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Abstract

The Complexity of Entangled Games

by

Thomas Vidick

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh V. Vazirani, Chair

Entanglement is at the heart of quantum mechanics. The nonlocal correlations that can
be obtained from space-time separated measurements on an entangled state are a central
feature which provably distinguish it from local theories. This dissertation studies entangle-
ment through a computational viewpoint. We develop new insights into the complex nature
of entanglement by studying its role in multiplayer games, in which cooperating, but non-
communicating, players interact with a referee in an attempt to win a pre-specified game. On
the one hand, the nonlocal correlations that entanglement allows may enable players using
it to develop new colluding strategies, defeating previously secure protocols. On the other,
the richness of this new resource may also be exploited in order to design new protocols, pro-
viding solutions to problems previously deemed impossible. We explore both aspects of this
dual nature of entanglement, putting limits on its strength while at the same time showing
how it can be put to profit to solve new computational problems.

A major unresolved question on the computational complexity of multiplayer entangled
games is the power of MIP∗, the class of languages having entangled multi-prover interac-
tive proofs: how does it relate to its purely classical analogue MIP, which was completely
characterized through the fundamental equation MIP = NEXP? Since the players may use
entanglement to increase their odds at colluding against the verifier, MIP∗ could potentially
be a much weaker class than MIP. Indeed, for a long time it has been an open question
whether two entangled provers are more useful than a single prover.

In this thesis we resolve this question by showing that the class of languages having
multiprover interactive proofs with entangled provers is at least as large as its classical
counterpart: NEXP ⊆ MIP∗. At the heart of this result is an analysis of the multilinearity
test of Babai, Fortnow, and Lund in the presence of entanglement. The fact that this test
remains sound gives a systematic way for a verifier to impose strong limits on the ability of
entangled provers to collude against the verifier.

Gap amplification is a fundamental primitive in the study of classical multiplayer games.
While sequential repetition of a game always decreases the prover’s maximum success proba-
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bility at an exponential rate, the fact that parallel repetition also achieves a gap amplification
is a highly non-trivial fact. We show that gap amplification can be performed in parallel
even in the presence of entanglement between the provers. We adapt a technique which was
originally introduced by Feige and Kilian and results in a polynomial rate of amplification.

The phenomenon of monogamy of entanglement states, in first approximation, that if
two parties are maximally entangled then they cannot simultaneously be entangled with a
third party. We use this phenomenon in two distinct results. In the first, we show that the
bits generated in our randomness-expansion protocol are certifiably random even from the
point of view of a quantum adversary who may share prior entanglement with the provers.
In addition, we prove the security against quantum adversaries of a randomness-efficient
extractor construction originally due to Trevisan. This lets us transform the high-entropy
bits that are generated in our protocol into ones that are almost indistinguishable from
uniform by any adversary.

More generally, we show how the monogamy of entanglement can be exploited to design
multi-prover interactive proof systems that are partially entanglement-resistant. Quantita-
tive bounds on the monogamy of entanglement have generally been elusive, and the analysis
of our protocol demonstrates such a bound in a new context.

The nonlocal correlations that can be created by entangled players provide a statistical
means of differentiating them from classical, unentangled players. This is the main idea
behind Bell inequalities, the violation of which demonstrates the nonlocality of quantum
mechanics. We show how this phenomenon may be exploited to design a protocol in which the
bits produced by successful players necessarily contain a large quantity of fresh randomness.
The presence of randomness is guaranteed irrespective of the provers’ actual strategy, as long
as the sole constraint of no signaling is respected. Hence a statistical certification for the
presence of randomness, a feat easily seen to be impossible to achieve classically.

In order to manipulate the random bits produced in our protocol, and make them useful
in cryptography, we give the first proof of security of a poly-logarithmic seed extractor
secure against quantum adversaries. To achieve this we adapt the reconstruction paradigm
originally introduced by Trevisan to the quantum setting.

We study other ways in which entanglement may be used in interactive proof systems
by also allowing a quantum interaction between the referee and the players. We show that,
using entanglement, the class of QMIP∗ proof systems can be parallelized to only three
rounds of interaction, and made public-coin, a property that does not hold in the absence of
entanglement between the players.
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Chapter 1

Introduction

Entanglement is arguably the most counterintuitive aspect of quantum mechanics — it
plays a crucial role in the exponential speed-ups of quantum computers. Einstein, whose
skepticism about quantum mechanics rested in part on thought experiments involving en-
tanglement, derided it as “spukhafte Fernwirkung”, or “spooky action at a distance”. In
his landmark 1965 paper [15], Bell proved that entanglement had a testable consequence:
simultaneous measurements on a pair of space-like separated entangled particles could lead
to outcomes correlated in a way that no classical local hidden variable theory could explain.
However, these correlations are still limited by the no-signaling principle, which states that
no information can be communicated from one particle to the other. Enormous efforts have
since been devoted to a systematic investigation of the statistical aspects of nonlocal cor-
relations. Understanding and quantifying the precise nature of these correlations is one of
the basic goals of quantum information theory, and has led to a full characterization of the
“nonlocal polytope” in two dimensions, the case of three dimensions still being open (see
e.g. [47] for a survey).

This dissertation takes a different, more computational approach towards understanding
the nature of entanglement. The strength of this approach is in taking entanglement out of
the static context commonly used in physics, and putting it into a dynamic setting. The re-
sult is a new understanding of the limits (beyond no-signaling) of the power of entanglement,
as well as the discovery of new tasks that are made possible using it, but are impossible in
a classical world. Moreover, the benefit is reciprocal: the introduction of a powerful new
element, entanglement, in the theory of computation promises to bring about a new under-
standing of some of the basic techniques of complexity theory, such as parallel repetition or
multilinearity testing.

The first theme of this dissertation, introduced in Section 1.2, consists in using compu-
tational complexity to study entanglement: what are the computational consequences of the
nonlocal correlations that it generates? A second theme, introduced in Section 1.3, explores
the following question: what are computational tasks that are made possible by the presence
of entanglement? Before describing these themes, in the next section we introduce the main
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computational model that our work is based on, multiplayer games.

1.1 Entanglement as a nonlocal resource

The following experiment, originally introduced by Clauser, Horne, Shimony and Holt [25],
gives the simplest demonstration of the strength of entanglement as a nonlocal resource.
Consider two distant parties, each holding one half of an entangled pair of particles. Each
of the parties receives a single bit x, y ∈ {0, 1}, chosen uniformly at random, as input.
They are allowed to perform arbitrary measurements on their particle, but are not allowed
to communicate.1 Their goal is to produce outputs a, b that satisfy the CHSH condition
a⊕ b = x ∧ y.

π/4

a = 0

a = 0

a = 1

a = 1

π/4

a = 0

a = 0

a = 1a = 1

π/8

Figure 1.1: The bases used in the CHSH game. Plain lines correspond to the basis used on
input x = 0 (left) and y = 0 (right). Dotted lines correspond to the basis used on input
x = 1 (left) and y = 1 (right). Pairs of vectors corresponding to valid outputs always make
an angle of π/8.

It is not hard to see that, if the particles are only classically correlated (i.e. they play the
role of shared randomness) then the best strategy will lead to a success probability of 3/4
— in fact, systematically outputting 0 is the best one can do. However, there are quantum
measurements on a 2-qubit entangled state that allow one to obtain a strictly higher success
probability of cos2 π/8 ≈ 0.85. The entangled state is a Bell pair

|Ψ〉 = 1√
2

(
|0〉|0〉+ |1〉|1〉

)
.

This notation describes the joint state of a pair of two-dimensional systems that are in an
equal superposition of two identical states: the |0〉|0〉 state and the |1〉|1〉 state. Each party
will measure its own half of |Ψ〉 using one of two possible choices of basis, depending on the
input bit. These bases are such that, out of the 4 pairs of bases, those corresponding to
input pairs (x, y) such that x ∧ y = 0 make an angle π/8 with each other, while the pair
corresponding to the inputs (1, 1) make an angle π/2−π/8 (see Figure 1.1 for an illustration).

1In the original version of the experiment the no-communication assumption was enforced through space-
time separation of the two parties.
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The resulting measurements have the property that, for every possible pair of inputs, the
pair of outputs obtained by making the corresponding measurements on both halves of |Ψ〉
will be correct with probability cos2 π/8. While using these measurements the marginal
distribution of outcomes obtained by either party will be uniform, their joint distribution
depends on the local choice of basis. The possibility to obtain such correlations is the source
of the strength of entanglement.

Multiplayer games. Multiplayer games generalize the setting of the CHSH experiment
by framing it as an interactive game between a referee, who runs the game, and two or more
players. In such a game the players co-operate in an attempt to win the game arbitrated by
the referee. While they have unlimited computational power, they are crucially not allowed
to communicate with each other once their interaction with the referee has started. This
no-communication, or no-signaling, assumption is at the heart of the richness of multiplayer
games.

Given a game, the key quantity associated to it is its value: the maximum winning
probability that any players can obtain in the game.2 This quantity lets us frame games as
a model of computation: the input is a description of the game itself, and the output is its
value. One may think of the players as computing this output for the referee: if it is close to
1 then the players have a high chance of winning the game, and if it close to 0 it is unlikely
that they will succeed.

The introduction of entanglement in multiplayer games is all but natural — in a quan-
tum mechanical universe, the sharing of entanglement between resource-unbounded players
cannot be physically avoided. We will call such games entangled games, and their value the
entangled value, thereby referring to the additional resource that the players may share. The
language of games lets us study entanglement in a new context, going well beyond the simple
non-interactive setting of the EPR paradox and Bell inequalities. For instance we may ask,
does entanglement strengthen or weaken the types of computations that can be performed
using multiplayer games? We have seen that entanglement may increase the value of a game:
what are the computational consequences of this fact? If the increase in value was system-
atically bounded, these consequences would be minimal. The following example shows that
this is not the case.

The Magic Square game. As a further example demonstrating the strength of the non-
local correlations of entanglement, consider the Mermin-Peres Magic Square game [83, 91].
In this game there are two players, the row player and the column player. The row player
is trying to convince the referee that the cells of an imaginary 3 × 3 square can be labeled
with bits in {0, 1} so that the bits in each row have even parity, while the column player is
trying to convince him that the square can be labeled in such a way that the bits in each
column have odd parity. In order to catch them, the referee asks the row player (resp. the

2This probability is taken over all random choices made in the game: the referee’s and the players’.
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0 1 1

000

1 0 ?

Rows have
even parity

Columns have odd parity

Figure 1.2: The Magic Square game. Cells in any given row should have even parity, while in
any given column their parity should be odd. Any labeling of the remaining cell will violate
either a row or a column constraint.

column player) for the values that he would assign to the three cells of a randomly chosen row
(resp. randomly chosen column). He then verifies that the parity of each player’s answers is
correct, and that the two players are consistent in the value that they assign to the unique
cell in which the chosen row and column intersect. A moment’s thought will convince the
reader that the players cannot win this game with certainty — indeed, the square’s overall
parity must be either odd or even, so that one of the players has to be wrong (cf. Figure 1.2
for an illustration). In stark contrast, Aravind [8] demonstrated the existence of a simple
entangled strategy succeeding with certainty, dashing all hopes of entanglement providing
only a bounded advantage over classical players in general.

This striking example can be pushed even further. As we will see in the next section, the
fact that entangled players can collude perfectly in the Magic Square game has dramatic con-
sequences on the computational complexity of multiplayer games. Indeed, it demonstrates
that the soundness property of certain proof systems (e.g. some proof systems used in con-
nection with the PCP theorem to show hardness of approximation of constraint satisfaction
problems) can completely fail in the presence of entanglement.

1.2 The computational complexity of entangled games

The introduction of multiplayer games as a model of computation in the late 80s had a
profound impact on classical complexity theory. It was the natural result of a revolutionary
line of work expanding on the definition of the class NP by adding a layer of randomization
and interaction. In that context multiplayer games are often referred to as interactive proof
systems : a polynomial-time referee (or verifier) interacts with the players (or provers) in
order to verify the validity of a certain statement. One may think of the provers as holding a
detailed proof of the statement. That proof may be very long and complex, and the verifier
can only ask specific questions about it. The provers are computationally unbounded, but
not allowed to communicate. They will always attempt to convince the verifier to accept,
irrespective of the truth of the statement he is attempting to verify. It is therefore crucial
that such proof systems have a good soundness property: if the statement is false, then
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the interaction should be such that no answers from the provers could convince the verifier
otherwise (except with small probability).

The corresponding class MIP of languages having multiprover interactive proofs [17]
was fully characterized in the celebrated result MIP = NEXP [12], where NEXP stands
for non-deterministic exponential time. This characterization demonstrates the impressive
computational power of multiple provers. It should be contrasted with the power of a
single prover, as expressed in the result that IP = PSPACE [80, 106], the set of languages
recognizable in polynomial space. At the same time, the discovery that MIP = NEXP
started a long, extremely fruitful line of work exploring the properties of multiplayer games,
eventually leading to a proof of the PCP theorem [9, 10] and to the subsequent exploration
of its deep connections with hardness of approximation [45].

The introduction of entanglement leads to the natural extension of multiprover entangled
interactive proofs, in which the provers may share an arbitrary entangled state. In spite of
the no-signaling principle, which shows that the players cannot use entanglement to exchange
information, its introduction can have a profound effect on the properties of certain proof
systems. As an example, consider the following simple protocol used to verify that a given
3XOR formula has a large fraction of its clauses satisfiable. A 3XOR formula is given by
a list of clauses xi ⊕ yi ⊕ zi = ai, where xi, yi, zi are variables and ai ∈ {0, 1}. The verifier
picks two clauses (i, j) at random, under the constraint that they share at least one variable,
say xi = xj . He sends the three variables in the first clause to a first prover, and the
variables from the second clause to a second prover. Each prover should answer him with
an assignment to the three variables it was sent. The verifier checks that the assignments he
receives satisfy the clauses, and are consistent : both provers should assign the same value
to the shared variable xi.

It is possible to relate the value of this proof system to the maximum number of clauses
that can be simultaneously satisfied in the formula: if there is an assignment satisfying
a large fraction of clauses then the provers have a successful strategy, and conversely any
successful strategy implies the existence of a good assignment. The key point is that the
consistency check made by the verifier prevents the provers from using a cheating strategy
that would assign different values to the same variable, depending on the clause they are
being asked: such a strategy will fail because the provers do not know which variable they
share in common.

The Magic Square game shows that such a relationship no longer holds in the presence of
entanglement between the provers: there are examples of 3XOR formulas that are far from
satisfiable, but such that entangled players have a perfect winning strategy. This example
shows that the soundness property of certain interactive proof systems may be broken by
the introduction of entanglement. It raises a fundamental question:

What is the computational complexity of entangled games?

This question can be stated more precisely by introducing the “entangled” analogue of
the complexity class MIP, MIP∗ [26]. The question then becomes: what is the relationship



CHAPTER 1. INTRODUCTION 6

between MIP and MIP∗? To show the inclusion MIP ⊆ MIP∗, one has to show that the
soundness property of an interactive proof system is preserved: if there is no classical strategy
achieving a high success probability, then there is no entangled strategy achieving a much
higher success probability. But the example discussed above shows that such a relationship
does not hold! Hence the impossibility of a direct reduction between the two classes.

Cleve, Høyer, Toner and Watrous [26] pushed this observation further by showing that
entanglement could indeed lead to the collapse of a whole complexity class. More specifi-
cally, they study a class, ⊕MIP, of languages having a certain restricted type of two-prover
interactive proofs. While it follows from work of H̊astad [52] that this class equals NEXP
(and is thus as powerful as the whole of MIP), Cleve & al. show that the corresponding
class with entanglement, ⊕MIP∗, collapses to EXP. This result shows that, in the setting
of ⊕MIP proof systems, whatever the verifier’s attempts to prevent entangled provers from
colluding, they will have a strategy that fools him.

In spite of this negative result, the question of the complexity of general entangled in-
teractive proofs remained open. Indeed, it could be that by allowing the verifier to interact
with the provers in a less constrained way, one may devise more complex proof systems that
are immune to the kind of behavior that caused the collapse of ⊕MIP∗. Despite intense
efforts on this question, for a long time little was known. The best lower bound on MIP∗

consisted in the trivial observation that multiple entangled provers are at least as powerful
as a single prover, hence PSPACE ⊆ MIP∗.

1.2.1 Contributions on the complexity of entangled games

We prove three results putting strong limits on the ability of entangled players to use their
entanglement in order to collude against the referee in a multiplayer game.

NEXP ⊆ MIP∗. We prove the inclusion NEXP = MIP ⊆ MIP∗, answering a long-
standing open question [72] and establishing the fact that multi-prover interactive proof
systems with entanglement are at least as expressive as their classical counterparts.

We prove our result by adapting Babai, Fortnow and Lund’s [12] original proof that
NEXP ⊆ MIP to the entangled setting. A key component in this proof is a multilinearity
test, by which one ensures that the provers are answering the verifier’s questions according to
an arbitrary multilinear function f : Fn → F, where F is a finite field. The test is very simple:
the verifier picks a triple of axis-aligned points x,y, z ∈ F

n, and he checks that the provers
provide him with answers a, b, c ∈ F that are correspondingly aligned. Babai, Fortnow and
Lund showed that if three deterministic provers had a high probability of success in this test,
then it must be the case that each prover computes his answer using a function a = f(x)
that is linear in each of its n coordinates.

The main difficulty in extending this test to the quantum setting is that there is no
underlying function: the strength of an entangled-prover strategy is in the correlations that
are generates by the provers’ respective measurements on their shared entangled state, and
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there is no meaning to either provers’ strategy when taken in isolation. As such, the situation
is similar to, but more complex than, a scenario in which the provers would be using shared
randomness but one would not allow for the usual “convexity” argument stating that this
randomness could be “fixed”. We explain this difficulty, and the way in which we overcome
it, in more detail in Section 1.2.2 below. We also give a more detailed introduction to the
problem of linearity testing with entangled provers in Chapter 2.

Our main result is that the multilinearity test is sound even in the presence of entangled
players. This demonstrates that even entangled players cannot escape the strong linear
structure imposed in this test, making it impossible for them to gain more than a negligible
advantage from their shared entanglement. This result is presented in Chapter 5.

Our result leaves open the intriguing possibility that entanglement may lead to a larger,
more expressive class of proof systems: is MIP∗ ⊆ MIP? Since the presence of entanglement
seemingly only increases the power of the provers, weakening the soundness guarantees of
existing protocols, it may seem like this inclusion should de facto hold. But there is an
intriguing possibility: the presence of entanglement between the provers may also increase
the power of the verifier by allowing him to devise new protocols, enabling the verification
of more complex classes of languages. This could result in MIP∗ being a larger class than
MIP. In the second part of this thesis (cf. Section 1.3.2) we will show that entanglement
can indeed be used to perform certain tasks that are impossible in its absence.

The monogamy of entanglement. Monogamy is a genuinely quantum phenomenon.
At an intuitive level, monogamy dictates that the correlations obtained from entanglement
can only be shared successfully between two parties, not more. Indeed, if two players are
maximally entangled, then neither of them can be simultaneously entangled with a third
player. Unfortunately this appealing property is very difficult to quantify precisely, and it can
be expressed in many distinct ways through the use of different entanglement measures [118,
71].

Multiplayer games provide a concrete way to understand the monogamy of entanglement:
in a three-player game, constraining two of the players to be strongly correlated should limit
their ability to collude with the third. We show how this idea can be put to profit by
transforming any game in a way that, even if in the original game entangled players were
able to use their entanglement to collude perfectly, in the modified game this is no longer
possible. Our transformation consists in introducing a third player, sending him the same
question as to one of the original players, and checking that he provides the same answer.

Using this transformation, we are able to give the first hardness of approximation result
for three-player one-round entangled games: it is NP-hard to approximate the value of such
a game to within a factor that is inverse polynomial in the size of the game, as measured
by the number of possible questions. This result is incomparable to the previous one: while
the hardness factor is weaker (inverse polynomial compared to constant), it applies to a
more restricted class of games, in which there are only three provers and a single round of
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interaction. Moreover, the transformation that we introduce here is generic, and can be used
to enhance the “entanglement-resistance” capabilities of any two-player game.

Parallel repetition of entangled games. Gap amplification is a fundamental primitive
in complexity theory. In the context of interactive proofs, one often arrives at a situation
where one has designed a specific game such that one can show that either there exists a
strategy for the players with success probability 1, or no players can succeed with probability
larger than, say, 0.99 — without knowing which is the case. It is then required to amplify
this distinction in order to make it more robust, while altering the properties of the game
the least possible.

In the setting of two-player classical games, an important result of Raz [96] shows that
gap amplification can be performed in parallel, without increasing the number of rounds of
interaction: the referee simultaneously sends independent pairs of questions to the players,
receives all their answers together, and checks that all pairs of answers are valid for the cor-
responding questions. This result shows a limitation of classical non-communicating provers:
they cannot take advantage of the fact that, in a parallel repeated game, they are allowed
to see all their questions before sending back their answers.

In Chapter 7 we show that gap amplification can also be performed with entangled
players, albeit only at a polynomial rate, by adapting the “miss/match” technique introduced
by Feige and Kilian [42]. While the polynomial rate we obtain is sub-optimal, this technique
has the benefit of proving more than amplification. Indeed, one can show that any players
with a reasonable (at least inverse polynomial) success probability in the repeated game must
be using a strategy taking a very specific sequential form, which may be useful to analyze
repeated games in more detail.

1.2.2 Proof strategy

The three results discussed above all rely on the analysis of certain multiplayer games, or
multi-prover interactive protocols, designed to achieve a specific goal. The main hurdle in
the analysis of such a game is to prove its soundness: given a game, show that no players can
have a significantly higher success probability than could “honest” players, playing according
to an “ideal”, well-behaved strategy. In the classical setting, a strategy for the players is
specified by a function f from the question set to the answer set. One usually reasons by
contrapositive, showing that high success in the game imposes strict constraints on f , up to
the point where one manages to show that f must be “close” to the ideal strategy. In order
to make this analysis possible one has at one’s disposal all the modern tools of computer
science, including error-correcting codes, Fourier analysis, and many others.

The analysis of entangled strategies, however, poses an immediate challenge: there is no
underlying function. This difficulty already arises in the presence of shared randomness, used
by the players to coordinate in selecting one of many possible functions before producing
their answer. The solution, in that case, is well-known: there is always an “optimal” shared
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random string which can be fixed, reducing the analysis to the deterministic case. Entan-
glement, however, cannot be “fixed”. This is a consequence of the non-commuting nature
of the players’ measurements, making it impossible in general to extract even a joint global
distribution describing the players’ choice of answers for every possible pair of questions.3

One is therefore constrained to work directly with the players’ strategies, as represented
by their measurements and potentially very high-dimensional entangled state. In the setting
of classical players using shared randomness, this would correspond to carrying out the whole
analysis in superposition, without fixing the randomness — a challenging task by itself.

As in the classical case, our goal is, starting from the assumption that the provers have a
high success probability in the game, to deduce constraints on the structure of the strategy
they could be using, relating it to a honest, “ideal” strategy whose success we can easily
bound — for instance because it can be modeled using shared randomness, thus reducing
the analysis to the classical case.

In order to carry out this approach we develop techniques geared at analyzing and con-
straining entangled-player strategies. One such technique is a quantum counterpart to the
celebrated linearity test of Blum, Luby, and Rubinfeld [23], and we present it in an accessible
way in Chapter 2. An extension of this test to multilinearity testing is at the heart of our
proof that NEXP ⊆ MIP∗, described in Chapter 5.

Another technique exploits the monogamy of entanglement to obtain almost-commuting
conditions on the players’ measurements. This condition lets us apply a weak rounding
procedure from entangled strategies to classical strategies. We relate the success of this
rounding technique to a conjecture about “almost-commuting” versus “nearly-commuting”
measurements, which is discussed in Chapter 4.

Our last technique, used in the proof of our result on parallel repetition, consists in
exploiting consistency constraints on the players’ answers to deduce that their measurements
must obey certain orthogonality conditions. These conditions are used to derive a direct
product test for entangled strategies.

1.3 Using entanglement in multiplayer games

The second theme of this thesis explores the new possibilities that are afforded by entangle-
ment in multiplayer games in order to present tasks that can only be accomplished in the
presence of entanglement. These complement the results in the first part of the thesis, in
which entanglement was seen as a negative resource used by the players to collude against
the referee. We give two main applications: the first to cryptography and the second to
interactive proof systems with quantum messages.

3This very fact is what makes the existence of games such as the Magic Square possible: in this game
entangled players have a perfect winning strategy even though there is no deterministic assignment of answers
to all questions that satisfies the constraints imposed by the referee.
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1.3.1 Generating certified randomness

A source of independent random bits is a basic resource in many computational tasks, such
as cryptography, game theoretic protocols, algorithms and physical simulations. However,
constructing a physical source of randomness is an unexpectedly tricky task. What makes
this task particularly challenging is the following: how can one even test whether one has
succeeded? In other words, suppose we are given a box that claims to output perfectly
random bits; is there a test to verify that claim? On the face of it, this task is impossible: a
perfect random number generator must output every n-bit sequence with equal probability
1/2n, and there seems to be no basis on which to reject any particular output in favor of any
other.

Entanglement provides a surprising way out of this conundrum. Recall the CHSH game
outlined earlier. This game has the property that classical players can achieve a success
probability at most pCHSH ≤ 3

4
, while for any number 3

4
< pCHSH ≤ cos2 π/8 ≈ 0.85 there is

a quantum strategy achieving exactly that success probability. Hence we may define the
quantum regime for the CHSH game as this range of probabilities: for any value in that
range there is a simple quantum-mechanical strategy, obeying the no-signaling condition,
which achieves that success probability.

These well-known facts have a striking consequence, first made explicit in Colbeck’s Ph.D.
thesis [28] (see also [29] for an expanded version): any players producing correlations that
fall in the quantum regime must be randomized ! Indeed, deterministic players are inherently
classical, so that their success probability must fall in the classical regime pCHSH ≤ 3/4. By
checking that the players produce answers that are more strongly correlated than could any
deterministically chosen answers, the referee is in effect implementing a statistical test for
randomness.

This idea was quantitatively analyzed in work by Pironio & al. [92]. They showed, us-
ing a protocol based on the CHSH game, that one could achieve a quadratic expansion of
randomness: while the protocol requires the referee to use

√
n uniformly distributed bits in

order to select his questions, n bits of randomness are generated.
The work in [92] left open two important questions. First, what is the best expansion

factor achievable? Is quadratic optimal? Among the many applications for random bits,
some of the most prominent pertain to the area of cryptography. For instance, the most
widely-studied key distribution protocol, BB84 [18], requires a large number of uniformly
distributed bits in order to make an initial choice of basis. Hence a second question: Are
the random bits produced secure for cryptographic uses? That is, could any information
about them potentially be leaked to an adversary, who may share prior entanglement with
the players?

Our contribution. We give an answer to both these questions. In Chapter 9 we introduce
a protocol that only requires the referee to use O(log n) random bits, and still results in the
generation of n bits of certified randomness: an exponential expansion. In our protocol, an
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experimenter (the referee) has a sequential interaction with a pair of unknown devices (the
players). The experimenter repeatedly selects inputs to the devices, and collects outputs.
He then verifies that the chosen inputs, together with the outputs obtained, verify a certain
constraint (in this case, the CHSH condition). If so, he accepts the outputs, and if not
he rejects them. This protocol is such that, if the devices share entanglement, there is a
simple strategy that will lead them to produce outputs that are accepted by the referee
with near-certainty (and are highly random). Moreover, any pair of devices satisfying the
no-signaling condition — whether or not their inner workings can be described by quantum
mechanics — will either be rejected by the experimenter with high probability, or produce
bits that contain large amounts of entropy. Hence the certified presence of randomness does
not depend on any assumption on the physical nature of the devices — it is guaranteed by
a simple statistical test, together with the no-signaling condition.

We also show that the bits produced in our protocol appear random even to the point of
view of a quantum adversary, who may herself be entangled with the two players used in the
protocol. This condition is crucial for the use of the random bits in cryptography, as well as
for composability of the protocol. Our proof of this additional security guarantee exploits
some key features of a specific construction of quantum-proof extractor. Specifically, suppose
that the conditional min-entropy of the devices’ outputs B, conditioned on the adversary’s
system E, is much smaller than the number of random bits we claim the devices produce:
H∞(B|E) � n. The key observation is then that, if we were to apply an extractor to
B in an attempt to extract more bits than its conditional min-entropy, then certainly the
extractor’s output would not be secure: Eve would be able to distinguish it from a uniformly
random string. By exploiting key features of the security proof of a specific extractor, based
on a construction paradigm due to Trevisan [119], we are able to use this argument to
derive strong conditions on the adversary, eventually leading to a contradiction with the
no-signaling condition. We explain our results one extractors next.

Quantum-proof extractors. Extractors are pseudorandom constructions that transform
a high-entropy string of bits (the source) into one that is close to uniform (but shorter). In
order to achieve this, they typically require an additional input, the seed, that is uniformly
distributed. An adversary to the extractor is given access to the seed, and to the output
of the extractor. The goal of the adversary is to distinguish this output from a uniformly
distributed bit string. If the adversary succeeds then the extractor is not accomplishing
its task. Quantum adversaries may be further (weakly) correlated with the source of the
extractor, and use this quantum side information in order to help them distinguish the output
of the extractor from uniform.

Showing that an extractor is secure against quantum adversaries is a challenging task,
and the first such proof of security is due to Renner [100]. Other constructions were proven
secure on a case-by-case basis [117, 74, 76], but for a long time no extractor construction
with poly-logarithmic seed was shown secure against quantum adversaries. The first such
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result came in work by Ta-Shma [112], who provided an analysis of a variant of Trevisan’s
extractor [119] in the quantum bounded-storage model. That variant had a poly-logarithmic
seed, but an output length with a poor dependence on the adversary’s memory size.

In Chapter 8 we show that Trevisan’s extractor is secure in the presence of a quantum ad-
versary, in the most general model of security. Moreover, we show that the parameters of the
extractor are essentially the same as in the classical setting. Our proof technique adapts the
so-called “reconstruction paradigm” to the quantum setting. Adapting this technique poses
the unique challenge of overcoming a fundamental property of quantum measurements, which
is that they perturb the state on which they are performed. The resulting “quantum recon-
struction paradigm”, which derives its key ingredient from work of Koenig and Terhal [76],
plays an important role in the proof of security of our randomness-expansion protocol.

1.3.2 Interactive proofs with quantum messages.

Entanglement plays a dual role in multilayer games. As we have seen, it can be used by
the players in order to collude against the referee. But it may also potentially be useful to
the referee: by exploiting the presence of entanglement between the players the referee may
require them to perform more complex tasks, that even “honest” but un-entangled players
would not be able to achieve. This intriguing possibility, together with the absence of a
quantitative bound on the amount of entanglement that may be required of the players to
play even near-optimally in a given game, helps explain why there is currently no upper
bound known on the class MIP∗. (See [38] for an upper bound on the related class of
languages having quantum commuting-prover interactive proofs.)

In order to explore this question we study multiplayer games in which the referee is
allowed to exchange quantum messages with the players. This natural modification may
open the way to stronger forms of interaction: for instance, the referee may himself send
entangled questions to the players, potentially making it harder for them to collude — or at
least making it necessary for them to share entanglement in order to succeed in the game.

The corresponding complexity class, QMIP∗, was introduced by Kobayashi and Mat-
sumoto [72]. Kobayashi and Matsumoto show that, in the absence of entanglement between
the players, QMIP = NEXP, while if a polynomial number of qubits of entanglement are
allowed then the inclusion QMIP∗ ⊆ NEXP still holds. Their first result demonstrates that
quantum messages are no more useful than classical messages in the context of multiprover
interactive proofs without entanglement.4

Our contribution. We show that the presence of entanglement in multiprover interactive
proofs with quantum messages can be used beneficially by the verifier. Indeed, we show

4An analogous result was very recently shown for the class of languages having single-prover quantum
interactive proofs: QIP = IP = PSPACE [64]. While the inclusion IP ⊆ QIP is not hard to see, it is the
proof of the reverse containment QIP ⊆ PSPACE = IP that required major work and the development of
radically new techniques [63, 62].
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that using entanglement QMIP∗ systems can be parallelized to three rounds of interaction,
and made public-coin: the verifier’s sole message to the provers is the broadcast of a single
random bit.

This second property does not hold in the absence of entanglement: in the classical case,
public-coin multi-prover interactive proofs are only as powerful as single-prover interactive
proofs — since every prover receives the same question from the verifier, every prover knows
how other provers will behave and the joint strategy of the provers can therefore simulate any
strategy of a single prover. Hence, these systems cannot be as powerful as general classical
multi-prover interactive proofs unless NEXP = PSPACE.

In contrast, our result shows that in the quantum case, public-coin QMIP systems are
as powerful as general QMIP systems. The non-triviality of public-coin QMIP systems may
be explained as follows: even if every quantum prover knows how other quantum provers
will behave, still each quantum prover can only apply local transformations over a part of
some state that may be entangled among the provers, which is not enough to simulate every
possible strategy a single quantum prover could follow.

1.4 Bibliographical remarks

This thesis is based on seven different papers. The result NEXP ⊆ MIP∗ is joint work with
T. Ito [60]. The parallel repetition of entangled games was studied in joint work with J.
Kempe [67]. The results exploiting the monogamy of entanglement in three-player games
appear in joint work with J. Kempe, H. Kobayashi, K. Matsumoto and B. Toner [68]. The
randomness-expansion protocol is joint work with U. V. Vazirani [121], while the security
of Trevisan’s extractor against quantum adversaries was first shown in the bounded storage
model in joint work with A. De [33], and extended to the most general setting in work with
A. De, C. Portmann and R. Renner [34]. The results on the structure of QMIP∗ are taken
from joint work with J. Kempe, H. Kobayashi and K. Matsumoto [69].
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Chapter 2

Working with entangled provers: the
example of linearity testing

The results in this thesis bring together techniques coming from two distinct areas, quan-
tum computing and classical multiplayer games. In this chapter we give a gentle introduction
to some of the key concepts from both in a simple but fundamental context: the analysis of
the celebrated linearity test of Blum, Luby and Rubinfeld [23] in the presence of entangled
players. While being simple enough to afford an elementary description, this analysis cap-
tures many of the key ideas that will be used in later chapters.1 The results in this chapter
are joint work with T. Ito [60].

We first recall the definition of the linearity test, and give a brief proof of its soundness for
the case of classical players, in Section 2.1. In Section 2.2 we give a “beginner’s introduction”
to the quantum formalism used to describe entangled players.2 In Section 2.3 we state the
“entangled-prover linearity test”, taking the opportunity to explain some of the challenges
that arise in the analysis of entangled games. Finally, in Section 2.3.2 we give a proof of the
soundness of that test, emphasizing the important tools and techniques that it makes use of.

2.1 The linearity test

Blum, Luby and Rubinfeld’s linearity test is a game played with three provers. The verifier’s
questions are elements of Fn

2 , for some integer n, and he expects answers in F2. The test
is designed to verify that each prover answers the verifier’s question according to a linear
function f : Fn

2 → F2, i.e. one that can be written as f(x) = u · x for some u ∈ F
n
2 . The test

is as follows:

1We will come back to these ideas in more detail in Chapter 4, in which we’ll give a more complete
introduction to the tools and techniques used in this thesis.

2A more complete description of the useful notions from quantum information theory, as well as definitions
related to games and interactive proofs, will be given in Chapter 3.
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Linearity test. Perform either of the following with probability 1/2 each:

1. (Consistency.) Select a random x ∈ F
n
2 , and send x to each of the provers.

Accept if and only if all three provide the same answer.

2. (Linearity.) Select two random points x, y ∈ F
n
2 , and set z := x+ y. Send x

to the first prover, y to the second, and z to the third. Expect three answers
a, b, c ∈ F2, and accept if and only if a+ b = c.

This test has perfect completeness : if the provers answer according to the same linear
function, then they succeed in the test with certainty. Note also that the marginal distribu-
tion on each prover’s questions being the same in both parts of the test, there is no way for
the provers to determine locally which part they are being tested on by the verifier: they
must use the same strategy in both cases. BLR show the following.

Theorem 1 (BLR). Suppose that three deterministic provers succeed in the linearity test
with probability 1− ε, and let f1, f2, f3 : F

n
2 → F2 be the functions describing their respective

strategies. Then there is an u ∈ F
n
2 such that, for each i ∈ {1, 2, 3}, fi(x) = u · x for all but

a fraction at most 8 ε of x ∈ F
n
2 .

Theorem 1 starts from the assumption that the three provers are deterministic. In the
case of classical, randomized provers this always holds without loss of generality by “fixing
the randomness”: among all shared random strings that the provers may use, there is always
one that gives them at least as good a success probability as on the average, and we may
as well assume that they are using the corresponding deterministic strategies. In the case of
entangled players this step will not be possible.

Analysis of the linearity test.

We refresh our reader’s memory by giving a classic Fourier-analytic proof of Theorem 1.
The proof for the case of entangled players will follow the same outline, and readers new to
linearity testing may find it useful to familiarize themselves with the classical proof first.

By assumption the provers succeed with probability 1 − ε in the linearity test, so they
must succeed in the “consistency” and “linearity” parts of the test with probability at least
1 − 2ε each. From the “consistency” part we can infer that there is at most a 2ε fraction
of x ∈ F

n
2 such that f2(x) 6= f1(x) or f3(x) 6= f1(x); call them “bad” x. In the “linearity”

part of the test, the probability that either of the two questions y or z is bad is at most 4ε.
Hence we may as well assume that all three provers answer according to the same function
f := f1, in which case their success in the linearity part of the test should be at least
1− 2ε− 4ε = 1− 6 ε.

Instead of working directly with f , it will be convenient to introduce the function g :
F
n
2 → {−1, 1} defined as g(x) = (−1)f(x) for every x ∈ F

n
2 . For any u ∈ F

n
2 , define the
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Fourier coefficient of g at u as ĝ(u) = Ex(−1)u·xg(x). Parseval’s identity states that

∑

u

(
ĝ(u)

)2
=
∑

u

Ex,y

[
(−1)u·(x+y)g(x)g(y)

]
= Ex

[
g(x)2

]
= 1.

It is not hard to see that for any ε′ > 0 the provers having success probability at least 1− ε′
in the “linearity” part of the test is equivalent to the following equation on g:

1

2
+

1

2
Ex,y [ g(x)g(y)g(x+ y) ] ≥ 1− 2 ε′. (2.1)

The key claim in the proof of Theorem 1 is the following.

Claim 2. Suppose deterministic provers applying the same function f succeed in the linearity
test with probability at least 1− ε′, and let g = (−1)f . Then

∑

u

(
ĝ(u)

)3 ≥ 1− 2 ε′. (2.2)

Proof. Expand

∑

u

(
ĝ(u)

)3
=
∑

u

Ex,y,z

[
(−1)u·(x+y+z)g(x)g(y)g(z)

]

= Ex,y [ g(x)g(y)g(x+ y) ] ,

since
∑

u(−1)u·(x+y+z) = 0 whenever z 6= x + y in F
n
2 . The claim then follows directly

from (2.1).

As a consequence of the bound proven in Claim 2, one can see that g must have a large
Fourier coefficient:

1− 12 ε ≤
∑

u

(
ĝ(u)

)3 ≤
(
max

u

∣∣ĝ(u)
∣∣
)(∑

u

(
ĝ(u)

)2)
= max

u

∣∣ĝ(u)
∣∣

by Parseval’s identity. Let u0 be such that
∣∣ĝ(u0)

∣∣ ≥ 1− 12ε. Then by definition

∣∣Ex [ (−1)u0·xg(x) ]
∣∣ =

∣∣ĝ(u0)
∣∣ ≥ 1− 12 ε.

Recalling the definition of g, this bound immediately implies that the functions f and x 7→
(u0 · x) can differ on at most a fraction 6ε of coordinates, proving Theorem 1.

Recapitulating, the proof of Theorem 1 has three main steps. First we argued that,
since the provers had a high success probability in the “consistency” part of the test, we
could assume that they were using the same function f to compute their answers. Then we
proved Claim 2, which puts a lower bound on the sum of the third powers of the Fourier
coefficients of any function that passes the “linearity” part of the test with high probability.
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Finally, from that bound we deduced that there must exist a linear function ` (the function
x 7→ u0 ·x) that differs from the prover’s function f on at most a small fraction of questions,
implying that if we replaced the provers by ones answering according to ` rather than f
then the verifier would see little difference — even if this replacement is done as part of a
larger protocol in which the linearity test is only a subroutine (provided that, in the larger
protocol, the marginal distribution of the questions to each of the “linear” provers is uniform
in F

n
2 ).

2.2 Entangled strategies

In this section we introduce some notation and concepts from quantum information theory
that are needed to describe what an entangled strategy is. Even though the linearity test
uses three provers, for clarity we focus on the setting of two provers; everything that we say
here has a natural extension to the case of more provers.

The reader may already be familiar with pure quantum states, which are described by
unit vectors |Ψ〉 ∈ C

d,3 for some dimension d which is usually a power of 2 (if the system is
represented by qubits, then the number of qubits is log2 d). The reader may also have prior
experience with orthogonal measurements: a measurement is described by the choice of an
orthonormal basis {|ei〉, i = 1, . . . , d} for the space C

d. Upon measuring in that basis the
i-th outcome is observed with probability |〈ei|Ψ〉|2, while the state of the system is projected
to its post-measurement state |ei〉.

In the remainder of this section we introduce generalizations of these two fundamental
concepts that will be necessary to describe entangled-prover strategies.

Density matrices. While pure states provide a convenient way to describe isolated sys-
tems, such as the joint state of all provers in a multiplayer game, we will sometimes need
to work with more general, non-isolated systems, such as the first prover’s subsystem alone.
In full generality, a quantum system is described by a probabilistic mixture of pure states
(pi, |Ψi〉). This mixture is represented by a corresponding density matrix ρ =

∑
i pi|Ψi〉〈Ψi|.4

Since the pi are a distribution, and the |Ψi〉 are normalized, ρ is a positive matrix with trace
1.

How does one compute the density matrix representing the first prover’s subsystem, given
that both provers are jointly in the pure state |Ψ〉? Suppose the second prover was to measure
his system using an arbitrary fixed orthogonal measurement, described by an orthonormal

3Recall that Dirac’s very convenient “ket” notation indicates how we think of the vector Ψ: a ket |Ψ〉 is
a column vector, while a bra 〈Ψ| is a line vector: 〈Ψ| = |Ψ〉†.

4The careful reader may have noticed that different distributions can give rise to the same density matrix.
But quantum mechanics states that the formalism of density matrices does give a full description of a given
subsystem’s state: different distributions giving rise to the same density matrix are indistinguishable.
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basis {|ei〉, i = 1, . . . , d}. Given such a basis, one may always express |Ψ〉 as

|Ψ〉 =
∑

i

√
pi|Ψi〉|ei〉,

where the pi are a distribution, and the |Ψi〉 normalized (but not necessarily orthogonal).
Hence once the second prover measures, he obtains outcome i with probability pi, and the
whole system gets projected in the state |Ψi〉|ei〉, implying that the first prover is then in
state |Ψi〉. But of course, by the no-signaling principle, the state of the first prover should
be independent of whether the second prover makes the measurement or not — hence the
first prover can be accurately described as being in state |Ψi〉 with probability pi, i.e. the
state of his subsystem is represented by the density matrix

ρ1 =
∑

i

pi|Ψi〉〈Ψi|.

The skeptical reader should check that this matrix is independent of our choice of basis for
the measurement on the second prover’s subsystem, as it should be.

The operation of finding a description of a subsystem given a description of the whole is
called “tracing out”, and it will be important for us. It can be performed in the same way as
described above even starting from a density matrix representation of the whole system: if
both provers are in a joint state σ, then the first prover’s reduced state, obtained by tracing
out the second prover, is given by

ρ1 = Tr2(σ) =
∑

i

(Id⊗ 〈ei|) σ (Id⊗ |ei〉). (2.3)

Generalized measurements. Just as we generalized our notion of quantum state from
pure states to density matrices, we’ll need to generalize measurements to allow “high-rank”
measurements, which have fewer possible outcomes than the system’s dimension. While we
used to think of a measurement as projecting a state on a basis, a projective measurement
corresponds to projecting a state on a subspace. Hence a projective measurement is given by
a set of orthogonal projectors A1, . . . , Ak such that A1 + . . . + Ak = Id. The “measurement
rule” is that when {Ai} is performed on the quantum state ρ, outcome i will be observed
with probability Tr(Aiρ), the “overlap” of the density ρ on Ai. Using a decomposition
ρ =

∑
j pj|Ψk〉〈Ψj|, this probability also reads Tr(Aiρ) =

∑
j pj〈Ψj|Ai|Ψj〉, which is the

average, according to the distribution {pj}, of the overlap of the state |Ψj〉 on the subspace
on which Ai projects.

Entangled strategies. We are ready to put our newly-learned notions from quantum
information theory to practice in describing an entangled-prover strategy in a multiplayer
game. Consider a two-prover game, in which the first (resp. second) prover is sent a question
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x (resp. y), and has to provide an answer a (resp. b). For simplicity, assume that the
provers’ answers are bits, as will be the case in the linearity test. Let σ be the density
matrix describing the joint state of the two provers. Upon receiving his question x, the first
prover measures his subsystem using a two-outcome measurement, described by a pair of
orthogonal projectors A0

x and A1
x such that A0

x + A1
x = Id; this measurement can also be

succinctly described through the corresponding observable Ax = A0
x − A1

x.
5 As a result, the

prover obtains an outcome a ∈ {0, 1}, and he sends it back to the verifier as his answer.6

Similarly, upon receiving y the second prover makes the measurement {B0
y , B

1
y} on his share

of σ, and sends his outcome back to the verifier.
In order to complete our picture we need to give the rule describing the joint probability

p(a, b|x, y) that the two provers answer the questions (x, y) with (a, b). The way to compute
this is to imagine the two provers as making a single, joint measurement, described by four
projectors obtained by taking the tensor product of both prover’s measurement operators:
A0

x ⊗ B0
y , A

0
x ⊗B1

x, etc. This leads to the following definition:

p(a, b|x, y) := Tr
((
Aa

x ⊗Bb
y

)
σ
)
=

∑

(r,s),(r′,s′)

(
Aa

x

)
r,r′

(
Bb

y

)
s,s′

σ(r,s),(r′,s′).

To make sure one understands this equation, one can think of how one would describe
classical provers using shared randomness in this formalism. In that case, σ would be a
diagonal matrix representing the prior probability q(r) of each shared random string r ∈ [d]:
σ’s rows can be indexed by pairs (r, s) ∈ [d]2, and it would have a coefficient q(r) in the
diagonal entry corresponding to the (r, r) row; all other coefficients (diagonal and otherwise)
would be 0.7 Let fr (resp. gr) be the function that the first (resp. second) prover would
use if the shared random string was r. Then for any question x and answer a the prover’s
measurement matrix Aa

x (resp. Bb
y) would also be diagonal, and contain a 1 in each diagonal

entry (r, r) such that fr(x) = a (resp. gr(y) = b). One can now check that with this setup

Tr
((
Aa

x ⊗Bb
y

)
σ
)
=
∑

r∈[d]
q(r) 1fr(x)=a 1gr(y)=b ,

as should be the case. Of course, general entangled strategies will differ from the one con-
structed above in a key aspect: the prover’s measurements corresponding to different ques-
tions will not in general commute, hence they will not be diagonal in the same basis.

5Going from the pair (A0
x, A

1
x) to Ax is the quantum analogue of going from a {0, 1}-valued function f

to the {−1, 1}-valued function g = (−1)f .
6The measurement formalism that we have described also encompasses seemingly more complex strategies,

in which the prover would make a measurement, then do some classical processing on the outcomes, maybe
another measurement, etc. — all these operations are taken into account by the projectors A0

x and A1
x,

which describe his final answer.
7As a side remark, note that choosing σ = d−2Id would not correspond to shared randomness — indeed,

that state has a tensor product form (d−1Idd) ⊗ (d−1Idd), so that it corresponds to a setting where there
would be no correlations between the provers at all.
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2.3 Linearity testing of entangled provers

The first difficulty in extending the linearity test to the case of entangled provers is to
determine what its precise statement should be. Indeed, in the presence of entanglement (as
in the presence of shared randomness between the provers), there is no hope of extracting
a single linear function from the prover’s strategy, as was done in Theorem 1. What does
it even mean for entangled provers to be linear, if their strategy cannot be tied to a single
function? The following informal theorem suggests an answer:

Theorem 3 (Entangled-prover linearity test, informal). Suppose that three entangled provers,
using a strategy described by measurements {Aa

x}, {Bb
y}, {Cc

z} and a shared entangled state
σ, succeed in the linearity test with probability 1− ε. For u ∈ F

n
2 , let

Âu = Ex(−1)x·u
(
A0

x − A1
x

)

be the matrix Fourier coefficient associated to the first prover’s strategy. For every u, define

Mu :=
(
Âu

)2
. (2.4)

Then {Mu} is a proper quantum measurement. Moreover, the original prover’s strategy is
almost indistinguishable from that of three “oblivious” provers whom would behave as follows:

1. Measure their share of the entangled state using {Mu}, each obtaining an outcome ui,
for i ∈ {1, 2, 3},

2. Upon receiving the prover’s question x, answer with ui · x.

The key point in Theorem 3 is Eq. (2.4), which, rather than defining a single linear
function to which the provers would be close, constructs a global measurement, independent
of the prover’s questions, and then claims that this measurement faithfully reproduces the
original provers’ strategy. It does this by considering new, “oblivious” provers, who first
measure according to the constructed measurement, obtaining the label u of a linear function,
and then apply that function to their question. Hence the measurement might as well have
been made before the start the protocol: the oblivious provers are effectively reduced to
being classical, using shared randomness to determine the linear function they will use.8

The definition of Mu has a simple interpretation in the special case where the provers
are classical, but may use shared randomness. It corresponds to the following definition
of an “oblivious” strategy: the prover simply looks at his random string r, pointing to a
function fr according to which the “original” prover would answer his questions. Instead,

8This observation shows that success in the linearity test imposes a very strong constraint on the struc-
ture of even entangled provers, thus reduced to using their entanglement in only a very limited way. A
generalization of this strong constraint will be at the heart of our proof that NEXP ⊆ MIP∗, given in
Chapter 5.
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the oblivious prover samples a function ` : x 7→ u · x, where u is chosen according to the
distribution suggested by fr’s Fourier spectrum.9 When his question x arrives, he answers
with `(x) = u · x.

Why is this a good strategy? Recall that in the soundness proof for the classical, deter-
ministic case we had proved Eq. (2.12), which stated that the Fourier coefficients of g = (−1)f
were sharply concentrated. This justified our “rounding” of the provers’ strategy to the lin-
ear function corresponding to the largest Fourier coefficient. In the case of a randomized
strategy it will still be the case that most functions fr have a large Fourier coefficient. Even
though which coefficient might depend on the random string r, the “linear” strategy defined
above intrinsically accounts for that possibility, and it is not hard to see that it will indeed
faithfully reproduce the original prover’s actions.

Returning to Theorem 3, what is maybe more surprising is that essentially the same
definition of a new strategy will also work in the case where the original provers use an
arbitrary entangled strategy! Before showing that this is indeed the case, we should make
precise what we mean by two entangled-prover strategies being “almost indistinguishable”.
In the classical case this was taken to mean “the new provers’ strategy differs from the
original one in a fraction at most O(ε) of questions”, and we give a definition formalizing a
similar intuition in the case of entangled provers in the next section. We then give a more
precise statement of Theorem 3, as well as its proof, in Section 2.3.2.

2.3.1 Measuring the distance between provers

In the classical analysis of the linearity test, from three functions (f, g, h) having high success
in the test one constructs a linear function ` such that f, g, h differ from ` in a small fraction
of points x ∈ F

n
2 . This ensures that the linearity test can be performed as part of a bigger

protocol, possibly involving a larger number of provers: its goal is to constrain a subset of the
provers to answer according to a linear function. Provided in the larger protocol the verifier’s
question to each prover is distributed as in the linearity test (uniformly in F

n
2 ), replacing

them with their linear approximation will not affect the provers’ success probability in the
overall protocol much, while potentially making the analysis much simpler.

We would like to achieve the same result in the case of entangled provers. In order to
make a meaningful statement, we need an appropriate measure of what it means for two
distinct strategies of a single prover to be “indistinguishable”. Any measure that we use
should be strong enough that a small distance implies that the type of “prover replacement”
described above does not affect the provers’ success probability in the overall protocol too
much, while still being weak enough that one is able to prove bounds on that distance simply
from the fact that the provers have a high success in the linearity test.10

9Letting gr = (−1)fr , this is the distribution induced by the |ĝr(u)|2 (Parseval’s identity shows that this
is indeed a distribution).

10This implies for instance that the operator norm on the provers’ measurements would not be appropriate,
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Consider two distinct measurements,
{
Aa

x

}
and

{
Ãa

x

}
, that the first prover could apply

on his share of the entangled state, which we’ll take to be a pure state |Ψ〉 for simplicity.
Fix a question x ∈ F

n
2 . Quantum mechanics dictates that, once the first prover has applied

the measurement
{
A0

x, A
1
x

}
on his share of |Ψ〉 and obtained an outcome a ∈ {0, 1}, the

entangled state gets projected to |Ψ′〉 =
(
Aa

x ⊗ Id ⊗ Id
)
|Ψ〉, where the identity terms are

meant to indicate that the other two provers have not performed any action yet.11 This
means that, for this fixed x, the global states resulting from the first prover measuring using
either {A0

x, A
1
x} or {Ã0

x, Ã
1
x}, and conditioning on either answer being obtained, will be close

if the following quantity is small:

∑

a

∥∥(Aa
x ⊗ Id⊗ Id)|Ψ〉 − (Ãa

x ⊗ Id⊗ Id)|Ψ〉
∥∥2 =

∑

a

〈Ψ|
((
Aa

x − Ãa
x

)2 ⊗ Id⊗ Id
)
|Ψ〉

=
∑

a

Tr
((
Aa

x − Ãa
x

)2
ρ
)
, (2.5)

where ρ is the reduced density of the state |Ψ〉 on the first prover’s register (cf. Eq. (2.3)
for a definition). The magic of this last equation is that the systems corresponding to the
second and third provers have disappeared; this was made possible by the fact that they
act on subsystems separated from the first prover’s. Nevertheless, we have shown that if
the quantity in (2.5) small, then the provers’ shared state is almost the same after the first
prover has measured his subsystem using either A or Ã, and obtained an answer a. Hence
whatever happens in the remainder of the protocol, the probabilities that arise from other
provers’ measurements will be essentially the same irrespective of which of A or Ã the first
prover applied.

Incorporating the choice of the question x, we are ready to define our distance measure
on strategies: we’ll say that the strategies described by

{
Aa

x

}
and

{
Ãa

x

}
, together with the

entangled state σ with reduced density ρ on the first prover’s subsystem, are δ-close if

dρ(A,B) :=
(
ExTr

((
Aa

x − Ãa
x

)2
ρ
))1/2

≤ δ.

We will explore properties of dρ in more detail in Chapter 4. In particular, it is not too
hard to see that dρ is indeed a distance measure (it is non-negative and satisfies the triangle
inequality), and that if {Aa

x} and {Ãa
x} are measurements then it is bounded between 0 and√

2.
We argued that the distance measure dρ was strong enough to ensure that switching

from one of two strategies close in that distance to the other would have a small effect on

as success in the test does not put constraints directly on the provers’ measurements themselves, but only
on their probability of obtaining certain outcomes when applied on the entangled state σ.

11Observe that the squared norm of the state after the prover’s measurement is ‖(Aa
x ⊗ Id ⊗ Id)|Ψ〉‖2 =

Tr
(
((Aa

x)
2⊗Id⊗Id)(|Ψ〉〈Ψ|)

)
= 〈Ψ|(Aa

x⊗Id⊗Id|Ψ〉, since Aa
x is a projector: it is the probability of obtaining

outcome a when measuring Ψ with {Aa
x}. As such, the post-measurement state is not normalized.
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the overall performance of the provers in any entangled game. The analysis of the linearity
test in the next section will show that it is also weak enough, in the sense described above:
one can place bounds on dρ from the seemingly weak assumption that provers have a high
success probability in a certain well-chosen test that the verifier plays with them.

2.3.2 The quantum analysis

Before stating our theorem, we observe that, given that the linearity test is symmetric
under permutation of the three provers, one may assume without loss of generality that the
following hold of the provers’ strategies:

1. All three provers are applying the same set of measurements {Aa
x},

2. The provers’ shared state σ is invariant with respect to any permutation of its three
subsystems.

This observation follows from a symmetrization argument; it is re-stated in more detail and
proved as Lemma 13 in Chapter 4. In practice, it means that the probabilities p(a, b, c|x, y, z)
do not depend on which prover applied the measurement corresponding to each question:

Tr
((
Aa

x ⊗ Ab
y ⊗ Ac

z

)
σ
)
= Tr

((
Ab

y ⊗ Ac
z ⊗ Aa

x

)
σ
)
= . . . = Tr

((
Ac

z ⊗ Ab
y ⊗ Aa

x

)
,

a convenient property we will make frequent use of.

The following theorem, a precise reformulation of Theorem 3, is the main result of this
chapter.

Theorem 4 (Linearity test with entangled provers). Suppose three entangled provers succeed
in the linearity test with probability at least 1−ε using a symmetric strategy12 with measure-
ments

{
Aa

x

}
and entangled state σ. Then there exists a measurement

{
Bu
}
, independent of

x and indexed by outcomes u ∈ F
n
2 , such that if we let Ba

x :=
∑

u:u·x=aB
u then

(
dρ(A,B)

)2
= Ex

∑

a

Tr
((
Aa

x −
∑

u:u·x=a

Bu
)2
ρ
)
≤ 8
√
ε. (2.6)

As discussed in Section 2.3.1, through Eq. (2.6) the theorem asserts that “oblivious”
provers, who would first measure according to {Bu}, obtain an outcome u, and then answer
their question x with u · x, are almost indistinguishable from the original provers, in the

12Even though this symmetry implies that all three provers are using the same set of measurements {Aa
x},

and their entangled state is invariant with respect to any permutation of the provers’ subsystems, this
assumption alone is not sufficient to guarantee that they will succeed with certainty in the “consistency”
part of the linearity test. Indeed, the assumption of symmetry does not for instance preclude randomized
strategies in which the random strings would be triples of bits (a, b, c) and the i-th prover would answer with
the bit contained in the i-th position.
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strong sense that one may replace the original provers by the new ones while only affecting
their success probability in any overall protocol,13 of which the linearity test might only be
a subroutine, by O

(√
ε
)
.

We now turn to the proof of Theorem 4. Following the classical proof given in Section 2.1,
we will use Fourier analysis directly on the prover’s observables Ax := A0

x − A1
x: for every

u ∈ F
n
2 one may define

Âu := Ex [ (−1)u·xAx ] .

In general, Âu is Hermitian, with eigenvalues in [−1, 1]. Indeed, a variant of Parseval’s
identity also holds in this setting:

∑

u

(
Âu

)2
=
∑

u

Ex,y

[
(−1)u·(x+y)AxAy

]
= Ex

[
A2

x

]
= Id, (2.7)

where the last equality uses that the Ax are observables.

As in the classical case (cf. (2.1)), the following two equations re-formulate the fact that
the provers must succeed in each of the “consistency” and the “linearity” parts of the tests
with probability at least 1−2ε.14 (Recall that we use p(a, b, c|x, y, z) to denote the probability
that the provers answer (a, b, c) to questions (x, y, z).)

Ex

∑

a,b

p(a, a, b|x, x, x) = ExTr
((
Ax ⊗ Ax ⊗ Id

)
σ
)
≥ 1− 4ε, (2.8)

Ex,y

∑

a,b

p(a, b, a+ b|x, y, z) = Ex,y Tr
((
Ax ⊗ Ay ⊗ Ax+y

)
σ
)
≥ 1− 4ε. (2.9)

The proof of both equations is exactly similar to the classical case, and we postpone it
until Section 2.3.3. Still in complete analogy with the classical setting, one can translate
Eqs. (2.8) and (2.9) into conditions on the Fourier coefficients Âu that we associated with
the observables Ax:

∑

u

Tr
((
Âu ⊗ Âu ⊗ Id

)
σ
)
≥ 1− 4ε, (2.10)

∑

u

Tr
((
Âu ⊗ Âu ⊗ Âu

)
σ
)
≥ 1− 4ε. (2.11)

The proof of both equations follows from the definition of Âu and Eqs. (2.8) and (2.9). In
the classical setting, (2.11) would already be a proof of Claim 2: since the “entangled state”

13As we already mentioned, this is only possible provided the marginal distribution on the “linear” provers’
questions in the overall protocol is as it is in the linearity test, uniform over Fn

2 .
14Note that, for the first equation, we write the probability of the provers succeeding as if the verifier

only checked that two out of the three answers were consistent; a weaker but sufficient requirement for our
purposes.
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in that case is one-dimensional, the tensor product becomes a product, and the sum of the
third powers of the Fourier coefficients appears.

In the presence of entanglement, however, it seems that we are stuck: each prover acts on
his own subsystem only; how could one bring different subsystems together? The following
claim shows that this is, in fact, possible as a consequence of the “consistency” part of the
linearity test: a measurement {Aa

x} performed on the first subsystem can be “replaced” by the
same measurement performed on the second subsystem, without affecting the provers’ shared
state, after that measurement has been performed, by much.15 Note that this property is
distinct from that of the strategy’s symmetry: while symmetry dictates that the distribution
of outcomes should be the same irrespective of which measurement is performed on which
subsystem, here we are showing that the whole post-measurement state is almost the same
in both cases. Claim 5 provides an important tool to manipulate entangled strategies, and
we will subsequently see how it lets us deduce an analogue of Claim 2 from (2.11).

Claim 5. Suppose the provers succeed in the consistency test with probability 1− ε. Then
∑

u

Tr
((
Âu ⊗ Id⊗ Id− Id⊗ Âu ⊗ Id

)2
σ
)
≤ 8ε,

and the same holds under arbitrary permutation of the registers.

Proof. It suffices to expand the expression on the left-hand side as

∑

u

Tr
((
Âu ⊗ Id⊗ Id− Id⊗ Âu ⊗ Id

)2
σ
)

=
∑

u

(
Tr
((
Â2

u ⊗ Id⊗ Id
)
σ
)
+ Tr

((
Id⊗ Â2

u ⊗ Id
)
σ
)
− 2Tr

((
Âu ⊗ Âu ⊗ Id

)
σ
))

≤ 2− 2(1− 4ε),

where we used Parseval’s identity (2.7) to compute the first two terms, and (2.10) to lower-
bound the last term.

Writing

Â3
u ⊗ Id⊗ Id− Âu ⊗ Âu ⊗ Âu =

(
Â2

u ⊗ Id⊗ Id
)(
Âu ⊗ Id⊗ Id− Id⊗ Âu ⊗ Id

)

+
(
Âu ⊗ Âu ⊗ Id

)
·
(
Âu ⊗ Id⊗ Id− Id⊗ Id⊗ Âu

)
,

Claim 5 together with Eq. (2.11) and the Cauchy-Schwarz inequality let us obtain the fol-
lowing quantum analogue of Claim 2.

15The claim proves this statement for the Fourier operator Âu, but a similar bound can be proven directly
for the observable Ax itself.
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Claim 6. The following holds

∑

u

Tr
(
Â3

u ρ
)
≥ 1− 8

√
ε. (2.12)

While in the classical setting Eq. (2.2), together with Parseval’s identity, immediately
implied the existence of a single large Fourier coefficient for g, in the presence of entanglement
Eq. (2.12) does not imply such a strong statement. Indeed, even in the case of provers
using shared randomness, (2.12) only states that for most random strings there should be a
corresponding large Fourier coefficient — but which coefficient it is may well depend on the
random string itself.

Instead, as described at the beginning of Section 2.3 we define a measurement {Mu} as

Mu :=
(
Âu

)2
.

Each Mu is non-negative, and Parseval’s identity shows that
∑

uM
u = Id: the Mu form a

proper quantum measurement. To show that they satisfy the requirement of the theorem,
let Cx = Ax −

∑
u(−1)u·xMu, and observe that the Fourier coefficient of Cx at u is

Ĉu = Âu − Ex

∑

u

(−1)u·xMu = Âu −
(
Âu

)2
,

so that by Parseval’s identity

ExC
2
x =

∑

u

(
Ĉu

)2
=
∑

u

Â2
u

(
Id− Âu

)2 ≤ 2
∑

u

Â2
u

(
Id− Âu

)
= 2

∑

u

(
Id− Â3

u

)
,

again as a consequence of Parseval’s identity. Hence

ExTr
((
Ax −

∑

u

(−1)u·xMu
)2
ρ
)
≤ 2− 2

∑

u

Tr
(
Â3

u

)

≤ 16
√
ε

by (2.12). This proves the theorem since

Ax −
∑

u

(−1)u·xMu =
1

2

(
Id + A0

x

)
− 1

2

(
Id +

∑

u·x=0

Mu
)
=

1

2

(
A0

x −
∑

u·x=0

Mu
)
,

and a similar equation holds after replacing ′0′ by ′1′.

2.3.3 Omitted proofs

We give details of the proofs that were omitted from our analysis of the linearity test in the
presence of entangled strategies.
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Proof of Eqs. (2.8) and (2.9). The player’s success probability in the consistency test is

Ex,y

∑

a

1

3

(
Tr
((
Aa

x ⊗ Aa
x ⊗ Id

)
σ
)
+ Tr

((
Aa

x ⊗ Id⊗ Aa
x

)
σ
)
+ Tr

((
Id⊗ Aa

x ⊗ Aa
x

)
σ
))
≥ 1− 2ε

(2.13)

By symmetry, all three terms inside the summation are the same. By definition of Ax =
A0

x − A1
x, we have

Tr
((
Ax ⊗ Ax ⊗ Id

)
σ
)
=
∑

a=a′

Tr
((
Aa

x ⊗ Aa′

x ⊗ Id
)
σ
)
−
∑

a 6=a′

Tr
((
Aa

x ⊗ Aa′

x ⊗ Id
)
σ
)
.

Using that A0
x + A1

x = Id, the sum (instead of the difference) of the two terms on the right-
hand side is 1. Combining this observation with (2.13) proves (2.8), and (2.9) is proved in a
similar way.

Proof of Claim 6.

