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Abstract

Modern Low-Complexity Capacity-Achieving Codes
for Network Communication

by

Naveen Goela

Doctor of Philosophy in Engineering-Electrical Engineering & Computer Sciences

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael Gastpar, Chair

Communication over unreliable, interfering networks is one of the current challenges in
engineering. For point-to-point channels, Shannon established capacity results in 1948, and it
took more than forty years to find coded systems approaching the capacity limit with feasible
complexity. Significant research efforts have gone into extending Shannon’s capacity results
to networks with many partial successes. By contrast, the development of low-complexity
codes for networks has received limited attention to date. The focus of this thesis is the
design of capacity-achieving network codes realizable by modern signal processing circuits.

For classes of networks, the following codes have been invented on the foundation of
algebraic structure and probability theory: i) Broadcast codes which achieve multi-user rates
on the capacity boundary of several types of broadcast channels. The codes utilize Arıkan’s
polarization theory of random variables, providing insight into information-theoretic concepts
such as random binning, superposition coding, and Marton’s construction. Reproducible
experiments over block lengths n = 512, 1024, 2048 corroborate the theory; ii) A network
code which achieves the computing capacities of a countably infinite class of simple noiseless
interfering networks. The code separates a network into irreducible parallel sub-networks and
applies a new vector-space function alignment scheme inspired by the concept of interference
alignment for channel communications. New bounds are developed to tighten the standard
cut-set bound for multi-casting functions.

As an additional example of low-complexity codes, reduced-dimension linear transforms
and convex optimization methods are proposed for the lossy transmission of correlated
sources across noisy networks. Surprisingly, simple un-coded or one-shot strategies achieve
a performance which is exactly optimal in certain networks, or close to optimal in the low
signal-to-noise regime relevant for sensor networks.
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Chapter 1

Dissertation Overview

1.1 Information Theory, Statistics, and New Codes

The field of information theory was pioneered by Claude Shannon beginning in 1948 to
understand the fundamental limits of communication systems. The probabilistic method
applied to random codes proved the existence of capacity-achieving codes for point-to-point
discrete, memoryless channels. However, early ideas such as random code ensembles did not
solve the problem of constructing explicit codes with low encoding and decoding complexity.
In recent years, several capacity-achieving explicit codes for point-to-point channels have
been invented (e.g., spatially-coupled codes, Arıkan’s polar codes). However, in the case
of multi-user channels and network communication, questions regarding finding the exact
capacity region and questions regarding finding good low-complexity codes remain open to a
large extent. It is intriguing that Shannon’s abstraction of information as bits is challenged
in networks. Furthermore, basic tools in networks such as cut-set bounds fail to establish
fundamental limits when information is “mixed” in network pathways. In this thesis, progress
is made towards designing low-complexity capacity-achieving codes for classes of networks.

How is it possible to design low-complexity capacity-achieving codes? One idea is to
create and exploit structure in a code. The structure serves two chief purposes: (i) Low-
complexity encoding and decoding become possible using recursive methods; (ii) It is math-
ematically tractable to “extrapolate to infinity” in proofs to verify achievable rates. Beyond
Shannon’s original idea of using randomness, the element of structure appears to be crucial.
Somewhat counter-intuitively, structure may coexist with randomness.1 This thesis demon-
strates the advantages of using both randomness and structure (e.g., algebraic structure) in
the design of network codes.

One way of discovering structure in a world of randomness and random variables is now
understood and it was first published in 2008 by E. Arıkan. This method is regarding
the polarization of discrete random variables. Briefly, Arıkan’s original concept is about

1For example, the Green-Tao theorem in mathematics elucidates a surprising structure and randomness
appearing in the sequence of primes.
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extracting the randomness inherent in a sequence of independent and identically distributed
binary random variables. Due to applying an algebraic transformation on the sequence of
variables, suitably defined conditional entropies of the transformed variables converge to
zero or one as the length of the sequence increases to infinity. The convergence is proven
using a new application of Martingales from probability theory. Moreover, codes built on
the polarization principle achieve capacity for point-to-point noisy channels. The elegant
recursive structure of polar codes, a butterfly structure similar to the pattern found in
computing the Fast Fourier Transform, is the key to low-complexity encoding and decoding
via a dynamic programming, “divide-and-conquer”, successive cancelation algorithm.

Building upon polarization principles, this thesis develops new low-complexity codes
for multi-user channels. A particular focus is on the broadcast channel, whose capacity is
unknown, except for a few special classes of channels. In Chapters 2-Chapter 5 based on [42],
new practical broadcast code constructions are able to approach the capacity boundary for
almost all of these special classes. The new codes also apply to general classes of channels.
In prior research, sub-optimal coding strategies and heuristics were employed. For example,
in the case of deterministic broadcast channels, researchers tried low-density parity-check
codes (LDPC), reinforced belief propagation, and constraint satisfaction algorithms. The
new code constructions of this thesis provide insight on the information-theoretic arguments
underlying Cover’s superposition codes and Marton’s ingenious broadcast construction for
noisy channels.

The concept of polarization of random variables is quite broad and offers a new perspec-
tive in statistics itself. The ideas developed in this thesis bear the potential to lead to new
capacity theorems that are outside the reach of classical random coding arguments. Exper-
imental evidence and reproducible simulations are recorded for the first practical broadcast
codes with optimal asymptotic properties. The theory sheds light on important questions
about engineering communication systems using modern circuits.

1.2 The Abstraction of Information in Networks

In network information theory, it is an open question whether the abstraction of information
as bits is correct or whether there exists a broader representation. One idea is to under-
stand network information as a transmission of functions of original sources. In Chapter 6,
a network computing problem is studied (drawing from material in [41, 87]) and related to
the well-known multiple-unicast communication problem. In the network computing prob-
lem, each receiver computes the same identical function of multiple sources. In this thesis,
the computation capacity is determined for a countably-infinite class of simple, interfering
networks. A new network decomposition theorem and function alignment code are derived.
Vector-space function alignment is inspired by the idea of interference alignment for channel
communications. In addition, new linear coding arguments for multi-casting functions and
new information-theoretic bounds are provided which sharpen ordinary cut-set bounds.

Chapters 7 and 8 provide analysis for the lossy transmission of distributed, correlated
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sources across noisy networks [39]. In certain cases such as biological systems, it might not
be feasible or valuable to code and represent information as bits. Rather, un-coded and one-
shot strategies offer low delay and low-complexity solutions. Linear transforms are proposed
for dimensionality-reduction of distributed sources while convex optimization methods are
applied to handle power constraints. New cut-set bounds link information theory and signal
processing in networks.
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Chapter 2

Polarization of Random Variables

2.1 Overview of Theory

The following theory by Arıkan [6] characterizes the polarization of random variables which
is applicable for both channel and source coding.

Theorem 1 (Polarization of Random Variables). Let

~Y = [Y1, Y2, . . . , Yn],

~Z = [Z1, Z2, . . . , Zn],

be two independent and identically distributed row vectors of random variables where (Yj, Zj) ∼
PY Z , j ∈ [n], and n = 2ℓ for integer ℓ ≥ 1. Consider polarized random variables ~U = ~Y FnBn

and ~V = ~ZFnBn, where the matrix Bn is a bit-reversal matrix as defined by Arıkan in [6]
and

Fn =

[

1 0
1 1

]⊗ log2(n)

.

Then as n→ ∞, for any ǫ ∈ (0, 1),

1

n

∣

∣

∣

{

j ∈ [n] : H(Uj|U j−1
1 ) ≥ 1− ǫ

}

∣

∣

∣
→ H(Y ),

1

n

∣

∣

∣

{

j ∈ [n] : H(Vj|V j−1
1 , Y n

1 ) ≥ 1− ǫ
}

∣

∣

∣
→ H(Z|Y ).

Notation: Let H(Uj|U j−1
1 ) denote the conditional entropy between random variables where

U j−1
1 is shorthand notation for the set of random variables {U1, U2, . . . , Uj−1}. Similarly,

H(Vj|V j−1
1 , Y n

1 ) represents the conditional entropy and Y n
1 = {Y1, Y2, . . . , Yn}. The notation

⊗ denotes the Kronecker matrix product.
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2.1.1 Estimating Conditional Entropies By Sampling

Although Theorem 1 was a break-through in information theory, an even more important part
of polarization is the dynamic programming method associated with computing probabilities
and estimating entropies. As in Theorem 1, define the following row vectors

~Y = [Y1, Y2, . . . , Yn],

~Z = [Z1, Z2, . . . , Zn],

where for j ∈ [n], the random variables (Yj, Zj) ∼ PY Z . In addition, the polarized variables

~U = [U1, U2, . . . , Un],

~V = [V1, V2, . . . , Vn],

where ~U = ~Y FnBn and ~V = ~ZFnBn as in Theorem 1. We would like to compute the entropy
termsH(Uj|U j−1

1 ) andH(Vj|V j−1
1 , Y n

1 ) numerically to simulate the polarization phenomenon.
The basic formula for the conditional entropies is

H(Uj|U j−1
1 ) , −EUj

1
log2

[

PUj |U
j−1
1

(Uj |U j−1
1 )

]

, (2.1)

H(Vj|V j−1
1 , Y n

1 ) , −EV j
1 ,Y

n
1
log2

[

PVj |V j−1
1 ,Y n

1
(Vj |V j−1

1 , Y n
1 )

]

. (2.2)

The expectations in the formulae for the conditional entropies imply averaging over samples
drawn from the joint distribution of ~U and ~V . Equivalently, we can sample from the simple
independent and identically distributed joint distribution of ~Y and ~Z and apply a polar
transformation to the samples.

2.1.2 Dynamic Programming and Numerically Robust

Recursions

The previous subsection showed that the conditional entropies may be estimated by sampling
from the appropriate distributions and computing probabilities as in Equation (2.1) and
Equation (2.2). Fortunately, the probabilities may be computed recursively. The recursions
were derived originally by Arıkan as a part of the low-complexity successive cancelation
decoder [6]. In those recursions, the ratios of probabilities (likelihoods) were computed.
However, since probabilities are bounded, we will compute them instead of likelihoods to
maintain numerical stability.
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Figure 2.1: Polarization of a Bernoulli source distribution PY (y) defined by PY (0) = 2
3
.

In the base case, the block length of the polar transform is n = 2.

P
(1)
2 , Pr{U1 = 0}

= Pr{Y1 ⊕ Y2 = 0}
= PY (0)PY (0) + PY (1)PY (1).

P
(2)
2 [u1] , Pr{U2 = 0|U1 = u1}

=
Pr{Y2 = 0, Y1 ⊕ Y2 = u1}

Pr{Y1 ⊕ Y2 = u1}

=
PY (u1)PY (0)

PY (0)PY (u1) + PY (1)PY (u1 ⊕ 1)
.

Our aim is to compute the following probabilities for arbitrary n = 2ℓ and integer ℓ ≥ 1.

P (j)
n

[

uj−1
1

]

, Pr{Uj = 0|U j−1
1 = uj−1

1 }.

This is possible due to a “divide and conquer” step for n > 2. Define the following
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sub-problems

Ξ1 = P
(j)
n
2

[

u2j−2
o,1 ⊕ u2j−2

e,1

]

,

Ξ2 = P
(j)
n
2

[

u2j−2
e,1

]

,

where the notation u2j−2
o,1 and u2j−2

e,1 represents the odd and even indices respectively of the

sequence u2j−2
1 . The recursive computation of the probabilities is characterized by

P (2j−1)
n

[

u2j−2
1

]

= 1− Ξ1 − Ξ2 + 2Ξ1Ξ2.

P (2j)
n

[

u2j−1
1

]

,















Ξ1Ξ2

1− Ξ1 − Ξ2 + 2Ξ1Ξ2

if u2j−1 = 0

Ξ2 − Ξ1Ξ2

Ξ1 + Ξ2 − 2Ξ1Ξ2

if u2j−1 = 1

It can be shown that if u2j−1 = 0, then it is not possible for (Ξ1,Ξ2) = (0, 1) or (Ξ1,Ξ2) =
(1, 0). Similarly, if u2j−1 = 1, it is not possible for (Ξ1,Ξ2) = (0, 0) or (Ξ1,Ξ2) = (1, 1).

Therefore the denominators in P
(2j)
n

[

u2j−1
1

]

will not be zero.

Example 1. Consider a Bernoulli source distribution PY (y) given as follows: PY (0) =
2
3
.

Let ~Y = [Y1, Y2, . . . , Yn] be independent and identically distributed random variables where
Yj ∼ PY , j ∈ [n], and n = 2ℓ for integer ℓ ≥ 1. Consider polarized random variables
~U = ~Y FnBn. Figure 2.1 plots the sorted values in the set {H(Uj|U j−1

1 )}j∈[n]. Due to Theo-
rem 1, the fraction of indices that are close to 1 approaches H(Y ) = hb(

2
3
). The polarization

phenomenon is depicted for finite block lengths n = 512, 1024, 2048.

2.1.3 Dynamic Programming and Numerically Robust

Recursions: Extension

To extend the analysis of the previous subsection, consider further conditioning in the prob-
abilities. Again, the base case begins with n = 2.

P
(1)
2

[

y21
]

, Pr{V1 = 0|Y 2
1 = y21}

=
Pr{Z1 ⊕ Z2 = 0, Y 2

1 = y21}
Pr{Y 2

1 = y21}

=
PY Z(y1, 0)PY Z(y2, 0) + PY Z(y1, 1)PY Z(y2, 1)

PY (y1)PY (y2)
.

P
(2)
2

[

v1, y1:2
]

, Pr{V2 = 0|V1 = v1, Y
2
1 = y21}

=
Pr{Z2 = 0, Z1 ⊕ Z2 = v1, Y

2
1 = y21}

Pr{Z1 ⊕ Z2 = v1, Y
2
1 = y21}

=
PY Z(y1, v1)PY Z(y2, 0)

PY Z(y1, 0)PY Z(y2, v1) + PY Z(y1, 1)PY Z(y2, v1 ⊕ 1)
.
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The aim is to compute the following probabilities for arbitrary n = 2ℓ and integer ℓ ≥ 1.

P (j)
n

[

vj−1
1 , yn1

]

, Pr{Vj = 0|V j−1
1 = vj−1

1 , Y n
1 = yn1}.

This is possible due to a “divide and conquer” step for n > 2. Define the following
sub-problems

Λ1 = P
(j)
n
2

[

v2j−2
o,1 ⊕ v2j−2

e,1 , y1:
n
2

]

,

Λ2 = P
(j)
n
2

[

v2j−2
e,1 , y

n
2
+1:n

]

,

where the notation v2j−2
o,1 and v2j−2

e,1 represents the odd and even indices respectively of the

sequence v2j−2
1 . The recursive computation of the probabilities is characterized by

P (2j−1)
n

[

v2j−2
1 , yn1

]

= 1− Λ1 − Λ2 + 2Λ1Λ2.

P (2j)
n

[

v2j−1
1 , yn1

]

,















Λ1Λ2

1− Λ1 − Λ2 + 2Λ1Λ2
if v2j−1 = 0

Λ2 − Λ1Λ2

Λ1 + Λ2 − 2Λ1Λ2
if v2j−1 = 1

It can be shown that if v2j−1 = 0, then it is not possible for (Λ1,Λ2) = (0, 1) or (Λ1,Λ2) =
(1, 0). Similarly, if v2j−1 = 1, it is not possible for (Λ1,Λ2) = (0, 0) or (Λ1,Λ2) = (1, 1).

Therefore the denominators in P
(2j)
n

[

v2j−1
1 , yn1

]

will not be zero.

Example 2. Consider a joint distribution PY Z(y, z) given as follows: PY Z(0, 0) = PY Z(0, 1) =

PY Z(1, 1) = 1
3
. Let ~Y = [Y1, Y2, . . . , Yn] and ~Z = [Z1, Z2, . . . , Zn] be two independent and

identically distributed row vectors of random variables where (Yj, Zj) ∼ PY Z , j ∈ [n], and

n = 2ℓ for integer ℓ ≥ 1. Consider polarized random variables ~U = ~Y FnBn and ~V = ~ZFnBn.
Figure 2.2 plots the sorted values in the set {H(Vj|V j−1

1 , Y n
1 )}j∈[n]. Due to Theorem 1, the

fraction of indices that are close to 1 approaches H(Z|Y ) = 2
3
. The polarization phenomenon

is depicted for finite block lengths n = 512, 1024, 2048.

2.2 Polar Codes for Multi-User Networks

2.2.1 Deterministic Broadcast Channels

The deterministic broadcast channel has received considerable attention in the literature (e.g.
due to related extensions such as secure broadcast, broadcasting with side information, and
index coding [12, 79]). Several practical codes have been designed. For example, the authors
of [93] propose sparse linear coset codes to emulate random binning and survey propagation
to enforce broadcast channel constraints. In [20], the authors propose enumerative source
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Figure 2.2: Polarization of a joint distribution of binary random variables PY Z(y, z) defined by PY Z(0, 0) =
PY Z(0, 1) = PY Z(1, 1) =

1
3
.

coding and Luby-Transform codes for deterministic DM-BCs specialized to interference-
management scenarios. Additional research includes reinforced belief propagation with non-
linear coding [16]. To our knowledge, polarization-based codes provide provable guarantees
for achieving rates on the capacity-boundary in the general case.

2.2.2 Polar Codes for Multi-User Settings

Subsequent to the derivation of channel polarization in [6] and the refined rate of polar-
ization in [9], polarization methods have been extended to analyze multi-user information
theory problems. In [2], a joint polarization method is proposed for m-user MACs with
connections to matroid theory. Polar codes were extended for several other multi-user set-
tings: arbitrarily-permuted parallel channels [48], degraded relay channels [51], cooperative
relaying [14], and wiretap channels [4, 61, 57]. In addition, several binary multi-user com-
munication scenarios including the Gelfand-Pinsker problem, and Wyner-Ziv problem were
analyzed in [55, Chapter 4]. Polar codes for lossless and lossy source compression were
investigated respectively in [7] and [54]. In [7], source polarization was extended to the
Slepian-Wolf problem involving distributed sources. The approach is based on an “onion-
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peeling” encoding of sources, whereas a joint encoding is proposed in [1]. In [8], a unified
approach is provided for the Slepian-Wolf problem based on generalized monotone chain rules
of entropy. To our knowledge, the design of polarization-based broadcast codes is relatively
new.

2.2.3 Binary vs. q-ary Polarization

The broadcast codes constructed in this thesis for DM-BCs are based on polarization for
binary random variables. However, in extending to arbitrary alphabet sizes, a large body
of prior work exists and has focused on generalized constructions and kernels [56], and
generalized polarization for q-ary random variables and q-ary channels [24, 64, 81, 71]. The
reader is also referred to the monograph in [82] containing a clear overview of polarization
methods.

2.3 Polar Codes For Broadcast Channels

Introduced by T. M. Cover in 1972, the broadcast problem consists of a single source trans-
mittingm independent private messages tom receivers through a single discrete, memoryless,
broadcast channel (DM-BC) [22]. The private-message capacity region is known if the chan-
nel structure is deterministic, degraded, less-noisy, or more-capable [33]. For general classes
of DM-BCs, there exist inner bounds such as Marton’s inner bound [63] and outer bounds
such as the Nair-El-Gamal outer bound [66]. One difficult aspect of the broadcast problem
is to design an encoder which maps m independent messages to a single codeword of sym-
bols which are transmitted simultaneously to all receivers. Several codes relying on random
binning, superposition, and Marton’s strategy have been analyzed in the literature (see e.g.,
the overview in [23]).

2.3.1 Overview of Contributions

The first part of this thesis focuses on low-complexity codes for broadcast channels based
on polarization methods. Polar codes were invented originally by Arıkan and were shown
to achieve the capacity of binary-input, symmetric, point-to-point channels with O(n log n)
encoding and decoding complexity where n is the code length [6]. We obtain the following
results.

• Polar codes for deterministic, linear and non-linear, binary-output, m-user DM-BCs
(cf. [40]). The capacity-achieving broadcast codes implement low-complexity random
binning, and are related to polar codes for other multi-user scenarios such as Slepian-
Wolf distributed source coding [7, 8], and multiple-access channel (MAC) coding [2].
For deterministic DM-BCs, the polar transform is applied to channel output variables.
Polarization is useful for shaping uniformly random message bits from m independent
messages into non-equiprobable codeword symbols in the presence of hard broadcast
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constraints. As discussed in Section 2.2.1 and referenced in [93, 20, 16], it is difficult
to design low-complexity parity-check (LDPC) codes or belief propagation algorithms
for the deterministic DM-BC due to multi-user broadcast constraints.

• Polar codes for general two-user DM-BCs based on Cover’s superposition coding strat-
egy. In the multi-user setting, constraints on the auxiliary and channel-input distribu-
tions are placed to ensure alignment of polarization indices. The achievable rates lie on
the boundary of the capacity region for certain classes of DM-BCs such as binary-input
stochastically degraded channels.

• Polar codes for general two-user DM-BCs based on Marton’s coding strategy. In the
multi-user setting, due to the structure of polarization, constraints on the auxiliary and
channel-input distributions are identified to ensure alignment of polarization indices.
The achievable rates lie on the boundary of the capacity region for certain classes of
DM-BCs such as binary-input semi-deterministic channels.

• For the above broadcast polar codes, the asymptotic decay of the average error proba-
bility under successive cancelation decoding at the broadcast receivers is established to
be O(2−n

β

) where 0 < β < 1
2
. The error probability is analyzed by averaging over polar

code ensembles. In addition, properties such as the chain rule of the Kullback-Leibler
divergence between discrete probability measures are exploited.

• Reproducible experiments are provided for finite block lengths up to n = 1024. The
results of the experiments corroborate the theory.

For different broadcast coding strategies, a systems-level block diagram of the communi-
cation channel and polar transforms is provided.

2.3.2 Notation

An index set {1, 2, . . . , m} is abbreviated as [m]. An m×n matrix array of random variables
is comprised of variables Yi(j) where i ∈ [m] represents the row and j ∈ [n] the column.
The notation Y k:ℓ

i , {Yi(k), Yi(k + 1), . . . , Yi(ℓ)} for k ≤ ℓ. When clear by context, the
term Y n

i represents Y 1:n
i . In addition, the notation for the random variable Yi(j) is used

interchangeably with Y j
i . The notation f(n) = O(g(n)) means that there exists a constant

κ such that f(n) ≤ κg(n) for sufficiently large n. For a set S, clo(S) represents set closure,
and co(S) the convex hull operation over set S. Let hb(x) = −x log2(x)− (1−x) log2(1− x)
denote the binary entropy function. Let a ∗ b , (1− a)b+ a(1− b).
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Chapter 3

Deterministic Broadcast Channels

3.1 Channel Capacity

Definition 1 (Discrete, Memoryless Broadcast Channel). The discrete memoryless broadcast
channel (DM-BC) with m broadcast receivers consists of a discrete input alphabet X , discrete
output alphabets Yi for i ∈ [m], and a conditional distribution PY1,Y2,...,Ym|X(y1, y2, . . . , ym|x)
where x ∈ X and yi ∈ Yi.

Definition 2 (Private Messages). For a DM-BC with m broadcast receivers, there exist
m private messages {Wi}i∈[m] such that each message Wi is composed of nRi bits and
(W1,W2, . . . ,Wm) is uniformly distributed over [2nR1 ]× [2nR2]× · · · × [2nRm ].

Definition 3 (Channel Encoding and Decoding). For the DM-BC with independent mes-

sages, let the vector of rates ~R ,
[

R1 R2 . . . Rm

]T
. An (~R, n) code for the DM-BC

consists of one encoder

xn : [2nR1 ]× [2nR2]× · · · × [2nRm ] → X n,

and m decoders specified by Ŵi : Yn
i → [2nRi] for i ∈ [m]. Based on received observations

{Yi(j)}j∈[n], each decoder outputs a decoded message Ŵi.

Definition 4 (Average Probability of Error). The average probability of error P
(n)
e for a

DM-BC code is defined to be the probability that the decoded message at all receivers is not
equal to the transmitted message,

P (n)
e = P

{

m
∨

i=1

Ŵi

(

{Yi(j)}j∈[n]
)

6= Wi

}

.
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Figure 3.1: Blackwell’s broadcast channel and private-message capacity region.

Definition 5 (Private-Message Capacity Region). If there exists a sequence of (~R, n) codes

with P
(n)
e → 0, then the rates ~R ∈ R

m
+ are achievable. The private-message capacity region

is the closure of the set of achievable rates.

Definition 6 (Deterministic DM-BC). Define m deterministic functions fi(x) : X → Yi for
i ∈ [m]. The deterministic DM-BC with m receivers is defined by the following conditional
distribution

PY1,Y2,...,Ym|X(y1, y2, . . . , ym|x) =
m
∏

i=1

1[yi=fi(x)]. (3.1)

3.1.1 Capacity Region

Proposition 1 (Marton [62], Pinsker [72]). The capacity region of the deterministic DM-BC

includes those rate-tuples ~R ∈ R
m
+ in the region

CDET−BC , co
(

clo
(

⋃

X,{Yi}i∈[m]

R
(

X, {Yi}i∈[m]

)

))

, (3.2)

where the polyhedral region R(X, {Yi}i∈[m]) is given by

R ,

{

~R
∣

∣

∣

∑

i∈S

Ri < H({Yi}i∈S), ∀S ⊆ [m]
}

. (3.3)

The union in Eqn. (3.2) is over all random variables X, Y1, Y2, . . . , Ym with joint distribution
induced by PX(x) and Yi = fi(X).
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Example 3 (Blackwell Channel). In Figure 3.1, the Blackwell channel is depicted with
X = {0, 1, 2} and Yi = {0, 1}. The channel is defined as Y1 = f1(X) and Y2 = f2(X)
where the non-linear functions f1(x) = max(x − 1, 0) and f2(x) = min(x, 1). For any
fixed distribution PX(x), it is seen that PY1Y2(y1, y2) has zero mass for the pair (1, 0). Let
α ∈ [1

2
, 2
3
]. Due to the symmetry of this channel, the capacity region is the union of two

regions,

{(R1, R2) : R1 ≤ hb(α), R2 ≤ hb(
α

2
), R1 +R2 ≤ hb(α) + α},

{(R1, R2) : R1 ≤ hb(
α

2
), R2 ≤ hb(α), R1 +R2 ≤ hb(α) + α},

where the first region is achieved with input distribution PX(0) = PX(1) =
α
2
, and the second

region is achieved with PX(1) = PX(2) = α
2
[33, Lec. 9]. The sum rate is maximized for

a uniform input distribution which yields a pentagonal achievable rate region: R1 ≤ hb(
1
3
),

R2 ≤ hb(
1
3
), R1 + R2 ≤ log2 3. For different input distributions PX(x), the achievable rate

points are contained within corresponding polyhedrons in R
m
+ where m = 2 for this example.

Figure 3.1 illustrates the capacity region.

3.2 Polar Coding Theorem

Theorem 2 (Polar Code for Deterministic DM-BC). Consider an m-user deterministic DM-
BC with arbitrary discrete input alphabet X , and binary output alphabets Yi ∈ {0, 1}. Fix
input distribution PX(x) where x ∈ X and constant 0 < β < 1

2
. Let π : [m] → [m] be a

permutation on the index set of receivers. Let the vector

~R ,
[

Rπ(1) Rπ(2) . . . Rπ(m)

]T
.

There exists a sequence of polar broadcast codes over n channel uses which achieves rates ~R
where the rate for receiver π(i) ∈ [m] is bounded as

0 ≤ Rπ(i) < H
(

Yπ(i)|{Yπ(k)}k=1:i−1

)

.

The average error probability of this code sequence decays as P
(n)
e = O(2−n

β

). The complexity
of encoding and decoding is O(n logn).

Remark 1. To prove the existence of low-complexity broadcast codes, a successive ran-
domized protocol is introduced in Section 3.4.1 which utilizes o(n) bits of randomness at the
encoder. A deterministic encoding protocol is also presented.

Remark 2. The achievable rates for a fixed input distribution PX(x) are the vertex points
of the polyhedral rate region defined in (3.3). To achieve non-vertex points, the following
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Figure 3.2: A polar code for the Blackwell channel approaching the capacity boundary point of (R1, R2) = (hb(
2
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), 2

3
).

coding strategies could be applied: time-sharing; rate-splitting for the deterministic DM-
BC [19]; polarization by Arıkan utilizing generalized chain rules of entropy [8]. For certain
input distributions PX(x), as illustrated in Figure 3.1 for the Blackwell channel, a subset of
the achievable vertex points lie on the capacity boundary.

Remark 3. Polarization of channels and sources extends to q-ary alphabets (see e.g. [24]).
Similarly, it is entirely possible to extend Theorem 2 to include DM-BCs with q-ary output
alphabets.

