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ABSTRACT
3D printers enable designers to rapidly produce working
models of future products. Today these physical prototypes
are mostly passive. Our research goal is to enable designers
to turn models produced on commodity 3D printers into inter-
active objects with a minimum of required assembly or instru-
mentation. We present Sauron, an embedded machine vision-
based system for sensing human input on physical controls
like buttons, sliders, and joysticks. With Sauron, designers
attach a single camera with integrated ring light to a printed
prototype. This camera observes the interior portions of in-
put components to determine their actuation and position. In
many prototypes, input components may be occluded or out-
side the viewing frustum of a single camera. We introduce al-
gorithms that generate internal geometry and calculate mirror
placements to redirect input motion into the visible camera
area. To investigate the space of designs that can be built with
Sauron along with its limitations, we built prototype devices,
evaluated the suitability of existing models for vision sensing,
and performed an informal study with 3 CAD users. While
our approach imposes some constraints on device design, re-
sults suggest that it is expressive and accessible enough to
enable constructing a useful variety of devices.
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ACM Classification Keywords
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INTRODUCTION
Our environment is rich with products having dedicated phys-
ical user interfaces like game controllers, electronic musical
instruments or personal medical devices. While the ubiquity

Submitted for review.

Figure 1. With Sauron, designers create a 3D CAD model of an input de-
vice and place a virtual camera in the model. Once printed, they attach
a matching physical camera to sense user input on the device.

of smart phones has led to a rise in touchscreen-based appli-
cations, retaining physicality has important benefits includ-
ing tactile feedback and high performance manipulation [11] .
For example, gamers prefer physical input for speed and per-
formance, musicians for virtuosity and control.

Rapid additive manufacturing techniques enable designers to
quickly turn CAD models of such future devices into tangible
prototypes. While such printed form prototypes can convey
the look and feel of a physical device, they are fundamentally
passive in that they do not sense or respond to manipulation
by a user. Building integrated prototypes that also exhibit
interactive behavior today requires adding electronic sensing
components and circuitry into the mechanical design.

Existing research has developed electronic toolkits and op-
tical approaches to lower the threshold of making physical
prototypes interactive [2, 7, 8, 23]. However, such toolkits
still require designers to manually assemble printed parts and
sensors. Such assembly may also require significant changes
to a 3D model (e.g., to add fasteners or split a shape into two
half shells). Detailed electro-mechanical co-design is time-
consuming and cumbersome and mismatched with the spirit
of rapid prototyping. Alternatively, designers may instrument
the environment with motion capture [1] or depth cameras
[24] to add interactivity, but these approaches limit designers
to testing prototypes inside the lab in small, restricted areas.

Our research goal is to facilitate the creation of functional
physical interface prototypes on commodity 3D printers with
minimal additional instrumentation or assembly. In this pa-
per, we present an embedded machine vision-based approach
for sensing human input on 3D-printed physical prototypes.
Using our system, Sauron, designers add a single miniature
camera with integrated ring light to their prototype. After an
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interactive registration step, Sauron can track the motion and
position of buttons, sliders, joysticks, and other input devices
through machine vision performed on the user’s computer,
and forward input events to other applications.

Sensing all input components on a potentially non-convex de-
vice can be challenging, as they may be outside the viewing
frustum of a single camera or blocked by the device’s geom-
etry. To address such challenges, we introduce an approach
of automatic geometry modification to translate human in-
put into visible movement that can be accurately tracked
with standard computer vision algorithms. We first determine
which components will be visible to the camera by placing
a virtual camera into a CAD model during the design phase.
For components not already visible to the camera, Sauron can
modify the component model’s internal geometry to extend
motion into the camera’s viewing frustum using parameter-
ized extrusions. Next, Sauron uses raytracing to determine
how optical mirrors may be placed to make motion visible in
cases where geometry modification fails because of mechan-
ical interference. We implement these techniques by extend-
ing a commercial parametric CAD package.

While computer vision research traditionally strives to un-
cover information about an unknown environment, our ap-
proach seeks to modify a known environment to facilitate
computer vision. Prior work has demonstrated how mechani-
cal intermediaries [23] can be used to detect physical motion
with optical sensors; but we believe we are the first to auto-
matically generate them based on analysis of a 3D design.

