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Object Detection in RGB-D Indoor

Scenes

1 Introduction

With the arrival of the Microsoft Kinect, obtaining depth maps of interior spaces
has become remarkably easy. The Kinect is equipped with an 8-bit RGB VGA
resolution (640x480 pixel) video camera, and also features an IR-triangulation
based depth sensor with reports of accuracy within q(z) = 2.73z2 + 0.74z −
0.58[mm], with z the depth in meters [11]. The Kinect's low cost and portability
make it an attractive instrument for robotics and mapping. We have witnessed
a boon of large datasets originating from such Kinect-style cameras, and an
associated development in algorithms for SLAM-like tasks. While the potential
for this data is vast, one immediate application is incorporating the depth data
into a more robust object detector.

Object detection is a well-studied problem in computer vision. One of the
basic tasks, as framed by the Pascal Visual Object Classes Challenge [6], is to
draw tight bounding boxes around instances of various target classes in a set
of images. The accuracy of each proposed bounding box is evaluated by some
function of its overlap and non-overlap with ground truth. Computer vision
literature has primarily focused on intensity, with less emphasis on depth data.
In this report we address the challenge of detecting 10 common household items
(bed, chair, etc) in RGB-D images obtained using the Kinect. We operate on
the recently released NYU-Depth V2 (NYUD2) dataset [14], which contains
1449 images from several di�erent indoor settings. Our algorithm augments the
deformable parts model by adding a set of vector quantized depth features that
are, to the best of our knowledge, novel on this dataset.

The remainder of this report is organized as follows: Part 2 describes previ-
ous work done in the area of object recognition and depth data. Part 3 describes
the dataset. Part 4 gives our approach to the problem. Part 5 gives results of
our method. Part 6 provides closing remarks.

2 Related Work

A wide variety of techniques for object recognition have proliferated in recent
years. While even state-of-the-art performance is far removed from the human
eye, much progress has been made in the area of feature descriptors and incorpo-
rating semantically meaningful information into the detection pipeline. Many
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methods employ the use of Amazon Mechanical Turk (AMT) to harness the
power of human annotations as input to supervised learning algorithms. We
provide an abbreviated overview of seminal works that use the �sliding window�
approach.

2.1 Histogram of Oriented Gradients (HOG)

HOG presented a novel feature descriptor on image patches. As a �rst step,
it computes discretized gradients by convolving the image patch with a �lter.

Two 1-D tap �lters, consisting of
[
−1 0 1

]
and

[
−1 0 1

]T
, were empiri-

cally found to perform best. Next the image patch is segmented into a dense
grid of uniformly spaced cells. Within each cell, a histogram of gradients is
computed. Each pixel casts a vote weighted by the strength of its gradient and
distance to the center of the cell, and each vote is cast towards a certain gra-
dient orientation range corresponding to a bin in the histogram. Finally, each
histogram is contrast normalized over spatial neighbors [5].

2.2 Non-Rigid Detectors

Some models improve on HOG by better capturing intra-class variation. These
models break down an object into its constituent parts. We present two inde-
pendently developed methods that have been successful in Pascal.

2.2.1 Poselets

The poselet detection pipeline attempts to better localize the con�guration of
objects in an image patch. The intuition is that semantic keypoints within an
object accurately capture its pose. For each object class, a set of meaningful
keypoints is selected by hand. For example, a �person� may be described by
keypoints such as {�head�, �shoulder�, �feet�, etc.}, and AMT workers are asked
to identify these keypoint in a training set. Random seed image patches con-
taining keypoints are used as cluster centers, and nearest neighbors in keypoint
con�guration space are identi�ed. Each cluster, referred to as a �poselet�, serves
as positive examples for a support vector machine (SVM) trained to �nd that
particular poselet. At test time, each poselet SVM provides a q-score activation,
which is then converted to a Q-score taking into account neighboring poselet
activations [3].

While this approach has proven successful in the past, scalability is a large
concern. First, keypoints must be chosen for each class, some of which may
not even possess enough structure to have clearly de�ned keypoints. In addi-
tion, AMT can be a tenuous tool. Workers often have questionable motives
for performance, and quality control methods are often manual and tedious.
Industrial-strength systems (Kinect) can skirt this problem by allocating dedi-
cated workers to hand annotations, but in academic settings this is not always
feasible.
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2.2.2 Deformable Parts Model (DPM)

We give an outline of the DPM methodology, as it provides a baseline and
framework for our work with depth features. DPM [7] augments rigid HOG
templates and avoids the overhead of additional annotations. It trains a latent
SVM scored by a function of the form:

fβ(x) = max
z∈Z(x)

β · Φ(x, z) (1)

where β is a vector of model parameters, z are latent values, and φ(x, z) is
a feature vector.