3.2.1 Experimental Results For The Blackwell Channel

As an experiment for the Blackwell channel described in Example 3, the target rate pair
on the capacity boundary is selected to be (R1, R2) = (hb(

2
3
), 2

3
). Note that R1 + R2 =

log2 3 which is the maximum sum rate possible for any input distribution. To achieve the
target rate pair, the input distribution PX(x) is uniform. The output distribution is then
PY1Y2(0, 0) = PY1Y2(0, 1) = PY1Y2(1, 1) =

1
3
. For the output distribution, H(Y1) = hb(

2
3
) and

H(Y2|Y1) = 2
3
. According to Theorem 2, these distributions permit polar codes approaching
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Table 3.1: P
(n)
e For Different Rate Pairs Achieved For The Blackwell Channel

n n n n
(R1, R2) 512 1024 2048 4096

(0.73, 0.53) 0.106 0.0518 0.0195 0.0051
(0.76, 0.55) 0.201 0.1356 0.0631 0.0194
(0.79, 0.57) 0.3799 0.3177 0.2246 0.1188
(0.82, 0.59) 0.5657 0.5606 0.5079 0.4070
(0.85, 0.61) 0.7849 0.8181 0.8286 0.8133
(0.87, 0.63) 0.9454 0.9757 0.9866 0.9936
(0.90, 0.65) 0.9986 1.0000 1.0000 1.0000

the target boundary rate pair. Figure 3.2 shows the average probability of error P
(n)
e for

block length n = 2048 with selected rate pairs approaching the capacity boundary. The
broadcast code employs a deterministic rule as opposed to a randomized rule at the encoder
as described in Section 3.4.1. Table 3.1 provides results of experiments for different block
lengths for a randomized rule at the encoder. While the randomized rule is important for
the proof, the deterministic rule provides better error results in practice. All data points for
error probabilities were generated using 104 codeword transmissions.

Remark 4 (Zero Error vs. Average Error). A zero-error coding scheme is trivial for rate
pairs (R1, R2) within the triangle: (0, 0), (0, 1), (1, 0). Beyond the triangular region, it is
possible to achieve zero-error throughout the whole capacity region by purging the polar code-
book of any codewords causing error at the encoder. However, unless there exists an efficient
method to enumerate the code-book, the purging process is not feasible with low-complexity
since there exist an exponential number of codewords.

3.3 Overview of Polarization Method

For the proof of Theorem 2, we utilize binary polarization theorems. By contrast to polar-
ization for point-to-point channels, in the case of deterministic DM-BCs, the polar transform
is applied to the output random variables of the channel.

3.3.1 Polar Transform

Consider an input distribution PX(x) to the deterministic DM-BC. Over n channel uses, the
input random variables to the channel are given by

X1:n = {X1, X2, . . . , Xn},
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where Xj ∼ PX are independent and identically distributed (i.i.d.) random variables. The
channel output variables are given by Yi(j) = fi(X(j)) where fi(·) are the deterministic
functions to each broadcast receiver. Denote the random matrix of channel output variables
by

Y ,











Y 1
1 Y 2

1 Y 3
1 . . . Y n

1

Y 1
2 Y 2

2 Y 3
2 . . . Y n

2
...

...
... . . .

...
Y 1
m Y 2

m Y 3
m . . . Y n

m











, (3.4)

where Y ∈ F
m×n
2 . For n = 2ℓ and ℓ ≥ 1, the polar transform is defined as the following

invertible linear transformation,

U = YGn (3.5)

where Gn ,

[

1 0
1 1

]

⊗

log2 n

Bn.

The matrix Gn ∈ F
n×n
2 is formed by multiplying a matrix of successive Kronecker matrix-

products (denoted by
⊗

) with a bit-reversal matrix Bn introduced by Arıkan [7]. The
polarized random matrix U ∈ F

m×n
2 is indexed as

U ,











U1
1 U2

1 U3
1 . . . Un

1

U1
2 U2

2 U3
2 . . . Un

2
...

...
... . . .

...
U1
m U2

m U3
m . . . Un

m











. (3.6)

3.3.2 Joint Distribution of Polarized Variables

Consider the channel output distribution PY1Y2···Ym of the deterministic DM-BC induced
by input distribution PX(x). The j-th column of the random matrix Y is distributed as
(Y j

1 , Y
j
2 , · · ·, Y j

m) ∼ PY1Y2···Ym. Due to the memoryless property of the channel, the joint
distribution of all output variables is

PY n
1 Y

n
2 ···Y n

m

(

yn1 , y
n
2 , · · ·, ynm

)

=

n
∏

j=1

PY1Y2···Ym

(

yj1, y
j
2, . . . , y

j
m

)

. (3.7)

The joint distribution of the matrix variables in Y is characterized easily due to the i.i.d.
structure. The polarized random matrix U does not have an i.i.d. structure. However, one
way to define the joint distribution of the variables in U is via the polar transform equa-
tion (3.5). An alternate representation is via a decomposition into conditional distributions
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GnG−1
n

H
(

Yi(j)
∣

∣

∣
Y 1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

H
(

Ui(j)
∣

∣

∣
U 1:j−1
i , {U 1:n

k }k∈[1:i−1]

)

Y

U

m

m

n

n

Figure 3.3: The polar transform applied to a random matrix Y with independent and identically distributed columns.

as follows1.

PUn
1 U

n
2 ···Un

m

(

un1 , u
n
2 , · · ·unm

)

=
m
∏

i=1

n
∏

j=1

P
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

. (3.8)

As derived by Arıkan in [7] and summarized in Section 3.3.5, the conditional probabilities
in (3.8) and associated likelihoods may be computed using a dynamic programming method
which “divides-and-conquers” the computations efficiently.

3.3.3 Polarization of Conditional Entropies

Proposition 2 (Polarization [7]). Consider the pair of random matrices (Y,U) related
through the polar transformation in (3.5). For i ∈ [m] and any ǫ ∈ (0, 1), define the set of
indices

A(n)
i ,

{

j ∈ [n] : H
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

≥ 1− ǫ
}

. (3.9)

Then in the limit as n→ ∞,

1

n

∣

∣

∣
A(n)
i

∣

∣

∣
→ H(Yi|Y1Y2 · · · Yi−1). (3.10)

1The abbreviated notation of the form P (a|b) which appears in (3.8) indicates PA|B(a|b), i.e. the condi-
tional probability P{A = a|B = b} where A and B are random variables.



CHAPTER 3. DETERMINISTIC BROADCAST CHANNELS 20

For sufficiently large n, Theorem 2 establishes that there exist (approximately) a total of
nH (Yi|Y1Y2 · · · Yi−1) indices per row i ∈ [m] of random matrix U for which the conditional
entropy is close to 1. The total number of indices in U for which the conditional entropy
terms polarize to 1 is approximately nH(Y1Y2 · · · Ym). The polarization phenomenon is
illustrated in Figure 3.3.

Remark 5. Since the polar transform Gn is invertible, {U1:n
k }k∈[1:i−1] are in one-to-one

correspondence with {Y 1:n
k }k∈[1:i−1]. Therefore the conditional entropy values expressed by

the terms H
(

Ui(j)
∣

∣U1:j−1
i , {U1:n

k }k∈[1:i−1]

)

also polarize to 0 or 1.

3.3.4 Rate of Polarization

The Bhattacharyya parameter of random variables is closely related to the conditional en-
tropy. The parameter is useful for characterizing the rate of polarization.

Definition 7 (Bhattacharyya Parameter). Let (T, V ) ∼ PT,V where T ∈ {0, 1} and V ∈ V
where V is an arbitrary discrete alphabet. The Bhattacharyya parameter Z(T |V ) ∈ [0, 1] is
defined

Z(T |V ) = 2
∑

v∈V

PV (v)
√

PT |V (0|v)PT |V (1|v). (3.11)

As shown in Lemma 9 of Appendix 3.5, Z(T |V ) → 1 implies H(T |V ) → 1, and sim-
ilarly Z(T |V ) → 0 implies H(T |V ) → 0 for T a binary random variable. Based on the

Bhattacharyya parameter, the following theorem specifies sets M(n)
i ⊂ [n] that will be called

message sets.

Proposition 3 (Rate of Polarization). Consider the pair of random matrices (Y,U) related
through the polar transformation in (3.5). Fix constants 0 < β < 1

2
, τ > 0, i ∈ [m]. Let

δn = 2−n
β

be the rate of polarization. Define the set

M(n)
i ,

{

j ∈ [n] : Z
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

≥ 1− δn

}

. (3.12)

Then there exists an No = No(β, τ) such that

1

n

∣

∣

∣
M(n)

i

∣

∣

∣
≥ H(Yi|Y1Y2 · · · Yi−1)− τ, (3.13)

for all n > No.

The proposition is established via the Martingale Convergence Theorem by defining a
super-martingale with respect to the Bhattacharyya parameters [6] [7]. The rate of polar-
ization is characterized by Arıkan and Telatar in [9].
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Remark 6. The message sets M(n)
i are computed “offline” only once during a code construc-

tion phase. The sets do not depend on the realization of random variables. In the following
Section 3.3.5, a Monte Carlo sampling approach for estimating Bhattacharyya parameters is
reviewed. Other highly efficient algorithms are known in the literature for finding the message
indices (see e.g. Tal and Vardy [88]).

3.3.5 Estimating Bhattacharyya Parameters

As shown in Lemma 4 in Appendix 3.5, one way to estimate the Bhattacharyya parameter
Z(T |V ) is to sample from the distribution PT,V (t, v) and evaluate ET,V

√

ϕ(T, V ). The
function ϕ(t, v) is defined based on likelihood ratios

L(v) ,
PT |V (0|v)
PT |V (1|v)

,

L−1(v) ,
PT |V (1|v)
PT |V (0|v)

.

Similarly, to determine the indices in the message sets M(n)
i defined in Proposition 3, the

Bhattacharyya parameters Z
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[i−1]

)

must be estimated efficiently. For

n ≥ 2, define the likelihood ratio

L(i,j)
n

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,
P

(

Ui(j) = 0
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

)

P

(

Ui(j) = 1
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

) . (3.14)

The dynamic programming method given in [7] allows for a recursive computation of the
likelihood ratio. Define the following sub-problems

Ξ1 = L
(i,j)
n
2

(

u1:2j−2
i,o ⊕ u1:2j−2

i,e , {y1:
n
2

k }k∈[1:i−1]

)

,

Ξ2 = L
(i,j)
n
2

(

u1:2j−2
i,e , {y

n
2
+1:n

k }k∈[1:i−1]

)

,

where the notation u1:2j−2
i,o and u1:2j−2

i,e represents the odd and even indices respectively of the

sequence u1:2j−2
i . The recursive computation of the likelihoods is characterized by

L(i,2j−1)
n

(

u1:2j−2
i , {y1:nk }k∈[1:i−1]

)

=
Ξ1Ξ2 + 1

Ξ1 + Ξ2
.

L(i,2j)
n

(

u1:2j−1
i , {y1:nk }k∈[1:i−1]

)

= (Ξ1)
γ Ξ2,

where γ = 1 if ui(2j − 1) = 0 and γ = −1 if ui(2j − 1) = 1. In the above recursive
computations, the base case is for sequences of length n = 2.
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3.4 Proof Of Main Theorem

The proof of Theorem 2 is based on binary polarization theorems as discussed in Section 3.3.
The random coding arguments of C. E. Shannon prove the existence of capacity-achieving
codes for point-to-point channels. Furthermore, random binning and joint-typicality argu-
ments suffice to prove the existence of capacity-achieving codes for the deterministic DM-BC.
However, it is shown in this section that there exist capacity-achieving polar codes for the
binary-output deterministic DM-BC.

3.4.1 Broadcast Code Based on Polarization

The ordering of the receivers’ rates in ~R is arbitrary due to symmetry. Therefore, let
π(i) = i be the identity permutation which denotes the successive order in which the mes-
sage bits are allocated for each receiver. The encoder must map m independent messages
(W1,W2, . . . ,Wm) uniformly distributed over [2nR1 ] × [2nR2 ] × · · · × [2nRm ] to a codeword
xn ∈ X n. To construct a codeword for broadcasting m independent messages, the following
binary sequences are formed at the encoder: u1:n1 , u1:n2 , . . . , u1:nm . To determine a particular

bit ui(j) in the binary sequence u1:ni , if j ∈ M(n)
i , the bit is selected as a uniformly dis-

tributed message bit intended for receiver i ∈ [m]. As defined in (3.12) of Proposition 3, the

message set M(n)
i represents those indices for bits transmitted to receiver i. The remaining

non-message indices in the binary sequence u1:ni for each user i ∈ [m] are computed either
according to a deterministic or random mapping.

3.4.1.1 Deterministic Mapping

Consider a class of deterministic boolean functions indexed by i ∈ [m] and j ∈ [n]:

ψ(i,j) : {0, 1}n(max{0,i−1})+j−1 → {0, 1}. (3.15)

As an example, consider the deterministic boolean function based on the maximum a poste-
riori polar coding rule.

ψ
(i,j)
MAP

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

, argmax
u∈{0,1}

{

P

(

Ui(j) = u
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

)}

. (3.16)

3.4.1.2 Random Mapping

Consider a class of random boolean functions indexed by i ∈ [m] and j ∈ [n]:

Ψ(i,j) : {0, 1}n(max{0,i−1})+j−1 → {0, 1}. (3.17)
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As an example, consider the random boolean function

Ψ
(i,j)
RAND

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,

{

0, w.p. λ0
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,

1, w.p. 1− λ0
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

,
(3.18)

where

λ0
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

, P

(

Ui(j) = 0
∣

∣

∣
U1:j−1
i = u1:j−1

i , {Y 1:n
k = y1:nk }k∈[1:i−1]

)

.

The random boolean function Ψ
(i,j)
RAND may be thought of as a vector of Bernoulli random

variables indexed by the input to the function. Each Bernoulli random variable of the vector
has a fixed probability of being one or zero that is well-defined.

3.4.1.3 Mapping From Messages To Codeword

The binary sequences u1:ni for i ∈ [m] are formed successively bit by bit. If j ∈ M(n)
i , then

the bit ui(j) is one message bit from the uniformly distributed message Wi intended for user

i. If j /∈ M(n)
i , ui(j) = ψ

(i,j)
MAP

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

in the case of a deterministic mapping,

or ui(j) = Ψ
(i,j)
RAND

(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

in the case of a random mapping. The encoder then
applies the inverse polar transform for each sequence: y1:ni = u1:ni G−1

n . The codeword xn is
formed symbol-by-symbol as follows:

x(j) ∈
m
⋂

i=1

f−1
i (yi(j)) .

If the intersection set is empty, the encoder declares a block error. A block error only occurs
at the encoder.

3.4.1.4 Decoding at Receivers

If the encoder succeeds in transmitting a codeword xn, each receiver obtains the sequence
y1:ni noiselessly and applies the polar transform Gn to recover u1:ni exactly. Since the message

indices M(n)
i are known to each receiver, the message bits in u1:ni are decoded correctly by

receiver i.

3.4.2 Total Variation Bound

While the deterministic mapping ψ
(i,j)
MAP performs well in practice, the average probability of

error P
(n)
e of the coding scheme is more difficult to analyze in theory. The random mapping

Ψ
(i,j)
RAND at the encoder is more amenable to analysis via the probabilistic method. Towards
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that goal, consider the following probability measure defined on the space of tuples of binary
sequences2.

Q
(

un1 , u
n
2 , · · ·, unm

)

,

m
∏

i=1

n
∏

j=1

Q
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

. (3.19)

where the conditional probability measure

Q
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

,

{

1
2
, if j ∈ M(n)

i ,

P
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)

, otherwise.

The probability measure Q defined in (3.19) is a perturbation of the joint probability measure
P defined in (3.8) for the random variables Ui(j). The only difference in definition between

P and Q is due to those indices in message set M(n)
i . The following lemma provides a bound

on the total variation distance between P and Q.

Lemma 1. (Total Variation Bound) Let probability measures P and Q be defined as in (3.8)
and (3.19) respectively. Let 0 < β < 1. For sufficiently large n, the total variation distance
between P and Q is bounded as

∑

{u1:n
k

}k∈[m]

∣

∣

∣
P
(

{u1:nk }k∈[m]

)

−Q
(

{u1:nk }k∈[m]

)

∣

∣

∣
≤ 2−n

β

.

Proof. See Section 3.6 of the Appendices.

3.4.3 Analysis of the Average Probability of Error

For the m-user deterministic DM-BC, an error event occurs at the encoder if a codeword xn

is unable to be constructed symbol by symbol according to the broadcast protocol described
in Section 3.4.1. Define the following set consisting of m-tuples of binary sequences,

T ,

{

(yn1 , y
n
2 , . . . , y

n
m) : ∃j ∈ [n],

m
⋂

i=1

f−1
i (yi(j)) = ∅

}

. (3.20)

The set T consists of thosem-tuples of binary output sequences which are inconsistent due to
the properties of the deterministic channel. In addition, due to the one-to-one correspondence
between sequences u1:ni and y1:ni , denote by T̃ the set of m-tuples (un1 , u

n
2 , . . . , u

n
m) that are

inconsistent.

2A related proof technique was provided for lossy source coding based on polarization in a different
context [54]. In the present thesis, a different proof is supplied that utilizes the chain rule for KL-divergence.
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For the broadcast protocol, the rate Ri =
1
n

∣

∣M(n)
i

∣

∣ for each receiver. Let the total sum
rate for all broadcast receivers be RΣ =

∑

i∈[m]Ri. If the encoder uses a fixed deterministic

map ψ(i,j) in the broadcast protocol, the average probability of error is

P (n)
e

[

{ψ(i,j)}
]

=
1

2nRΣ

∑

{u1:n
k

}k∈[m]

[1[(un1 ,un2 ,...,unm)∈T̃ ]

·
∏

i∈[m]

j∈[n]:j/∈M
(n)
i

1[ψ(i,j)(u1:j−1
i ,{y1:n

k
}k∈[1:i−1])=ui(j)]

]

. (3.21)

In addition, if the random maps Ψ(i,j) are used at the encoder, the average probability of
error is a random quantity given by

P (n)
e

[

{Ψ(i,j)}
]

=
1

2nRΣ

∑

{u1:n
k

}k∈[m]

[1[(un1 ,un2 ,...,unm)∈T̃ ]

·
∏

i∈[m]

j∈[n]:j/∈M
(n)
i

1[Ψ(i,j)(u1:j−1
i ,{y1:n

k
}k∈[1:i−1])=ui(j)]

]

. (3.22)

Instead of characterizing P
(n)
e directly for deterministic maps, the analysis of P

(n)
e [{Ψ(i,j)}]

leads to the following lemma.

Lemma 2. Consider the broadcast protocol of Section 3.4.1. Let Ri =
1
n

∣

∣M(n)
i

∣

∣ for i ∈ [m]
be the broadcast rates selected according to the criterion given in (3.12) in Proposition 3.
Then for 0 < β < 1 and sufficiently large n,

E{Ψ(i,j)}

[

P (n)
e [{Ψ(i,j)}]

]

< 2−n
β

.
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Proof.

E{Ψ(i,j)}

[

P (n)
e [{Ψ(i,j)}]

]

=
1

2nRΣ

∑

{u1:n
k

}k∈[m]

[1[(un1 ,un2 ,...,unm)∈T̃ ]·

∏

i∈[m]

j∈[n]:j/∈M
(n)
i

P
{

Ψ(i,j)
(

u1:j−1
i , {y1:nk }k∈[1:i−1]

)

= ui(j)
}

]

=
∑

{u1:n
k

}k∈[m]∈T̃

Q
(

{u1:nk }k∈[m]

)

(3.23)

=
∑

{u1:n
k

}k∈[m]∈T̃

∣

∣

∣
P
(

{u1:nk }k∈[m]

)

−Q
(

{u1:nk }k∈[m]

)

∣

∣

∣
(3.24)

≤ 2−n
β

. (3.25)

Step (3.23) follows since the probability measure Q matches the desired calculation exactly.
Step (3.24) is due to the fact that the probability measure P has zero mass over m-tuples of
binary sequences that are inconsistent. Step (3.25) follows directly from Lemma 1. Lastly,
since the expectation over random maps {Ψ(i,j)} of the average probability of error decays
stretched-exponentially, there must exist a set of deterministic maps which exhibit the same
behavior.

3.5 Proof Of Lemmas

The following lemmas provide a basis for proving polar coding theorems. A subset of the
lemmas were proven in different contexts, e.g., channel vs. source coding, and contain
citations to references.

Lemma 3. Consider two random variables X ∈ {0, 1} and Y ∈ Y with joint distribution
PX,Y (x, y). Let Q(x|y) = 1

2
denote a uniform conditional distribution for x ∈ {0, 1} and

y ∈ Y. Then the following identity holds.

D
(

PX|Y (x|y)
∥

∥

∥
Q(x|y)

)

= 1−H(X|Y ). (3.26)

Proof. The identity follows from standard definitions of entropy and Kullback-Leibler dis-
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tance.

H(X|Y ) =
∑

y∈Y

PY (y)
∑

x∈{0,1}

PX|Y (x|y) log2
1

PX|Y (x|y)

=
∑

y∈Y

PY (y)
∑

x∈{0,1}

PX|Y (x|y) log2
1

Q(x|y)

−
∑

y∈Y

PY (y)
∑

x∈{0,1}

PX|Y (x|y) log2
PX|Y (x|y)
Q(x|y)

=
∑

y∈Y

PY (y)



1−
∑

x∈{0,1}

PX|Y (x|y) log2
PX|Y (x|y)
Q(x|y)





= 1−D
(

PX|Y (x|y)
∥

∥

∥
Q(x|y)

)

.

Lemma 4 (Estimating The Bhattacharyya Parameter). Let (T, V ) ∼ PT,V (t, v) where T ∈
{0, 1} and V ∈ V where V is an arbitrary discrete alphabet. Define a likelihood function L(v)
and inverse likelihood function L−1(v) as follows.

L(v) ,
PT |V (0|v)
PT |V (1|v)

, L−1(v) ,
PT |V (1|v)
PT |V (0|v)

To account for degenerate cases in which PT |V (t|v) = 0, define the following function,

ϕ(t, v) ,















0 if 1[PT |V (t|v)=0]

L(v) if 1[PT |V (t|v)>0] and 1[t=1]

L−1(v) if 1[PT |V (t|v)>0] and 1[t=0]

In order to estimate Z(T |V ) ∈ [0, 1], it is convenient to sample from PTV (t, v) and express
Z(T |V ) as an expectation over random variables T and V ,

Z(T |V ) = ET,V

√

ϕ(T, V ). (3.28)
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Proof. The following forms of the Bhattacharyya parameter are equivalent.

Z(T |V ) , 2
∑

v∈V

PV (v)
√

PT |V (0|v)PT |V (1|v)

= 2
∑

v∈V

√

PTV (0, v)PTV (1, v)

=
∑

v∈V

PV (v)
∑

t∈{0,1}

√

PT |V (t|v)(1− PT |V (t|v))

=
∑

t∈{0,1}

∑

v:PT |V (t|v)>0
v∈V

PTV (t, v)

√

1− PT |V (t|v)
PT |V (t|v)

= ET,V

√

ϕ(T, V ).

Lemma 5 (Stochastic Degradation (cf. [55])). Consider discrete random variables V , Y1,
and Y2. Assume that |V| = 2 and that discrete alphabets Y1 and Y2 have an arbitrary size.
Then

PY1|V (y1|v) ≻ PY2|V (y2|v) ⇒ Z(V |Y2) ≥ Z(V |Y1). (3.29)

Proof. Beginning with the definition of the Bhattacharyya parameter leads to the following
derivation:

Z(V |Y2)
, 2

∑

y2

√

PV Y2(0, y2)PV Y2(1, y2)

= 2
∑

y2

√

PV (0)PV (1)
√

PY2|V (y2|0)PY2|V (y2|1)

= 2
√

PV (0)PV (1)
∑

y2

[

√

∑

y1

PY1|V (y1|0)P̃Y2|Y1(y2|y1) ·
√

∑

y1

PY1|V (y1|1)P̃Y2|Y1(y2|y1)
]

.

Then applying the Cauchy–Schwarz inequality yields

Z(V |Y2)

≥ 2
√

PV (0)PV (1)
∑

y2

[

∑

y1

√

PY1|V (y1|0)P̃Y2|Y1(y2|y1) ·
∑

y1

√

PY1|V (y1|1)P̃Y2|Y1(y2|y1)
]

= 2
√

PV (0)PV (1)
∑

y2

[

∑

y1

P̃Y2|Y1(y2|y1) ·
√

PY1|V (y1|0)PY1|V (y1|1)
]

.
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Interchanging the order of summations yields

Z(V |Y2) ≥ 2
√

PV (0)PV (1)

[

∑

y1

√

PY1|V (y1|0)PY1|V (y1|1) ·
∑

y2

P̃Y2|Y1(y2|y1)
]

= Z(V |Y1).

Lemma 6 (Successive Stochastic Degradation (cf. [55])). Consider a binary random variable
V , and discrete random variables Y1 with alphabet Y1, and Y2 with alphabet Y2. Assume that
the joint distribution PV Y1Y2 obeys the constraint PY1|V (y1|v) ≻ PY2|V (y2|v). Consider two
i.i.d. random copies (V 1, Y 1

1 , Y
1
2 ) and (V 2, Y 2

1 , Y
2
2 ) distributed according to PV Y1Y2. Define

two binary random variables U1 , V 1 ⊕ V 2 and U2 , V 2. Then the following holds

Z
(

U1
∣

∣Y 1:2
2

)

≥ Z
(

U1
∣

∣Y 1:2
1

)

, (3.30)

Z
(

U2
∣

∣U1, Y 1:2
2

)

≥ Z
(

U2
∣

∣U1, Y 1:2
1

)

. (3.31)

Proof. Given the assumptions, the following stochastic degradation conditions hold:

PY 1
1 |V 1(y11|v1) ≻ PY 1

2 |V 1(y12|v1), (3.32)

PY 2
1 |V 2(y21|v2) ≻ PY 2

2 |V 2(y22|v2). (3.33)

The goal is to derive new stochastic degradation conditions for the polarized conditional
distributions. The binary random variables U1 and U2 are not necessarily independent
Bernoulli(1

2
) variables. Taking this into account,

PY 1
2 Y

2
2 |U1

(

y12, y
2
2

∣

∣u1
)

=
1

PU1(u1)

∑

u2∈{0,1}

PV 1Y 1
2

(

u1 ⊕ u2, y12
)

PV 2Y 2
2

(

u2, y22
)

=
1

PU1(u1)

∑

u2∈{0,1}

[

PY 1
2 |V 1

(

y12
∣

∣u1 ⊕ u2
)

PV 1

(

u1 ⊕ u2
)

·PY 2
2 |V 2

(

y22
∣

∣u2
)

PV 2(u2)

]

.

Applying the property due to the assumption in (3.32),

PY 1
2 Y

2
2 |U1

(

y12, y
2
2

∣

∣u1
)

=
1

PU1(u1)

∑

u2∈{0,1}

[

PV 1

(

u1 ⊕ u2
)

PV 2(u2)

·
∑

a∈Y1

PY 1
1 |V 1

(

a
∣

∣u1 ⊕ u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)

·
∑

b∈Y1

PY 2
1 |V 2

(

b
∣

∣u2
)

P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

]

.
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Interchanging the order of summations and grouping terms involving PY 1
1 Y

2
1 |U1

(

y11, y
2
1

∣

∣u1
)

yields the following

PY 1
2 Y

2
2 |U1

(

y12, y
2
2

∣

∣u1
)

=
∑

a∈Y1,b∈Y1

PY 1
1 Y

2
1 |U1

(

a, b
∣

∣u1
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

.

The above derivation proves that

PY 1
1 Y

2
1 |U1

(

y11, y
2
1

∣

∣u1
)

≻ PY 1
2 Y

2
2 |U1

(

y12, y
2
2

∣

∣u1
)

.

Combined with Lemma 5, this concludes the proof for the ordering of the Bhattacharyya
parameters given in (3.30).

In a similar way, it is possible to show that

PY 1
2 Y

2
2 U

1|U2

(

y12, y
2
2, u

1
∣

∣u2
)

=
1

PU2(u2)
PV 1Y 1

2

(

u1 ⊕ u2, y12
)

PV 2Y 2
2

(

u2, y22
)

=
1

PU2(u2)

[

PY 1
2 |V 1

(

y12
∣

∣u1 ⊕ u2
)

PV 1

(

u1 ⊕ u2
)

·PY 2
2 |V 2

(

y22
∣

∣u2
)

PV 2(u2)

]

.

Applying the property due to the assumption in (3.33),

PY 1
2 Y

2
2 U

1|U2

(

y12, y
2
2, u

1
∣

∣u2
)

=
1

PU2(u2)

[

PV 1

(

u1 ⊕ u2
)

PV 2(u2)

·
∑

a∈Y1

PY 1
1 |V 1

(

a
∣

∣u1 ⊕ u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)

·
∑

b∈Y1

PY 2
1 |V 2

(

b
∣

∣u2
)

P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

]

.

Interchanging the order of the terms and grouping terms involving PY 1
1 Y

2
1 U

1|U2

(

y11, y
2
1, u

1
∣

∣u2
)

yields the following

PY 1
2 Y

2
2 U

1|U2

(

y12, y
2
2, u

1
∣

∣u2
)

=
∑

a∈Y1,b∈Y1

[

PY 1
1 Y

2
1 U

1|U2

(

a, b, u1
∣

∣u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)

]

,

=
∑

a∈Y1,b∈Y1,c∈{0,1}

[

PY 1
1 Y

2
1 U

1|U2

(

a, b, c
∣

∣u2
)

P̃Y 1
2 |Y 1

1

(

y12
∣

∣a)P̃Y 2
2 |Y 2

1

(

y22
∣

∣b
)1[u1=c]

]

.

