
Information Flow in Linear Systems

Se Yong Park

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-233

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-233.html

December 20, 2013



Copyright © 2013, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Information Flow in Linear Systems

by

Se Yong Park

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Associate Professor Anant Sahai, Chair

Professor Venkat Anantharam
Professor Andrew Packard

Professor David Tse

Fall 2013



Information Flow in Linear Systems

Copyright 2013

by

Se Yong Park



1

Abstract

Information Flow in Linear Systems

by

Se Yong Park

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Anant Sahai, Chair

Modern control systems have their own unique features that distinguish them from classical

control systems. In many cases, there inherently exist multiple distributed controllers and so com-

munication networks can be introduced to connect them. Due to these features, it is challenging to

design efficient controller and transceivers for modern control systems. Practically, we must answer

questions like “How reliable do we need the communication channels to be to achieve the desired

control performance?”, “What information should be exchanged between controllers?” and “What

are the optimal controller and transceiver structures?” All these practical equations are related to

one theoretical question “Can we understand the information flows between controllers?” In other

words, the controllers communicate with each other explicitly through the communication networks

and also implicitly through the plants, and we have to understand this information flow for control.

In this thesis, we consider three seemingly simple but fundamental problems to understand explicit

and implicit information flows for control, as initial building blocks for a theory that we hope will

eventually lead to novel and efficient designs for modern control systems.

In the first technical chapter, we consider Kalman filtering problems when the observations

are intermittently erased or lost. Practically, this problem is the simplest model for the packet losses

that can happen in communication networks connecting distributed controllers. Theoretically, by

relating the erasure probability of the channel with the stability of the control system, we can

measure the minimum quality requirements for uncoded information that has to flow to stabilize

the system. It was known that the Kalman filtering estimates are mean-square unstable when the

erasure probability is larger than some critical value, and stable otherwise. But what that critical

value actually is has been open for years. Unlike prior work that tried to connect with Lyapunov

stability, we connect with observability to completely characterize the critical erasure probability.

We introduce a new concept of eigenvalue cycles which captures the periodicity of systems, and

characterize the critical erasure probability based on this. It is also proved that eigenvalue cycles

can be easily broken if the original physical system is considered to be continuous-time — randomly-
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dithered nonuniform sampling of the observations makes the critical erasure probability almost surely

1
|λmax|2 , the best that could be hoped for even with arbitrarily complex coding. This implies that the

rank of the observability gramian can be thought of as the amount of information that the estimator

learns about linear systems, and nonuniform sampling helps maximize that rank. Furthermore,

different subspaces of the states can be thought of as the source of information flows and separated

as long as they belong to different eigenvalue cycles.

In the second technical chapter, to understand implicit information flows we consider dis-

tributed linear systems without explicit communication networks. To do this, we build a unified

view of both network coding and decentralized control. Precisely speaking, we consider both as

linear time-invariant systems by appropriately restricting channels and coding schemes of network

coding to be linear time-invariant, and the plant and controllers of decentralized control to be linear

time-invariant as well. First, we apply linear system theory to network coding. We introduce a novel

technique that we call Network Linearization. This technique gives a way of converting an arbitrary

relay network to an equivalent acyclic single-hop relay network. Based on network linearization, we

prove that the fundamental design limit, mincut, is achievable by a linear time-invariant network-

coding scheme regardless of the network topology. Unlike previous approaches relying on graph

theory, we use linear system theory and linear algebra, and exploit the fact that there can be mul-

tiple network representations for a given algebraic transfer function. For broadcast and unicast

problems, unintended messages at receivers turn out to be modeled as secrecy constraints after

network linearization.

Having built a linear-systems view of network coding, we turn it around to view decen-

tralized linear control systems. We argue that linear time-invariant controllers in a decentralized

linear system “communicate” via linear network coding to stabilize the plant. To justify this claim,

we revisit classical stabilizability results concerning fixed modes. We give an algorithm to “exter-

nalize” the implicit communication between the controllers that we believe must be occurring to

stabilize the plant. Based on this, we show that the stabilizability condition for decentralized linear

systems comes from an underlying communication limit, which can be described by the algebraic

mincut-maxflow theorem. With this re-interpretation in hand, we also consider stabilizability over

LTI networks to emphasize the connection with network coding. These results confirm the intu-

ition that there are implicit information flows in distributed control systems which we can visualize.

Moreover, the rank of subspaces are the proper measure of information for linear systems when we

consider stabilizability.

In the third and fourth technical chapters, we go beyond stabilizability and study how the

size of implicit information flows constrain the optimal control performance. To do this, we must

allow arbitrary controllers without imposing linearity constraints. In particular, we focus on scalar

decentralized average-cost infinite-horizon LQG problems with two controllers. For fast-dynamics

systems — when the eigenvalue of the system is large —, it is shown that the best linear controllers’

performance can be an arbitrary factor worse than the optimal nonlinear controller performance.
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To understand the required nonlinearity in such control systems, we caricature bit-levels of the

states as different subspaces, and the rank of those subspaces as the amount of information. In

other words, we take a linear view of nonlinearity. Based on this insight, we propose a simple set

of finite-dimensional nonlinear controllers, and prove that the proposed set contains easy-to-find

approximately optimal strategies that achieve within a constant ratio of the optimal quadratic cost.

The insight for the nonlinear strategies comes from revealing the relationship between implicit infor-

mation flow in control and wireless information flow. More precisely, we discuss a close relationship

between the high-SNR limit in wireless communication and the fast-dynamics case in decentralized

control, and justify how the proposed nonlinear control strategy can be understood as exploiting a

kind of generalized degree-of-freedom gain in wireless communication theory. For a rigorous justifi-

cation of this argument, we develop new mathematical tools and ideas. We extend Witsenhausen’s

counterexample to MIMO (multiple-input multiple-output) Witsenhausen’s counterexamples, just

as wireless communication extends the scalar AWGN (additive white Gaussian noise) channel to

MIMO channels and from there, eventually tackles multi-terminal problems. To reveal the relation-

ship between infinite-horizon problems and generalized MIMO Witsenhausen’s counterexamples, we

introduce the idea of geometric slicing that plays a role like that of cut-set bounds in communica-

tion theory. To analyze nonlinear strategy performance, we introduce an approximate-comb-lattice

model for the relevant random variables. For the slow-dynamics cases — when the eigenvalue of

the system is small —, we prove that single-controller optimal strategies —linear strategies— are

constant-ratio optimal among all distributed control strategies.

Understanding the nature of information flow for control should eventually lead to a unified

theory for control and communication. We believe the parallelism between control information flow

and wireless information flow is not just a coincidence but strong evidence for such a unified theory.

However, still lots of concepts and ideas in control and communication remain separate and have

not been related — for example, secrecy, interference alignment, and scaling laws in communication.

Therefore, further research is required to continue uncovering the fundamental relationship between

control and communication. Moreover, we also have to think how to leverage this understanding

in practical system designs, and how to build efficient distributed controllers and transceivers for

modern control systems.
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Chapter 1

Introduction

A goal of both control and communication theory is building efficient systems. Control

theory studies how to achieve the best performance with minimum effort. Communication theory

studies how to convey information with minimum cost. In other words, both problems can in

principle be formulated as optimization problems, and communication problems may not have to be

distinguished from control problems. In fact, until the late 1940s, the concept of cybernetics [106]

had not distinguished control and communication as separate fields.

However, Shannon’s revolution [93] overturned this classical paradigm. Relying on the fact

that communication systems can switch much faster than human recognition, Shannon conceived

block-coding strategies. It was well-known that as the length of i.i.d. random variable sequences

gets longer, the empirical distribution converges to the probabilistic distribution. However, it was

only after Shannon’s novel application of this fact that the concept of entropy was discovered as a

useful measure of information (it had been an abstract and philosophical concept before). Since the

discovery of entropy, communication theory —information theory in a broader sense— has separated

from control theory and become an independent research area.

While information theory has been developing mathematical tools to quantify a philosophi-

cal concept of information, control theory has mainly focused on extending the classical optimization

framework and finding practical applications. However, intuitively information and control have to

be deeply connected, since to control a plant we first need information about the plant. This intuitive

connection motivated both information and control theorists to explore the relationships between

the two theories [109, 45, 89, 8, 97, 26, 67, 86, 37].

More importantly, a new concept of modern cyber-physical systems [96, 41, 57], which have

both control and communication parts in them, recently emerged. To properly understand these new

systems, the unification (at the very least, partial compatibility) of control and communication theory

is becoming crucial. Modern systems differ from classical control systems in two aspects. The first

difference is the inherent distributedness of the systems. Unlike classical centralized control systems,
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Figure 1.1: An Artist’s Picture of Intelligent Transportation Systems [47]

as system size scales, it is becoming physically impossible to introduce centralized controllers. The

second difference is that since controllers are naturally distributed, wired/wireless communication

technology can be used to connect the distributed controllers.

Figure 1.1 shows an artist’s picture of intelligent transportation systems as an example of

modern systems. Until the last century, each vehicle had been considered as a separate system,

and controlled by one dedicated centralized controller. However, as the number of vehicles scales,

each vehicle starts to interact with (e.g. potentially collide with) each other. One goal of intelli-

gent transportation systems is to design controllers which avoid negative interactions (e.g. avoid

collisions) between the vehicles. To design such systems from a control-theoretic point of view, we

can no longer consider different vehicles as separate systems. We have to model all the vehicles

collectively as one big plant. The individual controllers dedicated to different vehicles should be

thought of as distributed controllers with partial information (around the corresponding vehicle)

and partial control (over the corresponding vehicle) of the big plant. Furthermore, we can employ

current wireless communication technologies to connect these distributed controllers to share their

information as well as having them using sensors to view each others’ actions.

However, control theory and the mathematical tools that currently exist are not enough to

decisively address core practical engineering questions in the design of these modern systems. For

example,

• How much wireless spectrum do we have to allocate for communication?

• How can we guarantee the stability of systems?

• How should we process communication and control signals?

• What kind of architecture should be used for controllers, and for communication for control?

Furthermore, the distributed nature of systems and interwoven communication networks are also

found in other modern systems including the smart grids [51], manufacturing [13], civil infrastruc-

ture [111], and health care [58].
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Figure 1.2: A Conceptual Diagram of Modern Cyber-Physical Systems

Therefore, to answer such fundamental questions about modern control systems, we have to

build a new theory that embraces both control and communication theory. Modern systems can be

represented by the conceptual diagram of Figure 1.2. In Figure 1.2, we can see multiple controllers

with partial information and control interacting with one big plant which models whole physical

systems. One big communication network which includes all individual channels/links between the

controllers is also shown in the diagram.

The main difference between classical centralized and modern distributed systems is infor-

mation flows. In classical centralized systems, the conceptual information flow for control is simple

enough to be ignored. Information (or uncertainty) is generated at the plant, flows to the controller

as the controller observes the plant, and dissipates as the controller controls the plant (and thereby

removes uncertainty at the plant) [67]. Furthermore, within the controller, classical control theory

assumes every component is connected with infinite capacity, perfectly reliable, and zero-delay links.

Therefore, there was no need to even measure the information flow required to control systems.

However, this is not the case for modern distributed systems. In modern control systems,

controllers consist of lots of different components, which might be connected by shared communica-

tion buses with bounded-capacity or unreliable communication channels. Therefore, each controller

has only partial information about the plant, and they may want to communicate with each other to

reduce the uncertainty that each faces. This communication can be done both explicitly through the

communication network and implicitly through the plant — this point will be clarified in Chapter 3.

In other words, the information generated at the plant is distributively observed and controlled

by multiple controllers, and flows through different controllers until it is actually dissipated by the

control. As a result, even finding a conceptual flow diagram corresponding to a specific uncertainty

is challenging. Measuring information flows for control, and thereby characterizing the tradeoff

between control performance and channel quality becomes practically important.

In short, to understand modern distributed systems from a control-theoretic point of view,
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Figure 1.3: A Conceptual Diagram of Control-Over-Communication-Channel Systems

we have to understand information flows for control and develop mathematical tools to measure

them. To further this end, we take a bottom-up approach. Since modern control problems are too

complicated to tackle directly, we will consider simpler but canonical problems which capture some

essential aspects of the original problems. By doing this, we expect to find the fundamental nature

of the problems in minimal form.

The first simpler problem is control over a communication channel [97]. As shown in

Figure 1.3, there are only two controllers in this problem. One controller, which we call the observer,

can only observe the plant, and the other controller, which we call the actuator, can only act on

the plant. Therefore, to control the system, the observer has to communicate information to the

actuator. Since the explicit communication channel is the only medium which connects these two,

the information for control has to flow through this explicit communication channel. By relating

the reliability of the communication channel with the control performance, we can expect to find a

proper measure of information for control [87].

The second simpler problem is distributed control without communication networks, as

shown in Figure 1.4. Of course, modern cyber-physical systems are equipped with communication

networks. However, to make the best use of the communication networks, we have to decide what in-

formation to send. Understanding control information flow without explicit communication networks

can be greatly helpful in making such decisions by providing a baseline against which improvement

can be evaluated. After all, systems with communication networks are only more complicated than

systems without communication networks.

The challenge is that when there are no communication networks, information for control

must flow implicitly through the plant. In other words, controllers can embed information in their
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Figure 1.4: A Conceptual Diagram of Distributed Systems without Communication Networks

actions. Then, the information will be temporarily stored in the plant until another controller

receives this information by its observations. Therefore, by studying this problem, we can understand

how information flows in systems with multiple controllers.

However, even though the concept of information flow for control sounds simple and the

diagrams of Figure 1.3 and 1.4 look simple, getting a mathematical or even qualitative formulation

of the concept is challenging. First of all, the classical notions of entropy and Shannon capacity

are not enough to measure the amount of information for control [86]. One crucial assumption

in deriving entropy and capacity for communication systems is the assumption that delay is not

important. Electromagnetic waves propagate at the speed of light and VLSI chips process signals

at giga hertz. Therefore, when the source or the destination of information is a human whose

recognition cycle is much slower than chip speeds, we can tolerate long delay assumptions. However,

in modern cyber-physical control systems, the sources and destinations are physical systems which

can operate much faster than humans and evolve over time [98]. Furthermore, as the system scales,

more and more controllers share a common communication network. Communication delay could

increase significantly due to congestion, and information could even be lost in the communication

network. Therefore, we have to define a proper notion of information that takes into account delay

and unreliability in communication and the dynamics of plants.

Second, when there exist multiple controllers, finding information flow paths can be chal-

lenging. The conceptual information path in the system of Figure 1.3 looks obvious since one

controller can only observe and the other controller can only act. However, when there are multiple

controllers which can both observe and act on the plant like the system of Figure 1.4, finding a

conceptual information path is not trivial. It is not clear what the sources, relays and destinations

of information are. Without a conceptual picture of information flow, it is impossible to understand

how information is generated, propagated and dissipated in control systems.

To make progress on these challenging problems, we restrict attention to linear systems
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as models of plants. Linear systems are the first order approximation of general systems. More

importantly, when the systems are linear we can expect to apply the well-developed mathematical

tools in linear algebra. For these reasons, in classical control theory linear systems have been used

as the first step towards general systems.

PLANT 

Observer Controller 

(a)

PLANT SENSOR Estimator 

(b)

Figure 1.5: (a) Closed-Loop Control System diagram of “Control over Real Erasure Channels” and

(b) Equivalent Open-Loop Estimation System diagram of “Intermittent Kalman Filtering”

1.1 Intermittent Kalman Filtering

In Chapter 2, we will first study intermittent Kalman filtering [95] as a simple toy for

abstracting an important piece of control-over-communication-channel problems. As mentioned

above, in modern distributed systems, the observer and controller can be located in separate places

and connected by unreliable wireless communication channels. Characterizing the tradeoff between

control performance and communication channel reliability is a common interest in both control and

communication. One of the simplest model for unreliable communication channel is the real erasure

channel shown in Figure 1.5a, where the transmitted packet can be lost with a certain probability.

This real erasure channel has both practical and theoretic importance. Practically, the real

erasure channel is the simplest toy model for channel fading in wireless communication and packet

losses in networks [90]. Theoretically, this system shows that the classical Shannon capacity is not

enough to measure information flow for control [87]. Since there is no additive noise and no power

constraints on the channel, the classical Shannon capacity of the real erasure channel is infinite.

However, the analysis of its performance shows the system can be unstable for sufficiently large

erasure probability. Furthermore, [27] found that the maximum erasure probability that systems
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can tolerate is upper and lower bounded in terms of the largest eigenvalue and the product of all

eigenvalues respectively. Therefore, the questions is “Are states amplified through all eigenvalues,

or only one or a subset of eigenvalues?” In other words, how do the subspaces of the plant interact

with each other when they play a role as information source? Therefore, a proper understanding of

this simple model can be a key to understand nature of plants as the sources of control information

flows.

The control-estimation separation principle [55] suggests looking at the open-loop estima-

tion system shown in Figure 1.5b as a simplified problem of the original closed-loop control system,

focusing on the pure estimation part of the problem. Furthermore, by restricting the observer to be

linear time-invariant, the optimal control problem reduces to a seemingly simple variation of Kalman

filtering. Formally, the resulting intermittent Kalman filtering problem is written as follows:

x[n+ 1] = Ax[n] + w[n]

y[n] = β[n](Cx[n] + v[n])

The vector x[n] models the states of the plant, and the estimator try to estimate the states based on

the observation y[n]. Just as in classical control theory, Gaussian random variables w[n] and v[n] are

introduced to model uncertainty in the control system. However, unlike classical control problems,

Bernoulli random variables β[n] are also introduced to model the unreliability in the communication

channel.

Even though Kalman filtering gives the optimal estimator, the analysis of its performance is

still beyond our understanding. Even the simple but fundamental question “When can we stabilize a

plant over an erasure channel?” had been open for years. In Chapter 2, we will answer this question

by taking a different approach from the existing literature. While the existing literature attempted

to extend Lyapunov stability [95, 27], we generalize observability concepts to definitively answer this

question.

We conceptualize the states as the source of control information flow. Again, the key

question is to what extent the states of the plant interact as information sources [27]. To answer this

question, we introduce a new notion called eigenvalue cycles. Borrowing linear algebra concepts, we

consider different subspaces of the states as different messages at the source, and measure the size

of the messages by the rank of the subspaces. Then, we prove that each subspace of the states can

be separated as long as states do not belong to the same eigenvalue cycles, i.e. they do not interact

with each other much except when eigenvalue cycles are present. Thus, the original system can be

divided into subsystems with smaller dimensions.

The observability gramian of the system can be thought of as a channel which conveys

information about the system. Since the amount of source information can be measured by the rank,

the rank of the observability gramian has to be large enough to convey enough information about

the states. Based on this intuition, we analyze the stopping time until we get enough information

about the states, which leads to the characterization of observability of the system.
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Figure 1.6: Equivalence between Stabilizability of Distributed System with LTI controllers and

Capacity of Relay Communication Network

Furthermore, to mathematically justify these insights, we make novel use of information-

theoretic ideas. To justify that the original system can be separated into subsystems, we adapt

successive decoding [21] and function decoding [74] ideas from modern network information theory.

To analyze the stopping time for the observability gramian, we apply large-deviation ideas [24] of

information theory.

One of the most counter-intuitive consequences from these insights is that nonuniform

sampling can dramatically increase the system robustness. Only the periodicity of the system

can make the observability gramian extra-susceptible to becoming rank deficient. However, this

periodicity of the system can be easily broken by introducing non-uniform sampling at the observer.

With non-uniform sampling, the interaction between the subspaces of the plant can be alleviated.

Therefore, the original multi-dimensional system behaves like a collection of simple scalar systems,

and the system robustness to channel unreliability can be greatly improved.

This result shares the same spirit as that of compressed sensing [15, 25] where nonuniform

sampling or “unstructured” observation matrices are required for optimal recovery. Practically, this

idea of nonuniform sampling might be easily implementable. Theoretically, this result also hints at

a new general notion of stochastic observability.

1.2 Network Coding meets Decentralized Control

To a centralized observer, the subspaces of the plant do not interact except when eigenvalue

cycles make a particular subspace more fragile in terms of the reliability needed. So what about in

distributed control systems? Are the different subspaces kept separate? To answer this question, in

Chapter 3, we will consider distributed control systems with multiple controllers. We will see that

the subspaces associated with different eigenvalues can still be separated, and the amount of infor-

mation in linear systems can still be measured by the rank of subspaces. As mentioned above, when

there are multiple controllers, the information flows between controllers are much more complicated,
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Figure 1.7: (a) An example of distributed control system and (b) The corresponding information

flow to stabilize x1[n]

and even finding the flows is not trivial. To simplify the situation, in Chapter 3, we will consider dis-

tributed control systems without communication networks. Even without communication networks,

the controllers can “implicitly” communicate through the plant. This implicit communication can

be much harder to understand than explicit communication via dedicated communication networks.

To understand information flows in distributed systems, we will take a unified approach to

control and communication theory. We intuitively believe that when control systems are stabilized,

there should be corresponding information flows. As shown in Figure 1.6, we will discover an

interesting relationship between distributed linear control systems and linear relay communication

networks by considering both as linear systems. We will find an algorithm that relates implicit

information flows in control systems with explicit information flows in communication systems.

Recently, the information theory community discovered a new paradigm of network coding

in understanding information flows in communication networks [1]. In classical communication

networks, relays only route their observed signals, while in the network-coding paradigm, relays

are allowed not only to route but also to process the signals. Moreover, the information theory

community found that there can be a significant gain by allowing such processing [1].

However, this paradigm of processing observations is not a new idea in control theory. All

linear controllers inherently mix their observations. Therefore, we can suspect that there might

fundamental relationships between control and communication theory.

First, we take a system-theoretic approach to network communication problems. Classi-

cally, communication networks are represented by graphs. The flows of graphs are defined as the

amount of commodity that we can transfer through the graph, and the cut-values of graphs are

defined as the number of edges that go through the cut. Then, the famous graph-theoretic mincut-

maxflow theorem [31, 28] reveals that the maximum flow of the graph is equal to the minimum cut of

the graph. Furthermore, it was well-known that the mincut is achievable by a static routing scheme,

which can be efficiently found by the Ford-Fulkerson algorithm.
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However, this graph-theoretic representation of communication networks turns out to be

insufficient to model “wireless” communication networks where the signals can be superposed and

broadcast by nature. Instead, the connections between the nodes in the network need be modeled

by LTI filters. Then, the classical graph-theoretic mincut-maxflow theorem also generalizes to these

LTI communication networks [6]. The flow of LTI networks is the rank of the transfer functions,

and the cut value of LTI networks is the rank of the channel matrix of the cut. In other words,

the information can be measured by the rank of a subspace, which is consonant with the insight of

Chapter 2. Then, the maxflow of LTI networks is still equal to the mincut [6]. However, the existing

proofs [6, 36, 2, 112] heavily depended on the so-called network unfolding idea [1, 6] which converts

general topology networks to layered networks by introducing duplicated nodes over time. As a

result, when we fold the layered network back to the original network, even time-invariant schemes

in the layered networks become time-varing schemes. It was not clear that we can achieve the mincut

of the network even if we restrict the relays to use time-invariant static mix-route schemes.

The difficulty in justifying such a theorem is because the topology of LTI networks can

be arbitrarily complicated and can include cycles. To handle this difficulty, we consider LTI com-

munication networks as linear systems, and adapt the state-space representation idea from control

theory (linear system theory). We find an algorithm that converts an arbitrary LTI network to a

standardized single-hop relay network without changing the time-invariantness of systems. Based on

this algorithm, we prove that there exists a static LTI relay scheme that achieves the mincut of LTI

networks with static LTI channel operations. In fact, this algorithm can be thought of as a “canon-

ical” state-space representation for LTI networks. Just as we can write all LTI control systems in

state-space representation, we can also covert all LTI networks into a standardized single-hop relay

network. Furthermore, for general network communication problems like broadcast and unicast,

it turns out that unwanted messages at receivers can be modeled as secrecy constraints after the

conversion of the networks.

Then, we apply communication theory to understand implicit information flows in dis-

tributed control systems. We consider the stabilizability condition for distributed linear systems

with LTI controllers. Formally, the system can be written as

x[n] = Ax[n] + B1u1[n] + · · ·+ Bvuv[n]

y1[n] = C1x[n]

...

yv[n] = Cvx[n].

Here, ui[n] is (hi ∗ yi)[n] where hi[n] is the causal LTI impulse response of the ith controller and ∗
stands for convolution.

It has been well-known that the stabilizability can be characterized using the concept called

fixed modes [104]. λ is called a fixed mode of system if λ ∈ ∩Kiσ(A +
∑

1≤i≤v BiKiCi) where σ(·)
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is the set of eigenvalues of the matrix. In [104], it was shown that if there exists a unstable fixed

mode, the system is unstabilizable. In [4], an equivalent condition was discovered in a matrix rank

form, which does not involve control design parameters Ki in the characterization. It was proved

that λ is a fixed mode if and only if minV⊆{1,··· ,v} rank

[
A− λI BV

CV c 0

]
< rank(A).

In Chapter 3, we revisit this result and leverage it to reveal the information flow required to

stabilize a system. Figure 1.7a shows a descriptive example of implicit communication to stabilize

the system. As we can see, the state x1[n] is only observable by controller 1 while controllable

by controller 2. Therefore, to stabilize the state x1[n], the controller 1 has to communication to

the controller 2 through the state x2[n]. Figure 1.7b shows the corresponding information flow to

stabilize x1[n].

The source of the information flow can be thought of as x1[n]. Then, the information is

relayed through controller 1 and 2, which are connected by the channel x2[n]. Finally, it arrives at

the destination x1[n]. Thus, the source and destination of information flow is the state to stabilize.

The controllers are the relays of the network. The remaining states can be thought of as the channel.

This answers the basic question we started with: the other states act as information conduits.

Furthermore, in Chapter 3, we will see that the state is stabilizable if and only if the cor-

responding communication networks have enough capacity. In other words, for a given unstable

eigenvalue, the minimum information required to stabilize that eigenvalue is the rank of the corre-

sponding subspaces (the number of Jordan blocks associated with the eigenvalue). Furthermore, we

can construct a relay communication network by considering the remaining states as channels and

the controllers as relays. Then, it can be shown that the states corresponding to the unstable eigen-

value are stabilizable if and only if the mincut of the constructed relay network is larger than the

rank of the unstable subspaces (the number of Jordan blocks). This result justifies the intuition that

to stabilize the control system there has to be a corresponding information flow. More importantly,

the controllers “communicate” with each other via robust network coding [52].

1.3 An approximate solution to the decentralized two-controller

infinite-horizon scalar LQG problem

The linear story definitely establishes that information must flow between controllers in

distributed LTI systems. The remaining question is “How much do information flows affect the

system performance?” To answer this equation, in Chapter 4 and 5, we study optimal control. To

study optimal performance, we must relax LTI controller constraints and allow arbitrarily compli-

cated nonlinear or time-varying controllers. By studying optimal control performance, we expect to

develop a mathematical and analytic way to quantify control information flows, and understand the

impact of “implicit” communication on control performance. This is practically important because
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C1[0] 

C2[1] 
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C1[0] C2[0] 
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Figure 1.8: (a) Witsenhausen’s counterexample, (b) Generalized MIMO Witsenhausen’s counterex-

ample, and (c) infinite-horizon LQG control problem.
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it can help to understand what are the bottlenecks to performance, and the extent to which these

bottlenecks are informational. Then, the use of explicit communication channels might help reach

better performance by bypassing those bottlenecks. Since general problems are too difficult, we

focus on the simplest nontrivial problem which shows the basic issue —– the infinite-horizon LQG

(linear quadratic Gaussian) problem with a scalar plant and two controllers. Formally, the system

is given as follows.

x[n+ 1] = ax[n] + u1[n] + u2[n] + w[n]

y1[n] = x[n] + v1[n]

y2[n] = x[n] + v2[n]

where w[n], v1[n], v2[n] are Gaussian random variables. u1[n], u2[n] must be causal functions of

y1[n], y2[n] respectively. The control objective is minimizing the following long-term average cost.

lim sup
N→∞

1

N

∑

1≤n≤N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

The main inspiration is an interesting relationship between Witsenhausen’s counterexam-

ple [108] and the infinite-horizon LQG problem. Figure 1.8a shows a conceptual diagram of Witsen-

hausen’s counterexample. Witsenhausen’s counterexample is also a LQG (linear quadratic Gaussian)

problem, but with a (very) finite time-horizon. The first controller acts at the first time step, the

second controller acts on the second, and then the system terminates. Thus, the first controller can

embed information about its observation in its control input to signal to the second controller [45].

This control-communication dual role of the control input is the crux of the problem, and Witsen-

hausen’s counterexample has been known as the simplest intractable counterexample in distributed

control [77, 59].

However, in [39] its relationship with a modern communication problem (dirty paper cod-

ing) was revealed. Based on this connection, a nonlinear signaling strategy with theoretical perfor-

mance guarantees was proposed. By adapting large deviation ideas [24] in information theory, [37]

showed that the proposed strategy is approximately optimal.

In Chapter 4 and 5, we will leverage this understanding to infinite-horizon problems. As

we can see in Figure 1.8b, the original Witsenhausen’s counterexample can be generalized to MIMO

Witsenhausen’s counterexamples by extending the time-horizon and introducing more observations

and control inputs. As we can easily see in Figure 1.8c, these MIMO Witsenhausen’s counterexamples

are sub-blocks of the infinite-horizon LQG problem. Therefore, we explore this intuition and find a

set of constant-ratio-optimal strategies.

To make the connection between MIMO-Witsenhausen and infinite-horizon problems rig-

orous, we came up with a simple but powerful idea of geometric slicing of problems, which we believe

to be the proper way of generalizing information-theoretic cutset bounds to dynamic programming

contexts. More importantly, an extensive relationship between wireless communication and decen-

tralized control problems becomes revealed. Conventionally, wireless communication theory divides
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cases into high-SNR(signal-to-noise ratio) and low-SNR [99]. We discover that the control problems

can be also divided into fast-dynamics and slow-dynamics according to the eigenvalues of the system.

The implicit information flow in fast(slow) dynamic systems is parallel to the explicit information

flow in high(low)-SNR communication systems.

In the fast-dynamics case, we relate the problem to a binary deterministic model [6] first

proposed to study information flow in relay communication systems. We conceptualize each bit

level of the scalar state as different subspace. Then, two controllers with different observation noise

levels can be thought of as observing different subspaces. Thus, the information from the scalar

state to controllers can still be measured by the rank of subspaces. The strategy which utilizes the

maximum rank of these information turns out to be approximately optimal. Furthermore, in this

sense, this control strategy can be thought of as a parallel to the maximum d.o.f. strategy in wireless

communication.

In the slow-dynamics case, the maximum-ratio-combining [99] of the observations turns out

to be crucial. Therefore, Kalman filtering of the observations is necessary to achieve constant-ratio

optimality, while implicit communication between the two controllers is not required. In this sense,

this control strategy parallels with the maximum-ratio-combining decoder in wireless communication

which exploits the power gain of the signals.

1.4 Future Research

By studying these three simple problems, we begin to understand the nature of information

flow for control. Control information flow has its own unique features, but also has similarity to

communication information flows. Therefore, current understanding of communication information

flows can help to understand control information flows. Especially, we see a striking parallelism be-

tween information flows in distributed control and wireless communication systems, and we expect

more extensive relationships between control and communication theories will be revealed in future

work. Therefore, it will be worth studying how the concepts and ideas from one theory can be

properly ported to the other. For example, the information-theoretic-secrecy concept [94] in com-

munication has to be properly converted to secure distributed control [16]. The scaling laws in large

wireless communication systems [40] may lead to scaling laws for large distributed control systems.

The interference-alignment idea [14, 63] in wireless communication theory is one of the fundamental

ideas that has to be infused into distributed control theory. Meanwhile, dynamic programming [11]

and delay [85] concepts in control theory also have to be integrated into communication theory. We

strongly believe that by studying such relationships we can eventually come up with a unified theory

for control and communication. Based on this unified theory, we will truly understand the nature

of distributed systems, which will lead to novel and efficient distributed control system designs in

practice.
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Chapter 2

Intermittent Kalman Filtering

2.1 Introduction

Unlike classical control systems where the controller and the plant are closely located or

connected by dedicated wired links, in post-modern systems the controllers and plants can be located

far apart and thus control has to happen over communication channels. In other words, there is an

observer which can only observe the plant but cannot control it. There is a separate actuator which

can only control the plant but cannot observe it. The observer and actuator are connected by a

communication channel. Therefore, to control the plant the observer has to send information about

its observation to the actuator through the communication channel. Understanding the tradeoff be-

tween control performance and communication reliability or finding the optimal controller structures

become the fundamental questions to build such post-modern control systems.

Not only practically, but also philosophically, control-over-communication-channel prob-

lems are important. When we are controlling systems, there is a corresponding life cycle of infor-

mation. In other words, the uncertainty or new information is generated and disturbs the plant.

This information is propagated to the controller as the controller observes the plant. Finally, when

the controller controls the system by removing the uncertainty, the information is dissipated. It

is conceptually very important to understand and quantify these information flows which naturally

occur as we control systems. In control-over-communication-channel systems, all the information for

control has to flow through the communication channel. Therefore, by relating the communication

channels with the control performance, we can measure how much information has to flow to achieve

a certain control performance.

The theoretical study of control-over-communication-channel problems was pioneered by

Baillieul [9] and Tatikonda et al. [97]. They restricted the communication channels to noiseless

rate-limited channels, and asked what the minimum rate of the channel is to stabilize the plant.

They found that the rate of the channel has to be at least the sum of the logarithms of the unstable
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eigenvalues, and indeed it is sufficient. This fact is known as the data-rate theorem. Later, Nair [70]

relaxed the bounded disturbance assumption that they had to Gaussian disturbances, and proved

that the same data-rate theorem holds.

However, an important question was whether we can reduce noisy communication channels

to noiseless channels with the same Shannon capacity, i.e. whether the classical notion of Shannon

capacity is still appropriate when the channel is used for control. In [86], Sahai et al. found the

answer for this question is no. Intuitively, since the system keeps evolving in time, not only the rate

but also the delay of communication is important. Since Shannon capacity ignores the delay issue,

it is insufficient for understanding information flows for control. Thus, they proposed a new notion

of anytime capacity which captures the delay of communication. The stabilizability condition for

noisy communication channels with feedback1 was characterized by anytime capacity.

Since then, researchers have accumulated lots of papers [44, 90, 71, 64, 42, 118, 120] which

consider various generalized and related problems. However, still most of the problems are wide

open, and the intermittent Kalman filtering problem which we will study in this chapter had been

one of them. In [95], Sinopoli et al. considered ‘control over real erasure channels’ which can be

thought as a special case of [86], but with a structural constraint on controller design.

Figure 2.1 shows the system diagram for control-over-real-erasure-channels. The observer

makes observations about the plant, and then uncodedly transmits its observation through the real

erasure channel. The real erasure channel drops the transmitted signal with a certain probability but

otherwise noiselessly transmits the signal. Finally, based on the received signals from the channel,

the controller generates its control inputs to stabilize the system.

The situation that this problem is modeling is that of control over a so-called packet drop

channel. A memoryless observer samples the output of an unstable continuous-time system, quan-

tizes this sample to a sufficient number of bits, binds the resulting bits into a single packet, and

transmits the packet to the controller through a communication system. Due to network congestion

or wireless fading, the transmitted packet may be lost2 with a certain probability and this packet

erasure process is further simplified to be i.i.d. The problem is designed to focus attention on the

delay/reliability effect of losing packets and so the number of bits per packet (capacity) is uncon-

strained. The main problem is finding what is the maximum tolerable erasure probability keeping

the system stable.

The linearity and memorylessness of the observer is at the heart of what Sinopoli et al. are

trying to model. Otherwise, the earlier results of [87] immediately reveal that the critical erasure

probability for stabilizability only depends on the magnitude of the largest eigenvalue of the plant.

However, to achieve the minimal erasure probability shown in [87], the observer and controller design

1By introducing feedback, they reduced the problem to one with nested information structure [109] which is known
to be much easier to solve in decentralized control theory. Especially, when the driving disturbance for the plant has
bounded support, the plant can be used as implicit noiseless feedback channel. [87]

2Such losses need not come from network effects — they could also occur because of sensor occlusion or otherwise
at the sampling time itself. That is why the issue of intermittent observations needs to be studied on its own.
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PLANT 

Observer Controller 

Figure 2.1: Closed-loop system for ‘control over real erasure channels’. Here, the observer just passes

its observation to the channel without any coding.

has to be quite complicated and may not be realistic in practice. Therefore, it is practically and

theoretically important to understand how much the control performance degrades when we impose

linear observer and controller constraints.

In this chapter, we will see that the degradation of stabilizability due to linear constraints

fundamentally comes only from the periodicity of the system. Nonuniform sampling is proposed

as a simple way to force the system to behave aperiodically. Therefore, by using linear controllers

in a junction with nonuniform sampling, we can expect a significant performance gain and indeed

recover the optimal stabilizability condition over all possible controller designs.

Furthermore, by the estimation-control separation principle [55], the closed-loop control

system can be reduced to an equivalent open-loop estimation problem [90]. Figure 2.2 shows the

resulting open-loop estimation system so-called intermittent Kalman filtering [95]. As before, the

sensor uncodedly transmits its observation to the real erasure channel. Then, the estimator tries to

estimate the state based on its received signals. We refer to [90] for a literature review and practical

applications of the problem.

This chapter is organized as follows: First, we formally state the problem in Section 2.2.

Then, we introduce some definitions in Section 2.3. In Section 2.4, we consider intermittent ob-

servability as a connection of stability and observability. From this, we distinguish our approach

to the previous approaches. In Section 2.5, we introduce some intuition for the characterization of

the intermittent observability by using representative examples. In Section 2.6, we formally define

eigenvalue cycles and characterize the intermittent observability. In Section 2.7, we discuss how

nonuniform sampling can break eigenvalue cycles and significantly improve the robustness of the

intermittent Kalman filtering. Finally, Section 2.8 gives the proof of the main results.
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PLANT SENSOR Estimator 

Figure 2.2: System diagram for ‘intermittent Kalman filtering’. This open-loop estimation system

is equivalent to the closed-loop control system of Figure 2.1. Like Figure 2.1, the sensor bypasses its

observation to the channel without any coding.

2.2 Problem Statement

Formally, the intermittent Kalman filtering problem is formulated as follows in discrete

time:

x[n+ 1] = Ax[n] + Bw[n] (2.1)

y[n] = β[n] (Cx[n] + v[n]) . (2.2)

Here n is the non-negative integer-valued time index and the system variables can take on

complex values — i.e. x[n] ∈ Cm,w[n] ∈ Cg,y[n] ∈ Cl,v[n] ∈ Cl. A ∈ Cm×m, B ∈ Cm×g and

C ∈ Cl×m. The underlying randomness comes from the initial state x[0], the persistent driving

disturbances w[n], the observation noises v[n] and the Bernoulli packet-drops β[n]. β[n] = 0 with

probability pe. x[0], w[n] and v[n] are jointly Gaussian.

The objective is to find the best causal estimator x̂[n] of x[n] that minimizes the mean

square error (MMSE) E[(x[n] − x̂[n])†(x[n] − x̂[n])], i.e. x̂[n] = E[x[n]|yn]. We assume that the

statistics of all random variables are known to the estimator. If x[0], w[n] and v[n] do not have zero

mean, the estimator can properly shift its estimation. Thus, without loss of generality, x[0],w[n]

and v[n] are assumed to be zero mean. x[0],w[n] and v[n] are independent and have uniformly

bounded second moments so that there exists a positive σ2 such that

E[x[0]x[0]†] � σ2I (2.3)

E[w[n]w[n]†] � σ2I

E[v[n]v[n]†] � σ2I.

To prevent degeneracy, we also assume that there exists a positive σ′2 such that 3

E[w[n]w[n]†] � σ′2I (2.4)

E[v[n]v[n]†] � σ′2I.

3The second condition on v[n] may seem redundant, and v[n] = 0 is enough since at each time the new disturbance
w[n] is added. However, when v[n] = 0, we can make the following counterexample in which the estimation error

of the state is bounded even if the system matrices (A,C) are not observable: A =

[
2 1
0 2

]
,B =

[
0
1

]
,C =

[
0 1

]
.

Thus, this assumption is usually kept in the analysis of Kalman filtering including [55, p.100].
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Under these assumptions we call (2.1) and (2.2) an intermittent system.

Definition 2.1. The linear system equations (2.1) and (2.2) with the second moment conditions (2.3)

and (2.4) are called an intermittent system (A,B,C), or an intermittent system (A,B,C)

with erasure probability pe when we only want to specify the erasure probability, or an inter-

mittent system (A,B,C, σ, σ′) with erasure probability pe when we specify the upper and lower

bounds on disturbances as well.

We say that an intermittent system is intermittent observable if the MMSE is uniformly

bounded for all time.

Definition 2.2. An intermittent system (A,B,C, σ, σ′) with erasure probability pe is called inter-

mittent observable if there exists a casual estimator x̂[n] of x[n] such that

sup
n∈Z+

E[(x[n]− x̂[n])†(x[n]− x̂[n])] <∞.

Before we discuss truly intermittent cases, let’s consider two extreme cases, when pe = 1

and pe = 0, to get some insight into the problem. When pe = 1, the estimator does not have

any observations. As a result, the system can be intermittent observable if and only if the system

itself is stable. On the other hand, when pe = 0, the estimator has all the observations without

any erasures. Intermittent observability reduces to observability. Thus, intermittent observability

can be understood as a new concept which interpolates two core concepts of linear system theory:

stability and observability.

Moreover, in intermittent systems, we can see the monotonicity of performance with the

erasure probability pe. A process with higher erasure probability can be simulated from a process

with lower erasure probability by randomly dropping the observations. Therefore, it is obvious that

the average estimation error is an increasing function on pe. Especially, if we consider an unstable

but observable system, when pe = 1 the estimation error goes to infinity, and when pe = 0 the

estimation error is bounded. Therefore, between 1 and 0 there must be a threshold on pe when the

estimation error first becomes infinity.

Theorem 2.1 (Theorem 2 of [95]). Given an intermittent system (A,B,C, σ, σ′) with erasure

probability pe, let (A,B) be controllable4, σ <∞, and σ′ > 0. Then, there exists a threshold p?e, such

that for pe < p?e the intermittent system (A,B,C, σ, σ′) with erasure probability pe is intermittent

observable and for pe ≥ p?e the intermittent system (A,B,C, σ, σ′) with erasure probability pe is not

intermittent observable.

Therefore, the characterization of intermittent observability reduces to the characterization

of the critical erasure probability p?e. For characterizing the critical erasure probability, we can

consider it as a generalization of either stability or observability.

4See Definiton 2.3 for controllability.
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In [95], Sinopoli et al. thought of intermittent observability as a generalization of stability.

Based on Lyapunov stability, they could find a lower bound on the critical erasure probability in a

LMI (linear matrix inequality) form. However, this bound is not tight in general and does not give

any insight into the solution. A more intuitive bound can be found in [27].

Theorem 2.2 (Corollary 8.4 of [27]). Given an intermittent system (A,B,C, σ, σ′) with erasure

probability pe, let (A,B) be controllable, σ <∞, σ′ > 0, and (A,C) be observable. Then,

1∏
i |λi|2

≤ p?e ≤
1

|λmax|2
,

where λi are the unstable eigenvalues of A and λmax is the one with the largest magnitude.

Therefore, the critical erasure probability characterization boils down to understanding

where the gap between 1∏
i |λi|2

and 1
|λmax|2 comes from.

In [113], Mo and Sinopoli found two interesting cases that give further insight into this

question. The first is when A is diagonalizable and all eigenvalues of A have distinct magnitudes —

then the critical erasure probability is 1
|λmax|2 just it would be in the formulation of [87]. The second

case is when A =

[
2 0

0 −2

]
and C =

[
1 1

]
— the critical erasure probability is 1∏

i |λi|2
= 1

24 . This

second case showed that the gap is real and requiring packets to be about a scalar observation can

have serious consequences.

To extend these cases and solve the general problem, we will apply insights from observ-

ability and introduce the new concept of an eigenvalue cycle. As a corollary, we show that in the

absence of eigenvalue cycles the critical value becomes 1
|λmax|2 . Furthermore, we show that simply

by introducing nonuniform sampling to the sensor, eigenvalue cycles can be broken and the critical

erasure probability becomes effectively 1
|λmax|2 .

These results can be surprising if we remember that computing random Lyapunov expo-

nents are difficult problems in general [100]. However, the intermittent Kalman filtering problem

turns out to have a special structure which makes the problem tractable. Precisely speaking, as

we will see in Section 2.5.3, appropriate subspaces of the vector state can be separated asymptot-

ically. To justify such separation, we use ideas from information theory (for example, decoding

functions [74] or successive decoding [21]). Therefore, the whole system can in effect be divided into

parallel sub-systems. As we will see in Section 2.5.1, each sub-system can be solved using ideas from

large deviation theory [24].

2.3 Definitions and Notations

Before we start the formal discussion of the problem, we first have to introduce mathemat-

ical definitions and notations.

We will use controllability and observability notions from linear system theory.
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Definition 2.3. For a m×m matrix A and a m× p matrix B, (A,B) is called controllable if

C =
[
B AB · · · Am−1B

]

is full rank, or equivalently
[
λI−A B

]
is full rank for all λ ∈ C. Moreover, we call an eigenvalue

λ of A uncontrollable if
[
λI−A B

]
is rank deficient.

Definition 2.4. For a m×m matrix A and a l ×m matrix C, (A,C) is called observable if

O =




C

CA
...

CAm−1




is full rank, or equivalently

[
λI−A

C

]
is full rank for all λ ∈ C. Moreover, we call an eigenvalue λ

of A unobservable if

[
λI−A

C

]
is rank deficient.

We will use Bernoulli processes and geometric random variables from probability theory.

Definition 2.5. An one-sided discrete-time random process a[n] (n ≥ 0) is called a Bernoulli

random process with probability p if a[n] are i.i.d. random variables with the following probability

mass function (p.m.f.):

{
P(a[n] = 1) = p

P(a[n] = 0) = 1− p

We also call a[n] as a Bernoulli random variable with erasure probability 1−p. A two-sided Bernoulli

random process is defined in the same way except that n comes from the integers.

Definition 2.6. A random variable X ∈ Z+ is called a geometric random variable with probability p

if it has a probability mass function P{X = x} = p(1−p)x for x ≥ 0. We also call X as a geometric

random variable with erasure probability 1− p.

Then, as it is well known, we have the following relationship between Bernoulli random

processes and geometric random variables. Let

X := min{n ∈ Z+ : a[n] = 1 where a[n] is a Bernoulli random variable with probability p}.

Then, X is a geometric random variable with probability p.

We will also use the following basic notions about matrices.

Definition 2.7. Given a matrix A ∈ Cm×m, |A|max is the elementwise max norm of A i.e.

|A|max = max1≤i,j≤m |aij |.
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Definition 2.8. Given a matrix A ∈ Cm×m, dim A denotes m. Given a column vector x1 ∈ Cm×1

and a row vector x2 ∈ C1×m, dim x1 and dim x2 denote m.

Definition 2.9. Given ni × ni matrices Ai for i ∈ {1, 2, · · · ,m}, diag{A1,A2, · · · ,Am} is a

(
∑m
i=1 ni)× (

∑m
i=1 ni) matrix in the form of




A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am




.

We also define modulo operation on numbers.

Definition 2.10. A sequence, a1, a2, · · · , an, is called congruent mod p if ai ≡ aj(mod p) for all

i, j.

Definition 2.11. A sequence, a1, a2, · · · , an, is called pairwise incongruent mod p if ai 6≡ aj(mod p)
for all i 6= j.

Since we will only focus on the scaling behavior, we will use the following definition paral-

leling big O and big Ω notations in complexity theory.

Definition 2.12. Consider two real functions a(t) and b(t) whose common domain is T ⊆ R. We

say a(t) . b(t) for t on T if there exists a positive c such that a(t) ≤ cb(t) for all t ∈ T .

We omit the argument and the domain of the above definition, when they are obvious from

the context and do not cause confusion.

We will also use an abbreviated notation for a sequence of random variables.

Definition 2.13. Given a discrete time random variable a[0], · · · , a[n], we denote a[n1], · · · , a[n2]

as an2
n1

, and a[0], · · · , a[n] as an. Likewise given a continuous time random variable b(t), we define

b(t1 : t2) to be b(t) for t1 ≤ t ≤ t2.

2.4 Intermittent Observability as an Extension of Stability

As we mentioned before, the characterization of the critical erasure probability can be

considered from two different directions — an extension of stability or an extension of observability.

In [95], Sinopoli et al. took the first approach, and attempted to characterize the critical erasure

probability by the Lyapunov stability condition. Let’s first review a property of Schur complements

and Lyapunov stability theorem.

Lemma 2.1 (Schur complements). Let X =

[
A B

B† C

]
be a symmetric matrix and C be invertible.

Then, X � 0 if and only if C � 0 and A−BC−1B† � 0.

Proof. See [12, p. 650].
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Theorem 2.3 (Lyapunov Stability Theorem). Given a linear system (2.1), the following three

conditions are equivalent.

(i) The system is stable.

(ii) ∃M,N � 0 such that

M−AMA† = N.

(iii) ∃M � 0 such that

[
M AM

MA† M

]
� 0.

Proof. The equivalence between (i) and (ii) can be easily found in linear system theory books

including [55, p.30] and [17, Theorem 5.D5]. The equivalence between (ii) and (iii) comes from

Schur complements in Lemma 2.1 by simply choosing A = M, B = AM and C = M.

Before we consider intermittent observability, let’s first characterize the standard observ-

ability condition using Lyapunov stability. The fundamental theorem of observability tells that if

(A,C) is observable, the eigenvalues of the closed loop system A + KC can be placed anywhere

by a proper selection of K. Based on this, we can characterize observability in terms of Lyapunov

stability.

Theorem 2.4. Given a linear system (2.1) and (2.2) with pe = 0, the following four conditions are

equivalent.

(i) All the unstable modes of A are observable.

(ii) ∃K such that A + KC is stable.

(iii) ∃K and M,N � 0 such that

M− (A + KC)M(A + KC)† = N.

(iv) ∃K and M � 0 such that

[
M (A + KC)M

M(A + KC)† M

]
� 0.

Proof. The equivalence of (i) and (ii) is the fundamental theorem of observability [17, Theorem

8.M3]. The equivalence of (ii), (iii) and (iv) follows from Theorem 2.3.
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Unfortunately, this observability characterization based on Lyapunov stability cannot be

generalized for intermittent observability. The main reason is that in intermittent Kalman filtering

the optimal estimator does not converge to a linear time-invariant one. In conventional Kalman

filtering for linear time-invariant systems, it is well-known that the optimal Kalman filter converges

to the linear time-invariant estimator which is known as the Wiener filter [107]. In fact, we can

directly plug in the Wiener filter gain for the matrix K of Theorem 2.4. However, when observations

are erased, the optimal estimator also depends on the erasure pattern and since the erasure pattern

is random and time-varying, the whole system becomes random and time-varying. Therefore, the

optimal estimator is also time-varying and does not converge.

In [95], Sinopoli et al. wrote the optimal time-varying linear estimator in a recursive equa-

tion form. The strictly causal estimator x̂[n] = E[x[n]|yn−1], is given as follows:

x̂[n+ 1] = Ax̂[n]−Kn(y[n]−Cx̂[n]) (2.5)

Here, Kn depends not only on n but also the history of the β[n], and does not converge to a constant

matrix in probability. Therefore, in the intermittent Kalman filtering problem it is not possible to

find a stability-optimal time-invariant gain K in Theorem 2.4.

However, we can still force the estimator to be linear time-invariant, and thereby find a

sufficient condition for intermittent observability using Lyapunov stability ideas. This is the idea that

Sinopoli et al. used to find a lower bound on the critical erasure probability in [95]. By restricting

the filtering gain to be a linear time-invariant matrix K, we get the following sub-optimal estimator

which looks similar to (2.5).

x̂[n+ 1] = Ax̂[n]− β[n]K(y[n]−Cx̂[n]) (2.6)

with x̂[0] = 0. By analyzing this sub-optimal estimator, Sinopoli et al. found the following sufficient

condition for intermittent observability. Here, we further prove that their condition is both necessary

and sufficient for the sub-optimal estimators of (2.6) to have an expected estimation error uniformly

bounded over time.5

Theorem 2.5 (Extension of Theorem 5 of [95]). Given an intermittent system (A,B,C, σ, σ′) with

erasure probability pe, let (A,B) be controllable, σ < ∞, and σ′ > 0. Then, the following three

conditions are equivalent.

(i) The system is intermittently observable by the suboptimal estimator of (2.6) with some K.

(ii) ∃K and M,N � 0 such that

M− peAMA† − (1− pe)(A + KC)M(A + KC)† = N.

5This fact is implicitly shown in Elia’s paper [27].
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(iii) ∃K and M � 0 such that




M
√

1− pe(MA + KC)
√
peMA

√
1− pe(MA + KC)† M 0
√
pe(MA)† 0 M


 � 0.

Proof. By (2.1), (2.2) and (2.6), we can see that the estimation error follows the following dynamics:

x[n+ 1]− x̂[n+ 1] = Ax[n] + Bw[n]− (Ax̂[n]− β[n]K(y[n]−Cx̂[n]))

= Ax[n] + Bw[n]− (Ax̂[n]− β[n]K(Cx[n] + v[n]−Cx̂[n]))

= (A + β[n]KC)(x[n]− x̂[n]) + Bw[n] + β[n]Kv[n]. (2.7)

Denote (x[n] − x̂[n]) as (e[n] and Bw[n] + β[n]Kv[n]) as w′[n]. Then, w′[n] also has a uniformly

bounded variance over time, and (2.7) can be written as

e[n+ 1] = (A + β[n]KC)e[n] + w′[n].

Since e[n] is independent from w′[n], β[n] by causality, the covariance matrix of e[n] follows the

following dynamics:

E[e[0]e†[0]] = E[x[0]x†[0]],

E[e[n+ 1]e†[n+ 1]] = E[(A + β[n]KC)e[n]e†[n](A + β[n]KC)†] + E[w′[n]w′
†
[n]]

= peAE[e[n]e†[n]]A† + (1− pe)(A + KC)E[e[n]e†[n]](A + KC)† + E[w′[n]w′
†
[n]].

(2.8)

Now, we will prove the theorem in three steps.

(1) Condition (i) implies condition (ii).

First of all, by linearity we can prove that the estimation error E[e[n]e†[n]] is an increasing function

of the variance of the underlying random variables.

Thus, if the system is intermittently observable by K, the same system with x[0] = 0, v[n] =

0, E[w[n]w†[n]] = σ′2I is also intermittently observable. So set x[0] = 0, v[n] = 0, E[w[n]w†[n]] =

σ′2I without loss of generality. With these parameters, we have E[e[0]e†[0]] = 0 and E[w′[n]w′
†
[n]] =

σ′2BB†. By the recursive equation in (2.8), we can show that for n ≥ 1, the covariance matrix of

e[n] can be written as

E[e[n]e†[n]] = σ′2BB† +

n∑

k=1

∑

l∈{−1,1}k
∆l∆

†
l .

where

∆l := (
√
peA)

1+l1
2 (
√

1− pe(A + KC))
1−l1

2 · · · (√peA)
1+lk

2 (
√

1− pe(A + KC))
1−lk

2 σ′B.
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Here, li = 1 means the ith observation was erased and li = −1 means that the ith observation was

not erased.

Here, we can notice that E[e[n]e†[n]] are positive semidefinite matrices and increasing in

n. Furthermore, since the system is intermittently observable by condtion (i), E[e[n]e†[n]] has to be

uniformly bounded over time. Therefore,

M̄ := lim
n→∞

E[e[n]e†[n]] = σ′2BB† +

∞∑

k=1

∑

l∈{−1,1}k
∆l∆

†
l (2.9)

must exist even though it involves an infinite sum. Let’s define M and N as follows:

M := σ′2BB† +

m−1∑

k=1

∑

l={−1,1}k
(k + 1)∆l∆

†
l +

∞∑

k′=m

∑

l′={−1,1}k′
m∆l∆

†
l (2.10)

N := σ′2BB† +

m−1∑

k=1

∑

l∈{−1,1}k
∆l∆

†
l (2.11)

where m is the dimension of A as we defined in Section 2.2. By the definitions of M̄ and M, we

can easily see that mM̄ � M. Therefore, M also exists even though it involves an infinite sum.

Furthermore, by the definitions of M and N, we can easily see that

M � σ′2(BB† + peABB†A† + · · ·+ pme AmBB†A†m)

N � σ′2(BB† + peABB†A† + · · ·+ pme AmBB†A†m)

since the terms in L.H.S. are just subsets of the terms in M and N.

Thus, we can see that M � 0, N � 0 since
[
B AB · · · Am−1B

]
is full rank by the

controllability of (A,B) and all terms BB†, · · · , pme AmBB†A†m are positive semidefinite. Finally,

by the definitions and simple matrix algebra, we can verify that M and N satisfy the following

relationship:

M = peAMA† + (1− pe)(A + KC)M(A + KC)† + N. (2.12)

Therefore, M and N satisfy condition (ii).6

(2) Condition (ii) implies condition (i).

Since M and N of condition (ii) are positive definite, we can find a such that a2M � E[x[0]x†[0]]

and a2N � E[w′[n]w′
†
[n]] for all n ∈ Z+. And we can easily see that even if we replace K, M, N

with K, a2M, a2N, condition (ii) still holds.

6Consider a fixed point equation, f(x) = xf(x)+g(x). There exist multiple f(x) and g(x) that satisfy this equation.
For example, (f(x), g(x)) = (1 + x + x2 + · · · , 1), (f(x), g(x)) = (1 + 2x + 2x2 + · · · , 1 + x), · · · , (f(x), g(x)) =
(1 + 2x+ · · ·+ (k− 1)xk−1 + kxk + kxk+1 · · · , 1 + x+ · · ·+ xk) all satisfy the equation. Likewise, there are multiple
matrices that satisfy the fixed point equation of (2.12). For example, we can easily check that M̄ of (2.9) and
N̄ := σ′2BB† satisfy (2.12), i.e. M̄ = peAM̄A† + (1 − pe)(A + KC)(A + KC)† + N̄. However, unlike N, N̄ does
not have to be positive definite. Thus, the choice of M̄, N̄ is not enough to prove the theorem. Here, we choose M,
N as shown in (2.10), (2.11) as another solution for (2.12). In fact, the choice of coefficient in M,N was inspired by
the solutions of f(x) = xf(x) + g(x) shown above.
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We will prove that a2M � E[e[n]e†[n]] for all n ∈ Z+ by induction. Since a2M �
E[x[0]x†[0]] = E[e[0]e†[0]], the claim is true for n = 0. Assume the claim is true for n. Then,

from the definition of a and (2.8),

E[e[n+ 1]e†[n+ 1]] ≺ peA(a2M)A† + (1− pe)(A + KC)(a2M)(A + KC)† + a2N = a2M

where the last equality comes from condition (ii). Therefore, the estimation error is uniformly upper

bounded by a2M when we use the K of condition (ii) as a gain matrix, and so condition (ii) implies

condition (i).

(3) Condition (ii) is equivalent to condition (iii).

Since M−1 � 0, by Schur complements in Lemma 2.1, condition (ii) is equivalent to

[
M− peAMA†

√
1− pe(A + KC)

√
1− pe(A + KC)† M−1

]
� 0.

Since

[
M− peAMA†

√
1− pe(A + KC)

√
1− pe(A + KC)† M−1

]

=

[
M

√
1− pe(A + KC)

√
1− pe(A + KC)† M−1

]
−

[√
peA

0

]
M
[√

peA
† 0

]

and M−1 � 0, we can apply Schur complement again. Thus, condition (ii) is equivalent to




M
√

1− pe(A + KC)
√
peA

√
1− pe(A + KC)† M−1 0
√
peA

† 0 M−1


 � 0.

Since M−1 � 0, this condition is again equivalent to




M−1 0 0

0 I 0

0 0 I







M
√

1− pe(A + KC)
√
peA

√
1− pe(A + KC)† M−1 0
√
peA

† 0 M−1







M−1 0 0

0 I 0

0 0 I




=




M−1
√

1− pe(M−1A + M−1KC)
√
peM

−1A
√

1− pe(M−1A + M−1KC)† M−1 0
√
pe(M

−1A)† 0 M−1


 � 0.

Since M−1 � 0 and K is an arbitrary matrix, by replacing M−1 by M and M−1K by K we get

condition (iii).

As we can expect, the conditions of this theorem reduce to those of stability and those of

observability when pe = 1 and pe = 0 respectively. One can easily observe that condition (ii) of

Theorem 2.5 reduces to condition (ii) of Theorem 2.3 when pe = 1 and condition (iii) of Theorem 2.4
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when pe = 0. Likewise, condition (iii) of Theorem 2.5 reduces to condition (iii) of Theorem 2.3 and

condition (iv) of Theorem 2.4 respectively.

Even though condition (ii) and (iii) of Theorem 2.5 are equivalent, condition (iii) is preferred

since it is given in a LMI (linear matrix inequality) form and convex optimization techniques [12]

are applicable. In fact, in [95] Sinopoli et al. related condition (iii) with quasi-convex problems.

Since we imposed an additional linear time-invariant constraint on the estimator, Theo-

rem 2.5 gives a lower bound on p?e. However, we can conclude that this lower bound is loose in

general.7 Moreover, even for stability, the characterization that the magnitudes of all eigenvalues

are less than 1 is much more intuitive than the LMI condition based on Lyapunov stability. There-

fore, researchers including [27] and [113] were looking for a tight and intuitive characterization of

the critical erasure probability.

2.5 Intermittent observability as an extension of observabil-

ity: Main Intuition

To reach this goal, we borrow insights from a characterization of observability. (A,C) is

observable if and only if for all s ∈ C
[
sI−A

C

]
is full rank.

Moreover, by a similarity transform [17] we can assume that A is in Jordan form8 without loss of

generality. With this additional assumption, the observability condition can be further simplified.

Theorem 2.6 ([17]). Consider a linear system with system matrices (A,C) where A is given in

a Jordan form. For an eigenvalue λ of A, denote Cλ as a matrix whose columns consist of the

columns of C which correspond to the first elements of the Jordan blocks in A associated with λ.

Then, the states associated with λ are observable if and only if the rank of Cλ is equal to the number

of Jordan blocks associated with λ. The whole system is observable if and only if all states associated

with all eigenvalues are observable.

7Numerical computation of the lower bound of Theorem 2.5 is shown in Figure 4 of [95]. For a system with

A =

[
1.25 0

1 1.1

]
and C =

[
1 1

]
. The numerical simulation shows the lower bound is approximately 1

(1.25×1.1)2
=

0.528 · · · , while the exact characterization of Theorem 2.7 tells the critical erasure probability is 1
1.252 = 0.64.

8Throughout the chapter, we will use the Jordan form that induces an upper triangular matrix.
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For example, let

A =




2 1 0 0

0 2 0 0

0 0 2 0

0 0 0 3




C =
[
c1 c2 c3 c4

]
.

Then, C2 =
[
c1 c3

]
and C3 =

[
c4

]
. The eigenvalue 2 is observable if and only if C2 is full rank,

and the eigenvalue 3 is observable if and only if C3 is full rank. The whole system with (A,C) is

observable if and only if both eigenvalues are observable.

This characterization reminds us of a divide-and-conquer approach. First, divide the ob-

servability problem into smaller problems according to the eigenvalues. Then, check whether the

smaller sub-problem for each eigenvalue is observable. Finally, the whole system is observable if and

only if all the sub-problems are observable.

This suggests applying a divide-and-conquer approach for the characterization of intermit-

tent observability. However, before we apply a divide-and-conquer approach, we first have to answer

the following three questions:

(a) What are the minimal irreducible sub-problems?

(b) How can we solve each sub-problem?

(c) How can we combine the answers of the sub-problems?

We will make an exact characterization of intermittent observability by resolving these

questions. The concept of eigenvalue cycles appears naturally as the answer of question (a).

Before we answer these questions, let’s first start from the simplest case, scalar plants. For

simplicity, we will only give hand-waving arguments in this section, and the rigorous justification

will be shown in later sections. The basic idea for the characterization of intermittent observability

is to consider the dynamics reverse in time. For example, consider the following scalar system: for

n ∈ Z+,

{
x[n+ 1] = 2x[n] + w[n]

y[n] = β[n]x[n]
. (2.13)

Here, x[0] = 0, w[n] are i.i.d. zero-mean unit-variance Gaussian, and β[n] is an independent Bernoulli

process with probability 1− pe. Then, we will show that the critical erasure probability p?e = 1
22 .

First, we extend the one-sided random process (2.13) to a two-sided process. Let w[n] = 0

for n ∈ Z−− where Z−− implies negative integers, and β[n] be a two-sided Bernoulli process with

probability 1 − pe. Then, we can see that the new two-sided process is equivalent to the original

process except that x[n] = 0, y[n] = 0 for n ∈ Z−−.

Let n − S be the most recent non-erased observation at time n, i.e. S := min{k ≥ 0 :

β[n − k] = 1}. Since β[n] is a two-sided Bernoulli process, the stopping time S is a geometric
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random variable, i.e. P{S = s} = (1− pe)pes.
(1) Sufficiency: We first prove that pe <

1
22 is sufficient for intermittent observability of

the example. For this, we analyze the performance of a suboptimal estimator x̂[n] = 2Sy[n − S] =

2Sx[n− S]. Then, the estimation error is upper bounded by

E[(x[n]− x̂[n])2] = E[E[(x[n]− x̂[n])2|S]]

= E[E[(2Sx[n− S] + 2S−1w[n− S] + · · ·+ w[n− 1]− 2Sx[n− S])2|S]]

≤ E[22(S−1) + 22(S−2) + · · ·+ 1]

= E[
22S − 1

22 − 1
]

=
1

22 − 1

(( ∞∑

i=0

(1− pe)(pe22)i

)
− 1

)
.

Therefore, the estimation error is uniformly bounded if pe <
1
22 .

(2) Necessity: For necessity, we use the fact that the disturbance w[n− S] is independent

of the non-erased observations present up to the time n. Therefore, the estimation error is lower

bounded by

E[(x[n]− E[x[n]|yn])2] ≥ E[E[(2S−1w[n− S])2|S]]

= E[22(S−1) · 1(n− S ≥ 0)]

=
1

22

(
n∑

i=0

(1− pe)(pe22)i

)

Therefore, if pe ≥ 1
22 the estimation error must diverge to ∞.

(3) Remarks: From the above proof, we can notice that the intermittent observability is

decided by whether pe2
2 is less than 1. Here, 2 is the largest eigenvalue of the system, and pe is the

probability mass function (p.m.f.) tail of S which can be defined as exp lim sups→∞
1
s lnP{S = s}.

Thus, we can think of two potential differences between scalar and vector systems: (i) The maximum

eigenvalue (ii) The p.m.f. tail.

It turns out the latter is true, and the p.m.f. tail is the difference between scalar and vector

systems. The following example shows why and how the p.m.f tail changes in vector systems.

2.5.1 Power Property

The power property answers question (b) of the previous section, “How can we solve each

sub-problem?”. Consider the example of [113].





x[n+ 1] =

[
2 0

0 −2

]
x[n] + w[n]

y[n] = β[n]
[
1 1

]
x[n]
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Like above, we put x[0] = 0, w[n] is 2-dimensional i.i.d. Gaussian vector with mean 0 and variance

I, and β[n] is an independent Bernoulli process with probability 1−pe. We also extend the one-sided

process to a two-sided process in the same way.

We can see the states are 2-dimensional, while the observations are 1-dimensional. There-

fore, unlike scalar systems at least two observations are required to estimate the states. Moreover,

if we write the observability Gramian matrix, we immediately notice cyclic behavior:

C =
[
1 1

]

CA−1 =
[

1
2 − 1

2

]

CA−2 =
[

1
4

1
4

]

CA−3 =
[

1
8 − 1

8

]

...

Notice that C,CA−2,CA−4, · · · are linearly dependent and CA−1,CA−3,CA−5, · · · are linearly

dependent. Therefore, as observed in [113], we need both even and odd time observations to estimate

the states. In this example, we will show that p?e = 1
24 .

(1) Sufficiency: Let pe <
1
24 . From (2.1) and (2.2), we can see that when β[n− k] = 1 the

following equations hold:

x[n] = Akx[n− k] + Ak−1w[n− k] + · · ·+ w[n− 1] (2.14)

y[n− k] = Cx[n− k] + v[n− k]

= CA−kx[n]− (CA−1w[n− k] + · · ·+ CA−kw[n− 1]− v[n− k])︸ ︷︷ ︸
:=v′[n−k]

(2.15)

Here, we can see the variance of v′[n − k] is bounded as E[|v′[n − k]|2] = E[(
[

1
2 − 1

2

]
w[n − 1] +

· · ·+
[

1
2k

1
(−2)k

]
w[n− k])2] ≤ 2

1
4

1− 1
4

= 2
3 .

Now, the stopping time S until we have enough observations to estimate the states becomes

the first time until we get both even and odd time observations, i.e. S := inf{k : 0 ≤ k1 < k2 ≤
k, β[n − k1] = 1, β[n − k2] = 1, k1 6= k2(mod2)}. Here, the p.m.f. of S gets thicker than that of

scalar cases. We can actually prove that the p.m.f. tail of S is exp lim sups→∞
1
s lnP{S = s} = p

1
2
e ,

which we will rigorously justify in Lemma 7.2. Thus, we can find δ, c > 0 such that pe <
1
24 − δ and

P{S = s} ≤ c
(

1
24 − δ

) s
2 for all s ∈ Z+.

Now, we will analyze the performance of a suboptimal estimator which only uses two

observations. Let x̂[n] :=

[
CA−k1

CA−k2

]−1 [
y[n− k1]

y[n− k2]

]
. Here, we can see the matrix inverse exists since

k1 and k2 are even and odd time observations. Let Fβ be the σ-field generated by β[n]. Then,
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k1, k2, S are deterministic variables conditioned on Fβ . The estimation error is upper bounded by

E[|x[n]− x̂[n]|22] = E[E[|x[n]− x̂[n]|22|Fβ ]] = E[E[

∣∣∣∣∣∣

[
CA−k1

CA−k2

]−1 [
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣∣

2

2

|Fβ ]]

≤ E[E[8 ·

∣∣∣∣∣∣

[
CA−k1

CA−k2

]−1
∣∣∣∣∣∣

2

max

·

∣∣∣∣∣

[
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣

2

max

|Fβ ]]

= 8 · E[

∣∣∣∣∣∣

[
2−k1 (−2)−k1

2−k2 (−2)−k2

]−1
∣∣∣∣∣∣

2

max

· E[

∣∣∣∣∣

[
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣

2

max

|Fβ ]]

= 8 · E[

∣∣∣∣∣
1

2 · 2−k1 · (−2)−k2

[
(−2)−k2 −(−2)−k1

−2−k2 2−k1

]∣∣∣∣∣

2

max

· E[

∣∣∣∣∣

[
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣

2

max

|Fβ ]]

= 8 · E[
1

22

(
2−k1

2−k1 · 2−k2

)2

· E[

∣∣∣∣∣

[
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣

2

max

|Fβ ]]

≤ 2 · E[22k2 · E[|v′[n− k1]|2 + |v′[n− k2]|2|Fβ ]]

≤ 8

3
E[22S ] ≤ 8

3

∞∑

s=0

22sc

(
1

24
− δ
) s

2

=
8

3

∞∑

s=0

c(1− 24δ)
s
2 <∞

Therefore, the estimation error is uniformly bounded for pe <
1
24 .

(2) Necessity: We will show that the system is not intermittent observable when pe ≥ 1
24 .

Denote the stopping time S′ to be inf{k ≥ 0 : β[n − k] = 1, k is even}. Then, P{S′ = 0} = 1 − pe,
P{S′ = 1} = 0, P{S′ = 2} = (1− pe)pe, · · · . Thus, the p.m.f. tail of S′, exp lim sups→∞

1
s lnP{S′ =

s}, is p
1
2
e .

The state disturbance w[n − S′] can be decomposed into two orthogonal components,

w[n − S′] =

[
1

1

]
w1[n − S′] +

[
1

−1

]
w2[n − S′] where w1[n − S′] and w2[n − S′] are independent

Gaussian random variables with zero mean and variance 1
2 . From the system equations (2.14),

(2.15) and the definition of S′, we can see that all the observations between time n− S′ and n are

orthogonal to w2[n− S′]. Thus, the estimator does not know anything about w2[n− S′] at time n,

and thus we can lower bound the estimation error as follows.

E[(x[n]− E[x[n]|yn])2] ≥ E[E[|AS′−1

[
1

−1

]
w2[n− S′]|22]|S′]

≥ E[22(S′−1)E[(w2[n− S′])2|S′]] =
1

23
E[22S′ · 1(S′ ≥ n)]

=
1

23

bn2 c∑

i=0

(1− pe)(
√
pe2

2)2i

Thus, if pe ≥ 1
24 the estimation error diverges to ∞.

(3) Remarks: Compared to the scalar case, the p.m.f. tails of both S and S′ in this vector

system thicken to
√
pe. This results in decreasing the critical erasure to 1

24 . The cyclic behavior of
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the observability Gramian matrix, C, CA−1, · · · , causes the thickening of the p.m.f. tails. Thus, to

capture this cyclic behavior of the observability Gramian matrix, we tentatively define an eigenvalue

cycle as follows9: We say that the eigenvalues of A, λ1 and λ2 belong to the same eigenvalue cycle

if λ1

λ2
is a root of unity, i.e.

(
λ1

λ2

)n
= 1 for some n ∈ Z. Moreover, we say that A has no eigenvalue

cycles if all the ratios between the eigenvalues of A are 1 or not roots of unity, which implies A has

no nontrivial eigenvalue cycles.

To generalize this example and find the p.m.f. tail for arbitrary eigenvalue cycles, we use

the idea of large deviations [24] which is equivalent to a union bound for simple cases. The idea goes

as follows.

First, consider test channels that are erasure-type channels which would make the ob-

servability gramian rank-deficient. For this example, these would be the channel that erases every

odd-time observations, the channel that erases every even-time observations and the channel that

erases all observations.10

Next, measure the distance from the true channel to the test channels. In our case, the

true channel is the channel without any restriction and the distance measure between the true and

test channel is the hamming distance. For the test channels considered above, the distance to the

odd-time erasure channel is 1 since we are restricting every one out of two indexes to be erasure.

Likewise, the distance to the even-time erasure channel is 1 and the distance to the all erasure

channel is 2.

Then, the large deviation principle intuitively says that the performance is decided by the

minimum-distance test channel. For the example, the odd-time or even-time erasure channel whose

distances are 1 will govern the performance.

So the effect of the eigenvalue cycle is to thicken the tail of the stopping time until you get

enough observations to estimate the states. Analytically, the effect is equivalent to taking a proper

power to the pe and hence the name “power property”.

2.5.2 Max Combining

This property answers the question (c) i.e. how we go from a single eigenvalue cycle to

multiple eigenvalue cycles. Consider the following example with two eigenvalue cycles:







x1[n+ 1]

x2[n+ 1]

x3[n+ 1]


 =




3 0 0

0 2 0

0 0 −2







x1[n]

x2[n]

x3[n]


+ w[n]

y[n] = β[n]
[
1 1 1

]
x[n]

As before, we let x[0] = 0, w[n] be i.i.d. Gaussian with mean 0 and variance I, and β[n] be an

independent Bernoulli process with probability 1 − pe. We also extend the one-sided process to a

9We will formally define eigenvalue cycles later in Section 2.6.
10In the actual characterization shown in Section 2.6, we will see that the set S′ in (2.18) is a proxy for these test

channels. This minimum distance to the test channels will be denoted as li in (2.18).
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two-sided process. Here, we can see there are two eigenvalue cycles. One eigenvalue cycle is {2,−2}
and the other one is {3}, and these can be considered as two subsystems of the original system.

Then, from the previous arguments, we can see that the p.m.f. tails for these two systems

are different. The p.m.f. tail for the eigenvalue cycle {3} is pe, while the p.m.f. tail for the eigen-

value cycle {2,−2} is thickened to p
1
2
e . Therefore, the question is whether the thickened tail in the

eigenvalue cycle {2,−2} affects {3}. The answer turns out to be “No”, and we can consider the two

subsystems separately. Thus, in this example, the system is intermittent observable if and only if

both subsystems are intermittent observable, i.e. p?e = 1
max{32,22·2} . The main idea to justify this is

so-called successive decoding developed in information theory [21].

(1) Sufficiency: We will prove that pe <
1

max{32,22·2} is sufficient for the intermittent ob-

servability using a successive decoding idea. The idea is simple. We first estimate the state x1[n].

Then, since we have an estimate for x1[n], we can subtract the estimate from the system and reduce

the dimension of the system. The remaining estimation error is considered as noise.

Let S be the stopping time until we receive three observations in the reverse process, i.e.

S := inf{k : 0 ≤ k1 < k2 < k3 ≤ k, β[n− k1] = 1, β[n− k2] = 1, β[n− k3] = 1}. Here, we can prove

that the p.m.f. tail of S is the same as the scalar case. Therefore, exp lim sups→∞ lnP{S = s} = pe,

which we will justify in Lemma 7.2. Since we have the three observations at time n− k1, n− k2 and

n− k3, by the pigeon-hole principle at least two among them have to be congruent mod 2. Assume

that k1 and k2 are both even. Then, by (2.15) we have

y[n− k1] =
[
1 1 1

]



3 0 0

0 2 0

0 0 −2




−k1 


x1[n]

x2[n]

x3[n]


+ v′[n− k1]

=
[
1 1 1

]



3−k1 0 0

0 2−k1 0

0 0 2−k1







x1[n]

x2[n]

x3[n]


+ v′[n− k1]

=
[
1 1

] [3 0

0 2

]−k1 [
x1[n]

x2[n] + x3[n]

]
+ v′[n− k1]

Like in the above section, we can also prove that E[|v′[n− k]|2] ≤ 2
1
4

1− 1
4

+
1
9

1− 1
9

= 19
24 . Here, we can

notice that instantaneously at time n−k1 and n−k2 the system equation behaves like the following

system with no eigenvalue cycles:





[
x1[n+ 1]

x2[n+ 1] + x3[n+ 1]

]
=

[
3 0

0 2

][
x1[n]

x2[n] + x3[n]

]
+

[
w1[n]

w2[n] + w3[n]

]

y[n] = β[n]
[
1 1

] [ x1[n]

x2[n] + x3[n]

]
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Consider the suboptimal estimator x̂[n] =

[
x̂1[n]

x̂2[n] + x̂3[n]

]
=

[
3−k1 2−k1

3−k2 2−k2

]−1 [
y[n− k1]

y[n− k2]

]
. Let Fβ

be the σ-field generated by β[n], and F be the event that k1 and k2 are even. The estimation error

is upper bounded by

E[

∣∣∣∣∣

[
x1[n]

x2[n] + x3[n]

]
− x̂[n]

∣∣∣∣∣

2

2

|Fβ ∩ F ] = E[

∣∣∣∣∣∣

[
3−k1 2−k1

3−k2 2−k2

]−1 [
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣∣

2

2

|Fβ ∩ F ]

≤ 8 ·

∣∣∣∣∣∣

[
3−k1 2−k1

3−k2 2−k2

]−1
∣∣∣∣∣∣

2

max

· E[

∣∣∣∣∣

[
v′[n− k1]

v′[n− k2]

]∣∣∣∣∣

2

max

|Fβ ∩ F ]

= 8 · 19

12
·

∣∣∣∣∣
1

3−k12−k2 − 2−k13−k2

[
2−k2 −2−k1

−3−k2 3−k1

]∣∣∣∣∣

2

max

= 8 · 19

12
·


 2−k1

3−k12−k2

(
1−

(
2
3

)k2−k1
)




2

≤ 8 · 19

12
· 32 · (3k1 · 2k2−k1)2 ≤ 57 · 32k2 ≤ 57 · 32S

Likewise, we can prove the same bound holds even if k1 and k2 are not even. Therefore, the

estimation error is bounded by 57 · 32S . Like the previous section, we can prove that if pe <
1
32 then

E[32S ] <∞. Thus, the expectation of the estimation error for x1[n] is uniformly bounded over time.

Once we estimate x3[n], we can subtract the estimation x̂3[n] from the observation, i.e.

y′[n] := y[n]−β[n]x̂1[n]. Then, the new system with the observation y′[n] behaves like the following

system:




[
x2[n+ 1]

x3[n+ 1]

]
=

[
2 0

0 −2

][
x2[n]

x3[n]

]
+ w[n]

y′[n] = β[n]

([
1 1

] [x2[n]

x3[n]

]
+ (x1[n]− x̂1[n])

)

Since the expectation of the estimation error for x1[n] is uniformly bounded, it can be considered

as a part of the observation noise.11 In the same way as the previous section, we can prove that the

estimation error for x2[n], x3[n] is uniformly bounded if pe <
1

22·2 . Notice that the minimum number

of observations required to estimate the state by observability gramian matrix inversion is 3, the

number of states. However, here we used more observations to apply successive decoding idea.

(2) Necessity: To prove that the example is not intermittent observable if pe ≥ 1
max{32,22·2} ,

we will use a genie argument. If the states x2[n], x3[n] are given to the estimator as side-information,

the remaining system with x1[n] is a scalar system with the eigenvalue 3. We know that if pe ≥ 1
32 ,

11Precisely speaking, the estimation error for x1[n] is a random variable which depends on the channel erasure
process. Therefore, the rigorous proof of Section 2.8.3 has more steps to justify this argument.
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x1[n] is not intermittent observable. We can also give x1[n] as side-information to conclude that

pe ≥ 1
22·2 is a necessary condition for intermittent observability.

(3) Remarks: In summary, we can solve problems with multiple eigenvalue cycles one by

one without worrying about the existence of the other eigenvalue cycles. In other words, at each

step we estimate the eigenvalue cycle associated with the largest eigenvalue. After the estimation,

the eigenvalue cycle can be subtracted from the system except uniformly bounded estimation error.

Then, we can simply repeat the steps for the remaining system. This procedure of successively

solving and subtracting the unknowns is called successive decoding in information theory, and used

as a decoding procedure for the multiple-access channel [21].

Therefore, we can conclude that the intermittent observability for a multiple eigenvalue-

cycle system is bottlenecked by the hardest-to-estimate eigenvalue cycle, which manifests as the max

operation in the critical erasure probability calculation.

2.5.3 Separability of Eigenvalue Cycles

The remaining question is what are the minimal irreducible sub-problems, whose answer

can be expected to be eigenvalue cycles from the discussion up to now. In other words, we will

understand general systems with multiple eigenvalue cycles by dividing into sub-systems with a

single eigenvalue cycle. In the max-combining property, we already saw an example with multiple

eigenvalue cycles. In the example, we first reduce the problem with multiple eigenvalue cycles to the

problem with no eigenvalue cycles by sub-sampling plants. For example, in Section 2.5.2 we already

saw that by sub-sampling (by 2), the system with an eigenvalue cycle (period 2) becomes a system

with no eigenvalue cycles.

Thus, the question reduces to the fact that for systems with no eigenvalue cycles the critical

erasure probability is 1
|λmax|2 , which will be shown in Corollary 2.1. To intuitively understand why

this is true, we will consider three cases depending on the structure of A.

The first case is when A is a diagonal matrix, and the magnitudes of its eigenvalues are

distinct. In fact, this case is already proved in [113]. Let’s consider a descriptive example when

A =

[
3 0

0 2

]
, C =

[
1 1

]
. Then, the observability gramian of the system becomes

[
CAn1

CAn2

]
=

[
3n1 2n1

3n2 2n2

]
. To prove that the critical erasure probability is given as 1

|λmax|2 = 1
32 , it is enough to

prove that the determinant of the observability gramian is large enough for almost all distinct n1

and n2. To justify this, we can use the fact that the ratio of the elements, ( 3
2 )n, is an exponentially

increasing function.

The second case is when A is a diagonal matrix, and the eigenvalues are distinct but

have the same magnitude. Let’s consider the system with A =

[
ej 0

0 ej
√

2

]
and C =

[
1 1

]
. The
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observability gramian is given as

[
CAn1

CAn2

]
=

[
ejn1 ej

√
2n1

ejn2 ej
√

2n2

]
, and like above it is enough to show

that the determinant of this observability gramian is large enough for almost all distinct n1, n2.

Here, the arguments from [113] cannot work. For this, we instead used Weyl’s criterion [54] which

tells us that each element (ejn, ej
√

2n) behaves like a random variable (ejθ1 , ejθ2) where θ1 and θ2 are

independent random variables uniformly distributed on [0, 2π]. In fact, the effect of the hypothetical

random variables (ejθ1 , ejθ2) is quite similar to the actually randomly-dithered nonuniform sampling

discussed in Section 2.7.

The last case is when A is a Jordan block matrix. Let’s consider the system with A =[
2 1

0 2

]
and C =

[
1 0

]
. The observability gramian is given as

[
CAn1

CAn2

]
=

[
2n1 n12n1

2n2 n22n2

]
, and

we have to show that the determinant of this observability gramian is large enough for almost all

distinct n1, n2. Unlike the above cases, this example has polynomial terms in n1, n2. Exploiting

this fact, we can reduce the problem to the fact that a polynomial function on n becomes zero only

on a measure zero set.

By combining the insights from these three examples, we can prove that for a general

matrix A with no eigenvalue cycles, the critical erasure probability is given as 1
|λmax|2 .

2.6 Intermittent Observability Characterization

Based on the intuition of the previous section, the intermittent observability condition can

be characterized. We begin with the formal definition of a cycle.

Definition 2.14. A multiset (a set that allows repetitions of its elements) {a1, a2, · · · , al} is called

a cycle with length l and period p if
(
ai
aj

)p
= 1 for all i, j ∈ {1, 2, · · · , l} and some p ∈ N. Following

convention, p is denoted12 as

p := min

{
n ∈ N :

(
ai
aj

)n
= 1,∀i, j ∈ {1, 2, · · · , l}

}
.

For example, {a} is a cycle with length 1 and period 1 by itself. {ejω, ej(ω+ 2π
6 )} is a cycle

with length 2 and period 6. {ej , ej
√

2} and {1, 2} are not cycles. One trivially necessary condition

for a1, a2 to belong to the same cycle is |a1| = |a2|. It can be also shown that cycles are closed under

overlapping unions, meaning that if {a1, a2} and {a2, a3} are cycles, {a1, a2, a3} is also a cycle.

Now, we can define an eigenvalue cycle. It is well-known in linear system theory [17] that

by properly changing coordinates, any linear system equations (2.1) can be written in an equivalent

form with a Jordan matrix A. Moreover, even though the MMSE value can be changed by a

coordinate change, the condition for boundedness (stabilizability) remains the same. Rigorously, for

any system matrix A, there exists an invertible matrix U and an upper-triangular Jordan matrix

12We use 0
0

= 1, 1
0

=∞, 1∞ =∞ and 1
∞ = 0.
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A′ such that A = UA′U−1. We also define B′ := UB and C′ := CU. Then, the matrix A′ and C′

can be written as the following form:

A′ = diag{A1,1,A1,2, · · · ,Aµ,νµ}

C′ =
[
C1,1 C1,2 · · · Cµ,νµ

]

where

Ai,j is a Jordan block with an eigenvalue λi,j

{λi,1, · · · , λi,νi} is a cycle with length νi and period pi

For i 6= i′, {λi,j , λi′,j′} is not a cycle

Ci,j is a l × dim Ai,j complex matrix. (2.16)

Since cycles are closed under overlapping unions, the eigenvalues of A can be uniquely partitioned

into maximal cycles, {λi,1, · · · , λi,νi}. We call these cycles eigenvalue cycles and we say A has no

eigenvalue cycle if all of its eigenvalue cycles are period 1.

Define

Ai = diag{λi,1, · · · , λi,νi}

Ci =
[
(Ci,1)1 · · · (Ci,νi)1

]

where (Ci,j)1 is the first column of Ci,j. (2.17)

In other words, we are dividing the original problem to sub-problems according to eigenvalue cycles.

Let li be the minimum cardinality among the sets S′ ⊆ {0, 1, · · · , pi − 1} whose resulting

S := {0, 1, · · · , pi − 1} \ S′ = {s1, s2, · · · , s|S|} makes




CiAi
s1

CiAi
s2

...

CiAi
s|S|




(2.18)

be rank deficient, i.e. the rank is strictly less than νi. Here, pi and li will be used for the power

property. li represents how many observations have to be erased out of pi time steps to make the

observability Gramian matrix rank deficient. This corresponds to the critical error event in large

deviation theory.

Now, we can apply the max-combination property to characterize intermittent observability.

Here is the main theorem of the chapter.

Theorem 2.7. Given an intermittent system (A,B,C, σ, σ′) with probability of erasure pe, let

σ <∞, σ′ > 0, and (A,B) be controllable. Then, the intermittent system is intermittent observable
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if and only if

pe <
1

max
1≤i≤µ

|λi,1|2
pi
li

.

or equivalently max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1.

Proof. See Section 2.8.3 for sufficiency, and Section 2.8.4 for necessity.

Here, we can notice that there is no assumption about stability or observability of the

system. Let’s first do a validity test of the theorem by trying stable modes and unobservable modes.

If |λi,1| < 1, 1

|λi,1|
2
pi
li

> 1. Therefore, the stable modes do not contribute to the characterization of

the critical erasure probability. If (Ai,Ci) are unobservable, li = 0. So, 1

|λi,1|2
pi
0

= 0 if |λi,1| ≥ 1 and

1

|λi,1|2
pi
0

= ∞ if |λi,1| < 1. Therefore, if the unobservable modes are stable they do not affect the

intermittent observability of the system and if they are not the system is not intermittent observable

even if pe = 0.

Even though in general li does not admit a closed form, it is computable for special cases.

Corollary 2.1. Given an intermittent system (A,B,C, σ, σ′) with probability of erasure pe, let

σ <∞, σ′ > 0, and (A,B) be controllable. We further assume that (A,C) is observable and A has

no eigenvalue cycles (i.e.
(
λi
λj

)n
6= 1 for all λi 6= λj and n ∈ N). Then, the intermittent system is

intermittent observable if and only if pe <
1

|λmax|2 where λmax is the largest magnitude eigenvalue

of A.

Proof. Since A has no eigenvalue cycles, pi equal to 1 for all i and Ai are scalars. Moreover, by the

observability condition and Theorem 2.6, Ci is full-rank. Thus, li = 1 for all i and by Theorem 2.7

the critical erasure probability is 1
maxi |λi,1|2 = 1

|λmax|2 .

For a more precise understanding of the critical erasure probability, we will focus on the

case of a row vector C — i.e. single-output systems. Heuristically, a row vector C is the worst

among C matrices since a vector observation is clearly better than a scalar observation.

Furthermore, we will also restrict the periods of the all eigenvalue cycles of A to be primes13.

The technical reason for this restriction is that prime periods give us a useful invariance property

of the sub-eigenvalue cycles. Let {λ1, λ2, · · · , λl} be an eigenvalue cycle with prime period p. Then,

all subsets of {λ1, λ2, · · · , λl} with distinct elements are eigenvalue cycles with the same period p.

This invariance property need not hold for eigenvalue cycles with composite periods as we will see

by example later.

Corollary 2.2. Given an intermittent system (A,B,C, σ, σ′) with probability of erasure pe, let

σ <∞, σ′ > 0, and (A,B) be controllable. We further assume that (A,C) is observable, C is a row

13For convenience, we include 1 as a prime number here.
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vector, and A has only prime-period eigenvalue cycles of length νi. Then, the intermittent system

is intermittent observable if and only if pe <
1

max
1≤i≤µ

|λi,1|
2pi

pi−νi+1

.

Proof. First, we introduce the following fact regarding Vandermonde matrix determinants [82]: Let

p be a prime, a1, · · · , an be pairwise incongruent in mod p and b1, · · · , bn be pairwise incongruent

in mod p. Then,



ej2π
a1b1
p ej2π

a1b2
p · · · ej2π

a1bn
p

ej2π
a2b1
p ej2π

a2b2
p · · · ej2π

a2bn
p

...
...

. . .
...

ej2π
anb1
p ej2π

anb2
p · · · ej2π

anbn
p




is full rank. [82]

Furthermore, since (A,C) is observable and C is a row vector, by Theorem 2.6, λi,j are dis-

tinct and (Ci,j)1 are not zeros. Therefore, let λi,j = |λi|ej2π
qi,j
pi where qi,1, · · · , qi,νi are incongruent

in mod pi and pi are primes.

Now, we will evaluate the critical erasure probability shown in Theorem 2.7. For this

system, (2.18) can be written as




CiAi
s1

...

CiAi
s|S|


 =




λs1i,1 · · · λs1i,νi
...

. . .
...

λ
s|S|
i,1 · · · λ

s|S|
i,νi







(Ci,1)1 · · · 0
...

. . .
...

0 · · · (Ci,νi)1




=




|λi|s1 · · · 0
...

. . .
...

0 · · · |λi|s|S|







e
j2π

qi,1
pi

s1 · · · e
j2π

qi,νi
pi

s1

...
. . .

...

e
j2π

qi,1
pi

s|S| · · · e
j2π

qi,νi
pi

s|S|







(Ci,1)1 · · · 0
...

. . .
...

0 · · · (Ci,νi)1




Since λi and Ci,j1 are non-zeros, the rank of




CiAi
s1

...

CiAi
s|S|


 is equal to the rank of




e
j2π

qi,1
pi

s1 · · · e
j2π

qi,νi
pi

s1

...
. . .

...

e
j2π

qi,1
pi

s|S| · · · e
j2π

qi,νi
pi

s|S|


 .

Furthermore, since qi,1, · · · , qi,ν1
are incongruent in mod pi and s1, · · · , s|S| are also in-

congruent in mod pi, by the property of the Vandermonde matrix discussed above, the rank of the

observability gramian is greater or equal to νi if and only if |S| ≥ νi.
Therefore, li of (2.18) is pi − νi + 1, and the corollary follows from Theorem 2.7.

One may wonder why we could not get a simple answer in Theorem 2.7 unlike Corollary 2.2.

To understand this, consider two potential extensions of Corollary 2.2:
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(1) Eigenvalue cycles with periods that are composite numbers:

Consider A =




2 0 0

0 2ej
2π
16 0

0 0 2ej
2π
16 9


 and C =

[
1 1 1

]
. The eigenvalue cycle has length 3 and

period 16. If we naively apply the formula of Corollary 2.2 then we would get a critical value

1

2
2· 16

16−3+1
= 1

2
16
7

. However, if we consider the sub-eigenvalue cycle {2ej 2π
16 , 2ej

2π
16 9}, the length is 2

and the period is 2. The formula of Corollary 2.2 gives 1

2
2· 2

2−2+1
= 1

24 as a critical value, which gives

a tighter condition than the previous one. In fact, the latter value is the correct critical erasure

probability. Because the period invariant property does not hold for a composite number cycle, the

longest cycle does not necessarily give the right critical probability.

(2) A general matrix C, multiple-output systems: If we have a vector observation, an

eigenvalue cycle can be divided into smaller cycles. As an extreme case, when C is an identity

matrix every eigenvalue cycle is divided into trivial cycles with length 1 and the critical erasure

probability becomes 1
|λmax|2 as observed in [95]. Consider now A =




2 0 0 0

0 2ej
2π
5 0 0

0 0 2ej
2π
5 2 0

0 0 0 2ej
2π
5 3




and C =

[
1 2 3 4

0 0 0 δ

]
. The eigenvalue cycle {2, 2ej 2π

5 , 2ej
2π
5 2, 2ej

2π
5 3} of A has length 4 and period

5. However, if δ 6= 0, by elementary row operations C can be converted to

[
1 2 3 0

0 0 0 1

]
. Thus, the

eigenvalue cycle is divided into two sub-cycles, {2, 2e 2π
5 , 2e

2π
5 2} and {2e 2π

5 3}. The longer cycle with

length 3 would dominate and the critical erasure probability would be 1

2
2· 5

5−3+1
= 1

2
10
3

. Meanwhile,

if δ = 0, the second row of C would be ignorable. Thus, the eigenvalue cycle would not be divided

and the critical erasure probability would be 1

2
2· 5

5−4+1
= 1

2
10
2

.

In this example, we can see that the critical erasure probability depends on whether δ is

equal to 0 or not, which is related to the rank of C. Thus, it is inevitable to have a rank condition

of some sort in the characterization of the critical erasure probability.

2.6.1 Extension to Intermittent Kalman Filtering with Parallel Channels

The concept of eigenvalue cycles and the divide-and-conquer approach can be also applied

to extensions and variations of the intermittent Kalman filtering.

Let’s consider intermittent Kalman filtering with parallel erasure channels as introduced
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in [33].

x[n+ 1] = Ax[n] + Bw[n]

y1[n] = β1[n](C1x[n] + v1[n])

...

yd[n] = βd[n](Cdx[n] + vd[n])

Here n is the non-negative integer-valued time index, and x[n] ∈ Cm, w[n] ∈ Cg, yi[n] ∈ Cli ,
vi[n] ∈ Cli , A ∈ Cm×m, B ∈ Cm×g, Ci ∈ Cli×m. The underlying randomness comes from x[0],

w[n], vi[n] and βi[n]. x[0], w[n] and vi[n] are independent Gaussian vectors with zero mean, and

there exist positive σ2 and σ′2 such that

E[x[0]x[0]†] � σ2I

E[w[n]w[n]†] � σ2I

E[vi[n]vi[n]†] � σ2I

E[w[n]w[n]†] � σ′2I

E[vi[n]vi[n]†] � σ′2I.

βi[n] are independent Bernoulli random processes with erasure probabilities pe,i.

We call this system as an intermittent system (A,B,Ci) with erasure probabilities pe,i.

Since the observations go through independent parallel erasure channels, we can expect

diversity gain [99], i.e. even though the observations from some channels are lost, we can still

estimate the state based on other successfully transmitted observations. At the first glance, this

extension may seem much harder than the original problem since we have to characterize the whole

region (pe,1, · · · , pe,d) rather than a single critical erasure value. However, a simple extension of

Theorem 2.7 turns out to be enough to characterize this critical erasure probability region. As in

Section 2.6, let A = UA′U−1 where U is an invertible matrix and A′ is an upper-triangular Jordan

matrix. We also define B′ := UB and C′i := CiU.

Then, we can make the following generalized definitions of (2.16), (2.17), (2.18) for A′ and

C′i.

A′ = diag{A1,1,A1,2, · · · ,Aµ,νµ}

C′i =
[
C1,1,i C1,2,i · · · Cµ,νµ,i

]

where

Ai,j is a Jordan block matrix with an eigenvalue λi,j

{λi,1, · · · , λi,νi} is a cycle with length νi and period pi

For i 6= i′, {λi,j , λi′,j′} is not a cycle

Ci,j,k is a lk × dim Ai,j matrix.



43

Denote

Ai = diag{λi,1, · · · , λi,νi}

Ci,j =
[
(Ci,1,j)1, · · · , (Ci,νi,j)1

]

where (Ci,j,k)1 is the first column of Ci,j,k.

Let (li,1, li,2, · · · , li,d) be the cardinality vector of the sets S′1, S
′
2, · · · , S′d such that Sj := {0, 1, · · · , pi−

1} \ S′j = {sj,1, sj,2, · · · , sj,|Sj |} and




Ci,1Ai
s1,1

...

Ci,1Ai
s1,|S1|

Ci,2Ai
s2,1

...

Ci,dAi
sd,|Sd|




is rank deficient, i.e. has rank strictly less than νi. Denote Li as a set of all such vectors.

Then, intermittent observability with parallel channels is characterized as follows.

Proposition 2.1. Given an intermittent system (A,B,Ci, σ, σ
′) with probabilities of erasures (pe,1, · · · , pe,d),

let σ <∞, σ′ > 0, and (A,B) be controllable. Then, the intermittent system is intermittent observ-

able if and only if

max
1≤i≤µ

max
(li,1,li,2,··· ,li,d)∈Li


 ∏

1≤j≤d

p
li,j
pi
e,j


 |λi,1|2 < 1.

We omit the proof of the proposition, since it is similar to that of Theorem 2.7.

Compared to Theorem 2.7, the max-combination and separability principle remain the

same, but the test channels in the power property become more complicated. Here, (S′1, · · · , S′d)
represents the test channels such that when they are erased, the observability Gramian becomes

rank-deficient. (li,1, · · · , li,d) represents the distance vector to these test channels.

2.7 Intermittent Kalman Filtering with Nonuniform Sam-

pling

In the previous section, we proved that eigenvalue cycles are the only factor that prevents

us from having the critical erasure probability be 1
|λmax|2 . Based on this understanding, we can look

for a simple way to avoid this troublesome phenomenon. Here, we propose nonuniform sampling as

a simple way of breaking the eigenvalue cycles and achieving the critical value 1
|λmax|2 .
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As an intuitive example, consider A =

[
1 0

0 −1

]
. Then, A =

[
1 0

0 −1

]
,A2 =

[
1 0

0 1

]
,A3 =

[
1 0

0 −1

]
,A4 =

[
1 0

0 1

]
, · · · . What the eigenvalue cycle is capturing is that half of A,A2,A3, · · ·

are identical. Therefore, the question is how we can make every matrix in A,A2,A3, · · · distinct. To

simplify the question, consider the sequence of −1, 1,−1, 1, · · · which corresponds to (2, 2) elements

of A,A2,A3, · · · .
Rewrite this sequence −1, 1,−1, 1, · · · as (ejπ)1, (ejπ)2, (ejπ)3, (ejπ)4, · · · and introduce a

jitter ti to each sampling time. The resulting sequence becomes (ejπ)1+t1 , (ejπ)2+t2 , (ejπ)3+t3 , (ejπ)4+t4 , · · ·
and if tis are uniformly distributed i.i.d. random variables on [0, T ] each element in the sequence is

distinct almost surely as long as T > 0.

Operationally, this idea can be implemented as follows: at design-time, the sensor and the

estimator agree on the nonuniform sampling pattern which is a realization of i.i.d. random variables

whose distribution is uniform on [0, T ] (T > 0). Whenever the sensor samples the system, it jitters

its sampling time according to this nonuniform pattern. Knowing the sampling time jitter, the

sampled continuous-time system looks like a discrete time-varying system to the estimator. The joint

Gaussianity between the observation and the state is preserved, and furthermore, Kalman filters are

optimal even for time-varying systems! This intermittent Kalman filtering problem with nonuniform

samples has the critical erasure probability 1
|λmax|2 almost surely. Therefore, an eigenvalue cycle is

breakable by nonuniform sampling.

One may be bothered by the probabilistic argument on the nonuniform sampling pattern.

However, this probabilistic proof is an indirect argument for the existence of an appropriate deter-

ministic nonuniform sampling pattern, which is similar to how the existence of capacity-achieving

codes is proved in information theory [93].

To write the scheme formally, consider a continuous-time dynamic system:

dxc(t) = Acxc(t)dt+ BcdWc(t) (2.19)

yc(t) = Ccxc(t) + Dc
dVc(t)

dt
. (2.20)

Here t is the non-negative real-valued time index. Wc(t) and Vc(t) are independent g and l-

dimension standard Wiener processes respectively, i.e. for a, b ≥ 0, Wc(a+b)−Wc(b) is distributed

as N (0, aI) and Vc(a + b) − Vc(b) is also distributed as N (0, aI). Ac ∈ Cm×m, Bc ∈ Cm×g,
Cc ∈ Cl×m, and Dc ∈ Cl×l where Dc is invertible. Thus, x[n] ∈ Cm and y[n] ∈ Cl. For convenience,

we assume x[0] = 0 but the results of this chapter hold for any x[0] with finite variance. Throughout

this chapter, we use the Ito’s integral [32, p.80] for stochastic calculus.

The process of (2.19) is known as Ornstein-Uhlenbeck process [32, p.109] whose solution is
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xc(t) = eActxc(0) +
∫ t

0
eAc(t−t′)BcdWc(t′). Therefore, for t1 ≤ t2 we have

xc(t2) = eAct2xc(0) +

∫ t2

0

eAc(t2−t′)BcdWc(t′) (2.21)

= eAc(t2−t1)

(
eAct1xc(0) +

∫ t2

0

eAc(t1−t′)BcdWc(t′)

)

= eAc(t2−t1)

(
eAct1xc(0) +

∫ t1

0

eAc(t1−t′)BcdWc(t′) +

∫ t2

t1

eAc(t1−t′)BcdWc(t′)

)

= eAc(t2−t1)

(
xc(t1) +

∫ t2

t1

eAc(t1−t′)BcdWc(t′)

)

which can be rewritten as

xc(t1) = eAc(t1−t2)xc(t2)−
∫ t2

t1

eAc(t1−t′)BcdWc(t′). (2.22)

The point of doing this is to understand the values of the states during sampling intervals in terms

of the states at the end of the interval.

Let’s say we want to sample the system with a sampling interval I (I > 0). Conventional

samplers uses integration filters to sample, i.e. in the uniform sampling case, the nth sample y[n]

corresponds to the integration of yc(t) for (n− 1)I ≤ t < nI:

y[n] =

∫ nI

(n−1)I

yc(t)dt.

Nonuniform sampling can be thought of in two ways with respect to sampler’s integration

filters: (1) The starting times of the integrations are uniform but the sampling intervals are non-

uniform. (2) The sampling intervals are uniform, but the starting times of the integrations are

non-uniform. Since the analysis and performance is similar in both cases, we will focus on the latter

case. To take the nth sample of the system, the non-uniform sampler takes the integration of yc(t)
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for (n− 1)I − tn ≤ t < nI − tn:

yo[n] =

∫ nI−tn

(n−1)I−tn
yc(t)dt

=

∫ nI−tn

(n−1)I−tn
Ccxc(t)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (2.23)

=

∫ nI−tn

(n−1)I−tn
Cc

(
eAc(t−(nI−tn))xc(nI − tn)−

∫ nI−tn

t

eAc(t−t′)BcdWc(t′)

)
dt

+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (2.24)

=

(∫ nI−tn

(n−1)I−tn
Cce

Ac(t−(nI−tn))dt

)
xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t)

=

(∫ I

0

Cce
Ac(t−I)dt

)

︸ ︷︷ ︸
:=C

xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t)

︸ ︷︷ ︸
:=v[n]

(2.25)

Here (2.23) follows from (2.20), and (2.24) follows from (2.22). Since yo[n] is transmitted over

the erasure channel, the intermittent system (Ac,Bc,C) with nonuniform samples and erasure

probability pe has the following system equation:

dxc(t) = Acxc(t)dt+ BcdWc(t) (2.26)

y[n] = β[n](Cxc(nI − tn) + v[n]) (2.27)

where y[n] ∈ Cl and β[n] is an independent Bernoulli random process with erasure probability pe.

The variance of v[n] is uniformly bounded since the integration interval is bounded, but v[n] can be

correlated since the integration intervals could overlap. Since C is a function of Cc, the observability

of (Ac,Cc) does not necessarily imply the observability of (Ac,C) while the observability of (Ac,C)

always implies the observability of (Ac,Cc).

Figure 2.3 shows the system diagram for intermittent Kalman filtering with nonuniform

sampling. The nonuniform sampler samples the plant according to the nonuniform sampling pattern

tn and generates observations yo[n]. The observation is transmitted through the real erasure channel

without any coding. Then, the estimator tries to estimate the state xc(t) based on its received signals

yn and the nonuniform sampling pattern tn.

As before, the intermittent system (Ac,Bc,C) with nonuniform samples is called inter-

mittent observable if there exists a causal estimator x̂(t) of x(t) based on y[b tI c], · · · ,y[0] such
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PLANT Nonuniform Sampling 
SENSOR 

Estimator 

Shared Nonuniform Sampling Pattern tn 

Figure 2.3: System diagram for ‘intermittent Kalman filtering with nonuniform sampling’. The

sensor samples the plant according to the nonuniform sampling pattern tn, and sends the observation

through the real erasure channel without any coding. The estimator tries to estimate the state based

on its received signals and the nonuniform sampling pattern tn.

that

sup
t∈R+

E[(x(t)− x̂(t))†(x(t)− x̂(t))] <∞.

Intermittent observability with nonuniform samples is characterized by the following theorem.

Theorem 2.8. Let tn be i.i.d. random variables uniformly distributed on [0, T ] (T > 0), and

(Ac,Bc) be controllable. When (Ac,C) has unobservable and unstable eigenvalues — i.e. ∃λ ∈ C+

such that

[
λI−Ac

C

]
is rank deficient —, the intermittent system (Ac,Bc,C) with nonuniform

samples is not intermittent observable for all pe. Otherwise, the intermittent system (Ac,Bc,C)

with nonuniform samples is intermittent observable if and only if pe <
1

|e2λmaxI | . Here λmax is the

eigenvalue of Ac with the largest real part.

Proof. See Section 2.8.1 for sufficiency, and Section 2.8.2 for necessity.

Since exp ((eigenvalue of Ac)I) corresponds to the eigenvalue of the sampled discrete time

system, the critical value of Theorem 2.8 is equivalent to that of Corollary 2.1. The nonuniform

sampling allows us to no longer care if eigenvalue cycles could exist for the original continuous-time

system under uniform sampling.

Nonuniform sampling is the right way of breaking eigenvalue cycles from a practical point

of view. The critical erasure probability of 1
|λmax|2 can thus be achieved not only by using the

computationally challenging estimation-before-packetization strategy of [87], but also by the simple

memoryless approach of dithered sampling before packetization. And so, even if the sensors were

themselves distributed, the critical erasure probability with nonuniform sampling is still critical

value optimal in a sense that they can achieve the same critical erasure probability as sensors with

causal or noncausal information about the erasure pattern and with unbounded complexity.
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2.7.1 Extensions of Intermittent Kalman Filtering with Nonuniform Sam-

pling

In this section, we discuss variations and extensions of intermittent Kalman filtering with

nonuniform samples. Since the proofs of the results shown in this section are similar to that of

Theorem 2.8, we only present the results without proofs.

General Distribution on tn

First, we relax the condition on the distribution of tn of Theorem 2.8. There, we assume

that tn are identically and uniformly distributed. However, they do not have to be identical or

uniform.

Proposition 2.2. Assume that t0, t1, · · · are independent and there exist a, c > 0 such that P{|tn| ≥
a} = 0 and P{tn ∈ B} ≤ c|B|L for all n ∈ Z+ and B ∈ B, where B is Borel σ-algebra and | · |L is

Lebesgue measure. Then, Theorem 2.8 still holds, i.e. if (Ac,C) has no unobservable and unstable

eigenvalues, the intermittent system with nonuniform samples is intermittent observable if and only

if pe <
1

|e2λmaxI | .

For the proof of the proposition, we can repeat the proof steps of Theorem 2.8 using an

improper distribution µ such that µ(A) = c|A ∩ [−a, a]|L.

Deterministic Sequences for tn

The randomness assumption on tn can be also removed. As we mentioned earlier, the prob-

abilistic proof is an indirect proof for the existence of deterministic nonuniform sampling patterns.

In fact, any nonuniform sequence satisfying Weyl’s criteria —which gives the sufficient and necessary

condition for a sequence equidistributed on the interval — can be used to break eigenvalue cycles.

Proposition 2.3. Let a sequence tn ∈ [0, T ] satisfy Weyl’s criteria, i.e. for all h ∈ Z \ {0},
lim
N→∞

| 1
N

∑
1≤n≤N

ej2πh·
t
T | = 0. Then, Theorem 2.8 still holds, i.e. if (Ac,C) has no unobservable and

unstable eigenvalues, the intermittent system with nonuniform samples is intermittent observable if

and only if pe <
1

|e2λmaxI | .

For example, a sequence like tn =
√

2n − b
√

2nc can be used to break eigenvalue cycles.

The proof is by merging the proofs of Theorem 2.7 and Theorem 2.8.

Nonuniform-length integration interval

In Theorem 2.8, we introduce nonuniform sampling by changing the starting time of the

length of the integration. Another way of introducing nonuniform sampling is changing the integra-

tion interval. To take the nth sample of the system, the sensor integrates yc(t) from (n− 1)I − tn
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to nI. Parallel to (2.25), we have the following equation.

yo[n] =

∫ nI

(n−1)I−tn
yc(t)dt

=

(∫ nI

(n−1)I−tn
Cce

Ac(t−nI)

)
xc(nI)

−
∫ nI

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI

(n−1)I−tn
DcdVc(t)

=

(∫ n+tn

0

Cce
Ac(t−nI−tn)

)

︸ ︷︷ ︸
:=Cn

xc(nI)

−
∫ nI

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI

(n−1)I−tn
DcdVc(t)

︸ ︷︷ ︸
:=v[n]

yo[n] is transmitted over the erasure channel, and the intermittent system (Ac,Bc,Cn) with nonuni-

form samples and erasure probability pe has the following system equations which correspond to

(2.26) and (2.27).

dxc(t) = Acxc(t)dt+ BcdWc(t)

y[n] = β[n](Cnxc(nI) + v[n])

Then, the intermittent observability condition for (Ac,Bc,Cn) is similar to Theorem 2.8.

Proposition 2.4. Let tn be i.i.d. random variables uniformly distributed on [0, T ] (T > 0), and

(Ac,Bc) be controllable. If (Ac,Cc) has unobservable and unstable eigenvalues, the intermittent

system (Ac,Bc,Cn) with nonuniform samples is not intermittent observable for all pe. Otherwise,

the intermittent system (Ac,Bc,Cn) with nonuniform samples is intermittent observable if and only

if pe <
1

|e2λmaxI | where λmax is the eigenvalue of Ac with the largest real part.

Compared to Theorem 2.8, we can see that the observability condition of (Ac,C) is relaxed

to the observability condition of (Ac,Cc). This is due to the following fact:
∫ nI−tn

(n−1)I−tn e
j 2π
I tdt = 0

for all tn and
∫ nI

(n−1)I−tn e
j 2π
I tdt 6= 0 for some tn. Even if (Ac,Cc) is observable, (Ac,C) can be

unobservable for all tn while (Ac,Cn) is observable for almost all tn.

Nonuniform Time-varying Filtering

In some cases, it is impossible to change the sampling time. In this case, we can use

nonuniform time-varying filtering to break eigenvalue cycles. Consider the following discrete-time

system:

x[n+ 1] = Ax[n] + Bw[n]

yo[n] = Cx[n] + v[n]
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Here yo[n] are the observations at the sensor, and the sensor cannot change the sampling intervals.

Instead, the sensor introduces nonuniform filtering to the observations as follows:

y′o[n] = α[n]yo[n] + α′[n]yo[n− 1]

This is just like introducing an FIR (finite impulse response) filter at the sensor except

that the impulse response of the filter keeps changing over time.

The output of the nonuniform time-varying filter, y′o[n], is transmitted over the erasure

channel. Therefore, the intermittent system (A,B,C) with erasure probability pe and nonuniform

time-varying filtering has the following system equations:

x[n+ 1] = Ax[n] + Bw[n]

y[n] = β[n](y′o[n])

= β[n](α[n]Cx[n] + α′[n]Cx[n− 1] + α[n]v[n] + α′[n]v[n− 1])

The intermittent observability with nonuniform filtering is given as the following proposition.

Proposition 2.5. Let α[n] and α′[n] be i.i.d. random variables uniformly distributed on [0, T ] (T >

0), and (A,B) be controllable. If (A,C) has unobservable and unstable eigenvalues, the intermittent

system (A,B,C) with nonuniform filtering is not intermittent observable for all pe. Otherwise,

the intermittent system (A,B,C) with nonuniform filtering is intermittent observable if and only if

pe <
1

|λmax|2 where λmax is the largest magnitude eigenvalue of A.

Sampling with Nonuniform Waveforms

So far in Theorem 2.8, Proposition 2.4, and Proposition 2.5, we have seen three different

ways of breaking eigenvalue cycles. However, these methods are essentially the same and generalized

to nonuniform sampling with nonuniform waveforms.

Fig. 2.4 shows the nonuniform sampling methods used to break eigenvalue cycles with

respect to their waveforms. First, Fig. 2.4a shows the uniform sampling which is implicitly used to

make discrete-time system (2.1), (2.2) from the underlying continuous-time system. As we saw in

Theorem 2.7, the eigenvalue cycles were not broken in this case. Fig. 2.4b shows the nonuniform

sampling by changing the starting time of the integration, which is used in Theorem 2.8. In this

case, the eigenvalue cycles were successfully broken, but we can still observe the regularity in the

integration intervals. Due to this regularity, we needed the observability of (Ac,C) instead of the

observability of (Ac,Cc). Fig. 2.4c shows the nonuniform sampling by changing the integration

interval, which is used in Proposition 2.4. The eigenvalue cycles were also broken in this case and

due to the lack of regularity in sampling intervals, the observability of (Ac,Cc) was enough. Fig. 2.4d

shows nonuniform filtering, which is used in Proposition 2.5 and successfully breaks the eigenvalue

cycles. Therefore, we can conclude that as long as the sampling waveforms are not uniform as
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(a) (b) (c)

(d) (e)

Figure 2.4: (a): uniform sampling of Theorem 2.7, (b): nonuniform sampling of Theorem 2.8, (c):

nonuniform sampling of Proposition 2.4, (d): nonuniform filtering of Proposition 2.5, (e): nonuniform

sampling with nonuniform waveforms

Fig. 2.4a the eigenvalue cycles are broken. In general, nonuniform waveforms shown in Fig. 2.4e can

be used to break eigenvalue cycles, and it is an interesting technical equation to find the minimal

condition on nonuniform waveforms to break eigenvalue cycles.

Extension to Parallel Channels

Theorem 2.8 can also be extended to the multiple sensors that transmit their observations

through parallel erasure channels. Consider the following continuous-time system equations.

dxc(t) = Acxc(t)dt+ BcdWc(t)

yc,1(t) = Cc,1xc(t) + Dc,1
dVc,1(t)

dt
...

yc,d(t) = Cc,dxc(t) + Dc,d
dVc,d(t)

dt

Here t is non-negative real-valued time index. Ac ∈ Cm×m, Bc ∈ Cm×g , Cc,i ∈ Cli×m and

Dc,i ∈ Cli×li where Dc,i is invertible. Wc(t) and Vc,1(t) are independent g and li-dimensional

standard Wiener process respectively.

Like (2.25), the nth sample at the sensor i is obtained by integrating yc,i(t) from (n−1)I−
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tn,i to nI − tn,i:

yo,i[n] =

∫ nI−tn,i

(n−1)I−tn,i
yc,i(t)dt

=

(∫ I

0

Cc,ie
Ac(t−I)dt

)

︸ ︷︷ ︸
:=Ci

xc(nI − tn,i)

−
∫ nI−tn,i

(n−1)I−tn,i

∫ nI−tn,i

t

Cc,ie
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn,i

(n−1)I−tn,i
Dc,idVc,i(t)

︸ ︷︷ ︸
:=vi[n]

Since yo,i[n] are transmitted over the parallel erasure channel, the intermittent system

(Ac,Bc,Ci) with parallel channel has the following system equation:

dxc(t) = Acxc(t)dt+ BcdWc(t)

y1[n] = β1[n](C1xc(nI − tn,1) + v1[n])

...

yd[n] = βd[n](Cdxc(nI − tn,d) + vd[n])

where yi[n] ∈ Cli and βi[n] are independent Bernoulli random processes with erasure probability

pe,i.

Like before, by a change of coordinates, we can rewrite the above system equations to the

ones with a Jordan form Ac without changing the intermittent observability. Therefore, like (2.16),

(2.17) and (2.18) we can write Ac and Ci as follows without loss of generality.

Ac = diag{A1,1,A1,2, · · · ,Aµ,νµ}

Ci =
[
C1,1,i C1,2,i · · · Cµ,νµ,i

]

where

Ai,j is a Jordan block with eigenvalue λi

λ1, · · · , λµ are pairwise distinct

Ci,j,k is a lk × dim Ai,j complex matrix.

Denote

Ci,j =
[
(Ci,1,j)1 · · · (Ci,νi,j)1

]

where (Ci,j,k)1 implies the first column of Ci,j,k

Let (li,1, li,2, · · · , li,d) ∈ {0, 1}d such that



1(li,1 = 0)Ci,1

...

1(li,d = 0)Ci,d



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is rank deficient, i.e. the rank is strictly less than νi.

Denote Li as the set of such (li,1, li,2, · · · , li,d) vectors. Then, the intermittent observability

of the system (Ac,Bc,Ci) with parallel channels is characterized by the following proposition.

Proposition 2.6. Given an intermittent system (Ac,Bc,Ci) with probability of erasures (pe,1, · · · , pe,d),
let (Ac,Bc) be controllable, and tn,i be independent random variables uniformly distributed on

[0, T ] (T > 0). The intermittent system (Ac,Bc,Ci) with parallel channels is intermittent observable

if and only if

max
1≤i≤µ

max
(li,1,li,2,··· ,li,d)∈Li


 ∏

1≤j≤d

p
li,j
e,j


 |e2λiI | < 1.

2.8 Proofs

The proofs of Theorem 2.7 and Theorem 2.8 are quite similar. For presentation purposes,

we will first present the proof of the nonuniform sampling case, Theorem 2.8, which is easier than

that of Theorem 2.7. The randomness introduced by non-uniform sampling will be emulated in the

proof of Theorem 2.7 by using Weyl’s criterion [54].

2.8.1 Sufficiency Proof of Theorem 2.8 (Non-uniform Sampling)

We will prove that if (Ac,C) does not have unobservable and unstable eigenvalues and

pe <
1

|e2λmaxI | , the system is intermittent observable.

• Reduction to a Jordan form matrix Ac: To simplify the problem, we first restrict to

system equations (2.26) and (2.27) with the following properties. We will also justify that this

restriction is without loss of generality and does not change intermittent observability.

(a) The system matrix Ac is a Jordan form matrix.

(b) All eigenvalues of Ac are unstable, i.e. the real parts are nonnegative.

(c) (2.26) and (2.27) can be extended to two-sided processes. (i.e. We can extend time to be negative,

and set the state as zero there.)

The restriction (a) can be justified by a similarity transform [17]. As mentioned before,

it is known [17] that for any square matrix Ac, there exists an invertible matrix U and an upper-

triangular Jordan matrix A′c such that Ac = UA′cU
−1. Then, equations (2.21) and (2.25) can be

rewritten as

U−1xc(t) = eA
′
ctU−1xc(0) +

∫ t

0

eA
′
c(t−t′)U−1BcdWc(t′)

yo[n] =

∫ I

0

CcUe
A′c(t−I)dtU−1xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

CcUe
A′c(t−t′)U−1BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t).
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Thus, by denoting x′c(t) := U−1xc(t), B′c := U−1Bc, and C′c := CcU, the system equations (2.19),

(2.20) and (2.27) can be written in the following equivalent forms.

dx′c(t) = A′cx
′
c(t)dt+ B′cdWc(t)

yc(t) = C′cx
′
c(t) + Dc

dVc(t)

dt

yo[n] = C′x′c(nI − tn) + v[n]

where C′ :=
∫ I

0
C′ce

A′c(t−I)dt =
∫ I

0
CcUU−1eAc(t−I)Udt = CU.

Since U is invertible, (Ac,C) has an unobservable eigenvalue λ if and only if (A′c,C
′) has

an unobservable eigenvalue λ. Moreover, since x′c = U−1xc(t), the original intermittent system

(Ac,Bc,C) with nonuniform samples is intermittent observable if and only if the new intermittent

system (A′c,B
′
c,C

′) with nonuniform samples is intermittent observable. Thus, without loss of

generality, we can assume Ac is given in a Jordan form, which justifies (a).

Once Ac is given in a Jordan form, there is a natural correspondence between the eigen-

values and the states. If there is a stable eigenvalue — i.e. the real part of the eigenvalue is negative

—, the variance of the corresponding state is uniformly bounded. Thus, we do not have to estimate

such a state to make the estimation error finite. In the observation y[n], the stable states can be

considered as a part of observation noise v[n], and the variance of v[n] is still uniformly bounded

(even if v[n] can be correlated). Therefore, we can assume (b) without loss of generality.

To justify restriction (c), we set Wc(t) = 0 for t < 0, Vc(t) = 0 for t < 0, and let β[n]

be a two-sided Bernoulli process with probability 1 − pe. Then, the resulting two-sided processes

xc(t) and y[n] are identical to the original one-sided processes except that xc(t) = 0 for t ∈ R−−

and y[n] = 0 for n ∈ Z−−.

In summary, without loss of generality we can assume that Ac is in a Jordan form, all

eigenvalues of Ac are stable, and (2.26) and (2.27) are two-sided processes. Thus, we can assume

Ac ∈ Cm×m and C ∈ Cl×m is given as follows.

Ac = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ} (2.28)

C =
[
C1,1 C1,2 · · · C1,ν1 · · · Cµ,1 · · · Cµ,νµ

]
(2.29)

where

Ai,j is a Jordan block with eigenvalue λi + jωi and size mi,j

mi,1 ≤ mi,2 ≤ · · · ≤ mi,νi for all i = 1, · · · , µ

λ1 ≥ λ2 ≥ · · · ≥ λµ ≥ 0

λ1 + jω1, λ2 + jω2, · · · , λµ + jωµ are pairwise distinct

Ci,j is a l ×mi,j complex matrix

The first columns of Ci,1,Ci,2, · · · ,Ci,νi are linearly independent.
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Here, Ai,1, · · · ,Ai,νi are the Jordan blocks corresponding to the same eigenvalue. The Jordan blocks

are sorted by the real parts of the eigenvalues in a descending order. The linear independence of

Ci,1,Ci,2, · · · ,Ci,νi comes from the observability of (Ac,C) (by Theorem 2.6).

• Uniform boundedness of observation noise: To prove intermittent observability, we will

propose a suboptimal maximum-likelihood-style estimator, and analyze it. To upper bound the

estimation error, we upper bound the disturbances and observation noises in the system.

By (2.22), we have

xc((n− k)I − tn−k) = e−Ac(kI+tn−k)xc(nI)−
∫ nI

(n−k)I−tn−k
eAc((n−k)I−tn−k−t′)BcdWc(t′)

︸ ︷︷ ︸
:=w′[n−k]

.

By plugging this equation into (2.27), we get

y[n− k] = Cxc((n− k)I − tn−k) + v[n− k]

= Ce−Ac(kI+tn−k)xc(nI) + Cw′[n− k] + v[n− k]︸ ︷︷ ︸
:=v′[n−k]

. (2.30)

We will upper bound the variance of v′[n − k]. First, consider the variance of w′[n − k]. By

assumption (b), all eigenvalues of Ac are unstable, and since tn−k ∈ [0, T ], ((n− k)I − tn−k − t′) is

within [−(kI + T ), 0]. Thus, there exits p′ ∈ N such that

E[w′[n− k]†w′[n− k]] . 1 + kp
′

(2.31)

where . holds for all n. (See Definition 2.12 for the definition of ..)

By (2.25), the variance of v[n] is uniformly bounded14 for all n. Therefore, we have

E[v′[n− k]†v′[n− k]] . 1 + kp
′

for all n.