Model

The model learns a �root� �lter, several higher-resolution internal �part� �lters,
and deformation costs associated with those part �lters. The score of a w × h
linear �lter F at a position (x, y) in a feature mapG is given by the �dot product�
of the �lter and a subwindow of the feature map with top-left corner at (x, y):∑

x′,y′

F (x′, y′)×G(x+ x′, y + y′) (2)

Furthermore, let H be a feature pyramid and p = (x, y, l) specify a position
(x, y) in the l-th level of the pyramid. Let φ(H, p) denote the vector obtained
by concatenating the feature vectors in the w×h subwindow of H with top-left
corner at p in row-major order, and let F ′ be the vector obtained by concate-
nating the weight vectors in F in row-major order. In this context, (2) can be
written as:

F ′ · φ(H, p)

The score of a model at a particular position and scale within an image
is the score of the root �lter at the given location plus the sum over parts
of the maximum, over placements of that part, of the part �lter score on its
location minus a deformation cost measuring the deviation of the part from
its ideal location relative to the root. Hence, a model with n parts consists of
a (n + 2)-tuple (F0, P1, . . . , Pn, b) where F0 is a root �lter, Pi is a model for
the i-th part and b is a real-valued bias term. Each Pi is de�ned by a 3-tuple
(Fi, vi, di) where Fi is a �lter for the i-th part, vi is a two-dimensional vector
specifying an �anchor� position for part i relative to the root position, and di is
a four-dimensional vector specifying coe�cients of a quadratic function de�ning
a deformation cost of the placement of the part relative to the anchor position.
The score of a particular choice of �lter placements (p0, . . . , pn) is given by:

score(p0, . . . , pn) =

n∑
i=0

F
′

i · φ(H, p)−
n∑
i=1

di · φd(dxi,dyi) + b

where
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(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi)

gives the displacement of the i-th part relative to its anchor position and

φd(dx, dy) = (dx, dy, dx2, dy2)

are deformation features. The score of a hypothesis z can be expressed in
terms of a dot product:

β · ψ(H, z)

where

β = (F
′

0, . . . , F
′

n, d1, . . . , dn, b)

ψ(H, z) = (φ(H, p0), . . . , φ(H, pn),−φd(dx1, dy1), ...,−φd(dxn, dyn), 1)

This naturally �ts the latent SVM formulation (1).

Latent SVM

Consider a classi�er that scores an example x with a function of the form (1). We
train β from labeled examples D = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {−1, 1}
by minimizing the objective function:

LD(β) =
1

2
‖β‖2 + C

n∑
i=1

max(0, 1− yifβ(xi))

Let Zp specify a latent value for each positive example in D. We de�ne an
auxiliary objective function LD(β, Zp) by restricting the latent values for the
positive examples. Note that:

LD(β) = min
Zp

LD(β, Zp)

In practice, LD(β, Zp)is minimized using a �coordinate descent� approach:

1. Relabel positive examples: Optimize LD(β, Zp) over Zp by selecting the
highest scoring latent value for each positive example zi = arg maxz∈Z(xi) LD(β, Zp)

2. Optimize beta: Optimize LD(β, Zp) over β by solving the convex opti-
mization problem.

2.3 Depth

Literature involving depth data for object recognition is less extensive. We
present an overview of some previous work.

Many RGB-D datasets include humans and are tied to the problems of hu-
man recognition and human pose estimation. These tasks are relevant to indus-
trial applications, and feature descriptors are commonly tailored to the human
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limb structure [21]. [22],[9] integrate multiple classi�ers and binocular disparity
features. Depth data is often noisy as triangulation methods are prone to quan-
tization error, and [2] introduces a pose estimation algorithm that copes with
this. In addition, it is not always clear how best to combine depth and RGB,
and [18] suggests one way to do so.

The challenge of object detection in standard indoor environments is closely
associated with robotics. As such, much emphasis is placed on developing speedy
algorithms that may be executed in real time. Depth maps are often sparse and
the objects small; [8] develops a multi-modal object detector to deal with this.
[19] uses a viewpoint feature histogram for simultaneous recognition of object
and its pose. [15] use independent re�ectance and depth data from a single
sensor to detect known objects. Some work has been done in using point clouds
to recognize geometric primitives [16], or detecting large novel objects [4].

Indoor scene segmentation on RGB-D, a closely related task, has also re-
cently become quite popular. [17] found success by using kernel descriptors, and
by combining MRF with segmentation tree. [10],[12] reason about 3D geometry
of rooms and objects. [1] use a graphical model and contextual information to
semantically label 3D points clouds.

