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Abstract

Information Flow in Linear Systems
by

Se Yong Park

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Anant Sahai, Chair

Modern control systems have their own unique features that distinguish them from classical
control systems. In many cases, there inherently exist multiple distributed controllers and so com-
munication networks can be introduced to connect them. Due to these features, it is challenging to
design efficient controller and transceivers for modern control systems. Practically, we must answer
questions like “How reliable do we need the communication channels to be to achieve the desired
control performance?”, “What information should be exchanged between controllers?” and “What
are the optimal controller and transceiver structures?” All these practical equations are related to
one theoretical question “Can we understand the information flows between controllers?” In other
words, the controllers communicate with each other explicitly through the communication networks
and also implicitly through the plants, and we have to understand this information flow for control.
In this thesis, we consider three seemingly simple but fundamental problems to understand explicit
and implicit information flows for control, as initial building blocks for a theory that we hope will
eventually lead to novel and efficient designs for modern control systems.

In the first technical chapter, we consider Kalman filtering problems when the observations
are intermittently erased or lost. Practically, this problem is the simplest model for the packet losses
that can happen in communication networks connecting distributed controllers. Theoretically, by
relating the erasure probability of the channel with the stability of the control system, we can
measure the minimum quality requirements for uncoded information that has to flow to stabilize
the system. It was known that the Kalman filtering estimates are mean-square unstable when the
erasure probability is larger than some critical value, and stable otherwise. But what that critical
value actually is has been open for years. Unlike prior work that tried to connect with Lyapunov
stability, we connect with observability to completely characterize the critical erasure probability.
We introduce a new concept of eigenvalue cycles which captures the periodicity of systems, and
characterize the critical erasure probability based on this. It is also proved that eigenvalue cycles

can be easily broken if the original physical system is considered to be continuous-time — randomly-



dithered nonuniform sampling of the observations makes the critical erasure probability almost surely
1

mea]? the best that could be hoped for even with arbitrarily complex coding. This implies that the
rank of the observability gramian can be thought of as the amount of information that the estimator
learns about linear systems, and nonuniform sampling helps maximize that rank. Furthermore,
different subspaces of the states can be thought of as the source of information flows and separated
as long as they belong to different eigenvalue cycles.

In the second technical chapter, to understand implicit information flows we consider dis-
tributed linear systems without explicit communication networks. To do this, we build a unified
view of both network coding and decentralized control. Precisely speaking, we consider both as
linear time-invariant systems by appropriately restricting channels and coding schemes of network
coding to be linear time-invariant, and the plant and controllers of decentralized control to be linear
time-invariant as well. First, we apply linear system theory to network coding. We introduce a novel
technique that we call Network Linearization. This technique gives a way of converting an arbitrary
relay network to an equivalent acyclic single-hop relay network. Based on network linearization, we
prove that the fundamental design limit, mincut, is achievable by a linear time-invariant network-
coding scheme regardless of the network topology. Unlike previous approaches relying on graph
theory, we use linear system theory and linear algebra, and exploit the fact that there can be mul-
tiple network representations for a given algebraic transfer function. For broadcast and unicast
problems, unintended messages at receivers turn out to be modeled as secrecy constraints after
network linearization.

Having built a linear-systems view of network coding, we turn it around to view decen-
tralized linear control systems. We argue that linear time-invariant controllers in a decentralized
linear system “communicate” via linear network coding to stabilize the plant. To justify this claim,
we revisit classical stabilizability results concerning fixed modes. We give an algorithm to “exter-
nalize” the implicit communication between the controllers that we believe must be occurring to
stabilize the plant. Based on this, we show that the stabilizability condition for decentralized linear
systems comes from an underlying communication limit, which can be described by the algebraic
mincut-maxflow theorem. With this re-interpretation in hand, we also consider stabilizability over
LTI networks to emphasize the connection with network coding. These results confirm the intu-
ition that there are implicit information flows in distributed control systems which we can visualize.
Moreover, the rank of subspaces are the proper measure of information for linear systems when we
consider stabilizability.

In the third and fourth technical chapters, we go beyond stabilizability and study how the
size of implicit information flows constrain the optimal control performance. To do this, we must
allow arbitrary controllers without imposing linearity constraints. In particular, we focus on scalar
decentralized average-cost infinite-horizon LQG problems with two controllers. For fast-dynamics
systems — when the eigenvalue of the system is large —, it is shown that the best linear controllers’

performance can be an arbitrary factor worse than the optimal nonlinear controller performance.



To understand the required nonlinearity in such control systems, we caricature bit-levels of the
states as different subspaces, and the rank of those subspaces as the amount of information. In
other words, we take a linear view of nonlinearity. Based on this insight, we propose a simple set
of finite-dimensional nonlinear controllers, and prove that the proposed set contains easy-to-find
approximately optimal strategies that achieve within a constant ratio of the optimal quadratic cost.
The insight for the nonlinear strategies comes from revealing the relationship between implicit infor-
mation flow in control and wireless information flow. More precisely, we discuss a close relationship
between the high-SNR limit in wireless communication and the fast-dynamics case in decentralized
control, and justify how the proposed nonlinear control strategy can be understood as exploiting a
kind of generalized degree-of-freedom gain in wireless communication theory. For a rigorous justifi-
cation of this argument, we develop new mathematical tools and ideas. We extend Witsenhausen’s
counterexample to MIMO (multiple-input multiple-output) Witsenhausen’s counterexamples, just
as wireless communication extends the scalar AWGN (additive white Gaussian noise) channel to
MIMO channels and from there, eventually tackles multi-terminal problems. To reveal the relation-
ship between infinite-horizon problems and generalized MIMO Witsenhausen’s counterexamples, we
introduce the idea of geometric slicing that plays a role like that of cut-set bounds in communica-
tion theory. To analyze nonlinear strategy performance, we introduce an approximate-comb-lattice
model for the relevant random variables. For the slow-dynamics cases — when the eigenvalue of
the system is small —, we prove that single-controller optimal strategies —linear strategies— are
constant-ratio optimal among all distributed control strategies.

Understanding the nature of information flow for control should eventually lead to a unified
theory for control and communication. We believe the parallelism between control information flow
and wireless information flow is not just a coincidence but strong evidence for such a unified theory.
However, still lots of concepts and ideas in control and communication remain separate and have
not been related — for example, secrecy, interference alignment, and scaling laws in communication.
Therefore, further research is required to continue uncovering the fundamental relationship between
control and communication. Moreover, we also have to think how to leverage this understanding
in practical system designs, and how to build efficient distributed controllers and transceivers for

modern control systems.
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Chapter 1

Introduction

A goal of both control and communication theory is building efficient systems. Control
theory studies how to achieve the best performance with minimum effort. Communication theory
studies how to convey information with minimum cost. In other words, both problems can in
principle be formulated as optimization problems, and communication problems may not have to be
distinguished from control problems. In fact, until the late 1940s, the concept of cybernetics [106]
had not distinguished control and communication as separate fields.

However, Shannon’s revolution [93] overturned this classical paradigm. Relying on the fact
that communication systems can switch much faster than human recognition, Shannon conceived
block-coding strategies. It was well-known that as the length of i.i.d. random variable sequences
gets longer, the empirical distribution converges to the probabilistic distribution. However, it was
only after Shannon’s novel application of this fact that the concept of entropy was discovered as a
useful measure of information (it had been an abstract and philosophical concept before). Since the
discovery of entropy, communication theory —information theory in a broader sense— has separated
from control theory and become an independent research area.

While information theory has been developing mathematical tools to quantify a philosophi-
cal concept of information, control theory has mainly focused on extending the classical optimization
framework and finding practical applications. However, intuitively information and control have to
be deeply connected, since to control a plant we first need information about the plant. This intuitive
connection motivated both information and control theorists to explore the relationships between
the two theories [109, 45, 89, 8, 97, 26, 67, 86, 37].

More importantly, a new concept of modern cyber-physical systems [96, 41, 57], which have
both control and communication parts in them, recently emerged. To properly understand these new
systems, the unification (at the very least, partial compatibility) of control and communication theory
is becoming crucial. Modern systems differ from classical control systems in two aspects. The first

difference is the inherent distributedness of the systems. Unlike classical centralized control systems,



Figure 1.1: An Artist’s Picture of Intelligent Transportation Systems [47]

as system size scales, it is becoming physically impossible to introduce centralized controllers. The
second difference is that since controllers are naturally distributed, wired/wireless communication
technology can be used to connect the distributed controllers.

Figure 1.1 shows an artist’s picture of intelligent transportation systems as an example of
modern systems. Until the last century, each vehicle had been considered as a separate system,
and controlled by one dedicated centralized controller. However, as the number of vehicles scales,
each vehicle starts to interact with (e.g. potentially collide with) each other. One goal of intelli-
gent transportation systems is to design controllers which avoid negative interactions (e.g. avoid
collisions) between the vehicles. To design such systems from a control-theoretic point of view, we
can no longer consider different vehicles as separate systems. We have to model all the vehicles
collectively as one big plant. The individual controllers dedicated to different vehicles should be
thought of as distributed controllers with partial information (around the corresponding vehicle)
and partial control (over the corresponding vehicle) of the big plant. Furthermore, we can employ
current wireless communication technologies to connect these distributed controllers to share their
information as well as having them using sensors to view each others’ actions.

However, control theory and the mathematical tools that currently exist are not enough to
decisively address core practical engineering questions in the design of these modern systems. For
example,

e How much wireless spectrum do we have to allocate for communication?

e How can we guarantee the stability of systems?

e How should we process communication and control signals?

e What kind of architecture should be used for controllers, and for communication for control?
Furthermore, the distributed nature of systems and interwoven communication networks are also
found in other modern systems including the smart grids [51], manufacturing [13], civil infrastruc-

ture [111], and health care [58].
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Figure 1.2: A Conceptual Diagram of Modern Cyber-Physical Systems

Therefore, to answer such fundamental questions about modern control systems, we have to
build a new theory that embraces both control and communication theory. Modern systems can be
represented by the conceptual diagram of Figure 1.2. In Figure 1.2, we can see multiple controllers
with partial information and control interacting with one big plant which models whole physical
systems. One big communication network which includes all individual channels/links between the
controllers is also shown in the diagram.

The main difference between classical centralized and modern distributed systems is infor-
mation flows. In classical centralized systems, the conceptual information flow for control is simple
enough to be ignored. Information (or uncertainty) is generated at the plant, flows to the controller
as the controller observes the plant, and dissipates as the controller controls the plant (and thereby
removes uncertainty at the plant) [67]. Furthermore, within the controller, classical control theory
assumes every component is connected with infinite capacity, perfectly reliable, and zero-delay links.
Therefore, there was no need to even measure the information flow required to control systems.

However, this is not the case for modern distributed systems. In modern control systems,
controllers consist of lots of different components, which might be connected by shared communica-
tion buses with bounded-capacity or unreliable communication channels. Therefore, each controller
has only partial information about the plant, and they may want to communicate with each other to
reduce the uncertainty that each faces. This communication can be done both explicitly through the
communication network and implicitly through the plant — this point will be clarified in Chapter 3.
In other words, the information generated at the plant is distributively observed and controlled
by multiple controllers, and flows through different controllers until it is actually dissipated by the
control. As a result, even finding a conceptual flow diagram corresponding to a specific uncertainty
is challenging. Measuring information flows for control, and thereby characterizing the tradeoff
between control performance and channel quality becomes practically important.

In short, to understand modern distributed systems from a control-theoretic point of view,
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Figure 1.3: A Conceptual Diagram of Control-Over-Communication-Channel Systems

we have to understand information flows for control and develop mathematical tools to measure
them. To further this end, we take a bottom-up approach. Since modern control problems are too
complicated to tackle directly, we will consider simpler but canonical problems which capture some
essential aspects of the original problems. By doing this, we expect to find the fundamental nature
of the problems in minimal form.

The first simpler problem is control over a communication channel [97]. As shown in
Figure 1.3, there are only two controllers in this problem. One controller, which we call the observer,
can only observe the plant, and the other controller, which we call the actuator, can only act on
the plant. Therefore, to control the system, the observer has to communicate information to the
actuator. Since the explicit communication channel is the only medium which connects these two,
the information for control has to flow through this explicit communication channel. By relating
the reliability of the communication channel with the control performance, we can expect to find a
proper measure of information for control [87].

The second simpler problem is distributed control without communication networks, as
shown in Figure 1.4. Of course, modern cyber-physical systems are equipped with communication
networks. However, to make the best use of the communication networks, we have to decide what in-
formation to send. Understanding control information flow without explicit communication networks
can be greatly helpful in making such decisions by providing a baseline against which improvement
can be evaluated. After all, systems with communication networks are only more complicated than
systems without communication networks.

The challenge is that when there are no communication networks, information for control

must flow implicitly through the plant. In other words, controllers can embed information in their
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Figure 1.4: A Conceptual Diagram of Distributed Systems without Communication Networks

actions. Then, the information will be temporarily stored in the plant until another controller
receives this information by its observations. Therefore, by studying this problem, we can understand
how information flows in systems with multiple controllers.

However, even though the concept of information flow for control sounds simple and the
diagrams of Figure 1.3 and 1.4 look simple, getting a mathematical or even qualitative formulation
of the concept is challenging. First of all, the classical notions of entropy and Shannon capacity
are not enough to measure the amount of information for control [86]. One crucial assumption
in deriving entropy and capacity for communication systems is the assumption that delay is not
important. Electromagnetic waves propagate at the speed of light and VLSI chips process signals
at giga hertz. Therefore, when the source or the destination of information is a human whose
recognition cycle is much slower than chip speeds, we can tolerate long delay assumptions. However,
in modern cyber-physical control systems, the sources and destinations are physical systems which
can operate much faster than humans and evolve over time [98]. Furthermore, as the system scales,
more and more controllers share a common communication network. Communication delay could
increase significantly due to congestion, and information could even be lost in the communication
network. Therefore, we have to define a proper notion of information that takes into account delay
and unreliability in communication and the dynamics of plants.

Second, when there exist multiple controllers, finding information flow paths can be chal-
lenging. The conceptual information path in the system of Figure 1.3 looks obvious since one
controller can only observe and the other controller can only act. However, when there are multiple
controllers which can both observe and act on the plant like the system of Figure 1.4, finding a
conceptual information path is not trivial. It is not clear what the sources, relays and destinations
of information are. Without a conceptual picture of information flow, it is impossible to understand
how information is generated, propagated and dissipated in control systems.

To make progress on these challenging problems, we restrict attention to linear systems



as models of plants. Linear systems are the first order approximation of general systems. More
importantly, when the systems are linear we can expect to apply the well-developed mathematical
tools in linear algebra. For these reasons, in classical control theory linear systems have been used

as the first step towards general systems.
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Figure 1.5: (a) Closed-Loop Control System diagram of “Control over Real Erasure Channels” and

(b) Equivalent Open-Loop Estimation System diagram of “Intermittent Kalman Filtering”

1.1 Intermittent Kalman Filtering

In Chapter 2, we will first study intermittent Kalman filtering [95] as a simple toy for
abstracting an important piece of control-over-communication-channel problems. As mentioned
above, in modern distributed systems, the observer and controller can be located in separate places
and connected by unreliable wireless communication channels. Characterizing the tradeoff between
control performance and communication channel reliability is a common interest in both control and
communication. One of the simplest model for unreliable communication channel is the real erasure
channel shown in Figure 1.5a, where the transmitted packet can be lost with a certain probability.

This real erasure channel has both practical and theoretic importance. Practically, the real
erasure channel is the simplest toy model for channel fading in wireless communication and packet
losses in networks [90]. Theoretically, this system shows that the classical Shannon capacity is not
enough to measure information flow for control [87]. Since there is no additive noise and no power
constraints on the channel, the classical Shannon capacity of the real erasure channel is infinite.
However, the analysis of its performance shows the system can be unstable for sufficiently large

erasure probability. Furthermore, [27] found that the maximum erasure probability that systems



can tolerate is upper and lower bounded in terms of the largest eigenvalue and the product of all
eigenvalues respectively. Therefore, the questions is “Are states amplified through all eigenvalues,
or only one or a subset of eigenvalues?” In other words, how do the subspaces of the plant interact
with each other when they play a role as information source? Therefore, a proper understanding of
this simple model can be a key to understand nature of plants as the sources of control information
flows.

The control-estimation separation principle [55] suggests looking at the open-loop estima-
tion system shown in Figure 1.5b as a simplified problem of the original closed-loop control system,
focusing on the pure estimation part of the problem. Furthermore, by restricting the observer to be
linear time-invariant, the optimal control problem reduces to a seemingly simple variation of Kalman

filtering. Formally, the resulting intermittent Kalman filtering problem is written as follows:
x[n 4 1] = Ax[n] + w[n]
yln] = Bln](Cx[n] + v[n])

The vector x[n] models the states of the plant, and the estimator try to estimate the states based on
the observation y[n]. Just as in classical control theory, Gaussian random variables w[n] and v[n] are
introduced to model uncertainty in the control system. However, unlike classical control problems,
Bernoulli random variables 3[n] are also introduced to model the unreliability in the communication
channel.

Even though Kalman filtering gives the optimal estimator, the analysis of its performance is
still beyond our understanding. Even the simple but fundamental question “When can we stabilize a
plant over an erasure channel?” had been open for years. In Chapter 2, we will answer this question
by taking a different approach from the existing literature. While the existing literature attempted
to extend Lyapunov stability [95, 27], we generalize observability concepts to definitively answer this
question.

We conceptualize the states as the source of control information flow. Again, the key
question is to what extent the states of the plant interact as information sources [27]. To answer this
question, we introduce a new notion called eigenvalue cycles. Borrowing linear algebra concepts, we
consider different subspaces of the states as different messages at the source, and measure the size
of the messages by the rank of the subspaces. Then, we prove that each subspace of the states can
be separated as long as states do not belong to the same eigenvalue cycles, i.e. they do not interact
with each other much except when eigenvalue cycles are present. Thus, the original system can be
divided into subsystems with smaller dimensions.

The observability gramian of the system can be thought of as a channel which conveys
information about the system. Since the amount of source information can be measured by the rank,
the rank of the observability gramian has to be large enough to convey enough information about
the states. Based on this intuition, we analyze the stopping time until we get enough information

about the states, which leads to the characterization of observability of the system.
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Figure 1.6: Equivalence between Stabilizability of Distributed System with LTI controllers and

Capacity of Relay Communication Network

Furthermore, to mathematically justify these insights, we make novel use of information-
theoretic ideas. To justify that the original system can be separated into subsystems, we adapt
successive decoding [21] and function decoding [74] ideas from modern network information theory.
To analyze the stopping time for the observability gramian, we apply large-deviation ideas [24] of
information theory.

One of the most counter-intuitive consequences from these insights is that nonuniform
sampling can dramatically increase the system robustness. Only the periodicity of the system
can make the observability gramian extra-susceptible to becoming rank deficient. However, this
periodicity of the system can be easily broken by introducing non-uniform sampling at the observer.
With non-uniform sampling, the interaction between the subspaces of the plant can be alleviated.
Therefore, the original multi-dimensional system behaves like a collection of simple scalar systems,
and the system robustness to channel unreliability can be greatly improved.

This result shares the same spirit as that of compressed sensing [15, 25] where nonuniform
sampling or “unstructured” observation matrices are required for optimal recovery. Practically, this
idea of nonuniform sampling might be easily implementable. Theoretically, this result also hints at

a new general notion of stochastic observability.

1.2 Network Coding meets Decentralized Control

To a centralized observer, the subspaces of the plant do not interact except when eigenvalue
cycles make a particular subspace more fragile in terms of the reliability needed. So what about in
distributed control systems? Are the different subspaces kept separate? To answer this question, in
Chapter 3, we will consider distributed control systems with multiple controllers. We will see that
the subspaces associated with different eigenvalues can still be separated, and the amount of infor-
mation in linear systems can still be measured by the rank of subspaces. As mentioned above, when

there are multiple controllers, the information flows between controllers are much more complicated,
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Figure 1.7: (a) An example of distributed control system and (b) The corresponding information

flow to stabilize x1[n]

and even finding the flows is not trivial. To simplify the situation, in Chapter 3, we will consider dis-
tributed control systems without communication networks. Even without communication networks,
the controllers can “implicitly” communicate through the plant. This implicit communication can
be much harder to understand than explicit communication via dedicated communication networks.

To understand information flows in distributed systems, we will take a unified approach to
control and communication theory. We intuitively believe that when control systems are stabilized,
there should be corresponding information flows. As shown in Figure 1.6, we will discover an
interesting relationship between distributed linear control systems and linear relay communication
networks by considering both as linear systems. We will find an algorithm that relates implicit
information flows in control systems with explicit information flows in communication systems.

Recently, the information theory community discovered a new paradigm of network coding
in understanding information flows in communication networks [1]. In classical communication
networks, relays only route their observed signals, while in the network-coding paradigm, relays
are allowed not only to route but also to process the signals. Moreover, the information theory
community found that there can be a significant gain by allowing such processing [1].

However, this paradigm of processing observations is not a new idea in control theory. All
linear controllers inherently mix their observations. Therefore, we can suspect that there might
fundamental relationships between control and communication theory.

First, we take a system-theoretic approach to network communication problems. Classi-
cally, communication networks are represented by graphs. The flows of graphs are defined as the
amount of commodity that we can transfer through the graph, and the cut-values of graphs are
defined as the number of edges that go through the cut. Then, the famous graph-theoretic mincut-
maxflow theorem [31, 28] reveals that the maximum flow of the graph is equal to the minimum cut of
the graph. Furthermore, it was well-known that the mincut is achievable by a static routing scheme,

which can be efficiently found by the Ford-Fulkerson algorithm.
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However, this graph-theoretic representation of communication networks turns out to be
insufficient to model “wireless” communication networks where the signals can be superposed and
broadcast by nature. Instead, the connections between the nodes in the network need be modeled
by LTI filters. Then, the classical graph-theoretic mincut-maxflow theorem also generalizes to these
LTI communication networks [6]. The flow of LTI networks is the rank of the transfer functions,
and the cut value of LTI networks is the rank of the channel matrix of the cut. In other words,
the information can be measured by the rank of a subspace, which is consonant with the insight of
Chapter 2. Then, the maxflow of LTI networks is still equal to the mincut [6]. However, the existing
proofs [6, 36, 2, 112] heavily depended on the so-called network unfolding idea [1, 6] which converts
general topology networks to layered networks by introducing duplicated nodes over time. As a
result, when we fold the layered network back to the original network, even time-invariant schemes
in the layered networks become time-varing schemes. It was not clear that we can achieve the mincut
of the network even if we restrict the relays to use time-invariant static mix-route schemes.

The difficulty in justifying such a theorem is because the topology of LTI networks can
be arbitrarily complicated and can include cycles. To handle this difficulty, we consider LTI com-
munication networks as linear systems, and adapt the state-space representation idea from control
theory (linear system theory). We find an algorithm that converts an arbitrary LTI network to a
standardized single-hop relay network without changing the time-invariantness of systems. Based on
this algorithm, we prove that there exists a static LTI relay scheme that achieves the mincut of LTI
networks with static LTI channel operations. In fact, this algorithm can be thought of as a “canon-
ical” state-space representation for LTI networks. Just as we can write all LTI control systems in
state-space representation, we can also covert all LTI networks into a standardized single-hop relay
network. Furthermore, for general network communication problems like broadcast and unicast,
it turns out that unwanted messages at receivers can be modeled as secrecy constraints after the
conversion of the networks.

Then, we apply communication theory to understand implicit information flows in dis-
tributed control systems. We consider the stabilizability condition for distributed linear systems

with LTT controllers. Formally, the system can be written as

x[n] = Ax[n] + Byuy[n] + - - - + Byuy[n]

yi[n] = C1x[n]

yv[n] = Cyx[n].

Here, u;[n] is (h; * y;)[n] where h;[n] is the causal LTI impulse response of the ith controller and *
stands for convolution.
It has been well-known that the stabilizability can be characterized using the concept called

fized modes [104]. A is called a fixed mode of system if A € Ng,0(A + >, <,<, BiK;C;) where o()
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is the set of eigenvalues of the matrix. In [104], it was shown that if there exists a unstable fixed
mode, the system is unstabilizable. In [4], an equivalent condition was discovered in a matrix rank
form, which does not involve control design parameters K; in the characterization. It was proved
A—- X By

Cye 0
In Chapter 3, we revisit this result and leverage it to reveal the information flow required to

that A is a fixed mode if and only if minycy;.... ) rank < rank(A).

stabilize a system. Figure 1.7a shows a descriptive example of implicit communication to stabilize
the system. As we can see, the state x1[n] is only observable by controller 1 while controllable
by controller 2. Therefore, to stabilize the state x1[n], the controller 1 has to communication to
the controller 2 through the state x3[n]. Figure 1.7b shows the corresponding information flow to
stabilize x1[n].

The source of the information flow can be thought of as x1[n]. Then, the information is
relayed through controller 1 and 2, which are connected by the channel x5[n]. Finally, it arrives at
the destination x4 [n]. Thus, the source and destination of information flow is the state to stabilize.
The controllers are the relays of the network. The remaining states can be thought of as the channel.
This answers the basic question we started with: the other states act as information conduits.

Furthermore, in Chapter 3, we will see that the state is stabilizable if and only if the cor-
responding communication networks have enough capacity. In other words, for a given unstable
eigenvalue, the minimum information required to stabilize that eigenvalue is the rank of the corre-
sponding subspaces (the number of Jordan blocks associated with the eigenvalue). Furthermore, we
can construct a relay communication network by considering the remaining states as channels and
the controllers as relays. Then, it can be shown that the states corresponding to the unstable eigen-
value are stabilizable if and only if the mincut of the constructed relay network is larger than the
rank of the unstable subspaces (the number of Jordan blocks). This result justifies the intuition that
to stabilize the control system there has to be a corresponding information flow. More importantly,

the controllers “communicate” with each other via robust network coding [52].

1.3 An approximate solution to the decentralized two-controller

infinite-horizon scalar LQG problem

The linear story definitely establishes that information must flow between controllers in
distributed LTI systems. The remaining question is “How much do information flows affect the
system performance?” To answer this equation, in Chapter 4 and 5, we study optimal control. To
study optimal performance, we must relax LTI controller constraints and allow arbitrarily compli-
cated nonlinear or time-varying controllers. By studying optimal control performance, we expect to
develop a mathematical and analytic way to quantify control information flows, and understand the

impact of “implicit” communication on control performance. This is practically important because
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Figure 1.8: (a) Witsenhausen’s counterexample, (b) Generalized MIMO Witsenhausen’s counterex-

ample, and (c) infinite-horizon LQG control problem.
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it can help to understand what are the bottlenecks to performance, and the extent to which these
bottlenecks are informational. Then, the use of explicit communication channels might help reach
better performance by bypassing those bottlenecks. Since general problems are too difficult, we
focus on the simplest nontrivial problem which shows the basic issue — the infinite-horizon LQG
(linear quadratic Gaussian) problem with a scalar plant and two controllers. Formally, the system

is given as follows.

z[n + 1] = ax[n] + u1[n] + uzn] + win)

y1[n] = z[n] + vi[n]

ya[n] = z[n] + va[n]

where w(n], vi[n], ve[n] are Gaussian random variables. wj[n], uz[n] must be causal functions of
y1[n], y2[n] respectively. The control objective is minimizing the following long-term average cost.
limsup = 3 qE[2[n]] + riElul[n]] + rE[uZn]
N—oo 1<n<N

The main inspiration is an interesting relationship between Witsenhausen’s counterexam-
ple [108] and the infinite-horizon LQG problem. Figure 1.8a shows a conceptual diagram of Witsen-
hausen’s counterexample. Witsenhausen’s counterexample is also a LQG (linear quadratic Gaussian)
problem, but with a (very) finite time-horizon. The first controller acts at the first time step, the
second controller acts on the second, and then the system terminates. Thus, the first controller can
embed information about its observation in its control input to signal to the second controller [45].
This control-communication dual role of the control input is the crux of the problem, and Witsen-
hausen’s counterexample has been known as the simplest intractable counterexample in distributed
control 77, 59)].

However, in [39] its relationship with a modern communication problem (dirty paper cod-
ing) was revealed. Based on this connection, a nonlinear signaling strategy with theoretical perfor-
mance guarantees was proposed. By adapting large deviation ideas [24] in information theory, [37]
showed that the proposed strategy is approximately optimal.

In Chapter 4 and 5, we will leverage this understanding to infinite-horizon problems. As
we can see in Figure 1.8b, the original Witsenhausen’s counterexample can be generalized to MIMO
Witsenhausen’s counterexamples by extending the time-horizon and introducing more observations
and control inputs. As we can easily see in Figure 1.8c, these MIMO Witsenhausen’s counterexamples
are sub-blocks of the infinite-horizon LQG problem. Therefore, we explore this intuition and find a
set of constant-ratio-optimal strategies.

To make the connection between MIMO-Witsenhausen and infinite-horizon problems rig-
orous, we came up with a simple but powerful idea of geometric slicing of problems, which we believe
to be the proper way of generalizing information-theoretic cutset bounds to dynamic programming
contexts. More importantly, an extensive relationship between wireless communication and decen-

tralized control problems becomes revealed. Conventionally, wireless communication theory divides
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cases into high-SNR(signal-to-noise ratio) and low-SNR [99]. We discover that the control problems
can be also divided into fast-dynamics and slow-dynamics according to the eigenvalues of the system.
The implicit information flow in fast(slow) dynamic systems is parallel to the explicit information
flow in high(low)-SNR communication systems.

In the fast-dynamics case, we relate the problem to a binary deterministic model [6] first
proposed to study information flow in relay communication systems. We conceptualize each bit
level of the scalar state as different subspace. Then, two controllers with different observation noise
levels can be thought of as observing different subspaces. Thus, the information from the scalar
state to controllers can still be measured by the rank of subspaces. The strategy which utilizes the
maximum rank of these information turns out to be approximately optimal. Furthermore, in this
sense, this control strategy can be thought of as a parallel to the maximum d.o.f. strategy in wireless
communication.

In the slow-dynamics case, the maximum-ratio-combining [99] of the observations turns out
to be crucial. Therefore, Kalman filtering of the observations is necessary to achieve constant-ratio
optimality, while implicit communication between the two controllers is not required. In this sense,
this control strategy parallels with the maximum-ratio-combining decoder in wireless communication

which exploits the power gain of the signals.

1.4 Future Research

By studying these three simple problems, we begin to understand the nature of information
flow for control. Control information flow has its own unique features, but also has similarity to
communication information flows. Therefore, current understanding of communication information
flows can help to understand control information flows. Especially, we see a striking parallelism be-
tween information flows in distributed control and wireless communication systems, and we expect
more extensive relationships between control and communication theories will be revealed in future
work. Therefore, it will be worth studying how the concepts and ideas from one theory can be
properly ported to the other. For example, the information-theoretic-secrecy concept [94] in com-
munication has to be properly converted to secure distributed control [16]. The scaling laws in large
wireless communication systems [40] may lead to scaling laws for large distributed control systems.
The interference-alignment idea [14, 63] in wireless communication theory is one of the fundamental
ideas that has to be infused into distributed control theory. Meanwhile, dynamic programming [11]
and delay [85] concepts in control theory also have to be integrated into communication theory. We
strongly believe that by studying such relationships we can eventually come up with a unified theory
for control and communication. Based on this unified theory, we will truly understand the nature
of distributed systems, which will lead to novel and efficient distributed control system designs in

practice.
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Chapter 2

Intermittent Kalman Filtering

2.1 Introduction

Unlike classical control systems where the controller and the plant are closely located or
connected by dedicated wired links, in post-modern systems the controllers and plants can be located
far apart and thus control has to happen over communication channels. In other words, there is an
observer which can only observe the plant but cannot control it. There is a separate actuator which
can only control the plant but cannot observe it. The observer and actuator are connected by a
communication channel. Therefore, to control the plant the observer has to send information about
its observation to the actuator through the communication channel. Understanding the tradeoff be-
tween control performance and communication reliability or finding the optimal controller structures
become the fundamental questions to build such post-modern control systems.

Not only practically, but also philosophically, control-over-communication-channel prob-
lems are important. When we are controlling systems, there is a corresponding life cycle of infor-
mation. In other words, the uncertainty or new information is generated and disturbs the plant.
This information is propagated to the controller as the controller observes the plant. Finally, when
the controller controls the system by removing the uncertainty, the information is dissipated. It
is conceptually very important to understand and quantify these information flows which naturally
occur as we control systems. In control-over-communication-channel systems, all the information for
control has to flow through the communication channel. Therefore, by relating the communication
channels with the control performance, we can measure how much information has to flow to achieve
a certain control performance.

The theoretical study of control-over-communication-channel problems was pioneered by
Baillieul [9] and Tatikonda et al. [97]. They restricted the communication channels to noiseless
rate-limited channels, and asked what the minimum rate of the channel is to stabilize the plant.

They found that the rate of the channel has to be at least the sum of the logarithms of the unstable
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eigenvalues, and indeed it is sufficient. This fact is known as the data-rate theorem. Later, Nair [70]
relaxed the bounded disturbance assumption that they had to Gaussian disturbances, and proved
that the same data-rate theorem holds.

However, an important question was whether we can reduce noisy communication channels
to noiseless channels with the same Shannon capacity, i.e. whether the classical notion of Shannon
capacity is still appropriate when the channel is used for control. In [86], Sahai et al. found the
answer for this question is no. Intuitively, since the system keeps evolving in time, not only the rate
but also the delay of communication is important. Since Shannon capacity ignores the delay issue,
it is insufficient for understanding information flows for control. Thus, they proposed a new notion
of anytime capacity which captures the delay of communication. The stabilizability condition for
noisy communication channels with feedback! was characterized by anytime capacity.

Since then, researchers have accumulated lots of papers [44, 90, 71, 64, 42, 118, 120] which
consider various generalized and related problems. However, still most of the problems are wide
open, and the intermittent Kalman filtering problem which we will study in this chapter had been
one of them. In [95], Sinopoli et al. considered ‘control over real erasure channels’ which can be
thought as a special case of [86], but with a structural constraint on controller design.

Figure 2.1 shows the system diagram for control-over-real-erasure-channels. The observer
makes observations about the plant, and then uncodedly transmits its observation through the real
erasure channel. The real erasure channel drops the transmitted signal with a certain probability but
otherwise noiselessly transmits the signal. Finally, based on the received signals from the channel,
the controller generates its control inputs to stabilize the system.

The situation that this problem is modeling is that of control over a so-called packet drop
channel. A memoryless observer samples the output of an unstable continuous-time system, quan-
tizes this sample to a sufficient number of bits, binds the resulting bits into a single packet, and
transmits the packet to the controller through a communication system. Due to network congestion
or wireless fading, the transmitted packet may be lost? with a certain probability and this packet
erasure process is further simplified to be i.i.d. The problem is designed to focus attention on the
delay /reliability effect of losing packets and so the number of bits per packet (capacity) is uncon-
strained. The main problem is finding what is the maximum tolerable erasure probability keeping
the system stable.

The linearity and memorylessness of the observer is at the heart of what Sinopoli et al. are
trying to model. Otherwise, the earlier results of [87] immediately reveal that the critical erasure
probability for stabilizability only depends on the magnitude of the largest eigenvalue of the plant.

However, to achieve the minimal erasure probability shown in [87], the observer and controller design

1By introducing feedback, they reduced the problem to one with nested information structure [109] which is known
to be much easier to solve in decentralized control theory. Especially, when the driving disturbance for the plant has
bounded support, the plant can be used as implicit noiseless feedback channel. [87]

2Such losses need not come from network effects — they could also occur because of sensor occlusion or otherwise
at the sampling time itself. That is why the issue of intermittent observations needs to be studied on its own.
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PLANT ufn]
x[n + 1] = Ax[n| + Bw[n] + u[n]

Observer Yo[n] y[n] | Controller
Yoln] = Cx[n] + v[n]

0 w.p. pe
1 otherwise

Figure 2.1: Closed-loop system for ‘control over real erasure channels’. Here, the observer just passes

its observation to the channel without any coding.

has to be quite complicated and may not be realistic in practice. Therefore, it is practically and
theoretically important to understand how much the control performance degrades when we impose
linear observer and controller constraints.

In this chapter, we will see that the degradation of stabilizability due to linear constraints
fundamentally comes only from the periodicity of the system. Nonuniform sampling is proposed
as a simple way to force the system to behave aperiodically. Therefore, by using linear controllers
in a junction with nonuniform sampling, we can expect a significant performance gain and indeed
recover the optimal stabilizability condition over all possible controller designs.

Furthermore, by the estimation-control separation principle [55], the closed-loop control
system can be reduced to an equivalent open-loop estimation problem [90]. Figure 2.2 shows the
resulting open-loop estimation system so-called intermittent Kalman filtering [95]. As before, the
sensor uncodedly transmits its observation to the real erasure channel. Then, the estimator tries to
estimate the state based on its received signals. We refer to [90] for a literature review and practical
applications of the problem.

This chapter is organized as follows: First, we formally state the problem in Section 2.2.
Then, we introduce some definitions in Section 2.3. In Section 2.4, we consider intermittent ob-
servability as a connection of stability and observability. From this, we distinguish our approach
to the previous approaches. In Section 2.5, we introduce some intuition for the characterization of
the intermittent observability by using representative examples. In Section 2.6, we formally define
eigenvalue cycles and characterize the intermittent observability. In Section 2.7, we discuss how
nonuniform sampling can break eigenvalue cycles and significantly improve the robustness of the

intermittent Kalman filtering. Finally, Section 2.8 gives the proof of the main results.
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PLANT || SENSOR Yolnl o ¥ Estimator
x[n+ 1] = Ax[n] + Bw(n] Yo[n] = Cx[n] + v{n] E [x[n][y"]

0 w.p. pe
1 otherwise

Figure 2.2: System diagram for ‘intermittent Kalman filtering’. This open-loop estimation system
is equivalent to the closed-loop control system of Figure 2.1. Like Figure 2.1, the sensor bypasses its

observation to the channel without any coding.

2.2 Problem Statement

Formally, the intermittent Kalman filtering problem is formulated as follows in discrete

time:
x[n + 1] = Ax[n| + Bw|n] (2.1)

yln] = B[n] (Cx[n] + v[n]). (2.2)

Here n is the non-negative integer-valued time index and the system variables can take on
complex values — i.e. x[n] € C™, wln] € C9,y[n] € Cl,v[n] € Cl. A € C™*™, B € C™*9 and
C € C*™. The underlying randomness comes from the initial state x[0], the persistent driving
disturbances w(n], the observation noises v[n] and the Bernoulli packet-drops 8[n]. S[n] = 0 with
probability p.. x[0], w[n] and v[n] are jointly Gaussian.

The objective is to find the best causal estimator X[n] of x[n] that minimizes the mean
square error (MMSE) E[(x[n] — X[n])T(x[n] — X[n])], i.e. X[n] = E[x[n]|y"]. We assume that the
statistics of all random variables are known to the estimator. If x[0], w[n] and v[n] do not have zero
mean, the estimator can properly shift its estimation. Thus, without loss of generality, x[0], w[n]
and v[n| are assumed to be zero mean. x[0],w[n] and v[n] are independent and have uniformly

bounded second moments so that there exists a positive o2 such that

E[x[0]x[0]T] < oI (2.3)

To prevent degeneracy, we also assume that there exists a positive ¢’ such that 3

E[w[n]w[n]] = oI (2.4)

E[v[n]v[n]] = "1

3The second condition on v[n] may seem redundant, and v[n] = 0 is enough since at each time the new disturbance
win] is added. However, when v[n] = 0, we can make the following counterexample in which the estimation error

of the state is bounded even if the system matrices (A, C) are not observable: A = {(2) ﬂ ,B = [ﬂ ,C = [O 1].

Thus, this assumption is usually kept in the analysis of Kalman filtering including [55, p.100].
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Under these assumptions we call (2.1) and (2.2) an intermittent system.

Definition 2.1. The linear system equations (2.1) and (2.2) with the second moment conditions (2.3)
and (2.4) are called an intermittent system (A,B,C), or an intermittent system (A,B,C)
with erasure probability p. when we only want to specify the erasure probability, or an inter-
mittent system (A, B, C,c,0’) with erasure probability p. when we specify the upper and lower

bounds on disturbances as well.

We say that an intermittent system is intermittent observable if the MMSE is uniformly

bounded for all time.

Definition 2.2. An intermittent system (A, B, C,o0,0’) with erasure probability p. is called inter-

)
mittent observable if there exists a casual estimator X[n| of x[n] such that

25H@M—§MV&M—§MH<w-

Before we discuss truly intermittent cases, let’s consider two extreme cases, when p, = 1
and p. = 0, to get some insight into the problem. When p. = 1, the estimator does not have
any observations. As a result, the system can be intermittent observable if and only if the system
itself is stable. On the other hand, when p. = 0, the estimator has all the observations without
any erasures. Intermittent observability reduces to observability. Thus, intermittent observability
can be understood as a new concept which interpolates two core concepts of linear system theory:
stability and observability.

Moreover, in intermittent systems, we can see the monotonicity of performance with the
erasure probability p.. A process with higher erasure probability can be simulated from a process
with lower erasure probability by randomly dropping the observations. Therefore, it is obvious that
the average estimation error is an increasing function on p.. Especially, if we consider an unstable
but observable system, when p. = 1 the estimation error goes to infinity, and when p. = 0 the
estimation error is bounded. Therefore, between 1 and 0 there must be a threshold on p, when the

estimation error first becomes infinity.

Theorem 2.1 (Theorem 2 of [95]). Given an intermittent system (A,B,C,o,0’) with erasure
probability p., let (A, B) be controllable*, o < oo, and o’ > 0. Then, there exists a threshold p, such
that for p. < pt the intermittent system (A, B, C,o,0’) with erasure probability p. is intermittent
observable and for p. > p% the intermittent system (A, B, C,0,0") with erasure probability p. is not

intermittent observable.

Therefore, the characterization of intermittent observability reduces to the characterization
of the critical erasure probability p;. For characterizing the critical erasure probability, we can

consider it as a generalization of either stability or observability.

4See Definiton 2.3 for controllability.
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In [95], Sinopoli et al. thought of intermittent observability as a generalization of stability.
Based on Lyapunov stability, they could find a lower bound on the critical erasure probability in a
LMI (linear matrix inequality) form. However, this bound is not tight in general and does not give

any insight into the solution. A more intuitive bound can be found in [27].
Theorem 2.2 (Corollary 8.4 of [27]). Given an intermittent system (A,B,C,o,0’) with erasure

probability p., let (A, B) be controllable, o < 0o, o’ > 0, and (A, C) be observable. Then,

. << ——
Hi|Ai|2 =Pe = |>\7naz|27

where \; are the unstable eigenvalues of A and Ay qx is the one with the largest magnitude.

Therefore, the critical erasure probability characterization boils down to understanding

where the gap between 8 |1)\1_|2 and \/\mlazlz comes from.

In [113], Mo and Sinopoli found two interesting cases that give further insight into this
question. The first is when A is diagonalizable and all eigenvalues of A have distinct magnitudes —
then the critical erasure probability is m just it would be in the formulation of [87]. The second

0

2
case is when A = L) ] and C = [1 1} — the critical erasure probability is ﬁ = 5. This

second case showed that the gap is real and requiring packets to be about a scalar observation can
have serious consequences.

To extend these cases and solve the general problem, we will apply insights from observ-
ability and introduce the new concept of an eigenvalue cycle. As a corollary, we show that in the
absence of eigenvalue cycles the critical value becomes m Furthermore, we show that simply
by introducing nonuniform sampling to the sensor, eigenvalue cycles can be broken and the critical
erasure probability becomes effectively m

These results can be surprising if we remember that computing random Lyapunov expo-
nents are difficult problems in general [100]. However, the intermittent Kalman filtering problem
turns out to have a special structure which makes the problem tractable. Precisely speaking, as
we will see in Section 2.5.3, appropriate subspaces of the vector state can be separated asymptot-
ically. To justify such separation, we use ideas from information theory (for example, decoding
functions [74] or successive decoding [21]). Therefore, the whole system can in effect be divided into
parallel sub-systems. As we will see in Section 2.5.1, each sub-system can be solved using ideas from

large deviation theory [24].

2.3 Definitions and Notations

Before we start the formal discussion of the problem, we first have to introduce mathemat-
ical definitions and notations.

We will use controllability and observability notions from linear system theory.



21

Definition 2.3. For a m x m matriz A and a m X p matriz B, (A, B) is called controllable if
c=[B AB ... Am1B

is full rank, or equivalently [)\I —A B} is full rank for all A € C. Moreover, we call an eigenvalue

\ of A uncontrollable if [/\I _A B} is rank deficient.

Definition 2.4. For a m x m matriz A and a Il x m matriz C, (A, C) is called observable if

C

CA
O:

CAm—l

is full rank, or equivalently l ] is full rank for all A € C. Moreover, we call an eigenvalue A

A=
of A unobservable if

Al .
] is rank deficient.

We will use Bernoulli processes and geometric random variables from probability theory.

Definition 2.5. An one-sided discrete-time random process a[n] (n > 0) is called a Bernoulli
random process with probability p if a[n] are i.i.d. random variables with the following probability

mass function (p.m.f.):

Plaln] =1) =p
0)=1-

We also call a[n] as a Bernoulli random variable with erasure probability 1 —p. A two-sided Bernoulli

random process is defined in the same way except that n comes from the integers.

Definition 2.6. A random variable X € Z* is called a geometric random variable with probability p
if it has a probability mass function P{X =z} = p(1 —p)* forx > 0. We also call X as a geometric

random variable with erasure probability 1 — p.

Then, as it is well known, we have the following relationship between Bernoulli random

processes and geometric random variables. Let
X :=min{n € Z" : a[n] = 1 where a[n] is a Bernoulli random variable with probability p}.

Then, X is a geometric random variable with probability p.

We will also use the following basic notions about matrices.

Definition 2.7. Given a matric A € C™ ™ |A|naz is the elementwise max norm of A i.e.

|A|maw = maXi1<4,j<m |aij"
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Definition 2.8. Given a matriz A € C™*™  dim A denotes m. Given a column vector xq € C™*!

and a row vector xg € C1*™ dimx; and dimxs denote m.

Definition 2.9. Given n; x n; matrices A; for i € {1,2,--- ,m}, diag{A1,A2,--- ,Am} is a

A, 0 - 0

0 Ay - 0
(> i) x (X0, ni) matriz in the form of

0 0 --- A

We also define modulo operation on numbers.

Definition 2.10. A sequence, ai,as, - ,ay,, is called congruent mod p if a; = aj(mod p) for all
i,7.

Definition 2.11. A sequence, a1, a2, - ,an, is called pairwise incongruent mod p if a; # aj(mod p)
for alli+#j.

Since we will only focus on the scaling behavior, we will use the following definition paral-

leling big O and big €2 notations in complexity theory.

Definition 2.12. Consider two real functions a(t) and b(t) whose common domain is T C R. We

say a(t) S b(t) fort on T if there exists a positive ¢ such that a(t) < cb(t) for allt € T.

We omit the argument and the domain of the above definition, when they are obvious from
the context and do not cause confusion.

We will also use an abbreviated notation for a sequence of random variables.

Definition 2.13. Given a discrete time random variable a[0],--- ,a[n], we denote a[ni],--- ,a[nz]
as ap?, and al0],--- ,a[n] as a". Likewise given a continuous time random variable b(t), we define

b(ty : t2) to be b(t) forty <t < to.

2.4 Intermittent Observability as an Extension of Stability

As we mentioned before, the characterization of the critical erasure probability can be
considered from two different directions — an extension of stability or an extension of observability.
In [95], Sinopoli et al. took the first approach, and attempted to characterize the critical erasure
probability by the Lyapunov stability condition. Let’s first review a property of Schur complements

and Lyapunov stability theorem.

Lemma 2.1 (Schur complements). Let X =

Bt ] be a symmetric matriz and C be invertible.

Then, X = 0 if and only if C = 0 and A — BC™'BT = 0.

Proof. See [12, p. 650]. O
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Theorem 2.3 (Lyapunov Stability Theorem). Given a linear system (2.1), the following three
conditions are equivalent.

(i) The system is stable.

(i) IM, N = 0 such that

M- AMAf =N.

(#i) IM > 0 such that

Proof. The equivalence between (i) and (ii) can be easily found in linear system theory books
including [55, p.30] and [17, Theorem 5.D5]. The equivalence between (ii) and (iii) comes from
Schur complements in Lemma 2.1 by simply choosing A =M, B =AM and C = M. O

Before we consider intermittent observability, let’s first characterize the standard observ-
ability condition using Lyapunov stability. The fundamental theorem of observability tells that if
(A, C) is observable, the eigenvalues of the closed loop system A + KC can be placed anywhere
by a proper selection of K. Based on this, we can characterize observability in terms of Lyapunov
stability.

Theorem 2.4. Given a linear system (2.1) and (2.2) with p. = 0, the following four conditions are
equivalent.

(i) All the unstable modes of A are observable.

(i) K such that A + KC is stable.

(#3) IK and M, N > 0 such that

M - (A+KC)M(A + KC)' =N.

(iv) K and M > 0 such that

M (A +KC)M
M(A + KC)T M

Proof. The equivalence of (i) and (ii) is the fundamental theorem of observability [17, Theorem

8.M3]. The equivalence of (ii), (iii) and (iv) follows from Theorem 2.3. O
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Unfortunately, this observability characterization based on Lyapunov stability cannot be
generalized for intermittent observability. The main reason is that in intermittent Kalman filtering
the optimal estimator does not converge to a linear time-invariant one. In conventional Kalman
filtering for linear time-invariant systems, it is well-known that the optimal Kalman filter converges
to the linear time-invariant estimator which is known as the Wiener filter [107]. In fact, we can
directly plug in the Wiener filter gain for the matrix K of Theorem 2.4. However, when observations
are erased, the optimal estimator also depends on the erasure pattern and since the erasure pattern
is random and time-varying, the whole system becomes random and time-varying. Therefore, the
optimal estimator is also time-varying and does not converge.

In [95], Sinopoli et al. wrote the optimal time-varying linear estimator in a recursive equa-

tion form. The strictly causal estimator X[n] = E[x[n]|y" 1], is given as follows:
X[n + 1] = AX[n] — Kn(y[n] — CX[n]) (2.5)

Here, K,, depends not only on n but also the history of the 8[n], and does not converge to a constant
matrix in probability. Therefore, in the intermittent Kalman filtering problem it is not possible to
find a stability-optimal time-invariant gain K in Theorem 2.4.

However, we can still force the estimator to be linear time-invariant, and thereby find a
sufficient condition for intermittent observability using Lyapunov stability ideas. This is the idea that
Sinopoli et al. used to find a lower bound on the critical erasure probability in [95]. By restricting
the filtering gain to be a linear time-invariant matrix K, we get the following sub-optimal estimator

which looks similar to (2.5).
X[n + 1] = Ax[n] — B[n]K(y[n] — Cx[n]) (2.6)

with X[0] = 0. By analyzing this sub-optimal estimator, Sinopoli et al. found the following sufficient
condition for intermittent observability. Here, we further prove that their condition is both necessary
and sufficient for the sub-optimal estimators of (2.6) to have an expected estimation error uniformly

bounded over time.?

Theorem 2.5 (Extension of Theorem 5 of [95]). Given an intermittent system (A, B, C,o,0") with
erasure probability p., let (A,B) be controllable, o < oo, and ¢’ > 0. Then, the following three
conditions are equivalent.

(i) The system is intermittently observable by the suboptimal estimator of (2.6) with some K.

(i) 3K and M, N > 0 such that

M — p.AMAT — (1 - p.)(A + KC)M(A + KC)' = N.

5This fact is implicitly shown in Elia’s paper [27].
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(i) K and M > 0 such that

M VI=p.(MA +KC) /p.MA
VI=po(MA +KC)f M 0 > 0.
Vbe(MA)T 0 M

Proof. By (2.1), (2.2) and (2.6), we can see that the estimation error follows the following dynamics:

x[n+ 1] = X[n + 1] = Ax[n] + Bw[n] — (AX[n] — 8[n|K(y[n] — CX[n]))
= Ax[n] + Bw(n] — (AX[n] — 8[n]K(Cx[n] + v[n] — CX[n]))
= (A + B[nJKC)(x[n] - X[n]) + Bw(n] + S[n]Kv[n]. (2.7)

Denote (x[n] — X[n]) as (e[n] and Bw[n] + S[n]Kv[n]) as w'[n]. Then, w’[n] also has a uniformly

bounded variance over time, and (2.7) can be written as
e[n+ 1] = (A + B[n]KC)e[n] + w'[n].

Since e[n] is independent from w’[n], 8[n] by causality, the covariance matrix of e[n] follows the

following dynamics:

Ele[n + 1le'[n + 1]] = E[(A + B[n]KC)e[nle [n](A + [n]KC)'] + E[w’[n]w" [n]]
= peAEfe[n]e![n]]AT + (1 - p.)(A + KC)E[e[n]e' [n]](A + KC)' + E[w’[n]w''[n]].
(2.8)

Now, we will prove the theorem in three steps.

(1) Condition (i) implies condition (ii).
First of all, by linearity we can prove that the estimation error E[e[n]ef[n]] is an increasing function
of the variance of the underlying random variables.

Thus, if the system is intermittently observable by K, the same system with x[0] = 0, v[n] =
0, E[w[n]w'[n]] = 0?1 is also intermittently observable. So set x[0] = 0, v[n] = 0, E[w[n]w'[n]] =
o’21 without loss of generality. With these parameters, we have E[e[0]e![0]] = 0 and E[w’[n]w’ [n]] =
o’?BBT. By the recursive equation in (2.8), we can show that for n > 1, the covariance matrix of

e[n] can be written as
Ele[nle’[n]] =o”BBT + >~ > AA]
k=1le{-1,1}*
where

141

A= (VpeA) 2

(VI= (A +KC) T - (V5eA) #* (T~ pe(A +KC)) = o'B,
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Here, [; = 1 means the ith observation was erased and l; = —1 means that the ith observation was
not erased.

Here, we can notice that Ele[n]ef[n]] are positive semidefinite matrices and increasing in
n. Furthermore, since the system is intermittently observable by condtion (i), E[e[n]ef[n]] has to be

uniformly bounded over time. Therefore,

M := lim E[e[n]eT[n]] = o¢"”?BB' + i Z AZA; (2.9)

n— oo
k=1le{-1,1}*

must exist even though it involves an infinite sum. Let’s define M and N as follows:

m—1 [eS)

M:=0”BB + > > (k+DAA[+ > > mAA] (2.10)
k=1 1={—1,1}* E'=mp={_11}+
m—1

N:=0¢”BBi+> > AA] (2.11)

k=11e{—1,1}F

where m is the dimension of A as we defined in Section 2.2. By the definitions of M and M, we
can easily see that mM = M. Therefore, M also exists even though it involves an infinite sum.

Furthermore, by the definitions of M and N, we can easily see that

M > o’*(BBf + p.ABBTAT + ... + p" A"BBTA™™)
N > ¢*(BB + p.ABBTAT ... 4 p"AmBBTAT™)

since the terms in L.H.S. are just subsets of the terms in M and N.

Thus, we can see that M = 0, N = 0 since [B AB ... A™~1B]| is full rank by the
controllability of (A,B) and all terms BBT,---  pm A™BBTAT™ are positive semidefinite. Finally,
by the definitions and simple matrix algebra, we can verify that M and N satisfy the following

relationship:
M = p, AMAT + (1 —p.)(A + KC)M(A + KC)" + N. (2.12)

Therefore, M and N satisfy condition (ii).

(2) Condition (ii) implies condition (i).
Since M and N of condition (ii) are positive definite, we can find a such that a?M = E[x[0]x[0]]
and a2N > E[w’[n]w'T[n]] for all n € Z+. And we can easily see that even if we replace K, M, N
with K, a?M, a?N, condition (ii) still holds.

6Consider a fixed point equation, f(z) = = f(x)+g(x). There exist multiple f(z) and g(x) that satisfy this equation.
For exa‘mpleu (f((IJ),g((II)) = (1 +z+ IQ + - 71)7 (f(z)7g(z)) = (1 + 2z + 2‘T2 + - 71 + :E), Tty (f(z)ug(z)) =
(T+2z+-+ (k-2 fka® + kbl 14+ 24+ 2F) all satisfy the equation. Likewise, there are multiple
matrices that satisfy the fixed point equation of (2.12). For example, we can easily check that M of (2.9) and
N := ¢/?BBT satisfy (2.12), i.e. M = p.AMAT + (1 — p.)(A + KC)(A + KC) + N. However, unlike N, N does
not have to be positive definite. Thus, the choice of M, N is not enough to prove the theorem. Here, we choose M,
N as shown in (2.10), (2.11) as another solution for (2.12). In fact, the choice of coefficient in M, N was inspired by
the solutions of f(x) = zf(z) + g(x) shown above.
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We will prove that a?M > Ele[n]ef[n]] for all n € ZT by induction. Since a?M >
E[x[0]x7[0]] = E[e[0]ef[0]], the claim is true for n = 0. Assume the claim is true for n. Then,
from the definition of a and (2.8),

Ele[n + 1]ef[n + 1]] < p.A(a®M)AT + (1 — p.)(A + KC)(a?M)(A + KC)' + ¢’°N = o*M

where the last equality comes from condition (ii). Therefore, the estimation error is uniformly upper
bounded by a?M when we use the K of condition (ii) as a gain matrix, and so condition (ii) implies
condition (i).

(3) Condition (ii) is equivalent to condition (iii).

Since M~! = 0, by Schur complements in Lemma 2.1, condition (ii) is equivalent to

M - p. AMAT  /T—p.(A+KC)
VI=pe(A+KC)T M-!

Since

M - p.AMAT  /T—p.(A +KC)
VI —p.(A+KC)f M-!

M 1—p.(A+KC A
_ VI =pe( )| |VPA| {\/ijT 0]
VI —p.(A+KOC)T M-! 0
and M~! = 0, we can apply Schur complement again. Thus, condition (ii) is equivalent to
M VI=p.(A+KC) p.A
VI —=p.(A +KC)f M-! 0 | >o0.
VPeAT 0 M

Since M~! = 0, this condition is again equivalent to

Mt 00 M VI=p.(A+KC) pA| M1 0 0
0 I 0| |v/IT—p(A+KC) M-! 0 0 I 0
0 01 DeAT 0 M 0 01
Mt VI=p.(M'A+MKC) /p-M'A
= |VI=p.(M'A + M 'KC)! M-! 0 > 0.
VDe(MTTA)T 0 M-!

Since M~! = 0 and K is an arbitrary matrix, by replacing M~! by M and M~'K by K we get

condition (iii). O

As we can expect, the conditions of this theorem reduce to those of stability and those of
observability when p. = 1 and p. = 0 respectively. One can easily observe that condition (ii) of

Theorem 2.5 reduces to condition (ii) of Theorem 2.3 when p. = 1 and condition (iii) of Theorem 2.4
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when p. = 0. Likewise, condition (iii) of Theorem 2.5 reduces to condition (iii) of Theorem 2.3 and
condition (iv) of Theorem 2.4 respectively.

Even though condition (ii) and (iii) of Theorem 2.5 are equivalent, condition (iii) is preferred
since it is given in a LMI (linear matrix inequality) form and convex optimization techniques [12]
are applicable. In fact, in [95] Sinopoli et al. related condition (iii) with quasi-convex problems.

Since we imposed an additional linear time-invariant constraint on the estimator, Theo-
rem 2.5 gives a lower bound on p;. However, we can conclude that this lower bound is loose in
general.” Moreover, even for stability, the characterization that the magnitudes of all eigenvalues
are less than 1 is much more intuitive than the LMI condition based on Lyapunov stability. There-
fore, researchers including [27] and [113] were looking for a tight and intuitive characterization of

the critical erasure probability.

2.5 Intermittent observability as an extension of observabil-
ity: Main Intuition

To reach this goal, we borrow insights from a characterization of observability. (A, C) is

observable if and only if for all s € C
sI—A| .
is full rank.
C

Moreover, by a similarity transform [17] we can assume that A is in Jordan form® without loss of

generality. With this additional assumption, the observability condition can be further simplified.

Theorem 2.6 ([17]). Consider a linear system with system matrices (A, C) where A is given in
a Jordan form. For an eigenvalue \ of A, denote Cy as a matriz whose columns consist of the
columns of C which correspond to the first elements of the Jordan blocks in A associated with .
Then, the states associated with A are observable if and only if the rank of C) is equal to the number
of Jordan blocks associated with A. The whole system is observable if and only if all states associated

with all eigenvalues are observable.

“Numerical computation of the lower bound of Theorem 2.5 is shown in Figure 4 of [95]. For a system with

A = [1'125 1?1} and C = [1 1]. The numerical simulation shows the lower bound is approximately m =

0.528 - - -, while the exact characterization of Theorem 2.7 tells the critical erasure probability is ﬁ = 0.64.
8Throughout the chapter, we will use the Jordan form that induces an upper triangular matrix.



29

For example, let

>
I

0
0
2
0

w o o O

2 1
0 2
0 0
0 0

C:{Cl C2 C3 Cy4gf-

Then, Cy = [Cl c3} and C3 = {C‘l}' The eigenvalue 2 is observable if and only if Cy is full rank,
and the eigenvalue 3 is observable if and only if Cj is full rank. The whole system with (A, C) is
observable if and only if both eigenvalues are observable.

This characterization reminds us of a divide-and-conquer approach. First, divide the ob-
servability problem into smaller problems according to the eigenvalues. Then, check whether the
smaller sub-problem for each eigenvalue is observable. Finally, the whole system is observable if and
only if all the sub-problems are observable.

This suggests applying a divide-and-conquer approach for the characterization of intermit-
tent observability. However, before we apply a divide-and-conquer approach, we first have to answer
the following three questions:

(a) What are the minimal irreducible sub-problems?
(b) How can we solve each sub-problem?
(¢) How can we combine the answers of the sub-problems?

We will make an exact characterization of intermittent observability by resolving these
questions. The concept of eigenvalue cycles appears naturally as the answer of question (a).

Before we answer these questions, let’s first start from the simplest case, scalar plants. For
simplicity, we will only give hand-waving arguments in this section, and the rigorous justification
will be shown in later sections. The basic idea for the characterization of intermittent observability
is to consider the dynamics reverse in time. For example, consider the following scalar system: for
nezr,

{ zln + 1] = 2z[n] + wn] (2.13)

y[n] = Bln]z[n]
Here, x[0] = 0, w[n] are i.i.d. zero-mean unit-variance Gaussian, and 3[n] is an independent Bernoulli
process with probability 1 — p.. Then, we will show that the critical erasure probability p; = 2%
First, we extend the one-sided random process (2.13) to a two-sided process. Let win] =0
for n € Z=~ where Z~~ implies negative integers, and S[n] be a two-sided Bernoulli process with
probability 1 — p.. Then, we can see that the new two-sided process is equivalent to the original
process except that z[n] =0,y[n] =0forn e Z~ .

Let n — S be the most recent non-erased observation at time n, i.e. S := min{k > 0 :

Bln — k] = 1}. Since S[n] is a two-sided Bernoulli process, the stopping time S is a geometric
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random variable, i.e. P{S = s} = (1 — p¢)p.®.
(1) Sufficiency: We first prove that p. < 2% is sufficient for intermittent observability of
the example. For this, we analyze the performance of a suboptimal estimator Z[n] = 25y[n — S| =

25¢[n — S]. Then, the estimation error is upper bounded by

E[(x[n] — Z[n])?] = E[E[(z[n] — Z[n])?|S]]

E[E[(2%z[n — S] + 25 tw[n — S] + - - - 4+ w[n — 1] — 2%z[n — S])?|9]]
E[22(5—1) 4 92(5-2) 4 ... 4 q]

225 —1
.

= 221_ 1 ((g(l _pe)(pe22)i> - 1) .

1
22"

(2) Necessity: For necessity, we use the fact that the disturbance w[n — S| is independent

IN

=E

Therefore, the estimation error is uniformly bounded if p, <

of the non-erased observations present up to the time n. Therefore, the estimation error is lower
bounded by
E|(z[n] — E[z[n][y"))*] > E[E[(2°w[n — S])?|5]]
=E[2257D . 1(n — 5 > 0)]

;<§}Lﬁw@ﬂw>

=0

Therefore, if p, > 2% the estimation error must diverge to oo.

(3) Remarks: From the above proof, we can notice that the intermittent observability is
decided by whether p.2? is less than 1. Here, 2 is the largest eigenvalue of the system, and p. is the
probability mass function (p.m.f.) tail of S which can be defined as explimsup,_,,, 1 InP{S = s}.
Thus, we can think of two potential differences between scalar and vector systems: (i) The maximum
eigenvalue (ii) The p.m.f. tail.

It turns out the latter is true, and the p.m.f. tail is the difference between scalar and vector

systems. The following example shows why and how the p.m.f tail changes in vector systems.

2.5.1 Power Property

The power property answers question (b) of the previous section, “How can we solve each

sub-problem?”. Consider the example of [113].

2
x[n+1] = |‘0
yln] = Bl [1 1] xln

0 ] x[n] + wn]



31

Like above, we put x[0] = 0, w[n] is 2-dimensional i.i.d. Gaussian vector with mean 0 and variance
I, and fS[n] is an independent Bernoulli process with probability 1 —p.. We also extend the one-sided
process to a two-sided process in the same way.

We can see the states are 2-dimensional, while the observations are 1-dimensional. There-
fore, unlike scalar systems at least two observations are required to estimate the states. Moreover,

if we write the observability Gramian matrix, we immediately notice cyclic behavior:

C:[1 1}

cat=[y
ca?=[} {]
ca=[t —{]

Notice that C,CA~2,CA~4, ... are linearly dependent and CA~1,CA~3 CA~5,... are linearly
dependent. Therefore, as observed in [113], we need both even and odd time observations to estimate
the states. In this example, we will show that p; = 2%

(1) Sufficiency: Let p. < 5r. From (2.1) and (2.2), we can see that when B[n — k] =1 the

following equations hold:

Xl = AFxin— K] + A* sl — K+ -+ win— 1 (214)
yin—k] = Cx[n — k] + v[n — k]
= CA"x[n] — (CA 'w[n — k] +---+ CA Fw[n — 1] — v[n — k) (2.15)
=v/[n—k]

Here, we can see the variance of v/[n — k| is bounded as E[|v'[n — k]|?] = E[( [% —%} wn — 1] +
-t [2% 7(712),6} win — k])?] < Qﬁ =2

Now, the stopping time S until we have enough observations to estimate the states becomes
the first time until we get both even and odd time observations, i.e. S := inf{k : 0 < k1 < ko <
k,Bn — k1] = 1,B8[n — ko] = 1,k1 # ko(mod2)}. Here, the p.m.f. of S gets thicker than that of
scalar cases. We can actually prove that the p.m.f. tail of S is explimsup,_, %ln P{S =s} = pé,
which we will rigorously justify in Lemma 7.2. Thus, we can find 4, ¢ > 0 such that p, < 2% — 4 and
P{S=s}<c(3 75)% for all s € Z+.

Now, we will analyze the performance of a suboptimal estimator which only uses two
CA-M] y[n — k1]
CA~F2 [y[n — ko]
k1 and ko are even and odd time observations. Let Fz be the o-field generated by B[n]. Then,

observations. Let X[n] := . Here, we can see the matrix inverse exists since
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k1, kg, S are deterministic variables conditioned on Fg. The estimation error is upper bounded by

—k] v'n — 1 ’
ElJx(n] — %[n]}3] = E[E[}x{n] - %[n][3173]] = E[E] gjk] [ { :” 7l
VN — Rg
—112 2
—k1 v'[n —k;
< E[E[8- gih] L’,L - Z H | Fs]]
—12 2
. 27k (—2)~k v/[n — k1]
=38 E[ L—kg (_2)—k2] . ]E[ lvl[n—k‘z]] - ‘}—BH
. 1 R e ) [N P S|
=8- [ 2.9-k1 . (_2)7k2 _9—ks 9~k o [ V/[TL B kg} - |]:,3H
—ky 2 v'In — 1 2
=8 Bl (2—32—k) Bl lv,{n_: m 73]

< 2-E2*" - E[V[n — k1]]* + [v/[n — ko] *| F]]

8 8 1 LR g .
gE[ZQS]ng:Q%c (24—5) 2520(1—245)5 <00
s=0

s=0

IN

Therefore, the estimation error is uniformly bounded for p, < 2%

(2) Necessity: We will show that the system is not intermittent observable when p. > 2%
Denote the stopping time S’ to be inf{k > 0: f[n — k] = 1,k is even}. Then, P{S' =0} =1 — p,,
P{S"=1} =0, P{S" =2} = (1 — pe)pe, - - -. Thus, the p.m.f. tail of S’, explimsup,_, ., %hﬂP’{S’ =
s}, is pe% )

The state disturbance w[n — S’] can be decomposed into two orthogonal components,

wan — S’ where wi[n — S’] and we[n — S’] are independent

no_ 1 wiln — §'
w[n—S]—L] 1] S+

Gaussian random variables with zero mean and variance % From the system equations (2.14),
(2.15) and the definition of S’, we can see that all the observations between time n — S’ and n are
orthogonal to wa[n — S’]. Thus, the estimator does not know anything about we[n — S’] at time n,

and thus we can lower bound the estimation error as follows.

E[(x[n] - Elx[n]ly"])*] = E[E[|AS " l 111 waln — S'I3]]S")

> B2 D[yl ~ 81718 = 55ER - 1(8 2 )]

Thus, if pe > 2% the estimation error diverges to oo.
(3) Remarks: Compared to the scalar case, the p.m.f. tails of both S and S’ in this vector

system thicken to ,/p.. This results in decreasing the critical erasure to 2% The cyclic behavior of
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the observability Gramian matrix, C, CA~!, -- ., causes the thickening of the p.m.f. tails. Thus, to
capture this cyclic behavior of the observability Gramian matrix, we tentatively define an eigenvalue
cycle as follows”: We say that the eigenvalues of A, A\; and Ay belong to the same eigenvalue cycle
if ’A\—; is a root of unity, i.e. (%)n = 1 for some n € Z. Moreover, we say that A has no eigenvalue
cycles if all the ratios between the eigenvalues of A are 1 or not roots of unity, which implies A has
no nontrivial eigenvalue cycles.

To generalize this example and find the p.m.f. tail for arbitrary eigenvalue cycles, we use
the idea of large deviations [24] which is equivalent to a union bound for simple cases. The idea goes
as follows.

First, consider test channels that are erasure-type channels which would make the ob-
servability gramian rank-deficient. For this example, these would be the channel that erases every
odd-time observations, the channel that erases every even-time observations and the channel that
erases all observations.!®

Next, measure the distance from the true channel to the test channels. In our case, the
true channel is the channel without any restriction and the distance measure between the true and
test channel is the hamming distance. For the test channels considered above, the distance to the
odd-time erasure channel is 1 since we are restricting every one out of two indexes to be erasure.
Likewise, the distance to the even-time erasure channel is 1 and the distance to the all erasure
channel is 2.

Then, the large deviation principle intuitively says that the performance is decided by the
minimum-distance test channel. For the example, the odd-time or even-time erasure channel whose
distances are 1 will govern the performance.

So the effect of the eigenvalue cycle is to thicken the tail of the stopping time until you get
enough observations to estimate the states. Analytically, the effect is equivalent to taking a proper

power to the p. and hence the name “power property”.

2.5.2 Max Combining

This property answers the question (c) i.e. how we go from a single eigenvalue cycle to

multiple eigenvalue cycles. Consider the following example with two eigenvalue cycles:

x1[n + 1] 3 0 0| |z1[n]
zoln+1]| = [0 2 0| |z2[n]| +W[n]
x3[n + 1] 0 0 —2| |z3[n]
ylnl =Bl [1 1 1] xIn]
As before, we let x[0] = 0, w[n| be i.i.d. Gaussian with mean 0 and variance I, and 3[n] be an

independent Bernoulli process with probability 1 — p.. We also extend the one-sided process to a

9We will formally define eigenvalue cycles later in Section 2.6.
10Tn the actual characterization shown in Section 2.6, we will see that the set S’ in (2.18) is a proxy for these test
channels. This minimum distance to the test channels will be denoted as I; in (2.18).
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two-sided process. Here, we can see there are two eigenvalue cycles. One eigenvalue cycle is {2, —2}
and the other one is {3}, and these can be considered as two subsystems of the original system.

Then, from the previous arguments, we can see that the p.m.f. tails for these two systems
are different. The p.m.f. tail for the eigenvalue cycle {3} is p., while the p.m.f. tail for the eigen-
value cycle {2, —2} is thickened to pé Therefore, the question is whether the thickened tail in the
eigenvalue cycle {2, —2} affects {3}. The answer turns out to be “No”, and we can consider the two
subsystems separately. Thus, in this example, the system is intermittent observable if and only if
both subsystems are intermittent observable, i.e. pX = m The main idea to justify this is
so-called successive decoding developed in information theory [21].

(1) Sufficiency: We will prove that p, < m is sufficient for the intermittent ob-
servability using a successive decoding idea. The idea is simple. We first estimate the state z1[n].
Then, since we have an estimate for x1[n], we can subtract the estimate from the system and reduce
the dimension of the system. The remaining estimation error is considered as noise.

Let S be the stopping time until we receive three observations in the reverse process, i.e.
S:i=inf{k:0<ky <ks<ks <k, Bn—k]=1,0[n—ke=15n—ks] =1} Here, we can prove
that the p.m.f. tail of S is the same as the scalar case. Therefore, exp limsup,_, ., InP{S = s} = p,,
which we will justify in Lemma 7.2. Since we have the three observations at time n — k1, n — ke and
n — ks, by the pigeon-hole principle at least two among them have to be congruent mod 2. Assume

that k1 and ko are both even. Then, by (2.15) we have
- “ky
30 0 x1[n)
yn — k1] = [1 1 1} 02 0 |:a?2[n] +v'[n — k1]
0 0 ]
3 o ][
0

2[1 1 1} 0 2™k

=1 1] [3 01 l PR RS
0 2 xo[n] + z3[n]

1 1
Like in the above section, we can also prove that E[[v'[n — k]|?] < 221 + 121 = 37. Here, we can
4 9

notice that instantaneously at time n — k1 and n — ko the system equation behaves like the following

_ [3 O] l x1[n] ] N [ wi [n] ]
0 2| |xz2[n] 4+ x3[n] wa[n] + ws[n]

x1[n) 1
xa[n| + x3n]

system with no eigenvalue cycles:

x1[n + 1]
xa[n 4+ 1] + x3[n + 1]

yln) = Bl [1 1]
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. : . - 1 [n] 3ho27h yln — k]
Consider the suboptimal estimator X[n] = =
Ta[n] + Z3[n] 3=k 9=ke y[n — ko]

be the o-field generated by S[n], and F' be the event that k; and ks are even. The estimation error

]. Let .7:5

is upper bounded by

2 -1 2
z1[n] . 37k 27k v'[n — kq]
E[ —X[n)| |FgnFI=E[| | ) |F N F]
xa[n] + x3[n] ) 37 272 v'[n — ko] )
112 2
37k 2=k v'[n — kq]
<8- . E[ |]:ﬂ N F]
37ke ke V'n—ka]|
_5. ! P
= 8. E . 3-k19—ky _ 9—ki3— ks 73—k:2 37}61
max
2
1 27k
12 3—k19—k2 (1 . (%)szlm)
<8252 (3h . glk)2 < 7. 3% < 7. 52

12
Likewise, we can prove the same bound holds even if k1 and ko are not even. Therefore, the
estimation error is bounded by 57-32%. Like the previous section, we can prove that if p, < 3% then
E[325] < co. Thus, the expectation of the estimation error for x[n] is uniformly bounded over time.

Once we estimate x3[n], we can subtract the estimation Z3[n] from the observation, i.e.

y'[n] := y[n] — B[n]Z1[n]. Then, the new system with the observation y’[n] behaves like the following
system:
1 2 0
xa[n + 1] _ x2[n] + win)
x3[n + 1] 0 —2| |x3[n]

vin] = Bl ([1 ] [“””2[”}

x3[n]

+ (21[n] =2 M))

Since the expectation of the estimation error for z1[n] is uniformly bounded, it can be considered
as a part of the observation noise.'! In the same way as the previous section, we can prove that the
estimation error for z2[n], 23[n] is uniformly bounded if p. < 2>. Notice that the minimum number
of observations required to estimate the state by observability gramian matrix inversion is 3, the
number of states. However, here we used more observations to apply successive decoding idea.

(2) Necessity: To prove that the example is not intermittent observable if p, > m,
we will use a genie argument. If the states z5[n], 23[n] are given to the estimator as side-information,

the remaining system with x1[n] is a scalar system with the eigenvalue 3. We know that if p, > 3%,

HPrecisely speaking, the estimation error for z1[n] is a random variable which depends on the channel erasure
process. Therefore, the rigorous proof of Section 2.8.3 has more steps to justify this argument.
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x1[n] is not intermittent observable. We can also give x1[n] as side-information to conclude that
Pe > 22% is a necessary condition for intermittent observability.

(3) Remarks: In summary, we can solve problems with multiple eigenvalue cycles one by
one without worrying about the existence of the other eigenvalue cycles. In other words, at each
step we estimate the eigenvalue cycle associated with the largest eigenvalue. After the estimation,
the eigenvalue cycle can be subtracted from the system except uniformly bounded estimation error.
Then, we can simply repeat the steps for the remaining system. This procedure of successively
solving and subtracting the unknowns is called successive decoding in information theory, and used
as a decoding procedure for the multiple-access channel [21].

Therefore, we can conclude that the intermittent observability for a multiple eigenvalue-
cycle system is bottlenecked by the hardest-to-estimate eigenvalue cycle, which manifests as the max

operation in the critical erasure probability calculation.

2.5.3 Separability of Eigenvalue Cycles

The remaining question is what are the minimal irreducible sub-problems, whose answer
can be expected to be eigenvalue cycles from the discussion up to now. In other words, we will
understand general systems with multiple eigenvalue cycles by dividing into sub-systems with a
single eigenvalue cycle. In the max-combining property, we already saw an example with multiple
eigenvalue cycles. In the example, we first reduce the problem with multiple eigenvalue cycles to the
problem with no eigenvalue cycles by sub-sampling plants. For example, in Section 2.5.2 we already
saw that by sub-sampling (by 2), the system with an eigenvalue cycle (period 2) becomes a system
with no eigenvalue cycles.

Thus, the question reduces to the fact that for systems with no eigenvalue cycles the critical
erasure probability is m, which will be shown in Corollary 2.1. To intuitively understand why
this is true, we will consider three cases depending on the structure of A.

The first case is when A is a diagonal matrix, and the magnitudes of its eigenvalues are

distinct. In fact, this case is already proved in [113]. Let’s consider a descriptive example when

30 CA™
A = , C = {1 1]. Then, the observability gramian of the system becomes =
0 2 CA"2
3”1 2”1
. To prove that the critical erasure probability is given as ﬁ = 3%, it is enough to
3n2  9n2 max

prove that the determinant of the observability gramian is large enough for almost all distinct ny
and no. To justify this, we can use the fact that the ratio of the elements, (%)”7 is an exponentially
increasing function.

The second case is when A is a diagonal matrix, and the eigenvalues are distinct but

J 0
have the same magnitude. Let’s consider the system with A = [60 jﬁ] and C = [1 1]. The
e
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CA™

CA"2
that the determinant of this observability gramian is large enough for almost all distinct nq, ns.

observability gramian is given as . .
einz  oJ V21

edni eiV2n
= , and like above it is enough to show

Here, the arguments from [113] cannot work. For this, we instead used Weyl’s criterion [54] which
tells us that each element (e/™, e/ \/5”) behaves like a random variable (7%, €792) where 0, and 6, are
independent random variables uniformly distributed on [0, 27]. In fact, the effect of the hypothetical
random variables (e791, 792) is quite similar to the actually randomly-dithered nonuniform sampling
discussed in Section 2.7.
The last case is when A is a Jordan block matrix. Let’s consider the system with A =
CA™ 2M p2™m
= , and
CA"™ 2™ ngy2n?
we have to show that the determinant of this observability gramian is large enough for almost all

2 1
l ] and C = [1 O] The observability gramian is given as
0 2

distinct ni1, ny. Unlike the above cases, this example has polynomial terms in ny, no. Exploiting
this fact, we can reduce the problem to the fact that a polynomial function on n becomes zero only
on a measure zero set.

By combining the insights from these three examples, we can prove that for a general

matrix A with no eigenvalue cycles, the critical erasure probability is given as m

2.6 Intermittent Observability Characterization

Based on the intuition of the previous section, the intermittent observability condition can

be characterized. We begin with the formal definition of a cycle.

Definition 2.14. A multiset (a set that allows repetitions of its elements) {a1,az,- - ,a;} is called
P
a cycle with length | and period p if (g—) =1 foralli,j € {1,2,---,1} and some p € N. Following

convention, p is denoted'? as

n
p::min{ne N: (Zi_> =1,Vi,j € {1,2,--- ,l}}.
J

For example, {a} is a cycle with length 1 and period 1 by itself. {e*, e« +%)} is a cycle
with length 2 and period 6. {e7,e7V2} and {1,2} are not cycles. One trivially necessary condition
for a1, as to belong to the same cycle is |a;| = |az|. It can be also shown that cycles are closed under
overlapping unions, meaning that if {a;,as} and {as,az} are cycles, {a1,aq, a3} is also a cycle.

Now, we can define an eigenvalue cycle. It is well-known in linear system theory [17] that
by properly changing coordinates, any linear system equations (2.1) can be written in an equivalent
form with a Jordan matrix A. Moreover, even though the MMSE value can be changed by a
coordinate change, the condition for boundedness (stabilizability) remains the same. Rigorously, for

any system matrix A, there exists an invertible matrix U and an upper-triangular Jordan matrix

L2We use & =1,

o :oo,lm:ooandizo.
oo

1
0
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A’ such that A = UA’U~!. We also define B’ := UB and C’ := CU. Then, the matrix A’ and C’

can be written as the following form:

A’ =diag{A11,A12, - Ay}

y A,
C' = [01,1 Cl,z Cu,uu]
where
A;; is a Jordan block with an eigenvalue A; ;
{1, Aiw, } s a cycle with length v; and period p;
For i #4', {\ij, Av 7} is not a cycle

C;; is a l x dim A; ; complex matrix. (2.16)

Since cycles are closed under overlapping unions, the eigenvalues of A can be uniquely partitioned
into maximal cycles, {\j1, -, Ai, }. We call these cycles eigenvalue cycles and we say A has no
eigenvalue cycle if all of its eigenvalue cycles are period 1.

Define

A =diag{hi1, -, Ny}
Ci= [(Cm)l (Ci,ui)l]

where (Cj ), is the first column of Cjj. (2.17)

In other words, we are dividing the original problem to sub-problems according to eigenvalue cycles.
Let I; be the minimum cardinality among the sets S’ C {0,1,--- ,p; — 1} whose resulting
S:={0,1,--- ,p; =1} \ 8" = {s1, 52, , 55|} makes

CiA;™

C;A;%2
(2.18)

C;A;°I5]

be rank deficient, i.e. the rank is strictly less than v;. Here, p; and I; will be used for the power
property. [; represents how many observations have to be erased out of p; time steps to make the
observability Gramian matrix rank deficient. This corresponds to the critical error event in large
deviation theory.

Now, we can apply the max-combination property to characterize intermittent observability.

Here is the main theorem of the chapter.

Theorem 2.7. Given an intermittent system (A,B,C,o,0’) with probability of erasure p., let

o < 00,0 >0, and (A, B) be controllable. Then, the intermittent system is intermittent observable
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if and only if

1
Pe < ——— m-
max |A; 1] %
1<i<p
i
or equivalently max pl*|\;1]? < 1.
1<i<y
Proof. See Section 2.8.3 for sufficiency, and Section 2.8.4 for necessity. O

Here, we can notice that there is no assumption about stability or observability of the

system. Let’s first do a validity test of the theorem by trying stable modes and unobservable modes.

If |hia] < 1, L~ > 1. Therefore, the stable modes do not contribute to the characterization of
[Xia] ™ ti

the critical erasure probability. If (A;, C;) are unobservable, [; = 0. So, —L—5- = 0if [\;1| > 1 and

[Ail?0

L = 00 if [Ai1| < 1. Therefore, if the unobservable modes are stable they do not affect the

— 1
[Ai1l>0
intermittent observability of the system and if they are not the system is not intermittent observable

even if p, = 0.

Even though in general [; does not admit a closed form, it is computable for special cases.

Corollary 2.1. Given an intermittent system (A,B,C,o,0’) with probability of erasure p., let
o < oo, ' >0, and (A, B) be controllable. We further assume that (A, C) is observable and A has
no eigenvalue cycles (i.e. (i‘—;)n # 1 for all \; # \j and n € N). Then, the intermittent system is
intermittent observable if and only if pe < ﬁ where Apaz 1S the largest magnitude eigenvalue

of A.

Proof. Since A has no eigenvalue cycles, p; equal to 1 for all 4 and A; are scalars. Moreover, by the

observability condition and Theorem 2.6, C;j is full-rank. Thus, I; = 1 for all ¢ and by Theorem 2.7

eps a1s . 1 _ 1
the critical erasure probability is s Dl = Pl O

For a more precise understanding of the critical erasure probability, we will focus on the
case of a row vector C — i.e. single-output systems. Heuristically, a row vector C is the worst
among C matrices since a vector observation is clearly better than a scalar observation.

Furthermore, we will also restrict the periods of the all eigenvalue cycles of A to be primes'3.
The technical reason for this restriction is that prime periods give us a useful invariance property
of the sub-eigenvalue cycles. Let {A1, A2, -+, A\;} be an eigenvalue cycle with prime period p. Then,
all subsets of {A1, A, -+, \;} with distinct elements are eigenvalue cycles with the same period p.

This invariance property need not hold for eigenvalue cycles with composite periods as we will see

by example later.

Corollary 2.2. Given an intermittent system (A,B,C,o,0") with probability of erasure p., let
o < 00,0 >0, and (A,B) be controllable. We further assume that (A, C) is observable, C is a row

13For convenience, we include 1 as a prime number here.
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vector, and A has only prime-period eigenvalue cycles of length v;. Then, the intermittent system

is intermittent observable if and only if pp < ————L——.

Pi
max ‘)\i,l‘ pi—vitl
1<i<p
Proof. First, we introduce the following fact regarding Vandermonde matrix determinants [82]: Let
p be a prime, ay,--- ,a, be pairwise incongruent in mod p and by, --- , b, be pairwise incongruent

in mod p. Then,

5_a1by o a1by 5_a1bn
6_;27771) 6_]27'( > 6_]271'717
o agby o aoby o asbp
6_;27771) 6_]27'( > 6_]271'717
o anbi ion anbz o anbn
6_7271' s 6]271' 5 . 6]271' o

is full rank. [82]

Furthermore, since (A, C) is observable and C is a row vector, by Theorem 2.6, A; ; are dis-
tinct and (Cj ;)1 are not zeros. Therefore, let A, ; = |)\Z—|ej2”%j where g; 1, - , ¢, are incongruent
in mod p; and p; are primes.

Now, we will evaluate the critical erasure probability shown in Theorem 2.7. For this

system, (2.18) can be written as

CALST st ... 51 . .
CiA; it Al [(Ciah 0
. ALSISI St 51s| .
CiA; LA i, 0 (Ciwh
My (51 jom il s jom i s
|)\2| 0 e P e P (Ci,l)l 0
. qi,1 . Qi vy
L0 N D W I P iyt IS 0 o (Cin
CiA;™
Since \; and C;;, are non-zeros, the rank of : is equal to the rank of
J1 ) :
S
o i1 o iy
63271' o S1 . 6]2# p17 S1
i qi,1 io Qi,v;
I SISl L I s
Furthermore, since ¢; 1, -+ ,¢i., are incongruent in mod p; and si,--- ,s|g are also in-

congruent in mod p;, by the property of the Vandermonde matrix discussed above, the rank of the
observability gramian is greater or equal to v; if and only if |S| > v;.

Therefore, I; of (2.18) is p; — v; + 1, and the corollary follows from Theorem 2.7. O

One may wonder why we could not get a simple answer in Theorem 2.7 unlike Corollary 2.2.

To understand this, consider two potential extensions of Corollary 2.2:
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(1) Eigenvalue cycles with periods that are composite numbers:
2 0 0
Consider A = |0 2775 0 and C = [1 1 1] The eigenvalue cycle has length 3 and
0 0 2%
period 16. If we naively apply the formula of Corollary 2.2 then we would get a critical value

. . . 2w o g2m .
2%6 = —15. However, if we consider the sub-eigenvalue cycle {2775, 2¢776%}, the length is 2
27 16—3+1 27

1 1

and the period is 2. The formula of Corollary 2.2 gives ——5— = 57 as a critical value, which gives
3—2F1

a tighter condition than the previous one. In fact, the latter value is the correct critical erasure
probability. Because the period invariant property does not hold for a composite number cycle, the
longest cycle does not necessarily give the right critical probability.

(2) A general matrix C, multiple-output systems: If we have a vector observation, an
eigenvalue cycle can be divided into smaller cycles. As an extreme case, when C is an identity

matrix every eigenvalue cycle is divided into trivial cycles with length 1 and the critical erasure

2 0 0 0
N ) , ' 0 2% 0 0
probability becomes r——r as observed in [95]. Consider now A = o
mawx O 0 26'7 ?2 0
0 0 0 27%3
12 3 4 . Gy amy o o :
and C = 5| The eigenvalue cycle {2,2¢77%5 ,2e775 2, 2¢753} of A has length 4 and period
0 0 O
. . 3 0
5. However, if § # 0, by elementary row operations C can be converted to . Thus, the
0 0 0 1
eigenvalue cycle is divided into two sub-cycles, {2, 262%,262%2} and {262?”3}. The longer cycle with
length 3 would dominate and the critical erasure probability would be 2% = 2%70 Meanwhile,
2% 5=3F1 3
if § = 0, the second row of C would be ignorable. Thus, the eigenvalue cycle would not be divided
and the critical erasure probability would be 2;5 = 15,
2% 5—a¥1 272

In this example, we can see that the critical erasure probability depends on whether § is
equal to 0 or not, which is related to the rank of C. Thus, it is inevitable to have a rank condition

of some sort in the characterization of the critical erasure probability.

2.6.1 Extension to Intermittent Kalman Filtering with Parallel Channels

The concept of eigenvalue cycles and the divide-and-conquer approach can be also applied
to extensions and variations of the intermittent Kalman filtering.

Let’s consider intermittent Kalman filtering with parallel erasure channels as introduced
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in [33].
x[n + 1] = Ax[n] + Bw[n]
ya[n] = B1[n](Cax[n] + va[n])

ya[n] = Ba[n](Cax[n] + va[n])
Here n is the non-negative integer-valued time index, and x[n] € C™, w[n] € C9, y;[n] € Cl,
vi[n] € Cl, A € C™*™ B € C™*9, C; € Cli*™. The underlying randomness comes from x[0],

win|, vi[n] and B;[n]. x[0], w[n] and vi[n] are independent Gaussian vectors with zero mean, and

there exist positive 02 and ¢’ such that

E[x[0]x[0]"] < 0”1

E[w([n]w[n]'] < 0’1
E[vi[n]vi[n]'] < o”I
E[w([n]wn]'] = 0”1
E[vi[n]vi[n]T] = o"°1.

Bi[n] are independent Bernoulli random processes with erasure probabilities pe ;.
We call this system as an intermittent system (A, B, C;) with erasure probabilities pe ;.
Since the observations go through independent parallel erasure channels, we can expect
diversity gain [99], i.e. even though the observations from some channels are lost, we can still
estimate the state based on other successfully transmitted observations. At the first glance, this
extension may seem much harder than the original problem since we have to characterize the whole
region (Pe1,--- ,Pe,q) rather than a single critical erasure value. However, a simple extension of
Theorem 2.7 turns out to be enough to characterize this critical erasure probability region. As in
Section 2.6, let A = UA’U~! where U is an invertible matrix and A’ is an upper-triangular Jordan
matrix. We also define B’ := UB and Cj := C;U.
Then, we can make the following generalized definitions of (2.16), (2.17), (2.18) for A’ and
Cl.
A’ =diag{A11,A12,- Ay, }
Ci= [Cl,l,i Ciz2i - C#,u,mi}
where
Aj;; is a Jordan block matrix with an eigenvalue A; ;
{1, Aiw, } s a cycle with length v; and period p;
For i # ¢/, {\;j, A j7} is not a cycle

Ci;x is a lp x dim A; ; matrix.
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Denote
A; = diag{\i1, N
CiJ = [(Ci,l,j)lv R (Ci,Vi,j)l}
where (Cj; k)1 is the first column of Cjj k.

Let (L1, 02, ,1;,q) be the cardinality vector of the sets S, S5, - -+ , S/ such that S; := {0,1,--- ,p;—
L\ S% = {sj1,8j2," 55,/ } and

s1,1 |
Ci1A4

Ci1 A5
Ci2A;%

| CiaA;°" 1%l |

is rank deficient, i.e. has rank strictly less than v;. Denote L; as a set of all such vectors.

Then, intermittent observability with parallel channels is characterized as follows.

Proposition 2.1. Given an intermittent system (A, B, C;, 0, 0") with probabilities of erasures (pe.1,- - ;De.d),
let o < 00, o’ >0, and (A, B) be controllable. Then, the intermittent system is intermittent observ-
able if and only if

Lij
; 2
L1 (Lo sl a)EL pey | Pial <1
<i<p (li1,li2,+ ,li,a)E€L; 1<j<d

We omit the proof of the proposition, since it is similar to that of Theorem 2.7.

Compared to Theorem 2.7, the max-combination and separability principle remain the
same, but the test channels in the power property become more complicated. Here, (S7,---,5%)
represents the test channels such that when they are erased, the observability Gramian becomes

rank-deficient. (I;1,---,l; 4) represents the distance vector to these test channels.

2.7 Intermittent Kalman Filtering with Nonuniform Sam-
pling

In the previous section, we proved that eigenvalue cycles are the only factor that prevents

us from having the critical erasure probability be ﬁ Based on this understanding, we can look
for a simple way to avoid this troublesome phenomenon. Here, we propose nonuniform sampling as
a simple way of breaking the eigenvalue cycles and achieving the critical value I/\;

5.
max
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1 0 1 0
. Then, A = JA? = JAS =
0 1 0 1

As an intuitive example, consider A = l

0 -1 0 1
are identical. Therefore, the question is how we can make every matrix in A, A%, A3, ... distinct. To

1 0 1 0 . ) L
LAY = ,---. What the eigenvalue cycle is capturing is that half of A, A2 A3,...

simplify the question, consider the sequence of —1,1,—1,1,--- which corresponds to (2,2) elements
of A,A% A3 ...,

Rewrite this sequence —1,1,—1,1,--- as (e/™), (e/™)2, (e/™)3, (™), .- and introduce a

jitter ¢; to each sampling time. The resulting sequence becomes (e/™)1 1 (eI™)2+t2 (eI™)3+ts (eim)dtta ...

and if ¢;s are uniformly distributed i.i.d. random variables on [0, T] each element in the sequence is
distinct almost surely as long as 7" > 0.

Operationally, this idea can be implemented as follows: at design-time, the sensor and the
estimator agree on the nonuniform sampling pattern which is a realization of i.i.d. random variables
whose distribution is uniform on [0,7] (T > 0). Whenever the sensor samples the system, it jitters
its sampling time according to this nonuniform pattern. Knowing the sampling time jitter, the
sampled continuous-time system looks like a discrete time-varying system to the estimator. The joint
Gaussianity between the observation and the state is preserved, and furthermore, Kalman filters are
optimal even for time-varying systems! This intermittent Kalman filtering problem with nonuniform
samples has the critical erasure probability m almost surely. Therefore, an eigenvalue cycle is
breakable by nonuniform sampling.

One may be bothered by the probabilistic argument on the nonuniform sampling pattern.
However, this probabilistic proof is an indirect argument for the existence of an appropriate deter-
ministic nonuniform sampling pattern, which is similar to how the existence of capacity-achieving
codes is proved in information theory [93].

To write the scheme formally, consider a continuous-time dynamic system:

dxc(t) = AexXe(t)dt + BedWe(t) (2.19)
V(1)

c(t) = Cexc(t D,
yelt) = Cexelt) + DVe

(2.20)

Here t is the non-negative real-valued time index. Wc(t) and V,(t) are independent g and I-
dimension standard Wiener processes respectively, i.e. for a,b > 0, W¢(a+b) — W (b) is distributed
as N(0,al) and Vc(a + b) — V(b) is also distributed as N (0,al). A, € C™*™ B, € C™*9,
C. € C*™ and D, € C*! where D, is invertible. Thus, x[n] € C™ and y[n] € C'. For convenience,
we assume x[0] = 0 but the results of this chapter hold for any x[0] with finite variance. Throughout
this chapter, we use the Ito’s integral [32, p.80] for stochastic calculus.

The process of (2.19) is known as Ornstein-Uhlenbeck process [32, p.109] whose solution is
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Xo(t) = ePetx (0) + fot eAe(t=t)B . dW,(t'). Therefore, for t; < t, we have

t2 ,
Xe(ty) = efet2x (0) + / eActz= B dW (1) (2.21)
0

t
_ eAC(tQ—tl) <6Actlxc(0) +/ 2 eAc(t1—t’)Bchc(t/)>
0

t1 ta
— pAclta—t1) (eActlxc(O) +/ eAc(tl—t)Bchc(t/) +/ eAc(ti—t )Bchc(t/)>
0

ty

ta
— eAclta—t1) (Xc(tl) +/ eAC(tlt,)Bchc(t/))

ty
which can be rewritten as
to ,
Xo(ty) = efetit2)x (ty) — / eAc =B AW (). (2.22)
ty

The point of doing this is to understand the values of the states during sampling intervals in terms

of the states at the end of the interval.
Let’s say we want to sample the system with a sampling interval I (I > 0). Conventional
samplers uses integration filters to sample, i.e. in the uniform sampling case, the nth sample y[n]

corresponds to the integration of y¢(t) for (n —1)I <t < nl:

nl
yn] = /( ve(t)dt.

n—1)I
Nonuniform sampling can be thought of in two ways with respect to sampler’s integration
filters: (1) The starting times of the integrations are uniform but the sampling intervals are non-
uniform. (2) The sampling intervals are uniform, but the starting times of the integrations are
non-uniform. Since the analysis and performance is similar in both cases, we will focus on the latter

case. To take the nth sample of the system, the non-uniform sampler takes the integration of y(¥)
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for (n — 1)1 —t, <t <nl—t,:

%sz Dt
(n— 1)I tn

nl—t,
_ / Coxe(t)dt + / D.dV,(t) (2.23)
(n—1)I (n—1)I—t,,
nl—t, ,
/ <eA°(t_("I_t"))xc(nI—tn) — / ehelt=t )Bchc(t’)> dt
(n—=1)I—t, t
nl—t,
+ / DedV,(t) (2.24)
(n—1)I

/ Cetet=(nI=tn)) gy Xe(nd — ty,)
(n— 1)I tn
nl—ty,

—tn
/ / Cee =B AW, (t')dt + / D.dV(t)
(n=1)I (n—1)I—t

I
</ Coetelt= I)dt> xc(nl —ty,)
0

nl—t, nl—t, nl—t,
— /( : / CeeA"B AW, (') dt + /( | D.dV.(t) (2.25)
n—1)I—t n—1

:=v[n]

Here (2.23) follows from (2.20), and (2.24) follows from (2.22). Since yo[n] is transmitted over
the erasure channel, the intermittent system (A.,B¢, C) with nonuniform samples and erasure

probability p. has the following system equation:

dxc(t) = Aexc(t)dt + BedWe(t) (2.26)
yv[n] = B[n)(Cxc(nl — ) + v[n]) (2.27)

where y[n] € C! and B[n] is an independent Bernoulli random process with erasure probability p..
The variance of v[n] is uniformly bounded since the integration interval is bounded, but v[n] can be
correlated since the integration intervals could overlap. Since C is a function of C, the observability
of (A, C.) does not necessarily imply the observability of (A, C) while the observability of (A, C)
always implies the observability of (A, Ce).

Figure 2.3 shows the system diagram for intermittent Kalman filtering with nonuniform
sampling. The nonuniform sampler samples the plant according to the nonuniform sampling pattern
t, and generates observations y,[n]. The observation is transmitted through the real erasure channel
without any coding. Then, the estimator tries to estimate the state z.(t) based on its received signals
3™ and the nonuniform sampling pattern ¢™.

As before, the intermittent system (Ag, Be, C) with nonuniform samples is called inter-

mittent observable if there exists a causal estimator X(t) of x(t) based on y[[%]],---,y[0] such
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Shared Nonuniform Sampling Pattern t,

| }

Nonuniform Sampling .
PLANT || sensor Estimator
dxelt) = Aexe(t)dt + BedWeln| | yoln] = Cxe(nl — t,) + v[nl|Yo[n] Ty [0)| E [xc(t)|y", "]

0 w.p. pe

1 otherwise
Figure 2.3: System diagram for ‘intermittent Kalman filtering with nonuniform sampling’. The
sensor samples the plant according to the nonuniform sampling pattern ¢,,, and sends the observation
through the real erasure channel without any coding. The estimator tries to estimate the state based

on its received signals and the nonuniform sampling pattern ¢,,.

that

sup E[(x(t) — x(1) (x(t) — x(1))] < oo

Intermittent observability with nonuniform samples is characterized by the following theorem.

Theorem 2.8. Let t,, be i.i.d. random wvariables uniformly distributed on [0,T] (T > 0), and
(Ac,Bc) be controllable. When (A, C) has unobservable and unstable eigenvalues — i.e. IX € CT

AL - A,
such that [ c 1 is rank deficient —, the intermittent system (Ac¢,Be, C) with nonuniform

samples is not intermittent observable for all p.. Otherwise, the intermittent system (Ac, B, C)
with nonuniform samples is intermittent observable if and only if p. < ﬁ Here \pae 1S the

eigenvalue of Ac with the largest real part.
Proof. See Section 2.8.1 for sufficiency, and Section 2.8.2 for necessity. O

Since exp ((eigenvalue of A.)I) corresponds to the eigenvalue of the sampled discrete time
system, the critical value of Theorem 2.8 is equivalent to that of Corollary 2.1. The nonuniform
sampling allows us to no longer care if eigenvalue cycles could exist for the original continuous-time
system under uniform sampling.

Nonuniform sampling is the right way of breaking eigenvalue cycles from a practical point
of view. The critical erasure probability of m can thus be achieved not only by using the
computationally challenging estimation-before-packetization strategy of [87], but also by the simple
memoryless approach of dithered sampling before packetization. And so, even if the sensors were
themselves distributed, the critical erasure probability with nonuniform sampling is still critical
value optimal in a sense that they can achieve the same critical erasure probability as sensors with

causal or noncausal information about the erasure pattern and with unbounded complexity.
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2.7.1 Extensions of Intermittent Kalman Filtering with Nonuniform Sam-
pling

In this section, we discuss variations and extensions of intermittent Kalman filtering with
nonuniform samples. Since the proofs of the results shown in this section are similar to that of

Theorem 2.8, we only present the results without proofs.

General Distribution on ¢,

First, we relax the condition on the distribution of ¢,, of Theorem 2.8. There, we assume
that t,, are identically and uniformly distributed. However, they do not have to be identical or

uniform.

Proposition 2.2. Assume that to,t1,--- are independent and there exist a,c > 0 such that P{|t,| >
a} =0 and P{t, € B} < ¢|B|z for alln € Z* and B € B, where B is Borel o-algebra and | - | is
Lebesque measure. Then, Theorem 2.8 still holds, i.e. if (A, C) has no unobservable and unstable

eigenvalues, the intermittent system with nonuniform samples is intermittent observable if and only

. 1
if pe < [P masT]

For the proof of the proposition, we can repeat the proof steps of Theorem 2.8 using an

improper distribution p such that p(A) = ¢|AN[—a,d]|..

