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Abstract

Conditional Sampling Distributions for
Coalescent Models Incorporating Recombination

by

Joshua Samuel Paul

Doctor of Philosophy in Computer Science
and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley
Professor Yun S. Song, Chair

With the volume of available genomic data increasing at an exponential rate, we have unprece-
dented ability to address key questions in molecular evolution, historical demography, and epi-
demiology. Central to such investigations is population genetic inference, which seeks to quantify
the genetic relationship of two or more individuals provided a stochastic model of evolution. A
natural and widely-used model of evolution is Kingman’s coalescent (Kingman, 1982a), which ex-
plicitly describes the genealogical relationship of the individuals, with various extensions to account
for complex biological phenomena. Statistical inference under the coalescent, however, remains a
challenging computational problem. Modern population genetic methods must therefore realize a
balance between computational efficiency and fidelity to the underlying model. A promising class
of such methods employ the conditional sampling distribution (CSD).

The CSD describes the probability of sampling an individual with a particular genomic sequence,
provided that a collection of individuals from the population, and their corresponding sequences,
has already been observed. Critically, the true CSD is generally inaccessible, and it is therefore
necessary to use an approximate CSD in its place; such an approximate CSD is ideally both
accurate and computationally efficient. In this thesis, we undertake a theoretical and algorithmic
investigation of the CSD for coalescent models incorporating mutation, homologous (crossover)
recombination, and population structure with migration.

Motivated by the work of De Iorio and Griffiths (2004a), we propose a general technique for
algebraically deriving an approximate CSD directly from the underlying population genetic model.
The resulting CSD admits an intuitive coalescent-like genealogical interpretation, explicitly describ-
ing the genealogical relationship of the conditionally sampled individual to the previously sampled
individuals. We make use of the genealogical interpretation to introduce additional approximations,
culminating in the sequentially Markov CSD (SMCSD), which models the conditional genealogical
relationship site-by-site across the genomic sequence. Critically, the SMCSD can be cast as a hid-
den Markov model (HMM), for which efficient algorithms exist; by further specializing the general
HMM methods to the SMCSD, we obtain optimized algorithms with substantial practical benefit.
Finally, we empirically validate both the accuracy and computational efficiency of our proposed
CSDs, and demonstrate their utility in several applied contexts.
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Chapter 1

Introduction & Preliminaries

In the past decade, advances in technology have reduced the cost of genomic DNA sequencing by
several orders of magnitude. As a direct result, the volume of available genomic data, both for
humans and other organisms, is expanding exponentially. In principle, this influx of data provides
a means of answering a great many questions: What is the demographic history of humankind, and
did early humans interbreed with our Neanderthal forebears? What are the genomic abnormalities
that contribute to a complex genetic disease, such as cancer? What are the roles of natural selection
and other evolutionary forces, such as mutation and recombination, in shaping the genome?

A common thread running through these questions, and many more, is the requirement that
many individuals belonging to a population, or species, be examined jointly. Such analyses are
within the domain of population genetics, which is generally concerned with the genetic/genomic
architecture of a population subject to a stochastic model of evolution. The model of evolution is
typically assumed to be a Wright-Fisher diffusion, which naturally models the stochastic effects of
genetic drift, and can also accommodate models of mutation, recombination, natural selection, and
population demography. The Wright-Fisher diffusion is prospective in the sense that it describes
the evolution of a population forwards in time; in many cases there also exists a dual model, the
coalescent, which is retrospective in the sense that it describes the genealogical relationship for a
sample of individuals within the same population backwards in time.

Both the Wright-Fisher diffusion and the coalescent have been used fruitfully in population
genetics, both to understand the theoretical implications of various modes of evolution, and in
the context of statistical inference to begin providing answers to data-driven questions, such as
those introduced above. Despite being mathematical idealizations of natural evolution, statistical
inference under these models remains a challenging computational problem. With the quantity of
genomic data rapidly increasing, it is therefore critical to develop practicable statistical methods
that realize a balance between computational efficiency and fidelity to the underlying model. A
promising class of such methods employ the conditional sampling distribution (CSD).

The CSD describes the probability of sampling an individual with a particular genetic/genomic
sequence, given that a collection of individuals from the population, and their corresponding se-
quences, has already been observed. Critically, the CSD is intuitively appealing and well-suited to
approximation; statistical procedures requiring the joint analysis of many individuals can then be
rephrased in terms of one or more CSDs, and approximations used thereafter. In this thesis, we
undertake a theoretical and algorithmic investigation of the CSD for coalescent models incorporat-
ing recombination, with the objective of developing highly accurate approximations that remain

1



2 Introduction & Preliminaries

computationally practicable, even for genomic-scale data. The outcome of our research is a family
of statistically well-motivated CSDs, and a corresponding efficient algorithmic framework. We also
demonstrate the utility of our approximate CSDs in the context of several applications.

The structure of this thesis is as follows. In the remainder of this chapter, we provide an
introduction to both the Wright-Fisher diffusion and the coalescent. These models are described in
a general setting, including mutation, recombination, and population structure; notably, selective
neutrality is assumed throughout, so that all individuals in the population have equal reproductive
opportunity. Of particular importance is the probability of obtaining a sample, and we discuss two
standard methods for exact computation of this quantity; the first derives directly from the Wright-
Fisher diffusion, and the second from the genealogical interpretation provided by the coalescent.
Finally, we formally introduce the CSD, and describe several commonly used approximations.

In Chapter 2, we develop the approximate CSD π̂PS. Analogous to the sampling probability
discussed in Chapter 1, π̂PS can be constructed either by an approximation to the Wright-Fisher
diffusion, or from an intuitive genealogical process, the trunk-conditional coalescent. We investigate
the resulting CSD in several limits and special cases, and provide evidence that it is a reasonable
approximation. We also consider the recursive expression for the conditional sampling probability
(CSP), and guided by the trunk-conditional coalescent, which describes the genealogical relationship
of the conditionally sampled individual to the previously sampled individuals, propose additional
approximations with desirable computational properties. These approximations culminate in the
sequentially Markov CSD π̂SMC, for which the sequence of site-by-site conditional genealogical
relationships is assumed to be Markov. Finally, we relate the CSDs π̂PS and π̂SMC to previously-
proposed CSDs, and conclude that π̂PS and π̂SMC more faithfully approximate the true CSD.

In Chapter 3, we more fully consider practical algorithms for computing the CSPs associated
with π̂PS and π̂SMC. We show that, for a single conditionally sampled individual, the computation
associated with π̂PS is asymptotically super-exponential in the number of sites. Due to the Markov
construction of π̂SMC, the model can be cast as a hidden Markov model (HMM), and the associated
computation is asymptotically linear in the number of sites, representing an impressive theoretical
speedup. Making use of additional observations about the specific form of the HMM associated
with π̂SMC, we obtain an optimized algorithm that is, in practice, several orders of magnitude faster
than the traditional dynamic programming algorithm used for HMM computation.

In Chapter 4, we empirically investigate the accuracy and computationally efficiency of our
proposed CSDs. In concordance with our earlier theoretical conjecture, we find that our CSDs are
generally more accurate than previously-proposed CSDs; importantly, the observed improvement
in accuracy is amplified as the number of sites increases, an important consideration for application
to genomic-scale data. Moreover, using our optimized algorithms for π̂SMC, we find that the time
required to evaluate the CSP is, for large genomic datasets, substantially less than for previously
proposed CSDs. We also demonstrate the utility of our CSD in the context of two well-known
applications, importance sampling and approximate likelihood inference, and describe and evaluate
several extensions and algorithmic improvements in these settings. Additionally, we describe a novel
application of our CSD for approximate inference of the genealogy relating several individuals at a
particular site.

Finally, in Chapter 5, we discuss our results and propose several promising future research
directions. We remark that although we do not explicitly answer any of the questions posed above,
we believe that the theoretical methods and results presented herein have immediate application
in these important research areas.
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h1 ∈ H

h2 ∈ H

h3 ∈ H

(a)

Ma
2(h1)

Ma
1(h2)

(b)

R(3,4)(h1, h2)

R(2,3)(h2, h3)

(c)

Figure 1.1. Illustration of fully-specified haplotypes, and the mutation and recombination opera-
tions. In this case, L = {1, 2, 3, 4}, B = {(1, 2), (2, 3), (3, 4)}, and Aℓ = A = {light grey, dark grey}
for each ℓ ∈ L. (a) Three haplotypes h1, h2, h3 ∈ H. The loci of each haplotype are represented by
filled circles, with the color representing the allelic type at that locus. (b) Example of two mutation
operations, Ma

2(h1),M
a
1(h2) ∈ H, where a = dark grey ∈ A. (c) Example of two recombination

operations, R(3,4)(h1, h2),R(2,3)(h2, h3) ∈ H.

1.1 Haplotypes and Sample Configurations

We begin by formalizing what is meant by the genomic/genetic “sequence” carried by an individual
in a population. Without loss of generality, we consider a population of haploid individuals, so that
there exists a single sequence, or haplotype, carried by each individual, and assume that this
haplotype comprises a finite number of loci, and that there are a finite number of possible alleles
at each locus. Each individual in the population thus carries a haplotype with the same structure,
but with potentially different alleles. This model is often referred to as finite-sites finite-alleles.
Denote the set of loci by L = {1, . . . , k} , and the finite set of alleles available at locus ℓ ∈ L by
Aℓ. The space of haplotypes, denoted by H, is then given by H = A1 × · · · ×Ak. Further, given a
haplotype h ∈ H, denote by h[ℓ] ∈ Aℓ the allele at locus ℓ ∈ L, and by h[ℓ : ℓ′] the sub-haplotype
for the range of loci ℓ ≤ ℓ′. See Figure 1.1(a) for an example.

There are two key biological mechanisms by which the haplotypes carried by individuals within
a population vary. The first, mutation, occurs when the descendant of an individual carries a
haplotype with a different allele than the parental haplotype at some locus ℓ ∈ L. The second,
homologous recombination, occurs when the descendant of two individuals carries a haplotype that
is a mosaic of the parental haplotypes. In principle, a recombination event can occur between any
pair of adjacent loci; the set of recombination breakpoints is denoted by B = {(1, 2), . . . , (k−1, k)}.
Note that we only consider crossover recombination, in which a single breakpoint b ∈ B is selected.
These mechanisms are formalized by the following operators, illustrated in Figures 1.1(b) and 1.1(c).

Mutation: Given h ∈ H, ℓ ∈ L, and a ∈ Aℓ, define Ma
ℓ (h) ∈ H as the haplotype derived from h

by substituting the allele at locus ℓ by a.

Recombination: Given h, h′ ∈ H and b = (ℓ, ℓ + 1) ∈ B, define Rb(h, h
′) ∈ H as the haplotype

derived by concatenating h[1, ℓ] and h′[ℓ+ 1, k].

We represent a configuration of fully-specified haplotypes by a vector n = (nh)h∈H, where nh is
the number of haplotypes of type h in the sample. The total number of haplotypes is then denoted
n = |n| =

∑
h∈H nh. Finally, we denote by eh the singleton configuration comprising a single

haplotype of type h.

Partially-specified haplotypes It will frequently be necessary to employ haplotypes for which
the alleles at one or more loci are unspecified. We denote an unspecified allele by •, so that the space
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g1 ∈ G

g2 ∈ G

g3 ∈ G

(a)

M3(g1)

M2(g2)

(b)

R−
(1,2)

(g1)

R+
(1,2)(g1)

(c)

C(g1, g3)

C(g2, g3)

(d)

Figure 1.2. Illustration of partially-specified haplotypes, and the mutation, recombination, and co-
alescence operations, in the setting of Figure 1.1. (a) Three partially-specified haplotypes g1, g2, g3 ∈
G. Unspecified alleles are indicated by unfilled circles. (b) Example of two mutation operations,
M3(g1),M2(g2) ∈ G. (c) Example of two recombination operations, R−

(1,2)(g1),R
+
(1,2)(g1) ∈ G. (d)

Example of two coalescence operations C(g1, g3), C(g2, g3) ∈ G. Note that g1 f g3 and g2 f g3, and
so the operations are well-defined.

of partially-specified k-locus haplotypes, denoted G, is given by G = (A1∪{•})×· · ·×(Ak∪{•}) ⊃ H.
For g ∈ G, we denote by L(g) ⊂ L the subset of loci specified by g, and by B(g) the set of breakpoints
between the leftmost and the rightmost loci in L(g). See Figure 1.2(a) for an example.

It is also necessary to revise the mutation and recombination operators for use with partially-
specified haplotypes, and to introduce an operator for combining, or coalescing, two partially-
specified haplotypes. Letting g, g′ ∈ G, we say that g and g′ are compatible, and write g f g′, if
g[ℓ] = g′[ℓ] for all ℓ ∈ L(g) ∩ L(g′).

Mutation: Given g ∈ G, ℓ ∈ L(g), define Mℓ(h) ∈ G as the haplotype derived from h by substi-
tuting an unspecified allele at locus ℓ.

Recombination: Given g ∈ G and b = (ℓ, ℓ + 1) ∈ B(g), define R−
b (g) ∈ G as the haplotype

derived by concatenating the sub-haplotype g[1, ℓ] and g•[ℓ+ 1, k], where g• ∈ G has g[ℓ] = •
for all ℓ ∈ L. Similarly, define R+

b (g) ∈ G as the haplotype derived by concatenating the
sub-haplotype g•[1, ℓ] and g[ℓ+ 1, k]

Coalescence: Given g, g′ ∈ G with g f g′, define C(g, g′) as the haplotype derived by setting, for
each ℓ ∈ L

C(g, g′)[ℓ] =





g[ℓ] = g′[ℓ], if ℓ ∈ L(g) ∩ L(g′),
g[ℓ], if ℓ ∈ L(g)\L(g′),
g′[ℓ], if ℓ ∈ L(g′)\L(g),
•, if ℓ /∈ L(g) ∪ L(g′).

(1.1)

These modified operators are illustrated in Figures 1.2(b), 1.2(c), and 1.2(d). Analogous to a config-
uration of fully-specified haplotypes, we represent a configuration of partially-specified haplotypes
by a vector n = (ng)g∈G , where ng is the number of partially-specified haplotypes of type g in the
sample.

The notation introduced in this section, though incomplete, forms a core that will be specialized
or generalized to particular domains in the subsequent sections and chapters. We remark at the
outset that the notation has been chosen to be as informative as possible without being overly cum-
bersome. As such, when no confusion arises, certain symbols will be re-used in different contexts.
For example, we have used the symbol n to designate both fully- and partially-specified haplotype
configurations, and will use the symbol again for configurations of haplotypes for which each hap-
lotype resides in particular population subdivision or deme. For reference, a table of commonly
used notation is provided in Appendix A.
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1.2 Wright-Fisher Diffusion

The Wright-Fisher diffusion forms the basis of much of classical population genetics, and is most
easily understood as mathematical idealization of the venerable discrete-time discrete-space Wright-
Fisher process. The latter applies to a finite and constant-sized population of 2N haplotypes,
corresponding to N diploid individuals, which is assumed to evolve in discrete, non-overlapping
generations. We assume selective neutrality so that each haplotype is assumed to have equal
reproductive opportunity. For the moment, we also assume that the population is not structured,
and disregard mutation and recombination. Thus, each haplotype in a given generation is an
identical copy of a single parental haplotype in the previous generation, and the parental haplotype
is chosen uniformly at random. Iterating this procedure for each subsequent generation, the count
of each haplotype in the population is modeled as a discrete-time Markov process. See Figure 1.3(a)
for a realization of this process.

Though the discrete Wright-Fisher process is an intuitively appealing model of evolution, it is
generally difficult to obtain associated theoretical results, particularly in the context of statistical
inference. In the remainder of this section, we consider the limiting behavior of the Wright-Fisher
model as N → ∞. By also appropriately scaling time, we recover the Wright-Fisher diffusion, a
continuous-time Markov process that models the proportion of each haplotype in the population,
and is more amenable to mathematical analysis. We also add mutation, recombination, and popula-
tion structure to the discrete Wright-Fisher process, and characterize the associated Wright-Fisher
diffusions. Finally, in each case we derive a recursion for the sampling probability of a sample
configuration directly from the Wright-Fisher diffusion.

1.2.1 Construction and sampling probabilities

Before proceeding, we briefly introduce diffusion processes and the associated mathematical tech-
niques; for a more thorough introduction to diffusion processes, see Karlin and Taylor (1981).
Let {X(t)}t≥0 be a continuous-time Markov process with continuous state space ∆. We say that
{X(t)}t≥0 is a diffusion process if the sample paths are almost surely continuous. Hereafter, we
consider diffusion processes that are time-homogeneous, so that the behavior of the process does
not depend on the current time.

For ease of exposition, we consider the state space ∆ associated with the Wright-Fisher diffusion.
Recalling that the Wright-Fisher diffusion models the proportion xh of each haplotype h ∈ H in
the population, the state space is the H-simplex

∆ =

{
x = (xh)h∈H

∣∣∣ xh ≥ 0 for all h ∈ H and
∑

h∈H

xh = 1

}
. (1.2)

Letting f : ∆ → R be an arbitrary, bounded, twice-differentiable function with continuous second
derivatives, we define the generator L of the diffusion process,

L f(x) = lim
t→0

1

t
· E[f(X(t))− f(X(0))|X(0) = x]. (1.3)
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(a) (b) (c)

Figure 1.3. Illustration of the discrete Wright-Fisher process for a constant-sized population of
1-locus haplotypes, disregarding mutation and recombination. (a) Realization of the process for
2N = 6 haplotypes over 8 generations. Each non-overlapping generation of haplotype is represented
as a row, with the most ancient generation at the top. Each haplotype in a given generation is
produced by choosing a parental haplotype uniformly at random from the haplotypes of the previous
generation, and copying the type. The choice of parental haplotype is indicated by a line connecting
each haplotype to its parent. (b) The genealogical relationship for a sample of 4 haplotypes in the
final generation, produced by considering the ancestral haplotypes for each sample haplotype. When
two or more haplotypes in a generation have a common parental haplotype, they are said to coalesce,
and in this way, the genealogy forms a tree. (c) A genealogy for a sample can be produced directly
for untyped haplotypes, which are represented by an unfilled circle. Starting with the most recent
generation, each sample haplotype selects a parental haplotype uniformly at random. If two or more
haplotypes coalesce, there are fewer ancestral haplotypes in the previous generation. This process
is iterated until a single ancestral haplotype remains.
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Observe that, using multi-dimensional Taylor expansion, the conditional expectation can be written

E[f(X(t))− f(X(0))|X(0) = x]

=
∑

h∈H

E[Xh(t)−Xh(0)|X(0) = x]
∂

∂xh
f(x)

+
1

2
·
∑

h∈H

∑

h′∈H

E[(Xh(t)−Xh(0))(Xh′ (t)−Xh′(0))|X(0) = x]
∂2

∂xh∂xh′
f(x) + o(t),

(1.4)

where the o(t) term is by the almost sure continuity of sample paths. We also define the time-
homogenous infinitesimal mean and infinitesimal covariance,

µh(x) = lim
t→0

1

t
· E[Xh(t)−Xh(0)|X(0) = x], (1.5)

σ2h,h′(x) = lim
t→0

1

t
· E[(Xh(t)−Xh(0))(Xh′ (t)−Xh′(0))|X(0) = x]. (1.6)

The infinitesimal mean and covariance can be interpreted as the component-wise mean and co-
variance associated with the random variable (X(t) − X(0)) for small values of t, given that
X(0) = x ∈ ∆. Intuitively, these quantities describe the instantaneous stochastic evolution of
the process. Making use of (1.4) along with definitions (1.5) and (1.6), the expression (1.3) for the
generator may be written

L f(x) =
∑

h∈H

Lh
∂

∂xh
f(x), (1.7)

where

Lhf(x) = µh(x)f(x) +
1

2
·
∑

h′∈H

σ2h,h′(x)
∂

∂xh′
f(x). (1.8)

The generator can thus be expressed in terms of the infinitesimal mean and covariance. Finally, if
the diffusion admits a stationary distribution X, then E[f(X(t))|X(0) = X] = f(X), and therefore,
making use of the definition (1.3) of the generator,

E[L f(X)] = E

[ ∑

h∈H

Lh
∂

∂xh
f(X)

]
= 0. (1.9)

This final result will form the basis for much of the remainder of this section.

Construction

Having introduced the relevant definitions and results for diffusion processes, we briefly describe
the construction of the Wright-Fisher diffusion from the discrete Wright-Fisher process. Recall that
the discrete Wright-Fisher process describes the evolution of a finite population of 2N haplotypes
in non-overlapping generations. Denote the composition of the population after i generations by
Y(N)(i) = (Y (N)

h (i))h∈H, where Y
(N)

h (i) is the random count of haplotypes with type h ∈ H, so
that

∑
h∈H Y

(N)

h (i) = 2N . Because a given generation of haplotypes is constructed directly from
previous generation, the discrete stochastic process {Y(N)(i)}i∈N is Markov.
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Next, define the continuous-time process {X(N)(t)}t≥0 by scaling the discrete process,

X(N)(t) =
Y(N)(⌊2Nt⌋)

2N
. (1.10)

In particular, time is re-scaled in units of 2N generations, and X(N)(t) is the vector of haplotype
proportions after ⌊2Nt⌋ generations. The Markov property for the continuous-time process is
inherited from the discrete process. Finally, we consider the limiting process as the population size
2N approaches infinity: it is possible to show that there exists diffusion process {X(t)}t≥0 with
continuous state space ∆ such that {X(N)(t)}t≥0 → {X(t)}t≥0 in the limit N → ∞. The process
{X(t)}t≥0 is then the desired Wright-Fisher diffusion.

Observe that although this explanation provides intuition about the construction of the Wright-
Fisher diffusion, it remains a substantial mathematical task to formally describe and prove the
required convergence to a diffusion; see Donnelly (1986) for an excellent introduction. In general, the
stochastic behavior of the resulting Wright-Fisher diffusion depends on the details of the evolution
modeled by the discrete Wright-Fisher process. The infinitesimal mean and covariance can be
obtained by considering the definitions with respect to the process {X(N)(t)}t≥0 and taking the
limit as N → ∞. In the Sections 1.2.2 and 1.2.2, we provide concrete examples of the Wright-
Fisher diffusion for specific evolutionary models.

Sampling distribution

Assuming the existence of well-defined Wright-Fisher diffusion, which models the time-evolution
of haplotype proportions {X(t)}t≥0, we are then interested in the sampling distribution associated
with the diffusion, and in particular the ordered sampling distribution q(·) assuming the diffusion
has reached stationarity.

Let n = (nh)h∈H be a sample configuration, and x = (xh)h∈H ∈ ∆ be a haplo type proportion
vector. The ordered sampling probability for n conditioned on haplotype proportions x is then
given by the ordered multinomial probability

q(n|x) =
∏

h∈H

xnh

h . (1.11)

Observe that, though n does not prescribe a particular ordering on haplotypes, the sequence of ran-
dom haplotypes is exchangeable, and so the function q(n|x) is well-defined. The ordered sampling
probability for n is then defined with respect to the stationary distribution of the Wright-Fisher
diffusion, given by the random vector X,

q(n) = E[q(n|X)]. (1.12)

Intuitively, q(n) represents the probability of randomly sampling |n| = n haplotypes from the
population drawn from the stationary distribution of the Wright-Fisher diffusion. In the general
case, there is no known analytic form for q(n). However, taking f(x) = q(n|x) using the key
identity (1.9), we obtain the expression

E

[ ∑

h∈H

Lh
∂

∂xh
q(n|X)

]
=

∑

h∈H

E

[
Lh

∂

∂xh
q(n|X)

]
= 0 (1.13)
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As will be demonstrated in the remainder of this section, in conjunction with the particulars of
the Wright-Fisher model under consideration, specified by the infinitesimal mean and covariance,
(1.5) and (1.6), the expression (1.13) gives rise to a recursive expression for the ordered sampling
probability q(n). It is similarly possible to obtain expressions for the unordered sampling probabil-
ity, and these expressions will generally be related to the corresponding expressions for the ordered
sampling probability by a combinatorial factor. For simplicity, we subsequently consider only the
ordered sampling probability.