3 Dataset

NYUD2 consists of 1449 images taken from a variety of commercial and resi-
dential buildings in three di�erent US cities across 26 scene classes. Per-pixel
instance and class annotations were produced by AMT workers. The annota-
tions are extremely speci�c, with 35,064 distinct objects spanning 894 classes.
Due to time-synchronization errors between the Kinect RGB and depth video
streams, we empirically discovered a contour disparity of up to 5 pixels on cer-
tain images in the dataset.

4 Our Approach

Our pipeline is as follows:

1. Raw depth maps are �rst transformed to surface normal maps by �tting
planes to support patches.

2. Surface normals are clustered using a standard k-means on cosine distance
metric.

3. Features are constructed by segmenting an image patch into 8pixel ×
8pixel cells. Cell histograms are produced by vector quantizing surface
normals to the nearest centroid produced during the k-means step, and
l1-normalized.

4. These features are used in a variant of the deformable parts model.
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4.1 Depth

Our pipeline for generating depth feature descriptors is somewhat similar to
that of HOG. However, our intuition is that surface normals are a more natural
way of capturing the curvature of objects, and hence a better descriptor, than
depth gradients. We precompute surface normals from a raw depth map and
align them with an estimated gravity vector. The aligned normals are clustered
via k-means and spatially histogrammed.

4.1.1 Surface Normals

We note that a dense set of surface normals reveals important information about
the shape of an object. In particular, they are a better descriptor for shape than
depth gradients alone. To extract a surface normal at each pixel, we follow [13]
by �tting a plane to a support patch of raw depths.

The equation of a plane is given by

disparity =
1

z
=
(x
z

)
nx +

(y
z

)
ny + nz

= nφ

where φ =
[
x
z

y
z 1

]T
and n =

[
nx ny nz

]
. For a given point cloud, we

solve for n such that l2 loss in disparity is minimized.
Let S be a m×m support patch of raw depths with top left corner at (x0, y0)

in the image. For each pixel in S, we �rst translate the patch to center at (0, 0).
That is, ∀(x, y) ∈ S de�ne x′ , x− x0 − m

2 and y′ , y − y0 − m
2 .

We also create the matrices for our least-squares problem. Let zxy be the
depth at (x, y) and de�ne

TS : (x, y) 7→
( x′
zxy

,
y′

zxy
, 1
)

US : (x, y) 7→ 1

zxy

Let O = {(x1, y1), . . . , (xm2 , ym2)} be any sequence of the points in S. Let Φ
be a m2× 3 matrix whose �rst row is TS(O1), second row is TS(O2), and so on.
Let A be a m2 × 1 vector whose �rst entry is US(O1), second entry is US(O2),
and so on.

We then solve
min
n
‖Φ n−A‖2

via standard least squares.
We experimented with m ∈ {3, 7, 11, 21, 31, 41}. Smaller m values capture

�ner resolution, which is useful for smaller objects.
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4.1.2 Extracting a Geocentric Coordinate Frame

We observe that the gravity vector g imposes much structure on the real world,
particularly within indoor settings (the �oor and other supporting planes are
usually orthogonal to g, whereas walls are aligned with g). Since the Kinect is
not robust to biases resulting from camera rotation, it is critical to produce a
gravity vector estimate ĝ for each image.

We follow [13] to estimate the direction of gravity from the surface normals
obtained previously. Intuitively, the algorithm tries to �nd the direction which
is either most aligned to or most orthogonal to the surface normals at as many
points as possible. We start by setting our initial estimate g0 to be the Y-axis
and re�ne the estimate with each iteration i

1. Use the current estimate ĝi−1, make hard assignments of surface normals
to aligned set S+i and orthogonal set S⊥i , (based on a threshold d on the
angle between the surface normal and ĝi−1). Stack the vectors in S+i to
form a matrix S+

i , and similarly in S⊥i to form S⊥i .

S+i ← {n|θ(n, ĝi−1) < d or θ(n, ĝi−1) > 180◦ − d}
S⊥i ← {n|90◦ − d < θ(n, ĝi−1) < 90◦ + d}

where θ(x, y) , angle between x and y constrained to [0◦, 180◦]

Intuitively, S+ should contain surface normals that are aligned with g
(points on the �oor and tables) while S⊥ should contain surface normals
that are orthogonal to g (points on the wall).