Deterministic Sequences for t,,

The randomness assumption on ¢,, can be also removed. As we mentioned earlier, the prob-
abilistic proof is an indirect proof for the existence of deterministic nonuniform sampling patterns.
In fact, any nonuniform sequence satisfying Weyl’s criteria —which gives the sufficient and necessary

condition for a sequence equidistributed on the interval — can be used to break eigenvalue cycles.

Proposition 2.3. Let a sequence t, € [0,T] satisfy Weyl’s criteria, i.e. for all h € Z \ {0},

lim [+ Y e/2mh 1| = (. Then, Theorem 2.8 still holds, i.e. if (Ac,C) has no unobservable and
N—oc0 1<n<N
unstable eigenvalues, the intermittent system with nonuniform samples is intermittent observable if

and only if pe < W

For example, a sequence like ¢, = v/2n — L\/inj can be used to break eigenvalue cycles.
The proof is by merging the proofs of Theorem 2.7 and Theorem 2.8.
Nonuniform-length integration interval

In Theorem 2.8, we introduce nonuniform sampling by changing the starting time of the
length of the integration. Another way of introducing nonuniform sampling is changing the integra-

tion interval. To take the nth sample of the system, the sensor integrates y¢(t) from (n — 1)I —t,
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to nl. Parallel to (2.25), we have the following equation.

nl
Yol /( ve(t)dt

n—1)I—t,
nl
B /( I Ceehet=m1) | xe(nl)
n— —tn
nl nl—ty, , nl
— / / Cee =B AW, (t')dt + / D.dV(t)
(n—=1)I—t, Jt (n—=1)I—t,
n+tn
= </ CCeA°(t_"I_t")> Xc(nl)
0
:=Cyp,
nl nl—t, , nl
- / / Cee =B AW, (t')dt + / D.dV(t)
(n—=1)I—t, Jt (n—=1)I—t,
:=v[n]

Yol[n] is transmitted over the erasure channel, and the intermittent system (A, B¢, Cp) with nonuni-
form samples and erasure probability p. has the following system equations which correspond to

(2.26) and (2.27).

dxe(t) = Acxo(t)dt + BedW ()
y[n] = B[n](Cnxc(nl) + v(n])

Then, the intermittent observability condition for (A¢, B¢, Cp) is similar to Theorem 2.8.

Proposition 2.4. Let t,, be i.i.d. random wvariables uniformly distributed on [0,T] (T > 0), and
(A¢,Bc) be controllable. If (Ac,Cc) has unobservable and unstable eigenvalues, the intermittent
system (Ac,Be, Cn) with nonuniform samples is not intermittent observable for all p.. Otherwise,
the intermittent system (Ac, Be, Cn) with nonuniform samples is intermittent observable if and only
if pe < W where Amaz 1S the eigenvalue of Ac with the largest real part.

Compared to Theorem 2.8, we can see that the observability condition of (A, C) is relaxed
to the observability condition of (A, Cc). This is due to the following fact: |, (21—_1?}— . eI Ftdt =0
for all ¢,, and f{;l_l)]_tn eI At # 0 for some t,. Even if (A, C.) is observable, (A, C) can be

unobservable for all ¢,, while (A, Cy) is observable for almost all ¢,.

Nonuniform Time-varying Filtering

In some cases, it is impossible to change the sampling time. In this case, we can use
nonuniform time-varying filtering to break eigenvalue cycles. Consider the following discrete-time
system:

x[n + 1] = Ax[n| + Bw|n]

Yo[n] = Cx[n] + v[n]|
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Here yo[n] are the observations at the sensor, and the sensor cannot change the sampling intervals.

Instead, the sensor introduces nonuniform filtering to the observations as follows:
Yoln] = a[nl]yo[n] + o/ [n]yo[n — 1]

This is just like introducing an FIR (finite impulse response) filter at the sensor except
that the impulse response of the filter keeps changing over time.

The output of the nonuniform time-varying filter, y. [n], is transmitted over the erasure
channel. Therefore, the intermittent system (A, B, C) with erasure probability p. and nonuniform

time-varying filtering has the following system equations:

x[n + 1] = Ax[n| + Bw|n]

yln] = Bln)(yelnl)
= B[n](a[n]Cx[n] + o/[n]Cx[n — 1] + a[n]v|n] + o/ [n]v[n — 1])

The intermittent observability with nonuniform filtering is given as the following proposition.

Proposition 2.5. Let a[n] and o/[n] be i.i.d. random variables uniformly distributed on [0,T] (T >
0), and (A, B) be controllable. If (A, C) has unobservable and unstable eigenvalues, the intermittent
system (A, B, C) with nonuniform filtering is not intermittent observable for all p.. Otherwise,
the intermittent system (A, B, C) with nonuniform filtering is intermittent observable if and only if

De < ﬁ where Amae 98 the largest magnitude eigenvalue of A.

e
oz

Sampling with Nonuniform Waveforms

So far in Theorem 2.8, Proposition 2.4, and Proposition 2.5, we have seen three different
ways of breaking eigenvalue cycles. However, these methods are essentially the same and generalized
to nonuniform sampling with nonuniform waveforms.

Fig. 2.4 shows the nonuniform sampling methods used to break eigenvalue cycles with
respect to their waveforms. First, Fig. 2.4a shows the uniform sampling which is implicitly used to
make discrete-time system (2.1), (2.2) from the underlying continuous-time system. As we saw in
Theorem 2.7, the eigenvalue cycles were not broken in this case. Fig. 2.4b shows the nonuniform
sampling by changing the starting time of the integration, which is used in Theorem 2.8. In this
case, the eigenvalue cycles were successfully broken, but we can still observe the regularity in the
integration intervals. Due to this regularity, we needed the observability of (A, C) instead of the
observability of (A¢, Cc). Fig. 2.4c shows the nonuniform sampling by changing the integration
interval, which is used in Proposition 2.4. The eigenvalue cycles were also broken in this case and
due to the lack of regularity in sampling intervals, the observability of (A, Cc) was enough. Fig. 2.4d
shows nonuniform filtering, which is used in Proposition 2.5 and successfully breaks the eigenvalue

cycles. Therefore, we can conclude that as long as the sampling waveforms are not uniform as
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() (b) (c)

(d) (e)

Figure 2.4: (a): uniform sampling of Theorem 2.7, (b): nonuniform sampling of Theorem 2.8, (c):
nonuniform sampling of Proposition 2.4, (d): nonuniform filtering of Proposition 2.5, (e): nonuniform

sampling with nonuniform waveforms

Fig. 2.4a the eigenvalue cycles are broken. In general, nonuniform waveforms shown in Fig. 2.4e can
be used to break eigenvalue cycles, and it is an interesting technical equation to find the minimal

condition on nonuniform waveforms to break eigenvalue cycles.

Extension to Parallel Channels

Theorem 2.8 can also be extended to the multiple sensors that transmit their observations

through parallel erasure channels. Consider the following continuous-time system equations.

dXe(t) = Acxc(t)dt + BedWo(t)

dVe(t)

yc,l(t) = Cc,lxc(t) + Dc,l dt

dVea(t)

Ye,d (t) - Cc,dxc (t) + Dc,d dt

Here t is non-negative real-valued time index. A, € C™*™ B, € C™*9 | C.; € Cl*™ and
D.; € Clixti where D is invertible. W¢(¢) and V¢ 1(f) are independent g and l;-dimensional
standard Wiener process respectively.

Like (2.25), the nth sample at the sensor i is obtained by integrating ye i(¢) from (n—1)I—
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tp,; tonl —
nl— —tn,i
Yo.i il / Yei(t)dt
(n—=1)T—ty;
I
— / Ceie®Dat | xe(nI — t,,)
0
nl—tn ; —tn,i , nl—tn i
/ / Cc7i€A°(t_t )BchC(t’)dt + / D idVei(t)
(n—=1)I—ty ; (n=1)I—tn ;

:=vj[n]
Since yo i[n] are transmitted over the parallel erasure channel, the intermittent system

(A, B, C;) with parallel channel has the following system equation:
dxe(t) = AeXc(t)dt + B dWe(t)
yi[n] = Bi[n](Cixe(nd — tn1) + vi[n])

ya[n] = Ba[n](Caxe(nl —tn.a) + va[n])
where y;[n] € C and $;[n] are independent Bernoulli random processes with erasure probability
DPe,i-
Like before, by a change of coordinates, we can rewrite the above system equations to the
ones with a Jordan form A, without changing the intermittent observability. Therefore, like (2.16),
(2.17) and (2.18) we can write A. and C; as follows without loss of generality.
A =diag{A11,A12,- - AL}
Ci= |:Cl,1,i Ci2i - C;L,l/,“i:|
where
A;; is a Jordan block with eigenvalue A;
A1,--+, A, are pairwise distinct
Ci;k is alp x dim A;j; complex matrix.

Denote

Cij = [(Ci,l,j)l o (Cingh
where (Cj k), implies the first column of Cj j i

Let (li71, li72, s ;li,d) S {0, 1}d such that
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is rank deficient, i.e. the rank is strictly less than v;.
Denote L; as the set of such (I;1,1; 2, - ,1; q4) vectors. Then, the intermittent observability

of the system (A, Be, C;) with parallel channels is characterized by the following proposition.

Proposition 2.6. Given an intermittent system (Ac, Be, C;) with probability of erasures (pe1,- - , Pe.d)s
let (Ac,Bc) be controllable, and t,,; be independent random variables uniformly distributed on
[0,T] (T > 0). The intermittent system (Ac, Be, Ci) with parallel channels is intermittent observable

if and only if

li.j v
max max | I Pej le?NT| < 1.
1<i< ) e s L. 2
<i<p (biyasliy2, 0 5 li,a)E LG 1<j<d

2.8 Proofs

The proofs of Theorem 2.7 and Theorem 2.8 are quite similar. For presentation purposes,
we will first present the proof of the nonuniform sampling case, Theorem 2.8, which is easier than
that of Theorem 2.7. The randomness introduced by non-uniform sampling will be emulated in the

proof of Theorem 2.7 by using Weyl’s criterion [54].

2.8.1 Sufficiency Proof of Theorem 2.8 (Non-uniform Sampling)

We will prove that if (A, C) does not have unobservable and unstable eigenvalues and
Pe < m, the system is intermittent observable.

e Reduction to a Jordan form matrix A.: To simplify the problem, we first restrict to
system equations (2.26) and (2.27) with the following properties. We will also justify that this
restriction is without loss of generality and does not change intermittent observability.

(a) The system matrix A is a Jordan form matrix.

(b) All eigenvalues of A, are unstable, i.e. the real parts are nonnegative.

(c) (2.26) and (2.27) can be extended to two-sided processes. (i.e. We can extend time to be negative,
and set the state as zero there.)

The restriction (a) can be justified by a similarity transform [17]. As mentioned before,
it is known [17] that for any square matrix A., there exists an invertible matrix U and an upper-
triangular Jordan matrix AL such that A. = UALU~L. Then, equations (2.21) and (2.25) can be
rewritten as

t
U 'xc(t) = e2<'U % (0) + / AU B dW, (1)
0

I
Yoln] z/ CcUeA;(t_I)dtU_lxc(nI— tn)
0
nl—ty,

nl—ty, nl—ty, , ,
— / / C UeAUTB AW, (')dt + / D.dVe(t).
(n—=1)I—t, Jt (n—=1)I—t,
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Thus, by denoting x/(t) := U~ !x.(t), B, := U™'B,, and C, := C.U, the system equations (2.19),
(2.20) and (2.27) can be written in the following equivalent forms.

dx.(t) = ALx,(t)dt + B.dW,(t)
dVe(t)

dt
Yoln| = C'x.(nl —t,) + v[n]

ye(t) = C/cx’c(t) + D¢

where C’ := [ CLeAe(-Ddt = [ C.UU A= Udt = CU.

Since U is invertible, (A, C) has an unobservable eigenvalue X if and only if (AL, C’) has
an unobservable eigenvalue \. Moreover, since x, = U~!x.(t), the original intermittent system
(A, Be, C) with nonuniform samples is intermittent observable if and only if the new intermittent
system (AL, B.,C’) with nonuniform samples is intermittent observable. Thus, without loss of
generality, we can assume A, is given in a Jordan form, which justifies (a).

Once A, is given in a Jordan form, there is a natural correspondence between the eigen-
values and the states. If there is a stable eigenvalue — i.e. the real part of the eigenvalue is negative
—, the variance of the corresponding state is uniformly bounded. Thus, we do not have to estimate
such a state to make the estimation error finite. In the observation y[n], the stable states can be
considered as a part of observation noise v[n], and the variance of v[n] is still uniformly bounded
(even if v[n] can be correlated). Therefore, we can assume (b) without loss of generality.

To justify restriction (c), we set We(t) = 0 for ¢t < 0, V() = 0 for t < 0, and let 8[n]
be a two-sided Bernoulli process with probability 1 — p.. Then, the resulting two-sided processes
Xc(t) and y[n] are identical to the original one-sided processes except that x¢(t) = 0 for t € R™~
and y[n]=0forneZ .

In summary, without loss of generality we can assume that A. is in a Jordan form, all
eigenvalues of A, are stable, and (2.26) and (2.27) are two-sided processes. Thus, we can assume

A, € C™*™ and C € C*™ is given as follows.

Ac = diag{Al,la A1,2a e 7A1,V17 e 7Au,17 e 7Au,uu} (228)
C= [01,1 Ciz2 -+ Cip - le Cu,uM (2.29)
where

A;;j is a Jordan block with eigenvalue \; + jw; and size m; ;
mi1 <mio < - <my,, foralli=1,---,p

A2 A > 22,20

AL+ jwi, A + jwa, -+, A, + jw, are pairwise distinct
Cijis a l x m; ; complex matrix

The first columns of C;1,C;j 2, -, Cs,, are linearly independent.
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Here, Aj1,---, A4, are the Jordan blocks corresponding to the same eigenvalue. The Jordan blocks
are sorted by the real parts of the eigenvalues in a descending order. The linear independence of
Ci1,Ciz2, - ,Ci,, comes from the observability of (A¢, C) (by Theorem 2.6).

e Uniform boundedness of observation noise: To prove intermittent observability, we will
propose a suboptimal maximum-likelihood-style estimator, and analyze it. To upper bound the
estimation error, we upper bound the disturbances and observation noises in the system.

By (2.22), we have

nl

Xe((n — k) — t,_p) = e AelblFta)x () — / eAel=BI—tn k=B IW (1)
(=) Tt
—w/[n—Fk]
By plugging this equation into (2.27), we get
¥l — k] = Cxel(n — K)I = tas) +vin — ]
= Ce Achltta-i)x (nI) + Cw'[n — k] + v[n — k] . (2.30)
=v/[n—k]

We will upper bound the variance of v'[n — k]. First, consider the variance of w’[n — k]. By
assumption (b), all eigenvalues of A, are unstable, and since t,_ € [0,T], (n — k)] —t,_ — ') is
within [—(kI 4+ T'),0]. Thus, there exits p’ € N such that

E[w'[n — kiw[n— k] <1+ & (2.31)

where < holds for all n. (See Definition 2.12 for the definition of <.)
By (2.25), the variance of v[n] is uniformly bounded'* for all n. Therefore, we have
E[v'[n— kIv/[n— k)] <1+ k' for all n.

Moreover, since W,(t) is a standard Wiener process with unit variance, supE[(x(nl) —
neL

X(nI))t(x(nI) — X(nl))] < oo implies supE[(x(t) — X())T(x(t) — X(t))] < co. Thus, it is enough to
estimate the state only at discrete timées],Rteps.

e Suboptimal Maximum-Likelihood-Style Estimator: Now, we will give the suboptimal
state estimator which only uses a finite number of recent observations. We first need the following

key lemma.

Lemma 2.2. Let A. and C be given as in (2.28) and (2.29), B[n] be a Bernoulli process with
probability 1 — p., and t,, be i.i.d. random variables whose distribution is uniform on [0,T] (T > 0).
Then, we can find m’ € N, a polynomial p(k) and a family of stopping times {S(e, k) : k € ZT,0 <
€ < 1} such that for all k € Z" and 0 < € < 1 there exist k < ky < ko < -++ < kpy < S(e,k) and a

m X m'l matrix M satisfying the following four conditions:

(i) Blki) =1 for all1 <i<m’

14Recall that to justify assumption (b), we considered the stable states as a part of observation noise v[n]. However,
this does not change the uniform boundedness since the variances of the stable states are also uniformly bounded.
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Ce—(Fil+te; ) Ac
Ce—(k2l+tiy)Ae
(i) M , — T,
Ce ™ km Ittn, ) Ae
(iii) M|, . < Me/\ls(e,ku

(iv) lime o (explimsup,_, o supez+ + log P{S(e, k) — k = s}) < pe.

Proof. See Appendix 7.4. The key ideas are explained in Section 2.5. O

Since we have p. < |e2’\7}mmf\ = 621117 there exists 6§ > 1 such that 6°p. < e“% By
Lemma 2.2, we can find m’ € N, 0 < € < 1, a polynomial p(k) and a family of stopping times
{S(n) : n € Z*} such that for all n, there exist 0 < ky < kg < -+ < kyy < S(n) and a m x m/l
matrix M, satisfying the following four conditions:
) Bn—Fki]l=1for1 <i<m’
Ce—(k1l+tn_k;)Ac

Ce(kal+tn_ky)Ac
(117) Mn . = I7n><7n

Ce~ B Ittn—k, ,)Ac

(iii") My, < Me,\ll»sm)

maxr —

(iv’) exp (limsup,_, . sup,cz+ + logP{S(n) = s}) < Vdp..

S

Then, here is the proposed suboptimal maximum likelihood estimator for x(nI):

yn — k1]
R(nl) = M yin - Rl (2.32)
yin — k]

Here, k; also depends on n, but we omit the dependency in notation for simplicity. Notice that,
m/, the number of observations used is much larger than the dimension of the system, m. In other
words, the estimator proposed here may use many more observations than the number of states
(the number of observations that a simple matrix inverse observer needs). This is because we use a
successive decoding idea in the proof of Lemma 2.2.

e Analysis of the estimation error: Now, we will analyze the performance of the proposed
estimator. Recall that p’ is defined in (2.31) and § > 1. By (iv’) and well-known properties of
polynomial and exponential functions, we can find ¢ > 0 that satisfies the following three conditions:
(") 1+ kP)<c-0Fforall k>0
(ii*) p(k) < c-6* for all k > 0
(iii”) sup,enP{S(n) = s} <c-(6-pe)® for all s € Z*

Let Fg be the o-field generated by S[n] and ¢;. Then, k;, S(n), and ¢; are deterministic



variables conditioned on Fg. The estimation error is upper bounded by
sup E[[x(n) — x(nl)|3]

= sup B[E(jx(nl) — X(n)[3|75]]

Ce—Aclkil+tn 1) v'[n — k1]
" Ce—Ackal+t, i) v'[n — ko]
Y sup BIE]|x(n]) — My . xel)+ ]
n : .
Ce—Aelkpr I+tar ) v'[n — kpy]
2
v'[n — ki
/

(B) Vin =k
D sup E[E[|Mn : | Fsl]

V/[n — k21gigu m;] 5

2
v/[n — k]
_ ) v/[n — ko]
~ SupE[|Mn|maac ’ ]E[ . |‘7:,3H
v/[n — k]

max

©) /
< SUpE[[Ma 74, - (14 S(n)")?]

€

< Sup]E[<p(SW)eMS("))2 1+ Sy

E
(S) supIE[52S(”) . 62)\1[~S(n) . 525(71)]

B & 4 AT
< Dot (6 pe)

s=0

@) 2(55 LMl p)s
s=0

< 00

where < holds for all n.
(A): By (2.30) and (2.32).
B)
(©)
(D)
(
(
(

By condition (ii’).
Since E[v'[n — k]Tv/[n — k]] < 14 k¥’ by definition.

E
F

G): Since we chose § so that 6°p, - M1 < 1.

): By condition (i”) and (ii”).
):

: By condition (iii’).
By condition (iii”).

o7

Therefore, the estimation error is uniformly bounded over ¢ € R* when p. < —z;r, which



a8

finishes the proof.

2.8.2 Necessity Proof of Theorem 2.8

The necessity proof divides into two parts. First, we prove that if p. > W, then

the system is not intermittent observable. Second, we prove that if (A, C) has unobservable and
Al— A
unstable eigenvalues — i.e. I\ € Ct such that l c c] is rank deficient — then the system is

not intermittent observable.

e When p, > W Intuitively speaking, we will give all states except the one corre-
sponding to the maximum eigenvalue as side-information to the estimator. Thus, we will reduce the
problem to the scalar system discussed in Section 2.5.

Formally, let g := E[(xc(t) — E[xc(t)[y!T1])(xc(t) — E[xc(t)|yL7!])T|F5] where Fj is the
o-field generated by 3[n] and t;. Notice that 3¢ is a random variable.

It is known that when (A, B¢) is controllable, the estimation error covariance of x¢(t)
based on all the causally available information y¢(0 : t) is positive definite when ¢ is large enough.
Therefore, there exists t' > 0 and o2 > 0 such that for all ¢ > #/, e = 0?1 with probability one.
Let e be a right eigenvector of A. associated with the eigenvalue \j,qz, i.6. Ace = Apaze. Then,
we can find 0’2 > 0 such that for all t > ¢/, Sy = o'?eel with probability one.

Define the stopping time S/, := inf{k € Z*|3[n — k] = 1} as the time until the most recent
observation.

The observations between discrete time n — S}, + 1 and n are all erased. This implies
the estimation error is exponentially amplified by the system dynamics during this period. Thus,

conditioned on (n — S;,)I > t', Zyqnr is lower bounded as follows with probability one.1®

E[Zntjnt| Sy, (n — S;)I > t'] = (€A°(S’/””I))E(ms;)u(nfs;,)l(6‘1&“(57/”7))T

o2 (eAe(5nD))gel (eAe(SnD)T

Y

!
reel

1Y

0_/2 ‘GQA,,L(WI |S

Here we use the fact that when e is an eigenvector of A, associated with an eigenvalue A4z, € is
also an eigenvector of eA<* associated with the eigenvalue e*me=t for all t.

Since pe > the average estimation error is lower bounded as follows:

E{(xe(n1) — Efxe(nD)ly"])! (xe(n]) — Exe(nD)ly"])]
> Blo e e [Sief? - 1((n — S))1 > ¢)

> oef? N [P (L=
0<s<[n—%

> 026 (1= pe) - (n— ) +1)

15The lower bound does not hold for R(A) = 0 which induces pe = 1. However, in this case we do not have any
observations, so trivially the system is unstable.
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Thus, the estimation error goes to infinity as n — oo, so the system is not intermittently observable.

e When (A, C) has unobservable and unstable eigenvalues: Now, we prove that if (A, C)
has unobservable and unstable eigenvalues, the system is not intermittent observable. This seems
trivial, but the original continuous-time system (A, C.) can still be observable while the sampled

system (A, C) is not. Thus, it still needs justification.

A —
Let A € C* be an unobservable and unstable eigenvalue. Then, [ c is rank deficient,

AL-A
and we can find a nonzero vector i such that [ c c] i = 0. Then, i satisfies Ci = 0, A.i = )i,

and we can notice that Ce<*i = e*MCi = 0. We will prove that the uncertainty in the direction i is
not, observable by any observations.

By the controllability of (A¢, B.), as above there exists ¢’ such that for all ¢t >, x.(¢t) —
E[xc(t)|yc(0 : ¢)] has a positive definite covariance matrix. Therefore, we can write xc(t) —
Exc(t)|yc(0:t)] =i-2L(t) +x(t) where z.(t), x2(t) and y.(0 : t) are independent and E[|z.(¢)[?] >
o' for some ¢’"> > 0 and all t > t'.

Then, we will prove that the sampled observations are independent from a(¢). By (2.21)

and (2.25), for all 7 < (n — 1)I —t,, we have

nl—t

yoln) = Gl De(r) [ A OBAW (1)

T

nl—t, nl—t, , nl—t,

— / / Ceer B AW, (t')dt + / D.dV(t)
(n—=1)I—t, Jt (n—=1)I—t,

nl—t

= C(eAC("I_t"_T)(i -2 (7) + x2(7) + E[xe(7)|ye(0: 7)] + / ' eAC(T_t/)BCdWC(t’)))

T

nl—ty, nl—ty, , nl—ty,
- / / CeeA<"B AW, (') dt + / D.dV,(t)
(n—=1)I—t, Jt (n—=1)I—t,

nl—t, ,
= C(eAeMI =t =) (x" (1) + E[xc(7)|ye(0 : 7)] + / eAT=IB AW (1))

nl—t, nl—t, , nl—t,
— /( / Cee B AW, (t')dt + /( D.dV(t) (2.33)
t

n—1)I—t, n—1)I—t,

where the last equality comes from Ce®<ti = 0. Moreover, by causality and definitions, the last
equation is independent of /(7).

Now, we will prove that the uncertainty . (7) can be arbitrarily amplified. Since ¢; are
uniform random variables on [0, 7], there exists a positive probability such that (n — 1)I — ¢, <
(n+n' — DI — tyyy for all n € N. Denote such an event as E. Then, by choosing n large

enough so that (n — 1)I —t, > t', we have the following lower bound on the estimation error for all
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t>(n—10I—t,:

E[[xc(t) — Elxo(t)y 7]
> E[|xc(t) — Elxc(t)ly ]| EJP(E)

(@
> E[lefetm(mDI=Di o (n — 1)1 —t,)]*| EJP(E)

= |t ((=DI=T)) 51252 . p(E) (2.34)

(a): By (2.21), xc(t) = eAelt=((n=DI=ta))x ((n —1)I —t,) +f(tn—1)l—tn eAe((n=DI=tn—tYB_JW(t').
Moreover, by definition, z//((n — 1)I — t,,) is independent from y.(0 : (n — 1)I —¢,). By (2.33),
z((n — 1)I —t,) is also independent from yo[n|,yo[n +1],---.

Since we can choose t arbitrarily large, this finishes the proof for ®(\) > 0. To prove for the
case of R(A) = 0, we can bound (2.34) more carefully and justify that independent estimation errors
accumulate in the direction of i. We omit the proof here since the argument is essentially equivalent
to that of the well-known fact that an eigenvalue with zero real part is unstable in continuous-time

systems.

2.8.3 Sufficiency Proof of Theorem 2.7 (Discrete-Time Systems)

1

We will prove that if p, < »— then the system is intermittent observable.

i ol
e Reduction to a Jordan form matrix A: As in Section 2.8.1, we will restrict attention to
system equations (2.1) and (2.2) with the following properties, and justify that such a restriction is
without loss of generality and does not change the intermittent observability.
(a) The system matrix A is a Jordan form matrix.
(b) All eigenvalues of A are unstable, i.e. the magnitude of all eigenvalues are greater or equal to 1.
(c) (2.1) and (2.2) can be extended to two-sided processes.
The restriction (a) can be justified by a similarity transform [17]. It is known [17] that for
any square matrix A, there exists an invertible matrix U and an upper-triangular Jordan matrix

A’ such that A = UA’U~L. Then, the system equations (2.1) and (2.2) can be rewritten as:

U 'x[n+1] = A'U x[n] + U 'Bw]n]
yln] = Bl (CUU~xfn] + Vi),

Thus, by denoting x'[n] := U~!x[n], B’ :== U~!B, and C’ := CU, we get

x'[n + 1] = A'X'[n] + B'w|n]
y[nl = B[n](C'X'[n] + v(nl).

Since U is invertible, the controllability of (A, B, C) remains the same for the new inter-

mittent system (A’,B’,C’). Moreover, since x'[n] = U~!x[n], the original intermittent system is
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intermittent observable if and only if the new intermittent system is intermittent observable. Thus,
without loss of generality, we can assume that A is given in a Jordan form, which justifies (a).
Once A is given in Jordan form, there is a natural correspondence between the eigenvalues
and the states. If there is a stable eigenvalue — i.e. the magnitude of the eigenvalue is less than 1
—, the variance of the corresponding state is uniformly bounded. Thus, we do not have to estimate
that particular state to make the estimation error finite. In the observation y[n], the stable states
can be considered as a part of observation noise v[n], and the variance of v[n] is still uniformly
bounded (even if v[n] can be correlated). Therefore, we can assume (b) without loss of generality.

To justify restriction (c), rewrite (2.1) as
x[n + 1] = Ax[n] + Iw’[n]

where w'[n] = Bw[n] for n > 0. Let w'[—1] = x[0], w[n] = 0 for n < —1, and v[n] for n < 0. We
also extend f[n] to a two-sided Bernoulli process with probability 1 — p.. Then, the resulting two-
sided processes x[n] and y[n| are identical to the original one-sided processes except that x[n] = 0
and y[n] =0 forn e Z~ .

In summary, without loss of generality we can assume that A is in a Jordan form, all
eigenvalues of A is stable, and (2.1) and (2.2) are two-sided process. Therefore, we can assume that
A € C™*™ and C € C™™ are given as

A =diag{A11,A12,  Aru, o Aut o At
C=|Cyy Ci2 -+ Ci, -+ Cu,1 - Cﬂ1”u:|
where

Aj;; is a Jordan block with an eigenvalue \; ; and size m; ;

mi712mi722---2mi7w foralli:1,~-- s 1

[A1,1

> Ao > > A >1
{Ni1, ", Aiw, b is cycle with length v; and period p;
For ¢ # 4', {X\i j, Air 5} is not a cycle

Ci; is a l x m; ; complex matrix. (2.35)

Here, A;1, -+, A4, are the Jordan blocks corresponding to the same eigenvalue cycle. The Jordan
blocks are sorted in descending order by the magnitude of the eigenvalues.
Like (2.17), (2.18), we also define A;, C;, and [; as follows.
A; =diag{ i1, Ny, }
Ci=[(Cia); - (Ciw)]

where (Cj ), is the first column of Cjj. (2.36)
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l; is the minimum cardinality among the sets S” C {0,1,--- ,p;—1} whose resulting S := {0,1,--- ,p;—
1}\ 8" = {51,582, -+, 55} makes

C;A;™
CiA;*
(2.37)
C;iA;°18l
be rank deficient, i.e. the rank of the matrix (2.37) is strictly less than v;.
Moreover, in (2.3), we already assumed that there exists a finite o > 0 such that
sup E[w([n]w[n]'] < 0’1
neZ
sup E[v[n]v[n]'] < ¢I. (2.38)
ne

e Uniform boundedness of observation noise: To prove intermittent observability, we will
propose a suboptimal maximum-likelihood-style estimator, and analyze it. We first have to upper
bound the disturbances and observation noises in the system. Following the same steps of (2.15),

we can derive

yln — k] = CA™*x[n] — (CA'w[n — k] + -+ CA *w[n — 1] — v[n — k]). (2.39)

v/ [n—k]

The invertibility of A is comes from assumption (b). Moreover, since all eigenvalues of A are
unstable, by (2.38) we can find p’ € N such that

E[v'[n—k|'v/[n— K] <1+ K (2.40)

where < holds for all n, k(k < n).
e Suboptimal Maximum-Likelihood-Style Estimator: Now, we will give a suboptimal es-
timator for the state which only uses a finite number of recent observations. We first need the

following key lemma which plays a parallel role to Lemma 2.2.

Lemma 2.3. Let A and C be given as in (2.35), (2.36) and (2.37), and B[n] be a Bernoulli process
with probability 1—p.. Then, we can findmy,--- ,m,, € N, polynomials p1(k), - ,p.(k) and families
of stopping times {S1(e,k) : k € Z*,0 < e < 1},--- ,{Su(e, k) : k € ZT,0 < e < 1} such that for all
ke Zt and 0 < e <1 there exist k < ky < --- < kpyy < S1(6,k) < kpygr < -+ < ks oo ml <
Sule k) and an m x (32, <<, m;)l matriz M satisfying the following conditions:
(i) Blki] =1 for 1 <i < Z1§¢gu m;

CAF

CA—F2
(”) M . =Lnxm

CAkagigM, my
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(iii) M, < may iy { PO i) ]

L
(iv) lim, o exp (hm SUP,_,y o0 SUDgez+ %log P{Si(e, k) — k = s}) < maxi<j<; {pé’j } fori1<i<upu
L

(v) lim, o exp (lim SUD,_, o, €SS sup % logP{S. (e, k) — Sp(e, k) = s\fsb}) < maxXp<i<q {pé’l} for 1 <
b < a < p where Fg, is the o-field generated by S;(e, k).

Proof. See Appendix 7.7. The ideas in the proof are discussed in Section 2.5. O

L
Since p, < ——L——, there exists § > 1 such that (55-1<a<x P& |Ni1)? < 1. By Lemma 2.3,
<i<p

max |)\7~,,1|2% ’
1<i<p
we can find my,--- ,m), € N, 0 < e <1, polynomials p; (k),-- - ,p,(k), and a family of stopping times
{(S1(n),---,8u(n)) : n € Z*} such that ¥n there exist 0 < ky < --+ < kpyr < S1(n) < Epyry1 <
e <kym < Su(n) and am x (32, <;<, m;)l matrix My, satisfying the following conditions:
(") Bln—kil =1for 1 <i <37, m;
CA—Hk
CA k2
(if) Mn . = Imxm
CA_kZISiSu mg

(lll’) |Mn| < maxi<;<, {pz(sé(")) ‘)\7,,1‘51(”)}

mar —

4

(iv’) exp (limsup,_, , 1 log P{S;(n) = s}) < V6 - max;<j<; {pgj } for1<i<p
1

(v)) exp (limsup,_, ., esssup L log P{S,(n) — Sp(n) = s|Fs,}) < V8 - maxy<i<q {pﬁl} for 1 <b<
a <y where Fg, is the o-field generated by S[n — S;(n)], B[n — S;(n) +1],-- -, B[n].

Then, here is the proposed suboptimal maximum likelihood estimator for x[n]:

yin — k1]

] = M vl - k) (2.41)

yln—ks, ., m]

Here, k; also depends on n, but we omit the dependency in notation for simplicity. Notice that the
number of observations that this estimator uses, kzlgigu m¢, can be much larger than the dimension
of the system, m. In other words, the estimator proposed here may use many more observations
than the number of states (the number of observations that a simple matrix inverse observer needs).
This is because we use a successive decoding idea in the proof of Lemma 2.3.

e Analysis of the estimation error: Now, we will analyze the performance of the proposed
estimator. Recall that p’ is defined in (2.40) and 6 > 1. By (iv’) and (v’), we can find ¢ > 0 that
satisfies the following four conditions:

(") A+ k") <c-6F forall k>0
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(ii”) pi(k) <c-6F forall 1 <i< pand k>0

Ly

(iii”) P{S;(n) = s} < c- (6 - maxi<j<; {pfj})g forall1<i<pand se€Z"

l

(iv”) P{Sa(n) — Sp(n) = s|Fs,} < c- (6 maxpei<a {pé})s foralll<b<a<pandseZt.
Let Fg be the o-field generated by S[n]. Then, k; and S; are deterministic variables
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conditioned on Fg. The estimation error is upper bounded by

E[|x[n] - X[n]|3] = E[E[|x[n] — X[n][3|Fp]]

2
CA—k1 V/[Tl — k'l]
" cat Vin— k]
D i) - M, ( | x[n] — . )| |F5ll
CA7k21gi§u mg v’[n - k21<i<u m,’i] 2
2 <i<
v'in — k]
v'[n— ks
V/[n - k21§z‘§u m/l] 2
2
v'[n — k]
v'[n — k]
E[[Mal2,,. - E| : | F5]]
V/[’Il - kzl<i<u m;]
(©)

< ElMala - (1+SY (n))°]
(2) E[max{(lMM

) b (14 2 (m)?]

i (S 2 )
<> E[<p( ( ))IA ”>> (14 8% (n))?]
1<i<p
(E)
< Z ]E[§2Si(n) . ‘)\i71‘25i(n) .523u(”)]
1<i<p
- Z E[§45:() |\, 1 [25:(0) - E[§2Sk(m)=Sim)) 7 1]
1<i<u
< 45i(n) | 28i(n) 25 |
Z 6 |)‘ | Z(S 5 1Igza<x{pe} ]
1<i<p =0

(@)
S B )

1<'L<;L
73
4s 2s | Pi s
Z 25 PV CE 1@%{% })
1<i<p s=0
’j
SPID LIPS Pt
1<i<pu s=0
©))
< o0

where < holds for all n.
(A): By (2.39) and (2.41).
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(B): By condition (ii’).
(C): Since E[v/[n — k]Tv/[n — k]] <1+ kP’ by the definition of p/ of (2.40), and thus each element of
the v’/[n] vector obeys max bound.
(D): By condition (iii’).
(E): By condition (i”) and (ii”).
(F): By condition (iv”).
L
. Q; 5. Pi |y, . |2
(G): Since 6 max pe [Xia|* < L.
(H): By condition (iii”).
lj
.G 5. Piy. |2
(I): Since & 02X pe [Ai1l® < 1.

1

Therefore, the estimation error variance is uniformly bounded over n when p, < 7T
b

max |\ 1]
1<i<p

which finishes the proof.

2.8.4 Necessity Proof of Theorem 2.7

Intuitively, we will give all states except the ones that corresponds to the bottleneck eigen-
value cycle as side-information to the estimator. Then, the problem reduces to the single eigenvalue
cycle one discussed in Section 2.5.1, and we can prove the estimation error diverges similarly. This

argument works for p, > ﬁ, since we can show that a single additional disturbance w(n]

max; |)\i,1‘ X
1

grows exponentially. However, for the equality case p. = —————5, the proof can be more

. . L;
complicated since not a single disturbance but the sum of diStTl?f)lali\ll(;gS llinearly diverges to infinity.
So, to make this argument complete and rigorous, we will analyze the optimal estimator,
and prove that its estimation error diverges when the condition of the lemma is violated.
It is well-known that the optimal estimator is the Kalman filter and it can be written in
recursive form. Let Fg be the o-field generated by S[n|. Denote the one-step prediction error as
Sntin = E[(x[n + 1] = E[x[n + 1][y"])(x[n + 1] — E[x[n + 1]|y"])T|Fs]. Then, X, 1n follows the

following recursive equation [55, p.101].

Sntin = (A = AL,Cpn)Zpn_1(A — AL,C,)' + ALLE[v[n]v[n]'|L, AT + BE[w[n]w[n]/|BT
(2.42)

Here, L, = Xpn_1C}, [CnEn‘n,léL—I—IE[V[n}V[n]T]]_l, and C, = Cif B[n] = 1 and C, = 0
otherwise. Notice that 3,1}, is a random variable.

Moreover, it is also known that when (A, B) is controllable, the one-step prediction error
of x[n + 1] based on y[n] becomes positive definite for large enough n even if there are no erasures.

Therefore, there exists m € N and ¢ > 0 such that Yntin = 0?1 with probability one for all
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n > m. Therefore, by (2.42) for all n > n’ > m we have

Sntin = (A= AL,Ch) (A — ALy Co ) Zpjw—1(A — ALy Co) T+ (A — AL,C,)f
= 0*(A - AL,C,) - (A — ALy Cp )I(A — AL, Co)'--- (A — AL,C,)T.  (2.43)

Let’s use the definitions of U, A’, C', U, A;, C;, Aij, pi, li, v; from (2.16), (2.17) and

(2.18). Let i* := argmax|)\i’1|2%. Let 8" C {0,1,--- ,p;+ — 1} be a set achieving the minimum
1<i<p

cardinality l;+. In other words, define 5* := {s{,s3,--,sfq.} = {0,1,--+,pi — 1} \ §". Then,

|S™| = l;» and

*
Cix A1

"
Ci Ay %2

*
Ci*Ai*S‘S*|

is rank deficient, i.e. the rank is strictly less than v;«.
For a given time index n, define the stopping time .S,, as the most recent observation which

does not belong to S* in modulo p;«, i.e.

S, = inf{kp;+ : k € Z" and there exists k' such that

Bln—k)=1kp <k < (k+1)pi«,—k" — 1(mod p;=) € S™}.

Then, we can compute that P{S,, = kp;+} = (1 — p4*)(pL*)* for all k € Z*. From the definition of
Sn, we can see that for all 0 < k < S,,, B[n — k] =1 only if —k — 1(mod p;+) € S*.
Then, conditioned on n— S, > m, by (2.43) the following inequality holds with probability

one:

Sntin = 02 (A — ALLCy) - (A — ALy_s,11Cn-s,+1)I(A — ALy s, 41Cn_s,4+1)" - (A — AL,C,)'.
(2.44)

where C,,_s_ 1k = Cor 0 if —S, + k — 1(mod p;+) = k — 1(mod p;+) € S* and Cp_g, 4k = 0 if
—Sp+k—1(mod p;+) = k—1(mod p;») € 8. Here, —S,, + k — 1(mod p;+) = k — 1(mod p;+) follows
from that S, (mod p;») = 0 by the definition of S,,.
We will prove that the L.H.S. of (2.44) grows exponentially. For this, we first need the
following lemma.
Lemma 2.4. Consider A, C, U, A/, C', A;, C;, v;, p; given in (2.16), (2.17) and (2.18). For a
C;A;™
C;A;*
given set S := {s1,--- 55} € {0,1,--- ,p; — 1}, let ] be rank-deficient, i.e. the rank is

CiA;*'s!
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less than v;, and define
A(K()? T ’Kpi—l) = (A - Kpi—lcpi—l) T (A - KOCO)

where (_Jj = C or O1xm when j € S and C_Jj = O1xm otherwise.
Then, for all Ko, -+ ,Kp,—1 € cm™xl A(Ko,- - ,Kp,—1) has a common right eigenvector e whose

eigenvalue is N7 .
:

Proof. For simplicity of notation, we will set ¢ = 1, but the proof for general ¢ is the same. Let

Ci1A,™
“ Ci1A;™

e = | . | be a nonzero vector that belongs to the right null space of ) . Let €] be a
Cu C1A, 5181

mq 1 X 1 column vector whose first element is e; and the rest are 0. Likewise, €} is a mj 3 x 1 column

vector with first element ey and the rest 0. e3,--- e, are defined in the same way. Let a m x 1
e}

column vector €’ be / . Then, we will prove that e := Ue” is the eigenvector
e

Vi

0(1’”— > my)x1
1<i<vy
that satisfies the conditions of the lemma.
By construction, we can see that C;A "¢’ = 0 for k € {sq,-- ,815}- Moreover, since
CAke = CUA"U'Ue” = C’A’ke”7 we also have CA*e = 0 for k € {sy,- - ;815 }- Thus, we can

conclude

(A=Kp,-1Cp 1) (A K5, Cs )(A — Ky, 1G5, 1) -+ (A = KoCo)e
—(A—Kp, 1Cp, 1) (A — Ky, Cay)(A — Koy 10) -+ (A — KoO)e

— (A—Kp,_1Cp,_1) - (A — K, Cs,)A% e

= (A —Kp,_1Cp,_1) - (A" le — K,, Cs, Ae)

(A~ Kp,_1Cpy 1) - (A% Fle)

Y APie = UA' U le = UA™ "

(D 17\PL o _ \P2
= UM e = A e

(a): CA®e=0and 0- A%te =0.
(b): Repetitive use of (a) for sz,---, s/g|.
(c): Ax”" = AT T and the definition of the vector e”.

Thus, the lemma is proved. O

Let the vector e be the right eigenvector of Lemma 2.4 for ¢ = ¢*. Then, there exists ¢’ > 0
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such that I = o'2eel. (2.44) is lower bounded as

2 _12\S, Shn
Yot = 070N 1ele()\i*J)T.

)

1
ST
[Agx 1] fi*

the expected one-step prediction error is lower bounded as follows: 6

Since p, >
E[(x[n + 1] — E[x[n + 1]|y"])! (x[n + 1] — E[x[n + 1]|y"])]

> Elo20”? |\ 1?5 |e]? - 1(n — S,, > m)]

> 0% elr S (1P ) (e Pl )

0<s<| o |

n—m
> o%o"lel” - (1—pi*) - (|——))
DPix
Therefore, as n goes to infinity, the one-step prediction error diverges to infinity. The estimation error

variance for the state is not uniformly bounded either, so the system is not intermittent observable.

Tail Property of
p.m.f. (probability mass functions) Proof of Lemma 2.2

[Appendix 7.1] [Appendix 7.4]

- - - Determinant of Observability}
Observability Gramian Matrix Gramian is uniformly good

[Appendix 7.2] [Lemma 7.12]

I Matrix Inverse I

J, [Lemma 7.6] \
I Matrix Determinant I A 4
\L [Lemma 7.8] / Lemma 2 holds

for a scalar observation
I [Lemma 7.13]

I Analytic Function

Uniform Convergence of v
the probabilities of bad events [Appendix 7.3]
Proof of Lemma 2.2
Property of - Reduction to scalar observation
Analytic Functions Uniform system[Claim 7.2]
[Lemma 7.9] Convergence of / - Successive Decoding:
the bad event Decode one state [Claim 7.3]
- probabilities Subtract it from the system
Dini’s theorem [Lemma 7.11] Decode the rest states
[Theorem 7.1]

Figure 2.5: Flow diagram of the proof of Lemma 2.2

16The lower bound does not hold when [Ai* 1| = 1 which induces pe = 1. However, in this case we do not have any
observations, so trivially the system is unstable.
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2.8.5 Proof Outline of Lemma 2.2 and Lemma 2.3

Now, the proofs of Theorem 2.8 and 2.7 boil down to the proofs of Lemma 2.2 and 2.3.
Since the proofs of Lemma 2.2 and 2.3 shown in Appendix are too involved, we give the outlines of

the proofs in this section.

Proof Outline of Lemma 2.2

The proof flow of Lemma 2.2 is shown in Figure 2.5. As we discussed in Section 2.5 by
explicit examples and as we formally saw in Section 2.8.1, the sufficiency proof of the critical erasure
probability mainly relies on two mathematical notions, the p.m.f. (probability mass function) tail
of stopping times and the observability gramian of the system.

In Appendix 7.1, we first study some well-known properties of the p.m.f. tail of random
variables which will be used to model the stopping times of interest. For example, we will prove that
when we add two independent random variables, the p.m.f. tail of the resulting random variable is
decided by the thicker one.

In Appendix 7.2, we consider the second notion: the observability gramian of the system.
We used a sub-optimal maximum likelihood estimator in the sufficiency proof of Section 2.8.1, and
its performance heavily relies on this inverse matrix of the observability gramian, especially the
norm of the inverse matrix. However, the norm of a matrix depends on all elements of the matrix,
and so it is hard to compute. Instead, we first relate the norm of the matrix with the determinant
of the matrix in Lemma 7.6. Thus, we can focus on the determinant of the observability gramian
instead of the norm to analyze the performance of the estimator. Furthermore, the determinant of
the observability gramian is an analytic function of the sampling times. Therefore, in Lemma 7.8 we
will further reduce the estimator performance problem to a question about analytic functions. More
precisely, we will prove that when the relevant analytic functions are large enough, the proposed
maximum likelihood estimator performs well.

Now, we can focus on a particular set of analytic functions. We have to prove that after
introducing nonuniform sampling, the multiple analytic functions which reflect different erasure pat-
terns (observation time indexes) are uniformly large enough with high probability. In Appendix 7.3,
we will prove that the probabilities that the relevant analytic functions are too small converge to
zero uniformly over all erasure patterns.

To show this, we first start with a single analytic function. In Lemma 7.9, we will prove
that for a given erasure pattern, each relevant analytic function is large enough with high probability
after nonuniform sampling. To convert this pointwise convergence result to a uniform convergence
result, we will use Dini’s theorem [35]. Dini’s theorem assures that under compactness and mono-
tone convergence conditions, pointwise convergence implies uniform convergence. Using these facts,
Lemma 7.11 proves the desired uniform convergence, i.e. the relevant set of analytic functions are

uniformly large enough with high probability for all erasure patterns.
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Now, we are ready to prove the desired Lemma 2.2. In Appendix 7.2, we relate the norm of
the inverse matrix of the observability gramian to an analytic function. In Appendix 7.3, we found
that these analytic functions uniformly converge. Thus, by integrating these results, Lemma 7.12
shows that the norm of the inverse matrix of the observability gramian is large enough with high
probability uniformly over all erasure patterns. In Section 2.5, we saw that erasure patterns are
modeled by geometric random variables. Now, we can apply the p.m.f. tail properties studied
in Appendix 7.1 to understand the p.m.f. tail of these geometric random variables. With this
understanding, we can easily prove Lemma 7.13, which tells us that Lemma 2.2 holds for systems
with scalar observations.

Finally, the only remaining step is generalizing this fact to systems with vector observations.
For this, we adapt an induction argument and use successive decoding ideas [21]. Induction is on
the number of states of the plant. First, in Claim 7.2 we reduce the system with vector observations
to another system with scalar observations by multiplying a proper row vector to the observations.
Then, as shown in Claim 7.3, we can apply the result for systems with scalar observations to estimate
just one particular state. Once we estimate one state, we can remove the estimated state from the
system to get a new system with a smaller number of states. Here, this idea of estimating a part of
state and subtracting it from the original system is known as successive decoding in the information
theory community [21]. Since we now have a system with a smaller number of states, we can apply
the induction hypothesis to finish the proof of Lemma 2.2.

Let’s consider the following system to understand this last step more precisely.

(210 + 1]] 3 1 1 [z1n]]  [wiln]]
xa[n + 1] 3 x2[n] wa[n]
xz[n+1]| = 31 zz[n]| + |ws[n]
x4[n + 1] 3 x4[n] wq[n]
| z5[n + 1] | i 2| |zsin]|  |ws[n]]

1 3 1 21
yw@mql 1 1] x[n]>

As we can see, the above system has vector observations. To reduce it to a scalar observation
system, we multiply a row vector [1 71} to each observation. Then, the resulting scalar observation

becomes

[1 —1]}’[”]25[1%] [0 1 2 —1 0|x[n].

Here, with new scalar observations, the states xi[n] and zs[n] are unobservable (unob-

servability of z1[n] is the key in the following argument). Thus, we will reduce the system to the
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following observable system by considering a function of states as a new state.

1

Lwsn] + ws [n]]

Fxg[n + 1]+ z3[n + 1]
x4[n + 1]

$xa[n] + xg[n]] N ng [n] + wg[n]]

z4[n] wq[n]

wy[n]

1 1] yln] =Bl [2 1][

By considering 3x2[n] + a3[n] as one state, the resulting system becomes an observable
scalar-observation system and the state x4[n| remains intact. This step is what Claim 7.2 does.

Therefore, using the result about observable scalar-observation systems, we can first esti-
mate x4[n] (this step corresponds to Claim 7.3). Once we have an estimate #4[n], we can subtract

it from the observation.

=
=)
|
=
=
1
[SCI )
| I
8
il
=)
I
=
=)
VR
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N W
I
—_
[SCIEN )
—
| S |
fal
=)
|
1
[SCIE )
| S
8
Ll
=
~—

x1[n]
_n'1311x2[n] 2l 2
= 1] wa| T [3) " M i
x5[n]

Therefore, the resulting system can be thought as of a system with only four states (one state less

than the original system). Using induction hypothesis, we can estimate the remaining four states.

Proof Outline of Lemma 2.3

The main proof ideas and structure of Lemma 2.3 described in Figure 2.6 are essentially
the same as those of Lemma 2.2. Thus, here we will mainly emphasize the differences between the
two proofs.

We reuse the properties of the p.m.f. tails that we proved in Appendix 7.1. In Appendix 7.5,
we relate the norm of the observability gramian inverse matrix with an analytic functions just as we
did in Appendix 7.2.

In Appendix 7.6, we will essentially show that the relevant set of analytic functions are
uniformly large enough for almost all erasure patterns. However, there is a crucial difference from
the nonuniform sampling case of Appendix 7.3. Unlike the nonuniform sampling case, there is no
randomness which jitters the sampling time. Therefore, we have to count the number of erasure
patterns which make the relevant analytic functions small (rather than computing a probability),
and prove that the number of such patterns is small enough compared to the number of all possible
erasure patterns.

For this, we use Weyl’s criterion [54] which gives us a handle on the ergodic behavior of
sequences. Specifically, a sequence a—|a], 2a—|2a], 3a— | 3], - - - with irrational a can be modeled

by a uniform random variable on [0, 1]. Therefore, using this fact we can reduce the counting problem
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Tail Property of
p.m.f. (probability mass functions) Proof of Lemma 2.3

[Appendix 7.1] [Appendix 7.7]

Determinant of Observability]
Observability Gramian Matrix Gramian is uniformly good

[Appendix 7.5] [Lemma 7.24]
I Matrix Inverse I
‘|' [Lemma 7.15]

I Matrix Determinant I A 2
\|' [Lemma 7.16] Lemma 3 holds
for a scalar observation
I Analytic Function I [Lemma 7.25]
Uniform Convergence of J

the size of bad sets [Appendix 7.6]

Proof of Lemma 2.2
- Reduction to scalar observation
system without eigenvalue cycles

Uniform
Convergence of
the bad event

probabilities [Claim 7.7]
with multiple - - Successive Decoding:
i Uniform Decode one state [Claim 7.8]
eyt Convergence of / Subtract it from the system
Lomma 700 the bad set sizes Decode the rest states
[Lemma 7.23]

Weyl’s criterion
[Theorem 7.3]

Figure 2.6: Flow diagram of the proof of Lemma 2.3

that we are facing to basically the same probability problem in the spirit of one we already studied
in Appendix 7.3. However, there is still a difference between these two cases. We may need multiple
random variables to model the erasure sequences. To clarify this point, let’s consider the following

examples.

,C= [1 1] The row of the observability

eiV2 0 V2 0
Let Ay = =
et As 0 e2vz| 2 0 V3

gramian of (A4,C) is CA," = [ej\/i” 612\/5"] In this case, the elements of CA1" do not satisfy
Weyl’s criterion [54]. It can be approximated by [er eI2X ] where X is uniform in [0, 27] — so it
involves only one random variable.

However, the row of the observability gramian of (Ag, C) is CAp™ = {ej Van g \/5"} whose
elements satisfy Weyl’s criterion [54]. Thus, it can be approximated by [ejxl er2} where X1, X»
are independent uniform random variables in [0, 2] — so it involves two random variables.

Therefore, in Lemma 7.18, we first extend the results of Appendix 7.3 to multiple random
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variables. Then, by combining Lemma 7.18 with Weyl’s criterion, Lemma 7.23 shows the number
of bad erasure patterns that make the relevant analytic functions small is small enough uniformly
over all the analytic functions.

In Appendix 7.7, we are finally prove Lemma 2.3. First, we prove the lemma for systems
with scalar observations and without eigenvalue cycles. Lemma 7.24 and Lemma 7.25 parallel
Lemma 7.12 and Lemma 7.13. Thus, the final step is extending the result to general systems with
vector observations and with eigenvalue cycles.

The proof ideas are similar to those of Lemma 2.2 except that there is another difficulty of
handling eigenvalue cycles. The main ideas for the proof are still induction and successive decoding.
However, we also adapt polyphase decomposition ideas from digital signal processing [75] to handle
the eigenvalue cycles. More precisely, by sub-sampling systems by the period of the system, we
decompose one periodic system (with eigenvalue cycles) to multiple aperiodic systems (without
eigenvalue cycles). Using these ideas, we can reduce the original system with vector observations and
eigenvalue cycles to multiple sub-sampled systems with scalar observations and without eigenvalue
cycles. Then, we can decode one state out of the reduced sub-sampled systems. We can apply
successive decoding ideas and the induction to finish the proof of Lemma 2.3.

These ideas can be clarified by the following descriptive example. Consider the following

system with eigenvalue cycles and vector observations.

z1[n + 1] 3 z1[n] wi[n]
xaln + 1] _ 3 xa[n] N wa[n]
x3[n + 1] -3 x3[n] ws[n]
x4[n + 1] 2| |z4n] wq[n]

1 1 1 2
([0 )

1 1
Here, following the notations of (2.35) and (2.36), we can see that C; = . 2] and
3
A, = 3 . Thus, we have
-3
1 1 1
C 1 -1 2
EERIPAEEEEE =[rodf
CiA, 3 3 -3
3 -3 -6

Now, we want to reduce the original system with vector observations and eigenvalue cycles

to the one with scalar observations and no eigenvalue cycles. For this, we multiply [—i %} to even

time observations and B 0} to odd time observations.
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z1[2(n + 1)] 9 x1[2n] 3w [2n] + w1 [2n 4 1]
x2[2(n + 1)] _ 9 x2[2n] 3wsz[2n] + we[2n + 1]
z3[2(n +1)] 9 z3[2n] —3ws[2n] + w3[2n + 1]
| 74[2(n +1)] 4| |zal2n] 2wy 2n] + wq[2n + 1]
x1[2n]
x9[2n]
Lot]yln =gl | [ -2 8 i
x4[2n]
931[271 + 1]
1 - L1 1 ] |Ele ]
{Z 0} yv[2n+ 1] = B[2n + 1] [Z 3 3 5} xZ[2n+ N
x4[2n + 1]
x1[2n] wy[2n)
_ gion 3 3 -3 x9[2n] 111 ] | [2n)
—Bla+1|[3 8 2 4 | IR iz
z4[2n] wy[2n)

We can consider even-time observations and odd-time observations as two separate systems.
Then, these two sub-sampled systems with scalar observations can be rewritten as follows: The first

system is

9

[;xl 2(n +1)] — 322(2(n + 1)] + 2z3[2(n + 1))
x4[2(n =+ 1)]

Fxl[zn} — Safon] + im?nl]

4 x4[2n]

1(3w1[2n] + wi[2n + 1]) — 2 (3ws[2n] + w2 [2n + 1]) + 3(—3ws[2n] + w3[2n + 1])

- é]y[2n]—m2n]<[1 1] [‘1*”“[2”“ZQ’Q[Z”HZ%[MD

x4[2n]

where 1z1[2n] — 2z5[2n] + 223[2n] and 24[2n] are the states of the system.



76

The second system is

Fmpw+4n+iupm+4ﬂ—impm+1n
1‘4[2(7’7, + 1)}

9 ] le[Zn] + 325[2n] — ix3[2n]]
4 x4[2n]

3 (3w [2n] + wi[2n + 1)) + 2 (3ws[2n] + wa[2n + 1)) — 3(—3ws[2n] + w3[2n + 1])

+ 2wy [2n] + wy[2n + 1]
w1[2n]
4 ot ea=stpren| [ ][RRy e
w4 [2n)

where 221 [2n] + 225[2n] — 223[2n] and 24[2n] are the new states of the system.

Here, we can notice that by considering functions of the original states as new states, we
get new systems with scalar observations and no eigenvalue cycles. The reduction of the original
systems to such systems is what Claim 7.7 does.

Now, we can apply Lemma 7.25 to estimate the states of the new systems, i.e. the estimation
of 221[2n] — 2z5[2n]+ 223[2n] and 2z [2n]+ 222[2n] — 223(2n]. Here, we are estimating a function of
states instead of the original states themselves. This idea of function decoding was recently proposed
and found to be useful in communication problems [73]. Furthermore, the sum of these two functions
is z1[2n], which means we can also estimate x1[2n] based on the estimation of the functions.

Therefore, we get an estimation of x;[n|, £1[n] (this step corresponds to Claim 7.8) and

subtract it from the original system as follows.

x2[n]
) N s
ﬂm—ﬁm[]xmﬂ—ﬁu [_12 J alnl | +

Finally, the resulting system can be thought as of a system with only three states (one
state less than the original system). Using induction hypothesis, we can estimate the remaining

three states.

2.9 Comments

The intermittent Kalman filtering problem was first motivated by control over communi-
cation channels. Therefore, the problem is conventionally believed to fall into the intersection of
control and communication. However, if the plant is unstable the transmission power of the sensor
diverges to infinity if it is really going to pack an ever increasing number of bits in each trans-
mission. Therefore, it is hard to say that intermittent Kalman filtering has a direct connection to

communication theory. Instead, we propose that the intersection of control and signal processing —
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especially sampling theory — is the right conceptual category for intermittent Kalman filtering. It
should thus be interesting to explore the connection of the results of this chapter with classical and
modern results in sampling theory.

Arguably, the closest problem to intermittent Kalman filtering is that of observability after
sampling. As we mentioned earlier, the observability of (A, C¢) in (2.19) and (2.20) does not imply
the observability of (Ac, C) in (2.26) and (2.27). The well-known sufficient condition is:

Theorem 2.9 (Theorem 6.9. of [17]). Suppose (Ac,C.) is observable. A sufficient condition for
its discretized system with sampling interval I to be observable is that w ¢ N whenever
RN —Aj) =0.

The eigenvalues of the sampled system are given as exp(\;I). Thus, the above theorem
tells that when the sampling does not map two distinct eigenvalues to the same one, the sampled
system is also observable.

For intermittent observability, we can write a similar theorem. When the sampling does
not make two distinct eigenvalues belong to the same eigenvalue cycle, the sampled system has the

ey o1s 1
critical erasure probability of [eZXmazT]

Corollary 2.3. Suppose (Ac,C.) is observable. A sufficient condition for its discretized system
with sampling interval I to have m as a critical erasure probability is that w ¢ Q
whenever R(A; — A;) = 0.

Proof immediately follows from Corollary 2.1 and the fact that the eigenvalues of the
sampled system are exp(A;[).

The idea of breaking cyclic behavior using non-uniform sampling is also shown in the
context of sampling multiband signals [79]. The lower bound on the sampling rate is known to be
the Lebesgue measure of the spectral support of the signal sampled. To achieve this lower bound for
a general multiband signal, a nonuniform sampling pattern has to be used. Moreover, nonuniform
sampling is also well known as a necessary condition for the currently hot field of compressed
sensing [25].

As a last comment, we would like to mention that the result is not sensitive to the norm.
In this chapter, intermittent observability is defined using the {2-norm to follow the majority of the
literature. But, if intermittent observability is defined by the [7-norm, we can simply replace 2 in

every theorem by 7. For example, the result of Theorem 2.7 becomes ————.

[
max|X; 1] i
i
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Chapter 3

Network Coding meets

Decentralized Control

3.1 Introduction

This chapter is inspired by the similarity between the algebraic characterization of fixed
modes [4] in decentralized control problems and the min-cut bound in information theory [21].

Consider a standard decentralized linear system

z[n + 1] = Az[n] + Byui[n] + - - - + Byuy[n]

y1[n] = Crz[n]

Yo[n] = Cyzn].

Here, the input w;[n] must be a causal LTI functions of the observations y;[n]. Then, the algebraic

condition for A to be a fixed mode [4, Theorem 4.1] is

) A— X By
min rank

> di . .
podun > dim(A) (3.1)

Cye
If X is a fixed mode, that implies that no LTI control strategy can stabilize that mode. Consider
a communication relay network shown in [21, Theorem 15.10.1] where the input to the channel
at the relay node ¢ is X; and the output from the channel at the relay node i is Y;. Then, the
information-theoretic min-cut bound [21, Theorem 15.10.1] is

in I(Xy: Y| Xpe) > Ri;. 3.2
Vg{?,lzl?..,v} (Xv; Yye V>7i€\/;evc j (3.2)
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We can see that the left-hand sides of both (3.1) and (3.2) have a minimization over all subsets V.
Moreover, in noiseless relay networks the mutual information is essentially equal to the rank of an
appropriate channel matrix! [99]. Therefore, the left-hand sides of (3.1) and (3.2) can be considered
to be exactly the same. Identifying the right hand sides of (3.1) and (3.2) with each other, we can
see that the dimension of A seems to correspond to a rate of total information flow. Moreover, fixed
modes are closely connected to stabilizability. Thus, we can conjecture that a decentralized system
is stabilizable if and only if enough information flow can be supported to stabilize the plant, and
vice versa. In this chapter, we make this conjecture rigorous.

First, let’s review perspectives on information flow in communication networks. Histori-
cally, information in a network was believed to behave like a physical commodity. The network was
modeled using a graph, and the information was thought of as commodities to be transported from
the source to the destination by routing them through the nodes. The most important result is the
celebrated mincut-maxflow theorem [28, 31], which reveals that the maximum amount of commodity
flow through a graph is equal to the minimum cut of the graph. Moreover, this maximum flow is
achievable by a routing scheme. For decades, this optimality result made researchers stick to routing
solutions even for information.

However, in [1] it was found that information flow in networks does not really behave
like physical commodities do. Obviously, we can copy information. But going further, we can
also process and mix information. The famous butterfly example shows that for multiple-source
multiple-destination cases, there is a gain by allowing relays to mix their incoming signals instead
of just routing them.

Even if physical commodity flows (which we can only route) and information flows (which
we can copy, process and mix) are different, the graph-theoretic concepts and insights originally
developed for commodity flows continue to be helpful. The main difference is that the amount of
flow, which is naturally measured by the number (or weight or volume) of commodities in physical
commodity flows, must instead be measured in “dimensions” of the signal for information flows.
However, the mincut-maxflow theorem remains the main tool to understand network information
flows. For example, in the multicast problem the relevant mincut is the minimum of the mincut to
each destination, and the mincut-maxflow theorem still holds [1]. Moreover, this maximum flow is
achievable by linear time-invariant network coding [52].

Once information-theorists had the freedom to mix and process signals inside the nodes

that they could design, they also started to consider such operations as potentially existing outside

lnformation is traditionally measured in bits and the rate of bits that a channel can carry is computed by the
mutual information I(X;Y). However, in continuous-alphabet channels like the AWGN (additive white Gaussian
noise) channel, the mutual information depends crucially on the signal-to-noise ratio and scales as log SNR. It was
noticed that when the channel has multiple-inputs and multiple-outputs (MIMO) — like when there are multiple
antennas involved in wireless communication — the mutual information increases as the rank of the channel matrix
times log SNR. This fact inspired the creation of the finite-field noiseless MIMO channel model, within which the
mutual information is equal to the rank of the channel matrix multiplied by the log of the field size. Therefore, the
rank can be considered another measure for information, as measured in units of dimensions or degrees-of-freedom.
We refer the reader to [99] for further details.
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these nodes [74]. The signals from the relay nodes could be broadcast to multiple receiving nodes
or superposed with other signals at a receiving node. In fact, such extensions were a natural fit to
wireless communication [6]. The operations outside the nodes modeled communication channels and
such wireless channel models had long been valuable even when restricted to be linear time-invariant.

At this point, we can see the similarities between network-coding problems [6] and decentralized-
linear-control problems [104]. The network channels (which we cannot design) can be considered as
the linear plant. The source, relays and destination nodes (which we can design) can be considered
as decentralized controllers. Just as decentralized controllers process and combine their observations
to generate their control inputs, the relay nodes process and combine their incoming signals from
the channel to generate their outgoing signals.

Despite these similarities, many differences between the communication and control prob-
lems had been preventing a firm connection being made between them. First of all, network-coding
information-theorists work in finite fields, whereas control-theorists default to infinite fields like the
reals or complex numbers. Moreover, information-theorists tend not to have any explicit state in the
system, preferring an input-output perspective. Most importantly, the information-theorists have
a clearly specified source and destination, and their goal is to push information from one to the
other. The control-theorists tend not to have explicit sources and destinations, and instead there is
a dynamic evolution that needs to be controlled or stabilized.

The main goal of this chapter is to bridge these differences and make a concrete connection
between network coding and decentralized linear control. We first apply linear-system-theoretic
ideas to network coding to propose network linearization as an algorithm to convert an arbitrary-
topology network to an equivalent acyclic single-hop relay network. Based on this, we prove an
algebraic mincut-maxflow theorem, Theorem 3.2.

Then, we apply network coding ideas to decentralized linear systems. As shown in Theo-
rem 3.7 and 3.8, we prove that if a decentralized linear system is LTI?-stabilizable, then there must
exist a corresponding implicit information flow sufficient to stabilize the system.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the definition
of LTI networks and prove an algebraic mincut-maxflow theorem based on network linearization.
We also compare network linearization with the known idea of network unfolding. In Section 3.3, we
introduce some preliminary facts about decentralized linear systems. Section 3.4 shows a representa-
tive example that clearly illustrates the implicit information flows in decentralized control systems.
Section 3.5 gives the capacity-stabilizability equivalence theorem. In Section 3.6, we consider the
stabilizability problem with an explicit communication network, and convert networking results to

the equivalent stabilizability results.

2]t is in our focus on stabilizability using only linear time-invariant control laws that the results in this chapter
differ from the results in [116] where time-varying control laws are permitted. The overall perspectives however are
compatible in that we are also interested in cutsets and information flows.
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3.2 LTI Communication Networks

3.2.1 Definitions and Algebraic Mincut-Maxflow Theorem

An LTI communication network is a collection of transmitters, relays, and receivers —
which will be called nodes.?

Each node has input and output ports. These connect to the channels. Each node generates
a signal and sends it to the channels through its output ports, which are simultaneously the input
to the channels. In this chapter, we model signals elements from a field F and time is discrete.
The transmitted signals go through the channels and arrive at the channel outputs, which are
simultaneously the input ports of the nodes. We take a channel-centric perspective in this chapter’s
notation.

The relationship between the input and output signals of the channels is given by nature.
In LTT communication networks, the input-output relationships of the channels are linear time-
invariant. Thus, they can be described by transfer functions. Furthermore, since we will focus on
discrete-time systems, by taking z-transforms the transfer functions can be represented by rational
functions in z.

Even though the channels are given by nature, we still have design freedom for the nodes.
Each node can choose the input signals to the channels as arbitrary causal functions on the output
signals from the channels. In LTI networks, the node operation is restricted to be linear time-
invariant. In other words, the nodes can be thought as causal linear time-invariant filters between
the output signals from the channels into the input signals to the channels. To reflect this design
freedom, we will assign different variables k; for the transfer functions inside the nodes.

We focus on LTI point-to-point communication networks with one transmitter and one
receiver, and we denote the network as N(z). Let’s formally define LTI point-to-point networks
using graph notation. The input and output ports of the nodes can be modeled as vertices. The
transfer functions connecting them can be thought as directed edges. Consider a digraph (W, E)
with a totally ordered set of vertices (ports) W and a set of edges E. W is partitioned according to
which node that port belongs to.

In other words, for an LTT network with v relays, W can be partitioned into the sets Ny,
Ny, -++, Ny, Ny, ie. N; CW, N,NN; =0 for i # j, and |J oz} Ni = W. Thus, a set of

vertices IN; corresponds to a node.

ie{tx,1,-

To simplify the notation, we will use the subscript “t2” and —1 interchangeably. Likewise,
we will also use the subscript v 4+ 1 for the subscript “ra”, i.e. Ny, = No and Ny = Ny41.
For a given node IV;, the elements of IV; are again partitioned into two subsets [V; ;, and

N; out Which are called the input and output vertices of the node i. The inputs and the outputs are

3The LTT networks considered here are essentially the same as the linear deterministic model studied in [6] except
that our LTI networks restrict the relay design to be linear time-invariant and the underlying field can also be real or
complex instead of being restricted to finite fields.
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defined in a channel-centric perspective. So an input vertex is an output port of a node, and an
output vertex is an input port of the node. N, ;, represent the signals going out from the node i
into the channels and IV; .+ Tepresent the signals coming out from the channels into the node i.

The transmitter node does not receive signals and the receiver node does not transmit
signals, s0 Nig out = 0 and N,y i, = 0. We denote the number of the input and output vertices of
the node 7 as d; i, and d; ous, 1-€. diin = [Ny inl, and d; our := |Ni out|-

Let the signals take values from a field F, let z be the dummy variable for z-transforms, and
let K = {ki,ko,ks,---} be a set of variables to represent the gains inside the nodes. We also define
F[z], F[K], F[z, K] as the field of all rational functions in variables z, K, {z} U K with coefficients
in F respectively.

Each edge which connects the ports of the nodes can be written as a triplet (w’, w”, hyy wr (2, K))
€ E where w',w” € W and hy (2, K) € F[z] U K. Here, w’ is the starting port of the edge, w”
is called the end of the edge, and hy (2, K) is the gain of the connection.

Since a lack of physical connection between two vertices w’ and w” can be represented as
ha (2, K) = 0, we assume that every input vertex is connected to every output vertex, including
“self-loops” connecting the input vertices to its own output vertices. There are two kinds of edges.
One kind of edges is the transfer functions connecting the input vertices to the output vertices
—channel transfer functions. They are given by nature and described by z-transforms —rational

functions on z. Formally, for all 4,5 € {0,--- ,v + 1} and w’ € Ny, 5, w” € Noue 5,
(W', " hay o (2, K)) € E and hyy g (2, K) € Flz].

The other kind of edge is inside each node. There we have design freedom. To reflect this,
for each node let there exist edges fully connecting its output vertices to its input vertices. The
transfer functions associated with these edges are in the form of k; € K and distinct. Since the
transmitter and receiver have only one kind of ports, Ny, and N,, do not have internal edges.

This distinct transfer function assumption guarantees enough design freedom at the relays
since we can assign different transfer functions to different edges. Formally, for all ¢ € {1,--- v} and
w' € Noyti, " € Nip iy (W w", by (2, K)) € E and hyy (2, K) = Ky where kyy o € K. If
(wh,wy) and (wy,wy) are distinct internal edges, hu wy # Puwywy- These internal edges represent
the potential LTI communication schemes. In a fully realized network with a specific communication
scheme, each element of the K will be replaced with a specific element in F[z].

At each vertex and edge, the signal is processed as follows: Each vertex w € W adds all
the signals coming from the edges whose head is w and transmits to the edges whose tail is w. Each
edge e € E multiplies the signal coming from its tail with its transfer function and transmits this to
its head.

Denote a transfer function matrix from the input vertices of the node N; to the output
vertices of the node N; as H; ;(z). In the same way, we denote a transfer function from a set (ordered

set) of nodes A to a set (ordered set) of nodes B as Ha p(z). We also denote the transfer function
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matrix from the output vertices (input ports) of N; to the input vertices (output vertices) of N; as
K;. Then, H; ;(z) € F[z]%icuwtdiin and K; € F[K]%:in*diout | For briefness, we write H; ;(z) as H; ;
ki, ki,

when it does not cause confusion. K; are given in forms of |k, ki,

As mentioned above, by considering the transfer functions of the internal edges as different
bare dummy variables in K, we reflect the design freedom of the relay nodes. Moreover, the capacity
of a network —the rank of the transfer function matrix— will be maximized by considering the
transfer functions of the internal edges as variables in K. Precisely, let K;(z) € F[z]diin*dicut he
a matrix whose size is the same as K; but the elements of the matrix belong to F[z]. Denote the
transfer functions from the transmitter to the receiver of N'(z) as G(z, K) and G(z, K(z)) in each

case. Then, we have the following relationship:

Lemma 3.1. Let G(z, K) be given as above. Then, we have the following relationship between the
rank of G(z,K) and G(z, K(z)).

rank G(z, K) = max rank G(z, K(2)).
K;(z)€F[z] % in X%, 0ut

Proof. The proof is essentially the same as [52, Lemma 1]. For all K;(z) € F[z]diin*diout the
independent columns in G(z, K(z)) are still independent even if we consider the elements of K; as
variables. Therefore, for all K;(z) € F[z]%:in*diout vank G(z, K) > rank G(z, K(2)).

Moreover, the rational function field F[z] has an infinite number of elements and the dimen-
sion of the algebraic variety that makes G(z, K) lose its rank is strictly smaller than the dimension
of K;’s. Therefore, there exists K;(z) € F[z]%:in*diout guch that rank G(z, K) = rank G(z, K(z)).

Thus, the lemma is true. O

Figure 3.1 shows the graphical representation of an LTI communication network. The
squares represent the nodes of the LTI networks. The empty circles attached to the squares represent
the input vertices (output ports) from the nodes to the channels. The circles with plus represent
the output vertices (input ports) from the channels to the nodes. The arrows outside the nodes
(connecting empty circles to plus circles) represent the communication channels, and the arrows
inside the nodes (connecting plus circles to empty circles) represent the communication schemes.
The scalars (or matrices) written on the arrows represent the transfer functions (or transfer function
matrices). We also denote a m x m identity matrix as I,y,.

Let G(z, K) be the transfer function from the input vertices of the transmitter node to the

output vertices of the receiver node. G(z, K) can be written in terms of H; ; and K; [75].
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Theorem 3.1. With the above definitions, the transfer function matriz G(z, K) is given as

G(Zv K) = [Hl,m;Kl s HU,T@UKU
—1
Hi Ky - HyaK, Hiza
I— - + Htac,r:c~
Hl,vKl Hv,va thv

Proof. As illustrated in Fig. 3.1, let U, X; and Y be vectors of signals at the input vertices of the
transmitter, the output vertices visible at node ¢, and the output vertices visible at the receiver.

Then, we have the following relations between U, X; and Y:

x| [Hoak - HOK] [X] [Hes
= + U
Xy Hi K1 -+ HyoKy| [ Xo Hiz v
X1
YZ[HLmKl HMIKU] | HigraU.
Xy

Simple algebra then gives the theorem. Here, the invertibility of the matrix can be shown as follows:

Hi 1K1 -+ Hy1K,

As shown in Lemma 3.1, the rank of (I — ) is the largest rank over all K;(z).
Hl,vKl HU,UKU

Furthermore, by putting K;(z) = 0, the matrix becomes invertible. O

Therefore, from an end-to-end perspective, the point-to-point LTI network A'(z) can be
thought as a MIMO (multiple-input multiple-output) channel whose channel matrix is G(z, K). It
is well-known that the capacity of MIMO channels is closely related to the rank of the channel
matrix [99].

Definition 3.1 (Degree of Freedom Capacity). For a given LTI network N(z), we say that the
degree of freedom (d.o.f.) capacity of the network N (2) is k if its transfer matriz G(z, K) is rank k,
i.e. rank(G(z, K)) = k.

On the other hand, when we “cut” the nodes into two disjoint sets V = {tx,iy,--- ,4x} and
Ve ={rz,igs1, - ,iy}, the channel matrix between these two is defined as
Htx,rx Hil,rm e Hik,rx
Htac,ik+1 Hil,ik+1 Hikaik+1
Hyye = ,
Hizq,  Hi i, Hi i,
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1,1
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Htx, "7 Hl,rx
v,1

U ° Y
Tx [ ] X, rx Rx
1,v
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HtX,V 15 H

> 57 V,rX

Figure 3.2: We can model feedback by introducing an outer transmitter Tz’ and receiver Rx’

Definition 3.2 (Degree of Freedom Mincut). For a given LTI network N'(2), we say that the degree

of freedom (d.o.f.) mincut of the network N (z) is k if the minimum rank of cuts is equal to k, i.e.

Miny.,vc{o,... w41}, Vate,Vgrs a0k Hyye(2) = k.

One key fact about LTI networks is that the well-known mincut-maxflow theorem [31, 28]

can be extended to them. This is one of the main theorems of the chapter.

Theorem 3.2 (Algebraic Mincut-Maxflow Theorem). With the above definitions,

rank G(z, K)

= min rank Hyye(z).
V:vC{0, - ,v+1},Votz,VEre

Proof. See Section 3.2.2. O

In this theorem, K; are considered as dummy variables which are independent from z and
each other. However, what this theorem really implies is the existence of mincut-achieving coding
schemes, i.e. there exist z-transforms that we can plug in for K; without changing the equality of
Theorem 3.2. In Section 3.2.3, we will discuss this point in further detail.

The above notations for LTI point-to-point networks can be naturally generalized to those

for LTI networks with multiple sources and destinations.
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Figure 3.3: LTI network example and its equivalent network with linearized transfer function

One may think the LTI networks above do not cover channels with feedback since we did not
include any channel from the receiver to the transmitter. However, as shown in Fig. 3.2 the channel
with feedback can be modeled by introducing an outer transmitter and receiver. In a similar way,
we can also include cooperation between transmitters and receivers in cases with multiple sources

and destinations.

3.2.2 State-Space Representation and Network Linearization

In this section, we prove Theorem 3.2 using the idea of network linearization. Network
linearization is the counterpart of the following fact of linear system theory: Every causal linear
time-invariant system with an input u[n] and an output y[n] can be written in state-space form [17],

i.e. can be realized as a linear system equation:

z[n + 1] = Az[n] + Bu[n]
yln] = Czxln] + Du[n]

by introducing the proper internal states z[n|. Similarly, network linearization tells us that every
LTI network with an arbitrary topology can be converted to an acyclic single-hop relay network by
introducing proper internal states.

First, we illustrate two key ideas for network linearization.

(1) Internal States: Consider the two-hop relay network shown in the top figure of Fig. 3.3.
The transfer function from U to Y is kgky, which is not linear in ki, ky. To write the transfer
function in a linear form, we introduce an internal state X at the output of the second node. Then,
Y ko O
0 Kk

the transfer function matrix from X, U to Y, X is

ko O 0
= [ |k 1]+
0 Kk 1
it corresponds to the transfer function of the acyclic single-hop relay network shown in the bottom
figure of Fig. 3.3.

X o .
] [U] , which is linear in kq, ko.

Moreover, since

1

k2 [1 0],
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Figure 3.4: LTI network N (Z) with a circulation arc added in.

(2) Circulation Arc: Even if the transfer function can be written in a linear matrix form by
introducing internal states, there has to be a relationship between the rank of the original transfer
function and the rank of the linearized transfer function.

After all, in general the rank of the linearized transfer function matrix will be bigger as the
above example illustrates. So we need a way to relate the ranks of the transfer function matrices.

To make this connection, we borrow the circulation arc idea from the integer programming
context [46, p.86]. The problem that they had was that when they tried to write the maxflow
problem in linear programming form, the flow conservation law did not hold at the source and the
destination. The flow at the source is negative and the flow at the destination is positive. To patch
this, they introduced a circulation arc with infinite capacity from the destination to the source.
Since the amount of the negative flow at the source is the same as the amount of the positive flow
at the destination, the flow conservative law can be recovered as a universal. Moreover, the flow
across the network can be easily measured by measuring the flow in the circulation arc.

To apply this idea to LTI networks, we use an underdetermined system. Let’s consider
z =z + K,,G(z, K)Ki,x with unknown vector . Here, K,,G(z, K)K,, is a transfer function
with a preprocessing matrix K;, and a postprocessing matrix K, . If the rank of K,,G(z, K)Ky, is
smaller than the dimension of x, the equation is underdetermined. Otherwise, it is not. Thus, we can

see that the rank of the transfer function can be measured by the underdeterminedness of the system.

Now, we will combine these ideas for network linearization. We first formally introduce the
circulation arc. As shown in Fig. 3.4, an auxiliary node N,, with d,, input ports and d,, output

ports is added to the original network. We also introduce d,, input vertices at the receiver node
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and dq, output vertices at the transmitter node. Let Hyy or = Hoztz = Haozyax = Koz = 1, -
As discussed in Section 3.2.1, to reflect the design freedom of the transmitter and receiver, let
K, € F[K]%«*das and K, € F[K]%=*dr and each element of K, K, is the form of k; € K and
they are all distinct and also distinct from the elements in K1, -, K, inside the relays.

Now, we introduce labels for the internal states. As shown in Fig. 3.4, let X,,, X;, and Y
be the vectors of the signals of the output vertices seen at the auxiliary node, the node i, and the

receiver respectively.

From the system diagram, Fig. 3.4, we can see the following relation has to hold.

Xaw Idaw Krw 0 e 0 Xaw
Y Htr,rthx 0 Hl,'erl Hv,ra:Kv Y
X1 Hip 1 Ky 0 Hi Ky H, 1K, X1
_Xv _Htx,vKtar 0 Hl,’uKl H’U,UKU_ _Xv
[0 —Kya 0 0 [ X0
_Htx,erta: Idm _Hl,'r'xKl _Hv,'er'u Y
(&) | —Hiz 1 Kia 0 Iy, —Hi1K; —Hy 1K, X1 (3.3)
L _th,vKtz 0 _Hl,vKl Idv,out Hv,va _Xv

::Gl'in(sz)




89

The matrix Gy, (z, K) here is filled with entries linear in K;. Thus, G, (2, K) can be rewritten as

0
1 0 Htl’,’!l
Gin(z, K)=|0 0 I -+ O|+ | Hg1 | Kia [—Idm 00 --- 0}
. . . . . i
0 0 0 I | Hizv |
——
=A :=Bis
_ 0 . — 0 .
Hl,r;ﬂ Hv,rz
| Ha Ko 0 gy, o o)+t [ Ho K oo0o0 o o]
: =C, : =C,
Hl,v Hv,v
L . L .
=B =B,
_Idam_
+1 0 | K [0 —Iq, 0 - 0]. (3.4)
: =Crq
0
L .
=B,

The A, By, Ciy, By, Ci, Bys, Crpy are defined as above in (3.4).

Because Gy, (2, K) looks like a transfer function matrix, we can formally ask what is the
LTI network whose transfer function matrix is Gy, (2, K). Then, we can easily see that Gy, (2, K)
corresponds to the transfer function of the linearized LTT network Nj;,(z) of Fig. 3.5. The linearized
network My, (2) has a new transmitter ¢z’ and receiver rz’, and is an acyclic single-hop relay network

with a direct link between tz’ and rz’. We also use the subscript “t2’” and —1 alternatively, and

)

likewise “rz’” and v + 2 alternatively.

Y

X1
Let d :=dim | | =dpg+ Zlgigv di our Where Y, Xy,--- , X, are given as (3.3). Then,

Xy

we will prove that the maxflow of Ny;,(2) is the same as the maxflow of A/(z) by an offset d.
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' -

Rx’

[
>

rx Ny rx

Figure 3.5: Linearized LTI network Ny, (2)

Furthermore, for sets (ordered sets) V = {vy,--- ,v;} and W = {w1,--- ,w;} we define
BV = B’U1 PPN B’U,,:|
e
Cy =
[ Co;
Dvlwl tee Dvle
DV,W = .
Dviwl tee Dviwj

whenever this shorthand does not cause confusion.

We also denote the channel matrices from the node ¢ to the node j in the linearized
LTT network Nyin(z) as H/". Then, we can easily see that the channel matrix for the cut V C
{0,---,v+1}is

A By

3.5
Cye 0 (3:5)

lin —
HVU{tm'},VCU{rw'} -

We will prove the essential equivalence between the original network A/(z) and the linearized network

Niin(z). First, we prove a lemma on matrix rank.

Lemma 3.2. For a field F and ny,no € Z+, let A € F X" B ¢ FrzXm (O ¢ FiXnz2 ) ¢ Fraxnz,
If D is invertible, the following rank equality holds.

A

rank = rank D + rank(4 — BD~'C)
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Proof.
A I,, —BD7'||A B
rank = rank
C 0 I, C D
= rank

A—-BD7C 0
C D

= rank D + rank(A — BD™'0)

I,, —BD!

0 I,
is a consequence of D being invertible. O

where the first equality comes from the fact that [ is invertible, and the last equality

Now, we prove that the maxflow of the two networks N (z) and N;,(2) are equivalent with

an offset d.

Lemma 3.3 (Maxflow Equivalence Lemma). Given the above notations,

rank(K,,G(z, K)Kiy) + d = rank Giin (2, K).
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rank Gy (2, K)
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1 _Hl,erl _Hv,r:ch
(A) 0 I-Hi 1K, —H, 1K,
=" rank )
0 _Hl,vKl I_HU,UKU
-1
I *Hl,mcKl *Hv,rva Hf'r,rmeT
0 I-Hi1K, -H, 1K, —Hip 1 Ky
+ rank —[—Km 0O --- 0 .
0 _HL'UKI I— Hv,va _Hta:,'uKta:
I _Hl,rzKl _H’U7’I‘IK’U _Htx,ert;E
(B) 0 I- Hl,lKl _H'u,lKv _Htx,th:L’
=d+rank | - |-K,, 0 --- 0| |. . ) .
0 _Hl,vKl I— Hv,vKu _Htm,vKt:c
-1 _Htw,erta:
I-H K —-Hy, 1K,
©) B . _Ht:r,tha:
= d+rank | K, | I Hy ,p K Hv,7'7;Kv:| : : ;
-, ,K I1-H,,K,
b ! ’ _Ht:c,vKt:v
Dy
—1
I — Hl,lKl - v,lK'u th,l
rank | Ky | Hegra + Hy 0 Ky Hv,mKw] : : Ky
_Hl,vKl I— Hv,va Htm,v
(B)
= d+rank(K,,G(z, K)Kiy)
*Ht.t,r.thac
_HtJE,IKt:E
(A): This comes from Lemma 3.2 by considering Oq4, ., as 4, [—Km 0 0} as B,
_Htav,vKtx

Idm *Hl,erl
0 g ,,, —Hiak

*Hv,rsz

- 'U,lKv
as C, and ]

0 _Hl,vKl e I _HU,UKU

v,out

as D. Here, D is invertible, since by
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Lemma 3.1 the rank of D is the maximum rank over all K;(z) and by setting K;(z) = 0 the matrix
D becomes full rank.

(B): Since each element of K; is a dummy variable,

Id,,.x _Hl,erl e _Hv,erv Ide 0 te 0
0 iy, —HinKy - —H, 1 K, 0 Iagp -+ 0
rank ' ) . ) >rank | . ) =d.
0 —Hy Ky e May g, — HooKy 0 R
Moreover, because the dimension of the matrix is d x d, the rank is also upper bounded by d.
. I B I —-BD! L
(C): We can easily show = . Thus, by considering [—H1,me s —Hy K,
D 0 D!
Iaimc *Hl,erl e *Hv,erv
0 Iy, —HiaKw - —H, 1K,
as B and ) ) as D, and multiplying with the matrix
0 _Hl,vKl dy,out HUJ)KU
[—Km 0o --- 0}7 we can prove this step.
(D): This comes from direct computation.
(E): This comes from the definition of G(z, K) shown in Theorem 3.1. O

The mincut of Ay, (2) is also the same as the mincut of AV/(z), except for an offset d.

Lemma 3.4 (Mincut Equivalence Lemma). Given the above notation,
min{rank K;,,rank K., min rank Hy we} + d
wWcC{0,-- ,v+1},Wote,WZrz

= min rank H%}"{,C. (3.6)
VC{-1,- wt+2},Votz' VHrz’ ’

Proof. As we can see in the R.H.S. of (3.6), V is a cut of Nj;,(z). We will divide V' into three cases:
(i) When tz € V°, (ii) When rz € V, and (ili) When tz € V and rz € V°.

For cases (i) and (ii), we will show that the rank of channel matrices is at least dim X, +d.
For case (iii), we will show a one-to-one mapping between the cut V for Ny;,(z) and the cut W for
N (z) — essentially V' is a cut of the original network N (z).

(i) When tz € V¢,
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Notice that by definition, we have

0 0o o - 0 |
Ia,,
A 0 0 Iy, -+ 0
rank [ ] = ) ) :ou ' ) = dim X, + d.
n : : : . :
0 0 dvout
—li, O 0 o0

. ]
and so

Moreover, whenever tx € V¢, the channel matrix for the cut H%}"L,C contains l
tx

rank H%}?{/c > dim X,, 4+ d. Thus, we have

min rank HU%.. > dim X, + d. (3.7)
VC{-1,- ,v+2},Vota’ VHraz' Vedtr ?

Furthermore, by choosing V' = {ta’}, we have

A
Cta:
, Ch
rank H! ;= rank = dim X, + d. (3.8)
tz’ {tz,1,.- v, rz,ra’} :
Cy
_Cmc

Therefore, by (3.7) and (3.8) we can conclude

min rank Hi/%,. = dim X, + d.
VC{-1,- ,v+2},Votz’ VHraz’' Vedte ’

(ii) When rz € V,
Notice that by definition, we have

0 Iq,.
1q,, 0
rank {A Bm} =0 0 Iy, - 0 0 | =dim X, +d.
_0 0 0 - Idv,out 0 ]

Moreover, whenever rx € V, the channel matrix for the cut H%,”{,c contains [A Bm] and

so rank H%}f{/u > dim X,, 4+ d. Thus, we have

min rank Hi%,. > dim X, + d. (3.9)
VC{-1,- ,w+2},Vota’,VFraz' ,Vore ’
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Furthermore, by choosing V' = {tz’,tx,1,--- ,v,rz}, we have
rank Hﬁ?/,m@,... ,rx},re’ = rank [A Btw Bl U Bv BT.L:| = dim Xar +d. (310)
Therefore, by (3.9) and (3.10) we can conclude

min rank H%,”{/c = dim X, + d.
VC{-1,- ,w+2},Vota’,VFraz' Vore ’

(ili) When tz € V and rz € V¢,

In this case, we will find a one-to-one mapping between the cutset V for N'"(2) and a
cutset W for N(z), and show that their mincut is the same with an offset of d.

Let W=V \ {te'} and W' :=Ve\ {ra'} = {ta’, tx, 1, - ju,rz,ra’}\ V \ {ra’}. Now, we

will show
rank H{}"L/C = rank Hyw w' + d. (3.11)

However, since the proof of (3.11) is not difficult but would be notationally complicated if written



out fully, we replace the proof by a representative example. Let v = 3 and and V = {0, 1}.

lin
rank H Ve

(A4)

(B)

(c

(

(

=" rank

o O O O o o o o

= rank

o O O O o o o O

)

= rank

o O O O o o o o

2) rank

O O O O O O o O

Htgc,mc
Hta:,2
th,?)

E)

A By
= rank Cs 0
Cy O
Cs; 0
0
1g,, 0
0 Ta; e
0 0
0 0
L. 0
0 0
0 0
0 0
0 0
0 1 out
0 0
0 0
L. 0
0 0
0 0
0 0
0 0
0 lay o
0 0
0 0
L. 0
0 0
0 0
0 0
0 0
0 0
0 0
-1, 0
0 14y o
0
0
Hypp
His | +d
Hys

= rank Hy,w +d

By
0
0

s
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(A): By the definitions of A, B;, C; shown in (3.4).

(B): This comes from elementary row operations to eliminate the I’s in the A by using the rows in
C;’s. In general, this kind of step will make the A part only have I’s at the location corresponding
to the set V.

(C): This comes from elementary column operations to eliminate the B;’s by using the I’s in the A.
In general, this kind of step will make the B part to have 0’s at the location corresponding to the
set V.

(D): By reordering of the rows so that the I’s in the A can be grouped with the C;’s. In general,
this kind of step will make the B part to be full-rank.

0 A
(E): Since we know rank [B ] = rank A + rank B and by the definitions, d = dy; + di,0ut +
0

d2,0ut + d3 oyt for this example.
As we can see, we only used elementary row and column operations which hold for general
matrices. Thus, we can easily prove that (3.11) holds in general by exactly the above argument.

Finally, using (i),(ii) and (iii) we can prove the lemma.

min rank H%}T{/c = min{dim X, min rank Hy we} +d
VC{-1,- ,v+2},Votz’' ,VHraz’ ? wWcC{o,-- ,v+1},Wote,WZFrz

= min{dim U, dim Y, dim X, min rank Hy we} +d
WC{0, - wt1},Wote,W Fre

= min{rank Ky,,rank K, min rank Hy we} +d
wc{o,-- ,v+1} ,Wate,WFra ’

Here, the second equality follows from the fact that the mincut of N'(z) is not greater than min{dim U, dim Y}
The third equality follows from rank K, = min{dim U, dim X, } and rank K, = min{dim Y, dim X, }.
O

The main advantage of linearized networks is that it is known that the algebraic mincut-
maxflow theorem holds for NVy;,(z, K) [4, Theorem 4.1]. Here, we present the theorem with a simpler,

self-contained and different proof for completeness.*

Theorem 3.3 (Algebraic Mincut-Maxflow Theorem for Linearized Network [4]). Given the above

notations,

rank G (2, K) = min rank Hi",.
VC{-1, w+2},Vota’ VFra! :

Proof. We saw that the transfer functions and channel matrices of Ny, (2) are given in terms of

A, B;,C; in (3.4) and (3.5) respectively. Thus, it is enough to prove that

A B
rank(A + E B, K;C;) = min rank c OV
VC

(3.12)
0<i<v+1 V{0, ,u+1}

4The proof of [4, Theorem 4.1] only uses linear algebraic fact and relates the rank of the matrices with the rank of
bigger matrices. However, here by the use of induction we make each step easier to understand.
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This is a fact of linear algebra and can be proved in three steps. First, we prove the theorem
for networks with a single relay with a scalar input and output, i.e. v = —1 and By, Cy are vectors
(Case (i)). Then, we extend the claim for a single relay with a vector input and output, i.e. v = —1
and By, Cy are matrices (Case (ii)). Finally, we generalize to multiple relays when v = 0,1,2,---
(Case (iii)).

(i) First, consider the case when v = —1 and By, Cy are vectors i.e. By € F[z]™*! and
Co € F[z]'*™. Then, (3.12) reduces to
. A
rank(A + BoKoCp) = min(rank [A BO} ,rank ). (3.13)
0

A
Moreover, since By and Cj are vectors, min(rank [ A Bo} ,rank [C’ ] ) is either rank(A) or rank(A)+
0
1.

A
(i-1) When min(rank [A Bo} ,rank [ ) = rank(A).

Co

In this case, either rank [A Bo} or rank is equal to rank(A). Let rank {A Bo} =

rank(A). Then, obviously, rank(A + ByKyCy) > rank(A). Moreover, the column space spanned by
By belongs to the column space spanned by A . Thus, ByKyCy cannot increase the rank of the

column space and rank(A4 + BoKCp) = rank(A4).

A
When rank [C = rank(A), the proof follows similarly.

A
(i-ii) When min(rank [A BO] ,rank l ]) = rank(4) + 1.

Co

In this case, rank [A Bo} = rank = rank(A4) + 1. Moreover, since By is a column

Co
vector, rank(A 4+ ByKyCp) < rank(A) + 1. Thus, we only have to prove rank(A + BoKoCp) >

rank(A) + 1, which is implied by rank(A + ByCp) = rank(A) + 1. The following claim proves the

last statement.

Claim 3.1. Let A € F[2]™*™ b€ F[2]™*!, and c € F[z]**™. If
A
rank(A4) + 1 = rank [A b] = rank l ]
c

then

rank(A) 4+ 1 = rank(A + bc).
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Proof. Let rank(A) = r. Then, there exist invertible matrices U and V such that

I, 0
UAV = .
0 0
b1
Denote ; := Ub and [61 CQ} := ¢V where b; and ¢ are r X 1 column and 1 X r row vectors
2
respectively.

Moreover, since U and

1 are invertible, we have

0 b
ba

v

rank [A b] = rank(U [A b] (1) ) = rank {UAV Ub} = rank K}r ] =r + rank(bs).

Thus, for rank {A b} = rank(A) + 1 to hold, by has to be a non-zero vector. Likewise, ¢y also has
to be a non-zero vector.

Finally, we can conclude

I, 0
rank(A + be) = rank(U (A + be)V') = rank( [
0

V) (3.14)

b0 ] ) (3.15)
= rank(A4) + 1. (3.16)

(3.14): elementary row operation and by is non-zero.
(3.15): elementary row operation.

(3.16): by and ¢y are non-zero. O

(ii) Consider the case when v = —1 and By, Cp are general matrices.
Like (i), (3.12) reduces to (3.13). The only difference is now By, Cy can be matrices, and
the following claim shows (3.13) still holds.

Claim 3.2. Let A € F[z]™*™, By € F[z]™*", Cy € F[2]7*™, and K, € F[K]|"*? where each element
of Kg is of the form k; € K and distinct. Then,

A
rank(A + BoKCp) = min{rank {A BO} ,rank [C ] }
0
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A
Proof. Let z := rank [A BO} —rank(A4) and y := rank [C ] —rank(A). Then, we can find at least
0

x linearly independent column vectors of By which are independent from the columns of A, and at

least y linearly independent row vectors of Cy which are independent from the rows of A. Formally,

let b1,---,b; and ¢y, -+ ,cy be such vectors, i.e. b; and c; are columns and rows of By and Cy
A
c1 A
respectively and rank [A by - bx} = rank [A Bo}, rank = rank ol Then, we have
0
Cy
rank(A + ByKoCo) > rank(A+ Y bici) (3.17)
1<i<min{z,y}
A
= min{rank [A BO} ,rank }. (3.18)
Co

(3.17): We can find a r x ¢ matrix K|, such that all the elements of the matrix are 0 or 1, and
A+ ByKyCy = A+ Zlggmin{%y} bic;. Moreover, rank(A + BoKyCy) > rank(A + BoK(Cy) by
Lemma 3.1.

(3.18): b; and ¢; are independent from the column and row space spanned by A respectively. Fur-
thermore, b; and ¢; are also independent from by,--- ,b;—1 and ¢y, --- ,c;—1 respectively. Therefore,
we can repeatedly apply Claim 3.1 and get the desired result.

Moreover,

rank(A + By KyCp) = rank( [A Bo]

1) < rank [A BO} (3.19)

0Co
A A
rank(A + BoKyCp) = rank( [I BOKO} ) < rank c (3.20)
0 0
Therefore, by (3.18), (3.19), (3.20) the claim is true. O
(iii) The case with multiple relays, i.e. v =0,1,2,--- and B;, C; are general matrices.
Now, we will prove (3.12) for a general v. The proof is an induction on v = —1,0,1,2,---.

Claim 3.2 shows (3.12) is true for v = —1. To prove that the theorem also holds for v = 0,1,2, -,
we will assume that the theorem holds for v = w as the induction hypothesis and prove that the
theorem holds for v = w + 1.

First, by applying Claim 3.2 we have

rank(A+ Y BKCi) =rank(A+ Y BiKiCi+ Buj1Kup1Cui1)

0<i<w+1 0<i<w
A+ cicw BilCi

Cerl

= min{rank {A + Y o<icw BiKiCi Bw+1] ,rank } (3.21)
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Consider the two terms one at a time.
rank [A + S gcicw BiKCy Bwﬂ}

:rank([A Bw+1} + Z B;K; {C’i 0})

0<i<w
A By B
= min rank o (3.22)
WC{0,+ w} Cwe 0O 0
A B
= min rank v (3.23)
WC{0, ,w+1},Wow+1 Cwe 0

where (3.22) comes from (3.12) for v = w by replacing A by [A Bvﬂ}, B; by B;, and C; by
i o]

Likewise, we can also prove

rank A+ ZOSiSw BiK:C;
Ow+1
A B;
= rank l ] + Z [ K;C;
Cut1 0<i<w 0
A B
= min rank v (3.24)
WC{0,+ w1}, W Fw+1 Cwe 0
By plugging (3.23) and (3.24) to (3.21), we have
A B
rank(A + Z B, K;C;) = min rank W
0<i<w+1 W0, w1} Cwe 0
Therefore, by induction the theorem is true. O

So far, we discussed how to convert general topology networks into standardized networks
— linearized networks (networks shown in Fig. (3.4) to linearized networks shown in Fig. 3.5).
Moreover, we discovered that the mincuts and maxflows of two networks are equivalent with an
offset (Lemma 3.3 and Lemma 3.4). Thus, using the mincut-maxflow theorem for linearized networks

(Theorem 3.3), we can prove the algebraic mincut-maxflow theorem for general LTT networks.

Proof of Theorem 3.2. Since we can arbitrarily choose dg., let d,, > maxz{d;s,d,,}. Then,

rank G(z, K) = rank(K,,G(z, K)Ki5) (3.25)
=rank Gy (2, K) — d (3.26)
= min rank H‘l}f{/c —d (3.27)

VC{=1,+ w+2},V>ta!VFra/

= min{rank K;,,rank K, rank Hy .} (3.28)

min
V{0, ,v+1},Vote,VHre

min rank Hy ye. (3.29)
V{0, ,w+1},Vote,VEre
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Figure 3.6: Simple Relay Network and the corresponding unfolded network with a mincut-achieving

linear scheme

(3.25) is due to the following fact: Select K, (%) as a 0—1 matrix that chooses rank G(z, K) indepen-
dent rows of G(z, K) and Ky, (z) as a 0— 1 matrix that chooses rank G(z, K') independent columns of
K,;G(z, K). Then, the rank of the resulting matrix K,,(z)G(z, K)K:,(z) is rank G(z, K). There-
fore, (3.25) follows from Lemma 3.1.