∑

u

Tr
((
Â3

u ⊗ Id⊗ Id− Âu ⊗ Âu ⊗ Âu

)
σ
)

=
∑

u

Tr
((
Â3

u ⊗ Id⊗ Id− Â2
u ⊗ Âu ⊗ Id

)
σ
)
+
∑

u

Tr
((
Â2

u ⊗ Âu ⊗ Id− Âu ⊗ Âu ⊗ Âu

)
σ
)

=
∑

u

Tr
((
Â2

u ⊗ Id⊗ Id
)
·
(
Âu ⊗ Id⊗ Id− Id⊗ Âu ⊗ Id

)
σ
)

+
∑

u

Tr
((
Âu ⊗ Âu ⊗ Id

)
·
(
Âu ⊗ Id⊗ Id− Id⊗ Id⊗ Âu

)
σ
)

≤
(∑

u

Tr
((
Âu ⊗ Id⊗ Id− Id⊗ Âu ⊗ Id

)2
σ
))1/2(∑

u

Tr
(
Â4

u ρ
)
+ Tr

((
Â2

u ⊗ Â2
u ⊗ Id

)
σ
))1/2

≤
√
8ε ·
√
2,

where the first inequality is the Cauchy-Schwarz inequality, and the last uses Parseval’s
identity

∑
u Â

2
u = Id. Eq. (2.11) lets us conclude the proof.
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Chapter 3

Preliminaries

This chapter describes the notation that is used throughout this dissertation, and collects
some useful definitions relating to quantum computing, entangled games and interactive
proofs. We start with some notation in Section 3.1, before giving a brief overview of the
relevant notions from quantum computing in Section 3.2 and from quantum information
theory in Section 3.3. We then define multiplayer games in Section 3.4.1, and introduce the
complexity classes built on them in Section 3.4.2.

3.1 Notation

Sets and indices. We write [N ] for the set of integers {1, . . . , N}. If x ∈ {0, 1}n is a
string of length n, i ∈ [n] an integer, and S ⊆ [n] a set of integers, we write xi for the ith

bit of x, and xS for the string formed by the bits of x at the positions given by the elements
of S. We also use the shorthands x<i for x[1..i−1], x≥i for x[i..n], etc. Given two n-bit strings
x, y we let dH(x, y) =

1
n

∑n
i=1 δxi,yi denote their relative Hamming distance.

Algebra. R and C denote the fields of real and complex numbers respectively, and ‖·‖2 the
Euclidean norm. A calligraphic letter H will usually denote a finite-dimensional complex
Hilbert state. Md(C) is the set of all d × d matrices with coefficients in C. We will use
Tr(A) :=

∑
iAii to denote the trace, and A† :=

(
Aji

)
ij
to denote the conjugate-transpose.

Md(C) forms a Hilbert space when equipped with the inner-product (A,B) 7→ Tr(AB†), and

the resulting norm is the Frobenius norm ‖A‖F =
√

Tr(AA†). We also let ‖A‖1 = Tr
√
AA†

be the Schatten 1-norm, also called the trace norm ‖A‖tr := ‖A‖1 in the context of quantum
computing, and ‖A‖∞ be the operator norm. We denote by P(H) the set of positive semi-
definite operators on H. We define the set of normalized quantum states S(H) := {ρ ∈
P(H) : Tr ρ = 1} and the set of sub-normalized quantum states S≤(H) := {ρ ∈ P(H) :
Tr ρ ≤ 1}.
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Random variables. We use capital lettersX, Y, Z to denote random variables, and X ,Y ,Z
for the sets that they range in. If a classical random variable X takes the value x ∈ X with
probability px, it can be represented by the state ρX =

∑
x∈X px|x〉〈x|x, where {|x〉}x∈X is an

orthonormal basis of a Hilbert space HX . If the classical system X is part of a composite sys-
tem XB, any state of that composite system can be written as ρXB =

∑
x∈X px|x〉〈x|x⊗ ρxB.

Such a state is called a cq-state (cq stands for classical-quantum).

Other notation. F will be used to denote a finite field. We use poly as a short-hand for
any fixed polynomial. We use the script M to denote a register containing a quantum state.

3.2 Quantum computing

We refer the reader to Section 2.2 in the previous chapter for a gentle introduction to quantum
states and measurements in the context of entangled games. Here we collect some of the
most important definitions uses throughout this dissertation, referring the reader to a book
such as Nielsen and Chuang’s [85] for additional details.

States and measurements. A d-dimensional quantum state is a vector |Ψ〉 ∈ C
d. A

d-dimensional density matrix is a positive matrix ρ ∈ Md(C) with trace 1. A k-outcome
positive operator-valued measurement (POVM in short) is given by a set of k (possibly
rectangular) matrices Ai such that

∑
iA
†
iAi = Id. The A†iAi are called the POVM elements.

A projective measurement is a POVM in which each element is a projector, i.e. (A†iAi)
2 =

A†iAi. When the POVM {Ai} is performed on a state ρ, the outcome i is observed with
probability Tr(A†iAiρ), and the state is projected onto the post-measurement state

ρi =
AiρA

†
i

Tr
(
A†iAiρ

) .

Distance measures. The usual distance measure on states is the trace norm, defined for
any matrix A as

‖A‖1 := Tr
√
A†A.

Another useful distance is the Fidelity, defined for a pair of density matrices ρ and σ as

F (ρ, σ) :=
(
Tr
√√

ρσ
√
ρ
)2
.

We will use the following property of the fidelity.

Lemma 7 ([109, 84]). For any density operators ρ, σ, ξ over a Hilbert space H,
F (ρ, σ)2 + F (σ, ξ)2 ≤ 1 + F (ρ, ξ).
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3.3 Quantum information theory

In this section we introduce a few basic information-theoretic notions that will be used mostly
in Chapters 8 and 9. Given a random variable X ∈ {0, 1}n, its min-entropy is

Hmin(X) = − logmax
x

Pr(X = x).

For two distributions p, q on a domain D, their statistical distance is

‖p− q‖1 := (1/2)
∑

x∈D

∣∣p(x)− q(x)
∣∣
1
.

This notion of distance can be extended to random variables with the same range in the
natural way. In the context of randomness extraction, we need a “robust” version of the
min-entropy, the smooth conditional min-entropy, to measure how much randomness a source
contains and can be extracted. In the classical setting it is given by

Hε
min(X) = sup

Y, ‖Y−X‖1≤ε
Hmin(Y ),

where ε > 0 is a small parameter. The following simple claim will be useful.

Claim 8. Let α, ε > 0 and X a random variable such that Hε
min(X) ≤ α. Then there exists

a set B such that Pr(X ∈ B) ≥ ε and for every x ∈ B, it holds that Pr(X = x) ≥ 2−α.

Proof. Let B be the set of x such that Pr(X = x) ≥ 2−α, and suppose Pr(X ∈ B) < ε.
Define Y so that Pr(Y = x) = Pr(X = x) for every x /∈ B, Pr(Y = x) = 0 for every x ∈ B.
In order to normalize Y , introduce new values z such that Pr(X = z) = 0, and extend Y
by defining Pr(Y = z) = 2−α−1 until it is properly normalized. Then ‖Y − X‖1 < ε and
Hmin(Y ) > α, contradicting the assumption on the smooth min-entropy of X.

A quantum analogue of the smooth conditional min-entropy was first introduced by
Renner [100]. It represents the optimal measure for randomness extraction in the presence of
quantum adversaries, in the sense that it is always possible to extract that amount of almost-
uniform (from the point of view the adversary) randomness from a source (with which the
adversary may be correlated), but never more. We first define the (non-smooth) quantum
conditional min-entropy.

Definition 9 (conditional min-entropy [100]). Let ρAB ∈ S≤(HAB). The min-entropy of A
conditioned on B is defined as

Hmin(A|B)ρ := max{λ ∈ R : ∃σB ∈ S(HB) s.t. 2
−λ

1A ⊗ σB ≥ ρAB}.
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We will often drop the subscript ρ when there is no doubt about what underlying state
is meant.

This definition has a simple operational interpretation when the first system is classi-
cal, which is the case we will consider. König et al. [75] showed that for a state ρXB =∑

x∈X px|x〉〈x|x⊗ ρxB classical on X,

Hmin(X|B)ρ = − log pguess(X|B)ρ, (3.1)

where pguess(X|B) is the maximum probability of guessing X given B, namely

pguess(X|B)ρ := max
{Ex

B}x∈X

(
∑

x∈X
px Tr(E

x
Bρ

x
B)

)
,

where the maximum is taken over all POVMs {Ex
B}x∈X on B. If the system B is empty,

then the min-entropy of X reduces to the standard definition, Hmin(X) = − logmaxx∈X px
(sometimes written H∞(X)). In this case the connection to the guessing probability is
particularly obvious: when no side information is available, the best guess we can make is
simply the value x ∈ X with highest probability.

In terms of randomness extraction the conditional min-entropy is not quite optimal, in
the sense that it is sometimes possible to extract more randomness. However, the smooth
min-entropy is optimal. In analogy with the classical setting, this information measure
consists in maximizing the min-entropy over all sub-normalized states ε-close to the actual
state ρXB of the system considered. Thus by introducing an extra error ε, we have a state
with potentially much more entropy.

Definition 10 (smooth min-entropy [100, 116]). Let ε ≥ 0 and ρAB ∈ S≤(HAB), then the
ε-smooth min-entropy of A conditioned on B is defined as

Hε
min(A|B)ρ := max

ρ̃AB∈Bε(ρAB)
Hmin(A|B)ρ̃,

where Bε(ρAB) ⊆ S≤(HAB) is a ball of sub-normalized states of radius ε around ρAB.
1

3.4 Games and complexity classes

Multiplayer games and interactive proofs give two different languages to study the same
object, and each is adapted to a slightly different context. A game is usually thought of

1Theoretically any distance measure could be used to define an ε-ball. We use the purified distance,
P (ρ, σ) :=

√
1− F (ρ, σ)2, where F (·, ·) is the fidelity, since this measure has some advantages over other

metrics such as the trace distance. The only property of the purified distance we will need is that it is larger
than the trace distance, i.e., P (ρ, σ) ≥ 1

2‖ρ − σ‖tr. We refer to [116] for a formal definition of the purified
distance (and fidelity) on sub-normalized states and a discussion of its advantages.
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as being specified explicitly, through a description of the verifier’s set of possible questions
to the players, the probability distribution with which he chooses them, and the predicate
with which he decides to accept or reject the provers’ answers. Moreover, the language of
games is often used to describe the simplest setting of a single round of interaction between
the verifier and two provers (also sometimes called players in this context), even though in
principle they can also involve more rounds of interaction or more provers.

In contrast, when using the language of interactive proofs one usually thinks of the
protocol as being given implicitly, through the specification of a polynomial-time randomized
Turing machine describing the verifier’s behavior in the protocol, given access to an input
x ∈ {0, 1}∗. As such, interactive proofs may involve a number of possible questions to the
provers that is exponential in the input size, but such that the verifier can sample from the
corresponding distribution in polynomial time. Interactive proofs can involve a polynomial
number of rounds of interaction between the verifier and a polynomial number of provers.

We proceed with the formal definitions.

3.4.1 Games

Let Q and A be finite sets and let k be a positive integer. We distinguish three types of
games.

Classical game: A classical game is given by a distribution π : Qk → [0, 1] and a function
V : Ak ×Qk → {0, 1}.2 The verifier samples questions (q1, . . . , qk) according to π, and
sends qi to prover i from whom he then receives an answer ai. He accepts those answers
if and only if V (a1, . . . , ak | q1, . . . , qk) = 1. The value of the game is

ω(G) = max
[ ∑

(q1,...,qk)∈Qk

(a1,...,ak)∈Ak

π(q1, . . . , qk) Pr(a1, . . . , ak | q1, . . . , qk)

× V (a1, . . . , ak | q1, . . . , qk)
]
,

where the maximum is taken over all the provers’ strategies Wi for i ∈ {1, . . . , k}, i.e.,
functions Wi : Q×R→ A for some domain R (“shared randomness”), and

Pr(a1, . . . , ak | q1, . . . , qk) = Pr
r∈R

(
W1(q1, r) = a1, . . . ,WN(qk, r) = ak

)
.

In fact we can assume the strategies to be deterministic: there is always some r ∈ R
that maximizes the winning probability and we can fix it in advance.

Classical entangled game: A classical entangled game is similar to a classical game, ex-
cept that the provers are now allowed to share an arbitrary state |Ψ〉 of arbitrary

2We write V (·, ·) as V (· | ·) to clarify the role of the inputs.
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dimension. This increases the set of possible strategies to quantum operations per-
formed on the prover’s share of the entangled state. Note that no restrictions on |Ψ〉
(such as |Ψ〉 consisting of EPR pairs, or |Ψ〉 having bounded dimension) are currently
known to hold without loss of generality3. By standard purification techniques (see,
e.g., [26]) one can assume that for each question q each prover performs a projective
measurement Wq = {W a

q }a∈A with outcomes in A. We will use a superscript “∗” to
indicate entangled-prover games. The value ω∗(G) of such a game is given by4

ω∗(G) = sup
[ ∑

(q1,...,qk)∈Qk

(a1,...,ak)∈Ak

π(q1, . . . , qk) Pr(a1, . . . , ak | q1, . . . , qk)

× V (a1, . . . , ak | q1, . . . , qk)
]
,

where the supremum is taken over all a priori shared states |Ψ〉 and all projective
measurements (Wi)q = {(Wi)

a
q}a∈A for i ∈ {1, . . . , k} and q ∈ Q, and the probability

now is
Pr(a1, . . . , ak | q1, . . . , qk) = 〈Ψ|(W1)

a1
q1
⊗ · · · ⊗ (Wk)

ak
qk
|Ψ〉.

Quantum entangled game: A quantum entangled game is a game in which both the
verifier and the provers are quantum, and they exchange quantum messages. We
usually denote such a game by Gq. The verifier holds k message registers of size
poly(log |Q|) each, in addition to a private register of size poly(log |Q|), all initialized
to the state |0 · · · 0〉. He applies a unitary V1 to all the registers, then sends the
message registers to the corresponding provers. By purification we can assume that
the j-th prover performs a unitary transformation Uj on his message register and his
part of the entangled state |Ψ〉 and then sends the message register back to the verifier.
The verifier performs a quantum operation V2 on the message registers and his private
space, followed by a measurement {Πacc,Πrej} of his first qubit. The value of a quantum
entangled game, ω∗q, is given by

ω∗q(Gq) = sup
|Ψ〉,U1,...,Uk

Tr(ΠaccV2UV1|Ψ〉〈Ψ|Ψ⊗ |0 · · · 0〉〈0 · · · 0|0 · · · 0V †1 U †V †2 ),

where U = U1 ⊗ · · · ⊗ Uk.

3In fact, there are games known in which the maximum success probability of the provers goes to 1 with
the dimension of their entangled state [77]. Note however that these games involve quantum messages, and
are thus quantum entangled games in our terminology.

4We use a supremum because the optimal strategies might not be finite in the case of entangled provers.
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Input size. We measure the size of a game through the cardinality of the question set Q.
All the other components of the game’s distribution (the distribution π, the answer size, the
verifier’s circuits V1 and V2 in the quantum case) will always be of size polynomial in |Q|.5

Special classes of games. In our work on parallel repetition (cf. Chapter 7) we will
distinguish the following classes of games.

Definition 11. A two-player game G = (V, π) is called a

• Projection game if for every q′, q ∈ Q and a′ ∈ A, there is a unique a ∈ A such that
V (a′, a|q′, q) = 1.

• Free game if π = πA × πB is a product distribution.

• Symmetric game if π is symmetric, and for any q′, q, a′, a we have V (a′, a|q′, q) =
V (a, a′|q, q′).

Symmetric games

More generally, we will say that a k-prover entangled game is symmetric, or permutation-
invariant, if, for any tuple of strategies (P1, . . . , Pk) of the provers, the verifier accepts
(P1, . . . , Pk) with exactly the same probability as he accepts any permutation (Pσ(1), . . . , Pσ(k)).

In this section we show that any entangled game can be turned into an equivalent sym-
metric game, in the sense that the maximum success probability of any provers in either
game is the same. Moreover, if a game is symmetric then the provers always have an opti-
mal symmetric strategy as defined below. Symmetry is a useful simplifying assumption in
two respects: first it lets one assume that the set of POVMs used by both provers is the
same. Second, and most important, it implies that the prover’s shared entangled state is also
permutation-invariant. This property will be essential in much of our analysis of entangled
games (cf. e.g. the very definition of the ρ-norms in Section 4.1 in Chapter 4). In its simplest
form we will often make use of it to argue that the specific register on which each prover
makes his or her measurement is unimportant.

Definition 12. Let (P1, . . . , Pk, |Ψ〉) be a k-prover strategy.6 We say that this strategy is
symmetric, or permutation-invariant, if P1 = · · · = Pk and |Ψ〉 is invariant with respect to
any permutation of the subsystems corresponding to each prover.

5In fact all games we consider also have circuits of size poly(log |Q|) to prepare the questions and check
the answers.

6We think of Pi as an arbitrary representation of the set of all of prover i’s POVMs.
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The following lemma shows that one can always assume without loss of generality that a
game is symmetric, and that in any symmetric game there is an optimal symmetric strategy
for the provers.

Lemma 13. For every k-prover game G there is a k-prover game G′ of the same value and
k times as many questions that is permutation-invariant. Moreover, G and G′ have the same
value, and given any strategy P1, . . . , Pk with entangled state |Ψ〉 that wins with probability
p in G, there exists a strategy P ′1, . . . , P

′
k with entangled state |Ψ′〉 and success probability p

in G′ such that P ′1 = · · · = P ′k and |Ψ′〉 is permutation-invariant. In addition, if |Ψ〉 was a
maximally entangled state then |Ψ′〉 is also.

Proof. The verifier V ′ in game G′ picks a uniformly random permutation π ∈ Sk, where
Sk is the set of permutations of {1, . . . , k}, at the start of the protocol. He then behaves
exactly as in G, except that for every question q he would have sent to the i-th prover, where
i ∈ {1, · · · , k}, he sends the question (q, i) to prover π(i) instead. Any answer he receives
from prover π(i) he treats as an answer received from prover i in the original protocol.

By appropriately padding with extra qubits, assume that all k registers of |Ψ〉 have the
same dimension. Define strategies P ′1, . . . , P

′
k as follows: the provers share the entangled

state |Ψ′〉 =∑σ∈Sk
|σ(1)〉 ⊗ · · · ⊗ |σ(k)〉 ⊗ |Ψσ〉, where the register containing |σ(i)〉 is given

to prover i and |Ψσ〉 is obtained from |Ψ〉 by permuting its registers according to σ. For
1 ≤ i ≤ k prover i measures the register containing |σ(i)〉 and behaves as in the strategy
Pσ(i). By symmetry of π and V this new strategy has the same success probability p, and
|Ψ′〉 has the required symmetry properties.

This also shows that the value of G′ is at least that of G. Conversely, if P1, . . . , Pk is a
strategy in G′, one constructs a strategy with at least the same value for G by choosing the
best out of (Pσ(1), . . . , Pσ(k)) over all permutations σ ∈ Sk.

Lemma 13 has the following trivial but useful consequence.

Claim 14. Let (P1, . . . , Pk, |Ψ〉) be a symmetric strategy, and for every i ∈ {1, . . . , k}, {Aa
i }a

a POVM for the i-th prover in that strategy. Then for every permutation σ on {1, . . . , k},
and every (a1, . . . , ak),

〈Ψ|Aa1
1 ⊗ · · · ⊗ Aak

k |Ψ〉 = 〈Ψ|A
aσ(1)

σ(1) ⊗ · · · ⊗ A
aσ(k)

σ(k) |Ψ〉,

i.e. the register on which each of the POVMs is performed does not matter up to an arbitrary
permutation.

The CHSH game

We conclude this section with a brief description of the most famous entangled game, the
CHSH game, originally introduced by Clause, Horne, Shimony and Holt [25] to demonstrate
the non-locality of quantum mechanics. This game will be important for our results in
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Chapter 9. There are two players, Alice and Bob. Each is given a bit x, y ∈ {0, 1} distributed
uniformly at random. Their goal is to produce bits a, b respectively such that a⊕b = x∧y. It
is not hard to see that classical parties (possibly using shared randomness) have a maximum
success probability of 3/4 in this game. In contrast, quantum mechanics predicts that the
following strategy, which we will sometimes refer to as the “honest” strategy, achieves a
success probability of cos2(π/8) ≈ 0.85. Alice and Bob share an EPR pair |Ψ〉 = 1√

2
|00〉 +

1√
2
|11〉. Upon receiving her input, Alice measures either in the computational (x = 0) or

the Hadamard (x = 1) basis. Bob measures in the computational basis rotated by either
π/8 (y = 0) or 3π/8 (y = 1). One can then verify that, for every pair of inputs (x, y), this
strategy produces a pair of correct outputs with probability exactly cos2(π/8).

3.4.2 Interactive proofs with multiple provers

In this section we define the three main complexity classes that this dissertation is concerned
with: Multi-Prover Interactive Proof Systems (MIP systems), Multi-Prover Interactive Proof
Systems with Entanglement (MIP∗ systems), and Quantum Multi-Prover Interactive Proof
Systems with Entanglement (MIP∗ systems). They are based respectively on multiplayer
games, multiplayer entangled games and quantum multiplayer games.

As before, k denotes the number of provers and m denotes the number of turns (a turn
consists in a single step of interaction in the protocol, in which either a message is sent
from the verifier to each of the provers, or a message is sent from each of the provers to
the verifier; a round is made of two turns). All of these are from the set of polynomially
bounded functions in the input size |x|, denoted by poly. Further, c and s denote polynomial-
time computable functions of the input size into [0, 1] corresponding to completeness and
soundness. For notational convenience in what follows we will omit the arguments of these
functions.

Multi-Prover Interactive Proof Systems (MIP systems): MIP systems were first
introduced in [17]. A k-prover interactive proof system consists of a verifier V and k provers
P1, . . . , Pk. The verifier is a probabilistic polynomial-time Turing machine, while the provers
are computationally unbounded. Each of them has a read-only input tape, a private work
tape and a random tape. In addition, the provers share an infinite read-only random tape of
0’s and 1’s (their shared randomness). Each prover has a write-only communication tape in
which he writes messages to the verifier. The verifier has k write-only communication tapes,
on which he writes messages to each of the provers.

The protocol proceeds in m turns. A turn is either a turn for the verifier or a turn for
the provers. A turn for the verifier consists in the verifier reading the message tapes from
each prover, and writing new messages to the provers on the corresponding write-only tape.
A turn of the provers is similar, except now the provers individually read the messages they
received from the verifier, and write their answers on the corresponding tape. The last turn
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is always a turn of the provers. The verifier then gets to read the last messages he received
from the provers, and he produces a special output bit, designating acceptance or rejection.

Definition 15. A language L is in MIP(k,m, c, s) iff there exists an m-turn polynomial-time
verifier V for k-prover interactive proof systems such that, for every input x:

(Completeness) if x ∈ L, there exist m-turn provers P1, . . . , Pk such that the interaction
protocol of V with (P1, . . . , Pk) results in the verifier accepting with probability at least
c,

(Soundness) if x 6∈ L, for any m-turn provers P ′1, . . . , P
′
k, the probability that the interaction

protocol of V with (P1, . . . , Pk) results in the verifier accepting is at most s.

If the parameters k or m are not specified they will be taken to be fixed polynomials in
the input size. If the parameters c (resp. s) are not specified they will be taken as c = 2/3
(resp. s = 1/3). Hence MIP = MIP(poly, poly, 2/3, 1/3).

Multi-Prover Interactive Proof Systems with Entanglement (MIP∗ systems): MIP∗

systems were first introduced in [26], and they are defined analogously to MIP systems. The
only difference is that now the provers are allowed to be quantum, while the verifier (and
communication) remains bounded in classical probabilistic polynomial-time. This implies the
provers may share an arbitrary entangled state |Ψ〉 in-between themselves before the proto-
col starts. A turn of the provers in the protocol is defined as a turn in which the provers
individually read the messages they received from the verifier, perform a measurement on
their share of the entangled state, and send back the outcome to the verifier.7 Formally,

Definition 16. A language L is in MIP∗(k,m, c, s) iff there exists an m-turn polynomial-
time verifier V for k-prover interactive proof systems such that, for every input x:

(Completeness) if x ∈ L, there exist m-turn provers P1, . . . , Pk and a state |Ψ〉 such that
the interaction protocol of V with (P1, . . . , Pk) results in the verifier accepting with
probability at least c,

(Soundness) if x 6∈ L, for any m-turn provers P ′1, . . . , P
′
k and entangled state |Ψ〉, the proba-

bility that the interaction protocol of V with (P1, . . . , Pk) results in the verifier accepting
is at most s.

7Any classical post-processing by the prover can be incorporated as part of the description of his
measurement.
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Quantum Multi-Prover Interactive Proof Systems with Entanglement (QMIP∗

systems): As in earlier work [125, 70, 72], we define QMIP∗ systems in terms of quantum
circuits. It is assumed that our circuits consist of unitary gates, which is sufficient since non-
unitary and unitary quantum circuits are equivalent in computational power [4]. To avoid
unnecessary complication, however, the descriptions of protocols often include non-unitary
operations (measurements). Even in such cases, it is always possible to construct unitary
quantum circuits that essentially achieve the same outcome. A notable exception is in the
definition of the public-coin quantum verifier, where we want to define the public coin-flip to
be a classical operation. This requires a non-unitary operation for the verifier, the (classical)
public coin-flip.

A quantum k-prover interactive proof system consists of a verifier V with private quan-
tum register V and k provers P1, . . . , Pk with private quantum registers P1, . . . ,Pk, as well as
quantum message registers M1, . . . ,Mk, which without loss of generality are assumed to have
the same number of qubits, denoted by qM. One of the private qubits of the verifier is desig-
nated as the output qubit. At the beginning of the protocol, all the qubits in (V,M1, . . . ,Mk)
are initialized to |0 · · · 0〉, and the qubits in (P1, . . . ,Pk) are in some a priori shared state
|Φ〉 prepared by the provers in advance (and hence possibly entangled), which without loss
of generality can be assumed to be pure. No direct communication between the provers
is allowed after that. The protocol consists of alternating turns of the provers and of the
verifier, starting with the verifier, if m is even, and with the provers otherwise. At a turn
of the verifier, V applies some polynomial-size circuit to the qubits in (V,M1, . . . ,Mk), and
then sends each register Mi to prover Pi. At a turn of the provers each prover Pi applies
some transformation to the registers (Pi,Mi) for 1 ≤ i ≤ k and sends Mi back to the verifier.
The last turn is always a turn for the provers. After the last turn the verifier applies a
polynomial-size circuit to the qubits in (V,M1, . . . ,Mk), and then measures the output qubit
in the standard basis, accepting if the outcome is |1〉 and rejecting otherwise.

Formally, an m-turn polynomial-time quantum verifier V for k-prover QMIP∗ systems
is a polynomial-time computable mapping from input strings x to a set of polynomial-time
uniformly generated circuits {V 1, . . . , V d(m+1)/2e}, and a partition of the space on which they
act into registers (V,M1, . . . ,Mk), which consist of polynomially many qubits. Similarly an
m-turn quantum prover P is a mapping from x to a set of circuits {P 1, . . . , P d(m+1)/2e} each
acting on registers (P,M). No restrictions are placed on the complexity of this mapping
or the size of P. We will denote the i-th prover, his registers and transformations with a
subscript i. We will always assume that each prover Pi is compatible with the verifier, i.e.,
that the corresponding register Mi is the same for the verifier and the prover for 1 ≤ i ≤ k.

The protocol (V, P1, . . . , Pk, |Φ〉) is the alternating application of the circuits of the provers
and the verifier to the initial state |0 · · · 0〉 ⊗ |Φ〉 in registers (V,M1, . . . ,Mk,P1, . . . ,Pk). For
odd m, circuits P 1

1 ⊗ · · · ⊗ P 1
k , V

1, P 2
1 ⊗ · · · ⊗ P 2

k , V
2 and so on are applied in sequence

terminating with V (m+1)/2. Ifm is even, the sequence begins with V 1 followed by P 1
1⊗· · ·⊗P 1

k

and so on up to V (m+2)/2. We say that (V, P1, . . . , Pk, |Φ〉) accepts x if the designated output
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qubit in V is measured in |1〉 at the end of the protocol and call the probability with which
this happens pacc(x, V, P1, . . . , Pk, |Φ〉).

Definition 17. A language L is in QMIP∗(k,m, c, s) iff there exists an m-turn polynomial-
time quantum verifier V for quantum k-prover interactive proof systems such that, for every
input x:

(Completeness) if x ∈ L, there exist m-turn quantum provers P1, . . . , Pk and an a priori
shared state |Φ〉 such that pacc(x, V, P1, . . . , Pk, |Φ〉) ≥ c,

(Soundness) if x 6∈ L, for any m-turn quantum provers P ′1, . . . , P
′
k and any a priori shared

state |Φ′〉, pacc(x, V, P ′1, . . . , P ′k, |Φ′〉) ≤ s.

Finally, we introduce the notions of public-coin quantum verifiers and public-coin QMIP∗

systems, that will be used in Chapter 10. These are natural generalizations of the corre-
sponding notions in the single-prover case introduced by [81]. Intuitively, a quantum verifier
for quantum multi-prover interactive proof systems is public-coin if, at each of his turns,
after receiving the message registers from the provers, he first flips a fair classical coin at
most a polynomial number of times, and then simply broadcasts the result of these coin-flips
to all the provers. No other messages are sent from the verifier to the provers. At the end
of the protocol, the verifier applies some quantum operation to the messages received so far,
and decides acceptance or rejection.

Formally, an m-turn polynomial-time quantum verifier for k-prover interactive proof
systems is public-coin if each of the circuits V 1, V 2, . . . , V d(m−1)/2e implements the follow-
ing procedure: V receives the message registers Mi from the provers, stores them in his
private space, and then flips a classical fair coin at most qM times to generate a public
string rj, records rj in his private space, and broadcasts rj to all the provers. The circuit
V d(m+1)/2e is some unitary transformation controlled by all the recorded random strings rj for
1 ≤ j ≤ d(m− 1)/2e. A QMIP∗ system is public-coin if the associated verifier is public-coin,
and we define QMIP∗pub(k,m, c, s) to be the class of languages in QMIP∗(k,m, c, s) with a
public-coin verifier.
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Chapter 4

Techniques

In this chapter we give a technical introduction to some of the important tools that are
used to analyze entangled strategies throughout the remainder of this dissertation. Our
goal is to find ways to manipulate entangled provers by designing tests that the verifier can
perform and which enforce specific structural constraints on the provers’ strategies.

The first tool we introduce, in Section 4.1, is an appropriate distance measure on entan-
gled strategies. It is designed to measure how much arbitrary provers differ from “ideal”
provers in a multiplayer game.1 Such a distance should be strong enough to imply that close
strategies induce a similar behavior in the game (their success probabilities are close), but
weak enough that one can obtain bounds on it from the sole assumption that the provers
have a high probability of succeeding in a certain game.

In Section 4.2 we introduce an important test in the analysis of entangled strategies,
the consistency test, and we study the structure of strategies having a high probability of
passing that test. Finally, in Section 4.3 we give two general-purpose results building on the
previous sections. The first one is the orthogonalization lemma, which states that consistent
strategies are close to orthogonal (projective) strategies. This lemma will be used in the
proof of our parallel repetition result in Chapter 7. The second is the almost-commuting
vs. nearly-commuting conjecture, which provides an attempt at limiting the provers’ use of
entanglement in a multiplayer game. It will be explored further in Chapter 6, and we explain
how it would imply a hardness result for the value of entangled games.

Notation. To simplify the presentation, in this chapter we will for the most part focus
on the case of two provers, Alice and Bob, applying only one POVM each:

{
Aa
}
for Alice

and
{
Bb
}
for Bob. We will assume their entangled state |Ψ〉AB is symmetric with respect

to permutation of the A and B subsystems (this assumption is justified by Lemma 13 from

1Recall that the soundness analysis of a game usually proceeds by showing that arbitrary successful
provers must be “close” to ideal, honest provers, whose maximum success probability can be bounded.
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Chapter 3), and denote its reduced density on either subsystem by

ρ := TrB
(
|Ψ〉〈Ψ|

)
= TrA

(
|Ψ〉〈Ψ|

)
.

Moreover, we will choose a basis in which to represent matrices that is such that ρ is real
(such as its diagonalization basis).

The maximally entangled state. Many of the results in this section can be greatly
simplified, and sometimes even trivialized, by assuming that the prover’s entangled state
|Ψ〉 is the maximally entangled state |Ψ〉 = d−1/2

∑d
i=1 |i〉|i〉 of arbitrary dimension d, with

reduced density ρ = d−1Id. Whenever possible we will first introduce the results in that
setting, and then explain what needs to be done for the case of a general entangled state.

4.1 Distance measures

In this section we introduce two key distance measures on single-prover strategies, the uni-
variate and bivariate ρ-norms. In the case where the prover’s entangled state is maximally
entangled these two norms collapse to a single one, which we introduce in Section 4.1.1.
The univariate and bivariate ρ-norms are then introduced in Section 4.1.2. We relate these
distance measures to more standard measures from quantum information theory, such as the
trace norm, in Section 4.1.3.

4.1.1 Prelude: the case of the maximally entangled state

Let
{
Aa

1

}
and

{
Aa

2

}
be two distinct measurements on Alice’s share of the maximally entan-

gled state |Ψ〉. We think of A1 and A2 as two possible strategies that she could apply: what
is an appropriate way to measure the distance between these two strategies in the context
of a multiplayer game?

We can always think of Alice as making her measurement first, obtaining an outcome
a that she sends to the verifier as her answer; then Bob will make his own measurement.
Once Alice has applied the measurement Ai, for i ∈ {1, 2}, conditioned on the outcome a
she obtained Bob’s share of the state is projected onto the post-measurement state

ρaB,i := TrA
( (√

Aa
i ⊗ IdB

)
|Ψ〉〈Ψ|

(√
Aa

i ⊗ IdB

))
=
√
Aa

i

T
ρB
√
Aa

i

T
=

1

d
(Aa

i )
T ,

where for the last two equalities we made use of the fact that |Ψ〉 was the maximally entangled
state, so that for any X we have (X⊗ Id)|Ψ〉 = (Id⊗XT )|Ψ〉, and ρB = TrA|Ψ〉〈Ψ| = d−1Id.
A sufficient condition for the provers’ behavior in the game to be roughly similar irrespective
of whether Alice measured using A1 or A2 is that the corresponding post-measurement states



CHAPTER 4. TECHNIQUES 42

be close, on average over the outcome a.2 The appropriate measure of distance between two
quantum states is the trace norm, so that a good candidate measure of the distance between
the strategies A1 and A2, in case the underlying state is maximally entangled, would be

d1(A1, A2) :=
∑

a

∥∥ρaB,1 − ρaB,2

∥∥
1
=
∑

a

1

d
Tr
∣∣Aa

1 − Aa
2

∣∣.

The difficulty in working with the distance d1 is the absolute value in the last term, which
is hard to compute in general. Instead of d1, we will use its much more malleable Euclidean
equivalent d2, defined as

d2(A1, A2) :=
(∑

a

1

d
Tr
((√

Aa
1 −

√
Aa

2

)2))1/2
.

Note that d2 corresponds to measuring the amount by which the provers’ entangled state
was moved in the Euclidean distance, as a result of Alice applying either A1 or A2:

d2(A1, A2) =
( ∑

a

∥∥(
√
Aa

1 ⊗ Id)|Ψ〉 − (
√
Aa

2 ⊗ Id)|Ψ〉
∥∥2
2

)1/2
.

In fact, in the specific setting of the maximally entangled state d2 is simply a dimension-

normalized variant of the Frobenius norm:
(
d2(A1, A2)

)2
=
∑

a d
−1∥∥√Aa

1 −
√
Aa

2

∥∥2
F
.

The measure d2 will be more convenient than d1 for two reasons. The first is that it
derives from an inner product: if we define

〈A,B〉 :=
∑

a

1

d
Tr
(
Aa(Ba)†

)

then 〈·, ·〉 is an inner product on
(
Md(C)

)k
, where k is the number of distinct outcomes a,

and d2(A1, A2)
2 = 〈√A1 −

√
A2,
√
A1 −

√
A2〉. As a result, the Cauchy-Schwarz inequality

will be an important tool to manipulate distances measured according to d2.
The second reason is that the provers’ success in a game often naturally translates into

constraints on the distance d2. We will explore this connection in much more detail in
Section 4.2, but to give an idea of its flavor we show the following.

Lemma 18. Suppose that, when Alice and Bob respectively apply their measurements {Aa}
and {Ba} on their share of the maximally entangled state |Ψ〉, they obtain the same outcome
with probability 1− ε. Then

(
d2(A,B)

)2
=
∑

a

1

d

∥∥Aa −Ba
∥∥2
F
≤ 2ε,

showing that consistent measurements are close in the d2 distance.

2If an outcome has a very small probability of occurring then it does not matter whether the post-
measurement states differ much; the verifier will still not notice.
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Proof. Rephrasing the fact that Alice and Bob’s measurements give consistent answers,

1− ε ≤
∑

a

〈Ψ|Aa ⊗ Ba|Ψ〉

=
∑

a

1

d
Tr
(
Aa(Ba)T

)

≤
∑

a

1

d
Tr
(√

Aa
√

(Ba)T
)

= 〈
√
A,
√
B

T 〉, (4.1)

where the first equality uses that |Ψ〉 is maximally entangled, and the second 0 ≤ Aa ≤√
Aa ≤ Id, and similarly for (Ba)T , since Aa is a POVM element. Given that 〈

√
A,
√
A〉 = 1

as a result of
∑

aA
a = Id, (4.1) proves the lemma (since the Ba are Hermitian).

We end this section by proving a lemma showing that the distances d1 and d2 are closely
related, implying that not only is d2 a more convenient distance to work with than d1, but it
also provides a good bound on the distance between two entangled strategies in a multiplayer
game.

Lemma 19. Let
{
Aa

1

}
and

{
Aa

2

}
be two POVMs. Then the following relations hold:

1

2
d2(A1, A2)

2 ≤ d1(A1, A2) ≤ 2 d2(A1, A2).

Proof. For any a it holds that
(√

Aa
1 −

√
Aa

2

)2 ≤
∣∣√Aa

1 +
√
Aa

2

∣∣ ∣∣√Aa
1 −

√
Aa

2

∣∣ ≤ 2
∣∣√Aa

1 −
√
Aa

2

∣∣,

since both
√
Aa

1,
√
Aa

2 ≤ Id; the first inequality follows. For the second, write

d1(A1, A2) =
∑

a

1

d

∥∥Aa
1 − Aa

2

∥∥
1

≤
∑

a

1

d

(∥∥√Aa
1

(√
Aa

1 −
√
Aa

2

)∥∥
1
+
∥∥(√Aa

1 −
√
Aa

2

)√
Aa

2

∥∥
1

)

≤
∑

a

1

d
‖Aa

1 − Aa
2

∥∥
F

(∥∥√Aa
1

∥∥
F
+
∥∥√Aa

2

∥∥
F

)

≤
(∑

a

1

d
‖Aa

1 − Aa
2

∥∥2
F

)1/2(∑

a

1

d

(∥∥√Aa
1

∥∥
F
+
∥∥√Aa

2

∥∥
F

)2)1/2

≤ 2 d2(A1, A2),

where the first inequality is the triangle inequality, and the second and third each follow
from the Cauchy-Schwarz inequality.
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4.1.2 The ρ-norms

We turn to the case where the provers’ entangled state |Ψ〉 is a general symmetric bipartite
state, with reduced density ρ on either prover’s subsystem. We will introduce two distinct
distance measures, each deriving from a norm: the univariate and bivariate ρ-norms. In case
|Ψ〉 is the maximally entangled state both distances reduce to the distance d2 introduced
in the previous section, but in general they are distinct and will have different uses. To
motivate their introduction, first recall Ando’s identity:

Fact 20 (Ando’s identity). For any matrices A and B and symmetric |Ψ〉 = ∑i λi|ui〉|vi〉,
let K =

∑
i

√
λi|ui〉〈vi|. Then

〈Ψ|A⊗B|Ψ〉 = Tr
(
AKBTK†

)
, (4.2)

and the reduced density

ρ = TrA|Ψ〉〈Ψ| = TrB|Ψ〉〈Ψ| = KK† = K†K.

Proof. By symmetry it holds that ρ =
∑

i λi|ui〉〈ui| =
∑

j λj|vj〉〈vj|, and

〈Ψ|A⊗ B|Ψ〉 =
∑

i,j

√
λi
√
λj〈ui|A|vj〉〈ui|B|vj〉

= Tr
(
K†AKBT

)
.

Suppose given two measurements
{
Aa

1

}
and

{
Aa

2

}
for Alice, and a measurement

{
Bb

2

}

for Bob. For a fixed pair (a, b), the probability that Alice and Bob obtain that outcome is
〈Ψ|Aa

1⊗Bb|Ψ〉 if Alice measures using A1, and it is 〈Ψ|Aa
2⊗Bb|Ψ〉 if she measures using A2.

By Ando’s identity, the difference between these two probabilities is
∣∣〈Ψ|Aa

1 ⊗Bb|Ψ〉 − 〈Ψ|Aa
2 ⊗Bb|Ψ〉

∣∣ =
∣∣Tr
(
(Aa

1 − Aa
2)K(Bb)TK†

)∣∣. (4.3)

In an attempt to bound this quantity by one that depends only on Alice’s two measurements,
one may use the Cauchy-Schwarz inequality in two different ways. The first sees the quantity
on the right-hand side as the matrix inner product between (Aa

1 − Aa
2)K and K(Bb)T , in

which case it can be upper-bounded as

∣∣Tr
(
(Aa

1 − Aa
2)K(Bb)TK†

)∣∣ ≤ Tr
(
(Aa

1 − Aa
2)

2ρ
)1/2

Tr
((
(Bb)T

)2
ρ
)1/2

. (4.4)

The second interprets the right-hand side of (4.3) as the matrix inner-product of K1(A
a
1 −

Aa
2)K

†
1 and K2(B

b)TK†2, where K1, K2 are such that K†1K2 = K, in which case it can be
bounded as
∣∣Tr
(
(Aa

1 −Aa
2)K(Bb)TK†

)∣∣ ≤ Tr
(
(Aa

1 −Aa
2)ρ

1/2(Aa
1 −Aa

2)ρ
1/2
)1/2

Tr
(
(Bb)Tρ1/2(Bb)Tρ1/2

)1/2
,

(4.5)



CHAPTER 4. TECHNIQUES 45

where ρ1/2 = (KK†)1/2 = K†1K1 = K†2K2. Both ways of bounding (4.3) have their uses, and
they give rise to the two distance measures on entangled strategies that we now introduce.3

The univariate ρ-norm

The univariate ρ-norm is the one that arises from the bound (4.4). As we will see, it is the
strongest of the two norms that we introduce, and is defined as follows.

Definition 21. Let A be any matrix, and ρ ≥ 0. The univariate ρ-norm of A is

∥∥A
∥∥
u,ρ

:=
√
Tr
(
AA†ρ

)
.

Remark. The choice of Tr
(
AA†ρ

)
instead of Tr

(
A†Aρ

)
in the definition of the norm is

arbitrary, but the two choices are not equivalent, as is seen by taking e.g. A = |0〉〈1| and
ρ = |0〉〈0|.

Based on this norm one can define a corresponding distance on POVMs: if
{
Aa

1

}
and{

Aa
2

}
are two POVMs for Alice,4 we let

du,ρ(A1, A2) :=
(∑

a

∥∥√Aa
1 −

√
Aa

2

∥∥2
u,ρ

)1/2
.

We note that this is the same distance as was already introduced in Section 2.3.1 of Chapter 2.

An important tool in using the univariate ρ-norm is that, while the map (A,B) 7→
Tr(AB†ρ) is not quite an inner-product in general (it is not symmetric), it still obeys a
Cauchy-Schwarz inequality.

Claim 22 (Cauchy-Schwarz inequality for the univariate ρ-norm). Let A,B be any two
matrices, and ρ ≥ 0. Then

∣∣Tr
(
AB†ρ

)∣∣ ≤
∥∥A
∥∥
u,ρ

∥∥B
∥∥
u,ρ
.

Proof. Apply the Cauchy-Schwarz inequality for the inner-product (A′, B′) 7→ Tr
(
A′(B′)†

)
,

with A′ = ρ1/2A and B′ = ρ1/2B.

3The attentive reader might have already observed that (4.5) provides a tighter bound than (4.4), since
for any matrices A,B it holds that Tr(ABAB) ≤ Tr(A2B2).

4We’ll assume that A1 and A2 have the same set of outcomes, as otherwise they are incomparable.
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The bivariate ρ-norm

The bivariate ρ-norm arises from the bound (4.5), and we define it as follows.

Definition 23. Let A be any matrix, and ρ ≥ 0. The bivariate ρ-norm of A is

∥∥A
∥∥
b,ρ

:=
√

Tr
(
Aρ1/2A†ρ1/2

)
.

Remark. If ρ = d−1Id is the totally mixed state, then both the univariate and the bivariate ρ-
norms are the same:

∥∥A
∥∥
u,ρ

=
∥∥A
∥∥
b,ρ

= d−1/2‖A‖F . In general this equality no longer holds,

and we will explore the relationship between the two norms in more detail in Section 4.1.3.

Claim 24. A 7→
∥∥A
∥∥
b,ρ

is a (semi-)norm,5 and it derives from the (semi)-inner-product

(A,B) ∈Md(C) 7→ 〈A,B〉ρ := Tr
(
Aρ1/2B†ρ1/2

)
= 〈Ψ|A⊗B|Ψ〉.

Proof. (A,B) 7→ 〈A,B〉ρ is sesquilinear, symmetric by cyclicity of the trace, and non-
negative: it is a semi-inner product. Hence A 7→

√
〈A,A〉ρ is a semi-norm.

As a consequence, the bivariate ρ-norm satisfies a Cauchy-Schwarz inequality analogue
to the one proved in Claim 22. We end this section with another useful inequality showing
that the bivariate ρ-norm is an upper-bound on a measurement’s self-consistency.

Claim 25. For any A and symmetric state |Ψ〉,

〈Ψ|A⊗ A|Ψ〉 ≤
∥∥A
∥∥2
b,ρ
.

Proof. Using Ando’s identity (4.2),

〈Ψ|A⊗ A|Ψ〉 = Tr
(
AKATK†

)
,

and the claim follows from the Cauchy-Schwarz inequality as in (4.5).

4.1.3 Relationships between norms

In this section we explore the relationships between the two norms introduced in the previous
section and other distance measures on quantum operations or states. We first show that, in
the case of a Hermitian A, the univariate ρ-norm is an upper-bound on the bivariate ρ-norm.

Claim 26. For any Hermitian A and ρ ≥ 0,

∥∥A
∥∥
b,ρ
≤
∥∥A
∥∥
u,ρ
.

5It is a norm if ρ is positive-definite.
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Proof. The claim follows from the Cauchy-Schwarz inequality:
∥∥A
∥∥2
b,ρ

= Tr
(
(Aρ1/2)(ρ1/2A)†

)
≤ Tr

(
AρA†

)1/2
Tr
(
ρ1/2AA†ρ1/2

)1/2
=
∥∥A
∥∥2
u,ρ
,

where for the last equality we used that A was Hermitian.

Remark. In case A is not Hermitian, but still satisfies AA† ≤ Id (and we have Tr(ρ) ≤ 1),

the proof of the previous claim only shows the weaker relationship
∥∥A
∥∥2
b,ρ
≤
∥∥A
∥∥
u,ρ

. This

bound is tight in general: if A = |0〉〈1| and ρ = (1 − ε)|1〉〈1| + ε|0〉〈0| then
∥∥A
∥∥2
u,ρ

= ε,

while
∥∥A
∥∥2
b,ρ

=
√
ε(1− ε). Choosing A = |1〉〈0| instead shows that one cannot hope for any

nontrivial inequality in the other direction.

The next lemma shows that the univariate ρ-norm is at least as strong as the trace norm.
It provides a partial analogue to Lemma 19, which was proven in case ρ was totally mixed.

Lemma 27. Let ρ be a density matrix and
{
Aa
}
,
{
Ba
}
two POVMs. Then

∑

a

∥∥∥
√
Aaρ
√
Aa −

√
Baρ
√
Ba

∥∥∥
1
≤ 2

√∑

a

∥∥√Aa −
√
Ba
∥∥2
u,ρ

= 2 du,ρ(A,B).

Proof. The inequality follows from a calculation similar to Ogawa and Nagaoka’s proof [90]
of Winter’s “gentle measurement lemma” (Lemma 9 in [129]). By the triangle inequality, for
any a

∥∥√Aaρ
√
Aa −

√
Baρ
√
Ba
∥∥
1
≤
∥∥√Aaρ

(√
Aa −

√
Ba
)∥∥

1
+
∥∥(√Aa −

√
Ba
)
ρ
√
Ba
∥∥
1
.

Applying the Cauchy-Schwarz inequality (cf. Theorem 116 in Appendix A),
∥∥√Aaρ

(√
Aa −

√
Ba
)∥∥

1
≤
∥∥√Aaρ1/2

∥∥
F

∥∥ρ1/2
(√

Aa −
√
Ba
)∥∥

F

=
∥∥√Aa

∥∥
u,ρ

∥∥√Aa −
√
Ba
∥∥
u,ρ

The claim follows by another application of Cauchy-Schwarz, together with the fact that∑
a

∥∥√Aa
∥∥2
u,ρ

=
∑

aTr(A
aρ) = 1.

Unfortunately, no bound similar to the one in Lemma 27 holds for the bivariate ρ-norm.
The following claim shows that a relationship does hold between the two norms when one
considers measurements that are consistent, a property that will be discussed in more detail
in Section 4.2.

Claim 28. Let {Aa} and {Ba} be two POVMs, |Ψ〉 a symmetric entangled state with reduced
density ρ, and let

ε := 1−
∑

a

∥∥Aa
∥∥2
b,ρ
.

Then ∑

a

∥∥√Aa −
√
Ba
∥∥2
u,ρ
≤
∑

a

∥∥√Aa −
√
Ba
∥∥2
b,ρ

+ 6
√
ε.
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Remark. Claim 25 shows that the assumption placed on A in Claim 28 is weaker than the
more natural one that would be placed by defining ε directly through A’s self-consistency as
a measurement by defining ε := 1−∑a〈Ψ|Aa ⊗ Aa|Ψ〉.

Proof. Expand

∑

a

∥∥√Aa −
√
Ba
∥∥2
u,ρ

=
∑

a

Tr
(
(
√
Aa −

√
Ba)2ρ

)

=
∑

a

(
Tr
(
(Aa +Ba)ρ

)
− 2Tr

(√
Aa
√
Baρ

))
. (4.6)

The first term inside the summation adds up to 2. In order to lower-bound the second, we
first bound

∑

a

Tr
((√

Aaρ1/2 − ρ1/2
√
Aa
)2)

= 2− 2
∑

a

∥∥√Aa
∥∥2
b,ρ

≤ 2ε, (4.7)

where we used
∥∥√Aa

∥∥
b,ρ
≥
∥∥Aa

∥∥
b,ρ

(since
√
Aa ≥ Aa), together with the definition of ε.

Hence

∑

a

∣∣Tr
(√

Aa
√
Baρ−

√
Aaρ1/2

√
Baρ1/2

)∣∣

≤
∑

a

Tr
(
Baρ

)1/2
Tr
((√

Aaρ1/2 − ρ1/2
√
Aa
)2)1/2

≤
√
2ε, (4.8)

where both inequalities are by Cauchy-Schwarz, and the second also uses (4.7). From (4.6)
we get

∑

a

∥∥√Aa −
√
Ba
∥∥2
u,ρ
≤ 2− 2

∑

a

Tr
(√

Aaρ1/2
√
Baρ1/2

)
+ 2
√
2ε

≤
∑

a

(
Tr
(√

Aaρ1/2
√
Aaρ1/2

)
+ Tr

(√
Baρ1/2

√
Baρ1/2

)

− 2Tr
(√

Aaρ1/2
√
Baρ1/2

))
+ 2ε+ 2

√
2ε

≤
∑

a

∥∥√Aa −
√
Ba
∥∥2
b,ρ

+ 6
√
ε,

where the first inequality is by (4.8), the second uses the definition of ε, and the last is by
definition of the bivariate ρ-norm.
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4.2 Consistency

In a classical symmetric multiplayer game it is often natural to enforce that the provers
are consistent, by checking, with some probability, that they provide the same answer when
simultaneously presented with the same question. This was done, for instance, in the linearity
test that we presented in Chapter 2. Indeed, consistency is at the heart of the connection
between multiplayer games and probabilistically checkable proofs, as it implies the existence
of a single underlying “proof” collecting all of the provers’ answers to the verifier’s possible
questions.

In the entangled setting, however, consistency is a more stringent requirement, and does
not always hold naturally. To see the subtlety, observe that even if all provers apply the
same, orthogonal, projective measurement, they need not obtain identical answers — this
will only be true of all such measurements if their entangled state is the maximally entangled
state.

Nevertheless, in most cases one still expects that honest provers should provide consistent
answers (indeed, the “ideal”, honest prover is often a classical one, answering his questions
deterministically), so that one is willing to incorporate the following test as part of the game
being played:

Consistency test. Pick a question at random6 and send it to both players.
Accept if and only if they provide the same answer.

In this section we explore the consequences that can be drawn of entangled players
passing the consistency test, and show that this seemingly weak requirement induces strong
constraints on the type of strategies they may use.

Lemma 29. Let {Aa} and {Ba} be two POVMs indexed by the same answer set, and |Ψ〉
a symmetric bipartite state. Suppose further that A and B pass the consistency test with
success probability 1− ε: ∑

a

〈Ψ|Aa ⊗ Ba|Ψ〉 ≥ 1− ε. (4.9)

Then the following hold:

1. The POVM {Aa} itself is self-consistent, in the sense that
∑

a

∥∥Aa
∥∥2
b,ρ
≥ 1 − 2ε, and

the same holds of {Ba},
2. If, moreover, {Ba} is self-consistent in the stronger sense that

∑
a 〈Ψ|Ba ⊗ Ba|Ψ〉 ≥

1− δ, then the POVMs with elements Aa and Ba are close in the univariate ρ-norm:
∑

a

∥∥√Aa −
√
Ba
∥∥2
u,ρ
≤ 8
√
ε,

6For the test to be effective, the distribution according to which the question is chosen should correspond
to the marginal distribution arising from the overall game of which we plan to use the consistency test as a
part of; if the game is symmetric then the marginals on different players will be identical.
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3. The density ρ is close to being invariant under application of {Aa}, in the sense that
∥∥∥
∑

a

√
Aaρ
√
Aa − ρ

∥∥∥
1
≤ 2 ε+

√
2 δ,

and the same holds for {Ba}.
Remark. This lemma generalizes Lemma 18, that was proved for the case of the maximally
entangled state: in that case condition 3. is trivial, and condition 1. follows if we were only
to impose that {Aa} is an orthogonal measurement. Indeed, one can think of the consistency
test as a way to force the provers to behave as if their shared state was maximally entangled,
an exceedingly convenient assumption in many a protocol’s analysis. We will draw more
consequences of the same vein in Lemma 30 below.

Proof. For the first item, we use Ando’s identity (4.2) and the Cauchy-Schwarz inequality
to write, for any a,

〈Ψ|Aa ⊗Ba|Ψ〉 = Tr
(
AaKBaK†

)

≤ Tr
(
Aaρ1/2Aaρ1/2

)1/2
Tr
(
Baρ1/2Baρ1/2

)1/2

≤ 1

2

(
Tr
(
Aaρ1/2Aaρ1/2

)
+ Tr

(
Baρ1/2Baρ1/2

))
,

where we used that Ba was Hermitian, and ρ real. Hence from (4.9) and the fact that∑
a Tr

(
Aaρ1/2Aaρ1/2

)
≤ 1, and the same holds for B, we obtain

∑

a

Tr
(
Aaρ1/2Aaρ1/2

)
≥ 1− 2ε and

∑

a

Tr
(
Baρ1/2Baρ1/2

)
≥ 1− 2ε, (4.10)

proving the first item. For the second, first bound

∑

a

Tr
((√

BaK −K
√
Ba

T )(√
BaK −K

√
Ba

T )†) ≤ 2− 2
∑

a

Tr
(√

BaK
√
Ba

T
K†
)

≤ 2δ (4.11)

by Ando’s identity and our assumption on B’s self-consistency. Hence

∑

a

∥∥√Aa −
√
Ba
∥∥2
u,ρ

=
∑

a

(∥∥√Aa
∥∥2
u,ρ

+
∥∥√Ba

∥∥2
u,ρ
− 2Tr

(√
Aa
√
Baρ

)

= 2− 2
∑

a

Tr
(√

AaK
√
Ba

T
K†
)
+
√
2δ

≤ 2ε+
√
2δ,

where the second equality uses (4.11) together with the Cauchy-Schwarz inequality, and the
inequality is by our assumption (4.9). This proves item 2.
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Regarding the last item, by monotonicity of the trace norm we have

∥∥∥
∑

a

√
Aaρ
√
Aa − ρ

∥∥∥
1

≤
∥∥∥
∑

a,a′

√
Aa ⊗

√
Ba′ |Ψ〉〈Ψ|

√
Aa ⊗

√
Ba′ −

∑

a′

Id⊗
√
Ba′ |Ψ〉〈Ψ|Id⊗

√
Ba′
∥∥∥
1

≤
∥∥∥
∑

a

√
Aa ⊗

√
Ba|Ψ〉〈Ψ|

√
Aa ⊗

√
Ba −

∑

a

Id⊗
√
Ba|Ψ〉〈Ψ|Id⊗

√
Ba

∥∥∥
1

+
∑

a 6=a′

〈Ψ|Aa ⊗Ba′ |Ψ〉

≤ 2
(∑

a

∥∥√Aa ⊗
√
Ba − Id⊗

√
Ba
∥∥2
u,ρ

)1/2
+ ε,

where the second inequality uses the triangle inequality, and the last is by Lemma 27. It
remains to bound

∑

a

∥∥√Aa ⊗
√
Ba − Id⊗

√
Ba
∥∥2
u,ρ

=
∑

a

(
〈Ψ|Aa ⊗ Ba|Ψ〉+ 〈Ψ|Id⊗ Ba|Ψ〉

− 2〈Ψ|
√
Aa ⊗ Ba|Ψ〉

)

≤ 2− 2
∑

a

〈Ψ|Aa ⊗Ba|Ψ〉

≤ 2ε,

where for the first inequality we used that 0 ≤ Aa ≤ Id and hence
√
Aa ≥ Aa. This proves

the last item in the lemma.

From Lemma 29 one may derive even further conditions: the POVM {Aa} is almost-
orthogonal, and {Aa} and {Ba} almost-commute. As we will see in the next section, the
orthogonality condition can be used to transform {Aa} into a projective POVM. A key
observation is that this together with item 3. in the lemma shows that we have almost
reduced the provers to using their state as shared randomness, at least locally — a question
at a time. In Section 4.3.2 we will discuss the extent to which this locality can be extended
by using a global variant of the “almost-commute” condition.

Lemma 30. Under the same assumptions as in Lemma 29, it further holds that

1. The POVM elements {Aa} are almost-orthogonal:

∑

a 6=a′

Tr
(√

AaAa′
√
Aaρ

)
≤ 15

√
ε,
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2. If, in addition, {Ba} is strongly consistent: ∑a〈Ψ|Ba⊗Ba|Ψ〉 ≥ 1−ε, then the POVMs
{Aa} and {Ba} almost-commute:

∑

a

∥∥√Aa
√
Ba −

√
Ba
√
Aa
∥∥2
u,ρ

= O
(√

ε
)
.

Proof. For the first item,

∑

a 6=a′

Tr
(√

AaAa′
√
Aaρ

)
=
∑

a 6=a′,a′′

〈Ψ|
√
AaAa′

√
Aa ⊗ Ba′′ |Ψ〉

≤
∑

a 6=a′

〈Ψ|
√
AaAa′

√
Aa ⊗Ba|Ψ〉+ ε

≤
∑

a 6=a′,a′′

〈Ψ|
√
Aa′′Aa′

√
Aa′′ ⊗ Ba|Ψ〉+ 2ε

≤
∑

a 6=a′

〈Ψ|Aa′ ⊗ Ba|Ψ〉+ 12
√
ε+ 2ε

≤ 15
√
ε,

where the first two inequalities hold by the consistency assumption on {Aa} and {Ba}, the
third uses item 3. from Lemma 29, and the last uses the consistency assumption again.

Regarding the second item, we simply sketch its proof, since we will not use it formally.

Expanding
∥∥√Aa

√
Ba −

√
Ba
√
Aa
∥∥2
u,ρ

by using the definition of the univariate ρ-norm, one

sees that it will suffice to show that
∑

a Tr
(√

Aa
√
Ba
√
Aa
√
Baρ

)
is close enough to 1. Using

the Cauchy-Schwarz inequality, one can show that this term is O(
√
ε) from

∑
a Tr

(
AaBaρ).

This last term can in turn be lower-bounded by using Ba’s self-consistency (cf item 1. from
Lemma 29) and assumption (4.9).

4.3 Applications

4.3.1 The orthogonalization lemma

Item 1. from Lemma 30 in the previous section shows that simply by requiring that a strategy
be self-consistent, one can obtain strong conditions showing that the measurements applied
as part of that strategy should satisfy almost-orthogonality relations. In this section we
show that one can take the step from almost to exactly orthogonal, proving that an almost-
orthogonal POVM is close, in the univariate ρ-norm, to one that is exactly orthogonal. A
variant of this result will be used in Chapter 7, in which we prove our result on the parallel
repetition of entangled games. The following is a statement of the lemma in the simplest
setting.
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Lemma 31 (Orthogonalization lemma). Let ε > 0, ρ a density matrix, and
{
Aa
}
a POVM,

such that ∑

a 6=a′

Tr
((√

AaAa′
√
Aa
)
ρ
)
≤ ε. (4.12)

Then there exists an orthogonal measurement
{
Ba
}
such that

(
du,ρ(A,B)

)2
=
∑

a

∥∥√Aa −Ba
∥∥2
u,ρ

= O
(
ε1/4
)
.

The strength of the lemma is in the bound it proves on the distance between the POVM
{Aa} and the orthogonal measurement {Ba} being independent of the number of outcomes
of these POVMs. Indeed, it is not too hard to obtain a bound depending on the number
of outcomes by adopting an iterative orthogonalization procedure, such as a variant of the
Gram-Schmidt process. To avoid this dependence one needs to find an appropriate global
procedure, moving each of the POVM elements by only a small amount on average.

The idea in the present case is to use the singular value decomposition, or SVD, of
the matrix having as its columns the eigenvectors of Aa whose corresponding eigenvalue is
large enough. This method is based on a variant of Schöneman’s solution to the “orthogonal
Procrustes problem”.7 Given any d-dimensional square matrices A and B, this is the problem
of finding the orthogonal matrix Ω which minimizes

Ω := argmin
1

d
‖A− BΩ‖2F .

Schöneman [102] showed that the optimal Ω is Ω = UV †, where UΣV † is the singular value
decomposition of BTA.8 Indeed, given unit vectors |u1〉, . . . , |vk〉, one can let A be the matrix
with columns the |ui〉, and B the identity. In this case, the orthogonal Procruste’s problem
consists in finding the best rigid rotation which maps the canonical basis of space to the
vectors |vi〉, where the error is measured in the least squares sense — the columns of the
corresponding orthogonal matrix will then form an orthonormal family close to the |ui〉.

We carry out this solution precisely in Claim 32 below, which contains all the intuition
necessary to solve the original problem on POVMs. Unfortunately, the solution to the latter
is made more involved technically by the matrices not being of rank 1, and the slightly
unorthodox (and, in particular, not rotationally invariant) norm used to measure the error.
The proof of Lemma 31 itself is given in Appendix A.

Claim 32. Let |u1〉, . . . , |uk〉 ∈ C
k be unit vectors such that 1

k

∑
i 6=j〈ui, uj〉2 ≤ ε. Then there

exist orthogonal unit vectors |v1〉, . . . , |vk〉 ∈ C
k such that 1

k

∑
i

∥∥ |ui〉 − |vi〉
∥∥2 ≤ ε.

7According to Wikipedia, Procrustes, or “the stretcher”, a figure from Greek mythology, was a rogue
smith and bandit from Attica who physically attacked people, stretching them, or cutting off their legs so
as to make them fit an iron bed’s size.

8We are grateful to the user “ohai” of MathOverflow.net for pointing out the connection between this
problem and that of the robust orthonormalization of almost-orthogonal vectors.
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Proof. Let X be the k × k matrix whose columns are made of the vectors |ui〉, expressed in
the canonical basis. The SVD of X is X = UΣV †, where U, V are unitary and Σ is diagonal
with the singular values si of M on the the diagonal. Then

1

k

k∑

i=1

(1− s2i )2 = ‖Σ†Σ− Id‖2F = ‖X†X − Id‖2F =
1

k

∑

i 6=j

∣∣〈ui, uj〉
∣∣2 ≤ ε (4.13)

where for the first equality we used the unitary invariance of the Frobenius norm, and the
second is by definition of X and uses the fact that the |ui〉 have unit norm. Let Y = UV †.
Y is a unitary matrix so its column vectors |vi〉 form an orthonormal family. We have

1

k

k∑

i=1

∥∥ |ui〉 − |vi〉
∥∥2
2
= ‖X − Y ‖2F = ‖Id− Σ‖2F =

1

k

k∑

i=1

(1− si)2

which can be bounded by (4.13) since (1− si)2 ≤ (1− si)2(1 + si)
2 = (1− s2i )2.

4.3.2 The “almost-commuting vs. nearly-commuting” conjecture

In the previous section we showed that, if a POVM’s elements were almost-orthogonal, then
the POVM could be transformed into one that was exactly orthogonal, while only moving
each POVM element by a small amount on average. In particular, the bound we obtained
was independent of the number of outcomes of the POVM. In this section we introduce
a similar-looking problem: given a set of almost-commuting projectors, does there exist a
corresponding set of exactly commuting projectors that are close?

To motivate this question, we first show how an almost-commuting constraint on the
prover’s strategies arises naturally from a simple transformation that one can apply to any
two-player entangled game. We then state the conjecture, and explain why a satisfactory
answer would imply a hardness result for the complexity of approximating the value of
two-player one-round entangled games, an important open problem.