Our approach has some important assumptions and limita-
tions: first, we require a 3D printer that can deposit sacri-
ficial support material to print designs with moving parts in
a single pass. Most professional machines support this, but
few hobbyist machines do today. Second, for printers that
cannot deposit multiple colors simultaneously, a user has to
perform some manual marking of a printed model with ei-
ther reflective or dark pigment. Third, our implementation of
the CAD plugin can currently only process certain types of
hollow models and is not guaranteed to succeed. Fourth, our
current model modification techniques only work for a sub-
set of input components. Despite these limitations, Sauron
enables construction of a useful variety of devices.

To evaluate the expressivity of our approach, we describe
functional prototypes created with Sauron. Three knowl-
edgable CAD users were asked to design DJ mixing boards
with our sensing approach in mind. In all cases the users
were able to focus on the usability of their prototype inter-
faces without being impeded by the sensing techniques. We
also evaluated ten pre-made models downloaded from the in-
ternet and determined that even designers who did not have
vision sensing in mind while designing would have been able
to use Sauron for their prototypes in seven of ten cases.

Our contributions are as follows:

1. A method for tracking human input on physical compo-
nents using a single camera placed inside a hollow object.

2. Two algorithms for modifying a 3D model’s internal ge-
ometry to increase the range of manipulations that can be
detected by a single camera.

3. An implementation and informal evaluation of Sauron, a
system that implements these techniques for models con-
structed in a professional CAD tool.

The remainder of this paper is organized as follows: we
present related work, then a description of our approach. We
offer details of our initial implementation. We present a col-
lection of prototypes, created by us, to test Sauron’s CAD
modification capabilities, and the results of an informal user
study using Sauron. Finally, we discuss the limitations of
Sauron and conclude with directions for future work.

RELATED WORK
Sauron is informed by prior work in three distinct areas: elec-
tronic toolkits for rapid prototyping of functional physical
user interfaces; computer vision approaches for sensing in-
teraction; and techniques and systems that leverage digital
fabrication.

Electronic Prototyping Tools
Electronic prototyping platforms like d.tools [8], Calder [3],
Phidgets [7], and Arduino [2] enable designers to quickly cre-
ate new physical interaction techniques and devices by offer-
ing accessible software abstractions for working with sens-
ing, actuation, and display hardware. These platforms restrict
designers to the use of components which can be purchased
off-the-shelf or which are fabricated specifically to support
the kit’s interface.

These toolkits offer little support for integrating their compo-
nents into printed devices. Modifying a device CAD model
to accommodate components can be a time-intensive process:
users have to address constraints like mount points and clear-
ances for each component. Enclosures and components must
be manually assembled, which may require redesigning the
CAD model to make assembly possible (e.g., by breaking
the shell into multiple pieces). Notably, .NET Gadgeteer of-
fers some support for eliminating the first barrier through a
CAD plug-in that automatically generates mounting bosses
and cut-outs for connectors [21]. In contrast to this class of
systems, Sauron uses a camera to sense the motion of compo-
nents, which eliminates many electro-mechanical integration
constraints.

Computer Vision
Vision-based design tools like Papier-Mâché offer high-level
event models to facilitate design of tangible interfaces [12].
Eyepatch [13] and Crayons [6] offer direct-manipulation in-
terfaces to train vision classifiers without programming.

Some systems place cameras in the environment to track ob-
jects and users’ interaction with those objects explicitly for
rapid prototyping (e.g., depth cameras in SketchSpace [9] or
motion capture systems in Display Objects [1]). In contrast
to these projects, we embed the camera inside the designer’s
device so testing is not confined to a controlled laboratory
setting. This embedding approach has also been taken by
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Figure 2. In the full process of designing with Sauron, a designer begins with his model (A), then inserts the camera and runs quick check for visibility
(B). He runs a full check when he is satisfied (C), which performs extrusions and suggests mirror placement. He fabricates his design (D), then colors
the inside and inserts the camera and mirrors (E). The computer vision software tracks the motion of his components (F) and forwards those events on
to his test game.

some hardware devices (e.g., the Rockin’ Mouse [4], Mouse
2.0 [20], Digits [10] and Rock-Paper-Fibers [17]), though
these systems do not contribute general prototyping tools.