(3.26), (3.27) and (3.28) follow from Lemma 3.3, Theorem 3.3 and Lemma 3.4 respectively.

(3.29) follows from the fact that the mincut of A/(2) is not greater than min{d;,, d, }, rank Ky, = dy,
and rank K, = d,,. ]

Remark: Part of Theorem 3.2 was already known in [52] and [49]. In fact, the main insight
of the theorem is indebted to Koetter and Medard’s algebraic framework of network coding [52].
However, the scope of the paper [49] is traditional networks with orthogonal links, and the proof
of the theorem is a corollary from the Ford-Fulkerson algorithm [31]. Later, Kim and Medard [49]
extended the algebraic framework to the deterministic model [6] using hypergraph ideas, and proved
the theorem using Ford-Fulkerson algorithm on hypergraphs [65]. Their idea provides an interesting
alternative view to the theorem, and is worth a formal and rigorous study given that the details in
[49] were omitted due to space limits. However, the model in [49] is still not general enough for LTI
networks since it only covers the case when the channel gains are 0 or 1 and field sizes are finite.
Moreover, sometimes it is not clear how to convert general LTI networks to equivalent graphs (or

hypergraphs).

3.2.3 Network Linearization vs. Network Unfolding

We proposed network linearization as a way of “converting” an arbitrary relay network to
an equivalent acyclic single-hop relay network. In this section, we will compare network linearization
with the previously known idea, network unfolding.

Network unfolding is proposed in [1] to convert arbitrary networks to layered networks

in which the only existing edges are from one layer to the next layer. As we can see in Fig. 3.6,
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X’ - Rx’

>

RXII

rx K7 rx

Figure 3.7: Linearized LTI network N/, (Z) with an additional destination Rz”

lin

X 5> X
Y R>
s D’
==

Figure 3.8: Linearized Network of the example in Fig. 3.6

by introducing duplicated nodes over the time, any arbitrary network can be approximated by a
layered network. Moreover, the capacity of the layered network approaches the capacity of the
original network as the time expansion gets large. Since layered networks have a quite attractive
and simple topology, a series of works [36, 2, 112] have exclusively focused on them and developed
algorithms that find deterministic linear schemes for layered networks.

However, what these papers are overlooking is that when we fold the unfolded network
back into its physical topology a time-invariant scheme might become a time-varying scheme. The
example shown in Fig. 3.6 shows that a network-coding design based on an unfolded network can
cause significant problems even in the simple network with one source, one relay and one destination.
The source transmits uq, - - - , ug to the destination. The letters on the arrows of the unfolded network
represent the flows of information. We can easily check that the network-coding scheme shown in
the figure is mincut achieving.

However, when we fold it back, we can see problems for implementation. First of all, the
scheme is time-varying at the relay. Thus, for the scheme to work every node in the network has
to be synchronized to a common clock. Moreover, the transmitted signal at a given time step may
depend on all of its previously received signals, which may require a large memory.

On the other hand, from the algebraic mincut-maxflow theorem (Theorem 3.2) we can
conclude that there exists a mincut achieving LTT scheme by using the same argument used in [52].

By Lemma 1 of [52] when the field size is large enough there exist K; that achieve the mincut
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of the network. Moreover, when the underlying field F are the reals R or complex C, these fields
already have an infinite number of elements and there exist channel gain matrices which achieve
the mincut of the network. When the fields are finite, by extending F to F" we can guarantee a
large-enough field size. Furthermore, we even do not have to extend the field when K., K;, K, are
allowed to have memory. F[z], the field of rational functions in z with coefficients from F, is already
an infinite field. Like Lemma 1 of [52] we can prove that there exist mincut-achieving casual® LTI
filters, Ky, K;, Ky, whose elements are from F[z], i.e. having memory is equivalent to extending a
field size.

However, we have to be careful to use the network linearization idea for the actual design
of the gain matrices K;, i.e. when we are choosing the elements of K; from F[z] and plugging them
in. The reason is we also have to guarantee the existence of the transfer function, which is the

I-H K, --- —-H,1K,
invertibility of as shown in Theorem 3.1.
~H K - I Hy,K,
Fortunately, this condition can be also posed as a part of the LTI communication network

problem. We can easily see that the condition is equivalent to the invertibility of

I, O 0 0
0 1 _Hl,erl e _Hv,rva
0 0 I—H K - —H,K,
0 0 —Hy K - I-H,K,]

This matrix further equals [+ B1 K1C1 +- - -+ B, K,,C,, using the definitions in (3.4). We can see the
maximum rank (and the dimension) of I + B K1C +- - -+ B, K, C, over all K, is d,, +d. Therefore,
the invertibility of the matrix can be thought as the mincut achieving condition from Tz’ to Rz” in
Figure 3.7. Finally, we can notice that by choosing d,; as the d.o.f. mincut of N'(z), the maxflow
from Tz’ to both Rz’ and Rxz” becomes d + dgz.

Theorem 3.4. Given the above definitions of N'(z) and N, (z), let’s choose dy as the d.o.f. mincut

of N(2). Then, all the multicast network gains K;(z) € Ci.inXdiout which achieve the mincut of

Iin(2) to both receivers Rx' and Rz can also achieve the mincut of N(z).

Proof. The proof follows essentially the same as Lemma 3.3 only by replacing K; with K;(z). The

existence of the transfer function comes from the mincut achievability of Rx" as discussed above. [

Therefore, we can find a mincut-achieving LTI network coding scheme of N (z) as follows:

(i) Select dg, of (3.3) as the d.o.f. mincut of N'(z). (ii) Find a mincut-achieving multicast network

5Notice that even if we put the causal restriction on the design of K;, the dimensions of the algebraic varieties
remain the same. Thus, the proof argument for Lemma 1 of [52] still holds.
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coding scheme for the linearized network N, (z) of Figure 3.7 with two receivers. (iii) Apply K;
obtained in the previous steps to the original network.

Furthermore, it is well known that when the network is acyclic, the transfer function always
exists [52, Lemma 2]. Therefore, when the network N (z) is acyclic, the receiver Rz” in N}, (z) which
was introduced to guarantee the existence of the transfer function is redundant.

Fig. 3.8 shows the linearized network of the example in Fig. 3.6. By the above argument,
any LTI scheme of S, R, D that makes the d.o.f. capacity from S’ to D’ be 3 achieves the mincut
of the original network. For instance, S =1, R =1, D = 1 achieve the mincut of both networks of
Fig. 3.6 and Fig. 3.8.

Network linearization can also be extended to general information flows, multicast, broad-
cast, and unicast. Multicast problems will also posed as a multicast problems even after network
linearization. However, broadcast and unicast problems will be posed as secrecy problems where
eavesdroppers reflect unintended messages in the original problems. We defer further discussions of
this to Appendix 8.1.

3.3 Preliminaries on Decentralized Control

In the previous section, we introduced network linearization based on internal states and
circulation arcs. As we mentioned, the internal states idea came from linear system theory. Moreover,
once we introduce the circulation arc as Fig. 3.4, the whole system becomes a closed-loop system,
and such closed-loop systems are the main interest of control theory. Therefore, we can consider
control theory from the communication(network coding) perspective. First, we review several known
facts on decentralized linear system theory — when the system is LTI-stabilizable — and introduce

a few concepts to LTT communication networks.

3.3.1 Decentralized Linear System

Decentralized linear systems have multiple controllers, each of which has access to its

own observations and generates its own control inputs. Formally, the decentralized linear system,
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L(A, B;,C;), is defined as follows:®

z[n+ 1] = Az[n] + Byui[n] + - - - + Byuy[n]

y1[n] = C1z[n]

yp[n] = Cyz[n]

where A € C™*™ B; € C™*% and C; € C"*™. Then, an interesting question is under what

conditions such systems are stabilizable using only LTI controllers:

Definition 3.3 (Stabilizability). A decentralized linear system is called LTI-stabilizable if there exist
linear time-invariant (LTI) controllers KC; (possibly with internal memories) that connect y; to u;

whose resulting closed-loop system has only stable poles.

The stabilizability condition for a decentralized linear system is given in [104] using the

concept of fixed modes.

Definition 3.4. [104, Definition 2] X is called a fived mode of L(A, B;, C;) if X € g, ccaixr: 0(A+
Y i<icy BilKiCi) where o(-) is the set of eigenvalues of the matriz.

The intuition behind this definition is that if an eigenvalue is fixed for all choices of (memo-
ryless) controllers, this eigenvalue is either unobservable or uncontrollable. Thus, if we have unstable

fixed modes, we cannot stabilize the plant.

Theorem 3.5. [104, Theorem 1] L(A, B;, C;) is LTI-stabilizable if and only if all of its fized modes

are within the unit circle.

Therefore, the stabilizability of linear systems is determined by the existence of unstable
fixed modes, and the characterization of stabilizability reduces to characterization of the fixed modes.
However, the characterization of fixed modes shown in Definition 3.4 involves an inter-
section over an infinite number of sets. Therefore, Anderson et al. found the following algebraic

characterization of fixed modes (3.1) which only involves minimization over a finite set [4].
Theorem 3.6. \ is a fived mode of L(A, B;,C;) if and only if

) A— )N By
min rank

> dim(A).
VC{1,2, v}

Cye

In other words, the two characterizations of fixed modes shown in Definition 3.4 and The-
orem 3.6 are equivalent. In the following discussion, we will see this equivalence turns out to be a

special case of the mincut-maxflow theorem for LTI networks.

6In this chapter, we consider discrete-time systems since they are conceptually easier to connect to communication
theory. We believe that the underlying phenomena discussed here also exist in continuous-time. Furthermore, we
assume the matrices here are complex since we will use the Jordan form which can be complex. However, if the
system were real we could prove corresponding results restricting the controller design to be real without changing
the stabilizability condition.
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Figure 3.9: Standard LTI Network

3.3.2 LTI Communication Networks at specific frequencies

Since the channel gains of LTI networks are given in z-transform, write the network as
N(z). We will also consider an LTI network, N(z), at a specific generalized frequency, z = \. To
indicate that the LTT network is considered at the generalized frequency z = A, we write the network
as N(A). N()) implies all z in the LTI network are replaced by A. Then, the capacity definition is
naturally generalized to N'(\).

Definition 3.5. For a given LTI network N(z2), we say that the degree of freedom (d.o.f.) capacity
of the network N (z) is k at frequency z = X if its transfer matric Gy ro (X, K;) is rank k.

Here we can see that the transfer matrix only makes sense at z = A when it does not have
a pole at A. Thus, we assume that H; ; has no pole at z = A. Then, the algebraic mincut-maxflow
theorem also holds for N'()\) as before.

Corollary 3.1. Giwven the LTI network N'(X) with no poles at X in the H;;(z),

rank(Gig rz (A, K))

= min rank( H: A)).
VC{tx,1,- v,rz},Vote,VIra ( V’VC( ))

Proof. Since the H; j(z) do not have any pole at A, we can apply Theorem 3.2 with the channel
matrices H; ;(\). O

Before we discuss the externalization of implicit communication in decentralized linear

systems, it is helpful to define a standard network we will repeatedly encounter later.

Definition 3.6. The LTI network shown in Fig. 3.9 is called a standard LTI network,

Ns(A; By, B, C;,Cl; D, D'; S, S").
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The transfer matrix and the channel matrices of the standard network are given as follows.

Lemma 3.5. In the standard network of Fig. 3.9, the transfer matriz from the transmitter to the

receiver is given as

Gtw,rw =A+ Blchl +-+ BvaCv
+ (D + B1K C} + - + B,K,C})
(S7'— (8 + B{K:C} + -+ BLK,C,)) ™"
(D" + B{K1Cy + --- 4+ B,K,C,).
The channel matrices H between the transmitter, the relays and the receiver are given for1 < i,j < w:
Hiyro =A+D(S™' = 5)7'D,
Hipi=Ci+Cj(S™' = 8D,
Hi,rz = Bz + D(S_1 - Sl)_le/'7
H;;j=Cj(S™"=5)"'Bj.
Here, we just assume the appropriate inverse matrices ezist.

Proof. Assign u, x;, i and y as we can see in Fig. 3.9. Then, we can find the following relationships

between these:

y=Byxi+ -+ Byx, + Au+ Di (3.30)
€1 =K101U+K1017; (331)

x, = K,Cyu+ K,Cli
i=98"+SBjx1+ -+ SB.x, + SD'u (3.32)
By (3.31) and (3.32), we have the following relation:
i=958"+ (SBYK.Cy + -+ SB,K,C,)u+ (SB1K,C} + ---+ SB.K,C.)i+ SD'u
()S™'i=(8"+ByK,C| +---+ B.K,C!)i + (D' + B{K,C, +---+ B, K,Cy,)u
()i=(S"'—(S+ B K:C; + -+ B,K,C,)) (D' + BiK:Cy + -+ + B,K,C,)u (3.33)
By plugging (3.31) and (3.33) into (3.30), we get the transfer function from the transmitter to the

receiver.

One can easily check the channel matrices between nodes. O
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21[n+1] 4 0 0 0 0][z1[n]] 00 [ 0 0
Zaln +1] 0 U 0 O [[Z27] U O OIANL 0
z3ln+1]| = |0][0 3_0 O|[Tzaln[[]+ 11 0| uin]+ [0 [0| uz[n] + |0| us(n]
z4ln +1] 0110 O TS 0 lz4ln] U of|o 0
x5(n + 1] 01[0 0|0 3¢f[as[n] [lc—0H-04 HOL-04
) = [ A0
Yl =1 o 5—orto—y
_f[o o p a .,
ya[n] = [0 0 05 () xtrr}
ys[n]=[0 0 0 0 Iixin

Figure 3.10: An example of an implicit information flow in a decentralized linear system.
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Figure 3.11: Conceptual representations of the information flows within the example of Fig. 3.10

3.4 Example: Information Flow in a Decentralized Linear

System

Before we discuss a general algorithm to externalize the implicit communication between
controllers, it will be helpful to see the information flows that we want to capture in an illustrative
example. By now, we have mounting evidence” that in linear systems, the unstable states themselves
are the sources and, at the same time, the destinations of information flows. Consider a linear plant
controlled by one controller. The states of the system will be excited by the disturbance, i.e. the
states are generating uncertainties. Then, the states will be observed by the controller, i.e. the
uncertain information flows from the state to the controller. Finally, the controller will compensate
for the disturbance, i.e. the information flows back to the states.

When there is more than one controller, the situation becomes more complicated since
the controllers can implicitly communicate with each other through the plant [108, 37]. The exam-
ple shown in Fig. 3.10 (adapted from [5]) illustrates this phenomenon. As we can see, the states

x1[n] and x4[n] are associated with the eigenvalue 4. However, the controller K; can only observe

"We return to this point in the conclusion, but the evidence here has largely come from contexts in which the
communication is explicitly present. On one side, papers like [89, 26, 86] construct feedback communication systems
that use unstable states to encode desired messages. This provides strong evidence for the states acting as information
sources. On the other side, papers like [8, 97, 86] talk about networked control systems in which the communication
demands on the network come from the states. These argue persuasively for the states in a control system as being
destinations of information flows since control and estimation are intimately linked together. The perspective on
the Kalman filter presented in [67] suggests strongly that such information flows exist even when there is no explicit
communication going on.
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x1[n], x2[n], the controller Ky can only control x;[n], z2[n], and the controller K3 can neither observe
nor control x1[n], z2[n]. Therefore, to stabilize x1[n], z2[n] the controller Ky intuitively has to relay
its observations to controller Ko through the implicit channel provided by the states xs[n], z4[n].

The red arrow of Fig. 3.10 shows the information flow to stabilize z1[n], z2[n]. First,
x1[n],x2[n] is observed by K; through yq[n]. Then, K; relays its observations to Ko by uj[n]
through the channel x3[n], z4][n]. K receives the relayed signals through ya[n], and finally controls
the states by uz[n]. Thus, we expect that the implicit information flow to stabilize x1[n], z2[n]
should be roughly representable as the first LTI network of Fig. 3.11. We can see the same kind of
information flow to stabilize the states x3[n], z4[n] as indicated by the blue arrow. Meanwhile the
state x5[n] can be stabilized by the controller K5 as indicated by the green arrow. Conceptually,
these information flows can be represented as the second and third LTI networks of Fig. 3.11.

Here, we can notice some interesting points. First, we are dividing the states according to
their associated eigenvalues. In this example, the states are first divided into three sets {x1[n], z2[n]},
{z5[n], z4[n]} and {z5[n]}, and the information flows for these sets are considered separately. More-
over, in each information flow the states associated with the same eigenvalue are considered as both
sources and destinations of the information. The remaining states are considered as the channels
that are available to implicitly carry this information flow. The controllers themselves are considered
as relays. So in the standard LTI model of Fig. 3.9, the blocks “tx” and “rz” correspond to the set of
states in consideration and the remaining states are included in the channel matrices, A, B;,--- ,S".
The “K;” blocks correspond to the controllers.

We can also see the connection between stabilizability and capacity. The eigenvalue 4 has
two associated states, z1[n] and za[n]. Thus, we can think that this source has 2 d.o.f. to transmit.
This information can be successfully transferred since the channel provided by the states x3[n] and
x4[n] has d.o.f. capacity 2, and so the eigenvalue 4 is not a fixed mode. However, if we remove the
state x4[n| from the system, the implicit channel’s d.o.f. capacity becomes 1. Thus, a source with 2
d.o.f. cannot be transferred, and the eigenvalue 4 becomes a fixed mode.

Table 3.1 summarizes the relationship between decentralized control and relay communi-

cation problems which we have discussed so far and will make rigorous in the following sections.

3.5 Externalization of Implicit Communication

In this section, we discuss how to externalize the implicit communication in decentralized
linear systems. The main idea can be considered as the reverse of the algebraic approach to network
coding. In [52], Koetter and Medard considered network coding as an algebraic problem. In other
words, they found that what is important about networks (graphical objects) in network coding is
their transfer functions (algebraic objects). What we do is the opposite. First, we will find transfer

functions which are closely connected to the implicit information flows needed to stabilize linear



111

’ LTT Communication Networks \ Decentralized Linear Systems

Source Unstable States associated with eigenvalue A

Destination Unstable States associated with eigenvalue \

Relays Controllers

Channels Remaining States and B;, C;

Message Unstable Subspace associated with eigenvalue A

Rate of Message Number of Jordan blocks associated with eigenvalue A

Capacity Stabilizability (Enough implicit communication for unstable subspace)

Table 3.1: The comparison between decentralized linear systems and LTI communication networks

systems. Then, we will find the LTI networks whose transfer functions these are.

3.5.1 Canonical-Form Externalization

It turns out that what is important in externalization is the right choice of transfer function.
In section 3.4 we saw that the source and the destination of the information flows are the states.
Thus, the straightforward choice is the transfer function from the states z[n] to themselves. For that
purpose, we introduce an auxiliary input u[n] and auxiliary output y[n] to the closed loop system

in the following way.

zn+1] = (A4 B1K:Cy + -+ - + B, K, C,,)z[n] + u[n],

It is clear that all the states xz[n] are directly controllable by u[n] and observable by y[n]. Since the
fixed modes show up as poles in the transfer function, checking whether A is a fixed mode involves
checking whether the transfer function from u[n] to y[n] has a fixed pole. However, checking poles is
mathematically troublesome since it results in division by zero. Thus, instead we inspect the zeros
of the formal transfer function from y[n] to u[n].

Under the assumption that z[0] = 0, the formal transfer function from y[n] to u[n] is given

as

u(z) = (ZI —A-— Blchl -t BvaCv) y(Z)

=Gecn (ZvK)

Here, G.,(z, K) is a rational function whose dummy variables are not only z but also the elements
of the Kj;s.

By Lemma 3.5, the standard network, N (zI — A; —B;,0;C;,0;0,0;0,0), has G.,(z, K)
as its transfer function. Denote this standard network as A, (z). The graphical representation of
Nen(z) at the generalized frequency z = A is shown in Fig. 3.12.

Then, we can easily derive the following theorem connecting the d.o.f. capacity of the LTI

network M., (z) with the stabilizability of the decentralized linear system L(A4, B;, C;).
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Figure 3.12: The graphical representation of N, ()

Theorem 3.7 (Capacity-Stabilizability Equivalence). Given the above definitions, the following
statements are equivalent.

(1) X is a fivzed mode of the decentralized linear system L(A, B;, C;).

(2) rank (G, (A, K)) < dim(A).

(3) (transfer matriz rank of LTI network N, (X)) < dim(A).

(4) (mincut rank of the LTI network Ne,(X\)) < dim(A).

AM—-A —-B
5) minycyq.... 1 rank V| < dim(A).
{1, v}

CVC O

Proof. By the definition of fixed modes, (1) is equivalent to det(A + >, ., BiK;C; — AI) = 0 for
all K; € C%*"i, By Lemma 3.1, this is equivalent to det(A + Zlgigv B;K;C; — M) = 0 where each
element of K is considered as distinct dummy variables. Since det(A + )", <i<v B,K;C;—\)=0
means not full rank, this is again equivalent to rank(A — A —37, ., B;K;C;) < dim(A), which is
the statement (2). (2) and (3) are equivalent by the definitions of G, (z, K) and M, (2). (3) and
(4) are equivalent by the algebraic mincut-maxflow theorem, Corollary 3.1. The equivalence of (4)

and (5) follows from the definitions of the cutset matrices of N, (z). O

Remark 1: y(z) is the signal assigned to the transmitter of N, (z), and u(z) is the signal
assigned to the receiver of AV, (z). Thus, the LTI network connects the states x[n]| to themselves,
which complies with our discussion of section 3.4.

Remark 2: The statement (1) of the theorem is directly connected to stabilizability by Theorem 3.5,
and the statement (3) of the theorem is about the d.o.f. capacity of the network at the frequency
z = A. Thus, this theorem reveals a fundamental equivalence between stabilizability and capacity.
Remark 3: This externalization seems naive, and as we can see in Fig. 3.12 it gives only networks with
a simple topology that does not have any links between the relays. We call this externalization as the
canonical-form externalization because of its simple topology. In the next section, we show another
way of externalizing the implicit communication which results in a different network topology. The
fact that different externalizations are possible is what allowed to us discover that, in fact, any
arbitrary network can be converted to the canonical network of Fig. 3.12, which is the insight for
network linearization as discussed in Section 3.2.2.

Remark 4: In fact, statement (5) is the algebraic characterization of fixed modes shown in [4]. So
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Figure 3.13: Canonical-form externalization of the system of Fig. 3.10 for A =4

in hindsight, we can say that Anderson and Clements found the algebraic mincut-maxflow theorem
for the special network of Fig. 3.12.
Remark 5: It is known that the rank of the channel matrix for a cut is a submodular function [112].
The complexity of submodular function minimization is polynomial time [91]. Therefore, we can
efficiently check for fixed modes.

Now, we can try to externalize the implicit communication of the example shown in
Fig. 3.10. Fig. 3.13 shows the canonical-form externalization for eigenvalue 4. If we look at the
figure, this externalization is not what we expected in Fig. 3.11. Since the links between the relays
are missing, we cannot see any relaying behavior between two controllers. Also, we cannot clearly
see the fact that there are 2 degrees-of-freedom that must be communicated. This motivates us to

seek a more compact externalization where the eigenvalues are emphasized by using Jordan forms.

3.5.2 Jordan-Form Externalization

As we see in the above section, externalization is done for each eigenvalue of A. For a general
matrix A, there is no clear correspondence between eigenvalues and particular states in the linear
system. Thus, we cannot but choose the transfer function from all the states z[n]| to themselves.
However, if A is given in Jordan normal form [17], we can find a natural correspondence between
eigenvalues and states, and use this to reduce the dimension of the transfer function. Moreover,
by a similarity transform an arbitrary linear system L(A, B;, C;) can be converted to an equivalent
linear system L£(A, B;, C;) with the matrix A’ in Jordan form [17]. Thus, without loss of generality,
assume that A is in Jordan form. (This corresponds to examining the system in its natural coordinate
system.)

For a Jordan-form A matrix, there is no (internal) interaction between states belonging to
different Jordan blocks. Thus, as discussed in section 3.4, to check if \ is a fixed mode, it is enough
to examine the transfer matrix from the states associated with Jordan blocks corresponding to the

eigenvalue A to themselves. For externalization, we can simply repeat the steps of the above section.
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M, O

0 A’
where A’ is a diagonal matrix whose diagonal elements are not equal to A. Because the matrix is

To understand the core ideas, we first consider a diagonal A matrix, i.e. A =

diagonal, each Jordan block is just a 1 x 1 matrix and so m) can be thought of as the number of
Jordan blocks associated with \. We will introduce auxiliary inputs and outputs that control and

observe the states corresponding to the eigenvalue A. For this, we define By and C) as follows:
T
Cy = {ImA 0} By = [ImA 0} . (3.34)
Then, the closed loop system is given as

zn+1]=(A+ Y BK,Ci)z[n] + Byualn]

1<i<v

ya[n] = Chrzx[n]

where uy[n] and yx[n] are my x 1 vectors. Let’s set

A A
(of — 4) = [Pr1a() ”’2(2)] (3.35)
Axo1(2) Axg2(2)
B
Ci=1|Cix1 Cixa| Bi= o
[ } Bi e

where Ay 11(2) is a my X my matrix, B; x1 is a my X ¢; matrix, C; x1 is a 7; X my matrix, and
the others are the proper implied dimensions. Here, by construction, we can see Ax11(\) = 0,
A)\’l,g()\) =0, A)\,Q’l()\) =0, and A)\’Q,Q()\) is invertible.

Then, we can see that the transfer function from uy(z) to yx(z) is given as follows:
A1 (2) AM,z(z)]

ZUA(Z):[I 0}( Ax21(2) Axg2(2)

Z Bix1KiCixg Bix1KiCiag2
15520 [ Bip2KiCing  Bin2KiCine

—1 I
> [O] ux(z) (3.36)

We need the following lemma to obtain the transfer function from y(z) to ux(2).
Lemma 3.6. For a field F and ni,ng € Z+1, let y € FX1 ¢y ¢ FmXl A ¢ FmiXm B ¢ Fraxnz,
A B
C e F2xm gnd D € F"2*"2 Assume D is invertible. Then, [O ] is invertible iff (A—BD~1C)
D

s invertible.

Moreover, if we assume D and [ are invertible,
D

I,
0 ] u (3.37)
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implies

u=(A— BD'C)y.

Proof. By Lemma 3.2,

A B

rank

= ng + rank(A — BD™'C).

Therefore, the first statement of the lemma is true. For the second,

] A B I,
Y= |in u
-t e b 0
-1
. +(|I,, BD™'||A-BD'C o0 I,
= I, 0 U
s I\lo I, c D 0
r (A—BD'C)! 0 | [I,, —BD ' |1,
= n u
L ~-D7'C(A-BD~'C)"' D' |0 I, 0

=(A-BD'0) !

Here, the matrix inverses exist because of the assumption that D is invertible, and the first statement
of the lemma. Therefore, u = (A — BD~'C)y. O

By Lemma 3.6 and matching (3.36) to the pattern given by (3.37), the transfer function

from yx(2) to ux(z), Gjaa(z, K), is given as

Giax(z, K) = (Ax11(2) — Z Bix1K;Cixn)

1<i<v

+ (Axa,2(2) — Z Bix1K;Cix2)

1<i<o

(I = (I = Ax22(2) + Z Bi2KiCing)) ™

1<i<v

(=Ax21(2) + Z Bix2K;Cixn). (3.38)

1<i<v
By Lemma 3.5, Gjq,x(z, K) corresponds to the transfer matrix of the standard LTI network,

No(Ax1,1(2); =Bix1, Bixn2;Ciag, Ciage
; A)\71,2(Z), —A)\7271(Z); I, I — A)\,272(Z)). (339)

Call this network Njg a(z). When it is evaluated at the generalized frequency z = X, Nq 1 (2) can
be simplified further as N(0; —B; x.1, Bix,2; Cia1, Cin2;0,0; 1,1 — Ay 2 2(X)). Fig. 3.14 shows this
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Figure 3.14: The graphical representation of Njg x(\)

network, Ajg (), and by Lemma 3.5 the channel matrices are given as follows:

Htm,rm(A) =0,

Hizi(A) = Cias

H;ro(A) = =Bian,

H; j(\) = Cjr2Ax22(N) "B o (3.40)

Now, we state a parallel proposition to Theorem 3.7.

Proposition 3.1. Given the above definitions, the following statements are equivalent.
(1) X is a fivzed mode of the decentralized linear system L(A, B;, C;)
(2) rank(Gjg A (N, K)) < m
(3) (transfer matriz rank of LTI network Njg (X)) < my
(4) (mincut rank of the LTI network Njq (X)) < my
0 —Bva

(5) minycyy,... vy rank < ma
N Cvexa CveaoAxa2(N) 'Buag

Proof. By Theorem 3.7 (2) and the fact that the dimension of G, (A, K) is dim(A), we know
that the statement (1) is equivalent to G, (A, K) is rank deficient. Furthermore, in Lemma 3.6
by considering (Ax,1,1(A) = >21<;<, Bia1KiCixi) as A, (Ax1,2(A) = 321 <4<, Bin1KiCin2) as B,
(Ax21(X) = Do cicy Bin2KiCing) as C, and (Ax22(N) — D <,y Bin2KiCix2) as D, we can
conclude that G;d;()\, K) is full rank if and only if o

Ax1(2) AA,1,2(Z)1 B
Ax21(2) Ax22(2)] 152,
=M -A- > BK(C;

1<i<v

=G\ K)

Bix1KiCixg Bix1KiCixz
Bir2KiCixg Bix2KiCixo

is full rank. Thus, G, (A, K) is rank deficient if and only if G4 (A, K) is rank deficient. Since the

dimension of Gg (A, K) is my, the statement (1) is equivalent to the statement (2).
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Figure 3.15: Critical Information Flow and Transfer Function in Jordan block

The statement (2) and (3) are equivalent, since Gjg (A, K) is the transfer function of
Nijar(N).

The statement (3) and (4) are equivalent by the mincut-maxflow theorem of Corollary 3.1.

The equivalence of the statement (4) and (5) comes from the definitions of the channel

matrices of Njg x(A) shown in (3.40). O

This theorem can be generalized to arbitrary Jordan forms A by introducing auxiliary
inputs and outputs from the states associated with A to themselves. However, we can further reduce
the dimension of the transfer matrix by inspecting the information flow inside nontrivial Jordan

blocks.

A1 0
Let’s consider the stabilizability condition for a single Jordan block A matrix, A= [0 X\ 1
0 0 A
by
B=|b|,C= [01 ca 03:|. Tt is well-known [17] that the observability condition for this example
bs

is ¢; # 0 and the controllability condition is b3 # 0. In other words, as shown in Fig. 3.15, we can
think of the critical information flow to stabilize a single Jordan block as flowing from the right-
bottom element to the left-top element. To check whether a single Jordan block has a fixed mode
or not, it is enough to consider the transfer function corresponding to this information flow.

This observation for a single Jordan block can be generalized to multiple Jordan blocks.
To decide whether A is a fixed mode or not, it is enough to examine the transfer function matrix
from the right-bottom elements of the multiple Jordan blocks (corresponding to the eigenvalue \)
to their left-top elements.

We will make this observation rigorous by introducing the following definitions. Since the

definitions are notationally heavy, we recommend visiting Appendix 8.2 for a descriptive example.
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A 1.0 0 0 0]
0O A1 0 0 O
. . 00 A0 0 O
In Appendix 8.2, we consider the case when A = . Then, we can see that the
0 0 0OA 1 O
0 000 XA O
0000 0 XN

3rd and 5th rows and the 1st and 4th column in AJ — A are all zeros. To reduce the system to the
system considered in Proposition 3.1, we move these all zero columns and rows to left top side of the
matrix by multiplying permutation matrices to Al — A. To this end, we will define the permutation
matrices Pr, x, Pr .

Let a; ; be the (3, j) element of A € C™*™. Since the locations of all zero columns and rows
are related to the locations of Jordan blocks, we have to define the indices which indicate the location
of each Jordan block. The sequences k1, » and kg » count the number of Jordan blocks associated
with A. The difference between the two sequences is that «r, 5 increases at the right-bottom element

of the Jordan block, while xkr  increases at the left-top.

Iﬁ:L’)\(O) =0
For 1 <i<m,

. HL./\('L'_l)'i'l if Qi g = X and Qi i+1 =0
rL (i) = ’

k(i —1) otherwise

12 () Rpam—=1)4+1 if apmm=A
L =
kpa(m—1) otherwise

krA(0) =0
IQR,)\(O)+1 if ai g =\
krA(l) = .
kg, (0) otherwise
For 1 <i<m,

. HRy)\(Z'f].)+1 if ;i = X and Ai—1,4 =0
HR’)\(Z) =

kra(i—1) otherwise

Notice that these two sequences are just different ways of counting the number of Jordan blocks
associated with the eigenvalue A. If we denote by m) the number of Jordan blocks associated with
the eigenvalue A, then my = s x(m) = kr A(m). From the sequences kg, x and kg, we also define

tr,» that indicates the left-top elements of the Jordan block associated with A and ¢, » that indicates
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the right-bottom elements.

LL,A(O) :0
For 1 <i<mj

LL7>\(7;) = min{k: eN: k> LL7,\(’L' — 1),/€L7)\(k‘) > HL7,\(]€ — 1)}
Likewise,

LR’)\(O) = 0
For 1 <i<m,

LR7)\(’L') = min{k eN: k> LR)\(’L' - 1),,‘{37)\(/0 > HJR,A(]C — 1)}

We also define permutation maps and matrices for Al — A. The role of these permutation maps
and matrices is to collect all zero rows and columns in AI — A. The permutation maps 7z, x(¢) and

g (7) that map the set {1,--- ,m} to itself are defined as follows:

- (2) HL’)\(i) if IQL,)\(i) >I€L,)\(i—1)
La(t) =
i+ kpa(m) —Kp (i) otherwise

. IiR’,\(Z') if IiR’)\(Z') > HR’)\(Z. — 1)
Tra(l) =14 , ,
i+ kpa(m) —kpa(i) otherwise
From the permutation map, we define the permutation matrices.
eﬂ'L’)\(l) eTrR’A(l)
Pra= : , Prx = : (3.41)
eﬂ'L,)\(m) eﬂ'R,)\(m)

where e; is the row vector with 1 in ith position and 0 in every other position.

Let’s multiply these permutation matrices to zI — A.

Ax11(2) AA,1,2(Z)]

PL’)\T (ZI - A) PR A= (342)

where Ay 1,1(2) is a my xmy matrix, Ay 12(2) is amyx (m—my) matrix, Ay 21(2) is a (m—my) xmy
matrix, Ay 22(%) is a (m —my) x (m —my) matrix.

Since the permutation matrices Pp x, Prx moves all zero columns and rows in Al — A
to the left-top side of the matrix (see Appendix 8.2 for an example), we can see Ax11(\) = 0,
Ax12(0) =0, Ax21(A) =0, and Ay 22(N) is invertible.

We also multiply the permutation matrices to B; and Cj, and define the following sub-

matrices after this permutation.

B

T
CiPr = [Ci,)\,l Ciaz| P Bi=
Bi o

(3.43)
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where B; 1 is a my X ¢; matrix, B; y 2 is a (m —my) x ¢; matrix, C; » 1 is a r; X my matrix, C; » 2
is a r; X (m — m)) matrix.

Furthermore, we will also define the auxiliary control and observation matrices B), C) as
we did in (3.34).

We will introduce an auxiliary input that can control the right-bottom elements of the
Jordan blocks and an auxiliary output that can observe the left-top elements of the Jordan blocks.
The following matrices By and C correspond to the input and output matrices of the system for

these auxiliary input and output.

Cir (1) €up (1)
C}\ = . ’B)\ =
€ir A (mA) Cipa(my)
From the construction of the permutation matrices, we can see that when they are applied to C)

and B,, the resulting matrices have nonzero elements only on the left or top side (just as we saw in
(3.34)). Formally,

O\Pro = [Ty 0] - PLABA = (3.44)

Im)\ ><m>\‘|

Finally, we get system equations which exactly parallel with the previous diagonal systems
in (3.34), (3.35).

Now, we are ready to externalize the implicit communication based on the Jordan form
matrix A. Just as the previous diagonal systems, we introduce the auxiliary input uy[n] € C™*
and the auxiliary output yy[n] € C™*. However, unlike the previous section, uy[n] only controls the
right-bottom elements of the Jordan blocks through By and y,[n] only observes the left-top elements
of the Jordan blocks through Cl.

zn+1] = (A+ B1K.Cy + - -+ + B,K,Cy)x[n] + Byux[n]
ya[n] = Chrzn)
Then, the transfer function from uy(2) to yx(2) is given as follows:

yx(z) = C)\(ZI —A— Z BiKiCi)_lB)\u,\(Z)
1<i<v
1

=0y | PpaPpy " [ 21— A Z B,K;C; | PraPr\" Biux(z)
1<i<v
—1
= O\Pr | Poa" (21 — A) Pg s — Z Py \TB,K;C;Pg.\ Pr 2" Byua(2)
1<i<w

Ax11(2) A,\,1,2(Z)1 B Z

Ax21(2) Ax22(2)] 152,

IRt

-1

B a1
K; [Ci,)\,l Ci,)\,Q] l

1
0

] u (4B.45)

B; a2



121

where the last line uses (3.44), (3.42), (3.43).
Since (3.36) and (3.45) are the same, (3.38), (3.39), (3.40) still hold. Thus, we can state

the capacity-stabilizability equivalence theorem based on the Jordan form A.

Theorem 3.8. (Capacity-Stabilizability Equivalence 2) Given the above definitions, the following
statements are equivalent.

(1) X is the fived mode of the decentralized linear system L(A, B;, C;)

(2) rank(Gja (A, K)) < my

(3) (transfer matriz rank of the LTI network Njg (X)) < my

(4) (mincut rank of the LTI network Njg (X)) < my

0 -B
(5) miny (... »} rank Vil ) < my
Cvert1 CyvengAroa(N) " 'Byaa
Proof. The same as Proposition 3.1. O

Remark 1: Notice that the condition (5) seems to be quite different from the statement (5)
of Theorem 3.7 that we saw before. However, by remembering that A has Jordan block structure

and using the following lemma, we can directly prove the equivalence between these two statements.

Lemma 3.7. For an invertible square matriz A,

0 0 By 5
rank | 0 A B;| =rank A+ rank 0
Co D-— ClA_lBl
Co C; D
Proof.
0 0 By 0 By O 0 B
rank | 0 A By| =rank |Cy D C(C;| =rankA+rank 0
Co D — ClA_lBl
Co Ci D 0 B A

where the first equality is due to elementary row and column operations and the second equality is
due to Lemma 3.2. O

Remark 2: This externalization is minimal in the sense that the dimensions of the trans-
mitter input signal and the receiver output signals are minimal. In other words, if we introduce an
auxiliary input and output whose dimensions are smaller than the ones shown in this characteriza-
tion, we cannot find the equivalent condition for fixed modes. The minimality of this characterization
manifests as the absence of direct link between the transmitter and the receiver in Njq x(X).

Remark 3: It has to be mentioned that this theorem for my = 1 is already shown in [56].
For this case, the condition (4) of the theorem reduces whether the mincut of the network is 0 or
not. Thus, it is equivalent to check the existence of the path from the source to the destination.

The LTT network of Fig. 3.16 shows the Jordan-form externalization of the Fig. 3.10 example
for A = 4. We can easily see that the LTI network of Fig. 3.16 agrees with the first LTI network
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Figure 3.16: Jordan-form externalization of the system of Fig. 3.10 for A =4

of Fig. 3.11. The information generated at x1[n], z2[n] is first observed by the controller Ky, then
relayed to the controller Ko, and finally returned to x1[n], x2[n|. Here, the controller K3 is correctly
omitted since it does not affect the transfer function of the relevant LTI network.

Until now, our discussion was limited to strictly proper systems where the impulse response
from u;[n] to yj[n] is strictly causal. However, the capacity-stabilizability theorem can be easily
extended to proper decentralized linear systems L£(A, B;, C;, D;;) as shown in Appendix 8.3.

Before we close this section, for a sanity check we apply the result of this section to cen-
tralized systems which are already well-understood. Moreover, this will be helpful to clarify our

understanding in later sections.

Corollary 3.2 (Stabilizability of Centralized Systems[17]). Let’s consider the above system with a
single controller, v =1. Then, the following conditions are equivalent.

(1) The centralized linear system L(A, By, Ch) is stabilizable.

(2) (A, By) is controllable and (A, C1) is observable.

(8) rank(Cq 1) > my and® rank(Bi 1) > my for all unstable eigenvalues A of A.

Proof. This is a well-known fact in linear system theory [17]. Especially, the equivalence of (1) and

(2) immediately follows from Theorem 3.8. O

3.6 Control over LTI networks

To clarify the previous discussion and reveal the further connection between network coding
and decentralized linear control, we consider a stabilizability problem with an explicit communication
network. Following the problem formulations in [97, 86, 95, 76], we propose ‘control over LTI
networks’ problems. The main advantage of these new problems is that the information for control
can only flow explicitly through the communication network, while in general decentralized systems
the information can also flow implicitly through the plant. Therefore, we can measure the minimum
information flow to stabilize the system by simply measuring the capacity (or reliability) of the

explicit communication network.
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Figure 3.17: Control over LTI Networks: Point-to-Point case

3.6.1 Point-to-Point

The problem of control over LTI networks is shown in Fig. 3.17. The unstable plant is

given as
z[n + 1] = Az[n] + Buln| + w[n|
yln] = Czln]

where A € C™*™ B € C™*4%n and C € C"**™. z[n] is the state, u[n] is the input to the system,
y[n] is the output from the system, and w(n] is the disturbance.

The observer can observe the output y[n], but cannot control the plant. On the other
hand, the controller can control the plant through the input u[n], but cannot observe the plant.
Therefore, to stabilize the plant the observer has to communicate to the controller. The observer
and the controller are connected by an LTI communication network, Npop (%), where the observer is
the transmitter, the controller is the receiver, and the relays are connected by linear time-invariant
channels. To make the problem physically meaningful, we assume that the channel matrices H; ;(2)
between the relays are stable and causal. Here, we want to find the linear time-invariant observer,
controller and relays that stabilize the plant. Therefore, by z-transform, every signal can be rep-
resented as a vector in F[z], and the operation of nodes (controller, observer, and relays) can be
represented as a matrix in F[z]. Denote the dimension of the input signal to the LTT network at the
observer to be go, and that of the output signal from the LTI network at the controller to be r.,.
Therefore, the dimensions of the observer and controller gain matrices are qop X 7op and gen X Tep
respectively. At the relay node i, denote the dimension of the input signal to the LTI network to be
¢; and that of the output signal from the LTI network to be r;. Then, the dimension of the relay
gain matrix, K;, is ¢; X r;.

The goal of control and communication nodes is to stabilizing the plant.

Definition 3.7 (Stabilizability over LTI networks). Given the above definitions, we say the plant

is stabilizable over the LTI network if there exist LTI observer, controller and relays that make

8Here, the inequalities are actually equalities, rank(C1,x,1) = my and rank(Bj ),1) = my, since the size of Cq 1
and By )1 is my.
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x[n], y[n], u[n], and all the inputs and outputs of the LTI network uniformly bounded for all uniformly
bounded disturbances wln]. For a given design, we say the plant is stable over the LTI network
if z[n], y[n], u[n], and all the inputs and outputs of the LTI network are uniformly bounded for all

uniformly bounded disturbance win].

For a given matrix A, let o(A) be the set of eigenvalues of A. Let my be the number of
Jordan blocks of A associated with the eigenvalue A. Then, the stabilizability condition is given as

follows.

Theorem 3.9. The plant is stabilizable over the LTI network if and only if for all X such that
Ae{X: A > 1} no(A) the following conditions are satisfied:

M= A ‘ ‘
(1) c is full rank, i.e. X\ is observable.

(74) [/\I —A B} is full rank, i.e. X is controllable.

(iti)my < (mincut rank of the LTI network Npiop(X))

Proof. For the necessity proof, we will use the realization idea. In other words, we will consider
control over LTT networks as distributed linear systems and apply the concept of fixed modes to check
stabilizability. For the sufficiency proof, we will give a constructive proof. We first design the relays
in the LTI network so that it can accommodate enough information flow to stabilize the system.
Then, we will design the observer and controller to connect the plant with the communication
network, and stabilize it.

(1) Necessity Proof: An insightful reader may notice that ‘control over LTI networks’ that
we are considering is essentially the same as ‘decentralized linear systems’ of Section 3.3.1. The
observer, controller, and relays in Figure 3.17 can be thought of as decentralized controllers. The
state x[n] and the internal states of the channels can be combined into one big state z’[n]. Then, the
minimal realization procedure described in Appendix 8.7 can convert ‘control over LTI networks’

problems to the following decentralized linear system L,.(Aj, B}, C;, D;;).

v+1
2n+1]=A2"n +ZB/U1 " wln]
v+1
yi[n] = Cla'[n +ZD n)for0<i<wv+1

Here, the controller 0 and v + 1 of £,..(Aj, B}, C}, Dj;) corresponds to the observer and controller
of the original problem respectively. The controllers 1 to v correspond to the relays in the original
a[n]

problem. The state 2'[n] can be written as
Zcn[n]

] where x[n] and z.p,[n] are respectively the plant
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and the internal states of the network in the original problem. Then, the state transition matrix A’
0

Ach
However, there are minor differences between ‘control over LTI networks’ and ‘decentralized

is a block diagonal matrix

linear system control’ problems. In ‘control over LTI networks’ problems, we only want to stabilize
the plant z[n] not all internal states a’[n]. And the state disturbance wn] is also added to only z[n]
not to all internal states a’[n]. However, since we assume all the channel matrices are stable, the A,
which correspond to z.;[n] have only stable eigenvalues. The only possibly unstable states are x[n].
Therefore, by simply repeating the proof shown in [104, 23], we can justify that the stabilizability of
the realized system L,.(A;, B, Cj, D;;) is still a necessary condition for stabilizability over the LTI
network.

Now, we can apply the Jordan form externalization® of Section 3.5.2 for all unstable eigen-
values A of A. Figure 3.18 shows the resulting LTI network from the Jordan form externalization
with respect to A. By Theorem 3.8, we know that A is not a fixed mode only if the mincut of the
network in Figure 3.18 is greater than m). First, we can think of the cutset that only includes
the transmitter yy. The channel matrix for this cut is C; and so rank C); > mj is a necessary
condition for stabilizability. By Corollary 3.2, this is equivalent to the observability of A which is
the condition (i) of the theorem. Likewise, we can think of the cutset that only excludes the receiver
uy. The channel matrix for this cut is —Bj ; and so rank B ; > m, is a necessary condition. This
corresponds to the theorem’s condition (ii), the controllability of A. The remaining cuts have a one-
to-one correspondence to the cuts of the LTI network of Figure 3.17. The conditions that these cuts
are larger than m) corresponds to the mincut condition of the LTI network, which is the condition
(iii) of the theorem.

(2) Sufficiency Proof: For sufficiency, we can also apply the realization idea and use the same
sufficiency proof for decentralized linear systems shown in [104, 23]. However, to reveal connections
we will give a constructive proof based on network coding, and this style of proof will turn out to
be useful in the extensions that we will consider later.

The proof consists of three steps: LTI network design, observer design, and controller
design. Without loss of generality, we can assume that A is given in a Jordan form. Then, we can
use the notations of Section 3.3.1. For for each unstable eigenvalue A of A, define the permutation
matrices Pg  and Py, 5 in the same ways as (3.41). Then, we can apply these permutations to the

system input and output matrices B and C, and denote the following sub-matrices.

B

C-Ppy= [C)\,l C,\,z} 7PLT,A ‘B =
B2

where By 1 is a my X gcp, matrix, and C) ;1 is a 7,5 X my matrix. We will design the controller, ob-

server and relay gain matrices K., Ko, K;. Each element in these gain matrices can be interpreted

9Strictly speaking, we have to apply the Jordan form externalization for proper systems shown in Appendix 8.6.
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in two ways, ether as a variable in the form of k; ; i, or as constant in F[z] (i.e. a transfer function
given as a z-transform). Then, designing the controller gains can be understood as a procedure of
plugging in constants in F[z] to variables. To distinguish these two meanings of K;, as mentioned in
Section 3.2.1 we will write K; when it is considered as a variable, and K;(z) when it is considered

as a constant.

(2-a) LTI network (relay) design: The goal of the relays is flowing enough information to stabi-
lize all unstable eigenvalues A. Denote the transfer function of the LTI network as Gpiop(2, K). The
goal of the relay gain design is finding K;(z) € F[z]?9*" such that for all unstable eigenvalues A,
rank(Gpiop(A, K)) = rank(Gpiop(A, K(2))) i.e. achieving the maxflow. Here, because of condition
(iii), the maxflow at z = X is always greater or equal to m, which is enough to stabilize.

Since the complex (or real) field is infinite, we can find memoryless gains K;(z) € C%*":
which achieve the maxflow. Rigorously speaking, for each A, the algebraic variety that makes the rank
of Gpiop(A, K) be smaller than its maximum rank has a strictly lower dimension than its underlying
space. Therefore, there exists an infinite number of solutions that can achieve the maxflow for
each A [52, Lemma 1]. Moreover, even if we have to achieve the maxflow for different eigenvalues
simultaneously, the algebraic variety which reduces the rank of any of transfer function matrices just
corresponds to a union. Therefore, the dimension is still strictly less than its underlying space, and
an infinite number of (simultaneous) solutions exist.

However, when the LTI network has cycles, just guaranteeing the rank condition from the
transmitter to the receiver is not enough. Even though all the channel transfer functions are stable,
by introducing relay gains at the nodes, we could shift some stable poles to become unstable poles.
To prevent such situations, we will adapt the argument introduced by Wang et al. in [104]. As
shown in [104], using Gershgorin’s circle theorem [101] we can prove that as long as the relays gains
are chosen small enough, the location of the poles does not move far from the original location.
Formally, we can find € > 0 such that for all |K;(2)| < € such that K;(z) € C%*"i all the poles of
the LTT network are stable. Moreover, even if we restrict K;(z) to satisfy |K;(z)| < ¢, the dimension
of the algebraic variety remains the same. Therefore, the proof of [52, Lemma 1] still holds, and the
same argument above guarantees the existence of a mincut achieving K;(z) which keeps the whole

LTT network stable.

(2-b) Observer design: The goal of the observer design is simply connecting all the unstable states
of the plant to the LTI network. Mathematically, finding K,,(z) € C9*7t such that for all unsta-
ble eigenvalue A, rank(Gpiop (A, K (2)) Ko Cx 1) = rank(Gpiop(A, K(2)) Kop(2)Ci1). Here, we can see

since the elements of K, are variables,
rank(Gpop(A, K(2))KopCi 1) = min(rank(Gpiop(A, K(2))), rank(C 1)).

Therefore, by the relay design (2-a) and condition (i) —together with Corollary 3.2— we can con-
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Figure 3.18: Jordan form externalization of L,.(Aj, B, C;, D;;) at z = A

clude rank(Gpop(A, K (2))KopCr1) > my. Using the same algebraic variety argument as (2-a), we
can prove the existence of such K,;(z). (Here, we do not need Gershgorin’s circle theorem for sta-
bility.)

(2-¢) Controller design: The goal of the controller is to actually stabilize the plant based on the
information it got. Once the design of the observer and the relays are fixed, from the controller’s

point of view the whole system can be viewed as follows in z-transform:

za(z) = Az(z) + Bu(z)
y(z) = C'(2)z(2)

where C"(2) = Gpiop(2, K(2))Kop(2)C. For each unstable eigenvalue X of A, let’s apply the same per-
mutation matrix Pr ) to C’(z) and denote the following sub-matrices as C'(z)-Pg,x = Ch1(2) O 4(2)|-
Then, we can easily see C} | (2) = Gprop(2, K(2))Kop(2)Cy 1. Moreover, a simple extension of Corol-
lary 3.2 gives that in this new system, A is observable if and only if rank(C% ; (X)) > mx. We already
know this condition holds for all unstable eigenvalues A. Moreover, by condition (ii) all unstable
eigenvalues are controllable. Therefore, all unstable eigenvalues are observable and controllable, and

so we can stabilize the system using a conventional controller design [17] (which first estimate the
states and control the states based on the estimated states).

This finishes the sufficiency proof. O

In the proof of the theorem, we saw how the Jordan form externalization of implicit in-
formation flows discussed in Section 3.5.2 can be used to understand problems which have both
control and communication aspects. Moreover, the connection between network coding and implicit
information flows for control leads to a new controller design for stabilizing the plant.

More importantly, the ideas used in the proof justify our intuition on information flows in
decentralized linear system shown in Section 3.4, especially Table 3.1. We converted ‘control over
LTT networks’ problems to decentralized linear systems by considering the relays in LTI networks
as controllers of decentralized systems and the channels as a part of the states and input-output
matrices B;,C;. The goal of the observer and the relays was to send enough information about

unstable states associated with A\. Therefore, the unstable states can be considered the source of
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Figure 3.19: Control over LTI Networks with multiple controllers: Multicast case

information flows, and the unstable subspaces can be thought of as the message. The maxflow of
the LTI network was compared with m), the number of Jordan blocks associated with A. Therefore,
my can be considered the rate of the message. The controller stabilized the plant by controlling the
unstable states based on its received information. Therefore, the unstable states can also be thought
of as the destination of information flows. Theorem 3.9 reveals that we can stabilize the system if and
only if the LTI network has enough capacity to afford the information flows for control. Therefore,
the capacity of LTI networks is deeply related to stabilizability of control systems. Moreover, the
communication scheme that we used for the relays was linear network coding.

Another important point is the relationship between network linearization that we discussed
in Section 3.2.2 and control over LTI networks. By comparing Figure 3.4 and Figure 3.18, we can
easily notice the similarity. The transmitter and receiver in LTI communication networks correspond
to the observer and controller in control over LTI networks. These nodes are connected by relay
nodes in both problems. Now we can see that what we did by introducing the circulation arc in
network linearization (in Figure 3.4) is essentially introducing an unstable plant to be stabilized
through the LTI communication network. This insight will be helpful in the later generalization of

control over LTI networks, and also the generalization of network linearization in Appendix 8.1.

3.6.2 Multicast

Now, we understand that the distributed controllers communicate by network coding. How-
ever, it is known in the communication community that network coding is really helpful to improve
the performance when the problem involves multiple transmitters and receivers. Therefore, we will
extend the previous single-plant single-observer single-controller problems to problems with multiple
plants, observers, and controllers. We will see a close relationship and parallelism between control
over LTI networks and network coding.

Arguably, the easiest and most well-understood problem among multi-user network coding
problems is the multicast problem. In multicast problems, there is a single transmitter and multiple

receivers, and all the receivers want to receive a common message from the transmitter. The worst
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mincut to all receivers is a trivial lower bound for the message rate in multicast problems. It is
shown [1] that we can achieve this lower bound and network coding is necessary for this.

Let’s find the counterpart of multicast problems in control over LTI networks. In the
sufficiency proof of Thereom 3.9, we saw that the destination of the information flow for control is
the controller.'® Since controllers are the receivers, we have to increase the number of controllers to
find the counterpart of multicast problems.

The situation that we will consider in this section is following. Consider a control over LTI
networks problem with two controllers as shown in Figure 3.19. Let’s say we want to design the
system so that the plant becomes stable by either one of the controllers — but does not have to be
stable when both controllers are simultaneously active. To design such systems, we can introduce the
multicast communication scheme for LTI networks so that the observer sends enough information
to stabilize the plant to both controllers.

For simplicity, let’s limit our discussion to two controllers but all the results in this section
can be easily generalized to multiple controllers. Figure 3.19 shows the resulting problem, control
over LTT networks with two controllers. Formally, the plant has two potential control inputs uw; and

ug, i.e. the plant is given as
z[n + 1] = Az[n] + Byui[n] + Baua[n] + w(n]
yln] = Cz[n]

where A € C™*™ By € C™*9en1 By € C™*9en2 and C' € C"e»*™ . If the observations of the observer
is decodable at both controllers, it is possible to stabilize the plant by engaging either one. The

following definition captures this idea.

Definition 3.8 (Alternative Stabilizability). Given the above definitions, we say that the plant
is alternatively stabilizable over the LTI network if there exist ‘common’ LTI observer and

relays, and possibly different controllers that makes both the first plant
x[n + 1] = Az[n] + Byuq[n] + w[n]
y[n] = Czn]

and the second plant
z[n + 1] = Az[n] + Baus[n] + wln]
y[n] = Cxn]

stable over the LTI network.

The reason why this problem is different from just two separate problems with a single

controller is that the same observer and relays have to be used for two different systems.

10Even if the ultimate destination of the information flow is the unstable states, in control over LTI network
problems, only the controller can control the plant. The controller can be thought as a penultimate destination.
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Let the LTI network that includes the observer, relays and controller 1 be N1 (2). Like-
wise, the LTT network including the observer, relays and controller 2 is denoted by Npu2(z). The
other notations and assumptions about the problem are the same as the point-to-point case. Then,

the condition for alternative stabilizability is given as follows.

Theorem 3.10. Given the above definitions, the plant is alternatively stabilizable over the LTI
network if and only if for all X such that A € {\ : |A] > 1} No(A) the following conditions are
satisfied

©

1s full rank

l)\I—A

(i4) [)\I —A Bl} and [)\I —A Bz} are both full rank
(i73)my < (mincut rank of the LTI network Npuir (X))

mx < (mincut rank of the LTI network Npwi2(X))

Proof. (1) Necessity Proof: Since the plant has to be stabilizable by both the controller 1 and 2, the
conditions of Theorem 3.9 has to be satisfied for both controllers, which corresponds to the condition
(i), (ii), (iil) of the theorem.

(2) Sufficiency Proof: Just as the sufficiency proof of Theorem 3.9, we will give a three-step
constructive proof. Since the only difference from that of Theorem 3.9 is LTI network desing, we
use the essentially definitions.

(2-a) LTI network design: Since we have to afford enough information flow for both controllers, we

choose the relay gain matrices K;(z) € C%*" such that for all unstable eigenvalue A,
rank(Guii (A, K(2))) > my and rank(Gpuz(X, K(2))) > my.

The existence of such gain matrices can be proved in the same way as Theorem 3.9 and using condi-
tion (iii). In other words, the set that we cannot choose K;(z) is the union of two algebraic varieties:
one that makes G,1(\, K;) lose its rank and the other one that makes G,2(X, K;) lose its rank.
The dimension of their union is also strictly smaller than that of the underlying space. Therefore,

almost all K;(z) € C%*" can achieve the maximum rank of both transfer functions.

(2-b) Observer Design: For the observer design, we find Ky,(z) € C™v*%* such that for all unstable
eigenvalue A, rank(Gpmu1 (A, K(2))Kop(2)Cx1) > ma and rank(Gpuz(A, K(2)) Ko (2)Cr1) > ma.
The existence of such K,(z) follows from the same way as Theorem 3.9 and the union of two alge-

braic varieties argument.

(2-¢) Controller Design: Now, at both controllers the plant is observable. We can simply use

conventional controller designs to stabilize the system by both controllers. O
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Like the point-to-point problem, memoryless observer and relays are enough for alternative
stabilizablity. The generalization of this result to more than two controllers is trivial. We can simply
add more controller conditions to the condition (ii) and (iii).

In fact, this theorem can be generalized to arbitrary decentralized linear systems. First,

we define strong connectivity of decentralized linear systems [19].

Definition 3.9. [19] A proper decentralized linear system L(A, B;, C;) with v decentralized con-
trollers is called strongly connected if for all V.C {1,--- ,v}, Cv (21 — A)~"1 By is nonzero.

The strong connectivity of the decentralized system implies that for any cut, the transfer
function across this cut is not zero. In other word, we can always send some information for any
cuts, and thereby every controller is connected with each other.

We generalize the alternative stabilizability definition to a set of decentralized linear sys-

tems.

Definition 3.10. Consider a set of p decentralized linear systems with v decentralized controllers,
(£(AD, B oMy ... £a® P P,

where for all 2 < i < v the dimensions of Bi(l),~~~ ,Bi(p) are the same, and the dimensions
of C’i(l),--- 7C’i(p) are also the same.'' This set of the decentralized systems is called alterna-
tively stabilizable if there exist common LTI controllers Ka,--- , K, and possibly different'? con-
trollers ICgl), e ,ICgp) such that for all 1 < k < p, all systems ﬁ(A(k),BZ(k),Ci(k)) with controllers

ICE’”, Ko, Ky are stable simultaneously.

The above definition implies that even if the decentralized system is arbitrarily chosen
from a given (finite) set, we can stabilize the system by changing only one controller (the controller
1). We can relate this problem with the previous control over LTI network problem. We can
consider the observer and relays of control over LTI networks as the controllers 2 through v in
decentralized systems. We can consider the multiple controllers as the potential controller 1s in
decentralized systems. Therefore, from the realization idea, we can see the alternative stabilization
of decentralized linear systems includes that of control over LTI networks as a special case.

This generalized problem corresponds to robust networking [52] in a network coding con-
text. In robust networking, the communication network can be adversarially chosen from a given
set, and we want to design the relay scheme that achieves the worst case mincut. In [52], it is shown
that robust networking is essentially the same as multicast problems, and the worst case mincut is
achievable using network coding.

Likewise, the alternative stabilizability of decentralized linear systems is essentially the
same as that of control over LTI networks. If the systems are strongly connected, the alternative

stabilizability condition is given as follows.

' The dimension of Bgl), s ,ng) and the dimension of Cil), s ,C{p) can be different.

2the design of the first controller ’ng‘) can be changed depending on which system is chosen.
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Figure 3.20: Stabilization over an LTI Network with multiple plants and multiple controllers: Broad-

cast case

Theorem 3.11. Consider a set of decentralized linear systems with v controllers
(£(AD, BD My ... L@ BP c®)y)

where each decentralized linear system is strongly connected.'® Then, this set of decentralized linear
systems is alternatively stabilizable if and only if each decentralized linear system does not have

unstable fized modes.

Proof. The necessity is obvious since each system has to be stabilizable.

Let’s prove the sufficiency. By [19, Corollary 1], we know that except a certain algebraic
variety whose dimension is strictly smaller than that of the underlying space, almost all constant
matrices K»(z), - , K, () make all unstable eigenvalues of £(AW), Bi(l), CZ-(U) to be observable and
controllable at the controller 1. Moreover, by Gershgorin’s circle theorem [101], there exists € > 0
such that for all |K;(z)| < € such that K;(z) € C%#*"  the stable eigenvalues of the system remain
stable.

Using the union of algebraic varieties argument, we can prove that there exist constant
matrices Ko(z) € C2*"2 ... 'K, (z) € C?*™ gsuch that for all systems {E(A(l),Bgl),Ci(l)), S
L(AP) Bi(p ), C’i(p ))}, the unstable eigenvalues are observable and controllable at the controller 1 and
the stable eigenvalues remain stable. Then, knowing which system is chosen, the first controller can

stabilize the system using a conventional design [17]. O

Just as the sufficiency of Theorem 3.10, memoryless controllers are enough for controllers 2
through v. The underlying reason why this theorem holds is that the controllers 2 to v relay (using

network coding) enough information for control to controller 1.
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3.6.3 Broadcast

Another well-understood problem in network coding is broadcast. Like multicast problems,
broadcast problems have a single transmitter and multiple receivers. However, unlike multicast
problems, each receiver wants to receiver its own message which is independent from the other’s.
We can find a simple lower bound on the message rate using cutset bounds. The message rate to
receiver 1 cannot exceed the cutset bound for receiver 1, and similar bounds hold for all receivers.
We can also think of sum cutsets for augmented receivers. The sum of the message rates to receiver
1 and receiver 2 cannot exceed the cutset bound for the augmented receiver 1 and 2. Likewise, we
can think of the cutset bounds for the sum of all two messages, three messages, and so on. This
cutset bound is also known to be achievable using network coding together with precoding at the
transmitter [62, 52].

In this section, we will find a counterpart of broadcast problems in control over LTI net-
works. As we saw in the previous section, multiple receivers in network-coding problems correspond
to multiple controllers. Now, we have to find the counterpart of multiple messages. In previous dis-
cussions, we found that the unstable states correspond to the messages. Therefore, as a counterpart
of independent messages, we introduce multiple plants which have orthogonal unstable states. Each
controller can only act on its designated plant.

Consider the control over LTI network problem with two plants and two controllers as
shown in Figure 3.20. Obviously, we want to design the system so that both plants becomes stable.
However, we will require an additional property of disturbance isolation. In other words, if we add
disturbance only to plant 1, the states of plant 2 should stay zero for all time. Likewise, if we add
disturbance only to plant 2, the states of plant 1 should stay zero for all time. In other words, any
disturbance added to the plant 1 must not propagate to plant 2, and vice versa.

For notational simplicity, we will only consider the two plants and two controllers case,
but the results in this section can be easily generalized to multiple plants and multiple controllers.
Figure 3.20 shows the resulting control over LTI network problem with two plants and two controllers.

The plant models are given as follows:

z1[n+ 1] = A1z1[n] + Biui[n] + wi[n]

n[n] = Crz1|n]

xo[n + 1] = Asxa[n] + Bausg[n] + wa[n]

ya[n] = Caxa[n]

where A; € C™i*™i B, € C™i*4ni and C; € Crevi*™i, Ag shown in Fig. 3.20, the observer has

both observations y;[n] and ya[n], but both controllers can only control their designated plants via

130therwise, controllers could be isolated from the remaining system. In this case, for each disconnected system at
least one controller’s design has to be changed to guarantee stability.
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ui[n] and ug[n]. The basic assumptions and notations for the LTI network are the same as the
multicast problem.

If just as in broadcast problems, the observation y;[n] (information about x1[n]) is decod-
able separately from ya[n] at the controller 1 and the observation ys[n] (information about zq[n])
is decodable separately from y;[n] at the controller 2, it is possible for controllers to control their
own designated plants without causing any interference to the others. This notion is captured by

the following definition of independent stabilizablity.

Definition 3.11 (Independent Stabilizability). Given the above definitions, we say that plants are
independently stabilizable over an LTI network if there exist the LTI observer, controllers
and relays that satisfy the following conditions:

(i) both of the plants are stable over the LTI network

(i) If wi[n] = 0 for all n, then x1[n] =0 for all n regardless of wa[n|

(iii) If wa[n] = 0 for all n, then xa[n] = 0 for all n regardless of wi[n]

In Figure 3.20, denote the LTI network including the observer, the relays and controller 1
as Nyr1(2). Likewise, denote the LTT network that includes the observer, the relays and controller 2
as Npr2(z). The LTI network that has the controller 1 and 2 as the augmented receiver is denoted
as Npr1,2(2).

We let mq » be the number of the Jordan blocks of A; associated with the eigenvalue A, and
mg, x be that for Ay. We also let m1 ez 1= maxyec,|a|>1 M1,4 a0d M2 mag = MaX)cc,|A|>1 M2\

One may think since we have to prevent disturbance propagation for independent stabiliz-
ability, the existence of separate paths from the observer to each controller is required for indepen-
dent stabilizability. However, we do not need separate paths to each controller. For example, let the
Uob,1 [n]] ‘o

Uop,2[n]
the network, the controller 1 and 2 have one dimensional y.,1[n] and yen2[n] respectively, and their

SRpI
Yenz|n] 1 2| |uop2[n]

We further assume the network has no relays. In this example, one may think that it is impossible

plants 1 and 2 be scalar plants. Let the observer have a two-dimensional input signal [

relation be given as

to independently stabilize the system since the communication channels to each controller interfere
-1

2 1
with each other. However, by simply introducing a precoding gain l ] , we can orthogonalize
2
the paths and independently stabilize the system.

This idea can be formalized for general cases. A sufficient condition and a necessary

condition for the independent stabilizability are given as follows.

Theorem 3.12. Given the above definitions, a sufficient condition for the plants to be independently

stabilizable is that for all X such that A € {\ : |A\| > 1} N (c(A1) U (As)) the following conditions
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hold:

@) AN — Ay

Cl 2

M — Ay
and . are both full rank

(i) {/\I — A Bl] and [)\I — A, BQ} are both full rank
(%) M1 maz + M2,maz < (mincut rank of the LTI network Nyy1,2(N))
M1 maz < (mincut rank of the LTI network Nyy1(N))

M2 maz < (mincut rank of the LTI network Npy2(X))

The necessary condition for the plants to be independently stabilizable is that for all \ such that
Ae{: A >1}N(0(A1) Uo(A2)) the following conditions hold:

The condition (i) and (ii) hold.
(ii7") max +maox < (mincut rank of the LTI network Ny 2(N\))
myx < (mincut rank of the LTI network Ny1(N))

ma,x < (mincut rank of the LTI network Nyy2(X))

Proof. (1) Necessary condition: The plant 1, the plant 2, and their augmented plant have to be
stabilizable by the controller 1, the controller 2, and their augmented controller. Therefore, by
apply Theorem 3.9 to these systems, we get the necessary conditions.

(2) Sufficient condition:

The proof is similar to that of Theorem 3.10, but here we need an additional step to
remove the interference between the information flows to two controllers. For this, we will adapt the
pre-and-post processing idea shown in [62, 52].

(2-a) LTI Network design:

Let Gpri(z, K) and Gpra(z, K) be the transfer function matrix of Mp.1(2) and Nppe(2)
Gor1(z, K)

Gora(z, K)
Npr1,2(2). Using the same union of algebraic varieties argument of Theorem 3.10, by condition (iii’)

respectively. Then, we can see Gy 2(2, K) =

] is the transfer function matrics of

we can prove that there exist K;(z) € C%*"™ such that for all unstable eigenvalue A

rank(Gpr1 (A, K(2)) > M1 maz

rank(Gng(A, K(Z)) > m2 max

rank(Gpr1 2(A, K(2))) > M1 maz + M2 maz (3.46)
and keep the stable eigenvalues stable.

(2-b) Pre-and-Post processors at Controller and Observer: Even if we design the relays so

that they can flow enough information, information flows from the observer to the controllers can
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interfere with each other. To remove this interference, we introduce pre-and-post processors at the
controllers and observer as shown in [62, 52].

First, let’s make Gpr1,2(2, K(2)) a square matrix by introducing pre-and-post processors
K!,1(2) € CMimazXTent K! o (2) € CM2masXTenz K/ (2) € ClobX(MimaztM2maz) a5 follows:

cnl

0 K0 Grr1,2(2, K(2)) Ko (2)-

Ggr1,2(zv K(z)) = l

The resulting matrix Gfﬂ.m(z,K(z)) is a square matrix with dimension (M1 maz + M2,maz), and
using the algebraic variety argument and (3.46) we can choose K. ,;(z), K/,2(2), K/,(z) so that for
all unstable eigenvalues A, G, 5(A, K (2)) is invertible.

Now, we can remove the interference by simply multiplying by the matrix inverse. To this

end, denote

p(2) = 2 det( br12(2 K(2))) ;)rl,Q(Z?K(Z))_l

Here, we introduce 2~ to make K, (z) causal. Therefore, d € Z* has to be chosen large enough so
that each element in K7} (2) is causal. Furthermore, since we multiplied det(Gy,,, 5(2, K (2))), K (2)
does not have any additional pole beyond the existing ones in Gy, »(2, K(2)). Thus, K7 (2) is also

stable. Let’s multiply this matrix to Gy, »(z, K(z)) and denote

gr1,2(ZaK(Z)) = ér1,2(Z7K(Z)) (/)/b(z)

In Gg’rl’z(z, K(z)), the only non-zero entries are diagonal entries, and so we have (M1 maz + M2 maz)
“orthogonal” communication channels.

(2-c¢) Observer design: In the observer, we will use mj mq, communication channels to
send information about plant 1, and the remaining for plant 2. First, denote C; 1 and C5 y,; for
Ch and C5 in the same way we defined C; for C' in Theorem 3.10. Using the algebraic variety
argument from Theorem 3.10 and condition (i), we can show that there exist K/} (z) € C"1mazXden1

and K[)'(z) € C™2maz*den2 guch that for all unstable eigenvalues A,

rank(K [ (2)Cia1) > mia

rank(Kpy'(2)Cox1) = ma .

Then, we will set the observer gain K,,(2) as

Kop(2) = K., (2) K, (2) [Kob(z) 0 1 .

0 KG(2)

(2-d) Controller design: Once we fix the relay gain and observer gain matrices as above

and introduce the gain matrix K/

! .1(z) at controller 1, by construction the controller 1 will have the
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following observation about the state.

[KLn(2) 0] Gorn ol K (2) Ky (2) K (2) lKob(z) 0 Hyl(z)]

0 K}'(2)] |y2(2)
_ / z z / z " z Ké’é(z) 0 Clxl('z)
= [Kml(z) 0} Gbr1,2( uK( )) ob( ) ob( ) [ 0 K(/)/l;/(z) C2.I2(Z)‘|

Ky 0

= 2~ % det( br1,2(2)) {I 0] 0 K (2)

Oy (z)}
CQJCQ (Z)

= 271 det (Gl 2(2)) Koy (2) Craa (2)

As we can see, the observation is orthogonal to the state of plant 2. Moreover, since for all unstable
eigenvalue A, det(Gh,.; 5(A)) # 0 and K[ (2)C1 can observe all unstable states of z1[n], the plant 1
is observable. Therefore, by a conventional controller design, controller 1 can orthogonally stabilize

plant 1. The same holds for plant 2 and controller 2. O

The result can be easily generalized to multiple plants and multiple observers. Unlike
Theorem 3.9 and Theorem 3.10, the memories at the observer and the relies are actually helpful.
The necessary and the sufficient condition coincide when all the unstable eigenvalues of A; and As
are the same, and this corresponds to the broadcast result of network coding.

However, unlike broadcast problems in network coding, the augmentation idea of nodes
and cutset bounds fail to give a tight necessary condition. The reason for this is in this problem
we have an additional factor, the frequency z. According to the frequency where it is evaluated,
the channel behaves significantly differently. Thus, there is no way to orthogonalize the channel
simultaneously for all frequencies, and we cannot achieve the necessary condition obtained by the
augmentation idea.

For example, let’s consider the plant A1 =3, Ao =2, By =By =1and C; = Cy = 1. And
the LTI network has no relays, the input signal dimension of the observer and the output signal
3— 6271

2 — 6271
plants and the observer has only one dimensional input signal to the network, it “seems impossible”

dimension of the controllers are 1, and Gy1,2(2, K;) = . Here, since there are two scalar

to independently stabilize the systems. In fact, this system violates the sufficiency condition of
Theorem 3.12 since M1 maz = 1, M2,maez = 1, and the mincut ranks of Ny,1(3), Mpr2(2) are both 1.
Therefore, Theorem 3.12 fails to guarantee independent stabilizability of the system.

However, the system still satisfies the necessary condition of Theorem 3.12 derived by
a simple augmented system idea. We can easily check that the system parameters are m; 3 = 1,
ma,3 = 0, (mincut rank of Np,1 2(3))=1, (mincut rank of Np,1 2(3))=1, (mincut rank of Ny1 2(3))=0,
mi2 = 0, mgo = 1, (mincut rank of Ny 2(2))=1, (mincut rank of Npyq12(2))=0, (mincut rank of

Nir1,2(2))=1. These parameters satisfy the necessary condition of the theorem.
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Figure 3.21: Control over LTI Networks with multiple plants, multiple observers, and multiple

controllers: Multiple-unicast case

Therefore, for even for this simple system, the necessary and sufficient condition of Theo-
rem 3.12 do not match. Finding the tight characterization for the independent stabilizability will be
an interesting further research direction. The example shows that it is the necessity condition that

probably needs to be tightened.

3.6.4 Multiple-Unicast

Multiple-unicast problems in network coding have multiple transmitter-receiver pairs which
try to communicate their own individual messages. Unlike the previous problems, each transmitter
only knows its own messages, and it is well-known that the cutset bound is not tight and the capacity
region is open except several known cases [102, 103].

Here, we try to convert multiple-unicast problem to the control over LTT network problems.
The main difference between multiple-unicast and broadcast problems is the multiple transmitters.
To capture this, we will introduce multiple observers'¢ to the previous control over LTI network
problems.

Figure 3.21 shows the resulting problem. The only difference compared with Figure 3.19 is
the multiple observers which do not share their observations directly. In this problem, we can easily
prove that if there exist a multiple unicast communication scheme from the observers to the con-
trollers which accommodates enough information flow to stabilize the plants, we can independently

stabilize the system.

3.7 Conclusion

In this chapter, we take a unified approach to network coding and decentralized control

by considering both problems as linear time-invariant systems. LTI-stabilizability of decentralized

141n section 3.4, we argued that the sources of the information flows for control are unstable states. However, when
only explicit observers can directly observe the unstable states, the observers can be thought of as the sources of
information.
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linear systems is found to be equivalent to having sufficient capacity in the relevant LTI networks.
This equivalence can be exploited in both network coding and decentralized control contexts.

In network coding, we found network linearization by introducing internal states and cir-
culation arcs. The linearized network has not only an equivalent mincut and maxflow to the original
network, but also a simple topology, acyclic single-hop relay. These properties lead to a simple and
elegant proof of an algebraic mincut-maxflow theorem.

In decentralized control, we gave an algorithm to make explicit LTI communication net-
works that represent the implicit communication required to stabilize the plant. The stabilizabil-
ity condition of decentralized systems is then easily interpreted using mincut conditions on the
corresponding networks. Each eigenvalue is viewed separately, and the number of Jordan blocks
corresponding to that eigenvalue corresponds to the number of degrees-of-freedom of implicit com-
munication required to stabilize that eigenvalue. The algebraic condition for fixed modes that was
reported in [4] and had, in our opinion, remained mysterious for 30 years turns out to be a special case
of the algebraic mincut-maxflow theorem. This also confirms that LTI controllers in decentralized
control systems implicitly communicate via linear network coding.

The connection to network coding becomes even more clear when we consider stabilization
problems with an explicit communication network. By introducing the concepts of alternative stabi-
lizability and independent stabilizability, we successfully convert network-coding results to equivalent
stabilizability results.

Taking a step back, the general idea of implicit communication (signaling) between de-
centralized controllers and information flow in decentralized systems has been recognized since
Witsenhausen’s counterexample [108]. However, in Witsenhausen’s counterexample the need for
communication between controllers is justified by the suboptimality of linear controllers, i.e. if the
decentralized controllers want to communicate with each other for efficient control of the system,
they would do so using nonlinear controllers for signaling [109, 45, 37]. However, we showed here
that even if we restrict controllers to be linear time-invariant, the controllers still can communicate
via linear network coding. To an extent, this chapter does for implicit communication what [95, 27]
did vis-a-vis [86, 87] for explicit communication — it finds a way to discuss the issue within a linear
framework. In fact, the existence of implicit communication between linear controllers in decen-
tralized systems has been conjectured for a long time [5, 19, 3, 116]. In a sense, we hope that this

chapter clarifies these discussions.
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Chapter 4

Decentralized scalar LQG problem:

Fast Dynamics

4.1 Introduction

One of the biggest successes in stochastic control theory is the LQG (linear quadratic
Gaussian) problem with a single controller. The solution of the LQG problem contributed two big
ideas to classical control theory [55]: The first is the optimality of linear controllers. This fact
allows designers to confidently focus on finite-dimensional linear strategies without worrying about
the infinite-dimensional strategy space. The second is the optimality of the Certainty-Equivalent-
Controllers (CEC). Without loss of optimality, we can first estimate states and then control the
system as if the estimated states were the true states. This is also called the estimation and control
separation principle.

Even if the optimality results were restricted to single-controller LQG problems, their
philosophical contribution was not limited to them. Lots of related but different control areas —
including nonlinear system control and adaptive control — accepted these principles and focused
on essentially linear controllers, and separated estimation from control. In this sense, the LQG
problems form a conceptual foundation in control theory.

However, this beautiful result on the LQG problem with a single controller fails as soon
as we introduce more than one controller. Following convention, we call a problem with a single
controller a centralized problem, and one with multiple controllers a decentralized problem. The
famous Witsenhausen’s counterexample [108] demonstrates that nonlinear strategies outperform
linear strategies even in a simple finite-horizon decentralized LQG problem. Later, Ho, Kastner,
and Wong [45] qualitatively argued that the need for nonlinear controllers stems from “signaling”
— we will also use the term “implicit communication” interchangeably — between decentralized

controllers. Finding the optimal nonlinear strategy in most decentralized problems is known to be
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a non-convex infinite-dimensional problem [88], for which we do not have a well-developed theory.
Yet, it is still interesting to consider the average-cost infinite-horizon decentralized LQG

problem, which is the natural extension of [55, p.93].
x[n + 1] = Ax[n] + Z Bju;[n] + wn]

i

yi[n] = Cix[n] + vi[n]

Here, the underlying random variables x[0], w[n], and v;[n] are independent Gaussian. The objective

is to minimize the asymptotic average cost:

lim sup i Z E[x*[n]Qx[n]] + ZE[ui [n|R;iu;[n]]
N—o0 0<n<N i

where Q = 0, R; > 0, and each u;[n] is a causal function of y;[n] alone. This chapter (and the next)

considers the simplest toy case among these infinite-horizon decentralized LQG problems, a scalar

system with two-controllers. As should be expected, linear controllers are not optimal. The crux of

decentralized LQG problems, nonconvex optimization over infinite-dimensional spaces, is still there

and finding the optimal solution seems impossible. Instead of trying to solve the problem exactly,

we solve it approximately to within a constant factor of the optimal cost.
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Figure 4.1: Relationship between Radner’s problem [80], Witsenhausen’s counterexample [108], and

the infinite-horizon scalar LQG problem with two controllers

4.1.1 Literature Review and Intellectual Context

Until the late 40s, control and communication were considered in a unified framework under
the name of cybernetics. According to Wiener [105], cybernetics is defined as ‘the scientific study of
control and communication in the animal and the machine.” However, Shannon’s revolutionary paper
detached communication problems as its own field of interest. Since then, control and communication

have grown as two separate areas.
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Now, control theory which successfully addressed fundamental problems in centralized con-
trol is facing the decentralized challenge (non-convex infinite-dimensional optimization problems).
This challenge divided related control research in two major directions.

The first direction is finding those special cases under which a linear strategy s optimal —
or almost equivalently, finding cases where the problem is convex. Radner’s pioneering paper [80]
considered the case when the controllers act simultaneously and the dynamics of the system termi-
nates after one time step, as shown in the first box of Fig. 4.1. Signaling (implicit communication
between two controllers) is intuitively impossible by problem construction. Therefore, linear con-
trollers are optimal in this case in spite of the problem being decentralized. Witsenhausen found
another sufficient condition for linear optimality called the nested information pattern [109]. The
condition tells if all information is shared with one step time delay by explicit communication, there
is no need to implicitly communicate the information and linear strategies are optimal. Later, this
concept was generalized by Yuksel to stochastic nestedness [117].

More recently, Rotkowitz and Lall [84] proposed an algebraic condition for convexity of
the problem called “quadratic invariance.” The condition finds sparsity constraints on the controller
so that the problem remains convex even after Youla’s parametrization [114]. There is a lot of on-
going research in this direction [92, 60] that has refined our understanding and also revealed much
about the structure of optimal controllers in these special cases where linear controllers are optimal.
However, all of these quadratic-invariance structured problems also have no signaling incentive and
the information patterns are nested [83].1

On the other hand, the second direction studies general cases when linear strategies are
not optimal. Nayyar et al. discussed the structure of the optimal controllers in general decentralized
problems [72], and Wu et al. found the mathematical properties (like continuity of the optimal
strategy) of the optimal strategy for Witsenhausen’s counterexample [110]. However, these results
do not give quantifiable results, and to get such results we have to study the effect of implicit
communication [45, 108].

Most of quantifiable results focus on Witsenhausen’s counterexample. As we can see in
the second box of Fig. 4.1, in Witsenhausen’s counterexample the two controllers act in different
time slots and may try to communicate. Exploiting implicit communication between the controllers
makes nonlinear strategies outperform linear ones. Mitter and Sahai found that linear strategies can
be arbitrarily bad compared to nonlinear strategies [68]. Many researchers including [59, 7, 61, 48]
tried using computer-based exhaustive search to find the optimal strategy. Finally, Grover et al.
showed that signaling-based nonlinear strategies approximately achieve the optimal cost to within

a constant ratio [37]. This chapter continues this approach, and can be considered as a direct

IThere are a few special cases when a linear controller is optimal but cannot be explained in the context of signaling
incentives. Especially, in [10], Bansal and Basar found that when input cost and state disturbance measures match,
a linear controller is optimal. Likewise, in communication theory where the encoder and decoder can be thought of
as distributed controllers, it is well known that linear is optimal when the source and channel distributions and cost
measures match [34]. This intriguing link deserves further exploration in future work.
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descendent of [37]. In fact, there is a close relationship between Witsenhausen’s counterexample
and the scalar infinite-horizon LQG problem considered in this chapter. We will revisit this point
in Section 4.4, and see that the infinite-horizon LQG problem can be thought of as the interlocking
of a series of generalized Witsenhausen’s counterexamples.

Another not directly but conceptually related branch of the second direction is “Control
over Communication Channels” [97, 86, 119, 26, 69, 66], which tries to quantify explicit information
flow for control. They introduce an explicit communication link and measure the amount of infor-
mation flow required to control the system. One of their main results is that in scalar systems we
need at least the communication rate, (log of eigenvalue) bits, to stabilize the system [97]. Later,
this concept was extended to nonlinear filtering [64]. In this chapter, we will see the underlying
relationship to decentralized control problems.

On the other hand, communication theory (especially, wireless communication theory) has
developed a lot of quantifiable results for network communication problems. Since communication
problems are decentralized in nature, the exact characterization of the capacity has been open for
most communication networks involving many nodes. However, they still made progress by dividing
cases based on the SNR (Signal-to-Noise Ratio), bringing linear-algebraic ideas and concepts to
problems, and solving problems approximately. Especially, Avestimehr et al. considered relay
communication problems with arbitrarily large number of nodes, and successfully characterize the
capacity to within a constant gap that only scales with network size. At the heart of this progress,
there are the concepts of generalized degree of freedom (d.o.f.) and binary deterministic models. In
[6], Avestimehr et al. idealized bit levels as different antennas. By conceptualizing each bit level as
a different subspace, they could apply linear-algebraic concepts and ideas for much precise analysis.
By expanding the concept of d.o.f. (essentially, the rank of linear spaces) to different bit levels, they
could understand the capacity of wireless communication networks to within a constant gap.

The main contribution of this chapter is the parallelism between information flows in decen-
tralized LQG control and those in wireless communication theory. We will see that just as wireless
communication theory divides cases depending on the SNR, decentralized LQG problems can be
divided based on the eigenvalue of the systems. Moreover, we will find the relevant bottleneck in de-
centralized LQG problems using the idea of ‘geometric slicing’, which we believe is a proper analogy
to the information-theoretic cutset bound [21] in a dynamic-programming context.

The rest of the chapter is organized as follows: We formally state the problem and the
main results in Section 4.2. Section 4.3 gives the underlying intuitions behind the results. In
Section 4.4, 4.5, 4.6, 4.7, we will convert these intuitions into formal proofs, and introduce proof
ideas for that. Section 4.8 discusses the fundamental relationship between wireless communication

theory and decentralized LQG problems. Finally, Section 4.9 concludes the chapter.
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4.2 Problem Statement and Main Results

Throughout this chapter, we will discuss the scalar infinite-horizon decentralized LQG

problems with two controllers.

Problem A (scalar infinite-horizon decentralized LQG problems with two controllers).

z[n + 1] = ax[n] + byui[n] + baus[n] + w(n]

y1[n] = crz[n] + v1[n]

y2[n] = cax[n] + va[n]

Here, u1[n] and ua[n] must be causal functions of y1[n] and ya[n] respectively, i.e. ui[n] = f1,n(y1[0],

-, y1[n]) and ue[n] = fon(y2[0], - ,y2[n]). Following the traditional LQG problem formulation,
the objective is minimizing an average quadratic cost:
. 1 2 2 2
lim sup N Z qE[z?[n]] + mE[ui[n]] + roE[us[n]]. (4.1)
N—oco 0<n<N

Here, ¢ > 0, 1 > 0, ro > 0 and the underlying random variables are independent Gaussian,
i.e. z[0] ~ N(0,02), win] ~ N(0,02), vi[n] ~ N(0,02)) and va[n] ~ N(0,02,).

Figure 4.1 shows a pictorial description of the problem by introducing duplicated nodes
across different time-steps and thus unraveling the dynamics.? First, without loss of generality, we
put a series of assumptions on the problems.

Assumption (a): by = by = 1.

Assumption (b): ¢ = ¢y = 1.

Assumption (c): o2 = 1.

Assumption (d): 0,1 < 042.

Assumptions (a), (b) do not lose generality since we can rescale uy,us and yi,ys respec-
tively. Assumption (c) doesn’t lose generality since we can rescale the system equation by i
Assumption (d) doesn’t lose generality because it is simply a way of deciding which controller is 1,
and which is 2.

Therefore, throughout this chapter we will consider the following problem:
Problem B (Normalized decentralized LQG problem for Problem A).
z[n + 1] = az[n] + u1[n] + uz[n] + win) (4.2)
2[n] + vi[n]

<
=
I

x[n] + va[n]

<

5

=,
I

where x[0] ~ N(0,03), win] ~ N(0,1), v1[n] ~ N(0,02%,), va[n] ~ N(0,02,). The control objective

is minimizing the long-term average cost in (4.1).

2The idea of unraveling the system by introducing duplicated nodes across different time-steps was also used to
study network information flows [1]. As in [1], we will see the unraveling of the dynamics will be helpful to find the
information bottleneck of the system.
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Even though this problem is the simplest decentralized infinite-horizon LQG problem, as we
will see in Proposition 4.4, linear strategies are not optimal and the optimization problem becomes
infinite-dimensional and non-convex. Here, we follow the approximation approach of [37], which
itself inherits from [6] and the spirit of approximate algorithms in computer science theory. We
propose a set of finite-dimensional function spaces that are guaranteed to contain an approximately
optimal solution. Therefore, if we optimize only over the proposed finite-dimensional function spaces,
the solution achieves the optimal performance within a constant ratio regardless of the problem
parameters, a, q, 1, T2, 0g, Oy1, and o,3. In this chapter, we first consider the fast-dynamics case
when the single eigenvalue of the system is large (|a] > 2.5) and discuss the conceptual relationship
with high-SNR in wireless communication theory. The slow-dynamics case when the single eigenvalue
of the system is small (Ja| < 2.5) will be discussed in Chapter 5, and the relationship with low-SNR
in wireless communication theory will be also revealed.3

The first set of controllers is two naive memoryless linear strategies, which simply zero-force
the state.

Definition 4.1 (Linear Strategy Liinpb). Liinpb is the set of the following two controllers:
(i) ui[n] = —ay1[n], uzn] = 0.
(ii) ui[n] = 0, uzn] = —aya[n].

The second set is a two-parameter (s, d) nonlinear strategy set for implicit communication

between two controllers.

Definition 4.2 (s-Stage Signaling Strategy Lsgs). For a given s € N, Ly s is the set of all

controllers which can be written as the following form for some d > 0,

ui[n] = —aRq(y1[n]) (4.3)
uz[n] = —a(Qara(y2[n] — Raea( Y a'‘ugln —i])) + Rasal Y @ lugln—i))).  (4.4)

1<i<s 1<i<s
Here, Qu(y) :== x| L + 3| and Ry(y) :=y — Q. (y). These quantities represent the quantization level
and remainder when y is divided by x respectively, i.e. lety =q-x+7r forq€ Z andr € [-5,3).
Then, Q4(y) = q -z and Ry(y) = r. (We also put ui[n] =0 and ug[n] =0 forn <0.)

We will give the intuition behind this strategy in Section 4.3. Roughly speaking, in the
strategy set Lg;q s the first controller “implicitly communicates” its observation to the second con-
troller with delay s by making the state easier to estimate. This strategy is essentially a multi-stage
generalization of the lattice-quantization strategy [37] used for Witsenhausen’s counterexample. No-

tice that the strategy requires remembering the past s control inputs.

3Here, we did not optimize for the best ratio, and the explicit number 2.5 is arbitrary. We could have written
Theorem 4.1, 4.2 with any fixed number like |a| = 2,3,5,6, --- which may result in a different ratio. However, as |a|
increases, the ratio between linear and nonlinear strategy cost goes to infinity, and the gain by considering nonlinear
strategies becomes larger.
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Now, we can state the main theorem of this chapter, which tells us that when |a| > 2.5
optimizing over L, pp and Lgg s is enough to give a constant-ratio optimal strategy among all

possible strategies.

Theorem 4.1. Consider the decentralized LQG problem shown in Problem B. Let L' = Ly pp U
UseN Lgig,s and L be the set of all measurable causal strategies. There exists a constant ¢ < 1.5 x 105
such that for all |a| > 2.5, q, 1, r2, 00, Oy1 and o4z,

inf lim sup% > Elgz?[n] + riui[n] + rauin]]
u,u2€l’ N 500 U 0<n< N

<
inf limsupx > E[g2?[n] + riuf[n] + roud[n]] ~
u,u2€l Nsoo T 0<n< N

Proof. See Section 4.7. O

Since measurability is the minimal condition required to even have the problem make any
sense, infy, 4,er implies a minimization over all possible control strategies. Thus, in the rest of the
chapter, we will simply write it as infy,, y,-

For the proof, we give explicit and computable upper and lower bounds on the optimal
cost, and prove that they are within a constant ratio. In Lemma 4.15 of page 214, we will see that
the linear strategies Ly pp give the following upper bounds on the minimal average cost.

1
inf limsup— Z Elgz?[n] + riui[n] + rou3n]] < (o2, + 1) + ri(a*c?; + a®o2; + a?).
Yotz N—voo SV 020N

1
inf lim SUp 7 Z E[gz?[n] + rui[n] + roud[n]] < q(a?0?y + 1) + ro(a’ o2y + a?0?y + a?).

“ot2 Nooo IV 20N

In Lemma 4.7 of page 174, we will see that the signaling strategies L4, give the following upper

bounds.

1
inf limsup— Z Elgz®[n] + riui[n] 4+ rou3[n]]
U1,U2 N—o0 N
0<n<N
a2d2
< inf Dy(d,wy) + 1
" (d,w1)€Su1 e U’l( 1) !

7
+ r2(8a2DU,1(d, wy) + 5(12(5+1)d2 + 4a2032).

where the definitions of Dy 1(d, w1) and Sy,1 are available in Lemma 4.7 of page 174.
For the lower bounds, we will see four different bounds in Lemma 4.12 of page 198 and
Lemma 4.13 of page 208. Thus, the optimal cost of Problem B is lower bounded as follows.

1
inf limsup — Z qE[z*[n]] + rE[ui[n]] + roE[us[n]]
“rt2 N—oo 0<n<N

> max sup _inf  ¢Dpi(P1, Poy ki, ko, k, 0l 0, ) + 11 Py + 1P,
1sis4 (k1,k2,k,05,0,8)ESL i P1,P2>0

Here, the definitions of Dy ; and S ; are available in Lemma 4.12 of page 198. The remaining

definitions of Dy, ; and Sp; for 2 < i < 4 are shown in Lemma 4.13 of page 208.
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Finally, in Section 4.7 of page 212 we will compare these upper and lower bounds, and
prove that they are within a constant ratio.

To prove a similar result for the slow-dynamics case (Ja| < 2.5), we need a further set of
single-controller optimal strategies. These strategies are linear strategies which can be parametrized

by a single parameter k.

Definition 4.3. L, rai s the set of all controllers which can be written in either one of the two

following forms for some k € R

(i) ur[n] = —kE[z[n]ly}, uy™"], uz[n] = 0.
(ii) ur[n] = 0, us[n] = —kE[z[n]lys, uz ™).
Here, E[z[n]y?, v}~ '] and E[z[n]|y3,u '] can be easily computed by Kalman filtering

once k is fixed.*
The results of Chapter 5 will show that when |a| < 2.5, optimization over Ly, kq is enough

to give a constant-ratio optimal strategy among all possible strategies.

Theorem 4.2. There exists ¢ < 2-10° such that for all |a| < 2.5, q, 71, T2, 00, Ov1 and oy,

inf lim sup% S° E[ga?[n] + riui[n] + raui[n]]
U1, u2€L1in, kal N—o00 0<n<N

<ec.

inf limsupx Y. E[gz?[n] + riudn] + roudn]] -
U1,U2 N—oo 0<n<N

Proof. This will be shown in Theorem 5.1 of Chapter 5. O

By Theorem 4.1 and 4.2, we can achieve the optimal cost to within a factor of 2 - 105 by
optimizing only over Ly, ki and Lgg, s, which only involves single and two parameter optimization
problems respectively. We believe that the factor here is coming from our proof strategy and the
gap will be far smaller in practice.

The optimal parameters for the proposed strategy sets in Definition 4.1, 4.2, 4.3 are
not difficult to find. The optimization over L, ra is a centralized LQG problem and it is well
known that the optimal k can be easily found by Riccati equations [55]. In Proposition 4.7 of

page 215 and Proposition 4.8 of page 216, we will see that the parameter s in Ly, can be selected

Ino2,—1 1,a%02
noy, H(ZHLT;( ,a fm))], so that

based on the problem parameters. Particularly, we can use s = |
a?=Y max(1,a%02,) < 02y < a®* max(1,a%c?2,). Moreover, Corollary 4.3 of page 216 gives a simple
analytic upper bound on the performance of L, s, which has only two local optima as d varies.
Therefore, both optimization problems are easily solvable.

However, the true implication of Theorem 4.1 and 4.2 is that they reveal the essential

skeletons of an optimal strategy. Since the original optimization problems are infinite-dimensional

4Since u?_l is known to the controller, we can compensate for the past control inputs and treat it as an open-loop
system. The estimation problem in the open-loop system is well-known Kalman filtering. This concept is called the
control-estimation separation principle in the control community.
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and non-convex, it is not even clear how and where to start a computer-based search. By revealing
the minimal strategy for approximately optimal performance, these results might give an initial
point to start optimization for further performance refinements. More importantly, as we will see in

later sections, the proposed strategy sets are intuitively interpretable and understandable.

4.3 Intuition: Deterministic Model Interpretation

Time 1 Time 2 Time 3 Time 4
Input Power
level for b
Controllgrl x{ .’L‘% O [L‘? x? 0
(also, Noise 0 0
level for ! 9 0 0 3 0 0
Contrclleer) Lz, O .’L'% il O xfi] /z 2 0 m‘i]
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Figure 4.2: Deterministic Model Interpretation of Nonlinear Control Strategies L;q 1
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Figure 4.3: Deterministic Model Interpretation of Linear Control Strategies Lj;,,

After reading the problem statement and the main result, readers may wonder
(1) Why are linear strategies not enough to achieve a constant ratio from the optimal?
(2) Why is the proposed set of nonlinear strategies enough to achieve a constant ratio from the

optimal cost?
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In this section, we will give an intuitive answer for these questions based on a linear
deterministic model in the spirit of Avestimehr, Diggavi and Tse [6], which has already proved to
be useful in understanding some control problems [37, 81].

The point of these linear deterministic models is to simplify and idealize real arithmetic,
and allow us to take a linear view of nonlinearity. The idea is to consider real numbers in binary
expansion and then to simplify arithmetic by eliminating carries. For example, if we have a number
5 we write it as 101 in binary expansion, and likewise we write % as 0.01. If we have a random
variable X which is uniform on [0,4), we can write it as b1bg.b_1b_o -+ - in binary expansion where
b; are i.i.d. Bernoulli($) random variables on {0,1}.

Since uniform random variables are so simple, we idealize Gaussian random variables as
uniform random variables. For a given Gaussian random variable with zero mean and variance o2,
we caricature it as a uniform random variable on [0,0) and use the same deterministic model for
the uniform random variable. For example, a Gaussian random variable N'(0,4?) is caricatured as
b1bo.b_1b_o---.

Then, we simplify the arithmetic on binary representations. Addition and subtraction are
approximated by bitwise XOR — thereby ignoring the carry effect. For B’ = bbj.b" b 5+ and
B" = b/bf.b" b -+, both B+ B” and B’ — B” are approximated by (b] @ b7)(by @ b().(b"_1 &
b )V 5@ b”,) - . Since we are modeling addition and subtraction in the same way, we ignore the
sign of the numbers and consider x and —x to be the same in deterministic models and so we will
assume every number is positive from now on.

Multiplication is approximated by a bit shift. For example, B’ x 4 and B’/4 are equal to
bibGb_ b0 5+ and 0.b4b4b_; - - - respectively. If we restrict multipliers and dividers to be 2",
this agrees with conventional multiplication and division.

For further discussion, it will be helpful to define the (binary) index and level for binary
expansions. For a given binary expansion B = ---b1bg.b_1b_o, the index ¢ bit of B indicates b;. It
is natural to call the bits b;, bjt1,b;42,--- as the bits above level i, and the bits b;_1,b;_2,b;_3,- -
as the bits below level i. To clarify this point, we define the level i as the imaginary line between
two sequential bits b; and b;_;. Thus, the decimal point corresponds to the level 0.

We also denote the upper-level of B as the minimum level [ such that all bits above the
level [ are 0, i.e. b; = 0 for all 7 > [. For example, the upper level of 3 is 2 and the upper level of 4 is
3. When B is a random variable, we denote the upper level | of B as the worst case bound, i.e. the
minimum [ such that b; = 0 for all ¢ > [ with probability 1. Therefore, the upper level of a uniform
random variable on [0,4) is 2 since 4 is not included in the interval.

Now, we can come up with the corresponding binary deterministic counterparts for the
LQG problems of Problem B. To simplify the discussion, we will assume the first controller has
perfect observations, and the second controller has no input cost. Like [37], we will consider the
state minimization problem for given control power constraints, instead of the weighted long-term

cost minimization problem.
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Problem C (Binary Deterministic Model for Problem B). Let a/,0),,p] € Z be the problem pa-
rameters. For time index n > 0 and binary index i, the deterministic system dynamics is given as

follows:
n+l _ _n n n n
T, =2 Duy; Dug; Dw;

n o __.n
Y1, = %4

)

n _ .n n
Yo = Ty Dy

)

Here, 29 = 0 for all i. For all n, w® are 0 for all i > 0 and i.i.d. Bernoulli % on {0,1} for all
i < 0. For all n, v} are 0 for all i > o,y and i.i.d. Bernoulli + on {0,1} for alli < ol,. The v} are
independent from the w;'. uf; and uy, are causal functions of yi'; and yy,; respectively. The first
controller has a “power” limit, uf ; = 0 for alln >0 and i > .

The goal of control is to minimize the upper-level d on the worst state distortion, i.e.

minimizing d such that ' =0 for all i > d and n > 0 with probability 1.

n

We can notice that z}', uf;, ui,, wf, v} correspond to wz[n], ui[n], uz[n], wn|, vin] of

v
Problem B respectively. Therefore, we will use the latter terms for a compact representation of the
bits in Problem C. Moreover, since the parameters of Problem C are given in the binary levels of

amplitude, they have the following relationship with those of Problem B: a = 2%, 02, = 22042,

E[u2[n]] < 22Pi. Through the rest of discussion, we will focus on the case, a’ = 2,0, = %,p’l =
%,. Therefore, the corresponding parameters in LQG Problem B are a = 22, 02 = 1, 02, = 22,

E[u?[n]] < 22.
Based on this deterministic model, we will answer the first question, ‘why the proposed
strategy is approximately optimal’. First, we can easily derive the following lower bound on the

state disturbance.

Proposition 4.1. When a' = 2,0, = %l,p'l = %/ in Problem C, the minimum upper-level d on the

state distortion level has to be at least 2.