Obtaining commutation relations in a two-player game

A technique to obtain almost-commuting constraints on prover strategies was first introduced
by Kobayashi & al. [68] in the context of entangled three-prover games, as well as entangled
two-player games with quantum messages (see Chapter 6 for more details on the technique
for the case of three provers). The specific variant that we present here, adapted to the case
of two-prover entangled games, is due to Ito & al. [59].

Consider a two-prover game G in which there are q questions per prover. Suppose the
game is symmetric and, for simplicity, assume that the distribution on pairs of questions in
the game is uniform. We introduce a modified game G′, in which the verifier performs the
following:
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1. Sample two questions (i, j) ∈ [q]2 uniformly at random.

2. Send the first question i to Alice, and send the (unordered) pair {i, j} to Bob.

3. Upon receiving Alice and Bob’s answers, check that they are consistent, and that Bob’s
answers satisfy the corresponding constraint from G.

This transformation of G into G′ is in general known as the oracularization technique. In
our context, the important point is that it introduced a variant of the consistency test in the
original game in a way that will let us establish almost-commuting relations on the provers’
measurements, provided they have a high probability of succeeding in the game G′.

Let {Aa
i }, {Bab

ij } and |Ψ〉 be a projective strategy in G′ that has success probability at
least 1 − ε, for some ε > 0. By making the game symmetric (permuting the role of Alice
and Bob at random, telling the provers whose role they are supposed to play), we may
assume that |Ψ〉 is a symmetric bipartite state, with reduced density ρ on either prover. The
fact that this strategy succeeds with probability 1− ε implies that the following consistency
condition must hold:

Ei,j

∑

a,b

〈Ψ|Aa
i ⊗Bab

ij |Ψ〉 ≥ 1− ε. (4.14)

Additional constraints hold due to the checking of the original game’s predicate, but we
ignore those here and instead focus on the implications of (4.14). For simplicity we will
write Ba

ij :=
∑

bB
ab
ij , and symmetrically for Bb

ij (we will always use a to represent the answer
to question i, and b for the answer to question j, so that there is no ambiguity). The following
lemma is adapted from [59].

Lemma 33. Suppose that (4.14) holds. Then

Ei,j

∑

a,b

∥∥∥
[
Aa

i , A
b
j

] ∥∥∥
2

u,ρ
≤ 16 ε.

Proof. First observe that (4.14) implies that

Ei,j

∑

b

〈Ψ|
(
Ab

j ⊗ Id− Id⊗Bb
ij

)2|Ψ〉 = 2− 2Ei,j

∑

b

〈Ψ|Ab
j ⊗ Bb

ij|Ψ〉

≤ 2 ε, (4.15)

while

Ei,j

∑

a,b

〈Ψ|
(
Aa

i ⊗Bb
ij − Id⊗ Bab

ij

)2|Ψ〉 = 2− 2Ei,j

∑

a,b

〈Ψ|Aa
i ⊗Bab

ij |Ψ〉

≤ 2 ε. (4.16)
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This lets us bound

Ei,j

∑

a,b

〈Ψ|
(
Ab

jA
a
i ⊗ Id− Aa

i ⊗ Bb
ij

)(
Ab

jA
a
i ⊗ Id− Aa

i ⊗Bb
ij

)†|Ψ〉

= Ei,j

∑

a,b

〈Ψ|
(
Ab

j ⊗ Id− Id⊗ Bb
ij

)(
Aa

i ⊗ Id
)(
Ab

j ⊗ Id− Id⊗Bb
ij

)†
Id|Ψ〉

= Ei,j

∑

b

〈Ψ|
(
Ab

j ⊗ Id− Id⊗ Bb
ij

)(
Ab

j ⊗ Id− Id⊗ Bb
ij

)†|Ψ〉

≤ 2 ε, (4.17)

where the last inequality is by (4.15). Using a similar calculation one can show that

Ei,j

∑

a,b

〈Ψ|
(
Aa

iA
b
j ⊗ Id− Ab

j ⊗ Ba
ij

)(
Aa

iA
b
j ⊗ Id− Ab

j ⊗Ba
ij

)†|Ψ〉 ≤ 2 ε. (4.18)

Finally, combining (4.17) and (4.18) with (4.16) and the triangle inequality, one obtains

Ei,j

∑

a,b

〈Ψ|
(
Aa

iA
b
j ⊗ Id− Ab

jA
a
i ⊗ Id

)2|Ψ〉 ≤ 16 ε,

proving the lemma.

Making almost-commuting projectors nearly-commute

Consider the following conjecture.

Conjecture 34 ((ε, δ) nearly-commuting conjecture). Let 0 ≤ ε < 1, ρ a density matrix,
and P1, . . . , Pk be d-dimensional projectors such that

1

k2

k∑

i,j=1

∥∥∥
[
Pi, Pj

] ∥∥∥
2

u,ρ
≤ ε.

Then there exists a δ > 0 and projectors Q1, . . . , Qk such that [Qi, Qj] = 0 for every i 6= j,
and

1

k

k∑

i=1

∥∥Pi −Qi

∥∥2
u,ρ
≤ δ.

The assumption of the conjecture is that the projectors are almost-commuting, i.e. the
norm of their commutators is small. The conclusion is that they must be nearly-commuting :
they are close to exactly commuting projectors.

Of course for any ε > 0 there will always be a δ > 0 such that the conjecture holds.
Moreover, it is not too hard to see that it can be shown to hold for a δ that is dimension-
independent. But can δ be made independent of the number k of projectors? If not, what
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is the best dependence of δ on k that one could hope for? This natural question is, as far as
we know, completely open, even in the case where ρ is the maximally entangled state and
the norm

∥∥ ·
∥∥
u,ρ

is correspondingly replaced by the normalized Frobenius norm d−1/2‖ · ‖F
in the equations above.

The history of the conjecture, and its implications, are discussed further in Chapter 6,
and we refer the reader there for additional details. Here we simply point out that, if the
conjecture was resolved in a satisfactory way, with a dependence δ = O(poly log k · poly(ε))
on the number of projectors that is at most poly-logarithmic, then Lemma 33, which extracts
an almost-commuting condition on the prover’s POVMs, would also imply that the prover’s
measurements must nearly-commute — i.e. their strategy should be close to a classical
strategy.
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Chapter 5

Hardness of entangled games

In this chapter we show that multi-prover interactive proofs with entangled provers as at
least as powerful as their classical counterparts, resolving a long-standing open question [72].

Theorem 35. The following inclusion holds:

NEXP ⊆ MIP∗(4, poly, 1, 1− 1/poly).

After sequential repetition of the protocol, this implies that NEXP ⊆ MIP∗(4, poly, 1, 2−p)
for all p ∈ poly.

Prior to this result the best lower bound known was PSPACE ⊆ MIP∗, which follows
by having the verifier interact with a single prover (in which case entanglement plays no
role) and using IP = PSPACE [106]. Together with the celebrated result NEXP = MIP [12],
Theorem 35 shows that entanglement does not weaken the power of general entangled-prover
proof systems.

The proof of Theorem 35 is based on Babai, Fortnow and Lund’s original proof [12] that
NEXP ⊆ MIP. Key to its extension to the entangled-prover setting is an analysis of the
multilinearity test that is at the heart of their proof. Our main contribution is to give an
analysis of this test in the presence of entanglement between the provers. The challenges of
such an analysis were already exposed in a simpler setting in Chapter 2. In that chapter we
analyzed a much simpler variant of the multilinearity test, the linearity test of Blum, Luby
and Rubinfeld [23].

We start by giving a brief overview of our proof strategy in the following section. After
giving some necessary preliminaries, in Section 5.3 we describe the protocol used to prove
Theorem 35. In Section 5.4 we show how the proof of the theorem reduces to the analysis of
an appropriate multilinearity test with entangled provers. This analysis, which constitutes
the core of the proof of Theorem 35, is given in Section 5.5.
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5.1 Overview

The multi-prover protocol for NEXP introduced in [12] consists of two main components.
In the first part of the protocol, the verifier performs a polynomial-round low-degree sum-
check protocol with a single prover. In the second part of the protocol, he has a one-round
interaction with each of the remaining three provers. This interaction is randomly chosen
between two possibilities. The first consists in asking each of the three provers a single
uniformly distributed question, and checking the answers they provide against the results of
the sum-check protocol. The second consists in performing a one-round multilinearity test
with the three provers. This test is designed to enforce that the function according to which
each of the three provers chose their answers is the same, and has the property of being
multilinear from F

n to F, where F is a field in which range the questions and answers in the
protocol.

The most challenging part in adapting this protocol to the case of entangled provers
consists in the analysis of the multilinearity test, and we now outline the main steps of that
analysis. The test is very simple. Let F be a field of characteristic 2, and n an integer. With
probability 1/2 the verifier picks three axis-aligned points x,x + α ei,x + β ei ∈ F

n, and
checks that the provers’ answers a, b, c ∈ F are correspondingly aligned. With the remaining
probability he sends all three provers the same question, checking they reply with the same
answer.

The analysis of the multilinearity test, in case the provers are deterministic, shows that
if they have success probability at least 1 − ε then there must exist a multilinear function
g such that g agrees with each prover’s own answers on a large fraction of points x ∈ F

n

(provided ε was small enough). In the presence of entanglement, however, one cannot hope
for such a statement: the provers may well be using their entanglement as shared randomness,
e.g. to coordinate in selecting one of many possible multilinear functions to compute their
answers. This observation points to a fundamental difficulty: how does one “extract” a
multilinear function from arbitrary entangled-prover strategies? What does it even mean for
such strategies to be “close to multilinear”?

Our work addresses these questions. A key insight, in retrospect a necessity, is to directly
manipulate the provers’ strategies themselves, without explicitly trying to relate them to a
classical strategy. More precisely, for x ∈ F

n
p let

{
Aa

x

}
a∈Fp

be the POVM applied by the

provers1 to determine their answer a, upon receiving question x. We will show how one can
remove the dependence of {Aa

x} on x, one coordinate at a time, by constructing a sequence
of POVMs

{
Bg

xk+1,...,xn

}
g
with outcomes g in the set of multilinear functions Fk

p → Fp. These

POVMs will have the following key property: the respective strategies corresponding to (i)
measuring according to {Aa

x}, and answering a or (ii) measuring according to {Bg
xk+1,...,xn

}
and answering g(a1, . . . , xk) are consistent, in the sense that if two distinct provers use either
strategy then with high probability they obtain the same answer. Setting k = n will give the

1A standard symmetry argument lets us assume that all provers use the same measurement.
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final result, by further proving that consistency implies closeness in an appropriate distance
measure. We will have shown that the original provers’ strategy is indistinguishable from
one in which the provers perform a measurement independent of their question, obtaining
a multilinear function g from which they compute their answer by evaluating g(x). This
effectively reduces the provers to using their entanglement as shared randomness, performing
their measurement even before the protocol starts.

A word on how the B measurements are defined. As we already pointed out, it is essential
that they are constructed as a global function of the original POVMs {Aa

x}. We define them
inductively, and only explain the one-dimensional case here. Our definition is very intuitive:
{B`} is the POVM which corresponds to measuring using {Aa

x1
} successively using two

randomly chosen values of x1, and returning the unique linear function which interpolates
between the two outcomes obtained. Once one has settled on this definition, it is in fact not
too hard to show that success of {Aa

x1
} in the multilinearity test implies that the strategies

corresponding to the {Aa
x1
}a and {B`}` POVMs are consistent.

An additional major hurdle arises as a result of the inductive argument sketched above
(and this difficulty is already present in Babai, Fortnow and Lund’s classical analysis of the
test): the quality of the approximation between the A andB strategies blows up exponentially
with k. In order to control this error, one has to perform an additional step of self-correction
on the B strategy. Making this step work requires substantially more work in the case of
entangled strategies than it does in the classical setting, and is one of our main technical
contributions.

5.2 Preliminaries

Notation. For a field F, a linear function g : F → F is a function such that there exists
a, b ∈ F, g(x) = ax+ b. A multilinear function g : Fk → F is a function that is linear in each
of its coordinates. ML(Fk,F) will denote the set of all multilinear functions from F

k to F. We
will denote tuples using bold symbols such as x and b. Given a tuple x = (x1, . . . , xn) and k ∈
[n], let x≤k = (x1, . . . , xk), x>k = (xk+1, . . . , xn) and x¬k = (x1, . . . , xk−1, xk+1, . . . , xn).

Given a positive matrix ρ and an arbitrary matrix A, we let Trρ(A) := Tr(Aρ). In case
ρ is a matrix on two Hilbert spaces H1 and H2, and A is a matrix on H1, we will sometimes
abuse notation and also write Trρ(A) for Trρ(A⊗ Id2). We also let

‖A‖2ρ := Tr
(
AA†ρ),

and observe that A 7→ ‖A‖ρ is a semi-norm (it is definite if ρ is invertible). It was introduced
as the “univariate ρ-norm”

∥∥A
∥∥
u,ρ

in Chapter 4. In that chapter we proved the following

Cauchy-Schwarz inequality: for any A,B,

Trρ
(
AB†

)
≤ ‖A‖ρ ‖B‖ρ.

We will work with incomplete POVMs {Pi}, which are simply a collection of positive
matrices such that

∑
i Pi ≤ Id (a complete POVM, in contrast, satisfies

∑
i Pi = Id).
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5.2.1 NEXP-complete problems

We will use the following NEXP-complete problem, as stated in Proposition 4.2 of Ref. [12]:

Problem 1: Oracle-3-satisfiability.
Instance. Integers r, s ∈ N in unary and a Boolean formula B(z, b1, b2, b3, a1, a2, a3) in
variables z ∈ {0, 1}r, b1, b2, b3 ∈ {0, 1}s and a1, a2, a3 ∈ {0, 1}.
Question. Does there exist a mappingA : {0, 1}s → {0, 1} such thatB(z, b1, b2, b3, A(b1), A(b2), A(b3)) =
1 simultaneously for all z ∈ {0, 1}r and b1, b2, b3 ∈ {0, 1}s?

Using the standard technique of arithmetization (e.g. Proposition 3.1 and Lemma 7.1 of
Ref. [12]), one can show that the following problem is also NEXP-complete.

Problem 2: Oracle-3-satisfiability, arithmetized version.
Instance. Integers r, s ∈ N in unary and an arithmetic expression2 for a polynomial f(z, b1, b2, b3,
a1, a2, a3), where z represents r variables and each of b1, b2, b3 represents s variables.

Yes-promise. There exists a mapping A : {0, 1}s → {0, 1} such that for all z ∈ {0, 1}r and
all b1, b2, b3 ∈ {0, 1}s, it holds that

f(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0 (5.1)

in Z (and therefore in every field).

No-promise. For every pair (F, A) of a field F and a mapping A : {0, 1}s → F, there exist z ∈
{0, 1}r and b1, b2, b3 ∈ {0, 1}s such that Eq. (5.1) is not satisfied in F.

We note that the degree of the polynomial f represented by the arithmetic expression
can be at most the size of the arithmetic expression, and is therefore bounded by the input
size.

5.2.2 Summation test

Let F be a finite field of characteristic two. If |F| = 2k, an encoding scheme of elements in F

is specified by k and a primitive polynomial f(t) over F2 of degree k. It is well-known that
given 1k, f(t), and the complete factorization of 2k − 1 along with the certificate that each
factor in the factorization is indeed a prime (such as the Pratt certificate), it is possible to
check that k and f(t) form a valid encoding scheme of the field F in polynomial time.

Consider the following promise problem, which has both an explicit and an implicit input.

2An arithmetic expression is a rooted tree whose internal nodes represent either addition or multiplication
and whose leaves represent either variables or an integer constant. The size of an arithmetic expression is
the number of nodes plus the sum of the number of bits required to represent the integer for each constant
node.
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Problem 3: Summation Test Problem.
Explicit input. Integers m, d ∈ N in unary, and an encoding scheme of a finite field F of
characteristic two.

Implicit input. A mapping h : Fm → F.

Promise. The given encoding scheme is valid, and the mapping h : Fm → F is a polynomial
function of degree at most d in each variable.

Question. Is ∑

x∈{0,1}m
h(x) = 0 (in F)? (5.2)

In a (single-prover) interactive proof system for a problem with an implicit input, the
implicit input is given to the verifier as an oracle.3 The following variant of the summation
test of Lund, Fortnow, Karloff and Nisan [80] is a special case of Lemma 3.5 in Ref. [12].

Lemma 36 (Summation test [12]). Suppose that |F| ≥ 2dm. Then there exists a single-
prover interactive proof system for the Summation Test Problem with perfect completeness
and soundness error at most dm/|F|. Moreover, in this interactive proof system, the verifier
behaves as follows. First he chooses q ∈ F

m uniformly at random. Then he interacts with
the prover. At the same time, he reads the value h(q) from the implicit input. Finally he
accepts or rejects depending on q, h(q), and the interaction with the prover.4

To apply the summation test to Problem 2, we have to consider exponentially many
constraints instead of one.

Problem 4: AND Test Problem.
Explicit input. Integers k, d ∈ N in unary, and an encoding scheme of a finite field F of
characteristic two.

Implicit input. A mapping h : Fk → F.

Promise. The given encoding scheme is valid, and the mapping h : Fk → F is a polynomial
function of degree at most d in each variable.

Question. Is h(i) = 0 (in F) for all i ∈ {0, 1}k?
The idea for the following corollary is already explained in Section 7.1 of Ref. [12]. We

will give a proof in Appendix A.2.1 for the sake of completeness.

3In Ref. [12], the authors refer to the interactive proof system for the Summation Test Problem as an
“interactive oracle-protocol,” viewing the mapping h as an exponentially long certificate string which is given
to the verifier as an oracle. However, for our purposes it will be more convenient to treat h as part of the
input.

4In particular, this implies that the verifier reads only one value h(q) from the implicit input and the
position q ∈ F

m to read is chosen uniformly in F
m. Together with the soundness guarantee, this in turn

implies that if the implicit input is δ-close to a polynomial function h̃ of degree at most d in each variable
and h̃ fails to satisfy the equation (5.2), then the verifier accepts with probability at most δ + dm/|F| no
matter what the prover does.
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Corollary 37. There exists a polynomial p : N×N→ N for which the following holds. There
exists a single-prover interactive proof system for the AND Test Problem with perfect com-
pleteness and soundness error at most 5/8 + p(k, d)/|F|. Moreover, in this interactive proof
system, the verifier behaves as follows. First he chooses i ∈ F

k uniformly and independently
at random. Then he interacts with the prover. At the same time, he reads the value h(i) from
the implicit input. Finally he accepts or rejects depending on i, h(i), and the interaction
with the prover.

5.3 Protocol

In order to prove Theorem 35 we construct a four-prover poly-round proof system for
Problem 2 which has perfect completeness with classical provers and soundness error at
most 1 − 1/poly with entangled provers. Our protocol follows that of [12] very closely. We
replace the three calls made in their protocol to the Oracle by calls to three distinct provers.

Label the provers as P,X1, X2, X3. The protocol will be symmetric under any permuta-
tion of the three provers X1, X2, X3. Let (r, s, f) be an instance of Problem 2, as described
in Section 5.2.1. Let df be the maximum degree of f in any one variable. Let m = r + 3s
and d = 2df . Let N be the smallest power of two such that N > 8p(d,m), where p is the
polynomial appearing in the statement of Corollary 37. Let F be the finite field of size N .

The verifier first receives an encoding scheme for F and its certificate from P , and rejects
if it is not valid. In the rest of the protocol, all arithmetic operations in F are performed
using this encoding scheme. If it is valid, the verifier proceeds to one of the following three
tests chosen uniformly at random:

• Consistency test. He chooses x ∈ F
s uniformly at random and sends the same ques-

tion x to the provers X1, X2, X3. He expects each prover to answer with an element of
F, and accepts if and only if all the answers are equal.

• Linearity test. He chooses i ∈ {1, . . . , s}, x ∈ F
s and yi, zi ∈ F uniformly at random,

and sets yj = zj = xj for every j ∈ {1, . . . , s} \ {i}. He sends x,y, z to X1, X2, X3, in
random order. He receives integers a, b, c, and accepts if and only if

b− a
yi − xi

=
c− b
zi − yi

=
c− a
zi − xi

.

• Summation test. The verifier simulates the interactive proof system in Corollary 37
with the explicit input (m, d) and P . When the verifier in Corollary 37 tries to read the
value h(z, b1, b2, b3) in the implicit input, where z ∈ F

r and b1, b2, b3 ∈ F
s, our verifier

simulates this by sending b1, b2, b3 to X1, X2, X3. Upon obtaining answers a1, a2, a3
to his queries, he evaluates f(z, b1, b2, b3, a1, a2, a3) and uses the result as the value
of h(z, b1, b2, b3).
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Note that in each of the three tests, each of the X provers is asked a question x ∈ F
s

distributed uniformly at random.

5.3.1 Completeness

To prove completeness, let (r, s, f) be a yes-instance of Problem 2. Then there exists
a mapping A : {0, 1}s → {0, 1} such that Eq. (5.1) is satisfied for all z ∈ {0, 1}r and
all b1, b2, b3 ∈ {0, 1}s simultaneously. Let g be the unique extension of A to a multilin-
ear function g : Fs → F. Each of X1, X2, X3 answers g(b) on question b ∈ F

s, while P
behaves as it should in the AND test. Then it is clear that this deterministic strategy is
accepted with certainty in the consistency test and the linearity test. In the summation test,
note that the value of h(z, b1, b2, b3) which the verifier uses is given by

h(z, b1, b2, b3) = f(z, b1, b2, b3, g(b1), g(b2), g(b3)),

which is a polynomial in z, b1, b2, b3 of degree at most 2df = d in each variable. Therefore,
the promise in the AND test is satisfied and prover P has a strategy which makes the verifier
accept with certainty.

5.3.2 Soundness

The soundness analysis is divided in two parts. First we analyze the consistency and linearity
tests, and show that success in those tests implies the following. (We refer the reader to
Section 5.2 for some relevant notation and definitions.)

Theorem 38. There exist universal constants 0 < c0, c1 < 1, C1 > 1 such that the following
holds. Let F be a finite field. Suppose |Ψ〉 and {Aa

x}a form a symmetric strategy which
passes both the consistency and the linearity tests with probability 1−ε. Assume furthermore
that |F|−1 ≤ ε and εc0/2 ≤ s−1. Then there exists a POVM {V g}, indexed by multilinear
g : Fs → F, such that

Ex

∑

a

Trρ
(
(Aa

x − V a
x )

2
)
≤ C1 ε

c1 , (5.3)

where we defined V a
x :=

∑
g: g(x)=a V

g.

Theorem 38 is proved in Section 5.4. Assuming the theorem, we prove that our proof
system has soundness error at most

1− 3 s−c0/2,

provided s is larger than an absolute constant depending on c1 and C1. Let (r, s, f) be a no-
instance. Suppose that the provers have a symmetric5 entangled strategy S whose acceptance

5This is without loss of generality by Lemma 13.
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probability is 1 − ε/3. Let |Ψ〉 ∈ P ⊗ X1 ⊗ X2 ⊗ X3 be the state used in the strategy S
and (Aa

x)a∈F be the projective measurements used by each X prover in the strategy S.
The verifier can be viewed as performing the multilinearity game with the playersX1, X2, X3

with probability 2/3 and performing something else (the summation test) with probabil-
ity 1/3. Therefore, the marginal strategy S|X1,X2,X3 has winning probability at least 1−ε/2 ≥
1 − ε in the multilinearity test. By Theorem 38, there exists a POVM

{
V g
}
g∈ML(Fs,F)

such

that inequality (5.3) holds, where ρ is the reduced state of |Ψ〉〈Ψ| on X1. Let

V a
x =

∑

g∈ML(Fs,F)
g(x)=a

V g.

For 0 ≤ i ≤ 3, let Si be the entangled strategy obtained from S by replacing the POVM for
the first i provers X1, . . . , Xi by V

a
x . Note S0 = S. In the strategy Si, the provers X1, . . . , Xi

can be implemented so that they measure the prior entanglement without looking at their
question. In particular, in the strategy S3, every prover except for P measures the prior
entanglement without looking at the question, and therefore S3 can be implemented by
shared randomness.

For 0 ≤ i ≤ 3, let pi be the probability that the strategy Si is accepted in the four-prover
protocol. By definition, p0 = 1− ε/3. We prove the following.

Claim 39. For i = 1, . . . , 3, it holds that |pi−1 − pi| ≤
√
C1ε

c1/2.

Proof. The only difference between the strategies Si−1 and Si is the measurements used by
the prover Xi. We call the message from the verifier to Xi as register A, and call everything
other than A and the private space Xi for prover Xi as register B. Register A is classical,
but we treat it as a quantum register which always contains a state in the computational
basis. Let σ be the global state before the prover Xi performs his measurement, and σA
(resp. σV ) be the global state after the prover Xi performs the measurement Ax (resp. V )
on his share of the state, and then discards the post-measurement state. Since the marginal
distribution on the question to Xi is uniform, the state σ has the following form:

σ = Ex∈Fs |x〉〈x|A ⊗ σXiB
x ,

where TrBσ
XiB
x = σXi = ρ is independent of x. We want to bound (1/2)‖σW − σM‖1, where

σW = TrXi

[
Ex∈Fs |x〉〈x|A ⊗

∑

a∈F
|a〉〈a|C ⊗ (Aa

x ⊗ IB)σXiB
x (Aa

x ⊗ IB)
]
,

σM = TrXi

[
Ex∈Fs |x〉〈x|A ⊗

∑

a∈F
|a〉〈a|C ⊗ (

√
V a
x ⊗ IB)σXiB

x (
√
V a
x ⊗ IB)

]
,
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and C denotes the register used for prover i’s answers. For x ∈ F
s, define isometries Ux, Vx : Xi⊗

B → Xi ⊗ B ⊗ C by

Ux =
∑

a∈F
Aa

x ⊗ IB ⊗ |a〉C,

Vx =
∑

a∈F

√
V a
x ⊗ IB ⊗ |a〉C.

Then,

‖ρW − ρM‖1

≤ ‖[‖
]
Ex∈Fs |x〉〈x|A ⊗

∑

a∈F
|a〉〈a|C ⊗

(
(Aa

x ⊗ IB)σXiB
x (Aa

x ⊗ IB)− (
√
V a
x ⊗ IB)σXiB

x (
√
V a
x ⊗ IB)

)

1

≤ Ex∈Fs‖[‖
]∑

a∈F
|a〉〈a|C ⊗

(
(Aa

x ⊗ IB)σXiB
x (Aa

x ⊗ IB)− (
√
V a
x ⊗ IB)σXiB

x (
√
V a
x ⊗ IB)

)

1

≤ 2Ex∈Fs

√∑

a∈F
Tr
(
(Aa

x −
√
V a
x )

2ρ
)

≤ 2

√
Ex∈Fs

∑

a∈F
Tr
(
(Aa

x −
√
V a
x )

2ρ
)

≤ 2
√
C1εc1 ,

where the third inequality is by Lemma 117, the fourth is by convexity and the last by (5.3).
Therefore, we have that |pi−1 − pi| ≤

√
C1ε

c1/2 as claimed.

By the triangle inequality, Claim 39 implies that |p0 − p3| ≤ 3
√
C1ε

c1/2, and therefore

p3 ≥ p0 − 3
√
C1ε

c1/2 = 1− ε− 3
√
C1ε

c1/2 ≥ 1− 4
√
C1ε

c1/2,

where the last inequality uses c1 ≤ 1.
If not all of the provers choose the same multilinear function, then they pass in the consis-

tency test with probability at most s/|F| ≤ 1/6 by Schwartz’s lemma [103]. In the strategy S3,
they pass in the consistency test with probability at least 1 − 21

√
C1ε

c1/2. Therefore, they
choose the same multilinear function with probability at least 1 − 21

√
C1ε

c1/2/(1 − 1/6) ≥
1−26

√
C1ε

c1/2. This implies that if an oracle chooses a multilinear function in the same way
as the prover X1 and use it for all three queries, the distribution on their answers will differ
by at most 52

√
C1ε

c1/2. Therefore, this oracle (which always implements a multilinear func-
tion) together with the prover P is accepted in the interactive proof system of Corollary 37
with probability at least 1− 21

√
C1ε

c1/2 − 52
√
C1ε

c1/2 = 1− 73
√
C1ε

c1/2.
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Because of our choice of the finite field F, the acceptance probability in the interactive
proof system of Corollary 37 is less than 3/4. Comparing this with the lower bound in the
previous paragraph, we obtain

1− 73
√
C1ε

c1/2 <
3

4
,

which implies

ε >
1

(2922 · C1)1/c1
,

contradicting our assumption that ε ≤ s−c0/2 as soon as s is large enough. Since we obtained
this lower bound on ε from the assumption that there exists an entangled strategy with
acceptance probability 1 − ε/3, we have proved the claimed soundness guarantee against
entangled provers.

5.4 Analysis of the multilinearity game

In this section we analyze the combination of the consistency test and the linearity test
described in Section 5.3 as a stand-alone game played by three players. For convenience, we
restate the test here. The game is parametrized by two integers n and p, where p is a power
of 2 and F a finite field of order |F| = p,6 and is performed with three players X1, X2, X3

treated symmetrically. The referee performs the following two tests with probability 1/2
each:

• Consistency test. The referee chooses x ∈ F
n uniformly at random and sends the same

question x to the players X1, X2, X3. He expects each player to answer with an element
of F, and accepts if and only if all the answers are equal.

• Linearity test. The referee chooses i ∈ {1, . . . , s}, x ∈ F
n and yi, zi ∈ F uniformly at

random, and sets yj = zj = xj for every j ∈ {1, . . . , n} \ {i}. He sends x,y, z to a
random permutation of the players, receives integers a, b, c, and accepts if and only if

b− a
yi − xi

=
c− b
zi − yi

=
c− a
zi − xi

.

The following definition will be useful in our analysis.

Definition 40. Let
{
T g
x≥k

}
g∈ML(Fk−1,F)

and
{
V h
x≥`

}
h∈ML(F`−1,F)

be two families of (possibly

incomplete) POVMs. Let δ > 0. We say that T and V are δ-consistent if the following
holds:

µ(T, V ) := Ex

∑

g,h: g(x<k) 6=h(x<`)

Trρ
(
T g
x≥k
⊗ V h

x≥`

)
≤ δ.

6The dimension parameter n was called s, and p was called N , in the previous section.
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We also let µ(T ) := µ(T, T ): µ(T ) measures the probability that two distinct provers simul-
taneously measuring their share of the entangled state using

{
T g
x≥k

}
obtain functions g, g′

that differ at (a random) x<k. Finally, by a slight abuse of notation we write

Trρ(T ) := Ex

∑

g

Trρ
(
T g
x≥k

)
.

The main result of this section is the following.

Theorem 41. There exists universal constants 0 < c0 < 1, C0 > 1 such that the following
holds. Suppose |Ψ〉 and {Aa

x}a form a permutation-invariant strategy which passes both the
consistency and the linearity tests with probability 1− ε. Assume furthermore that p = |F| ≥
ε−1 and εc0/2 ≤ n−1. Then there exists an incomplete POVM {V h}h∈ML(Fn,F), indexed by
multilinear h : Fn → F, such that

1. V is O(εc0)-consistent with A,

2. Trρ(V ) ≥ 1− C0 ε
c0.

The first condition in the theorem intuitively guarantees that, if a prover measures ac-
cording to V , obtaining a multilinear function h as outcome, then the value of that function
at x will correspond to the answer a that another prover applying the original POVM

{
Aa

x

}

would have obtained. The second condition states that the POVM V is “not too incomplete”.
We will show how Theorem 41 implies Theorem 38 in Section 5.4.2, while Theorem 41

will be proved in Section 5.5. In the following section we show a weaker version of the
multilinearity test, the “linearity test”, which implies Theorem 41 for n = 1. While that
claim avoids a lot of the difficulties of the overall proof, it demonstrates some of its basic
ideas and techniques, and will be used as an important building block in the proof of the
general case.

5.4.1 Preliminary analysis

As an immediate consequence of
{
Aa

x

}
succeeding in the multilinearity test, we get that the

following relations hold:

Ex

∑

a

Trρ
(
Aa

x ⊗ Aa
x

)
≥ 1− ε, (5.4)

∀i ∈ [n], E
xi,x′

i,x
′′
i x¬i

∑

a′−a
x′
i
−xi

= a′′−a′

x′′
i
−x′

i
= a′′−a

x′′
i
−xi

Trρ
(
Aa

xi,x¬i
⊗ Aa′

x′
i,x¬i
⊗ Aa′′

x′′
i ,x¬i

)
≥ 1− nε

≥ 1−√ε, (5.5)

where the last inequality follows from our assumption that n ≤ ε−c0/2 ≤ ε−1/2. We note that
here as elsewhere we abuse notation and use ρ to denote the prover’s density matrix on all
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three provers’ systems, any two of the provers’, or any one of them. Which will always be
clear from the context (recall that ρ is permutation-invariant).

The following claim proves the “linearity” part of the multilinearity test. It generalizes
Theorem 4 from Chapter 2 to field sizes p > 2.

Claim 42. Suppose that {Aa
x} is a projective strategy passing the consistency test with prob-

ability 1−ε, and the linearity test in the i-th direction with success 1−√ε. Then there exists
a POVM

{
Bu,v

x¬i

}
(u,v)∈F2 such that

Ex

∑

a

∥∥∥Aa
x −

∑

u,v:uxi+v=a

Bu,v
x¬i

∥∥∥
2

ρ
= O

(√
ε
)
.

Proof. Define

Bu,v
x¬i

:= Exi 6=x′
i
Auxi+v

xi,x¬i
A

ux′
i+v

x′
i,x¬i

Auxi+v
xi,x¬i

.

Then
{
Bu,v

x¬i

}
u,v

is a well-defined POVM: for fixed xi 6= x′i, as (u, v) ranges over F
2 both

uxi + v and ux′i + v independently range over F. Using the definition of the norm ‖ · ‖ρ, we
can expand

Ex

∑

a

∥∥∥Aa
x −

∑

u,v:uxi+v=a

Bu,v
x¬i

∥∥∥
2

ρ
= Ex

∑

a

Trρ
(
Aa

x

)
+ Ex

∑

(u,v), (u′,v′)
uxi+v=u′xi+v′

Trρ
(
Bu,v

x¬i
Bu′,v′

x¬i

)

− 2Ex

∑

a,u,v:uxi+v=a

Trρ
(
Aa

xB
u,v
x¬i

)
. (5.6)

By Lemma 120, using the consistency of {Aa
x} (and letting Ba

x :=
∑

(u,v):uxi+v=aB
u,v
x¬i

play the

role of Bi in that lemma), in order to lower-bound the last term it will suffice to lower-bound
Ex

∑
(u,v):uxi+v=aTrρ

(
Aa

x ⊗Bu,v
x¬i

)
. Using the definition of Bu,v

x¬i
, we have

Ex

∑

a,u,v:uxi+v=a

Trρ
(
Aa

x ⊗ Bu,v
x¬i

)

= Ex,x′
i 6=x′′

i

∑

a,u,v:uxi+v=a

Trρ
(
Aa

x ⊗ A
ux′

i+v

x′
i,x¬i

A
ux′′

i +v

x′′
i ,x¬i

A
ux′

i+v

x′
i,x¬i

)

= Ex,x′
i 6=x′′

i

∑

a,u,v:uxi+v=a

∑

a′

Trρ
(
Aa

x ⊗ A
ux′

i+v

x′
i,x¬i

A
ux′′

i +v

x′′
i ,x¬i

A
ux′

i+v

x′
i,x¬i
⊗ Aa′

x′
i,x¬i

)

≤ Ex,x′
i 6=x′′

i

∑

a,u,v:uxi+v=a

Trρ
(
Aa

x ⊗ A
ux′

i+v

x′
i,x¬i

A
ux′′

i +v

x′′
i ,x¬i

A
ux′

i+v

x′
i,x¬i
⊗ Aux′

i+v

x′
i,x¬i

)
+ ε

≤ Ex,x′
i 6=x′′

i

∑

a,u,v:uxi+v=a

∑

a′

Trρ
(
Aa

x ⊗ Aa′

x′
i,x¬i

A
ux′′

i +v

x′′
i ,x¬i

Aa′

x′
i,x¬i
⊗ Aux′

i+v

x′
i,x¬i

)
+ 2 ε

(5.7)
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where the first equality simply uses that the Aa′

x′
i,x¬i

sum to identity over a′, and the two

inequalities both use (5.4) on the last two registers (together with Aa
x ≤ Id). Moreover, by

Claim 119, together with (5.4), we know that

Ex

∥∥∥
∑

a

(
Aa

x ⊗ Id⊗ Id
)
ρ
(
Aa

x ⊗ Id⊗ Id
)
− ρ
∥∥∥
1
= O

(√
ε
)
,

where we used that the Aa
x are projectors. Hence

Ex,x′
i 6=x′′

i

∑

a,u,v:uxi+v=a

∑

a′

Trρ
(
Aa

x ⊗
(
Aa′

x′
i,x¬i

A
ux′′

i +v

x′′
i ,x¬i

Aa′

x′
i,x¬i
− Aux′′

i +v

x′′
i ,x¬i

)
⊗ Aux′

i+v

x′
i,x¬i

)

= Ex,x′
i 6=x′′

i

∑

a,u,v:uxi+v=a

Tr
((
Aa

x ⊗ A
ux′′

i +v

x′′
i ,x¬i

⊗ Aux′
i+v

x′
i,x¬i

)
·

(∑

a′

(
Id⊗ Aa′

x′
i,x¬i
⊗ Id

)
ρ
(
Id⊗ Aa′

x′
i,x¬i
⊗ Id

))
− ρ
))

≤ Ex,x′
i

∥∥∑

a′

Aa′

x′
i,x¬i

ρAa′

x′
i,x¬i
− ρ
∥∥
1
= O

(√
ε
)
,

where for the inequality we used that for every x,
∑

a,u,v:uxi+v=aA
a
x⊗A

ux′′
i +v

x′′
i ,x¬i
⊗Aux′

i+v

x′
i,x¬i
≤ Id,

and monotonicity of the trace distance. Combining this last bound with (5.7), we obtain

Ex

∑

a,u,v:uxi+v=a

Trρ
(
Aa

x ⊗Bu,v
x¬i

)
= Ex,x′

i 6=x′′
i

∑

a,u,v:uxi+v=a

Trρ
(
Aa

x ⊗ A
ux′′

i +v

x′′
i ,x¬i

⊗ Aux′
i+v

x′
i,x¬i

)
+O

(√
ε
)

= Ex,x′
i 6=x′′

i

∑

u,v

Trρ
(
Auxi+v

x ⊗ Aux′′
i +v

x′′
i ,x¬i

⊗ Aux′
i+v

x′
i,x¬i

)
+O

(√
ε
)
.

Up to the missing x′i = x′′i terms, the last summation above is exactly the probability that
the Aa

x pass the linearity test along the first coordinate, hence is at least 1 − √ε by (5.5).
Terms in the expectation for which x′i = x′′i contribute at most 1/p ≤ ε, hence we have
shown:

Ex

∑

a,u,v:uxi+v=a

Trρ
(
Aa

x ⊗Bu,v
x¬i

)
≥ 1−O

(√
ε
)
.

Since the first two terms in (5.6) are at most 1 each, this implies the bound in the claim.

5.4.2 Proof of Theorem 38

In this section we show how Theorem 38, which is the result we need in order to analyze
the overall protocol from Section 5.3, follows from Theorem 41. Theorem 41 is proved in
Section 5.5.
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Proof of Theorem 38. Given that A passes the consistency test, we have µ(A) ≥ 1 − ε (cf.
Eq. (5.4)) and hence

Ex

∑

a

Trρ
(
(Aa

x ⊗ Id− Id⊗ Aa
x)

2
)
= 2− 2

∑

a

Trρ
(
Aa

x ⊗ Aa
x

)
≤ 2 ε. (5.8)

Let
{
V h
}
be the incomplete POVM guaranteed by Theorem 41. Expanding

Ex

∑

a

Trρ
(
(Aa

x − V a
x )

2
)
= Ex

∑

a

(
Trρ
(
(Aa

x)
2
)
+ Trρ

(
(V a

x )
2
)
− 2Trρ

(
Aa

xV
a
x

))

≤ 2− 2Ex

∑

a

Trρ
(
Aa

xV
a
x

)
,

it will suffice to show that this last expectation is close to 1. By Lemma 120 and self-
consistency of A as per (5.8), it suffices to lower-bound

Ex

∑

a

Trρ
(
Aa

x ⊗ V a
x

)
= Trρ(V )− µ(V,A) ≥ 1− C0ε

c0 −O
(
εc0
)
,

assuming the bounds claimed in Theorem 41. This proves Theorem 38.

5.5 Proof of Theorem 41

In this section we prove our main result on the analysis of the multilinearity test in the
presence of entanglement between the provers, Theorem 41. Its proof proceeds by induction,
and is based on two lemmas. The first, an analogue of the “pasting lemma” from [12], lets
us remove the dependence of the provers’ strategy on the verifier’s question one coordinate
at a time.

Lemma 43 (Pasting lemma). Let {Aa
x}a, where x ∈ F

n and a ∈ F, be a strategy that is
accepted with probability at least 1− ε in both the linearity test and the consistency test. Let
k ∈ [n] and

{
T h
x≥k

}
h
, where h : Fk−1 → F is multilinear, be a (incomplete) POVM such that

T satisfies properties 1.–3. in the conclusion of Lemma 44, for some n−4 ≥ δ ≥ √ε, and
assume p ≥ n3. Then there exists a (incomplete) POVM

{
V g
x>k

}
g
, where g : Fk → F, such

that

1. V is consistent with A: µ(V,A) = O
(
δ1/4
)
,

2. V has large trace: Ex>k

∑
g Trρ

(
V g
x>k

)
≥ Ex≥k

∑
h Trρ

(
T h
x≥k

)
−O

(
δ1/4
)
.

We note that in this lemma we keep very little information on how V relates to T , but
rather connect V directly to A through the consistency property. Indeed, it can be thought
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of as a weaker variant of Claim 42, but one that we will be able to carry out throughout the
induction.

The second lemma is the quantum analogue of the “self-improvement lemma” of [12].
It shows that, if a strategy {Aa

x} is weakly consistent with a multilinear POVM {Rg
x≥k
},

and it passes the consistency and linearity tests with high probability, then it must be
highly consistent with an “improved” multilinear POVM {T g

x≥k
}. (The extra conditions in

the conclusion of the lemma are not ultimately needed, but are helpful to carry out the
induction procedure.)

Lemma 44 (Self-improvement lemma). There exists a universal constant 0 < c < 1 such
that the following holds. For every x ∈ F

n, let {Aa
x}a be a POVM indexed by a ∈ F. Let

1/n ≥ δ ≥ √ε > 0 be such that the following hold:

1. {Aa
x}x passes both tests with probability 1− ε,

2. There exists a (incomplete) POVM {Rg
x≥k
}g, indexed by multilinear g : Fk−1 → F, such

that µ(R,A) ≤ δ.

Then there exists a (incomplete) POVM {T g
x≥k
}g, where g : Fk−1 → F, such that T has a

factorization T g
x≥k

= T̂ g
x≥k

(
T̂ g
x≥k

)†
, and for every x there is a Sg

x = Ŝg
x

(
Ŝg
x

)†
such that the

following hold:

1. For every x and a,
∑

g:g(x<k)=a S
g
x ≤ Aa

x,

2. Ex

∑
g

∥∥T̂ g
x≥k
− Ŝg

x

∥∥2
ρ
= O(εc),

3. µ(T,A) = O(εc),

4. Trρ(T ) ≥ Trρ(R)−O
(
δ1/4
)
.

Based on these two lemmas, we can give a proof by induction of Theorem 41.

Proof of Theorem 41. We show the following by induction on 0 ≤ k ≤ n:

IH(k): There exists universal constants 0 < c < 1, C,C ′ > 1, and a POVM {V h
x>k
},

indexed by multilinear h : Fk → F, such that

1. V is C ′εc/4-consistent with A,

2. Trρ(V ) ≥ 1− C(k + 1) εc/8.

IH(0) is the base case, and is trivial: just set V = A; properties 1 and 2 both hold as a
consequence of A passing the tests. IH(n) implies the theorem.

Suppose that IH(k − 1) is true, prove IH(k). Let
{
Rh

x≥k

}
be the POVM guaranteed by

the induction hypothesis, where h : Fk−1 → F is multilinear. First apply Lemma 44 to A
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and R. Let C ′′ be an upper bound on all constants implied by the O(·) in the conclusion of
the lemma. We obtain a POVM

{
T g
x≥k
}
g
such that Trρ(T ) ≥ Trρ(R) − C ′′(C ′εc/4)1/4, and

T satisfies the other three conclusions of Lemma 44, with an error δ = C ′′εc.
Apply Lemma 43 to T . Let C ′′′ be an upper bound on all constants implied by the

O(·) notation in the conclusion of the lemma. We obtain a POVM
{
V g
x>k

}
, where now

g : Fk → F is multilinear, such that V is C ′′′(C ′′εc)1/4-consistent with A and Trρ(R) ≥
Trρ(V )−C ′′′(C ′′εc)1/4. This proves IH(k) provided C,C ′ are chosen such that C ′ ≥ C ′′′(C ′′)1/4

and C ≥ C ′′′(C ′′)1/4 + C ′′(C ′)1/4.

5.6 The self-improvement lemma

In this section we prove Lemma 44, which shows that the consistency with A of a given
(incomplete) POVM

{
Rg

x≥k

}
g
can be improved, while not increasing its “incompleteness”,

as measured by Trρ(R), too much. Before proceeding with the details, we give some intuition
and a high-level overview of how we will proceed.

Think about the following simplified situation in two dimensions. Consider also the case
where p = 2, so that the prover’s answers are simply bits. For every x ∈ F

2 we are given
a binary projective measurement (A0

x, A
1
x): picture two orthogonal “planes” of dimension

d/2 each. Our goal is to find a global “refinement” of these planes: a single projective
measurement {T g}, with outcomes in the set of bilinear functions g : F2 → F, such that at
every x the approximation Aa

x ≈ε

∑
g: g(x)=a T

g holds.7 In order to achieve this, we start
from two assumptions:

1. There exists another measurement {Rg} which achieves an approximation of weaker
quality, up to some δ � ε, than the one we are looking for,

2. The Aa
x are very close to linear : for every line (x1, ·) (resp. (·, x2)) there is measure-

ment B`
x1

with outcomes in the set of linear functions F → F such that Aa
(x1,x2)

≈ε∑
`: `(x2)=aB

`
x1
.

The goal is to use the high quality of the approximation along lines to improve the quality of
the overall “bilinear” approximation. Let’s trust that an ideal measurement {T g}, achieving
an approximation of order ε, exists. How can {Rg} differ from this ideal measurement? We
may think of {Rg} as a perturbation of {T g}. There are two ways {T g} can be perturbed:
the first is by applying an arbitrary (but not too large) rotation (or, in general, unitary
transformation) on the whole space. The second is by “mis-labeling” some of the POVM
elements: e.g. for some g, a subspace of the space on which Rg projects could have been
labeled as a subspace of T g′ for some g′ 6= g.

7At this point we are being purposely vague as to how the approximation is measured. It will be done in
a relatively weak sense, through the consistency µ(T,A).
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These are the two main types of errors to keep in mind. We devise a procedure which
“corrects” the first type of error, but not the second: indeed, if some parts of the measurement
{Rg} are mis-labeled, and hence produce outcomes which agree very poorly with the original
{Aa

x}, there is no generic way to recover from such errors. This type of error is unique to
the quantum setting, and is the main reason why the measurements we construct “shrink”
at every step of the induction: any mislabeled portions of space will have to be thrown out.
Since we cannot recover from these errors, it is crucial that they do not add up to too much
throughout the whole induction procedure.

To correct the first type of error, we introduce the following procedure:

1. For every x, find the POVM {Sg
x}g which is closest to {Rg} (for some appropriate

measure of distance between POVMs) while being perfectly consistent with {Aa
x}: that

is,
∑

g:g(x)=a S
g
x = Aa

x. This is possible only because x is fixed. We obtain {Sg
x} as the

optimum solution of a convex program (5.9).

2. Show that {Sg
x} in fact does not depend too much on x, so that defining T g := ExS

g
x

leads to the consistent measurement we are looking for.

The second step is key: why would the {Sg
x} be (almost) independent of x? Here the

linearity property comes into play. Using the perfect consistency of S and A, together with
the linearity of A, we are able to conclude that the {Sg

x} should not vary too much along any
line. That is, Sg

(x1,x2)
≈ε S

g
(x1,x′

2)
for any x1 and x2, x

′
2 (and similarly in the other direction).

This step uses properties of the specific optimization problem that we introduced in order
to define {Sg

x}g. The invariance along lines, together with the (reasonably) good expansion
properties of the hypercube, lets us conclude that the {Sg

x} are in fact globally invariant,
leading to the required POVM {T g}.8

We now proceed with the details. In the following section we introduce the optimization
procedure that is used to define the operators

{
Sg
x

}
g
. In Section 5.6.2 we show that the

{Sg
x} are close to being independent of x, leading to a POVM {T g} having the properties

claimed in Lemma 44.

8There will be a loss of a factor n in the quality of the approximation, but this is ok: they key point is
that the quality of the approximation of the T g depends on ε (and n) only, not on δ.
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5.6.1 A convex optimization problem

For every x and multilinear g, let {Ŝg
x}x be a solution to the following convex optimization

problem:

δ1 := min Ex

∑

g

∥∥∥Ŝg
x −

√
Rg

x≥k

∥∥∥
2

ρ
(5.9)

∀x, g, Ŝg
x = A

g(x≤k)
x Ŝg

x; ∀x, a,
∑

g:g(x≤k)=a

Ŝg
x(Ŝ

g
x)
† ≤ Aa

x,

where
√
Rg

x≥k is the positive square root of the (incomplete) POVM elements
{
Rg

x≥k

}
g

promised in the assumptions of Lemma 44. Let Sg
x = Ŝg

x

(
Ŝg
x)
†.9 Our first claim shows that

the optimum of (5.9) is bounded as a function of the consistency of R and A.

Claim 45. Suppose that the
{
Rg

x≥k

}
g
are POVMs satisfying the assumptions of Lemma 44.

Then the optimum of (5.9) is at most O
(√

µ(A,R) +
√
ε
)
.

Proof. We construct a feasible solution achieving the objective value claimed. Let Ŝg
x :=

A
g(x<k)
x

√
Rg

x≥k . Then by definition {Ŝg
x} is a feasible solution to (5.9). To upper-bound its

value, we first evaluate

Ex

∑

g

(
Trρ
(
Ŝg
x

√
Rg

x≥k

)
− Trρ

(
Rg

x≥k

))
= Ex

∑

g

Trρ
((
Ag(x<k)

x − Id
)
Rg

x≥k

)

We can bound

Ex

∑

g

Trρ
((
Ag(x<k)

x − Id
)
Rg

x≥k
⊗
(
Id− Ag(x<k)

x

))

≤
(
Ex

∑

g

Trρ
(
Rg

x≥k
⊗
(
Id− Ag(x<k)

x

)))1/2(
Ex

∑

g

Trρ
((
Ag(x<k)

x − Id
)
Rg

x≥k

(
Ag(x<k)

x − Id
)))1/2

≤
√
µ(A,R), (5.10)

where the first inequality is Cauchy-Schwarz and the second follows by definition of µ(A,R).
Similarly,

Ex

∑

g

Trρ
((
Ag(x<k)

x − Id
)
Rg

x≥k
⊗ Ag(x<k)

x

)

≤
(
Ex

∑

g

Trρ
(
Rg

x≥k
⊗ Ag(x<k)

x

))1/2(
Ex

∑

g

Trρ
((
Ag(x<k)

x − Id
)
Rg

x≥k

(
Ag(x<k)

x − Id
)
⊗ Ag(x<k)

x

))1/2

≤
√
µ(A,A) = O

(√
ε
)
, (5.11)

9We will usually use a hat, as in Ŝ, to denote matrices which we think of as factorizations of POVM
elements, and hence are not necessarily positive. In general, the relation between X̂ and X will always be
that X = X̂X̂†.
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by consistency of A. Together, Eq. (5.10) and (5.11) show that

Ex

∑

g

Trρ
(
Ŝg
x

√
Rg

x≥k

)
≥ Ex

∑

g

Trρ
(
Rg

x≥k

)
−O

(√
µ(R,A) +

√
ε
)
.

Expanding out
∥∥Ŝg

x −
√
Rg

x≥k

∥∥2
ρ
, to conclude it suffices to show that also

Ex

∑

g

Trρ
(
Ŝg
x

(
Ŝg
x

)†) ≤ Ex

∑

g

Trρ
(
Rg

x≥k

)
+O

(√
ε
)
,

which follows from arguments similar to the one above.

5.6.2 Constructing a POVM independent of x≤k

As a first step in showing that any optimal solution to (5.9) must be close to being indepen-
dent of x, we show that such an optimal solution must be close to another feasible solution
which is furthermore close to being invariant along the direction of any line. Precisely, we
have the following.

Claim 46. Assume p−1 ≤ ε. For every i < k there exists a feasible solution
{
Ẑg

x

}
to (5.9),

with objective value at most δ1 +O
(
ε
)1/4

, such that

Ex

∑

g

∥∥Ẑg
x − Ex′

i
Ẑg

x¬i,x′
i

∥∥2
ρ
= O

(√
ε
)
.

Proof. Let {Ŝg
x} be an optimal solution to (5.9), and for any i < k let

Ŷ g
x¬i

:= B
g|`i(x)
x¬i Exi

Ŝg
x,

where `i(x) is the line going through x and parallel to the i-th axis, and {B`
x¬i}` is the

“lines” POVM introduced in Claim 42. We first claim that the Ŷ g
x¬i

, while not strictly
feasible, achieve an objective value in (5.9) of at most δ1 +O(ε).

Towards proving this, we first show that B
g(x≤k)
x Ŝg

x is close to Ŝg
x. This follows from the

relation A
g(x≤k)
x Ŝg

x = Ŝg
x, and the closeness of A and B. Indeed, we have

Ex

∑

g

∥∥Bg(x≤k)
x Ŝg

x − Ŝg
x

∥∥2
ρ
= Ex

∑

g

Trρ
((
B

g(x≤k)
x − Ag(x≤k)

x

)
Sg
x

(
B

g(x≤k)
x − Ag(x≤k)

x

))

≤ Ex

∑

a

∥∥Ba
x − Aa

x

∥∥2
ρ

= O
(√

ε
)

(5.12)
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by Claim 42. By convexity, the following (infeasible) operators

Ỹ g
x¬i

:= Exi
B

g(x≤k)
x Ŝg

x

also achieve a value δ1 +O(
√
ε) in (5.9).

Next we show that the Ỹ g
x¬i

are close to the

Ŷ g
x¬i

:= B
g|`i(x)
x¬i Exi

Ŝg
x,

which are invariant along lines in the i-th direction. Indeed, from the definition

Ỹ g
x¬i

= B
g|`i(x)
x¬i Exi

Ŝg
x + Exi

∑

uxi+v=g(x≤k)
(u,v) 6=g|`i(x)

Bu,v
x¬i
Ŝg
x.

The norm of the second term can be expanded as follows:

Ex¬i

∑

g

∥∥∥Exi

∑

uxi+v=g(x≤k)
(u,v) 6=g|`i(x)

Bu,v
x¬i
Ŝg
x

∥∥∥
2

ρ

= Ex¬i

∑

g

Exi,yi

∑

uxi+v=g(x≤k)
(u,v) 6=g|`i(x)

∑

u′yi+v′=g(x≤k)
(u′,v′) 6=g|`i(x)

Trρ
(
Bu,v

x¬i
Ŝg
x¬i,xi

(Ŝg
x¬i,yi

)†Bu′,v′

x¬i

)

Eq. (A.2) from Lemma 120 shows that terms such that (u, v) 6= (u′, v′) contribute at most
O
(√

µ(B,B)
)
= O

(
ε1/4
)
. But the only possibility for (u, v) = (u′, v′) is that also xi = yi,

since two distinct lines intersect in at most one point. Hence we have that

Ex¬i

∑

g

∥∥∥Exi

∑

uxi+v=g(x≤k)
(u,v) 6=g|`i(x)

Bu,v
x¬i
Ŝg
x

∥∥∥
2

ρ
= Ex¬i

∑

g

1

p
Exi

∑

uxi+v=g(x≤k)
(u,v) 6=g|`i(x)

Trρ
(
Bu,v

x¬i
Sg
xB

u,v
x¬i

)
+O

(
ε1/4
)

≤ 1

p
+O

(
ε1/4
)
.

This in particular implies that the Ŷ g
x¬i

, while still not necessarily feasible, achieve an objec-

tive value in (5.9) of δ1 +O
(
ε1/4
)
.

Finally, define Ẑg
x := A

g(x≤k)
x B

g|`i(x)
x¬i Exi

Ŝg
x. Then the

{
Ẑg

x

}
are feasible in (5.9), and the

fact that
Ex

∑

g

∥∥Ẑg
x − Ŷ g

x¬i

∥∥2
ρ
= O

(√
ε
)

(5.13)
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follows from arguments similar to those used to prove Eq. (5.12). Hence the
{
Ẑg

x

}
are a

feasible solution to (5.9) with objective value δ1 + O
(
ε1/4
)
. Finally, by convexity (5.13)

implies that

Ex

∑

g

∥∥Exi
Ẑg

x − Ŷ g
x¬i

∥∥2
ρ
= O

(√
ε
)
,

which together with the triangle inequality and (5.13) shows that the Ẑ are close to their
expectation on any axis-parallel line in the i-th direction, proving the claim.

Using convexity of X → ‖X − A‖2ρ for fixed A, the following follows from Claims 45
and 46.

Claim 47. Let
{
Ŝg
x

}
be an optimal solution to (5.9). Then

Ex,i<k

∑

g

‖Ŝg
x − Ex′

i
Ŝg
x¬ix′

i
‖2ρ = O

(
ε1/4
)
.

Proof. We show that the two solutions thus constructed to (5.9),
{
Ŝg
x

}
and

{
Ẑg

x

}
from

Claim 46, must be close:10

Ex,i

∑

g

∥∥Ẑg
x − Ŝg

x

∥∥2
ρ
= O

(
ε1/4
)
. (5.14)

The claim will follow by combining this bound with the fact, proved in Claim 46, that the
Ẑg

x themselves are close to their expectation along any axis-parallel line in the i-th direction.

Eq. (5.14) essentially follows from the fact that both
{
Ŝg
x

}
and

{
Ẑg

x

}
are almost-optimal

solutions to (5.9), which is the minimization of a “Euclidean-like” distance to a convex set —
hence they must be close. Precisely, since the feasible set of (5.9) is convex, for any 0 ≤ t ≤ 1
the elements (1− t)Ŝg

x + tẐg
x also constitute a feasible solution. By optimality of

{
Ŝg
x

}
, its

objective value must be at least δ1: for every 0 ≤ t ≤ 1,

Ex

∑

g

∥∥∥Ŝg
x −

√
Rg

x≥k

∥∥∥
2

ρ
≤ Ex

∑

g

∥∥∥(1− t)Ŝg
x + tẐg

x −
√
Rg

x≥k

∥∥∥
2

ρ

= t2 Ex

∑

g

t2
∥∥∥Ẑg

x − Ŝg
x

∥∥∥
2

ρ
+ Ex

∑

g

∥∥∥Ŝg
x −

√
Rg

x≥k

∥∥∥
2

ρ

+ 2 tEx

∑

g

Trρ

((
Ẑg

x − Ŝg
x

)(
Ŝg
x −

√
Rg

x≥k

)†)

10Note that Ẑg
x
implicitly depends on i, and the following equation is measuring the distance on average

over the k − 1 different constructions of Ẑg
x
obtained for all 1 ≤ i < k.
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Using the known objective values, re-arranging and making t→ 0, we obtain that

Ex

∑

g

Trρ

(
Ẑg

x − Ŝg
x

)(√
Rg

x≥k − Ŝg
x

)†)
= O

(
ε1/4
)
.

Hence

Ex

∑

g

∥∥Ŝg
x − Ẑg

x

∥∥2
ρ
= Ex

∑

g

(∥∥∥Ẑg
x −

√
Rg

x≥k

∥∥∥
2

ρ
−
∥∥∥Ŝg

x −
√
Rg

x≥k

∥∥∥
2

ρ

+ 2Trρ

((
Ẑg

x − Ŝg
x

)(
Rg

x≥k
− Sg

x

)†))

= O
(
ε1/4
)
,

proving (5.14).

Claim 47 shows that the {Ŝg
x}g do not vary much along any axis-parallel line in the i-th

direction. Using the expansion properties of the hypercube, we can deduce that the {Ŝg
x}g

are close (in the ‖·‖2ρ norm) to a single operator, independent of the first (k−1) coordinates.

Claim 48. For every x≥k and g, let T̂ g
x≥k

:= Ex<k
Ŝg
x. Then

Ex

∑

g

∥∥Ŝg
x − T̂ g

x≥k

∥∥2
ρ
= O

(
nε1/4)

Proof. This is a direct consequence of Claim 121.

The only points remaining to be proven in Lemma 44 are items 3 and 4. Both follow
from the two previous items in a similar way. Item 4 follows as

Trρ(T ) = Ex

∑

g

Trρ
(
T̂ g
x≥k

(
T̂ g
x≥k

)†)

= Ex

∑

g

Trρ
(
Ŝg
x

(
Ŝg
x

)†)
+O

(
ε1/8
)

= Ex

∑

g

Trρ
(
Rg

x≥k

)
+O

(
δ1/4
)
+O

(
ε1/8
)
,

where the second equality follows from Cauchy-Schwarz and Claim 48, and the third follows
from Cauchy-Schwarz and the bound proved in Claim 45.
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5.7 The pasting lemma

In this section we prove Lemma 43. Let T be the POVM whose existence is promised in
the lemma’s assumptions. Our goal is to define a new POVM V , depending on one less
coordinate of x than T , but such that V is still reasonably consistent with A and is not
“too incomplete”: its trace should not be much smaller than that of T . The idea is to define
V as (roughly) corresponding to the sequential application of T twice. This will produce
two (k − 1)-multilinear functions h and h′, from which a k-multilinear function g can be
recovered by interpolation. This is essentially the same method as was used to define the
“line” operators B from the “point” operators A in Claim 42. Here the added difficulty is
that we are working with incomplete POVMs, and special care must be taken to ensure the
overall trace does not decrease too much.

For every x≥k and h choose a factorization of each POVM element T h
x≥k

= T̂ h
x≥k

(
T̂ h
x≥k

)†

that is such that T̂ h
xkx>k

(
T̂ h′

x′
kx>k

)†
= 0 whenever h 6= h′ or xk 6= x′k. While this factorization

may not be the one that appears in Lemma 44, all properties of this lemma are independent
of the specific factorization chosen (provided it is reflected appropriately in the factorization
for Sh

x).
Define T̂x≥k

=
∑

h T̂
h
x≥k

and let T̂x>k
= Exk

T̂x≥k
. Let T̂x>k

= UΣV †, where Σ is diagonal

with non-negative coefficients, be the SVD (to lighten the notation we leave the dependence
of U,Σ and V on x>k implicit). Let Σ̃ be Σ with all eigenvalues less than εd rounded down
to 0, where d > 0 is a small constant to be specified later. Let T̃x>k

= UΣ̃V †, and let

T̃−1x>k
= V Σ̃−1U † be the pseudo-inverse.

For every x>k and multilinear g : Fk → F define

V g
x>k

:= EykExk 6=yk,x
′
k 6=yk T̂

g|xk
xk,x>k T̃

−1
x>k

T
g|yk
yk,x>k T̃

−1
x>k

(
T̂

g|x′
k

x′
k,x>k

)†
. (5.15)

We first verify that the
{
V g
x>k

}
g
form an (incomplete) POVM.11

Claim 49. For every x>k, it holds that V g
x>k
≥ 0 for every g and

∑
g V

g
x>k
≤
(
1 +

O(ε−2d/p)
)
Id.

Proof. The non-negativity part is clear, as

V g
x>k

= Eyk

(
Exk 6=yk T̂

g|xk
xk,x>k

)
T̃−1x>k

T
g|yk
yk,x>k T̃

−1
x>k

(
Exk 6=yk T̂

g|xk
xk,x>k

)†
.

Using AB† +BA† ≤ AA† +BB†, for any (xk, yk, x
′
k) we have

T̂
g|xk
xk,x>k T̃

−1
x>k

T
g|yk
yk,x>k T̃

−1
x>k

(
T̂

g|x′
k

x′
k,x>k

)†
+ T̂

g|x′
k

x′
k,x>k

T̃−1x>k
T

g|yk
yk,x>k T̃

−1
x>k

(
T̂

g|xk
xk,x>k

)†

≤ T̂
g|xk
xk,x>k T̃

−1
x>k

T
g|yk
yk,x>k T̃

−1
x>k

(
T̂

g|xk
xk,x>k

)†
+ T̂

g|x′
k

x′
k,x>k

T̃−1x>k
T

g|yk
yk,x>k T̃

−1
x>k

(
T̂

g|x′
k

x′
k,x>k

)†
.

11The claim shows that the V g
x>k

sum to “barely more” than Id. To make them into a POVM it will
suffice to eventually scale them by the appropriate amount. This will not affect the properties that need to
be proved in Lemma 43 by much.
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Hence

∑

g

V g
x>k
≤
∑

g

EykExk 6=yk T̂
g|xk
xk,x>k T̃

−1
x>k

T
g|yk
yk,x>k T̃

−1
x>k

(
T̂

g|xk
xk,x>k

)†

=
(
1 + 1/p

)
Exk

T̂xk,x>k

(
T̂xk,x>k

)†

≤
(
1 + 1/p)Tx>k

,

where in the last inequality the extra (1/p)Id accounts for the terms for which xk = yk that
are missing, and we used T̃−1x>k

Tx>k
T̃−1x>k

≤ Id by definition.

Now that we defined an (incomplete) POVM
{
V g
x>k

}
g
, we show in the next two sections

that it satisfies items 1. and 2. in the conclusion of Lemma 43.

5.7.1 Consistency of V and A

Our next claim shows that V is consistent with A.