1.2.2 Multiple-locus, single-deme

We begin by considering a multiple-locus setting, including mutation and recombination (Ewens,
2004). Recall that in the discrete Wright-Fisher process, each haplotype in a given generation
is constructed from the haplotypes of the previous generation. Incorporating recombination and
mutation, construction of each haplotype occurs independently, in the following two steps,

1. With probability (1 − r), a haplotype selects a single parental haplotype from the previous
generation. With probability r the haplotype selects two parental haplotypes, and is the
product of crossover recombination; the recombination breakpoint b ∈ B is selected with
probability rb, where

∑
b∈B rb = 1.

2. Having selected one or both parental haplotypes, mutation at each locus ℓ ∈ L occurs with
probability uℓ according the (|Aℓ| × |Aℓ|)-dimensional matrix Φ(ℓ).

Following the procedure outlined in Section 1.2.1, it is possible to derive the associated Wright-
Fisher diffusion by re-scaling time, and taking the limit as the population size N → ∞. In order
to obtain a non-degenerate diffusion, it is necessary to assume the mutation and recombination
probabilities vary inversely with the population size 2N , so that for all ℓ ∈ L and b ∈ B, 4Nuℓ → θℓ
and 4Nrrb → ρb, where θℓ is the scaled mutation rate and ρb is the scaled recombination rate. The
Wright-Fisher diffusion then has infinitesimal mean and covariance,

µh(x) =
1

2

{∑

ℓ∈L

θℓ
∑

a∈Aℓ

xMa
ℓ
(h)

(
Φ
(ℓ)
a,h[ℓ] − δh,Ma

ℓ
(h)

)
+

∑

b∈B

ρb

[ ∑

h′∈H

xRb(h,h′)xRb(h′,h) − xh

]}

(1.14)

σ2h,h′(x) = xh(δh,h′ − xh′). (1.15)

Having characterized the Wright-Fisher diffusion, we can use the technique described in Sec-
tion 1.2.1 to obtain the following result,

Proposition 1.1. Let n = (nh)h∈H with |n| = n. Then the ordered sampling probability q(n)
obtained using the diffusion generator technique described in Section 1.2.1 is given by the following
recursion

q(n) =
1

N

∑

h∈H

nh

{
(nh − 1)q(n− eh)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eh + q(Ma

ℓ (h)))

+
∑

b∈B

ρb
∑

h′∈H

q(n− eh + eRb(h,h′) + eRb(h′,h)))

}
,

(1.16)
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where N = n
(
n− 1 +

∑
ℓ∈L θℓ +

∑
b∈B ρb

)
.

Proof. By (1.8), and the infinitesimal mean and covariance given in (1.14) and (1.15),

Lh
∂

∂xh
f(x) =

1

2

{
xh

∑

h′∈H

(δh,h′ − xh′)
∂

∂xh′

∂

∂xh
f(x)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

xMa
ℓ
(h)

(
Φ
(ℓ)
a,h[ℓ] − δh,Ma

ℓ
(h)

) ∂

∂xh
f(x)

+
∑

b∈B

ρb

[ ∑

h′∈H

xRb(h,h′)xRb(h′,h) − xh

]
∂

∂xh
f(x)

}
,

(1.17)

Setting f(x) = q(n|x) in (1.17), and taking the expectation,

E

[
Lh

∂

∂xh
q(n|X)

]
= nh ·

1

2

{
(nh − 1)q(n − eh)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eh + eMa

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q(n− eh + eRb(h,h′) + eRb(h′,h)))

−

(
(n− 1) +

∑

ℓ∈L

θℓ +
∑

b∈B

ρb

)
q(n)

}

(1.18)

Summing (1.18) over haplotypes h ∈ H, and making use of the key identity (1.13), the desired
result (1.17) is obtained.

In principle, repeated application of the recursion (1.16) yields a system of coupled linear
equations, which can be be solved to obtain an explicit value for the ordered sampling probability
q(n). Observe, however, that the final term on the right hand side of (1.16), associated with
recombination, is proportional to q(n′), where |n′| = n+ 1 > n = |n|. By induction, the resulting
system of equations contains a variable for q(n′) where |n′| is arbitrarily large. The system of
equations is therefore infinite, and cannot be solved numerically.

Thus, although Proposition 1.1 is an important theoretical result, it does not enable explicit
evaluation of q(n). In order to obtain a recursion amenable to evaluation of q(n), it is necessary
to extend the analysis to partially-specified haplotypes. In particular, let n = (ng)g∈G be a sample
configuration of partially-specified haplotypes. Then conditional on x ∈ ∆, the ordered sampling
probability is

q(n|x) =
∏

g∈G

y
ng
g , (1.19)

where yg =
∑

h∈H:hfg xh is the total proportion of fully-specified haplotypes that subsume the
partially-specified haplotype g ∈ G. Then defining q(n) = E[q(n|X)] as before, it is possible to
derive the following more general form of (1.16),
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Proposition 1.2. Let n = (ng)g∈G with |n| = n. Then the ordered sampling probability q(n)
obtained using the diffusion generator technique described in Section 1.2.1 is given by the following
recursion

q(n) =
1

N

∑

g∈G

ng

{ ∑

g′∈G:g′fg

(ng′ − δg,g′)q(n− eg + eC(g,g′))

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]q(n− eg + eMa

ℓ
(g))

+
∑

b∈B(g)

ρbq(n− eg + eR−
b
(g) + eR+

b
(g)))

}
,

(1.20)

where N =
∑

g∈G ng
(
n− 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

)
.

Proof. Begin by observing the following identities, which are immediate from the product rule,

∂

∂xh
q(n|x) =

∑

g∈G:gfh

ngq(n− eg|x), (1.21)

∂2

∂xh∂xh′
q(n|x) =

∑

g∈G:gfh

∑

g′∈G:g′fh′

ng(ng′ − δg,g′)q(n− eg − eg′ |x). (1.22)

Recalling the definition of q(·|x), it is also possible to obtain reduction identities, such as
∑

h∈H:hfg

q(n+ eh|x) = q(n|x)
∑

h∈H:hfg

xh = q(n|x)q(eg|x) = q(n+ eg|x), (1.23)

Making use of these identities, and setting f(x) = q(n|x) in the diffusion generator (1.17),

E

[
Lh

∂

∂xh
q(n|X)

]
=

∑

g∈G:gfh

ng ·
1

2

{ ∑

g′∈G:g′fh

(g′ − δg,g′)q(n− eg − eg′ + eh)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eg + eMa

ℓ
(h))

+
∑

b∈B

ρbq(n− eg + eR−
b
(h) + eR+

b
(h))

−

(
n− 1 +

∑

ℓ∈L

θℓ +
∑

b∈B

ρb

)
q(n− eg + eh)

}
.

(1.24)

Summing (1.24) over haplotypes h ∈ H, and making use of the key identity (1.13), the desired
result (1.20) is obtained.

As in (1.16), in computing q(n) using (1.20), the final term on the right hand side is proportional
to q(n′), where |n′| = n + 1 > n = |n|. However, defining L(n) =

∑
g∈G ng · |L(g)| to be the total

number of specified loci, L(n′) = L(n). Moreover, it can be be checked that each term on the right
hand side proportional to q(n′), for some n′, has L(n′) ≤ L(n). Thus, the system of equations
contains only variables of the form q(n′) for which L(n′) ≤ L(n). As a result, repeated application
of (1.20) yields a finite system of coupled linear equations, which can be numerically solved for the
desired value q(n).
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Parent independent mutation

We shall also frequently be interested in parent independent mutation (PIM) models: when a
mutation occurs, the mutant allele does not depend on the parental allele. Formally, a stochastic
mutation matrix Φ exhibits PIM if there exists a vector (Φa)a∈A with

∑
a∈A Φa = 1, and Φa′,a =

Φa for all a′ ∈ A. Given a PIM model at locus ℓ ∈ L, the term of the recursion (1.20) associated
with mutation can be simplified,

∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eg + eMa

ℓ
(h)) = Φ

(ℓ)
h[ℓ]E

[ ∑

a∈Aℓ

q(n− eg + eMa
ℓ
(h)|X)

]

= Φ
(ℓ)
h[ℓ]E

[
q(n− ea|X)

∑

a∈Aℓ

q(eMa
ℓ
(h)|X)

]

= Φ
(ℓ)
h[ℓ]q(n− ea + eMℓ(h)),

(1.25)

where the second and third equalities are by properties of the ordered multinomial distribution
q(·|x) similar to (1.23). As a result, given a PIM model at every locus ℓ ∈ L, identity (1.25) can
be used to re-write (1.20) as follows,

q(n) =
1

N

∑

g∈G

ng

{ ∑

g′∈G:g′fg

(ng′ − δg,g′)q(n− eg + eC(g,g′))

+
∑

ℓ∈L(g)

θℓΦ
(ℓ)
h[ℓ]q(n− ea + eMℓ(h))

+
∑

b∈B(g)

ρbq(n− eg + eR−
b
(g) + eR+

b
(g)))

}
,

(1.26)

where N =
∑

g∈G ng
(
n− 1+

∑
ℓ∈L(g) θℓ+

∑
b∈B(g) ρb

)
. Thus, assuming a PIM model at each locus

confers both a mathematical and computational benefit. Importantly, any bi-allelic mutation model
can be transformed into a PIM model. Consider an arbitrary model of mutation on the alleles A
with |A| = 2, and specified by parameters θ and Φ,

θ = θ0,Φ =

(
1− p12 p12
p21 1− p21

)

−→ θPIM = θ0(p12 + p21),ΦPIM =

( p21
p12+p21

p12
p12+p21

p21
p12+p21

p12
p12+p21

)
.

(1.27)

It can be verified that the resulting PIM model, specified by parameters θPIM and ΦPIM, yields
precisely the same recursive expression for q(n).

Specialization to one-locus case

In the one-locus case, the space of haplotypes can be represented by the (finite) space of alleles
H = A, and each haplotype by a single allele a ∈ A. Moreover, recombination is not applicable, and
the single scaled mutation rate is represented by θ. Given a one-locus configuration n = (na)a∈A,
the recursion (1.16) for the ordered sampling probability q(n) reduces to

q(n) =
1

N

∑

a∈A

na

{
(na − 1)q(n− ea) + θ

∑

a′∈A

Φa′,aq(n− ea + ea′)

}
, (1.28)
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where N = n(n− 1+ θ). Even for this relatively simple case, in order to explicitly evaluate q(n), it
remains necessary numerically solve a system of linear equations, generated by repeated application
of (1.28). However, if we assume a PIM model, then the recursion (1.26) for q(n) reduces to

q(n) =
1

N

∑

a∈A

na

{
(na − 1 + θΦa)q(n− ea)

}
, (1.29)

where N = n(n− 1 + θ). Observe that each term on the right hand side of (1.29) proportional to
q(n′) has |n′| = n− 1 < n = |n|, where the inequality is strict. Consequently, there exists a partial
order associated with the dependence of variables generated by repeated application of (1.29), and
we refer to the recursion as proper. The quantity q(n) can therefore be directly evaluated using
dynamic programming or memoization, without the need to construct and numerically solve a
coupled system of linear equations. Moreover, in this case, the recursion can be solved analytically,
yielding the celebrated Wright Sampling Formula (Wright, 1949),

Proposition 1.3 (Wright Sampling Formula). Let n = (na)a∈A be a one-locus configuration. Then
the sampling probability q(n) for a one-locus PIM model is given by

q(n) =
1

θ(n)

∏

a∈A

(θΦa)(na), (1.30)

where x(i) = (x)(x+ 1)(x+ 2) · · · (x+ i− 1) denotes a rising factorial.

Proof. Substitute (1.30) into (1.29).

The Wright Sampling Formula represents the only known closed-form formula for the sampling
probability in the finite-locus finite-alleles setting. Recently, however, Bhaskar et al. (2012) have
produced an asymptotic expansion for approximating the sampling probability for an irreducible
model of mutation for four or fewer alleles.

Limiting distributions

Returning to the more general setting, we suppose that ρb = ρ for all b ∈ B, and consider the
limit ρ → ∞. Intuitively, in the limit of infinite recombination, there should not exist correlation
between the alleles at different loci. This is formalized in the following result,

Proposition 1.4. Let n = (ng)g∈G with |n| = n, and suppose ρb = ρ for all b ∈ B. In the limit
ρ→ ∞, the ordered sampling probability q(n) is given by

q(n) =
∏

ℓ∈L

q(n[ℓ]), (1.31)

where n[ℓ] is the one-locus configuration induced by n at locus ℓ ∈ L, and q(n[ℓ]) is the one-locus
ordered sampling probability given in (1.28).

Proof. We refer the reader to the proof of Proposition 2.6, which is entirely analogous.

Thus, computing the sampling probability for a k-locus configuration can be efficiently per-
formed by computing the product of the sampling probabilities for k one-locus configurations.
Moreover, given a PIM model at each locus, the resulting one-locus sampling probabilities can be
computed efficiently and exactly, yielding an exact result. Such asymptotic considerations have
recently been extended (Jenkins and Song, 2009, 2010, 2012; Bhaskar and Song, 2012) to provide
approximate expressions for the sampling probability for finite values of ρ.
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1.2.3 Multiple-locus, multiple-deme

We now extend the analysis to the setting of a structured population including migration. We
assume that there exists a finite set of demes D, and that each haplotype resides in a particular
deme. Recall that in the discrete Wright-Fisher process, each haplotype in a given generation is
constructed from the haplotypes of the previous generation. This process, including mutation and
recombination, can be extended to accommodate population structure and migration as follows.
Denote the number of haplotypes in each deme d ∈ D by Nd, so that 2N =

∑
d∈DNd. Then

sampling a haplotype within deme d ∈ D proceeds by first selecting a parental deme d′ ∈ D with
probability vdd′ . Having selected a parental deme, the parental haplotype, or haplotypes in the
case of recombination, are selected from the parental deme, and mutation occurs as described in
Section 1.2.2.

As before, it is possible to derive the associated Wright-Fisher diffusion by re-scaling time, and
taking the limit as population size N → ∞. In order to obtain a non-degenerate diffusion, it is
necessary to assume that the number of haplotypes Nd in each deme d ∈ D increases with N , so
that Nd/N → κd, the relative deme size, with

∑
d∈D κd = 1. Similarly, it is necessary to assume

that vdd′ varies inversely with the population size for all d′ 6= d so that 4Nvdd′ → υdd′ , the scaled
migration rate. Define the total migration rate associated with deme d ∈ D by υd =

∑
d′ 6=d υdd′ .

The limiting Wright-Fisher diffusion has the expanded state space

∆ =

{
x = (xd,h)d∈D,h∈H

∣∣∣ xd,h ≥ 0 for all d ∈ D, h ∈ H and
∑

h∈H

xd,h = 1 for all d ∈ D

}
, (1.32)

where xd,h is the proportion of haplotype h ∈ H within deme d ∈ D. As in Section 1.2.1, the
diffusion generator can be written as a summation; for a bounded, twice-differentiable function
with continuous second derivatives f : ∆ → R,

L f(x) =
∑

d∈D

∑

h∈H

Ld,h
∂

∂xd,h
f(x), (1.33)

where the generator component for d ∈ D and h ∈ H is given by

Ld,hf(x) = µd,h(x)f(x) +
1

2
·
∑

d′∈D

∑

h′∈H

σ2(d,h),(d′,h′)(x)
∂

∂xd′,h′
f(x), (1.34)

and the associated infinitesimal mean and covariance are given by

µd,h(x) =
1

2

{∑

ℓ∈L

θℓ
∑

a∈Aℓ

xd,Ma
ℓ
(h)

(
Φ
(ℓ)
a,h[ℓ] − δh,Ma

ℓ
(h)

)

+
∑

b∈B

ρb

[ ∑

h′∈H

xd,Rb(h,h′)xd,Rb(h′,h) − xd,h

]

+

[ ∑

d′∈D
d′ 6=d

υdd′xd′,h − υdxd,h

]}
(1.35)

σ2(d,h),(d′,h′)(x) = xd,h(δh,h′ − xd,h′)κ−1
d · δd,d′ . (1.36)

In the extended setting of a structured population, a sample configuration is denoted by the vector
n = (nd,h)d∈D,h∈H, where nd,h is the number of haplotypes of type h within deme d in the sample.
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The sample configuration of haplotypes within deme d ∈ D is denoted by nd, and the number of
haplotypes in the deme by nd = |nd|. Finally, we use ed,h to denote the singleton structured sample
configuration comprising a single haplotype of type h in deme d.

Let n = (nd,h)d∈D,h∈H be a structured sample configuration, and x = (xd,h)d∈D,h∈H ∈ ∆ be
a haplotype proportion vector. The ordered sampling probability for n conditioned on haplotype
proportions x is then given by the ordered multinomial probability

q(n|x) =
∏

d∈D

∏

h∈H

x
nd,h

d,h . (1.37)

Finally, taking f(x) = q(n|x) and using the key identity (1.9) we obtain the expression

E

[∑

d∈D

∑

h∈H

Ld,h
∂

∂xd,h
q(n|X)

]
=

∑

d∈D

∑

h∈H

E

[
Ld,h

∂

∂xd,h
q(n|X)

]
= 0 (1.38)

which is the population structure analogue of (1.13) described in Section 1.2.1, and yields

Proposition 1.5. Let n = (nh)h∈H be a structured sample configuration, with |n| = n and |nd| = nd
for each d ∈ D. Then the ordered sampling probability q(n) obtained using the diffusion generator
technique described in Section 1.2.1 is given by the following recursion

q(n) =
1

N

∑

d∈D

∑

h∈H

nd,h

{
(nd,h − 1)κ−1

d q(n− ed,h)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− ed,h + ed,Ma

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q(n− ed,h + ed,Rb(h,h′) + ed,Rb(h′,h)))

+
∑

d′∈D
d′ 6=d

υdd′q(n− ed,h + ed′,h)

}

(1.39)

where N =
∑

d∈D

∑
h∈H nd,h

(
(nd − 1)κ−1

d +
∑

ℓ∈L θℓ +
∑

b∈B ρb + υd
)
.

Proof. Applying the generator component (1.34), with infinitesimal mean and covariance given by
(1.35) and (1.36), to f(x) = q(n|x), and taking the expectation,

E

[
Ld,h

∂

∂xd,h
q(n|X)

]
= nd,h ·

1

2

{
(nd,h − 1)κ−1

d q(n− ed,h)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− ed,h + ed,Ma

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q(n− ed,h + ed,Rb(h,h′) + ed,Rb(h′,h)))

+
∑

d′ 6=d

υdd′q(n− ed,h + ed′,h)

−
(
(nd − 1)κ−1

d +
∑

ℓ∈L

θℓ +
∑

b∈B

ρb +
∑

d′ 6=d

υdd′
)
q(n)

}

(1.40)
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Summing (1.40) over demes d ∈ D and haplotypes h ∈ H, and making use of the key identity
(1.38), the desired result (1.39) is obtained.

Once again, though Proposition 1.5 is an important theoretical result, it does not enable explicit
evaluation of q(n) for a structured sample configuration n. As in Section 1.2.2, it is necessary to
extend the analysis to partially-specified haplotypes, which yields the following generalized recursion
for a structured sample configuration on partially-specified haplotypes,

Proposition 1.6. Let n = (nd,g)d∈D,g∈G be a structured sample configuration, with |n| = n and
|nd| = nd for each d ∈ D. Then the ordered sampling probability q(n) obtained using the diffusion
generator technique described in Section 1.2.1 is given by the following recursion

q(c) =
1

N

∑

d∈D

∑

g∈H

nd,g

{ ∑

g′∈G:g′fg

(nd,g′ − δg,g′)κ
−1
d q(n− ed,g + ed,C(g,g′))

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]q(n− ed,g + ed,Ma

ℓ
(g))

+
∑

b∈B(g)

ρbq(n− ed,g + eR−
b
(g) + eR+

b
(g)))

+
∑

d′∈D
d′ 6=d

υdd′q(n− ed,g + ed′,g)

}
.

(1.41)

where N =
∑

d∈D

∑
g∈G nd,h

(
(nd − 1)κ−1

d +
∑

ℓ∈L(g) θℓ +
∑

b∈B(g) ρb + υd
)
.

Proof. The proof is analogous to the proof of Proposition 1.2, with the necessary extension to a
structured population provided in the proof of Proposition 1.5.

It is reassuring that, for single deme D = {1} with κ1 = 1, Propositions 1.5 and 1.6 are pre-
cisely equivalent to the analogous propositions 1.1 and 1.2, respectively, described in Section 1.2.2.
Moreover, it is possible to extend the recursion (1.39) to a PIM model as described in Section 1.2.2.
Similarly, assuming ρb = ρ for all b ∈ B, the limit b → ∞ produces the same decomposition into
one-locus sampling probabilities described in Proposition 1.4.

1.3 The Coalescent

The Wright-Fisher diffusion, as a prospective model, is intuitively appealing as it models the
evolution of a population forward in time. However, if we consider a finite sample of individuals
from the present, there is no direct way to understand their relationship in such a population-
centric context. For example, in order to directly sample of a collection of haplotypes from the
Wright-Fisher diffusion, it is necessary to first explicitly simulate the population-wide diffusion
proportions for a period of time sufficient to ensure stationarity, and then sample the desired
haplotypes conditional on the proportions. The coalescent provides a complementary approach to
the Wright-Fisher diffusion, in that it is retrospective, and operates directly on a finite sample; the
outcome of the coalescent is a genealogy that explicitly relates the haplotypes of the sample.

As for the Wright-Fisher diffusion, the coalescent is most easily understood as a mathematical
idealization of the discrete-time discrete-space Wright-Fisher process. Consider a realization of the
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discrete Wright-Fisher process on a constant-size population of 2N one-locus haplotypes, disre-
garding mutation and recombination, as illustrated Figure 1.3(a). The genealogical relationship for
a subset of haplotypes in the present generation can be extracted, as illustrated in Figure 1.3(b);
when two or more haplotypes in a generation have a common parental haplotype in the previous
generation, they are said to coalesce. Importantly, this genealogical structure can be produced more
directly. Starting in the present generation and assuming that the haplotypes are untyped, meaning
that the allelic type at each locus is not stated, the discrete Wright-Fisher process asserts that each
haplotype selects a parental haplotype from the previous generation uniformly at random. If one
or more haplotypes coalesce, there are fewer ancestral haplotypes in the previous generation. This
process, illustrated in Figure 1.3(c), is iterated for the ancestral haplotypes in each generation until
a single ancestral haplotype remains, the most recent common ancestor (MRCA) of the sample,
yielding the desired genealogical structure.

Though the formulation of a coalescent process based directly on the discrete Wright-Fisher
process is intuitively appealing, it is generally difficult to obtain associated theoretical results. In
the remainder of this section, we consider the limiting behavior of the discrete coalescent process as
N → ∞. By also appropriately scaling time, we recover the coalescent process, a continuous-time
Markov process that models the genealogical structure of a random sample of untyped haplotypes
from the present, that is more amenable to mathematical analysis. Given the genealogical struc-
ture, it is straightforward to directly sample the type of the MRCA from the appropriate stationary
distribution, and propagate this type forward in time, ultimately producing a typed sample and the
associated genealogy. In this context, we consider the discrete Wright-Fisher process incorporat-
ing mutation, recombination, and population structure, and characterize the associated coalescent
models. Finally, we describe a methodology for deriving recursive expressions for the sampling
probability directly from the coalescent process, and use it to provide a genealogical interpretation
for the sampling probabilities derived from the Wright-Fisher diffusion in the previous section.