Proof. We can easily see that for n > 1, the distortion level of x[n] is at least 0 since w[n — 1] with
upper-level 0 is added at each time step. At time n + 1, this distortion will be shifted up by two
bits, and the upper-level of the distortion becomes 2. However, the first controller cannot touch the
bits above the level 1 and so the first controller cannot reduce the distortion level. Moreover, at
the second controller, any bits below level 1 are corrupted by i.i.d. Bernoulli(1) observation noise.
Therefore, the second controller’s observation is independent from the unknown bits sitting below
the level 1. Consequently, there is no action it can take to draw that bit to 0.

Neither controller can reduce the distortion bit sitting between the level 1 and 2, so with
a positive probability % this bit can be non-zero. Therefore, the upper-level of x[n + 1] has to be at
least 2, i.e. d > 2. O

In fact, the following proposition shows this lower bound is actually achievable.
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Proposition 4.2. Consider Problem C with o’ = 2,0,, = %/,p’l = % Given the first con-
troller’s observation yi[n] = ---y? 197 0.7 _1--- and the second controller’s observation yz[n] =
C Y3 Yso-Ys 1, let the first and second controller’s control input be

up[n] = yf—z-yf—syﬁ—4 T

U2 [n] = '93,293,10000 T
Then, this strategy can achieve the optimal upper-level on the state distortion, d = 2.

Proof. Since we already know the minimal d > 2 from Proposition 4.1, it is enough to show that
the proposed strategy can achieve d = 2.

Figure 4.2 shows the resulting dynamics when we actually use this strategy. Since the initial
state 2[0] = 0, at time 1 both controllers’ inputs are also 0 and w[0] is only term that contributes to
x[1]. Thus, x[1] can be represented by 0.z 21,21, .- in the deterministic model where each bit
is i.i.d. Bernoulli £ in {0,1}.

At time 2, z[1] is shifted two-bits up to generate 1 ;2! ,.21,---. Since the first controller’s
observation y;[1] is equal to x1[n], its control input is #l,.2l5---. After being corrupted by the
noise vz [1], the second controller’s observation ys[1] becomes (vg).(z1; vl )(al, ®vl,) -+ which
is independent from the state, and as a result ug[l] = 0. When all of these are added, the second
bit of the state canceled by the first controller’s input. As we can see in Figure 4.2 the state z[2]
results in #70.2% 2%, - -+ where each bit is i.i.d. Bernoulli 1 except for the 0 in the Oth position.

At time 3, the first controller does essentially the same operation as time 2, canceling
the lower bits below the level 1. However, the second controller’s observation has larger level than
before, y2[2] = (2%)(vd).(x%, & v2,)---. Thus, uz[2] becomes 27000.0---. When we are adding
these values, the first bit of the state is canceled by the second controller’s input and the third bit
of the state is canceled by the first controller’s input. As Figure 4.2 shows, the resulting state x[3]
is 230.23 ;23 , - - - |, which is essentially the same as z[2].

Therefore, we arrive in steady state and repeating the control strategy always gives the

state with the same upper-level 2. This finishes the proof. O

So, we have an optimal scheme for the deterministic model. Let’s apply the insights that we
learnt from the deterministic model to the original LQG problem. The first controller’s strategy of
Proposition 4.2 can be understood as a sequence of two operations. The first operation is extracting
the lower bits of y; [n] and thus generating 0.0y;, —2y1,—3 - - - . To mimic this, we can simply divide y; [2]
by 0.1 (in binary) and take the remainder. Using Definition 4.2, this can be written as Rq(y1[2]) with
d = 0.1. The second operation is shifting the bits up to generate wu;[2], which is just multiplication
by a constant (—a to be exact). Therefore, u1[2] = —aRq(y1[2])-

The second controller’s strategy of Proposition 4.2 can be understood as a sequence of
two operations. The first operation is extracting the higher bits of y3[2] and thus generating

Yo.m - Y2,10.0---. For this, we can divide y2[2] by 10 (in binary) and take the quotient (exactly
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speaking, quotient multiplied by divisor). Using Definition 4.2, this can be written as Qg (y2[2])
with d = ad = 10. The second operation is shifting two bits up as before, which is multiplication.
Therefore, us[2] = —aQq (y2[2]).

Compared to (4.3) and (4.4), this strategy is essentially equivalent to 1-stage signaling
strategy except for some minor terms in ug[n]. Therefore, in nonlinear strategies Lg;q 5, u1[n| tries
to cancel the lower bits in ax[n] by exploiting its better observation and wus[n] tries to cancel higher
bits in az[n] exploiting its less expensive input cost.

Now, we understand why the proposed strategy might be approximately optimal. We can
move on to the next question, ‘why linear is not enough for constant-ratio optimality’. Let’s first
remind ourselves of the counterparts to linear operations in these binary models. Addition and
subtraction correspond to bitwise XOR. Multiplication and division by a constant correspond to
shifting bits up and down. Let’s revisit Problem C with these restrictions on the strategy, and
understand why we cannot achieve the optimal performance with linear strategies.

’

Proposition 4.3. Consider Problem C with o' = 2,0,, = %/,p'l = %. Let’s restrict the controller

strategies to the following forms: For some k; ;, k;] €Z and for alli € Z andn € 27,

0 1
Ui = Ylitkon DYlithyn © O YL it
0 1
Ui = Yok DYk, O O Yy,
Under this constraint on control strategy, the minimal upper-level d on the state distortion is 3.

Intuitively this proposition is obvious. As we saw in Proposition 4.1, the first controller has
input power is strictly less than the distortion level 2. When we restrict the strategy to be linear,
the first controller cannot cancel any bits in the state. Therefore, the second controller is the only
controller that can control the state. The second controller can only see the bits above level 1, and
after one time step, the distortion level will become 3. Let’s clarify this point more carefully.

Time 1 is the same as the proof of Proposition 4.2. However, at time 2 the first controller
cannot cancel the lower bits any more. The only allowed operations are shifting the bits in each
observation and taking XOR between them. As we can see in Figure 4.3, within the power con-
straint the first controller cannot but shift at least one-level down the bits in y;[1], and may choose
up[l] = 2t .2t ozl 5. As we discussed in Proposition 4.2, the second controller’s observation is
independent from the state and the optimal us[1] is 0. Therefore, as we can see in Figure 4.3 no bits
cancel with each other, and z[2] = 2323.2% | - -- where each bits are i.i.d. Bernoulli %

At time 3, due to the same reason, the best feasible input for the first controller is u1[2] =
222822 .-+ and cannot cancel any bits in the state. Meanwhile, the second controller’s observation
with additive noise is y2[2] = 2% (23 ® v3).(z2, ® v2,)---. Therefore, to cancel the first bits of
the state, the second controller shifts two-bits up in y2[2] and chooses uz[2] = 2% (23 ® v) (2%, ®

v2)) (22, ®v2,). (225 ®v23)---. When these are added, the first bit of the state cancels and the

resulting state z[3] has three bits above the decimal point as we can see in Figure 4.3.
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By repeating this procedure, we can see that after the transient states of time steps 1, 2, 3,
the plant and controllers stay in steady state. From Figure 4.3, in steady state, x[n] has three
bits above the decimal point. Therefore, compared to the optimal performance without the linear
controller constraint, we can see one-bit-level performance degradation. This degradation comes
from the inefficient use of the first controller input. In other words, the first controller cancels the
lower bits of the state in the optimal strategy while it cannot cancel any bits in linear strategies.

Let’s consider the Gaussian counterpart of the previous results. As we discussed earlier,
the corresponding parameters in the original LQG problem is 02, = 0, 02, = O(a), E[u?[n]] <
O(a), E[u3[n]] < co. We will consider the minimum state distortion as a goes to infinity. From
Proposition 4.2, we can expect that the optimal state distortion is E[z?[n]] < O(a?) with these
parameters.> From Proposition 4.3, we can expect that the state distortion is E[z?[n]] > Q(a?)
when we restrict control strategies to be linear. Here, we can see the ratio between the optimal cost
and the linear strategy cost goes to infinity as a grows.

Even if the discussion so far focused on minimizing the state distortion under power con-
straints, the result can be easily converted to the weighted long-term cost. Let’s choose the param-
eters of Problem Bas¢g=1,7 =a, 73 =0, 09 =0, 02, =0, and 02, = a, i.e.

inf lim Supl Z E[z%[n] + au?[n]]
uitz Noyoo Vo Sy
If E[z%[n]] < O(a?) when E[u?[n]] < ©(a) as we predicted, the optimal weighted cost has to be
O(a?). However, if we restrict the control strategies to be linear, E[z?[n]] will be Q(a®) with the
same power constraint according to our conjecture. Therefore, we need at least E[u}[n]] > ©(a?) to
make E[z%[n]] < O(a?). In either case®, the weighted cost is Q(a?).
Formally, the following proposition formalizes this insight and proves the ratio between the

optimal cost and linear strategy cost actually diverges in Gaussian problems.

Proposition 4.4. Let Lj,, be the set of all linear time-varying controllers which can be written in

the following form:
uy [Tl} = Z kn,iyl [Z]a

i<n

upln] =) K}, y2lil.

i<n

SExactly speaking, the optimal state distortion is E[z2[n]] < O(a®loga) with input power constraint E[u?[n]] >
O(aloga). The is due to the fact that unlike uniform random variables Gaussian random variables can be arbitrarily
large with exponentially decreasing probability. Later, this effect will be captured by large deviation ideas, and turns
out to be crucial to get constant-ratio optimality. We will discuss more about this issue in Section 4.3.1.

60ne may wonder why we do not consider the cases between E[u?[n]] = ©(a) and E[u?[n]] = ©(a?), for example

3
E[u?[n]] = ©(a?). The reason comes from the limitation of these bit-wise deterministic models, precision. For a = 4,
we will write u1[n] as uf.u™ u",--- in binary when E[u?[n]] = a, and as uJuf.u™, --- when E[u}[n]] = a®. When
3
E[u?[n]] = a2, we have to choose either one of these two. We choose the former in this chapter, so we cannot resolve

the difference between E[u?[n]] = a and E[u?[n]] = a.
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Consider Problem B with parameters ¢ =1, 11 = a, 1o =0, 02 =0, 02, =0, and 02, = a. Then,

we have
inf  lim sup% > Elgz?[n] + riuin]]
u1,u2€L};,, N—oo ~ 0<n<N
. . 1 2 o0
inf  limsupy > Elga?[n] 4+ riuin]]
u17U2eLsig,1 N—o00 0<n<N
as a — oo.
Proof. See Appendix 9.6. =

From the discussion above, we can see that the first controller with better observations is
“signaling” to the second controller (with worse observations) through the control actions. However,
the notion of communication here is different from the conventional one. In conventional commu-
nication problems, the transmitter has access to a source (but cannot change it) and reduces the
uncertainty about the source at the destination by explicitly sending information about the source.

However, in control systems the source is the state, and the “transmitter” (which is a
controller) can change the source itself by control action. Therefore, it can reduce the uncertainty of
the source and make the source easier to estimate at the destination. Then, the destination will have
a better idea about the source even without receiving any explicit information. This generalized
notion of communication is the one happening between the first and the second controller.

Moreover, we can also see the delay of the communication is crucial in control problems,
while this is usually ignored in traditional information theory. In Figure 4.2, the second controller
has to wait until the disturbance is amplified above its observation noise level, which causes a 1-step
delay between two controllers. However, as we increase the observation noise level of the second
controller, the second controller has to wait longer until the disturbance is amplified enough and
this will result in a longer “delay” between the two controller’s actions.

In Section 4.5, we will explore this point by relating the infinite-horizon LQG problem to
control problems with different time horizons. As we saw in Figure 4.1, Radner’s problem [80] and
Witsenhasuen’s counterexample [108] are sub-blocks of the infinite-horizon LQG problem. We will
see later in Section 4.5 that the scheme discussed here is a 1-step-delay implicit communication
scheme which essentially (approximately) solves Witsenhausen’s counterexample. In general, we
may need up to an s-step-delay implicit communication to solve s-stage MIMO Witsenhausen’s

counterexamples.

4.3.1 Caveat: Deterministic Model does not work for Radner’s Problem

Even though we explained the result based on the binary deterministic model, it is just a
simplified model for intuition and we should not naively believe that the same results always hold
in Gaussian models as well. In fact, we will show that in Radner’s problem [80] the deterministic

model fails to correctly predict the behavior of Gaussian problems.
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Figure 4.4: (a) Radner’s Problem and (b) the corresponding binary deterministic model. Here,

the binary deterministic model can fail to correctly predict the optimal strategy and the optimal

performance.
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Figure 4.5: (a) Witsenhausen’s Counterexample and (b) the corresponding binary deterministic

model . Here, the binary deterministic model does approximately predict the optimal strategy and

the optimal performance.



156

In [80], Radner considered the following problem of Figure 4.4a: x[0], v1[0], v2[0] are
independent Gaussian random variables with zero mean and variance o3, 02;, 02, respectively.
Let 1[0] := x[0] + v1[0], %2[0] = 2[0] + v2[0], wa[0] = f1(y1[0]), u2[0] := f2(y2[0]) and x[1] :=
2[0] 4+ u1[0] + u2[0]. The control objective is minimizing E[gz[1]? + riui[0]? + rouz[0]?]. And he
proved that a linear controller is optimal.

Later, Witsenhausen found that if we shift the second controller by one time-step, the
problem is fundamentally different and the optimal controller is not linear [108]. Figure 4.5a shows
the counterexample: z[0], v1[0], y1[0], u1[0] are the same as Radner’s problem. However, z[1] :=
2[0]4u1[0], the second controller observes yo[1] := x[1]4wv2[1] where v3[1] is Gaussian with zero mean
and variance o2,, and us[l] := fa(y2[1]), z[2] = x[1] + uz[1]. The control objective is minimizing
E[qz[2]? + r1u1[0]? + rouz([1]?].

At a high level, this difference can be understood in terms of implicit communication.
Radner’s problem is a single-stage problem. Even if one controller sends some information, it is
impossible for the other controller to receive the information at the next time step. Therefore,
implicit communication between the controllers is impossible, and it is widely believed that if this is
the case, then linear is optimal [109, 117, 92, 60, 83]. However, Witsenhausen’s counterexample is a
two-stage problem. If the first controller sends some information, the second controller can receive
this information at the next time step. Therefore, implicit communication is possible, and nonlinear
strategies which are good at this implicit communication can outperform linear strategies.

Let’s revisit these problems using the binary deterministic models. Like in Section 4.3,
we will give a perfect observation to the first controller and allow unbounded input power for the
second controller. The goal of control is minimizing the state disturbance for a given input power
constraint.

Binary deterministic model counterparts of Radner’s problem and Witsenhausen’s coun-

terexample, shown in Figure 4.4b and 4.5b respectively, are formulated as follows.

Problem D (Binary Deterministic Model for Radner’s Problem). For binary level index i, the

deterministic system dynamics is given as follows:

1,050 0
Ty = Duy; O gy,

0 _ .0
Y10 = Xy,
0 _ ..0.4.0
Yo = T; DUy

s

Here, 29 are 0 for all i > 2 and Bernoulli % on {0,1} for all i < 2. v are O for all i > 1 and
Bernoulli % on {0,1} for alli < 1. “(1),z‘ and ug’i are functions of y?)i and yg)i respectively. The first
controller has a power limit, u ; = 0 for all i > 1.

The goal of the control is to minimize the final state distortion level d, i.e. minimizing d

such that mzl =0 for all i > d.
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. : 0 1 0 20 .0 .0 .0
Here, we can easily notice that x7,x;,u7 ;,us ;.97 ;, 95, v; correspond to z[0], z[1], u[0],

u2[0], y1[0], y2[0], v2[0] in the original Radner’s problem.

Problem E (Binary Deterministic Model for Witsenhausen’s Counterexample [37]). For binary

level index i, the deterministic system dynamics is given as follows:

ol =l
v} =] Sy,
y?,i = x?

Yo, = B}

Here, 29 are 0 for all i > 2 and Bernoulli % on {0,1} for all i < 2. v} are O for alli > 1 and
Bernoulli % on {0,1} for alli < 1. u(l)’i and u%’i are functions of y?,i and y%,i respectively. The first
controller has a power limit, uf ; = 0 for all i > 1.

The goal of the control is to minimize the final state distortion level d, i.e. minimizing d

such that x% =0 for all i > d.

Here, we can easily notice that «, 7, 27, u ;, uj ;, y{ ;, 3.4, v} correspond to z[0], z[1], z[2],
u1[0], u2[1], y1[0], y=[1], v2[1] in the original Witsenhausen’s problem.

As we can see in Figure 4.4b and Figure 4.5b, essentially the same scheme that we discussed
in Section 4.3 can be used in both deterministic problems to give the optimal cost. The first controller

cancels the lower bits xoy and the second controller cancels the higher bits z1g at the next time step.

Proposition 4.5. At time n, let the first controller’s observation be yi[n] = YTy o YT o1
in binary expansion. Likewise, the second controller’s observation is ya[n] = YR Ys0Ys 1
in binary expansion. Then, the following control strategy achieves d = —oo (i.e. the final state is

identically zero.) in both Problem D and E and is optimal in both problems.

uy[n] = Z/ioyf—l T

U2 [n] = -y§2y§710.00 T

Proof. Immediately follows from Figure 4.4b and Figure 4.5b. O

As we discussed in Section 4.3 the corresponding strategy in the reals is a nonlinear strategy.
However, linear is optimal in Radner’s problem. How can this be? Clearly, the real nonlinear
strategy is not even approximately achieving the cost that the binary deterministic model promises.
The binary deterministic model fails to predict the optimal control strategy and the optimal cost
of the real Gaussian Radner’s problem. The reason for this is the binary deterministic model ignores

the carry-over in addition and subtraction which is actually happening in real Gaussian problems.
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In fact, we can see the difference between y3[0] of Figure 4.4b and y»[1] of Figure 4.5b. The second
bit of y2[0] of Figure 4.4b is x99 @ v19 which causes carry-over in the reals, while the second bit of
y2[1] of Figure 4.5b is vy1q is just v1g. Therefore, the bitwise separation ignoring the carry-over results
in an overly optimistic conclusion in binary deterministic models. A linear view of nonlinearity is
too simplified in this case.

In fact, even in Witsenhausen’s counterexample there is a small gap between the predicted
cost and actual LQG cost, even though the deterministic model correctly predicts the approximately
optimal strategy. As we can see in Proposition 4.5, in the deterministic model the final state is 0
as long as the first controller’s input power is greater than the second controller’s noise level. In
the corresponding LQG problem, the final cost turns out to be only an exponentially decreasing
function of the first controller’s input power. However, the underlying reason for this gap is different
from that in Radner’s problem. This gap in Witsenhausen’s counterexample comes from the tail of
Gaussian random variables and the finite-dimensionality of the problem.” While all disturbances are
bounded with probability 1 in deterministic models, in LQG problems Gaussian random variables
can be arbitrary large with an exponentially decreasing probability. This results in a logarithmic
gap between the costs in Witsenhausen’s counterexample. However, unlike in Radner’s problem this
gap is only logarithmic and the insights that we gain from the deterministic models are still useful
in the original LQG problems.

Therefore, we can rightfully say that deterministic models predict the essential behavior of
Witsenhausen’s counterexample, while failing for Radner’s problem.

To clarify this point, we propose another simple deterministic model, the ring model, that
takes into account of the carry-over effect. As shown in Figure 4.6a, there are 9 possible states, each
time 1 is added the state rotates one step in counter clockwise, and each time 1 is subtracted the
state rotates one step in clockwise. The distance between two states are measured by a minimum
number of +1 or —1 that we have to add to move from one state to the other state. The norm of a
state is defined as the distance from 0 to the state.

Let’s apply this ring model to Witsenhausen’s counterexample. We will consider the cor-
responding situation of the binary deterministic model in Figure 4.4b. z[0] is uniformly random
between all possible 9 states. At the fist controller, y1[0] = z[0] but u1[0] € {—1,0,1}. At the second
controller, y2[1] is either z[1] 4+ 1 or #[1] or x[1] — 1 with probability 1 and ux[1] can take arbitrary
value. The goal of the control is minimizing the norm of the final state x[2].

Figure 4.6b and 4.6¢ shows the optimal strategy for the first and second controller re-
spectively, which is canceling lower and higher bits of uncertainty. As shown in Figure 4.6d, after

the first controller’s control z[1] has only three possible states, 0,3,6. Even after corruption by

"In infinite-dimensional problems, the laws of large numbers guarantee that Gaussian random variables behave
typically and the probability that they can be arbitrary large asymptotically goes to zero. Therefore, we can drive
the final cost to 0 with bounded first controller’s input power, and the cost predicted by the deterministic model is
actually achievable. To capture the finite-dimentionality of the problem, we have to use large deviation ideas. We
refer to [38, 18] for further details.
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Figure 4.6: (a) Ring Model with 9 states. (b) A strategy for the first controller in ring model. (c)
A strategy for the second controller in ring model. (d) Resulting state evolution for Witsenhausen’s

counterexample. (e) Resulting state evolution for Radner’s problem.

the observation noise, yo[1] still has enough information to decode z[1]. Therefore, by the second
controller’s strategy in Figure 4.6¢, the final state x[2] can be forced to 0.

Then, let’s apply the same strategy to Radner’s problem. As we can see in Figure 4.6e,
x[0] is not quantized and the second controller cannot decode the initial state from its observation
y2[0]. The same strategy of Figure 4.6b and 4.6¢ gives a different result from Witsenhausen’s
counterexample. The final state 2[0] is 0 with probability 57 3 with probability é, and 6 with
probability %. Thus, the average squared norm of z[2] is 2. Let’s consider a different strategy,
u1[0] = 0 and u2[0] = —y2[0], which corresponds to a linear strategy in the Gaussian reals. Then,
we can easily check that the final state z[1] is equiprobably 1 or 0 or —1 and the average squared

2

norm is 5. Therefore, this linear strategy performs better than the nonlinear strategy that works

for Witsenhausen’s counterexample.

4.4 Proofs and Proof Ideas: High-Level Outline

The formal proof of the main result is separated into three parts. We will give upper and
lower bounds on the optimal cost, and then compare them to show that they are within a constant
ratio.

Figure 4.7 shows the proof idea flow for the upper bound® on the optimal cost. This is
done by analyzing specific control strategies. First, it is easy to analyze linear strategies by simply
tracking mean and variance. For nonlinear strategies, it can be tricky since mean and variance

do not characterize non-Gaussian random variables. Therefore, in Section 4.5.2, we will introduce

8This corresponds to achievability arguments in information theory.
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Figure 4.7: Flow diagram of the ideas for the upper bound on the control performance

a mini theory to analyze quantization-based strategies, which we call (d,w, 0)-approximate-comb-
lattice theory. Section 4.5.3 will actually analyze the nonlinear strategy performance based on this
theory.

To show that we cannot do much better, we also have to find a lower bound® on the cost.
Figure 4.8 shows the flow of ideas in the proof for the lower bound. The key idea is identifying
the informational bottleneck of a problem and figuring out the information relaying between the
controllers. In information theory, to figure out the informational bottleneck of the system, we
partition the nodes and apply cutset bounds [6, 21]. However, here rather than simply partitioning
the nodes, we expand the system in time and must divide the infinite-horizon problem into finite-
horizon ones. The geometric slicing idea (Figure 4.15) is introduced for this.

Now, we have a finite-horizon problem. However, unlike infinite-horizon problems where
the effect of transients can be amortized over infinitely many stationary states, the transient states
are the essence of a finite-horizon problem and therefore the problem is non-stationary. To handle
this issue, we divide the resulting finite-horizon problem into three sub time-intervals — childhood,
youth and old age, so to speak. Figure 4.16 (or Figure 4.23) shows the division of time intervals.
In “childhood”, we do not have enough information about the state, so we will call this interval
information-limited. In “old age”, we do not have enough power to control the state too well, so
we will call this interval power-limited. Between these two —in “youth”— something interesting

is happening and we will call this interval a MIMO Witsenhaussen’s (or Radner’s for Figure 4.23)

9This corresponds to converse arguments in information theory.
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Figure 4.8: Flow diagram of the ideas for the lower bound on the control performance
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interval.

In this interesting interval, the first controller is power-limited and the second controller
is information-limited, which is essentially the same issue as in Witsenhausen’s counterexample.
In fact, we will relate this interval to an s-stage MIMO Witsenhausen’s counterexample where a
new disturbance is added at each time step. Then, the question becomes what are the critical
disturbances among these? We will see that only first and second disturbances matter, and we can
relax to simpler problems which are s-stage and (s — 1)-stage MIMO Witsenhausen’s with only one
disturbance. However, still these problems are difficult due to the dual role of controller actions.
The controller actions can be used to control the states, but at the same time they can be used
to communicate some information to the other controller. This control-communication dual role of
controller actions makes the problem hard.

To tackle this issue, we remove the control role from the first controller, and thereby the
first controller will behave like a transmitter in communication problems. On the other hand, we
remove the communication role from the second controller by allowing free feedback, and thereby the
second controller will behave like a receiver in communication problems. In this way, we can reduce
the problem to MIMO state-amplification with feedback, which generalizes the problem shown in
[50]. However, the resulting problem is finite dimensional, and information-theoretic results for
infinite-dimensional problems can possibly give loose bounds [37]. In fact, we have to adapt large
deviation ideas to the s-stage MIMO state-amplification problem for this reason.'® Now, we can
apply simple information-theoretic cutset bounds to the final communication problems and derive
lower bounds.

Before we discuss the proof details, we first convert the weighted long-term average cost
optimization problem to an optimization problem with average power constraints as we did in
Section 4.3. The original control objective is minimizing the weighted cost of the state disturbance
and the controller input powers. However, it will be useful to consider minimizing the state given

an average bound on the input powers. Formally, the problem is written as follows.

Problem F (Decentralized LQG problem with average power constraints). Consider the same
dynamics as Problem B. But, now the control objective is minimizing the state disturbance D(Py, Py)

for given input power constraints Py, Py € RT. We will say the power-disturbance tradeoff, D(P1, Ps)

10This is the same issue and idea that we discussed in Section 4.3.1 for Witsenhausen’s counterexample and the
issue addressed in [37]
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is achievable if and only if there exist causal control strategies uy[n], uz[n] such that

hmsu—g E[z*[n]] < D(Py, P
N~>oop ! 2)
1N
lim su E[u2[n]] < Py,
o 3Bl < 7
1N
lim su E[u2[n]] < P.
o 3 Bl < P

Lemma 4.14 will relate the weighted-cost problem, Problem B, and the power-constraints
problem, Problem F, telling us that if we can approximately solve the latter we can also approxi-
mately solve the former. To characterize D(P;, P») approximately, we will come up with lower and
upper bounds on D(Py, P,). Since we are only aiming for an approximate solution, in the discussion
for intuitions and interpretations we will focus on the scaling and ignore the constants.

The following Cauchy-Schwarz style inequalities will be helpful to get bounds.

Lemma 4.1. For arbitrarily correlated random variables X1, -+ , X,, the following inequality holds:
(VEX?) — \EXZ) - — VEIXZ)? <E[(X: +- -+ Xo)?) < (VEIXZ + -+ VEIXZ])

n(E[X7] +--- + E[X7])

Proof.
E[(X1 4+ X5)?]
=E[XZ) + - +E[X2] + 2E[X 1 Xo] + - - - + 2E[X,, 1 X]
<E[XT]+ -+ E[X7] + 24 /E[XP]E[X?] + - - + 24/ E[XF]E[X2]
= (VEX?] + - + VE[X2])?
n(E[XT] + - + E[X7)
where all inequalities follow from Cauchy-Schwarz.
E[(X1 + -+ Xn)?
=E[X?] 4+ 2E[X1 (X2 + -+ + X)) + E[(Xa + - + X0)?]

> BX2) — 2 /EXZE[(Xz + - + X)2] + B[(Xz + - + X,)?

= (\/E[X?] = VE[(Xo +--- + X,,)2])?
> (\/EIX2] - \/E[x3] - - VEXZ)?

where all inequalities follow from Cauchy-Schwarz. O
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Figure 4.9: Approximately optimal strategies for given P; and o2, when 02, = 0 and P, = oo.
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Figure 4.11: The minimum state disturbance D(P;, P,) when 0%, = 0, 0,2 = a and P, = o0 as a
function of P;. The red line indicates the cost achievable by the 1-stage signaling strategy. The
blue line indicates the cost achievable by linear strategies. As we can see this performance plot

corresponds to that of the red line in Figure 4.9.
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Figure 4.12: The optimal weighted average cost for 02, =0, 62, = a, ¢ =1, r; = a', 7, = 0. The red
line indicates the optimal cost among all possible strategies. The blue line indicates the optimal cost
among only linear strategies. The green line indicates the cost of the centralized controller which
has both observations and can control both inputs. As [ varies, the optimal strategy traverses the

red line of Figure 4.9.
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4.5 Proofs and Proof Ideas: Upper bound on the optimal

cost

To come up with an upper bound on D(P;, P5), we should propose appropriate achievable
control strategies for approximate optimality and analyze their performances.

As we discussed in Section 4.3.1, a 1-stage signaling strategy (Lsig,1) for the infinite-horizon
problem (shown in Figure 4.2) and the nonlinear strategy for Witsenhausen’s counterexample (shown
in Figure 4.5) are essentially equivalent. The first controller implicitly communicates its observation
to the second controller by forcing the lower state bits to be zero. This point can be visually
understood in Figure 4.1 by noticing that Witsenhausen’s counterexample is indeed a sub-block of
the infinite-horizon problem.

However, there is a significant difference between these two problems — the time-horizon.
Witsenhausen’s counterexample terminates after 2-time steps, while the system keeps running in
infinite-horizon problems. Therefore, more issues arise when we are designing controllers for infinite-
horizon problems.

First, since the system keeps running in infinite horizon problems, the implicit communi-
cation also has to keep happening. In Figure 4.1, C1[1] communicates to C2[2], C;[2] communicates
to C3[3], and so on. In other words, an infinite-horizon problem can be thought as a series of
Witsenhausen counterexamples. Because of this interlocking of Witsenhausen’s blocks, the effect
of one problem can propagate to subsequent ones. To handle this interference between interlocked
problems, we introduced the Rgea(d;<;c,a'™"
Definition 4.2.

ug[n — i]) terms in the s-stage signaling policy in

The second difference is that since we have a longer time horizon, C;[0] does not have to
communicate to C3[1] of the next time step. It can also communicate with longer delay to Cs[2],
C3[3], ---. In general, C1[0] can communicate to Cs[s] as we can see in Figure 4.1. In fact, the
s-stage signaling strategy of Definition 4.2, Ly;, s, enables C1[0] to communicate with Cs[s], and the
infinite-horizon problem is decomposed into a series of interlocked ‘s-stage MIMO Witsenhausen’s
counterexamples’.

Let’s take a careful look at these signaling strategies, and understand which strategy has
to be used for which parameters of Problem B. For simplicity, we first consider the extreme case
when the first controller has a perfect observation and the second controller has no power constraint
just like Section 4.3. In other words, 02, = 0 and P, = oo. Here, we will be making references to

the binary deterministic perspective on the problem.
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When 0%, =0 and P, = o0

Figure 4.9 summarizes which strategy has to be used for a given 03 and P;. First, we
can notice that if the first controller has enough power then it does not really need any help from
the second controller. At each time step the disturbance w[n] is added, it is observable at the next
time step n + 1 by the first controller when its power is amplified by a2. Therefore, if P, > a? the
first controller can remove the disturbance by itself by choosing u1[n] = —ayi[n]. We will call this
a zero-forcing strategy from the first controller’s point of view. On the other hand, at each time
a new state disturbance w[n] with variance 1 is added. Therefore, when P; < 1 most of the first
controller’s input will be masked by the additional disturbance w[n]. Therefore, in this case u1[n] =0
is approximately optimal, and we will call this a zero-input strategy from the first controller’s point
of view.

Therefore, the question is “what should the first controller do when P; is between these two
extreme values?” As we discussed before, the first controller can implicitly communicate its perfect
observation to the second controller by canceling the bits which are not observable by the second
controller. This idea can be implemented when the bits below the second controller’s noise level are
observed by the first controller at previous time steps. For example, in Figure 4.2, 21, of time step
2, the bit below the noise level of the second controller, is observed by the first controller at time
step 1, one time step before.

Then, what is the condition for the first controller to observe the disturbance one time
step before in the original LQG problems? We can notice that at each time the disturbance wn|
is amplified by a and its variance becomes a? after one time step. Therefore, when 1 < 02, < a?
the bits below the second controller’s noise level are observed by the first controller at 1 time step
before.

What is the minimum power required for the first controller to cancel all the bits below

the second controller’s noise level 02,7 As we can guess'!, the answer is 02,. In sum, for 1-stage

2 and

signaling to be actually useful, the parameters of the LQG problems have to be 1 < 02, < a
02, < P < a®. When P, > a2, zero-forcing is approximately optimal, and when 0 < P; < 02,
zero-input is approximately optimal.

In general, when 2~ < 02, < a® for some s € N, the bits below the second controller’s
noise level can be “previewed” by the first controller at s time steps before, and the first controller’s
power has to be larger than (1277331) to actually cancel those bits. Therefore, in this case when P; > a2,

2
zero-forcing is approximately optimal, when a;:El) < P} < a?, s-stage signaling is approximately

2
optimal, and when 0 < P, < %, zero-input is approximately optimal.
On the other hand, when 02, < 1, it corresponds to dividing the infinite-horizon problem

into a series of Radner’s problems.'? The first controller will observe the bits below the second

1We can also conjecture this from the deterministic model in Figure 4.2. In Figure 4.2, the first controller’s input
power level and the second controller’s noise level is the same.
121n Section 4.7, we will name this case as the weakly-degraded-observation case, while the remaining case is named
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controller’s noise level without any delay, so it gets no preview. As we discussed in Section 4.3.1,
we cannot expect a significant gain from nonlinear strategies when two controllers are acting simul-
taneously on essentially the same quality observations. Therefore, in this case, a linear strategy is
enough to achieve constant-ratio optimality. We will revisit this point when we are discussing lower

bounds in Section 4.6.

When o2, >0

So far, we limited ourselves to 02, = 0 and P, = oco. Let’s first consider the case when
If we take a careful look at the previous case of o2, = 0, the bits that the first controller

2 are useless since at

actually uses are those between the power level 1 and a~2. The bits below a~
the next time step, they will be masked by the new disturbance. Therefore, as long as 02, < a~2,
the first controller can observe all its useful bits and the previous argument does not change.

Then, what is happening in the case when 2, > a=2? First, let’s ask what is the minimum
power P; for the first controller to zero-force the state. The disturbance is amplified by a? at each
time step, and the bits below o2, are not observable by the first controller. Therefore, by the time
the first controller observes the effect of the disturbance, the state’s variance becomes a?c2;. To
actually cancel it at the next time step, the first controller’s power has to be greater than ac?,, i.e.
Py > a'o?.

When the input power is smaller than a*c?,, it has to use signaling strategies. So when can
we use the s-stage signaling strategy? To use the s-stage signaling strategy, the first controller has

to observe the bits below the second controller’s noise level at least s time steps before. Therefore,

2
02, has to be less than Zgﬁ Since a longer stage signaling requires smaller power, we will use an

2 2
s-stage signaling strategy when —725 < o2, < Z32. Then, what is the minimum power to use

2
242 at the next

s-stage signaling strategy? Since the first controller has to cancel the bits below

2 2
a Oy2

time step, P; has to be greater than o

. When P; is less than this, the first controller uses the

zero-input strategy.

In o2, —In(max(1,a%02)))
2Ina

Summarizing the conclusions so far, let s = [ ] so that

a?*~ Y max(1,a%0%) < 02, < a® max(1,a0?)).

Then (i) When P; > max(a?, a*c?,), the zero-forcing strategy

2
(i) When 7225 < Py < max(a?, a"0},), the s-stage signaling strategy
2
(iii) When P; < %, the zero-input strategy

are approximately optimal respectively.

the strongly-degraded-observation case.
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When P, < oo

Let’s consider when the second controller also has a power constraint P,. When the first
controller is zero-forcing the state, the second controller does not have to control and the power
constraint P, does not change the result. When the first controller is either applying signaling or
zero input strategy, the second controller has to stabilize the system. By the definition, D(P;, 00)
is the smallest state disturbance we can expect. Therefore, P, has to be essentially greater than
a’D(Py,00) to cancel the state at the next time step and stabilize the system. In fact, this turns

out to be sufficient, too.

4.5.1 Generalized d.o.f. Performance

Now, we have approximately optimal strategies. In this section, we will see how the perfor-
mance scales as the problem parameters vary. More precisely, we will increase the various problem
parameters in different scales, and see how the control cost scales as a function of the problem pa-
rameters. In spirit, this measure of the performance corresponds to the generalized d.o.f. in wireless
communication [29, 6] where the SNRs of different antennas are allowed to scale differently. The
more fundamental connection with wireless communication theory will be discussed in Section 4.8.

Figure 4.11 shows how the minimum state disturbance of the proposed strategies scales as
a goes to infinity. Precisely, in Problem F we fix a = a, 02, = 0, 02, = a, P, = 00, and explore how
D(Py, P>) scales in a when P; scales differently in a. From the problem parameters, we can easily
see this cost plot corresponds to the cost of the red line (02, = a) in Figure 4.9. As we discussed
before, between zero-forcing and zero-input linear strategies, the nonlinear 1-stage signaling strategy
performs better.

So far the discussion is from the power-disturbance point of view. However, the original
weighted cost problem is essentially the same since the optimal strategy will have some corresponding
control input powers. Let’s consider the system equation (4.2) with a = a, 02, = 0,02, = a and the
average cost (4.1)

1
¢(l) = inf limsup — Z E[z%[n] + a'ui[n]]
Ytz N—oo 0<n<N

Figure 4.12 shows how the average cost scales as a goes to infinity for different values of [. As we
change [, the optimal solution follows the red line (02, = a) in Figure 4.9.

(i) When [ is small (I < 0), the input cost of the first controller is inexpensive and the zero-forcing
strategy is optimal up to scaling.

(ii) When [ is large (I > 2), the input cost is expensive and the zero-input strategy is approximately
optimal.

(iii) Between these two extremes (0 < 1 < 2), we need a nonlinear 1-stage signaling strategy and it
is approximately optimal.

As we can see in Figure 4.12, the average cost of linear and optimal nonlinear strategy scales
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differently in a. Therefore, the performance ratio between these two diverges to infinity, which was
formally stated in Proposition 4.4. Moreover, in Figure 4.12 we can also see a naive lower bound on
the cost (derived by allowing a centralized controller) is too loose to give constant ratio optimality.
Thus, we have to improve both the upper and lower bounds to prove constant-ratio optimality.

It is worth mentioning that figuring out this generalized d.o.f. cost is not enough to guar-
antee constant-ratio optimality, since the logarithmic scaling (caused by the tail of the Gaussian
random variables) in a does not appear in the generalized d.o.f. cost. For example, the first term
shown in the lower bound given by (c) of Corollary 4.2 cannot be captured in the generalized d.o.f.

cost.

4.5.2 (d,w,0) Approximate-Comb-Lattice Theory

allnNe

e B

> > —>
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e

Figure 4.13: Pictorial description of Definition 4.4

So far, we understand the approximately optimal strategies and intuitively why they have
to be used for given problem parameters. Now, we have to formally analyze their performances.
Unlike linear strategies, nonlinear strategies make the random variables (the state, observations and
inputs) non-Gaussian. Thus, the mean and variance is not enough to describe the distribution of
random variables, and the exact description of the distribution requires a potentially infinite number
of parameters. Therefore, we have to come up with an approximate description involving only a
finite number of parameters. To this end, we propose the following definition which will turn out to

be useful in analyzing quantization-based signaling strategies.

Definition 4.4. Let X be a random wvariable, d be nonzero, and w,o be nonnegative reals with

|d| > w. We say X <g (d,w,0) if

Px ¢ Jlird—5.i-d+ 2} <o
€L

Figure 4.13 pictorially shows this definition. When a random variable stays in one of the
boxes with width w, the event will be considered typical. When a random variable falls outside the
boxes, the event will be considered atypical and measured by outage probability o. Notice that after
quantization, the probability mass will concentrate in a sequence of boxes. When d = oo, we have

only one box centered at 0.
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Let’s study properties of this definition. The first lemma tells what happens when we add

two random variables.

Lemma 4.2. Let X, X9 and X3 be arbitrary correlated random variables. If X1 <gr (d1,w1,01),
X <gf (00, ws,02) and Xz <g4r (d1,ws,03) then

X1+ Xo <gr (di, w1 + wz,01 + 02)
X1+ X3 <gr (di, w1 + w3, 01 + 03)

Proof.
. w1 + wa w1 +w
P{X1+X2¢U[z-d1—%,z-d1+%]}
€L
. wi + wo . w1 + we Wo W wWo  Wo
<P{X: + X» ¢ZEUZ[Z'dl—T7Z'd1+T]»X2€[—777]}"'1?{)(2%[—7,7]}

. w . w
S]P){Xl gU[Z'dlf?l,Z'Chﬁ*?l]}%*Og
1EZL
<01+ 02

The second part follows similarly since when we add two points from the lattice points spaced by d,

the resulting point is also in that lattice. O
The second lemma tells what happens when we multiply a random variable by a constant.

Lemma 4.3. Let X <y (d,w,0) and k > 0. Then,

EX <4 (kd, kw,o).

Proof.
P{kX ¢ | J[i-kd - %w,z'-kd+ %w]}
€L
. w . w
—P{XgieLJZ[z-d—i,z-d—Fi]}

< o.

O

The next lemma captures the fact that the variance of a remainder is only smaller than

the original random variable.
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Lemma 4.4. For all random variable X and nonzero d, we have
E[R4(X)?] = E[(X — Qa(X))’] <E[X?].
Proof. For areal z,let x =¢q¢-d+rfor g€ Z and r € [f%, %) Then,
22 = (q-d+r)? = ¢*d® + 2qdr + r*
= lqd|(|qd| + 2sgn(qd) - ) +

When ¢ = 0, 22 = 2.
When ¢ # 0, since q € Z we have 22 > |qd|(|d| — 2|r|) +r? > r2.

Therefore,
E[X?] > E[Ry(X)?).
O

Since all underlying random variables of interest are Gaussian, we will relate Gaussian

distributions with our parameterization.

M

z_
2

Lemma 4.5. Let Q(z) := \/% f;o GXP(*L;)dU' Then, Q(x) ~
Yz >0

1 1 1 x? 1 x2
5 Gm) e (-7) em= e (3.

Moreover, when X is Gaussian with zero mean and variance smaller than o2, for all w > 0

\/217”6 exp( ). More precisely, for

X <4 (00,w,2- Q(%)).

Proof. For the first part, see [30]. The second part directly follows from the definition. O

The next lemma bounds the MMSE error of a quantized random variable when it is cor-

rupted by Gaussian observation noise.

Lemma 4.6. Let X and V be independent random variables where X <g4 (d,w,o) with |d| > w and

V is a Gaussian random variable with zero-mean and variance 0. Then,

E[(X — Qa(X +V))?]

<E[X - Qa(X)*]+ Y (ild+ o) QQ(W)
to- (d+g)2+ > (i~d+g)2.2Qd(@)

2<i<oc0
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Proof. For convenience, let d > 0. d < 0 can be proved by replacing d with |d|. Denote Tg,., =
Uiezli-d—%,i-d+ 3]

E[(X — Qa(X +V))’] =E[(X — Qu(X + V))*|X € T,u]P{X € Tiw}
+E[(X — Qu(X +V)*|X € T5,JP{X € T, }
<E[(X — Qa(X +V))*|X € Ta,u
+E[(X — Qa(X +V))*IX € Tg,] o
Notice that when X € Ty, and [V| < 5%, Qq(X) = Qa(X+V). When X € Ty, and |V| < d+%5%

Qa(X) =Qu(X +V)+d and so on. Therefore,
E[(X — Qa(X +V))*|X € Taw) = E[(Qd(X) + Ra(X) — Qa(X + V)X € Taw]
< E[X ~ Q)+ ([ + 972200 ) 1 2+ 22 20

Moreover, for all  when |V| < d, Qq(x) — Qa(z + V) = —d,0,d. When |V| < 2d,
Qa(z) — Qu(z + V) = —2d,—d,0,d, 2d and so on. Therefore, since |Ry(-)| < 4,

E[(X — Qa(X + V))le € 7'dcw} = E[(Qa(X) — Qd(X +V) + Ra(X))’|X € 7§,

9P+ 2d+ 5 20u( ) + (30 + 5 20u2) +

< (d
_(+2

Therefore,
E[(X — Qa(X +V))?]
gE[(X—Qdoc))?]+<d+f>2~2c2<d;a )+ (2 + 22 2

d

5) + (2d + ) 2Qd( ) (3d + )2 QQ( )

20
)

)+...

o-((d+

4.5.3 Analysis of Signaling Strategies

Now, we are ready to analyze the performance of the s-stage signaling strategy. In the
s-stage signaling strategy, the first controller imposes a lattice structure on z[n], but the second
controller’s action can possibly break this lattice structure. However, the second controller knows
all its past control inputs, so it can exploit the imposed lattice structure by compensating for its
past control inputs. More precisely, we will see that x[n] — Rasa(32,<;<, 0’ 'uz[n — i]) —with the
compensation term, Rq=a(3_;<;<, a’“lug[n —i])— has a lattice structure, and the second controller
will observe this quantized state with an observation noise va[n]. In spirit, the idea and analysis in
this section is similar to that in [78].

Before we state the lemma, we introduce a definition to compare multiple numbers. For

ai,...ap,b1,... by € R, wesay (a1,...,an) < (b1,...,b,) if and only if a1 < by, ..., an < by.
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Lemma 4.7. For a given s € N, let Sy be the set of (d,w1) such that

d>0,w; >0,

a
la|®d — (|a|51d|a|| _| Tt wy) > 0.

The bound Dy 1(d,wy) is defined as

o .d 1
DU’l(d, wl) = 2&25(2(5)2(1 . )2 + 2( )+2a le)
— — ag
Jal* =l fwn (20 Dlal*d — (Ja]* "ol 4 w)
2 1s [T 2 laj=-1
+ Z 4a”(ila|*d + 5 ( 20va )
1<i<oo
sd i — 1 Sd
+ 8420 2 ) Y (ilal*d+ |a‘2 )262((Z Jla )
2\/@2(8—1) a371 + a28012)1 1<i<oo 7
d
(@) 1 (4.5)

Let |a| > 1. Then, for all s and (d,w1) € Sy, the s-stage signaling strategy of Definition 4.2 can
achieve the following Power-Disturbance tradeoff of Problem F.

a2d2
(D(Py, Py), P, P>) < (Dy,i(d,wy),

7
8> Dy, (d, wn) + 5a*CHVd® + da%o7,)

Proof. For notational simplicity, we only consider a > 1. The proof for a < —1 can be obtained by
replacing a with |al.

By the definition of s-stage signaling strategies,

uy[n] = —aRa(y [n])
uz[n] = —a(Qasa(y2[n] — Rasal Z a’lugn —i])) + Rasal Z a" " tug[n —i]))
1<i<s 1<i<s
Therefore, for all n we have
z[n + 1] = ax[n] + ui[n] + uQ[n] + w[n]
= az[n] — a(Qusd(y2[n] — Rasd Za 2[n —1])) + Ras=al Za ug[n —1])) + w1 [n] + win|
1<i<s 1<i<s
= — Raoa( Y @ tugn — i) =Qaea(ya[n] = Rasa( Y 0’ ug[n —i)))) + ua[n] + wln]
1<i<s 1<i<s
=X[n] :=Y3[n]

(4.6)

First, we will prove that for all n > s, X[n] has a lattice structure. Then, Y5[n] is X[n] + va[n], so

we can use Lemma 4.6 to analyze the estimation error of quantized random variables.



For n > s, we have

X[n]
= a[n] — Rasa( Z ' ugln — i)
=a’z[n — 5|+ Z a " tugn —i] + Z a " tugn —i] + Z atwn — 4] — Ryeq( Z a'”

1<i<s 1<z<s
+ Z atug[n —i] + Z atwln — 1
1<i<s—1 1<i<s
= (a’z[n — s] — a®Ry(y1[n — $])) + Z a"tug[n —i] — Rasa( Z a " tug[n — i])
1<i<s 1<i<s
+ Z atugn —i] + Z a " twln — 1
1<i<s—1 1<i<s
= (a®(z[n — s] +vi[n — s] —v1[n — s]) — a’Ra(y1[n — s])) + Z a" " tug[n — i)
1<i<s
— Rysq Za ug[n —i]) + Z a " tug[n — i) Za wln — i
1<i<s 1<i<s—1 1<i<s
= (a’y1[n — s8] — a®Ra(y1[n — s))) Za ao[n — i asd Za uz[n —i])
1<i<s 1<i<s
+ Z a " tuy[n — ] Za wln — i) — a’vi[n — 3.

1<i<s—1 1<i<s
Here, by Lemmas 4.2 and 4.3 we have
a*yiln — 5] — a*Ra(yn [n S (@00

Z a"tug[n —i] — Rasal Z a'tugln — i) <4 (a°d,0,0),

1<i<s 1<i<s
Z atwln — i) — a®vy[n — 5] ~ N(0, z a?t-1 4 a**a?)),
1<i<s 1<i<s
Z a'tug[n —i] <gr (00,ad + a*d + -+ -+ a*~'d,0).
1<i<s—1
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The first and second term have a lattice structure. The third and fourth term can be thought as

bounded disturbances.

Since

2
i— . . a
Z 20 1)+a25051 < q26=1) _ 1—|—a25012)1
a2 —
1<i<s

) S asfld

1
ad+a*d+---+a*td=a""td14+ =+ +
a a—1

a572
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by Lemma 4.2, Lemma 4.5 we conclude for all w; >0

wy

i— _ _ < s_ldL 2.
Za 1[n — 1 Za wln —i] < (oo a1+w1’ Q(

—_ 2
1<i<s—1 1<i<s 2\/112(5 D—g— +a?02,

(4.9)

Applying Lemma 4.2 to (4.7), (4.8), (4.9) gives

wq

X[n] < (a°d,a®~ 1di—i-wl,Q Q(
1 2. /q2(s— 1) (1 +G‘2SO"U1

)-

Therefore, we can see that X[n] (n > s) has a lattice structure. Then, we will analyze the perfor-
mance of the estimator of X[n] using Lemma 4.6.

First, for n > s we have the following inequality.

HMM—%MH@W
= E[(z[n] — Ras4 Z a' " tuy [n —1]) = Qasq(x[n] — Rasa Z a'ug ”*Z)))Z}

15i<s 15i<s
:M@M_Rmﬂ;;MA 2[n — i) dezga uz[n — i)
— Qual[n] — 5d1§; a'ug[n — i]) — caﬁdlgz a'us[n —1)))?]
:EWML}EQM_WM_H_QMWMP}EQMWm_mf
— E[(l« 1 a*tuy[n — i) + 1; a*“twln — i) — a*vi[n — 5]
- QM(KE 1 a"luifn — z]+1<§; a'"twln — i) — a*vi[n - 5]))?]
< E[(KZ_ ;Hul [n—i] + Z ;i:lw[n —i] — a’vy[n — §])?]
(- o 8
< 215:[(12: 1 @ tuy[n — i])%] + 215[(1; a'win —i] — a’vi[n — s])?
(. Lemn_;a_jl._l) o
<2(\/Eludln —1]] + -+ \/aQ(S*Q)E[u%[n —s+1]))% + 2E[(1; awin — 1] = a*vi [n — )7
(. Lemma 4.1) -
< 2(%1)%2(5*2)(1_%)2 + 22671 _1%) +2a%02,

(*." Definition of u;[n])

ds
D

— a2(s—1)(2( - -
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Therefore, by Lemma 4.6 we can bound the estimation error as follows.

E[(X[n] — Qasa(Y2[n]))?]
= E[(X[n] — Qa-a(X[n] + v2[n]))?]

gQL) _|_2(

a®d 2a°d
)2+ (20°d+ = ) 2@( %)+ (ara+ ) 2Q(
2,/a26-1) 2 4 42502 2 Tv2 Ov2

Finally, by plugging the above equation into (4.6) we conclude for all n > s,

Elz®[n + 1]] = E[(a(X [n] = Qa+a(Y2([n])) + ur[n] + w[n])?]
< 2E[(a(X [n] — Qasa(Y2[n])))?] + 2E[uf[n]] + E[w?[n]]

)+ 2d°07,)

a*~td—2— +wy 5 a*d— (a*td25 + w)
QO'UQ )

a* -2 4w 3a’d — (a®~ 1d——i—w
+2a2(2a%d + = )220 (a )

20v2 ) *

)
= (@ d+ 202 4 o+ Ca0(E
2\/a2(s—1) a +a230-12)1 Ov2

2a® d) )

+ 2(ag(*)Q) +1 (4.10)

+ 4a2Q( )

+(3a%d+ 2 ) 2Q(—

Moreover, by (4.6), E[z?[n]] is bounded for any n < s. Therefore, the L.H.S. of (4.10) is an upper
bound on D(Py, P).

For all n, we also have

(4.11)

which is an upper bound on P;.

)+...
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Before we bound E[u3[n]], we first notice that by Lemma 4.1,

E[(Qara(y2[n] — Raza( Y a' tuafn —1])))’]

1<i<s

= E[(y2[n] = Rasa( ) o' tusn — 1 = Rasalyeln] — Raea( ) @' usln —1])))7)

1<i<s

< 2E[(y2[n] — Rasa( D @’ tualn —1)))%] +2(

1<i<s

= 2E[(z[n] — Rasal Z a " tug[n — 1]))?] + 202, + 2(

1<i<s
a’d

< 4E[z*[n]] + 4( 5

Therefore, for all n,

)%+ 2075 + 2(

a’d

1<i<s
a’d .,
2 )

a’d .,
2 )

2)2

E[u3[n]) = ¢®E[(Qasa(y2[n] — Rasal Z a'Mugln — 1)) + Rasa( Y @' usln — i]))?]

< a®(2E[(Qaea(y2[n] — Rasa( Y

)
< @(SE[?[n]] +8(757)? + 407 + 4(%5

1<i<s 1<i<s
. sd
a~tusln = 1)))%) + 2(57)?)
1<i<s
T o @y

< 8a?E[2*[n]] + gaQ(S“)dQ +4a202, (4.12)

which gives an upper bound on P,. Therefore, by (4.10), (4.11), (4.12) the lemma is proved. O

4.6 Proofs and Proof Ideas: Lower bound on the optimal

cost
ul[O] ’U.l[l] u1[2]
z[0] | z[1] | z[2]
uo[0] | woll] | uol2]

Figure 4.14: Naive truncation idea to divide an infinite-horizon problem to finite-horizon sub-

problems. This idea fails to give a constant-ratio lower bound.

In this section, we will study the lower bound on the optimal cost and understand why it is

impossible to outperform the proposed strategies by an arbitrary factor. In Section 4.5, we discussed

the relationship between the infinite-horizon problem of this chapter and finite-horizon problems.

The first idea for the lower bound is to make this idea formal, i.e. dividing the infinite-horizon

problem into a sequence of finite-horizon problems.
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/uz[?;] s[4 P us 5]

Figure 4.15: Geometric Slicing idea to divide an infinite-horizon problem to finite-horizon sub-

problems. This idea successfully gives a lower bound tight to within a constant ratio.

4.6.1 Geometric Slicing of Infinite-Horizon Problems

Let’s say we want to divide the infinite-horizon problem into sub-problems with time-
horizon 3. A naive way of dividing the problem is truncation, which is pictorially described in
Figure 4.14. The total cost vail qE[2%[n]] + r1E[u?[n]] + roE[u3[n]] can be divided into 3-time-
horizon problems. The first problem is minimizing ¢E[2?[0] + 2%[1] + 22[2]] + mE[u?[0] + u3[1] +
u2[2]] + raE[u3[0] + u3[1] + u3[2]]. The second problem is minimizing qE[z?[3] + z2[4] + 2?[5]] +
rE[u?[3] + u?[4] + u2[5]] + roE[u3[3] + u3[4] + u2[5]], and so on. However, in this approach we can
find only % sub-problems out of NV times, which turns out not to be enough to prove constant-ratio
optimality.

The main reason why the truncation idea gives too loose a bound is that in order to
decouple the sub-problems from each other, we have to start each sub-problem with initial state 0
because that is the best possible initial state. But then, we have to wait long enough until the state
disturbance w(n] is amplified enough. So, in each sub-problem, the state cost at the final time step
is the only one that is large enough. We end up penalizing the state only for %—time steps, while
the actual cost penalizes the state for N-time steps. In general, if we truncate the problem to s-
time-horizon problems, the resulting bound will be loose by a factor of s. In fact, to find a matching
lower bound for the s-stage signaling strategy, we have to divide the infinite-horizon problem into
s-time-horizon problems. Therefore, the lower bounds based on the truncation idea will be too loose
as s goes to infinity.

The idea of ‘geometric slicing’ solves this by introducing interlocking sub-problems and
penalizing the state at every time step. Figure 4.15 shows the idea pictorially. For example, we can
slice the problem to 3-time horizon problems as follows. The first problem is minimizing ¢E[z?[2]] +
rmE[Lu3[0] + Jui[1] + §u?[2]] + r2E[3u3[1] + $u3[2]]. The second problem is minimizing gE[2?[3]] +
rmE[Fui[l] + Jui[2] + §uf[3]] + r2E[3u3[2] + $u3[3]], and so on. Here, notice that u3[1] shows up in
both problems but it does not cause any difficulty since the weights form a geometric sequence and
the sum is less than 1. Therefore, we are slicing the problem using geometric sequences, and that
is where the name of the idea come from. In this way, we can extract N sub-problems out of an

N-time-horizon problem. The sub-problems can be formally written as follows.

Problem G (Geometrically-Sliced Finite-horizon LQG problem for Problem B). Let the system
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equations, the problem parameters, the underlying random variables, and the restrictions on the
controllers be given exactly the same as Problem B. However, now the control objective is for given

O0<a<l,kky ks €N (ki <k, ko <k), minimizing the finite-horizon cost

inf Bk +r(l-a)( Y o MERI) +ra(l-a)( Y o EL[).

U, U2
’ k1 <i<k—1 ka<i<k—1

Even if the system can run for infinite time, the cost terminates after the time step k.
Therefore, this problem is effectively a finite-horizon problem. The next lemma shows the cost of

this finite-horizon problem is a lower bound to the original infinite-horizon cost of Problem B.

Lemma 4.8. Let the system equations, the problem parameters, the underlying random variables,
and the restrictions on the controllers be given as in Problem B. When o3 =0, for all 0 < a < 1,
kki,ke € N (k1 < k, ko < k), the infinite-horizon cost of Problem B is lower bounded by the
finite-horizon cost of Problem G, i.e.

inf lim sup 1 Z (qE[z?[n]] + mE[u2[n]] + roE[ui[n]])

w2 N—oo IV g 2N
> inf EEPE]+r(l-a)( Y o TMERI) +ra(1—-a)( Y o RE[3[i]).
1 ke <i<k—1 ko <i<k—1

(4.13)

Here, when ki = k or ko = k the second or third term in the lower bound vanishes.
Furthermore, both costs are increasing functions of o3 and when 03 = 0, u1[0] = 0 and

u2[0] = 0 are optimal for both.

Proof. Let’s first prove that for all finite-horizon and infinite horizon problems, the average cost is

an increasing function in o3.

Proposition 4.6. Let 2'[0] and z”[0] be independent random variables, and z'[0] has zero mean.
Consider two systems where the system equations are given by Problem B. However, the initial state
of the first system is x'[0] + 2" [0] while the initial state of the second system is x'[n]. Except for the
initial states, both systems have the same underlying random variables wn], v1[n], va[n] as those in
Problem B. We denote the variables of the first system as x[n], u;[n], y;[n], and those of the second

system as T[n], u;[n], g;[n]. Then, the following inequality is true.

inf = 3 (qE[a?n]] + rE2[n]] + roE[udn]))

Ul ,u
P2 g<n<N -1

1 Y (GE[[n]] +mE[ai[n]] + r2Elu3[n]]).

> inf —
- us N
0<n<N—1

U1,
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Proof. Since both systems are coupled with each other except the initial state, we will reduce the first
system to the second system by giving z”[0] as side-information. Define L, as the set of strategies
for the first system which depend on its own observations and z”[0], i.e. Ly = {(u1[n], uz2[n]) :
ui[n] = fia(il0], -+ ,y1[n], 2"[0]),u2[n] = fan(y[0],---,y2[n],2"[0])}. Likewise, define Lj as
the set of strategies for the second system which depend on its own observations and z”[0], i.e.
Ly = {(t[n], uz[n]) : wa[n] = f1 ,(G:[0],- -, g [n], 2"[0]), 5, (42 (0], - - - g [m], 2" [0]) }.

Further, define uj[n] := w;[n] — E[u;[n]|2”[0]] and w}[n] := Elu;[n]|z”[0]]. Then, we can
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lower bound the average cost as follows.

inf ~ S (GEe?n]) + rE[u2n]] + raElud[n]])

U1, u2
0<n<N-1

ot LY (Bl + B + raBfun])

> ul’g;eLg N qL|r|n mikjugn rolkiUqg M
0<n<N-1

B) . 1 n n—1

= inf — E (gE[(a™z[0] + a™*w[0] 4 - - - + w[n — 1]

u1,u2€Lg N 0<n<

<n<N-1

+a" g [0) 4 - Fur[n — 1] 4 @™ tug[0] + - - Fugn — 1))

+miE[uf[n]] + r2Eluj[n]))
@ e qE[(a"2'[0] + a" w([0] + - - - + w[n — 1]

w1, u2€L N
PEEER ST g<n<N -1

+a" M 0] 4 - 4 uhn = 1]+ a" b 0] + -+ uh[n — 1]

+a"2"[0] + " [0] + - [ = 1] + @ Tug[0] + -+ ugn — 1])7]

+ 1 E[(u [n] + uy [n])?] + r2E[(uh[n] + uz[n])?]

= oty N OSE;V_I qE[(a"2[0] + a" " w[0] + -+ + wln — 1]

+a" 0] + -+ [n — 1)+ a™ b [0] 4 - + ubn — 1])7)

+ ¢E[(a™2"[0] + a" ' [0] + - + u [n — 1] + @™ty [0] + - - - + ul [0 — 1])?]
+r1Efuj [n]?] + mE[ [n]*] + r2Eluy[n]?] + raEug [n]]

> inf 1 Z qB[(a™2'[0] + " *w[0] + - - + wln — 1]

up,us€Ly N
PR Y g<n<N-1

+a" g [0] - i fn = 1]+ a" T [0 4 - 4 upln — 1))

+ mE[u) [n]*] 4 roE[ub[n]?]

> inf i > (@EZ*[n]] + rEui[n]] + roEfus[n]))
g 0<n<N-1

— inf L Y (qB[Z[n]] + rE[ui[n]] + r2E[u3[n]])|2" 0]

w10l N
2= 0<n<N—1

>inf inf %E[ Y GEEM]] + rEEgn] + roEa3[n]])a" 0] = ']

0<n<N-1
D g LS (G ]) + rEE 0] + )
Uy ,us€L N 0<nmeN—1

): L C L.

): By the system dynamics of (4.2).

C): Definitions of 2’[0], " [0], u;[n], u}[n].
)

K3 K3

uf[n]. Moreover, by definition, u}[n], u4[n] are orthogonal to z”[0], u{[n], uj[n].
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(E): To justify this, we will show (by induction) that for all n, y;[0], - -y;[n],2”[0] are functions of
7i[0], - - - gi[n], £”[0]. Therefore, there exists @1 [n], tz[n] such that a[n] = uf[n], 42[n] = uh[n)].

First, when n = 1, the claim is obvious since y;[0] = ;[0] + «”'[0]. Thus, y;[0], z"’[0] are
functions of g;[0], ”'[0]. Moreover, since u}[n] are functions of y;[0] and x”[0], we can find @;[n] such
that @;[n] = u}[n].

Let’s say the claim holds until n — 1. Then, we have

yiln] =a"2'[0] + a" " w[0] + -+ wln — 1]
+a" 0] 4 - - [ — 1]
+a" b [0] 4 - -+ ub[n — 1] + vi[n] + g(z"[0])
=a"2'[0] + a" " tw[0] + - - 4+ wln — 1]
+a" '@y [0] + -+ + ar[n — 1]
+a" 0] + - - + Uz n — 1] + vi[n] + g(2"[0])
=gi[n] + g(="[0])

where g(z”[0]) := a"2"[0] + "~ E[u1 [0]|2”[0)] + - - - + Efua [ — 1]|2"[0]] + a" ' E[uz[0]|«"[0]] + - - +
Eluz[n — 1]|2”[0]], and the send equality comes from the induction hypothesis. Therefore, y;[n] is
a function of g;[n], 2" [0], and we can find @;[n] such that 4;[n] = u;[n]. This proves the claim by

induction.

(F): Since in L; the strategies can depend on z"[0].

Therefore, the proposition is true. O

Here, we can notice that the proof holds for all quadratic costs. Therefore, by setting
2'[0] ~ N(0,0f) and 2”[0] ~ N(0,0(?), we can prove the costs in (4.13) are increasing functions
on o3. We can also easily justify that when z0[0] = 0, u1[0] = u2[0] = 0 is the optimal input by

symmetry.
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Then, let’s prove the inequality of (4.13).

inf lim sup% Z (qE[z*[n]] + rE[ui[n]] + roEu3[n]])

U1,U2 N—oo

0<n<N-1

(a) 1
> limsup inf — Z (qE[z*[n]] + rE[ui[n]] + roEu3[n]])

Nosoo utuz N

0<n<N-1

Q) 1 . )
> limsup inf N(qE[:cQ[k:]] +71(1 — ) Z & TME[A[I]]) 4 ro(1 — a)( Z o R E[u2[i]])

N—poo H1,42 ke <i<k—1 ko<i<k—1

+ qE[z?[k + 1]]

+7r1(1 —a)( Z & TRE[E + 1]]) + 2 (1 — a)( Z o TREE 1)) + -
k1 <i<k—1 ko <i<k—1

+ qE[z*[N — 1]]

tr(l-a)( >, o MEpIi+N-k—1)+r(1-a)( Y o "Euili+ N -k-1])
k1<i<k—1 ko<i<k—1

(>i) lim sup %( inf gE[z?[k]] + r1(1 — a)( Z & TRE[A[H]]) 4 r2(1 — a)( Z o R E[ul[i]])

ul ,u
N—roo 12 ki <i<k—1 ka<i<k—1

+ inf qE[z?[k + 1]]

tr(l-a)( > o PR+ 1) +re(l-a)( > o MEpi[i+ 1)) + -
k1 <i<k—1 ka<i<k—1
+ uiln£2 qE[z?[N —1]]
tr(l-a)( >, o MEpIi+N-k—1)+r(1—-a)( Y o "E[uili+ N —k-1])
k1 <i<k—1 ko<i<k—1
(4.14)
) _ . .
= timenp - E (f BRI 0 - Y @ RERE) 0 -a)( Y ot hE)
—00 e ke <i<k—1 ko <i<k—1

< inf gB2[k] +r1(1 - o) Yo @ MEE) +r(l-a)( Y o REu[]).

o by <i<k—1 ko<i<k—1
(a): infsup > supinf.
(b): We can easily check that the sum of the weight for each input cost, E[u2[n]] or E[u3[n]] is less
than (1 —a)(1 + o+ a? +--+) which is 1.
(¢): inf, f(z) + g(x) > inf, f(z) + inf, g(z’).
(d): The second minimization problem in (4.14) can be thought as a one-time-step shift of the first
minimization problem, i.e. x[1] of the second problem corresponds to the initial state z[0] = 0 of the

first problem. Therefore, by putting '[0] = 0 and 2”[0] = z[1] in Proposition 4.6, the first problem’s
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cost is smaller than the second problem’s cost. Likewise, we can prove that the first problem’s cost
is a lower bound for all other problems’ cost.

(e): limsupy_, o 2% = 1. O

Conceptually, this idea of geometric slicing can be thought of as an interesting variant on

how discounted dynamic programming [11] is used to study average-cost dynamic programming.

Costly
Input
yﬂm— c0l 2 ILkﬂ c,lk] & [{32]- c k) wlk - l}>| cial ]
1 ul[(ﬂ 1 ul[kl] 1 ul[kQ] 1 ul[k — 1]
! ! ! ! Costl
IL[(_I)] —QEB—) ...I/I:[k;ﬂ 9\) oo /I/[k;z] ‘;C)—\ b ‘L[k 7I1]_—9€9—)x[k] Statey
: LL)[O] : Ug[kl] : UQ[kz} : UQ[k‘ — ].]
- G0 - Gk, L= 55 Clk, L= ol Cylk-1
polo] L k] L] yalkz] LR yalk — 1 Z[C ] |
Controller 1: |n0$ltjty
Power Limited P
Information Limited Controller 2 o Power Limited
Information Limited

Figure 4.16: The general finite-horizon problem structure which can give a lower bound for s-stage
signaling strategies. The problem consists of three time intervals. In the first time interval, both
controllers are information-limited. In the second time interval, the first contoller is power-limited
and the second controller is information-limited. In the third time interval, both controllers are

power-limited.

4.6.2 Finite-Horizon LQG Problems: Three-Stage Division

Now, we can divide the infinite-horizon problem to finite-horizon problems. Figure 4.16
shows the finite-horizon problem that gives a lower bound approximately matching with s-stage
signaling strategies. As we discussed in Figure 4.8, the resulting problem is not stationary and to
tackle this issue we will divide the time-horizon into three intervals: (1) information-limited interval,
(2) MIMO Witsenhausen’s interval, (3) power-limited interval.

Let’s first state the power-distortion tradeoff version of the finite-horizon problem of Prob-

lem G.13

Problem H (Finite-Horizon LQG problem with discounted power constraints). Let’s consider the
same system and parameters as Problem G. But, now the control objective is minimizing the final

state disturbance Dp(Py, Py) for given input power constraints Py, Py € RT. In other words, we

13This is not a finite-hirizon version of Problem F.
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solve

Dp(Py, P) = inf E[z?[k]]

Uy,u2

s.t. Z o TME[I)] < Py
ky <i<k—1

> o RE[u3li] < Py
ko<i<k—1

Here we can see four parameters that characterize the problem: o2, P, 025, P>. The
importance of these parameters becomes different depending on which interval they lie in.

The information-limited interval —which corresponds to the time steps between 0 and k;
in Problem H and Figure 4.16— is introduced to handle the case when o2, is large. Since 02, > 02,
in this interval both controllers have very noisy observations and we can allow arbitrarily large power
to both controllers. In fact, in Figure 4.16 we can see in this interval both controllers do not have
any input costs. Therefore, the important parameters are 02, and o2,. It turns out that the cost of
the centralized controller (with access to both noisy observations y;[n] and ya[n]) gives a reasonable
bound. Essentially, what this interval is doing is waiting until the variance of the state disturbances
grows enough — to be around o2, up to scaling.

On the other hand, the power-limited interval — which corresponds to the time steps be-
tween ks and k in Problem H and Figure 4.16 — is introduced to handle cases when both controllers
do not have enough power to stabilize the system. Therefore, in this interval the important param-
eters are P; and P,. We will even give a perfect observation of z[n] to both controllers by setting
02, =0 and 02, = 0. In this interval, we will keep running the system by making k arbitrarily large,
and prove that E[z?[k]] must diverge to infinity given that the previous interval ended up with a too
large x[ks].

Between these two intervals — the time steps between k; and k2 in Problem H and Fig-
ure 4.16 — each controller faces a different situation. The first controller has enough information
about the state but it does not have enough power. The second controller has enough power but it
does not have enough information. Therefore, the important parameters of this interval are P; and
02,. So, we will allow a perfect observation to the first controller by setting o2, = 0 and infinite
power to the second controller by setting P, = co. In other words, the first controller is power
limited and the second controller is information limited. This situation is exactly the same as that
of Witsenhausen’s counterexample which we discussed in Section 4.3.1. Therefore, we will call this
interval an s-stage MIMO Witsenhausen’s interval and discuss it in Section 4.6.3 in more detail.

Let’s convert these ideas into formal proofs. As we mentioned, we will bound the cost in
the information-limited interval by analyzing a centralized controller with both observations y;[n]

and ys[n] when there is only initial disturbance w]0].

Lemma 4.9. Let w[0] ~ N(0,1), v1[n] ~ N(0,02%), va[n] ~ N(0,02%,) be independent Gaussian
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random variables. Let

az(k’l)ogl

2 (k1=1)(1—q—2k :
(+ 2 mF = + ol

1—a—2

El(a* (0] — Efa* w[0][y[1 : k], o[l : ka]))?) =

Proof. Notice that

y1[n] = a™ " tw[0] + v1[n]

ya[n] = Ea"_lw[O] + Jvlvg[n]
Ty2 Typ2 Tv2

Since maximum-ratio combining is a sufficient statistic (See [99] for instance), the sufficient statistic

ys of y1[1 : k1 — 1], yo for estimating w0] is given as:

ye= Y a4 Y TR ()

1<n<k 1<n<k, V2 Tv2

= > a @ el Fal)+ Y Ta (TR wfo] + T es[n))
1<n<k 1<n<k, 702 Tv2 Tv2
i § N>Rl

o? _ o2 .
= Z (a2(n—1) + 07151@2(”_1)))11)[0] + ( Z a” 11)1[71] + Z Tglan 11}2[”])
1<n<k; v2 1<n<k; 1<n<k, V2
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The estimation error for a*~1w[0] is

E[(a* w[0] — E[a* " w[0][y1[1 : ka],y2[1 : ka]])?)
= E[(a""w[0] — E[a"""w([0]]ys])’]
= E[(a"w[0])’] — E[a"w[0]y,) (E[y2]) "' Ela" 'w[0)y,]
E[(a*~w[0])*|E[yz] — E[a"~ w[0]y,]*
Ely3]
GQ(k_l)((Z1gngkl (a1 %az(n_l)))2 + D 1<n<h, a?" Vo2 + Z1gngk1(£;)2a2(n_l)‘732)

2
v

2
(X i<ner, (@27 + Z;T);GQ(”A)))Q + P icnck, @Vl + Zlgngkl(:%; )?a?n=Vo7,

a2(k—1)(2:1§n§k1 (a2=1) 4 Z%az(n—l)))z
(X icnen, (@271 + Z%az(nq)))z + P icnck, A2 Vod + Z1§n§kl(%§;)2a2(n71)032
a2(k71)(21gngkl a*" Vo2, + Zgngkl(ggz )?a*Not,)
(C1<n<n, (@=1 + Z%; a?m=D))2 437 g, @ 3 (Z%; )2a2(n=NoZ,
a7V (of) + Gy (i)
(14 Zp ) (S0 )2 4 (02, 4 ) iU ™)

2
a2(h=1 g2,

- a2(k1—1)(1_a—2k1)

o? '
I+ ) (=) + o
O

To bound the performance in the power-limited interval, we have to bound the influence
of control inputs on the state with respect to their power constraints. By expanding z[n] using the
system equation (4.2), we can see x[n] =3 ;. a1 twfi] + a1ty [i] + a1 tugfi]. Thus,
the terms > 5, ., a" 1", [i] can be considered as the influence of control inputs on the state.
The following Cauchy-Schwarz style inequality bounds the variance of Y, "' "u;[i] by the
power constraint >, _; 'E[u?[i]] imposed in Problem H.

1
a2b

Lemma 4.10. For arbitrary random variables X;, n € N, a,b € R (|| < 1), we have

az('”'*l) 1— 1 \n
E[(a" ' Xo4+a" X + -+ X, 1) < 1(7 1(a2b) )

aZb

(E[XG] + DE[XT] + - + D" 'E[X] 4])
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Proof.
E[(a" ' Xo+a" 72X + - + X,,_1)?]
< (\/az(n—nE[Xg] + \/aQ(”—Q)IE[X%] et \/]E[TTQL_J)Q
< (@00 E G B + UK -+ B )
e i” (BIX3) + VELXZ] 4+ 07 BX2_,))
where all inequalities follow from Cauchy-Schwarz. O

?Jlillzl | le?l;l _l Costl
. Cl[l]ul[l] . C1[2]1Ll[2] Input\g
Bl —od— o]

D> (3]

0]/ ﬂ%@m /ﬂéw@
wof1] vl L el

Figure 4.17: Finite-horizon generalized MIMO Witsenhausen’s counterexample. This problem gives

U [2]

the matching lower bound to 1-stage signaling.

e I e
1 ui(l]

UI[Q] Inputs
/@—)1[1:] —969—) 1[2:] —oEB—)z[S]
w|0] us[1] us[2]

Uzﬁnr@ vzﬁ%@r@

Figure 4.18: The simplified problem that results from Figure 4.17 by cutting the problem across the

red line. Unlike the original problem, w|0] is the only disturbance.

?Jlli2l o2 Costly
1

U1[2] Inputs
/@—> x[Q:] —oD—> 1l
wll] 2
C,[2]

v9[2)] 2]

Figure 4.19: The simplified problem that results from Figure 4.17 by cutting the problem across the

blue line. Unlike the original problem, w[1] is the only disturbance.
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uy[1] yo[1] -
C, 1 Channel 15[2] ¢, F>ul0]
w(0]
yo[1] 110 g
B?[Q]} N L 0 1} ng + M wl]

Figure 4.20: A further simplified MIMO communication problem of Figure 4.18. This problem

reflects the communication aspect of Figure 4.18.

4.6.3 Tackling the s-stage MIMO Witsenhausen’s interval: From multiple

disturbances to a single disturbance

Understanding the MIMO Witsenhausen’s interval is necessary to find a matching lower
bound to s-stage signaling strategies. Let’s explicitly consider Problem F with parameters o2, = 0
and P, = oo and find the lower bound on D(Py, P;) that approximately matches to the 1-stage
signaling strategy.

By selecting the parameters k = 3,k = 1,k = 3,a = % in Problem H, we have the problem
of minimizing D (Py, P2) = E[z?[3]] with the power constraint ($E[u$[1] + 1E[u}[2]) < Py. In the
same way as the proof of Lemma 4.8, we can prove that this is a lower bound on D(P, Py).

Figure 4.17 shows the resulting 2-stage finite-horizon problem. As we can see the problem
looks similar to Witsenhausen’s one in Figure 4.5a. In fact, it can be thought as a multi-stage
MIMO (multiple-input multiple-output) Witsenhausen’s counterexample. Compared to the original
Witsenhausen’s counterexample, both controllers have observations and control inputs at every time
step, and a new state disturbance w[n] is added at every time step. Since the second controller’s
input is free, it can be considered as the receiver in a communication problem. From this perspective,
the observation ys[1] can be considered as side-information at the receiver, and the input us[1] can
be imagined to be feedback from receiver to transmitter.

The first question that we have to answer to take this communication perspective is “What
is the relevant message in this communication problem?” Since the only uncertainty of the system
is the state disturbance wn], the answer has to be the disturbance. However, since a new w[n] is
added at every time step, we have to find the critically relevant disturbance among them.

To understanding this issue, let’s revisit the binary deterministic model of Section 4.3. In
Figure 4.2, we can see 3] corresponds to 0023 ;0.2 ;22 , - - - in the binary deterministic model. We
will divide this binary number into three parts. The first part is the first two bits 00, the second
part is the next two bits 2% ;0, and the third part is the remaining bits 23 ;22 , - - - . If we track back

the arrows of Figure 4.2, we can see that these three parts originated from the different disturbances
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wl[0], w[1], w[2] respectively. Therefore, we can see that w[2] is not a dominating disturbance since
its bit level is much smaller than the other parts, and the dominant disturbances for z[3] are w]0]
and w[1]. We will separate these two disturbances using the cutset idea in information theory.

The first cut gives every disturbance except w[0] as side information to the second controller,
i.e. we give w[l], w[2] as side information. Figure 4.18 shows the resulting problem, which is a 2-stage
MIMO Witsenhausen’s counterexample with only one disturbance at the beginning. Likewise, the
second cut gives w([0], w[2] and reserves w[1] inside the cut. Figure 4.19 shows the resulting problem,
which is a 1-stage Radner’s problem. Both problems are relaxations of the original problem, and
any convex sum of their cost is also a lower bound to the cost of the original problem.

We already know how to solve Radner’s problem in Figure 4.19. However, the problem in
Figure 4.18 is a generalized MIMO Witsenhausen’s problem, which is even harder than the original
one. The crux of the problem is the dual role of controllers’ inputs. The input signals uq[n] and
us[n] can be used to cancel the state (control role) and at the same time to send information about
their observations (communication role). Therefore, we will simplify the problem by removing the
less important role.

The first controller has a perfect observation while its input cost is expensive. Therefore,
it is better to use the control inputs to send information about the state. We will essentially remove
the control role of the first controller input by using the Cauchy-Schwarz inequality. Meanwhile,
the second controller has free input cost but blurry observations. Therefore, it is better to focus on
the control role. We will remove the communication role of the second controller input by allowing
free freeback from the second controller to the first. Therefore, the first controller reduces to a
transmitter and the second controller reduces to a receiver.

Figure 4.20 shows the pure MIMO communication problem we will get after removing
the dual roles of the controllers from the problem of Figure 4.19. The first controller knows the
exact state w[0] and sends information through the input w;[1]. Thus, the first controller is the
transmitter and wuq[1] is the transmitted signal.!* The second controller estimates the state w[0]
based on its observation ys[1], y2[2]. Therefore, the second controller is the receiver and ys[1], y2[2]

15 We will use a simple information-theoretic cutset bound to bound the

are the received signals.
performance of this communication system, and eventually derive a lower bound approximately
matching to the 1-stage signaling strategy.

At this point, one may wonder why we need the lower bound of Figure 4.18 and Figure 4.20
which correspond to zeros in the binary deterministic model. It is because it is not zero in Gaussian
real models. Binary deterministic models simplify Gaussian random variables as bounded uniform

distributions. This simplification can be justified in an infinite-dimensional relaxation. However, in

14Here, u1[2] cannot send any information to the second controller since communication requires at least one step
delay from the transmitter to the receiver.

15The second controller can also feedback its observation through us[1]. However, this effect of feedback is negligible
in this case, since the causal feedback information can only affect uz[2] at the transmitter. However, we will see the
effect of feedback later in the more generalized problem of Figure 4.21.
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finite dimensions the simplification only approximately holds and the zeros in the binary determin-
istic model are actually exponentially decreasing small quantities in a Gaussian model. As shown
in [37], we will replace va[n] of Figure 4.20 by a test channel, adapting ideas of large-deviation
theory. The problem of Figure 4.20 gives a non-trivial lower bound that captures the exponentially
decreasing small quantities that must occur because of the finite-dimensionality.

In general, we will see an s-stage MIMO Witsenhausen’s counterexample in the second time
interval of Figure 4.16. Following the same steps as above, we will reduce the problem to a pair of

pure communication problems, s-stage and (s — 1)-stage MIMO state-amplification with feedback.

Strictly Causal
Side Information

| == === vp[l], -+, va[k—1])
i —————— xk()]
— wil1], yalll
w 2] yl2] -
<. E "] Channel E - C, —>g;[0]
U1 U{—lj Yo []{I—lj

Figure 4.21: s-stage MIMO state-amplification with feedback. This problem reflects the implicit
communication aspect in the MIMO Witsenhausen’s interval of Figure 4.16. This figure also repre-

sents a system diagram of Problem I.

Ul[n] Channel yg[n]

c, > With —{ C, (0]
Memory !
A |
e e e e e e e e e e e e e 3
Feedback

Figure 4.22: An equivalent representation of s-stage MIMO state-amplification with feedback in
Figure 4.21. The MIMO channel of Figure 4.21 can be thought as a channel with memory. This

figure also represents a system diagram of Problem I.

4.6.4 s-stage MIMO state-amplification with feedback

Figure 4.21 shows the s-stage MIMO state-amplification problem. As we discussed before,

the first controller C is the transmitter, and the second controller Cs is the receiver. The transmitter
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knows the state z[0] at the initial time and learns the channel noise vs[n] by causal feedback. The
goal of communication is minimizing the estimation error of the state z[0] at the receiver.

Let’s formally state the s-stage MIMO state-amplification with feedback problem.

Problem I (s-stage MIMO state-amplification with feedback). Let the underlying random variables
x[0] ~ N(0,03) and va[n] ~ N(0,02) be all independent. These are the source and observation noise

respectively. The transmitter’s input ui[n] is a function of z[0] and va[1], - ,va2[n — 1], i.e.

<
—
=
I
~
=
—
8
=2
~

ul[k — 1] = fk_l(ﬂi[O],Ug[l ck— 2])

The receiver’s observations ya[n] are given as follows.

y2[0] = z[0] + v2[0]
y2[1] = az[0] + w1 [0] + va[1]
y2[2] = a*x[0] 4 auy [0] + uq [1] + va[2]

yalk — 1] = aF 12 [0] + " 2us [0] + - - +us [k — 2] + va[k — 1]

—

The receiver generates an estimate x[0] of the state x[0] based on its received signal y2[1 : k —1], i.e.

96/[0\] = g(ya2[1 : k — 1]). The objective of the system is minimizing the quadratic estimation error,

E(2[0] — 2[0])?].

This problem can be more compactly represented as Figure 4.22 by thinking of the MIMO
channel as a channel with memory. As shown in [22], feedback only increases the capacity at most
a half bit per time step. However, in this problem we are using the channels for & time steps, so
we still have to justify that the feedback does not increase the capacity too much. The following
lemma explicitly computes an information-theoretic cutset bound for this communication problem

and gives a reasonable bound on the rate-distortion tradeoff.

Lemma 4.11. Let’s consider Problem I of Figure 4.21.
(i) Let z[0] ~ N(0,02) and va[n] ~ N(0,02). Let w € R satisfy |-+-| < 1 and the input power

a?w

constraint is
(1 = wE[F[0]] + (1 — w)wE[uf[1]] + - + (1 — w)w* E[ui[k - 2)) < P
Then, the estimation error of z[0] based on y2[0 : k — 1] is lower bounded by

E[([0] - 2[0])*] > 37
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where

1 2a2k-Dg2  2gF—2 P

k
I = Slog(1+ —
= loellt p (G R G g p—

)-

(ii) Consider the same problem as (i) except that valk —1] ~ N(0,0'?), i.e. only the last observation

noise variance is different. Then, the estimation error based on y2[0 : k — 1] is lower bounded by

E T2 > O—g
[([0) = 2[0D)7] = 577
where
1 Loy 2, ,@F? P
I]/filk_1+§10g(1+0_74)2(20, ( )O—O+2ﬁm))

(i11) Consider the same problem as (ii) except that valk—1] ~ Unif[—o., 0], i.e. the last observation

is a uniform random variable. Then, the estimation error based on yo[0 : k — 1] is lower bounded by

N2 ‘73
E[(2[0] — 2[0])7] > 5217
where
=1+ L 10g(%9
k=T g 5 /)

Proof. (i) First, we can lower bound the estimation error as follows:

—

5 los(2meE[(x[0]  7{0))%)
> h(a[0] — 2[0]|ya[0 < k — 1)
= ie[0]lg2[0 £~ 1)

= h(z[0]) — I(x[0]; y2[0 : k —1])

v
| =

—log(2meod) — I(x[0];y2[0 : k — 1]). (4.15)

We will upper bound the mutual information. Let’s first upper bound the received signal power.

Since uq[n] is a strictly causal function of ve[n],

Ely3[n]] < 2E[(a"2[0))?] + 2E[(a"?us[0] + w1 [n — 1])*] + E[v3 [n]).

By Lemma 4.10, we have




Therefore, the received signal power is upper bounded as

2 21,2 a*"=b p 2
Efly3[n]] < 2a™ 05 + 271 T—w + Efv3[n]].
a?w

Thus, we can conclude

Y EW3n)

0<n<k—1
2(n71) P
< 2n 2 2
< Z 2a*" 02 + 21 o —+o
0<n<k—1
2(n 1) P
=214 +a?* V)52 4 Z 7+k03
0<n<k—1 w17 W
1—qa 2%k 9l — a2k P
9q2(k—1) 9 ko2
Tz o+ 20 1—a 2 ( A=)
2a2<k—1)08 n 2ak—2 P 4 ko?
- 1—a? 1—a=2( 3—)(1 —w) v

Using this, we can upper bound the mutual information.

I(z[0]; y2[0 : k — 1])
< h(y2[0: k —1]) — h(y2[0 : & — 1]]z[0])

g
0<n<k—1 v

(*.- geometric mean and arithmetic mean)

1 1 2a>k-Do2  2gF2 p
< clog | (1+ —( 0 4 — i )"
2 ko2* 1—a 1—a2( —=)(1 —w)

The last term is Ij. By plugging (4.16) into (4.15), we get

E[(z[0] — «[0])*] > 925,

which finishes the proof.

195

(4.16)
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(ii) We have

I(z[0]; y2[0 : k — 1])
< h(y2[0: k —1]) — h(y=2[0 : k — 1][z[0])
< Z h(yz[n]) — Z h(v2[n])

0<n<k—1 0<n<k—1

Y losneRlplnl) -

IN

v

1 1
log(2mec?) — 3 log(2mea’?)

1 H E[yQ[n]Q]) + %log(]E[yﬂk — 1]2])

I
I
—
°)
0
PN

o Ly Bl 1y Bl
0<n<k—2 v v

IN
I
—
o
Q
—

(*.- geometric mean and arithmetic mean)

1 2a2(k’2)08 n 2ak—3 P )),ﬁl
(k=102 1—a2 1—a2 (1—%)(1—11})

IN
NI pof =

log(1 +

1 a?k=2) p
log(1 + 7(2@“’“‘”08 +2

—
logh l— oy l-w

- ). (4.17)

The last term is I;,. By plugging (4.17) into (4.15), we get
E[(x[0] - [0])*] = o577
which finishes the proof.
(iii) We can repeat the proof of (ii) replacing the distribution of vs[k — 1] by uniform. O

In this lemma, the bound of (ii) is tighter than that of (i) since it excludes the last observa-
tion in the arithmetic-geometric inequality, but it is harder to compute. We also allow the variance
of the last observation noise to be different from the other ones, since we will replace it with another

distribution to adapt large deviation ideas.'®

4.6.5 Lower bound on the optimal cost based on Witsenhausen’s coun-

terexample

Now, we can combine the previous results to derive a lower bound that will approximately
match with s-stage signaling strategies. We will derive a lower bound on the weighted average cost
of Problem B, i.e. we will find functions DL7i(1ADI, ﬁ;) such that

1 - — —
inf limsup N Z qE[z*[n]] + rE[ui[n]] + roE[u3[n]] > min ¢Dr ;(Py, Py) + 71 Py + raPs.

ULU2 N o0 OSmenN P1,P2>0

16Even though large deviation ideas usually introduce a sequence of atypical noise, here the SNR of the last
observation dominates the SNR of all the other observations. Thus, it is enough to introduce atypically large noise
only to the last observation.
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Here, the lower bounds DLJ(E, Fg) can be thought as a lower bound on D(Py, P,), the
power-disturbance tradeoff, of Problem F. The first bound Dy ; is given in the following lemma,

and the rest will be given in Lemma 4.13 of page 208.
Lemma 4.12. Define St 1 as the set of (k1, k2, k, 0,4, a, ) such that

ki,kok €Nyoly, 0,3 € Ry,
k1 >1,ky—k1 =120,k > ko,
05,>0,0<a<]l,
1 when k1 =1
0<x¥< a?k1-Dg2 >0

when k1
o2, 2(k1-2) (1 _o—2(h1—1D) =
+Z ;)( L L)+o2,

’U

l—a—

We also define DL,l(E,E; ki, ko k,olq, %) as follows:

DLl P17P2ak13k27k O'U27O[ Z

a2k—h)y a2(k F-1)(1— (2.5a=2)k2=k1) Py
“oer(m) 1 —2.502 1—251

a2(k=k2=1)(1 — (2.5q=2)k—k2) 2 5k2—k1 Py a2(k=k2=1)(1 — (2.5a=2)k—k2) P, )
B 172.5a 2 1—251 1—25a"2 o5 1)+
a2(k—k1—1)2 a2(k=k1=2)(1 — (2.5a—2)k—k1-1) 2.5P;
921" (Py) 1725a 2 1—-25"1
aQ(kj—kz—l)( 2 5a_2 k— k2 P2 9
— 1 4.18
\/ 1- 2.5a*2 —2.571 et (4.18)
where
ko—ki—1 2q2(k2—2—F1) 2q2(k2—3—F1) 2.5P;
. == log(1 + (krkllq)ogz( Tz 2 T a7 (1—2.5a_2)(i—2.5_1)))
I'"(p) = ifky —k1—1>0
0 ifks—k —1=0
a2<k2_2_k1)ﬁl 1 2me

~ ~ 1 1
I'(P) =TI"(P,) + 5 los(1+ (72(2(12%2—1—“)2 +2
v2

(1-25a-2)(1— 2,571))) + 5 log(=) 10wz # 0lo)

207, exp(— U{i) if o2 £ 0
V2702 203, v2 7 T2

- !
1 if opa = 0lg

Let |a] > 2.5. Then, for all g,m1,72 > 0, the minimum cost (4.1) of Problem B is lower bounded as

follows:

inf lim sup% Z qE[2*[n]] + mE[ui[n]] + roE[u[n]]

“ot2 N—oo IV 02 2N

> sup ~min ¢Dy, 1(P1,P2, ki, ko k,ole,c, ) + r1P1 + 7"2P2
(k1,k2,k,0!4,0,5)ESL 1 P17P2>0
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Proof. For simplicity, we assume a > 2.5, k1 > 2, ko — k1 —1 > 0, k > ko, 042 # 0, 5. The remaining
cases when a < —25o0r k; =1lor kag —k; —1=0o0r k = kg or 0,2 = 0,5 easily follow with minor
modifications.

e Geometric Slicing: We first apply the geometric slicing idea of Section 4.6.1 to get a
finite-horizon problem. By setting o = 2.57! in Lemma 4.8, the average cost is lower bounded by

inf (qE[z[K]]

+r1 (1 =25 HE[WI k)] + (1 — 2.5 D25 Bul[ky + 1] + -+ (1 — 2.57 1) 2.5 HHRME[ [k — 1]))

=P,

+ 7y (1 = 2.5 HE[us[ka]] + (1 — 2.5 2.5 Eud[ka + 1]] + - + (1 — 2.57 1) 2.5 F I HR2E[2 [k — 1])))

=P,

Here, we denote the second and the third terms as f’; and TD; respectively. As we mentioned
in Figure 4.17, 4.18 and 4.19, we will relax the problem in two different ways — one with state
disturbance w[0] and the other one with w[1]. Let’s start with the former.

e Large deviation idea: As mentioned in Section 4.6.3, we will apply large deviation ideas'”

to valke — 1]. For this, we write va[ke — 1] as a mixture of two independent random variables:
’UQ[]{}Q - 1] =C- Ué[k)g - 1] + (1 - C)Ug[k’g - 1]

where C,vjke — 1],v4[ke — 1] are independent random variables whose distributions are given as

follows:
vylka — 1] ~ Unif[—0y5, 0]
2
= \/2710 - exp(fQZ—zz) for |v] > ol
f’l}é’[kz—l] (v) = 1 1 ° o2 al? /
b (exp(—5ta) — exp(—248)) for v] < ol
1 w.op. c
C= P
0 wp. 1l-—c
20'1') af
where ¢ = oz exp(f%g2 ).

e Three stage division: As mentioned in Section 4.6.2, we will divide the finite-horizon

problem into three time intervals. The following definitions of U;; correspond to the first and second

17 As mentioned before, large deviation theory usually replaces the whole noise sequence with a “typically atypical”
one. However, for simplicity of computation, we will only replace the last observation noise. The Gaussian observation
noise va[ka — 1] will behave like a uniform observation noise with larger variance with a certain probability. Thus,
we can replace va[ka — 1] with a uniform random variable with larger variance by multiplying by the corresponding
probability. See [37] for the details of the idea.
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controller’s input in these three intervals shown in Figure 4.16, where the indices ¢ and j represent

the controllers and time intervals respectively.

W= aw[k — 2] + - - - + a* " 1w[0]

Uiy = akfzul[l] 4+ 4+ akiklul[kl —1]

Uig := ak_kl_lul[kl] 4.4 ak_kzul[k:g —1]
Ups = a¥F2= 1y, [ka] + -+ +ur[k — 1]

Uy = ak72u2[1] 4o aF TRy, [k1 — 1]

Usy := ak_kl_lug[kl] + 4 ak_kng[kg —1]
Ups == a* ™ uglko] + - -+ + up[k — 1]

W o= (wlk — 1, wlk — 2], wll])

The goal in this proof is grouping control inputs into U;;, where each U;; can be thought as either
power-limited or information-limited inputs. By expanding z[n], we reveal the effects of the controller
inputs on the state, and then isolate (and bound) their effects according to their characteristics.

e Power-Limited Interval: Let’s first handle the third interval using Cauchy-Schwarz in-

equalities. Notice that

z[k] = wlk — 1] 4+ aw[k — 2] + - - - + a* " Lw[0]
+ur[k — 1]+ aug [k — 2] 4 - + a* 2y [1]
+ug[k — 1] + auslk — 2] + - - - + aF 2uy[1]

Therefore, by Lemma 4.1

E[z?[k]] = E[(W 4 U1 + Uiz + Urs + Ua1 + Una + Uss)?] + E[w?[k — 1]]

> (VEI(W + Un + Uz + Usi + Uza)?) — \/EIUZ] — /EU)% +1 (4.19)

Here, we can notice that E[(W + U1y + U1z + Ua1 + Uaz)?] is not affected by the controllers’ inputs
in the third interval.
e First controller’s input in Witsenhausen’s interval: We will also separate out the effect of

the power-limited (first controller’s) input in the second interval, Ujo, and introduce large deviation
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ideas.

E[(W + Uy + Uy + Usy + Uzz)?]
= E[E[(W + U1y 4 Urz + Uz + U)?|C]]
= E[(W + Uni + Uiz + U1 + Uz2)?*|C = 1]P(C = 1) + E[(W + U1 + Una + Us1 + Us2)?|C = 0]P(C = 0)

> E[(W + Ui + Uz + Usy + Usp)?|C = 1]P(C = 1)
= c-E[(W + Uyy + Ura + Uz + Uz)?|C = 1]

> o(\/E[(W + U1 + Ua1 + U)?|C = 1] — \/E[U3|C = 1])% (4.20)

Here, we can notice that by the causality of the system, C only affects the inputs us[ks — 1] and

uq[ka]. Thus, ug[l : ko — 2] and uq[l : k2 — 1] are independent of C'. We can also notice E[(W +
U1 + U + Uss)?|C = 1] has only information-limited inputs.

o Information-Limited Interval: Using Lemma 4.9, we will bound the remaining uncertainty
of the state after the information-limited interval. Since we will grant all disturbances except w[0] as
side-information, we denote the relevant observations as yj[n] and y4[n]. Formally, let y;[n], v4[n],
W', W", Uy, Uly be as follows:

[n] == a™ 'w[0] + v1[n]

yoln] := a" " w[0] + va[n]

W =W —E[W|yi[1: k- 1,041k — 1], W,C = 1]

W = EWIWL[1: by — 1,41 : b — 1], T, C = 1]

Usy := Uss — E[Usa|yy[1 : k1 — 1], y[L : by — 1], W, C = 1]
5o = E[Us|y1[1: k1 — 1], 95[1 : k1 — 1], W,C =1]

Here we can notice W, y1[1 : k; — 1], 95[1 : k; — 1], W are independent of C' and
W' = a* " w[0] — E[a* Yw[0]|y}[1 : k1 — 1], y5[1 : ky — 1]].

Since w[0],y1[1 : ki — 1],95[1 = ki — 1],W are jointly Gaussian, W' is independent from y}[1 :
k1 —1],y5[1 : k1 — 1], W. By Lemma 4.9 we have

E[W"?|C = 1]
= E[(a"'w[0] — E[a" 'w[0][y[1 : k1 — 1], 95[1 : k1 — 1]])?]

2(k—1) -2

a 0,1
- o2, az(klfz)(lfagﬂkl*l)) 5 (4.21)
(1+ 032; )( 1—a-2 )+0v1

2

This lower bounds the uncertainty in the state due to w[0] after the state has been observed through
yi[l: ky — 1] and 941 : ky — 1].
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Note that y1[1 : k;y — 1],92[1 : ky — 1], W are functions of y[1 : ky — 1], 95[1 : ky — 1], W.
Therefore, U1 and Us; are also functions of yj[1 : k1 — 1],y5[1 : ky — 1], W. Since (W', U,) are
orthogonal to all functions of (yi[1 : ky — 1],95[1 : k1 — 1], W), (W’,U},) are also orthogonal to
(W", U1, Uz, Us,). Moreover, since E[W’ + Uj,] = 0 and the conditioning on C' = 1 can be ignored

due to causality, we can conclude

E[(W + Uy + Uay + Ua)?|C = 1]

=E[(W' +W" + U1 + Un + Usy + Ugy)?|C = 1]

=E[(W' 4 U}y)?|C = 1] + B[(W" 4+ Uy + Uy + Usp)?|C = 1]
> E[(W' + Upy)?|C = 1].

In the last term, the effect of the information-limited interval inputs is separated out.

e Second controller’s input in Witsenhausen’s interval: We will bound the remaining un-
certainty of the state after it has been estimated by the second controller in the second time interval.
For this, we will reduce the problem to the state amplification problem of Section 4.6.4, and apply
Lemma 4.11.

U}, is a function of yo[1 : ke — 1], 94 [1 : ky — 1], y4[1 : ky — 1), W. Here, y4[1: k1 — 1], 95[1 :
ki —1], W are independent from W’ and ys[1 : k; — 1] is a function of y/;[1 : ky — 1], y4[1 : ky — 1], W.
Therefore, only yslk1 : ko — 1] are dependent on W’. Moreover, y1[1 : k3 — 1] —and therefore,
up [l : ky —1]— is a function of y}[1 : ky — 1], y4[1 : k1 — 1], W, so they are also independent from W'.

Now, we can subtract the independent part from W’ from the observation yo[k1, ko — 1]

without losing information about the state. First, consider ya[k1].

yalk1] — (wlky — 1] + awlky — 2] + - + a™ 2w[1]) — E[a™ " tw[0])|yi[1 : k1 — 1], yb[1 : k1—]]
— (ur[k1 — 1] + auy [ky — 2] + - - - 4+ aF 2y [1])
— (ur[ky — 1] + auq [ky — 2] + - - - 4+ a" 2y [1))
= a7 1w[0] — Ela® ~tw[0]|y4[1 : ky — 1), 95[1 : ky — 1]] + va[kd]
= aMTRW gk
Likewise, we can subtract the independent (from W’) part from ys[k; + 1]. Furthermore, us[k;] can

also be subtracted from ya[k; 4+ 1] without losing information since the second controller already

knows about us[k;]. Thus, the information about W’ in ys[k; + 1] is in

a"w[0] — Ela® w[0]|y}[1 : k1 — 1], 95[1 : k1 — 1]] 4 up [k1] + va[k1 + 1]
= " TR g [k 4 velky + 1)

In the same way, we can extract the relevant information about W’ from the observations yo[n]. It

is worth to mention that conditioned on C' = 1, valke — 1] is replaced by v4[ke — 1], and thus the
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information about W' in ya[ke — 1] is

a™22w[0] — E[a®2w[0]|y}[1 : k1 — 1], y5[1 : k1 — 1]]
+ U1[k2 — 1] + aul[kz — 2] +--- 4+ akz’_kl_lul[lﬁ] + Ué[k’g — 1]
= gF2—k—1yy “+ uy []62 — 1] + aul[kg — 2] + -4 (le_kl_lul [k‘l] + ’Ulz[kig — 1].

Moreover, as we mentioned, the conditioning C' = 1 does not affect u;[k; : k2 — 1] by causality. We

have

E[(1— 25" Yud[kr] + (1 — 2.5 2.5 M2k +1] + - + (1 — 2.5 2.5 Fethtly 2k 1]|C = 1]
<P <25P.