Moreover, since Wc(t) is a standard Wiener process with unit variance, sup
n∈Z

E[(x(nI) −

x̂(nI))†(x(nI) − x̂(nI))] < ∞ implies sup
t∈R

E[(x(t) − x̂(t))†(x(t) − x̂(t))] < ∞. Thus, it is enough to

estimate the state only at discrete time steps.

• Suboptimal Maximum-Likelihood-Style Estimator: Now, we will give the suboptimal

state estimator which only uses a finite number of recent observations. We first need the following

key lemma.

Lemma 2.2. Let Ac and C be given as in (2.28) and (2.29), β[n] be a Bernoulli process with

probability 1− pe, and tn be i.i.d. random variables whose distribution is uniform on [0, T ] (T > 0).

Then, we can find m′ ∈ N, a polynomial p(k) and a family of stopping times {S(ε, k) : k ∈ Z+, 0 <

ε < 1} such that for all k ∈ Z+ and 0 < ε < 1 there exist k ≤ k1 < k2 < · · · < km′ ≤ S(ε, k) and a

m×m′l matrix M satisfying the following four conditions:

(i) β[ki] = 1 for all 1 ≤ i ≤ m′

14Recall that to justify assumption (b), we considered the stable states as a part of observation noise v[n]. However,
this does not change the uniform boundedness since the variances of the stable states are also uniformly bounded.
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(ii) M




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(km′I+tkm′
)Ac




= Im×m

(iii) |M|max ≤
p(S(ε,k))

ε eλ1S(ε,k)I

(iv) limε↓0
(
exp lim sups→∞ supk∈Z+

1
s logP{S(ε, k)− k = s}

)
≤ pe.

Proof. See Appendix 7.4. The key ideas are explained in Section 2.5.

Since we have pe <
1

|e2λmaxI | = 1
e2λ1I

, there exists δ > 1 such that δ5pe <
1

e2λ1I
. By

Lemma 2.2, we can find m′ ∈ N, 0 < ε < 1, a polynomial p(k) and a family of stopping times

{S(n) : n ∈ Z+} such that for all n, there exist 0 ≤ k1 < k2 < · · · < km′ ≤ S(n) and a m ×m′l
matrix Mn satisfying the following four conditions:

(i’) β[n− ki] = 1 for 1 ≤ i ≤ m′

(ii’) Mn




Ce−(k1I+tn−k1
)Ac

Ce−(k2I+tn−k2
)Ac

...

Ce−(km′I+tn−km′
)Ac




= Im×m

(iii’) |Mn|max ≤
p(S(n))

ε eλ1I·S(n)

(iv’) exp
(
lim sups→∞ supn∈Z+

1
s logP{S(n) = s}

)
≤
√
δpe.

Then, here is the proposed suboptimal maximum likelihood estimator for x(nI):

x̂(nI) = Mn




y[n− k1]

y[n− k2]
...

y[n− km′ ]



. (2.32)

Here, ki also depends on n, but we omit the dependency in notation for simplicity. Notice that,

m′, the number of observations used is much larger than the dimension of the system, m. In other

words, the estimator proposed here may use many more observations than the number of states

(the number of observations that a simple matrix inverse observer needs). This is because we use a

successive decoding idea in the proof of Lemma 2.2.

• Analysis of the estimation error: Now, we will analyze the performance of the proposed

estimator. Recall that p′ is defined in (2.31) and δ > 1. By (iv’) and well-known properties of

polynomial and exponential functions, we can find c > 0 that satisfies the following three conditions:

(i”) (1 + kp
′
) ≤ c · δk for all k ≥ 0

(ii”) p(k) ≤ c · δk for all k ≥ 0

(iii”) supn∈N P{S(n) = s} ≤ c · (δ · pe)s for all s ∈ Z+

Let Fβ be the σ-field generated by β[n] and ti. Then, ki, S(n), and ti are deterministic
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variables conditioned on Fβ . The estimation error is upper bounded by

sup
n

E[|x(nI)− x̂(nI)|22]

= sup
n

E[E[|x(nI)− x̂(nI)|22|Fβ ]]

(A)
= sup

n
E[E[

∣∣∣∣∣∣∣∣∣∣∣

x(nI)−Mn(




Ce−Ac(k1I+tn−k1
)

Ce−Ac(k2I+tn−k2
)

...

Ce−Ac(km′I+tn−km′
)




x(nI) +




v′[n− k1]

v′[n− k2]
...

v′[n− km′ ]




)

∣∣∣∣∣∣∣∣∣∣∣

2

2

|Fβ ]]

(B)
= sup

n
E[E[

∣∣∣∣∣∣∣∣∣∣∣

Mn




v′[n− k1]

v′[n− k2]
...

v′[n− k∑
1≤i≤µm

′
i
]




∣∣∣∣∣∣∣∣∣∣∣

2

2

|Fβ ]]

. sup
n

E[|Mn|2max · E[

∣∣∣∣∣∣∣∣∣∣∣




v′[n− k1]

v′[n− k2]
...

v′[n− km′ ]




∣∣∣∣∣∣∣∣∣∣∣

2

max

|Fβ ]]

(C)

. sup
n

E[|Mn|2max · (1 + S(n)p
′
)2]

(D)

≤ sup
n

E[

(
p(S(n))

ε
eλ1I·S(n)

)2

· (1 + S(n)p
′
)2]

(E)

. sup
n

E[δ2S(n) · e2λ1I·S(n) · δ2S(n)]

(F )

.
∞∑

s=0

δ4s · e2λ1I·s · (δ · pe)s

(G)
=

∞∑

s=0

(δ5 · e2λ1I · pe)s

<∞

where . holds for all n.

(A): By (2.30) and (2.32).

(B): By condition (ii’).

(C): Since E[v′[n− k]†v′[n− k]] . 1 + kp
′

by definition.

(D): By condition (iii’).

(E): By condition (i”) and (ii”).

(F): By condition (iii”).

(G): Since we chose δ so that δ5pe · e2λ1I < 1.

Therefore, the estimation error is uniformly bounded over t ∈ R+ when pe <
1

e2λ1I
, which
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finishes the proof.

2.8.2 Necessity Proof of Theorem 2.8

The necessity proof divides into two parts. First, we prove that if pe ≥ 1
|e2λmaxI | , then

the system is not intermittent observable. Second, we prove that if (Ac,C) has unobservable and

unstable eigenvalues — i.e. ∃λ ∈ C+ such that

[
λI−Ac

C

]
is rank deficient — then the system is

not intermittent observable.

• When pe ≥ 1
|e2λmaxI | : Intuitively speaking, we will give all states except the one corre-

sponding to the maximum eigenvalue as side-information to the estimator. Thus, we will reduce the

problem to the scalar system discussed in Section 2.5.

Formally, let Σt|t := E[(xc(t)− E[xc(t)|yb tI c])(xc(t)− E[xc(t)|yb tI c])†|Fβ ] where Fβ is the

σ-field generated by β[n] and ti. Notice that Σt|t is a random variable.

It is known that when (Ac,Bc) is controllable, the estimation error covariance of xc(t)

based on all the causally available information yc(0 : t) is positive definite when t is large enough.

Therefore, there exists t′ > 0 and σ2 > 0 such that for all t ≥ t′, Σt|t � σ2I with probability one.

Let e be a right eigenvector of Ac associated with the eigenvalue λmax, i.e. Ace = λmaxe. Then,

we can find σ′2 > 0 such that for all t ≥ t′, Σt|t � σ′2ee† with probability one.

Define the stopping time S′n := inf{k ∈ Z+|β[n− k] = 1} as the time until the most recent

observation.

The observations between discrete time n − S′n + 1 and n are all erased. This implies

the estimation error is exponentially amplified by the system dynamics during this period. Thus,

conditioned on (n− S′n)I ≥ t′, ΣnI|nI is lower bounded as follows with probability one.15

E[ΣnI|nI|S′n, (n− S′n)I ≥ t′] � (eAc(S′nI))Σ(n−S′n)I|(n−S′n)I(e
Ac(S′nI))†

� σ′2(eAc(S′nI))ee†(eAc(S′nI))†

� σ′2|e2λmaxI |S
′
nee†

Here we use the fact that when e is an eigenvector of Ac associated with an eigenvalue λmax, e is

also an eigenvector of eAct associated with the eigenvalue eλmaxt for all t.

Since pe ≥ 1
|e2λmaxI | , the average estimation error is lower bounded as follows:

E[(xc(nI)− E[xc(nI)|yn])†(xc(nI)− E[xc(nI)|yn])]

≥ E[σ′2|e2λmaxI |S
′
n |e|2 · 1((n− S′n)I ≥ t′)]

≥ σ′2|e|2 ·
∑

0≤s≤bn− tI c

|e2λmaxI |s · (1− pe)pse

≥ σ′2|e|2 · (1− pe) · (bn−
t

I
c+ 1)

15The lower bound does not hold for <(λ) = 0 which induces pe = 1. However, in this case we do not have any
observations, so trivially the system is unstable.
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Thus, the estimation error goes to infinity as n→∞, so the system is not intermittently observable.

•When (Ac,C) has unobservable and unstable eigenvalues: Now, we prove that if (Ac,C)

has unobservable and unstable eigenvalues, the system is not intermittent observable. This seems

trivial, but the original continuous-time system (Ac,Cc) can still be observable while the sampled

system (Ac,C) is not. Thus, it still needs justification.

Let λ ∈ C+ be an unobservable and unstable eigenvalue. Then,

[
λI−Ac

C

]
is rank deficient,

and we can find a nonzero vector i such that

[
λI−Ac

C

]
i = 0. Then, i satisfies Ci = 0, Aci = λi,

and we can notice that CeActi = eλtCi = 0. We will prove that the uncertainty in the direction i is

not observable by any observations.

By the controllability of (Ac,Bc), as above there exists t′ such that for all t ≥ t′, xc(t)−
E[xc(t)|yc(0 : t)] has a positive definite covariance matrix. Therefore, we can write xc(t) −
E[xc(t)|yc(0 : t)] = i ·x′c(t)+x′′c(t) where x′c(t), x′′c(t) and yc(0 : t) are independent and E[|x′c(t)|2] ≥
σ′′2 for some σ′′2 > 0 and all t ≥ t′.

Then, we will prove that the sampled observations are independent from x′c(t). By (2.21)

and (2.25), for all τ ≤ (n− 1)I − tn we have

yo[n] = C(eAc(nI−tn−τ)(xc(τ) +

∫ nI−tn

τ

eAc(τ−t′)BcdWc(t′)))

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t)

= C(eAc(nI−tn−τ)(i · x′c(τ) + x′′c(τ) + E[xc(τ)|yc(0 : τ)] +

∫ nI−tn

τ

eAc(τ−t′)BcdWc(t′)))

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t)

= C(eAc(nI−tn−τ)(x′′c(τ) + E[xc(τ)|yc(0 : τ)] +

∫ nI−tn

τ

eAc(τ−t′)BcdWc(t′)))

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (2.33)

where the last equality comes from CeActi = 0. Moreover, by causality and definitions, the last

equation is independent of x′c(τ).

Now, we will prove that the uncertainty x′c(τ) can be arbitrarily amplified. Since ti are

uniform random variables on [0, T ], there exists a positive probability such that (n − 1)I − tn ≤
(n + n′ − 1)I − tn+n′ for all n′ ∈ N. Denote such an event as E. Then, by choosing n large

enough so that (n− 1)I − tn ≥ t′, we have the following lower bound on the estimation error for all
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t ≥ (n− 1)I − tn:

E[|xc(t)− E[xc(t)|yb tI c]|2]

≥ E[|xc(t)− E[xc(t)|yb tI c]|2|E]P(E)

(a)

≥ E[|eAc(t−((n−1)I−tn))i · x′′c ((n− 1)I − tn)|2|E]P(E)

= |eλ(t−((n−1)I−T )) · i|2σ′′2 · P(E) (2.34)

(a): By (2.21), xc(t) = eAc(t−((n−1)I−tn))xc((n−1)I− tn)+
∫ t

(n−1)I−tn e
Ac((n−1)I−tn−t′)BcdWc(t′).

Moreover, by definition, x′′c ((n − 1)I − tn) is independent from yc(0 : (n − 1)I − tn). By (2.33),

x′′c ((n− 1)I − tn) is also independent from yo[n],yo[n+ 1], · · · .
Since we can choose t arbitrarily large, this finishes the proof for <(λ) > 0. To prove for the

case of <(λ) = 0, we can bound (2.34) more carefully and justify that independent estimation errors

accumulate in the direction of i. We omit the proof here since the argument is essentially equivalent

to that of the well-known fact that an eigenvalue with zero real part is unstable in continuous-time

systems.

2.8.3 Sufficiency Proof of Theorem 2.7 (Discrete-Time Systems)

We will prove that if pe <
1

max
1≤i≤µ

|λi,1|
2
pi
li

then the system is intermittent observable.

• Reduction to a Jordan form matrix A: As in Section 2.8.1, we will restrict attention to

system equations (2.1) and (2.2) with the following properties, and justify that such a restriction is

without loss of generality and does not change the intermittent observability.

(a) The system matrix A is a Jordan form matrix.

(b) All eigenvalues of A are unstable, i.e. the magnitude of all eigenvalues are greater or equal to 1.

(c) (2.1) and (2.2) can be extended to two-sided processes.

The restriction (a) can be justified by a similarity transform [17]. It is known [17] that for

any square matrix A, there exists an invertible matrix U and an upper-triangular Jordan matrix

A′ such that A = UA′U−1. Then, the system equations (2.1) and (2.2) can be rewritten as:

U−1x[n+ 1] = A′U−1x[n] + U−1Bw[n]

y[n] = β[n](CUU−1x[n] + v[n]).

Thus, by denoting x′[n] := U−1x[n], B′ := U−1B, and C′ := CU, we get

x′[n+ 1] = A′x′[n] + B′w[n]

y[n] = β[n](C′x′[n] + v[n]).

Since U is invertible, the controllability of (A,B,C) remains the same for the new inter-

mittent system (A′,B′,C′). Moreover, since x′[n] = U−1x[n], the original intermittent system is
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intermittent observable if and only if the new intermittent system is intermittent observable. Thus,

without loss of generality, we can assume that A is given in a Jordan form, which justifies (a).

Once A is given in Jordan form, there is a natural correspondence between the eigenvalues

and the states. If there is a stable eigenvalue — i.e. the magnitude of the eigenvalue is less than 1

—, the variance of the corresponding state is uniformly bounded. Thus, we do not have to estimate

that particular state to make the estimation error finite. In the observation y[n], the stable states

can be considered as a part of observation noise v[n], and the variance of v[n] is still uniformly

bounded (even if v[n] can be correlated). Therefore, we can assume (b) without loss of generality.

To justify restriction (c), rewrite (2.1) as

x[n+ 1] = Ax[n] + Iw′[n]

where w′[n] = Bw[n] for n ≥ 0. Let w′[−1] = x[0], w[n] = 0 for n < −1, and v[n] for n < 0. We

also extend β[n] to a two-sided Bernoulli process with probability 1 − pe. Then, the resulting two-

sided processes x[n] and y[n] are identical to the original one-sided processes except that x[n] = 0

and y[n] = 0 for n ∈ Z−−.

In summary, without loss of generality we can assume that A is in a Jordan form, all

eigenvalues of A is stable, and (2.1) and (2.2) are two-sided process. Therefore, we can assume that

A ∈ Cm×m and C ∈ Cl×m are given as

A = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ}

C =
[
C1,1 C1,2 · · · C1,ν1 · · · Cµ,1 · · · Cµ,νµ

]

where

Ai,j is a Jordan block with an eigenvalue λi,j and size mi,j

mi,1 ≥ mi,2 ≥ · · · ≥ mi,νi for all i = 1, · · · , µ

|λ1,1| ≥ |λ2,1| ≥ · · · ≥ |λµ,1| ≥ 1

{λi,1, · · · , λi,νi} is cycle with length νi and period pi

For i 6= i′, {λi,j , λi′,j′} is not a cycle

Ci,j is a l ×mi,j complex matrix. (2.35)

Here, Ai,1, · · · ,Ai,νi are the Jordan blocks corresponding to the same eigenvalue cycle. The Jordan

blocks are sorted in descending order by the magnitude of the eigenvalues.

Like (2.17), (2.18), we also define Ai, Ci, and li as follows.

Ai = diag{λi,1, · · · , λi,νi}

Ci =
[
(Ci,1)1 · · · (Ci,νi)1

]

where (Ci,j)1 is the first column of Ci,j. (2.36)
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li is the minimum cardinality among the sets S′ ⊆ {0, 1, · · · , pi−1} whose resulting S := {0, 1, · · · , pi−
1} \ S′ = {s1, s2, · · · , s|S|} makes




CiAi
s1

CiAi
s2

...

CiAi
s|S|




(2.37)

be rank deficient, i.e. the rank of the matrix (2.37) is strictly less than νi.

Moreover, in (2.3), we already assumed that there exists a finite σ > 0 such that

sup
n∈Z

E[w[n]w[n]†] � σ2I

sup
n∈Z

E[v[n]v[n]†] � σ2I. (2.38)

• Uniform boundedness of observation noise: To prove intermittent observability, we will

propose a suboptimal maximum-likelihood-style estimator, and analyze it. We first have to upper

bound the disturbances and observation noises in the system. Following the same steps of (2.15),

we can derive

y[n− k] = CA−kx[n]− (CA−1w[n− k] + · · ·+ CA−kw[n− 1]− v[n− k])︸ ︷︷ ︸
v′[n−k]

. (2.39)

The invertibility of A is comes from assumption (b). Moreover, since all eigenvalues of A are

unstable, by (2.38) we can find p′ ∈ N such that

E[v′[n− k]†v′[n− k]] . 1 + kp
′

(2.40)

where . holds for all n, k(k ≤ n).

• Suboptimal Maximum-Likelihood-Style Estimator: Now, we will give a suboptimal es-

timator for the state which only uses a finite number of recent observations. We first need the

following key lemma which plays a parallel role to Lemma 2.2.

Lemma 2.3. Let A and C be given as in (2.35), (2.36) and (2.37), and β[n] be a Bernoulli process

with probability 1−pe. Then, we can find m′1, · · · ,m′µ ∈ N, polynomials p1(k), · · · , pµ(k) and families

of stopping times {S1(ε, k) : k ∈ Z+, 0 < ε < 1}, · · · , {Sµ(ε, k) : k ∈ Z+, 0 < ε < 1} such that for all

k ∈ Z+ and 0 < ε < 1 there exist k ≤ k1 < · · · < km′1 ≤ S1(ε, k) < km′1+1 < · · · < k∑
1≤i≤µm

′
i
≤

Sµ(ε, k) and an m× (
∑

1≤i≤µm
′
i)l matrix M satisfying the following conditions:

(i) β[ki] = 1 for 1 ≤ i ≤
∑

1≤i≤µm
′
i

(ii) M




CA−k1

CA−k2

...

CA
−k∑

1≤i≤µ m
′
i




= Im×m
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(iii) |M|max ≤ max1≤i≤µ

{
pi(Si(ε,k))

ε |λi,1|Si(ε,k)
}

(iv) limε↓0 exp
(
lim sups→∞ supk∈Z+

1
s logP{Si(ε, k)− k = s}

)
≤ max1≤j≤i

{
p

lj
pj
e

}
for 1 ≤ i ≤ µ

(v) limε↓0 exp
(
lim sups→∞ ess sup 1

s logP{Sa(ε, k)− Sb(ε, k) = s|FSb}
)
≤ maxb<i≤a

{
p
li
pi
e

}
for 1 ≤

b < a ≤ µ where FSi is the σ-field generated by Si(ε, k).

Proof. See Appendix 7.7. The ideas in the proof are discussed in Section 2.5.

Since pe <
1

max
1≤i≤µ

|λi,1|
2
pi
li

, there exists δ > 1 such that δ5· max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1. By Lemma 2.3,

we can find m′1, · · · ,m′µ ∈ N, 0 < ε < 1, polynomials p1(k), · · · , pµ(k), and a family of stopping times

{(S1(n), · · · , Sµ(n)) : n ∈ Z+} such that ∀n there exist 0 ≤ k1 < · · · < km′1 ≤ S1(n) < km′1+1 <

· · · < k∑
1≤i≤µm

′
i
≤ Sµ(n) and a m× (

∑
1≤i≤µm

′
i)l matrix Mn satisfying the following conditions:

(i’) β[n− ki] = 1 for 1 ≤ i ≤
∑

1≤i≤µm
′
i

(ii’) Mn




CA−k1

CA−k2

...

CA
−k∑

1≤i≤µ m
′
i




= Im×m

(iii’) |Mn|max ≤ max1≤i≤µ

{
pi(Si(n))

ε |λi,1|Si(n)
}

(iv’) exp
(
lim sups→∞

1
s logP{Si(n) = s}

)
≤
√
δ ·max1≤j≤i

{
p

lj
pj
e

}
for 1 ≤ i ≤ µ

(v’) exp
(
lim sups→∞ ess sup 1

s logP{Sa(n)− Sb(n) = s|FSb}
)
≤
√
δ · maxb<i≤a

{
p
li
pi
e

}
for 1 ≤ b <

a ≤ µ where FSi is the σ-field generated by β[n− Si(n)], β[n− Si(n) + 1], · · · , β[n].

Then, here is the proposed suboptimal maximum likelihood estimator for x[n]:

x̂[n] = Mn




y[n− k1]

y[n− k2]
...

y[n− k∑
1≤i≤µm

′
i
]




(2.41)

Here, ki also depends on n, but we omit the dependency in notation for simplicity. Notice that the

number of observations that this estimator uses, k∑
1≤i≤µm

′
i
, can be much larger than the dimension

of the system, m. In other words, the estimator proposed here may use many more observations

than the number of states (the number of observations that a simple matrix inverse observer needs).

This is because we use a successive decoding idea in the proof of Lemma 2.3.

• Analysis of the estimation error: Now, we will analyze the performance of the proposed

estimator. Recall that p′ is defined in (2.40) and δ > 1. By (iv’) and (v’), we can find c > 0 that

satisfies the following four conditions:

(i”) (1 + kp
′
) ≤ c · δk for all k ≥ 0
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(ii”) pi(k) ≤ c · δk for all 1 ≤ i ≤ µ and k ≥ 0

(iii”) P{Si(n) = s} ≤ c · (δ ·max1≤j≤i

{
p

lj
pj
e

}
)s for all 1 ≤ i ≤ µ and s ∈ Z+

(iv”) P{Sa(n)− Sb(n) = s|FSb} ≤ c · (δ ·maxb<i≤a

{
p
li
pi
e

}
)s for all 1 ≤ b < a ≤ µ and s ∈ Z+.

Let Fβ be the σ-field generated by β[n]. Then, ki and Si are deterministic variables
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conditioned on Fβ . The estimation error is upper bounded by

E[|x[n]− x̂[n]|22] = E[E[|x[n]− x̂[n]|22|Fβ ]]

(A)
= E[E[

∣∣∣∣∣∣∣∣∣∣∣

x[n]−Mn(




CA−k1

CA−k2

...

CA
−k∑

1≤i≤µ m
′
i




x[n]−




v′[n− k1]

v′[n− k2]
...

v′[n− k∑
1≤i≤µm

′
i
]




)

∣∣∣∣∣∣∣∣∣∣∣

2

2

|Fβ ]]

(B)
= E[E[

∣∣∣∣∣∣∣∣∣∣∣

Mn




v′[n− k1]

v′[n− k2]
...

v′[n− k∑
1≤i≤µm

′
i
]




∣∣∣∣∣∣∣∣∣∣∣

2

2

|Fβ ]]

. E[|Mn|2max · E[

∣∣∣∣∣∣∣∣∣∣∣




v′[n− k1]

v′[n− k2]
...

v′[n− k∑
1≤i≤µm

′
i
]




∣∣∣∣∣∣∣∣∣∣∣

2

max

|Fβ ]]

(C)

. E[|Mn|2max · (1 + Sp
′

µ (n))2]

(D)

≤ E[ max
1≤i≤µ

{
(
pi(Si(n))

ε
|λi,1|Si(n)

)2

} · (1 + Sp
′

µ (n))2]

≤
∑

1≤i≤µ

E[

(
pi(Si(n))

ε
|λi,1|Si(n)

)2

· (1 + Sp
′

µ (n))2]

(E)

.
∑

1≤i≤µ

E[δ2Si(n) · |λi,1|2Si(n) · δ2Sµ(n)]

=
∑

1≤i≤µ

E[δ4Si(n) · |λi,1|2Si(n) · E[δ2(Sµ(n)−Si(n))|FSi(n)]]

(F )

.
∑

1≤i≤µ

E[δ4Si(n) · |λi,1|2Si(n) ·
∞∑

s=0

δ2s · (δ · max
1≤i≤µ

{p
li
pi
e })s]

(G)

.
∑

1≤i≤µ

E[δ4Si(n) · |λi,1|2Si(n)]

(H)

.
∑

1≤i≤µ

∞∑

s=0

δ4s · |λi,1|2s · (δ · max
1≤j≤i

{
p
li
pi
e

}
)s

=
∑

1≤i≤µ

∞∑

s=0

(δ5 · |λi,1|2 · max
1≤j≤i

{
p

lj
pj
e

}
)s

(I)
< ∞

where . holds for all n.

(A): By (2.39) and (2.41).
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(B): By condition (ii’).

(C): Since E[v′[n− k]†v′[n− k]] . 1 + kp
′

by the definition of p′ of (2.40), and thus each element of

the v′[n] vector obeys max bound.

(D): By condition (iii’).

(E): By condition (i”) and (ii”).

(F): By condition (iv”).

(G): Since δ5 · max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1.

(H): By condition (iii”).

(I): Since δ5 · max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1.

Therefore, the estimation error variance is uniformly bounded over n when pe <
1

max
1≤i≤µ

|λi,1|
2
pi
li

,

which finishes the proof.

2.8.4 Necessity Proof of Theorem 2.7

Intuitively, we will give all states except the ones that corresponds to the bottleneck eigen-

value cycle as side-information to the estimator. Then, the problem reduces to the single eigenvalue

cycle one discussed in Section 2.5.1, and we can prove the estimation error diverges similarly. This

argument works for pe >
1

maxi |λi,1|
2
pi
li

, since we can show that a single additional disturbance w[n]

grows exponentially. However, for the equality case pe = 1

maxi |λi,1|
2
pi
li

, the proof can be more

complicated since not a single disturbance but the sum of disturbances linearly diverges to infinity.

So, to make this argument complete and rigorous, we will analyze the optimal estimator,

and prove that its estimation error diverges when the condition of the lemma is violated.

It is well-known that the optimal estimator is the Kalman filter and it can be written in

recursive form. Let Fβ be the σ-field generated by β[n]. Denote the one-step prediction error as

Σn+1|n := E[(x[n + 1] − E[x[n + 1]|yn])(x[n + 1] − E[x[n + 1]|yn])†|Fβ ]. Then, Σn+1|n follows the

following recursive equation [55, p.101].

Σn+1|n = (A−ALnC̄n)Σn|n−1(A−ALnC̄n)† + ALnE[v[n]v[n]†]Ln
†A† + BE[w[n]w[n]†]B†

(2.42)

Here, Ln = Σn|n−1C̄†n
[
C̄nΣn|n−1C̄†n + E[v[n]v[n]†]

]−1
, and C̄n = C if β[n] = 1 and C̄n = 0

otherwise. Notice that Σn+1|n is a random variable.

Moreover, it is also known that when (A,B) is controllable, the one-step prediction error

of x[n+ 1] based on y[n] becomes positive definite for large enough n even if there are no erasures.

Therefore, there exists m ∈ N and σ2 > 0 such that Σn+1|n � σ2I with probability one for all
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n ≥ m. Therefore, by (2.42) for all n ≥ n′ ≥ m we have

Σn+1|n � (A−ALnC̄n) · · · (A−ALn′C̄n′)Σn′|n′−1(A−ALn′C̄n′)
† · · · (A−ALnC̄n)†

� σ2(A−ALnC̄n) · · · (A−ALn′C̄n′)I(A−ALn′C̄n′)
† · · · (A−ALnC̄n)†. (2.43)

Let’s use the definitions of U, A′, C′, U, Ai, Ci, λi,j , pi, li, νi from (2.16), (2.17) and

(2.18). Let i? := argmax
1≤i≤µ

|λi,1|2
pi
li . Let S′? ⊆ {0, 1, · · · , pi? − 1} be a set achieving the minimum

cardinality li? . In other words, define S? := {s?1, s?2, · · · , s?|S?|} = {0, 1, · · · , pi? − 1} \ S′?. Then,

|S′?| = li? and




Ci?Ai?
s?1

Ci?Ai?
s?2

...

Ci?Ai?
s?|S?|




is rank deficient, i.e. the rank is strictly less than νi? .

For a given time index n, define the stopping time Sn as the most recent observation which

does not belong to S? in modulo pi? , i.e.

Sn := inf{kpi? : k ∈ Z+ and there exists k′ such that

β[n− k′] = 1, kpi? ≤ k′ < (k + 1)pi? ,−k′ − 1(mod pi?) ∈ S′?}.

Then, we can compute that P{Sn = kpi?} = (1− pli?e )(pli?e )k for all k ∈ Z+. From the definition of

Sn, we can see that for all 0 ≤ k < Sn, β[n− k] = 1 only if −k − 1(mod pi?) ∈ S?.
Then, conditioned on n−Sn ≥ m, by (2.43) the following inequality holds with probability

one:

Σn+1|n � σ2(A−ALnC̄n) · · · (A−ALn−Sn+1C̄n−Sn+1)I(A−ALn−Sn+1C̄n−Sn+1)† · · · (A−ALnC̄n)†.

(2.44)

where C̄n−Sn+k = C or 0 if −Sn + k − 1(mod pi?) = k − 1(mod pi?) ∈ S? and C̄n−Sn+k = 0 if

−Sn + k− 1(mod pi?) = k− 1(mod pi?) ∈ S′?. Here, −Sn + k− 1(mod pi?) = k− 1(mod pi?) follows

from that Sn(mod pi?) = 0 by the definition of Sn.

We will prove that the L.H.S. of (2.44) grows exponentially. For this, we first need the

following lemma.

Lemma 2.4. Consider A, C, U, A′, C′, Ai, Ci, νi, pi given in (2.16), (2.17) and (2.18). For a

given set S := {s1, · · · , s|S|} ⊆ {0, 1, · · · , pi − 1}, let




CiAi
s1

CiAi
s2

...

CiAi
s|S|




be rank-deficient, i.e. the rank is
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less than νi, and define

Ā(K0, · · · ,Kpi−1) := (A−Kpi−1C̄pi−1) · · · (A−K0C̄0)

where C̄j = C or 0l×m when j ∈ S and C̄j = 0l×m otherwise.

Then, for all K0, · · · ,Kpi−1 ∈ Cm×l, Ā(K0, · · · ,Kpi−1) has a common right eigenvector e whose

eigenvalue is λpii,1.

Proof. For simplicity of notation, we will set i = 1, but the proof for general i is the same. Let

e′ =




e1

...

eν1


 be a nonzero vector that belongs to the right null space of




C1A1
s1

C1A1
s2

...

C1A1
s|S|




. Let e′1 be a

m1,1×1 column vector whose first element is e1 and the rest are 0. Likewise, e′2 is a m1,2×1 column

vector with first element e2 and the rest 0. e′3, · · · , e′ν1 are defined in the same way. Let a m × 1

column vector e′′ be




e′1
...

e′ν1

0(m−
∑

1≤i≤ν1
m1,i)×1




. Then, we will prove that e := Ue′′ is the eigenvector

that satisfies the conditions of the lemma.

By construction, we can see that C1A1
ke′ = 0 for k ∈ {s1, · · · , s|S|}. Moreover, since

CAke = CUA′
k
U−1Ue′′ = C′A′

k
e′′, we also have CAke = 0 for k ∈ {s1, · · · , s|S|}. Thus, we can

conclude

(A−Kp1−1C̄p1−1) · · · (A−Ks1C̄s1)(A−Ks1−1C̄s1−1) · · · (A−K0C̄0)e

= (A−Kp1−1C̄p1−1) · · · (A−Ks1C̄s1)(A−Ks1−10) · · · (A−K00)e

= (A−Kp1−1C̄p1−1) · · · (A−Ks1C̄s1)As1e

= (A−Kp1−1C̄p1−1) · · · (As1+1e−Ks1C̄s1As1e)

(a)
= (A−Kp1−1C̄p1−1) · · · (As1+1e)

(b)
= Ap1e = UA′

p1U−1e = UA′
p1e′′

(c)
= Uλp1

1,1e
′′ = λp1

1,1e

(a): CAs1e = 0 and 0 ·As1e = 0.

(b): Repetitive use of (a) for s2, · · · , s|S|.
(c): A1

p1 = λp1

1,1I and the definition of the vector e′′.

Thus, the lemma is proved.

Let the vector e be the right eigenvector of Lemma 2.4 for i = i?. Then, there exists σ′ > 0
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such that I � σ′2ee†. (2.44) is lower bounded as

Σn+1|n � σ2σ′2λSni?,1ee†(λSni?,1)†.

Since pe ≥ 1

|λi?,1|
2
pi?
li?

, the expected one-step prediction error is lower bounded as follows:16

E[(x[n+ 1]− E[x[n+ 1]|yn])†(x[n+ 1]− E[x[n+ 1]|yn])]

≥ E[σ2σ′2|λi?,1|2Sn |e|2 · 1(n− Sn ≥ m)]

≥ σ2σ′2|e|2
∑

0≤s≤bn−mpi?
c

(1− pli?e )(|λi?,1|2pi?pli?e )s

≥ σ2σ′2|e|2 · (1− pli?e ) · (bn−m
pi?

c).

Therefore, as n goes to infinity, the one-step prediction error diverges to infinity. The estimation error

variance for the state is not uniformly bounded either, so the system is not intermittent observable.

Tail Property of  
p.m.f. (probability mass functions) 

[Appendix 7.1] 

Observability Gramian Matrix 
[Appendix 7.2] 

Uniform Convergence of  
the probabilities of bad events [Appendix 7.3] 

Matrix Inverse 

Matrix Determinant 

Analytic Function 

Property of 
Analytic Functions 

[Lemma 7.9] 

Dini’s theorem 
[Theorem 7.1] 

Uniform 
Convergence of  
the bad event 
probabilities 

[Lemma 7.11] 

[Lemma 7.6] 

[Lemma 7.8] 

Proof of Lemma 2.2 
[Appendix 7.4] 

Determinant of Observability 
Gramian is uniformly good 
[Lemma 7.12] 

Lemma 2 holds  
for a scalar observation 
[Lemma 7.13] 

Proof of Lemma 2.2 
- Reduction to scalar observation 

system[Claim 7.2] 
- Successive Decoding: 
  Decode one state [Claim 7.3] 
  Subtract it from the system 
  Decode the rest states 
 

Figure 2.5: Flow diagram of the proof of Lemma 2.2

16The lower bound does not hold when |λi?,1| = 1 which induces pe = 1. However, in this case we do not have any
observations, so trivially the system is unstable.
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2.8.5 Proof Outline of Lemma 2.2 and Lemma 2.3

Now, the proofs of Theorem 2.8 and 2.7 boil down to the proofs of Lemma 2.2 and 2.3.

Since the proofs of Lemma 2.2 and 2.3 shown in Appendix are too involved, we give the outlines of

the proofs in this section.

Proof Outline of Lemma 2.2

The proof flow of Lemma 2.2 is shown in Figure 2.5. As we discussed in Section 2.5 by

explicit examples and as we formally saw in Section 2.8.1, the sufficiency proof of the critical erasure

probability mainly relies on two mathematical notions, the p.m.f. (probability mass function) tail

of stopping times and the observability gramian of the system.

In Appendix 7.1, we first study some well-known properties of the p.m.f. tail of random

variables which will be used to model the stopping times of interest. For example, we will prove that

when we add two independent random variables, the p.m.f. tail of the resulting random variable is

decided by the thicker one.

In Appendix 7.2, we consider the second notion: the observability gramian of the system.

We used a sub-optimal maximum likelihood estimator in the sufficiency proof of Section 2.8.1, and

its performance heavily relies on this inverse matrix of the observability gramian, especially the

norm of the inverse matrix. However, the norm of a matrix depends on all elements of the matrix,

and so it is hard to compute. Instead, we first relate the norm of the matrix with the determinant

of the matrix in Lemma 7.6. Thus, we can focus on the determinant of the observability gramian

instead of the norm to analyze the performance of the estimator. Furthermore, the determinant of

the observability gramian is an analytic function of the sampling times. Therefore, in Lemma 7.8 we

will further reduce the estimator performance problem to a question about analytic functions. More

precisely, we will prove that when the relevant analytic functions are large enough, the proposed

maximum likelihood estimator performs well.

Now, we can focus on a particular set of analytic functions. We have to prove that after

introducing nonuniform sampling, the multiple analytic functions which reflect different erasure pat-

terns (observation time indexes) are uniformly large enough with high probability. In Appendix 7.3,

we will prove that the probabilities that the relevant analytic functions are too small converge to

zero uniformly over all erasure patterns.

To show this, we first start with a single analytic function. In Lemma 7.9, we will prove

that for a given erasure pattern, each relevant analytic function is large enough with high probability

after nonuniform sampling. To convert this pointwise convergence result to a uniform convergence

result, we will use Dini’s theorem [35]. Dini’s theorem assures that under compactness and mono-

tone convergence conditions, pointwise convergence implies uniform convergence. Using these facts,

Lemma 7.11 proves the desired uniform convergence, i.e. the relevant set of analytic functions are

uniformly large enough with high probability for all erasure patterns.
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Now, we are ready to prove the desired Lemma 2.2. In Appendix 7.2, we relate the norm of

the inverse matrix of the observability gramian to an analytic function. In Appendix 7.3, we found

that these analytic functions uniformly converge. Thus, by integrating these results, Lemma 7.12

shows that the norm of the inverse matrix of the observability gramian is large enough with high

probability uniformly over all erasure patterns. In Section 2.5, we saw that erasure patterns are

modeled by geometric random variables. Now, we can apply the p.m.f. tail properties studied

in Appendix 7.1 to understand the p.m.f. tail of these geometric random variables. With this

understanding, we can easily prove Lemma 7.13, which tells us that Lemma 2.2 holds for systems

with scalar observations.

Finally, the only remaining step is generalizing this fact to systems with vector observations.

For this, we adapt an induction argument and use successive decoding ideas [21]. Induction is on

the number of states of the plant. First, in Claim 7.2 we reduce the system with vector observations

to another system with scalar observations by multiplying a proper row vector to the observations.

Then, as shown in Claim 7.3, we can apply the result for systems with scalar observations to estimate

just one particular state. Once we estimate one state, we can remove the estimated state from the

system to get a new system with a smaller number of states. Here, this idea of estimating a part of

state and subtracting it from the original system is known as successive decoding in the information

theory community [21]. Since we now have a system with a smaller number of states, we can apply

the induction hypothesis to finish the proof of Lemma 2.2.

Let’s consider the following system to understand this last step more precisely.




x1[n+ 1]

x2[n+ 1]

x3[n+ 1]

x4[n+ 1]

x5[n+ 1]




=




3 1

3

3 1

3

2







x1[n]

x2[n]

x3[n]

x4[n]

x5[n]




+




w1[n]

w2[n]

w3[n]

w4[n]

w5[n]




y[n] = β[n]

([
1 3 1 2 1

1 2 −1 3 1

]
x[n]

)

As we can see, the above system has vector observations. To reduce it to a scalar observation

system, we multiply a row vector
[
1 −1

]
to each observation. Then, the resulting scalar observation

becomes

[
1 −1

]
y[n] = β[n]

[
0 1 2 −1 0

]
x[n].

Here, with new scalar observations, the states x1[n] and x5[n] are unobservable (unob-

servability of x1[n] is the key in the following argument). Thus, we will reduce the system to the
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following observable system by considering a function of states as a new state.

[
1
2x2[n+ 1] + x3[n+ 1]

x4[n+ 1]

]
=

[
3 1

3

][
1
2x2[n] + x3[n]

x4[n]

]
+

[
1
2w2[n] + w3[n]

w4[n]

]

[
1 −1

]
y[n] = β[n]

[
2 1

] [ 1
2w2[n] + w3[n]

w4[n]

]

By considering 1
2x2[n] + x3[n] as one state, the resulting system becomes an observable

scalar-observation system and the state x4[n] remains intact. This step is what Claim 7.2 does.

Therefore, using the result about observable scalar-observation systems, we can first esti-

mate x4[n] (this step corresponds to Claim 7.3). Once we have an estimate x̂4[n], we can subtract

it from the observation.

y[n]− β[n]

[
2

3

]
x̂4[n] = β[n]

([
1 3 1 2 1

1 2 −1 3 1

]
x[n]−

[
2

3

]
x4[n]

)

= β[n]




[
1 3 1 1

1 2 −1 1

]



x1[n]

x2[n]

x3[n]

x5[n]




+

[
2

3

]
x4[n]−

[
2

3

]
x̂4[n]




Therefore, the resulting system can be thought as of a system with only four states (one state less

than the original system). Using induction hypothesis, we can estimate the remaining four states.

Proof Outline of Lemma 2.3

The main proof ideas and structure of Lemma 2.3 described in Figure 2.6 are essentially

the same as those of Lemma 2.2. Thus, here we will mainly emphasize the differences between the

two proofs.

We reuse the properties of the p.m.f. tails that we proved in Appendix 7.1. In Appendix 7.5,

we relate the norm of the observability gramian inverse matrix with an analytic functions just as we

did in Appendix 7.2.

In Appendix 7.6, we will essentially show that the relevant set of analytic functions are

uniformly large enough for almost all erasure patterns. However, there is a crucial difference from

the nonuniform sampling case of Appendix 7.3. Unlike the nonuniform sampling case, there is no

randomness which jitters the sampling time. Therefore, we have to count the number of erasure

patterns which make the relevant analytic functions small (rather than computing a probability),

and prove that the number of such patterns is small enough compared to the number of all possible

erasure patterns.

For this, we use Weyl’s criterion [54] which gives us a handle on the ergodic behavior of

sequences. Specifically, a sequence α−bαc, 2α−b2αc, 3α−b3αc, · · · with irrational α can be modeled

by a uniform random variable on [0, 1]. Therefore, using this fact we can reduce the counting problem
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Tail Property of  
p.m.f. (probability mass functions) 

[Appendix 7.1] 

Observability Gramian Matrix 
[Appendix 7.5] 

Uniform Convergence of  
the size of bad sets [Appendix 7.6] 

Matrix Inverse 

Matrix Determinant 

Analytic Function 

Uniform 
Convergence of  
the bad event 
probabilities 
with multiple 

random variables 
[Lemma 7.18] 

Weyl’s criterion 
[Theorem 7.3] 

Uniform 
Convergence of  
the bad set sizes 

[Lemma 7.23] 

[Lemma 7.15] 

[Lemma 7.16] 

Proof of Lemma 2.3 
[Appendix 7.7] 

Determinant of Observability 
Gramian is uniformly good 
[Lemma 7.24] 

Lemma 3 holds  
for a scalar observation 
[Lemma 7.25] 

Proof of Lemma 2.2 
- Reduction to scalar observation 

system without eigenvalue cycles 
[Claim 7.7] 

- Successive Decoding: 
  Decode one state [Claim 7.8] 
  Subtract it from the system 
  Decode the rest states 
 

Figure 2.6: Flow diagram of the proof of Lemma 2.3

that we are facing to basically the same probability problem in the spirit of one we already studied

in Appendix 7.3. However, there is still a difference between these two cases. We may need multiple

random variables to model the erasure sequences. To clarify this point, let’s consider the following

examples.

Let A1 =

[
ej
√

2 0

0 ej2
√

2

]
, A2 =

[
ej
√

2 0

0 ej
√

3

]
, C =

[
1 1

]
. The row of the observability

gramian of (A1,C) is CA1
n =

[
ej
√

2n ej2
√

2n
]
. In this case, the elements of CA1

n do not satisfy

Weyl’s criterion [54]. It can be approximated by
[
ejX ej2X

]
where X is uniform in [0, 2π] — so it

involves only one random variable.

However, the row of the observability gramian of (A2,C) is CA2
n =

[
ej
√

2n ej
√

3n
]

whose

elements satisfy Weyl’s criterion [54]. Thus, it can be approximated by
[
ejX1 ejX2

]
where X1, X2

are independent uniform random variables in [0, 2π] — so it involves two random variables.

Therefore, in Lemma 7.18, we first extend the results of Appendix 7.3 to multiple random
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variables. Then, by combining Lemma 7.18 with Weyl’s criterion, Lemma 7.23 shows the number

of bad erasure patterns that make the relevant analytic functions small is small enough uniformly

over all the analytic functions.

In Appendix 7.7, we are finally prove Lemma 2.3. First, we prove the lemma for systems

with scalar observations and without eigenvalue cycles. Lemma 7.24 and Lemma 7.25 parallel

Lemma 7.12 and Lemma 7.13. Thus, the final step is extending the result to general systems with

vector observations and with eigenvalue cycles.

The proof ideas are similar to those of Lemma 2.2 except that there is another difficulty of

handling eigenvalue cycles. The main ideas for the proof are still induction and successive decoding.

However, we also adapt polyphase decomposition ideas from digital signal processing [75] to handle

the eigenvalue cycles. More precisely, by sub-sampling systems by the period of the system, we

decompose one periodic system (with eigenvalue cycles) to multiple aperiodic systems (without

eigenvalue cycles). Using these ideas, we can reduce the original system with vector observations and

eigenvalue cycles to multiple sub-sampled systems with scalar observations and without eigenvalue

cycles. Then, we can decode one state out of the reduced sub-sampled systems. We can apply

successive decoding ideas and the induction to finish the proof of Lemma 2.3.

These ideas can be clarified by the following descriptive example. Consider the following

system with eigenvalue cycles and vector observations.



x1[n+ 1]

x2[n+ 1]

x3[n+ 1]

x4[n+ 1]




=




3

3

−3

2







x1[n]

x2[n]

x3[n]

x4[n]




+




w1[n]

w2[n]

w3[n]

w4[n]




y[n] = β[n]

([
1 1 1 2

1 −1 2 3

])

Here, following the notations of (2.35) and (2.36), we can see that C1 =

[
1 1 1

1 −1 2

]
and

A1 =




3

3

−3


. Thus, we have

[
− 1

4
1
2

1
4 0

] [ C1

C1A1

]
=
[
− 1

4
1
2

1
4 0

]




1 1 1

1 −1 2

3 3 −3

3 −3 −6




=
[
1 0 0

]
.

Now, we want to reduce the original system with vector observations and eigenvalue cycles

to the one with scalar observations and no eigenvalue cycles. For this, we multiply
[
− 1

4
1
2

]
to even

time observations and
[

1
4 0

]
to odd time observations.
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


x1[2(n+ 1)]

x2[2(n+ 1)]

x3[2(n+ 1)]

x4[2(n+ 1)]




=




9

9

9

4







x1[2n]

x2[2n]

x3[2n]

x4[2n]




+




3w1[2n] + w1[2n+ 1]

3w2[2n] + w2[2n+ 1]

−3w3[2n] + w3[2n+ 1]

2w4[2n] + w4[2n+ 1]




[
− 1

4
1
2

]
y[2n] = β[2n]




[
1
4 − 3

4
3
4 1

]




x1[2n]

x2[2n]

x3[2n]

x4[2n]







[
1
4 0

]
y[2n+ 1] = β[2n+ 1]




[
1
4

1
4

1
4

1
2

]




x1[2n+ 1]

x2[2n+ 1]

x3[2n+ 1]

x4[2n+ 1]







= β[2n+ 1]




[
3
4

3
4

−3
4 1

]




x1[2n]

x2[2n]

x3[2n]

x4[2n]




+
[

1
4

1
4

1
4

1
2

]




w1[2n]

w2[2n]

w3[2n]

w4[2n]







We can consider even-time observations and odd-time observations as two separate systems.

Then, these two sub-sampled systems with scalar observations can be rewritten as follows: The first

system is

[
1
4x1[2(n+ 1)]− 3

4x2[2(n+ 1)] + 3
4x3[2(n+ 1)]

x4[2(n+ 1)]

]
=

[
9

4

][
1
4x1[2n]− 3

4x2[2n] + 3
4x3[2n]

x4[2n]

]

+

[
1
4 (3w1[2n] + w1[2n+ 1])− 3

4 (3w2[2n] + w2[2n+ 1]) + 3
4 (−3w3[2n] + w3[2n+ 1])

2w4[2n] + w4[2n+ 1]

]

[
− 1

4
1
2

]
y[2n] = β[2n]

([
1 1

] [ 1
4x1[2n]− 3

4x2[2n] + 3
4x3[2n]

x4[2n]

])

where 1
4x1[2n]− 3

4x2[2n] + 3
4x3[2n] and x4[2n] are the states of the system.
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The second system is

[
3
4x1[2(n+ 1)] + 3

4x2[2(n+ 1)]− 3
4x3[2(n+ 1)]

x4[2(n+ 1)]

]
=

[
9

4

][
3
4x1[2n] + 3

4x2[2n]− 3
4x3[2n]

x4[2n]

]

+

[
3
4 (3w1[2n] + w1[2n+ 1]) + 3

4 (3w2[2n] + w2[2n+ 1])− 3
4 (−3w3[2n] + w3[2n+ 1])

2w4[2n] + w4[2n+ 1]

]

[
1
4 0

]
y[2n+ 1] = β[2n+ 1]




[
1 1

] [ 3
4x1[2n] + 3

4x2[2n]− 3
4x3[2n]

x4[2n]

]
+
[

1
4

1
4

1
4

1
2

]




w1[2n]

w2[2n]

w3[2n]

w4[2n]







where 3
4x1[2n] + 3

4x2[2n]− 3
4x3[2n] and x4[2n] are the new states of the system.

Here, we can notice that by considering functions of the original states as new states, we

get new systems with scalar observations and no eigenvalue cycles. The reduction of the original

systems to such systems is what Claim 7.7 does.

Now, we can apply Lemma 7.25 to estimate the states of the new systems, i.e. the estimation

of 1
4x1[2n]− 3

4x2[2n]+ 3
4x3[2n] and 3

4x1[2n]+ 3
4x2[2n]− 3

4x3[2n]. Here, we are estimating a function of

states instead of the original states themselves. This idea of function decoding was recently proposed

and found to be useful in communication problems [73]. Furthermore, the sum of these two functions

is x1[2n], which means we can also estimate x1[2n] based on the estimation of the functions.

Therefore, we get an estimation of x1[n], x̂1[n] (this step corresponds to Claim 7.8) and

subtract it from the original system as follows.

y[n]− β[n]

[
1

1

]
x̂1[n] = β[n]




[
1 1 2

−1 2 3

]



x2[n]

x3[n]

x4[n]


+

[
1

1

]
x1[n]−

[
1

1

]
x̂1[n]




Finally, the resulting system can be thought as of a system with only three states (one

state less than the original system). Using induction hypothesis, we can estimate the remaining

three states.

2.9 Comments

The intermittent Kalman filtering problem was first motivated by control over communi-

cation channels. Therefore, the problem is conventionally believed to fall into the intersection of

control and communication. However, if the plant is unstable the transmission power of the sensor

diverges to infinity if it is really going to pack an ever increasing number of bits in each trans-

mission. Therefore, it is hard to say that intermittent Kalman filtering has a direct connection to

communication theory. Instead, we propose that the intersection of control and signal processing —
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especially sampling theory — is the right conceptual category for intermittent Kalman filtering. It

should thus be interesting to explore the connection of the results of this chapter with classical and

modern results in sampling theory.

Arguably, the closest problem to intermittent Kalman filtering is that of observability after

sampling. As we mentioned earlier, the observability of (Ac,Cc) in (2.19) and (2.20) does not imply

the observability of (Ac,C) in (2.26) and (2.27). The well-known sufficient condition is:

Theorem 2.9 (Theorem 6.9. of [17]). Suppose (Ac,Cc) is observable. A sufficient condition for

its discretized system with sampling interval I to be observable is that
|=(λi−λj)I|

2π /∈ N whenever

<(λi − λj) = 0.

The eigenvalues of the sampled system are given as exp(λiI). Thus, the above theorem

tells that when the sampling does not map two distinct eigenvalues to the same one, the sampled

system is also observable.

For intermittent observability, we can write a similar theorem. When the sampling does

not make two distinct eigenvalues belong to the same eigenvalue cycle, the sampled system has the

critical erasure probability of 1
|e2λmaxI | .

Corollary 2.3. Suppose (Ac,Cc) is observable. A sufficient condition for its discretized system

with sampling interval I to have 1
|e2λmaxI | as a critical erasure probability is that

|=(λi−λj)I|
2π /∈ Q

whenever <(λi − λj) = 0.

Proof immediately follows from Corollary 2.1 and the fact that the eigenvalues of the

sampled system are exp(λiI).

The idea of breaking cyclic behavior using non-uniform sampling is also shown in the

context of sampling multiband signals [79]. The lower bound on the sampling rate is known to be

the Lebesgue measure of the spectral support of the signal sampled. To achieve this lower bound for

a general multiband signal, a nonuniform sampling pattern has to be used. Moreover, nonuniform

sampling is also well known as a necessary condition for the currently hot field of compressed

sensing [25].

As a last comment, we would like to mention that the result is not sensitive to the norm.

In this chapter, intermittent observability is defined using the l2-norm to follow the majority of the

literature. But, if intermittent observability is defined by the lη-norm, we can simply replace 2 in

every theorem by η. For example, the result of Theorem 2.7 becomes 1

max
i
|λi,1|

ηpi
l′
i

.
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Chapter 3

Network Coding meets

Decentralized Control

3.1 Introduction

This chapter is inspired by the similarity between the algebraic characterization of fixed

modes [4] in decentralized control problems and the min-cut bound in information theory [21].

Consider a standard decentralized linear system

x[n+ 1] = Ax[n] +B1u1[n] + · · ·+Bvuv[n]

y1[n] = C1x[n]

...

yv[n] = Cvx[n].

Here, the input ui[n] must be a causal LTI functions of the observations yi[n]. Then, the algebraic

condition for λ to be a fixed mode [4, Theorem 4.1] is

min
V⊆{1,2,··· ,v}

rank

[
A− λI BV

CV c 0

]
≥ dim(A). (3.1)

If λ is a fixed mode, that implies that no LTI control strategy can stabilize that mode. Consider

a communication relay network shown in [21, Theorem 15.10.1] where the input to the channel

at the relay node i is Xi and the output from the channel at the relay node i is Yi. Then, the

information-theoretic min-cut bound [21, Theorem 15.10.1] is

min
V⊆{1,2,··· ,v}

I(XV ;YV c |XV c) ≥
∑

i∈V,j∈V c
Rij . (3.2)
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We can see that the left-hand sides of both (3.1) and (3.2) have a minimization over all subsets V .

Moreover, in noiseless relay networks the mutual information is essentially equal to the rank of an

appropriate channel matrix1 [99]. Therefore, the left-hand sides of (3.1) and (3.2) can be considered

to be exactly the same. Identifying the right hand sides of (3.1) and (3.2) with each other, we can

see that the dimension of A seems to correspond to a rate of total information flow. Moreover, fixed

modes are closely connected to stabilizability. Thus, we can conjecture that a decentralized system

is stabilizable if and only if enough information flow can be supported to stabilize the plant, and

vice versa. In this chapter, we make this conjecture rigorous.

First, let’s review perspectives on information flow in communication networks. Histori-

cally, information in a network was believed to behave like a physical commodity. The network was

modeled using a graph, and the information was thought of as commodities to be transported from

the source to the destination by routing them through the nodes. The most important result is the

celebrated mincut-maxflow theorem [28, 31], which reveals that the maximum amount of commodity

flow through a graph is equal to the minimum cut of the graph. Moreover, this maximum flow is

achievable by a routing scheme. For decades, this optimality result made researchers stick to routing

solutions even for information.

However, in [1] it was found that information flow in networks does not really behave

like physical commodities do. Obviously, we can copy information. But going further, we can

also process and mix information. The famous butterfly example shows that for multiple-source

multiple-destination cases, there is a gain by allowing relays to mix their incoming signals instead

of just routing them.

Even if physical commodity flows (which we can only route) and information flows (which

we can copy, process and mix) are different, the graph-theoretic concepts and insights originally

developed for commodity flows continue to be helpful. The main difference is that the amount of

flow, which is naturally measured by the number (or weight or volume) of commodities in physical

commodity flows, must instead be measured in “dimensions” of the signal for information flows.

However, the mincut-maxflow theorem remains the main tool to understand network information

flows. For example, in the multicast problem the relevant mincut is the minimum of the mincut to

each destination, and the mincut-maxflow theorem still holds [1]. Moreover, this maximum flow is

achievable by linear time-invariant network coding [52].

Once information-theorists had the freedom to mix and process signals inside the nodes

that they could design, they also started to consider such operations as potentially existing outside

1Information is traditionally measured in bits and the rate of bits that a channel can carry is computed by the
mutual information I(X;Y ). However, in continuous-alphabet channels like the AWGN (additive white Gaussian
noise) channel, the mutual information depends crucially on the signal-to-noise ratio and scales as log SNR. It was
noticed that when the channel has multiple-inputs and multiple-outputs (MIMO) — like when there are multiple
antennas involved in wireless communication — the mutual information increases as the rank of the channel matrix
times log SNR. This fact inspired the creation of the finite-field noiseless MIMO channel model, within which the
mutual information is equal to the rank of the channel matrix multiplied by the log of the field size. Therefore, the
rank can be considered another measure for information, as measured in units of dimensions or degrees-of-freedom.
We refer the reader to [99] for further details.
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these nodes [74]. The signals from the relay nodes could be broadcast to multiple receiving nodes

or superposed with other signals at a receiving node. In fact, such extensions were a natural fit to

wireless communication [6]. The operations outside the nodes modeled communication channels and

such wireless channel models had long been valuable even when restricted to be linear time-invariant.

At this point, we can see the similarities between network-coding problems [6] and decentralized-

linear-control problems [104]. The network channels (which we cannot design) can be considered as

the linear plant. The source, relays and destination nodes (which we can design) can be considered

as decentralized controllers. Just as decentralized controllers process and combine their observations

to generate their control inputs, the relay nodes process and combine their incoming signals from

the channel to generate their outgoing signals.

Despite these similarities, many differences between the communication and control prob-

lems had been preventing a firm connection being made between them. First of all, network-coding

information-theorists work in finite fields, whereas control-theorists default to infinite fields like the

reals or complex numbers. Moreover, information-theorists tend not to have any explicit state in the

system, preferring an input-output perspective. Most importantly, the information-theorists have

a clearly specified source and destination, and their goal is to push information from one to the

other. The control-theorists tend not to have explicit sources and destinations, and instead there is

a dynamic evolution that needs to be controlled or stabilized.

The main goal of this chapter is to bridge these differences and make a concrete connection

between network coding and decentralized linear control. We first apply linear-system-theoretic

ideas to network coding to propose network linearization as an algorithm to convert an arbitrary-

topology network to an equivalent acyclic single-hop relay network. Based on this, we prove an

algebraic mincut-maxflow theorem, Theorem 3.2.

Then, we apply network coding ideas to decentralized linear systems. As shown in Theo-

rem 3.7 and 3.8, we prove that if a decentralized linear system is LTI2-stabilizable, then there must

exist a corresponding implicit information flow sufficient to stabilize the system.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the definition

of LTI networks and prove an algebraic mincut-maxflow theorem based on network linearization.

We also compare network linearization with the known idea of network unfolding. In Section 3.3, we

introduce some preliminary facts about decentralized linear systems. Section 3.4 shows a representa-

tive example that clearly illustrates the implicit information flows in decentralized control systems.

Section 3.5 gives the capacity-stabilizability equivalence theorem. In Section 3.6, we consider the

stabilizability problem with an explicit communication network, and convert networking results to

the equivalent stabilizability results.

2It is in our focus on stabilizability using only linear time-invariant control laws that the results in this chapter
differ from the results in [116] where time-varying control laws are permitted. The overall perspectives however are
compatible in that we are also interested in cutsets and information flows.
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3.2 LTI Communication Networks

3.2.1 Definitions and Algebraic Mincut-Maxflow Theorem

An LTI communication network is a collection of transmitters, relays, and receivers —

which will be called nodes.3

Each node has input and output ports. These connect to the channels. Each node generates

a signal and sends it to the channels through its output ports, which are simultaneously the input

to the channels. In this chapter, we model signals elements from a field F and time is discrete.

The transmitted signals go through the channels and arrive at the channel outputs, which are

simultaneously the input ports of the nodes. We take a channel-centric perspective in this chapter’s

notation.

The relationship between the input and output signals of the channels is given by nature.

In LTI communication networks, the input-output relationships of the channels are linear time-

invariant. Thus, they can be described by transfer functions. Furthermore, since we will focus on

discrete-time systems, by taking z-transforms the transfer functions can be represented by rational

functions in z.

Even though the channels are given by nature, we still have design freedom for the nodes.

Each node can choose the input signals to the channels as arbitrary causal functions on the output

signals from the channels. In LTI networks, the node operation is restricted to be linear time-

invariant. In other words, the nodes can be thought as causal linear time-invariant filters between

the output signals from the channels into the input signals to the channels. To reflect this design

freedom, we will assign different variables ki for the transfer functions inside the nodes.

We focus on LTI point-to-point communication networks with one transmitter and one

receiver, and we denote the network as N (z). Let’s formally define LTI point-to-point networks

using graph notation. The input and output ports of the nodes can be modeled as vertices. The

transfer functions connecting them can be thought as directed edges. Consider a digraph (W,E)

with a totally ordered set of vertices (ports) W and a set of edges E. W is partitioned according to

which node that port belongs to.

In other words, for an LTI network with v relays, W can be partitioned into the sets Ntx,

N1, · · · , Nv, Nrx, i.e. Ni ⊆ W , Ni ∩Nj = ∅ for i 6= j, and
⋃
i∈{tx,1,··· ,v,rx}Ni = W . Thus, a set of

vertices Ni corresponds to a node.

To simplify the notation, we will use the subscript “tx” and −1 interchangeably. Likewise,

we will also use the subscript v + 1 for the subscript “rx”, i.e. Ntx = N0 and Nrx = Nv+1.

For a given node Ni, the elements of Ni are again partitioned into two subsets Ni,in and

Ni,out which are called the input and output vertices of the node i. The inputs and the outputs are

3The LTI networks considered here are essentially the same as the linear deterministic model studied in [6] except
that our LTI networks restrict the relay design to be linear time-invariant and the underlying field can also be real or
complex instead of being restricted to finite fields.
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defined in a channel-centric perspective. So an input vertex is an output port of a node, and an

output vertex is an input port of the node. Ni,in represent the signals going out from the node i

into the channels and Ni,out represent the signals coming out from the channels into the node i.

The transmitter node does not receive signals and the receiver node does not transmit

signals, so Ntx,out = ∅ and Nrx,in = ∅. We denote the number of the input and output vertices of

the node i as di,in and di,out, i.e. di,in := |Ni,in|, and di,out := |Ni,out|.
Let the signals take values from a field F, let z be the dummy variable for z-transforms, and

let K = {k1, k2, k3, · · · } be a set of variables to represent the gains inside the nodes. We also define

F[z], F[K], F[z,K] as the field of all rational functions in variables z, K, {z} ∪K with coefficients

in F respectively.

Each edge which connects the ports of the nodes can be written as a triplet (w′, w′′, hw′,w′′(z,K))

∈ E where w′, w′′ ∈ W and hw′,w′′(z,K) ∈ F[z] ∪K. Here, w′ is the starting port of the edge, w′′

is called the end of the edge, and hw′,w′′(z,K) is the gain of the connection.

Since a lack of physical connection between two vertices w′ and w′′ can be represented as

hw′,w′′(z,K) = 0, we assume that every input vertex is connected to every output vertex, including

“self-loops” connecting the input vertices to its own output vertices. There are two kinds of edges.

One kind of edges is the transfer functions connecting the input vertices to the output vertices

—channel transfer functions. They are given by nature and described by z-transforms —rational

functions on z. Formally, for all i, j ∈ {0, · · · , v + 1} and w′ ∈ Nin,i, w′′ ∈ Nout,j ,

(w′, w′′, hw′,w′′(z,K)) ∈ E and hw′,w′′(z,K) ∈ F[z].

The other kind of edge is inside each node. There we have design freedom. To reflect this,

for each node let there exist edges fully connecting its output vertices to its input vertices. The

transfer functions associated with these edges are in the form of ki ∈ K and distinct. Since the

transmitter and receiver have only one kind of ports, Ntx and Nrx do not have internal edges.

This distinct transfer function assumption guarantees enough design freedom at the relays

since we can assign different transfer functions to different edges. Formally, for all i ∈ {1, · · · , v} and

w′ ∈ Nout,i, w′′ ∈ Nin,i, (w′, w′′, hw′,w′′(z,K)) ∈ E and hw′,w′′(z,K) = kw′,w′′ where kw′,w′′ ∈ K. If

(w′1, w
′′
1 ) and (w′2, w

′′
2 ) are distinct internal edges, hw′1,w′′1 6= hw′2,w′′2 . These internal edges represent

the potential LTI communication schemes. In a fully realized network with a specific communication

scheme, each element of the K will be replaced with a specific element in F[z].

At each vertex and edge, the signal is processed as follows: Each vertex w ∈ W adds all

the signals coming from the edges whose head is w and transmits to the edges whose tail is w. Each

edge e ∈ E multiplies the signal coming from its tail with its transfer function and transmits this to

its head.

Denote a transfer function matrix from the input vertices of the node Ni to the output

vertices of the node Nj as Hi,j(z). In the same way, we denote a transfer function from a set (ordered

set) of nodes A to a set (ordered set) of nodes B as HA,B(z). We also denote the transfer function
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matrix from the output vertices (input ports) of Ni to the input vertices (output vertices) of Ni as

Ki. Then, Hi,j(z) ∈ F[z]dj,out×di,in and Ki ∈ F[K]di,in×di,out . For briefness, we write Hi,j(z) as Hi,j

when it does not cause confusion. Ki are given in forms of




ki1 ki2 · · ·
ki3 ki4 · · ·
...

...
. . .


.

As mentioned above, by considering the transfer functions of the internal edges as different

bare dummy variables in K, we reflect the design freedom of the relay nodes. Moreover, the capacity

of a network —the rank of the transfer function matrix— will be maximized by considering the

transfer functions of the internal edges as variables in K. Precisely, let Ki(z) ∈ F[z]di,in×di,out be

a matrix whose size is the same as Ki but the elements of the matrix belong to F[z]. Denote the

transfer functions from the transmitter to the receiver of N (z) as G(z,K) and G(z,K(z)) in each

case. Then, we have the following relationship:

Lemma 3.1. Let G(z,K) be given as above. Then, we have the following relationship between the

rank of G(z,K) and G(z,K(z)).

rankG(z,K) = max
Ki(z)∈F[z]di,in×di,out

rankG(z,K(z)).

Proof. The proof is essentially the same as [52, Lemma 1]. For all Ki(z) ∈ F[z]di,in×di,out the

independent columns in G(z,K(z)) are still independent even if we consider the elements of Ki as

variables. Therefore, for all Ki(z) ∈ F[z]di,in×di,out , rankG(z,K) ≥ rankG(z,K(z)).

Moreover, the rational function field F[z] has an infinite number of elements and the dimen-

sion of the algebraic variety that makes G(z,K) lose its rank is strictly smaller than the dimension

of Ki’s. Therefore, there exists Ki(z) ∈ F[z]di,in×di,out such that rankG(z,K) = rankG(z,K(z)).

Thus, the lemma is true.

Figure 3.1 shows the graphical representation of an LTI communication network. The

squares represent the nodes of the LTI networks. The empty circles attached to the squares represent

the input vertices (output ports) from the nodes to the channels. The circles with plus represent

the output vertices (input ports) from the channels to the nodes. The arrows outside the nodes

(connecting empty circles to plus circles) represent the communication channels, and the arrows

inside the nodes (connecting plus circles to empty circles) represent the communication schemes.

The scalars (or matrices) written on the arrows represent the transfer functions (or transfer function

matrices). We also denote a m×m identity matrix as Im.

Let G(z,K) be the transfer function from the input vertices of the transmitter node to the

output vertices of the receiver node. G(z,K) can be written in terms of Hi,j and Ki [75].
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Theorem 3.1. With the above definitions, the transfer function matrix G(z,K) is given as

G(z,K) =
[
H1,rxK1 · · · Hv,rxKv

]


I −




H1,1K1 · · · Hv,1Kv

...
. . .

...

H1,vK1 · · · Hv,vKv







−1 


Htx,1

...

Htx,v


+Htx,rx.

Proof. As illustrated in Fig. 3.1, let U , Xi and Y be vectors of signals at the input vertices of the

transmitter, the output vertices visible at node i, and the output vertices visible at the receiver.

Then, we have the following relations between U , Xi and Y :
X1

...

Xv

 =


H1,1K1 · · · Hv,1Kv

...
. . .

...

H1,vK1 · · · Hv,vKv



X1

...

Xv

+


Htx,1

...

Htx,v

U

Y =
[
H1,rxK1 · · · Hv,rxKv

]
X1

...

Xv

+Htx,rxU.

Simple algebra then gives the theorem. Here, the invertibility of the matrix can be shown as follows:

As shown in Lemma 3.1, the rank of (I −


H1,1K1 · · · Hv,1Kv

...
. . .

...

H1,vK1 · · · Hv,vKv

) is the largest rank over all Ki(z).

Furthermore, by putting Ki(z) = 0, the matrix becomes invertible.

Therefore, from an end-to-end perspective, the point-to-point LTI network N (z) can be

thought as a MIMO (multiple-input multiple-output) channel whose channel matrix is G(z,K). It

is well-known that the capacity of MIMO channels is closely related to the rank of the channel

matrix [99].

Definition 3.1 (Degree of Freedom Capacity). For a given LTI network N (z), we say that the

degree of freedom (d.o.f.) capacity of the network N (z) is k if its transfer matrix G(z,K) is rank k,

i.e. rank(G(z,K)) = k.

On the other hand, when we “cut” the nodes into two disjoint sets V = {tx, i1, · · · , ik} and

V c = {rx, ik+1, · · · , iv}, the channel matrix between these two is defined as

HV,V c =




Htx,rx Hi1,rx · · · Hik,rx

Htx,ik+1
Hi1,ik+1

· · · Hik,ik+1

...
...

. . .
...

Htx,iv Hi1,iv · · · Hik,iv



.
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Figure 3.1: point-to-point LTI network N (Z)

Tx RxTx’ Rx’
I I

Htx,rx

Hrx,tx

Figure 3.2: We can model feedback by introducing an outer transmitter Tx′ and receiver Rx′

Definition 3.2 (Degree of Freedom Mincut). For a given LTI network N (z), we say that the degree

of freedom (d.o.f.) mincut of the network N (z) is k if the minimum rank of cuts is equal to k, i.e.

minV :V⊆{0,··· ,v+1},V 3tx,V 63rx rankHV,V c(z) = k.

One key fact about LTI networks is that the well-known mincut-maxflow theorem [31, 28]

can be extended to them. This is one of the main theorems of the chapter.

Theorem 3.2 (Algebraic Mincut-Maxflow Theorem). With the above definitions,

rankG(z,K)

= min
V :V⊆{0,··· ,v+1},V 3tx,V 63rx

rankHV,V c(z).

Proof. See Section 3.2.2.

In this theorem, Ki are considered as dummy variables which are independent from z and

each other. However, what this theorem really implies is the existence of mincut-achieving coding

schemes, i.e. there exist z-transforms that we can plug in for Ki without changing the equality of

Theorem 3.2. In Section 3.2.3, we will discuss this point in further detail.

The above notations for LTI point-to-point networks can be naturally generalized to those

for LTI networks with multiple sources and destinations.
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Figure 3.3: LTI network example and its equivalent network with linearized transfer function

One may think the LTI networks above do not cover channels with feedback since we did not

include any channel from the receiver to the transmitter. However, as shown in Fig. 3.2 the channel

with feedback can be modeled by introducing an outer transmitter and receiver. In a similar way,

we can also include cooperation between transmitters and receivers in cases with multiple sources

and destinations.

3.2.2 State-Space Representation and Network Linearization

In this section, we prove Theorem 3.2 using the idea of network linearization. Network

linearization is the counterpart of the following fact of linear system theory: Every causal linear

time-invariant system with an input u[n] and an output y[n] can be written in state-space form [17],

i.e. can be realized as a linear system equation:

x[n+ 1] = Ax[n] +Bu[n]

y[n] = Cx[n] +Du[n]

by introducing the proper internal states x[n]. Similarly, network linearization tells us that every

LTI network with an arbitrary topology can be converted to an acyclic single-hop relay network by

introducing proper internal states.

First, we illustrate two key ideas for network linearization.

(1) Internal States: Consider the two-hop relay network shown in the top figure of Fig. 3.3.

The transfer function from U to Y is k2k1, which is not linear in k1, k2. To write the transfer

function in a linear form, we introduce an internal state X at the output of the second node. Then,

the transfer function matrix from X,U to Y,X is

[
Y

X

]
=

[
k2 0

0 k1

][
X

U

]
, which is linear in k1, k2.

Moreover, since

[
k2 0

0 k1

]
=

[
0

1

]
k1

[
0 1

]
+

[
1

0

]
k2

[
1 0

]
,

it corresponds to the transfer function of the acyclic single-hop relay network shown in the bottom

figure of Fig. 3.3.
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Figure 3.4: LTI network N (Z) with a circulation arc added in.

(2) Circulation Arc: Even if the transfer function can be written in a linear matrix form by

introducing internal states, there has to be a relationship between the rank of the original transfer

function and the rank of the linearized transfer function.

After all, in general the rank of the linearized transfer function matrix will be bigger as the

above example illustrates. So we need a way to relate the ranks of the transfer function matrices.

To make this connection, we borrow the circulation arc idea from the integer programming

context [46, p.86]. The problem that they had was that when they tried to write the maxflow

problem in linear programming form, the flow conservation law did not hold at the source and the

destination. The flow at the source is negative and the flow at the destination is positive. To patch

this, they introduced a circulation arc with infinite capacity from the destination to the source.

Since the amount of the negative flow at the source is the same as the amount of the positive flow

at the destination, the flow conservative law can be recovered as a universal. Moreover, the flow

across the network can be easily measured by measuring the flow in the circulation arc.

To apply this idea to LTI networks, we use an underdetermined system. Let’s consider

x = x + KrxG(z,K)Ktxx with unknown vector x. Here, KrxG(z,K)Ktx is a transfer function

with a preprocessing matrix Ktx and a postprocessing matrix Krx. If the rank of KrxG(z,K)Ktx is

smaller than the dimension of x, the equation is underdetermined. Otherwise, it is not. Thus, we can

see that the rank of the transfer function can be measured by the underdeterminedness of the system.

Now, we will combine these ideas for network linearization. We first formally introduce the

circulation arc. As shown in Fig. 3.4, an auxiliary node Nax with dax input ports and dax output

ports is added to the original network. We also introduce dax input vertices at the receiver node
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and dax output vertices at the transmitter node. Let Hrx,ax = Hax,tx = Hax,ax = Kax = Idax .

As discussed in Section 3.2.1, to reflect the design freedom of the transmitter and receiver, let

Ktx ∈ F[K]dtx×dax and Krx ∈ F[K]dax×drx , and each element of Ktx, Krx is the form of ki ∈ K and

they are all distinct and also distinct from the elements in K1, · · · ,Kv inside the relays.

Now, we introduce labels for the internal states. As shown in Fig. 3.4, let Xax, Xi, and Y

be the vectors of the signals of the output vertices seen at the auxiliary node, the node i, and the

receiver respectively.

From the system diagram, Fig. 3.4, we can see the following relation has to hold.




Xax

Y

X1

...

Xv




=




Idax Krx 0 · · · 0

Htx,rxKtx 0 H1,rxK1 · · · Hv,rxKv

Htx,1Ktx 0 H1,1K1 · · · Hv,1Kv

...
...

...
. . .

...

Htx,vKtx 0 H1,vK1 · · · Hv,vKv







Xax

Y

X1

...

Xv




(⇔)




0 −Krx 0 · · · 0

−Htx,rxKtx Idrx −H1,rxK1 · · · −Hv,rxKv

−Htx,1Ktx 0 Id1,out
−H1,1K1 · · · −Hv,1Kv

...
...

...
. . .

...

−Htx,vKtx 0 −H1,vK1 · · · Idv,out −Hv,vKv




︸ ︷︷ ︸
:=Glin(z,K)




Xax

Y

X1

...

Xv




=




0

0

0
...

0




(3.3)
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The matrix Glin(z,K) here is filled with entries linear in Ki. Thus, Glin(z,K) can be rewritten as

Glin(z,K) =




0 0 0 · · · 0

0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I




︸ ︷︷ ︸
:=A

+




0

Htx,rx

Htx,1

...

Htx,v




︸ ︷︷ ︸
:=Btx

Ktx

[
−Idax 0 0 · · · 0

]

︸ ︷︷ ︸
:=Ctx

+




0

H1,rx

H1,1

...

H1,v




︸ ︷︷ ︸
:=B1

K1

[
0 0 −Id1,out · · · 0

]

︸ ︷︷ ︸
:=C1

+ · · ·+




0

Hv,rx

Hv,1

...

Hv,v




︸ ︷︷ ︸
:=Bv

Kv

[
0 0 0 · · · −Idv,out

]

︸ ︷︷ ︸
:=Cv

+




Idax

0

0
...

0




︸ ︷︷ ︸
:=Brx

Krx

[
0 −Idrx 0 · · · 0

]

︸ ︷︷ ︸
:=Crx

. (3.4)

The A,Btx, Ctx, Bi, Ci, Brx, Crx are defined as above in (3.4).

Because Glin(z,K) looks like a transfer function matrix, we can formally ask what is the

LTI network whose transfer function matrix is Glin(z,K). Then, we can easily see that Glin(z,K)

corresponds to the transfer function of the linearized LTI network Nlin(z) of Fig. 3.5. The linearized

network Nlin(z) has a new transmitter tx′ and receiver rx′, and is an acyclic single-hop relay network

with a direct link between tx′ and rx′. We also use the subscript “tx′” and −1 alternatively, and

likewise “rx′” and v + 2 alternatively.

Let d := dim




Y

X1

...

Xv




= drx +
∑

1≤i≤v di,out where Y,X1, · · · , Xv are given as (3.3). Then,

we will prove that the maxflow of Nlin(z) is the same as the maxflow of N (z) by an offset d.
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Tx’ Rx’

Ktx

Krx

A

Ctx

K1

Kv

C1

Cv

Crx

Btx

B1

Bv

Brx

Figure 3.5: Linearized LTI network Nlin(z)

Furthermore, for sets (ordered sets) V = {v1, · · · , vi} and W = {w1, · · · , wj} we define

BV :=
[
Bv1 · · · Bvi

]

CV :=




Cv1

...

Cvi




DV,W :=




Dv1w1
· · · Dv1wj

...
. . .

...

Dviw1 · · · Dviwj




whenever this shorthand does not cause confusion.

We also denote the channel matrices from the node i to the node j in the linearized

LTI network Nlin(z) as H lin
i,j . Then, we can easily see that the channel matrix for the cut V ⊆

{0, · · · , v + 1} is

H lin
V ∪{tx′},V c∪{rx′} =

[
A BV

CV c 0

]
. (3.5)

We will prove the essential equivalence between the original networkN (z) and the linearized network

Nlin(z). First, we prove a lemma on matrix rank.

Lemma 3.2. For a field F and n1, n2 ∈ Z+, let A ∈ Fn1×n1 , B ∈ Fn2×n1 , C ∈ Fn1×n2 , D ∈ Fn2×n2 .

If D is invertible, the following rank equality holds.

rank

[
A B

C D

]
= rankD + rank(A−BD−1C)
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Proof.

rank

[
A B

C D

]
= rank

([
In1 −BD−1

0 In2

][
A B

C D

])

= rank

[
A−BD−1C 0

C D

]

= rankD + rank(A−BD−1C)

where the first equality comes from the fact that

[
In1

−BD−1

0 In2

]
is invertible, and the last equality

is a consequence of D being invertible.

Now, we prove that the maxflow of the two networks N (z) and Nlin(z) are equivalent with

an offset d.

Lemma 3.3 (Maxflow Equivalence Lemma). Given the above notations,

rank(KrxG(z,K)Ktx) + d = rankGlin(z,K).
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Proof.

rankGlin(z,K)

(A)
= rank




I −H1,rxK1 · · · −Hv,rxKv

0 I −H1,1K1 · · · −Hv,1Kv

...
...

. . .
...

0 −H1,vK1 · · · I −Hv,vKv




+ rank



−
[
−Krx 0 · · · 0

]




I −H1,rxK1 · · · −Hv,rxKv

0 I −H1,1K1 · · · −Hv,1Kv

...
...

. . .
...

0 −H1,vK1 · · · I −Hv,vKv




−1 


−Htx,rxKtx

−Htx,1Ktx

...

−Htx,vKtx







(B)
= d+ rank



−
[
−Krx 0 · · · 0

]




I −H1,rxK1 · · · −Hv,rxKv

0 I −H1,1K1 · · · −Hv,1Kv

...
...

. . .
...

0 −H1,vK1 · · · I −Hv,vKv




−1 


−Htx,rxKtx

−Htx,1Ktx

...

−Htx,vKtx







(C)
= d+ rank



Krx


I

[
H1,rxK1 · · · Hv,rxKv

]



I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv




−1






−Htx,rxKtx

−Htx,1Ktx

...

−Htx,vKtx







(D)
= d+

rank


Krx


Htx,rx +

[
H1,rxK1 · · · Hv,rxKv

]



I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv




−1 


Htx,1

...

Htx,v





Ktx




(E)
= d+ rank(KrxG(z,K)Ktx)

(A): This comes from Lemma 3.2 by considering 0drx as A,
[
−Krx 0 · · · 0

]
as B,




−Htx,rxKtx

−Htx,1Ktx

...

−Htx,vKtx




as C, and




Idrx −H1,rxK1 · · · −Hv,rxKv

0 Id1,out
−H1,1K1 · · · −Hv,1Kv

...
...

. . .
...

0 −H1,vK1 · · · Idv,out −Hv,vKv




as D. Here, D is invertible, since by
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Lemma 3.1 the rank of D is the maximum rank over all Ki(z) and by setting Ki(z) = 0 the matrix

D becomes full rank.

(B): Since each element of Ki is a dummy variable,

rank




Idrx −H1,rxK1 · · · −Hv,rxKv

0 Id1,out −H1,1K1 · · · −Hv,1Kv

...
...

. . .
...

0 −H1,vK1 · · · Idv,out −Hv,vKv



≥ rank




Idax 0 · · · 0

0 Id1,out · · · 0
...

...
. . .

...

0 0 · · · Idv,out




= d.

Moreover, because the dimension of the matrix is d× d, the rank is also upper bounded by d.

(C): We can easily show

[
I B

0 D

]−1

=

[
I −BD−1

0 D−1

]
. Thus, by considering

[
−H1,rxKrx · · · −Hv,rxKv

]

as B and




Idrx −H1,rxK1 · · · −Hv,rxKv

0 Id1,out −H1,1K1 · · · −Hv,1Kv

...
...

. . .
...

0 −H1,vK1 · · · Idv,out −Hv,vKv




as D, and multiplying with the matrix

[
−Krx 0 · · · 0

]
, we can prove this step.

(D): This comes from direct computation.

(E): This comes from the definition of G(z,K) shown in Theorem 3.1.

The mincut of Nlin(z) is also the same as the mincut of N (z), except for an offset d.

Lemma 3.4 (Mincut Equivalence Lemma). Given the above notation,

min{rankKtx, rankKrx, min
W⊆{0,··· ,v+1},W3tx,W 63rx

rankHW,W c}+ d

= min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′

rankH lin
V,V c . (3.6)

Proof. As we can see in the R.H.S. of (3.6), V is a cut of Nlin(z). We will divide V into three cases:

(i) When tx ∈ V c, (ii) When rx ∈ V , and (iii) When tx ∈ V and rx ∈ V c.
For cases (i) and (ii), we will show that the rank of channel matrices is at least dimXax+d.

For case (iii), we will show a one-to-one mapping between the cut V for Nlin(z) and the cut W for

N (z) — essentially V is a cut of the original network N (z).

(i) When tx ∈ V c,
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Notice that by definition, we have

rank

[
A

Ctx

]
=




0 0 0 · · · 0

0 Idrx 0 · · · 0

0 0 Id1,out · · · 0
...

...
...

. . .
...

0 0 0 · · · Idv,out

−Idax 0 0 · · · 0




= dimXax + d.

Moreover, whenever tx ∈ V c, the channel matrix for the cut H lin
V,V c contains

[
A

Ctx

]
and so

rankH lin
V,V c ≥ dimXax + d. Thus, we have

min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′,V c3tx

rankH lin
V,V c ≥ dimXax + d. (3.7)

Furthermore, by choosing V = {tx′}, we have

rankH lin
tx′,{tx,1,··· ,v,rx,rx′} = rank




A

Ctx

C1

...

Cv

Crx




= dimXax + d. (3.8)

Therefore, by (3.7) and (3.8) we can conclude

min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′,V c3tx

rankH lin
V,V c = dimXax + d.

(ii) When rx ∈ V ,

Notice that by definition, we have

rank
[
A Brx

]
=




0 0 0 · · · 0 Idax

0 Idrx 0 · · · 0 0

0 0 Id1,out
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · Idv,out 0




= dimXax + d.

Moreover, whenever rx ∈ V , the channel matrix for the cut H lin
V,V c contains

[
A Brx

]
and

so rankH lin
V,V c ≥ dimXax + d. Thus, we have

min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′,V 3rx

rankH lin
V,V c ≥ dimXax + d. (3.9)
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Furthermore, by choosing V = {tx′, tx, 1, · · · , v, rx}, we have

rankH lin
{tx′,tx,1,··· ,v,rx},rx′ = rank

[
A Btx B1 · · · Bv Brx

]
= dimXax + d. (3.10)

Therefore, by (3.9) and (3.10) we can conclude

min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′,V 3rx

rankH lin
V,V c = dimXax + d.

(iii) When tx ∈ V and rx ∈ V c,
In this case, we will find a one-to-one mapping between the cutset V for N lin(z) and a

cutset W for N (z), and show that their mincut is the same with an offset of d.

Let W := V \ {tx′} and W ′ := V c \ {rx′} = {tx′, tx, 1, · · · , v, rx, rx′} \ V \ {rx′}. Now, we

will show

rankH lin
V,V c = rankHW,W ′ + d. (3.11)

However, since the proof of (3.11) is not difficult but would be notationally complicated if written



96

out fully, we replace the proof by a representative example. Let v = 3 and and V = {0, 1}.

rankH lin
V,V c = rank




A B0 B1

C4 0 0

C2 0 0

C3 0 0




(A)
= rank




0 0 0 0 0 0 0

0 Idrx 0 0 0 Htx,rx H1,rx

0 0 Id1,out
0 0 Htx,1 H1,1

0 0 0 Id2,out 0 Htx,2 H1,2

0 0 0 0 Id3,out
Htx,3 H1,3

0 −Idrx 0 0 0 0 0

0 0 0 −Id2,out
0 0 0

0 0 0 0 −Id3,out 0 0




(B)
= rank




0 0 0 0 0 0 0

0 0 0 0 0 Htx,rx H1,rx

0 0 Id1,out
0 0 Htx,1 H1,1

0 0 0 0 0 Htx,2 H1,2

0 0 0 0 0 Htx,3 H1,3

0 −Idrx 0 0 0 0 0

0 0 0 −Id2,out
0 0 0

0 0 0 0 −Id3,out
0 0




(C)
= rank




0 0 0 0 0 0 0

0 0 0 0 0 Htx,rx H1,rx

0 0 Id1,out
0 0 0 0

0 0 0 0 0 Htx,2 H1,2

0 0 0 0 0 Htx,3 H1,3

0 −Idrx 0 0 0 0 0

0 0 0 −Id2,out 0 0 0

0 0 0 0 −Id3,out
0 0




(D)
= rank




0 0 0 0 0 0 0

0 0 0 0 0 Htx,rx H1,rx

0 0 0 0 0 Htx,2 H1,2

0 0 0 0 0 Htx,3 H1,3

0 −Idrx 0 0 0 0 0

0 0 Id1,out
0 0 0 0

0 0 0 −Id2,out 0 0 0

0 0 0 0 −Id3,out
0 0




(E)
=




Htx,rx H1,rx

Htx,2 H1,2

Htx,3 H1,3


+ d

= rankHW,W ′ + d
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(A): By the definitions of A, Bi, Ci shown in (3.4).

(B): This comes from elementary row operations to eliminate the I’s in the A by using the rows in

Ci’s. In general, this kind of step will make the A part only have I’s at the location corresponding

to the set V .

(C): This comes from elementary column operations to eliminate the Bi’s by using the I’s in the A.

In general, this kind of step will make the B part to have 0’s at the location corresponding to the

set V .

(D): By reordering of the rows so that the I’s in the A can be grouped with the Ci’s. In general,

this kind of step will make the B part to be full-rank.

(E): Since we know rank

[
0 A

B 0

]
= rankA + rankB and by the definitions, d = drx + d1,out +

d2,out + d3,out for this example.

As we can see, we only used elementary row and column operations which hold for general

matrices. Thus, we can easily prove that (3.11) holds in general by exactly the above argument.

Finally, using (i),(ii) and (iii) we can prove the lemma.

min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′

rankH lin
V,V c = min{dimXax, min

W⊆{0,··· ,v+1},W3tx,W 63rx
rankHW,W c}+ d

= min{dimU,dimY, dimXax, min
W⊆{0,··· ,v+1},W3tx,W 63rx

rankHW,W c}+ d

= min{rankKtx, rankKrx, min
W⊆{0,··· ,v+1},W3tx,W 63rx

rankHW,W c}+ d

Here, the second equality follows from the fact that the mincut ofN (z) is not greater than min{dimU,dimY }.
The third equality follows from rankKtx = min{dimU,dimXax} and rankKrx = min{dimY, dimXax}.

The main advantage of linearized networks is that it is known that the algebraic mincut-

maxflow theorem holds for Nlin(z,K) [4, Theorem 4.1]. Here, we present the theorem with a simpler,

self-contained and different proof for completeness.4

Theorem 3.3 (Algebraic Mincut-Maxflow Theorem for Linearized Network [4]). Given the above

notations,

rankGlin(z,K) = min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′

rankH lin
V,V c

Proof. We saw that the transfer functions and channel matrices of Nlin(z) are given in terms of

A,Bi, Ci in (3.4) and (3.5) respectively. Thus, it is enough to prove that

rank(A+
∑

0≤i≤v+1

BiKiCi) = min
V⊆{0,··· ,v+1}

rank

[
A BV

CV c 0

]
. (3.12)

4The proof of [4, Theorem 4.1] only uses linear algebraic fact and relates the rank of the matrices with the rank of
bigger matrices. However, here by the use of induction we make each step easier to understand.
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This is a fact of linear algebra and can be proved in three steps. First, we prove the theorem

for networks with a single relay with a scalar input and output, i.e. v = −1 and B0, C0 are vectors

(Case (i)). Then, we extend the claim for a single relay with a vector input and output, i.e. v = −1

and B0, C0 are matrices (Case (ii)). Finally, we generalize to multiple relays when v = 0, 1, 2, · · ·
(Case (iii)).

(i) First, consider the case when v = −1 and B0, C0 are vectors i.e. B0 ∈ F[z]m×1 and

C0 ∈ F[z]1×m. Then, (3.12) reduces to

rank(A+B0K0C0) = min(rank
[
A B0

]
, rank

[
A

C0

]
). (3.13)

Moreover, since B0 and C0 are vectors, min(rank
[
A B0

]
, rank

[
A

C0

]
) is either rank(A) or rank(A)+

1.

(i-i) When min(rank
[
A B0

]
, rank

[
A

C0

]
) = rank(A).

In this case, either rank
[
A B0

]
or rank

[
A

C

]
is equal to rank(A). Let rank

[
A B0

]
=

rank(A). Then, obviously, rank(A+ B0K0C0) ≥ rank(A). Moreover, the column space spanned by

B0 belongs to the column space spanned by A . Thus, B0K0C0 cannot increase the rank of the

column space and rank(A+B0K0C0) = rank(A).

When rank

[
A

C

]
= rank(A), the proof follows similarly.

(i-ii) When min(rank
[
A B0

]
, rank

[
A

C0

]
) = rank(A) + 1.

In this case, rank
[
A B0

]
= rank

[
A

C0

]
= rank(A) + 1. Moreover, since B0 is a column

vector, rank(A + B0K0C0) ≤ rank(A) + 1. Thus, we only have to prove rank(A + B0K0C0) ≥
rank(A) + 1, which is implied by rank(A + B0C0) = rank(A) + 1. The following claim proves the

last statement.

Claim 3.1. Let A ∈ F[z]m×m, b ∈ F[z]m×1, and c ∈ F[z]1×m. If

rank(A) + 1 = rank
[
A b

]
= rank

[
A

c

]

then

rank(A) + 1 = rank(A+ bc).
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Proof. Let rank(A) = r. Then, there exist invertible matrices U and V such that

UAV =

[
Ir 0

0 0

]
.

Denote

[
b1

b2

]
:= Ub and

[
c1 c2

]
:= cV where b1 and c1 are r × 1 column and 1 × r row vectors

respectively.

Moreover, since U and

[
V 0

0 1

]
are invertible, we have

rank
[
A b

]
= rank(U

[
A b

] [V 0

0 1

]
) = rank

[
UAV Ub

]
= rank

[
Ir 0 b1

0 0 b2

]
= r + rank(b2).

Thus, for rank
[
A b

]
= rank(A) + 1 to hold, b2 has to be a non-zero vector. Likewise, c2 also has

to be a non-zero vector.

Finally, we can conclude

rank(A+ bc) = rank(U(A+ bc)V ) = rank(

[
Ir 0

0 0

]
+

[
b1

b2

]
cV )

= rank(

[
Ir 0

0 0

]
+

[
0

b2

]
cV ) (3.14)

= rank(

[
Ir 0

0 b2c2

]
) (3.15)

= rank(A) + 1. (3.16)

(3.14): elementary row operation and b2 is non-zero.

(3.15): elementary row operation.

(3.16): b2 and c2 are non-zero.

(ii) Consider the case when v = −1 and B0, C0 are general matrices.

Like (i), (3.12) reduces to (3.13). The only difference is now B0, C0 can be matrices, and

the following claim shows (3.13) still holds.

Claim 3.2. Let A ∈ F[z]m×m, B0 ∈ F[z]m×r, C0 ∈ F[z]q×m, and K0 ∈ F[K]r×q where each element

of K0 is of the form ki ∈ K and distinct. Then,

rank(A+B0K0C0) = min{rank
[
A B0

]
, rank

[
A

C0

]
}
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Proof. Let x := rank
[
A B0

]
− rank(A) and y := rank

[
A

C0

]
− rank(A). Then, we can find at least

x linearly independent column vectors of B0 which are independent from the columns of A, and at

least y linearly independent row vectors of C0 which are independent from the rows of A. Formally,

let b1, · · · , bx and c1, · · · , cy be such vectors, i.e. bi and cj are columns and rows of B0 and C0

respectively and rank
[
A b1 · · · bx

]
= rank

[
A B0

]
, rank




A

c1
...

cy




= rank

[
A

C0

]
. Then, we have

rank(A+B0K0C0) ≥ rank(A+
∑

1≤i≤min{x,y}

bici) (3.17)

= min{rank
[
A B0

]
, rank

[
A

C0

]
}. (3.18)

(3.17): We can find a r × q matrix K ′0 such that all the elements of the matrix are 0 or 1, and

A + B0K
′
0C0 = A +

∑
1≤i≤min{x,y} bici. Moreover, rank(A + B0K0C0) ≥ rank(A + B0K

′
0C0) by

Lemma 3.1.

(3.18): bi and ci are independent from the column and row space spanned by A respectively. Fur-

thermore, bi and ci are also independent from b1, · · · , bi−1 and c1, · · · , ci−1 respectively. Therefore,

we can repeatedly apply Claim 3.1 and get the desired result.

Moreover,

rank(A+B0K0C0) = rank(
[
A B0

] [ I

K0C0

]
) ≤ rank

[
A B0

]
(3.19)

rank(A+B0K0C0) = rank(
[
I B0K0

] [A
C0

]
) ≤ rank

[
A

C0

]
. (3.20)

Therefore, by (3.18), (3.19), (3.20) the claim is true.

(iii) The case with multiple relays, i.e. v = 0, 1, 2, · · · and Bi, Ci are general matrices.

Now, we will prove (3.12) for a general v. The proof is an induction on v = −1, 0, 1, 2, · · · .
Claim 3.2 shows (3.12) is true for v = −1. To prove that the theorem also holds for v = 0, 1, 2, · · · ,
we will assume that the theorem holds for v = w as the induction hypothesis and prove that the

theorem holds for v = w + 1.

First, by applying Claim 3.2 we have

rank(A+
∑

0≤i≤w+1

BiKiCi) = rank(A+
∑

0≤i≤w

BiKiCi +Bw+1Kw+1Cw+1)

= min{rank
[
A+

∑
0≤i≤w BiKiCi Bw+1

]
, rank

[
A+

∑
0≤i≤w BiKiCi

Cw+1

]
} (3.21)
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Consider the two terms one at a time.

rank
[
A+

∑
0≤i≤w BiKiCi Bw+1

]

= rank(
[
A Bw+1

]
+
∑

0≤i≤w

BiKi

[
Ci 0

]
)

= min
W⊆{0,··· ,w}

rank

[
A Bw+1 BW

CW c 0 0

]
(3.22)

= min
W⊆{0,··· ,w+1},W3w+1

rank

[
A BW

CW c 0

]
. (3.23)

where (3.22) comes from (3.12) for v = w by replacing A by
[
A Bv+1

]
, Bi by Bi, and Ci by

[
Ci 0

]
.

Likewise, we can also prove

rank

[
A+

∑
0≤i≤w BiKiCi

Cw+1

]

= rank



[

A

Cw+1

]
+
∑

0≤i≤w

[
Bi

0

]
KiCi




= min
W⊆{0,··· ,w+1},W 63w+1

rank

[
A BW

CW c 0

]
(3.24)

By plugging (3.23) and (3.24) to (3.21), we have

rank(A+
∑

0≤i≤w+1

BiKiCi) = min
W⊆{0,··· ,w+1}

rank

[
A BW

CW c 0

]
.

Therefore, by induction the theorem is true.

So far, we discussed how to convert general topology networks into standardized networks

— linearized networks (networks shown in Fig. (3.4) to linearized networks shown in Fig. 3.5).

Moreover, we discovered that the mincuts and maxflows of two networks are equivalent with an

offset (Lemma 3.3 and Lemma 3.4). Thus, using the mincut-maxflow theorem for linearized networks

(Theorem 3.3), we can prove the algebraic mincut-maxflow theorem for general LTI networks.

Proof of Theorem 3.2. Since we can arbitrarily choose dax, let dax ≥ max{dtx, drx}. Then,

rankG(z,K) = rank(KrxG(z,K)Ktx) (3.25)

= rankGlin(z,K)− d (3.26)

= min
V⊆{−1,··· ,v+2},V 3tx′,V 63rx′

rankH lin
V,V c − d (3.27)

= min{rankKtx, rankKrx, min
V⊆{0,··· ,v+1},V 3tx,V 63rx

rankHV,V c} (3.28)

= min
V⊆{0,··· ,v+1},V 3tx,V 63rx

rankHV,V c . (3.29)
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R

DS

S[1] S[2] S[3] S[4] S[5] S[6]

R[1] R[2] R[3] R[4] R[5] R[6]

D[1] D[2] D[3] D[4] D[5] D[6]

u1 u2 u3 u4 u5

u1 u1 ,u2 u1 ,u2, u3 u1 u2u3 u4

u1 2u1+u2 2u2+u3+u4

D[7]

3u1+u5

u1,u2,…

u1+4u3

u6

Figure 3.6: Simple Relay Network and the corresponding unfolded network with a mincut-achieving

linear scheme

(3.25) is due to the following fact: Select Krx(z) as a 0−1 matrix that chooses rankG(z,K) indepen-

dent rows of G(z,K) and Ktx(z) as a 0−1 matrix that chooses rankG(z,K) independent columns of

KrxG(z,K). Then, the rank of the resulting matrix Krx(z)G(z,K)Ktx(z) is rankG(z,K). There-

fore, (3.25) follows from Lemma 3.1.

(3.26), (3.27) and (3.28) follow from Lemma 3.3, Theorem 3.3 and Lemma 3.4 respectively.

(3.29) follows from the fact that the mincut ofN (z) is not greater than min{dtx, drx}, rankKtx = dtx

and rankKrx = drx.

Remark: Part of Theorem 3.2 was already known in [52] and [49]. In fact, the main insight

of the theorem is indebted to Koetter and Medard’s algebraic framework of network coding [52].

However, the scope of the paper [49] is traditional networks with orthogonal links, and the proof

of the theorem is a corollary from the Ford-Fulkerson algorithm [31]. Later, Kim and Medard [49]

extended the algebraic framework to the deterministic model [6] using hypergraph ideas, and proved

the theorem using Ford-Fulkerson algorithm on hypergraphs [65]. Their idea provides an interesting

alternative view to the theorem, and is worth a formal and rigorous study given that the details in

[49] were omitted due to space limits. However, the model in [49] is still not general enough for LTI

networks since it only covers the case when the channel gains are 0 or 1 and field sizes are finite.

Moreover, sometimes it is not clear how to convert general LTI networks to equivalent graphs (or

hypergraphs).

3.2.3 Network Linearization vs. Network Unfolding

We proposed network linearization as a way of “converting” an arbitrary relay network to

an equivalent acyclic single-hop relay network. In this section, we will compare network linearization

with the previously known idea, network unfolding.

Network unfolding is proposed in [1] to convert arbitrary networks to layered networks

in which the only existing edges are from one layer to the next layer. As we can see in Fig. 3.6,
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Figure 3.7: Linearized LTI network N ′lin(Z) with an additional destination Rx′′
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1
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Figure 3.8: Linearized Network of the example in Fig. 3.6

by introducing duplicated nodes over the time, any arbitrary network can be approximated by a

layered network. Moreover, the capacity of the layered network approaches the capacity of the

original network as the time expansion gets large. Since layered networks have a quite attractive

and simple topology, a series of works [36, 2, 112] have exclusively focused on them and developed

algorithms that find deterministic linear schemes for layered networks.

However, what these papers are overlooking is that when we fold the unfolded network

back into its physical topology a time-invariant scheme might become a time-varying scheme. The

example shown in Fig. 3.6 shows that a network-coding design based on an unfolded network can

cause significant problems even in the simple network with one source, one relay and one destination.

The source transmits u1, · · · , u6 to the destination. The letters on the arrows of the unfolded network

represent the flows of information. We can easily check that the network-coding scheme shown in

the figure is mincut achieving.

However, when we fold it back, we can see problems for implementation. First of all, the

scheme is time-varying at the relay. Thus, for the scheme to work every node in the network has

to be synchronized to a common clock. Moreover, the transmitted signal at a given time step may

depend on all of its previously received signals, which may require a large memory.

On the other hand, from the algebraic mincut-maxflow theorem (Theorem 3.2) we can

conclude that there exists a mincut achieving LTI scheme by using the same argument used in [52].

By Lemma 1 of [52] when the field size is large enough there exist Ki that achieve the mincut
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of the network. Moreover, when the underlying field F are the reals R or complex C, these fields

already have an infinite number of elements and there exist channel gain matrices which achieve

the mincut of the network. When the fields are finite, by extending F to Fm we can guarantee a

large-enough field size. Furthermore, we even do not have to extend the field when Ktx,Ki,Krx are

allowed to have memory. F[z], the field of rational functions in z with coefficients from F, is already

an infinite field. Like Lemma 1 of [52] we can prove that there exist mincut-achieving casual5 LTI

filters, Ktx,Ki,Krx, whose elements are from F[z], i.e. having memory is equivalent to extending a

field size.

However, we have to be careful to use the network linearization idea for the actual design

of the gain matrices Ki, i.e. when we are choosing the elements of Ki from F[z] and plugging them

in. The reason is we also have to guarantee the existence of the transfer function, which is the

invertibility of




I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv


 as shown in Theorem 3.1.

Fortunately, this condition can be also posed as a part of the LTI communication network

problem. We can easily see that the condition is equivalent to the invertibility of




Idax 0 0 · · · 0

0 I −H1,rxK1 · · · −Hv,rxKv

0 0 I −H1,1K1 · · · −Hv,1Kv

...
...

...
. . .

...

0 0 −H1,vK1 · · · I −Hv,vKv




.

This matrix further equals I+B1K1C1 + · · ·+BvKvCv using the definitions in (3.4). We can see the

maximum rank (and the dimension) of I+B1K1C1 + · · ·+BvKvCv over all Ki is dax+d. Therefore,

the invertibility of the matrix can be thought as the mincut achieving condition from Tx′ to Rx′′ in

Figure 3.7. Finally, we can notice that by choosing dax as the d.o.f. mincut of N (z), the maxflow

from Tx′ to both Rx′ and Rx′′ becomes d+ dax.

Theorem 3.4. Given the above definitions of N (z) and N ′lin(z), let’s choose dax as the d.o.f. mincut

of N (z). Then, all the multicast network gains Ki(z) ∈ Cdi,in×di,out which achieve the mincut of

N ′lin(z) to both receivers Rx′ and Rx′′ can also achieve the mincut of N (z).

Proof. The proof follows essentially the same as Lemma 3.3 only by replacing Ki with Ki(z). The

existence of the transfer function comes from the mincut achievability of Rx′′ as discussed above.

Therefore, we can find a mincut-achieving LTI network coding scheme of N (z) as follows:

(i) Select dax of (3.3) as the d.o.f. mincut of N (z). (ii) Find a mincut-achieving multicast network

5Notice that even if we put the causal restriction on the design of Ki, the dimensions of the algebraic varieties
remain the same. Thus, the proof argument for Lemma 1 of [52] still holds.
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coding scheme for the linearized network N ′lin(z) of Figure 3.7 with two receivers. (iii) Apply Ki

obtained in the previous steps to the original network.

Furthermore, it is well known that when the network is acyclic, the transfer function always

exists [52, Lemma 2]. Therefore, when the network N (z) is acyclic, the receiver Rx′′ in N ′lin(z) which

was introduced to guarantee the existence of the transfer function is redundant.

Fig. 3.8 shows the linearized network of the example in Fig. 3.6. By the above argument,

any LTI scheme of S, R, D that makes the d.o.f. capacity from S′ to D′ be 3 achieves the mincut

of the original network. For instance, S = 1, R = 1, D = 1 achieve the mincut of both networks of

Fig. 3.6 and Fig. 3.8.

Network linearization can also be extended to general information flows, multicast, broad-

cast, and unicast. Multicast problems will also posed as a multicast problems even after network

linearization. However, broadcast and unicast problems will be posed as secrecy problems where

eavesdroppers reflect unintended messages in the original problems. We defer further discussions of

this to Appendix 8.1.

3.3 Preliminaries on Decentralized Control

In the previous section, we introduced network linearization based on internal states and

circulation arcs. As we mentioned, the internal states idea came from linear system theory. Moreover,

once we introduce the circulation arc as Fig. 3.4, the whole system becomes a closed-loop system,

and such closed-loop systems are the main interest of control theory. Therefore, we can consider

control theory from the communication(network coding) perspective. First, we review several known

facts on decentralized linear system theory — when the system is LTI-stabilizable — and introduce

a few concepts to LTI communication networks.

3.3.1 Decentralized Linear System

Decentralized linear systems have multiple controllers, each of which has access to its

own observations and generates its own control inputs. Formally, the decentralized linear system,
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L(A,Bi, Ci), is defined as follows:6

x[n+ 1] = Ax[n] +B1u1[n] + · · ·+Bvuv[n]

y1[n] = C1x[n]

...

yv[n] = Cvx[n]

where A ∈ Cm×m, Bi ∈ Cm×qi and Ci ∈ Cri×m. Then, an interesting question is under what

conditions such systems are stabilizable using only LTI controllers:

Definition 3.3 (Stabilizability). A decentralized linear system is called LTI-stabilizable if there exist

linear time-invariant (LTI) controllers Ki (possibly with internal memories) that connect yi to ui

whose resulting closed-loop system has only stable poles.

The stabilizability condition for a decentralized linear system is given in [104] using the

concept of fixed modes.

Definition 3.4. [104, Definition 2] λ is called a fixed mode of L(A,Bi, Ci) if λ ∈
⋂
Ki∈Cqi×ri σ(A+

∑
1≤i≤v BiKiCi) where σ(·) is the set of eigenvalues of the matrix.

The intuition behind this definition is that if an eigenvalue is fixed for all choices of (memo-

ryless) controllers, this eigenvalue is either unobservable or uncontrollable. Thus, if we have unstable

fixed modes, we cannot stabilize the plant.

Theorem 3.5. [104, Theorem 1] L(A,Bi, Ci) is LTI-stabilizable if and only if all of its fixed modes

are within the unit circle.

Therefore, the stabilizability of linear systems is determined by the existence of unstable

fixed modes, and the characterization of stabilizability reduces to characterization of the fixed modes.

However, the characterization of fixed modes shown in Definition 3.4 involves an inter-

section over an infinite number of sets. Therefore, Anderson et al. found the following algebraic

characterization of fixed modes (3.1) which only involves minimization over a finite set [4].

Theorem 3.6. λ is a fixed mode of L(A,Bi, Ci) if and only if

min
V⊆{1,2,··· ,v}

rank

[
A− λI BV

CV c 0

]
≥ dim(A).

In other words, the two characterizations of fixed modes shown in Definition 3.4 and The-

orem 3.6 are equivalent. In the following discussion, we will see this equivalence turns out to be a

special case of the mincut-maxflow theorem for LTI networks.

6In this chapter, we consider discrete-time systems since they are conceptually easier to connect to communication
theory. We believe that the underlying phenomena discussed here also exist in continuous-time. Furthermore, we
assume the matrices here are complex since we will use the Jordan form which can be complex. However, if the
system were real we could prove corresponding results restricting the controller design to be real without changing
the stabilizability condition.
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Figure 3.9: Standard LTI Network

3.3.2 LTI Communication Networks at specific frequencies

Since the channel gains of LTI networks are given in z-transform, write the network as

N (z). We will also consider an LTI network, N (z), at a specific generalized frequency, z = λ. To

indicate that the LTI network is considered at the generalized frequency z = λ, we write the network

as N (λ). N (λ) implies all z in the LTI network are replaced by λ. Then, the capacity definition is

naturally generalized to N (λ).

Definition 3.5. For a given LTI network N (z), we say that the degree of freedom (d.o.f.) capacity

of the network N (z) is k at frequency z = λ if its transfer matrix Gtx,rx(λ,Ki) is rank k.

Here we can see that the transfer matrix only makes sense at z = λ when it does not have

a pole at λ. Thus, we assume that Hi,j has no pole at z = λ. Then, the algebraic mincut-maxflow

theorem also holds for N (λ) as before.

Corollary 3.1. Given the LTI network N (λ) with no poles at λ in the Hij(z),

rank(Gtx,rx(λ,K))

= min
V⊆{tx,1,··· ,v,rx},V 3tx,V 63rx

rank(HV,V c(λ)).

Proof. Since the Hi,j(z) do not have any pole at λ, we can apply Theorem 3.2 with the channel

matrices Hi,j(λ).

Before we discuss the externalization of implicit communication in decentralized linear

systems, it is helpful to define a standard network we will repeatedly encounter later.

Definition 3.6. The LTI network shown in Fig. 3.9 is called a standard LTI network,

Ns(A;Bi, B
′
i;Ci, C

′
i;D,D

′;S, S′).
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The transfer matrix and the channel matrices of the standard network are given as follows.

Lemma 3.5. In the standard network of Fig. 3.9, the transfer matrix from the transmitter to the

receiver is given as

Gtx,rx =A+B1K1C1 + · · ·+BvKvCv

+ (D +B1K1C
′
1 + · · ·+BvKvC

′
v)

· (S−1 − (S′ +B′1K1C
′
1 + · · ·+B′vKvC

′
v))
−1

· (D′ +B′1K1C1 + · · ·+B′vKvCv).

The channel matrices H between the transmitter, the relays and the receiver are given for 1 ≤ i, j ≤ v:

Htx,rx = A+D(S−1 − S′)−1D′,

Htx,i = Ci + C ′i(S
−1 − S′)−1D′,

Hi,rx = Bi +D(S−1 − S′)−1B′i,

Hi,j = C ′j(S
−1 − S′)−1B′i.

Here, we just assume the appropriate inverse matrices exist.

Proof. Assign u, xi, i and y as we can see in Fig. 3.9. Then, we can find the following relationships

between these:

y = B1x1 + · · ·+Bvxv +Au+Di (3.30)

x1 = K1C1u+K1C
′
1i (3.31)

...

xv = KvCvu+KvC
′
vi

i = SS′i+ SB′1x1 + · · ·+ SB′vxv + SD′u (3.32)

By (3.31) and (3.32), we have the following relation:

i = SS′i+ (SB′1K1C1 + · · ·+ SB′vKvCv)u+ (SB′1K1C
′
1 + · · ·+ SB′vKvC

′
v)i+ SD′u

(⇔)S−1i = (S′ +B′1K1C
′
1 + · · ·+B′vKvC

′
v)i+ (D′ +B′1K1C1 + · · ·+B′vKvCv)u

(⇔)i = (S−1 − (S +B′1K1C
′
1 + · · ·+B′vKvC

′
v))
−1(D′ +B′1K1C1 + · · ·+B′vKvCv)u (3.33)

By plugging (3.31) and (3.33) into (3.30), we get the transfer function from the transmitter to the

receiver.

One can easily check the channel matrices between nodes.
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⎡
⎢⎢⎢⎢⎣

x1[n+ 1]
x2[n+ 1]
x3[n+ 1]
x4[n+ 1]
x5[n+ 1]

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

4 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1[n]
x2[n]
x3[n]
x4[n]
x5[n]

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦
u1[n] +

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦
u2[n] +

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦
u3[n]

y1[n] =

[
1 0 0 0 0
0 1 0 0 0

]
x[n]

y2[n] =

[
0 0 1 0 0
0 0 0 1 0

]
x[n]

y3[n] =
[
0 0 0 0 1

]
x[n]

Figure 3.10: An example of an implicit information flow in a decentralized linear system.
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Figure 3.11: Conceptual representations of the information flows within the example of Fig. 3.10

3.4 Example: Information Flow in a Decentralized Linear

System

Before we discuss a general algorithm to externalize the implicit communication between

controllers, it will be helpful to see the information flows that we want to capture in an illustrative

example. By now, we have mounting evidence7 that in linear systems, the unstable states themselves

are the sources and, at the same time, the destinations of information flows. Consider a linear plant

controlled by one controller. The states of the system will be excited by the disturbance, i.e. the

states are generating uncertainties. Then, the states will be observed by the controller, i.e. the

uncertain information flows from the state to the controller. Finally, the controller will compensate

for the disturbance, i.e. the information flows back to the states.

When there is more than one controller, the situation becomes more complicated since

the controllers can implicitly communicate with each other through the plant [108, 37]. The exam-

ple shown in Fig. 3.10 (adapted from [5]) illustrates this phenomenon. As we can see, the states

x1[n] and x2[n] are associated with the eigenvalue 4. However, the controller K1 can only observe

7We return to this point in the conclusion, but the evidence here has largely come from contexts in which the
communication is explicitly present. On one side, papers like [89, 26, 86] construct feedback communication systems
that use unstable states to encode desired messages. This provides strong evidence for the states acting as information
sources. On the other side, papers like [8, 97, 86] talk about networked control systems in which the communication
demands on the network come from the states. These argue persuasively for the states in a control system as being
destinations of information flows since control and estimation are intimately linked together. The perspective on
the Kalman filter presented in [67] suggests strongly that such information flows exist even when there is no explicit
communication going on.
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x1[n], x2[n], the controller K2 can only control x1[n], x2[n], and the controller K3 can neither observe

nor control x1[n], x2[n]. Therefore, to stabilize x1[n], x2[n] the controller K1 intuitively has to relay

its observations to controller K2 through the implicit channel provided by the states x3[n], x4[n].

The red arrow of Fig. 3.10 shows the information flow to stabilize x1[n], x2[n]. First,

x1[n], x2[n] is observed by K1 through y1[n]. Then, K1 relays its observations to K2 by u1[n]

through the channel x3[n], x4[n]. K2 receives the relayed signals through y2[n], and finally controls

the states by u2[n]. Thus, we expect that the implicit information flow to stabilize x1[n], x2[n]

should be roughly representable as the first LTI network of Fig. 3.11. We can see the same kind of

information flow to stabilize the states x3[n], x4[n] as indicated by the blue arrow. Meanwhile the

state x5[n] can be stabilized by the controller K3 as indicated by the green arrow. Conceptually,

these information flows can be represented as the second and third LTI networks of Fig. 3.11.

Here, we can notice some interesting points. First, we are dividing the states according to

their associated eigenvalues. In this example, the states are first divided into three sets {x1[n], x2[n]},
{x3[n], x4[n]} and {x5[n]}, and the information flows for these sets are considered separately. More-

over, in each information flow the states associated with the same eigenvalue are considered as both

sources and destinations of the information. The remaining states are considered as the channels

that are available to implicitly carry this information flow. The controllers themselves are considered

as relays. So in the standard LTI model of Fig. 3.9, the blocks “tx” and “rx” correspond to the set of

states in consideration and the remaining states are included in the channel matrices, A,Bi, · · · , S′.
The “Ki” blocks correspond to the controllers.

We can also see the connection between stabilizability and capacity. The eigenvalue 4 has

two associated states, x1[n] and x2[n]. Thus, we can think that this source has 2 d.o.f. to transmit.

This information can be successfully transferred since the channel provided by the states x3[n] and

x4[n] has d.o.f. capacity 2, and so the eigenvalue 4 is not a fixed mode. However, if we remove the

state x4[n] from the system, the implicit channel’s d.o.f. capacity becomes 1. Thus, a source with 2

d.o.f. cannot be transferred, and the eigenvalue 4 becomes a fixed mode.

Table 3.1 summarizes the relationship between decentralized control and relay communi-

cation problems which we have discussed so far and will make rigorous in the following sections.

3.5 Externalization of Implicit Communication

In this section, we discuss how to externalize the implicit communication in decentralized

linear systems. The main idea can be considered as the reverse of the algebraic approach to network

coding. In [52], Koetter and Medard considered network coding as an algebraic problem. In other

words, they found that what is important about networks (graphical objects) in network coding is

their transfer functions (algebraic objects). What we do is the opposite. First, we will find transfer

functions which are closely connected to the implicit information flows needed to stabilize linear
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LTI Communication Networks Decentralized Linear Systems

Source Unstable States associated with eigenvalue λ
Destination Unstable States associated with eigenvalue λ
Relays Controllers
Channels Remaining States and Bi, Ci
Message Unstable Subspace associated with eigenvalue λ
Rate of Message Number of Jordan blocks associated with eigenvalue λ
Capacity Stabilizability (Enough implicit communication for unstable subspace)

Table 3.1: The comparison between decentralized linear systems and LTI communication networks

systems. Then, we will find the LTI networks whose transfer functions these are.

3.5.1 Canonical-Form Externalization

It turns out that what is important in externalization is the right choice of transfer function.

In section 3.4 we saw that the source and the destination of the information flows are the states.

Thus, the straightforward choice is the transfer function from the states x[n] to themselves. For that

purpose, we introduce an auxiliary input u[n] and auxiliary output y[n] to the closed loop system

in the following way.

x[n+ 1] = (A+B1K1C1 + · · ·+BvKvCv)x[n] + u[n],

y[n] = x[n].

It is clear that all the states x[n] are directly controllable by u[n] and observable by y[n]. Since the

fixed modes show up as poles in the transfer function, checking whether λ is a fixed mode involves

checking whether the transfer function from u[n] to y[n] has a fixed pole. However, checking poles is

mathematically troublesome since it results in division by zero. Thus, instead we inspect the zeros

of the formal transfer function from y[n] to u[n].

Under the assumption that x[0] = 0, the formal transfer function from y[n] to u[n] is given

as

u(z) = (zI −A−B1K1C1 − · · · −BvKvCv)︸ ︷︷ ︸
:=Gcn(z,K)

y(z).

Here, Gcn(z,K) is a rational function whose dummy variables are not only z but also the elements

of the Kis.

By Lemma 3.5, the standard network, Ns(zI − A;−Bi, 0;Ci, 0; 0, 0; 0, 0), has Gcn(z,K)

as its transfer function. Denote this standard network as Ncn(z). The graphical representation of

Ncn(z) at the generalized frequency z = λ is shown in Fig. 3.12.

Then, we can easily derive the following theorem connecting the d.o.f. capacity of the LTI

network Ncn(z) with the stabilizability of the decentralized linear system L(A,Bi, Ci).
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Figure 3.12: The graphical representation of Ncn(λ)

Theorem 3.7 (Capacity-Stabilizability Equivalence). Given the above definitions, the following

statements are equivalent.

(1) λ is a fixed mode of the decentralized linear system L(A,Bi, Ci).

(2) rank (Gcn (λ,K)) < dim(A).

(3) (transfer matrix rank of LTI network Ncn(λ)) < dim(A).

(4) (mincut rank of the LTI network Ncn(λ)) < dim(A).

(5) minV⊆{1,··· ,v} rank

[
λI −A −BV
CV c 0

]
< dim(A).

Proof. By the definition of fixed modes, (1) is equivalent to det(A+
∑

1≤i≤v BiKiCi − λI) = 0 for

all Ki ∈ Cqi×ri . By Lemma 3.1, this is equivalent to det(A+
∑

1≤i≤v BiKiCi − λI) = 0 where each

element of Ki is considered as distinct dummy variables. Since det(A+
∑

1≤i≤v BiKiCi − λI) = 0

means not full rank, this is again equivalent to rank(λI −A−
∑

1≤i≤v BiKiCi) < dim(A), which is

the statement (2). (2) and (3) are equivalent by the definitions of Gcn(z,K) and Ncn(z). (3) and

(4) are equivalent by the algebraic mincut-maxflow theorem, Corollary 3.1. The equivalence of (4)

and (5) follows from the definitions of the cutset matrices of Ncn(z).

Remark 1: y(z) is the signal assigned to the transmitter of Ncn(z), and u(z) is the signal

assigned to the receiver of Ncn(z). Thus, the LTI network connects the states x[n] to themselves,

which complies with our discussion of section 3.4.

Remark 2: The statement (1) of the theorem is directly connected to stabilizability by Theorem 3.5,

and the statement (3) of the theorem is about the d.o.f. capacity of the network at the frequency

z = λ. Thus, this theorem reveals a fundamental equivalence between stabilizability and capacity.

Remark 3: This externalization seems naive, and as we can see in Fig. 3.12 it gives only networks with

a simple topology that does not have any links between the relays. We call this externalization as the

canonical-form externalization because of its simple topology. In the next section, we show another

way of externalizing the implicit communication which results in a different network topology. The

fact that different externalizations are possible is what allowed to us discover that, in fact, any

arbitrary network can be converted to the canonical network of Fig. 3.12, which is the insight for

network linearization as discussed in Section 3.2.2.

Remark 4: In fact, statement (5) is the algebraic characterization of fixed modes shown in [4]. So
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Figure 3.13: Canonical-form externalization of the system of Fig. 3.10 for λ = 4

in hindsight, we can say that Anderson and Clements found the algebraic mincut-maxflow theorem

for the special network of Fig. 3.12.

Remark 5: It is known that the rank of the channel matrix for a cut is a submodular function [112].

The complexity of submodular function minimization is polynomial time [91]. Therefore, we can

efficiently check for fixed modes.

Now, we can try to externalize the implicit communication of the example shown in

Fig. 3.10. Fig. 3.13 shows the canonical-form externalization for eigenvalue 4. If we look at the

figure, this externalization is not what we expected in Fig. 3.11. Since the links between the relays

are missing, we cannot see any relaying behavior between two controllers. Also, we cannot clearly

see the fact that there are 2 degrees-of-freedom that must be communicated. This motivates us to

seek a more compact externalization where the eigenvalues are emphasized by using Jordan forms.

3.5.2 Jordan-Form Externalization

As we see in the above section, externalization is done for each eigenvalue of A. For a general

matrix A, there is no clear correspondence between eigenvalues and particular states in the linear

system. Thus, we cannot but choose the transfer function from all the states x[n] to themselves.

However, if A is given in Jordan normal form [17], we can find a natural correspondence between

eigenvalues and states, and use this to reduce the dimension of the transfer function. Moreover,

by a similarity transform an arbitrary linear system L(A,Bi, Ci) can be converted to an equivalent

linear system L(Ã, B̃i, C̃i) with the matrix A′ in Jordan form [17]. Thus, without loss of generality,

assume that A is in Jordan form. (This corresponds to examining the system in its natural coordinate

system.)

For a Jordan-form A matrix, there is no (internal) interaction between states belonging to

different Jordan blocks. Thus, as discussed in section 3.4, to check if λ is a fixed mode, it is enough

to examine the transfer matrix from the states associated with Jordan blocks corresponding to the

eigenvalue λ to themselves. For externalization, we can simply repeat the steps of the above section.
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To understand the core ideas, we first consider a diagonal A matrix, i.e. A =

[
λImλ 0

0 A′

]

where A′ is a diagonal matrix whose diagonal elements are not equal to λ. Because the matrix is

diagonal, each Jordan block is just a 1 × 1 matrix and so mλ can be thought of as the number of

Jordan blocks associated with λ. We will introduce auxiliary inputs and outputs that control and

observe the states corresponding to the eigenvalue λ. For this, we define Bλ and Cλ as follows:

Cλ =
[
Imλ 0

]
, Bλ =

[
Imλ 0

]T
. (3.34)

Then, the closed loop system is given as

x[n+ 1] = (A+
∑

1≤i≤v

BiKiCi)x[n] +Bλuλ[n]

yλ[n] = Cλx[n]

where uλ[n] and yλ[n] are mλ × 1 vectors. Let’s set

(zI −A) =

[
Aλ,1,1(z) Aλ,1,2(z)

Aλ,2,1(z) Aλ,2,2(z)

]
(3.35)

Ci =
[
Ci,λ,1 Ci,λ,2

]
, Bi =

[
Bi,λ,1

Bi,λ,2

]

where Aλ,1,1(z) is a mλ ×mλ matrix, Bi,λ,1 is a mλ × qi matrix, Ci,λ,1 is a ri ×mλ matrix, and

the others are the proper implied dimensions. Here, by construction, we can see Aλ,1,1(λ) = 0,

Aλ,1,2(λ) = 0, Aλ,2,1(λ) = 0, and Aλ,2,2(λ) is invertible.

Then, we can see that the transfer function from uλ(z) to yλ(z) is given as follows:

yλ(z) =
[
I 0

]([Aλ,1,1(z) Aλ,1,2(z)

Aλ,2,1(z) Aλ,2,2(z)

]

−
∑

1≤i≤v

[
Bi,λ,1KiCi,λ,1 Bi,λ,1KiCi,λ,2

Bi,λ,2KiCi,λ,1 Bi,λ,2KiCi,λ,2

])−1
[
I

0

]
uλ(z) (3.36)

We need the following lemma to obtain the transfer function from yλ(z) to uλ(z).

