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Abstract

A Framework for Productive, Efficient and Portable Parallel Computing

by

Ekaterina I. Gonina

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Chair

Developing efficient parallel implementations and fully utilizing the available
resources of parallel platforms is now required for software applications to scale
to new generations of processors. Yet, parallel programming remains challeng-
ing to programmers due to the requisite low-level knowledge of the underlying
hardware and parallel computing constructs. Developing applications that effec-
tively utilize parallel hardware is restricted by poor programmer productivity,
low-level implementation requirements, and limited portability of the application
code. These restrictions in turn impede experimentation with various algorithmic
approaches for a given application. Currently, the programming world is divided
into two types of programmers: application writers who focus on designing and
prototyping applications and algorithms, and efficiency programmers who focus
on extracting performance for particular compute kernels. The gap between these
two types of programmers is referred to as "the implementation gap".

In this dissertation, we present a software environment that aims to bridge the
implementation gap and enable application writers to productively utilize parallel
hardware by reusing the work of efficiency programmers. Specifically, we present
PyCASP, a Python-based software framework that automatically maps Python
application code to a variety of parallel platforms. PyCASP is an application-
domain-specific framework that uses a systematic, pattern-oriented approach to
offer a single productive software development environment for application writ-
ers. PyCASP targets audio content analysis applications, but our methodology
is designed to be applicable to any application domain. Using PyCASP, appli-
cations can be prototyped in Python code and our environment enables them
to automatically scale their performance to modern parallel processors such as
GPUs, multicore CPUs and compute clusters. We use the Selective Embedded
JIT Specialization (SEJITS) mechanism to realize the pattern-based design of
PyCASP in software. We use SEJITS to implement PyCASP’s components and
to enable automatic parallelization of specific audio content analysis application
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patterns on a variety of parallel hardware. By focusing on one application domain,
we enable efficient composition of computations using three structural patterns:
MapReduce, Iterator and Pipe-and-Filter.

To illustrate our approach, we study a set of four example audio content anal-
ysis applications that are architected and implemented using PyCASP: a speaker
verification system, a speaker diarization system, a music recommendation sys-
tem and a video event detection system. We describe the detailed implementa-
tion of two computational components of PyCASP: a Gaussian Mixture Model
(GMM) component and a Support Vector Machine (SVM) component and their
use in implementing the example applications. We also analyze composition of
computations using the three structural patterns and implement the available
optimizations for composing computations in audio analysis applications.

We evaluate our approach with results on productivity and performance using
the two computational components and the four example applications. Our re-
sults illustrate that we can prototype the full-functioning applications in Python
using 10� 60⇥ less lines of code than equivalent implementations using low-level
languages. Our PyCASP components and example applications achieve and of-
ten exceed the efficiency of comparable hand-tuned low-level implementations. In
addition to specialization, adding the optimizations for composing components
in these applications can give up to 30% performance improvement. We show
that applications written using PyCASP can be run on multiple parallel hard-
ware backends with little or no application code change. PyCASP also enables
applications to scale from one desktop GPU to a cluster of GPUs with little pro-
grammer effort. Combining all of the specialization and composition techniques,
our example applications are able to automatically achieve 50-1000⇥ faster-than-
real-time performance on both multi-core CPU and GPU platforms and 15.5⇥
speedup on 16-node cluster of GPUs showing near-optimal scaling.
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Chapter 1

Introduction

Historically, processor capabilities in the computing industry have been driven by
Moore’s Law, which states that the number of transistors that can be put on a
processor die doubles every 18 months [73]. Moore’s Law is based on the trend that
the transistor size decreases every generation, allowing hardware manufactures
to put more transistors on one die. Thus, following this trend, since the mid
1980s, processor clock speeds increased exponentially every year, as shown in
Figure 1.1. This trend, in turn, enabled software applications to see an increase
in performance for “free”, i.e. without any programming effort - every two years
a new, faster processor automatically improved application performance.

However, in the early 2000s, this growth was disrupted by the physical limita-
tion on energy required to power more transistors on one die. As shown in Figure
1.1, the peak processor frequency could not scale above 3GHz, due to the power
limitations; the computing industry hit what is now referred to as the “Power
Wall”. While Moore’s Law remained in effect, instead of putting more transistors
on one processor die, the computing industry shifted to putting multiple processor
cores on one die. Thus, the power constraint caused a shift in the industry to
designing and manufacturing parallel hardware.

The shift to parallelism in the computing industry enabled higher performance
as parallel processors now allowed for higher computational throughput at lower
power costs. However, this shift was (and still is) absolutely disruptive to the
software industry. Instead of automatically seeing performance improvement with
every new generation of processors, applications now have to be explicitly rewritten
to take advantage of the new hardware capabilities.

When efficiently mapped onto parallel platforms, computationally-demanding,
large-scale and low-latency applications can achieve several orders of magnitude in
performance improvement allowing for real-time processing and scaling to large
datasets [15] [74] [23]. Table 1.1 shows the potential in performance improve-
ment when going from high-level single-core CPU code (typically preferred by
application programmers) to low-level parallel code. Reimplementing algorithms
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Figure 1.1: Scaling of the processor clock speeds.

in low-level code from high-level code for a single sequential CPU core alone
can give at least one to two orders of magnitude performance improvement [15].
Furthermore, when porting the application code from sequential low-level code
to multi-core CPU code, applications typically gain 2-10⇥ in performance [111].
When porting sequential single core CPU code to GPUs we can see anywhere
from 10⇥ to 200⇥ performance improvement [23, 15, 16]. Finally, distributing
the computation across a cluster of parallel machines can give further one or two
orders of magnitude in performance improvement [44]. Thus, starting from a
high-level, sequential single core CPU application implementation and combining
several parallelization techniques we can boost application performance by sev-
eral orders of magnitude. This performance improvement is extremely enticing -
higher application performance can mean significant improvement in application
accuracy and user experience [26]. In addition, in order to scale applications to
new hardware, we must implement applications to explicitly utilize parallelism in
the new processors.

While the benefits of parallelizing applications are very appealing, program-
ming parallel hardware is a challenging task. Writing low-level code takes a signifi-
cant amount of programmer effort and expertise, not available to every application
programmer. In order to see application performance improve with new gener-
ations of hardware, application developers are now required to understand not
only their application domain, but also the new parallel computing challenges,
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Implementation Shift ⇥ Perf Imp*
High-level single core CPU -> Low-level, single core CPU 10� 100⇥
Low-level single core CPU -> Low-level multi-core CPU 2� 10⇥

Low-level multi-core CPU-> Low-level GPU 10� 200⇥
Low-level multi-core CPU -> Low-level multi-node cluster 10� 100⇥

Table 1.1: Performance improvement possible when reimplementing applications
in lower-level languages and explicitly utilizing parallel hardware. *⇥ Perf Imp =
Performance Improvement Factor

previously unfamiliar to them. For example, application programmers now need
to understand the intricate details of parallel hardware architectures, parallel pro-
gramming environments and the synchronization and communication mechanisms
of parallel tasks. The required focus on the details of parallelism and the hard-
ware architecture significantly impedes programmer productivity. Furthermore,
because of the complexities associated with writing parallel code, applications are
typically written and tuned for one particular platform. This dependency on par-
ticular specifications of the target platform makes application code non-portable;
porting the application to a different platform requires at least a partial applica-
tion code rewrite. These parallel programming challenges make it very difficult
for application programmers to develop applications that can utilize new parallel
hardware.

Because of the challenges of developing parallel applications, the current prac-
tice of creating and deploying software applications is divided between application
developers and expert parallel programmers, creating a dichotomy that we refer to
as The Implementation Gap. Figure 1.2 shows a typical setup of programmers in
an application development project. On one end, there is the application domain
expert, who is developing the application for the target user. Application do-
main experts are deeply familiar with the application domain (for example speech
recognition or computer vision), they work to advance the state of the art in this
domain under a set of implementation constraints such as recognition accuracy
or recommendation latency. They are typically not familiar with the details of
the underlying hardware or parallelization strategies, but would rather focus on
analyzing the data, implementing particular algorithms, and experimenting with
algorithm parameters and alternative data representations. For their tasks, appli-
cation developers prefer to use high-level languages such as MATLAB or Python to
quickly prototype their applications and algorithms. On the other end, there are
the expert parallel programmers who are deeply familiar with the underlying par-
allel hardware and low-level languages used to program the hardware and extract
best performance for particular computations. They prefer to work in low-level
languages such as C and CUDA and focus on enabling low-level optimizations in
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Figure 1.2: The Implementation Gap in application development.

their code to fully utilize and use all intricate architectural features of parallel
hardware. Expert parallel programmers, however, typically lack broad applica-
tion domain understanding and thus cannot take advantage of domain knowledge
to improve application performance.

In order to develop efficient applications that utilize underlying parallel hard-
ware, expert parallel programmers need to work together with the application
domain experts to combine their application and parallel efficiency knowledge
and develop high-performing, parallel applications that achieve state-of-the-art
accuracy. This communication is required for the computing industry to move
forward and enable scalability of applications on future hardware platforms. One
way to solve this problem is to use a software environment that enables appli-
cation developers and efficiency programmers to work together to create efficient
applications that utilize parallel hardware. In this dissertation, we set out to an-
swer the following question:

How can we build a software environment to bridge the implementation gap
and enable application writers to productively utilize parallel hardware and develop
efficient, scalable, and portable applications?.

1.1 Research Goals
To answer the above question, we focus on answering more specific questions and
set concrete goals:
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1. Bridging the Gap: How can a software environment bridge the imple-
mentation gap and allow for communication between application developers
and expert parallel programmers? We aim to show how we can achieve
communication between the two types of programmers using a software en-
vironment.

2. Scope: What is the scope of such a software environment? What compo-
nents and abstractions should such a software environment support? We
aim to define the scope for a specific application domain and show how the
approach can be generalized to other domains.

3. Vocabulary: What language / common vocabulary should the software
environment use such that both types of programmers can understand and
use it? We aim to find such a language that facilitates both programmer’s
understanding of the software environment and its functionality.

4. Productivity: How can our software environment provide productivity of
high-level languages? We aim for 10-100⇥ lines-of-code reduction compared
to applications written in a low-level efficiency language.

5. Efficiency How can our software environment allow for efficient perfor-
mance of low-level implementations? We aim to obtain within 30-50% of
hand-coded performance and within an order of magnitude faster perfor-
mance than pure Python code.

6. Portability How can our solution ensure that the same application code is
portable to new generations of processors and across a variety of hardware
platforms? We aim to demonstrate the same application running on a multi-
core CPU, a GPU and a computer cluster without significant application
code change.

7. Scalability How can our software environment allow programmers to go
from experimentation on a single node to a cluster of processors, from pro-
cessing a sample subset of data to the entire dataset? We intend to show
application scaling from one compute node to a cluster of compute nodes,
using our same framework, without significant programming effort.

8. Flexibility Even when achieving the above requirements, how flexible is
such a software environment when designing and prototyping different ap-
plications? We aim to investigate the advantages and disadvantages of re-
stricting the application scope of the framework to a particular application
domain in terms of programmer flexibility.

9. Composition: How can our software environment support composition of
computations to further improve application performance?
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The list above presents a very broad set of topics and goals. In this thesis,
we focus in depth on bridging the implementation gap and providing application
programmer productivity and application efficiency and portability. In addition,
we outline the methodology to define the scope of the framework and enable
composition of computations. Finally, we provide a brief discussion on flexibility
of our approach and ways of achieving scalability to serve as a a guide for future
work.

The main contribution of this thesis is the proposal of a systematic way to
bridge the implementation gap using an application-domain-specific, pattern-
oriented approach for the design of the framework and the Selected Embed-
ded Just-in-Time Specialization (SEJITS) mechanism to realize this design in
software. We present our proposed solution in the form of PyCASP: a pattern-
oriented, application-domain-specific, specialization framework.

We use the audio content analysis domain as our target application domain.
Audio content applications implement algorithms for extracting information from
audio data such as speech, music and video soundtracks. Audio analysis appli-
cations have specific latency and throughput constrains that make it a lucrative
target for demonstrating performance improvement using parallelization. We use
four state-of-the art audio analysis applications to guide us through the design
and implementation of our proposed solution: a speaker verification system, a
meeting diarization system, a music recommendation system and a video event
detection system. We outline the design process of our framework, the realization
of the design in software as well as specific implementation details that enable us
to achieve our goals. We use the four selected state-of-the-art to illustrate our
approach throughout this work.

1.2 Thesis Contributions
The contributions of this thesis work are as follows:

• We propose using a pattern-oriented design for designing our software en-
vironment to bridge the implementation gap. The pattern-oriented design
uses application, computational and structural patterns to define the scope
and aid in defining a comprehensive and modular software solution. Pat-
terns are used to construct application software architectures. A framework
designed using patterns can support a variety of applications in the selected
application domain.

• We propose using an application-domain-specific approach for designing the
software solution to bridge the implementation gap. By focusing on one
application domain, we restrict the scope of the framework to particular
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patterns present in this domain resulting in a clear scope and a comprehen-
sive software environment.

• We propose restricting the scope of the software environment to one ap-
plication domain to aide in composition of computations. By focusing on
one application domain and analyzing the types of compositions that are
common this domain, we aim to design a software framework that can un-
derstand and optimize the composition of computations to enable higher
application efficiency.

• We propose using the Selected Embedded JIT Specialization (SEJITS) ap-
proach for realizing our pattern-based design in software. SEJITS enables
programmer productivity and flexibility as well as application efficiency and
portability. We propose using SEJITS to realize application patterns in soft-
ware to enable domain experts to automatically utilize parallel hardware.

• We propose and develop a framework called PyCASP (Python-based Content
Analysis using SPecialization) that uses the proposed approaches. Specif-
ically, PyCASP uses the pattern-oriented, application-domain-specific spe-
cialization approach to enable application programmers to write applications
that automatically utilize parallel hardware.

• We describe how PyCASP can allow for high application programmer pro-
ductivity by being embedded in Python as well as employing the pattern-
oriented design methodology. We hope that using these approaches, we can
achieve productivity of high-level languages in our software environment.

• We describe how PyCASP can allow for high application efficiency by using
the SEJITS approach. We hope that using specialization applications that
are written in a highly-productive environment, we can achieve efficiency
that is on par with the efficiency of hand-tuned low-level implementations.

• We describe how PyCASP’s components can be portable to a variety of par-
allel hardware including multi-core CPUs, NVIDIA GPUs and clusters. We
aim to enable applications written using PyCASP to run on many platforms
with little or no any application code change.

• We describe how we can allow the application developers to use a computer
cluster to run their applications. We aim to enable application programmers
to port their applications to use more nodes of a cluster of machines as well
as process more data by enabling the MapReduce functionality in PyCASP.

• We propose that the three structural patterns that are common in the audio
content analysis applications are sufficient for describing a large variety of
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applications in the domain. We aim to show that these three structural pat-
terns are sufficient and flexible enough to express the common compositions
of components in audio content analysis applications.

• We aim to show that we can implement a large variety of state-of-the-art
audio content analysis applications using our software environment. We look
at a variety of applications ranging from speaker verification to video event
detection and classification. We aim to show that these applications can
all be written in Python and use PyCASP to automatically utilize parallel
hardware.

1.3 Thesis Outline
• Chapter 2 describes the background information for this work. It describes

the programmer challenges and the specifics of parallel hardware architec-
tures and programming environments related to and used in this work. The
chapter also describes related work on alternative approaches to application
development and bridging the implementation gap. It then gives details on
the background for specific methodologies that we propose use to develop
our software solution

• Chapter 3 describes the audio content analysis application domain. It gives
a detailed overview of the four example audio analysis applications and the
algorithms they employ.

• Chapter 4 proposes using a pattern-oriented design for our software frame-
work solution. It discusses the pattern-oriented design methodology and
discusses the specific pattern-mining process to analyze the audio content
analysis applications. It describes the application, computational and struc-
tural patterns in the audio content analysis domain. The chapter then dis-
cusses how we can use the patterns to construct software architectures of
the sample audio analysis applications.

• Chapter 5 proposes using the specialization approach to realize the pattern-
based design described in Chapter 3 in software. Specifically, the chapter
discusses the Selected Embedded JIT Specialization (SEJITS) approach that
we propose to use in our solution. It discusses how application patterns can
be realized in software using SEJITS. It then gives details of the implemen-
tation and specialization mechanisms of two specific application patterns:
the Gaussian Mixture Model (GMM) Parametric Clustering component and
the Support Vector Machine (SVM) Linear Classification component.
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• Chapter 6 proposes restricting the framework’s scope to enable composition
of computational components in applications developed using our frame-
work. The chapter focuses on the three structural patterns we mined in
Chapter 3 (Pipe-and-Filter, Iterator and MapReduce) and discusses how we
can enable composition using these patterns. The chapter describes how
each pattern can be used to compose computations in applications using
the sample audio applications as a guideline.

• Chapter 7 shows how the sample audio content analysis applications can
be implemented using the proposed framework. Specifically, it describes
how the speaker verification application, speaker diarization system, mu-
sic recommendation system and the video event detection system can be
implemented in Python using PyCASP. Each section describes the imple-
mentation of the application algorithm using PyCASP illustrating the use
of its components and composition mechanisms.

• Chapter 8 evaluates the software environment solution against the goals
described in Chapter 1 and describes the results of this research. The chapter
talks about the results on productivity, efficiency and portability of each
example application as well as individual performance of each component of
PyCASP. It then describes the results on performance of applications from
using the composition mechanisms.

• Chapter 9 concludes this work and presents a discussion of the drawbacks
and some directions for future work.
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Chapter 2

Background

2.1 Programmer Challenges
When writing applications, programmers have to trade-off productivity with effi-
ciency and portability. On one end, application writers want to stay productive,
develop applications rapidly and find bugs quickly. On the other end, develop-
ers want applications that are performance-efficient and portable. Developing
efficient applications requires low-level implementation and careful tuning of the
algorithm, which significantly impedes productivity. In addition, writing portable
code requires rewriting the application to run on different platforms, which also
heavily impacts productivity.

2.1.1 Productivity

Productivity measures the programming effort needed for an application writer
to develop a full-functioning application. Measuring software productivity is a
difficult undertaking as there is no standardized measurement system or criteria
for evaluating productivity and most conclusive arguments can be made only
about large-scale software systems [95]. Several studies indicate that software
reuse is one of the most contributing factors to software productivity [11]. While
acknowledging that extensive data collection and knowledge-based approaches
are needed to fully evaluate productivity of software development, in this work,
we restrict our evaluation to comparing the lines of code required to implement
applications as well as code reuse. While this evaluation approach is fairly surface-
leveled, it provides a quantitative way to estimate productivity and serves as a
good initial estimate of productivity improvement.

When analyzing programmer productivity, case studies have found that high-
level scripting languages such as MATLAB or Python allow programmers to ex-
press the same programs in 3 � 10⇥ fewer lines of code and in one fifth to one
third the development time [22, 52, 84]. Thus, high-level scripting languages en-
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Figure 2.1: Python code for the 3D heat equation. From S. Kamil [59].

able programmer productivity; they express computations at a high-level, provide
libraries and abstractions to hide implementation details and reuse code. They
also provide a set of tools to aide in application development such as plotting and
data analysis tools as well as file management mechanisms that are easy to use.
To develop an application prototype in a productivity language, programmers do
not have to think about underlying hardware architecture but rather focus on the
application and the algorithm at hand. For example, Figure 2.1 shows a sample
Python code snippet for the 3D heat equation; the entire computation is expressed
in 4 lines of Python code. Productivity languages also typically do not require
compilation or linking, freeing the programmers from infrastructure concerns as
well.

2.1.2 Performance

Performance measures the efficiency of a particular application running on a given
hardware platform. As mentioned in Chapter 1 and shown in Table 1.1, when we
look at the landscape of parallel programming to compare application perfor-
mance, there are several orders of magnitude performance improvement available
when going from a high-level sequential implementation to combining several par-
allelization techniques and using low-level languages.

While low-level, parallel implementations of computations are very efficient,
they present some significant drawbacks. They take significant amount of pro-
gramming effort, are difficult to understand and maintain and are non-reusable
and non-composable. Figure 2.2 shows a code snippet of the 3D heat equation
implemented in C for efficiency, to contrast the one shown implemented in Python
and shown in Figure 2.1. Applications written in C/C++ contain orders of mag-
nitude more lines of code as the equivalent implementations in Python. The
application code is also more cumbersome to understand and maintain. These
problems become a lot more signficant when we move to parallel implementations
with Pthreads, OpenMP or CUDA. In order to extract best performance out of a
hardware platform, application code needs to be heavily tuned with optimizations
such as loop unrolling, operand reordering and memory usage optimization such as
zero-padding. Thus, while low-level, heavily-tuned, parallel implementations pro-
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Figure 2.2: C code for the the 3D heat equation. From S. Kamil [59].

vide high performance, they require substantial programmer effort, significantly
impeding productivity.

2.1.3 Portability

Productivity measures how many different hardware platforms one application can
run on without application code change. As mentioned in the previous subsection,
in order to extract the most efficiency out of a hardware platform, application code
needs to be heavily optimized and tuned to that specific hardware architecture.
This makes source code developed for one particular platform not portable to a
different platform. For example efficiency-level code written for a single desktop
GPU platform is not portable to a multi-core CPU platform or even to a previous
generation of the GPU. In order to run the application on a different platform,
current practice is to rewrite the application source code for every platform. This
amount of effort is typically not feasible for a typical software development project.

Furthermore, when one wants to port an application from a single-node plat-
form to a cluster of machines, application scalability becomes an issue. In order
to enable application scalability to a larger dataset, application code needs to
be rewritten to explicitly scale to clusters of machines. To achieve portability
and scalability of their applications to clusters of processors, programmers need
to rewrite their applications using distributed programming frameworks such as
Hadoop [107] and MapReduce [33]. In addition, commodity clusters and datacen-
ters typically consist of a large set of multi-core nodes, thus requiring composition
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of parallel code using the distributed frameworks and the low-level parallel imple-
mentations for a single multi-core node, further impeding application programmer
productivity.

2.2 Parallel Programming Challenges
In order to scale application performance to new parallel hardware, applications
have to explicitly express parallelism in their implementation. This requirement
makes application development very difficult to application writers due to several
challenges, described below.

2.2.1 Identifying available parallelism

Application algorithms can exhibit several possible parallelism opportunities. For
example if the algorithm operates on a multi-dimensional data structure, we can
focus on identifying dimensions that can be processed independently (referred to
as “data-parallelism”), or there may be multiple tasks in the algorithm that are in-
dependent and can be executed simultaneously (referred to as “task-parallelism”).
Some algorithms are, on the other hand, inherently sequential. For example, in
a path-finding algorithm for a graph, each algorithm step depends on the results
of the previous step, thus disallowing parallelization across iterations of the algo-
rithm. In order to parallelize an application, one needs to identify independent
computations as well as operations and data elements that can be operated on
in parallel. It is also important to understand the degree of parallelism of each
set of independent tasks or data elements. For example, there may be two or
two thousand independent tasks in an algorithm. Parallelization strategies will
differ depending on the degree of parallelism in addition to the type of parallelism
available.

2.2.2 Understanding the variety of parallel hardware

With the computing industry shifting toward parallel processors, there is a large
variety of parallel hardware available for application developers. The most com-
mon consumer-facing parallel computing platforms include multi-core CPUs, Graph-
ics Processing Units (GPUs) and commodity clusters. Each parallel platform has
its own hardware architecture specifications and execution models. Understand-
ing the intricacies of the parallel hardware architectures is important in order to
write efficient parallel code. For example, failure to fully understand the details
of the memory hierarchy, task scheduling or communication mechanisms between
processing units of a particular platform can result in losing several orders of
magnitude in application performance. In addition, it is not always clear which
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parallel platform is best suited for a particular application, further exacerbating
the problem of hardware selection.

2.2.3 Understanding the variety of parallel programming
frameworks

In addition to understanding the details of parallel platforms, application pro-
grammers must also understand the different parallel programming languages and
frameworks that can be used to program these platforms. In order to utilize paral-
lel hardware, it is necessary to write the applications in low-level frameworks such
as OpenMP [78], Pthreads [67], CUDA [75] and OpenCL [77] (discussed in more
detail later in this chapter). These frameworks support different programming and
threading models, some allow for different amount of control of synchronization
and communication mechanisms between parallel threads of execution. Further-
more, writing applications using these low-level frameworks typically results in
cumbersome, hard-to-maintain, platform-specific application code, making appli-
cation maintenance challenging as well.

2.3 Parallel Platforms
Currently, there are three main types of consumer-facing parallel computing plat-
forms - multi-core CPUs, GPUs (Graphics Processing Units) and commodity clus-
ters. We do not discuss supercomputers or other specialized parallel platforms as
we are focused on economical approaches to computing.

2.3.1 Multi-core CPUs

Figure 2.3 shows an example block diagram of a multi-core CPU. Multi-core CPUs
contain two or more processor cores per die. The processor cores are traditional
compute units that execute compute (add, multiply), data movement (load and
store) and branch instructions. Each core can also support vector instructions to
exploit data-level parallelism in a set of instructions. Each core on a multi-core
processor is optimized for single-thread performance and thus multi-core proces-
sors perform best on coarse-grained parallel tasks. In multi-core processors, each
core typically has a local cache. The cores can also share an L3 cache (as shown
in Figure 2.3). The cores on the chip use a shared memory or message-passing
protocol to communicate with each other (Figure 2.3 shows a CPU architecture
with cores using one shared DRAM). Some examples of multi-core CPUs include
the AMD Phenom, Intel’s i3, i5, and i7 (quad-core) and Intel Xeon (eight-core)
processors.
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Figure 2.3: Multi-core CPU block diagram.

2.3.2 GPUs

Figure 2.4 shows an example block diagram of a CPU-GPU system. GPUs were
originally developed to efficiently execute computer graphics operations such as
rendering and texture mapping, but have recently gained traction as general pur-
pose compute platforms (GP-GPUs). GPUs are high-throughput co-processors
that are highly efficient at executing arithmetically-intense, data-parallel, stream-
ing computations. GPUs contain a set of cores, each core implementing the SIMD
(Single Instruction Multiple Data) execution model where same instructions op-
erate on multiple pieces of data. Each core has a software-programmable lo-
cal memory (shown as Local Store, “LS”, in Figure 2.4). Efficiency comes from
amortizing instruction load as well as performing computations on coalesced data.
GPUs can be manufactured as a stand-alone piece of hardware (as in the NVIDIA
Tesla model) or can be integrated with the CPU on the same die (as in the Intel
Sandybridge model).

In this work, we focus on the NVIDIA GPU model, where the GPU is manufac-
tured as a separate compute board and is added to the compute pool as a separate
device using a PCI connection. As shown in Figure 2.4, in this model the GPU
is coupled with the host CPU to create a CPU-GPU co-processor system. The
CPU acts as a host processor, issuing memory allocation and copy requests from
the CPU memory to the GPU memory and calling kernel functions to execute
computations on the GPU device. The programmer is responsible for explicitly
managing data structure allocations on the GPU. To perform computations on
the GPU, data structures must first be allocated in the GPU memory and input
data must be copied from the CPU to the GPU. After the computation is com-
plete, the result data structures must be transferred back to the CPU memory
and the GPU data structures must be explicitly deallocated.
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Figure 2.4: CPU-GPU block diagram.

2.3.3 Clusters

Figure 2.5 shows an example block diagram of a computer cluster. A computer
cluster consists of a set of inter-connected general-purpose computers (cluster
nodes) that can operate together to execute a computation. Clusters were a re-
sult of several computing trends - availability of affordable computers, high speed
networks and innovation in distributed computing. Early adopters of compute
clusters were companies like Google and Yahoo! whose goal was to enable faster
cost-effective data processing. Efficient execution on a cluster requires exploit-
ing coarse-grained parallelism. Communication between the nodes of a cluster is
expensive since messages have to move across low-bandwidth interconnection net-
works. Thus, reducing communication and maximizing inter-machine parallelism
is essential to obtaining high performance for an application running on a cluster.

Node 0

Interconnection Network

Node 1 Node 2 Node3

Figure 2.5: Computer cluster block diagram. Four CPU-GPU nodes are connected
using an interconnection network.
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2.4 Alternative Approaches for Application
Development

There are many programmer tools that aim to bridge the implementation gap.
Table 2.1 summarizes some representative approaches. We note that there are
other categories of alternative approaches, here we focus on the main types that
have gotten the most traction. Each row in Table 2.1 shows whether the solu-
tion is a language, library or framework, whether its primary focus is efficiency
of productivity, whether it targets parallel platforms and whether or not it is
application-domain-specific. Subsections below describe each approach in more
detail.

Programmer Tool Efcy/Prod* Lib/Lng/Fwk** Parallel? DS?***
Python Productivity Language No No

Pthreads, OpenMP, CUDA Efficiency Language Yes No
BLAS, LAPACK Efficiency Library Yes No

Marsyas, HTK, OpenCV Efficiency Library No Yes
Cactus, CHARMS Efficiency Framework No Yes

Numpy, Gnumpy, Cudamat Productivity Library Yes No
Theano, Copperhead, MR Productivity Framework Yes No

Delite, OptiML Productivity Framework Yes Yes
MapReduce Productivity Framework Yes No

Table 2.1: Summary of alternative solutions for parallel programming. All iden-
tifiers are specific to application development process. *Efficiency / Productivity;
**Library / Language / Framework; ***DS = Domain Specific?

2.4.1 Efficiency languages

Pthreads (POSIX threads) [67] are one of the oldest mechanisms for parallel pro-
gramming, stemming from the UNIX operating systems. They employ a low-level
programming model that is efficient and non-domain specific. Pthreads are imple-
mented as a set of C types, functions and constants. Each operating system can
implement its own version of Pthreads and expose the API to the programmer.
The Pthread model views each thread as a stream of independent computations.
Each thread maintains its own stack pointer and registers. Threads are created
and are assigned a particular function to execute, they can be forked or joined.
Threads share data using read/write locks and barriers making synchronization
a very challenging programmer task. All thread behavior is explicitly controlled
by the programmer, thus, while being one of the most challenging parallel pro-



CHAPTER 2. BACKGROUND 18

gramming mechanisms, Pthreads provide the most flexibility to the programmer
requiring very little structure.