1.3.1 Construction and sampling probabilities

In order to provide some intuition, we begin with a construction of Kingman’s coalescent (Kingman,
1982a,b). Consider the discrete Wright-Fisher process for 2N haplotypes, disregarding mutation,
recombination, and population structure, and the procedure described above for sampling a ge-
nealogy for n untyped haplotypes. In each generation, a number i ≤ n of the 2N haplotypes are
ancestral to the haplotypes of the sample. Because each pair of haplotypes have a common parental
haplotype in the previous generation with probability 1/2N , the probability of pij of j ≤ i ancestral
haplotypes in the previous generation is given by

pij =





1−
(i
2

)
1
2N + o(N−1), if j = i,

(i
2

)
1
2N + o(N−1), if j = i− 1,

o(N−1), if j < i− 1.

(1.42)

The discrete process on the number of ancestral haplotypes is Markov, since the transition proba-
bility depends only on the current number ancestral haplotypes. Scaling time so that one unit of
time is equivalent to 2N generations, precisely as was done in the construction of the Wright-Fisher
diffusion, the waiting time T (N)

i while there are i individuals has distribution

Pr(T (N)

i ≤ t) = 1− p
⌊2Nt⌋
ii = 1−

(
1−

(
i

2

)
1

2N
+ o(N−1)

)⌊2Nt⌋

. (1.43)
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U0 U1 U2 Uτ−1 Uτ

V0 V1 V2 Vτ−1 Vτ

E1 E2 Eτ−1

Figure 1.4. Graphical model representation of the generalized procedure for sampling a collection of
haplotypes. The random variable Ui denotes the random untyped haplotype configuration following,
backward in time, the i-th genealogical event, Ei; the random variable Vi denotes the corresponding
typed haplotype configuration. The right-facing arrows correspond to the backward phase, in which
the genealogical event Ei = e is chosen conditional on Ui−1 = u from the distribution with density
p(·|u), so that Ui+1 = e(u). The left-facing arrows correspond to the forward phase, in which the
typed configuration Vi is sampled conditional on Vi+1 = v and Ei+1 = e. Thus, beginning with an
untyped configuration, U0 = n̂, this process ultimately yields the desired sample configuration V0.

As N → ∞, the waiting times converge in distribution T (N)

i → Ti where Pr(Ti ≤ t) = 1−exp
((i

2

)
t
)
,

so that Ti is distributed exponentially with parameter
(i
2

)
. Moreover, when a transition occurs, the

number of ancestral haplotypes almost surely decreases to i − 1. Thus, the number of haplotypes
ancestral to the sample is a pure death process, backwards in time, where the death rates are
given by

(i
2

)
for each i = n, . . . , 2. Each transition in the pure death process corresponds to a

coalescence event, wherein two ancestral haplotypes have a common ancestor. By symmetry, each
pair of untyped haplotypes is equally likely to have coalesced.

The resulting process, here constructed from the discrete Wright-Fisher process by scaling
time in units of 2N generations and taking the limit N → ∞, is Kingman’s coalescent. Much
as for the discrete process, a realization of Kingman’s coalescent can be succinctly represented as
a bifurcating tree genealogy. The leaves of the tree correspond to the n untyped haplotypes for
which the genealogy was constructed, each bifurcation corresponds to a coalescence of two untyped
haplotypes, and the root of the tree corresponds to the untyped MRCA haplotype. Observe that
the topology of the tree is entirely determined by the waiting times {Ti}i=n,...,2 and the pair of
haplotypes chosen to coalesce at each transition.

Sampling for coalescent processes

We next consider a more general class of coalescent processes, which are able to accommodate
genealogical events such as mutation, recombination, and migration, in addition to coalescence.
Much as for Kingman’s coalescent, a general coalescent process is naturally cast as continuous-time
Markov process, starting with a collection of untyped haplotypes in the present, and proceeding
backward in time, with each transition corresponding to a genealogical event; when a single untyped
haplotype, the MRCA, remains, the process is terminated. A realization of the coalescent process
is then a genealogy relating the haplotypes.

In order to formulate a probabilistic description of such processes, it is convenient to first
introduce the concept of an untyped haplotype configuration. Recalling that an untyped haplotype
has an unstated allelic type at each locus, denote by n̂ an ordered collection of untyped haplotypes;
equivalently, each of the haplotypes of n̂ may be uniquely labeled. In the context of the coalescent
process, it is also necessary to assume an ordering, or equivalently a labeling, for the haplotypes in a
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typed configuration n; a particular typed configuration therefore induces an untyped configuration.
Because the haplotypes within the typed and untyped configurations are exchangeable, the sampling
distributions we consider do not require an explicit representation of the haplotype labeling.

Provided a labeled untyped configuration of haplotypes n̂, we denote a genealogical realization
of the coalescent process by An̂. Importantly, haplotypes within the genealogy, including the
MRCA, are also untyped, and so we refer to the genealogy itself as untyped. Provided a specific
type for the MRCA, it is possible to stochastically propagate this type forward in time along the
genealogy. For example, at a coalescence event, each of the descendant haplotypes is identical
to the ancestral haplotype; other genealogical events, such as mutation, stochastically alter the
descendant haplotype from the ancestral haplotype. Moreover, in the absence of natural selection,
there is no correlation among the alleles of a single sampled haplotype, and so it straightforward
to sample the specific type of the MRCA haplotype from the stationary distribution of the Wright-
Fisher diffusion. In this way, it is possible to obtain the types of each haplotype in the genealogy,
including the previously-untyped configuration of haplotypes n̂. The result is a labeled typed
configuration n associated with n̂ and a corresponding typed genealogy An.

The coalescent processes we consider are time-homogeneous, so the behavior of the process
does not depend on the current time. Consequently, embedded within the continuous-time Markov
process is a discrete-time Markov process comprising the transitions within the continuous-time
process, but not the waiting times. This suggests a methodology for sampling a typed haplotype
configuration, which we present in some generality. Denote by Ui the random labeled untyped con-
figuration following, backward in time, the i-th genealogical event Ei, and by Vi the corresponding
typed haplotype configuration. Formally, the objective is to sample the typed configuration V0
conditioned on the labeled untyped configuration U0 = n̂. The sampling procedure is naturally
broken into two phases:

Backward phase: Conditioned on Ui = u, the distribution of possible genealogical events, back-
ward in time, is specified by the time-homogenous coalescent process and has density denoted
p(·|u) with support E(u). Moreover, for each genealogical event e ∈ E(u), then Ei = e in
conjunction with Ui−1 = u specifies a particular labeled untyped configuration, Ui = e(u).
For each i sequentially, starting with i = 1, suppose Ui−1 = u is known, and sample Ei = e
according to the density p(·|u), so that Ui = e(u). This process is stopped when Ui = u
comprises a single haplotype, |u| = 1, and the stopping time τ is set to i.

Forward phase: As has been described, it is possible to sample a single haplotype from the
stationary distribution, with density denoted p(·). Moreover, conditioned on Vi+1 = v and
Ei = e, it is possible sample the typed configuration Vi from a distribution specified by the
coalescent process, with density denoted p(·|v, e) and support V(v, e). Thus, sample the typed
configuration Vτ according to the density p(·); for each i = τ −1, . . . , 0, suppose that Vi+1 = v
and Ei+1 = e are known, and sample Vi according to the density p(·|v, e). This ultimately
yields the desired sample for V0.

This generalized sampling procedure is depicted as a graphical model in Figure 1.4. Note that a
genealogical event e ∈ E(u) operates on labeled haplotypes. Intuitively, a realization of the discrete-
time Markov process is a typed genealogy An with timing information removed. In the subsequent
sections and chapters, we provide concrete examples of the densities associated with this procedure.

Finally, we remark that it is often convenient to interpret a coalescent process as a genealogical
process. In this context, we envision a labeled lineage associated with each ancestral haplotype,
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tracing a path backward in time to produce the genealogy An̂. Genealogical events, such as a
coalescence event, then affect one or more lineages directly. For example, in the case of Kingman’s
coalescent, the genealogical process is succinctly described by stating that each pair of lineages
coalesce with rate 1. Thus, while there are i remaining lineages in An̂, each associated with
an ancestral haplotype, the total rate of coalescence is

(i
2

)
, and the process is identical to that

described above. For more complex coalescent processes, incorporating mutation, recombination,
and migration, such a genealogical interpretation, though formally identical, provides a more concise
and intuitive description of the process.

Sampling probabilities

Now let n = (nh)h∈H be a sample configuration. As for the Wright-Fisher diffusion, we are inter-
ested in determining the ordered sampling probability q(n) associated with the sampling procedure
described above. Intuitively, this can be accomplished by integrating over all possible genealogies,
as sampled by the above procedure, that are consistent with n. Due to the Markov structure of the
procedure, it is generally possible to factor the computation to obtain a recursion for the ordered
sampling probability. This technique is generally referred to as the backward/forward procedure,
which we here derive in some generality.

We assume that the haplotypes in n are ordered, or equivalently that each haplotype is uniquely
labeled. The associated labeled untyped configuration is denoted by n̂, and q(n) is then the
probability of V0 = n conditioned on U0 = n̂. Partitioning with respect to the most recent
genealogical event E1 = e ∈ E(n̂),

q(n) = Pr(V0 = n|U0 = n̂) =
∑

e∈E(n̂)

Pr(V0 = n|U0 = n̂, E1 = e)p(e|n̂)
(1.44)

Recall that U0 = n̂ and E1 = e uniquely determine the previous untyped configuration U1 = e(n̂).
Thus, partitioning with respect to V1 = n′ such that n ∈ V(n′, e),

Pr(V0 = n|U0 = n̂, E1 = e) = Pr(V0 = n|U0 = n̂, E1 = e, U1 = e(n̂))

=
∑

n
′:n∈V(n′,e)

p(n|n′, e) Pr(V1 = n′|U1 = e(n̂)) (1.45)

where the final equality makes use of two conditional independence assertions. Finally, the untyped
configuration associated with n′ must be e(n̂), and so by time homogeneity,

Pr(V1 = n′|U1 = e(n̂)) = Pr(V0 = n′|U0 = e(n̂)) = q(n′). (1.46)

Putting these results together, we obtain the desired recursive expression for q(n)

q(n) =
∑

e∈E(n̂)

p(e|n̂)
∑

n
′:n∈V(n′,e)

p(n|n′, e)q(n′). (1.47)

Recall that we have constructed the coalescent as a limit of the discrete Wright-Fisher process,
and that the same limit was used to construct the Wright-Fisher diffusion. We therefore expect to
obtain an identical recursion for q(n); in the subsequent sections, we show that this is the case.
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1.3.2 Multiple-locus, single-deme

Recall from Section 1.2.2 that the discrete Wright-Fisher process can be generalized to haplotypes
comprising multiple loci, and allowing for mutation to occur at locus ℓ ∈ L with probability uℓ, and
recombination to occur at breakpoint b ∈ B with probability r · rb. Viewing the process backward
in time, two or more haplotypes in a given generation may have common parental haplotypes
in the previous generation; such coalescence events decrease the number of haplotypes ancestral
to a sample. In contrast, haplotypes formed by recombination have two parental haplotypes in
the previous generation, and thereby increase the number of haplotypes ancestral to a sample.
Mutation does not affect the number of haplotypes ancestral to a sample.

It is possible to directly obtain the genealogy for a labeled untyped configuration n̂ by con-
sidering the discrete Wright-Fisher process backward in time, assuming a finite population of 2N
haplotypes. By scaling time in units of 2N generations and considering the limit N → ∞, a process
similar to Kingman’s coalescent is obtained, which incorporates both mutation and recombination
(Hudson, 1983). As in the Wright-Fisher diffusion, it is necessary to assume that the mutation and
recombination probabilities vary inversely with N , so that for all ℓ ∈ L and b ∈ B, 4Nuℓ → θℓ
and 4Nrrb → ρb as N → ∞; θℓ and ρb are the scaled mutation and recombination rates, respec-
tively. The resulting stochastic process is the coalescent with recombination, and has the following
genealogical interpretation,

Coalescence: Each pair of lineages coalesce with rate 1.

Mutation: Each lineage undergoes mutation at locus ℓ ∈ L with rate θℓ/2 according to the
stochastic matrix Φ(ℓ).

Recombination: Each lineage undergoes recombination at breakpoint b ∈ B with rate ρb/2.

When a recombination event occurs, the number of lineages increases by 1. Thus, the number
of ancestral lineages is a birth-death process; when there are i ancestral lineages the process has
death rate

(i
2

)
, corresponding to coalescence events, and birth rate i ·

∑
b∈B ρb/2, corresponding to

recombination events. The process continues until a single ancestral lineage, the MRCA, remains.
The resulting untyped genealogy An̂ is no longer a bifurcating tree, but rather a graph, known as
the ancestral recombination graph (ARG). See Figure 1.5(a) for an illustration of an ARG.

Observe that, unlike recombination events, mutation events do not affect the underlying topology
of the ARG An̂. It is therefore equivalent to sample an ARG using the following two step procedure:
first, sample the ARG topology using the coalescence with recombination process without mutation
events; second, realize the mutation events at each locus ℓ ∈ L as a Poisson process on the underlying
topology with rate θℓ/2. Importantly, given an ARG topology, it is straightforward to integrate
over the possible realizations of the mutation process; the state space of ARGs can therefore be
reduced in the statistical inference setting.

The effect of recombination within the ARG An̂ is to produce alternative genealogies for the
loci to left and right of the recombination breakpoint b ∈ B. Consequently, for any locus ℓ ∈ L,
there is embedded within the ARG An̂ a marginal genealogy An̂[ℓ] describing the genealogical
relationship of the haplotypes at the single locus ℓ. The marginal genealogy An̂[ℓ] can be recovered
by tracing each lineage backward in time, starting from the present; when a recombination event
is encountered, only the ancestral lineage associated with locus ℓ is retained. Thus, a marginal
genealogy An̂[ℓ] is once again a bifurcating tree, as illustrated in Figure 1.5(b).
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An

(a)

An[1] An[2] An[3]

(b)

Figure 1.5. An illustration of an ARG genealogy and the associated marginal genealogies. (a) A
typed ARG An for a configuration n of 3-locus haplotypes, with |n| = 3. Mutation events, along
with the locus and resulting haplotype, are indicated by small arrows. Recombination events have
occurred when a single descendant lineage has two ancestral lineages; the recombination breakpoint
is indicated by the location of vertical segment relative to the resulting haplotype. It can be verified
that the sample n is obtained by starting at the MRCA and tracing the type of each lineage forward
in time. (b) The marginal genealogiesAn[ℓ] associated with each locus ℓ ∈ L, obtained by considering
only those lineages ancestral to the sample at locus ℓ. Each marginal genealogy is a bifurcating tree,
and is correlated with other marginal genealogies by the coalescent with recombination process.

Given an untyped genealogy An̂, the type of the MRCA can be directly sampled and propagated
forward in time, yielding a typed configuration n and the corresponding typed genealogy An. As
described in Section 1.3.1, the time information within An̂ is not used to generate n, and so it is only
necessary to directly sample the genealogical events of An̂. Starting with an untyped configuration
n̂, the possible genealogical events E(n̂) include coalescence, mutation, and recombination. Let
e ∈ E(n̂) be a genealogical event, and suppose n′ is a typed configuration with associated untyped
configuration e(n̂),

Coalescence: Suppose e ∈ E(n̂) is a coalescence event. The untyped configuration e(n̂) is derived
from n̂ by replacing the appropriate two labeled haplotypes with a single labeled haplotype,
so that |e(n̂)| = |n̂| − 1. Moreover V(n′, e) comprises a single typed configuration derived
from n′ by replacing the appropriate labeled haplotype h ∈ H with two identical labeled
haplotypes,

V(n′, e) = {n′ − eh + eh + eh} = {n′ + eh}. (1.48)

Mutation: Suppose e ∈ E(n̂) is a mutation event at locus ℓ ∈ L. The untyped configuration e(n̂)
is derived from n̂ by replacing the appropriate labeled haplotype with a labeled haplotype, so
that |e(n̂)| = |n̂|. Moreover, V(n′, e) comprises a typed configuration for each allele a ∈ Aℓ,
derived from n′ by replacing the appropriate labeled haplotype h ∈ H with the labeled
haplotype Ma

ℓ (h),

V(n′, e) = {n′ − eh + eMa
ℓ
(h) : a ∈ Aℓ}, (1.49)
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and p(n′ − eh + eMa
ℓ
(h)|n

′, e) = Φ
(ℓ)
h[ℓ],a.

Recombination: Suppose e ∈ E(n̂) is a recombination event at breakpoint b ∈ B. The untyped
configuration e(n̂) is derived from n̂ by replacing the appropriate labeled haplotype with
two labeled haplotypes, so that |e(n̂)| = |n̂| + 1. Moreover V(n′, e) comprises a single typed
configuration derived from n′ by replacing the appropriate two labeled haplotypes h, h′ ∈ H
with the labeled haplotype Rb(h, h

′),

V(n′, e) = {n′ − eh − eh′ + eRb(h,h′)}. (1.50)

Finally, supposing that |n̂| = n, the density p(·|n̂) is obtained considering the minimum of the
exponential random variables associated with each event,

p(e|n̂) =





2/N , for e coalescence of two lineages,
θℓ/N , for e mutation of a lineage at locus ℓ ∈ L,
ρb/N , for e recombination of a lineage at breakpoint b ∈ B,

(1.51)

where the normalizing constant N = n
(
n−1+

∑
ℓ∈L θℓ+

∑
b∈B ρb

)
is twice the total rate associated

with all events. Using these densities, sampling a typed haplotype configuration proceeds by first
sampling the events of an untyped genealogy An̂, sampling a type for the MRCA, and stochastically
propagating this type down the genealogy.

Having characterized the sampling process associated with the coalescent with recombination,
the technique described in Section 1.3.1 yields the following result,

Proposition 1.7. Let n = (nh)h∈H with |n| = n. Then the ordered sampling probability q(n)
obtained using the coalescent-based method in Section 1.3.1 is given by the following recursion

q(n) =
1

N

∑

h∈H

nh

{
(nh − 1)q(n− eh)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eh + qMa

ℓ (h))

+
∑

b∈B

ρb
∑

h′∈H

q(n− eh + eRb(h,h′) + eRb(h′,h)))

}
,

(1.52)

where N = n
(
n− 1 +

∑
ℓ∈L θℓ +

∑
b∈B ρb

)
.

Proof. We use the technique described in Section 1.3.1. Define n̂ to be the labeled untyped config-
uration associated with an arbitrary labeling of n. Then we consider each event e ∈ E(n̂),

Coalescence: Suppose e ∈ E(n̂) is a coalescence event, specifying two labeled haplotypes h, h′ ∈ H
in n. Since coalescence can only occur between identical haplotypes, {n′ : n ∈ V(n′, e)} =
{n− eh} if h = h′ and is otherwise empty. As a result,

Pr(V0 = n|U0 = n̂, E1 = e) = δh,h′ · q(n− eh). (1.53)

Mutation: Suppose e ∈ E(n̂) is a mutation event at locus ℓ ∈ L, specifying the labeled haplotype
h ∈ H in n. Then {n′ : n ∈ V(n′, e)} = {n− eh + eMa

ℓ
(h) : a ∈ Aℓ}, and as a result,

Pr(V0 = n|U0 = n̂, E1 = e) =
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eh + eMa

ℓ
(h)). (1.54)
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Recombination: Suppose e ∈ E(n̂) is a recombination event at locus b ∈ L, specifying the labeled
haplotype h ∈ H in n. Then {n′ : n ∈ V(n′, e)} = {n − eh + eRb(h,h′) + eRb(h′,h) : h

′ ∈ H},
and as result,

Pr(V0 = n|U0 = n̂, E1 = e) =
∑

h′∈H

q(n− eh + eRb(h,h′) + eRb(h′,h)). (1.55)

The latter expression in each case is obtained by using (1.45) in conjunction with the known ex-
pressions for p(n|n′, e). Recall that each genealogical event e ∈ E(n̂) specifies haplotypes according
to a labeling, and without regard to type. Thus, using the general recursion (1.47), via (1.44), in
conjunction with the known density (1.51), the desired recursion (1.52) is obtained.

Recall that we constructed coalescent with recombination as a limit of the discrete Wright-
Fisher process, and that precisely the same limit was used to construct the Wright-Fisher diffusion;
it is therefore reassuring that the recursion for the ordered sampling probability q(n) obtained
from the coalescent-based approach (1.52) is identical to that obtained from the diffusion-based
approach (1.16). It is nonetheless remarkable that such different methodologies, reflecting entirely
complementary interpretations, can be used to deduce the same result.

As in Section 1.2.2, explicit evaluation of q(n) is not possible by repeated application of (1.52).
We therefore consider a modification to the coalescent with recombination that directly produces
a reduced recursion amenable to explicit evaluation. To this end, observe that, due to intervening
recombination events, it is possible for a locus on a particular lineage within an untyped ARG An̂

to have no descendant loci in the untyped configuration n̂; we describe such loci as non-ancestral.
In sampling a typed haplotype configuration n associated with the untyped ARG An̂, non-ancestral
loci can be left unspecified as, by definition, their type has no effect on n. It is therefore unnecessary
for the ARG to encode the genealogical history for such non-ancestral loci.

We modify the coalescent with recombination to explicitly incorporate the ancestral state of the
loci on each lineage of the untyped ARG An̂. Beginning with the untyped configuration n̂, every
locus is ancestral by definition. Proceeding backward in time, the ancestral state of each lineage
can be determined as follows,

• Given that a lineage undergoes recombination at breakpoint b = (ℓ, ℓ + 1) ∈ B, the set of
ancestral loci for the two ancestral lineages is the intersection of set of ancestral loci for the
descendant lineage with the sets 1 : ℓ and ℓ+ 1 : k, respectively.

• Given a coalescence between two lineages, the set of ancestral loci of ancestral lineage is the
union of the sets of ancestral loci of the two descendant lineages.

As stated above, it is unnecessary for the ARG to encode the genealogical history of non-ancestral
loci, and we can therefore augment the ordinary coalescent model with the following controls,

• Mutation events at a non-ancestral locus of an untyped lineage are not allowed.

• Recombination events that produce an untyped lineage that is entirely non-ancestral are not
allowed.

Using the modified coalescent with recombination, a reduced ARG is obtained. As before, it is
then possible to sample a type for the MRCA haplotype and stochastically propagate it forward in
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time. By construction, this reduced process yields the same distribution on sample configurations
as the full process. The method of Section 1.3.1 applied to the modified coalescent then yields the
following result,

Proposition 1.8. Let n = (ng)g∈G with |n| = n. Then the ordered sampling probability q(n) ob-
tained using the coalescent-based method in Section 1.3.1 in conjunction with the reduced coalescent
with recombination is given by the following recursion

q(n) =
1

N

∑

g∈G

ng

{ ∑

g′∈G:g′fg

(ng′ − δg,g′)q(n− eg + eC(g,g′))

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]q(n− eg + eMa

ℓ
(g))

+
∑

b∈B(g)

ρbq(n− eg + eR−
b
(g) + eR+

b
(g)))

}
,

(1.56)

where N =
∑

g∈G ng
(
n− 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

)
.

Proof. As described above, each labeled untyped haplotype contains additional information about
which loci are non-ancestral. Note that for a labeled typed configuration n, those loci that are
unspecified are considered non-ancestral in the corresponding untyped configuration as, for com-
puting the sampling probability q(n), their specific allelic value is irrelevant. Using this observation
and the modified genealogical process described above, the proof of this proposition is analogous
to the proof of Proposition 1.7.