The above derivation proves that

PY 1
1 Y

2
1 U

1|U2

(

y11, y
2
1, u

1
∣

∣u2
)

≻ PY 1
2 Y

2
2 U

1|U2

(

y12, y
2
2, u

1
∣

∣u2
)

.

Combined with Lemma 5, this concludes the proof for the ordering of the Bhattacharyya
parameters given in (3.31).
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Lemma 7 (Pinsker’s Inequality). Consider two discrete probability measures P (y) and Q(y)
for y ∈ Y. The following inequality holds for a constant κ , 2 ln 2.

∑

y∈Y

∣

∣

∣
P (y)−Q(y)

∣

∣

∣
≤

√

κD
(

P (y)
∥

∥Q(y)
)

.

Lemma 8 (Arıkan [7]). Consider two discrete random variables X ∈ {0, 1} and Y ∈ Y.
The Bhattacharyya parameter and conditional entropy are related as follows.

Z(X|Y )2 ≤ H(X|Y )
H(X|Y ) ≤ log2(1 + Z(X|Y ))

Lemma 9 (Bhattacharyya vs. Entropy Parameters). Consider two discrete random variables
X ∈ {0, 1} and Y ∈ Y. For any 0 < δ < 1

2
,

Z(X|Y ) ≥ 1− δ ⇒ H(X|Y ) ≥ 1− 2δ.

Z(X|Y ) ≤ δ ⇒ H(X|Y ) ≤ log2(1 + δ).

Proof. Due to Lemma 8, H(X|Y ) ≥ Z(X|Y )2 ≥ (1− δ)2 ≥ 1− 2δ + δ2 ≥ 1− 2δ. It follows
that if Z(X|Y ) ≥ 1 − δ and δ → 0, then H(X|Y ) → 1 as well. Similarly, due to Lemma 8,
taking constant κ = 1

loge 2
and using the series expansion of loge(1 + δ), if Z(X|Y ) ≤ δ then

H(X|Y ) ≤ log2(1 + δ) = κ
(

∑∞
k=1(−1)k+1 δk

k

)

≤ κδ. It follows that if Z(X|Y ) ≤ δ and

δ → 0, then H(X|Y ) → 0 as well.

3.6 Proof of Total Variation Bound

The total variation bound of Lemma 1 is decomposed in a simple way due to the chain rule
for Kullback-Leibler distance between discrete probability measures. The joint probability
measures P and Q were defined in (3.8) and (3.19) respectively. According to definition, if
P
(

{u1:ni }i∈[m]

)

> 0 then Q
(

{u1:ni }i∈[m]

)

> 0. Therefore the Kullback-Leibler distance D(P‖Q)
is well-defined and upper bounded as follows.
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D
(

P
(

{u1:ni }i∈[m]

)

∥

∥

∥
Q
(

{u1:ni }i∈[m]

)

)

=

m
∑

i=1

n
∑

j=1

[

D
(

P
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)
∥

∥

∥
Q
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

))

]

(3.34)

=

m
∑

i=1

∑

j∈M
(n)
i

[

D
(

P
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

)
∥

∥

∥
Q
(

ui(j)
∣

∣

∣
u1:j−1
i , {u1:nk }k∈[1:i−1]

))

]

(3.35)

=

m
∑

i=1

∑

j∈M
(n)
i

1−H
(

Ui(j)
∣

∣

∣
U1:j−1
i , {U1:n

k }k∈[1:i−1]

)

(3.36)

=
m
∑

i=1

∑

j∈M
(n)
i

1−H
(

Ui(j)
∣

∣

∣
U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

(3.37)

≤
m
∑

i=1

2δn

∣

∣

∣
M(n)

i

∣

∣

∣
. (3.38)

The equality in (3.34) is due to the chain rule for Kullback-Leibler distance. The equality

in (3.35) is valid because for indices j /∈ M(n)
i ,

P
(

ui(j)
∣

∣u1:j−1
i , {u1:nk }k∈[1:i−1]

)

= Q
(

ui(j)
∣

∣u1:j−1
i , {u1:nk }k∈[1:i−1]

)

.

The equality in (3.36) is valid due to Lemma 3 and the fact that

Q
(

ui(j)
∣

∣u1:j−1
i , {u1:nk }k∈[1:i−1]

)

=
1

2
,

for indices j ∈ M(n)
i . The equality in (3.37) follows due to the one-to-one correspondence

between variables {U1:n
k }k∈[1:i−1] and {Y 1:n

k }k∈[1:i−1]. The last inequality (3.38) follows from

Lemma 9 due to the fact that Z
(

Ui(j)
∣

∣U1:j−1
i , {Y 1:n

k }k∈[1:i−1]

)

≥ 1− δn for indices j ∈ M(n)
i .

To finish the proof of Lemma 1,

∑

{u1:n
k

}k∈[m]

∣

∣

∣
P
(

{u1:nk }k∈[m]

)

−Q
(

{u1:nk }k∈[m]

)

∣

∣

∣

≤
√

κD
(

P
(

{u1:nk }k∈[m]

)

∥

∥

∥
Q
(

{u1:nk }k∈[m]

)

)

(3.39)

≤

√

√

√

√κ
m
∑

i=1

2δn

∣

∣

∣
M(n)

i

∣

∣

∣
(3.40)

≤
√

(2κ)(m · n)(2−nβ′
).
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The inequality in (3.39) is due to Pinsker’s inequality given in Lemma 7. The inequality
in (3.40) was proven in (3.38). Finally for β ′ ∈ (β, 1

2
),

√

(2κ)(m · n)(2−nβ′
) < 2−n

β

for sufficiently large n. Hence the total variation distance is bounded by O(2−n
β

) for any
0 < β < 1

2
.
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Chapter 4

Superposition Coding

4.1 Classes of Broadcast Channels

Coding for noisy broadcast channels is now considered using polarization methods. By
contrast to the deterministic case, a decoding error event occurs at the receivers on account
of the randomness due to noise. For the remaining sections, it is assumed that there exist
m = 2 users in the DM-BC. The private-message capacity region for the DM-BC is unknown
even for binary input, binary output two-user channels such as the skew-symmetric DM-BC.
However, the private-message capacity region is known for specific classes.

4.1.1 Special Classes of Noisy DM-BCs

Definition 8. The two-user physically degraded DM-BC is a channel PY1Y2|X(y1, y2|x) for
which X − Y1 − Y2 form a Markov chain, i.e. one of the receivers is statistically stronger
than the other:

PY1Y2|X(y1, y2|x) = PY1|X(y1|x)PY2|Y1(y2|y1). (4.1)

Definition 9. A two-user DM-BC PY1Y2|X(y1, y2|x) is stochastically degraded if its condi-
tional marginal distributions are the same as that of a physically degraded DM-BC, i.e., if
there exists a distribution P̃Y2|Y1(y2|y1) such that

PY2|X(y2|x) =
∑

y1∈Y1

PY1|X(y1|x)P̃Y2|Y1(y2|y1). (4.2)

If (4.2) holds for two conditional distributions PY1|X(y1|x) and PY2|X(y2|x) defined over the
same input, then the property is denoted as follows: PY1|X(y1|x) ≻ PY2|X(y2|x).
Definition 10. A two-user DM-BC PY1Y2|X(y1, y2|x) for which V − X − (Y1, Y2) forms a
Markov chain is said to be less noisy if

∀PV X(v, x) : I(V ; Y1) ≥ I(V ; Y2). (4.3)
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I
/

IIIIIIV

Figure 4.1: Class hierarchy of special broadcast channels: Class I/II stochastically-degraded channels; Class III
“less-noisy” channels; Class IV “more capable” channels.

Definition 11. A two-user DM-BC PY1Y2|X(y1, y2|x) is said to be more capable if

∀PX(x) : I(X ; Y1) ≥ I(X ; Y2). (4.4)

The following lemma relates the properties of the special classes of noisy broadcast chan-
nels. A more comprehensive treatment of special classes is given by C. Nair in [65].

Lemma 10. Consider a two-user DM-BC PY1Y2|X(y1, y2|x). Let V − X − (Y1, Y2) form a
Markov chain, |V| > 1, and PV (v) > 0. The following implications hold:

X − Y1 − Y2

⇒ PY1|X(y1|x) ≻ PY2|X(y2|x) (4.5)

⇔ ∀PX|V (x|v) : PY1|V (y1|v) ≻ PY2|V (y2|v) (4.6)

⇒ ∀PV X(v, x) : I(V ; Y1) ≥ I(V ; Y2) (4.7)

⇒ ∀PX(x) : I(X ; Y1) ≥ I(X ; Y2). (4.8)

The converse statements for (4.5), (4.7), and (4.8) do not hold in general. Figure 4.1 illus-
trates the different types of broadcast channels as a hierarchy. Class II represents broadcast
channels for which V −X− (Y1, Y2) and PY2|V (y2|v) ≻ PY1|V (y1|v) for all PX|V (x|v). Class II
is equivalent to Class I which represents stochastically-degraded broadcast channels. Class III
represents “less-noisy” channels, and Class IV “more capable” channels.

Proof. See Section 4.5 of the Appendices.

4.2 Cover’s Inner Bound

Superposition coding involves one auxiliary random variable V which conveys a “cloud cen-
ter” or a coarse message decoded by both receivers [22]. One of the receivers then decodes
an additional “satellite codeword” conveyed through X containing a fine-grain message that
is superimposed upon the coarse information.
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Figure 4.2: The superposition coding inner bound and capacity region of a two-user broadcast channel comprised of
a BSC(p1) and a BSC(p2).

Proposition 4 (Cover’s Inner Bound). For any two-user DM-BC, the rates (R1, R2) ∈ R
2
+

are achievable in the region R(X, V, Y1, Y2) where

R(X, V, Y1, Y2) ,
{

R1, R2

∣

∣

∣
R1 ≤ I(X ; Y1|V ),
R2 ≤ I(V ; Y2),

R1 +R2 ≤ I(X ; Y1)
}

. (4.9)

and where random variables X, V, Y1, Y2 obey the Markov chain V −X − (Y1, Y2).

Remark 7. Cover’s inner bound is applicable for any broadcast channel. By symmetry, the
following rate region is also achievable: {R1, R2 | R2 ≤ I(X ; Y2|V ), R1 ≤ I(V ; Y1), R1+R2 ≤
I(X ; Y2)} for random variables obeying the Markov chain V −X − (Y1, Y2).

Remark 8. The inner bound is the capacity region for degraded, less-noisy, and more-capable
DM-BCs (i.e. Class I through Class IV as shown in Figure 4.1). For the degraded and less-
noisy special classes, the capacity region is simplified to {R1, R2 | R1 ≤ I(X ; Y1|V ), R2 ≤
I(V ; Y2)}. To see this, note that I(V ; Y2) ≤ I(V ; Y1) which implies I(V ; Y2) + I(X ; Y1|V ) ≤
I(V ; Y1) + I(X ; Y1|V ) = I(X ; Y1). Therefore the sum-rate constraint R1 +R2 ≤ I(X ; Y1) of
the rate-region in (4.9) is automatically satisfied.

Example 4 (Binary Symmetric DM-BC). The two-user binary symmetric DM-BC consists
of a binary symmetric channel with flip probability p1 denoted as BSC(p1) and a second
channel BSC(p2). Assume that p1 < p2 <

1
2
which implies stochastic degradation as defined

in (4.2). For α ∈ [0, 1
2
], Cover’s superposition inner bound is the region,

{

R1, R2

∣

∣

∣
R1 ≤ hb(α ∗ p1)− hb(p1),

R2 ≤ 1− hb(α ∗ p2)
}

(4.10)
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The above inner bound is determined by evaluating (4.9) where V is a Bernoulli random
variable with PV (v) =

1
2
, X = V ⊕S, and S is a Bernoulli random variable with PS(1) = α.

For a fixed auxiliary and input distribution PV X(v, x), the superposition inner bound is plotted
as a rectangle in R

2
+ for α = 1

10
and α = 1

4
in Figure 4.2. The corner points of this rectangle

given in (4.10) lie on the capacity boundary. For this example, polar codes achieve all points
on the capacity boundary.

Example 5 (DM-BC with BEC(ǫ) and BSC(p)[65]). Consider a two-user DM-BC com-
prised of a BSC(p) from X to Y1 and a BEC(ǫ) from X to Y2. Then it can be shown that
the following cases hold:

• 0 < ǫ ≤ 2p: Y1 is degraded with respect to Y2.

• 2p < ǫ ≤ 4p(1− p): Y2 is less noisy than Y1 but Y1 is not degraded with respect to Y2.

• 4p(1− p) < ǫ ≤ hb(p): Y2 is more capable than Y1 but not less noisy.

• hb(p) < ǫ < 1: The channel does not belong to the special classes.

The capacity region for all channel parameters for this example is achieved using superposi-
tion coding.

4.3 Polar Coding Theorem

Theorem 3 (Polarization-Based Superposition Code). Consider any two-user DM-BC with
binary input alphabet X = {0, 1} and arbitrary output alphabets Y1, Y2. There exists a
sequence of polar broadcast codes over n channel uses which achieves the following rate
region

R(V,X, Y1, Y2) ,
{

R1, R2

∣

∣

∣
R1 ≤ I(X ; Y1|V ),

R2 ≤ I(V ; Y2)
}

, (4.11)

where random variables V,X, Y1, Y2 have the following listed properties:

• V is a binary random variable.

• PY1|V (y1|v) ≻ PY2|V (y2|v).

• V −X − (Y1, Y2) form a Markov chain.

For 0 < β < 1
2
, the average error probability of this code sequence decays as P

(n)
e = O(2−n

β

).
The complexity of encoding and decoding is O(n logn).
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Figure 4.3: Block diagram of a polar code based on Cover’s superposition coding.

Remark 9. The requirement that auxiliary V is a binary random variable is due to the use
of binary polarization theorems in the proof. Indeed, the auxiliary V may need to have a
larger alphabet in the case of broadcast channels. An extension to q-ary random variables is
entirely possible if q-ary polarization theorems are utilized.

Remark 10. The requirement that V − X − (Y1, Y2) holds is standard for superposition
coding over noisy channels. However, the listed property PY1|V (y1|v) ≻ PY2|V (y2|v) is due to
the structure of polarization and is used in the proof to guarantee that polarization indices
are aligned. If both receivers are able to decode the coarse message carried by the auxiliary
random variable V , the polarization indices for the coarse message must be nested for the
two receivers’ channels.

4.4 Proof of Main Theorem

To prove Theorem 3, consider the block diagram for polarization-based superposition coding
given in Figure 4.3. Similar to random codes in Shannon theory, polarization-based codes
rely on n-length i.i.d. statistics of random variables; however, a specific polarization structure
based on the chain rule of entropy allows for efficient encoding and decoding. The key idea
of Cover’s inner bound is to superimpose two messages of information onto one codeword.

4.4.1 Polar Transform

Consider the i.i.d. sequence of random variables

(V j, Xj, Y j
1 , Y

j
2 ) ∼ PV (v)PX|V (x|v)PY1Y2|X(y1, y2|x),

where the index j ∈ [n]. Let the n-length sequence of auxiliary and input variables (V j, Xj)
be organized into the random matrix

Ω ,

[

X1 X2 X3 . . . Xn

V 1 V 2 V 3 . . . V n

]

. (4.12)
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Applying the polar transform to Ω results in the random matrix U , ΩGn. Let the random
variables in the random matrix U be indexed as follows:

U =

[

U1
1 U2

1 U3
1 . . . Un

1

U1
2 U2

2 U3
2 . . . Un

2

]

. (4.13)

The above definitions are consistent with the block diagram given in Figure 4.3 (and noting
that Gn = G−1

n ). The polar transform extracts the randomness of Ω. In the transformed
domain, the joint distribution of the random variables in U is given by

PUn
1 U

n
2

(

un1 , u
n
2

)

, PXnV n

(

un1Gn, u
n
2Gn

)

. (4.14)

For polar coding purposes, the joint distribution is decomposed as follows,

PUn
1 U

n
2

(

un1 , u
n
2

)

= PUn
2
(un2 )PUn

1 |Un
2

(

un1
∣

∣un2
)

=
n
∏

j=1

P
(

u2(j)
∣

∣u1:j−1
2

)

P
(

u1(j)
∣

∣u1:j−1
1 , un2

)

. (4.15)

The conditional distributions may be computed efficiently using recursive protocols as al-
ready mentioned. The polarized variables in U are not i.i.d. random variables.

4.4.2 Polarization Theorems Revisited

Definition 12 (Polarization Sets for Superposition Coding). Let V n, Xn, Y n
1 , Y

n
2 be the se-

quence of random variables as introduced in Section 4.4.1. In addition, let Un
1 = XnGn and

Un
2 = V nGn. Let δn = 2−n

β

for 0 < β < 1
2
. The following polarization sets are defined:

H(n)
X|V ,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1 , V n

)

≥ 1− δn

}

,

L(n)
X|V Y1

,

{

j ∈ [n] : Z
(

U1(j)
∣

∣

∣
U1:j−1
1 , V n, Y n

1

)

≤ δn

}

,

L(n)
V |Y1

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

1

)

≤ δn

}

.

H(n)
V ,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2

)

≥ 1− δn

}

,

L(n)
V |Y2

,

{

j ∈ [n] : Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≤ δn

}

.

Definition 13 (Message Sets for Superposition Coding). In terms of the polarization sets
given in Definition 12, the following message sets are defined:

M(n)
1v , H(n)

V ∩ L(n)
V |Y1

, (4.16)

M(n)
1 , H(n)

X|V ∩ L(n)
X|V Y1

. (4.17)

M(n)
2 , H(n)

V ∩ L(n)
V |Y2

. (4.18)
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Proposition 5 (Polarization). Consider the polarization sets given in Definition 12 and the
message sets given in Definition 13 with parameter δn = 2−n

β

for 0 < β < 1
2
. Fix a constant

τ > 0. Then there exists an No = No(β, τ) such that

1

n

∣

∣

∣
M(n)

1

∣

∣

∣
≥

(

H(X|V )−H(X|V, Y1)
)

−τ, (4.19)

1

n

∣

∣

∣
M(n)

2

∣

∣

∣
≥

(

H(V )−H(V |Y2)
)

−τ, (4.20)

for all n > No.

Lemma 11. Consider the message sets defined in Definition 13. If the property PY1|V (y1|v) ≻
PY2|V (y2|v) holds for conditional distributions PY1|V (y1|v) and PY2|V (y2|v), then the Bhat-
tacharyya parameters

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

1

)

≤ Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

for all j ∈ [n]. As a result,

M(n)
2 ⊆ M(n)

1v .

Proof. The proof follows from Lemma 5 and repeated application of Lemma 6 in Ap-
pendix 3.5.

4.4.3 Broadcast Encoding Blocks: (E1, E2)
The polarization theorems of the previous section are useful for defining a multi-user com-
munication system as diagrammed in Figure 4.3. The broadcast encoder must map two
independent messages (W1,W2) uniformly distributed over [2nR1] × [2nR2 ] to a codeword
xn ∈ X n in such a way that the decoding at each separate receiver is successful. The
achievable rates for a particular block length n are

R1 =
1

n

∣

∣

∣
M(n)

1

∣

∣

∣
,

R2 =
1

n

∣

∣

∣
M(n)

2

∣

∣

∣
.

To construct a codeword, the encoder first produces two binary sequences un1 ∈ {0, 1}n
and un2 ∈ {0, 1}n. To determine u1(j) for j ∈ M(n)

1 , the bit is selected as a uniformly

distributed message bit intended for the first receiver. To determine u2(j) for j ∈ M(n)
2 ,

the bit is selected as a uniformly distributed message bit intended for the second receiver.
The remaining non-message indices of un1 and un2 are computed according to deterministic
or random functions which are shared between the encoder and decoder.
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4.4.3.1 Deterministic Mapping

Consider the following deterministic boolean functions indexed by j ∈ [n]:

ψ
(j)
1 : {0, 1}n+j−1 → {0, 1}, (4.21)

ψ
(j)
2 : {0, 1}j−1 → {0, 1}. (4.22)

As an example, consider the deterministic boolean functions based on the maximum a pos-
teriori polar coding rule.

ψ
(j)
1

(

u1:j−1
1 , vn

)

, argmax
u∈{0,1}

{

P

(

U1(j) = u
∣

∣

∣
U1:j−1
1 = u1:j−1

1 , V n = vn
)}

. (4.23)

ψ
(j)
2

(

u1:j−1
2

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2

)}

. (4.24)

4.4.3.2 Random Mapping

Consider the following class of random boolean functions indexed by j ∈ [n]:

Ψ
(j)
1 : {0, 1}n+j−1 → {0, 1}, (4.25)

Ψ
(j)
2 : {0, 1}j−1 → {0, 1}. (4.26)

As an example, consider the random boolean functions

Ψ
(j)
1

(

u1:j−1
1 , vn

)

,

{

0, w.p. λ0
(

u1:j−1
1 , vn

)

,

1, w.p. 1− λ0
(

u1:j−1
1 , vn

)

,
(4.27)

Ψ
(j)
2

(

u1:j−1
2

)

,

{

0, w.p. λ0
(

u1:j−1
2

)

,

1, w.p. 1− λ0
(

u1:j−1
2

)

,
(4.28)

where

λ0
(

u1:j−1
2

)

, P
(

U2(j) = 0
∣

∣U1:j−1
2 = u1:j−1

2

)

.

λ0
(

u1:j−1
1 , vn

)

, P
(

U1(j) = 0
∣

∣U1:j−1
1 = u1:j−1

1 , V n = vn
)

.

The random boolean functions Ψ
(j)
1 and Ψ

(j)
2 may be thought of as a vector of independent

Bernoulli random variables indexed by the input to the function. Each Bernoulli random
variable of the vector is zero or one with a fixed probability.

4.4.3.3 Protocol

The encoder constructs the sequence un2 first using the message bits W2 and either (4.24)
or (4.28). Next, the sequence vn = un2Gn is created. Finally, the sequence un1 is constructed
using the message bits W1, the sequence vn, and either the deterministic maps defined
in (4.23) or the randomized maps in (4.27). The transmitted codeword is xn = un1Gn.
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4.4.4 Broadcast Decoding Based on Polarization

4.4.4.1 Decoding At First Receiver

Decoder D1 decodes the binary sequence ûn2 first using its observations yn1 . It then recon-
structs v̂n = ûn2Gn. Using the sequence v̂n and observations yn1 , the decoder reconstructs

ûn1 . The message W1 is located at the indices j ∈ M(n)
1 in the sequence ûn1 . More precisely,

define the following deterministic polar decoding functions:

ξ(j)v
(

u1:j−1
2 , yn1

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , Y n
1 = yn1

)}

. (4.29)

ξ(j)u1
(

u1:j−1
1 , vn, yn1

)

, argmax
u∈{0,1}

{

P

(

U1(j) = u
∣

∣

∣
U1:j−1
1 = u1:j−1

1 , V n = vn, Y n
1 = yn1

)}

. (4.30)

The decoder D1 reconstructs ûn2 bit-by-bit successively as follows using the identical shared

random mapping Ψ
(j)
2 (or possibly the identical shared mapping ψ

(j)
2 ) used at the encoder:

û2(j) =

{

ξ
(j)
v

(

û1:j−1
2 , yn1

)

, if j ∈ M(n)
2 ,

Ψ
(j)
2

(

û1:j−1
2

)

, otherwise.
(4.31)

If Lemma 11 holds, note that M(n)
2 ⊆ M(n)

1v . With ûn2 , decoder D1 reconstructs v̂n = ûn2Gn.
Then the sequence ûn1 is constructed bit-by-bit successively as follows using the identical

shared random mapping Ψ
(j)
1 (or possibly the identical shared mapping ψ

(j)
1 ) used at the

encoder:

û1(j) =

{

ξ
(j)
u1

(

û1:j−1
1 , v̂n, yn1

)

, if j ∈ M(n)
1 ,

Ψ
(j)
1

(

û1:j−1
1 , v̂n

)

, otherwise.
(4.32)

4.4.4.2 Decoding At Second Receiver

The decoder D2 decodes the binary sequence ûn2 using observations yn2 . The message W2

is located at the indices j ∈ M(n)
2 of the sequence ûn2 . More precisely, define the following

polar decoding functions

ξ(j)v
(

u1:j−1
2 , yn2

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , Y n
2 = yn2

)}

. (4.33)

The decoder D2 reconstructs ûn2 bit-by-bit successively as follows using the identical shared

random mapping Ψ
(j)
2 (or possibly the identical shared mapping ψ

(j)
2 ) used at the encoder:

û2(j) =

{

ξ
(j)
v

(

û1:j−1
2 , yn2

)

, if j ∈ M(n)
2 ,

Ψ
(j)
2

(

û1:j−1
2

)

, otherwise.
(4.34)

Remark 11. The encoder and decoders execute the same protocol for reconstructing bits at
the non-message indices. This is achieved by applying the same deterministic maps ψ

(j)
1 and

ψ
(j)
2 or randomized maps Ψ

(j)
1 and Ψ

(j)
2 .
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4.4.5 Total Variation Bound

To analyze the average probability of error P
(n)
e via the probabilistic method, it is assumed

that both the encoder and decoder share the randomized mappings Ψ
(j)
1 and Ψ

(j)
2 . Define

the following probability measure on the space of tuples of binary sequences.

Q
(

un1 , u
n
2

)

, Q
(

un2
)

Q
(

un1
∣

∣un2
)

=
n
∏

j=1

Q
(

u2(j)
∣

∣

∣
u1:j−1
2

)

Q
(

u1(j)
∣

∣

∣
u1:j−1
1 , un2

)

. (4.35)

In (4.35), the conditional probability measures are defined as

Q
(

u2(j)
∣

∣

∣
u1:j−1
2

)

,

{

1
2
, if j ∈ M(n)

2 ,

P
(

u2(j)
∣

∣

∣
u1:j−1
2

)

, otherwise.

Q
(

u1(j)
∣

∣

∣
u1:j−1
1 , un2

)

,

{

1
2
, if j ∈ M(n)

1 ,

P
(

u1(j)
∣

∣

∣
u1:j−1
1 , un2

)

, otherwise.

The probability measure Q defined in (4.35) is a perturbation of the joint probability measure
PUn

1 U
n
2
(un1 , u

n
2) in (4.15). The only difference in definition between P and Q is due to those

indices in message sets M(n)
1 and M(n)

2 . The following lemma provides a bound on the
total variation distance between P and Q. The lemma establishes the fact that inserting
uniformly distributed message bits in the proper indices M(n)

1 and M(n)
2 at the encoder does

not perturb the statistics of the n-length random variables too much.

Lemma 12. (Total Variation Bound) Let probability measures P and Q be defined as
in (4.15) and (4.35) respectively. Let 0 < β < 1. For sufficiently large n, the total variation
distance between P and Q is bounded as

∑

un1∈{0,1}
n

un2∈{0,1}
n

∣

∣

∣
PUn

1 U
n
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣
≤ 2−n

β

.

Proof. See Section 4.6 of the Appendices.

4.4.6 Error Sequences

The decoding protocols for D1 and D2 were established in Section 4.4.4. To analyze the
probability of error of successive cancelation (SC) decoding, consider the sequences un1 and
un2 formed at the encoder, and the resulting observations yn1 and yn2 received by the decoders.
It is convenient to group the sequences together and consider all tuples (un1 , u

n
2 , y

n
1 , y

n
2 ).
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Decoder D1 makes an SC decoding error on the j-th bit for the following tuples:

T j
1v ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
Uj
2

∣

∣U1:j−1
2 Y n

1

(

u2(j)
∣

∣u1:j−1
2 , yn1

)

≤

P
Uj
2

∣

∣U1:j−1
2 Y n

1

(

u2(j)⊕ 1
∣

∣u1:j−1
2 , yn1

)

}

,

T j
1 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
Uj
1

∣

∣U1:j−1
1 V nY n

1

(

u1(j)
∣

∣u1:j−1
1 , un2Gn, y

n
1

)

≤

P
Uj
1

∣

∣U1:j−1
1 V nY n

1

(

u1(j)⊕ 1
∣

∣u1:j−1
1 , un2Gn, y

n
1

)

}

. (4.36)

The set T j
1v represents those tuples causing an error at D1 in the case u2(j) is inconsistent with

respect to observations yn1 and the decoding rule. The set T j
1 represents those tuples causing

an error at D1 in the case u1(j) is inconsistent with respect to vn = un2Gn, observations y
n
1 ,

and the decoding rule. Similarly, decoder D2 makes an SC decoding error on the j-th bit for
the following tuples:

T j
2 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

: P
U2

∣

∣U1:j−1
2 Y n

2

(

u2
∣

∣u1:j−1
2 , yn2

)

≤

P
U2

∣

∣U1:j−1
2 Y n

2

(

u2 ⊕ 1
∣

∣u1:j−1
2 , yn2

)

}

.

The set T j
2 represents those tuples causing an error at D2 in the case u2(j) is inconsistent

with respect to observations yn2 and the decoding rule. Since both decoders D1 and D2 only
declare errors for those indices in the message sets, the set of tuples causing an error is

T1v ,
⋃

j∈M
(n)
2 ⊆M

(n)
1v

T j
1v, (4.37)

T1 ,
⋃

j∈M
(n)
1

T j
1 , (4.38)

T2 ,
⋃

j∈M
(n)
2

T j
2 . (4.39)

The complete set of tuples causing a broadcast error is

T , T1v ∪ T1 ∪ T2. (4.40)

The goal is to show that the probability of choosing tuples of error sequences in the set T is
small under the distribution induced by the broadcast code.