Claim 50. Let
{
V g
x>k

}
be the (incomplete) POVM defined in (5.15). Then

µ(V,A) = Ex

∑

g,a 6=g(x≤k)

Trρ
(
V g
x>k
⊗ Aa

x

)
≤ O

(
εc/2
)

Proof. To lighten the notation, for every x≥k and h let

Zh
x≥k

:= T̃−1x>k
T h
xk,x>k

T̃−1x>k
,

so that V g
x>k

= Exk,yk 6=xk,y
′
k 6=xk

T̂
g|yk
yk,x>kZ

g|xk
x≥k

(
T̂

g|y′
k

y′k,x>k

)†
. We first show the bound

∣∣∣ E
x,yk,y

′
k 6=xk

∑

g,a 6=g(x≤k)

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k

(
T̂

g|y′
k

y′k,x>k

)† ⊗ Aa
x ⊗

(
Id− Ag(y′k,x<k)

y′k,x¬k

)∣∣∣ = O
(
εc/2
)
. (5.16)

To prove (5.16), first bound

∣∣∣ E
x,yk,y

′
k 6=xk

∑

g,a 6=g(x≤k)

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k

(
T̂

g|y′
k

′yk,x>k
− Ŝ

g|y′
k

y′k,x¬k

)† ⊗ Aa
x

)∣∣∣

≤
(

E
x,yk 6=xk

∑

g

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k (Z

g|xk
x≥k )

†(T̂ g|yk
yk,x>k

)†))1/2(
Ex,yk 6=xk

∑

h

∥∥T̂ h
yk,x>k

− Ŝh
yk,x¬k

∥∥2
ρ

)1/2

≤ O
(
εc/2
)
, (5.17)
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where for the last inequality we bounded the second term using item 2 from Lemma 44.
Next using item 1 and consistency of A,

∣∣∣ E
x,yk,y

′
k 6=xk

∑

g,a 6=g(x≤k)

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k

(
Ŝ
g|y′

k

y′k,x¬k

)† ⊗ Aa
x ⊗

(
Id− Ag(y′k,x<k)

y′k,x¬k

))∣∣∣

≤
(

E
x,yk 6=xk

∑

g

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k (Z

g|xk
x≥k )

†(T̂ g|yk
yk,x>k

)†))1/2

·
(

E
x,yk 6=xk

∑

h

Trρ
(
Sh
yk,x>k

⊗
(
Id− Ah(x<k)

yk,x¬k

)))1/2

≤ O
(
ε1/2
)
.

Finally, the proof of (5.16) can be concluded using a bound similar to (5.17). The same
sequence of reasoning also shows that

E
x,yk,y

′
k 6=xk

∑

g,a 6=g(x≤k)

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k

(
T̂

g|y′
k

y′k,x>k

)† ⊗ Aa
x

)

= E
x,yk,y

′
k 6=xk

∑

g,a 6=g(x≤k)

Trρ
(
T̂

g|yk
yk,x>kZ

g|xk
x≥k

(
T̂

g|y′
k

y′k,x>k

)
⊗ Aa

x ⊗ Ag(yk,x<k)
yk,x¬k

⊗ Ag(y′k,x<k)

y′k,x¬k

)
+O

(
εc/2
)
.

(5.18)

This last expression can be directly upper-bounded by O(
√
ε) using Cauchy-Schwarz and

linearity of A (and of g) in the k-th direction.

5.7.2 V is not too incomplete

Before showing that Trρ(V ) is not much smaller than Trρ(T ), we first prove the following
useful preliminary bound.

Claim 51. The following holds:

E
x>k

yk 6=zk 6=y′k

∑

(h,h′,h′′) not aligned
(h(x<k),h

′(x<k),h
′′(x<k))

aligned

Trρ
(
T̂ h
yk,x>k

T̃−1T h′′

zk,x>k
T̃−1

(
T̂ h′

y′k,x>k

)†⊗Ah′′′(x<k)
x¬k,yk

)
= O

(
n
√
µ(T,A)

)
,

(5.19)
where here h′′′ is the unique function aligned with (h′, h′′) in the k-th direction: (h′′′−h′′)/(yk−
zk) = (h′′ − h′)/(zk − y′k).

The claim essentially follows from consistency of T and A, but the details are a bit
cumbersome.
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Proof. For any x>k and h, let

Zh
x>k

:= E(zk,yk):xk 6=zk 6=yk

∑

(h,h′,h′′) aligned

T̃−1T h′′

zk,x>k
T̃−1

(
T̂ h′

yk,x>k

)†
,

so that (5.19) can be expressed more succinctly as a bound on the quantity

∆ := Ex

∑

h 6=h′

h(x)=h′(x)

Trρ
(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′(x<k)

x

)
.

For any two h, h′ and x ∈ F
n we let β0(h, h

′,x) = 0 and for i = 1, . . . , k − 1 inductively
define

βi(h, h
′,x) =





1 if hc|x<i
6= (h′)c|x<i

and hc|x≤i
= (h′)c|x≤i

p/(p− 1)βi−1(h, h
′,x) if hc|x<i

6= (h′)c|x<i
and hc|x≤i

6= (h′)c|x≤i

βi−1(h, h
′,x) + 1/p if hc|x<i

= (h′)c|x<i
,

where for any function g in i variables x1, . . . , xi, g
c denotes the leading coefficient of g, i.e.

its coefficient on the monomial x1 · · · xi. Using the fact that whenever hc|x<i
6= (h′)c|x<i

there

always exists a unique xi such that hc|x≤i
= (h′)c|x≤i

, one can verify that for any (h, h′) it

holds that ∑

x

βk−1(h, h
′,x) = (k − 1) pk−2. (5.20)

Moreover, for any x such that h(x<k) = h′(x<k) we have βk−1(h, h
′,x) = 1 + (k − 1− i)/p,

where i ∈ [n] is the largest integer such that hc|x<i
6= (h′)c|x<i

and hc|x≤i
= (h′)c|x≤i

. We first

bound

∆1 := Ex

∑

h 6=h′

h(x<k)=h′(x<k)

(
βk−1(h, h

′,x)− 1
)
Trρ
(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k

)
= O

(
k2/p

)
. (5.21)

Indeed, for any fixed i < k we have

Ex

∑

h 6=h′:hc
|x<i
6=(h′)c

|x<i

hc
|x≤j

=(h′)c
|x≤j

∀j≥i

Trρ
(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k

)

= Ex

∑

h′

Trρ

(( ∑

h 6=h′:∀j≥i,
hc
|x≤j

=(h′)c
|x≤j

T̂ h
x≥k
−

∑

h6=h′:∀j≥i−1,
hc
|x≤j

=(h′)c
|x≤j

T̂ h
x≥k

)
Zh′

x≥k
⊗ Ah′

x≥k

)
,
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which can be bounded by O(1) by splitting it into two terms and applying the Cauchy-
Schwarz inequality to each term. This proves (5.21). Using the recursive definition of β, one
can prove the following bound by induction on i = 0, . . . , k − 1:

∆i := Ex

∑

a

Trρ

(( ∑

h′(x)=a
h 6=h′

βi(h, h
′,x)T̂ h′

x≥k
Zh

x≥k

)( ∑

h′(x)=a
h6=h′

βi(h, h
′,x)T̂ h′

x≥k
Zh

x≥k

)†)
= O(i2).

(5.22)

We can now re-write ∆ as

∆ = Ex

∑

h 6=h′

h(x<k)=h′(x<k)

βk−1(h, h
′,x) Trρ

(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k

)
+O(n2/p)

= Ex

∑

h 6=h′

h(x<k)=h′(x<k)

βk−1(h, h
′,x) Trρ

(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k
⊗ Ah(x≤k)

x A
h′(x≤k)
x

)
+O

(√
µ(A)

)

= Ex

∑

h 6=h′

βk−1(h, h
′,x) Trρ

(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k
⊗ Ah(x<k)

x Ah′(x<k)
x

)
+O

(√
µ(A)

)
,

where the first equality is by (5.21), the second uses self-consistency of A together with the
Cauchy-Schwarz inequality, and in the last we added the terms for which h(x<k) 6= h′(x<k)

by using that, in that case, A
h(x<k)
x A

h′(x<k)
x = 0. Using consistency again, together with the

Cauchy-Schwarz inequality and (5.22), we may remove the dependence of the last two A
terms on x<k, leading to

∆ := Ex

∑

h 6=h′

βk−1(h, h
′,x) Trρ

(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k
⊗ Ah

x≥k
Ah′

x≥k

)
+O

(
n
√
µ(T,A)

)

=
k − 1

p
Ex

∑

h 6=h′

Trρ
(
T̂ h
x≥k

Zh′

x≥k
⊗ Ah′

x≥k

)
+O

(
n
√
µ(T,A)

)

= O
(
n
√
µ(T,A)

)
,

where the second equality follows from (5.20).

Finally, we show that Trρ(V ) is not too small compared to Trρ(T ), proving item 2. in
the conclusion of Lemma 43.

Claim 52. Let
{
T h
x≥k

}
be the (incomplete) POVM promised in the assumptions in Lemma 43,

and
{
V g
x>k

}
the (incomplete) POVM defined in (5.15). Then

Ex

∑

g

Trρ
(
V g
x>k

)
≥ Trρ(T )−O

(
n
√
µ(T,A) + εd/2

)
.



CHAPTER 5. HARDNESS OF ENTANGLED GAMES 85

Proof. Proceeding as in the proof of Claim 50,

Trρ(V ) ≥ E
x>k

yk 6=zk 6=y′k

∑

g

Trρ
(
T̂

g|yk
yk,x≥k T̃

−1T
g|zk
zk,x≥k T̃

−1(T̂
g|y′

k

y′k,x≥k

)
⊗ Ag(x<k,yk)

x¬k,yk

)
+O

(√
µ(T,A)

)

= E
x>k

yk 6=zk 6=y′k

∑

g

Trρ
(
T̂yk,x≥k

T̃−1T
g|zk
zk,x≥k T̃

−1(T̂
g|y′

k

y′k,x≥k

)† ⊗ Ag(x<k,yk)
x¬k,yk

)
+O

(√
µ(T,A)

)

− E
x>k

yk 6=zk 6=y′k

∑

g,h 6=g|yk
h(x<k)=g(x<k,yk)

Trρ
(
T̂ h
yk,x≥k

T̃−1T
g|zk
zk,x≥k T̃

−1(T̂
g|y′

k

y′k,x≥k

)† ⊗ Ag(x<k,yk)
x¬k,yk

)
,

where the last equality uses again consistency of T and A to bound the terms for which
h(x<k) 6= g(x<k, yk). The last expression above is bounded using Claim 51. Hence we
obtain

Trρ(V ) ≥ E
x>k

yk 6=zk 6=y′k

∑

(a,b,c) aligned

Trρ
(
T̂yk,x¬k

T̃−1T c
zk,x¬k

T̃−1
(
T̂ b
y′k,x¬k

)† ⊗ Aa
x¬k,yk

)
+O

(
n
√
µ(T,A)

)

Using again consistency of T and A, and linearity of A in the k-th direction to remove the
dependence of the last A term on yk, we get

Trρ(V ) ≥ E
x>k

yk 6=zk 6=y′k

∑

(a,b,c) aligned

Trρ
(
T̂x¬k

T̃−1T c
zk,x¬k

T̃−1
(
T̂ b
y′k,x¬k

)† ⊗ Aa
x¬k,yk

)
+O

(
n
√
µ(T,A)

)
.

(5.23)

By definition, (Id − T̂x>kT̃
−1) = U(Id − ΣΣ̃−1)U † is the projector on the singular values of

Tx>k
= T̂x>k

(
T̂x>k

)†
that are at most εd. Hence

Ex¬k,zk

∑

(a,b,c) aligned

Trρ
(
(Id− T̂x>kT̃

−1)T c
zk,x≥k

(Id− T̂x>kT̃
−1)†

)
= O

(
εd
)
,

which from (5.23) gives

Trρ(V ) ≥ Ex¬k,zk 6=yk 6=y′k

∑

(a,b,c) aligned

Trρ
(
T̂ c
zk,x¬k

T̃−1
(
T̂ b
y′k,x¬k

)†⊗Aa
x¬k,yk

)
−O

(
εd/2+n

√
µ(T,A)

)
.

(5.24)
We may now conclude by consistency of T and A.
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Chapter 6

Immunizing games against
entanglement

In this chapter we introduce a novel technique to design games in a way that limits the
provers’ ability to use their entanglement in order to collude against the verifier. To this end
we design a new test, which can be added generically to any two-prover one-round game,
and significantly limits the use of entanglement by the provers beyond its utility as shared
randomness. We hope that this technique of “immunizing” a game against entanglement can
be extracted to serve a wider purpose in other contexts where we want to limit the power of
entanglement, possibly with cryptographic applications.

The goal in designing the new test lies is to prevent the provers from using entanglement
to coordinate their replies, and hence increase their success probability. Our main idea is
to modify the game by introducing a third prover. We use the extra prover to introduce
a consistency test that forces two of the provers to give the same answer. As a result, to
pass this test, the two original provers can only use an entangled state of a specific form;
it must be (approximately) extendable, i.e., it must be the density matrix of a symmetric
tripartite state. There are prior results pointing to the potential usefulness of a third prover
to limit the cheating power of entanglement. For example, two entangled provers can cheat
in the Odd Cycle game of Ref. [26], but if we add a third prover, then entangled provers
can perform no better than classical ones [118]. Moreover, after the completion of the work
presented in this chapter we learned from Andy Yao [131] of a way to add a third prover to
the Magic Square game such that as a result the winning probability of entangled provers is
nearly 0.94.

Our result has an important application to the computational complexity of multiplayer
entangled games. We show that it is NP-hard to approximate the value of three-player
games. This was the first hardness of approximation result for such games. Our main result
can be stated as follows:

Theorem 53. There exists a polynomial p such that it is NP-hard to decide, for an explicitly
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given three-prover one-round classical entangled game G, whether its value is 1 or at most
1− 1/p(|G|).1

This theorem implies that no polynomial-time algorithm can compute the value of an
entangled game to within polynomial precision. Given the importance of semi-definite pro-
grams (SDPs) in results on entangled games, the following immediate corollary is of interest:

Corollary 54. The success probability of classical entangled three-prover games cannot be
computed by SDPs of polynomial size, unless P = NP.

The proof of Theorem 53 is based on showing that by enforcing certain tests on the
provers we obtain sets of projectors (which characterize their strategy) which pairwise “al-
most commute”. We already introduced this condition in Chapter 4, and in this chapter we
show how it can be exploited to derive a classical strategy for the original classical game.

Remark. The results presented in this chapter are a subset of the results published in the
paper [68]. In particular, that paper proves a similar result to the one discussed above for the
case of quantum two-prover games, in which the verifier and players may exchange quantum
messages (cf. Section 3.4.1 for a definition). In this chapter we chose to focus on the case
of three-prover games.

Related work. The techniques developed in this chapter were subsequently applied by
Ito et al. [61] to show similar results for binary three-prover one-round classical entangled
games. They also give a new upper-bound for the value of these games; or, as often called in
this context, they give a family of new n-partite Tsirelson inequalities. Ito, Kobayashi and
Matsumoto [59] extended our proof technique and showed how a certain form of oracular-
ization could be used to prove a similar hardness result for the case of two-prover one-round
entangled games with classical messages and a constant answer size.

6.1 Proof overview

Reduction

We prove our NP-hardness result by a reduction from the hardness of approximation result
for classical (non-entangled) games, as implied by the PCP Theorem, which we state in the
language of games:

Theorem (PCP Theorem [10, 9]). There is a constant s < 1 such that it is NP-hard
to decide, given a two-prover one-round game with a constant number of answers, whether
its value is 1 or at most s.

We start with an instance of such a classical two-prover one-round game and modify it
to a a three-prover one-round classical entangled game with the property that the value of

1See Section 3.4.1 in Chapter 3 for a precise definition of the size |G| of G.
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the new entangled game is at least as big as the value of the original game. In other words,
if the value of the original game is 1, the value of the new game is still 1.

We then need to show that if the value of the original game is at most s, then the value of
the new entangled game is bounded away from 1 by an inverse-polynomial. In order to prove
this we reason by contrapositive and use a successful strategy of the entangled provers to
construct a strategy in the original game that achieves a large value (see Rounding below).

Rounding

The extra prover allows us to extract a mathematical condition on the operations of the
entangled provers. More precisely it turns out that the projectors corresponding to the
various questions of the verifier pairwise “almost commute” in some sense or “almost do not
disturb” the entangled state. This means that the provers’ actions are “almost classical”, in
the sense that they allow us to take any strategy for the entangled game and convert it back
to a strategy in the original classical game. We call this conversion rounding from a quantum
solution to a classical solution, in analogy to the rounding schemes used to convert a solution
to an SDP relaxation to a solution of the game. To explain the idea of our new rounding
scheme, consider the case of two-prover one-round entangled games. Assume that the provers,
when receiving a question from the verifier, perform a projective measurement on their share
of the entangled state depending on the question, and answer with the outcome they get. In
the exact case, when the value of the three-player entangled game is 1, the measurements
corresponding to different questions commute exactly. Hence, there is a common basis in
which the projectors corresponding to different answers are all diagonal for all questions. In
other words, for each question, the projectors simply define a partition of the basis vectors.
The probability that the provers give a certain pair of answers just corresponds to the size of
the overlap of the supports of the two corresponding projectors, i.e., to the number of basis
vectors that are contained in both of them. We can now construct a classical strategy for
the original game, where the provers use shared randomness to sample a basis vector, check
which projector/partition contains it, and output the corresponding answer. This classical
strategy achieves exactly the same probability distribution on the answers, and hence the
same value of the game.

Matters become more complicated in the case where the value of the entangled game
is larger than 1 − ε. Now, the provers’ measurements corresponding to different questions
“almost commute”. To exploit this property in a rounding scheme, imagine the following
pre-processing step to eliminate entanglement from the strategy: Before the game starts, the
provers apply in sequence all possible measurements, corresponding to all possible questions,
on a share of the entangled state, and write down a list of all the answers they obtain. Then,
during the game, when they receive a question from the verifier, they respond with the cor-
responding answer in their list2. Because the measurements almost commute, the answer to
any one particular question in this sequential measurement scheme is similarly distributed

2Obviously, the provers do not really need any entanglement to do this: all they have to do is sample from



CHAPTER 6. IMMUNIZING GAMES AGAINST ENTANGLEMENT 89

to the scenario in the entangled game, where the prover only performs the measurement
corresponding to that question. This can be seen by “commuting” the corresponding pro-
jectors through the list of projectors in the measurement, where each time we commute two
operators we lose some small amount in precision. As a result, the success probability of
this new unentangled strategy is similar to the one in the entangled game, or at least not
too low.

A new mathematical challenge

As mentioned above, our tests enforce an almost-commuting condition on the operators of the
provers. If they commuted exactly, they would be diagonal in a common basis, meaning that
the strategy is essentially classical and does not use entanglement. If one could conclude that
the operators are nearly diagonal in some basis, one could again extract a classical strategy
as in the exact case. Hence we reduce proving constant hardness of approximation to the
question whether one can approximate our operators by commuting ones. This touches
upon a deep question in operator algebra: Do almost commuting matrices nearly commute?
Here almost commuting means that the commutator is small in some norm, and nearly
commuting means that the matrices can be approximated by matrices that are diagonal in a
common basis. This famous question was asked for two Hermitian matrices by Halmos back
in 1976 [50].3 It was shown subsequently [123],4 using methods from algebraic topology, that
this conjecture is false for two unitary matrices. Then, Halmos’ conjecture was disproved for
the case of three Hermitian matrices [124]. Finally Halmos’ conjecture was proved [78] by a
“long tortuous argument” [32] using von Neumann algebras, almost twenty years after the
conjecture had been publicized. In our case we reduce proving hardness of approximation
of the value of an entangled game to the conjecture for a set of pairwise almost commuting
projectors, where the norm is the univariate ρ-norm introduced in Chapter 4:

∥∥A
∥∥2
u,ρ

:= Tr
(
AA†ρ

)
,

and ρ is the reduced density of the provers’ shared entangled state on either prover’s sub-
system.

Conjecture. Let W1, . . . ,Wn be d-dimensional projectors such that for some ε ≥ 0

and for all i, j ∈ {1, . . . , n},
∥∥WiWj−WjWi

∥∥2
u,ρ
≤ ε. Then there exists a δ ≥ 0, and pairwise

commuting projectors W̃1, . . . W̃n such that
∥∥Wi − W̃i

∥∥2
u,ρ
≤ δ for all i ∈ {1, . . . , n}.

Our proof shows that the conjecture with a constant δ implies hardness of approximation
of the value of entangled games to within a constant, i.e., the best possible result. Moreover,

the joint distribution that corresponds to the distribution of all the answers in this sequence of measurements.
3For the operator norm.
4For a simpler, elegant proof see Ref. [39].
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when scaled up to the setting of interactive proofs, the conjecture with a constant δ implies
inclusion of NEXP in MIP∗(3, 1) with completeness 1 and soundness bounded away from 1.

For two, three or a constant number of projectors the conjecture is easy to prove for a
constant δ. We do not know if it is true in general.

6.2 Hardness of three-prover classical entangled games

In this section we prove Theorem 53, which we now state as:

Theorem 55. There is a constant s2 > 0 such that it is NP-hard to decide, given a three-
prover classical entangled game with a constant number of answers, whether its value is 1 or
at most 1− ε for ε = s2

|Q|2 .

We will prove this by a reduction from the PCP Theorem. We begin by describing how
to modify any two-prover classical game G = (π, V ) (which is assumed to be symmetric per
Lemma 13) to a three-prover classical game G′ of equal or higher value.

The modified three-prover game

In the constructed game G′ the verifier chooses one of the provers uniformly at random.
Rename the chosen prover Alice and call the other provers Bob and Cleve. The verifier
samples questions q and q′ according to π(q, q′). He sends question q to both Alice and
Cleve, and question q′ to Bob. He receives answers a, a′, and a′′, respectively, and accepts
iff the following are both true:

Classical Test: The answers of Alice and Bob would win the game G, i.e., the answers a
and a′ satisfy V (a, a′ | q, q′) = 1.

Consistency Test: Alice and Cleve give the same answer, i.e., a = a′′.

It is clear that the value of the constructed game is at least as large as the value of the
original game G: if the provers reply according to an optimal classical strategy (which can
be assumed to be symmetric per Lemma 13), they always pass the consistency test. Also, it
is clear that the size of the description of the constructed game is linearly related to the size
of the description of the original game, hence we have the same complexity parameter.

To prove Theorem 55, we need to show the following lemma.

Lemma 56. If ω∗(G′) > 1− ε, then ω(G) > s.

Here ε = s2
|Q|2 for the constant s2 in Theorem 55 and the constant s is from the PCP

Theorem.
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Proof. Consider an entangled strategy for G′ that succeeds with probability greater than
1− ε.5 Since the game G′ is symmetric, we can assume that this strategy is symmetric, per
Lemma 13. Suppose that the provers share a symmetric state |Ψ〉 ∈ HA ⊗HB ⊗HC, where
each HA, HB, and HC is isomorphic to a same H. Let ρAB = TrHC

|Ψ〉〈Ψ| be the reduced
state of |Ψ〉〈Ψ| on Alice and Bob. When asked question qi, each prover measures their part
of |Ψ〉. Following standard arguments (extending the private space of the provers) we can
assume that this measurement is projective. Let W ai

qi
be the projector corresponding to

question qi and answer ai. This defines the entangled strategy for G′; it passes the classical
test with probability

π1 =
∑

a,a′,q,q′

π(q, q′)V (a, a′ | q, q′)pent(a, a′ | q, q′),

where
pent(a, a

′ | q, q′) = Tr
(
W a

q ⊗W a′

q′ ρAB

)
= 〈Ψ|W a

q ⊗W a′

q′ ⊗ Id|Ψ〉. (6.1)

It passes the consistency test with probability π2 =
∑

q π(q)π2(q), where π(q) is the marginal
of π(q, q′) and

π2(q) =
∑

a

Tr
(
W a

q ⊗W a
q ρAB

)
=
∑

a

〈Ψ|W a
q ⊗W a

q ⊗ Id|Ψ〉, (6.2)

where we made use of the symmetry. Note that π1, π2 > 1− ε.
Eqs. (6.1) and (6.2) clarify the role of the third prover, Cleve. The main purpose of

introducing the third prover is not to allow the two tests to be performed at the same time:
Indeed, it is possible to modify the protocol so that the verifier chooses two of the provers at
random (say Alice and Bob) and only sends questions to them, not interacting with the third
prover at all.6 The presence of the third prover would not be important if the provers were
executing a classical strategy, but it can (and does) make a difference if their strategy requires
entanglement. Indeed, if there were only two provers, then they could share any state ρAB,
whereas here we require that ρAB be extendable, i.e., it must be the reduced density matrix
of a symmetric tripartite state. To give a concrete example, it is not possible for ρAB to be
the maximally entangled state |Ψ−〉〈Ψ−|. This is termed monogamy of entanglement [127].

Rounding to a classical strategy

We construct a classical strategy for G from the entangled strategy for G′ in a similar fashion
as in the case of quantum entangled games, with

D(a1, . . . , an, a
′
1, . . . , a

′
n) =

∥∥W an
qn · · ·W a1

q1
⊗W a′n

qn · · ·W a′1
q1
⊗ Id|Ψ〉

∥∥2,
5We in fact consider a strategy with finite entanglement that has success probability greater than 1−ε−δ

for some δ = O(ε), which we will not write.
6With probability p, he sends them different questions and performs the classical test; with probability

1− p, he sends the same question and performs the consistency test—this modification does not materially
change our conclusions, but it does weaken the bounds in Theorem 55.



CHAPTER 6. IMMUNIZING GAMES AGAINST ENTANGLEMENT 92

where q1, . . . , qn is an ordering of the questions in Q such that π(q1) ≥ π(q2) ≥ . . . ≥ π(qn).
As before, we define pclass(ai, a

′
j | qi, qj) to be the marginal of D on ai, a

′
j.

Lemma 57. The (weighted) statistical distance between pclass and pent is

∆(pclass, pent) =
∑

q,q′

π(q, q′)
∑

a,a′

∣∣pclass(a, a′ | q, q′)− pent(a, a′ | q, q′)
∣∣ < 12|Q|√ε.

We first show how this lemma proves Lemma 56. Since the strategy in the entangled game
passes the classical test with probability greater than 1 − ε, the classical strategy succeeds
in the original game with probability greater than 1− ε−∆(pclass, pent) > 1− ε− 12|Q|√ε.
For ε = s2

|Q|2 and for sufficiently small constant s2, this probability is larger than s.

Why is Lemma 57 true? Rather than showing that the order of measurements is not
important (although it will turn out in hindsight that this is true), we show that each
measurement does not disturb ρAB very much. The key observation is as follows. Assume
the provers pass the consistency test with high probability. If a particular measurement
result occurs with certainty, the quantum state cannot be changed by the measurement.
We use this fact in the following way: suppose Cleve were to perform the measurement
corresponding to question q and assume he obtains an outcome a. Then, if Alice is asked
question q, she must also give answer a with high probability. Thus her measurement does
not change the quantum state much. However, since quantum theory is non-signaling, it
cannot matter who measured first. It follows that Alice’s measurement does not change
ρAB much. Note that only the bipartite state ρAB is approximately unchanged — Alice’s
measurement can change the tri-partite state |Ψ〉〈Ψ| considerably. We then use a hybrid
argument to show that performing all the measurements one after the other also leaves ρAB

approximately unchanged.

Proof of Lemma 57. Let Wq be the superoperator corresponding to the projective mea-
surement performed on question q, i.e., Wq(σ) =

∑
aW

a
q σ(W

a
q )
† is the post-measurement

state after performing {W a
q } on state σ.

To quantify how much a measurement changes a state we use Winter’s Gentle Mea-
surement Lemma, as state in Lemma 117 in Appendix A. The following simple corollary
quantifies how much the measurement Wq ⊗ Id changes ρAB:

Claim 58. The trace distance between Wq ⊗ Id(ρAB) and ρAB is bounded by

‖Wq ⊗ Id(ρAB)− ρAB‖tr ≤ 6
√

1− π2(q).

Proof. Using the relationsWq⊗Id(ρAB) = TrHC
(Wq⊗Id⊗Id(|Ψ〉〈Ψ|)) and ρAB = TrHC

(Id⊗
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Id⊗Wq(|Ψ〉〈Ψ|)),
‖Wq ⊗ Id(ρAB)− ρAB‖tr

≤ ‖Wq ⊗ Id⊗ Id(|Ψ〉〈Ψ|)− Id⊗ Id⊗Wq(|Ψ〉〈Ψ|)‖tr
≤
∥∥∥Wq ⊗ Id⊗ Id(|Ψ〉〈Ψ|)−

∑

a

W a
q ⊗ Id⊗W a

q |Ψ〉〈Ψ|W a
q ⊗ Id⊗W a

q

∥∥∥
tr

+
∥∥∥
∑

a

W a
q ⊗ Id⊗W a

q |Ψ〉〈Ψ|W a
q ⊗ Id⊗W a

q − Id⊗ Id⊗Wq(|Ψ〉〈Ψ|)
∥∥∥
tr

≤ 2
∥∥∥
∑

a

W a
q ⊗ Id⊗W a

q |Ψ〉〈Ψ|W a
q ⊗ Id⊗W a

q − Id⊗ Id⊗Wq(|Ψ〉〈Ψ|)
∥∥∥
tr

≤ 6
√

1− π2(q),
by monotonicity of the trace distance under partial trace, the triangle inequality, symmetry,
and then taking ρ =

⊕
aW

a
q ⊗ Id⊗ Id|Ψ〉〈Ψ|W a

q ⊗ Id⊗ Id and X =
⊕

a Id⊗ Id⊗W a
q , Y = Id

in Lemma 117.

For 1 ≤ i, j ≤ n, let

ρAB(i, j) = (Wqi−1
◦ · · · ◦ Wq1)⊗ (Wqj−1

◦ · · · ◦ Wq1)ρAB.

Then
pclass(ai, a

′
j | qi, q′j) = Tr

((
W ai

qi
⊗W a′j

q′j

)
ρ(i, j)

)
.

Hence we can bound
∑

ai,a′j
|pclass(ai, a′j | qi, q′j)−pent(ai, a′j | qi, q′j)| by bounding ‖ρ(i, j)−ρ‖tr,

since the trace distance between two states is an upper bound on the variation distance of
the probability distribution resulting from making any measurement on those two states.

The following technique was introduced by Ambainis, Nayak, Ta-Shma and Vazirani [7]
and has been used extensively by Aaronson [1, 2].

Claim 59. The trace distance between ρAB(i, j) and ρAB is bounded by

‖ρAB(i, j)− ρAB‖tr ≤ 6
i−1∑

i′=1

√
1− π2(qi′) + 6

j−1∑

j′=1

√
1− π2(qj′).

Proof. By induction. The claim is clearly true for (i, j) = (1, 1). Given it is true for a
particular value of (i, j), we show it is also true for (i+ 1, j). In view of the symmetry, this
is sufficient to establish the claim. We have

‖ρAB(i+ 1, j)− ρAB‖tr
≤ ‖ρAB(i+ 1, j)−Wqi ⊗ Id(ρAB)‖tr + ‖Wqi ⊗ Id(ρAB)− ρAB‖tr
≤ ‖Wqi ⊗ Id (ρAB(i, j)− ρAB) ‖tr + 6

√
1− π2(qi)

≤ ‖ρAB(i, j)− ρAB‖tr + 6
√
1− π2(qi),

where we used the triangle inequality, Claim 58, and monotonicity of the trace distance.
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Putting everything together, it follows that

∆(pclass, pent) ≤
n∑

i,j=1

π(qi, q
′
j)‖ρAB(i, j)− ρAB‖tr

≤ 6
n∑

i,j=1

π(qi, q
′
j)

( i−1∑

i′=1

√
1− π2(qi′) +

j−1∑

j′=1

√
1− π2(qj′)

)

= 12
n∑

i=1

i−1∑

i′=1

π(qi)
√
1− π2(qi′)

≤ 12|Q|
n∑

i′=1

π(qi′)
√
1− π2(qi′)

≤ 12|Q|
√
1− π2

< 12|Q|√ε,

since
√
1− x is concave and π2 =

∑
q π(q)π2(q) > 1− ε.
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Chapter 7

Parallel repetition of entangled games

One of the most interesting questions in the context of multiplayer games is the parallel
repetition question. It is well known that one can reduce both the value and the entangled
value of a game by repeating it sequentially, or alternatively, by repeating it in parallel
with several independent pairs of players. However, for many applications (like hardness
of approximation results or amplifications preserving zero-knowledge) we need a way to
decrease the winning probability without increasing the number of rounds or the number of
players, i.e., while staying in the model of two-player one-round games. Parallel repetition is
designed to do just that: in its most basic form, in the `-parallel repeated game, the referee
simply chooses ` pairs of questions independently and sends to each player his corresponding
`-tuple of questions. Each player then replies with an `-tuple of answers, which are accepted
if and only if each of the ` answer pairs would have been accepted in the original game.

Clearly the value of an `-parallel repeated game is at least the `-th power of the value of
the original game, since the players can just answer each of the ` questions independently
as in the original protocol. However, contrary to what intuition might suggest and to the
case of sequential repetition, parallel repetition does not necessarily decrease the value of a
game in a straightforward exponential manner1. The parallel repetition question is that of
finding upper bounds on the value of a repeated game, and for a long time no such upper
bound, even very weak, could be proved. For the case of classical two-player games, first
results date to Verbitsky [122] who showed that indeed the value goes to zero with the
number of repetitions. Following this, Feige and Kilian [42] showed that the value decreases
polynomially with the number of repetitions for the special case of so-called projection games
(in which the second player’s answer is uniquely determined by the first player’s). They used
a modified parallel repetition procedure in which a large fraction of the repetitions are made
of dummy rounds, that is, rounds in which the questions are chosen independently at random
for both players, and in which any answer is accepted. In this chapter we deviate somewhat

1See [41] for a classical example, and [27] for an example using entangled players due to Watrous. See
also [65] for another example where parallel repetition does not reduce the value of a game at the exact rate
one would expect if the players were playing independently.
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from the common terminology, and use the term “parallel repetition” even when referring
to such more general procedures. Finally, in a breakthrough result, Raz [96] showed that
the value of a classical game repeated in parallel indeed decreases exponentially with the
number of repetitions (albeit not exactly at the same rate as sequential repetition). There
is still very active research in this area, mostly on simplifying the analysis, which, over a
decade later, remains quite involved, and improving it for certain special cases of games [53,
94, 43, 95, 13, 14, 11, 99].

Previous work

The only two previous results regarding the parallel repetition of entangled games are for
two special classes of games. First, Cleve et al. showed that for the class of XOR games
(i.e., games with binary answers in which the referee’s decision is based solely on the XOR
of the two answers), perfect parallel repetition holds [27]. This means that the entangled
value of an `-parallel repeated game is exactly the `-th power of the entangled value of the
original game. Parallel repetition has also been shown to hold for the more general (but
still quite restricted) class of unique games [66] (i.e., games where the referee applies some
permutation to the answers of the second player and accepts if and only they match those
from the first player). One might also add a third result by Holenstein [53], who proved a
parallel repetition theorem for the so-called no-signaling value; since the no-signaling value
is an upper bound on the entangled value, this can sometimes be used to upper bound the
entangled value of repeated games. However, there is in general no guarantee regarding the
quality of this upper bound, and in many cases (e.g., all unique games) the no-signaling
value is always 1, making it useless as an upper bound on the entangled value.

It is important to note that in these results the entangled value of the parallel repeated
game is never analyzed directly; instead, one uses a “proxy” such as a semidefinite pro-
gram [27, 66] or the no-signaling value [53], whose behavior under parallel repetition is well
understood. Moreover, in all these cases, the proxy’s value is efficiently computable. This
unfortunately gives a very strong indication that such techniques cannot be extended to deal
with general games. Indeed, it is known that it is NP-hard to tell if the entangled value of
a given game is 1 or not [68, 59]; hence, unless P=NP, for any efficiently computable upper
bound on the entangled value, there are necessarily games whose entangled value is strictly
less than 1 yet for which that upper bound is 1 (and such games can often be exhibited
explicitly without relying on P 6=NP). We note that some of the early parallel repetition
results for the classical value [44] followed the same route (of upper bounding the value by a
semidefinite program) and were limited to special classes of games for the exact same reason.

In parallel to work on the parallel repetition problem, the related question of product
testing arose in the context of error amplification for PCPs [37, 35, 54, 56]. Roughly speak-
ing, the question here is to design tests by which a referee can check that the players play
according to a product strategy, i.e., answer each question independently of the other ques-
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tions (as one would expect from an honest behavior). Note that if the players are constrained
to follow a product strategy, then their maximum winning probability must necessarily go
down exponentially, hence the connection to the parallel repetition question. The result of
Feige and Kilian [42] mentioned above in fact also shows that the strategy of the players
must have some product structure, and recently there has been lots of renewed interest in
this question leading to much stronger product testers [36]. In the case of entangled players,
however, prior to this work nothing was known, raising the following question: Is there a
way to test if the strategy of entangled players is in some sense close to a product strategy?

Results

The main result of this chapter can be informally stated as follows.

Theorem 60 (informal). For any s < 1, δ > 0, and entangled game G, there is a corre-
sponding `-parallel repeated game G′, where ` = poly((1 − s)−1, δ−1), such that if the value
of G is less than s then the value of G′ is at most δ, whereas if the value of G is 1 then this
also holds2 for the repeated game.

The dependency of ` on δ in Theorem 60 is polynomial, whereas as we already mentioned
it is known that in some cases this dependence can be made poly-logarithmic (and this is cer-
tainly the case if the players are assumed to play independently). While a poly-logarithmic
dependence is important in some applications for which one would like to perform amplifi-
cation up to an exponentially small value, in many cases the main use of parallel repetition
is to amplify a small “gap” between value 1 and value 1− 1/poly(|G|) to a constant gap, say
between 1 and 1/2. In this case the polynomial dependence of ` on (1− s)−1 that we obtain
is optimal (up to the exact value of the exponent).

In the course of the proof of this theorem we also establish that the player’s strategies
have a certain “serial” or “product” structure (more on this in the proof ideas and techniques
section below). The informal statement above hides some details, which we now discuss.
The kind of parallel repetition we perform depends on the structure of the game G, and we
distinguish whether it is a projection game or not.

Repetition for projection games. If G is a projection game, then the repeated game is
obtained by independently playing the original G on a subset of the repetitions, and playing
dummy rounds in the other repetitions. We note that projection games form a wide class
of games that captures most of the games one typically encounters in the classical literature
(see [94]).

If, in addition, the game happens to be a free game (i.e., a game in which the referee’s
distribution on question pairs is a product distribution), then the dummy questions are no
longer needed and hence our analysis applies to the standard `-fold repetition.

2See the discussion following the theorem for some caveats.
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Repetition for general games. If the game G does not have the projection property,
then it is necessary to add a number of consistency rounds to the repetition. In those rounds
the referee sends identical questions to the players, and expects identical answers. As before,
the other rounds of the repetition are either the game G or dummy rounds. The consistency
questions are added to play the role of the projection constraints.

This kind of repetition raises the following issue3: namely, it is not obvious that honest
entangled players can answer the consistency questions correctly. This implies that, even
if the original game had value 1, players might not be able to succeed in the consistency
questions and hence the value of the repeated game might not equal 1 anymore. This may
or may not be an issue depending on where the original game comes from. In many cases
it is known that, if there is a perfect strategy, it does not require any entanglement at all,
or it can be achieved using the maximally entangled state. In both cases it is not hard to
see that players will be able to answer consistency questions perfectly, and hence our result
holds. Because of this we regard this issue as a minor one; however it might be important
in some contexts.

Proof idea and techniques

We focus on the case of projection games, as the proof of the other cases does not present
additional challenges. The starting point of our proof is the work of Feige and Kilian [42],
for which the following intuition can be given4. Our goal as the referee is to force the players
to use a product strategy, preventing any elaborate cheating strategies. In other words, we
want to make sure that the player chooses his answer to the ith question based only on that
question and not on any of the other `− 1 questions. Towards this end, the referee chooses
a certain (typically large) fraction of the ` question pairs to be independently distributed
dummy questions, the answers to which are ignored. These dummy questions are meant
to confuse the players: if they were indeed trying to carefully choose their answer to a
certain question by looking at many other questions, now most of these other questions will
be completely random and uncorrelated with the other player’s questions, so that such a
strategy cannot possibly be helpful.

In more detail, Feige and Kilian prove the following dichotomy theorem on the structure
of single-player repeated strategies (that is, maps from `-tuples of questions to `-tuples of
answers): either the strategy looks rather random (in which case the players cannot win
the game with good probability — this is where the projection property is used) or it is
almost a serial or product strategy, i.e., the answer to each question is chosen based on that
question only (in which case the player is playing the rounds independently, and his success
probability will suffer accordingly).

3This is why we treat the projection case separately, despite it leading to similar decay.
4We refer to Ryan O’Donnell’s excellent lecture notes [89, 88] for a helpful exposition of Feige and Kilian’s

proof.
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Our proof follows a similar structure. However, an important challenge immediately
surfaces: the proof in [42], and indeed all proofs of parallel repetition theorems or direct
product tests, make the important initial step of assuming that the player’s strategies are
deterministic (which is easily seen to hold without loss of generality). And indeed, it is
not at all trivial to extend those proofs to even the randomized setting without making
this initial simplifying assumption. To give a simple example, an important notion in Feige
and Kilian’s proof is that of a dead question — simply put, a question to which the player
does not give any majority answer, when one goes over all possible ways of completing that
specific question into a tuple of questions for the repeated game. It is easily seen that, in
the case of a deterministic strategy, dead questions are harmful, as the players are unlikely
to satisfy the projection property on them. However, it is just as easily seen that for most
randomized strategies, good or bad, all questions are dead.

This illustrates the kinds of difficulties that one encounters while trying to show parallel
repetition in the case of entangled players, when one cannot simply “fix the randomness”.
The issue we just raised is not too hard to solve, and others are more challenging. Indeed
the main difficulty is to define a proper notion of almost serial for operators, which would
in particular incorporate the inherent randomness of quantum strategies. It turns our that
the right notion is the notion of consecutive measurements (rather than tensor products of
measurements for each question, a tempting but excessively strong possibility). Based on a
quantum analogue of Feige and Kilian’s dichotomy theorem, we are able to show that the
almost serial condition induces a condition of almost orthogonality on the player’s operators.
At this point we use a variant of the orthogonalization lemma introduced in Section 4.3.1 of
Chapter 4, which lets us extract a product strategy from the almost-orthogonal condition.
We obtain that the players approximately perform a series of consecutive measurements,
each depending only on the current question. An upper bound on the value of the repeated
game then follows.

Repeated games

We will consider two different types of repeated games. The first one, originally used by Feige
and Kilian, applies to projection games, and we describe it in Definition 61. The second
type of repetition applies to consistency games, and is closer to the direct product testing
technique originally introduced by Dinur and Reingold [37]; we explain it in Definition 62.

Definition 61 (Feige-Kilian repetition). Let ` be any integer, and define C1 := `1/2 and
C2 := ` − C1. Given a two-player projection game G = (π, V,Q,A), its `-th Feige-Kilian
repetition is the following game GFK(`):

• The referee picks a random partition [`] = M ∪ F , where |M | = C1 and |F | = C2 =
` − C1. Indices in M will be called “game” indices, while indices in F will be called
“confuse” indices.
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• The referee picks (q′M , qM) ∼πC1 (Q×Q)C1.

• He picks (q′F , qF ) ∼(πA×πB)C2 (Q × Q)C2, where πA is the marginal of π on the first
player, and πB the marginal on the second player.

• The referee sends the questions to the players (without specifying which questions are
of which type). On game questions he verifies that the original game constraint is
satisfied. He accepts any answers to confuse questions.

Definition 62 (Dinur-Reingold repetition). Let ` be any integer, and define C ′1 := `1/2,
C1 = 2C ′1 and C2 := ` − C1. Given a two-player symmetric game G = (π, V,Q,A), its `-th
Dinur-Reingold repetition is the following game GDR(`):

• The referee picks a random partition [`] = R ∪G ∪ F , where |R| = C ′1, |G| = C ′1, and
|F | = C2. Indices in R will be called “consistency” indices, those in G will be called
“game” indices, and those in F “confuse” indices.

• The referee picks C ′1 questions qR ∼
π
C′
1

A

QC′
1 and sets q′R = qR, where πA is the marginal

of π on the first player (since we assumed G was symmetric, this is the same as πB,
the marginal on the second player).

• The referee picks C ′1 pairs of questions (q′G, qG) ∼πC′
1
(Q×Q)C′

1.

• He picks (q′F , qF ) ∼(πA×πB)C2 (Q×Q)C2.

• The referee sends the questions to the players (without specifying which questions are
of which type). On consistency questions he verifies that both answers, from Alice and
from Bob, are identical. On game questions he verifies that the original game constraint
is satisfied. He accepts any answers to confuse questions.

Note that, if a game G has value 1, then its Dinur-Reingold repetition does not necessarily
also have value 1, as the player’s optimal strategy in G might not be consistent. A consistent
strategy is one in which whenever the players are asked the same question they provide the
same answer with certainty. This may not always hold of an optimal strategy; nevertheless
Lemma 13 from Chapter 3 shows that we can assume it holds in some natural settings. That
lemma shows that, if G is any game, then we may symmetrize it and assume that the provers
are also playing according to a symmetric strategy. In particular, if G had value 1, and the
optimal strategy used either no entanglement or a maximally entangled state, then this also
holds of the optimal strategy in the symmetrized game. Such a strategy is automatically
consistent.
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7.1 Proof overview

We first give a formal account of our results in the next section, before proceeding to give a
detailed overview of their proof in Section 7.1.2.

7.1.1 Results

We first state our main theorems. They refer to the two types of repetition of an entangled
game G defined in the previous section, its `-th Feige-Kilian repetition GFK(`), and its `-th
Dinur-Reingold repetition GDR(`). Both types of repeated games are made of ` independent
rounds, played in parallel. Some of these rounds consist of independent repetitions of G,
while others are either confuse or consistency rounds, containing simple tests independent
of the original game (except for the distribution with which questions are chosen in those
rounds). Our first result pertains to projection games.

Theorem 63. There exists a constant c ≥ 1 such that, for all s < 1 and δ > 0 there is a
` = O((δ−1 (1− s)−1)c) such that, if G is a projection game with value ω∗(G) ≤ s, then the
entangled value of the game GFK(`) is at most δ. Moreover, if the value of G is 1 then the
value of GFK(`) is also 1.

In the case of free projection games, questions to the players are chosen independently,
so that the distribution on questions in the confuse rounds of the game GFK(`) is exactly the
same as that in the original game. The only difference is that in such a round, all answers
are accepted, which can only help the players. Hence the direct parallel repetition of G has
a smaller value than its Feige-Kilian repetition, which implies the following.

Corollary 64. Let s < 1 and δ > 0. Then there is a ` = O((δ−1 (1− s)−1)c) such that, if G
is a free projection game such that ω∗(G) ≤ s, then the (direct) `-fold parallel repetition of
G has value at most δ.

Our second result is more general, as it applies to arbitrary games. It only comes with the
mild caveat that, in order to preserve the fact that the original game had value 1 (whenever
this indeed holds), it is required that in that case there also exists a perfect strategy which
is consistent.

Theorem 65. There exists a constant c ≥ 1 such that, for all s < 1 and δ > 0 there is a
` = O((δ−1 (1 − s)−1)c) such that, if G is an arbitrary game with value ω∗(G) ≤ s , then
the entangled value of the game GDR(`) is at most δ. Moreover, if G has a perfect consistent
strategy then the value of GDR(`) is also 1.

Lemma 13 shows that the requirement that G has a perfect consistent strategy (which
is only a requirement in cases where we are interested in preserving the fact that G might
have value 1) is satisfied for many examples of games, including those for which we know a
priori that, if the value of G is 1, then there is an optimal strategy that either does not use
any entanglement at all, or uses the maximally entangled state.
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7.1.2 Proof overview

In the remainder of this section we describe the main ideas behind the proof of Theorem 63
and Theorem 65; full details can be found in Section 7.2. Our goal is to understand re-
peated quantum strategies, that is, maps q ∈ Q` 7→ {Xa

q }a∈A` which map tuples of questions
q = (q1, . . . , q`) to projective measurements {Xa

q }a∈A` in dimension d. The semantics are
that, on receiving questions q, a player measures his share of the entangled state |Ψ〉 accord-
ing to {Xa

q }a∈A` , resulting in him sending back answer a with probability 〈Ψ|Id ⊗ Xa
q |Ψ〉.

Interestingly, most of the proof will be directly concerned with the measurements {Xa
q }a∈A`

themselves (together with the reduced density ρ = TrA|Ψ〉〈Ψ|), without reference to the
other player’s measurements or even the underlying game.

We will be interested in a strategy’s marginals : given a fixed subset of indices S ⊆ [`]
and a set of questions qS on the indices in S, one can define the marginalized measurement

{
XaS

qS
: ρ 7→ Eq∼π[`]\S

[ ∑

a∈A[`]\S

√
XaS a

qSq ρ
√
XaS a

qSq

]}
aS∈AS

which corresponds to choosing a tuple q ∈ Q[`]\S by picking the question in each coordinate
independently according to some fixed distribution π,5 making the measurement correspond-
ing to the POVM described by {XaSa

qSq
}(aS ,a)∈A` , and marginalizing over those answers a

corresponding to indices not in S.
Given that X was a projective measurement, the marginalized strategy is a POVM —

it is not necessarily projective any more. Our main results will pertain to the structure of
such marginalized strategies. We will show that they are either very random (this is formally
called dead later on, and morally means that the marginalized strategy is very far from a
projective measurement; rather its singular values tend to be small and spread out), or highly
structured (this is called serial later on, and after some work we will show that it implies
that the marginalized strategy has somewhat of a product form, i.e. it can be decomposed
as a product Πa1

q1
· · ·Πas

qs on a subset of the coordinates). The attentive reader might already
see that once this is proven it will be possible to bound the success probability of both types
of strategies in the repeated game; however we should warn that the exact statements, and
their proofs, are quite technical and carry only a fair share of the intuition we have just
given.

We proceed to give a few more details on the structure of the proof of our results. It can
be divided into three main steps. The first two steps establish facts about the structure of
repeated single-player strategies, and are independent of the game being played, as well as
of the other player’s strategy.

5We will often drop the reference to π and simply write Eq [·]. π will be fixed throughout, and later
instantiated to the (marginal) distribution on questions from the original game G that is being repeated.
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Step 1: A quantum dichotomy theorem. In the first step we prove an analogue of
Feige and Kilian’s dichotomy theorem [42]. The precise statement is given in Lemma 68,
and its simple proof very closely follows that of Feige and Kilian’s theorem. Informally, it
states that there exists an integer 1 ≤ r∗ � `, such that a tuple of questions (R, qR), where
R ⊆ [`] denotes a subset of r∗ indices, and qR fixed questions in those positions, can be
of two types only. Either it is dead (case 1 in the lemma), or it is (1 − η)-serial, where
η > 0 is a small parameter (case 2 in the lemma). Both types of strategies are precisely
defined in Definition 67, and the meaning of dead is the easiest to grasp. The technical
definition is simply that the (marginalized) measurement {XaR

qR
}aR∈AR , when performed twice

(sequentially) on the same half6 of the state |Ψ〉, is unlikely to produce the same result. This
kind of strategy is easily seen to be bad for the players, as is shown in step 3. of the proof.

Serial strategies are more subtle. In the case of a classical deterministic player, a serial
strategy is such that, when one conditions on the player giving answers aR to the questions qR
in R, the answers to most other questions (not in R) are for the most part determined by the
player as a direct function of the corresponding question, i.e. he is playing an honest product
strategy on those coordinates. In the quantum case, we will adopt a seemingly weaker
definition, which is that a strategy is serial on (qR, aR) if, in expectation over the choice of an
additional question qi in position i, when the marginalized measurement {XaRai

qRqi
}(aR,ai)∈AR∪{i}

is performed twice on the same half of |Ψ〉, the probability that the same answer (aR, ai) is
obtained twice is almost as large as the probability that just aR is obtained twice: conditioned
on being consistent on the answers to the questions in R, the strategy is also consistent in
its answer on a random additional question qi in position i.

Fleshing out the consequences of this definition to eventually show that it implies some-
thing close to the classical definition requires some work, and is the object of the second step
of the proof.

Step 2: A product theorem for serial strategies. While for a classical deterministic
player a serial strategy, as defined in the previous section, is one which decides on the answer
ai to most questions qi not in R as a function of that question alone, in the quantum setting
this is much less clear. The first task is to decide on what one expects from a serial strategy.
For instance, one might ask for the measurements to take some “approximately-tensor” form;
however we find that this is too strong a requirement. Instead, we first show that the serial
property implies that the player’s measurement operator {XaRai

qRqi
}(aR,ai)∈AR∪{i} has a certain

6In fact we will also need to consider the outcome of performing the same measurement simultaneously
on the two halves of |Ψ〉.
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block-diagonal form, in the sense that7

XaRai
qRqi

≈ Πai
qi
XaRai

qRqi
Πai

qi

where {Πai
qi
}ai∈A are orthogonal projectors; the precise statement is given in Claim 72. Its

proof goes through a technical statement about sets of operators which are close to being
pairwise orthogonal. That statement, proven in Lemma 127 in Appendix A, shows the
natural fact that such operators are close to having a common block-diagonalization basis.

Once this is shown it is not hard to extend the approximation to a small number of
additional questions q1, . . . , qg, showing that the corresponding measurement also has a block-
diagonal form, this time described by the product of the corresponding projectors Πa1

q1
· · ·Πag

qg ;
a precise statement is given in Lemma 73. It is in the precise sense described in that lemma
that we can say that a serial strategy has a product form, based on which we can think of
the player as playing sequentially on a subset of the coordinates.

Step 3: Both dead and serial strategies fail the repeated game. In the last step of
the proof we show that both types of strategies, dead or serial, must fail in the repeated game
with high probability (provided the value of the original game was bounded away from 1).
For the case of dead strategies this is fairly intuitive: since a dead strategy does not assign
consistent answers to a certain subset of the questions qR, this implies that the player’s
answers in positions R will very much depend on the questions present in those indices
not in R; not only that but it will be virtually impossible for the other player to correlate
well with this player’s answers on those indices. Here we crucially use the “projection”, or
“consistency” rounds of the repeated game in order to show that such strategies will fail in
those rounds with high probability. This is proven in Claim 74.

The case of serial strategies is slightly harder to analyze, but it boils down to showing
that the block-diagonal form we described earlier roughly implies that we can in fact see
one of the players as making a sequential measurement governed by the Πai

qi
. Since in this

case the player’s answer to question qi is decided by applying a projective measurement
depending on qi alone, in case the original game had a value s < 1 such a strategy will fail
in at least a fraction s/2 of the “game” rounds with high probability, and be caught by the
referee provided there are enough such rounds. This is shown in Claim 75.

Finally note that the “confuse” rounds of the repeated game are not used in this stage
(and indeed the referee accepts any answers in those rounds), but they are crucial to show the
dichotomy lemma and the following claims, which only hold for strategies which have been
marginalized over a sufficiently large number of questions; in order to be able to perform
this marginalization it is important that questions to the players in the confuse rounds are
picked independently.

7Note that this “approximation” should be taken with a grain of salt; in particular one cannot expect
to extract any information about the measurement operators themselves simply by observing statistics of
measurement outcomes. Rather, all our estimates will bear on the post-measurement state, resulting from
applying the measurement corresponding to XaRai

qRqi
to one half of |Ψ〉.
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7.2 Proof of the main theorem

In this section we give the proof our main results, Theorems 63 and 65. It is divided in three
parts. The first, in Section 7.2.2, establishes our “quantum dichotomy theorem”. The second,
in Section 7.2.3, investigates the structure of serial strategies, and shows that they admit
a certain block structure. The results in this section are based on our “orthogonalization
lemma”, which we introduced in Section 4.3.1 in Chapter 3, and is proved in Appendix A.
Finally, in the third part, Section 7.2.4, we use the results from the first two parts to bound
the success probability of the players in the repeated game.

Because of the nature of repeated strategies, which are indexed by large tuples of questions
and answers, we are constrained to use rather heavy notation. We explain it in detail in
the following section, which can also serve as a reading guide for the statements that are to
follow.

7.2.1 Notation

Recall that for every q ∈ Q`, {Xa
q }a∈A` is an arbitrary projective measurement in d dimen-

sions, that is, the Xa
q are projector matrices, and for any fixed q they sum to the identity

over a. The position of the questions (or answers) in a tuple will always be fixed and usually
clear from the context; for example when we write q = (qG, qF ), where G,F ⊆ [`] are sets of
indices, it is not necessary that the questions qG are placed before the questions qF in the
tuple q; rather their position is determined by the indices in G,F . When precision is needed
we shall write (i, qi) to express the fact that question qi is destined to appear in the i-th
position of some tuple q. We also write q¬i to denote q1, . . . , qi−1, qi+1, . . . , q`.

We will often consider marginalized POVMs over a certain set S ⊆ [`]. Given questions
qS indexed by S, the marginalized POVM is the POVM indexed by answers aS, which results
from applying {XaSa

qSq
}aSa for a random q ∈ Q[`]\S, and ignoring the answers a not in S. More

precisely, given (S, qS, aS) it will be convenient to work with the Stinespring representation

X̂aS
qS

:=
∑

q

∑

a

√
π(q)

√
XaSa

qSq ⊗ 〈q, a|E

where E is an extra register of the appropriate dimension, and π denotes an arbitrary
distribution, fixed throughout (it will later be instantiated to the marginal distribution that
arises from the original game G that is being repeated). This definition satisfies, for any
ρ ≥ 0,

Eq

[ ∑

a

√
XaSa

qSq ρ
√
XaSa

qSq

]
= X̂aS

qS
(ρ⊗ IdE) (X̂

aS
qS
)†

where the identity IdE was created on the additional register E introduced in the defini-
tion of X̂aS

qS
, and the expectation is with respect to the distribution π. In order to make

measurements corresponding to marginalization over different sets S, we will assume that
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the register E is always of large enough dimension, and if necessary X̂aS
qS

is tensored with
1√

|Q||S||A||S|

∑
q,a〈q, a| on the extra 2|S| registers. Note that there is nothing in the definitions

above that require the questions and answers in X̂aS
qS

to be indexed to the same set, hence

we extend them to define X̂aT
qS
, for T ⊆ S ⊆ [`], in the obvious way.

For any ρ ≥ 0, we write Trρ(A) for Tr(A(ρ⊗ IdE)), so that in particular

Trρ
(
(X̂aT

qS
)†X̂aT

qS

)
= Eq

[ ∑

a

Tr
(√

XaT a
qSq ρ

√
XaT a

qSq

) ]
= Tr

(
XaT

qS
ρ
)

where we define
XaT

qS
:= X̂aT

qS
(X̂aT

qS
)† = Eq∈Q[`]\S

[ ∑

a∈A[`]\T

XaT a
qSq

]

Terms such as Tr
(
XaT

qS
ρ
)
will frequently appear on the right-hand side of our inequalities,

and they should simply be considered as normalization factors, accounting for the (possibly
unnormalized) underlying state ρ, and the conditioning on a fixed aT . Finally, given ρ ≥ 0
and a matrix A of appropriate dimension, we introduce the semi-norm

‖A‖2ρ := Tr
(
Aρ1/2A†ρ1/2

)
(7.1)

Note that ‖ ·‖ρ is definite only if ρ has full rank. We will mostly use this norm for notational
convenience. At this point it suffices to observe that it derives from a semi inner-product,
so that it satisfies the Cauchy-Schwarz inequality.

At a first reading it may be helpful for the reader to consider the special case of the totally
mixed state ρ = d−1Id; putting the notation in context this corresponds to the players sharing
the maximally entangled state. In this case very little of the above is really needed, and
in particular Trρ

(
(XaT

qS
)†XaT

qS

)
is simply the normalized trace Eq

[∑
a d
−1Tr

(
XaT a

qSq

)]
. Many

of our statements are easier to prove, and to understand, in this setting (the main cause of
simplification being the commutation between ρ and the X operators), so that the reader
may wish to consider it first.

7.2.2 A quantum dichotomy theorem

In this section we prove two important lemmas on the structure of any quantum strategy
in a repeated game. The main lemma, Lemma 68, is the analogue of Lemma 11 in [42].
It establishes a dichotomy between two different types of strategies that a player can use,
showing that either the strategy is very random, or it must have a relatively strong sequential
structure. Its proof follows that of the classical setting without too much added difficulty,
provided the definitions are made correctly — which we now proceed to do.

A crucial difficulty in adapting Feige and Kilian’s argument is to define an appropriate
measure of a strategy’s unpredictability. In the classical case of a deterministic strategy, this
can be measured through the entropy of the marginalized distribution on answers; however



CHAPTER 7. PARALLEL REPETITION OF ENTANGLED GAMES 107

in the quantum or even the randomized setting such a measure is no longer helpful, as even
honest product strategies can be very random, just by being convex combinations of distinct
deterministic strategies. Instead, we measure unpredictability as follows.

Definition 66. Given a strategy Xa
q , a state ρ, and a fixed set of questions qR in positions

R ⊆ [`], define the collision probability of X on qR as

Pcol(qR|X, ρ) :=
∑

aR

Pcol(qR, aR|X, ρ) (7.2)

where

Pcol(qR, aR|X, ρ) :=
(
Trρ
(
(X̂aR

qR
)† X̂aR

qR
(X̂aR

qR
)† X̂aR

qR

)
+ Tr

(
XaR

qR
ρ1/2XaR

qR
ρ1/2

))
(7.3)

To understand this definition, first consider the case when ρ is the totally mixed state
d−1Id. In this case both terms inside the summation are equal to the normalized squared
Frobenius norm d−1‖XaR

qR
‖2F . Expression (7.2) can be interpreted in two different ways. From

an operational point of view, it corresponds to the probability that one obtains twice the
same answers when one sequentially performs a measurement using the POVM with elements
{XaR

qR
}aR . In this sense, Pcol is a measure of the predictability of the strategy Xa

q : pick two

completions q, q′ at random and measure using first {XaRa
qRq }aRa and then using {XaRa′

qRq′ }aRa′ ;
Pcol(qR|X, ρ) is the probability of getting twice the same result aR (and ignoring the other
answers a, a′). The analytic interpretation is that this is a measure of the entropy of the
spectrum of XaR

qR
, which is maximized when XaR

qR
is a projector (for a fixed value of the trace).

In case ρ is not the identity, and hence does not commute with the Xa
q , we need to

adopt the more cumbersome definition (7.2) for technical reasons. However, note that the
operational interpretation remains — the first term on the right-hand side of (7.3) is the
probability of obtaining the same answer when performing the measurement twice on the
same half of |Ψ〉, while the second term is the same, when the measurement is performed
on the two different halves of |Ψ〉: indeed, note that Tr

(
XaR

qR
ρ1/2XaR

qR
ρ1/2

)
= 〈Ψ|XaR

qR
⊗

(XaR
qR

)T |Ψ〉.8

The following lets us make the distinction between the two different types of strategies
alluded to above.

Definition 67. We will say that:

• A block (R, qR) is ε-dead if Pcol(qR|X, ρ) ≤ ε. If a block is not ε-dead it is ε-alive.
Moreover, we say that the answer aR is ε-alive if it satisfies

Pcol(qR, aR|X, ρ) ≥ εTr
(
XaR

qR
ρ
)

Note that any ε-alive block has at least one ε-alive answer. Sometimes we will simply
say that a block or an answer are alive or dead, leaving the parameter ε implicit.

8Note the transpose sign, which indicates that our interpretation is only rigorously correct for the case of
real symmetric X.



CHAPTER 7. PARALLEL REPETITION OF ENTANGLED GAMES 108

• A block (R, qR, aR) is (1− η)-serial if aR is alive and the following holds:

E(i,qi) [Pcol(qR, qi|X, ρ) ] ≥ (1− η)Pcol(qR|X, ρ) (7.4)

Lemma 68. Assume that ε, η > 0 are chosen such that η ε3 > 16C
−1/2
1 .9 Then one of the

following holds

1. At least a (1− ε) fraction of blocks (R, qR) are ε-dead.

2. At least an ε fraction of blocks (R, qR) are ε-alive, and moreover if (R, qR) is an ε-alive
block then ∑

aR: aR alive but

(qR,aR) is not (1 − η)-serial

Tr
(
XaR

qR
ρ
)
≤ ε/2 (7.5)

i.e. alive answers which are not (1− η)-serial have a small probability of occurring.

Proof. We extend the definition of the collision probability to measuring collisions over an-
swers which are not necessarily on the same indices as the questions:

Pcol(q|R,X, ρ) :=
∑

aR

(
Trρ
(
(X̂aR

q )† X̂aR
q (X̂aR

q )† X̂aR
q

)
+ Tr

(
XaR

q ρ1/2XaR
q ρ1/2

))

where now q can be any subset of fixed questions, and R denotes the subset of answers on
which we are measuring the collision probability.

Claim 69. There exists an integer 1 ≤ r∗ ≤ C1 such that

ER,qR [Pcol(qR|R,X, ρ) ]− ER,qR,i,qi [Pcol(qR, qi|R ∪ {i}, X, ρ) ] ≤ 8C
−1/2
1

where the expectation is taken over all subsets R of size |R| = r∗.

Proof. There is a similar statement in [42]. Here we closely follow the proof of Corollary 3.2
in the lecture notes [89]; since the argument is very similar (mostly replacing the use of
Fact 1.3 in those notes by our Claims 130 and 132, proven in Appendix A) we only outline
it here, leaving the details to the reader. The proof goes by considering what happens to
the collision probability when one conditions on an additional question, resp. one considers
collisions over an additional answer. First, note that if one extends R by an index i, then
Pcol(q|R ∪ {i}, X, ρ) ≤ Pcol(q|R,X, ρ), since obtaining identical answers on R is a necessary
condition to obtain identical answers on R ∪ {i}. The following equation is the analogue of
Fact 1.4 in [89]:

∣∣E(i,qi) [Pcol(q, qi|R,X, ρ)]− Pcol(q|R,X, ρ)
∣∣ ≤ 4C

−1/2
1 (7.6)

9Recall that C1, C2 are chosen so that C1 + C2 = `: see Definitions 61 and 62 for more details.
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The proof of (7.6) follows directly from Claims 130 and 132, and we omit it. It shows that
the collision probability cannot increase by too much when one conditions on an additional
question, in expectation. The proof of the claim is then concluded exactly as in the clas-
sical case: consider a sequence of steps in which one successively looks for collisions on an
additional coordinate i, and conditions on an additional question qi. In expectation over the
choice of (i, qi), Pcol will never go up by more than 4C

−1/2
1 when one performs this operation.