Sauron’s approach shares the greatest similarity with
Döring’s work-in-progress on embedding a camera and pro-
jector system into product mockups [5]. Their system does
not provide visibility analyis or automatic model modification
techniques, as devices are manually constructed and not de-
fined in CAD. We also share an approach with SLAP widgets
[22] – fabricated controls that can be placed on an interactive
tabletop, where controls are tracked by the tabletop’s vision
system. Sauron extends the intuition behind SLAP widgets
to 3D devices and also contributes tools to construct custom
device configurations in a CAD environment.

CAD & Digital Fabrication
Finally, Sauron relates to prior work in augmenting CAD
tools and leveraging digital fabrication for prototyping.

ModelCraft [19] introduced techniques to edit digital 3D
models based on digital pen annotations performed on folded
paper versions of the model. Our goal is prototype interactiv-
ity rather than provide new interactions for editing models.

Willis’s work on printed optics describes how to combine op-
tical sensors with light guides to fabricate interactive compo-
nents like buttons and sliders [23]. Their prototype requires
stopping an ongoing print to insert electronics; with Sauron,
a single camera is added after printing is complete. In ad-
dition, while Willis’s work is inspirational in delineating a
design space for optically sensed physical manipulation, the
authors do not provide a tool for the design of such objects,
nor do they consider a sensing approach for printers on which
optically clear material is not available.

Midas fabricates capacitive touch sensors using a CNC cutter
based on high-level specifications [18]. Our contribution is
complementary, as Sauron focuses on vision sensing of mech-
anisms rather than touch input.

DESIGNING WITH SAURON
We will describe the process of designing and fabricating
models for single-camera sensing with a running example:
a designer wishes to prototype a new video game controller

with buttons, a joystick, and a direction pad. He wants to ex-
plore ergonomics – how the controller feels to hold and how
it will feel during gameplay. He follows the steps in Figure 2.

Modeling: The designer creates a 3D model of his controller
in a CAD tool like Solidworks, placing buttons and joysticks
from a library of available controls Sauron provides (Figure
1A). Each library element is parameterized and customizable.

Adding a virtual camera: Using the Sauron CAD plug-in,
he adds a 3D model of Sauron’s camera to his assembly. This
camera can be positioned anywhere on the model’s surface; it
must only point inwards, into the interior of his hollow model.
The designer then adds mount points for the camera so it can
be attached with screws once he fabricates his controller.

Visibility analysis: Sauron provides a “quick check” feature
which allows the designer to quickly determine if components
are directly within view of the camera or if they will require
model modifications (Figure 1B). In our example, the joystick
and direction pad in front of the camera are visible, so they
are colored green. The bumper and rear buttons are not: they
lie outside the camera’s field of view and are marked red.

Model modification: To make the remaining components
visible to the camera, the Sauron plugin automatically ex-
trudes the interior portion of the bumper buttons to extend
into the camera’s field of view (Figure 1C). The rear buttons
cannot be extended, as the extrusions would intersect the con-
troller’s shell. Detecting this interference, Sauron casts rays
from the camera into the 3D scene, reflecting them off the in-
terior of the body, and determines locations where placement
of two small mirrors will make the rear buttons visible in the
camera image. The plugin visualizes these locations to guide
the designer during manual assembly.

Fabrication and assembly: The designer sends his file
(without the camera model) to his 3D printer (Figure 1D).
Once the print is completed, an automatically generated in-
struction sheet guides him through the process of marking the
interior of input components, e.g, with black marker (Figure
1E). Last, he screws the camera into its mounts.

Registration and Testing: Finally, the designer registers the
components with the vision system one at at time: his CAD
tool prompts him which component to move, and he moves it
through its full range of motion to configure its component-
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Figure 3. Left: Sauron’s USB camera and ring light. Right: our model
of the camera and its field of view.

Figure 4. The hardware can be miniaturized, as in this pipe inspection
camera with integrated lights.

specific recognizers. The system then tracks each compo-
nent separately (in Figure 1E & F, components are: extruded
bumper buttons on top; joystick and d-pad in the middle, re-
flected rear buttons in mirrors below). Once all the compo-
nents are registered, he is ready to test his controller. Sauron
sends input event data over WebSockets to a quick game the
designer coded up in HTML and JavaScript.

IMPLEMENTATION
In this section, we describe Sauron’s camera, CAD compo-
nent architecture, algorithms for modifying internal geome-
try, and vision pipeline.