CHAPTER 4. SUPERPOSITION CODING 45

4.4.7 Average Error Probability

Denote the total sum rate of the broadcast protocol as RΣ = R1+R2. Consider first the use
of fixed deterministic maps ψ

(j)
1 and ψ

(j)
2 shared between the encoder and decoders. Then

the probability of error of broadcasting the two messages at rates R1 and R2 is given by

P (n)
e

[

{ψ(j)
1 , ψ

(j)
2 }

]

=
∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y

n
2

∣

∣Un
1 U

n
2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

· 1

2nR2

∏

j∈[n]:j /∈M
(n)
2

1[

ψ
(j)
2 (u1:j−1

2 )=u2(j)
]

· 1

2nR1

∏

j∈[n]:j /∈M
(n)
1

1[

ψ
(j)
1 (u1:j−1

1 ,un2Gn)=u1(j)
]

]

.

If the encoder and decoders share randomized maps Ψ
(j)
1 and Ψ

(j)
2 , then the average

probability of error is a random quantity determined as follows

P (n)
e

[

{Ψ(j)
1 ,Ψ

(j)
2 }

]

=
∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

[

P
Y n
1 Y

n
2

∣

∣Un
1 U

n
2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

· 1

2nR2

∏

j∈[n]:j/∈M
(n)
2

1[

Ψ
(j)
2 (u1:j−1

2 )=u2(j)
]

· 1

2nR1

∏

j∈[n]:j/∈M
(n)
1

1[

Ψ
(j)
1 (u1:j−1

1 ,un2Gn)=u1(j)
]

]

.

By averaging over the randomness in the encoders and decoders, the expected block error
probability is upper bounded in the following lemma.

Lemma 13. Consider the polarization-based superposition code described in Section 4.4.3
and Section 4.4.4. Let R1 and R2 be the broadcast rates selected according to the Bhat-
tacharyya criterion given in Proposition 5. Then for 0 < β < 1 and sufficiently large n,

E
{Ψ

(j)
1 ,Ψ

(j)
2 }

[

P (n)
e [{Ψ(j)

1 ,Ψ
(j)
2 }]

]

< 2−n
β

.

Proof. See Section 4.6 of the Appendices.

If the average probability of error decays to zero in expectation over the random maps
{Ψ(j)

1 } and {Ψ(j)
2 }, then there must exist at least one fixed set of maps for which P

(n)
e → 0.
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4.5 Proof Of Lemmas

To prove Lemma 10, note that the implication in (4.5) follows since X −Y1−Y2 means that

PY2|X(y2|x) =
∑

y1

PY1|X(y1|x)PY2|Y1(y2|y1).

The implication in (4.6) follows by observing that

PY2|V (y2|v) =
∑

y1∈Y1

PY1Y2|V (y1, y2|v)

=
∑

x∈X

∑

y1∈Y1

PX|V (x|v)PY1Y2|X(y1, y2|x)

=
∑

x∈X

PX|V (x|v)
∑

y1∈Y1

PY1Y2|X(y1, y2|x)

=
∑

x∈X

PX|V (x|v)PY2|X(y2|x)

=
∑

x∈X

PX|V (x|v)
∑

y1∈Y1

PY1|X(y1|x)P̃Y2|Y1(y2|y1) (4.41)

=
∑

y1∈Y1

∑

x∈X

PX|V (x|v)PY1|X(y1|x)P̃Y2|Y1(y2|y1)

=
∑

y1∈Y1

PY1|V (y1|v)P̃Y2|Y1(y2|y1).

In step (4.41), the assumed stochastic degraded condition PY1|X(y1|x) ≻ PY2|X(y2|x) ensures
the existence of the distribution P̃Y2|Y1(y2|y1). The converse to (4.6) follows since it is possible
to select PX|V (x|v) = 1[x=v] where the alphabet V = X . In this case, for any v ∈ X ,

PY2|V (y2|v) =
∑

x∈X

PX|V (x|v)PY2|X(y2|x)

=
∑

x∈X

1[x=v]PY2|X(y2|x)

= PY2|X(y2|v).
Similarly, PY1|V (y1|v) = PY1|X(y1|v) for any v ∈ X . Due to the assumed stochastic degrad-

edness condition PY2|V (y2|v) =
∑

y1
PY1|V (y1|v)P̃Y2|Y1(y2|y1), for any v ∈ X ,

PY2|X(y2|v) = PY2|V (y2|v)
=

∑

y1

PY1|V (y1|v)P̃Y2|Y1(y2|y1)

=
∑

y1

PY1|X(y1|v)P̃Y2|Y1(y2|y1).
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Therefore the stochastic degradedness property PY1|X(y1|x) ≻ PY2|X(y2|x) must hold as well.
The statement of (4.6) means that Class I and Class II are equivalent as shown in Figure 4.1.
The implication in (4.7) follows because assuming the stochastic degradedness property
PY1|V (y1|v) ≻ PY2|V (y2|v) holds for all PX|V (x|v), there exists a Ỹ1 such that V − Ỹ1 − Y2
form a Markov chain and PỸ1|V (ỹ1|v) = PY1|V (ỹ1|v) for all PX|V (x|v). By the data processing

inequality, I(V ; Ỹ1) ≥ I(V ; Y2). If PỸ1|V (ỹ1|v) = PY1|V (ỹ1|v), then PV Ỹ1(v, ỹ1) = PV Y1(v, ỹ1)

for all PV (v). It follows that for all PV X(v, x), the mutual information I(V ; Ỹ1) = I(V ; Y1).
The implication in (4.8) follows by setting PV X(v, x) = 1[v=x]PX(x) and letting V = X .
Then for any v ∈ X ,

PV Y1(v, y1) =
∑

x∈X

PV X(v, x)PY1|X(y1|x)

=
∑

x∈X

1[v=x]PX(x)PY1|X(y1|x)

= PX(v)PY1|X(y1|v)
= PXY1(v, y1).

Similarly for any v ∈ X , PV Y2(v, y2) = PXY2(v, y2). Therefore for the particular choice
of PV X(v, x) = 1[v=x]PX(x), I(V ; Y1) = I(X ; Y1) and I(V ; Y2) = I(X ; Y2). The converse
statements for (4.5), (4.7), and (4.8) do not hold due to a counterexample involving a DM-
BC comprised of a binary erasure channel BEC(ǫ) and a binary symmetric channel BSC(p)
as described in Example 5.

4.6 Bounding the Probability Of Error

The total variation bound of Lemma 12 is decomposed in a simple way due to the chain rule
for Kullback-Leibler distance between discrete probability measures. The joint probability
measures P and Q were defined in (4.15) and (4.35) respectively. According to definition, if
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n
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> 0. Therefore the Kullback-Leibler distance D(P‖Q) is
well-defined. Applying the chain rule,
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Applying Lemma 3, the one-to-one relation between Un
1 and V n, and Lemma 9 leads to the

following result.
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.

Using identical arguments as applied in the proof of Lemma 1, the total variation distance
between P and Q is bounded as O(2−n

β

).
To prove Lemma 13, the expectation of the average probability of error of the polarization-

based superposition code is written as
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From the definitions of the random boolean functions Ψ
(j)
1 in (4.27) and Ψ
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2 in (4.28), it

follows that
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The expression for the expected average probability of error is then simplified by substituting
the definition for Q(un1 , u

n
2) provided in (4.35) as follows,
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The next step in the proof is to split the error term E
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into two

main parts, one part due to the error caused by polar decoding functions, and the other part
due to the total variation distance between probability measures.
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. (4.42)

Lemma 12 established that the error term due to the total variation distance is upper
bounded as O(2−n

β

). Therefore, it remains to upper bound the error term due to the
polar decoding functions. Towards this end, note first that T = T1v∪T1∪T2, T1v = ∪jT j
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1v , T1 = ∪jT j
1 for j ∈ M(n)
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2 . It is convenient to
bound each type of error bit by bit successively at both decoder D1 and D2 as follows.
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In this form, it is possible to upper bound the error term E j1v with the corresponding Bhat-
tacharyya parameter as follows,
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Using identical arguments, the following upper bounds apply for the individual bit-by-bit
error terms caused by successive decoding at both D1 and D2.
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Therefore, the total error due to decoding at the receivers is upper bounded as
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This concludes the proof demonstrating that the expected average probability of error is
upper bounded as O(2−n

β

).
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Chapter 5

Marton’s Broadcast Construction

5.1 Marton’s Inner Bound

For general noisy broadcast channels, Marton’s inner bound involves two correlated auxiliary
random variables V1 and V2 [63]. The intuition behind the coding strategy is to identify two
“virtual” channels, one from V1 to Y1, and the other from V2 to Y2. Somewhat surprisingly,
although the broadcast messages are independent, the auxiliary random variables V1 and V2
may be correlated to increase rates to both receivers. While there exist generalizations of
Marton’s strategy, the basic version of the inner bound is presented in this section1.

Proposition 6 (Marton’s Inner Bound). For any two-user DM-BC, the rates (R1, R2) ∈ R
2
+

in the pentagonal region R(X, V1, V2, Y1, Y2) are achievable where

R(X, V1, V2, Y1, Y2) ,
{

R1, R2

∣

∣

∣
R1 ≤ I(V1; Y1),

R2 ≤ I(V2; Y2),

R1 +R2 ≤ I(V1; Y1) + I(V2; Y2)− I(V1;V2)
}

. (5.1)

and where X, V1, V2, Y1, Y2 have a joint distribution given by

PV1V2(v1, v2)PX|V1V2(x|v1, v2)PY1Y2|X(y1, y2|x).

Remark 12. It can be shown that for Marton’s inner bound there is no loss of generality if
PX|V1V2(x|v1, v2) = 1[x=φ(v1,v2)] where φ(v1, v2) is a deterministic function [33, Section 8.3].
Thus, by allowing a larger alphabet size for the auxiliaries, X may be a deterministic function
of auxiliaries (V1, V2). Marton’s inner bound is tight for the class of semi-deterministic DM-
BCs for which one of the outputs is a deterministic function of the input.

1In addition, it is difficult even to evaluate Marton’s inner bound for general channels due to the need
for proper cardinality bounds on the auxiliaries [43].
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PY1Y2|X(y1, y2|x)
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Un
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Figure 5.1: Block diagram of a polar code based on Marton’s broadcast construction.

5.2 Polar Coding Theorem

Theorem 4 (Polarization-Based Marton Code). Consider any two-user DM-BC with ar-
bitrary input and output alphabets. There exist sequences of polar broadcast codes over n
channel uses which achieve the following rate region

R(V1, V2, X, Y1, Y2) ,
{

R1, R2

∣

∣

∣
R1 ≤ I(V1; Y1),

R2 ≤ I(V2; Y2)− I(V1;V2)
}

, (5.2)

where random variables V1, V2, X, Y1, Y2 have the following listed properties:

• V1 and V2 are binary random variables.

• PY2|V2(y2|v2) ≻ PV1|V2(v1|v2).
• For a deterministic function φ : {0, 1}2 → X , the joint distribution of all random
variables is given by

PV1V2XY1Y2(v1, v2, x, y1, y2) = PV1V2(v1, v2)1[x=φ(v1,v2)]PY1Y2|X(y1, y2|x).

For 0 < β < 1
2
, the average error probability of this code sequence decays as P

(n)
e = O(2−n

β

).
The complexity of encoding and decoding is O(n logn).

Remark 13. The listed property PY2|V2(y2|v2) ≻ PV1|V2(v1|v2) is necessary in the proof due
to polarization-based codes requiring an alignment of polarization indices. The property
is a natural restriction since it also implies that I(Y2;V2) > I(V1;V2) so that R2 > 0.
However, certain joint distributions on random variables are not permitted using the analysis
of polarization presented here. It is not clear whether a different approach obviates the need
for an alignment of indices.

Remark 14. By symmetry, the rate tuple (R1, R2) = (I(V1; Y1) − I(V1;V2), I(V2, Y2)) is
achievable with low-complexity codes under similar constraints on the joint distribution of
V1, V2, X, Y1, Y2. The rate tuple is a corner point of the pentagonal rate region of Marton’s
inner bound given in (5.1).
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5.3 Proof of Main Theorem

To prove Theorem 4, consider the block diagram for polarization-based Marton coding given
in Figure 5.1. Marton’s strategy differs form Cover’s superposition coding with the presence
of two auxiliaries and the function φ(v1, v2) which forms the codeword symbol-by-symbol.
The polar transform is applied to each n-length i.i.d. sequence of auxiliary random variables.

5.3.1 Polar Transform

Consider the i.i.d. sequence of random variables

(V j
1 , V

j
2 , X

j, Y j
1 , Y

j
2 ) ∼ PV1V2(v1, v2)PX|V1V2(x|v1, v2)PY1Y2|X(y1, y2|x),

where the index j ∈ [n]. For the particular coding strategy analyzed in this section,
PX|V1V2(x|v1, v2) = 1[x=φ(v1,v2)]. Let the n-length sequence of auxiliary variables (V j

1 , V
j
2 )

be organized into the random matrix

Ω ,

[

V 1
1 V 2

1 V 3
1 . . . V n

1

V 1
2 V 2

2 V 3
2 . . . V n

2

]

. (5.3)

Applying the polar transform to Ω results in the random matrix U , ΩGn. Index the
random variables of U as follows:

U =

[

U1
1 U2

1 U3
1 . . . Un

1

U1
2 U2

2 U3
2 . . . Un

2

]

. (5.4)

The above definitions are consistent with the block diagram given in Figure 5.1 (and noting
that Gn = G−1

n ). The polar transform extracts the randomness of Ω. In the transformed
domain, the joint distribution of the variables in U is given by
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. (5.5)

However, for polar coding purposes, the joint distribution is decomposed as follows,
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. (5.6)

The above conditional distributions may be computed efficiently using recursive protocols.
The polarized random variables of U do not have an i.i.d. distribution.

5.3.2 Effective Channel

Marton’s achievable strategy establishes virtual channels for the two receivers via the function
φ(v1, v2). The virtual channel is given by

P φ
Y1Y2|V1V2

(
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∣
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)
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)

)

.
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Figure 5.2: The alignment of polarization indices for Marton’s broadcast construction.

Due to the memoryless property of the DM-BC, the effective channel between auxiliaries
and channel outputs is given by
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.

The polarization-based Marton code establishes a different effective channel between polar-
transformed auxiliaries and the channel outputs. The effective polarized channel is
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5.3.3 Polarization Theorems Revisited

Definition 14 (Polarization Sets for Marton Coding). Let V n
1 , V

n
2 , X

n, Y n
1 , Y

n
2 be the se-

quence of random variables as introduced in Section 5.3.1. In addition, let Un
1 = V n

1 Gn and
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Un
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2 Gn. Let δn = 2−n
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for 0 < β < 1
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. The following polarization sets are defined:
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Definition 15 (Message Sets for Marton Coding). In terms of the polarization sets given
in Definition 14, the following message sets are defined:
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∩ L(n)

V1|Y1
, (5.8)
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Proposition 7 (Polarization). Consider the polarization sets given in Definition 14 and the
message sets given in Definition 15 with parameter δn = 2−n

β

for 0 < β < 1
2
. Fix a constant

τ > 0. Then there exists an No = No(β, τ) such that

1

n

∣

∣

∣
M(n)

1

∣

∣

∣
≥

(

H(V1)−H(V1|Y1)
)

−τ, (5.10)

1

n

∣

∣

∣
M(n)

2

∣

∣

∣
≥

(

H(V2|V1)−H(V2|Y2)
)

−τ, (5.11)

for all n > No.

Lemma 14. Consider the polarization sets defined in Proposition 7. If the “degraded-ness”
property PY2|V2(y2|v2) ≻ PV1|V2(v1|v2) holds for conditional distributions PY2|V2(y2|v2) and
PV1|V2(v1|v2), then I(V2; Y2) > I(V1;V2) and the Bhattacharyya parameters

Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , Y n

2

)

≤ Z
(

U2(j)
∣

∣

∣
U1:j−1
2 , V n

1

)

for all j ∈ [n]. As a result,

L(n)
V2|V1

⊆ L(n)
V2|Y2

,

H(n)
V2|Y2

⊆ H(n)
V2|V1

.
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Proof. The proof follows from Lemma 5 and repeated application of Lemma 6 in Ap-
pendix 3.5.

Remark 15. The alignment of polarization indices characterized by Lemma 14 is dia-
grammed in Figure 5.2. The message set M(n)

2 is highlighted by the vertical red rectangles. At
finite code length n, exact alignment is not possible due to partially-polarized indices pictured
in gray. The alignment ensures the existence of polarization indices in the set M(n)

2 for the

message W2 to have a positive rate R2 > 0. The indices in M(n)
2 represent those bits freely

set at the broadcast encoder and simultaneously those bits that may be decoded by D2 given
its observations.

5.3.4 Partially-Polarized Indices

As shown in Figure 5.2, for the Marton coding scheme, exact alignment of polarization
indices is not possible. However, the alignment holds for all but o(n) indices. The sets of
partially-polarized indices shown in Figure 5.2 are defined as follows.

Definition 16 (Sets of Partially-Polarized Indices).

∆1 , [n] \
(

H(n)
V2|V1

∪ L(n)
V2|V1

)

, (5.12)

∆2 , [n] \
(

H(n)
V2|Y2

∪ L(n)
V2|Y2

)

. (5.13)

As implied by Arıkan’s polarization theorems, the number of partially-polarized indices
is negligible asymptotically as n→ ∞. For an arbitrarily small η > 0,

∣

∣∆1 ∪∆2

∣

∣

n
≤ η, (5.14)

for all n sufficiently large enough. As will be discussed, providing these o(n) bits as “genie-
given” bits to the decoders results in a rate penalty; however, the rate penalty is negligible
for sufficiently large code lengths.

5.3.5 Broadcast Encoding Blocks: (E1, E2)
As diagrammed in Figure 5.1, the broadcast encoder must map two independent messages
(W1,W2) uniformly distributed over [2nR1 ]× [2nR2] to a codeword xn ∈ X n in such a way that
the decoding at each separate receiver is successful. The achievable rates for a particular
block length n are

R1 =
1

n

∣

∣

∣
M(n)

1

∣

∣

∣
,

R2 =
1

n

∣

∣

∣
M(n)

2

∣

∣

∣
.
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To construct a codeword, the encoder first produces two binary sequences un1 ∈ {0, 1}n
and un2 ∈ {0, 1}n. To determine u1(j) for j ∈ M(n)

1 , the bit is selected as a uniformly

distributed message bit intended for the first receiver. To determine u2(j) for j ∈ M(n)
2 ,

the bit is selected as a uniformly distributed message bit intended for the second receiver.
The remaining non-message indices of un1 and un2 are decided randomly according to the
proper statistics as will be described in this section. The transmitted codeword is formed
symbol-by-symbol via the φ function,

∀j ∈ [n] : x(j) = φ
(

v1(j), v2(j)
)

where vn1 = un1Gn and vn2 = un2Gn. A valid codeword sequence is always guaranteed to be
formed unlike in the case of coding for deterministic broadcast channels.

5.3.5.1 Random Mapping

To fill in the non-message indices, we define the following random mappings. Consider the
following class of random boolean functions where j ∈ [n]:

Ψ
(j)
1 : {0, 1}j−1 → {0, 1}, (5.15)

Ψ
(j)
2 : {0, 1}n+j−1 → {0, 1}, (5.16)

Γ : [n] → {0, 1}. (5.17)

More concretely, we consider the following specific random boolean functions based on the
statistics derived from polarization methods:

Ψ
(j)
1

(

u1:j−1
1

)

,

{

0, w.p. λ0
(

u1:j−1
1

)

,

1, w.p. 1− λ0
(

u1:j−1
1

)

,
(5.18)

Ψ
(j)
2

(

u1:j−1
2 , vn1

)

,

{

0, w.p. λ0
(

u1:j−1
2 , vn1

)

,

1, w.p. 1− λ0
(

u1:j−1
2 , vn1

) (5.19)

Γ(j) ,

{

0, w.p. 1
2
,

1, w.p. 1
2
,

(5.20)

where

λ0
(

u1:j−1
1

)

, P

(

U1(j) = 0
∣

∣

∣
U1:j−1
1 = u1:j−1

1

)

.

λ0
(

u1:j−1
2 , vn1

)

, P

(

U2(j) = 0
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , V n
1 = vn1

)

.

For a fixed j ∈ [n], the random boolean functions Ψ
(j)
1 , Ψ

(j)
2 may be thought of as a vector

of independent Bernoulli random variables indexed by the input to the function. Each
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Bernoulli random variable of the vector is zero or one with a fixed well-defined probability
that is efficiently computable. The random boolean function Γ may be thought of as an
n-length vector of Bernoulli(1

2
) random variables.

5.3.5.2 Encoding Protocol

The broadcast encoder constructs the sequence un1 bit-by-bit successively,

u1(j) =

{

W1 message bit, if j ∈ M(n)
1 ,

Ψ
(j)
1

(

u1:j−1
1

)

, otherwise.
(5.21)

The encoder then computes the sequence vn1 = un1Gn. To generate v
n
2 , the encoder constructs

the sequence un2 (given vn1 ) as follows,

u2(j) =











W2 message bit, if j ∈ M(n)
2 ,

Γ(j), if j ∈ H(n)
V2|V1

\ M(n)
2 ,

Ψ
(j)
2

(

u1:j−1
2 , vn1

)

, otherwise.

(5.22)

Then the sequence vn2 = un2Gn. The randomness in the above encoding protocol over non-
message indices ensures that the pair of sequences (un1 , u

n
2) has the correct statistics as if

drawn from the joint distribution of (Un
1 , U

n
2 ). In the last step, the encoder transmits a

codeword xn formed symbol-by-symbol: x(j) = φ
(

v1(j), v2(j)
)

for all j ∈ [n]. For j ∈ ∆2,
where ∆2 is the set of partially-polarized indices defined in (5.13), the encoder records the
realization of u2(j). These indices will be provided to the second receiver’s decoder D2 as
“genie-given” bits.

5.3.6 Broadcast Decoding Based on Polarization

5.3.6.1 Decoding At First Receiver

Decoder D1 decodes the binary sequence ûn1 using its observations yn1 . The message W1 is

located at the indices j ∈ M(n)
1 in the sequence ûn1 . More precisely, we define the following

deterministic polar decoding function for the j-th bit:

ξ(j)u1
(

u1:j−1
1 , yn1

)

, argmax
u∈{0,1}

{

P

(

U1(j) = u
∣

∣

∣
U1:j−1
1 = u1:j−1

1 , Y n
1 = yn1

)}

. (5.23)

Decoder D1 reconstructs ûn1 bit-by-bit successively as follows using the identical random

mapping Ψ
(j)
1 at the encoder:

û1(j) =

{

ξ
(j)
u1

(

û1:j−1
1 , yn1

)

, if j ∈ M(n)
1 ,

Ψ
(j)
1

(

û1:j−1
1

)

, otherwise.
(5.24)
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Given that all previous bits û1:j−1
1 have been decoded correctly, decoder D1 makes a mistake

on the j-th bit û1(j) only if j ∈ M(n)
1 . For the remaining indices, the decoder produces the

same bit produced at the encoder due to the shared random maps.

5.3.6.2 Decoding At Second Receiver

The decoder D2 decodes the binary sequence ûn2 using observations yn2 . The message W2 is

located at the indices j ∈ M(n)
2 of the sequence ûn2 . Define the following deterministic polar

decoding functions

ξ(j)u2
(

u1:j−1
2 , yn2

)

, argmax
u∈{0,1}

{

P

(

U2(j) = u
∣

∣

∣
U1:j−1
2 = u1:j−1

2 , Y n
2 = yn2

)}

. (5.25)

Decoder D2 reconstructs ûn2 bit-by-bit successively as follows using the identical shared
random mapping Γ used at the encoder. Including all but o(n) of the indices,

û2(j) =

{

ξ
(j)
u2

(

û1:j−1
2 , yn2

)

, if j ∈ L(n)
V2|Y2

,

Γ(j), if j ∈ H(n)
V2|Y2

.
(5.26)

For those indices j ∈ ∆2 where ∆2 is the set of partially-polarized indices defined in (5.13),
the decoder D2 is provided with “genie-given” bits from the encoder. Thus, all bits are
decoded, and D2 only makes a successive cancelation error for those indices j ∈ L(n)

V2|Y2
.

Communicating the genie-given bits from the encoder to decoder results in a rate penalty.
However, since the number of genie-given bits scales asymptotically as o(n), the rate penalty
can be made arbitrarily small.

Remark 16. It is notable that decoder D2 reconstructs ûn2 using only the observations yn2 .
At the encoder, the sequence un2 was generated with the realization of a sequence vn1 as given
in (5.22). However, decoder D2 does not reconstruct the sequence v̂n1 . From this operational
perspective, Marton’s scheme differs crucially from Cover’s superposition scheme because
there does not exist the notion of a “stronger” receiver which reconstructs all the sequences
decoded at the “weaker” receiver.

5.3.7 Total Variation Bound

To analyze the average probability of error P
(n)
e , it is assumed that both the encoder and

decoder share the randomized mappings Ψ
(j)
1 , Ψ

(j)
2 , and Γ (where Ψ

(j)
2 is not utilized at

decoder D2). Define the following probability measure on the space of tuples of binary
sequences.

Q
(

un1 , u
n
2

)

, Q
(

un1
)

Q
(

un1
∣

∣un2
)

=
n
∏

j=1

Q
(

u1(j)
∣

∣u1:j−1
1

)

Q
(

u2(j)
∣

∣u1:j−1
2 , un1

)

, (5.27)
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where the conditional probability measures are defined as

Q
(

u1(j)
∣

∣

∣
u1:j−1
1

)

,

{

1
2
, if j ∈ M(n)

1 ,

P
(

u1(j)
∣

∣

∣
u1:j−1
1

)

, otherwise.

Q
(

u2(j)
∣

∣

∣
u1:j−1
2 , un1

)

,

{

1
2
, if j ∈ H(n)

V2|V1
,

P
(

u2(j)
∣

∣

∣
u1:j−1
2 , un1

)

, otherwise.

The probability measure Q defined in (5.27) is a perturbation of the joint probability measure
PUn

1 U
n
2
(un1 , u

n
2) in (5.6). The only difference in definition between P and Q is due to those

indices in message sets M(n)
1 and H(n)

V2|V1
(note: M(n)

2 ⊆ H(n)
V2|V1

). The following lemma
provides a bound on the total variation distance between P and Q. The lemma establishes
the fact that inserting uniformly distributed message bits in the proper indices M(n)

1 and

M(n)
2 (or the entire set H(n)

V2|V1
) at the encoder does not perturb the statistics of the n-length

random variables too much.

Lemma 15. (Total Variation Bound) Let probability measures P and Q be defined as in (5.6)
and (5.27) respectively. Let 0 < β < 1. For sufficiently large n, the total variation distance
between P and Q is bounded as

∑

un1∈{0,1}
n

un2∈{0,1}
n

∣

∣

∣
PUn

1 U
n
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣
≤ 2−n

β

.

Proof. Omitted. The proof follows via the chain rule for KL-divergence and is identical to
the previous proofs of Lemma 1 and Lemma 12.

5.3.8 Error Sequences

The decoding protocols for D1 and D2 were established in Section 5.3.6. To analyze the
probability of error of successive cancelation (SC) decoding, consider the sequences un1 and
un2 formed at the encoder, and the resulting observations yn1 and yn2 received by the de-
coders. The effective polarized channel P φ

Y n
1 Y

n
2 |Un

1 U
n
2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

was defined in (5.7) for a

fixed φ function. It is convenient to group the sequences together and consider all tuples
(un1 , u

n
2 , y

n
1 , y

n
2 ).

Decoder D1 makes an SC decoding error on the j-th bit for the following tuples:

T j
1 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
Uj
1

∣

∣U1:j−1
1 Y n

1

(

u1(j)
∣

∣u1:j−1
1 , yn1

)

≤

PUj
1 |U

1:j−1
1 Y n

1

(

u1(j)⊕ 1
∣

∣u1:j−1
1 , yn1

)

}

. (5.28)
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The set T j
1 represents those tuples causing an error at D1 in the case u1(j) is inconsistent

with respect to observations yn1 and the decoding rule. Similarly, decoder D2 makes an SC
decoding error on the j-th bit for the following tuples:

T j
2 ,

{

(

un1 , u
n
2 , y

n
1 , y

n
2

)

:

P
U2

∣

∣U1:j−1
2 Y n

2

(

u2
∣

∣u1:j−1
2 , yn2

)

≤

P
U2

∣

∣U1:j−1
2 Y n

2

(

u2 ⊕ 1
∣

∣u1:j−1
2 , yn2

)

}

.

The set T j
2 represents those tuples causing an error at D2 in the case u2(j) is inconsistent

with respect to observations yn2 and the decoding rule. The set of tuples causing an error is

T1 ,
⋃

j∈M
(n)
1

T j
1 , (5.29)

T2 ,
⋃

j∈L
(n)
V2|V1

T j
2 , (5.30)

T , T1 ∪ T2. (5.31)

The goal is to show that the probability of choosing tuples of error sequences in the set T is
small under the distribution induced by the broadcast code.