Once again, the expression (1.56) derived by the coalescent-based methodology is identical to the
expression (1.20) derived from the diffusion-based methodology. Finally, recall the mathematical
simplification (1.25) obtained when using a PIM model; given a mutation at locus ℓ ∈ L, the
specified allele at locus ℓ in the descendant haplotype is replaced with an unspecified allele in the
ancestral haplotype. By analogy with the reduced ARG, we expect that locus ℓ is non-ancestral in
the ancestral haplotype. Indeed, the type of the descendant allele does not depend on the ancestral
allele, by definition of a PIM model, and so the ancestral haplotype is formally non-ancestral at
locus ℓ. It is thus possible to refine the genealogical process for a PIM model, and so obtain the
mathematical simplification (1.25) genealogically.

1.3.3 Multiple-locus, multiple-deme

Recall from Section 1.2.3 that the discrete Wright-Fisher process can be further generalized to a
structured population with migration, for which there exist a finite set of D, and the number of
haplotypes in deme d ∈ D is given by Nd. To allow for migration between demes, in sampling a
haplotype in deme d ∈ D, the parental deme d′ ∈ D is sampled with probability vdd′ .

It is possible to directly obtain the genealogy for a sample of untyped haplotypes by considering
the discrete Wright-Fisher process backward in time, assuming a finite population of 2N haplotypes.
By scaling time in units of 2N generations and considering the limit N → ∞, a coalescent process
is obtained, which incorporates mutation, recombination, and migration (Notohara, 1990). As in
the Wright-Fisher diffusion, it is necessary to assume that Nd/N → κd and 4Nvdd′ → υdd′ for all
d, d′ ∈ D with d′ 6= d, where κd is the relative deme size and υdd′ is the scaled migration rate.
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An

Figure 1.6. An illustration of population structured ARG An for a configuration n of 3-locus
haplotypes, with |n| = 3, in two demes. The first deme, from which 2 haplotypes are sampled, is
shown with a white background, and the second deme, from which 1 haplotype is sampled, with
a light grey background. Mutation and recombination events are indicated as in Figure 1.5, and
migration events are indicated by a horizontal transition of a lineage from one deme into another.
It can be verified that the sample n is obtained by starting at the MRCA and tracing the type of
each lineage forward in time.

The resulting stochastic process is the coalescent with recombination and migration, and has the
following genealogical interpretation. Within each deme d ∈ D,

Coalescence: Each pair of lineages coalesce with rate κ−1
d .

Mutation: Each lineage undergoes mutation at locus ℓ ∈ L with rate θℓ/2 according to the
stochastic matrix Φ(ℓ).

Recombination: Each lineage undergoes recombination at breakpoint b ∈ B with rate ρb/2.

Migration: Each lineage migrates to deme d′ with rate υdd′/2.

The outcome of this process is a generalized ARG, within which each lineage resides in a particular
deme, as illustrated in Figure 1.6. Coalescence events can only occur between lineages in the same
deme, and recombination events produces ancestral lineages in the same deme as the descendant
lineage. Finally, migration events have the effect of moving a lineage, backward in time, from one
deme into another.

The procedure for sampling described in Section 1.3.2 can be generalized to this setting by
incorporating a genealogical event for migration. In addition, it is necessary to label haplotypes in
both typed and untyped configurations by the deme in which they reside. Let n̂ be such an untyped
configuration, and e ∈ E(n̂) a genealogical event. Supposing that e is a coalescence, mutation, or
recombination event, the description given in Section 1.3.2 suffices. Otherwise,

Migration: Suppose e ∈ E(n̂) is a migration event from d ∈ D to d′ ∈ D, backward in time. The
untyped configuration e(n̂) is derived from n̂ by replacing the appropriate labeled untyped
haplotype in deme d with a labeled untyped haplotype in deme d′. Given a typed configura-
tion n′ with associated untyped configuration e(n̂), V(n′, e) comprises a single configuration
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derived from n′ by replacing the appropriate labeled haplotype h ∈ H in deme d′ with an
identical labeled haplotype in deme d,

V(n′, e) = {n′ − ed′,h + ed,h}. (1.57)

Supposing that |n̂| = n and |n̂d| = nd for all d ∈ D, the density p(·|n̂) is obtained considering the
minimum of the exponential random variables associated with each event,

p(e|n̂) =





2κ−1
d /N , for e coalescence of two lineages in deme d ∈ D,

θℓ/N , for e mutation of a lineage at locus ℓ ∈ L,
ρb/N , for e recombination of a lineage at breakpoint b ∈ B,
υdd′/N , for e migration of a lineage from deme d to deme d′,

(1.58)

where the normalizing constant N =
∑

d∈D

∑
h∈H nd,h

(
(nd − 1)κ−1

d +
∑

ℓ∈L θℓ +
∑

b∈B ρb + υd
)
is

twice the total rate associated with all events. Having characterized the sampling process associated
with the coalescent with recombination, the technique described in Section 1.3.1 yields the following
result,

Proposition 1.9. Let n = (nd,h)d∈D,h∈H be a structured sample configuration, with |n| = n and
|nd| = nd for each d ∈ D. Then the ordered sampling probability q(n) obtained using the coalescent-
based method in Section 1.3.1 is given by the following recursion

q(c) =
1

N

∑

d∈D

∑

h∈H

nd,h

{
(nd,h − 1)κ−1

d q(n− ed,h)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− ed,h + ed,Ma

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q(n− ed,h + ed,Rb(h,h′) + ed,Rb(h′,h)))

+
∑

d′∈D
d′ 6=d

υdd′q(n− ed,h + ed′,h)

}

(1.59)

where N =
∑

d∈D

∑
h∈H nd,h

(
(nd − 1)κ−1

d +
∑

ℓ∈L θℓ +
∑

b∈B ρb + υd
)
.

Proof. We use the technique described in Section 1.3.1 and exemplified in the proof of Proposi-
tion 1.7. Define n̂ to be the labeled untyped configuration associated with an arbitrary labeling of
n, and let e ∈ E(n̂) be a genealogical event. If e is a coalescence, mutation, or recombination event,
the description in the proof of Proposition 1.7 suffices; otherwise,

Migration: Suppose e ∈ E(n̂) is a migration event from deme d ∈ D to deme d′ ∈ D, backward in
time, specifying the labeled haplotype h ∈ H in n. Then {n′ : n ∈ V(n′, e)} = {n−ed,h+ed′,h},
and as result,

Pr(V0 = n|U0 = n̂, E1 = e) = q(n− ed,h + ed′,h). (1.60)

Thus, using the general recursion (1.47), via (1.44), in conjunction with the known density (1.58),
the desired recursion (1.59) is obtained.
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Once again, the recursion for the ordered sampling probability q(n) obtained from the
coalescent-based approach (1.59) is identical to that obtained from the diffusion-based approach
(1.39). Moreover, though explicit evaluation of q(n) is not possible by repeated application of (1.59),
the reduced recursion (1.41) obtained using the diffusion generator technique can be obtained di-
rectly by considering a reduced coalescent with recombination and migration process, analogous to
the one described in Section 1.3.2.

1.3.4 Sequentially Markov coalescent

Though an ARG An̂ is most naturally sampled starting in the present and proceeding backward in
time, as described in Sections 1.3.2 and 1.3.3, Wiuf and Hein (1999) demonstrated that it is also
possible to sample an ARG sequentially, beginning from the left-most locus and proceeding to the
right. Though Wiuf and Hein describe this procedure for an infinite sites model, it is straightforward
to translate the technique to the finite-sites, finite-alleles model of present interest. For simplicity,
we consider the coalescent with recombination of Section 1.3.2, but note that the technique can be
generalized to migration.

Recall that, embedded within an ARG An̂, there is a one-locus marginal genealogy An̂[ℓ] de-
scribing the genealogical relationship of the configuration n̂ at locus ℓ ∈ L. We similarly define
the embedded marginal ARG An̂[1 : ℓ], which describes the genealogical relationship of the con-
figuration n̂ at the loci {1, . . . , ℓ}. The marginal ARG An̂[1 : ℓ] can be extracted from an ARG
An̂ by preserving only those lineages that are ancestral to loci {1, . . . , ℓ}. The key insight of Wiuf
and Hein is that it is possible to sample the marginal ARGs directly, using a sequential process.
Specifically, conditioned on the marginal ARG An̂[1 : ℓ − 1], the marginal ARG An̂[1 : ℓ] can be
sampled using the following process:

1. Recombination events, with breakpoint b = (ℓ − 1, ℓ) ∈ B are realized as a Poisson process
with rate ρb/2 on the marginal genealogy An̂[ℓ− 1] embedded within the marginal ARG for
loci An̂[1 : ℓ− 1].

2. At each recombination event, a new lineage associated with locus ℓ is created. Proceeding
backward in time, each of the new lineages associated with locus ℓ coalesce with the existing
lineages in the marginal ARG An̂[1 : ℓ− 1], and with each other, at rate 1.

The resulting genealogy is a marginal ARG An̂[1 : ℓ] consistent with An̂[1 : ℓ − 1]. Observe that
we have not incorporated the mutation process into the construction; as described in Section 1.3.2,
mutation events at each locus can be incorporated subsequently. Thus, beginning with the marginal
genealogy An̂[1], sampled directly, according to Kingman’s coalescent, it is possible to inductively
sample the marginal ARG An̂[1 : ℓ]. Ultimately, this process yields the desired ARG An̂.

We next consider the sequence of marginal genealogies (An̂[ℓ])ℓ∈L embedded with the ARG
An̂. Though the procedure proposed by Wiuf and Hein (1999) produces these marginal genealogies
sequentially, the procedure is explicitly non-Markov. In constructing the marginal genealogy An̂[ℓ],
though the first step depends only on the marginal genealogy An̂[ℓ − 1], the second step depends
on the entire marginal ARG An̂[1 : ℓ− 1]. Intuitively, this dependence corresponds to the potential
for coalescence events that link marginal genealogies at non-adjacent loci. McVean and Cardin
(2005) showed that the non-Markov process can be well-approximated by a Markov process on the
marginal genealogies. As for the full sequential construction, McVean and Cardin describe this
procedure for an infinite sites model, and we translate to a finite-sites model. Given the marginal
genealogy An̂[ℓ− 1], the marginal genealogy An̂[ℓ] can be approximately sampled as follows:
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An̂[ℓ]

(a)

(1) (2) (3)

(b)

An̂[ℓ+ 1]

(c)

Figure 1.7. Illustration of Markov transition procedure for the SMC. (a) The untyped marginal
genealogy An̂[ℓ − 1] at locus ℓ − 1 ∈ L. (b) Conditional on the marginal genealogy An̂[ℓ − 1],
the marginal genealogy An̂[ℓ] is sampled by (1) realizing recombination events, with breakpoint
b = (ℓ − 1, ℓ) ∈ B, as a Poisson process with rate ρb/2 on An̂[ℓ − 1], (2) removing the lineages
associated with locus ℓ−1 ancestral to each recombination event, (3) creating a new lineage associated
with locus ℓ at each breakpoint, and allowing each such lineage to coalesce with existing lineages
in the marginal genealogy, and with each other, at rate 1. (c) The resulting untyped marginal
genealogy An̂[ℓ] at locus ℓ ∈ L

1. Recombination events, with breakpoint b = (ℓ − 1, ℓ) ∈ B are realized as a Poisson process
with rate ρb/2 on An̂[ℓ− 1].

2. At each recombination event, the lineage associated with locus ℓ− 1 ancestral to the event is
removed.

3. At each recombination event, a new lineage associated with locus ℓ is created. Proceeding
backward in time, each of the new lineages associated with locus ℓ coalesce with the existing
lineages in the marginal genealogy for locus ℓ+ 1, and with each other, at rate 1.

See Figure 1.7 for an illustration. The sequence of marginal genealogies (An̂[ℓ])ℓ∈L is thus con-
structed directly, without requiring intermediate marginal ARGs for multiple loci. This process is
called the sequentially Markov coalescent (SMC). Critically, though the resulting joint distribution
on marginal genealogies is only approximate, due to the Markov assumption, the marginal geneal-
ogy An̂[ℓ] at each locus ℓ ∈ L is correctly distributed as Kingman’s coalescent. Moreover, it has
been empirically demonstrated (McVean and Cardin, 2005; Marjoram and Wall, 2006) that the
effect on the joint distribution of marginal genealogies using the SMC in place of the coalescent
with recombination is minimal; McVean and Cardin (2005) conjecture, but do not formally prove,
that SMC is equivalent to a modification to the coalescent with recombination in which coalescence
is disallowed between lineages that do not contain overlapping ancestral loci.

Recall that mutation events can be realized on the marginal genealogy An̂[ℓ] at locus ℓ ∈ L
independently; and given the one-locus marginal genealogy, the allelic type for the MRCA can be
sampled independently, and propagated forward in time, yielding a typed configuration at locus ℓ.
Consequently, there is an evident procedure for sampling a typed configuration sequentially, starting
from the left-most locus and proceeding to the right. While sampling directly from the coalescent
with recombination requires explicit construction of the graph-like ARG, the procedure associated
with the SMC is Markov on the tree-like marginal genealogies, and therefore confers considerable
mathematical and computational simplicity. We note, however, that while it is straightforward to
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sample the marginal genealogy An̂[ℓ] conditioned on An̂[ℓ− 1] using the procedure provided above,
deriving an analytic form for the associated transition density remains a challenging open problem.

1.4 Conditional Sampling Distribution

Having described both the Wright-Fisher diffusion and the coalescent process in the previous sec-
tions, we now formally introduce the conditional sampling distribution (CSD). Conditioned on a
sample configuration n = (nh)h∈H, the CSD describes the probability distribution on one or more
additionally sampled haplotypes. Intuitively, the configuration n is informative for the composi-
tion of the population, which is, in turn, informative for the additionally sampled haplotypes. We
shall be interested in understanding this distribution, with the objective of deriving approximate
distributions that facilitate computation.

Denoting a conditionally sampled configuration by c = (ch)h∈H, the ordered conditional sam-
pling probability (CSP) is denoted π(c|n), and by the definition of conditional probability,

π(c|n) =
q(c+ n)

q(n)
. (1.61)

Thus, it is possible to compute the CSP π(c|n) using the recursions provided in the previous sections
for q(·). Making use of the exact analytic expression for q(n) for a one-locus PIM model provided
in Proposition 1.3,

Proposition 1.10 (Conditional Wright Sampling Formula). Let c = (ca)a∈A and n = (na)a∈A be
one-locus configurations with |c| = c and |n| = n. For a PIM model, the CSP π(c|n) is given by

π(c|n) =
1

(θ + n)(c)

∏

a∈A

(θΦa + na)(ca), (1.62)

where x(i) = (x)(x+ 1)(x+ 2) · · · (x+ i− 1) denotes a rising factorial.

Proof. Substitution of (1.30) into the CSP definition (1.61).

Similarly, supposing ρb = ρ for all b ∈ B, and considering the limit ρ → ∞ described in
Proposition 1.4,

Proposition 1.11. Let n = (ng)g∈G with |c| = c and n = (ng)g∈G with |n| = n, and suppose ρb = ρ
for all b ∈ B. Then in the limit that ρ→ ∞, the CSP π(c|n) can be decomposed as follows

π(c|n) =
∏

ℓ∈L

π(c[ℓ]|n[ℓ]), (1.63)

where c[ℓ] and n[ℓ] is the one-locus configuration induced by c and n at locus ℓ ∈ L, and π(c[ℓ]|n[ℓ])
is the one-locus CSP.

Proof. Substitution of (1.31) into the CSP definition (1.61).

Thus, computing the CSP for a k-locus configuration can be efficiently accomplished by com-
puting the product of the CSPs for k one-locus configurations. Moreover, given a PIM model
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at each locus, the resulting one-locus CSPs can be computed efficiently and exactly using (1.62),
yielding an exact result.

Apart from these special cases, there are no known analytic formulas for computing the true
CSP. By enumerating the finite set of configurations c and computing π(c|n) for each of them,
it is also possible to sample from the true CSD. In contrast to the genealogical process described
in Section 1.3 for the unconditional sampling distribution, however, there is not a known efficient
procedure, genealogical or otherwise, for sampling from the true CSD.

As a result, exact computation for the true CSD using known methods is at least as challenging
as the analogous computation for the unconditional sampling distribution. Nonetheless, we hope
that by approximating the CSD, it is possible to obtain approximate, though computationally
tractable, solutions for many population genetic problems of interest. As will be demonstrated in
Chapter 4, in some cases it is even possible to correct these approximations using Monte Carlo
techniques. Conditioned on the sample configuration n = (nh)h∈H with |n| = n, consider the
following two extreme CSDs associated with a single haplotype,

Independence: The conditionally sampled haplotype is entirely independent of the previously
sampled configuration n. Letting h ∈ H,

π̂(eh|n) = q(eh). (1.64)

Complete Dependence: The conditionally sampled haplotype is chosen uniformly at random
from the previously sampled configuration n. Letting h ∈ H,

π̂(eh|n) =
nh
n
. (1.65)

The first of these specifies that there is no dependence on the previously sampled configuration,
which is trivially true when n = 0, and generally becomes a worse approximation with increasing
n. On the other hand, the second specifies complete dependence on the previously sampled config-
uration, which is trivially true if n is precisely representative of the entire population, occurring in
the limit n→ ∞; this approximation generally becomes worse with decreasing n, and ultimately is
not defined for n = 0.

Hereafter, we consider approximate CSDs that, as the true CSD, are intermediate between
these two extremes; the conditionally sampled haplotype should be similar to previously sampled
haplotypes, with variation introduced by the processes of mutation and recombination. Intuitively,
the recombination process breaks the conditionally sampled haplotype into several pieces, each sim-
ilar to a single previously sampled haplotype, with additional variation introduced by the mutation
process. The conditionally sampled haplotype is thus often referred to as an imperfect mosaic of
the previously sampled haplotypes.

Several approximate CSDs following this general model have been proposed, three of which
we introduce in some detail. It is important to note that these CSDs, though computationally
appealing, have limited theoretical connection to the coalescent. In Chapter 2, we introduce a
general methodology for constructing approximate CSDs directly from the Wright-Fisher diffusion,
or alternatively from a genealogical process closely related to the coalescent with recombination.

1.4.1 Stephens and Donnelly

Stephens and Donnelly (2000) proposed the following CSD, which we denote by π̂SD, applicable
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in the absence of recombination so that ρb = 0 for all b ∈ B. Let n = (nh)h∈H be a sample
configuration with |n| = n. Conditional on n, a haplotype is sampled using the following procedure,

1. Choose a haplotype h from n uniformly at random.

2. Letting Θ =
∑

ℓ∈L θℓ, mutate the haplotype a geometric number of times, with parameter
n/(n+Θ); a mutation occurs at locus ℓ ∈ L with probability θℓ/Θ, and according to stochastic
mutation matrix Φ(ℓ).

Thus, as n increases, the number of mutations decreases, concordant with our earlier intuition.
Letting η ∈ H, it is possible to compute the CSP,

π̂SD(eη |n) =
∑

h∈H

nh
n

∑

m∈Nk

F (n)(h, η,m), (1.66)

where the vector m = (mℓ)ℓ∈L indicates the number of mutations at each locus, and F (h, η,m) is
the probability of h mutating to η with m mutations,

F (n)(h, η,m) =

(
m

m

)[∏

ℓ∈L

( θℓ
n+Θ

)mℓ
[(

Φ(ℓ)
)mℓ

]
h[ℓ],η[ℓ]

]
n

n+Θ
, (1.67)

where m =
∑

ℓ∈Lmℓ and
(m
m

)
is the multinomial coefficient. Though this form is mathematically

elegant, it is challenging to compute numerically. Stephens and Donnelly observe that, by ele-
mentary properties of Poisson processes, the mutational procedure is equivalent to drawing a time
t ∈ R≥0 from an exponential distribution with rate parameter n, and applying mℓ mutations at
each locus ℓ ∈ L, where the values of mℓ are independent and Poisson distributed with mean θℓt.
Thus, the CSD π̂SD(eη |n) can alternatively be expressed

π̂SD(eη|n) =
∑

h∈H

nh
n

∫

R≥0

ne−nt
∏

ℓ∈L

Gℓ(h[ℓ], η[ℓ], t)dt, (1.68)

where Gℓ(a, a
′, t) is the probability of mutation from allele a to a′ at locus ℓ,

G
(n)
ℓ (a, a′, t) = e−θℓt

∞∑

m=0

(
θℓt

)m

m!
·
[(

Φ(ℓ)
)m]

a,a′
. (1.69)

By using Gaussian quadrature, it is possible to approximate the integral in (1.68) as a summation
over a finite number of values of t, and the value Gℓ(a, a

′, t) can be numerically approximated for
each such value of t. This provides a computationally tractable method for obtaining a highly
accurate approximation to the CSP π̂SD(eη |n).

Specialization to one-locus case

In the one-locus case, the space of haplotypes can be represented by the (finite) space of alleles
H = A, and each haplotype by a single allele a ∈ A. The single scaled mutation rate is represented
by θ so that Θ = θ. Letting n = (na)a∈A be a one-locus configuration, and α ∈ A, the general
solution (1.66) reduces to

π̂SD(eα|n) =
∑

a∈A

na
n

∞∑

m=0

(
θ

n+ θ

)m n

n+ θ

[
Φm

]
a,α
. (1.70)
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Moreover, for a PIM model, we have that Φm = Φ for m ≥ 1, and therefore,

π̂SD(eα|n) =
∑

a∈A

na
n

n

n+ θ

(
δα,a +

θΦα

n

)
=
nα + θΦα

n+ θ
(1.71)

Substituting c = eα into (1.62), it can be verified that for the one-locus PIM model, π̂SD = π.
Though this result is promising, it can be empirically demonstrated that π̂SD is not generally exact,
even in the one-locus case for a general model of mutation.

1.4.2 Fearnhead and Donnelly

Fearnhead and Donnelly (2001) proposed a generalization of the method of Stephens and Donnelly
(2000) incorporating recombination, which we denote by π̂FD. Let n = (nh)h∈H be a sample
configuration with |n| = n. Conditional on n, a haplotype is sampled using the following procedure,

1. Recombination occurs at each breakpoint b ∈ B independently with probability ρb/(n + ρb).
The recombination process splits the haplotype into one or more intervals.

2. Each haplotype interval is sampled independently according to the procedure proposed by
Stephens and Donnelly, and detailed above.

3. The sampled haplotype intervals are joined to produce a sampled haplotype.

As above, as n increases, the number of recombinations decreases, concordant with our earlier
intuition. In order to compute the CSP, it is necessary to integrate over the possible realizations of
recombination events, taking the product over the probabilities of each induced haplotype interval.

Considering a particular set of recombination events, and recalling the alternative interpretation
(1.68) of π̂SD, each of the induced haplotype intervals is independently characterized by a haplotype
chosen uniformly at random from n, and a time chosen according to an exponential distribution
with rate n. Because the recombination events are independent, the sequence of haplotype and
time pairs associated with each locus is Markov. Making use of this observation, Fearnhead and
Donnelly (2001) provide an efficient dynamic programming algorithm for computing the CSP. As
in the corresponding CSP computation for π̂SD, this algorithm relies on Gaussian quadrature.

Finally, observe that when ρb = 0 for all b ∈ B, the recombination process does not split the
sampled haplotype, and so π̂FD = π̂SD. Alternatively, suppose that ρb = ρ for all b ∈ B; in the
limit that ρ→ ∞, recombination occurs at each breakpoint almost surely, and therefore each locus
ℓ ∈ L is independently sampled according to the one-locus CSD π̂SD. Additionally assuming a PIM
model, recall that the one-locus CSP π̂SD = π, so that π̂FD = π.