Physical and Virtual Cameras
Sauron uses a single camera to sense input on a physical de-
vice. In order to determine visibility of input components
inside the CAD environment, Sauron uses a virtual camera
that matches the physical camera’s measurements and optical
characteristics. We empirically measured the field of view of
the camera with a geometric test pattern, and we then gener-
ated model geometry corresponding to this field of view as a
reference for designers (Figure 3).

Our current implementation uses a 640x480 USB cam-
era with a retrofitted 110 degree M12 lens (Sentech STC-
MC36USB-L2.3). The interior of the model is illuminated by
a ring light with eight surface-mount white LEDs. This hard-
ware may be too bulky for handheld devices; however, there
are no technological barriers to miniaturization. We have also
built prototypes using a commercial pipe inspection camera
(Figure 4) which is much smaller, but suffered from a low
video frame rate and shallow depth of field .

Component Library and Architecture
We provide a library of components with buttons, sliders,
scroll wheels, dials, trackballs, direction pads, and joysticks
(Figure 5). These components, when printed, will be tracked
by applying contrasting material in a specific pattern or loca-
tion. For many of the components, this location is in the base,
which is tagged in our models. We require that designers

Figure 5. Sauron currently supports seven types of input components.
The various components have different types of motions trackable by
Sauron, from binary up/down of a button, to one-dimensional slider in-
put, to two-dimensional input from a trackball or joystick. Extrudeable
portions of components are highlighted in red.

use components with tagged geometry in their devices so our
plugin understands which portions need to be visible to the
camera as well as how to perform modifications. Our base
components are parametric models for the SolidWorks CAD
software.

Because our models are parametric, designers already have
significant freedom in modifying them to suit their needs. As
long as the tagged geometry (on the interior, facing the cam-
era) is kept, the exterior of the models can be adapted. As
an example, a designer creating a video game controller may
make some buttons oblong rather than circular.

To create a new Sauron-compatible component, the compo-
nent must exhibit visible motion on the inside of a prototype
that can be tracked by the camera. Second, the component
must be paired with a suitable vision algorithm to extract its
state from visible changes. These two requirements can be
decoupled. For example, both toggle switches and momen-
tary switches can use the same algorithm extracting a single
state bit from a change in position.

Modifying Components
Users’ CAD models are modified based on an analysis of
which input components fall within the field of view of the
virtual camera. The two basic modifications our software
considers are extrusion and mirror placement. The software
which performs model interior modifications is implemented
in C# as a SolidWorks 2012 plugin.

Extrusion
In order to perform modifications, our initial step is to ex-
tend the virtual camera’s field of view feature to infinity while
maintaining its angles. We revert this after all modification
steps are complete. We determine visibility through colli-
sion detection between tagged model geometry and the vir-
tual camera’s field of view feature. When components are
outside the field of view, e.g., on a side wall (Figure 6C),
Sauron attempts to extend the component’s base through ex-
trusion (Figure 6A-B). This technique is not applicable to
scroll wheels or trackballs. The model parts Sauron can ex-
trude are shown in red in Figure 5
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Figure 6. We measure the distance from the button to the virtual cam-
era’s field of view–highlighted in blue (A), then extrude the bottom of the
button that distance (B). This technique is useful when creating objects
where input components on many faces point different directions, like
this dodecahedral ball of buttons (C).

Figure 7. Extrusion does not work in some cases. The component’s base
may not point at the camera’s field of view (A). The component’s base
may point at the field of view, but be blocked by the main body (B).
One component’s base (green), if extruded, would intersect the another
component (red) (C).

To calculate extrusion depth, we first cast a ray from the com-
ponent’s base and determine if it intersects the field of view.
If not, then we cannot reach the field of view with extrusion.
We then measure the distance from the base along its normal
to the field of view and update our extrusion to that depth.
We next iterate through possible positions of the component
(e.g., simulate a slider’s motion along its track) and check that
we are not intersecting any other components or the body of
the device, and that we continue to meet the field of view.
We iteratively extend our extrusion if we fall outside the cone
and perform mechanical interference checks at all positions
at each length. If we avoid collisions, the component has
been successfully modified. Failure cases of this algorithm
are shown in Figure 7.