Since Pcol is always between 0 and 1, the fact that it never goes up by much implies that
there must be a step in which it doesn’t decrease by more than 8C

−1/2
1 : the total decrease

cannot be larger than the total increase plus 1. r∗ is chosen so that this step occurs when
r∗ indices (and questions) have already been fixed.

Towards a contradiction, assume the negation of both 1. and 2. With probability at least
ε a random block (R, qR) is alive, and moreover if (R, qR) is alive then alive answers which
are not (1− η)-serial have a significant contribution. Fix such an answer aR. Since (7.4) is
not satisfied, summing over all aR which are alive but not (1− η)-serial one can see that the
collision probability, for this (R, qR), must decrease by at least

η ·
∑

aR: aR alive but

(qR,aR) is not (1 − η)-serial

Pcol(qR, aR|X, ρ)

By the negation of (7.5) and the fact that the answers are alive, this quantity is at least
ηε2/2. Finally, taking the expectation over the choice of (R, qR) gives a total decrease in Pcol

of at least ηε3/2, contradicting Claim 69 if ηε3/2 > 8C
−1/2
1 .

7.2.3 Serial strategies

The main result of this section is Lemma 73, which shows that serial strategies have a product
structure. Given that most of the strategies that we consider in this section will have a fixed
qR and aR, we introduce the useful notation Y aS

qS
:= XaRaS

qRqS
(resp. Ŷ aS

qS
:= X̂aRaS

qRqS
) for any

S ⊆ [`]\R; the value of qR and aR should always be clear from the context. We will also
simply write Y for XaR

qR
(resp. Ŷ for X̂aR

qR
). For the totality of this section η > 0 is a fixed

parameter, which one can think of as polynomial in the soundness δ that we are aiming for
in the repeated game.

We start with a simple fact which expands on the defining property of (1 − η)-serial
strategies.

Fact 70. Let qR ∈ QR. For every aR ∈ AR there exists αaR ≥ Tr
(
XaR

qR
ρ
)
such that∑

aR
αaR ≤ 3 and the following holds. Suppose (R, qR, aR) is (1 − η)-serial, and assume
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that η ≥ C
−1/2
2 . Then for a fraction at least (1− η1/4) of all (i, qi) for i /∈ R we have that

0 ≤ Trρ
(
Ŷ †qi ŶqiŶ

†
qi
Ŷqi
)
−
∑

ai

Trρ
(
(Ŷ ai

qi
)† Ŷ ai

qi
(Ŷ ai

qi
)† Ŷ ai

qi

)
≤ 4 η3/4 αaR (7.7)

0 ≤ Tr
(
Yqi ρ

1/2Yqi ρ
1/2
)
−
∑

ai

Tr
(
Y ai
qi
ρ1/2Y ai

qi
ρ1/2

)
≤ 4 η3/4 αaR (7.8)

Proof. By condition (7.4) in the definition of (1− η)-serial, the Y ai
qi

satisfy

E(i,qi)

[
Trρ
(
Ŷ † Ŷ Ŷ † Ŷ

)
−
∑

ai

Trρ
(
(Ŷ ai

qi
)† Ŷ ai

qi
(Ŷ ai

qi
)† Ŷ ai

qi

)]

+ E(i,qi)

[
Tr
(
Y ρ1/2Y ρ1/2

)
−
∑

ai

Tr
(
Y ai
qi
ρ1/2Y ai

qi
ρ1/2

)]

≤ η
(
Trρ
(
Ŷ † Ŷ Ŷ † Ŷ

)
+ Tr

(
Y ρ1/2Y ρ1/2

))
(7.9)

For any a′R ∈ AR, let

αa′R
:= max

(
Tr(X

a′R
qR ρ), η

−1
E(i,qi)

[∣∣Trρ
(
(X̂

a′R
qR )
†X

a′R
qR X̂

a′R
qR

)
− Trρ

(
(X̂

a′R
qRqi)

†X
a′R
qRqiX̂

a′R
qRqi

)∣∣
] )

(7.10)

By applying Claim 132 to the X̂
a′R
qRq we obtain

∑

a′R

E(i,qi)

[∣∣Trρ
(
(X̂

a′R
qR )
†X

a′R
qR X̂

a′R
qR

)
− Trρ

(
(X̂

a′R
qRqi)

†X
a′R
qRqiX̂

a′R
qRqi

)∣∣
]
≤ 2C

−1/2
2 Tr(ρ)

which, by using our assumption that C
−1/2
2 ≤ η and

∑
a′R

Tr(X
a′R
qR ρ) ≤ Tr(ρ), implies∑

a′R
αa′R
≤ 3Tr(ρ) ≤ 3. Applying Claim 130 to the Y a

q we also obtain

E(i,qi)

[∣∣Tr
(
Y ρ1/2Y ρ1/2

)
− Tr

(
Yqi ρ

1/2Yqi ρ
1/2
)∣∣] ≤ η αaR

Hence (7.9), together with an application of Markov’s inequality, implies that, for a fraction
at least (1− η1/4) of all (i, qi),
(
Trρ
(
Ŷ †qi ŶqiŶ

†
qi
Ŷqi
)
−
∑

ai

Trρ
(
(Ŷ ai

qi
)† Ŷ ai

qi
(Ŷ ai

qi
)† Ŷ ai

qi

))
+
(
Tr
(
Yqi ρ

1/2Yqi ρ
1/2
)
−
∑

ai

Tr
(
Y ai
qi
ρ1/2Y ai

qi
ρ1/2

))

≤ η3/4
(
Trρ
(
Ŷ † Ŷ Ŷ † Ŷ

)
+ Tr

(
Y ρ1/2Y ρ1/2

)
+ 2αaR

)

By expanding out the Yqi terms, one can verify that both terms on the left-hand-side of this
equation are positive, hence each of them must be smaller than the right-hand-side, itself
smaller than 4 η3/4αaR . This proves both (7.7) and (7.8).
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We now prove a simple claim which shows that (1− η)-serial strategies are close to being
orthogonal; this is how we will subsequently exploit that property.

Claim 71. Let qR ∈ QR. For every aR ∈ AR there exists αaR ≥ Tr
(
XaR

qR
ρ
)
such that∑

aR
αaR ≤ 3 and the following holds. Suppose that (R, qR, aR) is (1− η)-serial. Then for a

fraction at least (1− η1/4) of all (i, qi) for i /∈ R,
∑

ai 6=a′i

Trρai
(
(Ŷ ai

qi
)†Ŷ

a′i
qi (Ŷ

a′i
qi )
† Ŷ ai

qi

)
≤ 8η3/4 αaR (7.11)

where ρai = ρ1/2Y ai
qi
ρ1/2.

Proof. Define αaR as in (7.10). Letting Zi = Ŷ †qi(ŶqiŶ
†
qi
)Ŷqi−

∑
ai
(Ŷ ai

qi
)†Ŷ ai

qi
(Ŷ ai

qi
)† Ŷ ai

qi
, Eq. (7.7)

from Fact 70 can be re-written (for the (i, qi) for which it holds) as

Trρ(Zi) ≤ 4η3/4 αaR

Let ρi :=
∑

ai
ρai , where ρai = ρ1/2Y ai

qi
ρ1/2. Since ρi ≤ ρ and Zi ≥ 0, we get

Trρi(Zi) ≤ Trρ(Zi) ≤ 4η3/4 αaR

and hence, expanding out Zi,
∑

ai 6=a′i

Trρi
(
(Ŷ ai

qi
)†Ŷ

a′i
qi (Ŷ

a′i
qi )
† Ŷ ai

qi

)
≤ 4η3/4 αaR (7.12)

Finally, we can use (7.8) to upper-bound

∑

ai 6=a′′i ,a
′
i

Trρa′′
i

(
(Ŷ ai

qi
)†Ŷ

a′i
qi (Ŷ

a′i
qi )
† Ŷ ai

qi

)
≤ 4η3/4 αaR

where we used
∑

a′i
Ŷ

a′i
qi (Ŷ

a′i
qi )
† ≤ Id. Together with (7.12), this proves the claim.

Claim 72. Let qR ∈ QR. For every aR ∈ AR there exists αaR ≥ Tr
(
XaR

qR
ρ
)
such that∑

aR
αaR ≤ 3 and the following holds. Suppose that (R, qR, aR) is (1− η)-serial, let 1 ≤ g ≤

C1/2 be a fixed parameter, and (G, qG) chosen at random under the constraint that G∩R = ∅
and |G| = g. Then with probability at least (1− η1/4− e−2g) over the choice of (G, qG), there
is a partition G = G′ ∪G′′, where g′′ = |G′′| ≥ (1− 4ηc/4) g, such that for every i ∈ G′′

∑

ai

TrρG
(
(Ŷ ai

qG
)†(Id− Πai

qi
)Ŷ ai

qG

)
≤ O

(
g η1/c2

)
αaR (7.13)

where for i ∈ G′′, {Πai
qi
}ai is an orthogonal measurement depending only on qR, aR and qi (it

is independent of the particular choice of (G, qG)), ρG = ρ1/2YqGρ
1/2, and c > 0, c2 ≥ 1 are

universal constants.
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Proof. Since (qR, aR) is (1 − η)-serial, we can apply Claim 71 to obtain that a fraction
(1− η1/4) of (i, qi) satisfy

∑

ai 6=a′i

Trρai
(
(Ŷ ai

qi
)†Ŷ

a′i
qi (Ŷ

a′i
qi )
† Ŷ ai

qi

)
≤ 8η3/4 αaR (7.14)

where as before ρai = ρ1/2Y ai
qi
ρ1/2. We can now apply Lemma 127 (proven in Appendix A) to

the Y ai
qi

(with the states ρai) to obtain, for the fraction (1− η1/4) of (i, qi) considered above,
orthogonal projectors {Πai

qi
}ai satisfying

∑

ai

Trρai
(
(Ŷ ai

qi
)†(Id− Πai

qi
)Ŷ ai

qi

)
≤ O

(
η3c/4

)
αc
aR

(∑

ai

Tr
(
ρai
))1−c

(7.15)

Moreover, the Πai
qi

can easily be made into a projective measurement by enlarging one of
them, so that they sum to identity; this will not harm the above bound. By Markov’s
inequality, with probability at least (1−ηc/4) over the choice of (i, qi) it holds that Tr

(
Yqiρ

)
≤

η−c/4Tr
(
Y ρ
)
≤ η−c/4αaR . For any given (G, qG), let G′′ ⊆ G denote those indices i in

G for which this property holds for (i, qi), and moreover (i, qi) falls in the set of indices
for which (7.15) holds. By the union bound and a Chernoff bound, the probability that
|G′′| ≤ (1− 4ηc/4)g is less than e−2g, and for ever i ∈ G′′ we have

∑

ai

Trρai
(
(Ŷ ai

qi
)†(Id− Πai

qi
)Ŷ ai

qi

)
≤ O

(
η1/c2

)
αaR (7.16)

for some constant c2 > 0. Applying Claim 130 to the Ŷ ai
qi
, and summing over ai, we find

that in expectation

E(G,qG)

[∑

ai

∣∣Trρai
(
(Ŷ ai

qi
)†Ŷ ai

qi

)
− TrρG,ai

(
(Ŷ ai

qG
)†Ŷ ai

qG

)∣∣
]
≤ g C−12 Tr

(
Yqiρ

)
≤ gη3/4αaR

where we used C−12 ≤ η, ρG,ai := ρ1/2Y ai
qG
ρ1/2, and we think of the choice of (G, qG) as

first picking (i, qi) and then the remaining positions and questions. Another application of
Claim 130 combined with (7.8) shows that for every i ∈ G′′,

E(G,qG)

[ ∑

ai 6=a′i

TrρG,a′
i

(
(Ŷ ai

qi
)†Ŷ ai

qi

)]
≤ O(g η3/4)αaR

Hence, letting ρG := ρ1/2YqGρ
1/2 =

∑
ai
ρG,ai , combining the two previous equations we get

E(G,qG)

[∑

ai

∣∣Trρai
(
(Ŷ ai

qi
)†Ŷ ai

qi

)
− TrρG

(
(Ŷ ai

qG
)†Ŷ ai

qG

)∣∣
]
≤ O(g η3/4)αaR
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Using Markov’s inequality, his lets us replace Ŷ ai
qi

by Ŷ ai
qG

in (7.15) for a fraction (1− η1/4) of
(G, qG), losing an additional factor O(gη1/2)αaR . Hence

∑

ai

TrρG
(
(Ŷ ai

qG
)†(Id− Πai

qi
)Ŷ ai

qG

)
≤ O

(
g η1/c2

)
αaR (7.17)

where we safely assumed that c2 ≥ 2.

Lemma 73. Let qR ∈ QR. For every aR ∈ AR there exists αaR ≥ Tr
(
XaR

qR
ρ
)
such that∑

aR
αaR ≤ 3 and the following holds. Under the same conditions as in Claim 72, except for

a lower fraction (1− 2η1/4c2 − e−2g) of (G, qG), it holds that

∑

aG′′

TrρG
(
(Ŷ aG′′

qG
− ŶqG)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ (Ŷ
aG′′
qG
− ŶqG)

)
≤ O

(
g2η1/(4c2)

)
αaR (7.18)

∑

aG′′

TrρG
(
(Ŷ aG′′

qG
)†Ŷ aG′′

qG
− (Ŷ aG′′

qG
)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ Ŷ
aG′′
qG

)
≤ O

(
gη1/(8c2)

)
αaR (7.19)

Proof. Let {Πai
qi
} be the orthogonal projectors promised by Claim 72. Let g′′ = |G′′|, and

assume for simplicity that the first g′′ questions in G are those in G′′. To prove the first
inequality, we show the following by induction on i = 1, . . . , g′′: there exists a constant C > 0
such that, if we let Fi = {1, . . . , i}, then

∑

aFi

TrρG
(
(Ŷ

aFi
qG − ŶqG)†Πai

qi
· · ·Πa1

q1
· · ·Πai

qi
(Ŷ

aFi
qG − ŶqG)

)
≤ C i g η1/(3c2) αaR (7.20)

The statement for i = g′′ will imply (7.18). Let C0 be the constant implicit in (7.13) from
Claim 72. For i = 1, (7.20) is simply a re-statement of (7.13), provided C is chosen larger
than C0. Assume the inequality verified for i− 1, and prove it for i. Write

ŶqG − Ŷ
aFi
qG = (ŶqG − Ŷ ai

qG
) + (Ŷ ai

qG
− Ŷ aFi

qG )

The first term on the right-hand side (when plugged back into (7.20)) can be bounded
directly using (7.13) (and the fact that the projectors Π

aj
qj sum to identity over aj, for

j ∈ {1, . . . , i−1}). Regarding the second, we can use the Cauchy-Schwarz inequality together
with (7.13) to bound

∑

aFi

∣∣TrρG
(
(Ŷ ai

qG
)†(Id− Πai

qi
)Πai−1

qi−1
· · ·Πa1

q1
· · ·Πai

qi
(Ŷ

aFi
qG − Ŷ ai

qG
)
)∣∣ ≤ 2

√
C0
√
gη1/(2c2)α1/2

aR
Tr
(
YqGρ

)1/2

By Markov’s inequality, Tr
(
YqGρ

)
≤ η−1/4c2Tr

(
Y ρ
)
for a fraction at least (1 − η1/4c2) of

(G, qG), so that for those indices the bound above can be replaced by 2
√
C0
√
gη1/(4c2)αaR .
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For the rest of this proof we only consider questions (G, qG) for which the bound Tr
(
YqGρ

)
≤

η−1/4c2Tr
(
Y ρ
)
applies. We can similarly obtain

∑

aFi

∣∣TrρG
(
(Ŷ

aFi
qG )†(Id− Πai

qi
)Πai−1

qi−1
· · ·Πa1

q1
· · ·Πai

qi
(Ŷ

aFi
qG − Ŷ ai

qG
)
)∣∣ ≤ 2

√
C0
√
gη1/(4c2)αaR

so that
∑

aFi

TrρG
(
(Ŷ

aFi
qG − Ŷ ai

qG
)†Πai

qi
· · ·Πa1

q1
· · ·Πai

qi
(Ŷ

aFi
qG − Ŷ ai

qG
)
)

≤
∑

aFi

TrρG
(
(Ŷ

aFi
qG − Ŷ ai

qG
)†Πai−1

qi−1
· · ·Πa1

q1
· · ·Πai−1

qi−1
(Ŷ

aFi
qG − Ŷ ai

qG
)
)
+ 16

√
C0
√
gη1/(4c2)αaR

=
∑

aFi

TrρG
(
(Ŷ

aFi−1
qG − ŶqG)†Πai−1

qi−1
· · ·Πa1

q1
· · ·Πai−1

qi−1
(Ŷ

aFi−1
qG − Ŷ )

qG

)
+ 16

√
C0
√
gη1/(4c2)αaR

which can then be bounded using the induction hypothesis. This concludes the induction
step, provided C ≥ C0 + 16

√
C0, and proves (7.18).

We now prove (7.19). Use the Cauchy-Schwarz inequality to bound

∑

aG′′

∣∣TrρG
(
(Ŷ aG′′

qG
− ŶqG)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ Ŷ
aG′′
qG

)∣∣

≤
(∑

aG′′

TrρG
(
(Ŷ aG′′

qG
− ŶqG)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ (Ŷ
aG′′
qG
− ŶqG)

))1/2

·
(∑

aG′′

TrρG
(
(Ŷ aG′′

qG
)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ Ŷ
aG′′
qG

))1/2

≤ O
(
gη1/(8c2)

)
αaR

by (7.18). We obtain (7.19) by noting that

∑

aG′′

TrρG
(
(Ŷ aG′′

qG
)†Ŷ aG′′

qG
− Ŷ †qGΠ

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ ŶqG
)
= 0

since the Πai
qi

sum to identity over ai.

7.2.4 Bounding the success of players in a repeated game

We proceed to show how the results from the previous section can be combined in order to
prove Theorems 63 and 65. For the remainder of this section we fix a game G with question
set Q and answer set A, and consider the `-repeated games GFK(`) and GDR(`) for some fixed
integer `. Let s be the entangled value of the original game G, and {Aa′

q′}a′ (resp. {(Ba
q )

T}a)
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be an arbitrary fixed projective strategy for Alice (resp. Bob), using entangled state |Ψ〉, in
the `-repeated game.10 Let ρ = TrA|Ψ〉〈Ψ| be the reduced density of |Ψ〉 on Bob’s subsystem.

We note here that both types of `-repeated games have the same overall structure, in
that they consist of a set of C1 “correlated” rounds, in which the referee sends either “game”
or “consistency” questions, and C2 “independent” rounds, in which he asks questions chosen
independently from a product distribution (we refer to Definitions 61 and 62 for more details,
including the definition of C1 and C2). In both cases, we can think of the referee as choosing
the ` pairs of questions in the following order.

1. First, a subset R ⊆ [`] of size r∗ ≤ C1/2 is chosen, and designated as indices for either
game rounds (in the case of a projection game), or otherwise consistency rounds. Pairs
of questions (q′R, qR) are then picked according to the appropriate distribution.

2. A subset G ⊆ [`]\R of size C1 − r∗ is chosen. In the case of a projection game, all the
indices in G are designated as game rounds. In the other cases, C1/2 of the indices in G
are designated (at random) as game rounds, and the remaining indices are designated
as consistency rounds. Pairs of questions (q′G, qG) are chosen accordingly. Note that
the referee doesn’t know the value of r∗, but he doesn’t need to explicitly distinguish
between the game and consistency rounds, since they use the same distribution on
pairs of questions. The distinction is made only as a convenience for the analysis.

3. Finally, we let F = [`]\(R∪G). F has size C2, and the indices it contains are designated
as confuse rounds, with corresponding pairs of questions (q′F , qF ).

We will denote by (q′, q) := (q′Rq
′
Gq
′
F , qRqGqF ) the `-tuple of pairs of questions chosen by

the referee. Since questions on the indices in R always correspond to cases where for every
answer of Alice there is a unique possible valid answer for Bob, and since we will only
perform consistency (as opposed to game) checks on questions in those indices, we may
regroup Alice’s tuples of answers a′R when they induce the same aR for Bob. Hence we

re-define AaRa
qRq :=

∑
a′R
A

a′Ra
qRq , where the summation runs over all a′R such that (a′R, aR) are

valid answers to the questions (q′R, qR).
Our first claim shows that the players have a low success probability on blocks (R, qR)

which are dead.

Claim 74. Let ε > 0 be such that ε ≥ C1C
−1
2 , and suppose that (R, qR) is an ε-dead block.

Then the success probability of the players, conditioned on the referee picking questions (q′, q)
such that q includes qR in the positions in R, is at most

√
2 ε.

10The transpose sign on Bob’s operators is there for consistency of notation. For simplicity we will omit
this transpose in the future whenever we consider expressions of the form 〈Ψ|A ⊗ B|Ψ〉, which should be
read as 〈Ψ|A⊗BT |Ψ〉.



CHAPTER 7. PARALLEL REPETITION OF ENTANGLED GAMES 116

Proof. The definition of (R, qR) being ε-dead implies that

∑

aR

Tr
(
BaR

qR
ρ1/2BaR

qR
ρ1/2

)
≤ ε

By applying Claim 130 to the BaR
qRq together with Markov’s inequality, we obtain that in

expectation

EG,qG

[∑

aR

Tr
(
BaR

qRqG
ρ1/2BaR

qRqG
ρ1/2

)]
≤ ε+ C1C

−1
2 ≤ 2ε (7.21)

where we used |G| ≤ C1 and our assumption on ε. Condition on (q′R, qR) being chosen as part
of the referee’s questions in the game, and assume that the referee only checks consistency
of Alice and Bob’s answers to the questions in R. This can only increase their success
probability, which can then be bounded as

E(G,F ),(q′Gq′F ,qGqF )

[ ∑

aR,a′,a

〈Ψ|AaRa′

q′Rq′Gq′F
⊗BaRa

qRqGqF
|Ψ〉
]
≤ EG,(q′G,qG)

[(∑

aR

‖AaR
q′Rq′G
‖2ρ
)1/2(∑

aR

‖BaR
qRqG
‖2ρ
)1/2]

≤
√
2 ε

where we used that (q′F , qF ) are chosen according to a product distribution, the first inequality
follows from Cauchy-Schwarz (recall the definition of ‖ ·‖ρ given in (7.1)), and for the second
we upper-bounded

∑
aR
‖AaR

q′Rq′G
‖2ρ by 1 and used Jensen’s inequality together with (7.21) to

bound the other term.

We note informally that one can combine this claim with Lemma 73 to obtain a form
of “direct product test” for entangled strategies. Indeed, if two entangled players Alice and
Bob win the game with probability s� ε, then by the previous claim a fraction at least s2/2
of blocks (R, qR) should be alive; moreover a non-negligible fraction11 of answers aR to those
blocks must be (1 − η)-serial. Hence one can apply Lemma 73 to those blocks (R, qR, aR)
and obtain a product form for the corresponding marginalized strategy.

The next claim shows that strategies which are product, even on a subset of the coordi-
nates, also have a low success probability.

Claim 75. Fix (R, qR, aR), and for every (i, qi), where i ∈ [`]\R and qi ∈ Q, let {Πa
qi
}a∈A

be a fixed projective measurement. Suppose that Bob’s strategy is such that, with probability
at least 1 − δ over the choice of (G, qG) and G1 ⊆ G of size |G1| = g, there is a partition
G1 = G′ ∪G′′ such that g′′ = |G′′| ≥ (1− δ′)g and Bob’s POVM satisfies that for every aG′′

BaRaG′′
qRqG

= (B̂aR
qR
)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ B̂
aR
qR

11Note that one cannot hope to obtain any structural result on the strategies which would hold for more
than a fraction s of questions or answers, as the player’s strategy could be a mixture of a perfect winning
strategy with probability s, and a random strategy with probability (1− s).
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where for simplicity we wrote G′′ = {1, . . . , g′′}.
Then the success probability of the players, conditioned on the referee asking questions

(q′, q) such that q includes qR in the positions in R, and summed over all valid answers which
include aR for Bob, is at most

(
δ + e−(1−s−δ

′)2g
)
Tr
(
BaR

qR
ρ
)

Proof. Fixing the questions in R and G, and conditioning on the players consistently an-
swering aR to (q′R, qR), their probability of being accepted is at most

∑

a′
G′′ ,aG′′

〈Ψ|AaRa′
G′′

q′Rq′G
⊗BaRaG′′

qRqG
|Ψ〉 =

∑

a′
G′′ ,aG′′

〈Ψ|AaRa′
G′′

q′Rq′G
⊗ (B̂aR

qR
)†Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ B̂
aR
qR
|Ψ〉

=
∑

a′
G′′ ,aG′′

(
〈Ψ|Id⊗ (B̂aR

qR
)†
)
· AaRa′

G′′

q′Rq′G
⊗ Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′ ·
(
Id⊗ B̂aR

qR
|Ψ〉

(7.22)

The fact that sequential strategies cannot succeed in many rounds of the repeated game
implies that

∥∥∥E(G,q′G,qG)

[ ∑

a′
G′′ ,aG′′

A
aRa′

G′′

q′Rq′G
⊗ Π

ag′′
qg′′ · · ·Πa1

q1
· · ·Πag′′

qg′′

]∥∥∥
∞
≤ exp(−(1− s− δ′)2g)

Indeed, the expression on the left-hand side can be upper-bounded by the maximum success
probability of an Alice playing an arbitrary strategy and Bob a sequential strategy described
by the measurements Πai

qi
, provided the referee only checks the answers to those questions

in G′′ ⊆ G1, where G1 is a random subset of G of size g chosen by the referee. But this
success probability is even lower than the success probability that Alice and Bob would have
if Bob played his sequential strategy on all questions in G1, but the referee was to accept as
long as at least g′′ out of Alice and Bob’s g answers were correct. Since the probability of
such a serial strategy succeeding in any round is at most the value s of the original game,
and g′′ ≥ (1 − δ′)g, by a Chernoff bound the probability that the players succeed in g′′ out
of the g rounds is at most exp(−(1 − s − δ′)2g). Hence the expression in (7.22) can be
upper-bounded, in expectation, by

e−(1−s−δ
′)2g 〈Ψ|Id⊗ (B̂aR

qR
)†B̂aR

qR
|Ψ〉 = e−(1−s−δ

′)2g Tr
(
BaR

qR
ρ
)

Finally, we must account for the small probability δ that the serial property does not
hold; for those sets G we can trivially bound the success probability, conditioned on Bob
answering aR to qR, by Tr

(
BaR

qR
ρ
)
.

We finally turn to the proof of our main theorem.
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Proof of Theorem 63. We first set parameters: let C0 be a large enough constant, ε = C−10 δ2

(recall that δ is the target value for the repeated game GFK(`)), η = C−10 δ24c2(1−s) (where c2
is the constant which appears in Claim 72), g = C0 log(1/δ)(1−s)−1, and ` ≥ C15

0 δ
−125c2(1−

s)−4. Recall also that C1 was defined as C1 =
√
`, and C2 = `−C1. This choice of parameters

satisfies the following constraints:

• η ε3 > 16C
−1/2
1 , which is used in Lemma 68.

• η ≥ C
−1/2
2 , which is used in Fact 70 and subsequent claims.

• ε ≥ C1C
−1
2 , which is used in Claim 74.

As before, in game GFK(`), we can think of the referee as first picking r∗ ≤ C1/2 pairs of
questions (R, (q′R, qR)) for the players, then picking g pairs (G1, (q

′
G1
, qG1)), then C1− r∗ − g

pairs (G2, (q
′
G2
, qG2)) and finally C2 independent pairs of confuse questions (F, (q

′
F , qF )). Let

G = G1 ∪G2 and (q′, q) = (q′Rq
′
Gq
′
F , qRqGqF ). Let {Aa′

q′}a′ be Alice’s POVM on questions q′,
and {Ba

q }a Bob’s POVM on questions q.
By Lemma 68, one of two cases hold. Either a (1 − ε) fraction of blocks (R, qR) are

ε-dead, in which case the player’s success probability is readily bounded by ε +
√
2ε by

Claim 74. Otherwise, it must be that we are in case 2 of the lemma, so that ε-alive blocks
are for the most part serial. Note that any dead blocks contribute at most

√
2ε to the success

probability, by Claim 74. A similar argument to that in Claim 74 shows that alive blocks
which are not (1 − η)-serial also contribute at most

√
2ε, given the fact that we are in the

case 2. of Lemma 68, and there can only be few such blocks by (7.5).
Suppose (R, qR, aR) is (1−η)-serial. By Lemma 73, for every (i, qi) there exists a projective

measurement {Πai
qi
}ai , depending only on qR, aR, qi, ai, such that with probability at least

(1−2η1/4c2−e−2g) over the choice of (G, qG) such that |G| = g there is a partitionG1 = G′∪G′′
such that g′′ = |G′′| ≥ (1 − 4ηc/4)g such that Eqs. (7.18) and (7.19) from Lemma 73 are
satisfied, where ρG = ρ1/2BaR

qRqG
ρ1/2. To alleviate notation we let Π = Πa1

q1
· · ·Πag′′

qg′′ , and we
first use Cauchy-Schwarz to bound

∑

a′
G′′ ,aG′′

〈Ψ|AaRa′
G′′

q′Rq′G
⊗ (B̂aRaG′′

qRqG
)†(Id− Π†Π)B̂aRaG′′

qRqG
|Ψ〉

≤ ‖AaR
q′RqG
‖ρ
∥∥∥
∑

aG′′

(B̂aRaG′′
qRqG

)†(Id− Π†Π)B̂aRaG′′
qRqG

∥∥∥
ρ

≤ ‖AaR
q′RqG
‖ρ
(∑

aG′′

TrρG
(
(B̂aRaG′′

qRqG
)†(Id− Π†Π)B̂aRaG′′

qRqG

))1/2

≤ O
(√

gη1/(16c2)
)
‖AaR

q′RqG
‖ρ α1/2

aR
(7.23)

where ρG = ρ1/2BaR
qRqG

ρ1/2, the first inequality is by Cauchy-Schwarz, the second uses (Id −
Π†Π) ≤ Id, the last is by Eq. (7.19) from Lemma 73, and αaR was defined in Eq. (7.10)
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(where here we substitute B̂aR
qR

for X̂aR
qR

). A similar argument, using this time Eq. (7.18), lets
us bound
∑

a′
G′′ ,aG′′

〈Ψ|AaRa′
G′′

q′Rq′G
⊗
(
B̂aRaG′′

qRqG
− B̂aR

qRqG

)†
Π†Π

(
B̂aRaG′′

qRqG
− B̂aR

qRqG

)
|Ψ〉 ≤ O

(
gη1/(8c2)

)
‖AaR

q′RqG
‖ρ α1/2

aR

(7.24)

and hence combining (7.23) and (7.24) we get
∑

a′
G′′ ,aG′′

∣∣〈Ψ|AaRa′
G′′

q′Rq′G
⊗
(
BaRaG′′

qRqG
− (B̂aR

qRqG
)†Π†ΠB̂aR

qRqG

)
|Ψ〉
∣∣ ≤ O

(√
gη1/(16c2)

)
‖AaR

q′RqG
‖ρ α1/2

aR

Finally, by Claim 130 we have

E(G,qG)

[ ∑

a′
G′′ ,aG′′

∣∣〈Ψ|AaRa′
G′′

q′Rq′G
⊗
(
(B̂aR

qR
)†Π†ΠB̂aR

qR
− (B̂aR

qRqG
)†Π†ΠB̂aR

qRqG

)
|Ψ〉
∣∣
]

≤ 4‖AaR
q′RqG
‖ρ E(G,qG)

[∣∣∥∥BaR
qR

∥∥2
ρ
−
∥∥BaR

qRqG

∥∥2
ρ

]1/2

≤ 4η‖AaR
q′RqG
‖ρ α1/2

aR

where for the first inequality we used
∑

a′′G
Π†Π = Id, and for the second that η ≥ C−12 .

Hence the statistical distribution of outcomes produced by Alice and Bob (conditioned on
answering aR to qR) is close to that which would be obtained if Bob was to use the operators
(BaR

qR
)†Π†ΠBaR

qR
as his POVM on questions qG. But the success probability of the latter,

when summed over all valid answers to the pair of questions (q′G′′ , qG′′), can be bounded by

Claim 75. Hence summing over all aR (and using
∑

aR
‖AaR

q′RqG
‖ρ α1/2

aR ≤ 3) and taking the

expectation over qR, the average winning probability of the players for all (1−η)-serial blocks
(R, qR, aR) is at most

O
(√

g η1/(16c2) + 2ηc/4 + e−2g + e−(1−s−4η
1/4c2 )2g

)

where we also accounted for those (rare) choices of (G, q′G, qG) for which the previous bounds
do not hold. Given our choice of parameters ε, η, g and `, it can be checked that this
expression is � δ. Combining this bound with the one resulting from dead blocks shows
that the winning probability of the players is at most δ, which proves the theorem as long
as ` = poly(δ−1, (1− s)−1) is large enough.

We conclude this section by briefly explaining how the proof of Theorem 63 can be
adapted to prove Theorem 65. The main reason the proof carries over is that, in the proof
of Theorem 63, we only used the projection property for a subset of the game questions
(to bound the success over dead blocks), while for (1 − η)-serial blocks the game questions
were only used in conjunction with the fact that the value of the game was at most s. Here,
consistency rounds will play the role of the game questions previously in R, and game rounds
will play the role of those game questions previously in G (or rather its small subset G1).
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Proof of Theorem 65. In game GDR(`), we think of the referee as first picking r∗ ≤ C1/2
pairs of consistency questions (R, (q′R, qR)) for the players, then picking C1/2− r∗ additional
consistency pairs (R′, (q′R′ , qR′)), C1/2 pairs of game questions (G, (q′G, qG)) and finally C2

independent pairs of confuse questions (F, (q′F , qF )). Let (q
′, q) = (q′Rq

′
R′q′Gq

′
F , qRqR′qGqF ).

Assume a choice of parameters made that is similar to the one in the proof of Theorem 63.
As before, we can apply Lemma 68 to Bob’s strategy Ba

q , distinguishing between two cases.
In the first case, a fraction (1−ε) of blocks (R, qR) are dead, for |R| = r∗. Then Claim 74

again applies, as the only property we used in its proof was that any answer of Alice induced
a fixed answer for Bob, which is the case for consistency questions.

In the second case, a fraction ε of blocks (R, qR) are alive. Those blocks which are dead
can be dealt with as in the previous case, and we can focus on blocks (R, qR, aR) which are
(1− η)-serial. Here we can reason exactly as in Theorem 63, using Claim 75 with G1 chosen
as a subset of the questions in G, and the remaining consistency questions playing the role
of the remaining game questions before.

7.3 Discussion and open questions

The work presented in this chapter shows for the first time that the entangled value of games
can be decreased through parallel repetition. Even though we framed and proved our results
in the context of 2-player games, it should not be hard to extend them in some cases to
multiple players, depending on the kind of projection or consistency constraints that one
can assume on the game. On the other hand, extending the result to either many-round
games, or games with quantum messages, is an interesting open question.

One implication of our result is the following. The celebrated PCP theorem says that
given a game, it is NP-hard to tell if its value is 1 or less than, say, 0.99. Combined with
Raz’s parallel repetition result, one obtains that it is also hard to tell if the value is 1 or less
than, say, 0.01. The latter statement led to an enormous body of work on strong hardness
of approximation results [52]. It is currently a major open question whether an analogue of
the PCP theorem holds for the entangled value. If such a result was proved, our results
would allow to amplify the hardness to 1 vs. 0.01, as in the classical case, possibly leading
to further surprising implications. (While we show such a hardness result in Chapter 5, the
protocol used in that result requires a large (constant) number of provers, together with a
polynomial number of rounds of interaction: it is an open question whether the results in
this chapter can be applied to improve the gap of that protocol, while keeping the number
of rounds of interaction as small as possible.)

The main open question left by the results presented in this chapter is whether it is
possible to show a better rate of decay, in particular an exponential rate as Raz obtained
from direct parallel repetition, or [56] first obtained in the setting of direct product testers.
Another open question is whether our statement can be extended to hold for simple par-
allel repetition for arbitrary entangled games (i.e. without adding dummy or consistency
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questions).
We believe that our main conceptual contributions are the extension of the notion of

“approximately serial” to the setting of measurements, and our subsequent orthogonalization
lemma. We hope that these techniques might prove useful elsewhere. Lastly, product testers
are very useful in the area of property testing, and it remains to be seen if our result can be
applied similarly.
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Chapter 8

Trevisan’s extractor in the presence of
quantum side information

In this chapter we show that a family of extractor constructions originally introduced by
Trevisan [119] in the classical setting is secure against quantum adversaries. This construc-
tion, and its proof of security, will be crucial to the results in Chapter 9. We first introduce
the task of randomness extraction, emphasizing the importance of taking into account any
“side information”, classical or quantum, that an adversary to the extractor may have about
its random source. In §8.2 we give formal definitions of extractors and discuss briefly how
much randomness can be extracted from a given source. Section 8.3 contains the description
of Trevisan’s extractor construction paradigm and a proof that it is still sound in the presence
of quantum side information, in the cases of both uniform and weakly random seeds. Then in
§8.4 we plug in various one-bit extractors and pseudo-random seed constructions, resulting
in, amongst others, a construction which is nearly optimal in the amount of randomness
extracted in §8.4.1 (which is identical to the best known bound in the classical case [98] for
Trevisan’s extractor), and a construction which is still sound if there is a small linear entropy
loss in the seed in §8.4.4. Finally, in §8.5, we mention a few classical results which modify
and improve Trevisan’s extractor, but for which the correctness in the presence of quantum
side information does not seem to follow immediately from our work.

8.1 Introduction

Randomness extraction is the art of generating (almost) uniform randomness from any
weakly random source X. More precisely, a randomness extractor (or, simply extractor)
is a function Ext that takes as input X together with a uniformly distributed (and usually
short) string Y , called the seed, and outputs a string Z. One then requires Z to be almost
uniformly distributed whenever the min-entropy of X is larger than some threshold k, i.e.,

Hmin(X) ≥ k =⇒ Z := Ext(X, Y ) statistically close to uniform. (8.1)
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The min-entropy of a random variable X is directly related to the probability of cor-
rectly guessing the value of X using an optimal strategy: 2−Hmin(X) = maxx PX(x). Hence
Criterion (8.1) can be interpreted operationally: if the maximum probability of successfully
guessing the input of the extractor, X, is sufficiently low then its output is statistically close
to uniform.

The randomness of a value X always depends on the information one has about it, in
the following called side information. In cryptography, for instance, a key is supposed to be
uniformly random from the point of view of an adversary, who may have access to messages
exchanged by the honest parties, which we would therefore consider as side information.
Here, extractors are typically used for privacy amplification [19, 20] , i.e., to turn a partially
secure raw key (about which the adversary may have non-trivial information) into a perfectly
secure key. We thus demand that the extractor output be uniform with respect to the side
information held by the adversary. Another example is randomness recycling in a computa-
tion, which can be done using extractors [58]. The aim is that the recycled randomness is
independent of the outputs of previous computations, which are therefore considered as side
information.

In the following, we make side information explicit and denote it by E. The notions
of randomness we are going to use, such as the guessing probability, min-entropy or the
uniformity of a random variable, must then be defined with respect to E. We can naturally
reformulate Criterion (8.1) as

Hmin(X|E) ≥ k =⇒ Z := Ext(X, Y ) statistically close to uniform (8.2)

conditioned on E,

where Hmin(X|E) is the conditional min-entropy, formally defined in §3.3. This conditioning
naturally extends the operational interpretation of the min-entropy to scenarios with side
information, i.e., 2−Hmin(X|E) is the maximum probability of correctly guessing X, given
access to side information E [75].

Interestingly, the relationship between the two Criteria (8.1) and (8.2) depends on the
physical nature of the side information E, i.e., whether E is represented by the state of a
classical or a quantum system. In the case of purely classical side information, E may be
modeled as a random variable and it is known that the two criteria are essentially equivalent
(see Lemma 78 for a precise statement). But in the general case where E is a quantum
system, Criterion (8.2) is strictly stronger than (8.1): it was shown in [46] that there exist
extractors that fulfill (8.1) but for which (8.2) fails (see also [74] for a discussion).

Since our world is inherently non-classical, it is of particular importance that (8.2) rather
than the weaker Criterion (8.1) be taken as the relevant criterion for the definition of extrac-
tors. In cryptography, for instance, there is generally nothing that prevents an adversary
from holding quantum side information. In fact, even if a cryptographic scheme is purely
classical, an adversary may acquire information using a non-classical attack strategy. Hence,
when using extractors for privacy amplification, Criterion (8.1) does not generally imply se-
curity. A similar situation may arise in the context of randomness recycling. If we run a
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(simulation of) a quantum system E using randomness X, approximately Hmin(X|E) bits
of X can be reused. If we now, in an attempt to recycle the randomness, apply a function
Ext which fulfills (8.1) but not (8.2), the output Z may still be correlated to the system E.

It is known that the conditional min-entropy accurately characterizes the maximum
amount of uniform randomness that can be extracted from X while being independent from
E. (More precisely, the smooth min-entropy, an entropy measure derived from Hmin(X|E) by
maximizing the latter over all states in an ε-neighborhood, is an upper bound on the amount
of uniform randomness that can be extracted; see §3.3 in Chapter 3 and [100] for details). In
other words, the characterization of extractors in terms of Hmin(X|E) is essentially optimal,
and one may thus argue that Criterion (8.2) is indeed the correct definition for randomness
extraction (see also [100, 74, 76]). In this chapter, we follow this line of argument and call
an extractor quantum-proof if it satisfies Criterion (8.2) (see §8.2.1).

We note that there have been alternatives proposals in the literature for defining extrac-
tors in the context of quantum side information, which do however not satisfy the above
optimality condition. One prominent example is the bounded storage model (see §8.4.3),
where the (quantum) side information E is characterized by the number of qubits, H0(E),
required to store it. In this case, the entropy Hmin(X|E) of a source X conditioned on E
is generally lower-bounded by Hmin(X) −H0(E). However, this characterization of side in-
formation is strictly weaker than that using Hmin(X|E): there are sources X and nontrivial
side information E such that Hmin(X) − H0(E) � Hmin(X|E).1 In particular, even if an
extractor can provably extract Hmin(X)−H0(E) bits of uniform randomness from a source
X, we do not know whether the same extractor can attain the optimal Hmin(X|E) bits. Note
also that the same considerations apply to the purely classical case. In fact, no recent work
defines classical extractors for randomness sources with side information stored in bounded
classical memories.2

Finally we remark that the increased generality attained by the notion of quantum-proof
extractors used here is crucial for applications. For example in quantum key distribution,
where extractors are used for privacy amplification [100], it is generally impossible to bound
the adversary’s memory size.

1This can easily be seen by considering the following example. Let X be uniformly distributed on {0, 1}n
and E be X with each bit flipped with constant probability ε < 1/2. Then Hmin(X|E) = Θ(n), but
Hmin(X)−H0(E) = 0.

2Restricting the class of randomness sources further than by bounding their min-entropy can have advan-
tages, e.g., if we consider only bit-fixing sources, or sources generated by a random walk on a Markov chain,
then the extractor can be deterministic. (See [104] for a brief overview of restricted families of sources studied
in the literature.) There is however no known advantage (e.g., in terms of seed length) in considering only
input sources with side information stored in memory of bounded size, whether it is classical or quantum
memory.
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8.1.1 Related results

In the standard literature on randomness extraction, constructions of extractors are usually
shown to fulfill Criterion (8.1), for certain values of the threshold k (see [31] as well as [104] for
an overview). However, only a few constructions have been shown to fulfill Criterion (8.2)
with arbitrary quantum side information E. Among them is two-universal hashing [100,
117], constructions based on the sample-and-hash approach [74], as well as all extractors
with one-bit output [76].

Recently, Ta-Shma [112] studied Trevisan’s construction of extractors [119] in the bounded
quantum storage model. The result was a breakthrough because it, for the first time, im-
plied the existence of quantum-proof extractors requiring only short seeds (logarithmic in
the input length). Unfortunately, his proof technique requires the output length to be much
smaller than the min-entropy of the original data: it scales as (Hmin(X)/H0(E))

1/c, where
c > 1 is a constant. Furthermore, Ta-Shma’s result is proved in the bounded quantum
storage model, which, as discussed previously, only allows the extractor to output at most
Hmin(X)−H0(E) bits. This expression can in general be arbitrarily smaller than Hmin(X|E),
and in some cases may even become 0 (or negative) for n-bit sources for which it is possible
to extract Ω(n) bits of randomness.1

Subsequent to this work, Ben-Aroya and Ta-Shma [16] showed how two versions of Tre-
visan’s extractor, shown quantum-proof in this paper, can be combined to extract a con-
stant fraction of the min-entropy of an n-bit source with a seed of length O(log n), when
Hmin(X|E) > n/2. This is better than the straightforward application of Trevisan’s extrac-
tor analyzed here, which requires O(log2 n) bits of seed for the same output size (but works
for any Hmin(X|E)).

8.1.2 Contributions

We show that the performance of Trevisan’s extractor does not suffer in the presence of quan-
tum side information. This improves on the best previously known result [112] in two major
ways. First, we prove our results in the most general model, where the min-entropy of the
source is measured relative to quantum side information (Criterion (8.2)). Second, we show
that the output length of the extractor can be close to the optimal conditional min-entropy
Hmin(). This provides the first proof of soundness for an extractor with poly-logarithmic
seed meeting Criterion (8.2) in the presence of arbitrary quantum side information.

More generally, we show that a whole class of extractors is quantum-proof. It has been
observed, by, e.g., Lu and Vadhan [79, 120], that Trevisan’s extractor [119] (and variations
of it, such as [98]) is a concatenation of the outputs of a one-bit extractor with different
pseudo-random seeds. Since the proof of the extractor property is independent of the type of
the underlying one-bit extractor (and to some extent the construction of the pseudo-random
seeds), our result is valid for a generic scheme (defined in §8.3.1, Definition 83). We find that
the performance of this generic scheme in the context of quantum side information is roughly
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Min-entropy Output length Seed length Note

Corollary 89 any k m = k − 4 log 1/ε d = O(log3 n) optimized output length

Corollary 90 k = nα m = nα−γ d = O(log n) optimized seed length

Corollary 91 k = αn m = (α− γ)n d = O(log2 n) local extractor
Corollary 92 k = nα m = nα−γ d = O(log n) seed with min-entropy βd

Table 8.1: Plugging various weak designs and 1-bit extractors in Trevisan’s construction, we
obtain these concrete extractors. Here n is the input length, ε = poly1/n the error, α and γ
are arbitrary constants such that 0 < γ < α ≤ 1, and 1

2
< β < 1 is a specific constant.

equivalent to the (known) case of purely classical side information (§8.3.2, Theorem 86).
In practical situations where quantum-proof extractors are used, e.g., privacy amplifi-

cation in quantum key distribution [100], the players do not necessarily have access to a
uniform source of randomness. We therefore analyze separately the situation where the seed
is only weakly random, and show that Trevisan’s extractor is quantum-proof in that setting
as well (§8.3.2, Theorem 87).

By “plugging” various one-bit extractors and pseudo-random seeds into the generic
scheme, we obtain different final constructions, optimized for different needs, e.g., maxi-
mizing the output length, minimizing the seed, or using a non-uniform seed. In Table 8.1
we give a brief overview of the final constructions proposed.

8.1.3 Proof technique

The proof proceeds by contradiction. We first assume that a player holding the side infor-
mation E can distinguish the output from uniform with probability greater than ε. We then
show that such a player can reconstruct the input X with high probability, which means
that X must have low min-entropy (Hmin(X|E) < k). Taking the contrapositive proves that
the extractor is sound.

Trevisan [119] originally proved the correctness of his extractor this way. His construc-
tion starts by encoding the source X using a list-decodable code C [111]. The output of
the extractor then consists of certain bits of C(X), which are specified by the seed and a
construction called a (weak) design [86, 98]. (See §8.3.1 for a precise description of Trevisan’s
extractor.) His proof can then be broken down in two steps. He first shows that a player
who can distinguish the output from uniform can guess a random bit of C(X). In the second
step, he shows that such a player can reconstruct X.

Proving the soundness of Trevisan’s extractor in the quantum min-entropy framework
requires some important changes. In order to better explain these new elements, it will be
useful to first give a brief overview of the main steps that go into Ta-Shma’s proof [112].
For the sake of contradiction, assume that there is a test T , which performs a measurement
on the side information E in order to distinguish the output from uniform with advantage
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ε. Using a standard hybrid argument, along with properties of the (weak) design, one can
then construct a new test T ′ (using a little extra classical advice about X) which predicts a
random bit of C(X) with probability 1

2
+ ε

m
, where m is the number of output bits. Further,

T ′ makes exactly one query to T .
The proof in [112] proceeds by showing how from such a test, one can construct another

test T ′′ which predicts any bit of X with probability 0.99 and queries T ′ at most q = (m/ε)c

times (c = 15 for the code in [112]). This gives a random access code (RAC) [6] for X;
however, since it requires q queries to the side information E, the no-cloning theorem forces
us to see it as querying a single system of length qH0(E) (recall that Ta-Shma’s result was
proved in the bounded storage model, where one bounds the information provided by E by
its number of qubits H0(E)). Finally, using a new bound on the dimension of RACs [112],
one finds that Hmin(X) & mcH0(E), hence m . (Hmin(X)/H0(E))

1/c.
Our proof improves upon Ta-Shma’s through two major changes. First, we model the

side information E explicitly, instead of viewing it as an oracle which one queries. Indeed,
the measurement performed by the test T ′ to predict the bits of C(X) will be different from
the measurement performed by T ′′ to reconstruct X, and this cannot be captured by the
“oracle-side-information” model of Ta-Shma. We also generalize previous versions of this
step by considering non-uniform seeds. We thus show (in §8.3.2, Proposition 1) that if the
output of the extractor can be distinguished from uniform with probability 1

2
+ ε by a player

holding the side information E, then the bits of C(X) can be guessed with probability 1
2
+ ε

m

by a player holding E and some extra small classical information G.
Second, we depart from the reconstruction paradigm at the heart of the second half

of the proof of both Trevisan’s and Ta-Shma’s results. Instead of defining explicitly the
measurement and computation necessary to reconstruct X, we use the fact that for any
list-decodable code C : {0, 1}n → {0, 1}n̄, the function

C ′ : {0, 1}n × [n̄]→ {0, 1}
(x, i) 7→ C(x)i

is a one-bit extractor (see §A.5.5 for more details). The second part of the (classical) re-
construction paradigm can be understood as a proof that these codes are one-bit extrac-
tors according to Criterion (8.1). It was however proved by König and Terhal [76], that
in the one-bit setting the more general Criterion (8.2) is essentially equivalent to the usual
Criterion (8.1). This result lets us conclude the proof directly, without having needed to
explicitly show that the source X could be reconstructed from the extractor’s output and
the side information.

This proof structure results in a very modular extractor construction paradigm, which
allows arbitrary one-bit extractors and pseudo-random seeds to be “plugged in,” producing
many different final constructions, some of which are given in Table 8.1 and detailed in §8.4.
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8.2 Extractors

8.2.1 Extractors, side information, and privacy amplification

An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a function which takes a weak source of
randomness X and a uniformly random, short seed Y , and produces some output Ext(X, Y ),
which is almost uniform. The extractor is said to be strong, if the output is approximately
independent from the seed.

Definition 76 (strong extractor [87]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
a (k, ε)-strong extractor with uniform seed, if for all distributions X with min-entropy
Hmin(X) ≥ k and a uniform seed Y , we have3

1

2
‖ρExt(X,Y )Y − ρUm ⊗ ρY ‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.

Using the connection between min-entropy and guessing probability (Eq. (3.1)), a (k, ε)-
strong extractor can be seen as a function which guarantees that if the guessing probability
of X is not too high (pguess(X) ≤ 2−k), then it produces a random variable which is approx-
imately uniform and independent from the seed Y .

As discussed in the introduction, we consider here a more general situation involving side
information, denoted by E, which may be represented by the state of a quantum system. We
then want to find some function Ext such that, if the probability of guessing X given E is not
too high, Ext can produce a random variable Ext(X, Y ) which is approximately uniform and
independent from the seed Y and the side information E. Equivalently, one may think of a
privacy amplification scenario [19, 20], where E is the information available to an adversary
and where the goal is to turn weakly secret data X into a secret key Ext(X, Y ), where the
seed Y is assumed to be public. (In typical key agreement protocols, the seed is chosen by
the legitimate parties and exchanged over public channels.)

The following definition covers the general situation where the side information E may
be represented quantum-mechanically. The case of purely classical side information is then
formulated as a restriction on the nature of E.

Definition 77 (quantum-proof strong extractor [74]). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a quantum-proof (or simply quantum) (k, ε)-strong extractor with uniform seed,
if for all states ρXE classical on X with Hmin(X|E)ρ ≥ k, and for a uniform seed Y , we have

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε,

3A more standard classical notation would be 1
2 ‖Ext(X,Y ) ◦ Y − Um ◦ Y ‖ ≤ ε, where the distance metric

is the variational distance. However, since classical random variables can be represented by quantum states
diagonal in the computational basis, and the trace distance reduces to the variational distance, we use the
quantum notation for compatibility with the rest of this work.
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where ρUm is the fully mixed state on a system of dimension 2m.
The function Ext is a classical-proof (k, ε)-strong extractor with uniform seed if the same

holds with the system E restricted to classical states.

It turns out that if the system E is restricted to classical information about X, then this
definition is essentially equivalent to the conventional Definition 76.

Lemma 78 ([76, Proposition 1]). Any (k, ε)-strong extractor is a classical-proof (k+log 1/ε, 2ε)-
strong extractor.

However, if the system E is quantum, this does not necessarily hold. Gavinsky et al. [46]
give an example of a (k, ε)-strong extractor, which breaks down in the presence of quantum
side information, even when Hmin(X|E) is significantly larger than k.

Remark 79. In this section we defined extractors with a uniform seed, as this is the most
common way of defining them. Instead one could use a seed which is only weakly random,
but require it to have a min-entropy larger than a given threshold, Hmin(Y ) ≥ s. The seed
must still be independent from the input and the side information. Since having access
to a uniform seed is often an unrealistic assumption, it is much more useful for practical
applications to define and prove the soundness of extractors with a weakly random seed. We
redefine extractors formally this way in §A.5.1, and show in §8.3.2 that Trevisan’s extractor
is still quantum-proof in this setting.

All the considerations of this section, in particular Lemma 78 and the gap between clas-
sical and quantum side-information, also apply if the seed is only weakly random. In the
following, when we simply talk about a strong extractor, without specifying the nature of the
seed, we are referring to both uniform seeded and weakly random seeded extractors.

8.2.2 Extracting more randomness

Radhakrishnan and Ta-Shma [93] have shown that a (k, ε)-strong extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m will necessarily have

m ≤ k − 2 log 1/ε+O(1). (8.3)

However, in some situations we can extract much more randomness than the min-entropy.
For example, let X be distributed on {0, 1}n with Pr[X = x0] = 1/n and for all x 6= x0,
Pr[X = x] = n−1

n(2n−1) . We have Hmin(X) = log n, so using a (log n, 1/n)-strong extractor we

could obtain at most log n bits of randomness. But X is already 1/n-close to uniform, since
1
2
‖ρX − ρUn‖tr ≤ 1

n
. So we already have n bits of nearly uniform randomness, exponentially

more than by using a (log n, 1/n)-strong extractor.
In the case of quantum extractors, similar examples can be found, e.g., in [116, Remark

22]. However, an upper bound on the extractable randomness can be obtained by replacing
the min-entropy by the smooth min-entropy (Definition 10). More precisely, the total number
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of ε-uniform bits that can be extracted in the presence of side information E can never exceed
Hε

min(X|E) [100, Section 5.6].
Conversely, the next lemma implies that an extractor which is known to extract m bits

from any source such that Hmin(X|E) ≥ k can in fact extract the same number of bits, albeit
with a slightly larger error, from sources which only satisfy Hε′

min(X|E) ≥ k, a much weaker
requirement in some cases.

Lemma 80. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a quantum-proof (k, ε)-strong extractor,
then for any state ρXE and any ε′ > 0 with Hε′

min(X|E)ρ ≥ k,

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε+ 2ε′.

Proof. Let ρ̃XE be the state ε′-close to ρXE for which Hmin(X|E)ρ̃ reaches its maximum.
Then

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr

≤ 1

2
‖ρExt(X,Y )Y E − ρ̃Ext(X,Y )Y E‖tr +

1

2
‖ρ̃Ext(X,Y )Y E − ρUm ⊗ ρY ⊗ ρ̃E‖tr

+
1

2
‖ρUm ⊗ ρY ⊗ ρ̃E − ρUm ⊗ ρY ⊗ ρE‖tr

≤ 1

2
‖ρ̃Ext(X,Y )Y E − ρUm ⊗ ρY ⊗ ρ̃E‖tr + ‖ρXE − ρ̃XE‖tr

≤ ε+ 2ε′.

In the second inequality above we used (twice) the fact that a trace-preserving quantum
operation can only decrease the trace distance. And in the last line we used the fact that
the purified distance — used to measure the distance between two states (see Definition 10)
— is larger than the trace distance.

Remark 81. Since a (k, ε)-strong extractor can be applied to any source with smooth min-
entropy Hε′

min(X|E) ≥ k, we can measure the entropy loss of the extractor — namely how
much entropy was not extracted — with

∆ := k −m,
where m is the size of the output. From Eq. (8.3) we have that an extractor has optimal
entropy loss if ∆ = 2 log 1/ε+O(1).

8.3 Constructing m-bit extractors from one-bit extrac-

tors and weak designs

In this section we show how to construct a quantum m-bit extractor from any (classical)
1-bit strong extractor.
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This can be seen as a derandomization of a result by König and Terhal [76], who also
extract m bits in the presence of quantum side information by concatenating m times a
1-bit extractor. They however choose a different seed for each bit, thus having a seed of
total length d = mt, where t is the length of the seed of the 1-bit extractor. In the case
of classical side information, this derandomization was done by Trevisan [119], who shows
how to concatenate m times a 1-bit extractor using only d = polyt, logm bits of seed.4

We combine the weak designs from Raz et al. [98], which they use to improve Trevisan’s
extractor, and a previous observation by two of the authors [33], that since 1-bit extractors
were shown to be quantum-proof in [76], Trevisan’s extractor is also quantum-proof.

This results in a generic scheme, which can be based on any weak design and 1-bit strong
extractor. We define it in §8.3.1, then prove bounds on the min-entropy and error in §8.3.2.

8.3.1 Description of Trevisan’s construction

In order to shorten the seed while still outputtingm bits, in Trevisan’s extractor construction
paradigm the seed is treated as a string of length d < mt, which is then split inm overlapping
blocks of t bits, each of which is used as a (different) seed for the 1-bit extractor. Let
y ∈ {0, 1}d be the total seed. To specify the seeds for each application of the 1-bit extractor
we need m sets S1, · · · , Sm ⊂ [d] of size |Si| = t for all i. The seeds for the different runs of
the 1-bit extractor are then given by ySi

, namely the bits of y at the positions specified by
the elements of Si.

The seeds for the different outputs of the 1-bit extractor must however be nearly in-
dependent. To achieve this, Nisan and Wigderson [86] proposed to minimize the overlap
|Si ∩ Sj| between the sets, and Trevisan used this idea in his original work [119]. Raz et
al. [98] improved this, showing that it is sufficient for these sets to meet the conditions of a
weak design.5

Definition 82 (weak design [98, Definition 5]). A family of sets S1, . . . , Sm ⊂ [d] is a weak
(t, r)-design if

1. For all i, |Si| = t.

2. For all i,
∑i−1

j=1 2
|Sj∩Si| ≤ rm.

We can now describe Trevisan’s generic extractor construction.

4Trevisan’s original paper does not explicitly define his extractor as a pseudo-random concatenation of a
1-bit extractor. It has however been noted in, e.g., [79, 120], that this is basically what Trevisan’s extractor
does.

5The second condition of the weak design was originally defined as
∑i−1

j=1 2
|Sj∩Si| ≤ r(m− 1). We prefer

to use the version of [51], since it simplifies the notation without changing the design constructions.
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Definition 83 (Trevisan’s extractor [119]). For a one-bit extractor C : {0, 1}n × {0, 1}t →
{0, 1}, which uses a (not necessarily uniform) seed of length t, and for a weak (t, r)-design
S1, . . . , Sm ⊂ [d], we define the m-bit extractor ExtC : {0, 1}n × {0, 1}d → {0, 1}m as

ExtC(x, y) := C(x, yS1) · · ·C(x, ySm).

Remark 84. The length of the seed of the extractor ExtC is d, one of the parameters of
the weak design, which in turn depends on t, the size of the seed of the 1-bit extractor C.
In §8.4 we will give concrete instantiations of weak designs and 1-bit extractors, achieving
various entropy losses and seed sizes. The size of the seed will always be d = polylog n, if
the error is ε = poly1/n. For example, to achieve a near optimal entropy loss (§8.4.1), we
need d = O(t2 logm) and t = O(log n), hence d = O(log3 n).

8.3.2 Analysis

We now prove that the extractor defined in the previous section is a quantum-proof strong
extractor. The first step follows the structure of the classical proof [119, 98]. We show that
a player holding the side information and who can distinguish the output of the extractor
ExtC from uniform can — given a little extra information — distinguish the output of the
underlying 1-bit extractor C from uniform. This is summed up in the following proposition:

Proposition 1. Let X be a classical random variable correlated to some quantum system
E, let Y be a (not necessarily uniform) seed, independent from XE, and let

‖ρExtC(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr > ε, (8.4)

where ExtC is the extractor from Definition 83. Then there exists a fixed partition of the
seed Y in two substrings V and W , and a classical random variable G, such that G has
size H0(G) ≤ rm, where r is one of the parameters of the weak design (Definition 82),
V ↔ W ↔ G form a Markov chain,6 and

‖ρC(X,V )VWGE − ρU1 ⊗ ρVWGE‖tr >
ε

m
. (8.5)

We provide a proof of Proposition 1 in §A.5.3, where it is restated as Proposition 3.7

For readers familiar with Trevisan’s scheme [119, 98], we briefly sketch the correspondence
between the variables of Proposition 1 and quantities analyzed in Trevisan’s construction.

6Three random variables are said to form a Markov chain X ↔ Y ↔ Z if for all x, y, z we have
PZ|Y X(z|y, x) = PZ|Y (z|y), or equivalently PZX|Y (z, x|y) = PZ|Y (z|y)PX|Y (x|y).

7Note that Ta-Shma [112] has already implicitly proved that this proposition must hold in the presence
of quantum side information, by arguing that the side information can be viewed as an oracle. The present
statement is a strict generalization of that reasoning, which allows conditional min-entropy as well as non-
uniform seeds to be used.
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Trevisan’s proof proceeds by assuming by contradiction that there exists a player, holding
E, who can distinguish between the output of the extractor and the uniform distribution
(Eq. (8.4)). Part of the seed is then fixed (this corresponds toW in the above statement) and
some classical advice is taken (this corresponds to G in the above statement) to construct
another player who can distinguish a specific bit of the output from uniform. But since a
specific bit of Trevisan’s extractor is just the underlying 1-bit extractor applied to a substring
of the seed (V in the above statement), this new player (who holds WGE) can distinguish
the output of the 1-bit extractor from uniform (Eq. (8.5)).

In the classical case Proposition 1 would be sufficient to prove the correctness of Tre-
visan’s scheme, since it shows that if a player can distinguish ExtC from uniform, then he
can distinguish C from uniform given a few extra advice bits, which contradicts the assump-
tion that C is an extractor.8 But since our assumption is that the underlying 1-bit extractor
is only classical-proof, we still need to show that the quantum player who can distinguish
C(X, V ) from uniform is not more powerful than a classical player, and so if he can distin-
guish the output of C form uniform, so can a classical player. This has already been done
by König and Terhal [76], who show that 1-bit extractors are quantum-proof.

Theorem 85 ([76, Theorem III.1]). Let C : {0, 1}n × {0, 1}t → {0, 1} be a (k, ε)-strong
extractor. Then C is a quantum-proof (k + log 1/ε, 3

√
ε)-strong extractor.9

We now need to put Proposition 1 and Theorem 85 together to prove that Trevisan’s
extractor is quantum-proof. The cases of uniform and weak random seeds differ somewhat
in the details. We therefore give two separate proofs for these two cases in §8.3.2 and §8.3.2.

Uniform seed

We show that Trevisan’s extractor is a quantum-proof strong extractor with uniform seed
with the following parameters.

Theorem 86. Let C : {0, 1}n × {0, 1}t → {0, 1} be a (k, ε)-strong extractor with uniform
seed and S1, . . . , Sm ⊂ [d] a weak (t, r)-design. Then the extractor given in Definition 83,
ExtC : {0, 1}n × {0, 1}d → {0, 1}m, is a quantum-proof (k + rm + log 1/ε, 3m

√
ε)-strong

extractor.

Proof. In Proposition 1, if the seed Y is uniform, then V is independent from W and hence
by the Markov chain property from G as well, so Eq. (8.5) can be rewritten as

‖ρC(X,V )VWGE − ρU1 ⊗ ρV ⊗ ρWGE‖tr >
ε

m
,

which corresponds to the exact criterion of the definition of a quantum-proof extractor.

8In the classical case, [119, 98] still show that a player who can distinguish C(X,V ) from uniform can
reconstruct X with high probability. But this is nothing else than proving that C is an extractor.

9This result holds whether the seed is uniform or not.
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Let C be a (k, ε)-strong extractor with uniform seed, and assume that a player holds a
system E such that

‖ρExtC(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr > 3m
√
ε.

Then by Proposition 1 and because Y is uniform, we know that there exists a classical system
G with H0(G) ≤ rm, and a partition of Y in V and W , such that,

‖ρC(X,V )VWGE − ρU1 ⊗ ρV ⊗ ρWGE‖tr > 3
√
ε. (8.6)

Since C is a (k, ε)-strong extractor, we know from Theorem 85 that we must have
Hmin(X|WGE) < k + log 1/ε for Eq. (8.6) to hold. Hence by Lemma 139, Hmin(X|E) =
Hmin(X|WE) ≤ Hmin(X|WGE) +H0(G) < k + rm+ log 1/ε.