1.4.3 Li and Stephens

Li and Stephens (2003) propose a straightforward modification to π̂FD, and we denote the resulting
CSD by π̂LS. Let n = (nh)h∈H be a sample configuration with |n| = n. Conditional on n, a
haplotype is sampled using the following procedure,

1. Recombination occurs at each breakpoint b ∈ B independently with probability 1 −
exp(−ρb/n). The recombination process splits the haplotype into one or more intervals.
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2. Each such haplotype interval is sampled independently by choosing a haplotype h from n uni-
formly at random, and mutating each locus ℓ ∈ L within the haplotype interval independently
with probability θℓ/(θℓ + n).

3. The sampled haplotype intervals are joined to produce a sampled haplotype.

As for π̂FD, the CSP associated with π̂LS can be efficiently computed using a dynamic programming
algorithm. Because Gaussian quadrature is not required, computation of the CSP associated with
π̂LS is a (small) constant factor faster than computation of the CSP associated with π̂FD. However,
unlike π̂FD, π̂LS is not identical to π̂SD in the absence of recombination, and for a one-locus PIM
model, π̂LS 6= π̂SD = π. We thus anticipate that π̂LS is less accurate than π̂FD in order to provide
the aforementioned computational benefit. This claim is empirically investigated in Chapter 4.



Chapter 2

Theory

In this chapter, we describe two related techniques for obtaining an approximate conditional sam-
pling distribution (CSD) in a principled way. The development of these techniques parallels the
development of the sampling probabilities in Chapter 1. We first consider an approximation to
the diffusion generator technique described in Section 1.2, and use it to derive an approximate
CSD, π̂PS, for the coalescent with recombination, both with and without population structure and
migration. We then consider a genealogical process for conditional sampling, closely related to
the coalescent process described in Section 1.3, and show that the associated distribution is once
again the CSD π̂PS. The genealogical process is of particular importance as it provides an intuitive
generative process for π̂PS in much the same way the coalescent serves as a generative process for
the sampling distribution.

We derive recursive expressions for the conditional sampling probability (CSP) associated with
π̂PS, for models of evolution incorporating mutation, recombination, and population structure. As
for the sampling probabilities discussed in Chapter 1, explicit evaluation of the CSP by repeated
application of the recursive expressions is computationally intractable for all but very small datasets.
Guided by the genealogical process for π̂PS, we propose several genealogical approximations in order
to improve the computational complexity of CSP evaluation. These approximations culminate with
the sequentially Markov CSD π̂SMC, for which the sequence of marginal conditional genealogies is
assumed to be Markov, analogous to the sequentially Markov coalescent described in Section 1.3.4.
Finally, we relate the CSDs π̂PS and π̂SMC to previously-proposed CSDs, and conclude that π̂PS and
π̂SMC more precisely model the true CSD.

2.1 Diffusion-Generator Approximation

The diffusion-generator approximation was introduced by De Iorio and Griffiths (2004a), where it
was used to algebraically derive, directly from the diffusion, the one-locus CSD π̂SD, proposed by
Stephens and Donnelly (2000); the same approximation has also been used (De Iorio and Griffiths,
2004b) to derive a one-locus CSD in the setting of structured populations. Griffiths et al. (2008)
extended the diffusion-generator approximation to derive a two-locus CSD, including recombina-
tion. Their technique relies on an ad hoc symmetry argument, however, and cannot be generalized
to more than two loci; moreover, their technique is limited to parent independent mutation (PIM)
models.

More recently, Paul and Song (2010) generalized the diffusion-generator approximation to an

35
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arbitrary number of loci and arbitrary finite-alleles mutation model. In this section, we describe
the generalized diffusion-generator technique, and apply it to the general finite-locus finite-alleles
settings, both with and without population structure. We show that, in the one-locus case, the
resulting CSDs are the same as those derived by De Iorio and Griffiths (2004a,b).

2.1.1 Mathematical technique

Recall from Section 1.2 that the Wright-Fisher diffusion for a finite-locus finite-alleles model, for
which the space of haplotypes is denoted H, has state space given by the standard H-simplex

∆ =

{
x = (xh)h∈H

∣∣∣ xh ≥ 0 for all h ∈ H and
∑

h∈H

xh = 1

}
, (2.1)

where xh is the proportion of haplotype h ∈ H. Letting f : ∆ → R be an arbitrary, bounded,
twice-differentiable function with continuous second derivatives, the diffusion generator can be
decomposed into a summation

L f(x) =
∑

h∈H

Lh
∂

∂xh
f(x), (2.2)

where the form (1.8) of Lh depends on the infinitesimal mean (1.5) and covariance (1.6) associated
with the Wright-Fisher diffusion. Let n = (nh)h∈H be a haplotype configuration, and recall that
the ordered sampling probability q(n) can be expressed q(n) = E[q(n|X)] where the expectation is
with respect to the stationary distribution of the Wright-Fisher diffusion, and q(n|x) is the ordered
multinomial probability (1.12) of sampling n conditioned on haplotype proportions x ∈ ∆. Finally,
applying a general result (1.9) for f(x) = q(n|x),

∑

h∈H

E

[
Lh

∂

∂xh
q(n|X)

]
= 0, (2.3)

and this result can be used to derive a recursive expression for q(n). We now assume the existence
of distribution and associated expectation operator Ê such that (2.3) holds component-wise; that
is, for an arbitrary h ∈ H,

Ê

[
Lh

∂

∂xh
q(n|X)

]
= 0. (2.4)

Observe that this is a stronger assertion than (2.3), and need not generally be true. We refer to
this assumption as the diffusion-generator approximation; critically, this is precisely the assumption
used by De Iorio and Griffiths (2004a,b), and is the only approximation required for the development
of our approximate CSD. Let c = (ch)h∈H, and analogous to the definition (1.61) of the CSD π,
define the approximate CSD π̂PS

π̂PS(c|n) =
q̂(c+ n)

q̂(n)
, (2.5)

where q̂(n) = Ê[q(n|X)] is an approximate sampling probability. Using the diffusion generator
approximation (2.4), we propose the following re-weighted version of (2.3),

Ê

[ ∑

h∈H

ch
ch + nh

Lh
∂

∂xh
q(c+ n|X)

]

=
∑

h∈H

ch
ch + nh

Ê

[
Lh

∂

∂xh
q(c+ n|X)

]
= 0,

(2.6)
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with the final equality by (2.4). Analogous to the way (2.3) produces a recursive equation for
the sampling probability q(n), the latter equation (2.6) produces a recursive equation for the
approximate sampling probability q̂(c + n). By construction, the resulting equation is recursive
only on haplotypes within configuration c; thus, dividing by q̂(n) and making use of definition (2.5)
yields a recursive expression for the CSP π̂PS(c|n). As we shall see, the fact that the CSP π̂PS(c|n)
is recursive only on the conditional sample c confers a critical computational benefit.

General mathematical results

Because the proposed CSP π̂PS(c|n) is approximate, it is reasonable to question whether it satisfies
several important properties of the distribution π. For example, we can show that the approximate
CSPs are properly normalized by considering an arbitrary n and c > 0. Summing over all ordered
configurations of c with |c| = c,

∑

c:|c|=c

π̂PS(c|n) =
1

q̂(n)

∑

c:|c|=c

q̂(c+ n)

=
1

q̂(n)
Ê

[
q(n|X)

∑

c:|c|=c

q(c|X)

]
=

1

q̂(n)
Ê

[
q(n|X)

]
= 1,

(2.7)

where the penultimate equality is by the fact that q(·|x) is the properly normalized ordered multi-
nomial distribution. Thus, π̂PS(·|n) is a probability distribution, and we can henceforth refer to π̂PS

as a CSD. Moreover, if n = 0, then the key generating equation (2.6) reduces to (1.9), and so the
resulting CSD π̂PS(·|n) is actually exact ; in this case, π̂PS(c|n) = π(c|n) = q(c).

Letting c and n be arbitrary configurations, (2.6) does not depend on an ordering within
the configuration c. The derived ordered CSP π̂PS(c|n) is therefore exchangeable with respect
to the conditionally sampled configuration c, and so our convention of representing the ordered
configuration c as an unordered vector is well-defined. Finally, we consider the exchangeability
property for q̂. Given configurations c and n, and a haplotype h with ch > 0, exchangeability
would dictate that

q̂(c+ n)
?
= q̂((c − eh) + (n+ eh)) = q̂(c′ + n′), (2.8)

where c′ = c − eh and n′ = n + eh. By looking at the form of (2.6), the key approximation
generating the recursion for q̂, the necessary exchangeability between c and n is not evident. In
fact, it is simple to empirically demonstrate that in the general case q̂(c + n) 6= q̂(c′ + n′). Even
though our construction of the well-formed and exchangeable conditional distribution π̂PS(·|n) uses
the distribution q̂, the distribution q̂ is not itself exchangeable, and therefore not well-defined for
our convention of representing the ordered configuration as a vector. Let n = eh1 + · · ·+ ehn

, and
σ be a permutation of {1, . . . , n}; in general, we would like to write

q̂(eh1 + · · ·+ ehn
) = q̂(eh1)π̂PS(eh2 |eh1) · · · π̂PS(ehn

|eh1 + · · ·+ ehn−1), and

q̂(ehσ(1)
+ · · · + ehσ(n)

) = q̂(ehσ(1)
)π̂PS(ehσ(2)

|ehσ(1)
) · · · π̂PS(ehσ(n)

|ehσ(1)
+ · · ·+ ehσ(n−1)

),

but as a consequence of this shortcoming, q̂(eh1 + · · · + ehn
) 6= q̂(ehσ(1)

+ · · · + ehσ(n)
). Therefore,

it is non-trivial to approximate the sampling probability q(n) ≈ q̂(n) using a decomposition into
approximate CSDs, as the result will generally depend on the ordering of the sample and therefore
on the ordering of the decomposition.
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2.1.2 Multiple-locus, single-deme

Given the general form of diffusion-generator technique described, we derive the following result
for multiple loci with recombination.

Theorem 2.1. Let c = (ch)h∈H with |c| = c, and n = (nh)h∈H with |n| = n. Then the CSP
π̂PS(c|n) obtained using the approximate diffusion-generator technique described in Section 2.1.1 is
given by the following recursive expression,

π̂PS(c|n) =
1

N

∑

h∈H

ch

{
(ch + nh − 1)π̂PS(c− eh|n)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]π̂PS(c− eh + eMa

ℓ
(h)|n)

+
∑

b∈B

ρb
∑

h′∈H

π̂PS(c− eh + eRb(h,h′) + eRb(h′,h))|n)

}
,

(2.9)

where N = c
(
c+ n− 1 +

∑
ℓ∈L θℓ +

∑
b∈B ρb

)
.

Proof. Recalling the specifics of the diffusion generator (1.17), apply the key equation (2.6). In
conjunction with the component-wise expectation (1.18), this yields

0 =
∑

h∈H

ch
1

2

{
(ch + nh − 1)q̂(c+ n− eh)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q̂(c+ n− eh + eMa

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q̂(c+ n− eh + eRb(h,h′) + eRb(h′,h)))

−

(
(c+ n− 1) +

∑

ℓ∈L

θℓ +
∑

b∈B

ρb

)
q̂(c+ n)

}
.

(2.10)

Dividing by q̂(n) and using the definition (2.5) of π̂PS(c|n), the desired result (2.9) is obtained.

Observe that, as in Section 1.2.2, the system of linear equations resulting from repeated applica-
tion of the recursion (2.9) is of infinite size, and therefore cannot be numerically solved. Therefore,
though we consider Theorem 2.1 to be a primary result, it does not enable explicit evaluation of
the CSP π̂PS(c|n).

In order to establish a practicable formulation, it is necessary to extend this result to partially-
specified haplotypes. Let n = (ng)g∈G be a sample configuration of partially-specified haplotypes.
Then conditional on x ∈ ∆, the ordered sampling probability is

q(n|x) =
∏

g∈G

y
ng
g , (2.11)

where yg =
∑

h∈H:hfg xh is the total proportion of fully-specified haplotypes that subsume the
partially-specified haplotype g ∈ G. Defining the ordered sampling probability q̂(·) and the CSP
π̂PS(·|·) as in Section 2.1.1, it is possible to derive the following more general form of (2.9),
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Theorem 2.2. Let c = (cg)g∈G with |c| = c, and n = (nh)h∈H with |n| = n. Then the CSP
π̂PS(c|n) obtained using the approximate diffusion-generator technique described in Section 2.1.1 is
given by the following recursive expression,

π̂PS(c|n) =
1

N

∑

g∈G

cg

{( ∑

h∈H:hfg

nh

)
π̂PS(c− eg|n)

+
∑

g′∈G:g′fg

(cg′ − δg,g′)π̂PS(c− eg + eC(g,g′)|n)

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂PS(c− eg + eMa

ℓ
(g)|n)

+
∑

b∈B(g)

ρbπ̂PS(c− eh + eR−
b
(h) + eR+

b
(h))|n)

}
,

(2.12)

where N =
∑

g∈G cg
(
c+ n− 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

)
.

Proof. Without loss of generality, write c = eg1+· · ·+egc for g1, . . . , gc ∈ G. Let f(·) be an arbitrary
real-valued function on fully-specified haplotype configurations, and define the linear map Sc,

Scf =
∑

h1∈H
h1fg1

· · ·
∑

hm∈H
hmfgm

f(eh1 + · · ·+ ehc
). (2.13)

Then setting f(c′) = π̂PS(c
′|n)

Scf =
∑

h1∈H
h1fg1

· · ·
∑

hm∈H
hmfgm

π̂PS(eh1 + · · ·+ ehc
|n)

=
1

q̂(n)
Ê

[( ∏

h∈H

Xnh

h

)
·
∑

h1∈H
h1fg1

Xh1 · · ·
∑

hc∈H
hcfgc

Xhc

]

=
1

q̂(n)
Ê

[( ∏

h∈H

Xnh

h

)
· Yg1 · · ·Ygc

]
= π̂PS(c|n)

(2.14)

Setting f(c′) =
∑

h∈H c
′
hnhπ̂PS(c

′ − eh|n) and using a similar technique yields

Scf =
∑

g∈G

cg
∑

h∈H
hfg

nh · π̂PS(c− eg|n).
(2.15)

And in the same way, setting f(c′) =
∑

h∈H c
′
h(ch − 1)π̂PS(c

′ − eh|n) yields

Scf =
∑

g∈G

cg
∑

g′∈G
gfg

(cg′ − 1) · π̂PS(c− eg − eg′ + eC(g,g′)|n),
(2.16)

setting f(c′) =
∑

h∈H c
′
h

∑
ℓ∈L θℓ

∑
a∈Aℓ

Φ
(ℓ)
a,h[ℓ]π̂PS(c

′ − eh + eMa
ℓ
(h)|n) yields

Scf =
∑

g∈G

cg

( ∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂PS(c− eg + eMa

ℓ
(g)|n) +

∑

ℓ/∈L(g)

θℓπ̂PS(c|n)

)
, (2.17)
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setting f(c′) =
∑

b∈B ρb
∑

h′∈H π̂PS(c
′ − eh + eRb(h,h′) + eRb(h′,h))|n) yields

Scf =
∑

g∈G

cg

( ∑

b∈B(g)

ρbπ̂PS(c− eh + eR−
b
(h) + eR+

b
(h))|n) +

∑

b/∈B(g)

ρbπ̂PS(c|n)

)
. (2.18)

Thus, regarding both the left and right hand sides of (2.9) as real-valued functions on full hap-
lotype configuration and applying the linear map Sc yields, in conjunction with the results just
presented, the desired result (2.12). Observe that this proof explicitly depends on the result (2.9)
of Theorem 2.1

Let c = (cg)g∈G and n = (nh)h∈H, and denote the total number of specified loci in c′ by L(c′).
Applying the recursion (2.12) to c and n, each term on the right hand side is proportional to
π̂PS(c

′|n) for some partially-specified configuration c′, and L(c′) ≤ L(c). Consequently, repeated
application of (2.12) yields a system of equations containing variables of the form π̂PS(c

′|n) for which
L(c′) ≤ L(c). The resulting system is therefore finite, and can be numerically or algebraically solved
for the desired value π̂(c|n). The size of this linear system will be discussed in Section 3.1.

Finally, observe that Theorem 2.2 is applicable only when the configuration n = (nh)h∈H is
fully-specified. Obtaining a more general form of Theorem 2.2 for a partially-specified configuration
n remains an important open problem.

Parent independent mutation

We shall also frequently be interested in parent independent mutation (PIM) models. Recall that
a stochastic mutation matrix Φ exhibits PIM if there exists a vector (Φa)a∈A with

∑
a∈A Φa = 1,

and Φa′,a = Φa for all a′ ∈ A. Given a PIM model at locus ℓ ∈ L, the term of the recursion (2.12)
associated with mutation can be simplified,

∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂PS(c− eg + eMa

ℓ
(g)|n) = Φ

(ℓ)
g[ℓ]

1

q̂(n)
Ê

[ ∑

a∈Aℓ

q(c− eg + eMa
ℓ
(g) + n|X)

]

= Φ
(ℓ)
g[ℓ]

1

q̂(n)
Ê

[
q(c− eg + n|X)

∑

a∈Aℓ

q(eMa
ℓ
(g)|X)

]

= Φ
(ℓ)
g[ℓ]π̂PS(c− eg + eMℓ(g)|n),

(2.19)

where the second and third equalities are by properties of the ordered multinomial distribution
q(·|x) similar to (1.23). As a result, given a PIM model at every locus ℓ ∈ L, identity (2.19) can
be used to re-write (2.12) as follows,

π̂PS(c|n) =
1

N

∑

g∈G

cg

{( ∑

h∈H:hfg

nh

)
π̂PS(c− eg|n)

+
∑

g′∈G:g′fg

(cg′ − δg,g′)π̂PS(c − eg + eC(g,g′)|n)

+
∑

ℓ∈L(g)

θℓΦ
(ℓ)
g[ℓ]π̂PS(c− eg + eMℓ(g)|n)

+
∑

b∈B(g)

ρbπ̂PS(c− eh + eR−
b
(h) + eR+

b
(h))|n)

}
,

(2.20)
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where N =
∑

g∈G cg
(
c + n − 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

)
. Thus, as for the sampling probability

computations discussed in Section 1.2.1, assuming a PIM model at each locus confers both a
mathematical and computational benefit. Nevertheless, it remains necessary to construct and
numerically or algebraically solve a system of linear equations in order to evaluate the CSP π̂PS(c|n).
In Section 2.2.2, we describe an additional approximation that obviates the need for solving a
system. Finally, recall from Section 1.2.2 that any bi-allelic mutation model can be transformed
into a PIM model, making (2.20) broadly applicable.

Specialization to one-locus case

In the one-locus case, the space of haplotypes can be represented by the (finite) space of alleles
H = A, and each haplotype by a single allele a ∈ A. Moreover, recombination is not applicable, and
the single scaled mutation rate is represented by θ. Given a one-locus configurations c = (ca)a∈A
and n = (na)a∈A, the recursion (2.9) for the CSP π̂PS(c|n) reduces to

π̂PS(c|n) =
1

N

∑

a∈A

ca

{
(ca + na − 1)π̂PS(c− ea|n) + θ

∑

a′∈A

Φa′,aπ̂PS(c− ea + ea′ |n)

}
(2.21)

where N = c(c + n − 1 + θ). It is reassuring that given a haplotype α ∈ A and setting c = eα,
we obtain the result obtained by De Iorio and Griffiths (2004a) using the same diffusion generator
approximation. Further assuming a PIM model, the recursion (2.20) for π̂PS(c|n) reduces to

π̂PS(c|n) =
1

N

∑

a∈A

ca

{
(ca + na − 1 + θΦa)π̂PS(c− ea|n)

}
(2.22)

where N = c(c+ n− 1 + θ). Observe that each term on the right hand side of (1.29) proportional
to π̂PS(c

′|n) has |c′| = c − 1 < c = |c|, where the inequality is strict. As in Section 1.2.2, the
recursion is therefore proper, and the quantity π̂PS(c|n) can be directly evaluated using dynamic
programming or memoization, without the need to construct and solve a coupled system of linear
equations. Moreover, as for the one-locus PIM sampling probability, this recursion can be solved
analytically,

Proposition 2.3. Let c = (ca)a∈A and n = (na)a∈A be one-locus configurations. Then the CSP
π̂PS(c|n) for a one-locus PIM model is given by

π̂PS(c|n) =
1

(θ + n)(c)

∏

a∈A

(θΦa + na)(ca), (2.23)

where x(i) = (x)(x+ 1)(x+ 2) · · · (x+ i− 1) denotes a rising factorial.

Proof. Substitute (2.23) into (2.22).

The analytic solution (2.23) is precisely the Conditional Wright Sampling Formula (1.62), and
so for the one-locus PIM model, π̂PS = π. As we shall see, the correctness of the diffusion-generator
technique is atypical. Nonetheless, this result provides some reassurance that our methodology, the
diffusion generator approximation, is reasonable.
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Specialization to two-locus case

For two loci, L = {1, 2} and B = {(1, 2)}. Further assuming a PIM model, it is possible to derive
the following closed-form solution of (2.20) when conditionally sampling a single haplotype,

Proposition 2.4. Let n = (nh)h∈H be fully-specified two-locus configuration, and (a1, a2) ∈ H a
two-locus haplotype. Then the CSP π̂PS(e(a1,a2)|n) for a two-locus PIM model is given by

π̂PS(e(a1,a2)|n) =
1

N

{
n(a1,a2) + θ1Φ

(1)
a1 π̂PS(ea1 |n[1]) + θ2Φ

(2)
a2 π̂PS(ea2 |n[2])

+ ρ(1,2)
2n+ θ1 + θ2

2(n+ 1) + θ1 + θ2
π̂PS(ea1 |n[1])π̂PS(ea2 |n[2])

}
,

(2.24)

where n[ℓ] is the one-locus configuration induced by n at locus ℓ ∈ L, and π̂PS(ea|n[ℓ]) is the one-
locus CSP given in (2.22), and

N = n+ θ1 + θ2 + ρ(1,2)

(
2n+ θ1 + θ2

2(n + 1) + θ1 + θ2

)
. (2.25)

Proof. Substitute (2.24) into (2.20).

Though the one-locus CSPs comprising (2.24) are known to be exact, it is not the case that
the CSP given by (2.24) is exact. It is interesting that, despite also using the diffusion generator
approximation, Griffiths et al. (2008) obtain a distinct result, denoted π̂GJS

π̂GJS(e(a1,a2)|n) =
1

N ′

{
n(a1,a2) + θ1Φ

(1)
a1 π̂(ea1 |n[1]) + θ2Φ

(2)
a2 π̂(ea2 |n[2])

+
1

2
ρ(1,2)

(
n+ θ1

n+ 1 + θ1
+

n+ θ2
n+ 1 + θ2

)
π̂(ea1 |n[1])π̂(ea2 |n[2])

}
,

(2.26)

where N ′ = n + θ1 + θ2 +
1
2ρ(1,2)

(
n+θ1

n+1+θ1
+ n+θ2

n+1+θ2

)
. To understand this disparity, observe that

directly substituting c = e(a1,a2) into (2.20) immediately yields the term π̂(e(a1,•) + e(•,a2)|n), the
probability of conditionally sampling two haplotypes. The generalized recursion (2.20) is directly
applicable for c = e(a1,•) + e(•,a2). In contrast, Griffiths et al. (2008) derive and use a form of the
recursion limited to conditionally sampling a single haplotype, and therefore must approximate this
term using the symmetrized form:

π̂(e(a1,•) + e(•,a2)|n) =
∑

a′1∈A1

∑

a′2∈A2

π̂(e(a1,a′2) + e(a′1,a2)|n)

≈
∑

a′1∈A1

∑

a′2∈A2

1

2

(
π̂(e(a1,a′2)|n+ e(a′1,a2))π̂(e(a′1,a2)|n)

+ π̂(e(a′1,a2)|n+ e(a1,a′2))π̂(e(a1,a′2)|n)
)
.