OpenMP (Open Multi-Processing) [78] is an API that supports shared mem-
ory multiprocessor programming in C, C++, and Fortran. OpenMP is a multi-
threaded programming model, where a master thread controls a set of worker
threads; tasks are divided among the threads in a particular specified way using
a work-sharing mechanism. Programmers mark the parallel sections with prepro-
cessor directives that tell the compiler which sections of the code can be executed
by multiple threads. Threads synchronization is expressed using synchronization
clauses (atomic, barrier, critical etc.). Task scheduling among threads can be
controlled using scheduling clauses (static, dynamic, custom). The programmer
is tasked with identifying the parallel sections in his/her code and marking them
accordingly; the OpenMP runtime creates and runs the threads and joins them
after execution is done.

Intel Cilk+ language [27] is a set of C/C++ extensions for programming
multi-core processors. The programmer exposes parallelism in a C/C++ program
by identifying elements that can be executed concurrently and marking it with
a Cilk-specific keyword. The programming environment decides exactly how the
work is split among threads and how the tasks are scheduled, thus the same
program can run on one as well as many processors without code change. Similar
to the OpenMP model, the programmer is tasked with identifying parallel sections
in the code and marking them with the Cilk keywords, while the runtime handles
thread creation and execution.

CUDA (Compute Unified Device Architecture) [75] is a framework for pro-
gramming NVIDIA GPUs. A CUDA application is organized into sequential host
code written in C running on the CPU and many parallel device kernels running
on the GPU. The kernel executes a set of scalar sequential programs across a set
of parallel threads on the GPU. The programmer can organize these threads into
thread blocks, which are mapped onto the processor cores at runtime. Each core
has a small software-managed fast local memory. To run an application on the
GPU, data structures must be explicitly transferred from host to device. Task
scheduling and load balancing are handled by the device driver automatically.

OpenCL [77] is a framework for writing parallel programs that execute across
heterogeneous platforms such as CPUs and GPUs. Similar to CUDA, OpenCL
uses C extensions for writing host code and device kernels, as well as APIs that
are used to define and control the platforms. The OpenCL model uses task-based
and data-based parallelism and thus can be used to program a variety of parallel
devices.
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2.4.2 Efficiency libraries & frameworks

There are several efficient libraries, such as BLAS [10] and LAPACK [2] for numer-
ical and linear algebra computations that aim to bridge the implementation gap
by packaging up complex, efficient implementations of particular computations
allowing for reuse and productivity. However, libraries typically implement a spe-
cific computation for a specific platform presenting a brittle approach. Compiler
optimizations and auto-tuners such as those described in [105] and [60] can ad-
dress the portability issue by tuning the application code to a particular platform.
Libraries and auto-tuners, however, do not provide guidance on how to design an
application as a whole to allow for most efficient and scalable implementation.
Efficiency application frameworks, like Cactus [45] and CHARMS [47], on the
other hand provide a flexible environment for application development, while still
enabling high performance. Programmers can develop their applications using
the framework that guides them in the composition of various computations in a
pre-defined way. Both of these approaches allow for increased productivity and
efficiency in application development, but are still low-level solutions.

2.4.3 Domain-specific efficiency libraries & frameworks

There is an extensive list of domain-specific libraries and frameworks for audio
and visual media analysis, here we name a few important ones. OpenCV [46]
is a library for developing computer vision applications, that includes Python,
C/C++ and Java interfaces and targets CPU platforms. The Hidden Markov
Model Toolkit (HTK) [49] is a portable toolkit for building and manipulating
hidden Markov models as well as performing other processing on audio, used for
speech recognition. Marsyas [104] is a popular music information retrieval (MIR)
software framework for rapid prototyping, design and experimentation with audio
analysis and synthesis with specific emphasis on processing music signals in audio
format. CLAM [1] is a C++ framework, for development and research in audio
and music signal processing applications. These frameworks provide an extensive
API for processing audio and image data, however most of them are presented in
a low-level language such as C++ and do not target parallel platforms. While
some frameworks, such as OpenCV have some modules that are ported to parallel
backends, parallelism is not the primary goal of such frameworks.

2.4.4 Productivity languages

Many application domain experts use productivity languages such as MATLAB
and Python to prototype and develop their applications. Such productivity lan-
guages provide high-level abstractions for many computations (for example linear
algebra or machine learning computations) as well as provide light-weight scripting
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“glue code” capabilities such file I/O, data plotting and data flow logic. Proto-
typing applications in such high-level languages can be done in a couple hundred
lines of code, allowing application writers to easily experiment with application
algorithms and data. However, these languages are usually impeded by perfor-
mance limitations. Unless there are libraries (such as BLAS) written in low-level
languages and linked to Python or MATLAB, applications written in pure MAT-
LAB or Python show very poor performance [15]. Thus, even though application
logic implementation can be done quite rapidly in such languages, experiment
turn-around is typically slow due to performance limitations.

2.4.5 Productivity libraries

There is a set of Python libraries that call efficient multi-core CPU and GPU im-
plementations of particular computations. For example Numpy [5] and Gnumpy
[102] contain APIs for numeric processing in Python that execute the computa-
tion on CPUs and GPUs respectively. Numpy runs on top of BLAS and Gnumpy
runs on top of Cudamat [72], both of which contain basic data parallel and lin-
ear algebra computations such as vector and matrix addition and multiplication.
These libraries provide a convenient, non-domain-specific way of performing nu-
meric and linear algebra computations in Python that run on parallel hardware.
They provide a clean interface to common numeric operations and are easy to
use for domain experts. However, their APIs do not provide flexibility that is
sometimes required for the application implementation.

2.4.6 Productivity frameworks

There are several frameworks that aim to bridge the implementation gap by cou-
pling productivity of Python with the efficiency of C-level implementations. Some
examples include Theano [7], a CPU/GPU math-compiler for Python, the Cop-
perhead language [14] which provides a set of data-parallel abstractions expressed
as a restricted subset of Python. The Delite framework [18] is a Domain Spe-
cific Language (DSL) creation framework and runtime for stencil operations and
OptiML [100] is a framework for executing efficient machine learning algorithms
from productive Scala code developed by Stanford University. Both Theano and
Copperhead provide automatic mapping of data-parallel computations onto GPUs
allowing for productivity and performance and are non-domain-specific. Similar
approaches are used in domain-specific frameworks. Delite is a DSL and compiler
for stencil operations with code generation capabilities for Scala, C++ and CUDA
and OptiML is a DSL for machine learning applications written in Scala that ex-
tracts task-parallelism from high-level machine learning algorithm descriptions.



CHAPTER 2. BACKGROUND 21

2.4.7 MapReduce

Finally, there is a set of frameworks that aim to enable productive programming
of computer clusters. They use the MapReduce paradigm originally developed by
Dean et al. [32]. These frameworks facilitate inter-machine parallelism by provid-
ing building blocks with which the application programmer can construct parallel
dataflows using map and reduce functions on key-value pair objects. MapReduce
frameworks are designed to be productive - all of the machine communication and
parallelism details are hidden from the programmer.

The MapReduce paradigm is supported by a number of languages and frame-
works, for example Hadoop [107] and MapReduce [33]. The DryadLINQ [112]
programming model provides a declarative, sequential, single machine program-
ming abstraction and the computations are expressed in a high-level language
similar to SQL. There are also several domain specific languages (DSLs) imple-
mented on MapReduce including Sawzall [82], Cascading [51] and Papyrus [50].

MapReduce frameworks have two main drawbacks. First, they are not suitable
for all scientific workloads since they are designed for data-intensive workloads.
Second, they still require a modest understanding of parallel programming despite
the fact that they are designed for productivity and hide many of the details of
distributed computing.

2.4.8 Other approaches

We’ve covered some of the main representative approaches to developing applica-
tions. There are a lot of other alternative approaches that we have not covered in
this section, including message-passing frameworks (such as MPI [48], Charm++
[56]), other threading libraries (such as TBB [90]) and cluster programming frame-
works (Spark [113], Pig [76]).

2.5 Comparing Alternative Approaches
Figure 2.6 shows the relative efficiency and productivity of the alternative ap-
proaches presented in the previous section. The efficiency scale denotes the ef-
ficiency of applications that is possible to achieve when they are written using
these approaches. The productivity scale denotes the productivity of application
developers when developing the applications using the specific approach. It is
important to note that the placement of each approach does not capture the ex-
act measured efficiency and productivity, but is rather meant to show relative
placement of the approaches on the global spectrum.

Figure 2.6 illustrates, that, while efficiency languages such as Pthreads and
CUDA provide the highest efficiency for applications, they are very low on the
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Figure 2.7: Comparing portability and productivity (left) and flexibility and pro-
ductivity (right) of alternative approaches.

productivity scale. Using these languages, the application programmers are re-
quired to write low-level code and tune it to particular computations and plat-
forms. On the opposite end, Python and MATLAB are high-level languages that
allow application programmers to stay highly productive, but do not yield efficient
code. Efficiency libraries (such as OpenCV, BLAS and HTK) and frameworks
(such as Cactus and CHARMS) provide efficient implementations of common
computations, and give more productivity than the efficiency languages. They
are, however, not as productive as Python-based productivity libraries such as
Numpy, Gnumpy and Cudamat and productivity frameworks such as Theano and
Copperhead. Those productivity libraries and frameworks provide efficient imple-
mentations that are wrapped in Python code, and thus are also more efficient.

Figure 2.7 places the alternative approaches on the portability-productivity
spectrum (left) and flexibility-productivity spectrum (right). As before, the pro-
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ductivity scale denotes the productivity of application developers when developing
the applications. The portability scale denotes how many different platforms ap-
plications that are written using these approaches can run on without application
code change. The flexibility scale denotes the application developer flexibility in
specifying application functionality when using these approaches. While the po-
sitioning of each approach doesn’t change on the horizontal (productivity) axis,
they show quite different placement on the vertical (productivity and flexibility)
axes.

Applications written in Pthreads or CUDA tend to be non-portable, i.e. they
are usually tuned to one particular platform and in order to enable them run
on another type of platform, application code has to be rewritten from scratch.
On the other end, applications written in Python or MATLAB can run on any
platform. Efficiency and productivity libraries usually can support multiple plat-
forms in the backend (different types of multi-core CPUs and GPUs for example)
making applications more portable to a variety of hardware platforms.

The flexibility of each approach also differs. Efficiency and productivity lan-
guages provide the highest degree of flexibility - programmers can express arbi-
trary computations using these approaches. Flexibility becomes more restricted
when we move to frameworks since they only allow for specific types of compu-
tations, but do give programmers flexibility in specifying exact details of code
functionality. Libraries provide the least amount of flexibility as they implement
very specific computations and usually do not allow for any modifications of the
underlying computation.

2.6 Our Approach
In the previous section, we discussed the major alternative approaches to applica-
tion development. While some prior approaches present reasonable solutions for
bridging the gap, they have several deficiencies. We summarize them below:

• Efficiency languages allow for very efficient application implementations but
do not allow for programmer productivity or portability of applications.

• Productivity languages allow for very high programmer productivity and
allow for application portability but yield inefficient applications.

• Efficiency libraries and frameworks are efficient but do not allow for signifi-
cant programmer productivity, are fragile and non-extensible, and allow for
modest amount of portability of applications.

• Productivity libraries are efficient and allow for more programmer produc-
tivity than efficiency libraries but are still fragile and non-extensible.
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• Productivity frameworks are efficient, productive and reasonably flexible
and portable, yet they typically are non-domain specific and thus cannot
take advantage of high-level domain knowledge for further application opti-
mization.

• Prior efficiency and productivity approaches do not allow for efficient com-
position of computational components in applications.

In this thesis, we aim to find a software solution that:

1. Bridges the implementation gap between application developers and effi-
ciency programmers to enable application developers to utilize parallel hard-
ware,

2. Achieves the goals of bringing productivity and flexibility to the application
development process and efficiency and portability to the resulting applica-
tions,

3. Allows for application-domain-specific optimizations, and

4. Allows for composition of computations in applications.

We propose the PyCASP (Python-based Content Analysis using Spe-

cialization) framework as the software solution to bridge the implementation
gap and achieve application programmer productivity and flexibility as well appli-
cation efficiency and portability to a variety of parallel hardware.

As mentioned in Chapter 1, bridging the implementation gap is a difficult
task. Application developers and efficiency programmers prefer to work in their
comfort zones, yet each type of programmer lacks the required understanding to
build full-functioning applications that scale to parallel hardware. In addition, as
illustrated by the comparison of alternative approaches, productivity, efficiency,
portability and flexibility are opposing forces in an application development pro-
cess. Writing efficient code requires low-level implementations and careful tuning
which impedes programmer productivity. Developing portable applications re-
quires rewriting each application for each platform, also significantly impeding
productivity. Allowing flexibility usually takes away from efficiency since we can-
not provide an optimized implementation for each use case in an application.
Composition of computations is also a notoriously hard problem: there are too
many computational workloads in software applications, each varies greatly in the
type of computation and data representation it uses. Composing computations
requires high-level knowledge of the computation and data format and low-level
optimizations, making it difficult to automate. Thus, creating a single software
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environment that achieves all of these aspects in addition to bridging the imple-
mentation gap is a difficult undertaking.

To find the right solution, we have extensively studied prior work on the sub-
ject. We aim to bridge the implementation gap by carefully defining the scope
and using code specialization to achieve the goals of productivity, efficiency, flex-
ibility and portability in PyCASP. In addition, we hypothesize that making our
software framework application-domain-specific will enable productivity, as well
as allow for application-domain-specific optimizations and efficient composition
of computations in applications. For this purpose, we choose to use the audio
content analysis application domain as the target application area, but our aim
is to design a software solution that can be applied to any application domain.

In order to bridge the implementation gap between application developers and
efficiency programmers, we aim to design and develop a software solution that
provides an infrastructure for both types of programmers. Our goal is to enable
application developers to utilize parallel hardware, thus, we set the target audi-
ence for our software solution to be application developers. Specifically, since we
aim to make our software solution application-specific, we set our target audience
to be the audio content analysis researchers and domain experts. Audio content
analysis researchers and application developers focus on analyzing and obtaining
high-accuracy information from audio sources such as speech and music. These
programmers typically prefer to use high-level languages such as MATLAB or
Python and focus on the algorithms used in their applications and not low-level
implementation details. On the other end, we aim to enable efficiency program-
mers to develop efficient parallel implementations of particular computations that
can then be used by the application developers. Our software solution needs to
provide efficiency and portability to applications developed by the domain ex-
perts. In addition, our software solution needs to provide reasonable amount of
flexibility to allow for implementation of a variety of applications in the domain.
Thus, we need to focus carefully on the design, the scope and the infrastructure
of our solution to bridge the implementation gap between the two programmer
types and achieve our goals.

2.6.1 Patterns & Our Pattern Language

In prior work, we have seen that using a pattern-oriented approach for the design
of software frameworks and libraries can provide modularity and productivity
to software infrastructures [25, 99]. Patterns give a common language to the
domain experts and efficiency programmers to communicate with each other and
provide a set of abstractions that help define the scope of software frameworks.
Specifically, a pattern-oriented approach based on design patterns developed by
Keutzer and Mattson in the OPL (Our Pattern Language) project [62] has shown
a lot of potential in designing comprehensive software environments. Patterns
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provide a generalizable solution to a class of recurring problems that occurs in
the design of software. OPL provides a pattern-based language to describe all
software applications using patterns. With OPL patterns, we can describe both
the structure of the applications as well as the computation of each component of
the application. This provides a modular, comprehensive way of structuring and
communicating the organization of various applications.

Pattern-oriented design has a strong foundation in the field of software en-
gineering, from the design patterns in object-oriented programming [42] and ar-
chitectural styles [97], to patterns in parallel programming [70] and performance
modeling and analysis of applications [98]. In our work, we aim for patterns to
provide us with guidance on the framework’s scope and performance implications
as well as define a common vocabulary to the software environment developers
and domain researchers who use it.

Figure 2.8: Patterns in Our Pattern Language (OPL)

Figure 2.8 shows the patterns that make up OPL. Applications (at the top
of the Figure) composed of application patterns (not shown) are decomposed
into computational and structural patterns. Computational patterns describe the
workload of the computation while the structural patterns describe the control-
flow and composition of computations in the application. The parallel algorithm
strategy patterns describe the parallelization strategies available for extracting
parallelism out of computations. The implementation strategy and parallel exe-
cution patterns describe how the parallel computation is further decomposed into
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parallel tasks and executed on parallel hardware.
Together, computational and structural patterns describe the software archi-

tecture of applications. Software architecture describes the organization, i.e. the
high-level computational and control-flow of an application. A software architect
designs applications by constructing software architectures. Software architec-
tures can be captured as boxes and arrows and drawn on a white board. They
give information about the structure and internal control- and data-flow of the
application. They provide modularity as the control flow between computations is
clearly described by the boxes and arrows. Software architectures are essential for
a systematic, modular application design and communication between application
designers and developers.

2.6.2 Selected Embedded JIT Specialization (SEJITS)

In analyzing previous work, we have seen progress in achieving productivity,
efficiency and flexibility with productivity frameworks such as Copperhead and
Theano [14, 7]. These frameworks use separation of concerns to enable appli-
cation developers and efficiency programmers to stay in their comfort domains
and provide a software infrastructure to bridge the gap between the two types
of programers. Specifically, these frameworks use code specialization and just-in-
time (JIT) compilation techniques to bridge the implementation gap and achieve
productivity, efficiency and flexibility. Specifically, a technique called Selected
Embedded JIT Specialization (SEJITS) has shown a lot of potential in bringing
efficiency to applications written in a high-level (productive) language [17, 57].

SEJITS-based frameworks contain a set of specializers that automatically par-
allelize specific computations on different parallel hardware. Specializers are mini-
compilers for domain specific embedded languages (DSELs) glued together by
Python code. SEJITS has the capability of rendering templated low-level code as
well as lowering Python code using AST (abstract syntax tree) transformations to
low-level code such as C or CUDA to enable specializer customization (see [17]).

To allow for productivity and efficiency, SEJITS focuses on the separation of
concerns: the application Python programmer focuses on innovating the applica-
tion and the efficiency programmer focuses on developing specializers for specific
computations. The specializers are then reused across applications by domain
researchers. The challenge of verification is eased due to programs being shorter
and easier to understand. The separation of concerns also allows for SEJIT spe-
cializers to target multiple platforms in the back-end of the framework without
changing the application code, allowing for portability.

When working with SEJITS-based frameworks, scientists express their appli-
cations entirely in Python using Python libraries and tools. They import the
framework’s specializers as Python objects into their code. When calling the
specialized functions from the application, SEJITS automatically generates low-
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level parallel code for a given back-end platform and problem size, compiles and
executes it on the parallel platform. From the Python application programmer’s
view, this experience is like calling a pure Python library, except that performance
is potentially several orders of magnitude faster.

Figure 2.9: SEJITS logical flow

Figure 2.9 shows the logical flow of using SEJITS in an application. At the
top, there is the productivity application written in Python. The application calls
several functions such as f() and h(). While the typical Python function f() gets
directly interpreted by the Python interpreter and executed on the underlying
hardware, the call to the specialized function h() gets intercepted by SEJITS.
When SEJITS intercepts the call to h() from the application, it calls the specializer
code to generate an efficient C version of h() (right side of Figure 2.9). The C
code gets compiled, cached and linked back to the Python program and executed
on the underlying hardware. This process is transparent to the application writer
and the entire logic of specialization is captured in the specializer (written by the
parallel programmer/specializer developer).

A specific framework for developing specializers called Asp (A SEJITS for
Python) was proposed and developed by Kamil [57]. Asp contains facilities to
automate the process of determining the best variant to use, emit source code
corresponding to that variant, compile and call the optimized code, and pass the
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results of the computation back to the Python interpreter. Asp has shown a wide
applicability to a variety of application domains [58].

2.7 Summary
The shift to parallel programming presents a set of challenges to the application
developers and introduces an implementation gap between efficiency programmers
and application developers. There is a variety of approaches for bridging the im-
plementation gap ranging from efficiency languages, libraries and frameworks to
productivity languages, libraries and frameworks. Each approach has its advan-
tages and drawbacks, and most importantly, neither approach achieves applica-
tion programmer productivity and flexibility as well as application efficiency and
portability. In this thesis, we propose PyCASP - Python-based Content Analysis
using Specialization framework as a software solution that achieves those goals and
bridges the implementation gap. We will use pattern-oriented design methodology
to define the scope of PyCASP and use the Selected Embedded JIT Specializa-
tion (SEJITS) methodology as the implementation infrastructure for our software
environment. Finally, we hope that restricting the scope of our software environ-
ment to one application domain will can enable composition of computations as
well as domain-specific optimizations to yield more efficient applications.
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Chapter 3

Audio Content Analysis

We wish to find a compelling application domain which will benefit from a pro-
gramming approach that provides productivity and efficiency when programming
a variety of high-throughput parallel processors. The audio content analysis appli-
cation domain is a great candidate for our approach. Audio content applications
implement algorithms for extracting information from audio data such as speech,
music and video soundtracks. With hundreds of videos and audio files being
uploaded to the web every minute [65], there is a high demand for scalable solu-
tions to large-scale audio content analysis. For example, appealing audio content
analysis applications include automatic video and audio transcription and search,
recommendation of new musical content, and tools for geo-location and privacy
analyses of human speech. Accurate and robust applications require training on
hundreds of thousands of learning examples requiring hours or days of processing
time. In addition, such applications require real-time processing when integrated
into interactive environments such as home entertainment systems and mobile ap-
plications, which require fast, low-latency, portable solutions to audio processing.
With such intensive application demands this domain presents a lucrative target
for a software solution that allows for automatic parallelization and scaling on a
variety of parallel hardware.

3.1 Audio Content Analysis Applications
Audio content analysis applications use a large variety of signal processing and
machine learning techniques to extract information from audio sources. Figure
3.1 shows a high-level diagram of audio content analysis applications. We start
with raw audio from speech or music. Typically, the first step in analyzing the
raw audio data is to extract features from raw audio signals using signal process-
ing algorithms. For example, the Mel Frequency Cepstral Coefficients (MFCC)
features are commonly used to extract and represent short-term spectral informa-
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Figure 3.1: High-level overview of audio content analysis applications.

tion from audio sources (commonly employed in speech processing applications).
After feature extraction, a variety of machine learning algorithms are used to con-
struct models that best explain the specific aspects of the data relevant to the
application. For example, in speech recognition applications, Gaussian Mixture
Models (GMMs) or Neural Networks (NNs) are used to model acoustic properties
of human speech. Several machine learning blocks can be composed together into
more complex applications. For example Hidden Markov Models (HMMs) are
composed with GMMs or NNs in speech recognition inference algorithms [111].

There are many appealing audio content analysis applications, for example:

• Automatic speech recognition and transcription

• Speaker modeling and verification

• Meeting diarization

• Music recommendation

• Beat tracking in a music performance

• Music genre identification

• Music fingerprinting / identification

• Video soundtrack transcription and event detection

• Audio search

• Video geo-location and privacy analysis

As mentioned in Chapter 1, we use four audio content analysis applications as
working examples to drive our design process and illustrate our approach through-
out this work. We summarize the applications below.
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1. Speaker verification application identifies if a piece of input audio belongs
to a particular target speaker.

2. Speaker diarization application segments an audio recording into speaker-
homogeneous regions, addressing the question “who spoke when” without
any prior knowledge of the recording or speakers.

3. Music recommendation application finds a set of songs that are most
similar to a given song or artist.

4. Video event detection system identifies a set of audio events (for example
“feeding an animal” or “birthday party”) in a set of videos by analyzing the
audio soundtracks.

We choose these four applications for several reasons:

• These applications present diverse workloads. Speaker verification works on
very small inputs of human speech (2-5 seconds) while the music recom-
mendation system uses a large database of one million songs to find similar
songs based on their audio properties.

• They analyze different types of audio. Speaker verification and diarization
analyze human speech. Music recommendation system analyzes a variety of
songs (pop, rock, jazz, hip hop) and video event detection analyzes audio
from consumer-produced videos.

• They take a step away from traditional speech recognition workloads. Speech
recognition is a sub-field of audio content analysis domain which has been
extensively studied since the 1940’s. While we still address speech in our
sample applications, our goal is to design a framework that can support
arbitrary audio analysis and thus, focusing on speech recognition would be
too restrictive.

In this thesis, we will use these applications to support and inform our decisions
about the design and implementation of our software solution. We discuss the
applications and their underlying algorithms in more details in the next set of
sections.

3.1.1 Speaker verification

A speaker verification system automatically identifies if a piece of input audio
belongs to a particular target speaker. Such a system can be employed in a
biometric authorization application, i.e. when a user wants to unlock a device
for example his/her phone. The speaker verification system requests an audio
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password and determines whether the recorded audio belongs to the owner of the
device or an intruder.

Algorithm

Our speaker verification uses Gaussian Mixture Models (GMMs) to model acoustic
properties of the speakers and Support Vector Machines (SVMs) to classify the
speakers into categories. This algorithm was originally developed and described
by Campbell et al. in [12], we summarize it below. The algorithm consists of two
phases: training and classification. The training phase is shown in Figure 3.2 and
contains the following steps:

1. Train a Universal Background Model (UBM) on audio samples from
a variety of speakers. A UBM is modeled by a GMM that “averages” the
audio features from a random sample of the training data and places the
average in a multi-dimensional space.

2. Adapt the UBM to target speaker audio. For each audio file from our
target speaker, adapt the UBM to our target speaker to compute a super-
vector. The GMM initialized with the UBM parameters. The adaptation
loop consists of a few (typically one to three) GMM training iterations using
the audio from the target speaker data. After UBM adaptation, we concate-
nate the means of the adapted GMMs into a supervector to be used as our
speaker classification features for the SVM. UBM adaptation approach for
speaker verification was originally described in [92].

3. Adapt the UBM to intruder examples. For each audio file from a
set of intruder examples, adapt the UBM to intruder speaker examples to
compute supervectors of example non-target-speaker audio.

4. Create a label set. Create a set of labels for the supervectors from our
target speaker (with value 1) and from the intruder set (with value �1), and
train a SVM on the set of positive and negative examples for our verification
system.

The classification phase of the speaker verification is shown in Figure 3.3.
When a new audio file comes in, we adapt the UBM and use the SVM to determine
whether the audio came from our target speaker or an intruder.

3.1.2 Speaker diarization

Speaker diarization application segments an audio recording into speaker-homo-
geneous regions, addressing the question “who spoke when” without any prior
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Figure 3.4: llustration of the segmentation and clustering algorithm used for
speaker diarization.

knowledge of the recording or the number of speakers. One popular diarization
method uses agglomerative hierarchical clustering with the Bayesian Information
Criterion (BIC) and GMMs trained with frame-based cepstral features [4]. This
method combines the speech segmentation and segment clustering tasks into a
single stage using agglomerative hierarchical clustering, a process by which many
simple candidate models are iteratively merged into more complex, accurate mod-
els. Figure 3.4 shows the general organization of such a diarization system.

Algorithm

The diarization is based on 19-dimensional, Gaussianized, Mel-Frequency Cepstral
Coefficients (MFCCs). We use a frame period of 10 ms with an analysis window
of 30 ms in the feature extraction, as well as the speech/non-speech segmentation
used in [108]. In the segmentation and clustering stage of speaker diarization, an
initial segmentation is generated by uniformly partitioning the audio track into
K segments of the same length. K is chosen to be much larger than the assumed
number of speakers in the audio track. For meeting recordings of about 30 minute
length, previous work [53] experimentally determined K = 16 to be a good value.

The procedure for diarization is shown in Figure 3.4 and takes the following
steps (more details can be found in [108]):

1. Initialize. Train a set of GMMs, one per initial segment.

2. Re-segment. Re-segment the audio track using majority vote over the
GMMs’ likelihoods.

3. Re-train. Retrain the GMMs on the new segmentation.
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4. Agglomerate. Select the most similar GMMs and merge them. At each
iteration, the algorithm checks all possible pairs of GMMs, looking to obtain
an improvement in BIC scores by merging the pair and re-training it on
the pair’s combined audio segments. We use the unscented-transform-based
KL-divergence optimization [fastmatch] to not have to compare all pairs of
GMM. The GMM clusters of the pair with the largest improvement in BIC
scores are permanently merged. The algorithm then repeats from the re-
segmentation step until there are no remaining pairs whose merging would
lead to an improved BIC score.

The result of the algorithm consists of a segmentation of the audio track with
n segment subsets and with one GMM for each subset, where n is assumed to be
the number of speakers.

3.1.3 Music recommendation

Music recommendation is one of the most challenging applications in Music In-
formation Retrieval (MIR). The goal of a music recommendation system is to
recommend a set of songs that are most similar to a given song or artist. Most cur-
rent recommendation systems such as Pandora (www.pandora.com) and Last.fm
(www.last.fm) use collaborative filtering [101] or manually label songs with tags.
These approaches require tedious, manual labeling of high-level audio features
thereby severely limiting scalability of the system. Instead, we can use the audio
content of the recordings to find similar songs. This is the approach we take in
our music recommendation system.

Algorithm

Our music recommendation system uses the UBM-GMM supervector approach
and Locality Sensitive Hashing (LSH) described in [20] and [71] respectively to re-
trieve a set of most similar songs given a query song title or artist name. Figure 3.5
(top and bottom) shows the offline and online phases of the recommendation sys-
tem. In the offline phase, the system prepares the data for online querying. In
the online phase, the system uses the data structures pre-built during the offline
phase to retrieve a list of most similar songs to a given query. We use a Python
interface to SQLite database to store and retrieve song meta-data and features
(shown as “SqliteDB” in the figures).

