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1 Note to the Reader

This technical report is the extended version of the paper “Polynomial-Time Verification of
PCTL Properties of MDPs with Convex Uncertainties” presented at the 25th International
Conference on Computer Aided Verification, CAV 2013. The report extends the confer-
ence submission with the following additional material, which was not added due to space
limitations:

1. Appendix A: Results on convex optimization.
2. Appendix B: Alternative verification procedure based on Value Iteration.
3. Appendix C: Linear programming formulation to verify the property including the

Until operator on the running example introduced in the paper.
4. Appendix D: Case study on the verification of the Dining Philosopher problem.
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Abstract. We address the problem of verifying Probabilistic Computation Tree
Logic (PCTL) properties of Markov Decision Processes (MDPs) whose state transi-
tion probabilities are only known to lie within uncertainty sets. We first introduce the
model of Convex-MDPs (CMDPs), i.e., MDPs with convex uncertainty sets. CMDPs
generalize Interval-MDPs (IMDPs) by allowing also more expressive (convex) de-
scriptions of uncertainty. Using results on strong duality for convex programs, we
then present a PCTL verification algorithm for CMDPs, and prove that it runs in
time polynomial in the size of a CMDP for a rich subclass of convex uncertainty
models. This result allows us to lower the previously known algorithmic complexity
upper bound for IMDPs from co-NP to PTIME. Using the proposed approach, we
verify a consensus protocol and a dynamic configuration protocol for IPv4 addresses.

1 Introduction

Stochastic models like Discrete-Time Markov Chains (DTMCs) [1] and Markov Decision
Processes (MDPs) [2] are used to formally represent systems that exhibit probabilistic be-
haviors. These systems need quantitative analysis [3] to answer questions such as “what is the
probability that a request will be eventually served?”. Properties of these systems can be ex-
pressed and analyzed using logics such as Probabilistic Computation Tree Logic (PCTL) [4]
— a probabilistic logic derived from CTL — as well as techniques for probabilistic model
checking [5]. These methods often rely on deriving a probabilistic model of the underly-
ing process, hence the formal guarantees they provide are only as good as the estimated
model. In a real setting, these estimations are affected by uncertainties due, for example, to
measurement errors or approximation of the real system by mathematical models.

Interval-valued Discrete-Time Markov Chains (IDTMCs) have been introduced to cap-
ture modeling uncertainties [6]. IDTMCs are DTMC models where each transition prob-
ability lies within a compact range. Two semantic interpretations have been proposed for
IDTMCs [7]: Uncertain Markov Chains (UMCs) and Interval Markov Decision Processes
(IMDPs). An UMC is interpreted as a family of DTMCs, where each member is a DTMC
whose transition probabilities lie within the interval range given in the UMC. In IMDPs,
the uncertainty is resolved through non-determinism. Each time a state is visited, a transi-
tion distribution within the interval is adversarially picked, and a probabilistic step is taken
accordingly. Thus, IMDPs model a non-deterministic choice made from a set of (possibly
uncountably many) choices. In this paper we do not consider UMCs and focus on IMDPs.

An upper-bound on the complexity of model checking PCTL properties on IMDPs was
previously shown to be co-NP [8]. This result relies on the construction of an equivalent
MDP that encodes all behaviors of the IMDP. For each state in the new MDP, the set of
transition probabilities is equal to the Basic Feasible Solutions (BFS) of the set of inequalities
specifying the transition probabilities of the IMDP. Since the number of BFS is exponential



Table 1: Known Upper-Bound on the Complexity of PCTL Model Checking.
Model DTMC [4] IMDP [8] IMDP/CMDP [ours]

Complexity PTIME co-NP PTIME

in the number of states in the IMDP, the equivalent MDP can have size exponential in the
size of the IMDP. In this paper, we describe a polynomial-time algorithm (in both size of the
model and size of the formula) based on Convex Programming (CP) for the same fragment
of PCTL considered in [7, 8] (the Bounded Until operator is disallowed). This shows that
the problem is in the complexity class PTIME. With Bounded Until, the time complexity of
our algorithm only increases to pseudo-polynomial in the maximum integer time bound.

An interval model of uncertainty may appear to be the most intuitive. However, there
are significant advantages in accommodating also more expressive (and less pessimistic)
uncertainty models. In [9], a financial portfolio optimization case-study is analyzed in which
uncertainty arises from estimating the asset return rates. The authors claim that the interval
model is too conservative in this scenario, because it would suggest to invest the whole
capital into the asset with the smallest worst-case return. The ellipsoidal model proposed
in that paper returns instead the more profitable strategy of spreading the capital across
multiple assets. Further, depending on the field, researchers use different models to represent
uncertainty. Maximum likelihood models are often used, for example, to estimate chemical
reaction parameters [10]. To increase modeling expressiveness, we introduce the model of
Convex-MDP (CMDP), i.e., an MDP whose state transition probabilities are only known
to lie within convex uncertainty sets. The proposed algorithms can be extended to verify
CMDPs for all the models of uncertainty that satisfy a technical condition introduced later in
the paper, while maintaining the same complexity results proven for IMDPs. This condition
is not a limitation in practical scenarios, and we show that all the models in the wide
and relevant class of convex uncertainty sets introduced in [11] (e.g. interval, ellipsoidal
and likelihood models) satisfy it. Heterogeneous models of uncertainty can then be used
within the same CMDP to represent different sources of uncertainty. We also note that the
complexity results presented in [7] and [8] cannot be trivially extended to verifying CMDPs.
This is because BFS are not defined for generic convex inequalities, so the construction of
an equivalent MDP would not be possible. The complexity results are compared in Table 1.

To summarize, the contributions of this paper are as follows.

1. We give a polynomial-time algorithm for model checking PCTL properties (without
Bounded Until) on IMDPs. This improves the co-NP result in [8] to PTIME.

2. We extend the algorithm to full PCTL (with Bounded Until) and show that its time
complexity becomes pseudo-polynomial in the maximum integer bound in Bounded Until.

3. We show that our complexity results extend to Convex-MDPs (CMDPs) for a wide and
expressive subclass of the convex models of uncertainty.

4. We demonstrate the relevance of our approach with case studies, where a small uncertainty
in the probability transitions indeed yields a significant change in the verification results.

The paper is organized as follows. Section 2 gives background on MDPs, PCTL, and the
analyzed uncertainty models. Section 3 presents related work in the fields of verification and
control. Section 4 gives an overview of the proposed approach. In Section 5, we describe the
proposed algorithm in detail and prove the PTIME complexity result. Section 6 describes
two case studies, and we conclude and discuss future directions in Section 7.



2 Preliminaries

Definition 2.1. A Probability Distribution (PD) over a finite set Z of cardinality n is a
vector µ ∈ Rn satisfying 0 ≤ µ ≤ 1 and 1Tµ = 1. The element µ[i] represents the probability
of realization of the event zi. We call Dist(Z) the set of distributions over Z.

2.1 Convex Markov Decision Process (CMDP)

Definition 2.2. A CMDP is a tuple MC = (S, S0, A,Ω,F ,A,X , L), where S is a finite set
of states of cardinality N = |S|, S0 is the set of initial states, A is a finite set of actions
(M = |A|), Ω is a finite set of atomic propositions, F is a finite set of convex sets of
transition PDs, A : S → 2A is a function that maps each state to the set of actions available
at that state, X = S × A → F is a function that associates to state s and action a the
corresponding convex set Fas ∈ F of transition PDs, and L : S → 2Ω is a labeling function.

The set Fas = Distas(S) represents the uncertainty in defining a transition distribution for
MC given state s and action a. We call fas ∈ Fas an observation of this uncertainty. Also,
fas ∈ RN and we can collect the vectors fas ,∀s ∈ S into an observed transition matrix F a ∈
RN×N . Abusing terminology, we call Fa the uncertainty set of the transition matrices, and
F a ∈ Fa. Fas is interpreted as the row of Fa corresponding to state s. Finally, fasisj = fasi [j]
is the observed probability of transitioning from si to sj when action a is selected.

A transition between state s to state s′ in a CMDP occurs in three steps. First, an action
a ∈ A(s) is chosen. The selection of a is nondeterministic. Secondly, an observed PD fas ∈ Fas
is chosen. The selection of fas models uncertainty in the transition. Lastly, a successor state
s′ is chosen randomly, according to the transition PD fas .

A path π inMC is a finite or infinite sequence of the form s0
fa0s0s1−−−→ s1

fa1s1s2−−−→, · · · , where
si ∈ S, ai ∈ A(si) and faisi,si+1

> 0 ∀i ≥ 0. We indicate with Πfin (Πinf ) the set of all finite

(infinite) paths of MC . π[i] is the ith state along the path and, for finite paths, last(π) is
the last state visited in π ∈ Πfin. Πs = {π | π[0] = s} is the set of paths starting in state s.

To model uncertainty in state transitions, we make the following assumptions:

Assumption 2.1. Fa can be factored as the Cartesian product of its rows, i.e., its rows are
uncorrelated. Formally, for every a ∈ A, Fa = Fas0 × · · · ×F

a
sN−1

. In [11] this assumption is
referred to as rectangular uncertainty.

Assumption 2.2. If the probability of a transition is zero (non-zero) for at least one PD
in the uncertainty set, then it is zero (non-zero) for all PDs.
Formally, ∃fas ∈ Fas : fass′ = ( 6=)0 =⇒ ∀fas ∈ Fas : fass′ = ( 6=)0. The assumption guarantees
the correctness of the preprocessing verification routines used later in the paper, which rely
on reachability of the states of the MDP underlying graph.

We determine the size R of the CMDPMC as follows.MC has N states, O(M) actions
per state and O(N2) transitions for each action. Let Da

s denote the number of constraints
required to express the rectangular uncertainty set Fas (e.g. Da

s = O(2N) for the interval
model, to express the upper and lower bounds of the transition probabilities from state s to
all states s′ ∈ S), and D = max

s∈S,a∈A
Da
s . The overall size ofMC is thusR = O(N2M+NMD).

In order to analyze quantitative properties of CMDPs, we need a probability space over
infinite paths [12]. However, a probability space can only be constructed once nondetermin-
ism and uncertainty have been resolved. We call each possible resolution of nondeterminism
an adversary, which chooses an action in each state of MC .