(2.27)

Using this expression in place of the recursion (2.20) to evaluate π̂(e(a1,•) + e(•,a2)|n) yields the
cited result (2.26). Note that the method employed by Griffiths et al. (2008) does not have an
evident generalization to more than two loci, and requires the additional approximation (2.27).

Finally, we remark that it is possible, in principal, to obtain closed-form solutions for (2.12)
for a non-PIM finite-alleles model, and even for more than two loci. There does not appear to be
very much algebraic simplification possible in these cases, however, and the resulting solutions are
tantamount to symbolically solving the system of equations generated using the recursion (2.12).
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Limiting distributions

Returning to the more general setting, suppose that ρb = ρ, for all b ∈ B. We begin by investigating
the CSD π̂PS when ρ = 0. Setting c = eη for η ∈ H, the recursion (2.12) yields the following
simplified recursion for the single-haplotype CSP π̂PS(eη|n),

π̂PS(eη |n) =
1

n+
∑

ℓ∈L θℓ

(
nη +

∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]π̂PS(eMη

ℓ
(a)|n)

)
. (2.28)

Recall from Section 1.4.1 that Stephens and Donnelly’s CSD π̂SD is applicable in the absence of
recombination (i.e. when ρ = 0). Despite the dissimilarity of Stephens and Donnelly’s formula-
tion (1.66) and the above recursion (2.28), the following proposition demonstrates that they are
mathematically identical,

Proposition 2.5. Let η ∈ H and n = (nh)h∈H. Assuming ρb = 0 for all b ∈ B,

π̂PS(eη|n) = π̂SD(eη|n). (2.29)

Proof. We show that the expression (1.66) for π̂SD(eη|n) solves the same recursion (2.28) as
π̂PS(eη |n). Removing the summand with m = 0 ∈ N

k in equation (1.66) yields:

π̂SD(eη|n) =
∑

h∈H

nh
n

[
F (n)(h, η,0) +

∑

m∈Nk

∑

ℓ∈L

mℓ + 1

m+ 1
F (n)(h, η,m + eℓ)

]
. (2.30)

Additionally, we have that F (n)(h, η,0) = δh,η · n/(n+Θ), and

F (n)(h, η,m + eℓ) =
m+ 1

mℓ + 1

θℓ
n+Θ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ] · F (h,M

η
ℓ (a),m).

Substituting these identities into (2.30) yields the recursion

π̂SD(eη|n) =
1

n+Θ


nη +

∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]

π̂SD(eMη
ℓ
(a)|n)


 ,

which is identical to the recursion (2.28), proving the proposition.

This result generalizes a similar result (De Iorio and Griffiths, 2004a) demonstrating the equiv-
alence of π̂SD to the diffusion-generator method in the one-locus case. Moreover, the equivalence
provides a method for exact computation of the CSP π̂SD(eη |n). Conversely, using the Gaussian
quadrature method proposed by Stephens and Donnelly and described in Section 1.4.1, it provides
a fast method for approximating π̂PS in the absence of recombination. As will be demonstrated in
Section 2.3.2, this is special case of a more general class of approximations related to the sequen-
tially Markov coalescent. Finally, recall from Section 1.4.2 that in the absence of recombination,
Fearnhead and Donnellys CSD π̂FD coincides with π̂SD by construction, and so π̂PS = π̂FD = π̂SD.

We next consider the limit ρ → ∞. In this setting, we derive a result analogous to Proposi-
tion 1.4, showing that the CSP for π̂PS can be decomposed into a product of one-locus CSPs.
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Proposition 2.6. Let c = (ch)h∈H and n = (nh)h∈H, and suppose ρb = ρ for all b ∈ B. In the
limit ρ→ ∞, the CSP π̂PS(c|n) is given by

π̂PS(c|n) =
∏

ℓ∈L

π̂PS(c[ℓ]|n[ℓ]), (2.31)

where c[ℓ] and n[ℓ] are the one-locus configurations induced by c and n at locus ℓ ∈ L, and
π̂PS(c[ℓ]|n[ℓ]) is the one-locus CSP given in (2.21).

Proof. Let c′ = (c′g)g∈G , and define B(c′) =
∑

g∈G c
′
g|B(g)| to be the total number of valid break-

points in c′. For B(c′) > 0, and in the limit that ρ→ ∞, the key recursion (2.12) produces

π̂PS(c
′|n) =

1

B(c′)

∑

g∈G

ng
∑

b∈B(g)

π̂PS(c
′ − eg + eR−

b
(g) + eR+

b
(g)|n),

and repeated application of this equation yields the identity

π̂PS(c|n) = π̂PS(c
∗|n), (2.32)

where c∗ is derived from c by recombination at every possible breakpoint. More precisely, for ℓ ∈ L
and a ∈ Aℓ, define cℓ,a to be the number of haplotypes in c with allele a at locus ℓ, and uℓ(a) ∈ G
to be the haplotype with allele a at locus ℓ and unspecified elsewhere. Then

c∗ =
∑

ℓ∈L

c∗ℓ , where c∗ℓ =
∑

a∈Aℓ

cℓ,a · euℓ(a). (2.33)

Since B(c∗) = 0, (2.12) in conjunction with (2.32) yields

∑

ℓ∈L

(
c(n+ θℓ)

)
π̂PS(c

∗|n) =
∑

ℓ∈L

∑

a∈Aℓ

cℓ,a

[(
nℓ,a + (cℓ,a − 1)

)
π̂PS

((
c∗ℓ − euℓ(a)

)
+

∑
ℓ′ 6=ℓ c

∗
ℓ′ |n

)

+ θℓ
∑

a′∈Aℓ

Φ
(ℓ)
a′,aπ̂PS

((
c∗ℓ − euℓ(a) + euℓ(a′)

)
+

∑
ℓ′ 6=ℓ c

∗
ℓ′ |n

)]
.

(2.34)

Observe that (2.34) is a sum of independent recursions, each for a particular locus ℓ ∈ L. Conse-
quently, it can be verified that the solution for the recursion is the product of solutions for each
recursion summand,

π̂PS(c
∗|n) =

∏

ℓ∈L

π̂PS(c
∗
ℓ |n) =

∏

ℓ∈L

π̂PS(c[ℓ]|n[ℓ]).

In conjunction with (2.32), this produces the desired result

Recall from Section 1.4.2 that Fearnhead and Donnelly’s CSD π̂FD exhibits the same limiting
decomposition, and the one-locus CSD π̂FD coincides with the one-locus CSDs π̂SD and π̂PS. These
facts imply that π̂PS = π̂FD in the limit ρ→ ∞. Moreover, by Proposition 1.11, the true CSD π can
be identically decomposed; coupled with the fact that the one-locus CSDs π̂PS and π̂FD are exact
for PIM models, we may conclude that for PIM models in the limit ρ→ ∞, π̂PS = π̂FD = π.
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2.1.3 Multiple-locus, multiple-deme

We now extend diffusion generator approximation to the setting of a structured population including
migration. Recall from Section 1.2.3 that the Wright-Fisher diffusion for a finite-locus finite-alleles
model including population structure over a finite set of demes, denoted D, has state space

∆ =

{
x = (xd,h)d∈D,h∈H

∣∣∣ xd,h ≥ 0 for all d ∈ D, h ∈ H and
∑

h∈H

xd,h = 1 for all d ∈ D

}
, (2.35)

where xd,h is the proportion of haplotype h ∈ H within deme d ∈ D. As before, the diffusion
generator can be decomposed into a summation

L f(x) =
∑

d∈D

∑

h∈H

Ld,h
∂

∂xd,h
f(x), (2.36)

where the form (1.34) of Ld,h includes the infinitesimal mean (1.35) and covariance (1.36) associated
with the Wright-Fisher diffusion. Let n = (nd,h)d∈D,h∈H be a structured haplotype configuration,
and recall that q(n|x) is the ordered multinomial probability (1.37) of sampling n conditioned on
haplotype proportions x ∈ ∆. Analogous to the technique described in Section 2.1.1, we assume
the existence of distribution and associated expectation Ê such that (1.38) hold component-wise,

Ê

[
Ld,h

∂

∂xd,h
q(n|X)

]
= 0. (2.37)

Note that this is a generalization of the diffusion-generator approximation (2.4) to a structured
population, and that in the case that |D| = 1, reduces to (2.4). Using the generalized diffusion
generator approximation (2.37), we propose the following re-weighted version of (1.38),

Ê

[∑

d∈D

∑

h∈H

cd,h
cd,h + nd,h

Ld,h
∂

∂xd,h
q(c+ n|X)

]

=
∑

d∈D

∑

h∈H

cd,h
cd,h + nd,h

Ê

[
Ld,h

∂

∂xd,h
q(c+ n|X)

]
= 0,

(2.38)

As before, (2.38) produces a recursive equation for the sampling probability q̂(c+n), and dividing
by q̂(n) yields a recursive equation for the CSP π̂PS(c|n). We note that all of the mathematical
results described in Section 2.1.1 for the diffusion generator technique continue to hold in this more
general setting.

Given the generalized form of diffusion-generator technique described, we derive the following
result for multiple loci with recombination and migration.

Theorem 2.7. Let c = (cd,h)d∈D,h∈H with |c| = c, and n = (nd,h)d∈D,h∈H with |n| = n. Then the
CSP π̂PS(c|n) obtained using the approximate diffusion-generator technique is given by the following
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recursive expression,

π̂PS(c|n) =
1

N

∑

d∈D

∑

h∈H

cd,h

{
(cd,h + nd,h − 1)κ−1

d π̂PS(c− ed,h|n)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]π̂PS(c− ed,h + ed,Ma

ℓ
(h)|n)

+
∑

b∈B

ρb
∑

h′∈H

π̂PS(c − ed,h + ed,Rb(h,h′) + ed,Rb(h′,h))|n)

+
∑

d′∈D
d′ 6=d

υdd′ π̂PS(c− ed,h + ed′,h|n)

}

(2.39)

where N =
∑

d∈D

∑
h∈H cd,h

(
(cd + nd − 1)κ−1

d +
∑

ℓ∈L θℓ +
∑

b∈B ρb + υd
)
.

Proof. Recalling the specifics of the diffusion generator (1.34), with infinitesimal mean and covari-
ance given by (1.35) and (1.36), apply the key equation (2.38). In conjunction with the component-
wise expectation (1.40), this yields

0 =
∑

d∈D

∑

h∈H

cd,h ·
1

2

{
(cd,h + nd,h − 1)κ−1

d q̂(c+ n− ed,h)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q̂(c+ n− ed,h + ed,Ma

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q̂(c+ n− ed,h + ed,Rb(h,h′) + ed,Rb(h′,h)))

+
∑

d′∈D
d′ 6=d

υdd′ q̂(c+ n− ed,h + ed′,h)

−

(
(cd + nd − 1)κ−1

d +
∑

ℓ∈L

θℓ +
∑

b∈B

ρb + υd

)
q̂(c+ n)

}

(2.40)

Dividing by q̂(n), and using the definition (2.5) of π̂PS(c|n), the desired result (2.39) is obtained.

Once again, though Theorem 2.7 is an important theoretical result, it does not enable explicit
evaluation of π̂(c|n) for a structured sample configurations c and n. As in Section 2.1.2, it is neces-
sary to extend the analysis to partially-specified haplotypes, which yields the following generalized
recursion for a structured sample configuration on partially-specified haplotypes,

Theorem 2.8. Let c = (cd,g)d∈D,g∈G with |c| = c, and n = (nd,h)d∈D,h∈H with |n| = n. Then the
CSP π̂PS(c|n) obtained using the approximate diffusion-generator technique is given by the following
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recursive expression,

π̂PS(c|n) =
1

N

∑

d∈D

∑

g∈G

cd,g

{( ∑

h∈H:hfg

nd,h

)
κ−1
d π̂PS(c− ed,g|n)

+
∑

g′∈G:g′fg

(cd,g′ − δg,g′)κ
−1
d π̂PS(c− ed,g + ed,C(g,g′)|n)

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂PS(c− ed,g + ed,Ma

ℓ
(g)|n)

+
∑

b∈B(g)

ρbπ̂PS(c− ed,g + ed,R−
b
(g) + ed,R+

b
(g))|n)

+
∑

d′∈D
d′ 6=d

υdd′ π̂PS(c− ed,g + ed′,g|n)

}
,

(2.41)

where N =
∑

d∈D

∑
g∈H cd,g

(
(cd + nd − 1)κ−1

d +
∑

ℓ∈L(g) θℓ +
∑

b∈B(g) ρb + υd
)
.

Proof. The proof is entirely analogous to the proof of Theorem 2.2, and so we do not reproduce it
here.

As in Section 2.1.2, it is possible to show the reduced recursion (2.41) yields a finite set of
coupled linear equations, which can be numerically solved for the CSP. It is reassuring that, for
single deme D = {1} with κ1 = 1, Theorems 2.7 and 2.8 reduce to the analogous Theorems 2.1 and
2.2, respectively, described in Section 2.1.2.

Product migration rates

Given a model of migration on a set D of demes, the migration rate model is said to be a product
migration rate (PMR) model if there exist vectors (υ(s)

d )d∈D and (υ(d)

d )d∈D, with
∑

d υ
(d)

d = 1, such
that υdd′ = υ(s)

d υ
(d)

d′ for all d, d′ ∈ D with d 6= d′. Note that any migration model on |D| = 2 demes
is a PMR model. Given a PMR model, the term of the recursion associated with migration can be
re-factored,

∑

d′∈D
d′ 6=d

υdd′ π̂PS(c− ed,h + ed′,h|n) = υ(s)

d

∑

d′∈D
d′ 6=d

υ(d)

d′ π̂PS(c− ed,h + ed′,h|n)

= υ(s)

d

∑

d′∈D

υ(d)

d′ π̂PS(c− ed,h + ed′,h|n)− υ(s)

d υ
(d)

d π̂PS(c|n).

(2.42)
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As a result, given a PMR model, identity (2.42) can be used to re-write (2.41) as follows,

π̂PS(c|n) =
1

N

∑

d∈D

∑

g∈G

cd,g

{( ∑

h∈H:hfg

nd,h

)
κ−1
d π̂PS(c− ed,g|n)

+
∑

g′∈G:g′fg

(cd,g′ − δg,g′)κ
−1
d π̂PS(c− ed,g + ed,C(g,g′)|n)

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂PS(c− ed,g + ed,Ma

ℓ
(g)|n)

+
∑

b∈B(g)

ρbπ̂PS(c− ed,g + ed,R−
b
(g) + ed,R+

b
(g))|n)

+ υ(s)

d

∑

d′∈D

υ(d)

d′ π̂PS(c− ed,g + ed′,g|n)

}
,

(2.43)

where N =
∑

d∈D

∑
g∈H cd,g

(
(cd + nd − 1)κ−1

d +
∑

ℓ∈L(g) θℓ +
∑

b∈B(g) ρb + υ(s)

d

)
. In this general

case, a PMR model does provide some regularity to the recursive expression, but unlike PIM, does
not appear to confer an advantage in evaluating the recursion. In the one-locus case, however, we
shall see that a PMR model does allow an analytic solution.

Specialization to one-locus case

In the one-locus case, the space of haplotypes can be represented by the (finite) space of alleles
H = A, and each haplotype by a single allele a ∈ A. Moreover, recombination is not applicable,
and the single scaled mutation rate is represented by θ. Let α ∈ A and d ∈ D; given the one-locus
configurations ed,α and n = (nd,a)d∈D,a∈A, the recursion (2.39) for the CSP π̂PS(ed,α|n) reduces to

π̂PS(ed,α|n) =
1

N

{
nd,ακ

−1
d + θ

∑

a′∈Aℓ

Φa′,απ̂PS(ed,a′ |n) +
∑

d′∈D
d′ 6=d

υdd′ π̂PS(ed′,α|n)

}

(2.44)

where N = ndκ
−1
d + θ + υd. This is precisely the result derived by De Iorio and Griffiths (2004b)

under the same diffusion-generator approximation. Further assuming a PMR and PIM model,

π̂PS(ed,α|n) =
1

N

{
nd,ακ

−1
d + θΦα + υ(s)

d

∑

d′∈D

υ(d)

d′ π̂PS(ed′,α|n)

}
(2.45)

where N = ndκ
−1
d +θ+υ(s)

d . In contrast to the single-deme case, this recursion is not proper; explicit
evaluation by repeated application of (2.45) still requires solving a system. However, De Iorio and
Griffiths (2004b) showed that there does exist an analytic solution,

Proposition 2.9. Let α ∈ A and d ∈ D, and let n = (na)a∈A be a one-locus configuration. Then
the CSP π̂PS(ed,α|n) for a one-locus PMR and PIM model is given by

π̂PS(ed,α|n) =
1

Nd

{
nd,ακ

−1
d + θΦα + υ(s)

d

(∑
d′∈D(nd′,ακ

−1
d′ + θΦα)υ

(d)

d′ N
−1
d′

1−
∑

d′∈D υ
(s)

d′ υ
(d)

d′ N
−1
d′

)}
, (2.46)

where Nd = ndκ
−1
d + θ + υ(s)

d .
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Proof. Substitute (2.46) into (2.45).

We note that, in contrast to the single-deme case, for which we were able to obtain the con-
ditional Wright Sampling Formula, the result of Proposition 2.9 is not the true CSP. Moreover, it
remains an open problem to determine a general analytic solution analogous to (2.46) for multiple
conditionally sampled haplotypes.

2.2 A Genealogical Interpretation

In this section, we describe a coalescent-like genealogical process (Paul and Song, 2010) for con-
ditional sampling. As we demonstrate, the genealogical process induces the same CSD π̂PS as the
diffusion-generator approximation employed in the previous section. The genealogical process thus
furnishes an intuitive generative process for the CSD π̂PS, analogous to the way that the coalescent
serves as a generative process for the sampling distribution of Chapter 1.

Perhaps more importantly, the genealogical process suggests several genealogical approxima-
tions that might be made to improve the efficiency of computing the CSP associated with π̂PS;
these approximations culminate in the sequentially Markov CSD, to be discussed in the following
section. We first describe the genealogical process, and then demonstrate how it can be applied to
the finite-locus finite-alleles setting, both with and without population structure.

2.2.1 The trunk-conditional coalescent

Recall from Section 1.3 that a realization of the coalescent process is a genealogy An̂ comprising
a series of genealogical events (e.g. coalescence, mutation, and recombination) relating an untyped
collection of haplotypes n̂. The procedure for sampling An̂ is naturally described by continuous-
time Markov process starting in the present and continuing backward in time. The state of the
process is a collection of labeled untyped haplotypes, or lineages, ancestral to the haplotypes of n̂;
genealogical events then correspond to transitions in the process, and the state is modified according
to the event. When a single lineage, corresponding to the most recent common ancestor (MRCA)
of n̂ remains, the process terminates. Given an untyped genealogy An̂, a type for the MRCA
can be sampled from the stationary distribution of the Wright-Fisher diffusion, and propagated
forward in time on the genealogy An̂. This yields a typed configuration n and the corresponding
typed genealogy An. The embedded discrete-time process, comprising the genealogical events and
corresponding typed and untyped configuration, is depicted as a graphical model in Figure 1.4.

Suppose that we wish to sample a collection of additional haplotypes conditional on having
already observed the configuration n. For the moment, assume that the typed genealogy An

associated with configuration n is known. The coalescent process can be extended to sample a
conditional genealogy Cĉ relating the conditionally sampled haplotypes of the untyped configuration
ĉ to each other and to the haplotypes of the observed configuration n. Specifically, the continuous-
time Markov process for sampling Cĉ comprises the same genealogical events, within Cĉ, as the
unconditional process, and also coalescence events involving a lineage in Cĉ and a lineage in An.
We refer to these latter coalescence events as absorption events, since the lineage of Cĉ has been
absorbed into the known genealogy An. When all of the lineages of Cĉ have been absorbed into the
genealogy An, the process terminates. Because An is a typed genealogy, the type of each absorbed
lineage in Cĉ is known, and can then be propagated forward in time, yielding a typed configuration
c and the corresponding typed conditional genealogy Cc. See Figure 2.1(a) for an illustration.
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There are several complications with this approach. Foremost is that the genealogy An asso-
ciated with a sample n is typically unknown, and the posterior distribution for An is generally
inaccessible. Moreover, in order to sample the typed conditional genealogy Cc, the types of each
of the lineages within An must be fully-specified, and the genealogy must therefore be unreduced.
Similarly, because the conditional genealogy may extend beyond the MRCA of the genealogy An,
the genealogy An must extend beyond the MRCA, and infinitely into the past. Finally, unlike the
genealogical processes described in Chapter 1, the Markov process for generating Cc depends on An,
and is therefore time-inhomogeneous; as a result, the general methods developed in Section 1.3.1
for producing a recursive expression for the CSP are not applicable.

To address these complications, we approximate the unknown genealogy by An = A0(n), where
A0(n) is the non-random trunk genealogy, within which lineages do not mutate, recombine, migrate,
or coalesce with one another, and instead form a trunk extending infinitely into the past. Note
that although A0(n) is an improper genealogy, as there is no MRCA, the process for sampling Cĉ
remains well-defined. See Figure 2.1(b) for an illustration of the approximate conditional sampling
process. In conjunction, the conditional process is modified so that the rate of each non-absorption
event within Cĉ is doubled. This modification may be interpreted as mitigating the effect of the
assumption An = A0(n); for example, mutations do not occur in A0(n), but occur at double the
rate within Cĉ. We refer to this genealogical process as the trunk-conditional coalescent.

Because the trunk genealogy A0(n) is time-homogeneous, and extends infinitely into the past,
the trunk-conditional coalescent is also time-homogeneous. Moreover, every lineage of A0(n) is
fully-specified; the type of each absorbed lineage is therefore known, and can be propagated forward
in time, yielding a sample c and the corresponding typed conditional genealogy Cc. The trunk-
conditional coalescent thus induces a CSD, which we denote by π̂GEN.

2.2.2 Multiple-locus, single-deme

Let ĉ be an untyped haplotype configuration and n = (nh)h∈H a typed haplotype configuration
with associated trunk genealogy A0(n). The trunk-conditional coalescent with recombination then
has the following genealogical interpretation. For lineages within the conditional genealogy Cĉ,

Mutation: Each lineage undergoes mutation at locus ℓ ∈ L with rate θℓ according to the mutation
transition matrix Φ(ℓ).

Recombination: Each lineage undergoes recombination at breakpoint b ∈ B with rate ρb.

Coalescence: Each pair of lineages coalesce with rate 2.

Absorption: Each lineage is absorbed into a lineage of A0(n) with rate 1.

This process continues until all lineages of Cĉ have been absorbed into the trunk A0(n). A condi-
tional genealogy realized by this process is illustrated in Figure 2.1(b). Because mutation events
do not affect the topology of the conditional genealogy Cĉ, it is equivalent to sample a conditional
genealogy using a two step procedure: first, sample the conditional genealogy topology using the
procedure above without mutation events; second, realize the mutation events at each locus ℓ ∈ L
as a Poisson process on the underlying topology with rate θℓ.