Lemma 3.6. For a field F and n1, n2 ∈ Z+, let y ∈ Fn1×1, u ∈ Fn1×1, A ∈ Fn1×n1 , B ∈ Fn1×n2 ,

C ∈ Fn2×n1 , and D ∈ Fn2×n2 . Assume D is invertible. Then,

[
A B

C D

]
is invertible iff (A−BD−1C)

is invertible.

Moreover, if we assume D and

[
A B

C D

]
are invertible,

y =
[
In1 0

] [A B

C D

]−1 [
In1

0

]
u (3.37)
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implies

u = (A−BD−1C)y.

Proof. By Lemma 3.2,

rank

[
A B

C D

]
= n2 + rank(A−BD−1C).

Therefore, the first statement of the lemma is true. For the second,

y =
[
In1 0

] [A B

C D

]−1 [
In1

0

]
u

=
[
In1

0
]([In1 BD−1

0 In2

][
A−BD−1C 0

C D

])−1 [
In1

0

]
u

=
[
In1

0
] [ (A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

][
In1

−BD−1

0 In2

][
In1

0

]
u

= (A−BD−1C)−1u

Here, the matrix inverses exist because of the assumption that D is invertible, and the first statement

of the lemma. Therefore, u = (A−BD−1C)y.

By Lemma 3.6 and matching (3.36) to the pattern given by (3.37), the transfer function

from yλ(z) to uλ(z), Gjd,λ(z,K), is given as

Gjd,λ(z,K) = (Aλ,1,1(z)−
∑

1≤i≤v

Bi,λ,1KiCi,λ,1)

+ (Aλ,1,2(z)−
∑

1≤i≤v

Bi,λ,1KiCi,λ,2)

· (I − (I −Aλ,2,2(z) +
∑

1≤i≤v

Bi,λ,2KiCi,λ,2))−1

· (−Aλ,2,1(z) +
∑

1≤i≤v

Bi,λ,2KiCi,λ,1). (3.38)

By Lemma 3.5, Gjd,λ(z,K) corresponds to the transfer matrix of the standard LTI network,

Ns(Aλ,1,1(z);−Bi,λ,1, Bi,λ,2;Ci,λ,1, Ci,λ,2

;Aλ,1,2(z),−Aλ,2,1(z); I, I −Aλ,2,2(z)). (3.39)

Call this network Njd,λ(z). When it is evaluated at the generalized frequency z = λ, Njd,λ(z) can

be simplified further as Ns(0;−Bi,λ,1, Bi,λ,2;Ci,λ,1, Ci,λ,2; 0, 0; I, I −Aλ,2,2(λ)). Fig. 3.14 shows this



116

y u
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Figure 3.14: The graphical representation of Njd,λ(λ)

network, Njd,λ(λ), and by Lemma 3.5 the channel matrices are given as follows:

Htx,rx(λ) = 0,

Htx,i(λ) = Ci,λ,1,

Hi,rx(λ) = −Bi,λ,1,

Hi,j(λ) = Cj,λ,2Aλ,2,2(λ)−1Bi,λ,2. (3.40)

Now, we state a parallel proposition to Theorem 3.7.

Proposition 3.1. Given the above definitions, the following statements are equivalent.

(1) λ is a fixed mode of the decentralized linear system L(A,Bi, Ci)

(2) rank(Gjd,λ(λ,K)) < mλ

(3) (transfer matrix rank of LTI network Njd,λ(λ)) < mλ

(4) (mincut rank of the LTI network Njd,λ(λ)) < mλ

(5) minV⊆{1,··· ,v} rank

 0 −BV,λ,1
CV c,λ,1 CV c,λ,2Aλ,2,2(λ)−1BV,λ,2

 < mλ

Proof. By Theorem 3.7 (2) and the fact that the dimension of Gcn(λ,K) is dim(A), we know

that the statement (1) is equivalent to Gcn(λ,K) is rank deficient. Furthermore, in Lemma 3.6

by considering (Aλ,1,1(λ)−
∑

1≤i≤v Bi,λ,1KiCi,λ,1) as A, (Aλ,1,2(λ)−
∑

1≤i≤v Bi,λ,1KiCi,λ,2) as B,

(Aλ,2,1(λ) −
∑

1≤i≤v Bi,λ,2KiCi,λ,1) as C, and (Aλ,2,2(λ) −
∑

1≤i≤v Bi,λ,2KiCi,λ,2) as D, we can

conclude that Gjd,λ(λ,K) is full rank if and only if
[
Aλ,1,1(z) Aλ,1,2(z)

Aλ,2,1(z) Aλ,2,2(z)

]
−
∑

1≤i≤v

[
Bi,λ,1KiCi,λ,1 Bi,λ,1KiCi,λ,2

Bi,λ,2KiCi,λ,1 Bi,λ,2KiCi,λ,2

]

= λI −A−
∑

1≤i≤v

BiKiCi

= Gcn(λ,K)

is full rank. Thus, Gcn(λ,K) is rank deficient if and only if Gjd,λ(λ,K) is rank deficient. Since the

dimension of Gjd,λ(λ,K) is mλ, the statement (1) is equivalent to the statement (2).
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⎡
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⎤
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⎤
⎦

[
c1 c2 c3

]

Figure 3.15: Critical Information Flow and Transfer Function in Jordan block

The statement (2) and (3) are equivalent, since Gjd,λ(λ,K) is the transfer function of

Njd,λ(λ).

The statement (3) and (4) are equivalent by the mincut-maxflow theorem of Corollary 3.1.

The equivalence of the statement (4) and (5) comes from the definitions of the channel

matrices of Njd,λ(λ) shown in (3.40).

This theorem can be generalized to arbitrary Jordan forms A by introducing auxiliary

inputs and outputs from the states associated with λ to themselves. However, we can further reduce

the dimension of the transfer matrix by inspecting the information flow inside nontrivial Jordan

blocks.

Let’s consider the stabilizability condition for a single Jordan blockAmatrix, A =




λ 1 0

0 λ 1

0 0 λ


,

B =




b1

b2

b3


, C =

[
c1 c2 c3

]
. It is well-known [17] that the observability condition for this example

is c1 6= 0 and the controllability condition is b3 6= 0. In other words, as shown in Fig. 3.15, we can

think of the critical information flow to stabilize a single Jordan block as flowing from the right-

bottom element to the left-top element. To check whether a single Jordan block has a fixed mode

or not, it is enough to consider the transfer function corresponding to this information flow.

This observation for a single Jordan block can be generalized to multiple Jordan blocks.

To decide whether λ is a fixed mode or not, it is enough to examine the transfer function matrix

from the right-bottom elements of the multiple Jordan blocks (corresponding to the eigenvalue λ)

to their left-top elements.

We will make this observation rigorous by introducing the following definitions. Since the

definitions are notationally heavy, we recommend visiting Appendix 8.2 for a descriptive example.
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In Appendix 8.2, we consider the case when A =




λ 1 0 0 0 0

0 λ 1 0 0 0

0 0 λ 0 0 0

0 0 0 λ 1 0

0 0 0 0 λ 0

0 0 0 0 0 λ′




. Then, we can see that the

3rd and 5th rows and the 1st and 4th column in λI − A are all zeros. To reduce the system to the

system considered in Proposition 3.1, we move these all zero columns and rows to left top side of the

matrix by multiplying permutation matrices to λI −A. To this end, we will define the permutation

matrices PL,λ, PR,λ.

Let ai,j be the (i, j) element of A ∈ Cm×m. Since the locations of all zero columns and rows

are related to the locations of Jordan blocks, we have to define the indices which indicate the location

of each Jordan block. The sequences κL,λ and κR,λ count the number of Jordan blocks associated

with λ. The difference between the two sequences is that κL,λ increases at the right-bottom element

of the Jordan block, while κR,λ increases at the left-top.

κL,λ(0) = 0

For 1 ≤ i < m,

κL,λ(i) =

{
κL,λ(i− 1) + 1 if ai,i = λ and ai,i+1 = 0

κL,λ(i− 1) otherwise

κL,λ(m) =

{
κL,λ(m− 1) + 1 if am,m = λ

κL,λ(m− 1) otherwise

κR,λ(0) = 0

κR,λ(1) =

{
κR,λ(0) + 1 if a1,1 = λ

κR,λ(0) otherwise

For 1 < i ≤ m,

κR,λ(i) =

{
κR,λ(i− 1) + 1 if ai,i = λ and ai−1,i = 0

κR,λ(i− 1) otherwise

Notice that these two sequences are just different ways of counting the number of Jordan blocks

associated with the eigenvalue λ. If we denote by mλ the number of Jordan blocks associated with

the eigenvalue λ, then mλ = κL,λ(m) = κL,λ(m). From the sequences κR,λ and κL,λ, we also define

ιR,λ that indicates the left-top elements of the Jordan block associated with λ and ιL,λ that indicates
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the right-bottom elements.

ιL,λ(0) = 0

For 1 ≤ i ≤ mλ

ιL,λ(i) = min{k ∈ N : k > ιL,λ(i− 1), κL,λ(k) > κL,λ(k − 1)}

Likewise,

ιR,λ(0) = 0

For 1 ≤ i ≤ mλ

ιR,λ(i) = min{k ∈ N : k > ιR,λ(i− 1), κR,λ(k) > κR,λ(k − 1)}

We also define permutation maps and matrices for λI − A. The role of these permutation maps

and matrices is to collect all zero rows and columns in λI − A. The permutation maps πL,λ(i) and

πR,λ(i) that map the set {1, · · · ,m} to itself are defined as follows:

πL,λ(i) =

{
κL,λ(i) if κL,λ(i) > κL,λ(i− 1)

i+ κL,λ(m)− κL,λ(i) otherwise

πR,λ(i) =

{
κR,λ(i) if κR,λ(i) > κR,λ(i− 1)

i+ κR,λ(m)− κR,λ(i) otherwise

From the permutation map, we define the permutation matrices.

PL,λ =




eπL,λ(1)

...

eπL,λ(m)


 , PR,λ =




eπR,λ(1)

...

eπR,λ(m)


 (3.41)

where ei is the row vector with 1 in ith position and 0 in every other position.

Let’s multiply these permutation matrices to zI −A.

PL,λ
T (zI −A)PR,λ =

[
Aλ,1,1(z) Aλ,1,2(z)

Aλ,2,1(z) Aλ,2,2(z)

]
(3.42)

where Aλ,1,1(z) is a mλ×mλ matrix, Aλ,1,2(z) is a mλ×(m−mλ) matrix, Aλ,2,1(z) is a (m−mλ)×mλ

matrix, Aλ,2,2(z) is a (m−mλ)× (m−mλ) matrix.

Since the permutation matrices PL,λ, PR,λ moves all zero columns and rows in λI − A

to the left-top side of the matrix (see Appendix 8.2 for an example), we can see Aλ,1,1(λ) = 0,

Aλ,1,2(λ) = 0, Aλ,2,1(λ) = 0, and Aλ,2,2(λ) is invertible.

We also multiply the permutation matrices to Bi and Ci, and define the following sub-

matrices after this permutation.

CiPR,λ =
[
Ci,λ,1 Ci,λ,2

]
, PL,λ

TBi =

[
Bi,λ,1

Bi,λ,2

]
(3.43)
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where Bi,λ,1 is a mλ × qi matrix, Bi,λ,2 is a (m−mλ)× qi matrix, Ci,λ,1 is a ri ×mλ matrix, Ci,λ,2

is a ri × (m−mλ) matrix.

Furthermore, we will also define the auxiliary control and observation matrices Bλ, Cλ as

we did in (3.34).

We will introduce an auxiliary input that can control the right-bottom elements of the

Jordan blocks and an auxiliary output that can observe the left-top elements of the Jordan blocks.

The following matrices Bλ and Cλ correspond to the input and output matrices of the system for

these auxiliary input and output.

Cλ =




eιR,λ(1)

...

eιR,λ(mλ)


 , Bλ =




eιL,λ(1)

...

eιL,λ(mλ)




T

.

From the construction of the permutation matrices, we can see that when they are applied to Cλ

and Bλ, the resulting matrices have nonzero elements only on the left or top side (just as we saw in

(3.34)). Formally,

CλPR,λ =
[
Imλ×mλ 0

]
, PTL,λBλ =

[
Imλ×mλ

0

]
. (3.44)

Finally, we get system equations which exactly parallel with the previous diagonal systems

in (3.34), (3.35).

Now, we are ready to externalize the implicit communication based on the Jordan form

matrix A. Just as the previous diagonal systems, we introduce the auxiliary input uλ[n] ∈ Cmλ

and the auxiliary output yλ[n] ∈ Cmλ . However, unlike the previous section, uλ[n] only controls the

right-bottom elements of the Jordan blocks through Bλ and yλ[n] only observes the left-top elements

of the Jordan blocks through Cλ.

x[n+ 1] = (A+B1K1C1 + · · ·+BvKvCv)x[n] +Bλuλ[n]

yλ[n] = Cλx[n]

Then, the transfer function from uλ(z) to yλ(z) is given as follows:

yλ(z) = Cλ(zI −A−
∑

1≤i≤v

BiKiCi)
−1Bλuλ(z)

= Cλ


PL,λPL,λT


zI −A−

∑

1≤i≤v

BiKiCi


PR,λPR,λ

T



−1

Bλuλ(z)

= CλPR,λ


PL,λT (zI −A)PR,λ −

∑

1≤i≤v

PL,λ
TBiKiCiPR,λ



−1

PL,λ
TBλuλ(z)

=
[
I 0

]


[
Aλ,1,1(z) Aλ,1,2(z)

Aλ,2,1(z) Aλ,2,2(z)

]
−
∑

1≤i≤v

[
Bi,λ,1

Bi,λ,2

]
Ki

[
Ci,λ,1 Ci,λ,2

]


−1 [

I

0

]
uλ(z)(3.45)
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where the last line uses (3.44), (3.42), (3.43).

Since (3.36) and (3.45) are the same, (3.38), (3.39), (3.40) still hold. Thus, we can state

the capacity-stabilizability equivalence theorem based on the Jordan form A.

Theorem 3.8. (Capacity-Stabilizability Equivalence 2) Given the above definitions, the following

statements are equivalent.

(1) λ is the fixed mode of the decentralized linear system L(A,Bi, Ci)

(2) rank(Gjd,λ(λ,K)) < mλ

(3) (transfer matrix rank of the LTI network Njd,λ(λ)) < mλ

(4) (mincut rank of the LTI network Njd,λ(λ)) < mλ

(5) minV⊂{1,··· ,v} rank

[
0 −BV,λ,1

CV c,λ,1 CV c,λ,2Aλ,2,2(λ)−1BV,λ,2

]
< mλ

Proof. The same as Proposition 3.1.

Remark 1: Notice that the condition (5) seems to be quite different from the statement (5)

of Theorem 3.7 that we saw before. However, by remembering that A has Jordan block structure

and using the following lemma, we can directly prove the equivalence between these two statements.

Lemma 3.7. For an invertible square matrix A,

rank




0 0 B0

0 A B1

C0 C1 D


 = rankA+ rank

[
0 B0

C0 D − C1A
−1B1

]

Proof.

rank




0 0 B0

0 A B1

C0 C1 D


 = rank




0 B0 0

C0 D C1

0 B1 A


 = rankA+ rank

[
0 B0

C0 D − C1A
−1B1

]

where the first equality is due to elementary row and column operations and the second equality is

due to Lemma 3.2.

Remark 2: This externalization is minimal in the sense that the dimensions of the trans-

mitter input signal and the receiver output signals are minimal. In other words, if we introduce an

auxiliary input and output whose dimensions are smaller than the ones shown in this characteriza-

tion, we cannot find the equivalent condition for fixed modes. The minimality of this characterization

manifests as the absence of direct link between the transmitter and the receiver in Njd,λ(λ).

Remark 3: It has to be mentioned that this theorem for mλ = 1 is already shown in [56].

For this case, the condition (4) of the theorem reduces whether the mincut of the network is 0 or

not. Thus, it is equivalent to check the existence of the path from the source to the destination.

The LTI network of Fig. 3.16 shows the Jordan-form externalization of the Fig. 3.10 example

for λ = 4. We can easily see that the LTI network of Fig. 3.16 agrees with the first LTI network
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Figure 3.16: Jordan-form externalization of the system of Fig. 3.10 for λ = 4

of Fig. 3.11. The information generated at x1[n], x2[n] is first observed by the controller K1, then

relayed to the controller K2, and finally returned to x1[n], x2[n]. Here, the controller K3 is correctly

omitted since it does not affect the transfer function of the relevant LTI network.

Until now, our discussion was limited to strictly proper systems where the impulse response

from ui[n] to yj [n] is strictly causal. However, the capacity-stabilizability theorem can be easily

extended to proper decentralized linear systems L(A,Bi, Ci, Dij) as shown in Appendix 8.3.

Before we close this section, for a sanity check we apply the result of this section to cen-

tralized systems which are already well-understood. Moreover, this will be helpful to clarify our

understanding in later sections.

Corollary 3.2 (Stabilizability of Centralized Systems[17]). Let’s consider the above system with a

single controller, v = 1. Then, the following conditions are equivalent.

(1) The centralized linear system L(A,B1, C1) is stabilizable.

(2) (A,B1) is controllable and (A,C1) is observable.

(3) rank(C1,λ,1) ≥ mλ and8 rank(B1,λ,1) ≥ mλ for all unstable eigenvalues λ of A.

Proof. This is a well-known fact in linear system theory [17]. Especially, the equivalence of (1) and

(2) immediately follows from Theorem 3.8.

3.6 Control over LTI networks

To clarify the previous discussion and reveal the further connection between network coding

and decentralized linear control, we consider a stabilizability problem with an explicit communication

network. Following the problem formulations in [97, 86, 95, 76], we propose ‘control over LTI

networks’ problems. The main advantage of these new problems is that the information for control

can only flow explicitly through the communication network, while in general decentralized systems

the information can also flow implicitly through the plant. Therefore, we can measure the minimum

information flow to stabilize the system by simply measuring the capacity (or reliability) of the

explicit communication network.
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Figure 3.17: Control over LTI Networks: Point-to-Point case

3.6.1 Point-to-Point

The problem of control over LTI networks is shown in Fig. 3.17. The unstable plant is

given as

x[n+ 1] = Ax[n] +Bu[n] + w[n]

y[n] = Cx[n]

where A ∈ Cm×m, B ∈ Cm×qcn and C ∈ Crob×m. x[n] is the state, u[n] is the input to the system,

y[n] is the output from the system, and w[n] is the disturbance.

The observer can observe the output y[n], but cannot control the plant. On the other

hand, the controller can control the plant through the input u[n], but cannot observe the plant.

Therefore, to stabilize the plant the observer has to communicate to the controller. The observer

and the controller are connected by an LTI communication network, Nptop(z), where the observer is

the transmitter, the controller is the receiver, and the relays are connected by linear time-invariant

channels. To make the problem physically meaningful, we assume that the channel matrices Hi,j(z)

between the relays are stable and causal. Here, we want to find the linear time-invariant observer,

controller and relays that stabilize the plant. Therefore, by z-transform, every signal can be rep-

resented as a vector in F[z], and the operation of nodes (controller, observer, and relays) can be

represented as a matrix in F[z]. Denote the dimension of the input signal to the LTI network at the

observer to be qob, and that of the output signal from the LTI network at the controller to be rcn.

Therefore, the dimensions of the observer and controller gain matrices are qob × rob and qcn × rcn
respectively. At the relay node i, denote the dimension of the input signal to the LTI network to be

qi and that of the output signal from the LTI network to be ri. Then, the dimension of the relay

gain matrix, Ki, is qi × ri.
The goal of control and communication nodes is to stabilizing the plant.

Definition 3.7 (Stabilizability over LTI networks). Given the above definitions, we say the plant

is stabilizable over the LTI network if there exist LTI observer, controller and relays that make

8Here, the inequalities are actually equalities, rank(C1,λ,1) = mλ and rank(B1,λ,1) = mλ, since the size of C1,λ,1

and B1,λ,1 is mλ.
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x[n], y[n], u[n], and all the inputs and outputs of the LTI network uniformly bounded for all uniformly

bounded disturbances w[n]. For a given design, we say the plant is stable over the LTI network

if x[n], y[n], u[n], and all the inputs and outputs of the LTI network are uniformly bounded for all

uniformly bounded disturbance w[n].

For a given matrix A, let σ(A) be the set of eigenvalues of A. Let mλ be the number of

Jordan blocks of A associated with the eigenvalue λ. Then, the stabilizability condition is given as

follows.

Theorem 3.9. The plant is stabilizable over the LTI network if and only if for all λ such that

λ ∈ {λ : |λ| ≥ 1} ∩ σ(A) the following conditions are satisfied:

(i)

[
λI −A
C

]
is full rank, i.e. λ is observable.

(ii)
[
λI −A B

]
is full rank, i.e. λ is controllable.

(iii)mλ ≤ (mincut rank of the LTI network Nptop(λ))

Proof. For the necessity proof, we will use the realization idea. In other words, we will consider

control over LTI networks as distributed linear systems and apply the concept of fixed modes to check

stabilizability. For the sufficiency proof, we will give a constructive proof. We first design the relays

in the LTI network so that it can accommodate enough information flow to stabilize the system.

Then, we will design the observer and controller to connect the plant with the communication

network, and stabilize it.

(1) Necessity Proof: An insightful reader may notice that ‘control over LTI networks’ that

we are considering is essentially the same as ‘decentralized linear systems’ of Section 3.3.1. The

observer, controller, and relays in Figure 3.17 can be thought of as decentralized controllers. The

state x[n] and the internal states of the channels can be combined into one big state x′[n]. Then, the

minimal realization procedure described in Appendix 8.7 can convert ‘control over LTI networks’

problems to the following decentralized linear system Lre(A′i, B′i, C ′i, D′ij).

x′[n+ 1] = A′x′[n] +

v+1∑

i=0

B′iui[n] +

[
Im

0

]
w[n]

yi[n] = C ′ix
′[n] +

v+1∑

j=0

D′ijuj [n] for 0 ≤ i ≤ v + 1

Here, the controller 0 and v + 1 of Lre(A′i, B′i, C ′i, D′ij) corresponds to the observer and controller

of the original problem respectively. The controllers 1 to v correspond to the relays in the original

problem. The state x′[n] can be written as

[
x[n]

xch[n]

]
where x[n] and xch[n] are respectively the plant
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and the internal states of the network in the original problem. Then, the state transition matrix A′

is a block diagonal matrix

[
A 0

0 Ach

]
.

However, there are minor differences between ‘control over LTI networks’ and ‘decentralized

linear system control’ problems. In ‘control over LTI networks’ problems, we only want to stabilize

the plant x[n] not all internal states x′[n]. And the state disturbance w[n] is also added to only x[n]

not to all internal states x′[n]. However, since we assume all the channel matrices are stable, the Ach

which correspond to xch[n] have only stable eigenvalues. The only possibly unstable states are x[n].

Therefore, by simply repeating the proof shown in [104, 23], we can justify that the stabilizability of

the realized system Lre(A′i, B′i, C ′i, D′ij) is still a necessary condition for stabilizability over the LTI

network.

Now, we can apply the Jordan form externalization9 of Section 3.5.2 for all unstable eigen-

values λ of A. Figure 3.18 shows the resulting LTI network from the Jordan form externalization

with respect to λ. By Theorem 3.8, we know that λ is not a fixed mode only if the mincut of the

network in Figure 3.18 is greater than mλ. First, we can think of the cutset that only includes

the transmitter yλ. The channel matrix for this cut is Cλ,1 and so rankCλ,1 ≥ mλ is a necessary

condition for stabilizability. By Corollary 3.2, this is equivalent to the observability of λ which is

the condition (i) of the theorem. Likewise, we can think of the cutset that only excludes the receiver

uλ. The channel matrix for this cut is −Bλ,1 and so rankBλ,1 ≥ mλ is a necessary condition. This

corresponds to the theorem’s condition (ii), the controllability of λ. The remaining cuts have a one-

to-one correspondence to the cuts of the LTI network of Figure 3.17. The conditions that these cuts

are larger than mλ corresponds to the mincut condition of the LTI network, which is the condition

(iii) of the theorem.

(2) Sufficiency Proof: For sufficiency, we can also apply the realization idea and use the same

sufficiency proof for decentralized linear systems shown in [104, 23]. However, to reveal connections

we will give a constructive proof based on network coding, and this style of proof will turn out to

be useful in the extensions that we will consider later.

The proof consists of three steps: LTI network design, observer design, and controller

design. Without loss of generality, we can assume that A is given in a Jordan form. Then, we can

use the notations of Section 3.3.1. For for each unstable eigenvalue λ of A, define the permutation

matrices PR,λ and PL,λ in the same ways as (3.41). Then, we can apply these permutations to the

system input and output matrices B and C, and denote the following sub-matrices.

C · PR,λ =
[
Cλ,1 Cλ,2

]
, PTL,λ ·B =

[
Bλ,1

Bλ,2

]

where Bλ,1 is a mλ × qcn matrix, and Cλ,1 is a rob ×mλ matrix. We will design the controller, ob-

server and relay gain matrices Kcn,Kob,Ki. Each element in these gain matrices can be interpreted

9Strictly speaking, we have to apply the Jordan form externalization for proper systems shown in Appendix 8.6.
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in two ways, ether as a variable in the form of ki,j,k, or as constant in F[z] (i.e. a transfer function

given as a z-transform). Then, designing the controller gains can be understood as a procedure of

plugging in constants in F[z] to variables. To distinguish these two meanings of Ki, as mentioned in

Section 3.2.1 we will write Ki when it is considered as a variable, and Ki(z) when it is considered

as a constant.

(2-a) LTI network (relay) design: The goal of the relays is flowing enough information to stabi-

lize all unstable eigenvalues λ. Denote the transfer function of the LTI network as Gptop(z,K). The

goal of the relay gain design is finding Ki(z) ∈ F[z]qi×ri such that for all unstable eigenvalues λ,

rank(Gptop(λ,K)) = rank(Gptop(λ,K(z))) i.e. achieving the maxflow. Here, because of condition

(iii), the maxflow at z = λ is always greater or equal to mλ which is enough to stabilize.

Since the complex (or real) field is infinite, we can find memoryless gains Ki(z) ∈ Cqi×ri

which achieve the maxflow. Rigorously speaking, for each λ, the algebraic variety that makes the rank

of Gptop(λ,K) be smaller than its maximum rank has a strictly lower dimension than its underlying

space. Therefore, there exists an infinite number of solutions that can achieve the maxflow for

each λ [52, Lemma 1]. Moreover, even if we have to achieve the maxflow for different eigenvalues

simultaneously, the algebraic variety which reduces the rank of any of transfer function matrices just

corresponds to a union. Therefore, the dimension is still strictly less than its underlying space, and

an infinite number of (simultaneous) solutions exist.

However, when the LTI network has cycles, just guaranteeing the rank condition from the

transmitter to the receiver is not enough. Even though all the channel transfer functions are stable,

by introducing relay gains at the nodes, we could shift some stable poles to become unstable poles.

To prevent such situations, we will adapt the argument introduced by Wang et al. in [104]. As

shown in [104], using Gershgorin’s circle theorem [101] we can prove that as long as the relays gains

are chosen small enough, the location of the poles does not move far from the original location.

Formally, we can find ε > 0 such that for all |Ki(z)| < ε such that Ki(z) ∈ Cqi×ri , all the poles of

the LTI network are stable. Moreover, even if we restrict Ki(z) to satisfy |Ki(z)| < ε, the dimension

of the algebraic variety remains the same. Therefore, the proof of [52, Lemma 1] still holds, and the

same argument above guarantees the existence of a mincut achieving Ki(z) which keeps the whole

LTI network stable.

(2-b) Observer design: The goal of the observer design is simply connecting all the unstable states

of the plant to the LTI network. Mathematically, finding Kob(z) ∈ Cqob×rob such that for all unsta-

ble eigenvalue λ, rank(Gptop(λ,K(z))KobCλ,1) = rank(Gptop(λ,K(z))Kob(z)Cλ,1). Here, we can see

since the elements of Kob are variables,

rank(Gptop(λ,K(z))KobCλ,1) = min(rank(Gptop(λ,K(z))), rank(Cλ,1)).

Therefore, by the relay design (2-a) and condition (i) —together with Corollary 3.2— we can con-
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Figure 3.18: Jordan form externalization of Lre(A′i, B′i, C ′i, D′ij) at z = λ

clude rank(Gptop(λ,K(z))KobCλ,1) ≥ mλ. Using the same algebraic variety argument as (2-a), we

can prove the existence of such Kob(z). (Here, we do not need Gershgorin’s circle theorem for sta-

bility.)

(2-c) Controller design: The goal of the controller is to actually stabilize the plant based on the

information it got. Once the design of the observer and the relays are fixed, from the controller’s

point of view the whole system can be viewed as follows in z-transform:

zx(z) = Ax(z) +Bu(z)

y(z) = C ′(z)x(z)

where C ′(z) = Gptop(z,K(z))Kob(z)C. For each unstable eigenvalue λ of A, let’s apply the same per-

mutation matrix PR,λ to C ′(z) and denote the following sub-matrices as C ′(z)·PR,λ =
[
C ′λ,1(z) C ′λ,2(z)

]
.

Then, we can easily see C ′λ,1(z) = Gptop(z,K(z))Kob(z)Cλ,1. Moreover, a simple extension of Corol-

lary 3.2 gives that in this new system, λ is observable if and only if rank(C ′λ,1(λ)) ≥ mλ. We already

know this condition holds for all unstable eigenvalues λ. Moreover, by condition (ii) all unstable

eigenvalues are controllable. Therefore, all unstable eigenvalues are observable and controllable, and

so we can stabilize the system using a conventional controller design [17] (which first estimate the

states and control the states based on the estimated states).

This finishes the sufficiency proof.

In the proof of the theorem, we saw how the Jordan form externalization of implicit in-

formation flows discussed in Section 3.5.2 can be used to understand problems which have both

control and communication aspects. Moreover, the connection between network coding and implicit

information flows for control leads to a new controller design for stabilizing the plant.

More importantly, the ideas used in the proof justify our intuition on information flows in

decentralized linear system shown in Section 3.4, especially Table 3.1. We converted ‘control over

LTI networks’ problems to decentralized linear systems by considering the relays in LTI networks

as controllers of decentralized systems and the channels as a part of the states and input-output

matrices Bi, Ci. The goal of the observer and the relays was to send enough information about

unstable states associated with λ. Therefore, the unstable states can be considered the source of
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Figure 3.19: Control over LTI Networks with multiple controllers: Multicast case

information flows, and the unstable subspaces can be thought of as the message. The maxflow of

the LTI network was compared with mλ, the number of Jordan blocks associated with λ. Therefore,

mλ can be considered the rate of the message. The controller stabilized the plant by controlling the

unstable states based on its received information. Therefore, the unstable states can also be thought

of as the destination of information flows. Theorem 3.9 reveals that we can stabilize the system if and

only if the LTI network has enough capacity to afford the information flows for control. Therefore,

the capacity of LTI networks is deeply related to stabilizability of control systems. Moreover, the

communication scheme that we used for the relays was linear network coding.

Another important point is the relationship between network linearization that we discussed

in Section 3.2.2 and control over LTI networks. By comparing Figure 3.4 and Figure 3.18, we can

easily notice the similarity. The transmitter and receiver in LTI communication networks correspond

to the observer and controller in control over LTI networks. These nodes are connected by relay

nodes in both problems. Now we can see that what we did by introducing the circulation arc in

network linearization (in Figure 3.4) is essentially introducing an unstable plant to be stabilized

through the LTI communication network. This insight will be helpful in the later generalization of

control over LTI networks, and also the generalization of network linearization in Appendix 8.1.

3.6.2 Multicast

Now, we understand that the distributed controllers communicate by network coding. How-

ever, it is known in the communication community that network coding is really helpful to improve

the performance when the problem involves multiple transmitters and receivers. Therefore, we will

extend the previous single-plant single-observer single-controller problems to problems with multiple

plants, observers, and controllers. We will see a close relationship and parallelism between control

over LTI networks and network coding.

Arguably, the easiest and most well-understood problem among multi-user network coding

problems is the multicast problem. In multicast problems, there is a single transmitter and multiple

receivers, and all the receivers want to receive a common message from the transmitter. The worst



129

mincut to all receivers is a trivial lower bound for the message rate in multicast problems. It is

shown [1] that we can achieve this lower bound and network coding is necessary for this.

Let’s find the counterpart of multicast problems in control over LTI networks. In the

sufficiency proof of Thereom 3.9, we saw that the destination of the information flow for control is

the controller.10 Since controllers are the receivers, we have to increase the number of controllers to

find the counterpart of multicast problems.

The situation that we will consider in this section is following. Consider a control over LTI

networks problem with two controllers as shown in Figure 3.19. Let’s say we want to design the

system so that the plant becomes stable by either one of the controllers — but does not have to be

stable when both controllers are simultaneously active. To design such systems, we can introduce the

multicast communication scheme for LTI networks so that the observer sends enough information

to stabilize the plant to both controllers.

For simplicity, let’s limit our discussion to two controllers but all the results in this section

can be easily generalized to multiple controllers. Figure 3.19 shows the resulting problem, control

over LTI networks with two controllers. Formally, the plant has two potential control inputs u1 and

u2, i.e. the plant is given as

x[n+ 1] = Ax[n] +B1u1[n] +B2u2[n] + w[n]

y[n] = Cx[n]

where A ∈ Cm×m, B1 ∈ Cm×qcn1 , B2 ∈ Cm×qcn2 and C ∈ Crob×m. If the observations of the observer

is decodable at both controllers, it is possible to stabilize the plant by engaging either one. The

following definition captures this idea.

Definition 3.8 (Alternative Stabilizability). Given the above definitions, we say that the plant

is alternatively stabilizable over the LTI network if there exist ‘common’ LTI observer and

relays, and possibly different controllers that makes both the first plant

x[n+ 1] = Ax[n] +B1u1[n] + w[n]

y[n] = Cx[n]

and the second plant

x[n+ 1] = Ax[n] +B2u2[n] + w[n]

y[n] = Cx[n]

stable over the LTI network.

The reason why this problem is different from just two separate problems with a single

controller is that the same observer and relays have to be used for two different systems.

10Even if the ultimate destination of the information flow is the unstable states, in control over LTI network
problems, only the controller can control the plant. The controller can be thought as a penultimate destination.
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Let the LTI network that includes the observer, relays and controller 1 be Nmul1(z). Like-

wise, the LTI network including the observer, relays and controller 2 is denoted by Nmul2(z). The

other notations and assumptions about the problem are the same as the point-to-point case. Then,

the condition for alternative stabilizability is given as follows.

Theorem 3.10. Given the above definitions, the plant is alternatively stabilizable over the LTI

network if and only if for all λ such that λ ∈ {λ : |λ| ≥ 1} ∩ σ(A) the following conditions are

satisfied

(i)

[
λI −A
C

]
is full rank

(ii)
[
λI −A B1

]
and

[
λI −A B2

]
are both full rank

(iii)mλ ≤ (mincut rank of the LTI network Nmul1(λ))

mλ ≤ (mincut rank of the LTI network Nmul2(λ))

Proof. (1) Necessity Proof: Since the plant has to be stabilizable by both the controller 1 and 2, the

conditions of Theorem 3.9 has to be satisfied for both controllers, which corresponds to the condition

(i), (ii), (iii) of the theorem.

(2) Sufficiency Proof: Just as the sufficiency proof of Theorem 3.9, we will give a three-step

constructive proof. Since the only difference from that of Theorem 3.9 is LTI network desing, we

use the essentially definitions.

(2-a) LTI network design: Since we have to afford enough information flow for both controllers, we

choose the relay gain matrices Ki(z) ∈ Cqi×ri such that for all unstable eigenvalue λ,

rank(Gmul1(λ,K(z))) ≥ mλ and rank(Gmul2(λ,K(z))) ≥ mλ.

The existence of such gain matrices can be proved in the same way as Theorem 3.9 and using condi-

tion (iii). In other words, the set that we cannot choose Ki(z) is the union of two algebraic varieties:

one that makes Gmul1(λ,Ki) lose its rank and the other one that makes Gmul2(λ,Ki) lose its rank.

The dimension of their union is also strictly smaller than that of the underlying space. Therefore,

almost all Ki(z) ∈ Cqi×ri can achieve the maximum rank of both transfer functions.

(2-b) Observer Design: For the observer design, we find Kob(z) ∈ Crob×qob such that for all unstable

eigenvalue λ, rank(Gmul1(λ,K(z))Kob(z)Cλ,1) ≥ mλ and rank(Gmul2(λ,K(z))Kob(z)Cλ,1) ≥ mλ.

The existence of such Kob(z) follows from the same way as Theorem 3.9 and the union of two alge-

braic varieties argument.

(2-c) Controller Design: Now, at both controllers the plant is observable. We can simply use

conventional controller designs to stabilize the system by both controllers.
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Like the point-to-point problem, memoryless observer and relays are enough for alternative

stabilizablity. The generalization of this result to more than two controllers is trivial. We can simply

add more controller conditions to the condition (ii) and (iii).

In fact, this theorem can be generalized to arbitrary decentralized linear systems. First,

we define strong connectivity of decentralized linear systems [19].

Definition 3.9. [19] A proper decentralized linear system L(A,Bi, Ci) with v decentralized con-

trollers is called strongly connected if for all V ⊂ {1, · · · , v}, CV (zI −A)−1BV c is nonzero.

The strong connectivity of the decentralized system implies that for any cut, the transfer

function across this cut is not zero. In other word, we can always send some information for any

cuts, and thereby every controller is connected with each other.

We generalize the alternative stabilizability definition to a set of decentralized linear sys-

tems.

Definition 3.10. Consider a set of p decentralized linear systems with v decentralized controllers,

{L(A(1), B
(1)
i , C

(1)
i ), · · · ,L(A(p), B

(p)
i , C

(p)
i }.

where for all 2 ≤ i ≤ v the dimensions of B
(1)
i , · · · , B(p)

i are the same, and the dimensions

of C
(1)
i , · · · , C(p)

i are also the same.11 This set of the decentralized systems is called alterna-

tively stabilizable if there exist common LTI controllers K2, · · · ,Kv and possibly different12 con-

trollers K(1)
1 , · · · ,K(p)

1 such that for all 1 ≤ k ≤ p, all systems L(A(k), B
(k)
i , C

(k)
i ) with controllers

K(k)
1 ,K2, · · · ,Kv are stable simultaneously.

The above definition implies that even if the decentralized system is arbitrarily chosen

from a given (finite) set, we can stabilize the system by changing only one controller (the controller

1). We can relate this problem with the previous control over LTI network problem. We can

consider the observer and relays of control over LTI networks as the controllers 2 through v in

decentralized systems. We can consider the multiple controllers as the potential controller 1s in

decentralized systems. Therefore, from the realization idea, we can see the alternative stabilization

of decentralized linear systems includes that of control over LTI networks as a special case.

This generalized problem corresponds to robust networking [52] in a network coding con-

text. In robust networking, the communication network can be adversarially chosen from a given

set, and we want to design the relay scheme that achieves the worst case mincut. In [52], it is shown

that robust networking is essentially the same as multicast problems, and the worst case mincut is

achievable using network coding.

Likewise, the alternative stabilizability of decentralized linear systems is essentially the

same as that of control over LTI networks. If the systems are strongly connected, the alternative

stabilizability condition is given as follows.

11The dimension of B
(1)
1 , · · · , B(p)

1 and the dimension of C
(1)
1 , · · · , C(p)

1 can be different.
12the design of the first controller K(i)

1 can be changed depending on which system is chosen.



132

Observer

Controller2

K1

Kv

Htx,1
Plant1

y1[n]

u2[n]

Htx,v
H1,rx2

Hv,rx2

LTI Network

H1,v

Hv,1

Controller1

Htx,rx2

Htx,rx1

Hv,rx1

H1,rx1

u1[n]

Plant2
y2[n]

Hv,v

H1,1

Figure 3.20: Stabilization over an LTI Network with multiple plants and multiple controllers: Broad-

cast case

Theorem 3.11. Consider a set of decentralized linear systems with v controllers

{L(A(1), B
(1)
i , C

(1)
i ), · · · ,L(A(p), B

(p)
i , C

(p)
i )}

where each decentralized linear system is strongly connected.13 Then, this set of decentralized linear

systems is alternatively stabilizable if and only if each decentralized linear system does not have

unstable fixed modes.

Proof. The necessity is obvious since each system has to be stabilizable.

Let’s prove the sufficiency. By [19, Corollary 1], we know that except a certain algebraic

variety whose dimension is strictly smaller than that of the underlying space, almost all constant

matrices K2(z), · · · ,Kv(z) make all unstable eigenvalues of L(A(1), B
(1)
i , C

(1)
i ) to be observable and

controllable at the controller 1. Moreover, by Gershgorin’s circle theorem [101], there exists ε > 0

such that for all |Ki(z)| ≤ ε such that Ki(z) ∈ Cqi×ri , the stable eigenvalues of the system remain

stable.

Using the union of algebraic varieties argument, we can prove that there exist constant

matrices K2(z) ∈ Cq2×r2 , · · · ,Kv(z) ∈ Cqv×rv such that for all systems {L(A(1), B
(1)
i , C

(1)
i ), · · · ,

L(A(p), B
(p)
i , C

(p)
i )}, the unstable eigenvalues are observable and controllable at the controller 1 and

the stable eigenvalues remain stable. Then, knowing which system is chosen, the first controller can

stabilize the system using a conventional design [17].

Just as the sufficiency of Theorem 3.10, memoryless controllers are enough for controllers 2

through v. The underlying reason why this theorem holds is that the controllers 2 to v relay (using

network coding) enough information for control to controller 1.
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3.6.3 Broadcast

Another well-understood problem in network coding is broadcast. Like multicast problems,

broadcast problems have a single transmitter and multiple receivers. However, unlike multicast

problems, each receiver wants to receiver its own message which is independent from the other’s.

We can find a simple lower bound on the message rate using cutset bounds. The message rate to

receiver 1 cannot exceed the cutset bound for receiver 1, and similar bounds hold for all receivers.

We can also think of sum cutsets for augmented receivers. The sum of the message rates to receiver

1 and receiver 2 cannot exceed the cutset bound for the augmented receiver 1 and 2. Likewise, we

can think of the cutset bounds for the sum of all two messages, three messages, and so on. This

cutset bound is also known to be achievable using network coding together with precoding at the

transmitter [62, 52].

In this section, we will find a counterpart of broadcast problems in control over LTI net-

works. As we saw in the previous section, multiple receivers in network-coding problems correspond

to multiple controllers. Now, we have to find the counterpart of multiple messages. In previous dis-

cussions, we found that the unstable states correspond to the messages. Therefore, as a counterpart

of independent messages, we introduce multiple plants which have orthogonal unstable states. Each

controller can only act on its designated plant.

Consider the control over LTI network problem with two plants and two controllers as

shown in Figure 3.20. Obviously, we want to design the system so that both plants becomes stable.

However, we will require an additional property of disturbance isolation. In other words, if we add

disturbance only to plant 1, the states of plant 2 should stay zero for all time. Likewise, if we add

disturbance only to plant 2, the states of plant 1 should stay zero for all time. In other words, any

disturbance added to the plant 1 must not propagate to plant 2, and vice versa.

For notational simplicity, we will only consider the two plants and two controllers case,

but the results in this section can be easily generalized to multiple plants and multiple controllers.

Figure 3.20 shows the resulting control over LTI network problem with two plants and two controllers.

The plant models are given as follows:

x1[n+ 1] = A1x1[n] +B1u1[n] + w1[n]

y1[n] = C1x1[n]

x2[n+ 1] = A2x2[n] +B2u2[n] + w2[n]

y2[n] = C2x2[n]

where Ai ∈ Cmi×mi , Bi ∈ Cmi×qcni , and Ci ∈ Crobi×mi . As shown in Fig. 3.20, the observer has

both observations y1[n] and y2[n], but both controllers can only control their designated plants via

13Otherwise, controllers could be isolated from the remaining system. In this case, for each disconnected system at
least one controller’s design has to be changed to guarantee stability.
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u1[n] and u2[n]. The basic assumptions and notations for the LTI network are the same as the

multicast problem.

If just as in broadcast problems, the observation y1[n] (information about x1[n]) is decod-

able separately from y2[n] at the controller 1 and the observation y2[n] (information about x2[n])

is decodable separately from y1[n] at the controller 2, it is possible for controllers to control their

own designated plants without causing any interference to the others. This notion is captured by

the following definition of independent stabilizablity.

Definition 3.11 (Independent Stabilizability). Given the above definitions, we say that plants are

independently stabilizable over an LTI network if there exist the LTI observer, controllers

and relays that satisfy the following conditions:

(i) both of the plants are stable over the LTI network

(ii) If w1[n] = 0 for all n, then x1[n] = 0 for all n regardless of w2[n]

(iii) If w2[n] = 0 for all n, then x2[n] = 0 for all n regardless of w1[n]

In Figure 3.20, denote the LTI network including the observer, the relays and controller 1

as Nbr1(z). Likewise, denote the LTI network that includes the observer, the relays and controller 2

as Nbr2(z). The LTI network that has the controller 1 and 2 as the augmented receiver is denoted

as Nbr1,2(z).

We let m1,λ be the number of the Jordan blocks of A1 associated with the eigenvalue λ, and

m2,λ be that for A2. We also let m1,max := maxλ∈C,|λ|≥1m1,λ and m2,max := maxλ∈C,|λ|≥1m2,λ.

One may think since we have to prevent disturbance propagation for independent stabiliz-

ability, the existence of separate paths from the observer to each controller is required for indepen-

dent stabilizability. However, we do not need separate paths to each controller. For example, let the

plants 1 and 2 be scalar plants. Let the observer have a two-dimensional input signal

[
uob,1[n]

uob,2[n]

]
to

the network, the controller 1 and 2 have one dimensional ycn1[n] and ycn2[n] respectively, and their

relation be given as
[
ycn1[n]

ycn2[n]

]
=

[
2 1

1 2

][
uob,1[n]

uob,2[n]

]
.

We further assume the network has no relays. In this example, one may think that it is impossible

to independently stabilize the system since the communication channels to each controller interfere

with each other. However, by simply introducing a precoding gain

[
2 1

1 2

]−1

, we can orthogonalize

the paths and independently stabilize the system.

This idea can be formalized for general cases. A sufficient condition and a necessary

condition for the independent stabilizability are given as follows.

Theorem 3.12. Given the above definitions, a sufficient condition for the plants to be independently

stabilizable is that for all λ such that λ ∈ {λ : |λ| ≥ 1} ∩ (σ(A1) ∪ σ(A2)) the following conditions
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hold:

(i)

[
λI −A1

C1

]
and

[
λI −A2

C2

]
are both full rank

(ii)
[
λI −A1 B1

]
and

[
λI −A2 B2

]
are both full rank

(iii) m1,max +m2,max ≤ (mincut rank of the LTI network Nbr1,2(λ))

m1,max ≤ (mincut rank of the LTI network Nbr1(λ))

m2,max ≤ (mincut rank of the LTI network Nbr2(λ))

The necessary condition for the plants to be independently stabilizable is that for all λ such that

λ ∈ {λ : |λ| ≥ 1} ∩ (σ(A1) ∪ σ(A2)) the following conditions hold:

The condition (i) and (ii) hold.

(iii′) m1,λ +m2,λ ≤ (mincut rank of the LTI network Nbr1,2(λ))

m1,λ ≤ (mincut rank of the LTI network Nbr1(λ))

m2,λ ≤ (mincut rank of the LTI network Nbr2(λ))

Proof. (1) Necessary condition: The plant 1, the plant 2, and their augmented plant have to be

stabilizable by the controller 1, the controller 2, and their augmented controller. Therefore, by

apply Theorem 3.9 to these systems, we get the necessary conditions.

(2) Sufficient condition:

The proof is similar to that of Theorem 3.10, but here we need an additional step to

remove the interference between the information flows to two controllers. For this, we will adapt the

pre-and-post processing idea shown in [62, 52].

(2-a) LTI Network design:

Let Gbr1(z,K) and Gbr2(z,K) be the transfer function matrix of Nbr1(z) and Nbr2(z)

respectively. Then, we can see Gbr1,2(z,K) :=

[
Gbr1(z,K)

Gbr2(z,K)

]
is the transfer function matrics of

Nbr1,2(z). Using the same union of algebraic varieties argument of Theorem 3.10, by condition (iii’)

we can prove that there exist Ki(z) ∈ Cqi×ri such that for all unstable eigenvalue λ

rank(Gbr1(λ,K(z)) ≥ m1,max

rank(Gbr2(λ,K(z)) ≥ m2,max

rank(Gbr1,2(λ,K(z))) ≥ m1,max +m2,max (3.46)

and keep the stable eigenvalues stable.

(2-b) Pre-and-Post processors at Controller and Observer: Even if we design the relays so

that they can flow enough information, information flows from the observer to the controllers can
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interfere with each other. To remove this interference, we introduce pre-and-post processors at the

controllers and observer as shown in [62, 52].

First, let’s make Gbr1,2(z,K(z)) a square matrix by introducing pre-and-post processors

K ′cn1(z) ∈ Cm1,max×rcn1 , K ′cn2(z) ∈ Cm2,max×rcn2 , K ′ob(z) ∈ Cqob×(m1,max+m2,max) as follows:

G′br1,2(z,K(z)) :=

[
K ′cn1(z) 0

0 K ′cn2(z)

]
Gbr1,2(z,K(z))K ′ob(z).

The resulting matrix G′br1,2(z,K(z)) is a square matrix with dimension (m1,max + m2,max), and

using the algebraic variety argument and (3.46) we can choose K ′cn1(z), K ′cn2(z), K ′ob(z) so that for

all unstable eigenvalues λ, G′br1,2(λ,K(z)) is invertible.

Now, we can remove the interference by simply multiplying by the matrix inverse. To this

end, denote

K ′′ob(z) := z−ddet(G′br1,2(z,K(z)))G′br1,2(z,K(z))−1

Here, we introduce z−d to make K ′′ob(z) causal. Therefore, d ∈ Z+ has to be chosen large enough so

that each element in K ′′ob(z) is causal. Furthermore, since we multiplied det(G′br1,2(z,K(z))), K ′′ob(z)

does not have any additional pole beyond the existing ones in G′br1,2(z,K(z)). Thus, K ′′ob(z) is also

stable. Let’s multiply this matrix to G′br1,2(z,K(z)) and denote

G′′br1,2(z,K(z)) := G′br1,2(z,K(z))K ′′ob(z).

In G′′br1,2(z,K(z)), the only non-zero entries are diagonal entries, and so we have (m1,max+m2,max)

“orthogonal” communication channels.

(2-c) Observer design: In the observer, we will use m1,max communication channels to

send information about plant 1, and the remaining for plant 2. First, denote C1,λ,1 and C2,λ,1 for

C1 and C2 in the same way we defined Cλ,1 for C in Theorem 3.10. Using the algebraic variety

argument from Theorem 3.10 and condition (i), we can show that there exist K ′′′ob(z) ∈ Cm1,max×qcn1

and K ′′′′ob (z) ∈ Cm2,max×qcn2 such that for all unstable eigenvalues λ,

rank(K ′′′ob(z)C1,λ,1) ≥ m1,λ

rank(K ′′′′ob (z)C2,λ,1) ≥ m2,λ.

Then, we will set the observer gain Kob(z) as

Kob(z) = K ′ob(z)K
′′
ob(z)

[
K ′′′ob(z) 0

0 K ′′′′ob (z)

]
.

(2-d) Controller design: Once we fix the relay gain and observer gain matrices as above

and introduce the gain matrix K ′cn1(z) at controller 1, by construction the controller 1 will have the
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following observation about the state.

[
K ′cn1(z) 0

]
Gbr1,2(z,K(z))K ′ob(z)K

′′
ob(z)

[
K ′′′ob(z) 0

0 K ′′′′ob (z)

][
y1(z)

y2(z)

]

=
[
K ′cn1(z) 0

]
Gbr1,2(z,K(z))K ′ob(z)K

′′
ob(z)

[
K ′′′ob(z) 0

0 K ′′′′ob (z)

][
C1x1(z)

C2x2(z)

]

= z−d det(G′br1,2(z))
[
I 0

] [K ′′′ob(z) 0

0 K ′′′′ob (z)

][
C1x1(z)

C2x2(z)

]

= z−d det(G′br1,2(z))K ′′′ob(z)C1x1(z)

As we can see, the observation is orthogonal to the state of plant 2. Moreover, since for all unstable

eigenvalue λ, det(G′br1,2(λ)) 6= 0 and K ′′′ob(z)C1 can observe all unstable states of x1[n], the plant 1

is observable. Therefore, by a conventional controller design, controller 1 can orthogonally stabilize

plant 1. The same holds for plant 2 and controller 2.

The result can be easily generalized to multiple plants and multiple observers. Unlike

Theorem 3.9 and Theorem 3.10, the memories at the observer and the relies are actually helpful.

The necessary and the sufficient condition coincide when all the unstable eigenvalues of A1 and A2

are the same, and this corresponds to the broadcast result of network coding.

However, unlike broadcast problems in network coding, the augmentation idea of nodes

and cutset bounds fail to give a tight necessary condition. The reason for this is in this problem

we have an additional factor, the frequency z. According to the frequency where it is evaluated,

the channel behaves significantly differently. Thus, there is no way to orthogonalize the channel

simultaneously for all frequencies, and we cannot achieve the necessary condition obtained by the

augmentation idea.

For example, let’s consider the plant A1 = 3, A2 = 2, B1 = B2 = 1 and C1 = C2 = 1. And

the LTI network has no relays, the input signal dimension of the observer and the output signal

dimension of the controllers are 1, and Gbr1,2(z,Ki) =

[
3− 6z−1

2− 6z−1

]
. Here, since there are two scalar

plants and the observer has only one dimensional input signal to the network, it “seems impossible”

to independently stabilize the systems. In fact, this system violates the sufficiency condition of

Theorem 3.12 since m1,max = 1, m2,max = 1, and the mincut ranks of Nbr1(3), Nbr2(2) are both 1.

Therefore, Theorem 3.12 fails to guarantee independent stabilizability of the system.

However, the system still satisfies the necessary condition of Theorem 3.12 derived by

a simple augmented system idea. We can easily check that the system parameters are m1,3 = 1,

m2,3 = 0, (mincut rank ofNbr1,2(3))=1, (mincut rank ofNbr1,2(3))=1, (mincut rank ofNbr1,2(3))=0,

m1,2 = 0, m2,2 = 1, (mincut rank of Nbr1,2(2))=1, (mincut rank of Nbr1,2(2))=0, (mincut rank of

Nbr1,2(2))=1. These parameters satisfy the necessary condition of the theorem.
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Figure 3.21: Control over LTI Networks with multiple plants, multiple observers, and multiple

controllers: Multiple-unicast case

Therefore, for even for this simple system, the necessary and sufficient condition of Theo-

rem 3.12 do not match. Finding the tight characterization for the independent stabilizability will be

an interesting further research direction. The example shows that it is the necessity condition that

probably needs to be tightened.

3.6.4 Multiple-Unicast

Multiple-unicast problems in network coding have multiple transmitter-receiver pairs which

try to communicate their own individual messages. Unlike the previous problems, each transmitter

only knows its own messages, and it is well-known that the cutset bound is not tight and the capacity

region is open except several known cases [102, 103].

Here, we try to convert multiple-unicast problem to the control over LTI network problems.

The main difference between multiple-unicast and broadcast problems is the multiple transmitters.

To capture this, we will introduce multiple observers14 to the previous control over LTI network

problems.

Figure 3.21 shows the resulting problem. The only difference compared with Figure 3.19 is

the multiple observers which do not share their observations directly. In this problem, we can easily

prove that if there exist a multiple unicast communication scheme from the observers to the con-

trollers which accommodates enough information flow to stabilize the plants, we can independently

stabilize the system.

3.7 Conclusion

In this chapter, we take a unified approach to network coding and decentralized control

by considering both problems as linear time-invariant systems. LTI-stabilizability of decentralized

14In section 3.4, we argued that the sources of the information flows for control are unstable states. However, when
only explicit observers can directly observe the unstable states, the observers can be thought of as the sources of
information.
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linear systems is found to be equivalent to having sufficient capacity in the relevant LTI networks.

This equivalence can be exploited in both network coding and decentralized control contexts.

In network coding, we found network linearization by introducing internal states and cir-

culation arcs. The linearized network has not only an equivalent mincut and maxflow to the original

network, but also a simple topology, acyclic single-hop relay. These properties lead to a simple and

elegant proof of an algebraic mincut-maxflow theorem.

In decentralized control, we gave an algorithm to make explicit LTI communication net-

works that represent the implicit communication required to stabilize the plant. The stabilizabil-

ity condition of decentralized systems is then easily interpreted using mincut conditions on the

corresponding networks. Each eigenvalue is viewed separately, and the number of Jordan blocks

corresponding to that eigenvalue corresponds to the number of degrees-of-freedom of implicit com-

munication required to stabilize that eigenvalue. The algebraic condition for fixed modes that was

reported in [4] and had, in our opinion, remained mysterious for 30 years turns out to be a special case

of the algebraic mincut-maxflow theorem. This also confirms that LTI controllers in decentralized

control systems implicitly communicate via linear network coding.

The connection to network coding becomes even more clear when we consider stabilization

problems with an explicit communication network. By introducing the concepts of alternative stabi-

lizability and independent stabilizability, we successfully convert network-coding results to equivalent

stabilizability results.

Taking a step back, the general idea of implicit communication (signaling) between de-

centralized controllers and information flow in decentralized systems has been recognized since

Witsenhausen’s counterexample [108]. However, in Witsenhausen’s counterexample the need for

communication between controllers is justified by the suboptimality of linear controllers, i.e. if the

decentralized controllers want to communicate with each other for efficient control of the system,

they would do so using nonlinear controllers for signaling [109, 45, 37]. However, we showed here

that even if we restrict controllers to be linear time-invariant, the controllers still can communicate

via linear network coding. To an extent, this chapter does for implicit communication what [95, 27]

did vis-a-vis [86, 87] for explicit communication — it finds a way to discuss the issue within a linear

framework. In fact, the existence of implicit communication between linear controllers in decen-

tralized systems has been conjectured for a long time [5, 19, 3, 116]. In a sense, we hope that this

chapter clarifies these discussions.
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Chapter 4

Decentralized scalar LQG problem:

Fast Dynamics

4.1 Introduction

One of the biggest successes in stochastic control theory is the LQG (linear quadratic

Gaussian) problem with a single controller. The solution of the LQG problem contributed two big

ideas to classical control theory [55]: The first is the optimality of linear controllers. This fact

allows designers to confidently focus on finite-dimensional linear strategies without worrying about

the infinite-dimensional strategy space. The second is the optimality of the Certainty-Equivalent-

Controllers (CEC). Without loss of optimality, we can first estimate states and then control the

system as if the estimated states were the true states. This is also called the estimation and control

separation principle.

Even if the optimality results were restricted to single-controller LQG problems, their

philosophical contribution was not limited to them. Lots of related but different control areas —

including nonlinear system control and adaptive control — accepted these principles and focused

on essentially linear controllers, and separated estimation from control. In this sense, the LQG

problems form a conceptual foundation in control theory.

However, this beautiful result on the LQG problem with a single controller fails as soon

as we introduce more than one controller. Following convention, we call a problem with a single

controller a centralized problem, and one with multiple controllers a decentralized problem. The

famous Witsenhausen’s counterexample [108] demonstrates that nonlinear strategies outperform

linear strategies even in a simple finite-horizon decentralized LQG problem. Later, Ho, Kastner,

and Wong [45] qualitatively argued that the need for nonlinear controllers stems from “signaling”

— we will also use the term “implicit communication” interchangeably — between decentralized

controllers. Finding the optimal nonlinear strategy in most decentralized problems is known to be
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a non-convex infinite-dimensional problem [88], for which we do not have a well-developed theory.

Yet, it is still interesting to consider the average-cost infinite-horizon decentralized LQG

problem, which is the natural extension of [55, p.93].

x[n+ 1] = Ax[n] +
∑

i

Biui[n] + w[n]

yi[n] = Cix[n] + vi[n]

Here, the underlying random variables x[0], w[n], and vi[n] are independent Gaussian. The objective

is to minimize the asymptotic average cost:

lim sup
N→∞

1

N

∑

0≤n<N

E[x∗[n]Qx[n]] +
∑

i

E[ui
∗[n]Riui[n]]

where Q � 0, Ri � 0, and each ui[n] is a causal function of yi[n] alone. This chapter (and the next)

considers the simplest toy case among these infinite-horizon decentralized LQG problems, a scalar

system with two-controllers. As should be expected, linear controllers are not optimal. The crux of

decentralized LQG problems, nonconvex optimization over infinite-dimensional spaces, is still there

and finding the optimal solution seems impossible. Instead of trying to solve the problem exactly,

we solve it approximately to within a constant factor of the optimal cost.

C1[0] 

C2[0] 

C1[1] 

C2[1] 

C1[2] 

C2[2] 

C1[n] 

C2[n] 

Radner’s 
Problem 

Witsenhausen’s 
Counterexample 

n-Stage Signaling 

Figure 4.1: Relationship between Radner’s problem [80], Witsenhausen’s counterexample [108], and

the infinite-horizon scalar LQG problem with two controllers

4.1.1 Literature Review and Intellectual Context

Until the late 40s, control and communication were considered in a unified framework under

the name of cybernetics. According to Wiener [105], cybernetics is defined as ‘the scientific study of

control and communication in the animal and the machine.’ However, Shannon’s revolutionary paper

detached communication problems as its own field of interest. Since then, control and communication

have grown as two separate areas.
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Now, control theory which successfully addressed fundamental problems in centralized con-

trol is facing the decentralized challenge (non-convex infinite-dimensional optimization problems).

This challenge divided related control research in two major directions.

The first direction is finding those special cases under which a linear strategy is optimal —

or almost equivalently, finding cases where the problem is convex. Radner’s pioneering paper [80]

considered the case when the controllers act simultaneously and the dynamics of the system termi-

nates after one time step, as shown in the first box of Fig. 4.1. Signaling (implicit communication

between two controllers) is intuitively impossible by problem construction. Therefore, linear con-

trollers are optimal in this case in spite of the problem being decentralized. Witsenhausen found

another sufficient condition for linear optimality called the nested information pattern [109]. The

condition tells if all information is shared with one step time delay by explicit communication, there

is no need to implicitly communicate the information and linear strategies are optimal. Later, this

concept was generalized by Yuksel to stochastic nestedness [117].

More recently, Rotkowitz and Lall [84] proposed an algebraic condition for convexity of

the problem called “quadratic invariance.” The condition finds sparsity constraints on the controller

so that the problem remains convex even after Youla’s parametrization [114]. There is a lot of on-

going research in this direction [92, 60] that has refined our understanding and also revealed much

about the structure of optimal controllers in these special cases where linear controllers are optimal.

However, all of these quadratic-invariance structured problems also have no signaling incentive and

the information patterns are nested [83].1

On the other hand, the second direction studies general cases when linear strategies are

not optimal. Nayyar et al. discussed the structure of the optimal controllers in general decentralized

problems [72], and Wu et al. found the mathematical properties (like continuity of the optimal

strategy) of the optimal strategy for Witsenhausen’s counterexample [110]. However, these results

do not give quantifiable results, and to get such results we have to study the effect of implicit

communication [45, 108].

Most of quantifiable results focus on Witsenhausen’s counterexample. As we can see in

the second box of Fig. 4.1, in Witsenhausen’s counterexample the two controllers act in different

time slots and may try to communicate. Exploiting implicit communication between the controllers

makes nonlinear strategies outperform linear ones. Mitter and Sahai found that linear strategies can

be arbitrarily bad compared to nonlinear strategies [68]. Many researchers including [59, 7, 61, 48]

tried using computer-based exhaustive search to find the optimal strategy. Finally, Grover et al.

showed that signaling-based nonlinear strategies approximately achieve the optimal cost to within

a constant ratio [37]. This chapter continues this approach, and can be considered as a direct

1There are a few special cases when a linear controller is optimal but cannot be explained in the context of signaling
incentives. Especially, in [10], Bansal and Basar found that when input cost and state disturbance measures match,
a linear controller is optimal. Likewise, in communication theory where the encoder and decoder can be thought of
as distributed controllers, it is well known that linear is optimal when the source and channel distributions and cost
measures match [34]. This intriguing link deserves further exploration in future work.
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descendent of [37]. In fact, there is a close relationship between Witsenhausen’s counterexample

and the scalar infinite-horizon LQG problem considered in this chapter. We will revisit this point

in Section 4.4, and see that the infinite-horizon LQG problem can be thought of as the interlocking

of a series of generalized Witsenhausen’s counterexamples.

Another not directly but conceptually related branch of the second direction is “Control

over Communication Channels” [97, 86, 119, 26, 69, 66], which tries to quantify explicit information

flow for control. They introduce an explicit communication link and measure the amount of infor-

mation flow required to control the system. One of their main results is that in scalar systems we

need at least the communication rate, (log of eigenvalue) bits, to stabilize the system [97]. Later,

this concept was extended to nonlinear filtering [64]. In this chapter, we will see the underlying

relationship to decentralized control problems.

On the other hand, communication theory (especially, wireless communication theory) has

developed a lot of quantifiable results for network communication problems. Since communication

problems are decentralized in nature, the exact characterization of the capacity has been open for

most communication networks involving many nodes. However, they still made progress by dividing

cases based on the SNR (Signal-to-Noise Ratio), bringing linear-algebraic ideas and concepts to

problems, and solving problems approximately. Especially, Avestimehr et al. considered relay

communication problems with arbitrarily large number of nodes, and successfully characterize the

capacity to within a constant gap that only scales with network size. At the heart of this progress,

there are the concepts of generalized degree of freedom (d.o.f.) and binary deterministic models. In

[6], Avestimehr et al. idealized bit levels as different antennas. By conceptualizing each bit level as

a different subspace, they could apply linear-algebraic concepts and ideas for much precise analysis.

By expanding the concept of d.o.f. (essentially, the rank of linear spaces) to different bit levels, they

could understand the capacity of wireless communication networks to within a constant gap.

The main contribution of this chapter is the parallelism between information flows in decen-

tralized LQG control and those in wireless communication theory. We will see that just as wireless

communication theory divides cases depending on the SNR, decentralized LQG problems can be

divided based on the eigenvalue of the systems. Moreover, we will find the relevant bottleneck in de-

centralized LQG problems using the idea of ‘geometric slicing’, which we believe is a proper analogy

to the information-theoretic cutset bound [21] in a dynamic-programming context.

The rest of the chapter is organized as follows: We formally state the problem and the

main results in Section 4.2. Section 4.3 gives the underlying intuitions behind the results. In

Section 4.4, 4.5, 4.6, 4.7, we will convert these intuitions into formal proofs, and introduce proof

ideas for that. Section 4.8 discusses the fundamental relationship between wireless communication

theory and decentralized LQG problems. Finally, Section 4.9 concludes the chapter.
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4.2 Problem Statement and Main Results

Throughout this chapter, we will discuss the scalar infinite-horizon decentralized LQG

problems with two controllers.

Problem A (scalar infinite-horizon decentralized LQG problems with two controllers).

x[n+ 1] = ax[n] + b1u1[n] + b2u2[n] + w[n]

y1[n] = c1x[n] + v1[n]

y2[n] = c2x[n] + v2[n]

Here, u1[n] and u2[n] must be causal functions of y1[n] and y2[n] respectively, i.e. u1[n] = f1,n(y1[0],

· · · , y1[n]) and u2[n] = f2,n(y2[0], · · · , y2[n]). Following the traditional LQG problem formulation,

the objective is minimizing an average quadratic cost:

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]. (4.1)

Here, q ≥ 0, r1 ≥ 0, r2 ≥ 0 and the underlying random variables are independent Gaussian,

i.e. x[0] ∼ N (0, σ2
0), w[n] ∼ N (0, σ2

w), v1[n] ∼ N (0, σ2
v1) and v2[n] ∼ N (0, σ2

v2).

Figure 4.1 shows a pictorial description of the problem by introducing duplicated nodes

across different time-steps and thus unraveling the dynamics.2 First, without loss of generality, we

put a series of assumptions on the problems.

Assumption (a): b1 = b2 = 1.

Assumption (b): c1 = c2 = 1.

Assumption (c): σ2
w = 1.

Assumption (d): σv1 ≤ σv2.

Assumptions (a), (b) do not lose generality since we can rescale u1, u2 and y1, y2 respec-

tively. Assumption (c) doesn’t lose generality since we can rescale the system equation by 1
σw

.

Assumption (d) doesn’t lose generality because it is simply a way of deciding which controller is 1,

and which is 2.

Therefore, throughout this chapter we will consider the following problem:

Problem B (Normalized decentralized LQG problem for Problem A).

x[n+ 1] = ax[n] + u1[n] + u2[n] + w[n] (4.2)

y1[n] = x[n] + v1[n]

y2[n] = x[n] + v2[n]

where x[0] ∼ N (0, σ2
0), w[n] ∼ N (0, 1), v1[n] ∼ N (0, σ2

v1), v2[n] ∼ N (0, σ2
v2). The control objective

is minimizing the long-term average cost in (4.1).

2The idea of unraveling the system by introducing duplicated nodes across different time-steps was also used to
study network information flows [1]. As in [1], we will see the unraveling of the dynamics will be helpful to find the
information bottleneck of the system.
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Even though this problem is the simplest decentralized infinite-horizon LQG problem, as we

will see in Proposition 4.4, linear strategies are not optimal and the optimization problem becomes

infinite-dimensional and non-convex. Here, we follow the approximation approach of [37], which

itself inherits from [6] and the spirit of approximate algorithms in computer science theory. We

propose a set of finite-dimensional function spaces that are guaranteed to contain an approximately

optimal solution. Therefore, if we optimize only over the proposed finite-dimensional function spaces,

the solution achieves the optimal performance within a constant ratio regardless of the problem

parameters, a, q, r1, r2, σ0, σv1, and σv2. In this chapter, we first consider the fast-dynamics case

when the single eigenvalue of the system is large (|a| ≥ 2.5) and discuss the conceptual relationship

with high-SNR in wireless communication theory. The slow-dynamics case when the single eigenvalue

of the system is small (|a| < 2.5) will be discussed in Chapter 5, and the relationship with low-SNR

in wireless communication theory will be also revealed.3

The first set of controllers is two naive memoryless linear strategies, which simply zero-force

the state.

Definition 4.1 (Linear Strategy Llin,bb). Llin,bb is the set of the following two controllers:

(i) u1[n] = −ay1[n], u2[n] = 0.

(ii) u1[n] = 0, u2[n] = −ay2[n].

The second set is a two-parameter (s, d) nonlinear strategy set for implicit communication

between two controllers.

Definition 4.2 (s-Stage Signaling Strategy Lsig,s). For a given s ∈ N, Lsig,s is the set of all

controllers which can be written as the following form for some d > 0,

u1[n] = −aRd(y1[n]) (4.3)

u2[n] = −a(Qasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])) +Rasd(
∑

1≤i≤s

ai−1u2[n− i])). (4.4)

Here, Qx(y) := xb yx + 1
2c and Rx(y) := y −Qx(y). These quantities represent the quantization level

and remainder when y is divided by x respectively, i.e. let y = q · x + r for q ∈ Z and r ∈ [−x2 ,
x
2 ).

Then, Qx(y) = q · x and Rx(y) = r. (We also put u1[n] = 0 and u2[n] = 0 for n < 0.)

We will give the intuition behind this strategy in Section 4.3. Roughly speaking, in the

strategy set Lsig,s the first controller “implicitly communicates” its observation to the second con-

troller with delay s by making the state easier to estimate. This strategy is essentially a multi-stage

generalization of the lattice-quantization strategy [37] used for Witsenhausen’s counterexample. No-

tice that the strategy requires remembering the past s control inputs.

3Here, we did not optimize for the best ratio, and the explicit number 2.5 is arbitrary. We could have written
Theorem 4.1, 4.2 with any fixed number like |a| = 2, 3, 5, 6, · · · which may result in a different ratio. However, as |a|
increases, the ratio between linear and nonlinear strategy cost goes to infinity, and the gain by considering nonlinear
strategies becomes larger.
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Now, we can state the main theorem of this chapter, which tells us that when |a| ≥ 2.5

optimizing over Llin,bb and Lsig,s is enough to give a constant-ratio optimal strategy among all

possible strategies.

Theorem 4.1. Consider the decentralized LQG problem shown in Problem B. Let L′ = Llin,bb ∪⋃
s∈N Lsig,s and L be the set of all measurable causal strategies. There exists a constant c ≤ 1.5×105

such that for all |a| ≥ 2.5, q, r1, r2, σ0, σv1 and σv2,

inf
u1,u2∈L′

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2∈L

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c.

Proof. See Section 4.7.

Since measurability is the minimal condition required to even have the problem make any

sense, infu1,u2∈L implies a minimization over all possible control strategies. Thus, in the rest of the

chapter, we will simply write it as infu1,u2 .

For the proof, we give explicit and computable upper and lower bounds on the optimal

cost, and prove that they are within a constant ratio. In Lemma 4.15 of page 214, we will see that

the linear strategies Llin,bb give the following upper bounds on the minimal average cost.

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]] ≤ q(a2σ2

v1 + 1) + r1(a4σ2
v1 + a2σ2

v1 + a2).

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]] ≤ q(a2σ2

v2 + 1) + r2(a4σ2
v2 + a2σ2

v2 + a2).

In Lemma 4.7 of page 174, we will see that the signaling strategies Lsig,s give the following upper

bounds.

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

≤ inf
(d,w1)∈SU,1

qDU,1(d,w1) + r1
a2d2

4
+ r2(8a2DU,1(d,w1) +

7

2
a2(s+1)d2 + 4a2σ2

v2).

where the definitions of DU,1(d,w1) and SU,1 are available in Lemma 4.7 of page 174.

For the lower bounds, we will see four different bounds in Lemma 4.12 of page 198 and

Lemma 4.13 of page 208. Thus, the optimal cost of Problem B is lower bounded as follows.

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ max
1≤i≤4

sup
(k1,k2,k,σ′v2,α,Σ)∈SL,i

inf
P̃1,P̃2≥0

qDL,i(P̃1, P̃2; k1, k2, k, σ
′
v2, α,Σ) + r1P̃1 + r2P̃2.

Here, the definitions of DL,1 and SL,1 are available in Lemma 4.12 of page 198. The remaining

definitions of DL,i and SL,i for 2 ≤ i ≤ 4 are shown in Lemma 4.13 of page 208.
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Finally, in Section 4.7 of page 212 we will compare these upper and lower bounds, and

prove that they are within a constant ratio.

To prove a similar result for the slow-dynamics case (|a| < 2.5), we need a further set of

single-controller optimal strategies. These strategies are linear strategies which can be parametrized

by a single parameter k.

Definition 4.3. Llin,kal is the set of all controllers which can be written in either one of the two

following forms for some k ∈ R
(i) u1[n] = −kE[x[n]|yn1 , un−1

1 ], u2[n] = 0.

(ii) u1[n] = 0, u2[n] = −kE[x[n]|yn2 , un−1
2 ].

Here, E[x[n]|yn1 , un−1
1 ] and E[x[n]|yn2 , un−1

2 ] can be easily computed by Kalman filtering

once k is fixed.4

The results of Chapter 5 will show that when |a| ≤ 2.5, optimization over Llin,kal is enough

to give a constant-ratio optimal strategy among all possible strategies.

Theorem 4.2. There exists c ≤ 2 · 106 such that for all |a| ≤ 2.5, q, r1, r2, σ0, σv1 and σv2,

inf
u1,u2∈Llin,kal

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c.

Proof. This will be shown in Theorem 5.1 of Chapter 5.

By Theorem 4.1 and 4.2, we can achieve the optimal cost to within a factor of 2 · 106 by

optimizing only over Llin,kal and Lsig,s, which only involves single and two parameter optimization

problems respectively. We believe that the factor here is coming from our proof strategy and the

gap will be far smaller in practice.

The optimal parameters for the proposed strategy sets in Definition 4.1, 4.2, 4.3 are

not difficult to find. The optimization over Llin,kal is a centralized LQG problem and it is well

known that the optimal k can be easily found by Riccati equations [55]. In Proposition 4.7 of

page 215 and Proposition 4.8 of page 216, we will see that the parameter s in Lsig,s can be selected

based on the problem parameters. Particularly, we can use s = d lnσ2
v2−ln(max(1,a2σ2

v1))
2 ln a e, so that

a2(s−1) max(1, a2σ2
v1) < σ2

v2 ≤ a2s max(1, a2σ2
v1). Moreover, Corollary 4.3 of page 216 gives a simple

analytic upper bound on the performance of Lsig,s, which has only two local optima as d varies.

Therefore, both optimization problems are easily solvable.

However, the true implication of Theorem 4.1 and 4.2 is that they reveal the essential

skeletons of an optimal strategy. Since the original optimization problems are infinite-dimensional

4Since un−1
i is known to the controller, we can compensate for the past control inputs and treat it as an open-loop

system. The estimation problem in the open-loop system is well-known Kalman filtering. This concept is called the
control-estimation separation principle in the control community.
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and non-convex, it is not even clear how and where to start a computer-based search. By revealing

the minimal strategy for approximately optimal performance, these results might give an initial

point to start optimization for further performance refinements. More importantly, as we will see in

later sections, the proposed strategy sets are intuitively interpretable and understandable.

4.3 Intuition: Deterministic Model Interpretation

Time 1 Time 2 Time 3 Time 4 

Disturbance 
level 
(decimal 
point) 

Input Power 
level for 
Controller1 
(also, Noise 
level for 
Controller2) 

Figure 4.2: Deterministic Model Interpretation of Nonlinear Control Strategies Lsig,1

Time 1 Time 2 Time 3 Time 4 

Disturbance 
level 
(decimal 
point) 

Input Power 
level for 
Controller1 
(also, Noise 
level for 
Controller2) 

Figure 4.3: Deterministic Model Interpretation of Linear Control Strategies L′lin

After reading the problem statement and the main result, readers may wonder

(1) Why are linear strategies not enough to achieve a constant ratio from the optimal?

(2) Why is the proposed set of nonlinear strategies enough to achieve a constant ratio from the

optimal cost?
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In this section, we will give an intuitive answer for these questions based on a linear

deterministic model in the spirit of Avestimehr, Diggavi and Tse [6], which has already proved to

be useful in understanding some control problems [37, 81].

The point of these linear deterministic models is to simplify and idealize real arithmetic,

and allow us to take a linear view of nonlinearity. The idea is to consider real numbers in binary

expansion and then to simplify arithmetic by eliminating carries. For example, if we have a number

5 we write it as 101 in binary expansion, and likewise we write 1
4 as 0.01. If we have a random

variable X which is uniform on [0, 4), we can write it as b1b0.b−1b−2 · · · in binary expansion where

bi are i.i.d. Bernoulli( 1
2 ) random variables on {0, 1}.

Since uniform random variables are so simple, we idealize Gaussian random variables as

uniform random variables. For a given Gaussian random variable with zero mean and variance σ2,

we caricature it as a uniform random variable on [0, σ) and use the same deterministic model for

the uniform random variable. For example, a Gaussian random variable N (0, 42) is caricatured as

b1b0.b−1b−2 · · · .
Then, we simplify the arithmetic on binary representations. Addition and subtraction are

approximated by bitwise XOR — thereby ignoring the carry effect. For B′ = b′1b
′
0.b
′
−1b
′
−2 · · · and

B′′ = b′′1b
′′
0 .b
′′
−1b
′′
−2 · · · , both B′ + B′′ and B′ − B′′ are approximated by (b′1 ⊕ b′′1)(b′0 ⊕ b′′0).(b′−1 ⊕

b′′−1)(b′−2⊕ b′′−2) · · · . Since we are modeling addition and subtraction in the same way, we ignore the

sign of the numbers and consider x and −x to be the same in deterministic models and so we will

assume every number is positive from now on.

Multiplication is approximated by a bit shift. For example, B′ × 4 and B′/4 are equal to

b′1b
′
0b
′
−1b
′
−2.b

′
−3 · · · and 0.b′1b

′
0b
′
−1 · · · respectively. If we restrict multipliers and dividers to be 2n,

this agrees with conventional multiplication and division.

For further discussion, it will be helpful to define the (binary) index and level for binary

expansions. For a given binary expansion B = · · · b1b0.b−1b−2, the index i bit of B indicates bi. It

is natural to call the bits bi, bi+1, bi+2, · · · as the bits above level i, and the bits bi−1, bi−2, bi−3, · · ·
as the bits below level i. To clarify this point, we define the level i as the imaginary line between

two sequential bits bi and bi−1. Thus, the decimal point corresponds to the level 0.

We also denote the upper-level of B as the minimum level l such that all bits above the

level l are 0, i.e. bi = 0 for all i ≥ l. For example, the upper level of 3 is 2 and the upper level of 4 is

3. When B is a random variable, we denote the upper level l of B as the worst case bound, i.e. the

minimum l such that bi = 0 for all i ≥ l with probability 1. Therefore, the upper level of a uniform

random variable on [0, 4) is 2 since 4 is not included in the interval.

Now, we can come up with the corresponding binary deterministic counterparts for the

LQG problems of Problem B. To simplify the discussion, we will assume the first controller has

perfect observations, and the second controller has no input cost. Like [37], we will consider the

state minimization problem for given control power constraints, instead of the weighted long-term

cost minimization problem.
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Problem C (Binary Deterministic Model for Problem B). Let a′, σ′v2, p
′
1 ∈ Z be the problem pa-

rameters. For time index n ≥ 0 and binary index i, the deterministic system dynamics is given as

follows:

xn+1
i = xni−a′ ⊕ un1,i ⊕ un2,i ⊕ wni
yn1,i = xni

yn2,i = xni ⊕ vni

Here, x0
i = 0 for all i. For all n, wni are 0 for all i ≥ 0 and i.i.d. Bernoulli 1

2 on {0, 1} for all

i < 0. For all n, vni are 0 for all i ≥ σ′v2 and i.i.d. Bernoulli 1
2 on {0, 1} for all i < σ′v2. The vni are

independent from the wni . un1,i and un2,i are causal functions of yn1,i and yn2,i respectively. The first

controller has a “power” limit, un1,i = 0 for all n ≥ 0 and i ≥ p′1.

The goal of control is to minimize the upper-level d on the worst state distortion, i.e.

minimizing d such that xni = 0 for all i ≥ d and n ≥ 0 with probability 1.

We can notice that xni , un1,i, u
n
1,i, w

n
i , vni correspond to x[n], u1[n], u2[n], w[n], v[n] of

Problem B respectively. Therefore, we will use the latter terms for a compact representation of the

bits in Problem C. Moreover, since the parameters of Problem C are given in the binary levels of

amplitude, they have the following relationship with those of Problem B: a = 2a
′
, σ2

v2 = 22σ′v2 ,

E[u2
1[n]] ≤ 22p′1 . Through the rest of discussion, we will focus on the case, a′ = 2, σ′v2 = a′

2 , p
′
1 =

a′

2 . Therefore, the corresponding parameters in LQG Problem B are a = 22, σ2
w = 1, σ2

v2 = 22,

E[u2
1[n]] ≤ 22.

Based on this deterministic model, we will answer the first question, ‘why the proposed

strategy is approximately optimal’. First, we can easily derive the following lower bound on the

state disturbance.

Proposition 4.1. When a′ = 2, σ′v2 = a′

2 , p
′
1 = a′

2 in Problem C, the minimum upper-level d on the

state distortion level has to be at least 2.

Proof. We can easily see that for n ≥ 1, the distortion level of x[n] is at least 0 since w[n− 1] with

upper-level 0 is added at each time step. At time n + 1, this distortion will be shifted up by two

bits, and the upper-level of the distortion becomes 2. However, the first controller cannot touch the

bits above the level 1 and so the first controller cannot reduce the distortion level. Moreover, at

the second controller, any bits below level 1 are corrupted by i.i.d. Bernoulli( 1
2 ) observation noise.

Therefore, the second controller’s observation is independent from the unknown bits sitting below

the level 1. Consequently, there is no action it can take to draw that bit to 0.

Neither controller can reduce the distortion bit sitting between the level 1 and 2, so with

a positive probability 1
2 this bit can be non-zero. Therefore, the upper-level of x[n+ 1] has to be at

least 2, i.e. d ≥ 2.

In fact, the following proposition shows this lower bound is actually achievable.
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Proposition 4.2. Consider Problem C with a′ = 2, σ′v2 = a′

2 , p
′
1 = a′

2 . Given the first con-

troller’s observation y1[n] = · · · yn1,1yn1,0.yn1,−1 · · · and the second controller’s observation y2[n] =

· · · yn2,1yn2,0.yn2,−1 · · · , let the first and second controller’s control input be

u1[n] = yn1,−2.y
n
1,−3y

n
1,−4 · · ·

u2[n] = · · · yn2,2yn2,1000.0 · · ·

Then, this strategy can achieve the optimal upper-level on the state distortion, d = 2.

Proof. Since we already know the minimal d ≥ 2 from Proposition 4.1, it is enough to show that

the proposed strategy can achieve d = 2.

Figure 4.2 shows the resulting dynamics when we actually use this strategy. Since the initial

state x[0] = 0, at time 1 both controllers’ inputs are also 0 and w[0] is only term that contributes to

x[1]. Thus, x[1] can be represented by 0.x1
−1x

1
−2x

1
−3 · · · in the deterministic model where each bit

is i.i.d. Bernoulli 1
2 in {0, 1}.

At time 2, x[1] is shifted two-bits up to generate x1
−1x

1
−2.x

1
−3 · · · . Since the first controller’s

observation y1[1] is equal to x1[n], its control input is x1
−2.x

1
−3 · · · . After being corrupted by the

noise v2[1], the second controller’s observation y2[1] becomes (v1
0).(x1

−1 ⊕ v1
−1)(x1

−2 ⊕ v1
−2) · · · which

is independent from the state, and as a result u2[1] = 0. When all of these are added, the second

bit of the state canceled by the first controller’s input. As we can see in Figure 4.2 the state x[2]

results in x2
10.x2

−1x
2
−2 · · · where each bit is i.i.d. Bernoulli 1

2 except for the 0 in the 0th position.

At time 3, the first controller does essentially the same operation as time 2, canceling

the lower bits below the level 1. However, the second controller’s observation has larger level than

before, y2[2] = (x2
1)(v2

0).(x2
−1 ⊕ v2

−1) · · · . Thus, u2[2] becomes x2
1000.0 · · · . When we are adding

these values, the first bit of the state is canceled by the second controller’s input and the third bit

of the state is canceled by the first controller’s input. As Figure 4.2 shows, the resulting state x[3]

is x3
10.x3

−1x
3
−2 · · · , which is essentially the same as x[2].

Therefore, we arrive in steady state and repeating the control strategy always gives the

state with the same upper-level 2. This finishes the proof.

So, we have an optimal scheme for the deterministic model. Let’s apply the insights that we

learnt from the deterministic model to the original LQG problem. The first controller’s strategy of

Proposition 4.2 can be understood as a sequence of two operations. The first operation is extracting

the lower bits of y1[n] and thus generating 0.0y1,−2y1,−3 · · · . To mimic this, we can simply divide y1[2]

by 0.1 (in binary) and take the remainder. Using Definition 4.2, this can be written as Rd(y1[2]) with

d = 0.1. The second operation is shifting the bits up to generate u1[2], which is just multiplication

by a constant (−a to be exact). Therefore, u1[2] = −aRd(y1[2]).

The second controller’s strategy of Proposition 4.2 can be understood as a sequence of

two operations. The first operation is extracting the higher bits of y2[2] and thus generating

y2,m · · · y2,10.0 · · · . For this, we can divide y2[2] by 10 (in binary) and take the quotient (exactly
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speaking, quotient multiplied by divisor). Using Definition 4.2, this can be written as Qd′(y2[2])

with d′ = ad = 10. The second operation is shifting two bits up as before, which is multiplication.

Therefore, u2[2] = −aQd′(y2[2]).

Compared to (4.3) and (4.4), this strategy is essentially equivalent to 1-stage signaling

strategy except for some minor terms in u2[n]. Therefore, in nonlinear strategies Lsig,s, u1[n] tries

to cancel the lower bits in ax[n] by exploiting its better observation and u2[n] tries to cancel higher

bits in ax[n] exploiting its less expensive input cost.

Now, we understand why the proposed strategy might be approximately optimal. We can

move on to the next question, ‘why linear is not enough for constant-ratio optimality’. Let’s first

remind ourselves of the counterparts to linear operations in these binary models. Addition and

subtraction correspond to bitwise XOR. Multiplication and division by a constant correspond to

shifting bits up and down. Let’s revisit Problem C with these restrictions on the strategy, and

understand why we cannot achieve the optimal performance with linear strategies.

Proposition 4.3. Consider Problem C with a′ = 2, σ′v2 = a′

2 , p
′
1 = a′

2 . Let’s restrict the controller

strategies to the following forms: For some ki,j , k
′
i,j ∈ Z and for all i ∈ Z and n ∈ Z+,

un1,i = y0
1,i+k0,n

⊕ y1
1,i+k1,n

⊕ · · · ⊕ yn1,i+kn,n
un2,i = y0

2,i+k′0,n
⊕ y1

2,i+k′1,n
⊕ · · · ⊕ yn2,i+k′n,n

Under this constraint on control strategy, the minimal upper-level d on the state distortion is 3.

Intuitively this proposition is obvious. As we saw in Proposition 4.1, the first controller has

input power is strictly less than the distortion level 2. When we restrict the strategy to be linear,

the first controller cannot cancel any bits in the state. Therefore, the second controller is the only

controller that can control the state. The second controller can only see the bits above level 1, and

after one time step, the distortion level will become 3. Let’s clarify this point more carefully.

Time 1 is the same as the proof of Proposition 4.2. However, at time 2 the first controller

cannot cancel the lower bits any more. The only allowed operations are shifting the bits in each

observation and taking XOR between them. As we can see in Figure 4.3, within the power con-

straint the first controller cannot but shift at least one-level down the bits in y1[1], and may choose

u1[1] = x1
−1.x

1
−2x

1
−3 · · · . As we discussed in Proposition 4.2, the second controller’s observation is

independent from the state and the optimal u2[1] is 0. Therefore, as we can see in Figure 4.3 no bits

cancel with each other, and x[2] = x2
1x

2
0.x

2
−1 · · · where each bits are i.i.d. Bernoulli 1

2 .

At time 3, due to the same reason, the best feasible input for the first controller is u1[2] =

x2
1.x

2
0x

2
−1 · · · and cannot cancel any bits in the state. Meanwhile, the second controller’s observation

with additive noise is y2[2] = x2
1(x2

0 ⊕ v2
0).(x2

−1 ⊕ v2
−1) · · · . Therefore, to cancel the first bits of

the state, the second controller shifts two-bits up in y2[2] and chooses u2[2] = x2
1 (x2

0 ⊕ v2
0) (x2

−1 ⊕
v2
−1) (x2

−2 ⊕ v2
−2). (x2

−3 ⊕ v2
−3) · · · . When these are added, the first bit of the state cancels and the

resulting state x[3] has three bits above the decimal point as we can see in Figure 4.3.
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By repeating this procedure, we can see that after the transient states of time steps 1, 2, 3,

the plant and controllers stay in steady state. From Figure 4.3, in steady state, x[n] has three

bits above the decimal point. Therefore, compared to the optimal performance without the linear

controller constraint, we can see one-bit-level performance degradation. This degradation comes

from the inefficient use of the first controller input. In other words, the first controller cancels the

lower bits of the state in the optimal strategy while it cannot cancel any bits in linear strategies.

Let’s consider the Gaussian counterpart of the previous results. As we discussed earlier,

the corresponding parameters in the original LQG problem is σ2
v1 = 0, σ2

v2 = Θ(a), E[u2
1[n]] ≤

Θ(a), E[u2
2[n]] ≤ ∞. We will consider the minimum state distortion as a goes to infinity. From

Proposition 4.2, we can expect that the optimal state distortion is E[x2[n]] ≤ O(a2) with these

parameters.5 From Proposition 4.3, we can expect that the state distortion is E[x2[n]] ≥ Ω(a3)

when we restrict control strategies to be linear. Here, we can see the ratio between the optimal cost

and the linear strategy cost goes to infinity as a grows.

Even if the discussion so far focused on minimizing the state distortion under power con-

straints, the result can be easily converted to the weighted long-term cost. Let’s choose the param-

eters of Problem B as q = 1, r1 = a, r2 = 0, σ0 = 0, σ2
v1 = 0, and σ2

v2 = a, i.e.

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

E[x2[n] + au2
1[n]]

If E[x2[n]] ≤ O(a2) when E[u2
1[n]] ≤ Θ(a) as we predicted, the optimal weighted cost has to be

O(a2). However, if we restrict the control strategies to be linear, E[x2[n]] will be Ω(a3) with the

same power constraint according to our conjecture. Therefore, we need at least E[u2
1[n]] ≥ Θ(a2) to

make E[x2[n]] ≤ O(a2). In either case6, the weighted cost is Ω(a3).

Formally, the following proposition formalizes this insight and proves the ratio between the

optimal cost and linear strategy cost actually diverges in Gaussian problems.

Proposition 4.4. Let L′lin be the set of all linear time-varying controllers which can be written in

the following form:

u1[n] =
∑

i≤n

kn,iy1[i],

u2[n] =
∑

i≤n

k′n,iy2[i].

5Exactly speaking, the optimal state distortion is E[x2[n]] ≤ O(a2 log a) with input power constraint E[u21[n]] ≥
Θ(a log a). The is due to the fact that unlike uniform random variables Gaussian random variables can be arbitrarily
large with exponentially decreasing probability. Later, this effect will be captured by large deviation ideas, and turns
out to be crucial to get constant-ratio optimality. We will discuss more about this issue in Section 4.3.1.

6One may wonder why we do not consider the cases between E[u21[n]] = Θ(a) and E[u21[n]] = Θ(a2), for example

E[u21[n]] = Θ(a
3
2 ). The reason comes from the limitation of these bit-wise deterministic models, precision. For a = 4,

we will write u1[n] as un0 .u
n
−1u

n
−2 · · · in binary when E[u21[n]] = a, and as un1u

n
0 .u

n
−1 · · · when E[u21[n]] = a2. When

E[u21[n]] = a
3
2 , we have to choose either one of these two. We choose the former in this chapter, so we cannot resolve

the difference between E[u21[n]] = a and E[u21[n]] = a
3
2 .
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Consider Problem B with parameters q = 1, r1 = a, r2 = 0, σ2
0 = 0, σ2

v1 = 0, and σ2
v2 = a. Then,

we have

inf
u1,u2∈L′lin

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n]]

inf
u1,u2∈Lsig,1

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n]]

→∞

as a→∞.

Proof. See Appendix 9.6.

From the discussion above, we can see that the first controller with better observations is

“signaling” to the second controller (with worse observations) through the control actions. However,

the notion of communication here is different from the conventional one. In conventional commu-

nication problems, the transmitter has access to a source (but cannot change it) and reduces the

uncertainty about the source at the destination by explicitly sending information about the source.

However, in control systems the source is the state, and the “transmitter”(which is a

controller) can change the source itself by control action. Therefore, it can reduce the uncertainty of

the source and make the source easier to estimate at the destination. Then, the destination will have

a better idea about the source even without receiving any explicit information. This generalized

notion of communication is the one happening between the first and the second controller.

Moreover, we can also see the delay of the communication is crucial in control problems,

while this is usually ignored in traditional information theory. In Figure 4.2, the second controller

has to wait until the disturbance is amplified above its observation noise level, which causes a 1-step

delay between two controllers. However, as we increase the observation noise level of the second

controller, the second controller has to wait longer until the disturbance is amplified enough and

this will result in a longer “delay” between the two controller’s actions.

In Section 4.5, we will explore this point by relating the infinite-horizon LQG problem to

control problems with different time horizons. As we saw in Figure 4.1, Radner’s problem [80] and

Witsenhasuen’s counterexample [108] are sub-blocks of the infinite-horizon LQG problem. We will

see later in Section 4.5 that the scheme discussed here is a 1-step-delay implicit communication

scheme which essentially (approximately) solves Witsenhausen’s counterexample. In general, we

may need up to an s-step-delay implicit communication to solve s-stage MIMO Witsenhausen’s

counterexamples.

4.3.1 Caveat: Deterministic Model does not work for Radner’s Problem

Even though we explained the result based on the binary deterministic model, it is just a

simplified model for intuition and we should not naively believe that the same results always hold

in Gaussian models as well. In fact, we will show that in Radner’s problem [80] the deterministic

model fails to correctly predict the behavior of Gaussian problems.
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C1[0] 

C2[0] 

(a) (b)

Figure 4.4: (a) Radner’s Problem and (b) the corresponding binary deterministic model. Here,

the binary deterministic model can fail to correctly predict the optimal strategy and the optimal

performance.

C1[0] 

C2[1] 

(a) (b)

Figure 4.5: (a) Witsenhausen’s Counterexample and (b) the corresponding binary deterministic

model . Here, the binary deterministic model does approximately predict the optimal strategy and

the optimal performance.
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In [80], Radner considered the following problem of Figure 4.4a: x[0], v1[0], v2[0] are

independent Gaussian random variables with zero mean and variance σ2
0 , σ2

v1, σ2
v2 respectively.

Let y1[0] := x[0] + v1[0], y2[0] := x[0] + v2[0], u1[0] := f1(y1[0]), u2[0] := f2(y2[0]) and x[1] :=

x[0] + u1[0] + u2[0]. The control objective is minimizing E[qx[1]2 + r1u1[0]2 + r2u2[0]2]. And he

proved that a linear controller is optimal.

Later, Witsenhausen found that if we shift the second controller by one time-step, the

problem is fundamentally different and the optimal controller is not linear [108]. Figure 4.5a shows

the counterexample: x[0], v1[0], y1[0], u1[0] are the same as Radner’s problem. However, x[1] :=

x[0]+u1[0], the second controller observes y2[1] := x[1]+v2[1] where v2[1] is Gaussian with zero mean

and variance σ2
v2, and u2[1] := f2(y2[1]), x[2] = x[1] + u2[1]. The control objective is minimizing

E[qx[2]2 + r1u1[0]2 + r2u2[1]2].

At a high level, this difference can be understood in terms of implicit communication.

Radner’s problem is a single-stage problem. Even if one controller sends some information, it is

impossible for the other controller to receive the information at the next time step. Therefore,

implicit communication between the controllers is impossible, and it is widely believed that if this is

the case, then linear is optimal [109, 117, 92, 60, 83]. However, Witsenhausen’s counterexample is a

two-stage problem. If the first controller sends some information, the second controller can receive

this information at the next time step. Therefore, implicit communication is possible, and nonlinear

strategies which are good at this implicit communication can outperform linear strategies.

Let’s revisit these problems using the binary deterministic models. Like in Section 4.3,

we will give a perfect observation to the first controller and allow unbounded input power for the

second controller. The goal of control is minimizing the state disturbance for a given input power

constraint.

Binary deterministic model counterparts of Radner’s problem and Witsenhausen’s coun-

terexample, shown in Figure 4.4b and 4.5b respectively, are formulated as follows.

Problem D (Binary Deterministic Model for Radner’s Problem). For binary level index i, the

deterministic system dynamics is given as follows:

x1
i = x0

i ⊕ u0
1,i ⊕ u0

2,i,

y0
1,i = x0

i ,

y0
2,i = x0

i ⊕ v0
i .

Here, x0
i are 0 for all i ≥ 2 and Bernoulli 1

2 on {0, 1} for all i < 2. v0
i are 0 for all i ≥ 1 and

Bernoulli 1
2 on {0, 1} for all i < 1. u0

1,i and u0
2,i are functions of y0

1,i and y0
2,i respectively. The first

controller has a power limit, u0
1,i = 0 for all i ≥ 1.

The goal of the control is to minimize the final state distortion level d, i.e. minimizing d

such that x1
i = 0 for all i ≥ d.
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Here, we can easily notice that x0
i , x

1
i , u

0
1,i, u

0
2,i, y

0
1,i, y

0
2,i, v

0
i correspond to x[0], x[1], u1[0],

u2[0], y1[0], y2[0], v2[0] in the original Radner’s problem.

Problem E (Binary Deterministic Model for Witsenhausen’s Counterexample [37]). For binary

level index i, the deterministic system dynamics is given as follows:

x1
i = x0

i ⊕ u0
1,i

x2
i = x1

i ⊕ u1
2,i

y0
1,i = x0

i

y1
2,i = x1

i ⊕ v1
i

Here, x0
i are 0 for all i ≥ 2 and Bernoulli 1

2 on {0, 1} for all i < 2. v1
i are 0 for all i ≥ 1 and

Bernoulli 1
2 on {0, 1} for all i < 1. u0

1,i and u1
2,i are functions of y0

1,i and y1
2,i respectively. The first

controller has a power limit, u0
1,i = 0 for all i ≥ 1.

The goal of the control is to minimize the final state distortion level d, i.e. minimizing d

such that x2
i = 0 for all i ≥ d.

Here, we can easily notice that x0
i , x

1
i , x

2
i , u

0
1,i, u

1
2,i, y

0
1,i, y

1
2,i, v

0
i correspond to x[0], x[1], x[2],

u1[0], u2[1], y1[0], y2[1], v2[1] in the original Witsenhausen’s problem.

As we can see in Figure 4.4b and Figure 4.5b, essentially the same scheme that we discussed

in Section 4.3 can be used in both deterministic problems to give the optimal cost. The first controller

cancels the lower bits x20 and the second controller cancels the higher bits x10 at the next time step.

Proposition 4.5. At time n, let the first controller’s observation be y1[n] = · · · yn1,1yn1,0.yn1,−1 · · ·
in binary expansion. Likewise, the second controller’s observation is y2[n] = · · · yn2,1yn2,0.yn2,−1 · · ·
in binary expansion. Then, the following control strategy achieves d = −∞ (i.e. the final state is

identically zero.) in both Problem D and E and is optimal in both problems.

u1[n] = yn1,0.y
n
1,−1 · · ·

u2[n] = · · · yn2,2yn2,10.00 · · ·

Proof. Immediately follows from Figure 4.4b and Figure 4.5b.

As we discussed in Section 4.3 the corresponding strategy in the reals is a nonlinear strategy.

However, linear is optimal in Radner’s problem. How can this be? Clearly, the real nonlinear

strategy is not even approximately achieving the cost that the binary deterministic model promises.

The binary deterministic model fails to predict the optimal control strategy and the optimal cost

of the real Gaussian Radner’s problem. The reason for this is the binary deterministic model ignores

the carry-over in addition and subtraction which is actually happening in real Gaussian problems.
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In fact, we can see the difference between y2[0] of Figure 4.4b and y2[1] of Figure 4.5b. The second

bit of y2[0] of Figure 4.4b is x20 ⊕ v10 which causes carry-over in the reals, while the second bit of

y2[1] of Figure 4.5b is v10 is just v10. Therefore, the bitwise separation ignoring the carry-over results

in an overly optimistic conclusion in binary deterministic models. A linear view of nonlinearity is

too simplified in this case.

In fact, even in Witsenhausen’s counterexample there is a small gap between the predicted

cost and actual LQG cost, even though the deterministic model correctly predicts the approximately

optimal strategy. As we can see in Proposition 4.5, in the deterministic model the final state is 0

as long as the first controller’s input power is greater than the second controller’s noise level. In

the corresponding LQG problem, the final cost turns out to be only an exponentially decreasing

function of the first controller’s input power. However, the underlying reason for this gap is different

from that in Radner’s problem. This gap in Witsenhausen’s counterexample comes from the tail of

Gaussian random variables and the finite-dimensionality of the problem.7 While all disturbances are

bounded with probability 1 in deterministic models, in LQG problems Gaussian random variables

can be arbitrary large with an exponentially decreasing probability. This results in a logarithmic

gap between the costs in Witsenhausen’s counterexample. However, unlike in Radner’s problem this

gap is only logarithmic and the insights that we gain from the deterministic models are still useful

in the original LQG problems.

Therefore, we can rightfully say that deterministic models predict the essential behavior of

Witsenhausen’s counterexample, while failing for Radner’s problem.

To clarify this point, we propose another simple deterministic model, the ring model, that

takes into account of the carry-over effect. As shown in Figure 4.6a, there are 9 possible states, each

time 1 is added the state rotates one step in counter clockwise, and each time 1 is subtracted the

state rotates one step in clockwise. The distance between two states are measured by a minimum

number of +1 or −1 that we have to add to move from one state to the other state. The norm of a

state is defined as the distance from 0 to the state.

Let’s apply this ring model to Witsenhausen’s counterexample. We will consider the cor-

responding situation of the binary deterministic model in Figure 4.4b. x[0] is uniformly random

between all possible 9 states. At the fist controller, y1[0] = x[0] but u1[0] ∈ {−1, 0, 1}. At the second

controller, y2[1] is either x[1] + 1 or x[1] or x[1]− 1 with probability 1
3 and u2[1] can take arbitrary

value. The goal of the control is minimizing the norm of the final state x[2].

Figure 4.6b and 4.6c shows the optimal strategy for the first and second controller re-

spectively, which is canceling lower and higher bits of uncertainty. As shown in Figure 4.6d, after

the first controller’s control x[1] has only three possible states, 0, 3, 6. Even after corruption by

7In infinite-dimensional problems, the laws of large numbers guarantee that Gaussian random variables behave
typically and the probability that they can be arbitrary large asymptotically goes to zero. Therefore, we can drive
the final cost to 0 with bounded first controller’s input power, and the cost predicted by the deterministic model is
actually achievable. To capture the finite-dimentionality of the problem, we have to use large deviation ideas. We
refer to [38, 18] for further details.
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Figure 4.6: (a) Ring Model with 9 states. (b) A strategy for the first controller in ring model. (c)

A strategy for the second controller in ring model. (d) Resulting state evolution for Witsenhausen’s

counterexample. (e) Resulting state evolution for Radner’s problem.

the observation noise, y2[1] still has enough information to decode x[1]. Therefore, by the second

controller’s strategy in Figure 4.6c, the final state x[2] can be forced to 0.

Then, let’s apply the same strategy to Radner’s problem. As we can see in Figure 4.6e,

x[0] is not quantized and the second controller cannot decode the initial state from its observation

y2[0]. The same strategy of Figure 4.6b and 4.6c gives a different result from Witsenhausen’s

counterexample. The final state x[0] is 0 with probability 7
9 , 3 with probability 1

9 , and 6 with

probability 1
9 . Thus, the average squared norm of x[2] is 2. Let’s consider a different strategy,

u1[0] = 0 and u2[0] = −y2[0], which corresponds to a linear strategy in the Gaussian reals. Then,

we can easily check that the final state x[1] is equiprobably 1 or 0 or −1 and the average squared

norm is 2
3 . Therefore, this linear strategy performs better than the nonlinear strategy that works

for Witsenhausen’s counterexample.

4.4 Proofs and Proof Ideas: High-Level Outline

The formal proof of the main result is separated into three parts. We will give upper and

lower bounds on the optimal cost, and then compare them to show that they are within a constant

ratio.

Figure 4.7 shows the proof idea flow for the upper bound8 on the optimal cost. This is

done by analyzing specific control strategies. First, it is easy to analyze linear strategies by simply

tracking mean and variance. For nonlinear strategies, it can be tricky since mean and variance

do not characterize non-Gaussian random variables. Therefore, in Section 4.5.2, we will introduce

8This corresponds to achievability arguments in information theory.
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Achievable Strategies 
(Upper bound) 
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Basic 
Properties 

[Lemma 4.2, 
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Problem: Nonlinear + Gaussian = Non-Gaussian 

Figure 4.7: Flow diagram of the ideas for the upper bound on the control performance

a mini theory to analyze quantization-based strategies, which we call (d,w, o)-approximate-comb-

lattice theory. Section 4.5.3 will actually analyze the nonlinear strategy performance based on this

theory.

To show that we cannot do much better, we also have to find a lower bound9 on the cost.

Figure 4.8 shows the flow of ideas in the proof for the lower bound. The key idea is identifying

the informational bottleneck of a problem and figuring out the information relaying between the

controllers. In information theory, to figure out the informational bottleneck of the system, we

partition the nodes and apply cutset bounds [6, 21]. However, here rather than simply partitioning

the nodes, we expand the system in time and must divide the infinite-horizon problem into finite-

horizon ones. The geometric slicing idea (Figure 4.15) is introduced for this.

Now, we have a finite-horizon problem. However, unlike infinite-horizon problems where

the effect of transients can be amortized over infinitely many stationary states, the transient states

are the essence of a finite-horizon problem and therefore the problem is non-stationary. To handle

this issue, we divide the resulting finite-horizon problem into three sub time-intervals — childhood,

youth and old age, so to speak. Figure 4.16 (or Figure 4.23) shows the division of time intervals.

In “childhood”, we do not have enough information about the state, so we will call this interval

information-limited. In “old age”, we do not have enough power to control the state too well, so

we will call this interval power-limited. Between these two —in “youth”— something interesting

is happening and we will call this interval a MIMO Witsenhaussen’s (or Radner’s for Figure 4.23)

9This corresponds to converse arguments in information theory.
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Q: How to bound? 
A: Cutset bound 

Figure 4.8: Flow diagram of the ideas for the lower bound on the control performance
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interval.

In this interesting interval, the first controller is power-limited and the second controller

is information-limited, which is essentially the same issue as in Witsenhausen’s counterexample.

In fact, we will relate this interval to an s-stage MIMO Witsenhausen’s counterexample where a

new disturbance is added at each time step. Then, the question becomes what are the critical

disturbances among these? We will see that only first and second disturbances matter, and we can

relax to simpler problems which are s-stage and (s− 1)-stage MIMO Witsenhausen’s with only one

disturbance. However, still these problems are difficult due to the dual role of controller actions.

The controller actions can be used to control the states, but at the same time they can be used

to communicate some information to the other controller. This control-communication dual role of

controller actions makes the problem hard.

To tackle this issue, we remove the control role from the first controller, and thereby the

first controller will behave like a transmitter in communication problems. On the other hand, we

remove the communication role from the second controller by allowing free feedback, and thereby the

second controller will behave like a receiver in communication problems. In this way, we can reduce

the problem to MIMO state-amplification with feedback, which generalizes the problem shown in

[50]. However, the resulting problem is finite dimensional, and information-theoretic results for

infinite-dimensional problems can possibly give loose bounds [37]. In fact, we have to adapt large

deviation ideas to the s-stage MIMO state-amplification problem for this reason.10 Now, we can

apply simple information-theoretic cutset bounds to the final communication problems and derive

lower bounds.

Before we discuss the proof details, we first convert the weighted long-term average cost

optimization problem to an optimization problem with average power constraints as we did in

Section 4.3. The original control objective is minimizing the weighted cost of the state disturbance

and the controller input powers. However, it will be useful to consider minimizing the state given

an average bound on the input powers. Formally, the problem is written as follows.

Problem F (Decentralized LQG problem with average power constraints). Consider the same

dynamics as Problem B. But, now the control objective is minimizing the state disturbance D(P1, P2)

for given input power constraints P1, P2 ∈ R+. We will say the power-disturbance tradeoff, D(P1, P2)

10This is the same issue and idea that we discussed in Section 4.3.1 for Witsenhausen’s counterexample and the
issue addressed in [37]
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is achievable if and only if there exist causal control strategies u1[n], u2[n] such that

lim sup
N→∞

1

N

N∑

n=1

E[x2[n]] ≤ D(P1, P2),

lim sup
N→∞

1

N

N∑

n=1

E[u2
1[n]] ≤ P1,

lim sup
N→∞

1

N

N∑

n=1

E[u2
2[n]] ≤ P2.

Lemma 4.14 will relate the weighted-cost problem, Problem B, and the power-constraints

problem, Problem F, telling us that if we can approximately solve the latter we can also approxi-

mately solve the former. To characterize D(P1, P2) approximately, we will come up with lower and

upper bounds on D(P1, P2). Since we are only aiming for an approximate solution, in the discussion

for intuitions and interpretations we will focus on the scaling and ignore the constants.

The following Cauchy-Schwarz style inequalities will be helpful to get bounds.

Lemma 4.1. For arbitrarily correlated random variables X1, · · · , Xn, the following inequality holds:

(
√
E[X2

1 ]−
√
E[X2

2 ] · · · −
√

E[X2
n])2

+ ≤ E[(X1 + · · ·+Xn)2] ≤ (
√
E[X2

1 ] + · · ·+
√
E[X2

n])2

≤ n(E[X2
1 ] + · · ·+ E[X2

n])

Proof.

E[(X1 + · · ·+Xn)2]

= E[X2
1 ] + · · ·+ E[X2

n] + 2E[X1X2] + · · ·+ 2E[Xn−1Xn]

≤ E[X2
1 ] + · · ·+ E[X2

n] + 2
√
E[X2

1 ]E[X2
1 ] + · · ·+ 2

√
E[X2

1 ]E[X2
n]

= (
√
E[X2

1 ] + · · ·+
√
E[X2

n])2

≤ n(E[X2
1 ] + · · ·+ E[X2

n])

where all inequalities follow from Cauchy-Schwarz.

E[(X1 + · · ·+Xn)2]

= E[X2
1 ] + 2E[X1(X2 + · · ·+Xn)] + E[(X2 + · · ·+Xn)2]

≥ E[X2
1 ]− 2

√
E[X2

1 ]E[(X2 + · · ·+Xn)2] + E[(X2 + · · ·+Xn)2]

= (
√
E[X2

1 ]−
√
E[(X2 + · · ·+Xn)2])2

≥ (
√
E[X2

1 ]−
√
E[X2

2 ] · · · −
√
E[X2

n])2
+

where all inequalities follow from Cauchy-Schwarz.
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Figure 4.9: Approximately optimal strategies for given P1 and σ2
v2 when σ2
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Figure 4.10: Approximately optimal strategies for given P1 and σ2
v1 when σ2

v2 = a5 and P2 =∞.
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Figure 4.11: The minimum state disturbance D(P1, P2) when σ2
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function of P1. The red line indicates the cost achievable by the 1-stage signaling strategy. The

blue line indicates the cost achievable by linear strategies. As we can see this performance plot

corresponds to that of the red line in Figure 4.9.
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Figure 4.12: The optimal weighted average cost for σ2
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v2 = a, q = 1, r1 = al, r2 = 0. The red

line indicates the optimal cost among all possible strategies. The blue line indicates the optimal cost

among only linear strategies. The green line indicates the cost of the centralized controller which

has both observations and can control both inputs. As l varies, the optimal strategy traverses the

red line of Figure 4.9.
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4.5 Proofs and Proof Ideas: Upper bound on the optimal

cost

To come up with an upper bound on D(P1, P2), we should propose appropriate achievable

control strategies for approximate optimality and analyze their performances.

As we discussed in Section 4.3.1, a 1-stage signaling strategy (Lsig,1) for the infinite-horizon

problem (shown in Figure 4.2) and the nonlinear strategy for Witsenhausen’s counterexample (shown

in Figure 4.5) are essentially equivalent. The first controller implicitly communicates its observation

to the second controller by forcing the lower state bits to be zero. This point can be visually

understood in Figure 4.1 by noticing that Witsenhausen’s counterexample is indeed a sub-block of

the infinite-horizon problem.

However, there is a significant difference between these two problems — the time-horizon.

Witsenhausen’s counterexample terminates after 2-time steps, while the system keeps running in

infinite-horizon problems. Therefore, more issues arise when we are designing controllers for infinite-

horizon problems.

First, since the system keeps running in infinite horizon problems, the implicit communi-

cation also has to keep happening. In Figure 4.1, C1[1] communicates to C2[2], C1[2] communicates

to C2[3], and so on. In other words, an infinite-horizon problem can be thought as a series of

Witsenhausen counterexamples. Because of this interlocking of Witsenhausen’s blocks, the effect

of one problem can propagate to subsequent ones. To handle this interference between interlocked

problems, we introduced the Rasd(
∑

1≤i≤s a
i−1u2[n − i]) terms in the s-stage signaling policy in

Definition 4.2.

The second difference is that since we have a longer time horizon, C1[0] does not have to

communicate to C2[1] of the next time step. It can also communicate with longer delay to C2[2],

C2[3], · · · . In general, C1[0] can communicate to C2[s] as we can see in Figure 4.1. In fact, the

s-stage signaling strategy of Definition 4.2, Lsig,s, enables C1[0] to communicate with C2[s], and the

infinite-horizon problem is decomposed into a series of interlocked ‘s-stage MIMO Witsenhausen’s

counterexamples’.

Let’s take a careful look at these signaling strategies, and understand which strategy has

to be used for which parameters of Problem B. For simplicity, we first consider the extreme case

when the first controller has a perfect observation and the second controller has no power constraint

just like Section 4.3. In other words, σ2
v1 = 0 and P2 = ∞. Here, we will be making references to

the binary deterministic perspective on the problem.
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When σ2
v1 = 0 and P2 =∞

Figure 4.9 summarizes which strategy has to be used for a given σ2
2 and P1. First, we

can notice that if the first controller has enough power then it does not really need any help from

the second controller. At each time step the disturbance w[n] is added, it is observable at the next

time step n + 1 by the first controller when its power is amplified by a2. Therefore, if P1 ≥ a2 the

first controller can remove the disturbance by itself by choosing u1[n] = −ay1[n]. We will call this

a zero-forcing strategy from the first controller’s point of view. On the other hand, at each time

a new state disturbance w[n] with variance 1 is added. Therefore, when P1 ≤ 1 most of the first

controller’s input will be masked by the additional disturbance w[n]. Therefore, in this case u1[n] = 0

is approximately optimal, and we will call this a zero-input strategy from the first controller’s point

of view.

Therefore, the question is “what should the first controller do when P1 is between these two

extreme values?” As we discussed before, the first controller can implicitly communicate its perfect

observation to the second controller by canceling the bits which are not observable by the second

controller. This idea can be implemented when the bits below the second controller’s noise level are

observed by the first controller at previous time steps. For example, in Figure 4.2, x1
−2 of time step

2, the bit below the noise level of the second controller, is observed by the first controller at time

step 1, one time step before.

Then, what is the condition for the first controller to observe the disturbance one time

step before in the original LQG problems? We can notice that at each time the disturbance w[n]

is amplified by a and its variance becomes a2 after one time step. Therefore, when 1 ≤ σ2
v2 ≤ a2

the bits below the second controller’s noise level are observed by the first controller at 1 time step

before.

What is the minimum power required for the first controller to cancel all the bits below

the second controller’s noise level σ2
v2? As we can guess11, the answer is σ2

v2. In sum, for 1-stage

signaling to be actually useful, the parameters of the LQG problems have to be 1 ≤ σ2
v2 ≤ a2 and

σ2
v2 ≤ P1 ≤ a2. When P1 ≥ a2, zero-forcing is approximately optimal, and when 0 ≤ P1 ≤ σ2

v2,

zero-input is approximately optimal.

In general, when a2(s−1) ≤ σ2
v2 ≤ a2s for some s ∈ N, the bits below the second controller’s

noise level can be “previewed” by the first controller at s time steps before, and the first controller’s

power has to be larger than
σ2
v2

a2(s−1) to actually cancel those bits. Therefore, in this case when P1 ≥ a2,

zero-forcing is approximately optimal, when
σ2
v2

a2(s−1) ≤ P1 ≤ a2, s-stage signaling is approximately

optimal, and when 0 ≤ P1 ≤ σ2
v2

a2(s−1) , zero-input is approximately optimal.

On the other hand, when σ2
v2 ≤ 1, it corresponds to dividing the infinite-horizon problem

into a series of Radner’s problems.12 The first controller will observe the bits below the second

11We can also conjecture this from the deterministic model in Figure 4.2. In Figure 4.2, the first controller’s input
power level and the second controller’s noise level is the same.

12In Section 4.7, we will name this case as the weakly-degraded-observation case, while the remaining case is named
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controller’s noise level without any delay, so it gets no preview. As we discussed in Section 4.3.1,

we cannot expect a significant gain from nonlinear strategies when two controllers are acting simul-

taneously on essentially the same quality observations. Therefore, in this case, a linear strategy is

enough to achieve constant-ratio optimality. We will revisit this point when we are discussing lower

bounds in Section 4.6.

When σ2
v1 > 0

So far, we limited ourselves to σ2
v1 = 0 and P2 = ∞. Let’s first consider the case when

σ2
v1 > 0.

If we take a careful look at the previous case of σ2
v1 = 0, the bits that the first controller

actually uses are those between the power level 1 and a−2. The bits below a−2 are useless since at

the next time step, they will be masked by the new disturbance. Therefore, as long as σ2
v1 ≤ a−2,

the first controller can observe all its useful bits and the previous argument does not change.

Then, what is happening in the case when σ2
v1 ≥ a−2? First, let’s ask what is the minimum

power P1 for the first controller to zero-force the state. The disturbance is amplified by a2 at each

time step, and the bits below σ2
v1 are not observable by the first controller. Therefore, by the time

the first controller observes the effect of the disturbance, the state’s variance becomes a2σ2
v1. To

actually cancel it at the next time step, the first controller’s power has to be greater than a4σ2
v1, i.e.

P1 ≥ a4σ2
v1.

When the input power is smaller than a4σ2
v1, it has to use signaling strategies. So when can

we use the s-stage signaling strategy? To use the s-stage signaling strategy, the first controller has

to observe the bits below the second controller’s noise level at least s time steps before. Therefore,

σ2
v1 has to be less than

σ2
v2

a2s . Since a longer stage signaling requires smaller power, we will use an

s-stage signaling strategy when
σ2
v2

a2(s+1) < σ2
v1 ≤

σ2
v2

a2s . Then, what is the minimum power to use

s-stage signaling strategy? Since the first controller has to cancel the bits below
σ2
v2

a2s at the next

time step, P1 has to be greater than
a2σ2

v2

a2s . When P1 is less than this, the first controller uses the

zero-input strategy.

Summarizing the conclusions so far, let s = d lnσ2
v2−ln(max(1,a2σ2

v1))
2 ln a e so that

a2(s−1) max(1, a2σ2
v1) < σ2

v2 ≤ a2s max(1, a2σ2
v1).

Then (i) When P1 ≥ max(a2, a4σ2
v1), the zero-forcing strategy

(ii) When
σ2
v2

a2(s−1) ≤ P1 ≤ max(a2, a4σ2
v1), the s-stage signaling strategy

(iii) When P1 ≤ σ2
v2

a2(s−1) , the zero-input strategy

are approximately optimal respectively.

the strongly-degraded-observation case.
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When P2 <∞

Let’s consider when the second controller also has a power constraint P2. When the first

controller is zero-forcing the state, the second controller does not have to control and the power

constraint P2 does not change the result. When the first controller is either applying signaling or

zero input strategy, the second controller has to stabilize the system. By the definition, D(P1,∞)

is the smallest state disturbance we can expect. Therefore, P2 has to be essentially greater than

a2D(P1,∞) to cancel the state at the next time step and stabilize the system. In fact, this turns

out to be sufficient, too.

4.5.1 Generalized d.o.f. Performance

Now, we have approximately optimal strategies. In this section, we will see how the perfor-

mance scales as the problem parameters vary. More precisely, we will increase the various problem

parameters in different scales, and see how the control cost scales as a function of the problem pa-

rameters. In spirit, this measure of the performance corresponds to the generalized d.o.f. in wireless

communication [29, 6] where the SNRs of different antennas are allowed to scale differently. The

more fundamental connection with wireless communication theory will be discussed in Section 4.8.

Figure 4.11 shows how the minimum state disturbance of the proposed strategies scales as

a goes to infinity. Precisely, in Problem F we fix a = a, σ2
v1 = 0, σ2

v2 = a, P2 =∞, and explore how

D(P1, P2) scales in a when P1 scales differently in a. From the problem parameters, we can easily

see this cost plot corresponds to the cost of the red line (σ2
v2 = a) in Figure 4.9. As we discussed

before, between zero-forcing and zero-input linear strategies, the nonlinear 1-stage signaling strategy

performs better.

So far the discussion is from the power-disturbance point of view. However, the original

weighted cost problem is essentially the same since the optimal strategy will have some corresponding

control input powers. Let’s consider the system equation (4.2) with a = a, σ2
v1 = 0, σ2

v2 = a and the

average cost (4.1)

c(l) = inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

E[x2[n] + alu2
1[n]]

Figure 4.12 shows how the average cost scales as a goes to infinity for different values of l. As we

change l, the optimal solution follows the red line (σ2
v2 = a) in Figure 4.9.

(i) When l is small (l ≤ 0), the input cost of the first controller is inexpensive and the zero-forcing

strategy is optimal up to scaling.

(ii) When l is large (l ≥ 2), the input cost is expensive and the zero-input strategy is approximately

optimal.

(iii) Between these two extremes (0 ≤ 1 ≤ 2), we need a nonlinear 1-stage signaling strategy and it

is approximately optimal.

As we can see in Figure 4.12, the average cost of linear and optimal nonlinear strategy scales
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differently in a. Therefore, the performance ratio between these two diverges to infinity, which was

formally stated in Proposition 4.4. Moreover, in Figure 4.12 we can also see a naive lower bound on

the cost (derived by allowing a centralized controller) is too loose to give constant ratio optimality.

Thus, we have to improve both the upper and lower bounds to prove constant-ratio optimality.

It is worth mentioning that figuring out this generalized d.o.f. cost is not enough to guar-

antee constant-ratio optimality, since the logarithmic scaling (caused by the tail of the Gaussian

random variables) in a does not appear in the generalized d.o.f. cost. For example, the first term

shown in the lower bound given by (c) of Corollary 4.2 cannot be captured in the generalized d.o.f.

cost.

4.5.2 (d,w,o) Approximate-Comb-Lattice Theory

w w w 

d d 

Figure 4.13: Pictorial description of Definition 4.4

So far, we understand the approximately optimal strategies and intuitively why they have

to be used for given problem parameters. Now, we have to formally analyze their performances.

Unlike linear strategies, nonlinear strategies make the random variables (the state, observations and

inputs) non-Gaussian. Thus, the mean and variance is not enough to describe the distribution of

random variables, and the exact description of the distribution requires a potentially infinite number

of parameters. Therefore, we have to come up with an approximate description involving only a

finite number of parameters. To this end, we propose the following definition which will turn out to

be useful in analyzing quantization-based signaling strategies.

Definition 4.4. Let X be a random variable, d be nonzero, and w, o be nonnegative reals with

|d| > w. We say X ≤df (d,w, o) if

P{X 6∈
⋃

i∈Z
[i · d− w

2
, i · d+

w

2
]} ≤ o.

Figure 4.13 pictorially shows this definition. When a random variable stays in one of the

boxes with width w, the event will be considered typical. When a random variable falls outside the

boxes, the event will be considered atypical and measured by outage probability o. Notice that after

quantization, the probability mass will concentrate in a sequence of boxes. When d = ∞, we have

only one box centered at 0.
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Let’s study properties of this definition. The first lemma tells what happens when we add

two random variables.