Definition 2.3. Adversary. A randomized adversary forMC is a function α = Πfin×A→
[0, 1], with

∑
A(last(π)) α(π, a) = 1, and a ∈ A(last(π)) if α(π, a) > 0. We call Adv the set

of all adversaries α of MC.

Conversely, we call a nature each possible resolution of uncertainty, i.e., a nature chooses a
transition PD for each state and action of MC .

Definition 2.4. Nature. Given action a ∈ A, a randomized nature is the function ηa :
Πfin ×Dist(S) → [0, 1] with

∫
Fa
last(π)

ηa(π, fas ) = 1, and fas ∈ Falast(π) if ηa(π, fas ) > 0. We

call Nat the set of all natures ηa of MC.

An adversary α (nature ηa) is memoryless if it depends only on last(π). Also, α (ηa) is
deterministic if α(π, a) = 1 for some a ∈ A(last(π)) (ηa(π, fas ) = 1 for some fas ∈ Falast(π)).

2.2 Models of Uncertainty

We only consider CMDPs whose transition PDs lie in uncertainty sets that satisfy Assump-
tion 5.1 (introduced later for ease of presentation). This assumption holds for all the uncer-
tainty models analyzed in [11]. We report results for the interval, likelihood and ellipsoidal
models. A more thorough derivation is available in Appendix A.

Interval Model. Intervals commonly describe uncertainty in transition matrices:

Fas = {fas ∈ RN | 0 ≤ fas ≤ fas ≤ f
a

s ≤ 1,1T fas = 1} (1)

where fas , f
a

s ∈ RN are the element-wise lower and upper bounds of f . This model is suitable
when the transition matrix components are individually estimated by statistical data.

Likelihood Model. This model is appropriate when the transition probabilities are deter-
mined experimentally. The transition frequencies associated to action a ∈ A are collected in
matrix Ha. Uncertainty in each row of Ha can be described by the likelihood region [13]:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1,
∑
s′ h

a
ss′ log(fass′) ≥ βas } (2)

where βas < βas,max =
∑
s′ h

a
ss′ log(hass′) represents the uncertainty level. Likelihood regions

are less conservative uncertainty representations than intervals, which arise from projections
of the uncertainty region onto each row component.

Ellipsoidal Model. Ellipsoidal models can be seen as a second-order approximation of the
likelihood model [11]. Formally:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1, ‖Ras (fas − has) ‖2 ≤ 1, Ras � 0} (3)

where matrix Ras represents an ellipsoidal approximation of the likelihood Region (2).

Remark 2.1. Each set Fas within the same CMDP can be expressed with a different un-
certainty model to represent different sources of uncertainty.

To illustrate our results, we will use the IMDP MC in Figure 1, with S = {s0 · · · s3},
S0 = {s0}, A = {a, b}, Ω = {ω, ϑ}, A : {s0, s1, s2} → {a} ; {s3} → {a, b}, L : {s0, s3} →
ϑ ; {s2} → ω. The uncertainty intervals are shown next to each transition. For example,
Fas0 = {fas0 ∈ RN | [0, 0.6, 0.2, 0] ≤ fas0 ≤ [0, 0.8, 0.5, 0],

∑
s′∈S f

a
ss′ = 1}.



Fig. 1: Example IMDP.

Table 2: PCTL semantics for CMDP

s |= True
s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2
s |= Ponp [ψ] iff Prob ({π ∈ Πs(α, η

a) | π |= ψ}) on p
∀α ∈ Adv and ηa ∈ Nat

π |= Xφ iff π[1] |= φ
π |= φ1 U≤kφ2 iff ∃i ≤ k | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1
π |= φ1 Uφ2 iff ∃k ≥ 0 | π |= φ1 U≤kφ2

2.3 Probabilistic Computation Tree Logic (PCTL)

We use PCTL, a probabilistic logic derived from CTL which includes a probabilistic operator
P [4], to express properties of CMDPs. The syntax of this logic is defined as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | Ponp [ψ] state formulas

ψ ::= Xφ | φ1 U≤kφ2 | φ1 Uφ2 path formulas

where ω ∈ Ω is an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1] and k ∈ N.
Path formulas ψ use the Next (X ), Bounded Until

(
U≤k

)
and Unbounded Until (U) oper-

ators. These formulas are evaluated over paths and only allowed as parameters to the Ponp [ψ]
operator. The size Q of a PCTL formula is defined as the number of Boolean connectives
plus the number of temporal operators in the formula. For the Bounded Until operator, we
denote separately the maximum time bound that appears in the formula as kmax. Proba-
bilistic statements about MDPs typically involve universal quantification over adversaries
α ∈ Adv. With uncertainties, for each action a selected by adversary α, we will further quan-
tify across nature ηa ∈ Nat to compute the worst case condition within the action range of

ηa, i.e., the uncertainty set Fas . We define Ps(α, η
a)[ψ]

4
= Prob ({π ∈ Πs(α, η

a) | π |= ψ}) the
probability of taking a path π ∈ Πs that satisfies ψ under adversary α and nature ηa. If α
and ηa are Markov deterministic in state s, we write Ps(a, f

a
s ), where a and fas are the action

and resolution of uncertainty that are deterministically chosen at each execution step by α
and ηa. Pmaxs [ψ] (Pmins [ψ]) denote the maximum (minimum) probability Ps(α, η

a)[ψ] across
all adversaries α ∈ Adv and natures ηa ∈ Nat, and the vectors Pmax[ψ],Pmin[ψ] ∈ RN

collect these probabilities ∀s ∈ S. The semantics of the logic is reported in Table 2, where
we write |= instead of |=Adv,Nat for simplicity.

For ease of computation, we would like to restrict our attention to memoryless and deter-
ministic adversaries and natures to compute quantitative probabilities, i.e., solve problems:

Pmaxs [ψ] = max
a∈A(s)

max
fas ∈Fas

Ps(a, f
a
s )[ψ] or Pmins [ψ] = min

a∈A(s)
min

fas ∈Fas
Ps(a, f

a
s )[ψ] (4)

We extend a result from [14] to prove that this is possible.

Proposition 2.1. Given a CMDP MC and a target state st ∈ S, there always exist de-
terministic and memoryless adversaries and natures for MC that achieve the maximum
(minimum) probabilities of reaching st, if A is finite and the inner optimization in Problem
(4) always attains its optimum σ∗s (a) over the sets Fas ,∀s ∈ S,∀a ∈ A(s), i.e., there exists
a finite feasible fas ∈ Fas such that Ps(a, f

a
s )[ψ] = σ∗s (a).



Sketch of proof. The proof is divided into two parts. First, we prove the existence of an
adversary and a nature that achieve the maximum (minimum) probabilities of reaching ts,
using Banach fixed-point theorem [14]. Second, we prove that at least one such adversary
and nature is memoryless and deterministic. The proof extends the one in Puterman [14],
Theorem 6.2.10. We need to prove that Problem (4) always attains the maximum (minimum)
over the feasibility sets Fas , i.e., ∀s ∈ S, ∀a ∈ A(s),∃fas ∈ Fas : ||fas ||2 < ∞, Ps(a, fas )[ψ] =
σ∗s (a). This is indeed true for all the convex sets Fas considered in this paper. The interval
and ellipsoidal models result in compact sets Fas on which Weierstrass theorem holds. For
the likelihood model we use the notion of consistency, which guarantees the existence and
uniqueness of a point in Fas where the optimum is attained. ut

The verification of a PCTL state formula φ can be viewed as a decision problem. The
verification algorithm V needs to determine whether a state s ∈ S0 is (or is not) contained
in the set Sat(φ) = {s ∈ S | s |= φ}. We can thus define the following properties for V:

Definition 2.5. Soundness ( Completeness). Algorithm V is sound (complete) if:

s ∈ SatV (φ)⇒ s ∈ Sat(φ) (s 6∈ SatV (φ)⇒ s 6∈ Sat(φ))

where SatV (φ) is the computed satisfaction set, while Sat(φ) is the actual satisfaction set.

Algorithms to verify non-probabilistic formulas are sound and complete, because they are
based on reachability analysis over the finite number of states of MC [15]. Conversely, we
will show in Section 5 that algorithms to verify probabilistic formulas φ = Ponp [ψ] in the
presence of uncertainties require to solve convex optimization problems over the set R of the
real numbers. Optima of these problems can be arbitrary real numbers, so, in general, they
can be computed only to within a desired accuracy εd. We consider an algorithm to be sound
and complete if the error in determining the satisfaction probabilities of φ is bounded by
such a parameter εd, since the returned result will still be accurate enough in most settings.

3 Related Work

Probabilistic model checking tools such as PRISM [5] have been used to analyze a multitude
of applications, from communication protocols and biological pathways to security problems.
In this paper, we further consider uncertainties in the probabilistic transitions of the MDP
for model checking PCTL specifications. Prior work [6–8,16] in similar verification problems
also dealt with uncertainties in the probabilistic transitions. However, they considered only
interval models of uncertainty, while we incorporate more expressive models such as ellip-
soidal and likelihood. Further, we consider nature as adversarial and study how it affects the
MDP execution in the worst case. The developers of PARAM [17] consider instead uncer-
tainties as possible values that parameters in the model can take, and synthesize the optimal
parameter values to maximize the satisfaction probability of a given PCTL specification.

We improve the previously best-known complexity result of co-NP in [8] to PTIME,
for the fragment of PCTL without U≤k. For the full PCTL syntax, our algorithm runs in
O(poly(R) × Q × kmax) time, where kmax is the maximum bound in U≤k. This result is
pseudo-polynomial in kmax, i.e., polynomial (exponential) if kmax is counted in its unary
(binary) representation. Conversely, classical PCTL model checking for DTMCs [4] runs in
time polynomial in kmax counted in its binary representation. The difference stems from
the computation of the set Sat

(
Ponp

[
φ1 U≤kφ2

])
. For (certain) MDPs, this computation

involves raising the transition matrices F a,∀a ∈ A to the kth power, to model the evolution
of the system in k steps. With uncertainties, we cannot do matrix exponentiation, because



F a ∈ Fa might change at each step. However, both Q and kmax are typically small in
practical applications [18,19], so the dominant factor for runtime is the size of the model R.
We note that the complexity results of [7] and [8] can be extended to the PCTL with U≤k.