Therefore, we can see that after removing the independent (from W') part from ys[k; : k2 — 1] the
problem reduces to the state amplification problem of Section 4.6.4. By plugging x[0] = a® ~w[0],

k=ky—ki, w=25"1 P=25P and 02 = ¥ (which comes from (4.21)) in
8

— ! /
Oy = Oy2, Oy = 049,

Lemma 4.11 (iii), we have!

&2(k_k1)2

/ /1 \2 _
E[(W' +Uy)*|C =1] > 2 ()

(4.22)

e Power-Limited Inputs: As mentioned before, causality implies C' is independent from

y1[1 : k2 — 1] and thus Uje. Then, we can upper bound the power of the power-limited inputs.

E[UZ|C = 1] = E[U3)]
= E[(a* " tuy k] + - + " ug [k — 1))7)
— 2FFRIE[(a* R Ly k] -+ ke — 1])7]

a?k=ki=1)(1 — (2,50~ 2)k2—k1) (E[u[k1]] + - + 2_5—(k—k1_1)E[u?[/€2 —1]])

- 1—2.5a2
a2(k—k1—1)(1 _ (2'5a—2)k2—k1) ﬁ;
= 1—2.5a2 1-25-1 (4.23)

where the first inequality comes from Lemma 4.10 with parameters ¢ = a and b = 2.57!. Likewise,

by applying Lemma 4.10 with paramters a = a and b = 2.57!, we have

E[UR] = E[(a* " tug [ky] + - + w [k — 1])?]
a2(b=k2=1) (1 _ (2.542)k~k2)

(E[u?[ka]] + - - - + 2.5~ k=R~ DE[2[k — 1]))

= 1- 25072
a?(F=k2=1)(1 — (2,507 2)k~F2) 2.5k~ k1 Py
= 125072 12571 (4.24)

8Here, we have to use (iii) of Lemma 4.11 instead of (i) since in the last observation the SNR, (Signal-to-Noise
ratio) is too big to apply an arithmetic-geometric inequality together with the previous observations.
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and

E[U33] = E[(a"**  ug[ks] + - + ua[k — 1])?]
a2(k—k2—1)(1 _ (2.5a_2)k_k2)
- 1—2.5a"2
a2(k—k2—1)(1 _ (2.5a—2>k—k2) ]3;
1—25a2 1-25-1"

(E2ls]] + - + 2.5~ R DEp2[E — 1))

< (4.25)

e Lower bound from w[0]: Finally, by plugging (4.20), (4.22), (4.23), (4.24), (4.25) into
(4.19)

a2(k7k1)2 a2(k Fi=1)(1 — (2.5a-2)k2=k1) Py
“oer (B 1 — 2,502 1-2571

\/a2(kk21) 2 5a— 2 k— k2) 2. 5k2 klp1

1—2.5a—2 1—2.5"1
a2k=k2=1)(1 — (2.5a=2)k=k2) P, )
; \/ 1 —2.502 a5+t ] (4.26)

e Lower bound from w[1]: As we mentioned in Figure 4.17, 4.18 and 4.19, we will repeat
the above derivation for w[1] instead of w[0].

Let’s denote

Uy = a*2u, ) +---+ ak_kl_lul[k;l]
Upg i= a* M2y [ky + 1] 4 -+ ug [k — 1]
Uy = ak_QuQ[l] + -4 ak_kl_luQ[kl]
Uy = a" M 2ug[ky + 1] + - + a¥ F2uy[ky — 1]
W= (wlk — 1), wlk — 2], -, w[2], w[0])
Compared with the previous case, U,y and Us; include extra input signals uq[k1] and ug[k;] since
w[1] is generated one time-step later than w[0]. Uy includes all power-limited inputs of the first
controller.
Like before, Tj}j groups the controller inputs into either information-limited or power-limited
ones. Then, we will isolate the effect of the inputs sz‘j to the state z[n] according to their categories.
e Power-Limited Inputs: Like the previous case, we first isolate the power-limited inputs.
However, unlike the previous case, we do not need to introduce any large deviation ideas. By

Lemma 4.1,

E[l‘2[l€H = E[(W + (711 + ﬁ12 + ﬁgl + ﬁzz + U23)2] +1

\/IE W + Uyy + Uz + Usy)? \/]E UZ)] —\/EUZDZ +1 (4.27)

Now, the resulting E[(W + U 11 + 1721 + (722)2] has only information-limited inputs.
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e Information-Limited Interval: Like before, we will bound the remaining uncertainty of

the state after the information-limited interval using Lemma 4.9. Denote y1[n] and y2[n] as follows:

Gul1] == vi[1]

o[1] = va[l]

For n > 2

Giln] := a"2w[l] + v [n]
Joln] := a"2w[1] + va[n]

Wi =W —E[WI[Gi[1: ki, 521 : k1], W]
Wi = E[WIG[1: k), B2l : k], W]
Uhy = U — E[Unlf1[1 : k1], Ba[L : ku], W)
Uy = E[Usa|t1[1 : k1, o[l : ka], W]

Here we can notice
Wi = ak_zw[l] - ]E[ak_2w[1]\§j1 [1: k1], 92[1 : K1]]

Since w([1],71[1 : k1], 95[1 : k‘l],w are jointly Gaussian, Wi is independent from [l : k1], 75[1 :
k1], W. By Lemma 4.9 we have

E[W{%]

= E[(a"?w(1] — Ela*w[1]|ga[1 : k1], Ga[1 : ka]])?)
a2k=2)52,
= o2\ a2k1-2) (1_g—2(h1—1)) 2 (4'28)
(14 288 )( j— )+ 0o

v2

This lower bounds the remaining state disturbance due to w[1] after it is observed by 9|1 : k1] and
Ya[l : k1]

Note that yi[1 : k1], y2[1 : kﬂ,W are functions of y1[1 : k1], 92[1 : kl],w. Therefore, 511
and Us; are also functions of il k1], 2(1 ¢ k], w. By repeating the previous argument, we can

conclude

E[(W + Uy + Uz1 + Un)?)
= E[(W] + W + Uy + Uays + Uy + Ugh)?]
= E[(W] + U3)?] + E[(WY' + Un1 + Ui + U3)?)
> E[(W] + Usy)?].
In the last term, the effect of the information-limited inputs is separated out.

e Second controller’s input in Witsenhausen’s interval: Like before, we will reduce the

problem to the state amplification problem of Section 4.6.4, and apply Lemma 4.11. Only the
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observations ya[k1 + 1 : ko — 1] are relevant to W7. Here, we also have the power constraint on u;
E[(1—2.5 Yul[ky + 1]+ - 4+ 2.5 F2H+22[k, — 1] < 2.5P;

Like before, after removing the independent (from W]) part from the observations yo[k1 + 1 :
ky — 1], the problem reduces to the state amplification problem of Section 4.6.4. By plugging
2[0] = a" (1], 00 = ou k= ko — k1 — 1w = 2.5°1, P = 2.5P, and 62 = ¥ (which comes from
(4.28)) to Lemma 4.11 (i), we have!®

q2(k—k1—-1)x

/ T \2
E[(W] + Uyy)<] > 5217 (Pr)

(4.29)

e Lower bound from w[l]: By applying Lemma 4.10 with the parameters a = a and
b=2.5"1 we can upper bound the power of the power-limited inputs.
E[U7) = Bl(a* " 2us by +1] + -+ 4w [k — 1])?]
a®*k1=2)(1 - (2,507 2)Fk1-1)  25P

< 4.

- 1—2.5a2 1-25-1 (4.30)
Therefore, by plugging (4.29), (4.30), (4.25) into (4.27) we get
a2(k7k171)2 a2(k=k1=2)(1 — (2.5q=2)k—k1-1) 2.5P;
221" (P1) 1—2.5a72 1-2571
a2(k—k2=1)(1 — (2.50-2)k—k2) P,
- 1 4.31
\/ 1—2.5a—2 1—2.5—1)++ (4:31)
e Final Lower bound: By (4.26) and (4.31), for all 0 < o < 1
22
a2(k—k1)2 2(b=k1=1)(1 — (2.5a-2)k>—F1) Py
@) 1-25a2 1-2571
- a2(k=k2=1)(1 — (2.5q-2)k—k2) 2. 5k2—k1 P, B a2(k=k2=1)(1 — (2.5q-2)k—k2) P, .
1—25a2 1—2571 1—25a2 1—25-1"7F
a2h—k-Dy [ g2(k-ki-2)(] — (2.5a-2)k—k1-1) 2.5P;
921" (Py) 1 —2.5a72 1—-25"1
a2(k‘7k2271 17 2 5a~ 2 k— kg p2 5
- 1
\/ 1-— 2.5a—2 a5+t

O

In this lemma, the time-interval from 0 to k; — 1 corresponds to the information-limited
interval in Figure 4.16. The time-interval from k; to ks — 1 corresponds to the Witsenhausen’s
interval in Figure 4.16. The time-interval from ko to k corresponds to the power-limited interval in
Figure 4.16.

9Unlike the previous part, we apply (i) of Lemma 4.11 instead of (iii) since the SNR is small enough for all
observations.
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Costly
Input
yl!_OL 5| Cl[O] I yllufl_] a| C1[k1] I yl[k Fl])l C[k-1] I
ul[O} | ul[kl] 1 ul[k — 1]
|

7[0] —oD—> - Cv[k:1]—6>€9—>x[k1 1] joeealle — 1> afk] S5

1 1
i us|0] : us (k1] : uglk — 1]
—>| | - —>| k L= 3 Cylk-1
yZ'[(TJ G,lo] yQ[‘kl] Cylk,] ‘ yQ[k -1 o[k-1]
Costly
Input
Information Limited Radner’s Problem Power Limited

Figure 4.23: The general finite-horizon problem structure to justify the infeasibility of O-stage sig-
naling strategies. Like the one in Figure 4.16, the problem consists of three time intervals. However,
unlike Figure 4.16, we can see Radner’s problem between the information-limited and power-limited

intervals.

4.6.6 Lower bound on the optimal cost based on Radner’s problem

As we discussed in Section 4.3.1, Radner’s problem cannot be understood using the binary
deterministic models and thereby is fundamentally different from Witsenhausen’s counterexample.
Essentially, it says the communication between controllers requires at least one step delay, and for the
observations obtained at the same time step, nonlinear strategies do not improve the performance.
Therefore, so-called ‘0-stage signaling’ is impossible.

Sine Radner’s problem is a sub-block of the infinite-horizon problem 4.1, we also need a
lower bound based on Radner’s problem to bound the infinite-horizon problem within a constant
ratio. Figure 4.23 shows the general structure of the lower bound for the case. As we discussed in
Figure 4.16, the information-limited interval from time step 0 to ki is introduced due to the case
02, > 0 and the power-limited interval from time step k; + 1 to k is introduced due to the case
Py, < o0.

However, between these two time intervals, we can see the difference. Even though the
first controller has better observations and the second has worse observations, if this significant
unbalance between two controllers lasts for only one time step, implicit communication between the
two controllers is nearly impossible and nonlinear strategies cannot help that much. To capture this
effect, we replace the MIMO Witsenhausen’s problem with Radner’s problem.

Like Lemma 4.9, the following lemma gives a lower bound on the weighted average cost of

Problem B when Witsenhausen’s interval is replaced by Radner’s.



Lemma 4.13. Define a set Sp.2 as a set of (k1,k, %) such that
ki, ke N,Y € R,
ki >1,k>k +1,

1
0<¥u< @1 Dk,

)+od,

o2 a2(k1—2) (1 _4—2(k1—1)
(1+25L)( T .

We also define DL)Q(?:“E; k1,k, %) as follows:

DL,2(/PV1, Pk, k,3)

= inf (\/aQ(’f—kl—l)((a —c1 — 2)?E + 3ol + cdo?y)

c1,c2€R
a2(k=k1-2)(1 — (2.5q-2)k—k1-1) P,
a 1—2.502 (1 -25-1)2.5-1
a2(k=k1=2)(1 — (2.5 2)k—k1-1) P,
B 1—2.5a"2 (1-25"1)2.5-1

st (1—-25 (S +02) < P
(1-25"HE(S+02%) < P,

2
2+
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Let |a| > 2.5. Then, for all q,r1,79 > 0, the minimum cost (4.1) of Problem B is lower bounded as

follows:

inf lim sup% Z qE[2*[n]] + rE[ui[n]] + roE[ud[n]]

Utz N—oo IV 00N

> sup min gDy o(Py, Py k1, k, %) + 11 Py + ro Py

(k1,k,5)€SL,2 P, P2>0

For ki, k € N, define Sr. 3, Sp 4, DL)g(E,E;kl) and DL’4(E,E,I<:) as follows:

SL,;), = {kl € N}
SL74Z={]<Z€N5]€22}

P D 2(k1—-1) 42
Dy 3(P1, P ky) = max( a o

‘731 )( a2(k1’2)(17a*2(k1’1)))

2 )
o 1—a

(1+

g

q2(k—2)

1—-25a=21-25"1

D P 2(k—2) D
DL,4(P1,P2;]€) = (m_ \/ a P B \/

1-25a=21-2.5"1

(4.32)

(4.33)

Then, when |a| > 2.5, for all q,r1,r2 > 0, the minimum cost (4.1) of Problem B is also lower bounded

as follows:

inf limsup i Z qE[IQ[nH + T1E[U% [n]] + T2E[U§ [n]]

Ht2 N—oo 0<n<N

k1 ESL,g P1,P>>0

> sup _min qDL,s(E,E;kl)JrhEJrrzE
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and

inf limsup 1 Z qE[2?[n]] + mE[u[n]] + r2E[ui[n]]

“tz N—oo 0<n<N

> sup

min gDy 4(Pr, Pa; k) + 1Py + 72 Ps.

kESLA P1,P>>0

Proof. For simplicity, we assume a > 2.5, k1 > 2, k > ky + 1. The remaining cases when a < —2.5
or k1 =1 or k= ki + 1 easily follow with minor modifications.
e Geometric Slicing: We apply the geometric slicing idea of Section 4.6.1 to get a finite-

horizon problem. By putting @ = 2.57' and ko = k; to Lemma 4.8, the average cost is lower
bounded by

inf (qE[2[K]]

Uy,u2

+r (1 =25 HE@I[k1]] + (1 — 2.5 D25 ' B[wl[ky 4+ 1]] + - + (1 — 2.5 D25 MM ER2 [ — 1))

=P

+ 7o (1 =25 HE[wWS[k]] + (1 — 2.5 2.5 Eud[ky + 1] + - + (1 — 2.57 1) 2.5 HME[L2 [k — 1]))

=P

Like the proof of Lemma 4.13, we denote the second and the third terms as ?1 and ?2 respectively.

e Power-Limited Interval: Denote

Wy = a" M 2wk + 1] + -+ + aw[k — 2]
U12 = akikliQ’U,l[kl + 1] + o4 Ul[k — 1]
U22 = ak_k1_2u2[k1 + ].} + -4 ’Lbz[k — 1]

Here, U5 and Uss correspond to the first and second controller’s input in the power-limited intervals

described in Figure 4.23. We will first handle these power-limited inputs. Notice that

z[k] = " F gk + 1) 4 @R P [k 4 1) - un [k — 1)+ o TR [k + 1) 4 -+ uplk — 1

+a R Rk 1) 4k — 1.

Since x[k1 + 1] and Wy are independent by causality, using Lemma 4.1 we can lower bound E[z?[k]]
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as
E[z*[K]]
=E[(a* "7 x[ky + 1] + Uia + Uy + W) +
> (yJEl(ah*1—talky + 1] + Wa)2) — \/EUR] — /EUZ])? +1
= (y/El(@*41-Yalky + 10)%] + EIWZ] — /EUR] — \/EUR)? +1

> (fa2=k-VE[lk; + 12 — /E[UZ] — \/EUZ)% +1. (4.34)

Here, E[z[k; + 1]?] is lower bounded as

Elz[ky 4 1]%] = E[(az[k1] + w1 [k1] + ua[k1] 4 w[ki])?]
= E[(ax[ki] + u1[k1] + uz[k1])?] + Efw[k:]?)
E

axr|ki| +
[(ax[k:l] + uq [kl} + u2[k1])2]. (435)

v

In the last term, the effect of the power-limited inputs is separated out.
e Information-Limited Interval: Using Lemma 4.9, we will bound the remaining uncertainty
of the state after the information-limited interval. Since we will give all the disturbances except w]0]

as side-information, we denote the relevant observations as yj[n] and y4[n]. Formally, denote

Wy = a" " tw(0] + - + wlky — 1]
Uiq := akl*lul[O] + -+ Ul[lﬁ — 1]
U21 = CLk1711L2[0] 4+ 4 UQ[kl — 1]

Yi[n] = a" " w[0] + va[n]

/

ya[n] == a" " w[0] + v2[n]

Wi =Wy —E[Wi|y[1: ki — 1], y5[1 : ks — 1], W]

Wi =E[Wilyi[1: k1 — 1,951 : ky — 1], W]

wi k1] = i [ka] = Elun [ka]|yi (1 by — 1], 95[1 s by — 1], W]
uf k1] := Elua [ka][yy[1: k1 — 1), y5(1 : by — 1], W]

uslki] := ua k] — Elug[kn][yy [1: k1 — 1], y5[1 : k1 — 1], W]

ug (k] o= Blua[k]lyy [ k1 — 1), gL by — 1], W]
Here, we have
W, = "~ 1w([0] — E[a® w[0]|y}[1: k1 — 1], y4[1 : ky — 1]

Since w[0],y1[1 : k1 — 1],95[1 : ky — 1], W are jointly Gaussian, W] is independent from yj[l :
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k1 —1],95[1 : k1 — 1], W. By Lemma 4.9 we have

az(qu)ggl

E[W{?] = (4.36)

2 2(k1—2)(1—q—2(k1—1)
1+ Zp) (2o T )y 4 62

v2

This lower bounds the state disturbance due to w[0] when it is observed by y{[1 : k1 — 1] and
yb[1 : k1 —1]. Note that y1[1: ky — 1], y2[1 : k1 — 1], W is a function of y/;[1 : ky — 1], y4[1 : k1 — 1], W.
Therefore, Uy and Us; are also functions of yj[1: ky — 1], y4[1 : k1 — 1], W and (4.35) can be lower

bounded as

E[(az[k1] + ui[k1] + ualki])?]

= E[(a(W; + Ur1 + Ui2) + u[k1] + uz[k1])?]

= E[(aW] + v [k1] + uy[k1])?] + E[(@W] + aUyy + aUrg + !/ [k1] + ub [k1])?]

> E[(aW] + u}[k1] + uh[k1])?] (4.37)

In the last term, the effect of the information-limited inputs is separated out.

e Radner’s Interval: Now we will reduce the last term of (4.37) to Radner’s problem.
uy[k1] and ublki] are functions of yi[1 : k1], vi[1 : k1 — 1], 94[1 : ky — 1], W and ya[l : k1], 941 :
k1 —1],y4[1 : k1 — 1], W respectively. Here, y{[1 : k1 — 1], 95[1 : ky — 1], W are independent from W/
and yi[1 : k1 — 1], 92[1 : k1 — 1], W is a function of y{[1 : ky — 1], y4[1 : k1 — 1], W. Therefore, only
y1[k1] at the first controller and ya[k1] at the second controller are relevant to W{. Therefore, by

removing independent parts from W7 in y;[k1], the sufficient statistic of y;[k1] is

yilk] = (wlky = 1] + awlky — 2] + -+ a" "2w[1]) — E[a™ w[0][y [1 : ky = 1], 5[ : k1 — 1]]
— (ur[kr — 1] + aug[ky — 2] + -+ + @ "2y [1])

— (uglky — 1] + aug[ky — 2] + - - - + a®1 7 2uy[1])

= a" (0] — Ela™ T w[0]jyi [1: k1 — 1), 95[1 ¢ k1 — 1] + w1 [k1]

= Wi + v [kq]

Likewise, y2[k1] can be reduced to
Wll + v9 [kl]

Therefore, by considering W] as an initial state, vi[k1] and va[k;] as observation noises of the first
and second controller, we can map the problem into Radner’s problem. Here, we have the following

power constraints on wuq[k1] and us[k1].

(1-25"E[uilk])] < Py
(1-25"")E[uski]] < Py
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Since a linear strategy is optimal in Radner’s problem, by (4.36) we can conclude

E[(aW] + ) [k1] + ub[k1])?] > cligfe]R(a —c1 — @)Y+ ol + cdod, (4.38)

st. (1-25"Hcf (X +02)) < P
(1-25")3(S+0%) <P,

e Final Lower bound: Applying Lemma 4.10 with paramters a = a and b = 2.57!, we can

upper bound the power of the power-limited inputs.

E[U7] = E[(a"" " Pua[ky + 1] + - + w [k — 1))

< a?(F=k1=2)(1 — (2.5 2)k—F1—1) P, (4.39)
< 1—2.502 (1-2571)2.571 |
and likewise
a?(F=k1=2)(1 — (2.5a=2)k—F1—1) P,
. 4.4
U] < 1— 2502 (1—25-1)2.5"1 (440

Finally, plugging (4.38), (4.39), (4.40) into (4.34) gives the first bound based on Dy, o(Py, Py; k1, k, ):

E[z*[n]] > inf <\/ a2k=k1=1)((a — ¢1 — €)% + 202) + c302,)

C1,C2

a2(k=k1=2)(1 — (2.5q—2)k—k1-1) P,
B 1— 2502 (1—-25"1)2.5-1

a2(k=k1-2)(1 — (2.5q-2)k—k1-1) P, )
_ )+ +1
1—25a—2 (1-25-1)25"1

st. (1-25NAE(S+02) <Py
(1-25NA(S+0%) < P,

The second bound based on DL,g,(f':7 Py ky) derived as follows. Since E[z2[n]] > E[w?[n — 1]] = 1,

trivially Dy, (E, E) > 1. Moreover, as justified above, we have
E[#*[k1]] > E[(a" ~'w[0] — E[a* ' w[0)|y{ [1 : k1 — 1], 95[1 < k1 — 1))*] = E[W{?].

Therefore, by setting k = k1 we get the second bound based on DL73(/PZ, E; k1).

The last bound based on DL,4(E, ?2 ; k) of the lemma can be derived as follows.
E[z*[k]]
> (y/Bl(@1w(0] + -+ wllk — 1)2] = /B[t 0] + -+ + ik~ 1)2]

— El@* ugf0] + -+ ualk — 1)2])%

2(k—2) P, 2(k—2) 23
Z(\/aQ(kl)\/ a 1 \/ a 2 )2

1—-25a=21-25"1 1—25a=21-25"1

where the first inequality follows from Lemma 4.1 and the second inequality follows from Lemma 4.10.
O
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In this lemma, the time-interval from 0 to k; — 1 corresponds to the information-limited
interval in Figure 4.23. The time-interval from k; to k1 + 1 corresponds to the Radner’s interval
in Figure 4.23. The time-interval from k; + 1 to k corresponds to the power-limited interval in
Figure 4.23.

4.7 Constant Ratio Optimality

Now, we have an upper and lower bound on D(P;, P»). In this section, we will evaluate
the bounds and prove Theorem 4.1 which bounds the weighted average cost within a constant ratio.
Even though the numerical evaluations are not elegant?’, these are enough to justify constant ratio
optimality.

The upper bounds are written from the power-disturbance tradeoff perspective of Prob-
lem F and denoted by (Dy(P1, P2), P, P2). The lower bounds in Lemma 4.12 and 4.13 are given
for the original weighted average-cost of Problem B, which can be written as (DL,Z-(.’PZ, };)7 ’PZ, E)
from the power-disturbance perspective. The following lemma tells us that if these two trade-
off regions are within a constant ratio of each other as regions in R3, i.e. Jc > 1 such that
(Dy(cPr,cPy),cPr,cPs) < c¢- (D i(Pr1, P2), P1, Py), then the average cost can be characterized to

within a constant ratio.

Lemma 4.14. For two functions DL(E,]S;) and Dy (Py, Py), let there exist ¢ > 1 such that for all

T1,T2 >0
Dy (cxy,cxs) < c¢- Dp(xy,x2).
Then, for all q,r1,m9 > 0, the following inequality holds.
Plrlevignzo qDy(P1, Py) + 1Py + 1Py < C(EI%HZO qDL(P1, Py) + 11 Py + 12 Py)
Proof. Let P} and Pj achieve the minimum of the right term of the inequality, i.e.
min gD (Py, Py) + 1P +15P)

P1,P;>0

=qDr (P}, P})+r P +rP5.

20The bounds can probably be improved and tightened. However, the main concern of this chapter is not quantifying
the exact cost, but qualitatively understanding the near-optimal strategies. The constant ratio optimality results are
enough to justify our intuition behind the proposed strategies.
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Then, we have
¢(_min qDL(ﬁ;ﬁ;)-ﬁ-ﬁE-i—Tz]S;)
Py,P>>0
=c-(¢DL(Pl, P5) +ri Py +12P%)
> gDy (cPf,cP3) + ri(cPl) + ra(chy)

> min ¢Dy (P, Po) + 1Py + 2P
Py, P>
where the first inequality comes from the assumption of the lemma. Thus, the lemma is proved. [

We will show that the proposed strategies of Defintion 4.1 and 4.2 solve the weighted average
cost problem of Problem B to within a constant ratio. Let’s call the case when o2, < max(1,a?02;)
the weakly-degraded-observation case since the gap between the two controllers’ observation noises is
not too huge and the second controller can observe what the first controller observed only after one-
time step. Likewise, we will call the case when 02, > max(1,a%0?,) the strongly-degraded-observation
case since the gap between the observation noises is larger.

The weakly-degraded-observation case will be discussed in Section 4.7.1 and the strongly-

degraded-observation case will be covered in Section 4.7.2.

4.7.1 Weakly-Degraded-Observation case with |a| > 2.5

Let’s first consider the weakly-degraded case when 02, < max(1,a?0?2;), which corresponds
to the left half plane of Figure 4.9 of page 164. In this case, the infeasibility of O-stage signaling
discussed in Section 4.3.1 and 4.6.6 shows up and thus linear strategies are enough for constant-ratio
optimality.

First, we evaluate the lower bound of Lemma 4.13 which involves Radner’s problem.

Corollary 4.1. Let |a| > 2.5 and 02, < max(1,a%02%). Then, for all q,r1,72 > 0, the minimum

cost (4.1) of Problem B is lower bounded as follows:

1 — — —
inf limsup — Z qE[z%[n]] + mE[ui[n]] + rE[ui[n]] > min ¢Dp(Pi, Py) +r1 Py 4+ 2P,
ULU2 N oo O<meN Py,P>>0

where DL(E, ﬁ;) satisfies the following conditions.
(a) If P < 1o50° max(1,a%02)) and P, < 1650° max(1,a?02,) then DL(E,E) = 0.

(b) If P, < 15a° max(1,a02)), for all P, DL(E,E) > 0.176a%02, + 1.

(¢) For all Py and Py, Dy(Py, P3) > 0.295 - max(1, a202 ).
Proof. See Appendix 9.1. O

(a) and (b) tell what happens if the first controller has little power (i.e. it must follow
something close to a zero-input strategy). (a) shows if the second controller does not have enough

power, the system becomes unstable. (b) shows that even if the second controller has enough power,
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the state variance is lower bounded by the second controller’s observation noise. (c¢) shows that even
if the first controller has enough power to apply a zero-forcing strategy, the state variance is lower
bounded by the first controller’s observation noise.

The following lemma analyzes the achievable disturbance by the simple linear strategy of

Definition 4.1.

Lemma 4.15. Consider a single-controller scalar system

z[n + 1] = ax[n] + u[n] + wn]

yln] = e[n] + vn]

where wn] is i.i.d. N(0,1) and v[n] is i.i.d. N(0,02). For a given control strategy, let D(P) :=

limsup,,_, o & D 0<n<N E[z%[n]] and P :=limsup,,_, ., & D 0<n<N E[u?[n]]. Then,
(D(P), P) < (a*0? + 1,a*0? + a*0? + a?)

is achievable by a linear bang-bang controller, u[n] = —ay[n]. Therefore, in Problem F the following

power-disturbance tradeoffs are achievable.

(D(Py, Py), P1, P5) < (a*0?, +1,a%0?, + a®0?, +d?,0),
(D(Py, Py), P1, P5) < (a*02y +1,0,a*02, + a*c?, + a?).

Proof. Put u[n] = —ay[n] into the system equation. Then, we have

z[n + 1] = ax[n] — azx[n] — avin] + win]

= —av[n| + w[n]
Thus, we conclude for n > 1
E[z*[n]] = a*02 + 1
and

E[u®[n]] = a®E[(z[n] + v[n])?]
= aQ(aQUg +1+ 03)
O

Using Lemma 4.14, Corollary 4.1 and Lemma 4.15, we can compare the upper and lower
bounds to prove linear strategies suffice to achieve constant-ratio optimality in this region of problem

parameters.
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Proposition 4.7. There exists ¢ > 1200 such that for all a,q,r1,72,00,0u1, 042 Satisfying |a| > 2.5

and 02, < max(1,a%02,), the following inequality holds:

infu17u2eLlin,bb lim SUPN 0 % ZO§n<N ]E[qu[n] + Tlu%[ ] + 7‘2/“% [nH

infy, u, imsupy_, ., % Zogn<N E[gz?[n] + 7"1“1[ ]+ 7’2u2[ ]]

Proof. See Appendix 9.2. O

4.7.2 Strongly-Degraded-Observation case with |a| > 2.5

Let’s consider the strongly-degraded-observation case when o2, > max(1,a%02,), which
corresponds to the right half-plane of Figure 4.16. Since |a| > 2.5, we can find s € N such that

26=1) max(1,a?02%)) < 02, < a®* max(1,a%0?2;). We will show that the s-stage signaling strategy is

a
required for constant-ratio optimality.
Since we need a matching lower bound to s-stage signaling strategies, we evaluate Lemma 4.13

which has a generalized Witsenhausen’s counterexample in it.

Corollary 4.2. Let |a| > 2.5 and for some s € N, suppose

2(s—1 2 2 2 2s 2 2
a?C™ Y max(1,a%02)) < 02, < a?* max(1,a%0?)).

Then, for all q,r1,72 > 0, the minimum cost (4.1) of Problem B is lower bounded as follows:

1 — — —
inf limsup — Z qE[z?[n]] + mE[ui[n]] + roE[ui[n]] > min ¢Dp(Py, Py) +ri Py + roPs.

“ot2 N—oo IV (212N P1, P20

where Dy, (E, E) satisfies the following conditions.
(a) When E < 70%?371), then DL(E,E) > 0.008a%02, + 1.
— 3 —
(b) When P1 < =525 and Py < then DL(Pl,Pg)
(c) When m < Py < ggp5 max(a?, ato?)),
then D(Py, Py) > 0.2541a% P, exp( %) + 0.066a% max(1,a%02;) + 1.
(d) When W?z_l) <P < 35006 max(a?, a*o? ) and Py < 0.0457a2+D Py exp(—%) +
0.0113a2(+Y) max(1, a202,), then Dy (Py, Py) =
() For all P, and Py, Dy (P;, Ps) > 0.295 - max(l,a ).

28000 ’

Proof. See Appendix 9.3. O

(a) and (b) tell what happens if the first controller has little power and thus is forced to be
close to a zero-input strategy. Even if the second controller has enough power, the state variance is
lower bounded by the second controller’s observation noise. If the second controller does not have
enough power to stabilize the system, the state diverges to infinity. (e) shows the opposite case when

the first controller has enough power to apply a zero-forcing strategy. However, even in this case, the
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state variance is lower bounded by the first controller’s observation noise. (¢) and (d) cover the cases
between these two extreme cases. (c) gives the lower bound that matches to the s-stage signaling
strategy when the second controller has enough power. (d) shows that since the first controller does
not stabilize the system with its signaling alone, the second controller’s input power has to be large
enough to stabilize the system.

Now, we evaluate the performance of the s-stage signaling analyzed in Lemma 4.7 of

page 174.

Corollary 4.3. Consider Problem F of page 163, and let |a| > 2.5 and suppose >~ max(1, a?02,) <
02, < a?* max(1,a%02,) for some s € N. Then, there exists an upper bound Dy (Py, Py) on D(Py, Py)
i.e. D(Py,Py) < Dy(Py, Py) for all Py, Py > 0 satisfying the following:

2s 50a*¢—D p 2s 2 2
(Dy(Py, P2), P, Py) <(832a Pexp(fT) + 63a“° max(1,a“0y;),
v2
2(571)P
80000P, 6656a2(5+1)PeXp(75()(172) + 564426V max(1, a?02)))
02
for 70;% <P< m max(a?, ato?,).
Proof. See Appendix 9.4 0

Here we can notice that the performance is matching that of Corollary 4.2 (c), (d) in that
the bounds on the state disturbance take the same form of a function on P; and system parameters.

Now, we can compare these two bounds to prove constant-ratio optimality.

Proposition 4.8. There exists ¢ < 1.5 x 10° such that for all a,q,71,72,00,0v1,0v2 Satisfying

la| > 2.5 and
a?C™ Y max(1,a%0%)) < 02, < a®* max(1,a%0%)).

for some s € N, the following inequality holds:

01y s € Liin 1pULusg.c HSUPN o0 7 Do<nen Elgz’[n] + riuf[n] + raud[n]]

- - <ec.
infuy uy BMSUPN o0 3 Do<nen Elaw?[n] + riug(n] + raus[n]]

Proof. See Appendix 9.5 O

Now, Theorem 4.1 immediately follows from Propositions 4.7 and 4.8.
Proof of Theorem 4.1. Propostion 4.7 covers the case when o2, < max(1,a%02,). Propostion 4.8

covers the case when 02, > max(1,a%02,), since in this case there exists s € N such that

a?C™ Y max(1,a%02)) < 02, < a?* max(1,a%0?)).
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4.8 Connection to Wireless Communication Theory

VAT ¥ |A+B+n
jBAQ A Z A+2B4ny

9y

Tx

(a)

Tx jATl l Rx 2A+Il1
jAAQ A l 3A+n;

9y

(b)

Figure 4.24: MIMO Wireless Communication Problem: (a) By transmitting different signals across
the antennas, we can achieve ‘d.o.f. gain’. Generally, this scheme performs well in high-SNR.. (b)
By transmitting the same signal across the antennas, we can achieve ‘power gain’. Generally, this

scheme performs well in low-SNR.

Throughout the discussion, we have observed a lot of similarity between wireless commu-
nication and the decentralized LQG control problems considered in this chapter. In this section,
we will explore this point in more detail. At first glance, decentralized LQG control and wireless
communication seem pretty distinct from each other. But the main result in this chapter is actually
a manifestation of a deeper connection.

The essence of wireless communication problems [99] can be summarized as follows: First,
unlike wired communication, wireless communication systems share a common channel and as a re-
sult the signals from different transmitting antennas can interact with each other. Second, wireless
communication systems involve uncertainties or randomness that come from channel fading or ther-
mal noise in circuits. Third, to extend battery life and minimize interference to other transceivers,
each transmitting antenna has a power constraint.

The way that wireless communication theory models capture this nature is very similar
to stochastic control theory. First, the interaction between signals is modeled by linear operations.
Second, the uncertainty in the system is modeled by Gaussian random variables. Third, the power
of the transmitting antennas is measured by a quadratic cost. If we remember that wireless com-

munication systems are by nature distributed, wireless communication problems are essentially a
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special case of decentralized LQG control problems, except that wireless communication problems
have the special objective of communication.

Like decentralized LQG problems, wireless network communication problems are still open [29,
6] or nonconvex [115]. However, wireless communication theorists found that it is helpful to divide
cases according to the SNR(Signal-to-Noise Ratio). For a given communication scheme, the capacity
of a channel is usually given as log(1 + ¢;SNR + --- + ¢, SNRF). Therefore, when SNR is large
(high-SNR case), the capacity is approximately klog SN R (where k turns out to be the ‘d.o.f. gain’
of the scheme). When SNR is small (low-SNR case), the capacity is approximately ¢; SNR (where
¢ turns out to be the ‘power gain’ of the scheme). Therefore, depending on the SNR the capacity
of communication schemes are very different. Consequently, wireless communication theory usually
divides into two cases: (1) high-SNR (2) low-SNR.

Let’s consider the 2 x 2 MIMO communication problem shown in Figure 4.24. We can
think of two basic ways of exploiting these antennas. The first way is transmitting different signals
across different antennas. As we can see in Fig. 4.24a, in this case the receiver will have two variables
and two (noisy) equations, and we can expect ‘MIMO gain’ by solving for multiple variables. In
wireless communication theory, this gain is called the ‘d.o.f.(degree-of-freedom) gain’ and the scheme
of Figure 4.24a succeeds in increasing k in the capacity formula.

As we mentioned in Section 4.5.1, this concept can be extended to generalized d.o.f. by
allowing the transmitting powers of different antennas to scale differently [29]. When the transmit-
ting powers of different antennas scale differently, we can further divide a single receiving antenna
according to “signal levels”. For the small signal level, all tranmitting antennas can affect it, but
for the large signal level, only the few transmitting antennas with large power can affect it. In [6],
binary deterministic models were proposed to capture this phenomenon by conceptualizing different
bit-levels like different antennas, which we used in Section 4.3.

The second way of using the antennas is transmitting the same signal across different
antennas as shown in Fig. 4.24b. In this scheme, the receiver will have only one variable and we
cannot expect the d.o.f. gain of solving for multiple variables. However, there is a gain to be had
from aligning the signals. Let’s assume all random variables, A, B,ni,no, are Gaussian random
variables with zero mean and unit variance, and compute the signal-to-noise ratio at the receiving
antennas. The SNR of the first receive antenna in Fig. 4.24a is Mﬁ%ngﬂ = 2. On the other hand,
the SNR of the first antenna in Fig. 4.24b is Egé?%)f] = 4. Therefore, by transmitting the same
signal over different antennas we can increase the SNR of the received signals. This gain is known

as ‘power gain’ in wireless communication theory and the proposed scheme is good for increasing
c1 in the capacity formula. To exploit the power gain, the receiver has to introduce maximum-ratio
combining [99].

How is this relevant for scalar decentralized LQG control problems? To control a plant

we first have to gain information about its state. The quantitative behavior of this information
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Figure 4.25: As indicated by the blue circles, in the fast dynamics case the proposed scheme exploits
“information flow” from both controllers but ignores all past observations. By contrast, as indicated
by the red circle, in the slow dynamics case the proposed scheme exploits the information of only

one controller but takes into account all past observations.

flow (from a plant to controllers and finally back to the plant as we discussed in Chapter 3) is very
similar to that in wireless communication systems. More precisely, according to the eigenvalue
of the system, the information flow in the system shows a very different behavior. The system is
deemed to be fast-dynamics when the eigenvalue is large (Ja| > 2.5) and slow-dynamics when the
eigenvalue is small (|a| < 2.5).

The main reason for this division is the relationship between the eigenvalue of the system
and the SNR of the information flow for control. The discussion of Section 4.3 reveals that the SNR
of implicit communication between two controllers will be bounded?' by the eigenvalue squared
(la]?). Therefore, when the eigenvalue is large, the SNR for implicit communication is also large.
Therefore, from wireless communication theory we can expect that the (generalized) d.o.f. gain of
the implicit communication is crucial. Likewise, when the eigenvalue is small, the SNR for implicit
communication is also small and the power gain of the implicit communication is crucial. This is the
slow dynamics case. To harness the power gain, we have to use Kalman filtering which corresponds
to maximum-ratio combining in wireless communication [99].

In short, even if the system is the simplest scalar system, we can think of two ways of
sending information. One way is across different bit-levels and the other way is across different
time-slots. Moreover, these multiple bit-levels and multiple time-slots can be deemed as MIMO

antennas in wireless communication theory. In fast-dynamics, the MIMO antenna gain of multiple

21Gince the second controller can cancel all bits above its noise level at the next time step, the new information in
the state cannot be amplified more than |a|? above the second controller’s noise level. Thus, the SNR measured at
the second controller is always bounded by |a|?.
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bit-levels dominates that of multiple time-slots. The proposed signaling strategies exploit the d.o.f.
gain of the MIMO antennas over multiple bit-levels.

On the other hand, in slow-dynamics, the MIMO antenna gain of multiple time-slots is
much more crucial. In Chapter 5, Kalman filtering will be used to exploit the power gain of the
MIMO antennas over multiple time-slots.

Figure 4.25 visualizes the discussion so far. In fast-dynamics, the state is quickly changing
and the SNR of implicit communication is high. Thus, the information from previous time steps is
much less important than that of the current time step. However, to fully exploit the MIMO antenna
gain of different bit-levels, the observations from both controllers have to be used.?? On the other
hand, in slow-dynamics, the state changes slowly and the SNR of implicit communication is low.
Therefore, there is no huge incentive for implicit communication between controllers, and a strategy
which fully exploits the observations of either one controller is enough to achieve constant-ratio
optimality. However, the power gain from the past observations cannot be ignored and so Kalman
filtering has to be used.

It is worth mentioning that this fundamental difference between fast and slow dynamics
was conjectured as early as the 1970s [88] but remained vague: “The development of systematic
procedures for appropriately modeling large scale systems with slow and fast dynamics has not received
the attention it deserves. --- one should look for time scale separation (fast and slow dynamics).”
This dissertation is the first that has used this quantitatively.

The division of fast and slow dynamics based on 2.5 is somewhat surprising if we recall
that Witsenhausen’s counterexample seems to correspond to the a = 1 case in the infinite horizon
problem. In [37] it was shown that we need a nonlinear strategy to achieve constant-ratio optimality
in Witsenhasuen’s counterexample, while in Chapter 5 it is shown that in the slow dynamics case
(including a = 1) linear strategies are enough for a constant ratio optimality. The main reason for this
is that the infinite horizon problem is a sequential problem. Since the problem is sequential, we can
think of the infinite-horizon problem as an interlocking series of Witsenhausen’s counterexamples.
When a = 1, the interference from the previous Witsenhausen’s problem dominates and we do not

have to solve the current Witsenhausen’s problem optimally.

4.9 Discussion and Further Research

In the beginning of the chapter, we summarized the two main contributions of the classical
centralized LQG result. The first was linear controller optimality which narrows the search for the
optimal strategy from the infinite-dimensional strategy space to the finite-dimensional linear strategy

space. In Theorem 4.1, we gave the corresponding result for scalar decentralized LQG problems in

22Even though the strategy in Definition 4.2 relies on the past controller inputs (therefore, the past observations),
the role of the past inputs in the strategy is just to cancel their influence on the current time step, not providing
information about the state.
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Figure 4.27: Communication-Estimation-Control separation controller interpretation of Lg;, s (Here,
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an approximation sense by proposing a finite-dimensional strategy space.

The second contribution was more philosophical. Centralized LQG gave us the separation
principle for estimation and control. Therefore, a natural question is whether we can interpret the
result of Theorem 4.1 in terms of estimation-control separation, or if there is a conceptual missing
block. The authors believe there is a missing fundamental design block, the “communication” block.

Figure 4.26 shows the proposed communication-estimation-control separation controller,
which we believe, is approximately optimal. First, the controller observes y[n]. Unlike the cen-
tralized case, y[n] may contain transmitted “signals” from the other controllers. The decoder block
extracts such information and generates a new observation yq[n|. Based on both y[n] and yq[n], the
estimator block tries to estimate the states. After the estimation, the controller can either control
the states?® by itself, or relay information to the other controllers and let them control. &,[n] is
the states that the controller wants to control by itself. Based on &,[n], the actuator generates the
control action wug[n]. &.[n] is the state that the controller wants to encode for the other controllers.
Based on Z.[n], the encoder generates the encoded signal u.[n]. Finally, the control output is the
superposition of u,[n] and ue[n].

Figure 4.27 interprets the strategy L4 s based on the proposed controller structure. The
strategy exploits the fact that the controller 1 has a better observation than the controller 2. Since
the controller 1’s control signal is expensive, it “relays” its observation through the encoder rather
than trying to control the state by itself. Then, the controller 2 extracts the relayed information in
the decoder block, and takes action based on it. We can notice that only encoders and decoders are
nonlinear, while estimators and actuators are linear. Therefore, this structure fits the intuition that
the essential nonlinearity comes from communication.

An extensive relationship between the implicit information flow for control and wireless
information flow was discussed in Section 4.8. Some unique features of information flows for control
were also noticed. We also found the counterpart of the classical notion of information theoretic
cutset bounds [21] in the dynamic-programming context. The geometric slicing idea discussed in
Figure 4.14 can be thought of as a cutset bound in a sense that it finds the informational bottleneck
of the system. However, unlike traditional information-theoretic cutsets, the geometric slicing idea
divides the nodes by a weighted cut rather than a simple partitioning.

Even if this chapter focused on the simplest toy scalar LQG problem with two controllers,
the essential difficulty of decentralized problems — nonconvex optimization over infinite-dimensional
space — was still there and we could finesse this difficulty by taking an approximation approach. We
believe the approaches and techniques developed in this chapter will also be useful in more general
problems with vector states and multiple controllers. Moreover, in the process of such generalization,
we will find more close relationships and parallels between wireless information flows and control

information flows. For example, the notion of the computation over communication channels [74]

23Even a single scalar state can be viewed as a collection of bit-positions.
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or interference alignment [63, 14] has yet to be properly understood in control contexts. Above
all, by solving the problems only approximately, we “may” be able to make a breakthrough in this

long-standing open problem, the decentralized LQG problem.
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Chapter 5

Decentralized scalar LQG problem:

Slow Dynamics

5.1 Introduction

In Chapter 4, we consider the simplest decentralized LQG (linear quadratic Gaussian)
problem, the scalar infinite-horizon LQG problem with two controllers. In the last chapter, we
focused on the fast dynamics case when the eigenvalue of the system is large. The most interesting
fact in this case is that a nonlinear control strategy can infinitely outperform any linear strategy
especially when the two controllers are asymmetric. When the first controller has a better observation
with high control cost and the second controller has a worse observation with small control cost, there
is a huge incentive for the first controller to communicate its observation to the second controller.
Moreover, this communication is implicitly through the plant and for such implicit communication,
nonlinear strategies are more efficient than linear strategies. The Signal-to-Noise Ratio (SNR)
for this implicit communication is upper bounded by the eigenvalue of the system. Thus, as the
eigenvalue of the system goes to infinity, the performance gap between nonlinear and linear strategy
can unboundedly diverge.

In this chapter, we focus on slow dynamics where the eigenvalue of the system is bounded
by a constant. The SNR for implicit communication in this case is bounded and the performance
gap between the best nonlinear and linear strategies is bounded by a constant. In the scalar system
considered in this chapter, the system is observable and controllable by both controllers. It turns
out that control by a single controller is good enough to achieve a constant-ratio of the optimal cost.

The rest of the chapter consists as follows: In Section 5.2, we will state the problem and
main results. In Section 5.3, we will revisit classic centralized control results and intuitively under-
stand them. In Section 5.4, we will derive a fundamental lower bound on the control performance,

and prove that the centralized control performance and the derived lower bound are within a constant
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ratio.

5.2 Problem Statement and Main Result

Throughout this chapter, we will consider the same problem considered in Chapter 4, the
scalar infinite-horizon decentralized LQG problems with two controllers. However, while the focus of
Chapter 4 was the fast-dynamics case (when |a| > 2.5), the focus of this chapter is the slow-dynamics

case (when |a| < 2.5).

Problem J (scalar infinite-horizon decentralized LQG problems with two controllers). Consider

the system dynamics given as

z[n] + v1[n]

=
=
I

ya[n] = z[n] + va[n]

where z[0] ~ N(0,08), wn] ~ N(0,1), vi[n] ~ N(0,02%)), v2[n] ~ N(0,02%,) are independent
Gaussian random variables. The control inputs, ui[n] and uz[n], must be causal functions of y1[n]
and ya[n] respectively, i.e. ur[n] = f1n(y1[0],- -+ ,y1[n]) and uzn] = fon(y2[0], -, y2[n]).
For q,r1,m9 > 0, the control objective is to minimize a long-term average quadratic cost:
1

limsup — > qEle*[n]] + r1E[ui[n]] + r2E[u3[n]]. (5.1)

N
N—oa 0<n<N

As discussed in Chapter 4, even though we normalized the problem parameters (the vari-
ance of wln], the gains for u[n], ua[n|,y1[n], y2[n]), this problem includes all scalar two-controller
decentralized LQG problems by a proper scaling.

In Chapter 4, we saw that in fast-dynamics cases, implicit communication between two
controllers is crucial to achieve the optimal performance within a constant ratio. Moreover, es-
sentially memoryless controllers, which only exploit the information at the current time step, were
constant-ratio optimal.

Therefore, a natural question for slow-dynamics cases is that whether the same type of
controllers are enough to achieve constant ratio optimality. In other words, is implicit communication
crucial for performance? Can memoryless controllers achieve constant-ratio optimality? In this
chapter, we will see that the answers for both questions are negative.

To understand why the answer for the first question is negative, let’s revisit fast-dynamics
cases. Even though the mathematical definition of implicit communication is still unclear, we can
roughly measure the SNR (signal-to-noise ratio) of implicit communication. The blurry controller
(the controller with higher observation noise) utilizes the transmitted signal from the other con-

troller as soon as the transmitted signal’s power exceeds its observation noise level. Therefore, the
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maximum SNR for implicit communication cannot exceed a?, which is the ratio at which the system
dynamics amplify signals in one time step. From this, we can conjecture that for slow dynamics cases
(la| < 2.5), the SNR is bounded and implicit communication may not be crucial for constant-ratio
optimality.

However, justification is not that simple since the time-horizon is infinite. In other words,
even though we could justify that the SNR at each time step is bounded, accumulation of such infor-
mation may result in unbounded gain. Furthermore, a precise definition of implicit communication
and the corresponding SNR requires further study.

For the second question, we will see that all observations from the past have to be utilized
to achieve constant-ratio optimality. For this, Kalman filtering must be used.

In other words, we will prove that in the slow-dynamics case, single-controller optimal
strategies — Kalman filtering linear strategies — are approximately optimal within a constant

ratio. For this, let’s first define the single-controller strategies which involve only one parameter k.

Definition 5.1 (Single Controller Optimal Strategy Liin kal). Liinkal s the set of all controllers
which can be written in either one of two following forms for some k € R

(i) wi[n] = —kE[z[n]lyf, u "], uzln] =0

(ii) us[n] = 0, uz[n) = —kE[z[n]|y3, us™")

Here, we can notice that since the system is linear and underlying random variables are
Gaussian, the conditional expectations are linear in the observations [11].

Now, we can state the main theorem of this chapter, which states that when |a| < 2.5 the
optimization only over Ly rq is enough to achieve approximate optimality within a constant ratio

among all possible strategies.

Theorem 5.1. Consider the decentralized LQG problem shown in Problem J. Let L be the set of
all measurable causal strategies. Then, there exists a constant ¢ < 2-10° such that for all la| < 2.5,

q, 1, T2, 00, Oul and O0v2,

inf lim sup% > Egz?[n] + riui[n] + rou3[n]]
u1,U2€LL1in,kal N—oo — 0<n<N

<
inf limsup+ > E[g22[n] + riu?[n] + roud[n]] ~ ¢
u,u2€L N_yo0 0<n<N
Proof. See Section 5.4.5 for the proof. O

The basic proof strategy is following. Rather than directly considering the average cost
problem of Problem J, we consider the power-distortion tradeoff problem of Problem K. Then, since
we have an explicit constraint on the controller power, we can divide the tradeoff curve into multiple
regions based on the control power. For these finite number of regions, we derive different upper and

lower bounds on the performance. By comparing them, we characterize the tradeoff curve within
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a constant ratio. Then, we finally convert the constant-ratio characterization of the tradeoff curve

into the constant-ratio result on the average cost.

Problem K (Decentralized LQG problem with average power constraints). Consider the same dy-
namics as Problem J. But, now the control objective is minimizing the state distortion for given input
power constraints Py, Py € RT. We will say the power-distortion tradeoff, D(Py, P) is achievable if

and only if there exist causal control strategies uq[n], us[n] such that

N
1
lim sup i Z E[z%[n]] < D(P, Py),
n=1

N—o0

N
lim sup — E[u?[n < Py,
msup - > Efuflal <

5.3 Qualitative Understanding of Centralized LQG Problems

Before we present the technical details, we first explain the insight behind the results.
Theorem 5.1 states that control by a single controller is enough to achieve an approximately optimal
performance. The optimal control by a single controller is a well-studied LQG control problem. The
optimal average cost, the weighted sum of the input power and the state distortion, is the solution
of a Riccati equation.

However, even though Riccati equations give exact optimal costs for centralized control
problems, their quantitative results are hard to interpret. Therefore, in this section, we will approx-
imate the optimal costs to simple functions, so that we can gain intuitive and qualitative under-
standing about the centralized control problems. Furthermore, we will take take a distortion-power-
tradeoff perspective rather than a minimum-cost point-of-view.

Let’s first formally state the scalar centralized LQG problems.

Problem L (Centralized LQG with average power constraints). Consider the following dynamic

system with a single controller.

z[n + 1] = ax[n] + u[n] + wn]

yln] = z[n] + v[n]

where z[0] ~ N(0,02), wn] ~ N(0,1), v[n] ~ N(0,02) are independent Gaussian random variables.
The control input u[n] must be a causal function of y[n], i.e. u[n] = fr(y1[0], - ,y1[n]).
The control objective is minimizing the state distortion for a given input power constraint

P € RY. We say the power-distortion tradeoff D, (P) is achievable if and only if there exists a
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causal control strategy u[n] such that

N—oc0

N
1
limsupﬁ E E[l'z[n]] < DUU(P)7
n=1

N —oc0

N
1
lim sup N Z E[u?[n]] < P.
n=1

Definition 5.2 (Optimal Linear Strategy Ly cen for Centralized LQG problems). Consider the
centralized LQG problem of Problem L. Let Ly, cen, be the set of all controllers which can be written

in the following form. For some k € R, u[n] = —kE[z[n]|y", u™].

Lemma 5.1. Consider the centralized LQG problem of Problem L. Define X as

(a®> = 1)o2 — 1+ +/((a2 = 1)02 — 1)2 + 4a202
2a? '

Then, for all k such that |a — k| < 1, the linear strategy of Definition 5.2 can achieve the following

Power-distortion tradeoff:

(2ak — k‘Q)ZE +1
1—(a—k)?

20k — k*)Xp +1
1—(a—k)?

(Do (P).P) = ( a2 _2). (5.3)

Furthermore, this power-distortion tradeoff is optimal in the sense that for a given P, there is no

control strategy which can achieve an expected squared state smaller than D, (P).

Proof. Let #[n] := E[z[n]|y",u"~!]. Since u[n] = —kZ[n],

z[n + 1] = ax[n] — k&[n] + w[n]
= a(z[n] — £[n]) + (a — k)&[n] + wn]. (5.4)

Define x,, := E[z?[n]], ¥ ,, = E[2*[n]], Eg,n = E[(z[n] — &[n])?]. Then, we have

s

EntXg, (5.5)

where the second equality comes from the orthogonality of xz[n] — £[n] and &[n]. Likewise, by (5.4)

we also have

Sxmi1=0"Spn+(a—k)?Sg, +1
=a®Yp,+(a—k)?*(Sx, —Xpa) +1 (5.6)

where the last inequality comes from (5.5).
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Moreover, it is well-known that Kalman filtering performance converges to a steady state.

In other words, by [11] we have

2 _1)o?2-1 2 _1)o2 —1)2 + 4a20?2
S lim g, — @700 = 14 (@ = Do~ 1)+ da’
n— o0 ’ 2a2

Thus, by (5.6), £x , converges as long as |a — k| < 1. Let lim,,_,o ¥x ., = Xx. Then, by
(5.6) we have
(a®> - (a—k)>)Ip+1

Z =
X 1—(a—k)?
- (QGk — kJQ)ZE —|— 1
1—(a—k)?2 -
Since u[n] = —ki[n], using (5.5) the input power converges as follows.

lim E[u?[n]] = k*(Zx — Zg)

n—o00
(2ak — ]{JQ)ZE + 1 _

= K 1— (a— k)2

Sh).

This finishes the achievability proof of the tradeoff. The tightness of the tradeoff and the
optimality of centralized linear controllers are well-known in the community, and we refer to [11] for

a rigorous proof based on dynamic programming. O

As mentioned in the proof, X i represents the Kalman filtering performance (mean square

estimation error).

In the following discussions, we will qualitatively understand the tradeoff between the state

distortion and control power by dividing into cases based on the eigenvalue of the system.

5.3.1 When [a| =1

150

100

State Distortion

50/

0 0.05 01 015 02 025
Power

Figure 5.1: The Optimal State Distortion-Input Power Tradeoff: When a = 1 with different values
of 02 (02 =1 (Black line), 02 = 100 (Blue line), 02 = 200 (Red line))
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max(Xg, 1)

max(Xpg, 1)

Figure 5.2: Conceptual Plot of State Distortion-Input Power Tradeoff: When |a| = 1

First, let’s consider the case when the magnitude of the eigenvalue is 1, i.e. |a| = 1.

Since the Kalman filtering performance ¥ is the minimum squared error for estimating
the states, we can see D, (P) > a?Sg + 1 for all P. For notational convenience, let’s approximate
a’Y g +1 by max(Xg, 1).

To achieve D, (P) ~ max(Xg, 1), the control power P has to be large enough. As we can
see in Figure 5.1, the state distortion D, (P) inversely proportionally increases as the control power
P decreases.

Therefore, the power-state distortion tradeoff D, (P) can be conceptualized as Figure 5.2.

When the power P is smaller than m, the state distortion behaves like %. When the power
becomes greater than m, the state distortion saturates at max(Xg, 1).
Let’s write (a1, ,a,) > (b1,--- ,b,) if and only if a; > by, ---, a,, > b,. Then, Corol-

lary 5.1 shows the formal statement of the power-distortion tradeoff for the centralized LQG problem.

Corollary 5.1. Consider the centralized LQG problem shown in Problem L. When |a| = 1, the
achievable power-distortion tradeoff (D, (P), P) by the strategies of Definition 5.2 is upper bounded

as follows:
2
D, (P),P)< (2.t No<t<—— 5.7
(Dou(P).P) < (ot) for all 0 <1 < s (57)
where the definition of ¥ g is given as (5.2).
Especially, when o, > 16, we have
2
D, (P),P) < (-,t ll < —. .
(Do, (P P) < (5.) for all 0 < t < o (59)
When o, < 16, we have
2
D, (P),P) < (-,t 1 t < . .
(Do, (P),P) < (2.1) for all 0 <t < o (59)
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Proof. See Appendix 10.1 for the proof. O

1

(155 the tradeoff is inversely pro-

As we can see from (5.7), for powers 0 < P <

1

portional. When the power becomes P = ax(1,5.)

, the state distortion saturates at the Kalman
filtering performance.
In fact, careful inspection of Figure 5.1 shows that the transition between the interval

and P € [m7 oo] is much smoother than the one suggested in the conceptual

P €0, m]
plot of Figure 5.2. Therefore, a better approximation of the tradeoff can be D, (P) ~ ++max (X, 1)
rather than D, (P) ~ max(5,%g,1) suggested in Figure 5.2. In fact, since max($,%p,1) <
% + max(Xg, 1) < Qmax(%,ZE, 1), the two approximations are within a constant ratio. Thus,
both approximations are enough to prove constant ratio optimality. In this chapter, we choose the
approximation shown in Figure 5.2, since it is more discrete and thereby easier to compare with the
lower bound in Section 5.4.2 by dividing cases.

Furthermore, we can prove that the optimal tradeoff (D, (P), P) can be upper and lower
bounded by the approximation of Figure 5.2 within a constant ratio. Consider the case! when
o, > 16, then (5.8) of Lemma 5.1 gives an achievable upper bound on the tradeoff, D, (P) < % for
all 0 < P < m < 1—16. We will see that Corollary 5.5 of Section 5.4.2 gives a lower bound on
the tradeoff. By putting the second controller’s noise o,2 = 0o and considering the first controller
as the centralized controller, (b) of Corollary 5.5 gives that Dg, (P) > %0217 41 for all P < 4.
Therefore, we can notice that the upper and lower bound match within a constant ratio. Moreover,
(d) of Corollary 5.5 gives that D, (P) > max(@am, 1) for all P, which justifies the flat part of

Figure 5.2. Therefore, increasing input power P more than will not be greatly helpful, and

1
1.00050,

we can use an achievable upper bound D, (P) = 2.001c, for all P > to prove constant-ratio

1
1.00050,
optimality. This constant-ratio characterization of the tradeoff curve can be easily converted to a

constant ratio optimality of average-cost problems by applying Lemma 4.14 of Chapter 4.

5.3.2 When 1< |a| <25

Let’s consider the case? when 1 < |a| < 2.5. Just like the case of |a| = 1, the state distortion
saturates at a®’Yp + 1 ~ max(Xg,1) for all P, and the state distortion inversely proportionally
increases as the power decreases.

However, there is a significant difference from the previous case of |a| = 1. Since the system
is unstable by itself, when the power is too small the state distortion diverges to infinity. Figure 5.3a
shows this behavior. Furthermore, it is well known that the minimum capacity to stabilize unstable
plants is log |a|. Since the variance of w[n] is 1, the capacity from the controller to the plant can
be thought as of }log(1 + P). Therefore, the stabilizability condition % log(1 + P) > log|a| gives
P > a? — 1 to stabilize the system.

1Recall that when |a| = 1, g = 0.
2Here, the explicit number 2.5 does not have to be 2.5. In fact, we can choose any fixed number like 2,3, 5,6, - - -.
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Figure 5.3: The Optimal State Distortion-Input Power Tradeoff: a = 1.01. In (a), 02 are chosen as

02 =1 (Black line), 02 = 10 (Blue line), 02 = 20 (Red line). In (b), 02 are chosen as o2 = 1000

(Black line), 02 = 2000 (Blue line), o2 = 3000 (Red line).

D(P) D(P)
1
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Figure 5.4: Conceptual Plot of State Distortion-Input Power Tradeoff for 1 < |a| < 2.5: (a) is when

max(Xg, 1) < . (b) is when max(Sg,1) > .
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Based on the above discussion, we can draw a conceptual power-distortion tradeoff curve as

shown in Figure 5.4a. Like Figure 5.2, when the power is larger than the state distortion

1
max(Xg,1)’

saturates at max(Xg,1). When the power is between a? — 1 and , the state distortion

)
is inversely proportional to the power. However unlike Figure 5.2 when the power is smaller than
(a? — 1), the controller cannot stabilize the system, so the state distortion diverges to infinity.
Furthermore, Figure 5.3b shows that as X g increases, the gap between (a? — 1) and
m (the interval where the distortion is inversely proportional to the power) decreases, i.e.
the boundary of the optimal tradeoff region shrinks. Eventually, the whole boundary will con-
verge to one point. Figure 5.4b conceptualizes this situation. When Y is large enough so that
max(Xg,1) > a2—171, we need at least (a? — 1)? max(¥g, 1) controller power to stabilize the plant,
and the corresponding state distortion saturates at the Kalman filtering performance max(Xg,1).
The following corollary shows a formal statement of these conceptual tradeoff curves shown

in Figure 5.4.

Corollary 5.2. Consider the centralized single-controller LQG problem shown in Problem L. When
la| > 1, the achievable power-distortion tradeoff (Ds,(P),P) by the strategies of Definition 5.2 is
upper bounded as follows:
(i) (Do, (P), P) < (@ + 1)Sp + £, (0> — 1S + (a® — 1))
.. 2 2
(i1) (Do, (P), P) < (ULELE ) for all 2(]a| +1)2(1 - (1)) < ¢ < il
where the definition of ¥ g is given in (5.2).
FEspecially, when 1 < |a| < 2.5, D, (P) satisfies the following conditions:
(i’) (Do, (P),P) < (72555 + 525 (a* — 1)?Sg + (a® — 1))

(ii') (Do, (P), P) < (%,1) for all 8(a® —=1) <t < o

Proof. See Appendix 10.1 for the proof. O

When max(Xg,1) < —', (ii’) of the corollary shows that we can achieve the tradeoff
curve shown in Figure 5.4a. More precisely, when P = 8(a? — 1), the statement (ii’) reduces to
D, (P) < %. Therefore, (D, (P), P) & (55 ,a* — 1) is achievable (up to constant scaling).
When P = m, the statement (ii’) reduces to Dy, (P) < 2 max(1,7.25%g). Thus,
(D, (P), P) = (max(Xg, 1), m) is also achievable. Between these two values, the tradeoff is

inversely proportional.

When max(Xp,1) > —t—, (") of the corollary shows the tradeoff curve in Figure 5.4b is

- a2_1’

achievable. More precisely, with the condition max(Xg,1) > az—l_l, the statement (i’) implies

6.25
(Do, (P), P) < (T:25%p + ——, (a®> —1)’2g + (a® - 1))

< (13.5max(X g, 1),2(a® — 1) max(Xg, 1)).

Therefore, the corner point of Figure 5.4b is achievable up to constant scaling. The whole tradeoff

region is also achievable since we can always achieve the points with more state distortion and input
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power.
Just like Section 5.3.1, a careful inspection of Figure 5.3a suggests that D, (P) =~ m—k
max(Xg, 1) may be a better approximation than the one shown in Figure 5.4a. However, just like the
discussion in Section 5.3.1, the approximation of Figure 5.3a is good enough to prove constant-ratio
optimality, and easier to compare with a lower bound on the performance since the approximation
is divided into multiple regions.
In fact, by putting Yo = oo and considering the first controller as the centralized controller,

(g), (f), (j) of Corollary 5.4 in Section 5.4.1 respectively reduce to
1
D, (P) = oo forall P < %(cﬂ —1)

0.0006976 1
> D0 L all P < —
= p  trlralfs g

D,, (P) > max(0.1035%, 1).

Do, (P)

By taking the maximum over these three bounds, we can easily check that the resulting lower bound
coincides with the approximation of Figure 5.3a up to a constant, and thereby the average cost can

also be characterized within a constant by Lemma 4.14 of Chapter 4.

5.3.3 When 0.9 < |a| <1
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Figure 5.5: The Optimal State Distortion-Input Power Tradeoff: a = 0.99. In (a), 02 are chosen as
02 = 1 (Black line), 02 = 10 (Blue line), 02 = 20 (Red line). In (b), 02 are chosen as o2 = 1000

v

(Black line), o2 = 2000 (Blue line), 02 = 3000 (Red line).

Let’s consider the case when 0.9 < |a| < 1. In contrast to the case of 1 < |a| < 2.5, the
system is stable by itself in this case. Therefore, the state distortion never increases above ﬁ

As we can see in Figure 5.5a, the essential tradeoff curve is similar to the case of |a| = 1. For
all control powers P, the state distortion saturates at the Kalman filtering performance max(¥g, 1).

For control powers between 1 — a? and i the state distortion is inversely proportional to

1
max(Xg,1

the control power.
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> 1
max(Xg, 1)
() (b)

Figure 5.6: Conceptual Plot of State Distortion-Input Power Tradeoff for 0.9 < |a| < 1: (a) is when
max(Xg,1) < (b) is when max(Xg,1) > =

_1
T—a?" aZ

However, when the power becomes smaller than 1 — a2, this inversely-proportional car-
icature of the state distortion becomes larger than ﬁ, which is achievable even without any
control. Therefore, for powers smaller than 1 —a?, the state distortion stays at ﬁ Therefore, the
conceptual tradeoff curve has to follow the curve in Figure 5.4a.

Furthermore, Figure 5.5b shows that as X increases, the state distortion without control
(£>) and the Kalman filtering performance (max(Xg,1)) becomes similar. Eventually, when

max(Xg,1) >

as depicted in Figure 5.4b, the minimum state distortion becomes 1_1a2 which

_1
1—a2”
is achievable even without any control.

Corollary 5.3 gives formal statements of these observations.

Corollary 5.3. Consider the centralized LQG problem shown in Problem L. When |a| < 1, the
achievable power-distortion tradeoff (D, (P), P) by the strategies of Definition 5.2 is upper bounded
as follows:

1

(DUVU(P)vp) < (m,

0), (5.10)

and especially when® Y < ﬁ we also have

2
D, (P),P) < (=,t Nl1—a*<t< ——c— 5.11
(Dou(P).P) < (1) for all 1= < 1 < s (5.11)
where the definition of X g is given as (5.2).
Proof. See Appendix 10.1 for the proof. O

When max(Xg,1) > =2, (5.10) shows the tradeoff curve shown in Figure 5.6b is achiev-

1—a2’

able.

3Since |a|] < 1, the condition g < 1Ja2 is equivalent to the condition max(1,Xg) < ﬁ
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When max(Xg, 1) < ﬁ, (5.11) shows the inversely proportional tradeoff curve shown in

Figure 5.6a when the power is between 1 — a? and m

In fact, in Figure 5.5a we cannot find a flat region for the power between 0 and 1 — a?
which is shown in the approximation of Figure 5.6a. Therefore, like Section 5.3.1, 5.3.2, a better
approximation of the tradeoff might be D, (P) =~ m + max(Xg,1) and worth exploring.
However, the approximation of Figure 5.5a is good enough to give a constant-ratio optimality result.
For example, if we compute the distortion for P € [0,1 — a?] with this new approximation, we get
D, (P) € [ﬁ + max(Xp, 1), 23 + max(Xg, 1)]. Especially, for max(Xg,1) < 15 which is
the case of Figure 5.6a, this interval is included in

1 2

21—-a?)"1-a?

[

+ max(Xg, 1),

).

L max(SE, 1) C [

2(1 — a2) l-a

Therefore, the approximation is essentially the same as the one of Figure 5.6a, ﬁ, up to a constant.
Furthermore, Corollary 5.6 of Section 5.4.3 gives a matching lower bound to the approx-
imation of Figure 5.6a. First notice that as 0,2 goes to infinity, the Kalman filtering performance

35 converges to ﬁ which is the expected squared-state of the stable system without any control.

Thus, by putting ¥, = ﬁ, thinking of the second controller as the centralized controller, and
considering the case of L > 40, the conditions (a), (b), (e) of Corollary 5.6 respectively reduce to
0.009131
Do, (P)> ————+1forall P<1-a?
—a
0.009131 1
D, (P) > T—i—lforall 1-a><P< 0

D, (P) > max(0.2636%,,1) for all P.

Therefore, we can easily observe that by taking the maximum of these bounds, we get a matching
lower bound to Figure 5.6a (up to a constant). Therefore, by Lemma 4.14 of Chapter 4, we can also

characterize the average cost within a constant ratio using the approximation of Figure 5.6a.

5.3.4 When |a| <0.9

In this case, the state distortion ﬁ which can be obtained without any control input, is
already small enough (smaller than 5.27). Therefore, the tradeoff curve is essentially the same as

Figure 5.6b, which is achievable with zero control input.

5.4 Lower bounds and Constant-Ratio Results for Decentral-

ized LQG problems

Now, we intuitively understand the power-distortion tradeoff of centralized single-controller

LQG problems with scalar plants. Based on this understanding, we will prove that single-controller
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linear strategies are enough to achieve the optimal decentralized LQG performance to within a con-
stant ratio. In other words, (D(Py, Ps), P1, P2) of Problem K is essentially (min(Dy,, (P1), Do, (P2)), P1, P2)
where the definition of D, (P) is given in Problem L.
For the upper bound on the optimal cost of the decentralized LQG problems, we can
simply use the centralized controller’s performance shown in Corollaries 5.2, 5.1, 5.3. However, we
still need a lower bound on the cost of the decentralized LQG problems, and it turns out the naive
lower bound we can obtain by merging two decentralized controllers into a centralized controller is
too loose to prove constant-ratio optimality (One can easily see this by giving noiseless observation
to one controller and zero input cost to the other.).
Therefore, in this section, we will give a non-trivial lower bound based on information

theory [21] and prove that the proposed lower bounds are tight to within a constant ratio.

5.4.1 When 1 <|a] <25

The ideas for the lower bounds are essentially the same as the ones of Chapter 4. The main
idea is geometric slicing, which can be thought of as a counterpart to cutset bounds in information
theory [21]. The only difference from the geometric slicing lemma shown in Lemma 4.8 of Chapter 4
is that here we use allow arbitrary sequences for slicing the problem since we must use arithmetic
sequences to slice the problem for the |a| = 1 case, and a geometric base that depends on « in the
vicinity of a = 1.

As we did in Chapter 4, we first introduce sliced finite-horizon problems.

Problem M (Sliced Finite-horizon LQG problem for Problem J). Let the system equations, the
problem parameters, the underlying random wvariables, and the restrictions on the controllers be
given ezxactly the same as Problem J. However, now for given k,ki,ko € N(k1 < k, ko < k) and

POsitive Sequences Oy, Ak, +1, - ,Qk—1 And Py, Bi,+1,+* , Be—1, the control objective is

inf gE[2*(k]]+m1 Y oBpifill+r2 > BE[u3n]].

Uuy,u2
ki <i<k—1 ko<i<k—1

Lemma 5.2 (Geometric Slicing). Let the system equations, the problem parameters, the under-
lying random wvariables, and the restrictions on the controllers be given as in Problem J. When
o2 = 0, for all k,ki,ka € N(k1 < k,ky < k) and positive sequences au,, 11, ,,—1 and
Breas Brr1, s Br—1 such that 37 icp y s =1 and 32, ;o Bi = 1, the infinite-horizon cost of
Problem J is lower bounded by the finite-horizon cost of Problem M, i.e.

inf lim sup% Z (qE[z%[n]] + rE[u?[n]] + roE[ui[n]])

w1z N—oo 0<n<N-1

> inf ¢E[2°[K] +r1 > aBil]+re Y BEu3n]).

U, u2
’ k1 <i<k—1 ko<i<k—1
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Furthermore, both costs are increasing functions of o¢ and when o} = 0, u1[0] = 0 and uz[0] = 0

are optimal for both problems.

Proof. The proof is essentially the same as the proof of Lemma 4.8 of Chapter 4. The only difference

is that the geometric sequences used in Lemma 4.8 of Chapter 4 have to be replaced by o, and 3,,. [

Using this lemma, we can lower bound on the cost of the decentralized LQG problems as
follows. (Notice that the following lemma holds for all |a| > 1. However, it fails to give a constant
ratio result for fast-dynamics case of |a| > 2.5 since it does not reflect the large deviation aspect of

disturbance random variables.)

Lemma 5.3. Define Sy, as the set of (k1, ko, k) such that ki, ko, k € N and 1 < ky < ko < k. We
also define DL71(E,/P5;7]€17]€2, k) as follows:

~ >+ a2(kfk1)1_ﬂl{2(7’22;]cl) 1 — g—2(k—k2)
: = —a 2k—ky) - & 7
Drp (P, Pos ki, ko, k) : (\/ YT +a R P
o (1 —_ a—(k?—ktl))QN o (1 _ a—(k?—k)2))2~
_ \/a2(k k1 UWH — [ q2(k—F UWPQ)i—’_l

where

_ g2k 1)
a2(k 1)1—a

1—a—2
x= 921
7 ki —1 log(1 + 1 az(klﬂ)(l _ a72(k171)) 1_ a*2(k1*1))
2 (k1 — 1)o%, 1—a2 1—a2
_ 1 1 2(]()172) 1 _ 72(1{5171) 1 _ 72(’@171)
n ky log(1 + i a (1-a ) a
2 (k1 —1)o2, 1-a2 1—-a2
—~ ko — Ky 1 1= a_Q(kQ_kl)
I'(P) = log(l 4+ —— - (2a2H2"1-M)_— =
( 1) 2 Og( * (kQ — k1)0'12]2( “ 1-— a72
4 9g20e—1-kn) L= a2tk ] — g2k k)
1—a2 1—a2
N 2@2(’“2*’“1*2) 1 — g 2(k2—Fk1) (1 _ a*(szlfkl))(l _ a*(k*kl))ﬁ,))
1—a2 (1—a-1)? v

Here, when k1 — 1 =0, I =0 and when ko — k1 =0, I’(IADI) =0.
Let |a| > 1. Then, for all q,71,72,00,041, 02 > 0, the minimum cost (5.1) of Problem J is
lower bounded as follows:

1
inf limsup — Z qE[z?[n]] + mE[ui[n]] + roE[us[n]]
w2 N—oo IV g 07 N

> sup _min gDpi(Py, Poik ko, k) + 1P+ 1Py,
(k1,k2,k)€SL P1,P2>0
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Proof. For simplicity, we assume a > 1, 1 < k1 < ky < k. The remaining cases when a < —1 or
k1 =1or ks — k1 =0 or k = ko easily follow with minor modifications.

e Geometric Slicing: We apply the geometric slicing idea of Lemma 5.2 to get a finite-
horizon problem. By putting oy, = (171;7‘(1,:,61)), gy 11 = (%)a’l, o = (171(1_,(+,:,“))a’k“”Cl
and By, = (1_1&%), Bryt1 = (P;%)a‘l, sy Brol = (%)a—ﬂub the average

cost is lower bounded by

inf (gE[2*[k]]
1—at 1—at _ 1—a! _
+ 7 ((m)ﬂf[u?[/ﬁﬂ + (m)a "Eluflk +1]] +--- + (m)a FHFRE[W[E - 1]])
-5
1—a! 2 l1—a™' 1y, 2 l—a™t ket 1l4kay, 2
+ 72 ((W)E[%[/ﬂz” + (m)a Eluzlks + 1] + -+ + (m)a Elu; [k — 1]]))

P,

Here, we denote the second and third terms as ﬁ; and ﬁ; respectively.
e Three stage division: As we did Chapter 4, we will divide the finite-horizon problem into

three time intervals — information-limited interval, Witsenhausen’s interval, power-limited interval.
Define

Wy = a" (0] 4 - - + o R T [k — 2]

Wy = a* Frwlky — 1]+ + a2 lwlky — 2]

Wi = a" *2wlky — 1] + - + aw[k — 2]

Upp o= a"2ug[1] + - + a" Mg [k — 1

Upp = a"2up[1] + - - - + a" Py [k — 1]

Uy = a* M=ty (k] + -+ u [k — 1]

Uy := ak_kl_lug[kl] + 4 ak_k2u2[k2 —1))

Uy = a" R L kg) + - - - 4+ ualk — 1]

X1 =Wy 4+ U1 +Uxn

Xo 1= Wy + Uy
Wi, Wy, W3 represent the distortions of three intervals respectively. Up; and Us; respectively
represent the first and second controller inputs in the information-limited interval. U; represents

the remaining input of the first controller. Uss and Us represent the second controller’s inputs in

Witsenhausen’s and power-limited intervals respectively.
The goal of this proof is grouping control inputs and expanding z[n], so that we reveal the

effects of the controller inputs on the state and isolate their effects according to their characteristics.
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e Power-Limited Inputs: We will first isolate the power-limited inputs of the controllers,
i.e. the first controller’s input in the Witsenhausen’s and power-limited intervals, and the second

controller’s input in the power-limited interval. Notice that

2lk] = wlk — 1] + awlk — 2] + - + "~ w0

+uilk = 1]+ aw [k — 2]+ -+ 0" [0]
+uplk — 1] + auzlk — 2] + - + @ 0]

— (@ w[0] + - + aF R fky — 2]
+ a1 4tk - 1
+a* Pug (1] + - aF Rk — 1))
+ (" Frwlky — 1]+ - 4+ dF TRk, — 2]
bRl -l 1)
+ (@ *2wlky — 1) + -+ + awlk — 2))
(@R k] + -+ [k — 1))
+ (a2 g [ko] + -+ 4 uglk — 1)
+wlk—1].

Therefore, by Lemma 4.1 of Chapter 4 we have

Ela?[k]] = E[(X1 + X2 + W3 + Up + Us + wlk — 1])?]
=E[(X; + Xo + W3 + Uy + Us)?| + E[w?[k — 1]]

> (VE[(X1 + Xo + W3)2] — \/E[UZ] — \/E[U3])2 + 1

= (E(X) + X2)2) + EWE) — \EU7] - /EUZ)? (5.12)

where the last equality comes from causality. Here, we can see that E[(X; + X2)?] does not depend
on the power-limited inputs.
e Information-Limited Interval: We will bound the remaining state distortion after the

information-limited interval. Define 3} and y} as follows.

yi k] = aF 7 w[0] + a*2w(1] + - + w[k — 1] + v [K]
yhlk] = "7 w[0] + a*2w[1] + - - - + wlk — 1] + vo K]

Here, y1[k], y4[k] can be obtained by removing ui[l : k — 1], ug[l : k — 1] from y1[k], ya[k], and
ui[k] and wuslk] are functions of y1[1 : k] and ys[1 : k] respectively. Therefore, we can see that
y1[1 : k], y2[1 : k] are functions of yi[1 : k], y4[1 : k]. Moreover Wy, yi[1 : k1 — 1], y5[1 : k1 — 1] are

jointly Gaussian.
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Let

Wi =W —EWilyy[L: ki — 1], y5[L : k1 —1]]
W =E[Wi|yy[1: ky — 1], 95[1 : ky — 1]].
Then, W{, W{', W5 are independent Gaussian random variables. Moreover, W/, W5 are independent

from yi[1: ky — 1], y5[1 : ky — 1]. WY is a function of ¢{[1 : ky — 1], 951 : k1 — 1].

Now, let’s lower bound E[(X; + X2)?]. Since Gaussians maximize entropy, we have

%log(QweIE[(Xl + X5)%

h(X1 + X5)
h(X1 +X2\y1[1 ki — 1], y5[1 : ky — 1], yalky k2 —1])
— W(W] + W+ Upy + Usa + Wa + Usaly[1: k1 — 1, w41 : by — 1], yolks : ko — 1))
h(W1 T Wolyi[l: ke — 1] y5[1 : oy — 1], yalky « ko — 1]). (5.13)

We will first lower bound the variance of W{. Notice that

E[y,[k)?] = @2k=1) 4 g2(k=2) 41 4 2

q2(k=1) 1—a? 2

1—a*2

and

]E[yé [k]2] _ a2(k71) 4 a2(k72) IR 0_12)2

1—q 2k
k—
a®*= Y 1 — a2 + 07,
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Thus, we have
T(Wys g1 ky — 1], y5[1 : ky — 1))
=h(y[1 k= 1], 951 : k= 1)) — h(yy[L 2 k1 — 1], y5[1 : by — 1]|W7)

= DR 1 C7A 1) S SO Y€ 1) N SO YCA ) S SO TG )

1<i<ki—1 1<i<ki—1 1<i<ki—1 1<i<ki—1
1 q2(k—1) 1= (Z—j: + 02, 1 q2(k—1) 1—a" +U )
< Z ilog( 102 Y+ Z §log( 102 )
1<k<ki—1 vl 1<k<ki—1 v2
1 a2(h=1) 1= a,z—i—a 1 q2(k-1)1=a % '+a
=3 log( H 02 S)+ 5 log( H J2 )
1<k<ki;—1 vl 1<k<k;—1 v2
2k —2k
(A) k —1 1 q2k— 1)1“7,2—1—0 k-1 1 a2(k— 1)117a 2—1—0
< log( 5 ) + log( Z Qa )
2 k-1 1<k<ki—1 Tv1 2 k-1 1<k<ki—1 Tv2
2k —2k
by —1 1 q2(k-1)1za”? k-1 1 q2(k-1)1za”?
= log(1 + 5 )+ log(1 + 72)
2 k-1 1<k<ki—1 Tv1 2 ky — 1<k<ki—1 Tv2
1—g—2t171) q2(k=1) L=a=21 71
fey — 1 1 a?k-Dlze ki —1 1 —
< log(1 + = )+ log(1 + )
2 kl —1 1§k§1—1 031 2 kl -1 1<k<hi—1 0'12)2
ko1 - 1 a2(h1=2)(1 _ =201y 1 _ a—z(kl—l))
= o
2 BTk — 1)o2, 1— a2 1—a2
N kh—1 log(1 + 1 2(/@1*2)(1 — a*2(7€1*1)) 1 — g 2(ki—1) (5.14)
o .
2 & (k1 —1)o2, 1—a—2 1—a—2
(A): Arithmetic-Geometric mean.
Let’s denote the R.H.S. of (5.14) as I. We also have
E[WE] =21 Loy a2(k7k1+1))
= a2(k_1)(1 R a—Q(k1—2))
_ =2k —1
q2(k—1) 1—a2t D) (5.15)

1—a2
Now, we can bound the variance of the Gaussian random variable W7 as follows:
£ log(2neE[W{?]) = (V7))
> h(Wilyy[1: by — 1], 501« k1 —1])
— W(Walyi[1: by — 1, (1 ky — 1))

=h(W1) = I(Wy;yp[1 2 k= 1], y5[1 : ky — 1])
—2(ki—1)

—_

2(k—1) l-a
1—a2

Y
o

—log(2mea



where the last inequality follows from (5.14) and (5.15).
Thus,

2(k—1)1—a~ 211

E[W{Q] Z 2211—0,*2

a

and denote the R.H.S. of (5.16) as X. Since W/ is Gaussian, we can write W| =
W ~ N(0,%), and W{"”, W{"" are independent.

Moreover, we also have
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(5.16)

W+ W{" where

_ 2k L —16‘72;': ) (5.17)
By (5.13) we have
%log(%reE[(Xl + X2)?))
h(WT + Waly[L: by — 1] y5[1 k1 — 1], ya[ky : ko — 1))

> h(WH + Wa Wi yq (L ky — 1], y5[1 by — 1, ya [k 2 ko — 1)
= h(W{" +Wa Wi i [L: ky — 1], w51 by — 1], yalky : k2 — 1])
= h(W{" + Wa[W{" y1[L: by — 1], y5[L : by — 1)

— I(W" + Was gk ke — 1)[WT" 0 [1 2 ke — 1], 5[0 < ey — 1])
= h(W{" + W>)

= I(W{" + Wasyalky « ko — 1[W1" yi[1: ke — 1], 95[1 « kg — 1))

% log(2me( 4 a2k L7877 71 _1‘1:2:_2; " )

— I(W{" + Wasyalky « ko — 1[W™ g1 [1: k1 — 1], y5[1 - k1 — 1)) (5.18)

where the last inequality follows from the fact that W{” and W5 are independent Gaussian, and

(5.16), (5.17).

Now, the question boils down to getting an upper bound of the last mutual information

term, which can be understood as the information contained in the second controller’s observation

in Witsenhausen’s interval.

e Second controller’s observation in Witsenhausen’s interval: We will bound the amount of

information contained in the second controller’s observation in Witsenhausen’s interval. For n > kq,

define

yy[n] == a™*W" + a"Frwlky — 1) 4 @™ T wlkg ] +

+ a"ikl*lul[kl] + - 4 un—1]

+ va[n].

<+ wln —1)
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Notice that the relationship between ya[n] and y4[n] is
ya[n] = g5 [n] + a" M uglky ] 4 -+ ugln — 1]
+a" P @ RE[W [y (1 ke — 1), b1 Ky — 1)) (5.19)
The mutual information of (5.18) is bounded as follows:
I(WY" + Wasyalky < kg — 1)|W" g1 [1 s by — 1], yp[1 < by — 1)
= h(yz[k1 + k2 — Wy [L: ke — 1], 95[1 by — 1))
— h(yalky « ke — 1 [W" + Wa, Wi,y (1 by — 1], 51 2 kg — 1))
= > halilyalky i — 10, W i1 by — 1,501k — 1))

ky <i<kz—1
— Y Mwslillyalky i — 1, WY+ W, W yi [k — 1], w51 Ry — 1))
k1 <i<ko—1
(A) . .
= h(slilyelk i = 1, W gL ke = 1), gh[1: - 1))
k1 <i<ko—1
— Y hwslillyalky i — 1, WY+ W, W yi [k — 1], w51 Ry — 1))
k1 <i<ko—1
(B) . .
< ) Al - Y h(eli])
k1 <i<kz—1 k1 <i<kz—1
1 1
< Z 3 log(2meE[y4 [i]?]) — Z 3 log(2mea?,) (5.20)
ky<i<kz—1 k1 <i<ko—1
(A): Since yo[1 : k1 — 1] is a function of y4[1 : ky — 1], ualki],- - , ua[é] are functions of ya[ky : i — 1],

y5[1 : k1 — 1]. Thus, all the terms in (5.19) except y4 [i] vanish by the conditioning.
(B): By causality, vs[i] is independent from all conditioning random variables.

First, let’s bound the variance of y4[n]. By Lemma 4.1 of Chapter 4, we have

Elys [n]*] < 2E[(a"*W)" + a" Fwlky = 1] + o™ M wlki] + - 4 wln — 1)
+2E[(a" ™M k] + - [ = 1])%) + 07y
= 2(a?"Ry 4 g2 k) )
+ 2E[(a" M Yy [ky] + - +ug[n — 1))2] 4 o,

Here, by putting a = a and b = a~! to Lemma 4.10 of Chapter 4 we have

El(a" ™ ug[ka] + - + o — 1])%)

—(n—k1)

1—
< @20 D I @A)+ o Bk + 1] 4+ o UEREf - 1)

(n—k1) 1 — g—(k—k1) _
a P

1—a™
< 2(n7k171)
= 1—a! 1—at
—(n—ky o —(k—k1)\ __
_ a2(n—k1—1)(1 —a( ))(1 a” ))Pl-
(1—a"1)2
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Thus, the variance of ¥4 [n] is bounded as:

1 — q—2(n—ki+1) (1—a= (k)1 = g~ (k1))
2 2(n—k 2(n—k 2(n—k1—1) 2
Elys [n]?] < 22°" V8 4 2020 ) o g 202 1o Prt oy
Therefore, we have
> Eln)’]
klgngszl
_ o —2(n—k1+1) _ q—(n—Fk1) _ g~ (k=k1)y __
< ¥ 2a2(n—k)2+2a2(n—k1)1i%21 +2a2(n—k1—1)(]— a 11 )(11 2a 1 )P1 402,
klgngszl - ( - )
—2(kay—k
< 9(a2 b 4y 2y S 2a2(n7k1)17a—(221)
ey <n<ks—1 I—a
1 — g (ka—1=k1)y(1 — g—(k=k1)y _
n Z 9g2(n—k1—1) ( i a)(1)2 )Pl + (kg — k1)o2,
k1 <n<k,—1
< gglka-1-p L =0T o 4 9g2ke—1-k) 1 = a=2k2mk) ] — =2k —k1)
- 1—a2 1—a2 1—a2
1 — g 2(ka—k1) (1 — g=(ka=1=k1)y({| _ g—(k—k1)) _
+ 2a2(/€2—k1—2) T ( (1 — a>_(1)2 )Pl + (kg — k1)0'32 (521)

Therefore, by (5.20) and (5.21) we conclude
I(WY" + Wasyalky « ke — 1[W™ gy [L: ky — 1], 95[1 : by — 1))
1 E y// nl?

2
ki<n<ks—1 Tv2
1 E[y; [n])°]
51092( H Qf)
02
klgngszl
(A) ko — k 1 E[yY[n]?
Z 2 5 1 1Og(k - [yQQ[n] ])
2Ry Tk T2
k2 _ kl 1 2k —1—F 1 _ a—Q(k‘Q kl) 2k —1—F 1 _ a—Q(kQ—kl) 1 _ a_2(k2_k1)
< log(1 4+ ———————(2a2F2= =M 2 514 9q2(k2—1-k1)
- 2 Og( + (]CQ — k1)032( “ 1—a2 +ea

1—a2 1—a2

1 _ a72(k}27k1) (1 _ a*(kz*l*kl))(l _ ai(kikl))"’
2(ky—k1—2) P 5.22
+2a 1—qg2 (1—@‘1)2 1)) ( )
(A): Arithmetic-Geometric mean

Denote the R.H.S. of (5.22) as I’(E). By (5.18), we can conclude

1 gy 1 —a™2k2=k)
3 log(2meE[(X) + X3)?] > = log(2me(X + a2k k1)

)~ 1'(P)

DN | =

which implies

Y 4 g2(k—k1) 1—a*j;k'f;k1>
E[(X1 + X2)?] > o7 @1 . (5.23)
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e Final lower bound: Now, we can merge the inequalities to prove the lemma. The variance

of W3 is given as follows:
E[WSQ] _ a2(k—k’2) 4+t aQ — a2(k— (524)

By setting a = a and b = a~! in Lemma 4.10 of Chapter 4, the variance of U; is bounded as follows:

1 — q—(k—k1)
B[U?] < @k D= (Bl ]) + 0 Bl b + 1]+ -+ o~ VB[ - 1])
_ g (k—k1)
s(k—ky—1) (1 —a )? 2y 9
a —(1 . 1) 1- (5 5)
Likewise, the variance of Uy can be bounded as
2 2(kka—1y (L —a” (FR2))2 o
Finally, by plugging (5.23), (5.24), (5.25), (5.26) into (5.12), we prove the lemma. O
Corollary 5.4. Consider the decentralized LQG problem of Problem J. Define
5, - (a2 = 1)o2 — 1+ /((a%2 — 1)02, — 1)2 + 4a202, (5.27)
2a2
,1 -1 —1)2 da202
S + V(@ o )+ dadony (5.28)

Let 1 < |a| < 2.5. Then, for all q,71,72,00,041,02 > 0, the minimum cost (5.1) of Problem J is
lower bounded as follows:

inf limsup 1 Z qE[2*[n]] + rE[u3[n]] + roE[u3n]]

U2 N0 0<n<N

> _min aDr(P1, P2) + 1P + o P

Py, P,>0

where DL(?l, ﬁ;) satisfies the following conditions.
(a) If S, > 150, 5 > 150, P, < (=20 By < @2V yon Dy (P, By) =

40000 40000
(b) If 1 > 150, £, > 150, P, < % then Dy (Py, Py) > 0.002774%5 + 1.

(c) If P < &(a® — 1), Py < &(a® = 1) then Dp(Py, ) = oo

— 20
(d) If P < £ and P, < & then Dy (Py, Py) > 0.00389

1
max(Py,Ps) +1.

<
(e) If Sy > IZO Py < s then Dr(Pr, Py) > 0.000697655 + 1.
(f) If $2 > 150, - < P, < k5 then Dy (Py, Py) > w +1.
(9) If S2 > 150, P, < (a> = 1), P, < % then DL(Pl,Pg) = 0o
(h) If ©1 > 150, Py < % Py < 5(a? 1) then Dp(Py, P3) = oo

(i) If 5 > 150, P, < & (a® — 1) then Dy (Py, Py) > 0.0002732%% + 1.
(j) For all P1 and Pg, DL(Pl,Pz) > max(0.1035%, 1).

Proof. See Appendix 10.2 for the proof. O



247

In this corollary, 3; and 35 are the Kalman filtering performance of the first and second
controllers respectively.

Now, we have lower bounds on the average decentralized control cost of Problem J. Fur-
thermore, by inspecting the form of the lower bounds, the term DL(E , }3;) can be speculated as a
lower bound on the power-distortion tradeoff D(P;, Py) of Problem K.

Furthermore, Lemma 4.14 of Chapter 4 shows the average cost problem in Problem J and
the power-distortion tradeoff problem in Problem K are closely related, i.e. if we can characterize
the power-distortion tradeoff within a constant ratio, then we can characterize the average cost
within a constant ratio. Therefore, in the following discussion, we will focus on the power-distortion
tradeoff and justify that why it can be characterized within a constant. Throughout the discussion,
we will consider DL(TDI, ID;) as if it is a lower bound on D(Py, P;) and the rigorous justification will
be shown in Appendix sec:ageql.

By comparing the achievable cost shown in Corollary 5.2, we will prove that they are within
a constant ratio. In other words, we will prove the power-distortion tradeoft (D(Py, Py), Py, P2) is es-
sentially the better performance between two single controllers, i.e. (min(Dy, (P1), Dy, (P2)), P1, P2).

To justify this, we will divide the cases. As discussed in Section 5.3, the centralized con-

troller’s performance behaves qualitatively differently depending on max(X;,1), max(Xy,1), ﬁ
Therefore, we will divide into three cases* depending on these values. Then, we will further divide

the cases by P; and P.

When max(2;,1) < max(Es,1) < O()

We will again divide the cases based on Py, Ps.

e When P; < O(a?—1) and P, < ©(a?—1). As we can see from Figure 5.4a, each controller
does not have enough power to stabilize the system. The statement (c) of Corollary 5.4 reveals that
the system is unstable even in decentralized control problems.

e When P, < O(a? — 1) and O(a®? — 1) < P, < @(m)
performance is determined by the second controller. From Figure 5.4a we can see that D(Py, Py) =
O(P%) is achievable. The statement (d) of Corollary 5.4 tells it is tight up to a constant ratio.

e When P; < ©(a®? — 1) and O(

inates the performance, and Figure 5.4a shows D(P;, P;) = O(max(X2,1)). The statement (i) of

In this case, the control

m) < P,. Like above the second controller dom-

Corollary 5.4 shows its tightness.
e When O(a? — 1) < P, < 6( m)

performance is determined by the controller with larger power, and Figure 5.4a shows D(Py, Py) =

)) and Py < O(

W In this case, the control
2

O(m) is achievable. The statement ( ) of Corollary 5.4 gives a matching lower bound.
e When O(a? — 1) < P, < O ) and ©( ) < P,. In this case, the second

controller dominates the performance, and Figure 5.4a shows D(P;, P») = O(X9,1) is achievable.

maX(Eg 1) max(Eg 1)

4Since op1 < 0p2, 21 is always smaller than Yg.
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The statement (e) of Corollary 5.4 gives a matching lower bound.
e When @(7““(22 1)) < P < @(7max S 1)).
the performance, and Figure 5.4a shows D(Py, P») = O(P%) is achievable. The statement (f) of

In this case, the first controller dominates

Corollary 5.4 gives a matching lower bound.
e When 9(7111&;((21 5
and Figure 5.4a shows D(Py, P;) = O(max(X,1)) is achievable. The statement (j) of Corollary 5.4

) < Py;. In this case, the first controller dominates the performance,

gives a matching lower bound.

When max(31,1) < O(7) < max(Ss, 1)

We will further divide the cases based on Py, Ps.

e When P; < ©(a?—1) and P, < O((a? —1)? max(Xa, 1)). As we can see from Figure 5.4a,
each controller does not have enough power to stabilize the system by itself. The statement (g) of
Corollary 5.4 shows that the system is indeed necessarily unstable for decentralized control problems.

e When P; < ©(a?—1) and O((a?—1)? max(X,1)) < P. In this case, the second controller
dominates the performance, and Figure 5.4b shows D(P;, P;) = O(max(X2,1)). The statement (i)

of Corollary 5.4 give a matching lower bound up to a constant ratio.

e When ©(a? —1) < P, < @(m) Since we assume O(——) < max(X,, 1), this case
never happens.
e When @(m) < P < @(m) In this case, the first controller dominates

the performance, and Figure 5.4a shows D(Py, Py) = O(P%) is achievable. The statement (f) of
Corollary 5.4 gives a matching lower bound.

e When @(m)
see in Figure 5.4a its performance is saturated by Kalman filtering and D(P;, P») = O(max(X1, 1)).

< Py. The first controller dominates the performance, but as we can

The statement (j) of Corollary 5.4 gives a matching lower bound.

When O(——) < max(3,1) < max(Xs,1)

We will divide the cases based on Py, Ps.

e When P; < O((a? — 1)?max(¥y,1)) and P, < O((a? — 1)2max(31,1)). In this case,
as shown in Figure 5.4b each controller cannot stabilize the system by itself. The statement (a) of
Corollary 5.4 shows that the decentralized system is indeed ncessarily unstable.

e When P; < O((a? — 1)? max(21,1)) and O((a? — 1)? max(21,1)) < P». In this case, the
second controller dominates the performance, and Figure 5.4b shows D(Py, P2) < O(m)
achievable. The statement (b) of Corollary 5.4 gives a matching lower bound.

e When O((a? — 1)?max(X1,1)) < P;. In this case, the first controller dominates the
performance, and Figure 5.4b shows D(P;, P;) < O(max(31,1)) is achievable. The statement (j) of
Corollary 5.4 gives a matching lower bound.

Formally, the average cost can be characterized within a constant ratio as follows.
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Proposition 5.1. Consider the decentralized LQG control of Problem J. There exists ¢ < 2 x 108
such that for all 1 < |a| < 2.5, q, r1, T2, 0p1 and oy,

inf lim sup% > Elgz?[n] + riuin] + rau3n]]
u1,u2€L1in kal N—oo ~ 0<n<N

<ec.

inf limsupx Y. Elgz?[n] + riu?n] + roud[n]] -
U1,U2 N—ooo — 0<n<N

Proof. See Appendix 10.2. This basically follows from the cases above. O

5.4.2 When |a| =1

In this case, we can prove the following lemmas which parallel Lemma 5.3 and Corollary 5.4

from the case when 1 < |a| < 2.5.

Lemma 5.4. We use the definition of Sy, shown in Lemma 5.8, i.e. the set of (ki,ka, k) such that
ki ko, k € N and 1 < ky < ky < k. We define Dy o(P1, Py, k1, ko, k) as follows:

~ S+ ks — ki — —
DL,Q(Pl,PQ,kl, kQ,k) 2 (\/221’(P1) + k - k2 - \/(k - k1)2P1 - \/(k - kQ)ZPQ)%’_ + ].
where

ki—1

X = 921
ki —1 ki—1 ki —1 k1 —1

I= log(1 log(1

5 log(1+ oy )+ —5—log(1+ 032)
D kg — k1 1 —

02
Here, when k1 —1 =0, I =0 and when ko — k1 =0, I'(E) =0.
Let |a| = 1. Then, for all q,71,72,00,001,0p2 > 0, the minimum cost (5.1) of Problem J is

lower bounded as follows:

inf lim Sup% Z qB[2?[n]] + rE[ui[n]] + roE[ui[n]]

w1tz N—oo 0<n<N

> sup _min gDpo(Py, Poiki, ko, k) + 1P+ o P
(k1,k2,k)eSL P1,P2>0

Proof. See Appendix 10.3. This is similar to the proof of Lemma 5.3 except that the geometric

sequences «; and B; in the geometric slicing are replaced by arithmetic sequences. O

Corollary 5.5. Consider the decentralized LQG problem of Problem J. Let |a| = 1. Then, for all

q,71,7m2 > 0, the minimum cost (5.1) of Problem J is lower bounded as follows:

inf lim sup% Z qB[2?[n]] + rE[u[n]] + r2E[ui[n]]

Utz N—oo 0<n<N

> min ¢Dy (P, Py) +711P + 9P,
Py,P>>0
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where DL(ﬁl, E) satisﬁes the following conditions.

(a) If oya > 16 and P1 1 then DL<P1,P2) > 0.091680,2 + 1.
(b) If o2 > 16 and 17— < P1 < & then DL(P1 p2) > 00;417 11

0.003772
(c) prl 50,P2 0 thenDL(Pth) m+1

(d) For all Pl,Pg, DL(/ZBI,/PZ) > max(@avl, 1).

Proof. See Appendix 10.3. O

Like Section 5.4.1, we will intuitively argue why the power-distortion tradeoff can be char-
acterized within a constant ratio by considering DL(/PZ7 E) as if it is a lower bound on D(Py, P,).
Notice that by (5.2), when |a| = 1 the Kalman filtering performance of the controllers are

—144/1+402 —14+/14+402
IV and 3, = VT

given as Y1 = 5
Yo & 01 and so we can think of o1, o3 shown in Corollary 5.5 as if they are 3, Xs.

respectively. Therefore, we can see ¥ =~ o7 and
As we discussed in Section 5.3.1, when |a| = 1 there is only one case for the power-distortion
tradeoff. Thus, we will only divide the cases by P; and Pg.
e When P; < O( and P, < O
dominates the performance, and Figure 5.2 shows D(P;, P») = O(

The controller with a larger power

maxE 1)) maxZ 1))

m) is achievable. The

statement (c¢) of Corollary 5.5 gives a matching lower bound.
e When Pl < @(m) and C"‘)(
dominates the performance, but its performance saturates to the Kalman filtering performance.