We use the Million Song Dataset [8] assembled by Columbia University using
data provided by Echo Nest. The Million Song Dataset contains audio features
(onsets, timbre) as well as metadata (title, artist name, duration etc.) for 1 mil-
lion popular songs. Our system uses the timbre features to recommend a set of
similar songs out of the 1 million songs based on the features of the songs that
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Figure 3.5: Top: Offline data preparation phase of the content-based music recom-
mendation system. Bottom: Online song recommendation phase of the content-
based music recommendation system.

matched the query.

Offline Data Preparation Phase
In the offline phase (shown at the top of Figure 3.5), we prepare data to be

used during recommendation in the following way:

1. Train UBM. We first train the UBM on a random subset of timbre features
of all songs in the Million Song Dataset to obtain UBM parameters (weights,
means and covariance of the GMM). The UBM is a GMM of 64 components.

2. Adapt the UBM to all songs. After we compute the UBM parameters
from the previous step, we use UBM MAP adaptation (described in [20]) to
compute supervectors (mean vectors of the trained GMM) for each of the
songs in the Million Song Dataset and normalize them using the MCS-norm
[20].

3. Hash song supervectors. After computing and normalizing the super-
vectors, we use a Locality Sensitive Hashing (LSH) technique to hash the
supervectors to a hash table. LSH is a general technique for computing
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approximate nearest-neighbors in a high-dimensional space originally de-
scribed by Andoni and Indyk [3]. We base our implementation on the one
described by Casey in [71]. We use K = 8 projections and L = 11 hash
tables with the quantization bin size of w = 1.291 to retrieve (on average)
90% of songs within R = 0.3 radius of the query point and reject 89% of
songs farther than c ⇤R = 0.72 radius from the query point.

Online Recommendation Phase
In the online recommendation phase of our music recommendation system

(shown at the bottom of Figure 3.5), we use the data structures constructed
during the offline phase and compute the set of songs similar to a given query.

1. Get the query from the user. Our system can recommend songs based
on song title, an artist name or a list of song titles and/or artist names.
After receiving a query, we retrieve the features of the songs that match the
query (i.e. songs with the given artist name) from the SQLite database and
concatenate the set of timbre features.

2. Adapt the UBM on the query. After obtaining the timbre features for
all the songs that matched the user query, we then adapt the UBM on the
query song features to obtain the query timbre supervector.

3. Get approximate nearest-neighbors for the query supervector. We
use our LSH hash functions to retrieve the set of nearest neighbors to the
query supervectors.

4. Compute the closest C songs. We use p-norm distance (described in
[20]) to compute the C closest songs out of the nearest neighbors returned
by our LSH table.

The resulting song IDs are sent back to the query request service and the audio
is retrieved and played back to the user.

3.1.4 Video event detection

A video event detection system aims to identify a set of audio events in a set of
videos [36]. Most state-of-the-art approaches rely on manual definition of prede-
fined sound concepts such as “engine sounds” or “outdoor/indoor sounds”. These
approaches require manual event definitions and are very domain specific. The
goal of our video event detection application is to detect events in consumer-
produced videos found on the web. The definition of “event” goes beyond simple
object recognition to more abstract concepts such as “feeding an animal”, “wed-
ding ceremony” or “attempting a board trick”. This system is designed for large
scale retrieval and tested on the TRECVid MED 2011 development data set. It
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Figure 3.6: Overview of the video event detection system. Each video soundtrack
file gets diarized, i.e. clustered based on the audio event content. Then all clusters
across all audio files get clustered into a global set of audio events using k-means
clustering.

performs learning based on arbitrary low level audio features and can be used to
detect high level concepts like those given in the dataset.

Algorithm

The event detection system is generalized from speaker diarization for indexing
audio contents. We use the detection system to automatically identify low-level
sound concepts similar to annotator defined concepts and then use these concepts
for indexing. The applicability of speaker diarization to video indexing and event
detection is most similar to the approaches described in [68] and [21].

We use GMMs to represent the audio concepts. In order to match low level
audio concepts across training videos and also to classify low level feature models
found in testing videos, the system reduces the per-event GMM to a single vector
that consists of the sums of the weighted means and the sums of the weighted vari-
ances of each Gaussian (we call this vector a simplified supervector). A K-means
method is then used to cluster the simplified supervectors that were generated
from all of the low level acoustic concepts, resulting in clusters that represent
audio event abstractions. These can then be mapped back to the concepts in
each video by calculating the distance between the video’s event models and the
abstract simplified supervectors.

Figure 3.6 shows the overall structure of the video event detection system.
Starting with the features of audio files, each file is diarized using the speaker
diarization algorithm. K-means clustering is then performed on the simplified
supervectors. This results in each audio file being segmented into events, and all
the same events clustered together. Thus, we obtain a global view of the different
audio events present in a video collection and can then perform indexing and
search based on the events.
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3.2 Parallelizing Audio Analysis Applications

3.2.1 Paralleizing speech processing applications

There is much prior work on accelerating speech processing applications using
parallelism. In the 1993 Ravishankar et al. [89] implemented parallel speech
recognition engines on shared memory multiprocessors (SMP) by statically par-
titioning data and tasks among threads. Their implementation achieved up to
3.85⇥ speedup using 5 threads. In 1999 Phillips et al. [81] parallelized a speech
recognition engine on an SMP and and obtained factors of 3-6 speedup on 4-
12 processors respectively. Then in 2006, Ishikawa et al. [54] implemented a
Large Vocabulary Continuous Speech Recognition (LVCSR) system on cellphone-
oriented platforms achieving real-time speech processing performance. You et
al. [110] achieved about 2⇥ faster than real-time performance on a 20,000 word
speech recognition task by parallelizing the algorithm on multi-core processors
using OpenMP [78]. All of these efforts focused on parallelizing the acoustic ob-
servation probability computation phase of the inference engine since it took up
majority of the execution time, leaving the network traversal phase sequential.
Only recent work (including our own) parallelized the entire engine on parallel
processors.

Most recently, Graphics Processing Units (GPUs) emerged as programmable
highly parallel processors and presented an interesting new target for speech recog-
nition applications. Chong et al. [24] first parallelized the entire recognition
engine on a GPU obtaining 10.5⇥ speedup compared to a sequential version of
the algorithm. GPUs have also been used to accelerate acoustic model computa-
tions in speech recognition and speaker diarization applications by [34] and [66].
Dixon et al. ([34]) offloaded the observation probability computation in a speech
recognition engine to the GPU, while Kumar et al. ([66]) used the GPU to train
Gaussian Mixture Models to obtain 164⇥ speedup on these sub-computations
over a sequential CPU implementation. EhKan et al. [35] implemented a Gaus-
sian Mixture Model-based speaker identification system on FPGAs, achieving 90⇥
speedup over sequential software version.

3.2.2 Paralleizing music processing applications

There has not been as much work on parallelizing music processing applications
compared to the efforts in the speech recognition community. There has been some
work done in parallelizing acoustic and audio rendering on GPUs by Tsingos et
al. [103] as well as parallelizing signal processing kernels of music information
retrieval (MIR) tasks on GPUs by Saviola et al. [94]. Both of them obtained
one or two orders of magnitude faster performance than comparable systems. For
music information retrieval tasks GPUs and multi-core CPUs have been used by
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Battenberg et al. [6] to accelerate non-negative matrix factorization for an audio
source separation application and by Ferraro et al. [38] to accelerate a query-by-
humming application. These application also saw one to two order of magnitude
performance improvement from GPU acceleration.

3.3 Summary
We use the audio content analysis application domain as the example domain for
the software solution developed in this work. Audio content analysis applications
use signal processing and machine learning techniques for extracting information
and analyzing audio content such as speech and music. This domain presents
a lucrative target due to a variety of reasons, including specific throughput and
latency requirements. We choose four state-of-the-art audio analysis applications
as the driving examples to help us with the design and implementation decisions
throughout this work. These are speaker verification, speaker diarization, mu-
sic recommendation and video event detection applications. These applications
present a variety of interesting workloads with real-world constraints, comprising
a good evaluation set for our approach.
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Chapter 4

Pattern-Oriented Design

4.1 Finding the Common Vocabulary
Starting with the initial application design process, one effective software engi-
neering practice is to use software architectures to design and develop applications
[63]. Software architectures provide a systematic way of structuring applications
as well as describing and communicating the application details to others. They
consist of a set of boxes and arrows, each box corresponds to a particular com-
putation and the arrows correspond the control-flow in the application. Software
architectures are hierarchical - each box can be further decomposed into smaller
software architectures, giving more detail of the particular computation. When
designing applications, application domain experts can draw the software archi-
tecture on a white board and concisely describe what computation and control
flow are present in the particular application.

The goal of our work is to create a software framework, PyCASP, that pro-
vides a productive way for application developers to reuse the work of efficiency
programmers to create applications that are efficient and portable to a variety of
parallel hardware. Our software environment needs to enable application devel-
opers to design and implement their applications based on software architectures.
In order to create software architectures that are familiar to both application do-
main experts and efficiency programmers, we need a vocabulary for describing the
boxes and arrows of software architectures. As we discussed in Chapter 2, design
patterns provide a useful set of vocabulary for describing computations and struc-
tures of applications. They seem to fit our goal quite well. Design patterns provide
a common language for designing libraries and frameworks based on software ar-
chitectures and thus give a systematic way of thinking through applications and
creating modular, self-contained software environments. The practice of using
design patterns to create application frameworks has gained a lot of traction with
the Our Pattern Language (OPL) project developed by Keutzer and Mattson [62].
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OPL uses the methodology and taxonomy of parallel patterns. Previous libraries
and frameworks described in [25] and [99] used the pattern-oriented design to
enable modularity and provide comprehensive scope and efficient performance of
applications. Thus, we choose to use OPL and pattern-based methodology for
PyCASP’s design. In addition to providing a language for our framework’s users,
patterns provide a systematic way to define the scope of our framework and pro-
vide a way to create a modular software environment that will comprehensively
span a variety of audio content analysis applications.

4.2 Pattern-Mining Audio Content Analysis
Applications

In order to use the OPL-based pattern-oriented methodology for designing Py-
CASP, we need to identify what computational and compositional building blocks
are common in our application domain. Specifically, we need to identify three spe-
cific types of patterns that are common in state-of-the-art audio content analysis
applications. Those are:

1. Application Patterns

2. Computational Patterns

3. Structural Patterns

Application patterns describe the solutions to commonly-occurring problems
in an application domain. Computational patterns describe the specific types of
computations that occur in each application pattern. Structural patterns describe
the control-flow of applications. Using the pattern-oriented approach, identifying
the core application, computational and structural patterns can allow us to under-
stand the software architectures of applications in our domain. We hope that un-
derstanding software architectures of applications will give us a systematic way of
developing a modular, comprehensive software environment that enables develop-
ment of a large variety of applications in our domain. Furthermore, by supporting
the primary application and structural patterns used in the audio content analysis
applications we can enable the application writers to use a familiar vocabulary
enabling their productivity, which is one of our primary goals.

We must be careful about how many patterns we choose to support. Too many
patterns will lead to a convoluted framework scope and confuse the application
developer, while too few patterns will not allow for comprehensive application
coverage. Thus, our goal is to find a minimal set of patterns that we can use
to construct a large variety of applications in the audio content analysis domain.
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Figure 4.1: Application, computational and structural patterns in PyCASP.

The next three subsections describe in detail our process of identifying the three
sets of patterns in audio content analysis applications.

4.2.1 Application patterns

Application patterns describe a set of solutions to a common set of problems in an
application domain. Domain experts use application patterns as computational
building blocks in their applications. In the audio content analysis application do-
main, application patterns are machine learning and signal processing techniques
that have been developed, studied and standardized over time.

By studying a variety of applications in our application domain, we aim to
determine the set of algorithms and patterns that are commonly used in these
applications; we refer to this process as “pattern-mining”. To perform pattern-
mining in our application domain, we went through the following process. First,
we extensively studied specific selected state-of-the-art audio content analysis ap-
plications we had familiarity with, such as speech recognition, music analysis and
video event detection [4, 23, 26, 36, 111] to better understand what types and
classes of algorithmic approaches they use. This helped us identify a set of can-
didate application patterns. Then, we went through accepted papers from the
technical track of two top conferences in the area, Interspeech 2012 and ISMIR
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2012, 1 to identify the common high-level algorithmic techniques used in state-of-
the-art applications. We refined our original list of specific algorithmic approaches
to include application patterns from these papers and then went through the list
further grouping and refining it, based on similarity of the approaches (for example
we grouped various clustering approaches together into the Parametric Clustering
pattern). Finally, we had detailed discussions with domain experts in the field
to confirm our categorization and gain a better understanding of how they think
about the state-of-the art algorithmic techniques.

After our pattern-mining efforts, we obtained a list of seven application pat-
terns, shown in the left panel of Figure 4.1. These seven patterns present high-level
groupings of algorithmic techniques we mined from the application domain. These
patterns are: Convolution, Orthogonal Transformations, Parametric Clustering,
Hierarchical Clustering, Probabilistic Networks, Neural Networks and Linear Clas-
sifiers and Eigen Decomposition. Each of them can be decomposed into a list of
specific algorithms, i.e. specific instances of the application pattern. We describe
the application patterns below.

• Convolution is a common operation in signal processing applications. Given
a function f and g, the convolution of the two functions is defined as the
integral of their product after one is reversed and shifted. Applications of
convolution in audio processing include computation of sound reverbera-
tion of the original sound with echos from objects surrounding the sound
source, removing noise from the audio signal, as well as mapping the impulse
response of a real-world environment to a digital audio signal.

• Orthogonal Transformations are common signal processing techniques
to transform audio input to its orthogonal form. The most common or-
thogonal transformations are the discrete Fourier transform (DFT) and the
discrete cosine transform (DCT) to transform the audio signal from time/s-
pace domain to the frequency domain [88]. These techniques are used in
analyzing audio signals, as well as feature extraction, filtering and compres-
sion.

• Parametric Clustering is a machine learning technique of grouping data
points into clusters where each cluster contains points that are similar by a
particular metric. The clusters are defined by parameters, hence the “para-
metric” term. One simple example is the k-means clustering technique,
where the N points are grouped into k clusters, each cluster contains points
that are geometrically close to each other and the clusters are parametrized
by their means. Gaussian Mixture Models (GMMs) are also a common
parametric clustering technique. In GMMs, clusters are defined by Gaussian

1http://interspeech2012.org, http://ismir2012.ismir.net/
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distributions, data points “belong” to the Gaussian component with highest
likelihood defined by the Gaussian function (see Chapter 4). The cluster
parameters are the weight, mean and covariance values of each Gaussian in
the mixture. GMMs are used extensively in audio processing for clustering
spectral features to create acoustic models of various audio sources.

• Hierarchical Clustering is a machine learning technique for creating a
hierarchy of clusters. There are two types of hierarchical clustering: agglom-
erative and divisive. Agglomerative hierarchical clustering is a “bottom up”
approach where each observation starts in its own cluster, and clusters are
merged as one moves up the hierarchy until some optimization criterion is
reached. The divisive hierarchical clustering is a “top down” approach where
all observations start in one cluster, and the clusters are split as one moves
down the hierarchy until a certain optimization criterion is reached. Hierar-
chical clustering is used in unsupervised machine learning processes where
the final number of clusters is initially unknown and is learned during the
clustering process. In audio processing, this technique is used for speaker
diarization, where the task is to identify which part of a meeting recording
belongs to each speaker and the initial number of speakers is unknown.

• Probabilistic Networks are a set of statistical modeling techniques that
represent the model as a set of nodes in a directed graph. Each node rep-
resents a random variable and the directed edges represent conditional de-
pendencies of the variables on each other. An example of a probabilistic
network is the hidden Markov model (HMM) model where each node in the
model is a hidden, unobserved event, but whose output (which is dependent
of the event) is visible. Each node has a probability distribution over the
possible outputs. The nodes are connected with transition edges that have
the Markov property [86]. Probabilistic networks are useful in modeling
data with temporal dependencies. For example, HMMs are widely used to
model sequences of sounds and words in speech recognition applications.

• Neural Networks and Linear Classifiers are machine learning tech-
niques for modeling data which assume that the observations from a partic-
ular process can be separated into classes by linear functions (i.e. the data
is “ linearly-separable”). When reasoning about prediction, linear models
assume that the distribution of the output variable Y follows a weighted
sum of observations X

i

. The task of modeling Y is to determine the weights
�

i

that correspond to each random variable X

i

. In addition, each random
variable can be transformed by a non-linear function �, a technique which
is referred to as a basis expansion. The idea of the basis expansion is that
if the observation data is not linearly-separable in the given space, applying
a basis transformation will transform the data to a new (usually higher-
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dimensional) space that will allow for linear separation. This technique is
employed in one of the most common linear classifiers - the Support Vector
Machine (SVM). SVMs are supervised binary linear classifiers that aim to
find points in the training data (called support vectors) that separate the
two classes with the largest margin (discussed more in Chapter 4). SVMs
are extensively used in audio classification.

• Eigen Decomposition (also referred to as “spectral decomposition”) is a
linear algebra technique for factorization of a matrix in terms of its eigen-
values and eigenvectors. In audio processing, eigen decomposition allows
for reasoning about components that make up a signal as well as transfor-
mation and modification of those components in a computationally-efficient
way. A related approach to eigen decomposition called Singular Value De-
composition (SVD) is a common signal processing and statistics technique
for separating an audio signal into its primary components. SVD is used
in audio source separation applications whose task is to separate an audio
signal into its components [114].

These application patterns correspond to a set of signal processing and ma-
chine learning techniques that are typically used to analyze audio content. Those
techniques are composed together to create full-functioning audio analysis appli-
cations. For example, we found that in speech recognition, probabilistic models
such as hidden Markov models (HMMs) are typically coupled with clustering
models such as Gaussian Mixture Models (GMMs) or Neural Network models to
model words, pronunciation and acoustics in speech recognition applications. In
audio classification applications linear classifiers, such as Logistic Regression or
Support Vector Machines (SVMs) are commonly used for audio content classifi-
cation. In addition to summarizing the types of algorithms and techniques used
in the application domain, this modular approach can help us to identify software
already available in the community that may implement a specific computation
on a given parallel hardware platform. We can then integrate existing solutions
into the backend of our framework instead of reimplementing them from scratch.
Using this pattern-oriented approach, we can develop a comprehensive framework
for building parallel audio analysis applications leveraging our knowledge of the
application domain and existing tools and software.

4.2.2 Computational patterns

Our next goal is to identify the set of computational patterns [62] that underlie
the application patterns in the audio content analysis domain. Computational
patterns describe the various types of computational workloads that can occur
in software applications. They provide a useful way of summarizing and cate-
gorizing application patterns into classes of computations. Identifying the set of
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computational patterns allows us to determine what types of computations our
identified application patterns use. To identify the set of computational patterns,
we start with the list of computational patterns in the OPL (see Figure 2.8) lan-
guage. We then implement several example audio content analysis applications
on a variety of parallel platforms and performed several levels of optimizations to
gain a better understanding of the underlying computations of each application
pattern. For example, we implement the Gaussian Mixture Model training and
evaluation Parametric Clustering pattern and identify that the underlying com-
putations are Dense Linear Algebra operations. For the application patterns that
we do not have specific implementation examples, we study the theoretical math-
ematical formulations as well as look at academic references for those patterns
that describe the implementation of those patterns. For example, we looked at
specific papers describing the implementation of Singular Value Decomposition
Eigen Decomposition pattern [114] to identify that the computational pattern the
algorithm uses is Sparse Linear Algebra. From this process, we can identify what
types of computations are present in each application pattern.

After our efforts, we determined that our seven application patterns use five
computational patterns, as shown in the right panel of Figure 4.1. These patterns
are Dense Linear Algebra, Sparse Linear Algebra, Spectral Methods, Graph Algo-
rithms and Structured Grids. We describe them in more detail below, additional
information may be found at https://patterns.eecs.berkeley.edu/.

• Dense Linear Algebra are a large class of problems expressed as linear
operations applied to dense matrices and vectors. Density is defined as the
matrices and vectors having mostly non-zero elements. Solutions to this
class of problems are defined in terms of basic linear algebra building blocks
referred to as the Basic Linear Algebra Subroutines (BLAS). Application
patterns that fall into the Dense Linear Algebra computational pattern are
the Parametric Clustering and Neural Networks / Linear Classifier patterns.

• Sparse Linear Algebra are a large class of problems expressed as linear
operations applied to sparse matrices and vectors. Sparsity is defined as the
matrices and vectors having mostly zero elements. Sparse matrices come
in a variety of shapes and there are several different formats for storing
them [93]. Sparse linear algebra solutions can be direct or iterative, with
iterative solutions relying on pre-conditioners that make finding the solution
much faster. Application pattern that falls into the Sparse Linear Algebra
computational pattern is the Eigen Decomposition pattern.

• Spectral Methods are a class of computational problems that involve
systems that are defined in terms of several different representations. For
example, a periodic sequence of a signal can be represented as a set of dis-
crete points in time or as a linear combination of frequency components.
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Going from one representation to another can reduce the computation of
a difficult problem to a simple algebraic solution. For example, the Fast
Fourier Transform (FFT) transforms an audio signal from the time domain
to the frequency domain allowing for much faster signal filtering and trans-
formations. Application pattern that falls into the Spectral Methods com-
putational pattern is the Orthogonal Transformation pattern.

• Graph Algorithms are a large set of computational problems that operate
on graphs. Graphs are made up of a set of nodes and edges (either directed or
undirected). In order to use graph algorithms to solve a particular problem,
the problem is first restructured as a graph. Then, graph algorithms such as
breadth-first or depth-first traversal are used to understand the connectivity
of the graph.The graph can be expanded or merged by operations on its
nodes or edges, or graph partitioning algorithms can be used to partition
the graph to prepare it for parallel processing. Application patterns that
fall into the Graph Algorithms computational pattern are the Probabilistic
Networks and Hierarchical Clustering patterns.

• Structured Grid are a set of problems that operate on discrete grids of
data points, typically arising in computational science simulations. The
grids represent natural systems (such as air space or biological processes)
in terms of a discrete sampling of points, defined as a structured mesh (in
contrast to unstructured mesh, which corresponds to the Unstructured Grid
computational pattern). Each point in the mesh is updated using a function
that operates on the mesh point and its neighbors; the set of neighbors is
defined separately for each application. Application pattern that falls into
the Structured Grid computational pattern is the Convolution pattern.

Identifying and distilling the application patterns to the core computational
patterns allows for a more tractable framework scope and allows us to under-
stand the computational properties of the application patterns. Moreover, we can
identify specific parallel platforms for each computational pattern that allow for
its most efficient implementation (for example GPUs are efficient at executing
data-parallel dense linear algebra algorithms). Thus, computational patterns can
give us more insight into what particular computation occurs in each application
pattern and thus can guide us in selecting hardware platforms for the components
that implement these patterns. They can also provide a modular organization of
the application patterns for communication with the domain experts.

4.2.3 Structural patterns

At the final step in the pattern-based design process, our goal is to identify the
set of structural patterns [62] that are common in audio content analysis appli-
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cations. Structural patterns define specific ways in which application patterns
are composed together in applications. They describe the arrows in the software
architecture block diagrams of applications, and thus they describe the control
flow of the computations in an applications. These patterns are very important
when we try to understand the composition of patterns into applications as they
describe the ways computational components are used together and describe how
control- and data-flow between computations.

We start our structural pattern-mining process by leveraging previous work of
Chong [25]. In his PhD thesis, Chong describes the details of speech recognition
applications, their software architectures and pattern decomposition. Specifically,
he identifies three structural patterns that are sufficient in constructing speech
recognition applications: Pipe-and-Filter, Interator and MapReduce. Starting
with this set of patterns, we set out to determine if these three patterns are in
fact sufficient to construct most applications in the audio content analysis domain.
In order to answer this question, we again turn to our pattern-mining process. We
analyzed our sample applications and their software architectures in terms of the
types of structural patterns they use. We looked at the types of data-flow patterns
as well as control-flow patterns in each application. After careful consideration of
a variety of audio analysis applications, our conclusion was that, indeed, the three
structural patterns were sufficient to describe the software architectures of all of
our sample applications. Thus, while we cannot guarantee that we have studied
every single application in the domain, we are convinced that the three structural
patterns are sufficient to describe the design of most applications in the domain.

Thus, to finish our pattern-mining process, we add these three structural pat-
terns to the bottom panel of Figure 4.1 and describe them in more detail below:

• Pipe-and-Filter pattern refers to applications that are structured with
data flowing through modular phases of computation. The solution con-
structs the program as state-less “filters” and “pipes” corresponding to the
computational steps and data communication steps respectively. Data flows
through the filters and pipes with the output of one filter flowing as input
to the next filter.

• Iterator pattern refers to applications whose computation is repeated many
times in a loop until either a particular number of iterations is reached or
a certain termination condition is met. In each iteration, a particular set
of computations is performed and then the iteration stopping criterion is
computed and compared against the termination criterion. If those two
conditions match, the iterative process terminates.

• MapReduce pattern refers to a class of computations that are structured in
a set of parallel “map” and “reduce” phases. In the map phase computation
is split into a set of independent computations and executed in parallel. In



CHAPTER 4. PATTERN-ORIENTED DESIGN 51

the reduce phase, the results of the map phase are accumulated and either
returned or processed further. The map and reduce phases can be chained
together to yield more complex MapReduce applications.

We found that the structural patterns used in the audio content analysis do-
main correspond to the way and the type of data is moved between components.
Since audio content analysis applications typically involve a set of machine learn-
ing and signal processing techniques, application patterns are composed into ap-
plications using data-flow: the output of one pattern is fed as input to the next
pattern in a Pipe-and-Filter structural pattern or data is distributed across in-
stances of a pattern in a MapReduce structural pattern. Thus, the arrows in
a software architecture of an application correspond to the structural patterns,
which in turn describe how and what types of data is communicated between the
boxes / application patterns.

4.3 Pattern-Based Software Architectures of
Example Applications

The pattern-mining process helped us identify the set of application, computa-
tional and structural patterns common in the audio content analysis application
domain. We can now go through our four example applications and look in de-
tail at their software architectures. Each software architecture consists of a list
of boxes (corresponding to specific instances of application patterns) and arrows
(corresponding to the structural patterns). The architectures are hierarchical -
each box can be further decomposed into a smaller software architecture detailing
the specific organization of that particular application pattern instance.

4.3.1 Speaker verification

Figure 4.2 shows the software architecture of the speaker verification application.
For speaker verification training, at the top level, the feature extraction MFCC
(instance of the Orthogonal Transformation pattern) is composed with the GMM
supervector training (instance of the Parametric Clustering pattern) component
using a Pipe-and-Filter pattern to compute the UBM parameters. The MFCC
computation itself consists of several signal processing stages (FFT, Mel Scale, Log
and DCT, each is an instance of the Orthogonal Transformation or Convolution
application patterns) composed using a Pipe-and-Filter pattern. Then, given the
UBM parameters, two parallel Pipe-and-Filter streams of MFCC feature extrac-
tion and GMM training are launched (one on our target speaker audio and one on
intruder audio examples). The result of the GMM training (GMM parameters) are
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Figure 4.2: Software architecture of the speaker verification application. Internal
architecture of each component is shown once.

passed to the SVM classifier training (an instance of the Linear Classification pat-
tern) in a Pipe-and-Filter structural pattern. The GMM and SVM computations
themselves are internally comprised of an Iterator structural pattern over several
Dense Linear Algebra operations, each structured with a MapReduce pattern and
composed using a Pipe-and-Filter pattern. The speaker verification classification
phase consists of an MFCC Orthogonal Transformation pattern composed with
a GMM Parametric Clustering pattern and a SVM Linear Classification pattern
using a Pipe-and-Filter structural pattern. Algorithmically, the audio sample is
processed to extract features, compute the adapted GMM parameters which are
then passed to the SVM for classification of the audio.

4.3.2 Speaker diarization

Figure 4.3 (left) shows the software architecture of the speaker diarization ap-
plication. At the top level, the diarization application consists of an Iterator
pattern over a Pipe-and-Filter of GMM train, GMM evaluation (both instances
of the Parametric Clustering application patterns) and Segment stages. The Seg-
ment stage is a loop that assigns chunks of audio to particular speakers based
on GMM likelihoods from the GMM evaluation stage. The application iterates
over GMM training, evaluation and segmentation phases until a stable number of
speakers and audio segmentation has been identified. The MFCC feature extrac-
tion component and GMM training components consist of the same underlying
computations and software architectures as in the speaker verification application.
GMM evaluation computation internally is a Pipe-and-Filter structural pattern
that composes several MapReduce stages, each implementing Dense Linear Alge-
bra computations.
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Figure 4.3: Software architecture of the speaker diarization and the music recom-
mendation application.

4.3.3 Music recommendation

Figure 4.3 (right) shows the software architecture of the music recommendation
application. At the top level, the GMM training (instance of the Parametric
Clustering pattern) used to compute UBM parameters is composed with another
GMM training pattern to adapt the UBM using features from a query song (in
our example the query is “all songs by Elton John”). Then the result of the UBM
adaptation is composed with the Distance Computation using a Pipe-and-Filter
structural pattern to compute the set of top 10 most similar songs. The Distance
Computation component is a matrix-matrix multiply operation, an instance of
the Dense Linear Algebra computational pattern. GMM training instance of the
Parametric Clustering pattern consists of an Iterator structural pattern that iter-
ates over a Pipe-and-Filter composition of MapReduce stages, each MapReduce
stage implements a Dense Linear Algebra computation.

4.3.4 Video event detection

Figure 4.4 shows the software architecture of the video event detection system. At
the top level the application uses the MapReduce structural pattern with the map
phase executing the diarization computation on each video and the reduce phase
calling the K-means clustering to come up with the total list of audio events across
all videos. The diarization computation has the software architecture described
above.