Given an untyped conditional genealogy Cĉ and the corresponding trunk genealogy A0(n), the
type of each absorbed lineage is known, and can be propagated forward in time, yielding a typed
conditional configuration c. Because the conditional sampling process is time-homogenous, the
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AnCc

(a)

A0(n)Cc

(b)

Figure 2.1. An illustration of the genealogical process for sampling a single haplotype conditional
on configuration n. (a) Idealized conditional sampling, for which the typed genealogy An is known.
An untyped conditional genealogy Cĉ is sampled for untyped sample ĉ using the unconditional
genealogical procedure, and including absorption events, wherein an untyped lineage of Cĉ is absorbed
into a typed lineage of An, at rate 1. Absorption events are indicated by dot-dash arrows into
An. It can be verified that the configuration c is obtained by tracing the type of each absorbed
lineage forward in time. (b) Setting An = A0(n), where A0(n) is the improper trunk genealogy,
within which lineages to not coalesce, mutate, or recombine. A similar procedure can be used to
sample the conditional genealogy Cĉ, and to account for the absence of events within A0(n), the
rate of coalescence, mutation, and recombination within Cĉ is doubled. It can be verified that the
configuration c is obtained by tracing the type of each absorbed lineage forward in time.

time information within Cĉ is not used to generate c, and so it is only necessary to directly sample
the genealogical events of Cĉ. Recalling the general construction of Section 1.3.1, starting with an
untyped configuration ĉ, the possible genealogical events E(ĉ) include coalescence, mutation, and
recombination, and absorption. Let e ∈ E(ĉ) be a genealogical event, and suppose c′ is a typed
configuration with associated untyped configuration e(ĉ),

Coalescence: Suppose e ∈ E(ĉ) is a coalescence event. The untyped configuration e(ĉ) is derived
from ĉ by replacing the appropriate two labeled haplotypes with a single labeled haplotype, so
that |e(ĉ)| = |ĉ| − 1. Moreover V(c′, e) comprises a single typed configuration derived from c′

by replacing the appropriate labeled haplotype h ∈ H with two identical labeled haplotypes,

V(c′, e) = {c′ − eh + eh + eh} = {c′ + eh}. (2.47)

Mutation: Suppose e ∈ E(ĉ) is a mutation event at locus ℓ ∈ L. The untyped configuration e(ĉ)
is derived from ĉ by replacing the appropriate labeled haplotype with a labeled haplotype, so
that |e(ĉ)| = |ĉ|. Moreover, V(c′, e) comprises a typed configuration for each allele a ∈ Aℓ,
derived from c′ by replacing the appropriate labeled haplotype h ∈ H with the labeled
haplotype Ma

ℓ (h),

V(c′, e) = {c′ − eh + eMa
ℓ
(h) : a ∈ Aℓ}, (2.48)

and p(c′ − eh + eMa
ℓ
(h)|c

′, e) = Φ
(ℓ)
h[ℓ],a.

Recombination: Suppose e ∈ E(ĉ) is a recombination event at breakpoint b ∈ B. The untyped
configuration e(ĉ) is derived from ĉ by replacing the appropriate labeled haplotype with
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two labeled haplotypes, so that |e(ĉ)| = |ĉ| + 1. Moreover V(c′, e) comprises a single typed
configuration derived from c′ by replacing the appropriate two labeled haplotypes h, h′ ∈ H
with the labeled haplotype Rb(h, h

′),

V(c′, e) = {c′ − eh − eh′ + eRb(h,h′)}. (2.49)

Absorption: Suppose e ∈ E(ĉ) is an absorption event. The untyped configuration e(ĉ) is derived
from ĉ by removing the appropriate labeled haplotype, so that |e(ĉ)| = |ĉ| − 1. Moreover
V(c′, e) comprises a single typed configuration derived from c′ by adding the labeled haplotype
h ∈ H, where h is the type of the trunk lineage specified by the event.

V(c′, e) = {c′ + eh}. (2.50)

Finally, supposing that |ĉ| = c and |n| = n, the density p(·|ĉ) is obtained considering the minimum
of the exponential random variables associated with each event,

p(e|ĉ) =





2/N , for e coalescence of two lineages,
θℓ/N , for e mutation of a lineage at locus ℓ ∈ L,
ρb/N , for e recombination of a lineage at breakpoint b ∈ B,
1/N , for e absorption of a lineage,

(2.51)

where the normalizing constant N = c
(
c − 1 + n +

∑
ℓ∈L θℓ +

∑
b∈B ρb

)
is the total rate associ-

ated with all events. Having characterized the conditional sampling process associated with the
trunk-conditional coalescent with recombination, the technique described in Section 1.3.1 yields the
following result,

Theorem 2.10. Let c = (ch)h∈H with |c| = c, and n = (nh)h∈H with |n| = n. Then the CSP
π̂GEN(c|n) obtained using the technique described in Section 1.3.1 in conjunction with the trunk-
conditional coalescent with recombination is given by the following recursion

π̂GEN(c|n) =
1

N

∑

h∈H

ch

{
(ch + nh − 1)π̂GEN(c− eh|n)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]π̂GEN(c− eh + eMa

ℓ
(h)|n)

+
∑

b∈B

ρb
∑

h′∈H

π̂GEN(c− eh + eRb(h,h′) + eRb(h′,h))|n)

}
,

(2.52)

where N = c
(
c+ n− 1 +

∑
ℓ∈L θℓ +

∑
b∈B ρb

)
.

Proof. We use the technique described in Section 1.3.1. Define ĉ to be the labeled untyped config-
uration associated with an arbitrary labeling of c. Then we consider each event e ∈ E(n̂),

Coalescence: Suppose e ∈ E(ĉ) is a coalescence event, specifying two labeled haplotypes h, h′ ∈ H
in n. Since coalescence can only occur between identical haplotypes, {c′ : c ∈ V(c′, e)} =
{c− eh} if h = h′ and is otherwise empty. As a result,

Pr(V0 = c|U0 = ĉ, E1 = e) = δh,h′ · q(c− eh). (2.53)
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Mutation: Suppose e ∈ E(ĉ) is a mutation event at locus ℓ ∈ L, specifying the labeled haplotype
h ∈ H in c. Then {c′ : c ∈ V(c′, e)} = {c− eh + eMa

ℓ
(h) : a ∈ Aℓ}, and as a result,

Pr(V0 = c|U0 = ĉ, E1 = e) =
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(c− eh + eMa

ℓ
(h)). (2.54)

Recombination: Suppose e ∈ E(ĉ) is a recombination event at locus b ∈ L, specifying the labeled
haplotype h ∈ H in c. Then {c′ : c ∈ V(c′, e)} = {c− eh + eRb(h,h′) + eRb(h′,h) : h

′ ∈ H}, and
as result,

Pr(V0 = c|U0 = ĉ, E1 = e) =
∑

h′∈H

q(c− eh + eRb(h,h′) + eRb(h′,h)). (2.55)

Absorption: Suppose e ∈ E(ĉ) is an absorption event at locus b ∈ L, specifying the labeled
haplotype h ∈ H in c and h′ ∈ H in n. Since absorption can only occur between identical
haplotypes {c′ : c ∈ V(c′, e)} = {c − eh} if h = h′ and is otherwise empty. As a result,

Pr(V0 = c|U0 = ĉ, E1 = e) = δh,h′ · q(c− eh). (2.56)

The latter expression in each case is obtained by using (1.45) in conjunction with the known ex-
pressions for p(n|n′, e). Recall that each genealogical event e ∈ E(n̂) specifies haplotypes according
to a labeling, and without regard to type. Thus, using the general recursion (1.47), via (1.44), in
conjunction with the known density (2.51), the desired recursion (2.52) is obtained.

Observe that the recursive expression (2.52) for computing the CSP π̂GEN(c|n) is identical to
the recursive expression (2.9) for computing π̂PS(c|n), and therefore π̂GEN = π̂PS. The trunk-
conditional coalescent thus furnishes a genealogical interpretation for π̂PS. Moreover, recall that in
the absence of recombination Proposition 2.5 states that π̂PS = π̂SD, and consequently the trunk-
conditional coalescent also serves as an explicit genealogical interpretation for π̂SD. We note that
it is remarkable that such different methodologies, reflecting distinct approximations to entirely
complementary interpretations of the Wright-Fisher diffusion, can be used to deduce the same
result. In Section 2.2.4, we investigate the relationship between these two approximations.

As in Section 1.3.2, we define a lineage within the conditional genealogy Cĉ to be non-ancestral at
locus ℓ ∈ L if, due to intervening recombination events in Cĉ, the locus has no descendant loci within
the untyped configuration ĉ. Thus, in conditionally sampling a typed haplotype configuration,
non-ancestral loci can be left unspecified, and it is unnecessary for Cĉ to encode their genealogical
history. By incorporating information about the non-ancestral loci into each lineage of the untyped
conditional genealogy Cĉ, it is possible to specify a reduced trunk-conditional coalescent process.
Applying the technique described in Section 1.3.1 to the reduced conditional genealogy then directly
yields the more general form (2.12) of the recursion for the CSP π̂PS(c|n).

Limiting coalescence

In the one-locus setting discussed in Section 2.1.2, assuming a PIM model has the effect of making
the CSP recursion proper, as there exists a partial order associated with the dependence of variables
generated by repeated application of the recursive expression (2.22). As a result, the CSP can be
evaluated using dynamic programming or memoization rather than numerically or algebraically
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solving a system of equations. Moreover, we demonstrated in Proposition 2.3 that it is possible to
obtain a closed-form solution to the recursion.

In contrast, assuming a PIM model in the more general multiple-locus case yields (2.20).
Though we showed in Section 2.1.2 that repeated application of this recursion yields a set of
coupled linear equations, the recursion is not proper. Examination of (2.20) in the context of the
trunk-conditional coalescent reveals that it is the terms associated with coalescence events that
make the recursion improper. For example, in a conditional genealogy it is possible for a lineage
to undergo recombination, and for the two resulting lineages to then coalesce, thereby generating
an identical configuration and precluding the existence of a partial order for the dependence of
haplotype configurations on one another.

In order to prohibit this behavior, it is necessary to modify the trunk-conditional coalescent
to disallow a certain class of coalescence events. We say that two untyped lineages are overlap-
coalesceable if the sets of ancestral loci have a non-empty intersection; we then modify the trunk-
conditional coalescent process so that coalescence events within Cĉ are only allowed between pairs of
lineages that are overlap-coalesceable. This modification alters the induced CSD, which we denote
by π̂LC, where “LC” is an abbreviation for “limited coalescence”.

Formally, given partially-specified haplotypes g1, g2 ∈ G, analogous to the case for untyped
haplotypes, we say that g1 and g2 are overlap-coalesceable, and write g1 ⊼ g2 if L(g1) ∩ L(g2) 6= ∅.
Similarly, we say that g1 and g2 overlap-compatible, and write g1f̄g2, if g1 f g2 and g1 ⊼ g2. Let
c = (cg)g∈G with |c| = c, and n = (nh)h∈H with |n| = n; using the technique described in
Section 1.3.1 and assuming a PIM model yields the following recursion

π̂LC(c|n) =
1

N

∑

g∈G

cg

{( ∑

h∈H:hfg

nh

)
π̂LC(c− eg|n)

+
∑

g′∈G:g′f̄g

(cg′ − δg,g′)π̂LC(c− eg + eC(g,g′)|n)

+
∑

ℓ∈L(g)

θℓΦ
(ℓ)
g[ℓ]π̂LC(c− eg + eMℓ(g)|n)

+
∑

b∈B(g)

ρbπ̂LC(c− eh + eR−
b
(g) + eR+

b
(g))|n)

}
,

(2.57)

where N =
∑

g∈G cg
(∑

g′∈G:g⊼g′(cg′ − δg,g′) + n+
∑

ℓ∈L(g) θℓ +
∑

b∈B(g) ρb
)
. Note that the normal-

ization constant requires lineages to be overlap-coalesceable, while the body of recursion requires
lineages to be overlap-compatible.

The resulting recursion (2.57) for π̂LC is proper. To see this, define R(c) = L(c) + B(c),
where L(c) =

∑
g∈G cg|L(g)| is the total number of specified loci and B(c) =

∑
g∈G cg|B(g)| is

the total number of valid recombination breakpoints. Applying the recursion, each term on the
right hand side is a scalar multiple of π̂(c′|n) for some partially-specified configuration c′. For
the first term, representing an absorption event, L(c′) < L(c) and B(c′) ≤ B(c). For the second
term, representing a overlap-compatible coalescence, L(c′) < L(c) and B(c′) ≤ B(c). For the third
term, representing mutation L(c′) < L(c) and B(c′) ≤ B(c), and for the fourth term, representing
recombination, L(c′) = L(c) and B(c′) < B(c).

Therefore, in each case R(c′) < R(c). As a result, there exists a partial-ordering on the
dependence of the variables, and so the recursion is proper. The CSP π̂LC(c|n) can thus be computed
using dynamic programming or memoization, and does not rely upon numerically or algebraically
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solving of a system of coupled linear equations. Unlike the recursion (2.22) associated with the
one-locus PIM model, no analytic solution for (2.57) is known.

Disallowing coalescence

As an extension to limiting coalescence to those lineages which are overlap-coalesceable in the
conditional genealogical process, we next consider disallowing coalescence entirely, and denote the
corresponding CSD by π̂NC. Recall that in the more general case, a conditional genealogy Cĉ
comprises mutation, recombination, coalescence, and absorption events. Among these events, only
coalescence has the effect of coupling two lineages backward in time; mutation, recombination,
and absorption events have the non-coupling effect of modifying, splitting, and removing lineages,
respectively. Intuitively then, in a genealogical process disallowing coalescence, separate lineages
should behave independently. We formalize this intuition in the following proposition,

Proposition 2.11. Let c = eg1 + · · ·+ egc, where g1, . . . , gc ∈ G, and n = (nh)h∈H where |n| = n.
The CSP π̂NC(c|n) can be decomposed as follows,

π̂NC(c|n) = π̂NC(eg1 + · · ·+ egc |n) =
c∏

i=1

π̂NC(egi |n), (2.58)

and for η ∈ G,

π̂NC(eη|n) =
1

N

{ ∑

h∈H:hfη

nh +
∑

ℓ∈L(η)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]π̂NC(eMη

ℓ
(a)|n)

+
∑

b∈B(η)

ρbπ̂NC(eR−
b
(η))π̂NC(eR+

b
(η)|n)

}
,

(2.59)

where N = n+
∑

ℓ∈L(η) θℓ +
∑

b∈B(η) ρb.

Proof. Applying the technique described in Section 1.3.1 to the conditional genealogical process for
which coalescence has been disallowed yields the following recursion for the CSP π̂NC(c|n),

π̂NC(c|n) =
1

N

∑

g∈G

cg

{( ∑

h∈H:hfg

nh

)
π̂NC(c− eg|n)

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂NC(c− eg + eMa

ℓ
(g)|n)

+
∑

b∈B(g)

ρbπ̂NC(c− eg + eR−
b
(g) + eR+

b
(g))|n)

}
,

(2.60)



56 Theory

where N =
∑

g∈G cg
(
n+

∑
ℓ∈L(gi)

θℓ +
∑

b∈B(gi)
ρb
)
. And making use of the stated definition of c,

c∑

i=1

(
n+

∑

ℓ∈L(gi)

θℓ +
∑

b∈B(gi)

ρb

)
π̂NC(c|n) =

c∑

i=1

{( ∑

h∈H:hfgi

nh

)
π̂NC(c− egi |n)

+
∑

ℓ∈L(gi)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,gi[ℓ]

π̂NC(c− egi + eMa
ℓ
(gi)|n)

+
∑

b∈B(gi)

ρbπ̂NC(c− egi + eR−
b
(gi)

+ eR+
b
(gi))

|n)

}

(2.61)

Observe that the latter expression is a sum of independent recursions, each for a particular haplotype
gi ∈ G, and therefore has the solution given by (2.58). And by setting c = eη in (2.60), and applying
(2.58) to the final term associated with recombination, (2.59) is obtained.

Thus, disallowing coalescence confers a substantial computational simplification, as the state
space of the recursion can be restricted to single-haplotype configurations. As in the case of limit-
ing coalescence events to overlap-coalesceable lineages, further assuming a PIM model makes the
recursion (2.59) proper, so that it can be computed using dynamic programming or memoization.
The computational complexity of these methods will be discussed in Chapter 3. Observe that for
a single conditionally sampled haplotype c = eη for η ∈ H, events within the conditional geneal-
ogy cannot produce lineages that are overlap-coalesceable. As a result, π̂LC = π̂NC for a single
conditionally sampled haplotype.

Finally, we remark that disallowing and limiting coalescence is not as unreasonable as it first may
seem; unlike the coalescent process, the conditional genealogical process does not rely on coalescence
events to terminate (absorption events play the analogous role). Intuitively, the importance of
modeling coalescence events within the conditional genealogy decreases with the ratio of the size of
the conditional sample to the size of the observed sample; this is because absorption events become
relatively more common than coalescence events as this ratio decreases. In many applications of
the CSD, the size of conditional sample is indeed small, and the observed sample large.

2.2.3 Multiple-locus, multiple-deme

The approximate conditional sampling process can be further extended to population structure,
including migration. Letting ĉ be a structured untyped configuration and n = (nd,h)d∈D,h∈H a
structured typed configuration, lineages within the conditional genealogy Cĉ exist in a particular
deme d ∈ D, and can migrate from deme to deme within Cĉ prior to absorption. In contrast, lineages
within the trunk genealogy do not migrate, and so the trunk genealogy A0(n) can be decomposed
into sub-trunk genealogies A0(nd) for each deme d ∈ D. Coalescence between lineages in Cĉ can
only occur if the lineages are in the same deme, and a lineage in deme d of Cĉ can only be absorbed
into a the sub-trunk genealogy A0(nd). The trunk-conditional coalescent with recombination and
migration then has the following genealogical interpretation. For lineages in deme d ∈ D of the
conditional genealogy Cĉ,

Coalescence: Each pair of lineages coalesce with rate 2κ−1
d .

Mutation: Each lineage undergoes mutation at locus ℓ ∈ L with rate θℓ according to the mutation
transition matrix Φ(ℓ).
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Recombination: Each lineage undergoes recombination at breakpoint b ∈ B with rate ρb.

Migration: Each lineage migrates to deme d′ with rate υdd′

Absorption: Each lineage is absorbed into a lineage of A0(nd) with rate κ−1
d .

This genealogical process continues until all lineages of Cĉ have been absorbed into the trunk A0(n).
A conditional genealogy realized by this process is illustrated in Figure 2.4(a).

The procedure for conditional sampling described in Section 2.2.2 can be generalized to this
setting by incorporating a genealogical event for migration. Note that it is necessary to label
haplotypes in both typed and untyped configurations by the deme in which they reside. Let ĉ be
such a structured untyped configuration, and e ∈ E(ĉ) a genealogical event. Supposing that e is
a coalescence, mutation, recombination, or absorption event, the description given in Section 2.2.2
suffices. Otherwise,

Migration: Suppose e ∈ E(ĉ) is a migration event from d ∈ D to d′ ∈ D, backward in time. The
untyped configuration e(ĉ) is derived from ĉ by replacing the appropriate labeled untyped
haplotype in deme d with a labeled untyped haplotype in deme d′. Given a typed configuration
c′ with associated untyped configuration e(ĉ), V(c′, e) comprises a single configuration derived
from c′ by replacing the appropriate labeled haplotype h ∈ H in deme d′ with an identical
labeled haplotype in deme d,

V(n′, e) = {c′ − ed′,h + ed,h}. (2.62)

Finally, supposing that |ĉ| = c and |ĉd| = cd and |n̂d| = nd for all d ∈ D, the density p(·|ĉ) is
obtained considering the minimum of the exponential random variables associated with each event,

p(e|n̂) =





2κ−1
d /N , for e coalescence of two lineages in deme d ∈ D,

θℓ/N , for e mutation of a lineage at locus ℓ ∈ L,
ρb/N , for e recombination of a lineage at breakpoint b ∈ B,
υdd′/N , for e migration of a lineage from deme d to deme d′,

κ−1
d /N , for e absorption of a lineage,

(2.63)

where the normalizing constant N =
∑

d∈D

∑
h∈H cd,h

(
(cd − 1+nd)κ

−1
d +

∑
ℓ∈L θℓ+

∑
b∈B ρb + υd

)

is the total rate associated with all events. Having characterized the conditional sampling process
associated with the trunk-conditional coalescent with recombination and migration, the technique
described in Section 1.3.1 yields the following result,

Theorem 2.12. Let c = (cd,h)d∈D,h∈H with |n| = n, and n = (nd,h)d∈D,h∈H with |c| = c. Then
the CSP π̂GEN(c|n) obtained using the technique described in Section 1.3.1 in conjunction with the
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trunk-conditional coalescent with recombination and migration is given by the following recursion

π̂GEN(c|n) =
1

N

∑

d∈D

∑

h∈H

cd,h

{
(cd,h + nd,h − 1)κ−1

d π̂GEN(c− ed,h|n)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]π̂GEN(c− ed,h + ed,Ma

ℓ
(h)|n)

+
∑

b∈B

ρb
∑

h′∈H

π̂GEN(c− ed,h + ed,Rb(h,h′) + ed,Rb(h′,h))|n)

+
∑

d′∈D
d′ 6=d

υdd′ π̂GEN(c− ed,h + ed′,h|n)

}

(2.64)

where N =
∑

d∈D

∑
h∈H cd,h

(
(cd + nd − 1)κ−1

d +
∑

ℓ∈L θℓ +
∑

b∈B ρb + υd
)
. This is identical to the

recursion (2.39) obtained using the diffusion-generator approximation in Section 2.1.3.

Proof. We use the technique described in Section 1.3.1 and exemplified in the proof of Theorem 2.10.
Define ĉ to be the labeled untyped configuration associated with an arbitrary labeling of c, and
let e ∈ E(ĉ) be a genealogical event. If e is a coalescence, mutation, recombination, or absorption
event, the description in the proof of Theorem 2.10 suffices; otherwise,

Migration: Suppose e ∈ E(ĉ) is a migration event from deme d ∈ D to deme d′ ∈ D, backward in
time, specifying the labeled haplotype h ∈ H in n. Then {c′ : c ∈ V(c′, e)} = {c−ed,h+ed′,h},
and as result,

Pr(V0 = c|U0 = ĉ, E1 = e) = q(c− ed,h + ed′,h). (2.65)

Thus, using the general recursion (1.47), via (1.44), in conjunction with the known density (2.63),
the desired recursion (2.64) is obtained.

As in Section 2.2.2, the recursive expression (2.64) for computing the CSP π̂GEN(c|n) is identical
to the recursive expression (2.39) for computing π̂PS(c|n), and therefore π̂GEN = π̂PS. The trunk-
conditional coalescent thus furnishes a genealogical interpretation for π̂PS in this more general
setting of a structured population with migration. Moreover, by considering a reduced conditional
genealogical process that accounts for non-ancestral loci, it is possible to directly obtain the more
general form (2.41) of the recursion for the CSP π̂PS(c|n).

Finally, we remark that the conditional genealogical process can be modified, as in Section 2.2.2,
so that coalescence events are limited or entirely disallowed. Though several key properties hold,
including the haplotype decomposition (2.58) associated with π̂NC, the notable exception is that
the CSP recursion associated with both π̂LC and π̂NC, for a PIM model, is no longer proper; this
is due to cycles in the dependence structure introduced by migration events. As a result, the
CSPs associated with π̂LC and π̂NC, including migration, must be evaluated by constructing and
numerically or algebraically solving a system of coupled linear equations.