Figure 5.2 shows D(Py, P2) = O(max(32,1)). The statement (a) of Corollary 5.5 gives a matching

W) < P,. In this case, the second controller

lower bound.
e When @(m) < Pl < 6(
performance, and Figure 5.2 shows D(Py, P) = O(P%). The statement (b) of Corollary 5.5 gives a

m) In this case, the first controller dominates the

matching lower bound.
e When Pl > @(

but its performance saturates to the Kalman filtering performance. Figure 5.2 shows D(Py, P2) =

m) In this case, the first controller dominates the performance,
O(max(X1,1)) is achievable. The statement (d) of Corollary 5.5 gives a matching lower bound.
Formally, the constant-ratio result for the average cost LQG problem can be written as

follows.

Proposition 5.2. Consider the decentralized LQG control of Problem J. There exists ¢ < 540 such
that for all |a| = 1, q, r1, T2, 0u1 and 042,

inf limsup+ > Elgz?[n] + riui[n] + roud[n]]
U1, U2€Liin, kal N—o00 0<n<N

inf limsupwx; Y. Elgz?[n] + riuin] + raudn]]

U1,¥2 N—oo = 0<n<N

<ec.

Proof. See Appendix 10.3. O
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5.4.3 When 0.9 < |a| < 1

Lemma 5.5. We use the definition of S, shown in Lemma 5.8, i.e. the set of (ki,ka, k) such that
ki ko, k €N and 1 < ky < ky < k. We define Dy, 3(Py, Pa, k1, ko, k) as follows:

2(kg—k
Y o+ q2(k—ka+1) 1—a1<_;2 R 1 — q2(k—k2)
+a

Dps(Pr, Pp) = (\/ 520 () 1— a2

1—ab—k ~ 1—abk2  —~
- \/(1a>2p1 - \/(la)2p2)i +

where
_g2tk1—1)
. a2(k—Fk1+1) 1 12_’;12 !
- 92I
PR U et Y SR U SONURRS B Sy Wt
=gloslld ) glesll G
— 1 1 1— a2(k2*k1) 1— a2(k2717k1+1)
I'(P) = =log(l4+ —————(2a* """ — 4 9(ky — k
( 1) 2Og( +<I€2—k1)0'12}2(a 1— g2 + (2 1) 1 — a2
4 ogh—k1 T a> R (1 —ah R ak_kl)ﬁl»kz—kl
1—a (1—a)?

Here, when k1 —1 =0, I =0 and when ko — k1 = 0, I’(ﬁl) =0.
Let0 < |a| < 1. Then, for all q,71,72,00,041,042 > 0, the minimum cost (5.1) of Problem J
is lower bounded as follows:

1
inf limsup — Z qE[z%[n]] + mE[ui[n]] + roE[ui[n]]
“rtz N—oo IV (00N

> sup _min ¢Dp3(Pi, Poiki, ko, k) + 1Py + roPa.
(k1,k2,k)ESL P1,P>>0

Proof. See Appendix 10.4 for the proof. The proof parallels to Lemma (5.3) except that the base

for the geometric sequences a; and j3; is a instead of a~*. O

Corollary 5.6. Consider the decentralized LQG problem of Problem J. Define

(a®> = 1)o2, — 1+ +/((a% — 1)02, — 1)2 + 4a202,
2a2

(a? —1)o2y — 1+ \/((a2 —1)02, — 1)2 + 4a202,
2a2 '

21 =

22 =

Let 0.9 < |a| < 1. Then, for all q,r1,79 > 0, the minimum cost (5.1) of Problem J is lower bounded
as follows:

inf lim sup% Z qB[2?[n]] + rE[u[n]] + r2E[ui[n]]

Utz N—oo 0<n<N

> min ¢Dy (P, Py) +711P + 9P,
Py,P>>0
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where DL(ﬁl, E) satisfies the following conditions.
Then, we have a lower bound DL(E,E) on D(Py, P2) where DL(TDI,E) satisfies the fol-
lowings:
(a) If £ > 40, E < & then Dy(Py, Py) > 00091315, + 1.
(b) If22>40 <P1< thenDL(Pl,P)>%+1.
(c) If 158 (Pl,Pg) < 45 then Di(Py, P) > %H
(d) IfmaX(Pth) < (P]_,PQ) > Oiﬂiig +1.
(e) For all }Z,E, DL(FI,E) > max(0.2636%1, 1).

Proof. See Appendix 10.4 for the proof. O

Like in Section 5.4.1, we will intuitively argue why the power-distortion tradeoff can be
characterized within a constant ratio by considering Dy, (E, ﬁ;) as if it is a lower bound on D( P, Ps).
The characterization of the power-distortion tradeoff is equivalent to the characterization of the
average cost. Thus, we will intuitively argue how we can characterize the power-distortion tradeoff
within a constant ratio. For this, we will first divide the cases by X1, s, then we will further divide

the cases by P, Ps.

When max(21,1) < max(5,,1) < O(+21)

We will further divide the cases based on E7 ﬁ;

e When P; < O(1—a?) and P, < O(1—a?). From Figure 5.6a we can see that D(Py, Py) =
ﬁ is achievable without any control input. The statement (d) of Corollary 5.6 gives a lower bound
tight up to a constant ratio.

e When P; < O(1 —a?) and O(1 —a?) < P, < @(m) The second controller
dominates. Figure 5.6a shows D(Py, Py) = O(P%) is achievable in this case. The statement (c) of
Corollary 5.6 gives a lower bound tight up to a constant ratio.

e When P, < ©(1 — a2) and @(m) < P,. In this case, the second controller’s
performance saturates to Kalman filtering, and Figure 5.6a shows D (P, P;) = O(max(3s,1)) is
achievable. The statement (a) of Corollary 5.6 gives a lower bound tight up to a constant ratio.

e When ©(1-a?) < P, < @(m) and P, < O(1—a?). The first controller dominates.
Figure 5.6a shows D(Py, Py) = O( P%) is achievable in this case. The statement (c) of Corollary 5.6
gives a lower bound tight up to a constant ratio.

e When ©(1—a?) < P, < @(m) and O(1—a?) < P, < @(m) The controller
with larger power dominates. Figure 5.6a shows D(Py, P2) = O(m) is achievable with the
controller with lager power. The statement (c¢) of Corollary 5.6 gives a lower bound tight up to a
constant ratio.

e When (1 —a?) < P, < @(m) and Q(W) < P,. The second controller
dominates. Figure 5.6a shows D(P;, P,) = O(max(X3,1)) is achievable. The statement (a) of

Corollary 5.6 gives a lower bound tight up to a constant ratio.
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e When @(m) <P < @(m) The first controller dominates. Figure 5.6a
shows D(Py, Py) = O<P%> is achievable. The statement (b) of Corollary 5.6 gives a lower bound

tight up to a constant ratio.
e When @(m) < Py. The first controller dominates. Figure 5.6a shows D(Py, P2) =
O(max(X1,1)) is achievable. The statement (e) of Corollary 5.6 gives a lower bound tight up to a

constant ratio.

When max(21,1) < O(115) = max(3,,1)

We will further divide the cases based on Py, Ps.
e When P; < ©(1 — a?). From Figure 5.6a we can see that D(Py, Py) = 1 1=z is achievable
without any control input. The statement (b) of Corollary 5.6 gives a matching lower bound. More

precisely, since ©(;—) = max(Xy, 1), for a large value of X5 we can put P, = O(1 — a?) in the

1—a?
statement (b). Then, the bound reduces to D(Py, P2) = Q(11).
e When ©(1 - a?) < Pi < O(smxy)-

Figure 5.6a shows D(Py, Py) = O(P%) is achievable. The statement (b) of Corollary 5.6 gives a

In this case, the first controller dominates, and

matching lower bound.
e When @(m
shows D(Py, P;) = O(max(X4,1)) is achievable. The statement (e) of Corollary 5.6 gives a matching

) < P;. In this case, the first controller dominates, and Figure 5.6a

lower bound.

When O(~) = max(¥;,1) ~ max(3s, 1)

In this case, the Kalman filtering noise ¥; and X is already compatible with the state

1— a27

distortion attainable without any control mputs Therefore, we cannot expect a significant control

gain, and the optimal state distortion is ©(1=-z). Since ©(1=3) = max(£y,1), the statement (e)

1—a?
of Corollary 5.6 gives a matching lower bound.

Formally, the average LQG cost for 0.9 < |a| < 1 can be characterized as follows.

Proposition 5.3. Consider the decentralized LQG control of Problem J. There exists ¢ < 1700
such that for all 0.9 > |a| < 1, q, r1, T2, 0p1 and oy,

inf limsupy > Elgz?[n] + riui[n] 4+ roud[n]]

u1,u2€L1in kal N—oo ~ 0<n<N

inf limsupx, Y. Elgz2[n] + riu?[n] + rou3[n]]
UL,U2 N 500 0<n<N

<ec.

Proof. See Appendix 10.4 for the proof. O
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5.4.4 When |a| <0.9

Proposition 5.4. Consider the decentralized LQG control of Problem J. There exists ¢ < 6 such
that for all |a| < 0.9, q, r1, 12, 01 and oys,

inf lim sup% > Elgz?[n] + riui[n] + rou3[n]]
w1,u2€Liin kal N—00 0<n<N

inf lim sup% > Elgz?[n] + riu?[n] + raui[n]]
U1,U2 N 00 0<n<N

<c

Proof. By Lemma 4.14 of Chapter 4, it is enough to show that there exists ¢ € R such that
DU(CP1, CPQ) S C- DL(Pl,Pg).
Upper bound: Putting £ = 0 in Lemma 5.1 gives

1 1
Dy(P),P) < (——=,0) < 0
( U( 1)7 1) = (1—0/2’ )— (1_0'923 )
Lower bound: By Lemma 5.5,
Dp(Pr, P2) > 1
Ratio: ¢ is upper bounded by
1
< <
€= 1092 =0
Therefore, the lemma is proved. O

5.4.5 Proof of Theorem 5.1

Now, by combining the results of Proposition 5.1, 5.2, 5.3 we can prove the main theorem

of the chapter.

Proof of Theorem 5.4.5. The proof immediately follows from Proposition 5.1, 5.2, 5.3. O
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Chapter 6

Conclusion

In this thesis, we studied modern control system problems through an informational lens.
Even though we considered explicit control systems with control objectives, what we really found
in the solutions was the nature of information flow. We applied information-theoretic ideas to
understand the problems, often found relations between control and communication theory, and
even discovered hints of a unified theory. Table 6.1 shows a list of ideas, results and techniques
shown in this thesis, and Figure 6.1 summaries the relationship and parallelism between the two
theories.

One of the earliest paper which showed an explicit relationship between communication and
control is due to Schalkwijk and Kailath. In [89], they found a surprising relationship between point-
to-point feedback communication systems and centralized feedback control systems. Recently, in [37]
we found another interesting relationship between dirty-paper coding (in information theory) [20]
and Witsenhausen’s counterexample (in control theory) [108]. We proposed a control strategy based
on the known solution for dirty-paper coding, and applied large deviation ideas [24] to prove its
approximate optimality.

In this thesis, we found much more extensive relationships between the two theories. In
Chapter 2, we considered intermittent Kalman filtering, which previously had been considered only
from a control theoretic point of view. However, we found that the essence of the problem is in fact
communication and information flows. The plant in intermittent Kalman filtering can be thought
of as the source of information flows, and the observability gramian generated from the successfully
received observations can be thought of as the channel. Furthermore, we showed that the different
subspaces of the plant do not interact with each other as long as they belong to different eigenvalue
cycles. To justify this, we adapt successive decoding ideas [21] from information theory. Then, the
amount of source information and the channel capacity were measured by rank, i.e. the dimension
of subspaces belong to the same eigenvalue cycle is the amount of source information, and the rank

of the observability gramian generated from the successfully received observations is the channel
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e Intermittent Kalman Filtering (Chapter 2)

Result
Idea
SP Technique

IT Technique

IT Technique
Ergodic Theory

Strategy Result
IT Technique

(1) Characterization of critical erasure probability (Theorem 2.7 of Page 39)

- Eigenvalue Cycle to capture periodicity of system (Section 2.5.1 of Page 30

- Polyphase decomposition idea to reduce periodic systems
to aperiodic systems (Claim 7.7 of Page 328)

- Successive decoding idea to justify one state by

one state decoding (Section 2.5.2 of Page 33)

- Large deviation idea to analyze the p.m.f. tails (Appendix 7.1 of Page 260)

- Weyl’s criterion to approximate deterministic sequences
by random variables (Appendix 7.6 of Page 300)

(2) Nonuniform sampling improves performance (Theorem 2.8)
- Random jittering idea for analysis (Section 2.7 of Page 43)

Technique - Application of Dini’s theorem to justify uniform convergence
(Appendix 7.3 of Page 272)
e Network coding meets Decentralized control (Chapter 3)
Result (1) Algebraic mincut-maxflow theorem (Theorem 3.2 of Page 85)
Idea - Network Linearization idea to simplify network topology

Interpretation Result

Idea
Idea & Technique

New Problem
Result

Result

Result

to single-hop relay networks (Section 3.2.2 of Page 86)

(2) Externalization of Implicit Communication (Section 3.5 of Page 110)
- Jordan form transition to reveal source and destination
of information flow (Section 3.5.2 of Page 113)
- Interpretation of transfer function as network topology

(Theorem 3.8 of Page 121)

(3) Control over LTT networks (Section 3.6 of Page 3.6)
- Relationship between network capacity and stabilizability of system
(Theorem 3.9 of Page 124)
- Use of multicast network coding schemes to increase
reliability control systems (Theorem 3.10 of Page 130)
- Use of broadcast network coding schemes to reduce
interference between control systems (Theorem 3.12 of Page 135)

e Scalar LQG problem with two controllers - Fast Dynamics (Chapter 4)

Strategy Result
IT Technique
Idea

IT Technique

Result
Technique

Technique
Technique

Result & Technique

(1) Achievable Cost (Lemma 4.7 of Page 174)
- Linear determinist model interpretation (Section 4.3 of Page 148)
- Nonlinear s-stage signaling strategy (Definition 4.2 of Page 145)
- Approximate lattice theory to analyze the performance

(Section 4.5.2 of Page 170)

(2) Lower bound on Cost (Lemma 4.12 of Page 198)
- Geometric slicing to reduce infinite-horizon problems to
finite-horizon problems (Lemma 4.8 of Page 180)
- Three stage division of finite-horizon problems
(Section 4.6.2 of Page 185)
- Bounding the first interval as information limited interval
(Lemma 4.9 of Page 187)
- Interpretation of the second interval as MIMO Witsenhausen’s
counterexample (Section 4.6.3 of Page 190)

Technique - Use of large deviation ideas to bound rare events

(Proof of Lemma 4.12 of Page 198)
Technique - Bounding the third interval as power limited interval

(Lemma 4.10 of Page 188)
Result (3) Constant Ratio Optimality Result (Theorem 4.1 of Page 146)
Technique - Relation between average cost problem and power-distortion tradeoff

(Lemma 4.14 of Page 212)

e Scalar LQG problem with two controllers - Slow Dynamics (Chapter 5)

Result (1) Achievable Cost (Lemma 5.3 of Page 227)

Interpretation & Result

Result
Technique

- Approximation of centralized control cost
(Corollary 5.1, 5.2, 5.3 of Page 230, 233, 235)
(2) Lower bound on Cost (Section 5.4 of Page 236)
- Geometric slicing with different sequences (Lemma 5.2 of Page 238)

Table 6.1: Highlighted Ideas, Results and Techniques developed in this thesis
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capacity. This insight parallels the fact that in MIMO AWGN (additive white Gaussian noise)
communication channels the ranks of channel matrices are known as the d.o.f.(degree-of-freedom)
capacity of the channel [99].

Therefore, the intermittent Kalman filtering performance is deeply related with the rank
of the observability gramian generated from the randomly received observations. We saw that the
probability that such randomly generated observability gramians have too small a rank to convey
enough information about the plant dominates the performance of intermittent Kalman filtering.
We adapted large-deviation ideas [24] from information theory to analyze such a probability. Fur-
thermore, nonuniform sampling can be used as a simple way to increase the rank of the observability
gramian, so it can dramatically improve the intermittent Kalman filtering performance.

In Chapter 3, we took a unified view of distributed linear control systems and linear net-
work coding. By restricting the system, controllers, transmitter, relays and receiver designs to be
linear time-invariant, we considered both systems as linear time-invariant systems. Based on this
interpretation, we developed an algorithm which extracts implicit information flows that must hap-
pen when the controllers stabilize the plant. More precisely, we modeled the implicit information
flows by relay networks. The source and destination of the relay network are the states(subspaces)
of the plant corresponding to the same eigenvalue, the relays are the controllers, and the remaining
states of the plant correspond to the channels. Like in the intermittent Kalman filtering interpreta-
tion, information is measured by a rank. The dimension of subspaces corresponds to the minimum
amount of information that must flow to stabilize them. Therefore, a subspaces can be stabilized
if and only if the mincut of the relay network is larger or equal to this minimum required amount
of information. Here, the mincut of the relay network is also measured by a rank, precisely the
rank of the channel matrix for the cut. Thus, we could understand the stabilizability condition for
distributed control systems through the lens of a mincut-maxflow theorem for relay communication
networks. We also saw that this insight can lead to new designs for distributed control with explicit
LTT communication networks.

Furthermore, the connection between distributed control and network coding could lead to
new results for network coding. In Chapter 3.2.2, by applying state-space representation ideas to
network coding, we found an algorithm that converts arbitrary topology communication networks
to equivalent single-hop relay networks, which we called network linearization. This standardization
of network topology turned out to be extremely useful when the complexity of network topology is
the crux of the problem. We asked the question whether the mincuts of LTI networks are achievable
by static LTI relay schemes. We first showed the answer is yes for standardized single-hop relay
networks. Then, we generalized the result to arbitrary topology networks by network linearization.

Finally, in Chapter 4 and 5, we considered the optimal LQG control problem with a scalar
plant and two controllers, and leveraged the understanding of control information flows to approxi-
mately optimal controller design. One of the key ideas in finding an approximate optimal strategy

was an appropriate division of cases. Just as wireless communication theory [99] divides cases ac-
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cording to SNR (signal-to-noise ratio), we divided based on the eigenvalue of the system. When the
eigenvalue of the system is large, we called it the fast-dynamics case. When the eigenvalue of the
system is small, we called it the slow-dynamics case.

The main insight to understand fast-dynamics cases was a linear view of nonlinearity. We
saw that in the fast-dynamics case, nonlinear controllers can infinitely outperform linear controllers.
To understand nonlinear controllers and resulting nonlinear system’s behavior, we considered each
bit-level of the state as different linear spaces. In the resulting linear deterministic model [6],
information still can be measured by a rank. In the proposed approximately optimal nonlinear
strategy, the first controller “communicates” to the second controller by reducing the rank of the
binary representation of the state. In other words, by reducing the rank of the binary representation,
the first controller reduces the amount of information in the state so that the second controller can
have better estimates about the state. Since we are focusing on the rank of linear spaces, this control
strategy parallels with high-SNR wireless communication schemes which exploit d.o.f. gain [99].

For slow-dynamics, we saw that the opposite is true. The SNR of implicit communication
between two controllers is bounded by the eigenvalue. Therefore, there is no huge incentive for
implicit communication, and single controller linear strategy (Kalman filtering) turns out to be
approximately optimal. The Kalman filtering gain can be thought of as a kind of power gain which
turned out to be crucial for low-SNR case [99] in wireless communication.

Furthermore, to prove approximate optimality of the proposed strategy, we used informa-
tion theory and found new fundamental limits on control performance. A key tool was the geometric
slicing idea, which gives different ways of cutting infinite-horizon problems into finite-horizon ones,
and parallels with cutset bounds in information theory.

Control and communication theory have been developed separately for decades. However,
as we saw in this thesis, there exist extensive parallelism and relationship between two theories.
Furthermore, the emerging modern systems have both control and communication systems as sub-
systems. A mathematical theory for modern cyber-physical systems should include control and
communication theories. Figure 6.1 summaries the relationships between control and communication
theories, and also indicates the directions to build a unified theory for modern systems. Lots of ideas
and problems in both theories still remain unconnected, and these connections have to be made to
build modern systems.

As we control power grids or transportation systems over communication networks, the
security issue becomes a crucial component. The security concept of communication theory has
to be connected to the safety concept of control theory. As modern systems scale, we also have
to understand overall behavior of whole system as the number of subsystems grows. Since control
systems keep evolving over time, the delay issue of communication is becoming more crucial and has
to be theoretically understood.

All of these theoretic understanding and insights into modern systems have to based on the

understanding of information flows for control. This thesis shows the possibility of theoretic study



259

Communication Theory Control Theory
*| Point-to-Point with Feedback > Centralized LQG problem
*| Dirty Paper Coding — Linear Controller

— Dynamic Programming
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— Computation over MAC
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* Broadcast Channel Intermittent Kalman Filtering
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*| Relay Network Weighted Cutset (Geometric Slicing)
— Compress-and-Forward for Dynamic Program
— Decode-and-Forward — Delay of Implicit Communication
— Amplify-and-Forward

*| Network Coding
* Security/Secrecy
| Large Deviation

*| General Network
— Cutset bound
— Scaling law

?

S

Figure 6.1: Parallelism and Relationship between Communication and Control Theory

of control information flows. Even thought control information flows have their own unique features,
they still bears lots of semblance to wireless information flows. This suggests that we can exploit
the current understanding of wireless information flows to study control information flows. At the
end of study, we may be able to reach a unified theory for control and communication from a lens

of information.



260

Chapter 7

Appendix for Chapter 2

7.1 Lemmas for Tails of Probability Mass Functions

In this section, we will prove some properties of the tails of probability mass functions
(p-m.f.). By the tail, we mean how fast the probability decreases geometrically as we consider rarer
and rarer events.

First, we define the essential supremum, ess sup.

Definition 7.1. For a given random variable X, esssup X is given as follows.
esssup X = inf{z € R: P(X > x) = 0}.

The following lemma shows that even if we increase a random variable sub-linearly, its

p-m.f. tail remains the same.

Lemma 7.1. Consider o-field F and a nonnegative discrete random wvariable k whose probability
mass function satisfies

1
exp(limsup esssup — logP{k = n|F}) <p

n— 00 n
Then, given a function f(z) such that f(z) < a(log(z + 1) + 1) for some a € RT, the probability
mass function of a random variable k + f(k) satisfies the following:

1
exp(limsup ess sup — logP{k + f(k) =n|F}) < p.

n—00 n

Proof. Since esssupP{k = n|F} is bounded by 1, for all § > 0 such that p + § < 1 we can
find a positive ¢ such that esssupP{k = n|F} < c¢(p+6)" (1 — (p+9J)). Moreover, since f(z) <
log(z + 1)+ 1, for all § > 0 we can find a positive ¢’ such that f(z) < 8z + ¢ for all z € RT. Then,
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we have

esssupP{k + f(k) = n|F} < esssupP{k + f(k) > n|F} <esssupP{k + 8k +c >n|F
pP{k + f(k) = n|F} pP{k + f(k) > n|F} pP{
<esssup]P>{l<:>L j\]—"}_ Z esssup P{k = i|F}

n—c’

1= |.1+5/J
< Y cp+8)(1—(p+9))
i=15757)

225 )
—e1- -+ 0) B

clp+0)5 T =c(p+0) T T (p+ o)

=c(p+9) L5557

Therefore,

n—oo

exp (hmsupess sup — log]P’{k + f(k) = n|]—'}> <(p+ 5)1+%s’
Since we can choose ¢ and §’ arbitrarily close to 0,

exp <hm Sup ess sup — 1ogIP’{k: + f(k) = n|}"}) <p,

n—oo

which finishes the proof. O

The following (well-known) lemma tells us that if we add independent random variables,

the p.m.f. tail of the sum is equal to the heaviest one.

Lemma 7.2. Consider an increasing o-field sequence Fo, F1, -+ ,Fn_1 and a sequence of discrete
random variables ki, ko, - | ky satisfying two properties:

(i) ki e F; forie{l,--- ,n—l}

(ii) exp(limsup;,_, . esssup + log P(k; = k|F;_1)) < p;.

Let S =" k;. Then, exp(limsup,_, . esssup L logP(S = s|Fy)) < maxi<;<n{p:}-

Proof. Given ¢ > 0, let k. be independent geometric random variables with probability 1 — (p; + ).

Denote S” := " | ki. The moment generating function of S’ is

i=1 -

ﬁ (1—(pi+9))
Pl (pi+06)Z—1"
By [75], the last term can be expanded into a sum of rational functions whose denominators are
1 — (p; + 6)Z~ L. Therefore, by using an inverse Z-transform shown in [75], we can prove that
exp(liirl)sip é logP(S' = s)) < lrgla<xn{pz +0}.

On the other hand, since esssup P(k; = k|F;—1) is bounded by 1, for all 6 > 0 we can find positive
¢; such that

esssup P(k; = k| Fi_1) < ¢ (p1 +0)" (1 — (p1 + 0)) = ciP(k] = k)
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for all k € Z*. Then

esssup P(S = s|Fo)

= esssup Z P(ky = s1]|Fo)P(k2 = s2|Fo, k1 = s1) - - - P(ky = sn|Fo, k1 = 81, ,kn—1 = 5p-1)
s=s1+:+5n

< Z esssup P(k1 = s1|Fo) esssup P(ke = s2|F1) - - - esssup P(ky, = sp|Fn-1)

s=s1+-+sn

< II ar Y. P = s1)P(k) = 52) - P(K), = 53)

1<i<n s=s1++5sp

< H C; ]P)(S/ = S)
1<i<n
Thus, exp(limsup,_, ., esssup + log P(S = s|Fy)) < maxi<i<,{pi + 6}
Since this holds for all § > 0, exp(limsup,_, . esssup < log P(S = s|Fp)) < maxi<;<n{p;}-
O

The next lemma tells us how the large deviation principle [24] can be applied to stopping
times, i.e. it formally states the “test channel” and the “distance idea” shown in the power property
of Section 2.5.1.

Lemma 7.3. For given n, consider discrete random variables ki, ka,--- .k, and o-algebra F. The
probability mass functions of ki, ks - , k, satisfy
1
exp(lim sup esssup — log P{k; = k|F}) < p;
k—oco k
and ky, ko, - -+, k, are conditionally independent given F.

For given sets Ty, Ta, -+ , Ty, € {1,2,--- ,n}, define stopping times My,--- , My, as

M; := max k;
teT;
and a stopping time S as
S := min M;
1<i<m
Then,
. 1
exp | limsupesssup —logP{S = k|F} | < max PPty " Ptyp-
k—o0 k T={t1,ta, tjp }C{1,2, ,n} 8.t. TAT; 0 for all i

Proof. Since esssup P{k; = k|F} is bounded by 1, for all § > 0 we can find ¢ > 1 such that
esssup P{k; = k|F} < ¢(p; +6)" (1 = (pi +6)).
Thus, we have

esssup P{k; > k|F} < c(pi + ).
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Therefore,
esssupP{S = k|F} < esssupP{S > k|F}
=esssupP{M; > k,--- , My, > k|F}
= esssup P{There exists T' = {t1,t2,--- ,t|p|} € {1,--- ,n} s.t.
TNT; #0for all i and kg, >k, -+ ke > kIF}

< > esssupP{ky, >k ky, > k.- ki .y > kIF}
T = {ts,ta, - tyr} S {1,-- ,n}
st. TNT; # 0 for all 4
<HT = {t1,t2,--- s tjr} € {1,--- ,n} s.t. TNT; # 0 for all i} (7.1)
max esssup P{ky, > k|F}---esssup P{ky ., > k[F}

T = {t1,ta,--- ,tj7} C{1,--- ,n}
st. TNT; # 0 for all 4

< "HT = {t,t2,--- ,typ} ©{1,--- ,n} s.t. TNT; # 0 for all 4}

max (Pt +0)"  (pry +0) " (prp +0)
T = {tl,tz,"‘ 7t|T|} C {17... ,n}
s.t. TNT; # for all ¢

(7.1) follows from union bound. Since the above inequality holds for all § > 0,

1
exp <lim SUD ess Sup logP{S = k|}'}> < max Pt Dty Pty -
k—o0 T={t1,t2, ,t|7| }C{1,2,--,n} s.t. TNT;#0 for all i

O

7.2 Lemmas about the Observability Gramian of Continuous-

Time Systems

In linear system theory [17], the observability Gramian plays a crucial role in estimating
states from observations. Therefore, we also study the behavior of the observability Gramian,
especially the norm of the inverse of the observability Gramian.

First, we start with a corollary of the classic rearrangement inequality [43].

Lemma 7.4 (Rearrangement Inequality). For Ay > Ao > -+ > X, 20,0 < k; <ky < -+ < ky,

and any permutation map o, the following inequality is true:
e Aok o= Ac)k2 L o= Ac(m)Em < e~ MEig=Aeka o= Amkm
Moreover, the ratio of these two can also be upper bounded as

e ok Ae@k2 ... o= A (m)bm
e—Mkig—A2k2 ... o= Amkm

< e*(%—;(m) —Am)(Fm =k, —1(m))
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Proof. The first inequality directly follows from the classic rearrangement inequality. The second

inequality is proved as follows: When o~!(m) = m, the inequality is trivial. When o~(m) # m,

we have

e Aok Ao@ka o TAME 1y L g TAe Dk 1 g Ao (m) B

— (67)‘0'(1)]61 67)‘6(2)]62 o e_kmko‘_l(nL) o ei)‘O'(”l*l)km_l) .eiAU(m)km

(a)
_ <ef)\g(1)k16*)\a(2)k2 . e—Aa(m)kﬂ_um) . 67/\0(m—1)k7n71) . (

(b)

e AmFo—1(m)

e_AU(m)ka_l('m,)

We can notice that the exponent of (a) has {A1, A2, -+, A} \ {Ao(@m) } and {k1, ko, - -

terms in it, and the exponent of (b) has

({222 A\ o my 1) U Ao} \ {Am}
= {)\1’)\2, e a)\m} \ {)‘m}

and {ky, ko, - ,km} \ {km} terms in it. Thus, by the first inequality of the lemma,

(b) < e_)‘lkl . e_>\m71km,1.

Together with (7.2), we have

e~ remF1o=Ae@F2 ... o= Ao (m)Fm

e~ MEig—A2k2 ... o= Amkm

“Amk __1
—A1ky —Am—1km_1 e o m) —Ao(m)km
e e 6 . —_— . e o(m
( ) (eka(m)k(,—l(m)

e~ Mkipg—A2k2 ... o= Amkm

—Amk_—1

mi (m)

IR ™) e Petmkn — g =Ae ) =k -1 (1)
e—Amkm e Aom) kg —1(m)

IN

which finishes the proof.

) s Aetmbm (7.2)

s} \ {km }

O

Even though Theorem 2.8 is written for a general matrix C, we will first start from the

simpler case of a row vector C. In fact, for the proof of the general case, we will reduce the system

with a matrix C to a system with a row vector C.

First, we introduce the definitions corresponding to (2.28), (2.29) for a row vector C. Let
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A, be am x m Jordan form matrix, and C be a 1 x m row vector C which are written as follows:

A.= diag{Al,l? Ara, A1, AL, 7Au,V,L} (7.3)
C= |:Cl,1 Ciz - Ci, - Cui - CWJ (7.4)
where A, is a Jordan block with eigenvalue A; ; + v/ —1w; ; and size m; ;
mi1 <mio < - <my,, foralli=1,---,p
m; = Z mi,j for all i = 1,--- s W
1<j<v;
/\i,l :)\i,Q = "':/\i,ui for all i = 1,-~- s 1

/\171 >>\271 > > /\lhl >0
Wi1," * ,W;,, are pairwise distinct
C;jis a1l x m;; complex matrix and its first element is non-zero

Ai + v —1w; is (i,1) element of A.

Here, we can notice that the real parts of the eigenvalues of A;q,---,A;,, are the same, but the
eigenvalues of all Jordan blocks A; ; are distinct. Therefore, by Theorem 2.6, the condition that the
first elements of C; j are non-zero corresponds to the observability of (A, C).

The following lemma upper bounds the determinant of the observability Gramain of the

sampled continuous system.

Lemma 7.5. Let A. and C be given as (7.3) and (7.4). For 0 < ky < ko < -+ < kyy, there exists
a>0,pcZT such that

Ce F1he
CeF2he
det ) <a(kP +1) H e i
: 1<i<m
CeFmAe

where \; is the real part of (i,i) component of A..
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A1+ jwi 0
. . . o 0 A2 + jwe
Proof. First consider a diagonal matrix, i.e. A, = ) ) . ) . Then,
0 0 e A Jwm
CefklAc
CeF28Ac
det
Ce kmAe
m
cESm i=1
m
| ooy (Nitiwi)
< ml! ;Ié%}i che
=1
m m
=m! Hci max He_k"(”’\'i
o1 |7 i
m m
=m! H ¢ H e Ridi(- - Lemma 7.4)
i=1 |i=1
m
< H e ki (7.5)
i=1
where ¢; are ith component of C, S,, is the set of all permutations on {1,--- ,m}, and sgn(o) is +1

if o is an even permutation —1 otherwise. Therefore, the lemma is true for a diagonal A..
To extend to a general Jordan matrix A, consider a matrix A/ which is obtained by
erasing the off-diagonal elements of A.. Then, we can easily see the ratio between the elements of
Ce Fihhe Co—HAL
and the corresponding elements of : is a polynomial whose degree is less
Ce FmAe CeFmAc

than m. Therefore, by repeating the steps of (7.5) we can easily obtain

Ce F1Ae
det Ce:kZAc <4k e,
Ce FmAe -
which finishes the proof. O

The next lemma upper bounds the norm of the inverse of the observability Gramian, given
the lower bound on the observability Gramian determinant. Therefore, we can reduce the matrix

inverse problem to the matrix determinant problem.
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Lemma 7.6. Consider A and C given as (7.3) and (7.4). Let \; be the real part of (i,1) element
of Ac. Then, there exists a positive polynomial p(k) such that for alle >0 and 0 < kg < -+ < Ky,

if

Ce k1A
Cefk2Ac
det ) > € H e ki
: 1<i<m
Ce Fmhe
then
-1
CefklAc
Ce F2Ac k
< p( Tn)eAlkm.
€
CeFmAc
max

CefklAc

Cek2Ae
Proof. Let O;; be the matrix obtained by removing the ith row and jth column of

Ce Fmhe

Let Ac(j) be the (m — 1) x (m — 1) matrix that we can obtain by removing the jth row and column
of A, and C(j) be the row vector that we can obtain by removing the jth element of C.

First, let’s consider the case when A is a diagonal matrix. In this case, using properties
[ C(j)eFiAe0) ]

C(j)e_szlAc(j)

of diagonal matrices we can easily check that O;; = .
C(j)e FitrAel)

C(j)etnAcd
In other words, O;; are also the observability Gramian of (Ac(j), C(j)). Let C;; be the
Ce k1A

Ce F28e
(4, 4)th cofactor of . . Since C; ; is the determinant of Oj j, we can apply Lemma 7.5 to

Ce FkmAe

conclude that there exists a positive polynomial p; ; such that
pig (k) (THS e ) - (T ettt ) - ([T o) ifi 2
pilhn) (TGt e ) - (TS e ) - (MO o) i<

Then, let’s consider the case when A, is a general Jordan form matrix. Compared to

Cijl < (7.6)

the case of a diagonal matrix A, the elements of O;; only differ by polynomials on %; in ratio.
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Therefore, by the same argument of the proof of Lemma 7.5, we can still find a positive polynomial
pi,; satisfying (7.6).
Moreover, since Ay > Ao > -+ > A, > 0and 0 < kg < ky <--- < k,,,, we have

7j—1 i—1
H e*/\zkz . He*AHlkz . H S*Azkz < He*/\ iki— L
=1 1—j

l=i+1
i—1 -1
Hef)\zkz . Hef)\zkz-u . H ef)\lkl < H ik 1
=1 1= I=j+1

Therefore, we can further bound the cofactor as follows:
m
—Niki_
|Cij] < maxpi j (km) He L

Then, we have

CeF1he
k2
Ce _ max;, ; ‘C¢7j| < maxs ; |Ci7j|
Ce F1Ac 6H1gigme o
Ce—FmAc Ce Ao
mazx det
Ce_kwnAc
m —Niki—
max;; Pi,j(km) [iZs € '
> —kiX;
€Ili<i<me
_ maxi; Pi,j (k) MlHe kihi-1)
€
max; ; p;
< maXi,; Pij (Km) ik, HeAl A >N >0,k — kg >0)
€
_ wemm
€
< ZigPralhm)
- €
Therefore, the lemma is true. =

Now, the question is reduced to whether the observability Gramian determinant is large
enough. We will find a sufficient condition for the determinant to be large in terms of a simpler
analytic function. For this, we first need the following lemma that basically asserts that polynomials

increase slower than exponentials.
Lemma 7.7. For any given polynomial f(x), A\ > 0 and € > 0, there exists a > 0 such that
[f(k+ )] < ee’®

for all x > a(log(k + 1) + 1) and k > 0.
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Proof. Let the order of f(z) be p. Then, there exists ¢ > 0 such that for all > 0,
[f(@)] < e(1 +aP*h).

If we consider %logg + %10g(1 + (22)P*1) and z, the former grows logarithmically in 2 while the
later grows linearly on x. Therefore, we can find ¢t > 0 such that
1

1
3 log ¥z log(1 + (2z)P™!) < =
€

A

for all # > t. We can also finde a > 0 such that a(log(k+1)+1) > max {§ log € + § log(1 + (2k)P*1), ¢}
for all £ > 0.

To check the condition, |f(k + z)| < ee??, we divide into two cases.

(a) When z < k,

|f(k + z)| is bounded as follows:

PO+ )l < e (1+(k+ap)
<ec (1 + (2k)”“)
oM log 241 log(14+(2k)7 )

S eeA‘I
where the last inequality comes from § log ¢ + § log(1 + (2k)P™) < z.
(b) When z > k,
Since ¢t < z, 1 log ¢ + +log(1 4 (22)P*1) < 2. Then, we can bound |f(k + z)| as follows:
O+l <1+ 0+at)
<c (1 + (2x)p+1>
— M3 log £+ 5 log(1+(22)P 1))

Az

IN

€e

Therefore, the lemma is proved. O

Now, we give a sufficient condition to guarantee that the determinant of the observability

Gramian is large enough.

Lemma 7.8. Let A. and C be given as (7.3) and (7.4). Let a;; and C; ; be the (i,j) element and
CefklAc

Ce F2Ae
cofactor of ' respectively. Then there exist g.(k) : RT™ — RT and a € R*such that for all

CeFmAc
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€>0 and ky,--- , ky, satisfying

i)0§k1<k2<"'<km
“) km - kmfl 2 ge(kmfl)

iii) ge(k) < a(1 +log(k + 1))

(
(
(
@) > amiCmil >e [ eFN

m—m,+1<i<m 1<i<m
the following inequality holds:
Ce F1Ae
Ce_k2Ac 1
det ) > §€ e kiNi
: 1<i<m
Ce_kmAc

Proof. First of all, because A is in Jordan form, it is well known that the elements of e~*4¢ take
a specific form [17]. Thus, we can prove that for all a;; there exists a polynomial p; ;(k) such
that a; ; = p; ;(k;)e* (X139 Then, we can find p(k) in the form of a(1 + k%) (a > 0) such that
p(k) > max; ; |p; (k)| for all k> 0. Denote X := X,_11 — A, 1 > 0.

Let Sy, be the set of all permutations on {1,---,m}, and sgn(c) be +1 if o is an even



271

permutation —1 otherwise. Then, we have

Ce k1A
C@il@Ac m
det , =1 > amiCmi|l =] Y sgn(o) [ i
: 1<i<m TES i=1
Ce FmAc
Z § am,icm,i - E am,icm,i
m—m,+1<i<m 1<i<m-—m,,
> € H e ki _ g Am,iCmi| (.7 Assumption (iv))
1<i<m 1<i<m—my,
m
=e [J e - > sgn(0) [T aso
1<i<m 0ESm,1<o(m)<m—m,, i=1
m
e [ e S e
1<i<m 0E€Sm,1<o(m)<m—m,, li=1
m
=e [[ e - > [T 9o (i)e e Qoo tiwon)
1<i<m 0€Sm 1<a(m)<m—m,, li=1
m
> € H e kiNi E ePAm=Ao(m)) Fm =k —16n)) | Hp(k‘i)e_k’)i (. Lemma 7.4)
1<i<m 0ESm,1<o(m)<m—m,, i=1
> H e kit | e — E p(km)me()‘m_)“’(’”))(km_k””(m)) (. p(k) is an increasing function.)
1<i<m 0€Sm,1<o(m)<m—m,
—kiX; E =X (km—km— .. _y/
Z H € €~ p(km)me ( 2 ( /\U(m) —Am 2> )‘#—1,1 - )‘HJ =A )
1<i<m 0€Sm,1<o(m)<m—m,,
!
> [ e (6 — mlp(k) e (km—kmfl))

1<i<m

Since m!p(z)™ is a polynomial in z, by Lemma 7.7 there exists g.(k) : Rt — R™ such that
(i) ge(k) < log(k + 1) + 1

(ii) |mp(k + )™ < %6/\,'1 for all x > g.(k) and k > 0.

Therefore, for all k,, such that k., — kn—1 > ge(km—1),

Ce F1hc
Ce F2he
det Z H e_kz)\i (6 _ Eekl'(km_km—l)e_kl'(km_kmfl)) 2 E H e—ki,)\i.
: 1<i< 2 2 o2
S1sm <i<m
Ce_krnAc

Thus, the lemma is proved. O
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7.3 Uniform Convergence of a Set of Analytic Functions

(Continuous-Time Systems)

We will prove that after introducing nonuniform sampling, the determinant of the observ-
ability Gramian will become large enough regardless of the erasure pattern. Since the determinant
of the observability Gramian is an analytic function, to prove that the observability Gramian is large
enough it is enough prove that a set of specific analytic functions are large enough. To this end, we
will prove a set of analytic functions are uniformly away from 0.

First, we prove that an analytic function can become zero only on sets of zero Lebesgue-
measure, as long as the function is not zero for all values. The intuition for the lemma is that analytic
functions can be locally determined by that Taylor expansions. Thus, if an analytic function is zero

for any open interval with non-zero Lebesgue-measure, it is identically zero.

Lemma 7.9. For a given nonnegative integer p and distinct positive reals w; 1,w; 2, - , Wiy, , define

p Vi
— i .
Fl@) = 2" | Y ana;cos(wiz) +arq;sinw; ;)
i=0 j=1
where at least one coefficient among ar; j,arq,; s non-zero. Let X be a uniform random variable

in [0,T) (T >0). Then, for all h € R, the following is true:

P{|f(X) —h| <€} =0 as e} 0.

Proof. First, notice that f(x)—h is an analytic function. It is well-known that if an analytic function
f(z) — h is not identically zero, the set {x € [0,T] : f(x) — h = 0} is an isolated set [53], which
is countable. Therefore, P{|f(X) — h| = 0} = 0. Moreover, P{|f(X) — h| < e} < P{|f(X) — h| <
€}, which is a cumulative distribution function. Since cumulative distribution functions are right-
continuous, limejo P{|f(X) — h| < e} <lim o P{|f(X) — h| < e} =P{|f(X) —h| =0} =0.

Thus, the proof reduces to proving f(x) — h is not zero for all z. Let i* be the largest i
such that either agr; ; or ar; ; is non-zero.

(i) When i* =0,

In this case, there are no polynomial terns and only sinusoidal terms exist. Let’s compute

the energy of f(x) — h in interval [s, s + r] and prove that f(z) — h is not identically zero for all s
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as long as r is large enough.

2

V;*

s+r
/ > (ari- jcos(wis jz) + ap i jsin(wi- jz)) — h | da
S

j=1
s+r Vi*
= / Z (a%yiw cos? (wj= ;) + a%i*,j sin®(w+ jz)) + h? + 2 Z AR, i+ i1 i+ j Cos(w;= ;) sin(w;« ;)
s J=1 1<
+2 Z AR,i* iQR,i* j COS(w;- ;) cos(wi« ;) + 2 Z agi= ;01 ,i+ 5 Sin(w;» ;) sin(w;« ;)
i<j i<j
Vix
-2 Z(apm-*,j cos(ws+ ;) + ar ;= j sin(w;= ;x))h dz
j=1

/s+r Vi*
S

Jj=1

9 1+ cos2w;» jx 5 1 —cos2w; jx d
R e Jrah-*,j—2 x

s+
+ / D arie it (sin (Wie j +wie j) @) = sin (wie j — we 5) 7)) do
S i<y

s+r
+ / Z AR, i+ iaR,i* j (€os ((wix j — wix ;) ) + cos ((wi= j +wi= ;) x)) dx
s i<j

s+r
+ / Zal,i*,ialﬂ'*u’ (cos ((wyx,j — wix j) ) — cos ((wi= j + wi= j) x)) dx
$ i<j

Vix

s+r
- / 2 Z(aRti*,j cos(wi+ ;) + ar i+ jsin(ws= jx))h d. (7.7)

j=1
Therefore, as r increases, the first term in (7.7) arbitrarily increases regardless of s, while the
remaining terms in (7.7) are sinusoidal and so bounded. Thus, f(x) — h is not identically zero for
all s when r is large enough. Thus, there exist 6 > 0 and r > 0 such that for all s, |f(z) —z| > ¢
holds for some x € [s,s + 7).

(i) When i* > 1,

In this case, we have polynomial terms and we will prove that the term with the highest
degree will dominate the reaming terms. By the argument of (i), we can find 6 > 0 and r > 0 such

that for all s > 0 we can find z € [s, s + 7] satisfying

it —1 v
[f(z) = hl = 62" = > | larijl + larigl | &' = |hl.
i=0 \j=1

Since we can choose s arbitrarily large, | f(x) — h| has to be greater than 0 for some x. Thus, f(xz)—h
is not identically zero.

Therefore, the lemma is true. O

To prove uniform convergence, we need the following Dini’s theorem which says that for
compact sets, pointwise convergence implies uniform convergence. The intuition behind this theorem

is as follows: since we can find a finite open cover for a compact set, we can convert the uniform
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convergence of an infinite number of functions to the uniform convergence of only finitely many
functions when the domain is compact. The uniform convergence of a finite number of functions

immediately follows from pointwise convergence.

Theorem 7.1 (Dini’s Theorem). [35, p. 81] If {fn} is a sequence of functions defined on a set A
and converging on A to a function f, and if

(i) the convergence is monotonic,

(i) frn is continuous on A, n=1,2,---

(iii) f is continuous on A,

(iv) A is compact,

then the convergence is uniform on A.
Proof. See [35, p. 81] for the proof. O

Now, using the pointwise convergence of Lemma 7.9 and Dini’s theorem, we can prove the

uniform convergence of the relevant functions over a set of parameters.

Lemma 7.10. Let p, vy, -+ ,v, be nonnegative integers with v, > 0. Suppose v and I' are strictly
positive reals such that v < T'. For each 0 < i < p, w;1,w; 2, ,Wi,, ore distinct reals. Let X be
a uniform random variable on [0,T] for some T > 0. Then, for all m,n such that 0 < m < p and

1 <n < v, we have the following inequality:

p Vi
sup P ZXi Zaiyjej“”“ix <ep—+0asel0
=1

‘anz,n‘z'YvVivj:‘ai,j‘SF i=0
where a; ; are taken from C.

Proof. The purpose of this proof is reducing the lemma to Dini’s theorem (Theorem 7.1).
First, we will assume the w; ; are positive without loss of generality. To justify this, let

Wmin = Min{min, j w; j,0} — ¢ for some § > 0. Then,

P

Vi
sup P E X' E a; je?i N || < e
=1

[@m,n|>7,las,;|<T i=0

P Vi
= sup P g X E ai j el (Wi —wmin) X | | ¢
i=0 j=1

[@m,nl>7,la:,;|<T

Here, for each 7, w; 1 —Wmin, Wi,2 —Wmin, -+ Wi,u; —Wmen are distinct and strictly positive. Therefore,
without loss of generality, we can assume that for each i, w; 1,w; 2, -+ ,w;,,, are distinct and strictly
positive.

Let a;; = ar;; — jar,,; where ar;; and ay; ; are real. Since |am | > 7, at least one of

|aRr,m.n| OF |arm n| should be greater than % First, consider the case when |ag ;| > 5. It is

V2
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sufficient to prove that the real part of 0 _, X* (Z”‘ ai)jej“’ivfx) satisfies the lemma, i.e.

=1
P 123
sup P E X E aR,i,j cos(w; j X) +ar,; jsin(w; ; X) || <ep —+0aselO.
ar,mn2 s lar,ij|STlar;|<T i=0 j=1
Here, we take the supremum over ag ., > % instead of the supremum over |ag m .| > % by

Symimetry.
Now, we apply Dini’s theorem 7.1 and prove the claim.
Fix a positive sequence ¢; such that ¢; | 0 as i — co. Define a sequence of functions {f;}

as

p Vi
f,( R,1717a1,171,~~~ 7a],l,,,l,p) ::]P) ZXZ ZQR’i’j cos(wi,jX) +a[71'7j sin(wiva) < €;
j=1

i=0
where the domain A of the functions is A := {(ar1,1,a11,1, " 01pp,) * GRmn > %, lar,i ;| <
I ]ar ] <T}. Let f(ar1,ar1,1,- -+ ,arp.,) be the identically zero function. Then, we will prove

that {f;} converges to f = 0 uniformly on A by checking the conditions of Theorem 7.1.
e f; point-wisely converges to f:
Since apmn > J5, 2io T’ (Z]”’:l ag,i,j cos(wi ;) + ar; ; sin(wi,jx)> satisfies the assump-

tions of Lemma 7.9. Thus, for all A

P 123
P ZXi Zaij cos(w; ; X) +ay,; jsin(w; ; X) | —h| <ep —0aselO0. (7.8)
i=0 j=1
Therefore, by selecting h = 0, fi(ari,1,ar1,1, " ,a17p7,,p) converges to f = 0 for all ag 1,1, ar1,1,

c, g py, 0 A
e Convergence is monotone: Since €; monotonically converge to 0, f; is also a monotonically
decreasing function sequence. Thus, the convergence is monotone.

e f, is continuous on A: For continuity (does not have to be uniformly continuous), we

will prove that for given ag 11,0711, " a1, and for all ¢ > 0, there exists d(o) > 0 such that
|filar11+Varii,ar110+Varia,- arpw, +Varp,,) = filari1,ar1,1, - ,a1p,.,)| < o for all
|VCLR71;J'| < 5(0’) and |Va177;7j| < 5(0’)

.8), we can find ¢§'(o) for all o such that

=0

P Vi
ZXi ZaR,i,j cos(wi,jX) +ar;; sin(wiﬁjX) — (_€i> < 6’(0’) <

i=0 j=1

By (7
p ) 123 o
P ZXz ;GR)Z‘J cos(w; ; X) + ar;jsin(w; ; X) | —€| <d(o) p < 3 and
P{ 7
2

min( 25
Denote (o) := %5’(0). Then, for all |Vagr,; ;| < 6(o) and |Var; ;| < §(o), the following
i=0 "7
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inequality is true.

p Vi
P Z XZ Z (aR,iyj + VaRvi,j) COS(oJi’]’X) + (al,i,j + VG/R’Z'J’) sin(wi’jX) < €
=0 j=1

p Vi
> ]P{ ZXZ Zam,j cos(w; ;j X) + agjsin(w; ; X) || <
=1

=0
/4 ) v
€ — ZXl Z Vag, ;cos(w; ; X) + Var,; jsin(w; ; X) }
i=0 J=1
P ) Vi
> P Z X Z AaR.i,j COS(wiij) +ar;; sin(wi’jX) < € — 5/(0') (79)
i=0 J=1
P Vi
=P ZX’L ZGR’i’j cos(wiva) +ar;; Sin(ijX) < €;
i=0 j=1

p Vi
—-P €; — 5/(0') S Z Xi Z aR,ij COS(wi,jX) + ag.i,j sin(wiij) < €;
j=1

1=0
p Vi
> P Z X QRi,j cos(wiva) + ag i j sin(wMX) < €;
i=0 j=1
P Vi
—-P ZXZ ZaR?i’j COS(wiﬁjX) +ar;,; sin(w,;JX) — €| < 5’(0’)
i=0 j=1
p Vi
- P ZXZ ZaR?i’j cos(wiﬁjX) +aI,i,j Sin(ijX) — (—Ei) < 5/(0')
i=0 j=1

p Vi
>P ZXZ ZaR’i’j cos(wiva) +ar;,; Sin(ijX) <€ p—oO.
i=0 j=1

Here, (7.9) can be shown as follows:

p v
ZXi ZVGR,i,j cos(w; ; X) + Var,; jsin(w; ; X)
i=0 j=1
p Vi
<Y IXD  (Varigl + [Var )
i=0 =1

<max(T?,1)2v;6(0) (-0 < X <T w.p. 1)
= ¢'(0) (.- definition of §(c))

Therefore, by the definition of f; we have

filar11+Varyg,ar11+Varig, - ,arp., +Varp.,)

— filara1,011,1, -+ ,01,p0,) > —0. (7.10)
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Likewise, we can prove that

p Vi

P Z XZ Z (CLRJJ' + V(lR’iJ‘) cos(wi’jX) + (a[,m— + VCLRJ’]') sin(wi,jX) < €
=0 j=1

P Vi

S P ZX’L ZaR,M cos(wiij)qLa],i’j sin(ijX) < Ei+5/(0')
i=0 j=1

(" The same step as (7.9))

p v
=P E X E ar,;jcos(w;; X)+ar;;sin(w;; X) || <e
i=0 j=1

+]P) €; S ZXl ZaR_’i,j cos(wi_jX) +a11i,j sin(wi,jX) < € +(s/(0')

P Vi
<P Z)(z ZaR’i’j COS(UJLJ'X) +ar;; Sin(ijX) < €;
j=1

=0
P ) Vi
+P ZXZ ZaR?i’j COS(wi_’jX) +a],i7j sin(wiJ—X) — 6| < 6/(0)
i=0 j=1
p ) Vi
+]P> ZXZ ZaR?i’j COS(wl',jX) +a],i7j sin(w,;JX) - (*Ei) < 5/((7)
i=0 j=1

P Vi
<P ZX’L ZaR’i’j COS(WL]’X) +ar;,; sin(wiJX) <€ pto
i=0 j=1

which implies

filaraa +Varii,a111+Varia, -+ ,arp., +Varp,,)

— filar11,ar11,  ,01,p0,) < O (7.11)

By (7.10) and (7.11),

‘fi(aR,l,l +Vagra1,ar1,10+Varia, s arpw, + Varp,,) — filaryi, a1, arp.,)| <o

Therefore, fi(ar1,1,ar,1,1, " ,arp.,) is continuous.

e f is continuous on A: f is obviously continuous, since f is identically zero.

e A is compact: A is compact since it is closed and bounded.

Thus, by Dini’s theorem 7.1, the convergence is uniform on A, which finishes the proof for
the case of |ag mn| > % The proof for the case of |arm,n| > —= follows in an identical manner.

V2
Since there are only two cases, the function

P Vi
p— % ‘wi i X
gi(ai,1,+ apy,) =P E X E a;, ;€7 <€
i=0 =1



278

converges uniformly on {a; ; : |amn| > 7, |a; ;| <T'}. This finishes the proof of the lemma. O

In Lemma 7.10, we have a boundedness condition on the coefficients (|a; ;| < T') to guar-
antee compactness. However, we can easily notice the functions only get larger as a; ; increases.

Therefore, we can prove that Lemma 7.10 still holds without the boundedness condition.

Lemma 7.11. Let p be a nonnegative integer and vy, - - - , vy be also nonnegative integers with v, > 0.
v s a strictly positive real. For each 0 <1 < p, w;i1,w;i2, - Wi, are distinct reals. Let X be a
uniform random variable on [0,T] for some T > 0. Then, for all m,n such that 0 < m < p and

1 < n < v, we have the following inequality:
p Vi

sup P ZXZ Zaiyjej““dx <€ep—>0asel0
‘U«m,n‘Z'Y i=0 j=1

where a; ; are taken from C.

Proof. Denote v :=>_Y_, v;. The proof is by strong induction on v.
(i) When v = 1.

sup P {|ap 1 XPe/r1X| <€} (7.12)
‘ap,l‘z'y
= sup ]P’{ ’yap’lXpej“P*lX‘ < 6}
lap, 1|2y |ap,1] |ap,1|
< sup P{|a,, XPelr 1 X| <€} ( T o< 1) (7.13)
|a;771|:'y |ap,1|

By lemma 7.10, (7.13) converges to 0 as € | 0. Thus, (7.12) converges to 0 as € | 0.

(ii) As an induction hypothesis, we assume the lemma is true for v = 1,--- ,n — 1 and
prove that the lemma still holds for v = n. We will prove this by dividing into two cases: (a) When
all a; ; are not much bigger than a,, ,. In this case, the claim reduces to Lemma 7.10. (b) When
there is an @,/ which is much bigger than a,, ,. In this case, we can ignore the term associated
with a,, , and reduce the number of terms in the functions. Thus, either way the claim reduces to
the induction hypothesis.

To prove the lemma for v = n, it is enough to show that for a fixed v and every § > 0,
there exists €(d) > 0 such that

P

v;
sup P ZXi a; jeln N || < e(8) p <4
[@rm,m [ >y i=0 j=1

By the induction hypothesis for all (m’,n’) # (m,n) we can find €,/ /() > 0 such that

P Vi
sup P ZX” a; j&? % N < e i (8) ¢ < 0. (7.14)
=1

Wy =0, s[> i=0
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We choose k(§) as min {min(m/m,)#myn) {Em""'(é) } ) 1}. By Lemma 7.10, there exists €/(6) > 0

2yT™
such that

\am,n|:’%ai,j§ﬁ i=0

p Vi
sup PO XP D g el || < €(8) p <0 (7.15)
j=1

Denote €(d) := min {e’(é), N (17 /)£ (mm) {6’"'=5'(5) }} Then, we have

p Vi
sup P ZXi Zai’jej“”JX < €(9)
j=1

[@m,n|>v i=0
p Vi
= max{ sup P X' a; je? i % || < e(s 7.16
lag,jl 1 Z Z I ( ) ’ ( )
|a7n.n‘2')’; Tam,nl Sm =0 Jj=1
P Vi
max sup P Xt a;, edvidX N < (8 7.7
(m?.n)#(m.n) s il Z Z " ©) (7.17)
|am,n|27a ‘am:n| Z %) 1=0 J=1
1. (7.18)

e When the a; ; are not too bigger than a,,,: Let’s bound the first term in (7.16). Set

a5 ; = 1o qai- Then, (7.16) is upper bounded as follows:
p Vi
sup P ZXZ Zaiyjej“”’jx < €(0)
Jam |27, el < s | [i=0 =1
% S g
= sup P Xt ——a; % || < €(d
s \ T
\am,n\Z’Y, Tam.nl SW 1=0 Jj=1
P Vi
= sup P ZXZ Za;jej“’i'-fX < 7 e(8)
\a,’m,"\:'y,|a§'j|§ﬁ i—0 =1 |am,n|
p Vi
< sup P ZXZ Za;jewi‘jX <e(d)p (- T < 1)
lat, nl=7la] ;1< sy i=0 =1 |am’"|
p Vi
< sup P Z X" Z aj ;73X || < €(8) p (- definition of €(5))
lat, nl=7la] ;1< sy i=0 =1
< 0(. (7.15)) (7.19)

e When ay, ,/ is much bigger than a,, »: Let’s bound the second term in (7.17). For given
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m',n’, set a;; 1—a; ;. Then, (7.17) is upper bounded by

= |a,, ’ n

p Vi
max sup P g X' E ai je? i | < e(6)
(m/,n")#(m,n) lap,r o . .
> mo,nt s 1 i=0 j=1
lam, |27 T 0T 2 50
. vy
= max sup P E E —ay jej“’WX < ——¢€(9)
(m/,n")#(m,n) la >~ lat ntl > 1 |am n’ ‘ |a’m’,n’|
M ZY Tap 0T 2 5(5)
’y .
< max sup E al je]“’l aX |- Xmiam’newm’"x
(m/,n")#(m,n) a > a7 ot | |am/ n/ |U,m/7n/|
m,n|Z7, lam,nl = (
Y Y
< max (0) + |cLm n|T™
(m/,n")#(m,n) ‘am’,n’| |am n’

< max sup

o (m’,n’)#(m,n) vl
27, Lo >+

\um nl =

a e
= |amn| | |

Vi

< et (5)} (7.20)

p—1 v;
< max sup P Xt al e?vniX | < e (6
(m',n)F(mn) ar,  =0,Ja”, 1=~ Z Z " it (0)
_ g
(" By definition, aj,/ ., = ———— @’ n')
|@mr |
<O(.(7.14)) (7.21)

Here, (7.20) can be derived as follows: First, we have

1> k(0) (. Definition of k(9))

7 - K(9)
2> (. lamnl >7)
|Gl
i |am’ | 1
e > ) (7.22)
| @ | [ K(6)
We also have
|am/ n/‘ 1
AT <7v-6()T™ (& ——— > —=
|am’ n/| ‘ | ’7 ( ) ( |am7n| K(é))
€m’ n’ (5) o . €Em/ n’(é)
) m . < )
< 772771’” T™ (. By definition, x(J) < T )
_ Emn(9) (7.23)
2
Therefore,
m’ ,n’/ 4]
| 7 <0+ i lamalT™ < €(6) + 672“ (- (7.22),(7.23))
Am/ n’ Qm/ n’

< émr (). (. By definition, €(d) < W)
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Therefore, (7.20) is true.
By plugging (7.19) and (7.21) into (7.18), we get

p Vi
sup P ZXi Zai,jej“”’jx <e(d) p <9,
j=1

|am,n|2’y =0

which finishes the proof. O

7.4 Proof of Lemma 2.2

In this section, we will merge the properties about the observability Gramian shown in
Section 7.2 with the uniform convergence of Section 7.3, and prove Lemma 2.2 of page 56.
We first prove the following lemma which tells us that the determinant of the observability

Gramian is large with high probability under a cofactor condition on the Gramian.

Lemma 7.12. Let A; and C be given as (7.3) and (7.4). Let a;; and C;; be the (i,j) element
Ce—(kal+t1)Ac

and cofactor of : respectively, where t is a random variable which is uniformly
Ce (km—1I4tm_1)Ac

Ce—(FmI+t)Ac
distributed on [0,T] and I is the sampling interval defined in (2.25). Then, there exist a € Rt and
a family of increasing functions {g.(*) 1 € > 0, gc : RT™ — RT} satisfying:
(i) For all € > 0, k1 < ko <+ <kpy—1,0 <t <T if |Crnym| > €[ ]1cicmn s e~kilXi the following

18 true:

Ce—(kil+t1)Ac

sup P< |det ) <€ H e kilXd L 0asel0
e €2,k —km—1>ge (km 1) Ce(km—1l+tm-1)Ac

Ce_(knLI+t)Ac

(#) For all € > 0, ge(k) < a(1l +log(k +1)).

CeF1he

C; ; as the (i, j) element and cofactor of

J

/9.2 T /
Proof. Let € = 2¢*[],.;.,, e*" . Define a; ;,

CerimAe
Then, by Lemma 7.8, we can find a function ¢, (k) such that for all 0 < k1 < kg < -+ < Ky
satisfying:
(1") Km = Fm—1 > gor(Km—1)
(i) gt () < 1+ log(s + 1)

(iii’) | mem“ﬂgigm Ui Crnil 2 € Tlicicm C
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the following inequality holds:

Ce_K/IAc

det >

e Il e

1<i<m

N | —

CefﬁmAc

Let’s use t,, and ¢ interchangeably. These are in [0,7] with probability one. Ideally, we
want to plug k;I +t; into ;. However, even though the sequence ki, - - , k,, is sorted, the sequence

kil +t1,--+  kyl +t, may not be sorted. Therefore, we define kI +t(1y, -+, k(m) +t(m) as the

result of sorting kil + t1, -+, kI + t,;,. Then, we can see this sorted sequence has the following
property.
Claim 7.1. Consider two sequences, oy, s, -+ , oy and B, Ba, -+, Bn where ap < ag < -+ < ay

and B; € [0,T] (T > 0). Let ary + By, 2y + B2y, -+ Qny + By be the ascending ordered set of
a1+ B1,a9 + B, -+, ap + Bn. In other words,
Then, for all i € {1,--- ,n}, we have

0<ay+Bu—a <T.

Proof. We will prove this by contradiction. Let’s say there exists ¢ such that
Qi)+ ﬁ(i) —a; < 0.
Then, we have

oy +Bay < o Saipr <o <.

Since By, -+, 8, = 0, we can conclude oy + By < ai + Biy -+, ay + By < @ + By. Thus, in the
sequence ay + 31, - , &y + B, there exist n — i+ 1 elements which are larger than a(;) 4 3(4). This
contradicts the fact that ;) + B(;) is ith largest element among oy + B1,- -, an + By

Likewise, let’s say there exists ¢ such that
agy + Buy —ai >T.
Then, we have
agy B >ai+T <ai1+T <o +T.

Since B, , B, < T, we can conclude agy + By > a; + Bi, -+, a@y + Buy > ar + B1. Thus, in
the sequence oy + f1,- -+, an + B, there exist i elements which are smaller than a(;) + 3(i). This

contradicts the fact that ;) + B(;) is ith smallest element among oy + 31, , an + Bn- O
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Therefore, by the claim, we have

H e*AiT H efk:il-)\i S H e*(k(i)l+t(i))>\i S efk;iI-)\i. (724)

1<i<m 1<i<m 1<i<m 1<i<m

Finally, we can plug k¢;I + t(; into x; to conclude the following statement. For all 0 <
ki< <km, 0<t; <T,0<t<T such that!
(i”) km — kpm—1 > gél/(km—l)
(i”) gl (k) S1+log(k+1)

(A)
see9) ) . / —kil-X\; / —(keiyI+tey) N
(iii”) Zm—mu—&-lgigm U, iCrmi| > € ngigme > € Hl§i§m6 (k(iy I+t(i))

the following inequality holds:

Ce—(kil+t1)Ac

: 1 (B) 1
det : > ¢ H e~k I+t@)xi ') = H o MT ][ e~ kil Ni
Co—(Fm—1T+tm-1)Ac -2 -2

1<i<m 1<i<m 1<i<m
Ce_(km,l‘i‘t)Ac

©) &2 H o—kilXi
1<i<m
Here, (A) and (B) always hold by (7.24). (C) follows from the definition of €.
Let ge(k) be ¢/ (k). Then, we can easily check such g.(k) satisfies condition (ii) of the

lemma. Let’s show that such g.(k) also satisfies condition (i) of the lemma.

Ce—(kal+t1)Ac

sup P < |det ) <€ H e kil
km €Z,km—km—1>ge(km—1) Cef(kmflj‘i’tmfl)Ac 1<i<m

Ce—(kmI+t)Ac

- o F Z Crim,i <22 H eNiT . H e kil Ai

T ke €%k —km 1> g (Fm_1)

m—m,,+1<i<m 1<i<m 1<i<m
C’mi Qm, i
_ : : Lt T[T
- sup P > I R o (e I ria, | < 2€7€ €
Em €L,k —km—1>ge(km—1) m—m,+1<i<m 1<i<m—1 1<i<m
a ; )
< sup P E bi# < 2¢- e T H Mty (7.25)
e~ (kmI+t)Am
[bm|>1

m—m,+1<i<m 1<i<m
where the last inequality comes from assumption (i), |Cpm| > €[ cic,n_y € %1, and the fact
that ¢ € [0, T] with probability one.

Now, it is enough to prove that (7.25) converges to 0 as ¢ | 0. To this end, let’s
study @, which are the elements of the observability gramian. Let the C,,, defined in (7.4)

1Here, we select gl (k) large enough so that when ky, —km—1 > g7 (km—1), we always have kpm [+t > km—11+tm—1,
i.e. kmI +t becomes the largest.
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be |¢f -+ ] Then, we have

My,vy,

ei(kath)A#va

) ) ) -1 -1
ok I+t A,y Fiwp,vy,) (kI + f)P*(k'mIth)(Au,uu tiwp,vp) (=) T (e T4 8) VR
, em I + t)e (G
i
) -2 —2
o R I+ Ay +iwp,vy,) (=D T (e 1) VR
= (mp,v, —2)!
N N o B T8 gy +iwp, )

Thus, we can see that

P Z C/. (_1)mu,r/u *Z(kml + t)mu,uu —1 e_(k;ml—‘,-t)(km-‘rjwu_,/“).
’ , ’ (myp, —1)!
1<i<my ., u
Therefore,
_ Amm Z o (=)™ (kI + t)mmuu_ief(kml+t)(jw,u/“)
e_(kml+t)>\m K (mu’yu — Z)! :

1<i<my, .,
le=wnvnt term only shows up

v, —1 .
P DTy k]
1 (m —1)! :
I m

Moreover, when a,,; is considered as a function of ¢, the t"#ve™

Qm,m—my+1 Am.m

. Am,m . .
I = M n,, AMONEG ——( 1ot s s rtnn,» and the coefficient is ¢

Since we know |b,,| > 1 in (7.25), by defining ¢’ := leal ; we can see that the magnitude of the

B (mu,u“_l)
. . . 1 s Am,m—m+1
corresponding coefficient is greater or equal to ¢’. Furthermore, the remaining terms —q .-,

Am,m—1 —Jw, 1t my1—1,—Jw, 1t —jw,, ot my o—1,—jw, ot —JWu,u,t
-7monlyhaveejﬂ’1,-~',t w,1 63“'1,63“’2,'”715 w,2 6‘7“’2,"'76 movpt

oo, tMuen =27 3%t when they are considered as functions in ¢. Thus, using the assumption that

my1 <o <my,,(7.25) can be upper bounded as follows:

My,v, vy
(7.25) < sup P Z il Zag je*j““ﬂ't < 2eenT . H eMT S (7.26)
N P i=1 j=1 1<i<m
By Lemma 7.11 (by setting v as ¢/, (m,n) as (M0, Vu), P 8S My u,s Vo, -+ 5 Vp S Vpy Wojs " * Wy j
as —wy j, and € as 2€ [[,<;<,, M7 - e T), we get
M,y Y
sup P Z it Z aj je It |1 < 2eerT . H My 5 0asel 0. (7.27)
g o 126 i=1 j=1 1<i<m
Therefore, by (7.25), (7.26), (7.27) we can say that
Ce—(kil+t1)Ac
sup P < |det : < € H e kilAid s 0asel0
K €2,k —Km—12>ge (km—1) Ce™(km—1l+tm—1)Ac 1<i<m

Ce_(knLI+t)Ac

which finishes the proof. O

o Oom T+ gy, Hiop,0)

o Oom T Ny, +iop, )
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Based on the previous lemma, we will integrate the properties of p.m.f. tails shown in
Section 7.1 with the properties of the observability Gramian discussed in Section 7.2, and prove

Lemma 2.2 for the case of a row vector C.

Lemma 7.13. Let A. and C be given as (7.3) and (7.4). Let 8[n] (n € Z1) be a Bernoulli random
process with probability 1 — p. and t,, be i.i.d. random variables which are uniformly distributed on
[0,T] (T > 0). Then, we can find a polynomial p(k) and a family of stopping times {S(e, k) : k €
Z%,e > 0} such that for all e > 0, k € Z* there exist k < k1 < kg < -+ < kp, < S(€,k) and M
satisfying the following conditions:

(1) Blki] =1 for1<i<m
Ce—(F1l+te, ) Ac
Ce—(kal+tiy)Ac

(i) M ) -1
Cei(kml+tk‘7n)AC

(iii) |M|pmap < PEER) oAiS(ek)]

(iv) lime g exp limsup,_, ., supez+ ~logP{S(e, k) — k = s} < p..
Proof. By Lemma 7.6, instead of conditions (ii) and (iii), it is enough to prove that

Ce—(kil+te, )Ae

Ce—(kal+tr,)Ac
det . >€ H e*(ki1+tki)/\i'
. 1<i<m
Cef(kathkm)Ac

Furthermore, since t; > 0 it is sufficient to prove that

Cef(k1[+tk1 )Ac

—(k21+tk2 )Ac
Ce —kil-X\;
det ) > € e .
. 1<i<m
Ce_(kml+tkm )Ac

Therefore, it is enough to prove the following claim:
We can find a family of stopping times {S(e, k) : k € Z*, e > 0} such that for all € > 0 and
k € ZF there exist k < k1 < ko < -+ <k < S(e, k) satisfying the following condition:

(a) Blki)=1for 1 <i<m
Ce—(kil+te, )Ac

Ce(k2l+try)Ac

(b) |det ' > e[Ticicm e—kil-Xi
Ce(bmIttr, )Ac

(c) limejo explimsup,_, . Supgez+ ~logP{S(e,k) — k = s} < pe

We will prove the claim by induction on m, the size of the A, matrix.
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(i) When m =1,
Since we only have to care about small enough ¢, assume € < |c;|e~27*1. Denote S(e, k) :

inf{n > k : B[n] = 1} and k1 = S(e, k). Then, Slk1] = 1 and ‘det ([cle*(kl”tkl)()\lﬂwl)})’
~Thig=kilM > ge—kil-M

Y

|cale
Moreover, since S(e, k) — k is a geometric random variable with probability 1 — pe,

exp limsup sup logP{S(e, k) — k = s} = pe.

s—00 keZt

Therefore, S(e, k) satisfies all the conditions of the lemma.

(ii) Now, we assume that the lemma is true for m — 1 and prove the lemma still holds for

First, we will fix k = 0, then we will consider general k € Z. We will see that the induction
hypothesis corresponds to the cofactor condition of Lemma 7.12, which tells us that the determinant
of the observability Gramian is large enough with high probability.

Let A/, be the (m — 1) x (m — 1) matrix obtained by removing mth row and column of
A.. Likewise, C’' is a 1 x (m — 1) vector obtained by removing mth element of C. Then, since A,

is given in a Jordan form, we can easily check that once we remove the last element from the row

vector Ce~(Filttr)Ae o get Ce~(kilttk)Ac  Therefore, we can see that
C’e*(kllﬁh)Aé Ce—(k1l+te, ) Ac
det = cof’mﬂn (728)
Ol e~ km—1T+tk,, _)A; Ce—(kmI+tn,,)Ac

where cof; ;(A) implies the cofactor matrix of A with respect to (i, j) element.

By the induction hypothesis, there exists a stopping time S’(e,0) such that we can find
0<ky <hkg<-- <kmp_1 <5'(e0) satisfying:
(a) flki]=1for 1 <i<m-—1

Cle—(kil+tn; )AL
(b) |det : > e[Ticicm g e M
C/e—(km,ll-&-tkmil)Aé o

(c) limeyo explimsup,_,, +logP {S'(¢,0) = s} < pe.

Let F; be a o-field generated by 3[0],---,3[i], and to,--- ,t;. Let g. : RT — RT be the

function of Lemma 7.12. Denote
Ce—(Fil+t; ) Ac

p(€) := esssup sup P, { |det

km €Z,km—S"(€,0)>9e (S’ (€,0)) Ce™ Fm—1lHtk,, ) Ac 1<i<m

Ce—(kmf-i-t)Ac

(7.29)

< 62 H e—kﬁl-ki'fs/(e’o)
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Here, given Fgr(c.0), k1, s km—1, thy, -+ s th,,_y, S'(€,0) are all fixed, we took the supre-
mum over k,, such that k,, — S’(¢,0) > ¢.(5'(¢,0)), and t is a uniform random variable on [0, T
which we computed the probability over.

Since ky, > S'(€,0) + g(5'(¢,0)) > km—1 + ge(km—1) and we have (7.28), (b) implies
Ce—(Fil+te; ) Ac

€O fm,m : > ellicicm e~kil:Ai | Thus, by Lemma 7.12 we have lim, o p/(€) =

Ce_(kml"l‘tk.m )Ac

Denote S”(€,0) := [5'(€,0) 4+ g(S'(¢,0))]. From (ii) of Lemma 7.12 we know g (k) <
1+ log(k + 1) for all e > 0. Therefore, by (¢) and Lemma 7.1 we have
1
lim exp lim sup = log P{S"(¢,0) = s} < pe. (7.30)
€0 s—o0 S

Denote a stopping time

SN/(E, 0)

Ce—(Fil+te; ) Ac

:=inf¢ n > S5"(e): Bln] =1 and |det > 2e7 M An H e kil

— (k1 I+, A
Ce~ (km—1lttn,, ;) Ae 1<i<m—1

Ce—(nl—&-tn)Ac

(7.31)

Since G[n] and ¢, are independent processes, for S"/(e¢,0) = n to hold, 8[n] = 1 and the
determinant of (7.31) has to be large enough. By (7.29), we already know the probability for the
determinant not being large enough is upper bounded by p’(¢). Therefore, given that S"”'(e,0) > n,
the probability that S (e, 0) # n is upper bounded by (p. + (1 —p.)p’(€)) — (erasure) or (not erased

but small determinant). Thus, for all s € Z*, we have
esssupP{S""(,0) — 5" (€,0) > s|Fgr(c0)} < (pe + (1 —pe) P'(€))” .
Since we know lim. o p’(¢) = 0, we have

1
liﬂ)l exp lim sup ess sup — log P{S"’(€,0) — 5" (¢,0) = 5| Fsrr(c,0)} < Pe- (7.32)

5—00 S
By applying Lemma 7.2 to (7.30) and (7.32), we can conclude that

1
liﬁ)l exp limsup — log P{S"(¢,0) = s} < pe.

s—o00 S

Therefore, if we denote S(e, 0) := $"(e2,0), S(e,0) satisfies all the conditions of the claim when we
fix k=0.
Here, we know f3[n] is stationary process. Thus, to prove the claim for general k € ZT, we

can shift the time index by k. Then, we can find a family of stopping times {S(e, k) : k € Z*,e > 0}
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such that for all ¢ > 0 and k € ZT there exist k < k; < ko < -+ < ky, < S(e, k) satisfying the
following condition:

(@) Blk]=1for1 <i<m
Ce—((ki—k) I+t )Ac

Ce—((ka—k)I+ty,)Ac

(b”) |det : > e[Ticicm o~ (ki=k)I- X
Ce—((km—k)I+t1,,)Ac

(¢”) limeyo exp limsup,_, o, supgez+ < logP{S(e, k) — k = s} < p.

Here, we can notice that the condition (b') is equivalent to

Cef(k1]+tk1 )Ac

Ce—(k2I+tn,)Ac
det ) -| det(erAe)| > € H e~ (kimk) LA
: 1<i<m
Ce—(kml""tkm)Ac

Ce_(klI"l‘tkl )Ac

Ce—(k2T+tiy)Ac
(&) |det . > |det(ePAe)["toe J] e®Bin=e T eti™

Ce—(kmI+te,,)Ac
Therefore, the claim is true for all k € Z* and the lemma is also true. O

Before we prove Lemma 2.2, we will first prove the following lemma which allows us to

merge two Jordan blocks associated with the same eigenvalue into one Jordan block.

Lemma 7.14. Let A be a Jordan block matriz with an eigenvalue A € C and a size m € N, i.e.

A1 .- 0
0 X --- 0
A= . |. C and C" are 1 x m matrices such that
0 0 A
C = |:Cl Co e Cm:|
C':[c’l dy C;n:|
where ¢;,¢; € C and ¢1 # 0.
X1 x)
To /2
For allk € R and m x 1 matrices X =| | and X' = | |, there exists T such that
ZTm .
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()T is an upper triangular matriz.
(i1)Ce*AX + C'eFAX! = Cef® (X + TX)
Moreover, the diagonal elements of T are %

Proof. The proof is an induction on m, the size of the A matrix. The lemma is trivial when m = 1.

Thus, we can assume the lemma is true for m as an induction hypothesis, and consider m + 1 as the



dimension of A.

Ce*AX 4 CleFAX!
[k k ek
0 ek
=C
L 0 0
[k k gk
0 ek
C
L 0 0

ek)\ %ek)‘
0 ek)\
=C
0 0
/S
+ |:0 Co Clc
ekA %ek)\
0 ek>
=C
0 0
/ c ;
_ & _
+ |:C2 o1 C2 (33 o c3

E™ kA ko
m! e e ﬁe
m—1
hek)\ , 0 ekA
. X+C
ekA | 0 0
KT kA
(mfl.)le X
ek/\
kX k kX
€ ie
/ 0 ekA
/ _ 4
2 Cm+1 1 C7n+1:|
0 0
km—l 5N ,
—1)! c
(m=1) x 1 A
: c1
ek/\
kX k kX E™ kA
e ﬂe . He
kX L0 KM kX
, o 0 e (m—l)!e
c — e
m c om
0 0 ek
fare™ 0 T+
Eml g
me 0 xz +
- : + _
kX ey 0
€ Tmt1 + 24
ek)\ %610‘
0 ek/\
/ c
Cm+1 — 5 Cm+1
0 0

Tm—11¢

k ek

m!

km—l 5N
X/

kA

k7n kA

mi €
kT kA
CE IR Y

kX
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kA k kA E™ okA
1! m!
m—1
0 ekA k ek
—!
-C (m
’
kA 5%
0 0 e Tyt + 22040
kX k kX EmL B /
e e (m_l)!e xr1 + =71
kA k™2 kA /
N [ 0 e (m=ay1¢ To + L5
€L C2 ' Cm )
’
kA C1 !
0 0 e T + T,
EX  k kX k kA EmTl kA
e e =€ e
1! 21 (m—1)!
kXA k kA E™T2 kA
/ ch / c} ’ c} 0 € i (m72),6
1 1
+ [62 —oC2 C3— ocC3 Crm41 — o Cm+1
0 0 0 ekA
kX k kA E™ kX
e ﬂe me O
kA EmY kA
-C 0 € T (7n—1)!e 0
kXA ¢
0 0 e Lm+1 + Exm-i-l
kX k kA E™ kA S, ’ /
e i€ m—1)1¢ T+ Ty 111 tig
kX E"2 kA i /
0 e m=2)1¢ Ty + Ty 0 54
+lci ¢ - cm +
’
kX C1 ../
0 0 e T + o T 0 0
[ kX k kA k™ kA r _~_i/ ¢ "
e e T € T+ % 1,1 1,2
m—1 . !
0 ek}\ k ek)‘ 0 T2 + il” 0 !
(WL71)| C1 2 272
=C + +
’
kA Cy
| 0 0 e ] | Tm+1 + jxm_ﬂ 0 0 0
[ehA Eekdh o KTk ] ,
1! m! T < / / z
0 B i 5 1 e L1 Lm 1
(m—1)! cy / /
_ C + C1 El
k kX
e 0 0 a | |a
kA [m+1 o 4 Pmta

where (7.33) follows from the induction hypothesis. The lemma is true.

Now, we are ready to prove Lemma 2.2.
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La

/

T3

/

zm-‘,—l

/ /
1,m Lo
/ /
t2,m T3

!/ /
tm,m, xm—‘—l

(7.33)
| | 22
tom| | T3
0 Tint1
O

Proof of Lemma 2.2. The proof is an induction on m, the size of matrix A.. Recall that here C can
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be a general matrix, so we use the definitions of A, C given as (2.28), (2.29).

(i) When m =1,

In this case, the system is scalar, and the lemma is trivially true. A rigorous proof goes as
follows: Since (A¢, C) is observable, we can find a 1 x [ matrix L such that LC is not zero. Then,
(A, LC) is observable, and the lemma is reduced to Lemma 7.13.

(ii) We will assume that the lemma holds for (m — 1)-dimensional systems as an induction
hypothesis, and prove the lemma holds for m.

The proof goes in three steps. First, we reduce the system to a system with scalar ob-
servations to apply Lemma 7.13. Then, we estimate one of the states, and subtract the estimation
from the system — this procedure is known as successive decoding in information theory. Now, the
system reduces to an (m — 1)-dimensional one, so we apply the induction hypothesis.

X1,1

X1,2

)

To do this, we define x := where x; j are m; j X 1 vectors, and (X1,4, )m, ,, as the

X,
ma1,,, th element of x1 ,,. We also define (x); as the kth element of a vector x in general. Here, x

can be thought as the states of the system. We first decode (X1, )m, ,,, and decode the remaining
elements in x.

e Reduction to Systems with Scalar Observations: By Lemma 7.13, we already know that
the lemma is true for systems with scalar observations. Therefore, we will reduce a general system

with vector observations to a system with scalar observations.

Claim 7.2. There exist L, C', A’,x’ that satisfy the following conditions.

(i) L is a 1 x I row vector.

(i) A’ is a m' x m' square matriz given in Jordan form. The eigenvalues of A’ belong to {\1 +
Jwi, -, Ay + Jwut which is the set of eigenvalues of A. The first Jordan block of A’ is equal to
Ai,,.

(iii) C' is a l x m’ matriz and (A’,LC’) is observable.

(iv) x" is am' x I column vector. (X')m, ,, = (X1,01 )mi 01

(v) LCe FAex = LC/e FA'x/,

What this claim implies is the following. By multiplying the matrix L to the vector ob-
servations, we can obtain scalar observations. However, the resulting system may not be observable
any more. Therefore, we will carefully design the L matrix and reduced system matrices A/, C’,
so that the system remains observable even with a scalar observation and the information about
(X1,0, )m, ,, Temains intact. Furthermore, since the reduced system (A', LC’) has a scalar observa-

tion, all eigenvalues of A’ has to be distinct to make the reduced system observable.

Proof. Since the first columns of Cy 1,Cq 2, -, C1 ., are linearly independent, there exists a 1 x [



293

matrix L such that the first elements of LCy 1,LCy 2, - ,LCy ., -1 are zeros and the first element

of LCy ,, is non-zero. Then, we can observe that

e~ kAL ... 0 X1.1

—kA _
LCe ex=L[Cy, - me] :
—kA,
O e e sV Xl‘vl’u

= LClylekal*lxl,l -+ LclgeikAl’zX]_’z + -+ LCW,“e*kA“-V”# X, (734)

Recall that the Jordan blocks A; 1, -, A;j,, correspond to the same eigenvalue. We will merge these
Jordan blocks into one Jordan block. However, since the size of Jordan blocks A;q,---,A;,, are
distinct, we will extend the small Jordan blocks to the size of the largest one by adding zero elements.
Let the dimension of A; 5 be the largest among Ajq,---,A;,,, and m; 5 be the corresponding
dimension. Then, we define Ci}j as a matrix where the first m; 5, — m; ; vectors are all zeros, and
the remaining vectors are the same as those of C;j. Aiyj is defined as the same matrix as A; z,.
Xij is defined as a column vector whose first m; y, — m; ; elements are all zeros, and the remaining

elements are those of x; j.

Then, by the construction, we know
(734) = L(_:1716—k1_\1,1>—(1’1 + LCLge_kAl'g)_(l,Q =+ 4 LC%VH@_'I“&“’"“ )_(FW’M'

Furthermore, Ay ., = Al,yl, Ci, = Cl,yl, X1,, = X1,1,. The first elements of LCy 1, LCq 2, -,
LC;,,, -1 are zeros and the first element of LC, ,, is non-zero.

Now, we get the same dimension systems (A; 1,LCj1), -+, (Aj.,, LCi,,). However, none
of them might be observable. Thus, we will truncate the matrices to make sure that at least one
of them is observable. Recall that since L(_Ji,j is a row vector and Aiyj is a single Jordan block, the
system is observable as long as the first element of LC;j is not zero. Thus, we will truncate the
matrices until we see at least one nonzero element among the first elements of LCM, cee LC_Ji’,,i. Let
k; be the smallest number such that at least one of the k;th elements of LC_]H7 s ,LC_Ji,l,i becomes
nonzero, and let L(_Ji,y; be the vector that achieves the minimum.

Then, we will reduce the dimensions of (A; j, LC; ;) by truncating the first (k; — 1) vectors.
Define CQJ as the matrix obtained by removing the first (k; — 1) columns from C; j, Ai,j as a vector
obtained by removing the first (k; — 1) rows and columns from Ai’j, and XLJ- as a vector obtained

by removing the first (k; — 1) elements from X; ;.

Then, by construction, the resulting systems (Aj ., LCj .) are observable. We can also see
that v = vy, Cll»VI =Cy1,, = C1,,, AlleI =Ay,, =A1,,,and X’LVI = X1, = X1,,. In words,
the Jordan block A ,, was not affected by the above manipulations. Moreover, by construction,
the first elements of LCY 4,---,LCY ,, 4 are all zero.

A ! ! / A y / / /
Denote €' = [C} . s+ .| and A” i= diag{Af i Ay .+ A, ). Then,



294

(7.34) can be written as follows:

kA kA — kA’
(7.34) = LC) je *A1ax) | + LC, pe Fex, , + ... + LC!, , e "Pumnx!

MV MV

_ / —kAL ko /
=LC ;e 1 (Xl,u; + § T1x7;)+ -
JE{L, i\
kA’
' v (! o
+LC, ,.e i (Xl“,; + E T,.5%),5) (7.35)
Jell s
N / !
1, P .
e " 0 X1 T Eje{l,m oy 115X 5
— / ! M
- LC].J/I e LC].,I/;:| .
7kA/ * / !
s . x!
0 € " Xp,vr, + ZJE{L“' Yu\vy TWXM
=x'
’
= LCe kY

where (7.35) follows from Lemma 7.14. Here, we can easily see that A’ satisfies the condition (ii) of

the claim, and (A’, LC’) is observable since each (A{ .,LCj .) is observable.

Moreover, by Lemma 7.14, we know that Ty 1,---,T1,,, -1 are upper triangular matrices
whose diagonal elements are zeros. Therefore, (x')m,,, = (X1, )mi,, = (X1,01)m,,,. Therefore,
the condition (iv) of the claim is also satisfied. O

e Decoding (X1,u, )m, ,,: Now, we reduced the system to a system with a scalar observation.

Then, we can apply Lemma 7.13 to decode (x1,4,)m, ,, -
Claim 7.3. We can find a polynomial p'(k) and a family of stopping times {S' (e, k) : k € Z*,e > 0}

such that for all € > 0, k € ZF there exist k < kg < kg < -+ < kyy < 5(€,k) and MY satisfying:
(i) Blki] =1 for 1 <i<m’

L 0 --- 0 Ce—(kil+ti)A
. , 0 L e 0 Ce—(k2I+tk2)A
(i) My | . , X = (X100 )i,
0 0 - Ll |ceCmitte, A
(i) M|, < EELERD AuS ()T

(iv) lime g explimsup,_, o, supgez+ ~logP{S'(e,k) — k = s} < p..

This claim is showing that there exists an estimator M diag{L, - - - , L} which can estimate

the state (Xl,,,l)mw1 with observations at time ki, - , k.

Proof. By construction, (A’, LC’) is observable and LC’ is a row vector. Thus, by Lemma 7.13 we
can find a polynomial p'(k) and a family of stopping times {S’(e, k) : k € Z*,e > 0} such that for
all € > 0, k € ZT there exist k < k1 < ka < -+ < kpy < 5'(e, k) and M’ satisfying:

(i) Blki] =1for 1 <i<m/
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LC/ e~ (kal+tr)A!
LC e~ (k2l+try)A!
(il) M ) =1
LC/e—(km./I-i-tkm,)A/
(iif) [M/],, . < p’(S’e(ak))eAls'(e,k)I
(iv) lim, o exp limsup,_, o, SUPgcz+ %log P{S'(e,k) — k = s} < pe.
Let M} be the mq ,,th row of M. Then,

L 0 --- 0 Ce—(Fil+tk; ) Ac LCe—(k1l+tr; ) Acy
10 L --- 0 Ce—(kal+tr,)Ac / LCe—(k2l+tr,)Acy
M|, . . . . x =M;
0 0 .. L Cei(km’IJ’»tkwn’)AC LCe_(km’/ I+tkm’ )ACX

[ L/Cle—(kul+te, )A
L/c/ef(kQIth;W)A'X/
=Mj ) (. Claim 7.2 (v))

L’C’ef(km’ﬂrt’“m' )A'X,

i L/Cl e~ (kil+tn, A

L/C/e—(k21+tk2)A’
= M?L . x = (X/)mLyl = (Xl,lq)ml,ul (. Claim 7.2 (iv)).

Llc/e—(km/ I+tkm, )A'
O

e Subtracting (X1,u, )m, ,, from the observations: Now, we have an estimate for (x1,, )m, ,, -
We will remove it from the system. A”,C” and x” are the system matrices after the removal. For-
mally, A”,C" and x" are obtained by removing >, ., m1,;th row and column from A, removing
Zlgigw my ;th row from C and removing Zlgigui mq ;th component from x respectively.

Obviously, A” € Cm=1x(m=1) and C” e C*(m=1)_ Moreover, since the last element of
the Jordan block Ay ,, is removed and the observability only depends on the first element, (A", C")
is observable. Denote A\ + w{ be the eigenvalue of A” with the largest real part. Then, trivially
N < AL

The new system (A”,C”) and the original system (A, C) are related as follows. Denote

the >, .,<,, m1,ith column of Ce #A< as R(k). Then, we have
Ce MAex — R(k)(X1,,)m,,, = C’e *A %" (7.36)

which can be easily proved from the block diagonal structure of A.. We can further see that there
< p///(k)ekal .

maxr —

exists a polynomial p’”’(k) such that |R(k)]|
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e Decoding the remaining element of x: We decoded and subtracted the state (X1,u, )m, ,,
from the system. Now, we can apply the induction hypothesis to the remaining (m — 1)-dimensional
system and estimate the remaining states.

By the induction hypothesis, for given S’(e, k), we can find m” € Z and a polynomial p” (k)
and a family of stopping time {S” (e, S(e, k)) : S’(e,k) € Z*,0 < € < 1} such that for all 0 < e < 1
there exist S'(€,k) < kg1 < -+ <k < 8"(€,5(e,k)) and a (m — 1) x (m” —m’)l matrix M”
satisfying the following conditions:

(i) Blki] =1form' +1 < <m”
o~ Fmra THte, A"
,,e—(km,+21+tkm,+2)A“

(ii) M . = I(m—l)x(m—l)

C//e_(km”l""tkm// )AN

(iii) |M”| < Mews%gs/(e,km

(iv) limeyo explim sup,_, . esssup L log P{S" (e, S’ (e, k)) — S (e, k) = s|Fsr(ei)} < Pe
where F,, is the o-field generated by £[0],-- -, B[n] and to, -, t,.



Then,

C/le*(km,’+1l+tkm/+1 )A”

C//e—(kmurzH‘tkmur2 JA

1 1
x'=M

— M//

— M//

— Ml/

— M//

Cllei(km'” I+tkm/’ )A

"

(ks It A
Ce (CAVESY L T X — R(km/+1f + tk7”/+l)(xl7y1)ml)ul

(ks inItte ) Ac
Ce +2 m/+27x — R(kppraol + tkm/+2)(xl7’/1)7”1,u1

Cef(k‘yn// I+tkm” )ACX
_Ce_(km/+11+tkm,+l )Ac

Ce*(km’+21+tkm/+2 JAc

Ce—(k‘m//f-‘rtkm” )Ac

Ce*(km’-HIJFtkmurl )Ac

Ce*(km’JerJFtkmurz )Ac

Cef(khi// I+tkm,” )Ac

R(km'-‘rll + tkm/+1)
R(kor o] +th,,.,)

R(/ﬂm//.[ + tkm”)

_ R(]Cm//l + tkm,, )(Xl)yl)ml,ul

R(k’murgf + tsz’+2)

R(km/+1f + tkm’+1)
R(kmr g2l + 1,

m,’+2)

L 0 0
0 e 0

I
00 - L

Rk ]+t )]

| Rl 411, |

L R(k7n”1+tkmu) |

(X11V1)m1,1/1

0

Clo L

Ml
0 0

Ce—(kil+tr, )Ac

Ce—(k2l+try)Ac
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(7.37)

Ce_(kl I+tk1 )Ac

o

Ce(k2I+try)Ac

o

L Cef(k?m/ I+tkm’ )Ac

(7.38)

Ce—(km//1+tkm” )Ac

where (7.37) follows from (7.36), and (7.38) follows from the condition (ii) of Claim 7.3. Therefore,

we can recover the remaining states of x.
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Moreover, we have

Rk 1] +th,, ) L 0
M |- R(kmlﬁj,ﬂkm'“) M [ I 1
R(k’m//I + tkm”) 0O 0 --- L i

R(kmryrl + i, )
R(k7n/+21 + tkm/+2)

SJ |M/I|maz - max . |M;.|mam ‘leax ? 1
Rk I + tkm,,)
170 QI /
,S p (S (E,S (67k)))e)\'IIS”(e,S'(Qk))I
€
e /(S (e, k) 4. o
. max {pm(km//l + tkmu)e A1 (K, +1I+tkm/+1) . wexls (e;k)I | |L|mam , 1}
€

= 1 !
< PO TR s S DT (.- 76, ) < s < s < S (e, S'(E. ). X < A

€

for some polynomial p(k). Since for some p(k)

M| ’(S’(e,k))e,\lsr(e’k)l < 5(5”(6’5/(@k)))exls”(e,s’(s,k))l

mar — € — 62

and we can recover x from x” and (X1, )m, ,, , there exists M and a polynomial p(k) such that
Ce—(kil+tr )Ac
M = Lnxm
Ce_(km,”l"’_tkm// )AC
and

M| < p(S" (e, 5" (¢,k))) M8 (.S (e k)]

mar — €2

Moreover, since

hmexphmsupesssup log P{S" (¢, S"(e,k)) — S"(&, k)| Fsr(e.p) } < e
S§—00
and
hmexphmsup sup logP{S’ (e, k) — k} < pe,
s—o0 keZt
by Lemma 7.2
hmexphmsup sup logP{S" (¢, 5" (e, k)) — k} < pe.

s—00 keZ+

Therefore, by putting S(e, k) := S"(e%,S’(e%,k)), S(e, k) satisfies all the conditions of the lemma.
O
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7.5 Lemmas about the Observability Gramian of Discrete-

Time Systems

Now, we will consider the discrete-time systems discussed in Section 2.6. Like the continu-
ous time case, we start from a simpler case when C is a row vector and A has no eigenvalue cycles.
The definitions corresponding to (2.35) for the row vector case are given as follows: Let A be a

m x m Jordan form matrix and C be 1 x m row vector which can be written as

A= diaﬂg{ALla A172a T 7A17l/1 P 7Au,17 o 7AN7V“} (739)
C= Cl,l) C172a e 70171/17 e 7C;,L,1) Ty Cuﬂ/,_b (740)
where

A;; is a Jordan block with eigenvalue \; ;€727 and size m;
mip <mij2<---<m;,, foralli=1---
Ai1=Xg=-=N,, foralli=1,--- p

A1 > > >0 >1

{1, Aiw, } s cycle with length v; and period p;

For all (¢,7) # (7', j'), wij —wirj» ¢ Q

Ci;is a 1 x m; ; complex matrix and its first element is non-zero

\ied?™@i is (i,4) element of A.

Here, we can notice that A has no eigenvalue cycles since w; ; — wy j» ¢ Q for all (i,j) # (7', j'),
and C is a row vector. By Theorem 2.6, the condition that the first elements of C;; are non-zero
corresponds to the observability condition of (A, C) since C is a row vector.

Let’s state lemmas which parallel Lemma 7.6 and Lemma 7.8. In fact, the proofs of the

lemmas are very similar to those of Lemma 7.6 and Lemma 7.8 and we omit the proofs here.

Lemma 7.15. Let A and C be given as (7.39) and (7.40). Then, there exists a polynomial p(k)
such that for all e >0 and 0 < k1 < -+ < k, if

CA M

CA—F
det ) > € H P

1<i<m

CA~Fm
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then
CA M
CA k2
. S p(km) /\Ilcm
CA~Fm
Proof. Tt can be easily proved in a similar way to Lemma 7.6. O

Lemma 7.16. Let A and C be given as (7.39) and (7.40). Define a, ; and C; ; as the (i,j) element
CA M

CA k2
and cofactor of ) respectively. Then there exists g.(k) : Rt — RT and a € RT such that

CA~Fm
for all e >0 and kq,--- , ky, satisfying

(Z)OSI{?l <ks<---<kpnp
(Zl)km — k-1 > ge(km—l)
(ii1)ge (k) < a1 + log(k + 1))

(iv) Z amJC’m,i ZE H )\i_ki

m—m,+1<i<m 1<i<m
the following inequality holds:
CA— .
CA~F2 1
—k;
det : > 56 H A
. 1<i<m
CA~Fm
Proof. Tt can be easily proved in a similar way to Lemma 7.8. O

Like the continuous-time case, these lemmas reduce questions about the inverse of the

observability Gramian to questions about the determinant of the observability Gramian.

7.6 Uniform Convergence of Sequences satisfying Weyl’s cri-

terion (Discrete-Time Systems)

As we did in the continuous-time case, we will prove that the determinant of the ob-

servability matrix is large enough regardless of the erasure pattern. The main difference from the
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continuous-time case of Appendix 7.3 is the measure that must be used. While we used the Lebesgue
measure to measure the bad event —the event that the determinant of the observability matrix is
small—, we use the counting measure in this section.

The main idea of this section is approximating aperiodic deterministic sequences by random
variables using ergodic theory [54]. The necessary and sufficient condition for a sequence to behave
like uniformly distributed random variables in [0, 1] is known as Weyl’s criterion. We first state a

general ergodic theorem, and derive the Weyl’s criterion as a corollary.

Theorem 7.2 (Koksma and Szusz inequality [54]). Consider a s-dimensional sequence X1,Xz, - €
R®, and let o := (a1, ,a5) and B := (B1,- -+, Bs). For any positive integer m, we have
A(le, B); N, {Xn
sup ( )N ) H (Bi — i)
0<a;<Bi<1 1<i<s
<o9g2gs+1 [ L n Z L1 Z 27V (h )
- m r(h)
heZs,0<|h|eo<m 1<n<N
where
A([O{,ﬂ),N, {Xn}) = Z 1{Xn E [alvﬂl) X [OéQaﬁQ)"' X [a87/83)} (741)
1<n<N
r(h) =[] max{ln,|,1}.
1<j<s
Proof. See [54] for the proof. O

Here, we can see A([c, 8); N,{Xn}) is the counting measure of the event that a sequence
falls in the set [cr, 8). The theorem tells us that the counting measure is close to the Lebesgue
measure of the set [a, 8) uniformly over all «, 5.

Using this theorem, we can easily derive? the Weyl’s criterion for a family of sequences.

Definition 7.2. Consider a family of s-dimensional sequences J = {(X1,0,X2,6," ) :0 € J, ;¢ €

R*}. Here, the index set for the sequences, J, can be infinite. If for allh € Z° \ {0},

. 1 ;
lim sup |— g ei2m(hxno)| —
N=zeooeg |V 2y

then the family of sequences is said to satisfy Weyl’s criterion.

Theorem 7.3 (Weyl’s criterion [54]). Consider a family of s-dimensional sequences J = {(X1,5,X2,0, - -

o€ J,x; o € R°}, which satisfy the Weyl’s criterion. Then, this family of sequences satisfies

A i N n,o
lim sup sup ([aaﬂ)a 7{X ) }) o H (/Bz 70%) — 0’
N—=005e70<a,;<B:<1 N 1<i<s

2The original Weyl’s criterion [54] is shown for only one sequence. Here we extend Weyl’s criterion to a family of
sequences. For this, we state a generalized theorem of the Weyl’s criterion and prove it.



302

where the definition of A ([a, 8); N,{Xn,s}) is given in (7.41).