Lemma 4.2. Let X1, X2 and X3 be arbitrary correlated random variables. If X1 ≤df (d1, w1, o1),

X2 ≤df (∞, w2, o2) and X3 ≤df (d1, w3, o3) then

X1 +X2 ≤df (d1, w1 + w2, o1 + o2)

X1 +X3 ≤df (d1, w1 + w3, o1 + o3)

Proof.

P{X1 +X2 6∈
⋃

i∈Z
[i · d1 −

w1 + w2

2
, i · d1 +

w1 + w2

2
]}

≤ P{X1 +X2 6∈
⋃

i∈Z
[i · d1 −

w1 + w2

2
, i · d1 +

w1 + w2

2
], X2 ∈ [−w2

2
,
w2

2
]}+ P{X2 6∈ [−w2

2
,
w2

2
]}

≤ P{X1 6∈
⋃

i∈Z
[i · d1 −

w1

2
, i · d1 +

w1

2
]}+ o2

≤ o1 + o2

The second part follows similarly since when we add two points from the lattice points spaced by d,

the resulting point is also in that lattice.

The second lemma tells what happens when we multiply a random variable by a constant.

Lemma 4.3. Let X ≤df (d,w, o) and k > 0. Then,

kX ≤df (kd, kw, o).

Proof.

P{kX 6∈
⋃

i∈Z
[i · kd− kw

2
, i · kd+

kw

2
]}

= P{X 6∈
⋃

i∈Z
[i · d− w

2
, i · d+

w

2
]}

≤ o.

The next lemma captures the fact that the variance of a remainder is only smaller than

the original random variable.
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Lemma 4.4. For all random variable X and nonzero d, we have

E[Rd(X)2] = E[(X −Qd(X))2] ≤ E[X2].

Proof. For a real x, let x = q · d+ r for q ∈ Z and r ∈ [−d2 ,
d
2 ). Then,

x2 = (q · d+ r)2 = q2d2 + 2qdr + r2

= |qd|(|qd|+ 2sgn(qd) · r) + r2

When q = 0, x2 = r2.

When q 6= 0, since q ∈ Z we have x2 ≥ |qd|(|d| − 2|r|) + r2 ≥ r2.

Therefore,

E[X2] ≥ E[Rd(X)2].

Since all underlying random variables of interest are Gaussian, we will relate Gaussian

distributions with our parameterization.

Lemma 4.5. Let Q(x) := 1√
2π

∫∞
x

exp(−u
2

2 )du. Then, Q(x) ∼ 1√
2πx

exp(−x
2

2 ). More precisely, for

∀x > 0

1√
2π

(
1

x
− 1

x3

)
exp

(
−x

2

2

)
≤ Q(x) ≤ 1√

2πx
exp

(
−x

2

2

)
.

Moreover, when X is Gaussian with zero mean and variance smaller than σ2, for all w ≥ 0

X ≤df (∞, w, 2 ·Q(
w

2σ
)).

Proof. For the first part, see [30]. The second part directly follows from the definition.

The next lemma bounds the MMSE error of a quantized random variable when it is cor-

rupted by Gaussian observation noise.

Lemma 4.6. Let X and V be independent random variables where X ≤df (d,w, o) with |d| > w and

V is a Gaussian random variable with zero-mean and variance σ2. Then,

E[(X −Qd(X + V ))2]

≤ E[(X −Qd(X))2] +
∑

1≤i≤∞

(i|d|+ w

2
)2 · 2Q(

(2i− 1)|d| − w
2σ

)

+ o ·


(d+

d

2
)2 +

∑

2≤i≤∞

(i · d+
d

2
)2 · 2Qd(

(i− 1)|d|
σ

)


 .
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Proof. For convenience, let d > 0. d < 0 can be proved by replacing d with |d|. Denote Td,w =
⋃
i∈Z[i · d− w

2 , i · d+ w
2 ].

E[(X −Qd(X + V ))2] = E[(X −Qd(X + V ))2|X ∈ Td,w]P{X ∈ Td,w}

+ E[(X −Qd(X + V ))2|X ∈ T cd,w]P{X ∈ T cd,w}

≤ E[(X −Qd(X + V ))2|X ∈ Td,w]

+ E[(X −Qd(X + V ))2|X ∈ T cd,w] · o

Notice that when X ∈ Td,w and |V | < d−w
2 , Qd(X) = Qd(X+V ). When X ∈ Td,w and |V | < d+ d−w

2 ,

Qd(X) = Qd(X + V )± d and so on. Therefore,

E[(X −Qd(X + V ))2|X ∈ Td,w] = E[(Qd(X) +Rd(X)−Qd(X + V ))2|X ∈ Td,w]

≤ E[(X −Qd(X))2] + (d+
w

2
)2 · 2Q(

d− w
2σ

) + (2d+
w

2
)2 · 2Q(

3d− w
2σ

) + · · ·

Moreover, for all x when |V | < d, Qd(x) − Qd(x + V ) = −d, 0, d. When |V | < 2d,

Qd(x)−Qd(x+ V ) = −2d,−d, 0, d, 2d and so on. Therefore, since |Rd(·)| ≤ d
2 ,

E[(X −Qd(X + V ))2|X ∈ T cd,w] = E[(Qd(X)−Qd(X + V ) +Rd(X))2|X ∈ T cd,w]

≤ (d+
d

2
)2 + (2d+

d

2
)2 · 2Qd(

d

σ
) + (3d+

d

2
)2 · 2Qd(

2d

σ
) + · · ·

Therefore,

E[(X −Qd(X + V ))2]

≤ E[(X −Qd(X))2] + (d+
w

2
)2 · 2Q(

d− w
2σ

) + (2d+
w

2
)2 · 2Q(

3d− w
2σ

) + · · ·

+ o · ((d+
d

2
)2 + (2d+

d

2
)2 · 2Qd(

d

σ
) + (3d+

d

2
)2 · 2Qd(

2d

σ
) + · · · ).

4.5.3 Analysis of Signaling Strategies

Now, we are ready to analyze the performance of the s-stage signaling strategy. In the

s-stage signaling strategy, the first controller imposes a lattice structure on x[n], but the second

controller’s action can possibly break this lattice structure. However, the second controller knows

all its past control inputs, so it can exploit the imposed lattice structure by compensating for its

past control inputs. More precisely, we will see that x[n] − Rasd(
∑

1≤i≤s a
i−1u2[n − i]) —with the

compensation term, Rasd(
∑

1≤i≤s a
i−1u2[n− i])— has a lattice structure, and the second controller

will observe this quantized state with an observation noise v2[n]. In spirit, the idea and analysis in

this section is similar to that in [78].

Before we state the lemma, we introduce a definition to compare multiple numbers. For

a1, . . . an, b1, . . . , bn ∈ R, we say (a1, . . . , an) ≤ (b1, . . . , bn) if and only if a1 ≤ b1, . . ., an ≤ bn.
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Lemma 4.7. For a given s ∈ N, let SU,1 be the set of (d,w1) such that

d > 0, w1 > 0,

|a|sd− (|a|s−1d
|a|
|a| − 1

+ w1) > 0.

The bound DU,1(d,w1) is defined as

DU,1(d,w1) := 2a2s(2(
d

2
)2(

1

1− 1
|a|

)2 + 2(
1

1− 1
a2

) + 2a2σ2
v1)

+
∑

1≤i≤∞

4a2(i|a|sd+
|a|s−1d |a||a|−1 + w1

2
)2Q(

(2i− 1)|a|sd− (|a|s−1d |a||a|−1 + w1)

2σv2
)

+ 8a2Q(
w1

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

)
∑

1≤i≤∞

(i|a|sd+
|a|sd

2
)2Q(

(i− 1)|a|sd
σv2

)

+ 2(a2(
d

2
)2) + 1. (4.5)

Let |a| > 1. Then, for all s and (d,w1) ∈ SU,1, the s-stage signaling strategy of Definition 4.2 can

achieve the following Power-Disturbance tradeoff of Problem F.

(D(P1, P2), P1, P2) ≤ (DU,1(d,w1),
a2d2

4
, 8a2DU,1(d,w1) +

7

2
a2(s+1)d2 + 4a2σ2

v2)

Proof. For notational simplicity, we only consider a > 1. The proof for a < −1 can be obtained by

replacing a with |a|.
By the definition of s-stage signaling strategies,

u1[n] = −aRd(y1[n])

u2[n] = −a(Qasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])) +Rasd(
∑

1≤i≤s

ai−1u2[n− i]))

Therefore, for all n we have

x[n+ 1] = ax[n] + u1[n] + u2[n] + w[n]

= ax[n]− a(Qasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])) +Rasd(
∑

1≤i≤s

ai−1u2[n− i])) + u1[n] + w[n]

= a(x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])

︸ ︷︷ ︸
:=X[n]

−Qasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i]))

︸ ︷︷ ︸
:=Y2[n]

) + u1[n] + w[n]

(4.6)

First, we will prove that for all n ≥ s, X[n] has a lattice structure. Then, Y2[n] is X[n] + v2[n], so

we can use Lemma 4.6 to analyze the estimation error of quantized random variables.
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For n ≥ s, we have

X[n]

= x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])

= asx[n− s] +
∑

1≤i≤s

ai−1u1[n− i] +
∑

1≤i≤s

ai−1u2[n− i] +
∑

1≤i≤s

ai−1w[n− i]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])

= (asx[n− s] + as−1u1[n− s]) +
∑

1≤i≤s

ai−1u2[n− i]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])

+
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]

= (asx[n− s]− asRd(y1[n− s])) +
∑

1≤i≤s

ai−1u2[n− i]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])

+
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]

= (as(x[n− s] + v1[n− s]− v1[n− s])− asRd(y1[n− s])) +
∑

1≤i≤s

ai−1u2[n− i]

−Rasd(
∑

1≤i≤s

ai−1u2[n− i]) +
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]

= (asy1[n− s]− asRd(y1[n− s])) +
∑

1≤i≤s

ai−1u2[n− i]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])

+
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]− asv1[n− s].

Here, by Lemmas 4.2 and 4.3 we have

asy1[n− s]− asRd(y1[n− s]) ≤df (asd, 0, 0), (4.7)
∑

1≤i≤s

ai−1u2[n− i]−Rasd(
∑

1≤i≤s

ai−1u2[n− i]) ≤df (asd, 0, 0), (4.8)

∑

1≤i≤s

ai−1w[n− i]− asv1[n− s] ∼ N (0,
∑

1≤i≤s

a2(i−1) + a2sσ2
v1),

∑

1≤i≤s−1

ai−1u1[n− i] ≤df (∞, ad+ a2d+ · · ·+ as−1d, 0).

The first and second term have a lattice structure. The third and fourth term can be thought as

bounded disturbances.

Since

∑

1≤i≤s

a2(i−1) + a2sσ2
v1 ≤ a2(s−1) a2

a2 − 1
+ a2sσ2

v1

ad+ a2d+ · · ·+ as−1d = as−1d(1 +
1

a
+ · · ·+ 1

as−2
) ≤ as−1d

a

a− 1
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by Lemma 4.2, Lemma 4.5 we conclude for all w1 ≥ 0

∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i] ≤ (∞, as−1d
a

a− 1
+ w1, 2 ·Q(

w1

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

))

(4.9)

Applying Lemma 4.2 to (4.7), (4.8), (4.9) gives

X[n] ≤ (asd, as−1d
a

a− 1
+ w1, 2 ·Q(

w1

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

)).

Therefore, we can see that X[n] (n ≥ s) has a lattice structure. Then, we will analyze the perfor-

mance of the estimator of X[n] using Lemma 4.6.

First, for n ≥ s we have the following inequality.

E[(X[n]−Qasd(X[n]))2]

= E[(x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])−Qasd(x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])))2]

= E[(x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])−Qasd(
∑

1≤i≤s

ai−1u2[n− i])

−Qasd(x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− i])−Qasd(
∑

1≤i≤s

ai−1u2[n− i])))2]

= E[(x[n]−
∑

1≤i≤s

ai−1u2[n− i]−Qasd(x[n]−
∑

1≤i≤s

ai−1u2[n− i]))2]

= E[(
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]− asv1[n− s]

−Qasd(
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]− asv1[n− s]))2]

≤ E[(
∑

1≤i≤s−1

ai−1u1[n− i] +
∑

1≤i≤s

ai−1w[n− i]− asv1[n− s])2]

(∵ Lemma 4.4)

≤ 2E[(
∑

1≤i≤s−1

ai−1u1[n− i])2] + 2E[(
∑

1≤i≤s

ai−1w[n− i]− asv1[n− s])2]

(∵ Lemma 4.1)

≤ 2(
√
E[u2

1[n− 1]] + · · ·+
√
a2(s−2)E[u2

1[n− s+ 1]])2 + 2E[(
∑

1≤i≤s

ai−1w[n− 1]− asv1[n− s])2]

(∵ Lemma 4.1)

≤ 2(
ad

2
)2a2(s−2)(

1

1− 1
a

)2 + 2a2(s−1)(
1

1− 1
a2

) + 2a2sσ2
v1

(∵ Definition of u1[n])

= a2(s−1)(2(
d

2
)2(

1

1− 1
a

)2 + 2(
1

1− 1
a2

) + 2a2σ2
v1)



177

Therefore, by Lemma 4.6 we can bound the estimation error as follows.

E[(X[n]−Qasd(Y2[n]))2]

= E[(X[n]−Qasd(X[n] + v2[n]))2]

≤ a2(s−1)(2(
d

2
)2(

1

1− 1
a

)2 + 2(
1

1− 1
a2

) + 2a2σ2
v1)

+ (asd+
as−1d a

a−1 + w1

2
)22Q(

asd− (as−1d a
a−1 + w1)

2σv2
)

+ (2asd+
as−1d a

a−1 + w1

2
)22Q(

3asd− (as−1d a
a−1 + w1)

2σv2
) + · · ·

+ 2Q(
w1

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

)((asd+
asd

2
)2 + (2asd+

asd

2
)22Q(

asd

σv2
) + (3asd+

asd

2
)22Q(

2asd

σv2
) + · · · )

Finally, by plugging the above equation into (4.6) we conclude for all n ≥ s,

E[x2[n+ 1]] = E[(a(X[n]−Qasd(Y2[n])) + u1[n] + w[n])2]

≤ 2E[(a(X[n]−Qasd(Y2[n])))2] + 2E[u2
1[n]] + E[w2[n]]

≤ 2a2s(2(
d

2
)2(

1

1− 1
a

)2 + 2(
1

1− 1
a2

) + 2a2σ2
v1)

+ 2a2(asd+
as−1d a

a−1 + w1

2
)22Q(

asd− (as−1d a
a−1 + w1)

2σv2
)

+ 2a2(2asd+
as−1d a

a−1 + w1

2
)22Q(

3asd− (as−1d a
a−1 + w1)

2σv2
) + · · ·

+ 4a2Q(
w1

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

)((asd+
asd

2
)2 + (2asd+

asd

2
)22Q(

asd

σv2
)

+ (3asd+
asd

2
)22Q(

2asd

σv2
) + · · · )

+ 2(a2(
d

2
)2) + 1 (4.10)

Moreover, by (4.6), E[x2[n]] is bounded for any n < s. Therefore, the L.H.S. of (4.10) is an upper

bound on D(P1, P2).

For all n, we also have

E[u2
1[n]] ≤ a2d2

4
(4.11)

which is an upper bound on P1.
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Before we bound E[u2
2[n]], we first notice that by Lemma 4.1,

E[(Qasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− 1])))2]

= E[(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− 1]−Rasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− 1])))2]

≤ 2E[(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− 1]))2] + 2(
asd

2
)2

= 2E[(x[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− 1]))2] + 2σ2
v2 + 2(

asd

2
)2

≤ 4E[x2[n]] + 4(
asd

2
)2 + 2σ2

v2 + 2(
asd

2
)2

Therefore, for all n,

E[u2
2[n]] = a2E[(Qasd(y2[n]−Rasd(

∑

1≤i≤s

ai−1u2[n− 1])) +Rasd(
∑

1≤i≤s

ai−1u2[n− i]))2]

≤ a2(2E[(Qasd(y2[n]−Rasd(
∑

1≤i≤s

ai−1u2[n− 1])))2] + 2(
asd

2
)2)

≤ a2(8E[x2[n]] + 8(
asd

2
)2 + 4σ2

v2 + 4(
asd

2
)2 + 2(

asd

2
)2)

≤ 8a2E[x2[n]] +
7

2
a2(s+1)d2 + 4a2σ2

v2 (4.12)

which gives an upper bound on P2. Therefore, by (4.10), (4.11), (4.12) the lemma is proved.

4.6 Proofs and Proof Ideas: Lower bound on the optimal

cost

Figure 4.14: Naive truncation idea to divide an infinite-horizon problem to finite-horizon sub-

problems. This idea fails to give a constant-ratio lower bound.

In this section, we will study the lower bound on the optimal cost and understand why it is

impossible to outperform the proposed strategies by an arbitrary factor. In Section 4.5, we discussed

the relationship between the infinite-horizon problem of this chapter and finite-horizon problems.

The first idea for the lower bound is to make this idea formal, i.e. dividing the infinite-horizon

problem into a sequence of finite-horizon problems.
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Figure 4.15: Geometric Slicing idea to divide an infinite-horizon problem to finite-horizon sub-

problems. This idea successfully gives a lower bound tight to within a constant ratio.

4.6.1 Geometric Slicing of Infinite-Horizon Problems

Let’s say we want to divide the infinite-horizon problem into sub-problems with time-

horizon 3. A naive way of dividing the problem is truncation, which is pictorially described in

Figure 4.14. The total cost
∑N
i=1 qE[x2[n]] + r1E[u2

1[n]] + r2E[u2
2[n]] can be divided into 3-time-

horizon problems. The first problem is minimizing qE[x2[0] + x2[1] + x2[2]] + r1E[u2
1[0] + u2

1[1] +

u2
1[2]] + r2E[u2

2[0] + u2
2[1] + u2

2[2]]. The second problem is minimizing qE[x2[3] + x2[4] + x2[5]] +

r1E[u2
1[3] + u2

1[4] + u2
1[5]] + r2E[u2

2[3] + u2
2[4] + u2

2[5]], and so on. However, in this approach we can

find only N
3 sub-problems out of N times, which turns out not to be enough to prove constant-ratio

optimality.

The main reason why the truncation idea gives too loose a bound is that in order to

decouple the sub-problems from each other, we have to start each sub-problem with initial state 0

because that is the best possible initial state. But then, we have to wait long enough until the state

disturbance w[n] is amplified enough. So, in each sub-problem, the state cost at the final time step

is the only one that is large enough. We end up penalizing the state only for N
3 -time steps, while

the actual cost penalizes the state for N -time steps. In general, if we truncate the problem to s-

time-horizon problems, the resulting bound will be loose by a factor of s. In fact, to find a matching

lower bound for the s-stage signaling strategy, we have to divide the infinite-horizon problem into

s-time-horizon problems. Therefore, the lower bounds based on the truncation idea will be too loose

as s goes to infinity.

The idea of ‘geometric slicing’ solves this by introducing interlocking sub-problems and

penalizing the state at every time step. Figure 4.15 shows the idea pictorially. For example, we can

slice the problem to 3-time horizon problems as follows. The first problem is minimizing qE[x2[2]] +

r1E[ 1
2u

2
1[0] + 1

4u
2
1[1] + 1

8u
2
1[2]] + r2E[ 1

2u
2
2[1] + 1

4u
2
2[2]]. The second problem is minimizing qE[x2[3]] +

r1E[ 1
2u

2
1[1] + 1

4u
2
1[2] + 1

8u
2
1[3]] + r2E[ 1

2u
2
2[2] + 1

4u
2
2[3]], and so on. Here, notice that u2

1[1] shows up in

both problems but it does not cause any difficulty since the weights form a geometric sequence and

the sum is less than 1. Therefore, we are slicing the problem using geometric sequences, and that

is where the name of the idea come from. In this way, we can extract N sub-problems out of an

N -time-horizon problem. The sub-problems can be formally written as follows.

Problem G (Geometrically-Sliced Finite-horizon LQG problem for Problem B). Let the system
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equations, the problem parameters, the underlying random variables, and the restrictions on the

controllers be given exactly the same as Problem B. However, now the control objective is for given

0 < α < 1, k, k1, k2 ∈ N (k1 ≤ k, k2 ≤ k), minimizing the finite-horizon cost

inf
u1,u2

qE[x2[k]] + r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i]]).

Even if the system can run for infinite time, the cost terminates after the time step k.

Therefore, this problem is effectively a finite-horizon problem. The next lemma shows the cost of

this finite-horizon problem is a lower bound to the original infinite-horizon cost of Problem B.

Lemma 4.8. Let the system equations, the problem parameters, the underlying random variables,

and the restrictions on the controllers be given as in Problem B. When σ2
0 = 0, for all 0 < α < 1,

k, k1, k2 ∈ N (k1 ≤ k, k2 ≤ k), the infinite-horizon cost of Problem B is lower bounded by the

finite-horizon cost of Problem G, i.e.

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

≥ inf
u1,u2

qE[x2[k]] + r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i]]).

(4.13)

Here, when k1 = k or k2 = k the second or third term in the lower bound vanishes.

Furthermore, both costs are increasing functions of σ2
0 and when σ2

0 = 0, u1[0] = 0 and

u2[0] = 0 are optimal for both.

Proof. Let’s first prove that for all finite-horizon and infinite horizon problems, the average cost is

an increasing function in σ2
0 .

Proposition 4.6. Let x′[0] and x′′[0] be independent random variables, and x′[0] has zero mean.

Consider two systems where the system equations are given by Problem B. However, the initial state

of the first system is x′[0] + x′′[0] while the initial state of the second system is x′[n]. Except for the

initial states, both systems have the same underlying random variables w[n], v1[n], v2[n] as those in

Problem B. We denote the variables of the first system as x[n], ui[n], yi[n], and those of the second

system as x̄[n], ūi[n], ȳi[n]. Then, the following inequality is true.

inf
u1,u2

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

≥ inf
ū1,ū2

1

N

∑

0≤n≤N−1

(qE[x̄2[n]] + r1E[ū2
1[n]] + r2E[ū2

2[n]]).
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Proof. Since both systems are coupled with each other except the initial state, we will reduce the first

system to the second system by giving x′′[0] as side-information. Define Lg as the set of strategies

for the first system which depend on its own observations and x′′[0], i.e. Lg := {(u1[n], u2[n]) :

u1[n] = f1,n(y1[0], · · · , y1[n], x′′[0]), u2[n] = f2,n(y2[0], · · · , y2[n], x′′[0])}. Likewise, define L′g as

the set of strategies for the second system which depend on its own observations and x′′[0], i.e.

L′g := {(ū1[n], ū2[n]) : ū1[n] = f ′1,n(ȳ1[0], · · · , ȳ1[n], x′′[0]), f ′2,n(ȳ1[0], · · · , ȳ1[n], x′′[0])}.
Further, define u′i[n] := ui[n] − E[ui[n]|x′′[0]] and u′′i [n] := E[ui[n]|x′′[0]]. Then, we can



182

lower bound the average cost as follows.

inf
u1,u2

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

(A)

≥ inf
u1,u2∈Lg

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

(B)
= inf

u1,u2∈Lg

1

N

∑

0≤n≤N−1

(qE[(anx[0] + an−1w[0] + · · ·+ w[n− 1]

+ an−1u1[0] + · · ·+ u1[n− 1] + an−1u2[0] + · · ·+ u2[n− 1])2]

+ r1E[u2
1[n]] + r2E[u2

2[n]])

(C)
= inf

u1,u2∈Lg

1

N

∑

0≤n≤N−1

qE[(anx′[0] + an−1w[0] + · · ·+ w[n− 1]

+ an−1u′1[0] + · · ·+ u′1[n− 1] + an−1u′2[0] + · · ·+ u′2[n− 1]

+ anx′′[0] + an−1u′′1 [0] + · · ·+ u′′1 [n− 1] + an−1u′′2 [0] + · · ·+ u′′2 [n− 1])2]

+ r1E[(u′1[n] + u′′1 [n])2] + r2E[(u′2[n] + u′′2 [n])2]

(D)
= inf

u1,u2∈Lg

1

N

∑

0≤n≤N−1

qE[(anx′[0] + an−1w[0] + · · ·+ w[n− 1]

+ an−1u′1[0] + · · ·+ u′1[n− 1] + an−1u′2[0] + · · ·+ u′2[n− 1])2]

+ qE[(anx′′[0] + an−1u′′1 [0] + · · ·+ u′′1 [n− 1] + an−1u′′2 [0] + · · ·+ u′′2 [n− 1])2]

+ r1E[u′1[n]2] + r1E[u′′1 [n]2] + r2E[u′2[n]2] + r2E[u′′2 [n]2]

≥ inf
u1,u2∈Lg

1

N

∑

0≤n≤N−1

qE[(anx′[0] + an−1w[0] + · · ·+ w[n− 1]

+ an−1u′1[0] + · · ·+ u′1[n− 1] + an−1u′2[0] + · · ·+ u′2[n− 1])2]

+ r1E[u′1[n]2] + r2E[u′2[n]2]

(E)

≥ inf
ū1,ū2∈L′g

1

N

∑

0≤n≤N−1

(qE[x̄2[n]] + r1E[ū2
1[n]] + r2E[ū2

2[n]])

= inf
ū1,ū2∈L′g

1

N
E[

∑

0≤n≤N−1

(qE[x̄2[n]] + r1E[ū2
1[n]] + r2E[ū2

2[n]])|x′′[0]]

≥ inf
x′

inf
ū1,ū2∈L′g

1

N
E[

∑

0≤n≤N−1

(qE[x̄2[n]] + r1E[ū2
1[n]] + r2E[ū2

2[n]])|x′′[0] = x′]

(F )
= inf

ū1,ū2∈L

1

N

∑

0≤n≤N−1

(qE[x̄2[n]] + r1E[ū2
1[n]] + r2E[ū2

2[n]])

(A): L ⊆ Lg.
(B): By the system dynamics of (4.2).

(C): Definitions of x′[0], x′′[0], u′i[n], u′′i [n].

(D): Since x′[0], w[n] are zero mean and independent from x′′[0], they are orthogonal to x′′[0], u′′1 [n],

u′′2 [n]. Moreover, by definition, u′1[n], u′2[n] are orthogonal to x′′[0], u′′1 [n], u′′2 [n].
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(E): To justify this, we will show (by induction) that for all n, yi[0], · · · yi[n], x′′[0] are functions of

ȳi[0], · · · ȳi[n], x′′[0]. Therefore, there exists ū1[n], ū2[n] such that ū1[n] = u′1[n], ū2[n] = u′2[n].

First, when n = 1, the claim is obvious since yi[0] = ȳi[0] + x′′[0]. Thus, yi[0], x′′[0] are

functions of ȳi[0], x′′[0]. Moreover, since u′i[n] are functions of yi[0] and x′′[0], we can find ūi[n] such

that ūi[n] = u′i[n].

Let’s say the claim holds until n− 1. Then, we have

yi[n] =anx′[0] + an−1w[0] + · · ·+ w[n− 1]

+ an−1u′1[0] + · · ·+ u′1[n− 1]

+ an−1u′2[0] + · · ·+ u′2[n− 1] + vi[n] + g(x′′[0])

=anx′[0] + an−1w[0] + · · ·+ w[n− 1]

+ an−1ū1[0] + · · ·+ ū1[n− 1]

+ an−1ū2[0] + · · ·+ ū2[n− 1] + vi[n] + g(x′′[0])

=ȳi[n] + g(x′′[0])

where g(x′′[0]) := anx′′[0] + an−1E[u1[0]|x′′[0]] + · · ·+E[u1[n− 1]|x′′[0]] + an−1E[u2[0]|x′′[0]] + · · ·+
E[u2[n − 1]|x′′[0]], and the send equality comes from the induction hypothesis. Therefore, yi[n] is

a function of ȳi[n], x′′[0], and we can find ūi[n] such that ūi[n] = u′i[n]. This proves the claim by

induction.

(F): Since in L′g the strategies can depend on x′′[0].

Therefore, the proposition is true.

Here, we can notice that the proof holds for all quadratic costs. Therefore, by setting

x′[0] ∼ N (0, σ′20 ) and x′′[0] ∼ N (0, σ′′20 ), we can prove the costs in (4.13) are increasing functions

on σ2
0 . We can also easily justify that when x0[0] = 0, u1[0] = u2[0] = 0 is the optimal input by

symmetry.
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Then, let’s prove the inequality of (4.13).

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

(a)

≥ lim sup
N→∞

inf
u1,u2

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

(b)

≥ lim sup
N→∞

inf
u1,u2

1

N
(qE[x2[k]] + r1(1− α)(

∑

k1≤i≤k−1

αi−k1E[u2
1[i]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i]])

+ qE[x2[k + 1]]

+ r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i+ 1]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i+ 1]]) + · · ·

+ qE[x2[N − 1]]

+ r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i+N − k − 1]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i+N − k − 1]])

(c)

≥ lim sup
N→∞

1

N
( inf
u1,u2

qE[x2[k]] + r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i]])

+ inf
u1,u2

qE[x2[k + 1]]

+ r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i+ 1]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i+ 1]]) + · · ·

+ inf
u1,u2

qE[x2[N − 1]]

+ r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i+N − k − 1]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i+N − k − 1]])

(4.14)

(d)

≥ lim sup
N→∞

N − k
N

( inf
u1,u2

qE[x2[k]] + r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i]])

(e)
= inf

u1,u2

qE[x2[k]] + r1(1− α)(
∑

k1≤i≤k−1

αi−k1E[u2
1[i]]) + r2(1− α)(

∑

k2≤i≤k−1

αi−k2E[u2
2[i]]).

(a): inf sup ≥ sup inf.

(b): We can easily check that the sum of the weight for each input cost, E[u2
1[n]] or E[u2

2[n]] is less

than (1− α)(1 + α+ α2 + · · · ) which is 1.

(c): infx f(x) + g(x) ≥ infx f(x) + infx′ g(x′).

(d): The second minimization problem in (4.14) can be thought as a one-time-step shift of the first

minimization problem, i.e. x[1] of the second problem corresponds to the initial state x[0] = 0 of the

first problem. Therefore, by putting x′[0] = 0 and x′′[0] = x[1] in Proposition 4.6, the first problem’s
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cost is smaller than the second problem’s cost. Likewise, we can prove that the first problem’s cost

is a lower bound for all other problems’ cost.

(e): lim supN→∞
N−k
N = 1.

Conceptually, this idea of geometric slicing can be thought of as an interesting variant on

how discounted dynamic programming [11] is used to study average-cost dynamic programming.

C1[0] 

C2[0] 

C1[k1] 

C2[k1] 

C1[k2] 

C2[k2] 

C1[k-1] 

C2[k-1] 

Costly 
Input 

Costly 
Input 

Power Limited Information Limited 

Controller 1: 
    Power Limited 
Controller 2: 
    Information Limited 

Costly 
State 

Figure 4.16: The general finite-horizon problem structure which can give a lower bound for s-stage

signaling strategies. The problem consists of three time intervals. In the first time interval, both

controllers are information-limited. In the second time interval, the first contoller is power-limited

and the second controller is information-limited. In the third time interval, both controllers are

power-limited.

4.6.2 Finite-Horizon LQG Problems: Three-Stage Division

Now, we can divide the infinite-horizon problem to finite-horizon problems. Figure 4.16

shows the finite-horizon problem that gives a lower bound approximately matching with s-stage

signaling strategies. As we discussed in Figure 4.8, the resulting problem is not stationary and to

tackle this issue we will divide the time-horizon into three intervals: (1) information-limited interval,

(2) MIMO Witsenhausen’s interval, (3) power-limited interval.

Let’s first state the power-distortion tradeoff version of the finite-horizon problem of Prob-

lem G.13

Problem H (Finite-Horizon LQG problem with discounted power constraints). Let’s consider the

same system and parameters as Problem G. But, now the control objective is minimizing the final

state disturbance DF (P1, P2) for given input power constraints P1, P2 ∈ R+. In other words, we

13This is not a finite-hirizon version of Problem F.
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solve

DF (P1, P2) = inf
u1,u2

E[x2[k]]

s.t.
∑

k1≤i≤k−1

αi−k1E[u2
1[i]] ≤ P1

∑

k2≤i≤k−1

αi−k2E[u2
2[i]] ≤ P2.

Here we can see four parameters that characterize the problem: σ2
v1, P1, σ2

v2, P2. The

importance of these parameters becomes different depending on which interval they lie in.

The information-limited interval —which corresponds to the time steps between 0 and k1

in Problem H and Figure 4.16— is introduced to handle the case when σ2
v1 is large. Since σ2

v2 ≥ σ2
v1,

in this interval both controllers have very noisy observations and we can allow arbitrarily large power

to both controllers. In fact, in Figure 4.16 we can see in this interval both controllers do not have

any input costs. Therefore, the important parameters are σ2
v1 and σ2

v2. It turns out that the cost of

the centralized controller (with access to both noisy observations y1[n] and y2[n]) gives a reasonable

bound. Essentially, what this interval is doing is waiting until the variance of the state disturbances

grows enough — to be around σ2
v1 up to scaling.

On the other hand, the power-limited interval — which corresponds to the time steps be-

tween k2 and k in Problem H and Figure 4.16 — is introduced to handle cases when both controllers

do not have enough power to stabilize the system. Therefore, in this interval the important param-

eters are P1 and P2. We will even give a perfect observation of x[n] to both controllers by setting

σ2
v1 = 0 and σ2

v2 = 0. In this interval, we will keep running the system by making k arbitrarily large,

and prove that E[x2[k]] must diverge to infinity given that the previous interval ended up with a too

large x[k2].

Between these two intervals — the time steps between k1 and k2 in Problem H and Fig-

ure 4.16 — each controller faces a different situation. The first controller has enough information

about the state but it does not have enough power. The second controller has enough power but it

does not have enough information. Therefore, the important parameters of this interval are P1 and

σ2
v2. So, we will allow a perfect observation to the first controller by setting σ2

v1 = 0 and infinite

power to the second controller by setting P2 = ∞. In other words, the first controller is power

limited and the second controller is information limited. This situation is exactly the same as that

of Witsenhausen’s counterexample which we discussed in Section 4.3.1. Therefore, we will call this

interval an s-stage MIMO Witsenhausen’s interval and discuss it in Section 4.6.3 in more detail.

Let’s convert these ideas into formal proofs. As we mentioned, we will bound the cost in

the information-limited interval by analyzing a centralized controller with both observations y1[n]

and y2[n] when there is only initial disturbance w[0].

Lemma 4.9. Let w[0] ∼ N (0, 1), v1[n] ∼ N (0, σ2
v1), v2[n] ∼ N (0, σ2

v2) be independent Gaussian
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random variables. Let

y1[n] = an−1w[0] + v1[n],

y2[n] = an−1w[0] + v2[n].

Then,

E[(ak−1w[0]− E[ak−1w[0]|y1[1 : k1], y2[1 : k1]])2] =
a2(k−1)σ2

v1

(1 +
σ2
v1

σ2
v2

)(a
2(k1−1)(1−a−2k1 )

1−a−2 ) + σ2
v1

.

Proof. Notice that

y1[n] = an−1w[0] + v1[n]

σv1

σv2
y2[n] =

σv1

σv2
an−1w[0] +

σv1

σv2
v2[n]

Since maximum-ratio combining is a sufficient statistic (See [99] for instance), the sufficient statistic

ys of y1[1 : k1 − 1], y2 for estimating w[0] is given as:

ys =
∑

1≤n≤k1

an−1y1[n] +
∑

1≤n≤k1

σv1

σv2
an−1(

σv1

σv2
y2[n])

=
∑

1≤n≤k1

an−1(an−1w[0] + v1[n]) +
∑

1≤n≤k1

σv1

σv2
an−1(

σv1

σv2
an−1w[0] +

σv1

σv2
v2[n])

= (
∑

1≤n≤k1

(a2(n−1) +
σ2
v1

σ2
v2

a2(n−1)))w[0] + (
∑

1≤n≤k1

an−1v1[n] +
∑

1≤n≤k1

σ2
v1

σ2
v2

an−1v2[n])
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The estimation error for ak−1w[0] is

E[(ak−1w[0]− E[ak−1w[0]|y1[1 : k1], y2[1 : k1]])2]

= E[(ak−1w[0]− E[ak−1w[0]|ys])2]

= E[(ak−1w[0])2]− E[ak−1w[0]ys](E[y2
s ])−1E[ak−1w[0]ys]

=
E[(ak−1w[0])2]E[y2

s ]− E[ak−1w[0]ys]
2

E[y2
s ]

=
a2(k−1)((

∑
1≤n≤k1

(a2(n−1) +
σ2
v1

σ2
v2
a2(n−1)))2 +

∑
1≤n≤k1

a2(n−1)σ2
v1 +

∑
1≤n≤k1

(
σ2
v1

σ2
v2

)2a2(n−1)σ2
v2)

(
∑

1≤n≤k1
(a2(n−1) +

σ2
v1

σ2
v2
a2(n−1)))2 +

∑
1≤n≤k1

a2(n−1)σ2
v1 +

∑
1≤n≤k1

(
σ2
v1

σ2
v2

)2a2(n−1)σ2
v2

−
a2(k−1)(

∑
1≤n≤k1

(a2(n−1) +
σ2
v1

σ2
v2
a2(n−1)))2

(
∑

1≤n≤k1
(a2(n−1) +

σ2
v1

σ2
v2
a2(n−1)))2 +

∑
1≤n≤k1

a2(n−1)σ2
v1 +

∑
1≤n≤k1

(
σ2
v1

σ2
v2

)2a2(n−1)σ2
v2

=
a2(k−1)(

∑
1≤n≤k1

a2(n−1)σ2
v1 +

∑
1≤n≤k1

(
σ2
v1

σ2
v2

)2a2(n−1)σ2
v2)

(
∑

1≤n≤k1
(a2(n−1) +

σ2
v1

σ2
v2
a2(n−1)))2 +

∑
1≤n≤k1

a2(n−1)σ2
v1 +

∑
1≤n≤k1

(
σ2
v1

σ2
v2

)2a2(n−1)σ2
v2

=
a2(k−1)(σ2

v1 +
σ4
v1

σ2
v2

)(a
2(k1−1)(1−a−2k1 )

1−a−2 )

(1 +
σ2
v1

σ2
v2

)2(a
2(k1−1)(1−a−2k1 )

1−a−2 )2 + (σ2
v1 +

σ4
v1

σ2
v2

)a
2(k1−1)(1−a−2k1 )

1−a−2

=
a2(k−1)σ2

v1

(1 +
σ2
v1

σ2
v2

)(a
2(k1−1)(1−a−2k1 )

1−a−2 ) + σ2
v1

.

To bound the performance in the power-limited interval, we have to bound the influence

of control inputs on the state with respect to their power constraints. By expanding x[n] using the

system equation (4.2), we can see x[n] =
∑

0≤i≤n−1 a
n−1−iw[i] + an−1−iu1[i] + an−1−iu2[i]. Thus,

the terms
∑

0≤i≤n−1 a
n−1−iuj [i] can be considered as the influence of control inputs on the state.

The following Cauchy-Schwarz style inequality bounds the variance of
∑

0≤i≤n−1 a
n−1−iuj [i] by the

power constraint
∑

0≤i≤n−1 α
iE[u2

j [i]] imposed in Problem H.

Lemma 4.10. For arbitrary random variables Xi, n ∈ N, a, b ∈ R (| 1
a2b | < 1), we have

E[(an−1X0 + an−2X1 + · · ·+Xn−1)2] ≤
a2(n−1)(1− ( 1

a2b )
n)

1− 1
a2b

(E[X2
0 ] + bE[X2

1 ] + · · ·+ bn−1E[X2
n−1])
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Proof.

E[(an−1X0 + an−2X1 + · · ·+Xn−1)2]

≤ (
√
a2(n−1)E[X2

0 ] +
√
a2(n−2)E[X2

1 ] + · · ·+
√
E[X2

n−1])2

≤ (a2(n−1) +
a2(n−2)

b
+ · · ·+ (

1

b
)n−1)(E[X2

0 ] + bE[X2
1 ] + · · ·+ bn−1E[X2

n−1])

=
a2(n−1)(1− ( 1

a2b )
n)

1− 1
a2b

(E[X2
0 ] + bE[X2

1 ] + · · ·+ bn−1E[X2
n−1])

where all inequalities follow from Cauchy-Schwarz.

C1[1] 

C2[1] 

C1[2] 

C2[2] 

Costly 
Inputs 

Figure 4.17: Finite-horizon generalized MIMO Witsenhausen’s counterexample. This problem gives

the matching lower bound to 1-stage signaling.

C1[1] 

C2[1] 

C1[2] 

C2[2] 

Costly 
Inputs 

Figure 4.18: The simplified problem that results from Figure 4.17 by cutting the problem across the

red line. Unlike the original problem, w[0] is the only disturbance.

C1[2] 

C2[2] 

Costly 
Inputs 

Figure 4.19: The simplified problem that results from Figure 4.17 by cutting the problem across the

blue line. Unlike the original problem, w[1] is the only disturbance.
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C1 C2 Channel 

Figure 4.20: A further simplified MIMO communication problem of Figure 4.18. This problem

reflects the communication aspect of Figure 4.18.

4.6.3 Tackling the s-stage MIMO Witsenhausen’s interval: From multiple

disturbances to a single disturbance

Understanding the MIMO Witsenhausen’s interval is necessary to find a matching lower

bound to s-stage signaling strategies. Let’s explicitly consider Problem F with parameters σ2
v1 = 0

and P2 = ∞ and find the lower bound on D(P1, P2) that approximately matches to the 1-stage

signaling strategy.

By selecting the parameters k = 3, k1 = 1, k2 = 3, α = 1
2 in Problem H, we have the problem

of minimizing DF (P1, P2) = E[x2[3]] with the power constraint ( 1
2E[u2

1[1]] + 1
4E[u2

1[2]]) ≤ P1. In the

same way as the proof of Lemma 4.8, we can prove that this is a lower bound on D(P1, P2).

Figure 4.17 shows the resulting 2-stage finite-horizon problem. As we can see the problem

looks similar to Witsenhausen’s one in Figure 4.5a. In fact, it can be thought as a multi-stage

MIMO (multiple-input multiple-output) Witsenhausen’s counterexample. Compared to the original

Witsenhausen’s counterexample, both controllers have observations and control inputs at every time

step, and a new state disturbance w[n] is added at every time step. Since the second controller’s

input is free, it can be considered as the receiver in a communication problem. From this perspective,

the observation y2[1] can be considered as side-information at the receiver, and the input u2[1] can

be imagined to be feedback from receiver to transmitter.

The first question that we have to answer to take this communication perspective is “What

is the relevant message in this communication problem?” Since the only uncertainty of the system

is the state disturbance w[n], the answer has to be the disturbance. However, since a new w[n] is

added at every time step, we have to find the critically relevant disturbance among them.

To understanding this issue, let’s revisit the binary deterministic model of Section 4.3. In

Figure 4.2, we can see x[3] corresponds to 00x3
−10.x3

−3x
3
−4 · · · in the binary deterministic model. We

will divide this binary number into three parts. The first part is the first two bits 00, the second

part is the next two bits x3
−10, and the third part is the remaining bits x3

−3x
3
−4 · · · . If we track back

the arrows of Figure 4.2, we can see that these three parts originated from the different disturbances
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w[0], w[1], w[2] respectively. Therefore, we can see that w[2] is not a dominating disturbance since

its bit level is much smaller than the other parts, and the dominant disturbances for x[3] are w[0]

and w[1]. We will separate these two disturbances using the cutset idea in information theory.

The first cut gives every disturbance except w[0] as side information to the second controller,

i.e. we give w[1], w[2] as side information. Figure 4.18 shows the resulting problem, which is a 2-stage

MIMO Witsenhausen’s counterexample with only one disturbance at the beginning. Likewise, the

second cut gives w[0], w[2] and reserves w[1] inside the cut. Figure 4.19 shows the resulting problem,

which is a 1-stage Radner’s problem. Both problems are relaxations of the original problem, and

any convex sum of their cost is also a lower bound to the cost of the original problem.

We already know how to solve Radner’s problem in Figure 4.19. However, the problem in

Figure 4.18 is a generalized MIMO Witsenhausen’s problem, which is even harder than the original

one. The crux of the problem is the dual role of controllers’ inputs. The input signals u1[n] and

u2[n] can be used to cancel the state (control role) and at the same time to send information about

their observations (communication role). Therefore, we will simplify the problem by removing the

less important role.

The first controller has a perfect observation while its input cost is expensive. Therefore,

it is better to use the control inputs to send information about the state. We will essentially remove

the control role of the first controller input by using the Cauchy-Schwarz inequality. Meanwhile,

the second controller has free input cost but blurry observations. Therefore, it is better to focus on

the control role. We will remove the communication role of the second controller input by allowing

free freeback from the second controller to the first. Therefore, the first controller reduces to a

transmitter and the second controller reduces to a receiver.

Figure 4.20 shows the pure MIMO communication problem we will get after removing

the dual roles of the controllers from the problem of Figure 4.19. The first controller knows the

exact state w[0] and sends information through the input u1[1]. Thus, the first controller is the

transmitter and u1[1] is the transmitted signal.14 The second controller estimates the state w[0]

based on its observation y2[1], y2[2]. Therefore, the second controller is the receiver and y2[1], y2[2]

are the received signals.15 We will use a simple information-theoretic cutset bound to bound the

performance of this communication system, and eventually derive a lower bound approximately

matching to the 1-stage signaling strategy.

At this point, one may wonder why we need the lower bound of Figure 4.18 and Figure 4.20

which correspond to zeros in the binary deterministic model. It is because it is not zero in Gaussian

real models. Binary deterministic models simplify Gaussian random variables as bounded uniform

distributions. This simplification can be justified in an infinite-dimensional relaxation. However, in

14Here, u1[2] cannot send any information to the second controller since communication requires at least one step
delay from the transmitter to the receiver.

15The second controller can also feedback its observation through u2[1]. However, this effect of feedback is negligible
in this case, since the causal feedback information can only affect u2[2] at the transmitter. However, we will see the
effect of feedback later in the more generalized problem of Figure 4.21.
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finite dimensions the simplification only approximately holds and the zeros in the binary determin-

istic model are actually exponentially decreasing small quantities in a Gaussian model. As shown

in [37], we will replace v2[n] of Figure 4.20 by a test channel, adapting ideas of large-deviation

theory. The problem of Figure 4.20 gives a non-trivial lower bound that captures the exponentially

decreasing small quantities that must occur because of the finite-dimensionality.

In general, we will see an s-stage MIMO Witsenhausen’s counterexample in the second time

interval of Figure 4.16. Following the same steps as above, we will reduce the problem to a pair of

pure communication problems, s-stage and (s− 1)-stage MIMO state-amplification with feedback.

C1 C2 Channel 

Strictly Causal 
Side Information 

Figure 4.21: s-stage MIMO state-amplification with feedback. This problem reflects the implicit

communication aspect in the MIMO Witsenhausen’s interval of Figure 4.16. This figure also repre-

sents a system diagram of Problem I.

Channel 
With 

Memory 
C1 C2 

Feedback 

Figure 4.22: An equivalent representation of s-stage MIMO state-amplification with feedback in

Figure 4.21. The MIMO channel of Figure 4.21 can be thought as a channel with memory. This

figure also represents a system diagram of Problem I.

4.6.4 s-stage MIMO state-amplification with feedback

Figure 4.21 shows the s-stage MIMO state-amplification problem. As we discussed before,

the first controller C1 is the transmitter, and the second controller C2 is the receiver. The transmitter
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knows the state x[0] at the initial time and learns the channel noise v2[n] by causal feedback. The

goal of communication is minimizing the estimation error of the state x[0] at the receiver.

Let’s formally state the s-stage MIMO state-amplification with feedback problem.

Problem I (s-stage MIMO state-amplification with feedback). Let the underlying random variables

x[0] ∼ N (0, σ2
0) and v2[n] ∼ N (0, σ2

v) be all independent. These are the source and observation noise

respectively. The transmitter’s input u1[n] is a function of x[0] and v2[1], · · · , v2[n− 1], i.e.

u1[1] = f1(x[0])

u1[2] = f2(x[0], v2[1])

...

u1[k − 1] = fk−1(x[0], v2[1 : k − 2])

The receiver’s observations y2[n] are given as follows.

y2[0] = x[0] + v2[0]

y2[1] = ax[0] + u1[0] + v2[1]

y2[2] = a2x[0] + au1[0] + u1[1] + v2[2]

...

y2[k − 1] = ak−1x[0] + ak−2u1[0] + · · ·+ u1[k − 2] + v2[k − 1]

The receiver generates an estimate x̂[0] of the state x[0] based on its received signal y2[1 : k− 1], i.e.

x̂[0] = g(y2[1 : k − 1]). The objective of the system is minimizing the quadratic estimation error,

E[(x[0]− x̂[0])2].

This problem can be more compactly represented as Figure 4.22 by thinking of the MIMO

channel as a channel with memory. As shown in [22], feedback only increases the capacity at most

a half bit per time step. However, in this problem we are using the channels for k time steps, so

we still have to justify that the feedback does not increase the capacity too much. The following

lemma explicitly computes an information-theoretic cutset bound for this communication problem

and gives a reasonable bound on the rate-distortion tradeoff.

Lemma 4.11. Let’s consider Problem I of Figure 4.21.

(i) Let x[0] ∼ N (0, σ2
0) and v2[n] ∼ N (0, σ2

v). Let w ∈ R satisfy | 1
a2w | < 1 and the input power

constraint is

(1− w)E[u2
1[0]] + (1− w)wE[u2

1[1]] + · · ·+ (1− w)wk−2E[u2
1[k − 2]] ≤ P

Then, the estimation error of x[0] based on y2[0 : k − 1] is lower bounded by

E[(x[0]− x̂[0])2] ≥ σ2
0

22Ik
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where

Ik =
k

2
log(1 +

1

kσ2
v

(
2a2(k−1)σ2

0

1− a−2
+

2ak−2

1− a−2

P

(1− 1
a2w )(1− w)

)).

(ii) Consider the same problem as (i) except that v2[k−1] ∼ N (0, σ′2v ), i.e. only the last observation

noise variance is different. Then, the estimation error based on y2[0 : k − 1] is lower bounded by

E[(x[0]− x̂[0])2] ≥ σ2
0

22I′k

where

I ′k = Ik−1 +
1

2
log(1 +

1

σ′2v
(2a2(k−1)σ2

0 + 2
a2(k−2)

1− 1
a2w

P

1− w
)).

(iii) Consider the same problem as (ii) except that v2[k−1] ∼ Unif [−σ′v, σ′v], i.e. the last observation

is a uniform random variable. Then, the estimation error based on y2[0 : k− 1] is lower bounded by

E[(x[0]− x̂[0])2] ≥ σ2
0

22I′′k

where

I ′′k = I ′k +
1

2
log(

πe

2
).

Proof. (i) First, we can lower bound the estimation error as follows:

1

2
log(2πeE[(x[0]− x̂[0])2])

≥ h(x[0]− x̂[0]|y2[0 : k − 1])

= h(x[0]|y2[0 : k − 1])

= h(x[0])− I(x[0]; y2[0 : k − 1])

≥ 1

2
log(2πeσ2

0)− I(x[0]; y2[0 : k − 1]). (4.15)

We will upper bound the mutual information. Let’s first upper bound the received signal power.

Since u1[n] is a strictly causal function of v2[n],

E[y2
2 [n]] ≤ 2E[(anx[0])2] + 2E[(ak−2u1[0] + u1[n− 1])2] + E[v2

2 [n]].

By Lemma 4.10, we have

E[(an−1u1[0] + · · ·+ u1[n− 1])2]

≤ a2(n−1)

1− 1
a2w

P

1− w
.
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Therefore, the received signal power is upper bounded as

E[y2
2 [n]] ≤ 2a2nσ2

0 + 2
a2(n−1)

1− 1
a2w

P

1− w
+ E[v2

2 [n]].

Thus, we can conclude

∑

0≤n≤k−1

E[y2
2 [n]]

≤
∑

0≤n≤k−1

2a2nσ2
0 + 2

a2(n−1)

1− 1
a2w

P

1− w
+ σ2

v

= 2(1 + · · ·+ a2(k−1))σ2
0 +

∑

0≤n≤k−1

2
a2(n−1)

1− 1
a2w

P

1− w
+ kσ2

v

= 2a2(k−1) 1− a−2k

1− a−2
σ2

0 + 2ak−2 1− a−2k

1− a−2

P

(1− 1
a2w )(1− w)

+ kσ2
v

≤ 2a2(k−1)σ2
0

1− a−2
+

2ak−2

1− a−2

P

(1− 1
a2w )(1− w)

+ kσ2
v .

Using this, we can upper bound the mutual information.

I(x[0]; y2[0 : k − 1])

≤ h(y2[0 : k − 1])− h(y2[0 : k − 1]|x[0])

≤
∑

0≤n≤k−1

h(y2[n])−
∑

0≤n≤k−1

h(v2[n])

≤
∑

0≤n≤k−1

1

2
log(2πeE[y2[n]2])− k − 1

2
log(2πeσ2

v)

=
1

2
log(

∏

0≤n≤k−1

E[y2[n]2]

σ2
v

)

≤ 1

2
log


(

1

k

∑

0≤n≤k−1

E[y2[n]2]

σ2
v

)k−1




(∵ geometric mean and arithmetic mean)

≤ 1

2
log

(
(1 +

1

kσ2
v

(
2a2(k−1)σ2

0

1− a−2
+

2ak−2

1− a−2

P

(1− 1
a2w )(1− w)

))k
)

(4.16)

The last term is Ik. By plugging (4.16) into (4.15), we get

E[(x[0]− x̂[0])2] ≥ σ2
0

22Ik

which finishes the proof.
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(ii) We have

I(x[0]; y2[0 : k − 1])

≤ h(y2[0 : k − 1])− h(y2[0 : k − 1]|x[0])

≤
∑

0≤n≤k−1

h(y2[n])−
∑

0≤n≤k−1

h(v2[n])

≤
∑

0≤n≤k−1

1

2
log(2πeE[y2[n]2])− k − 1

2
log(2πeσ2

v)− 1

2
log(2πeσ′2v )

=
1

2
log(

∏

0≤n≤k−2

E[y2[n]2]

σ2
v

) +
1

2
log(

E[y2[k − 1]2]

σ′2v
)

≤ 1

2
log(

1

k − 1

∑

0≤n≤k−2

E[y2[n]2]

σ2
v

)k−1 +
1

2
log(

E[y2[k − 1]2]

σ′2v
)

(∵ geometric mean and arithmetic mean)

≤ 1

2
log(1 +

1

(k − 1)σ2
v

(
2a2(k−2)σ2

0

1− a−2
+

2ak−3

1− a−2

P

(1− 1
a2w )(1− w)

))k−1

+
1

2
log(1 +

1

σ′2v
(2a2(k−1)σ2

0 + 2
a2(k−2)

1− 1
a2w

P

1− w
)). (4.17)

The last term is I ′k. By plugging (4.17) into (4.15), we get

E[(x[0]− x̂[0])2] ≥ σ2
0

22I′k

which finishes the proof.

(iii) We can repeat the proof of (ii) replacing the distribution of v2[k − 1] by uniform.

In this lemma, the bound of (ii) is tighter than that of (i) since it excludes the last observa-

tion in the arithmetic-geometric inequality, but it is harder to compute. We also allow the variance

of the last observation noise to be different from the other ones, since we will replace it with another

distribution to adapt large deviation ideas.16

4.6.5 Lower bound on the optimal cost based on Witsenhausen’s coun-

terexample

Now, we can combine the previous results to derive a lower bound that will approximately

match with s-stage signaling strategies. We will derive a lower bound on the weighted average cost

of Problem B, i.e. we will find functions DL,i(P̃1, P̃2) such that

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]] ≥ min
P̃1,P̃2≥0

qDL,i(P̃1, P̃2) + r1P̃1 + r2P̃2.

16Even though large deviation ideas usually introduce a sequence of atypical noise, here the SNR of the last
observation dominates the SNR of all the other observations. Thus, it is enough to introduce atypically large noise
only to the last observation.
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Here, the lower bounds DL,i(P̃1, P̃2) can be thought as a lower bound on D(P1, P2), the

power-disturbance tradeoff, of Problem F. The first bound DL,1 is given in the following lemma,

and the rest will be given in Lemma 4.13 of page 208.

Lemma 4.12. Define SL,1 as the set of (k1, k2, k, σ
′
v2, α,Σ) such that

k1, k2, k ∈ N, σ′v2, α,Σ ∈ R+,

k1 ≥ 1, k2 − k1 − 1 ≥ 0, k ≥ k2,

σ′v2 ≥ 0, 0 ≤ α ≤ 1,

0 ≤ Σ ≤





1 when k1 = 1
a2(k1−1)σ2

v1

(1+
σ2
v1
σ2
v2

)(
a2(k1−2)(1−a−2(k1−1))

1−a−2 )+σ2
v1

when k1 ≥ 2

We also define DL,1(P̃1, P̃2; k1, k2, k, σ
′
v2, α,Σ) as follows:

DL,1(P̃1, P̃2; k1, k2, k, σ
′
v2, α,Σ)

:= α(

√
c
a2(k−k1)Σ

22I′(P̃1)
−

√

c
a2(k−k1−1)(1− (2.5a−2)k2−k1)

1− 2.5a−2

P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

2.5k2−k1 P̃1

1− 2.5−1
−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+

+ (1− α)(

√
a2(k−k1−1)Σ

22I′′(P̃1)
−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

2.5P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+ + 1 (4.18)

where

I ′′(P̃1) =





k2−k1−1
2 log(1 + 1

(k2−k1−1)σ2
v2

( 2a2(k2−2−k1)

1−a−2 Σ + 2a2(k2−3−k1)

1−a−2
2.5P̃1

(1−2.5a−2)(1−2.5−1) ))

if k2 − k1 − 1 > 0

0 if k2 − k1 − 1 = 0

I ′(P̃1) = I ′′(P̃1) +
1

2
log(1 +

1

σ′2v2

(2a2(k2−1−k1)Σ + 2
a2(k2−2−k1)P̃1

(1− 2.5a−2)(1− 2.5−1)
)) +

1

2
log(

2πe

4
)1(σv2 6= σ′v2)

c =





2σ′v2√
2πσv2

exp(− σ′2v2

2σ2
v2

) if σv2 6= σ′v2

1 if σv2 = σ′v2

Let |a| ≥ 2.5. Then, for all q, r1, r2 ≥ 0, the minimum cost (4.1) of Problem B is lower bounded as

follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
(k1,k2,k,σ′v2,α,Σ)∈SL,1

min
P̃1,P̃2≥0

qDL,1(P̃1, P̃2; k1, k2, k, σ
′
v2, α,Σ) + r1P̃1 + r2P̃2.
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Proof. For simplicity, we assume a ≥ 2.5, k1 ≥ 2, k2−k1− 1 > 0, k > k2, σv2 6= σ′v2. The remaining

cases when a ≤ −2.5 or k1 = 1 or k2 − k1 − 1 = 0 or k = k2 or σv2 = σ′v2 easily follow with minor

modifications.

• Geometric Slicing: We first apply the geometric slicing idea of Section 4.6.1 to get a

finite-horizon problem. By setting α = 2.5−1 in Lemma 4.8, the average cost is lower bounded by

inf
u1,u2

(qE[x2[k]]

+ r1 ((1− 2.5−1)E[u2
1[k1]] + (1− 2.5−1)2.5−1E[u2

1[k1 + 1]] + · · ·+ (1− 2.5−1)2.5−k+1+k1E[u2
1[k − 1]])︸ ︷︷ ︸

:=P̃1

+ r2 ((1− 2.5−1)E[u2
2[k2]] + (1− 2.5−1)2.5−1E[u2

2[k2 + 1]] + · · ·+ (1− 2.5−1)2.5−k+1+k2E[u2
2[k − 1]])︸ ︷︷ ︸

:=P̃2

)

Here, we denote the second and the third terms as P̃1 and P̃2 respectively. As we mentioned

in Figure 4.17, 4.18 and 4.19, we will relax the problem in two different ways — one with state

disturbance w[0] and the other one with w[1]. Let’s start with the former.

• Large deviation idea: As mentioned in Section 4.6.3, we will apply large deviation ideas17

to v2[k2 − 1]. For this, we write v2[k2 − 1] as a mixture of two independent random variables:

v2[k2 − 1] = C · v′2[k2 − 1] + (1− C)v′′2 [k2 − 1]

where C, v′2[k2 − 1], v′′2 [k2 − 1] are independent random variables whose distributions are given as

follows:

v′2[k2 − 1] ∼ Unif [−σ′v2, σ
′
v2]

fv′′2 [k2−1](v) =





1
1−c

1√
2πσv2

exp(− v2

2σ2
v2

) for |v| > σ′v2

1
1−c

1√
2πσv2

(exp(− v2

2σ2
v2

)− exp(− σ′2v2

2σ2
v2

)) for |v| ≤ σ′v2

C =

{
1 w.p. c

0 w.p. 1− c

where c =
2σ′v2√
2πσv2

exp(− σ′2v2

2σ2
v2

).

• Three stage division: As mentioned in Section 4.6.2, we will divide the finite-horizon

problem into three time intervals. The following definitions of Uij correspond to the first and second

17As mentioned before, large deviation theory usually replaces the whole noise sequence with a “typically atypical”
one. However, for simplicity of computation, we will only replace the last observation noise. The Gaussian observation
noise v2[k2 − 1] will behave like a uniform observation noise with larger variance with a certain probability. Thus,
we can replace v2[k2 − 1] with a uniform random variable with larger variance by multiplying by the corresponding
probability. See [37] for the details of the idea.
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controller’s input in these three intervals shown in Figure 4.16, where the indices i and j represent

the controllers and time intervals respectively.

W := aw[k − 2] + · · ·+ ak−1w[0]

U11 := ak−2u1[1] + · · ·+ ak−k1u1[k1 − 1]

U12 := ak−k1−1u1[k1] + · · ·+ ak−k2u1[k2 − 1]

U13 := ak−k2−1u1[k2] + · · ·+ u1[k − 1]

U21 := ak−2u2[1] + · · ·+ ak−k1u2[k1 − 1]

U22 := ak−k1−1u2[k1] + · · ·+ ak−k2u2[k2 − 1]

U23 := ak−k2−1u2[k2] + · · ·+ u2[k − 1]

W := (w[k − 1], w[k − 2], · · · , w[1])

The goal in this proof is grouping control inputs into Uij , where each Uij can be thought as either

power-limited or information-limited inputs. By expanding x[n], we reveal the effects of the controller

inputs on the state, and then isolate (and bound) their effects according to their characteristics.

• Power-Limited Interval: Let’s first handle the third interval using Cauchy-Schwarz in-

equalities. Notice that

x[k] = w[k − 1] + aw[k − 2] + · · ·+ ak−1w[0]

+ u1[k − 1] + au1[k − 2] + · · ·+ ak−2u1[1]

+ u2[k − 1] + au2[k − 2] + · · ·+ ak−2u2[1]

Therefore, by Lemma 4.1

E[x2[k]] = E[(W + U11 + U12 + U13 + U21 + U22 + U23)2] + E[w2[k − 1]]

≥ (
√

E[(W + U11 + U12 + U21 + U22)2]−
√
E[U2

13]−
√
E[U2

23])2
+ + 1 (4.19)

Here, we can notice that E[(W + U11 + U12 + U21 + U22)2] is not affected by the controllers’ inputs

in the third interval.

• First controller’s input in Witsenhausen’s interval: We will also separate out the effect of

the power-limited (first controller’s) input in the second interval, U12, and introduce large deviation
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ideas.

E[(W + U11 + U12 + U21 + U22)2]

= E[E[(W + U11 + U12 + U21 + U22)2|C]]

= E[(W + U11 + U12 + U21 + U22)2|C = 1]P(C = 1) + E[(W + U11 + U12 + U21 + U22)2|C = 0]P(C = 0)

≥ E[(W + U11 + U12 + U21 + U22)2|C = 1]P(C = 1)

= c · E[(W + U11 + U12 + U21 + U22)2|C = 1]

≥ c(
√
E[(W + U11 + U21 + U22)2|C = 1]−

√
E[U2

12|C = 1])2
+ (4.20)

Here, we can notice that by the causality of the system, C only affects the inputs u2[k2 − 1] and

u1[k2]. Thus, u2[1 : k2 − 2] and u1[1 : k2 − 1] are independent of C. We can also notice E[(W +

U11 + U21 + U22)2|C = 1] has only information-limited inputs.

• Information-Limited Interval: Using Lemma 4.9, we will bound the remaining uncertainty

of the state after the information-limited interval. Since we will grant all disturbances except w[0] as

side-information, we denote the relevant observations as y′1[n] and y′2[n]. Formally, let y′1[n], y′2[n],

W ′, W ′′, U ′22, U ′′22 be as follows:

y′1[n] := an−1w[0] + v1[n]

y′2[n] := an−1w[0] + v2[n]

W ′ := W − E[W |y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ,C = 1]

W ′′ := E[W |y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ,C = 1]

U ′22 := U22 − E[U22|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ,C = 1]

U ′′22 := E[U22|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ,C = 1]

Here we can notice W, y′1[1 : k1 − 1], y′2[1 : k1 − 1],W are independent of C and

W ′ = ak−1w[0]− E[ak−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]].

Since w[0], y′1[1 : k1 − 1], y′2[1 : k1 − 1],W are jointly Gaussian, W ′ is independent from y′1[1 :

k1 − 1], y′2[1 : k1 − 1],W . By Lemma 4.9 we have

E[W ′2|C = 1]

= E[(ak−1w[0]− E[ak−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]])2]

=
a2(k−1)σ2

v1

(1 +
σ2
v1

σ2
v2

)(a
2(k1−2)(1−a−2(k1−1))

1−a−2 ) + σ2
v1

(4.21)

This lower bounds the uncertainty in the state due to w[0] after the state has been observed through

y′1[1 : k1 − 1] and y′2[1 : k1 − 1].
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Note that y1[1 : k1 − 1], y2[1 : k1 − 1],W are functions of y′1[1 : k1 − 1], y′2[1 : k1 − 1],W .

Therefore, U11 and U21 are also functions of y′1[1 : k1 − 1], y′2[1 : k1 − 1],W . Since (W ′, U ′22) are

orthogonal to all functions of (y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ), (W ′, U ′22) are also orthogonal to

(W ′′, U11, U21, U
′′
22). Moreover, since E[W ′+U ′22] = 0 and the conditioning on C = 1 can be ignored

due to causality, we can conclude

E[(W + U11 + U21 + U22)2|C = 1]

= E[(W ′ +W ′′ + U11 + U21 + U ′22 + U ′′22)2|C = 1]

= E[(W ′ + U ′22)2|C = 1] + E[(W ′′ + U11 + U21 + U ′′22)2|C = 1]

≥ E[(W ′ + U ′22)2|C = 1].

In the last term, the effect of the information-limited interval inputs is separated out.

• Second controller’s input in Witsenhausen’s interval: We will bound the remaining un-

certainty of the state after it has been estimated by the second controller in the second time interval.

For this, we will reduce the problem to the state amplification problem of Section 4.6.4, and apply

Lemma 4.11.

U ′22 is a function of y2[1 : k2 − 1], y′1[1 : k1 − 1], y′2[1 : k1 − 1],W . Here, y′1[1 : k1 − 1], y′2[1 :

k1− 1],W are independent from W ′ and y2[1 : k1− 1] is a function of y′1[1 : k1− 1], y′2[1 : k1− 1],W .

Therefore, only y2[k1 : k2 − 1] are dependent on W ′. Moreover, y1[1 : k1 − 1] —and therefore,

u1[1 : k1−1]— is a function of y′1[1 : k1−1], y′2[1 : k1−1],W , so they are also independent from W ′.

Now, we can subtract the independent part from W ′ from the observation y2[k1, k2 − 1]

without losing information about the state. First, consider y2[k1].

y2[k1]− (w[k1 − 1] + aw[k1 − 2] + · · ·+ ak1−2w[1])− E[ak1−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1−]]

− (u1[k1 − 1] + au1[k1 − 2] + · · ·+ ak1−2u1[1])

− (u1[k1 − 1] + au1[k1 − 2] + · · ·+ ak1−2u1[1])

= ak1−1w[0]− E[ak1−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]] + v2[k1]

= ak1−kW ′ + v2[k1]

Likewise, we can subtract the independent (from W ′) part from y2[k1 + 1]. Furthermore, u2[k1] can

also be subtracted from y2[k1 + 1] without losing information since the second controller already

knows about u2[k1]. Thus, the information about W ′ in y2[k1 + 1] is in

ak1w[0]− E[ak1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]] + u1[k1] + v2[k1 + 1]

= ak1−k+1W ′ + u1[k1] + v2[k1 + 1].

In the same way, we can extract the relevant information about W ′ from the observations y2[n]. It

is worth to mention that conditioned on C = 1, v2[k2 − 1] is replaced by v′2[k2 − 1], and thus the
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information about W ′ in y2[k2 − 1] is

ak2−2w[0]− E[ak2−2w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]

+ u1[k2 − 1] + au1[k2 − 2] + · · ·+ ak2−k1−1u1[k1] + v′2[k2 − 1]

= ak2−k−1W ′ + u1[k2 − 1] + au1[k2 − 2] + · · ·+ ak2−k1−1u1[k1] + v′2[k2 − 1].

Moreover, as we mentioned, the conditioning C = 1 does not affect u1[k1 : k2 − 1] by causality. We

have

E[(1− 2.5−1)u2
1[k1] + (1− 2.5−1)2.5−1u2

1[k1 + 1] + · · ·+ (1− 2.5−1)2.5−k2+k1+1u2
1[k2 − 1]|C = 1]

≤ P̃1 ≤ 2.5P̃1.

Therefore, we can see that after removing the independent (from W ′) part from y2[k1 : k2 − 1] the

problem reduces to the state amplification problem of Section 4.6.4. By plugging x[0] = ak1−1w[0],

σv = σv2, σ′v = σ′v2, k = k2 − k1, w = 2.5−1, P = 2.5P̃1 and σ2
0 = Σ (which comes from (4.21)) in

Lemma 4.11 (iii), we have18

E[(W ′ + U ′22)2|C = 1] ≥ a2(k−k1)Σ

22I′(P̃1)
. (4.22)

• Power-Limited Inputs: As mentioned before, causality implies C is independent from

y1[1 : k2 − 1] and thus U12. Then, we can upper bound the power of the power-limited inputs.

E[U2
12|C = 1] = E[U2

12]

= E[(ak−k1−1u1[k1] + · · ·+ ak−k2u1[k2 − 1])2]

= a2(k−k2)E[(ak2−k1−1u1[k1] + · · ·+ u1[k2 − 1])2]

≤ a2(k−k1−1)(1− (2.5a−2)k2−k1)

1− 2.5a−2
(E[u2

1[k1]] + · · ·+ 2.5−(k−k1−1)E[u2
1[k2 − 1]])

≤ a2(k−k1−1)(1− (2.5a−2)k2−k1)

1− 2.5a−2

P̃1

1− 2.5−1
(4.23)

where the first inequality comes from Lemma 4.10 with parameters a = a and b = 2.5−1. Likewise,

by applying Lemma 4.10 with paramters a = a and b = 2.5−1, we have

E[U2
13] = E[(ak−k1−1u1[k1] + · · ·+ u1[k − 1])2]

≤ a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2
(E[u2

1[k2]] + · · ·+ 2.5−(k−k2−1)E[u2
1[k − 1]])

≤ a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

2.5k2−k1 P̃1

1− 2.5−1
(4.24)

18Here, we have to use (iii) of Lemma 4.11 instead of (i) since in the last observation the SNR (Signal-to-Noise
ratio) is too big to apply an arithmetic-geometric inequality together with the previous observations.
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and

E[U2
23] = E[(ak−k2−1u2[k2] + · · ·+ u2[k − 1])2]

≤ a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2
(E[u2

2[k2]] + · · ·+ 2.5−(k−k2−1)E[u2
2[k − 1]])

≤ a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
. (4.25)

• Lower bound from w[0]: Finally, by plugging (4.20), (4.22), (4.23), (4.24), (4.25) into

(4.19)

E[x2[k]] ≥ (

√
c
a2(k−k1)Σ

22I′(P̃1)
−

√

c
a2(k−k1−1)(1− (2.5a−2)k2−k1)

1− 2.5a−2

P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

2.5k2−k1 P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+ + 1 (4.26)

• Lower bound from w[1]: As we mentioned in Figure 4.17, 4.18 and 4.19, we will repeat

the above derivation for w[1] instead of w[0].

Let’s denote

Ũ11 := ak−2u1[1] + · · ·+ ak−k1−1u1[k1]

Ũ12 := ak−k1−2u1[k1 + 1] + · · ·+ u1[k − 1]

Ũ21 := ak−2u2[1] + · · ·+ ak−k1−1u2[k1]

Ũ22 := ak−k1−2u2[k1 + 1] + · · ·+ ak−k2u2[k2 − 1]

W̃ := (w[k − 1], w[k − 2], · · · , w[2], w[0])

Compared with the previous case, Ũ11 and Ũ21 include extra input signals u1[k1] and u2[k1] since

w[1] is generated one time-step later than w[0]. Ũ12 includes all power-limited inputs of the first

controller.

Like before, Ũij groups the controller inputs into either information-limited or power-limited

ones. Then, we will isolate the effect of the inputs Ũij to the state x[n] according to their categories.

• Power-Limited Inputs: Like the previous case, we first isolate the power-limited inputs.

However, unlike the previous case, we do not need to introduce any large deviation ideas. By

Lemma 4.1,

E[x2[k]] = E[(W + Ũ11 + Ũ12 + Ũ21 + Ũ22 + U23)2] + 1

≥ (

√
E[(W + Ũ11 + Ũ21 + Ũ22)2]−

√
E[Ũ2

12]−
√
E[U2

23])2
+ + 1 (4.27)

Now, the resulting E[(W + Ũ11 + Ũ21 + Ũ22)2] has only information-limited inputs.
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• Information-Limited Interval: Like before, we will bound the remaining uncertainty of

the state after the information-limited interval using Lemma 4.9. Denote ỹ1[n] and ỹ2[n] as follows:

ỹ1[1] := v1[1]

ỹ2[1] := v2[1]

For n ≥ 2

ỹ1[n] := an−2w[1] + v1[n]

ỹ2[n] := an−2w[1] + v2[n]

W ′1 := W − E[W |ỹ1[1 : k1], ỹ2[1 : k1], W̃ ]

W ′′1 := E[W |ỹ1[1 : k1], ỹ2[1 : k1], W̃ ]

Ũ ′22 = Ũ − E[Ũ22|ỹ1[1 : k1], ỹ2[1 : k1], W̃ ]

Ũ ′′22 = E[Ũ22|ỹ1[1 : k1], ỹ2[1 : k1], W̃ ]

Here we can notice

W ′1 = ak−2w[1]− E[ak−2w[1]|ỹ1[1 : k1], ỹ2[1 : k1]]

Since w[1], ỹ1[1 : k1], ỹ′2[1 : k1], W̃ are jointly Gaussian, W ′1 is independent from ỹ1[1 : k1], ỹ′2[1 :

k1], W̃ . By Lemma 4.9 we have

E[W ′21 ]

= E[(ak−2w[1]− E[ak−2w[1]|ỹ1[1 : k1], ỹ2[1 : k1]])2]

=
a2(k−2)σ2

v2

(1 +
σ2
v1

σ2
v2

)(a
2(k1−2)(1−a−2(k1−1))

1−a−2 ) + σ2
v1

(4.28)

This lower bounds the remaining state disturbance due to w[1] after it is observed by ỹ1[1 : k1] and

ỹ2[1 : k1].

Note that y1[1 : k1], y2[1 : k1], W̃ are functions of ỹ1[1 : k1], ỹ2[1 : k1], W̃ . Therefore, Ũ11

and Ũ21 are also functions of ỹ1[1 : k1], ỹ2[1 : k1], W̃ . By repeating the previous argument, we can

conclude

E[(W + Ũ11 + Ũ21 + Ũ22)2]

= E[(W ′1 +W ′′1 + Ũ11 + Ũ21 + Ũ ′22 + Ũ ′′22)2]

= E[(W ′1 + Ũ ′22)2] + E[(W ′′1 + Ũ11 + Ũ21 + Ũ ′′22)2]

≥ E[(W ′1 + Ũ ′22)2].

In the last term, the effect of the information-limited inputs is separated out.

• Second controller’s input in Witsenhausen’s interval: Like before, we will reduce the

problem to the state amplification problem of Section 4.6.4, and apply Lemma 4.11. Only the
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observations y2[k1 + 1 : k2 − 1] are relevant to W ′1. Here, we also have the power constraint on u1

E[(1− 2.5−1)u2
1[k1 + 1] + · · ·+ 2.5−k2+k1+2u2

1[k2 − 1]] ≤ 2.5P̃1

Like before, after removing the independent (from W ′1) part from the observations y2[k1 + 1 :

k2 − 1], the problem reduces to the state amplification problem of Section 4.6.4. By plugging

x[0] = ak1−1w[1], σv = σv2, k = k2 − k1 − 1, w = 2.5−1, P = 2.5P̃1 and σ2
0 = Σ (which comes from

(4.28)) to Lemma 4.11 (i), we have19

E[(W ′1 + Ũ ′22)2] ≥ a2(k−k1−1)Σ

22I′′(P̃1)
. (4.29)

• Lower bound from w[1]: By applying Lemma 4.10 with the parameters a = a and

b = 2.5−1, we can upper bound the power of the power-limited inputs.

E[Ũ2
12] = E[(ak−k1−2u1[k1 + 1] + · · ·+ u1[k − 1])2]

≤ a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

2.5P̃1

1− 2.5−1
(4.30)

Therefore, by plugging (4.29), (4.30), (4.25) into (4.27) we get

E[x2[k]] ≥ (

√
a2(k−k1−1)Σ

22I′′(P̃1)
−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

2.5P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+ + 1 (4.31)

• Final Lower bound: By (4.26) and (4.31), for all 0 ≤ α ≤ 1

E[x2[k]]

≥ α(

√
c
a2(k−k1)Σ

22I′(P̃1)
−

√

c
a2(k−k1−1)(1− (2.5a−2)k2−k1)

1− 2.5a−2

P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

2.5k2−k1 P̃1

1− 2.5−1
−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+

+ (1− α)(

√
a2(k−k1−1)Σ

22I′′(P̃1)
−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

2.5P̃1

1− 2.5−1

−

√
a2(k−k2−1)(1− (2.5a−2)k−k2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+ + 1

In this lemma, the time-interval from 0 to k1 − 1 corresponds to the information-limited

interval in Figure 4.16. The time-interval from k1 to k2 − 1 corresponds to the Witsenhausen’s

interval in Figure 4.16. The time-interval from k2 to k corresponds to the power-limited interval in

Figure 4.16.

19Unlike the previous part, we apply (i) of Lemma 4.11 instead of (iii) since the SNR is small enough for all
observations.
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C1[0] 

C2[0] 

C1[k1] 

C2[k1] 

C1[k-1] 

C2[k-1] 

Costly 
Input 

Costly 
Input 

Power Limited Information Limited Radner’s Problem 

Costly 
State 

Figure 4.23: The general finite-horizon problem structure to justify the infeasibility of 0-stage sig-

naling strategies. Like the one in Figure 4.16, the problem consists of three time intervals. However,

unlike Figure 4.16, we can see Radner’s problem between the information-limited and power-limited

intervals.

4.6.6 Lower bound on the optimal cost based on Radner’s problem

As we discussed in Section 4.3.1, Radner’s problem cannot be understood using the binary

deterministic models and thereby is fundamentally different from Witsenhausen’s counterexample.

Essentially, it says the communication between controllers requires at least one step delay, and for the

observations obtained at the same time step, nonlinear strategies do not improve the performance.

Therefore, so-called ‘0-stage signaling’ is impossible.

Sine Radner’s problem is a sub-block of the infinite-horizon problem 4.1, we also need a

lower bound based on Radner’s problem to bound the infinite-horizon problem within a constant

ratio. Figure 4.23 shows the general structure of the lower bound for the case. As we discussed in

Figure 4.16, the information-limited interval from time step 0 to k1 is introduced due to the case

σ2
v1 > 0 and the power-limited interval from time step k1 + 1 to k is introduced due to the case

P2 <∞.

However, between these two time intervals, we can see the difference. Even though the

first controller has better observations and the second has worse observations, if this significant

unbalance between two controllers lasts for only one time step, implicit communication between the

two controllers is nearly impossible and nonlinear strategies cannot help that much. To capture this

effect, we replace the MIMO Witsenhausen’s problem with Radner’s problem.

Like Lemma 4.9, the following lemma gives a lower bound on the weighted average cost of

Problem B when Witsenhausen’s interval is replaced by Radner’s.
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Lemma 4.13. Define a set SL,2 as a set of (k1, k,Σ) such that

k1, k ∈ N,Σ ∈ R,

k1 ≥ 1, k ≥ k1 + 1,

0 ≤ Σ ≤





1 k1 = 1
a2(k1−1)σ2

v1

(1+
σ2
v1
σ2
v2

)(
a2(k1−2)(1−a−2(k1−1))

1−a−2 )+σ2
v1

k1 ≥ 2

We also define DL,2(P̃1, P̃2; k1, k,Σ) as follows:

DL,2(P̃1, P̃2; k1, k,Σ)

:= inf
c1,c2∈R

(
√
a2(k−k1−1)((a− c1 − c2)2Σ + c21σ

2
v1 + c22σ

2
v2)

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃1

(1− 2.5−1)2.5−1

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃2

(1− 2.5−1)2.5−1
)2
+ + 1

s.t. (1− 2.5−1)c21(Σ + σ2
v1) ≤ P̃1

(1− 2.5−1)c22(Σ + σ2
v2) ≤ P̃2

Let |a| ≥ 2.5. Then, for all q, r1, r2 ≥ 0, the minimum cost (4.1) of Problem B is lower bounded as

follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
(k1,k,Σ)∈SL,2

min
P̃1,P̃2≥0

qDL,2(P̃1, P̃2; k1, k,Σ) + r1P̃1 + r2P̃2.

For k1, k ∈ N, define SL,3, SL,4, DL,3(P̃1, P̃2; k1) and DL,4(P̃1, P̃2, k) as follows:

SL,3 := {k1 ∈ N}

SL,4 := {k ∈ N : k ≥ 2}

DL,3(P̃1, P̃2; k1) := max(
a2(k1−1)σ2

v1

(1 +
σ2
v1

σ2
v2

)(a
2(k1−2)(1−a−2(k1−1))

1−a−2 ) + σ2
v1

, 1) (4.32)

DL,4(P̃1, P̃2; k) := (
√
a2(k−1) −

√
a2(k−2)

1− 2.5a−2

P̃1

1− 2.5−1
−

√
a2(k−2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+. (4.33)

Then, when |a| ≥ 2.5, for all q, r1, r2 ≥ 0, the minimum cost (4.1) of Problem B is also lower bounded

as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
k1∈SL,3

min
P̃1,P̃2≥0

qDL,3(P̃1, P̃2; k1) + r1P̃1 + r2P̃2
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and

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
k∈SL,4

min
P̃1,P̃2≥0

qDL,4(P̃1, P̃2; k) + r1P̃1 + r2P̃2.

Proof. For simplicity, we assume a ≥ 2.5, k1 ≥ 2, k > k1 + 1. The remaining cases when a ≤ −2.5

or k1 = 1 or k = k1 + 1 easily follow with minor modifications.

• Geometric Slicing: We apply the geometric slicing idea of Section 4.6.1 to get a finite-

horizon problem. By putting α = 2.5−1 and k2 = k1 to Lemma 4.8, the average cost is lower

bounded by

inf
u1,u2

(qE[x2[k]]

+ r1 ((1− 2.5−1)E[u2
1[k1]] + (1− 2.5−1)2.5−1E[u2

1[k1 + 1]] + · · ·+ (1− 2.5−1)2.5−k+1+k1E[u2
1[k − 1]])︸ ︷︷ ︸

:=P̃1

+ r2 ((1− 2.5−1)E[u2
2[k1]] + (1− 2.5−1)2.5−1E[u2

2[k1 + 1]] + · · ·+ (1− 2.5−1)2.5−k+1+k1E[u2
2[k − 1]])︸ ︷︷ ︸

:=P̃2

Like the proof of Lemma 4.13, we denote the second and the third terms as P̃1 and P̃2 respectively.

• Power-Limited Interval: Denote

W2 := ak−k1−2w[k1 + 1] + · · ·+ aw[k − 2]

U12 := ak−k1−2u1[k1 + 1] + · · ·+ u1[k − 1]

U22 := ak−k1−2u2[k1 + 1] + · · ·+ u2[k − 1]

Here, U12 and U22 correspond to the first and second controller’s input in the power-limited intervals

described in Figure 4.23. We will first handle these power-limited inputs. Notice that

x[k] = ak−k1−1x[k1 + 1] + ak−k1−2u1[k1 + 1] + · · ·+ u1[k − 1] + ak−k1−2u2[k1 + 1] + · · ·+ u2[k − 1]

+ ak−k1−2w[k1 + 1] + · · ·+ w[k − 1].

Since x[k1 + 1] and W2 are independent by causality, using Lemma 4.1 we can lower bound E[x2[k]]
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as

E[x2[k]]

= E[(ak−k1−1x[k1 + 1] + U12 + U22 +W2)2] + 1

≥ (
√
E[(ak−k1−1x[k1 + 1] +W2)2]−

√
E[U2

12]−
√
E[U2

22])2
+ + 1

= (
√
E[(ak−k1−1x[k1 + 1])2] + E[W 2

2 ]−
√
E[U2

12]−
√
E[U2

22])2
+ + 1

≥ (
√
a2(k−k1−1)E[x[k1 + 1]2]−

√
E[U2

1 ]−
√
E[U2

2 ])2
+ + 1. (4.34)

Here, E[x[k1 + 1]2] is lower bounded as

E[x[k1 + 1]2] = E[(ax[k1] + u1[k1] + u2[k1] + w[k1])2]

= E[(ax[k1] + u1[k1] + u2[k1])2] + E[w[k1]2]

≥ E[(ax[k1] + u1[k1] + u2[k1])2]. (4.35)

In the last term, the effect of the power-limited inputs is separated out.

• Information-Limited Interval: Using Lemma 4.9, we will bound the remaining uncertainty

of the state after the information-limited interval. Since we will give all the disturbances except w[0]

as side-information, we denote the relevant observations as y′1[n] and y′2[n]. Formally, denote

W1 := ak1−1w[0] + · · ·+ w[k1 − 1]

U11 := ak1−1u1[0] + · · ·+ u1[k1 − 1]

U21 := ak1−1u2[0] + · · ·+ u2[k1 − 1]

W := (w[1], · · · , w[k − 1])

y′1[n] := an−1w[0] + v1[n]

y′2[n] := an−1w[0] + v2[n]

W ′1 := W1 − E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ]

W ′′1 := E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ]

u′1[k1] := u1[k1]− E[u1[k1]|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ]

u′′1 [k1] := E[u1[k1]|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ]

u′2[k1] := u2[k1]− E[u2[k1]|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ]

u′′2 [k1] := E[u2[k1]|y′1[1 : k1 − 1], y′2[1 : k1 − 1],W ].

Here, we have

W ′1 = ak1−1w[0]− E[ak1−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]

Since w[0], y′1[1 : k1 − 1], y′2[1 : k1 − 1],W are jointly Gaussian, W ′1 is independent from y′1[1 :
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k1 − 1], y′2[1 : k1 − 1],W . By Lemma 4.9 we have

E[W ′21 ] =
a2(k1−1)σ2

v1

(1 +
σ2
v1

σ2
v2

)(a
2(k1−2)(1−a−2(k1−1))

1−a−2 ) + σ2
v1

(4.36)

This lower bounds the state disturbance due to w[0] when it is observed by y′1[1 : k1 − 1] and

y′2[1 : k1−1]. Note that y1[1 : k1−1], y2[1 : k1−1],W is a function of y′1[1 : k1−1], y′2[1 : k1−1],W .

Therefore, U11 and U21 are also functions of y′1[1 : k1 − 1], y′2[1 : k1 − 1],W and (4.35) can be lower

bounded as

E[(ax[k1] + u1[k1] + u2[k1])2]

= E[(a(W1 + U11 + U12) + u1[k1] + u2[k1])2]

= E[(aW ′1 + u′1[k1] + u′2[k1])2] + E[(aW ′′1 + aU11 + aU12 + u′′1 [k1] + u′′2 [k1])2]

≥ E[(aW ′1 + u′1[k1] + u′2[k1])2] (4.37)

In the last term, the effect of the information-limited inputs is separated out.

• Radner’s Interval: Now we will reduce the last term of (4.37) to Radner’s problem.

u′1[k1] and u′2[k1] are functions of y1[1 : k1], y′1[1 : k1 − 1], y′2[1 : k1 − 1],W and y2[1 : k1], y′1[1 :

k1 − 1], y′2[1 : k1 − 1],W respectively. Here, y′1[1 : k1 − 1], y′2[1 : k1 − 1],W are independent from W ′1

and y1[1 : k1 − 1], y2[1 : k1 − 1],W is a function of y′1[1 : k1 − 1], y′2[1 : k1 − 1],W . Therefore, only

y1[k1] at the first controller and y2[k1] at the second controller are relevant to W ′1. Therefore, by

removing independent parts from W ′1 in y1[k1], the sufficient statistic of y1[k1] is

y1[k1]− (w[k1 − 1] + aw[k1 − 2] + · · ·+ ak1−2w[1])− E[ak1−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]

− (u1[k1 − 1] + au1[k1 − 2] + · · ·+ ak1−2u1[1])

− (u2[k1 − 1] + au2[k1 − 2] + · · ·+ ak1−2u2[1])

= ak1−1w[0]− E[ak1−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1]] + v1[k1]

= W ′1 + v1[k1]

Likewise, y2[k1] can be reduced to

W ′1 + v2[k1]

Therefore, by considering W ′1 as an initial state, v1[k1] and v2[k1] as observation noises of the first

and second controller, we can map the problem into Radner’s problem. Here, we have the following

power constraints on u1[k1] and u2[k1].

(1− 2.5−1)E[u2
1[k1]] ≤ P̃1

(1− 2.5−1)E[u2
2[k1]] ≤ P̃2
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Since a linear strategy is optimal in Radner’s problem, by (4.36) we can conclude

E[(aW ′1 + u′1[k1] + u′2[k1])2] ≥ inf
c1,c2∈R

(a− c1 − c2)2Σ + c21σ
2
v1 + c22σ

2
v2 (4.38)

s.t. (1− 2.5−1)c21(Σ + σ2
v1) ≤ P̃1

(1− 2.5−1)c22(Σ + σ2
v2) ≤ P̃2

• Final Lower bound: Applying Lemma 4.10 with paramters a = a and b = 2.5−1, we can

upper bound the power of the power-limited inputs.

E[U2
1 ] = E[(ak−k1−2u1[k1 + 1] + · · ·+ u1[k − 1])2]

≤ a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃1

(1− 2.5−1)2.5−1
(4.39)

and likewise

E[U2
1 ] ≤ a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃2

(1− 2.5−1)2.5−1
(4.40)

Finally, plugging (4.38), (4.39), (4.40) into (4.34) gives the first bound based on DL,2(P̃1, P̃2; k1, k,Σ):

E[x2[n]] ≥ inf
c1,c2

(
√
a2(k−k1−1)((a− c1 − c2)2Σ + c21σ

2
v1 + c22σ

2
v2)

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃1

(1− 2.5−1)2.5−1

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃2

(1− 2.5−1)2.5−1
)2
+ + 1

s.t. (1− 2.5−1)c21(Σ + σ2
v1) ≤ P̃1

(1− 2.5−1)c22(Σ + σ2
v2) ≤ P̃2

The second bound based on DL,3(P̃1, P̃2; k1) derived as follows. Since E[x2[n]] ≥ E[w2[n − 1]] = 1,

trivially DL(P̃1, P̃2) ≥ 1. Moreover, as justified above, we have

E[x2[k1]] ≥ E[(ak1−1w[0]− E[ak1−1w[0]|y′1[1 : k1 − 1], y′2[1 : k1 − 1])2] = E[W ′21 ].

Therefore, by setting k = k1 we get the second bound based on DL,3(P̃1, P̃2; k1).

The last bound based on DL,4(P̃1, P̃2; k) of the lemma can be derived as follows.

E[x2[k]]

≥ (
√

E[(ak−1w[0] + · · ·+ w[k − 1])2]−
√

E[(ak−1u1[0] + · · ·+ u1[k − 1])2]

−
√

E[(ak−1u2[0] + · · ·+ u2[k − 1])2])2
+

≥ (
√
a2(k−1) −

√
a2(k−2)

1− 2.5a−2

P̃1

1− 2.5−1
−

√
a2(k−2)

1− 2.5a−2

P̃2

1− 2.5−1
)2
+

where the first inequality follows from Lemma 4.1 and the second inequality follows from Lemma 4.10.
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In this lemma, the time-interval from 0 to k1 − 1 corresponds to the information-limited

interval in Figure 4.23. The time-interval from k1 to k1 + 1 corresponds to the Radner’s interval

in Figure 4.23. The time-interval from k1 + 1 to k corresponds to the power-limited interval in

Figure 4.23.

4.7 Constant Ratio Optimality

Now, we have an upper and lower bound on D(P1, P2). In this section, we will evaluate

the bounds and prove Theorem 4.1 which bounds the weighted average cost within a constant ratio.

Even though the numerical evaluations are not elegant20, these are enough to justify constant ratio

optimality.

The upper bounds are written from the power-disturbance tradeoff perspective of Prob-

lem F and denoted by (DU (P1, P2), P1, P2). The lower bounds in Lemma 4.12 and 4.13 are given

for the original weighted average-cost of Problem B, which can be written as (DL,i(P̃1, P̃2), P̃1, P̃2)

from the power-disturbance perspective. The following lemma tells us that if these two trade-

off regions are within a constant ratio of each other as regions in R3, i.e. ∃c ≥ 1 such that

(DU (cP1, cP2), cP1, cP2) ≤ c · (DL,i(P1, P2), P1, P2), then the average cost can be characterized to

within a constant ratio.

Lemma 4.14. For two functions DL(P̃1, P̃2) and DU (P1, P2), let there exist c ≥ 1 such that for all

x1, x2 ≥ 0

DU (cx1, cx2) ≤ c ·DL(x1, x2).

Then, for all q, r1, r2 ≥ 0, the following inequality holds.

min
P1,P2≥0

qDU (P1, P2) + r1P1 + r2P2 ≤ c( min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2)

Proof. Let P ?1 and P ?2 achieve the minimum of the right term of the inequality, i.e.

min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2

= qDL(P ?1 , P
?
2 ) + r1P

?
1 + r2P

?
2 .

20The bounds can probably be improved and tightened. However, the main concern of this chapter is not quantifying
the exact cost, but qualitatively understanding the near-optimal strategies. The constant ratio optimality results are
enough to justify our intuition behind the proposed strategies.
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Then, we have

c( min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2)

= c · (qDL(P ?1 , P
?
2 ) + r1P

?
1 + r2P

?
2 )

≥ qDU (cP ?1 , cP
?
2 ) + r1(cP ?1 ) + r2(cP ?2 )

≥ min
P1,P2

qDU (P1, P2) + r1P1 + r2P2

where the first inequality comes from the assumption of the lemma. Thus, the lemma is proved.

We will show that the proposed strategies of Defintion 4.1 and 4.2 solve the weighted average

cost problem of Problem B to within a constant ratio. Let’s call the case when σ2
v2 ≤ max(1, a2σ2

v1)

the weakly-degraded-observation case since the gap between the two controllers’ observation noises is

not too huge and the second controller can observe what the first controller observed only after one-

time step. Likewise, we will call the case when σ2
v2 > max(1, a2σ2

v1) the strongly-degraded-observation

case since the gap between the observation noises is larger.

The weakly-degraded-observation case will be discussed in Section 4.7.1 and the strongly-

degraded-observation case will be covered in Section 4.7.2.

4.7.1 Weakly-Degraded-Observation case with |a| ≥ 2.5

Let’s first consider the weakly-degraded case when σ2
v2 ≤ max(1, a2σ2

v1), which corresponds

to the left half plane of Figure 4.9 of page 164. In this case, the infeasibility of 0-stage signaling

discussed in Section 4.3.1 and 4.6.6 shows up and thus linear strategies are enough for constant-ratio

optimality.

First, we evaluate the lower bound of Lemma 4.13 which involves Radner’s problem.

Corollary 4.1. Let |a| ≥ 2.5 and σ2
v2 ≤ max(1, a2σ2

v1). Then, for all q, r1, r2 ≥ 0, the minimum

cost (4.1) of Problem B is lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]] ≥ min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2

where DL(P̃1, P̃2) satisfies the following conditions.

(a) If P̃1 ≤ 1
400a

2 max(1, a2σ2
v1) and P̃2 ≤ 1

400a
2 max(1, a2σ2

v2) then DL(P̃1, P̃2) =∞.

(b) If P̃1 ≤ 1
400a

2 max(1, a2σ2
v1), for all P̃2, DL(P̃1, P̃2) ≥ 0.176a2σ2

v2 + 1.

(c) For all P̃1 and P̃2, DL(P̃1, P̃2) ≥ 0.295 ·max(1, a2σ2
v1).

Proof. See Appendix 9.1.

(a) and (b) tell what happens if the first controller has little power (i.e. it must follow

something close to a zero-input strategy). (a) shows if the second controller does not have enough

power, the system becomes unstable. (b) shows that even if the second controller has enough power,
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the state variance is lower bounded by the second controller’s observation noise. (c) shows that even

if the first controller has enough power to apply a zero-forcing strategy, the state variance is lower

bounded by the first controller’s observation noise.

The following lemma analyzes the achievable disturbance by the simple linear strategy of

Definition 4.1.

Lemma 4.15. Consider a single-controller scalar system

x[n+ 1] = ax[n] + u[n] + w[n]

y[n] = x[n] + v[n]

where w[n] is i.i.d. N (0, 1) and v[n] is i.i.d. N (0, σ2
v). For a given control strategy, let D(P ) :=

lim supn→∞
1
N

∑
0≤n<N E[x2[n]] and P := lim supn→∞

1
N

∑
0≤n<N E[u2[n]]. Then,

(D(P ), P ) ≤ (a2σ2
v + 1, a4σ2

v + a2σ2
v + a2)

is achievable by a linear bang-bang controller, u[n] = −ay[n]. Therefore, in Problem F the following

power-disturbance tradeoffs are achievable.

(D(P1, P2), P1, P2) ≤ (a2σ2
v1 + 1, a4σ2

v1 + a2σ2
v1 + a2, 0),

(D(P1, P2), P1, P2) ≤ (a2σ2
v2 + 1, 0, a4σ2

v2 + a2σ2
v2 + a2).

Proof. Put u[n] = −ay[n] into the system equation. Then, we have

x[n+ 1] = ax[n]− ax[n]− av[n] + w[n]

= −av[n] + w[n]

Thus, we conclude for n ≥ 1

E[x2[n]] = a2σ2
v + 1

and

E[u2[n]] = a2E[(x[n] + v[n])2]

= a2(a2σ2
v + 1 + σ2

v)

Using Lemma 4.14, Corollary 4.1 and Lemma 4.15, we can compare the upper and lower

bounds to prove linear strategies suffice to achieve constant-ratio optimality in this region of problem

parameters.
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Proposition 4.7. There exists c ≥ 1200 such that for all a, q, r1, r2, σ0, σv1, σv2 satisfying |a| ≥ 2.5

and σ2
v2 ≤ max(1, a2σ2

v1), the following inequality holds:

infu1,u2∈Llin,bb lim supN→∞
1
N

∑
0≤n<N E[qx2[n] + r1u

2
1[n] + r2u

2
2[n]]

infu1,u2
lim supN→∞

1
N

∑
0≤n<N E[qx2[n] + r1u2

1[n] + r2u2
2[n]]

≤ c.

Proof. See Appendix 9.2.

4.7.2 Strongly-Degraded-Observation case with |a| ≥ 2.5

Let’s consider the strongly-degraded-observation case when σ2
v2 > max(1, a2σ2

v1), which

corresponds to the right half-plane of Figure 4.16. Since |a| ≥ 2.5, we can find s ∈ N such that

a2(s−1) max(1, a2σ2
v1) ≤ σ2

v2 ≤ a2s max(1, a2σ2
v1). We will show that the s-stage signaling strategy is

required for constant-ratio optimality.

Since we need a matching lower bound to s-stage signaling strategies, we evaluate Lemma 4.13

which has a generalized Witsenhausen’s counterexample in it.

Corollary 4.2. Let |a| ≥ 2.5 and for some s ∈ N, suppose

a2(s−1) max(1, a2σ2
v1) ≤ σ2

v2 ≤ a2s max(1, a2σ2
v1).

Then, for all q, r1, r2 ≥ 0, the minimum cost (4.1) of Problem B is lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]] ≥ min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2.

where DL(P̃1, P̃2) satisfies the following conditions.

(a) When P̃1 ≤ σ2
v2

70a2(s−1) , then DL(P̃1, P̃2) ≥ 0.008a2σ2
v2 + 1.

(b) When P̃1 ≤ σ2
v2

70a2(s−1) and P̃2 ≤ a4σ2
v2

28000 , then DL(P̃1, P̃2) =∞.

(c) When
σ2
v2

70a2(s−1) ≤ P̃1 ≤ 1
20000 max(a2, a4σ2

v1),

then DL(P̃1, P̃2) ≥ 0.2541a2sP̃1 exp(− 50a2(s−1)P̃1

σ2
v2

) + 0.066a2s max(1, a2σ2
v1) + 1.

(d) When
σ2
v2

70a2(s−1) ≤ P̃1 ≤ 1
20000 max(a2, a4σ2

v1) and P̃2 ≤ 0.0457a2(s+1)P̃1 exp(− 50a2(s−1)P̃1

σ2
v2

) +

0.0113a2(s+1) max(1, a2σ2
v1), then DL(P̃1, P̃2) =∞.

(e) For all P̃1 and P̃2, DL(P̃1, P̃2) ≥ 0.295 ·max(1, a2σ2
v1).

Proof. See Appendix 9.3.

(a) and (b) tell what happens if the first controller has little power and thus is forced to be

close to a zero-input strategy. Even if the second controller has enough power, the state variance is

lower bounded by the second controller’s observation noise. If the second controller does not have

enough power to stabilize the system, the state diverges to infinity. (e) shows the opposite case when

the first controller has enough power to apply a zero-forcing strategy. However, even in this case, the
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state variance is lower bounded by the first controller’s observation noise. (c) and (d) cover the cases

between these two extreme cases. (c) gives the lower bound that matches to the s-stage signaling

strategy when the second controller has enough power. (d) shows that since the first controller does

not stabilize the system with its signaling alone, the second controller’s input power has to be large

enough to stabilize the system.

Now, we evaluate the performance of the s-stage signaling analyzed in Lemma 4.7 of

page 174.

Corollary 4.3. Consider Problem F of page 163, and let |a| ≥ 2.5 and suppose a2(s−1) max(1, a2σ2
v1) ≤

σ2
v2 ≤ a2s max(1, a2σ2

v1) for some s ∈ N. Then, there exists an upper bound DU (P1, P2) on D(P1, P2)

i.e. D(P1, P2) ≤ DU (P1, P2) for all P1, P2 ≥ 0 satisfying the following:

(DU (P1, P2), P1, P2) ≤(832a2sP exp(−50a2(s−1)P

σ2
v2

) + 63a2s max(1, a2σ2
v1),

80000P, 6656a2(s+1)P exp(−50a2(s−1)P

σ2
v2

) + 564a2(s+1) max(1, a2σ2
v1))

for
σ2
v2

70a2(s−1) ≤ P ≤ 1
20000 max(a2, a4σ2

v1).

Proof. See Appendix 9.4

Here we can notice that the performance is matching that of Corollary 4.2 (c), (d) in that

the bounds on the state disturbance take the same form of a function on P1 and system parameters.

Now, we can compare these two bounds to prove constant-ratio optimality.

Proposition 4.8. There exists c ≤ 1.5 × 105 such that for all a, q, r1, r2, σ0, σv1, σv2 satisfying

|a| ≥ 2.5 and

a2(s−1) max(1, a2σ2
v1) ≤ σ2

v2 ≤ a2s max(1, a2σ2
v1).

for some s ∈ N, the following inequality holds:

infu1,u2∈Llin,bb∪Lsig,s lim supN→∞
1
N

∑
0≤n<N E[qx2[n] + r1u

2
1[n] + r2u

2
2[n]]

infu1,u2 lim supN→∞
1
N

∑
0≤n<N E[qx2[n] + r1u2

1[n] + r2u2
2[n]]

≤ c.

Proof. See Appendix 9.5

Now, Theorem 4.1 immediately follows from Propositions 4.7 and 4.8.

Proof of Theorem 4.1. Propostion 4.7 covers the case when σ2
v2 ≤ max(1, a2σ2

v1). Propostion 4.8

covers the case when σ2
v2 > max(1, a2σ2

v1), since in this case there exists s ∈ N such that

a2(s−1) max(1, a2σ2
v1) ≤ σ2

v2 ≤ a2s max(1, a2σ2
v1).
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4.8 Connection to Wireless Communication Theory

Tx Rx 

(a)

Tx Rx 

(b)

Figure 4.24: MIMO Wireless Communication Problem: (a) By transmitting different signals across

the antennas, we can achieve ‘d.o.f. gain’. Generally, this scheme performs well in high-SNR. (b)

By transmitting the same signal across the antennas, we can achieve ‘power gain’. Generally, this

scheme performs well in low-SNR.

Throughout the discussion, we have observed a lot of similarity between wireless commu-

nication and the decentralized LQG control problems considered in this chapter. In this section,

we will explore this point in more detail. At first glance, decentralized LQG control and wireless

communication seem pretty distinct from each other. But the main result in this chapter is actually

a manifestation of a deeper connection.

The essence of wireless communication problems [99] can be summarized as follows: First,

unlike wired communication, wireless communication systems share a common channel and as a re-

sult the signals from different transmitting antennas can interact with each other. Second, wireless

communication systems involve uncertainties or randomness that come from channel fading or ther-

mal noise in circuits. Third, to extend battery life and minimize interference to other transceivers,

each transmitting antenna has a power constraint.

The way that wireless communication theory models capture this nature is very similar

to stochastic control theory. First, the interaction between signals is modeled by linear operations.

Second, the uncertainty in the system is modeled by Gaussian random variables. Third, the power

of the transmitting antennas is measured by a quadratic cost. If we remember that wireless com-

munication systems are by nature distributed, wireless communication problems are essentially a
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special case of decentralized LQG control problems, except that wireless communication problems

have the special objective of communication.

Like decentralized LQG problems, wireless network communication problems are still open [29,

6] or nonconvex [115]. However, wireless communication theorists found that it is helpful to divide

cases according to the SNR(Signal-to-Noise Ratio). For a given communication scheme, the capacity

of a channel is usually given as log(1 + c1SNR + · · · + ckSNR
k). Therefore, when SNR is large

(high-SNR case), the capacity is approximately k logSNR (where k turns out to be the ‘d.o.f. gain’

of the scheme). When SNR is small (low-SNR case), the capacity is approximately c1SNR (where

c1 turns out to be the ‘power gain’ of the scheme). Therefore, depending on the SNR the capacity

of communication schemes are very different. Consequently, wireless communication theory usually

divides into two cases: (1) high-SNR (2) low-SNR.

Let’s consider the 2 × 2 MIMO communication problem shown in Figure 4.24. We can

think of two basic ways of exploiting these antennas. The first way is transmitting different signals

across different antennas. As we can see in Fig. 4.24a, in this case the receiver will have two variables

and two (noisy) equations, and we can expect ‘MIMO gain’ by solving for multiple variables. In

wireless communication theory, this gain is called the ‘d.o.f.(degree-of-freedom) gain’ and the scheme

of Figure 4.24a succeeds in increasing k in the capacity formula.

As we mentioned in Section 4.5.1, this concept can be extended to generalized d.o.f. by

allowing the transmitting powers of different antennas to scale differently [29]. When the transmit-

ting powers of different antennas scale differently, we can further divide a single receiving antenna

according to “signal levels”. For the small signal level, all tranmitting antennas can affect it, but

for the large signal level, only the few transmitting antennas with large power can affect it. In [6],

binary deterministic models were proposed to capture this phenomenon by conceptualizing different

bit-levels like different antennas, which we used in Section 4.3.

The second way of using the antennas is transmitting the same signal across different

antennas as shown in Fig. 4.24b. In this scheme, the receiver will have only one variable and we

cannot expect the d.o.f. gain of solving for multiple variables. However, there is a gain to be had

from aligning the signals. Let’s assume all random variables, A,B, n1, n2, are Gaussian random

variables with zero mean and unit variance, and compute the signal-to-noise ratio at the receiving

antennas. The SNR of the first receive antenna in Fig. 4.24a is E[(A+B)2]
E[n2

1]
= 2. On the other hand,

the SNR of the first antenna in Fig. 4.24b is E[(2A)2]
E[n2

1]
= 4. Therefore, by transmitting the same

signal over different antennas we can increase the SNR of the received signals. This gain is known

as ‘power gain’ in wireless communication theory and the proposed scheme is good for increasing

c1 in the capacity formula. To exploit the power gain, the receiver has to introduce maximum-ratio

combining [99].

How is this relevant for scalar decentralized LQG control problems? To control a plant

we first have to gain information about its state. The quantitative behavior of this information
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Figure 4.25: As indicated by the blue circles, in the fast dynamics case the proposed scheme exploits

“information flow” from both controllers but ignores all past observations. By contrast, as indicated

by the red circle, in the slow dynamics case the proposed scheme exploits the information of only

one controller but takes into account all past observations.

flow (from a plant to controllers and finally back to the plant as we discussed in Chapter 3) is very

similar to that in wireless communication systems. More precisely, according to the eigenvalue

of the system, the information flow in the system shows a very different behavior. The system is

deemed to be fast-dynamics when the eigenvalue is large (|a| ≥ 2.5) and slow-dynamics when the

eigenvalue is small (|a| < 2.5).

The main reason for this division is the relationship between the eigenvalue of the system

and the SNR of the information flow for control. The discussion of Section 4.3 reveals that the SNR

of implicit communication between two controllers will be bounded21 by the eigenvalue squared

(|a|2). Therefore, when the eigenvalue is large, the SNR for implicit communication is also large.

Therefore, from wireless communication theory we can expect that the (generalized) d.o.f. gain of

the implicit communication is crucial. Likewise, when the eigenvalue is small, the SNR for implicit

communication is also small and the power gain of the implicit communication is crucial. This is the

slow dynamics case. To harness the power gain, we have to use Kalman filtering which corresponds

to maximum-ratio combining in wireless communication [99].

In short, even if the system is the simplest scalar system, we can think of two ways of

sending information. One way is across different bit-levels and the other way is across different

time-slots. Moreover, these multiple bit-levels and multiple time-slots can be deemed as MIMO

antennas in wireless communication theory. In fast-dynamics, the MIMO antenna gain of multiple

21Since the second controller can cancel all bits above its noise level at the next time step, the new information in
the state cannot be amplified more than |a|2 above the second controller’s noise level. Thus, the SNR measured at
the second controller is always bounded by |a|2.
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bit-levels dominates that of multiple time-slots. The proposed signaling strategies exploit the d.o.f.

gain of the MIMO antennas over multiple bit-levels.

On the other hand, in slow-dynamics, the MIMO antenna gain of multiple time-slots is

much more crucial. In Chapter 5, Kalman filtering will be used to exploit the power gain of the

MIMO antennas over multiple time-slots.

Figure 4.25 visualizes the discussion so far. In fast-dynamics, the state is quickly changing

and the SNR of implicit communication is high. Thus, the information from previous time steps is

much less important than that of the current time step. However, to fully exploit the MIMO antenna

gain of different bit-levels, the observations from both controllers have to be used.22 On the other

hand, in slow-dynamics, the state changes slowly and the SNR of implicit communication is low.

Therefore, there is no huge incentive for implicit communication between controllers, and a strategy

which fully exploits the observations of either one controller is enough to achieve constant-ratio

optimality. However, the power gain from the past observations cannot be ignored and so Kalman

filtering has to be used.

It is worth mentioning that this fundamental difference between fast and slow dynamics

was conjectured as early as the 1970s [88] but remained vague: “The development of systematic

procedures for appropriately modeling large scale systems with slow and fast dynamics has not received

the attention it deserves. · · · one should look for time scale separation (fast and slow dynamics).”

This dissertation is the first that has used this quantitatively.

The division of fast and slow dynamics based on 2.5 is somewhat surprising if we recall

that Witsenhausen’s counterexample seems to correspond to the a = 1 case in the infinite horizon

problem. In [37] it was shown that we need a nonlinear strategy to achieve constant-ratio optimality

in Witsenhasuen’s counterexample, while in Chapter 5 it is shown that in the slow dynamics case

(including a = 1) linear strategies are enough for a constant ratio optimality. The main reason for this

is that the infinite horizon problem is a sequential problem. Since the problem is sequential, we can

think of the infinite-horizon problem as an interlocking series of Witsenhausen’s counterexamples.

When a = 1, the interference from the previous Witsenhausen’s problem dominates and we do not

have to solve the current Witsenhausen’s problem optimally.

4.9 Discussion and Further Research

In the beginning of the chapter, we summarized the two main contributions of the classical

centralized LQG result. The first was linear controller optimality which narrows the search for the

optimal strategy from the infinite-dimensional strategy space to the finite-dimensional linear strategy

space. In Theorem 4.1, we gave the corresponding result for scalar decentralized LQG problems in

22Even though the strategy in Definition 4.2 relies on the past controller inputs (therefore, the past observations),
the role of the past inputs in the strategy is just to cancel their influence on the current time step, not providing
information about the state.
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Figure 4.26: Communication-Estimation-Control Separation Controllers
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Figure 4.27: Communication-Estimation-Control separation controller interpretation of Lsig,s (Here,

x̄[n] = Qasd(y2[n]−Rasd(
∑

1≤i≤s a
i−1u2[n− i])) +Rasd(

∑
1≤i≤s a

i−1u2[n− i]))
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an approximation sense by proposing a finite-dimensional strategy space.

The second contribution was more philosophical. Centralized LQG gave us the separation

principle for estimation and control. Therefore, a natural question is whether we can interpret the

result of Theorem 4.1 in terms of estimation-control separation, or if there is a conceptual missing

block. The authors believe there is a missing fundamental design block, the “communication” block.

Figure 4.26 shows the proposed communication-estimation-control separation controller,

which we believe, is approximately optimal. First, the controller observes y[n]. Unlike the cen-

tralized case, y[n] may contain transmitted “signals” from the other controllers. The decoder block

extracts such information and generates a new observation yd[n]. Based on both y[n] and yd[n], the

estimator block tries to estimate the states. After the estimation, the controller can either control

the states23 by itself, or relay information to the other controllers and let them control. x̂a[n] is

the states that the controller wants to control by itself. Based on x̂a[n], the actuator generates the

control action ua[n]. x̂e[n] is the state that the controller wants to encode for the other controllers.

Based on x̂e[n], the encoder generates the encoded signal ue[n]. Finally, the control output is the

superposition of ua[n] and ue[n].

Figure 4.27 interprets the strategy Lsig,s based on the proposed controller structure. The

strategy exploits the fact that the controller 1 has a better observation than the controller 2. Since

the controller 1’s control signal is expensive, it “relays” its observation through the encoder rather

than trying to control the state by itself. Then, the controller 2 extracts the relayed information in

the decoder block, and takes action based on it. We can notice that only encoders and decoders are

nonlinear, while estimators and actuators are linear. Therefore, this structure fits the intuition that

the essential nonlinearity comes from communication.

An extensive relationship between the implicit information flow for control and wireless

information flow was discussed in Section 4.8. Some unique features of information flows for control

were also noticed. We also found the counterpart of the classical notion of information theoretic

cutset bounds [21] in the dynamic-programming context. The geometric slicing idea discussed in

Figure 4.14 can be thought of as a cutset bound in a sense that it finds the informational bottleneck

of the system. However, unlike traditional information-theoretic cutsets, the geometric slicing idea

divides the nodes by a weighted cut rather than a simple partitioning.

Even if this chapter focused on the simplest toy scalar LQG problem with two controllers,

the essential difficulty of decentralized problems — nonconvex optimization over infinite-dimensional

space — was still there and we could finesse this difficulty by taking an approximation approach. We

believe the approaches and techniques developed in this chapter will also be useful in more general

problems with vector states and multiple controllers. Moreover, in the process of such generalization,

we will find more close relationships and parallels between wireless information flows and control

information flows. For example, the notion of the computation over communication channels [74]

23Even a single scalar state can be viewed as a collection of bit-positions.
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or interference alignment [63, 14] has yet to be properly understood in control contexts. Above

all, by solving the problems only approximately, we “may” be able to make a breakthrough in this

long-standing open problem, the decentralized LQG problem.
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Chapter 5

Decentralized scalar LQG problem:

Slow Dynamics

5.1 Introduction

In Chapter 4, we consider the simplest decentralized LQG (linear quadratic Gaussian)

problem, the scalar infinite-horizon LQG problem with two controllers. In the last chapter, we

focused on the fast dynamics case when the eigenvalue of the system is large. The most interesting

fact in this case is that a nonlinear control strategy can infinitely outperform any linear strategy

especially when the two controllers are asymmetric. When the first controller has a better observation

with high control cost and the second controller has a worse observation with small control cost, there

is a huge incentive for the first controller to communicate its observation to the second controller.

Moreover, this communication is implicitly through the plant and for such implicit communication,

nonlinear strategies are more efficient than linear strategies. The Signal-to-Noise Ratio (SNR)

for this implicit communication is upper bounded by the eigenvalue of the system. Thus, as the

eigenvalue of the system goes to infinity, the performance gap between nonlinear and linear strategy

can unboundedly diverge.

In this chapter, we focus on slow dynamics where the eigenvalue of the system is bounded

by a constant. The SNR for implicit communication in this case is bounded and the performance

gap between the best nonlinear and linear strategies is bounded by a constant. In the scalar system

considered in this chapter, the system is observable and controllable by both controllers. It turns

out that control by a single controller is good enough to achieve a constant-ratio of the optimal cost.

The rest of the chapter consists as follows: In Section 5.2, we will state the problem and

main results. In Section 5.3, we will revisit classic centralized control results and intuitively under-

stand them. In Section 5.4, we will derive a fundamental lower bound on the control performance,

and prove that the centralized control performance and the derived lower bound are within a constant
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ratio.

5.2 Problem Statement and Main Result

Throughout this chapter, we will consider the same problem considered in Chapter 4, the

scalar infinite-horizon decentralized LQG problems with two controllers. However, while the focus of

Chapter 4 was the fast-dynamics case (when |a| ≥ 2.5), the focus of this chapter is the slow-dynamics

case (when |a| < 2.5).

Problem J (scalar infinite-horizon decentralized LQG problems with two controllers). Consider

the system dynamics given as

x[n+ 1] = ax[n] + u1[n] + u2[n] + w[n]

y1[n] = x[n] + v1[n]

y2[n] = x[n] + v2[n]

where x[0] ∼ N (0, σ2
0), w[n] ∼ N (0, 1), v1[n] ∼ N (0, σ2

v1), v2[n] ∼ N (0, σ2
v2) are independent

Gaussian random variables. The control inputs, u1[n] and u2[n], must be causal functions of y1[n]

and y2[n] respectively, i.e. u1[n] = f1,n(y1[0], · · · , y1[n]) and u2[n] = f2,n(y2[0], · · · , y2[n]).

For q, r1, r2 ≥ 0, the control objective is to minimize a long-term average quadratic cost:

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]. (5.1)

As discussed in Chapter 4, even though we normalized the problem parameters (the vari-

ance of w[n], the gains for u1[n], u2[n], y1[n], y2[n]), this problem includes all scalar two-controller

decentralized LQG problems by a proper scaling.

In Chapter 4, we saw that in fast-dynamics cases, implicit communication between two

controllers is crucial to achieve the optimal performance within a constant ratio. Moreover, es-

sentially memoryless controllers, which only exploit the information at the current time step, were

constant-ratio optimal.

Therefore, a natural question for slow-dynamics cases is that whether the same type of

controllers are enough to achieve constant ratio optimality. In other words, is implicit communication

crucial for performance? Can memoryless controllers achieve constant-ratio optimality? In this

chapter, we will see that the answers for both questions are negative.

To understand why the answer for the first question is negative, let’s revisit fast-dynamics

cases. Even though the mathematical definition of implicit communication is still unclear, we can

roughly measure the SNR (signal-to-noise ratio) of implicit communication. The blurry controller

(the controller with higher observation noise) utilizes the transmitted signal from the other con-

troller as soon as the transmitted signal’s power exceeds its observation noise level. Therefore, the
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maximum SNR for implicit communication cannot exceed a2, which is the ratio at which the system

dynamics amplify signals in one time step. From this, we can conjecture that for slow dynamics cases

(|a| ≤ 2.5), the SNR is bounded and implicit communication may not be crucial for constant-ratio

optimality.

However, justification is not that simple since the time-horizon is infinite. In other words,

even though we could justify that the SNR at each time step is bounded, accumulation of such infor-

mation may result in unbounded gain. Furthermore, a precise definition of implicit communication

and the corresponding SNR requires further study.

For the second question, we will see that all observations from the past have to be utilized

to achieve constant-ratio optimality. For this, Kalman filtering must be used.

In other words, we will prove that in the slow-dynamics case, single-controller optimal

strategies — Kalman filtering linear strategies — are approximately optimal within a constant

ratio. For this, let’s first define the single-controller strategies which involve only one parameter k.

Definition 5.1 (Single Controller Optimal Strategy Llin,kal). Llin,kal is the set of all controllers

which can be written in either one of two following forms for some k ∈ R
(i) u1[n] = −kE[x[n]|yn1 , un−1

1 ], u2[n] = 0

(ii) u1[n] = 0, u2[n] = −kE[x[n]|yn2 , un−1
2 ]

Here, we can notice that since the system is linear and underlying random variables are

Gaussian, the conditional expectations are linear in the observations [11].

Now, we can state the main theorem of this chapter, which states that when |a| ≤ 2.5 the

optimization only over Llin,kal is enough to achieve approximate optimality within a constant ratio

among all possible strategies.

Theorem 5.1. Consider the decentralized LQG problem shown in Problem J. Let L be the set of

all measurable causal strategies. Then, there exists a constant c ≤ 2 · 106 such that for all |a| ≤ 2.5,

q, r1, r2, σ0, σv1 and σv2,

inf
u1,u2∈Llin,kal

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2∈L

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c

Proof. See Section 5.4.5 for the proof.

The basic proof strategy is following. Rather than directly considering the average cost

problem of Problem J, we consider the power-distortion tradeoff problem of Problem K. Then, since

we have an explicit constraint on the controller power, we can divide the tradeoff curve into multiple

regions based on the control power. For these finite number of regions, we derive different upper and

lower bounds on the performance. By comparing them, we characterize the tradeoff curve within
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a constant ratio. Then, we finally convert the constant-ratio characterization of the tradeoff curve

into the constant-ratio result on the average cost.

Problem K (Decentralized LQG problem with average power constraints). Consider the same dy-

namics as Problem J. But, now the control objective is minimizing the state distortion for given input

power constraints P1, P2 ∈ R+. We will say the power-distortion tradeoff, D(P1, P2) is achievable if

and only if there exist causal control strategies u1[n], u2[n] such that

lim sup
N→∞

1

N

N∑

n=1

E[x2[n]] ≤ D(P1, P2),

lim sup
N→∞

1

N

N∑

n=1

E[u2
1[n]] ≤ P1,

lim sup
N→∞

1

N

N∑

n=1

E[u2
2[n]] ≤ P2.

5.3 Qualitative Understanding of Centralized LQG Problems

Before we present the technical details, we first explain the insight behind the results.

Theorem 5.1 states that control by a single controller is enough to achieve an approximately optimal

performance. The optimal control by a single controller is a well-studied LQG control problem. The

optimal average cost, the weighted sum of the input power and the state distortion, is the solution

of a Riccati equation.

However, even though Riccati equations give exact optimal costs for centralized control

problems, their quantitative results are hard to interpret. Therefore, in this section, we will approx-

imate the optimal costs to simple functions, so that we can gain intuitive and qualitative under-

standing about the centralized control problems. Furthermore, we will take take a distortion-power-

tradeoff perspective rather than a minimum-cost point-of-view.

Let’s first formally state the scalar centralized LQG problems.

Problem L (Centralized LQG with average power constraints). Consider the following dynamic

system with a single controller.

x[n+ 1] = ax[n] + u[n] + w[n]

y[n] = x[n] + v[n]

where x[0] ∼ N (0, σ2
0), w[n] ∼ N (0, 1), v[n] ∼ N (0, σ2

v) are independent Gaussian random variables.

The control input u[n] must be a causal function of y[n], i.e. u[n] = fn(y1[0], · · · , y1[n]).

The control objective is minimizing the state distortion for a given input power constraint

P ∈ R+. We say the power-distortion tradeoff Dσv (P ) is achievable if and only if there exists a
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causal control strategy u[n] such that

lim sup
N→∞

1

N

N∑

n=1

E[x2[n]] ≤ Dσv (P ),

lim sup
N→∞

1

N

N∑

n=1

E[u2[n]] ≤ P.

Definition 5.2 (Optimal Linear Strategy Llin,cen for Centralized LQG problems). Consider the

centralized LQG problem of Problem L. Let Llin,cen be the set of all controllers which can be written

in the following form. For some k ∈ R, u[n] = −kE[x[n]|yn, un].

Lemma 5.1. Consider the centralized LQG problem of Problem L. Define ΣE as

ΣE :=
(a2 − 1)σ2

v − 1 +
√

((a2 − 1)σ2
v − 1)2 + 4a2σ2

v

2a2
. (5.2)

Then, for all k such that |a− k| < 1, the linear strategy of Definition 5.2 can achieve the following

Power-distortion tradeoff:

(Dσv (P ), P ) = (
(2ak − k2)ΣE + 1

1− (a− k)2
, k2(

(2ak − k2)ΣE + 1

1− (a− k)2
− ΣE)). (5.3)

Furthermore, this power-distortion tradeoff is optimal in the sense that for a given P , there is no

control strategy which can achieve an expected squared state smaller than Dσv (P ).

Proof. Let x̂[n] := E[x[n]|yn, un−1]. Since u[n] = −kx̂[n],

x[n+ 1] = ax[n]− kx̂[n] + w[n]

= a(x[n]− x̂[n]) + (a− k)x̂[n] + w[n]. (5.4)

Define ΣX,n := E[x2[n]], ΣX̂,n := E[x̂2[n]], ΣE,n := E[(x[n]− x̂[n])2]. Then, we have

ΣX,n = E[(x[n]− x̂[n] + x̂[n])2]

= E[(x[n]− x̂[n])2] + E[x̂2[n]]

= ΣE,n + ΣX̂,n (5.5)

where the second equality comes from the orthogonality of x[n]− x̂[n] and x̂[n]. Likewise, by (5.4)

we also have

ΣX,n+1 = a2ΣE,n + (a− k)2ΣX̂,n + 1

= a2ΣE,n + (a− k)2(ΣX,n − ΣE,n) + 1 (5.6)

where the last inequality comes from (5.5).
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Moreover, it is well-known that Kalman filtering performance converges to a steady state.