The convex uncertainty models [11] analyzed in this paper have been considered recently
in the robust control literature. In [20], an algorithm is given to synthesize a robust optimal
controller for an MDP to satisfy a Linear Temporal Logic (LTL) specification where only
one probabilistic operator is allowed. Their technique first converts the LTL specification to
a Rabin automaton (which is worst-case doubly exponential in the size of the LTL formula),
and composes it with the MDP. Robust dynamic programming is then used to solve for the
optimal control policy. We consider PCTL, which allows nested probability operators, and
propose an algorithm which is polynomial both in the size of the model and of the formula.

In [21], the robustness of PCTL model checking is analyzed based on the notion of an
Approximate Probabilistic Bisimulation (APB) tailored to the finite-precision approximation
of a numerical model. We instead verify MDPs whose transition probabilities are affected
by uncertainties due to estimation errors or imperfect information about the environment.

4 Probabilistic Model Checking with Uncertainties

We define the problem under analysis, and overview the proposed approach to solve it.
PCTL model checking with uncertainties. Given a Markov Decision Process model with

convex uncertainties MC of size R and a PCTL formula φ of size Q over a set of atomic
propositions Ω, verify φ over the uncertainty sets Fas ∈ F of MC .

As in verification of CTL [22], the algorithm traverses bottom-up the parse tree for φ,
recursively computing the set Sat(φ′) of states satisfying each sub-formula φ′. At the end
of the traversal, the algorithm computes the set of states satisfying φ and it determines if
s |= φ by checking if s ∈ Sat (φ). For the non-probabilistic PCTL operators, the satisfying
states are computed as: Sat (True) = S, Sat(ω) = {s ∈ S | ω ∈ L(s)}, Sat(¬φ) = S \Sat(φ)
and Sat(φ1 ∧ φ2) = Sat(φ1)∩ Sat(φ2). For the probabilistic operator P on [ψ], we compute:

Sat (P/p [ψ]) = {s ∈ S | Pmaxs (ψ) / p} Sat (P.p [ψ]) =
{
s ∈ S | Pmins (ψ) . p

}
(5)

In this paper, we propose polynomial-time routines to compute Sets 5 for MDPs whose
transition matrices F a are only known to lie within convex uncertainty sets Fa, ∀a ∈ A.

Using Proposition 2.1, the proposed routines encode the transitions of MC under the
sets of deterministic and memoryless adversaries and natures into convex programs and
solve them. From the returned solution, it is then possible to determine the quantitative
satisfaction probabilities Pmaxs [ψ] (or Pmins [ψ]) ∀s ∈ S, which get compared in linear time
to the threshold p to compute the set Sat (Ponp [ψ]). To prove the polynomial-time complexity
of the model-checking algorithm, we use the following key result from convex theory [23].

Proposition 4.1. Given the convex program:

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · ,m

with x ∈ Rn and fi, i = 0, · · · ,m convex functions, the optimum σ∗ can be found to within
±εd in time complexity that is polynomial in the size of the problem (n,m) and log(1/εd).

We are now ready to state the main contribution of this paper:



Theorem 4.1. Complexity of PCTL model-checking for CMDPs.

1. The problem of verifying if a CMDP MC of size R satisfies a PCTL formula φ without
U≤k is in PTIME.

2. A formula φ′ with U≤k can be verified with time complexity O (poly(R)×Q′ × kmax),
i.e., pseudo-polynomial in the maximum time bound kmax of U≤k.

Sketch of proof. The proof is constructive. Our verification algorithm parses φ in time linear
in the size Q of φ [22], computing the satisfiability set of each operator in φ. For the non-
probabilistic operators, satisfiability sets can be computed in time polynomial in R using
set operations, i.e., set inclusion, complementation and intersection. For the probabilistic
operator, we leverage Proposition 4.1 and prove that the proposed verification routines: 1)
solve a number of convex problems polynomial in R; 2) generate these convex programs in
time polynomial in R. The correctness and time-complexity for formulas involving Next and
Unbounded Until operators are formalized in Lemma 5.1 and 5.2 (Section 5.1 and 5.2). It
thus follows that the overall algorithm runs in time polynomial in R and in the size of φ.
Finally, Lemma 5.3 formalizes the results related to the Bounded Until operator. ut

5 Verification Routines

We detail the routines used to verify the probabilistic operator P . We only consider prop-
erties in the form φ = P/p[ψ], but the results can trivially be extended to φ = P.p[ψ] by
replacing “max” with “min” in the optimization problems below.

5.1 Next Operator

We verify property φ = Ponp[Xφ1] on a CMDP of size R. First, the set Syes = Sat(φ1) is
computed. Second, for all state s ∈ S, the algorithm evaluates Equation (4) by solving:

Pmaxs [Xφ1] = max
a∈A(s)

max
fas ∈Fas

∑
s′∈Syes f

a
ss′ (6)

The inner max is a convex program since Fas is convex. The sets Fas can be expressed
with heterogeneous uncertainty models, since each problem is independent from the others.
Finally, the computed probabilities are compared to p to select the states that satisfy φ.

Lemma 5.1. The routine to verify the Next operator is sound, complete and guaranteed to
terminate with algorithmic complexity that is polynomial in the size R of MC.

Proof. Problem (6) has one “inner” convex program ∀s ∈ S and ∀a ∈ A(s), for a total
of O(MN) problems. Each problem has O(N) unknowns, representing the probability of
transitioning from state s to state s′ for s′ ∈ Syes. It has O(N + 1) constraints to guarantee
that the solution lies in the probability simplex, and Da

s constraints to enforce the solution
to be within the uncertainty set Fas . The total number of constraints is thus linear in R.
Using Proposition 4.1, each inner problem is solved in time polynomial in R. Soundness and
completeness also follow directly from Proposition 4.1, which states that the optimum of
Problem (6) can be found to within the desired accuracy ±εd in time linear in log(1/εd). ut
We verify φ = P≤0.4[Xω] in the example in Figure 1. Trivially, Syes = {s2}. We solve
Problem (6) for all a ∈ A and s ∈ S. As an example, for state s0 and action a, we solve:

P a,maxs0 = max
f01,f02

f02

s.t. 0.6 ≤ f01 ≤ 0.8; 0.2 ≤ f02 ≤ 0.5; f01 + f02 = 1

and get P a,maxs0 [Xω] = 0.4. Overall, we get Pmax[Xω]=[0.4, 0.5, 0, 0.6], so Sat(φ)={s0, s2}.



5.2 Unbounded Until Operator

We verify φ = P/p[φ1Uφ2] on a CMDP of size R. First, the sets Syes
4
= Sat (P≥1[φ1Uφ2]),

Sno
4
= Sat (P≤0[φ1Uφ2]) and S? = S \ (Sno ∪ Syes) are precomputed in time polynomial in

R using conventional reachability routines over the CMDP underlying graph [15]. Second,
Equation (4) is evaluated for all s ∈ S at the same time using the Convex Programming pro-
cedure described next. Finally, the computed probabilities are compared to p. An alternative
verification procedure, based on Value Iteration, can be found in Appendix B.

Convex Programming Procedure (CP). We start from the classical LP formulation to
solve the problem without the presence of uncertainty [15]:

min
x

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; s ∈ Syes; (7)

xs ≥ xTfas ∀s ∈ S?, ∀a ∈ A(s)

where Pmax[φ1Uφ2] = x∗ is computed solving only one LP. Problem (7) has N unknowns
and N −Q+MQ constraints, where Q = |S?| = O(N), so its size is polynomial in R.

Proposition 2.1 allows us to rewrite Problem (7) in the uncertain scenario as:

min
x

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes; (8)

xs ≥ max
fas ∈Fas

(
xTfas

)
∀s ∈ S?,∀a ∈ A(s)

i.e., we maximize the lower bound on xs across the nature action range. The decision variable
of the inner problem is fas and its optimal value σ∗(x) is parameterized in the outer problem
decision variable x. Problem (8) can be written in convex form for an arbitrary uncertainty
model by replacing the last constraint with one constraint for each point in Fas . However,
this approach results in infinite constraints if the set Fas contains infinitely many points, as
in the cases considered in the paper. We solve this difficulty using duality, which allows to
rewrite Problem (8) with a number of constraints polynomial in R. We start by replacing
the primal inner problem in the outer Problem (8) with its dual ∀s ∈ S? and ∀a ∈ A(s):

σas (x) = max
fas ∈Fas

xT fas ⇒ das(x) = min
λa
s∈Das

g(λa
s ,x) (9)

where λas is the (vector) Lagrange multiplier and Das is the feasibility set of the dual. In
the dual, the decision variable is λas and its optimal value das(x) is parameterized in x.
The dual function g(λas ,x) and the set Das are convex by construction in λas for arbitrary
uncertainty models, so the dual is convex. Further, since also the primal is convex, strong
duality holds, i.e., σas = das , ∀x ∈ RN , because the primal satisfies Slater’s condition [24]
for any non-trivial uncertainty set Fas . Any dual solution overestimates the primal solution.
When substituting the primals with the duals in Problem (8), we drop the inner optimization
operators because the outer optimization operator will find the least overestimates, i.e., the
dual solutions das ,∀s ∈ S, a ∈ A(s), to minimize its cost function. We get the CP formulation:

min
x

xT1 min
x,λ

xT1

s.t. xs = 0; xs = 1; s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes; (10a)

xs ≥ min
λas∈Das

g (λas ,x) ⇒ xs ≥ g (λas ,x) ; ∀s ∈ S?, ∀a ∈ A(s); (10b)

λas ∈ Das ∀s ∈ S?, ∀a ∈ A(s) (10c)