5.3.9 Average Error Probability

If the encoder and decoders share randomized maps Ψ
(j)
1 , Ψ

(j)
2 , and Γ, then the average

probability of error is a random quantity determined as follows

P (n)
e

[

{Ψ(j)
1 ,Ψ

(j)
2 ,Γ}

]

=
∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

[

P φ

Y n
1 Y

n
2

∣

∣Un
1 U

n
2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

· 1

2nR1

∏

j∈[n]:j/∈M
(n)
1

1[

Ψ
(j)
1 (u1:j−1

1 )=u1(j)
]

· 1

2nR2

∏

j∈H
(n)
V2|V1

\M
(n)
2

1[Γ(j)=u2(j)]

·
∏

j∈[n]:j/∈H
(n)
V2|V1

1[

Ψ
(j)
2 (u1:j−1

2 ,un1Gn)=u2(j)
]

]

.

By averaging over the randomness in the encoders and decoders, the expected block error
probability is upper bounded in the following lemma.
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Lemma 16. Consider the polarization-based Marton code described in Section 5.3.5 and
Section 5.3.6. Let R1 and R2 be the broadcast rates selected according to the Bhattacharyya
criterion given in Proposition 7. Then for 0 < β < 1 and sufficiently large n,

E
{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}

[

P (n)
e [{Ψ(j)

1 ,Ψ
(j)
2 ,Γ}]

]

< 2−n
β

.

Proof. See Section 5.4 of the Appendices.

If the average probability of block error decays to zero in expectation over the random
maps {Ψ(j)

1 }, {Ψ(j)
2 }, and Γ, then there must exist at least one fixed set of maps for which

P
(n)
e → 0. Hence, polar codes for Marton’s inner bound exist under suitable restrictions on

distributions and they achieve reliable transmission according to the advertised rates (except
for a small set of o(n) polarization indices as is discussed next).

5.3.10 Rate Penalty Due to Partial Polarization

Lemma 16 is true assuming that decoder D2 obtains “genie-given” bits for the set of indices
∆2 defined in (5.13). The set ∆2 represents those indices that are partially-polarized and
which cause a slight misalignment of polarization indices in the Marton scheme. Fortunately,
the set ∆2 contains a vanishing fraction of indices: 1

n

∣

∣∆2

∣

∣≤ η for η > 0 arbitrarily small and
n sufficiently large. Therefore, a two-phase strategy suffices for sending the “genie-given”
bits. In the first phase of communication, the encoder sends several n-length blocks while
decoder D2 waits to decode. After accumulating several blocks of output sequences, the
encoder transmits all the known bits in the set ∆2 for all the first-phase transmissions. The
encoder and decoder can use any reliable point-to-point polar code with non-vanishing rate
for communication. Having received the “genie-aided” bits in the second-phase, the second
receiver then decodes all the first-phase blocks. The number of blocks sent in the first-phase
is O( 1

η
). The rate penalty is O(η) where η can be made arbitrarily small. A similar argument

was provided in [54] for designing polar codes for the Gelfand-Pinsker problem.

5.3.11 Concluding Remarks

Coding for broadcast channels is fundamental to our understanding of communication sys-
tems. Broadcast codes based on polarization methods achieve rates on the capacity boundary
for several classes of DM-BCs. In the case of m-user deterministic DM-BCs, polarization of
random variables from the channel output provides the ability to extract uniformly random
message bits while maintaining broadcast constraints at the encoder. As referenced in the
literature, maintaining multi-user constraints for the DM-BC is a difficult task for traditional
belief propagation algorithms and LDPC codes.

For two-user noisy DM-BCs, polar codes were designed based on Marton’s coding strategy
and Cover’s superposition strategy. Constraints on auxiliary and input distributions were
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placed in both cases to ensure alignment of polarization indices in the multi-user setting. The
asymptotic behavior of the average error probability was shown to be P

(n)
e = O(2−n

β

) with
an encoding and decoding complexity of O(n logn). Recent simulations have supplemented
the theory with experimental evidence of the error-correcting capability of polar codes over
simulated channels for finite code lengths. The results demonstrate that polar codes have a
potential for use in several network communication scenarios.

5.4 Bounding the Probability of Error

To prove Lemma 16, the expectation of the average probability of error of the polarization-
based Marton code is written as

E
{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}

[

P (n)
e [{Ψ(j)

1 ,Ψ
(j)
2 ,Γ}]

]

=

∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

[

P φ

Y n
1 Y

n
2

∣

∣Un
1 U

n
2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

· 1

2nR1

∏

j∈[n]:j/∈M
(n)
1

P

{

Ψ
(j)
1

(

u1:j−1
1

)

= u1(j)
}

· 1

2nR2

∏

j∈H
(n)
V2|V1

\M
(n)
2

P

{

Γ(j) = u2(j)
}

·
∏

j∈[n]:j/∈H
(n)
V2|V1

P

{

Ψ
(j)
2

(

u1:j−1
2 , un1Gn

)

= u2(j)
}

]

.

The expression is then simplified by substituting the definition ofQ(un1 , u
n
2) provided in (5.27),

and then splitting the error term into two parts:

E
{Ψ

(j)
1 ,Ψ

(j)
2 ,Γ}

[

P (n)
e [{Ψ(j)

1 ,Ψ
(j)
2 ,Γ}]

]

=

∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

[

P φ

Y n
1 Y

n
2

∣

∣Un
1 U

n
2

(

yn1 , y
n
2

∣

∣un1 , u
n
2

)

Q(un1 , u
n
2)

]

,

≤
[

∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

PUn
1 U

n
2 Y

n
1 Y

n
2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

]

+

[

∑

un1∈{0,1}
n

un2∈{0,1}
n

∣

∣

∣
PUn

1 U
n
2

(

un1 , u
n
2

)

−Q
(

un1 , u
n
2

)

∣

∣

∣

]

.

The error term pertaining to the total variation distance was already upper bounded as
in Lemma 15. The error due to successive cancelation decoding at the receivers is upper
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bounded as follows.

E ,
∑

{un1 ,u
n
2 ,y

n
1 ,y

n
2 }∈T

PUn
1 U

n
2 Y

n
1 Y

n
2

(

un1 , u
n
2 , y

n
1 , y

n
2

)

≤
∑

j∈M
(n)
1

Z
(

U j
1

∣

∣U1:j−1
1 , Y n

1

)

+
∑

j∈L
(n)
V2|Y2

Z
(

U j
2

∣

∣U1:j−1
2 , Y n

2

)

,

≤ δn

[

∣

∣

∣
M(n)

1

∣

∣

∣
+
∣

∣

∣
L(n)
V2|Y2

∣

∣

∣

]

≤ 2nδn.

This concludes the proof demonstrating that the expectation of the average probability of
block error is upper bounded as O(2−n

β

).
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Networks
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Chapter 6

Network Coding and Network

Computing

6.1 Overview of Literature

Recently coding for computation in networks has received considerable attention with appli-
cations in sensor networks [38] and cloud computing scenarios [26, 27]. In a sensor network,
a fusion node may be interested in computing a relevant function of the measurements from
various data nodes. In a cloud computing scenario, a client may download a function or
part of the original source information that is distributed (e.g. using a maximum distance
separable code) across multiple data nodes.

The simplest setting for computation in networks consists of multiple sources transmit-
ting information to a single receiver which computes a function of the original sources.
Appuswamy et al. study the fundamental limits of computation for linear and general target
function classes for single receiver networks [5]. The problem of linear function computation
in single-receiver networks has been solved in part due to a duality theorem establishing an
equivalence to the classical problem of communication with multi-cast demands [3]. In the
classical multi-cast setting, cut-set bounds provide tight limits on communication. Similar
cut-set bounds may be given for computation in single-receiver networks.

Several results over the past decade have contributed to the understanding of classical
communication in multi-cast networks. In a multi-cast network, raw messages are transmit-
ted to a set of receivers with identical message demands. The celebrated work of Ahlswede
et al. [3] established that the cut-set bound is tight for multicast communication. Subse-
quent research developed practical linear network coding strategies ranging from random
linear codes to deterministic polynomial-time code constructions [59, 53, 47, 49]. The suc-
cess of traditional multi-cast communication motivates us to explore the fundamental limits
of multi-casting a linear function in multi-receiver networks as a natural next step. For
this open problem, some facts are known based on special examples: (a) Random codes are
insufficient in achieving capacity limits, and structured codes achieve higher computation
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rates [67]; (b) Linear codes are insufficient in general for computation over multi-receiver
networks (cf. both [74] and [29]) and non-linear codes may achieve higher computation
rates.

To make progress on the problem of multicasting a function in multi-receiver networks, we
consider the simplest two transmitter two-receiver network in which both receivers compute
a linear function (modulo-2 sum) of two independent Bernoulli sources generated at the
transmitters. Specifically, we consider the Avestimehr-Diggavi-Tse (ADT) deterministic
single-hop network model [10] which captures superposition and broadcast properties of
wireless Gaussian networks and is a generalization of networks of orthogonal links. We
develop a new achievable coding scheme termed function alignment, inspired by the concept
of interference alignment [60, 18]. We also derive a new converse theorem that is tighter
than cut-set based bounds and genie-aided bounds. As a consequence of this capacity result,
we find that unlike the single-receiver case, the cut-set based bound is not achieved due
to competition for shared network resources that arise in satisfying function demands at
multiple receivers. As a byproduct of our analysis, we develop a network decomposition
theorem to identify elementary parallel subnetworks that can constitute an original network
without loss of optimality for in-network computation. The network decomposition approach
offers a conceptually simpler proof for an achievable code and extends to L-transmitter L-
receiver symmetric single-hop networks. In addition, the design of structured computation
codes using network decomposition could be applicable in multi-hop networks.

In [76, 75, 74], the computing capacity for multi-casting a sum of sources is explored
for arbitrary multiple-source multiple-destination networks. It is shown that there exists
a linearly solvable and equivalent sum-network for any multiple-unicast network and vice-
versa. The authors characterized necessary and sufficient conditions for communicating
sums of sources of two-source L-destination (or L-source two-destination) networks, when
the entropy of each source is limited by 1. On the other hand, our work considers sources
without entropy constraints and establishes the exact capacity of a particular multi-receiver
network which is a generalization of traditional network coding models with orthogonal links.

Renewed interest in network coding has emerged recently due to the intimate connection
between wireless information flow and wired networks. Due to [10], specific deterministic
models closely approximate Gaussian channels and networks in the limit of high signal-
to-noise ratios. Further connections between wireless communication and network coding
were made in [68] where the compute-and-forward framework was introduced for multi-
hop networks in which relay nodes reliably compute and forward functions of messages.
Computation alignment over real vector spaces within the compute-and-forward framework
was introduced in [69].

6.2 A Simple Multiple-Unicast Network

Before the study of network computation, it is instructive to understand a simple multiple-
unicast network for which the cut-set bound is not tight. The cut-set bound is motivated
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by a network’s graph representation. Why is it not tight in certain cases? An informal
answer could be that the mixing of disparate information in bottleneck, shared paths causes
the graph-theoretic notion to break-down both for communication and computation. While
graph-theoretic upper bounds on information transmission are desirable, often it is not easily
possible and new information-theoretic upper bounds must be specified. The following lemma
introduces a three-node example which inspired Kramer and Savari to develop new edge-cut
bounds in [58].

1

23

W1 Ŵ2

Ŵ3

Ŵ1 W2

W3

Figure 6.1: A directed cyclic network with multiple-unicast demands.

Lemma 17 (Capacity Region of a Multi-Hop Network). Consider the network depicted in
Figure 6.1. Assume unit capacities for the noiseless links. The capacity region is given by

{

(R1, R2, R3) ∈ R
+
3

∣

∣

∣
Ri +Rj ≤ 1, i 6= j

}

. (6.1)

Remark 17. It is interesting to note that the cut-set bound is not tight for this commu-
nication network with multiple-unicast demands. The cut-set bound is 0 ≤ Ri ≤ 1 for
i ∈ {1, 2, 3}.

Proof. The achievable code is self-evident because each transmitter may send 1 bit to its
respective receiver if all other transmitters are silent. Time-sharing establishes the achievable
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region. The first steps of the converse proof below are due to Fano’s inequality.

N(R1 +R2)

= H(W1) +H(W2)

≤ I(W1;X
N
23,W3) + I(W2;X

N
31,W1) +Nǫ1,N +Nǫ2,N

≤ I(W1;X
N
23,W3) + I(W2;X

N
23, X

N
31,W1,W3) +Nǫ1,N +Nǫ2,N

= I(W1;X
N
23,W3) + I(W2;X

N
23,W1,W3) +Nǫ1,N +Nǫ2,N

= I(W1;X
N
23

∣

∣ W3) + I(W2;X
N
23,W1

∣

∣ W3) +Nǫ1,N +Nǫ2,N

= I(W1,W2;X
N
23

∣

∣ W3) +Nǫ1,N +Nǫ2,N

= H(XN
23

∣

∣ W3)−H(XN
23

∣

∣ W1,W2,W3) +Nǫ1,N +Nǫ2,N

= H(XN
23

∣

∣ W3) +Nǫ1,N +Nǫ2,N

≤
N
∑

i=1

H(X
(i)
23 ) +Nǫ1,N +Nǫ2,N

≤ N +Nǫ1,N +Nǫ2,N .

Therefore, R1+R2 ≤ 1+ ǫ1,N + ǫ2,N where ǫ1,N → 0 and ǫ2,N → 0 as N → ∞. By symmetry,
we obtain all the upper bounds of Eqn. (6.1). In the above derivation, I(W2;X

N
23, X

N
31,W1,W3)

is equivalent to I(W2;X
N
23,W1,W3) because XN

31 is a function of W3 and XN
23. In addition,

H(XN
23

∣

∣ W1,W2,W3) is zero because all transmissions are functions of the original mes-
sages.

6.3 Network Computing Model

As discovered in the literature, function computation in networks is closely related to com-
munication with multiple-unicast demands. In the following definitions, a single-hop network
model is introduced for network computing which encapsulates many of the challenges as-
sociated with coding in multiple-unicast networks. For most of this chapter, an L = 2 user
model is assumed, where L is the number of transmitter-receiver pairs. Figure 6.2 illustrates
the network model.

Definition 17 (Source Symbols). Each transmitter ℓ ∈ [L] observes source symbols SKℓ in
which each symbol Sℓ,k for k ∈ [K] is drawn uniformly from a finite field F2. Thus the source
distribution is Bernoulli(1

2
).

Definition 18 (Encoders). Let ℓ ∈ [L], j ∈ [N ], and q > 0 be a positive integer. Transmitter

ℓ uses encoder E (N)
ℓ to map its message SKℓ to a length-N codeword XN

ℓ where Xℓ[j] ∈ F
q×1
2

is the channel input vector for the jth channel use. The mapping over N channel uses is

E (N)
ℓ : FK2 → F

q×N
2 .
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Tx 2 Rx 2

Tx 1 Rx 1
q

αq = m

S1 ∼ Bern(1
2
)

ˆS1 ⊕ S2

q

αq = m

ˆS1 ⊕ S2

X1

X2

Y1

Y2S2 ∼ Bern(1
2
)

Figure 6.2: A symmetric network computing model with parameters (m, q, L) = (5, 6, 2).

Definition 19 (Channel Model). The channel model is a discrete memoryless model. Trans-
mitter ℓ ∈ [L] transmits input Xℓ[j] ∈ F

q×1
2 in the jth time slot where j ∈ [N ]. The channel

output for receiver ℓ ∈ [L] is given by Yℓ[j] ∈ F
q×1
2 . The input-output relationship is defined

by,

Yℓ[j] = Xℓ[j]⊕
⊕

ℓ′∈[L],ℓ′ 6=ℓ

Gq−mXℓ′[j]. (6.2)

The channel matrix is a downshift matrix characterized by kernel G ∈ F
q×q
2 containing

entries [G]st = 1[s=t+1] for 0 ≤ s ≤ q and 0 ≤ t ≤ q. It will be convenient to define the

ratio parameter α , m
q
which is a rational number for m ∈ Z

+. Each network is compactly

identified by parameters (m, q, L).

Example 6. The channel model corresponds to a class of symmetric linear deterministic
models.1 The channel model includes broadcast and superposition which allows the possibility
for in-network computation. Figure 6.2 illustrates a model with parameters (m, q, L) =
(5, 6, 2) and α = 5

6
.

Definition 20 (Decoders). Each receiver ℓ ∈ [L] observes channel output vectors {Yℓ[j]}Nj=1

over N channel uses. The goal for all receivers is to reconstruct the identical modulus function
⊕L

ℓ=1 S
K
ℓ using a decoder DN

ℓ :

D(N)
ℓ : Fq×N2 → F

K
2 .

Definition 21 (Computation Rate). A computation rate

Rcomp =
K

N
1Several related types of linear deterministic channels have been studied as approximations to Gaussian

channels and networks; see [10] for an overview and further references.
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Figure 6.3: The computation capacity region for a countably infinite class of networks parameterized by α , m
q

with

L = 2 transmitters and receivers.

is achievable in a network if all receivers reliably compute the modulus sum of source symbols,
i.e. if for any ǫ > 0 and block length N large enough, there exist encoders E (N)

ℓ and decoders

D(N)
ℓ such that P

(

Dℓ(Y
N
ℓ ) 6= ⊕L

ℓ=1 S
K
ℓ

)

≤ ǫ for all ℓ ∈ [L].

Definition 22 (Computation Capacity). The computation capacity Ccomp is the supremum
of the achievable rates.

Definition 23 (Zero-Error Linear Coding Capacity for Computation). The zero-error net-
work coding capacity for computing the modulus sum function is defined as

Cze
comp = sup

{

K

N
: ∃(K,N) code that computes the

⊕

-function with zero error.

}

A code computes the modulus sum function with zero-error if for all ℓ ∈ [L], there exist

encoders E (N)
ℓ and decoders D(N)

ℓ such that Dℓ(Y
N
ℓ ) =

⊕L
ℓ=1 S

K
ℓ with zero probability of error.

The linear coding capacity for computation Clin
comp is defined as the zero-error network coding

capacity under the restriction that encoders E (N)
ℓ and decoders D(N)

ℓ are linear mappings.
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6.4 Computation Capacity Region

Theorem 5 (Capacity Region [41, 87]). Consider a network model with parameters (m, q, L =
2) and α , m

q
. The normalized computation capacity is

Ccomp

q
=















α if 0 ≤ α ≤ 2
3
, (6.3a)

2

3
if 2

3
< α < 1, (6.3b)

1 if α = 1. (6.3c)

In the regime 2
3
< α < 1, vector linear coding achieves higher computation rates than

scalar linear coding.

Corollary 1 (Limiting Capacity). As established by Theorem 5, there exists a discontinuity
at α = 1. For a sequence of networks with α increasing to 1 (but strictly less than 1), the
computation capacity is limited by 2

3
. In the case α = 1 exactly, the computation capacity is

exactly 1. Figure 6.3 illustrates the capacity region.

6.4.1 Scalar vs. Vector Linear Coding

A basic coding strategy at each receiver is to first decode both sources SK1 and SK2 separately,
and then compute the function. The multi-cast capacity for transmitting both messages to
both receivers for an (m, q, L = 2) network is given by R1 ≤ m, R2 ≤ m, and R1 + R2 ≤ q.
Therefore, a lower bound on the computation rate is Rcomp ≥ min{m, q

2
} which yields

Rcomp

q
≥ min

{

α,
1

2

}

. (6.4)

Decoding both messages provides the optimal coding strategy for 0 ≤ α ≤ 1
2
. In order to

achieve higher computation rates, the channel structure must be exploited for in-network
computation. Both scalar and vector linear codes are necessary.

In the regime 1
2
≤ α ≤ 2

3
, a scalar linear code suffices, and the code construction is

provided in Fig. 6.4. For the figure, we introduce the notation ak , S1,k and bk , S2,k for
k ∈ [K] to represent the source symbols of the first and second transmitter respectively. The
specific example is for the (3, 5) model. The channel structure is exploited to compute the
⊕

2-function of message bits.
As will be derived in the next section, coding over N channel uses of the network for

the (m, q, L) model is equivalent to coding over one channel use of the (mN, qN, L) model.
In this case, vector linear coding over F2 may be characterized by beam-forming vectors
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a3 ⊕ b3

a1

b1

a3

a1

a3
a2

b1
b2
b3

m

m

m
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2m− q

q −m

2m− q
2q − 3m
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RCOMP

q
= m

q
= α

Figure 6.4: Scalar linear code construction for (m, q, L = 2) networks in the regime 1
2
≤ α ≤ 2

3
.

v1,k ∈ F
qN
2 and v2,k ∈ F

qN
2 for k ∈ [K] such that

X̃1 =

K
⊕

k=1

akv1,k,

X̃2 =

K
⊕

k=1

bkv2,k.

Here the modified network inputs X̃1, X̃2 ∈ F
qN
2 represent coding over N channel uses. The

code construction consists of designing all beam-forming vectors at the transmitters so that
the receivers may recover the computations ak ⊕ bk for all k ∈ [K].

6.5 Network Decomposition Into Parallel Models

For general (m, q, L) computing models, we develop a network decomposition theorem which
identifies elementary subnetworks such that the computation capacity of the subnetworks
is the same as the computation capacity of the original network. This theorem identifies
fundamental building blocks that can constitute an original network without loss of opti-
mality, thus establishing a separation principle among the building blocks. The theorem
also encompasses L-transmitter L-receiver symmetric networks, thus serving to establish the
linear coding capacity for computing in a generalized network.

Theorem 6 (Network Decomposition). Consider an (m, q, L) network where m 6= q. The
following network decompositions hold:2

2The symbol × denotes the concatenation of orthogonal models as by analogy to the mathematical
notation R

2 = R× R.
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Tx1 Rx1

X1 Y1

Tx2 Rx2

X2 Y2

Tx1 Rx1

X1 Y1

Tx2 Rx2

X2 Y2

Tx1 Rx1

X1 Y1

Tx2 Rx2

X2 Y2

= X

Figure 6.5: Network decomposition of the (m,q, L) = (7, 9, 2) model into parallel models.

(1) For any λ ∈ Z
+,

(λm, λq, L) = (m, q, L)λ = (m, q, L)× (m, q, L)× . . .× (m, q, L).

(2) (2m+ 1, 2q + 1, L) = (m, q, L)× (m+ 1, q + 1, L)

(3) For arbitrary (m, q, L) models,

(m, q, L) =

{

(r, r + 1, L)q−m−a × (r + 1, r + 2, L)a, m < q;
(r + 1, r, L)m−q−a × (r + 2, r + 1, L)a, m > q.

(6.5)

where

r =

⌊

min{m, q}
|q −m|

⌋

,

a = min{m, q} mod |q −m|.
(6.6)

Example 7. The following (m, q, L) network decompositions into orthogonal components
hold as examples: (7, 9, 2) = (3, 4, 2) × (4, 5, 2) and (17, 21, 2) = (8, 10, 2) × (9, 11, 2) =
(4, 5, 2)3 × (5, 6, 2). In Figure 6.5, an example is provided for the (7, 9, 2) model. As estab-
lished in Theorem 6, the idea is to use graph coloring with |q − m| = 2 colors. The colors
separate the original network into two parallel “gap-1” models.

Remark 18. Unlike the L = 2 case, for L ≥ 3, the case m < n is not symmetric with
m > n. Nevertheless, the above symmetric decomposition holds even when L ≥ 3. �

Remark 19. The separation principle among these decomposed subnetworks is not generally
true. It is well known that for parallel interference channels, the optimal performance can
be attained by coding over orthogonal components. �
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6.5.1 Proof of Theorem 6

For Part (1), consider the (λm, λq, L) model. The proof uses graph coloring with λ col-
ors, identified by integers {0, 1, . . . , λ − 1}. At transmitter 1, assign to level p (for p =
1, 2, . . . , λmax(m, q)) the color (p− 1) mod λ. Use exactly the same rule to color the ver-
tices of receiver 1 as well as the transmitters and receivers of the remaining (L− 1) users. It
is seen by inspection that each color represents an independent graph. Moreover, each color
represents precisely an (m, q, L) model.

For Part (2), graph coloring with two colors suffices. At all transmitters and receivers,
assign one color to the even-numbered levels and the other color to the odd-numbered levels.
By inspection, it can be verified that each color represents an independent graph. Moreover,
one color represents an (m, q, L) model and the other represents an (m+ 1, q + 1, L) model.

For Part (3), we use graph coloring with |q−m| colors, identified by integers {0, 1, . . . , |q−
m| − 1}. At transmitter 1, assign to level p (for p = 1, 2, . . . ,max(m, q)) the color (p − 1)
mod |q − m|. Use exactly the same rule to color the levels of receiver 1 as well as the
transmitters and receivers of the remaining (L− 1) users. It is seen by inspection that each
color represents an independent graph. A tedious but straightforward calculation shows that
of the resulting |q−m| independent graphs, there are a number of models (r+1, r+ 2) and
q −m− a number of models (r, r + 1), with the claimed values for r and a.

6.6 Function Alignment

In the regime 2
3
≤ α < 1, vector linear codes are necessary to achieve the computation

capacity. In this regime, linear codes achieve Rcomp

q
= 2

3
. Due to Theorem 6, an arbitrary

network is decomposed into “gap-1” models. Surprisingly, it suffices to consider separate
coding over the “gap-1” parallel models.

Theorem 7 (Computation Rate in “Gap-1” Models). In any “gap-1” model defined by
(m, q, L) = (r, r+1, 2) with r ≥ 2, the computation rate achieved by linear codes is Rcomp

q
≥ 2

3
.

Proof. We prove Theorem 7 by classifying network models (r, r + 1) with r ≥ 2 into three
different cases:

1. (r + 1) mod 3 = 0.

2. (r + 1) mod 3 = 1.

3. (r + 1) mod 3 = 2.

Each of these three cases is proved separately in the following sections.



CHAPTER 6. NETWORK CODING AND NETWORK COMPUTING 76

a1

a5
a2 ⊕ b2

b2

b6

b2

a1
a3 a3

a5
a2
a4
a6

a4 ⊕ b4
a6 ⊕ b6

b4

b1
b3
b5

b1
b3
b5

b4
b6

a1 ⊕ b1
a3 ⊕ b3
a5 ⊕ b5
a2
a4
a6

a1

a5
a2 ⊕ b2

b2

b6

b2

a1
a3 a3

a5
a2
a4

a7 ⊕ a6

a7
a8
a7
a8

a4 ⊕ b4
a6 ⊕ b6 ⊕ a7

b4

b1
b3

b8 ⊕ b5

b7
b8

b8
b7

b1
b3 ⊕ a7

b5 ⊕ a8 ⊕ b8
a7

a8 ⊕ b8
b7

b4
b6

a1 ⊕ b1
a3 ⊕ b3

a5 ⊕ b5 ⊕ b8
a2

a4 ⊕ b8
a6 ⊕ a7 ⊕ b7

b8
a7 ⊕ b7

a8

Figure 6.6: Scalar linear code for the (m, q, L) = (9, 12, 2) model and vector linear code over N = 3 channel uses of
the (3, 4, 2) model.

6.6.1 The Case of (r + 1) mod 3 = 0

For these networks, e.g. (2, 3), (5, 6), (8, 9), (11, 12), only scalar network coding is necessary.
For r = 2, an explicit code is as follows: X1,1 = a1, X1,2 = a2, X1,3 = 0 and X2,1 =
b2, X2,2 = b1, X2,3 = 0. It is straightforward to verify that both receivers can reconstruct
a1 ⊕ b1 and a2 ⊕ b2, hence, a computation rate of 2 is attained. For the general case, we set
X1,3k−2 = a2k−1, X1,3k−1 = a2k, X1,3k = 0 and X2,3k−2 = b2k, X2,3k−1 = b2k−1, X2,3k = 0, for

k = 1, 2, . . . , p, where p , (r+1)
3

. Each receiver can reconstruct all 2p sums ak ⊕ bk and thus,
the computation rate is 2p = 2

3
(r + 1).

6.6.2 The Case of (r + 1) mod 3 = 1

For these networks, e.g. (3, 4), (6, 7), (9, 10), (12, 13), vector network coding is necessary and
we show that N = 3 channel uses is sufficient. Consider first the “indecomposable” model
(3, 4) as an example. Figure 6.6 provides one linear code over N = 3 channel uses which
achieves a normalized computation rate of 2

3
. A total of 8 computations ak⊕bk are extracted

at both receivers using only N(r + 1) = 12 transmitted symbols.
For general network models in this class, we construct a vector linear code over N = 3

channel uses. It is observed (via network equivalences) that vector coding with N = 3 for
an (r, r + 1) model is identical to scalar linear coding over the model (3r, 3(r + 1)). As an
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Figure 6.7: Scalar linear code for the (m,q, L) = (12, 15, 2) model and vector linear code over N = 3 channel uses of
the (4, 5, 2) model.

example, vector coding with N = 3 for the model (6, 7) is equivalent to scalar linear coding
for the model (18, 21). We now show that linear code construction for the (18, 21) model
follows in a straightforward manner from the achievable strategies already presented. On
the left side of Figure 6.6, we observe that 6 computations are achieved over a total of 9
dimensions at both receivers. Subtracting these 9 dimensions completely from the (18, 21)
model exactly “resets” the network model to a (9, 12) model for which we know that using
the code construction given in Figure 6.6, as many as 8 computations are possible. Thus, a
total of 8 + 6 computations are possible in the (18, 21) model which yields the normalized
rate 2

3
for computation. The discussed approach generalizes to all network models of this

class.