In other words, by [11] we have

ΣE := lim
n→∞

ΣE,n =
(a2 − 1)σ2

v − 1 +
√

((a2 − 1)σ2
v − 1)2 + 4a2σ2

v

2a2

Thus, by (5.6), ΣX,n converges as long as |a− k| < 1. Let limn→∞ ΣX,n = ΣX . Then, by

(5.6) we have

ΣX =
(a2 − (a− k)2)ΣE + 1

1− (a− k)2

=
(2ak − k2)ΣE + 1

1− (a− k)2
.

Since u[n] = −kx̂[n], using (5.5) the input power converges as follows.

lim
n→∞

E[u2[n]] = k2(ΣX − ΣE)

= k2(
(2ak − k2)ΣE + 1

1− (a− k)2
− ΣE).

This finishes the achievability proof of the tradeoff. The tightness of the tradeoff and the

optimality of centralized linear controllers are well-known in the community, and we refer to [11] for

a rigorous proof based on dynamic programming.

As mentioned in the proof, ΣE represents the Kalman filtering performance (mean square

estimation error).

In the following discussions, we will qualitatively understand the tradeoff between the state

distortion and control power by dividing into cases based on the eigenvalue of the system.

5.3.1 When |a| = 1

Figure 5.1: The Optimal State Distortion-Input Power Tradeoff: When a = 1 with different values

of σ2
v ( σ2

v = 1 (Black line), σ2
v = 100 (Blue line), σ2

v = 200 (Red line))
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Figure 5.2: Conceptual Plot of State Distortion-Input Power Tradeoff: When |a| = 1

First, let’s consider the case when the magnitude of the eigenvalue is 1, i.e. |a| = 1.

Since the Kalman filtering performance ΣE is the minimum squared error for estimating

the states, we can see Dσv (P ) ≥ a2ΣE + 1 for all P . For notational convenience, let’s approximate

a2ΣE + 1 by max(ΣE , 1).

To achieve Dσv (P ) ≈ max(ΣE , 1), the control power P has to be large enough. As we can

see in Figure 5.1, the state distortion Dσv (P ) inversely proportionally increases as the control power

P decreases.

Therefore, the power-state distortion tradeoff Dσv (P ) can be conceptualized as Figure 5.2.

When the power P is smaller than 1
max(ΣE ,1) , the state distortion behaves like 1

P . When the power

becomes greater than 1
max(ΣE ,1) , the state distortion saturates at max(ΣE , 1).

Let’s write (a1, · · · , an) ≥ (b1, · · · , bn) if and only if a1 ≥ b1, · · · , an ≥ bn. Then, Corol-

lary 5.1 shows the formal statement of the power-distortion tradeoff for the centralized LQG problem.

Corollary 5.1. Consider the centralized LQG problem shown in Problem L. When |a| = 1, the

achievable power-distortion tradeoff (Dσv (P ), P ) by the strategies of Definition 5.2 is upper bounded

as follows:

(Dσv (P ), P ) ≤ (
2

t
, t) for all 0 < t ≤ 1

max(1,ΣE)
(5.7)

where the definition of ΣE is given as (5.2).

Especially, when σv ≥ 16, we have

(Dσv (P ), P ) ≤ (
2

t
, t) for all 0 < t ≤ 1

1.0005σv
. (5.8)

When σv ≤ 16, we have

(Dσv (P ), P ) ≤ (
2

t
, t) for all 0 < t ≤ 1

15.008
. (5.9)
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Proof. See Appendix 10.1 for the proof.

As we can see from (5.7), for powers 0 < P ≤ 1
max(1,ΣE) , the tradeoff is inversely pro-

portional. When the power becomes P = 1
max(1,Σe)

, the state distortion saturates at the Kalman

filtering performance.

In fact, careful inspection of Figure 5.1 shows that the transition between the interval

P ∈ [0, 1
max(ΣE ,1) ] and P ∈ [ 1

max(ΣE ,1) ,∞] is much smoother than the one suggested in the conceptual

plot of Figure 5.2. Therefore, a better approximation of the tradeoff can beDσv (P ) ≈ 1
P +max(ΣE , 1)

rather than Dσv (P ) ≈ max( 1
P ,ΣE , 1) suggested in Figure 5.2. In fact, since max( 1

P ,ΣE , 1) ≤
1
P + max(ΣE , 1) ≤ 2 max( 1

P ,ΣE , 1), the two approximations are within a constant ratio. Thus,

both approximations are enough to prove constant ratio optimality. In this chapter, we choose the

approximation shown in Figure 5.2, since it is more discrete and thereby easier to compare with the

lower bound in Section 5.4.2 by dividing cases.

Furthermore, we can prove that the optimal tradeoff (Dσv (P ), P ) can be upper and lower

bounded by the approximation of Figure 5.2 within a constant ratio. Consider the case1 when

σv ≥ 16, then (5.8) of Lemma 5.1 gives an achievable upper bound on the tradeoff, Dσv (P ) ≤ 2
P for

all 0 < P ≤ 1
1.0005σv

≤ 1
16 . We will see that Corollary 5.5 of Section 5.4.2 gives a lower bound on

the tradeoff. By putting the second controller’s noise σv2 = ∞ and considering the first controller

as the centralized controller, (b) of Corollary 5.5 gives that Dσv (P ) ≥ 0.02417
P + 1 for all P ≤ 1

64 .

Therefore, we can notice that the upper and lower bound match within a constant ratio. Moreover,

(d) of Corollary 5.5 gives that Dσv (P ) ≥ max(
√

2
2 σv1, 1) for all P , which justifies the flat part of

Figure 5.2. Therefore, increasing input power P more than 1
1.0005σv

will not be greatly helpful, and

we can use an achievable upper bound Dσv (P ) = 2.001σv for all P ≥ 1
1.0005σv

to prove constant-ratio

optimality. This constant-ratio characterization of the tradeoff curve can be easily converted to a

constant ratio optimality of average-cost problems by applying Lemma 4.14 of Chapter 4.

5.3.2 When 1 < |a| ≤ 2.5

Let’s consider the case2 when 1 < |a| ≤ 2.5. Just like the case of |a| = 1, the state distortion

saturates at a2ΣE + 1 ≈ max(ΣE , 1) for all P , and the state distortion inversely proportionally

increases as the power decreases.

However, there is a significant difference from the previous case of |a| = 1. Since the system

is unstable by itself, when the power is too small the state distortion diverges to infinity. Figure 5.3a

shows this behavior. Furthermore, it is well known that the minimum capacity to stabilize unstable

plants is log |a|. Since the variance of w[n] is 1, the capacity from the controller to the plant can

be thought as of 1
2 log(1 + P ). Therefore, the stabilizability condition 1

2 log(1 + P ) > log |a| gives

P ≥ a2 − 1 to stabilize the system.

1Recall that when |a| = 1, ΣE ≈ σv .
2Here, the explicit number 2.5 does not have to be 2.5. In fact, we can choose any fixed number like 2, 3, 5, 6, · · · .
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(a) (b)

Figure 5.3: The Optimal State Distortion-Input Power Tradeoff: a = 1.01. In (a), σ2
v are chosen as

σ2
v = 1 (Black line), σ2

v = 10 (Blue line), σ2
v = 20 (Red line). In (b), σ2

v are chosen as σ2
v = 1000

(Black line), σ2
v = 2000 (Blue line), σ2

v = 3000 (Red line).

(a) (b)

Figure 5.4: Conceptual Plot of State Distortion-Input Power Tradeoff for 1 < |a| ≤ 2.5: (a) is when

max(ΣE , 1) ≤ 1
a2−1 . (b) is when max(ΣE , 1) ≥ 1

a2−1 .
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Based on the above discussion, we can draw a conceptual power-distortion tradeoff curve as

shown in Figure 5.4a. Like Figure 5.2, when the power is larger than 1
max(ΣE ,1) , the state distortion

saturates at max(ΣE , 1). When the power is between a2 − 1 and 1
max(ΣE ,1) , the state distortion

is inversely proportional to the power. However unlike Figure 5.2 when the power is smaller than

(a2 − 1), the controller cannot stabilize the system, so the state distortion diverges to infinity.

Furthermore, Figure 5.3b shows that as ΣE increases, the gap between (a2 − 1) and

1
max(ΣE ,1) (the interval where the distortion is inversely proportional to the power) decreases, i.e.

the boundary of the optimal tradeoff region shrinks. Eventually, the whole boundary will con-

verge to one point. Figure 5.4b conceptualizes this situation. When ΣE is large enough so that

max(ΣE , 1) ≥ 1
a2−1 , we need at least (a2 − 1)2 max(ΣE , 1) controller power to stabilize the plant,

and the corresponding state distortion saturates at the Kalman filtering performance max(ΣE , 1).

The following corollary shows a formal statement of these conceptual tradeoff curves shown

in Figure 5.4.

Corollary 5.2. Consider the centralized single-controller LQG problem shown in Problem L. When

|a| > 1, the achievable power-distortion tradeoff (Dσv (P ), P ) by the strategies of Definition 5.2 is

upper bounded as follows:

(i) (Dσv (P ), P ) ≤ ((a2 + 1)ΣE + a2

a2−1 , (a
2 − 1)2ΣE + (a2 − 1))

(ii) (Dσv (P ), P ) ≤ ( 4(|a|+1)2

t , t) for all 2(|a|+ 1)2(1− ( 1
a )2) ≤ t ≤ 2(|a|+1)2

max(1,(a2+1)ΣE)

where the definition of ΣE is given in (5.2).

Especially, when 1 < |a| ≤ 2.5, Dσv (P ) satisfies the following conditions:

(i’) (Dσv (P ), P ) ≤ (7.25ΣE + 6.25
a2−1 , (a

2 − 1)2ΣE + (a2 − 1))

(ii’) (Dσv (P ), P ) ≤ ( 49
t , t) for all 8(a2 − 1) ≤ t ≤ 8

max(1,7.25ΣE)

Proof. See Appendix 10.1 for the proof.

When max(ΣE , 1) ≤ 1
a2−1 , (ii’) of the corollary shows that we can achieve the tradeoff

curve shown in Figure 5.4a. More precisely, when P = 8(a2 − 1), the statement (ii’) reduces to

Dσv (P ) ≤ 49
8(a2−1) . Therefore, (Dσv (P ), P ) ≈ ( 1

a2−1 , a
2 − 1) is achievable (up to constant scaling).

When P = 8
max(1,7.25ΣE) , the statement (ii’) reduces toDσv (P ) ≤ 49

8 max(1, 7.25ΣE). Thus,

(Dσv (P ), P ) ≈ (max(ΣE , 1), 1
max(ΣE ,1) ) is also achievable. Between these two values, the tradeoff is

inversely proportional.

When max(ΣE , 1) ≥ 1
a2−1 , (i’) of the corollary shows the tradeoff curve in Figure 5.4b is

achievable. More precisely, with the condition max(ΣE , 1) ≥ 1
a2−1 , the statement (i’) implies

(Dσv (P ), P ) ≤ (7.25ΣE +
6.25

a2 − 1
, (a2 − 1)2ΣE + (a2 − 1))

≤ (13.5 max(ΣE , 1), 2(a2 − 1)2 max(ΣE , 1)).

Therefore, the corner point of Figure 5.4b is achievable up to constant scaling. The whole tradeoff

region is also achievable since we can always achieve the points with more state distortion and input
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power.

Just like Section 5.3.1, a careful inspection of Figure 5.3a suggests thatDσv (P ) ≈ 1
P−(a2−1)+

max(ΣE , 1) may be a better approximation than the one shown in Figure 5.4a. However, just like the

discussion in Section 5.3.1, the approximation of Figure 5.3a is good enough to prove constant-ratio

optimality, and easier to compare with a lower bound on the performance since the approximation

is divided into multiple regions.

In fact, by putting Σ2 =∞ and considering the first controller as the centralized controller,

(g), (f), (j) of Corollary 5.4 in Section 5.4.1 respectively reduce to

Dσv (P ) =∞ for all P ≤ 1

20
(a2 − 1)

Dσv (P ) ≥ 0.0006976

P1
+ 1 for all P ≤ 1

150

Dσv (P ) ≥ max(0.1035Σ1, 1).

By taking the maximum over these three bounds, we can easily check that the resulting lower bound

coincides with the approximation of Figure 5.3a up to a constant, and thereby the average cost can

also be characterized within a constant by Lemma 4.14 of Chapter 4.

5.3.3 When 0.9 ≤ |a| < 1

(a) (b)

Figure 5.5: The Optimal State Distortion-Input Power Tradeoff: a = 0.99. In (a), σ2
v are chosen as

σ2
v = 1 (Black line), σ2

v = 10 (Blue line), σ2
v = 20 (Red line). In (b), σ2

v are chosen as σ2
v = 1000

(Black line), σ2
v = 2000 (Blue line), σ2

v = 3000 (Red line).

Let’s consider the case when 0.9 ≤ |a| < 1. In contrast to the case of 1 < |a| ≤ 2.5, the

system is stable by itself in this case. Therefore, the state distortion never increases above 1
1−a2 .

As we can see in Figure 5.5a, the essential tradeoff curve is similar to the case of |a| = 1. For

all control powers P , the state distortion saturates at the Kalman filtering performance max(ΣE , 1).

For control powers between 1 − a2 and 1
max(ΣE ,1) , the state distortion is inversely proportional to

the control power.
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(a) (b)

Figure 5.6: Conceptual Plot of State Distortion-Input Power Tradeoff for 0.9 ≤ |a| < 1: (a) is when

max(ΣE , 1) ≤ 1
1−a2 . (b) is when max(ΣE , 1) ≥ 1

1−a2 .

However, when the power becomes smaller than 1 − a2, this inversely-proportional car-

icature of the state distortion becomes larger than 1
1−a2 , which is achievable even without any

control. Therefore, for powers smaller than 1−a2, the state distortion stays at 1
1−a2 . Therefore, the

conceptual tradeoff curve has to follow the curve in Figure 5.4a.

Furthermore, Figure 5.5b shows that as ΣE increases, the state distortion without control

( 1
1−a2 ) and the Kalman filtering performance (max(ΣE , 1)) becomes similar. Eventually, when

max(ΣE , 1) ≥ 1
1−a2 , as depicted in Figure 5.4b, the minimum state distortion becomes 1

1−a2 which

is achievable even without any control.

Corollary 5.3 gives formal statements of these observations.

Corollary 5.3. Consider the centralized LQG problem shown in Problem L. When |a| < 1, the

achievable power-distortion tradeoff (Dσv (P ), P ) by the strategies of Definition 5.2 is upper bounded

as follows:

(Dσv (P ), P ) ≤ (
1

1− a2
, 0), (5.10)

and especially when3 ΣE ≤ 1
1−a2 we also have

(Dσv (P ), P ) ≤ (
2

t
, t) for all 1− a2 ≤ t ≤ 1

max(1,ΣE)
(5.11)

where the definition of ΣE is given as (5.2).

Proof. See Appendix 10.1 for the proof.

When max(ΣE , 1) ≥ 1
1−a2 , (5.10) shows the tradeoff curve shown in Figure 5.6b is achiev-

able.

3Since |a| < 1, the condition ΣE ≤ 1
1−a2 is equivalent to the condition max(1,ΣE) ≤ 1

1−a2 .
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When max(ΣE , 1) ≤ 1
1−a2 , (5.11) shows the inversely proportional tradeoff curve shown in

Figure 5.6a when the power is between 1− a2 and 1
max(1,ΣE) .

In fact, in Figure 5.5a we cannot find a flat region for the power between 0 and 1 − a2

which is shown in the approximation of Figure 5.6a. Therefore, like Section 5.3.1, 5.3.2, a better

approximation of the tradeoff might be Dσv (P ) ≈ 1
P−(a2−1) + max(ΣE , 1) and worth exploring.

However, the approximation of Figure 5.5a is good enough to give a constant-ratio optimality result.

For example, if we compute the distortion for P ∈ [0, 1− a2] with this new approximation, we get

Dσv (P ) ∈ [ 1
2(1−a2) + max(ΣE , 1), 1

1−a2 + max(ΣE , 1)]. Especially, for max(ΣE , 1) ≤ 1
1−a2 which is

the case of Figure 5.6a, this interval is included in

[
1

2(1− a2)
+ max(ΣE , 1),

1

1− a2
+ max(ΣE , 1)] ⊆ [

1

2(1− a2)
,

2

1− a2
].

Therefore, the approximation is essentially the same as the one of Figure 5.6a, 1
1−a2 , up to a constant.

Furthermore, Corollary 5.6 of Section 5.4.3 gives a matching lower bound to the approx-

imation of Figure 5.6a. First notice that as σv2 goes to infinity, the Kalman filtering performance

Σ2 converges to 1
1−a2 which is the expected squared-state of the stable system without any control.

Thus, by putting Σ2 = 1
1−a2 , thinking of the second controller as the centralized controller, and

considering the case of 1
1−a2 ≥ 40, the conditions (a), (b), (e) of Corollary 5.6 respectively reduce to

Dσv (P ) ≥ 0.009131

1− a2
+ 1 for all P ≤ 1− a2

Dσv (P ) ≥ 0.009131

P
+ 1 for all 1− a2 ≤ P ≤ 1

40

Dσv (P ) ≥ max(0.2636Σ1, 1) for all P.

Therefore, we can easily observe that by taking the maximum of these bounds, we get a matching

lower bound to Figure 5.6a (up to a constant). Therefore, by Lemma 4.14 of Chapter 4, we can also

characterize the average cost within a constant ratio using the approximation of Figure 5.6a.

5.3.4 When |a| ≤ 0.9

In this case, the state distortion 1
1−a2 which can be obtained without any control input, is

already small enough (smaller than 5.27). Therefore, the tradeoff curve is essentially the same as

Figure 5.6b, which is achievable with zero control input.

5.4 Lower bounds and Constant-Ratio Results for Decentral-

ized LQG problems

Now, we intuitively understand the power-distortion tradeoff of centralized single-controller

LQG problems with scalar plants. Based on this understanding, we will prove that single-controller
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linear strategies are enough to achieve the optimal decentralized LQG performance to within a con-

stant ratio. In other words, (D(P1, P2), P1, P2) of Problem K is essentially (min(Dσv1
(P1), Dσv2

(P2)), P1, P2)

where the definition of Dσv (P ) is given in Problem L.

For the upper bound on the optimal cost of the decentralized LQG problems, we can

simply use the centralized controller’s performance shown in Corollaries 5.2, 5.1, 5.3. However, we

still need a lower bound on the cost of the decentralized LQG problems, and it turns out the naive

lower bound we can obtain by merging two decentralized controllers into a centralized controller is

too loose to prove constant-ratio optimality (One can easily see this by giving noiseless observation

to one controller and zero input cost to the other.).

Therefore, in this section, we will give a non-trivial lower bound based on information

theory [21] and prove that the proposed lower bounds are tight to within a constant ratio.

5.4.1 When 1 < |a| ≤ 2.5

The ideas for the lower bounds are essentially the same as the ones of Chapter 4. The main

idea is geometric slicing, which can be thought of as a counterpart to cutset bounds in information

theory [21]. The only difference from the geometric slicing lemma shown in Lemma 4.8 of Chapter 4

is that here we use allow arbitrary sequences for slicing the problem since we must use arithmetic

sequences to slice the problem for the |a| = 1 case, and a geometric base that depends on a in the

vicinity of a = 1.

As we did in Chapter 4, we first introduce sliced finite-horizon problems.

Problem M (Sliced Finite-horizon LQG problem for Problem J). Let the system equations, the

problem parameters, the underlying random variables, and the restrictions on the controllers be

given exactly the same as Problem J. However, now for given k, k1, k2 ∈ N(k1 ≤ k, k2 ≤ k) and

positive sequences αk1
, αk1+1, · · · , αk−1 and βk2

, βk1+1, · · · , βk−1, the control objective is

inf
u1,u2

qE[x2[k]] + r1

∑

k1≤i≤k−1

αiE[u2
1[i]] + r2

∑

k2≤i≤k−1

βiE[u2
2[n]].

Lemma 5.2 (Geometric Slicing). Let the system equations, the problem parameters, the under-

lying random variables, and the restrictions on the controllers be given as in Problem J. When

σ2
0 = 0, for all k, k1, k2 ∈ N(k1 ≤ k, k2 ≤ k) and positive sequences αk1

, αk1+1, · · · , αk−1 and

βk2 , βk1+1, · · · , βk−1 such that
∑
k1≤i≤k−1 αi = 1 and

∑
k2≤i≤k−1 βi = 1, the infinite-horizon cost of

Problem J is lower bounded by the finite-horizon cost of Problem M, i.e.

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n≤N−1

(qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]])

≥ inf
u1,u2

qE[x2[k]] + r1

∑

k1≤i≤k−1

αiE[u2
1[i]] + r2

∑

k2≤i≤k−1

βiE[u2
2[n]].
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Furthermore, both costs are increasing functions of σ2
0 and when σ2

0 = 0, u1[0] = 0 and u2[0] = 0

are optimal for both problems.

Proof. The proof is essentially the same as the proof of Lemma 4.8 of Chapter 4. The only difference

is that the geometric sequences used in Lemma 4.8 of Chapter 4 have to be replaced by αn and βn.

Using this lemma, we can lower bound on the cost of the decentralized LQG problems as

follows. (Notice that the following lemma holds for all |a| > 1. However, it fails to give a constant

ratio result for fast-dynamics case of |a| ≥ 2.5 since it does not reflect the large deviation aspect of

disturbance random variables.)

Lemma 5.3. Define SL as the set of (k1, k2, k) such that k1, k2, k ∈ N and 1 ≤ k1 ≤ k2 ≤ k. We

also define DL,1(P̃1, P̃2, k1, k2, k) as follows:

DL,1(P̃1, P̃2; k1, k2, k) := (

√
Σ + a2(k−k1) 1−a−2(k2−k1)

1−a−2

22I′(P̃1)
+ a2(k−k2)

1− a−2(k−k2)

1− a−2

−

√
a2(k−k1−1)

(1− a−(k−k1))2

(1− a−1)2
P̃1 −

√
a2(k−k2−1)

(1− a−(k−k2))2

(1− a−1)2
P̃2)2

+ + 1

where

Σ =
a2(k−1) 1−a−2(k1−1)

1−a−2

22I

I =
k1 − 1

2
log(1 +

1

(k1 − 1)σ2
v1

a2(k1−2)(1− a−2(k1−1))

1− a−2

1− a−2(k1−1)

1− a−2
)

+
k1 − 1

2
log(1 +

1

(k1 − 1)σ2
v2

a2(k1−2)(1− a−2(k1−1))

1− a−2

1− a−2(k1−1)

1− a−2
)

I ′(P̃1) =
k2 − k1

2
log(1 +

1

(k2 − k1)σ2
v2

(2a2(k2−1−k) 1− a−2(k2−k1)

1− a−2
Σ

+ 2a2(k2−1−k1) 1− a−2(k2−k1)

1− a−2

1− a−2(k2−k1)

1− a−2

+ 2a2(k2−k1−2) 1− a−2(k2−k1)

1− a−2

(1− a−(k2−1−k1))(1− a−(k−k1))

(1− a−1)2
P̃1)).

Here, when k1 − 1 = 0, I = 0 and when k2 − k1 = 0, I ′(P̃1) = 0.

Let |a| > 1. Then, for all q, r1, r2, σ0, σv1, σv2 ≥ 0, the minimum cost (5.1) of Problem J is

lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
(k1,k2,k)∈SL

min
P̃1,P̃2≥0

qDL,1(P̃1, P̃2; k1, k2, k) + r1P̃1 + r2P̃2.
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Proof. For simplicity, we assume a > 1, 1 < k1 < k2 < k. The remaining cases when a < −1 or

k1 = 1 or k2 − k1 = 0 or k = k2 easily follow with minor modifications.

• Geometric Slicing: We apply the geometric slicing idea of Lemma 5.2 to get a finite-

horizon problem. By putting αk1
= ( 1−a−1

1−a−(k−k1) ), αk1+1 = ( 1−a−1

1−a−(k−k1) )a−1, · · · , αk = ( 1−a−1

1−a−(k−k1) )a−k+1+k1

and βk2 = ( 1−a−1

1−a−(k−k2) ), βk2+1 = ( 1−a−1

1−a−(k−k2) )a−1, · · · , βk−1 = ( 1−a−1

1−a−(k−k2) )a−k+1+k2 the average

cost is lower bounded by

inf
u1,u2

(qE[x2[k]]

+ r1 ((
1− a−1

1− a−(k−k1)
)E[u2

1[k1]] + (
1− a−1

1− a−(k−k1)
)a−1E[u2

1[k1 + 1]] + · · ·+ (
1− a−1

1− a−(k−k1)
)a−k+1+k1E[u2

1[k − 1]])
︸ ︷︷ ︸

:=P̃1

+ r2 ((
1− a−1

1− a−(k−k2)
)E[u2

2[k2]] + (
1− a−1

1− a−(k−k2)
)a−1E[u2

2[k2 + 1]] + · · ·+ (
1− a−1

1− a−(k−k2)
)a−k+1+k2E[u2

2[k − 1]])
︸ ︷︷ ︸

:=P̃2

)

Here, we denote the second and third terms as P̃1 and P̃2 respectively.

• Three stage division: As we did Chapter 4, we will divide the finite-horizon problem into

three time intervals — information-limited interval, Witsenhausen’s interval, power-limited interval.

Define

W1 := ak−1w[0] + · · ·+ ak−k1+1w[k1 − 2]

W2 := ak−k1w[k1 − 1] + · · ·+ ak−k2+1w[k2 − 2]

W3 := ak−k2w[k2 − 1] + · · ·+ aw[k − 2]

U11 := ak−2u1[1] + · · ·+ ak−k1u1[k1 − 1]

U21 := ak−2u2[1] + · · ·+ ak−k1u2[k1 − 1]

U1 := ak−k1−1u1[k1] + · · ·+ u1[k − 1]

U22 := ak−k1−1u2[k1] + · · ·+ ak−k2u2[k2 − 1])

U2 := ak−k2−1u2[k2] + · · ·+ u2[k − 1]

X1 := W1 + U11 + U21

X2 := W2 + U22

W1, W2, W3 represent the distortions of three intervals respectively. U11 and U21 respectively

represent the first and second controller inputs in the information-limited interval. U1 represents

the remaining input of the first controller. U22 and U2 represent the second controller’s inputs in

Witsenhausen’s and power-limited intervals respectively.

The goal of this proof is grouping control inputs and expanding x[n], so that we reveal the

effects of the controller inputs on the state and isolate their effects according to their characteristics.
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• Power-Limited Inputs: We will first isolate the power-limited inputs of the controllers,

i.e. the first controller’s input in the Witsenhausen’s and power-limited intervals, and the second

controller’s input in the power-limited interval. Notice that

x[k] = w[k − 1] + aw[k − 2] + · · ·+ ak−1w[0]

+ u1[k − 1] + au1[k − 2] + · · ·+ ak−1u1[0]

+ u2[k − 1] + au2[k − 2] + · · ·+ ak−1u2[0]

= (ak−1w[0] + · · ·+ ak−k1+1w[k1 − 2]

+ ak−2u1[1] + · · ·+ ak−k1u1[k1 − 1]

+ ak−2u2[1] + · · ·+ ak−k1u2[k1 − 1])

+ (ak−k1w[k1 − 1] + · · ·+ ak−k2+1w[k2 − 2]

+ ak−k1−1u2[k1] + · · ·+ ak−k2u2[k2 − 1])

+ (ak−k2w[k2 − 1] + · · ·+ aw[k − 2])

+ (ak−k1−1u1[k1] + · · ·+ u1[k − 1])

+ (ak−k2−1u2[k2] + · · ·+ u2[k − 1])

+ w[k − 1].

Therefore, by Lemma 4.1 of Chapter 4 we have

E[x2[k]] = E[(X1 +X2 +W3 + U1 + U2 + w[k − 1])2]

= E[(X1 +X2 +W3 + U1 + U2)2] + E[w2[k − 1]]

≥ (
√

E[(X1 +X2 +W3)2]−
√
E[U2

1 ]−
√

E[U2
2 ])2

+ + 1

= (
√
E[(X1 +X2)2] + E[W 2

3 ]−
√
E[U2

1 ]−
√
E[U2

2 ])2
+ + 1. (5.12)

where the last equality comes from causality. Here, we can see that E[(X1 +X2)2] does not depend

on the power-limited inputs.

• Information-Limited Interval: We will bound the remaining state distortion after the

information-limited interval. Define y′1 and y′2 as follows.

y′1[k] = ak−1w[0] + ak−2w[1] + · · ·+ w[k − 1] + v1[k]

y′2[k] = ak−1w[0] + ak−2w[1] + · · ·+ w[k − 1] + v2[k]

Here, y′1[k], y′2[k] can be obtained by removing u1[1 : k − 1], u2[1 : k − 1] from y1[k], y2[k], and

u1[k] and u2[k] are functions of y1[1 : k] and y2[1 : k] respectively. Therefore, we can see that

y1[1 : k], y2[1 : k] are functions of y′1[1 : k], y′2[1 : k]. Moreover W1, y
′
1[1 : k1 − 1], y′2[1 : k1 − 1] are

jointly Gaussian.
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Let

W ′1 := W1 − E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]

W ′′1 := E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]].

Then, W ′1, W ′′1 , W2 are independent Gaussian random variables. Moreover, W ′1,W2 are independent

from y′1[1 : k1 − 1], y′2[1 : k1 − 1]. W ′′1 is a function of y′1[1 : k1 − 1], y′2[1 : k1 − 1].

Now, let’s lower bound E[(X1 +X2)2]. Since Gaussians maximize entropy, we have

1

2
log(2πeE[(X1 +X2)2]

≥ h(X1 +X2)

≥ h(X1 +X2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′1 +W ′′1 + U11 + U12 +W2 + U22|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′1 +W2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1]). (5.13)

We will first lower bound the variance of W ′1. Notice that

E[y′1[k]2] = a2(k−1) + a2(k−2) + · · ·+ 1 + σ2
v1

= a2(k−1) 1− a−2k

1− a−2
+ σ2

v1

and

E[y′2[k]2] = a2(k−1) + a2(k−2) + · · ·+ 1 + σ2
v2

= a2(k−1) 1− a−2k

1− a−2
+ σ2

v2.
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Thus, we have

I(W1; y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(y′1[1 : k1 − 1], y′2[1 : k1 − 1])− h(y′1[1 : k1 − 1], y′2[1 : k1 − 1]|W1)

≤
∑

1≤i≤k1−1

h(y′1[i]) +
∑

1≤i≤k1−1

h(y′2[i])−
∑

1≤i≤k1−1

h(v1[i])−
∑

1≤i≤k1−1

h(v2[i])

≤
∑

1≤k≤k1−1

1

2
log(

a2(k−1) 1−a−2k

1−a−2 + σ2
v1

σ2
v1

) +
∑

1≤k≤k1−1

1

2
log(

a2(k−1) 1−a−2k

1−a−2 + σ2
v2

σ2
v2

)

=
1

2
log(

∏

1≤k≤k1−1

a2(k−1) 1−a−2k

1−a−2 + σ2
v1

σ2
v1

) +
1

2
log(

∏

1≤k≤k1−1

a2(k−1) 1−a−2k

1−a−2 + σ2
v2

σ2
v2

)

(A)

≤ k1 − 1

2
log(

1

k1 − 1

∑

1≤k≤k1−1

a2(k−1) 1−a−2k

1−a−2 + σ2
v1

σ2
v1

) +
k1 − 1

2
log(

1

k1 − 1

∑

1≤k≤k1−1

a2(k−1) 1−a−2k

1−a−2 + σ2
v2

σ2
v2

)

=
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

a2(k−1) 1−a−2k

1−a−2

σ2
v1

) +
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

a2(k−1) 1−a−2k

1−a−2

σ2
v2

)

≤ k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

a2(k−1) 1−a−2(k1−1)

1−a−2

σ2
v1

) +
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

a2(k−1) 1−a−2(k1−1)

1−a−2

σ2
v2

)

=
k1 − 1

2
log(1 +

1

(k1 − 1)σ2
v1

a2(k1−2)(1− a−2(k1−1))

1− a−2

1− a−2(k1−1)

1− a−2
)

+
k1 − 1

2
log(1 +

1

(k1 − 1)σ2
v2

a2(k1−2)(1− a−2(k1−1))

1− a−2

1− a−2(k1−1)

1− a−2
) (5.14)

(A): Arithmetic-Geometric mean.

Let’s denote the R.H.S. of (5.14) as I. We also have

E[W 2
1 ] = a2(k−1) + · · ·+ a2(k−k1+1))

= a2(k−1)(1 + · · ·+ a−2(k1−2))

= a2(k−1) 1− a−2(k1−1)

1− a−2
. (5.15)

Now, we can bound the variance of the Gaussian random variable W ′1 as follows:

1

2
log(2πeE[W ′21 ]) = h(W ′1)

≥ h(W ′1|y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W1)− I(W1; y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πea2(k−1) 1− a−2(k1−1)

1− a−2
)− I
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where the last inequality follows from (5.14) and (5.15).

Thus,

E[W ′21 ] ≥
a2(k−1) 1−a−2(k1−1)

1−a−2

22I
(5.16)

and denote the R.H.S. of (5.16) as Σ. Since W ′1 is Gaussian, we can write W ′1 = W ′′′1 +W ′′′′1 where

W ′′′1 ∼ N (0,Σ), and W ′′′1 ,W ′′′′1 are independent.

Moreover, we also have

E[W 2
2 ] = a2(k−k1) + · · ·+ a2(k−k2+1)

= a2(k−k1) 1− a−2(k2−k1)

1− a−2
. (5.17)

By (5.13) we have

1

2
log(2πeE[(X1 +X2)2])

≥ h(W ′1 +W2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

≥ h(W ′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′′′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′′′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W ′′′1 +W2)

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πe(Σ + a2(k−k1) 1− a−2(k2−k1)

1− a−2
))

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1]) (5.18)

where the last inequality follows from the fact that W ′′′1 and W2 are independent Gaussian, and

(5.16), (5.17).

Now, the question boils down to getting an upper bound of the last mutual information

term, which can be understood as the information contained in the second controller’s observation

in Witsenhausen’s interval.

• Second controller’s observation in Witsenhausen’s interval: We will bound the amount of

information contained in the second controller’s observation in Witsenhausen’s interval. For n ≥ k1,

define

y′′2 [n] := an−kW ′′′1 + an−k1w[k1 − 1] + an−k1−1w[k1] + · · ·+ w[n− 1]

+ an−k1−1u1[k1] + · · ·+ u1[n− 1]

+ v2[n].
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Notice that the relationship between y2[n] and y′′2 [n] is

y2[n] = y′′2 [n] + an−k1−1u2[k1] + · · ·+ u2[n− 1]

+ an−kW ′′′′1 + an−kE[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]. (5.19)

The mutual information of (5.18) is bounded as follows:

I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

− h(y2[k1 : k2 − 1]|W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

=
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

−
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

(A)
=

∑

k1≤i≤k2−1

h(y′′2 [i]|y2[k1 : i− 1],W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

−
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

(B)

≤
∑

k1≤i≤k2−1

h(y′′2 [i])−
∑

k1≤i≤k2−1

h(v2[i])

≤
∑

k1≤i≤k2−1

1

2
log(2πeE[y′′2 [i]2])−

∑

k1≤i≤k2−1

1

2
log(2πeσ2

v2) (5.20)

(A): Since y2[1 : k1 − 1] is a function of y′2[1 : k1 − 1], u2[k1], · · · , u2[i] are functions of y2[k1 : i− 1],

y′2[1 : k1 − 1]. Thus, all the terms in (5.19) except y′′2 [i] vanish by the conditioning.

(B): By causality, v2[i] is independent from all conditioning random variables.

First, let’s bound the variance of y′′2 [n]. By Lemma 4.1 of Chapter 4, we have

E[y′′2 [n]2] ≤ 2E[(an−kW ′′′1 + an−k1w[k1 − 1] + an−k1−1w[k1] + · · ·+ w[n− 1])2]

+ 2E[(an−k1−1u1[k1] + · · ·+ u1[n− 1])2] + σ2
v2

= 2(a2(n−k)Σ + a2(n−k1) + · · ·+ 1)

+ 2E[(an−k1−1u1[k1] + · · ·+ u1[n− 1])2] + σ2
v2.

Here, by putting a = a and b = a−1 to Lemma 4.10 of Chapter 4 we have

E[(an−k1−1u1[k1] + · · ·+ u1[n− 1])2]

≤ a2(n−k1−1) 1− a−(n−k1)

1− a−1
(E[u2

1[k1]] + a−1E[u2
1[k1 + 1]] + · · ·+ a−(n−k1−1)E[u2

1[n− 1]])

≤ a2(n−k1−1) 1− a−(n−k1)

1− a−1

1− a−(k−k1)

1− a−1
P̃1

= a2(n−k1−1) (1− a−(n−k1))(1− a−(k−k1))

(1− a−1)2
P̃1.



245

Thus, the variance of y′′2 [n] is bounded as:

E[y′′2 [n]2] ≤ 2a2(n−k)Σ + 2a2(n−k1) 1− a−2(n−k1+1)

1− a−2
+ 2a2(n−k1−1) (1− a−(n−k1))(1− a−(k−k1))

(1− a−1)2
P̃1 + σ2

v2.

Therefore, we have

∑

k1≤n≤k2−1

E[y′′2 [n]2]

≤
∑

k1≤n≤k2−1

2a2(n−k)Σ + 2a2(n−k1) 1− a−2(n−k1+1)

1− a−2
+ 2a2(n−k1−1) (1− a−(n−k1))(1− a−(k−k1))

(1− a−1)2
P̃1 + σ2

v2

≤ 2(a2(k1−k) + · · ·+ a2(k2−1−k))Σ +
∑

k1≤n≤k2−1

2a2(n−k1) 1− a−2(k2−k1)

1− a−2

+
∑

k1≤n≤k2−1

2a2(n−k1−1) (1− a−(k2−1−k1))(1− a−(k−k1))

(1− a−1)2
P̃1 + (k2 − k1)σ2

v2

≤ 2a2(k2−1−k) 1− a−2(k2−k1)

1− a−2
Σ + 2a2(k2−1−k1) 1− a−2(k2−k1)

1− a−2

1− a−2(k2−k1)

1− a−2

+ 2a2(k2−k1−2) 1− a−2(k2−k1)

1− a−2

(1− a−(k2−1−k1))(1− a−(k−k1))

(1− a−1)2
P̃1 + (k2 − k1)σ2

v2 (5.21)

Therefore, by (5.20) and (5.21) we conclude

I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′, y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≤
∑

k1≤n≤k2−1

1

2
log(

E[y′′2 [n]2]

σ2
v2

)

=
1

2
log(

∏

k1≤n≤k2−1

E[y′′2 [n]2]

σ2
v2

)

(A)

≤ k2 − k1

2
log(

1

k2 − k1

∑

k1≤n≤k2−1

E[y′′2 [n]2]

σ2
v2

)

≤ k2 − k1

2
log(1 +

1

(k2 − k1)σ2
v2

(2a2(k2−1−k) 1− a−2(k2−k1)

1− a−2
Σ + 2a2(k2−1−k1) 1− a−2(k2−k1)

1− a−2

1− a−2(k2−k1)

1− a−2

+ 2a2(k2−k1−2) 1− a−2(k2−k1)

1− a−2

(1− a−(k2−1−k1))(1− a−(k−k1))

(1− a−1)2
P̃1)) (5.22)

(A): Arithmetic-Geometric mean

Denote the R.H.S. of (5.22) as I ′(P̃1). By (5.18), we can conclude

1

2
log(2πeE[(X1 +X2)2] ≥ 1

2
log(2πe(Σ + a2(k−k1) 1− a−2(k2−k1)

1− a−2
))− I ′(P̃1)

which implies

E[(X1 +X2)2] ≥
Σ + a2(k−k1) 1−a−2(k2−k1)

1−a−2

22I′(P̃1)
. (5.23)
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• Final lower bound: Now, we can merge the inequalities to prove the lemma. The variance

of W3 is given as follows:

E[W 2
3 ] = a2(k−k2) + · · ·+ a2 = a2(k−k2) 1− a−2(k−k2)

1− a−2
. (5.24)

By setting a = a and b = a−1 in Lemma 4.10 of Chapter 4, the variance of U1 is bounded as follows:

E[U2
1 ] ≤ a2(k−k1−1) 1− a−(k−k1)

1− a−1
(E[u2

1[k1]] + a−1E[u2
1[k1 + 1]] + · · ·+ a−(k−k1−1)E[u2

1[k − 1]])

= a2(k−k1−1) (1− a−(k−k1))2

(1− a−1)2
P̃1. (5.25)

Likewise, the variance of U2 can be bounded as

E[U2
2 ] ≤ a2(k−k2−1) (1− a−(k−k2))2

(1− a−1)2
P̃2. (5.26)

Finally, by plugging (5.23), (5.24), (5.25), (5.26) into (5.12), we prove the lemma.

Corollary 5.4. Consider the decentralized LQG problem of Problem J. Define

Σ1 :=
(a2 − 1)σ2

v1 − 1 +
√

((a2 − 1)σ2
v1 − 1)2 + 4a2σ2

v1

2a2
(5.27)

Σ2 :=
(a2 − 1)σ2

v2 − 1 +
√

((a2 − 1)σ2
v2 − 1)2 + 4a2σ2

v2

2a2
. (5.28)

Let 1 < |a| ≤ 2.5. Then, for all q, r1, r2, σ0, σv1, σv2 > 0, the minimum cost (5.1) of Problem J is

lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2

where DL(P̃1, P̃2) satisfies the following conditions.

(a) If Σ1 ≥ 150, Σ2 ≥ 150, P̃1 ≤ (a2−1)2Σ1

40000 , P̃2 ≤ (a2−1)2Σ2

40000 then DL(P̃1, P̃2) =∞.

(b) If Σ1 ≥ 150, Σ2 ≥ 150, P̃1 ≤ (a2−1)2Σ1

40000 then DL(P̃1, P̃2) ≥ 0.002774Σ2 + 1.

(c) If P̃1 ≤ 1
20 (a2 − 1), P̃2 ≤ 1

20 (a2 − 1) then DL(P̃1, P̃2) =∞.

(d) If P̃1 ≤ 1
75 and P̃2 ≤ 1

75 then DL(P̃1, P̃2) ≥ 0.00389 1
max(P1,P2) + 1.

(e) If Σ2 ≥ 150, P̃1 ≤ 1
Σ2

then DL(P̃1, P̃2) ≥ 0.0006976Σ2 + 1.

(f) If Σ2 ≥ 150, 1
Σ2
≤ P̃1 ≤ 1

150 then DL(P̃1, P̃2) ≥ 0.0006976

P̃1
+ 1.

(g) If Σ2 ≥ 150, P̃1 ≤ 1
20 (a2 − 1), P̃2 ≤ (a2−1)2Σ2

40000 then DL(P̃1, P̃2) =∞.

(h) If Σ1 ≥ 150, P̃1 ≤ (a2−1)2Σ1

40000 , P̃2 ≤ 1
20 (a2 − 1) then DL(P̃1, P̃2) =∞.

(i) If Σ2 ≥ 150, P̃1 ≤ 1
20 (a2 − 1) then DL(P̃1, P̃2) ≥ 0.0002732Σ2 + 1.

(j) For all P̃1 and P̃2, DL(P̃1, P̃2) ≥ max(0.1035Σ1, 1).

Proof. See Appendix 10.2 for the proof.



247

In this corollary, Σ1 and Σ2 are the Kalman filtering performance of the first and second

controllers respectively.

Now, we have lower bounds on the average decentralized control cost of Problem J. Fur-

thermore, by inspecting the form of the lower bounds, the term DL(P̃1, P̃2) can be speculated as a

lower bound on the power-distortion tradeoff D(P1, P2) of Problem K.

Furthermore, Lemma 4.14 of Chapter 4 shows the average cost problem in Problem J and

the power-distortion tradeoff problem in Problem K are closely related, i.e. if we can characterize

the power-distortion tradeoff within a constant ratio, then we can characterize the average cost

within a constant ratio. Therefore, in the following discussion, we will focus on the power-distortion

tradeoff and justify that why it can be characterized within a constant. Throughout the discussion,

we will consider DL(P̃1, P̃2) as if it is a lower bound on D(P1, P2) and the rigorous justification will

be shown in Appendix sec:ageq1.

By comparing the achievable cost shown in Corollary 5.2, we will prove that they are within

a constant ratio. In other words, we will prove the power-distortion tradeoff (D(P1, P2), P1, P2) is es-

sentially the better performance between two single controllers, i.e. (min(Dσ1
(P1), Dσ2

(P2)), P1, P2).

To justify this, we will divide the cases. As discussed in Section 5.3, the centralized con-

troller’s performance behaves qualitatively differently depending on max(Σ1, 1), max(Σ2, 1), 1
a2−1 .

Therefore, we will divide into three cases4 depending on these values. Then, we will further divide

the cases by P1 and P2.

When max(Σ1, 1) ≤ max(Σ2, 1) ≤ Θ( 1
a2−1 )

We will again divide the cases based on P1, P2.

•When P1 ≤ Θ(a2−1) and P2 ≤ Θ(a2−1). As we can see from Figure 5.4a, each controller

does not have enough power to stabilize the system. The statement (c) of Corollary 5.4 reveals that

the system is unstable even in decentralized control problems.

• When P1 ≤ Θ(a2 − 1) and Θ(a2 − 1) ≤ P2 ≤ Θ( 1
max(Σ2,1) ). In this case, the control

performance is determined by the second controller. From Figure 5.4a we can see that D(P1, P2) =

O( 1
P2

) is achievable. The statement (d) of Corollary 5.4 tells it is tight up to a constant ratio.

• When P1 ≤ Θ(a2 − 1) and Θ( 1
max(Σ2,1) ) ≤ P2. Like above the second controller dom-

inates the performance, and Figure 5.4a shows D(P1, P2) = O(max(Σ2, 1)). The statement (i) of

Corollary 5.4 shows its tightness.

• When Θ(a2 − 1) ≤ P1 ≤ Θ( 1
max(Σ2,1) ) and P2 ≤ Θ( 1

max(Σ2,1) ). In this case, the control

performance is determined by the controller with larger power, and Figure 5.4a shows D(P1, P2) =

O( 1
max(P1,P2) ) is achievable. The statement (d) of Corollary 5.4 gives a matching lower bound.

• When Θ(a2 − 1) ≤ P1 ≤ Θ( 1
max(Σ2,1) ) and Θ( 1

max(Σ2,1) ) ≤ P2. In this case, the second

controller dominates the performance, and Figure 5.4a shows D(P1, P2) = O(Σ2, 1) is achievable.

4Since σv1 ≤ σv2, Σ1 is always smaller than Σ2.



248

The statement (e) of Corollary 5.4 gives a matching lower bound.

• When Θ( 1
max(Σ2,1) ) ≤ P1 ≤ Θ( 1

max(Σ1,1) ). In this case, the first controller dominates

the performance, and Figure 5.4a shows D(P1, P2) = O( 1
P1

) is achievable. The statement (f) of

Corollary 5.4 gives a matching lower bound.

• When Θ( 1
max(Σ1,1) ) ≤ P1. In this case, the first controller dominates the performance,

and Figure 5.4a shows D(P1, P2) = O(max(Σ1, 1)) is achievable. The statement (j) of Corollary 5.4

gives a matching lower bound.

When max(Σ1, 1) ≤ Θ( 1
a2−1 ) ≤ max(Σ2, 1)

We will further divide the cases based on P1, P2.

•When P1 ≤ Θ(a2−1) and P2 ≤ Θ((a2−1)2 max(Σ2, 1)). As we can see from Figure 5.4a,

each controller does not have enough power to stabilize the system by itself. The statement (g) of

Corollary 5.4 shows that the system is indeed necessarily unstable for decentralized control problems.

•When P1 ≤ Θ(a2−1) and Θ((a2−1)2 max(Σ2, 1)) ≤ P2. In this case, the second controller

dominates the performance, and Figure 5.4b shows D(P1, P2) = O(max(Σ2, 1)). The statement (i)

of Corollary 5.4 give a matching lower bound up to a constant ratio.

• When Θ(a2− 1) ≤ P1 ≤ Θ( 1
max(Σ2,1) ). Since we assume Θ( 1

a2−1 ) ≤ max(Σ2, 1), this case

never happens.

• When Θ( 1
max(Σ2,1) ) ≤ P1 ≤ Θ( 1

max(Σ1,1) ). In this case, the first controller dominates

the performance, and Figure 5.4a shows D(P1, P2) = O( 1
P1

) is achievable. The statement (f) of

Corollary 5.4 gives a matching lower bound.

• When Θ( 1
max(Σ1,1) ) ≤ P1. The first controller dominates the performance, but as we can

see in Figure 5.4a its performance is saturated by Kalman filtering and D(P1, P2) = O(max(Σ1, 1)).

The statement (j) of Corollary 5.4 gives a matching lower bound.

When Θ( 1
a2−1 ) ≤ max(Σ1, 1) ≤ max(Σ2, 1)

We will divide the cases based on P1, P2.

• When P1 ≤ Θ((a2 − 1)2 max(Σ1, 1)) and P2 ≤ Θ((a2 − 1)2 max(Σ1, 1)). In this case,

as shown in Figure 5.4b each controller cannot stabilize the system by itself. The statement (a) of

Corollary 5.4 shows that the decentralized system is indeed ncessarily unstable.

• When P1 ≤ Θ((a2 − 1)2 max(Σ1, 1)) and Θ((a2 − 1)2 max(Σ1, 1)) ≤ P2. In this case, the

second controller dominates the performance, and Figure 5.4b shows D(P1, P2) ≤ O( 1
max(Σ2,1) ) is

achievable. The statement (b) of Corollary 5.4 gives a matching lower bound.

• When Θ((a2 − 1)2 max(Σ1, 1)) ≤ P1. In this case, the first controller dominates the

performance, and Figure 5.4b shows D(P1, P2) ≤ O(max(Σ1, 1)) is achievable. The statement (j) of

Corollary 5.4 gives a matching lower bound.

Formally, the average cost can be characterized within a constant ratio as follows.
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Proposition 5.1. Consider the decentralized LQG control of Problem J. There exists c ≤ 2 × 106

such that for all 1 < |a| ≤ 2.5, q, r1, r2, σv1 and σv2,

inf
u1,u2∈Llin,kal

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c.

Proof. See Appendix 10.2. This basically follows from the cases above.

5.4.2 When |a| = 1

In this case, we can prove the following lemmas which parallel Lemma 5.3 and Corollary 5.4

from the case when 1 < |a| ≤ 2.5.

Lemma 5.4. We use the definition of SL shown in Lemma 5.3, i.e. the set of (k1, k2, k) such that

k1, k2, k ∈ N and 1 ≤ k1 ≤ k2 ≤ k. We define DL,2(P̃1, P̃2, k1, k2, k) as follows:

DL,2(P̃1, P̃2, k1, k2, k) ≥ (

√
Σ + k2 − k1

22I′(P1)
+ k − k2 −

√
(k − k1)2P̃1 −

√
(k − k2)2P̃2)2

+ + 1

where

Σ =
k1 − 1

22I

I =
k1 − 1

2
log(1 +

k1 − 1

σ2
v1

) +
k1 − 1

2
log(1 +

k1 − 1

σ2
v2

)

I ′(P̃1) =
k2 − k1

2
log(1 +

1

σ2
v2

(2Σ + 2(k2 − k1) + 2(k2 − k1 − 1)(k − k1)P̃1)).

Here, when k1 − 1 = 0, I = 0 and when k2 − k1 = 0, I ′(P̃1) = 0.

Let |a| = 1. Then, for all q, r1, r2, σ0, σv1, σv2 ≥ 0, the minimum cost (5.1) of Problem J is

lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
(k1,k2,k)∈SL

min
P̃1,P̃2≥0

qDL,2(P̃1, P̃2; k1, k2, k) + r1P̃1 + r2P̃2.

Proof. See Appendix 10.3. This is similar to the proof of Lemma 5.3 except that the geometric

sequences αi and βi in the geometric slicing are replaced by arithmetic sequences.

Corollary 5.5. Consider the decentralized LQG problem of Problem J. Let |a| = 1. Then, for all

q, r1, r2 > 0, the minimum cost (5.1) of Problem J is lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2
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where DL(P̃1, P̃2) satisfies the following conditions.

(a) If σv2 ≥ 16 and P̃1 ≤ 1
4σv2

then DL(P̃1, P̃2) ≥ 0.09168σv2 + 1.

(b) If σv2 ≥ 16 and 1
4σv2

≤ P̃1 ≤ 1
64 then DL(P̃1, P̃2) ≥ 0.02417

P̃1
+ 1.

(c) If P̃1 ≤ 1
50 , P̃2 ≤ 1

50 then DL(P̃1, P̃2) ≥ 0.003772

max(P̃1,P̃2)
+ 1.

(d) For all P̃1, P̃2, DL(P̃1, P̃2) ≥ max(
√

2
2 σv1, 1).

Proof. See Appendix 10.3.

Like Section 5.4.1, we will intuitively argue why the power-distortion tradeoff can be char-

acterized within a constant ratio by considering DL(P̃1, P̃2) as if it is a lower bound on D(P1, P2).

Notice that by (5.2), when |a| = 1 the Kalman filtering performance of the controllers are

given as Σ1 =
−1+
√

1+4σ2
v

2 and Σ2 =
−1+
√

1+4σ2
v

2 respectively. Therefore, we can see Σ1 ≈ σ1 and

Σ2 ≈ σ1 and so we can think of σ1, σ2 shown in Corollary 5.5 as if they are Σ1, Σ2.

As we discussed in Section 5.3.1, when |a| = 1 there is only one case for the power-distortion

tradeoff. Thus, we will only divide the cases by P1 and P2.

• When P1 ≤ Θ( 1
max(Σ2,1) ) and P2 ≤ Θ( 1

max(Σ2,1) ). The controller with a larger power

dominates the performance, and Figure 5.2 shows D(P1, P2) = O( 1
max(P1,P2) ) is achievable. The

statement (c) of Corollary 5.5 gives a matching lower bound.

• When P1 ≤ Θ( 1
max(Σ2,1) ) and Θ( 1

max(Σ2,1) ) ≤ P2. In this case, the second controller

dominates the performance, but its performance saturates to the Kalman filtering performance.

Figure 5.2 shows D(P1, P2) = O(max(Σ2, 1)). The statement (a) of Corollary 5.5 gives a matching

lower bound.

• When Θ( 1
max(Σ2,1) ) ≤ P1 ≤ Θ( 1

max(Σ1,1) ). In this case, the first controller dominates the

performance, and Figure 5.2 shows D(P1, P2) = O( 1
P1

). The statement (b) of Corollary 5.5 gives a

matching lower bound.

• When P1 ≥ Θ( 1
max(Σ1,1) ). In this case, the first controller dominates the performance,

but its performance saturates to the Kalman filtering performance. Figure 5.2 shows D(P1, P2) =

O(max(Σ1, 1)) is achievable. The statement (d) of Corollary 5.5 gives a matching lower bound.

Formally, the constant-ratio result for the average cost LQG problem can be written as

follows.

Proposition 5.2. Consider the decentralized LQG control of Problem J. There exists c ≤ 540 such

that for all |a| = 1, q, r1, r2, σv1 and σv2,

inf
u1,u2∈Llin,kal

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c.

Proof. See Appendix 10.3.
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5.4.3 When 0.9 ≤ |a| < 1

Lemma 5.5. We use the definition of SL shown in Lemma 5.3, i.e. the set of (k1, k2, k) such that

k1, k2, k ∈ N and 1 ≤ k1 ≤ k2 ≤ k. We define DL,3(P̃1, P̃2, k1, k2, k) as follows:

DL,3(P̃1, P̃2) := (

√
Σ + a2(k−k2+1) 1−a2(k2−k1)

1−a2

22I′(P̃1)
+ a2

1− a2(k−k2)

1− a2

−

√
(
1− ak−k1

1− a
)2P̃1 −

√
(
1− ak−k2

1− a
)2P̃2)2

+ + 1

where

Σ =
a2(k−k1+1) 1−a2(k1−1)

1−a2

22I

I =
1

2
log(1 +

1

σ2
v1

1− a2(k1−1)

1− a2
)k1−1 +

1

2
log(1 +

1

σ2
v2

1− a2(k1−1)

1− a2
)k1−1

I ′(P̃1) =
1

2
log(1 +

1

(k2 − k1)σ2
v2

(2a2(k1−k) 1− a2(k2−k1)

1− a2
Σ + 2(k2 − k1)

1− a2(k2−1−k1+1)

1− a2

+ 2ak1−k 1− ak2−k1

1− a
(1− ak2−1−k1)(1− ak−k1)

(1− a)2
P̃1))k2−k1

Here, when k1 − 1 = 0, I = 0 and when k2 − k1 = 0, I ′(P̃1) = 0.

Let 0 ≤ |a| < 1. Then, for all q, r1, r2, σ0, σv1, σv2 ≥ 0, the minimum cost (5.1) of Problem J

is lower bounded as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ sup
(k1,k2,k)∈SL

min
P̃1,P̃2≥0

qDL,3(P̃1, P̃2; k1, k2, k) + r1P̃1 + r2P̃2.

Proof. See Appendix 10.4 for the proof. The proof parallels to Lemma (5.3) except that the base

for the geometric sequences αi and βi is a instead of a−1.

Corollary 5.6. Consider the decentralized LQG problem of Problem J. Define

Σ1 :=
(a2 − 1)σ2

v1 − 1 +
√

((a2 − 1)σ2
v1 − 1)2 + 4a2σ2

v1

2a2

Σ2 :=
(a2 − 1)σ2

v2 − 1 +
√

((a2 − 1)σ2
v2 − 1)2 + 4a2σ2

v2

2a2
.

Let 0.9 ≤ |a| < 1. Then, for all q, r1, r2 > 0, the minimum cost (5.1) of Problem J is lower bounded

as follows:

inf
u1,u2

lim sup
N→∞

1

N

∑

0≤n<N

qE[x2[n]] + r1E[u2
1[n]] + r2E[u2

2[n]]

≥ min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2
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where DL(P̃1, P̃2) satisfies the following conditions.

Then, we have a lower bound DL(P̃1, P̃2) on D(P1, P2) where DL(P̃1, P̃2) satisfies the fol-

lowings:

(a) If Σ2 ≥ 40, P̃1 ≤ 1
Σ2

then DL(P̃1, P̃2) ≥ 0.009131Σ2 + 1.

(b) If Σ2 ≥ 40, 1
Σ2
≤ P̃1 ≤ 1

40 then DL(P̃1, P̃2) ≥ 0.009131

P̃1
+ 1.

(c) If 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1
40 then DL(P1, P2) ≥ 0.001201

max(P̃1,P̃2)
+ 1.

(d) If max(P̃1, P̃2) ≤ 1−a2

20 then DL(P̃1, P̃2) ≥ 0.0869
1−a2 + 1.

(e) For all P̃1, P̃2, DL(P̃1, P̃2) ≥ max(0.2636Σ1, 1).

Proof. See Appendix 10.4 for the proof.

Like in Section 5.4.1, we will intuitively argue why the power-distortion tradeoff can be

characterized within a constant ratio by considering DL(P̃1, P̃2) as if it is a lower bound on D(P1, P2).

The characterization of the power-distortion tradeoff is equivalent to the characterization of the

average cost. Thus, we will intuitively argue how we can characterize the power-distortion tradeoff

within a constant ratio. For this, we will first divide the cases by Σ1,Σ2, then we will further divide

the cases by P1, P2.

When max(Σ1, 1) ≤ max(Σ2, 1) ≤ Θ( 1
1−a2 )

We will further divide the cases based on P̃1, P̃2.

•When P1 ≤ Θ(1−a2) and P2 ≤ Θ(1−a2). From Figure 5.6a we can see that D(P1, P2) =

1
1−a2 is achievable without any control input. The statement (d) of Corollary 5.6 gives a lower bound

tight up to a constant ratio.

• When P1 ≤ Θ(1 − a2) and Θ(1 − a2) ≤ P2 ≤ Θ( 1
max(Σ2,1) ). The second controller

dominates. Figure 5.6a shows D(P1, P2) = O( 1
P2

) is achievable in this case. The statement (c) of

Corollary 5.6 gives a lower bound tight up to a constant ratio.

• When P1 ≤ Θ(1 − a2) and Θ( 1
max(Σ2,1) ) ≤ P2. In this case, the second controller’s

performance saturates to Kalman filtering, and Figure 5.6a shows D(P1, P2) = O(max(Σ2, 1)) is

achievable. The statement (a) of Corollary 5.6 gives a lower bound tight up to a constant ratio.

•When Θ(1−a2) ≤ P1 ≤ Θ( 1
max(Σ2,1) ) and P2 ≤ Θ(1−a2). The first controller dominates.

Figure 5.6a shows D(P1, P2) = O( 1
P1

) is achievable in this case. The statement (c) of Corollary 5.6

gives a lower bound tight up to a constant ratio.

•When Θ(1−a2) ≤ P1 ≤ Θ( 1
max(Σ2,1) ) and Θ(1−a2) ≤ P2 ≤ Θ( 1

max(Σ2,1) ). The controller

with larger power dominates. Figure 5.6a shows D(P1, P2) = O( 1
max(P1,P2) ) is achievable with the

controller with lager power. The statement (c) of Corollary 5.6 gives a lower bound tight up to a

constant ratio.

• When Θ(1 − a2) ≤ P1 ≤ Θ( 1
max(Σ2,1) ) and Θ( 1

max(Σ2,1) ) ≤ P2. The second controller

dominates. Figure 5.6a shows D(P1, P2) = O(max(Σ2, 1)) is achievable. The statement (a) of

Corollary 5.6 gives a lower bound tight up to a constant ratio.
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• When Θ( 1
max(Σ2,1) ) ≤ P1 ≤ Θ( 1

max(Σ1,1) ). The first controller dominates. Figure 5.6a

shows D(P1, P2) = O( 1
P1

) is achievable. The statement (b) of Corollary 5.6 gives a lower bound

tight up to a constant ratio.

•When Θ( 1
max(Σ1,1) ) ≤ P1. The first controller dominates. Figure 5.6a shows D(P1, P2) =

O(max(Σ1, 1)) is achievable. The statement (e) of Corollary 5.6 gives a lower bound tight up to a

constant ratio.

When max(Σ1, 1) ≤ Θ( 1
1−a2 ) = max(Σ2, 1)

We will further divide the cases based on P1, P2.

• When P1 ≤ Θ(1− a2). From Figure 5.6a we can see that D(P1, P2) = 1
1−a2 is achievable

without any control input. The statement (b) of Corollary 5.6 gives a matching lower bound. More

precisely, since Θ( 1
1−a2 ) = max(Σ2, 1), for a large value of Σ2 we can put P1 = Θ(1 − a2) in the

statement (b). Then, the bound reduces to D(P1, P2) = Ω( 1
1−a2 ).

• When Θ(1 − a2) ≤ P1 ≤ Θ( 1
max(Σ1,1) ). In this case, the first controller dominates, and

Figure 5.6a shows D(P1, P2) = O( 1
P1

) is achievable. The statement (b) of Corollary 5.6 gives a

matching lower bound.

• When Θ( 1
max(Σ1,1) ) ≤ P1. In this case, the first controller dominates, and Figure 5.6a

shows D(P1, P2) = O(max(Σ1, 1)) is achievable. The statement (e) of Corollary 5.6 gives a matching

lower bound.

When Θ( 1
1−a2 ) = max(Σ1, 1) ≈ max(Σ2, 1)

In this case, the Kalman filtering noise Σ1 and Σ2 is already compatible with 1
1−a2 , the state

distortion attainable without any control inputs. Therefore, we cannot expect a significant control

gain, and the optimal state distortion is Θ( 1
1−a2 ). Since Θ( 1

1−a2 ) = max(Σ1, 1), the statement (e)

of Corollary 5.6 gives a matching lower bound.

Formally, the average LQG cost for 0.9 ≤ |a| < 1 can be characterized as follows.

Proposition 5.3. Consider the decentralized LQG control of Problem J. There exists c ≤ 1700

such that for all 0.9 ≥ |a| < 1, q, r1, r2, σv1 and σv2,

inf
u1,u2∈Llin,kal

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c.

Proof. See Appendix 10.4 for the proof.
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5.4.4 When |a| ≤ 0.9

Proposition 5.4. Consider the decentralized LQG control of Problem J. There exists c ≤ 6 such

that for all |a| < 0.9, q, r1, r2, σv1 and σv2,

inf
u1,u2∈Llin,kal

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u
2
1[n] + r2u

2
2[n]]

inf
u1,u2

lim sup
N→∞

1
N

∑
0≤n<N

E[qx2[n] + r1u2
1[n] + r2u2

2[n]]
≤ c

Proof. By Lemma 4.14 of Chapter 4, it is enough to show that there exists c ∈ R such that

DU (cP1, cP2) ≤ c ·DL(P1, P2).

Upper bound: Putting k = 0 in Lemma 5.1 gives

(DU (P1), P1) ≤ (
1

1− a2
, 0) ≤ (

1

1− 0.92
, 0)

Lower bound: By Lemma 5.5,

DL(P1, P2) ≥ 1

Ratio: c is upper bounded by

c ≤ 1

1− 0.92
≤ 6

Therefore, the lemma is proved.

5.4.5 Proof of Theorem 5.1

Now, by combining the results of Proposition 5.1, 5.2, 5.3 we can prove the main theorem

of the chapter.

Proof of Theorem 5.4.5. The proof immediately follows from Proposition 5.1, 5.2, 5.3.
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Chapter 6

Conclusion

In this thesis, we studied modern control system problems through an informational lens.

Even though we considered explicit control systems with control objectives, what we really found

in the solutions was the nature of information flow. We applied information-theoretic ideas to

understand the problems, often found relations between control and communication theory, and

even discovered hints of a unified theory. Table 6.1 shows a list of ideas, results and techniques

shown in this thesis, and Figure 6.1 summaries the relationship and parallelism between the two

theories.

One of the earliest paper which showed an explicit relationship between communication and

control is due to Schalkwijk and Kailath. In [89], they found a surprising relationship between point-

to-point feedback communication systems and centralized feedback control systems. Recently, in [37]

we found another interesting relationship between dirty-paper coding (in information theory) [20]

and Witsenhausen’s counterexample (in control theory) [108]. We proposed a control strategy based

on the known solution for dirty-paper coding, and applied large deviation ideas [24] to prove its

approximate optimality.

In this thesis, we found much more extensive relationships between the two theories. In

Chapter 2, we considered intermittent Kalman filtering, which previously had been considered only

from a control theoretic point of view. However, we found that the essence of the problem is in fact

communication and information flows. The plant in intermittent Kalman filtering can be thought

of as the source of information flows, and the observability gramian generated from the successfully

received observations can be thought of as the channel. Furthermore, we showed that the different

subspaces of the plant do not interact with each other as long as they belong to different eigenvalue

cycles. To justify this, we adapt successive decoding ideas [21] from information theory. Then, the

amount of source information and the channel capacity were measured by rank, i.e. the dimension

of subspaces belong to the same eigenvalue cycle is the amount of source information, and the rank

of the observability gramian generated from the successfully received observations is the channel
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• Intermittent Kalman Filtering (Chapter 2)
Result (1) Characterization of critical erasure probability (Theorem 2.7 of Page 39)
Idea - Eigenvalue Cycle to capture periodicity of system (Section 2.5.1 of Page 30)
SP Technique - Polyphase decomposition idea to reduce periodic systems

to aperiodic systems (Claim 7.7 of Page 328)
IT Technique - Successive decoding idea to justify one state by

one state decoding (Section 2.5.2 of Page 33)
IT Technique - Large deviation idea to analyze the p.m.f. tails (Appendix 7.1 of Page 260)
Ergodic Theory - Weyl’s criterion to approximate deterministic sequences

by random variables (Appendix 7.6 of Page 300)
Strategy Result (2) Nonuniform sampling improves performance (Theorem 2.8)
IT Technique - Random jittering idea for analysis (Section 2.7 of Page 43)
Technique - Application of Dini’s theorem to justify uniform convergence

(Appendix 7.3 of Page 272)

• Network coding meets Decentralized control (Chapter 3)
Result (1) Algebraic mincut-maxflow theorem (Theorem 3.2 of Page 85)
Idea - Network Linearization idea to simplify network topology

to single-hop relay networks (Section 3.2.2 of Page 86)
Interpretation Result (2) Externalization of Implicit Communication (Section 3.5 of Page 110)
Idea - Jordan form transition to reveal source and destination

of information flow (Section 3.5.2 of Page 113)
Idea & Technique - Interpretation of transfer function as network topology

(Theorem 3.8 of Page 121)
New Problem (3) Control over LTI networks (Section 3.6 of Page 3.6)
Result - Relationship between network capacity and stabilizability of system

(Theorem 3.9 of Page 124)
Result - Use of multicast network coding schemes to increase

reliability control systems (Theorem 3.10 of Page 130)
Result - Use of broadcast network coding schemes to reduce

interference between control systems (Theorem 3.12 of Page 135)

• Scalar LQG problem with two controllers - Fast Dynamics (Chapter 4)
Strategy Result (1) Achievable Cost (Lemma 4.7 of Page 174)
IT Technique - Linear determinist model interpretation (Section 4.3 of Page 148)
Idea - Nonlinear s-stage signaling strategy (Definition 4.2 of Page 145)
IT Technique - Approximate lattice theory to analyze the performance

(Section 4.5.2 of Page 170)
Result (2) Lower bound on Cost (Lemma 4.12 of Page 198)
Technique - Geometric slicing to reduce infinite-horizon problems to

finite-horizon problems (Lemma 4.8 of Page 180)
Technique - Three stage division of finite-horizon problems

(Section 4.6.2 of Page 185)
Technique - Bounding the first interval as information limited interval

(Lemma 4.9 of Page 187)
Result & Technique - Interpretation of the second interval as MIMO Witsenhausen’s

counterexample (Section 4.6.3 of Page 190)
Technique - Use of large deviation ideas to bound rare events

(Proof of Lemma 4.12 of Page 198)
Technique - Bounding the third interval as power limited interval

(Lemma 4.10 of Page 188)
Result (3) Constant Ratio Optimality Result (Theorem 4.1 of Page 146)
Technique - Relation between average cost problem and power-distortion tradeoff

(Lemma 4.14 of Page 212)

• Scalar LQG problem with two controllers - Slow Dynamics (Chapter 5)
Result (1) Achievable Cost (Lemma 5.3 of Page 227)
Interpretation & Result - Approximation of centralized control cost

(Corollary 5.1, 5.2, 5.3 of Page 230, 233, 235)
Result (2) Lower bound on Cost (Section 5.4 of Page 236)
Technique - Geometric slicing with different sequences (Lemma 5.2 of Page 238)

Table 6.1: Highlighted Ideas, Results and Techniques developed in this thesis
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capacity. This insight parallels the fact that in MIMO AWGN(additive white Gaussian noise)

communication channels the ranks of channel matrices are known as the d.o.f.(degree-of-freedom)

capacity of the channel [99].

Therefore, the intermittent Kalman filtering performance is deeply related with the rank

of the observability gramian generated from the randomly received observations. We saw that the

probability that such randomly generated observability gramians have too small a rank to convey

enough information about the plant dominates the performance of intermittent Kalman filtering.

We adapted large-deviation ideas [24] from information theory to analyze such a probability. Fur-

thermore, nonuniform sampling can be used as a simple way to increase the rank of the observability

gramian, so it can dramatically improve the intermittent Kalman filtering performance.

In Chapter 3, we took a unified view of distributed linear control systems and linear net-

work coding. By restricting the system, controllers, transmitter, relays and receiver designs to be

linear time-invariant, we considered both systems as linear time-invariant systems. Based on this

interpretation, we developed an algorithm which extracts implicit information flows that must hap-

pen when the controllers stabilize the plant. More precisely, we modeled the implicit information

flows by relay networks. The source and destination of the relay network are the states(subspaces)

of the plant corresponding to the same eigenvalue, the relays are the controllers, and the remaining

states of the plant correspond to the channels. Like in the intermittent Kalman filtering interpreta-

tion, information is measured by a rank. The dimension of subspaces corresponds to the minimum

amount of information that must flow to stabilize them. Therefore, a subspaces can be stabilized

if and only if the mincut of the relay network is larger or equal to this minimum required amount

of information. Here, the mincut of the relay network is also measured by a rank, precisely the

rank of the channel matrix for the cut. Thus, we could understand the stabilizability condition for

distributed control systems through the lens of a mincut-maxflow theorem for relay communication

networks. We also saw that this insight can lead to new designs for distributed control with explicit

LTI communication networks.

Furthermore, the connection between distributed control and network coding could lead to

new results for network coding. In Chapter 3.2.2, by applying state-space representation ideas to

network coding, we found an algorithm that converts arbitrary topology communication networks

to equivalent single-hop relay networks, which we called network linearization. This standardization

of network topology turned out to be extremely useful when the complexity of network topology is

the crux of the problem. We asked the question whether the mincuts of LTI networks are achievable

by static LTI relay schemes. We first showed the answer is yes for standardized single-hop relay

networks. Then, we generalized the result to arbitrary topology networks by network linearization.

Finally, in Chapter 4 and 5, we considered the optimal LQG control problem with a scalar

plant and two controllers, and leveraged the understanding of control information flows to approxi-

mately optimal controller design. One of the key ideas in finding an approximate optimal strategy

was an appropriate division of cases. Just as wireless communication theory [99] divides cases ac-
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cording to SNR (signal-to-noise ratio), we divided based on the eigenvalue of the system. When the

eigenvalue of the system is large, we called it the fast-dynamics case. When the eigenvalue of the

system is small, we called it the slow-dynamics case.

The main insight to understand fast-dynamics cases was a linear view of nonlinearity. We

saw that in the fast-dynamics case, nonlinear controllers can infinitely outperform linear controllers.

To understand nonlinear controllers and resulting nonlinear system’s behavior, we considered each

bit-level of the state as different linear spaces. In the resulting linear deterministic model [6],

information still can be measured by a rank. In the proposed approximately optimal nonlinear

strategy, the first controller “communicates” to the second controller by reducing the rank of the

binary representation of the state. In other words, by reducing the rank of the binary representation,

the first controller reduces the amount of information in the state so that the second controller can

have better estimates about the state. Since we are focusing on the rank of linear spaces, this control

strategy parallels with high-SNR wireless communication schemes which exploit d.o.f. gain [99].

For slow-dynamics, we saw that the opposite is true. The SNR of implicit communication

between two controllers is bounded by the eigenvalue. Therefore, there is no huge incentive for

implicit communication, and single controller linear strategy (Kalman filtering) turns out to be

approximately optimal. The Kalman filtering gain can be thought of as a kind of power gain which

turned out to be crucial for low-SNR case [99] in wireless communication.

Furthermore, to prove approximate optimality of the proposed strategy, we used informa-

tion theory and found new fundamental limits on control performance. A key tool was the geometric

slicing idea, which gives different ways of cutting infinite-horizon problems into finite-horizon ones,

and parallels with cutset bounds in information theory.

Control and communication theory have been developed separately for decades. However,

as we saw in this thesis, there exist extensive parallelism and relationship between two theories.

Furthermore, the emerging modern systems have both control and communication systems as sub-

systems. A mathematical theory for modern cyber-physical systems should include control and

communication theories. Figure 6.1 summaries the relationships between control and communication

theories, and also indicates the directions to build a unified theory for modern systems. Lots of ideas

and problems in both theories still remain unconnected, and these connections have to be made to

build modern systems.

As we control power grids or transportation systems over communication networks, the

security issue becomes a crucial component. The security concept of communication theory has

to be connected to the safety concept of control theory. As modern systems scale, we also have

to understand overall behavior of whole system as the number of subsystems grows. Since control

systems keep evolving over time, the delay issue of communication is becoming more crucial and has

to be theoretically understood.

All of these theoretic understanding and insights into modern systems have to based on the

understanding of information flows for control. This thesis shows the possibility of theoretic study
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Control Theory 
• Centralized LQG problem 

– Linear Controller 
– Dynamic Programming 

• Witsenhausen’s Counterexample 
– Implicit Communication 

• Intermittent Kalman Filtering 
– Eigenvalue Cycle 

• Stabilizability of LTI distributed 
control 
– Fixed mode 

• Inifinite Horizon Problem 
– Fast-Dynamics 
– Slow-Dynamics 
– Weighted Cutset (Geometric Slicing) 

for Dynamic Program 
– Delay of Implicit Communication 

 
 
 

   
 
 
 

 
 
 

Communication Theory 
• Point-to-Point with Feedback 
• Dirty Paper Coding 
• Multiple Access Channel 

– Successive Decoding 
– Computation over MAC 

• Broadcast Channel 
– Superposition Coding 

• Interference Channel 
– Approximately Optimality 
– Deterministic Model 
– Genie idea 
– Interference Alignment 
– Conferencing 

• Relay Network 
– Compress-and-Forward 
– Decode-and-Forward 
– Amplify-and-Forward 

• Network Coding 
• Security/Secrecy 
• Large Deviation 
• General Network 

– Cutset bound 
– Scaling law 

? 
Figure 6.1: Parallelism and Relationship between Communication and Control Theory

of control information flows. Even thought control information flows have their own unique features,

they still bears lots of semblance to wireless information flows. This suggests that we can exploit

the current understanding of wireless information flows to study control information flows. At the

end of study, we may be able to reach a unified theory for control and communication from a lens

of information.
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Chapter 7

Appendix for Chapter 2

7.1 Lemmas for Tails of Probability Mass Functions

In this section, we will prove some properties of the tails of probability mass functions

(p.m.f.). By the tail, we mean how fast the probability decreases geometrically as we consider rarer

and rarer events.

First, we define the essential supremum, ess sup.

Definition 7.1. For a given random variable X, ess supX is given as follows.

ess supX = inf{x ∈ R : P(X > x) = 0}.

The following lemma shows that even if we increase a random variable sub-linearly, its

p.m.f. tail remains the same.

Lemma 7.1. Consider σ-field F and a nonnegative discrete random variable k whose probability

mass function satisfies

exp(lim sup
n→∞

ess sup
1

n
logP{k = n|F}) ≤ p

Then, given a function f(x) such that f(x) ≤ a(log(x + 1) + 1) for some a ∈ R+, the probability

mass function of a random variable k + f(k) satisfies the following:

exp(lim sup
n→∞

ess sup
1

n
logP{k + f(k) = n|F}) ≤ p.

Proof. Since ess supP{k = n|F} is bounded by 1, for all δ > 0 such that p + δ < 1 we can

find a positive c such that ess supP{k = n|F} ≤ c (p+ δ)
n

(1− (p+ δ)). Moreover, since f(x) .

log(x+ 1) + 1, for all δ′ > 0 we can find a positive c′ such that f(x) ≤ δ′x+ c′ for all x ∈ R+. Then,
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we have

ess supP{k + f(k) = n|F} ≤ ess supP{k + f(k) ≥ n|F} ≤ ess supP{k + δ′k + c′ ≥ n|F}

≤ ess supP{k ≥ bn− c
′

1 + δ′
c|F} ≤

∞∑

i=bn−c′
1+δ′ c

ess supP{k = i|F}

≤
∞∑

i=bn−c′
1+δ′ c

c(p+ δ)i(1− (p+ δ))

= c(1− (p+ δ))
(p+ δ)b

n−c′
1+δ′ c

1− (p+ δ)
= c(p+ δ)b

n−c′
1+δ′ c

≤ c(p+ δ)
n−c′
1+δ′ −1 = c(p+ δ)−

c′
1+δ′−1(p+ δ)

n
1+δ′ .

Therefore,

exp

(
lim sup
n→∞

ess sup
1

n
logP{k + f(k) = n|F}

)
≤ (p+ δ)

1
1+δ′ .

Since we can choose δ and δ′ arbitrarily close to 0,

exp

(
lim sup
n→∞

ess sup
1

n
logP{k + f(k) = n|F}

)
≤ p,

which finishes the proof.

The following (well-known) lemma tells us that if we add independent random variables,

the p.m.f. tail of the sum is equal to the heaviest one.

Lemma 7.2. Consider an increasing σ-field sequence F0,F1, · · · ,Fn−1 and a sequence of discrete

random variables k1, k2, · · · , kn satisfying two properties:

(i) ki ∈ Fi for i ∈ {1, · · · , n− 1}
(ii) exp(lim supk→∞ ess sup 1

k logP(ki = k|Fi−1)) ≤ pi.
Let S =

∑n
i=1 ki. Then, exp(lim sups→∞ ess sup 1

s logP(S = s|F0)) ≤ max1≤i≤n{pi}.

Proof. Given δ > 0, let k′i be independent geometric random variables with probability 1− (pi + δ).

Denote S′ :=
∑n
i=1 k

′
i. The moment generating function of S′ is

E[Z−S
′
] =

n∏

i=1

(1− (pi + δ))

1− (pi + δ)Z−1
.

By [75], the last term can be expanded into a sum of rational functions whose denominators are

1− (pi + δ)Z−1. Therefore, by using an inverse Z-transform shown in [75], we can prove that

exp(lim sup
s→∞

1

s
logP(S′ = s)) ≤ max

1≤i≤n
{pi + δ}.

On the other hand, since ess supP(ki = k|Fi−1) is bounded by 1, for all δ > 0 we can find positive

ci such that

ess supP(ki = k|Fi−1) ≤ ci (p1 + δ)
k

(1− (p1 + δ)) = ciP(k′i = k)
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for all k ∈ Z+. Then

ess supP(S = s|F0)

= ess sup
∑

s=s1+···+sn

P(k1 = s1|F0)P(k2 = s2|F0, k1 = s1) · · ·P(kn = sn|F0, k1 = s1, · · · , kn−1 = sn−1)

≤
∑

s=s1+···+sn

ess supP(k1 = s1|F0) ess supP(k2 = s2|F1) · · · ess supP(kn = sn|Fn−1)

≤
∏

1≤i≤n

ci ·
∑

s=s1+···+sn

P(k′1 = s1)P(k′2 = s2) · · ·P(k′n = sn)

≤
∏

1≤i≤n

ci · P(S′ = s).

Thus, exp(lim sups→∞ ess sup 1
s logP(S = s|F0)) ≤ max1≤i≤n{pi + δ}.

Since this holds for all δ > 0, exp(lim sups→∞ ess sup 1
s logP(S = s|F0)) ≤ max1≤i≤n{pi}.

The next lemma tells us how the large deviation principle [24] can be applied to stopping

times, i.e. it formally states the “test channel” and the “distance idea” shown in the power property

of Section 2.5.1.

Lemma 7.3. For given n, consider discrete random variables k1, k2, · · · , kn and σ-algebra F . The

probability mass functions of k1, k2 · · · , kn satisfy

exp(lim sup
k→∞

ess sup
1

k
logP{ki = k|F}) ≤ pi

and k1, k2, · · · , kn are conditionally independent given F .

For given sets T1, T2, · · · , Tm ⊆ {1, 2, · · · , n}, define stopping times M1, · · · ,Mm as

Mi := max
t∈Ti

kt

and a stopping time S as

S := min
1≤i≤m

Mi.

Then,

exp

(
lim sup
k→∞

ess sup
1

k
logP{S = k|F}

)
≤ max
T={t1,t2,··· ,t|T |}⊆{1,2,··· ,n} s.t. T∩Ti 6=∅ for all i

pt1pt2 · · · pt|T | .

Proof. Since ess supP{ki = k|F} is bounded by 1, for all δ > 0 we can find c > 1 such that

ess supP{ki = k|F} ≤ c(pi + δ)k (1− (pi + δ)) .

Thus, we have

ess supP{ki ≥ k|F} ≤ c(pi + δ)k.
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Therefore,

ess supP{S = k|F} ≤ ess supP{S ≥ k|F}

= ess supP{M1 ≥ k, · · · ,Mm ≥ k|F}

= ess supP{There exists T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n} s.t.

T ∩ Ti 6= ∅ for all i and kt1 ≥ k, · · · , kt|T | ≥ k|F}

≤
∑

T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n}
s.t. T ∩ Ti 6= ∅ for all i

ess supP{kt1 ≥ k, kt2 ≥ k, · · · , kt|T | ≥ k|F}

≤ |{T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n} s.t. T ∩ Ti 6= ∅ for all i}| (7.1)

· max
T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n}

s.t. T ∩ Ti 6= ∅ for all i

ess supP{kt1 ≥ k|F} · · · ess supP{kt|T | ≥ k|F}

≤ cn|{T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n} s.t. T ∩ Ti 6= ∅ for all i}|

· max
T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n}

s.t. T ∩ Ti 6= ∅ for all i

(pt1 + δ)k−1(pt2 + δ)k−1 · · · (pt|T | + δ)k−1.

(7.1) follows from union bound. Since the above inequality holds for all δ > 0,

exp

(
lim sup
k→∞

ess sup
1

k
logP{S = k|F}

)
≤ max
T={t1,t2,··· ,t|T |}⊆{1,2,··· ,n} s.t. T∩Ti 6=∅ for all i

pt1pt2 · · · pt|T | .

7.2 Lemmas about the Observability Gramian of Continuous-

Time Systems

In linear system theory [17], the observability Gramian plays a crucial role in estimating

states from observations. Therefore, we also study the behavior of the observability Gramian,

especially the norm of the inverse of the observability Gramian.

First, we start with a corollary of the classic rearrangement inequality [43].

Lemma 7.4 (Rearrangement Inequality). For λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, 0 ≤ k1 ≤ k2 ≤ · · · ≤ km,

and any permutation map σ, the following inequality is true:

e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)km ≤ e−λ1k1e−λ2k2 · · · e−λmkm .

Moreover, the ratio of these two can also be upper bounded as

e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)km

e−λ1k1e−λ2k2 · · · e−λmkm
≤ e−(λσ(m)−λm)(km−kσ−1(m)).
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Proof. The first inequality directly follows from the classic rearrangement inequality. The second

inequality is proved as follows: When σ−1(m) = m, the inequality is trivial. When σ−1(m) 6= m,

we have

e−λσ(1)k1e−λσ(2)k2 · · · e−λmkσ−1(m) · · · e−λσ(m−1)km−1 e−λσ(m)km

=
(
e−λσ(1)k1e−λσ(2)k2 · · · e−λmkσ−1(m) · · · e−λσ(m−1)km−1

)

︸ ︷︷ ︸
(a)

·e−λσ(m)km

=
(
e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)kσ−1(m) · · · e−λσ(m−1)km−1

)

︸ ︷︷ ︸
(b)

·

(
e−λmkσ−1(m)

e−λσ(m)kσ−1(m)

)
· e−λσ(m)km .(7.2)

We can notice that the exponent of (a) has {λ1, λ2, · · · , λm} \ {λσ(m)} and {k1, k2, · · · , km} \ {km}
terms in it, and the exponent of (b) has

(
{λ1, λ2, · · · , λm} \ {λσ(m)}

)
∪ {λσ(m)} \ {λm}

= {λ1, λ2, · · · , λm} \ {λm}

and {k1, k2, · · · , km} \ {km} terms in it. Thus, by the first inequality of the lemma,

(b) ≤ e−λ1k1 · · · e−λm−1km−1 .

Together with (7.2), we have

e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)km

e−λ1k1e−λ2k2 · · · e−λmkm

≤

(
e−λ1k1 · · · e−λm−1km−1

)
·
(

e
−λmkσ−1(m)

e
−λσ(m)kσ−1(m)

)
· e−λσ(m)km

e−λ1k1e−λ2k2 · · · e−λmkm

=
1

e−λmkm
·

(
e−λmkσ−1(m)

e−λσ(m)kσ−1(m)

)
· e−λσ(m)km = e(λm−λσ(m))(km−kσ−1(m))

which finishes the proof.

Even though Theorem 2.8 is written for a general matrix C, we will first start from the

simpler case of a row vector C. In fact, for the proof of the general case, we will reduce the system

with a matrix C to a system with a row vector C.

First, we introduce the definitions corresponding to (2.28), (2.29) for a row vector C. Let
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Ac be a m×m Jordan form matrix, and C be a 1×m row vector C which are written as follows:

Ac = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ} (7.3)

C =
[
C1,1 C1,2 · · · C1,ν1 · · · Cµ,1 · · · Cµ,νµ

]
(7.4)

where Ai,j is a Jordan block with eigenvalue λi,j +
√
−1ωi,j and size mi,j

mi,1 ≤ mi,2 ≤ · · · ≤ mi,νi for all i = 1, · · · , µ

mi =
∑

1≤j≤νi

mi,j for all i = 1, · · · , µ

λi,1 = λi,2 = · · · = λi,νi for all i = 1, · · · , µ

λ1,1 > λ2,1 > · · · > λµ,1 ≥ 0

ωi,1, · · · , ωi,νi are pairwise distinct

Ci,j is a 1×mi,j complex matrix and its first element is non-zero

λi +
√
−1ωi is (i, i) element of Ac.

Here, we can notice that the real parts of the eigenvalues of Ai,1, · · · ,Ai,νi are the same, but the

eigenvalues of all Jordan blocks Ai,j are distinct. Therefore, by Theorem 2.6, the condition that the

first elements of Ci,j are non-zero corresponds to the observability of (Ac,C).

The following lemma upper bounds the determinant of the observability Gramain of the

sampled continuous system.

Lemma 7.5. Let Ac and C be given as (7.3) and (7.4). For 0 ≤ k1 ≤ k2 ≤ · · · ≤ km, there exists

a > 0, p ∈ Z+ such that

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

≤ a(kpm + 1)
∏

1≤i≤m

e−kiλi

where λi is the real part of (i, i) component of Ac.
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Proof. First consider a diagonal matrix, i.e. Ac =




λ1 + jω1 0 · · · 0

0 λ2 + jω2 · · · 0
...

...
. . .

...

0 0 · · · λm + jωm




. Then,

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
∑

σ∈Sm

sgn(σ)

m∏

i=1

cie
−kσ(i)(λi+jωi)

∣∣∣∣∣

≤ m! max
σ∈Sm

∣∣∣∣∣
m∏

i=1

cie
−kσ(i)(λi+jωi)

∣∣∣∣∣

= m!

∣∣∣∣∣
m∏

i=1

ci

∣∣∣∣∣ max
σ∈Sm

∣∣∣∣∣
m∏

i=1

e−kσ(i)λi

∣∣∣∣∣

= m!

∣∣∣∣∣
m∏

i=1

ci

∣∣∣∣∣
m∏

i=1

e−kiλi(∵ Lemma 7.4)

.
m∏

i=1

e−kiλi (7.5)

where ci are ith component of C, Sm is the set of all permutations on {1, · · · ,m}, and sgn(σ) is +1

if σ is an even permutation −1 otherwise. Therefore, the lemma is true for a diagonal Ac.

To extend to a general Jordan matrix Ac, consider a matrix A′c which is obtained by

erasing the off-diagonal elements of Ac. Then, we can easily see the ratio between the elements of


Ce−k1Ac

...

Ce−kmAc


 and the corresponding elements of




Ce−k1A′c

...

Ce−kmA′c


 is a polynomial whose degree is less

than m. Therefore, by repeating the steps of (7.5) we can easily obtain

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

. (1 + km
2

m )

m∏

i=1

e−kiλi ,

which finishes the proof.

The next lemma upper bounds the norm of the inverse of the observability Gramian, given

the lower bound on the observability Gramian determinant. Therefore, we can reduce the matrix

inverse problem to the matrix determinant problem.
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Lemma 7.6. Consider Ac and C given as (7.3) and (7.4). Let λi be the real part of (i, i) element

of Ac. Then, there exists a positive polynomial p(k) such that for all ε > 0 and 0 ≤ k1 ≤ · · · ≤ km,

if
∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤i≤m

e−kiλi

then
∣∣∣∣∣∣∣∣∣∣∣∣




Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc




−1
∣∣∣∣∣∣∣∣∣∣∣∣
max

≤ p(km)

ε
eλ1km .

Proof. Let Oi,j be the matrix obtained by removing the ith row and jth column of




Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc




.

Let Ac(j) be the (m− 1)× (m− 1) matrix that we can obtain by removing the jth row and column

of Ac, and C(j) be the row vector that we can obtain by removing the jth element of C.

First, let’s consider the case when Ac is a diagonal matrix. In this case, using properties

of diagonal matrices we can easily check that Oi,j =




C(j)e−k1Ac(j)

...

C(j)e−ki−1Ac(j)

C(j)e−ki+1Ac(j)

...

C(j)e−kmAc(j)




.

In other words, Oi,j are also the observability Gramian of (Ac(j),C(j)). Let Ci,j be the

(i, j)th cofactor of




Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc




. Since Ci,j is the determinant of Oi,j, we can apply Lemma 7.5 to

conclude that there exists a positive polynomial pi,j such that

|Ci,j | ≤





pi,j(km)
(∏j−1

l=1 e
−λlkl

)
·
(∏i−1

l=j e
−λl+1kl

)
·
(∏m

l=i+1 e
−λlkl

)
if i ≥ j

pi,j(km)
(∏i−1

l=1 e
−λlkl

)
·
(∏j−1

l=i e
−λlkl+1

)
·
(∏m

l=j+1 e
−λlkl

)
if i ≤ j

(7.6)

Then, let’s consider the case when Ac is a general Jordan form matrix. Compared to

the case of a diagonal matrix Ac, the elements of Oi,j only differ by polynomials on ki in ratio.
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Therefore, by the same argument of the proof of Lemma 7.5, we can still find a positive polynomial

pi,j satisfying (7.6).

Moreover, since λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and 0 ≤ k1 ≤ k2 ≤ · · · ≤ km, we have

(
j−1∏

l=1

e−λlkl

)
·



i−1∏

l=j

e−λl+1kl


 ·

(
m∏

l=i+1

e−λlkl

)
≤

m∏

i=2

e−λiki−1 ,

(
i−1∏

l=1

e−λlkl

)
·

(
j−1∏

l=i

e−λlkl+1

)
·




m∏

l=j+1

e−λlkl


 ≤

m∏

i=2

e−λiki−1 .

Therefore, we can further bound the cofactor as follows:

|Ci,j | ≤ max
i,j

pi,j(km)

m∏

i=2

e−λiki−1 .

Then, we have
∣∣∣∣∣∣∣∣∣∣∣∣




Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc




−1
∣∣∣∣∣∣∣∣∣∣∣∣
max

=
maxi,j |Ci,j |∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

≤ maxi,j |Ci,j |
ε
∏

1≤i≤m e
−kiλi

≤
maxi,j pi,j(km)

∏m
i=2 e

−λiki−1

ε
∏

1≤i≤m e
−kiλi

=
maxi,j pi,j(km)

ε
eλ1k1

m∏

i=2

eλi(ki−ki−1)

≤ maxi,j pi,j(km)

ε
eλ1k1

m∏

i=2

eλ1(ki−ki−1)(∵ λ1 ≥ λi ≥ 0, ki − ki−1 ≥ 0)

=
maxi,j pi,j(km)

ε
eλ1km

≤
∑
i,j pi,j(km)

ε
eλ1km

Therefore, the lemma is true.

Now, the question is reduced to whether the observability Gramian determinant is large

enough. We will find a sufficient condition for the determinant to be large in terms of a simpler

analytic function. For this, we first need the following lemma that basically asserts that polynomials

increase slower than exponentials.

Lemma 7.7. For any given polynomial f(x), λ > 0 and ε > 0, there exists a > 0 such that

|f(k + x)| ≤ εeλ·x

for all x ≥ a(log(k + 1) + 1) and k ≥ 0.



269

Proof. Let the order of f(x) be p. Then, there exists c > 0 such that for all x ≥ 0,

|f(x)| ≤ c(1 + xp+1).

If we consider 1
λ log c

ε + 1
λ log(1 + (2x)p+1) and x, the former grows logarithmically in x while the

later grows linearly on x. Therefore, we can find t > 0 such that

1

λ
log

c

ε
+

1

λ
log(1 + (2x)p+1) ≤ x

for all x ≥ t. We can also finde a > 0 such that a(log(k+1)+1) ≥ max
{

1
λ log c

ε + 1
λ log(1 + (2k)p+1), t

}

for all k ≥ 0.

To check the condition, |f(k + x)| ≤ εeλ·x, we divide into two cases.

(a) When x ≤ k,

|f(k + x)| is bounded as follows:

|f(k + x)| ≤ c
(

1 + (k + x)
p+1
)

≤ c
(

1 + (2k)
p+1
)

= εeλ( 1
λ log c

ε+ 1
λ log(1+(2k)p+1))

≤ εeλ·x

where the last inequality comes from 1
λ log c

ε + 1
λ log(1 + (2k)p+1) ≤ x.

(b) When x > k,

Since t ≤ x, 1
λ log c

ε + 1
λ log(1 + (2x)p+1) ≤ x. Then, we can bound |f(k + x)| as follows:

|f(k + x)| ≤ c
(

1 + (k + x)
p+1
)

≤ c
(

1 + (2x)
p+1
)

= εeλ( 1
λ log c

ε+ 1
λ log(1+(2x)p+1))

≤ εeλ·x.

Therefore, the lemma is proved.

Now, we give a sufficient condition to guarantee that the determinant of the observability

Gramian is large enough.

Lemma 7.8. Let Ac and C be given as (7.3) and (7.4). Let ai,j and Ci,j be the (i, j) element and

cofactor of




Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc




respectively. Then there exist gε(k) : R+ → R+ and a ∈ R+such that for all
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ε > 0 and k1, · · · , km satisfying

(i) 0 ≤ k1 < k2 < · · · < km

(ii) km − km−1 ≥ gε(km−1)

(iii) gε(k) ≤ a(1 + log(k + 1))

(iv) |
∑

m−mµ+1≤i≤m

am,iCm,i| ≥ ε
∏

1≤i≤m

e−kiλi

the following inequality holds:

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

≥ 1

2
ε
∏

1≤i≤m

e−kiλi .

Proof. First of all, because Ac is in Jordan form, it is well known that the elements of e−kAc take

a specific form [17]. Thus, we can prove that for all ai,j there exists a polynomial pi,j(k) such

that ai,j = pi,j(ki)e
−ki(λj+jωj). Then, we can find p(k) in the form of a(1 + kb) (a > 0) such that

p(k) ≥ maxi,j |pi,j(k)| for all k ≥ 0. Denote λ′ := λµ−1,1 − λµ,1 > 0.

Let Sm be the set of all permutations on {1, · · · ,m}, and sgn(σ) be +1 if σ is an even
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permutation −1 otherwise. Then, we have

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

1≤i≤m

am,iCm,i

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

σ∈Sm

sgn(σ)

m∏

i=1

ai,σ(i)

∣∣∣∣∣

≥

∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

am,iCm,i

∣∣∣∣∣∣
−

∣∣∣∣∣∣
∑

1≤i≤m−mµ

am,iCm,i

∣∣∣∣∣∣

≥ ε
∏

1≤i≤m

e−kiλi −

∣∣∣∣∣∣
∑

1≤i≤m−mµ

am,iCm,i

∣∣∣∣∣∣
(∵ Assumption (iv))

= ε
∏

1≤i≤m

e−kiλi −

∣∣∣∣∣∣
∑

σ∈Sm,1≤σ(m)≤m−mµ

sgn(σ)

m∏

i=1

ai,σ(i)

∣∣∣∣∣∣

≥ ε
∏

1≤i≤m

e−kiλi −
∑

σ∈Sm,1≤σ(m)≤m−mµ

∣∣∣∣∣
m∏

i=1

ai,σ(i)

∣∣∣∣∣

= ε
∏

1≤i≤m

e−kiλi −
∑

σ∈Sm,1≤σ(m)≤m−mµ

∣∣∣∣∣
m∏

i=1

pi,σ(i)(ki)e
−ki(λσ(i)+jωσ(i))

∣∣∣∣∣

≥ ε
∏

1≤i≤m

e−kiλi −
∑

σ∈Sm,1≤σ(m)≤m−mµ

(
e(λm−λσ(m))(km−kσ−1(m)) ·

m∏

i=1

p(ki)e
−kiλi

)
(∵ Lemma 7.4)

≥
∏

1≤i≤m

e−kiλi


ε−

∑

σ∈Sm,1≤σ(m)≤m−mµ

p(km)me(λm−λσ(m))(km−kσ−1(m))


 (∵ p(k) is an increasing function.)

≥
∏

1≤i≤m

e−kiλi


ε−

∑

σ∈Sm,1≤σ(m)≤m−mµ

p(km)me−λ
′(km−km−1)


 (∵ λσ(m) − λm ≥ λµ−1,1 − λµ,1 = λ′)

≥
∏

1≤i≤m

e−kiλi
(
ε−m!p(km)me−λ

′(km−km−1)
)

Since m!p(x)m is a polynomial in x, by Lemma 7.7 there exists gε(k) : R+ → R+ such that

(i) gε(k) . log(k + 1) + 1

(ii) |m!p(k + x)m| ≤ ε
2e
λ′·x for all x ≥ gε(k) and k ≥ 0.

Therefore, for all km such that km − km−1 ≥ gε(km−1),

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−k1Ac

Ce−k2Ac

...

Ce−kmAc







∣∣∣∣∣∣∣∣∣∣∣

≥
∏

1≤i≤m

e−kiλi
(
ε− ε

2
eλ
′·(km−km−1)e−λ

′·(km−km−1)
)
≥ ε

2

∏

1≤i≤m

e−kiλi .

Thus, the lemma is proved.
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7.3 Uniform Convergence of a Set of Analytic Functions

(Continuous-Time Systems)

We will prove that after introducing nonuniform sampling, the determinant of the observ-

ability Gramian will become large enough regardless of the erasure pattern. Since the determinant

of the observability Gramian is an analytic function, to prove that the observability Gramian is large

enough it is enough prove that a set of specific analytic functions are large enough. To this end, we

will prove a set of analytic functions are uniformly away from 0.

First, we prove that an analytic function can become zero only on sets of zero Lebesgue-

measure, as long as the function is not zero for all values. The intuition for the lemma is that analytic

functions can be locally determined by that Taylor expansions. Thus, if an analytic function is zero

for any open interval with non-zero Lebesgue-measure, it is identically zero.

Lemma 7.9. For a given nonnegative integer p and distinct positive reals ωi,1, ωi,2, · · · , ωi,νi , define

f(x) :=

p∑

i=0

xi




νi∑

j=1

aR,i,j cos(ωi,jx) + aI,i,j sin(ωi,jx)




where at least one coefficient among aR,i,j , aI,i,j is non-zero. Let X be a uniform random variable

in [0, T ] (T > 0). Then, for all h ∈ R, the following is true:

P{|f(X)− h| < ε} → 0 as ε ↓ 0.

Proof. First, notice that f(x)−h is an analytic function. It is well-known that if an analytic function

f(x) − h is not identically zero, the set {x ∈ [0, T ] : f(x) − h = 0} is an isolated set [53], which

is countable. Therefore, P{|f(X) − h| = 0} = 0. Moreover, P{|f(X) − h| < ε} ≤ P{|f(X) − h| ≤
ε}, which is a cumulative distribution function. Since cumulative distribution functions are right-

continuous, limε↓0 P{|f(X)− h| < ε} ≤ limε↓0 P{|f(X)− h| ≤ ε} = P{|f(X)− h| = 0} = 0.

Thus, the proof reduces to proving f(x) − h is not zero for all x. Let i∗ be the largest i

such that either aR,i,j or aI,i,j is non-zero.

(i) When i∗ = 0,

In this case, there are no polynomial terns and only sinusoidal terms exist. Let’s compute

the energy of f(x) − h in interval [s, s + r] and prove that f(x) − h is not identically zero for all s
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as long as r is large enough.

∫ s+r

s



νi∗∑

j=1

(aR,i∗,j cos(ωi∗,jx) + aI,i∗,j sin(ωi∗,jx))− h




2

dx

=

∫ s+r

s

νi∗∑

j=1

(
a2
R,i∗,j cos2(ωi∗,jx) + a2

I,i∗,j sin2(ωi∗,jx)
)

+ h2 + 2
∑

i≤j

aR,i∗,iaI,i∗,j cos(ωi∗,ix) sin(ωi∗,jx)

+ 2
∑

i<j

aR,i∗,iaR,i∗,j cos(ωi∗,ix) cos(ωi∗,jx) + 2
∑

i<j

aI,i∗,iaI,i∗,j sin(ωi∗,ix) sin(ωi∗,jx)

− 2

νi∗∑

j=1

(aR,i∗,j cos(ωi∗,jx) + aI,i∗,j sin(ωi∗,jx))h dx

=

∫ s+r

s

νi∗∑

j=1

(
a2
R,i∗,j

1 + cos 2ωi∗,jx

2
+ a2

I,i∗,j

1− cos 2ωi∗,jx

2

)
dx

+

∫ s+r

s

∑

i≤j

aR,i∗,iaI,i∗,j (sin ((ωi∗,j + ωi∗,j)x)− sin ((ωi∗,j − ωi∗,j)x)) dx

+

∫ s+r

s

∑

i<j

aR,i∗,iaR,i∗,j (cos ((ωi∗,j − ωi∗,j)x) + cos ((ωi∗,j + ωi∗,j)x)) dx

+

∫ s+r

s

∑

i<j

aI,i∗,iaI,i∗,j (cos ((ωi∗,j − ωi∗,j)x)− cos ((ωi∗,j + ωi∗,j)x)) dx

−
∫ s+r

s

2

νi∗∑

j=1

(aR,i∗,j cos(ωi∗,jx) + aI,i∗,j sin(ωi∗,jx))h dx. (7.7)

Therefore, as r increases, the first term in (7.7) arbitrarily increases regardless of s, while the

remaining terms in (7.7) are sinusoidal and so bounded. Thus, f(x) − h is not identically zero for

all s when r is large enough. Thus, there exist δ > 0 and r > 0 such that for all s, |f(x) − x| ≥ δ

holds for some x ∈ [s, s+ r].

(ii) When i∗ ≥ 1,

In this case, we have polynomial terms and we will prove that the term with the highest

degree will dominate the reaming terms. By the argument of (i), we can find δ > 0 and r > 0 such

that for all s ≥ 0 we can find x ∈ [s, s+ r] satisfying

|f(x)− h| ≥ δxi
∗
−
i∗−1∑

i=0




νi∑

j=1

|aR,i,j |+ |aI,i,j |


xi − |h|.

Since we can choose s arbitrarily large, |f(x)−h| has to be greater than 0 for some x. Thus, f(x)−h
is not identically zero.

Therefore, the lemma is true.

To prove uniform convergence, we need the following Dini’s theorem which says that for

compact sets, pointwise convergence implies uniform convergence. The intuition behind this theorem

is as follows: since we can find a finite open cover for a compact set, we can convert the uniform
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convergence of an infinite number of functions to the uniform convergence of only finitely many

functions when the domain is compact. The uniform convergence of a finite number of functions

immediately follows from pointwise convergence.

Theorem 7.1 (Dini’s Theorem). [35, p. 81] If {fn} is a sequence of functions defined on a set A

and converging on A to a function f , and if

(i) the convergence is monotonic,

(ii) fn is continuous on A, n = 1, 2, · · ·
(iii) f is continuous on A,

(iv) A is compact,

then the convergence is uniform on A.

Proof. See [35, p. 81] for the proof.

Now, using the pointwise convergence of Lemma 7.9 and Dini’s theorem, we can prove the

uniform convergence of the relevant functions over a set of parameters.

Lemma 7.10. Let p, ν0, · · · , νp be nonnegative integers with νp > 0. Suppose γ and Γ are strictly

positive reals such that γ ≤ Γ. For each 0 ≤ i ≤ p, ωi,1, ωi,2, · · · , ωi,νi are distinct reals. Let X be

a uniform random variable on [0, T ] for some T > 0. Then, for all m,n such that 0 ≤ m ≤ p and

1 ≤ n ≤ νm, we have the following inequality:

sup
|am,n|≥γ,∀i,j,|ai,j |≤Γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε



→ 0 as ε ↓ 0

where ai,j are taken from C.

Proof. The purpose of this proof is reducing the lemma to Dini’s theorem (Theorem 7.1).

First, we will assume the wi,j are positive without loss of generality. To justify this, let

ωmin = min{mini,j ωi,j , 0} − δ for some δ > 0. Then,

sup
|am,n|≥γ,|ai,j |≤Γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε





= sup
|am,n|≥γ,|ai,j |≤Γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
j(ωi,j−ωmin)X



∣∣∣∣∣∣
< ε



 .

Here, for each i, ωi,1−ωmin, ωi,2−ωmin, · · · , ωi,νi−ωmin are distinct and strictly positive. Therefore,

without loss of generality, we can assume that for each i, ωi,1, ωi,2, · · · , ωi,νi are distinct and strictly

positive.

Let ai,j = aR,i,j − jaI,i,j where aR,i,j and aI,i,j are real. Since |am,n| ≥ γ, at least one of

|aR,m,n| or |aI,m,n| should be greater than γ√
2
. First, consider the case when |aR,m,n| ≥ γ√

2
. It is
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sufficient to prove that the real part of
∑p
i=0X

i
(∑νi

j=1 ai,je
jωi,jX

)
satisfies the lemma, i.e.

sup
aR,m,n≥ γ√

2
,|aR,i,j |≤Γ,|aI,i,j |≤Γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< ε



→ 0 as ε ↓ 0.

Here, we take the supremum over aR,m,n ≥ γ√
2

instead of the supremum over |aR,m,n| ≥ γ√
2

by

symmetry.

Now, we apply Dini’s theorem 7.1 and prove the claim.

Fix a positive sequence εi such that εi ↓ 0 as i → ∞. Define a sequence of functions {fi}
as

fi(aR,1,1, aI,1,1, · · · , aI,p,νp) := P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi





where the domain A of the functions is A := {(aR,1,1, aI,1,1, · · · , aI,p,νp) : aR,m,n ≥ γ√
2
, |aR,i,j | ≤

Γ, |aI,i,j | ≤ Γ}. Let f(aR,1,1, aI,1,1, · · · , aI,p,νp) be the identically zero function. Then, we will prove

that {fi} converges to f = 0 uniformly on A by checking the conditions of Theorem 7.1.

• fi point-wisely converges to f :

Since aR,m,n ≥ γ√
2
,
∑p
i=0 x

i
(∑νi

j=1 aR,i,j cos(ωi,jx) + aI,i,j sin(ωi,jx)
)

satisfies the assump-

tions of Lemma 7.9. Thus, for all h

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− h

∣∣∣∣∣∣
< ε



→ 0 as ε ↓ 0. (7.8)

Therefore, by selecting h = 0, fi(aR,1,1, aI,1,1, · · · , aI,p,νp) converges to f = 0 for all aR,1,1, aI,1,1,

· · · , aI,p,νp in A.

• Convergence is monotone: Since εi monotonically converge to 0, fi is also a monotonically

decreasing function sequence. Thus, the convergence is monotone.

• fn is continuous on A: For continuity (does not have to be uniformly continuous), we

will prove that for given aR,1,1, aI,1,1, · · · , aI,p,νp and for all σ > 0, there exists δ(σ) > 0 such that

|fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)− fi(aR,1,1, aI,1,1, · · · , aI,p,νp)| < σ for all

|∇aR,i,j | < δ(σ) and |∇aI,i,j | < δ(σ).

By (7.8), we can find δ′(σ) for all σ such that

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− εi

∣∣∣∣∣∣
< δ′(σ)



 <

σ

2
and

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− (−εi)

∣∣∣∣∣∣
< δ′(σ)



 <

σ

2
.

Denote δ(σ) :=
min( 1

Tp ,1)
2
∑p
i=0 νi

δ′(σ). Then, for all |∇aR,i,j | < δ(σ) and |∇aI,i,j | < δ(σ), the following
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inequality is true.

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

(aR,i,j +∇aR,i,j) cos(ωi,jX) + (aI,i,j +∇aR,i,j) sin(ωi,jX)



∣∣∣∣∣∣
< εi





≥ P

{∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
<

εi −

∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

∇aR,i,j cos(ωi,jX) +∇aI,i,j sin(ωi,jX)



∣∣∣∣∣∣

}

≥ P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi − δ′(σ)



 (7.9)

= P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi





− P



εi − δ

′(σ) ≤

∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi





≥ P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi





− P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− εi

∣∣∣∣∣∣
< δ′(σ)





− P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− (−εi)

∣∣∣∣∣∣
< δ′(σ)





> P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi



− σ.

Here, (7.9) can be shown as follows:
∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

∇aR,i,j cos(ωi,jX) +∇aI,i,j sin(ωi,jX)



∣∣∣∣∣∣

≤
p∑

i=0

|Xi|
νi∑

j=1

(|∇aR,i,j |+ |∇aI,i,j |)

≤ max(T p, 1)2νiδ(σ)(∵ 0 ≤ X ≤ T w.p. 1)

= δ′(σ)(∵ definition of δ(σ))

Therefore, by the definition of fi we have

fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)

− fi(aR,1,1, aI,1,1, · · · , aI,p,νp) > −σ. (7.10)
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Likewise, we can prove that

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

(aR,i,j +∇aR,i,j) cos(ωi,jX) + (aI,i,j +∇aR,i,j) sin(ωi,jX)



∣∣∣∣∣∣
< εi





≤ P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi + δ′(σ)





(∵ The same step as (7.9))

= P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi





+ P



εi ≤

∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi + δ′(σ)





≤ P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi





+ P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− εi

∣∣∣∣∣∣
< δ′(σ)





+ P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)


− (−εi)

∣∣∣∣∣∣
< δ′(σ)





< P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)



∣∣∣∣∣∣
< εi



+ σ

which implies

fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)

− fi(aR,1,1, aI,1,1, · · · , aI,p,νp) < σ. (7.11)

By (7.10) and (7.11),

∣∣fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)− fi(aR,1,1, aI,1,1, · · · , aI,p,νp)
∣∣ < σ.

Therefore, fi(aR,1,1, aI,1,1, · · · , aI,p,νp) is continuous.

• f is continuous on A: f is obviously continuous, since f is identically zero.

• A is compact: A is compact since it is closed and bounded.

Thus, by Dini’s theorem 7.1, the convergence is uniform on A, which finishes the proof for

the case of |aR,m,n| ≥ γ√
2
. The proof for the case of |aI,m,n| ≥ γ√

2
follows in an identical manner.

Since there are only two cases, the function

gi(a1,1, · · · , ap,νp) := P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< εi




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converges uniformly on {ai,j : |am,n| ≥ γ, |ai,j | ≤ Γ}. This finishes the proof of the lemma.

In Lemma 7.10, we have a boundedness condition on the coefficients (|ai,j | ≤ Γ) to guar-

antee compactness. However, we can easily notice the functions only get larger as ai,j increases.

Therefore, we can prove that Lemma 7.10 still holds without the boundedness condition.

Lemma 7.11. Let p be a nonnegative integer and ν0, · · · , νp be also nonnegative integers with νp > 0.

γ is a strictly positive real. For each 0 ≤ i ≤ p, ωi,1, ωi,2, · · · , ωi,νi are distinct reals. Let X be a

uniform random variable on [0, T ] for some T > 0. Then, for all m,n such that 0 ≤ m ≤ p and

1 ≤ n ≤ νm, we have the following inequality:

sup
|am,n|≥γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε



→ 0 as ε ↓ 0

where ai,j are taken from C.

Proof. Denote ν :=
∑p
i=0 νi. The proof is by strong induction on ν.

(i) When ν = 1.

sup
|ap,1|≥γ

P
{∣∣ap,1Xpejωp,1X

∣∣ < ε
}

(7.12)

= sup
|ap,1|≥γ

P
{∣∣∣∣

γ

|ap,1|
ap,1X

pejωp,1X
∣∣∣∣ <

γ

|ap,1|
ε

}

≤ sup
|a′p,1|=γ

P
{∣∣a′p,1Xpejωp,1X

∣∣ < ε
}(

∵
γ

|ap,1|
≤ 1

)
(7.13)

By lemma 7.10, (7.13) converges to 0 as ε ↓ 0. Thus, (7.12) converges to 0 as ε ↓ 0.

(ii) As an induction hypothesis, we assume the lemma is true for ν = 1, · · · , n − 1 and

prove that the lemma still holds for ν = n. We will prove this by dividing into two cases: (a) When

all ai,j are not much bigger than am,n. In this case, the claim reduces to Lemma 7.10. (b) When

there is an am′,n′ which is much bigger than am,n. In this case, we can ignore the term associated

with am,n and reduce the number of terms in the functions. Thus, either way the claim reduces to

the induction hypothesis.

To prove the lemma for ν = n, it is enough to show that for a fixed γ and every δ > 0,

there exists ε(δ) > 0 such that

sup
|am,n|≥γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)



 < δ.

By the induction hypothesis for all (m′, n′) 6= (m,n) we can find εm′,n′(δ) > 0 such that

sup
am,n=0,|am′,n′ |≥γ

P





∣∣∣∣∣∣

p∑

i=0

Xp




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< εm′,n′(δ)



 < δ. (7.14)
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We choose κ(δ) as min
{

min(m′,n′)6=(m,n)

{
εm′,n′ (δ)

2γTm

}
, 1
}

. By Lemma 7.10, there exists ε′(δ) > 0

such that

sup
|am,n|=γ,ai,j≤ γ

κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xp




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε′(δ)



 < δ. (7.15)

Denote ε(δ) := min
{
ε′(δ),min(m′,n′)6=(m,n)

{
εm′,n′ (δ)

2

}}
. Then, we have

sup
|am,n|≥γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)





= max{ sup
|am,n|≥γ,

|ai,j |
|am,n|

≤ 1
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)



 , (7.16)

max
(m′,n′) 6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)



 (7.17)

}. (7.18)

• When the ai,j are not too bigger than am,n: Let’s bound the first term in (7.16). Set

a′i,j := γ
|am,n|ai,j . Then, (7.16) is upper bounded as follows:

sup
|am,n|≥γ,

|ai,j |
|am,n|

≤ 1
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)





= sup
|am,n|≥γ,

|ai,j |
|am,n|

≤ 1
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

γ

|am,n|
ai,je

jωi,jX



∣∣∣∣∣∣
<

γ

|am,n|
ε(δ)





= sup
|a′m,n|=γ,|a′i,j |≤

γ
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

a′i,je
jωi,jX



∣∣∣∣∣∣
<

γ

|am,n|
ε(δ)





≤ sup
|a′m,n|=γ,|a′i,j |≤

γ
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

a′i,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)



 (∵

γ

|am,n|
≤ 1)

≤ sup
|a′m,n|=γ,|a′i,j |≤

γ
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

a′i,je
jωi,jX



∣∣∣∣∣∣
< ε′(δ)



 (∵ definition of ε(δ))

< δ(∵ (7.15)) (7.19)

•When am′,n′ is much bigger than am,n: Let’s bound the second term in (7.17). For given
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m′, n′, set a′′i,j := γ
|am′,n′ |

ai,j . Then, (7.17) is upper bounded by

max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)





= max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

γ

|am′,n′ |
ai,je

jωi,jX



∣∣∣∣∣∣
<

γ

|am′,n′ |
ε(δ)





≤ max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

γ

|am′,n′ |
ai,je

jωi,jX


−Xm γ

|am′,n′ |
am,ne

jωm,nX

∣∣∣∣∣∣

< max
(m′,n′)6=(m,n)

γ

|am′,n′ |
ε(δ) +

γ

|am′,n′ |
|am,n|Tm

}

≤ max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

γ

|am′,n′ |
ai,je

jωi,jX


−Xm γ

|am′,n′ |
am,ne

jωm,nX

∣∣∣∣∣∣

< εm′,n′(δ)

}
(7.20)

≤ max
(m′,n′)6=(m,n)

sup
a′′m,n=0,|a′′

m′,n′ |=γ
P





∣∣∣∣∣∣

p−1∑

i=0

Xi




νi∑

j=1

a′′i,je
jωi,jX



∣∣∣∣∣∣
< εm′,n′(δ)





(∵ By definition, a′′m′,n′ =
γ

|am′,n′ |
am′,n′)

< δ(∵ (7.14)) (7.21)

Here, (7.20) can be derived as follows: First, we have

1 ≥ κ(δ) (∵ Definition of κ(δ))

≥ γ · κ(δ)

|am,n|
(∵ |am,n| ≥ γ)

≥ γ

|am′,n′ |
. (∵

|am′,n′ |
|am,n|

≥ 1

κ(δ)
) (7.22)

We also have

γ

|am′,n′ |
|am,n|Tm ≤ γ · κ(δ)Tm (∵

|am′,n′ |
|am,n|

≥ 1

κ(δ)
)

≤ γ εm
′,n′(δ)

2γTm
Tm (∵ By definition, κ(δ) ≤ εm′,n′(δ)

2γTm
)

=
εm′,n′(δ)

2
. (7.23)

Therefore,

γ

|am′,n′ |
ε(δ) +

γ

|am′,n′ |
|am,n|Tm ≤ ε(δ) +

εm′,n′(δ)

2
(∵ (7.22), (7.23))

≤ εm′,n′(δ). (∵ By definition, ε(δ) ≤ εm′,n′(δ)

2
)
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Therefore, (7.20) is true.

By plugging (7.19) and (7.21) into (7.18), we get

sup
|am,n|≥γ

P





∣∣∣∣∣∣

p∑

i=0

Xi




νi∑

j=1

ai,je
jωi,jX



∣∣∣∣∣∣
< ε(δ)



 < δ,

which finishes the proof.

7.4 Proof of Lemma 2.2

In this section, we will merge the properties about the observability Gramian shown in

Section 7.2 with the uniform convergence of Section 7.3, and prove Lemma 2.2 of page 56.

We first prove the following lemma which tells us that the determinant of the observability

Gramian is large with high probability under a cofactor condition on the Gramian.

Lemma 7.12. Let Ac and C be given as (7.3) and (7.4). Let ai,j and Ci,j be the (i, j) element

and cofactor of




Ce−(k1I+t1)Ac

...

Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac




respectively, where t is a random variable which is uniformly

distributed on [0, T ] and I is the sampling interval defined in (2.25). Then, there exist a ∈ R+ and

a family of increasing functions {gε(·) : ε > 0, gε : R+ → R+} satisfying:

(i) For all ε > 0, k1 < k2 < · · · < km−1, 0 ≤ ti ≤ T if |Cm,m| > ε
∏

1≤i≤m−1 e
−kiI·λi the following

is true:

sup
km∈Z,km−km−1≥gε(km−1)

P





∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+t1)Ac

...

Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac







∣∣∣∣∣∣∣∣∣∣∣

< ε2
∏

1≤i≤m

e−kiI·λi





→ 0 as ε ↓ 0

(ii) For all ε > 0, gε(k) ≤ a(1 + log(k + 1)).

Proof. Let ε′ = 2ε2
∏

1≤i≤m e
λiT . Define a′i,j , C

′
i,j as the (i, j) element and cofactor of




Ce−κ1Ac

...

Ce−κmAc


.

Then, by Lemma 7.8, we can find a function g′ε′(k) such that for all 0 ≤ κ1 < κ2 < · · · < κm

satisfying:

(i’) κm − κm−1 ≥ g′ε′(κm−1)

(ii’) g′ε′(κ) . 1 + log(κ+ 1)

(iii’) |
∑
m−mµ+1≤i≤m a

′
m,iC

′
m,i| ≥ ε′

∏
1≤i≤m e

−κiλi
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the following inequality holds:

∣∣∣∣∣∣∣∣
det







Ce−κ1Ac

...

Ce−κmAc







∣∣∣∣∣∣∣∣
≥ 1

2
ε′
∏

1≤i≤m

e−κiλi .

Let’s use tm and t interchangeably. These are in [0, T ] with probability one. Ideally, we

want to plug kiI + ti into κi. However, even though the sequence k1, · · · , km is sorted, the sequence

k1I + t1, · · · , kmI + tm may not be sorted. Therefore, we define k(1)I + t(1), · · · , k(m)I + t(m) as the

result of sorting k1I + t1, · · · , kmI + tm. Then, we can see this sorted sequence has the following

property.

Claim 7.1. Consider two sequences, α1, α2, · · · , αn and β1, β2, · · · , βn where α1 ≤ α2 ≤ · · · ≤ αn

and βi ∈ [0, T ] (T > 0). Let α(1) + β(1), α(2) + β(2), · · · , α(n) + β(n) be the ascending ordered set of

α1 + β1, α2 + β2, · · · , αn + βn. In other words,

Then, for all i ∈ {1, · · · , n}, we have

0 ≤ α(i) + β(i) − αi ≤ T.

Proof. We will prove this by contradiction. Let’s say there exists i such that

α(i) + β(i) − αi < 0.

Then, we have

α(i) + β(i) < αi ≤ αi+1 ≤ · · · ≤ αn.

Since β1, · · · , βn ≥ 0, we can conclude α(i) + β(i) < αi + βi, · · · , α(i) + β(i) < αn + βn. Thus, in the

sequence α1 +β1, · · · , αn +βn, there exist n− i+ 1 elements which are larger than α(i) +β(i). This

contradicts the fact that α(i) + β(i) is ith largest element among α1 + β1, · · · , αn + βn.

Likewise, let’s say there exists i such that

α(i) + β(i) − αi > T.

Then, we have

α(i) + β(i) > αi + T ≤ αi−1 + T ≤ α1 + T.

Since β1, · · · , βn ≤ T , we can conclude α(i) + β(i) > αi + βi, · · · , α(i) + β(i) > α1 + β1. Thus, in

the sequence α1 + β1, · · · , αn + βn, there exist i elements which are smaller than α(i) + β(i). This

contradicts the fact that α(i) + β(i) is ith smallest element among α1 + β1, · · · , αn + βn.
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Therefore, by the claim, we have

∏

1≤i≤m

e−λiT
∏

1≤i≤m

e−kiI·λi ≤
∏

1≤i≤m

e−(k(i)I+t(i))λi ≤
∏

1≤i≤m

e−kiI·λi . (7.24)

Finally, we can plug k(i)I + t(i) into κi to conclude the following statement. For all 0 ≤
k1 < · · · < km, 0 ≤ ti ≤ T , 0 ≤ t ≤ T such that1

(i”) km − km−1 ≥ g′′ε′(km−1)

(ii”) g′′ε′(k) . 1 + log(k + 1)

(iii”)
∣∣∣
∑
m−mµ+1≤i≤m am,iCm,i

∣∣∣ ≥ ε′
∏

1≤i≤m e
−kiI·λi

(A)

≥ ε′
∏

1≤i≤m e
−(k(i)I+t(i))λi

the following inequality holds:

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+t1)Ac

...

Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ 1

2
ε′
∏

1≤i≤m

e−(k(i)I+t(i))λi
(B)

≥ 1

2
ε′
∏

1≤i≤m

e−λiT
∏

1≤i≤m

e−kiI·λi

(C)
= ε2

∏

1≤i≤m

e−kiI·λi .