The decision variables of Problem (10) are both x and λas , so the CP formulation is convex
only if the dual function g(λas ,x) is jointly convex in λas and x. While this condition cannot
be guaranteed for arbitrary uncertainty models, we prove constructively that it holds for the
ones considered in the paper. For example, for the interval model, Problem (10) reads:

min
x,λa

s

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno;∀s ∈ Syes;

xs ≥ λa1,s − (fsa)Tλa
2,s + (f

s
a)Tλa

3,s; ∀s ∈ S?, ∀a ∈ A(s);

x + λa
2,s − λa

3,s − λa1,s1 = 0; ∀s ∈ S?, ∀a ∈ A(s);

λa
2,s ≥ 0, λa

3,s ≥ 0 ∀s ∈ S?, ∀a ∈ A(s)

which is an LP, so trivially jointly convex in x and λas . Analogously, Problem (10) for the
ellipsoidal model is a Second-Order Cone Program (SOCP), as reported in Appendix A, so
again jointly convex in x and λas . For the likelihood model, Problem (10) reads:

min
xs,λas

xT
s 1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes; (11a)

xs ≥ λa1,s − (1 + βas )λa2,s+λ
a
2,s

∑
s′ h

a
ss′ log

(
λa2,sh

a
ss′

λa1,s−xs′

)
; ∀s ∈ S?, ∀a ∈ A(s); (11b)

λa1,s ≥ max
s′∈S

xs′ ; λ
a
2,s ≥ 0 ∀s ∈ S?, ∀a ∈ A(s) (11c)

We prove its joint convexity in x and λas as follows. The cost function and Constraints (11a)-
(11c) are trivially convex. Constraint (11b) is generated by a primal-dual transformation,
so, according to convex theory, it is convex in the dual variables λas by construction. Convex
theory also guarantees that the affine subtraction of x from λa1,s preserves convexity, given
λa1,s ≥ max xs′ ,∀s ∈ S in Constraint (11c), so we conclude that Problem (11) is convex.

For general CMDPs, we will assume:

Assumption 5.1. Given a CMDP MC, for all convex uncertainty sets Fas ∈ F , the dual
function g(λas ,x) in Problem (9) is jointly convex in both λas and x.

According to Proposition 4.1, Problem (10) can thus be solved in polynomial time.
Also for this formulation, Pmax[φ1Uφ2] = x∗, so all the satisfaction probabilities can be
computed by solving only one convex problem. Finally, we note that we can combine models
of uncertainty different from one another within a single CP formulation, since each dual
problem is independent from the others according to Assumption 2.1. As an example, if both
the interval and ellipsoidal models are used, the overall CP formulation is an SOCP.

Lemma 5.2. The routine to verify the Unbounded Until operator is sound, complete and
guaranteed to terminate with algorithmic complexity polynomial in the size R of MC, if MC
satisfies Assumption 5.1.

Proof. The routine solves only one convex program, generated in time polynomial in R as
follows. We formulate Constraints (10b) and (10c) ∀s ∈ S? and a ∈ A(s), i.e., O(MQ)
constraints, where Q = |S?| = O(N). They are derived from MQ primal-dual transfor-
mations as in Equation (9). Each primal problem has N unknowns, N + 1 constraints to
represent the probability simplex and Da

s constraints to represent the uncertainty set Fas .
From duality theory, the corresponding dual inner problem has N + 1 +Da

s unknowns and
2N + 1 + Da

s constraints. Overall, Problem (10) has O ((N + 1 +D)MQ) more unknowns
and O ((2N + 1 +D)MQ) more constraints of Problem (7), so its size is polynomial in R.



IfMC satisfies Assumption 5.1, Problem (10) is convex. Using Proposition 4.1, we conclude
that it can be solved in time polynomial in R. Finally, when strong duality holds for the
transformation in Equation (9), soundness and completeness of the final solution are pre-
served because the dual and primal optimal value of each inner problem are equivalent. ut

We verify φ = P≥0.3[ ϑ U ω ] on the example in Figure 1. Problem (10) written with the
data of the model has 19 variables and 11 constraints, and it can be found in Appendix C.
The solution reads: Pmin[ ϑ U ω ] = [0.2, 0, 1, 0.32], and, in conclusion, Sat(φ) = {s2, s3}.

5.3 Bounded Until Operator

We present the routine to verify property φ = Ponp[φ1U≤kφ2] on a CMDP of size R. First,

the set Syes
def
= Sat(φ2), Sno

def
= S \ (Sat(φ1) ∪ Sat(φ2)) and S? = S \ (Sno ∪ Syes) are

precomputed. Second, the maximum probabilities Pmax[ψ] = xk = Gk(0) to satisfy φ are
computed for all states s ∈ S applying k times mapping G defined as:

xi = Gi(xi−1) =


0; 1; ∀s ∈ Sno; ∀s ∈ Syes;

0; ∀s ∈ S? ∧ i = 0;

max
a∈A(s)

max
fas ∈Fas

(xi−1)T fas ∀s ∈ S? ∧ i > 0

(12)

and x−1 = 0 ∈ RN . Finally, the computed probabilities are compared to the threshold p.

Lemma 5.3. The routine to verify the Bounded Until operator is sound, complete and
guaranteed to terminate with algorithmic complexity that is polynomial in the size R of MC
and pseudo-polynomial in the time bound k of U≤k.

Proof. The proof of polynomial complexity in R is similar to the one for the Next Operator.
Further, the pseudo-polynomial complexity in k comes from applying Mapping (12) k times.
While each inner problem is solved with accuracy ±εinn in time linear in log(1/εinn) by
Proposition 4.1, we also need to prove the soundness and completeness of the overall solution,
since the εinn-approximations in xi,∀i, get propagated at each iteration and the error might
get amplified. We call εis the error accumulated at step i for state s, xis = xis,id + εis, where

xis,id is the solution with no error propagation, and εks the error in the final solution. Also,

fa,is ∈ Fas is the optimal solution of the inner problem at step i. We solve this difficulty by
noting that the optimal value of the inner problem is computed by multiplying vector xi by
fa,is ∈ Fas , with 1T fas = 1,∀fas ∈ Fas ,∀a ∈ A(s). At the first, second and ith iteration:

x1s = x1s,id + ε1s = fa,1s x0 + εinn

x2s = fa,2s x1 + εinn = fa,2s

(
fa,1s x0 + εinn1

)
+ εinn = fa,2s fa,1s x0 + 2εinn

xis = fa,is xi−1 + εinn = fa,is (fa,i−1
s xi−1 + (i− 1)εinn1) + εinn = fa,is fa,i−1

s . . . fa,1s x0 + iεinn

so εis increases linearly with i. The desired accuracy εd of the final solution can thus be
guaranteed by solving each inner problem with accuracy εinn = εd/k. ut

We verify φ = P≤0.6[ϑ U≤1ω] in the example in Fig. 1. Syes = {s2}, Sno = {s1}. Applying
once Mapping (12), we get Pmax[ϑU≤1ω] = [0.4, 0, 1, 0.6] and Sat(φ) = {s0, s1, s3}.

6 Case Studies

We implemented the proposed verification algorithm in Python, and interfaced it with
PRISM [5] to extract information about the CMDP model. We used MOSEK [25] to solve



the LPs generated for the interval model and implemented customized numerical solvers for
the other models of uncertainty. The implemented tool is available at [26]. The algorithm
was tested on all the case studies collected in the PRISM benchmark suite [27]. Due to space
limits, we report two of them: the verification of a consensus protocol and of a dynamic con-
figuration protocol for IPv4 addresses. Further, the Dining Philosopher problem is verified
in Appendix D. The goals of these experiments are two-fold: 1) quantitatively evaluate the
impact of uncertainty on the results of verification of PCTL properties of CMDPs; 2) assess
the scalability of the proposed approach to increasing problem size. The runtime data were
obtained on a 2.4 GHz Intel Xeon with 32GB of RAM.

6.1 Consensus Protocol

Consensus problems arise in many distributed environments, where a group of distributed
processes attempt to reach an agreement about a decision to take by accessing some shared
entity. A consensus protocol ensures that the processes will eventually terminate and take
the same decision, even if they start with initial guesses that might differ from one another.

We analyze the randomized consensus protocol presented in [18,28]. The protocol guar-
antees that the processes return a preference value v ∈ {1, 2}, with probability parameterized
by a process independent value R (R ≥ 2) and the number of processes P . The processes
communicate with one another by accessing a shared counter of value c. The protocol pro-
ceeds in rounds. At each round, a process flips a local coin, increments or decrements the
shared counter depending on the outcome and then reads its value c. If c ≥ PR (c ≤ −PR),
it chooses v = 1 (v = 2). Note that the larger the value of R, the longer it takes on average
for the processes to reach the decision. Nondeterminism is used to model the asynchronous
access of the processes to the shared counter, so the overall protocol is modeled as an MDP.

We verify the property Agreement: all processes must agree on the same decision,
i.e., choose a value v ∈ {1, 2}. We compute the minimum probability of Agreement and
compare it against the theoretical lower bound (R− 1)/2R [18]. In PCTL syntax:

Pmins0 [ψ] := Pmins0 (F ({finished} ∧ {all coins equal 1})) (13)

We consider the case where one of the processes is unreliable or adversarial, i.e., it throws
a biased coin instead of a fair coin. Specifically, the probability of either outcome lies in the
uncertainty interval [(1 − u)p0, (1 + u)p0], where p0 = 0.5 according to the protocol. This
setting is relevant to analyze the protocol robustness when a process acts erroneously due
to a failure or a security breach. In particular, our approach allows to study attacks that
deliberately hide under the noise threshold of the protocol. In such attacks, the compromised
node defers agreement by producing outputs whose statistical properties are within the noise
tolerance of an uncompromised node, so that it is harder to detect its malicious behavior.

Figure 2 shows the effect of different levels of uncertainty on the computed probabilities
for P = 4. With no uncertainty (u = 0), Pmins0 increases as R increases, because a larger R
drives the decision regions further apart, making it more difficult for the processes to decide
on different values of v. As R goes to infinity, Pmins0 approaches the theoretical lower bound
limR→∞(R − 1)/2R = 0.5. However, even with a small uncertainty (u = 0.01), Pmins0 soon
decreases for increasing R. With a large uncertainty (u = 0.15), Pmins0 quickly goes to 0. A
possible explanation is that the faulty process has more opportunities to deter agreement for
a high R, since R also determines the expected time to termination. Results thus show that
the protocol is vulnerable to uncertainties. This fact may have serious security implication,
i.e., a denial-of-service attack could reduce the availability of the distributed service, since
a compromised process may substantially alter the expected probability of agreement.