Extrusion need not be limited to a single direction straight
down from a component’s base. We have built proof-of-
concept components, e.g. the button in Figure 8, which have
multiple possible extrusion directions. This increases the ap-
plicability of extrusion to even more complicated geometries.
Our prototype does not automatically extrude such compo-
nents as these, although a designer using the camera’s virtual
field of view reference can easily make these modifications
manually.

Figure 8. This prototype component (A) can be extruded in multiple
directions to meet the camera’s FOV cone (B).

Visibility Check, Raytracing, and Mirror Placement
Designers can check visibility of their components by see-
ing whether they fall within the field of view geometry of the
virtual camera. However, the virtual camera’s field of view
shown to the user has limited depth so it does not interfere
with other modeling tasks. Using raycasting, Sauron provides
immediate visibility feedback by highlighting all components
that are directly visible to the camera. We cast a ray from the
center of the camera to the bottom of each component and
determine whether that ray falls inside the field of view. If so,
we perform the same check in the maximum and minimum
positions of the component (e.g., we slide sliders to each end
of their tracks). In a full simulation we check more positions,
but for quick check we find this is sufficient.

We use raytracing to determine how to place mirrors for com-
ponents where extrusion failed (Figure 9). The designer has
to manually insert these during post-print assembly.

Each ray is cast from the camera to the body of the device,
and from there reflected based on the surface normal of the
body at the intersection point: i.e., we assume that during as-
sembly the mirror will be placed tangent to the body’s inner
face. The reflected rays are traced to determine if they inter-
sect any components which were not successfully modified
in the extrusion step. If such a component is encountered by
the reflected ray, the location on the body that it was reflected
from is marked. This leaves a cloud of points per component,
which informs the designer where to place mirrors during as-
sembly (see Figure 2). Our prototype traces a coarse grid
of 20x20 rays because the SolidWorks API requires approxi-
mately 250ms per ray. A more efficient reimplementation can
increase rays to one per camera pixel.

The raytracing algorithm also finds occlusions. If a compo-
nent is not the first object hit by any direct rays cast or any
rays reflected off the main body, the user is alerted that the
component needs to be moved or manually modified because
it is out of the camera’s view. For example, in a case with two
buttons in a row and the camera’s view parallel to the row, if
mirror placement is not possible then the rear button would
trigger this alert because all rays cast from the camera hit the
front button first.

Mirrors can also be used to redirect motion to increase its vis-
ibility. For example, buttons moving along the Z-axis (toward
the camera) are harder to track than buttons that move in the
XY plane. A 45 degree mirror placed next to the button can
redirect visible motion. Our prototype does not automatically
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calculate the locations of these mirrors yet.

Figure 9. An illustration of the raytracing algorithm used for mirror
placement. Note that the button in the figure cannot be extruded to meet
the field of view cone. A mirror will be glued at the spots where the rays
successfully reflect (seen in B) during assembly.

Post-Print Assembly
Due to the nature of our sensing approach, we require that
designers’ models be hollow and contain a hole of suitable
size for the lighting and camera rig to be inserted. Many pro-
totypes are designed to be hollow at present because it con-
serves printing material. However, this requirement places
some restrictions on how other elements, e.g, an LCD screen,
can be placed inside the model.

We also require a few steps of assembly to make the proto-
type suitable for use with our vision pipeline. To increase
visibility of the input components versus the background, we
require the addition of some distinctive material to the input
components. This material can be printed in multi-color 3D
printers. Alternatively, coloring the bottoms of the input com-
ponents with a pen is sufficient. We use a silver permanent
pen on dark model material or a black permanent pen on light
model material (see Figure 10).

Because most current materials used for 3D printing are too
brittle to create small compliant parts, users must add springs
manually after printing (e.g., to restore buttons after being
pressed). We designed our buttons to allow for insertion of
springs using tweezers. Any mirrors will need to be inserted
as well. We use small craft mirrors which we affix to the
printed device’s interior surface with epoxy.

Sauron generates a basic set of step-by-step instructions,
automatically displayed in the designer’s browser, to as-
sist in correct model assembly. These instructions include
automatically-created screenshots of the model highlighting
parts that require their attention and example images showing
them how to apply mirrors and how to mark components for
successful sensing.

Figure 10. Components with reflective ink on black material (left) and
black ink on white material (right).

Figure 11. SolidWorks highlights each component in turn and asks the
designer to actuate it. The vision software creates a bounding box as
the component moves through its track and also saves any information
required by the component type. For example, to determine slider posi-
tion later the vision software saves the two most extreme tracked center
points (the red and green dots).