Here, (A) and (B) always hold by (7.24). (C) follows from the definition of ε′.

Let gε(k) be g′′e′(k). Then, we can easily check such gε(k) satisfies condition (ii) of the

lemma. Let’s show that such gε(k) also satisfies condition (i) of the lemma.

sup
km∈Z,km−km−1≥gε(km−1)

P





∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+t1)Ac

...

Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac







∣∣∣∣∣∣∣∣∣∣∣

< ε2
∏

1≤i≤m

e−kiI·λi





≤ sup
km∈Z,km−km−1≥gε(km−1)

P





∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

Cm,iam,i

∣∣∣∣∣∣
< 2ε2

∏

1≤i≤m

eλiT ·
∏

1≤i≤m

e−kiI·λi





= sup
km∈Z,km−km−1≥gε(km−1)

P





∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

Cm,i
ε
∏

1≤i≤m−1 e
−kiI·λi

am,i
e−(kmI+t)λm

∣∣∣∣∣∣
< 2ε · eλmt

∏

1≤i≤m

eλiT





≤ sup
|bm|≥1

P





∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

bi
am,i

e−(kmI+t)λm

∣∣∣∣∣∣
< 2ε · eλmT

∏

1≤i≤m

eλiT



 . (7.25)

where the last inequality comes from assumption (ii), |Cm,m| > ε
∏

1≤i≤m−1 e
−kiI·λi , and the fact

that t ∈ [0, T ] with probability one.

Now, it is enough to prove that (7.25) converges to 0 as ε ↓ 0. To this end, let’s

study am,i which are the elements of the observability gramian. Let the Cµ,νµ defined in (7.4)

1Here, we select g′′
ε′ (k) large enough so that when km−km−1 ≥ g′′ε′ (km−1), we always have kmI+t ≥ km−1I+tm−1,

i.e. kmI + t becomes the largest.
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be
[
c′1 · · · c′mµ,νµ

]
. Then, we have

e−(kmI+t)Aµ,νµ

=




e
−(kmI+t)(λµ,νµ+jωµ,νµ )

−(kmI + t)e
−(kmI+t)(λµ,νµ+jωµ,νµ )

· · · (−1)
mµ,νµ−1

(kmI+t)
mµ,νµ−1

(mµ,νµ−1)!
e
−(kmI+t)(λµ,νµ+jωµ,νµ )

0 e
−(kmI+t)(λµ,νµ+jωµ,νµ )

· · · (−1)
mµ,νµ−2

(kmI+t)
mµ,νµ−2

(mµ,νµ−2)!
e
−(kmI+t)(λµ,νµ+jωµ,νµ )

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · · e
−(kmI+t)(λµ,νµ+jωµ,νµ )


.

Thus, we can see that

am,m =
∑

1≤i≤mµ,νµ

c′i
(−1)mµ,νµ−i(kmI + t)mµ,νµ−i

(mµ,νµ − i)!
e−(kmI+t)(λm+jωµ,νµ ).

Therefore,

am,m
e−(kmI+t)λm

=
∑

1≤i≤mµ,νµ

c′i
(−1)mµ,νµ−i(kmI + t)mµ,νµ−i

(mµ,νµ − i)!
e−(kmI+t)(jωµ,νµ ).

Moreover, when am,i is considered as a function of t, the tmµ,νµ−1e−jωµ,νµ t term only shows up

in
am,m

e−(kmI+t)λm
among

am,m−mµ+1

e−(kmI+t)λm
, · · · , am,m

e−(kmI+t)λm
, and the coefficient is c′1

(−1)
mµ,νµ−1

(mµ,νµ−1)! e
−jωµ,νµkmI .

Since we know |bm| ≥ 1 in (7.25), by defining c′ :=
|c′1|

(mµ,νµ−1)! we can see that the magnitude of the

corresponding coefficient is greater or equal to c′. Furthermore, the remaining terms
am,m−mµ+1

e−(kmI+t)λm
,

· · · , am,m−1

e−(kmI+t)λm
only have e−jωµ,1t, · · · , tmµ,1−1e−jωµ,1t, e−jωµ,2t, · · · , tmµ,2−1e−jωµ,2t, · · · , e−jωµ,νµ t,

· · · , tmµ,νµ−2e−jωµ,νµ t when they are considered as functions in t. Thus, using the assumption that

mν,1 ≤ · · · ≤ mν,µν ,(7.25) can be upper bounded as follows:

(7.25) ≤ sup
|a′mµ,νµ ,νµ |≥c

′
P





∣∣∣∣∣∣

mµ,νµ∑

i=1

ti−1




νµ∑

j=1

a′i,je
−jωµ,jt



∣∣∣∣∣∣
≤ 2εeλmT ·

∏

1≤i≤m

eλiT



 . (7.26)

By Lemma 7.11 (by setting γ as c′, (m,n) as (mµ,νµ , νµ), p as mµ,νµ , ν0, · · · , νp as νµ, ω0,j , · · · , ωp,j
as −ωµ,j , and ε as 2ε

∏
1≤i≤m e

λiT · eλmT ), we get

sup
|a′mµ,νµ ,νµ |≥c

′
P





∣∣∣∣∣∣

mµ,νµ∑

i=1

ti−1




νµ∑

j=1

a′i,je
−jωµ,jt



∣∣∣∣∣∣
≤ 2εeλmT ·

∏

1≤i≤m

eλiT



→ 0 as ε ↓ 0. (7.27)

Therefore, by (7.25), (7.26), (7.27) we can say that

sup
km∈Z,km−km−1≥gε(km−1)

P





∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+t1)Ac

...

Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac







∣∣∣∣∣∣∣∣∣∣∣

< ε2
∏

1≤i≤m

e−kiI·λi





→ 0 as ε ↓ 0

which finishes the proof.
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Based on the previous lemma, we will integrate the properties of p.m.f. tails shown in

Section 7.1 with the properties of the observability Gramian discussed in Section 7.2, and prove

Lemma 2.2 for the case of a row vector C.

Lemma 7.13. Let Ac and C be given as (7.3) and (7.4). Let β[n] (n ∈ Z+) be a Bernoulli random

process with probability 1 − pe and tn be i.i.d. random variables which are uniformly distributed on

[0, T ] (T > 0). Then, we can find a polynomial p(k) and a family of stopping times {S(ε, k) : k ∈
Z+, ε > 0} such that for all ε > 0, k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km ≤ S(ε, k) and M

satisfying the following conditions:

(i) β[ki] = 1 for 1 ≤ i ≤ m

(ii) M




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(kmI+tkm )Ac




= I

(iii) |M|max ≤ p(S(ε,k))
ε eλ1S(ε,k)I

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP {S(ε, k)− k = s} ≤ pe.

Proof. By Lemma 7.6, instead of conditions (ii) and (iii), it is enough to prove that

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(kmI+tkm )Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤i≤m

e−(kiI+tki )λi .

Furthermore, since ti ≥ 0 it is sufficient to prove that

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(kmI+tkm )Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤i≤m

e−kiI·λi .

Therefore, it is enough to prove the following claim:

We can find a family of stopping times {S(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0 and

k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km ≤ S(ε, k) satisfying the following condition:

(a) β[ki] = 1 for 1 ≤ i ≤ m

(b)

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(kmI+tkm )Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤i≤m e
−kiI·λi

(c) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP {S(ε, k)− k = s} ≤ pe

We will prove the claim by induction on m, the size of the Ac matrix.
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(i) When m = 1,

Since we only have to care about small enough ε, assume ε ≤ |c1|e−2Tλ1 . Denote S(ε, k) :=

inf{n ≥ k : β[n] = 1} and k1 = S(ε, k). Then, β[k1] = 1 and
∣∣∣det

([
c1e
−(k1I+tk1

)(λ1+jω1)
])∣∣∣ ≥

|c1|e−Tλ1e−k1I·λ1 ≥ εe−k1I·λ1 .

Moreover, since S(ε, k)− k is a geometric random variable with probability 1− pe,

exp lim sup
s→∞

sup
k∈Z+

logP {S(ε, k)− k = s} = pe.

Therefore, S(ε, k) satisfies all the conditions of the lemma.

(ii) Now, we assume that the lemma is true for m− 1 and prove the lemma still holds for

m.

First, we will fix k = 0, then we will consider general k ∈ Z+. We will see that the induction

hypothesis corresponds to the cofactor condition of Lemma 7.12, which tells us that the determinant

of the observability Gramian is large enough with high probability.

Let A′c be the (m − 1) × (m − 1) matrix obtained by removing mth row and column of

Ac. Likewise, C′ is a 1× (m− 1) vector obtained by removing mth element of C. Then, since Ac

is given in a Jordan form, we can easily check that once we remove the last element from the row

vector Ce−(kiI+tki )Ac , we get C′e−(kiI+tki )A
′
c . Therefore, we can see that

det







C′e−(k1I+tk1
)A′c

...

C′e−(km−1I+tkm−1
)A′c





 = cofm,m







Ce−(k1I+tk1
)Ac

...

Ce−(kmI+tkm )Ac





 (7.28)

where cofi,j(A) implies the cofactor matrix of A with respect to (i, j) element.

By the induction hypothesis, there exists a stopping time S′(ε, 0) such that we can find

0 ≤ k1 < k2 < · · · < km−1 ≤ S′(ε, 0) satisfying:

(a) β[ki] = 1 for 1 ≤ i ≤ m− 1

(b)

∣∣∣∣∣∣∣∣
det







C′e−(k1I+tk1
)A′c

...

C′e−(km−1I+tkm−1
)A′c







∣∣∣∣∣∣∣∣
≥ ε

∏
1≤i≤m−1 e

−kiI·λi

(c) limε↓0 exp lim sups→∞
1
s logP {S′(ε, 0) = s} ≤ pe.

Let Fi be a σ-field generated by β[0], · · · , β[i], and t0, · · · , ti. Let gε : R+ → R+ be the

function of Lemma 7.12. Denote

p′(ε) := ess sup sup
km∈Z,km−S′(ε,0)≥gε(S′(ε,0))

Pt





∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

...

Ce−(km−1I+tkm−1
)Ac

Ce−(kmI+t)Ac







∣∣∣∣∣∣∣∣∣∣∣

< ε2
∏

1≤i≤m

e−kiI·λi |FS′(ε,0)





.

(7.29)
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Here, given FS′(ε,0), k1, · · · , km−1, tk1 , · · · , tkm−1 , S′(ε, 0) are all fixed, we took the supre-

mum over km such that km − S′(ε, 0) ≥ gε(S
′(ε, 0)), and t is a uniform random variable on [0, T ]

which we computed the probability over.

Since km ≥ S′(ε, 0) + gε(S
′(ε, 0)) ≥ km−1 + gε(km−1) and we have (7.28), (b) implies

cofm,m







Ce−(k1I+tk1
)Ac

...

Ce−(kmI+tkm )Ac





 ≥ ε

∏
1≤i≤m−1 e

−kiI·λi . Thus, by Lemma 7.12 we have limε↓0 p
′(ε) =

0.

Denote S′′(ε, 0) := dS′(ε, 0) + gε(S
′(ε, 0))e. From (ii) of Lemma 7.12 we know gε(k) .

1 + log(k + 1) for all ε > 0. Therefore, by (c) and Lemma 7.1 we have

lim
ε↓0

exp lim sup
s→∞

1

s
logP{S′′(ε, 0) = s} ≤ pe. (7.30)

Denote a stopping time

S′′′(ε, 0)

:= inf





n ≥ S′′(ε) : β[n] = 1 and

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

...

Ce−(km−1I+tkm−1
)Ac

Ce−(nI+tn)Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ ε2e−nI·λm
∏

1≤i≤m−1

e−kiI·λi





.

(7.31)

Since β[n] and tn are independent processes, for S′′′(ε, 0) = n to hold, β[n] = 1 and the

determinant of (7.31) has to be large enough. By (7.29), we already know the probability for the

determinant not being large enough is upper bounded by p′(ε). Therefore, given that S′′′(ε, 0) ≥ n,

the probability that S′′′(ε, 0) 6= n is upper bounded by (pe+(1−pe)p′(ε)) — (erasure) or (not erased

but small determinant). Thus, for all s ∈ Z+, we have

ess supP{S′′′(ε, 0)− S′′(ε, 0) ≥ s|FS′′(ε,0)} ≤ (pe + (1− pe) p′(ε))
s
.

Since we know limε↓0 p
′(ε) = 0, we have

lim
ε↓0

exp lim sup
s→∞

ess sup
1

s
logP{S′′′(ε, 0)− S′′(ε, 0) = s|FS′′(ε,0)} ≤ pe. (7.32)

By applying Lemma 7.2 to (7.30) and (7.32), we can conclude that

lim
ε↓0

exp lim sup
s→∞

1

s
logP{S′′′(ε, 0) = s} ≤ pe.

Therefore, if we denote S(ε, 0) := S′′′(ε
1
2 , 0), S(ε, 0) satisfies all the conditions of the claim when we

fix k = 0.

Here, we know β[n] is stationary process. Thus, to prove the claim for general k ∈ Z+, we

can shift the time index by k. Then, we can find a family of stopping times {S(ε, k) : k ∈ Z+, ε > 0}
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such that for all ε > 0 and k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km ≤ S(ε, k) satisfying the

following condition:

(a’) β[ki] = 1 for 1 ≤ i ≤ m

(b’)

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−((k1−k)I+tk1
)Ac

Ce−((k2−k)I+tk2
)Ac

...

Ce−((km−k)I+tkm )Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤i≤m e
−(ki−k)I·λi

(c’) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP {S(ε, k)− k = s} ≤ pe

Here, we can notice that the condition (b′) is equivalent to

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(kmI+tkm )Ac







∣∣∣∣∣∣∣∣∣∣∣

· | det(ekIAc)| ≥ ε
∏

1≤i≤m

e−(ki−k)I·λi

(⇔)

∣∣∣∣∣∣∣∣∣∣∣

det







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(kmI+tkm )Ac







∣∣∣∣∣∣∣∣∣∣∣

≥ |det(ekIAc)|−1 · ε
∏

1≤i≤m

e−(ki−k)I·λi = ε
∏

1≤i≤m

e−kiI·λi

Therefore, the claim is true for all k ∈ Z+ and the lemma is also true.

Before we prove Lemma 2.2, we will first prove the following lemma which allows us to

merge two Jordan blocks associated with the same eigenvalue into one Jordan block.

Lemma 7.14. Let A be a Jordan block matrix with an eigenvalue λ ∈ C and a size m ∈ N, i.e.

A =




λ 1 · · · 0

0 λ · · · 0
...

...
. . .

...

0 0 · · · λ




. C and C′ are 1×m matrices such that

C =
[
c1 c2 · · · cm

]

C′ =
[
c′1 c′2 · · · c′m

]

where ci, c
′
i ∈ C and c1 6= 0.

For all k ∈ R and m× 1 matrices X =




x1

x2

...

xm




and X′ =




x′1

x′2
...

x′m




, there exists T such that
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(i)T is an upper triangular matrix.

(ii)CekAX + C′ekAX′ = CekA (X + TX′)

Moreover, the diagonal elements of T are
c′1
c1

.

Proof. The proof is an induction on m, the size of the A matrix. The lemma is trivial when m = 1.

Thus, we can assume the lemma is true for m as an induction hypothesis, and consider m+ 1 as the
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dimension of A.

CekAX + C′ekAX′

= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ




X + C′




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ




X′

= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ




X

+

(
c′1
c1

C +
[
0 c′2 −

c′1
c1
c2 · · · c′m+1 −

c′1
c1
cm+1

])




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ




X′

= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ




(
X +

c′1
c1

X′
)

+
[
0 c′2 −

c′1
c1
c2 · · · c′m −

c′1
c1
cm

]




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ




X′

= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ










0

0
...

xm+1 +
c′1
c1
x′m+1




+




x1 +
c′1
c1
x′1

x2 +
c′1
c1
x′2

...

0







+
[
c′2 −

c′1
c1
c2 c′3 −

c′1
c1
c3 · · · c′m+1 −

c′1
c1
cm+1

]




ekλ k
1!e

kλ · · · km−1

(m−1)!e
kλ

0 ekλ · · · km−2

(m−2)!e
kλ

...
...

. . .
...

0 0 · · · ekλ







x′2

x′3
...

x′m+1



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= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ







0

0
...

xm+1 +
c′1
c1
x′m+1




+
[
c1 c2 · · · cm

]




ekλ k
1!e

kλ · · · km−1

(m−1)!e
kλ

0 ekλ · · · km−2

(m−2)!e
kλ

...
...

. . .
...

0 0 · · · ekλ







x1 +
c′1
c1
x′1

x2 +
c′1
c1
x′2

...

xm +
c′1
c1
x′m




+
[
c′2 −

c′1
c1
c2 c′3 −

c′1
c1
c3 · · · c′m+1 −

c′1
c1
cm+1

]




ekλ k
1!e

kλ k
2!e

kλ · · · km−1

(m−1)!e
kλ

0 ekλ k
1!e

kλ · · · km−2

(m−2)!e
kλ

...
...

...
. . .

...

0 0 0 · · · ekλ







x′2

x′3
...

x′m+1




= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ







0

0
...

xm+1 +
c′1
c1
x′m+1




+
[
c1 c2 · · · cm

]




ekλ k
1!e

kλ · · · km−1

(m−1)!e
kλ

0 ekλ · · · km−2

(m−2)!e
kλ

...
...

. . .
...

0 0 · · · ekλ










x1 +
c′1
c1
x′1

x2 +
c′1
c1
x′2

...

xm +
c′1
c1
x′m




+




t′1,1 t′1,2 · · · t′1,m

0 t′2,2 · · · t′2,m
...

...
. . .

...

0 0 · · · t′m,m







x′2

x′3
...

x′m+1







(7.33)

= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · ekλ










0

0
...

xm+1 +
c′1
c1
x′m+1




+




x1 +
c′1
c1
x′1

x2 +
c′1
c1
x′2

...

0




+




t′1,1 t′1,2 · · · t′1,m

0 t′2,2 · · · t′2,m
...

...
. . .

...

0 0 · · · 0







x′2

x′3
...

x′m+1







= C




ekλ k
1!e

kλ · · · km

m! e
kλ

0 ekλ · · · km−1

(m−1)!e
kλ

...
...

. . .
...

0 0 · · · k
1!e

kλ

0 0 · · · ekλ










x1

x2

...

xm+1




+




c′1
c1

t′1,1 · · · t′1,m

0
c′1
c1

· · · t′2,m
...

...
. . .

...

0 0 · · · c′1
c1







x′1

x′2
...

x′m+1







where (7.33) follows from the induction hypothesis. The lemma is true.

Now, we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. The proof is an induction on m, the size of matrix Ac. Recall that here C can
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be a general matrix, so we use the definitions of Ac,C given as (2.28), (2.29).

(i) When m = 1,

In this case, the system is scalar, and the lemma is trivially true. A rigorous proof goes as

follows: Since (Ac,C) is observable, we can find a 1× l matrix L such that LC is not zero. Then,

(Ac,LC) is observable, and the lemma is reduced to Lemma 7.13.

(ii) We will assume that the lemma holds for (m− 1)-dimensional systems as an induction

hypothesis, and prove the lemma holds for m.

The proof goes in three steps. First, we reduce the system to a system with scalar ob-

servations to apply Lemma 7.13. Then, we estimate one of the states, and subtract the estimation

from the system — this procedure is known as successive decoding in information theory. Now, the

system reduces to an (m− 1)-dimensional one, so we apply the induction hypothesis.

To do this, we define x :=




x1,1

x1,2

...

xµ,νµ




where xi,j are mi,j × 1 vectors, and (x1,ν1)m1,ν1
as the

m1,ν1th element of x1,ν1 . We also define (x)k as the kth element of a vector x in general. Here, x

can be thought as the states of the system. We first decode (x1,ν1)m1,ν1
, and decode the remaining

elements in x.

• Reduction to Systems with Scalar Observations: By Lemma 7.13, we already know that

the lemma is true for systems with scalar observations. Therefore, we will reduce a general system

with vector observations to a system with scalar observations.

Claim 7.2. There exist L,C′,A′,x′ that satisfy the following conditions.

(i) L is a 1× l row vector.

(ii) A′ is a m′ ×m′ square matrix given in Jordan form. The eigenvalues of A′ belong to {λ1 +

jω1, · · · , λµ + jωµ} which is the set of eigenvalues of A. The first Jordan block of A′ is equal to

A1,ν1 .

(iii) C′ is a l ×m′ matrix and (A′,LC′) is observable.

(iv) x′ is a m′ × l column vector. (x′)m1,ν1
= (x1,ν1)m1,ν1

.

(v) LCe−kAcx = LC′e−kA
′
x′.

What this claim implies is the following. By multiplying the matrix L to the vector ob-

servations, we can obtain scalar observations. However, the resulting system may not be observable

any more. Therefore, we will carefully design the L matrix and reduced system matrices A′, C′,

so that the system remains observable even with a scalar observation and the information about

(x1,ν1)m1,ν1
remains intact. Furthermore, since the reduced system (A′,LC′) has a scalar observa-

tion, all eigenvalues of A′ has to be distinct to make the reduced system observable.

Proof. Since the first columns of C1,1,C1,2, · · · ,C1,ν1 are linearly independent, there exists a 1× l
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matrix L such that the first elements of LC1,1,LC1,2, · · · ,LC1,ν1−1 are zeros and the first element

of LC1,ν1 is non-zero. Then, we can observe that

LCe−kAcx = L
[
C1,1 · · · Cµ,νµ

]



e−kA1,1 · · · 0
...

. . .
...

0 · · · e−kAµ,νµ







x1,1

...

xµ,νµ




= LC1,1e
−kA1,1x1,1 + LC1,2e

−kA1,2x1,2 + · · ·+ LCµ,νµe
−kAµ,νµxµ,νµ (7.34)

Recall that the Jordan blocks Ai,1, · · · ,Ai,νi correspond to the same eigenvalue. We will merge these

Jordan blocks into one Jordan block. However, since the size of Jordan blocks Ai,1, · · · ,Ai,νi are

distinct, we will extend the small Jordan blocks to the size of the largest one by adding zero elements.

Let the dimension of Ai,ν̄i be the largest among Ai,1, · · · ,Ai,νi , and mi,ν̄i be the corresponding

dimension. Then, we define C̄i,j as a matrix where the first mi,ν̄i −mi,j vectors are all zeros, and

the remaining vectors are the same as those of Ci,j. Āi,j is defined as the same matrix as Ai,ν̄i .

x̄i,j is defined as a column vector whose first mi,ν̄i −mi,j elements are all zeros, and the remaining

elements are those of xi,j.

Then, by the construction, we know

(7.34) = LC̄1,1e
−kĀ1,1 x̄1,1 + LC̄1,2e

−kĀ1,2 x̄1,2 + · · ·+ LC̄µ,νµe
−kĀµ,νµ x̄µ,νµ .

Furthermore, A1,ν1 = Ā1,ν1 , C1,ν1 = C̄1,ν1 , x1,ν1 = x̄1,ν1 . The first elements of LC1,1, LC1,2, · · · ,
LC1,ν1−1 are zeros and the first element of LC1,ν1 is non-zero.

Now, we get the same dimension systems (Āi,1,LC̄i,1), · · · , (Āi,νi ,LC̄i,νi). However, none

of them might be observable. Thus, we will truncate the matrices to make sure that at least one

of them is observable. Recall that since LC̄i,j is a row vector and Āi,j is a single Jordan block, the

system is observable as long as the first element of LC̄i,j is not zero. Thus, we will truncate the

matrices until we see at least one nonzero element among the first elements of LC̄i,1, · · · , LC̄i,νi . Let

ki be the smallest number such that at least one of the kith elements of LC̄i,1, · · · ,LC̄i,νi becomes

nonzero, and let LC̄i,ν?i
be the vector that achieves the minimum.

Then, we will reduce the dimensions of (Āi,j,LC̄i,j) by truncating the first (ki−1) vectors.

Define C′i,j as the matrix obtained by removing the first (ki− 1) columns from C̄i,j, A′i,j as a vector

obtained by removing the first (ki − 1) rows and columns from Āi,j, and x′i,j as a vector obtained

by removing the first (ki − 1) elements from x̄i,j.

Then, by construction, the resulting systems (A′i,ν?i
,LC′i,ν?i

) are observable. We can also see

that ν?1 = ν1, C′1,ν?1 = C̄1,ν1 = C1,ν1 , A′1,ν?1 = Ā1,ν1 = A1,ν1 , and x′1,ν?1 = x̄1,ν1 = x1,ν1 . In words,

the Jordan block A1,ν1 was not affected by the above manipulations. Moreover, by construction,

the first elements of LC′1,1, · · · ,LC′1,ν1−1 are all zero.

Denote C′ :=
[
C′1,ν?1 C′2,ν?2 · · · C′µ,ν?µ

]
and A′ := diag{A′1,ν?1 ,A

′
2,ν?2

, · · · ,A′µ,ν?µ}. Then,
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(7.34) can be written as follows:

(7.34) = LC′1,1e
−kA′1,1x′1,1 + LC′1,2e

−kA′1,2x′1,2 + · · ·+ LC′µ,νµe
−kA′µ,νµx′µ,νµ

= LC′1,ν?1e
−kA′1,ν?1 (x′1,ν?1 +

∑

j∈{1,··· ,ν1}\ν?1

T1,jx
′
1,j) + · · ·

+ LC′µ,ν?µe
−kA′µ,ν?µ (x′µ,ν?µ +

∑

j∈{1,··· ,νµ}\ν?µ

Tµ,jx
′
µ,j) (7.35)

=
[
LC′1,ν?1 · · · LC′1,ν?µ

]



e
−kA′1,ν?1 · · · 0

...
. . .

...

0 · · · e
−kA′µ,ν?µ







x′1,ν?1 +
∑
j∈{1,··· ,ν1}\ν?1

T1,jx
′
1,j

...

x′µ,ν?µ +
∑
j∈{1,··· ,νµ}\ν?µ

Tµ,jx
′
µ,j




︸ ︷︷ ︸
:=x′

= LC′e−kA
′
x′

where (7.35) follows from Lemma 7.14. Here, we can easily see that A′ satisfies the condition (ii) of

the claim, and (A′,LC′) is observable since each (A′i,ν?i
,LC′i,ν?i

) is observable.

Moreover, by Lemma 7.14, we know that T1,1, · · · ,T1,ν1−1 are upper triangular matrices

whose diagonal elements are zeros. Therefore, (x′)m1,ν1
= (x′1,ν1)m1,ν1

= (x1,ν1)m1,ν1
. Therefore,

the condition (iv) of the claim is also satisfied.

• Decoding (x1,ν1)m1,ν1
: Now, we reduced the system to a system with a scalar observation.

Then, we can apply Lemma 7.13 to decode (x1,ν1)m1,ν1
.

Claim 7.3. We can find a polynomial p′(k) and a family of stopping times {S′(ε, k) : k ∈ Z+, ε > 0}
such that for all ε > 0, k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km′ ≤ S′(ε, k) and M′

1 satisfying:

(i) β[ki] = 1 for 1 ≤ i ≤ m′

(ii) M′
1




L 0 · · · 0

0 L · · · 0
...

...
. . .

...

0 0 · · · L







Ce−(k1I+tk1
)A

Ce−(k2I+tk2
)A

...

Ce−(km′I+tkm′
)A




x = (x1,ν1)m1,ν1

(iii) |M′
1|max ≤

p′(S′(ε,k))
ε eλ1S

′(ε,k)I

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP{S′(ε, k)− k = s} ≤ pe.

This claim is showing that there exists an estimator M′
1diag{L, · · · ,L} which can estimate

the state (x1,ν1)m1,ν1
with observations at time k1, · · · , km.

Proof. By construction, (A′,LC′) is observable and LC′ is a row vector. Thus, by Lemma 7.13 we

can find a polynomial p′(k) and a family of stopping times {S′(ε, k) : k ∈ Z+, ε > 0} such that for

all ε > 0, k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km′ ≤ S′(ε, k) and M′ satisfying:

(i) β[ki] = 1 for 1 ≤ i ≤ m′
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(ii) M′




LC′e−(k1I+tk1
)A′

LC′e−(k2I+tk2
)A′

...

LC′e−(km′I+tkm′
)A′




= I

(iii) |M′|max ≤
p′(S′(ε,k))

ε eλ1S
′(ε,k)I

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP{S′(ε, k)− k = s} ≤ pe.

Let M′
1 be the m1,ν1th row of M′. Then,

M′
1




L 0 · · · 0

0 L · · · 0
...

...
. . .

...

0 0 · · · L







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(km′I+tkm′ )Ac




x = M′
1




LCe−(k1I+tk1
)Acx

LCe−(k2I+tk2
)Acx

...

LCe−(km′I+tkm′
)Acx




= M′
1




L′C′e−(k1I+tk1
)A′x′

L′C′e−(k2I+tk2
)A′x′

...

L′C′e−(km′I+tkm′
)A′x′




(∵ Claim 7.2 (v))

= M′
1




L′C′e−(k1I+tk1
)A′

L′C′e−(k2I+tk2
)A′

...

L′C′e−(km′I+tkm′
)A′




x′ = (x′)m1,ν1
= (x1,ν1)m1,ν1

(∵ Claim 7.2 (iv)).

• Subtracting (x1,ν1)m1,ν1
from the observations: Now, we have an estimate for (x1,ν1)m1,ν1

.

We will remove it from the system. A′′,C′′ and x′′ are the system matrices after the removal. For-

mally, A′′,C′′ and x′′ are obtained by removing
∑

1≤i≤νi m1,ith row and column from Ac, removing
∑

1≤i≤νi m1,ith row from C and removing
∑

1≤i≤νi m1,ith component from x respectively.

Obviously, A′′ ∈ C(m−1)×(m−1) and C′′ ∈ Cl×(m−1). Moreover, since the last element of

the Jordan block A1,ν1 is removed and the observability only depends on the first element, (A′′,C′′)

is observable. Denote λ′′1 + ω′′1 be the eigenvalue of A′′ with the largest real part. Then, trivially

λ′′1 ≤ λ1.

The new system (A′′,C′′) and the original system (A,C) are related as follows. Denote

the
∑

1≤i≤νi m1,ith column of Ce−kAc as R(k). Then, we have

Ce−kAcx−R(k)(x1,ν1)m1,ν1
= C′′e−kA′′x′′ (7.36)

which can be easily proved from the block diagonal structure of Ac. We can further see that there

exists a polynomial p′′′(k) such that |R(k)|max ≤ p′′′(k)e−kλ1 .
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• Decoding the remaining element of x: We decoded and subtracted the state (x1,ν1)m1,ν1

from the system. Now, we can apply the induction hypothesis to the remaining (m−1)-dimensional

system and estimate the remaining states.

By the induction hypothesis, for given S′(ε, k), we can find m′′ ∈ Z and a polynomial p′′(k)

and a family of stopping time {S′′(ε, S′(ε, k)) : S′(ε, k) ∈ Z+, 0 < ε < 1} such that for all 0 < ε < 1

there exist S′(ε, k) < km′+1 < · · · < km′′ ≤ S′′(ε, S′(ε, k)) and a (m − 1) × (m′′ −m′)l matrix M′′

satisfying the following conditions:

(i) β[ki] = 1 for m′ + 1 ≤ i ≤ m′′

(ii) M′′




C′′e
−(km′+1I+tkm′+1

)A′′

C′′e
−(km′+2I+tkm′+2

)A′′

...

C′′e−(km′′I+tkm′′
)A′′




= I(m−1)×(m−1)

(iii) |M′′|max ≤
p′′(S′′(ε,S′(ε,k)))

ε eλ
′′
1 S
′′(ε,S′(ε,k))I

(iv) limε↓0 exp lim sups→∞ ess sup 1
s logP{S′′(ε, S′(ε, k))− S′(ε, k) = s|FS′(ε,k)} ≤ pe

where Fn is the σ-field generated by β[0], · · · , β[n] and t0, · · · , tn.
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Then,

x′′ = M′′




C′′e
−(km′+1I+tkm′+1

)A′′

C′′e
−(km′+2I+tkm′+2

)A′′

...

C′′e−(km′′I+tkm′′
)A′′




x′′

= M′′




Ce
−(km′+1I+tkm′+1

)Acx−R(km′+1I + tkm′+1
)(x1,ν1)m1,ν1

Ce
−(km′+2I+tkm′+2

)Acx−R(km′+2I + tkm′+2
)(x1,ν1)m1,ν1

...

Ce−(km′′I+tkm′′
)Acx−R(km′′I + tkm′′ )(x1,ν1)m1,ν1




(7.37)

= M′′







Ce
−(km′+1I+tkm′+1

)Ac

Ce
−(km′+2I+tkm′+2

)Ac

...

Ce−(km′′I+tkm′′
)Ac




x−




R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...

R(km′′I + tkm′′ )




(x1,ν1)m1,ν1




= M′′







Ce
−(km′+1I+tkm′+1

)Ac

Ce
−(km′+2I+tkm′+2

)Ac

...

Ce−(km′′I+tkm′′
)Ac




x−




R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...

R(km′′I + tkm′′ )




M′
1




L 0 · · · 0

0 L · · · 0
...

...
. . .

...

0 0 · · · L







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(km′I+tkm′
)Ac




x




(7.38)

= M′′



−




R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...

R(km′′I + tkm′′ )




M′
1




L 0 · · · 0

0 L · · · 0
...

...
. . .

...

0 0 · · · L




I







Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...

Ce−(km′′I+tkm′′
)Ac




x

where (7.37) follows from (7.36), and (7.38) follows from the condition (ii) of Claim 7.3. Therefore,

we can recover the remaining states of x.
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Moreover, we have

∣∣∣∣∣∣∣∣∣∣∣

M′′



−




R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...

R(km′′I + tkm′′ )




M′
1




L 0 · · · 0

0 L · · · 0
...

...
. . .

...

0 0 · · · L




I




∣∣∣∣∣∣∣∣∣∣∣
max

. |M′′|max ·max





∣∣∣∣∣∣∣∣∣∣∣




R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...

R(km′′I + tkm′′ )




∣∣∣∣∣∣∣∣∣∣∣
max

|M′
1|max |L|max , 1





.
p′′(S′′(ε, S′(ε, k)))

ε
eλ
′′
1 S
′′(ε,S′(ε,k))I

·max

{
p′′′(km′′I + tkm′′ )e

−λ1(km′+1I+tkm′+1
) · p

′(S′(ε, k))

ε
eλ1S

′(ε,k)I · |L|max , 1
}

.
p̄(S′′(ε, S′(ε, k)))

ε2
eλ1S

′′(ε,S′(ε,k))I (∵ S′(ε, k) < km′+1 < km′′ ≤ S′′(ε, S′(ε, k)), λ′′1 ≤ λ1)

for some polynomial p̄(k). Since for some ¯̄p(k)

|M′
1|max ≤

p′(S′(ε, k))

ε
eλ1S

′(ε,k)I ≤
¯̄p(S′′(ε, S′(ε, k)))

ε2
eλ1S

′′(ε,S′(ε,k))I

and we can recover x from x′′ and (x1,ν1)m1,ν1
, there exists M and a polynomial p(k) such that

M




Ce−(k1I+tk1
)Ac

...

Ce−(km′′I+tkm′′
)Ac


 = Im×m

and

|M|max ≤
p(S′′(ε, S′(ε, k)))

ε2
eλ1S

′′(ε,S′(ε,k))I .

Moreover, since

lim
ε↓0

exp lim sup
s→∞

ess sup logP{S′′(ε, S′(ε, k))− S′(ε, k)|FS′(ε,k)} ≤ pe

and

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

logP{S′(ε, k)− k} ≤ pe,

by Lemma 7.2

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

logP{S′′(ε, S′(ε, k))− k} ≤ pe.

Therefore, by putting S(ε, k) := S′′(ε
1
2 , S′(ε

1
2 , k)), S(ε, k) satisfies all the conditions of the lemma.
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7.5 Lemmas about the Observability Gramian of Discrete-

Time Systems

Now, we will consider the discrete-time systems discussed in Section 2.6. Like the continu-

ous time case, we start from a simpler case when C is a row vector and A has no eigenvalue cycles.

The definitions corresponding to (2.35) for the row vector case are given as follows: Let A be a

m×m Jordan form matrix and C be 1×m row vector which can be written as

A = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ} (7.39)

C =
[
C1,1,C1,2, · · · ,C1,ν1 , · · · ,Cµ,1, · · · ,Cµ,νµ

]
(7.40)

where

Ai,j is a Jordan block with eigenvalue λi,je
j2πωi,j and size mi,j

mi,1 ≤ mi,2 ≤ · · · ≤ mi,νi for all i = 1, · · · , µ

λi,1 = λi,2 = · · · = λi,νi for all i = 1, · · · , µ

λ1,1 > λ2,1 > · · · > λµ,1 ≥ 1

{λi,1, · · · , λi,νi} is cycle with length νi and period pi

For all (i, j) 6= (i′, j′), ωi,j − ωi′,j′ /∈ Q

Ci,j is a 1×mi,j complex matrix and its first element is non-zero

λie
j2πωi is (i, i) element of A.

Here, we can notice that A has no eigenvalue cycles since ωi,j − ωi′,j′ /∈ Q for all (i, j) 6= (i′, j′),

and C is a row vector. By Theorem 2.6, the condition that the first elements of Ci,j are non-zero

corresponds to the observability condition of (A,C) since C is a row vector.

Let’s state lemmas which parallel Lemma 7.6 and Lemma 7.8. In fact, the proofs of the

lemmas are very similar to those of Lemma 7.6 and Lemma 7.8 and we omit the proofs here.

Lemma 7.15. Let A and C be given as (7.39) and (7.40). Then, there exists a polynomial p(k)

such that for all ε > 0 and 0 ≤ k1 ≤ · · · ≤ km, if

∣∣∣∣∣∣∣∣∣∣∣

det







CA−k1

CA−k2

...

CA−km







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤i≤m

λ−kii
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then
∣∣∣∣∣∣∣∣∣∣∣




CA−k1

CA−k2

...

CA−km




∣∣∣∣∣∣∣∣∣∣∣
max

≤ p(km)

ε
λkm1

Proof. It can be easily proved in a similar way to Lemma 7.6.

Lemma 7.16. Let A and C be given as (7.39) and (7.40). Define ai,j and Ci,j as the (i, j) element

and cofactor of




CA−k1

CA−k2

...

CA−km




respectively. Then there exists gε(k) : R+ → R+ and a ∈ R+ such that

for all ε > 0 and k1, · · · , km satisfying

(i)0 ≤ k1 < k2 < · · · < km

(ii)km − km−1 ≥ gε(km−1)

(iii)gε(k) ≤ a(1 + log(k + 1))

(iv)

∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

am,iCm,i

∣∣∣∣∣∣
≥ ε

∏

1≤i≤m

λi
−ki

the following inequality holds:

∣∣∣∣∣∣∣∣∣∣∣

det







CA−k1

CA−k2

...

CA−km







∣∣∣∣∣∣∣∣∣∣∣

≥ 1

2
ε
∏

1≤i≤m

λi
−ki .

Proof. It can be easily proved in a similar way to Lemma 7.8.

Like the continuous-time case, these lemmas reduce questions about the inverse of the

observability Gramian to questions about the determinant of the observability Gramian.

7.6 Uniform Convergence of Sequences satisfying Weyl’s cri-

terion (Discrete-Time Systems)

As we did in the continuous-time case, we will prove that the determinant of the ob-

servability matrix is large enough regardless of the erasure pattern. The main difference from the
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continuous-time case of Appendix 7.3 is the measure that must be used. While we used the Lebesgue

measure to measure the bad event —the event that the determinant of the observability matrix is

small—, we use the counting measure in this section.

The main idea of this section is approximating aperiodic deterministic sequences by random

variables using ergodic theory [54]. The necessary and sufficient condition for a sequence to behave

like uniformly distributed random variables in [0, 1] is known as Weyl’s criterion. We first state a

general ergodic theorem, and derive the Weyl’s criterion as a corollary.

Theorem 7.2 (Koksma and Szusz inequality [54]). Consider a s-dimensional sequence x1,x2, · · · ∈
Rs, and let α := (α1, · · · , αs) and β := (β1, · · · , βs). For any positive integer m, we have

sup
0≤αi<βi≤1

∣∣∣∣∣∣
A ([α, β);N, {xn})

N
−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣

≤ 2s23s+1


 1

m
+

∑

h∈Zs,0<|h|∞≤m

1

r(h)

∣∣∣∣∣∣
1

N

∑

1≤n≤N

e2π
√
−1〈h,xn〉

∣∣∣∣∣∣




where

A ([α, β);N, {xn}) :=
∑

1≤n≤N

1 {xn ∈ [α1, β1)× [α2, β2) · · · × [αs, βs)} (7.41)

r(h) :=
∏

1≤j≤s

max{|hj |, 1}.

Proof. See [54] for the proof.

Here, we can see A([α, β);N, {xn}) is the counting measure of the event that a sequence

falls in the set [α, β). The theorem tells us that the counting measure is close to the Lebesgue

measure of the set [α, β) uniformly over all α, β.

Using this theorem, we can easily derive2 the Weyl’s criterion for a family of sequences.

Definition 7.2. Consider a family of s-dimensional sequences J = {(x1,σ,x2,σ, · · · ) : σ ∈ J, xi,σ ∈
Rs}. Here, the index set for the sequences, J , can be infinite. If for all h ∈ Zs \ {0},

lim
N→∞

sup
σ∈J

∣∣∣∣∣∣
1

N

∑

1≤n≤N

ej2π〈h,xn,σ〉

∣∣∣∣∣∣
= 0

then the family of sequences is said to satisfy Weyl’s criterion.

Theorem 7.3 (Weyl’s criterion [54]). Consider a family of s-dimensional sequences J = {(x1,σ,x2,σ, · · · ) :

σ ∈ J, xi,σ ∈ Rs}, which satisfy the Weyl’s criterion. Then, this family of sequences satisfies

lim
N→∞

sup
σ∈J

sup
0≤αi<βi≤1

∣∣∣∣∣∣
A ([α, β);N, {xn,σ})

N
−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣
= 0,

2The original Weyl’s criterion [54] is shown for only one sequence. Here we extend Weyl’s criterion to a family of
sequences. For this, we state a generalized theorem of the Weyl’s criterion and prove it.
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where the definition of A ([α, β);N, {xn,σ}) is given in (7.41).

Proof. By Theorem 7.2, for any positive integer m, we have

sup
σ∈J

sup
0≤αi<βi≤1

∣∣∣∣∣∣
A ([α, β);N, {xn,σ})

N
−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣

≤ sup
σ∈J

2s23s+1


 1

m
+

∑

0<|h|∞≤m

1

r(h)

∣∣∣∣∣∣
1

N

∑

1≤n≤N

e2πj〈h,xn,σ〉

∣∣∣∣∣∣


 (7.42)

To prove the theorem, it is enough to show that for all δ > 0 there exists N ′ such that for all N > N ′

sup
σ∈J

sup
0≤αi<βi≤1

∣∣∣∣∣∣
A ([α, β);N, {xn,σ})

N
−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣
< δ. (7.43)

Let’s choose m := 4s23s+1

δ so that

2s23s+1

m
<
δ

2
. (7.44)

Once we fixm, there are only (2m+1)s number of h ∈ Zs such that |h|∞ ≤ m. Furthermore,

by the definition of Weyl’s criterion, we can find N ′′ such that for all N > N ′′,

sup
σ∈J

∣∣∣∣∣∣
1

N

∑

1≤n≤N

ej2π〈h,xn,σ〉

∣∣∣∣∣∣
<

1

(2m+ 1)s2s23s+1

δ

2
.

Thus, we can find N ′′ such that for all N > N ′′ the following holds:

2s23s+1sm+1 max
0<|h|∞≤m

sup
σ∈J

∣∣∣∣∣∣
1

N

∑

1≤n≤N

ej2π〈h,xn,σ〉

∣∣∣∣∣∣
<
δ

2
. (7.45)

Therefore, by plugging (7.44), (7.45) into (7.42), we can prove (7.43). Thus, the theorem is true.

Since we are mainly interested in the fractional part of sequences, it will be helpful to denote

〈x〉 := x− bxc. Although 〈x,y〉 is the inner product between two vectors, these two definitions can

be distinguished by counting the number of arguments. Let’s consider some specific sequences, and

see whether they satisfy Weyl’s criterion.

Example 7.1.
(〈√

2n
〉
,
〈√

3n
〉)

satisfies Weyl’s criterion and
(〈√

2n
〉
,
〈
(
√

2 +
√

3)n
〉)

does too.
(〈√

2n
〉
,
〈(√

2 + 0.5
)
n
〉)

does not satisfy Weyl’s criterion and neither does
(〈√

2n
〉
,
〈√

2
2 n
〉)

.

Therefore, among general sequences in the form of (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉), there are

sequences which satisfy Weyl’s criterion and others do not. However, the following lemma reveals

all sequences can be written as linear combinations of basis sequences which satisfy Weyl’s criterion.

This idea is very similar to that linear-algebraic concepts like linear decomposition and basis.
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Lemma 7.17. Consider an m-dimensional sequence (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉). Then, there exists

k ≤ m and p ∈ N such that

ωi =
qi,0
p

+
∑

1≤j≤k

qi,jγj

where

qi,j ∈ Z,

(〈γ1n〉 , 〈γ2n〉 , · · · , 〈γkn〉) satisfies Weyl’s criterion.

Proof. Before the proof, we can observe the following two facts.

First, since as long as 〈h,w〉 is not an integer,

1

N

∑

1≤n≤N

ej2π〈h,(〈ω1n〉,〈ω2n〉,··· ,〈ωmn〉)〉 =
1

N

ej2π(h1ω1+h2ω2+···+hmωm)
(
1− ej2πN(h1ω1+h2ω2+···+hmωm)

)

1− ej2π(h1ω1+h2ω2+···+hmωm)
,

the statement that the sequence (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) does not satisfy Weyl’s criterion is equiv-

alent to there being h1, h2, · · · , hm ∈ Z that are not identically zero and make

h1ω1 + h2ω2 + · · ·+ hmωm ∈ Z. (7.46)

The second observation is that if (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) satisfies Weyl’s criterion then

for all a1, · · · , am ∈ N, (
〈
ω1

a1
n
〉
,
〈
ω2

a2
n
〉
, · · · ,

〈
ωm
am
n
〉

) also satisfies Weyl’s criterion. To see this,

suppose (
〈
ω1

a1
n
〉
,
〈
ω2

a2
n
〉
, · · · ,

〈
ωm
am
n
〉

) did not satisfy Weyl’s criterion. Then, by (7.46) there would

exist (h1, h2, · · · , hm) ∈ Zm \ {0} such that h1
ω1

a1
+ h2

ω2

a2
+ · · · + hm

ωm
am
∈ Z. So,

h1
∏

1≤i≤m ai

a1
ω1 +

h2
∏

1≤i≤m ai

a2
ω2 + · · · + hm

∏
1≤i≤m ai

am
ωm ∈ Z as well as (

h1
∏

1≤i≤m ai

a1
, · · · , hm

∏
1≤i≤m ai

am
) ∈ Zm \ {0}.

But since (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) would not satisfy Weyl’s criterion, this causes a contradiction.

Now, we will prove the lemma by induction on m.

(i) When m = 1,

If 〈ω1n〉 satisfies Weyl’s criterion, the lemma is trivially true by selecting γ1 = ω1 and

q1,1 = 1. If 〈ω1n〉 does not satisfy Weyl’s criterion, then by (7.46), ω1 is a rational number. So we

can find q1,0 and p such that ω1 =
q1,0
p , and set the k = 0.

(ii) Assume that the lemma is true for m− 1.

If (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) satisfies Weyl’s criterion, the lemma follows by selecting k =

m, γi = ωi and qi,i = 1.

If (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) does not satisfy Weyl’s criterion, by (7.46) there exists (h1,

h2, · · · , hm) ∈ Zm \ {0} and h ∈ Z such that h1ω1 + h2ω2 + · · · + hmωm = h. Without loss of

generality, let’s say h1 6= 0. Then

ω1 = −h2

h1
ω2 −

h3

h1
ω3 − · · · −

hm
h1
ωm +

h

h1
. (7.47)
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By the induction hypothesis, we know that there exists k′ ≤ m − 1, p′ ∈ N, q′i,j ∈ Z, γ′i

such that

ω2 =
q′2,0
p′

+
∑

1≤j≤k′
q′2,jγ

′
j

...

ωm =
q′m,0
p′

+
∑

1≤j≤k′
q′m,jγ

′
j . (7.48)

where (〈γ′1n〉 , 〈γ′2n〉 , · · · , 〈γ′kn〉) satisfies Weyl’s criterion. Therefore, by plugging (7.48) to (7.47)

we can find q′1,j ∈ Z such that

ω1 =
q′1,0
|h1 · p′|

+
∑

1≤i≤k

q′1,i
γ′i
h1
.

By the second observation, (
〈
γ′1
h1
n
〉
,
〈
γ′2
h1
n
〉
, · · · ,

〈
γ′k
h1
n
〉

) satisfies Weyl’s criterion, so we can use

p = |h1 · p′| and γi =
γ′i
h1

to show that the lemma also holds for m.

Therefore, by induction the lemma is true.

Now, we can decompose the sequences into basis sequences which satisfy Weyl’s criterion,

and so behave like uniform random variables. The main difference from the uniform convergence

discussion of Appendix 7.3 is the number of random variables. In other words, in continuous-time

systems with random jitter, only one random variable is introduced at each sample for the random

jitter. However, this is not the case in discrete-time systems.

Let A1 =

[
ej
√

2 0

0 ej2
√

2

]
, A2 =

[
ej
√

2 0

0 ej
√

3

]
, C =

[
1 1

]
. The row of the observability

gramian of (A1,C) is CA1
n =

[
ej
√

2n ej2
√

2n
]
. In this case, the elements of CA1

n do not satisfy

Weyl’s criterion. Thus, it can be approximated by
[
ejX ej2X

]
where X is uniform in [0, 2π]. This

involves only one random variable.

However, the row of the observability gramian of (A2,C) is CA2
n =

[
ej
√

2n ej
√

3n
]

whose

elements satisfy Weyl’s criterion. Thus, it can be approximated by
[
ejX1 ejX2

]
where X1, X2 are

independent uniform random variables in [0, 2π], and so involves two random variables.

Therefore, the lemmas derived in Appendix 7.3 have to be generalized to multiple random

variables, and then the multiple random variables can be used to model deterministic sequences.

Intuitively, adding more randomness should not cause any problems, so generalization to

multiple random variables must be possible. We first extend Lemma 7.10 which was written for a

single random variable to multiple random variables.

Lemma 7.18. Let X be (X1, X2, · · · , Xν) where Xi are i.i.d. random variables whose distribution

is uniform between 0 and 2π. Let k1,k2, · · · ,kµ ∈ Rν be distinct. Then, for strictly positive γ, Γ
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(γ ≤ Γ), and m ∈ {1, · · · , µ}

sup
|am|≥γ,|ai|≤Γ,ai∈C

P{|
µ∑

i=1

aie
j<ki,X>| < ε} → 0 as ε ↓ 0.

Proof. We will prove the lemma by induction on ν, the number of random variables.

(i) When ν = 1. The lemma reduces to Lemma 7.10.

(ii) Let’s assume the lemma is true for 1, · · · , ν − 1.

Without loss of generality, we can assume m = 1 by symmetry. We will prove the lemma

by dividing into cases based on ki. Let the jth component of ki be denoted as kij .

First, consider the case when k1,1 = k2,1 = · · · = kµ,1. Then,

sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑

i=1

aie
j<ki,X>| < ε} = sup

|a1|≥γ,|ai|≤Γ

P{|
µ∑

i=1

aie
j
∑

1≤j≤ν ki,jXj | < ε}

= sup
|a1|≥γ,|ai|≤Γ

P{|ejk1,1X1 | · |
µ∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε}

= sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε} → 0 (∵ induction hypothesis).

Second, consider the case when ki,1 6= kj,1 for some i, j. Without loss of generality, we can

assume that k1,1 = k2,1 = · · · = kµ1,1 and k1,1 6= kj,1 for all µ1 < j ≤ µ. Then, for all ε′ > 0, we

have

sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑

i=1

aie
j<ki,X>| < ε}

= sup
|a1|≥γ,|ai|≤Γ

P{|
µ1∑

i=1

aie
j<ki,X> +

µ∑

i=µ1+1

aie
j<ki,X>| < ε}

≤ sup
|a1|≥γ,|ai|≤Γ

P{|
µ1∑

i=1

aie
j<ki,X> +

µ∑

i=µ1+1

aie
j<ki,X>| < ε

∣∣∣|
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | ≥ ε′}

+ P{|
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}

= sup
|a1|≥γ,|ai|≤Γ

P{|(
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj )ejk1,1X1 +

µ∑

i=µ1+1

aie
j<ki,X>| < ε

∣∣∣|
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | ≥ ε′}

+ P{|
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}

≤ sup
|a′1|≥ε′,|a′i|≤µΓ

PX1{|a′1ejk1,1X1 +

µ∑

i=µ1+1

a′ie
jki,1X1 | < ε}+ sup

|a1|≥γ,|ai|≤Γ

P{|
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}.
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Therefore, by the induction hypothesis (since the first term has only one random variable, and the

second term has ν − 1 random variables)

lim
ε→0

sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑

i=1

aie
j<ki,X>| < ε}

≤ lim
ε′→0

lim
ε→0

sup
|a′1|≥ε′,|a′i|≤µΓ

P{|a′1ejk1,1X1 +

µ∑

i=µ1+1

a′ie
jki,1X1 | < ε}+ sup

|a1|≥γ,|ai|≤Γ

P{|
µ1∑

i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}

= 0.

Therefore, the lemma is true.

Now, we will consider a deterministic sequence in the form of (< ω1n >, · · · , < ωµn >).

As we have shown in Lemma 7.17, this sequence can be thought of as a linear combination of basis

sequences which satisfy Weyl’s criterion. Thus, we can approximate the deterministic sequence as a

linear combination of multiple uniform random variables considered in Lemma 7.18.

Lemma 7.19. Let ω1, ω2, · · · , ωµ be real numbers such that ωi − ωj /∈ Q for all i 6= j. Then, for

strictly positive numbers γ and Γ (γ ≤ Γ), and m ∈ {1, · · · , µ}

lim
ε↓0

lim
N→∞

sup
|am|≥γ,|ai|≤Γ,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε} → 0.

Proof. By Lemma 7.17, ωi can be written as 〈qi, ρ〉 where qi = (qi,0, qi,1, · · · , qi,r) ∈ Zr+1, ρ =

( 1
s , ρ1, · · · , ρr) ∈ Rr+1 and s ∈ N. Here, (〈ρ1n〉 , 〈ρ2n〉 , · · · , 〈ρrn〉) satisfies Weyl’s criterion. Since

ωi − ωj /∈ Q for all i 6= j, (qi,1, qi,2, · · · , qi,r) 6= (qj,1, qj,2, · · · , qj,r).
For given k,N,M ∈ N, and m1, · · · ,mr ∈ {1, · · · ,M}, define a set Sm1,··· ,mr as3

{
n ∈ {1, · · · , N} :

m1 − 1

M
≤ 〈ρ1(n+ k)〉 < m1

M
, · · · , mr − 1

M
≤ 〈ρr(n+ k)〉 < mr

M

}
.

Then, for all k,N,M ∈ N and ε > 0, we have the following:

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε}

=

N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε, n ∈ Sm1,··· ,mr}

≤
N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

1{ min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2πωi(n+k)| < ε, n ∈ Sm1,··· ,mr}

=

N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

1{ min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2πωi(n+k)| < ε} · 1{n ∈ Sm1,··· ,mr}. (7.49)

3Notice that the definition of Sm1,··· ,mr also depends on k,N,M as well as m1, · · · ,mr. However, we omit the
dependence on k,N,M in the definition for simplicity.
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Moreover, we also know by the definitions of qi and ρ,

µ∑

i=1

aie
j2πωi(n+k) =

µ∑

i=1

aie
j2π〈qi,ρ〉(n+k)

=

µ∑

i=1

aie
j2π(

qi,0
s (n+k)+qi,1ρ1(n+k)+···+qi,rρr(n+k))

=

µ∑

i=1

aie
j2π(

qi,0
s (n+k)+qi,1〈ρ1(n+k)〉+···+qi,r〈ρr(n+k)〉)(∵ qi,j ∈ Z).

Thus, by defining Xm1,··· ,mr as a random vector which is uniformly distributed over

[m1−1
M , m1

M )× · · · × [mr−1
M , mrM ) and q′i = (qi,1, qi,2, · · · , qi,r), ρ′ = (ρ1, ρ2, · · · , ρr), we can conclude

max
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2πωi(n+k)| = max

n∈Sm1,··· ,mr
|
µ∑

i=1

aie
j2π(

qi,0
s (n+k)+qi,1〈ρ1(n+k)〉+···+qi,r〈ρr(n+k)〉)|

≥ |
µ∑

i=1

aie
j2π(

qi,0
s (n+k)+〈q′i,Xm1,··· ,mr〉)| a.e. (7.50)

By (7.50), (7.49) can be upper bounded as follows:

(7.49) ≤
N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

P{ min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2πωi(n+k)| − max

n∈Sm1,··· ,mr
|
µ∑

i=1

aie
j2πωi(n+k)|

+ |
µ∑

i=1

aie
j2π(

qi,0
s (n+k)+〈q′i,Xm1,··· ,mr〉)| < ε} · 1{n ∈ Sm1,··· ,mr}

=

N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

P{ min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π(

qi,0
s (n+k)+〈q′i,ρ′〉(n+k))|

− max
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π(

qi,0
s (n+k)+〈q′i,ρ′〉(n+k))|

+ |
µ∑

i=1

aie
j2π(

qi,0
s (n+k)+〈q′i,Xm1,··· ,mr〉)| < ε} · 1{n ∈ Sm1,··· ,mr}

≤
N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

max
0≤s′<s

P{ min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,ρ′〉(n+k)

)
|

− max
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,ρ′〉(n+k)

)
|+ |

µ∑

i=1

aie
j2π
(
s′
s +〈q′i,Xm1,··· ,mr〉

)
| < ε} · 1{n ∈ Sm1,··· ,mr}

≤
N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

∑

0≤s′<s

P{ min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,ρ′〉(n+k)

)
|

− max
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,ρ′〉(n+k)

)
|+ |

µ∑

i=1

aie
j2π
(
s′
s +〈q′i,Xm1,··· ,mr〉

)
| < ε} · 1{n ∈ Sm1,··· ,mr}.

(7.51)
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Here, we have

max
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,ρ′〉(n+k)

)
|

= max
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π
(
s′
s +qi,1〈ρ1(n+k)〉+···+qi,r〈ρr(n+k)〉

)
|(∵ qi,j ∈ Z)

≤ sup
0≤∆i<

1
M

|
µ∑

i=1

aie
j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M +qi,1∆1+···+qi,r∆r

)
|

= sup
0≤∆i<

1
M

|
µ∑

i=1

aie
j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M

)
+ aie

j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M

)

(−1 + cos 2π(qi,1∆1 + · · ·+ qi,r∆r) + j sin 2π(qi,1∆1 + · · ·+ qi,r∆r))|

≤ |
µ∑

i=1

aie
j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M

)
|

+

µ∑

i=1

|aie
j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M

)
|

· ( sup
0≤∆i<

1
M

| − 1 + cos 2π(qi,1∆1 + · · ·+ qi,r∆r)|+ sup
0≤∆i<

1
M

| sin 2π(qi,1∆1 + · · ·+ qi,r∆r)|)

≤ |
µ∑

i=1

aie
j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M

)
|+ 4π

µ∑

i=1

|ai| sup
0≤∆i<

1
M

|qi,1∆1 + · · ·+ qi,r∆r| (7.52)

≤ |
µ∑

i=1

aie
j2π
(
s′
s +qi,1

m1−1
M +···+qi,r mr−1

M

)
|+ 4πΓ

M

µ∑

i=1

r∑

j=1

|qi,j |.(∵ We assumed |ai| ≤ Γ)

where (7.52) comes from the fact that | sinx| ≤ |x| and | − 1 + cosx| ≤ |x| for all x ∈ R.

Likewise, we also have

min
n∈Sm1,··· ,mr

|
µ∑

i=1

aie
j2π

(
s′i
s +〈q′i,ρ′〉(n+k)

)
|

≥ |
µ∑

i=1

aie
j2π

(
s′i
s +qi,1

m1−1
M +···+qi,r mr−1

M

)
| − 4πΓ

M

µ∑

i=1

r∑

j=1

|qi,j |.

Therefore,

sup
mi−1

M ≤〈ρi(n+k)〉<mi
M

|
µ∑

i=1

aie
j2π

(
s′i
s +〈q′i,ρ′〉(n+k)

)
| − inf

mi−1

M ≤〈ρi(n+k)〉<mi
M

|
µ∑

i=1

aie
j2π

(
s′i
s +〈q′i,ρ′〉(n+k)

)
|

≤ 8πΓ

M

µ∑

i=1

r∑

j=1

|qi,j |.

By selecting M such that 8πΓ
M

∑µ
i=1

∑r
j=1 |qi,j | ≤ ε, (7.51) is upper bounded by

(7.51) ≤
N∑

n=1

∑

1≤m1≤M,··· ,1≤mr≤M

∑

0≤s′<s

P{|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,Xm1,··· ,mr〉

)
| < 2ε} · 1{n ∈ Sm1,··· ,mr}.

(7.53)
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Since (〈ρ1n〉 , · · · , 〈ρkn〉) satisfies Weyl’s criterion, by Theorem 7.3

lim
N→∞

sup
k∈Z

1

N

N∑

n=1

1{n ∈ Sm1,··· ,mr} =
1

Mr
. (7.54)

Therefore, if we let X be a 1 × r random vector whose distribution is uniform on [0, 1)r, by (7.53)

and (7.54)

lim
N→∞

sup
|am|≥γ,|ai|≤Γ,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε}

≤ sup
|am|≥γ,|ai|≤Γ,k∈Z

∑

1≤m1≤M,··· ,1≤mr≤M

∑

0≤s′<s

P{|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,Xm1,··· ,mr〉

)
| < 2ε} · 1

Mr

≤ sup
|am|≥γ,|ai|≤Γ,k∈Z

∑

0≤s′<s

P{|
µ∑

i=1

aie
j2π
(
s′
s +〈q′i,X〉

)
| < 2ε}(∵ definitions of Xm1,··· ,mr ,X)

≤ sup
|am|≥γ,|ai|≤Γ

s · P{|
µ∑

i=1

aie
j2π(〈q′i,X〉)| < 2ε}.(∵ ej2π

s′
s only rotates the phase.) (7.55)

Since q′i are distinct, by Lemma 7.18, (7.55) goes to 0 as ε ↓ 0.

So far, we put the restriction that |ai| ≤ Γ. However, the functions are growing as |ai|
increases. Therefore, Lemma 7.19 holds even after we remove such restrictions. The proof is similar

to that of Lemma 7.11.

Lemma 7.20. Let ω1, ω2, · · · , ωµ be real numbers such that ωi − ωj /∈ Q for all i 6= j. Then, for

strictly positive numbers γ, and any m ∈ {1, · · · , µ}

lim
ε↓0

lim
N→∞

sup
|am|≥γ,ai∈C,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε} → 0.

Proof. The proof is by induction on µ, the number of terms in the inner sum.

(i) When µ = 1.

Denote a′1 as γ a1

|a1| . Then,

lim
N→∞

sup
|a1|≥γ,k∈Z

1

N

N∑

n=1

1{|a1e
j2πω1(n+k)| < ε} (7.56)

= lim
N→∞

sup
|a1|≥γ,k∈Z

1

N

N∑

n=1

1{| γ
|a1|

a1e
j2πω1(n+k)| < γ

|a1|
ε}

≤ lim
N→∞

sup
|a′1|=1,k∈Z

1

N

N∑

n=1

1{|a′1ej2πω1(n+k)| < ε}(∵ γ

|a1|
≤ 1) (7.57)

By Lemma 7.19, (7.57) converges to 0 as ε ↓ 0. Thus, (7.56) converges to 0 as ε ↓ 0.

(ii) As an induction hypothesis, we assume the lemma is true until µ− 1.
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To prove the lemma for µ, it is enough to show that for all δ > 0 there exists ε(δ) > 0 such

that

lim
N→∞

sup
|am|≥γ,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)} < δ.

By the induction hypothesis, for all m′ 6= m we can find εm′(δ) > 0 such that

lim
N→∞

sup
|am′ |≥γ,k∈Z

1

N

N∑

n=1

1{|
∑

1≤i≤µ,i6=m

aie
j2πωi(n+k)| < εm′(δ)} < δ. (7.58)

Let κ(δ) := min
{

minm′ 6=m

{
εm′ (δ)

2γ

}
, 1
}

. By Lemma 7.19, there exists ε′(δ) > 0 such that

lim
N→∞

sup
|am|≥γ,|ai|≤ γ

κ(δ)
,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε′(δ)} < δ. (7.59)

Set ε(δ) := min
{
ε′(δ),minm′ 6=m

{
εm′ (δ)

2

}}
. Then, we have

lim
N→∞

sup
|am|≥γ,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)}

≤ lim
N→∞

max{ sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)},

max
m′ 6=m

sup
|am|≥γ,

|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)}}

= max{ lim
N→∞

sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)},

max
m′ 6=m

lim
N→∞

sup
|am|≥γ,

|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)}}. (7.60)
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Let a′i := γ
|am|ai. Then, the first term in (7.60) is upper bounded by

lim
N→∞

sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)}

= lim
N→∞

sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

γ

|am|
aie

j2πωi(n+k)| < γ

|am|
ε(δ)}

= lim
N→∞

sup
|a′m|=γ,|a′i|≤

γ
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

a′ie
j2πωi(n+k)| < γ

|am|
ε(δ)}

≤ lim
N→∞

sup
|a′m|=γ,|a′i|≤

γ
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

a′ie
j2πωi(n+k)| < ε(δ)}(∵ γ

|am|
≤ 1)

≤ lim
N→∞

sup
|a′m|=γ,|a′i|≤

γ
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

a′ie
j2πωi(n+k)| < ε′(δ)}(∵ ε′ ≥ ε)

< δ.(∵ (7.59)) (7.61)

Let a′′i := γ
|am′ |

ai. Then, the second term in (7.60) is upper bounded by

lim
N→∞

sup
|am|≥γ,

|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)}

= lim
N→∞

sup
|am|≥γ,

|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

γ

|am′ |
aie

j2πωi(n+k)| < γ

|am′ |
ε(δ)}

≤ lim
N→∞

sup
|am|≥γ,

|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

γ

|am′ |
aie

j2πωi(n+k) − γ

|am′ |
ame

j2πωm(n+k)| < γ

|am′ |
ε(δ) +

γ

|am′ |
|am|}

≤ lim
N→∞

sup
|am|≥γ,

|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

γ

|am′ |
aie

j2πωi(n+k) − γ

|am′ |
ame

j2πωm(n+k)| < εm′(δ)}

(7.62)

≤ lim
N→∞

sup
|a′′
m′ |=γ,k∈Z

1

N

N∑

n=1

1{|
∑

1≤i≤µ,i6=m

a′′i e
j2πωi(n+k)| < εm′(δ)}(∵ definition of a′′i )

< δ.(∵ (7.58)) (7.63)

Here, (7.62) is justified as follows:

γ

|a′m|
ε(δ) +

γ

|a′m|
|am|

≤ γ

|am|
ε(δ) + γκ(δ)(∵

|am′ |
|am|

≥ 1

κ(δ)
, and by definition κ(δ) ≤ 1)

≤ ε(δ) + γκ(δ)(∵ |am| ≥ γ)

≤ εm′(δ)

2
+
εm′(δ)

2
.(∵ definitions of ε(δ), κ(δ))
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Therefore, by plugging (7.61) and (7.63) into (7.60), we get

lim
N→∞

sup
|am|≥γ,k∈Z

1

N

N∑

n=1

1{|
µ∑

i=1

aie
j2πωi(n+k)| < ε(δ)} < δ,

which finishes the proof.

Now, we will generalize Lemma 7.20 by introducing polynomial terms. First, we prove that

a set of polynomials is uniformly bounded away from 0 when there is a nonzero coefficient.

Lemma 7.21. For all n ∈ N, n′ ∈ Z+, m ∈ {1, · · · , n}, γ > 0 and k > 0,

lim
T→∞

sup
|am|≥γ,ai∈C

|{x ∈ (0, T ] : |
∑n
i=−n′ aix

i| < k}|L
T

= 0

where | · |L is the Lebesgue measure of the set.

Proof. Let X be a uniform random variable on (0, 1]. Then, we have

sup
|am|≥γ

|{x ∈ (0, T ] : |
∑n
i=−n′ aix

i| < k}|L
T

= sup
|am|≥γ

|{x ∈ (0, T ] : |
∑n
i=−n′ ai

xi

Tm | <
k
Tm }|L

T

= sup
|am|≥γ

|{x ∈ (0, T ] : |
∑n
i=−n′ ai

(
x
T

)i | < k
Tm }|L

T

= sup
|am|≥γ

|{x ∈ (0, 1] : |
n∑

i=−n′
aix

i| < k

Tm
}|L

= sup
|am|≥γ

P{|
n∑

i=−n′
aiX

i| < k

Tm
}

= sup
|am+n′ |≥γ

P{|
n+n′∑

i=0

aiX
i| < kXn′

Tm
}

≤ sup
|am+n′ |≥γ

P{|
n+n′∑

i=0

aiX
i| < k

Tm
}.(∵ 0 < X ≤ 1 w.p. 1)

Therefore, by Lemma 7.11

lim
T→∞

sup
|am|≥γ,ai∈C

|{x ∈ [0, T ] : |
∑n
i=−n′ aix

i| < k}|L
T

= lim
T→∞

sup
|am+n′ |≥γ,ai∈C

P{|
n+n′∑

i=0

aiX
i| < k

Tm
} = 0,

which finishes the proof.



313

The following lemma shows that the above lemma still holds even if we change Lebesgue

measure to counting measure.

Lemma 7.22. For all n ∈ N, n′ ∈ Z+, m ∈ {1, · · · , n}, γ > 0 and k > 0,

lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ {1, · · · , N} : |
∑n
i=−n′ aix

i| < k}|C
N

= 0

where | · |C implies the counting measure of the set, the cardinality of the set.

Proof. First, we will prove the following claim which relates Lebesgue measure with counting mea-

sure.

Claim 7.4. Let f : R+ → R be a C∞ function with l local maxima and minima. Then,

|{x ∈ [1, N ] : f(x) > 0}|L ≤ |{x ∈ {1, · · · , N} : f(x) > 0}|C + 3l + 2.

Proof. Since f(x) is a continuous function with l local maxima and minima, we can prove that there

exist l′ ≤ l + 1, si and ti (1 ≤ i ≤ l′) such that

{x ∈ {1, · · · , N} : f(x) > 0} = {s1, s1 + 1, · · · , s1 + t1} ∪ · · · ∪ {sl′ , sl′ + 1, · · · , sl′ + tl′}.

One way to justify this is by contradiction, i.e. if we assume l′ > l + 1, there should exist more

than l local maxima and minima by the mean value theorem. Moreover, since the number of local

maxima and minima is bounded by l, we have

|{x ∈ [1, N ] : f(x) > 0}|L ≤ |[s1 − 1, s1 + t1 + 1]|L + · · ·+ |[sl′ − 1, sl′ + tl′ + 1]|L + l

≤ (t1 + 2) + · · ·+ (tl′ + 2) + l

≤ |{x ∈ {1, · · · , N} : f(x) > 0}|C + 2l′ + l

≤ |{x ∈ {1, · · · , N} : f(x) > 0}|C + 3l + 2.

Thus, the claim is true.

To prove the lemma, let ai = aR,i + jaI,i where aR,i, aI,i ∈ R. Then,

|
n∑

i=−n′
aix

i| < k

(⇔)|
n+n′∑

i=0

ai−n′x
i| < kxn

′

(⇔)(

n+n′∑

i=0

aR,i−n′x
i)2 + (

n+n′∑

i=0

aI,i−n′x
i)2 < k2xn

′
.
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Since k2x2n′ − (
∑n+n′

i=0 aR,i−n′x
i)2 − (

∑n+n′

i=0 aI,i−n′x
i)2 is a continuous function with at

most 2(n+ n′) local maxima and minima, by the claim we have

lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ {1, · · · , N} : |
∑n
i=0 aix

i| < k}|C
N

≤ lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ [1, N ] : |
∑n
i=0 aix

i| < k}|L + 6(n+ n′) + 2

N

= lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ (0, N ] : |
∑n
i=0 aix

i| < k}|L
N

= 0 (∵ Lemma 7.21)

Therefore, the lemma is proved.

Now, we merge Lemma 7.22 with Lemma 7.20 to prove that Lemma 7.23 still holds even

after we introduce polynomial terms to the functions.

Lemma 7.23. Let ω1, ω2, · · · , ωµ be real numbers such that ωi − ωj /∈ Q for all i 6= j. Then, for

strictly positive numbers γ,

lim
ε↓0

lim
N→∞

sup
|a1ν1

|≥γ,aij∈C,k∈Z

1

N

N∑

n=1

1





∣∣∣∣∣∣

µ∑

i=1




νi∑

j=0

aijn
j


 ej2πωi(n+k)

∣∣∣∣∣∣
< ε



→ 0.

Proof. To prove the lemma, it is enough to show that for all δ > 0, there exist ε > 0 and NT ∈ N
such that for all N ≥ NT ,

sup
|a1ν1

|≥γ,aij∈C,k∈Z

1

N

N∑

n=1

1





∣∣∣∣∣∣

µ∑

i=1




νi∑

j=0

aijn
j


 ej2πωi(n+k)

∣∣∣∣∣∣
< ε



 < δ. (7.64)

Since µ is finite, by Lemma 7.20, there exist ε′ > 0 and MT ∈ N such that for all M ≥MT ,

max
d∈{1,··· ,µ}

(
sup

k∈Z,ai∈C,|ad|≥1

1

M

M∑

c=1

1

{∣∣∣∣∣

µ∑

i=1

aie
j2πωi(c+k)

∣∣∣∣∣ < ε′

})
<
δ

4
. (7.65)

By Lemma 7.22, there exists B′T ∈ N such that for all B′ ≥ B′T ,

sup
|a′1ν1 |≥γ

∣∣∣
{
b ∈ {1, · · · , B′} :

∣∣∣
∑ν1

j=0 a
′
1jb

j
∣∣∣ ≤ 2

}∣∣∣
C

B′
<
δ

4
. (7.66)

Define κ′ :=
2
∑µ
i=1

∑νi
j=1

∑j
k=1 (jk)

ε′ . By Lemma 7.22, there exists B′′T ∈ N such that for all

B′′ ≥ B′′T ,

∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|ak|=1

|{b ∈ {1, · · · , B′′} : κ′ ≥ |
∑νi−j+k
j′=−j+k aj′b

j′ |}|C
B′′

<
δ

4
. (7.67)
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Define B := max(B′T , B
′′
T ). We will show that the choice of ε = ε′ and NT = max(MT , d 4

δ e)·
B satisfies (7.64). Then, for all N ≥ NT , N can be written as N = B · M + b for some M ≥
max(MT , d 4

δ e) and 0 ≤ b ≤ B − 1.

sup
|a1ν1

|≥γ,aij∈C,k∈Z

1

N

N∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωi(n+k)

∣∣∣∣∣ < ε

}

= sup
|a1ν1

|≥γ,aij∈C

1

N

N∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωin

∣∣∣∣∣ < ε

}
(∵ ej2πωik can be absorbed into the aij .)

= sup
|a1ν1

|≥γ,aij∈C

1

B ·M + b

B·M+b∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωin

∣∣∣∣∣ < ε

}

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B·M∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωin

∣∣∣∣∣ < ε

}
+

b

B ·M

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B·M∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωin

∣∣∣∣∣ < ε

}
+
δ

4

= sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij(bM + c)j
)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}
+
δ

4
(∵ n is rewritten as bM + c.)

= sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij

(
(bM)j +

j∑
k=1

(
j

k

)
(bM)j−kck

))
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}
+
δ

4

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij(bM)j
)
ej2πωi(bM+c)

∣∣∣∣∣ < ε+

µ∑
i=1

νi∑
j=1

|aij |
j∑

k=1

(
j

k

)
(bM)j−kck

}
+
δ

4

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij(bM)j
)
ej2πωi(bM+c)

∣∣∣∣∣ < ε+

µ∑
i=1

νi∑
j=1

j∑
k=1

|aij |

(
j

k

)
(bM)j−kMk

}
+
δ

4

(7.68)

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ <
ε

Mb
+

∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb

}
+
δ

4

≤ sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

{
1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}

+ 1

{
ε

Mb
+

∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb
≥ ε

}}
+
δ

4

≤ sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

{
1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}

+ 1

{
ε

Mb
≥ ε

2

}
+ 1

{∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb
≥ ε

2

}}
+
δ

4
(7.69)

where Mb := maxi
{∣∣∣∑νi

j=0 aij (bM)j
∣∣∣} and when Mb = 0 the value of the indicator function is set to be 0

since in this case, the indicator function of (7.68) is already 0.

First, let’s prove that the first term of (7.69) is small enough. For all aij ∈ C such that |a1ν1 | ≥ γ
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and b ∈ {0, · · · , B}, we have

1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}

≤ max
d∈{1,··· ,µ}

(
sup

k∈Z,ai∈C,|ad|≥1

1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

aie
jωi(c+k)

∣∣∣∣∣ < ε

})

(∵ By the definition of Mb,

∣∣∣∣∑νi
j=0 aij(bM)j

Mb

∣∣∣∣ = 1 for some i)

<
δ

4
.(∵ (7.65)) (7.70)

Let’s prove that the second term of (7.69) is small enough.

sup
|a1ν1

|≥γ

|{b ∈ {1, · · · , B} : Mb < 2}|C
B

≤ sup
|a1ν1

|≥γ

∣∣∣{b ∈ {1, · · · , B} :
∣∣∣∑ν1

j=0 a1j(bM)j
∣∣∣ < 2

}∣∣∣
C

B
(∵ definition of Mb)

≤ sup
|a′1ν1 |≥γ

∣∣∣{b ∈ {1, · · · , B} :
∣∣∣∑ν1

j=0 a
′
1jb

j
∣∣∣ < 2

}∣∣∣
C

B
(∵ putting a′1j := a1jM

j and M goes to infinity.)

<
δ

4
.(∵ (7.66)) (7.71)

Now, we will prove that the third term of (7.69) is small enough.

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb
≥ ε

2

}

≤ sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
(

µ∑
i′=1

νi′∑
j′=1

j′∑
k′=1

(
j′

k′

)
) · max

1≤i≤µ,1≤j≤νi,1≤k≤j
|aij |(bM)j−kMk ≥ ε

2
Mb

}

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
κ′|aij |(bM)j−kMk ≥Mb

}

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
κ′|aij |(bM)j−kMk ≥ |

νi∑
j′=0

aij′(bM)j
′
|

}
(∵ definition of Mb)

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
κ′ ≥ |

νi∑
j′=0

aij′(bM)j
′

|aij |bj−kMk
|

}

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|ak|=1

1

B

B−1∑
b=0

1

{
κ′ ≥ |

νi−j+k∑
j′=−j+k

aj′b
j′ |

}

<
δ

4
.(∵ (7.67)) (7.72)

Therefore, by (7.70), (7.71), (7.72), we can see (7.69) < δ, which finishes the proof.

7.7 Proof of Lemma 2.3

In this section, we will merge the properties about the observability Gramian shown in

Appendix 7.5 with the uniform convergence of Appendix 7.6, and prove Lemma 2.3 of page 63.
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Just as we did in Appendix 7.4, we must first prove the following lemma which tells us that

the determinant of the observability Gramian is large except on a negligible set under a cofactor

condition the Gramian matrix. The proof of the lemma is very similar to that of Lemma 7.12.

Lemma 7.24. Let A and C be given as (7.39) and (7.40). Define ai,j and Ci,j as the (i, j) element

and cofactor of




CA−k1

...

CA−km−1

CA−n




respectively. Then, there exists a family of functions {gε : ε > 0, gε :

R+ → R+} satisfying:

(i) For all ε > 0, k1 < k2 < · · · < km−1 and |Cm,m| ≥ ε
∏

1≤i≤m−1 λ
−ki
i , the following is true.

lim
N→∞

sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣∣∣∣∣∣

det







CA−k1

...

CA−km−1

CA−n







∣∣∣∣∣∣∣∣∣∣∣

< ε2λ−nm
∏

1≤i≤m−1

λ−kii





→ 0 as ε ↓ 0.

(ii) For each ε > 0, gε(k) . 1 + log(k + 1).

Proof. By Lemma 7.16, we can find a function g′2ε2(k) such that for all 0 ≤ k1 < k2 < · · · < km−1 < n

satisfying:

(i) n− km−1 ≥ g′2ε2(km−1)

(ii) g′2ε2(k) . 1 + log(k + 1)

(iii)
∣∣∣
∑
m−mµ+1≤i≤m am,iCm,i

∣∣∣ ≥ 2ε2λ−nm
∏

1≤i≤m−1 λ
−ki
i

the following inequality holds:

∣∣∣∣∣∣∣∣∣∣∣

det







CA−k1

...

CA−km−1

CA−n







∣∣∣∣∣∣∣∣∣∣∣

≥ ε2λ−nm
∏

1≤i≤m−1

λ−kii .
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Let gε(k) be g′2ε2(k). Then, we have

sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣∣∣∣∣∣

det







CA−k1

...

CA−km−1

CA−n







∣∣∣∣∣∣∣∣∣∣∣

< ε2λ−nm
∏

1≤i≤m−1

λ−kii





≤ sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

am,iCm,i

∣∣∣∣∣∣
< 2ε2λ−nm

∏

1≤i≤m−1

λ−kii



 (7.73)

= sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

am,i

λ−nm

Cm,i

ε
∏

1≤i≤m−1 λ
−ki
i

∣∣∣∣∣∣
< 2ε





≤ sup
k∈Z,|bm|≥1

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

bi
am,i

λ−nm

∣∣∣∣∣∣
< 2ε



 (7.74)

where (7.73) is by the definition of gε(k) and Lemma 7.16, and (7.74) is by |Cm,m| ≥ ε
∏

1≤i≤m−1 λ
−ki
i .

Let Cµ,νµ denoted in (7.40) be
[
c′1 · · · c′mµ,νµ

]
.

Moreover,

Aµ,νµ
−n

=




(λµ,νµe
j2πωµ,νµ )−n

(−n
1

)
(λµ,νµe

j2πωµ,νµ )−n−1 · · ·
( −n
mµ,νµ−1

)
(λµ,νµe

j2πωµ,νµ )−n−mµ,νµ+1

0 (λµ,νµe
j2πωµ,νµ )−n · · ·

( −n
mµ,νµ−2

)
(λµ,νµe

j2πωµ,νµ )−n−mµ,νµ+2

...
...

. . .
...

0 0 · · · (λµ,νµe
j2πωµ,νµ )−n



.

Thus, we can see that

am,m =
∑

1≤i≤mµ,νµ

c′i

(
−n

mµ,νµ − i

)
(λµ,νµe

j2πωµ,νµ )−n−mµ,νµ+i.

Therefore,

am,m

λ−nm
=

∑

1≤i≤mµ,νµ

c′i

(
−n

mµ,νµ − i

)
λ
−mµ,νµ+i
µ,νµ (ej2πωµ,νµ )−n−mµ,νµ+i.

Moreover, when am,i is considered as a function of n, the nmµ,νµ−1e−j2πωµ,νµn term only shows up in
am,m
λ−nm

among
am,m−mµ+1

λ−nm
, · · · , am,m

λ−nm
, and the associated coefficient is

c′1(−1)
mµ,νµ−1

(mµ,νµ−1)! λ
−mµ,νµ+1
µ,νµ ej2πωµ,νµ (−mµ,νµ+1).
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Let c′ :=
|c′1|

(mµ,νµ−1)!λ
−mµ,νµ+1
µ,νµ . Then, (7.74) can be upper bounded as follows:

(7.74) ≤ sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣
∑

1≤i≤νµ


 ∑

1≤j≤mµ,i

aijn
j−1


 ej2π(−ωµ,i)n

∣∣∣∣∣∣
< 2ε





= sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

N∑

n=1

1





∣∣∣∣∣∣
∑

1≤i≤νµ


 ∑

1≤j≤mµ,i

aij(n+ k)j−1


 ej2π(−ωµ,i)(n+k)

∣∣∣∣∣∣
< 2ε





≤ sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

N∑

n=1

1





∣∣∣∣∣∣
∑

1≤i≤νµ


 ∑

1≤j≤mµ,i

aijn
j−1


 ej2π(−ωµ,i)(n+k)

∣∣∣∣∣∣
< 2ε



 (7.75)

The last inequality comes from the fact that the coefficient of nmµ,νµ−1 is the same for both
∑

1≤j≤mµ,νµ
aνµ,j(n+ k)j−1 and

∑
1≤j≤mµ,νµ

aνµ,jn
j−1.

By Lemma 7.11, we get

lim
N→∞

sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

N∑

n=1

1





∣∣∣∣∣∣
∑

1≤i≤νµ


 ∑

1≤j≤mµ,i

aijn
j−1


 ej2π(−ωµ,i)(n+k)

∣∣∣∣∣∣
< 2ε



→ 0 as ε ↓ 0.

Therefore, by (7.75) we can say that

lim
N→∞

sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑

n=k+1

1





∣∣∣∣∣∣∣∣∣∣∣

det







CA−k1

...

CA−km−1

CA−n







∣∣∣∣∣∣∣∣∣∣∣

< ε2λ−nm
∏

1≤i≤m−1

λ−kii





→ 0 as ε ↓ 0

which finishes the proof.

Based on the previous lemma, the properties of p.m.f. tails shown in Section 7.1 and the

properties of the observability Gramian discussed in Section 7.5, we can prove Lemma 2.3 for the

case when the system has no eigenvalue cycles. Moreover, we will prove a lemma involving multiple

systems. This will turn out to be helpful in proving Lemma 2.3 for general systems with eigenvalue

cycles.

Consider pairs of matrices (A1,C1), (A2,C2), · · · , (Ar,Cr) defined as follows:

Ai is a mi ×mi Jordan form matrix and Ci is a 1×mi row vector (7.76)

Each Ai has no eigenvalues cycles and (Ai,Ci) is observable

λ
(i)
j ej2πω

(i)
j is (j, j) element of Ai

λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ(i)

mi ≥ 1.

Then, the following lemma holds.

Lemma 7.25. Consider systems (A1,C1), (A2,C2), · · · , (Ar,Cr) given as (7.76). Then, we can

find a polynomial p(k) and a family of random variables {S(ε, k) : k ∈ Z+, ε > 0} such that for all
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ε > 0, k ∈ Z+ and 1 ≤ i ≤ r there exist k ≤ ki,1 < ki,2 < · · · < ki,mi ≤ S(ε, k) and Mi satisfying

the following conditions:

(i) β[ki,j ] = 1 for 1 ≤ i ≤ r and 1 ≤ j ≤ mi

(ii) Mi




CiAi
−ki,1

CiAi
−ki,2

...

CiAi
−ki,mi




= I

(iii) |Mi|max ≤ p(S(ε,k))
ε (λ

(i)
1 )S(ε,k)

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP{S(ε, k)− k = s} = pe.

Proof. By Lemma 7.15, instead of the conditions (ii) and (iii) it is enough to prove that

∣∣∣∣∣∣∣∣∣∣∣

det







CiAi
−ki,1

CiAi
−ki,2

...

CiAi
−ki,mi







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤j≤mi

(λ
(i)
j )−ki,j .

Therefore, it is enough to prove the following claim:

Claim 7.5. We can find a family of stopping times {S(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0,

k ∈ Z+ and 1 ≤ i ≤ r there exist k ≤ ki,1 < ki,2 < · · · < ki,mi ≤ S(ε, k) satisfying the following

condition:

(a) β[ki,j ] = 1 for 1 ≤ i ≤ r and 1 ≤ j ≤ mi

(b)

∣∣∣∣∣∣∣∣∣∣∣

det







CiAi
−ki,1

CiAi
−ki,2

...

CiAi
−ki,mi







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤j≤mi(λ
(i)
j )−ki,j

(c) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP {S(ε, k)− k = s} ≤ pe.

Before we prove the above claim, we first prove the claim for a single system.

Claim 7.6. We can find a family of stopping times {S1(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0

and k ∈ Z+ there exist k ≤ k′1 < k′2 < · · · < k′m1
≤ S1(ε, k) satisfying the following condition:

(a’) β[k′j ] = 1 for 1 ≤ j ≤ m1

(b’)

∣∣∣∣∣∣∣∣∣∣∣

det







C1A1
−k′1

C1A1
−k′2

...

C1A1
−k′mi







∣∣∣∣∣∣∣∣∣∣∣

≥ ε
∏

1≤j≤m1
(λ

(1)
j )−k

′
j

(c’) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP {S1(ε, k)− k = s} ≤ pe.

• Proof of Claim 7.6: The proof of Claim 7.6 is an induction on m1, the dimension of A1.
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(i) First consider the case m1 = 1.

In this case, A1 and C1 is scalar, so denote A1 := λ
(1)
1 ej2πω

(1)
1 and C1 := c1. Since we only

care about small enough ε, let ε ≤ |c1|. Denote S1(ε, k) := inf{n ≥ k : β[n] = 1} and k′1 = S1(ε, k).

Then, β[k′1] = 1 and
∣∣∣det

([
c1(λ

(1)
1 ej2πω

(1)
1 )−k

′
1

])∣∣∣ = |c1|(λ(1)
1 )−k

′
1 ≥ ε(λ

(1)
1 )−k

′
1 . Moreover, since

S1(ε, k)− k is a geometric random variable with probability 1− pe,

exp lim sup
s→∞

sup
k∈Z+

logP {S1(ε, k)− k = s} = pe.

Therefore, S1(ε, k) satisfies all the conditions of the claim.

(ii) As an induction hypothesis, we assume the claim is true for m1−1 and prove the claim

hold for m1.

First, we will fix k = 0, then we will consider general k ∈ Z+.

Denote A′1 be a (m1 − 1)× (m1 − 1) matrix obtained by removing m1th row and column

of A1. Likewise, C′1 is a 1× (m1 − 1) vector obtained by removing m1th element of C1. Then, we

can observe that

det







C′1A′1
−k′1

...

C′1A′1
−k′m1−1





 = cofm1,m1







C1A1
−k′1

...

C1A1
−k′m1







where cofi,j(A) implies the cofactor matrix of A with respect to (i, j) element.

By the induction hypothesis, we can find a stopping time S′1(ε, 0) such that there exist

0 ≤ k′1 < k′2 < · · · < k′m1−1 ≤ S′1(ε, 0) satisfying:

(a”) β[k′j ] = 1 for 1 ≤ j ≤ m1 − 1

(b”)

∣∣∣∣∣∣∣∣
det







C′1A′1
−k′1

...

C′1A′1
−k′m1−1







∣∣∣∣∣∣∣∣
≥ ε

∏
1≤j≤m1−1(λ

(1)
j )−k

′
j

(c”) limε↓0 exp lim sups→∞
1
s logP {S′1(ε, 0) = s} ≤ pe.

Let Fi be a σ-field generated by β[0], · · · , β[i] and gε : R+ → R+ be the function of

Lemma 7.24. Denote a random variable d(ε,N) as following:

d(ε,N) := sup
l∈Z,l−S′1(ε,0)≥gε(S

′
1(ε,0))

1

N

l+N∑
n=l+1

1



∣∣∣∣∣∣∣∣∣∣∣∣
det




C1A1

−k′1

...

C1A1
−k′m1−1

C1A1
−n





∣∣∣∣∣∣∣∣∣∣∣∣
< ε2(λ(1)

m1
)−n

∏
1≤j≤m1−1

(λ
(1)
j )−kj |FS′1(ε,0)


.

Since (b”) implies cofm1,m1




C1A1

−k′1

...

C1A1
−k′m1−1

C1A1
−n



 ≥ ε
∏

1≤j≤m1−1(λ
(1)
i )−k

′
j , by Lemma 7.24 we have

lim
ε↓0

lim
N→∞

ess sup d(ε,N) = 0.
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Denote S′′1 (ε, 0) := S′1(ε, 0) + gε(S
′
1(ε, 0)). From (ii) of Lemma 7.24 we know gε(k) . 1 + log(k + 1) for all

ε > 0. Therefore, by Lemma 7.1 we have

lim
ε↓0

exp lim sup
s→∞

1

s
log P{S′′1 (ε, 0) = s} ≤ pe. (7.77)

Denote a stopping time

S′′′1 (ε, 0) := inf


n > S′′1 (ε, 0) : β[n] = 1 and

∣∣∣∣∣∣∣∣∣∣∣∣
det




C1A1

−k′1

...

C1A1
−k′m1−1

C1A1
−n





∣∣∣∣∣∣∣∣∣∣∣∣
≥ ε2(λ(1)

m1
)−n

∏
1≤j≤m1−1

(λ
(1)
j )−k

′
j


.

Since β[n] is a Bernoulli process,

P{S′′′1 (ε, 0)− S′′1 (ε, 0) ≥ N |FS′′1 (ε,0)} ≤ pN(1−d(ε,N))
e .

Therefore,

lim
ε↓0

exp lim sup
N→0

ess sup
1

N
log P{S′′′1 (ε, 0)− S′′1 (ε, 0) ≥ N |FS′′1 (ε,0)} ≤ lim

ε↓0
lim
N→∞

ess sup p1−d(ε,N)
e ≤ pe

i.e.

lim
ε↓0

exp lim sup
s→0

ess sup
1

s
log P{S′′′1 (ε, 0)− S′′1 (ε, 0) = s|FS′′1 (ε,0)} ≤ pe. (7.78)

By applying Lemma 7.2 to (7.77) and (7.78), we can conclude that

lim
ε↓0

exp lim sup
s→∞

1

s
log P{S′′′1 (ε, 0) = s} ≤ pe.

Therefore, if we denote S1(ε, 0) := S′′′1 (ε
1
2 , 0), S1(ε, 0) satisfies the conditions of Claim 7.6 when we fix k = 0.

Here, we know β[n] is a stationary process. Thus, to prove the claim for general k ∈ Z+, we can

shift the time index by k. Then, we can find a stopping time S1(ε, k) such that for all ε > 0 and k ∈ Z+

there exist k ≤ k′1 < k′2 < · · · < k′m1
≤ S1(ε, k) satisfying the following conditions:

(a”’) β[k′j ] = 1 for 1 ≤ j ≤ m1

(b”’)

∣∣∣∣∣∣∣∣∣∣∣∣
det




C1A1

−(k′1−k)

C1A1
−(k′2−k)

...

C1A1
−(k′mi

−k)





∣∣∣∣∣∣∣∣∣∣∣∣
≥ ε

∏
1≤j≤m1

(λ
(1)
j )−(k′j−k)

(c”’) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S1(ε, k)− k = s} ≤ pe.
Here, we can notice that the condition (b”’) is equivalent to∣∣∣∣∣∣∣∣∣∣∣∣

det




C1A1

−k′1

C1A1
−k′2

...

C1A1
−k′mi





∣∣∣∣∣∣∣∣∣∣∣∣
·
∣∣∣det

([
A1

k
])∣∣∣ ≥ ε ∏

1≤j≤m1

(λ
(1)
j )−(k′j−k)

(⇔)

∣∣∣∣∣∣∣∣∣∣∣∣
det




C1A1

−k′1

C1A1
−k′2

...

C1A1
−k′mi





∣∣∣∣∣∣∣∣∣∣∣∣
≥
∣∣∣det

([
A1

k
])∣∣∣−1

· ε
∏

1≤j≤m1

(λ
(1)
j )−(k′j−k) ≥ ε

∏
1≤j≤m1

(λ
(1)
j )−k

′
j
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Therefore, Claim 7.6 is true.

• Proof of Claim 7.5: By recursive use of Claim 7.6, we can find stopping times S2(ε, k), · · · , Sr(ε, k)

such that for all ε > 0 and 2 ≤ i ≤ r there exist Si−1(ε, k) < ki,1 < ki,2 < · · · < ki,mi ≤ Si(ε, k) satisfying

the following condition:

(a) β[ki,j ] = 1 for 1 ≤ j ≤ mi

(b)

∣∣∣∣∣∣∣∣∣∣∣∣
det




CiAi

−ki,1

CiAi
−ki,2

...

CiAi
−ki,mi





∣∣∣∣∣∣∣∣∣∣∣∣
≥ ε

∏
1≤j≤mi(λ

(i)
j )−ki,j

(c) limε↓0 exp lim sups→∞ ess sup 1
s

log P{Si(ε, k)− Si−1(ε, k) = s|FSi−1(ε,k)} ≤ pe.
Then, by Lemma 7.2

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{Sr(ε, k)− k = s} ≤ pe.

Therefore, if we denote S(ε, k) := Sr(ε, k), S(ε, k) satisfies all the conditions of Claim 7.5. Thus, Claim 7.5

is true and the lemma is also true.

We prove some properties about matrices which will be helpful in the proof of Lemma 2.3.

Lemma 7.26. Let A and A′ be Jordan block matrices with eigenvalues λ, αλ(α 6= 0) respectively

and the same size m ∈ N, i.e. A =




λ 1 · · · 0

0 λ · · · 0
...

...
. . .

...

0 0 · · · λ




and A′ =




αλ 1 · · · 0

0 αλ · · · 0
...

...
. . .

...

0 0 · · · αλ




. Then, for all

n ∈ Z

A′
n

=




α−(m−1) 0 · · · 0

0 α−(m−2) · · · 0
...

...
. . .

...

0 0 · · · 1




An




αn+(m−1) 0 · · · 0

0 αn+(m−2) · · · 0
...

...
. . .

...

0 0 · · · αn



.
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Proof.

A′
n

=




(αλ)n
(
n
1

)
(αλ)n−1

(
n
2

)
(αλ)n−2 · · ·

(
n
m

)
(αλ)n−(m−1)

0 (αλ)n
(
n
1

)
(αλ)n−1 · · ·

(
n

m−1

)
(αλ)n−(m−2)

0 0 (αλ)n · · ·
(

n
m−2

)
(αλ)n−(m−3)

...
...

...
. . .

...

0 0 0 · · · (αλ)n




=




α−(m−1) 0 0 · · · 0

0 α−(m−2) 0 · · · 0

0 0 α−(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




·




αn+m−1λn
(
n
1

)
αn−1+m−1λn−1

(
n
2

)
αn−2+m−1λn−2 · · ·

(
n
m

)
αn−(m−1)+m−1λn−(m−1)

0 αn+m−2λn
(
n
1

)
αn−1+m−2λn−1 · · ·

(
n

m−1

)
αn−(m−2)+m−2λn−(m−2)

0 0 αn+m−3λn · · ·
(

n
m−2

)
αn−(m−3)+m−3λn−(m−3)

...
...

...
. . .

...

0 0 0 · · · αnλn




=




α−(m−1) 0 0 · · · 0

0 α−(m−2) 0 · · · 0

0 0 α−(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




·




αn+m−1λn
(
n
1

)
αn+m−2λn−1

(
n
2

)
αn+m−3λn−2 · · ·

(
n
m

)
αnλn−m

0 αn+m−2λn
(
n
1

)
αn+m−3λn−1 · · ·

(
n

m−1

)
αnλn−(m−1)

0 0 αn+m−3λn · · ·
(

n
m−2

)
αnλn−(m−2)

...
...

...
. . .

...

0 0 0 · · · αnλn




=




α−(m−1) 0 0 · · · 0

0 α−(m−2) 0 · · · 0

0 0 α−(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




·




λn
(
n
1

)
λn−1

(
n
2

)
λn−2 · · ·

(
n
m

)
λn−m

0 λn
(
n
1

)
λn−1 · · ·

(
n

m−1

)
λn−(m−1)

0 0 λn · · ·
(

n
m−2

)
λn−(m−2)

...
...

...
. . .

...

0 0 0 · · · λn




·




αn+(m−1) 0 0 · · · 0

0 αn+(m−2) 0 · · · 0

0 0 αn+(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · αn




=




α−(m−1) 0 · · · 0

0 α−(m−2) · · · 0
...

...
. . .

...

0 0 · · · 1




An




αn+(m−1) 0 · · · 0

0 αn+(m−2) · · · 0
...

...
. . .

...

0 0 · · · αn



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This direct computation finishes the proof.

Lemma 7.27. Let A be a Jordan block with eigenvalue λ and dimension m×m. Then, the Jordan

decomposition of the matrix Ak for k ∈ N is UΛU−1 where U is an invertible upper triangular

matrix —so the diagonal elements of U are non-zero— and Λ is a Jordan block with eigenvalue λk

and dimension m×m.

Proof. We can see that Ak is a upper triangular toeplitz matrix whose diagonal elements are λk.

Thus, det(sI−Ak) = (s− λk)m and all eigenvalues of Ak are λk. Moreover, the rank of Ak − λkI
is m− 1. Thus, Λ has to be a Jordan block matrix with eigenvalue λk and dimension m×m.

Moreover, Ker
((

A− λkI
)p) ⊇ span{e1, e2, · · · , ep}. Therefore, ith column of U−1 has

to belong to the vector space {e1, · · · , ei} and U−1 is upper diagonal matrix. Here, the existence

of the Jordan form of arbitrary matrices guarantee the invertibility of U. Therefore, U is also an

upper triangular matrix and the invertibility condition of an upper triangular matrix is its diagonal

elements are non-zero.

Lemma 7.28. Let A be a Jordan block matrix with eigenvalue λ ∈ C and size m ∈ N, i.e. A =


λ 1 · · · 0

0 λ · · · 0
...

...
. . .

...

0 0 · · · λ




. C and C′ are 1×m matrices such that

C =
[
c1 c2 · · · cm

]

C′ =
[
c′1 c′2 · · · c′m

]

where ci, c
′
i ∈ C and c1 6= 0.

For all k ∈ R and m× 1 matrices X =




x1

x2

...

xm




and X′ =




x′1

x′2
...

x′m




, there exists T such that

(i)T is an upper triangular matrix.

(ii)CAkX + C′AkX′ = CAk (X + TX′)

Moreover, the diagonal elements of T are
c′1
c1

.

Proof. Similar to Lemma 7.14.

Now, we can prove Lemma 2.3.
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Proof of Lemma 2.3. We will prove the lemma by an induction on m, the dimension of the system.

Recall that here we are using the definitions of (2.35), (2.36) for the system matrices A, C, Ai, Ci,

· · · .
(i) When m = 1,

In this case, the lemma reduces to the scalar problem and is trivially true. Precisely, if we

choose S1(ε, k) as inf{s ≥ k : β[s] = 1}, we can check all the conditions of the lemma are satisfied.

(ii) Now, we will assume the lemma is true when the system dimension is m − 1 as an

induction hypothesis, and prove the lemma holds for the system with dimension m.

Let xi,j be a mi,j × 1 column vector, and x be




x1,1

x1,2

...

xµ,νµ




. Here, x can be thought as the

state of the system, and xi,j corresponds to the states associated with the Jordan block Ai,j. Recall

that A1,1 is the Jordan block with the largest eigenvalue and size. For a vector v, we also define

(v)n as the nth element of v.

The purpose of this proof is following: By Lemma 7.25, we already know that the lemma

holds for systems with scalar observations and without eigenvalue cycles. Therefore, we first reduce

the system to one with scalar observations and without eigenvalue cycles. To reduce the system to

the one without eigenvalue cycles, we will use down-sampling ideas (polyphase decomposition) from

signal processing [75]. To reduce the system to the one with scalar observations, we will multiply a

proper post-processing matrix which combines vector observations into scalar observations. Then, we

estimate the m1,1th element of x1,1, which associated with the largest eigenvalue. Then, we subtract

the estimate from the system. The resulting system becomes an (m − 1)-dimensional system, and

by the induction hypothesis, we can estimate the remaining states. As we mentioned before, this

idea is called successive decoding in information theory [21].

Let’s start with the down-sampling and reduction to scalar observations.

• Down-sampling the System by p and Reduction to Scalar Observations: The main dif-

ficulty in estimating the m1,1th element of x1,1 is the periodicity of the system. To handle this

difficulty, we down-sample the system. Let p =
∏

1≤i≤µ pi. Recall that in (2.36), pi was the period

of each eigenvalue cycle. We can see when the system is down sampled by p, the resulting system

becomes aperiodic. Thus, we can reduce the original periodic system to p aperiodic systems.

We can further reduce vector observation systems to scalar observation systems. Thus, the

system reduces to an aperiodic system with scalar observations, and by Lemma 7.25 we can estimate

the m1,1th element of x1,1.

Since we are using induction for the proof, we can focus on the first eigenvalue cycle of the

system.
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Let T1, · · · , TR be all the sets T such that T := {t1, · · · , t|T |} ⊆ {0, 1, · · · , p1 − 1} and




C1A1
−t1

C1A1
−t2

...

C1A1
−t|T |




is full rank. (7.79)

Here, the definition of A1 and C1 is given in (2.36) and




C1diag{α1,1, · · · , α1,ν1
}−t1

C1diag{α1,1, · · · , α1,ν1}−t2
...

C1diag{α1,1, · · · , α1,ν1
}−t|T |




is also full

rank. The number of such sets, R, is finite since p1 is finite.

Therefore, for each Tr := {tr,1, · · · , tr,|Tr|} (1 ≤ r ≤ R), we can find a matrix Lr such that

Lr




C1diag{α1,1, · · · , α1,ν1
}−tr,1

C1diag{α1,1, · · · , α1,ν1}−tr,2
...

C1diag{α1,1, · · · , α1,ν1
}−tr,|Ti|




= I.

Let
[
Ltr,1,r Ltr,2,r · · · Ltr,|Tr|,r

]
be the first row of Lr where Lt,r are 1× l matrices. Then,

[
Ltr,1,r Ltr,2,r · · · Ltr,|Tr|,r

]




C1diag{α1,1, · · · , α1,ν1
}−tr,1

C1diag{α1,1, · · · , α1,ν1}−tr,2
...

C1diag{α1,1, · · · , α1,ν1
}−tr,|Tr|




=
[
1 0 · · · 0

]
. (7.80)

When q ∈ {0, 1, · · · , p1 − 1} \ {tr,1, · · · , tr,|Tr|}, we put Lq,r = 0. We also extend this

definition of Lq,r to all q ∈ {0, · · · , p − 1}, r ∈ {1, · · · , R} by putting Lq,r := Lq( mod p1),r for

q ≥ p1. Then, we can easily check that (7.80) still holds as long as tr,i remains the same in mod p1.

Claim 7.7. For a given q ∈ {0, · · · , p − 1} and r ∈ {1, · · · , R}, let Lq,rC1 be not 0. Then, there

exist C̄q,r, Āq,r, Ūq,r, x̄q,r that satisfy the following conditions:

(i) Āq,r is a m̄q,r × m̄q,r square matrix given in a Jordan form. The eigenvalues of Āq,r belong

to {λp1,1, λ
p
2,1, · · · , λ

p
µ,1}, and no two different Jordan blocks have the same eigenvalue. Therefore,

Āq,r has no eigenvalue cycles. Furthermore, the first Jordan block(left-top) of Āq,r is a m1,1×m1,1

Jordan block associated with eigenvalue λp1,1.

(ii) C̄q,r is a 1× m̄q,r row vector and (Āq,r, C̄q,r) is observable.

(iii) Ūq,r is a m̄q,r × m̄q,r invertible upper triangular matrix.
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(iv) x̄q,r is a m̄q,r × 1 column vector. There exists a nonzero constant gq,r such that

(x̄q,r)m1,1 = gq,r

(
Lq,rC1diag{α1,1, · · · , α1,ν1}−(q+(m1,1−1))

)




(x1,1)m1,1

(x′1,2)m1,1

...

(x′1,ν1)m1,1



.

where (x′1,i)m1,1
= (x1,i)m1,1

when the size of x1,i is greater or equal to m1,1, and (x′1,i)m1,1
= 0

otherwise.

(v) For all k ∈ Z+, Lq,rCA−(pk+q)x = C̄q,rĀ
−k
q,rŪq,rx̄q,r.

This claim tells that by sub-sampling with rate p, we get systems without eigenvalue cycles.

Moreover, by multiplying the proper row vector to observations, we can reduce the system to a scalar

observation system while keeping required information to estimate (x1,1)m1,1
. When Lq,rC1 is 0,

the observation is not useful in estimation (x1,1)m1,1 . Thus, we can ignore it.

Proof. The proof of the claim consists of two parts, down-sampling and reduction to a scalar obser-

vation system.

(1) Down-sampling the System by p:

By the definition of C, A, Ci,j, Ai,j, for all k ∈ Z, q ∈ {0, · · · , p− 1} we have

CA−(pk+q)x = C1,1A1,1
−(pk+q)x1,1 + C1,2A1,2

−(pk+q)x1,2 + · · ·+ Cµ,νµAµ,νµ
−(pk+q)xµ,νµ

(7.81)

Since the dimensions of xi,1, · · · ,xi,νi may be different, we will make them equal by ex-

tending the dimensions to the maximum, i.e. mi,1. For the extension, we will append zeros at

the end of the matrices. Let C′i,j be a l × mi,1 matrix given as
[
Ci,j 0l×(mi,1−mi,j)

]
, A′i,j be a

mi,1 ×mi,1 Jordan block matrix with eigenvalue λi,j , and x′i,j be a mi,1 × 1 column vector given as[
xi,j

0(mi,1−mi,j)×1

]
. Then, by the construction, we can see that (x′1,1)m1,1

= (x1,1)m1,1
, and if m1,i is

greater or equal to m1,1 (x′1,i)m1,1 = (x1,i)m1,1 and otherwise (x′1,i)m1,1 = 0. Therefore, x′i,j satisfies

the condition (iv) of the claim. Furthermore, the first column of C′i,j is equal to the first column of

Ci,j by construction.

We also define αi,j to be
λi,j
λi,1

. Recall that λi,j was defined as the eigenvalue corresponding

to Ai,j in (2.35). Then, by the definitions αpii,j = 1.
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Then, (7.81) can be written as follows:

CA−(pk+q)x = C′1,1A′1,1
−(pk+q)

x′1,1 + C′1,2A′1,2
−(pk+q)

x′1,2 + · · ·+ C′µ,νµA′µ,νµ
−(pk+q)

x′µ,νµ

= C′1,1A′1,1
−(pk+q)

x′1,1

+ C′1,2




α
−(m1,1−1)
1,2 0 · · · 0

0 α
−(m1,1−2)
1,2 · · · 0

...
...

. . .
...

0 0 · · · 1




A′1,1
−(pk+q)

·




α
−(pk+q)+(m1,1−1)
1,2 0 · · · 0

0 α
−(pk+q)+(m1,1−2)
1,2 · · · 0

...
...

. . .
...

0 0 · · · α
−(pk+q)
1,2




x′1,2 + · · ·

+ C′µ,νµ




α
−(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · 1




A′µ,1
−(pk+q)

·




α
−(pk+q)+(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−(pk+q)+(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · α
−(pk+q)
µ,νµ




x′µ,νµ (7.82)

= C′1,1A′1,1
−(pk+q)

x′1,1

+ C′1,2




α
−(m1,1−1)
1,2 0 · · · 0

0 α
−(m1,1−2)
1,2 · · · 0

...
...

. . .
...

0 0 · · · 1




A′1,1
−(pk+q)




α
−q+(m1,1−1)
1,2 0 · · · 0

0 α
−q+(m1,1−2)
1,2 · · · 0

...
...

. . .
...

0 0 · · · α−q1,2




x′1,2 + · · ·

+ C′µ,νµ




α
−(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · 1




A′µ,1
−(pk+q)




α
−q+(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−q+(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · α−qµ,νµ




x′µ,νµ .

(7.83)

Here, (7.82) follows from Lemma 7.26 and (7.83) follows from αpi,j =
(
αpii,j
)∏

j 6=i pj = 1. Recall that

mi,j was defined as the size of Ai,j in (2.35).
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Define

C′′i,j := C′i,j




α
−(mi,1−1)
i,j 0 · · · 0

0 α
−(mi,1−2)
i,j · · · 0

...
...

. . .
...

0 0 · · · 1



, (7.84)

x′′i,j :=




α
−q+(mi,1−1)
i,j 0 · · · 0

0 α
−q+(mi,1−2)
i,j · · · 0

...
...

. . .
...

0 0 · · · α−qi,j




x′i,j. (7.85)

Here, we can notice that the first column of C′′i,j is α
−(mi,1−1)
i,j times the first column of

C′i,j. Here, we know the first column of C′i,j is equal to the first column of Ci,j. The last element of

x′′i,j is α−qi,j times the last element of x′i,j. (7.83) can be written as

CA−(pk+q)x = C′′1,1A′1,1
−(pk+q)

x′′1,1 + C′′1,2A′1,1
−(pk+q)

x′′1,2 + · · ·+ C′′µ,νµA′µ,1
−(pk+q)

x′′µ,νµ .(7.86)

We can see all x′′i,1, · · · ,x′′i,νi are multiplied by the same matrix A′1,1. Eventually, we will merge

x′′i,1, · · · ,x′′i,νi by taking linear combinations.

(2) Reduction to the scalar observation: Now, we reduce C′′i,j to row vectors by multiplying

Lq,r to (7.86).

Lq,rCA−(pk+q)x = Lq,rC
′′
1,1A′1,1

−(pk+q)
x′′1,1 + Lq,rC

′′
1,2A′1,1

−(pk+q)
x′′1,2 + · · ·+ Lq,rC

′′
µ,νµA′µ,1

−(pk+q)
x′′µ,νµ .

(7.87)

Here, the systems (A′i,1,Lq,rC
′′
i,1), · · · , (A′i,1,Lq,rC

′′
i,νi

) have the same dimension, but none

of them might be observable. Therefore, we will make at least one of the systems be observable by

truncation. Since A′i,1 is a Jordan block matrix and Lq,rC
′′
i,j is a row vector, (A′i,1,Lq,rC

′′
i,j) is

observable if and only if the first element of Lq,rC
′′
i,j is not zero. Let m′i be the smallest number

such that at least one of the m′ith elements of Lq,rC
′′
i,1, · · · ,Lq,rC

′′
i,νi

becomes nonzero, and let

Lq,rC
′′
i,ν?i

be the vector that achieves the minimum.

Then, we will reduce the dimension of (A′i,1,Lq,rC
′′
i,νi

) by truncating the first (m′i − 1)

vectors. Define C′′′i,j as the matrix obtained by truncating the first (m′i − 1) columns of C′′i,j, A′′i,j

as the matrix obtained by truncating the first (m′i − 1) rows and columns of A′i,j, and x′′′i,j as the

column vector obtained by truncating the first (m′i − 1) elements of x′′i,j.

In the claim, we assumed that Lq,rC1 is not 0. Recall that the elements of Lq,rC1 corre-

spond to the first elements of Lq,rC1,1, · · · ,Lq,rC1,ν1 , which are again equal to the first elements of

Lq,rC
′
1,1, · · · ,Lq,rC

′
1,ν1 . Since the first column of C′′i,j is the first column of C′i,j times α

−(mi,1−1)
i,j ,

at least one of the systems (A′1,1,Lq,rC
′′
1,1), · · · , (A′1,1,Lq,rC

′′
1,ν1) has to be observable.

Therefore, we can see m′1 = 1 and

C′′′1,i = C′′1,i,A
′′
1,i = A′1,i,x

′′′
1,i = x′′1,i. (7.88)
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Now, (7.87) becomes

Lq,rCA−(pk+q)x = Lq,rC
′′′
1,1A′′1,1

−(pk+q)
x′′′1,1 + Lq,rC

′′′
1,2A′′1,1

−(pk+q)
x′′′1,2 + · · ·+ Lq,rC

′′′
µ,νµA′′µ,1

−(pk+q)
x′′′µ,νµ .

Let c′′′i,j,1 be the first element of Lq,rC
′′′
i,j. By Lemma 7.28, we can find upper triangular matrices

Ti,j such that their diagonal elements are
c′′′i,j,1
c′′′
i,ν?
i
,1

and

Lq,rCA−(pk+q)x = Lq,rC
′′′
1,ν?1

A′′1,1
−(pk+q) (

T1,1x′′′1,1 + T1,2x′′′1,2 + · · ·+ T1,ν1x′′′1,ν1
)

+ · · ·

+ Lq,rC
′′′
µ,ν?µ

A′′µ,1
−(pk+q)

(
Tµ,1x′′′µ,1 + Tµ,2x′′′µ,2 + · · ·+ Tµ,νµx′′′µ,νµ

)
(7.89)

where c′′′i,ν?i ,1 is guaranteed to be nonzero by the construction.

Define x′′′′i as

(
Ti,1x′′′i,1 + Ti,2x′′′i,2 + · · ·+ Ti,νix

′′′
i,νi

)
. (7.90)

Here, A′′i,1
−(pk+q)

is not in a Jordan block. However, since A′′i,1 is a Jordan block, by

Lemma 7.27 the Jordan decomposition of A′′i,1
p

is UiΛiUi
−1 where Λi is a Jordan block whose

eigenvalue is the pth power of the eigenvalue of A′′i,1 and Ui is an upper triangular matrix whose

diagonal entries are non-zero. Thus, (7.89) can be written as

Lq,rCA−(pk+q)x = Lq,rC
′′′
1,ν?1

U1Λ1
−kU1

−1A′′1,1
−q

x′′′′1 + · · ·+ Lq,rC
′′′
µ,ν?µ

UµΛµ
−kUµ

−1A′′µ,1
−q

x′′′′µ

=
[
Lq,rC

′′′
1,ν?1

U1 Lq,rC
′′′
2,ν?2

U2 · · · Lq,rC
′′′
µ,ν?µ

Uµ

]




Λ1 0 · · · 0

0 Λ2 · · · 0
...

...
. . .

...

0 0 · · · Λµ




−k

·




U1
−1A′′1,1

−q
0 · · · 0

0 U2
−1A′′2,1

−q · · · 0
...

...
. . .

...

0 0 · · · Uµ
−1A′′µ,1

−q







x′′′′1

x′′′′2

...

x′′′′µ



.

Let’s define C̄q,r as
[
Lq,rC

′′′
1,ν?1

U1 Lq,rC
′′′
2,ν?2

U2 · · · Lq,rC
′′′
µ,ν?µ

Uµ

]
, Āq,r as




Λ1 0 · · · 0

0 Λ2 · · · 0
...

...
. . .

...

0 0 · · · Λµ




,

Ūq,r as


U1
−1A′′1,1

−q
0 · · · 0

0 U2
−1A′′2,1

−q · · · 0
...

...
. . .

...

0 0 · · · Uµ
−1A′′µ,1

−q




, x̄q,r as




x′′′′1

x′′′′2

...

x′′′′µ




and m̄q,r as the dimension of

Āq,r.
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Here, we can see that Āq,r has no eigenvalue cycles and satisfies the condition (i) of the

claim. Furthermore, since Ui is an upper triangular matrix whose diagonal elements are non-zero,

the first elements of Lq,rC
′′′
i,ν?i

Ui are still non-zeros. Thus, the system (Λi,Lq,rC
′′′
i,ν?i

Ui) is observable

and (Āq,r, C̄q,r) is also observable, which satisfies the condition (ii) of the claim. We also have

Lq,rCA−(pk+q)x = C̄q,rĀ
−k
q,rŪq,rx̄q,r

which is the condition (v) of the claim.

Let c1,j,1 be the first element of Lq,rC1,j. Then, we have

(x̄q,r)m1,1
= (x′′′′1 )m1,1

=

(
c′′′1,1,1
c′′′1,ν?1 ,1

(x′′′1,1)m1,1
+ · · ·+

c′′′1,ν1,1

c′′′1,ν?1 ,1
(x′′′1,ν1)m1,1

)
(7.91)

=

(
c′′′1,1,1
c′′′1,ν?1 ,1

α−q1,1(x′1,1)m1,1
+ · · ·+

c′′′1,ν1,1

c′′′1,ν?1 ,1
α−q1,ν1

(x′1,ν1)m1,1

)
(7.92)

=
1

c′′′1,ν?1 ,1

(
c1,1,1α

−q−(m1,1−1)
1,1 (x′1,1)m1,1

+ · · ·+ c1,ν1,1α
−q−(m1,1−1)
1,ν1

(x′1,ν1)m1,1

)
(7.93)

=
1

c′′′1,ν?1 ,1

(
Lq,rC1diag{α1,1, · · · , α1,ν1}−(q+(m1,1−1))

)



(x′1,1)m1,1

...

(x′1,ν1)m1,1




(7.91) follows from (7.90). (7.92) follows from (7.85), (7.88). (7.93) follows from (7.84), (7.88)

and that the first column of C′i,j is the same as the first column of Ci,j as we mentioned above.

Furthermore, as we mentioned above, (x′1,1)m1,1
= (x1,1)m1,1

. Therefore, the condition (iv) of the

claim is also satisfied, and this finishes the proof.

• Estimating (x)m1,1
: Now, we have systems without eigenvalue cycles and with scalar

observations. Thus, by applying Lemma 7.25, we will estimate the state (x)m1,1 .

Claim 7.8. We can find a polynomial p̄(k), m̄ ∈ N and a family of stopping time {S̄(ε, k) : k ∈
Z+, ε > 0} such that for all ε > 0, k ∈ Z+ there exist k ≤ k̄1 < k̄2 < · · · < k̄m̄ ≤ S̄(ε, k) and M̄

satisfying:

(i) β[k̄i] = 1 for 1 ≤ i ≤ m̄

(ii) M̄




CA−k̄1

...

CA−k̄m̄


x = (x)m1,1

(iii)
∣∣M̄
∣∣
max
≤ p̄(S̄(ε,k))

ε |λ1,1|S̄(ε,k)

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP{S̄(ε, k)− k = s} ≤ p

l1
p1
e

This claim tells that there exists an estimator M̄ for (x)m1,1 which use observations at time

k̄1, · · · , k̄m̄.
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Proof. For each q ∈ {0, · · · , p−1}, we have the down-sampled systems (Āq,1, C̄q,1), · · · , (Āq,R, C̄q,R)

such that all systems are observable, Āq,i have no eigenvalue cycles, and C̄q,i are row vectors. By

Lemma 7.25, we can find a polynomial pq(k) and a family of random variables {S̄q(ε, k) : k ∈ Z+, ε >

0} such that for all ε > 0, k ∈ Z+ and 1 ≤ i ≤ R there exist dk−qp e ≤ ki,1 < ki,2 < · · · < ki,m̄q,i ≤
S̄q(ε, k) and Mi satisfying:

(i) β[pki,j + q] = 1 for 1 ≤ j ≤ m̄q,i

(ii) Mi




C̄q,iĀ
−ki,1
q,i

C̄q,iĀ
−ki,2
q,i

...

C̄q,iĀ
−ki,m̄q,i
q,i




= Im̄q,i×m̄q,i

(iii) |Mi|max ≤
pq(S̄q(ε,k))

ε (|λ1,1|p)S̄q(ε,k)

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s logP{S̄q(ε, k)− dk−qp e = s} = pe.

By the property (iv) of S̄q(ε, k), we get

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{pS̄q(ε, k)− pdk − q

p
e = s} = p

1
p
e

which implies

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{(pS̄q(ε, k) + q)− k = s} = p

1
p
e .

Moreover, S̄q(ε, k) depends on only β[q], β[p + q], β[2p + q], · · · . Thus, S̄0(ε, k), · · · , S̄p−1(ε, k) are

independent.

Now, we can estimate the state of each sub-sampled system. We will leverage these esti-

mations to the estimation of the state (x)m1,1
.

First, notice that the down-sampling rate p is much larger than p1. Therefore, we make

the corresponding definition to (7.79) for the longer period p. Let T ′1, · · · , T ′R′ be all the sets T ′ such

that T ′ := {t′1, · · · , t′|T ′|} ⊆ {0, 1, · · · , p− 1} and




C1A1
−t′1

C1A1
−t′2

...

C1A1
−t′|T ′|




is full rank.

Here, we can ask how many observations have to be erased to make the observability

Gramian of (A1,C1) rank deficient during the period p. Obviously, the answer is l1
∏

2≤j≤µ pj

where the definition of l1 is shown in (2.37). The reason for this is that we have to erase at least l1

observations for each period p1 to make the observability Gramian rank deficient. Formally, it can

be written as follows:

min{|T | : T = {t1, · · · , t|T |} ⊆ {0, 1, · · · , p− 1}, T ′i 6⊆ T for all 1 ≤ i ≤ R′} = l1
∏

2≤j≤µ

pj .
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Denote a stopping time S̄(ε, k) as the minimum time until we have enough observations to

make the observability Gramian of (A1,C1) full rank. Formally,

S̄(ε, k)− k := inf{s : ∃i ∈ {1, · · · , R′} s.t. T ′i = {t′1, t′2, · · · t′|T ′i |} and

(pS̄t′1(ε, k) + t′1)− k ≤ s, (pS̄t′2(ε, k) + t′2)− k ≤ s, · · · , (pS̄t′
|T ′
i
|
(ε, k) + t′|T ′i |

)− k ≤ s}.

Then, by Lemma 7.3 we have

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{S̄(ε, k)− k = s} ≤ p

l1
∏
j 6=1 pj
p

e = p
l1
p1
e .

Without loss of generality, let T ′1 be the set that satisfies the definition of S̄(ε, k). Then,

by the definition of T ′1 and Ti, there must exist Ti such that T ′1 contains Ti in mod p1. Let T1 be

such a set without loss of generality. Then, we can find {t′1, · · · , t′|T1|} which is included in T ′1 and

includes T1 in mod p1. Formally, {t′1, · · · , t′|T1|} ⊆ T
′
1 and {t′1(mod p1), · · · , t′|T1|(mod p1)} = T1.

Then, from the definition of S̄(ε, k) and S̄q(ε, k), for each q ∈ {t′1, · · · , t′|T1|} we can find

dk−qp e ≤ kq,1 < kq,2 < · · · < kq,m̄q,1 ≤ S̄q(ε, k) and Mq satisfying the following conditions:

(i’) β[pkq,j + q] = 1 for 1 ≤ j ≤ m̄q,1

(ii’) Mq




C̄q,1Ā
−kq,1
q,1

C̄q,1Ā
−kq,2
q,1

...

C̄q,1Ā
−kq,m̄q,1
q,1




= Im̄q,1×m̄q,1

(iii’) |Mq|max ≤
pq(S̄q(ε,k))

ε (|λ1,1|p)S̄q(ε,k).

(iv’) pS̄q(ε, k) + q ≤ S̄(ε, k)
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Then, we have

diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}diag{Lt′1,1

,Lt′1,1
, · · · ,Lt′|T1|

,1}

·




CA
−(pkt′1,1

+t′1)

CA
−(pkt′1,2

+t′1)

...

CA
−(pkt′1,m̄t′1,1

+t′1)

CA
−(pkt′2,1

+t′2)

...

CA
−(pkt′|T1|

,m̄
t′|T1|

,1
+t′|T1|

)




x

= diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}




Lt′1,1
CA

−(pkt′1,1
+t′1)

x

Lt′1,1
CA

−(pkt′1,2
+t′1)

x
...