Fig. 2: Value of Eq. 13 in function of R
while varying the uncertainty level u.

Fig. 3: Scalability of the CP procedure.

Lastly, we study the scalability of the CP procedure, by evaluating Equation (13) while
sweeping R both for P = 2 and P = 4. We use MOSEK [25] to solve Problem (10) and set
the Time Out (TO) to one hour. In Figure 3, we plot the sum (N + T ) of the number of
states (N) and transitions (T ) of the CMDP, which are independent of the uncertainty in
the transition probabilities, to represent the model size (top), the sum (V +C) of the number
of variables (V ) and constraints (C) of the generated LP instances of Problem (10) (center),
and the running time tCP (bottom). V +C always scales linearly with N +T (the lines have
the same slope), supporting the polynomial complexity result for our algorithm. Instead, tCP
scales linearly only for smaller problems (P = 2), while it has a higher-order polynomial
behavior for larger problems (P = 4) (the line is still a straight line but with steeper slope,
so it is polynomial on logarithmic axes). This behavior depends on the performance of the
chosen numerical solver, and it can improve benefiting of future advancements in the solver
implementation. In Table 3, we compare the CP procedure with two tools, PRISM [5] and
PARAM [17], in terms of runtime, for varying values of P and R. Although neither tool solves
the same problem addressed in this paper, the comparison is useful to assess the practicality
of the proposed approach. In particular, PRISM only verifies PCTL properties of MDPs
with no uncertainties. PARAM instead derives a symbolic expression of the satisfaction
probabilities as a function of the model parameters, to then find the parameter values that
satisfy the property. Hence, PRISM only considers a special case of the models considered in
this paper, while our approach only returns the worst-case scenario computed by PARAM.
Results show that the CP procedure runs faster than PRISM for some benchmarks, but it
is slower for larger models. This is expected since the scalability of our approach depends
mainly on the problem size, while the performance of the iterative engine in PRISM depends
on the problem size and on the number of iterations required to achieve convergence, which
is dependent on the problem data. Finally, our approach is orders of magnitude faster than
PARAM, so it should be preferred to perform worst-case analysis of system performances.

6.2 ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local Addresses

The ZeroConf protocol [29,30] is an Internet Protocol (IP)-based configuration protocol for
local (e.g. domestic) networks. In such a local context, each device should configure its own
unique IP address when it gets connected to the network, with no user intervention. The
protocol thus offers a distributed ”plug-and-play” solution in which address configuration
is managed by individual devices when they are connected to the network. The network is



Table 3: Runtime Comparison

Tool
P = 2, R = 2 R = 7 R = 128 P = 4, R = 2 R = 32 R = 44 P = 6, R = 4
N + T = 764 2, 604 47, 132 97, 888 1, 262, 688 1, 979, 488 14, 211, 904

CP 0.02s 0.1s 2.1s 8.3s 1, 341s 2, 689 TO
PRISM 0.01s 0.09s 196s 1s 2, 047s TO 1860s
PARAM 22.8s 657s TO TO TO TO TO

composed of DVtot devices. After being connected, a new device chooses randomly an IP
address from a pool of IPA = 65024 available ones, as specified by the standard. The address
is non-utilized with probability p0 = 1 − DVtot/IPA. It then sends messages to the other
devices in the network, asking whether the chosen IP address is already in use. If no reply
is received, the device starts using the IP address, otherwise the process is repeated.

The protocol is both probabilistic and timed: probability is used in the randomized
selection of an IP address and to model the eventuality of message loss; timing defines
intervals that elapse between message retransmissions. In [30], the protocol has been modeled
as an MDP using the digital clock semantic of time. In this semantic, time is discretized in
a finite set of epochs which are mapped to a finite number of states in an MDP, indexed by
the epoch variable te. To enhance the user experience and, in battery-powered devices, to
save energy, it is important to guarantee that a newly-connected device manages to select a
unique IP address within a given deadline dl. For numerical reasons, we study the maximum
probability of not being able to select a valid address within dl. In PCTL syntax:

Pmaxs0 [ψ] := Pmaxs0 (¬{unique address} U {te > dl}) (14)

We analyzed how network performances vary when there is uncertainty in estimating:
1) the probability of selecting an IP address, and; 2) the probability of message loss during
transmission. The former may be biased in a faulty or malicious device. The latter is esti-
mated from empirical data, so it is approximated. Further, the IMDP semantic of IDTMCs
(Section 1), which allows a nature to select a different transition distribution at each execu-
tion step, properly models the time-varying characteristics of the transmission channel.

In Figure 4, we added uncertainty only to the probability of message loss using the
likelihood model, which is suitable for empirically-estimated probabilities. Using classical
results from statistics [11], we computed the value of parameter β from Set (2) corresponding
to several confidence levels CL in the measurements. In particular, 0 ≤ CL ≤ 1 and CL =
1−cdfχ2

d
(2 ∗ (βmax − β)), where cdfχ2

d
is the cumulative density function of the Chi-squared

distribution with d degrees of freedom (d = 2 here because there are two possible outcomes,
message lost or received). Results show that the value of Pmaxs0 increases by up to ∼10×
for decreasing CL, while classical model-checking would only report the value for CL = 1,
which roughly over-estimates network performance. The plot can be used by a designer to
choose dl to make the protocol robust to varying channel conditions, or by a field engineer
to assess when the collected measurements are enough to estimate network performances.

In Figure 5, we compose different models of uncertainty, i.e., we also add uncertainty in
the probability of selecting the new IP address using the interval model. This probability thus
lies in the interval [(1−u)p0, (1+u)p0]. We, arbitrarily, fixed dl = 25 and swept DVtot in the
range [10− 100], which covers most domestic applications, to study how network congestion
affects the value of Equation 14. We studied four scenarios: the ideal scenario, returned by
classical model-checking techniques; the confident, normal, conservative scenarios, where we
added increasing uncertainty to model different knowledge levels of the network behavior, a



Fig. 4: Value of Equation 14 (top) and
verification runtime (bottom).

Fig. 5: Value of Eq. 14 for increasing
number of devices in the network.

situation that often arises during the different design phases, from conception to deployment.
Results show that Pmaxs0 [ψ] gets up to ∼ 15× higher than the ideal scenario, an information
that designers can use to determine the most sensitive parameters of the system and to assess
the impact of their modeling assumptions on the estimation of network performances.

7 Conclusions and Future Work

We addressed the problem of verifying PCTL properties of Convex-MDPs (CMDPs), i.e.,
MDPs whose state transition probabilities are only known to lie within convex uncertainty
sets. Using results on strong duality for convex programs, we proved that model checking
is decidable in PTIME for the fragment of PCTL without the Bounded Until operator. For
the entire PCTL syntax, the algorithmic complexity becomes pseudo-polynomial in the size
of the property. Verification results on two case studies show that uncertainty substantially
alters the computed probabilities, thus revealing the importance of the proposed analysis.

As future work, we aim to relax the rectangular uncertainty assumption, to limit the
power of nature and obtain a less conservative analysis. Also, we plan to verify a complex
physical system, e.g. an airplane power system, in which modeling uncertainties are present
both in the underlying physical process and in the failure probabilities of its components.
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Appendices

A Convex Optimization Results

In this appendix, we give details on the results from convex theory and duality that we used
in the paper. Most of the material is an elaboration of [11].

We begin by giving the definition of a convex set.

Definition A.1. A set C is convex if the line segment between any two points in C lies in
C, i.e., if for any x, y ∈ C and any α with 0 ≤ α ≤ 1, we have: αx+ (1− α)y ∈ C [24].

The convex sets Fas ,∀s ∈ S, ∀a ∈ A(s) model the uncertainty in the estimation of the rows
in the transition matrices of MC . In the following, we will also use:

Definition A.2. A function h : RN → R is convex if its domain D is a convex set, and for
all x,y ∈ D and α with 0 ≤ α ≤ 1, we have: h (αx+ (1− α)y) ≤ αh(x) + (1− α)h(y) [24].

We now introduce the convex uncertainty models explicitly supported by our framework.
In order:

1. Interval
2. Likelihood
3. Ellipsoidal
4. Entropy (not introduced in the paper for space limits)

For each of them, we also give details on the primal and dual formulation of the inner
problem:

max
fas ∈Fas

xT fas (15)

and derive the time-complexity of the algorithms used to solve it. Finally, for both the
interval and ellipsoidal models of uncertainty, we provide the full formulation of Problem
(10) used to verify the U operator in polynomial time. Similar results can be obtained also for
the minimization problem. In the following, we omit state and action indices when possible
to improve readability.

A.1 Interval Model

A common description of uncertainty for transition matrices is by intervals:

Fas = {fas ∈ RN | 0 ≤ fas ≤ fas ≤ f
a

s ≤ 1,1T fas = 1} (16)

where fas , f
a

s ∈ RN are vectors containing lower and upper bounds of the elements of f . This
representation is suitable when the components of the transition matrices are individually
estimated by statistical data.

We rewrite the inner problem in Equation (15) in primal form:

σ∗(x) = max xT f

s.t. 1T f = 1 (17)

f ≤ f ≤ f̄

The dual problem reads:

d∗(x) = min
λ1,λ2,λ3

λ1 − fTλ2 + f̄Tλ3

s.t. λ2 ≥ 0, λ3 ≥ 0 (18)

x + λ2 − λ3 − λ11 = 0

Since the primal problem is an LP, strong duality holds and σ∗ = d∗ [24].