Figure 12. The different types of components in our library require dif-
ferent computer vision tracking.

Machine Vision
A computer vision pipeline tracks user manipulations of com-
ponents once they have been printed. We run each cam-
era frame through a series of steps: binarization, connected
components detection, and previous frame differencing. This
highlights movement of components between frames.

Registration
Users have to register components before they can be tracked.
During the registration process, regions of interest for each
component are determined. A designer is prompted by Solid-
Works to actuate each of his components in turn, and a bound-
ing region is created that encompasses all the points through
which the component moved (Figure 11). These regions
determine the relative position of the component within its
bounds during the testing phase.

Tracking
After registration, different detection algorithms apply to
each input component. The techniques we use for each com-
ponent are visualized in Figure 12. For buttons, we extract
one bit of status from movement of its tracked blob. The
direction pad generalizes this approach to track four cardi-
nal directions, while the joystick tracks movement of x and
y axes separately. We find the absolute position of a slider
in a unit interval by finding its blob on a line connecting the
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minimum and maximum positions observed during calibra-
tion (see also Figure 11). The dial tracks position as orienta-
tion of a blob around an elliptical path, while scoll wheel and
trackball use optical flow to determine amount and direction
of relative movement.

We currently do not correct for perspective in our images,
which leads to non-linear behaviors in components like the
slider and dial when they are not oriented flat to the camera.
It would be possible to account for perspective analytically
(since we know the orientation of the component’s plane with
respect to the camera in the model).

The vision component of our prototype is implemented in
C++ and runs at interactive speeds (>32fps) on a 2011 Mac-
book Pro. We rely on the open-source computer vision li-
brary OpenCV [15] and OpenFrameworks [16]. Messages
are passed between SolidWorks and OpenFrameworks via the
OpenSoundControl (OSC) protocol. OSC messages are sent
over UDP and contain an address (e.g. ”/button/1”) and pay-
load (e.g. ”on” or ”off”). Our prototype uses these messages
to communicate processed events, to start and stop test mode,
and to start and stop registration of a particular component
(see Figure 13).

Figure 13. SolidWorks and OpenFrameworks exchange messages via
OpenSoundControl. OpenFrameworks also sends OSC messages con-
taining processed data to a WebSockets server to deliver events to a
user’s application.

Testing
Sauron can deliver processed input events to designers’ appli-
cations using either OpenSoundControl or WebSocket mes-
sages.

Existing third-party tools can transform OSC messages into
keyboard, mouse, or game controller events. For example, a
designer could assign messages coming from /joystick/x to
move the mouse in the X direction and from /joystick/y to
move it in the Y direction. We use the third party OSCulator
program for this purpose.

Alternatively, we enable designers to consume processed
events in web applications written in HTML and Javascript.
Leveraging web applications as a platform allows interface
prototyping on any device with an internet-connected web
browser. We use a node.js server which exposes processed
events over WebSockets. We adopt this strategy from Mi-
das [18].

Figure 14. Our three user study participants prototyped DJ mixing
boards using our component library. Each had a very different strat-
egy for ensuring the camera could see all components. The assembly on
the bottom (with interior cutaway view at right) was designed to have
the camera inside reflecting off mirrors placed on the back wall.

EVALUATION
To evaluate the feasibility and expressivity of the Sauron
sensing approach, we asked experienced CAD users to de-
sign Sauron devices; we also checked the suitability of vari-
ous models found online for vision sensing; and we printed
and tested several prototypes.

Modeling with Sauron
We performed an informal evaluation with three trained me-
chanical engineers. All were proficient SolidWorks users. We
first explained how Sauron works and demonstrated a printed
prototype containing examples of all our input components.
We then asked them to prototype a disk jockey (DJ) con-
troller that could be tested with Sauron. Common functions
on such controllers are volume and EQ control knobs and
large “scratch” wheels for two audio channels, and a cross-
fader. We emphasized thinking aloud, as we wished to deter-
mine how the constraints of our vision-based system affected
their design process. Participants did not run the plug-in it-
self during the modeling sessions due to time constraints, but
we ran it on the resulting models and fabricated one of their
designs (see Figure 17).