Example 8. Figure 6.6 illustrates a code achieving the optimal computation rate Rcomp

L
=

8
12

= 2
3
for the (m, q, L) = (3, 4, 2) model made possible by computation alignment. On the

left, a total of 6 computation bits are possible using alternating computation alignment. On
the right, 2 more computation bits for both receivers are possible due to careful alignment of
encoding vectors within the received dimensions.
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6.6.3 The Case of (r + 1) mod 3 = 2

For these networks, e.g. (4, 5), (7, 8), (10, 11), (13, 14), vector network coding is again
necessary over N = 3 channel uses. The code for the “indecomposable” (4, 5) model is
provided in Figure 6.7. For other models in this series, we repeat our reasoning. As an
example, vector coding with N = 3 for the model (7, 8) is equivalent to scalar linear coding
for the (21, 24) model. The (21, 24) model is first “reset” by subtracting out 9 dimensions
(achieving 6 computations), resulting in a (12, 15) model which is equivalent to coding for
the (4, 5) model over N = 3 channel uses. Similarly, all network models of this class are
“reset” to yield the indecomposable (4, 5) model.

Example 9. Figure 6.7 illustrates a code achieving the optimal computation rate Rcomp

L
=

10
15

= 2
3
for the (m, q, L) = (4, 5, 2) model. On the left, a total of 6 computation bits are

possible using alternating computation alignment. On the right, 4 more computation bits for
both receivers are possible due to careful alignment of encoding vectors within the received
dimensions.

6.7 Linear Coding Upper Bound

Theorem 8 (Linear Coding Upper Bound). Let m,n, q be integers such that 0 < m ≤ n and
q ≥ n. Consider a network defined by input X1, X2 ∈ F

q
2, output Y1, Y2 ∈ F

q
2, and transfer

function

Y1 = Gq−nX1 ⊕Gq−mX2,

Y2 = Gq−mX1 ⊕Gq−nX2,

where shift-matrix G ∈ F
q×q
2 is defined by [G]ij = 1[i=j+1] for 0 ≤ i ≤ q and 0 ≤ j ≤ q. Let

K be the number of computations recovered by each receiver separately. Then over N uses
of the network, the linear computation capacity of the network is bounded by the following
two inequalities,

K ≤ mN, (6.7)

3K ≤ 2qN. (6.8)

Proof. Let H ∈ F
qN×qN
2 be defined by [H]ij = 1[i=j+1] where 0 ≤ i ≤ qN and 0 ≤ j ≤ qN . A

key observation is that coding over N uses of the described network is equivalent to coding
over a single use of the following shift network

Ỹ1 = HN(q−n)X̃1 ⊕HN(q−m)X̃2, (6.9)

Ỹ2 = HN(q−m)X̃1 ⊕HN(q−n)X̃2, (6.10)



CHAPTER 6. NETWORK CODING AND NETWORK COMPUTING 79

where X̃1, X̃2 ∈ F
qN
2 , Ỹ1, Ỹ2 ∈ F

qN
2 . To see this, consider the block-diagonal matrix H′ ∈

F
qN×qN
2 consisting of N copies of Gt on the diagonal where integer t ≥ 0:

H′ ,











Gt 0q×q . . . 0q×q

0q×q Gt . . . 0q×q

...
...

. . .
...

0q×q 0q×q 0q×q Gt











.

Due to the fact that H′ contains sub-matrices Gt as copies along its diagonal, there exists
a permutation matrix P such that H′P = HtN for integer t ≥ 0. Therefore, without loss
of generality, it is sufficient to analyze linear coding over N uses of our original network by
considering linear coding over a single use of the extended shift network given via Eqn. (6.9)
and Eqn. (6.10).

Consider linear encoding at both transmitters and linear decoding at both receivers.
Denote the source bits at the first and second transmitters by {s1k} and {s2k} respectively
where 1 ≤ k ≤ K. The definition of linear coding (over F2) at the transmitters implies that
there exist beam-forming vectors v1,k ∈ F

qN
2 and v2,k ∈ F

qN
2 such that

X̃1 =
K
⊕

k=1

s1,kv1,k,

X̃2 =

K
⊕

k=1

s2,kv2,k.

The output signals of the receivers are deterministic functions of the input:

Ỹ1 =

[

K
⊕

k=1

s1,kH
N(q−n)v1,k ⊕ s2,kH

N(q−m)v2,k

]

, (6.11)

Ỹ2 =

[

K
⊕

k=1

s1,kH
N(q−m)v1,k ⊕ s2,kH

N(q−n)v2,k

]

. (6.12)

Definition 24 (Alignment Set at First Receiver). Either HN(q−n)v1,k = HN(q−m)v2,k holds
or the case HN(q−n)v1,k 6= HN(q−m)v2,k holds. If HN(q−n)v1,k = HN(q−m)v2,k holds, this is
defined as an alignment of beam-forming vectors at the first receiver. Let the alignment set
at the first receiver be defined as

A1 ,
{

k ∈ [K] : HN(q−n)v1,k = HN(q−m)v2,k

}

.

Definition 25 (Alignment Set at Second Receiver). Either HN(q−m)v1,k = HN(q−n)v2,k holds
or the case HN(q−m)v1,k 6= HN(q−n)v2,k holds. If HN(q−m)v1,k = HN(q−n)v2,k holds, this is
defined as an alignment of beam-forming vectors at the second receiver. Let the alignment
set at the second receiver be defined as

A2 ,
{

k ∈ [K] : HN(q−m)v1,k = HN(q−n)v2,k

}

.



CHAPTER 6. NETWORK CODING AND NETWORK COMPUTING 80

Lemma 18 (Simultaneous Alignment is Impossible). The following key implication holds
for two-user symmetric networks where 0 < m < n and q ≥ n: A1∩A2 = ∅. In other words,

∀k : HN(q−n)v1,k = HN(q−m)v2,k ⇒ HN(q−m)v1,k 6= HN(q−n)v2,k, (6.13)

∀k : HN(q−m)v1,k = HN(q−n)v2,k ⇒ HN(q−n)v1,k 6= HN(q−m)v2,k. (6.14)

Eqn (6.13) and Eqn (6.14) of the above lemma state that alignment is possible with
respect to each receiver, but not to both receivers simultaneously. To see this more clearly,
consider the implication in Eqn (6.13). The assumption is that v1,k = HN(n−q)HN(q−m)v2,k =
HN(n−m)v2,k. However,

HN(q−m)v1,k = HN(q−m)HN(n−m)v2,k = HN(q+n−2m)v2,k 6= HN(q−n)v2,k

unless n = m. Similarly, the implication in Eqn (6.14) follows.

According to Definition 24, in terms of alignment set A1, the received vector Ỹ1 ∈ F
qN
2 is

a linear combination of the following vectors:

Ỹ1 =

[

⊕

k∈A1

(s1,k ⊕ s2,k)H
N(q−n)v1,k

]

⊕





⊕

k∈Ac
1

s1,kH
N(q−n)v1,k ⊕ s2,kH

N(q−m)v2,k



 , (6.15)

=

[

⊕

k∈A1

(s1,k ⊕ s2,k)H
N(q−m)v2,k

]

⊕





⊕

k∈Ac
1

s1,kH
N(q−n)v1,k ⊕ s2,kH

N(q−m)v2,k



 . (6.16)

According to Definition 25, in terms of alignment set A2, the received vector Ỹ2 ∈ F
qN
2 is

a linear combination of the following vectors:

Ỹ2 =

[

⊕

k∈A2

(s1,k ⊕ s2,k)H
N(q−m)v1,k

]

⊕





⊕

k∈Ac
2

s1,kH
N(q−m)v1,k ⊕ s2,kH

N(q−n)v2,k



 , (6.17)

=

[

⊕

k∈A2

(s1,k ⊕ s2,k)H
N(q−n)v2,k

]

⊕





⊕

k∈Ac
2

s1,kH
N(q−m)v1,k ⊕ s2,kH

N(q−n)v2,k



 . (6.18)

Clearly, K ≤ qN since received vectors Ỹ1, Ỹ2 ∈ F
qN
2 . However, since m ≤ n, a tighter

bound to prove is K ≤ mN . In addition, Lemma 18 implies further that K ≤
(

2
3

)

qN
regardless of the values of m,n. To prove the inequalities, the following definition of zero-
error linear decoding is provided.

Definition 26 (Encoding and Decoding Matrices). Encoding vectors {vℓ,k} for ℓ = 1, 2

transmitters and k ∈ [K] may be grouped into encoding matrices Vℓ ∈ F
qN×K
2 . For each
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encoding vector vℓ,k there exists a corresponding decoding vector rℓ,k. The decoding vectors

may be grouped as matrices Rℓ ∈ F
qN×K
2 .

Vℓ ,
[

vℓ,1 vℓ,2 . . . vℓ,K
]

.

Rℓ ,
[

rℓ,1 rℓ,2 . . . rℓ,K
]

.

Definition 27 (Zero-Error Linear Decoding). Let Ỹ1, Ỹ2 be the output signals received at
each receiver respectively. Zero-error linear encoding and decoding over F2 is defined by the
following conditions.

sss1 ,
[

s1,1 s1,2 . . . s1,K
]T
.

sss2 ,
[

s2,1 s2,2 . . . s2,K
]T
.

RT
1 Ỹ1 = sss1 ⊕ sss2.

RT
2 Ỹ2 = sss1 ⊕ sss2.

6.7.1 Proof Of Inequality Eqn. (6.7)

If zero-error linear decoding of K computations is assumed at both receivers according to
Definition 27, then the following rank conditions must hold due to the ordinary output
equations given in Eqn. (6.11) and Eqn. (6.12) respectively.

rank
[

RT
1H

N(q−m)V2

]

= K,

rank
[

RT
2H

N(q−m)V1

]

= K.

Simplifying the conditions,

rank
[

RT
1H

N(q−m)V2

]

≤ min
{

rank
[

RT
1

]

, rank
[

HN(q−m)
]

, rank
[

VT
2

]}

≤ min{K, qN,mN},
rank

[

RT
2H

N(q−m)V1

]

≤ min
{

rank
[

RT
2

]

, rank
[

HN(q−m)
]

, rank
[

VT
1

]}

≤ min{K, qN,mN}.

Therefore, the rank conditions will not hold unless K ≤ qN and K ≤ mN .

6.7.2 Proof Of Inequality Eqn. (6.8)

To prove K ≤
(

2
3

)

qN , Lemma 18 and the definitions of alignment sets A1 and A2 are
necessary. The inequality of Eqn. (6.8) follows from the following lemma.

Lemma 19. Consider the alignment set A1 ⊆ [K] from Definition 24 and the alignment set
A2 ⊆ [K] from Definition 25. If zero-error linear decoding of K computations is assumed
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at both receivers according to Definition 27, the following set cardinality conditions must be
true.

|A1|+ |A2| ≤ K, (6.19)

|A1|+ 2|Ac
1| ≤ qN, (6.20)

|A2|+ 2|Ac
2| ≤ qN. (6.21)

The first inequality in Eqn. (6.19) follows from Lemma 18 which states that A1∩A2 = ∅.
To see why the second and third inequalities hold, the encoding and decoding may be written
in matrix form. In the following notation, assume alignment sets A1 and A2 are ordered,
and that V1,A represents the matrix formed by those columns of V1 with indices in set A for
an arbitrary set A ⊆ [K]. Similarly, let V2,A represent the matrix formed by those columns
of V2 with indices in set A for an arbitrary set A ⊆ [K]. In addition, define

φφφ1 ,
[

(sss1,A1 ⊕ sss2,A1) sss1,Ac
1
sss2,Ac

1

]T
,

φφφ2 ,
[

(sss1,A2 ⊕ sss2,A2) sss2,Ac
2
sss1,Ac

2

]T
.

Based on Equations: (6.15), (6.16), (6.17) and (6.18), define the following matrices.

ΦΦΦ1 ,
[

HN(q−n)V1,A1 HN(q−n)V1,Ac
1

HN(q−m)V2,Ac
1

]

.

ΦΦΦ2 ,
[

HN(q−n)V2,A2 HN(q−n)V2,Ac
2

HN(q−m)V1,Ac
2

]

.

Then the decoding at both receivers is characterized by the following linear algebra.

RT
1 Ỹ1 = RT

1ΦΦΦ1φφφ1. (6.22)

RT
2 Ỹ2 = RT

2ΦΦΦ2φφφ2. (6.23)

The matrices R1,R2 ∈ F
qN×K
2 and the matrices

ΦΦΦ1 ∈ F
qN×(|A1|+2|Ac

1|)
2 ,

ΦΦΦ2 ∈ F
qN×(|A2|+2|Ac

2|)
2 .

If the columns of ΦΦΦ1 are not linearly independent, then K computations cannot be recovered
at the first receiver, because after column operations, ΦΦΦ1 may be reduced to a matrix having
at least one column consisting of all zeroes. In this case, ΦΦΦ1φφφ1 will not include at least one
source symbol required for K computations. In order for ΦΦΦ1 to have linearly independent
columns, it must be that |A1| + 2|Ac

1| ≤ qN . Similarly, in order for ΦΦΦ2 to have linearly
independent columns, and for the second receiver to recover K computations, |A2|+2|Ac

2| ≤
qN . This completes the proof of Lemma 19.

Theorem 8 follows from Lemma 19 since for any choice of alignment sets A1 ⊆ [K] and
A2 ⊆ [K], the inequality 3K ≤ 2qN holds. For the particular choice of alignment sets with
balanced cardinalities, i.e., |A1| = |A2| = K

2
, the bound 3K ≤ 2qN holds. For all other

choices of alignment sets, the bound is tighter. Hence, 3K ≤ 2qN represents the linear
coding upper bound.
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6.8 Converse Theorems

In order to determine the fundamental limits of computing in a network for either linear
or non-linear codes, the entropy of signals must be taken into account. The following basic
converse bounds illustrate proof techniques based on Fano’s inequality, and simple genie-
aided arguments.

Lemma 20 (Basic Cut-Set Bound). The computation rate is limited by the total entropy of
the output signals:

Rcomp

q
≤ 1.

Proof. For the following steps, we write Xn
2 and Y n

1 to mean {X2[i]}ni=1 and {Y1[i]}ni=1 re-
spectively. By applying Fano’s inequality,

N(Rcomp) = H(SK1 ⊕ SK2 ),

= I(SK1 ⊕ SK2 ; Y N
1 ) +H(SK1 ⊕ SK2 |Y N

1 ),

≤ I(SK1 ⊕ SK2 ; Y N
1 ) +NǫN ,

≤ I(SK1 ⊕ SK2 ; Y N
1 , SK2 ) +NǫN ,

= I(SK1 ⊕ SK2 ; Y N
1 |SK2 , XN

2 ) +NǫN ,

≤ H(Y N
1 |SK2 , XN

2 ) +NǫN ,

≤
∑

i

H(Y1i|X2i) +NǫN .

If Rcomp is achievable, then ǫN → 0 as N tends to infinity. So we get NRcomp ≤ Nq. In the
above derivations, the fourth step utilizes the fact that SK2 is independent of SK1 ⊕ SK2 .

Lemma 21 (Tighter Cut-Set Bound). For an (m, q, L) network where L = 2 users,

Rcomp

q
≤ α.

Proof. For the following steps, we write Xn
1 and Y n

1 to mean {X1[i]}ni=1 and {Y1[i]}ni=1 re-
spectively. By applying Fano’s inequality,

N(Rcomp) = H(SK1 ⊕ SK2 ),

= I(SK1 ⊕ SK2 ; Y N
1 ) +H(SK1 ⊕ SK2 |Y N

1 ),

≤ I(SK1 ⊕ SK2 ; Y N
1 ) +NǫN ,

≤ I(SK1 ⊕ SK2 ; Y N
1 , SK1 ) +NǫN ,

= I(SK1 ⊕ SK2 ; Y N
1 |SK1 , XN

1 ) +NǫN ,

≤ H(Y N
1 |SK1 , XN

1 ) +NǫN ,

≤
∑

i

H(Y1i|X1i) +NǫN .
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The last inequality yields that N(Rcomp) ≤ Nm which completes the proof.

Lemma 22 (Beyond Cut-Set Bounds [87]). For an (m, q, L) network where L = 2 users,

Rcomp

q
≤ 2

3
.

The following proof starts in a novel manner, and was first proven solely by Prof. C. Suh
in [87]. The proof is quoted here for the sake of completeness only. For symmetric L = 2 user
networks, Gq−mXℓ can be reconstructed from (Y1, Y2). Without loss of generality, assume
that Gq−mX1 is a function of (Y1, Y2). Starting with Fano’s inequality, we get

N(3Rcomp − ǫN )

≤I(SK1 ⊕ SK2 ; Y N
1 ) + I(SK1 ⊕ SK2 ; Y N

2 ) + I(SK1 ⊕ SK2 ; Y N
2 )

(a)

≤ [H(Y N
1 )−H(Y N

1 |SK1 ⊕ SK2 )]

+ [H(Y N
2 )−H(Y N

2 |SK1 ⊕ SK2 , Y
N
1 )] + I(SK1 ⊕ SK2 ; Y N

2 )

≤ H(Y N
1 ) +H(Y N

2 )

−H(Y N
1 , Y N

2 |SK1 ⊕ SK2 ) + I(SK1 ⊕ SK2 ; Y N
2 , SK2 )

(b)
= H(Y N

1 ) +H(Y N
2 )

−H(Y N
1 , Y N

2 |SK1 ⊕ SK2 ) + I(SK1 ⊕ SK2 ; Y N
2 |SK2 )

(c)
= H(Y N

1 ) +H(Y N
2 )

−H(Y N
1 , Y N

2 |SK1 ⊕ SK2 ) +H(T12X
N
1 |SK2 )

(d)
= H(Y N

1 ) +H(Y N
2 )

−H(Y N
1 , Y N

2 ,T12X
N
1 |SK1 ⊕ SK2 ) +H(T12X

N
1 |SK2 )

≤ H(Y N
1 ) +H(Y N

2 )

−H(T12X
N
1 |SK1 ⊕ SK2 ) +H(T12X

N
1 |SK2 )

(e)
= H(Y N

1 ) +H(Y N
2 )−H(T12X

N
1 ) +H(T12X

N
1 |SK2 )

(f)

≤
∑

[H(Y1i) +H(Y2i)]

≤ 2Nq,

where (a) follows from the fact that conditioning reduces entropy; (b) follows from the fact
that SK2 is independent of SK1 ⊕SK2 ; (c) follows from the fact that XN

2 is a function of SK2 and
that T12 , IN⊗Gq−m; (d) follows from our hypothesis that Gq−mX1 is a function of (Y1, Y2);
(e) follows from the fact that XN

1 is a function of SK1 that is independent of SK1 ⊕ SK2 ; (f)
follows from the fact that conditioning reduces entropy. This completes the proof.
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Table 6.1: Computation Capacity Results For (m, q, L) Networks [87]

α α α α
Network (0, 1

2
) [1

2
, 2
3
] (2

3
, 1) 1

(m, q, 2) Ccomp

q
α α 2

3
1

(m, q, L) CLIN
comp

q
α 1

2
1
2

1

(m, q,∞) Ccomp

q
α 1

2
1
2

1

6.9 General L-User Networks

We summarize the contributions for L = 2 networks. Computation alignment strategies were
introduced for multi-casting modulus functions. Vector and scalar linear coding strategies
were both necessary. With even two receivers, a key challenge is to balance shared network
resources with receiver demands. A good code allows for in-network computation as opposed
to recovering all messages at the receivers. The computation capacity was determined for a
countably infinite class of (m, q, L = 2) deterministic models. Several network equivalence
and decomposition theorems were developed which have a strong potential for inclusion in
multi-hop network codes.

In extending to L > 2 users, the network equivalences and decompositions still hold.
In addition, the linear coding upper bound extends in an intuitive way. The information-
theoretic upper bound based on Fano’s inequality extends to L-user networks, but yields a
gap to the linear coding achievable bound. Table 6.1 summarizes known results for L-user
networks as further studied in [87]. In [87], it is shown that if L→ ∞, then the asymptotic
computation capacity is resolved. For all finite L, the linear coding capacity CLIN

comp is known,
but a gap to the information-theoretic upper bound exists. It is possible that structured, non-
linear codes might outperform vector-space function alignment codes for general (m, q, L)
networks where L > 2.
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Part III

Low-Complexity

Source-Channel-Network Coding
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Chapter 7

Linear Transform Coding in Networks

7.1 Introduction

The compression and estimation of an observed signal via subspace projections is both a
classical and current topic in signal processing and communication. While random subspace
projections have received considerable attention in the compressed sensing literature [28],
subspace projections optimized for minimal distortion are important for many applications.
The Karhunen-Loève transform (KLT) and its empirical form Principal Components Anal-
ysis (PCA), are widely studied in computer vision, biology, signal processing, and infor-
mation theory. Reduced dimensionality representations are useful for source coding, noise
filtering, compression, clustering, and data mining. Specific examples include eigenfaces for
face recognition, orthogonal decomposition in transform coding, and sparse PCA for gene
analysis [89, 44, 25].

In contemporary applications such as wireless sensor networks (WSNs) and distributed
databases, data is available and collected in different locations. In a WSN, sensors are
usually constrained by limited power and bandwidth resources. This has motivated existing
approaches to take into account correlations across high-dimensional sensor data to reduce
transmission requirements (see e.g. [36, 83, 92, 94, 31, 95, 30]). Rather than transmitting
raw sensor data to a fusion center to approximate a global signal, sensor nodes carry out
local data dimensionality reduction to increase bandwidth and energy efficiency.

In the present paper, we propose a linear transform network (LTN) model to analyze
dimensionality reduction for compression-estimation of correlated signals in multi-hop net-
works. In a centralized setting, given a random source signal xxx with zero-mean and covariance
matrix Σxxx, applying the KLT to xxx yields uncorrelated components in the eigenvector basis of
Σxxx. The optimal linear least squares kth-order approximation of the source is given by the k
components corresponding to the k largest eigenvalues of Σxxx. In a network setting, multiple
correlated signals are observed by different source nodes. The source nodes transmit low-
dimensional subspace projections (approximations of the source) to intended receivers via a
relay network. The compression-estimation problem is to optimize the subspace projections
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computed by all nodes in order to minimize the end-to-end distortion at receiver nodes.
In our model, receivers estimate random vectors based on “one-shot” linear analog-

amplitude multisensor observations. The restriction to “one-shot”, zero-delay encoding of
each vector of source observations separately is interesting due to severe complexity limi-
tations in many applications (e.g. sensor networks). Linear coding depends on first-order
and second-order statistics and is robust to uncertainty in the precise probabilistic distri-
bution of the sources. Under the assumption of ideal channels between nodes, our task is
to optimize signal subspaces given limited bandwidth in terms of the number of real-valued
messages communicated. Our results extend previous work on distributed estimation in this
case [36, 83, 92, 94]. For the case of dimensionality-reduction with noisy channel communi-
cation (see e.g. [83]), the task is to optimize signal subspaces subject to channel noise and
power constraints.

For noisy networks, the general communication problem is often referred to as the joint
source-channel-network coding problem in the information-theoretic literature and is a fa-
mously open problem. Beyond the zero-delay, linear dimensionality-reduction considered
here, end-to-end performance in networks could be improved by (i), non-linear strategies
and (ii), allowing a longer coding horizon. Partial progress includes non-linear low-delay
mappings for only simple network scenarios [78, 86, 46]. For the case of an infinite coding
horizon, separation theorems for decomposing the joint communication problem have been
analyzed by [77, 50, 34].

7.1.1 Related Work

Directly related to our work in networks is the distributed KLT problem. Distributed linear
transforms were introduced by Gastpar et al. for the compression of jointly Gaussian sources
using iterative methods [36][35]. Simultaneous work by Zhang et al. for multi-sensor data
fusion also resulted in iterative procedures [94]. An alternate proof based on innovations for
second order random variables with arbitrary distributions was given by [70]. The problem
was extended for non-Gaussian sources, including channel fading and noise effects to model
the non-ideal link from sensors to decoder by Schizas et al. [83]. Roy and Vetterli provide
an asymptotic distortion analysis of the distributed KLT, in the case when the dimension
of the source and observation vectors approaches infinity [80]. Finally, Xiao et al. analyze
linear transforms for distributed coherent estimation [92].

Much of the estimation-theoretic literature deals with single-hop networks; each sensor
relays information directly to a fusion center. In multi-hop networks, linear operations are
performed by successive relays to aggregate, compress, and redistribute correlated signals.
The LTN model relates to recent work on routing and network coding (Ahlswede et al. [3]).
In pure routing solutions, intermediate nodes either forward or drop packets. The corre-
sponding analogy in the LTN model is to constrain transforms to be essentially identity
transforms. However, network coding (over finite fields) has shown that mixing of data at
intermediate nodes achieves higher rates in the multicast setting (see [59] regarding the suffi-
ciency of linear codes and [49] for multicast code construction). Similarly in the LTN model,
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linear combining of subspace projections (over the real field) at intermediate nodes improves
decoding performance. Lastly, the max-flow min-cut theorem of Ford-Fulkerson [32] provides
the basis for cut-set lower bounds in networks.

The LTN model is partially related to the formulation of Koetter and Kschischang [52]
modeling information transmission as the injection of a basis for a vector space into the
network, and subspace codes [85]. If arbitrary data exchange is permitted between network
nodes, the compression-estimation problem is related to estimation in graphical models (e.g.
decomposable PCA [90], and tree-based transforms (tree-KLT) [84]). Other related work
involving signal projections in networks includes joint source-channel communication in sen-
sor networks [11], random projections in a gossip framework[73], and distributed compressed
sensing [13].

7.1.2 Summary of Main Results

We cast the network compression-estimation problem as a statistical signal processing and
constrained optimization problem. For most networks, the optimization is non-convex.
Therefore, our main results are divided into two categories: (i) Iterative solutions for linear
transform coding over acyclic networks; (ii) Cut-set bounds based on convex relaxations and
cut-set bounds based on information theory.

• Section 7.3 reviews linear signal processing in networks. Section 7.4 outlines an itera-
tive optimization for compression-estimation matrices in ideal networks under a local
convergence criterion.

• Section 7.7 analyzes an iterative optimization method involving constrained quadratic
programs for noisy networks with power allocation over subspaces.

• Section 8.1 introduces cut-set lower bounds to benchmark the minimum mean square
error (MSE) for linear coding based on convex relaxations such as a semi-definite
program (SDP) relaxation.

• Section 8.5 describes cut-set lower bounds for any coding strategy in networks based
on information-theoretic principles of source-channel separation. The lower bounds are
plotted for a distributed noisy network.

• Sections 7.4-8.1 provide examples illustrating the tradeoffs between compression and
estimation; upper and lower bounds are illustrated for an aggregation (tree) network,
butterfly network, and distributed noisy network.

7.1.3 Notation

Boldface upper case letters denote matrices, boldface lower case letters denote column vec-
tors, and calligraphic upper case letters denote sets. The ℓ2-norm of a vector xxx ∈ R

n is



CHAPTER 7. LINEAR TRANSFORM CODING IN NETWORKS 90

v1

v5

xxx1

r̂̂r̂r5

L15

B5

L13
v2

v6

xxx2

r̂̂r̂r6

L26

B6

L23

v3

v4

L34

L46L45

(a) Linear Transform Network

c34c15 c26

c13 c23

c46c45

v1

v5

xxx1

r̂̂r̂r5

yyy15
yyy45

xxx15
xxx13

zzz15

v2

v6

xxx2

r̂̂r̂r6

yyy26
yyy46

xxx26
xxx23

zzz26

v3

v4
xxx45 xxx46

yyy34

xxx34

yyy13 yyy23

(b) Signal Flow on Graph

zzz34

zzz13

zzz45

zzz23

zzz46

Figure 7.1: (a) Linear transform network model. (b) Signal flow graph representation.

defined as ‖xxx‖2 ,
√

∑n
i=1 |xi|2. The weighted ℓ2-norm ‖xxx‖

W
, ‖Wxxx‖2 where W is a posi-

tive semi-definite matrix (writtenW � 0). Let (·)T , (·)−1, and tr(·) denote matrix transpose,
inverse, and trace respectively. Let A⊗B denote the Kronecker matrix product of two ma-
trices. The matrix Iℓ denotes the ℓ× ℓ identity. For ℓ ≥ k, the notation Tk:ℓ , TkTk+1 · · ·Tℓ

denotes the product of (ℓ− k + 1) matrices. A matrix X ∈ R
m×n is written in vector form

vec(X) ∈ R
mn by stacking its columns; i.e. vec(X) = [xxx1;xxx2; . . . ;xxxn] where xxxj is the j-th

column of X. For random vectors, E[·] denotes the expectation, and Σxxx , E[xxxxxxT ] denotes
the covariance matrix of the zero-mean random vector xxx.

7.2 Network Model

Fig. 7.1 serves as an extended example of an LTN graph. The network is comprised of two
sources, two relays, and two receiver nodes.