Replacing Problem (17) with Problem (18), we obtain a new LP formulation for Problem
(10), used to verify the U operator:

min
x,λa1,s,λ

a
2,s,λ

a
3,s

xT1

s.t. xs = 0 ∀s ∈ Sno

xs = 1 ∀s ∈ Syes (19)

xs ≥ λa1,s − (fsa)Tλa2,s + (f
s

a)Tλa3,s ∀s ∈ S?, ∀a ∈ A(s)

x + λa2,s − λa3,s − λa1,s1 = 0 ∀s ∈ S?, ∀a ∈ A(s)

λa2,s ≥ 0, λa3,s ≥ 0 ∀s ∈ S?, ∀a ∈ A(s)

During the verification of the Next operator instead, we want to solve Problem (18). To
derive the time complexity of this operation, we rewrite the problem as [11]:

d∗ = min
λ

(
f̄ − f

)T
(λ1− x)+ + xT f̄ + λ

(
1− 1T f̄

)
where v+ represent the positive part of vector v. In this form, the dual problem is uncon-
strained, and it minimizes a convex piecewise function with break-points at the origin and
at xi, i = 1, · · ·N . A bisection algorithm over the discrete set b = 0, xi, i = 1, · · ·N will
thus find the optimal solution in O (Nlog(N)) steps.

A.2 Likelihood Model

The likelihood model is appropriate when the transition probabilities between states are
determined experimentally. The resulting empirical frequencies of transition associated to
action a ∈ A are collected in matrix Ha. Uncertainty in the transition matrices can then be
described by the likelihood region [13]:

Fa = {F a ∈ RN×N | F a � 0, F a1 = 1,
∑
s,s′ h

a
ss′ log(fass′) ≥ βa}

where βa < βamax =
∑
s,s′ h

a
ss′ log(hass′) represents the uncertainty level. Since the likelihood

region above does not satisfy Assumption 2.1, it must be approximated by projection onto
each row of the transition matrix. We obtain:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1,
∑
s′ h

a
ss′ log(fass′) ≥ βas } (20)

Even with this approximation, likelihood regions are less conservative uncertainty represen-
tations than intervals, which arise from further projection onto the row components.

We rewrite the inner problem in Equation (15) in primal form:

σ∗(x) = max xT fs

s.t. 1T fs = 1 (21)∑
s′ hss′ log(fss′) ≥ βs

fs ≥ 0

The dual problem reads [11]:

d∗(x) = min
λ1,λ2

λ1 − (1 + βs)λ2+λ2
∑
s′ hss′ log

(
λ2hss′
λ1−xs′

)
s.t. λ1 ≥ xmax = max

s′∈S
xs′ (22)

λ2 ≥ 0



The primal problem is convex, and it satisfies Slater’s condition [24] for non-trivial un-
certainty sets, i.e. for βs < βmax =

∑
s,s′ hss′ log(hss′), so strong duality holds and σ∗ = d∗.

Also, it can be proven that the dual Problem (22) is jointly convex in λ and x.
Replacing Problem (21) with Problem (22), we thus obtain a new formulation for Problem

(10), used to verify the U operator:

min
xs,λa1,s,λ

a
2,s

xT

s 1

λa
3,s,λ

a
4,s

s.t. xs = 0 ∀s ∈ Sno

xs = 1 ∀s ∈ Syes (23)

xs ≥ λa1,s − (1 + βas )λa2,s+λ
a
2,s

∑
s′ h

a
ss′ log

(
λa2,sh

a
ss′

λa1,s−xs′

)
∀s ∈ S?,∀a ∈ A

λa1,s ≥ xmax = max
s′∈S

xs′ ∀s ∈ S?,∀a ∈ A

λa2,s ≥ 0 ∀s ∈ S?,∀a ∈ A

Moreover, when verifying the Next operator, the dual problem can be reduced to one di-
mension and solved using a bisection algorithm [11], with resulting time complexityO (Nlog(xmax/ε))) [24]
with ε equal to the machine precision and xmax ≤ 1, since x is a vector of probabilities.

A.3 Ellipsoidal Model

Ellipsoidal models can be seen as a second-order approximation of the likelihood model [11].
Intuitively, in this model the elements of fas ∈ Fas are restricted to lie on the intersection of
the ellipse Ea

s = {fas | ‖Ras fas ‖2 ≤ 1, Ras � 0} and the probability simplex ∆N = {fas ∈ RN |
1T fas = 1, fas ≥ 0}. We will thus consider sets:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1, ‖Ras (fas − has) ‖2 ≤ 1, Ras � 0} (24)

where the matrix Ras represents an ellipsoidal approximation of the likelihood region ras =
{fas ∈ RN |

∑
s′ h

a
ss′ log(fass′) ≥ βas }. In particular, Ras can be computed as follows. First, we

write the second order approximation of the likelihood region:

ras = {fas ∈ RN |
∑
s′ h

a
ss′ log(fass′) ≥ βas } ≈ {fas ∈ RN |

∑
s′

(fass′−h
a
ss′)

2

ha
ss′

≤ K2} (25)

where K2 = 2 (βmax − β) is a measure of the uncertainty in approximating the values hass′ .
The approximation in Equation 25 can be written in matrix form:

∑
s′

(fass′−h
a
ss′)

2

ha
ss′

≤ K2 ⇔ ‖Ras (fas − has) ‖2 ≤ 1 (26)

Ras =


(
√
hass0K)−1 0 · · · 0

0 (
√
hass1K)−1 · · · 0

0 · · ·
. . .

...
0 0 · · · (

√
hassNK)−1


Matrix Ras is guaranteed to be positive definite, i.e., Ras � 0, because it is diagonal and the
values hass′ represent empirical frequencies of transition from states s to s′, hence they are
non-negative by definition.



We rewrite the inner problem in Equation (15) in primal form:

σ∗(x) = max
fas

xT fas

s.t. 1T fas = 1 (27)

‖Ras (fas − has) ‖2 ≤ 1

fas ≥ 0

The dual reads:

d∗(x) = min
λ1,λ2,λ3

λ1 + λ2 + hTRλ3

s.t. ‖λ3‖2 ≤ λ2 (28)

x− λ11−RTλ3 = 0

λ2 ≥ 0, λ3 ≥ 0

where the state and action indices have been dropped to improve readability. The inner
problem is a Second Order Cone Problem (SOCP), which satisfies Slater’s condition [24] for
any non-trivial uncertainty set, so strong duality holds and σ∗ = d∗. The dual Problem (28)
is an SOCP, so it is trivially jointly convex in λ and x.

Replacing Problem (27) with Problem (28), we can thus obtain a new SOCP formulation
for Problem (10), used to verify the U operator:

min
xs,λa1,s,λ

a
2,s,λ

a
3,s

xT

s 1

s.t. xs = 0 ∀s ∈ Sno

xs = 1 ∀s ∈ Syes (29)

xs ≥ λa1,s + λa2,s + ha
s
TRasλ

a
3,s ∀s ∈ S?,∀a ∈ A

‖λa3,s‖2 ≤ λa2,s ∀s ∈ S?,∀a ∈ A
x− λa1,s1−Ras

Tλa3,s = 0 ∀s ∈ S?,∀a ∈ A
λa2,s ≥ 0, λa3,s ≥ 0 ∀s ∈ S?,∀a ∈ A

Introducing uncertainty comes at the cost of solving an SOCP with (N + 2)MQ more
variables and (N + 1)MQ more constraints than the original LP, where Q =|S?|= O(N).

During the verification of the Next operator instead, we want to solve either Problem (27)
or Problem (28). Since they are both SOCP, they can be solved using interior-point methods
with worst-case (practical) time complexity O

(
N1.5log(xmax \ ε)

)
(O (Nlog(xmax \ ε))) [24]

and xmax ≤ 1, since x is a vector of probabilities.
Finally, we report a second dual formulation of Equation (15), which we experimentally

found to have better runtime performance when using the VI routine to verify properties
containing the U operator. Intuitively, the faster performance is achieved because this for-
mulation allows to write the analytical expression of the dual solution of the inner problem
as a function of the state probabilities x. The analytical expression can then be rapidly eval-
uated during the VI iterations using the values of x estimated in the previous iteration. We
note that the same approach cannot be used for the CP routine, since the derived analytical
expression is not easily representable in conic form when the optimization Problem (29)
operates both on the decision variables x and λ at the same time. In the following, we will
drop the state and action indices to improve readability.



We rewrite the inner problem in Equation (27) in an equivalent primal form:

σ∗(x) = max
f

xT f

s.t. 1T f = 1 (30)∑
s′

(fs′ − hs′)2

hs′
≤ K2

f ≥ 0

The Lagrangian operator associated to Problem (30) reads:

L(f , µ, ξ, ν) = xT f + µ(1− 1T f) + ξT f + ν

(
K2 −

∑
s′

(fs′ − hs′)2

hs′

)
(31)

The primal optimal value can be computed as:

σ∗(x) = max
f

min
µ,ξ,ν

L(f , µ, ξ, ν) (32)

By the minimax theorem [24], we obtain an upper bound on the value of σ∗(x) by
inverting the “max” and “min” operators:

d∗(x) = min
µ,ξ,ν

max
f
L(f , µ, ξ, ν) (33)

Problem (30) satisfies Slater’s condition [24] for any non-trivial uncertainty set, so strong
duality holds and σ∗ = d∗. We can thus solve Problem (33) instead of Problem (30) while
preserving the soundness and completeness of the verification procedure. As a first step, we
compute the dual function g(µ, ξ, ν) by solving the inner problem in Equation (33), i.e., we
aim at computing:

g(µ, ξ, ν) = max
f
L(f) (34)

We can solve Problem (34) by setting the gradient of the Lagrangian to zero, and solving
for the optimal primal solution f∗:

∂L
∂fs0

= x0 − µ+ ξ0 − 2ν
hs0

(fs0 − hs0) = 0 f∗s0 =
hs0
2ν (x0 − µ+ ξ0) + hs0

∂L
∂fs1

= x1 − µ+ ξ1 − 2ν
hs1

(fs1 − hs1) = 0 ⇒ f∗s1 =
hs1
2ν (x1 − µ+ ξ1) + hs1

· · · · · ·
∂L
∂fsN

= xN − µ+ ξN − 2ν
hsN

(fsN − hsN ) = 0 f∗sN =
hsN
2ν (xN − µ+ ξN ) + hsN

(35)
Substituting f∗ back into Problem 34, we obtain the dual function:

g(µ, ξ ≥ 0, ν ≥ 0) = µ+ νK2 +
∑
s′

(hs′(xs′ − µ+ ξs′)) +
1

4ν

∑
s′

(hs′(xs′ − µ+ ξs′)
2) (36)