Proof. By Theorem 7.2, for any positive integer m, we have

A i N P
sup sup ([Oé, B)7N ) {XIL }) _ H (52 _ ai)
c€J 0<a;<B; <1 1<i<s
<supastzt [ Ly > 1 11 $ ezmilhn) (7.42)
T oeg ™ ocihlm<m r(h) | N £2n

To prove the theorem, it is enough to show that for all § > 0 there exists N’ such that for all N > N’

A i N n,o
wp s ([, )i N {xno}) IT 3 — a0 <o. (7.43)
0€J 0<a;<p; <1 N 1<i<s

24541
Let’s choose m := 45+ so that

25235+1

m

5
<5 (7.44)

Once we fix m, there are only (2m+1)® number of h € Z° such that |h|. < m. Furthermore,

by the definition of Weyl’s criterion, we can find N such that for all N > N/,

1 27 (h,Xn, o) 1 4
Sup —_ ej N, o < - - —.
ceg | N 1SnZ§N (2m 4 1)325235+1 2

Thus, we can find N such that for all N > N” the following holds:

1 .
2523°T1sm+l  max  sup |— Z R

(7.45)
0<iblcsmoeg | IV | T2

| >

Therefore, by plugging (7.44), (7.45) into (7.42), we can prove (7.43). Thus, the theorem is true. [

Since we are mainly interested in the fractional part of sequences, it will be helpful to denote
() :=x — |x]. Although (x,y) is the inner product between two vectors, these two definitions can
be distinguished by counting the number of arguments. Let’s consider some specific sequences, and

see whether they satisfy Weyl’s criterion.

Example 7.1. (<\/§n> , <\/§n>) satisfies Weyl’s criterion and (<\/§n> , <(\/§—|— \/§)n>) does too.
(<\/§n> , <(\/§ + 0.5) n>) does not satisfy Weyl’s criterion and neither does <<\/§n> , <§n>>

Therefore, among general sequences in the form of ({(win), (wan), -, {(wmn)), there are
sequences which satisfy Weyl’s criterion and others do not. However, the following lemma reveals
all sequences can be written as linear combinations of basis sequences which satisfy Weyl’s criterion.

This idea is very similar to that linear-algebraic concepts like linear decomposition and basis.
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Lemma 7.17. Consider an m-dimensional sequence ({(win), (wan), -, (wmn)). Then, there exists

k<m and p € N such that

1<;<k

where

¢, € Z,

({mmn), {(yan), -, (ykn)) satisfies Weyl’s criterion.

Proof. Before the proof, we can observe the following two facts.
First, since as long as (h, w) is not an integer,

i Z ej27r(h,((w1n),<w2n>,~-,(wmn))> - iej27"(h1w1+h2w2+"'+hmwm) (1 _ ej27TN(h1w1+h2w2+“'+hmwm))

N 1 — ei2n(hiwithowa+-+hmwm) ’
1<n<N

the statement that the sequence ({win), {(wan),- -, (wm,n)) does not satisfy Weyl’s criterion is equiv-

alent to there being hi, ho,--- , h;,, € Z that are not identically zero and make
hiwi + hows + -+ - + hyppwi, € Z. (7.46)

The second observation is that if ({(win), (wan), -, (wn,n)) satisfies Weyl’s criterion then
for all a1, -+ ,a;, € N, (<a1n> , <:’—;n> o ,<mn>) also satisfies Weyl’s criterion. To see this,

Qm

suppose < > < w2 > , <mn>) did not satisfy Weyl’s criterion. Then, by (7.46) there would

a2 Qn
hl ngigwn aiw +
al 1

K3 h7n i i
1H1glgma e [li<i<ma ) c 7m \ {0}

ay ’ Am

exist (hi,ha, -, hy) € Z™ \ {0} such that hy et L+ h2“’2 4+t hm‘;’—z € Z. So,

hallicicm @ "w2_|_'”_|_ P Ilicicm %
ag am

But since ({win), (wan), -, {wmn)) would not satisfy Weyl’s criterion, this causes a contradiction.

W € Z as well as (

Now, we will prove the lemma by induction on m.

(i) When m =1,

If (win) satisfies Weyl’s criterion, the lemma is trivially true by selecting v; = w; and
@11 = 1. If (win) does not satisfy Weyl’s criterion, then by (7.46), w; is a rational number. So we
can find ¢; o and p such that w; = q;O and set the & = 0.

(ii) Assume that the lemma is true for m — 1.

If ({win), {wen), -, {wmn,n)) satisfies Weyl’s criterion, the lemma follows by selecting k =

m, v; = w; and g;; = 1.

If ({win), (wan), -, {(wmn)) does not satisfy Weyl’s criterion, by (7.46) there exists (hq,
ha, -+, hy) € Z™ \ {0} and h € Z such that hjwy + hows + -+ + hypw,, = h. Without loss of
generality, let’s say hy # 0. Then

h h B, h
Wi = — 2wy — g — e — g (7.47)
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By the induction hypothesis, we know that there exists &' <m — 1, p' € N, ¢; ; € Z, 7}
such that

224 N G

1<j<k
p/ / a]’y.; (7.48)
1<G<k’
where ({(yin), (y4n),---,(y,n)) satisfies Weyl’s criterion. Therefore, by plugging (7.48) to (7.47)

we can find ¢} ; € Z such that

qu / ’7
w —.
' |h1 p| z; s “ha

By the second observation, (<%n> , <%n> R ,<Z—’°n>) satisfies Weyl’s criterion, so we can use
1 1 1
p=|hy-p| and v; = Z—l to show that the lemma also holds for m.

Therefore, by induction the lemma is true. O

Now, we can decompose the sequences into basis sequences which satisfy Weyl’s criterion,
and so behave like uniform random variables. The main difference from the uniform convergence
discussion of Appendix 7.3 is the number of random variables. In other words, in continuous-time
systems with random jitter, only one random variable is introduced at each sample for the random
jitter. However, this is not the case in discrete-time systems.

V2 0 ]

0 e2V2]’

e

V2
2 = ,C= [1 1] The row of the observability

gramian of (A1,C) is CA;" = [ej\/ﬁ” 312\/5"] In this case, the elements of CA1™ do not satisfy
Weyl’s criterion. Thus, it can be approximated by [er ei2X ] where X is uniform in [0, 27]. This

involves only one random variable.

However, the row of the observability gramian of (Ag, C) is CA,™ = [ej Van i ﬁ"} whose

elements satisfy Weyl’s criterion. Thus, it can be approximated by [ejxl erZ} where X, X, are
independent uniform random variables in [0, 27], and so involves two random variables.
Therefore, the lemmas derived in Appendix 7.3 have to be generalized to multiple random
variables, and then the multiple random variables can be used to model deterministic sequences.
Intuitively, adding more randomness should not cause any problems, so generalization to
multiple random variables must be possible. We first extend Lemma 7.10 which was written for a

single random variable to multiple random variables.

Lemma 7.18. Let X be (X1, Xo, -+, X,) where X; are i.i.d. random variables whose distribution

is uniform between 0 and 2m. Let kq,ka,--- ,k, € R” be distinct. Then, for strictly positive v, I



305

(v<T), and me {1,---,u}

n
sup P{| Zaiej<k"x>| <et—0aselO.

‘arnlz')/vla'ilgraaiec i=1

Proof. We will prove the lemma by induction on v, the number of random variables.
(i) When v = 1. The lemma reduces to Lemma 7.10.
(ii) Let’s assume the lemma is true for 1,--- ;v — 1.
Without loss of generality, we can assume m = 1 by symmetry. We will prove the lemma

by dividing into cases based on k;j. Let the jth component of k; be denoted as k;;.

First, consider the case when ki1 = k21 =--- =k, 1. Then,
H Iz
sup  P{| E aied <KX= <) = sup  P{| E a;e? Za<i<e kiaXi| < ¢}
las|2y,las < 5o la1|>v,las|<T 555

1
= sup Pt | Y aged Zesise Bt < f
la1|>7,la;|<T i=1

w
= sup P Z aze’? Xe<i<v kiaXi| < ¢} — 0 (.- induction hypothesis).
la1]>7,la;|<T i=1

Second, consider the case when k; 1 # k;; for some 4, j. Without loss of generality, we can
assume that k11 = ko = -+ = ky, 1 and ki1 # kj ;1 for all g < j < p. Then, for all € > 0, we

have

n
sup  P{| Z aied <KX < e}
la1|>v,]a;|<T" i=1

1 I

j<ki,X j<ki,X

= sup  P{| E a;e? SR> 4 E a;e? <R < e}
la1]>v,]a;|<T i=1 i=p1+1

H1 13 H1
< sup P{Q :aiej<ki,X> + 2 : azed <k X>| < e’\ § :aieJ 2o<i<o ki,ij| > €'}
la1|>7,la;|<T i=1 i=p1+1 i=1

M1

i=1
251 M M1
j . ki i X, ] i i ; . ki i X
= sup ]P’{‘( g ai@j 2ocj<n ki J)e]kl,le + E aiej<k X>| < €’| E Cl,iej Dacj<y Fis J| > 6/}
la1|>7,]a;|<T i=1 i=p14+1 i=1

1231
+P{| Y el Trsisr b | < )

i=1

H M1
< sup Py, {|a}ef* 1% 4 E ajelt i X < e} 4+ sup P E age? Zesise kiaXi) < ¢y
lai|>¢]af|<pT i=p14+1 la1|>v,]a;|<T i=1
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Therefore, by the induction hypothesis (since the first term has only one random variable, and the

second term has v — 1 random variables)

w
lim  sup  P{| E aied KX <y
€000y |>y Jai|<T i

H M1
< lim lim sup P{|a}j el 151 4 E ajettiiXi < el 4+ sup P E e’ Zesisv FiaXi| < ¢y
€ —>0€—>0‘a/1‘26/,|aélgur i1 la1]|>7,]a; |<T i=1

=0.
Therefore, the lemma is true. O

Now, we will consider a deterministic sequence in the form of (< win >, -, < w,n >).
As we have shown in Lemma 7.17, this sequence can be thought of as a linear combination of basis
sequences which satisfy Weyl’s criterion. Thus, we can approximate the deterministic sequence as a

linear combination of multiple uniform random variables considered in Lemma 7.18.

Lemma 7.19. Let wy,wo,--- ,w, be real numbers such that w; —w; ¢ Q for all i # j. Then, for

strictly positive numbers v and T’ (y <T), and m € {1,--- , u}

N Iz
1 .
lim lim sup — 1{])  aie?? R <) 0.
el0 N=o0|q,, >, a;|<Ikez NV ,; ; '
Proof. By Lemma 7.17, w; can be written as (qi, p) where @i = (¢;0,4i1, " ,qir) € Z"Y, p =
(f,p1, - ,pr) € R" and s € N. Here, ({p1n),{p2n), -, (pyn)) satisfies Weyl’s criterion. Since

wi —w; € Qforall i # j, (¢i1,G2, @) # (@182, Q)
For given k, N, M € N, and mq,--- ,m, € {1,---, M}, define a set Sy, ... m, as>

my — mi m, — 1

{ne e vy T <) < b T < ek k) < G b

M
Then, for all k&, N, M € N and € > 0, we have the following:

N Iz
S ae ) <o

n=1 =1

N n
Z Z ]_{| Zaiej27rwi(n+k)| <enc€ Sml,m,mr}

n=11<mi <M, 1<m,.<M =1

N Iz
< Z Z 1{ min |Zaiej2m“("+k)| < €N E Spmy o m}

nESmy,- ,my Pt

N Iz
> > 1 min ) a0 H < 1{n € S,y m, ) (7.49)

nESm, ...
n=11<m; <M, ,1<m,.<M T g

3Notice that the definition of Smy,--- ym, also depends on k, N, M as well as m1,--- ,m,. However, we omit the
dependence on k, N, M in the definition for simplicity.
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Moreover, we also know by the definitions of q; and p,

Za pd2mwi(ntk) _ Za d2m(ai,p) (n+k)

i=1 i=1
m

=3 aee(®

i=1

& (n+k)+i,1p1 (n+E)++qi,rpr(n+k))

a; eg27r( O (n+k)+qi, 1<P1(n+k))+--*+¢1i,r<ﬂr(n+k)>)(-.- gij € Z)

Il
.Mt

s
Il
—

Thus, by defining Xy, ... m, as a random vector which is uniformly distributed over

[t may s [T ey and of = (¢4,15 462, 5 Qir)s P = (p1, P2, 4 pr), We can conclude
H ) i . 4,0
max |Zaieﬂ2”“i("+k)| =  max |Zai6127r( 22 (k) Faia (o1 (k) i (or (nHR)) |
ne moy,mp Lee P
(2 )+ (e Xeny,ome)) | e, (7.50)

By
N u "
. 2oy meos (nh
(7.49) < Z Z P{ min |Zai€j2 wiln) | _ nesﬁaf ) |Z%‘€J2 wi(ntk)|
T =1 e

nw
+1) a2 (Al X )| < €} 1{n € Sy, }

N
— Z Z P{nesgm 5 | Z a; (af.p’ >(n+k))|

;s 1<me <M

= = )

max | Z aiejz’r(qzo (”+k)+<qg’f’,>(”+k))|

NnESmq - m =

M )
1) e (el Xy o)) | < €} 10 € Sy, )
i=1

N
< Z Z max P{ min |Za, g2m (% (aie >(n+k))\
- 0<s'<s NESmy,...,my

- gmax |Z <"+’“’|+|Z (S X)) < 1€ Sy )

m

N 4 ’ ’
<2 2 > P{nesfﬂi? |Zaiej27r(%+<qi’9>(”+k))‘

n=1 1<m1§M--- 1<m, <M 0<s'<s ST =1

—  max Za eﬂﬂ Habe')r) | + | Zal 72 (4 Ko 'mr>)\ <el-1{n € Spmy om,. }

nESm, FRERIN )
1 T i=1

(7.51)
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Here, we have

o
max | Z aiej2”<%+<qg’p/>("+k)) |

NnESmy, - ,my

1
—  max ‘Zaieﬂw(%’+qi,1<p1(n+k)>+-~~+qi,r<p7-(n+k)>)|(.
NnESmq - yma

G5 € Z)
i=1

- 2 (—S'Jr =
us i
< sup | E age’ T\
0<A-<ﬁ i=1

277 +1
= sup | E a;e’ Gia ™
O<A<M =1

Lo gig 25 g A g A ) |

—1 —
gy, T

. !
J2W(%+q1‘,1 =

—1 Ly — 1
o )

)+aie

(_1 + cos QW(Qi,lAI + -+ qi,TAT) + .7 sin 27T(qi,1A1 + -+ qi,rAr))‘

]27T +Q7, 1 IM 1+‘“+‘11',T%)
< \ |

. / —1 —1
+Z |aiea2ﬂ<%+qi=1’"b ot 27,

1=1
“(sup  [—=1+cos2m(ginAr 4+ ¢ipAr)| + sup  [sin27(gi 1A+ -+ girA)])
O<A~<ﬁ 0<Ai< 47

) 1

< ‘ Z J27r +q7.,1 4 Lpetgn ‘ + 471_2 ‘al sup |Qi71A1 4+ qurArl (752)
i—1 0<A; <4

< ‘ Z zejzﬂ +qz 1=

where (7.52) comes from the fact that |sinz| < |z| and | — 1 + cosz| < |z| for all x € R.

Ly +qi

4 r
y Z lgi j].(.- We assumed |a;| <T)

=1 j5=1

Likewise, we also have

. J27r(7; q,,p’>(n+k))
min | Z aje |

NnESmy, - ,my

- jzﬂ(%+qi,l%+”'+qi,‘r' m?[1> 4nl
2 |) e ZZVM

i=1 =1 j=1

Therefore,

sup i aze 327r( (a0 >(n+k)> - inf i ase j27r( (a0 >(n+k)> |

, 471
1<<pi<n+k>><" i=1 ML < (pi(ntk)) <

87TF Z Z g1

=1 5=1

By selecting M such that 87L 3 > i1 lai ] < € (7.51) is upper bounded by

N

(7.51) < > > P zﬂjaieﬂ“(%*<qﬁ’xmv--vmr>)\ <2} -1{n € Spm, ... m.}.

n=11<m;<M,--- ,1<m, <M 0<s’'<s =1

(7.53)
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Since ({(p1n), -, {prn)) satisfies Weyl’s criterion, by Theorem 7.3
1 & 1
I\}gnoozlégﬁnz;ll{n S e i (7.54)

Therefore, if we let X be a 1 x r random vector whose distribution is uniform on [0,1)", by (7.53)
and (7.54)

lim sup N Z 1{| Za el 2mwin k)| ey

N—=00|q,.|>7,|a;:|<T,kEZ

< sw > S B Y e (K ) gy L

lam|2v,lail STREZ | <y < - 1§mT§M 0<s'<s =1

< sup Z P{] Z aiej2ﬂ(%+<q;’x>)| < 2€e}(". definitions of X, ... m,, X)
|am‘27,|ai|§r‘,kezogsl<s i=1
/“L ’
< sup s-P{| Z aiej2”(<qi’x>)| < 2€}.( €?*™5 only rotates the phase.) (7.55)
|”'m ‘>’Y |a7|<l_‘
Since g} are distinct, by Lemma 7.18, (7.55) goes to 0 as € | 0. O

So far, we put the restriction that |a;] < T'. However, the functions are growing as |a;|

increases. Therefore, Lemma 7.19 holds even after we remove such restrictions. The proof is similar
to that of Lemma 7.11.

Lemma 7.20. Let wi,ws,--- ,w, be real numbers such that w; —w; ¢ Q for all i # j. Then, for

strictly positive numbers v, and any m € {1,--- ,u}
1L &
lim lim sup 1] a2t <l 0.
O N=ooq,, \>’Ya7€(Ck€Zan: Z: '

Proof. The proof is by induction on y, the number of terms in the inner sum.
(i) When p = 1.

Denote a} as yi2-. Then
la] ’

lim  sup N Z 1{|a, /2™ ("R < ) (7.56)

N—o0 |a |>’Y keZ

= lim  sup |—a eime(nth)| o
N‘)OO\a \>'yk€ZNZ { | | }
| X
< lim sup — Z 1{|a) 21 (HR) | < e} (- T < 1) (7.57)
N=00|gf |=1,keZ — |a]
n=1

By Lemma 7.19, (7.57) converges to 0 as € | 0. Thus, (7.56) converges to 0 as € | 0.

(ii) As an induction hypothesis, we assume the lemma is true until g — 1.
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To prove the lemma for p, it is enough to show that for all § > 0 there exists €¢(d) > 0 such

N

1 S
lim sup Z 1{| Zaieﬂm‘“(”+k)\ <e€(0)} <.

N=00 |a,, |2y, kez IV i=1

By the induction hypothesis, for all m’ # m we can find €,,/(4) > 0 such that

. i2nwi(n+k) ,
]\;gxloo sup Z 1{| Z a;e | < em ()} <. (7.58)
@,/ |27, kEL 1<i<p,i#m

Let #(d) := min {minm/;ém {6’"2'56)} ,1}. By Lemma 7.19, there exists €'(§) > 0 such that
| N

lim sup 1 a;e? iR ¢ < 9. 7.59
Jn s LSy <) (7.59)

=%(5)" n=1 =1

Set €(d) := min {e’((?),minm/;ém {#}} Then, we have

N

1
lim sup Z 1{| Za eI 2wt k)| < ¢(5)}

N_ij‘a |>'YkeZNn 1 i=1

N Iz
1 .
. i2nw;(n+k)
< ngnoomax{ ‘S1I1p I Z 1{| Zale | < €(9)},
|QM|2'71|,,;L|SK(5)J€ €L n=1 =1
1 -
_ i2nwi(n+k)
max S Z 1| D _ae | <e(®)}}
‘a7n|>"/7 >7,]€EZ n=1 =1

Tam[ = =(8)

= max{ lim sup — Z 1{| Za eI Frein k)| < ¢(§)},
N=eo Illm|2"/a|‘aml|fh(5)7kez

max lim sup — Z 1{| Za eI 2tk | < ¢(5)1]. (7.60)

m/#m N—o0 CAIN
| @ | >y, T2 kGZ n=1

lam| = *i( )’
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Let a} := |ajn‘ai. Then, the first term in (7.60) is upper bounded by
1L
dmo e Y e < (9)
|a7n‘2'77‘a7;‘§ﬁ(5)7kez = =1
RN ! v
= lim sup SO ae? R < e(6)}
N0 2t € ke N = ay| |
1 N - ~y
= lim sup — 1{]Y aled?eintR)) « L _¢(5)}
N=ooar =, |a}|< 5y REZ N n=1 ; ]
1 N y
< lim sup — aled (TR | < e(§)} (o —— < 1)
N=09 a1 =, af | < 755 k€ N; ; |am|
| X
< lim sup 1{]Y aled?mei )| < (§)} (o€ > €)
R e Z ;
< 0.( (7.59)) (7.61)
Let af := ﬁai. Then, the second term in (7.60) is upper bounded by
1L ¢
dmo o sp S I el < )
[am >, |am‘ >ﬁ kEeZ n= =1

= lim sup Z {|Z " az ]27rwz(n+k)| < ()}
'rYL

N—oo |@m | >, ‘az’::“ N( 3> kGZ n=1 |CLm/‘
< lim sup a;e??mwi(ntk) _ Lameﬂ“’m(mrm <1 €(0) + 7 |am|}
N—oo 197 | |am| || |am|
lam |27, TamT 2 (a7 n=1
< lim sup ‘€j2ﬂ-wi(n+k) S— amej27rwm(n+k)| < € (6)}
N—oo la ,‘ |am'|
|¢1m|2’y, \a = h( ¥ JkEZ n=1
(7.62)
| X
< lim sup Z 1{| Z alle??™inFR) | < ¢ (8)}( . definition of a!')
N=oo g |= %kEan 1 1<i<p,itm
< 6.( (7.58)) (7.63)
Here, (7.62) is justified as follows:
g Y
0y + —La,,
] O Tar 1!
< (8) (@) Pl s L by definition #(6) < 1)
|am| |am| K(6)
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Therefore, by plugging (7.61) and (7.63) into (7.60), we get

lim sup N Z 1{] Za I 2Tt R) | e(§)) < 6,

which finishes the proof. O

Now, we will generalize Lemma 7.20 by introducing polynomial terms. First, we prove that

a set of polynomials is uniformly bounded away from 0 when there is a nonzero coefficient.

Lemma 7.21. For alln e N, n’ € Z*, me {1,--- ,n}, v>0 and k > 0,

{z € (0,T):| >0, aix’| < k}Ho

lim sup =0
T—)OO'a ‘>’Y a; €C T
where | - |1 is the Lebesque measure of the set.
Proof. Let X be a uniform random variable on (0,1]. Then, we have
{z € (0,T]: |30, a’| <K}l
sup
|am‘2’Y T
— s {e € (0,T]: |0, aidm| < £}
“1m|Z’Y T
g HEE OIS 0 (5)'] < e
‘am|>7 T
k
= sup |{z €(0,1]:] Z a;x'| < m}I]L
‘a7n|>’)’ i=—n'
i k
= sup P{] Z aZX\<
‘am|>')’ i=—n'
n+n
kX
= sup ]P’{|ZaXl|< —}
@ gmr |27 i=0
n—i—n
< sup P Zale <—}( 0<X <1lwp. 1)
‘a‘vn+n/|>’y i=0

Therefore, by Lemma 7.11

o € [0,T]: [ Y07, aix’| < K}

lim sup
T |q,,|>7,a;€C T
n+n' k’
= lim sup P{| E a; X' < ==} =0,
T=o0a,, 4 nr|>7,0:€C i=0 T

which finishes the proof. O
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The following lemma shows that the above lemma still holds even if we change Lebesgue

measure to counting measure.
Lemma 7.22. For alln e N, n’ € Z*, me {1,---,n}, v>0 and k > 0,

lim sup Hrefl,--- N} |Z:‘L:7n' ai$i| < k}c
N=00 |g,,[>v,a;€C N

=0

where | - |c implies the counting measure of the set, the cardinality of the set.

Proof. First, we will prove the following claim which relates Lebesgue measure with counting mea-

sure.

Claim 7.4. Let f : RT — R be a C* function with | local mazima and minima. Then,
Hr € [LN]: f(z) >0}, < Hze{l,---,N}: f(x) >0} +3l+2.

Proof. Since f(z) is a continuous function with { local maxima and minima, we can prove that there

exist I' <141, s; and ¢; (1 <7 <1') such that
{:L‘E{].,-'- 7]\/v}if(ﬁ)>0}:{81,81—|-1,-~- , 81 +t1}U-~-U{Sl/,Sl/+1,'-~ ,Sl/—‘rtl/}.

One way to justify this is by contradiction, i.e. if we assume I’ > [ + 1, there should exist more
than [ local maxima and minima by the mean value theorem. Moreover, since the number of local

maxima and minima is bounded by [, we have

Hz e [1,N]: f(z) >0}, <|[s1 —L,s1+t1 + 1], +--+|[sv —Lsy +tr + 1|, +1
St +2)+ -+ (ty +2)+1
<Hxe{l,---,N}: f(z) >0} +2I'+1
<H{ze{l,---,N}: f(z) >0} +3+2.

Thus, the claim is true. O

To prove the lemma, let a; = ar; + jar; where ar;,ar; € R. Then,

n
| Z a;z'| < k

i=—n'
’
n+n

(@) Y aiwal| < ka™
1=0

n+n' n+n'

(e)( Z ar,i-nz')? + ( Z arinx')? < k22"
i=0 i=0
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. ’ . . . .
Since k22%" — (ZerOn ap,i—nr)? — (ZZHOR ari—nx')? is a continuous function with at

most 2(n + n’) local maxima and minima, by the claim we have

‘{x € {15"' ’N} : |Z?:Oaixi‘ < k}|C

lim sup
N=0 |q,, | >7,a;€C N
< lim sup {z € [1,N]: | Y0 aiz’| < k}Ho +6(n+n')+2
- Noeo |a7n‘>’y @ ;€C N
€ (0,N]: n i i<k

= lim sup o € O N 13 img @il < ke _ 0 (.- Lemma 7.21)

N—oc0 |@m |>7,a;€C N

Therefore, the lemma is proved. O

Now, we merge Lemma 7.22 with Lemma 7.20 to prove that Lemma 7.23 still holds even

after we introduce polynomial terms to the functions.

Lemma 7.23. Let wi,wo,- - ,w, be real numbers such that w; —w; ¢ Q for all i # j. Then, for

strictly positive numbers -y,

H Vi

lim lim NZl Z Zaijnj el2mwi(nth) | e 4 s,

€l0 N—oo la1u, |>’y a” €C,keZ i=1 \ j=0

Proof. To prove the lemma, it is enough to show that for all § > 0, there exist € > 0 and Ny € N
such that for all N > N,

12 Vi
N Z 1 Z Zaijnj e P A (7.64)
€C,kez

la1y, ‘>’Y a” i=1 \ j=0

Since p is finite, by Lemma 7.20, there exist ¢ > 0 and M7 € N such that for all M > My,

1 ~ 5

max sup — N1 a;el?mwicth) | ¢ < -, 7.65
de{l,-,pu} <k€Z,ai€C,ad|Zl M ; { ; 4 (7.65)

By Lemma 7.22, there exists B/ € N such that for all B’ > B/,
Hbe{l, B} ‘zj Oalij’<2}‘ s -

sup -. .
lat, [=y B 4
J

Define &’ := E Zk ! (k) By Lemma 7.22, there exists B7. € N such that for all

B" > BY,

be{l, - B} > TI apb 5
3 s I{be{ }: B//|Z Ny \}|cc<7. (767)

1<i<p,1<j<vi 1<k <y |9k =1

W~
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Define B := max(B/., B.). We will show that the choice of € = ¢’ and Ny = max(Mr, [$])-
B satisfies (7.64). Then, for all N > Np, N can be written as N = B- M + b for some M >
max(Mr, [%—\) and 0<b< B-1.
< e}

Z@p)ﬂww
< 6} (- €?*™* can be absorbed into the a;;.)

N
1
sup —
laro, 1>7.a:5€C,kez IV

n=1

1=1

(X: aijnj> gimwin
i=1 \j=0
B-M+b u vi
Z < aijnj> gi2mwin
Jj=0

cB-M+b ; ! —

v;
J Jj2mw;n
ig T € ‘

N
1
= sup N 1
la1yy |=27v,a:;€C n—1

= sup
la1uq [>7,ai5€

1
ec B-

< sup

la1uy 1>7,as5

S
o
SNPE
-
—

=
I

Ah/—/h\
1
S

< sup
latyy |>7v,a:5€C

o 3
Lol
g

UU
S
ME 1
HE
—

= sup

(" n is rewritten as bM + c.)

NG

w
S
(]

<e}—|—
i . ( (b1 +Z< > bMJ k k>>€j2ﬂ-wi(bM+C)
)

la1vy [Z7,ai;€C

o] ﬁ-
|
)
v}
<l
S}

:
S
(]

0
= sup <e€ep+ é
la1yy |>7v,a:5€C b—0 c—1 =1 4
| BolM u vi s
. j 2ww; (bM+c) k k 4
<o eSS (Sae) ¢ <w22mz(%w bed
V1 vJ b=0 c=1 =1 \7j=0 =1 j=1
1 B—-1 M ,u v; 5
< sup — Zl ai;(bM)’ gl 2mwi(bM+e) <e+ZZZ|aU\ (bM)?FMF Y 4 =
a1y 127 ,a5ec B M=o =1 \j=0 1 =1 k=1 4
=0 c= = Jj= i=1 j=
(7.68)
B—-1 M w v; j
1 2o aij (bM) j2mew; (bM+
< sup [ 1 =0 "W ) pd2mwi 9| <
la1yy |>7,a45€C B-M b—o ; { Z:zl < My
£ Zi:l Zjizl Zi::l lai; (i) (bM Ik P 4 é
M, M, 4
M H Zl{i a; -(bM)j )
< 1 j=0"" j2mw; (bM+c)
latuy ‘S‘;{Yp‘lw eC B Z {M Z { ; < M, ‘ =
v (9 j—k 3 rk
11 € n i:l =1 Zk:l |a”|(i) (bM) "M > e n é
M, My 4
S an(GM)
< 1 £=j=0 "W\ ) 527w (bM+c)
n%%waZ@Z{;( iy, <
Y Yk laig () (oMY TEME §
1 1| oz i 9| > bt 7.69

where M, := max; {‘Z;’;O ai; (bM)’|} and when M;, = 0 the value of the indicator function is set to be 0

since in this case, the indicator function of (7.68) is already 0.

First, let’s prove that the first term of (7.69) is small enough. For all a;; € C such that |a1,, | > v
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and b € {0,---, B}, we have
i Z?izo ai (DM I2mwi (bM+-c)
My

XM

c=1 i=1
<  max 1 qied@ieth|
T de{1,-,u} (keZ a16C \ad|>1 M Z { Z

>l aii (OM)7 | .
JT’ =1 for some i)

)

(- (7.65)) (7.70)

(.- By the definition of My,

o

<

Let’s prove that the second term of (7.69) is small enough.
{be{l,---,B}: My <2}

sup

la1uy 1>y B
Hbe (1,---,B}: ‘ZJ 0 1 bM)j‘ < 2}‘
< sup C (.- definition of My)
> B
|a11/1 >~
{pett By [Sr o <2}’ ‘
< | /sul‘)> B . putting aj; := a1;M’ and M goes to infinity.)
A1y 127
1)
< Z( (7.66)) (7.71)

Now, we will prove that the third term of (7.69) is small enough.

sup i: { Z 1|a’1J‘()(bM)J7M }

|a1u1\Z’Yvai]’€C b—0

B- b
< = . >£
< sup B { Z Z Z ( Ti<i<p, 1<J<V 1<k<j |aij|(bM) MF > 2M}

\al,,l|2'y,a” i’ =1j'=1k'=1

Z sup

1<i<p, 1< <vy 1<k < 101 1275065 €C

>

N

IA

Ud\
M\

1 K |ai;| (bM) ~FMF > M,,}

IN
UJ @
,_. o

B
1<i<p,1<j<v;,1<k<j|0tvy27:0:;€C =0

IN
mﬁ
,_.o

sup

sup = 1{ "aiz| (bM)?~F M* >|Za” (bM)” }( definition of M)

Q!
> Z P TE Ry 7\4
a1y, |>7,a:;€C _
1<i<p,1<5j<v;,1<k<j 1 J =

E
vi— J+k
sup Z { a-/bj/|}
B J

<
1<i<p, 1<) <y, 1<k<j 19k 1=1 =itk
1
< 3 (7.67) (7.72)

Therefore, by (7.70), (7.71), (7.72), we can see (7.69) < §, which finishes the proof. O

7.7 Proof of Lemma 2.3

In this section, we will merge the properties about the observability Gramian shown in

Appendix 7.5 with the uniform convergence of Appendix 7.6, and prove Lemma 2.3 of page 63.
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Just as we did in Appendix 7.4, we must first prove the following lemma which tells us that
the determinant of the observability Gramian is large except on a negligible set under a cofactor

condition the Gramian matrix. The proof of the lemma is very similar to that of Lemma 7.12.

Lemma 7.24. Let A and C be given as (7.39) and (7.40). Define a, ; and C; ; as the (i,7) element
CAF

and cofactor of : respectively. Then, there exists a family of functions {ge : € > 0, g, :
CA Fm—1

CA™™
RT — RT} satisfying:
(i) For all e >0, k1 < kg <+ <km-1 and |Cpm| > €[[1cicpy A K the following is true.

CA M
1 k+N
]\}i_l}loo S sup> ) N Z 1 |det _'k i < N H AFS 5 0aselo.
k—km—12ge(km-1) ¥ ;—p11 CA=Fm—2 1<i<m—1
CA—™

(i) For each € > 0, ge(k) S 1+log(k+1).

Proof. By Lemma 7.16, we can find a function g5 (k) such that forall 0 < ky < ky < -+ <kp_1 <n
satisfying:

() 1 — kit > gha (k)

(i) gheo(k) S 1+1og(k+1)

(i) |2, +1<icm @m,iCmii| = 220" [T cicm—1 Ak

the following inequality holds:
CA—k

det >N [T A

-
CA 1 1<i<m—1

CA—"
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Let ge(k) be g5 (k). Then, we have

CAk
1 kAN .
sup — Z 1 |det ’ < N H P
KELk—km—12ge(km—1) IV 574 CA Fm— 1<i<m—1
CA—™
1 k+N
< sup — Z 1 Z i Crmi <282\ H )\;ki (7.73)
k€Zk—=km—12gc(km—1) n=k+1 m—m,+1<i<m 1<i<m—1
k+N
1 Am,i C’m,i
= sup N Z 1 Z on o < 2e
k€Z,k—km—12>9ge(km—1) n=k+1 m—m,+1<i<m ™ Enlgigmfl i
1 ey Qi
< sup Yo > bi)\”f;f < 2 (7.74)
kEZ,|bm|>1 n=k+1 m—m, +1<i<m m

where (7.73) is by the definition of g(k) and Lemma 7.16, and (7.74) is by |Crn,im| > € [[1<;<n 1 A

i

Let C,,,, denoted in (7.40) be [c’l c’mum]
Moreover,
Apy, "
O 250 () O T80 () Oy 2T
vy
0 T T N
—_ ’ v T ’
0 0 e ()\M,yuejQWUJM,UM )7n

Thus, we can see that

-n . o .
Am,m = E C; . ()\u’”“e]%rw“,y“) nTMen
m —1
[T87M

1<i<my .y,
Therefore,
am,m _ / -n *mu,wﬁLi J2TW 0wy \— =My, i
= & A (€T nT
A ) My, — 1
1<i<my v, i

1, —j27wu,v,

Moreover, when a,, ; is considered as a function of n, the n™=»x "¢ " term only shows up in

R a . . .
% among v , = and the associated coefficient is R CTe I
m m m I :

MV

’ myv, —1 .
mm—mu+1  Am,m Cl(_l) H )\ m“’y/b+1e.]2ﬂ-wu,1/“(7m1»t,l/p‘+1).
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’

Let ¢/ := ﬁ;l_m)\;ﬁ@:’u“ﬂ. Then, (7.74) can be upper bounded as follows:

E+N
1 ; ; )
(7.714) < sup N Z 1 Z Z aijnj_l eI2m(—wui)n| ~ 9¢
k€Zlav, mp v, 12¢ Y [ 2 1<i<v, \1<j<m,
| X
= sup N Z 1 Z Z aij(n + kY1 | 22w R | o o
K€Ll awyymp vy, 12¢ 2 2y 1<i<v, \1<j<my.;
| XN
< sup NZI Z Z aijnj_l e?m(mwpi)(ntk) |~ 9¢ (7.75)
K€Ll awyy mp vy, 12¢ 2 2 1<i<v, \1<j<my.;

The last inequality comes from the fact that the coefficient of n™=»x~! is the same for both

. j—1 nJd—1
Zlgjgmu,,,u Avyy,j (n+k) and Zlgjgmu,,,u R L

By Lemma 7.11, we get

N
1 . _
lim sup N E 1 E E ain? ™t | 2wtk < 9e b 50 as € | 0.
n=1

N —oc0
REL lav,mu,v,, 12¢/ 1<i<y, \1<5<my

Therefore, by (7.75) we can say that

CAF
1 k+N
lim sup — 1 ¢ |det ' <ENT AR S s 0asel0
N—=%0 kez, k—kpm—1>ge(km—1) IV nzzk;rl CA Fm—1 1§i1;,[n_1
CA—™
which finishes the proof. O

Based on the previous lemma, the properties of p.m.f. tails shown in Section 7.1 and the
properties of the observability Gramian discussed in Section 7.5, we can prove Lemma 2.3 for the
case when the system has no eigenvalue cycles. Moreover, we will prove a lemma involving multiple
systems. This will turn out to be helpful in proving Lemma 2.3 for general systems with eigenvalue

cycles.

Consider pairs of matrices (A1,C1), (A2,C2), -, (A, Cp) defined as follows:

A; is a m; x m; Jordan form matrix and C; is a 1 X m; row vector (7.76)
Each A; has no eigenvalues cycles and (A;, C;) is observable

i) jomw'® ...
)\g- )ei2m;” g (4,7) element of A;

A > AP > >0 >
Then, the following lemma holds.

Lemma 7.25. Consider systems (A1,C1), (A2,Cz2), -, (Ay,Cy) given as (7.76). Then, we can
find a polynomial p(k) and a family of random variables {S(e, k) : k € ZT,e > 0} such that for all
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€>0,ke€Z" and 1 <i <r there exist k < ki1 < ki < -+ < kim, < S(e,k) and M; satisfying
the following conditions:
(1) Blkij] =1 for1<i<randl1<j<m,
CiAi—ki,l
C;iA; Fi2
M || =T
CiAiiki’"”
S EAk ] €
(iii) |Mi|mas < M(Ay))s( k)
(iv) limeyg explimsup,_, o suppez+ +log P{S(e, k) — k = s} = pe.

Proof. By Lemma 7.15, instead of the conditions (ii) and (iii) it is enough to prove that

Ci.Ai_kq"'1
CiA; M2 ,
det . >e J] () he.
: 1<5<m;
CiAi*ki,mi

Therefore, it is enough to prove the following claim:

Claim 7.5. We can find a family of stopping times {S(e, k) : k € ZT, ¢ > 0} such that for all e > 0,
keZt and 1 < i <r there evist k < ki1 < kia < -+ < kim;, < S(e,k) satisfying the following
condition:

(a) Blkij] =1 for1<i<randl<j<m,

CiAAi_k’”1
—ki2

Cids (D) =k, ;
(b) |det : Z€H1§j§7n7;(>‘j )i

CiAiiki’mi
(¢) limeyo exp limsup,_, . supgez+ + logP{S(e, k) — k = s} < pe.

Before we prove the above claim, we first prove the claim for a single system.

Claim 7.6. We can find a family of stopping times {S1(e, k) : k € ZT, e > 0} such that for all e > 0
and k € ZF there exist k <k} < kjy <--- < kj, < Si(e k) satisfying the following condition:
(a’) BIE;] =1 for 1 < j <my
Ci1A, 1
Ci1A, " ,
(b’) |det . 2 Gnlgjgml(/\y))_kj
ClAlfk:”i
(c¢’) lim¢ o exp lim sup,_, . SUpgcz+ %log]P’{Sl (e,k) — k=s} <pe.

e Proof of Claim 7.6: The proof of Claim 7.6 is an induction on my, the dimension of A;.
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(i) First consider the case my = 1.

In this case, A; and C;j is scalar, so denote Ay := )\gl)eﬂ”“’il) and C; := ¢;. Since we only
care about small enough €, let € < |c1]. Denote Si(e, k) := inf{n >k : 8[n] = 1} and k| = Si(e, k).
Then, B[k}] = 1 and ’det ([cl(,\gl)eﬁm’gl))—ki}) = |c1\(/\§1))*’<?'1 > e()\gl))*ki. Moreover, since

S1(e, k) — k is a geometric random variable with probability 1 — pe,

exp limsup sup logP {S1(e, k) — k = s} = pe.
s—00 keZ+

Therefore, Sy (e, k) satisfies all the conditions of the claim.

(ii) As an induction hypothesis, we assume the claim is true for m; — 1 and prove the claim
hold for m;.

First, we will fix k¥ = 0, then we will consider general k € Z*.

Denote Aj be a (m; — 1) X (m; — 1) matrix obtained by removing m;th row and column
of A;. Likewise, Cj is a 1 x (my — 1) vector obtained by removing mth element of C;. Then, we
can observe that

A, h CA, M
det : = 0 fmy.m,
Cy Ay Fmi C1A;
where cof; ;(A) implies the cofactor matrix of A with respect to (¢, j) element.

By the induction hypothesis, we can find a stopping time S7(e,0) such that there exist
0<K <kh<---<kl < S1(€,0) satisfying:

my—1
(a”) ﬁ[k‘g] =lfor1<j<m;-—1
A,
9 . 1)\ —%"
(b”) |det : > €H1gjgml—1()‘§‘ )) ki

CYAy
(¢”) limeyo exp limsup,_, . 2 logP{S](€,0) = s} < pe.
Let F; be a o-field generated by S[0],---,A[i] and g. : Rt — R*' be the function of

Lemma 7.24. Denote a random variable d(e, N) as following:

ClAlikll
1N .
. —-n D\ —ks
d(e,N) := sup i 1< |det . < 62()\,(,,111) H (,\; ) k’|]'—si(e,0)
1€Z,1—5S" (€,0)>ge(S] (€,0)) n=l+1 Ci1A; "mi-1 1<j<mi—1
Ci1A:7"
Cl‘Alikl1
Since (b”) implies cofm,,m, : , > EH1<j<m171()\1(-1))_k;, by Lemma 7.24 we have
C1A; Fmi—1 ==
CiA1 "

151&1 1\}51100 esssupd(e, N) = 0.
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Denote S7'(€,0) := Si(€,0) + ge(Si(€,0)). From (ii) of Lemma 7.24 we know gc(k) < 1+ log(k + 1) for all
€ > 0. Therefore, by Lemma 7.1 we have

lim exp lim sup 1 log P{S7 (¢,0) = s} < pe. (7.77)
€l0 s—oo S
Denote a stopping time
ClAlikll
S7"(€,0) :=inf { n > S7(€,0) : B[n] = 1 and |det i >0 T )
Ci1A; "mit 1<j<mi—1
CiA: ™"

Since S[n] is a Bernoulli process,
P{S1"(€,0) = 5(€,0) > N|Fspe} <pol 74N,

Therefore,

111

lﬁﬂ} exp linzflilép ess sup % log P{S7"(¢,0) — S (¢,0) > N|}—Si/(670)} < 1513 1\}1_13100 esssup pl 4N < g
ie.
13&)1 exp hr?j(l)lp ess sup i log P{S7"(¢,0) — S (¢,0) = s|f5i/<€70>} < Pe. (7.78)
By applying Lemma 7.2 to (7.77) and (7.78), we can conclude that
lim exp lim sup 1 log P{S1"(¢,0) = s} < pe.

€l0 s—oo S

Therefore, if we denote S1 (e, 0) := S’ (e, 0), S (e, 0) satisfies the conditions of Claim 7.6 when we fix k = 0.
Here, we know f3[n] is a stationary process. Thus, to prove the claim for general k € Z", we can
shift the time index by k. Then, we can find a stopping time Si(e, k) such that for all ¢ > 0 and k € Z*
there exist k <k} < ky < -+ < ky,,, < S1(e, k) satisfying the following conditions:
(@) Ikl =1for 1 <j<m
C, Al—(k’l—k)

ClAlf(kéfk)
99 1)\ — (k. —
(b)) |det , Zenlstml(A§>) (K} —k)

CoAr b
(c”?) limeyo exp limsup,_, ., Supyez+ 1 logP{S1(e, k) — k = s} < pe.

S

Here, we can notice that the condition (b”’) is equivalent to

Ci1A, R
C1A, k2 /
det 1 .1 2 . )det<|:A1ki|)‘ > H (A;l))_(kj_k)
: 1<j<mg
ClA]_ k""z
ClAl k1
C1A, k2 B
e | | 00 o ([an])[ e TT 0z e TT o9
/ 1sjsm 1<j<m,y
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Therefore, Claim 7.6 is true.

e Proof of Claim 7.5: By recursive use of Claim 7.6, we can find stopping times Sa(¢, k), - - - , Sr(€, k)
such that for all € > 0 and 2 < i < r there exist Si—1(e,k) < kin < ki2a < -+ < kiym; < Si(e, k) satisfying
the following condition:

(a) Blkij]=1for 1 <j<my
CiA;hin
CiA; Fi2 .
(b) |det . 2 e[licjem, (A5)) 7
CiA; Fimi
(c) limeyo explimsup,_, . esssup % log P{Si(e, k) — Si—1(€,k) = 8| Fs; 1 (ek)} < Pe-
Then, by Lemma 7.2
lim exp lim sup sup 1 log P{S-(e, k) — k = s} < pe.
€l0 s—oo kezt S

Therefore, if we denote S(e, k) := Sr(¢, k), S(e, k) satisfies all the conditions of Claim 7.5. Thus, Claim 7.5

is true and the lemma is also true. O
We prove some properties about matrices which will be helpful in the proof of Lemma 2.3.

Lemma 7.26. Let A and A’ be Jordan block matrices with eigenvalues A, aX(a # 0) respectively

A1 - 0 ax 1 -+ 0
0O x -~ 0 0 aXx -+ 0
and the same sizem €N, i.e. A= | | and A =| L | . Then, for all
0 0 A 0 0 a
nez
a—(m—l) 0 0 an-{-(m—l) 0
0 a—(m=2) 0 0 ant(m=2)
A" = A"



Proof.
(@)™ (Plan)™t (5)(ar
0 ()™
A" = 0 0 (a\)"
| 0 0 0
[q—(m=1) 0 0
0 a~(m=2) 0
- 0 0 a~(m=3)
i 0 0 0
_O[nerfl)\n (711) oénflerfl)\nfl
O an+m—2/\n
0 0
i 0 0
[q—(m=1) 0 0
0 a~(m=2) 0
- 0 0 a~(m=3)
i 0 0 0
_O[nerfl)\n (711) O(n%»m72/\n71
0 an+m—2)\n
0 0
i 0 0
[q—(m=1) 0 0
0 a~(m=2) 0
= 0 0 a~(m=3)
i 0 0 0
NN (A
o (e
0 0 AT
_0 0 0
a—(m=1) 0 e 0
0 a~(m=2) 0
0 0 1

1

(’g) an:2+m71/\n72

(’rll> an—1+m—2/\n—1

(YT:L) O[nf(mfl)+m71/\n7(m71) T

(mil)an—(m—2)+m—2An—(m—2)
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aqntm=3\n (miQ) an—(m—3)+m—3>\n—(m—3)
0 a A" ]
0_
0
0
1_
(721) an+m73/\n72 (77711) Qt \vm
(711) antm=3)\n—1 (mil)an)\n—(m—l)
antm=3\n (miZ) an}\n—(m—2)
0 a \" ]
0_
0
0
1_

(Q)An—m _an—i-(m—l) 0 0
(mfil))\n—(m—l) 0 an+(m—2) 0
(mTLQ) )\nf(m72) 0 0 anJr(me)

P I 0 0
anJr(mfl) 0
0 OénJr(me)
Am
0 0 a”




325

This direct computation finishes the proof. O

Lemma 7.27. Let A be a Jordan block with eigenvalue A\ and dimension m X m. Then, the Jordan
decomposition of the matriz A* for k € N is UAU™! where U is an invertible upper triangular
matriz —so the diagonal elements of U are non-zero— and A is a Jordan block with eigenvalue \*

and dimension m X m.

Proof. We can see that AF is a upper triangular toeplitz matrix whose diagonal elements are A*.
Thus, det(sI — A¥) = (s — A*)™ and all eigenvalues of A¥ are \*. Moreover, the rank of A¥ — \*I
is m — 1. Thus, A has to be a Jordan block matrix with eigenvalue A\* and dimension m x m.
Moreover, Ker ((A — )\kI)p) D span{ei,ez,- - ,ep}. Therefore, ith column of U~! has
to belong to the vector space {eq,--- ,e;} and U™! is upper diagonal matrix. Here, the existence
of the Jordan form of arbitrary matrices guarantee the invertibility of U. Therefore, U is also an
upper triangular matrix and the invertibility condition of an upper triangular matrix is its diagonal

elements are non-zero. O

Lemma 7.28. Let A be a Jordan block matrixz with eigenvalue A € C and size m € N, i.e. A =
A1 - 0

0 A
. C and C' are 1 x m matrices such that
0 0 A
C = |:Cl Cc2 e ij|
Cl:[c’l dy C/m.:|
where ¢;, ¢, € C and ¢; # 0.
1 @)
To /2
For allk € R and m x 1 matrices X = | | and X' = | |, there exists T such that
Tim xl,

())T is an upper triangular matriz.

(1) CA*X + C'A*X’ = CA* (X + TX')
Moreover, the diagonal elements of T are %
Proof. Similar to Lemma 7.14. O

Now, we can prove Lemma 2.3.
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Proof of Lemma 2.3. We will prove the lemma by an induction on m, the dimension of the system.
Recall that here we are using the definitions of (2.35), (2.36) for the system matrices A, C, A;, C;,

(i) When m =1,
In this case, the lemma reduces to the scalar problem and is trivially true. Precisely, if we
choose S (e, k) as inf{s > k : 8[s] = 1}, we can check all the conditions of the lemma are satisfied.
(ii) Now, we will assume the lemma is true when the system dimension is m — 1 as an
induction hypothesis, and prove the lemma holds for the system with dimension m.
X111

X1,2
Let x;; be a m; ; x 1 column vector, and x be ] . Here, x can be thought as the

XUaVu
state of the system, and x; ; corresponds to the states associated with the Jordan block A; ;. Recall

that Ay 7 is the Jordan block with the largest eigenvalue and size. For a vector v, we also define
(V) as the nth element of v.

The purpose of this proof is following: By Lemma 7.25, we already know that the lemma
holds for systems with scalar observations and without eigenvalue cycles. Therefore, we first reduce
the system to one with scalar observations and without eigenvalue cycles. To reduce the system to
the one without eigenvalue cycles, we will use down-sampling ideas (polyphase decomposition) from
signal processing [75]. To reduce the system to the one with scalar observations, we will multiply a
proper post-processing matrix which combines vector observations into scalar observations. Then, we
estimate the mq ;th element of x; 1, which associated with the largest eigenvalue. Then, we subtract
the estimate from the system. The resulting system becomes an (m — 1)-dimensional system, and
by the induction hypothesis, we can estimate the remaining states. As we mentioned before, this
idea is called successive decoding in information theory [21].

Let’s start with the down-sampling and reduction to scalar observations.

e Down-sampling the System by p and Reduction to Scalar Observations: The main dif-
ficulty in estimating the m; ;th element of x; 1 is the periodicity of the system. To handle this
difficulty, we down-sample the system. Let p = ngig,upi' Recall that in (2.36), p; was the period
of each eigenvalue cycle. We can see when the system is down sampled by p, the resulting system
becomes aperiodic. Thus, we can reduce the original periodic system to p aperiodic systems.

We can further reduce vector observation systems to scalar observation systems. Thus, the
system reduces to an aperiodic system with scalar observations, and by Lemma 7.25 we can estimate
the m 1th element of x4 ;.

Since we are using induction for the proof, we can focus on the first eigenvalue cycle of the

system.
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Let Ty, -+ ,Tr be all the sets T such that T":= {t;,--- , )7/} € {0,1,--- ,p1 — 1} and

CiA;
CiA, "2
) is full rank. (7.79)
C1A; 7
Cidiag{on 1, -+ ;o0 } "
Cidiag{on 1, -y, } "
Here, the definition of Ay and Cj is given in (2.36) and ) is also full

Cldiag{oq,l, cee aal,ul}itlT‘
rank. The number of such sets, R, is finite since p; is finite.

Therefore, for each T;. := {t;1, -+ ,t,|7,|} (1 <r < R), we can find a matrix L, such that

) e,
Cidiag{ay1, -, 0, } !
: —t
Cidiag{oa1, - a1, } "2
L, _ ~ L
. -
Cldla’g{al,1>"' )al,lll} ATl

Let {Ltr wr Ltoor 0 Lo p mr} be the first row of L, where Ly , are 1 x [ matrices. Then,

. —t,
Cidiag{on 1, -+ a1, )1

Cidiag{on1, -+ o0, } 2
Leir Lear - Lo | =1 0 - o] (7380

. —t
Cidiag{ai, -+ a1y, } T

When ¢ € {0,1,--- ,p1 — 1} \ {tr1, - ,tr 7.1}, We put Lg, = 0. We also extend this
definition of Lq, to all ¢ € {0,---,p —1},7 € {1,---, R} by putting Lqr := Lg( mod p1),r fOr

g > p1. Then, we can easily check that (7.80) still holds as long as t,.; remains the same in mod p;.

Claim 7.7. For a given ¢ € {0,--- ,p—1} and r € {1,--- | R}, let LqrC1 be not 0. Then, there
exist Cqr, Aqr, Uqr, Xqr that satisfy the following conditions:

(i) Agr is a Mg, X Mg, square matriz given in a Jordan form. The eigenvalues of Aqy belong
to {A} 1, A5 1, AV 1}, and no two different Jordan blocks have the same eigenvalue. Therefore,
Aq,r has no eigenvalue cycles. Furthermore, the first Jordan block(left-top) of Aq,r s ami1 XMy
Jordan block associated with eigenvalue \Y ;.

(i) Cqr s a 1 X My, row vector and (Aqr, Cqr) is observable.

(i11) Ugqr is a Mg,y X Mg, invertible upper triangular matriz.
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(1v) Xqr 15 a Mg, X 1 column vector. There exists a nonzero constant gq, such that
(Xl,l)ml,l
(Reur)ms s = Gaur (Lq,rC1diag{041,1, - ’a17ul}*(4+(m1,171)))

(%1 Jma

where (X} ;)my, = (X1,i)m,, when the size of x1; is greater or equal to my1, and (X ;)m,, = 0
otherwise.
(v) For all k € ZF, LqrCA~PF0x = Cqr Ak UqrXqr-

This claim tells that by sub-sampling with rate p, we get systems without eigenvalue cycles.
Moreover, by multiplying the proper row vector to observations, we can reduce the system to a scalar
observation system while keeping required information to estimate (x171)m171. When L ,C; is 0,

the observation is not useful in estimation (x1,1)m,,. Thus, we can ignore it.

Proof. The proof of the claim consists of two parts, down-sampling and reduction to a scalar obser-
vation system.

(1) Down-sampling the System by p:

By the definition of C, A, C;i;, A;j, forallk € Z, g € {0,--- ,p — 1} we have

CA— Pty — 01’1A171—(pk+q)xl’1 + 01’2A1’2—(pk+q)xl’2 4t Cu,VuAmm_(pkﬂ)Xu

L

(7.81)

Since the dimensions of xj 1, ,Xj,, may be different, we will make them equal by ex-
tending the dimensions to the maximum, i.e. m; ;. For the extension, we will append zeros at
Af; be a

m;1 X M4 Jordan block matrix with eigenvalue J\; ;, and x; j be a m; 1 x 1 column vector given as
,

the end of the matrices. Let Cj; be a | x m;,; matrix given as |C;j  Opx(m, ,—m. )|

. Then, by the construction, we can see that (X7 1)m,, = (X1,1)m, ,, and if my ; is

l ¥
0(mi’17miyj)><1
greater or equal to m11 (X ;)m,,, = (X1,i)m,, and otherwise (X} ;)m, , = 0. Therefore, x; ; satisfies
the condition (iv) of the claim. Furthermore, the first column of Cj ; is equal to the first column of
C; ; by construction.

Aij
A1
to Ajj in (2.35). Then, by the definitions o}, = 1.

We also define a; ; to be . Recall that A; ; was defined as the eigenvalue corresponding



Then, (7.81) can be written as follows:

CA—(Pk+a)y C/171A/171*(pk+q)x/171 + CILZA/Lz*(pkﬂ‘()x/l,2 4t
—(phk+
= C/1,1Al1,1 (p q)xll,l
a;éml’lfl) 0 0
—(m1,1-2)
0 Qo —(pk+
+ C;.,Z A/L (pk+q)
aigpk+Q)+(77ll,l_1) 0 . 0
0 a;gpk+q)+(m1,1—2) . 0 /
X172 + .
—(pk+
0 0 ag
w0 0
—(mpu,1—2)
0 (&7 .y‘,“’ _
+C., - . | AL (v
0 0 1
;,(VZ;]CJF‘Z)JF(’”M,I*D 0 .. 0
0 a;,(yz;k+q)+(mu,1—2) » /
X vy
—(pk+
0 0 Mx(lz g
—(phk+
_ C’1,1A/1,1 (p Q)X/ N
;gml,lfl) 0 0 a;g+(ml‘171)
—(m1,1—2)
0 Qo -+ 0 (ot 0
+Cl 2 . . | Ala (pha)
0 0 -1 0
S 0 g
—(mp,1—2)
0 Qu,” - 0 0
/ P 1 —(pk+q)
+ Cu,vu : : . . Aml
0 0 1 0

Here, (7.82) follows from Lemma 7.26 and (7.83) follows from of ; = (o

j
m; ; was defined as the size of A;; in (2.35).

MV
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1 —(pk+a) s
Aﬂv”u Xl‘v”u
(7.82)
0
—q+(m1,1—2
C“l,g m ) ,
[ X2t
0 aig
0 . 0
;’%—:(m‘hl_?) o O !
(N
O U a;)%#
(7.83)

)H#l‘pi = 1. Recall that
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Define
—(m;,1—1)
ij 0
0 o (M=)
Cij =G . s : (7.84)
0 0 1
a;;,]*(mivl*l) 0 )
0 —at(min=2)
X;/J = X d . . X Xg,j‘ (7.85)
0 0 ot
—(m4,1—-1)

Here, we can notice that the first column of Ci’ 5 Is times the first column of

i
C;,j' Here, we know the first column of Cij is equal to the first column of Cjj. The last element of

x{; is oy | times the last element of x{ ;. (7.83) can be written as

CA—(Ph+a)y — /1/,1A/1717(pk+q)x/1/71 + C/l/’zAll’l*(P’“JF‘I)X/II’2 4t CZ_W L’lf(karq)xZ’Vg].SG)
We can see all x{';,---,x{', are multiplied by the same matrix A} ;. Eventually, we will merge
x{'y, -+, X{,, by taking linear combinations.

(2) Reduction to the scalar observation: Now, we reduce C{’; to row vectors by multiplying
Lo to (7.86).

—(pk+q)w _ " 1 —(pk+a) i 7 1 —(pk+a) _n 1" 1 —(pk+a)
LqrCA x = Lq, 1,1A1,1 X311+ Lq,r 1,2A171 Xyt -+ Lq,PCH,V“Au,l X

(7.87)

Here, the systems (A{ ;,LqrCy{,), -+, (A];,LqrCy{,,) have the same dimension, but none

of them might be observable. Therefore, we will make at least one of the systems be observable by

truncation. Since A{, is a Jordan block matrix and Lq.Cf{j is a row vector, (Aj,,LqrCy;) is

observable if and only if the first element of Lq,C{; is not zero. Let m; be the smallest number

such that at least one of the mjth elements of Lq,C{;, - ,LqrC{,, becomes nonzero, and let
LqrC{,. be the vector that achieves the minimum.

Then, we will reduce the dimension of (A{;,Lq,C{,,) by truncating the first (m; — 1)

vectors. Define C{’; as the matrix obtained by truncating the first (m; — 1) columns of C{;, A{;

as the matrix obtained by truncating the first (m; — 1) rows and columns of Aj;, and x{j as the

column vector obtained by truncating the first (m; — 1) elements of x{';.

In the claim, we assumed that Lq ,Cy is not 0. Recall that the elements of Lq »Cy corre-

spond to the first elements of Lg +C11,- -+ ,Lq,»C1,.,, which are again equal to the first elements of
LqrCi 1, LqrCh,,, . Since the first column of CY; is the first column of Cf; times oz;;mi’lfl),
at least one of the systems (A} ;,LqrC7 ), -+, (A 1,LqrCY ) has to be observable.

Therefore, we can see mj = 1 and

"o "o Al "o n
1= L1 = Al,ivxl,i = X1

(7.88)

HsVp”
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Now, (7.87) becomes

—(pk+q),, _ m an —ok+a) _m m o At —@k+a) m " 1 —(Pk+a)
Lq.CA X = Lq,rcl,lAl,l X311+ Lq,rcl,zAl,l X1,2 T + Lq,rcu,uu w1l X,

Let ¢/, ; be the first element of qurC%. By Lemma 7.28, we can find upper triangular matrices
T; ; such that their diagonal elements are ;f;j’l and

3 *
(R

—(pk m n —(pk+q) " " "
Ly CA~(Pktay — LqxCY,: ATy (Trax{y + Toaxyy+ -+ T1p, Xy, )+

[T e 120 ¢ v Xy,

+ Lq,r " i —(pk+q) (THJXZCI + T#,ZXZCZ + 4 Tp” " ) (789)

where ¢/ . | is guaranteed to be nonzero by the construction.

"
i

Define x!" as

(Tiaxiy + Tiaxis + -+ Tiyx, ). (7.90)

i,l/i

Here, A;”l_(pkﬂ) is not in a Jordan block. However, since A{; is a Jordan block, by
Lemma 7.27 the Jordan decomposition of A{flp is U;A;U; ! where A; is a Jordan block whose
eigenvalue is the pth power of the eigenvalue of Ai’ ; and Uj is an upper triangular matrix whose

diagonal entries are non-zero. Thus, (7.89) can be written as

—(pk+q)y " —k —1 A —a_mnnm " —k —1 A —a_mnn
Lq)rCA X—Lq)r LVIU]-AI U1 Al,l X1 + —‘qu)rC”,VﬁUuAM UI‘« Aﬂal X

i
—k
Ar 0 - 0
0 Ag - 0
_ " " "
— [LqsCYL;Ur LquC5,.Us - LquClL.U,
0 0 - A,
—1An —q "
U, Ay, 0 0 !
1A —q 1m
0 U, 'Ay, 0 x!
—1Anm —q "
0 0 - U, Aml X,
Ay O
_ _ 0 Ay --- O
' " " " .
Let’s define Cq » as LqrCy,:Ur Lq,C3 ;U --- Lq,rCu,u;Uu]v Agras | . s
0 0 A,
Ug,r as
—1 AN q 1"
U1 Al,l 0 X1
0 Uz—lAlz/’lfq B <! ) . .
) , Xq,r a5 | | and g, as the dimension of
—1An —q 1"
0 0 o ULTAL x/!
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Here, we can see that Ag, has no eigenvalue cycles and satisfies the condition (i) of the
claim. Furthermore, since Uj is an upper triangular matrix whose diagonal elements are non-zero,
the first elements of L »C{", . U; are still non-zeros. Thus, the system (A, Lg,»Cy,. U;) is observable

and (Ag .y, Cqr) is also observable, which satisfies the condition (ii) of the claim. We also have
Ly :CA~PFr0x = Cy A KU Rq r

which is the condition (v) of the claim.

Let c1,5,1 be the first element of Lg Cy ;. Then, we have

e M
= ) _ 1,1,1 " L, o
(anr)ml,l - (xl )ml,l - 177 (Xl,l)ml,l +oeee At 177 (Xl,lll)ml,l (791)
Cluvr Clur
" "
C C
_ 1,1, —q 11,1 —q /
- 177 al,l(xl,l)ml,l +eee " Qo (Xl,ul)ml,l (792)
Clur Cluvr
1
_ —gq—(m11—1)/ s —q—(m11—-1)/ s
R (cl:lvlal,l (Xlxl)le +ot Clp1,100 (Xlﬂ/l)ml,l (7'93)
Lvi,1
’
(xl,l)ml,l
1

"
1vi,1

= (Lq,rcldiag{al}17 . 7041,1,1}_((1-"_(7”1'1_1)))
(Xél_,l/l)ml,l

(7.91) follows from (7.90). (7.92) follows from (7.85), (7.88). (7.93) follows from (7.84), (7.88)
and that the first column of Cg’j is the same as the first column of C;; as we mentioned above.
Furthermore, as we mentioned above, (X} 1)m,, = (X1,1)m,,- Therefore, the condition (iv) of the

claim is also satisfied, and this finishes the proof. O

e Estimating (x),,, ,: Now, we have systems without eigenvalue cycles and with scalar

observations. Thus, by applying Lemma 7.25, we will estimate the state (x)p,, ,-

Claim 7.8. We can find a polynomial p(k), m € N and a family of stopping time {S(e, k) : k €
ZF,e > 0} such that for all e > 0, k € Z* there evist k < ky < ko < --- < kg, < S(e,k) and M
satisfying:

(i) BF) =1 for 1<i<m

CA— k1

(ii) M : X = (%),
CAFn

(iii) M| < M‘Mﬂg(e,k)

1

(iv) lime g explimsup,_, oo Supez+ ~ log P{S(e, k) — k = s} < pé*

This claim tells that there exists an estimator M for (X)m,, which use observations at time
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Proof. For each g € {0,--- ,p—1}, we have the down-sampled systems (Aq 1,Cq1), ** , (AqRr;CqR)
such that all systems are observable, Aq,i have no eigenvalue cycles, and (_?q)i are row vectors. By
Lemma 7.25, we can find a polynomial p,(k) and a family of random variables {S, (e, k) : k € ZT, e >
0} such that for all e > 0, k € ZT and 1 < i < R there exist [%W Shin <kip <. <kim,, <
Sq(€, k) and M; satisfying:

(i) Blpki,; +q] =1for 1 < j <mg,

S
C%iAq,i "
Carly!”
(ii) M; @ S
= x kimg,
Cq7iAq,iy o
( ) ‘M |maa; < M(M |p)5'q(5,k)

(iv) limeyo explim sup,_, .. supgez+ = log P{S,(e, k) — [%] = s} = pe.
By the property (iv) of Sy(e, k), we get

— 1
hmexphmsup sup — logP{pS (e, k) — f%} =s}=pl

5§—00 keZ+

which implies

1
hm exp lim sup sup — log P{(pSy(&,k) + q) — k = s} = p&.
§—00 keZ+
Moreover, S, (e, k) depends on only Blg], B[p + q], B[2p + ¢],--. Thus, So(e, k), -+ ,Sp_1(€, k) are
independent.

Now, we can estimate the state of each sub-sampled system. We will leverage these esti-
mations to the estimation of the state (x),, ;.

First, notice that the down-sampling rate p is much larger than p;. Therefore, we make
the corresponding definition to (7.79) for the longer period p. Let 17, - -- , T}, be all the sets T” such
that 77 := {¢},- - - ’tiT/I} c{0,1,--- ,p—1} and

ClAl_tll
C1A; P

is full rank.

Ci1A; )

Here, we can ask how many observations have to be erased to make the observability
Gramian of (A1, Cy) rank deficient during the period p. Obviously, the answer is Iy H2§ i<uPi
where the definition of ; is shown in (2.37). The reason for this is that we have to erase at least Iy
observations for each period p; to make the observability Gramian rank deficient. Formally, it can
be written as follows:

mm{|T| :T:{tla"' 7t|T|}g{071a"' ,p—l},TZ-’ZTforall1§i§R’}:ll H bj-
2<j<p
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Denote a stopping time S(e, k) as the minimum time until we have enough observations to

make the observability Gramian of (A1, Cy) full rank. Formally,

S(e,k) —k:=inf{s:Ji € {l,--- R’} s.t. T] = {t},t},- "tTT{\} and

(pgt/l (6,k) +t)) —k <s, (pgtfz(e, k) +ty) —k <s,- (pSt/

iz (€. k) +tigs) —k < s}

Then, by Lemma 7.3 we have

Llljz1pj %
hﬁr)lexp lim sup sup — logJP’{S’(e k)y—k=s}<pe 7 =pet.

§—00 k;eZ+

Without loss of generality, let T} be the set that satisfies the definition of S(e, k). Then,
by the definition of T] and Tj, there must exist T; such that 7] contains T; in mod p;. Let T be
such a set without loss of generality. Then, we can find {t],--- ’tiT1|} which is included in 7] and
includes Ty in mod py. Formally, {t},--- |z} € T7 and {t\(mod p1),--- . t|7, (mod p1)} = Th.

Then, from the definition of S(e, k) and S, (e, k), for each ¢ € {t;, - stiry b we can find
[k—a - 1) < kg1 < kga <+ <kgm,, < Sq(e, k) and Mg satisfying the following conditions:

(") Blpkq; +4q] =1 for 1 < j <mqy,
Cq1A

(i) [My],,,, < 2eSalehd) |y, | p)Saeh),
(iv") qu(e, k)+q< 5(6, k)



Then, we have

diag{U;' My, , U}
g{ t/171 tll’Utlz,lMt;""

CA_(Pkt’l,1+t/1)
CA*(pk’t,’lfert/l)

_(Pkt’l ,mt,l 1 +t/1)

CA
CA_(pkt/Tl'i‘t/z)

—(pk
CA

+ - t
\Tl\’mti ,1+ i 1)

Tyl

Ot

t/

Ty

B

Mt[Tl\ }diag{Ly,

717:[‘12’1,17 e

L
1 ’ t\IT1\’1}

—(pk !
Ly, 1 CA™ PRty

_ . ’
Ly 1CA (PR 2Ft) o

_(Pkt’l ,mt,l 1 +t/1)
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=di U_! U} §
ag{U;! My, , U My, -, U My} Ly, 1 C
E t.1CA X
L —(pkys 1 +t5
t’z,ICA th,1 2)X
k/ !
_ t
L , C t\Tl\’nlt/ ’1+ |T1|)
B t\Tﬂ’l A [Ty | X
Cy 1A, 0y 1% |
t
- 11 ‘1'1’1 Ut’l,lxt/l,l
C , < t’l,Z = —
t1,1At/171 Ut’l,lxt’l,l
— di —1 —1 F )
iag{U, My, T, My, ,---, T, A4
. A 5,1 ) ) Y 1Mt/ } Ct/ 1A. 1 11,16 —
EE Ty 1L t1,1%¢3,1
C/ A t/2,1— —
18 1 Uty aXep
_kt‘/ .,
— — Ty 1
Cti-rlwl t/ 1 o Uy Xy
Ty iyt g oL
. A_kt/ll ] (7.94)
¢ ’
15401
= —1
U, My, Uy, 1%
1 4 t,,1%t,1
_ T Rem
C 1’ t’1,1
t/1:1At'1,1
_ —k,,
C, A tIT1|'1
- t\lelAt’l»l
Ui, Mty : Utz 1%
. iy : t/ 1Xt/
s Tyt Ty ot
_ t\Tl\’ﬁlt‘/
’7 T '
L try 101 !
X¢),1
_ 7.95
L t\T1\’1 ( )
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Here, (7.94) comes from the condition (v) of Claim 7.7. (7.95) comes from the definition of M.

. . - - Mg, r _
Now, we will estimate (x),, , based on X¢/ 1, ,X¢/ . Let emy] be a 1 X mgy, row

|T1|’1

vector whose elements are all zeros except mj 1th element which is 1. Then, we have the following

equation:
~ - Xt),1
[ L et 1 ML
gy mi,1 g, my, 1
1 e
Xt?Tl\’l
1 1 _
= , (Xt'171)m1,1 + + , (Xt?Tl‘;l)ml,l
g1 Gtip, 51

(lel)m1,1
= (L, 1C+di —(t1+(m1,1-1)) :
= (Ly 1Cadiag{ar 1, o1, } : L

/
(Xl,ul)ml,l
(Xl-,l)ml,l
. —(t|p  +(mi1—1 .
+ (Lt"Tl‘,lcleag{al,h'" O ) (tlzy +(m1a—1) : (7.96)
’
(xl,yl)ml,l
. —¢ —mi,1+1
Cidiag{ary, - o0, )7 | [y (X1,1)m1
= |:Ltgl.’1 e LtTTl\’l :
. —t/ —mi1+1l,
Cldzag{al,la e ’a17’/1} 171l Ay, ( 1,y1)m1,1

_ —mia+l _—mia+1
=01, (lel)ml,l =01, (X)ml,l' (797)

Here, (7.96) follows from the condition (iv) of Claim 7.7. (7.97) follows from (7.80) and {¢} (mod p1),
e, tTTﬂ(mOd p1)} =Ti.
Now, we merge the results from (7.95) and (7.97) to make an estimator for (x),,, ,. Define

m
‘%Tﬂl’l

m,,/
T . my,1—1 1 [t3 1,1 1
M =a my

=0 mi i g

et 1 ! 1
1 [Ty 17

. r7—1 r7—1 r7—1 .
. dlag{Ut,l)11\/.[1;§l s Ut’271Mt/27 s ’Ut\,T ‘;1MtiT1| }d@ag{Lti’17 Ltll,lv tee ’LtiT1|’1}
1

and

CA_(pktll,lJ’_t/l)
CA*(pkt’l ,2+t11)

~(Phig iy, H)

= CA
. CA_(pkt’z,1+t/2)

—(Pky
CA [Ty 1 tiT1|

11+t\/T1\)
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Then, by (iii’) and (iv’) we can find a positive polynomial p(k) such that

- p(S(e, k 3(e
M,,,, £ max (Mhe) < Z3ED ), psen
1<i<| T !

Moreover, by (7.95) and (7.97) we have

CA &

M X = (X)ml,l'

CAFn

This finishes the proof of the claim O

e Subtracting (x),,, , from the observations: Now, we have an estimation for (x),, ,. We
will remove it from the system.

11, C and X are the system matrices after the removal. Formally, A is obtained by removing
the mq 1th row and column from A, C is obtained by removing the my ;th row from C, and X is
obtained by removing the m; ;th component from x respectively.

Denote the m; 1th column of CA~* as R(k). Then, we have the following relation between

the original system (A, C) and the new system (A, C):
CA™*x — R(k)(X)m,, = CA™*x (7.98)

which can be easily proved from the block diagonal structure of A. From the definition of R(k),
we can further see that there exists a polynomial p(k) such that |R(k)|maz < p(k)|A1.1]7%. Thus,
when |A11] > 1 we can find a threshold ky, > 0 such that all k > ky,, p(k)|A1,1]7% is a decreasing
function. When |A1 1| = 1, we simply put ky, = 0.

e Decoding the remaining element of x: We decoded and subtracted the state (x),,, , from
the system. After subtracting, the remaining system matrices A € Cm=Dx(m=1) anq C e C!*(m=1)
become one-dimension smaller. Therefore, we can apply the induction hypothesis to estimate X.

We can also write A and C in the same way that we write A and C as (2.35), (2.36) and
(2.37), and define the corresponding parameters shown in (2.35), (2.36) and (2.37). To distinguish
the parameters for A and C from the parameters for A and C, we use tilde. For example, the
dimension of A was m x m, and we define the dimension of A as m x . Likewise, the parameters
1, Ui, Xi)j, i i, Pis 1; are defined for the system matrices A and C in the same ways as (2.35), (2.36)
and (2.37).

By the induction hypothesis, we can find m}, - - -, ﬁ%fﬂ € N, positive polynomials p; (k), - - - , pp (k)
and families of stopping times {S1(¢e,k) : k € ZT,0 <e < 1},--- ,{Su(e,k) : k € ZT,0 < e < 1} such
that for all 0 < e < 1 there exist max{S(e, k), kin} < k1 < -+ < Eﬁ’l < Si(e,k) < Eﬁ—b’1+1 <<
Ezlﬂg iy < gﬁ(e, k) and a m x (32, ;<5 M;)l matrix M satisfying the following conditions:

(i") Blki] =1for 1 <i< Y,z

l
i
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A
. CA—F
(") M . —1
6,&7%219:5;7 w4

(i7) [Mar < maicic { ZEER,

§i(e,k)}

l]
(iv”) lim, o exp lim sup,_, ., esssup % log P{gi(e, k)—max{S(e, k), k} = 8| Fs(e.r) ) = maxi<j<i {pfj }

for1<i<p

L

(v) lim,}g explimsup,_, ., esssup%logp{ga(e,k) — Sy(e, k) = S1Fg, (ep)) < MaXpci<a pet b for

1<b<a<p Compared to Lemma 2.3, we can notice that the condition (iv”) is slightly different
from the condition (iv) of Lemma 2.3. The sup over k of (iv) in Lemma 2.3 is replaced by the ess sup.

However, if we remind that max{S(e, k), k1, } is a constant conditioned on* F, S(e,k)» We just replaced
k of Lemma 2.3 with max{S(e, k), k1, }.

“4More precise notations for S1(e,k), -+, Su(e, k) are Sy(e, max{S(e, k), kn}), -+, Su(e, max{S(e, k), kep}) since
max{S(e, k), ksn} plays the role of k of Lemma 2.3 after conditioning. However, we use the notation of the chapter
for simplicity.



Here, we have

GAF
AP

CA FSicicam

CA-*x
CA—F2%

CA Fsicicimiz

CAFix — R(k1) (%), ,

CA~F2x — R(k)(X)m

CA—F
CA—F

CA "Sicicn

CA ™M
CA~F:

(.- (7.98))
R(k1) |
R (ks
X = ( ) (X)ml,l
-R(Ezlgg mi)—
R(k1) CA—F
R(k2) CA—F:
X - .
Riks, ., a)] |[CA™F
[ cAk
_ CAFn
M X.
CA—h

1,1

CA_kZhgigﬁ %ZLX — R(EZ1<i<ﬁ ﬁz;)(x)ml,l

X
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(" the condition (ii) of Claim 7.8)

(7.99)
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When |A1 1] > 1, we have

R(k1)
— R (k2) _
M |- ) M I

kzl i<p T mazx
< |M|mam max ‘ Y ! )1

max
kzl ) mazx
_ 5 (S k .
S max. 7”\ - max {ﬁ(kl)p\l,ﬂklp((e))|/\1,1|s(6’k)71} (7.100)
1<i<n € €

where the last inequality follows from (iii”), |R(k)| < p(k)|A11|7%, ki < ki, and condition (iii) of
Claim 7.8. Moreover, since S(e, k) < ki < Si(e, k), there exist some positive polynomials pi(k) such

that
) >} (7.101)

1<i<p €2

/1(Q. _ _
(7.100) < max {pi(SZ(G’k))MM ‘

When |[A141] =1, |X1’1\ is also 1. Thus, we have

R(k1)
— R(k2) _
M ) M I
R(%Zliiﬁﬁ r%;) max
R(k1)
R (k2)
S |M|ma1 max . | ‘max’
R(%Eléiéﬁ fﬁ,;) max
S ~ p (S(e, k
< max {pl(Sl(e,k))} max {ﬁ(kz ~,71/p( (e, ))71}
1<Z§ﬁ € 1<i<p 7 €
P (Sa(e, k)
S—F (7.102)

H /
for some polynomial pﬁ(k).
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Since we can reconstruct x from X and (x),,, , , we can say there exists M such that

CA M

CAFnm
CA*

CA_kZ1§i§g m;

By condition (ii) of Claim 7.8 and (7.99), such M satisfies the following:

R(k1)
— R(k2) _
M|z < max |M|mam, — ) M 1
R(kzlé ;) max
_ o
< max {p(5(6’ k) A1 |5CeR) max Pi(Sie k) B (e k)}} (7.103)
<[ €

1 . 5(c ~ ~
< 5 max {p(S(e, k) Agp[7R), max {pg(Si(e, k)i

Here, (7.103) follows from the condition (iii) of Claim 7.8, (7.101), (7.102).

Moreover, since ky, is a constant, the condition (iv) of Claim 7.8 implies

11
hﬁ)lexphmsup sup — log]P’{maX{S €, k) kth} —k= s} pat. (7.105)

s—oo kez+ S

Therefore, by applying Lemma 7.2 together with (7.105) and (iv”) we get

. 51 ZTJ
hr{)l exp limsup sup — log P{S;(e, k) — k = s} = max {pe , max {pé’j }} . (7.106)

s—o00 kezZ+ S 1<5<i
We finish the proof by dividing into two cases depending on z. Since A is obtained by
erasing just one row and column of A, the relation between g and p is either g = por = pu — 1.
(1) When g = p.
In this case, the number of the eigenvalue cycles remains the same. We can see that

|XZ 1] = A1 A1 and 111 may be the same or 111 has smaller dimension than A;. Thus, the new
11 l1

> L je pft < pft. A; and Ai are the same for

system A1 becomes easier to estimate, and lll T

all 2 <4 < pu, so % = p—li for 2 < j < p. Define S;(€%, k) := Si(e, k), p1(k) := p(k) + p}(k), and
pi(k) = pi(k) for 2 <4 < p. Then, (7.104), (7.106) and (v”) reduces as follows:
|M|maa: < max {pz(S( ))|>\ ek)}
€

1<i<p
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l]
hfnexphmsup sup flog]P’{S (e,k) — k= s} < max {p;j },

s—o00 kezZ+ S 1<5<i

Li
hmexp lim sup esssup — log]P’{S (€,k) — Sp(e, k) = 5| Fs, ey} < max {pé’i } .
<i1<a

$§—00

Here, we reparametrized €2 to e. Therefore, the lemma is true for this case.
(2) When g = p — 1.
Since one eigenvalue cycle has disappeared we can see that |X171\ = |A2.1, |X271| =|A31], -, |Xﬁ,1| =
|Au,1]- Moreover, A; = Ajsfor1<i<p and 4= J: for 1 < i < fi. Define S;(e2, k) := S(e, k),
p(k) := p(k), Si(€2, k) := S;_1(e, k) and p;(k) := pi_l(k) for 2 <4 < pu. We will also reparametrize
€% to €. Then, (7.104) reduces to
(c. k)}

By the definition of S} (e, k), the condition (iv) of Claim 7.8 reduces to

|M|max < max {pz(s())p\z
1<i<p € ,1

1

‘1
hmexp limsup sup — logIF’{Sl(e k) —k=s} <pe'.

5—00 k€Z+

y (7.106) and the definition of S;(e, k), we have for all 2 < i < p,

‘“;cz‘;ﬂ
——
——

Il
NS
]
IS
—N
b~
T~
—

S§—00 k€Z+

I i
. N A < Pj

hrg exp limsup sup — log P{S;(e, k) — k = s} < max {pe I i . {p
By (iv”), (v”) and the definition of S;(e, k), we have for all 1 < b < a < p,

L
hﬁ)lexp lim sup ess sup — log]P’{S (6, k) — Sp(e, k) = 8| Fgy(en)} < max {pep’i } .

S§—00

Therefore, the lemma is also true for this case.

Thus, the proof is finished. O
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Chapter 8

Appendix for Chapter 3

8.1 Network Linearization for General Information Flow

In this section, we will extend the network linearization idea of Section 3.2.2 from the
point-to-point case to general information flow cases — multicast, broadcast and multiple-unicast.
The main idea for this generalization is the relationship between network linearization and control

over LTT networks discussed in Section 3.6.

8.1.1 Multicast

From the discussion in the point-to-point case, we can expect that to linearize multicast
problems, we have to introduce circulation arcs in a way that corresponds with Fig. 3.4. Fig. 8.1
shows how the circulation arc has to be introduced. One circulation arc (which corresponds to an
unstable plant as discussed in Section 3.6.1) is connected to both receivers.

We will essentially use the same notation and assumptions as Section 3.2.2. Let the one-
transmitter two-receiver LTT network of Fig. 8.1 without circulation arcs be N,.,;(2). Denote the
dimension of Y7 as d,.;1 and Y5 as d,;2. Let the transfer function from the transmitter to the receiver
1 of Nypui(2) be Gig ra1(z, K), and the transfer function from the transmitter to the receiver 2 be

Gigrz2(2, K). Here, the transfer function can be computed in the same way as Theorem 3.1.
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11
- 12
Htx, N Hl,rxl
Y
&«
1
vl t%,rX x
o H
Ktx v,rx1
,rx2Y
1L
1')‘2 X X2, Nrx2
Htx,v N . H
> L V,rx2
N
\am| €

Figure 8.1: Multicast LTT network N,,,,;(Z) with circulation arc added in

Then, similar to Section 3.2.2, the following relation has to hold:

-Xaa:_ [ I Kra:l Krw2 0 o 0 ] _Xa;v_
le Htm,rletx 0 0 Hl,rlel e Hv,rleu Yl
Yé th,erKtr 0 0 Hl,erKl T Hv,r:cZKv Y2
X | | HaiKi 0 0 oKy - H1K, X1
X’u Ht:v,vKta: 0 0 Hl,vKl o Hv,va Xv
0 S R 0 0 | [xw] 0]
_Ht:L’,r:L’tha: 1 0 _Hl,ra:lKl e _Hv,'rlev Yl 0
_Hta:,ra:2Ktx 0 I _Hl,rx2K1 T _Hv,rmZKv Y2 0
R =
(<) —Hyp 1 Ky 0 0 I-H 1Ky --- —H,1K, X1 0
—Hiy o Kia 0 0 —Hi Ky - T—Hy oKy | | Xy 0

:=Glin(z,K)
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Then, we have

0 0 0 0 ol [ o |
0 I O 0 0 Htm,rml
G X 001 0 0 Hiyrao .
tin(2, K) = 00 0 I ol t Ho m[—] 000 - 0
. 5:Ctm
0 0 0 0 I th,v
=A :=Bt,m
0 0
Hl,rwl H’U,’!']Jl
I P TP o] + +H”’”2K[oooo I
0 L 7 ... i ; _
=C: =C,
Hl,v Hv,v
::Bl ::B,U
I .
I
0
0
0
+ |, Km[o T 0 0 ol + |0 ng[oo I 0 o}
=Clrp1 : =Crga
0
O L J
= :=DBrz2
:=Brz1
Let

Gtm’,rrl/(za K) =A + Bt’I'Kf’ECf’I' + Bmcleclcrrcl + Z B'IK'IC’L

1<i<v
Gtz’me’(Zy K) =A + Btth:L’Cta: + BTIQKTIQC’I"ZL’2 + Z BZKZC’L
1<i<v
_Yl .
Y,

and d := dim | X1|. Let ./\flm“l(z) be the network shown in Fig. 8.2. Then, we can easily see

wm

Xy
Gty re1(2, K) is the transfer function from tz’ to raf of NZZ[(Z)» and Gy rp2 (2, K) is the transfer

function from ta’ to rah of NI, (2).

ul

Then, like Section 3.2.2 we can show the equivalence between Ny, (2) and N (2).
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(V4 >
I\tX

A4

l\l

tx’ o

rx,

1/ rx

Y rx2

Figure 8.2: Linearized LTI network of Multicast problem, A% (2)

mul

Theorem 8.1. Let Ky, € Flz]dwXdae K € Flz]diinXdiout K € Flz]dasXdrar gnd Km0 €

F[z]%as¥dr=2 . We also assume that

)

I-H K, -+ —H,1K,
: is invertible.
_Hl,vKl I_Hv,va

Then, for all dy,dy € Z7F

(7/) rank(Krwl (Z)Gtw,rwl (Z7 K(Z))Ktl (Z)) > dl
(i1) rank (Ky42(2) Gra,ra2 (2, K (2)) Kz (2)) 2> d2

if and only if

(a) rank Gy rp17 (2, K(2)) > d+ dy
(b) rank Giar rpo (2, K(2)) > d + do

Proof. Similar to Lemma 3.3. O

Remark 1. The result of this theorem can be easily generalized to multiple receivers, which
we omit for simplicity.
Remark 2. To apply this theorem to multicast problems and send a message with rate
r, we can simply put d; = do = r. Moreover, just as we did in Figure 3.7, the condition that
I-H K, -+ —H,1K,
: : is invertible can be included as a part of the communication

_Hl,vKl I_H’U,UKU
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Xax 1Xax,2
Tx
Q
e g
G %
(@) (‘\)\(3,1 X3/J O
K
)
X4
O A(a
Y;,1Y1/ \Yzﬂg,z
Rx, Rx,

Figure 8.3: Butterfly Example for Multicast. The gains of all edges are 1.

problem by introducing an additional receiver. Following the similar procedure of Section 3.2.3, we
can design an LTT multicast scheme.

Remark 3. Fig. 8.3 and Fig. 8.4 shows the famous butterfly example in network coding [1]
and its corresponding linearized network. Here, we can see the linearized network has more input
and output vertices, but is topologically simpler — a single-hop multicast network. Because there

are no cycles, the additional receiver in Remark 2 is not required.

8.1.2 Broadcast

Inspired by Figure 3.20, we introduce circulation arcs as shown in Figure 8.5 to linearize
broadcast problems. We introduce two circulation arcs which correspond to the two unstable plants
of Figure 3.20, and the two circulation arcs are connected to different receivers as two plants are
controlled by different controllers in Figure 3.20.

We basically use the same notations and assumptions of the previous section. Let the
one-transmitter two-receiver LTI network of Fig. 8.5 without circulation arcs be Ap.(z). Denote
the dimension of X,;1 as dqp1 and Xgzo as dggzo. Then, as we can see from the figure, K;,1 is a
diz X dgp1 matrix and Kizo is a dyy X dgze matrix. Let the transfer function from the transmitter
to the receiver 1 of Nyui(2) be Giy ra1(2, K), and the transfer function from the transmitter to the

receiver 2 be Gy rp2(2, K).
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Figure 8.4: Linearized Network for Butterfly Example of Fig. 8.3. The gain of each edge from Tz’
to Ky, Ki, Krz1, Krzo is —1, and the gains for the other edges are all 1.

e 1 caxl
< €
|
1,1
- 12
HtX, 1 Hl,rxl
Y
K,
rx1
U \& X, X
% Hv,rxl
tx2 2 Y
1Z >
1/)‘2 tx,) - Nrx2™
Htx,v N o H
> e V,rx2
XaxZ |
<]
< €

Figure 8.5: Broadcast LTI network N,.(z) with circulation arcs added in



Then, the following relation has to hold:

—Xaazl- [ 1 0 Krzl 0 | —Xaxl-
Xar2 0 KTIQ Xar2
Yl Htx,m:th;cl Ht;c,r;cth;zQ 0 0 Hl,'r‘;clKl H’u,'r‘a:lKv Yl
Yé Hta:n‘a:ZKtzl th,erKth 0 0 Hl,rw2K1 HU,T:DZKU Yé
Xl Ht:r:?th:rl Htx,tha:2 0 0 Hl,lKl H’u,lKv Xl
L Xv i L Htm,vKtml th,vKtzQ 0 0 Hl,vKl Hv,va 1 L Xv i
[ — Nzl 0 0 ] _Xarl
0 O — N2 0 0 XazQ
_Htw,'r'leta:l _Htw,’r'leth 1 O _Hl,ra:lKl _Hv,rlev Yl
(<:>) _thWzQKt:El _Hta:,erKtw2 0 I _Hl,r:r2Kl _Hv,erKv Y2
—Hyp 1 K —Hyz 1 Kiao 0 0 I—-H 1K, —H, 1K, X1
L *Htm,vKtxl *th,vKtzQ 0 0 *Hl,vKl I Hv,va_ L Xv
=Gln(2,K)

br

o ©oO o o o




350

Thus, we have

00000 0
00000 0
007100 0| |Hirer
Gin(z,K)=10 0 0 I 0 0| + |Hewga2 | Kig1 |[-I 0 0 0 0 --- 0

0000 T ol | Hua ——

00000 -~ 1| | Huo,

=A :=Biz1

Hiz vzt

+ |Hizgo2 | Kigo |0 =1 0 0 0 --- 0
Hizn —C

| Hizv |

S L

0

Hy ozt Hy a1

+ [Hirez| K10 00 0 —1 o 0]+ 4 [Homz| Koo 0 0 0 0 - I
Hiyq -, H, —C.
| Hiv | | Hyo |

e o5
- -
0 I
0 0

+ 0] Kwafo 0 <1 0 0 - 0|+ |0| Kuafo 0 0 1 0 - 0
0 =Crat 0 i=Coran
0] [0

N —_
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1/ >
Nx1

| V4 )
Ca Ko™ RX11

x2 [ VAN
I\1 L

RX,,

RX1,

C K—> RXy1

v rx2

lin

Figure 8.6: Linearized LTI network of a Broadcast problem, N;/™(z)

Let

Gtw’,mcll’ (Z7 K) =A + Btlet;vlCtacl + Brleraclcrzl + Z BzKlCz (81)
1<i<w

Gtib/,’l“$22’(zy K) =A+ BthKtIQCtzQ + BerKr:nQCrm2 + Z B’LKZC’L
1<i<v

Gtz’,rwlZ’(Za K) =A + Btw2Ktw2th2 + Brlerwlcra:l + Z Bszcz
1<i<v

G ra12 (2, K) := A+ Big1 Ki21Cra1 + BraoKrp2Craa + Z B;K;C;
1<i<v

Let N7 (2) be the network shown in Fig. 8.6. Then, we can easily see Gy o117 (2, K), - -+, Gar ro12/ (2, K)
correspond to the transfer functions from tz’ to rafy, - ,raly of N7 (2) respectively.

Then, the relationship between A, (z) and N (z) is given as follows.

Theorem 8.2. Let K1 (2) € Flz]dtsXdast K o(2) € Fz]%te*dac2 | K;(2) € Fz]din*diouwt K 1(2) €

F[z]das1*drer gnd K, .o(z) € Flz]das2Xdra2 - We also assume that

I-H K, -+ —-H,1K,
. . is invertible.

_HL'UKI I_H’U,UKU
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Then, for all dy,ds,ds,ds € ZF, the following two conditions are equivalent.

Z) rank Kratl(z)Gtz,rzl(za K(z))Ktzl(Z) Z dl
i1) rank K,50(2) Gy rae2(2, K(2)) Kip2(2) > do

(
(
(443) rank K50 (2)Gig rao (2, K(2)) Kip1(2) < ds
(

i) rank K41 (2)Giara1 (2, K(2))Kig2(2) < ds
if and only if

a) rank Gig/ rp11/

( (2, K(
(b) rank Gl ry20r (2, K (
(c) rank Gyor rar12/ (2, K (2
(d) rank Ggr re21/ (2, K (

Proof. Similar to Lemma 3.3. O

Remark 1. The result of this theorem can be easily generalized to multiple receivers. In

2 conditions

three receiver case, we will see 9 conditions. For a general n receiver case, we will see n
since each receiver will see n different signals (one desired signal and n — 1 interference).

Remark 2. To design a broadcast scheme which communicates a message with rate r;
to receiver 1 and at the same time another message with rate ro to receiver 2, we can choose the
problem parameters as di = r1,dy = 7r3,d3 = 0,d4 = 0. Any scheme which satisfies the condition
(a) —(d), and the existence condition of transfer functions can be immediately applied to the original
problem and give a broadcast communication scheme.

Remark 3. The linearized network of Figure 8.6 can be understood as a two-receiver and
two-eavesdropper secrecy problem. The receivers rx1l’ and rz22’ want to receive d + d; and d + ds
dimensional information about the messages (possibly, common) respectively. While at the same
time, we do not want to give more than d 4+ ds and d + d4 dimensions about the message to the
eavesdroppers rx12’ and rz21’.

The receivers rz1l’ and rz22’ in the linearized network reflect that the desired messages
have to be received in the original problem. The eavesdropper rz12' and rz21’ in the linearized

network reflects that the undesired messages must be removable in the original problem.

8.1.3 Multiple-Unicast

As the only difference between Figure 3.20 and Figure 3.21 is the observers, we introduce
circulation arcs in the same way as the broadcast problems in Figure 8.5. Fig. 8.7 shows the

multiple-unicast LTI network Ny,;(2) with the circulation arcs.



eaxl

14
Bx17]

14
Brx1’

(V2NN

1
Nx2

na”

Figure 8.7: Multiple Unicast LTI network N,,;(z) with circulation arc added in
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We essentially repeat the previous argument. Let’s use the same notations and assumptions

of the previous section. Denote the dimension of Uy, Us, Y1,Ys as diyz1, diyo, drg1, drgpo Tespectively.

The transfer functions between the transmitters and the receivers are denoted as Giz1,r41(2, K),
Gtzl,rmZ (zv K), Gt:I}Q,’I’CEl(27 K)a GtzZ,raﬂ('Za K)

Then, we have the following relationship.

Xaz
Xaz
Yi
Y5

1 1 0
2 I
thl,rletrl HtxZ,Tlet:c
= Htaﬁl,rm2Ktx1 Hth,chKtac
Hig11Kq1 Hipo 1Ky
i thl,vKtxl Htx2,vKtx2
0 0
0 0
*thl,r:tht:nl 7Ht127T:E1Kt12
_Htwl,ra:QKtwl _Htw2,ra:2KtJ;2
—Hyp1 1Ko —Hypo,1 Kiao
_Html,vKtzl _Hta:Z,vKt:EZ

2

2

Kra;l
0

0
0
0

0

0
K22 0
0 Hi,nk:
0 HiypaKi
0 o1 K,
0 H, Ky
0 0
—Kyyo 0
0 —H re1 K1
I —Hy ;22K

)

0 I-H K,

0 —Hy Ky

Xaa:l
Xam2
Hv,rlev Yl
Hv,chKv }/2
H’u,lKv Xl
Hv,'uK'u L Xv i
0 1 _Xazl_
0 XamZ
*Hv,r:clKv Yl
_Hv,rw2Kv YVQ =
- v,lKv Xl
I-H,,K,| | Xy |

uni

=Glin (2 K)

o O o o o
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[0 00 00 o] [ o ]
00 0 0 O 0 0
00 I 00 0 Hipt,ra1

Gir(z,K)y=|0 0 0 I 0 0 + | Hizt,ra2 | Kian [—I 0000 - 0}

0000 I 0 Hizia —

0000 0 - I| | Huiw |

=A :=Bim
T
0

Hiz2 ra1

+ [Hiazrar | Kz [0 —1 00 0 0]
Hiza s

| Hizow |

N
:=Byas

C o _ ;
0
Hi a1 Hyran

+ [Himz| Ko 00 0 I 0+ + [Hope| K, J0 0 0 0 0 T
Hy -, Hya —C.
L le d L va i
N ol
0 I
0 0

+ 10| Keifo 0 =1 0 0 of+ [0] Keazo 0 0 —1 0 0]
0 — 0 —
0] 0]

Use the same definitions of (8.1) for Giz1,r21(2, K), -, Giz2,ra2(2, K). These transfer functions are

the transfer functions of N'“"(z) as before.

unt
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Theorem 8.3. Let Kyi(2) € Flz]derXdaar [, o(2) € Flz]dezXdecz [(2) € F[z]diin>Xdioue

Kyz1(2) € Flz)dearXdrar gnd K, ,o(2) € F[z]dee2Xdra2 - We also assume that

Then, for all dy,ds,ds,ds € Z7F, the following two conditions are equivalent.

if and only if

(
(
(
(

I-HiK,

*Hl,vKl

- v,lKv

I - H’U,'UK'U

1s invertible.

i) rank K41 (2) Gzt ro1 (2, K(2)) Kiz1(2) > dy

i1) rank K, 50(2) Gy re2(2, K(2)) Kig2(2) > do
119) rank K52 (2)Giz1 ra2(2, K (2)) Kiz1(2) < ds
iv) rank K41 (2)Ga2,ra1 (2, K(2)) Kiga(2) < ds

(
(0)
(©)
(

Proof. Similar to Lemma 3.3.

a) rank Gig/ rp11/

(2, K(
rank Gy ro22 (2, K (2)
c)rank Gy ra12/ (2, K (2)

(2, K(

d) rank Gy,

,re2l’

O

Remark 1. The linearized problem of this theorem is essentially the same as that of broad-

cast problems. Compared with Theorem 8.2, the only difference is that By,1 and Bygo of

are different in multiple-unicast problems while they are the same in broadcast problems.

(2, K)

Remark 2. Like the broadcast problem, to design a two-unicast scheme which communicates

a rate r; message to receiver 1 and a rate ro message to receiver 2, we have to choose d; = rq,

do =19, d3 = 0, dgy = 0. The linearized network of Figure 8.7 can be understood as a two-receiver

and two-eavesdropper secrecy problem.
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8.2 Jordan Form Externalization Example

In this section, we show how the Jordan form externalization of the implicit communication

works by working out an explicit example. Let

- 0 -
A 0 0
A =
1
0 0
0 A
| 0 0 N

Ci:{cm Cia Ciz Cia Cis Cig

B;1
B;o
B3
B4
B s
_Bi76_

where A # N, B; ; are row vectors, C; ; are column vectors. We will externalize at the frequency
z= A\

As mentioned in Section 3.5.2, we will move the third and fifth rows and the first and fourth
columns of A\I — A to the left-top of the matrix. For this, we will define the permutation matrices
Pr x and Pg ).

The definitions of Section 3.5.2 is given as follows:

IiL))\(O) = O,HL)\(l) =0, HL7)\<2) =0, HL7,\(3) = 1,:‘{1;7,\(4) = 1,/{L7,\(5> = Q,KL,)\(ﬁ) =2

K}R’)\(O) = O,KJR,)\(l) = ].7:‘{127)\(2) = ].,IiR’)\(S) = 1;”R,)\(4) = 2,:‘{37)\(5) = 2,&37)\(6) =2

m,\:2

1 A(0) =0,000(1) =3,000(2) =5

LR_’A(O) = O,LRV)\(l) = 1,LL7)\(2) =4

7TL7,\(1) = 3,7TL,)\(2) = 4,7TL7,\(3) = 1,7TL7>\(4) = 5,7TL,)\(5) = 2,7TL7,\(6) =6

7TRy)\(].) = ].,7'(37)\(2) = 3,’7‘(’37)\(3) = 4,’7‘1'37)\(4) = 2,7TR’)\(5) = 5,7TR’)\(6) = 6
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0 0 0 0O

1

0 01 000

0 00100

01 0000

0

1

0 0 0O
0 000 01

10 0 0
0 001060

0

100 0 00
0000 1O

0

10 0 0O

0 00 001

, and Pg y to the left and right side of (21 — A), we get the following:

T

By multiplying P;

zZ—A

0

z—N

001 00O

10
100 0 00O
0 0001FPO0

0 0 O

01 0000

P{ \(z] — A)Pr y

10 0 0 0 O
001 0 O0O0

0001 O0O0

01 0 00O

00 0 01O

1.0 0 0 0O
0 01 00O

0 001060

01 00 0O

0 0001FPO0

0 000 01

0
0
0
0

0
z—N

0

z—N

0

0

Here, we can notice that the 2 x 2 left-top sub-matrix is a zero matrix. Furthermore,

(Al — A)Pg » is a diagonal matrix.

T
Pr
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A)\7171(Z), A)\,172(Z)’ A)\72,1(Z), A)\,272(Z) are defined as

[0 0 0 2z—X 0 0
Axia(2) = 0] JAxi2(2) = [ ]

0 0 0 2-=X 0
22 0 1 0 0 0
0 =X -1 0 0
A,\,2,1(2’) = aA)\,Z,Z(Z) =
0 - 0 0 -1 0
0 0 0 0 0 z—X

We also multiply Pgr x and Pr ) to C; and B; respectively.

CiPR,)\:[Ci,l Cia Cio Ciz Cis Ci,ﬁ}

B; 3
Bi s
B;i1
B,
B;a
_Bi76_

Therefore, C; x,1,Cs x,2, Bia,1, Bix 2 are defined as follows.

Cixg = [Cm Oi,4] Cing = [Ci,Q Ciz Cis Cj 6]

B;1
B; 3 B; o
Bix1= yBixg =
B;s B4
B;s

We also introduce auxiliary inputs and outputs which access each Jordan block. For this,

we define C'\ and B, as follows.