Weak random seed

We show that Trevisan’s extractor is a quantum-proof strong extractor with weak random
seed, with the following parameters.

Theorem 87. Let C : {0, 1}n × {0, 1}t → {0, 1} be a (k, ε)-strong extractor with an s-bit
seed — i.e., the seed needs at least s bits of min-entropy — and S1, . . . , Sm ⊂ [d] a weak
(t, r)-design. Then the extractor given in Definition 83, ExtC : {0, 1}n × {0, 1}d → {0, 1}m,
is a quantum-proof (k+ rm+ log 1/ε, 6m

√
ε)-strong extractor for any seed with min-entropy

d− (t− s− log 1
3
√
ε
).

The main difference between this proof and that of Theorem 86, is that since the seed Y
is not uniform in Proposition 1, the substring W of the seed not used by the 1-bit extractor
C is correlated to the seed V of C, and acts as classical side information about the seed.
To handle this, we show in Lemma 135 that with probability 1− ε over the values of W , V
still contains a lot of min-entropy, roughly s′ − d′, where d′ is the length of W and s′ the
min-entropy of Y . And hence a player holding WGE can distinguish the output of C from
uniform, even though the seed has enough min-entropy.

Proof. Let C be a (k, ε)-strong extractor with s bits of min-entropy in the seed, and
assume that a player holds a system E such that

‖ρExtC(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr > 6m
√
ε.

Then by Proposition 1 we have

‖ρC(X,V )VWGE − ρU1 ⊗ ρVWGE‖tr > 6
√
ε. (8.7)

Since this player has classical side-information W about the seed V , we need an extra
step to handle it. Lemma 135 tells us that from Eq. (8.7) and because by Theorem 85, C is a
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quantum (k+log 1/ε, 3
√
ε)-strong extractor, we must have either for some w,Hmin(X|GEW =

w) < k + log 1/ε and hence

Hmin(X|E) = Hmin(X|EW = w)

≤ Hmin(X|GEW = w) +H0(G) < k + rm+ log 1/ε,

or Hmin(V |W ) < s+ log 1
3
√
ε
, from which we obtain using Lemma 137,

Hmin(Y ) ≤ Hmin(V |W ) +H0(W ) < s+ log
1

3
√
ε
+ d− t.

8.4 Concrete constructions

Depending on what goal has been set — e.g., maximize the output, minimize the seed
length — different 1-bit extractors and weak designs will be needed. In this section we give
a few examples of what can be done, by taking various classical extractors and designs, and
plugging them into Theorem 86 (or Theorem 87), to obtain bounds on the seed size and
entropy loss in the presence of quantum side information.

The results are usually given using the O-notation. This is always meant with respect to
all the free variables, e.g., O(1) is a constant independent of the input length n, the output
length m, and the error ε. Likewise, o(1) goes to 0 for both n and m large.

We first consider the problem of extracting all the min-entropy of the source in §8.4.1.
This was achieved in the classical case by Raz et al. [98], so we use the same 1-bit extractor
and weak design as them.

In §8.4.2 we give a scheme which uses a seed of length d = O(log n), but can only extract
part of the entropy. This is also based on Raz et al. [98] in the classical case.

In §8.4.3 we combine an extractor and design which are locally computable (from Vad-
han [120] and Hartman and Raz [51] respectively), to produce a quantum m-bit extractor,
such that each bit of the output depends on only O(log(m/ε)) bits of the input.

And finally in §8.4.4 we use a 1-bit extractor from Raz [97], which only requires a weakly
random seed, resulting in a quantumm-bit extractor, which also works with a weakly random
seed.

These constructions are summarized in Table 8.1 on page 126.

8.4.1 Near optimal entropy loss

To achieve a near optimal entropy loss we need to combine a 1-bit extractor with near
optimal entropy loss and a weak (t, 1)-design. We use the same extractor and design as
Raz et al. [98] to do so, namely Lemma 141 for the design and Proposition 4 for the 1-bit
extractor. Plugging this into Theorem 86 we get an extractor against quantum adversaries
with parameters similar to Raz et al. [98].
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Corollary 88. Let C be the extractor from Proposition 4 with error ε′ = ε2

9m2 and let us
use the weak design from Lemma 141. Then Trevisan’s extractor ExtC : {0, 1}n × {0, 1}d →
{0, 1}m is a (m + 8 logm + 8 log 1/ε + O(1), ε)-strong extractor with uniform seed against
quantum adversaries, with d = O(log2(n/ε) logm).

For ε = poly1/n the seed has length d = O(log3 n). The entropy loss is ∆ = 8 logm +
8 log 1/ε+ O(1), which means that the input still has this much randomness left in it (con-
ditioned on the output). We can extract a bit more by now applying a second extractor to
the input. For this we will use the extractor by Tomamichel et al [117], which is a quan-
tum (k′, ε′)-strong extractor with seed length d′ = O(m′ + log n′ + log 1/ε′) and entropy loss
∆′ = 4 log 1/ε′ + O(1), where n′ and m′ are the input and output string lengths. Since we
will use it for m′ = 8 logm + 4 log 1/ε′ + O(1), we immediately get the following corollary
from Lemma 136.

Corollary 89. By applying the extractors from Corollary 88 and [117, Theorem 10] in suc-
cession, we get a new function Ext : {0, 1}n × {0, 1}d → {0, 1}m, which is a quantum-proof
(m+ 4 log 1/ε+O(1), ε)-strong extractor with uniform seed, with d = O(log2(n/ε) logm).

For ε = poly1/n the seed has length d = O(log3 n).
The entropy loss is ∆ = 4 log 1/ε + O(1), which is only a factor 2 times larger than the

optimal entropy loss. By Lemma 80 this extractor can produce m = Hε
min(X|E)−4 log 1/ε−

O(1) bits of randomness with an error 3ε.

8.4.2 Seed of logarithmic size

The weak design used in §8.4.1 requires the seed to be of size d = Θ(t2 logm), where t is the
size of the seed of the 1-bit extractor. Since t cannot be less than Ω(log n) [93], a scheme
using this design will always have d = Ω(log2 n logm). If we want to use a seed of size
d = O(log n) we need a different weak design, e.g., Lemma 142, at the cost of extracting less
randomness from the source.

For the 1-bit extractor we can use the same as in the previous section, Proposition 4.
Plugging this into Theorem 86 we get an extractor against quantum adversaries with loga-
rithmic seed length.

Corollary 90. If for any constant 0 < α ≤ 1, the source has min-entropy Hmin(X|E) = nα,
and the desired error is ε = poly1/n, then using the extractor C from Proposition 4 with
error ε′ = ε2

9m2 and the weak design from Lemma 142 with r = nγ for any 0 < γ < α,
we have that Trevisan’s extractor ExtC : {0, 1}n × {0, 1}d → {0, 1}m is a (nγm + 8 logm +
8 log 1/ε + O(1), ε)-strong extractor with uniform seed against quantum adversaries, with

d = O
(

1
γ
log n

)
.

Choosing γ to be a constant results in a seed of length d = O(log n). The output
length is m = nα−γ − o(1) = Hmin(X|E)1−

γ
α − o(1). By Lemma 80 this can be increased to

m = Hε
min(X|E)1−

γ
α − o(1) with an error of 3ε.
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8.4.3 Locally computable extractor

Another interesting feature of extractors is locality, that is, the m-bit output depends only
a small subset of the n input bits. This is useful in, e.g., the bounded storage model (see
[82, 79, 120] for the case of a classical adversary and [74] for a general quantum treatment),
where we assume a huge source of random bits, say n, are available, and the adversary’s
storage is bounded by αn for some constant α < 1. Legitimate parties are also assumed to
have bounded workspace for computation. In particular, for the model to be meaningful,
the bound is stricter than that on the adversary. So to extract a secret key from the large
source of randomness, they need an extractor which only reads ` � n bits. An extractor
with such a property is called `-local. We will use a construction of an `-local extractor by
Vadhan [120], stated in Lemma 146.

Since we assume that the available memory is limited, we also want the construction of
the weak design to be particularly efficient. For this we can use a construction by Hartman
and Raz [51], given in Lemma 143. Plugging this into Theorem 86 we get a local extractor
against quantum adversaries.

Corollary 91. If for any constant 0 < α ≤ 1, the source has min-entropy Hmin(X|E) = αn,
then using the weak design from Lemma 143 for any constant r > 1, and the extractor C from
Lemma 146 with error ε′ = ε2

9m2 and any constant γ < α, we have that Trevisan’s extractor
ExtC : {0, 1}n × {0, 1}d → {0, 1}m is an `-local (γn + rm + 2 logm + 2 log 1/ε + O(1), ε)-
strong extractor with uniform seed against quantum adversaries, with d = O(log2(n/ε)) and
` = O(m log(m/ε)). Furthermore, each bit of the output depends on only O(log(m/ε)) bits
of the input.

With these parameters the extractor can produce up to m = (α− γ)n/r −O(log 1/ε) =
(Hmin(X|E) − γn)/r − O(log 1/ε) bits of randomness, with an error of ε = poly1/n. By
Lemma 80 this can be increased to m = (Hε

min(X|E)− γn)/r − O(log 1/ε) with an error of
3ε.

8.4.4 Weak random seed

Extractors with weak random seeds typically require the seed to have a min-entropy linear
in its length. Theorem 87 says that the difference between the length and the min-entropy
of the seed needed in Trevisan’s extractor is roughly the same as the difference between the
length and min-entropy of the seed of the underlying 1-bit extractor. So we will describe
in detail how to modify the construction from §8.4.2 to use a weakly random seed. As that
extractor uses a seed of length O(log n), this new construction allows us to preserve the
linear loss in the min-entropy of the seed. Any other version of Trevisan’s extractor can be
modified in the same way to use a weakly random seed, albeit with weaker parameters.

For this we need a 1-bit extractor which uses a weakly random seed. We will use a result
by Raz [97] (Lemma 147), which allows us to construct the extractor from Corollary 148.
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Plugging this and the weak design from Lemma 142 in Theorem 87, we get the following
extractor with weak random seed.

Corollary 92. Let α > 0 be a constant such that the source has min-entropy Hmin(X|E) =
nα, and the desired error is ε = poly1/n. Using the extractor C from Corollary 148 with
error ε′ = ε2

9m2 and the weak design from Lemma 142 with r = nγ for any 0 < γ < α, we have
that Trevisan’s extractor ExtC : {0, 1}n×{0, 1}d → {0, 1}m is a (nγm+8 logm+8 log 1/ε+
O(1), ε)-strong extractor with an s-bit weak random seed against quantum adversaries, where

the seed has length d = O
(

1
β2γ

log n
)
and min-entropy s =

(
1−

1
2
−β
c

)
d, for some constant

c.10

Choosing β and γ to be constants results in a seed of length d = O(log n) with a possible
entropy-loss linear in d. The output length is the same as in §8.4.2, m = nα−γ − o(1) =
Hmin(X|E)1−

γ
α − o(1).

If we are interested in extracting all the min-entropy of the source, we can combine
Lemma 147 with the extractor from §8.4.1. The results in a new extractor with seed length
d = O(log3 n) and seed min-entropy s = d−O( 3

√
d).

8.5 Other variations of Trevisan’s scheme

There exist many results modifying and improving Trevisan’s extractor. We briefly describe
a few of them here, and refer to [104] for a more extensive review.

Some of these constructions still follow the “design and 1-bit extractor” pattern — hence
our work implies that they are immediately quantum-proof with roughly the same parameters
— e.g., the work of Raz et al. [98] and Lu [79], which were mentioned in §8.4 and correspond
to modifications of the design and 1-bit extractor respectively. Other results such as [98, 114,
105] replace the binary list-decoding codes with multivariate codes over a field F . Raz et
al. [98] thus reduce the dependence of the seed on the error from O(log2 1/ε) to O(log 1/ε).
Ta-Shma et al. [114] and Shaltiel and Umans [105] reduce the size of the seed to d ≤ 2 log n
in several constructions with different parameters for the min-entropy. In these constructions
the connection to 1-bit extractors is not clear anymore, and it is therefore not guaranteed
that the construction is quantum-proof.

Raz et al. [98] extract a little more randomness than we do in §8.4.1. They achieve this by
composing (in the sense described in §A.5.2) the scheme of Corollary 88 with an extractor by
Srinivasan and Zuckerman [110], which has an optimal entropy loss of ∆ = 2 log 1/ε+O(1).
In the presence of quantum side information this extractor has only been proven to have an
entropy loss of ∆ = 4 log 1/ε+O(1) in [117], hence our slightly weaker result in Corollary 89.
This still leaves room for a small improvement.

10If we work out the exact constant, we find that c ≈ d/t ≈ 8(1+4a)
βγ ln 2 , for ε = n−a.
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Impagliazzo et al. [57] and then Ta-Shma et al. [113] modify Trevisan’s extractor to work
for a sub-polynomial entropy source, still using a seed of size d = O(log n). Ta-Shma et
al. [113] achieve a construction which can extract all the min-entropy k of the source with
such a seed length, for some k = o(n). While it is unclear whether these modifications
preserve the “design and 1-bit extractor” structure, it is an interesting open problem to
analyze them in the context of quantum side information.

Another research direction consists in making these constructions practically imple-
mentable. Whether the extractor is used for privacy amplification [19, 20], randomness
recycling [58], or for generating true randomness [130], the extractor has to be efficiently
computable. This does not seem to be the case of Trevisan’s construction [108]. An impor-
tant open problem is thus to find variations which are efficient to execute.
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Chapter 9

Certifiable Quantum Dice

In Chapter 8 we studied how random bits could be manipulated through the use of
extractors. In this chapter we introduce a method by which one may generate certifiably
random bits through an interaction with two untrusted provers. The only assumption we
will need in order to guarantee the bits’ randomness is that the provers obey the no-signaling
condition.

We first motivate the problem of generating certifiable randomness, and introduce our
results, in the following section. In Section 9.2 we define the guessing game, an important
conceptual tool in the proofs of our main results, stated in Theorem 93 and Theorem 94. In
Section 9.3 we prove Theorem 93, while Theorem 94 is proven in Section 9.4.

9.1 Introduction

A source of independent random bits is a basic resource in many modern-day computational
tasks, such as cryptography, game theoretic protocols, algorithms and physical simulations.
Moreover, these tasks place different demands on the quality of the randomness (e.g. the
need for privacy in cryptographic applications). It is of great interest, therefore, to construct
a physical device for reliably and provably outputting a stream of random bits. Testing
such a device poses a fundamental problem — since all outputs should be output with equal
probabilitythere is no basis for rejecting any particular output of the device.

Starting in the mid-80’s, computer scientists considered the question of extracting truly
random bits from adversarially controlled physical sources of randomness, such as the semi-
random source [101], and weak random sources [31]. This sequence of papers has culminated
in sophisticated algorithms called randomness extractors that are guaranteed to output a
sequence of truly random bits from physical sources of low-quality randomness (see [104] for
a survey). It was clear, in a classical world, that these results were the best one could hope
for — while it was necessary to assume that the physical device outputs randomness (since
that could not be tested), minimal assumptions were made about the quality of randomness
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output.

Quantum mechanics provides a surprising path around this fundamental barrier — it pro-
vides a way of testing that the output of a certain kind of device is truly random. Recall the
famous CHSH game, illustrated in Figure 9.1. In this game two non-communicating parties,
represented by spatially separated boxes A, B, are given inputs x, y ∈ {0, 1} respectively.
Their task is to produce outputs a, b ∈ {0, 1} such that the CHSH condition a ⊕ b = x ∧ y
holds. Let pCHSH be the probability that a certain pair of boxes produces outputs satisfying
this condition, when the inputs x, y are chosen uniformly at random.

A B

x ∈ {0, 1} y ∈ {0, 1}

a ∈ {0, 1} b ∈ {0, 1}

Check: a⊕ b = x ∧ y

Figure 9.1: The CHSH game. Any pair of boxes A,B is characterized by a distribution
p(a, b|x, y) which is required to be no-signaling : the marginal distribution of b is independent
of x, and that of a is independent of y.

Classical players can achieve a success probability at most pCHSH ≤ 3
4
, but there is a

quantum strategy that succeeds with pCHSH = cos2 π/8 ≈ 0.85. Indeed, we may define the
quantum regime corresponding to success probability 3/4 < pCHSH ≤ cos2 π/8 ≈ 0.85. For
any value in that range there is a simple quantum-mechanical pair of boxes, still obeying the
no-signaling condition, which achieves that success probability.

These well-known facts have a striking consequence: any boxes producing correlations
that fall in the quantum regime must be randomized ! Indeed, deterministic boxes are inher-
ently classical, so that their success probability must fall in the classical regime pCHSH ≤ 3/4.
Hence a simple statistical test guaranteeing the presence of randomness, under a single as-
sumption on the process that produced the bits: that it obeys the no-signaling condition.
This powerful observation was first made in Colbeck’s Ph.D. thesis [28] (see also [29] for an
expanded version). The idea was then developed in a paper by Pironio et. al. [92], where
the first quantitative bounds on the amount of randomness produced were shown.

An efficient and testable randomness-generation protocol

This method of generating randomness is not very efficient. Choosing a pair of inputs for the
boxes requires 2 bits of randomness, so the 2 bits that are output certainly do not contain
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Protocol A

1. Let `,∆ be two integers given as input. Set k = d10 log2 `e and m = ∆ `.

2. Choose T ⊆ [m] uniformly at random by selecting each position independently with proba-
bility 1/`.

3. Repeat, for i = 1, . . . ,m:

3.1 If i /∈ T , then

3.1.1 Set x = y = 0 and choose x, y as inputs for k consecutive steps. Collect outputs
a, b ∈ {0, 1}k.

3.1.2 If a ⊕ b has more than d0.16ke 1’s then reject and abort the protocol. Otherwise,
continue.

3.2 If i ∈ T ,

3.2.1 Pick x, y ∈ {0, 1} uniformly at random, and set x, y as inputs for k consecutive
steps. Collect outputs a, b ∈ {0, 1}k.

3.2.2 If a⊕ b differs from x∧ y in more than d0.16ke positions then reject and abort the
protocol. Otherwise, continue.

4. If all steps accepted, then accept.

Figure 9.2: Protocol A uses O(∆ log `) bits of randomness and makes O(` log2 `) uses of
the boxes. Theorem 93 shows that Ω(`) bits of randomness are produced, with security
ε = exp(−Ω(∆)).

more randomness than was used.1

Instead, consider the following randomness-efficient protocol. Let n be the target number
of random bits to be generated, and ε a “security” parameter. Inputs in the protocol are
grouped in m = C dn log(1/ε)e successive blocks of k = 10dlog2 ne pairs of inputs each,
where C is a large constant. Inputs in a given block consist of a fixed pair (x, y) repeated
k times. Most blocks use the (0, 0) input, but approximately 103dlog(1/ε)e of them are
selected at random and marked as “Bell” blocks. In those blocks a random pair of inputs
(x, y) ∈ {0, 1}2 is chosen, and used as inputs throughout the block. Finally, the sequence of
outputs produced by the boxes is accepted if, in every block, the CHSH constraint is satisfied
by at least 0.84k of the blocks’s input/output pairs.2

1In fact, one may show that boxes having a probability of success in the CHSH game that is close to the
optimal quantum value produce at most 1.25 random bits per use, on average [92].

2Note that honest boxes, playing each round independently, will indeed satisfy the CHSH condition in
each block on average with probability 1− 2−Ω(log2 n), so that by a union bound it is very unlikely that they
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The following theorem shows that this protocol (formally described as Protocol A in
Figure 9.2) can be used to generate certifiably random bits.

Theorem 93. There exists a constant C > 1 such that the following holds. Let ε > 0 be
given, and n an integer. Set ∆ = 103 dlog(1/ε)e, and ` = C n. Let (A,B) be an arbitrary
pair of no-signaling boxes used to execute Protocol A, B the random variable describing the
bits output by B in protocol A, and CHSH the event that the boxes’ outputs are accepted in
the protocol. Then for all large enough n at least one of the following holds :

• Either Hε
∞(B|CHSH) ≥ n,

• Or Pr
(
CHSH

)
≤ ε.

Moreover, Protocol A requires O(log n log(1/ε)) bits of randomness, and makes O(n log2 n log(1/ε))
uses of the boxes.

We note that the second condition in the theorem is necessary, as there is always an
unavoidable chance that the boxes successfully guess their whole inputs, and deterministically
produce matching outputs. The theorem guarantees that the probability of this happening
can be bounded by an inverse-exponential in the number of random bits used.

The theorem as stated only guarantees that the bits output by the device have large
(smooth) min-entropy. In order to obtain bits that are (close to) uniformly random, one may
apply an extractor. There exists efficient constructions of such devices which will convert B
into roughly Hε

∞(B|CHSH) bits that are ε-close, in statistical distance, to uniform. In order
to do so, the best extractors will require an additional O(log n) many uniformly random bits
to be used as seed [48].

Compared to the basic procedure outlined earlier, Protocol A uses two main ideas in
order to save on the randomness required. The first idea is to restrict the inputs to (0, 0)
most of the time. Only a few randomly placed checks (the Bell blocks) are performed in
order to verify that the boxes are generating their inputs honestly. This idea was already
used in [92], and led to a protocol with a quadratic

√
n→ n expansion of randomness.

The second idea is to systematically group inputs to the boxes into blocks of k successive,
identical pairs and check that the CHSH correlations are satisfied on average in every block.
This is necessary: if one was to only check that the CHSH condition is satisfied on average
over the whole protocol, then boxes systematically producing the outputs (0, 0) would lead
to a large — close to 100% — violation. Hence the more robust checking that we perform
forces the boxes to play “honestly” and produce randomness in essentially every block.

Moreover, the block structure of the inputs also plays a key role in the analysis of the pro-
tocol, which is based on the definition of a simple “guessing game”, explained in Section 9.2.
The main point is that if box B’s output in a certain block is likely to be a particular string,
then Alice, given access to A, can guess B’s input y ∈ {0, 1} based on whether A’s output is
will fail the CHSH condition in any of the blocks.



CHAPTER 9. CERTIFIABLE QUANTUM DICE 144

“close” or “far” in Hamming distance from that particular string. This provides a way for
Alice to guess B’s input with probability greater than 1/2, violating the no-signaling condi-
tion placed on the boxes. This style of reasoning can be used to establish that B’s output
must have high min-entropy, thus yielding Theorem 93. The proof is given in Section 9.3.

To understand the significance of Theorem 93, it may be instructive to recall the common
paraphrasing of Einstein’s quote from his 1926 letter to Max Born expressing his unhappiness
with quantum mechanics as “God does not play dice with the Universe.” Clearly a device
based on quantum mechanics can be used to generate randomness — simply prepare a
qubit in the |0〉 state, apply a Hadamard gate, and measure the resulting state in the
computational basis: the outcome is a uniformly random bit. However, in addition to
believing the correctness of quantum mechanics, to trust that such a device produces random
bits one must believe that the manufacturer is trustworthy, experimentally skilled, and that
the device is always well calibrated. These difficulties are compounded by the fact that the
postulates of quantum physics forbid any classical observer from getting more than a small
probabilistic digest of the internal quantum state of the system. The randomness generation
protocol presented above has the property that the output is guaranteed to be random based
only on the observed correlations in the output (violations of Bell inequalities), and on the
relativistic assumption that information does not travel faster than light. In this sense it
might be appropriate to deem that it is “Einstein certifiable”!

Quantum adversaries

We have described a simple protocol that guarantees the production of bits that are sta-
tistically close to uniform. Suppose these random bits were used later in an interactive
cryptographic protocol. In that case it is crucial that the bits generated appear close to
uniform not only to the (honest) user of the protocol, but also to any adversary in the
cryptographic protocol.

For concreteness, consider the following catastrophic scenario: the maker of the boxes,
call her Eve, inserted an undetectable “back-door” by not only entangling A and B together,
but extending this entanglement to reach into her own, private, laboratory. Eve knows that
the protocol mostly uses 0’s as inputs to B. Betting on this she repeatedly makes a specific
measurement on her system, which reliably produces the same output as B in case its input
was a 0. If we assume that B’s outputs are uniformly distributed then such a strategy does
not obviously violate the no-signaling constraint between B and Eve. But Eve learns most
of B’s output: while in isolation it may be random, it is totally insecure!

We rule out this scenario by showing an analogue to Theorem 93 which also holds in the
presence of a quantum adversary. The theorem applies to a slight variant of the protocol
used in the previous section, described as Protocol B in Figure 9.3. The main differences
are that the number of random bits used in that protocol is slightly larger, O(log3 n) instead
of O(log n), and the protocol is based on using an “extended” version of the CHSH game,
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which will be introduced in Section 9.4.

Theorem 94. Let α, γ > 0 be such that γ ≤ 1/(10 + 8α), and n an integer. Set C =
d100αe, and ` = n1/γ. Let (A,B) be an arbitrary pair of no-signaling boxes used to execute
Protocol B, CHSH the event that the boxes’ outputs are accepted in the protocol, and B′ the
random variable describing the bits output by B, conditioned on CHSH. Let E be an arbitrary
quantum system, possibly entangled with A and B, but such that no communication occurs
between A,B and E once the protocol starts. Then for all large enough n at least one of the
following holds:

• Either Hε
∞(B

′|E) ≥ n,

• Or Pr
(
CHSH

)
≤ ε,

where ε = n−α. Moreover, Protocol B uses only O(γ−3 log3 n) bits of randomness.

Indication that dealing with quantum, rather than classical, adversaries may present
substantial new difficulties may be found in the area of strong extractor constructions. There
are examples of such constructions, secure against classical adversaries, that dramatically
fail in the presence of quantum adversaries with even smaller prior information [46]. Luckily,
other constructions, such as a very efficient construction due to Trevisan [119], have been
shown secure even against quantum adversaries [112, 34]. One may use such a “quantum-
proof” extractor in order to efficiently transform the bits output in Protocol B into ones that
are statistically close to uniform even from the point of view of the adversary at the cost of
an additional O(log2 n) bits of fresh randomness.

A reason to think that the power of a quantum adversary in learning B’s output may
be limited comes from a delicate property of entanglement, its monogamy [115]. Informally,
monogamy states that a tripartite entangled state |Ψ〉ABE cannot be maximally entangled
both between A and B and between B and E. Since Protocol B enforces very strict correla-
tions between the outputs of A and B, one may hope that these correlations will pre-empt
any strong correlation between B and an arbitrary E.

Interestingly, the proof of Theorem 94 makes crucial use of the properties of a specific
construction of a quantum-proof extractor, based on Trevisan’s construction and the t-
XOR code, that was first outlined in [33]. This construction is used to prove the following
information-theoretic lemma. The lemma gives an operational interpretation to a random
variable having small smooth min-entropy conditioned on a quantum system, and may be
of independent interest.

Lemma 95. Let ρXE be a state such that X is a classical random variable distributed over
m-bit strings, and E is an arbitrarily correlated quantum system. Let ε, δ > 0, and K =
Hε
∞(X|E). Then there exists a subset V ⊆ [m] of size v = |V | = O(K log2m), and for every

v-bit string z a measurement Mz on E such that, with probability at least Ω(ε6/m6), MXV

produces a string Y that agrees with X in a fraction at least 1− 1
logm

of positions.
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In essence Lemma 95 states that, given access to some of the bits of X (the ones indexed
by V ), and to the quantum system E, one can predict the remainder of the string X with
inverse-polynomial success probability. In the range of large K (at least inverse-polynomial
in m), this is much higher than the inverse-exponential probability that one would get by
measuring E directly, without using any “advice” bits.

The proof of lemma 95 mostly follows from the proof of security of Trevisan’s extractor
against quantum adversaries presented in [34]. Since however it does not follow as a black-
box, we give a detailed outline of the proof of the lemma in Appendix A.6.2.

Related work. In independent recent work, Fehr, Gelles and Schaffner [40] showed that
security of a randomness-generation scheme against quantum adversaries could be automati-
cally deduced from its security against classical adversaries, provided the result proved in the
non-adversarial setting takes on a very specific form. Namely, the bound on the randomness
generated in that case should be a function of the average violation of a Bell inequality by
the devices’ outputs, and should hold even conditioned on any inputs to the boxes in the
protocol. They use their results to present an exponential randomness-expansion scheme
based on the use of four, instead of two, no-signaling devices.

Neither condition required for the reduction in [40] to hold seems to be satisfied in our
setting: our bound does not rely solely on the average violation of the CHSH inequality by
the devices3. Moreover, we prove a bound on the min-entropy that holds on average over
the choice of inputs in the protocol, rather than for all inputs, as needed for the reduction
in [40].

Recent work by Colbeck and Renner [30] studies a related question, that of improving
the quality of a given source of weak randomness. Specifically, they show that if one is given
access to a so-called Santha-Vazirani source then one can produce bits that are guaranteed
to be statistically close to uniform by using the violation of a specific Bell inequality by a
pair of untrusted no-signaling devices.

9.2 The guessing game

Consider the following simple guessing game. In this game, there are two cooperating players,
Alice and Bob. At the start of the game Bob receives a single bit y ∈ {0, 1} chosen uniformly
at random. The players are then allowed to perform arbitrary computations, but are not
allowed to communicate. At the end of the game Alice outputs a bit a, and the players win
if a = y.

Clearly, any strategy with success probability larger than 1
2
indicates a violation of the

no-communication assumption between Alice and Bob. At the heart of the proofs of both
Theorem 93 and Theorem 94 is a reduction to the guessing game. Assuming there existed a

3In fact, we argued that merely observing a large average violation would not suffice to guarantee an
exponential expansion of randomness.
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pair of boxes violating the conclusions of either theorem, we will show how these boxes may
be used to devise a successful strategy in the guessing game, contradicting the no-signaling
assumption placed on the boxes.

To illustrate the main features of the strategies we will design later, consider the following
simplified setting. Let A,B be a given pair of boxes taking inputs X, Y ∈ {0, 1} and
producing outputs A,B ∈ {0, 1}k respectively. Assume the following two properties hold.
First, if the input to B is Y = 0 then its output B is essentially deterministic, in the sense
that B = b0 with high probability. Second, whatever their inputs, the boxes’ outputs satisfy
the CHSH constraint on average: at least 84% of i ∈ [k] are such that Ai ⊕ Bi = X ∧ Y .
Then we claim that there is a strategy for Alice and Bob in the guessing game, using A
and B, that succeeds with probability strictly larger than 1/2, demonstrating that the boxes
must be signaling.

Alice and Bob’s strategy is the following. Alice is given access to A and Bob to B. Upon
receiving his secret bit y, Bob inputs it to B, collecting outputs b ∈ {0, 1}k. Alice chooses an
x ∈ {0, 1} uniformly at random, and inputs it to A, collecting outputs a ∈ {0, 1}k. Let b0
be the k-bit string with the highest probability of being output by B, conditioned on y = 0.
Alice makes a decision as follows: she computes the relative Hamming distance d = dH(a, b0).
If d < 0.2 she claims “Bob’s input was 0”. Otherwise, she claims “Bob’s input was 1”.

By assumption, if Bob’s secret bit was y = 0, then his output is almost certainly b0. By
the CHSH constraint, independently of her input Alice’s output a lies in a Hamming ball of
radius 0.16 around b0. So in this case she correctly decides to claim “Bob’s input was 0”.

In the case that Bob’s secret bit was y = 1, the analysis is more interesting. Let b be
the actual output of B. Let a0 and a1 be A’s output in the two cases x = 0 and x = 1
respectively. We claim that the Hamming distance dH(a0, a1) ≥ 0.68. This is because by the
CHSH constraint, dH(a0, b) ≤ 0.16, while dH(a1, b) ≥ 0.84. Applying the triangle inequality
gives the lower bound on the distance between a0 and a1. This lower bound is large enough
that both a0 and a1 cannot lie in the Hamming ball of radius 0.16 around b0 (observe that
this argument makes no use of the actual location of b!). Thus in the case y = 1, Alice
correctly outputs “Bob’s input was 1” with probability at least 1/2.

Overall Alice and Bob succeed in the guessing game with probability 3/4, which contra-
dicts no-signaling.

Clearly there is a lot of slack in the above reasoning, since for contradiction it suffices to
succeed in the guessing game with any probability strictly greater than 1/2. By being more
careful it is possible to allow Bob’s output on y = 0 to have more min entropy, as well as
allow for a small probability that the boxes’ outputs may not satisfy the CHSH constraint:

Lemma 96. Let β, γ > 0 be such that γ + 2β < 1/4, and k an integer. Suppose given a
pair of boxes A,B, taking inputs X, Y ∈ {0, 1} and producing outputs A,B ∈ {0, 1}k each.
Suppose the following conditions hold:
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1. When given input 0, the distribution of outputs of B has low min-entropy: there exists
a b0 ∈ {0, 1}k such that Pr(B = b0|Y = 0) ≥ 1− γ,

2. The boxes’ outputs satisfy the CHSH condition, on average:

Pr
(
#
{
i ∈ [k], Ai ⊕Bi 6= X ∧ Y

}
> 0.16 k

)
≤ β.

Then there is a strategy for Alice and Bob, using A and B, with gives them success probability
strictly greater than 1/2 in the guessing game.

Proof. Alice and Bob’s strategy in the guessing game is as described above. Let b0 be the
k-bit string that is most likely to be output by B, conditioned on y = 0.

We first show that, if Bob’s input was y = 0, then Alice claims that Bob had a 0 with
probability at least 1− γ− 2β. By the first condition in the lemma, Bob obtains the output
b0 with probability at least 1− γ. Moreover, by the second condition the CHSH constraint
will be satisfied with probability at least 1−2β on average over Alice’s choice of input, given
that Bob’s input was y = 0. Given y = 0, whatever the input to A the CHSH constraint
states that dH(a, b) < 0.16. Hence by a union bound Alice will obtain an output string a at
relative Hamming distance at most 0.16 from b0 with probability at least 1− γ − 2β.

Next we show that, in case Bob’s input in the guessing game is y = 1, Alice claims that
Bob had a 1 with probability at least 1

2

(
1− 8β). Let b′ the actual output produced by Bob.

By the second condition in the lemma and Markov’s inequality, with probability at least
1 − 4β the output b′ is such that the CHSH constraint will be satisfied with probability at
least 1− 4β simultaneously for both of Alice’s possible choices of input.

Suppose this holds. If Alice chooses x = 0 then the CHSH constraint indicates that the
corresponding a0 should be such that dH(a0, b

′) ≤ 0.16, while in case she chooses x = 1 her
output a1 should satisfy dH(a1, b

′) ≥ 0.84. By the triangle inequality, dH(a0, a1) ≥ 0.68:
whatever the value of b′, only one of a0 or a1 can be at distance less than 0.2 from b0. By
a union bound, with probability at least 1− 8β there is a choice of input for Alice that will
make her claim Bob had a 1, and she chooses that input with probability 1/2.

The two bounds proven above together show that Alice’s probability of correctly guessing
Bob’s input in the guessing game is at least

psucc ≥
1

2

(
1− 2γ

)
+

1

2

1− 8β

2
=

1

2
+
(1
4
− 2β − γ

)
,

which is greater than 1/2 whenever 2β + γ < 1/4, proving Lemma 96.

9.3 Proof of the main result

Theorem 93 asserts that, given any pair (A,B) of non-signaling boxes, if the outputs of B
do not contain much min-entropy (when its inputs are chosen as in Protocol A, described in
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Figure 9.2), then the boxes can only satisfy the CHSH constraints imposed in the protocol
with small probability.

We prove Theorem 93 by a reduction to the guessing game introduced in Section 9.2.
Suppose that there existed a pair of boxes such that neither of the theorem’s conclusions
was satisfied. Recall that Protocol A calls for a total of mk uses of the boxes, divided into
m blocks of k pairs of identical inputs each. We show that, provided the CHSH constraints
are satisfied in all blocks with non-negligible probability, there must exist a special block
i0 ∈ [m] in which the boxes’ outputs, conditioned on specific past values, have properties
close to those required in Lemma 96. This lets us carry out a reduction to the guessing
game, leading to a contradiction of the no-signaling assumption. The exact properties of the
special block that we obtain are described in Claim 97 below.

Modeling events in the protocol. To model the situation, we introduce four sequences
of random variables X = (Xi), Y = (Yi), A = (Ai), B = (Bi) ∈

(
{0, 1}k

)m
, where m is

the number of blocks of the protocol. X and Y are distributed as in Protocol A, and
A,B are random variables describing the boxes’ respective outputs when their inputs are
X and Y . For i ∈ [m], let CHSHi be the event that dH(Ai ⊕ Bi, Xi ∧ Yi) ≤ 0.16, and
CHSH =

∧
i CHSHi. We will also use the shorthand CHSH<i =

∧
j<iCHSHj. Finally, we

let Tj be a random variable denoting the j-th Bell block, chosen jointly by Alice and Bob at
the start of Protocol A.

Claim 97. There exists a constant C > 1 such that the following holds. Let 2−Cn < ε < 1/5
and ∆ = 103dlog(1/ε)e. Suppose that (i) Hε

∞(B|CHSH) ≤ n, and (ii) Pr(CHSH) ≥ ε.
Let m = C∆n. Then for all large enough n there exists an index j0 and a set G satisfying
Pr(G) ≥ ε5 such that the following hold.

• B’s output in the j0-th Bell block Tj0 is essentially deterministic:

∀b ∈ G, Pr(BTj0
= bTj0

|CHSH<Tj0
, B<Tj0

= b<Tj0
) ≥ 0.99, (9.1)

• Irrespective of the input YTj0
= yTj0

∈ {0, 1} to B in the Tj0-th block, the CHSH
condition is satisfied with high probability:

∀b ∈ G, Pr(CHSHTj0
|CHSH<Tj0

, B<Tj0
= b<Tj0

, YTj0
= yTj0

) ≥ 0.9. (9.2)

The proof of Claim 97 mostly follows from an appropriate chained application of Baye’s
rule, and is given in Appendix A.6.1. In order to conclude the proof of Theorem 93 it remains
to show how the special block identified in Claim 97 can be used to show that boxes A and
B satisfying the claim’s assumptions may be used successfully in the guessing game.

Consider the following strategy for Alice and Bob in the guessing game. In a preparatory
phase (before Bob receives his secret bit y), Alice and Bob run protocol A with the boxes A
and B, up to the i0-th block (excluded). Bob communicates B’s outputs up till that block
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to Alice. Together they check that the CHSH constraint is satisfied in all blocks preceding
the i0-th; if not they abort. They also verify that Bob’s outputs are the prefix of a string
b ∈ G; if not they abort. The guessing game can now start: Alice and Bob are separated
and Bob is given his secret input y.

Given the conditioning that Alice and Bob have performed before the game started, once
it starts boxes A and B can be seen to satisfy both conditions of Lemma 96. Indeed, since
under the input distribution specified in Protocol A B receives a 0 as input in block i0 with
probability at least 1/2, condition 1. in Lemma 96 holds with γ = 1/50 as a consequence of
item 1 in Claim 97. Condition 2 in Lemma 96 puts a bound on the probability of the CHSH
condition being satisfied under the uniform input distribution. Hence item 2 from Claim 97
implies that condition 2 holds with β = 1/10. Since γ + 2β = 0.22 < 1/4, Lemma 96
concludes that the boxes A and B must be signaling in the i0-th block, a contradiction. This
finishes the proof of Theorem 93.

9.4 Producing random bits secure in the presence of a

quantum adversary

In this section we prove Theorem 94. We first give an overview of the proof, describing the
main steps, in the next section. The formal proof is given in Section 9.4.2

9.4.1 Proof overview

Theorem 94 is based on Protocol B, a variant of Protocol A which replaces the use of the
CHSH game by the following “extended” variant. In this game each box may receive one of
four possible inputs, labeled (A, 0), (A, 1), (B, 0), (B, 1). An input such as “(A, 1)” to either
box means: “perform the measurement that A would have performed in the honest CHSH
strategy, in case its input had been a 1”. The advantage of working with this game is that
there exists an optimal strategy (the one directly derived from the honest CHSH strategy)
in which both players always output identical answers when their inputs are equal.

Protocol B follows the same structure as Protocol A. Inputs are divided into groups of
k = d10 log2 ne identical inputs. There are m = O(n1/δ log2 n) successive blocks, where δ > 0
is a small parameter. Most blocks use the same input (A, 0) to both boxes. A random
subset T ⊆ [m] of approximately log2 n blocks are designated as Bell blocks. In such blocks
A is given an input at random in {(A, 0), (A, 1)}, while B is given an input at random in
{(A, 0), (B, 0)}.

As in the proof of Theorem 93 we will prove Theorem 94 by contradiction, through
a reduction to the guessing game. In the non-adversarial case the crux of the reduction
consisted in identifying a special block i0 ∈ [m] in which B’s output B was essentially
deterministic, conditioned on past outputs. In the adversarial setting, however, B may
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Protocol B

1. Let `, C be two integers given as input. Set k = d10 log2 `e and m = dC` log2 `e.

2. Choose T ⊆ [m] uniformly at random by selecting each position independently with proba-
bility 1/`.

3. Repeat, for i = 1, . . . ,m:

3.1 If i /∈ T , then

3.1.1 Set x = y = (A, 0) and choose x, y as inputs for k consecutive steps. Collect
outputs a, b ∈ {0, 1}k.

3.1.2 If a 6= b then reject and abort the protocol. Otherwise, continue.

3.2 If i ∈ T ,

3.2.1 Pick x ∈ {(A, 0), (A, 1)} and y ∈ {(A, 0), (B, 0)} uniformly at random, and set x, y
as inputs for k consecutive steps. Collect outputs a, b ∈ {0, 1}k.

3.2.2 If either a = b and x = y, or dH(a, b) ≤ 0.16 and y = (B, 0), or dH(a, b) ∈
[0.49, 0.51] and x = (A, 1) and y = (A, 0) then continue. Otherwise reject and
abort the protocol.

4. If all steps accepted, then accept.

Figure 9.3: Protocol B uses O(log3 `) bits of randomness and makes O(` log4 `) uses of the
boxes. Theorem 94 shows that Ω(`γ) bits of randomness are produced, where γ > 0 is a
constant depending on the security parameter ε one wants to achieve.
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be perfectly uniform, and such a block may not exist. Instead, we start by assuming for
contradiction that the min-entropy of Bob’s output conditioned on Eve’s information is
small: Hε

∞(B|E) ≤ n.
Previously in the guessing game Alice tried to guess Bob’s secret input y ∈ {0, 1}. She

did so by using her prediction for B’s outputs, together with the CHSH constraint and her
own box A’s outputs. Here we team up Alice and Eve. Alice will provide Eve with some
information she obtained in previous blocks of the protocol, and based on that information
Eve will attempt to make an accurate prediction for B’s outputs in the special block. Alice
will then use that prediction to guess y, using as before the CHSH constraint and her own
box A’s outputs.

The reconstruction paradigm. We would like to show that, under our assumption on
Hε
∞(B|E), Eve can perform the following task: accurately predict (part of) B, given auxiliary

information provided by Alice. We accomplish this by using the “reconstruction” property
of certain extractor constructions originally introduced by Trevisan [119]. Recall that an
extractor is a function which maps a string B with large min-entropy (conditioned on side
information contained in E) to a (shorter) string Z that is statistically close to uniform
even from the point of view of an adversary holding E. The reconstruction proof technique
proceeds as follows: Suppose an adversary breaks the extractor. Then there exists another
adversary who, given a small subset of the bits of the extractor’s input as “advice”, can
reconstruct the whole input. Hence the input’s entropy must have been at most the number
of advice bits given.

For the purposes of constructing extractors, one would then take the contrapositive to
conclude that, provided the input has large enough entropy, the extractor’s output must be
indistinguishable from uniform, thereby proving security. Here we work directly with the
reconstruction procedure. Suppose that B has low min-entropy, conditioned on Eve’s side
information. If we were to apply an extractor to B in order to extract more bits than its
conditional min-entropy, then certainly the output would not be secure: Eve would be able
to distinguish it from a uniformly random string. The reconstruction paradigm states that,
as a consequence, there is a strategy for Eve that successfully predicts the entire string B,
given a subset of its bits as advice — exactly what is needed from Eve to facilitate Alice’s
task in the guessing game.

The t-XOR extractor. At this stage we are faced with two difficulties. The first is that
the reconstruction paradigm was developed in the context of classical adversaries, who can
repeat predictive measurements at will. Quantum information is more delicate, and may be
modified by the act of measuring. The second has to do with the role of the advice bits:
since they come from B’s output B we need to ensure that, in the guessing game, Alice can
indeed provide this auxiliary information to Eve, without communicating with Bob.

In order to solve both problems we focus on a specific extractor construction, the t-XOR
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extractor Et (here t is an integer such that t = O(log2 n)). For our purposes it will suffice
to think of Et as mapping the mk-bit string B to a string of r � n bits, each of which is
the parity of a certain subset of t out of B’s mk bits. Which parities is dictated by an extra
argument to the extractor, its seed, based on the use of combinatorial designs. Formally,

Et : {0, 1}mk × {0, 1}s → {0, 1}r

(b, y) 7→
(
C1

t (b, y), . . . , C
r
t (b, y)

)
,

where C i
t(b, y) is the parity of a specific subset of t bits of x, depending on both i and y.

Suppose that Eve can distinguish the output of the extractor Z = Et(B, Y ) from a
uniformly random string with success probability ε. In the first step of the reconstruction
proof, a hybrid argument is used to show that Eve can predict the parity of t bits of B
chosen at random with success ε/r, given access to the parities of O(r) other subsets of t
bits of B as advice. This step uses specific properties of the combinatorial designs.

The next step is the most critical. One would like to argue that, since Eve can predict
the parity of a random subset of t of B’s bits, she can recover a string that agrees with most
of the t-XORs of B. One could then appeal to the approximate list-decoding properties of
the t-XOR code in order to conclude that Eve may deduce a list of guesses for the string B
itself. Since, however, Eve is quantum, the fact that she has a measurement predicting any
t-XOR does not imply she has one predicting every t-XOR: measurements are destructive
and distinct measurements need not be compatible. This is a fundamental difficulty, which
arises e.g. in the analysis of random access codes [7]. To overcome it one has to appeal to a
subtle argument due to Koenig and Terhal [76]. They show that without loss of generality one
may assume that Eve’s measurement has a specific form, called the pretty-good measurement.
One can then argue that this specific measurement may be refined into one that predicts
a guess for the whole list of t-XORs of B, from which a guess for B can be deduced by
list-decoding the t-XOR code.

The security of the t-XOR extractor against quantum adversaries was first shown by
Ta-Shma [112], and later improved in [33, 34]. As such, the argument above is not new.
Rather, our contribution is to observe that it proves more than just the extractor’s security.
Indeed, summarizing the discussion so far we have shown that, if Hε

∞(B|E) ≤ n, then there
is a measurement on E which, given a small amount of information about B as advice,
reconstructs a good approximation to the whole string B with success probability poly(ε/r).
(This is essentially the statement that is made in Lemma 95.) Most crucially, the bits of
information required as advice are localized to a small subset of bits of B, of the order of
the number of bits of information Eve initially has about that string. This property holds
thanks to the specific extractor we are using, which is local : every bit of the output only
depends on few bits of the input.

Completing the reduction to the guessing game. In the guessing game it is Alice
who needs to hand the advice bits to Eve. Indeed, if Bob, holding box B, was to hand them
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over, they could leak information about his secret input y: some of the advice bits may fall
in blocks of the protocol that occur after the special block i0 in which Bob is planning to
use his secret y as input. This leak of information defeats the purpose of the guessing game,
which is to demonstrate signaling between A and B.

Hence the “extended” variant of the CHSH game introduced in Protocol B: since in most
blocks the inputs to both A and B are identical, by the extended CHSH constraint enforced
in the protocol their outputs should be identical. The relatively few advice bits needed by
Eve occupy a fixed set of positions, and with good probability all Bell blocks will fall outside
of these positions, in which case Alice can obtain the advice bits required by Eve directly
from A’s outputs.

The proof of Theorem 94 is now almost complete, and one may argue as in Lemma 96 that
Alice and Eve together will be able to successfully predict Bob’s secret input in the guessing
game, contradicting the no-signaling assumption placed on A and B. A more detailed proof
of the theorem is given in the next section.

9.4.2 Proof of Theorem 94

We proceed to formally prove Theorem 94, using Lemma 95 to perform a reduction to the
guessing game (Lemma 95 is proved in Appendix A.6.2). Protocol B is described in Fig-
ure 9.3. It consists of m = dC` log2 `e blocks of k = d10 log2 ne rounds each, where C
is a large constant, ` = n1/γ and n is the target amount of min-entropy. Each round of
the protocol selects inputs to the boxes coming from the “extended CHSH” game. That
game has four questions per party: (A, 0), (A, 1), (B, 0), (B, 1). We expect honest boxes to
apply the following strategy. They share a single EPR pair, and perform the same measure-
ment if provided the same input. On input (A, 0) the measurement is in the computational
basis, and on input (A, 1) it is in the Hadamard basis {|+〉, |−〉}, with the outcome |+〉
being associated with the output ’0’. On input (B, 0) the measurement is in the basis
{cos2(π/8)|0〉+ sin2(π/8)|1〉, sin2(π/8)|0〉 − cos2(π/8)|1〉}, with the first vector being associ-
ated with the outcome ’0’.

Modeling. To model the situation, introduce four sequences of random variables X =
(Xi), Y = (Yi), A = (Ai), B = (Bi) ∈

(
{0, 1}k

)m
. X and Y are distributed as in protocol B,

while A,B are random variables describing the boxes’ respective outputs when their inputs
are X and Y . For i ∈ [m], let CHSHi be the following event:

CHSHi =





Ai = Bi if Xi = Yi,

dH(Ai, Bi) ≤ 0.16 if Yi = (B, 0),

dH(Ai, Bi) ∈ [0.49, 0.51] if Xi = (A, 1) and Yi = (A, 0).

Honest CHSH boxes as described above satisfy CHSHi with probability 1 − 2−Ω(k). Let
CHSH =

∧
i CHSHi.
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We introduce two new random variables to model the adversary Eve’s behavior, when
she performs the measurement promised by Lemma 95. We use EA = (EA

i ) ∈
(
{0, 1}k

)m
to denote the outcome of that measurement when the required advice bits are the bits AV

taken from A’s outputs, and EB = (EB
i ) ∈

(
{0, 1}k

)m
to denote its outcome when they are

the bits BV taken from B’s output (here V is a fixed subset of [km] that will be specified
later). Let GA be the event that dH(E

A, B) < fe, and G
B the event that dH(E

B, B) < fe,
where fe > 0 is a parameter to be specified later. Let j ∈ T be an index that runs over the
blocks that have been designated as Bell blocks in the protocol (where T itself is a random
variable). Given a Bell block j, let GA

j be a boolean random variable such that GA
j = 1 if

and only if either dH(E
A
j , B) < 0.01 and Yj = (A, 0), or dH(E

A
j , B) < 0.17 and Yj = (B, 0).

Define GB
j symmetrically with respect to EB instead of EA.

We prove Theorem 94 by contradiction. Assume that both the theorem’s conclusions are
violated, so that (i) Hε

∞(B
′|E) ≥ n, where B′ is a random variable describing the distribution

of B’s outputs conditioned on CHSH, and Pr
(
CHSH

)
≤ ε. Here ε = n−α, where α > 0 is a

parameter.

The first step is to apply Lemma 95 with X = B′. The conclusion of the lemma is that
there exists a subset V ⊆ [km] of size |V | = O(mγ log2m) such that, letting fe = 1/(logmk),
we have ps := Pr(GB|CHSH) = Ω(ε7/n6) = Ω(n−7(α+γ)).

GB denotes the event that Eve correctly predicts B on a fraction at least 1 − fe of
positions. Since in Protocol B the Bell blocks form only a very small fraction of the total,
a priori it could still be that Eve’s prediction is systematically wrong on all Bell blocks,
preventing us from successfully using them in the guessing game.

The following claim shows Eve’s errors cannot be concentrated in the Bell blocks. The
intuition is the following. If B’s input in a Bell block is (A, 0) then nothing distinguishes
this block from most others, so that Eve’s prediction has no reason of being less correct than
average. However, blocks in which its input is (B, 0) are distinguished. We rule out the
possibility that Eve’s errors are concentrated in such blocks by appealing to the no-signaling
condition between Eve and A. Indeed, about half of Bell blocks in which B’s input is (B, 0)
are such that A’s input for the same block is (A, 0): looking only at A’s inputs they are
indistinguishable from most other blocks. We will argue that, as long as the CHSH constraint
is satisfied, Eve might as well have been given the advice bits by Alice, in which case there
is no reason for her to make more errors than average in those blocks.

Claim 98. Let T be the set of Bell blocks selected in Protocol B. Then there exists a constant
ce < 10−3 such that the following holds.

Pr
(
Ej∈T

[
GA

j

]
> 1− ce

log n
, CHSH

)
= Ω(psε) = Ω

(
n−8(α+γ)

)
.

The proof of Claim 98 is given in Appendix A.6.1. Based on this claim we can show
an analogue of Claim 97 which will let us complete the reduction to the guessing game.
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Claim 98 shows that with probability Ω(psε) Eve’s prediction will be correct on a fraction
at least 1− ce/ log n of Bell blocks. Since there are O(log2 n) such blocks in Protocol B, with
the same probability Eve only makes errors on a total number we = O(log n) of Bell blocks.
Group the Bell blocks in groups of 20we successive blocks, and let k be an index that runs
over such groups; there are O(log n) of them. Let GA

k be the event that Eve’s prediction is
correct in at least 99% of the Bell blocks in group k: GA

k = 1 if and only if Ej∼kG
A
j ≥ 0.99,

where the average is taken over the Bell blocks comprising group k. By Markov’s inequality,
it follows from Claim 98 that Pr(∧kG

A
k , CHSH) = Ω(psε).

Claim 99. For all large enough n there exists a Bell block j0 ∈ T such that, in that block, it
is highly likely that both Eve’s prediction (when given advice bits from A’s output) is correct
and the CHSH constraint is satisfied, conditioned on this being so in past iterations:

Pr(GA
j0
, CHSHj0|CHSHj<j0 , G

A
k<k0

) ≥ 0.98, (9.3)

where k0 is the index of the group containing the j0-th Bell block.

Proof. By the chain rule, since there are O(log n) groups there will exist a group k0 in which
Eve’s prediction is correct, and the CHSH condition is satisfied, with probability at least
0.99, when conditioned on the same holding of all previous groups. Since by definition Eve
being correct in the group means that she is correct in 99% of that group’s blocks, there is
a specific block j0 in which she is correct with probability at least 0.98.

The reduction to the guessing game should now be clear, and follows along the same lines
as the proof of Theorem 93 given in Section 9.3. Alice and Bob run protocol B, including the
selection of all Bell blocks T , with the boxes A and B, up to the j0-th Bell block (excluded).
Bob communicates B’s outputs up till that block to Alice. They check that the CHSH
constraint is satisfied in all blocks previous to the j0-th; if not they abort. The guessing
game can now start: Alice and Bob are separated and Bob is given his secret input y. If
y = 0 then he chooses (A, 0) as input to B in the j0-th block; otherwise he chooses (B, 0). He
then completes the protocol honestly. Alice chooses an input x ∈ {(A, 0), (A, 1)} at random
for the j0-th block, and then completes the protocol honestly.

In order to help her guess Bob’s input, Alice has access to the eavesdropper Eve. Alice
gives the bits aV taken from A’s output string a as advice bits to Eve. Eve makes a prediction
e for Bob’s output. Alice checks that the event GA

<k0
is satisfied. If not she aborts. If so,

by Claim 99 we know that both CHSHj0 and GA
j0
are satisfied with probability at least 0.98,

so this must be so with probability at least 0.92 for each of the four possible pair of inputs
(x, y) given to A and B in the j0-th block.

Alice makes her prediction as follows: if either A’s input was (A, 0) and its output agrees
with Eve’s prediction on at least a 0.99 fraction of positions (in the j0-th block), or A’s
input was (A, 1) and its output agrees with Eve’s prediction on a fraction of positions that
is between 0.48 and 0.52 she claims “Bod had a 0”. Otherwise she claims “Bob had a 1”.
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Clearly if Bob is using (A, 0) as his input then Alice will predict correctly with probability
at least 0.92, since in that case GA

j0
implies that Eve predicts B’s output with at most 1%

of error. If he is using (B, 1) then GA
j0

implies that Eve’s prediction will be within 0.17
relative Hamming distance of B’s output in block j0. By the CHSH constraint A’s output
must also be within 0.16 of B’s output, whatever input Alice chooses. Hence A’s output is
always within 0.43 < 0.49 of B’s, meaning Alice will correctly claim Bob had a 1 whenever
her input is (A, 1). Hence in that case she correctly predicts Bob’s input with probability at
least 0.92/2.

Overall, conditioned on Alice not aborting her prediction is correct with probability at
least 0.69 over the choice of a random input for Bob, indicating a violation of the no-signaling
assumption on the boxes and proving Theorem 94.
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Chapter 10

Multiprover interactive proofs with
quantum messages

In this chapter we prove some general structural properties of multiprover interactive
proof systems in which the verifier is quantum and exchanges quantum messages with a
polynomial number of entangled provers, i.e. QMIP∗ systems. A novelty of our approach is
that our results make extensive use of prior shared entanglement, which is required even for
honest provers. To the best of our knowledge all previous results in this area have focused
on studying the negative effects of entanglement, i.e., whether or not dishonest entangled
provers can break proof systems that are sound for any dishonest unentangled provers. Our
work is the first to focus on the positive aspects of entanglement, where shared entanglement
may be advantageous to honest provers.

The main result of this chapter is that any quantum k-prover interactive proof system
that may involve polynomially many rounds can be parallelized to a one-round quantum
(k + 1)-prover interactive proof system of perfect completeness and such that the gap between
completeness and soundness is still bounded by an inverse-polynomial.

To state our results more precisely, let QMIP∗(k,m, c, s) denote the class of languages
having m-turn quantum k-prover interactive proof systems with completeness at least c and
soundness at most s, where provers are allowed to share an arbitrary amount of entanglement,
as defined in Chapter 3. We will call the difference c − s the “gap”. As commonly used in
classical multi-prover interactive proofs we use the term “round” to describe an interaction
consisting of questions from the verifier followed by answers from the provers. We use the
term “turn” for messages sent in one direction. One round consists of two turns: a turn for
the verifier and a turn for the provers. Throughout this chapter we assume that the number
m of turns and the number k of provers are functions in poly, and that completeness c and
soundness s are polynomial-time computable functions of the input size, with values in [0, 1].
We show the following main theorem.

Theorem 100. For any k,m ∈ poly and c, s satisfying c− s ∈ poly−1 there exists a function
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p ∈ poly such that

QMIP∗(k,m, c, s) ⊆ QMIP∗
(
k + 1, 2, 1, 1− 1

p

)
.

Since it is easy to amplify the success probability without increasing the number of rounds
by running multiple instances of a proof system in parallel using a different set of provers
for every instance, the above theorem shows that one-round (i.e., two-turn) QMIP∗ systems
are as powerful as general QMIP∗ systems.

Corollary 101. For any k,m, p ∈ poly and c, s satisfying c− s ∈ poly−1, there exists a
function k′ = O(k pm2/(c− s)2) such that

QMIP∗(k,m, c, s) ⊆ QMIP∗(k′, 2, 1, 2−p).

The proof of our main theorem comes in three parts, corresponding to Section 10.2,
Section 10.3, and Section 10.4. The first part shows how to convert any QMIP∗ system
with two-sided bounded error into one with one-sided bounded error of perfect completeness
without changing the number of provers. The second part shows that any QMIP∗ system
with polynomially many turns can be parallelized to one with only three turns in which the
gap between completeness and soundness is still bounded by an inverse-polynomial. Again
the number of provers remains the same in this transformation. Finally, the third part
shows that any three-turn QMIP∗ system with sufficiently large gap can be converted into a
two-turn (i.e., one-round) QMIP∗ system with inverse-polynomial gap, by adding an extra
prover.

Similar statements to our first and second parts have already been shown in [70] for
single-prover quantum interactive proofs. Their proofs, however, heavily rely on the fact
that a single quantum prover can apply arbitrary operators over all the space except for
the private space of the verifier. This is not the case any more for quantum multi-prover
interactive proofs, since now a quantum prover cannot access the qubits in the private spaces
of the other quantum provers, in addition to those in the private space of the verifier. Hence
new methods are required for the multi-prover case.

10.1 Proof overview

To transform proof systems so that they have perfect completeness, our basic idea is to adapt
the quantum rewinding technique developed for quantum zero-knowledge proofs by [126] to
our setting. We show how the main idea behind this technique can be used to “rewind” an
unsuccessful computation that would result in rejection into a successful one. To this end,
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we first modify the proof system so that the honest provers can convince the verifier with
probability exactly 1

2
using some initial shared state and moreover no other initial shared

state achieves a higher acceptance probability. This initial shared state corresponds to the
auxiliary state in the case of quantum zero-knowledge proofs, and as in that scenario we
can prove that the sequence of forward, backward, and forward executions of the protocol
achieves perfect completeness. The obvious problem of this construction lies in proving
soundness, as the dishonest provers may not use the same strategies for all of the three
executions of the proof system. To settle this, we design a simple protocol that tests if the
second backward execution is indeed a backward simulation of the first forward execution.
The verifier performs with equal probability either the original rewinding protocol or this
invertibility test without revealing which test the provers are undergoing. This forces the
provers to use essentially the same strategies for the first two executions of the protocol,
which is sufficient to bound the soundness. As a result we prove the following.

Theorem 102. For any k,m, p ∈ poly and c, s satisfying c− s ∈ poly−1, there exists a
function m′ ∈ poly such that

QMIP∗(k,m, c, s) ⊆ QMIP∗(k,m′, 1, 2−p).

For the parallelization to three turns, our approach is to first show that any QMIP∗

system with sufficiently large gap can be converted into another QMIP∗ system with the
same number of provers, in which the number of rounds (turns) becomes almost half of that
in the original proof system. The proof idea is that the verifier in the first turn receives the
snapshot state from the original system after (almost) half of turns have been executed, and
then with equal probability executes either a forward-simulation or a backward-simulation
of the original system from that turn on. Thus, honest provers have to share the snapshot
state of the original system, but only have to simulate the original system to convince the
verifier after that. In contrast, any strategy of dishonest provers with unallowable high
success probability would lead to a strategy of dishonest provers in the original system that
contradicts the soundness condition. By repeatedly applying this modification, together with
Theorem 102 as preprocessing, we can convert any QMIP∗ system into a three-turn QMIP∗

system with the same number of provers that still has an inverse-polynomial gap.

Theorem 103. For any k,m ∈ poly and c, s satisfying c− s ∈ poly−1, there exists a function
p ∈ poly such that

QMIP∗(k,m, c, s) ⊆ QMIP∗
(
k, 3, 1, 1− 1

p

)
.

For k = 1, this gives an alternative proof of the parallelization theorem due to [70] for
single-prover quantum interactive proofs. It is interesting to note that our parallelization
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method does not need the controlled-swap test at all, while it is the key test in the Kitaev-
Watrous parallelization method. Another point worth mentioning in our method is that,
at every time step of our parallelized protocol, the whole system has only one snapshot
state of the original system. This is in contrast to the fact that the whole system has to
simultaneously treat many snapshot states in the Kitaev-Watrous method. The merit of our
method is, thus, that we do not need to treat the possible entanglement among different
snapshot states when analyzing soundness, which may be a main reason why our method
works well even for the multi-prover case. Moreover, our method is more space-efficient than
the Kitaev-Watrous method, in particular when we parallelize a system with polynomially
many rounds.

To prove the third part, we will take a detour by proving that

(i) any three-turn QMIP∗ system with sufficiently large gap can be modified to a three-
turn public-coin QMIP∗ system with the same number of provers and a gap of roughly
similar order of magnitude, and

(ii) any three-turn public-coin QMIP∗ system can be converted into a two-turn QMIP∗

system without changing completeness and soundness, by adding one extra prover.

The notion of public-coin QMIP∗ systems we use is a natural generalization of public-coin
quantum interactive proofs in the single-prover case introduced by [81]. The corresponding
complexity class is denoted by QMIP∗pub(k,m, c, s). Intuitively, at every round, a public-coin
quantum verifier flips a fair classical coin at most polynomially many times, and then simply
broadcasts the result of these coin-flips to all the provers. Property (i) is a generalization of
the result by [81] to the multi-prover case, whereas property (ii) is completely new. We note
that the protocol that arises in the proof of property (ii) is no longer public-coin. It is not
hard to see that this cannot be avoided unless BP · PP = PSPACE: two-turn public-coin
systems with any number of provers are in fact equivalent to single-prover two-turn public-
coin systems (i.e., QAM systems), which are at most as powerful as BP · PP [81]. A simple
proof of this fact is given in Theorem 112 at the end of Section 10.4.1.

The idea to prove (ii), assuming that the number of provers in the original proof system is
k, is to send questions only to the first k provers in the new (k + 1)-prover system, requesting
the original second messages from the k provers in the original system. The verifier expects
to receive from the (k + 1)-st prover the original first messages from the k provers in the
original system without asking any question to that prover. The public-coin property of
the original system implies the nonadaptiveness of the messages from the verifier, which is
essential to prove (ii). In fact, there is a way of directly proving the third part, but our
detour enables us to show another two important properties of QMIP∗ systems. Specifically,
property (i) essentially proves the equivalence of public-coin quantum k-prover interactive
proofs and general quantum k-prover interactive proofs, for any k.

Theorem 104. For any k,m, p ∈ poly and c, s satisfying c− s ∈ poly−1, there exists a func-
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tion m′ ∈ poly such that

QMIP∗(k,m, c, s) ⊆ QMIP∗pub(k,m
′, 1, 2−p).

Note that in the classical case, public-coin multi-prover interactive proofs are only as pow-
erful as single-prover interactive proofs — since every prover receives the same question from
the verifier, every prover knows how other provers will behave and the joint strategy of the
provers can therefore simulate any strategy of a single prover. Hence, these systems cannot
be as powerful as general classical multi-prover interactive proofs unless NEXP = PSPACE.
In contrast, our result shows that in the quantum case, public-coin QMIP∗ systems are as
powerful as general QMIP∗ systems. The non-triviality of public-coin QMIP systems may
be explained as follows: even if every quantum prover knows how other quantum provers
will behave, still each quantum prover can apply only local transformations over a part of
some state that may be entangled among the provers, which is not enough to simulate every
possible strategy a single quantum prover could follow.