After identifying the set of application, computational and structural patterns
we are now able to describe the software architecture of each application using
the pattern-based vocabulary. Now that we have identified the pattern-oriented
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Figure 4.4: Software architecture of the video event detection system.

approach as a useful systematic way of designing application frameworks, we need
to determine how this design will be implemented in software. The next chapter
discusses this next step.

4.4 Summary
Pattern-based design provides a powerful methodology for designing a software en-
vironment that gives productivity, modularity and comprehensiveness while pro-
viding a common language for application writers and efficiency programmers.
Patterns provide a vocabulary for designing and reasoning through software ar-
chitectures of applications. Using the pattern-oriented approach, we have gone
through the pattern-mining process to identify the set of application, computa-
tion and structural patterns that are used in the audio content analysis applica-
tion domain. We then analyzed the software architectures of our four example
applications composed of the three different types of patterns. Modularity and
comprehensiveness are two primary goals for a software framework: it must sup-
port implementations of a variety of applications as well as provide modularity
for clarity, debugging and scalability. Reasoning about composition in the audio
analysis applications using structural patterns gives us a very powerful approach
to gain modularity and clarity in application design. This clarity is extremely im-
portant when developing a framework that targets two types of programmers and
aims to close the implementation gap. Each programmer must understand the
framework abstractions and scope in order for the framework to serve a a software
tool for both types of programmers. Thus, we choose the pattern-oriented design
for defining the scope and the vocabulary of PyCASP. In the next chapter, we
focus on implementation mechanisms for realizing our design in software.
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Chapter 5

Implementing Patterns Using
SEJITS

In the previous Chapter, we stepped through the design process of PyCASP us-
ing design patterns. In this chapter we set out to determine how our design will
be realized in software. Pattern-based design enables our framework to provide
programmer productivity; however, we must enable our other goals: efficiency,
flexibility and portability. In the software implementation of our software frame-
work we need to ensure that we achieve programmer productivity and flexibility
as well as application efficiency and portability.

Previous successful implementations of productivity frameworks such as [14],
use code specialization and JIT compilations from a high-level language to achieve
efficiency, flexibility and portability. Specifically, a technique called Selected Em-
bedded Just-in-Time (JIT) Specialization (SEJITS) has shown a lot of potential in
bridging productivity, flexibility, efficiency and portability [17, 57]. By specializ-
ing selected functions in an application written in a high-level language, SEJITS
is able to achieve application efficiency that is close to a hand-tuned low-level
implementations [57]. In addition, SEJITS can support arbitrary computations
defined by a domain specific language (DSL) that is created by the framework
designer. This seems to fit our goals quite well. In order to achieve efficiency,
flexibility and portability in addition to productivity we need a software mecha-
nism that will specialize particular computations to a variety of parallel hardware
and provide customizations and flexibility to the application programmer. Thus,
we choose to employ the SEJITS methodology to implement our framework in
software.

To make a decision about what kind of high-level language and the special-
izer development environment we will use for PyCASP, we look at successful
implementations of SEJITS frameworks. Both Copperhead [17] and Asp [57] use
Python. Python has recently gained traction as a high-level productivity lan-
guage for scientific computing. It provides a free, high-level interpreted scripting
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environment that is easy to use. A large array of tools and libraries is available
for Python, making it very versatile for application development. For example,
packages like Scipy [55] and Numpy [5] provide a variety of tools and functionality
for scientific and numerical computing. Furthermore, Python is highly extensible
- it allows for easy embedding of low-level modules using Python wrappers; in fact
most functions in Scipy and Numpy are implemented using low-level languages
(such as C) and then wrapped and exposed to Python. This extensibility allows
for separation of concerns between the application and efficiency programmers.
Thus, following the example of productivity frameworks and SEJITS methodol-
ogy, we embed PyCASP in Python.

To choose the specializer development environment, we analyze previous SE-
JITS frameworks [17, 57, 7]. The Asp framework 1 presents a compelling imple-
mentation of SEJITS [57] as it provides methodology to create domain-specific
languages (DSLs) and specializers. Asp contains facilities to automate the pro-
cess of creating specializers, either based on templates or AST (abstract syntax
tree) transformations, to emit source code corresponding to different code vari-
ants, compile and call the optimized code, and pass the results of the computation
back to the Python interpreter. It has shown a wide applicability to a variety of
application domains such as stencil computations, linear algebra and graph al-
gorithms [58]. Thus, we choose to use it as the framework to develop SEJIT
specializers for PyCASP.

5.1 From Patterns to Software
After outlining the scope of PyCASP using design patterns, and deciding to em-
bed it in Python and use the Asp SEJITS framework to realize the patterns in
software, we need to determine the API of our framework. The target audience for
our framework are audio content analysis domain experts. As mentioned earlier,
domain experts use application patterns as computational building blocks in their
applications. Application patterns are familiar to audio analysis application writ-
ers as machine learning or signal processing techniques and thus have a clear scope
and functionality. Application developers can customize specific algorithmic de-
tails of each pattern based on parameters of the specific algorithmic techniques. In
addition, because of the clarity of scope and functionality, efficiency programmers
can implement specific instances of application patterns on parallel hardware as
stand-alone components. Thus, application patterns present a great candidate for
the level of abstraction of our framework. Efficiency programmers can implement
specific instances of application patterns as SEJIT specializers and application
domain experts can then use the application patterns in their applications. Com-
putational patterns allow us to understand the underlying computation of each

1Asp stands for “A SEJITS for Python”.
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application pattern to enable efficiency programmers to optimize the underlying
computations. We realize application patterns as SEJIT specializers; these spe-
cializers become components of PyCASP.

Following our implementation decisions, we choose to develop a set of com-
ponents of our framework that correspond to specific instances of the application
patterns. For example, a component can be a Gaussian Mixture Model (GMM)
training and evaluation specializer, which is an instance of the Parametric Clus-
tering application pattern. Each instance of an application pattern has a specific
scope and functionality, but can be customized to fit a particular application.
Some application patterns are more customizable than others. For example, a
GMM parametric clustering pattern has fixed functionality: training and evalu-
ating GMMs, while Hierarchical Clustering application pattern can have several
specific implementations depending on the types of models that are clustered,
and thus, is more customizable. Thus, we design PyCASP to contain two types
of components:

• Library components: have fixed functionality, fixed (maybe multiple) par-
allelization strategies, and a fixed software architecture.

• Customizable components: have customizable functionality, a fixed software
architecture, and their parallelization strategy is determined at runtime.

Table 5.1 shows the broad scope of PyCASP. The table shows example cus-
tomizable and library components and the application patterns they correspond
to. Library components are specific, common customizations of customizable
components, i.e. they implement common ways a specific component can be cus-
tomized. For example, the Expectation-Maximization algorithm can be used to
learn parameters of many clustering models. Using EM for GMM training is a
specific common use of the EM training customizable component. By knowing
the specific use case of a particular customizable component, we can implement
a much more efficient version of the specializer. For the EM training example,
targeting the component to the specific instance of using EM to train GMMs, we
can implement GMM EM training as a “black box” specializer that uses low-level
code templates to generate code. This enables us to achieve higher efficiency of
commonly-used customizations of particular components of PyCASP.

Customizable components allow for more flexible user customizations. Cus-
tomizations are familiar to the application writers as parameters of machine
learning and signal processing techniques. For example, the application writer
may want to specify the functionality of components instead of relying on fixed
functionality. To customize the component, programmers can overload specific
methods of the specialized class. For example, in the Hierarchical Clustering
component, programmer may specify the information criteria during model selec-
tion (BIC, MDL, AIC [64]), or the merging function (parameter concatenation,
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Application Pattern Customizable Compo-
nent

Library Component

Parametric Clustering EM training (Model) GMM training

Parametric Clustering Geometric Neighbor
Computation (Distance)

L-norm geometric
(K-means)

Hierarchical Clustering Hierarchical Clustering
(Model, Merging)

Agglomerative Clustering
(GMMs, BIC)

NN & Linear Classifiers SVM (Kernel function) SVM (Linear, Polynomial,
Gaussian)

NN & Linear Classifiers NN Classifier (Smoothing
function)

NN Classifier
(Softmax smoothing)

Convolution Wiener filter (Noise
model)

Wiener filter

Orthogonal Transformations — FFT, DCT, MFCC

Probabilistic Networks HMM (Observation
Model) Speech Decoder (GMM)

Table 5.1: The broad scope of PyCASP’s components. First column lists the
application pattern, the customizable component column gives an example cus-
tomizable component that is an instance of the application pattern. The cus-
tomization point is given in parenthesis. The library component column gives
an example library component, i.e. a specific implementation of a customizable
component.

averaging etc.). In the hidden Markov model component, the programmer can
specify the function to compute the observation probability given a hidden state
(Gaussian, mixture of Gaussians, discrete etc.).

We can use the SEJITS technology to implement both types of components.
The two types of components match the Asp framework functionality quite well:
library components can be implemented using Asp templates and customizable
components can be implemented using AST transformations and code lowering
methods. Since the scope of PyCASP is quite broad, in this work, we restrict our
focus to the library component implementations and leave customizable compo-
nents as future work. Customizable components enable higher application pro-
grammer flexibility and thus are an important aspect of future work and will be
discussed more in Chapter 8.

Library components implement specific types of computation and thus allow
for high efficiency of the generated code. Restricting the scope of library compo-
nents allows us to abstract away all of the internal functionality of a component
and thus extract the most performance out of the particular pattern. We can
then allow application writers to call these components from Python code as a
black box, without thinking about their internal functionality. Using the SE-
JITS technology, we can allow PyCASP to automatically handle all underlying
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parallelization and implementation details. In addition, when a computation has
multiple parallelization strategies, the specializer can choose logic about what
strategy to use, transparent to the application writer.

5.2 Efficiency and Portability Using SEJITS
Chapter 2 describes the background SEJITS approach we use to enable efficiency,
flexibility and portability in application frameworks. We now step through the spe-
cific process of creating a specializer using Asp templates that we use to implement
the library components of our framework.

Creating a specializer

The Asp framework provides functionality for creating specializers as Python
classes. To create a template-based Asp specializer, specializer writers typically
start with an efficient version of a particular instance of an application pattern
and a target hardware platform (for example GMM training on NVIDIA GPUs).
They carefully analyze the low-level implementation and identify tuning/special-
ization parameters for each function that need to be adjusted for a particular
instance of a hardware platform such as number of thread blocks and number of
threads per block in a CUDA implementation. They also define the data move-
ment logic, if needed, for example moving training data to and from the GPU
memory. They can also have multiple code variants of the same computation, for
example different blocking strategies or loop reordering, whose efficiency differs
depending on particular hardware and input data parameters.

The efficient implementation(s) for a particular component are then translated
into .mako templates and placed into Asp code modules. Templates contain the
original low-level code as well as place-holder variables for the tuning/specializa-
tion parameters for each function and modules to plug in different code variants
of the same computation. The specializer logic specifies how to populate the
place-holder values and select the code variants (for example, by querying for the
specs of the hardware platform or the shape of the input data) and what compiler
toolchain to call on the generated code. All of the specializer logic is implemented
in Python, only the template code is implemented in a low-level efficiency language
(this allows for specializer writer productivity, and is one of the advantages of Asp).
When the specialized function gets called, Asp renders and transforms these tem-
plates into syntactically correct source code via the templating library Mako [69],
and compiles, caches and links them using the Python extension CodePy [28].
During template rendering, Asp populates the place-holder variables, selects ap-
propriate code variants according to specializer logic, and calls the appropriate
compile toolchain on the resulting code. Once the code is compiled, it is automat-
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ically executed and the results are brought back to Python. The compiled object
code is cached to avoid redundant recompilation. This is the general mechanism
for achieving efficiency in the component implementation.

To allow for portability, the specializer writer has to target multiple low-level
backends; however, they can typically be grouped together into a few “general”
backends, i.e. one CUDA specializer backend can target all CUDA-programmable
GPUs, while another Cilk+ specializer can target all Cilk-programmable Intel x86
hardware. Thus, while it does take significant amount of effort to implement a
specializer, it is intended to be done by an efficiency programmer who is familiar
with low-level intrinsics of the hardware and typically implementing the same
computation for multiple backends is not as difficult once the programmer is
familiar with the algorithm. In addition, this effort has to be done once, and
can then be reused by all application programmers who use resulting framework
without knowing any details of the specializer implementation. At the cost of
increased specializer developer coding time, this approach significantly improves
application developer productivity.

Finally, given a multi-layered structure of the specializers, special debugging
techniques need to be employed to guarantee specializer correctness, such as [109];
this is generally ongoing research work. Debugging applications that use special-
izers can be facilitated by ensuring the specializes have high code coverage and
undergo thorough regression testing. Since specializer creation is an isolated pro-
cess, this process is fairly self-contained. The application code is then written in
compact Python using the specializers, which facilitates isolation of user errors.

We now illustrate the use of the Asp template-based approach to implement
two sample components of PyCASP: the GMM training and evaluation compo-
nent (instance of Parametric Clustering application pattern) and the Support
Vector Machine (SVM) training and classification component (instance of Lin-
ear Classification application pattern). We choose these two components as they
are extensively used in many audio analysis applications and thus, have a high
potential of reuse across a variety of applications. Gaussian Mixture Models are
extensively used in acoustic modeling for speech recognition and other audio ap-
plications, while Support Vector Machines are often used for classification of audio
content. In addition, some audio analysis applications employ both components
(such as a GMM-SVM speaker verification system) and thus we can use these
two components to analyze component composition (discussed more in the next
chapter).

Our goal is to illustrate in detail the underlying algorithms and specialization
mechanisms for each component. Using the SEJITS approach we aim to enable
efficiency and portability of the components in addition to application writer
productivity. After designing and implementing the two components, we evaluate
their performance both in terms of efficiency and portability and discuss the results
in Chapter 8.
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5.3 Parametric Clustering
As described in Chapter 4, Parametric Clustering application pattern corresponds
to a machine learning technique of grouping data points into clusters where each
cluster contains points that are similar by a particular metric. For our first com-
ponent of PyCASP, we choose to implement the Gaussian Mixture Model (GMM)
parametric clustering technique. GMMs are widely used in audio processing, as
we have seen in our example applications, and thus, they present a lucrative target
for specialization.

5.3.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are one of the most widely-used parametric
probabilistic models for clustering data. GMMs are parametric probability density
functions that consist of a weighted set of Gaussian component densities. A GMM
is a weighted sum of M Gaussian components, each Gaussian g
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Given N observed data points (x
j

s), each a D-dimensional feature vector, we
need to learn the parameters µ

i

,⌃

i

for each component and the weight parameters
⇡

i

for combining them into the overall mixture model.
GMM parameters can be estimated from training data using the Expectation-

Maximization (EM) algorithm [9] using a data set of N D-dimensional training
data points. EM is an iterative algorithm. Given an initial estimate of the pa-
rameters, the EM algorithm iterates between two phases: the E-step and the
M-step.

• The E-step computes the expectation of the log-likelihood of the events (i.e.
the observations) given parameter estimates,
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where p

i,j

is the probability of event j belonging to component i and k is
the iteration number.

• The M-step in turn computes the parameter estimates that maximize the
expected log-likelihood of the observation data.
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• These two steps repeat either a pre-specified number of times (number of EM
iterations) or until the updates of GMM parameters become epsilon-small,
i.e. a convergence criterion is reached.

GMMs are very useful in modeling biometric data such as human voice or other
sounds, due to their ability to represent a large class of variable distributions.
GMMs have been used extensively in speech recognition [12, 39, 40, 41, 92] and
music information retrieval [20, 91] to model sound variability and compute audio
similarity.

5.3.2 GMM component overview

Our goal is to design and implement the GMM component such that it enables
efficient execution of the EM algorithm on a variety of parallel platforms while
enabling application developer to use the component productively, in a high-level
language. Earlier in this chapter, we developed a methodology to enable these
aspects by encapsulating the computations for a specific instance of an application
pattern in a template-based specializer using Asp. The API for this specializer
has to correspond to the standard way application developers use GMMs (we can
look at example GMM libraries, for example Scikit-learn [96]); it needs to provide
the following parameters:

• num_components: set the number of components in the GMM
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• num_iterations: set the number of EM training iterations.

• weights: set weights to a particular vector value.

• means: set means of GMM to particular values.

• covers: set covariance matrices of GMM to particular values.

• covariance_type: set type of covariance matrix.

and support the following functions:

• train(data_set): train a GMM given a set of training data using the EM
algorithm.

• score(data_set, GMM_parameters): compute the log-likelihood of a given
observation given an already trained GMM.

• aposteriori(data_set, GMM_parameters): compute the aposteriori prob-
abilities for each Gaussian in the mixture.

• get_parameters(): return parameters of a trained GMM (weights, means,
covariances).

An application programmer needs to be able to call each function from Python
code and customize the computations using this set of parameters.

We aim to enable portability of our GMM component to a variety of platforms
available on a typical application developer desktop. Thus, we set the GMM
component to target two classes of platforms: NVIDIA CUDA and Intel Cilk+
[27] backends.

5.3.3 GMM component implementation

We aim to support two different types of backends - CUDA-programmable GPUs
and Intel multi-core CPUs (with Cilk+ programming environment). The most im-
portant and computationally-intensive function that our GMM component needs
to support is GMM training, thus, we focus on this function.

GMM training on the GPU

For the GPU backend, we start with the CUDA code implemented by Pangborn
[80] for training GMMs; this code contains an implementation of the EM training
algorithm as well as the functions for computing the likelihood given an already
trained GMM. We analyze this code and further optimize the CUDA kernels. In
this original code, each kernel is custom-written for each particular phase of the
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Figure 5.1: Four code variants for computing the covariance matrix during M
step. The computation loops are reordered and assigned to thread blocks and
threads as shown above. The "Seq" part of the computation is done sequentially
by each thread.

EM algorithm, thus we pay careful attention to the tuning and parallelization
strategies available for each phase. There are three integers that define the prob-
lem size: M - the number of Gaussian components, D - the dimensionality of the
Gaussians and N - the number of feature vectors.

By carefully analyzing the computation of GMM training EM algorithm, we
discover that there are several parallelization strategies available for the most
compute-intensive phase of the EM algorithm, the covariance matrix computation
during the M-step of the computation (Equation 5.6) which takes about 60% of
the total computation time. The covariance matrix computation exhibits several
degrees of available parallelism, namely:

• Computation of each component’s covariance matrix is independent,

• Computation of each cell of each matrix is independent,

• Computation of each feature vector’s contribution to a cell in each covariance
matrix is independent.

Thus, given the several degrees of parallelism in the computation, we can
derive four different parallelizaiton strategies that can be employed to perform
the covariance matrix computation during GMM training. The parallelization
strategies are summarized in Figure 5.1. Each code variant differs in what compute
entity the different dimensions of the problems are assigned to (either thread
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blocks, threads or sequential processing) as well as the different uses of per-block
shared memory. Thus, the efficiency of each version depends on the values of M ,
D and N as well as the hardware characteristics of the GPU. We describe the
implementation code variants below.

Code Variant 1 (V1), we use as baseline: This is the original implementa-
tion of the EM algorithm from Pangborn [80]. This strategy launches
M ⇥ D ⇥ D

2 thread blocks - one for one cell for one component’s matrix
(shown by the first two for loops in Figure 5.1(V1)). Threads correspond
to the loop over features (N). The mean vector is stored in local per-block
shared memory, however only two values are used (corresponding to the row
and column of the cell the block is computing).

Code Variant 2 (V2): Modifies Code Variant V1 by assigning each thread block
to compute one cell for all components. Thread blocks correspond to the
loop over D ⇥ D

2 cells in the matrix. Threads correspond to feature vectors
as in V1.

Code Variant 3 (V3): Makes better use of per-block shared memory by as-
signing each thread block to compute the entire covariance matrix for one
component (M). Each thread in the thread block is responsible for one cell
in the covariance matrix (D ⇥ D

2 threads). Each thread loops through all
events sequentially.

Code Variant 4 (V4-BXX): Improves upon V3 by making it more resilient
to small number of components (M) by adding blocking across the N di-
mension. Launches M ⇥ B thread blocks, where B is a blocking factor,
i.e. the number of desired feature blocks. Each thread block computes the
contribution to its entire covariance matrix for its block of features (N

B

),
followed by a sum() reduction over the partial matrices across all feature
blocks (Figure 5.1(V4) shows the additional blocking and reduction loops).
In this work we use two values of B, 32 and 128.

In order to understand the trade-offs between the different code variants, we
can test all the variants on latest GPU cards to see whether the variants’ perfor-
mance is predictable and can be programmed using logic in the speicalizer. We
use NVIDIA GTX285 and GTX480 GPUs to analyze the trade-offs of the code
variants; we use a regular sampling of problem sizes that are typical in audio con-
tent analysis. The GTX285 has more CUDA cores, but the GTX480 has longer
SIMD vectors and better atomic primitives.

The best variant depends on both the problem size and the underlying ma-
chine. V1 and V2 have a large amount of thread parallelism while V2 has limited
thread block parallelism if D is small. V3 can be limited in both thread block



CHAPTER 5. IMPLEMENTING PATTERNS USING SEJITS 66

and thread parallelism if M and D are small. V1 underutilizes the local mem-
ory and requires many streaming reads, whereas V2 and V3 utilize local memory
more efficiently and V2 requires a factor of M fewer feature data streaming reads
than V1. V4 mitigates V3’s limited thread block parallelism by blocking over N ,
but requires a global reduction across B thread blocks, incurring synchronization
overhead due to atomic operation latency.

Figure 5.2 shows some example results that we obtained form this experiment.
Overall, for the space of problem sizes that are typical in our application do-
main (1  D  36, 1  M  128, 10, 000  N  90, 000), the best-performing
code variant for a given problem instance gave a 32% average performance im-
provement in covariance matrix calculation time compared to always running the
baseline code variant V1. This performance gap increases further with larger
problem sizes, e.g. for (D = 36, M = 128, N = 500, 000) the difference grows to
75.6%. Figure 5.2 plots a slice through the 3D space of possible input parameters
for N = 10, 000 and N = 90, 000, allowing the average runtimes of different im-
plementations of the covariance computation to be compared. We see that V1, V3
and V4 with different B parameters are mutually competitive and show trade-offs
in performance when run on various problem sizes and on two GPU architectures.
V2 shows consistently poor performance compared to the other code variants.
While there are general trends leading to separable areas where one variant dom-
inates the others (e.g. V1 is best with small D values for N = 90, 000), we had
difficulty formulating a hierarchy of rules to predetermine the optimal variant be-
cause each hardware feature affects each variant’s performance differently. This
finding suggests that variant selection cannot necessarily be reduced to a compact
set of simple rules, even for a specific problem in a restricted domain of problem
sizes.

Thus, we see that there is no simple logic that can be implemented in the
specializer to perform variant selection. Instead, we can use a mechanism called
“auto-tuning"’ (pioneered in numerical libraries such as Atlas [106] and LAPACK
[2]) to automatically select the best-performing variant by running, timing and
selecting the best variant given a particular problem size and hardware config-
uration. Using auto-tuning, we test each variant on the given problem size and
time its performance, after which, we select the best-performing variant and use
it in all consecutive calls to the GMM training function. We can store the re-
sults of the auto-tuning process in a database provided by Asp so that we don’t
have to perform the (time-consuming) auto-tuning process every time we use the
PyCASP’s GMM component.

To continue with the implementation of our GMM component, we implement
all code variants for covariance matrix computation in CUDA and add them to
the optimized CUDA implementation from Pangborn. This gives us the CUDA
implementation of all functions for our GMM component. We then transform the
CUDA implementation to .mako templates, following the Asp methodology of
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Code variants 
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Figure 5.2: GMM code variant performance on NVIDIA GTX480 GPU with
varying M and D parameter values for N = 10, 000 (left) and N = 90, 000 (right)
training points. Each point shows the “winning” code variant (i.e. the code variant
yielding fastest execution time of the training algorithm). Code variant legend is
in the bottom right.

creating template-based specializers. Thus, as component/specializer writers, we
hand-code templates for the CUDA implementations of GMM functions and code
variants described previously in low-level code and translate them into template
files that are then used by Asp to generate syntactically-correct CUDA code.

Because we use CUDA as our low-level implementation language, the GMM
component emits two kinds of lower-level source code: C++ host code that calls
CUDA kernels and controls the algorithm logic (such as convergence loop compu-
tation), and CUDA GPU kernel code that implements the different parallel kernels
for training and evaluation of GMMs. Because the internal code structure of the
different covariance matrix creation kernel variants is very dissimilar, we found it
simplest to include all variants of the kernel in every dynamically-linked library
generated by the specializer; instead of specializing the kernel, we specialize the
host C code, causing it to call the best kernel based on the particular covariance
matrix type, problem size and available hardware.

Thus, the specialization logic of our GMM component has two jobs: variant
selection and parallel code parameter selection.
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• Variant selection. As discussed above, one of the jobs of our GMM com-
ponent is the variant selection logic. The best variant to use depends on
properties of the input problem data (the size of M , N , and D). We choose
to select a variant by telling Asp to examine the values of the parame-
ters passed to the specialized function, and to treat functions with different
parameter values as different functions. The current Asp implementation
tries a different variant every time a particular function/problem size is
specialized, until all variants have been tested. Thereafter, the component
remembers what the best runtime was for that particular function/problem
size, and always reuses the associated variant’s cached binary. This vari-
ant selection method is naive; instead, it is desirable to use performance
models or machine learning to make decisions about what variant to use
without exhaustively searching all options. This will be addressed in future
work. However, the important observation for this present work is that the
mechanism and policy for variant selection can be well-encapsulated and
can be replaced without touching the original application source code or the
code variant templates themselves, allowing us to enable application writer
productivity and application performance.

• Parallel code parameter selection. Our component has to also populate
the template parameters for the .mako templates in order to generate valid
CUDA code. The component can choose the optimal number of threads and
thread blocks to use by querying the GPU specs and replacing the template
parameters with those values. Thus, because the components emits valid
CUDA code that is tuned to the particular GPU, we enable our GMM
component to run on any CUDA-programmable GPU allowing for efficiency
and portability across generations of parallel hardware.

GMM training on a multi-core CPU

We follow a similar methodology to enable our GMM component to specialize
computation to run on the multi-core CPUs. We start by implementing our own
Cilk+ version of the GMM training and likelihood computation functions. We use
cilk_for keywords around loops whose elements can be computed in parallel in
the E and the M stages. We also use the reducer operators to perform cumulative
computations (reductions) in our training code. The number of processors that get
utilized is controlled by CILK_NWORKERS variable without change to the specializer
code. We then translate the Cilk+ code to .mako templates and enable our
specializer to make decisions about the number of threads to launch for each
computation. We also add compiler flags such that our specializer can use the
Intel compiler optimizations to tune the code to the particular hardware platform.
We follow the same mechanisms as in our CUDA implementation to select the
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parallelization parameters such that the Cilk+ backend of the component can run
on any Intel multi-core CPU.

Using the GMM component in Python code

After initial implementation in CUDA and Cilk+, creating templates and using
Asp to implement logic of template rendering, code generation and compilation,
we develop a pipeline for implementing functions of our GMM component. We
follow the same methodology to implement all of the functions specified by our
initial API design. We also add Python accessor functions to enable reading
and writing of the GMM parameters from the GMM objects. Thus, using Asp
and Python we enable our application developers to use the CUDA and Cilk+
implementations of the GMM component from Python application code. We use
the SEJITS technology (embodied in Asp) to perform the specialization and code
generation processes to enable easy use of our GMM functions. Figure 5.3 shows
an example usage of the GMM component in Python application code.

This code snippet shows the example use of the GMM component in an ap-
plication that trains a Gaussian Mixutre Model on a training data set (stored
as a Numpy array) and then computes the log likelihood of testing data using
the trained model. The application first imports Numpy and the GMM compo-
nent of PyCASP (lines 1 and 2). It then reads in the training and testing data
sets (lines 5 and 8) and creates a GMM object (line 17). Then the GMM is
trained on the training data set (line 20) and evaluated on the testing data set
(line 23). When the training and evaluation calls are made on the GMM objects,
the specializer triggers the set of steps that generate, compile, link and execute
efficiency-level code on parallel hardware. To run the same application on a dif-
ferent GPU, the specializer automatically changes the values it uses to populate
the templates when the GMM training function is called. This example illustrates
how we are able to achieve productivity, efficiency and portability of applications
using patterns and SEJITS for our design and implementation of PyCASP.

5.4 Linear Classification

5.4.1 Support Vector Machines

Support Vector Machines (SVMs) are one of the primary machine learning tech-
niques used for content classification. Given a set of labeled training examples
(consisting of [feature_vector, label] pairs) and a set of unlabeled target exam-
ples (consisting of [feature_vector] values), the task of an SVM is to produce a
model based on the training data that can predict the labels of the target set
[31]. More concretely, given a training set of feature-label pairs (x

i

, y

i

), i = 1, ..., n
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1 import numpy as np
2 from gmm import ∗
3
4 # ge t numpy array o f t r a i n i n g data

5 tra in ing_data = get_training_data ( )
6
7 # ge t numpy array o f t e s t i n g data

8 test ing_data = get_test ing_data ( )
9

10 # se t number o f GMM components

11 M = 16
12
13 # ge t d imens i ona l i t y o f the data

14 D = tra in ing_data . shape [ 1 ]
15
16 # i n i t i a l i z e the GMM, use d iagona l covar iance

17 gmm = GMM(M, D, cvtype=’ diag ’ )
18
19 # tra in the GMM

20 gmm. t r a i n ( tra in ing_data )
21
22 # eva l ua t e the GMM to ge t l o g l i k e l i h o o d s on t e s t data

23 l og_lk ld = gmm. s co r e ( test ing_data )

Figure 5.3: Example usage of the GMM component.
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are training feature vectors, y
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are the labels attached to x
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are a set of weights, one for each training example (which are the optimization
parameters). C is an error parameter that trades off classifier accuracy with
generality.