We can now compute d∗ solving the dual problem:

d∗ = min
µ,ξ≥0,ν≥0

g(µ, ξ, ν) (37)



Before further proceeding, we note that, for monotonicity reasons, we can trivially set
ξ∗ = 0. We thus aim to solve the following optimization problem:

d∗ = min
µ,ν≥0

µ+ νK2 +
∑
s′

(hs′(xs′ − µ)) +
1

4ν

∑
s′

(hs′(xs′ − µ)2) (38)

We first set the partial derivatives of the dual function g to zero and compute the optimal
dual solution (µ∗, ν∗). Formally:

∂g
∂µ = 1− 2h

4ν (x− µ1)T − 1Th = 0 µ∗ =
∑
s′ hs′xs′

⇒
∂g
∂ν = K2 − h(x−µ1)2T

4ν2 = 0 ν∗ = 1
2K
√∑

s′ hs′(xs′ − µ)2
(39)

The optimal value can then be computed as d∗ = g(µ∗, ν∗).
Finally, we report the primal and dual formulations to solve the inner problem when

verifying properties of the form P.p [ψ]. In the primal problem of Equation (15), we change
the optimization operator from “max” to “min”:

σ∗(x) = min
f

xT f

s.t. 1T fas = 1 (40)∑
s′

(fs′ − hs′)2

hs′
≤ K2

f ≥ 0

Following the same steps presented above, we obtain the corresponding dual problem:

d∗ = max
µ,ν≥0

µ− νK2 +
∑
s′

(hs′(xs′ − µ))− 1

4ν

∑
s′

(hs′(xs′ − µ)2) (41)

which admits the optimal solution:
∂g
∂µ = 1 + 2h

4ν (x− µ1)T − 1Th = 0 µ∗ =
∑
s′ hs′xs′

⇒
∂g
∂ν = −K2 + h(x−µ1)2T

4ν2 = 0 ν∗ = 1
2K
√∑

s′ hs′(xs′ − µ)2
(42)

A.4 Entropy Model

The entropy model of uncertainty can be viewed as a variation of the likelihood model.
In the likelihood setting we bound the divergence from an empirically extracted distribu-
tion, whereas in the entropy setting we bound the divergence from a reference analytical
distribution q [11]. We will thus consider sets:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1,
∑
s′ f

a
ss′ log

(
fa
ss′
qa
ss′

)
≤ βas } (43)

We rewrite the inner problem in Equation (15) in primal form:

σ∗ = max xT fs

s.t. 1T fs = 1 (44)∑
s′ fss′ log

(
fss′
qss′

)
≤ βs

fs ≥ 0



The dual problem reads:

d∗ = min
λ

λ log
(∑

s′ qss′ exp
(xs′
λ

))
+ βsλ (45)

s.t. λ ≥ 0

The primal problem is convex, and it satisfies Slater’s condition [24] for non-trivial un-
certainty sets, i.e. for βs > 0, so strong duality holds and σ∗ = d∗.

Replacing Problem (44) with Problem (45), we can thus obtain a new formulation for
Problem (10), used to verify the U operator:

min
xs,λas

xT

s 1

s.t. xs = 0 ∀s ∈ Sno (46a)

xs = 1 ∀s ∈ Syes (46b)

xs ≥ λas log
(∑

s′ qss′ exp
(
xs′
λas

))
+ βsλ

a
s ∀s ∈ S?,∀a ∈ A (46c)

λas ≥ 0 ∀s ∈ S?,∀a ∈ A (46d)

We prove its joint convexity in x and λas as follows. The cost function and Constraints (46a),
(46b) and (46d) are trivially convex. Constraint(46c) is generated by a primal-dual transfor-
mation, so, according to convex theory, it is convex in the dual variables λas by construction.
Moreover, we prove that it is also jointly convex in x by induction on the number NS of
next states s′ ∈ S for state s. As a base case, NS = 1, and we can rewrite the constraint as:

xs ≥ λas log (qss′) + xs′ + βsλ
a
s (47)

which is trivially jointly convex. We now assume that the constraint is jointly convex for
NS = n, and prove that it is jointly convex also for NS = n + 1. This result immediately
follows from observing that increasing NS simply introduces one more term in the summa-
tion, so if the constraint is jointly convex for NS = n it must remain jointly convex also
for NS = n+ 1, since an affine addition preserves convexity according to convex theory. We
conclude that Problem (46) is convex.

Moreover, when verifying the Next operator, the dual problem is unidimensional and
it can thus be solved using a bisection algorithm [11], with resulting time complexity
O (Nlog(xmax \ ε))) [24] with ε equal to the machine precision and xmax ≤ 1, since x is
a vector of probabilities.



B Proof of Contraction Lemma

In this appendix, we present a verification procedure for the Until operator based on Value
Iteration (VI), which should be considered as an alternative to the CP procedure. We report
also the VI procedure because it has shorter runtime than the CP procedure for some of the
analyzed case studies, depending on the structure and data of the problem. Both procedures
should be run in the early stages of system verification and the one which performs better
should be used in the rest of the project development.

We start by defining:

Definition B.1. Contraction. Let (B, d) be a metric space and g : B → B. Function g is a
contraction if there is a real number θ, 0 ≤ θ < 1, such that:

d (g(u), g(v)) ≤ θd(u, v) ∀u, v ∈ B (48)

In the following, we will use:

Proposition B.1. Contraction mapping. Let (B, d) be a complete metric space and g : B →
B a contraction. Then there exists a unique point x∗ ∈ B such that:

g(x∗) = x∗

Additionally, if x ∈ B, then:
lim

k→+∞
gk(x) = x∗

We use the mapping g = G defined as:

G =



0 ∀s ∈ Sno

1 ∀s ∈ Syes

0 ∀s ∈ S? ∧ i = 0

max
a∈A(s)

max
fas ∈Fas

(xi−1)T fas ∀s ∈ S? ∧ i ≥ 0

(49)

where Syes
def
= Sat (P≥1[φ1Uφ2]), Sno

def
= Sat (P≤0[φ1Uφ2]) and S? = S \ (Sno ∪ Syes). We

note that MQ convex problems need to be solved to compute mapping G, with Q =| S? |. For
the uncertainty models considered in the paper, each problem can be solved with complexity
O (N log(1/ε)) [11], and ε equal to the machine precision. To simplify notation in the proof,
we use the weighted maximum norm ‖ . ‖w of a vector v ∈ RN defined as:

‖ . ‖w = max
i=1···N

| vi |
wi

(50)

where wi is the scalar weight associated to each element of v.
We can now state:

Lemma B.1. Mapping G is a contraction over the metric space (RN , ‖ . ‖w).

Proof. The proof follows closely the ones in [B.1] (Vol. II, Section 2.4) and [20]. Those proofs
refer to a control setting, where the optimal action (control) can be selected. Hence, the
contraction needs to hold for only one of the available actions, i.e. the optimal one (existential
quantification). Conversely, in the verification setting, the contraction needs to hold across all
available actions, because we consider the worst case resolution of nondeterminism (universal



quantification). Further, as in [20], we quantify across all nature behaviors: this is possible
due to Assumption 2.2. For the sake of brevity, in the following we will only consider the
calculation of Prmins , but the same reasoning applies also for the maximization problem.

We start from partitioning the state space S = Syes ∪ Sno ∪ S? as explained in Section
5.2. Since at all iterations the probabilities Prmins will remain constant by construction in
all states s ∈ Syes ∪ Sno, we do not need to consider these states explicitly. In particular,
we perform the following transformations of the CMDP underlying graph: we collapse the
set Syes into one terminal state t, and eliminate all states s ∈ Sno from the graph. These
transformations are fundamental together with Assumption 2.2 to guarantee that all possible
adversaries Adv are proper in the transformed graph, i.e. they almost surely reach the
terminal state t for all transition matrices in F [31]. We will now work with the new state
space S† = S? ∪ {t}, and, for simplicity, we redefine N =| S† |. We further partition S†, as
follows. Let S1 = {t} and for q = 2, 3, · · · compute:

Sq = {s ∈ S† | s 6∈ S1 ∪ · · · ∪ Sq−1, min
a∈A(s)

max
s′∈S1∪···∪Sq−1

min
fas ∈Fas

fass′ > 0}

Let r be the largest integer such that Sr is nonempty. Since all adversaries are proper, we
are guaranteed that ∪rq=1Sq = S†. We now need to choose weights ws,∀s ∈ S† such that G

is a contraction with respect to ‖.‖w. First, we take the sth component ws to be the same
for states s in the same set Sq. Then we set ws = yq if i ∈ Sq, where y1, · · · , yr are scalars
satisfying 1 = y1 < y2 < · · · < yr. Further, let:

ξ = min
q=2,··· ,r

min
a∈A

min
s∈Sq

min
fas ∈Fas

∑
s′∈S1∪···∪Sq−1

fass′

By construction 0 < ξ ≤ 1.
The rest of the proof goes as follows: first, we will show that if we can find y2, · · · , yr

such that for q = 2, · · · , r:
yr
yq

(1− ξ) +
yq−1
yq
≤ θ

for some θ < 1, then G is a contraction. Second, we will prove that such values always exist.
We begin by defining:

Gs(x) = min
a∈A(s)

min
fas ∈Fas

xT fas

Gas(x) = min
fas ∈Fas

xT fas

i.e. the sth element of the output of mapping G applied to vector x ∈ RN , and the same
element when mapping G is evaluated only at the fixed action a ∈ A(s). Then, for all vectors
v,u ∈ RN , we determine A(s) such that:

a = argmin
A(s)

G(u)

We can thus write for all s ∈ S†:

Gs(v)−Gs(u) = Gs(v)−Gas(u)

≤ Gas(v)−Gas(u)

=
∑
s′ (V

a
ss′vs′ − Uass′us′)

≤
∑
s′M

a
ss′ (vs′ − us′)



where:

Va
s = argmin

fas ∈Fas
vT fas

Ua
s = argmin

fas ∈Fas
uT fas

Ma
ss′ = argmax {V ass′ (vs′ − us′) , Uass′ (vs′ − us′)}

Let q(s) be such that state s belongs to the set Sq(s). Then, for any constant c:

‖v − u‖w ⇒ vs − us ≤ cyq(s) ∀s ∈ S†

We can thus write ∀s ∈ Sq and q = 1, · · · , r:

Gs(v)−Gs(u)
cyq(s)

≤ 1
yq(s)

∑
s′∈S†M

a
ss′yq(s′)

≤ yq(s)−1

yq(s)

∑
s′∈S1∪···∪Sq(s)−1

Ma
ss′

+ yr
yq(s)

∑
s′∈Sq(s)∪···∪Sr M

a
ss′

=
(
yq(s)−1

yq(s)
− yr

yq(s)

)∑
s′∈S1∪···∪Sq(s)−1

Ma
ss′

+
yr
yq(s)

≤
(
yq(s)−1

yq(s)
− yr
yq(s)

)
ξ +

yr
yq(s)

≤ θ

We have thus proved that Gs(v)−Gs(u)
wi

≤ cθ, for an arbitrary state s ∈ S†. Taking the

maximum over S†, we get:

‖G(v)−G(u)‖w ≤ cθ, ∀u,v ∈ RNs.t.‖v − u‖ ≤ c

so, G is a contraction over the metric space (RN , ‖ . ‖w), and:

θ = max
1≤q≤r

yr
yq

(1− ξ) +
yq−1
yq

(51)

is the corresponding contraction factor. Finally, we constructively prove by induction that
it is always possible to find scalars y1, · · · , yr such that the above assumptions hold. As the
base case, we set y0 = 0, y1 = 1. At the induction step, we suppose that y2, · · · , yq have
already been determined. If ξ = 1, we set yq+1 = yq + 1. If ξ < 1, we set yq+1 = 1

2 (yq +mq)
where:

mq = min
1≤i≤q

{
yi +

ξ

1− ξ
(yi − yi−1)

}
With these choices, we are guaranteed that:

mq+1 = min

{
mq, yi +

ξ

1− ξ
(yi − yi−1)

}
so by induction, we have that yq < yq+1 < mq+1, and we can construct the required sequence.

ut

We now state the main results of this appendix:

Lemma B.2. The VI procedure to verify the Unbounded Until operator is sound and com-
plete, i.e.,

Pmax[φ1Uφ2] = lim
k→+∞

Gk(x) (52)



In practice, we need a criterion to stop the iteration, so an error is introduced in Equa-
tion (52) and Pmax is approximated. In the following, we show how to compute an exact
lower bound Kmin on the number of iterations required to obtain the desired accuracy εd.
The existence of such a lower bound also proves the soundness and completeness of the VI
procedure. Further, we propose a heuristic stopping criterion based on a relative tolerance
check, which is often used to reduce runtime [5]. The user can choose between the two
approaches, depending on the application.

Exact Lower Bound. From Lemma B.1, at the end of the ith iteration the residual error
in estimation is bounded by:

ρi = ‖Pmax − xi‖w ≤ ρ0
θi

1− θ

where ρ0 is the initial error in estimation which can be trivially bounded by ρ0 ≤ 1. The
error in the estimation of the satisfaction probabilities is bounded by εd if:

ρi ≤
εd

wmax
⇒| Pmaxs − xi |≤ εd, ∀s ∈ S?

where wmax is the maximum of the weights of Norm (50). We can thus obtain a lower bound
Kmin for the number of iterations required to achieve the desired accuracy εd:

θK

1− θ
≤ εd
wmax

→ K ≥ Kmin =
log[εd(1− θ)]− log(wmax)

log(θ)
(53)

Heuristic Based on Relative Tolerance. Although provably exact, the lower bound
Kmin in the number of iterations derived in the previous section might be too conservative
and result in an unnecessary increase in runtime. We thus also present a heuristic stopping
criterion based on relative tolerance. In particular, we stop when:

δr > max
s∈S?

(
|xis − xi−1s |/xis

)
(54)

the maximum relative difference in the computed value of Pmaxs [φ1Uφ2], ∀s ∈ S? between
two consecutive iterations is below a user defined tolerance δrel. We note that Such a criterion
does not guarantee that the error is bounded by δr. The required δr to achieve accuracy
εd, i.e., δ∗r , depends on the CMDP model and needs to be determined by trial-and-error,
a common practice in iterative procedures (e.g. the ODE solver in a circuit simulator). To
determine δ∗r , we compute several approximations of Pmax[ψ] while decreasing δr by steps of
10×. We heuristically stop when no probability Pmaxs ,∀s ∈ S?, changes more than εd after
checking Criterion (54) for δ∗r and δ∗r/100. Finally, errors in solving the inner problems, as
introduced in Section 5.3, are propagated across iterations. We call εinn the inner problem
accuracy. If the VI procedure exits after I iterations and εd < I × εinn, the procedure needs
to be run again after decreasing εinn to, approximately, εinn < εd/I.

We use the VI routine with εd = 10−3 to verify again φ = P≥0.3[ ϑ U ω ] in the example
in Figure 1. After 3 iterations, we get Pmin[ ϑ U ω ] = [0.2, 0, 1, 0.32] and Sat(φ) = {s2, s3}.

[B.1] D. Bertsekas, “Dynamic Programming and Optimal Control”, Athena Scientific, 2011



C Toy LP

This appendix reports the full LP formulation that was used to verify property φ = P≥0.3[ ϑ U ω ]
on the example in Figure 1. Problem (10) written with the data of the model has 19 variables
and 11 constraints. All variables are (implicitly) bounded to be positive apart from the ones
labeled as free at the bottom of the formulation.

max
x,λ1,λ2,λ3

x0 + x3 (55)

Subject to:

x2 = 1

x1 = 0

x0 ≤ λa1,s0 + 0.6λa2,s0s0 + 0.2λa2,s0s1 − 0.8λa3,s0s0 − 0.5λa3,s0s1

x1 − λa1,s0 + λa3,s0s0 − λ
a
2,s0s0 = 0

x2 − λa1,s0 + λa3,s0s1 − λ
a
2,s0s1 = 0

x0 ≤ +x3

x3 ≤ λa1,s3 + 0.1λa2,s3s0 + 0.5λa2,s3s1 + 0.3λa2,s3s2 − 0.5λa3,s3s0 − 0.8λa3,s3s1 − 0.4λa3,s3s2

x0 − λa1,s3 + λa3,s3s0 − λ
a
2,s3s0 = 0

x1 − λa1,s3 + λa3,s3s1 − λ
a
2,s3s1 = 0

x2 − λa1,s3 + λa3,s3s2 − λ
a
2,s3s2 = 0

x3 ≤ λb1,s3 + 0.3λb2,s3s0 + 0.4λb2,s3s1 − 0.7λb3,s3s0 − 0.6λb3,s3s1

x2 − λb1,s3 + λb3,s3s0 − λ
b
2,s3s0 = 0

x3 − λb1,s3 + λb3,s3s1 − λ
b
2,s3s1 = 0

Free: λa1,s0 , λ
a
1,s3 , λ

b
1,s3



D Dining Philosophers

We analyze the classical Dining Philosopher Problem [D.1]. Briefly, n philosophers are sitting
at a table with n available forks. Each philosopher can either think or eat: when he becomes
hungry, he needs to pick both the fork on his right and on his left before eating. Since
there are not enough forks to allow all philosophers to eat together, they need to follow
steps according to a stochastic protocol to eat in turns. We consider this case study relevant
because it can be used to model real shared-resources stochastic protocols [D.1], and because
the size of the model n can be easily scaled to benchmark the time complexity of our routines.

We model the uncertainty of the philosophers in deciding which fork to pick first: while
the nominal protocol assigns 0.5 − 0.5 probability to the left and right fork, we assume
that these values are only known with ±10% confidence. The parameters for each model of
uncertainty corresponding to this level of confidence can be set using the approach suggested
in [11]. For example, for the Interval model, the probabilities lie in the interval [45%−55%].
Within this setting, we aim to determine which is the quantitative minimum probability for
any philosopher to eat within k steps of the protocol after he becomes hungry. In PCTL
syntax:

Pmin [ψ] := Pmin
[
F ≤k{Eating}

]
(56)

with initial states S0 = Sat(hungry). Figure 2 shows the evolution of the probability of
Equation (56) as a function of the number of protocol steps k. As expected, the probability
of eating steadily increases as the number of steps increases. However, the plot also shows
that adding uncertainty decreases this probability with respect to the nominal scenario (if
no uncertainty is added, our results match those in [D.1]. The inset of Figure 2 shows the
relative deviation in probability with respect to the nominal case: a ±10% uncertainty can
cause a deviation up to 35% in the computed probabilities, and the deviation is always
higher than 10% for k ≤ 60. Further, the deviation is larger for the Interval and Ellipsoidal
models, since they are the most conservative among the considered ones, as explained in
Section 2.2 and Appendix A.

Lastly, we evaluate the runtime performance of our routines while varying the size n
of the problem. We report three data points for each uncertainty model, corresponding to
n = 3, 4, 5. Figure 3 shows that runtime increases approximately linearly with the number of
statesN . The discrepancy with the expected quadratic behavior can be explained considering
that in this case study (and in most practical ones) not all actions a ∈ A are available at each
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Fig. 2: Evolution of Equation (56) for in-
creasing k and n = 3 philosophers.

9 sec

9 sec

Fig. 3: Runtime vs. Number of States with
k = 150 steps.



state s ∈ S and the transition matrix F a ∈ Fa is sparse. The interval and ellipsoidal models
run faster because the inner convex optimization problems can be solved using simpler
atomic operations (sum and multiplication) than the likelihood model (logarithm). Further,
the routine for the interval model runs only 1.2× slower than the Certain Slow routine,
and the penalty rises to 20× with respect to the Certain Fast routine: this result can be
interpreted as the cost of not being able to use optimized library procedures for matrix-vector
multiplication when adding uncertainty to the model. These results support our claim of
good scalability of the proposed approach with respect to the model size.

[D.1] PRISM Model Checker - Dining Philosopher Case Study
- http://www.prismmodelchecker.org/casestudies/phil.php
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