Property (ii) for the case k = 1 implies that any language in QIP (and thus in PSPACE)
has a two-prover one-round quantum interactive proof system of perfect completeness with
exponentially small error in soundness, since any language in QIP has a three-turn public-
coin quantum interactive proof system of perfect completeness with exponentially small error
in soundness [81].

Corollary 105. For any p ∈ poly,

QIP ⊆ QMIP∗(2, 2, 1, 2−p).

In the classical case a similar statement to the last corollary was shown by [24] (and the
stronger statement that two-prover one-round interactive proofs are as powerful as general
multi-prover interactive proofs was shown later by [44]). All these results are, however, not
known to hold under the existence of prior entanglement among the provers. Before our
result, it has even been open if PSPACE has two-prover one-round quantum interactive
proof systems. Very recently, [68] succeeded in proving that the classical two-prover one-
round interactive proof system for PSPACE by [24] is sound in a weak sense against any pair
of dishonest prior-entangled provers: soundness is bounded away from one by an inverse-
polynomial. After the completion of the present work, [59] improved the result by [68] to
show that the same system for PSPACE has exponentially small soundness even against
no-signaling provers (hence against entangled provers), and thus, PSPACE is now known to
have classical two-prover one-round interactive proof systems even with entangled provers.
These results are incomparable to ours since on one hand we have the inclusion even for
QIP, and on the other hand both the verifier and the honest provers must be quantum. In
contrast, in [68] and [59] both of them just follow a classical protocol.
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10.2 Achieving Perfect Completeness

In this section we prove Theorem 102, showing that any QMIP∗ system with two-sided
bounded error can be transformed into a one with one-sided bounded error of perfect com-
pleteness without changing the number of provers. For the case of a single prover, this was
shown by [70], but their proof relies on the single prover performing a global unitary on
the whole system, and therefore does not carry over to the multi-prover case (no prover has
access to the private spaces of other provers and the private space of each prover might be
arbitrarily large, and thus, we cannot use the verifier to transfer those spaces from one prover
to any other).

When proving statements that involve the perfect-completeness property, we assume
that our universal gate set satisfies some conditions, which may not hold with an arbitrary
universal gate set. Specifically, we assume that the Hadamard transformation and any
classical reversible transformations are exactly implementable in our gate set. Note that
this condition is satisfied by most of the standard gate sets including the Shor basis [107]
consisting of the Hadamard gate, the controlled-i-phase-shift gate, and the Toffoli gate, and
thus, we believe that this condition is not restrictive. We stress that most of our main
statements do hold with an arbitrary choice of universal gate set (the only thing that would
change is that the completeness and soundness conditions may become worse by negligible
amounts in some of the claims, which does not affect the final main statements).

First, we introduce the notion of perfectly rewindable QMIP∗ systems.

Definition 106. Let s < 1
2
. A language L has a perfectly rewindable m-turn quantum k-

prover interactive proof system with soundness at most s iff there exists anm-turn polynomial-
time quantum verifier V , such that, for every input x:

(Perfect Rewindability) if x ∈ L, there exists a set of m-turn quantum provers P1, . . . , Pk

such that max|Φ〉 pacc(x, V, P1, . . . , Pk, |Φ〉) = 1
2
, where the maximum is taken over all a

priori shared states |Φ〉 prepared by P1, . . . , Pk.

(Soundness) if x 6∈ L, for any set of m-turn quantum provers P ′1, . . . , P
′
k and any a priori

shared state |Φ′〉, pacc(x, V, P ′1, . . . , P ′k, |Φ′〉) ≤ s.

Note that in the perfect rewindability property we first fix the provers’ transformations
and then maximize over all a priori shared states, which hence have a fixed dimension. We
first show how to modify any general QMIP∗ system (with some appropriate conditions on
completeness and soundness) to a perfectly rewindable one with the same k and m.

Lemma 107. Let c ≥ 1
2
> s. Then, any language L in QMIP∗(k,m, c, s) has a perfectly

rewindable m-turn quantum k-prover interactive proof system with soundness at most s.

Proof. Let L be a language in QMIP∗(k,m, c, s) and V be the correspondingm-turn quantum
verifier. We slightly modify V to construct anotherm-turn quantum verifierW for a perfectly
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rewindable proof system for L. The new verifierW , in addition to the registers of V , prepares
another single-qubit register B, initialized to |0〉. For the firstm−2 turns,W simply simulates
V . In the (m− 1)-st turn, a turn for the verifier, W proceeds like V would, but sends B to
the first prover in addition to the qubits V would send in the original proof system. In the
m-th turn the first prover is requested to send B back to W , in addition to the qubits sent
to V in the original proof system. Then W proceeds for the final decision procedure like
V would, but accepts iff V would have accepted and B is in the state |1〉. Notice that W
accepts only if V would have accepted. Hence the soundness is obviously at most s in the
constructed proof system.

For perfect rewindability we slightly modify the protocol for honest provers in the case
x ∈ L. Let |Φ∗〉 be the a priori shared state in the original proof system that maximizes
the acceptance probability for the original honest provers and let pmax be that maximal
acceptance probability. The new provers use |Φ∗〉 as the a priori shared state and simulate
the original provers except for the last turn. The only difference is that in the last turn the
first prover proceeds as P1 would, and applies a one-qubit unitary T to the qubit in B,

T : |0〉 7→
√
1− 1

2pmax

|0〉+
√

1

2pmax

|1〉.

¿From the construction it is obvious that the maximum accepting probability is exactly
equal to 1

2
and that this maximum is achieved when the provers use the a priori shared state

|Φ∗〉.

Now, we are ready to show the following lemma.

Lemma 108. Let c ≥ 1
2
and s < 1

25
. Then,

QMIP∗(k,m, c, s) ⊆ QMIP∗
(
k, 3m, 1,

1

2
+ 2
√
s+

5s

2

)
.

Proof. The intuitive idea behind the proof of this lemma, using the “quantum rewinding
technique” by [126], has already been explained in the introduction. We add some more
intuition before proceeding to the technical proof. Using Lemma 107 we can assume that
in the case of honest provers (i.e., x ∈ L) the acceptance probability with shared state |Φ∗〉
is exactly 1

2
and furthermore that no other a priori shared state achieves higher acceptance

probability. The acceptance probability when the provers use any shared state |Φ〉 can be
written as pacc = ‖ΠaccQ|Ψ〉‖2 = ‖ΠaccQΠinit|Ψ〉‖2, where |Ψ〉 = |0 · · · 0〉(V,M1,...,Mk) ⊗ |Φ〉, Q
is the unitary transformation induced by the QMIP∗ system just before the verifier’s final
measurement, Πinit is the projection onto states in which all the qubits in (V,M1, . . . ,Mk)
are in state |0〉 and Πacc is the projection onto accepting states in the original proof system
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(i.e., states with the designated output qubit being |1〉). In other words the state |Ψ∗〉 =
|0 · · · 0〉(V,M1,...,Mk) ⊗ |Φ∗〉 maximizes the expression

max
|Ψ〉
〈Ψ|ΠinitQ

†ΠaccQΠinit|Ψ〉,

meaning that the matrixM = ΠinitQ
†ΠaccQΠinit has maximum eigenvalue 1

2
with correspond-

ing eigenvector |Ψ∗〉. Now we apply the quantum rewinding technique by performing forward,
backward, and forward executions of the proof system in sequence. Perfect completeness fol-
lows from the fact that the initial state is an eigenvector of M with the corresponding
eigenvalue exactly 1

2
, and the proof is similar to that of the zero-knowledge scenario [126].

The challenge of this construction lies in the proof of soundness. If the input is a no-
instance, the maximum eigenvalue of any matrix M corresponding to our proof system is
small. This shows that if the dishonest provers are actually “not so dishonest”, i.e., if they
use the same strategies for all of the three (forward, backward, and forward) executions of
the original proof system, the acceptance probability is still small. However, the problem
arises when the dishonest provers change their strategies for some of the three executions.
To settle this, we design a simple protocol that tests if the backward execution is indeed
a backward simulation of the first forward execution. The verifier performs the original
rewinding protocol or this invertibility test uniformly at random without revealing which
test the provers are undergoing. Honest provers always pass this invertibility test, and thus
perfect completeness is preserved. When the input is a no-instance, this forces the provers to
use approximately the same strategies for the first two executions of the proof system, which
is sufficient to bound the soundness. We note that, as is shown by the example at the end
of this section, the invertibility test is necessary — without it, in some proof systems, the
provers can apply a backwards execution that is different from the inverse of their forward
execution, and are accepted with certainty even if their maximum acceptance probability in
the original proof system was zero.

We now proceed with the technical details of the proof. Let L be a language in QMIP∗(k,m, c, s)
and let V be the verifier in the perfectly rewindable m-turn quantum k-prover interactive
proof system for L as per Lemma 107. We construct a 3m-turn quantum verifier W of a
new quantum k-prover interactive proof system for L. W has the same registers as V in
the original proof system, and performs one of the two tests, which we call “Rewinding

Test” and “Invertibility Test”. The exact protocol is described in Figure 10.1, where
for simplicity it is assumed that m is even (the case in which m is odd can be proved in a
similar manner).

Completeness: Assume the input x is in L. From the original provers P1, . . . , Pk we
design honest provers R1, . . . , Rk for the constructed 3m-turn system. Each new prover Ri

has the same quantum register Pi as Pi has, and the new provers initially share |Φ∗〉. For
the first m turns each Ri simulates Pi. At the (m + 2j)-th turn for 1 ≤ j ≤ m

2
, Ri applies

(P
m
2
−j+1

i )† (i.e., the inverse of Pi’s transformation at the (m−2j+2)-nd turn in the original
system). Finally, for the (2m+ 2j)-th turn for 1 ≤ j ≤ m

2
, Ri again applies P j

i .
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Verifier’s Protocol for Achieving Perfect Completeness

1. Simulate the original verifier for the first m turns.

2. Choose b ∈ {0, 1} uniformly at random. If b = 0, move to the Rewinding Test described
in Step 3, while if b = 1, move to the Invertibility Test described in Step 4.

3. (Rewinding Test)

3.1 Apply V
m
2
+1 to the qubits in (V,M1, . . . ,Mk). Accept if the content of (V,M1, . . . ,Mk)

corresponds to an accepting state in the original proof system. Otherwise apply
(V

m
2
+1)† to the qubits in (V,M1, . . . ,Mk), and send Mi to the i-th prover, for 1 ≤ i ≤ k.

3.2 For j = m
2 down to 2, do the following:

Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply (V j)† to the qubits in
(V,M1, . . . ,Mk), and send Mi to the i-th prover, for 1 ≤ i ≤ k.

3.3 Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply (V 1)† to the qubits in
(V,M1, . . . ,Mk). Perform a controlled-phase-flip: multiply the phase by −1 if all the
qubits in (V,M1, . . . ,Mk) are in state |0〉. Apply V 1 to the qubits in (V,M1, . . . ,Mk),
and send Mi to the i-th prover, for 1 ≤ i ≤ k.

3.4 For j = 2 to m
2 , do the following:

Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply V j to the qubits in
(V,M1, . . . ,Mk), and send Mi to the i-th prover, for 1 ≤ i ≤ k.

3.5 Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply V
m
2
+1 to the qubits in

(V,M1, . . . ,Mk). Accept if the content of (V,M1, . . . ,Mk) corresponds to an accept-
ing state in the original proof system, and reject otherwise.

4. (Invertibility Test)

4.1 Send Mi to the i-th prover, for 1 ≤ i ≤ k.

4.2 For j = m
2 down to 2, do the following:

Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply (V j)† to the qubits in
(V,M1, . . . ,Mk), and send Mi to the i-th prover, for 1 ≤ i ≤ k.

4.3 Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply (V 1)† to the qubits in
(V,M1, . . . ,Mk). Accept if all the qubits in (V,M1, . . . ,Mk) are in state |0〉, and re-
ject otherwise.

Figure 10.1: Verifier’s protocol for achieving perfect completeness
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It is obvious from this construction that the provers R1, . . . , Rk can convince W with
certainty whenW performs the Invertibility Test. We show that R1, . . . , Rk can convince
W with certainty even when W performs the Rewinding Test. In short, this holds for
essentially the same reason that the quantum rewinding technique works well in the case of
quantum zero-knowledge proofs, and we will closely follow that proof.

For notational convenience, let

P̃ j = P j
1 ⊗ · · · ⊗ P j

k

for 1 ≤ j ≤ m
2
, and let

Q = V
m
2
+1P̃

m
2 V

m
2 · · · P̃ 1V 1.

Recall that M |Ψ∗〉 = 1
2
|Ψ∗〉 where M = ΠinitQ

†ΠaccQΠinit. Define the unnormalized states
|φ0〉, |φ1〉, |ψ0〉, and |ψ1〉 by

|φ0〉 = ΠaccQ|Ψ∗〉, |φ1〉 = ΠrejQ|Ψ∗〉,
|ψ0〉 = ΠinitQ

†|φ0〉, |ψ1〉 = ΠillegalQ
†|φ0〉,

where Πillegal = I(V,M1,...,Mk) − Πinit is the projection onto states orthogonal to |0 · · · 0〉(V,M1,...,Mk)

and Πrej = I(V,M1,...,Mk) − Πacc is the projection onto rejecting states. Then, noticing that
|Ψ∗〉 = Πinit|Ψ∗〉, we have

|ψ0〉 = ΠinitQ
†ΠaccQ|Ψ∗〉 = ΠinitQ

†ΠaccQΠinit|Ψ∗〉 =M |Ψ∗〉 = 1

2
|Ψ∗〉,

and thus,

Q†|φ1〉 = Q†ΠrejQ|Ψ∗〉 = |Ψ∗〉 −Q†ΠaccQ|Ψ∗〉
= |Ψ∗〉 −Q†|φ0〉 = 2|ψ0〉 − (|ψ0〉+ |ψ1〉) = |ψ0〉 − |ψ1〉.

Hence, the state just before the controlled-phase-flip in Step 3.3 when entering the
Rewinding Test is exactly

1

‖|φ1〉‖
Q†|φ1〉 =

1

‖|φ1〉‖
(|ψ0〉 − |ψ1〉).

Since Πinit|ψ0〉 = |ψ0〉 and Πinit|ψ1〉 = 0, the controlled-phase-flip changes the state to

− 1

‖|φ1〉‖
(|ψ0〉+ |ψ1〉) = −

1

‖|φ1〉‖
Q†|φ0〉.

Therefore, the state just after V
m
2
+1 is applied in Step 3.5 is exactly

− 1

‖|φ1〉‖
QQ†|φ0〉 = −

1

‖|φ1〉‖
|φ0〉,
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and thus, the fact that Πacc|φ0〉 = |φ0〉 implies that the verifierW always accepts in Step 3.5.
Soundness: Now suppose that the input x is not in L. Let R′1, . . . , R

′
k be any k provers

for the constructed 3m-turn proof system, and let |ψ〉 be any a priori shared state. Let Rj
i

be the transformation that R′i applies at his 2j-th turn, for 1 ≤ i ≤ k and 1 ≤ j ≤ 3m
2

and
let Z denote the controlled-phase-flip operator in Step 3.3. Let

R̃j = Rj
1 ⊗ · · · ⊗Rj

k

for 1 ≤ j ≤ 3m
2
, and define

U1 = R̃
m
2 V

m
2 · · · R̃2V 2R̃1V 1,

U2 = (V 1)†R̃m · · · (V m
2
−1)†R̃

m
2
+2(V

m
2 )†R̃

m
2
+1,

U3 = R̃
3m
2 V

m
2 · · · R̃m+2V 2R̃m+1V 1.

There are three cases of acceptance in the constructed proof system. In the first case, the
verifier W performs the Rewinding Test and accepts in Step 3.1. This happens with
probability p1

2
, where

p1 = ‖ΠaccV
m
2
+1U1|ψ〉‖2.

In the second case, the verifier W performs the Rewinding Test and accepts in Step 3.5.
This happens with probability p2

2
, where

p2 = ‖ΠaccV
m
2
+1U3ZU2(V

m
2
+1)†ΠrejV

m
2
+1U1|ψ〉‖2.

Finally, in the third case, the verifier W performs the Invertibility Test and accepts in
Step 4.3. This happens with probability p3

2
, where

p3 = ‖ΠinitU2U1|ψ〉‖2.

Hence, the total probability pacc that W accepts x when communicating with R′1, . . . , R
′
k is

given by pacc =
1
2
(p1 + p2 + p3). From the soundness condition of the original proof system,

it is obvious that p1 ≤ s. We shall show that p2 ≤ 1 + 4
√
s+ 4s− p3. This implies that

pacc ≤ 1
2
+ 2
√
s+ 5s

2
, and the soundness condition follows.

Using the triangle inequality, we have that

‖ΠaccV
m
2
+1U3ZU2(V

m
2
+1)†ΠrejV

m
2
+1U1|ψ〉‖

≤ ‖ΠaccV
m
2
+1U3ZU2(V

m
2
+1)†ΠrejV

m
2
+1U1|ψ〉 − ΠaccV

m
2
+1U3ZU2U1|ψ〉‖

+ ‖ΠaccV
m
2
+1U3ZU2U1|ψ〉 − ΠaccV

m
2
+1U3ZΠinitU2U1|ψ〉‖

+ ‖ΠaccV
m
2
+1U3ZΠinitU2U1|ψ〉‖.

(10.1)
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The first term of the right-hand side of inequality (10.1) can be bounded from above as
follows:

‖ΠaccV
m
2
+1U3ZU2(V

m
2
+1)†ΠrejV

m
2
+1U1|ψ〉 − ΠaccV

m
2
+1U3ZU2U1|ψ〉‖

≤ ‖V m
2
+1U3ZU2(V

m
2
+1)†ΠrejV

m
2
+1U1|ψ〉 − V

m
2
+1U3ZU2U1|ψ〉‖

= ‖(V m
2
+1)†ΠrejV

m
2
+1U1|ψ〉 − U1|ψ〉‖

= ‖ΠrejV
m
2
+1U1|ψ〉 − V

m
2
+1U1|ψ〉‖

= ‖ − ΠaccV
m
2
+1U1|ψ〉‖ = ‖ΠaccV

m
2
+1U1|ψ〉‖ =

√
p1 ≤

√
s.

The second term of the right-hand side of inequality (10.1) can be bounded from above as
follows:

‖ΠaccV
m
2
+1U3ZU2U1|ψ〉 − ΠaccV

m
2
+1U3ZΠinitU2U1|ψ〉‖

≤ ‖V m
2
+1U3ZU2U1|ψ〉 − V

m
2
+1U3ZΠinitU2U1|ψ〉‖

= ‖U2U1|ψ〉 − ΠinitU2U1|ψ〉‖ = ‖ΠillegalU2U1|ψ〉‖ =
√

1− p3.

Here the last equality follows from the facts that U2U1|ψ〉 = ΠinitU2U1|ψ〉+ΠillegalU2U1|ψ〉 is a
unit vector, that ΠinitU2U1|ψ〉 and ΠillegalU2U1|ψ〉 are orthogonal, and that ‖ΠinitU2U1|ψ〉‖2 = p3.

Finally, since ΠinitU2U1|ψ〉 is an unnormalized state parallel to some legal initial state
and ZΠinit = −Πinit from the definitions of Z and Πinit, the third term of the right-hand
side of inequality (10.1) can be bounded as follows by using the soundness condition of the
original proof system:

‖ΠaccV
m
2
+1U3ZΠinitU2U1|ψ〉‖ = ‖ − ΠaccV

m
2
+1U3ΠinitU2U1|ψ〉‖

= ‖ΠaccV
m
2
+1U3ΠinitU2U1|ψ〉‖ ≤

√
s.

Putting everything together, we have

p2 = ‖ΠaccV
m
2
+1U3ZU2(V

m
2
+1)†ΠrejV

m
2
+1U1|ψ〉‖2

≤
(
2
√
s+

√
1− p3

)2
= 1 + 4

√
s(1− p3) + 4s− p3 ≤ 1 + 4

√
s+ 4s− p3,

as desired.

To finish the proof of Theorem 102 it suffices to repeat sequentially the proof system
obtained in Lemma 108 an appropriate number of times (and accept if and only if all the
original verifiers would have accepted every time). To see that this reduces soundness expo-
nentially with the number of repetitions, imagine by contradiction that there exists a set of
provers that succeeds in the k-th repetition of the proof system with probability s′ greater
than the soundness s in the original proof system. Then we can construct provers for the
original proof system by letting them initially share the state of the provers at the end of
the (k − 1)-st repetition of the new proof system. These provers would be accepted with
probability s′ > s, a contradiction.
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Necessity of the invertibility test. Consider the following single-prover two-turn quan-
tum interactive proof system. The verifier initially has a state |000〉 of three qubits, where
the first two qubits are in his private space and the last one is the message register. He sends
the message register to the prover, receives it back, and then applies the transformation U
which maps |001〉 7→ |010〉, |011〉 7→ |110〉, and conversely |010〉 7→ |001〉, |110〉 7→ |011〉, and
leaves all the other basis states unchanged. After his transformation, the verifier again sends
the message register to the prover, receives it back, and finally accepts if anf only if the final
state of the system is |111〉.

It is easy to see that the prover’s maximum winning probability in this protocol is zero.
However, we can design a prover that passes with certainty the Rewinding Test induced
from this protocol, by having him apply the transformation |0〉 7→ |1〉 in both of his actions
during the first forward phase, applying the identity and then |0〉 7→ |1〉 in the backward
phase, and applying twice the identity in the last forward phase. It is easy to check that this
prover succeeds in the Rewinding Test with certainty, and thus, we cannot achieve perfect
completeness with theRewinding Test only. Note that this prover fails the Invertibility
Test with certainty, and the Invertibility Test is indeed helpful in this case.

10.3 Parallelizing to Three Turns

In this section we prove Theorem 103, which reduces the number of turns to three without
changing the number of provers. This is done by repeatedly converting any (2l + 1)-turn
QMIP∗ system into a (2l−1 + 1)-turn QMIP∗ system where the gap decreases, but is still
bounded by an inverse polynomial. We first show the following lemma.

Lemma 109. For any c, s satisfying c2 > s,

QMIP∗(k, 4m+ 1, c, s) ⊆ QMIP∗
(
k, 2m+ 1,

1 + c

2
,
1 +
√
s

2

)
.

Proof. Let L be a language in QMIP∗(k, 4m+ 1, c, s) and let V be the corresponding (4m+ 1)-
turn quantum verifier. We construct a (2m+ 1)-turn quantum verifier W for the new quan-
tum k-prover interactive proof system for L. The idea is that W first receives the snapshot
state that V would have in (V,M1, . . . ,Mk) just after the (2m+ 1)-st turn of the original
system. W then executes with equal probability either a forward-simulation of the original
system from the (2m+ 1)-st turn or a backward-simulation of the original system from the
(2m+ 1)-st turn. In the former case W accepts if and only if the simulation results in ac-
ceptance in the original proof system, while in the latter case W accepts if and only if all
the qubits in V are in state |0〉 (recall that in the original proof system the first turn was
done by the provers, hence we do not measure the qubits in each Mi here). The details are
given in Figure 10.2.
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Verifier’s Protocol to Half the Number of Turns

1. Receive V and M1 from the first prover and Mi from the i-th prover for 2 ≤ i ≤ k.

2. Choose b ∈ {0, 1} uniformly at random.

3. If b = 0, execute a forward-simulation of the original proof system as follows:

3.1 Apply V m+1 to the qubits in (V,M1, . . . ,Mk). Send b and Mi to the i-th prover, for
1 ≤ i ≤ k.

3.2 For j = m+ 2 to 2m, do the following:
Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply V j to the qubits in
(V,M1, . . . ,Mk). Send Mi to the i-th prover, for 1 ≤ i ≤ k.

3.3 Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply V 2m+1 to the qubits in
(V,M1, . . . ,Mk). Accept if the content of (V,M1, . . . ,Mk) is an accepting state of the
original proof system, and reject otherwise.

4. If b = 1, execute a backward-simulation of the original proof system as follows:

4.1 Send b and Mi to the i-th prover, for 1 ≤ i ≤ k.

4.2 For j = m down to 2, do the following:
Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply (V j)† to the qubits in
(V,M1, . . . ,Mk). Send Mi to the i-th prover, for 1 ≤ i ≤ k.

4.3 Receive Mi from the i-th prover, for 1 ≤ i ≤ k. Apply (V 1)† to the qubits in
(V,M1, . . . ,Mk). Accept if all the qubits in V are in state |0〉, and reject otherwise.

Figure 10.2: Verifier’s protocol to reduce the number of turns by half.

Completeness: Assume the input x is in L. Let P1, . . . , Pk be the honest quantum provers
in the original proof system with a priori shared state |Φ〉. Let |ψ2m+1〉 be the quantum state
in (V,M1, . . . ,Mk,P1, . . . ,Pk) just after the (2m+ 1)-st turn in the original proof system. We
construct honest provers R1, . . . , Rk for the new (2m+ 1)-turn system. In addition to V and
M1, R1 prepares P1 in his private space. Similarly, in addition to Mi, Ri prepares Pi in his
private space for 2 ≤ i ≤ k. R1, . . . , Rk initially share |ψ2m+1〉 in (V,M1, . . . ,Mk,P1, . . . ,Pk).
At the first turn of the constructed proof system, R1 sends V and M1 to W , while each Ri,
for 2 ≤ i ≤ k, sends Mi to W . At the (2j − 1)-st turn for 2 ≤ j ≤ m+ 1, if b = 0, each Ri

applies Pm+j
i (i.e., Pi’s transformation at the (2m + 2j − 1)-st turn in the original system)

while if b = 1, each Ri applies (Pm−j+3
i )† (i.e., the inverse of Pi’s transformation at the

(2m − 2j + 5)-th turn in the original system) to the qubits in (Pi,Mi), for 1 ≤ i ≤ k. The
provers R1, . . . , Rk can then clearly convince W with probability at least c if b = 0, and with
certainty if b = 1. Hence, W accepts every input x ∈ L with probability at least 1+c

2
.
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Soundness: Now suppose that x is not in L. Let R′1, . . . , R
′
k be arbitrary provers for

the constructed proof system, and let |ψ〉 be an arbitrary quantum state that represents the
state just after the first turn in the constructed system. Suppose that, at the (2j − 1)-st
turn for 2 ≤ j ≤ m+ 1, each R′i applies X

j
i if b = 0 and Y j

i if b = 1, for 1 ≤ i ≤ k and write

X̃j = Xj
1 ⊗ · · · ⊗Xj

k, Ỹ j = Y j
1 ⊗ · · · ⊗ Y j

k .

Define unitary transformations U0 and U1 by

U0 = V 2m+1X̃m+1V 2m · · · X̃2V m+1,

U1 = (V 1)†Ỹ m+1 · · · (V m)†Ỹ 2,

and let

|α〉 = 1

‖ΠaccU0|ψ〉‖
ΠaccU0|ψ〉, |β〉 = 1

‖ΠinitU1|ψ〉‖
ΠinitU1|ψ〉,

where Πacc is the projection onto accepting states in the original proof system and Πinit is
the projection onto states in which all the qubits in V are in state |0〉. Then

‖ΠaccU0|ψ〉‖ =
1

‖ΠaccU0|ψ〉‖
∣∣〈ψ|U †0ΠaccU0|ψ〉

∣∣

= F
(
|α〉〈α|, U0|ψ〉〈ψ|U †0

)
= F

(
U †0 |α〉〈α|U0, |ψ〉〈ψ|

)
,

and thus, the probability p0 of acceptance when b = 0 is given by

p0 = F
(
U †0 |α〉〈α|U0, |ψ〉〈ψ|

)2
.

Similarly, the probability p1 of acceptance when b = 1 is given by

p1 = F
(
U †1 |β〉〈β|U1, |ψ〉〈ψ|

)2
.

Hence the probability pacc of acceptance when W communicates with R′1, . . . , R
′
k is given by

pacc =
1

2
(p0 + p1) =

1

2

(
F
(
U †0 |α〉〈α|U0, |ψ〉〈ψ|

)2
+ F

(
U †1 |β〉〈β|U1, |ψ〉〈ψ|

)2)
.

Therefore, from Lemma 7, we have

pacc ≤
1

2

(
1 + F

(
U †0 |α〉〈α|U0, U

†
1 |β〉〈β|U1

))

=
1

2

(
1 + F

(
|α〉〈α|, U0U

†
1 |β〉〈β|U1U

†
0

))
.

Note that Πinit|β〉 = |β〉 and thus |β〉 is a legal quantum state which could appear in the
original proof system just after the first turn. Hence, from the soundness property of the
original proof system,

∥∥ΠaccU0U
†
1 |β〉

∥∥2

=
∥∥ΠaccV

2m+1X̃m+1V 2m · · · X̃2V m+1(Ỹ 2)†V m · · · (Ỹ m+1)†V 1|β〉
∥∥2 ≤ s,
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since V 1, (Ỹ m+1)†, · · · , V m, (Ỹ 2)†, V m+1, X̃2, · · · , V 2m, X̃m+1, V 2m+1 form a legal sequence
of transformations in the original proof system.

Now, from the fact that Πacc|α〉 = |α〉, we have

F
(
|α〉〈α|, U0U

†
1 |β〉〈β|U1U

†
0

)
=
∣∣〈α|U0U

†
1 |β〉

∣∣ =
∣∣〈α|ΠaccU0U

†
1 |β〉

∣∣

≤ ‖ΠaccU0U
†
1 |β〉‖ ≤

√
s.

Hence the probability pacc that W accepts x is bounded by pacc ≤ 1
2
+
√
s
2
, which completes

the proof.

Now, by repeatedly applying the construction in the proof of Lemma 109, we can reduce
the number of turns to three. The proof is straightforward, but we need to carefully keep
track of the efficiency of the constructed verifiers in each application, since the construction
is sequentially applied a logarithmic number of times.

Lemma 110. For any m ≥ 4 and any c, s such that ε = 1 − c and δ = 1 − s satisfy
δ > 2(m− 1)ε,

QMIP∗(k,m, 1− ε, 1− δ) ⊆ QMIP∗
(
k, 3, 1− 2ε

m− 1
, 1− δ

(m− 1)2

)
.

Proof. Let l be such that 2l + 1 ≤ m ≤ 2l+1 + 1. Trivially, the inclusion QMIP∗(k,m, c, s) ⊆ QMIP∗(k, 2
holds, and we show the inclusion QMIP∗(k, 2l+1 + 1, 1− ε, 1− δ) ⊆ QMIP(k, 3, 1− 2ε

m−1 , 1− δ
(m−1)2 ).

Let L be a language in QMIP∗(k, 2l+1 + 1, 1− ε, 1− δ) and let V (0) be the corresponding
(2l+1 + 1)-turn quantum verifier. Given a description of V (0) one can compute in poly-
nomial time a description of a (2l + 1)-turn quantum verifier V (1) following the proof of
Lemma 109. The resulting proof system has completeness at least 1− ε

2
and soundness at

most 1
2
+
√
1−δ
2
≤ 1− δ

4
. Crucially, the description of V (1) is at most some constant times the

size of the description of V (0) plus an amount bounded by a polynomial in the input length.
Hence it is obvious that, given a description of V (0), one can compute in polynomial time
a description of a three-turn quantum verifier V (l) by repeatedly applying the construction
in the proof of Lemma 109 l times. The resulting proof system has completeness at least
1− ε

2l
≥ 1− 2ε

m−1 and soundness at most 1− δ
4l
≤ 1− δ

(m−1)2 , as desired.

Theorem 103 now follows immediately from Theorem 102 and Theorem 110: For every p ∈
poly there exist a functionm′ ∈ poly such that the inclusions QMIP∗(k,m, c, s) ⊆ QMIP∗(k,m′, 1, 2−p)
⊆ QMIP∗

(
k, 3, 1, 1− 1−2−p

(m′−1)2
)
hold. Now it suffices to observe that 1−2−p

(m′−1)2 ∈ poly−1.
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10.4 Public-Coin Systems

In this section we present the last part to complete the proof of Theorem 100. We show how
any three-turn QMIP∗ system with sufficiently large gap can be converted into a two-turn
QMIP system with one extra prover, in which the gap is bounded by an inverse-polynomial.
Although there is also a direct proof for this, given in Section 10.4.3, we first give another
proof that takes a detour by showing how (i) any three-turn QMIP∗ system with sufficiently
large gap can be modified to a three-turn public-coin QMIP∗ system with inverse-polynomial
gap without changing the number of provers, and (ii) any three-turn public-coin QMIP∗

system can be converted into a two-turn QMIP∗ system without changing completeness and
soundness, by adding an extra prover. By parallelizing to two turns we lose the public-coin
property, and in Theorem 112 we show that this is unavoidable unless BP · PP = PSPACE:
any two-turn public-coin proof system with a polynomial number of provers can be converted
to a single-prover two-turn public-coin proof system (i.e., a quantum Arthur-Merlin proof
system).

The added benefits of our detour are a proof of the equivalence of public-coin QMIP∗

systems and general QMIP∗ systems (Theorem 104) and a proof that QIP and hence PSPACE
has two-prover one-round quantum interactive proof systems of perfect completeness and
exponentially small soundness (Corollary 105).

Remark. The direct proof in Section 10.4.3 would only give the weaker corollary that QIP
has a two-prover one-round quantum interactive proof system of perfect completeness, but
with soundness only exponentially close to 1

2
. This is indeed weaker than what we can show

with the detour, since it is not known how to amplify the success probability of QMIP∗

systems without increasing either the number of provers or the number of turns.

10.4.1 Converting to Public-Coin Systems

In this subsection we prove Theorem 104 showing that any language that has a quantum k-
prover interactive proof system with two-sided bounded error also has a public-coin quantum
k-prover interactive proof system of perfect completeness and exponentially small soundness.

We first show that any three-turn QMIP∗ system with sufficiently large gap can be
modified to a three-turn public-coin QMIP∗ system with the same number of provers and
inverse-polynomial gap. In the single-prover case, [81] proved a similar statement. Our proof
is a generalization of their proof (Theorem 5.4 in [81]) to the multi-prover case.

Lemma 111. For any c, s satisfying c2 > s,

QMIP∗(k, 3, c, s) ⊆ QMIP∗pub

(
k, 3,

1 + c

2
,
1 +
√
s

2

)
.

Moreover, the message from the verifier to each prover in the public-coin system consists of
only one classical bit.
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Verifier’s Protocol in the Three-Turn Public-Coin System

1. Receive V from the first prover and receive nothing from the i-th prover, for 2 ≤ i ≤ k.

2. Choose b ∈ {0, 1} uniformly at random. Send b to each prover.

3. Receive Mi from the i-th prover for 1 ≤ i ≤ k.

3.1 If b = 0, apply V 2 to the qubits in (V,M1, . . . ,Mk). Accept if the content of
(V,M1, . . . ,Mk) is an accepting state of the original proof system, and reject other-
wise.

3.2 If b = 1, apply (V 1)† to the qubits in (V,M1, . . . ,Mk). Accept if all the qubits in V are
in state |0〉, and reject otherwise.

Figure 10.3: Verifier’s protocol in the three-turn public-coin system.

Proof. Let L be a language in QMIP∗(k, 3, c, s) and let V be the corresponding three-turn
quantum verifier. We construct a new verifier W for the public-coin system. The idea is
that in the first turn W receives the reduced state in the register V (corresponding to the
private space of the original verifier) of the snapshot state just after the second turn (i.e.,
just after the first transformation of V ) in the original proof system. W then flips a fair
classical coin b ∈ {0, 1} and broadcasts b to the provers. At the third turn the i-th prover
is requested to send the message register Mi of the original proof system, for 1 ≤ i ≤ k.
If b = 0 the qubits in (V,M1, . . . ,Mk) should form the quantum state the original verifier
V would possess just after the third turn of the original proof system. Now W applies V 2

to the qubits in (V,M1, . . . ,Mk) and accepts if and only if the content of (V,M1, . . . ,Mk)
is an accepting state of the original proof system. On the other hand, if b = 1, the qubits
in (V,M1, . . . ,Mk) should form the quantum state the original verifier V would possess just
after the second turn of the original proof system. Now W applies (V 1)† to the qubits in
(V,M1, . . . ,Mk) and accepts if and only if all the qubits in V are in state |0〉. The detailed
description of the protocol of W is given in Figure 10.3.

Completeness: Assume the input x is in L. Let P1, . . . , Pk be the honest quantum provers
in the original proof system with a priori shared state |Φ〉 in (P1, . . . ,Pk). Let |ψ2〉 be the
quantum state in (V,M1, . . . ,Mk,P1, . . . ,Pk) just after the second turn in the original proof
system. We construct honest provers R1, . . . , Rk for the public-coin system. In addition to V

and M1, R1 prepares P1 in his private space. Similarly, in addition to Mi, Ri prepares Pi in
his private space, for 2 ≤ i ≤ k. R1, . . . , Rk initially share |ψ2〉 in (V,M1, . . . ,Mk,P1, . . . ,Pk).
At the first turn of the constructed proof system, R1 sends V to W , while each Ri, 2 ≤ i ≤ k
send nothing to W . At the third turn, if b = 0 each Ri applies P

2
i to the qubits in (Mi,Pi)

and then sends Mi to W , while if b = 1, each Ri does nothing and sends Mi to W . It is
obvious that the provers R1, . . . , Rk can convince W with probability at least c if b = 0, and
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with certainty if b = 1. Hence, W accepts every input x ∈ L with probability at least 1+c
2
.

Soundness: Now suppose that x is not in L. Let R′1, . . . , R
′
k be arbitrary provers for

the constructed proof system, and let |ψ〉 be an arbitrary quantum state that represents the
state just after the first turn in the constructed system. Suppose that at the third turn each
R′i applies Xi if b = 0 and Yi if b = 1, for 1 ≤ i ≤ k and write

X̃ = X1 ⊗ · · · ⊗Xk, Ỹ = Y1 ⊗ · · · ⊗ Yk.

Note that X̃ and Ỹ are unitary transformations that do not act over the qubits in V. Let

|α〉 = 1

‖ΠaccV 2X̃|ψ〉‖
ΠaccV

2X̃|ψ〉, |β〉 = 1

‖Πinit(V 1)†Ỹ |ψ〉‖
Πinit(V

1)†Ỹ |ψ〉,

where Πacc is the projection onto accepting states in the original proof system and Πinit is
the projection onto states in which all the qubits in V are in state |0〉.

Then, with a similar argument to that in the proof of Lemma 109, the probability pacc
that W accepts x when communicating with R′1, . . . , R

′
k+1 is bounded by

pacc ≤
1

2

(
1 + F

(
X̃†(V 2)†|α〉〈α|V 2X̃, Ỹ †V 1|β〉〈β|(V 1)†Ỹ

))

=
1

2

(
1 + F

(
|α〉〈α|, V 2X̃Ỹ †V 1|β〉〈β|(V 1)†Ỹ X̃†(V 2)†

))
.

Since Πinit|β〉 = |β〉 is a legal quantum state which could appear just after the first turn

in the original proof system, V 1,
(
X̃Ỹ †

)
, V 2 form a legal sequence of transformations in the

original proof system, and Πacc|α〉 = |α〉, again a similar argument to that in the proof of
Lemma 109 shows that

F
(
|α〉〈α|, V 2X̃Ỹ †V 1|β〉〈β|(V 1)†Ỹ X̃†(V 2)†

)
≤ √s.

Hence the probability pacc that W accepts x is bounded by pacc ≤ 1
2
+
√
s
2
, as desired.

Theorem 104 now follows directly from Theorem 103 and Theorem 111 together with
sequential repetition: Theorem 103 and Theorem 111 imply that there exists a function p′ ∈
poly such that QMIP∗(k,m, c, s) ⊆ QMIP∗

(
k, 3, 1, 1− 1

p′

)
⊆ QMIP∗pub

(
k, 3, 1, 1− 1

4p′

)
, since

1
2

(
1 +

√
1− 1

p′

)
≤ 1− 1

4p′
. Finally, sequential repetition gives that for all p ∈ poly there

exists a function m′ ∈ poly such that QMIP∗pub
(
k, 3, 1, 1− 1

4p′

)
⊆ QMIP∗pub(k,m

′, 1, 2−p).

We end this section by proving the following theorem, which shows that the parallelization
to three turns in Lemma 111 is optimal when considering public-coin systems: Theorem 112
below implies that it cannot be brought down to two turns unless BP · PP = PSPACE, which
would imply a collapse of the counting hierarchy to the second level, since BP·PP ⊆ BPPPP ⊆
PPPP. Here BP·PP is the complexity class obtained by applying the BP-operator to the class
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PP. Indeed, on one hand the inclusion QAM ⊆ BP · PP holds for the class QAM of languages
having two-turn public-coin quantum single-prover interactive proof systems [81], and on
the other hand the inclusions PSPACE ⊆ QIP ⊆ QMIP are obvious. We write QAM(c, s) to
specify completeness c and soundness s.

Theorem 112. For any k ∈ poly and for any c, s,

QMIP∗pub(k, 2, c, s) = QMIP∗pub(1, 2, c, s) = QAM(c, s).

Proof (sketch). The inclusion QAM(c, s) ⊆ QMIP∗pub(k, 2, c, s) is clear. To show that
QMIP∗pub(k, 2, c, s) ⊆ QAM(c, s), we transform a QMIP∗pub protocol into a QAM protocol in
the most straightforward manner: the verifier receives all the k proofs from the single prover,
after having sent him the results of public coin-flips. Completeness is obvious, and we only
need to check for soundness. Suppose the prover in the QAM system answers ρr when asked
r, a string of n random bits. Then the k provers in the QMIP∗pub system could share the 2n

possible quantum states ρ1, . . . , ρ2n among themselves before the protocol starts, and could
simply answer ρr to the question r (which they all received). These provers are accepted
with the same probability as the original QAM prover, and the claim follows.

10.4.2 Parallelizing to Two Turns

Finally, we prove the last piece of Theorem 100 by showing that any three-turn public-coin
quantum k-prover interactive proof system can be converted into a two-turn (i.e., one-round)
(k + 1)-prover system without changing completeness and soundness. The idea of the proof
is to send questions only to the first k provers to request the original second messages from
the k provers in the original system and to receive from the (k + 1)-st prover the original
first messages of the k provers in the original system without asking him any question.

Lemma 113. For any k ∈ poly and for any c, s,

QMIP∗pub(k, 3, c, s) ⊆ QMIP∗(k + 1, 2, c, s).

Proof. Let L be a language in QMIP∗pub(k, 3, c, s) and let V be the corresponding verifier.
The original three-turn system can be viewed as follows: At the first turn, V first receives

a quantum register Mi from the ith prover, for each 1 ≤ i ≤ k. Then V flips a fair classical
coin qM times to generate a random string r of length qM, and broadcasts r to all the provers.
V also stores r in a quantum register Q in his private space. Finally, at the third turn, V
receives a quantum register Ni from the i-th prover, for each 1 ≤ i ≤ k. V then prepares a
quantum register V for his work space, where all the qubits in V are initialized to state |0〉,
applies the transformation V final to the qubits in (Q,V,M1, . . . ,Mk,N1, . . . ,Nk), and performs
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Verifier’s Protocol in the One-Round System

1. Prepare a quantum register V, and initialize all the qubits in V to state |0〉. Flip a fair
classical coin qM times to generate a random string r of length qM. Store r in a quantum
register Q, and send r to the i-th prover for 1 ≤ i ≤ k. Send nothing to the (k + 1)-st prover.

2. Receive a quantum register Ni from the i-th prover, for 1 ≤ i ≤ k, and k
quantum registers M1, . . . ,Mk from the (k + 1)-st prover. Apply V final to the
qubits in (Q,V,M1, . . . ,Mk,N1, . . . ,Nk) and accept if and only if the content of
(Q,V,M1, . . . ,Mk,N1, . . . ,Nk) is an accepting state of the original proof system.

Figure 10.4: Verifier’s protocol to reduce the number of turns to two.

the measurement Π = {Πacc,Πrej} to decide acceptance or rejection. We construct a two-
turn quantum verifier W for the new quantum (k + 1)-prover interactive proof system for
L.

The constructed prover W starts with generating a random string r of length qM in the
first turn, and sends r to the first k provers. To the last prover, W does not send any
question. In the second turn W receives Ni from the i-th prover expecting the original
second message from the original i-th prover, for 1 ≤ i ≤ k. From the (k + 1)-st prover W
receives k quantum registers M1, . . . ,Mk, expecting the original first messages of the original
k provers. Then W proceeds like V would. A detailed description of the protocol of W is
given in Figure 10.4.

Completeness: Assume the input x is in L. Let P1, . . . , Pk be the honest provers in
the original proof system. Let |ψ1〉 be the quantum state in (M1, . . . ,Mk,P1, . . . ,Pk) in the
original proof system just after the first turn. We construct honest provers R1, . . . , Rk+1

for the two-turn system. For 1 ≤ i ≤ k, Ri prepares quantum register Pi in his private
space, where some of the qubits in Pi form the quantum register Ni, while Rk+1 prepares
the quantum registers M1, . . . ,Mk in his private space. Initially, R1, . . . , Rk+1 share |ψ1〉 in
(M1, . . . ,Mk,P1, . . . ,Pk). At the second turn, Rk+1 just sends the qubits in (M1, . . . ,Mk) to
W , while each Ri, after receiving r, just behaves like Pi would at the third turn of the original
system, and then sends Ni, which is a part of Pi, to W , for 1 ≤ i ≤ k. It is obvious from the
construction that the provers R1, . . . , Rk+1 can convince W with the same probability with
which P1, . . . , Pk could convince V , which is at least c.

Soundness: Now assume the input x is not in L. Let R′1, . . . , R
′
k+1 be any provers for

the constructed proof system and let R′i be the quantum register consisting of all the qubits
in the private space of R′i, for 1 ≤ i ≤ k + 1. For R′k+1, some of the qubits in R′k+1 form the
register M = (M1, . . . ,Mk). Let |ψ〉 be an arbitrary quantum state in (R′1, . . . ,R

′
k+1) that is

initially shared by R′1, . . . , R
′
k+1. Suppose that, at the second turn, each R′i applies X

(r)
i , for

1 ≤ i ≤ k, if the message from W is r. Without loss of generality, we assume that R′k+1 does
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nothing, and just sends the qubits in (M1, . . . ,Mk) at the second turn, since R′k+1 receives
nothing from W (that R′k+1 applies some transformation Z is equivalent to sharing Z|ψ〉 at
the beginning).

Consider three-turn quantum provers P ′1, . . . , P
′
k for the original proof system with the

following properties: (1) each P ′i prepares the quantum register R′i in his private space, for
1 ≤ i ≤ k, (2) P ′1, . . . , P

′
k initially share |ψ〉 in (R′1, . . . ,R

′
k+1), where all the qubits in R′k+1

except for those in (M1, . . . ,Mk) are shared arbitrarily, (3) at the first turn, each P ′i sends Mi

to V , for 1 ≤ i ≤ k, and (4) if the message from V is r, at the third turn, each P ′i applies X
(r)
i

to the qubits in R′i, for 1 ≤ i ≤ k. It is obvious that these provers P ′1, . . . , P
′
k can convince

the original verifier V with the same probability that R′1, . . . , R
′
k+1 can convince W . Hence,

the probability W accepts x is at most s, as desired.

Now Theorem 100 follows from Theorem 103, Theorem 111, and Theorem 113. Corol-
lary 105, claiming QIP ⊆ QMIP∗(2, 2, 1, 2−p) for any p ∈ poly follows directly from Theo-
rem 113 and the fact shown by [81] that any language in QIP can be verified by a three-turn
public-coin quantum interactive proof system of perfect completeness with exponentially
small error in soundness (i.e., QIP ⊆ QMAM(1, 2−p) for any p ∈ poly).

10.4.3 Directly Modifying Three-Turn Systems to Two-Turn Sys-
tems

For completeness, here we give a direct proof of the fact that any k-prover three-turn system
can be converted into a (k + 1)-prover two-turn system.

Lemma 114. For any c, s satisfying c2 > s,

QMIP∗(k, 3, c, s) ⊆ QMIP∗
(
k + 1, 2,

1 + c

2
,
1 +
√
s

2

)
.

Proof. The proof is very similar to that of Theorem 111. Indeed, our starting point is the
same, but this time we move to a two-turn proof system, instead of a three-turn public-coin
system, by adding an extra prover. As in Theorem 113, the verifier first broadcasts a random
bit b ∈ {0, 1} to all but the extra prover, and ask the extra prover to send him a register V
and the other provers to send him registers Mi. We then proceed as in Step 3 of the proof
system given in Theorem 111: a detailed description is given in Figure 10.5.

Completeness: This follows immediately from the completeness of the proof system in
Theorem 111: in Theorem 111 the first prover sends both V (before receiving the bit b) and
M1 (after); here we can imagine that before the protocol starts the first prover gives register
V to the extra (k + 1)-st prover, who sends it to the verifier.

Soundness: This also follows from the soundness of the proof system in Theorem 111: by
combining the actions of the first prover and the extra (k + 1)-st prover (and thus making
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Verifier’s Protocol in the One-Round System (Direct Construction)

1. Choose b ∈ {0, 1} uniformly at random. Send b only to the first k provers, and send nothing
to the (k + 1)-st prover.

2. Receive Mi from the i-th prover, for 1 ≤ i ≤ k, and V from the (k + 1)-st prover.

2.1 If b = 0, apply V 2 to the qubits in (V,M1, . . . ,Mk). Accept if the content of
(V,M1, . . . ,Mk) is an accepting state in the original proof system, and reject other-
wise.

2.2 If b = 1, apply (V 1)† to the qubits in (V,M1, . . . ,Mk). Accept if all the qubits in V are
in state |0〉, and reject otherwise.

Figure 10.5: Verifier’s protocol to reduce the number of turns to two (direct construction).

the provers only stronger), we can construct a set of provers that would succeed in the proof
system of Theorem 111 with the same probability as they succeed here.

10.5 Conclusion

We showed that restricting the number of turns to three and requiring the verifier to be
public coin, or even restricting to two turns (without the public-coin property) does not
affect the class QMIP. Moreover, we showed that any QMIP∗ system can be made to have
perfect completeness.

An obvious drawback of some of our results is that they require an increase in the num-
ber of provers. This happens in two cases. First, when we want to improve soundness while
keeping the number of rounds constant, we are forced to use new sets of prover to perform
independent parallel repetitions. An interesting open problem is to show a parallel repeti-
tion theorem for QMIP, which would in particular allow us to improve soundness without
increasing the number of provers. Second, we use an additional prover in the reduction from
three turns to two turns. Finding a way to avoid this in general would in particular show
that QIP(2) = QIP(3)(= QIP), which is an open question. Perhaps it might be easier to
show that the additional prover can be avoided when there are at least two provers originally.

A related, more general open problem would be to study to what extent the number of
provers can be reduced in a QMIP proof system. This study has been initiated by [73] for
the case of multi-prover QMA (see also [3]), but nothing is known for multi-round proof
systems with entangled provers.
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Appendix A

Auxiliary results

This appendix collects a few useful inequalities, together with proofs that were omitted
from the main chapters of this dissertation.

A.1 Matrix inequalities

We first state a useful operator version of the Cauchy-Schwarz inequality.

Claim 115. Let A,B be (possibly rectangular) matrices such that A†B exists, and B†B is
invertible. Then

(A†B)(B†B)−1(B†A) ≤ A†A

Proof. Let ∆ = (B†B)−1(B†A). Then the matrix (A − B∆)†(A − B∆) is positive, which
gives the result.

The following is another version of a matrix Cauchy-Schwarz inequality. It follows from
Eq. (3) of Bhatia and Davis [22] (see also [21]), substituting the norm |||·||| by ‖ · ‖1,

Theorem 116. Let A and B be arbitrary matrices. Then,

∥∥A†B
∥∥
1
≤
∥∥A
∥∥
F

∥∥B
∥∥
F
.

Winter’s gentle measurement lemma [129, Lemma 9] is an key lemma formalizing the
intuitive fact that if a measurement produces a certain outcome with near-certainty when
performed on a specific state, then the post-measurement state is close to the original state.
The following is a variant of that lemma.

Lemma 117. Let ρ be a density operator on a Hilbert space H, and X and Y be linear
operators from H to a Hilbert space K such that X∗X � I and Y ∗Y � I. Then,

‖XρX∗ − Y ρY ∗‖1 ≤ 2
√

Tr(X − Y )ρ(X − Y )∗.
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Proof. The inequality follows from a calculation similar to Ogawa and Nagaoka’s proof [90,
Appendix C] of Winter’s “gentle measurement lemma” [129, Lemma 9]. By the triangle
inequality,

‖XρX∗ − Y ρY ∗‖1 ≤ ‖(X − Y )ρX∗‖1 + ‖Y ρ(X − Y )∗‖1.
By Theorem 116,

‖(X − Y )ρX∗‖1 ≤ ‖(X − Y )
√
ρ‖2‖
√
ρX∗‖2

=
√
Tr(X − Y )ρ(X − Y )∗

√
TrXρX∗

≤
√
Tr(X − Y )ρ(X − Y )∗.

Similarly, ‖Y ρ(X − Y )∗‖1 ≤
√
Tr(X − Y )ρ(X − Y )∗, and the lemma follows.

We state the following two corollaries of Lemma 117, that will be used in Chapter 5.

Claim 118. Let {Ai} and {Bi} be two sets of positive matrices of the same dimension, and
ρ ≥ 0. Then

∥∥∥
∑

i

√
Ai ρ

√
Ai −

√
Bi ρ

√
Bi

∥∥∥
1
≤ 2

(∑

i

Tr
((√

Ai −
√
Bi

)2
ρ
))1/2

.

Proof. Let X be a block-column matrix with blocks the
√
Ai, and similarly for Y and the√

Bi. Then

∥∥∥
∑

i

√
Ai ρ

√
Ai−

√
Bi ρ

√
Bi

∥∥∥
1
≤
∑

i

∥∥∥
√
Ai ρ

√
Ai−

√
Bi ρ

√
Bi

∥∥∥
1
≤
∥∥XρX†−Y ρY †

∥∥
1
,

and
Tr
(
(X − Y )ρ(X − Y )†

)
=
∑

i

Tr
((√

Ai −
√
Bi

)2
ρ
)
,

so that the claim follows from Lemma 117.

Claim 119. Let σ ≥ 0 be symmetric, ρ = Tr1σ = Tr2σ and {Ai}i a POVM, and let

δ :=
∑

i 6=j

Tr
(
Ai ⊗ Ajσ

)
.

Then ∥∥∑

i

√
Aiρ
√
Ai − ρ

∥∥
1
= O(

√
δ).
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Proof. First note that, {Ai}i being a POVM, Tr2
(∑

i Id ⊗
√
AiσId ⊗

√
Ai

)
= Tr2

(
σ
)
= ρ.

Hence by monotonicity of the trace norm

∥∥∑

i

√
Aiρ
√
Ai − ρ

∥∥
1
≤
∥∥∑

i,j

√
Ai ⊗

√
Ajσ

√
Ai ⊗

√
Aj −

∑

j

Id⊗
√
AjσId⊗

√
Aj

∥∥
1

≤
∥∥∑

i

√
Ai ⊗

√
Aiσ

√
Ai ⊗

√
Ai −

∑

i

Id⊗
√
AiσId⊗

√
Ai

∥∥
1

+
∑

i 6=j

Tr
(
Ai ⊗ Ajσ

)

≤ 2

√∑

i

Tr
(
(
√
Ai ⊗

√
Ai − Id⊗

√
Ai)2σ

)√
Tr
(
Id⊗ Aiσ

)
+ δ

≤ 2
√
δ + δ

where the second inequality is the triangle inequality, the third is by Claim 118, and the last
uses the definition of δ.

A.2 Omitted proofs from Chapter 5

The following useful lemma relates the consistency of a measurement when performed on
two separate subsystems of a permutation-invariant state with the possibility of exchanging
the sub-system on which the measurement is performed. Here ρ is the reduced density of a
permutation-invariant state, and µ(A) =

∑
i 6=j Trρ

(
Ai ⊗ Aj).

Lemma 120. Let {Ai} be a POVM, Z such that ZZ† ≤ Id, and
{
Zi

}
such that

∑
i ZiZ

†
i ≤

Id. Then
∣∣∣
∑

i

Trρ(ZiAi)−
∑

i

Trρ(Zi ⊗ Ai)
∣∣∣ ≤

√
µ(A) (A.1)

∣∣∣
∑

i 6=j

Trρ(AjZAi)
∣∣∣ ≤ 2

√
µ(A) (A.2)

Proof. We first prove (A.1). We have

∣∣∣
∑

i

Trρ(ZiAi)−
∑

i

Trρ(Zi ⊗ Ai)
∣∣∣ =

∣∣∣
∑

i

Trρ
(
Zi(Ai ⊗ Id− Id⊗ Ai)

)∣∣∣

≤
(∑

i

Trρ
(
ZiZ

†
i

))1/2(∑

i 6=j

Trρ
(
(Ai ⊗ Aj)

2
))1/2

≤
√
µ(A,A),
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where the second inequality follows from Cauchy-Schwarz. Regarding (A.2), we have
∣∣∣
∑

i 6=j

Trρ(AiZAj)
∣∣∣ =

∣∣∣Trρ
(
Z
)
−
∑

i

Trρ
(
AiZAi

)∣∣∣

From (A.1) we know that
∣∣∣
∑

i

Trρ
(
AiZAi

)
−
∑

i

Trρ
(
AiZ ⊗ Ai

)∣∣∣ ≤
√
µ(A).

The second term on the left-hand side satisfies
∣∣∣
∑

i

Trρ
(
AiZ ⊗ Ai

)
−
∑

i

Trρ
(
Z ⊗ Ai

)∣∣∣ ≤
(∑

i

Trρ
(
Z†Z ⊗ Ai

))1/2(∑

i

Trρ
(
(Id− Ai)

2 ⊗ Ai

))1/2

≤
√
µ(A),

and this concludes the proof.

The following lemma follows from the standard expansion properties of the hypercube.
Recall that for ρ ≥ 0 and any A, ‖A‖2ρ = Tr

(
AA†ρ).

Claim 121 (Expansion lemma). Let A : Fn → C
d×d such that for every x, 0 ≤ Ax ≤ Id,

and
Ei,x¬i,xi,x′

i

∥∥Ax − Ax′

∥∥2
ρ
≤ ε.

Then there exists A0 = ExAx ≥ 0 such that

Ex

∥∥Ax − A0

∥∥2
ρ
≤ 2nε.

Proof. LetM :=
∑

x,i,x′
i
|x〉〈x′| be the adjacency matrix of the hypercube Fn, L := npId−M

the Laplacian, and L̃ = L⊗ ρ1/2. Let A =
∑

x |x〉 ⊗ Ax. Then

A†L̃ · A =
1

2

∑

x,i,x′
i

(Ax − Ax′)ρ1/2(Ax − Ax′). (A.3)

The normalized Laplacian L/(np) has smallest eigenvalue 0, and second smallest λ1 ≥ 1/(2n).
Let the smallest eigenvector of L be |v0〉 = p−n/2

∑
x |x〉, and write A = |v0〉⊗A0+ |v1〉⊗A1,

where |v1〉 is orthogonal to |v0〉, and A0 = p−n/2
∑

xAx. Then

A†L̃A = λ1A1ρ
1/2A1 ≥

1

2n
A1ρ

1/2A1.

Using the assumption made in the claim’s statement together with (A.3), we get ‖A1‖2ρ ≤
2nεpn, and hence by definition of A,

Tr
(
(A− |v0〉 ⊗ A0)

†(Id⊗ ρ1/2)(A− |v0〉 ⊗ A0)ρ
1/2
)
= ‖A1‖2ρ ≤ 2nεpn,

which proves the claim.
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A.2.1 Proof of Corollary 37

In this section we give the proof of Corollary 37, used in Chapter 5. A standard method to
convert multiple constraints to a single constraint involving an exponential sum is by using
small-bias probability spaces.

Definition 122 (Small-bias probability space). Let n ∈ N. A set S ⊆ F
n
2 is called an ε-bias

probability space if for every c ∈ F
n
2 \ {0}, it holds that

∣∣ Pr
ζ∈S

[c · ζ = 0]− Pr
ζ∈S

[c · ζ = 1]
∣∣ ≤ ε.

Proposition 2. Let n ∈ N, and let S ⊂ F
n
2 be an ε-bias probability space. Let F be a finite

field of characteristic two. If c ∈ F
n \ {0}, then

Pr
ζ∈S

[
n∑

i=1

ζici = 0

]
≤ 1 + ε

2
.

Proof. If F = F2, then the proposition holds because

Pr
ζ∈S

[
n∑

i=1

ciζi = 0

]
=

1

2
+

1

2

(
Pr
ζ∈S

[
n∑

i=1

ciζi = 0

]
− Pr

ζ∈S

[
n∑

i=1

ciζi = 1

])

≤ 1 + ε

2
.

For general F, regard F as a vector space over F2, and let {α1, . . . , αk} be a basis of F
over F2. Write c as c = α1c

(1) + · · · + αkc
(k), where c(1), . . . , c(k) ∈ F

n
2 . Because c 6= 0, we

have that c(j
∗) 6= 0 for some j∗. By using the case of F2, it holds that

Pr
ζ∈S

[
n∑

i=1

c
(j∗)
i ζi = 0

]
≤ 1 + ε

2
.

Since α1, . . . , αk are linearly independent over F2,
∑n

i=1 ciζi = 0 implies
∑n

i=1 c
(j)
i ζi = 0 for

all j, and therefore in particular
∑n

i=1 c
(j∗)
i ζi = 0. Therefore,

Pr
ζ∈S

[
n∑

i=1

ciζi = 0

]
≤ Pr

ζ∈S

[
n∑

i=1

c
(j∗)
i ζi = 0

]
≤ 1 + ε

2
.

Theorem 123 (Alon, Goldreich, H̊astad, and Peralta [5]). There exist a constant c >
0 and a polynomial-time algorithm C which, given K,M ∈ N, i ∈ {1, . . . , K} and j ∈
{1, . . . ,M}, outputs C(K,M, i, j) ∈ F2 such that the set {ζ(j) : 1 ≤ j ≤M} defined by ζ(j) =
(C(K,M, 1, j), . . . , C(K,M,K, j)) is an (K/M c)-bias probability space in F

K
2 .
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By arithmetizing the Boolean circuit for C by using a similar idea to the proof of Propo-
sition 4.2 of Ref. [12], we obtain the following corollary.

Corollary 124. There exist a constant c > 0 and a polynomial-time algorithm A which,
given 1k and 1m, outputs 1t and an arithmetic expression f(i, j, l) in k + m + t variables
such that the set {ζ(j) : j ∈ {0, 1}m} defined by ζ(j) = (

∑
l∈{0,1}t f(i, j, l))i∈{0,1}k is an 2k−cm-

bias probability space in F
2k

2 .

Proof of Corollary 37. The protocol works as follows. The verifier first computes m = d(k+
2)/ce, where c is the constant in Corollary 124. He runs the algorithm of Corollary 124 with
parameters k and m to obtain t ∈ N and an arithmetic expression f(i, j, l) in k + m + t
variables. Let d′ be the maximum degree of f in single variables. He chooses j ∈ {0, 1}m
uniformly at random, and sends j to the prover. Then he simulates the protocol in Lemma 36
with explicit inputs k + t and d+ d′ and implicit input hj(i, l) := f(i, j, l)h(i).

For i ∈ F
k, j ∈ F

m, and l ∈ F
t, let ζ

(j)
i =

∑
l f(i, j, l) ∈ F and ζ(j) = (ζ

(j)
i )i∈{0,1}k ∈ F

2k .

Because m ≥ (k + 2)/c, Corollary 124 guarantees that {ζ(j) : j ∈ {0, 1}m} is a 1/4-bias
probability space.

Let ci = h(i). Then for all j ∈ {0, 1}m, it holds that
∑

i∈{0,1}k,l∈{0,1}t
hj(i, l) =

∑

i∈{0,1}k
ζ
(j)
i ci. (A.4)

Completeness: Suppose that ci = 0 for all i ∈ {0, 1}k. Then, by Eq. (A.4), it holds that
∑

i∈{0,1}k,l∈{0,1}t
hj(i, l) = 0

for all j ∈ {0, 1}m. Therefore, the completeness of the protocol in Lemma 36 implies that
the protocol constructed above also has perfect completeness.

Soundness: Suppose that c 6= 0. By Proposition 2, it holds that

Pr
j∈{0,1}m

[ ∑

i∈{0,1}k
ζ
(j)
i ci = 0

]
≤ 1 + 1/4

2
=

5

8
.

Eq. (A.4) and the soundness in Lemma 36 imply that for the choices of j ∈ {0, 1}m such

that
∑

i∈{0,1}k ζ
(j)
i ci 6= 0, the acceptance probability conditioned on the choice of j is at

most (d+ d′)(k + t)/|F|. Therefore, the overall acceptance probability is at most 5/8 + (d+
d′)(k + t)/|F|. The corollary follows because d′ and t are polynomially bounded in k.

A.3 The orthogonalization lemma

In this section we prove different variants of our orthogonalization lemma. We first give a
general statement of the lemma.
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Lemma 125. Let ρi, i = 1, . . . , k be positive matrices, and ρ :=
∑

i ρi. Let P1, . . . , Pk be
d-dimensional projectors such that

∑

i 6=j

Tr(PiPjPi ρi) ≤ ε and
∑

i 6=j

Tr(Pi ρj) ≤ ε

for some 0 < ε ≤ Tr(ρ). Then there exists orthogonal projectors Q1, . . . , Qk such that

k∑

i=1

Tr
(
(Pi −Qi)

2 ρi
)
= O

(
ε1/2
)
Tr(ρ)1/2

We first prove Lemma 125. We will then show how Lemma 31 stated in Chapter 4 follows
from it. Finally, we will give a different corollary of Lemma 125, Lemma 127 below, which
is adapted to our work on parallel repetition presented in Chapter 7.