SVMs use a machine learning technique called basis expansion to project the
feature vectors to a higher-dimensional space in order to better separate the train-
ing examples into two classes. The transformation is done using the function �().
Specifically, using a kernel function, K(x
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can be done efficiently without having to explicitly compute the values of �() by
taking advantage of the fact that only dot products of feature vectors are required
for the optimization problem; this is commonly referred to as the kernel trick.
There are several “standard” kernel functions:

• Linear. K(x
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where r, d and � are kernel parameters specific to each function.
The task of the SVM optimization is to find a linear separating hyperplane in

this higher-dimensional space that has the maximum separating margin between
examples from the two classes.

There are several ways to solve the SVM training optimization problem. We
use the optimized implementation by Catanzaro et al. [16] as the baseline for our
SVM component since it was shown to be the most efficient implementation of
the SVM training and classification algorithm. This implementation uses the Se-
quential Minimal Optimization (SMO) algorithm [83] to solve the SVM training
problem. The algorithm takes advantage of the sparse nature of the optimiza-
tion problem and reduces the optimization steps to first, determining and then
updating two weights ↵

i

. The remainder set of weights is updated using the
Karush-Kuhn-Tucker optimality conditions which are maintained using a vector
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The SMO algorithm we choose to use for our SVM component (from [16]) is

as follows:
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The update functions are as follows:
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They define index sets as:
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This set is computed using a tolerance value ✏, due to the approximate nature
of the problem (i.e. {i : ✏ < ↵

i

< (C � ✏)}). The weights ↵
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and ↵
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are
clipped to the valid range 0  ↵

i

 C to ensure validity of the updates. The
algorithm chooses indices of the weights to be updated (i
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and i

high

) using a
combination two sets of heuristics: a first order heuristic from Keerthi et al. [61]
and second-order heuristic from Fan et al.[37]. This adaptive heuristic technique
is as follows. First, using the first order heuristic, i
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is chosen as follows:
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Then i
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After solving the optimization problem using the SMO algorithm and the set
of heuristics described above, we end up with a set of training data points for
which ↵

i

> 0; these points are called support vectors. The decision surface is
defined by the support vectors. Once the set of support vectors is determined
during training, the SVM classification problem is states as follows:
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= sign{b+
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i
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i

, z)} (5.20)

where z 2 Rn is a point in the target set for which need to determine the label
l

z

2 {1,�1}.

5.4.2 SVM component overview

Our goal now is to design and implement the SVM component such that it enables
efficient execution of the SVM SMO training and classification algorithm on a set
of parallel platforms while enabling application developer to use the component
productively, in a high-level language. Similar to the GMM component, we use
the SEJITS methodology to enable efficiency, productivity and portability. We
encapsulate the computations for this specific instance of an application pattern
in a template-based specializer using Asp. The API for this component has to
correspond to the standard way application developers use SVMs. We can again
refer to the example API in the Scikit-learn [96] library. Our SVM component
must provide the following parameters:

• kernel_type: type of kernel to use in the SVM model,

• kernel_parameters: the r, d and � kernel parameters specific to the kernel
function,

• heuristic_method: heuristic to use (first, second or adaptive),

• epsilon: the ✏ approximation parameter,

• tolerance: the ⌧ convergence parameter

and support the following functions:

• train(feature_vectors, labels, kernel_type,
kernel_parameters, heuristic_method, epsilon, tolerance): train the
SVM using the specified kernel functions and other parameters,

• classify(feature_vectors): classify the given set of test feature vectors,
optionally pass in labels to evaluate accuracy,
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• get_support_vectors(): return the support vectors for model analysis.

Application programmer needs to be able to call each function from Python
code and customize the computations using the set of parameters. We aim to
enable portability of our SVM component to a variety of GPU platforms and
enable applications to run on any NVIDIA GPU without code change. We leave
enabling the SVM component to target Cilk+ backend to future work.

5.4.3 SVM component implementation

We aim to enable efficient and productive use of SVM instance of linear classifi-
cation pattern in applications that use our framework. Since the SVM training
function is by far the most compute-intensive function of this component, we focus
the majority of our attention on it.

SVM training on the GPU

As mentioned above, for the SVM training and classification implementation, we
start with the efficient implementation from Catanzaro et al. [16] and modifying
it to use more modern CUDA functionality. This code contains implementations
of the SMO training algorithm using both types of heuristics as well as the SVM
classification code.

The GPU implementation of SVM training we use for our SVM component
uses several parallel computation phase. The parallel tasks are based on the
MapReduce structural pattern. As discussed in Chapter 4, the MapReduce struc-
tural pattern consists of map and reduce phases, where map phase maps inde-
pendent computations onto a set of data points and the reduce phase summarizes
the results. First, one GPU thread is assigned one data point in the training set
to compute f

0 (equation 5.12), using map parallelism. Then, depending on the
heuristic chosen, it launches another set of parallel tasks on the GPU. For the
first order heuristic, it launches a set of reductions to compute b

low

, b

high

, i

low

and i

high

. For the second order heuristic it launches two reductions to compute
b

high

and i

high

, it then launches a map to compute �F
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for all points and reduce
phases for computing b
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and i

low

. The implementation also caches the values
of K(x
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, x

j

) on the fly, if the computation encounters a repeated set of x

i

and
x

j

, those values are simply retrieved from the cache and not recomputed. After
analyzing this implementation, we carefully went through the code and updated
it to use more recent CUDA constructs (for example, for using shared memory on
the GPU).

To implement the SVM component, we use Asp templates, following the pro-
cess we used to implement the GMM component. We translate all CUDA code
files of the SVM training and classification implementation to .mako template
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files. We replace the parameters that will need to be filled in by the specializer
with template parameters: the number of thread blocks, the number of threads
per thread block, and shared memory size.

When the SVM training or classification functions are called from application
Python code, our component can pull in the template code and populate the
template parameters with values based on the particular GPU platform the code
is running on. We can do this the same way we did in the GMM component
implementation: by querying the GPU for its specs and filling in the template
parameters with the corresponding values. After we populate the template pa-
rameters with the correct values, Asp can generate valid CUDA code from the
templates, call the appropriate compile toolchain (which can be specified in our
component logic), execute the function and return results back to the Python
application.

Using SVM component in Python code

Figure 5.4 shows a sample Python code snippet that uses the PyCASP SVM
component. First, the Numpy library and the SVM components are imported
into the application (line 25-26). Then the training and testing data represented
by Numpy arrays are read in (lines 29 and 32). The SVM object is instantiated
on line 35 and trained using the training data feature vectors and labels and a
linear kernel (line 39). Finally, the trained SVM is used to classify the testing
data feature vectors and results are evaluated for accuracy against the ground
truth labels (line 43). This sample application is written in Python but allows
the application programmer to use the underlying GPU hardware by automati-
cally specializing the SVM training and classification function calls to the GPU
using SEJITS. Because of our specialization mechanisms, this code can run on
any CUDA-programmable GPU without code change. This example illustrates
how the pattern-based design and SEJITS-based implementations help us achieve
productivity, efficiency and portability goals. The specific results on sample ap-
plications are discussed in Chapter 8.

5.5 Summary
This chapter steps through the process of realizing PyCASP’s pattern-oriented
design in software. Our goal is to realize patterns in software in a way that of-
fers productivity to the application developers and efficiency and portability to the
applications. Application patterns provide a great API for PyCASP as they are fa-
miliar to application developers and capture concise algorithms for efficiency pro-
grammers to implement. We design PyCASP to support two kinds of components
that capture two levels of customizability: library and customizable components.
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25 import numpy as np
26 from svm import ∗
27
28 # ge t numpy array o f t r a i n i n g data

29 tra in ing_data = get_training_data ( )
30
31 # ge t numpy array o f t e s t i n g data

32 test ing_data = get_test ing_data ( )
33
34 # crea t e SVM ob j e c t

35 svm = SVM()
36
37 # tra in the SVM on t r a i n i n g data ( f e a t u r e s and l a b e l s )

38 # using a l i n e a r k e rne l and d e f a u l t e p l i s on and t o l e r anc e va l u e s

39 svm . t r a i n ( tra in ing_data . f e a tu r e s , t ra in ing_data . l ab e l s , " l i n e a r " )
40
41 # c l a s s i f y t e s t i n g data

42 # eva l ua t e aga in s t ground t ru t h l a b e l s to compute accuracy

43 accuracy = svm . c l a s s i f y ( test ing_data . f e a tu r e s , test ing_data . l a b e l s )

Figure 5.4: Example usage of the SVM component.

Previous work showed that the SEJITS methodology can bring productivity, flex-
ibility, efficiency and portability to application frameworks. Happily, a specific
implementation of SEJITS, called Asp, is a methodology that allows patterns
captured in terms of a DSL to be matched up with a highly-efficient implemen-
tation created by an efficiency programmer. Asp fits our goals well in several
ways. First, Asp provides two main mechanisms for efficiency programmers to
create software implementations of a pattern: templates and AST manipulations,
which map well onto the two kinds of components of PyCASP. Second, the Asp
prototype uses Python, which is a good language choice for us for other reasons
discussed in the chapter. We describe two detailed Asp template-based specializ-
ers for two PyCASP components: Gaussian Mixture Model (GMM) training and
evaluation and Support Vector Machine (SVM) training and classification. We
illustrate that even though library components don’t allow for as much flexibility
as customizable components, they still provide quite a bit of customization to the
application developer. For example, library components can support customiza-
tions in the form of algorithm selection and in some cases parameter selection for
the specific code variants of the algorithm.
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Chapter 6

Composition with Structural
Patterns

6.1 Composition Design Space
In previous chapters, we described the pattern-based design of PyCASP and the
implementation of application patterns using Selected Embedded JIT Special-
ization. In addition to using these techniques to create a productive, efficient
and portable software framework, we set out to create a software environment
to enable application-specific optimization opportunities to further improve ap-
plication performance. Using the pattern-mining process we determined that the
three structural patterns, Pipe-and-Filter, Iterator, and MapReduce, are sufficient
to express the types of compositions of computations in audio content analysis
applications. By restricting the scope of our software environment to a specific
application domain, we aim to gain an understanding of how the structural pat-
terns are used to compose computations and what optimization opportunities they
present. The process of identifying and implementing composition optimizations
is application-domain specific as we must understand the types of compositions,
the computations that are being composed and the data format they use. We
now ask: how can the structural pattern-based composition mechanisms be real-
ized in software and how can we use these to optimize component composition in
PyCASP?

One option is to realize the structural pattern composition in software ex-
plicitly. Explicit composition is defined by having the application programmers
explicitly use structural pattern classes in their application code. We can use
explicit skeletal class structures [29] for each type of structural pattern. By hav-
ing explicit class structures for the structural patterns, we can explicitly define
composition points and available optimizations for each pattern. For example,
we can provide a skeleton for the Pipe-and-Filter structural pattern by having
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an abstract class that defines “pipe” and “filter” functions, where the pipes define
data sharing optimizations. These functions can then be defined and implemented
by the application writer. This approach requires application writers to identify
what types of structural patterns they need to use in their application and rewrite
the application code to use that logic.

An alternative approach is to have the application developers write applica-
tion code without the explicit need to identify the structural patterns in their
applications. This is an implicit composition strategy. It is defined by having
the framework automatically detect composition points and perform composition
optimizations. There are domain-specific ways of composing computational com-
ponents in applications. Specifically, since we focus on the audio content analysis
applications, we can infer the typical ways computations are naturally composed
in such applications. We can then enable PyCASP to recognize these typical com-
position points and optimize them. In order to determine the composition points,
we need to study example use cases to determine how PyCASP’s components are
typically used and composed in the example applications.

Figure 6.1 schematically illustrates how components can be used in PyCASP.
Application programmers can import and use PyCASP components as black boxes
in their application code (example A on the left). In some cases, there are typical
ways to use components, for example in an Iterator pattern (example B). Fig-
ure 6.2 shows a more concrete code example of implicit composition. The figure
shows a GMM-SVM composition using the Pipe-and-Filter structural pattern.
The output of the GMM training call (specifically the GMM mean parameters)
are passed to the SVM classification component. The GMM means are reused
across the two component calls, which presents an opportunity for optimization.
Since this is a natural way for application programmers to use the GMM and
SVM components in an application, we can add logic in PyCASP to enable op-
timizations when such compositions occur in applications. Since we use Python
to implement PyCASP, we can implement the composition logic in Python to
implicitly optimize applications that use specific structural patterns. We focus on
enabling application programer to productively develop applications. Thus, we
choose to use the implicit composition strategy since it provides a natural way to
use components in application, enables composition optimizations, and does not
require rewriting applications to explicitly use structural patterns. We leave the
evaluation of explicit composition strategy as future work.

The three structural patterns are used on many levels of software architec-
tures of applications - from high-level computation across different audio analysis
models, to low-level implementations of specific machine learning computations.
In this work we focus on composition of PyCASP’s components, and thus, are
concerned with the high-level composition of computational building blocks. The
use of the structural patterns at the low-level is captured in the component imple-
mentations (i.e. the low-level code emitted by the component specializer). In this
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FFT
GMM

SVM
HMM

Components

A) Component use in Python

GMM

FFT

B) Component and Composition use in Python

Composition Patterns

Pipe-and-Filter Iterator MapReduce

FFT

GMM

Figure 6.1: Schematic summary of components and composition patterns of Py-
CASP and sample usage in applications.

45 from pycasp import gmm
46 from pycasp import svm
47
48 input_data = get_input_data ( )
49
50 # Train

51 gmm = GMM(M, D)
52 gmm.train(input_data)
53
54 # C l a s s i f y

55 class = SVM.classify(gmm.means)

Figure 6.2: Example implicit composition using Pipe-and-Filter.
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work we are not concerned with composing computations with patterns at that
low level. We also note that since we are focused on how PyCASP’s components
are composed at a high level, the underlying implementation of communication
mechanisms (i.e. whether it is via message-passing or shared memory) is orthog-
onal to this analysis. Here, we are aiming to understand composition at the level
of PyCASP components and implement composition optimizations based on the
structural patterns.

We now analyze in detail how structural patterns are used to compose com-
putations in applications. We start by describing each pattern and looking at the
specific use cases and applications where the pattern in used to understand how
the computations are naturally composed using the pattern. We then make deci-
sions about what optimization opportunities are available for the specific pattern
and how we can implement them.

6.2 Pipe-and-Filter
As described in Chapter 4, the Pipe-and-Filter pattern refers to applications that
are structured with data flowing through modular phases of computation (filters)
using data flow channels (pipes). This pattern is the most common structural
pattern used in machine learning, and specifically, audio content analysis applica-
tions. These applications typically consist of a set of computations arranged in a
particular, linear order. The structural control-flow of such applications uses the
Pipe-and-Filter pattern to pass data and control from one phase of the compu-
tation to another; the control-flow is defined by the pipes of the Pipe-and-Filter
pattern.

6.2.1 Composition using Pipe-and-Filter

We now look at specific instances of using the Pipe-and-Filter pattern to com-
pose computations in audio content analysis applications. When learning optimal
parameters of machine learning models in audio content analysis applications,
application researchers typically need to iterate between training and testing of
the model. First, they train a particular model instance on a set of training fea-
tures. Then they evaluate the model performance on a set of testing examples
and evaluate the model given the ground truth. If the model is not performing
as well as needed, application researchers change certain parameters of the model
that they think will improve performance, and repeat the training process un-
til sufficient model prediction accuracy is achieved. This process heavily utilizes
the Pipe-and-Filter pattern: the specific computations of the training and testing
phases are the filters of the pattern and the data passed between computations
flows through the pipes. We illustrate this approach with two concrete examples
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of training machine learning models using the two PyCASP components described
in Chapter 5: GMM training and prediction and SVM training and classification.
We look at the details of using the Pipe-and-Filter structural pattern to compose
computations in the model training examples.

Figure 6.3 shows a sample GMM training pipeline that can be used to learn a
GMM-based acoustic model using short-term frequency Mel-Frequency Cepstral
Coefficients (MFCC) features. In order to determine the right set of GMM pa-
rameters (the number of components, type of covariance matrix, etc.), the GMM
training algorithm iterates between two phases - training and testing. In the
training phase, the acoustic model represented by the GMM is trained on MFCC
features. Then, using the MFCC features extracted from a testing dataset, the
trained GMM is used to predict the likelihood of the features extracted from
previously-unseen testing data. Finally, the model is evaluated against the ground
truth to understand its predictive performance. As shown in Figure 6.3, compu-
tations in the training and testing phases are composed using the Pipe-and-Filter
pattern. The filters are the computations of MFCC feature extraction and GMM
training / prediction calls. The data flowing down the pipes of the Pipe-and-Filter
are the MFCC features and the GMM parameter data.

One of the basic machine learning approaches used in audio analysis is to use
GMMs for modeling acoustic properties of audio and use SVMs for classifying the
content represented by the GMMs. The model learning procedure is employed
in learning the GMM and SVM parameters in such systems. This approach can
be used in many audio classification application such as speaker modeling and
verification, speech recognition, music classification and audio concept detection.

We now look at the GMM-SVM training pipeline, shown in Figure 6.4. The
SVM is trained on GMM means (referred to as supervectors). The SVM is tasked
to classify GMM supervectors into two classes. The training data contains exam-
ples of audio from both classes and corresponding class labels. During the training
phase, the MFCC features are extracted from raw audio and passed to the GMM
training procedure. After training the GMM on each audio sample from both
classes, GMM supervectors with the corresponding labels are passed to the SVM
training computation. The SVM is trained using the two sets of features and
labels. To evaluate the SVM, the support vectors (SVM parameters) are passed
to the testing phase of the SVM learning process. A set of MFCC features is ex-
tracted from previously unseen testing examples and passed to the GMM training
call to compute the supervector for each audio example. The trained SVM is then
used to classify the new supervectors into one of the two classes. As shown in
Figure 6.4, the Pipe-and-Filter pattern serves as the main structural pattern this
application as well. The filters are the MFCC extraction, GMM training and SVM
training and classification computations. The pipes are the data passed between
these stages (MFCC features, GMM supervectors and SVM parameters).

The GMM-SVM model is also used in the speaker verification application,
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Figure 6.3: Composition using Pipe-and-Filter pattern for GMM training pipeline.
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Figure 6.5: Composition using Pipe-and-Filter pattern for GMM-SVM speaker
verification system.

whose algorithm we discussed in Chapter 3. In the speaker verification system,
the SVM is used to classify previously unknown audio input to determine whether
it belongs to a particular target speaker. Figure 6.5 shows the audio classification
phase of the speaker verification application. Here, the Pipe-and-Filter pattern
is also the main structural pattern used to compose computations. The MFCC
features are extracted from raw audio recorded from the speaker, the GMM is
trained on the features and then the GMM supervector is classified using the
trained SVM. The filters are MFCC extraction, GMM training and SVM predic-
tion computations and the pipes are the MFCC features and GMM supervectors
passed between the computations.

Thus, during machine learning model training and evaluation as well as model
prediction (exemplified by the speaker verification application), we discover the
common ways that the Pipe-and-Filter structural pattern used to compose com-
putations. The filters correspond to specific computations, in our case realized as
PyCASP components. The pipes correspond to specific data structures that are
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passed between the components. This gives us an insight into what types of compo-
sitions occur in our application domain and enables us to implement optimizations
in our framework based on these insights.

6.2.2 Implementation of composition optimizations

To use the insights we gained by studying the Pipe-and-Filter-based compositions
in audio content analysis applications, we need to determine application optimiza-
tions that are possible given these types of compositions. We have determined
that composition using the Pipe-and-Filter pattern in our application domain
corresponds to data structure sharing across computational components. We can
use this knowledge to optimize applications that are developed using our software
framework.

Data structure sharing

We can remove redundant data allocation, deallocation and deep copy calls when
data structures are shared between computations. If one component uses the
output of another component as its input, there is no need to deallocate and real-
locate and copy that data. Thus, we need to implement a mechanism that simply
passes the reference to already allocated data from one component to the next.
For simplicity, we focus on the case of two components sharing one data struc-
ture; optimizing data structure sharing across several instances of computations
becomes exponentially more difficult. When sharing a data structure across two
computations, we must pay careful attention to the data format - both compu-
tations have to use the same format or know how to efficiently convert from one
format to the other. This is the major contingency when composing applications
using data structure sharing. Computational components need to agree on what
data format they will use in a pre-defined “protocol”. When new components are
added to the framework, they must adhere to this protocol or define a new format
if a new type of composition is introduced. This makes composition of computa-
tions a challenging task: there are numerous ways to represent data structures,
for example graphs can be represented using adjacency matrix or adjacency lists,
sparse matrix representations can also use a variety of formats. Each representa-
tion implies different level of efficiency of the algorithm, depending on the type of
computation that is performed on it. Thus, we are faced with the question - how
do we define a data structure format protocol for the components of our software
framework?

To address the above question, we look back at the scope of our framework.
Since each type of component can introduce their own data structure format, we
focus on the exact computations that our framework aims to support. We use the
design patterns to define and restrict the scope of our framework. This enables us
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to reason through specific computations and data structures that are used in our
application domain. We discover that in audio applications the data structures
are used to represent:

• Audio input data, for example MFCC features,

• Alternative or transformed representations of audio, for example the DCT
or FFT of the input data,

• Machine learning model parameters, for example GMM means and covari-
ance matrices, and

• Auxiliary evaluation data, for example likelihood of an observation com-
puted using a pre-trained GMM.

These data structures are usually represented using dense matrices and vectors.
Thus, we restrict our composition problem to the following:

• Data structures that are shared across components are represented using
dense matrix and vectors,

• We optimize one-to-one component data sharing,

• We know exactly the types of computations that will be composed (given
by application patterns).

By focusing on a more restricted composition problem, we hope to enable
component composition and cross-computation optimizations in our applications.

Implementation details

We focus on the restricted set of compositions given our application domain -
allowing for efficient sharing of dense matrix and vector data structures across
computational components of PyCASP. As described in Chapter 5, we use the Asp
framework to develop specializers for each specific instance of application patterns.
When a component is called for the first time, it allocates the data structures it
needs to perform its computations. However, if a component operates on data
that has previously been allocated by another component, instead of reallocating
the data structures in this component call, we can pass the reference to the data
structure.

The components must agree on the data format of the shared data structures
- in our case, the data is dense matrix and vectors, thus the components must
agree on whether the data is stored in row-major or column-major format. By
default, each component in PyCASP assumes the data is in row-major format. A
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component is allowed to internally transpose data to make specific computations
more efficient (for example the GMM component stores two copies of the input
data, one in row-major and one in column-major format). The conversion between
formats is left to the component writer (i.e the SEJITS specializer developer).

In Python, objects are passed by reference by default - when data structures
(for example Numpy arrays or Python dictionaries) are passed from one compu-
tation to the other, they are passed the value of the object’s reference, without
reallocation. It is assumed that the programmer knows this default feature and
expects each function to potentially modify the data structures passed to it as pa-
rameters (unless they are of immutable type, such as numbers or strings). Thus,
when running Python applications on CPU platforms, Python by default already
implements the data structure sharing optimization.

As mentioned in Chapter 2, when working with the GPU backends, data allo-
cation and memory management must be handled explicitly by the programmer.
Each data structure needs to be explicitly allocated, copied and deallocated in
CUDA code. Thus, we must explicitly implement the pass-by-reference mecha-
nism for the GPU backend of our PyCASP components. For example, Figure 6.6
shows the two alternative data sharing implementations in the speaker verifica-
tion application. In the first scenario (Figure 6.6(A)), without implementing the
composition optimization, the supervector data will be deallocated, copied back
to the CPU, reallocated, and copied back to the GPU. This is clearly wasteful.
Instead, by recognizing that data is shared across these two component calls, Py-
CASP can remove the redundant data reallocation calls and pass the reference to
an already allocated data structure to the SVM component (shown in the second
scenario, Figure 6.6(B)).

The pass-by-reference mechanism can be implemented by creating a Python
dictionary that maps data structures to their locations in GPU memory. When
a component invokes a data allocation call, PyCASP first checks if the data has
been allocated on the GPU by referencing this memory map data structure. If
there is a “hit”, PyCASP passes the reference to the data in memory and skips the
allocation call. This way, data structures can be shared across GPU function calls.
We use the data structure map to keep track of which data structures have been
allocated on the GPU. Specifically, since Python already uses references to pass
data structures between function calls, we store the pair [CPU reference, GPU
reference] in our dictionary. The next task is to insert the read and write calls to
this data structure in the PyCASP component implementation logic. Every time a
component calls a GPU allocation function, we look up the CPU reference of that
data in the dictionary. If we don’t find the reference in the dictionary, we allocate
and copy the data to the GPU and store the new pair [CPU reference, GPU
reference] in the dictionary. If we do get a hit in our dictionary, we simply set
the GPU data reference in the component to the value returned by the dictionary
and skip the allocation and copy calls.
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Figure 6.6: Two alternative data sharing implementations in the speaker verifica-
tion system.

When the PyCASP component objects are no longer used by the application,
their destructors are automatically invoked by Python’s garbage collector. Thus,
we add deallocation calls to the destructors of our components that deallocate
data structures on the GPU. This way, when the same object is reused many
times in an application, its destructor will not be called, and thus, the data
structures will stay in the GPU memory. When the destructor is finally called,
the GPU data structures are deallocated and we remove the corresponding entry
from the memory map dictionary. Using Python objects allows us to add the
memory management logic to the objects constructors and destructors and thus,
implicitly control data structure allocation in the PyCASP components.

Now that we have determined our optimization strategy and its implemen-
tation, we mark the specific locations to insert these optimizations in our com-
ponent’s code, i.e. the specific functions that will require these optimizations.
Referring back to Figures 6.3, 6.4 and 6.5, we identified the set of data structure
transfers between specific component calls. They are:

• MFCC-extract - MFCC features - GMM train

• MFCC-extract - MFCC features - GMM predict

• GMM train - GMM parameters - GMM predict

• GMM train - GMM supervector - SVM train
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• GMM train - GMM supervector - SVM predict

• SVM train - SVM parameters - SVM predict

Thus, we need to insert the memory optimizations in the following function
calls:

• Feature extractor data allocator

• GMM training input data allocator

• GMM prediction input data allocator

• GMM training parameter allocator

• SVM training input data allocator

• SVM prediction input data allocator

• SVM training parameter allocator

We insert the dictionary write and read logic into these functions in the social-
izer Python code. This process then becomes a way to tie together the sets of com-
ponents that we know are composed into applications using the Pipe-and-Filter
pattern specializer. We discuss the performance results of these optimizations in
Chapter 8.

6.3 Iterator
As we discussed in Chapter 4, the Iterator pattern refers to applications whose
computation is repeated many times in a loop until a termination condition is met.
The Iterator pattern is used extensively in audio content analysis, specifically
when learning model parameters. During speaker diarization, for example, the
learning algorithm iterates through each speaker model, updating its parameters
based on likelihood of the meeting segmentation. During acoustic or classification
model training, model parameters are updated until a particular error function is
minimized (as in SVM training) or a certain number of iterations is reached (as
in GMM training).
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Figure 6.7: Composition using Iterator pattern in UBM training application.

6.3.1 Composition using Iterator

We now look at specific instances of composition of computational building blocks
using the Iterator pattern. Figure 6.7 shows the Iterator pattern used for training
a UBM model. UBM is represented by a GMM and is trained on a set of features
randomly sampled from the problem dataset. We divide the dataset into chunks
of audio and train the GMM on the set of features in each chunk, updating the
GMM parameters in each training call. The GMM parameters are shared across
the calls of the GMM training function. We can optimize this composition by
recognizing that the same model is trained on different chunks of audio features
and the model parameters are reused across training calls.

Figure 6.8 shows how the Iterator pattern is used in the speaker diarization
application to segment a meeting recording. At the top level, the algorithm it-
erates over the speaker model training and data segmentation phases, merging
speaker models (represented by GMMs) until the optimal BIC score is reached
(see Chapter 3 for the algorithm details). In each iteration, each speaker model is
retrained on data that has been previously assigned to it during the segmentation
phase. Then each speaker model is evaluated using the new trained parameters
to compute the likelihood of each feature in the meeting recording. After the like-
lihoods are computed for each model, they are passed to the segmentation phase
to re-assign chunks of audio to the speaker models.

In this Iterator composition, each speaker model is retrained, using a sepa-
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rate call to the GMM training function. Thus, we are forced to reallocate the
GMM parameters each time when the GMM training function is invoked. We
can, however, optimize the way data is passed to the GMM training call. Since
the meeting audio data is reused throughout the segmentation process, we can
allocate it once for the entire speaker diarization application. In addition, after
segmentation, instead of passing subsets of feature vectors to each GMM training
call, we can instead pass the indices of the feature subset intervals, reducing the
amount of data that is passed between function calls.

Note that the overall structure of this application uses the Pipe-and-Filter pat-
tern - the GMMs are trained and evaluated and then the audio is segmented using
the output of the GMM evaluation computation. Accessing the input data using
the interval indices can be done at the Pipe-and-Filter level - i.e. we can always
access the meeting data using the intervals instead of passing in audio features
directly. However, since in the Iterator pattern the audio data is reused repeatedly
across component calls, this optimization becomes much more important.

As shown by the examples, the Iterator pattern is used to compose computa-
tions that are repeated many times. The opportunity for optimization is presented
by the data structure reuse across component calls. As shown in our example ap-
plications, these data structures can be model parameters that are updated over
several training calls, or read-only audio data that is reused across multiple model
training calls. We now discuss the implementation details of how we can use these
insights and implement optimizations for compositions that use the Iterator pat-
tern.