Cy = , B

o O O = O O

100 0 0O
0001 00O

o = O O O O

With these definitions, we can construct the network J\/'jd, ». The channel matrices of
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Njax(X) are given as follows:

Htm,rm()‘) =0
Hyyi(N) = [Ci,l Ci,4]

B;
HIJ.L(A): 3
B; 5
-1

-1 0 0 0 B;q1

-1 0 0 B; o

Hi,j<>‘):{ci,2 Ci,a Ci,s Ci,G 1 0 B

- i4

0 0 A=X| |Big

8.3 Externalization of Implicit Communication in Proper Sys-

tems

In this section, we extend the discussion of Section 3.5 to proper systems. The extension of

fixed modes to proper systems can be found in [23]. Formally, a proper decentralized linear system,
L(A, B;,C;, D;j), is defined as follows:

xz[n+ 1] = Az[n] + ZBlul[n]

yi[n] = C;z[n] + Z Dijuj[n]

Unlike strictly proper systems, the observations y;[n] depend not only on the states but also the
control inputs u;[n]. Then, the definition of fixed modes can be extended to proper decentralized

systems as follows.
Definition 8.1. /23, Definition 2] X is called a fized mode of L(A, B;, C;, Dy;) if

DuK: - DK\ [
xe () oA+ [BiE, - BE||I-| i )
(Ko, Ko)ek DKy -+ DyK, Cy
where o(-) is the set of the eigenvalues of the matriz and K = {(K1,---,K,) : K; € C4#*"i ] —
DKy -+ DK,
: is invertible}.
DKy - Dy Ky
As before, the stabilizability condition is charaterized by the fixed modes of the system.

Theorem 8.4. [23, Theorem 3] L(A, B;,C;, D;j) is stabilizable if and only if all of its fized modes

are within the unit circle.
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Then, we can externalize information flows to stabilize the proper system as before.

8.4 Canonical Externalization 1

We will introduce the gain K; to the ith controller, and the auxiliary input u[n] and output
y[n] (which can access all states and observations, x[n],yi[n], - - ,y,[n]) to the system. Then, the

system equation can be written as follows:

x[n + 1] A Bi1Ki --- ByK, x[n]
y1[n] Ci DuKy, -+ DyK,| |yin]
. . . , . + uln]
yv[n] Co DuiKi - DyK, yv[n]
z[n]
y[n] = yl.[n]
yv[n}

Then, the transfer function from y(z) to w(z), Genr(z, K) , is given as follows.

(21 0 -~ 0] [A BK, -+ B,K,
o I --- 0 C1 Di1Ki1 -+ Di,K,
Gen1(2, Ki) = | | . N . .
_0 o .- I _Cv Dlel D’UUK’U
[2I—A 0 - 0] B B,
—Cl I s 0 D11 Dlv
= + Ko -1 0+ + K, fo o
:=Cenr1 :=CenlI,v
Cy 0 I_ Dy Dy
~—— ~——
=Acn1(z) :=Becnr,1 :=Benrv

By Lemma 3.5, the standard network, Ns(Acni(2); Bent,is 0; Cenr i, 0;0,0;0,0), has Gepr(z, K) as
a transfer function. Denote this network as N.,7(z). Then, we can prove the similar theorem as

before.
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Theorem 8.5. Given the above definitions, the following statements are equivalent.

1) X is a fized mode of the decentralized linear system L(A, B;, C;, D;j)

2) rank(Genr(A, K)) < dim(Aenr)

(1)

(2)

(3) (transfer matriz rank of the LTI network Nenr(N)) < dim(Aenr)
4) (

4) (mincut rank of the LTI network Nop,r(N\)) < dim(Agnr)

Acnl()\) BcnI,V

< dlm(Acn])
C1cnI,VC 0

5)  min rank
V{1, ,v}

Proof. Similar to Theorem 3.7. After we define G,s(z, K) as above, the D;; are just a part of
Bcnl,i~ O

8.5 Canonical Externalization I1

Like the discussion of Section 3.5, we only need the auxiliary input and output to be
connected to the unstable states. Thus, we can reduce the dimension of the auxiliary input and

output by allowing them only to access the state z[n]. Now, the system equation is given as follows:

x[n + 1] A BiK; --- B,)K, x[n] I
y1[n] Ci DuKy - DiuK,| |yn] 0
=1. . , . N I B
Yy [n] Co DuKi -+ DyKy| |y[n] 0
z[n]
y1[n]
yln]=1I 0 --- 0 .
yv[n}

The transfer function from wu(z) to y(z) is the following.

2T 0 -+ 0 A BK, - B,K, T
0 I - 0 C1 DuK: - DK,

o 0 - I Cy, DuKi -+ DyK, 0



362

By Lemma 3.6, the transfer function from y(2) to w(z), Genrr(z, K), is given as follows:

-1
DKy -+ DKy -1
Gent1(5,K) = (:I = A) = [-BiKy -+ —B,K,| | 1-
Dlel e D’UUKU _CU
= (z2I—A)+( —-By Kl[f 0}—~-- ~B, Kv[o 1})
———— N~ S~~~
::Aan[(Z) =Benir ) =Benil,v ‘*C/'
T Yenll,1 T Yenllv
-1
D1y Dy, Gy
\I,I’_ : K1[I O]+"'+ : Kv[o I} .
= S(‘nII D'Ul va CU
~—— —— ——
::B(/;nll,l ;732”“ v =D_ .1

Then, by Lemma 3.5, we can see that Ge,rr(z, K) is the transfer function of the standard network
NS(AC,LH(Z);Bmlu,Bénlu;0,Cénn’i;O,DénII;San,O). Denote this network as Mg,rr(2). Fur-
thermore, by Lemma 3.5 the channel between the nodes and the channel for the cut V- = {tx, i1, -+ ,ix}

is given as follows:

Hta:,z - Cz
Hi,r:n - Bz
Hij = Dji
ZI — A _Bil e _Bik
Cik+1 Dik+1,i1 Dik+1,ik
HV,VC (Z) =
C’LU Div,il e Div,ik

Then, we can give the capacity-stabilizability equivalence theorem as before.

Theorem 8.6. Given the above definitions, the following statements are equivalent.

(1) X is a fired mode of the decentralized linear system L(A, B;, Cy, D;;)
(2) 1ank(Genrr (A, K)) < dim(A)

(3)

(4)

(transfer matriz rank of the LTI network Neprr(\)) < dim(A)
(mincut rank of the LTI network Neprr(X)) < dim(A)

M—-A -B
(5)  min rank v

< dim(A)
VT, 0}

Cve  Dyey
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Proof. Similar to Theorem 3.7. O

Here, it has to be mentioned that the equivalence of (1) and (5) was already shown in [23].

8.6 Jordan Form Externalization

Like Section 3.5.2, we can minimize the dimension of the auxiliary input and output by
using the Jordan form. Without loss of generality, we assume that A is in Jordan form and use
the same notations of Section 3.5.2. Then, the system equation with the auxiliary input wy[n] and

output yy[n] is given as follows:

LL’[’I?, + 1] A BlKl s Bva .I[TL] CA
1 [n) Cy DuKy -+ DiuK,| |wn] 0
L S i R P

Yo [n] Co DnKy -+ DyKy| |yun] 0
——
::C;

x[n]

y1[n]

pil =By 0 - 0] |7

=B
Yo[n]

We also expand the dimension of the permutation matrices Pr, » and Pg .

[Py 0O 0

Pp =
L0 0 I
[Pry 0 0
0 I 0

Pz’m =
0 0 I
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The transfer function from wuy(z) to yx(z) is the following.

, o I --- 0 C1 DKy
we) =] . . |-
0 O I CU D’UlKU
(21— A —-BK;
-C, I-Dnk;
T
= C;(Pi,)\Pi,A ( .
L _Cv _Dlev
(21— A —-B K
—C4 I — D1 Ky
T
= Cf\lez,/\(Pi,,\ (
L 701} —Dn K,

PZ)\(ZI_A)PR,/\ _PE)\BIKl

. —C1Pg I—-Di K,
:CAPR,)\ .

_CUPR,)\ _Dlev

_A,\,1,1(Z) Axi12(2)

Ax21(2) Axp2(2)

:[I 00 --- 0] —Cia1 —Ciag

| — VoAl —LuA2

B, K,
Dl’UK’U
. D7IBua(2)
D’U’UK’U
_Bva |
—D1o Ky / 1 T\—1p0
. )PR,)\PR,/\ )" Byux(2)
I—- vaKv_
~B,K, |
D1 Ky 1 \—1pr T
)PR,,\) PL,)\ Bjux(z)
I— DU'UK'U_
-1
—PZABUKU
_Dviv
. Py, Biua(2)
I— D’L)’UK’U
-1 - -
—Bi 1K —By 1K, 1
—B1 ) 2K —By 22K,
I — Dy K,y —D1, K, 0 ux(2)
—-Dg K, - I—DUUKU_ _O_
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By Lemma 3.6, the transfer matrix G,q(z) from yx(z) to ux(z) is given as

Gja(z) = Ax11(2) — [AA,1,2(Z) —Bi 1Ky —BU,A,lKv]
—1
A)\,2,2(Z) —B1,A,2K1 _Bv,)\,2Kv AA,2,1(Z)
—Ciy2 I-DukK, --- —Di,K, —Cia1
—LwA2 _Dlel I_DU'UK’U —LAl
= A H([ e 0 - 0] BuaKifo 1o o] BuaKfo 0 e 1))
——— —— ——
=Aja(2) :=Djq(z) =Bjan =Cl 4 =Bja,v =C,
I—Ayo02(2) 0 0 Biae By
; Ciz2 0 -~ 0 D1y i D1y e -1
(L —( , | + o1 0+ + oo o 1]))
:S;dl :
Corz 0 0 Dy Dy,
—— ——
=S%,(2) =B, =B, .,
—Ax21(2)
Cian
Cv,)\,l
—_—
=D’ ,(2)

Then, we can easily check that G;4(z) is the transfer function of the standard network
No(Aja(2); Bja,ir Bja 30, Clg i3 Dja(2), Dig(2); Sja, Sja(2)).-

Moreover, we have

A)\’Q’Q(Z) o --- 0 A)\’Q’Q(Z)_l 0
(S_l , )71 —Cl’)\,g(z) I e 0 Cly)\_VQA)HQ’Q(Z)il I e 0
jd — Pjd - . . . . .

—Cupp(z) 0 - CoroAroa(z)™ 0 -+ I
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Thus, by Lemma 3.5 the channel matrix between the nodes and the channel matrix for the cut
V = {tx,i1, -+ ,ix} is given as follows:

Hizrz(A) =0

Hiypi(N) = Cian

H; ro(A) = —=Bixa

Hij(A) = Cjr24x22(0) "' Bixz + D

0 —Bi, a1 e —Biy a1
—1 —1
Ciriond Cigin2Ax22(N) " Biyx2 + Diyyin - Cig i n24x22(0) 7 Big a2 + Diy iy,
Hyye(A) = . . .
—1 —1
Ci, Ciyn2Ax22N) " Biy a2+ Diyiy, - Ciyx2Ax22(0) 7 Big a2 + Dii,

Then, we can write a similar theorem as before.

Theorem 8.7. Given the above definitions, the following statements are equivalent.

1) X is the fized mode of the decentralized linear system L(A, B;, C;, D;;)

(1)

(2) rank(Gjq(A, K)) < my

(3) (transfer matriz rank of the LTI network Njq(X)) < my
(4)

4) (mincut rank of the LTI network Njq(X)) < my

) 0 —Byaa
(5) min rank ) < my
Vel v} Cyext CvexaAx22(A) 'Bvaz+ Dyey

Proof. Similar to Theorem 3.8. Compared to Theorem 3.8, Dy y is just added to CVC,A’QAAQQ()\)*IBV,AVQ.
O

8.7 Realization of Closed LTI Network

In this section, we will discuss how to realize the problem of Figure 3.17 in a decentralized
linear system form. First, we can notice that the system of Figure 3.17 can be thought as a special
case of the closed LTI network of Figure 8.8. We can put p of Figure 8.8 as v + 2, and consider the
relay 4 of Figure 3.17 as the node ¢ of Figure 8.8, the observer as the node v + 1, and the controller
as the node v 4- 2. Then, by connecting the node v 4 1 with the node v + 2 with H,19)(v+1)(2)
which is equivalent to the plant of Figure 3.17, the two problems are equivalent. Therefore, we can
focus on the realization of the closed LTI network of Fig. 8.8.

As we can see in Figure 3.17, for 1 < 4,5 < p the input of node i is connected to the

output of node j by the channel H;;(z). When i = j, it corresponds to a self-loop. In other words,
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1,1
| VAN
KT
1
1p
12 >
S
p.p

Figure 8.8: General Closed LTI Network

y;i(2) = H;j(2)u;(z) where u;(2) is the input of the node ¢ and y;(z) is the output of the node j.
Since this relationship can be considered as a centralized input-output system, it can be realized by
the usual realization method shown in [17, chapter 7]. Let’s say the resulting linear system is given

as follows:

xij[n+ 1] = Ajjzij[n] + Bijus[n]

y;[n] = Cijxij[n] + Dijui[n]

Let the dimension of u;[n] be g;, the dimension of y;[n] be r; and the dimension of x;;[n] be m;;.
Then, the dimensions of the other matrices are uniquely determined. When there is no connection
between the nodes, simply m;; becomes 0.

The main idea for the realization of a closed LTI network is to augment the states x;;[n].
Denote z[n], A, B; and C; as follows:
En [n + 1]_

z1p[n + 1]
T21 [’Il —+ 1}

[Zpp[n + 1] ]
A= di_ag(All, e Ay, Ao, - " s App)

0(21§j<1‘, zlgkgp mjk)Xqi

Bil

By,

_O(Zi<jSpZISk§pmjk)Xqi_
Cl{j = [Orfleskqmik Cij Orszqupm,;k}
C; = [C:'u C{n}-
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Then, we can easily check that the decentralized linear system
z[n + 1] = Az[n] + Y  Biu[n]
4,J

is the realization of the closed LTI network of Fig. 8.8.
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Chapter 9

Appendix for Chapter 4

9.1 Proof of Corollary 4.1 of Page 213

Proof of (¢):
Let’s first consider when max(1,a%02,) = a%0?,. Since a0, > 1, there exists k; > 2 such

that
a7 < 252 < g2ki-D)
and we choose such a k; as k; in Lemma 4.13. Then, by (4.32) of Lemma 4.13 we have

DL;%(E, Py; k1)

a2k —1)012)1

Z 2 2(kq1—2)
Iu1\(atf1~ 2
(1+ 032)( 1—a-2 )+ Ou1
A 2(k1—1) ~2
(>) a (k1 )le
- 2 2(k1—2 2
o5z a?h= 4oy
2 2
a~0,1

2

o5 + 7 )
(B) aZng
T s Tl
> 0.295775...a%02,
> 0.2950202,. &1

(A): 0% <02, and |a| > 2.5.
(B): a?02%, < a?1=1),

When max(1,a?02;) = 1, by (4.32) of Lemma 4.13 we have DL_’3(E7E; k1) > 1> 0.295.

Proof of (b):
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In Lemma 4.13, choose k; in the same way as (¢) and let k = k1 + 1. Inspired by the proof
of (c), we can safely choose ¥ = 0.295max(1,a%02,;). Then, by Lemma 4.13, we notice that since
k — k1 — 1 =0, the second and third square-root terms in DL’Q(H, ﬁ;; k1,k,X¥) goes away and the

bound reduces to

DL,2(E» Py k1, k, ¥) > inf (\/(a —c1— )28+ ol + Body)t +1

C1,C2

st. (1-25" DA (S+02) <Py

where ¢y can be chosen arbitrarily.

Here, since we assumed P1 < éoaz max(1,a%0,;), we have
1
(1-25"H3(S+02) <P < 4—00(12 max(1,a’0?;)
1
(=)c2(0.295 max (1, a%0?)) + 02)) < WQQ max(1,a%0?;)
2 a’?max(1,a%0%)) a?

=)

<
U= 100(1 = 2.5-1)(0.205 max(1, a%02)) +02,) — 400(1 —2.5-1) - 0.295
(=)]e1| < 0.118846...|a| < 0.119]al.

Therefore,

DLQ(E, 13;; k1,k, %) > inf (\/(a —c1 — ¢2)%0.295max(1, a%0?%)) + cio?, + 6201}2)?|r +1

C1,C2

s.t. |e1] <0.119]al

> inf(a — 0.119a — ¢)%0.295 max(1, a®0?)) + c302, + 1
c2

(A)
> inf(a — 0.119a — ¢2)%0.29502, + 202, + 1
c2

= igf(\/(l —0.119 — 3)20.295 + &°)2a?02, + 1

C2

B 0.176808...a202, + 1

> 0.176a02, + 1.

(A): By the assumption max(1,a?02;) > o2,.

(B): By the numerical optimization of the quadratic function.

Proof of (a):
(i) When max(1,a%02,) = a%02,

In Lemma 4.13, we will choose k1 in the same way as (c¢) and k arbitrarily large. As above,
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we can safely choose ¥ = 0.295a?02,. Applying the same arguments as (b), (c) to Lemma 4.13 gives

Dy o(Pr, Poi k1, k, %) > inf (y/a2k=k1=D((a — ¢ — 2)28 + 202, + c202,)

C1,C2
a2(k=k1=2)(1 — (2.5q=2)k—k1-1) P,
a 1—2.502 (1 -25-1)2.5-1
a2(k=k1=2)(1 — (2.5 2)k—k1-1) P, )
- )+ + 1
1—25a"2 (1-25"1)2.5"1
st. (1-25"Hef (X +0%)) < P
(1-25")3(S+0%) <P,
> (\/@2("’—’“1—1)0.176a2032
a2(k=k1=2)(1 — (2.5q-2)k—k1-1) P,
a 1— 2502 (1 -25-1)2.5-1
a2(k=k1-2)(1 — (2.5 2)k—k1-1) P, )
a \/ 1 —2.502 (1-25-1)2.5-1 e+l (92
Moreover, we have
a2(k7k172)(1 _ (2.5a72)k7k171) 151
1—2.5a2 (1 -2.5"1)25"1
(A) q2(k—k1-2) E
<
= 1-2571 (1-25"1)251
(B) Q(k k1—2) 1 9
S @25 s Tan” e aen)
< 0.01736111...a2k—F1) 52,
< 0.0174¢>F kg2, (9.3)
(A): |a| > 2.5.
(B): We assumed P < 50’ max(1,a?02)) = fsato?) < a0,
Likewise, we also have
a2(k7k172)(1 _ (2_5a72)k7k171) ﬁ;
1—2.5a72 (1-2.5"1)25"1
< 0.0174a2*F kg2, (9.4)

Therefore, by plugging (9.3) and (9.4) into (9.2), we get

Dy o(Py, Pos ki, k,3) > (V0.176 — v0.0174 — V0.0174)2 a2 F1)62, 41
> 0.0202F kg2, 41,

Since k can be chosen arbitrarily large and |a| > 1, limg_, DL72(E, 13;; k1,k, %) = oo.
(i) When max(1,a?02,) = 1
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We will choose k arbitrarily large in (4.33) of Lemma 4.13. Here the assumptions E <

2 2

2
a
1630 max(1, a%02,) reduce to P < 465 and P, < 105+

max(1,a%02,) and Py < 1o
Therefore, by (4.33) of Lemma 4.13 and |a| > 2.5, for all k¥ we have

— a2(k 2) a2 a2(k—2) a2
DL,4(P17P2, (Va1 —\/ )2 \/()2

400 1—2.5-1)2400""

1 1
—(1— _ 2 2(k-1)
( \/400(1 —251)2 \/400(1 —o5 1)+

> (0.6a2*—1)

Since k can be chosen arbitrarily large, limg_, oo DL74(fP5I, E; k) = oc.

9.2 Proof of Proposition 4.7

By Lemma 4.14, if there exists ¢ > 1 such that for all IADI,/PS; >0, DU(CE,CE) <ec-
DL(E, E), then for all ¢,71,79 > 0 we have

minp, p,>0 ¢Dy(P1, P2) +r1 P + 7’2P2
OqDL(P1,P2)+T1P1 +7"2P2

ming; 5

which finishes the proof. Therefore, we will only prove that such ¢ exists.
(i) When P; < 1650* max(1,a’0?2;) and P, < 1650° max(1, a?02,)
Lower bound: By Corollary 4.1 (a),

DL(E;]B;) =

Therefore, we do not need the corresponding upper bound.
(ii) When P, < 1650° max(1,a?02;) and P> 1050* max(1,a?02,)

Lower bound: By Corollary 4.1 (b),
Dy(Py, Py) > 0.176a%02, + 1.
Upper bound: By Lemma 4.15,
(Dy(Py, Py), P, P2) < (a®02y + 1,0,a%02, + a®opy + @)
< (a®02, 4 1,0,3a® max(1,a02,)).
Ratio: Thus, ¢ is upper bounded by

¢ < max(—— ) = 1200.

1 3
0.176" 2~
(iii) When P; > 1070* max(1,a?02))

Lower bound: By Corollary 4.1 (c),

Dy(Py, Py) > 0.295 max(1,a%02))
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Upper bound: By Lemma 4.15,
(DU(P17P2) PlaPQ) (a JU1+1CLO'U1+(ZO'1]1+CL O)
< (2max(1,a?0?,), 3a® max(1,a?0?,),0)

Ratio: ¢ is upper bounded by

2 3
, ) = 1200.
0.295" L

Therefore, by (i), (ii), (iii), the lemma is true and ¢ < 1200.

¢ < max(——

9.3 Proof of Corollary 4.2

For simplicity, we will only prove for the case when max(1,a%02,) = a%02,. To prove the

case when max(1,a%02,) = 1, we can simply repeat the following proofs with parameters k; = 1 and

¥ = 0.295. We will also abbreviate DL)l(ﬁhﬁg; ki,ka kyolq, %) to DL,1(E7 ﬁ;)

Proof of (a):

Since a?02; > 1, there exists k1 > 2 such that

q2(k1—2) 2(k1=1),

< azogl <a

and we will use such a ki in Lemma 4.12.

Since the selection of k; is the same as in the proof of Corollary 4.1 (c), by (9.1) we can
select ¥ = 0.295a%02, in Lemma 4.12.

Let’s further choose ko =k =k1 +s+1, a = 1 and 0,2 = 0, in Lemma 4.12. Then, since

(??), (7?), (4.18) disappear, Dy, ; in Lemma 4.12 reduces to

— a2(k2—k1) Yy a2ka—ki=1)Py
Dy q(Pr, P2) > (\/ 21 () —\/ (1—2571) )5+ 1. (9.5)
We can bound I”(P) as
2
— (A1 1 2q2(k2—2—k1) 9g2(k2—3—k1) 9 5 L 1 _0o,
I// P < 71 1 2 2 2 70 a2(< 1) k27k171
(P1) < 5 log(1+ (s — T —1)o%, 1252 2P0 0mt o e g 51y 7))
1 1 2 2 2.5
— Zloe(1 995025 52 70 —2 2 \\ka—ki—1
S loe T T, T2 2 P T F T s a1t )
(B) 1 1 2 2 75 oE
< Z1 1 2 70 2.5 ko—ki1—1
< gloelt o G2 M T s g o s 1)
1 0.7401738...
— Zlog(l + —— 1T ko =k —1
ploell+ o= —7)
1 0.7402
< 71 1 ko—ki1—1
< glog(l+ = —7)

< % 1Og(€0'7402).
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— 2
(A): Assumptions P; < =22+ and |a| > 2.5.

2502, < 02, and |a| > 2.5.

(B): Assumptions a
Likewise, I’(E) is upper bounded as

a,2(k:2727k71)P

~ 1 1 1
/ <2 0.7402y , * Lo 2(ke—1-k1) 1
r'p) < 5 log(e )+ ) log(1 + poy (2a DES 2<1 95D = 257) )
4 1 1 1 q2(s—1) L ‘7;3
< 5 log(e" ™) + Slog(1 + —(2a°0.295a° 07, + Ty = 505{2;)21) )
v2 .
_1 log(e®-7102) 4 11og(i(o2 2% 0295020 0g2 4 1 ))
2 2 g2, 2 ' vb T 35(1 —2.5-1)2 72
(? 1log(eo‘7402) + llog(i(az(”l)oa +2x 0295026t g2 4 — 2+ 52 )
) 2 852 v 1T 351 — 2.5-1)2 v
1 1 a2(s+1)02
I 1 0.7402 = 1 71)1 1 2 2 -
5 og(e )+ 5 og( =y (142 x0.295 + 50 _2.5_1)2))
1 1 a2(s+1)02
= —log(e® ™) + ~log(———211.669365...)
2 2 o2y
1 1 2(s+1) ;2
< Zlog(e®™492) 1 Zlog(L—Tv11.6694). (9.6)
2 2 Oig
(A): Assumptions E < #?f,l) and |a| > 2.5.
(B): Assumption 02, < a?(5t1g2 .
— 2
Moreover, since Py < =2, we have
a2(k2=k1=1) B - 025 o2, B 202, 01
(1-251)2 = (1-251)270a26-D = (1—25-1)270° '
Therefore, by plugging (9.6) and (9.7) into (9.5), we have
~ ~ a?(s+1)0.295a202 a?o?
D P P, > vl o v2 2 1
LJ( 1 F2) = £0.7402 ‘12(5+21>‘731 1.6694 \/(1 — 2.5_1)270)+ +

v2

> 0.008a%02, + 1.

Proof of (b):
We choose k1, X, ka, ar, 042 of Lemma 4.12 in the same way as the proof of (a) except k.

Then, we will increase k arbitrarily large. Then, Lemma 4.12 reduces to

S a2(k—k1)y) a2(k—ki=1) p; a2(k—k2-1)2 5ha—k1 Py a?hkm VP,
Dp1 (P, Py) > = — - - L
zalhy, 2)‘(\/ 521 () \/<1—2.5—1>2 ¢ (1-2571)2 G-25p )t

(9.8)

Since the relevant parameters are the same, (9.6) and (9.7) in the proof of (a) still hold.



— 4 2
Since |a| > 2.5 and P, < 38358, we also have

a2(k—k2—1)2.5k2—k1ﬁ1

(1—25-1)2
— (E)kz—kl a2kl 1) py
a2 (1—25-1)2

_ (L)2a2(l~c—k1—l)ﬁ;
257 (1—-2.571)2
and
a2(kfk271)ﬁ; a2(k—k2—1) a4032

< .
(1—25-1)% ~ (1—2.5"1)2 28000

Therefore, by plugging (9.6), (9.7), (9.9), (9.10) into (9.8), we have

375

(9.10)

252
a°0,9

~ ~ a2(s+1)0.295a202 1 a?o?
DL’1<P1,P2) Z ( pETERSyp vl _ (1 + 25)\/ v2
0.7402 2T V0%, 4 6604 (
v2

> 10 6g2(k—kat152 41,
Since k can be chosen arbitrarily large, limg_, oo DLJ(’PZ, ﬁ;) = 00.

Proof of (¢):

1—-25-1)270

/i

1—2.5-1)228000

We choose k, k1, k2, ¥ of Lemma 4.12 in the same way as the proof of (a), i.e.

0.295a%02, and ko = k = k; + s + 1. We put the remaining parameters o and o/, as a =

'3 = 100a2*=Y Py. Then, Lemma 4.12 reduces to
D D L 1,
Dp (P, Ps) > §D + §D +1

where

D= a2(k2—k1)y az(kz—kl—nﬁl)z
921'(Py) (1—2.5-1)2/F

D// B ( a2(k}27k‘171)2 B a2(k27k172)2.5§1/)2
B 921" (Py) (1—-25-1)2 )

)

2
1a

2(k—ka) | |

D

1
29

(9.11)

(9.12)
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Here, I”(ﬁ) is upper bounded as:

1 9q2(k2—2—k1) 9q2(k2—3—k1) 2.5351

2 == =2 =2 )
(ko —k1—1)05" 1—a l1—a (1-25a"2)(1-25"1)

—~ 1
I//(Pl) = 5 log(l +

1 2q2(k2—2—k1) 2a2(k2*3*k1) 2.5 a 031

% %log(l + (oo — o1 = 1)032( 552 0.295a%02, + 57 2_00;()5 7 ))ka—ki-1

- %bg(l T s kll— 102, (1= 5.5—20'295 Tz 2.5—2 1 - 52205000) Ja*opy) TR

2 L iog1 — llﬁ — (1= ;5_20.295 + ;5_2 (12_522_05000) et

= %log(l + ﬁo.m&oz..)kr’ﬁ*l

< %log(l + ﬁo.m:&s)kr’ﬁ*l

< %1og(eo'7033). (9.13)
(A): P < 20000(14%1 and |a| > 2.5.
(B): a*02, < 02,.

Likewise, I’(ﬁl) is upper bounded as:

I'(p) < %log(l + %}22(2&(’“2*1*’“)2 + 2(1 — ;.2;2222)(:1)_}251))) + %log(eo'm%) + %log(%)

< %bg(l + ;(2a252 + Zm)) + %log(eo'm%) + %log(%)

— %log(l + 12(2a25(0 295a%07,) + 2({123}?)2)) + %log(eo‘m%) + %log(%)

- ;1og(M(100a2(51)E +2.0.205a26D g2, ¢ Qm)) i %log(eomg) + %log(%)
(g) ;log(moaz(ls—npl (100(;(;:);:% +2- 020507 o, + 2zoog;gi+i);.i—1)z))

+ 5 Tog(e"™%) 4 L1og( %)

= élog(l(l)O(O.595277...)a22(:11))01§11) + %log(60~7033) n %log(?)

< %1 (100 (0. 5953)‘;2;:11))0;11) + %log(eo‘m?’?’) + %log(?). (9.14)

4 2
(A): Assumption P < o083 -



Therefore, by plugging (9.14) into (9.11), we get the following lower bound on D’:

0.295a2(5+2) g2, a? P,

)2
0.7033 2me _1 a2GtDg2, 1—2.5-1)2/F
e 7¢ 1k 0.5953 ( )

0.295 1 D
=c( — - —5 )50 P
\/60'7033241(1)00.5953 \/(1 —2.5-1)2

— 0.532969...ca> P,

D' >c

> 0.5329ca? P,

2-10a*"1\/ P, 100a26-DP; . —
=05329— VL exp(— T 1yg2 Py
\/ TOy2 201}2
210 100a2(=D Py

@) B

> 0.5329———— exp(——M a5 P,

= 05329 5 g P g, A
— 50 2(sfl)ﬁ/

= 0.508202...a% P exp(— ——5

042

~ 50a2(s~1) P|
> 0.50820 Py exp(— ———5——).

02

‘732
= 70a2(s=1)*

4 2
Since P1 < 20056, we also have

(A): Assumption P>

a?k2~ki=2)9 5P

(1—25-1)2
25 1 a o,

< ( )252000(1)

S - 25 1y

2.5a2C Vg2,
20000(1 — 2.5-1)2

Therefore, by plugging (9.13) and (9.15) into (9.12), D" is lower bounded as:

s (0295020 a2, 2560 o _y2
207033 20000(1 — 2.571)2

= 0.132117...a*6t o

> 0.1321a2(s+1)031

Finally, DL,1(E7 IDVQ) is lower bounded as:

~ ~ 5002~ D Py
Dy (P, Py) > 0.25410% Py exp(— ——5—2) 4 0.066a2 V02, 4 1
02

Proof of (d):

377

(9.15)
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We choose ki, k2,3, a, 0,5 of Lemma 4.12 in the same way as the proof of (c) except k. k

will be chosen arbitrarily large. Lemma 4.12 reduces to

~ =~ 1 1
Dpa(Pr, Py) > §a2<k—k2>D’ + 5aQ(’“—’@)D” +1 (9.16)

D, _ ( Cg/Q(kQ*kl)E _ Ca2(k‘27k171)}51/ _ a722.5k27klﬁl/ _ a72/ﬁ2/ )2
221" (Py) (1—2.5-1)2 (1—2.5-1)2 (1—25-1)2"F
D= ( a2(k2—ki—1)%) - a2(ka=k1-2)2 5P - a—2P, 2
921" (P1) (1—25-1)2 (1—2.5-1)2/+

Denote P’ := \/ 7212 ‘Zk; flpl + \/(1 — 25Pl)2. Then, following the same steps of the proof of (c), we

can lower bound D’ and D” as follows:

where

~ 50a2(s—1) P,
D > (\/0.5082a25P1 exp(—%) — VP (9.17)
02
. 2P
DH Z (\/013210/2( +1)031 — m)+
> (1/0.1321a20+ 002, — VP, (9.18)
Here, we have
a=22.5k2—k1 p
1_251)
a—2|a|s+1_’ﬁ1
—_— (" > 2.
S Aogpne (el 229)
2a25"51
B S
S o255z
a®* max(1,a’0?;) (B max(aQ,a4agl))
= 20000(1 — 25-1)2 © 1S T 20000
Thus,
(4) a*22.5k2*k1ﬁ1 a*QI?’;
P < y/2
= \/ a5z Y5
(B) | a?s max(1,a?0?,) 2 ~ 50a2(s—1) Py
< ! v 0.0457a2s P e 0.0113a2s 1,a20?
= \/10000(1 —o5-12 T 1251 a* Py exp( o2, )+ a**max(1, a*y,))
— 50a2(s—1) Py
< \/ 0.253880a2 P, exp(—%) +0.062502° max(1, a2o, ) (9.19)
v

(A): Cauchy-Schwarz inequaility
(B): Assumptions on E and E
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By comparing (9.19) with (9.17) and (9.18), we can conclude that either D’ or D" has to be
greater than 0. Moreover, since we can choose k arbitrarily large in (9.16), limy_, oo DL,1(E, ﬁ;) =

Q.

Proof of (e):
The same as (a) of Corollary 4.1.

9.4 Proof of Corollary 4.3

For simplicity, we will only prove the case when a > 2.5. The proof for a < —2.5 easily
follows by replacing a with |a].
We will evaluate Lemma 4.7 with the parameters wy = “;d and d = 4/ 32029013 . Then, we

can easily see that (d,w;) € Sy,1. Furthermore, Z%l > 13 since

a*d  a*"1v/320000P

Ov2 Ov2

as—l\/ o2 o2
> 4-80000——=2— (. P> —v2 _
z 7026 P2 e

4 -
_ 480000 g
70

Then, we will upper bound Dy 1(d, w;). First, let’s bound the second term of Dy 1(d, wq) in (4.5).

The second term is upper bounded as

a®~td—% 4wy (26 — 1)a®d — (a*1d-2% + w)
)2Q(

3 4d’(ia*d + a1 o )

- 2 20‘v2
1<i<oco
a®td-% + w; atd — (a*7'd-2= + wy)
—4 2 sd a—1 2 a—1
a”(a*d + 5 )=Q( 00
s=ld—2 4wy 3a°d — (a*~td-2= + w)
4 2 2 sd a—1 2 a—1
+4a”(20°d + 5 ( Sos )
as—1d—e + a’d asd — (asfld a_ 4 asd)
_ 2(. s a—1 6 \2 a—1 6
= da?(a*d + —— )2 o )
as—ld-2 + a’d 3a5d — (asfld a_ 4 asd)
4 2 2a°d a—1 6 \2 a—1 6 ..
+40*(20°d + —— T T )+
1 1 1 1
<4d*(a°d + ———a’d + —a®d)? 1-— — =)a’d
Sda(@id+ gprmpyadt o d QG- 55—y — D)

1 1 1 1 1
4a*(20°d + —————a’d + —a’d)* 3 — — —)a’d
T 207d 4 gy ad s R d QG B sy m gD+

) 1 5
=4a*(a®d)*(1+ —)? 1—-)a’
@@ d)*(1+ 13 Q5,— (1 = Had)
+4a2(a8d)2(2+3)2c2( ! (3—§)asd)+-~- (9.20)
12 20,2 6 ’
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Denote k := avd Since we already know k > 13, for all n > 1 we have

(n+ 5)*QgAs (20 — 1 Ba*d)
?

(n+1+3)2Q 202(271—&—1 5)asd)
1 (355 (2n—1-%)a*d)?
(n+ %)2( - _1 “Sard (#(Q,Hl_l_%)asd)ii)exp(_ 2 2 . )
> w2 w2 e Cres e (. Lemma 4.5)
1 f’v n a
(n+1+%)2(W)EXP( o2 2 )
512 1 1 (3(2n—1-2)k)?
B (n+13) (%(271—1—%)/@ - (%(zn—1—g)k)3)eXP(* ? )
- 1(2n4+1—-2)k)2
(n+1+ %)%Wl_%)k)exp(—M)
1+ (l(2n7117§)k - (l(an} k)3) exp(— % )
> ( B - : . —3 (n=1)
2+ 3 (t@rriow) exp(—2%)
1+ 32 7 i@2n+1-3) l(2n+177)
> 12 12 7]62 2 6/ _ 2 k> 13
—(2+15—2) exp(73 )(5(271717%) (L2n—1- ))3132)( =13)
@ 1+ 2

2 7

122 —k2)0.99
)? exp(35H°)

> 10* (k> 13)

(A): When n = 1, we can check the inequality by computation. When n > 2, we have

3Cn+1-8)  §@2n+1-3)
3@n—=1-23) (3(2n—1-§))313?
>1— 2(4+1-5) > 0.99.

Gu-1-pyE

Thus, the terms in (9.20) decrease faster than a geometric sequence with ratio 10742 and

thus can be upper bounded as

o 2
2)%Q

1 5 1

Tl

.20) < 4a®(a*d)?(1 1-—
(9.20) < 4a(a*d)*(1+ 05175

(9.21)

The third term of Dy 1(d, w) in (4.5) can also be bounded similarly. We have

s a’d\21 1y2 s
(ad+2)2 (1+2> (ad>13)

(20°d+ Z12Q(2) ~ 2+ 1)2Q(13) ' 0w~

%
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and for n > 2

T2
(n+1)+ 5)2Q(2ed)
(n—|— 1)2( 1 _ 1 )ex (_ (n;vl;ad)Z)
2 (n—T)ad ((nflz)ad):; p B}
> Ty2 Ty

(. Lemma 4.5)

(ped)?
((n+1) + 3)?(zax) exp(— 24—

Tv2

)

B exp(2n — 1k2) (n+ %)2((71,11)1@ - (nf%)?’k?’)
2 (n+1)+ 3)2(:%)
P B z'n—1 m—npg) TS
(4) 3., (2+1)?
> Z132 22-0.98
= eXp<2 )(3+ %)2
(A): Since n > 2, we have
n n
— >]1]— ——— >0.98.
n—1 (n—153132~  (2—-1)%132 —

Therefore, the third term of Dy 1(d, wy) in (4.5) is upper bounded by

a’d

a’d 1

( 6 )(asd+ )2 —.
2\/a2(s—1) @y 252 271-10

4a%Q

(9.22)

a?—1



Dy, (d,wy) < 2023(2(5)2(

By plugging (9.21) and (9.22) into (4.5), we can bound Dy 1(d, wy) of Lemma 4.7 as follows.

d 1
- l)2+2(1_i)+2a2051)
a a?
5 1 5 1
2(,5 72 D2 _ 9y s
(@ d)’ (1 + 5)°Q( — (1~ Ga'd) T
& a’d ., 1
+ 44> a’d + -
Q(2\/a2(51) +a25021)( 2 =) 1—10-37
d
+2(a2(§)2)+1
(4) d.5,5.5 50
< 9 2s 2= 2 el 2
< 20 <<2><3> + o +20%0%)
(@ (L yQiL )
12 120,071 — 10—42
a’d
a’d 1
+ 4a® 6 a®d + -
Q(z\/GQ(S—l)g'? +a25021)( 2 5 ) 1—10-%7
d
+2((12(§)2)+1
B) d. o 5 50
< 2 2s 2 _ 2 _ 2 2
< 20 (2(5)(5)° + o7 +20%0%)
17, a’d 1
5d
+4 ( ) (12) Q(120v2)1—10*42
X Sd Sd 1
+da*(ad+ 5 QU — ) o
124/38000 *
d
wod o5y 50
< 2d° (2(5)2(5)2 + o7 +2a%02))
17 5 1
+4a(5d)( ) T
12\Fa,,2
Sd 1
4a?(a®d 2
+da*(a%d + 2)@(12 ST
d
+2(a2(§)2)+1
100 a?d?
=1 - 23 b 2$d2 4a 2(‘,»4,_1) 2
+ 21 + 9 2 +
17 1 1 a’d
4(— 2 9 2((9+1)d2
+( (12) T—10 2" 1f10*37)a Q(m\/ﬁg )
51 Y%v2

1 2 a2d?
<1499 20 | 2 20 + 40>t V62 1170362 @2 Q(

a’d )
- 21 9 2 19 /%%2

382



100 25
=14 ——a*® + ==4-80000a>C~V P +2-80000P + 4a*** V2,

21 * 9
“lyv4. 8000OP

12\/7%2

+— 9 21662~ Y max(a?, a*0?)) + 8 max(a?, a*c?)) + 4a*CtVo?

+17.03 -4 - 80000a* P - Q

(©) 100 ,, 25
< - S
<1+ 51 a

1 1 a266=14 . 80000 P

/2 @2~ L/AS0000P SOOOOP xp(— 2 144 %52,

+17.03 - 4 - 80000a** P )

12 21 0'1;2

1 2
ﬂa% + —516a2(3_1) max(a?, a*c?,) + 8 max(a?, a*c?)) + 44>V o2

_
T 9

V70 14 - 80000 a2e-0p 50a2(8—1)P

17.03 - 4 - 80000 ————— —(= —50 2p —
+ m TSOOOO exp( (2 144 . % ) 032 )a exp( 012)2

D) 100 25
<1+ iazs + — 9 2166~ Y max(a?, a*c?)) + 8 max(a?, a*c?)) + 40>tV o2

V70 1 4-80000 1 o 50q2(—1 p
+ 1703 . 4 . 80000W eXp(—(§@ — 50)770)Cl Pexp(—T)

1 2
<1+ ga% + 3516a2(8_1) max(a?, a*0?,) + 8 max(a?, a*c?)) + 44>V o2

50a2C-1 P
+831.473...a% P exp(— ———y——)
042
100 25

§1+(i+—16+8+4)a max(1,a’0?,) + 831.473...a%" P exp(—

50a2(s=1) p

2
02

50q2(s-1) p

< 1+ 61.206...a% max(1,a’0?;) + 831.473...a*° P exp(— 5
Ov2
50a*~V p

2
02

< 1+ 62a* max(1,a%0?,) + 832a* P exp(—

s 50a%¢~1 P s
< 832a* Pexp(—T) + 63a®* max(1,a*c?))

(A): a >2.5.

(B): From the assumption a

2= max(1,a%02,) < 02, < a** max(1,a%02,), we have

. 125 s 46
a2 Uﬁ +a*0?, < ﬁmax(cﬁ(s Y, a*0})) < 5012;2'

max(a®,a’c?))

20000 and Lemma 4.5.

I\/ \/\

: P
: P

a2(s 1)
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This justifies the upper bound on Dy (P, P»). By the definition of d and Lemma 4.7, P;
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is upper bounded by 80000P. P» of Lemma 4.7 can be upper bounded as
T os
Py < 8a®Dy 1 (d, wy) + §a2(‘(’+1)d2 + 4a%0?,

7
=8a?Dy 1 (d,wy) + 74 80000a* P + 4a*c2,

50a2¢—1) P
< 8a?(832a** P exp(—a72) + 630 max(1,a?0?)))

02

2

7
+ 54 -4a®* max(a?, a*c?)) + 4a%a® max(1, a*0?))

50a2(—1) P
= 8a%(832a** P exp(—a72) + 70.50% max(1,a?c?)))

Jv2
50a2s=D p

2
02

= 66560 P exp(— ) + 56426+ max(1, a%0?)).

max(a®,ac2,)

where the inequality comes from the assumptions P < 50000 and 02, < a? max(1,a%02,).

This finishes the proof.

9.5 Proof of Proposition 4.8

As the proof of Proposition 4.7, by Lemma 4.14 it is enough to show that there exists ¢ > 1
such that DU(CﬁI,cTD;) <ec- DL(E,ﬁ;).

(i) When P, < #’Z{U and Py < g;ggs
Lower bound: By Corollary 4.2 (b)

DL(ﬁ].,,PE;) = 0.

Therefore, we do not need the corresponding upper bound.
— 2 — 4 2
(ll) Whenplgﬁandpgz%
Lower bound: By Corollary 4.2 (a)

Dy (Py, P5) > 0.008a2%02, + 1.
Upper bound: By Lemma 4.15

(Dy(P1, P2), Py, Py) < (a2032 +1, O,a4012,2 + a2032 +a?)

IN

2 2 4 2 2 2 2 2
(a Oy2 + 13070’ 02 +a 02 +a 01}2)

2
(a2, +1,0,(1+ ﬁ)a4032)

< (a*02y +1,0,1.32a%02,).

IN

Ratio: Thus, ¢ is upper bounded by

1 1.32

— ).
0.008" 55560

¢ < max(
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max (a2, a*o?,) and Py < 0.0457a2(1) Py exp(— w)—i—

Tv2

a2 D 1
(iii) When =52 < P1 < 55500
0.0113a2¢+D max(1, a?02;)

Lower bound: By Corollary 4.2 (d)
DL (ﬁla }3;) =

Therefore, we do not need the corresponding upper bound.
2 — — — 1)
(iv) When % <P < 20(1)00 max(a?, a*o2,) and Py > 0.0457a>C+tD Py exp(—%)—i—
0.0113a>¢+1) max(1, a%0?2))

Lower bound: By Corollary 4.2 (c)

> B 25, 5002~ Py 2s 2 2
Dp(Py, Py) > 0.2541a™° Py exp(——————) + 0.066a°° max(1,a"0y;) + 1

0v2

Upper bound: By Corollary 4.3
50(12(571)}:

(Dy(P1, Py), Py, P2) <(63a% max(1, a®02,) + 832a%° Py exp(— T),soooofi
_ 2(s—1) P,
, 66560257 P, eXp(f50a721) + 56442V max(1, a%02)))
UUQ

Ratio: ¢ is upper bounded by

832 63 6656 564
Cc S max( ) ) ) ) )
0.2541° 0.066 0.0457° 0.0113
(v) When Py > o005 max(a?, a*c))

Lower bound: By Corollary 4.2 (e)
Dy (Py, Py) > 0.295 - max(1, a%02,)
Upper bound: By Lemma 4.15

(DU(Pl,PQ),Pl,Pg) < (CL 0' vl + 1 CL O'Ul +a le +CL 0)
< (a®0?, 4+ 1,2a%2, + a*,0)
<

(2max(1,a’0?;), 3 max(a?, a*c?)),0)

Ratio: ¢ is upper bounded by

3

20000

¢ < max(5o05

Therefore, by (i), (ii), (iii), (iv), (v), the lemma is true and ¢ < 1.5 x 10°.

9.6 Proof of Proposition 4.4

Since a goes to infinity, let a > 10000. We will first show the best linear strategy perfor-

mance is O(a?).
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e The best linear strategy performance is ©(a?): Following the same steps in the proof of

Lemma 4.8, we can lower bound the average cost as follows:

it~ Efge?ln] + rd o]

w1,uz€L]; 0<meN

— inf - ((GrEWHL) + 5riERd ) + B3] + (GrEfE2) + 5riERd ) + Bl + -

lin

+ (%TlE[u%[N -3+ %TlE[uf[N —2]] + ¢E[z2[N —1])))
N -3 . 1 9 1 ) )

> 500, (GriBluE] 4 5Bl 2] + gEle*(3])
N -3

. 1 2 1 2 2
=~ inf (iaE[ul[l]] + ia]E[ul[QH + E[z*[3]).

’
uy,uz€Ll];

In the similar way of Proposition 4.6, we can further justify that setting w[l] = 0, w[2] = 0 only

decrease the quadratic cost. Then, at time 1 we have

Let

At time 2 we have

z[2] = ax[l] + ui[1] + uz[1]

aw[()] + knw[O] + le(’U)[O] + ’UQ[].])
yi[1]
y21]

aw[O] + kuw[O] + k:gl(w[O} + ’Ug[l])

aw[O] + knw[O] + kgl(w[O} + ’Ug[l]) + v [2]

Therefore, we can put

U1[2] = klg’LU[O] + klg’l)g[].]

u2[3] = koo (w[0] + v2[1]) + kog(aw[0] + k1w[0] + v2[2])
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At time 3 we have
z[3] = ax[2] + u1[2] + uz(2)
= a2w[0] + aknw[()] + akzl(w[()] + 112[1]) + klgw[()} + klgvg[l}
+ kQQ(U)[O] + UQ[].D + kgg(a’u)[O] + kll’UJ[O] —+ U2 [2])
= (CL2 + aky1 + k’lz)’w[O] + klgvg[l] + (ak21 + k’gz)(w[O] + 7)2[1]) + ]{?23((1,’11)[0} + /€11’w[0] + V2 [2])

= (a2 + aki1 + k12 — klg)w[O] + (akor + koo + /ﬁg)(u}[O] + Ug[l]) + kgg(aw[()} + /€11U)[0] + 1)2[2])

Therefore,
E[z?[3]] > (a® + aki1 + k12 — k13)? M M S E[w([0]|w([0] 4 v2[1], aw([0] + k11w[0] 4 v2[2]]

(i) When E[u?[1]] + E[u}[2]] < fa?

The condition implies
E[(k11w[0])?] + E[(k12w[0] + k13v2[1])?]

1
= ki) + ki + kiza < —a?

16
Thus,
1
‘k11| < Za
1
‘k12| < Za
1
‘k13| < 1 a
Since a > 10000 we have
2 2 2 2
9 5 @ a a a
k kio—kiz>a" — — — — — —_ =
a” + ar1 + k12 13 =2 @ 1 1 1 1

Moreover, we also have
MM SE[w[0]|w[0] + va[1], aw[0] + k11w[0] + v2[2]]
> MMSE[wl0][wf0] + v2[1], 2 (0] + va[2]
> MMSE[wl0]| % w[0] + vo[1], 2 (0] + va[2]

:MMﬂmmﬁ%wm+wm+wm

(e
(102 + 2a
_ 2a
B (197“)2 +2a
2 1 8

>__< - _
T (2)2+2a  33a
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Therefore, in this case,

1 1 1 8
f  Z—aE[u2[1]] + —aE[u?[2]] + E[z3[3] > — - 3
ul,erle aElui] H+2a [ui[2]] + E[z7[3]] > 6 33°

(ii) When E[u[1]] + E[u?[2]] > {50 In this case

1 1 1
inf  —aE[ui[1]] + aE[ui[2]] + E[z*[3]] > —=a®
u17qule 2 32

Therefore, by (i),(ii),

1 1 1
inf  —aE[ui[1]] + aR[ui[2]] + E[z*[3]] > —a® (9.23)
ul,uQEle 2 66

e The optimal average cost is O(a?loga): Now, we will show the average cost, O(a?loga),

is achievable by the nonlinear 1-stage signaling strategy. Let a > 20000. Since max(1,a%02,) <

vl
2 2 2 2 aloga 1 2 _ aloga -
0o < a”max(l,a’0;;) and 55 < 5% < oonesa?, we can set s = 1 and P = “52% in Corollary 4.2.

Then, by Corollary 4.2, the average cost is upper bounded as follows.

ul,uznelLMgl N Z q:z: +7’1u1[ H

0<n<N
aloga 50408 80000a log a
< 2 _ 25 2
< 832a 55 exp( P ) +63a” +a 95
1
<8322 °5ga +63a% + %ai’ loga

< 3297a% log a (9.24)

In short, by (9.23) the optimal linear strategy cost is lower bounded by Q(a?) . By (9.24),

the nonlinear 1-stage signaling strategy can achieve O(a?loga). Thus, their ratio diverges as a goes
to infinity, which finishes the proof.
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Chapter 10

Appendix for Chapter 5

10.1 Proof of Corollary 5.1, 5.2, 5.3

Proof of Corollary 5.1 of Page 230. For simplicity, we will only proof for the case when a = 1. The
proof for the case of a = —1 follows similarly by replacing a with —a.

In this case, Lemma 5.1 reduces to that for all |1 — k| < 1,

2 2
PSk%W—ZE):kQ(%iH—FZE—EE): % (10.2)
where
o, _ L+ VITET
2
Let k* € (0,1] be a constant such that max(1,Xg) = 5-1—. Here, we can see that such
k* always exists since max(1,Xg) > 1 and ﬁ is a decreasing function on k. Let k € (0, k*].

Then, we can see since 0 < k* <1, |1 — k| < 1. Then, (10.1) and (10.2) are again upper bounded as

follows:

DUU(P)Zﬁ-FZE
1
2k — k2
! 1
RET R Ty

2

< _ =
— 2k — k2

+ max(1,Xg)




where the last inequality follows from 0 < k < k*.

k2
P_2k7k2

209 _ 1.)\2
_ K@k
= 2k — k2
=2k — k2

where the inequality follows from 0 < k& < k* < 1.

Let’s put t = 2k — k*. Then, we have (D, (P),P) < (2,t) where t € (0,2k* —

Therefore, ¢ € (0, m] This finishes the proof of the first claim.

When o, > 16, we have

— 2 2
5, = 1+ /402 +1 - Vo2 +1

2 2
402 + #O’%
< = 1.000488...0,
< 1.00050,,.
Therefore, the range of ¢ at least includes (0, W] and the second claim is true.

When o, < 16, we have

- 1+VA 167+ 1

Yg 5

= 15.0078105... < 15.008.

Therefore,the range of t at least includes (0 and the third claim is true.

#]
> 15.008
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k*Q].

O

Proof of Corollary 5.2 of Page 233. For simplicity, we prove only for the case when a > 1. The

proof for the case of a < —1 follows similarly by replacing a with —a.

Proof of (i): Let’s put k = a — 1 in Lemma 5.1. Since |[a — a + 1| = [1] < 1, the

power-distortion tradeoff in (5.3) still holds. Thus, we can see that

(2a(a— 1) — (a— 1)?)p +1
Dy(P) < 1 (%)2

and

azfl2 9 a?
by
a ) T

P<(

) — g
< (a®> = 1)?°Yg + (a® - 1),

which finishes the proof of (i).

Proof of (ii): We will divide into two cases depending on Y.
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Case 1) When max(1, (1 + a?)Sg) > ﬁ

In this case, the domain for ¢ is an empty set and we do not have to prove anything.
Case 2) When max(1, (1 +a?)Zg) < ﬁ
Since max(1, (14 a?)Xg) < % there exists A* € [0, 1] such that

e
1

max(1, (a* + 1)Zg) = - —a)

Let’s put K = a — 1 + A in Lemma 5.1 where A € [0, A*]. Then, we have the following
upper bound on D, (P) and P.

2ak—k2)23+1
1— (a— k)2
_ 2ak — k? St 1
T 1—(a—k2 P T 1= (a—k)?
a?—1+1—(a—k)? 1
= Z
—@—k? P 1 (akp

a? -1 1

Do, (P) < ( (10.3)

4 a?-1 1
—_— 1)t
1_(%)2+ ) E+1_(a_k)2

1
=(@®+ )X+

1—(a—k)?
1
1—-(-A)2

(B) 5 1
< max(1, (a* 4+ 1)Xg) +

=(a*+1)Sg +

1 n 1
(T —a 1

1
ST AR 1T-(-Ap
2
T ar (10.4)

=
o
IN
B>
IN
Ay
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=
o
IN
g
IN
B>
*
IN
Sy

1—(a—k)?
2(1]{7—]62)2]5-‘1-1
o
ST e e )
(4) 2
< P
1—-(-A)2

a

— 1 2

P < E*( )

(B) 1 2
< (a—|—Aa—a—|—A)2

= ((a+1)(1 - 2 +A))?

2(a+1)%(1—14+A)2
1—(1=A)

2a+1)%(1-1+A)
1+1-A

© o1 1
< 2a+ 11—+ A1+~ - A)

1
—2a+ 11— (2 - A
a
(A): This comes from the comparison of (10.3) and (10.4).
(B): Since A >0, a > 1, we have a — % + A > 0. Moreover, Aa > 0.
(Cro<A<I 1+1-A)>1.
Therefore, by putting ¢ = 2(a + 1)?(1 — (£ — A)?) we can conclude

(Do, (P),P) < (————

(a+1)2(1 — (£ — A*)?)]. Moreover, by the
L), st

Since A € [0,A*], we have t € [2(a + 1)2(1 — (2)?),2
2
( > max(1,(a?+1)Xg)

a
definition of A*, it is equivalent to t € [2(a 4+ 1)*(1 —
This finishes the proof of (ii).

When 1 < |a|] < 2.5, (i) is upper bounded as

(Do, (P).P) < (6 + 1)8g + .

1
62 2 2 2
(7252;5—1— — ,(a* = 1)°Eg + (a® = 1)).

(a®* —1)*Sp + (a® - 1))

Thus, we get (i°).
When 1 < |a| < 2.5, (ii) is also upper bounded as

A(la| + 1)2

(Do, (P), P) < (R

)
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Moreover, for 1 < |a| < 2.5

L1, 2((a] + 1)’

2(Jal +1)7°(1 ~ (a) )st< max(1, (a2 + 1)2g)
1, 2(|al +1)?

()2(1+ m) (a®=1)<t< max(1, (a2 + 1)Sg)

8
o<t — —— |
GRl -1 st s A 7255

Therefore, we get (ii’). O

Proof of Corollary 5.3 of Page 235. For simplicity, we will only proof for the case when 0 < a < 1.
The proof for —1 < a < 0 follows similarly by replacing a with —a.

First part of the lemma easily follows by putting £ = 0 in Lemma 5.1.

Let’s prove the second part of the lemma. Since the second part of the lemma assumes

1—a?>

Since 0 < k* < aand 0 < a < 1, for all k € [0, k*] we have |a—k| < 1. Thus, by Lemma 5.1,

Yp < 72, there always exists k* € [0, a] such that max(1,¥g) = W

for all k € [0, k*] we have the following upper bounds on D, (P), P.

(2ak — k*)Sgp + 1

D, (p) < B (10.5)
@ (1 - a? +2ak — k*)Lp + 1
- 1—(a—k)?
(1—(a—k)»HEp+1
T 11— (a—k)?
e (106)
(B) 1 1
T 1—(a—k*)? 1—(a—k)?
(2) 2
~ 1—(a—k)?
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(20,]€ — kQ)EE + 1

P <k? -X
< K 1—(a— k)2 )
(A" 1
< K+ ———s -2
< k( E+1_(a_k)2 E)

k2
T 1-(a—k)p2
(B) (1—a+k)?
= 1—(a—k)?
_l-a+k
S l4+a-—k
@)
< l—-a+k)(l+a—k)
=1—(a—k)?

(A%): (10.5) < (10.6).
B)0<a<land0<k<a.
(C)r0<a<land0<k<a.
Let’s put ¢ = 1 — (a — k). Then, we have (Dg, (P), P) < (2,t). Moreover, since 0 < k <
k* <a,tel—-a?1~-(a—k*)?]. Furthermore, since t, t € [1 — a*52 %} This finishes the

>’ max(1,Xg

proof of the lemma. O

10.2 Proof of Corollary 5.4 and Proposition 5.1

Proof of Corollary 5.4 of page 246. For simplicity, we first prove for the case when 1 < a < 2.5. The
proof for the case when —2.5 < a < —1 follows similarly.
First, let’s upper bound ¥; and X3 of (5.27) and (5.28). When |(a? — 1)02, — 1| > [2a041],

we have

(@ = 1o, — 1+ /3((@ — 1)o?, — 1)
2a2
(1+v2)|(a* =)o, — 1]
2a2
_ (L4 V) max(L, (@ — 1)o%,)
- 2a?

When |(a? — 1)02; — 1| < |2a0,1|, we have

2 <

<

(10.7)

12a0,1] + v/ (2a0,1)% + 4a202,
2a?
(1+v/2)2a0,1

= (10.8)

Therefore, by (10.7) and (10.8), we can conclude

(14 v2) max(1, (a® — 1)02,, 2a0,1)
2a?

¥ <

5, < . (10.9)




395

Likewise, we also have

(1+v/2) max(1, (a? — 1)02y, 2a0,2)

Yo <
2= 2a?

We also have for all £ > 3

a2(1 _ a—z(k—l)) a2(k—1) -1 (a _ 1)(1 et a(2k_4) T a(2k—3))

1 _g-2k—2  — g2k—2) _1 (a—1)(1+ -+ al2k=5)) (10.10)
14 -4 q2k=4) 4 q(2k=3)
- 14+ q2k=5)
a(2k=1) 4 4(2k=3)
1+ -+ a5
(A) q(2k—4) +a(2k—3)
= q(2k—6) 1 q(2k—5)
=1+4a? <1+25%=7.25. (10.11)
(A): This comes from k > 3.
Then, let’s prove the statements of the lemma.
Proof of (a):
Since ¥; > 150 and Yo > 150, there exist k1 > 3 and ky > 3 such that
a2(k172) -1 21 a2(k171) -1
_— < 10.12
1—a2 _24< 1—a—2 ( )
a2h=2) _ 1w, g2ke-1) _
_ < - —
1—a2 — 24 1—a2
We will evaluate Lemma 5.3 with these k; and k2, and increase k arbitrary large.
Moreover, since X1 > 150 implies 0,1 > 1, (10.9) further reduces to
5, < (1+v/2) max((a® — 1)02,, 2aav1). (10.13)
2a2
Let’s upper bound I of Lemma 5.3. First, we have
a2(k172)(1 _ a*?(k‘lfl))Q
(1—-a=2)2
(4) a2(k1—2)(1 _ a—2(k1—1))
- (1—-a2)2
® a?k1=2)(7.25072(1 — a=2(F1=2)))
- (1-a72)2
a?h1=2) 1 1
=7.25a"?
™ 1—a=2 "1-a2
7.25%; a2 _7.25%; 1 (10.14)

- 24 1—-a2 24 a2-1
(A): For ky >3,1—a 2F-1 <1,
(B): By comparing (10.10) and (10.11), we get 7.25a=2(1 — a=2(F1=2)) > (1 — 21— 1)),
(C): This comes from (10.12).
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Moreover, we also have

a2(k?172) (1 _ a72(k171))2

(1-a72)2
@ o> 72(7.25072(1 — o> M1 72))?
- (1—a—2)2
(B) a2(k1—2)(1 _ a—2(k1—2))
< 7952 2
s 725 1—a2
(© 7.25% .,
< (—)~. 10.15
< (=) (10.15)

(A): By comparing (10.10) and (10.11), we get 7.25a2(1 — a=2(k1=2)) > (1 — g=2(k1—1)),
(B):a>1andk; > 3.
(C): This comes from (10.12).

By merging the results so far, we can conclude

a2(k1—2)(1 _ a—2(k1—1)>2

10.16
(1—a=2)2 ( )
(4 725%, 1 7.25% .,
< 10.1
< min(— ———: (=) (10.17)
) i (7.25 1 (1+V2)(a®-1)0% (7.25)2((1+\/§)2aav1)2)
X
- 24 a?2 -1 2a2 24 2a2
B 725142 725 5, 1+V2 5 ,
= max(— = — o (5 ) (=) )oun
©) 7251++2 7.25
< max( = ———, (5, )2(1+v2)%)a3,
< 0.531902, (10.18)

(A): This comes from (10.14) and (10.15).
(B): When (a? — 1)02; > 2a0,1, by (10.13) we have X1 < % Thus, by plugging it into
(10.17), we get

725 1 (14++2)(a® - 1)02;
24 a2 -1 2a2 ’

(10.16) <
Likewise, when (a? — 1)02, < 2a0,1, by (10.13) we have ¥; < (H\/;# Therefore, by plugging
it into (10.17), we get

7.25
24

(14 v2)2a0.,,
2a2

)2

(10.16) < ( )2(

(C): Because a > 1.
In the same ways, we can also prove that

a2(}€272)(1 _ a72(k271))2
(1 —a2)2

< 0.531902,. (10.19)
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Therefore, by plugging (10.18) and (10.19) into I of Lemma 5.3, we can upper bound I by

I< (ky —1)log(1 +

531
F—705319)

< log %5319, (10.20)

Let’s upper bound I’(E). First, we have

9g2(k2—1-F) 1 — g 2(k2—k1) 5 . 1 — g~ 2(k2—Fk1) 1 _ 4—2(k2a—k1)
1—a—2 1—a2 1—a2
(A) 2 2(k;2 1 k) 1 _ a72(k27k21) a2(k71)(1 _ a72(k171))
o i
= 1—a2 1—a2
4 9g2ke—1-k) 1 = O S G
1—a2 1—a2
_ 2a2(k272)(1 —a k) (1 —a?h) I C P a2l
1—a2 1—a2 1—a2
_ 2a2(’“2—2)(1 _q2ka=k1) | _ g=2(ki-1) 4 g—2(ki—1) _ g—2(k2—1)
1—a2 1—a2
(B) [ q—2(k2—1)
< 2a2(k2 2)( 1— g2 )2
(©)
< 2-0.531902,. (10.21)
(A): Since I >0, ¥ < a2(k_1)%
: It comes from .19).
C):1 fi 10.19
We also have
9g2ke—k1-2) 1 = e e o [ af(kfkl))jg
“ 1—a2 (1—a"1)2 !
(é) o 2(ka—h1—2) 1 — q~2(ka=k1) (1 — g=(ka=1=k1))(] — q=(k=k1)) 24(q2 — 1)2 g2(1—1) _ |
= 1—a2 (1—a 1) 40000 1-—a 2
®) 2a2<’“2*2>(1 — a2k~ 2472 (a? —1)2
= 1—a2 ’ 40000 (1—a 1)2
B 2a2(k2—2)(1 — g~ 2(k2-1) 224(a + 1)2
o 1—a2 40000
48(2.5 + 1)2
< Wo.%wa@
= 0.0078189302,. (10.22)
A): Since we have ﬁl < (a®-1°%, and X1 < 24% by (10.12).
20000 I—a

(B) Since kg -1 2 kg — kl and 2(k2 — 1) 2 (kg —-1- kl)
(C): By (10.19) and 0 < a < 2.5.



398

Therefore, by (10.21) and (10.22), we can bound I’(P;) of Lemma 5.3 by

~ ky—k 1
I'(P) < 2 —"Llog(1 + (2-0.5319 4 0.00781893))
2 kg — Ky

cke— kg (1+ (1.07161893))

=Ty U T LT Y

< %log eH0TIT, (10.23)
Moreover, we have

20—k -1 (L= a” k)2 B
(1—a-1)2

@ oy (L= FTR)224(a® — 1) 27 — 1
- (1—a1)2 40000 1—a2
B a2(k—k1—1)1 — 2= (b=k1) 4 g=2(k=k1) 24(g2 — 1)2 g2(F1—1) —
- (1—a"1)? 40000  1—a?
(E) 20—k =) 1—a=2(k=k1) 24(g2 — 1)2 g2k1-1) _ 1
B (1-a=1)2 40000 1—a2

az(k—2)(1 — a—2(k—k1))(1 _ a—2(k1—1)) 24(@2 _ 1)2

(1—a2) £ 40000(1 — a—1)2
- a2(k72)(1 _ a72(k:71)) 24(&2 _ 1)2
= (1—a2) 40000(1 — a—1)2
B a?kF=1D (1 — g=2(-1)) 24(a + 1)2
(1-a72) 40000
© a®F=D (1 —a72(71)  24(2.5 4 1)°
- (1-a"2) 40000
a?F=D(1 — o=2k=D) 147
= : 10.24
1-a2) 20000 (10.24)
(A): By (10.12) and Py < -1
(B): Since k > k.
(C): Since 1 < a < 2.5.
Likewise, we can also prove that
1— —(k—k2)\2 __ 2(k—1) 1— —2k—1) 14
a2(k7k271)( a _ ) P, < a ( il ) . 7 ) (10.25)
1—a1)2 (1—a?) 20000
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Finally, by plugging (10.20), (10.23), (10.24), (10.25) into Lemma 5.3 we have
Dy(Py, P2)

1—a—2

az(kfl) 1—a—2(f12—1) + ag(k,kl) 1—a—2(k'3;k1) + az(k*]ﬁ) 1—q—2(k—k2)
> ( 1—a l—a
o 22(I+1'(P1))

o (l_af(ktfkl))QN o (1_a7(k7k2))2,\,
_\/a2(k k1 DWH_ q2(k—ks I)WP2)2++1

- a?kF=1 (1 — g=2(=1)) 1 147 147 .,
1— a2 ( ottt ~ \ 20000 ~ V 20000+ !

az(kfl) (1 _ afz(kfl))
>

- 1—a2

0.02969 + 1.
Therefore, by choosing k arbitrary large, we have DL(E, E) = 0.
Proof of (b):

Like (a), since ¥ > 150 and X5 > 150, there exist k1 > 3 and ko > 3 such that

a2(k172) _ 1 El a‘2(k‘171) _ 1

1—a2 — 24 1—a2 "~
q2(k2—2) _ 1 Yo 2kl g
_ < - —

1—a2 — 24 1—a2

We put the parameters of Lemma 5.3 as such ki, ks and k = ko. Then, the lower bound of Lemma 5.3
reduces to

o Y+ a2(k7k1)%(’i;kl) (1 — g=(k=k1))2 ~
—a _ 2k—ki—1) = % ) P2
Dr(P, Py) > (\/ 2l (B a 1 a1 P37+ 1

Since we choose k; and ko in the same way as (a) and have the same bound on ﬁl, we still
have (10.20), (10.23), (10.24) which are

I < log %5319,
— 1
I'(P) < §logel‘0717,

20—k =1) (1— a*(kflm))QF/ a2(k—1)(1 _ a72(k71)) 147
1> . .
(I —a7t)? (1-a2) 20000

Therefore, we can conclude

-DL(ﬁlv ﬁ;)

q2k—1)1=a=2®17D | o(k—ky) 1mam2* k1) (1 —q(k—hk1)2
1—a-2 1—a—2 ke — a ) 2
= (\/ 52T+ T7(P) —yeth Aoz e+l

- a?F=1 (1 — g=2(k=1)) 1 147
= 1—q-2 ( £2:0.5319+1.0717 20000)+ +1

22 1 147 2
> M(\/e2-0.531%1.0717_\/20000)++1

> 0.002774%, + 1.
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Proof of (c):
We will put k&1 = k2 = 1 in Lemma 5.3 and increase k arbitrary large. First, the lower

bound in Lemma 5.3 reduces to

S 1 — g—2(k—1) a2(k=2)(1 — g—(k=1))2 — a2(k=2)(1 — g—(k=1))2 —
Dy (P, Py) > (\/az(kl) . \/ (1—a1)2 P - (1—a1)? P2)3-+1

1—a2
(10.26)
Here, we have
a2k=2)(1 — af(kfl))2/p;
(1—a=1)2
- a2(k—2)(1 2~ (k—1) + a—Q(k 1)) (a2 B 1)
(1—a-1)2 20
(A) CL2(l~c—1)(1 _ a—2(k—1)) 1
< 1 ) L
= 1-a2?) (1407755
(B) 1 a2(k—1)(1 _ a—Q(k—l))
< = 12 (10.27)
(A): Since k > 1.
(B): Since a > 1.
Likewise, we can also prove that
a2k (1 — q=(=1)2 1 q2k=1)(] _ g=2(k=1))
(1—a 1) 2>y 1—a7?) (10.28)
Finally, by plugging (10.27), (10.28) into (10.26), we get
~ 1 — g 2(k— 1)
Dy(Py,Py) > a*F D T -
Therefore, by choosing k arbitrary large, we have DL(Pl, Pg) =00
Proof of (d):
Let k1 = ko =1and P = max(jﬁl, P,). Since P < 75, we can find k£ > 2 such that
(=1 _1 1 -1
a ak
—al =3P “1—al (10-29)

By setting the parameters of Lemma 5.3 to such k1, ko, k, the lower bound in Lemma 5.3 reduces to

— 1 — g—2(k—1) a2k=2)(1 — g~ (k=1)2 ~ a2(k=2)(1 — g~ (k=1)2 ~
> 2(k—1) - P — Py)?
Du(Pr, ) = (\/“ = \/ d—al)p 1 d—a1)? )5+
(10.30)
The first term of (10.30) is lower bounded as follows:
a2(k71) 1— a72(k71)
1—a2
(A4 aF —1 1
T l-all4a?!
B 1
> (10.31)

1.
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(A): k> 2.
(B): (10.29) and a > 1.
The second term of (10.30) is upper bounded as follows:

a2(l~c—2)(1 _ a—(k—l))2~ (A) (ak—l _ 1)2~ (B) 1 — 1
P < P < P <
(1—a1)2 Y1 —aeH)27 < 900P27 T 900P

(10.32)

(A):a>1.
(B): (10.29).
Likewise, the third term of (10.30) is upper bounded as
a2(k=2) (] _ g~ (k=12 __ 1
(1(—(1—1)2 L < 900P
Therefore, by plugging (10.31), (10.32), (10.33) into (10.30), we conclude

Dr(Pi,Po) 2 V \/90 \/90

> 0. —+1
,000389P+

(10.33)

Proof of (e):
Since Y5 > 150, we can find k£ > 3 such that
2(k—2) _ 1 ) 2(k—1) _ 1
S Py . (10.34)
1—a—2 24 1—a—2
Let ks = k and k; = 1. By putting the parameters of Lemma 5.3 with these parameters, the lower

bound of Lemma 5.3 reduces to

o q2(k—1) 1=a=2:-1) 2(k—2) (1 — g—(k—1)
D,(Pr. ) 2(\/ N i Gl e P (10.35)

22II(P1) (1_0/_1)2

We will upper bound I'(Py). First, since we chose k in the same ways as ko of (a), (10.21)
still holds, i.e.

2a2(k—2)1_a72(kl)2 1 9g2(k=2) 1—q2(-1) 1 _ g=2(k-1)
l—a” 1—a2 1—q-2

< 2-0.531902,. (10.36)

Moreover, we have

—2(k—1) (1 _ af(kfz))(l _ af(kfl))w

1—a2 (1—a1)? !
4 T a 2D (1 —a=*2)(1 —a=*) 1 1-0a72
- 1—a2 (1—a"1)2 24 q2(k=2) _ 1

(B) 1 a—4(a2(k—1) _ 1) (1 _ a—(k—l))Q

<

T 12 a2(k-2) (1—a1)2

2(k:72)(1 _ a72(k71))2
(1—a-2)2

< 1 2,28
< 2( +a ")’

(D) 1 ,

< 50.5319%2 (10.37)




402

(A) P < & < et
(B): 1 —a =2 <1 —q k-1,

(C): Since k > 3 and 1 < a < 2.5, we have
(a2(k—1) _ 1) < (a4(k—2) _ 1)
(@)(aQ(k_l) _ 1) < (a2(k—2) _ 1)(a2(k—2) + 1)
(:>)(a2(k71) _ 1) < (a2(k72) _ 1)(ak71 + 1)2
) a2(k 1)( 2(k—2) _ 1)<1 + af(lcfl))2
)a ( 2(k—1) 1)(1_a (k— 1))
(@FT 1)1 - a2
(D): This comes from 1 < a < 2.5 and (10.19).
Therefore, by (10.36) and (10.37), we have

1 1
log(1 + ﬁ@ -0.5319 + 50.5319)’“—1

2(k—2) (1 _ a72(k71))2

—1\2, 2@
<(l4+a ")a 1 —a2)y

3

I'(P)

IN

1
og(1+ — (1. 2411))k~

log e!-2411, (10.38)

IN

N N~ N~
=

We also have

(A) a—z(a2(k—2) _ 1)2
<
= (1-a2)2

(B) Sy, ~
< (=)°4P
< (24P

© %,
< —=
- 144
(A): This comes from 2(k —2) > (k —1).
(B): By (10.34) and 1 < a < 2.5.
(C): Since P, < 2%2
Therefore, by plugging (10.34), (10.38), (10.39) into (10.35), we get

(1+a )P

(10.39)

o q2(k—1) 1= a*2<’f2 ) D
Di(P1, Py) > 1 =292 4
L( 1, 2)—(\/ 221,(131) 144)++
by by
> (|t — -\ [22R 41

924 . 921'(P1) 144

[1 1,
= B\ gperam ~\ 1) !

> 0.000697632 + 1.
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Proof of (f):

Since ﬁ; % there exists k > 3 such that

a2k=2) _ 1 1 a2(k=1) _q

<—=K< 10.40
l—a? = 4p 1—a2 ( )

Let k3 = k and k; = 1. By putting the parameters of Lemma 5.3 as these parameters, the lower

bound of Lemma 5.3 reduces to

q2(k-1)1=a20 70 \/a2(k—2)(1 — g~ (k=1))2

P, P) > 1o P2 +1 10.41
DL(P17P2) sl (\/ 221/(P1) (1 _a_l)Q 1)+ + ( 0 )

We will upper bound I'(P;). Since we assumed P% < ¥, by (10.40) we have % < z2.
Therefore, (10.21) still holds and we have

1— 2(k—1) 1— 2(k—1) 1— —2(k—1)
2a2(k72)1‘i7a2+2 q2(k—2) 1Cia . 1‘1@_2 < 2-0.531902,.
Since P, < 2 7 W, following the same process of (10.37) we have
902(k—3) 1—a2® D (1 —a=* 21 —a=*D) P,
1—a2 (1—a"1)2
1 2
< 50.531903,

Therefore, I’ (E) is upper bounded by

1
log(1 + ;—(2-0.5319 + o 5319)k~

1
log(1 4+ ——(1.2411
g1+ —— (1.2411))""

log e!-2411 (10.42)

IN
N N~ N~

Moreover, we also have

—a
(1—a1)2 A
—2( k=1 _ 1\2 __
_a(a 1) P,
(1—a1)2

(A) a—2(a2(k—2) _ 1)2
<

=T a2
(B) 1 ~ 1
< (—=)UP = ——
24P, 144 P,

(1+a')’P

(10.43)

(A): This comes from 2(k — 2) > (k — 1).
(B): By (10.40) and 1 < a < 2.5.
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Therefore, by plugging (10.40), (10.42), (10.43) into (10.41), we have

o a2(h-1) 1o D 1
DB T > 1-a? —)2 +1
(P, P2) > ( 921'(Pr) 144 P, &

1 1
> =)} +1
24P, - 221'(P1) 144 P,

1 1 1,
7 Warrerzm Vi) +!

- 0.000697686...
- P
0.0006976
Z - +
Py

vV

+1

1.

Proof of (g):

Since Yo > 150, we can find ko > 3 such that
a2ha=2) _ 1y, g2ke=1) _
e S5 T i-af

Let k1 = 1 and increase k arbitrary large. By plugging such parameters to Lemma 5.3, the lemma

reduces to
o q2(k—1) L=a=2(2=1) 1 — q—2(k—k2)
T—a? 2k—ky) 2 — 4 T
Dp(P, Py) > (\/ 21 () +a 2 3
1—q-(h-1)2 — (1 — a—(h—k))2 —
- \/”(@_)P - \/ e T Pl (104)

We will first upper bound I’ (151) Following the same steps as (10.21), we get

—2(k=1) ] _ g—2(k—1)

1 —q2(k=1) 1—a
2(k—2) 2(k—2) . 2
2a WZ + 2a 1— a72 1— a72 S 2 053190U2

We also have

—2(ka—1 —(ka—2 — (k=1
2kl a 2= (1 —a=®=2)(1 —a~ ! ))_’5

1—a2 (1—a1)? !

@ 23 (L~ a?2m)(1 —a”k2m2) Py

- (I1—a1)? 1—a2

) ey (L= a2 D)2 1

- (1-a1)2 20

2(k2=2)(1 _ g—2(k2-1))2 1

— a (1 a ) 7(1_’_@—1)2
(1—a=2)? 20

(©) q2k2=2)(1 — g=2(k2-1))2 ]

- (1—-a—2)2 5

(2) 05319 ,

S 5 0,2
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:Since 0 <1 —a= D < 1.
:Since 1 < a < 2.5.

: This follows from that (10.19) still holds.
Therefore, I’ (/P:) is upper bounded by

(A):
(B): Since we assumed Py < 75 (a? = 1).
(©)
(D)

~ 1 (24 2)0.5319
I'(P —log(1 + 2 """kl
(P < rog(1 + 0
1 1.27656
< —log(l + ————)k=—1
< 5log(1+ — )
1
< 5 log e 127656, (10.45)
Following the same steps as (10.27), we still have
2k=2)(] _ —(h-1D\2 _ 1 g2(k=1)(] _ g—2(k—1)
o (—a L Gl ) (10.46)
(1—a=1)2 5 (1—a=2)
Following the same steps as (10.24), we still have
—2(k—k2))2 2(k—1 —2(k—1
2komty (L2025 @207 —a2070) 147 (10.47)
(1—a"1)2 (1-a"2) 20000

Therefore, by plugging (10.45), (10.46), (10.47) into (10.44) we conclude

o Z(k 1)( —Q(k 1) 147
Dp(Py, P2) > 1—a- \/ e1 27656 \/7 \/ 20000

2(k D(1 — g~ 201
(I-a™?)

> 0. 00002252 + 1.

Finally, by increasing k arbitrarily large, we can prove Dy, (E , 1?’;) = 0.
Proof of (h):
Compared to (g), we can notice that only the conditions for the controller 1 and 2 are
flipped. Thus, by symmetry the proof is the same as (g).
Proof of (i):
Since Y5 > 150, we can find k > 3 such that
2(k—2) _ 1 b 2(k—1) _ 1
R e B S (10.48)
1—a2 — 24 1—a2
Let k&1 = 1 and ko = k. By plugging these parameters into Lemma 5.3, the lower bound of Lemma 5.3

reduces to

=T

D.(Pi, Py) > P2 +1. 10.49
L( 1, 2) - (\/ 22]'(P1) (1_0,71)2 1)++ ( )
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Following the same steps as (10.45), we still have

I'(P)) < = log e 27656 (10.50)

NN

Following the same steps as (10.27), we can prove

a2F=2)(1 — q~(k=1)2 1 q2(k=1)(1 _ g2(k-1))

(1—a 1) P < 5 1—a7?) (10.51)

Therefore, by plugging (10.50), (10.51) into (10.49), we conclude

— a?k=1) (1 — g—2(k=1)
Dr(Py, Py) > = a_z 61 27656

(k 1)( a—2 (k— 1))
>
- (1—-a=?)

0.00655882... + 1

(A) ¥
> 2—jo.00655882... +1

> 0.000273284...35 + 1
> 0.0002732%9 + 1.

(A): This comes from (10.48).

Proof of (j):

We will prove this by analyzing the centralized controller performance which has both y;[n],
y2[n] and has no input power constraint.

Define y/[n] := x[n] + v}[n] and yb[n] := x[n] + vh[n] where v}[n] ~ N(0,07) and vh[n] ~
N(0,0%) are i.i.d. random variables. Since the costs of centralized controllers are monotone in the
variances of observations, the cost of the centralized controller with the observations y;[n], y2[n] is
larger than the cost of the centralized controller with the observations yj[n], y5[n]. Moreover, by the
maximum ratio combining, the cost of the centralized controller with the observations y}[n], y5[n]
is equivalent to the cost of the centralized controller with a scalar observation M

Now, we can apply Lemma 5.1 to analyze the performance of such a controller with the

observation ¥ M Let ¥ g be the Kalman filtering performance with the observation M
Then, by Lemma 5.1, ¥ is lower bounded by
2
a® — 1 il —1)2 + 4a2 1
G 2 + 4025
max((a” —1
(@ - 1) ). (10.52)

- 2a2
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Therefore, for all E, ?2 the decentralized controller’s cost is lower bounded as follows:

~ ~ (A4 (2ak — k*)YE + 1
D (P, Py) > inf
T Pt ey

e P S

Tlack<il—(a—k)2 P T 1= (a—k)?

(B) 1—a?+2ak —k?

> Sp+1

- |air1$|<1 1—(a—k)? B+

=Yp+1 (10.53)

(A): The decentralized control cost is larger than the centralized controller’s cost with the observation
M. Moreover, when |a — k| > 1 the centralized control system is unstable, and the cost
diverges to infinity. When |a — k| < 1, the cost analysis follows from Lemma 5.1.
(B): This comes from a > 1 and 2ak — k* > 1 — (a — k)? > 0.

Therefore, by (10.52) and (10.53) for all Py, P, we have

max((a? — 1)051 —1,v2a0,; — 1)
2a?

—1,V2a0,1 —1) 1
Jr

Dy (Py, Py) > max( 1)

max((a? — 1) Ugl

- 4a?

- max((a? — 1)0’7zjl —1,v2a0, — 1) 1
- 4a? 2a?
N max((a? — 1)021 ,V2a0,1,1)

- 4a?

By (10.9) we already know

(14 v/2) max(1, (a®> — 1)02,, 2a0,1)

Y <
b= 2a2

Therefore,

max(1, (a? — 1)";1 ,V2a0,1)

D(P., Py) > =
1 1 V2
> 3 4 8 4
_Imn( 1+2\/§7 1+2\/§a 1+\/§)21
1

-~ 5

11+v2) "
> 0.1035%;.

As mentioned in (10.53), D(Py, P;) > 1. Thus, the statement (j) is true.

Proof of Proposition 5.1 of page 249. Consider the power-distortion tradeoff D(Py, P;) for the de-

centralized control problem shown in Problem K. Since we can achieve the tradeoff of the single
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controller systems by turning on only one controller, we have
(D(P1’P2)a Pla P2) < (min(ngl(Pl)7 D01;2(P2))7 P17P2)

where the definition of D, (P) is shown in Problem L.
By Lemma 4.14 of Chapter 4, if there exists ¢ > 1 such that for all E, ﬁ; >0,

min(Dyy(cPy), Dy2(cPy)) < ¢+ Di(Py, Pa),

then for all ¢,r1,79 > 0 we have

minp, p,>0 ¢min(Dy1(cPy), Do2(cPs)) + r1 Py + 12 P <.
ming 5. qDL(P1, Po) + 11 Py + 1Py B

which finishes the proof. Therefore, we will only prove that such ¢ exists.

Before we start the proof, define the subscript maz as argmaa:ie{u}f’i. For example, if
E < P; then ]5,,:; = E7 Pz = P2y Ypae = X2, Dy, .. (P) = D, ,(P) and so on. Furthermore,
for notational simplicity, we write Dy, (+), Dy, (*), D () as Dy1(+), Dv2(+); Dymae () respectively.

For the proof, we will first divide the cases based on 3,35 then further divide based on

Tvmawx

ﬁ; TD; Remind that since 0,1 < 042, we have X1 < X5, We can use this fact to reduce the cases.
(i) When ¥; < ¥y <150

(i-1) When 15 < maX(E,E)

Lower bound: By Corollary 5.4 (j)
DL(E7 Isz) >1

Upper bound:

If (a®> —1) < ——+ - then the range for ¢ in Corollary 5.2 (ii’) is not an empty set.
max(1,7.25% ,42)

Therefore, by plugging ¢t = we get

-8
max(1,7.25%g)

8
max(1,7.25%,,42)

4
(Damaw (Pmax)v Pmaa:) < (gg maX(2; 14-5Emaw)a )

49
< (g -145-150,8)( £y < 8 < 150).

If (a®> — 1) > m, by Corollary 5.2 (i’) we get
6.25 o, .., ,
(Damaw(Pmaw)y Pmaz) < (725Zmax + a2 — 1,(& - 1) Emaw + (a’ - 1))
6.25
< (7255 s + 5, 2056255 s +5.25)( 1 < Ja] < 2.5)
a2 _

< (7.25%mas + 6.25max(1, 7.255maz), 27.56255 max + 5.25)
< (7.25-150 + 6.25 - 7.25 - 150, 27.5625 - 150 + 5.25)(-. 51 < 5 < 150)
< (7884.375,4139.625).
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Ratio: ¢ is upper bounded by
4139.625

cx 1
150

< 106.

(i-ii) When & (a® — 1) < max(Py, Py) <
Lower bound: By Corollary 5.4 (d),

1
150

~ 1
Dy (P, P5) > 0.00389——— + 1. (10.54)
maX(Pl, PQ)

Upper bound:
If 8(a2 — 1) < max(ﬁ;,ﬁ;)
(i") for Dymaz(Pmaxz). Therefore, we get

< m, then we can put t = 15:;;[, in COI‘OH&I‘y 5.2

49 ——
(Da'maw (Pmaw)a P’maw) S (77 P’rnaw)-

max
If 55(a? — 1) < max(Py, Py) < 8(a2 — 1)
In this case, the lower bound (10.54) can be further lower bounded as

0.00389 1,
> (—— —(a® - 1)).
(D (Py, P3), Praz) > (24.5((12 0 +1 55 (a® —1))

By Corollary 5.2 (i’), we have

6.25
(Domaz (Prmaz)s Prmaz) < (7.25%ma0 + 21 (a2 - l)zzmaz + (a2 —-1))
6.25
< (7.25-150 + =1 1,5.25 -150(a® — 1) + (a®> = 1)) (- 1 < |a| < 2.5, %1 < £y < 150)
6.25 X
= (a2 — 1087.5,788.5(a” — 1)).
I sy < max(PL P) < 135

Notice that this case never happens since

8 8 1
> > —.
max(1,7.255maz) ~ 7.25-150 ~ 150

Ratio: ¢ is upper bounded by

< 24.5 % 6.25

40000.
¢S 000389~ 40000

(i-iii) When max(Py, Py) < > (a*—1)
Lower bound: By Corollary 5.4 (c),

Dy(Py, Py) = 0.

We do not need a corresponding upper bound.
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(ii) When ¥; < 150 < 5,

(ii-1) When a§0 >3

(ii-i-i) When 15 < P

Lower bound: By Corollary 5.4 (j),

-DL(?;E) 2 1

If (® - 1) < xprassy
Upper bound: By putting ¢ = m to Corollary 5.2 (ii’) for Dy1(Py), we have

8

"max(1,7.25%) )

4
(Do1(Pr), Pr) < (§9 max(1,7.25%4)
49
< (§ - 7.25-150,8) (.- X1 < 150)

If (a2 - 1) 2 max(1,17.2521)
Upper bound: By Corollary 5.2 ('),

6 25
(Dor(P1), P1) < (72551 + 5~ 2756255, + 5.25)

< (7.25-150 + 6.25 max(l, 7.25%1),27.5625 - 150 4 5.25) (- £; < 150)

< (7.25-150 + 6.25 - 7.25 - 150, 27.5625 - 150 + 5.25).

Ratio: ¢ is upper bounded by
< 27.5625 - 150 + 5.25

- = 620943.75.
150
(ii-i-ii) When &~ < Pl 100
Lower bound: By Corollary 5.4 (f)
~ o~ 0.0006976
Di(P,Py) >~ 1. (10.55)

Py

If— 58 <P <

max(1,7.25%;) — 150’

o 8 8 1
This never happens since (173557 2 55150 > 150

D 8
If8(a® — 1) < P < srrassyy

Upper bound: By plugging t = P to Corollary 5.2 (ii’) for D1 (P1), we get

(DUI(P1)7P1> < (:,ﬁl)

1

If < P1 < 8(a — 1)

Here the lower bound of (10.55) is further lower bounded by

0.0006976 1 1

(DL(P1, o), Py) > G- *r5t s < P <8(a®-1)).

by
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Upper bound: When g < Py < 8(a? — 1) and (¢® — 1) < iy

t =8(a? — 1) for Dy1(P;) to Corollary 5.2 (ii’) for Dyq(P;). Then, we get

49 ,
m,S(a -1))

<( 49 8-20
- 8(@2—1)’ 22

we can plug

(Do1(Pr), P1) < (

0
> Z .
1 2)

)(. In (ii-i), we assumed 212

When z:% <P <8@a?-1)and (a®> - 1) > m, by Corollary 5.2 (i) we get

6.25
(@ = P+ (0 - 1))

6.25 2022, 20
< (7.25% + -2 =
= 1t 2 +22)

(Do1(Pr), Pr) < (7.25% +

>X
a?—-1"7~ 2)

6.25 20% + 20
< (== 4725150, ———
- (a2 —1 + ’ ZQ

(. In (ii-i), we assumed

Ratio: ¢ is upper bounded by

8 x 6.25

8625 oh00.
©= 50006976 ~ 2000

(ii-i-iii) When Py < i and max(Py, Py) = P > o

Lower bound: By Corollary 5.4 (e)
Dr(P1, P>) > 0.0006976%5 + 1.

First, since Yo > 150, we can see that max(1,7.25%5) = 7.25%,.

If (6 = 1) < 7o
Upper bound: By plugging t = ﬁ into Corollary 5.2 (ii’) for Dyo(P2), we get
49 8
Dya(P2), Py) < (= - 7.255, ——0—).
(Doa(Po), o) < (5 > 7255,
If (6 = 1) > 75555
Upper bound: By Corollary 5.2 (i), we get
6.25 9 9 9
(DO-Q(PQ),PQ) S (72522 + a2 — 1,((1 — 1) 22 + (CL — 1))

6.25 20%%, 20
< (7.25%9 + —— —
= ( 2+ a2 — 1, E% 22)

> 3)

202 + 20
X9

(. In (ii-1), we assumed e

< (7.25%5 +6.25 - 7.25%, ).

Ratio: ¢ is upper bounded by

7.25+6.25 x 7.25

¢S —g.0006076  ~ (0000-
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(ii-i-iv) When P; < E% and 55(a? — 1) < max (P, Py) < 2%

Lower bound: By Corollary 5.4 (d), we have

~ ~ 0.00389
Dy(P,Py) > — 2 41, (10.56)
max (P, Ps)

8 D P 1
I rsssy S max(P, Py) < 7
1

8 - T
max(1,7.255 mas)  7.255 R

If 8(a® — 1) < max(P1, P2) < pvamass)

This case never happens, since

Upper bound: By plugging t = P, into Corollary 5.2 (ii’) for Dymaz(Prmas), we have

49 ——
(Domaz(Pmaw)a Pmaa:) S (ﬁy Pmam)-

If 55(a? — 1) < max(Py, P;) < 8(a® — 1)
In this case, the lower bound of (10.56) is further lower bounded by
0.00389 1

+1,—(a® - 1)).

(DL(ﬁhrp;)vaam) > (m 20

Upper bound: By Corollary 5.2 (i’), we have

6.25
(Damaz(Pmaz)a Pmaa:) < (725Emam + Cl27—17 (CL2 - 1)2Zmaz + (CLQ — ].))
625  , ,
< (72522 + 2 1,(0, — 1) 22 + (a — 1))( 21 < 22)
7.25-20 6.25
<( o1 T2 1,20(a2 — 1)+ (a* = 1))(". In (ii-i), we assumed "
725204625 _
S(—pm-7 2l -1)
Ratio: ¢ is upper bounded by
7.25-2046.25
L2220 F 020 320000.
8

(ii-i-v) When P < 2% and max(ﬁ,g) < 55(a* = 1)

Lower bound: By Corollary 5.4 (c),
Di(Py, Py) > .

Thus, we do not need a corresponding upper bound in this case.

(ii-ii) When 295 < 3

(ii-ii-i) When 115 < Py
Compared to (ii-i-1), the only difference is ¥ and 35 does not affect the result of (ii-i-i).

Therefore, in the same way as (ii-i-1), we can prove that ¢ is bounded by the same constant as (ii-i-i).

(ii-ii-i1) When & (a2 —1) < Py < &

0
>
=2 %)
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< x(@*—1) <P < 5

Lower bound: Since in (ii-ii) we assumed % < %,, we have = 150

1
b
Therefore, we can apply Corollary 5.4 (f) to get

~ ~ 0.0006976
Di(P,Py) >~ 4 1. (10.57)
Py
8 D 1
If max(1,7.25%1) <SP <15
Since we assumed ¥; < 150 in (ii), a(l 87.2521) > 7‘258.150 > ﬁ. Therefore, this case

never happens.
If 8(a® = 1) < Pt < mriomsy
Upper bound: By plugging ¢t = P into Corollary 5.2 (ii’) for Dy1(Py), we have
49 ~
(Ds1(Pr1), P1) < (=, P1).
P

If L(a>—1) <P <8(a® 1)
In this case, the lower bound of (10.57) is further lower bounded by
~ ~ 0.0006976 1
Dy(Py,P),P)) > (——5—rv +1,—(a® - 1)).
( L( 1 2), 1)_(8((12*1) + 720(0’ ))

Upper bound: By Corollary 5.2 (')

6.25
(Dy(Pr), Pr) < (7.25% + PR (a® = 1)*%1 + (a® — 1))
6.25
a2 -1’

(X% <150,1 < |a]| < 2.5)

< (7.25- 150 + 5.25-150 - (a® — 1) 4 (a® — 1))

Ratio: ¢ is upper bounded by

6.25 x 8

D20 XS 2o000.
©< 5.0006976 = 200

(ii-ii-iii) When P, < 2(a® — 1) and P, > %

Lower bound: By Corollary 5.4 (i), we have
Dy (Py, P3) > 0.0002732% + 1.
Upper bound: By Corollary 5.2 (i’), we have

(Dya(Py), Py) < (7.25%5 + &, (a® —1)?Yy + (a® — 1))

a?—1
6.25 x
< (T.25%5 + ——%, (a® — 1)?8y + (a® — 1)222
< (7.25%; + 20 2, (a )"E2 + (a ) 20)
0
o In (ii-i d <X
(. In (ii-ii), we assume PR 2)

Ratio: ¢ is upper bounded by

1+ 25
e < —2% < 42000.
40000



414

(a®—1)*%,
(ii-ii-iv) When P < 35 (a® — 1) and P, < 0000
Lower bound: By Corollary 5.2 (g), we have

Dy(Py, Py) =

We do not need a matching upper bound.
(ifi) When 150 < ¥; < %,
In this case, we can see that max(l 7.25%1) = 7.25%,, max(1,7.253;) = 7.25%,.
(iii-i) When ag— > % and -2 > ¥,
(iii-i-i) When 2—1 <P
Lower bound: By Corollary 5.4 (j), we have

Dy (Py, P;) > 0.1035%;.

If (a* 1) < 7.2%21
Upper bound: By plugging t = %;21 into Corollary 5.2 (ii’) for D1 (Py), we get

o

7.25% 8
Do (Py), Py) = (49 - , .
(Dor(Pr), Pr) = (49 —g=, 75557)
If (a®> — 1) > 77'%21
Upper bound: By Corollary 5.2 (i’), we have
6 25 9 9 9
(Dgl(Pl) ) (7 2521 —|— 1 (a — 1) Zl + (a — 1))
20 .5 20
< (7.25%1 +6.25 - 7.25%, (= )?%; + =)
Y1 Y1
e 0
(.- In (iii-i), we assumed 12 1)
20-21
= (7.25°% .
( 1 El )
Ratio: ¢ is upper bounded by
2
< 10.
€= 035 <10

(iii-i-ii) When s- < P; < &

Lower bound: Smce in (iii) we assumed 150 < X1, we have - > < P < Ei < % Therefore,

we can apply Corollary 5.4 (f) to conclude

~ ~ 0.0006976
Py
8 D 1
If 7255, = P < i
Since 7~2§21 > -, this case never happens.

If 8(a® — 1) < E < i



Upper bound: By plugging ¢t = P into Corollary 5.2 (ii’) for Dy1(Py), we have
49

(Dal(Pl)vpl) < (?,E)

If L <P <8(a®—1)
In this case, the lower bound of (10.58) is further lower bounded by

0.0006976 1

(DL(EJ'Z)’E) > (m + ,2—2)

If oo < Py <24.5(a® — 1) and (a® — 1) < 7555y

Upper bound: By plugging t = 8(a? — 1) into Corollary 5.2 (ii’) for Dy1(P;), we have

49 9
mﬂ(a —-1))
49 8-20

(8((12 - 1)’ 22 )

(Do1(P1), Py) < (

IN

(.- In (iii-i), we assumed

0
a2—1222)

Ifi§P1§8(a2—1) and (a? — 1) >
Upper bound: By Corollary 5.2 (i’), we have

_1
7.25%1

6.25
(Dy1(P1), Py) < (7.25% + pra— (a® —1)*8 + (a* - 1))

(7.25~20+ 6.25 20221+@)
Vo1 T a?o1 22,
2 2
0 < 0

a?—1 _az—l)

(.- In (iii-i), we assumed Y; <

- (7.25 2204+ 6.25 202 + 20
- a2 —1 ’ EQ
( 21 < 22)

)

Ratio: ¢ is upper bounded by

7.25-20+46.25

6
0.0006976 <2 x10%
8

(iii-i-iii) When P, < - and max(Py, Py) = Py > s
Lower bound: By Corollary 5.4 (e),
Dy (Py, P3) > 0.0006976% + 1.

If (a® — 1) < 7.2%22

Upper bound: By plugging ¢ = =—o« into Corollary 5.2 (ii’) for Dy (P,), we get

7.25%,

24.5

Dya(Py), Py) < (14.55, ———2
(Doa(P2), P») < (14.5 3 7955,

).

415
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If (a® —1) > 7.2%22
Upper bound: By Corollary 5.2 (i’), we have
625 o, . )
(DUQ(PQ),PQ) S (72522 + m, (a - 1) 22 + (a - 1))
202 20
< (7.25%9 +6.25 - 7.25%9, — + —)
X X
N e 20
(. In (iii-i), we assumed Xg < o 1)
20-21
< (7.25%%,, ).
b))
Ratio: ¢ is upper bounded by
7.252

< .
©< 5.0006976 ~ S0V00

(iii-i-iv) When P < z:% and 55(a? — 1) < max(]gz,g) < E%
1

Lower bound: Since we assumed o > 150 in (iii), we have max(P;, Pp) < 2% <10 <

Therefore, by Corollary 5.4 (d) we can see

0.00389

1
75"

Dp(P,Py) > — 2 41, (10.59)

max(Pl, P2)

8 D D 1
If 7255 an S maX(Pl,Pg) S b

This never happens since

8 1 1
> > —.
7.25Y maz  Zmaz | 22

If 8(a2 — 1) < max(Pp, Pp) < 7get—
Upper bound: By plugging t = Praw into Corollary 5.2 (ii’), we get

49 ——
(Damaac(Pmaac)a Pmaa:) S (xa Pmaa:)-

If %(a2 -1 < max(ﬁ;ﬁg) <8(a%?-1)
In this case, we can notice that the lower bound of (10.59) is further lower bounded by

— e 0.00389 1, .,
> (———— —(a®—1
(DL(Py1, P2), Praz) > (S(a2 ) +1, 20(a )

Upper bound: By Corollary 5.2 (i), we get
6.25

(Domax(Pmax)a Pma:c) < (7~25Emaac + a2 _1 (a2 - 1)2Emax + (Cl2 — 1))
725-20  6.25 , ,
S(aQ—l a2—1’20(a —1)+(a” = 1))
- 20 20
(- In (iii-i), we assumed ¥ < o ;29 < PO 1)

< (7.25 -20+6.25

2
< 2 21(a? - 1)
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Ratio: ¢ is upper bounded by

7.25-20+6.25

= 0.00389
8

< 320000.

(iii-i-v) When P; < 5 and max(Py, Py) < 2 (a* = 1)

Lower bound: By Corollary 5.4 (c),
Dy (P1, Py) > co.

We do not need a corresponding upper bound.
(iii-ii) When ¥; < 2% < %,
(iii-ii-i) When E% <P

Compared to the case (iii-i-i), the conditions for 3, Py are the same and the only difference

is the condition for 3. However, the condition for ¥5 does not affect the argument of (iii-i-i). Thus,
the same bound on ¢ as (iii-i-i) still holds for this case.
(iii-ii-ii) When (a2 — 1) < Py < 5=

Lower bound: Since we assumed 150 < ¥ in (iii), we have < L

1
55 < a0l
Flo' Thus, we can apply Corollary 5.4 (f) to get

~ 0.0006976

Dy (P1, Py) > ——+1. (10.60)
1

8 D 1
If 7.25%, <h < =7

This case nev