2. Estimate a new ĝi that maximizes both alignment to surface normals in S+i
and orthogonality to surface normals in S⊥i . We solve the optimization
problem

ĝi ← arg min
g:‖g‖2=1

∑
n∈S⊥

i

cos2(θ(n, g)) +
∑

n∈S+
i

sin2(θ(n, g))

This simpli�es into �nding the the smallest eigenvector of the 3×3 matrix:
S⊥i (S⊥i )T − S+

i (S+
i )T

We run 5 iterations with d = 45◦ followed by 5 iterations with d = 15◦. Using
this estimate, we rotate our normals such that the y-axis is roughly in the
direction of g.

4.1.3 K-Means

Using surface normal estimates at each pixel, we follow HOG's structure by
histogramming them. A natural approach is to run k-means over the surface
normals and treat the cluster centroids as bins. k-means is an algorithm that
partitions a set of data points into k di�erent clusters in a way that minimizes
the within-cluster sum of squares.
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Given n 3D surface normals x1, . . . , xn ∈ R3, we wish to assign corresponding
cluster labels z1, . . . , zn ∈ {1, . . . , k} to those normals. We de�ne Si = {xj |zj =
i} and k cluster centroids µ1, . . . , µk, where µi = 1

|Si|
∑
xj∈Si

xj . We initialize

µ
(0)
i = xj with j random. k-means consists of 2 iterative steps at each time step
t:

1. ∀i ∈ {1, . . . , n} : z
(t+1)
i ← arg minj∈{1,...,k} d(µ

(t)
j , xi) where d is some

distance metric. In practice, we let d be the cosine distance.

2. ∀i ∈ {1, . . . , k} : µ
(t+1)
i ← 1

|S(t+1)
i |

∑
xj∈S(t+1)

i
xj

Fig. 1 gives a visualization of the clustered means.

4.1.4 Feature Extraction

Let n̂(x, y) be the surface normal estimate at a pixel (x, y) in an image, and
let µ1, . . . , µk be the centroids obtained from k-Means. The surface normal
estimate at each pixel is discretized into one of k values via vector quantization

v(x, y) , arg min
i∈{1,...,k}

d(µi, n̂(x, y))

We de�ne a pixel-level feature map that speci�es a sparse histogram at each
pixel. Let c ∈ {1, . . . , k} range over cluster centers. The feature vector at (x, y)
is

F (x, y)c =

{
1 if c = v(x, y)

0 otherwise

We de�ne a dense grid of n × n �cells�. We wish to spatially aggregate
values from F , a w × h pixel-level feature map, to produce a cell-based feature
map C, with feature vectors C(i, j) for 0 ≤ i ≤ b(w − 1)/kc and 0 ≤ j ≤
b(h − 1)/kc. This aggregation provides invariance to small deformations and
inconsistencies and reduces the size of the feature map. We follow HOG and
use a �soft binning� approach where each pixel-level feature contributes to the
cell-level feature vectors in the four cells around it using bilinear interpolation.
After constructing these cell histograms, we l1 normalize them.

4.2 Con�guring DPM

In practice, we let k = 36 and mimic DPM by letting our cells be 8pixels
× 8pixels. Fitting our depth descriptors into the DPM pipeline consists of a
few changes. Most importantly, we must consider the question of how to use
the obtained features. Since the cell grid structure in our depth framework is
identical to HOG, it is natural to stack the features. In particular, let G(i, j)
be the 31 dimensional feature vector on RGB at cell location (i, j) produced
by DPM [7], and let G′(i, j) be our depth features at the same location. The
stacked cell features to be used in the pipeline are H(i, j) ,

[
G(i, j); G′(i, j)

]
with |H(i, j)| = 31 + 36 = 67.
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Fig. 1: Visualizing Vector Quantized Normals

We demonstrate a �ne to course grained progression of our vector quantized surface normal estimates. RGB is
presented in the top left corner of each image group. The ensuing images show the vector quantized normals,
with each gray shade representing a distinct cluster center. The patch size m ranges from 31, 21, 11, 7, to 3.
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a) b)

c)

Fig. 2: Models and Detections for Lamp Class

a) An RGB model with 2 components, with visualizations for root and part �lters
b) Same as a), but trained on RGB-D and patch size m=3. For this visualization, cluster

means are limited to x, y and snapped to a θ orientation as in HOG
c) 2 sample detections
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We also modify the design choice for image patch resizing when computing
features at di�erent resolutions in the pyramid. In standard DPM, image scal-
ing is carried out in a fast implementation that interpolates a pixel's spatial
neighbors. This is less sensible for depth features, so we simply take the nearest
neighbor when scaling.

Fig. 2 shows an example learned model.