Proof of Lemma 125. For every i write Pi =
∑

l |xi,l〉〈xi,l|, where the {|xi,l〉}l are orthonor-
mal, and let Xi :=

∑
l |xi,l〉〈ei,l|, X :=

∑
iXi, where |ei,l〉 is the canonical basis: X has the

|xi,l〉 as its columns. In order for X to be a square matrix, if necessary we extend the space
in which the |xi,l〉 vectors live, so as to make it the same dimension as Span{|ei,l〉}. The
inner-product condition on the Pi implies that

∑

i 6=j

Tr
(
PiPjPi ρi

)
=
∑

i 6=j

∑

l,l′,l′′

〈xi,l|xj,l′〉〈xj,l′|xi,l′′〉〈xi,l′′ |ρi|xi,l〉 ≤ ε (A.5)

Write X†X =
∑

i,j,l,l′〈xi,l|xj,l′〉 |ei,l〉〈ej,l′|, so that

∑

i

Tr
((
X†X− Id)2X†i ρiXi

)
=
∑

i,l,l′′

∑

(j,l′) 6=(i,l),(i,l′′)

〈xi,l|xj,l′〉〈xj,l′|xi,l′′〉〈xi,l′′ |ρi|xi,l〉 ≤ ε (A.6)

where we used (A.5) to upper-bound the expression in the middle by ε. Indeed, in the second
summation, if i = j then either l′ 6= l or l′ 6= l′′, so that one of the inner products 〈xi,l|xi,l′〉
or 〈xi,l′ |xi,l′′〉 is 0, since the {|xi,l〉}l are orthogonal.

LetX = UΣV †, where Σ is diagonal positive and U, V unitary, be the polar decomposition
of X. By an appropriate choice of the basis |ei,l〉 we can assume that V = Id (if not, re-define
Xi := XiV ; this corresponds to changing |ei,l〉 → V †|ei,l〉). Let Π be the projector on the
span of the eigenvectors of Σ with corresponding eigenvalue at least 1/2 and at most 2. Π
is needed to control eigenvalues of Σ which may be too small or too large.

Let Ũ = UΠ and X̃ = XΠ. Let |ũi,l〉 (resp. |x̃i,l〉) be the column vectors of Ũ (resp. X̃),
so that Ũ =

∑
i,l |ũi,l〉〈ei,l|. We will show that the projectors Qi :=

∑
l |ũi,l〉〈ũi,l| are close

to the projectors Pi, in the sense claimed in the lemma (note that since U is unitary and
Π a diagonal projector the Qi are orthogonal projectors, which do not necessarily sum to
identity). We first state some consequences of (A.6).
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Fact 126. The following inequalities holds
∑

i,l,l′

〈ũi,l − x̃i,l|ũi,l′ − x̃i,l′〉〈x̃i,l′ |ρi|x̃i,l〉 ≤ ε (A.7)

∑

i,l

|〈ũi,l|ρ|ũi,l〉 − 〈x̃i,l|ρ|x̃i,l〉| ≤ 2
√
2 ε1/2Tr(ρ)1/2 (A.8)

Proof. We start with proving (A.7). Since Σ is diagonal, one can immediately check that
X†X − Id = (X − U)†(X + U). Note also that (X + U)(X + U)† = U(Id + Σ)2U † ≥ Id.
Hence

∑

i

Tr
(
(Σ− Id)2X†i ρiXi

)
=
∑

i

Tr
(
(X − U)†(X − U)X†i ρiXi

)

≤
∑

i

Tr
(
(X − U)†(X + U)(X + U)†(X − U)X†i ρiXi

)

≤ ε (A.9)

where the last inequality is by (A.6). This implies that
∑

i Tr((Σ− Id)2(XiΠ)
†ρi(XiΠ) ≤ ε

(note that Π commutes with Σ by definition), which is just (A.7).
Before turning to the proof of (A.8), first observe that

Tr((Σ− Id)2ΠX†ρX) =
∑

i,j

Tr((Σ− Id)2ΠX†i ρjXi

)

≤ 2ε (A.10)

where the equality uses that (Σ− Id)2Π) is diagonal, and the inequality is by (A.7) for the
terms i = j and uses (Σ− Id)2Π ≤ Id and the second condition in the lemma for the terms
i 6= j. From (A.10) we get

∑

i,l

〈ũi,l − x̃i,l|ρ|ũi,l − x̃i,l〉 = Tr(Π(X − U)†ρ(X − U))

≤ 4Tr
(
ΣΠΣ(X − U)†ρ(X − U)

)

= 4Tr
(
(Id− Σ)Π(Id− Σ)X†ρX

)

≤ 8ε (A.11)

where the first inequality uses ΠΣ ≥ 1/2Π, by definition of Π, and the last is by (A.10).
We now prove (A.8). By Cauchy-Schwarz, for every (i, l)

〈ũi,l − x̃i,l|ρ|ũi,l〉 ≤ 〈ũi,l − x̃i,l|ρ|ũi,l − x̃i,l〉1/2〈ũi,l|ρ|ũi,l〉1/2

hence by (A.11) we see that
∑

i,l

|〈ũi,l − x̃i,l|ρ|ũi,l〉| ≤ 2
√
2 ε1/2Tr(ρ)1/2

A symmetric inequality can be obtained, and (A.8) follows by the triangle inequality.
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As a consequence of Fact 126, note that

∣∣∣
∑

i,l,l′

〈ũi,l|x̃i,l′〉 〈x̃i,l′ |ρi|ũi,l − x̃i,l〉
∣∣∣ ≤

(∑

i,l,l′

〈x̃i,l|x̃i,l′〉〈x̃i,l′ |ρi|x̃i,l〉
)1/2(∑

i,l

〈ũi,l − x̃i,l|ρi|ũi,l − x̃i,l〉
)1/2

≤ Tr(ρ)1/2 · (8ε)1/2 = O(ε1/2)Tr(ρ)1/2 (A.12)

where the first inequality is by Cauchy-Schwarz (and the |ũi,l〉 being orthonormal) and the

second uses X̃iX̃
†
i ≤ Id, and (A.11) (with ρi ≤ ρ).

In order to bound the distance between Qi =
∑

l |ũi,l〉〈ũi,l| and Pi, we first bound the

distance between Qi and P̃i := X̃iX̃
†
i :

∑

i

Tr
(
(P̃i −Qi)

2 ρi
)
=
∑

i,l

(
〈x̃i,l|ρi|x̃i,l〉+ 〈ũi,l|ρi|ũi,l〉

)
− 2

∑

i,l,l′

<
(
〈ũi,l|x̃i,l′〉 〈x̃i,l′ |ρi|ũi,l〉

)

≤ 2
∑

i,l

〈x̃i,l|ρi|x̃i,l〉 − 2
∑

i,l,l′

<
(
〈ũi,l|x̃i,l′〉 〈x̃i,l′ |ρi|x̃i,l〉

)
+O(ε1/2Tr(ρ)1/2)

≤ O(ε1/2Tr(ρ)1/2) (A.13)

where the first inequality is by (A.8) and (A.12) and the second by (A.7). It remains to
bound the distance between the P̃i and the Pi:

∑

i

Tr
(
(P̃i − Pi)

2 ρi
)
=
∑

i

Tr
(
(Id− Π)X†i ρiXi

)

≤ 2
∑

i

Tr
(
|Id− Σ|X†i ρiXi

)

≤ 2
(∑

i

Tr
(
(Id− Σ)2X†i ρiXi

))1/2(∑

i

Tr
(
X†i ρiXi

))1/2

≤ 2ε1/2Tr(ρ)1/2 (A.14)

where the first inequality uses (Id−Π) ≤ 2|Σ− Id| by definition of Π, the second is Cauchy-
Schwarz and the last is by (A.9). Combining (A.13) and (A.14) finishes the proof of the
lemma.

We now show how Lemma 31 follows from Lemma 125.

Proof of Lemma 31. Given that
∑

aA
a = Id, the assumption (4.12) is equivalent to

∑

a 6=a′

Tr
((√

Aa(Id− Aa)
√
Aa
)
ρ
)
≤ ε.
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For every a, let Pa be the projection on the eigenvalues of Aa larger than 1/2, and ρa :=
PaρPa. By definition, Aa ≥ (1/2)Pa. Hence

∑

a

Tr
((
P a −

√
Aa
)2
ρa
)
=
∑

a

(
Tr
(
Aaρa

)
+ Tr

(
P aρa)− 2Tr

(
P a
√
Aaρa

))

≤ 2
∑

a

Tr
(
P a(Id− Aa)P aρ

)

≤
∑

a

Tr
(√

Aa(Id− Aa)
√
Aaρ

)

≤ ε, (A.15)

where for the first inequality we used that the P a were projectors, and Aa ≤
√
Aa. Next

observe that
∑

a 6=a′

Tr
(
P aP a′P aρa

)
≤ 2

∑

a 6=a′

Tr
(
P aAa′P aρa

)

= 2
∑

a 6=a′

Tr
(
P a(Id− Aa)P aρ

)

≤ 4
∑

a 6=a′

Tr
(√

Aa(Id− Aa)
√
Aaρ

)

≤ 4 ε. (A.16)

Hence the P a, together with ρa, satisfy both assumptions of Lemma 125. The lemma gives
us orthogonal projectors Qa such that

∑

a

Tr
(
(P a −Qa)2ρa

)
= O

(
ε1/2
)
,

which, combined with (A.15) and the triangle inequality, also shows that

∑

a

Tr
(
(
√
Aa −Qa)2ρa

)
= O

(
ε1/2
)
. (A.17)

From (A.16) we know that
∑

aTr(A
aρa) ≥ 1−O(ε), so that by the Cauchy-Schwarz inequality

we also get
∑

a Tr(Q
aρa) ≥ 1−O

(
ε1/4
)
, and since the Qa are orthogonal and

∑
aTr(ρa) = 1,

this implies ∑

a 6=a′

Tr
(
Qaρa′

)
= O

(
ε1/4
)
.

Together with the same equation for Aa instead of Qa, obtained from (A.16), and (A.17),
we obtain ∑

a

Tr
(
(
√
Aa −Qa)2ρ

)
= O

(
ε1/4
)
. (A.18)
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To conclude it suffices to make the {Qa} into a projective measurement {Ba}, by setting
Ba0 := Qa0 + (Id −∑aQ

a) for some arbitrary a0, and Ba := Qa for a 6= a0. From the
fact that

∑
aA

a = Id and (A.18) it is not hard to see that Tr((Id −∑aQ
a)ρ) = O(ε1/4),

hence (A.18) still holds with the Ba in place of the Qa, and the lemma is proved.

In Lemma 127 stated below, one can think of the Ŷi as operators in the Stinespring
representation of a measurementMi : ρ 7→ Ŷi(ρ⊗Id)Ŷ †i , where i refers to the i-th outcome of
the measurement. In that setting the hypothesis of the lemma is that, whenM is performed
twice sequentially on a specific state ρ, it is likely that identical answers will be obtained.
The conclusion is that the operators Ŷi have an approximate joint block-diagonal form, as
described by the orthogonal projectors Πi.

Lemma 127. There is a c > 0 such that the following holds. Let ρi, i = 1, . . . , k be positive,
ρ such that

∑
i ρi ≤ ρ and Ŷi, i = 1, . . . , k (possibly rectangular) matrices, be such that

∑

i 6=j

Trρi
(
Ŷ †i (Ŷj Ŷ

†
j ) Ŷi

)
≤ αTr(ρ) (A.19)

and
∑

i ŶiŶ
†
i ≤ Id. Then there exists orthogonal projectors {Πi} such that

∑

i

Trρi
(
Ŷ †i (Id− Πi)Ŷi

)
≤ O

(
αc
)
Tr(ρ).

Proof. The idea of the proof is simple. Let β1, β2 > 0 be parameters to be chosen later.
For every i, let Pi be the projector on the eigenvectors of Ŷi Ŷ

†
i with corresponding eigen-

value at least β1. Since Pi contains all the large eigenvalues, PiŶi ≈ Ŷi. Moreover, by
definition Pi ≤ β−11 Ŷi Ŷ

†
i . These two properties together with (A.19) almost imply that∑

i 6=j Trρi
(
Ŷ †i Pi Pj PiŶi

)
. β−1αTr(ρ). Choosing β1 ≈

√
α, we could then apply Lemma 125

to the Pi and states σi := ŶiρiŶ
†
i , recovering close orthogonal projectors Πi which would

satisfy the required condition. Carrying out this intuition precisely is a bit tedious, and we
now proceed to the details. We will use the following simple fact.

Fact 128. Let A ≥ 0, ρ ≥ 0, and Π a projection. Let

a = Trρ(A), b = |Trρ((Id− Π)AΠ)| and c = Trρ
(
(Id− Π)A(Id− Π)

)
.

Then both the following hold

Trρ
(
ΠAΠ

)
≤
(√

a+
√
c
)2 ≤ 2(a+ c),

Trρ
(
ΠAΠ

)
≤
(√a+

√
a+ 4b

2

)2
≤ a+ 2b.
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Proof. Write Π = (Π− Id)+ Id, so Trρ(ΠAΠ) ≤ |Trρ((Π− Id)AΠ)|+ |Trρ(AΠ)|. The second
term can be bounded by a1/2Trρ(ΠAΠ)

1/2 by Cauchy-Schwarz. Similarly bounding the first
term by c1/2Trρ(ΠAΠ)

1/2 yields the first equation. To get the second, let X = Trρ(ΠAΠ)
1/2

to obtain the equation
X2 − a1/2X − b ≤ 0.

Solving and using X ≥ 0, one finds that this is equivalent to X ≤ (
√
a+
√
a+ 4b)/2.

Let Y−i :=
∑

j 6=i ŶjŶ
†
j ≤ Id, and Qi be the projector on the eigenvectors of PiY−iPi with

eigenvalue at most β2. Note that, by definition, Qi ≤ Pi ≤ β−11 ŶiŶ
†
i (and in particular Qi

commutes with Pi). We first bound the distance between Ŷ †i and Ŷ †i Qi: since Ŷ
†
i (Id−Qi) =

Ŷ †i (Id− Pi) + Ŷ †i Pi(Id−Qi)Pi,

∑

i

Trρi
(
Ŷ †i (Id−Qi)Ŷi

)
=
∑

i

(
Trρi

(
Ŷ †i (Id− Pi)Ŷi

)
+ Trρi(Ŷ

†
i Pi(Id−Qi)PiŶi)

)
(A.20)

The first term is easily bounded by β1 Tr(ρ). For the second, note that Pi(Id − Qi)Pi ≤
β−12 PiY−iPi. Using Fact 128 with A

i = Y−i, Π
i = Pi, and ρ

i = Ŷiρi(Ŷi)
† we get

∑
i a

i ≤ αTr(ρ)
and

∑
i c

i ≤ β1Tr(ρ), so that
∑

i

Trρi
(
Ŷ †i PiY−iPiŶi

)
≤ 2(α + β1)Tr(ρ)

Assuming α ≤ β1 (which will hold for our choice of parameters), from (A.20) we get
∑

i

Trρi
(
Ŷ †i (Id−Qi)Ŷi

)
≤ O(β−12 β1)Tr(ρ). (A.21)

Next observe that, by definition of Qi, followed by an application of the Cauchy-Schwarz
inequality,
∑

i

∣∣Trρi
(
Ŷ †i QiY−i(Id−Qi)Ŷi

)∣∣ =
∑

i

∣∣Trρi
(
Ŷ †i QiY−i(Id− Pi)Ŷi

)∣∣

≤
(∑

i

Trρi
(
Ŷ †i (Id− Pi)Ŷi

))1/2(∑

i

Trρi(Ŷ
†
i QiY

2
−iQiŶi

))1/2

≤ β
1/2
1 β2Tr(ρ), (A.22)

where we used QiY
2
−iQi ≤ β2

2Id, which holds by definition of Qi, to bound the second
term in the last inequality. Using the second bound in Fact 128 with Ai = Y−i, Π

i = Qi,

ρi = Ŷiρi(Ŷi)
†, we get

∑
i a

i ≤ αTr(ρ) and
∑

i b
i ≤ β

1/2
1 β2Tr(ρ) by (A.22), so that

∑

i 6=j

Trρi
(
Ŷ †i QiQjQiŶi

)
≤ β−11

∑

i

Trρi
(
Ŷ †i QiY−iQiŶi

)

≤ β−11

(
α + 2β

1/2
1 β2

)
Tr(ρ).



APPENDIX A. AUXILIARY RESULTS 203

Set β2 = β
3/4
1 and β1 = α4/5 to obtain

∑

i 6=j

Trρi
(
Ŷ †i QiQjQiŶi

)
≤ O(α1/5) Tr(ρ). (A.23)

Let σi := ŶiρiŶ
†
i . We are now ready to apply Lemma 125 to the Qi and σi: the first condition

holds by (A.23), and the second is a direct consequence of (A.19) and Qj ≤ β−11 ŶjŶ
†
j for

every j. The lemma then gives us pairwise orthogonal Πi such that

∑

i

Trρi
(
Ŷ †i (Qi − Πi)

2Ŷi
)
≤ O(α1/10)Tr(ρ).

Combined with (A.21) and the triangle inequality, this leads to

∑

i

Trρi
(
Ŷ †i (Id− Πi)Ŷi

)
≤ O(α1/10) Tr(ρ).

A.4 Omitted proofs from Chapter 7

In this section we give a series of useful claims showing that, in a strategy which has been
marginalized over a large number of indices, fixing a particular coordinate (i, qi) does not
have much influence on average. Throughout this question we fix a question set Q and a
distribution µ on Q. Whenever an expectation over tuples of questions q ∈ QC is taken, it
will be over the product distribution µC .

Our claims will rely essentially on the following, which applies to any matrix semi-norm
‖ · ‖, provided it is derived from a semi-inner product 〈·, ·〉.

Claim 129. Let C be an integer, and f : QC → {X ∈ C
d×d }. Let M = Eq [f(q)] and for

any (i, qi), Mi,qi = Eq¬i
[f(q)]. Suppose that Eq [‖f(q)‖2] ≤ 1. Then

1. 0 ≤ Ei,qi [‖M −Mi,qi‖2] ≤
Eq[‖f(q)‖2]

C
≤ 1

C
.

2. Ei,qi [‖M −Mi,qi‖2] = Ei,qi [‖Mi,qi‖2]− ‖M‖2.

3. Pri,qi(|Tr(M)− Tr(Mi,qi)| ≥ C−1/3) ≤ C−1/3.

Proof. The proof of all three parts is in close analogy to that of Lemma 2.1 in [88], which
shows similar statements for a Boolean function f . For part 1 note that Ei,qi [‖M −Mi,qi‖2] =
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1
C

∑C
i=1 Eqi [‖M −Mi,qi‖2] and hence it suffices to show that

∑C
i=1 Eqi [‖M −Mi,qi‖2] ≤

Tr(M). Observe that

0 ≤ Eq

[
‖f(q)−

∑

i

(Mi,qi −M)‖2
]

= Eq

[
‖f(q)‖2

]
−
∑

i

Eqi [〈Mi,qi −M,Mi,qi〉+ 〈Mi,qi ,Mi,qi −M〉] +
∑

i,j

Eqi,qj

[
〈M −Mi,qi ,M −Mj,qj〉

]

= Eq

[
‖f(q)‖2

]
−
∑

i

Eqi

[
‖M −Mi,qi‖2

]
,

where for the last equality we have used thatEqi [Mi,qi −M ] = 0 and henceEqi [〈Mi,qi −M,Mi,qi〉] =
Eqi [〈Mi,qi −M,Mi,qi −M〉] and, for i 6= j,

Eqi,qj

[
〈M −Mi,qi ,M −Mj,qj〉

]
= 〈Eqi [M −Mi,qi ] ,Eqj

[
M −Mj,qj

]
〉 = 0

Part 1. now follows, and the second inequality is simply the assumption that Eq [‖f(q)‖2] ≤
1.

Part 2 is trivial from the expansion of ‖M −Mi,qi‖2. Part 3 follows from part 1 using
Markov’s inequality, which gives Pri,qi((Tr(M−Mi,qi))

2 ≥ C−2/3) ≤ C2/3Ei,qi [(Tr(M −Mi,qi))
2].

Observing that for A :=M −Mi,qi we have (Tr(A))
2 = 〈A, Id〉2 ≤ ‖A‖2 · ‖Id‖2 = ‖A‖2 gives

the desired bound.

The following is a direct corollary of Claim 129, obtained for a specific instantiation of
the norm ‖ · ‖.

Claim 130. Let Y a
q , for q ∈ QC and a ∈ AC, be positive matrices such that Yq :=

∑
a Y

a
q ≤

Id, and ρ ≥ 0. Let Y = Eq [Yq]. Then

E(i,qi)

[∣∣Tr
(
Y ρ1/2Y ρ1/2

)
− Tr

(
Yqi ρ

1/2Yqi ρ
1/2
)∣∣] ≤ C−1Eq

[
Tr
(
Yqρ

1/2Yqρ
1/2
)]
≤ Trρ(Y ).

Proof. The statement follows from Claim 129, applied to f(q) = Yq and the (semi)-norm
‖A‖2 = Tr

(
Aρ1/2A†ρ1/2

)
, which is derived from the inner-product (A,B) 7→ Tr

(
Aρ1/2B†ρ1/2

)
.

The second inequality holds since 0 ≤ Yq ≤ Id for every q.

We following simple calculation will be useful.

Claim 131. Let Yq ∈ C
d×d, 0 ≤ Yq ≤ Id, for q ∈ QC, and let Y = Eq [Yq], Yi,qi = Eq¬i

[Yq]
for i ∈ [C]. Then

E(i,qi)

[
(Y − Yi,qi)2

]
≤ C−1Eq

[
Y 2
q

]
.



APPENDIX A. AUXILIARY RESULTS 205

Proof. Write

0 ≤
(
Yq −

∑

i

(Yi,qi − Y )
)(
Yq −

∑

i

(Yi,qi − Y )
)

= Y 2
q −

∑

i

(
Yq(Yi,qi − Y ) +

(
Yi,qi − Y )Yq

)
+
∑

i,j

(
Yi,qi − Y

)(
Yj,qj − Y

)

Taking the expectation over q, we obtain

∑

i

Eqi

[
(Yi,qi − Y )2

]
≤ Eq

[
Y 2
q

]

Dividing by C on both sides proves the claim.

Claim 132. For every q ∈ QC let {Xa
q }a∈AC′ be a POVM, and X̂a

q :=
√
π(q)

√
Xa

q ⊗ 〈q, a|
(as described in Section 7.2.1), and ρ ≥ 0. Assume that X̂X̂† =

∑
aEq

[
X̂a

q (X̂
a
q )
†
]
≤ Id.

Then
∑

a

E(i,qi)

[∣∣Trρ
(
(X̂a)†X̂a(X̂a)†X̂a

)
− Trρ

(
(X̂a

qi
)†X̂a

qi
(X̂a

qi
)†X̂a

qi

)∣∣
]
≤ 2C−1/2Tr(ρ).

Proof. Let X̃a
i =

∣∣X̂a(X̂a)† − X̂a
qi
(X̂a

qi
)†
∣∣, and ρ̃ai =

∣∣X̂aρ(X̂a)† − X̂a
qi
ρ(X̂a

qi
)†
∣∣, where the

notation keeps the dependence on qi implicit. Use the triangle inequality to write

∣∣Tr
(
X̂a(X̂a)†X̂aρ(X̂a)†

)
− Tr

(
X̂a

qi
(X̂a

qi
)†X̂a

qi
ρ(X̂a

qi
)†
)∣∣ ≤ Tr

(
X̃a

i X̂
aρ(X̂a)†

)
+ Tr

(
X̂a

qi
(X̂a

qi
)†ρ̃ai

)

(A.24)

The expectation of the first term on the right-hand side of (A.24) can be bounded by Cauchy-
Schwarz as

E(i,qi)

[
Tr
(
X̃a

i X̂
aρ(X̂a)†

)]
≤ E(i,qi)

[
Trρ((X̂

a)†X̂a)1/2Tr
(
(X̃a

i )
2X̂aρ(X̂a)†

)1/2]

≤ C−1/2Trρ((X̂
a)†X̂a)

by Claim 129, applied to the (semi)-norm ‖A‖2 := Tr
(
(A†A) (X̂aρ(X̂a)†)

)
and the mapping

f : q 7→ X̂a
q (X̂

a
q )
†.

Regarding the second term on the right-hand side of (A.24), let A be the block-column
matrix with blocks

√
π(qi)ρ̃

a
i for every (i, qi) and a, and B with blocks

√
π(qi)X̂

a
i (X̂

a
i )
†.

Then B†B =
∑

a E(i,qi)

[(
X̂a

i (X̂
a
i )
†)2
]
≤ Id. Let D = A†B =

∑
aE(i,qi)

[
ρ̃ai X̂

a
i (X̂

a
i )
†
]
; the

operator Cauchy-Schwarz inequality from Claim 115 gives

DD† ≤ D(B†B)−1D† ≤ A†A =
∑

a

E(i,qi)

[
(ρ̃ai )

2
]
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Applying Claim 131 to X̂a
q ρ(X̂

a
q )
† (for every a), we can then bound

DD† ≤ C−1Eq

[
(X̂qρX̂

†
q )

2
]
≤ C−1Eq

[
X̂qρ

2X̂†q

]
(A.25)

where for the second inequality we used X̂†qX̂q ≤ Id. Since Tr(D) ≤ Tr
(√

DD†
)
= ‖D‖1,

taking the square root on both sides of (A.25) (the square root being operator monotone)
and then the trace, we obtain

∑

a

E(i,qi)

[
Tr
(
ρ̃ai X̂

a
i (X̂

a
i )
†)] ≤ C−1/2Tr

√
Eq

[
X̂qρ2X̂

†
q

]
= C−1/2

∥∥X̂ρ
∥∥
1

where X̂ is the rectangular matrix with square blocks π(q)−1/2X̂a
q arranged in a column. By

Holder’s inequality
∥∥X̂ρ

∥∥
1
≤ Tr(ρ)‖X̂‖∞, and ‖X̂‖∞ ≤ 1 since X̂†X̂ = Eq

[
X̂†qX̂q

]
≤ Id.

This finishes the proof of the claim.

A.5 More on extractors

This appendix contains additional results related to Chapter 8, as well as some technical
proofs omitted from that chapter. We first develop a bit more the general theory of ex-
tractors. In A.5.1 we define extractors for weakly random seeds, and in A.5.2 we show how
to compose extractors to obtain more randomness from the same source. In A.5.3 we give
technical lemmas: several min-entropy chain rules and the details of the reduction from
Trevisan’s construction to the underlying one-bit extractor. Section A.5.4 contains all pre-
viously known constructions for one-bit extractors and weak designs which we use in this
work and plug into Trevisan’s extractor. Finally, in A.5.5 we give a proof that list-decodable
codes are one-bit extractors.

A.5.1 Weak random seed

In 8.2.1 we defined extractors as functions which take a uniformly random seed. This is the
most common way of defining them, but not a necessary condition. Instead we can consider
extractors which use a seed which is only weakly random, but with a bounded min-entropy.
We extend Definition 76 this way.

Definition 133 (strong extractor with weak random seed). A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is a (k, ε)-strong extractor with an s-bit seed, if for all distributions X
with Hmin(X) ≥ k and any seed Y independent from X with Hmin(Y ) ≥ s, we have

1

2
‖ρExt(X,Y )Y − ρUm ⊗ ρY ‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.
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If quantum side information about the input is present in a system E, then as before, we
require the seed and the output to be independent from that side-information.

Definition 134 (quantum-proof strong extractor with weak random seed). A function Ext :
{0, 1}n × {0, 1}d → {0, 1}m is a quantum-proof (k, ε)-strong extractor with an s-bit seed,
if for all states ρXE classical on X with Hmin(X|E)ρ ≥ k, and for any seed Y independent
from XE with Hmin(Y ) ≥ s, we have

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.

Lemma 78 says that any extractor will work with roughly the same parameters when
classical side information about the input X is present. The same holds in the case of
classical side information Z about the seed Y .

Lemma 135. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a quantum-proof (k, ε)-strong extractor
with an s-bit seed. Then for any classical X, Y and Z, and quantum E, such that XE and
Y are independent, Y ↔ Z ↔ E form a Markov chain,1 Hmin(Y |Z) ≥ s + log 1/ε, and for
all z ∈ Z, Hmin(X|EZ = z) ≥ k, we have

1

2
‖ρExt(X,Y )Y ZE − ρU ⊗ ρY ZE‖tr ≤ 2ε.

Proof. For any two classical systems Y and Z, we have

2−Hmin(Y |Z) = Ez←Z

[
2−Hmin(Y |Z=z)

]
,

so by Markov’s inequality,

Pr
z←Z

[Hmin(Y |Z = z) ≤ Hmin(Y |Z)− log 1/ε] ≤ ε.

And since Y ↔ Z ↔ E form a Markov chain, we have for all z ∈ Z,
ρY E|Z=z = ρY |Z=z ⊗ ρE|Z=z.

Hence
1

2
‖ρExt(X,Y )Y EZ − ρU ⊗ ρY EZ‖tr

=
1

2

∑

z∈Z
PZ(z)‖ρExt(X,Y )Y E|Z=z − ρU ⊗ ρY E|Z=z‖tr

=
1

2

∑

z∈Z
PZ(z)‖ρExt(X,Y )Y E|Z=z − ρU ⊗ ρY |Z=z ⊗ ρE|Z=z‖tr ≤ 2ε.

The case of quantum side information correlated to both the input and the seed is out
of the scope of this work.

1A ccq state ρXY E forms a Markov chain X ↔ Y ↔ E if it can be expressed as ρXY E =∑
x,y PXY (x, y)|x, y〉〈x, y|x, y ⊗ ρyE .
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A.5.2 Composing extractors

If an extractor does not have optimal entropy loss, a useful approach to extract more entropy
is to apply a second extractor to the original input, trying to extract the randomness that
remains when the output of the first extractor is known. This was first proposed in the
classical case by Wigderson and Zuckerman [128], and improved by Raz et al. [98]. König and
Terhal [76] gave the first quantum version for composing m times quantum 1-bit extractors.
We slightly generalize the result of König and Terhal [76] to the composition of arbitrary
quantum extractors.

Lemma 136. Let Ext1 : {0, 1}n×{0, 1}d1 → {0, 1}m1 and Ext2 : {0, 1}n×{0, 1}d2 → {0, 1}m2

be quantum-proof (k, ε1)- and (k − m1, ε2)-strong extractors. Then the composition of the
two, namely

Ext3 :{0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m1 × {0, 1}m2

(x, y1, y2) 7→ (Ext1(x, y1),Ext2(x, y2)),

is a quantum-proof (k, ε1 + ε2)-strong extractor.

Proof. We need to show that for any state ρXE with Hmin(X|E) ≥ k,

1

2
‖ρExt1(X,Y1) Ext2(X,Y2)Y1Y2E − ρU1 ⊗ ρU2 ⊗ ρY1 ⊗ ρY2 ⊗ ρE‖tr ≤ ε1 + ε2. (A.26)

The left-hand side of Eq. (A.26) can be upper-bounded by

1

2
‖ρExt1(X,Y1)Y1E ⊗ ρU2 ⊗ ρY2 − ρU1 ⊗ ρY1 ⊗ ρE ⊗ ρU2 ⊗ ρY2‖tr

+
1

2
‖ρExt2(X,Y2)Y2 Ext1(X,Y1)Y1E − ρU2 ⊗ ρY2 ⊗ ρExt1(X,Y1)Y1E‖tr. (A.27)

By the definition of Ext1 the first term in Eq. (A.27) is upper-bounded by ε1. For the second
term we use Lemma 139 and get

Hmin(X|Ext1(X, Y1)Y1E) ≥ Hmin(X|Y1E)−H0(Ext1(X, Y1))

= Hmin(X|E)−H0(Ext1(X, Y1)) ≥ k −m1.

By the definition of Ext2 the second term in Eq. (A.27) can then be upper-bounded by ε2.

A.5.3 Technical lemmas

Min-entropy chain rules.

We use the following “chain-rule type” statement about the min-entropy. The proofs for the
two first can be found in [100].
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Lemma 137 ([100, Lemma 3.1.10]). For any state ρABC,

Hmin(A|BC) ≥ Hmin(AC|B)−H0(C),

where H0(C) = log rankρC.

Lemma 138 ([100, Lemma 3.1.9]). For any state ρABZ classical on Z,

Hmin(AZ|B) ≥ Hmin(A|B).

Lemma 139. For any state ρABZ classical on Z,

Hmin(A|BZ) ≥ Hmin(A|B)−H0(Z),

where H0(Z) = log rankρZ.

Proof. Immediate by combining Lemma 137 and Lemma 138.

Reduction step.

To show that a player who can distinguish the output of ExtC (defined in Definition 83 on
page 131) from uniform can also guess the output of the extractor C, we first show that
such a player can guess one of the bits of the output of ExtC given some extra classical
information. This is a quantum version of a result by Yao [132].

Lemma 140. Let ρZB be a cq-state, where Z is a random variable on m-bit strings. If
‖ρZB − ρUm ⊗ ρB‖tr > ε, then there exists an i ∈ [m] such that

‖
∑

z∈Z
zi=0

pz|z[i−1]〉〈z[i−1]|z[i−1] ⊗ ρzB −
∑

z∈Z
zi=1

pz|z[i−1]〉〈z[i−1]|z[i−1] ⊗ ρzB‖tr >
ε

m
. (A.28)

Using the fact that for any binary random variable X and quantum system Q with
ρXQ =

∑
i=0,1 pi|i〉〈i|i⊗ρiQ, the following equality holds: ‖ρXQ−ρU1⊗ρQ‖tr = ‖p0ρ0Q−p1ρ1Q‖tr,

Eq. (A.28) can be rewritten as ‖ρZi[i−1]B − ρU1 ⊗ ρZ[i−1]B‖tr > ε
m
. Lemma 140 can thus

be interpreted as saying that if a player holding B can distinguish Z from uniform with
probability greater than ε, then there exists a bit i ∈ [m] such that when given the previous
i−1 bits of Z, he can distinguish the ith bit of Z from uniform with probability greater than
ε
m
.

Proof. The proof uses a hybrid argument. Let

σi =
∑

z∈Z
r∈{0,1}m

pz
2m
|z[i], r{i+1,...,m}〉〈z[i], r{i+1,...,m}|z[i], r{i+1,...,m} ⊗ ρzB.
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Then

ε < ‖ρZB − ρUm ⊗ ρB‖tr
= ‖σm − σ0‖tr

≤
m∑

i=1

‖σi − σi−1‖tr

≤ mmax
i
‖σi − σi−1‖tr.

By rearranging ‖σi − σi−1‖tr we get the lhs of Eq. (A.28).

We now need to bound the size of this extra information, the “previous i− 1 bits”, and
show that when averaging over all the seeds of ExtC , we average over all the seeds of C,
which means that guessing a bit of the output of ExtC corresponds to distinguishing the
output of C from uniform. For the reader’s convenience we now restate Proposition 1 and
give its proof.

Proposition 3. [Proposition 1] Let X be a classical random variable correlated to some
quantum system E, let Y be a (not necessarily uniform) seed, independent from XE, and let

‖ρExtC(X,Y )E − ρUm ⊗ ρY ⊗ ρE‖tr > ε, (A.29)

where ExtC is the extractor from Definition 83. Then there exists a fixed partition of the
seed Y in two substrings V and W , and a classical random variable G, such that G has
size H0(G) ≤ rm, where r is one of the parameters of the weak design (Definition 82),
V ↔ W ↔ G form a Markov chain, and

‖ρC(X,V )VWGE − ρU1 ⊗ ρVWGE‖tr >
ε

m
. (A.30)

Proof. We apply Lemma 140 to Eq. (A.29) and get that there exists an i ∈ [m] such that

∥∥∥∥∥∥∥∥

∑

x,y
C(x,ySi

)=0

pxqy|C(x, yS1) · · ·C(x, ySi−1
), y〉〈C(x, yS1) · · ·C(x, ySi−1

), y|C(x, yS1) · · ·C(x, ySi−1
), y ⊗ ρx

−
∑

x,y
C(x,ySi

)=1

pxqy|C(x, yS1) · · ·C(x, ySi−1
), y〉〈C(x, yS1) · · ·C(x, ySi−1

), y|C(x, yS1) · · ·C(x, ySi−1
), y ⊗ ρx

∥∥∥∥∥∥∥∥
tr

>
ε

m
, (A.31)

where {px}x∈X and {qy}y∈Y are the probability distributions of X and Y respectively.
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We split y ∈ {0, 1}d in two strings of t = |Si| and d − t bits, and write v := ySi
and

w := y[d]\Si
. To simplify the notation, we set g(w, x, j, v) := C(x, ySj

). Fix w, x and j, and
consider the function g(w, x, j, ·) : {0, 1}t → {0, 1}. This function only depends on |Sj ∩ Si|
bits of v. So to describe this function we need a string of at most 2|Sj∩Si| bits. And to
describe gw,x(·) := g(w, x, 1, ·) · · · g(w, x, i − 1, ·), which is the concatenation of the bits of
g(w, x, j, ·) for 1 ≤ j ≤ i− 1, we need a string of length at most

∑i−1
j=1 2

|Sj∩Si|. So a system

G containing a description of gw,x has size at most H0(G) ≤
∑i−1

j=1 2
|Sj∩Si|. We now rewrite

Eq. (A.31) as

∥∥∥∥∥∥∥

∑

x,v,w
C(x,v)=0

pxqv,w|gw,x(v), v, w〉〈gw,x(v), v, w|gw,x(v), v, w ⊗ ρx

−
∑

x,v,w
C(x,v)=1

pxqv,w|gw,x(v), v, w〉〈gw,x(v), v, w|gw,x(v), v, w ⊗ ρx

∥∥∥∥∥∥∥
tr

>
ε

m
.

By providing a complete description of gw,x instead of its value at the point v, we can
only increase the trace distance, hence

∥∥∥∥∥∥∥

∑

x,v,w
C(x,v)=0

pxqv,w|gw,x, v, w〉〈gw,x, v, w|gw,x, v, w ⊗ ρx

−
∑

x,v,w
C(x,v)=1

pxqv,w|gw,x, v, w〉〈gw,x, v, w|gw,x, v, w ⊗ ρx

∥∥∥∥∥∥∥
tr

>
ε

m
.

By rearranging this a little more we finally get

‖ρC(X,V )VWGE − ρU1 ⊗ ρVWGE‖tr >
ε

m
,

where G is a classical system of size H0(G) ≤
∑i−1

j=1 2
|Sj∩Si|, and V ↔ W ↔ G form a Markov

chain. By the definition of weak designs, we have for all i ∈ [m],
∑i−1

j=1 2
|Sj∩Si| ≤ rm for some

r ≥ 1. So H0(G) ≤ rm.

A.5.4 Known extractors and designs

In this section we list the known constructions for weak designs and 1-bit extractors, which
we plug into Trevisan’s extractor in 8.4.
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Weak designs.

The following weak design allows nearly all the min-entropy of the source to be extracted,
but requires a rather large seed (typically O(log3 n) for an optimal 1-bit extractor).

Lemma 141 ([98, Lemma 17]2). For every t,m ∈ N there exists a weak (t, 1)-design
S1, . . . , Sm ⊂ [d] such that d = t

⌈
t

ln 2

⌉
dlog 4me = O(t2 logm). Moreover, such a design

can be found in time polym, d and space polym.

If we wish to minimize the length of the seed, we can use the following weak design with
log r = Θ(t). We then get a seed of length O(log n) (for an optimal 1-bit extractor), but
only extract a sub-linear amount of min-entropy from the source.

Lemma 142 ([98, Lemma 15]). For every t,m ∈ N and r > 1, there exists a weak (t, r)-

design S1, . . . , Sm ⊂ [d] such that d = t
⌈

t
ln r

⌉
= O

(
t2

log r

)
. Moreover, such a design can be

found in time polym, d and space polym.

The following weak design construction is much more efficient than the two previous ones,
and ideal for a local extractor. It uses a seed of size O(log2 n) and can extract a constant
fraction of the min-entropy (for an optimal 1-bit extractor).

Lemma 143 ([51, Theorem 3]). For every m, t ∈ N, such that m = Ω(tlog t), and constant
r > 1, there exists an explicit weak (t, r)-design S1, . . . , Sm ⊂ [d], where d = O(t2). Such a
design can be found in time polylogm, t and space polylogm+ log t.

Remark 144. For the extractor from Lemma 146 and an error ε = poly1/n, this design
requires m = Ω

(
(log n)log log n

)
. If we are interested in a smaller m, say m = polylog n, then

we can use the weak design from Lemma 142 with r = nγ. This construction would require
time and space polylog n = polylog 1/ε. The resulting seed would have length only O(log n)
instead of O(log2 n).

One-bit extractors.

As 1-bit extractor, Raz et al. [98] (and Trevisan [119] too) used the bits of a list-decodable
code. We give the parameters here as Proposition 4 and refer to A.5.5 for details on the
construction and proof.

Proposition 4. For any ε > 0 and n ∈ N there exists a (k, ε)-strong extractor with uniform
seed Extn,ε : {0, 1}n × {0, 1}d → {0, 1} with d = O(log(n/ε)) and k = 3 log 1/ε.

2Hartman and Raz [51] give a more efficient construction of this lemma, namely in time polylogm, t and
space polylogm+ log t, with the extra minor restriction that m > tlog t.
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Local extractor. Local extractors are defined as follows.

Definition 145 (`-local extractor). An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is `-
locally computable (or `-local), if for every r ∈ {0, 1}d, the function x 7→ Ext(x, r) depends
on only ` bits of its input, where the bit locations are determined by r.

Lu [79] modified Trevisan’s scheme [119, 98] to use a local list-decodable code as 1-bit
extractor. Vadhan [120] proposes another construction for local extractors, which is optimal
up to constant factors. Both these constructions have similar parameters in the case of 1-bit
extractors.3 We state the parameters of Vadhan’s construction here and Lu’s constructions
in A.5.5.

Lemma 146 ([120, Theorem 8.5]). For any ε > exp
(
−n/2O(log∗ n)

)
, n ∈ N and constant

0 < γ < 1, there exists an explicit `-local (k, ε)-strong extractor with uniform seed Extn,ε,γ :
{0, 1}n × {0, 1}d → {0, 1} with d = O(log(n/ε)), k = γn and ` = O(log 1/ε).

Weak random seed. Raz [97] shows how to transform any extractor which needs a uni-
form seed into one which can work with a weakly random seed.

Lemma 147 ([97, Theorem 4]). For any (k, ε)-strong extractor Ext : {0, 1}n × {0, 1}t →
{0, 1}m with uniform seed, there exists a (k, 2ε)-strong extractor Ext : {0, 1}n × {0, 1}t′ →
{0, 1}m requiring only a seed with min-entropy Hmin(Y ) ≥

(
1
2
+ β

)
t′, where t′ = 8t/β.

By applying this lemma to the 1-bit extractor given in Proposition 4, we obtain the
following 1-bit extractor.

Corollary 148. For any ε > 0 and n ∈ N there exists a (k, ε)-strong extractor Extn,ε :
{0, 1}n×{0, 1}d → {0, 1} requiring a seed with min-entropy

(
1
2
+ β

)
d, where d = O( 1

β
log(n/ε))

and k = 3 log 1/ε+ 3.

A.5.5 List-decodable codes are one-bit extractors

Construction.

A standard error correcting code guarantees that if the error is small, any string can be
uniquely decoded. A list-decodable code guarantees that for a larger (but bounded) error,
any string can be decoded to a list of possible messages.

Definition 149 (list-decodable code). A code C : {0, 1}n → {0, 1}n̄ is said to be (ε, L)-
list-decodable if every Hamming ball of relative radius 1/2− ε in {0, 1}n̄ contains at most L
codewords.

3If the extractor is used to extract m-bits, then Vadhan’s scheme reads less input bits and uses a shorter
seed than Lu’s.
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Neither Trevisan [119] nor Raz et al. [98] state it explicitly, but both papers contain an
implicit proof that if C : {0, 1}n → {0, 1}n̄ is a (ε, L)-list-decodable code, then

Ext : {0, 1}n × [n̄]→ {0, 1}
(x, y) 7→ C(x)y,

is a (logL + log 1/2ε, 2ε)-strong extractor (according to Definition 76). We have rewritten
their proof in A.5.6 for completeness.4

There exist list-decodable codes with following parameters.

Lemma 150. For every n ∈ N and δ > 0 there is a code Cn,δ : {0, 1}n → {0, 1}n̄, which
is (δ, 1/δ2)-list-decodable, with n̄ = polyn, 1/δ. Furthermore, Cn,δ can be evaluated in time
polyn, 1/δ and n̄ can be assumed to be a power of 2.

For example, Guruswami et al. [49] combine a Reed-Solomon code with a Hadamard
code, obtaining such a list-decodable code with n̄ = O(n/δ4).

Such codes require all bits of the input x to be read to compute any single bit C(x)i of
the output. If we are interested in so-called local codes, we can use a construction by Lu [79,
Corollary 1].

A.5.6 List-decodable codes are strong extractors

Theorem 151. Let C : {0, 1}n → {0, 1}n̄ be an (ε, L)-list-decodable code. Then the function

C ′ : {0, 1}n × [n̄]→ {0, 1}
(x, y) 7→ C(x)y,

is a (logL+ log 1/2ε, 2ε)-strong extractor.5

To prove this theorem we first show that a player who can distinguish the bit of C ′(X, Y )
from uniform can construct a string α which is close to C(X) on average (over X). Then
using the error correcting properties of the code C, he can reconstruct X. Hence a player
who can break the extractor must have low min-entropy about X.

Lemma 152. Let X and Y be two independent random variables with alphabets {0, 1}n and
[n] respectively. Let Y be uniformly distributed and X be distributed such that 1

2
|XY ◦Y −U1◦

Y | > δ, where U1 is uniformly distributed on {0, 1}. Then there exists a string α ∈ {0, 1}n
with

Pr

[
d(X,α) ≤ 1

2
− δ

2

]
> δ,

where d(·, ·) is the relative Hamming distance.

4A slightly more general proof, that approximate list-decodable codes are 1-bit extractors can be found
in [33, Claim 3.7].

5This theorem still holds in the presence of classical side information with exactly the same parameters.
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Proof. Define α ∈ {0, 1}n to be the concatenation of the most probable bits of X, i.e.,
αy := argmaxb PXy(b), where PXy(b) =

∑
x∈{0,1}n
xy=b

PX(x).

The average relative Hamming distance between X and α is

∑

x∈{0,1}n
PX(x)d(x, α) =

1

n

∑

x∈{0,1}n
PX(x)

n∑

y=1

|xy − αy|

=
1

n

∑

x,y
xy 6=αy

PX(x) = 1− 1

n

n∑

y=1

PX(αy).

And since 1
2
|XY ◦ Y − U1 ◦ Y | > δ is equivalent to 1

n

∑n
y=1 maxb∈{0,1} PXy(b) >

1
2
+ δ, we

have ∑

x∈{0,1}n
PX(x)d(x, α) <

1

2
− δ. (A.32)

We now wish to lower bound the probability that the relative Hamming distance is less
than 1

2
− δ

2
. Let B := {x : d(x, α) ≤ 1

2
− δ

2
} be the set of values x ∈ {0, 1}n meeting this

requirement. Then the weight of B, w(B) :=
∑

x∈B PX(x), is the quantity we wish to lower
bound. It is at its minimum if all x ∈ B have Hamming distance d(x, α) = 0. In which case
the average Hamming distance is

∑

x∈{0,1}n
PX(x)d (x, α) > (1− w(B))

(
1

2
− δ

2

)
. (A.33)

Combining Eqs. (A.32) and (A.33) we get

w(B) >
δ

1− δ ≥ δ.

We are now ready to prove Theorem 151.
Proof of Theorem 151. We will show that if it is possible to distinguish C ′(X, Y ) from

uniform with probability at least 2ε, then X must have min-entropy Hmin(X) < logL +
log 1/2ε.

If 1
2
|C ′(X, Y ) ◦ Y − U1 ◦ Y | > 2ε, then by Lemma 152 we know that there exists an

α ∈ {0, 1}n̄ such that

Pr

[
d (C(X), α) ≤ 1

2
− ε
]
> 2ε,

where d(·, ·) is the relative Hamming distance.
This means that with probability at least 2ε, X takes values x such that the relative

Hamming distance d(C(x), α) ≤ 1
2
− ε. So for these values of X, if we choose one of the

codewords in the Hamming ball of relative radius 1
2
−ε around α uniformly at random as our
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guess for x, we will have chosen correctly with probability at least 1/L, since the Hamming
ball contains at most L code words. The total probability of guessing X is then at least
2ε/L.

Hence by Eq. (3.1), Hmin(X) < logL+ log 1/2ε.

A.6 Omitted proofs from Chapter 9

A.6.1 Identifying “good” blocks in Protocols A and B

In this section we prove Claim 97 and Claim 98, which play an analogous role for Theorem 93
and Theorem 94 respectively: that of identifying a special iteration of the protocol that will
be useful to Alice and Bob in the guessing game.

Proof of Claim 97. Let BAD′ be the set of strings b ∈
(
{0, 1}k

)m
such that Pr(b|CHSH) >

2−n. Assumption (i) together with Claim 8 show that Pr(BAD′|CHSH) ≥ ε, so using (ii) we
get Pr(CHSH|BAD′) ≥ ε2. Define BAD to contain only those strings b ∈ BAD′ such that
Pr(CHSH|b) ≥ ε2/2; we have Pr(BAD) ≥ (ε2/2) Pr(BAD′) ≥ ε4/2.

By definition of BAD, using Baye’s rule we have that for every b = (b1, . . . , bm) ∈ BAD,

Pr(B = b,CHSH) =
m∏

i=1

Pr(Bi = bi,CHSHi|CHSH<i, B<i = b<i) ≥ 2−nε2/2.

Taking logarithms on both sides,

m∑

i=1

− log Pr(Bi = biCHSHi|CHSH<i, B<i = b<i) ≤ n+ 3 log(1/ε) ≤ 2n,

assuming as in the statement of the claim that ε is not too small. By an averaging argument
at least 7/8 of all i ∈ [m] are such that a fraction at least 7/8 of all b ∈ BAD are such that

Pr(Bi = bi|CHSH<i, B<i = b<i) ≥ 2−128(n/m) ≥ 2−128/C . (A.34)

A similar argument, starting from Pr(CHSH|b) ≥ ε2/2 for all b ∈ BAD, shows that

m∑

i=1

− log Pr(CHSHi|CHSH<i, b) ≤ 2 log(1/ε) + 1 ≤ 3 log(1/ε)

for large enough n. By an averaging argument, a fraction at least 7/8 of all i ∈ [m] are such
that a fraction 7/8 of all all b ∈ BAD satisfy

− log Pr(CHSHi|CHSH<i, b) ≤
192 log(1/ε)

n
, (A.35)
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where here we used m ≥ n. Let S be the set of i ∈ [m] such that both (A.34) and (A.35)
hold simultaneously for a fraction at least 3/4 of b ∈ BAD. By the union bound, we have
|S| ≥ (3/4)m.

We apply the same reasoning once more, focusing on the CHSH constraint being satisfied
in a Bell block. Let N be a random variable equal to the number of Bell blocks that fall in
S. Since S is a fixed set of indices, and each block is chosen to be a Bell block independently
with probability 1/`, N is concentrated around ∆(|S|/m) ≥ ∆/2. By a Chernoff bound,
the probability that N is less than ∆/4 is at most e−∆/16, which given our choice of ∆ can
be neglected in front of the other events we are considering. For the remainder of the proof
we assume that N ≥ C/4. Let Tj be a random variable denoting the index of the j-th Bell
block, among those that fall in S. Starting from Pr(CHSH|BAD) ≥ ε2/2 and using Baye’s
rule as before,

N∑

j=1

− log Pr(CHSHTj
|CHSH<Tj

,BAD) ≤ 2 log(1/ε) + 1 ≤ 3 log(1/ε).

By an averaging argument and using our assumed lower bound on N this shows that a
fraction at least 1/2 of the Bell blocks in Protocol A are such that

Pr(CHSHTj
|CHSH<Tj

,BAD) ≥ ε24/C . (A.36)

Let Tj ∈ T ∩ S be a Bell block for which (A.36) holds. For a fraction at least ε24/C/2 of
b ∈ BAD it holds that

Pr(CHSHTj
|CHSH<Tj

, b) ≥ ε24/C/2. (A.37)

By the union bound, at iteration Tj (A.37) will hold simultaneously with (A.34) and (A.35)
for a subset G of BAD of size at least

Pr(G) = Pr(G|BAD)Pr(BAD) ≥
(
ε24/C/2− 1/4

)
ε4/2 ≥ ε5

given our choice of parameters. By choosing C large enough, (A.34) implies item 1 in the
claim, and (A.35) and (A.37) imply item 2, given the choice of ∆ made in the claim.

Proof of Claim 98. By definition, Pr
(
GB
)
≥ ps Pr(CHSH) ≥ psε. Conditioned on GB, by

Markov’s inequality it must be that dH(E
B, B) < 0.01 on a fraction at least 1 − 100fe of

blocks in which the input to B was (A, 0). Let f ′e = 100fe. Let η = 2−10
−5f ′

e|T |/(2·1002), and
assume C chosen large enough so that η ≤ psε/6 = Ω(n−8(1+α)). This is possible since |T | is
sharply concentrated around C log2 ` and f ′e = Ω(1/ log `).

Among the blocks in which Eve’s prediction is correct, nothing distinguishes those Bell
blocks in which B’s input is (A, 0): indeed, we may think of those only being designated
as Bell blocks after Eve has made her prediction. By a Chernoff bound the probability
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that more than a fraction 2f ′e of such blocks fall into those for which GB
j does not hold is

upper-bounded by η. Hence the following holds

Pr
(
Ej∈T :Yj=(A,0)G

B
j > 1− 2f ′e|GB

)
≥ 1− η. (A.38)

Since V is a fixed subset of [km] of size |V | = O(mγ log2m), the probability that any
of the randomly chosen O(log2 `) Bell blocks intersects it is at most O(m−1+γ log4m) =
O(n2−1/γ log4 n) for large enough n. We assume as in the statement of Theorem 94 that
γ is chosen large enough so that this is much smaller than (our upper bound on) η, i.e.
γ < 1/(9+8α). For the remainder of the proof we will neglect the chance of this happening.

Conditioning further on CHSH can only blow-up the error by a factor 1/Pr(CHSH|GB) ≤
1/(psε). In that caseGA = GB (Eve’s prediction only depends on the advice bits she is given),
so we obtain:

Pr
(
Ej∈T :Yj=0G

B
j > 1− 2f ′e,CHSH|GA

)

Pr
(
CHSH|GA

) = Pr
(
Ej∈T :Yj=(A,0)G

A
j > 1−2f ′e|GA,CHSH

)
≥ 1−η/(psε).
(A.39)

Suppose Eve makes more than a fraction 5f ′e of errors in predicting A’s output on those Bell
blocks in which its input is (A, 0). Some of those will later be randomly chosen by Bob as
Bell blocks, and by a Chernoff bound with probability at least 1− η the input to B will also
be (A, 0) in at least 40% of those blocks. Whenever this happens, Eve’s prediction will be
wrong on a total fraction more than 2f ′e of B’s (A, 0)-input Bell blocks, contradicting (A.39).
Indeed, whenever CHSH holds, if the input to both boxes is (A, 0) then Eve being correct in
predicting B’s output is equivalent to her being correct in predicting A’s output. Hence the
following holds:

Pr
(
Ej∈T :Xj=(A,0)G

A
j > 1− 5f ′e,CHSH|GA

)
≥ Pr

(
Ej∈T :Yj=(A,0)G

A
j > 1− 2f ′e,CHSH|GA

)
− η

≥ (1− η/(psε)) Pr
(
CHSH|GA

)
− η

≥ (1− 2η/(psε)) Pr
(
CHSH|GA

)
, (A.40)

where the last inequality uses Pr(CHSH|GA) ≥ psε. As before, since GA ∧ CHSH = GB ∧
CHSH, (A.40) implies the following:

Pr
(
Ej∈T :Xj=(A,0)G

B
j > 1− 5f ′e|GB,CHSH

)
≥ 1− 2η/(psε). (A.41)

Next, suppose Eve makes a prediction that is wrong on a fraction at least 14f ′e of the Bell
blocks, irrespective of Bob’s inputs. Then again with high probability at least 40% of the
inputs to A in those blocks will be (A, 0), implying that Eve is wrong on more than a
fraction 5f ′e of A’s (A, 0) inputs, and contradicting (A.41). Hence the following is proven
just as (A.40) was:

Pr
(
Ej∈T G

B
j > 1− 14f ′e|GB,CHSH

)
≥ 1− 3η/(psε). (A.42)
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Hence
Pr
(
Ej∈T G

A
j > 1− 14f ′e|GA,CHSH

)
≥ 1− 3η/(psε),

which is greater than 1/2 given our choice of η. Removing all conditioning, whenever Eve is
given advice bits by Alice, it holds that

Pr
(
Ej∈T G

A
j > 1− 14f ′e,CHSH

)
≥ Ω(psε).

A.6.2 Proof of Lemma 95

In this section we give the proof of Lemma 95. The proof crucially uses properties of a
specific extractor construction, first shown to be secure in the presence of quantum bounded-
storage adversaries in [112], and in the more general setting of quantum bounded-information
adversaries in [34]. We first describe the extractor.

The t-XOR extractor

The t-XOR extractor Et, parametrized by an integer t, follows Trevisan’s general extractor
construction paradigm [119]. It is based on two main ingredients, the t-XOR code and a
combinatorial design construction due to Hartman and Raz [51]. For us, only the details of
the t-XOR code will be important.

The t-XOR code. Given integers m and t ≤ m, let Ct : {0, 1}m → {0, 1}(mt ) map an
m-bit string to the string of parities of all subsets of t out of its m bits. Two properties
of this encoding will be relevant for us. The first is that it is locally computable: each bit
of the code only depends on t bits of the input. The second is that it is approximately
list-decodable (we summarize its parameters in Lemma 157 below).

Combinatorial designs. Given integers s,m, r and ρ > 0, a collection of subsets S1, . . . , Sr ⊆
[s] is called a (s,m, r, ρ) weak design if for all i ∈ [r], |Sr| = m and for all j,

∑
i<j 2

|Si∩Sj | ≤
ρ(r − 1). For our purposes it will suffice to note that Hartman and Raz [51] proved the
existence of a (s,m, r, 1 + γ) design for every m, 0 < γ < 1/2, s = O(m2 log 1/γ) and
r > sΩ(log s).

The t-XOR extractor. We define the extractor that we will use in the proof of Lemma 95.

Definition 153. Let m, r, t, s be given integers such that t = O(logm) and s = O(log4 n).
Then Et : {0, 1}m×{0, 1}s → {0, 1}r maps (x, y) ∈ {0, 1}m×{0, 1}s to Ct(x)yS1

, . . . , Ct(x)ySr
,

where (S1, . . . , Sr) is a (s, t logm, r, 5/4) design and ySi
designates the bits of y indexed by

Si, interpreted as a t-element subset of [m].
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While, as shown in Corollary 5.11 in [34], Et is a strong extractor with good parameters,
we will not use this fact directly. Rather, we will use specific properties that arise from
the “reconstruction paradigm”-based proof that it is an extractor secure against quantum
adversaries, and one may argue that Lemma 95 is implicit in the proof of security of Et given
in [34]. Since it does not follow directly from the mere statement that Et is an extractor,
we give more details here. We will show the following lemma, which is more general than
Lemma 95.

Lemma 154. Let m, r, t be integers such that t = O(log2m) and ε > 0. Let ρXE be a
cq-state such that X is a random variable distributed over m-bit strings. Let Ur be uniformly
distributed over r-bit strings, and suppose that

‖ρExt(X,Y )E − ρUr ⊗ ρE
∥∥
tr
> ε, (A.43)

i.e. an adversary Eve holding register E can distinguish the output of the extractor from a
uniformly random r-bit string. Then there exists a fixed subset V ⊆ [m] of size |V | = O(tr)
such that, given the string XV as advice, with probability at least Ω(ε2/r2) over the choice
of x ∼ pX and her own randomness Eve can output a list of ` = O(r4/ε4) strings x̃1, . . . , x̃`

such that there is an i ∈ [`], dH(x̃
i, x) ≤ (2/t) ln(4r/ε).

It is not hard to see why Lemma 154 implies Lemma 95. First note that if r is chosen
in Lemma 154 so that r > 2Hε

∞(X|E) then the assumption (A.43) is automatically satis-
fied.6 The conclusion of Lemma 95 then follows from that of Lemma 154 by having Eve
output a random string out of her ` predictions, and choosing t = Ω(log2m) to ensure that
(2/t) ln(4r/ε) ≤ 1/ logm.

In the remainder of this section we sketch the proof of Lemma 154. The first step,
explained in Section A.6.2, consists in using a hybrid argument to show that, given (A.43),
Eve can predict a random t-XOR of X’s bits with reasonable success probability, given
sufficiently many “advice bits” about X. In the second step, detailed in Section A.6.3, we
show using an argument due to Koenig and Terhal [76] that this implies the adversary can
in fact recover most t-XORs of X, simultaneously. Finally, in Section A.6.3 we use the list-
decoding properties of the XOR code to show that as a consequence the adversary can with
good probability produce a string that agree with X on a large fraction of coordinates.

The hybrid argument

Suppose that (A.43) holds. Proposition 4.4 from [34] shows that a standard hybrid argument,
together with properties of Trevisan’s extractor (specifically the use of the seed through
combinatorial designs), can be used to show the following claim.

6The extra randomness coming from the seed of the extractor will be small, as its size can be taken to
be s = O(log4 m).
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Claim 155. There exists a subset V ⊆ [m] of size |V | = O(tr) such that, given the bits XV ,
Eve can predict a random t-XOR of the bits of X with advantage ε/r. Formally,

∥∥ρCt(X)Y Y V E − ρU1 ⊗ ρY ⊗ ρV E

∥∥
tr
>

ε

r
, (A.44)

where Y is a random variable uniformly distributed over
[(

m
t

)]
and V is a register containing

the bits of X indexed by V .

A.6.3 Recovering all t-XORs.

The next step in the proof of Lemma 154 is to argue that Eq. (A.44) implies that an adversary
given access to E ′ = V E can predict not only a random XOR of X, but a string Z of length(
m
t

)
such that Z agrees with the string Ct(X) of all t-XOR’s of X in a significant fraction of

positions. Classically this is trivial, as one can just repeat the single-bit prediction procedure
guaranteed by (A.44) for all possible choices Y of the t bits whose parity one is trying to
compute. In the quantum setting it is more tricky. We will follow an argument from [76]
showing that (A.44) implies that there is a single measurement, independent of Y , that one
can perform on E and using the (classical) result of which one can predict the bits Ct(X)Y
with good success on average (over the measurement’s outcome and the choice of Y ).

Claim 156. Suppose (A.44) holds. Then there exists a measurement F , with outcomes in
{0, 1}m, such that

Pr
x∼pX , y∼Ut logm

(
Ct(x)Y = Ct(F(V E))y

)
≥ 1

2
+

ε2

4r2
, (A.45)

where F(V E) denotes the outcome of F when performed on the cq-state ρV E.

Proof. Our argument closely follows the proof of Theorem III.1 from [76]. Given an arbitrary
cq-state ρZQ, define the non-uniformity of Z given Q as

d(Z ← Q) :=
∥∥ρZQ − ρUz ⊗ ρQ

∥∥
tr
.

Let ρx denote the state contained in registers V E, conditioned on X = x. For a fixed string
y, define two states

ρy0 :=
∑

x:Ct(x)y=0

pX(x) ρx and ρy1 :=
∑

x:Ct(x)y=1

pX(x) ρx.

Then, by definition d
(
Ct(X)y ← V E

)
=
∥∥ρy0 − ρy1

∥∥
tr

is the adversary’s maximum success
probability in distinguishing those states ρx which correspond to an XOR of 0 from those
which correspond to an XOR of 1. Let Ey =

{
E0

y , E
1
y

}
be the pretty good measurement

corresponding to the pair of states
{
ρy0, ρ

y
1

}
:

E0
y = ρ

−1/2
V E ρy0 ρ

−1/2
V E and E1

y = ρ
−1/2
V E ρy1 ρ

−1/2
V E ,
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where ρV E =
∑

x PX(x)ρx. Lemma 2 from [76] (more precisely, Eq. (19)), shows that the
following holds as a consequence of (A.44):

√
Ey

[
2 d
(
Ct(X)y ← Ey(V E)

)]
+ d(Ct(X)Y ← Y ) >

ε

r
, (A.46)

where Ey(V E) is the result of the POVM Ey applied on ρV E, and d(Ct(X)Y ← Y ) is the
distance from uniform of the one-bit extractor’s output, in the absence of the adversary. We
may as well assume this term to be small: indeed, if it is more than ε/(2r) then (A.45) is
proved without even having to resort to the quantum system E. Hence (A.46) implies

Ey

[
d
(
Ct(X)y ← Eypgm(V E)

) ]
>

ε2

2r2
,

which can be equivalently re-written as

Ey

[
Tr
(
E0

y ρ
0
y

)
+ Tr

(
E1

y ρ
1
y

) ]
>

1

2
+

ε2

4r2
. (A.47)

Following the argument in [76], we define a new PGM F with outcomes in {0, 1}m and POVM

elements F x = PX(x)ρ
−1/2
V E ρx ρ

−1/2
V E . The important point to notice is that for z ∈ {0, 1} we

have Ez
y =

∑
x:Ct(x)y=z F

x, hence (A.47) can be re-written as

Ey

[ ∑

b:Ct(b)y=0

Tr
(
F x ρ0y

)
+

∑

b:Ct(b)y=1

Tr
(
F x ρ1y

) ]
>

1

2
+

ε2

4r2
,

which is exactly (A.45).

List-decoding the XOR code.

The following lemma (for a reference, see [55], Lemma 42) states the list-decoding properties
of the t-XOR code Ct that are important for us.

Lemma 157. For every η > 2t2/2m and z ∈ ({0, 1}m)t, there is a list of ` ≤ 4/η2 elements
x1, . . . , x` ∈ {0, 1}m such that the following holds: for every z′ ∈ {0, 1}m which satisfies

Pr
{y1,...,yt}∈(mt )

[z(y1,...,yt) = ⊕t
i=1z

′
yi
] ≥ 1

2
+ η,

there is an i ∈ [`] such that
Pr

y∼UN
[xiy = z′y] ≥ 1− δ,

with δ = (1/t) ln(2/η).
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Claim 156 implies that, with probability at least ε2/(8r2) over the choice of x and over
Eve’s own randomness, when measuring her system with F she will obtain a string z̃ whose
t-XORs agree with those of x with probability at least 1/2 + ε2/(8r2). Lemma 157 shows
that in that case she can recover a list of at most 28r4/ε4 “candidate” strings z̃i such that
there exists at least one of these strings which agrees with x at a (possibly adversarial)
fraction 1 − δ of positions, where δ = (2/t) ln(4r/ε) given our choice of parameters. Hence
Lemma 154 is proved.
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