Definition 28 (Relay Network). Consider a relay network modeled by a directed acyclic
graph (DAG) G = (V, E) and a set of weights C. The set V = {v1, v2, . . . , v|V|} is the
vertex/node set, E ⊂ {1, . . . , |V|}×{1, . . . , |V|} is the edge set, and C = {cij ∈ Z

+ : (i, j) ∈ E}
is the set of weights. Each edge (i, j) ∈ E represents a communication link with integer
bandwidth cij from node vi to vj. The in-degree and out-degree of a node vi are computed as

d−i =
∑

q:(q,i)∈E

cqi, (7.1)

d+i =
∑

l:(i,l)∈E

cil. (7.2)
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As an example, the graph in Fig. 7.1 consists of nodes V = {v1, v2, . . . , v6}. Integer
bandwidths cij for each communication link (i, j) are marked.

Definition 29 (Source and Receiver Nodes). Given a relay network G = (V, E), the set of
source nodes S ⊂ V is defined as S = {vi ∈ V | d−i = 0}. We assume a labeling of nodes in
V so that S = {v1, v2, . . . , v|S|}, i.e. the first |S| nodes are source nodes. The set of receiver

nodes T ⊂ V is defined as T = {vi ∈ V | d+i = 0}.1 Let κ , |V|− |T |. We assume a labeling
of nodes in V so that T = {vκ+1, vκ+2, . . . , v|V|}, i.e. the last |T | nodes are receiver nodes.

In Fig. 7.1, S = {v1, v2} and T = {v5, v6}.

7.2.1 Source Model

Definition 30 (Basic Source Model). Given a relay network G = (V, E) with source and

receiver nodes (S, T ), the source nodes S = {vi}|S|i=1 observe random signals X = {xxxi}|S|i=1. The
random vectors xxxi ∈ R

ni are assumed zero-mean with covariance Σii, and cross-covariances
Σij ∈ R

ni×nj . Let n ,
∑

i ni. The distributed network sources may be grouped into an
n-dimensional random vector xxx = [xxx1;xxx2; . . . ;xxx|S|] with known second-order statistics Σxxx ∈
R
n×n,

Σxxx =











Σ11 Σ12 . . . Σ1|S|

Σ21 Σ22 . . . Σ2|S|
...

...
. . .

...
Σ|S|1 Σ|S|2 . . . Σ|S||S|











. (7.3)

More generally, each source node vi ∈ S emits independent and identically distributed
(i.i.d.) source vectors {xxxi[t]}t>0 for t a discrete time index; however, in the analysis of zero-
delay linear coding, we do not write the time indices explicitly.

Remark 20. A common linear signal-plus-noise model for sensor networks is of the form
xxxi = Hixxx + nnni; however, neither a linear source model nor the specific distribution of xxxi
is assumed here. A priori knowledge of second-order statistics may be obtained during a
training phase via sample estimation.

In Fig. 7.1, two source nodes S = {v1, v2} observe the corresponding random signals in
X = {xxx1,xxx2}.

7.2.2 Communication Model

Definition 31 (Communication Model). Given a relay network G = (V, E) with weight-set
C, each edge (i, j) ∈ E represents a communication link of bandwidth cij from vi to vj. The

1For networks of interest in this paper, an arbitrary DAG G may be augmented with auxiliary nodes to
ensure that source nodes have in-degree d−i = 0 and receiver nodes have out-degree d+i = 0.
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bandwidth is the dimension of the vector channel. We denote signals exiting vi ∈ V along
edge (i, j) ∈ E by xxxij ∈ R

cij and signals entering node vj along edge (i, j) ∈ E by yyyij ∈ R
cij .

If communication is noiseless, yyyij = xxxij. For all relay nodes and receiver nodes, we further

define yyyj ∈ R
d−j to be the concatenation of all signals yyyij incident to node vj along edges

(i, j) ∈ E .
A noisy communication link (i, j) ∈ E is modeled as: yyyij = xxxij + zzzij. The channel noise

zzzij ∈ R
cij is a Gaussian random vector with zero-mean and covariance Σzzzij . The channel

input is power constrained so that E[‖xxxij‖22] ≤ Pij. The power constraints for a network are
given by set P = {Pij ∈ R

+ : (i, j) ∈ E}. The signal-to-noise ratio (SNR) along a link is

SNRij =
E
[

‖xxxij‖22
]

E
[

‖zzzij‖22
] . (7.4)

Fig. 7.1(b) illustrates the signal flow of an LTN graph.

7.2.3 Linear Encoding over Graph G

Source and relay nodes encode random vector signals by applying reduced-dimension linear
transforms.

Definition 32 (Linear Encoding). Given a relay network G = (V, E), weight-set C, source
and receiver nodes (S, T ), sources X , and the communication model of Definition 31, the
linear encoding matrices for G are denoted by set LG = {Lij : (i, j) ∈ E}. Each Lij represents
the linear transform applied by node vi in communication with node vj. For vi ∈ S, transform
Lij is of size cij × ni and represents the encoding xxxij = Lijxxxi. For a relay vi, transform Lij
is of size cij × d−i , and xxxij = Lijyyyi. The compression ratio along edge (i, j) ∈ E is

αij =











cij
ni

if vi ∈ S, (7.5a)

cij
d−i

if vi ∈ V \ S. (7.5b)

In Fig. 7.1, the linear encoding matrices for source node v1 and v2 are {L15,L13} and
{L26,L23} respectively. The linear encoding matrices for the relays are L34, L45, L46. The
output signals of source node v1 are xxx15 = L15xxx1 and xxx13 = L13xxx1. Similarly, the output
signal of relay v3 is

xxx34 = L34yyy3 = L34

[

yyy13
yyy23

]

. (7.6)

7.2.4 Linear Estimation over G

Definition 33 (Linear Estimation). Given relay network G = (V, E), weight-set C, source
and receiver nodes (S, T ), sources X , and the communication model of Def. 31, the set of
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linear decoding matrices is denoted BG = {Bi}i:vi∈T . Each receiver vi ∈ T estimates a (zero-
mean) random vector rrri ∈ R

ri which is correlated with the sources in X . We assume that
the second-order statistics Σrrri, Σrrrixxx are known. Receiver vi ∈ T applies a linear estimator

given by matrix Bi ∈ R
ri×d

−
i to estimate rrri given its observations and computes r̂̂r̂ri = Biyyyi.

The linear least squares estimate (LLSE) of rrri is denoted by r̂̂r̂ri.

In Fig. 7.1, receiver v5 reconstructs rrr5 while receiver v6 reconstructs rrr6. The LLSE signals
r̂̂r̂r5 and r̂̂r̂r6 are computed as

r̂̂r̂r5 = B5yyy5 = B5

[

yyy15
yyy45

]

, (7.7)

r̂̂r̂r6 = B6yyy6 = B6

[

yyy26
yyy46

]

. (7.8)

Definition 34 (Distortion Metric). Let xxx and yyy be two real vectors of the same dimension.
The MSE distortion metric is defined as

dmse(xxx,yyy) , ‖xxx− yyy‖22 . (7.9)

7.2.5 Compression-Estimation in Networks

Definition 35 (Linear Transform Network N ). An LTN model N is a communication
network modeled by DAG G = (V, E), weight-set C, source and receiver nodes (S, T ), sources
X , sets LG, and BG from Definitions 28-33. Second-order source statistics are given by Σxxx

(Definition 30). The operational meaning of compression-estimation matrices in LG and
BG is in terms of signal flows on G (Definition 31). The desired reconstruction vectors
{rrri}i:vi∈T have known second-order statistics Σrrri and Σrrrixxx. The set {r̂̂r̂ri}i:vi∈T denotes the
LLSE estimates formed at receivers (Definition 33). For noisy networks, noise variables
along link (i, j) ∈ E have known covariances Σzzzij . Power constraints are given by set P in
Definition 31.

Given an LTN graph N , the task is to design a network transform code: the compression-
estimation matrices in LG and BG to minimize the end-to-end weighted MSE distortion. Let
positive weights {wi}i:vi∈T represent the relative importance of reconstructing a signal at
receiver vi ∈ T . Using indexing term κ , |V|−|T | for receiver nodes, we concatenate vectors
rrri as rrr =

[

rrrκ+1;rrrκ+2; . . . ;rrr|V|

]

and LLSE estimates r̂̂r̂ri as r̂̂r̂r =
[

r̂̂r̂rκ+1; r̂̂r̂rκ+2; . . . ; r̂̂r̂r|V|

]

. The
average weighted MSE written via a weighted ℓ2-norm is

DMSE,W , E

[

∑

i:vi∈T

dmse(
√
wirrri,

√
wir̂̂r̂ri)

]

,

= E
[

∥

∥rrr − r̂̂r̂r
∥

∥

2

W

]

, (7.10)

where W contains diagonal blocks Wi =
√
wi I.
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Remark 21. The distortion DMSE,W is a function of the compression matrices in LG and
the estimation matrices in BG. In most network topologies, the weighted MSE distortion
is non-convex over the set of feasible matrices. Even in the particular case of distributed
compression [36], currently the optimal linear transforms are not solvable in closed form.

7.3 Linear Processing of Network Signals

The linear processing and filtering of source signals by an LTN graphN is modeled compactly
as a linear system with inputs, outputs, and memory elements. At each time step, LTN nodes
transmit random signals through edges/channels of the graph.

7.3.1 Linear System

Consider edge (i, j) ∈ E as a memory element storing random vector yyyij. Let c , (
∑

(i,j)∈E cij)

and d , (
∑

i:vi∈T
d−i ). The network N is modeled as a linear system with the following

signals: (i) input sources {xxxi}i:vi∈S concatenated as global source vector xxx ∈ R
n; (ii) input

noise variables {zzzij}(i,j)∈E concatenated as global noise vector zzz ∈ R
c; (iii) memory elements

{yyyij}(i,j)∈E concatenated as global state vector µµµ[t] ∈ R
c at time t; (iv) output vectors

{yyyi}i:vi∈T concatenated as yyy ∈ R
d.

7.3.1.1 State-space Equations

The linear system2 is described by the following state-space equations for i : vi ∈ T ,

µµµ[t + 1] = Fµµµ[t] + Exxx[t] + Ẽzzz[t], (7.11)

yyyi[t] = Ciµµµ[t] +Dixxx[t] + D̃izzz[t]. (7.12)

The matrix F ∈ R
c×c is the state-evolution matrix common to all receivers, E ∈ R

c×n is
the source-network connectivity matrix, and Ẽ ∈ R

c×c is the noise-to-network connectivity
matrix. The matricesCi ∈ R

d−i ×c,Di ∈ R
d−i ×n, and D̃i ∈ R

d−i ×c represent how each receiver’s
output is related to the state, source, and noise vectors respectively. For networks considered
in this paper, Di = 0 and D̃i = 0.

7.3.1.2 Linear Transfer Function

A standard result in linear system theory yields the transfer function (assuming a unity
indeterminate delay operator) for each receiver vi ∈ T ,

yyyi = Ci (I− F)−1 (Exxx+ Ẽzzz), (7.13)

= Gixxx+ G̃izzz, (7.14)

2When discussing zero-delay linear coding, the time indices on vectors xxx, zzz, and yyyi are omitted for greater
clarity of presentation.
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Figure 7.2: Input and output signals for a noisy relay network.

where Gi , Ci (I− F)−1
E and G̃i , Ci (I− F)−1

Ẽ. For acyclic graphs, F is a nilpotent
matrix and (I− F)−1 = I +

∑γ
k=1F

γ for finite integer γ. Using indexing term κ, the ob-
servation vectors collected by receivers are concatenated as yyy =

[

yyyκ+1; yyyκ+2; . . . ; yyy|V|

]

.
Let

T ,
[

Gκ+1; Gκ+2; . . . ; G|V|

]

, (7.15)

and let T̃ be defined similarly with respect to matrices G̃i. Then the complete linear transfer
function of the network N is yyy = Txxx+T̃zzz. Analog processing of signals without error control
implies noise propagation; the additive noise zzz is also linearly filtered by the network via T̃.

Example 10. Fig. 7.2 is the LTN graph of a noisy relay network. Let state µµµ = [yyy12; yyy13; yyy23],
zzz = [zzz12; zzz13; zzz23], and output yyy3 = [yyy13; yyy23]. The linear system representation is given as
follows,

µµµ[t+ 1] =





0 0 0

0 0 0

L23 0 0



µµµ[t] +





L12

L13

0



xxx1[t] + Iczzz[t],

yyy3[t] =

[

0 I 0

0 0 I

]

µµµ[t].

By evaluating Eqn. (7.14),

yyy3[t] =

[

L13

L23L12

]

xxx1[t] +

[

0 I 0

L23 0 I

]

zzz[t].

Dropping the time indices and writing xxx = xxx1 in addition to yyy = yyy3, the linear transfer
function of the noisy relay network is of the following form: yyy = Txxx+ T̃zzz.

7.3.2 Layered Networks

Definition 36 (Layered DAG Network). A layering of a DAG G = (V, E) is a partition of
V into disjoint subsets V1,V2, . . . ,Vp+1 such that if directed edge (u, v) ∈ E , where u ∈ Vj
and v ∈ Vk, then j > k. A DAG layering (non-unique) is polynomial-time computable [45].
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Given a layered partition {Vℓ}p+1
ℓ=1 of an LTN graph, source nodes vi ∈ S with in-degree

d−i = 0 may be placed in partition Vp+1. Similarly, receivers vi ∈ T with out-degree d+i = 0
may be placed in partition V1. The transfer function T in Eqn. (7.15) may be factored into
a product of matrices,

T = T1:p , T1T2 · · ·Tp, (7.16)

where Tℓ for 1 ≤ ℓ ≤ p is the linear transformation of signals between nodes in partition
Vℓ+1 and Vℓ (note the reverse ordering of the Tℓ with respect to the partitions Vℓ). If an
edge exists between nodes in non-consecutive partitions, an identity transform is inserted to
replicate signals between multiple layers. Due to the linearity of transforms, for any layered
partition {Vℓ}p+1

ℓ=1 of V, the layered transforms {Tℓ}pℓ=1 can be constructed. The {Tℓ}pℓ=1

are structured matrices comprised of sub-blocks Lij , identity matrices, and/or zero matrices.
The block structure is determined by the network topology.

Example 11. For the multiple unicast network of Fig. 7.1, a valid layered partition of V is
V1 = {v5, v6}, V2 = {v4}, V3 = {v3}, and V4 = {v1, v2}. Let xxx = [xxx1; xxx2], yyy = [yyy5; yyy6] =
[yyy15; yyy45; yyy46; yyy26], and let L34 be partitioned as L34 = [L′

34 L′′
34]. According to the layering,

the transfer matrix T is factored in product form T = T1T2T3,

T =









I 0 0

0 L45 0

0 L46 0

0 0 I













I 0 0 0

0 L′
34 L′′

34 0

0 0 0 I













L15 0

L13 0

0 L23

0 L26









.

Example 12. Consider the setting of Example 10 for the relay network shown in Fig. 7.2.
A valid layered partition of V is V1 = {v3}, V2 = {v2}, V3 = {v1}. According to the layering,
the transfer matrix T may be written in product form T = T1T2,

T =

[

I 0

0 L23

] [

L13

L12

]

.

7.4 Convex Optimization of Compression-Estimation

Matrices

Our optimization method proceeds iteratively over network layers. To simplify the optimiza-
tion, we first assume ideal channels (high-SNR communication) for which yyyij = xxxij . Then
the linear operation of the network N is yyy = Txxx with zzz = 0. Linear transform coding is
constrained according to bandwidth compression ratios αij.
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7.4.1 MSE Distortion at Receivers

According to the linear system equations, Eqns. (7.11)-(7.14), each receiver vi ∈ T receives
filtered source observations yyyi = Gixxx. Receiver vi applies a linear estimator Bi to estimate
signal rrri. The MSE cost of estimation is

Di = E
[

∥

∥rrri −BiGixxx
∥

∥

2

2

]

= tr
(

Σrrri

)

−2tr
(

BiGiΣxxxrrri

)

+tr
(

BiGiΣxxxG
T
i B

T
i

)

. (7.17)

Setting the matrix derivative with respect to Bi in Eqn. (7.17) to zero yields: −2ΣrrrixxxG
T
i +

2BiGiΣxxxG
T
i = 0. For a fixed transfer function Gi, the optimal LLSE matrix B

opt
i is

B
opt
i = ΣrrrixxxG

T
i

[

GiΣxxxG
T
i

]−1
. (7.18)

If Gi in Eqn. (7.18) is singular, the inverse may be replaced with a pseudo-inverse operation
to compute B

opt
i .

Let B denote a block diagonal global matrix containing individual decoding matrices
{Bi}i:vi∈T on the diagonal. For an LTN graph N with encoding transfer function T = T1:p,
we write the linear decoding operation of all receivers as r̂̂r̂r = Byyy where yyy = T1:pxxx are
the observations received. The weighted MSE cost in Eqn. (7.10) for reconstructing signals
{rrri}i:vi∈T at all receivers is written as

DMSE,W = E
[

‖rrr − r̂̂r̂r‖2
W

]

= E
[

‖rrr −BT1:pxxx‖2W
]

= tr
(

WΣrrrW
T
)

− 2tr
(

WBT1:pΣxxxrrrW
T
)

+ tr
(

WBT1:pΣxxxT
T
1:pB

TWT
)

. (7.19)

By construction of the weighting matrix W, the MSE in Eqn. (7.19) is a weighted sum of
individual distortions at receivers, i.e. DMSE,W =

∑

i:vi∈T
wiDi.

7.4.2 Computing Encoding Transforms Ti

The optimization of the network transfer function T = T1:p is more complex due to block
constraints imposed by the network topology on matrices {Ti}pi=1. In order to solve for a
particular linear transform Ti, we assume all linear transforms Tj , j 6= i and the receivers’
decoding transform B are fixed. Then the optimal Ti is the solution to a constrained
quadratic program. To derive this, we utilize the following identities in which xxx = vec(X):

tr
(

ATX
)

= vec(A)Txxx, (7.20)

tr
(

XTA1XA2

)

= xxxT (A2 ⊗A1)xxx. (7.21)
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We write the network’s linear transfer function as T = T1:p = T1:i−1TiTi+1:p and define the
following matrices

Ji , Ti+1:pΣxxxrrrW
TWBT1:i−1, (7.22)

J′
i , (T1:i−1)

TBTWTWBT1:i−1, (7.23)

J′′
i , Ti+1:pΣxxx(Ti+1:p)

T . (7.24)

To write DMSE,W in terms of the matrix variable Ti, we also define the following,

pi , tr
(

WΣrrrW
T
)

, (7.25)

pppi , −2vec
(

JTi
)

, (7.26)

Pi , J′′
i ⊗ J′

i, (7.27)

where pi, pppi, and Pi are a scalar, vector, and positive semi-definite matrix respectively. The
following lemma expresses DMSE,W as a function of the unknown matrix variable Ti.

Lemma 23. Let transforms Tj, j 6= i, and B be fixed. Let Ji, J′
i, J′′

i be defined in
Eqns. (7.22)-(7.24), and pi, pppi, and Pi be defined in Eqns. (7.25)-(7.27). Then the weighted
MSE distortion DMSE,W of Eqn. (7.19) is a quadratic function of ttti = vec(Ti),

DMSE,W = tttTi Pittti + pppTi ttti + pi. (7.28)

Proof. Substituting the expressions for Ji, J′
i, J′′

i in Eqns. (7.22)-(7.24) into Eqn. (7.19)
produces the intermediate equation: DMSE,W = tr

(

TT
i J

′
iTiJ

′′
i

)

−2tr
(

JiTi

)

+pi. Directly ap-
plying the vector-matrix identities of Eqns. (7.20)-(7.21) results in Eqn. (7.28).

7.4.3 Quadratic Program with Convex Constraints

Due to Lemma 23, the weighted MSE is a quadratic function of ttti = vec(Ti) if all other
network matrices are fixed. The optimal Ti must satisfy block constraints determined by
network topology. The block constraints are linear equality constraints of the form Φittti = φφφi.
For example, if Ti contains an identity sub-block, this is enforced by setting entries in ttti to
zero and one accordingly, via linear equality constraints.

Theorem 9 (Optimal Encoding). Let encoding matrices Tj, j 6= i and decoding matrix
B be fixed. Let ttti = vec(Ti). The optimal encoding transform ttti is given by the following
constrained quadratic program (QP) [15, Def. 4.34]

argmin
ttti

tttTi Pittti + pppTi ttti + pi (7.29)

s. t. Φittti = φφφi,
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Algorithm 1 Ideal-Compression-Estimation(N , W, ǫ)

1: Identify compression matrices {Ti}pi=1 and corresponding linear equalities {Φi,φφφi}pi=1 for
network N . Identify estimation matrices {Bi}i:vi∈T . [Sec. 7.3, Sec. 7.4.3]

2: Initialize {T(0)
i }pi=1 randomly to feasible matrices.

3: Set n = 1, DMSE,W(0) = ∞.
4: repeat

5: Compute {B(n)
i }i:vi∈T given {T(n−1)

k }pk=1. [Eqn. (7.18)]
6: for i = 1 : p do

7: Compute T
(n)
i given {Φi,φφφi}, {B(n)

k }k:vk∈T , {T
(n)
k }(i−1)

k=1 , {T(n−1)
k }pk=i+1. [Theorem 9]

8: end for

9: Compute DMSE,W(n). [Eqn. (7.19)]
10: Set ∆MSE,W = DMSE,W(n)−DMSE,W(n− 1).
11: Set n = n+ 1.
12: until ∆MSE,W ≤ ǫ or n ≥ Nmax.

13: return {T(n)
i }pi=1, {B(n)

i }i:vi∈T .

where (Φi,φφφi) represent linear equality constraints on elements of Ti. The solution to the
above optimization for ttti is obtained by solving a corresponding linear system

[

2Pi ΦT
i

Φi 0

] [

ttti
λλλ

]

=

[

−pppi
φφφi

]

. (7.30)

If the constraints determined by the pair (Φi,φφφi) are feasible, the linear system of Eqn. (7.30)
is guaranteed to have either one or infinitely many solutions.

Proof. The QP of Eqn. (7.29) follows from Lemma 23 with additional linear equality con-
straints placed on ttti. The closed form solution to the QP is derived using Lagrange dual
multipliers for the linear constraints, and the Karush-Kuhn-Tucker (KKT) conditions. Let
f(ttti,λλλ) represent the Lagrangian formed with dual vector variable λλλ for the constraints,

f(ttti,λλλ) = tttTi Pittti + pppTi ttti + pi + λλλT (Φittti − φφφi) , (7.31)

∇tttif(ttti,λλλ) = 2Pittti + pppi +ΦT
i λλλ, (7.32)

∇λλλf(ttti,λλλ) = Φitttitttittti − φφφi. (7.33)

Setting ∇tttif(ttti,λλλ) = 0 and ∇λλλf(ttti,λλλ) = 0 yields the linear system of Eqn. (7.30), the
solutions to which are ttti and dual vector λλλ. Since the MSE distortion is bounded by a
minimum of zero error, the linear system has a unique solution if Pi is full rank, or infinitely
many solutions of equivalent objective value if Pi is singular.

Remark 22. Beyond linear constraints, several other convex constraints on matrix variables
could be applied within the quadratic program. For example, the ℓ1-norm of a vector xxx ∈ R

n

defined by ‖xxx‖1 ,
∑

i |xi| is often used in compressed sensing to enforce sparsity.
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7.5 Iterative Algorithm

Algorithm 1 defines an iterative method to optimize all encoding matrices {Ti}pi=1 and
the global decoding matrix B for an LTN graph. The iterative algorithm begins with the
random initialization of the encoding matrices {Ti}pi=1 subject to size specifications and
linear equality constraints given by {Φi}pi=1 and {φφφi}pi=1. The iterative method proceeds by
solving for the optimal B transform first. Similarly, with Tj , j 6= i and B fixed, the optimal
Ti is computed using Theorem 9. The iterative method proceeds for n ≤ Nmax iterations or
until the difference in error ∆MSE,W is less than a prescribed tolerance ǫ.

7.5.1 Convergence to Stationary Points

A key property of Algorithm 1 is the convergence to a stationary point (either local minimum
or saddle-point) of the weighted MSE.

Theorem 10 (Local Convergence). Denote the network’s linear transfer function after the
n-th outer-loop iteration in Algorithm 1 by T(n), and the block-diagonal global decoding trans-
form by B(n) which contains matrices {B(n)

i }i:vi∈T on the diagonal. Let r̂̂r̂r(n) = B(n)T(n)xxx
denote the estimate of desired signal rrr. Then

E
[

∥

∥rrr − r̂̂r̂r(n)
∥

∥

2

W

]

≥ E
[

∥

∥rrr − r̂̂r̂r(n+1)
∥

∥

2

W

]

, (7.34)

i.e., the weighted MSE distortion is a nonincreasing function of the iteration number n.

Proof. In Step 5 of Algorithm 1, with matrices {T(n−1)
k }pk=1 fixed, the optimal transform

B(n) is determined to minimize DMSE,W. The current transform B(n−1) is feasible within the
optimization space which implies that the MSE distortion cannot increase. In Step 7 of the
inner loop, with matrices B(n), {T(n)

k }(i−1)
k=1 , and {T(n−1)

k }pk=i+1 fixed, Theorem 9 computes the

optimal transform T
(n)
i to minimize DMSE,W. A similar argument shows that the error term

cannot increase. The distortion sequence {DMSE,W(n)} is nonincreasing and nonnegative;
hence limn→∞DMSE,W(n) = inf{DMSE,W(n)} by monotone convergence.

Remark 23. The local convergence in Theorem 10 is affected by several factors: (i) The
covariance structure Σxxx of the source; (ii) The DAG structure of G; (iii) The schedule of
iterative optimization of local matrices and factorization of T into the Ti; (iv) The ran-
dom initialization of {Ti}pi=1. In practice, multiple executions of Algorithm 1 increase the
probability of converging to a global minimum.

7.6 Example: A Multi-Hop Network

Consider the noiseless multi-hop network of Fig. 7.3 in which a relay aggregates, compresses
and/or forwards its observations to a receiver. The network is a hybrid combination of a
distributed and point-to-point network.
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(a) LTN Block Diagram (b) Distortion vs. Compression (c) Convergence
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Figure 7.3: (a) Block diagram of the “hybrid network” example. (b) The end-to-end distortion vs. compression
for varying bandwidth c = c13 = c23. (c) Convergence of DMSE(n) for five different initializations of the iterative
algorithm for the operating point c = 6, c34 = 11.

Example 13 (“Hybrid Network”). High-dimensional, correlated signals xxx1 ∈ R
n1 and xxx2 ∈

R
n2 are observed at nodes v1 and v2 where n1 = n2 = 15 dimensions. The covariance Σxxx of

the global source xxx = [xxx1; xxx2] was generated as follows for the experiment, ensuring Σxxx ≻ 0.
The diagonal entries (i, i) of Σxxx were selected as 15+2Uii, and off-diagonal entries (i, j) for
j > i were selected as 1 + 2Uij where Uii and Uij are i.i.d. uniform random variables over
the interval [0, 1].

The linear transfer function is factored in the form T = T1T2 where T1 = L34 and

T2 =

[

L13 0

0 L23

]

.

The target reconstruction at v4 is the entire signal rrr4 = xxx. The bandwidth c34 = 11, while
bandwidth c = c13 = c23 is varied for the experiment. Depending on the amount of bandwidth
c, the network operates in one of three modes (distributed, hybrid, or point-to-point) as
described in Example 13. Fig. 7.3(b) plots the sum distortion vs. compression performance,
and Fig. 7.3(c) plots the convergence of Algorithm 1 for the operating point c = 6, c34 = 11.

7.7 Analysis of Noisy Networks

We now analyze communication for networks with non-ideal channels: yyyij = xxxij +zzzij . Edges
(i, j) represent vector Gaussian channels. Network communication is limited according to
both bandwidth compression ratios αij and signal-to-noise ratios SNRij . We simplify op-
timization of subspaces by restricting attention to single-layer multi-source, multi-receiver
networks for which V = S ∪ T . In this case, the linear transfer function is yyy = Txxx+ zzz, i.e.
the noise is additive but not filtered over multiple network layers.
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Table 7.1: A “Hybrid” Linear Transform Network

Network Modes Bandwidth

Distributed c ≤ ⌊ c34
2
⌋

Hybrid ⌈ c34
2
⌉ < c < c34

Point to Point c34 ≤ c

7.7.1 MSE Distortion at Receivers

Each receiver vi ∈ T receives observations yyyi = Gixxx + zzzi where zzzi is the noise to vi. The
MSE distortion for reconstructing rrri at receiver vi is given by,

D̃i = tr
(

Σrrr

)

−2tr
(

BiGiΣxxxrrri

)

+tr
(

BiΣzzziB
T
i

)

+ tr
(

BiGiΣxxxG
T
i B

T
i

)

. (7.35)

Setting the matrix derivative with respect to Bi in Eqn. (7.35) to zero yields the optimal
linear transform Bi (cf. Eqn. (7.18)),

B
opt
i = ΣrrrixxxG

T
i

[

GiΣxxxG
T
i +Σzzzi

]−1

. (7.36)

Combining the LLSE estimates as r̂̂r̂r = Byyy, where yyy = Txxx + zzz, the weighted MSE for all
receivers is given by

D̃MSE,W = E
[

∥

∥rrr − r̂̂r̂r
∥

∥

2

W

]

= E
[

∥

∥rrr −B(Txxx+ zzz)
∥

∥

2

W

]

= tr
(

WBTΣxxxT
TBTWT

)

−2tr
(

WBTΣxxxrrrW
T
)

+ tr
(

WΣrrrW
T
)

+tr
(

WBΣzzzB
TWT

)

. (7.37)

By construction of the weighting matrix W, the MSE in Eqn. (7.37) is a weighted sum of
individual distortions at receivers, i.e. D̃MSE,W =

∑

i wi D̃i.