6.3.2 Implementation of composition optimizations

To implement the optimizations for composition of computations using the Itera-
tor pattern, we use a lazy allocation technique to remove redundant data allocation
and copy calls: for both CPU and GPU backends, we skip the data structure al-
locations if the data is reused from a previous object allocation. Python object
allocation on CPU is automatically managed by Python. Python extensions such
as PyUBLAS [85] also allow data structures to be shared by reference between
C++ and Python. Thus, similar to the Pipe-and-Filter pattern, we focus on the
CPU-GPU implementations, as we must manage data allocation logic manually.
Instead of reallocating the GMM parameters for every call to the GMM train-
ing function, we can lazily reallocate GMM parameters by recognizing when the
same GMM object is reused across multiple training calls. If the same GMM is
trained using new input training data, we do not reallocate the GMM parameters
but reuse the ones that are already in memory by passing in a reference to the
parameters.

To implement the feature interval indices optimization, we implement another
GMM training function variant that operates on interval indices instead of feature
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vector training data as input. This function (train_on_subset()) takes a set of
index intervals as parameters and gathers the subsets of audio features correspond-
ing to the intervals into a buffer that is then passed to the training function. The
meeting audio data resides in main GPU memory and is not reallocated across
GMM training calls (unless, of course, the application programmer changes the
input data to be a new set of audio features). We discuss the trade-offs of the
results of these optimizations in Chapter 8.

6.4 MapReduce
The MapReduce pattern (as discussed in Chapter 4) describes programs that
implement specific map and reduce operations on key-value pairs to enable ap-
plication parallelism. Using the two simple data operators, many loosely coupled
tasks can be readily mapped to clusters [87]. MapReduce jobs are typically used
to distribute a computation across a set of nodes in a cluster. A programmer can
write arbitrarily complex applications using a set of map and reduce functions
to extract information and analyze large datasets. The computation model is
based on streaming - data flows through the map and reduce stages, each stage
processing the data, performing computation, processing or summarizing tasks.
The output of a MapReduce job is typically an analysis result or a summary of
the input data.

MapReduce is also used extensively on the lower-levels of application software
architectures. For example, in GMM EM training algorithm, MapReduce is used
to map computations to the GPU cores. However, as mentioned before, we are
concerned with the composition of PyCASP’s components and thus, analyze the
high-level use of the MapReduce pattern.

6.4.1 Composition using MapReduce

In audio analysis applications, the MapReduce pattern is typically used when
applications process large datasets. By using the MapReduce pattern and dis-
tributing the computation across many nodes of a computer cluster, large datasets
can be processed much more efficiently. The simplest MapReduce job consists of
launching a set of map tasks, each executing a particular set of computations on
a subset of data and there are no dependencies among the tasks. This is the
simplest use of MapReduce yet it is powerful enough to provide scalability to ap-
plications that process large datasets. There has been extensive research done on
implementing MapReduce frameworks and optimizing more complex MapReduce
applications [51, 76, 82, 112]. In this work, we focus on integrating the MapRe-
duce functionality into PyCASP to enable application writers to easily scale their
applications to clusters of machines.
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Figure 6.9: Composition using MapReduce pattern in video event detection ap-
plication.

We use the video event detection application as the driving example for the
MapReduce-based composition. The application processes thousands of videos,
extracting information from the soundtrack of each video. MapReduce is required
to make this application scalable to large datasets. Figure 6.9 shows the use of
MapReduce pattern in the video event detection application. The video dataset
is partitioned across a set of nodes in a cluster, each cluster node is assigned a
particular subset of videos. Each node performs the diarization computations on
its assigned subset of data to segment the video soundtrack and compute event
models (see Chapter 3 for algorithm details). The result is then returned to one
node, which runs the K-means clustering to distill the global set of audio events
present in all videos. Since diarization of each video is independent, we are able
to process the entire video dataset in parallel using the MapReduce pattern.

The computations in each map function can themselves consist of multiple
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compute stages, composed using Pipe-and-Filter and Iterator patterns. We can
use the optimizations for each pattern described earlier in this chapter. Thus, we
can then compose MapReduce workloads with Pipe-and-Filter and Iterator work-
loads in applications, each of which uses a set of PyCASP components and com-
position optimizations. For example, in the video event detection application, we
compose the MapReduce pattern with the diarization computation, which itself
consists of an Iterator and Pipe-and-Filter patterns and uses the segmentation
and data sharing optimizations described earlier. The component computations
are run on a multi-core CPU or a GPU, utilizing parallel hardware on the compute
node. Thus, we use our optimization strategies for composition of components
across several levels of structural patterns. This enables full-functioning, opti-
mized applications that scale to large datasets and utilize several levels of parallel
hardware.

6.4.2 Implementation of composition optimizations

From our analysis above, an application of the MapReduce pattern is to distribute
data and independent computations across cluster nodes. In this work we choose
to focus on this basic use of MapReduce - enabling functionality to distribute data
to cluster nodes and exposing the map and reduce functions in PyCASP.

To expose the MapReduce functionality in PyCASP, we use the popular, open
source Hadoop MapReduce framework [107]. Specifically we choose to use the
mrjob abstraction for writing MapReduce programs in Python 1. The application
programmers can then use the map and reduce functions in Python to imple-
ment their applications and scale them to computer clusters. Map and reduce
functions take arbitrary Python functions and thus can be passed complex func-
tions that use other PyCASP components. This enables composition of PyCASP
components and other composition optimizations with the MapReduce pattern.
The programmer is tasked with transferring the data to the Hadoop distributed
file system (HDFS) before invoking the application code. This is the standard
practice in using MapReduce frameworks: the data needs to be transferred to the
distributed file system to enable locality in MapReduce computations. The data
transfer can be automated by the framework with specific input from the appli-
cation developer; we leave this as future work. We discuss the specific examples
of using the MapReduce pattern in applications in Chapter 7.

Our choice of MapReduce and Hadoop as the means of parallelization has
several added benefits: Hadoop has automatic load balancing and fault tolerance,
and it provides an array of tuning parameters that PyCASP can use to opti-
mize performance. Furthermore, it comes bundled with a distributed filesystem

1http://packages.python.org/mrjob/
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that provides high read bandwidth, data durability, and the ability to schedule
computation close to its data.

6.5 Summary
In this chapter, we have determined the set of composition points based on three
structural patterns: Pipe-and-Filter, Iterator and MapReduce. We analyzed spe-
cific use cases of each pattern in our sample applications and we have determined
the most natural way of composing components in audio analysis applications
and available optimizations for the composition points. Table 6.1 summarizes our
findings.

Pattern Optimization
Pipe-and-Filter Data structures shared between components

Iterator Data structures reused in a loop
MapReduce Data structures distributed across compute nodes

Table 6.1: Summary of composition optimizations based on structural patterns.

After identifying the specifics of composition mechanisms for each of the struc-
tural patterns, we determined how we can implement optimizations based on these
insights. For data structure sharing and reuse, we use a reference-tracking mech-
anism to remove redundant allocation and copy calls. Since this functionality
is already supported by default in Python when using CPU platforms, we focus
our attention on the GPU backend, where we must explicitly manage memory
use and data structure allocations. For data structure sharing using Pipe-and-
Filter and reuse using Iterator, we implement a pass-by-reference mechanism and
lazy allocation respectively to remove redundant data allocation on the GPU. For
MapReduce we task the application programmer to distribute the data across
cluster nodes before invoking the application code. For each pattern, we study
each composition point explicitly and insert the optimization logic into each rel-
evant function. We discuss the results of these optimizations in Chapter 8 and
discuss advantages and disadvantages of our approach in Chapter 9
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Chapter 7

Implementing Applications with
PyCASP

Chapters 4, 5 and 6 described the pattern-oriented design of PyCASP, the im-
plementation of the specific instances of application patterns using Selected Em-
bedded JIT Specialization (SEJITS), and the composition methodology using
structural patterns. In Chapter 3, we discussed the algorithmic details of the four
sample applications that we use as application case studies in this work. We now
tie things together by discussing how PyCASP can be used to implement these
sample applications. We discuss how PyCASP components are used and how the
composition mechanisms based on structural patterns are utilized to implement
the four full-functioning audio content analysis applications.

Figure 6.1 in Chapter 6 summarizes the pattern-based structure of PyCASP
and schematically shows the use of PyCASP in Python applications. We have de-
signed PyCASP to contain a set of components that implement specific instances
of application patterns (top left of Figure 6.1) and employ a set of optimizations
for composing the components based on the three structural patterns (top right
of Figure 6.1). The target audience of PyCASP are the audio analysis application
developers and domain experts. To enable programmer productivity and applica-
tion efficiency, we implement PyCASP in Python and use SEJITS to implement
the PyCASP components. Thus, in order to use PyCASP in an application, the
application developer can import PyCASP’s components directly into the applica-
tion code, instantiate the objects and then call the specialized functions, as shown
in the schematic code example A in Figure 6.1. Importing PyCASP’s component
can be done by using the standard Python import() call to import the specialized
component objects into the application. Because of our design decision to implic-
itly handle composition, when there is a particular structural pattern employed
in an application (as shown in schematic code example B in Figure 6.1), PyCASP
automatically identifies the composition points and uses its internal knowledge of
data structure sharing and reuse to invoke the optimizations corresponding to the
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particular structural pattern.
Using the SEJITS technology, after the application Python code is written,

the application writer can run the code as a regular Python program. When the
specialized component functions are called, PyCASP triggers the Asp SEJITS
mechanisms and generates, compiles, links, caches, and executes the code. Thus,
programmers are tasked with identifying the components of PyCASP that they
can use in their applications, and PyCASP generates parallel optimized versions
of the components as well as identifies composition points and performs further
optimizations of the application by removing redundant data allocation and copy
calls. This enables the application programmer to stay productive and focus on
the algorithmic details of the application. PyCASP handles the rest of the imple-
mentation stack, i.e. the parallelization strategy, efficiency, code generation, and
composition. We now describe the detailed implementations of the four sample
applications using PyCASP.

7.1 Speaker Verification
The speaker verification system determines whether a piece of recorded audio be-
longs to a particular target speaker. Figure 7.1 shows the Python code of the
classification step of the speaker verification system. The PyCASP components,
which are executed on parallel hardware, are highlighted in light grey. The algo-
rithm for this application is described in Chapter 3 and the software architecture
is shown in Figure 4.2 in Chapter 4. To implement this application in Python,
we use PyCASP’s GMM component for adapting the UBM (i.e. performing EM
iterations) and the SVM linear classification component to classify whether the
supervector of the adapted UBM belongs to the target speaker. We now step
through the code for the classification phase of the application shown in Figure
7.1.

1. Initialize. First, we import the two PyCASP components, GMM and SVM
(lines 57 and 58). The function verify_speaker() is passed the parameters
of the speaker models (M - the number of components and D - the dimen-
sionality of the data), the UBM and SVM models trained in the training
phase, and the audio data that needs to be classified.

2. Adapt UBM. We first create a new GMM object (line 62) and train it
using the UBM parameters on the audio data (line 63), to adapt the UBM
to the new speaker data.

3. Classify using SVM. We use the SVM to classify the GMM mean vectors
(i.e. the supervector) to one of the two classes (target speaker or other
speaker) and return the corresponding label.
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57 from pycasp import gmm
58 from pycasp import svm
59
60 def ver i fy_speaker (M, D, UBM, SVM, speaker_data ) :
61 # Adapt UBM

62 gmm = GMM(M, D, UBM. params )
63 gmm.train(speaker_data)
64
65 # C l a s s i f y

66 class = SVM.classify(gmm.means)
67
68 return class

69
70 # Main Speaker Ve r i f i c a t i o n Code

71
72 M = 256 # number o f components in GMM

73 D = 19 # dimens i ona l i t y o f GMM

74
75 UBM, SVM = tra in_speake r_ve r i f i e r (M, D) # code omit ted

76 new_data = get_new_speaker_data ( ) # read in new speaker data to c l a s s i f y

77 d e c i s i o n = ver i fy_speaker (M, D, UBM, SVM, new_data )

Figure 7.1: Speaker verification in Python. Components that are executed on the
GPU are highlighted in light-gray. Code for the training phase omitted.

Lines 72 - 77 show the use of the verify_speaker() function, we set the pa-
rameters of the speaker model, M and D (lines 72 and 73), and train the UBM
and SVM models (details omitted for brevity) on line 75. We then read in the
new speaker data that needs to be classified and pass it to the verify_speaker()
function for classification. When the GMM training and SVM classification func-
tions are called, PyCASP invokes the specialization pipeline for each component.
It calls the code generation logic, fills in the template values for each function,
compiles, links and executes the function on underlying parallel hardware (either
multi-core CPU or GPU), all transparent to the application writer.

In Chapter 6, we analyzed this application when studying the Pipe-and-Filter
composition pattern. Without any additional logic, the result of the UBM adap-
tation (i.e. the supervector) would be copied back to the CPU after the GMM
training computation was complete (line 63) and that memory on the GPU would
be deallocated. After the copy back and deallocation, the SVM component would
immediately reallocate the space in the GPU memory for its input data (i.e. the
same supervector) and copy its values from the CPU to the GPU (line 66). This
data structure reallocation is redundant, since the output of one operation is the
immediate input of the other. Instead, using the logic and implementation of im-
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plicit composition optimizations described in Chapter 6, PyCASP identifies this
particular composition pattern and uses the data structure reuse logic to keep the
data on the GPU. This is done by reassigning the reference to the input data for
the SVM component to point to the output of the GMM component. This allows
us to bypass the copy/deallocate/allocate/copy calls and simply continue onto the
SVM computation.

This sample application illustrates how we can implement a sample speaker
verification system in Python code. We can use the PyCASP components to au-
tomatically utilize parallel hardware and use composition optimizations to remove
redundant data reallocation calls.

7.2 Speaker Diarization
The speaker diarization application segments a recording of a meeting into speaker-
homogenious regions to determine what speaker spoke when in the meeting. Fig-
ures 7.2 and 7.3, show the implementation of the speaker diarization system in
Python. As in previous example of speaker verification, the PyCASP components
that are executed on the parallel platform (either GPU or multi-core CPU) are
highlighted in light-gray.

Based on the algorithm description from Chapter 3 we now step through the
Python code shown in Figure 7.2 and 7.3:

1. Initialize. First we import the Numpy [5] library and the GMM component
of PyCASP (lines 79 and 80). We then uniformly initialize a list of K GMMs
(in our case 16 5-component GMMs) on line 90. After creating the list of
GMMs, we perform initial training on equal subsets of feature vectors (lines
91-92). The training computation is executed on the underlying parallel
platform. Next, we implement the agglomerative clustering loop based on
the Bayesian Information Criterion (BIC) score [91] (line 95-96).

2. Re-segment. In each iteration of the agglomeration, we compute the like-
lihood of the feature vectors given the current GMM parameters and re-
segment the feature vectors into subsets using majority vote segmentation
(lines 100-103). PyCASP GMM component automatically use the underly-
ing parallel platform to compute the log-likelihoods (gmm.score() method),
which calls the E-step of the GMM training algorithm.

3. Re-train. After re-segmentation we re-train the Gaussian Mixtures on the
parallel platform on the corresponding subsets of frames (lines 105-106).

4. Agglomerate. After re-training, we decide which GMMs to merge by first
computing the unscented-transform based KL-divergence of all GMMs (line
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79 import numpy as np
80 from gmm import ∗
81
82 # Main d i a r i z a t i o n func t i on . Parameters :

83 # M: number o f GMM components , D: data d imens iona l i t y ,

84 # K: s t a r t i n g number o f segments

85
86 def d i a r i z e ( s e l f , M, D, K, data ) :
87 gmm_list = new_gmm_list (M,D,K)
88 N = data . shape [ 0 ]
89 per_c lus te r = N/K
90 i n i t = uni form_init ( gmm_list , data , per_cluster , N)
91 for gmm, data in i n i t :
92 gmm.train(data)
93
94 # Perform h i e r a r c h i c a l agg lomerat ion

95 best_BIC_score = 1 .0
96 while ( best_BIC_score > 0 and l en ( gmm_list ) > 1 ) :
97
98 # Resegment data based on l i k e l i h o o d scor ing

99 L = gmm_list [ 0 ] . s c o r e ( data )
100 for gmm in gmm_list [ 1 : ] :
101 L = np . column_stack ( (L , gmm.score(data) ) )
102 most_l ike ly = L . argmax ( )
103 sp l i t_data = split_obs_data_L ( most_likely , data )
104
105 for gmm, data in sp l i t_data : # re t r a i n on new segments

106 gmm.train(data)

Figure 7.2: Speaker diarization in Python part 1. Components that are executed
on the parallel platform are highlighted in light-gray

114). We then compute the BIC score of the top k pairs of GMMs (in
our case k = 3) by re-training merged GMMs as described in Chapter 3
(lines 116-120) and keeping track of the highest BIC score (lines 121-124).
Finally we merge two GMMs with the highest BIC score (lines 127-128)
and repeat the iteration until no more GMMs can be merged. The result
of running the application are the meeting segmentation and the speaker
models represented by the GMMs.

The code for speaker diarization shows how we can capture the core algorithm
in under 100 lines of Python code. PyCASP components automatically utilize
underlying parallel hardware by using the SEJITS methodology. In this applica-
tion, the GMM training and likelihood computations are performed on parallel
hardware, with parallel code automatically generated by PyCASP and Asp. Using
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107 # Score a l l p a i r s o f GMMs us ing BIC

108 best_merged_gmm = None
109 best_BIC_score = 0 .0
110 m_pair = None
111
112 # Find most l i k e l y merge cand ida te s us ing KL

113 gmm_pairs = get_top_K_GMMs( gmm_list , 3)
114
115 for pa i r in gmm_pairs :
116 gmm1, d1 = pa i r [ 0 ] #ge t gmm1 and i t s data

117 gmm2, d2 = pa i r [ 1 ] # ge t gmm2 and i t s data

118 new_gmm, s co r e =
119 compute_BIC(gmm1, gmm2, concat((d1, d2)))
120 i f s co r e > best_BIC_score :
121 best_merged_gmm = new_gmm
122 m_pair = (gmm1, gmm2)
123 best_BIC_score = sco r e
124
125 # Merge the winning candidate pa i r

126 i f best_BIC_score > 0 . 0 :
127 merge_gmms( gmm_list , m_pair [ 0 ] , m_pair [ 1 ] )

Figure 7.3: Speaker diarization in Python, part 2. Components that are executed
on the parallel platform are highlighted in light-gray

the structural-pattern-based composition, PyCASP can further optimize this ap-
plication by recognizing the opportunity for data structure reuse across iterations
based on the Iterator pattern. Namely, as we discussed in Chapter 6, this applica-
tion reuses the meeting audio across many iterations. Thus, instead of reallocating
the meeting data for every call to the GMM training and prediction function, we
can use the lazy allocation optimization to remove redundant data allocation and
copy calls. In addition, we can use the interval indices for meeting segmentation
to pass the segmentation information to the GMM training call. To switch to
interval-indices-based implementation, we can replace the GMM training calls in
lines 91-92 and 105-106 with the call to train_on_subset(data, intervals)
that takes the reference to the meeting recording data (passed by reference using
PyCASP’s internal reference-tracking dictionary), and the intervals corresponding
to the particular speaker model we’re re-training. Given the interval indices, we
can implement the logic to gather corresponding feature vectors either in Python
or in CUDA. We discuss the results of these optimizations and implementation
decisions in Chapter 8
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7.3 Music Recommendation
The music recommendation system suggests musically-similar songs based on a
query set of songs. Based on the algorithm described in Chapter 3, we now
describe the usage of PyCASP in the application. First, in the offline data prepa-
ration phase, we train the UBM, adapt it on each song’s data, one by one, and
create the hash table of nearest neighbors. In the online phase, we receive a query
from the user, adapt the UBM to the features of the songs returned by the query
and find the list of closest songs.

Figure 7.4 shows the Python code for the relevant steps of the offline data
preparation and online recommendation phase of the music recommendation sys-
tem. We describe the use of PyCASP GMM component in the application and
discuss the implementation details in the next two subsections.

Offline Data Preparation Phase

1. Train UBM. We use the GMM training component of PyCASP to train
the UBM. We randomly sample the features of all songs in the database
and train the UBM on 7 million timbre feature vectors. To train the UBM,
we setup a GMM object and invoke the train() method on it. The Python
logic for this step is captured by the function train_music_UBM() on lines
157-168 in Figure 7.4

2. Adapt the UBM to all songs. To adapt the UBM we also use the GMM
training component (not shown in the sample code), but set the number of
EM iterations to 1. For every song in the database, we retrieve the features
and call the GMM training component to adapt the UBM to each song using
the features.

3. Hash song supervectors. This step (also, skipped in the code snippet
for brevity) does not use PyCASP but is implemented in Python using the
Numpy library.

Online Recommendation Phase

1. Get the query from the user. We get the query from the user (in our
case, all songs by Elton John). This step requires parsing the user query and
obtaining the song features from the SQLite database using Python tools
(details implemented in the function on line 134). No specialization is used
in this step.

2. Adapt the UBM to the query. After parsing the query, we retrieve the
feature vectors of all the songs that match the query and store them in a
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128 from pycasp import gmm
129 import s q l i t e 3 as s q l i t e
130
131 def recommend_songs (M, D, UBM, a r t i s t ) :
132 # ge t query song data and f e a t u r e s

133 query_songs = DB. get_song_data ( a r t i s t )
134
135 f e a t u r e s = [ ]
136 for song in query_songs :
137 f e a t u r e s . append ( song . f e a t u r e s )
138
139 # adapt UBM

140 gmm = GMM(M, D, UBM. params )
141 gmm.train(features)
142
143 # ge t a l i s t o f near ne i ghbors from the hash t a b l e

144 nn = hash_table . get_near_neighbors ( a r t i s t , t i t l e )
145
146 # compute the d i s t ance between each ne ighbor

147 d i s t an c e s = [ ]
148 for neighbor in nn :
149 song_info = db . get_song_data ( ne ighbor . a r t i s t , ne ighbor . t i t l e )
150 d i s t an c e s . append ( compbute_distance ( song_info . sv , gmm. means ) )
151
152 # f ind the 10 c l o s e s songs

153 i n d i c e s = a rg s o r t ( d i s t an c e s )
154 return nn [ i n d i c e s [ : 1 0 ] ]
155
156 def train_music_UBM(M, D, DB) :
157 # ge t s e t s o f f ea tu r e s , randomly sampled from the DB

158 f e a tu r e_se t s = get_feature_sets (DB)
159
160 # crea t e a UBM

161 ubm = GMM(M, D)
162
163 # tra in UBM on su b s e t s o f f e a t u r e s

164 for f s in f e a tu r e s_s e t s :
165 ubm.train(fs.data)
166
167 return ubm
168
169 M = 64
170 D = 12
171
172 UBM = train_music_UBM(M, D, DB)
173 c l o s e s t_songs = recommend_songs (M, D, UBM, "Elton�John" )

Figure 7.4: Python code for the online phase of the music recommendation appli-
cation.
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list (lines 136-138). We then use the PyCASP GMM training component
to adapt the UBM to the query features by doing one EM iteration of the
train() function (lines 141-142).

3. Get approximate nearest-neighbors for the query supervector. We
retrieve the approximate nearest neighbors from the hash tables (line 145).
This is done in Python using the Numpy library.

4. Compute the closest C songs. We then compute the distance between
the query and all the nearest neighbors returned in the previous step and
return top C (in our example C = 10) songs. This is done in Python using
the Numpy library (lines 148-155).

The main code invokes the UBM training and calls a sample query for "Elton
John" songs. We are able to rapidly prototype the entire system in about 400
lines of Python code (excluding the SQLite database and LSH setup) and use
PyCASP to remove the UBM training bottleneck by automatically offloading the
computation onto underlying parallel processors using the GMM component of
PyCASP. We use the composition optimization based on the Iterator structural
pattern when training the UBM. Instead of reallocating the UBM parameters
every time the GMM training function gets called (line 166 in Figure 7.4), we keep
the UBM components on the GPU and iterate through chunks of feature vectors
randomly sampled from our entire database of songs. This removes redundant
data allocation and copy calls and improves the performance of the offline phase
of the system. We discuss the performance results of this application in the next
chapter.

7.4 Video Event Detection
The video event detection application uses the speaker diarization algorithm (and
thus the GMM training component of PyCASP) to segment video soundtracks into
audio events. The algorithm is described in Chapter 3. The application invokes
the MapReduce job in Python for analyzing the set of videos. Each map job
runs the speaker diarization algorithm on its assigned set of videos (see algorithm
description in Chapter 3).

As mentioned in Chapter 6, the MapReduce component of PyCASP provides a
high-level map function for applying the same diarization operation to a set of data
segments in parallel. We use this function to perform the diarization computation
on each video. Figures 7.5 and 7.6 show a portion of the video event detection
code before and after it was refactored to use the MapReduce component. From
the application point of view, this is the entire diarization phase of the video event
detection system, consisting of 4 lines of code for the MapReduce component in
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175 import sys
176 from speake r_d ia r i z e r import d i a r i z e
177
178 input_f i l enames = parse_input_fi lenames ( sys . argv ) :
179 for f i l ename in input_f i l enames :
180 d i a r i z e ( components=5, dim=60, c l u s t e r s =16, data=f i l ename )

Figure 7.5: A for-loop that applies the “diarize” operation to every filename.
Python runs each iteration sequentially.

181 input_f i l enames = parse_input_fi lenames ( sys . argv ) :
182 map(diarize, components=5, dim=60, clusters=16, data=input_filenames )

Figure 7.6: The same operation (in light-gray) expressed without an implied order,
allowing each iteration to be executed in parallel.

addition to the diarization code (shown in the speaker diarziation example). With
this modification, the application is now able to scale to a computer cluster. The
same change would require at least 20⇥ as many lines of Java code.

In the video event detection application, we compose the MapReduce compo-
nent to map the event detection system to a cluster of parallel processors using
a two-line code change in the application code. We compose the MapReduce
structural pattern with the speaker diarization algorithm, which uses the GMM
training component and the Iterator structural pattern. We have discussed in
Section 7.2 how the speaker diarization implementation composes the GMM com-
ponent calls using the Iterator structural pattern. The composition optimizations
corresponding to the Iterator pattern are also used in the video event detection
system, since it uses the speaker diarization algorithm to segment video sound-
tracks. In addition to the Iterator pattern and the GMM component, we use the
MapReduce-based composition optimizations to scale the application to a cluster
of parallel processors.

When invoked, the MapReduce composition mechanism generates an input
record for each content file to be processed. The record is passed to a worker
node, which calls the speaker diarization algorithm to efficiently diarize the sound-
track. The reduction step is skipped, and the call returns when all input records
(video soundtrack files) have been successfully processed. Since our MapReduce
structural pattern implementation uses Hadoop, it automatically handles load
balancing by assigning records to under-utilized nodes and enables fault tolerance
by reassigning records from nodes that have failed to healthy ones. Thus, when
using PyCASP and its MapReduce-based composition mechanisms, a two line
code change scales the application from a single parallel processor to a cluster of
parallel processors within the same software environment. We discuss the results
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183 GMM:
184 autotune : Fa l se
185 name_of_backend_to_use : " c i l k "
186 template_path : "/ d i sk /home/ egonina /pycasp/ s p e c i a l i z e r s /gmm/"
187 cuda_device_id : 0
188 SVM:
189 autotune : Fa l se
190 name_of_backend_to_use : "cuda"
191 template_path : "/ d i sk /home/ egonina /pycasp/ s p e c i a l i z e r s /svm/"
192 cuda_device_id : 0

Figure 7.7: Example config file for PyCASP specializers.

of using the MapReduce structural pattern in this application in Chapter 8.

7.5 Porting Applications to Different Platforms
In Chapter 2, we discussed the different hardware architectures that we focus on
in this work. Figures 2.3, 2.4 and 2.5 in Chapter 2, show block diagrams for a
multi-core CPU, GPU and a compute cluster backends. These backends differ sig-
nificantly in their processor architectures, memory hierarchies and programming
environment, and thus, it is extremely difficult for one application programmer to
enable portability to these platforms. Thus, before we discuss the specific results
for both productivity and performance in the next chapter, we illustrate the pro-
cess of porting applications to different platforms using PyCASP. As discussed in
Chapter 5, the specializer writers are responsible for enabling portability of their
specializers. The specializer enables portability by specifying the code generation
logic for each specific class of hardware platforms (i.e. multi-core CPUs, CUDA
GPUs, etc.). The interface of the specializer remains unchanged, and thus, appli-
cation code that uses the specializers does not change when application is ported
to a different platform. In order to specify what platform the application will be
run on as well as other runtime parameters, we use a configuration file

Figure 7.7 shows a sample config file. The application writer needs to specify
which platform to run the application on (“cilk” for Cilk+ backend and “cuda” for
CUDA backend) as well as the CUDA device ID if the CUDA backend is selected
and there are multiple GPUs in the machine. The application writer can also spec-
ify whether or not to use auto-tuning (automatically selecting the most efficient
code variant of the generated implementation) for each specializer. We separate
the application code from the configuration of the specific hardware platform it
will be run on. The specializer logic of PyCASP’s components understands the
different platforms it can target. Thus, the application code needs to be written
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once and then the application writer can use the configuration file to specify the
particular platform he/she wants to run their application on.

7.6 Summary
In this Chapter, we have described the implementation details of the four exam-
ple applications using Python and PyCASP. Using the example applications, we
illustrated that we can enable application programmer productivity by embed-
ding PyCASP in Python. We enable high performance of the applications by
offloading the compute-intensive parts of the applications to parallel hardware.
Specifically, we use the SEJITS methodology to implement the components of
PyCASP, each component corresponding to a specific instance of an application
pattern. Using SEJITS, PyCASP components automatically generate parallel im-
plementation of the algorithms for the specific application pattern, and compile
and execute it on the parallel hardware. By decoupling the application logic from
the efficiency code and enabling portability with SEJITS, we enable application
developer productivity and portability of the application code.
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Chapter 8

Results

In this chapter we first present the results on the productivity, efficiency and
portability of individual PyCASP components. We then analyze the performance
of component composition based on the structural patterns. We then put things
together and analyze the productivity, efficiency and portability of each example
application written in Python and using the PyCASP components and the com-
ponent composition mechanisms. For the hardware backends, we use two Intel
CPU platforms and two NVIDIA GPU platforms as well as a cluster of 16 Tesla
M1060 GPUs. The specs of the platforms are summarized in Table 8.1.