5 Empirical Results

We evaluated our system on NYUD2 using the PASCAL protocols for evalu-
ation. At test time, the goal is to predict the bounding boxes of all objects
of a given class in an image (if any). In practice our system will output a set
of bounding boxes with corresponding scores, and we threshold these scores at
various levels to obtain a precision-recall curve. For a particular threshold the
precision is the percentage of the reported bounding boxes that are correct,
while recall is the percentage of the objects found.

A predicted bounding box is considered correct if it overlaps more than
50% with the ground truth, otherwise it is considered a false positive. We use
a system's average precision (AP) across precision-curves as a measure of its
performance.

NYUD2 provides instance and class labels, but not bounding box annota-
tions. To extract bounding box annotations for training and testing, we take
the min and max x and y coordinates over each instance, and set these to be the
boundaries of the box for that particular instance. We use the same splits as
provided by NYUD2. There are 795 training images and 654 test images. Each
image contains a subset of the 10 evaluation classes. We note that scarcity of
data may contribute to sub-optimal performance of our system.

We compare the impact of our depth features on performance. In the over-
whelming majority of cases, we see an improvement over just the RGB data by
adding our features. We also compare the e�ect of using just the root �lter vs.
with parts, components vs. no components, and varying the patch size used to
compute surface normals.

In Tab. 1, we �nd that adding parts gives a substantial boost. Using parts
in the DPM framework allows the system to capture intra-class variability.

Adding additional components does not appear to signi�cantly impact per-
formance. This �nding may be the result of two factors. Due to the nature of
data collection in indoor environments there is little variation among camera
viewpoints and object poses, implying that enforcing multiple components on
an object class is not necessarily the correct thing to do. Also, a lack of su�-
cient training examples prevents the components from taking on clearly de�ned
structure.

[20] appears to suggest that adding components, in addition to a few minor
modi�cations, can achieve performance comparable to the boost from parts. Our
results do not a�rm this conclusion, although the datasets are very di�erent.

We observe that monotonically changing patch size does not monotonically
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bed blinds chair counter garbage
bin

lamp pillow sink sofa window

a) !d 0.169 0.0667 0.0758 0.0703 0.1 0.191 0.071 0.0782 0.0368 0.0863
b) base 0.243 0.0483 0.0821 0.0708 0.0773 0.166 0.123 0.196 0.0794 0.123
c) p 0.375 0.135 0.13 0.0866 0.116 0.165 0.126 0.184 0.153 0.132
d) c2 0.219 0.0429 0.105 0.0636 0.0936 0.163 0.141 0.209 0.0646 0.122

e) m=3 0.314 0.0404 0.0849 0.121 0.112 0.203 0.143 0.197 0.0924 0.139
f) m=7 0.227 0.0506 0.0702 0.0813 0.164 0.205 0.139 0.176 0.0672 0.149
g) m=11 0.231 0.0485 0.0771 0.0864 0.137 0.195 0.143 0.181 0.0868 0.129
h) m=21 0.237 0.0396 0.0809 0.0871 0.133 0.19 0.131 0.19 0.106 0.16
i) m=31 0.235 0.0434 0.0704 0.0818 0.117 0.174 0.116 0.166 0.0938 0.129
j) p; m =

arg maxmAP
0.363 0.1943 0.1513 0.1643 0.1553 0.2347 0.1687 0.1933 0.15421 0.1717

k) p; c2; m =
arg maxmAP

0.323 0.1957 0.14731 0.1513 0.1283 0.2113 0.16921 0.2331 0.15521 0.1773

Tab. 1: Average Precision on NYUD2

The �base� con�guration uses: depth data, root �lter only (no parts), 1 component, and patch size m=41. The
other listed con�gurations modify one or more of these parameters. !d indicates no depth (hence, patch size is
irrelevant). p indicates parts are used. c2 indicates 2 components. m indicates a di�erent patch size. For h) and

i), the patch size m is written as a superscript.

Figure 3: Precision Recall
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change performance. Using a smaller patch size to estimate surface normals is
useful for capturing the smaller objects, as it captures a �ner-grained resolution.
However, it is also more susceptible to errors due to noise, as the estimates are
less smoothed. This tradeo� suggests that a combination of all patch sizes may
achieve the best performance.

6 Conclusion

In this report, we have suggested a new method of using raw depth data to
augment HOG-based object detectors. Our depth descriptors are e�ciently
computed and may be easily �bolted on� to existing methods that compute HOG
on RGB. While our features empirically provide a dramatic boost to only RGB,
it is important to note that the depth features are computed independently of
RGB. In the future we would like to combine RGB and depth channels at the
feature extraction stage, as opposed to considering them separately.
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