All of our participants successfully modeled DJ mixing
boards that could be used with our vision-based sensing ap-
proach (Figure 14). They followed different approaches to
place the camera – though all showed concern for the aesthet-
ics of their design and accordingly tried to mount the camera
inside the main enclosure or otherwise out of the way. One
user mounted the camera sideways (Figure 14A), but at a lo-
cation such that the mixer’s components would not occlude
each other; another created a very deep box at the start, stat-
ing that he preferred “to focus on the user side, rather than
the camera because I don’t care about the box size” (Fig-
ure 14B). The most ingenious design from our study par-
ticipants mounted the camera on the top, pointing down, so
that all components would be visible in a single large mir-
ror placed at the bottom of the controller (Figure 14C). In
aggregate, while our users had to plan for the visibility con-
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straints of camera-based sensing in their designs, they did not
see these constraints as overly burdensome.

One user wished that an interactive design checker was avail-
able to test his design iteratively for visibility. Our complete
analysis plugin currently requires ∼5 minutes to process a
non-rectilinear model with 10 components, because of slow
calls to the SolidWorks API. Based on this feedback we im-
plemented the “quick check” feature which highlights com-
ponents that are immediately within the viewing area without
reflection or extrusion.

Participants also successfully modified the library of param-
eterized components. One stated that it was important to her
that the sensing portion of each component was decoupled
from the user-facing portion. For example, the scratch wheels
are large on the user’s side to enable users to place their entire
hand on them, while the internal dial diameter is small so it
can be seen by the camera in its entirety (see Figure 14 C).
The same user also wished that there was better documenta-
tion for the component library, describing how large holes for
mounting needed to be.

Analysis of Pre-Designed Models
To determine if designers working without our constraints in
mind would create prototypes that were compatible with our
vision-based system, we found several examples of 3D mod-
els available online and analyzed them. The models all rep-
resented interactive devices in some form, and ranged from
XBOX and Guitar Hero controllers to interactive desks with
keyboards. None of the devices that we analyzed were de-
signed for 3D printing, but rather for rendering or as engi-
neering drawings. Our first step in processing them was esti-
mation of the internal geometry of the bodies, for which we
assumed simple shelling (i.e. no internal supports, wall thick-
ness approximately .1”, interior curves following the curves
of the outside of the body). After this was done, we selected
several candidate camera locations which would not interfere
with what we understood to be the user-facing functions of
the device, and we measured which components would be
visible to the camera directly, which via extrusion, and which
via reflection.

Out of 10 devices we analyzed, we believe that 7 of them
could be successfully processed by Sauron. Three devices
were too thin – this caused serious occlusion problems be-
tween components. Their bodies also did not allow space for
the inclusion of mirrors to solve the occlusion problem (Fig-

Figure 15. These models found online were too shallow to sense with
Sauron—occlusion and curvature would prevent correct sensing with
computer vision.

Figure 16. Our ergonomic mouse prototype has a trackball the user can
manipulate with his thumb as well as two buttons and a scroll wheel. On
the right is the camera’s view of the inside of the mouse.

Figure 17. Our DJ mixing board, based on one of our users’s designs,
has sliders and two dial configurations: raised knobs for easy manipula-
tion of volume, and a larger flat wheel for seeking and scratching songs.
The different types of dials share a sensing algorithm, however, as their
interior parts are similar.

ure 15). One of the failing devices, a steering-wheel-style
device, had two handle areas with buttons at their far ends
and thin, continuously-curving surfaces bending away from
the main body. Using just one mirror-bounce, it would be
impossible to see around these corners to the buttons at the
ends.

Example Devices
We also fabricated three prototypes that display the range of
interactive components our prototype system offers.

Ergonomic Mouse
Our ergonomic mouse (see Figure 16) has a trackball the user
can manipulate with his thumb as well as two buttons and a
scroll wheel. We configured the mouse to control the mouse
cursor on a laptop using OSCulator. Due to large tolerances in
our model, the scroll wheel tended to oscillate between “up”
and “down” states after being released. This problem could
either be addressed through modifications to the model or by
double thresholding in our computer vision component.