Processor Intel Core i7 Intel Wesmere GTX285 GTX480
Cores 4 cores (SMT) 2 ⇥ 6 (SMT) 30 cores 15 cores

SIMD Width 4 lanes 4 lanes 8 lanes 16 lanes
Clock Speed 2.66 GHz 3.33 GHz 1.51 GHz 1.45 GHz

Memory Capacity 6GB 24GB 2GB 2.6GB
Memory BW 32.0 GB/s 32 GB/s 141.7 GB/s 177.4GB/s

Compiler icc 12.1.2 icc 12.1.2 nvcc 5.0 nvcc 5.0

Table 8.1: Parameters for the experimental platforms

8.1 Components
First, we discuss the standalone performance of the two PyCASP components, the
GMM training and prediction and SVM training and classification. We described
the design principles and implementation of the components using SEJITS in
Chapters 4 and 5, and we now evaluate the productivity, efficiency and portability
of each component individually.
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8.1.1 Productivity

First, we focus on the complexity of the components (i.e. the SEJIT specializers)
and the productivity of specializer writers. Using Asp, we implement the specific
instances of application patterns as specializes. PyCASP’s GMM and SVM com-
ponents are template-based specializers, they include the template CUDA and
Cilk+ code as well as Python code of the specializer logic. Table 8.2 shows the
number of lines of code used to implement both components of PyCASP. The first
column shows the number of lines of Python code used to implement the special-
izer logic (i.e. the code variant selection mechanism, templating and compilation
toolchain). The second column shows the number of lines of efficiency code in
the specializer templates. The development of the specializer is done once after
that, the code is reusable in all applications that use the component. This allows
for specializer writer productivity, i.e. in 600 � 800 lines of Python code we en-
capsulate the efficient CUDA code into a reusable component of PyCASP. Thus,
implementing specializers is itself made productive by using the Asp framework.
We discuss the productivity results of implementing the example applications that
use the PyCASP components later in this chapter.

8.1.2 Efficiency

Second, we look at the standalone efficiency of each component. Table 8.3 shows
the GMM and SVM component standalone efficiency on a NVIDIA GTX480 and
an Intel Westmere CPU (3.33GHz). We use a C++/Pthread-based implementa-
tion of the GMM training algorithm to evaluate the performance of the GMM
component. We use the widely-used LIBSVM [19] threaded CPU implementation
of the SVM training component to evaluate the performance of the SVM com-
ponent. Both components achieve significant speedups compared to the state-of-
the-art implementations. The GMM component achieves 5� 20⇥ speedup using
CUDA and 4 � 12⇥ using the Cilk+ backend compared to the state-of-the-art
threaded CPU implementation running on the Intel Westmere CPU. The SVM
training achieves 13� 79⇥ speedup on GTX480 compared to the LIBSVM imple-
mentation. Speedup numbers range for a variable size of the models and training
data. Thus, the efficiency of PyCASP’s components is not only on-par, but actu-
ally beats the hand-tuned state-of-the art implementations by one or two orders
of magnitude.

8.1.3 Portability

Finally, we look at the portability of PyCASP’s components. Specifically, since
we focused on the GMM component as an example of a portable component with
code variants, we look at the portability of GMM training to the two types of par-



CHAPTER 8. RESULTS 110

Component Specializer Python Code Efficiency Code
GMM 800 2700 (CUDA) + 700 (Cilk+)
SVM 600 3500 (CUDA)

Table 8.2: Number of lines of code for both components’ specializer Python and
template code.

Component CUDA Speedup Cilk+ Speedup
GMM 5� 20⇥ 4� 12⇥
SVM 13� 79⇥ N/A

Table 8.3: Speedup of each component on NVIDIA GTX480 GPU and Intel West-
mere CPU compared to state-of-the-art threaded implementations running on the
Intel Westmere CPU.

allel platforms - multi-core Intel CPUs (running the CIlk+ backend) and NVIDIA
GPUs (running CUDA). Without application code change (but by changing the
config file described in Chapter 7) applications that use the GMM component
can run on any CUDA-programmable GPU and Intel multi-core CPU. Figure
8.1 shows the performance of PyCASP’s GMM training component on NVIDIA
GPU (GTX480) and Intel multi-core CPU (Intel X 5680 Westmere). Both versions
outperform the baseline Pthread implementation of the GMM training computa-
tion. Furthermore, the CUDA backend of the GMM component can beat even the
hand-coded CUDA implementation [80] by selecting the best-performing algorith-
mic variant at runtime based on the problem size and hardware parameters (for
more detail, see [30]). Thus, by targeting two types of platforms in the PyCASP
GMM component, we can enable application portability to a variety of paral-
lel hardware with no required application code change. We note that the SVM
component is also portable across CUDA-programmable GPUs; the application
programmer can specify the selected GPU backend by modifying the PyCASP
configuration file.

8.2 Composition
We now analyze the performance improvements that are possible using the op-
timizations for composing PyCASP’s components. In Chapter 6, we discussed
how structural patterns can help us identify and understand the ways PyCASP
components are composed together in applications. To recap our findings, by an-
alyzing specific use cases of each pattern in our sample applications and we have
determined that:

• Pipe-and-Filter composition corresponds to data structures being shared
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Figure 8.1: GMM training time (in seconds) given number of mixture-model
components M using the CUDA backend and a native CUDA version (both on
NVIDIA GTX480), and the Cilk+ backend and a C++/Pthreads version (both
on dual-socket Intel X5680 Westmere 3.33GHz).

between computational components,

• Iterator composition corresponds to data structures being reused by com-
putational components in an iterator loop,

• MapReduce composition corresponds to data structures being distributed
across compute nodes in a computer cluster.

Thus, in order to optimize composition of PyCASP components, we can iden-
tify and remove redundant data structure allocation and copy calls. Specifically,
we focus on running our applications on the GPU backend, since we must manage
data structure allocation explicitly (as discussed in Chapter 6, Section 6.2.2) and
removing redundant data allocation and copy calls to the GPU memory. Figure
8.2 shows the time required to allocate data structures of varying sizes (varied on
the x-axis) and copy the data to and from the GPU memory (for NVIDIA GTX480
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GPU). The overhead becomes much more significant as we move to larger data
structures. In this section, we aim to understand how much of this overhead we
can save removing redundant allocation and copy calls.

Figure 8.2: GPU memory management overhead.

We evaluate the optimizations in composing PyCASP’s components using the
three structural patterns by comparing execution time with and without data
structure reuse. We use data sizes that are typical in audio content analysis
applications. For example, we range the number of GMM components from M =

16 to M = 1024, as those are the number of components that are used to for
acoustic modeling using GMMs. We consider the dimensionality of feature vectors
of D = 19 and D = 39 corresponding to MFCC features with delta and delta-delta
coefficients respectively.

8.2.1 Pipe-and-Filter

As discussed in Chapter 6, the Pipe-and-Filter-based composition corresponds to
data structures shared between calls to PyCASP components. We can optimize
the composition of components using Pipe-and-Filter by realizing what specific
data structures are shared across component calls and removing redundant data
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allocation and copy calls. In Chapter 6, we discussed three specific examples of
composing PyCASP components using the Pipe-and-Filter pattern:

1. GMM training - GMM prediction (Figure 6.3). GMM parameters (weights,
means, covariances) are shared between the two component calls.

2. SVM training - SVM classification (Figure 6.4). SVM parameters (support
vectors) are shared between the two component calls.

3. GMM training - SVM classification (Figure 6.5) in the speaker verification
application. GMM means (i.e. the supervector) is passed between the two
component calls.

In each application example, we optimized the Pipe-and-Filter-based compo-
sition by removing the data structure reallocation and copy in the second com-
ponent call and instead sharing the data structure by passing a reference to the
allocated data structure from the first component call to the second. To evaluate
the benefit of this optimization, we measured the time that it takes to execute the
second component call in each example application (including the data allocation
and copy), and the time spent allocating and copying data structures. We then
analyzed the fraction of the total execution time of the second component call
spent in data allocation. With our optimization, we are able to remove the data
allocation calls and reduce the execution time by that amount.

Tables 8.4 and 8.5, show the performance data for the GMM train - GMM
prediction application example for different number of GMM components, M ,
and data dimensionality D, D = 19 and 39 respectively. The tables show that for
small models (M = 16, M = 32), data allocation time for GMM prediction takes
2.0 � 3.8% of the total GMM prediction time. This fraction becomes even less
significant as the model sizes grow, down to 0.5% and 0.9% for M = 1024 (D = 19

and 39 respectively). Thus, we are able to reduce the runtime by 0.5 � 3.8% by
removing redundant data allocation and copy calls by recognizing this Pipe-and-
Filter composition of components in our applications. While this reduction in
runtime is not as significant for individual small problems, it can become sig-
nificant when we scale the application to run many (hundreds to thousands) of
instances of this application.

For SVM training - SVM classification pipeline, the optimization yields even
less significant results as the support vector data structures are typically small
(10-200KB). We measured the allocation and copy calls for support vectors (data
structure size of 152KB) in a sample application to take 0.7 milliseconds. Thus,
the optimization of removing redundant data allocation and copy calls for this
specific example usage does not present an opportunity for significant performance
improvement.
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M GMM predict time (ms) GMM param alloc time (ms) Alloc fraction
16 11.55 0.44 3.8%
32 16.19 0.47 2.9%
64 25.37 0.49 1.9%
128 44.27 0.52 1.2%
256 77.58 0.66 0.9%
512 147.22 1.12 0.8%
1024 283.10 1.36 0.5%

Table 8.4: D = 19. Total time (in ms) for GMM prediction, parameter allocation
time and fraction of total time due to allocation. The allocation procedure allo-
cates and copies D ⇥ M means, D ⇥ D ⇥ M covariance and M weights on the
GPU.

M GMM predict time (ms) GMM param alloc time (ms) Alloc fraction
16 15.70 0.38 2.4%
32 21.44 0.44 2.0%
64 32.60 0.65 2.0%
128 54.07 1.04 1.9%
256 97.20 1.35 1.4%
512 169.02 1.89 1.1%
1024 322.10 3.02 0.9%

Table 8.5: D = 39. Total time (in ms) for GMM prediction, parameter allocation
time and fraction of total time due to allocation. The allocation procedure allo-
cates and copies D ⇥ M means, D ⇥ D ⇥ M covariance and M weights on the
GPU.

Finally, we study the last example of composition using Pipe-and-Filter, the
GMM train - SVM classify composition in the speaker verification application.
The data structure that is shared between the two component calls is the GMM
means (supervector) data structure, represented by a D ⇥M dense matrix. The
SVM input data allocation function copies the D⇥M input matrix from the CPU
to the GPU, as well as aligns the matrix on the CPU, transposes it on the CPU,
and allocates and copies it to the GPU. Tables 8.6 and 8.7 show the execution
time of the SVM classification component for different input data sizes (D⇥M),
for varying M and D = 19 and 39 respectively. The tables show the total clas-
sification time of SVM classification (including data allocation), the execution
time of the data allocation calls and the fraction of the execution time spent in
the data allocation function. Since SVM classification computation itself is very
efficient and the SVM input data allocation function makes several allocation and
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copy calls, the fraction of the SVM classification call due to data allocation is
quite significant, from 19.8 � 21.2% for smaller input to 23.7 � 30.4% for larger
input. Thus, this example illustrates that there are indeed opportunities for sig-
nificant performance improvement by enabling the composition optimizations in
our framework. We are able to significantly reduce the SVM classification perfor-
mance by recognizing the data structure sharing across the two component calls
and removing redundant data allocation and copy calls.

M SVM classify time (ms) Data alloc time (ms) Alloc fraction
16 1.80 0.36 20.0%
32 1.95 0.39 20.0%
64 2.44 0.49 20.1%
128 2.91 0.69 23.7%
256 5.11 1.34 26.2%
512 9.15 2.48 27.1%
1024 16.7 4.83 28.9%

Table 8.6: D = 19. Total time (in ms) for SVM classification, allocation time and
fraction of total time due to allocation. The allocation procedure allocates and
copies D ⇥ M GMM means (i.e. the supervector) on GPU, aligns data on the
CPU, allocates and copies transposed data on CPU and GPU.

M SVM classify time (ms) Data alloc time (ms) Alloc fraction
16 1.97 0.39 19.8%
32 2.21 0.45 20.4%
64 3.40 0.72 21.2%
128 5.20 1.35 26.0%
256 9.23 2.54 27.5%
512 16.50 4.94 29.9%
1024 30.80 9.36 30.4%

Table 8.7: D = 39. Total time (in ms) for SVM classification, allocation time and
fraction of total time due to allocation. The allocation procedure allocates and
copies D ⇥ M GMM means (i.e. the supervector) on GPU, aligns data on the
CPU, allocates and copies transposed data on CPU and GPU.

8.2.2 Iterator

In Chapter 6, we identified that when PyCASP’s components are composed using
the Iterator structural pattern, certain data structures are reused across iterations.
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This insight gives us an opportunity for optimizing composition of components -
we can identify which data structures are reused and remove redundant allocation
and copy calls by using lazy allocation. When the same data structure is reused
across component calls, we can skip the data allocation and copy calls and just
reuse the previously-allocated data structures. As before, we focus on the GPU
backend. In addition to data structure reuse opportunities, we also identified
an opportunity for optimization during audio segmentation. This audio feature
gather operation can be performed either in the Python code of the PyCASP
component, or in the low-level CUDA code. We now evaluate the performance
gains we obtain by reusing data structures across component calls in an Iterator
pattern as well as study the performance of the two different gather mechanisms
in the audio segmentation task.

We have identified three examples of composition of components and oppor-
tunities for optimization using the Iterator pattern:

1. GMM training on multiple sets of input data points. GMM parameters are
reused across subsequent calls to the GMM training function.

2. Audio segmentation in the speaker diarization application. Input audio
features are reused by speaker models and audio segmentation calls.

3. Audio segmentation in the speaker diarization application. Audio features
can be gathered in Python or in CUDA code with varying efficiency.

First, we look at the performance gains of reusing GMM parameters when
training the same GMM on multiple sets of feature vectors. Tables 8.8 and 8.9
show the time to train one GMM of varying sizes (M = 16 to M = 1024, D =

19 and D = 39 respectively) on six (6) datasets (two of each, N = 10, 000,
N = 50, 000 and N = 100, 000, D-dimensional features). The leftmost columns
show the execution time (in milliseconds) of training the model on the six datasets
without reusing the GMM parameters. The second column shows the time to train
the model reusing the model parameters. The third column shows the difference
between the two execution times, i.e. the time that we save by removing redundant
parameter allocation calls. The last column shows the fraction of runtime due to
data allocation. The tables illustrate that the GMM parameter allocation time is
a very small fraction of the total execution of GMM training when iterating over
several detasets, in our examples it was less than 0.25%. Thus, while the absolute
reduction in time is 2.63�53.24 milliseconds, the relative reduction in time is not
very significant.

When we look at the reuse of the input data (i.e. the audio feature vec-
tors) across GMM training calls, removing redundant data allocation and copy
calls presents a much greater opportunity for optimization. Tables 8.10 and 8.11
show the allocation time (in seconds) for the input audio features of varying sizes
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M w/o composition (ms) with composition (ms) Diff (ms) % reduction
16 1, 074.43 1, 071.80 2.63 0.24%
32 1, 511.69 1, 508.25 3.44 0.23%
64 2, 403.20 2, 397.31 5.89 0.25%
128 4, 182.97 4, 175.59 7.38 0.18%
256 7, 767.70 7, 751.56 16.14 0.21%
512 14, 870.70 14, 844.04 26.66 0.18%
1024 29, 134.30 29, 100.882 33.48 0.11%

Table 8.8: D = 19. Time to train one GMM 6 times on varying datasets (two
sets of N = 10, 000, N = 50, 000, N = 100, 000 features) and different model
sizes (M = 16 � 1024). Time (in ms) with and without composition (i.e. GMM
parameter reuse), absolute and % reduction due to data reuse optimization.

M w/o composition (ms) with composition (ms) Diff (ms) % reduction
16 2, 652.60 2, 646.73 5.87 0.22%
32 5, 439.29 5, 429.26 10.03 0.18%
64 10, 216.17 10, 204.90 11.27 0.11%
128 19, 793.47 19, 779.90 13.57 0.07%
256 38, 901.64 38, 886.73 14.91 0.04%
512 77, 231.10 77, 196.59 34.51 0.04%
1024 153, 762.80 153, 709.57 53.24 0.03%

Table 8.9: D = 39. Time to train one GMM 6 times on varying datasets (two
sets of N = 10, 000, N = 50, 000, N = 100, 000 features) and different model
sizes (M = 16 � 1024). Time (in ms) with and without composition (i.e. GMM
parameter reuse), absolute and % reduction due to data reuse optimization.

(N = 10, 000 to N = 1, 000, 000 D = 19-dimensional features) and execution time
(in seconds) of training an M = 16 and M = 64 component GMM respectively
(D = 19 in both cases). The right-most columns show the fraction of GMM train-
ing execution time due to input data allocation. For both model sizes, the input
data allocation time takes up from 2.28% to 10.01% of the total GMM training
runtime. The larger the input data, the less significant the data allocation call be-
comes in the overall computation, as the GMM training execution time increases.
This presents a significant optimization opportunity for applications that reuse
the input data over many GMM training calls (such as the speaker diarization
application). By identifying input data reuse, we can reduce the execution time
of GMM training calls by up to 10.3%.

Finally, we look at the two different gather mechanisms in the audio segmen-
tation example. Figure 8.3 shows the total time for training a GMM using the
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N Allocation time (sec) Total GMM train time (sec) Alloc fraction
10, 000 0.06 0.54 10.26%
50, 000 0.06 0.62 9.33%
100, 000 0.07 0.73 9.05%
500, 000 0.08 1.52 5.34%
1, 000, 000 0.10 2.53 3.87%

Table 8.10: M = 16. Time (in seconds) to train a GMM on input data of different
sizes (N D = 19-dimensional features). Input data allocation time, total training
time and the fraction of the total time due to data allocation.

N Allocation time (sec) Total GMM train time (sec) Alloc fraction
10, 000 0.06 0.59 10.01%
50, 000 0.06 0.74 8.63%
100, 000 0.07 0.91 7.37%
500, 000 0.08 2.37 3.29%
1, 000, 000 0.10 4.23 2.28%

Table 8.11: M = 64. Time (in seconds) to train a GMM on input data of different
sizes (N D = 19-dimensional features). Input data allocation time, total training
time and the fraction of the total time due to data allocation.

two types of gather mechanisms on varying subset sizes. For each data point in
the graphs, we varied the size of the subset of features that is gathered in either
Python code or CUDA code. The three plots show the execution time (in sec-
onds) of three GMMs with M = 5 and M = 15 components (corresponding to the
GMM model sizes in the speaker diarization application). The plots show that
the crossover points vary for different model sizes, with the CUDA-gather imple-
mentation becoming more optimal for larger models. Overall, we see that the
trade-off point for using Python-gather vs CUDA-gather lies around the subset
size of 50, 000 � 65, 000. After this point, the CUDA-gather based implementa-
tion is more efficient than the Python-gather implementation. Thus, the most
efficient gather mechanism depends on the size of the subset of input data that is
being gathered. In our case, we use subset sizes of only 250 feature vectors, and
thus, the Python-based gather is most efficient for the example speaker diarization
application.

8.2.3 MapReduce

The MapReduce structural pattern composition corresponds to data structures
being distributed across compute nodes for parallel computation. When we map
an application from a single node to a cluster of compute nodes, we need to
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Figure 8.3: GMM training time with Python and CUDA gather mechanisms for
M = 5 and M = 15 GMM components.
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Speaker
Verification

Speaker
Diarization

Music
Recommendation

Video
Event

Detection
LOC 260 700 600 720

Performance
remarks

Train: 13
min speech
/ 2.4 sec

Classify: 5
min speech
/ 0.3 sec

71� 115⇥
Faster-than-

real-time

Under 1 second
recommendation

time
for all queries

15.5⇥
speedup
on 16

nodes

Table 8.12: Number of lines of Python code and performance remarks for the four
example applications.

distribute the data across these compute nodes to maximize data locality. In
this work, we focus on the basic use of MapReduce to map computations to a
cluster of nodes by distributing a dataset across the compute nodes and executing
a map() function on each subset of data in parallel. Each map computation can
be a Python function or call other PyCASP components. In our example video
event detection application, the map function is the diarization algorithm that
gets executed on each video file.

The videos are distributed across the compute nodes in the beginning of the
computation. Before calling MapReduce applications, the application program-
mer has to explicitly transfer data to the computer cluster. In our case, data
needs to be transferred to HDFS. To transfer the video dataset across a network
with a 200-300 MB/s bandwidth takes about 5-7 seconds. This is the standard
first step in using MapReduce to enable data locality. The data transfer has to
be done once for the entire application before invoking the application algorithm.
Thus, we compose the data distribution procedure with the other optimizations
implemented in the speaker diarization application (such as input data and GMM
parameter reuse across GMM training calls). We discussed the implementation
details in Chapter 6 and optimization results earlier in this chapter.

8.3 Applications
We now describe the results on productivity, efficiency and portability based on
the four example applications: speaker verification, speaker diarization, music rec-
ommendation and video event detection using the efficient PyCASP components
and composition optimizations. We use the four different hardware platforms
shown in Table 8.1 for our evaluation. Each application takes full advantage of
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the efficiency of the PyCASP components in its implementation as well as the
composition optimizations based on structural patterns.

We evaluate productivity in terms of how productive the application developer
can be when developing the application. As discussed in Chapter 2, we base our
evaluations on one of the common evaluation metrics - the lines of application
code (LOC) as well as code reuse. We note that in order to fully understand
productivity of our approach, we need to look at both application programmer
productivity and the specializer developer productivity. The application lines-of-
code consist of both the Python application code and the specializer-generated
code. It is important to note that the Python lines of code that implement the
application does not include all of the code that gets executed when the application
is run. Specifically, the specializer logic and generated code, captured outside of
the application also gets called when an application is running on a particular
backend. We discussed the specializer developer productivity and the lines of
code needed to implement each specializer earlier in this chapter. We emphasizes
that the specializer code needs written once, and then is reused across many
applications. In this section, we describe the the number of lines of Python code
that is required for an application developer to prototype an application (re)using
PyCASP.

We evaluate the efficiency of each application based on the application-specific
evaluation criteria. Table 8.12 summarizes the results on productivity and effi-
ciency for each application. Each application has a specific target when it comes
to performance. The baseline for the evaluation is the execution time; we can
compare the execution time with other implementations of the same application
to get an idea of the efficiency of our applications. The faster we can perform a
particular computation, the better. Another metric, typically used in interactive
applications is the Real-Time-Factor (⇥RT), which is computed by dividing the
meeting time by the processing time. For example, a 100⇥ real-time factor means
we can process a ten minute meeting in six seconds. We use the Real-Time-Factor
(⇥RT) to evaluate the speaker verification and speaker diarization applications
since these applications rely on fast, interactive processing of audio. For large-
scale applications that process lots of data (such as our video event detection
example application), it is also important to measure scalability - i.e. how well
does the application scale to and utilize underlying hardware.

Finally, we measure portability by looking at the efficiency of executing each
application on a variety of available parallel hardware and analyze the results.
We use two Intel CPU platforms and two NVIDIA GPU platforms for our exper-
iments. The specs of the platforms are summarized in Table 8.1. We describe the
specific results for each application using the subset of the hardware platforms in
the sections below.
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8.3.1 Speaker verification

Productivity

The speaker verification system is implemented in about 260 lines of Python code.
The most compute-intensive phases of the application are the GMM and SVM
training. As discussed in Chapter 7, we use the GMM and SVM components
of PyCASP to offload the compute-intensive phases to parallel hardware. The
rest of the application consists of reading in and parsing the training and testing
datasets and setting up the UBM adaptation and SVM classification procedures.
This application illustrates the rapid prototyping capabilities of PyCASP - we
developed the full-functioning speaker verification application in about one week
of engineering time. We do not have a comparable speaker verification application
written in a low-level language; however, looking at the productivity advantage
of Python over low-level languages such as C/C++, the same application would
require at least 10� 60⇥ more lines of code to implement the same functionality.

Efficiency

To evaluate the efficiency of the speaker verification application, we look at the
time that it takes for the application to train the GMM and SVM models and the
time that it takes to classify a piece of previously-unsceen audio. Since speaker
verification application requires quick, real-time feedback to the user, it is critical
for the application to run as quickly as possible, much faster than real-time. We
measure efficiency in two ways - the total time it takes to train the speaker and
classification models, and the real-time-factor based on the length of the input
audio.

As discussed in Chapter 7, the speaker verification application uses two compo-
nents of PyCASP - the GMM and SVM components for learning speaker models
and performing classification. The GMM component can generate CUDA and
Cilk+ code and thus can run on either NVIIDA GPU backends or Intel multi-
core CPU backends. The SVM component generates CUDA code and can run on
NVIDIA GPU backends. Thus, for our experiments, we use two NVIDIA GPUs,
the GTX480 (Fermi) GPU and the GTX285 GPU to run the CUDA backend
and a 4-core Intel Core i7 CPU for the Cilk+ backend. We can either run both
components on a GPU (and thus utilize the composition optimizations), or run
the GMM training on the multi-core CPU and the SVM component on a GPU.

Figure 8.4 shows the performance of the two phases of the speaker verification
application: training and testing, on the four hardware configurations. The blue
bar shows the time (in seconds) to train the UBM, adapt it to two types of speakers
and train the SVM. The magenta bar shows the time to classify a piece of audio to
one of the two classes ("target speaker" or "intruder"). Training dataset consists
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Figure 8.4: Performance of the speaker verification application on a variety of
parallel hardware. Training dataset consists of 825.21 seconds (13.75 minutes) of
speech and testing dataset consists of 344.63 seconds (5.74 minutes) of speech.

of 825.21 seconds (13.75 minutes) of speech and testing dataset consists of 344.63
seconds (5.74 minutes) of speech.

Table 8.13 shows the performance of the speaker verification in terms of the
real-time-factor. The performance numbers indicate, that we can train and classify
speaker audio within seconds and orders of magnitude faster than real-time. Thus,
the application can be run in real-time which is the primary requirement of a
speaker verification system. We do not have a full-functioning speaker verification
application implemented in a low-level language to compare our efficiency results
to; however, based on the performance of both components (GMM and SVM,
discussed earlier in Section 8.1), we can conclude that our implementation of the
speaker verification application achieves state-of-the-art efficiency.

Portability

Figure 8.4 shows the performance of the speaker verification training and classifi-
cation phases on four different hardware configurations: GTX480 GPU, GTX285
GPU, Intel Core i7 CPU + GTX480 GPU and Intel Core i7 CPU + GTX285
GPU. As noted earlier, we can run the GMM training component on either a
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Platform Training ⇥RT Testing ⇥RT
GTX480 331 1111

GTX285 243 1013

Core i7 + GTX480 106 189

Core i7 + GTX285 105 186

Table 8.13: Speaker verification Real-Time-Factor (⇥RT).

GPU or a CPU and the SVM component on any NVIDIA GPU. By using a con-
figuration file (described in Chapter 7), we can specify which backend to run each
component on. As shown in Figure 8.4, the best-performing platform for this ap-
plication is the NVIDIA GTX480 GPU. The GTX285 GPU (which has less cores
and lower DRAM bandwidth), gets similar performance for classification phase,
but is almost 1 second slower for the training phase. Using the Cilk+ backend
for the GMM slows the application down significantly regardless of the GPU that
is used to run the SVM component. This indicates that the GMM training dur-
ing both model learning and classification phases is impacted significantly by the
shift to the multi-core CPU from a GPU. In addition, we cannot take advantage
of the composition optimizations because the two components use different device
memories. Using the SEJITS-based implementations of PyCASP components and
enabling backend selection using the configuration file, we are able to run this ap-
plication on a variety of hardware targets without application code change. This
illustrates how easily an application writer can experiment with different backends
for his/her application to select the platform that performs best. In the case of
speaker verification, the GTX480 is the “winning” platform.

8.3.2 Speaker diarization

Productivity

The entire speaker diarization application is implemented is about 700 lines of
Python code, which includes the core algorithm, feature file reading, parsing and
speech-non-speech pruning, output formatting and storage, printing of usage in-
structions and parsing of the configuration input file. The core algorithm of the
speaker diarization application is captured in 100 lines of Python code as shown
in Chapter 7, Figures 7.2 and 7.3. The application uses the GMM component of
PyCASP to train speaker models and segment the meeting audio based on the
models. The code uses Numpy arrays for manipulating the feature and parameter
data and Python for file I/O and application “glue” code. A comparable speaker
diarization application written in C++ requires about 30⇥ more lines of code
[39]. Thus, PyCASP enables application programmers to capture an equivalent,
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complex state-of-the-art application in an order of magnitude less lines of code,
enabling high programmer productivity.

Efficiency

We evaluate the performance of the speaker diarization system using the real-
time-factor metric to measure speed as well as the Diarization Error Rate (DER)
to measure accuracy. We studied this particular application in extensive detail to
show that not only can we achieve productivity and efficiency with our framework,
but we can ensure that the application performs as well as other state-of-the-
art speaker diarization applications in terms of accuracy. We discuss the details
implementation and the analysis of accuracy and performance of our speaker di-
arization application in [43]; this work was well-received by the speech recognition
community, whose domain experts struggle with productive utilization of parallel
processors. Here, we summarize the performance results of this application.