7.7.2 Computing Encoding Transform T

For noisy networks, power constraints on channel inputs limit the amount of amplification
of transmitted signals. For single-layer networks, let vi ∈ S be a source node with observed
signal xxxi. A power constraint on the input to channel (i, j) ∈ E is given by

E[‖xxxij‖22] = E[‖Lijxxxi‖22] = tr
(

LijΣxxxiL
T
ij

)

≤ Pij. (7.38)

The power constraint in Eqn. (7.38) is a quadratic function of the entries of the global linear
transform T. More precisely, let ℓℓℓij = vec(Lij) and ttt = vec(T). Since ttt contains all variables
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Algorithm 2 Noisy-Compression-Estimation(N ,W, ǫ)

1: Identify compression matrix T and corresponding linear equality constraints (Φ,φφφ),
and quadratic power constraints {(Γij , Pij)}(i,j)∈E . Identify estimation matrices
{Bi}i:vi∈T . [Sec. 7.3, Sec. 7.7.2]

2: Initialize T(0) randomly to a feasible matrix.
3: Set n = 1, D̃MSE,W(0) = ∞.
4: repeat

5: Compute {B(n)
i }i:vi∈T given T(n−1). [Eqn. (7.36)]

6: Compute T(n) given {B(n)
i }i:vi∈T , (Φ,φφφ), {(Γij , Pij)}(i,j)∈E . [Theorem 11]

7: Compute D̃MSE,W(n). [Eqn. (7.37)]
8: Set ∆̃MSE,W = D̃MSE,W(n)− D̃MSE,W(n− 1).
9: Set n = n+ 1.
10: until ∆̃MSE,W ≤ ǫ or n ≥ Nmax.

11: return T(n) and {B(n)
i }i:vi∈T .

of ℓℓℓij, we may write ℓℓℓij = Jijttt where Jij selects variables from ttt. Using the matrix-vector
identities of Eqn. (7.21), the power constraint in Eqn. (7.38) can be written as

tr
(

LijΣxxxiL
T
ij

)

= ℓℓℓTij (Σxxxi ⊗ I)ℓℓℓij

= tttTJTij (Σxxxi ⊗ I)Jijttt. (7.39)

Letting Γij , JTij (Σxxxi ⊗ I)Jij, the quadratic constraint is tttTΓijttt ≤ Pij. The matrix Γij is
a symmetric, positive semi-definite matrix. Thus a power constraint is a quadratic, convex
constraint.

7.7.3 Quadratic Program with Convex Constraints

As in Section 7.4.2, we use the vector form ttt = vec(T) to enforce linear equality constraints
Φttt = φφφ. For noisy networks, we include power constraints tttTΓijttt ≤ Pij for each channel
(i, j) ∈ E . For a fixed global decoding transform B, the distortion D̃MSE,W of Eqn. (7.37) is
again a quadratic function of ttt. Using the compact notation

p , tr
(

WΣrrrW
T
)

+tr
(

WBΣzzzB
TWT

)

, (7.40)

ppp , −2vec
(

BTWTWΣrrrxxx

)

, (7.41)

P , Σxxx ⊗BTWTWB, (7.42)

a derivation identical to that of Lemma 23 yields D̃MSE,W = tttTPttt + pppTttt + p. The optimal
encoding transform T for single-layer noisy networks is solvable via a quadratic program
with quadratic constraints (QCQP), following the development of Eqns. (7.40)-(7.42), and
the power constraints given in Eqns. (7.38)-(7.39); cf. Theorem 9.
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Figure 7.4: Block diagram of a distributed network with noise and power constraints.

Theorem 11 (Optimal Encoding T for Noisy LTN). Let N be a single-layer LTN, B be the
fixed decoding transform, and ttt = vec(T) be the encoding transform. The optimal encoding ttt
is the solution to the following quadratic program with quadratic constraints (QCQP):

argmin
ttt

tttTPttt+ pppTttt + p (7.43)

s. t. Φttt = φφφ,

tttTΓijttt ≤ Pij , (i, j) ∈ E ,

where (Φ,φφφ) represent linear equality constraints (dictated by network topology), and where
{(Γij , Pij)}(i,j)∈E represent quadratic power constraints on variables of T.

Remark 24. A quadratic program with linear and convex quadratic constraints is solvable
efficiently via standard convex program solvers; the time complexity depends polynomially on
the number of matrix variables and constraints.

7.7.4 Iterative Algorithm and Convergence

Algorithm 2 defines an iterative algorithm for single-layer, noise/power limited networks. In
addition to subspace selection, the amount of power per subspace is determined iteratively.
The iterative method alternates between optimizing the global decoding transform B and
the global encoding transform T, ensuring that network topology and power constraints are
satisfied. As in Theorem 10, the weighted MSE distortion is a nonincreasing function of the
iteration number, i.e. D̃MSE,W(n) ≥ D̃MSE,W(n + 1). While convergence to a stationary
point is guaranteed, the optimization space is highly complex– a globally optimal solution
is not guaranteed.
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(a) Compression-Estimation Tradeoffs

(b) Cut-Set Lower Bounds (Information Theory)
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Figure 7.5: (a) Power-compression-distortion “spectra” of a distributed noisy network for varying compression ratios
α and SNR levels. Unmarked, red, dashed lines represent cut-set lower bounds for linear coding based on convex
relaxations. (b) For α ∈ {0.25, 1.0}, the results due to low-complexity linear transforms are measured with respect
to information-theoretic cut-set bounds.

7.8 Example: A Distributed Noisy Network

Fig. 7.4 diagrams a classic example of a distributed network with multiple source (sensor)
nodes transmitting signal projections to a central decoder. Each source node is power con-
strained and must transmit a compressed description of its observed signal over a noisy
vector channel.

Example 14 (Distributed LTN). In Fig. 7.4, the global source xxx = [xxx1; xxx2; xxx3] is chosen to
be a jointly Gaussian vector with n = 12 dimensions, and ni = 4 for each of |S| = 3 source
nodes. Here, we specify the exact distribution of xxx in order to provide information-theoretic
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lower bounds. We set the covariance of xxx to be Gauss-Markov with ρ = 0.8,

Σxxx =















1 ρ ρ2 . . . ρ11

ρ 1 ρ . . . ρ10

ρ2 ρ 1 . . . ρ9

...
...

...
. . .

...
ρ11 ρ10 ρ9 . . . 1















.

The network structure is specified by bandwidths c14 = c24 = c34 = c. The global encoding
transform T is block-diagonal with matrices L14, L24, and L34 on the diagonal. The compres-
sion ratio is varied equally for each source node, α = c

ni
where ni = 4. The noise variables

zzzij are i.i.d. Gaussian random vectors with zero-mean and identity covariances. The power
constraints are set as P1 = P2 = P3 = c(SNR), where SNRij = SNR for all links. The
goal of destination v4 is to reconstruct the entire source rrr4 = xxx. Fig. 7.5(a) plots the perfor-
mance of LTN optimization for varying α and SNR ratios as well as cut-set lower bounds
for linear coding based on convex relaxations. Cut-set lower bounds for linear coding for this
example are explained further in Section 8.4.1. Fig. 7.5(b) plots cut-set bounds based on
information theory which are explained further in Sections 8.5 and 8.5.5. In the high-SNR
setting, information-theoretic coding strategies are capable of zero-distortion; however, in the
low-SNR setting, linear coding achieves a competitive MSE performance while maintaining
zero-delay and low-complexity.

Remark 25 (Comparison with [36, 83]). For this example, as the SNR → ∞, the error
D̃MSE approaches the error associated to the distributed KLT [36] where channel noise was
not considered. In [83], the authors model the effects of channel noise; however, they do
not provide cut-set lower bounds. In addition, the iterative optimization of the present paper
optimizes all compression matrices simultaneously per iteration and allows arbitrary convex
constraints, as opposed to the schemes in both [36, 83] which optimize the encoding matrix
of each user separately per iteration.
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Chapter 8

Cut-Set Bounds

8.1 Cutting a Graph

In this section, we derive lower bounds on the minimum MSE distortion possible for linear
compression and estimation of correlated signals in the LTN model. Our main technique is
to relax an arbitrary acyclic graph along all possible graph cuts to point-to-point networks
with side information. The cut-set bounds provide a performance benchmark for the iterative
methods of Sections 7.4-7.7.

8.1.1 Point-to-Point Network with Side Information

Consider the point-to-point network of Fig. 8.1. Source node v1 compresses source xxx ∈ R
n

via a linear transform L12. The signal xxx12 ∈ R
c12 is transmitted where xxx12 = L12xxx and

E[‖xxx12‖22] ≤ P . Receiver v2 computes a linear estimate of desired signal rrr ∈ R
r using

observations yyy12 = xxx12 + zzz and side information sss ∈ R
s as follows,

r̂̂r̂r = B

[

yyy12
sss

]

=
[

B11 B12

]

[

yyy12
sss

]

. (8.1)

The decoding transform B is here partitioned into two sub-matrices B11 and B12. We will
find it convenient to define the following random vectors,

ξξξ , xxx−ΣxxxsssΣ
−1
sss sss, (8.2)

ννν , rrr −ΣrrrsssΣ
−1
sss sss. (8.3)

Signals ξξξ and ννν are innovation vectors. For example, ξξξ is the difference between xxx and the
linear least squares estimate of xxx given sss which is equivalent to ΣxxxsssΣ

−1
sss sss.
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Figure 8.1: A point-to-point network with a power-constrained transmitter, additive channel noise, and side infor-
mation available at the receiver.

8.2 Case I: Relaxation to Ideal Vector Channel

In the ideal case, P = ∞ or zzz = 0. The weighted, linear minimum MSE distortion of the
point-to-point network with side information is obtained by solving

D∗
ideal = min

L12,B
E
[

∥

∥rrr − r̂̂r̂r
∥

∥

2

W

]

,

= min
L12,B11,B12

E
[

∥

∥rrr − (B11L12xxx+B12sss)
∥

∥

2

W

]

. (8.4)

The following theorem specifies the solution to Eqn. (8.4).

Theorem 12 (Ideal Network Relaxation). Let xxx ∈ R
n, sss ∈ R

s, and rrr ∈ R
r be zero-mean ran-

dom vectors with given full-rank covariance matrices Σxxx, Σsss, Σrrr and cross-covariances Σrxrxrx,
Σrsrsrs, Σxsxsxs. Let ξξξ and ννν be the innovations defined in Eqn (8.2) and Eqn. (8.3) respectively.
The solution to the minimization of Eqn. (8.4) over matrices L12 ∈ R

c12×n, B11 ∈ R
r×c12,

and B12 ∈ R
r×s is obtained in closed form as

D∗
ideal = tr

(

ΣνννW
TW

)

−
c12
∑

j=1

λj, (8.5)

where {λj}c12j=1 are the c12 largest eigenvalues of the matrix WΣνννξξξΣ
−1
ξξξ ΣξξξνννW

T .

Proof. The optimization in Eqn. (8.4) is simplified by first determining the LMMSE optimal
B12 transform in terms of B11 and L12: B

opt
12 = ΣrrrsssΣ

−1
sss − B11L12ΣxxxsssΣ

−1
sss . Plugging B

opt
12

into Eqn. (8.4) yields a minimization over B11 and L12 only. By grouping and rearranging
variables in terms of innovation vectors ξξξ and ννν,

D∗
ideal = min

L12,B11

E
[

∥

∥ννν −B11L12ξξξ
∥

∥

2

W

]

. (8.6)

The optimization of Eqn. (8.6) is that of an equivalent point-to-point network with input
signal ξξξ and desired reconstruction ννν, without side information. Eqn. (8.6) is in standard
form and solvable using canonical correlation analysis as detailed in [17, p. 368]. The optimal
value D∗

ideal is given in Eqn. (8.5) in terms of the eigenvalues of WΣνννξξξΣ
−1
ξξξ ΣξξξνννW

T .
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8.3 Case II: Semi-Definite Programming Relaxation

In the case of additive noise zzz (here with assumed covariance Σzzz = I for compactness) and a
power-constrained input to the vector channel, the weighted, linear minimum MSE distortion
is obtained by solving

D∗
noisy = min

L12,B11,B12

E
[

∥

∥rrr − (B11(L12xxx+ zzz) +B12sss)
∥

∥

2

W

]

,

s.t. tr[L12ΣxxxL
T
12] ≤ P. (8.7)

Again, by solving for the optimal LMMSE matrix B12 and grouping terms in the resulting
optimization according to innovation vectors ξξξ and ννν,

D∗
noisy = min

L12,B11

E
[

∥

∥ννν − (B11(L12ξξξ + zzz))
∥

∥

2

W

]

,

s.t. tr[L12ΣxxxL
T
12] ≤ P. (8.8)

Remark 26. The exact solution to Eqn. (8.8) involves handling a quadratic power constraint
and a rank constraint due to the reduced-dimensionality of L12. In [83, Theorem 4], a
related optimization problem was solved via a Lagrangian relaxation. For our problem, we
take a simpler approach using a semi-definite programming (SDP) relaxation. We first note
that D∗

noisy ≥ D∗
ideal. In the high-SNR regime, the two distortion values are asymptotically

equivalent. Therefore, we compute a good approximation for the distortion D∗
noisy in the

low-SNR regime via the following SDP relaxation.

Theorem 13 (SDP Relaxation). Consider random vectors xxx, sss, rrr, ξξξ, ννν, and matrices L12,
B11 as defined in Theorem 12. In addition, let random vector zzz have zero-mean and covari-
ance Σzzz = I. Let Ψ , LT12L12 and Φ ∈ R

r×r be an arbitrary positive semi-definite matrix
where r is the dimension of random vector rrr. The following lower bound applies,

D∗
noisy ≥ min

Φ,Ψ
tr[Φ] + tr

[

W
[

Σννν −ΣνννξξξΣ
−1
ξξξ Σξξξννν

]

WT
]

,

s.t. tr[ΣxxxΨ] ≤ P, Ψ � 0,
[

Φ WΣνννξξξΣ
−1
ξξξ

Σ−1
ξξξ ΣξξξνννW

T Σ−1
ξξξ +Ψ

]

� 0. (8.9)

The proof of Theorem 13 is based on a rank relaxation as detailed in the Appendix. The
power constraint is still enforced in Eqn. (8.9). In the low-SNR regime, power allocation
over subspaces dominates the error performance. If we denote the solution to the SDP of
Theorem 13 as D∗

sdp, we arrive at the following characterization,

D∗
noisy ≥ max{D∗

ideal, D
∗
sdp}. (8.10)



CHAPTER 8. CUT-SET BOUNDS 110

8.4 Cut-Set Lower Bounds for Linear Coding

Consider an LTN graph N with source nodes S ⊂ V and receivers T ⊂ V. We assume that
S ∩ T = ∅, i.e. the set of sources and receivers are disjoint. The total bandwidth and total
power across a cut F ⊂ V are defined respectively as

C(F) =
∑

jk∈E
j∈F , k∈Fc

cjk, (8.11)

P (F) =
∑

jk∈E
j∈F , k∈Fc

Pjk, (8.12)

where the edge set E and bandwidths cjk were defined in Section 7.2. The edges of the
graph are directed, hence the bandwidth across a cut accounts for the cij only for those
edges directed from node vi to vj. In the following theorem, the notation xxxF denotes the
concatenation of vectors xxxi : vi ∈ F . The set F c denotes the complement of F in V.

Definition 37. D∗
ideal

[

xxx,rrr
∣

∣sss; c,W
]

represents the distortion D∗
ideal computed with the weighted

norm via W for the ideal point-to-point network with input xxx, bandwidth c, reconstruction
vector rrr, and side information to receiver sss. Similarly, D∗

noisy

[

xxx,rrr
∣

∣sss; c, P,W
]

represents the
distortion D∗

noisy for a noisy point-to-point network with channel-input power constraint P
and noise vector zzz with zero-mean with identity covariance.

Theorem 14 (Cut-Set Lower Bounds). Let N be an arbitrary LTN graph with source nodes
S and receivers T . Let F ⊂ V be a cut of the graph. For ideal channel communication,

E
[

∥

∥rrrFc − r̂̂r̂rFc

∥

∥

2

W

]

≥ D∗
ideal

[

xxxF , rrrFc

∣

∣

∣
xxxFc ;C(F),W

]

. (8.13)

In the case of noisy channel communication over network N with additive channel noise zzzij
(assumed zero-mean, identity covariance),

E
[

∥

∥rrrFc − r̂̂r̂rFc

∥

∥

2

W

]

≥ D∗
noisy

[

xxxF , rrrFc

∣

∣

∣
xxxFc ;C(F), P (F),W

]

. (8.14)

Proof. The LTN graph is partitioned into two sets F and F c. The source nodes vi ∈ F
are merged as one source “super” node, and the receivers vi ∈ F c are merged into one
receiver “super” node. The maximum bandwidth and maximum power between the source
and receiver are C(F) and P (F) respectively. The random vector xxxFc represents those
signals with channels to the receiver super node, not accounted for in the cut F ; hence, this
information is given as side information (a relaxation) to the receiver. The relaxed network
after the merging process is the point-to-point network of Fig. 8.1 with noise zzz of dimension
equal to the bandwidth C(F) of the cut, and provides a lower bound on the MSE distortion

E
[

∥

∥rrrFc − r̂̂r̂rFc

∥

∥

2

W

]

at receivers vi ∈ F c.
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Figure 8.2: (a) Block diagram of a multi-source, multi-destination ideal network with labeled bandwidths cij . (b)
The distortion region assuming that node v5 reconstructs xxx1, and node v6 reconstructs xxx2. (c) The distortion region
assuming that node v5 reconstructs xxx2, and node v6 reconstructs xxx1.

Remark 27. The total number of distinct cuts F separating sources and receivers is (2|S| −
1)(2|T |−1). For a particular cut, there exists a continuum of lower bounds for multi-receiver
networks depending on the choice of weighting W.

8.4.1 Example: Cut-Set Lower Bounds for Linear Coding

In Fig. 7.5(a), cut-set lower bounds for linear coding are illustrated based on Theorem 14
for a distributed noisy network. The bounds are depicted for the cut that separates all
sources from the receiver. Due to our approximation method in Eqn. (8.10) based on the
SDP relaxation, the lower bounds show tight agreement in the low-SNR and high-SNR
asymptotic regimes.

8.5 Cut-Set Lower Bound From Information Theory

For the point-to-point communication scenario illustrated in Fig. 8.1, the optimal perfor-
mance can be determined precisely. Consider an ℓ-length sequence {(xxx[t], sss[t])}ℓt=1 of jointly
i.i.d. random vectors. The source node v1 has access to the source sequence {xxx[t]}ℓt=1. We
will assume throughout that rrr (respectively rrr[t]) is a deterministic function of (xxx,sss) (re-
spectively (xxx[t], sss[t])). The goal of receiver v2 is to minimize the average MSE distortion

Dℓ = E
[

1
ℓ

∑ℓ
t=1 ‖rrr[t]− r̂̂r̂r[t]‖22

]

where the reconstruction sequence {r̂̂r̂r[t]}ℓt=1 is generated based

on access to side information {sss[t]}ℓt=1 and the sequence of channel output vectors. We study
the performance in the limit as ℓ→ ∞ and denote D , D∞.
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8.5.1 Source-Channel Separation

We establish a lower bound by combining the data processing inequality with the definitions
of Wyner-Ziv rate-distortion function and channel capacity. Specifically, by straightfor-
ward extension of [91], the minimum rate R(D) required to reconstruct {rrr[t]}∞t=1 at dis-
tortion D is given by R(D) = min I(xxx;uuu|sss) where the minimization is over all “auxiliary”
random vectors uuu for which p(uuu,xxx,sss) = p(uuu|xxx)p(xxx,sss) and for which E[‖rrr − E[rrr|uuu,sss]‖22] ≤
D. Furthermore, by definition of the channel capacity C(P ) between v1 and v2, C(P ) =
maxp(xxx12):E[‖xxx12‖22]≤P

I(xxx12;yyy12).
1 Source-channel separation applies to the scenario of Fig. 8.1,

and in a nearly identical proof as detailed in [37, Thm. 1.10],

R(D) ≤ C(P ). (8.15)

8.5.2 R(D) for Jointly Gaussian Sources

If {(rrr[t],xxx[t], sss[t])} form an i.i.d. sequence of jointly Gaussian random vectors, then R(D) is
equal to the conditional rate-distortion function [36, Appendix II],

Rc(D) = min
p(r̂̂r̂r|xxx,sss):E[‖rrr−r̂̂r̂r‖22]≤D

I(xxx; r̂̂r̂r|sss). (8.16)

8.5.3 Capacity of the Vector AWGN Channel

If the channel noise zzz is a Gaussian random vector with zero mean and covariance Σzzz = I,
the capacity of the channel in Fig. 8.1 with bandwidth c12 and power constraint P is

C(P ) =
c12
2

log2

[

1 +
P

c12

]

. (8.17)

8.5.4 Lower Bound

We utilize Eqn. (8.15) to obtain an information-theoretic lower bound to the distortion
achievable in any network of the type considered in this paper. An arbitrary graph is
reduced via graph cuts to point-to-point networks. The following theorem collects the known
information-theoretic results discussed.

Theorem 15 (Cut-Set Bounds: Information Theory). Let N be an arbitrary LTN graph with
vector AWGN channels. Consider a cut F ⊂ V separating the graph into a point-to-point
network with bandwidth C(F) and power P (F). Let R(D∗

opt) be the rate-distortion function
for the source xxxF with side information xxxFc and reconstruction rrrFc .2 Then

R(D∗
opt) ≤

C(F)

2
log2

[

1 +
P (F)

C(F)

]

. (8.18)

1The notation in information theory vs. signal processing differs. The term I(xxx12;yyy12) denotes the
mutual information between random vectors whereas the term p(xxx12) indicates a probability distribution.

2We assume that rrrFc is a deterministic function of the global source xxx.
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8.5.5 Example: Cut-Set Lower Bound From Information Theory

For the noisy network in Example 14, consider cut F = {v1, v2, v3}. The source signal
xxxF = xxx = [xxx1;xxx2;xxx3] is jointly Gaussian, the side information is absent, and rrrFc = xxx. Denote
the eigenvalues of the source xxxF as {λxxx,i}ni=1. Evaluating Eqn. (8.16) as in [36, Appendix II],
optimal source coding corresponds to reverse water-filling over the eigenvalues (see also [21,
Chap. 10]),

Rc(D
∗
opt) =

n
∑

i=1

max

{

1

2
log2

λxxx,i
Di

, 0

}

,

where Di =

{

θ if θ < λxxx,i

λxxx,i if θ ≥ λxxx,i

and where θ is chosen such that
∑n

i=1Di = D∗
opt. The lower bound of Eqn. (8.18) is plotted

in Fig. 7.5(b) for two different bandwidth compression ratios.

8.6 Example: Multi-Source, Multi-Receiver Network

Example 15 (Multiple Unicast). In Fig. 8.2, the global source xxx = [xxx1; xxx2] where xxx1 ∈ R
4

and xxx2 ∈ R
4. The correlation structure of xxx is given by the following matrices,

[

Σ11 Σ12

Σ21 Σ22

]

=

























2.4 1.1 0.4 0.0 0.1 0.1 0.0 0.1
1.1 1.7 0.8 0.4 0.0 0.2 0.2 0.1
0.4 0.8 1.2 0.0 0.2 0.6 0.1 0.3
0.0 0.4 0.0 0.8 0.3 0.0 0.1 0.0
0.1 0.0 0.2 0.3 1.1 0.1 0.2 0.0
0.1 0.2 0.6 0.0 0.1 1.2 0.2 0.1
0.0 0.2 0.1 0.1 0.2 0.2 1.0 0.6
0.1 0.1 0.3 0.0 0.0 0.1 0.6 1.2

























. (8.20)

Although the network is symmetric, the source covariance matrix given in Eqn. (8.20) in-
cludes cross-correlations which cause the distortion plots to appear asymmetric. The network
structure is specified by bandwidths cij as labeled in Fig. 8.2(a). The factorization of the global
linear transform T was given in Example 11 of Section 7.4.

The distortion region for the network in the case when node v5 estimates rrr5 = xxx1, and
node v6 estimates rrr6 = xxx2 is given in Fig. 8.2(b). A direct link exists from each source to
receiver. However, if the desired reconstruction at the receivers is switched as in Fig. 8.2(c),
the channel from v3 to v4 must be shared fully and becomes a bottleneck. The cut-set bounds
of interest are shown in dotted lines. The shaded region depicts the points achievable via
the iterative method of Section 7.4. In Fig. 8.2(c), the upper and lower bounds are not
tight everywhere–even if one receiver is completely ignored, the resulting problem is still
a distributed compression problem for which tight bounds are not known. The achievable
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Table 8.1: Comparison of Reduced-Dimension Linear Transforms

Fig. 5(b) Fig. 5(c)
Design Method D5 +D6 D5 +D6

Random Projections 4.3170 6.3471
Routing and Network Coding 2.7029 3.8170
Iterative QP Optimization 2.3258 2.6165
〈Lower Bound〉 2.3243 2.3243

curve was generated by taking the convex hull of 32 points corresponding to weighting ratios
w5

w6
∈ [ 1

100
, 100].

In Table 8.1, we compare the results of linear transform design methods for the minimum
sum distortion point (weighting ratio w5

w6
= 1).

• Random Projections– Each entry for all compression matrices is selected from the
standard normal distribution. The sum distortion D5+D6 is averaged over 102 random
compression matrices selected for all nodes.

• Routing and Network Coding (Ad-Hoc)– For the scenario in Fig. 8.2(b), nodes v1 and
v2 project their signal onto the principal eigenvectors of Σ11 and Σ22 respectively. Rout-
ing permits each receiver to receive the best two eigenvector projections from its corre-
sponding source, as well as an extra projection from the other source. For Fig. 8.2(c),
using a simple “network coding” strategy of adding signals at v3, one receiver is able to
receive its best two eigenvector projections, but the other receiver can only receive one
best eigenvector projection.

• Iterative QP Optimization– Linear transforms are designed using the iterative method
of Section 7.4.

• Lower Bound– The minimum sum distortion possible due to the cut-set lower bound of
Theorem 14.

8.6.1 Concluding Remarks

The linear transform network (LTN) was proposed to model the aggregation, compression,
and estimation of correlated random signals in directed, acyclic graphs. For both noiseless
and noisy LTN graphs, a new iterative algorithm was introduced for the joint optimization of
reduced-dimension network matrices. Cut-set lower bounds were introduced for zero-delay
linear coding based on convex relaxations. Cut-set lower bounds for optimal coding were
introduced based on information-theoretic principles. The compression-estimation tradeoffs
were analyzed for several example networks. A future challenge remains to compute tighter
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lower bounds and relaxations for non-convex network optimization problems. Reduced-
dimension linear transforms have potential applications in data fusion and sensor networks.
The idea of exploiting correlations between network signals to reduce data transmission, and
the idea of approximate reconstruction as opposed to exact recovery at receivers may lead
to further advances in networking.

8.7 Proof of Theorem 13

Starting from the optimization in Eqn. (8.8), the LLSE optimal matrix

B
opt
11 = ΣνννξξξL

T
12(L12ΣξξξL

T
12 + I)−1,

assuming Σzzz = I. Substituting this expression and simplifying the objective function in
Eqn. (8.8),

D∗
noisy = min

L12

tr
[

WΣνννW
T
]

+ tr
[

WΣνννξξξL
T
12

[

L12ΣξξξL
T
12 + I

]−1
L12ΣξξξνννW

T
]

s.t. tr
[

L12ΣxxxL
T
12

]

≤ P. (8.21)

Applying the Woodbury (matrix-inversion) identity [15, C.4.3] to the objective function,

D∗
noisy = min

L12

tr
[

WΣνννW
T
]

− tr
[

WΣνννξξξΣ
−1
ξξξ ΣξξξνννW

T
]

+ tr

[

WΣνννξξξΣ
−1
ξξξ

[

Σ−1
ξξξ + LT12L12

]−1

Σ−1
ξξξ ΣξξξνννW

T

]

s.t. tr
[

L12ΣxxxL
T
12

]

≤ P. (8.22)

Introducing a positive semi-definite matrix Φ such that

Φ � WΣνννξξξΣ
−1
ξξξ

[

Σ−1
ξξξ + LT12L12

]−1
Σ−1
ξξξ ΣξξξνννW

T ,

written equivalently in Schur-complement form [15, A.5.5], and setting Ψ = LT12L12 ∈ R
n×n

as a rank c12 matrix,

D∗
noisy = min

Φ,Ψ
tr [Φ] + tr

[

W
[

Σννν −ΣνννξξξΣ
−1
ξξξ Σξξξννν

]

WT
]

,

s.t. tr [ΣxxxΨ] ≤ P, Ψ � 0, rank [Ψ] = c12,
[

Φ WΣνννξξξΣ
−1
ξξξ

Σ−1
ξξξ ΣξξξνννW

T Σ−1
ξξξ +Ψ

]

� 0. (8.23)

Dropping the rank constraint yields the relaxation of Eqn. (8.9).
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