DJ Mixer
The DJ mixing board in Figure 17 – based off one designed
by a study participant – was constructed in two pieces to fit
on our 3D printer’s bed size. We converted the OSC mes-
sages sent out by Sauron’s vision software to MIDI mes-
sages to control Traktor, a professional virtual DJ application.
One issue this prototype raised was that disparities between
the virtual and physical camera parameters affected visibility.
While the components were designed to fit within the virtual
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camera’s field of view, an offset between the lens axis and
the center of the sensor on our (manually-modified) camera
led to some components falling outside the physical field of
view. We are confident that more calibration and measure-
ment would have led to visibility of all components.

Game Controller
We developed two versions of an XBOX-style video game
controller, shown in Figures 1 and 2. To test responsiveness,
we built a simple browser-based game to accept data from
Sauron’s WebSockets server. The controller moves the player
character around (joystick) and shoots various types of fire-
balls (buttons). We found the game was playable, although
detection of the joystick position was noisy. This seems to
be due to the fact that the blobs tracked for the main base
and the two flanks were lumped together when the joystick
was in certain configurations, e.g., at extreme right. We be-
lieve this is not a fundamental issue and could be mitigated by
iterating on the joystick’s interior design or by using a higher-
resolution camera.

LIMITATIONS
Currently, our prototypes do still require some post-printing
assembly for marking components and inserting mirrors.
However, we believe this step is significantly less time-
consuming than the process of wiring up a prototype with
electronic components.

A second limitation is the required registration process af-
ter printing. In future work we plan to create more sophis-
ticated algorithms which can pre-determine bounding boxes
of printed components using the digital model. This would
allow designers to skip the registration step.

Because we currently use visible light sensing, environmental
lighting can interfere with our algorithms. For example, our
prototypes behave erratically when tested with bright floures-
cent lighting directly overhead. Some components, like the
slider and joystick, require a certain amount of space around
them to function properly. When bright light shines through
these gaps, vision tracking can become problematic. One
remedy is to move sensing into the IR spectrum or test in
areas with low ambient light levels, however each of these
solutions has limitations of its own.

Our algorithms do not deal with cases where chaining of
model modifications is required: i.e., if a component could
be seen by first extruding, then reflecting, it will not be cor-
rectly processed by our algorithm. We provide the field of
view of our camera as a reference to designers so that they
can correct cases like this on their own, however more com-
plex automatic interior geometry modifications are possible.

Finally, we support only a limited library of components, and
not all components can be modified through extrusions. How-
ever, this library is extensible by expert users who can de-
fine and label faces for extrusion and who can choose or pro-
gram appropriate tracking algorithms. Our informal evalua-
tion suggests though that configuring and changing existing
components to suit the needs of a particular prototype may be
sufficient to cover a useful design space.

FUTURE WORK
Current Sauron prototypes are all tethered to a PC. There
are opportunities to explore interactive devices not connected
to computers. For example, tangible peripherals for mobile
device could also be prototyped using our system. Mod-
ern smartphones have on board cameras and LED flashes,
and enough on-board processing to perform computer vision.
Modeling the phone and its camera parameters could enable
prototypes designed to encase the phone or be used in a mo-
bile scenario (see Figure 18).

Figure 18. By modeling a smartphone’s built-in camera and creating
a native app for vision-based sensing, we could expand Sauron’s model
modification into mobile prototype scenarios.

The creation of interactive prototypes also need not be limited
to 3D printed plastic. Digital fabrication opens the doors to
many new areas of exploration: any process which fabricates
material according to a model created in software could be
processed similarly. One such promising technology is laser
cutting, where we already see the ability to create 3D models
through sliceforms or layering of 2D cross-sections of an ob-
ject. Laser Origami [14] has pushed the bounds further, and
it is not difficult to imagine fully laser-cuttable mechanisms
that could be tracked by Sauron.

For future work we hope to test our tool more extensively
with designers in the context of a workshop or class. We are
also planning to explore tools to simplify the physical design
process for users unfamiliar with CAD tools.

CONCLUSION
In this paper, we presented Sauron, a system to assist design-
ers creating interactive physical prototypes without the need
for wiring or an augmented environment. Sauron uses a cam-
era to track input on moving physical components. Sauron
can check visibility of model components at design time and
modify component geometry. Several 3D printed objects cre-
ated by the authors demonstrate the range of capabilities of
the prototype system. Feedback from early users also sug-
gests improvements to be made as the work continues. Be-
yond Sauron, we will expand our future research agenda to
assist people in the creation of interactive objects by leverag-
ing the ubiquity and power of digital fabrication tools.
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