Lt′1,1
CA

−(pkt′1,m̄t′1,1
+t′1)

x

Lt′2,1
CA

−(pkt′2,1
+t′2)

x
...

Lt′|T1|
,1CA

−(pkt′|T1|
,m̄
t′|T1|

,1
+t′|T1|

)

x




= diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}




C̄t′1,1
Ā
−kt′1,1
t′1,1

Ūt′1,1
x̄t′1,1

C̄t′1,1
Ā
−kt′1,2
t′1,1

Ūt′1,1
x̄t′1,1

...

C̄t′1,1
Ā
−kt′1,m̄t′1,1
t′1,1

Ūt′1,1
x̄t′1,1

C̄t′2,1
Ā
−kt′2,1
t′2,1

Ūt′2,1
x̄t′2,1

...

C̄t′|T1|
,1Ā

−kt′|T1|
,m̄
t′|T1|

,1

t′|T1|
,1 Ūt′|T1|

,1x̄t′|T1|
,1




(7.94)

=




Ū−1
t′1,1

Mt′1




C̄t′1,1
Ā
−kt′1,1
t′1,1

...

C̄t′1,1
Ā
−kt′1,m̄t′1,1
t′1,1




Ūt′1,1
x̄t′1,1

...

Ū−1
t′|T1|

,1Mt′|T1|




C̄t′|T1|
,1Ā

−kt′|T1|
,1

t′1,1

...

C̄t′|T1|
,1Ā

−kt′|T1|
,m̄
t′|T1|

,1

t′1,1




Ūt′|T1|
,1x̄t′|T1|

,1




=




x̄t′1,1

...

x̄t′|T1|
,1


 . (7.95)
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Here, (7.94) comes from the condition (v) of Claim 7.7. (7.95) comes from the definition of Mq.

Now, we will estimate (x)m1,1
based on x̄t′1,1

, · · · , x̄t′|T1|
,1. Let e

m̄q,r
m1,1 be a 1 × m̄q,r row

vector whose elements are all zeros except m1,1th element which is 1. Then, we have the following

equation:

[
1

gt′1,1
e

m̄t′1,1
m1,1 · · · 1

gt′|T1|
,1

e
m̄|t′|T1|

|,1

m1,1

]



x̄t′1,1

...

x̄t′|T1|
,1




=
1

gt′1,1
(x̄t′1,1

)m1,1
+ · · ·+ 1

gt′|T1|
,1

(x̄t′|T1|
,1)m1,1

=
(
Lt′1,1

C1diag{α1,1, · · · , α1,ν1}−(t′1+(m1,1−1))
)



(x1,1)m1,1

...

(x′1,ν1)m1,1


+ · · ·

+
(
Lt′|T1|

,1C1diag{α1,1, · · · , α1,ν1}
−(t′|T1|

+(m1,1−1))
)



(x1,1)m1,1

...

(x′1,ν1)m1,1


 (7.96)

=
[
Lt′1,1

· · · Lt′|T1|
,1

]



C1diag{α1,1, · · · , α1,ν1
}−t′1

...

C1diag{α1,1, · · · , α1,ν1
}−t

′
|T1|







α
−m1,1+1
1,1 (x1,1)m1,1

...

α
−m1,1+1
1,ν1

(x′1,ν1)m1,1




= α
−m1,1+1
1,1 (x1,1)m1,1

= α
−m1,1+1
1,1 (x)m1,1

. (7.97)

Here, (7.96) follows from the condition (iv) of Claim 7.7. (7.97) follows from (7.80) and {t′1(mod p1),

· · · , t′|T1|(mod p1)} = T1.

Now, we merge the results from (7.95) and (7.97) to make an estimator for (x)m1,1
. Define

M̄ :=α
m1,1−1
1,1

[
1

gt′1,1
e

m̄|t′1|,1
m1,1 · · · 1

gt′|T1|
,1

e
m̄|t′|T1|

|,1

m1,1

]

· diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}diag{Lt′1,1

,Lt′1,1
, · · · ,Lt′|T1|

,1}

and




CA−k̄1

...

CA−k̄m̄


 :=




CA
−(pkt′1,1

+t′1)

CA
−(pkt′1,2

+t′1)

...

CA
−(pkt′1,m̄t′1,1

+t′1)

CA
−(pkt′2,1

+t′2)

...

CA
−(pkt′|T1|

,m̄
t′|T1|

,1
+t′|T1|

)




.
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Then, by (iii’) and (iv’) we can find a positive polynomial p̄(k) such that

∣∣M̄
∣∣
max

. max
1≤i≤|T1|

{|Mt′i
|max} ≤

p̄(S̄(ε, k))

ε
|λ1,1|S̄(ε,k).

Moreover, by (7.95) and (7.97) we have

M̄




CA−k̄1

...

CA−k̄m̄


x = (x)m1,1 .

This finishes the proof of the claim

• Subtracting (x)m1,1 from the observations: Now, we have an estimation for (x)m1,1 . We

will remove it from the system.

Ã, C̃ and x̃ are the system matrices after the removal. Formally, Ã is obtained by removing

the m1,1th row and column from A, C̃ is obtained by removing the m1,1th row from C, and x̃ is

obtained by removing the m1,1th component from x respectively.

Denote the m1,1th column of CA−k as R(k). Then, we have the following relation between

the original system (A,C) and the new system (Ã, C̃):

CA−kx−R(k)(x)m1,1
= C̃Ã−kx̃ (7.98)

which can be easily proved from the block diagonal structure of A. From the definition of R(k),

we can further see that there exists a polynomial p̃(k) such that |R(k)|max ≤ p̃(k)|λ1,1|−k. Thus,

when |λ1,1| > 1 we can find a threshold kth ≥ 0 such that all k ≥ kth, p̃(k)|λ1,1|−k is a decreasing

function. When |λ1,1| = 1, we simply put kth = 0.

• Decoding the remaining element of x: We decoded and subtracted the state (x)m1,1
from

the system. After subtracting, the remaining system matrices Ã ∈ C(m−1)×(m−1) and C̃ ∈ Cl×(m−1)

become one-dimension smaller. Therefore, we can apply the induction hypothesis to estimate x̃.

We can also write Ã and C̃ in the same way that we write A and C as (2.35), (2.36) and

(2.37), and define the corresponding parameters shown in (2.35), (2.36) and (2.37). To distinguish

the parameters for Ã and C̃ from the parameters for A and C, we use tilde. For example, the

dimension of A was m×m, and we define the dimension of Ã as m̃× m̃. Likewise, the parameters

µ̃, ν̃i, λ̃i,j , m̃i,j , p̃i, l̃i are defined for the system matrices Ã and C̃ in the same ways as (2.35), (2.36)

and (2.37).

By the induction hypothesis, we can find m̃′1, · · · , m̃′µ̃ ∈ N, positive polynomials p̃1(k), · · · , p̃µ̃(k)

and families of stopping times {S̃1(ε, k) : k ∈ Z+, 0 < ε < 1}, · · · , {S̃µ̃(ε, k) : k ∈ Z+, 0 < ε < 1} such

that for all 0 < ε < 1 there exist max{S̄(ε, k), kth} ≤ k̃1 < · · · < k̃m̃′1 ≤ S̃1(ε, k) < k̃m̃′1+1 < · · · <
k̃∑

1≤i≤µ̃ m̃
′
i
≤ S̃µ̃(ε, k) and a m̃× (

∑
1≤i≤µ̃ m̃

′
i)l matrix M̃ satisfying the following conditions:

(i”) β[k̃i] = 1 for 1 ≤ i ≤
∑

1≤i≤µ̃ m̃
′
i
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(ii”) M̃




C̃Ã−k̃1

C̃Ã−k̃2

...

C̃Ã
−k̃∑

1≤i≤µ̃ m̃
′
i




= I

(iii”) |M̃|max ≤ max1≤i≤µ̃

{
p̃i(S̃i(ε,k))

ε |λ̃i,1|S̃i(ε,k)
}

(iv”) limε↓0 exp lim sups→∞ ess sup 1
s logP{S̃i(ε, k)−max{S̄(ε, k), kth} = s|FS̄(ε,k)} = max1≤j≤i

{
p

l̃j
p̃j
e

}

for 1 ≤ i ≤ µ̃

(v”) limε↓0 exp lim sups→∞ ess sup 1
s logP{S̃a(ε, k) − S̃b(ε, k) = s|FS̃b(ε,k)} ≤ maxb<i≤a

{
p
l̃i
p̃i
e

}
for

1 ≤ b < a ≤ µ̃. Compared to Lemma 2.3, we can notice that the condition (iv”) is slightly different

from the condition (iv) of Lemma 2.3. The sup over k of (iv) in Lemma 2.3 is replaced by the ess sup.

However, if we remind that max{S̄(ε, k), kth} is a constant conditioned on4 FS̄(ε,k), we just replaced

k of Lemma 2.3 with max{S̄(ε, k), kth}.
4More precise notations for S̃1(ε, k), · · · , S̃µ(ε, k) are S̃1(ε,max{S̄(ε, k), kth}), · · · , S̃µ(ε,max{S̄(ε, k), kth}) since

max{S̄(ε, k), kth} plays the role of k of Lemma 2.3 after conditioning. However, we use the notation of the chapter
for simplicity.



339

Here, we have

x̃ = M̃




C̃Ã−k̃1

C̃Ã−k̃2

...

C̃Ã
−k̃∑

1≤i≤µ̃ m̃
′
i




x̃

= M̃




C̃Ã−k̃1 x̃

C̃Ã−k̃2 x̃
...

C̃Ã
−k̃∑

1≤i≤µ̃ m̃
′
i x̃




= M̃




CA−k̃1x−R(k̃1)(x)m1,1

CA−k̃2x−R(k̃2)(x)m1,1

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
ix−R(k̃∑

1≤i≤µ̃ m̃
′
i
)(x)m1,1




(∵ (7.98))

= M̃







CA−k̃1

CA−k̃2

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
i




x−




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




(x)m1,1




= M̃







CA−k̃1

CA−k̃2

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
i




x−




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




M̄




CA−k̄1

CA−k̄2

...

CA−k̄m̄




x




(∵ the condition (ii) of Claim 7.8)

= M̃



−




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




M̄ I







CA−k̄1

...

CA−k̄m̄

CA−k̃1

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
i




x. (7.99)
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When |λ1,1| > 1, we have

∣∣∣∣∣∣∣∣∣∣∣

M̃



−




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




M̄ I




∣∣∣∣∣∣∣∣∣∣∣
max

. |M̃|max ·max





∣∣∣∣∣∣∣∣∣∣∣




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




∣∣∣∣∣∣∣∣∣∣∣
max

∣∣M̄
∣∣
max

, 1





. max
1≤i≤µ̃

{
p̃i(S̃i(ε, k))

ε
|λ̃i,1|S̃i(ε,k)

}
·max

{
p̃(k̃1)|λ1,1|−k̃1

p̄
(
S̄(ε, k)

)

ε
|λ1,1|S̄(ε,k), 1

}
(7.100)

where the last inequality follows from (iii”), |R(k)| ≤ p̃(k)|λ1,1|−k, kth ≤ k̃i, and condition (iii) of

Claim 7.8. Moreover, since S̄(ε, k) ≤ k̃1 ≤ S̃i(ε, k), there exist some positive polynomials p′i(k) such

that

(7.100) . max
1≤i≤µ̃

{
p′i(S̃i(ε, k))

ε2
|λ̃i,1|S̃i(ε,k)

}
(7.101)

When |λ1,1| = 1, |λ̃1,1| is also 1. Thus, we have

∣∣∣∣∣∣∣∣∣∣∣

M̃



−




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




M̄ I




∣∣∣∣∣∣∣∣∣∣∣
max

. |M̃|max ·max





∣∣∣∣∣∣∣∣∣∣∣




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




∣∣∣∣∣∣∣∣∣∣∣
max

∣∣M̄
∣∣
max

, 1





. max
1≤i≤µ̃

{
p̃1(S̃1(ε, k))

ε

}
·max

{
p̃(k̃∑

1≤i≤µ̃ m̃
′
i

p̄
(
S̄(ε, k)

)

ε
, 1

}

.
p′(S̃µ̃(ε, k))

ε2
(7.102)

for some polynomial p′µ̃(k).
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Since we can reconstruct x from x̃ and (x)m1,1 , we can say there exists M such that

M




CA−k̄1

...

CA−k̄m̄

CA−k̃1

...

CA
−k̃∑

1≤i≤µ̃ m̃i




= I.

By condition (ii) of Claim 7.8 and (7.99), such M satisfies the following:

|M|max ≤ max





∣∣M̄
∣∣
max

,

∣∣∣∣∣∣∣∣∣∣∣

M̃



−




R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)




M̄ I




∣∣∣∣∣∣∣∣∣∣∣
max





. max

{
p̄(S̄(ε, k))

ε
|λ1,1|S̄(ε,k), max

1≤i≤µ̃

{
p′i(S̃i(ε, k))

ε2
|λ̃i,1|S̃i(ε,k)

}}
(7.103)

≤ 1

ε2
max

{
p̄(S̄(ε, k))|λ1,1|S̄(ε,k), max

1≤i≤µ̃

{
p′i(S̃i(ε, k))|λ̃i,1|S̃i(ε,k)

}}
. (7.104)

Here, (7.103) follows from the condition (iii) of Claim 7.8, (7.101), (7.102).

Moreover, since kth is a constant, the condition (iv) of Claim 7.8 implies

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP

{
max

{
S̄(ε, k), kth

}
− k = s

}
= p

l1
p1
e . (7.105)

Therefore, by applying Lemma 7.2 together with (7.105) and (iv”) we get

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{S̃i(ε, k)− k = s} = max

{
p
l1
p1
e , max

1≤j≤i

{
p

l̃j
p̃j
e

}}
. (7.106)

We finish the proof by dividing into two cases depending on µ̃. Since Ã is obtained by

erasing just one row and column of A, the relation between µ̃ and µ is either µ̃ = µ or µ̃ = µ− 1.

(1) When µ̃ = µ.

In this case, the number of the eigenvalue cycles remains the same. We can see that

|λ̃i,1| = |λi,1|. A1 and Ã1 may be the same or Ã1 has smaller dimension than A1. Thus, the new

system Ã1 becomes easier to estimate, and l̃1
p̃1
≥ l1

p1
, i.e. p

l̃1
p̃1
e ≤ p

l1
p1
e . Ai and Ãi are the same for

all 2 ≤ i ≤ µ, so l̃i
p̃i

= li
pi

for 2 ≤ j ≤ µ. Define Si(ε
2, k) := S̃i(ε, k), p1(k) := p̄(k) + p′1(k), and

pi(k) := p′i(k) for 2 ≤ i ≤ µ. Then, (7.104), (7.106) and (v”) reduces as follows:

|M|max ≤ max
1≤i≤µ

{
pi(Si(ε, k))

ε
|λi,1|Si(ε,k)

}
,
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lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{Si(ε, k)− k = s} ≤ max

1≤j≤i

{
p

lj
pj
e

}
,

lim
ε↓0

exp lim sup
s→∞

ess sup
1

s
logP{Sa(ε, k)− Sb(ε, k) = s|FSb(ε,k)} ≤ max

b<i≤a

{
p
li
pi
e

}
.

Here, we reparametrized ε2 to ε. Therefore, the lemma is true for this case.

(2) When µ̃ = µ− 1.

Since one eigenvalue cycle has disappeared, we can see that |λ̃1,1| = |λ2,1|, |λ̃2,1| = |λ3,1|, · · · , |λ̃µ̃,1| =
|λµ,1|. Moreover, Ãi = Ai+1 for 1 ≤ i ≤ µ̃ and l̃i

p̃i
= li+1

pi+1
for 1 ≤ i ≤ µ̃. Define S1(ε2, k) := S̄(ε, k),

p1(k) := p̄(k), Si(ε
2, k) := S̃i−1(ε, k) and pi(k) := p′i−1(k) for 2 ≤ i ≤ µ. We will also reparametrize

ε2 to ε. Then, (7.104) reduces to

|M|max ≤ max
1≤i≤µ

{
pi(Si(ε, k))

ε
|λi,1|Si(ε,k)

}
.

By the definition of S1(ε, k), the condition (iv) of Claim 7.8 reduces to

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{S1(ε, k)− k = s} ≤ p

l1
p1
e .

By (7.106) and the definition of Si(ε, k), we have for all 2 ≤ i ≤ µ,

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
logP{Si(ε, k)− k = s} ≤ max

{
p
l1
p1
e , max

1≤j≤i−1

{
p

l̃j
p̃j
e

}}
= max

1≤j≤i

{
p
li
pi
e

}
.

By (iv”), (v”) and the definition of Si(ε, k), we have for all 1 ≤ b < a ≤ µ,

lim
ε↓0

exp lim sup
s→∞

ess sup
1

s
logP{Sa(ε, k)− Sb(ε, k) = s|FSb(ε,k)} ≤ max

b<i≤a

{
p
li
pi
e

}
.

Therefore, the lemma is also true for this case.

Thus, the proof is finished.
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Chapter 8

Appendix for Chapter 3

8.1 Network Linearization for General Information Flow

In this section, we will extend the network linearization idea of Section 3.2.2 from the

point-to-point case to general information flow cases – multicast, broadcast and multiple-unicast.

The main idea for this generalization is the relationship between network linearization and control

over LTI networks discussed in Section 3.6.

8.1.1 Multicast

From the discussion in the point-to-point case, we can expect that to linearize multicast

problems, we have to introduce circulation arcs in a way that corresponds with Fig. 3.4. Fig. 8.1

shows how the circulation arc has to be introduced. One circulation arc (which corresponds to an

unstable plant as discussed in Section 3.6.1) is connected to both receivers.

We will essentially use the same notation and assumptions as Section 3.2.2. Let the one-

transmitter two-receiver LTI network of Fig. 8.1 without circulation arcs be Nmul(z). Denote the

dimension of Y1 as drx1 and Y2 as drx2. Let the transfer function from the transmitter to the receiver

1 of Nmul(z) be Gtx,rx1(z,K), and the transfer function from the transmitter to the receiver 2 be

Gtx,rx2(z,K). Here, the transfer function can be computed in the same way as Theorem 3.1.
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Ktx

Krx2

K1

Kv

Htx,rx2

Htx,1

Htx,v

H1,rx2

Hv,rx2

Hv,1

H1,v

H1,1

Hv,v

I

I
I

I

U

Xv

X1

Y2

Xax

Krx1
Y1

Htx,rx1

H1,rx1

Hv,rx1

I

Figure 8.1: Multicast LTI network Nmul(Z) with circulation arc added in

Then, similar to Section 3.2.2, the following relation has to hold:




Xax

Y1

Y2

X1

...

Xv




=




I Krx1 Krx2 0 · · · 0

Htx,rx1Ktx 0 0 H1,rx1K1 · · · Hv,rx1Kv

Htx,rx2Ktx 0 0 H1,rx2K1 · · · Hv,rx2Kv

Htx,1Ktx 0 0 H1,1K1 · · · Hv,1Kv

...
...

...
...

. . .
...

Htx,vKtx 0 0 H1,vK1 · · · Hv,vKv







Xax

Y1

Y2

X1

...

Xv




(⇔)




0 −Krx1 −Krx2 0 · · · 0

−Htx,rx1Ktx I 0 −H1,rx1K1 · · · −Hv,rx1Kv

−Htx,rx2Ktx 0 I −H1,rx2K1 · · · −Hv,rx2Kv

−Htx,1Ktx 0 0 I −H1,1K1 · · · −Hv,1Kv

...
...

...
...

. . .
...

−Htx,vKtx 0 0 −H1,vK1 · · · I −Hv,vKv




︸ ︷︷ ︸
:=Glin(z,K)




Xax

Y1

Y2

X1

...

Xv




=




0

0

0

0
...

0



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Then, we have

Glin(z,K) =




0 0 0 0 · · · 0

0 I 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
...

...
...

. . .
...

0 0 0 0 · · · I




︸ ︷︷ ︸
:=A

+




0

Htx,rx1

Htx,rx2

Htx,1

...

Htx,v




︸ ︷︷ ︸
:=Btx

Ktx

[
−I 0 0 0 · · · 0

]

︸ ︷︷ ︸
:=Ctx

+




0

H1,rx1

H1,rx2

H1,1

...

H1,v




︸ ︷︷ ︸
:=B1

K1

[
0 0 0 −I · · · 0

]

︸ ︷︷ ︸
:=C1

+ · · ·+




0

Hv,rx1

Hv,rx2

Hv,1

...

Hv,v




︸ ︷︷ ︸
:=Bv

Kv

[
0 0 0 0 · · · −I

]

︸ ︷︷ ︸
:=Cv

+




I

0

0

0
...

0




︸︷︷︸
:=Brx1

Krx1

[
0 −I 0 0 · · · 0

]

︸ ︷︷ ︸
:=Crx1

+




I

0

0
...

0




︸︷︷︸
:=Brx2

Krx2

[
0 0 −I 0 · · · 0

]

︸ ︷︷ ︸
:=Crx2

Let

Gtx′,rx1′(z,K) := A+BtxKtxCtx +Brx1Krx1Crx1 +
∑

1≤i≤v

BiKiCi

Gtx′,rx2′(z,K) := A+BtxKtxCtx +Brx2Krx2Crx2 +
∑

1≤i≤v

BiKiCi

and d := dim




Y1

Y2

X1

...

Xv




. Let Nmul
lin (z) be the network shown in Fig. 8.2. Then, we can easily see

Gtx′,rx1′(z,K) is the transfer function from tx′ to rx′1 of N lin
mul(z), and Gtx′,rx2′(z,K) is the transfer

function from tx′ to rx′2 of N lin
mul(z).

Then, like Section 3.2.2 we can show the equivalence between Nmul(z) and N lin
mul(z).
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tx’

rx1’

Ktx

Krx2

K1

Kv

Krx1

Ctx

C1
A

rx2’
ACv

Crx1

Crx2

BtxBtx
B1B1

Bv
Bv

Brx1

Brx2

Figure 8.2: Linearized LTI network of Multicast problem, N lin
mul(z)

Theorem 8.1. Let Ktx ∈ F[z]dtx×dax , Ki ∈ F[z]di,in×di,out , Krx1 ∈ F[z]dax×drx1 and Krx2 ∈
F[z]dax×drx2 . We also assume that




I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv


 is invertible.

Then, for all d1, d2 ∈ Z+

(i) rank(Krx1(z)Gtx,rx1(z,K(z))Ktx(z)) ≥ d1

(ii) rank(Krx2(z)Gtx,rx2(z,K(z))Ktx(z)) ≥ d2

if and only if

(a) rankGtx′,rx1′(z,K(z)) ≥ d+ d1

(b) rankGtx′,rx2′(z,K(z)) ≥ d+ d2

Proof. Similar to Lemma 3.3.

Remark 1. The result of this theorem can be easily generalized to multiple receivers, which

we omit for simplicity.

Remark 2. To apply this theorem to multicast problems and send a message with rate

r, we can simply put d1 = d2 = r. Moreover, just as we did in Figure 3.7, the condition that


I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv


 is invertible can be included as a part of the communication
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K2

Tx

K1

K3

K4

Rx1 Rx2

Xax,1Xax,2

X1 X2

X3,1 X3,2

X4

Y1,1Y1,2 Y2,1Y2,2

Figure 8.3: Butterfly Example for Multicast. The gains of all edges are 1.

problem by introducing an additional receiver. Following the similar procedure of Section 3.2.3, we

can design an LTI multicast scheme.

Remark 3. Fig. 8.3 and Fig. 8.4 shows the famous butterfly example in network coding [1]

and its corresponding linearized network. Here, we can see the linearized network has more input

and output vertices, but is topologically simpler — a single-hop multicast network. Because there

are no cycles, the additional receiver in Remark 2 is not required.

8.1.2 Broadcast

Inspired by Figure 3.20, we introduce circulation arcs as shown in Figure 8.5 to linearize

broadcast problems. We introduce two circulation arcs which correspond to the two unstable plants

of Figure 3.20, and the two circulation arcs are connected to different receivers as two plants are

controlled by different controllers in Figure 3.20.

We basically use the same notations and assumptions of the previous section. Let the

one-transmitter two-receiver LTI network of Fig. 8.5 without circulation arcs be Nbr(z). Denote

the dimension of Xax1 as dax1 and Xax2 as dax2. Then, as we can see from the figure, Ktx1 is a

dtx × dax1 matrix and Ktx2 is a dtx × dax2 matrix. Let the transfer function from the transmitter

to the receiver 1 of Nmul(z) be Gtx,rx1(z,K), and the transfer function from the transmitter to the

receiver 2 be Gtx,rx2(z,K).
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Ktx

Xax,1
Xax,2
Y1,1
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Figure 8.4: Linearized Network for Butterfly Example of Fig. 8.3. The gain of each edge from Tx′

to Ktx, Ki, Krx1, Krx2 is −1, and the gains for the other edges are all 1.

Krx2

K1

Kv

Htx,rx2

Htx,1

Htx,v

H1,rx2

Hv,rx2

Hv,1

H1,v

H1,1

Hv,v

I
I

I
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I
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Figure 8.5: Broadcast LTI network Nbr(z) with circulation arcs added in
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Then, the following relation has to hold:




Xax1

Xax2

Y1

Y2

X1

...

Xv




=




I 0 Krx1 0 0 · · · 0

0 I 0 Krx2 0 · · · 0

Htx,rx1Ktx1 Htx,rx1Ktx2 0 0 H1,rx1K1 · · · Hv,rx1Kv

Htx,rx2Ktx1 Htx,rx2Ktx2 0 0 H1,rx2K1 · · · Hv,rx2Kv

Htx,1Ktx1 Htx,1Ktx2 0 0 H1,1K1 · · · Hv,1Kv

...
...

...
...

...
. . .

...

Htx,vKtx1 Htx,vKtx2 0 0 H1,vK1 · · · Hv,vKv







Xax1

Xax2

Y1

Y2

X1

...

Xv




(⇔)




0 0 −Krx1 0 0 · · · 0

0 0 0 −Krx2 0 · · · 0

−Htx,rx1Ktx1 −Htx,rx1Ktx2 I 0 −H1,rx1K1 · · · −Hv,rx1Kv

−Htx,rx2Ktx1 −Htx,rx2Ktx2 0 I −H1,rx2K1 · · · −Hv,rx2Kv

−Htx,1Ktx1 −Htx,1Ktx2 0 0 I −H1,1K1 · · · −Hv,1Kv

...
...

...
...

...
. . .

...

−Htx,vKtx1 −Htx,vKtx2 0 0 −H1,vK1 · · · I −Hv,vKv




︸ ︷︷ ︸
:=Glinbr (z,K)




Xax1

Xax2

Y1

Y2

X1

...

Xv




=




0

0

0

0

0
...

0



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Thus, we have

Glinbr (z,K) =




0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 I 0 0 · · · 0

0 0 0 I 0 · · · 0

0 0 0 0 I · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · I




︸ ︷︷ ︸
:=A

+




0

0

Htx,rx1

Htx,rx2

Htx,1

...

Htx,v




︸ ︷︷ ︸
:=Btx1

Ktx1

[
−I 0 0 0 0 · · · 0

]

︸ ︷︷ ︸
:=Ctx1

+




0

0

Htx,rx1

Htx,rx2

Htx,1

...

Htx,v




︸ ︷︷ ︸
:=Btx2

Ktx2

[
0 −I 0 0 0 · · · 0

]

︸ ︷︷ ︸
:=Ctx2

+




0

0

H1,rx1

H1,rx2

H1,1

...

H1,v




︸ ︷︷ ︸
:=B1

K1

[
0 0 0 0 −I · · · 0

]

︸ ︷︷ ︸
:=C1

+ · · ·+




0

0

Hv,rx1

Hv,rx2

Hv,1

...

Hv,v




︸ ︷︷ ︸
:=Bv

Kv

[
0 0 0 0 0 · · · −I

]

︸ ︷︷ ︸
:=Cv

+




I

0

0

0

0
...

0




︸︷︷︸
:=Brx1

Krx1

[
0 0 −I 0 0 · · · 0

]

︸ ︷︷ ︸
:=Crx1

+




0

I

0

0

0
...

0




︸︷︷︸
:=Brx2

Krx2

[
0 0 0 −I 0 · · · 0

]

︸ ︷︷ ︸
:=Crx2
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Figure 8.6: Linearized LTI network of a Broadcast problem, N lin
br (z)

Let

Gtx′,rx11′(z,K) := A+Btx1Ktx1Ctx1 +Brx1Krx1Crx1 +
∑

1≤i≤v

BiKiCi (8.1)

Gtx′,rx22′(z,K) := A+Btx2Ktx2Ctx2 +Brx2Krx2Crx2 +
∑

1≤i≤v

BiKiCi

Gtx′,rx12′(z,K) := A+Btx2Ktx2Ctx2 +Brx1Krx1Crx1 +
∑

1≤i≤v

BiKiCi

Gtx′,rx12′(z,K) := A+Btx1Ktx1Ctx1 +Brx2Krx2Crx2 +
∑

1≤i≤v

BiKiCi

LetN br
lin(z) be the network shown in Fig. 8.6. Then, we can easily seeGtx′,rx11′(z,K), · · · , Gtx′,rx12′(z,K)

correspond to the transfer functions from tx′ to rx′11, · · · , rx′12 of N br
lin(z) respectively.

Then, the relationship between Nbr(z) and N lin
br (z) is given as follows.

Theorem 8.2. Let Ktx1(z) ∈ F[z]dtx×dax1 , Ktx2(z) ∈ F[z]dtx×dax2 , Ki(z) ∈ F[z]di,in×di,out , Krx1(z) ∈
F[z]dax1×drx1 and Krx2(z) ∈ F[z]dax2×drx2 . We also assume that




I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv


 is invertible.
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Then, for all d1, d2, d3, d4 ∈ Z+, the following two conditions are equivalent.

(i) rankKrx1(z)Gtx,rx1(z,K(z))Ktx1(z) ≥ d1

(ii) rankKrx2(z)Gtx,rx2(z,K(z))Ktx2(z) ≥ d2

(iii) rankKrx2(z)Gtx,rx2(z,K(z))Ktx1(z) ≤ d3

(iv) rankKrx1(z)Gtx,rx1(z,K(z))Ktx2(z) ≤ d4

if and only if

(a) rankGtx′,rx11′(z,K(z)) ≥ d+ d1

(b) rankGtx′,rx22′(z,K(z)) ≥ d+ d2

(c) rankGtx′,rx12′(z,K(z)) ≤ d+ d3

(d) rankGtx′,rx21′(z,K(z)) ≤ d+ d4

Proof. Similar to Lemma 3.3.

Remark 1. The result of this theorem can be easily generalized to multiple receivers. In

three receiver case, we will see 9 conditions. For a general n receiver case, we will see n2 conditions

since each receiver will see n different signals (one desired signal and n− 1 interference).

Remark 2. To design a broadcast scheme which communicates a message with rate r1

to receiver 1 and at the same time another message with rate r2 to receiver 2, we can choose the

problem parameters as d1 = r1, d2 = r2, d3 = 0, d4 = 0. Any scheme which satisfies the condition

(a)−(d), and the existence condition of transfer functions can be immediately applied to the original

problem and give a broadcast communication scheme.

Remark 3. The linearized network of Figure 8.6 can be understood as a two-receiver and

two-eavesdropper secrecy problem. The receivers rx11′ and rx22′ want to receive d+ d1 and d+ d2

dimensional information about the messages (possibly, common) respectively. While at the same

time, we do not want to give more than d + d3 and d + d4 dimensions about the message to the

eavesdroppers rx12′ and rx21′.

The receivers rx11′ and rx22′ in the linearized network reflect that the desired messages

have to be received in the original problem. The eavesdropper rx12′ and rx21′ in the linearized

network reflects that the undesired messages must be removable in the original problem.

8.1.3 Multiple-Unicast

As the only difference between Figure 3.20 and Figure 3.21 is the observers, we introduce

circulation arcs in the same way as the broadcast problems in Figure 8.5. Fig. 8.7 shows the

multiple-unicast LTI network Nuni(z) with the circulation arcs.
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Ktx2 Krx2

K1

Kv

Htx1,1

Htx2,v

H1,rx2

Hv,rx2

H1,1

Hv,v

I
I

I

I

U2

Xv

X1

Y2

Xax2

Krx1
Y1

I
II

I

Xax1

H1,rx1

Hv,rx1

Ktx1
U1

H1,v

Hv,1

Htx1,rx1

Htx2,rx2

Htx2,rx1

Htx1,rx2
Htx2,1

Htx1,v

Figure 8.7: Multiple Unicast LTI network Nuni(z) with circulation arc added in

We essentially repeat the previous argument. Let’s use the same notations and assumptions

of the previous section. Denote the dimension of U1, U2, Y1, Y2 as dtx1, dtx2, drx1, drx2 respectively.

The transfer functions between the transmitters and the receivers are denoted as Gtx1,rx1(z,K),

Gtx1,rx2(z,K), Gtx2,rx1(z,K), Gtx2,rx2(z,K).

Then, we have the following relationship.




Xax1

Xax2

Y1

Y2

X1

...

Xv




=




I 0 Krx1 0 0 · · · 0

0 I 0 Krx2 0 · · · 0

Htx1,rx1Ktx1 Htx2,rx1Ktx2 0 0 H1,rx1K1 · · · Hv,rx1Kv

Htx1,rx2Ktx1 Htx2,rx2Ktx2 0 0 H1,rx2K1 · · · Hv,rx2Kv

Htx1,1Ktx1 Htx2,1Ktx2 0 0 H1,1K1 · · · Hv,1Kv

...
...

...
...

...
. . .

...

Htx1,vKtx1 Htx2,vKtx2 0 0 H1,vK1 · · · Hv,vKv







Xax1

Xax2

Y1

Y2

X1

...

Xv




(⇔)




0 0 −Krx1 0 0 · · · 0

0 0 0 −Krx2 0 · · · 0

−Htx1,rx1Ktx1 −Htx2,rx1Ktx2 I 0 −H1,rx1K1 · · · −Hv,rx1Kv

−Htx1,rx2Ktx1 −Htx2,rx2Ktx2 0 I −H1,rx2K1 · · · −Hv,rx2Kv

−Htx1,1Ktx1 −Htx2,1Ktx2 0 0 I −H1,1K1 · · · −Hv,1Kv

...
...

...
...

...
. . .

...

−Htx1,vKtx1 −Htx2,vKtx2 0 0 −H1,vK1 · · · I −Hv,vKv




︸ ︷︷ ︸
:=Glinuni(z,K)




Xax1

Xax2

Y1

Y2

X1

...

Xv




=




0

0

0

0

0
...

0



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Therefore, we have

Glinuni(z,K) =




0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 I 0 0 · · · 0

0 0 0 I 0 · · · 0

0 0 0 0 I · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · I




︸ ︷︷ ︸
:=A

+




0

0

Htx1,rx1

Htx1,rx2

Htx1,1

...

Htx1,v




︸ ︷︷ ︸
:=Btx1

Ktx1

[
−I 0 0 0 0 · · · 0

]

︸ ︷︷ ︸
:=Ctx1

+




0

0

Htx2,rx1

Htx2,rx2

Htx2,1

...

Htx2,v




︸ ︷︷ ︸
:=Btx2

Ktx2

[
0 −I 0 0 0 · · · 0

]

︸ ︷︷ ︸
:=Ctx2

+




0

0

H1,rx1

H1,rx2

H1,1

...

H1,v




︸ ︷︷ ︸
:=B1

K1

[
0 0 0 0 −I · · · 0

]

︸ ︷︷ ︸
:=C1

+ · · ·+




0

0

Hv,rx1

Hv,rx2

Hv,1

...

Hv,v




︸ ︷︷ ︸
:=Bv

Kv

[
0 0 0 0 0 · · · −I

]

︸ ︷︷ ︸
:=Cv

+




I

0

0

0

0
...

0




︸︷︷︸
:=Brx1

Krx1

[
0 0 −I 0 0 · · · 0

]

︸ ︷︷ ︸
:=Crx1

+




0

I

0

0

0
...

0




︸︷︷︸
:=Brx2

Krx2

[
0 0 0 −I 0 · · · 0

]

︸ ︷︷ ︸
:=Crx2

Use the same definitions of (8.1) for Gtx1,rx1(z,K), · · · , Gtx2,rx2(z,K). These transfer functions are

the transfer functions of N lin
uni(z) as before.
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Then, Theorem 8.2 essentially holds for multiple unicast problems as well.

Theorem 8.3. Let Ktx1(z) ∈ F[z]dtx1×dax1 , Ktx2(z) ∈ F[z]dtx2×dax2 , Ki(z) ∈ F[z]di,in×di,out ,

Krx1(z) ∈ F[z]dax1×drx1 and Krx2(z) ∈ F[z]dax2×drx2 . We also assume that




I −H1,1K1 · · · −Hv,1Kv

...
. . .

...

−H1,vK1 · · · I −Hv,vKv


 is invertible.

Then, for all d1, d2, d3, d4 ∈ Z+, the following two conditions are equivalent.

(i) rankKrx1(z)Gtx1,rx1(z,K(z))Ktx1(z) ≥ d1

(ii) rankKrx2(z)Gtx2,rx2(z,K(z))Ktx2(z) ≥ d2

(iii) rankKrx2(z)Gtx1,rx2(z,K(z))Ktx1(z) ≤ d3

(iv) rankKrx1(z)Gtx2,rx1(z,K(z))Ktx2(z) ≤ d4

if and only if

(a) rankGtx′,rx11′(z,K(z)) ≥ d+ d1

(b) rankGtx′,rx22′(z,K(z)) ≥ d+ d2

(c) rankGtx′,rx12′(z,K(z)) ≤ d+ d3

(d) rankGtx′,rx21′(z,K(z)) ≤ d+ d4

Proof. Similar to Lemma 3.3.

Remark 1. The linearized problem of this theorem is essentially the same as that of broad-

cast problems. Compared with Theorem 8.2, the only difference is that Btx1 and Btx2 of Glinuni(z,K)

are different in multiple-unicast problems while they are the same in broadcast problems.

Remark 2. Like the broadcast problem, to design a two-unicast scheme which communicates

a rate r1 message to receiver 1 and a rate r2 message to receiver 2, we have to choose d1 = r1,

d2 = r2, d3 = 0, d4 = 0. The linearized network of Figure 8.7 can be understood as a two-receiver

and two-eavesdropper secrecy problem.
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8.2 Jordan Form Externalization Example

In this section, we show how the Jordan form externalization of the implicit communication

works by working out an explicit example. Let

A =




λ 1 0

0 λ 1

0 0 λ

0 0

0
λ 1

0 λ
0

0 0 λ′




Ci =
[
Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6

]

Bi =




Bi,1

Bi,2

Bi,3

Bi,4

Bi,5

Bi,6




where λ 6= λ′, Bi,j are row vectors, Ci,j are column vectors. We will externalize at the frequency

z = λ.

As mentioned in Section 3.5.2, we will move the third and fifth rows and the first and fourth

columns of λI − A to the left-top of the matrix. For this, we will define the permutation matrices

PL,λ and PR,λ.

The definitions of Section 3.5.2 is given as follows:

κL,λ(0) = 0, κL,λ(1) = 0, κL,λ(2) = 0, κL,λ(3) = 1, κL,λ(4) = 1, κL,λ(5) = 2, κL,λ(6) = 2

κR,λ(0) = 0, κR,λ(1) = 1, κR,λ(2) = 1, κR,λ(3) = 1, κR,λ(4) = 2, κR,λ(5) = 2, κR,λ(6) = 2

mλ = 2

ιL,λ(0) = 0, ιL,λ(1) = 3, ιL,λ(2) = 5

ιR,λ(0) = 0, ιR,λ(1) = 1, ιL,λ(2) = 4

πL,λ(1) = 3, πL,λ(2) = 4, πL,λ(3) = 1, πL,λ(4) = 5, πL,λ(5) = 2, πL,λ(6) = 6

πR,λ(1) = 1, πR,λ(2) = 3, πR,λ(3) = 4, πR,λ(4) = 2, πR,λ(5) = 5, πR,λ(6) = 6
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PL,λ =




0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1




, PR,λ =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




By multiplying PTL,λ and PR,λ to the left and right side of (zI −A), we get the following:

PTL,λ(zI −A)PR,λ =




0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1




T 


z − λ −1 0

0 z − λ −1

0 0 z − λ

0 0

0
z − λ −1

0 z − λ
0

0 0 z − λ′




·




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




=




0 0 z − λ 0 0 0

0 0 0 0 z − λ 0

z − λ −1 0 0 0 0

0 z − λ −1 0 0 0

0 0 0 z − λ −1 0

0 0 0 0 0 z − λ′







1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




=




0 0 0 z − λ 0 0

0 0 0 0 z − λ 0

z − λ 0 −1 0 0 0

0 0 z − λ −1 0 0

0 z − λ 0 0 −1 0

0 0 0 0 0 z − λ′




Here, we can notice that the 2 × 2 left-top sub-matrix is a zero matrix. Furthermore,

PTL,λ(λI −A)PR,λ is a diagonal matrix.
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Aλ,1,1(z), Aλ,1,2(z), Aλ,2,1(z), Aλ,2,2(z) are defined as

Aλ,1,1(z) =

[
0 0

0 0

]
, Aλ,1,2(z) =

[
0 z − λ 0 0

0 0 z − λ 0

]

Aλ,2,1(z) =




z − λ 0

0 0

0 z − λ
0 0



, Aλ,2,2(z) =




−1 0 0 0

z − λ −1 0 0

0 0 −1 0

0 0 0 z − λ′



.

We also multiply PR,λ and PL,λ to Ci and Bi respectively.

CiPR,λ =
[
Ci,1 Ci,4 Ci,2 Ci,3 Ci,5 Ci,6

]

PTL,λBi =




Bi,3

Bi,5

Bi,1

Bi,2

Bi,4

Bi,6




Therefore, Ci,λ,1, Ci,λ,2, Bi,λ,1, Bi,λ,2 are defined as follows.

Ci,λ,1 =
[
Ci,1 Ci,4

]
, Ci,λ,2 =

[
Ci,2 Ci,3 Ci,5 Ci,6

]

Bi,λ,1 =

[
Bi,3

Bi,5

]
, Bi,λ,2 =




Bi,1

Bi,2

Bi,4

Bi,6




We also introduce auxiliary inputs and outputs which access each Jordan block. For this,

we define Cλ and Bλ as follows.

Cλ =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
, Bλ =




0 0

0 0

1 0

0 0

0 1

0 0




With these definitions, we can construct the network Njd.λ. The channel matrices of
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Njd,λ(λ) are given as follows:

Htx,rx(λ) = 0

Htx,i(λ) =
[
Ci,1 Ci,4

]

Hi,rx(λ) =

[
Bi,3

Bi,5

]

Hi,j(λ) =
[
Ci,2 Ci,3 Ci,5 Ci,6

]




−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 λ− λ′




−1 


Bi,1

Bi,2

Bi,4

Bi,6




8.3 Externalization of Implicit Communication in Proper Sys-

tems

In this section, we extend the discussion of Section 3.5 to proper systems. The extension of

fixed modes to proper systems can be found in [23]. Formally, a proper decentralized linear system,

L(A,Bi, Ci, Dij), is defined as follows:

x[n+ 1] = Ax[n] +

v∑

i=1

Biui[n]

yi[n] = Cix[n] +

v∑

j=1

Dijuj [n]

Unlike strictly proper systems, the observations yi[n] depend not only on the states but also the

control inputs ui[n]. Then, the definition of fixed modes can be extended to proper decentralized

systems as follows.

Definition 8.1. [23, Definition 2] λ is called a fixed mode of L(A,Bi, Ci, Dij) if

λ ∈
⋂

(K1,··· ,Ki)∈K

σ(A+
[
B1K1 · · · BvKv

]

I −




D11K1 · · · D1vKv

...
. . .

...

Dv1K1 · · · DvvKv







−1 


C1

...

Cv


)

where σ(·) is the set of the eigenvalues of the matrix and K = {(K1, · · · ,Kv) : Ki ∈ Cqi×ri , I −


D11K1 · · · D1vKv

...
. . .

...

Dv1K1 · · · DvvKv


 is invertible}.

As before, the stabilizability condition is charaterized by the fixed modes of the system.

Theorem 8.4. [23, Theorem 3] L(A,Bi, Ci, Dij) is stabilizable if and only if all of its fixed modes

are within the unit circle.
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Then, we can externalize information flows to stabilize the proper system as before.

8.4 Canonical Externalization I

We will introduce the gain Ki to the ith controller, and the auxiliary input u[n] and output

y[n] (which can access all states and observations, x[n], y1[n], · · · , yv[n]) to the system. Then, the

system equation can be written as follows:




x[n+ 1]

y1[n]
...

yv[n]




=




A B1K1 · · · BvKv

C1 D11K1 · · · D1vKv

...
...

. . .
...

Cv Dv1K1 · · · DvvKv







x[n]

y1[n]
...

yv[n]




+ u[n]

y[n] =




x[n]

y1[n]
...

yv[n]




Then, the transfer function from y(z) to u(z), GcnI(z,K) , is given as follows.

GcnI(z,Ki) =




zI 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I



−




A B1K1 · · · BvKv

C1 D11K1 · · · D1vKv

...
...

. . .
...

Cv Dv1K1 · · · DvvKv




=




zI −A 0 · · · 0

−C1 I · · · 0
...

...
. . .

...

−Cv 0 · · · I




︸ ︷︷ ︸
:=AcnI(z)

+




B1

D11

...

Dv1




︸ ︷︷ ︸
:=BcnI,1

K1

[
0 −I · · · 0

]

︸ ︷︷ ︸
:=CcnI,1

+ · · ·+




Bv

D1v

...

Dvv




︸ ︷︷ ︸
:=BcnI,v

Kv

[
0 0 · · · −I

]

︸ ︷︷ ︸
:=CcnI,v

By Lemma 3.5, the standard network, Ns(AcnI(z);BcnI,i, 0;CcnI,i, 0; 0, 0; 0, 0), has GcnI(z,K) as

a transfer function. Denote this network as NcnI(z). Then, we can prove the similar theorem as

before.
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Theorem 8.5. Given the above definitions, the following statements are equivalent.

(1) λ is a fixed mode of the decentralized linear system L(A,Bi, Ci, Dij)

(2) rank(GcnI(λ,K)) < dim(AcnI)

(3) (transfer matrix rank of the LTI network NcnI(λ)) < dim(AcnI)

(4) (mincut rank of the LTI network NcnI(λ)) < dim(AcnI)

(5) min
V⊆{1,··· ,v}

rank

[
AcnI(λ) BcnI,V

CcnI,V c 0

]
< dim(AcnI)

Proof. Similar to Theorem 3.7. After we define GcnI(z,K) as above, the Dij are just a part of

BcnI,i.

8.5 Canonical Externalization II

Like the discussion of Section 3.5, we only need the auxiliary input and output to be

connected to the unstable states. Thus, we can reduce the dimension of the auxiliary input and

output by allowing them only to access the state x[n]. Now, the system equation is given as follows:




x[n+ 1]

y1[n]
...

yv[n]




=




A B1K1 · · · BvKv

C1 D11K1 · · · D1vKv

...
...

. . .
...

Cv Dv1K1 · · · DvvKv







x[n]

y1[n]
...

yv[n]




+




I

0
...

0



u[n]

y[n] =
[
I 0 · · · 0

]




x[n]

y1[n]
...

yv[n]




The transfer function from u(z) to y(z) is the following.

y(z) =
[
I 0 · · · 0

]







zI 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I



−




A B1K1 · · · BvKv

C1 D11K1 · · · D1vKv

...
...

. . .
...

Cv Dv1K1 · · · DvvKv







−1 


I

0
...

0



u(z)



362

By Lemma 3.6, the transfer function from y(z) to u(z), GcnII(z,K), is given as follows:

GcnII(z,K) = (zI −A)−
[
−B1K1 · · · −BvKv

]

I −




D11K1 · · · D1vKv

...
. . .

...

Dv1K1 · · · DvvKv







−1 


−C1

...

−Cv




= (zI −A)︸ ︷︷ ︸
:=AcnII(z)

+( −B1︸︷︷︸
:=BcnII,1

K1

[
I · · · 0

]

︸ ︷︷ ︸
:=C′cnII,1

− · · · −Bv︸︷︷︸
:=BcnII,v

Kv

[
0 · · · I

]

︸ ︷︷ ︸
:=C′cnII,v

)

·




I︸︷︷︸
:=S−1

cnII

−







D11

...

Dv1




︸ ︷︷ ︸
:=B′cnII,1

K1

[
I · · · 0

]
+ · · ·+




D1v

...

Dvv




︸ ︷︷ ︸
:=B′cnII,v

Kv

[
0 · · · I

]







−1




C1

...

Cv




︸ ︷︷ ︸
:=D′cnII

Then, by Lemma 3.5, we can see that GcnII(z,K) is the transfer function of the standard network

Ns(AcnII(z);BcnII,i, B′cnII,i; 0, C ′cnII,i; 0, D′cnII ;ScnII , 0). Denote this network as NcnII(z). Fur-

thermore, by Lemma 3.5 the channel between the nodes and the channel for the cut V = {tx, i1, · · · , ik}
is given as follows:

Htx,rx(z) = zI −A

Htx,i = Ci

Hi,rx = −Bi

Hi,j = Dji

HV,V c(z) =




zI −A −Bi1 · · · −Bik
Cik+1

Dik+1,i1 · · · Dik+1,ik

...
...

. . .
...

Civ Div,i1 · · · Div,ik




Then, we can give the capacity-stabilizability equivalence theorem as before.

Theorem 8.6. Given the above definitions, the following statements are equivalent.

(1) λ is a fixed mode of the decentralized linear system L(A,Bi, Ci, Dij)

(2) rank(GcnII(λ,K)) < dim(A)

(3) (transfer matrix rank of the LTI network NcnII(λ)) < dim(A)

(4) (mincut rank of the LTI network NcnII(λ)) < dim(A)

(5) min
V⊆{1,··· ,v}

rank

[
λI −A −BV
CV c DV c,V

]
< dim(A)
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Proof. Similar to Theorem 3.7.

Here, it has to be mentioned that the equivalence of (1) and (5) was already shown in [23].

8.6 Jordan Form Externalization

Like Section 3.5.2, we can minimize the dimension of the auxiliary input and output by

using the Jordan form. Without loss of generality, we assume that A is in Jordan form and use

the same notations of Section 3.5.2. Then, the system equation with the auxiliary input uλ[n] and

output yλ[n] is given as follows:




x[n+ 1]

y1[n]
...

yv[n]




=




A B1K1 · · · BvKv

C1 D11K1 · · · D1vKv

...
...

. . .
...

Cv Dv1K1 · · · DvvKv







x[n]

y1[n]
...

yv[n]




+




Cλ

0
...

0




︸ ︷︷ ︸
:=C′λ

uλ[n]

yλ[n] =
[
Bλ 0 · · · 0

]

︸ ︷︷ ︸
:=B′λ




x[n]

y1[n]
...

yv[n]




We also expand the dimension of the permutation matrices PL,λ and PR,λ.

P ′L,λ :=




PL,λ 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I




P ′R,λ :=




PR,λ 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I



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The transfer function from uλ(z) to yλ(z) is the following.

yλ(z) = C ′λ(




zI 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I



−




A B1K1 · · · BvKv

C1 D11K1 · · · D1vKv

...
...

. . .
...

Cv Dv1Kv · · · DvvKv




)−1B′λuλ(z)

= C ′λ(P ′L,λP
′
L,λ

T
(




zI −A −B1K1 · · · −BvKv

−C1 I −D11K1 · · · −D1vKv

...
...

. . .
...

−Cv −Dv1Kv · · · I −DvvKv




)P ′R,λP
′
R,λ

T
)−1B′λuλ(z)

= C ′λP
′
R,λ(P ′L,λ

T
(




zI −A −B1K1 · · · −BvKv

−C1 I −D11K1 · · · −D1vKv

...
...

. . .
...

−Cv −Dv1Kv · · · I −DvvKv




)P ′R,λ)−1P ′L,λ
T
B′λuλ(z)

= C ′λP
′
R,λ




PTL,λ(zI −A)PR,λ −PTL,λB1K1 · · · −PTL,λBvKv

−C1PR,λ I −D11K1 · · · −D1vKv

...
...

. . .
...

−CvPR,λ −Dv1Kv · · · I −DvvKv




−1

P ′L,λ
T
B′λuλ(z)

=
[
I 0 0 · · · 0

]




Aλ,1,1(z) Aλ,1,2(z) −B1,λ,1K1 · · · −Bv,λ,1Kv

Aλ,2,1(z) Aλ,2,2(z) −B1,λ,2K1 · · · −Bv,λ,2Kv

−C1,λ,1 −C1,λ,2 I −D11K1 · · · −D1vKv

...
...

...
. . .

...

−Cv,λ,1 −Cv,λ,2 −Dv1Kv · · · I −DvvKv




−1 


I

0

0
...

0




uλ(z)
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By Lemma 3.6, the transfer matrix Gjd(z) from yλ(z) to uλ(z) is given as

Gjd(z) = Aλ,1,1(z)−
[
Aλ,1,2(z) −B1,λ,1K1 · · · −Bv,λ,1Kv

]

·




Aλ,2,2(z) −B1,λ,2K1 · · · −Bv,λ,2Kv

−C1,λ,2 I −D11K1 · · · −D1vKv

...
...

. . .
...

−Cv,λ,2 −Dv1K1 · · · I −DvvKv




−1 


Aλ,2,1(z)

−C1,λ,1

...

−Cv,λ,1




= Aλ,1,1(z)︸ ︷︷ ︸
:=Ajd(z)

+(
[
Aλ,1,2(z) 0 · · · 0

]

︸ ︷︷ ︸
:=Djd(z)

−B1,λ,1︸ ︷︷ ︸
:=Bjd,1

K1

[
0 I · · · 0

]

︸ ︷︷ ︸
:=C′jd,1

− · · ·−Bv,λ,1︸ ︷︷ ︸
:=Bjd,v

Kv

[
0 0 · · · I

]

︸ ︷︷ ︸
:=C′jd,v

)

· ( I︸︷︷︸
:=S−1

jd

−(




I −Aλ,2,2(z) 0 · · · 0

C1,λ,2 0 · · · 0
...

...
. . .

...

Cv,λ,2 0 · · · 0




︸ ︷︷ ︸
:=S′jd(z)

+




B1,λ,2

D11

...

Dv1




︸ ︷︷ ︸
:=B′jd,1

K1

[
0 I · · · 0

]
+ · · ·+




Bv,λ,2

D1v

...

Dvv




︸ ︷︷ ︸
:=B′jd,v

Kv

[
0 0 · · · I

]
))−1

·




−Aλ,2,1(z)

C1,λ,1

...

Cv,λ,1




︸ ︷︷ ︸
:=D′jd(z)

Then, we can easily check that Gjd(z) is the transfer function of the standard network

Ns(Ajd(z);Bjd,i, B′jd,i; 0, C ′jd,i;Djd(z), D
′
jd(z);Sjd, S

′
jd(z)).

Moreover, we have

(S−1
jd − S

′
jd)
−1 =




Aλ,2,2(z) 0 · · · 0

−C1,λ,2(z) I · · · 0
...

...
. . .

...

−Cv,λ,2(z) 0 · · · I




−1

=




Aλ,2,2(z)−1 0 · · · 0

C1,λ,2Aλ,2,2(z)−1 I · · · 0
...

...
. . .

...

Cv,λ,2Aλ,2,2(z)−1 0 · · · I



.
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Thus, by Lemma 3.5 the channel matrix between the nodes and the channel matrix for the cut

V = {tx, i1, · · · , ik} is given as follows:

Htx,rx(λ) = 0

Htx,i(λ) = Ci,λ,1

Hi,rx(λ) = −Bi,λ,1

Hi,j(λ) = Cj,λ,2Aλ,2,2(λ)−1Bi,λ,2 +Dji

HV,V c(λ) :=




0 −Bi1,λ,1 · · · −Bik,λ,1
Cik+1,λ,1 Cik+1,λ,2Aλ,2,2(λ)−1Bi1,λ,2 +Dik+1i1 · · · Cik+1,λ,2Aλ,2,2(λ)−1Bik,λ,2 +Dik+1ik

...
...

. . .
...

Civ,λ,1 Civ,λ,2Aλ,2,2(λ)−1Bi1,λ,2 +Divi1 · · · Civ,λ,2Aλ,2,2(λ)−1Bik,λ,2 +Divik




Then, we can write a similar theorem as before.

Theorem 8.7. Given the above definitions, the following statements are equivalent.

(1) λ is the fixed mode of the decentralized linear system L(A,Bi, Ci, Dij)

(2) rank(Gjd(λ,K)) < mλ

(3) (transfer matrix rank of the LTI network Njd(λ)) < mλ

(4) (mincut rank of the LTI network Njd(λ)) < mλ

(5) min
V⊆{1,··· ,v}

rank

[
0 −BV,λ,1

CV c,λ,1 CV c,λ,2Aλ,2,2(λ)−1BV,λ,2 +DV c,V

]
< mλ

Proof. Similar to Theorem 3.8. Compared to Theorem 3.8, DV c,V is just added to CV c,λ,2Aλ,2,2(λ)−1BV,λ,2.

8.7 Realization of Closed LTI Network

In this section, we will discuss how to realize the problem of Figure 3.17 in a decentralized

linear system form. First, we can notice that the system of Figure 3.17 can be thought as a special

case of the closed LTI network of Figure 8.8. We can put p of Figure 8.8 as v + 2, and consider the

relay i of Figure 3.17 as the node i of Figure 8.8, the observer as the node v + 1, and the controller

as the node v + 2. Then, by connecting the node v + 1 with the node v + 2 with H(v+2)(v+1)(z)

which is equivalent to the plant of Figure 3.17, the two problems are equivalent. Therefore, we can

focus on the realization of the closed LTI network of Fig. 8.8.

As we can see in Figure 3.17, for 1 ≤ i, j ≤ p the input of node i is connected to the

output of node j by the channel Hij(z). When i = j, it corresponds to a self-loop. In other words,



367

K1 

Kp 

H1,p 

Hp,1 

Hp,p 

H1,1 

Figure 8.8: General Closed LTI Network

yj(z) = Hij(z)ui(z) where ui(z) is the input of the node i and yj(z) is the output of the node j.

Since this relationship can be considered as a centralized input-output system, it can be realized by

the usual realization method shown in [17, chapter 7]. Let’s say the resulting linear system is given

as follows:

xij [n+ 1] = Aijxij [n] +Bijui[n]

yj [n] = Cijxij [n] +Dijui[n]

Let the dimension of ui[n] be qi, the dimension of yi[n] be ri and the dimension of xij [n] be mij .

Then, the dimensions of the other matrices are uniquely determined. When there is no connection

between the nodes, simply mij becomes 0.

The main idea for the realization of a closed LTI network is to augment the states xij [n].

Denote x[n], A, Bi and Ci as follows:

x[n] :=




x11[n+ 1]
...

x1p[n+ 1]

x21[n+ 1]
...

xpp[n+ 1]




A := diag(A11, · · · , A1p, A21, · · · , App)

Bi :=




0(
∑

1≤j<i
∑

1≤k≤pmjk)×qi

Bi1
...

Bip

0(
∑
i<j≤p

∑
1≤k≤pmjk)×qi




C ′ij :=
[
0rj×

∑
1≤k<j mik

Cij 0rj×
∑
j<k≤pmik

]

Ci :=
[
C ′1i · · · C ′pi

]
.
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Then, we can easily check that the decentralized linear system

x[n+ 1] = Ax[n] +
∑

i

Biui[n]

yi[n] = Cix[n] +
∑

i,j

Dijui[n]

is the realization of the closed LTI network of Fig. 8.8.
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Chapter 9

Appendix for Chapter 4

9.1 Proof of Corollary 4.1 of Page 213

Proof of (c):

Let’s first consider when max(1, a2σ2
v1) = a2σ2

v1. Since a2σ2
v1 ≥ 1, there exists k1 ≥ 2 such

that

a2(k1−2) ≤ a2σ2
v1 < a2(k1−1),

and we choose such a k1 as k1 in Lemma 4.13. Then, by (4.32) of Lemma 4.13 we have

DL,3(P̃1, P̃2; k1)

≥ a2(k1−1)σ2
v1

(1 +
σ2
v1

σ2
v2

)(a
2(k1−2)

1−a−2 ) + σ2
v1

(A)

≥ a2(k1−1)σ2
v1

2
1−2.5−2 a2(k1−2) + σ2

v1

=
a2σ2

v1

2
1−2.5−2 +

σ2
v1

a2(k1−2)

(B)

≥ a2σ2
v1

2
1−2.5−2 + 1

≥ 0.295775...a2σ2
v1

≥ 0.295a2σ2
v1. (9.1)

(A): σ2
v1 ≤ σ2

v2 and |a| ≥ 2.5.

(B): a2σ2
v1 < a2(k1−1).

When max(1, a2σ2
v1) = 1, by (4.32) of Lemma 4.13 we have DL,3(P̃1, P̃2; k1) ≥ 1 ≥ 0.295.

Proof of (b):
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In Lemma 4.13, choose k1 in the same way as (c) and let k = k1 + 1. Inspired by the proof

of (c), we can safely choose Σ = 0.295 max(1, a2σ2
v1). Then, by Lemma 4.13, we notice that since

k − k1 − 1 = 0, the second and third square-root terms in DL,2(P̃1, P̃2; k1, k,Σ) goes away and the

bound reduces to

DL,2(P̃1, P̃2; k1, k,Σ) ≥ inf
c1,c2

(
√

(a− c1 − c2)2Σ + c21σ
2
v1 + c22σ

2
v2)2

+ + 1

s.t. (1− 2.5−1)c21(Σ + σ2
v1) ≤ P̃1

where c2 can be chosen arbitrarily.

Here, since we assumed P̃1 ≤ 1
400a

2 max(1, a2σv1), we have

(1− 2.5−1)c21(Σ + σ2
v1) ≤ P̃1 ≤

1

400
a2 max(1, a2σ2

v1)

(⇒)c21(0.295 max(1, a2σ2
v1) + σ2

v1) ≤ 1

400(1− 2.5−1)
a2 max(1, a2σ2

v1)

(⇒)c21 ≤
a2 max(1, a2σ2

v1)

400(1− 2.5−1)(0.295 max(1, a2σ2
v1) + σ2

v1)
≤ a2

400(1− 2.5−1) · 0.295

(⇒)|c1| ≤ 0.118846...|a| ≤ 0.119|a|.

Therefore,

DL,2(P̃1, P̃2; k1, k,Σ) ≥ inf
c1,c2

(
√

(a− c1 − c2)20.295 max(1, a2σ2
v1) + c21σ

2
v1 + c22σ

2
v2)2

+ + 1

s.t. |c1| ≤ 0.119|a|

≥ inf
c2

(a− 0.119a− c2)20.295 max(1, a2σ2
v1) + c22σ

2
v2 + 1

(A)

≥ inf
c2

(a− 0.119a− c2)20.295σ2
v2 + c22σ

2
v2 + 1

= inf
c̃2

(

√
(1− 0.119− c̃2)20.295 + c̃2

2)2a2σ2
v2 + 1

(B)
= 0.176808...a2σ2

v2 + 1

≥ 0.176a2σ2
v2 + 1.

(A): By the assumption max(1, a2σ2
v1) ≥ σ2

v2.

(B): By the numerical optimization of the quadratic function.

Proof of (a):

(i) When max(1, a2σ2
v2) = a2σ2

v2

In Lemma 4.13, we will choose k1 in the same way as (c) and k arbitrarily large. As above,
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we can safely choose Σ = 0.295a2σ2
v1. Applying the same arguments as (b), (c) to Lemma 4.13 gives

DL,2(P̃1, P̃2; k1, k,Σ) ≥ inf
c1,c2

(
√
a2(k−k1−1)((a− c1 − c2)2Σ + c21σ

2
v1 + c22σ

2
v2)

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃1

(1− 2.5−1)2.5−1

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃2

(1− 2.5−1)2.5−1
)2
+ + 1

s.t. (1− 2.5−1)c21(Σ + σ2
v1) ≤ P̃1

(1− 2.5−1)c22(Σ + σ2
v2) ≤ P̃2

≥ (
√
a2(k−k1−1)0.176a2σ2

v2

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃1

(1− 2.5−1)2.5−1

−

√
a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃2

(1− 2.5−1)2.5−1
)2
+ + 1. (9.2)

Moreover, we have

a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃1

(1− 2.5−1)2.5−1

(A)

≤ a2(k−k1−2)

1− 2.5−1

P̃1

(1− 2.5−1)2.5−1

(B)

≤ a2(k−k1−2)

(1− 2.5−1)22.5−1

1

400
a2 max(1, a2σ2

v1)

≤ 0.01736111...a2(k−k1)σ2
v2

≤ 0.0174a2(k−k1)σ2
v2. (9.3)

(A): |a| ≥ 2.5.

(B): We assumed P̃1 ≤ 1
400a

2 max(1, a2σ2
v1) = 1

400a
4σ2
v1 ≤ a2σ2

v2.

Likewise, we also have

a2(k−k1−2)(1− (2.5a−2)k−k1−1)

1− 2.5a−2

P̃2

(1− 2.5−1)2.5−1

≤ 0.0174a2(k−k1)σ2
v2. (9.4)

Therefore, by plugging (9.3) and (9.4) into (9.2), we get

DL,2(P̃1, P̃2; k1, k,Σ) ≥ (
√

0.176−
√

0.0174−
√

0.0174)2
+a

2(k−k1)σ2
v2 + 1

≥ 0.02a2(k−k1)σ2
v2 + 1.

Since k can be chosen arbitrarily large and |a| > 1, limk→∞DL,2(P̃1, P̃2; k1, k,Σ) =∞.

(ii) When max(1, a2σ2
v2) = 1
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We will choose k arbitrarily large in (4.33) of Lemma 4.13. Here the assumptions P̃1 ≤
1

400a
2 max(1, a2σ2

v1) and P̃2 ≤ 1
400a

2 max(1, a2σ2
v2) reduce to P̃1 ≤ a2

400 and P̃2 ≤ a2

400 .

Therefore, by (4.33) of Lemma 4.13 and |a| ≥ 2.5, for all k we have

DL,4(P̃1, P̃2; k) ≥ (
√
a2(k−1) −

√
a2(k−2)

(1− 2.5−1)2

a2

400
−

√
a2(k−2)

(1− 2.5−1)2

a2

400
)2
+

= (1−

√
1

400(1− 2.5−1)2
−

√
1

400(1− 2.5−1)2
)2
+a

2(k−1)

≥ 0.6a2(k−1)

Since k can be chosen arbitrarily large, limk→∞DL,4(P̃1, P̃2; k) =∞.

9.2 Proof of Proposition 4.7

By Lemma 4.14, if there exists c ≥ 1 such that for all P̃1, P̃2 ≥ 0, DU (cP̃1, cP̃2) ≤ c ·
DL(P̃1, P̃2), then for all q, r1, r2 ≥ 0 we have

minP1,P2≥0 qDU (P1, P2) + r1P1 + r2P2

min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P̃1 + r2P̃2

≤ c

which finishes the proof. Therefore, we will only prove that such c exists.

(i) When P̃1 ≤ 1
400a

2 max(1, a2σ2
v1) and P̃2 ≤ 1

400a
2 max(1, a2σ2

v2)

Lower bound: By Corollary 4.1 (a),

DL(P̃1, P̃2) =∞

Therefore, we do not need the corresponding upper bound.

(ii) When P̃1 ≤ 1
400a

2 max(1, a2σ2
v1) and P̃2 ≥ 1

400a
2 max(1, a2σ2

v2)

Lower bound: By Corollary 4.1 (b),

DL(P̃1, P̃2) ≥ 0.176a2σ2
v2 + 1.

Upper bound: By Lemma 4.15,

(DU (P1, P2), P1, P2) ≤ (a2σ2
v2 + 1, 0, a4σ2

v2 + a2σ2
v2 + a2)

≤ (a2σ2
v2 + 1, 0, 3a2 max(1, a2σ2

v2)).

Ratio: Thus, c is upper bounded by

c ≤ max(
1

0.176
,

3
1

400

) = 1200.

(iii) When P̃1 ≥ 1
400a

2 max(1, a2σ2
v1)

Lower bound: By Corollary 4.1 (c),

DL(P̃1, P̃2) ≥ 0.295 max(1, a2σ2
v1)
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Upper bound: By Lemma 4.15,

(DU (P1, P2), P1, P2) ≤ (a2σ2
v1 + 1, a4σ2

v1 + a2σ2
v1 + a2, 0)

≤ (2 max(1, a2σ2
v1), 3a2 max(1, a2σ2

v1), 0)

Ratio: c is upper bounded by

c ≤ max(
2

0.295
,

3
1

400

) = 1200.

Therefore, by (i), (ii), (iii), the lemma is true and c ≤ 1200.

9.3 Proof of Corollary 4.2

For simplicity, we will only prove for the case when max(1, a2σ2
v1) = a2σ2

v1. To prove the

case when max(1, a2σ2
v1) = 1, we can simply repeat the following proofs with parameters k1 = 1 and

Σ = 0.295. We will also abbreviate DL,1(P̃1, P̃2; k1, k2, k, σ
′
v2, α,Σ) to DL,1(P̃1, P̃2).

Proof of (a):

Since a2σ2
v1 ≥ 1, there exists k1 ≥ 2 such that

a2(k1−2) ≤ a2σ2
v1 < a2(k1−1),

and we will use such a k1 in Lemma 4.12.

Since the selection of k1 is the same as in the proof of Corollary 4.1 (c), by (9.1) we can

select Σ = 0.295a2σ2
v1 in Lemma 4.12.

Let’s further choose k2 = k = k1 + s+ 1, α = 1 and σv2 = σ′v2 in Lemma 4.12. Then, since

(??), (??), (4.18) disappear, DL,1 in Lemma 4.12 reduces to

DL,1(P̃1, P̃2) ≥ (

√
a2(k2−k1)Σ

22I′(P̃1)
−

√
a2(k2−k1−1)P̃1

(1− 2.5−1)2
)2
+ + 1. (9.5)

We can bound I ′′(P̃1) as

I ′′(P̃1)
(A)

≤ 1

2
log(1 +

1

(k2 − k1 − 1)σ2
v2

(
2a2(k2−2−k1)

1− 2.5−2
0.295a2σ2

v1 +
2a2(k2−3−k1)

1− 2.5−2

2.5 1
70

σ2
v2

a2(s−1)

(1− 2.5−1)2
))k2−k1−1

=
1

2
log(1 +

1

(k2 − k1 − 1)σ2
v2

(
2

1− 2.5−2
0.295a2sσ2

v1 +
2

1− 2.5−2

2.5 1
70

(1− 2.5−1)2
a−2σ2

v2))k2−k1−1

(B)

≤ 1

2
log(1 +

1

k2 − k1 − 1
(

2

1− 2.5−2
0.295 +

2

1− 2.5−2

1
70

1
2.5

(1− 2.5−1)2
))k2−k1−1

=
1

2
log(1 +

0.7401738...

k2 − k1 − 1
)k2−k1−1

≤ 1

2
log(1 +

0.7402

k2 − k1 − 1
)k2−k1−1

≤ 1

2
log(e0.7402).
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(A): Assumptions P̃1 ≤ σ2
v2

70a2(s−1) and |a| ≥ 2.5.

(B): Assumptions a2sσ2
v1 ≤ σ2

v2 and |a| ≥ 2.5.

Likewise, I ′(P̃1) is upper bounded as

I ′(P̃1) ≤ 1

2
log(e0.7402) +

1

2
log(1 +

1

σ2
v2

(2a2(k2−1−k1)Σ + 2
a2(k2−2−k1)P̃1

(1− 2.5a−2)(1− 2.5−1)
))

(A)

≤ 1

2
log(e0.7402) +

1

2
log(1 +

1

σ2
v2

(2a2s0.295a2σ2
v1 + 2

a2(s−1) 1
70

σ2
v2

a2(s−1)

(1− 2.5−1)2
))

=
1

2
log(e0.7402) +

1

2
log(

1

σ2
v2

(σ2
v2 + 2× 0.295a2(s+1)σ2

v1 +
1

35(1− 2.5−1)2
σ2
v2))

(B)

≤ 1

2
log(e0.7402) +

1

2
log(

1

σ2
v2

(a2(s+1)σ2
v1 + 2× 0.295a2(s+1)σ2

v1 +
1

35(1− 2.5−1)2
a2(s+1)σ2

v1))

=
1

2
log(e0.7402) +

1

2
log(

a2(s+1)σ2
v1

σ2
v2

(1 + 2× 0.295 +
1

35(1− 2.5−1)2
))

=
1

2
log(e0.7402) +

1

2
log(

a2(s+1)σ2
v1

σ2
v2

1.669365...)

≤ 1

2
log(e0.7402) +

1

2
log(

a2(s+1)σ2
v1

σ2
v2

1.6694). (9.6)

(A): Assumptions P̃1 ≤ σ2
v2

70a2(s−1) and |a| ≥ 2.5.

(B): Assumption σ2
v2 ≤ a2(s+1)σ2

v1.

Moreover, since P̃1 ≤ σ2
v2

70a2(s−1) , we have

a2(k2−k1−1)P̃1

(1− 2.5−1)2
≤ a2s

(1− 2.5−1)2

σ2
v2

70a2(s−1)
≤ a2σ2

v2

(1− 2.5−1)270
. (9.7)

Therefore, by plugging (9.6) and (9.7) into (9.5), we have

DL,1(P̃1, P̃2) ≥ (

√√√√ a2(s+1)0.295a2σ2
v1

e0.7402 a
2(s+1)σ2

v1

σ2
v2

1.6694
−

√
a2σ2

v2

(1− 2.5−1)270
)2
+ + 1

≥ 0.008a2σ2
v2 + 1.

Proof of (b):

We choose k1,Σ, k2, α, σv2 of Lemma 4.12 in the same way as the proof of (a) except k.

Then, we will increase k arbitrarily large. Then, Lemma 4.12 reduces to

DL,1(P̃1, P̃2) ≥ (

√
a2(k−k1)Σ

22I′(P̃1)
−

√
a2(k−k1−1)P̃1

(1− 2.5−1)2
−

√
a2(k−k2−1)2.5k2−k1 P̃1

(1− 2.5−1)2
−

√
a2(k−k2−1)P̃2

(1− 2.5−1)2
)2
+ + 1.

(9.8)

Since the relevant parameters are the same, (9.6) and (9.7) in the proof of (a) still hold.
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Since |a| ≥ 2.5 and P̃2 ≤ a4σ2
v2

28000 , we also have

a2(k−k2−1)2.5k2−k1 P̃1

(1− 2.5−1)2

= (
2.5

a2
)k2−k1

a2(k−k1−1)P̃1

(1− 2.5−1)2

≤ (
1

2.5
)2 a

2(k−k1−1)P̃1

(1− 2.5−1)2
(9.9)

and

a2(k−k2−1)P̃2

(1− 2.5−1)2
≤ a2(k−k2−1)

(1− 2.5−1)2

a4σ2
v2

28000
. (9.10)

Therefore, by plugging (9.6), (9.7), (9.9), (9.10) into (9.8), we have

DL,1(P̃1, P̃2) ≥ (

√√√√ a2(s+1)0.295a2σ2
v1

e0.7402 a
2(s+1)σ2

v1

σ2
v2

1.6694
− (1 +

1

2.5
)

√
a2σ2

v2

(1− 2.5−1)270
−

√
a2σ2

v2

(1− 2.5−1)228000
)2
+a

2(k−k2) + 1

≥ 10−6a2(k−k2+1)σ2
v2 + 1.

Since k can be chosen arbitrarily large, limk→∞DL,1(P̃1, P̃2) =∞.

Proof of (c):

We choose k, k1, k2, Σ of Lemma 4.12 in the same way as the proof of (a), i.e. Σ =

0.295a2σ2
v1 and k2 = k = k1 + s + 1. We put the remaining parameters α and σ′v2 as α = 1

2 ,

σ′2v2 = 100a2(s−1)P̃1. Then, Lemma 4.12 reduces to

DL,1(P̃1, P̃2) ≥ 1

2
D′ +

1

2
D′′ + 1

where

D′ = (

√
c
a2(k2−k1)Σ

22I′(P̃1)
−

√
c
a2(k2−k1−1)P̃1

(1− 2.5−1)2
)2
+ (9.11)

D′′ = (

√
a2(k2−k1−1)Σ

22I′′(P̃1)
−

√
a2(k2−k1−2)2.5P̃1

(1− 2.5−1)2
)2
+. (9.12)
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Here, I ′′(P̃1) is upper bounded as:

I ′′(P̃1) =
1

2
log(1 +

1

(k2 − k1 − 1)σ2
v2

(
2a2(k2−2−k1)

1− a−2
Σ +

2a2(k2−3−k1)

1− a−2

2.5P̃1

(1− 2.5a−2)(1− 2.5−1)
))k2−k1−1

(A)

≤ 1

2
log(1 +

1

(k2 − k1 − 1)σ2
v2

(
2a2(k2−2−k1)

1− 2.5−2
0.295a2σ2

v1 +
2a2(k2−3−k1)

1− 2.5−2

2.5 1
20000a

4σ2
v1

(1− 2.5−1)2
))k2−k1−1

=
1

2
log(1 +

1

(k2 − k1 − 1)σ2
v2

(
2

1− 2.5−2
0.295 +

2

1− 2.5−2

2.5 1
20000

(1− 2.5−1)2
)a2sσ2

v1)k2−k1−1

(B)

≤ 1

2
log(1 +

1

k2 − k1 − 1
(

2

1− 2.5−2
0.295 +

2

1− 2.5−2

2.5 1
20000

(1− 2.5−1)2
))k2−k1−1

=
1

2
log(1 +

1

k2 − k1 − 1
0.703207...)k2−k1−1

≤ 1

2
log(1 +

1

k2 − k1 − 1
0.7033)k2−k1−1

≤ 1

2
log(e0.7033). (9.13)

(A): P̃1 ≤ 1
20000a

4σ2
v1 and |a| ≥ 2.5.

(B): a2sσ2
v1 ≤ σ2

v2.

Likewise, I ′(P̃1) is upper bounded as:

I ′(P̃1) ≤ 1

2
log(1 +

1

σ′2v2

(2a2(k2−1−k1)Σ + 2
a2(k2−2−k1)P̃1

(1− 2.5a−2)(1− 2.5−1)
)) +

1

2
log(e0.7033) +

1

2
log(

2πe

4
)

≤ 1

2
log(1 +

1

σ′2v2

(2a2sΣ + 2
a2(s−1)P̃1

(1− 2.5−1)2
)) +

1

2
log(e0.7033) +

1

2
log(

2πe

4
)

=
1

2
log(1 +

1

σ′2v2

(2a2s(0.295a2σ2
v1) + 2

a2(s−1)P̃1

(1− 2.5−1)2
)) +

1

2
log(e0.7033) +

1

2
log(

2πe

4
)

=
1

2
log(

1

100a2(s−1)P̃1

(100a2(s−1)P̃1 + 2 · 0.295a2(s+1)σ2
v1 + 2

a2(s−1)P̃1

(1− 2.5−1)2
)) +

1

2
log(e0.7033) +

1

2
log(

2πe

4
)

(A)

≤ 1

2
log(

1

100a2(s−1)P̃1

(
100a2(s+1)σ2

v1

20000
+ 2 · 0.295a2(s+1)σ2

v1 + 2
a2(s+1)σ2

v1

20000(1− 2.5−1)2
))

+
1

2
log(e0.7033) +

1

2
log(

2πe

4
)

=
1

2
log(

1

100
(0.595277...)

a2(s+1)σ2
v1

a2(s−1)P̃1

) +
1

2
log(e0.7033) +

1

2
log(

2πe

4
)

≤ 1

2
log(

1

100
(0.5953)

a2(s+1)σ2
v1

a2(s−1)P̃1

) +
1

2
log(e0.7033) +

1

2
log(

2πe

4
). (9.14)

(A): Assumption P̃1 ≤ a4σ2
v1

20000 .
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Therefore, by plugging (9.14) into (9.11), we get the following lower bound on D′:

D′ ≥ c(

√√√√ 0.295a2(s+2)σ2
v1

e0.7033 2πe
4

1
1000.5953

a2(s+1)σ2
v1

a2(s−1)P̃1

−

√
a2sP̃1

(1− 2.5−1)2
)2
+

= c(

√
0.295

e0.7033 2πe
4

1
1000.5953

−

√
1

(1− 2.5−1)2
)2
+a

2sP̃1

= 0.532969...ca2sP̃1

≥ 0.5329ca2sP̃1

= 0.5329
2 · 10as−1

√
P̃1√

2πσv2

exp(−100a2(s−1)P̃1

2σ2
v2

)a2sP̃1

(A)

≥ 0.5329
2 · 10√
2π
√

70
exp(−100a2(s−1)P̃1

2σ2
v2

)a2sP̃1

= 0.508202...a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

)

≥ 0.5082a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

).

(A): Assumption P̃1 ≥ σ2
v2

70a2(s−1) .

Since P̃1 ≤ a4σ2
v1

20000 , we also have

a2(k2−k1−2)2.5P̃1

(1− 2.5−1)2

≤
a2(s−1)2.5

a4σ2
v1

20000

(1− 2.5−1)2

=
2.5a2(s+1)σ2

v1

20000(1− 2.5−1)2
(9.15)

Therefore, by plugging (9.13) and (9.15) into (9.12), D′′ is lower bounded as:

D′′ ≥ (

√
0.295a2(s+1)σ2

v1

e0.7033
−

√
2.5a2(s+1)σ2

v1

20000(1− 2.5−1)2
)2
+

= 0.132117...a2(s+1)σ2
v1

≥ 0.1321a2(s+1)σ2
v1

Finally, DL,1(P̃1, P̃2) is lower bounded as:

DL,1(P̃1, P̃2) ≥ 0.2541a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

) + 0.066a2(s+1)σ2
v1 + 1

Proof of (d):
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We choose k1, k2,Σ, α, σ
′
v2 of Lemma 4.12 in the same way as the proof of (c) except k. k

will be chosen arbitrarily large. Lemma 4.12 reduces to

DL,1(P̃1, P̃2) ≥ 1

2
a2(k−k2)D′ +

1

2
a2(k−k2)D′′ + 1 (9.16)

where

D′ = (

√
c
a2(k2−k1)Σ

22I′(P̃1)
−

√
c
a2(k2−k1−1)P̃1

(1− 2.5−1)2
−

√
a−22.5k2−k1 P̃1

(1− 2.5−1)2
−

√
a−2P̃2

(1− 2.5−1)2
)2
+

D′′ = (

√
a2(k2−k1−1)Σ

22I′′(P̃1)
−

√
a2(k2−k1−2)2.5P̃1

(1− 2.5−1)2
−

√
a−2P̃2

(1− 2.5−1)2
)2
+.

Denote P ′ :=
√

a−22.5k2−k1 P̃1

(1−2.5−1)2 +
√

a−2P̃2

(1−2.5−1)2 . Then, following the same steps of the proof of (c), we

can lower bound D′ and D′′ as follows:

D′ ≥ (

√
0.5082a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

)−
√
P ′)2

+ (9.17)

D′′ ≥ (
√

0.1321a2(s+1)σ2
v1 −

√
a−2P̃2

(1− 2.5−1)2
)2
+

≥ (
√

0.1321a2(s+1)σ2
v1 −

√
P ′)2

+ (9.18)

Here, we have

a−22.5k2−k1 P̃1

(1− 2.5−1)2

≤ a−2|a|s+1P̃1

(1− 2.5−1)2
(∵ |a| ≥ 2.5)

≤ a−2a2sP̃1

(1− 2.5−1)2
(∵ s ≥ 1)

≤ a2s max(1, a2σ2
v1)

20000(1− 2.5−1)2
(∵ P̃1 ≤

max(a2, a4σ2
v1)

20000
)

Thus,

P ′
(A)

≤

√
2(
a−22.5k2−k1 P̃1

(1− 2.5−1)2
+

a−2P̃2

(1− 2.5−1)2
)

(B)

≤

√
a2s max(1, a2σ2

v1)

10000(1− 2.5−1)2
+

2

(1− 2.5−1)2
(0.0457a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

) + 0.0113a2s max(1, a2σ2
v1))

≤

√
0.253889a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

) + 0.0625a2s max(1, a2σ2
v1) (9.19)

(A): Cauchy-Schwarz inequaility

(B): Assumptions on P̃1 and P̃2
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By comparing (9.19) with (9.17) and (9.18), we can conclude that either D′ or D′′ has to be

greater than 0. Moreover, since we can choose k arbitrarily large in (9.16), limk→∞DL,1(P̃1, P̃2) =

∞.

Proof of (e):

The same as (a) of Corollary 4.1.

9.4 Proof of Corollary 4.3

For simplicity, we will only prove the case when a ≥ 2.5. The proof for a ≤ −2.5 easily

follows by replacing a with |a|.
We will evaluate Lemma 4.7 with the parameters w1 = asd

6 and d =
√

320000P
a2 . Then, we

can easily see that (d,w1) ∈ SU,1. Furthermore, asd
σv2
≥ 13 since

asd

σv2
=
as−1
√

320000P

σv2

≥ as−1

σv2

√
4 · 80000

σ2
v2

70a2(s−1)
(∵ P ≥ σ2

v2

70a2(s−1)
)

=

√
4 · 80000

70
≥ 13.

Then, we will upper bound DU,1(d,w1). First, let’s bound the second term of DU,1(d,w1) in (4.5).

The second term is upper bounded as

∑

1≤i≤∞

4a2(iasd+
as−1d a

a−1 + w1

2
)2Q(

(2i− 1)asd− (as−1d a
a−1 + w1)

2σv2
)

= 4a2(asd+
as−1d a

a−1 + w1

2
)2Q(

asd− (as−1d a
a−1 + w1)

2σv2
)

+ 4a2(2asd+
as−1d a

a−1 + w1

2
)2Q(

3asd− (as−1d a
a−1 + w1)

2σv2
) + · · ·

= 4a2(asd+
as−1d a

a−1 + asd
6

2
)2Q(

asd− (as−1d a
a−1 + asd

6 )

2σv2
)

+ 4a2(2asd+
as−1d a

a−1 + asd
6

2
)2Q(

3asd− (as−1d a
a−1 + asd

6 )

2σv2
) + · · ·

≤ 4a2(asd+
1

2(2.5− 1)
asd+

1

12
asd)2Q(

1

2σv2
(1− 1

2.5− 1
− 1

6
)asd)

+ 4a2(2asd+
1

2(2.5− 1)
asd+

1

12
asd)2Q(

1

2σv2
(3− 1

2.5− 1
− 1

6
)asd) + · · ·

= 4a2(asd)2(1 +
5

12
)2Q(

1

2σv2
(1− 5

6
)asd)

+ 4a2(asd)2(2 +
5

12
)2Q(

1

2σv2
(3− 5

6
)asd) + · · · (9.20)
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Denote k := asd
σv2

. Since we already know k ≥ 13, for all n ≥ 1 we have

(n+ 5
12 )2Q( 1

2σv2
(2n− 1− 5

6 )asd)

(n+ 1 + 5
12 )2Q( 1

2σv2
(2n+ 1− 5

6 )asd)

≥
(n+ 5

12 )2( 1
1

2σv2
(2n−1− 5

6 )asd
− 1

( 1
2σv2

(2n−1− 5
6 )asd)3 ) exp(−

( 1
2σv2

(2n−1− 5
6 )asd)2

2 )

(n+ 1 + 5
12 )2( 1

1
2σv2

(2n+1− 5
6 )asd

) exp(−
( 1

2σv2
(2n+1− 5

6 )asd)2

2 )
(∵ Lemma 4.5)

=
(n+ 5

12 )2( 1
1
2 (2n−1− 5

6 )k
− 1

( 1
2 (2n−1− 5

6 )k)3 ) exp(− ( 1
2 (2n−1− 5

6 )k)2

2 )

(n+ 1 + 5
12 )2( 1

1
2 (2n+1− 5

6 )k
) exp(− ( 1

2 (2n+1− 5
6 )k)2

2 )

≥ (
1 + 5

12

2 + 5
12

)2
( 1

1
2 (2n−1− 5

6 )k
− 1

( 1
2 (2n−1− 5

6 )k)3 )

( 1
1
2 (2n+1− 5

6 )k
)

exp(− ( 1
12k)2

2 )

exp(− ( 13
12k)2

2 )
(∵ n ≥ 1)

≥ (
1 + 5

12

2 + 5
12

)2 exp(
7

12
k2)(

1
2 (2n+ 1− 5

6 )
1
2 (2n− 1− 5

6 )
−

1
2 (2n+ 1− 5

6 )

( 1
2 (2n− 1− 5

6 ))3132
) (∵ k ≥ 13)

(A)

≥ (
1 + 5

12

2 + 5
12

)2 exp(
7

12
k2)0.99

≥ 1042 (∵ k ≥ 13)

(A): When n = 1, we can check the inequality by computation. When n ≥ 2, we have

1
2 (2n+ 1− 5

6 )
1
2 (2n− 1− 5

6 )
−

1
2 (2n+ 1− 5

6 )

( 1
2 (2n− 1− 5

6 ))3132

≥ 1−
1
2 (4 + 1− 5

6 )

( 1
2 (4− 1− 5

6 ))3132
≥ 0.99.

Thus, the terms in (9.20) decrease faster than a geometric sequence with ratio 10−42 and

thus can be upper bounded as

(9.20) ≤ 4a2(asd)2(1 +
5

12
)2Q(

1

2σv2
(1− 5

6
)asd)

1

1− 10−42
. (9.21)

The third term of DU,1(d,w1) in (4.5) can also be bounded similarly. We have

(asd+ asd
2 )2 1

2

(2asd+ asd
2 )2Q(a

sd
σv2

)
≥

(1 + 1
2 )2

(2 + 1
2 )22Q(13)

(∵
asd

σv2
≥ 13)

≥ 1037
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and for n ≥ 2

(n+ 1
2 )2Q( (n−1)ad

σv2
)

((n+ 1) + 1
2 )2Q(nadσv2

)

≥
(n+ 1

2 )2( 1
(n−1)ad
σv2

− 1

(
(n−1)ad
σv2

)3
) exp(−

(
(n−1)ad
σv2

)2

2 )

((n+ 1) + 1
2 )2( 1

nad
σv2

) exp(−
(nadσv2

)2

2 )
(∵ Lemma 4.5)

= exp(
2n− 1

2
k2)

(n+ 1
2 )2( 1

(n−1)k −
1

(n−1)3k3 )

((n+ 1) + 1
2 )2( 1

nk )

≥ exp(
3

2
132)

(2 + 1
2 )2

(3 + 1
2 )2

(
n

n− 1
− n

(n− 1)3132
) (∵ n ≥ 2, k ≥ 13)

(A)

≥ exp(
3

2
132)

(2 + 1
2 )2

(3 + 1
2 )2

0.98

≥ 10109.

(A): Since n ≥ 2, we have

n

n− 1
− n

(n− 1)3132
≥ 1− 2

(2− 1)3132
≥ 0.98.

Therefore, the third term of DU,1(d,w1) in (4.5) is upper bounded by

4a2Q(
asd
6

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

)(asd+
asd

2
)2 1

1− 10−37
. (9.22)
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By plugging (9.21) and (9.22) into (4.5), we can bound DU,1(d,w1) of Lemma 4.7 as follows.

DU,1(d,w1) ≤ 2a2s(2(
d

2
)2(

1

1− 1
a

)2 + 2(
1

1− 1
a2

) + 2a2σ2
v1)

+ 4a2(asd)2(1 +
5

12
)2Q(

1

2σv2
(1− 5

6
)asd)

1

1− 10−42

+ 4a2Q(
asd
6

2
√
a2(s−1) a2

a2−1 + a2sσ2
v1

)(asd+
asd

2
)2 1

1− 10−37

+ 2(a2(
d

2
)2) + 1

(A)

≤ 2a2s(2(
d

2
)2(

5

3
)2 +

50

21
+ 2a2σ2

v1)

+ 4a2(asd)2(
17

12
)2Q(

asd

12σv2
)

1

1− 10−42

+ 4a2Q(
asd
6

2
√
a2(s−1) 25

21 + a2sσ2
v1

)(asd+
asd

2
)2 1

1− 10−37

+ 2(a2(
d

2
)2) + 1

(B)

≤ 2a2s(2(
d

2
)2(

5

3
)2 +

50

21
+ 2a2σ2

v1)

+ 4a2(asd)2(
17

12
)2Q(

asd

12σv2
)

1

1− 10−42

+ 4a2(asd+
asd

2
)2Q(

asd

12
√

46
21σv2

)
1

1− 10−37

+ 2(a2(
d

2
)2) + 1

≤ 2a2s(2(
d

2
)2(

5

3
)2 +

50

21
+ 2a2σ2

v1)

+ 4a2(asd)2(
17

12
)2Q(

asd

12
√

46
21σv2

)
1

1− 10−42

+ 4a2(asd+
asd

2
)2Q(

asd

12
√

46
21σv2

)
1

1− 10−37

+ 2(a2(
d

2
)2) + 1

= 1 +
100

21
a2s +

25

9
a2sd2 +

a2d2

2
+ 4a2(s+1)σ2

v1

+ (4(
17

12
)2 1

1− 10−42
+ 9

1

1− 10−37
)a2(s+1)d2Q(

asd

12
√

46
21σv2

)

≤ 1 +
100

21
a2s +

25

9
a2sd2 +

a2d2

2
+ 4a2(s+1)σ2

v1 + 17.03a2(s+1)d2Q(
asd

12
√

46
21σv2

)
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= 1 +
100

21
a2s +

25

9
4 · 80000a2(s−1)P + 2 · 80000P + 4a2(s+1)σ2

v1

+ 17.03 · 4 · 80000a2sP ·Q(
as−1
√

4 · 80000P

12
√

46
21σv2

)

(C)

≤ 1 +
100

21
a2s +

25

9
16a2(s−1) max(a2, a4σ2

v1) + 8 max(a2, a4σ2
v1) + 4a2(s+1)σ2

v1

+ 17.03 · 4 · 80000a2sP
1

√
2π a

s−1
√

4·80000P

12
√

46
21σv2

exp(−1

2

a2(s−1)4 · 80000P

144 · 46
21σ

2
v2

)

= 1 +
100

21
a2s +

25

9
16a2(s−1) max(a2, a4σ2

v1) + 8 max(a2, a4σ2
v1) + 4a2(s+1)σ2

v1

+ 17.03 · 4 · 80000

√
70

√
2π
√

4·80000

12
√

46
21

exp(−(
1

2

4 · 80000

144 · 46
21

− 50)
a2(s−1)P

σ2
v2

)a2sP exp(−50a2(s−1)P

σ2
v2

)

(D)

≤ 1 +
100

21
a2s +

25

9
16a2(s−1) max(a2, a4σ2

v1) + 8 max(a2, a4σ2
v1) + 4a2(s+1)σ2

v1

+ 17.03 · 4 · 80000

√
70

√
2π
√

4·80000

12
√

46
21

exp(−(
1

2

4 · 80000

144 · 46
21

− 50)
1

70
)a2sP exp(−50a2(s−1)P

σ2
v2

)

≤ 1 +
100

21
a2s +

25

9
16a2(s−1) max(a2, a4σ2

v1) + 8 max(a2, a4σ2
v1) + 4a2(s+1)σ2

v1

+ 831.473...a2sP exp(−50a2(s−1)P

σ2
v2

)

≤ 1 + (
100

21
+

25

9
16 + 8 + 4)a2s max(1, a2σ2

v1) + 831.473...a2sP exp(−50a2(s−1)P

σ2
v2

)

≤ 1 + 61.206...a2s max(1, a2σ2
v1) + 831.473...a2sP exp(−50a2(s−1)P

σ2
v2

)

≤ 1 + 62a2s max(1, a2σ2
v1) + 832a2sP exp(−50a2(s−1)P

σ2
v2

)

≤ 832a2sP exp(−50a2(s−1)P

σ2
v2

) + 63a2s max(1, a2σ2
v1)

(A): a ≥ 2.5.

(B): From the assumption a2(s−1) max(1, a2σ2
v1) ≤ σ2

v2 ≤ a2s max(1, a2σ2
v1), we have

a2(s−1) 25

21
+ a2sσ2

v1 ≤
46

21
max(a2(s−1), a2sσ2

v1) ≤ 46

21
σ2
v2.

(C): P ≤ max(a2,a4σ2
v1)

20000 and Lemma 4.5.

(D): P ≥ σ2
v2

70a2(s−1) .

This justifies the upper bound on DU (P1, P2). By the definition of d and Lemma 4.7, P1
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is upper bounded by 80000P . P2 of Lemma 4.7 can be upper bounded as

P2 ≤ 8a2DU,1(d,w1) +
7

2
a2(s+1)d2 + 4a2σ2

v2

= 8a2DU,1(d,w1) +
7

2
4 · 80000a2sP + 4a2σ2

v2

≤ 8a2(832a2sP exp(−50a2(s−1)P

σ2
v2

) + 63a2s max(1, a2σ2
v1))

+
7

2
4 · 4a2s max(a2, a4σ2

v1) + 4a2a2s max(1, a2σ2
v1)

= 8a2(832a2sP exp(−50a2(s−1)P

σ2
v2

) + 70.5a2s max(1, a2σ2
v1))

= 6656a2(s+1)P exp(−50a2(s−1)P

σ2
v2

) + 564a2(s+1) max(1, a2σ2
v1).

where the inequality comes from the assumptions P ≤ max(a2,a4σ2
v1)

20000 and σ2
v2 ≤ a2s max(1, a2σ2

v1).

This finishes the proof.

9.5 Proof of Proposition 4.8

As the proof of Proposition 4.7, by Lemma 4.14 it is enough to show that there exists c ≥ 1

such that DU (cP̃1, cP̃2) ≤ c ·DL(P̃1, P̃2).

(i) When P̃1 ≤ σ2
v2

70a2(s−1) and P̃2 ≤ a4σ2
v2

28000

Lower bound: By Corollary 4.2 (b)

DL(P̃1, P̃2) =∞.

Therefore, we do not need the corresponding upper bound.

(ii) When P̃1 ≤ σ2
v2

70a2(s−1) and P̃2 ≥ a4σ2
v2

28000

Lower bound: By Corollary 4.2 (a)

DL(P̃1, P̃2) ≥ 0.008a2σ2
v2 + 1.

Upper bound: By Lemma 4.15

(DU (P1, P2), P1, P2) ≤ (a2σ2
v2 + 1, 0, a4σ2

v2 + a2σ2
v2 + a2)

≤ (a2σ2
v2 + 1, 0, a4σ2

v2 + a2σ2
v2 + a2σ2

v2)

≤ (a2σ2
v2 + 1, 0, (1 +

2

2.52
)a4σ2

v2)

≤ (a2σ2
v2 + 1, 0, 1.32a4σ2

v2).

Ratio: Thus, c is upper bounded by

c ≤ max(
1

0.008
,

1.32
1

28000

).
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(iii) When
σ2
v2

70a2(s−1) ≤ P̃1 ≤ 1
20000 max(a2, a4σ2

v1) and P̃2 ≤ 0.0457a2(s+1)P̃1 exp(− 50a2(s−1)P̃1

σ2
v2

)+

0.0113a2(s+1) max(1, a2σ2
v1)

Lower bound: By Corollary 4.2 (d)

DL(P̃1, P̃2) =∞

Therefore, we do not need the corresponding upper bound.

(iv) When
σ2
v2

70a2(s−1) ≤ P̃1 ≤ 1
20000 max(a2, a4σ2

v1) and P̃2 ≥ 0.0457a2(s+1)P̃1 exp(− 50a2(s−1)P̃1

σ2
v2

)+

0.0113a2(s+1) max(1, a2σ2
v1)

Lower bound: By Corollary 4.2 (c)

DL(P̃1, P̃2) ≥ 0.2541a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

) + 0.066a2s max(1, a2σ2
v1) + 1

Upper bound: By Corollary 4.3

(DU (P1, P2), P1, P2) ≤(63a2s max(1, a2σ2
v1) + 832a2sP̃1 exp(−50a2(s−1)P̃1

σ2
v2

), 80000P̃1

, 6656a2(s+1)P̃1 exp(−50a2(s−1)P̃1

σ2
v2

) + 564a2(s+1) max(1, a2σ2
v1))

Ratio: c is upper bounded by

c ≤ max(
832

0.2541
,

63

0.066
, 80000,

6656

0.0457
,

564

0.0113
)

(v) When P̃1 ≥ 1
20000 max(a2, a4σ2

v1)

Lower bound: By Corollary 4.2 (e)

DL(P̃1, P̃2) ≥ 0.295 ·max(1, a2σ2
v1)

Upper bound: By Lemma 4.15

(DU (P1, P2), P1, P2) ≤ (a2σ2
v1 + 1, a4σ2

v1 + a2σ2
v1 + a2, 0)

≤ (a2σ2
v1 + 1, 2a4σ2

v1 + a2, 0)

≤ (2 max(1, a2σ2
v1), 3 max(a2, a4σ2

v1), 0)

Ratio: c is upper bounded by

c ≤ max(
2

0.295
,

3
1

20000

)

Therefore, by (i), (ii), (iii), (iv), (v), the lemma is true and c ≤ 1.5× 105.

9.6 Proof of Proposition 4.4

Since a goes to infinity, let a ≥ 10000. We will first show the best linear strategy perfor-

mance is Θ(a3).
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• The best linear strategy performance is Θ(a3): Following the same steps in the proof of

Lemma 4.8, we can lower bound the average cost as follows:

inf
u1,u2∈L′lin

1

N

∑

0≤n<N

E[qx2[n] + r1u
2
1[n]]

= inf
u1,u2∈L′lin

1

N
((

1

2
r1E[u2

1[1]] +
1

2
r1E[u2

1[2]] + qE[x2[3]]) + (
1

2
r1E[u2

1[2]] +
1

2
r1E[u2

1[3]] + qE[x2[4]]) + · · ·

+ (
1

2
r1E[u2

1[N − 3]] +
1

2
r1E[u2

1[N − 2]] + qE[x2[N − 1]]))

≥ N − 3

N
inf

u1,u2∈L′lin
(
1

2
r1E[u2

1[1]] +
1

2
r1E[u2

1[2]] + qE[x2[3]])

=
N − 3

N
inf

u1,u2∈L′lin
(
1

2
aE[u2

1[1]] +
1

2
aE[u2

1[2]] + E[x2[3]]).

In the similar way of Proposition 4.6, we can further justify that setting w[1] = 0, w[2] = 0 only

decrease the quadratic cost. Then, at time 1 we have

x[1] = w[0]

y1[1] = w[0]

y2[1] = w[0] + v2[1]

Let

u1[1] = k11w[0]

u2[1] = k21(w[0] + v2[1])

At time 2 we have

x[2] = ax[1] + u1[1] + u2[1]

= aw[0] + k11w[0] + k21(w[0] + v2[1])

y1[1] = aw[0] + k11w[0] + k21(w[0] + v2[1])

y2[1] = aw[0] + k11w[0] + k21(w[0] + v2[1]) + v2[2]

Therefore, we can put

u1[2] = k12w[0] + k13v2[1]

u2[3] = k22(w[0] + v2[1]) + k23(aw[0] + k11w[0] + v2[2])
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At time 3 we have

x[3] = ax[2] + u1[2] + u2[2]

= a2w[0] + ak11w[0] + ak21(w[0] + v2[1]) + k12w[0] + k13v2[1]

+ k22(w[0] + v2[1]) + k23(aw[0] + k11w[0] + v2[2])

= (a2 + ak11 + k12)w[0] + k13v2[1] + (ak21 + k22)(w[0] + v2[1]) + k23(aw[0] + k11w[0] + v2[2])

= (a2 + ak11 + k12 − k13)w[0] + (ak21 + k22 + k13)(w[0] + v2[1]) + k23(aw[0] + k11w[0] + v2[2])

Therefore,

E[x2[3]] ≥ (a2 + ak11 + k12 − k13)2MMSE[w[0]|w[0] + v2[1], aw[0] + k11w[0] + v2[2]]

(i) When E[u2
1[1]] + E[u2

1[2]] ≤ 1
16a

2

The condition implies

E[(k11w[0])2] + E[(k12w[0] + k13v2[1])2]

= k2
11 + k2

12 + k2
13a ≤

1

16
a2

Thus,

|k11| ≤
1

4
a

|k12| ≤
1

4
a

|k13| ≤
1

4

√
a

Since a ≥ 10000 we have

a2 + ak11 + k12 − k13 ≥ a2 − a2

4
− a2

4
− a2

4
=
a2

4

Moreover, we also have

MMSE[w[0]|w[0] + v2[1], aw[0] + k11w[0] + v2[2]]

≥MMSE[w[0]|w[0] + v2[1],
5a

4
w[0] + v2[2]]

≥MMSE[w[0]|5a
4
w[0] + v2[1],

5a

4
w[0] + v2[2]]

= MMSE[w[0]|10a

4
w[0] + v2[1] + v2[2]]

= 1−
( 10a

4 )2

( 10a
4 )2 + 2a

=
2a

( 10a
4 )2 + 2a

≥ 2

( 10
4 )2 + 2

1

a
=

8

33a
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Therefore, in this case,

inf
u1,u2∈L′lin

1

2
aE[u2

1[1]] +
1

2
aE[u2

1[2]] + E[x2[3]] ≥ 1

16
· 8

33
a3

(ii) When E[u2
1[1]] + E[u2

1[2]] ≥ 1
16a

2 In this case

inf
u1,u2∈L′lin

1

2
aE[u2

1[1]] +
1

2
aE[u2

1[2]] + E[x2[3]] ≥ 1

32
a3

Therefore, by (i),(ii),

inf
u1,u2∈L′lin

1

2
aE[u2

1[1]] +
1

2
aE[u2

1[2]] + E[x2[3]] ≥ 1

66
a3 (9.23)

• The optimal average cost is O(a2 log a): Now, we will show the average cost, O(a2 log a),

is achievable by the nonlinear 1-stage signaling strategy. Let a ≥ 20000. Since max(1, a2σ2
v1) ≤

σ2
v2 ≤ a2 max(1, a2σ2

v1) and a
70 ≤

a log a
25 ≤ 1

20000a
2, we can set s = 1 and P = a log a

25 in Corollary 4.2.

Then, by Corollary 4.2, the average cost is upper bounded as follows.

inf
u1,u2∈Lsig,1

1

N

∑

0≤n<N

E[qx2[n] + r1u
2
1[n]]

≤ 832a2 a log a

25
exp(−

50a log a
25

a
) + 63a2 + a

80000a log a

25

≤ 832
a log a

25
+ 63a2 +

80000

25
a2 log a

≤ 3297a2 log a (9.24)

In short, by (9.23) the optimal linear strategy cost is lower bounded by Ω(a3) . By (9.24),

the nonlinear 1-stage signaling strategy can achieve O(a2 log a). Thus, their ratio diverges as a goes

to infinity, which finishes the proof.
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Chapter 10

Appendix for Chapter 5

10.1 Proof of Corollary 5.1, 5.2, 5.3

Proof of Corollary 5.1 of Page 230. For simplicity, we will only proof for the case when a = 1. The

proof for the case of a = −1 follows similarly by replacing a with −a.

In this case, Lemma 5.1 reduces to that for all |1− k| < 1,

Dσv (P ) ≤ (2k − k2)ΣE + 1

1− (1− k)2
=

(2k − k2)ΣE + 1

2k − k2
=

1

2k − k2
+ ΣE (10.1)

P ≤ k2(
(2k − k2)ΣE + 1

1− (1− k)2
− ΣE) = k2(

1

2k − k2
+ ΣE − ΣE) =

k2

2k − k2
(10.2)

where

ΣE =
−1 +

√
4σ2

v + 1

2
.

Let k? ∈ (0, 1] be a constant such that max(1,ΣE) = 1
2k?−k?2 . Here, we can see that such

k? always exists since max(1,ΣE) ≥ 1 and 1
2k−k2 is a decreasing function on k. Let k ∈ (0, k?].

Then, we can see since 0 < k? ≤ 1, |1− k| < 1. Then, (10.1) and (10.2) are again upper bounded as

follows:

Dσv (P ) =
1

2k − k2
+ ΣE

≤ 1

2k − k2
+ max(1,ΣE)

=
1

2k − k2
+

1

2k? − k?2

≤ 2

2k − k2
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where the last inequality follows from 0 < k ≤ k?.

P =
k2

2k − k2

≤ k2(2− k)2

2k − k2

= 2k − k2

where the inequality follows from 0 < k ≤ k? ≤ 1.

Let’s put t = 2k − k2. Then, we have (Dσv (P ), P ) ≤ ( 2
t , t) where t ∈ (0, 2k? − k?2].

Therefore, t ∈ (0, 1
max(1,ΣE) ]. This finishes the proof of the first claim.

When σv ≥ 16, we have

ΣE =
−1 +

√
4σ2

v + 1

2
≤
√

4σ2
v + 1

2

≤

√
4σ2

v + 1
162σ2

v

2
= 1.000488...σv

≤ 1.0005σv.

Therefore, the range of t at least includes (0, 1
1.0005σv

] and the second claim is true.

When σv ≤ 16, we have

ΣE =
−1 +

√
4 · 162 + 1

2
= 15.0078105... ≤ 15.008.

Therefore,the range of t at least includes (0, 1
15.008 ] and the third claim is true.

Proof of Corollary 5.2 of Page 233. For simplicity, we prove only for the case when a > 1. The

proof for the case of a < −1 follows similarly by replacing a with −a.

Proof of (i): Let’s put k = a − 1
a in Lemma 5.1. Since |a − a + 1

a | = | 1a | < 1, the

power-distortion tradeoff in (5.3) still holds. Thus, we can see that

DU (P ) ≤
(2a(a− 1

a )− (a− 1
a )2)ΣE + 1

1− ( 1
a )2

=
a2 − 1

a2

1− 1
a2

ΣE +
1

1− ( 1
a )2

= (a2 + 1)ΣE +
a2

a2 − 1

and

P ≤ (
a2 − 1

a
)2(a2ΣE +

a2

a2 − 1
)− ΣE

≤ (a2 − 1)2ΣE + (a2 − 1),

which finishes the proof of (i).

Proof of (ii): We will divide into two cases depending on ΣE .
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Case 1) When max(1, (1 + a2)ΣE) > 1
1−( 1

a )2 .

In this case, the domain for t is an empty set and we do not have to prove anything.

Case 2) When max(1, (1 + a2)ΣE) ≤ 1
1−( 1

a )2 .

Since max(1, (1 + a2)ΣE) ≤ 1
1−( 1

a )2 , there exists ∆? ∈ [0, 1
a ] such that

max(1, (a2 + 1)ΣE) =
1

1− ( 1
a −∆?)2

.

Let’s put k = a − 1
a + ∆ in Lemma 5.1 where ∆ ∈ [0,∆?]. Then, we have the following

upper bound on Dσv (P ) and P .

Dσv (P ) ≤ (2ak − k2)ΣE + 1

1− (a− k)2
(10.3)

=
2ak − k2

1− (a− k)2
ΣE +

1

1− (a− k)2

=
a2 − 1 + 1− (a− k)2

1− (a− k)2
ΣE +

1

1− (a− k)2

= (
a2 − 1

1− (a− k)2
+ 1)ΣE +

1

1− (a− k)2

= (
a2 − 1

1− ( 1
a −∆)2

+ 1)ΣE +
1

1− (a− k)2

(A)

≤ (
a2 − 1

1− ( 1
a )2

+ 1)ΣE +
1

1− (a− k)2

= (a2 + 1)ΣE +
1

1− (a− k)2

= (a2 + 1)ΣE +
1

1− ( 1
a −∆)2

(B)

≤ max(1, (a2 + 1)ΣE) +
1

1− ( 1
a −∆)2

=
1

1− ( 1
a −∆?)2

+
1

1− ( 1
a −∆)2

≤ 1

1− ( 1
a −∆)2

+
1

1− ( 1
a −∆)2

=
2

1− ( 1
a −∆)2

(10.4)

(A): 0 ≤ ∆ ≤ 1
a
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(B): 0 ≤ ∆ ≤ ∆? ≤ 1
a

P ≤ k2(
(2ak − k2)ΣE + 1

1− (a− k)2
− ΣE)

≤ k2(
(2ak − k2)ΣE + 1

1− (a− k)2
)

(A)

≤ k2 2

1− ( 1
a −∆)2

= (a− 1

a
+ ∆)2 2

1− ( 1
a −∆)2

(B)

≤ (a+ ∆a− 1

a
+ ∆)2 2

1− ( 1
a −∆)2

= ((a+ 1)(1− 1

a
+ ∆))2 2

1− ( 1
a −∆)2

=
2(a+ 1)2(1− 1

a + ∆)2

1− ( 1
a −∆)2

=
2(a+ 1)2(1− 1

a + ∆)

1 + 1
a −∆

(C)

≤ 2(a+ 1)2(1− 1

a
+ ∆)(1 +

1

a
−∆)

= 2(a+ 1)2(1− (
1

a
−∆)2)

(A): This comes from the comparison of (10.3) and (10.4).

(B): Since ∆ ≥ 0, a > 1, we have a− 1
a + ∆ > 0. Moreover, ∆a ≥ 0.

(C): 0 ≤ ∆ ≤ 1
a , (1 + 1

a −∆) ≥ 1.

Therefore, by putting t = 2(a+ 1)2(1− ( 1
a −∆)2) we can conclude

(Dσv (P ), P ) ≤ (
4(a+ 1)2

t
, t).

Since ∆ ∈ [0,∆?], we have t ∈ [2(a + 1)2(1 − ( 1
a )2), 2(a + 1)2(1 − ( 1

a − ∆?)2)]. Moreover, by the

definition of ∆?, it is equivalent to t ∈ [2(a+ 1)2(1− ( 1
a )2), 2(a+1)2

max(1,(a2+1)ΣE) ].

This finishes the proof of (ii).

When 1 < |a| ≤ 2.5, (i) is upper bounded as

(Dσv (P ), P ) ≤ ((a2 + 1)ΣE +
a2

a2 − 1
, (a2 − 1)2ΣE + (a2 − 1))

≤ (7.25ΣE +
6.25

a2 − 1
, (a2 − 1)2ΣE + (a2 − 1)).

Thus, we get (i’).

When 1 < |a| ≤ 2.5, (ii) is also upper bounded as

(Dσv (P ), P ) ≤ (
4(|a|+ 1)2

t
, t)

≤ (
49

t
, t).
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Moreover, for 1 < |a| ≤ 2.5

2(|a|+ 1)2(1− (
1

a
)2) ≤ t ≤ 2(|a|+ 1)2

max(1, (a2 + 1)ΣE)

(⇔)2(1 +
1

|a|
)2(a2 − 1) ≤ t ≤ 2(|a|+ 1)2

max(1, (a2 + 1)ΣE)

(⇒)8(a2 − 1) ≤ t ≤ 8

max(1, 7.25ΣE)
.

Therefore, we get (ii’).

Proof of Corollary 5.3 of Page 235. For simplicity, we will only proof for the case when 0 ≤ a < 1.

The proof for −1 < a ≤ 0 follows similarly by replacing a with −a.

First part of the lemma easily follows by putting k = 0 in Lemma 5.1.

Let’s prove the second part of the lemma. Since the second part of the lemma assumes

ΣE ≤ 1
1−a2 , there always exists k? ∈ [0, a] such that max(1,ΣE) = 1

1−(a−k?)2 .

Since 0 ≤ k? ≤ a and 0 ≤ a < 1, for all k ∈ [0, k?] we have |a−k| < 1. Thus, by Lemma 5.1,

for all k ∈ [0, k?] we have the following upper bounds on Dσv (P ), P .

Dσv (P ) ≤ (2ak − k2)ΣE + 1

1− (a− k)2
(10.5)

(A)

≤ (1− a2 + 2ak − k2)ΣE + 1

1− (a− k)2

=
(1− (a− k)2)ΣE + 1

1− (a− k)2

= ΣE +
1

1− (a− k)2
(10.6)

(B)

≤ 1

1− (a− k?)2
+

1

1− (a− k)2

(C)

≤ 2

1− (a− k)2

(A): 0 ≤ a < 1, 0 < k ≤ a, ΣE ≥ 0.

(B): max(1,ΣE) = 1
1−(a−k?)2 .

(C): 0 ≤ k ≤ k? ≤ a.
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P ≤ k2(
(2ak − k2)ΣE + 1

1− (a− k)2
− ΣE)

(A′)

≤ k2(ΣE +
1

1− (a− k)2
− ΣE)

=
k2

1− (a− k)2

(B′)

≤ (1− a+ k)2

1− (a− k)2

=
1− a+ k

1 + a− k
(C′)

≤ (1− a+ k)(1 + a− k)

= 1− (a− k)2

(A’): (10.5) ≤ (10.6).

(B’): 0 ≤ a < 1 and 0 < k ≤ a.

(C’): 0 ≤ a < 1 and 0 < k ≤ a.

Let’s put t = 1 − (a − k)2. Then, we have (Dσ1
(P ), P ) ≤ ( 2

t , t). Moreover, since 0 ≤ k ≤
k? ≤ a, t ∈ [1− a2, 1− (a− k?)2]. Furthermore, since t, t ∈ [1− a452, 1

max(1,ΣE) ]. This finishes the

proof of the lemma.

10.2 Proof of Corollary 5.4 and Proposition 5.1

Proof of Corollary 5.4 of page 246. For simplicity, we first prove for the case when 1 < a ≤ 2.5. The

proof for the case when −2.5 ≤ a < −1 follows similarly.

First, let’s upper bound Σ1 and Σ2 of (5.27) and (5.28). When |(a2− 1)σ2
v1− 1| ≥ |2aσv1|,

we have

Σ1 ≤
(a2 − 1)σ2

v1 − 1 +
√

2((a2 − 1)σ2
v1 − 1)2

2a2

≤ (1 +
√

2)|(a2 − 1)σ2
v1 − 1|

2a2

≤ (1 +
√

2) max(1, (a2 − 1)σ2
v1)

2a2
(10.7)

When |(a2 − 1)σ2
v1 − 1| ≤ |2aσv1|, we have

Σ1 ≤
|2aσv1|+

√
(2aσv1)2 + 4a2σ2

v1

2a2

=
(1 +

√
2)2aσv1

2a2
(10.8)

Therefore, by (10.7) and (10.8), we can conclude

Σ1 ≤
(1 +

√
2) max(1, (a2 − 1)σ2

v1, 2aσv1)

2a2
. (10.9)
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Likewise, we also have

Σ2 ≤
(1 +

√
2) max(1, (a2 − 1)σ2

v2, 2aσv2)

2a2
.

We also have for all k ≥ 3

a2(1− a−2(k−1))

1− a−2(k−2)
=
a2(k−1) − 1

a2(k−2) − 1
=

(a− 1)(1 + · · ·+ a(2k−4) + a(2k−3))

(a− 1)(1 + · · ·+ a(2k−5))
(10.10)

=
1 + · · ·+ a(2k−4) + a(2k−3)

1 + · · ·+ a(2k−5)

= 1 +
a(2k−4) + a(2k−3)

1 + · · ·+ a(2k−5)

(A)

≤ 1 +
a(2k−4) + a(2k−3)

a(2k−6) + a(2k−5)

= 1 + a2 ≤ 1 + 2.52 = 7.25. (10.11)

(A): This comes from k ≥ 3.

Then, let’s prove the statements of the lemma.

Proof of (a):

Since Σ1 ≥ 150 and Σ2 ≥ 150, there exist k1 ≥ 3 and k2 ≥ 3 such that

a2(k1−2) − 1

1− a−2
≤ Σ1

24
<
a2(k1−1) − 1

1− a−2
(10.12)

a2(k2−2) − 1

1− a−2
≤ Σ2

24
<
a2(k2−1) − 1

1− a−2

We will evaluate Lemma 5.3 with these k1 and k2, and increase k arbitrary large.

Moreover, since Σ1 ≥ 150 implies σv1 ≥ 1, (10.9) further reduces to

Σ1 ≤
(1 +

√
2) max((a2 − 1)σ2

v1, 2aσv1)

2a2
. (10.13)

Let’s upper bound I of Lemma 5.3. First, we have

a2(k1−2)(1− a−2(k1−1))2

(1− a−2)2

(A)

≤ a2(k1−2)(1− a−2(k1−1))

(1− a−2)2

(B)

≤ a2(k1−2)(7.25a−2(1− a−2(k1−2)))

(1− a−2)2

= 7.25a−2(
a2(k1−2) − 1

1− a−2
)

1

1− a−2

≤ 7.25Σ1

24

a−2

1− a−2
=

7.25Σ1

24

1

a2 − 1
. (10.14)

(A): For k1 ≥ 3, 1− a−2(k1−1) ≤ 1.

(B): By comparing (10.10) and (10.11), we get 7.25a−2(1− a−2(k1−2)) ≥ (1− a−2(k1−1)).

(C): This comes from (10.12).
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Moreover, we also have

a2(k1−2)(1− a−2(k1−1))2

(1− a−2)2

(A)

≤ a2(k1−2)(7.25a−2(1− a−2(k1−2)))2

(1− a−2)2

(B)

≤ 7.252(
a2(k1−2)(1− a−2(k1−2))

1− a−2
)2

(C)

≤ (
7.25Σ1

24
)2. (10.15)

(A): By comparing (10.10) and (10.11), we get 7.25a−2(1− a−2(k1−2)) ≥ (1− a−2(k1−1)).

(B): a > 1 and k1 ≥ 3.

(C): This comes from (10.12).

By merging the results so far, we can conclude

a2(k1−2)(1− a−2(k1−1))2

(1− a−2)2
(10.16)

(A)

≤ min(
7.25Σ1

24

1

a2 − 1
, (

7.25Σ1

24
)2) (10.17)

(B)

≤ max(
7.25

24

1

a2 − 1

(1 +
√

2)(a2 − 1)σ2
v1

2a2
, (

7.25

24
)2(

(1 +
√

2)2aσv1

2a2
)2)

= max(
7.25

24

1 +
√

2

2a2
, (

7.25

24
)2(

1 +
√

2

a
)2)σ2

v1

(C)

≤ max(
7.25

24

1 +
√

2

2
, (

7.25

24
)2(1 +

√
2)2)σ2

v1

≤ 0.5319σ2
v1 (10.18)

(A): This comes from (10.14) and (10.15).

(B): When (a2− 1)σ2
v1 ≥ 2aσv1, by (10.13) we have Σ1 ≤ (1+

√
2)(a2−1)σ2

v1

2a2 . Thus, by plugging it into

(10.17), we get

(10.16) ≤ 7.25

24

1

a2 − 1

(1 +
√

2)(a2 − 1)σ2
v1

2a2
.

Likewise, when (a2 − 1)σ2
v1 ≤ 2aσv1, by (10.13) we have Σ1 ≤ (1+

√
2)2aσv1

2a2 . Therefore, by plugging

it into (10.17), we get

(10.16) ≤ (
7.25

24
)2(

(1 +
√

2)2aσv1

2a2
)2.

(C): Because a > 1.

In the same ways, we can also prove that

a2(k2−2)(1− a−2(k2−1))2

(1− a−2)2
≤ 0.5319σ2

v2. (10.19)
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Therefore, by plugging (10.18) and (10.19) into I of Lemma 5.3, we can upper bound I by

I ≤ (k1 − 1) log(1 +
1

k1 − 1
0.5319)

≤ log e0.5319. (10.20)

Let’s upper bound I ′(P̃1). First, we have

2a2(k2−1−k) 1− a−2(k2−k1)

1− a−2
Σ + 2a2(k2−1−k1) 1− a−2(k2−k1)

1− a−2

1− a−2(k2−k1)

1− a−2

(A)

≤ 2a2(k2−1−k) 1− a−2(k2−k1)

1− a−2

a2(k−1)(1− a−2(k1−1))

1− a−2

+ 2a2(k2−1−k1) 1− a−2(k2−k1)

1− a−2

1− a−2(k2−k1)

1− a−2

= 2a2(k2−2)(
1− a−2(k2−k1)

1− a−2
)(

(1− a−2(k1−1))

1− a−2
+ a2(−k1+1) 1− a−2(k2−k1)

1− a−2
)

= 2a2(k2−2)(
1− a−2(k2−k1)

1− a−2
)(

1− a−2(k1−1) + a−2(k1−1) − a−2(k2−1)

1− a−2
)

(B)

≤ 2a2(k2−2)(
1− a−2(k2−1)

1− a−2
)2

(C)

≤ 2 · 0.5319σ2
v2. (10.21)

(A): Since I ≥ 0, Σ ≤ a2(k−1) 1−a−2(k1−1)

1−a−2 .

(B): k1 ≥ 1.

(C): It comes from (10.19).

We also have

2a2(k2−k1−2) 1− a−2(k2−k1)

1− a−2

(1− a−(k2−1−k1))(1− a−(k−k1))

(1− a−1)2
P̃1

(A)

≤ 2a2(k2−k1−2) 1− a−2(k2−k1)

1− a−2

(1− a−(k2−1−k1))(1− a−(k−k1))

(1− a−1)2

24(a2 − 1)2

40000

a2(k1−1) − 1

1− a−2

(B)

≤ 2a2(k2−2)(
1− a−2(k2−1)

1− a−2
)2 24a−2

40000

(a2 − 1)2

(1− a−1)2

= 2a2(k2−2)(
1− a−2(k2−1)

1− a−2
)2 24(a+ 1)2

40000

≤ 48(2.5 + 1)2

40000
0.5319σ2

v2

= 0.00781893σ2
v2. (10.22)

(A): Since we have P̃1 ≤ (a2−1)2Σ1

40000 and Σ1 ≤ 24a
2(k1−1)−1
1−a−2 by (10.12).

(B): Since k2 − 1 ≥ k2 − k1 and 2(k2 − 1) ≥ (k2 − 1− k1).

(C): By (10.19) and 0 ≤ a ≤ 2.5.
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Therefore, by (10.21) and (10.22), we can bound I ′(P̃1) of Lemma 5.3 by

I ′(P̃1) ≤ k2 − k1

2
log(1 +

1

k2 − k1
(2 · 0.5319 + 0.00781893))

≤ k2 − k1

2
log(1 +

1

k2 − k1
(1.07161893))

≤ 1

2
log e1.0717. (10.23)

Moreover, we have

a2(k−k1−1) (1− a−(k−k1))2

(1− a−1)2
P̃1

(A)

≤ a2(k−k1−1) (1− a−(k−k1))2

(1− a−1)2

24(a2 − 1)2

40000

a2(k1−1) − 1

1− a−2

= a2(k−k1−1) 1− 2a−(k−k1) + a−2(k−k1)

(1− a−1)2

24(a2 − 1)2

40000

a2(k1−1) − 1

1− a−2

(B)

≤ a2(k−k1−1) 1− a−2(k−k1)

(1− a−1)2

24(a2 − 1)2

40000

a2(k1−1) − 1

1− a−2

=
a2(k−2)(1− a−2(k−k1))(1− a−2(k1−1))

(1− a−2)
· 24(a2 − 1)2

40000(1− a−1)2

≤ a2(k−2)(1− a−2(k−1))

(1− a−2)
· 24(a2 − 1)2

40000(1− a−1)2

=
a2(k−1)(1− a−2(k−1))

(1− a−2)
· 24(a+ 1)2

40000

(C)

≤ a2(k−1)(1− a−2(k−1))

(1− a−2)
· 24(2.5 + 1)2

40000

=
a2(k−1)(1− a−2(k−1))

(1− a−2)
· 147

20000
(10.24)

(A): By (10.12) and P̃1 ≤ (a2−1)2Σ1

40000 .