We use a popular subset of 12 meetings (5.4 hours) from the Augmented Multi-
Party Interaction (AMI) corpus [13] to analyze the performance in terms of speed
and accuracy and also compare our speaker diarization application to an equiv-
alent system written in C++. The AMI corpus consists of audio-visual data
captured from four to six participants in a natural meeting scenario. For the ex-
periments described here, we used the beamformed far-field (FF) and near-field
(NF) array microphone signals.

FF DER FF ⇥RT NF DER NF ⇥RT
35.49% 71.02⇥ 24.76% 115.40⇥

Table 8.14: Average Diarization Error Rate (DER) of the diarization system and
the faster than real-time performance factor (⇥RT) for far-field (FF) and the
near-field (NF) microphone array setup for the AMI corpus.

Table 8.14 shows the average performance numbers in terms of accuracy and
speed of diarization across all the meetings in the AMI dataset. Columns “FF
DER” and “NF DER” show the average accuracy (Diarization Error Rate (%DER) 1).
The accuracy of our system is consistent with the state-of-the art system described
in [39]. Columns “FF ⇥RT” and “NF ⇥RT” in Table 8.14 show corresponding
performance for far-field and near-field microphone setup in terms of faster than
real-time factor (⇥RT) using PyCASP on NVIDIA GTX480 GPU. The real-time
performance varies by each meeting from about 50-250⇥RT, depending on the
length of the audio as well as the number of clustering iterations computed before
convergence (for details see [43]). Our reference C++ application achieves about
real-time performance. Thus, our speaker diarization application performs orders

1National institute of standards and technologies: Rich transcription spring 2004 evaluation.
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Mic Array Orig. C++/pthreads Py+Cilk+ Py+CUDA
Westmere Westmere GTX285/GTX480

Near field 20⇥ 56⇥ 101⇥ / 115⇥
Far field 11⇥ 32⇥ 68⇥ / 71⇥

Table 8.15: The Python application using CUDA and Cilk+ outperforms the
native C++/Pthreads implementation by a factor of 3� 6⇥.

of magnitude better than the reference C++ implementation in terms of speed,
and just as well in terms of accuracy.

Portability

The speaker diarization application uses the GMM component of PyCASP. As
described in Chapters 5 and 7, we designed the GMM component to be portable
to CUDA GPUs and Intel multi-core CPUs. Table 8.15 shows the speaker di-
arization performance on three different backends: Intel Westmere CPU and on
two generations of NVIDIA GPUs, GTX285 and GTX480. We compare the per-
formance of the PyCASP-based implementation with the original implementation
running C++ and Pthreads on the Intel Westmere CPU. On all platforms, the
implementation that uses PyCASP achieves higher performance than even the
reference sequential C++ implementation in terms of the real-time-factor (and
as noted above, with 30⇥ fewer lines of code). The best-performing platform
is again, the NVIDIA GTX480 GPU. Since performance of this application is
highly-dependent on the performance of the GMM training component, the plat-
form that can execute GMM training computations is the most efficient platform
for the entire application. Thus, we enable application portability as well as high-
performance on a variety of parallel hardware by using SEJITS to implement the
components of PyCASP.

8.3.3 Music recommendation

Productivity

The music recommendation system is written in about 800 lines of Python code.
Out of the 800 lines, 600 lines capture the recommendation algorithm and ad-
ditional 200 lines implement the music server interface, database querying other
auxiliary functions. The application uses the GMM component of PyCASP to
train and adapt the UBM for music similarity computation. We use the SQLite
Python library [79] for setting up the music server and for manipulating and ac-
cessing the song database. We use the Numpy library [5] for auxiliary numerical
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computations, such as the distance computation to find the set of closest songs to
the query songs.

Figure 7.4 in Chapter 7 captures the core Python code for the online phase
of the application. Using the high-level Python language as well as offloading
the compute-intensive GMM training computation to parallel platforms using
PyCASP, we were able to prototype this application in about three weeks of engi-
neering time. Python enables easy integration of a variety of tools, for example, it
is quite straightforward to import and use the SQLite package for database manip-
ulation and the Numpy library for numerical computations. In addition to using
PyCASP, the availability and the ability to easily integrate a variety of Python
tools into our application code aids in productive application development. We
do not have a comparable low-level implementation of the music recommendation
system, but from our experience, we can estimate that a similar implementation
would take an order of magnitude more lines of code, and thus, significantly more
development time.

Efficiency

To evaluate the efficiency of our music recommendation system, we use two
datasets: the 10, 000 song subset of the Million Song Dataset [8] and the en-
tire set of one million songs in the Million Song Dataset on one NVIDIA GTX480
GPU desktop. Figure 8.5 shows the time it takes to adapt the UBM and the
total recommendation time (excluding the database accesses) for various query
sizes for the two datasets respectively. The total time contains UBM adaptation
time, approximate nearest-neighbor computation using LSH and computing the
C closes songs returned by LSH (algorithm steps 2-4 discussed in Chapter 3). We
used artist names to query our recommendation system to come up with the list
of query songs; for example, we ran queries like “Radiohead” and “Elton John or
Eric Clapton” to find songs that are musically-similar to all songs by Radiohead
and to both Elton John and Eric Clapton. In the 10K system, typical queries re-
turned 1� 17 songs, up to 23, 000 feature vectors. The number of songs returned
by our queries using the 1M song dataset ranged from 30 to 500, up to 560, 000

feature vectors total. Figure 8.5 shows the scalability of PyCASP’s GMM training
component as we increase the number of features returned by the query. For the
largest query our system is able complete the online recommendation phase from
the one million song dataset in under 1 second. The GMM training component
in PyCASP can process up to 7 million features to train M = 64-component
GMMs on NVIDIA GTX480 GPU. Thus, we believe that the online phase of the
application will scale to even larger queries.

The offline phase takes a significantly longer time to execute than the online
phase. The most significant component of the offline phase of the recommendation
system is the UBM feature gather, the SQLite database setup and the LSH hash
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Figure 8.5: Scaling of the [Content-Based] Music Recommendation (CBMR) sys-
tem on the 10,000 song subset of the Million Song Dataset (top) and on the full
dataset (bottom).
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table setup. Since these operations require frequent disk access, the offline phase
of our recommendation system is disk I/O bound and takes about 24-36 hours
to complete on the 120GB database. The Sqlite database query time can range
quite significantly, depending on whether the data is in memory or on disk, ranging
anywhere from 1 to 200 seconds. The UBM adaptation itself on 7M randomly-
sampled features takes about 50 seconds on the NVIDIA GTX480 GPU platform,
and is not the bottleneck. Thus, due to these factors and the fact that the offline
phase of the system needs to be run once for the entire appellation, we don’t
include it in the detailed analysis of performance.

Portability

Our music recommendation system makes heavy use of the GMM component
of PyCASP, and thus, music recommendation system can run on a multi-core
CPU or GPU without code change. In the offline phase of the recommendation
system, we train a UBM on a large set of randomly-sampled features. This is
is the compute-intensive part of the offline phase of the application (other time-
intensive phases are database setup and file parsing, which are I/O bound). To
train large GMM models, the most efficient platform to execute UBM training
is the NVIDIA GTX480 GPU. Thus, although we are able to use other NVIDIA
GPUs and Intel multi-core CPUs, we choose to use the GTX480 platform for the
offline phase of the recommendation system.

For the online phase of the recommendation system, it is less clear what plat-
form will perform best. The two NVIDIA GPU platforms we use for our evalua-
tion have separate device memories; running an application on an NVIDIA GPU
requires explicit data structure transfer from the CPU memory to the GPU mem-
ory. Although GPUs are more efficient at executing GMM training (as we have
seen in speaker verification application in Section 8.3.1), the overhead of data
reallocation can impede the application performance on a GPU backend. Indeed,
when we run a set of sample queries through our recommendation system, we see
that using the Intel CPU Cilk+ backend (in this case we used the Core i7 4-core
processor), is about 10 � 20% faster than the NVIDIA GTX480 GPU backend
(the total recommendation time on the Intel Core i7 is 3.2 seconds and on the
NVIDIA GTX480 is about 3.6 seconds). Thus, when we train a GMM on a small
set of features (as in the online phase of the music recommendation system), the
data transfer overhead becomes more significant and impedes the performance of
the GPU backend making the Intel CPU backend more efficient. We are able to
perform these experiments by modifying the configuration file without changing
the application code.
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8.3.4 Video event detection

Productivity

The video event detection application is written in 720 lines of Python code. 100
lines correspond to the core functionality of the speaker diarizaiton algorithm.
The remainder 600 lines correspond to file I/O and parsing, output formatting
and storage, printing of usage instructions and parsing of the configuration input
file. Finally 20 lines of code, implement the MapReduce code for scaling the the
application to run on a computer cluster. The same change would require at least
20⇥ as many lines of Java code. Thus, we are able to rapidly prototype the appli-
cation by reusing the speaker diarization algorithm and adding the MapReduce
code to scale it to the large dataset of videos.

Efficiency

We evaluate the efficiency of our system using the TRECVid Med 2011 dataset.
This dataset is comprised of consumer-produced videos collected from social net-
working sites, or “found videos.” The data is broken down into 15 categories or
“event-kits”, with 5 of those categories available in the test set. The event cate-
gories available in the test set are “attempting a board trick”, “feeding an animal”,
“landing a fish”, “wedding ceremony”, and “working on a woodworking project”.
Of the test set, 496 videos are from these 5 categories, and the remaining 3, 755

videos are random videos not belonging to any event category. The system uses
60-dimensional features: C0-C19 Linear Frequency Cepstral Coefficients (LFCC)
features with 25ms windows and 10ms step size, along with deltas and delta-deltas.

We performed the experiments on a cluster of 8 nodes with two NVIDIA
Tesla M1060 GPUs each, total of 16 GPUs, using CUDA 3.2. We analyzed the
speedup of the video event detection system using the MapReduce composition of
PyCASP compared to running the diarization on each video sequentially on one
machine with one GPU. We map an increasing number of videos from different
event categories to nodes in our cluster to investigate the scalability of our imple-
mentation. Figure 8.6 shows that once we process enough video files, we obtain
nearly perfect speedup - 15.5⇥ on 500 and 1000 videos compared to running the
same computation on one GPU node. This result shows that the video event
detection application achieves nearly optimal scaling on the GPU cluster. We
performed this experiment on Amazon EC2 cloud compute platform, yielding the
same results. The efficiency of the diarization algorithm was shown in analysis of
the speaker diarization application earlier, in Section 8.3.2. Thus, this example
illustrates a near-perfect scaling and efficiency, of our video event detection ap-
plication that uses PyCASP’s MapReduce composition and GMM component to
run on a cluster of GPUs.
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Portability

Using the MapReduce functionality of PyCASP, we are able to easily port the
video event detection application from running on one GPU node to a cluster of
GPUs. By changing the configuration file we can also run the video event detection
system on a cluster of Intel CPU machines. With this example application, we
illustrate the portability of PyCASP application from desktop GPUs and CPUs
to computer clusters. This also serves as an example of how PyCASP enables
application writers to develop and prototype algorithms using a sample subset
of data on one machine (utilizing underlying parallel hardware if using PyCASP
components), and then easily scale their application to a larger dataset and utilize
a whole cluster of machines.

8.4 Comparison to prior approaches
In Chapter 2, we discussed several main alternative approaches to bridging the
implementation gap: efficiency languages and libraries, productivity language and
libraries, and efficiency and productivity frameworks. The alternative approaches
allowed for varying amount of programmer productivity and flexibility, and appli-

Figure 8.6: Scaling of the video event detection system using MapReduce for
varying number of video files diarized.
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Productivity
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Figure 8.8: Comparing portability and productivity (left) and flexibility and pro-
ductivity (right) of alternative approaches and PyCASP.

cation efficiency and portability, shown in Figures 2.6 and 2.7. Now that we have
illustrated the productivity, efficiency and portability results of both PyCASP
components, composition optimizations and applications written using PyCASP,
we can discuss how PyCASP fits into this global picture.

Figures 8.7 and 8.8 show the relative positioning of PyCASP and each type of
the alternative approaches on the Productivity-Efficiency scale (Figure 8.7) and
the Productivity-Portability and Productivity-Flexibility scales (Figure 8.8). As a
reminder, the Productivity scale denotes the productivity of application developers
when using the particular approach. The Efficiency scale denotes the efficiency
of applications that is possible when they are written using these approaches.
The Portability scale denotes how many different platforms applications that are
written using these approaches can run on. The Flexibility scale denotes the
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application developer flexibility in specifying application functionality when using
these approaches. While the positioning of each approach doesn’t change on the
horizontal (productivity) axis, they show quite different placement on the vertical
(efficiency, productivity and flexibility) axes. Again, we note that the placement
of each approach does not capture the exact measured efficiency and productivity,
but is rather meant to show relative placement of PyCASP and each alternative
approach on the global spectrum.

When looking at the Productivity-Efficiency scale, our component and appli-
cation examples illustrate that PyCASP can be quite competitive with efficiency
languages and libraries in terms of efficiency it provides to the applications. In
addition, PyCASP is much more productive than the former. PyCASP provides
productivity that is close to the productivity languages but allows for much more
efficiency. On the Portability-Productivity scale, PyCASP enables high portabil-
ity by targeting multiple types of platforms (GPUs, multi-core CPUs and clusters)
while maintaining productivity. PyCASP provides higher portability than pro-
ductivity libraries as it targets not only multiple platforms, but also multiple
versions of those platforms by tuning the code that it generates to the underly-
ing hardware. Finally, on the Productivity-Flexibility scale, PyCASP gives more
flexibility to applications programmers than productivity and efficiency libraries
by allowing application programmers to modify the specific details of computa-
tions in their applications. PyCASP is not as flexible as code-lowering frameworks
such as Theano or Copperhead or programming languages; however, PyCASP is
designed to close this gap with the customizable components, discussed more in
Chapter 9.

We conclude that PyCASP is a productivity framework that presents appli-
cation programmers with a single application-specific software environment that
brings efficiency, productivity and portability to applications and provides more
flexibility than traditional library approaches.

8.5 Summary
In this chapter, we presented results on productivity, efficiency and portability of
PyCASP’s components and applications written using PyCASP. We show that
we are able to achieve productivity, efficiency and portability of both PyCASP
components and the example applications. We also analyzed the performance
gains achieved by utilizing optimizations when composing PyCASP’s components
in applications. We evaluated the performance gains possible when sharing (using
the Pipe-and-Filter pattern), reusing (using the Iterator pattern) and distributing
(using the MapReduce pattern) data structures. While some composition points,
such as the GMM training - GMM prediction composition, did not yield signif-
icant performance improvement from removing redundant data allocation calls,
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other composition points did. Specifically, we showed that we can reduce the
runtime of the speaker verification classification phase by almost 30% by sharing
data structures across the GMM training and SVM evaluation calls. Thus, we
have illustrated that by restricting the scope of our framework to one applica-
tion domain and using structural patterns to analyze composition of components
in applications, we can optimize composition of computations and enable higher
application efficiency. In the next chapter, we summarize and evaluate this work
against our goals and discuss advantages and drawbacks of using our approach to
create application-specific frameworks for productive parallel computing.
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Chapter 9

Conclusion

9.1 Thesis Summary
With the commoditization of parallel processors, porting applications to utilize
parallel processors is essential to enable application scalability to new generations
of hardware. Unfortunately, the programming world is still divided into two types
of programmers: application developers and researchers who focus on designing
and prototyping algorithms, and efficiency programmers who focus on extracting
the most performance out of a particular compute kernel. The gap between these
two types of programmers is referred to as "the implementation gap". In order
to enable applications to utilize parallel hardware, one way to bridge the imple-
mentation gap is to create a software environment that allows the two types of
programmers to communicate with each other. In this dissertation, we set out to
answer the following research question:

How can we build a software environment to bridge the implementation gap
and enable application writers to productively utilize parallel hardware and de-
velop efficient, scalable, and portable applications?.

In this thesis, we focus on developing a software framework that bridges the
implementation gap between the two types of programmers. We aim for this soft-
ware framework to enable application programmer productivity and flexibility in
developing applications, as well as allow for application efficiency and portability
to a variety of parallel hardware. We propose three main mechanisms to answer
our thesis hypothesis:

1. We propose using a pattern-oriented design for our framework to enable
productivity, modularity and comprehensiveness of our software solution.
We use Our Pattern Language, originally presented in [62], for the design
of our framework. The pattern-oriented approach allows us to define a
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clear scope and enable modular and comprehensive coverage of the specific
application domain. Patterns also provide for a common vocabulary for
application domain experts and efficiency programmers.

2. We propose using Selected Embedded Just-in-Time Specialization (SEJITS)
to realize the framework’s design in software to enable productivity, flexi-
bility, efficiency and portability. We use the SEJITS technology to realize
the pattern-based design of our framework in software. SEJITS allows for
the separation of concerns between the application developers and efficiency
programmers enabling productivity, as well as efficiency and portability of
resulting applications.

3. We propose restricting the scope of the framework to one application domain
to enable efficient composition of computations. We restrict the scope of our
framework to one application domain, in our case, the audio content analysis
applications. Audio applications present a compelling set of applications due
to the specific latency and throughput requirements and the ever-increasing
amount of audio data that is available for analysis and machine learning.
By restricting the scope of our framework to one application domain, we
aim to understand the types of compositions of computations that occur in
the applications and implement composition optimizations.

In this thesis, we present an example framework called PyCASP (“Python-
based Content Analysis using SPecialization”) whose design and implementation
combines the three approaches described above. Using patterns, we aim to provide
the programmers with a software environment that has a familiar vocabulary and
a concise scope, allowing for productivity in application development. Using the
SEJITS approach and the separation of programmer concerns it enables, PyCASP
is able to provide high application efficiency and portability to a variety of parallel
platforms, in addition to high-level language productivity.

By restricting the scope of the framework to one application domain, we are
able to optimize composition of computations. We analyze the variety of ways
PyCASP components are composed together into applications using structural
patterns. We show that the three structural patterns, Pipe-and-Filter, Iterator
and MapReduce, are sufficient to describe the types of compositions that occur
in majority of audio content analysis applications. We verify the hypothesis by
analyzing the types of computation compositions in a variety of audio content
analysis applications. We then identify the optimization opportunities for specific
compositions based on the structural patterns. Specifically, we discover that:

• Pipe-and-Filter composition corresponds to data structures being shared
between computational components,
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• Iterator composition corresponds to data structures being reused by com-
putational components in an iterator loop,

• MapReduce composition corresponds to data structures being distributed
across compute nodes in a computer cluster.

The opportunities for optimization of composing computations correspond to
removing redundant data structure allocation and copy calls. We focus on the
CPU-GPU backend, as we must manage data allocation and memory utilization
explicitly. By identifying the specific ways computations are composed, we are
able to remove redundant data allocation and thus, further optimize application
performance. We show that, in addition to specialization, adding the optimiza-
tions for composing components in these applications can give up to 30% perfor-
mance improvement.

To illustrate the applicability of PyCASP we analyze the implementation of
four full-functioning audio content analysis applications using PyCASP: a speaker
verification system, a speaker diarization application, a content-based music rec-
ommendation system, and a video event detection system. We use two NVIDIA
GPUs, two Intel multi-core CPUs and a cluster of NVIDIA GPUs to run and
analyze the performance of the four applications. We show that across this wide
range of applications and parallel platforms, PyCASP is able to give high pro-
ductivity to application writers and efficiency and portability of applications. By
using PyCASP, application developers can capture a full-functioning application
in 10-60⇥ less lines-of-code compared to implementing the same application in
a low-level language such as C++. In addition, using PyCASP’s components,
they are able to reuse significant amount of code, further improving productivity.
Applications written using PyCASP are able to achieve, and often even exceed,
the performance of the same application written in a low-level language.

Finally, we demonstrate that using SEJITS, we are able to port the appli-
cations to run on a variety of parallel hardware, ranging from Intel multi-core
CPUs, NVIDIA GPUs and compute clusters. The application porting from CPU
to GPU can be done without any application code change, but my modifying
a configuration file. Porting an application to a cluster of machines requires an
additional 20 lines of Python code. Applications written using PyCASP can scale
up to large sets of audio data enabling the programmer to easily go from single-
desktop, small subset experimentation to running the application on a cluster of
parallel nodes using the full dataset. Combining all of the techniques and opti-
mizations, our example applications are able to automatically achieve 50-1000⇥
faster-than-real-time performance on both multi-core CPU and GPU platforms
and 15.5⇥ speedup on 16-node cluster of GPUs showing near-optimal scaling.

We now evaluate our results against the goals we set in the beginning of this
work:
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1. Productivity: We aimed for 10 � 100⇥ lines-of-code reduction compared
to applications written in a low-level efficiency language. While it is difficult
to evaluate the exact lines-of-code reduction, using our best estimates of the
implementation the example applications, we conclude that we can achieve
at least a 10�60⇥ reduction in the number of lines of code for the application
implementation using Python and PyCASP compared to using low-level
languages such as C++.

2. Efficiency We aimed to obtain within 30�50% of hand-coded performance
and within an order of magnitude faster performance than pure Python
code. For PyCASP’s components, we showed that we can not only obtain
efficiency within the 30 � 50% factor of hand-coded performance, but we
can often beat the hand-coded implementation by choosing the best code
variant for a particular computation (illustrated with the GMM training
component). When evaluating example applications, we showed that using
PyCASP we can achieve state-of-the-art performance and enable applica-
tions to run orders of magnitude faster than real-time, which can also beat
the performance of equivalent hand-coded applications.

3. Portability We aimed to demonstrate the same application running on
multi-core CPU, a GPU and a computer cluster without significant applica-
tion code change. We have shown that our applications can run on a variety
of GPU and multi-core CPU platforms without application code change but
by using the configuration file to specify the hardware backends. We have
also shown, using the video event detection application, that by adding 20

lines of Python code, we were able to scale our applications to run on a clus-
ter of compute nodes, enabling portability from a single node to a compute
cluster.

4. Scalability We intended to show application scaling from one node to a
cluster of nodes, using our same framework, without significant program-
ming effort. We have demonstrated this capability using the video event de-
tection example application. We showed that by adding 20 lines of Python
code, we enabled the application to scale to a larger dataset and run on a
computer cluster achieving a speedup of 15.5⇥ on a 16-node GPU cluster.

Thus, we have shown that our approach achieves the goals of bridging the
implementation gap, application programmer productivity and application effi-
ciency and portability; however, there are some drawbacks and limitations of our
approach that we need to analyze in order to fully understand the applicability
of this technology.
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9.2 Discussion

9.2.1 Components & scope

Software frameworks have to trade-off efficiency of the generated code with the
generality of the computations they support. It is difficult to enable both general-
ity and efficiency, and thus, most frameworks fall closer to one of the ends of this
spectrum. We use the pattern-oriented approach to define the scope of PyCASP.
Specifically, we use application patterns to understand the types of computations
and algorithms our framework will support, and structural patterns for under-
standing how the computations are composed together into applications. Thus,
PyCASP presents a tall-skinny framework that focuses deeply on one application
domain and specializes the specific algorithms used in this particular domain. Py-
CASP cannot support new, “undiscovered” algorithms by definition - we design
PyCASP’s components to support existing algorithms and allow for their modifi-
cation within particular constraints. By focusing on specializing entire instances
of application patterns (i.e. the algorithms in the particular application domain),
PyCASP is able to achieve high levels of efficiency of the generated code, at the
expense of generality.

In contrast, frameworks such as Copperhead [14] and Theano [7], implement
and specialize general, lower-level constructs, such as data-parallel operations or
loop-nest optimizations. Domain experts can construct new algorithms using the
lower-level constructs of such frameworks, which then get specialized and executed
on parallel hardware. These frameworks have a wider scope, i.e. they support a
subset of general computations that can be specialized to run on parallel hardware
from application code. At the expense of this generality, applications developed
using these frameworks can achieve limited efficiency (see [14] for more details).

9.2.2 Flexibility & customization

As discussed in Chapter 5, PyCASP is designed to support customizable com-
ponents in addition to library components. Currently, PyCASP contains library
components, which specialize specific algorithms and allow for a set of pre-defined
customization points. The application developer chooses particular components of
PyCASP to use and sets the customization points based on the application require-
ments. For example, the application programmer can choose to use Support Vec-
tor Machines (SVMs) for content classification, and then choose between several
kernel functions for the SVM component. These customizations give some flexibil-
ity to application programmers, but still restrict the capabilities of the framework
to support only the pre-defined computations and customizations. Thus, this re-
striction limits the flexibility of PyCASP and restricts its use cases to only the
ones supported by the library components.
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In some scenarios, the framework users may want to specify the functionality
of components themselves instead of relying on fixed functionality or pre-existing
components. To enable higher application developer flexibility, PyCASP is de-
signed to support customizable components. Customizable components allow for
more user input and customization of algorithms and computations. Customizable
components can be implemented as embedded domain-specific-languages (eDSLs)
using the Asp framework to lower high-level (Python) code to low-level efficiency
code. Application programmers can then specify the exact functionality of the
component by defining the internals of specific functions. Asp and SEJITS will
then “translate” these functions into low-level code and plug that code in with the
remainder of the specializer-generated code. Customizable components can en-
able much higher flexibility for PyCASP, as the application writer can specify the
exact algorithm for each application, without relying on previously-implemented
approaches. Currently, PyCASP does not contain customizable components, and
thus does not allow for significant application programmer flexibility. In order to
enable PyCASP to be a fully-flexible software environment that allows applica-
tion developers to experiment with algorithms, customizable components are a
requirement and the natural next step in continuing development of PyCASP.

9.2.3 Composition

In order to enable efficient composition of computations in applications, we restrict
the scope of PyCASP to a specific application domain. We restrict our focus on
composing PyCASP’s components, i.e. a high-level composition of machine learn-
ing and signal processing algorithms. These compositions can be analyzed using
structural patterns. Namely, in this work, we discover that we can use the three
structural patterns, Pipe-and-Filter, Iterator and MapReduce to express the ways
components are composed together in audio content analysis applications. Based
on our structural pattern analysis, we discover that composing PyCASP’s com-
ponent at this high level corresponds to data structure sharing and reuse. Thus,
we can optimize application performance by removing redundant data structure
allocation and copy calls from our generated code. This optimization can result
in up to 30% reduction in execution time (see Chapter 8 for experimental results).

Our approach for analyzing and optimizing composition of computations gives
a relatively small insight into the general composition problem. In order to enable
efficient composition of PyCASP’s components, we 1) restricted the scope of our
framework to one application domain, 2) restricted our composition optimizations
to only apply to composing two components, and 3) pre-defined the data struc-
ture format that will be used by both components (in our case, the data that
is shared across components are row-major dense matrices). Application writers
must call two components that they want to be composed one right after the
other, passing the data structures directly between the two components. If there
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are any modifications to the shared data structure between the two component
calls, the composition is not possible as we must deallocate and reallocate the new
updated data structure between the two component calls. Thus, we setup a strict
composition protocol in order to optimize compositions in our framework. The
composition problem becomes much harder once we move to composing general
computations, composing multiple computation calls instead of just two, as well
as when we move to more complex data structures (for example graphs or sparse
matrices) that have many alternative formats. Thus, it is not clear whether the
methodology we describe here is applicable to more general composition scenarios
than the ones we focus on in this work.

9.2.4 Uses of PyCASP

While PyCASP is still in its initial phases of development, the framework is al-
ready being used by speech recognition researchers at the International Computer
Science Institute (ICSI) to perform fast speaker diarization and video event de-
tection tasks. The speaker diarization application, written using PyCASP, is also
being used for meeting diarization by the Intel Corporation. The GMM train-
ing component is employed in other multimedia and audio research projects by
PhD students at UC Berkeley and researchers at audio analysis companies such as
Gracenote 1. By collaborating with researchers, we have iterated on a better API
for PyCASP’s components as well as included detailed documentation of specific
functionality of the framework. In order to develop PyCASP further, researcher
and application domain expert collaboration is essential to identify new use cases,
fix bugs and develop good documentation. Thus, we hope to continue the collab-
oration with application domain experts and encourage more researchers to use
our software.

9.3 Future Work
PyCASP illustrates an initial effort in a larger project of using selected embedded
specialization to create productive and efficient software environments for a variety
of application areas 2. Continuation of this work is supported by a full NSF grant,

1http://www.gracenote.com/
2Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding

and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes
from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung. Partially
supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department
of Interior National Business Center contract number D11PC20066. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusion contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or
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and thus, we expect a significant increase in the magnitude and development
efforts of this project or other projects based on PyCASP. PyCASP illustrates
the use of key elements such as pattern-oriented design, SEJITS for component
specialization and customization, and component composition, that can be reused
in designing productive programming environments for other application areas.

Future work for PyCASP includes completing the PyCASP framework with
more components, corresponding to the application patterns we mined in the
design phase of this work. Other machine learning components such as neural-
network training and classification are especially important to add as well as fea-
ture extraction signal processing components. Another important trajectory is to
add customizable components to PyCASP to enable higher application program-
mer flexibility and customization of algorithms. By adding more components, we
can further explore the breadth and efficiency of PyCASP as well as analyze new
composition points and optimizations.

Other exciting directions for future work include adding more cluster com-
puting functionality to PyCASP and integrating more auto-tuning technology.
Currently, PyCASP supports basic calls to map and reduce functions by expos-
ing Hadoop through its Python interface. Enabling more complex MapReduce
applications and their integration with PyCASP’s components and composition
mechanisms can provide productive software solutions to large-scale data analysis
applications (not only in audio content analysis). Adding auto-tuning and ma-
chine learning to perform automatic code-tuning and optimizations can further
improve performance of applications and enable higher application portability.

Finally, we hope that more domain experts and researchers use, extend con-
tribute to the PyCASP project, and we would like to encourage the research com-
munity to do so. PyCASP is available at: https://github.com/egonina/pycasp.

endorsement, either expressed or implied, of IARPA, DOI/NBC, or the U.S. Government.
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