(B): Since k ≥ k1.

(C): Since 1 ≤ a ≤ 2.5.

Likewise, we can also prove that

a2(k−k2−1) (1− a−(k−k2))2

(1− a−1)2
P̃2 ≤

a2(k−1)(1− a−2k−1))

(1− a−2)
· 147

20000
. (10.25)
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Finally, by plugging (10.20), (10.23), (10.24), (10.25) into Lemma 5.3 we have

DL(P̃1, P̃2)

≥ (

√
a2(k−1) 1−a−2(k1−1)

1−a−2 + a2(k−k1) 1−a−2(k2−k1)

1−a−2 + a2(k−k2) 1−a−2(k−k2)

1−a−2

22(I+I′(P̃1))

−

√
a2(k−k1−1)

(1− a−(k−k1))2

(1− a−1)2
P̃1 −

√
a2(k−k2−1)

(1− a−(k−k2))2

(1− a−1)2
P̃2)2

+ + 1

≥ a2(k−1)(1− a−2(k−1))

1− a−2
(

√
1

e2·0.5319+1.0717
−
√

147

20000
−
√

147

20000
)2
+ + 1

≥ a2(k−1)(1− a−2(k−1))

1− a−2
0.02969 + 1.

Therefore, by choosing k arbitrary large, we have DL(P̃1, P̃2) =∞.

Proof of (b):

Like (a), since Σ1 ≥ 150 and Σ2 ≥ 150, there exist k1 ≥ 3 and k2 ≥ 3 such that

a2(k1−2) − 1

1− a−2
≤ Σ1

24
<
a2(k1−1) − 1

1− a−2
,

a2(k2−2) − 1

1− a−2
≤ Σ2

24
<
a2(k2−1) − 1

1− a−2
.

We put the parameters of Lemma 5.3 as such k1, k2 and k = k2. Then, the lower bound of Lemma 5.3

reduces to

DL(P̃1, P̃2) ≥ (

√
Σ + a2(k−k1) 1−a−2(k−k1)

1−a−2

22I′(P̃1)
−

√
a2(k−k1−1)

(1− a−(k−k1))2

(1− a−1)2
P̃1)2

+ + 1.

Since we choose k1 and k2 in the same way as (a) and have the same bound on P̃1, we still

have (10.20), (10.23), (10.24) which are

I ≤ log e0.5319,

I ′(P̃1) ≤ 1

2
log e1.0717,

a2(k−k1−1) (1− a−(k−k1))2

(1− a−1)2
P̃1 ≤

a2(k−1)(1− a−2(k−1))

(1− a−2)
· 147

20000
.

Therefore, we can conclude

DL(P̃1, P̃2)

≥ (

√
a2(k−1) 1−a−2(k1−1)

1−a−2 + a2(k−k1) 1−a−2(k−k1)

1−a−2

22(I+I′(P1))
−

√
a2(k−k1−1)

(1− a−(k−k1))2

(1− a−1)2
P1)2

+ + 1

≥ a2(k−1)(1− a−2(k−1))

1− a−2
(

√
1

e2·0.5319+1.0717
−
√

147

20000
)2
+ + 1

≥ Σ2

24
(

√
1

e2·0.5319+1.0717
−
√

147

20000
)2
+ + 1

≥ 0.002774Σ2 + 1.
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Proof of (c):

We will put k1 = k2 = 1 in Lemma 5.3 and increase k arbitrary large. First, the lower

bound in Lemma 5.3 reduces to

DL(P̃1, P̃2) ≥ (

√
a2(k−1)

1− a−2(k−1)

1− a−2
−

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1 −

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃2)2

+ + 1.

(10.26)

Here, we have

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1

≤ a2(k−2)(1− 2a−(k−1) + a−2(k−1))

(1− a−1)2

1

20
(a2 − 1)

(A)

≤ a2(k−1)(1− a−2(k−1))

(1− a−2)
(1 + a−1)2 1

20

(B)

≤ 1

5

a2(k−1)(1− a−2(k−1))

(1− a−2)
(10.27)

(A): Since k ≥ 1.

(B): Since a ≥ 1.

Likewise, we can also prove that

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃2 ≤

1

5

a2(k−1)(1− a−2(k−1))

(1− a−2)
(10.28)

Finally, by plugging (10.27), (10.28) into (10.26), we get

DL(P̃1, P̃2) ≥ a2(k−1) 1− a−2(k−1)

1− a−2
(1−

√
1

5
−
√

1

5
)2
+ + 1.

Therefore, by choosing k arbitrary large, we have DL(P̃1, P̃2) =∞.

Proof of (d):

Let k1 = k2 = 1 and P = max(P̃1, P̃2). Since P ≤ 1
75 , we can find k ≥ 2 such that

a(k−1) − 1

1− a−1
≤ 1

30P
<

ak − 1

1− a−1
(10.29)

By setting the parameters of Lemma 5.3 to such k1, k2, k, the lower bound in Lemma 5.3 reduces to

DL(P̃1, P̃2) ≥ (

√
a2(k−1)

1− a−2(k−1)

1− a−2
−

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1 −

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃2)2

+ + 1.

(10.30)

The first term of (10.30) is lower bounded as follows:

a2(k−1) 1− a−2(k−1)

1− a−2

(A)

≥ ak − 1

1− a−1

1

1 + a−1

(B)

≥ 1

60P
(10.31)
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(A): k ≥ 2.

(B): (10.29) and a ≥ 1.

The second term of (10.30) is upper bounded as follows:

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1

(A)

≤ (ak−1 − 1)2

(1− a−1)2
P̃1

(B)

≤ 1

900P 2
P̃1 ≤

1

900P
(10.32)

(A): a ≥ 1.

(B): (10.29).

Likewise, the third term of (10.30) is upper bounded as

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1 ≤

1

900P
. (10.33)

Therefore, by plugging (10.31), (10.32), (10.33) into (10.30), we conclude

DL(P̃1, P̃2) ≥ 1

P
(

√
1

60
−
√

1

900
−
√

1

900
)2 + 1

≥ 0.00389
1

P
+ 1

Proof of (e):

Since Σ2 ≥ 150, we can find k ≥ 3 such that

a2(k−2) − 1

1− a−2
≤ Σ2

24
<
a2(k−1) − 1

1− a−2
. (10.34)

Let k2 = k and k1 = 1. By putting the parameters of Lemma 5.3 with these parameters, the lower

bound of Lemma 5.3 reduces to

DL(P̃1, P̃2) ≥ (

√
a2(k−1) 1−a−2(k−1)

1−a−2

22I′(P̃1)
−

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1)2

+ + 1. (10.35)

We will upper bound I ′(P̃1). First, since we chose k in the same ways as k2 of (a), (10.21)

still holds, i.e.

2a2(k−2) 1− a−2(k−1)

1− a−2
Σ + 2a2(k−2) 1− a−2(k−1)

1− a−2

1− a−2(k−1)

1− a−2
≤ 2 · 0.5319σ2

v2. (10.36)

Moreover, we have

2a2(k−3) 1− a−2(k−1)

1− a−2

(1− a−(k−2))(1− a−(k−1))

(1− a−1)2
P̃1

(A)

≤ 2a2(k−3) 1− a−2(k−1)

1− a−2

(1− a−(k−2))(1− a−(k−1))

(1− a−1)2

1

24

1− a−2

a2(k−2) − 1

(B)

≤ 1

12

a−4(a2(k−1) − 1)

a2(k−2) − 1

(1− a−(k−1))2

(1− a−1)2

(C)

≤ 1

12
(1 + a−1)2a−2 a

2(k−2)(1− a−2(k−1))2

(1− a−2)2

(D)

≤ 1

3
0.5319σ2

v2 (10.37)
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(A): P̃1 ≤ 1
Σ2
≤ 1

24
1−a−2

a2(k−2)−1
.

(B): 1− a−(k−2) ≤ 1− a−(k−1).

(C): Since k ≥ 3 and 1 ≤ a ≤ 2.5, we have

(a2(k−1) − 1) ≤ (a4(k−2) − 1)

(⇔)(a2(k−1) − 1) ≤ (a2(k−2) − 1)(a2(k−2) + 1)

(⇒)(a2(k−1) − 1) ≤ (a2(k−2) − 1)(ak−1 + 1)2

(⇔)(a2(k−1) − 1) ≤ a2(k−1)(a2(k−2) − 1)(1 + a−(k−1))2

(⇔)
a−4(a2(k−1) − 1)(1− a−(k−1))2

(a2(k−2) − 1)(1− a−1)2
≤ (1 + a−1)2a−2 a

2(k−2)(1− a−2(k−1))2

(1− a−2)2
.

(D): This comes from 1 ≤ a ≤ 2.5 and (10.19).

Therefore, by (10.36) and (10.37), we have

I ′(P̃1) ≤ 1

2
log(1 +

1

k − 1
(2 · 0.5319 +

1

3
0.5319)k−1

≤ 1

2
log(1 +

1

k − 1
(1.2411))k−1

≤ 1

2
log e1.2411. (10.38)

We also have

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1

=
a−2(ak−1 − 1)2

(1− a−1)2
P̃1

(A)

≤ a−2(a2(k−2) − 1)2

(1− a−2)2
(1 + a−1)2P̃1

(B)

≤ (
Σ2

24
)24P̃1

(C)

≤ Σ2

144
(10.39)

(A): This comes from 2(k − 2) ≥ (k − 1).

(B): By (10.34) and 1 ≤ a ≤ 2.5.

(C): Since P1 ≤ 1
Σ2

.

Therefore, by plugging (10.34), (10.38), (10.39) into (10.35), we get

DL(P̃1, P̃2) ≥ (

√
a2(k−1) 1−a−2(k−1)

1−a−2

22I′(P̃1)
−
√

Σ2

144
)2
+ + 1

≥ (

√
Σ2

24 · 22I′(P̃1)
−
√

Σ2

144
)2
+ + 1

≥ Σ2(

√
1

24 · e1.2411
−
√

1

144
)2 + 1

≥ 0.0006976Σ2 + 1.
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Proof of (f):

Since P̃1 ≤ 1
150 , there exists k ≥ 3 such that

a2(k−2) − 1

1− a−2
≤ 1

24P̃1

<
a2(k−1) − 1

1− a−2
. (10.40)

Let k2 = k and k1 = 1. By putting the parameters of Lemma 5.3 as these parameters, the lower

bound of Lemma 5.3 reduces to

DL(P̃1, P̃2) ≥ (

√
a2(k−1) 1−a−2(k−1)

1−a−2

22I′(P̃1)
−

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1)2

+ + 1 (10.41)

We will upper bound I ′(P̃1). Since we assumed 1

P̃1
≤ Σ2, by (10.40) we have a2(k−2)−1

1−a−2 ≤ Σ2

24 .

Therefore, (10.21) still holds and we have

2a2(k−2) 1− a−2(k−1)

1− a−2
Σ + 2a2(k−2) 1− a−2(k−1)

1− a−2

1− a−2(k−1)

1− a−2
≤ 2 · 0.5319σ2

v2.

Since P̃1 ≤ 1
24

1−a−2

a2(k−2)−1
, following the same process of (10.37) we have

2a2(k−3) 1− a−2(k−1)

1− a−2

(1− a−(k−2))(1− a−(k−1))

(1− a−1)2
P̃1

≤ 1

3
0.5319σ2

v2.

Therefore, I ′(P̃1) is upper bounded by

I ′(P̃1) ≤ 1

2
log(1 +

1

k − 1
(2 · 0.5319 +

1

3
0.5319)k−1

≤ 1

2
log(1 +

1

k − 1
(1.2411))k−1

≤ 1

2
log e1.2411 (10.42)

Moreover, we also have

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1

=
a−2(ak−1 − 1)2

(1− a−1)2
P̃1

(A)

≤ a−2(a2(k−2) − 1)2

(1− a−2)2
(1 + a−1)2P̃1

(B)

≤ (
1

24P̃1

)24P̃1 =
1

144P̃1

(10.43)

(A): This comes from 2(k − 2) ≥ (k − 1).

(B): By (10.40) and 1 ≤ a ≤ 2.5.
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Therefore, by plugging (10.40), (10.42), (10.43) into (10.41), we have

DL(P̃1, P̃2) ≥ (

√
a2(k−1) 1−a−2(k−1)

1−a−2

22I′(P̃1)
−
√

1

144P̃1

)2
+ + 1

≥ (

√
1

24P̃1 · 22I′(P̃1)
−
√

1

144P̃1

)2
+ + 1

≥ 1

P̃1

(

√
1

24 · e1.2411
−
√

1

144
)2 + 1

≥ 0.000697686...

P̃1

+ 1

≥ 0.0006976

P̃1

+ 1.

Proof of (g):

Since Σ2 ≥ 150, we can find k2 ≥ 3 such that

a2(k2−2) − 1

1− a−2
≤ Σ2

24
<
a2(k2−1) − 1

1− a−2

Let k1 = 1 and increase k arbitrary large. By plugging such parameters to Lemma 5.3, the lemma

reduces to

DL(P̃1, P̃2) ≥ (

√
a2(k−1) 1−a−2(k2−1)

1−a−2

22I′(P̃1)
+ a2(k−k2)

1− a−2(k−k2)

1− a−2

−

√
a2(k−2)

(1− a−(k−1))2

(1− a−1)2
P̃1 −

√
a2(k−k2−1)

(1− a−(k−k2))2

(1− a−1)2
P̃2)2

+ + 1. (10.44)

We will first upper bound I ′(P̃1). Following the same steps as (10.21), we get

2a2(k−2) 1− a−2(k−1)

1− a−2
Σ + 2a2(k−2) 1− a−2(k−1)

1− a−2

1− a−2(k−1)

1− a−2
≤ 2 · 0.5319σ2

v2.

We also have

a2(k2−3) 1− a−2(k2−1)

1− a−2

(1− a−(k2−2))(1− a−(k−1))

(1− a−1)2
P̃1

(A)

≤ a2(k2−3) (1− a−2(k2−1))(1− a−(k2−2))

(1− a−1)2

P̃1

1− a−2

(B)

≤ a2(k2−3) (1− a−2(k2−1))2

(1− a−1)2

1

20
a2

=
a2(k2−2)(1− a−2(k2−1))2

(1− a−2)2

1

20
(1 + a−1)2

(C)

≤ a2(k2−2)(1− a−2(k2−1))2

(1− a−2)2

1

5

(D)

≤ 0.5319

5
σ2
v2.
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(A): Since 0 ≤ 1− a−(k−1) ≤ 1.

(B): Since we assumed P̃1 ≤ 1
20 (a2 − 1).

(C): Since 1 ≤ a ≤ 2.5.

(D): This follows from that (10.19) still holds.

Therefore, I ′(P̃1) is upper bounded by

I ′(P̃1) ≤ 1

2
log(1 +

(2 + 2
5 )0.5319

k2 − 1
)k2−1

≤ 1

2
log(1 +

1.27656

k2 − 1
)k2−1

≤ 1

2
log e1.27656. (10.45)

Following the same steps as (10.27), we still have

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1 ≤

1

5

a2(k−1)(1− a−2(k−1))

(1− a−2)
. (10.46)

Following the same steps as (10.24), we still have

a2(k−k2−1) (1− a−2(k−k2))2

(1− a−1)2
P̃2 ≤

a2(k−1)(1− a−2(k−1))

(1− a−2)

147

20000
(10.47)

Therefore, by plugging (10.45), (10.46), (10.47) into (10.44) we conclude

DL(P̃1, P̃2) ≥ a2(k−1)(1− a−2(k−1))

(1− a−2)
(

√
1

e1.27656
−
√

1

5
−
√

147

20000
)2 + 1

≥ 0.00002252
a2(k−1)(1− a−2(k−1))

(1− a−2)
+ 1.

Finally, by increasing k arbitrarily large, we can prove DL(P̃1, P̃2) =∞.

Proof of (h):

Compared to (g), we can notice that only the conditions for the controller 1 and 2 are

flipped. Thus, by symmetry the proof is the same as (g).

Proof of (i):

Since Σ2 ≥ 150, we can find k ≥ 3 such that

a2(k−2) − 1

1− a−2
≤ Σ2

24
<
a2(k−1) − 1

1− a−2
. (10.48)

Let k1 = 1 and k2 = k. By plugging these parameters into Lemma 5.3, the lower bound of Lemma 5.3

reduces to

DL(P̃1, P̃2) ≥ (

√
a2(k−1) 1−a−2(k−1)

1−a−2

22I′(P̃1)
−

√
a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1)2

+ + 1. (10.49)
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Following the same steps as (10.45), we still have

I ′(P̃1) ≤ 1

2
log e1.27656. (10.50)

Following the same steps as (10.27), we can prove

a2(k−2)(1− a−(k−1))2

(1− a−1)2
P̃1 ≤

1

5

a2(k−1)(1− a−2(k−1))

(1− a−2)
. (10.51)

Therefore, by plugging (10.50), (10.51) into (10.49), we conclude

DL(P̃1, P̃2) ≥ a2(k−1)(1− a−2(k−1))

(1− a−2)
(

√
1

e1.27656
−
√

1

5
)2 + 1

≥ a2(k−1)(1− a−2(k−1))

(1− a−2)
0.00655882...+ 1

(A)

≥ Σ2

24
0.00655882...+ 1

≥ 0.000273284...Σ2 + 1

≥ 0.0002732Σ2 + 1.

(A): This comes from (10.48).

Proof of (j):

We will prove this by analyzing the centralized controller performance which has both y1[n],

y2[n] and has no input power constraint.

Define y′1[n] := x[n] + v′1[n] and y′2[n] := x[n] + v′2[n] where v′1[n] ∼ N (0, σ2
1) and v′2[n] ∼

N (0, σ2
1) are i.i.d. random variables. Since the costs of centralized controllers are monotone in the

variances of observations, the cost of the centralized controller with the observations y1[n], y2[n] is

larger than the cost of the centralized controller with the observations y′1[n], y′2[n]. Moreover, by the

maximum ratio combining, the cost of the centralized controller with the observations y′1[n], y′2[n]

is equivalent to the cost of the centralized controller with a scalar observation
y′1[n]+y′2[n]

2 .

Now, we can apply Lemma 5.1 to analyze the performance of such a controller with the

observation
y′1[n]+y′2[n]

2 . Let ΣE be the Kalman filtering performance with the observation
y′1[n]+y′2[n]

2 .

Then, by Lemma 5.1, ΣE is lower bounded by

ΣE =
(a2 − 1)(

σ2
v1

2 )− 1 +

√
((a2 − 1)(

σ2
v1

2 )− 1)2 + 4a2 σ
2
v1

2

2a2

≥
max((a2 − 1)

σ2
v1

2 − 1,
√

2aσv1 − 1)

2a2
. (10.52)
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Therefore, for all P̃1, P̃2 the decentralized controller’s cost is lower bounded as follows:

DL(P̃1, P̃2)
(A)

≥ inf
|a−k|<1

(2ak − k2)ΣE + 1

1− (a− k)2

= inf
|a−k|<1

2ak − k2

1− (a− k)2
ΣE +

1

1− (a− k)2

(B)

≥ inf
|a−k|<1

1− a2 + 2ak − k2

1− (a− k)2
ΣE + 1

= ΣE + 1 (10.53)

(A): The decentralized control cost is larger than the centralized controller’s cost with the observation
y′1[n]+y′2[n]

2 . Moreover, when |a − k| ≥ 1 the centralized control system is unstable, and the cost

diverges to infinity. When |a− k| < 1, the cost analysis follows from Lemma 5.1.

(B): This comes from a > 1 and 2ak − k2 ≥ 1− (a− k)2 > 0.

Therefore, by (10.52) and (10.53) for all P̃1, P̃2 we have

DL(P̃1, P̃2) ≥ max(
max((a2 − 1)

σ2
v1

2 − 1,
√

2aσv1 − 1)

2a2
, 1)

≥
max((a2 − 1)

σ2
v1

2 − 1,
√

2aσv1 − 1)

4a2
+

1

2

≥
max((a2 − 1)

σ2
v1

2 − 1,
√

2aσv1 − 1)

4a2
+

1

2a2

≥
max((a2 − 1)

σ2
v1

2 ,
√

2aσv1, 1)

4a2

By (10.9) we already know

Σ1 ≤
(1 +

√
2) max(1, (a2 − 1)σ2

v1, 2aσv1)

2a2
.

Therefore,

D(P̃1, P̃2) ≥
max(1, (a2 − 1)

σ2
v1

2 ,
√

2aσv1)

4a2

≥ min(
1
4

1+
√

2
2

,
1
8

1+
√

2
2

,

√
2

4

1 +
√

2
)Σ1

=
1

4(1 +
√

2)
Σ1

≥ 0.1035Σ1.

As mentioned in (10.53), D(P̃1, P̃2) ≥ 1. Thus, the statement (j) is true.

Proof of Proposition 5.1 of page 249. Consider the power-distortion tradeoff D(P1, P2) for the de-

centralized control problem shown in Problem K. Since we can achieve the tradeoff of the single
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controller systems by turning on only one controller, we have

(D(P1, P2), P1, P2) ≤ (min(Dσv1(P1), Dσv2(P2)), P1, P2)

where the definition of Dσ(P ) is shown in Problem L.

By Lemma 4.14 of Chapter 4, if there exists c ≥ 1 such that for all P̃1, P̃2 ≥ 0,

min(Dσ1(cP̃1), Dσ2(cP̃2)) ≤ c ·DL(P̃1, P̃2),

then for all q, r1, r2 ≥ 0 we have

minP1,P2≥0 qmin(Dσ1(cP1), Dσ2(cP2)) + r1P1 + r2P2

min
P̃1,P̃2≥0

qDL(P̃1, P̃2) + r1P1 + r2P2

≤ c

which finishes the proof. Therefore, we will only prove that such c exists.

Before we start the proof, define the subscript max as argmaxi∈{1,2}P̃i. For example, if

P̃1 < P̃2 then P̃max = P̃2, Pmax = P2, Σmax = Σ2, Dσvmax(P ) = Dσv2
(P ) and so on. Furthermore,

for notational simplicity, we write Dσv1
(·), Dσv2

(·), Dσvmax(·) as Dv1(·), Dv2(·), Dvmax(·) respectively.

For the proof, we will first divide the cases based on Σ1,Σ2 then further divide based on

P̃1, P̃2. Remind that since σv1 ≤ σv2, we have Σ1 ≤ Σ2. We can use this fact to reduce the cases.

(i) When Σ1 ≤ Σ2 ≤ 150

(i-i) When 1
150 ≤ max(P̃1, P̃2)

Lower bound: By Corollary 5.4 (j)

DL(P̃1, P̃2) ≥ 1

Upper bound:

If (a2 − 1) ≤ 1
max(1,7.25Σmax) , then the range for t in Corollary 5.2 (ii’) is not an empty set.

Therefore, by plugging t = 8
max(1,7.25ΣE) we get

(Dσmax(Pmax), Pmax) ≤ (
49

8
max(2, 14.5Σmax),

8

max(1, 7.25Σmax)
)

≤ (
49

8
· 14.5 · 150, 8)(∵ Σ1 ≤ Σ2 ≤ 150).

If (a2 − 1) ≥ 1
max(1,7.25Σmax) , by Corollary 5.2 (i’) we get

(Dσmax(Pmax), Pmax) ≤ (7.25Σmax +
6.25

a2 − 1
, (a2 − 1)2Σmax + (a2 − 1))

≤ (7.25Σmax +
6.25

a2 − 1
, 27.5625Σmax + 5.25)(∵ 1 < |a| ≤ 2.5)

≤ (7.25Σmax + 6.25max(1, 7.25Σmax), 27.5625Σmax + 5.25)

≤ (7.25 · 150 + 6.25 · 7.25 · 150, 27.5625 · 150 + 5.25)(∵ Σ1 ≤ Σ2 ≤ 150)

≤ (7884.375, 4139.625).



409

Ratio: c is upper bounded by

c ≤ 4139.625
1

150

< 106.

(i-ii) When 1
20 (a2 − 1) ≤ max(P̃1, P̃2) ≤ 1

150

Lower bound: By Corollary 5.4 (d),

DL(P̃1, P̃2) ≥ 0.00389
1

max(P̃1, P̃2)
+ 1. (10.54)

Upper bound:

If 8(a2 − 1) ≤ max(P̃1, P̃2) ≤ 8
max(1,7.25Σmax) , then we can put t = P̃max in Corollary 5.2

(ii’) for Dσmax(Pmax). Therefore, we get

(Dσmax(Pmax), Pmax) ≤ (
49

P̃max
, P̃max).

If 1
20 (a2 − 1) ≤ max(P̃1, P̃2) ≤ 8(a2 − 1)

In this case, the lower bound (10.54) can be further lower bounded as

(DL(P1, P2), Pmax) ≥ (
0.00389

24.5(a2 − 1)
+ 1,

1

20
(a2 − 1)).

By Corollary 5.2 (i’), we have

(Dσmax(Pmax), Pmax) ≤ (7.25Σmax +
6.25

a2 − 1
, (a2 − 1)2Σmax + (a2 − 1))

≤ (7.25 · 150 +
6.25

a2 − 1
, 5.25 · 150(a2 − 1) + (a2 − 1))(∵ 1 ≤ |a| < 2.5,Σ1 ≤ Σ2 ≤ 150)

= (
6.25

a2 − 1
+ 1087.5, 788.5(a2 − 1)).

If 8
max(1,7.25Σmax) ≤ max(P̃1, P̃2) ≤ 1

150

Notice that this case never happens since

8

max(1, 7.25Σmax)
≥ 8

7.25 · 150
>

1

150
.

Ratio: c is upper bounded by

c ≤ 24.5× 6.25

0.00389
< 40000.

(i-iii) When max(P̃1, P̃2) ≤ 1
20 (a2 − 1)

Lower bound: By Corollary 5.4 (c),

DL(P̃1, P̃2) =∞.

We do not need a corresponding upper bound.
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(ii) When Σ1 ≤ 150 ≤ Σ2

(ii-i) When 20
a2−1 ≥ Σ2

(ii-i-i) When 1
150 ≤ P̃1

Lower bound: By Corollary 5.4 (j),

DL(P̃1, P̃2) ≥ 1

If (a2 − 1) ≤ 1
max(1,7.25Σ1)

Upper bound: By putting t = 8
max(1,7.25Σ1) to Corollary 5.2 (ii’) for Dσ1(P1), we have

(Dσ1(P1), P1) ≤ (
49

8
max(1, 7.25Σ1),

8

max(1, 7.25Σ1)
)

≤ (
49

8
· 7.25 · 150, 8)(∵ Σ1 ≤ 150)

If (a2 − 1) ≥ 1
max(1,7.25Σ1)

Upper bound: By Corollary 5.2 (i’),

(Dσ1(P1), P1) ≤ (7.25Σ1 +
6.25

a2 − 1
, 27.5625Σ1 + 5.25)

≤ (7.25 · 150 + 6.25 max(1, 7.25Σ1), 27.5625 · 150 + 5.25)(∵ Σ1 ≤ 150)

≤ (7.25 · 150 + 6.25 · 7.25 · 150, 27.5625 · 150 + 5.25).

Ratio: c is upper bounded by

c ≤ 27.5625 · 150 + 5.25
1

150

= 620943.75.

(ii-i-ii) When 1
Σ2
≤ P̃1 ≤ 1

150

Lower bound: By Corollary 5.4 (f)

DL(P̃1, P̃2) ≥ 0.0006976

P̃1

+ 1. (10.55)

If 8
max(1,7.25Σ1) ≤ P̃1 ≤ 1

150 ,

This never happens since 8
max(1,7.25Σ1) ≥

8
7.25·150 >

1
150 .

If 8(a2 − 1) ≤ P̃1 ≤ 8
max(1,7.25Σ1) ,

Upper bound: By plugging t = P̃1 to Corollary 5.2 (ii’) for Dσ1(P1), we get

(Dσ1(P1), P1) ≤ (
49

P̃1

, P̃1).

If 1
Σ2
≤ P̃1 ≤ 8(a2 − 1),

Here the lower bound of (10.55) is further lower bounded by

(DL(P̃1, P̃2), P̃1) ≥ (
0.0006976

8(a2 − 1)
+ 1,

1

Σ2
).(∵

1

Σ2
≤ P̃1 ≤ 8(a2 − 1)).
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Upper bound: When 1
Σ2
≤ P̃1 ≤ 8(a2 − 1) and (a2 − 1) ≤ 1

max(1,7.25Σ1) , we can plug

t = 8(a2 − 1) for Dσ1(P1) to Corollary 5.2 (ii’) for Dσ1(P1). Then, we get

(Dσ1(P1), P1) ≤ (
49

8(a2 − 1)
, 8(a2 − 1))

≤ (
49

8(a2 − 1)
,

8 · 20

Σ2
)(∵ In (ii-i), we assumed

20

a2 − 1
≥ Σ2).

When 1
Σ2
≤ P1 ≤ 8(a2 − 1) and (a2 − 1) > 1

max(1,7.25Σ1) , by Corollary 5.2 (i’) we get

(Dσ1(P1), P1) ≤ (7.25Σ1 +
6.25

a2 − 1
, (a2 − 1)2Σ1 + (a2 − 1))

≤ (7.25Σ1 +
6.25

a2 − 1
,

202Σ1

Σ2
2

+
20

Σ2
)

(∵ In (ii-i), we assumed
20

a2 − 1
≥ Σ2)

≤ (
6.25

a2 − 1
+ 7.25 · 150,

202 + 20

Σ2
).(∵ Σ1 ≤ 150 ≤ Σ2)

Ratio: c is upper bounded by

c ≤ 8× 6.25

0.0006976
< 72000.

(ii-i-iii) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) = P̃2 >
1

Σ2

Lower bound: By Corollary 5.4 (e)

DL(P1, P2) ≥ 0.0006976Σ2 + 1.

First, since Σ2 ≥ 150, we can see that max(1, 7.25Σ2) = 7.25Σ2.

If (a2 − 1) ≤ 1
7.25Σ2

Upper bound: By plugging t = 8
7.25Σ2

into Corollary 5.2 (ii’) for Dσ2(P2), we get

(Dσ2(P2), P2) ≤ (
49

8
· 7.25Σ2,

8

7.25Σ2
).

If (a2 − 1) ≥ 1
7.25Σ2

Upper bound: By Corollary 5.2 (i’), we get

(Dσ2(P2), P2) ≤ (7.25Σ2 +
6.25

a2 − 1
, (a2 − 1)2Σ2 + (a2 − 1))

≤ (7.25Σ2 +
6.25

a2 − 1
,

202Σ2

Σ2
2

+
20

Σ2
)

(∵ In (ii-i), we assumed
20

a2 − 1
≥ Σ2)

≤ (7.25Σ2 + 6.25 · 7.25Σ2,
202 + 20

Σ2
).

Ratio: c is upper bounded by

c ≤ 7.25 + 6.25× 7.25

0.0006976
< 76000.
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(ii-i-iv) When P̃1 ≤ 1
Σ2

and 1
20 (a2 − 1) ≤ max(P̃1, P̃2) ≤ 1

Σ2

Lower bound: By Corollary 5.4 (d), we have

DL(P̃1, P̃2) ≥ 0.00389

max(P̃1, P̃2)
+ 1. (10.56)

If 8
max(1,7.25Σmax) ≤ max(P̃1, P̃2) ≤ 1

Σ2

This case never happens, since 8
max(1,7.25Σmax) = 8

7.25Σ2
> 1

Σ2
.

If 8(a2 − 1) ≤ max(P̃1, P̃2) ≤ 8
max(1,7.25Σmax)

Upper bound: By plugging t = P̃max into Corollary 5.2 (ii’) for Dσmax(Pmax), we have

(Dσmax(Pmax), Pmax) ≤ (
49

P̃max
, P̃max).

If 1
20 (a2 − 1) ≤ max(P1, P2) ≤ 8(a2 − 1)

In this case, the lower bound of (10.56) is further lower bounded by

(DL(P̃1, P̃2), Pmax) ≥ (
0.00389

8(a2 − 1)
+ 1,

1

20
(a2 − 1)).

Upper bound: By Corollary 5.2 (i’), we have

(Dσmax(Pmax), Pmax) ≤ (7.25Σmax +
6.25

a2 − 1
, (a2 − 1)2Σmax + (a2 − 1))

≤ (7.25Σ2 +
6.25

a2 − 1
, (a2 − 1)2Σ2 + (a2 − 1))(∵ Σ1 ≤ Σ2)

≤ (
7.25 · 20

a2 − 1
+

6.25

a2 − 1
, 20(a2 − 1) + (a2 − 1))(∵ In (ii-i), we assumed

20

a2 − 1
≥ Σ2)

≤ (
7.25 · 20 + 6.25

a2 − 1
, 21(a2 − 1))

Ratio: c is upper bounded by

c ≤ 7.25 · 20 + 6.25
0.00389

8

< 320000.

(ii-i-v) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) ≤ 1
20 (a2 − 1)

Lower bound: By Corollary 5.4 (c),

DL(P̃1, P̃2) ≥ ∞.

Thus, we do not need a corresponding upper bound in this case.

(ii-ii) When 20
a2−1 ≤ Σ2

(ii-ii-i) When 1
150 ≤ P̃1

Compared to (ii-i-i), the only difference is Σ2 and Σ2 does not affect the result of (ii-i-i).

Therefore, in the same way as (ii-i-i), we can prove that c is bounded by the same constant as (ii-i-i).

(ii-ii-ii) When 1
20 (a2 − 1) ≤ P̃1 ≤ 1

150
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Lower bound: Since in (ii-ii) we assumed 20
a2−1 ≤ Σ2, we have 1

Σ2
≤ 1

20 (a2 − 1) ≤ P1 ≤ 1
150 .

Therefore, we can apply Corollary 5.4 (f) to get

DL(P̃1, P̃2) ≥ 0.0006976

P̃1

+ 1. (10.57)

If 8
max(1,7.25Σ1) ≤ P̃1 ≤ 1

150

Since we assumed Σ1 ≤ 150 in (ii), 8
max(1,7.25Σ1) ≥

8
7.25·150 > 1

150 . Therefore, this case

never happens.

If 8(a2 − 1) ≤ P̃1 ≤ 8
max(1,7.25Σ1)

Upper bound: By plugging t = P̃1 into Corollary 5.2 (ii’) for Dσ1(P1), we have

(Dσ1(P1), P1) ≤ (
49

P̃1

, P̃1).

If 1
20 (a2 − 1) ≤ P̃1 ≤ 8(a2 − 1)

In this case, the lower bound of (10.57) is further lower bounded by

(DL(P̃1, P̃2), P̃1) ≥ (
0.0006976

8(a2 − 1)
+ 1,

1

20
(a2 − 1)).

Upper bound: By Corollary 5.2 (i’)

(DU (P1), P1) ≤ (7.25Σ1 +
6.25

a2 − 1
, (a2 − 1)2Σ1 + (a2 − 1))

≤ (7.25 · 150 +
6.25

a2 − 1
, 5.25 · 150 · (a2 − 1) + (a2 − 1))

(∵ Σ1 ≤ 150, 1 < |a| ≤ 2.5)

Ratio: c is upper bounded by

c ≤ 6.25× 8

0.0006976
< 72000.

(ii-ii-iii) When P̃1 ≤ 1
20 (a2 − 1) and P̃2 ≥ (a2−1)2Σ2

40000

Lower bound: By Corollary 5.4 (i), we have

DL(P̃1, P̃2) ≥ 0.0002732Σ2 + 1.

Upper bound: By Corollary 5.2 (i’), we have

(Dσ2(P2), P2) ≤ (7.25Σ2 +
6.25

a2 − 1
, (a2 − 1)2Σ2 + (a2 − 1))

≤ (7.25Σ2 +
6.25

20
Σ2, (a

2 − 1)2Σ2 + (a2 − 1)2 Σ2

20
)

(∵ In (ii-ii), we assumed
20

a2 − 1
≤ Σ2)

Ratio: c is upper bounded by

c ≤
1 + 1

20
1

40000

≤ 42000.
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(ii-ii-iv) When P̃1 ≤ 1
20 (a2 − 1) and P̃2 ≤ (a2−1)2Σ2

40000

Lower bound: By Corollary 5.2 (g), we have

DL(P̃1, P̃2) =∞

We do not need a matching upper bound.

(iii) When 150 ≤ Σ1 ≤ Σ2

In this case, we can see that max(1, 7.25Σ1) = 7.25Σ1, max(1, 7.25Σ2) = 7.25Σ2.

(iii-i) When 20
a2−1 ≥ Σ1 and 20

a2−1 ≥ Σ2

(iii-i-i) When 1
Σ1
≤ P̃1

Lower bound: By Corollary 5.4 (j), we have

DL(P̃1, P̃2) ≥ 0.1035Σ1.

If (a2 − 1) ≤ 1
7.25Σ1

Upper bound: By plugging t = 8
7.25Σ1

into Corollary 5.2 (ii’) for Dσ1(P1), we get

(Dσ1(P1), P1) = (49 · 7.25Σ1

8
,

8

7.25Σ1
).

If (a2 − 1) ≥ 1
7.25Σ1

Upper bound: By Corollary 5.2 (i’), we have

(Dσ1(P1), P1) = (7.25Σ1 +
6.25

a2 − 1
, (a2 − 1)2Σ1 + (a2 − 1))

≤ (7.25Σ1 + 6.25 · 7.25Σ1, (
20

Σ1
)2Σ1 +

20

Σ1
)

(∵ In (iii-i), we assumed
20

a2 − 1
≥ Σ1)

= (7.252Σ1,
20 · 21

Σ1
).

Ratio: c is upper bounded by

c ≤ 7.252

0.1035
< 510.

(iii-i-ii) When 1
Σ2
≤ P̃1 ≤ 1

Σ1

Lower bound: Since in (iii) we assumed 150 ≤ Σ1, we have 1
Σ2
≤ P̃1 ≤ 1

Σ1
≤ 1

150 . Therefore,

we can apply Corollary 5.4 (f) to conclude

DL(P̃1, P̃2) ≥ 0.0006976

P̃1

+ 1. (10.58)

If 8
7.25Σ1

≤ P̃1 ≤ 1
Σ1

Since 8
7.25Σ1

> 1
Σ1

, this case never happens.

If 8(a2 − 1) ≤ P̃1 ≤ 8
7.25Σ1
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Upper bound: By plugging t = P̃1 into Corollary 5.2 (ii’) for Dσ1(P1), we have

(Dσ1(P1), P1) ≤ (
49

P̃1

, P̃1).

If 1
Σ2
≤ P̃1 ≤ 8(a2 − 1)

In this case, the lower bound of (10.58) is further lower bounded by

(DL(P̃1, P̃2), P̃1) ≥ (
0.0006976

8(a2 − 1)
+ 1,

1

Σ2
).

If 1
Σ2
≤ P1 ≤ 24.5(a2 − 1) and (a2 − 1) ≤ 1

7.25Σ1

Upper bound: By plugging t = 8(a2 − 1) into Corollary 5.2 (ii’) for Dσ1(P1), we have

(Dσ1(P1), P1) ≤ (
49

8(a2 − 1)
, 8(a2 − 1))

≤ (
49

8(a2 − 1)
,

8 · 20

Σ2
)

(∵ In (iii-i), we assumed
20

a2 − 1
≥ Σ2)

If 1
Σ2
≤ P1 ≤ 8(a2 − 1) and (a2 − 1) > 1

7.25Σ1

Upper bound: By Corollary 5.2 (i’), we have

(Dσ1(P1), P1) ≤ (7.25Σ1 +
6.25

a2 − 1
, (a2 − 1)2Σ1 + (a2 − 1))

≤ (
7.25 · 20

a2 − 1
+

6.25

a2 − 1
,

202Σ1

Σ2
2

+
20

Σ2
)

(∵ In (iii-i), we assumed Σ1 ≤
20

a2 − 1
,Σ2 ≤

20

a2 − 1
)

≤ (
7.25 · 20 + 6.25

a2 − 1
,

202 + 20

Σ2
)

(∵ Σ1 ≤ Σ2)

Ratio: c is upper bounded by

c ≤ 7.25 · 20 + 6.25
0.0006976

8

≤ 2× 106.

(iii-i-iii) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) = P̃2 >
1

Σ2

Lower bound: By Corollary 5.4 (e),

DL(P̃1, P̃2) ≥ 0.0006976Σ2 + 1.

If (a2 − 1) ≤ 1
7.25Σ2

Upper bound: By plugging t = 8
7.25Σ2

into Corollary 5.2 (ii’) for Dσ2(P2), we get

(Dσ2(P2), P2) ≤ (14.5Σ2,
24.5

7.25Σ2
).
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If (a2 − 1) ≥ 1
7.25Σ2

Upper bound: By Corollary 5.2 (i’), we have

(Dσ2(P2), P2) ≤ (7.25Σ2 +
6.25

a2 − 1
, (a2 − 1)2Σ2 + (a2 − 1))

≤ (7.25Σ2 + 6.25 · 7.25Σ2,
202

Σ2
+

20

Σ2
)

(∵ In (iii-i), we assumed Σ2 ≤
20

a2 − 1
)

≤ (7.252Σ2,
20 · 21

Σ2
).

Ratio: c is upper bounded by

c ≤ 7.252

0.0006976
< 80000.

(iii-i-iv) When P̃1 ≤ 1
Σ2

and 1
20 (a2 − 1) ≤ max(P̃1, P̃2) ≤ 1

Σ2

Lower bound: Since we assumed Σ2 ≥ 150 in (iii), we have max(P1, P2) ≤ 1
Σ2
≤ 1

150 ≤
1
75 .

Therefore, by Corollary 5.4 (d) we can see

DL(P̃1, P̃2) ≥ 0.00389

max(P̃1, P̃2)
+ 1. (10.59)

If 8
7.25Σmax

≤ max(P̃1, P̃2) ≤ 1
Σ2

This never happens since

8

7.25Σmax
>

1

Σmax
≥ 1

Σ2
.

If 8(a2 − 1) ≤ max(P̃1, P̃2) ≤ 8
7.25Σmax

Upper bound: By plugging t = P̃max into Corollary 5.2 (ii’), we get

(Dσmax(Pmax), Pmax) ≤ (
49

P̃max
, P̃max).

If 1
20 (a2 − 1) ≤ max(P̃1, P̃2) ≤ 8(a2 − 1)

In this case, we can notice that the lower bound of (10.59) is further lower bounded by

(DL(P̃1, P̃2), P̃max) ≥ (
0.00389

8(a2 − 1)
+ 1,

1

20
(a2 − 1))

Upper bound: By Corollary 5.2 (i’), we get

(Dσmax(Pmax), Pmax) ≤ (7.25Σmax +
6.25

a2 − 1
, (a2 − 1)2Σmax + (a2 − 1))

≤ (
7.25 · 20

a2 − 1
+

6.25

a2 − 1
, 20(a2 − 1) + (a2 − 1))

(∵ In (iii-i), we assumed Σ1 ≤
20

a2 − 1
,Σ2 ≤

20

a2 − 1
)

≤ (
7.25 · 20 + 6.25

a2 − 1
, 21(a2 − 1))
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Ratio: c is upper bounded by

c ≤ 7.25 · 20 + 6.25
0.00389

8

< 320000.

(iii-i-v) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) ≤ 1
20 (a2 − 1)

Lower bound: By Corollary 5.4 (c),

DL(P̃1, P̃2) ≥ ∞.

We do not need a corresponding upper bound.

(iii-ii) When Σ1 ≤ 20
a2−1 ≤ Σ2

(iii-ii-i) When 1
Σ1
≤ P̃1

Compared to the case (iii-i-i), the conditions for Σ1, P̃1 are the same and the only difference

is the condition for Σ2. However, the condition for Σ2 does not affect the argument of (iii-i-i). Thus,

the same bound on c as (iii-i-i) still holds for this case.

(iii-ii-ii) When 1
20 (a2 − 1) ≤ P̃1 ≤ 1

Σ1

Lower bound: Since we assumed 150 ≤ Σ1 in (iii), we have 1
Σ2
≤ 1

20 (a2 − 1) ≤ P1 ≤ 1
Σ1
≤

1
150 . Thus, we can apply Corollary 5.4 (f) to get

DL(P̃1, P̃2) ≥ 0.0006976

P̃1

+ 1. (10.60)

If 8
7.25Σ1

≤ P̃1 ≤ 1
Σ1

This case never happens.

If 8(a2 − 1) ≤ P̃1 ≤ 8
7.25Σ1

Upper bound: By plugging t = P̃1 into Corollary 5.2 (ii’) for Dσ1(P1), we get

(Dσ1(P1), P1) ≤ (
49

P̃1

, P̃1).

If 1
20 (a2 − 1) ≤ P1 ≤ 8(a2 − 1)

In this case, the lower bound of (10.60) can be further lower bounded as

(DL(P̃1, P̃2), P̃1) ≥ (
0.0006976

8(a2 − 1)
+ 1,

1

20
(a2 − 1))

Upper bound: By Corollary 5.2 (i’), we have

(Dσ1(P1), P1) ≤ (7.25Σ1 +
6.25

a2 − 1
, (a2 − 1)2Σ1 + (a2 − 1))

≤ (
7.25 · 20

a2 − 1
+

6.25

a2 − 1
, 20(a2 − 1) + (a2 − 1))

(∵ In (iii-ii), we assumed Σ1 ≤
20

a2 − 1
.)

≤ (
7.25 · 20 + 6.25

a2 − 1
, 21(a2 − 1))
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Ratio: c is upper bounded by

c ≤ 7.25 · 20 + 6.25
0.006976

8

< 320000.

(iii-ii-iii) When P̃1 ≤ 1
20 (a2 − 1) and P̃2 ≥ (a2−1)2Σ2

40000

Lower bound: By Corollary 5.4 (i), we have

DL(P̃1, P̃2) ≥ 0.0002732Σ2 + 1.

Upper bound: By Corollary 5.2 (i’), we have

(Dσ2(P2), P2) ≤ (7.25Σ2 +
6.25

a2 − 1
, (a2 − 1)2Σ2 + (a2 − 1))

≤ (7.25Σ2 +
6.25

20
Σ2, (a

2 − 1)2Σ2 + (a2 − 1)2 Σ2

20
)

(∵ In (iii-ii), we assumed
20

a2 − 1
≤ Σ2)

Ratio: c is upper bounded by

c ≤ 40000(1 +
1

20
) ≤ 42000.

(iii-ii-iv) When P̃1 ≤ 1
20 (a2 − 1) and P̃2 ≤ (a2−1)2Σ2

40000

Lower bound: By Corollary 5.4 (g),

DL(P̃1, P̃2) =∞.

Therefore, we do not need a corresponding upper bound.

(iii-iii) When 20
a2−1 ≤ Σ1 ≤ Σ2

(iii-iii-i) When P̃1 ≥ (a2−1)2Σ1

40000

Lower bound: By Corollary 5.4 (j), we have

DL(P̃1, P̃2) ≥ 0.1035Σ1

Upper bound: By Corollary 5.2 (i’), we have

(Dσ1(P1), P1) ≤ (7.25Σ1 +
6.25

a2 − 1
, (a2 − 1)2Σ1 + (a2 − 1))

≤ (7.25Σ1 +
6.25

20
Σ1, (a

2 − 1)2Σ1 + (a2 − 1)2 Σ1

20
)

(∵ In (iii-iii), we assumed
20

a2 − 1
≤ Σ1)

Ratio: c is upper bounded by

c ≤ 40000(1 +
1

20
) ≤ 42000.

(iii-iii-ii) When P̃1 ≤ (a2−1)2Σ1

40000 and P̃2 ≥ (a2−1)2Σ2

40000
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Lower bound: By Corollary 5.4 (b), we have

DL(P1, P2) ≥ 0.002774Σ2 + 1.

Upper bound: By Corollary 5.2 (i’), we have

(DU (P2), P2) ≤ (7.25Σ2 +
6.25

a2 − 1
, (a2 − 1)2Σ2 + (a2 − 1))

≤ (7.25Σ2 +
6.25

20
Σ2, (a

2 − 1)2Σ2 + (a2 − 1)2 Σ2

20
)

(∵ In (iii-iii), we assume
20

a2 − 1
≤ Σ2)

Ratio: c is upper bounded by

c ≤ 40000(1 +
1

20
) ≤ 42000.

(iii-iii-iii) When P̃1 ≤ (a2−1)2Σ1

40000 and P̃2 ≤ (a2−1)2Σ2

40000

Lower bound: By Corollary 5.4 (a), we have

DL(P̃1, P̃2) =∞.

Therefore, we do not need a corresponding upper bound.

Finally, by (i), (ii), (iii), we get the constant c ≤ 6× 106 and prove the proposition.

10.3 Proof of Lemma 5.4, Corollary 5.1 and Proposition 5.2

Proof of Lemma 5.4 of Page 249. For simplicity, we assume a = 1, 1 < k1 < k2 < k. The remaining

cases when a = −1 or k1 = 1 or k2 = k1 or k = k2 easily follow with minor modifications.

We essentially follow the proof of Lemma 5.3. However, since |a| = 1, the sum of the

sequence, 1
|a| ,

1
|a|2 , · · · , is not less than 1 any more. Therefore, in the geometric slicing, we replace

geometric sequences with arithmetic sequences.

• Geometric Slicing: We apply the slicing idea of Lemma 5.2 to get a finite-horizon problem.

By putting αk1
= 1

k−k1
, αk1+1 = 1

k−k1
, · · · , αk = 1

k−k1
and βk2

= 1
k−k2

, βk2+1 = 1
k−k2

, · · · ,
βk−1 = 1

k−k2
the average cost is lower bounded by

inf
u1,u2

(qE[x2[k]]

+ r1 (
1

k − k1
E[u2

1[k1]] + · · ·+ 1

k − k1
E[u2

1[k − 1]])

︸ ︷︷ ︸
:=P̃1

+ r2 (
1

k − k2
E[u2

2[k2]] + · · ·+ 1

k − k2
E[u2

2[k − 1]])

︸ ︷︷ ︸
:=P̃2

)
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• Three stage division: As we did in the proof of Lemma 5.3, we divide the resulting finite-

horizon problem into three time intervals — information-limited interval, Witsenhausen’s interval,

power-limited interval. Define

W1 := w[0] + · · ·+ w[k1 − 2]

W2 := w[k1 − 1] + · · ·+ w[k2 − 2]

W3 := w[k2 − 1] + · · ·+ w[k − 2]

U11 := u1[1] + · · ·+ u1[k1 − 1]

U21 := u2[1] + · · ·+ u2[k1 − 1]

U22 := u2[k1] + · · ·+ u2[k2 − 1]

U1 := u1[k1] + · · ·+ u1[k − 1]

U2 := u2[k2] + · · ·+ u2[k − 1]

X1 := W1 + U11 + U12

X2 := W2 + U22

Like the proof of Lemma 5.3, W1,W2,W3 represent the distortions of three intervals. U11 and U21

represent the first and second controller inputs in the information-limited interval. U1 represents

the remaining input of the first controller. U22 and U2 represent the second controller’s input in

Witsenhausen’s and power-limited intervals respectively.

The goal of this proof is grouping control inputs, so that we reveal the effects of the

controller inputs on the state and isolate their effects according to their characteristics.

• Power-Limited Inputs: We first isolate the power-limited inputs, i.e. the first controller’s

input in the Witsenhausen’s and power-limited interval, and the second controller’s input in the
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power-limited interval. Notice that

x[k] = w[k − 1] + w[k − 2] + · · ·+ w[0]

+ u1[k − 1] + u1[k − 2] + · · ·+ u1[0]

+ u2[k − 1] + u2[k − 2] + · · ·+ u2[0]

= (w[0] + · · ·+ w[k1 − 2]

+ u1[1] + · · ·+ u1[k1 − 1]

+ u2[1] + · · ·+ u2[k1 − 1])

+ (w[k1 − 1] + · · ·+ w[k2 − 2]

+ u2[k1] + · · ·+ u2[k2 − 1])

+ (w[k2 − 1] + · · ·+ w[k − 2])

+ (u1[k1] + · · ·+ u1[k − 1])

+ (u2[k2] + · · ·+ u2[k − 1])

+ w[k − 1].

Therefore, by Lemma 4.1 of Chapter 4 we have

E[x2[k]] = E[(X1 +X2 +W3 + U1 + U2 + w[k − 1])2]

= E[(X1 +X2 +W3 + U1 + U2)2] + E[w2[k − 1]]

≥ (
√
E[(X1 +X2 +W3)2]−

√
E[U2

1 ]−
√

E[U2
2 ])2

+ + 1

= (
√
E[(X1 +X2)2] + E[W 2

3 ]−
√
E[U2

1 ]−
√

E[U2
2 ])2

+ + 1 (10.61)

where the last equality follows from the causality. Here, we can see that E[(X1 + X2)2] does not

depend on the power-limited inputs.

• Information-Limited Interval: We will bound the remaining state distortion after the

information-limited interval. Denote y′1 and y′2 as follows:

y′1[k] = w[0] + w[1] + · · ·+ w[k − 1] + v1[k]

y′2[k] = w[0] + w[1] + · · ·+ w[k − 1] + v2[k]

Here, y′1[k], y′2[k] can be obtained by removing u1[1 : k− 1], u2[1 : k− 1] from y1[k], y2[k], and u1[k]

and u2[k] are functions of y1[1 : k] and y2[1 : k] respectively. Therefore, we can see that y1[1 : k],

y2[1 : k] are functions of y′1[1 : k], y′2[1 : k]. Moreover, W1, y′1[1 : k1 − 1], y′2[1 : k1 − 1] are jointly

Gaussian.

Let

W ′1 := W1 − E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]

W ′′1 := E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]].
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Then, W ′1, W ′′1 , W2 are independent Gaussian random variables. Moreover, W ′1,W2 are independent

from y′1[1 : k1 − 1], y′2[1 : k1 − 1]. W ′′1 is a function of y′1[1 : k1 − 1], y′2[1 : k1 − 1].

Now, let’s lower bound E[(X1 +X2)2]. Since Gaussian maximizes the entropy, we have

1

2
log(2πeE[(X1 +X2)2]

≥ h(X1 +X2)

≥ h(X1 +X2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′1 +W ′′1 + U11 + U12 +W2 + U22|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′1 +W2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1]) (10.62)

We will first lower bound the variance of W ′1. Notice that

E[y′1[k]2] = E[w2[0]] + · · ·+ E[w2[k − 1]] + E[v2
1 [k]] = k + σ2

v1

and

E[y′2[k]2] = k + σ2
v2.

Thus, we have

I(W1; y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(y′1[1 : k1 − 1], y′2[1 : k1 − 1])− h(y′1[1 : k1 − 1], y′2[1 : k1 − 1]|W1)

≤
∑

1≤i≤k1−1

h(y′1[i]) +
∑

1≤i≤k1−1

h(y′2[i])−
∑

1≤i≤k1−1

h(v1[i])−
∑

1≤i≤k1−1

h(v2[i])

≤
∑

1≤k≤k1−1

1

2
log(

k + σ2
v1

σ2
v1

) +
∑

1≤k≤k1−1

1

2
log(

k + σ2
v2

σ2
v2

)

=
1

2
log(

∏

1≤k≤k1−1

k + σ2
v1

σ2
v1

) +
1

2
log(

∏

1≤k≤k1−1

k + σ2
v2

σ2
v2

)

(A)

≤ k1 − 1

2
log(

1

k1 − 1

∑

1≤k≤k1−1

k + σ2
v1

σ2
v1

) +
k1 − 1

2
log(

1

k1 − 1

∑

1≤k≤k1−1

k + σ2
v2

σ2
v2

)

=
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

k

σ2
v1

) +
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

k

σ2
v2

)

≤ k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

k1 − 1

σ2
v1

) +
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

k1 − 1

σ2
v2

)

=
k1 − 1

2
log(1 +

1

(k1 − 1)σ2
v1

(k1 − 1)2) +
k1 − 1

2
log(1 +

1

(k1 − 1)σ2
v2

(k1 − 1)2)

=
k1 − 1

2
log(1 +

k1 − 1

σ2
v1

) +
k1 − 1

2
log(1 +

k1 − 1

σ2
v2

) (10.63)

(A): Arithmetic-Geometric mean.
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Let’s denote the last equation as I. We also have

E[W 2
1 ] = k1 − 1 (10.64)

Now, we can bound the variance of the Gaussian random variable W ′1 as follows:

1

2
log(2πeE[W ′21 ]) = h(W ′1)

≥ h(W ′1|y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W1)− I(W1; y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πe(k1 − 1))− I

where the last inequality follows from (10.63) and (10.64).

Thus,

E[W ′21 ] ≥ k1 − 1

22I
(10.65)

and denote the last term as Σ. Since W ′1 is Gaussian, W ′1 = W ′′′1 +W ′′′′1 where W ′′′1 ∼ N (0,Σ), and

W ′′′1 ,W ′′′′1 are independent.

Moreover, we also have

E[W 2
2 ] = E[(w[k1 − 1] + · · ·+ w[k2 − 2])2] = k2 − k1. (10.66)

By (10.62), we have

1

2
log(2πeE[(X1 +X2)2])

≥ h(W ′1 +W2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

≥ h(W ′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′′′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′′′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W ′′′1 +W2)

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πe(Σ + k2 − k1))

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1]) (10.67)

where the last inequality comes from the fact that W ′′′1 and W2 are independent Gaussian, and

(10.65), (10.66). Now, the question boils down to the upper bound of the last mutual information

term, which can be understood as the information contained in the second controller’s observation

in Witsenhausen’s interval.
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• Second controller’s observation in Witsenhausen’s interval: We will bound the amount of

information contained in the second controller’s observation in Witsenhausen’s interval. For n ≥ k1,

define

y′′2 [n] := W ′′′1 + w[k1 − 1] + w[k1] + · · ·+ w[n− 1]

+ u1[k1] + · · ·+ u1[n− 1]

+ v2[n]

Notice the relationship between y2[n] and y′′2 [n]:

y2[n] = y′′2 [n] + u2[k1] + · · ·+ u2[n− 1] +W ′′′1 + E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]. (10.68)

The mutual information of (10.67) is bounded as follows:

I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

− h(y2[k1 : k2 − 1]|W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

=
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

−
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

(A)
=

∑

k1≤i≤k2−1

h(y′′2 [i]|y2[k1 : i− 1],W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

−
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

(B)

≤
∑

k1≤i≤k2−1

h(y′′2 [i])−
∑

k1≤i≤k2−1

h(v2[i])

≤
∑

k1≤i≤k2−1

1

2
log(2πeE[y′′2 [i]2])−

∑

k1≤i≤k2−1

1

2
log(2πeσ2

v2) (10.69)

(A): Since y2[1 : k1 − 1] is a function of y′2[1 : k1 − 1], u2[k1], · · · , u2[i] are functions of y2[k1 :

i− 1], y′2[1 : k1 − 1]. Thus, all the terms in (10.68) except y′′2 [i] can be vanished by the conditioning

(B): By causality, v2[i] is independent from all conditioning random variables.

First, let’s bound the variance of y′′2 [n]. By Lemma 4.1 of Chapter 4, we have

E[y′′2 [n]2] ≤ 2E[(W ′′′1 + w[k1 − 1] + w[k1] + · · ·+ w[n− 1])2]

+ 2E[(u1[k1] + · · ·+ u1[n− 1])2] + σ2
v2

= 2(Σ + n− k1 + 1) + 2E[(u1[k1] + · · ·+ u1[n− 1])2] + σ2
v2.
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By Lemma 4.1 of Chapter 4, we have

E[(u1[k1] + · · ·+ u1[n− 1])2]

≤ (
√
E[u2

1[k1]] + · · ·+
√

E[u2
1[n− 1]])2

(A)

≤ (n− k1)(E[u2
1[k1]] + E[u2

1[k1 + 1]] + · · ·+ E[u2
1[n− 1]])

≤ (n− k1)(k − k1)P̃1.

(A): Cauchy-Schwarz inequality

Thus, the variance of y′′2 [n] is bounded as:

E[y′′2 [n]2] ≤ 2Σ + 2(n− k1 + 1) + 2(n− k1)(k − k1)P̃1 + σ2
v2

Therefore, we have

∑

k1≤n≤k2−1

E[y′′2 [n]2]

≤
∑

k1≤n≤k2−1

(2Σ + 2(n− k1 + 1) + 2(n− k1)(k − k1)P̃1 + σ2
v2)

≤ 2(k2 − k1)Σ +
∑

k1≤n≤k2−1

2(k2 − k1) +
∑

k1≤n≤k2−1

2(k2 − k1 − 1)(k − k1)P̃1 + (k2 − k1)σ2
v2

= 2(k2 − k1)Σ + 2(k2 − k1)2 + 2(k2 − k1)(k2 − k1 − 1)(k − k1)P̃1 + (k2 − k1)σ2
v2 (10.70)

Therefore, by (10.69) and (10.70) we conclude

I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′, y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≤
∑

k1≤n≤k2−1

1

2
log(

E[y′′2 [n]2]

σ2
v2

)

=
1

2
log(

∏

k1≤n≤k2−1

E[y′′2 [n]2]

σ2
v2

)

(A)

≤ k2 − k1

2
log(

1

k2 − k1

∑

k1≤n≤k2−1

E[y′′2 [n]2]

σ2
v2

)

≤ k2 − k1

2
log(1 +

1

(k2 − k1)σ2
v2

(2(k2 − k1)Σ + 2(k2 − k1)2 + 2(k2 − k1)(k2 − k1 − 1)(k − k1)P̃1))

≤ k2 − k1

2
log(1 +

1

σ2
v2

(2Σ + 2(k2 − k1) + 2(k2 − k1 − 1)(k − k1)P̃1))

(A): Arithmetic-Geometric mean

Denote the last equation as I ′(P̃1). By (10.67), we can conclude

1

2
log(2πeE[(X1 +X2)2] ≥ 1

2
log(2πe(Σ + k2 − k1))− I ′(P̃1)

which implies

E[(X1 +X2)2] ≥ Σ + k2 − k1

22I′(P̃1)
. (10.71)
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• Final lower bound: Now, we can merge the inequalities to prove the lemma. The variance

of W3 is

E[W 2
3 ] = k − k2. (10.72)

By Lemma 4.1 of Chapter 4 and Cauchy-Schwarz inequality, the variance of U1 is upper bounded

as follows:

E[U2
1 ] ≤ (

√
a2(k−k1−1)E[u2

1[k1]] + · · ·+
√
E[u2

1[k − 1]])2

≤ (k − k1)(E[u2
1[k1]] + E[u2

1[k1 + 1]] + · · ·+ E[u2
1[k − 1]])

= (k − k1)2P̃1. (10.73)

Likewise, the variance of U2 can be bounded as

E[U2
2 ] ≤ (k − k2)2P̃2. (10.74)

By plugging (10.71), (10.72), (10.73), (10.74) into (10.61), we finally prove the lemma.

Proof of Corollary 5.5 of Page 250. Proof of (a):

Since σv2 ≥ 16, we can find k2 ≥ 6 such that

k2 − 2 ≤ σv2

4
< k2 − 1 (10.75)

We put such k3, k1 = 1 and k = k2 as the parameters of Lemma 5.4. Then, the lower bound of

Lemma 5.4 reduces to

DL(P̃1, P̃2) ≥ (

√
k2 − 1

22I′(P̃1)
−
√

(k2 − 1)2P̃1)2
+ + 1. (10.76)

Since k2 ≥ 6, we have

k2 − 2

k2 − 1
≥ 4

5
. (10.77)

Thus, I ′(P̃1) is lower bounded by

I ′(P̃1) =
1

2
log(1 +

1

σ2
v2

(2(k2 − 1) + 2(k2 − 2)(k2 − 1)P̃1))k2−1

=
1

2
log(1 +

1

k2 − 1
(
2(k2 − 1)2

σ2
v2

+
2(k2 − 2)(k2 − 1)2P̃1

σ2
v2

))k2−1

(A)

≤ 1

2
log(1 +

1

k2 − 1
(2(

5

4
)2 (k2 − 2)2

σ2
v2

+ 2(
5

4
)2 (k2 − 2)(k2 − 2)2

4σ3
v2

))k2−1

(B)

≤ 1

2
log(1 +

1

k2 − 1
(2(

5

4
)2(

1

4
)2 + 2(

5

4
)2(

1

4
)3))k2−1

≤ 1

2
log e

125
512 (10.78)
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(A): (10.77) and P̃1 ≤ 1
4σv2

.

(B): (10.75).

Moreover, we have

(k2 − 1)2P̃1

(A)

≤ 5

4
(k2 − 1)(k2 − 2)P̃1

(B)

≤ 5

4
(k2 − 1)

k2 − 2

4σv2

(C)

≤ 5

4
(k2 − 1)

1

16

=
5

64
(k2 − 1) (10.79)

(A): (10.77)

(B): P̃1 ≤ 1
4σv2

(C): (10.75)

Therefore, by plugging (10.78), (10.79) into (10.76), we get

DL(P̃1, P̃2) ≥ (

√
k2 − 1

22I′(P1)
−
√

(k2 − 1)2P̃1)2
+ + 1

≥ (

√
k2 − 1

e
125
512

−
√

5

64
(k2 − 1))2

+ + 1

= 0.366724...(k2 − 1) + 1

≥ 0.366724...
σv2

4
+ 1

= 0.09168106...σv2 + 1

where the last inequality follows from (10.75).

Proof of (b):

Since 1

P̃1
≥ 64, we can find k2 ≥ 6 such that

k2 − 2 ≤ 1

16P̃1

< k2 − 1. (10.80)

We put such k2, k1 = 1 and k = k2 as the parameters of Lemma 5.4. Then, the lower bound of

Lemma 5.4 reduces to

DL(P̃1, P̃2) ≥ (

√
k2 − 1

22I′(P̃1)
−
√

(k2 − 1)2P̃1)2
+ + 1. (10.81)
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First, I ′(P̃1) is lower bounded by

I ′(P̃1) =
1

2
log(1 +

1

σ2
v2

(2(k2 − 1) + 2(k2 − 2)(k2 − 1)P̃1))k2−1

=
1

2
log(1 +

1

k2 − 1
(
2(k2 − 1)2

σ2
v2

+
2(k2 − 2)(k2 − 1)2P̃1

σ2
v2

))k2−1

(A)

≤ 1

2
log(1 +

1

k2 − 1
(2(k2 − 1)2(4P̃1)2 + 2(k2 − 2)(k2 − 1)2P̃1(4P̃1)2))k2−1

(B)

≤ 1

2
log(1 +

1

k2 − 1
(2(

5

4
)2(k2 − 2)2(4P̃1)2 + 2(

5

4
)2(k2 − 2)3P̃1(4P̃1)2))k2−1

(C)

≤ 1

2
log(1 +

1

k2 − 1
(2(

5

4
)2(

1

4
)2 + 2(

5

4
)2 1

16
(
1

4
)2)k2−1

≤ 1

2
log e

425
2048 . (10.82)

(A): 1
4σv2

≤ P1

(B): Since k2 ≥ 6, (10.77) still holds.

(C): (10.80)

Moreover, we also have

(k2 − 1)2P̃1

(A)

≤ 5

4
(k2 − 1)(k2 − 2)P̃1

(B)

≤ 5

4
(k2 − 1)

1

16

=
5

64
(k2 − 1). (10.83)

(A): Since k2 ≥ 6, (10.77) still holds.

(B): (10.80)

Therefore, plugging (10.82), (10.83) into (10.81) we can conclude

DL(P̃1, P̃2) ≥ (

√
k2 − 1

22I′(P̃1)
−
√

(k2 − 1)2P̃1)2
+ + 1

≥ (

√
k2 − 1

e
425
2048

−
√

5

64
(k2 − 1))2

+ + 1

= 0.386801...(k2 − 1) + 1

≥ 0.386801...
1

16P̃1

+ 1

=
0.0241750...

16P̃1

+ 1

where the last inequality comes from (10.80).

Proof of (c):

Denote P := max(P̃1, P̃2). Since P ≤ 1
50 , there exists k ≥ 3 such that

k − 2 ≤ 1

50P
< k − 1. (10.84)
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We put such k and k1 = k2 = 1 as the parameters of Lemma 5.4. Then, the lower bound of

Lemma 5.4 reduces to

DL(P̃1, P̃2) ≥ (
√
k − 1−

√
(k − 1)2P̃1 −

√
(k − 1)2P̃2)2

+ + 1.

Since k ≥ 3, we have

k − 2

k − 1
≥ 1

2
. (10.85)

Therefore, we conclude

DL(P̃1, P̃2) ≥ (
√
k − 1−

√
4(k − 1)2P )2

+ + 1

(A)

≥ (
√
k − 1−

√
16(k − 2)2P )2

+ + 1

(B)

≥ (

√
1

50P
−
√

16

502P
)2
+ + 1

≥ 0.00377258...
1

P
+ 1.

(A): (10.84)

(B): (10.85)

Proof of (d):

As mentioned in the proof of Corollary 5.4 (j), the centralized controller’s distortion that

has both observations y1[n], y2[n] and has no input power constraints is a lower bound on the

decentralized controller’s distortion.

Let y′1[n] := x[n] + v′1[n] and y′2[n] := x[n] + v′2[n] where v′1[n] ∼ N (0, σ2
1) and v′2[n] ∼

N (0, σ2
1) are i.i.d. random variables. Just like the proof of Corollary 5.4 (j), the performance of the

centralized controller with both observations is equivalent to a centralized controller with observation
y′1[n]+y′2[n]

2 by the maximum ratio combining.

Let ΣE be the estimation error of the Kalman filtering with a scalar observation
y′1[n]+y′2[n]

2 .

By Lemma 5.1,

ΣE =
−1 +

√
4
σ2
v1

2 + 1

2

=
−1 +

√
2σ2

v1 + 1

2
.

Then, for all P̃1 and P̃2, the cost of the decentralized controllers is lower bounded as follows:

DL(P̃1, P̃2)
(A)

≥ inf
|1−k|<1

(2k − k2)ΣE + 1

1− (1− k)2

= inf
|1−k|<1

ΣE +
1

1− (1− k)2

≥ ΣE .
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(A): The decentralized control cost is larger than the centralized controller’s cost with the observation
y′1[n]+y′2[n]

2 . Moreover, when |a − k| ≥ 1 the centralized control system is unstable, and the cost

diverges to infinity. When |a− k| < 1, the cost analysis follows from Lemma 5.1.

By Lemma 5.4, DL(P̃1, P̃2) ≥ 1. Finally, for all P̃1, P̃2 we have

DL(P̃1, P̃2) ≥ max(ΣE , 1) = max(
−1 +

√
2σ2

v1 + 1

2
, 1)

≥ 1

2
(
−1 +

√
2σ2

v1 + 1

2
) +

1

2

≥ 1

4
+

√
2σ2

v1 + 1

2

≥
√

2

2
σv1.

Since we already know DL(P̃1, P̃2) ≥ 1, the statement (d) of the corollary is true.

Proof of Proposition 5.2 of Page 250. Like the proof of Proposition 5.1, we define the subscript max

as argmaxi∈{1,2}P̃i, and write Dσv1(·), Dσv2(·), Dσvmax(·) as Dv1(·), Dv2(·), Dvmax(·) respectively.

By the same argument as the proof of Proposition 5.1, it is enough to show that there

exists c ≤ 106 such that for all P̃1, P̃2 ≥ 0, min(Dσ1(cP̃1), Dσ2(cP̃2)) ≤ c ·DL(P̃1, P̃2).

In the proof, we first divide the cases based on σ1, σ2 (essentially equivalent to Σ1, Σ2),

and then based on P̃1, P̃2. Here, we can use the fact that σ1 ≤ σ2 to reduce the cases.

(i) When σv1 ≤ 16, σv2 ≤ 16

(i-i) If max(P̃1, P̃2) ≥ 1
64

Lower bound: By Corollary 5.5 (d),

DL(P̃1, P̃2) ≥ 1.

Upper bound: Since σv1, σv2 ≤ 16, we can plug t = 1
15.008 into the equation (5.9) of

Corollary 5.1. Thus, we have

(Dσmax(Pmax), Pmax) ≤ (30.016,
1

15.008
).

Ratio: c is upper bounded by

c ≤ 30.016.

(i-ii) If max(P̃1, P̃2) ≤ 1
64

Lower bound: Since max(P̃1, P̃2) ≤ 1
64 ≤

1
50 , by Corollary 5.5 (c) we can conclude

DL(P̃1, P̃2) ≥ 0.003772

max(P̃1, P̃2)
+ 1.

Upper bound: Since σv1, σv2 ≤ 16 and P̃max ≤ 1
64 ≤

1
15.008 , we can plug t = P̃max into the

equation (5.9) of Corollary 5.1. Thus, we have

(Dσmax(Pmax), Pmax) ≤ (
2

P̃max
, P̃max).
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Ratio: c is upper bounded by

c ≤ 2

0.003772
< 540.

(ii) When σv1 ≤ 16 ≤ σv2

(ii-i) If P̃1 ≥ 1
64

Lower bound: By Corollary 5.5 (d), we have

DL(P̃1, P̃2) ≥ 1.

Upper bound: Since σ1 ≤ 16, we can plug t = 1
15.008 into the equation (5.9) of Corollary 5.1.

Thus, we have

(Dσ1(P1), P1) ≤ (30.016,
1

15.008
).

Ratio: c is upper bounded by

c ≤ 30.016.

(ii-ii) If 1
4σv2

≤ P̃1 ≤ 1
64

Lower bound: By Corollary 5.5 (b), we have

DL(P̃1, P̃2) ≥ 0.02417

P̃1

+ 1.

Upper bound: Since P̃1 ≤ 1
64 ≤

1
15.008 , we can plug t = P̃1 into the equation (5.9) of

Corollary 5.1. Thus, we have

(Dσ1(P1), P1) ≤ (
2

P̃1

, P̃1).

Ratio: c is upper bounded by

c ≤ 2

0.02417
< 83.

(ii-iii) If P̃1 ≤ 1
4σv2

and P̃2 ≥ 1
4σv2

Lower bound: By Corollary 5.5 (a), we have

DL(P̃1, P̃2) ≥ 0.09168σv2 + 1

Upper bound: Since σv2 ≥ 16, we can plug t = 1
1.0005σv2

into the equation (5.8) of Corol-

lary 5.1. Thus, we have

(Dσ2(P̃2), P̃2) ≤ (2.001σv2,
1

1.0005σv2
).

Ratio: c is upper bounded by

c ≤ 2.001

0.09168
< 22.
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(ii-iv) If P̃1 ≤ 1
4σv2

and P̃2 ≤ 1
4σv2

Lower bound: Since P̃1 ≤ 1
4σv2

≤ 1
64 ≤

1
50 , P̃2 ≤ 1

4σv2
≤ 1

64 ≤
1
50 , by Corollary 5.5 (c) we

have

DL(P̃1, P̃2) ≥ 0.003772

max(P̃1, P̃2)
+ 1.

Upper bound: Since P̃1 ≤ 1
4σv2

≤ 1
64 ≤

1
15.008 , P̃2 ≤ 1

4σv2
≤ 1

1.0005σv2
, these satisfies

the conditions for (5.8), (5.9) of Corollary 5.1 respectively. Therefore, by plugging t = P̃max into

Corollary 5.1, we have

(Dσmax(Pmax), Pmax) ≤ (
2

P̃max
, P̃max).

Ratio: c is upper bounded by

c ≤ 2

0.003772
< 540.

(iii) When σv1 ≥ 16 and σv2 ≥ 16

(iii-i) If P̃1 ≥ 1
4σv1

Lower bound: By Corollary 5.5 (d), we have

DL(P̃1, P̃2) ≥
√

2

2
σv1.

Upper bound: Since σv1 ≥ 16, we can plug t = 1
1.0005σv1

into (5.8) of Corollary 5.1. Thus,

we have

(Dσ1(P1), P1) ≤ (2.001σv1,
1

1.0005σv1
).

Ratio: c is upper bounded by

c ≤ 4

1.0005
< 4.

(iii-ii) If 1
4σv2

≤ P̃1 ≤ 1
4σv1

Lower bound: Since 1
4σv2

≤ P̃1 ≤ 1
4σv1

≤ 1
64 , by Corollary 5.5 (b) we have

DL(P̃1, P̃2) ≥ 0.02417

P̃1

+ 1.

Upper bound: Since 1

P̃1
≤ 1

4σv1
≤ 1

1.0005σv1
, we can plug t = P̃1 into the equation (5.8) of

Corollary 5.1. Thus, we have

(Dσ1(P1), P1) ≤ (
2

P̃1

, P̃1).

Ratio: c is upper bounded by

c ≤ 2

0.02417
< 83.
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(iii-iii) If P̃1 ≤ 1
4σv2

and P̃2 ≥ 1
4σv2

Lower bound: By Corollary 5.5 (a), we have

DL(P̃1, P̃2) ≥ 0.09168σv2 + 1.

Upper bound: Since σv2 ≥ 16, we can plug t = 1
1.0005σv2

into the equation (5.8) of Corol-

lary 5.1. Thus, we have

(Dσ2(P2), P2) ≤ (2.001σv2,
1

1.0005σv2
).

Ratio: c is upper bounded by

c ≤ 2.001

0.09168
< 22.

(iii-iv) If P̃1 ≤ 1
4σv2

and P̃2 ≤ 1
4σv2

Lower bound: Since P̃1 ≤ 1
4σv2

≤ 1
64 ≤

1
50 , P̃2 ≤ 1

4σv2
≤ 1

64 ≤
1
50 , by Corollary 5.5 (c) we

have

DL(P̃1, P̃2) ≥ 0.003772

max(P̃1, P̃2)
+ 1.

Upper bound: Since P̃1 ≤ 1
4σv2

≤ 1
4σv1

≤ 1
1.0005σv1

and P̃2 ≤ 1
4σv2

≤ 1
1.0005σv2

, we can plug

t = P̃max into the equation (5.8) of Corollary 5.1. Thus, we have

(Dσmax(Pmax), Pmax) ≤ (
2

P̃max
, P̃max).

Ratio: c is upper bounded by

c ≤ 2

0.003772
< 540.

Finally, by (i), (ii), (iii), the constant c is upper bounded by 106 and the proposition is

proved.

10.4 Proof of Lemma 5.5, Corollary 5.1 and Proposition 5.2

Proof of Lemma 5.5 of Page 251. For simplicity, we assume 0 ≤ a < 1, 1 < k1 < k2 < k. The

remaining case when −1 < a ≤ 0 or k1 = 1 or k1 = k2 or k = k2 easily follow with minor

modifications.

• Geometric Slicing: We apply the geometric slicing idea of Lemma 5.2 to get a finite-

horizon problem. By putting αk1
= ( 1−a

1−ak−k1
)ak−k1−1, αk1+1 = ( 1−a

1−ak−k1
)ak−k1−2, · · · , αk =

1−a
1−ak−k1

and βk2 = ( 1−a−1

1−a−(k−k2) ), βk2+1 = ( 1−a−1

1−a−(k−k2) )a−1, · · · , βk−1 = ( 1−a−1

1−a−(k−k2) )a−k+1+k2 the
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average cost is lower bounded by

qE[x2[k]]

+ r1 ((
1− a

1− ak−k1
)ak−k1−1E[u2

1[k1]] + (
1− a

1− ak−k1
)ak−k1−2E[u2

1[k1 + 1]] + · · ·+ (
1− a

1− ak−k1
)E[u2

1[k − 1]])
︸ ︷︷ ︸

:=P̃1

+ r2 ((
1− a

1− ak−k2
)ak−k1−1E[u2

2[k2]] + (
1− a

1− ak−k2
)ak−k1−2E[u2

2[k2 + 1]] + · · ·+ (
1− a

1− ak−k2
)E[u2

2[k − 1]])
︸ ︷︷ ︸

:=P̃2

)

Here, we denote the second and third terms as P̃1 and P̃2 respectively.

• Three stage division: As we did in the proof of Lemma 5.3, we will divide the finite-

horizon problem into three time intervals — information-limited interval, Witsenhausen’s interval,

power-limited interval. Define

W1 := ak−1w[0] + · · ·+ ak−k1+1w[k1 − 2]

W2 := ak−k1w[k1 − 1] + · · ·+ ak−k2+1w[k2 − 2]

W3 := ak−k2w[k2 − 1] + · · ·+ aw[k − 2]

U11 := ak−2u1[1] + · · ·+ ak−k1u1[k1 − 1]

U21 := ak−2u2[1] + · · ·+ ak−k1u2[k1 − 1]

U1 := ak−k1−1u1[k1] + · · ·+ u1[k − 1]

U22 := ak−k1−1u2[k1] + · · ·+ ak−k2u2[k2 − 1])

U2 := ak−k2−1u2[k2] + · · ·+ u2[k − 1]

X1 := W1 + U11 + U21

X2 := W2 + U22

W1,W2,W3 represent the distortions of three intervals respectively. U11 and U21 represent the

first and second controller inputs in the information-limited interval respectively. U1 represent

the remaining input of the first controller. U22 and U2 represent the second controller’s input in

Witsenhausen’s and power-limited intervals respectively.

The goal of this proof is grouping control inputs and expanding x[n], so that we reveal the

effects of the controller inputs on the state and isolate their effects according to their characteristics.

• Power-Limited Inputs: We will first isolate the power limited inputs, i.e. the first con-

troller’s input in the Witsenhausen’s and power-limited intervals, and the second controller’s input
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in the power-limited interval. Notice that

x[k] = w[k − 1] + aw[k − 2] + · · ·+ ak−1w[0]

+ u1[k − 1] + au1[k − 2] + · · ·+ ak−1u1[0]

+ u2[k − 1] + au2[k − 2] + · · ·+ ak−1u2[0]

= (ak−1w[0] + · · ·+ ak−k1+1w[k1 − 2]

+ ak−2u1[1] + · · ·+ ak−k1u1[k1 − 1]

+ ak−2u2[1] + · · ·+ ak−k1u2[k1 − 1])

+ (ak−k1w[k1 − 1] + · · ·+ ak−k2+1w[k2 − 2]

+ ak−k1−1u2[k1] + · · ·+ ak−k2u2[k2 − 1])

+ (ak−k2w[k2 − 1] + · · ·+ aw[k − 2])

+ (ak−k1−1u1[k1] + · · ·+ u1[k − 1])

+ (ak−k2−1u2[k2] + · · ·+ u2[k − 1])

+ w[k − 1].

Therefore, by Lemma 4.1 of Chapter 4 we have

E[x2[k]] = E[(X1 +X2 +W3 + U1 + U2 + w[k − 1])2]

= E[(X1 +X2 +W3 + U1 + U2)2] + E[w2[k − 1]]

≥ (
√

E[(X1 +X2 +W3)2]−
√
E[U2

1 ]−
√

E[U2
2 ])2

+ + 1

= (
√
E[(X1 +X2)2] + E[W 2

3 ]−
√
E[U2

1 ]−
√

E[U2
2 ])2

+ + 1 (10.86)

where the last equality comes form the causality. Here, we can see that E[(X1 + X2)2] does not

depend on the inputs from the power-limited intervals.

• Information-Limited Interval: We will bound the remaining state distortion after the

information-limited interval. Define y′1 and y′2 as follows:

y′1[k] = ak−1w[0] + ak−2w[1] + · · ·+ w[k − 1] + v1[k]

y′2[k] = ak−1w[0] + ak−2w[1] + · · ·+ w[k − 1] + v2[k].

Here, y′1[k], y′2[k] can be obtained by removing u1[1 : k − 1], u2[1 : k − 1] from y1[k], y2[k], and

u1[k] and u2[k] are functions of y1[1 : k] and y2[1 : k] respectively. Therefore, we can see that

y1[1 : k], y2[1 : k] are functions of y′1[1 : k], y′2[1 : k]. Moreover, W1, y′1[1 : k1 − 1], y′2[1 : k1 − 1] are

jointly Gaussian.

Let

W ′1 := W1 − E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]

W ′′1 := E[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]].



436

Then, W ′1, W ′′1 , W2 are independent Gaussian random variables. Moreover, W ′1,W2 are independent

from y′1[1 : k1 − 1], y′2[1 : k1 − 1]. W ′′1 is a function of y′1[1 : k1 − 1], y′2[1 : k1 − 1].

Now, let’s lower bound E[(X1 +X2)2]. Since Gaussian maximizes the entropy, we have

1

2
log(2πeE[(X1 +X2)2]

≥ h(X1 +X2)

≥ h(X1 +X2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′1 +W ′′1 + U11 + U12 +W2 + U22|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′1 +W2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1]). (10.87)

We will first lower bound the variance of W ′1. Notice that

E[y′1[k]2] = a2(k−1) + a2(k−2) + · · ·+ 1 + σ2
v1

=
1− a2k

1− a2
+ σ2

v1

and

E[y′2[k]2] = a2(k−1) + a2(k−2) + · · ·+ 1 + σ2
v1

=
1− a2k

1− a2
+ σ2

v2.

Thus, we have

I(W1; y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(y′1[1 : k1 − 1], y′2[1 : k1 − 1])− h(y′1[1 : k1 − 1], y′2[1 : k1 − 1]|W1)

≤
∑

1≤i≤k1−1

h(y′1[i]) +
∑

1≤i≤k1−1

h(y′2[i])−
∑

1≤i≤k1−1

h(v1[i])−
∑

1≤i≤k1−1

h(v2[i])

≤
∑

1≤k≤k1−1

1

2
log(

1−a2k

1−a2 + σ2
v1

σ2
v1

) +
∑

1≤k≤k1−1

1

2
log(

1−a2k

1−a2 + σ2
v2

σ2
v2

)

=
1

2
log(

∏

1≤k≤k1−1

1−a2k

1−a2 + σ2
v1

σ2
v1

) +
1

2
log(

∏

1≤k≤k1−1

1−a2k

1−a2 + σ2
v2

σ2
v2

)

(A)

≤ k1 − 1

2
log(

1

k1 − 1

∑

1≤k≤k1−1

1−a2k

1−a2 + σ2
v1

σ2
v1

) +
k1 − 1

2
log(

1

k1 − 1

∑

1≤k≤k1−1

1−a2k

1−a2 + σ2
v2

σ2
v2

)

=
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

1−a2k

1−a2

σ2
v1

) +
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

1−a2k

1−a2

σ2
v2

)

≤ k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

1−a2(k1−1)

1−a2

σ2
v1

) +
k1 − 1

2
log(1 +

1

k1 − 1

∑

1≤k≤k1−1

1−a2(k1−1)

1−a2

σ2
v2

)

=
k1 − 1

2
log(1 +

1

σ2
v1

1− a2(k1−1)

1− a2
) +

k1 − 1

2
log(1 +

1

σ2
v2

1− a2(k1−1)

1− a2
). (10.88)
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(A): Arithmetic-Geometric mean

Let’s denote the last equation as I. We also have

E[W 2
1 ] = a2(k−1) + · · ·+ a2(k−k1+1)

= a2(k−k1+1)(a2(k1−2) + · · ·+ 1)

= a2(k−k1+1) 1− a2(k1−1)

1− a2
. (10.89)

Now, we can bound the variance of a Gaussian random variable W ′1 as follows:

1

2
log(2πeE[W ′21 ]) = h(W ′1)

≥ h(W ′1|y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W1)− I(W1; y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πea2(k−k1+1) 1− a2(k1−1)

1− a2
)− I

where the last inequality follows from (10.88) and (10.89).

Thus,

E[W ′21 ] ≥
a2(k−k1+1) 1−a2(k1−1)

1−a2

22I
(10.90)

and denote the last term as Σ. Since W ′1 is Gaussian, we can write W ′1 = W ′′′1 + W ′′′′1 where

W ′′′1 ∼ N (0,Σ), and W ′′′1 ,W ′′′′1 are independent.

Moreover, we also have

E[W 2
2 ] = a2(k−k1) + · · ·+ a2(k−k2+1)

= a2(k−k2+1) 1− a2(k2−k1)

1− a2
. (10.91)



438

By (10.87), we have

1

2
log(2πeE[(X1 +X2)2])

≥ h(W ′1 +W2|y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

≥ h(W ′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′′′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1], y2[k1 : k2 − 1])

= h(W ′′′1 +W2|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(W ′′′1 +W2)

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πe(Σ + a2(k−k2+1) 1− a2(k2−k1)

1− a2
))

− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1]) (10.92)

where the last inequality comes from the fact that W ′′′1 and W2 are independent Gaussian, and

(10.90) and (10.91).

Now, the question boils down to the upper bound of the last mutual information term,

which can be understood as the information contained in the second controller’s observation in

Witsenhausen’s interval.

• Second controller’s observation in Witsenhausen’s interval: We will bound the amount of

information contained in the second controller’s observation in Witsenhausen’s interval. For n ≥ k1,

define

y′′2 [n] := an−kW ′′′1 + an−k1w[k1 − 1] + an−k1−1w[k1] + · · ·+ w[n− 1]

+ an−k1−1u1[k1] + · · ·+ u1[n− 1] + v2[n].

Notice the relationship between y2[n] and y′′2 [n] is

y2[n] = y′′2 [n] + an−k1−1u2[k1] + · · ·+ u2[n− 1]

+ an−kW ′′′′1 + an−kE[W1|y′1[1 : k1 − 1], y′2[1 : k1 − 1]]. (10.93)
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The mutual information in (10.92) is bounded as follows:

I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

= h(y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

− h(y2[k1 : k2 − 1]|W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

=
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

−
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

(A)
=

∑

k1≤i≤k2−1

h(y′′2 [i]|y2[k1 : i− 1],W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

−
∑

k1≤i≤k2−1

h(y2[i]|y2[k1 : i− 1],W ′′′1 +W2,W
′′′′
1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

(B)

≤
∑

k1 ≤ i ≤ k2 − 1h(y′′2 [i])−
∑

k1≤i≤k2−1

h(v2[i])

≤
∑

k1≤i≤k2−1

1

2
log(2πeE[y′′2 [i]2])−

∑

k1≤i≤k2−1

1

2
log(2πeσ2

v2) (10.94)

(A): Since y2[1 : k1 − 1] is a function of y′2[1 : k1 − 1], u2[k1], · · · , u2[i] are functions of y2[k1 :

i− 1], y′2[1 : k1 − 1]. Thus, all the terms in (10.93) except y′′2 [i] can be vanished by the conditioned.

(B): By causality, v2[i] is independent from all conditioning random variables.

First, let’s bound the variance of y′′2 [n]. By Lemma 4.1 of Chapter 4, we have

E[y′′2 [n]2] ≤ 2E[(an−kW ′′′1 + an−k1w[k1 − 1] + an−k1−1w[k1] + · · ·+ w[n− 1])2]

+ 2E[(an−k1−1u1[k1] + · · ·+ u1[n− 1])2] + σ2
v2

= 2(a2(n−k)Σ + a2(n−k1) + · · ·+ 1)

+ 2E[(an−k1−1u1[k1] + · · ·+ u1[n− 1])2] + σ2
v2

Here, by Lemma 4.1 of Chapter 4, we have

E[(an−k1−1u1[k1] + · · ·+ u1[n− 1])2]

≤ (
√
a2(n−k1−1)E[u2

1[k1]] + · · ·+
√
E[u2

1[n− 1]])2

(A)

≤ (a(n−k1−1) + a(n−k1−2) + · · ·+ 1)(a(n−k1−1)E[u2
1[k1]] + a(n−k1−2)E[u2

1[k1 + 1]] + · · ·+ E[u2
1[n− 1]])

=
1− an−k1

1− a
· an−k(ak−k1−1E[u2

1[k1]] + ak−k1−2E[u2
1[k1 + 1]] + · · ·+ ak−nE[u2

1[n− 1]])

≤ 1− an−k1

1− a
· an−k 1− ak−k1

1− a
P̃1

= an−k
(1− an−k)(1− ak−k1)

(1− a)2
P̃1.
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(A): Cauchy-Schwarz inequality

Thus, the variance of y′′2 [n] is bounded as:

E[y′′2 [n]2] ≤ 2a2(n−k)Σ + 2
1− a2(n−k1+1)

1− a2
+ 2an−k

(1− an−k)(1− ak−k1)

(1− a)2
P̃1 + σ2

v2.

Therefore, we have

∑

k1≤n≤k2−1

E[y′′2 [n]2]

≤
∑

k1≤n≤k2−1

2a2(n−k)Σ + 2
1− a2(n−k1+1)

1− a2
+ 2an−k

(1− an−k)(1− ak−k1)

(1− a)2
P̃1 + σ2

v2

≤ 2(a2(k1−k) + · · ·+ a2(k2−1−k))Σ +
∑

k1≤n≤k2−1

2
1− a2(k2−1−k1+1)

1− a2

+
∑

k1≤n≤k2−1

2an−k
(1− ak2−1−k1)(1− ak−k1)

(1− a)2
P̃1 + (k2 − k1)σ2

v2

≤ 2a2(k1−k) 1− a2(k2−k1)

1− a2
Σ + 2(k2 − k1)

1− a2(k2−1−k1+1)

1− a2

+ 2ak1−k 1− ak2−k1

1− a
(1− ak2−1−k1)(1− ak−k1)

(1− a)2
P̃1 + (k2 − k1)σ2

v2. (10.95)

Therefore, by (10.94) and (10.95) we conclude

I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′, y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≤
∑

k1≤n≤k2−1

1

2
log(

E[y′′2 [n]2]

σ2
v2

)

=
1

2
log(

∏

k1≤n≤k2−1

E[y′′2 [n]2]

σ2
v2

)

(A)

≤ k2 − k1

2
log(

1

k2 − k1

∑

k1≤n≤k2−1

E[y′′2 [n]2]

σ2
v2

)

≤ k2 − k1

2
log(1 +

1

(k2 − k1)σ2
v2

(2a2(k1−k) 1− a2(k2−k1)

1− a2
Σ + 2(k2 − k1)

1− a2(k2−1−k1+1)

1− a2

+ 2ak1−k 1− ak2−k1

1− a
(1− ak2−1−k1)(1− ak−k1)

(1− a)2
P̃1))

(A): Arithmetic-Geometric mean

Denote the last equation as I ′(P̃1). By (10.92) we conclude

1

2
log(2πeE[(X1 +X2)2]

≥ h(W ′′′1 +W2)− I(W ′′′1 +W2; y2[k1 : k2 − 1]|W ′′′′1 , y′1[1 : k1 − 1], y′2[1 : k1 − 1])

≥ 1

2
log(2πe(Σ + a2(k−k2+1) 1− a2(k2−k1)

1− a2
))− I ′(P̃1)
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which implies

E[(X1 +X2)2] ≥
Σ + a2(k−k2+1) 1−a2(k2−k1)

1−a2

22I′(P̃1)
. (10.96)

• Final lower bound: Now, we can merge the inequalities to prove the lemma. The variance

of W3 is given as follows:

E[W 2
3 ] = a2(k−k2) + · · ·+ a2

= a2 1− a2(k−k2)

1− a2
. (10.97)

By Lemma 4.1 of Chapter 4, the variance of U1 is bounded as follows:

E[U2
1 ] ≤ (

√
a2(k−k1−1)E[u2

1[k1]] + · · ·+
√
E[u2

1[k − 1]])2

(A)

≤ (a(k−k1−1) + a(k−k1−2) + · · ·+ 1)(a(k−k1−1)E[u2
1[k1]] + a(k−k1−2)E[u2

1[k1 + 1]] + · · ·+ E[u2
1[k − 1]])

=
1− ak−k1

1− a
(a(k−k1−1)E[u2

1[k1]] + a(k−k1−2)E[u2
1[k1 + 1]] + · · ·+ E[u2

1[k − 1]])

=
1− ak−k1

1− a
1− ak−k1

1− a
P̃1

= (
1− ak−k1

1− a
)2P̃1. (10.98)

(A): Cauchy-Schwarz inequality

Likewise, the variance of U2 can be bounded as

E[U2
2 ] ≤ (

1− ak−k2

1− a
)2P̃2 (10.99)

By plugging in (10.96), (10.97), (10.98), (10.99) into (10.86), we finally prove the lemma.

Proof of Corollary 5.6 of Page 252. For simplicity, we will prove for 0.9 ≤ a < 1. The proof for

−1 < a ≤ −0.9 is simply follows by replacing a by |a|.
First, we can notice

Σ1 =
(a2 − 1)σ2

v1 − 1 +
√

((a2 − 1)σ2
v1 − 1)2 + 4a2σ2

v1

2a2

=
4a2σ2

v1

2a2(−(a2 − 1)σ2
v1 + 1 +

√
((a2 − 1)σ2

v1 − 1)2 + 4a2σ2
v1)

=
2σ2

v1

(1− a2)σ2
v1 + 1 +

√
((1− a2)σ2

v1 + 1)2 + 4a2σ2
v1

Since 0.9 ≤ a < 1, (1− a2)σ2
v1 ≥ 0. Thus, Σ1 is upper bounded by

Σ1 ≤
2σ2

v1√
4a2σ2

v1

=
σ2
v1

aσv1
=
σv1

a
≤ 10

9
σv1
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and

Σ1 ≤
2σ2

v1

(1− a2)σ2
v1 + (1− a2)σ2

v1

=
1

1− a2

Likewise, we also have

Σ2 ≤
10

9
σv2 (10.100)

and

Σ2 ≤
1

1− a2
(10.101)

Proof of (a):

Notice that by Σ2 ≥ 40, 0.9 ≤ a < 1 and (10.101) we have

Σ2

40
≤ 1

40

1

1− a2
<

a2

1− a2

Σ2

40
≥ 1 ≥ a2 =

a2 − a4

1− a2

Thus, we can find k ≥ 3 such that

a2 − a2(k−1)

1− a2
≤ Σ2

40
<
a2 − a2k

1− a2
(10.102)

Let’s put such k and k1 = 1, k2 = k as the parameters of Lemma 5.5. Then, the lower

bound of Lemma 5.5 reduces to

DL(P̃1, P̃2) ≥ (

√
a2−a2k

1−a2

22I′(P̃1)
−

√
(
1− ak−1

1− a
)2P̃1)2

+ + 1 (10.103)

where

I ′(P̃1) =
1

2
log(1 +

1

(k − 1)σ2
v2

(2(k − 1)
1− a2(k−1)

1− a2
+ 2a1−k 1− ak−1

1− a
(1− ak−2)(1− ak−1)

(1− a)2
P̃1))k−1.

Let’s first upper bound I ′(P̃1). By (10.101) and (10.102), we first have

a2 − a2(k−1)

1− a2
≤ Σ2

40
≤ 1

40

1

1− a2

(⇒)a2 − a2(k−1) ≤ 1

40

(⇔)a2 − 1

40
≤ a2(k−1)

(⇒)(
9

10
)2 − 1

40
≤ a2(k−1)(∵ 0.9 ≤ a < 1)

(⇔)
157

200
≤ a2(k−1). (10.104)
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We also have

a2(k−1)(k − 1) ≤ 1 + a2 + a4 + · · ·+ a2(k−2) =
1− a2(k−1)

1− a2
(10.105)

where the first inequality comes from that 0.9 ≤ a < 1 so a2(k−1) ≤ 1, · · · , a2(k−1) ≤ a2(k−2).

Therefore, by (10.104) and (10.105)

157

200
(k − 1) ≤ 1− a2(k−1)

1− a2

(⇒)k − 1 ≤ 200

157

1− a2(k−1)

1− a2
(10.106)

Moreover, we also have

1− a2(k−1)

a2 − a2(k−1)
=

1− a2

a2 − a2(k−1)
+
a2 − a2(k−1)

a2 − a2(k−1)

=
1− a2

a2 − a2(k−1)
+ 1

≤ 1− a2

a2 − a4
+ 1(∵ k ≥ 3)

=
1

a2
+ 1

≤ (
10

9
)2 + 1 =

181

81
(∵ 0.9 ≤ a < 1)

which implies

1− a2(k−1)

1− a2
≤ 181

81

a2 − a2(k−1)

1− a2
. (10.107)

We also have

1− ak−1

1− a
≤ 1− ak−1

1− a
2

1 + a
(∵ 0.9 ≤ a < 1)

≤ 1− a2(k−2)

1− a
2

1 + a
(∵ k ≥ 3 implies 2(k − 2) ≥ k − 1)

≤ 1− a2(k−2)

1− a
2

1 + a

a2

0.92
(∵ 0.9 ≤ a < 1)

=
2

0.92

a2 − a2(k−1)

1− a2
. (10.108)

Therefore, the terms in I ′(P̃1) are upper bounded as:

2(k − 1)
1− a2(k−1)

1− a2
≤ 2

200

157
(
1− a2(k−1)

1− a2
)2(∵ (10.106))

≤ 2
200

157
(
181

81

a2 − a2(k−1)

1− a2
)2(∵ (10.107))

≤ 2
200

157
(
181

81

Σ2

40
)2(∵ (10.102)) (10.109)
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and

2a1−k 1− ak−1

1− a
(1− ak−2)(1− ak−1)

(1− a)2
P̃1

≤ 2

√
200

157
(
1− ak−1

1− a
)3P̃1(∵ (10.104) and ak−1 ≤ ak−2)

≤ 2

√
200

157
(

2

0.92
(
a2 − a2(k−1)

1− a2
))3P̃1(∵ (10.108))

≤ 2

√
200

157
(

2

0.92

Σ2

40
)3 1

Σ2
(∵ (10.102) and the assumption P̃1 ≤

1

Σ2
)

= 2

√
200

157
(

5

81
)3Σ2

2 (10.110)

Now, we can upper bound I ′(P̃1) by

I ′(P̃1)
(A)

≤ 1

2
log(1 +

Σ2
2

(k − 1)σ2
v2

(2
200

157
(

181

81 · 40
)2 + 2

√
200

157
(

5

81
)3))k−1

(B)

≤ 1

2
log(1 +

1

(k − 1)
(
10

9
)2(2

200

157
(

181

81 · 40
)2 + 2

√
200

157
(

5

81
)3))k−1

≤ 1

2
log(1 +

0.010471667...

k − 1
)k−1

≤ 1

2
log e0.01047 (10.111)

(A): (10.109), (10.110)

(B): (10.100)

Moreover, we also have

(
1− ak−1

1− a
)2P̃1 ≤ (

2

0.92

a2 − a2(k−1)

1− a2
)2P̃1(∵ (10.108))

≤ (
2

0.92

Σ2

40
)2 1

Σ2
(∵ (10.102) and the assumption P̃1 ≤

1

Σ2
)

= (
5

81
)2Σ2. (10.112)

Finally, by plugging (10.111), (10.112) into (10.103) we can conclude

DL(P̃1, P̃2) ≥ (

√
Σ2

40e0.01047
−
√

(
5

81
)2Σ2)2

+ + 1

≥ 0.0091316992...Σ2 + 1.

Proof of (b):

Notice that by Σ2 ≥ 40, 1
Σ2
≤ P̃1 ≤ 1

40 , (10.101),

1

40P̃1

≤ Σ2

40
≤ 1

40

1

1− a2
<

a2

1− a2

1

40P̃1

≥ 1 ≥ a2 =
a2 − a4

1− a2
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Thus, we can find k ≥ 3 such that

a2 − a2(k−1)

1− a2
≤ 1

40P̃1

<
a2 − a2k

1− a2
(10.113)

Let’s put such k and k1 = 1, k2 = k as the parameters of Lemma 5.5. Then, the lower bound of

Lemma 5.5 reduces to

DL(P̃1, P̃2) ≥ (

√
a2−a2k

1−a2

22I′(P̃1)
−

√
(
1− ak−1

1− a
)2P̃1)2

+ + 1

First, we will upper bound I ′(P̃1). Since 1

40P̃1
≤ Σ2

40 , we still have (10.104), (10.105), (10.106) which

are

157

200
≤ a2(k−1) (10.114)

k − 1 ≤ 200

157

1− a2(k−1)

1− a2
. (10.115)

Since k ≥ 3, we still have (10.107) and (10.108) which are

1− a2(k−1)

1− a2
≤ 181

81

a2 − a2(k−1)

1− a2
(10.116)

1− ak−1

1− a
≤ 2

0.92

a2 − a2(k−1)

1− a2
. (10.117)

Then, the terms in I ′(P̃1) are upper bounded as:

2(k − 1)
1− a2(k−1)

1− a2
≤ 2

200

157
(
1− a2(k−1)

1− a2
)2(∵ (10.115))

≤ 2
200

157
(
181

81

a2 − a2(k−1)

1− a2
)2(∵ (10.116))

≤ 2
200

157
(
181

81

1

40P̃1

)2(∵ (10.113))

≤ 2
200

157
(
181

81

1

40
)2Σ2

2(∵ Assumption
1

P̃1

≤ Σ2) (10.118)

and

2a1−k 1− ak−1

1− a
(1− ak−2)(1− ak−1)

(1− a)2
P̃1

≤ 2

√
200

157
(
1− ak−1

1− a
)3P̃1(∵ (10.114))

≤ 2

√
200

157
(

2

0.92
(
a2 − a2(k−1)

1− a2
))3P̃1(∵ (10.117))

≤ 2

√
200

157
(

2

0.92

1

40P̃1

)3P̃1(∵ (10.113))

= 2

√
200

157
(

5

81
)3 1

P̃1

2

≤ 2

√
200

157
(

5

81
)3Σ2

2.(∵ Assumption
1

P̃1

≤ Σ2) (10.119)
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Therefore, by (10.118) and (10.119), I ′(P̃1) is upper bounded as:

I ′(P̃1) ≤ 1

2
log(1 +

Σ2
2

(k − 1)σ2
v2

(2
200

157
(

181

81 · 40
)2 + 2

√
200

157
(

5

81
)3))k−1

≤ 1

2
log(1 +

1

(k − 1)
(
10

9
)2(2

200

157
(

181

81 · 40
)2 + 2

√
200

157
(

5

81
)3))k−1(∵ (10.100))

≤ 1

2
log(1 +

0.010471667...

k − 1
)k−1

≤ 1

2
log e0.01047. (10.120)

Moreover, we also have

(
1− ak−1

1− a
)2P̃1 ≤ (

2

0.92

a2 − a2(k−1)

1− a2
)2P̃1(∵ (10.117))

≤ (
2

0.92

1

40P̃1

)2P̃1(∵ (10.113))

= (
5

81
)2 1

P̃1

. (10.121)

Finally, by (10.113), (10.120), (10.121), we can conclude

DL(P̃1, P̃2) ≥ (

√
1

40e0.01047P̃1

−
√

(
5

81
)2

1

P̃1

)2
+ + 1

≥ 0.0091316992...

P̃1

+ 1

Proof of (c):

Let P := max(P̃1, P̃2). Notice that since 1−a2

20 ≤ P ≤ 1
40 and 0.9 ≤ a < 1 we have

1

40P
≤ 1

2(1− a2)
<

a2

1− a2

1

40P
≥ 1 ≥ a2 =

a2 − a4

1− a2

Therefore, we can find k ≥ 3 such that

a2 − a2(k−1)

1− a2
≤ 1

40P
<
a2 − a2k

1− a2
(10.122)

Let’s put such k and k1 = k2 = 1 as the parameters of Lemma 5.5. Then, the lower bound of

Lemma 5.5 reduces to

DL(P̃1, P̃2) ≥ (

√
a2 − a2k

1− a2
−

√
(
1− ak−1

1− a
)2P̃1 −

√
(
1− ak−1

1− a
)2P̃2)2

+ + 1. (10.123)

Since k ≥ 3, we still have (10.108) which tells 1−ak−1

1−a ≤ 2
0.92

a2−a2(k−1)

1−a2 . Thus, by (10.108), we have

1− ak−1

1− a
≤ 2

0.92

a2 − a2(k−1)

1− a2

≤ 2

0.92

1

40P
(∵ (10.122))

=
5

81P
(10.124)
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Thus, by plugging (10.122), (10.124) into (10.123), we can conclude

DL(P̃1, P̃2) ≥ (

√
1

40P
−
√

(
5

81P
)2P −

√
(

5

81P
)2P )2

+ + 1

= (

√
1

40
−
√

(
5

81
)2 −

√
(

5

81
)2)2 1

P
+ 1

= 0.0012011...
1

P
+ 1

Proof (d):

Since 1
2 < a4, there exists k ≥ 3 such that

a2k ≤ 1

2
< a2(k−1) (10.125)

Let’s put such k and k1 = k2 = 1 as the parameters of Lemma 5.5. Then, the lower bound of

Lemma 5.5 reduces to

DL(P̃1, P̃2) ≥ (

√
a2 − a2k

1− a2
−

√
(
1− ak−1

1− a
)2P̃1 −

√
(
1− ak−1

1− a
)2P̃2)2

+ + 1

Here, we have

a2 − a2k

1− a2
≥
a2 − 1

2

1− a2
(∵ (10.125))

≥
0.92 − 1

2

1− a2
(∵ 0.9 ≤ a < 1)

=
0.31

1− a2
(10.126)

and

1− ak−1

1− a
≤

1− 1√
2

1− a
(∵ (10.125))

≤
1− 1√

2

1− a
2

1 + a
(∵ 0.9 ≤ a < 1)

=
2(1− 1√

2
)

1− a2
(10.127)

Finally, by the assumption max(P̃1, P̃2) ≤ 1−a2

20 and (10.126), (10.127) we can conclude

DL(P̃1, P̃2) ≥ (

√
0.31

1− a2
−

√

(
2(1− 1√

2
)

1− a2
)2

1− a2

20
−

√

(
2(1− 1√

2
)

1− a2
)2

1− a2

20
)2
+ + 1

= (
√

0.31−

√
(2(1− 1√

2
))2

1

20
−

√
(2(1− 1√

2
))2

1

20
)2 1

1− a2
+ 1

=
0.0869099...

1− a2
+ 1

Proof of (e):
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As mentioned in the proof of Corollary 5.4 (j), the centralized controller’s distortion that

has both observations y1[n], y2[n] and has no input power constraints is a lower bound on the

decentralized controller’s distortion.

Let y′1[n] := x[n] + v′1[n] and y′2[n] := x[n] + v′2[n] where v′1[n] ∼ N (0, σ2
1) and v′2[n] ∼

N (0, σ2
1) are i.i.d. random variables. Just like the proof of Corollary 5.4 (j), the performance of the

centralized controller with both observations is equivalent to a centralized controller with observation
y′1[n]+y′2[n]

2 by the maximum ratio combining.

Let ΣE be the estimation error of the Kalman filtering with a scalar observation
y′1[n]+y′2[n]

2 .

By Lemma 5.1,

ΣE =
(a2 − 1)

σ2
v1

2 − 1 +

√
((a2 − 1)

σ2
v1

2 − 1)2 + 4a2 σ
2
v1

2

2a2

=
4a2 σ

2
v1

2

2a2(−(a2 − 1)
σ2
v1

2 + 1 +

√
((a2 − 1)

σ2
v1

2 − 1)2 + 4a2 σ
2
v1

2 )

=
σ2
v1

(1− a2)
σ2
v1

2 + 1 +

√
((1− a2)

σ2
v1

2 + 1)2 + 4a2 σ
2
v1

2

.

Here, we have

ΣE ≤
σ2
v1

(1− a2)
σ2
v1

2 + (1− a2)
σ2
v1

2

=
1

1− a2
. (10.128)

Then, for all P̃1 and P̃2, the cost of the decentralized controllers is lower bounded as follows:

DL(P̃1, P̃2)
(A)

≥ inf
k:|a−k|<1

(2ak − k2)ΣE + 1

1− (a− k)2

= inf
k:|a−k|<1

a2 − 1

1− (a− k)2
ΣE +

1− a2 + 2ak − k2

1− (a− k)2
ΣE +

1

1− (a− k)2

= inf
k:|a−k|<1

a2 − 1

1− (a− k)2
ΣE + ΣE +

1

1− (a− k)2
(10.129)

(A): The decentralized control cost is larger than the centralized controller’s cost with the observation
y′1[n]+y′2[n]

2 . Moreover, when |a − k| ≥ 1 the centralized control system is unstable, and the cost

diverges to infinity. When |a− k| < 1, the cost analysis follows from Lemma 5.1.

Let k? be k achieving the infimum of (10.129). Then, for all P̃1, P̃2 ≥ 0 we have

DL(P̃1, P̃2) ≥ a2 − 1

1− (a− k?)2
ΣE + ΣE +

1

1− (a− k?)2

≥ a2 − 1

1− (a− k?)2

1

1− a2
+ ΣE +

1

1− (a− k?)2
(∵ (10.128))

= ΣE . (10.130)

Therefore, ΣE is a lower bound on DL(P̃1, P̃2), and we will compare this with Σ1 which is

Σ1 =
2σ2

v1

(1− a2)σ2
v1 + 1 +

√
((1− a2)σ2

v1 + 1)2 + 4a2σ2
v1

.
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To this end, let’s divide the case based on three quantities (1− a2)
σ2
v1

2 , 1, aσv1√
2

.

(i) When max((1− a2)
σ2
v1

2 , 1, aσv1√
2

) = (1− a2)
σ2
v1

2 ,

In this case, by the definition of ΣE we have

ΣE ≥
σ2
v1

2(1− a2)
σ2
v1

2 +

√
(2(1− a2)

σ2
v1

2 )2 + 4((1− a2)
σ2
v1

2 )2

=
1

(1− a2) +
√

(1− a2)2 + (1− a2)2

=
1

1 +
√

2

1

1− a2
. (10.131)

By the definition of Σ1, we also have

Σ1 ≤
2σ2

v1

(1− a2)σ2
v1 + (1− a2)σ2

v1

=
1

1− a2
. (10.132)

Therefore, we have

DL(P̃1, P̃2) ≥ ΣE(∵ (10.130))

≥ 1

1 +
√

2

1

1− a2
(∵ (10.131))

≥ 1

1 +
√

2
Σ1.(∵ (10.132))

(ii) When max((1− a2)
σ2
v1

2 , 1, aσv1√
2

) = aσv1√
2

,

In this case, by the definition of ΣE we have

ΣE ≥
σ2
v1

aσv1√
2

+ aσv1√
2

+
√

(aσv1√
2

+ aσv1√
2

)2 + 4a2 σ
2
v1

2

=
σv1

2a√
2

+
√

( 2a√
2
)2 + 2a2

≥ σv1

2√
2

+
√

2 + 2
(∵ 0.9 ≤ a < 1)

=
σv1

2√
2

+ 2
. (10.133)

By the definition of Σ1, we also have

Σ1 ≤
2σ2

v1√
4a2σ2

v1

=
σ2
v1

aσv1
=
σv1

a

≤ 10

9
σv1.(∵ 0.9 ≤ a < 1) (10.134)
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Therefore, we have

DL(P1, P2) ≥ ΣE(∵ (10.130))

≥ σv1
2√
2

+ 2
(10.133)

≥ 1
2√
2

+ 2

9

10
Σ1.(10.134)

(iii) When max((1− a2)
σ2
v1

2 , 1, aσv1√
2

) = 1,

By the assumption, we have aσv1√
2
≤ 1. Since 0.9 ≤ a < 1, we can see

σv1 ≤
√

2

a
≤ 10

√
2

9
. (10.135)

Furthermore, by the definition of Σ1, we can see that (10.134) still holds. Therefore, by

(10.135), we have

Σ1 ≤
10

9
σv1 ≤

10

9
(
10
√

2

9
) (10.136)

Moreover, by Lemma 5.5, we know that for all P̃1, P̃2 ≥ 0, DL(P̃1, P̃2) ≥ 1. Thus, by (10.136) we

can conclude

DL(P̃1, P̃2) ≥ 1 ≥ 9

10
(

9

10
√

2
)Σ1

Finally, by (i),(ii),(iii),

D ≥ min(
1

1 +
√

2
,

1
2√
2

+ 2

9

10
,

9

10
(

9

10
√

2
))Σ1

=
1

2√
2

+ 2

9

10
Σ1

≥ 0.26360...Σ1.

Since by Lemma 5.5 we already know DL(P̃1, P̃2) ≥ 1, the statement (e) of the corollary is true.

Proof of Proposition 5.3 of Page 253. Like the proof of Proposition 5.1, we define the subscript max

as argmaxi∈{1,2}P̃i, and write Dσv1
(·), Dσv2

(·), Dσvmax(·) as Dv1(·), Dv2(·), Dvmax(·) respectively.

By the same argument as the proof of Proposition 5.1, it is enough to show that there

exists c ≤ 106 such that for all P̃1, P̃2 ≥ 0, min(Dσ1(cP̃1), Dσ2(cP̃2)) ≤ c ·DL(P̃1, P̃2).

In the proof, we first divide the cases based on Σ1, Σ2, and then based on P̃1, P̃2. Here, we

know Σ1 ≤ Σ2 since σ1 ≤ σ2. Using this, we can reduce the cases.

(i) When Σ1 ≤ 40, Σ2 ≤ 40

(i-i) When max(P̃1, P̃2) ≥ 1
40

Lower bound: By Corollary 5.6 (e), we have

DL(P̃1, P̃2) ≥ 1
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If max(P̃1, P̃2) ≥ 1
40 and Σmax ≥ 1

1−a2

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0) ≤ (Σmax, 0) ≤ (40, 0).

If max(P̃1, P̃2) ≥ 1
40 and Σmax ≤ 1

1−a2

Upper bound: By plugging t = 1
max(1,Σmax) into Corollary 5.3 (5.11), we have

(Dσmax(Pmax), Pmax) ≤ (2 max(1,Σmax),
1

max(1,Σmax)
)

≤ (2 · 40, 1)(∵ In (i), we assumed Σ1 ≤ 40,Σ2 ≤ 40)

Ratio: c is upper bounded by

c ≤ 2 · 40.

(i-ii) When 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1
40

Lower bound: By Corollary 5.6 (c), we have

DL(P̃1, P̃2) ≥ 0.001201

max(P̃1, P̃2)
+ 1. (10.137)

If Σmax ≥ 1
1−a2

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0) ≤ (Σmax, 0) ≤ (40, 0)

If Σmax ≤ 1
1−a2 and 1− a2 ≤ max(P̃1, P̃2) ≤ 1

40

Since we assume Σ1 ≤ 40, Σ2 ≤ 40 in (i), we have 1 − a2 ≤ P̃max ≤ 1
40 ≤

1
max(1,Σmax) .

Thus, we can plug t = P̃max to Corollary 5.3 (5.11), and conclude

(Dσmax(Pmax), Pmax) ≤ (
2

P̃max
, P̃max).

If Σmax ≤ 1
1−a2 and 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1− a2

In this case, the lower bound of (10.137) can be further lower bounded by

DL(P̃1, P̃2) ≥ 0.001201

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0).

Ratio: c is upper bounded by

c ≤ 2

0.001201
< 2000.
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(i-iii) When max(P̃1, P̃2) ≤ 1−a2

20

Lower bound: By Corollary 5.6 (d), we have

DL(P̃1, P̃2) ≥ 0.0869

1− a2
+ 1

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0).

Ratio: c is upper bounded by

c ≤ 1

0.0869
< 12.

(ii) When Σ1 ≤ 40 ≤ Σ2

(ii-i) When P̃1 ≥ 1
40

Lower bound: By Corollary 5.6 (e), we have

DL(P̃1, P̃2) ≥ 1.

If P̃1 ≥ 1
40 and Σ1 ≥ 1

1−a2

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ1(P1), P1) ≤ (
1

1− a2
, 0) ≤ (Σ1, 0) ≤ (40, 0).

If P̃1 ≥ 1
40 and Σ1 ≤ 1

1−a2

Upper bound: By plugging t = 1
max(1,Σ1) into the equation (5.11) of Corollary 5.3, we have

(Dσ1(P1), P1) ≤ (2 max(1,Σ1),
1

max(1,Σ1)
)

≤ (2 · 40, 1)(∵ In (ii), we assumed Σ1 ≤ 40)

Ratio: c is upper bounded by

c ≤ 2 · 40.

(ii-ii) When 1
Σ2
≤ P̃1 ≤ 1

40

Lower bound: By Corollary 5.6 (b), we have

DL(P̃1, P̃2) ≥ 0.009131

P̃1

+ 1. (10.138)

If Σ1 ≥ 1
1−a2

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ1(P1), P1) ≤ (
1

1− a2
, 0) ≤ (Σ1, 0) ≤ (40, 0)
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If Σ1 ≤ 1
1−a2 and 1− a2 ≤ P̃1 ≤ 1

40

Upper bound: Since 1 − a2 ≤ P̃1 ≤ 1
40 ≤

1
max(1,Σ1) , we can plug t = P̃1 into Corollary 5.3

(5.11). Thus, we have

(Dσ1(P1), P1) ≤ (
2

P̃1

, P̃1).

If Σ1 ≤ 1
1−a2 and 1

Σ2
≤ P̃1 ≤ 1− a2

In this case, the lower bound of (10.138) can be further lower bounded by

DL(P1, P2) ≥ 0.009131

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ1(P1), P1) ≤ (
1

1− a2
, 0).

Ratio: c is upper bounded by

c ≤ 2

0.009131
< 220.

(ii-iii) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) = P̃2 >
1

Σ2

Lower bound: By Corollary 5.6 (a), we have

DL(P̃1, P̃2) ≥ 0.009131Σ2 + 1. (10.139)

If Σ2 ≥ 1
1−a2 , P̃1 ≤ 1

Σ2
and max(P̃1, P̃2) > 1

Σ2

The lower bound of (10.139) can be further lower bonded by

DL(P̃1, P̃2) ≥ 0.009131Σ2 + 1 ≥ 0.009131
1

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ2(P2), P2) ≤ (
1

1− a2
, 0).

If Σ2 ≤ 1
1−a2 , P̃1 ≤ 1

Σ2
and max(P̃1, P̃2) > 1

Σ2

Upper bound: Since we assumed Σ2 ≥ 40 in (ii), max(1,Σ2) = Σ2. Thus, we can plug

t = 1
Σ2

into (5.11) of Corollary 5.3, and conclude

(Dσ2(P2), P2) ≤ (2Σ2,
1

Σ2
).

Ratio: c is upper bounded by

c ≤ 2

0.009131
< 220.

(ii-iv) When P̃1 ≤ 1
Σ2

and 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1
Σ2
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Lower bound: Since 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1
Σ2
≤ 1

40 , by Corollary 5.6 (c) we have

DL(P̃1, P̃2) ≥ 0.001201

max(P̃1, P̃2)
+ 1. (10.140)

If Σmax ≥ 1
1−a2 , P̃1 ≤ 1

Σ2
and 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1
Σ2

In this case, the lower bound of (10.140) can be further lower bounded by

DL(P̃1, P̃2) ≥ 0.001201

max(P̃1, P̃2)
+ 1 ≥ 0.001201Σ2 + 1

≥ 0.001201Σmax + 1 ≥ 0.001201

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0).

If Σmax ≤ 1
1−a2 , P̃1 ≤ 1

Σ2
and 1

max(1,Σmax) < max(P̃1, P̃2) ≤ 1
Σ2

This case never happens since Σ2 ≥ max(1,Σmax).

If Σmax ≤ 1
1−a2 , P̃1 ≤ 1

Σ2
and 1− a2 ≤ max(P̃1, P̃2) ≤ 1

max(1,Σmax)

Upper bound: By plugging t = P̃max into (5.11) of Corollary 5.3, we have

(Dσmax(Pmax), Pmax) ≤ (
2

P̃max
, P̃max).

If Σmax ≤ 1
1−a2 , P̃1 ≤ 1

Σ2
and 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1− a2

In this case, the lower bound of (10.140) can be further lower bounded by

DL(P̃1, P̃2) ≥ 0.0012011

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0).

Ratio: c is upper bounded by

c ≤ 2

0.0012011
≤ 1700.

(ii-v) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) ≤ 1−a2

20

Lower bound: By Corollary 5.6 (d), we have

DL(P̃1, P̃2) ≥ 0.0869

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσmax(Pmax), Pmax) ≤ (
1

1− a2
, 0).
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Ratio: c is upper bounded by

c ≤ 1

0.0869
≤ 12.

(iii) When 40 ≤ Σ1 ≤ Σ2

(iii-i) When P̃1 ≥ 1
Σ1

Lower bound: By Corollary 5.6 (e), we have

DL(P̃1, P̃2) ≥ 0.2636Σ1.

If P̃1 ≥ 1
Σ1

and Σ1 ≥ 1
1−a2

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ1(P̃1), P̃1) ≤ (
1

1− a2
, 0) ≤ (Σ1, 0).

If P̃1 ≥ 1
Σ1

and Σ1 ≤ 1
1−a2

Upper bound: By plugging t = 1
Σ1

into (5.11) of Corollary 5.3, we have

(Dσ1(P1), P1) ≤ (2Σ1,
1

Σ1
).

Ratio: c is upper bounded by

c ≤ 2

0.2636
< 8.

(iii-ii) When 1
Σ2
≤ P̃1 ≤ 1

Σ1

Lower bound: Since 1
Σ2
≤ P̃1 ≤ 1

Σ1
≤ 1

40 , by Corollary 5.6 (b)

wehaveDL(P̃1, P̃2) ≥ 0.009131

P̃1

+ 1. (10.141)

If Σ1 ≥ 1
1−a2 and 1

Σ2
≤ P̃1 ≤ 1

Σ1

In this case, the lower bound of (10.141) can be further lower bounded by

DL(P̃1, P̃2) ≥ 0.009131Σ1 + 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ1(P1), P1) ≤ (
1

1− a2
, 0) ≤ (Σ1, 0).

If Σ1 ≤ 1
1−a2 and 1− a2 ≤ P̃1 ≤ 1

Σ1

Upper bound: By plugging t = P̃1 into (5.11) of Corollary 5.3, we have

(Dσ1(P1), P1) ≤ (
2

P̃1

, P̃1).

If Σ1 ≤ 1
1−a2 and 1

Σ2
≤ P̃1 ≤ 1− a2
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In this case, the lower bound (10.141) can be further lower bounded by

DL(P̃1, P̃2) ≥ 0.009131

1− a2
+ 1.

Upper bound: By Corollary 5.3 (5.10), we have

(Dσ1(P1), P1) ≤ (
1

1− a2
, 0).

Ratio: c is upper bounded by

c ≤ 2

0.009131
< 220.

(iii-iii) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) > 1
Σ2

Compared to the case (ii-iii), the only difference is the condition on Σ1. Moreover, since

the argument of (ii-iii) does not depend on the condition on Σ1, we can get the same bound on c

following the same argument as (ii-iii).

(iii-iv) When P̃1 ≤ 1
Σ2

and 1−a2

20 ≤ max(P̃1, P̃2) ≤ 1
Σ2

Compared to the case (ii-iv), the only difference is the condition on Σ1. Moreover, since

the argument of (ii-iv) does not depend on the condition on Σ1, we can get the same bound on c

following the same argument as (ii-iv).

(iii-v) When P̃1 ≤ 1
Σ2

and max(P̃1, P̃2) ≤ 1−a2

20

Compared to the case (ii-v), the only difference is the condition on Σ1. Moreover, since

the argument of (ii-v) does not depend on the condition on Σ1, we can get the same bound on c

following the same argument as (ii-v).
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