2.2.4 Interpretation

We have proposed a genealogical process, related to the coalescent with recombination, for condi-
tional sampling. Importantly, the CSDs associated with the genealogical process are identical to
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the CSDs derived, in Section 2.1, from the diffusion-generator approximation. We here investigate
this connection, and provide some intuition for why the particular mathematical assumption used
in the diffusion-generator approximation (2.4) is related to a genealogical process. We state the
key result as a proposition, first suggested by Griffiths et al. (2008),

Proposition 2.13. Let n = (nh)h∈H be a sample configuration with associated untyped config-
uration n̂. In the context of the coalescent process described in Section 1.3.1, denote by Λh the
probabilistic event that the first genealogical event E1 includes one of the nh labeled haplotypes of
type h in n. Fixing h ∈ H, the diffusion-generator approximation (2.4) applied to h is equivalent
to assuming that the events Λh and V0 = n are conditionally independent given the event U0 = n̂,

Ê

[
Lh

∂

∂xh
q(n|X)

]
= 0 ⇔ P̂r(Λh|V0 = n) = Pr(Λh|U0 = n̂). (2.66)

Proof. The following recursive expression is immediate from the technique of Section 1.3.1,

Pr(V0 = n|U0 = n̂,Λh) =
1

N

{
(nh − 1)q(n − eh)

+
∑

ℓ∈L

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,h[ℓ]q(n− eh + eMa

ℓ
(h))

+
∑

b∈B

ρb
∑

h′∈H

q(n− eh + eRb(h,h′) + eRb(h′,h)))

}
,

(2.67)

where N = nh
(
n− 1+

∑
ℓ∈L θℓ+

∑
b∈B ρb

)
. Beginning with the diffusion-generator approximation

(2.4), in conjunction with (1.18), we obtain

q̂(n) = P̂r(V0 = n|U0 = n̂) = Pr(V0 = n|U0 = n̂,Λh), (2.68)

where the first equality is by definition, and the second by mutual equality to (2.67). Applying
Bayes Law, in conjunction with (2.68), then yields

P̂r(Λh|V0 = n) =
Pr(V0 = n|U0 = n̂,Λh)

P̂r(V0 = n|U0 = n̂)
· Pr(Λh|U0 = n̂) = Pr(Λh|U0 = n̂). (2.69)

Because each step can be reversed, the desired equivalence is established.

This proposition furnishes a link between the diffusion-generator approximation and the ge-
nealogical interpretation, providing an intuitive statement about the distribution of genealogical
event E1, conditioned on the sample configuration V0 = n. The equivalent intermediate result
(2.68) is also valuable, showing that the sampling probability q(n) can be evaluated by choosing an
arbitrary h ∈ H, and conditioning on the genealogical event E1 including one of the nh haplotypes.

Now consider a haplotype configuration c+ n. Applying the above logic, we may condition on
the genealogical event E1 including at least one haplotype within c to obtain a recursion for the
sampling probability q(c+ n) that does not include haplotypes in n. This is the operation that is
formalized by the approximate diffusion-generator technique, and in particular the weighted average
provided in (2.6). In the genealogical context, this is precisely what the conditional sampling process
accomplishes by only allowing events that include at least one haplotype within c, and therefore
do not disrupt the lineages associated with n, thereby giving rise to the trunk genealogy .
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2.3 Sequentially Markov CSD

Though we have not yet thoroughly discussed computation in the context of the approximate
CSD π̂, it should be intuitively clear that constructing and solving the system of linear equations
associated with the recursion for π̂PS is computationally challenging. We show in the next chapter
that the computational complexity of these solutions is exponential in both the number of loci
and the number of conditionally sampled individuals. Much as for the ordinary coalescent, the
genealogical interpretation identified in the previous section suggests a key approximation, related
to the sequentially Markov coalescent (SMC) introduced in Section 1.3.4. In this section, we
describe the approximation, which yields the sequentially Markov CSD π̂SMC, then demonstrate
how it can be applied to general finite-locus finite-alleles settings, both with (Steinrücken et al.,
2012) and without population structure (Paul et al., 2011).

2.3.1 Marginal conditional genealogies

Recall from Section 1.3.4 that embedded within an ARG An̂, there is a sequence (An̂[ℓ])ℓ∈L of
marginal genealogies, where each one-locus marginal genealogy An̂[ℓ] describes the genealogical
relationship of the configuration n̂ at locus ℓ ∈ L. Wiuf and Hein (1999) demonstrated that it
is possible to sample the marginal genealogies sequentially, starting from the left-most locus and
proceeding to the right, in such a way that the joint distribution is identical to that obtained from
the underlying coalescent model. Critically, the sequence of marginal genealogies produced by the
method of Wiuf and Hein is not Markov. Intuitively, the non-Markov dependence corresponds to
the potential for coalescence events that link marginal genealogies at non-adjacent loci.

McVean and Cardin (2005) showed that the non-Markov process of Wiuf and Hein can be
well-approximated by a Markov process on the marginal genealogies, the SMC. The transition
distribution for the approximate Markov process, as described in Section 1.3.4, is related to the
two-locus distribution induced by the coalescent with recombination. Because each of the marginal
genealogies in the Markov sequence is tree-like, the SMC confers substantial mathematical and
computational simplicity relative to the coalescent with recombination, for which the entire graph-
like ARG must be constructed. Moreover, it has been empirically demonstrated that the effect of
this approximation is minimal (McVean and Cardin, 2005; Marjoram and Wall, 2006).

In much the same way, embedded within a conditional genealogy, there is a sequence (Cĉ[ℓ])ℓ∈L
of marginal conditional genealogies (MCGs), where each one-locus MCG describes the genealogy,
culminating with one or more absorptions into the trunk genealogy A0(n), of the configuration
ĉ at locus ℓ ∈ L. Though the sequence of MCGs is not Markov, we follow McVean and Cardin
(2005) in constructing a Markov approximation, with transition distribution related to the two-locus
transition distribution induced by the trunk-conditional coalescent with recombination. Using the
transition distribution, the sequence of MCGs can be sampled directly. Recall from Section 2.2.2
that the mutation process does not affect the topology of the conditional genealogy; the sequence
of MCGs (Cĉ[ℓ])ℓ∈L can therefore be produced without mutation events, which can be subsequently
sampled at each locus independently.

We denote by π̂SMC the CSD resulting from the sequentially Markov process. Critically, the
conditional sampling process associated with π̂SMC can be cast as a hidden Markov model (HMM).
Suppose we wish to sample a typed configuration associated with ĉ, conditional on the observed
configuration n. At locus ℓ ∈ L, the hidden state is the MCG at locus ℓ, without mutation events,
which we denote by sℓ ∈ S, where S is the space of such MCGs. The corresponding observed state
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is the one-locus typed configuration associated with ĉ[ℓ]. It is necessary to specify the initial and
transition distributions for the hidden state, and the emission distribution for the observed state,

Initial Distribution The random MCG at the first locus S1 is drawn from the initial distribution,
with density denoted ζ(n)(·), and is taken to be the one-locus marginal distribution on MCGs
induced by the trunk-conditional coalescent.

Transition Distribution Given the MCG Sℓ−1 = sℓ−1, the random MCG Sℓ is drawn from the

transition distribution, with density denoted φ
(n)
(ℓ−1,ℓ)(·|sℓ−1), and is taken to be the two-locus

transition distribution induced by the trunk-conditional coalescent.

Emission Distribution Given the MCG Sℓ = sℓ, the alleles at the ℓ-th locus of the conditionally
sampled configuration ĉ[ℓ] are drawn from the emission distribution, with density denoted

ξ
(n)
ℓ (·|sℓ), and is taken to be the distribution induced by the mutation process.

Now let c be a configuration, and consider computing the CSP π̂SMC(c|n). Recalling that there are
k loci, the forward recursion (Cappé et al., 2005) for HMMs immediately yields

π̂SMC(c|n) =

∫

S
f
(c,n)
k (sk) dsk, (2.70)

where f
(c,n)
ℓ (·) is defined (for 1 < ℓ ≤ k) by

f
(c,n)
ℓ (sℓ) = ξ

(n)
ℓ (c[ℓ]|sℓ) ·

∫

S
φ
(n)
(ℓ−1,ℓ)(sℓ|sℓ−1) · f

(c,n)
ℓ−1 (sℓ−1) dsℓ−1, (2.71)

with base case
f
(c,n)
1 (s1) = ξ

(n)
ℓ (c[1]|s1) · ζ

(n)(s1). (2.72)

The MCG state space is continuous, however, and we generally cannot explicitly evaluate these
integrals. In Chapter 3, we consider discretizing the state space, allowing π̂SMC(c|n) to be approx-
imated efficiently and with high precision; the resulting CSP can be evaluated with computational
complexity linear in the number of loci. In the remainder of this section, we apply the sequentially
Markov approximation of π̂SMC, obtaining explicit characterizations of the hidden state space and
expressions for the initial, transition, and emission densities.

Before proceeding, we remark that, for ease of notation, we generally suppress the dependence
on n and c whenever possible. Thus, we typically write ζ, φb, and ξℓ for the initial, transition, and
emission densities, respectively. Similarly, for the forward density we write fℓ.

2.3.2 Single-deme, one-haplotype

Let n = (nh)h∈H be a haplotype configuration, and consider sampling a single haplotype conditioned
on n according to the trunk-conditional coalescent of Section 2.2.2. As discussed above, embedded
within the conditional genealogy Cĉ at locus ℓ ∈ L is an MCG sℓ ∈ S; disregarding mutation events,
sℓ is entirely specified by two variables:

1. The absorption time, denoted tℓ ∈ R≥0 (with tℓ = 0 representing the present), at which the
lineage associated with locus ℓ was absorbed into the trunk.
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τ (a)

τ (b)

η(a)

η(b)

A0(n)Cc

(a)

s1 = s2 = (τ (a), η(a))

s3 = (τ (b), η(b))

A0(n)Cc

(b)

Figure 2.2. Illustration of the corresponding genealogical and sequential interpretations of a condi-
tional genealogy Cc with respect to the trunk genealogy A0(n). (a) The genealogical interpretation.
Absorption events, and the corresponding absorption time (τ (a) and τ (b)) and haplotype (η(a) and
η(b), respectively), are indicated by dot-dashed horizontal lines. (b) The corresponding sequential
interpretation. The marginal conditional genealogies at the first, second, and third locus (s1, s2,
and s3) are indicated by dotted, dashed, and solid lines, respectively.

2. The absorption haplotype, denoted hℓ ∈ H, corresponding to the lineage in the trunk into
which the lineage associated with locus ℓ was absorbed.

As a result the state space for the MCG can be represented S = R≥0×H. We also write Sℓ = (Tℓ,Hℓ)
for the random MCG, and sℓ = (tℓ, hℓ) ∈ S for the realized MCG at locus ℓ ∈ L. See Figure 2.2
for an illustration.

We begin by considering the distribution of Sℓ induced by the conditional genealogical process.
Because the absorption process is Markov, Tℓ and Hℓ are independent, with Tℓ distributed expo-
nentially with parameter n = |n|, and Hℓ distributed uniformly over the n haplotypes of n. Thus,
the marginal density ζ(·) is given by,

ζ(sℓ) = nhℓ
e−ntℓ . (2.73)

Conditioning on Sℓ−1 = sℓ−1 = (tℓ−1, hℓ−1), the marginal conditional genealogy Sℓ, for ℓ ≥ 2,
is distributed according to a process analogous to that described in Section 1.3.4 for the SMC.
Letting b = (ℓ− 1, ℓ) ∈ B,

1. Recombination breakpoints are realized as a Poisson process with rate ρb on the marginal
conditional genealogy sℓ−1.

2. Going backward in time, the lineage associated with locus ℓ− 1 branching from each recom-
bination breakpoint is removed, so that only the lineage more recent than the first (i.e. the
most recent) breakpoint remains.

3. The lineage associated with locus ℓ branching from the first recombination breakpoint is
subject to absorption into each lineage of A0(n) at rate 1.

See Figure 2.3 for an illustration of this process. From this description, we deduce that there is
no recombination between loci ℓ − 1 and ℓ with probability exp(−ρbtℓ−1), and in this case the
marginal conditional genealogy is unchanged, that is Sℓ = sℓ−1. Otherwise, the time Tr of the first
recombination breakpoint is distributed exponentially with parameter ρb, truncated at time tℓ−1,
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(1) (2) (3)

tr

ta

sℓ−1sℓ−1sℓ−1sℓ−1

sℓ

Figure 2.3. Illustration of the process for sampling the MCG Sℓ conditioned on Sℓ−1 = sℓ−1. The
MCG Sℓ is sampled by (1) realizing recombination events, with breakpoint b = (ℓ − 1, ℓ) ∈ B, as a
Poisson process with rate ρb on the MCG sℓ−1, (2) removing the lineage associated with locus ℓ− 1
branching from each breakpoint, so that only the lineage more recent than the first breakpoint, at
time Tr = tr, remains, (3) creating a new lineage associated with locus ℓ at the first breakpoint,
which is absorbed into a haplotype of n chosen uniformly at random, after time Ta = ta distributed
exponentially with rate n. This produces the MCG Sℓ = sℓ, with tℓ = tr + ta.

and the additional time Ta until absorption is distributed exponentially with parameter n. Thus
we have Sℓ = (Tr + Ta,Hℓ), where Hℓ is chosen uniformly at random from the sample n. Taking a
convolution of Tr and Ta, the transition density φb(·|sℓ−1) is given by

φb(sℓ|sℓ−1) = e−ρbtℓ−1 · δsℓ−1,sℓ +
nhℓ

n

∫ tℓ−1∧tℓ

0
ρbe

−ρbtrne−n(tℓ−tr)dtr, (2.74)

where tℓ−1 ∧ tℓ denotes the minimum of tℓ−1 and tℓ.
Finally, conditioning on Sℓ = sℓ, recall that mutations are realized as a Poisson process

(c.f. Stephens and Donnelly (2000)) with rate θℓ. Thus, the number of mutations is Poisson-
distributed, with mean θℓtℓ, and each mutation proceeds according to Φ(ℓ). The emission density
on alleles ξℓ(·|sℓ) is therefore given by

ξℓ(a|sℓ) = e−θℓtℓ

∞∑

m=0

(θℓtℓ)
m

m!

[(
Φ(ℓ)

)m]
hℓ[ℓ],a

. (2.75)

Using these densities within the forward recursion given above provides, in principle, a method
for computing π̂SMC. In practice, there is no known analytic solution for the integrals, and so it
is necessary to numerically approximate them. This technique is discussed in detail in Chapter 3.
We next document several important properties satisfied by the densities and by the CSD π̂SMC.

Equivalence to π̂LC

Recall from Section 2.3.1 that the sequentially Markov assumption is violated by coalescence events,
which introduce non-Markov dependence between the marginal genealogies at non-adjacent loci.
With this as intuition, it is reasonable to conjecture (McVean and Cardin, 2005) that a genealogical
process disallowing a certain class of coalescence events may be equivalent to the sequentially
Markov coalescent. The disallowed coalescences are those between two lineages that do not share
ancestral loci; formally, these are precisely the coalescence events between lineages that are not
overlap-coalesceable, as described in Section 2.2.2. To the author’s knowledge, no proof of this
conjecture exists.
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In the conditional sampling setting, the same intuition makes it reasonable to conjecture that
π̂SMC is equivalent to π̂LC (see Section 2.2.2), for which the same class of coalescence events are
disallowed within the conditional genealogy. In this most general case, the conjecture is again
unproved. Recall that when conditionally sampling a single haplotype, π̂LC is identical π̂NC, for
which coalescence entirely disallowed within the conditional genealogy; in this special case, we can
algebraically demonstrate that the conjecture is true,

Theorem 2.14. Let η ∈ H and n = (nh)h∈H. Then the CSD π̂SMC is equivalent to the CSD induced
by the trunk-conditional coalescent with coalescence events disallowed,

π̂SMC(eη|n) = π̂LC(eh|n) = π̂NC(eη|n). (2.76)

Sketch of Proof. The key idea of the proof is to introduce a genealogical recursion for the joint

density function g
(η,n)
ℓ (sℓ) associated with sampling the first ℓ loci of haplotype η (under π̂NC) and

the marginal genealogy sℓ at the final locus. This recursion can be constructed following the lines
of Griffiths and Tavaré (1994) to explicitly incorporate coalescent time.

By partitioning with respect to the most recent event occurring at the last locus k, it is possible

to inductively show that f
(η,n)
ℓ (sℓ) = g

(η,n)
ℓ (sℓ). Moreover, the identity

∫
g
(η,n)
k (sℓ)dsℓ = π̂NC(eη|n)

can be verified, and thus we conclude that

π̂LC(eη|n) = π̂NC(eη|n) =

∫
g
(η,n)
k (sk)dsk =

∫
f
(η,n)
k (sk)dsk = π̂SMC(eη|n).

A full version of this proof is presented in Appendix B.1. We believe that this method of
proof could, in principle, be extended to the more general case of conditionally sampling two or
more haplotypes. Without further abstraction, however, it seems the requisite algebra would be
overwhelming. We thus leave proof of this general conjecture as an open problem. Finally, we
note that the demonstrated equivalence provides a method for exact computation of π̂SMC(eη|n),
providing a useful baseline to compare numerical approximations to.

Mathematical properties

We now demonstrate several other intuitively appealing properties of π̂SMC for a single conditionally
sampled haplotype. For example, the marginal and transition distributions described above satisfy
the detailed-balance condition. Letting b = (ℓ− 1, ℓ) ∈ B, and sℓ−1, sℓ ∈ S be arbitrary MCGs,

φb(sℓ|sℓ−1)ζ(sℓ−1)

=

(
e−ρbtℓ−1 · δsℓ−1,sℓ +

nhℓ

n

∫ tℓ−1∧tℓ

0
ρbe

−ρbtne−n(tℓ−t)dt

)(
nhℓ−1

e−ntℓ−1

)

=

(
e−ρbtℓ · δsℓ,sℓ−1

+
nhℓ−1

n

∫ tℓ∧tℓ−1

0
ρbe

−ρbtne−n(tℓ−1−t)dt

)(
nhℓ

e−ntℓ

)

= φb(sℓ−1|sℓ)ζ(sℓ)

(2.77)

The detailed-balance condition shows that Markov process is reversible, and that the distribution
ζ is stationary under the given transition dynamics; that is, the invariance condition,

∫

S
φb(sℓ|sℓ−1)ζ(sℓ−1) dsℓ−1 = ζ(sℓ) ·

∫

S
φb(sℓ−1|sℓ) dsℓ−1 = ζ(sℓ) (2.78)
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is satisfied. Thus, for π̂SMC, the random MCG Sℓ is marginally distributed according to ζ for all
loci ℓ ∈ L, and in particular the marginal distribution of the absorption time Tℓ is exponential with
rate n. This parallels the fact that the marginal genealogies under the SMC (and the coalescent
with recombination) are distributed according to Kingman’s coalescent. Moreover, this property
ensures that the CSP computation will yield the same result regardless of whether we proceed from
left to right, as in (2.70), or from right to left.

Similarly, the transition density exhibits a consistency property, which we refer to as the locus-
skipping property. Intuitively, this property states that transitioning directly from locus ℓ − 1
to ℓ + 1 can be accomplished by using the transition density parametrized with the sum of the
recombination rates. Formally, letting sℓ−1 and sℓ+1 be arbitrary MCGs, it can be verified that

∫

S
φ(ℓ−1,ℓ)(sℓ|sℓ−1)φ(ℓ,ℓ+1)(sℓ+1|sℓ)dsℓ = φ(ℓ−1,ℓ+1)(sℓ+1|sℓ−1), (2.79)

where φ(ℓ−1,ℓ+1) is the transition density parameterized by ρ(ℓ−1,ℓ) + ρ(ℓ,ℓ+1). As will be more
thoroughly described in Chapter 3, this property is computationally useful, as it enables loci ℓ ∈ L
for which η[ℓ] is unobserved to be skipped in computing the CSP π̂SMC(eη|n).

Finally, it can be verified that the expectation of Tℓ conditioned on Tℓ−1 = tℓ−1 is

E[Tℓ|Tℓ−1 = tℓ−1] =

∫ ∞

0
tℓ

(
e−ρbtℓ−1 · δtℓ−1,tℓ +

∫ tℓ−1∧tℓ

0
ρbe

−ρbtne−n(tℓ−t)dt

)
dtℓ

=

(
1

ρb
+

1

n

)(
1− e−ρbtℓ−1

)
,

(2.80)

where b = (ℓ− 1, ℓ) ∈ B. Asymptotically, this expression provides several intuitive results.

• As ρb → ∞, E[Tℓ|Tℓ−1 = tℓ−1] → 1/n. In this limit, recombination occurs immediately, and
so 1/n is the expectation of the additional absorption time Ta.

• As ρb → 0, E[Tℓ|Tℓ−1 = tℓ−1] → tℓ−1. In this limit there is no recombination, and the
absorption time does not change.

• As tℓ−1 → ∞, E[Tℓ|Tℓ−1 = tℓ−1] → 1/ρb + 1/n. In this limit, recombination must occur,
and the exponentially distributed time is not truncated, so the expectation is the sum of the
expectations of two exponentials.

• As tℓ−1 → 0, E[Tℓ|Tℓ−1 = tℓ−1] → 0. In this limit, no recombination can occur, and so the
absorption time is unchanged.

Limiting distributions

We next set ρb = ρ, for all b ∈ B, and explore the properties of π̂SMC when ρ = 0 and in the
limit ρ → ∞. Setting ρ = 0, the transition distribution reduces to φb(sℓ|sℓ−1) = δsℓ−1,sℓ for all
b = (ℓ− 1, ℓ) ∈ B, and therefore fℓ(sℓ) = ξℓ(c[ℓ]|sℓ)fℓ−1(sℓ) and

π̂SMC(eη|n) =

∫

S
ζ(s)

∏

ℓ∈L

ξℓ(η[ℓ]|s)ds. (2.81)

From a genealogical perspective, when ρ = 0, the only possible events are absorption and mutation;
equivalently, it is possible to initially disregard mutation, and conditioned on the time of the
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absorption event, sample mutation events (independently) for each locus. Thus, in the limit that
ρ = 0, π̂SMC is equivalent to π̂PS and, by extension, π̂SD and π̂FD. Note that the form (2.81) for π̂SMC

when ρ = 0 is equivalent to the alternative form (1.68) for π̂SD.
Similarly, in the limit ρ → ∞, the transition distribution reduces to φb(sℓ|sℓ−1) = ζ(sℓ) for all

b = (ℓ− 1, ℓ) ∈ B, and therefore fℓ(sℓ) = ξℓ(c[ℓ]|sℓ)ζ(sℓ)
∫
S fℓ−1(sℓ−1)dsℓ−1 and

π̂SMC(eη|n) =
∏

ℓ∈L

[ ∫

S
ζ(sℓ)ξℓ(η[ℓ]|sℓ)dsℓ

]
=

∏

ℓ∈L

π̂SMC(eη[ℓ]|n[ℓ]), (2.82)

where π̂SMC(eη[ℓ]|n[ℓ]) is the one-locus CSP. Recalling Proposition 2.6, π̂PS enjoys the same limiting
decomposition, and because π̂SMC = π̂PS in the one-locus case, we have that in the limit ρ → ∞,
π̂SMC = π̂PS = π̂FD. Moreover, for a PIM model of mutation the CSDs are correct in this limit.

2.3.3 Multiple-deme, one-haplotype

We now demonstrate how the CSD π̂SMC described above can be extended to a structured population
model including migration. Let n = (nd,h)d∈D,h∈H be a structured sample, and consider sampling
a single haplotype in deme α ∈ D conditioned on n, according to the trunk-conditional coalescent
of Section 2.2.3. Embedded within the conditional genealogy at locus ℓ ∈ L is an MCG sℓ, and
disregarding mutation events, sℓ is specified by the absorption time tℓ ∈ R≥0 and haplotype hℓ ∈ H,
as before, and also the migrational history Qℓ, which is represented by the sequence

Qℓ =
(
(tm0 , d

m
0 ), (t

m
1 , d

m
1 ), . . . , (t

m
p , d

m
p )
)
, (2.83)

where tmi and dm
i are the time and destination deme of the i-th migration event (for ease of notation,

the dependence on ℓ is not indicated), and tm0 = 0 and dm
0 = α, the deme from which the haplotype

is sampled. It is possible that p = 0, corresponding to the case that the ancestral lineage associated
with locus ℓ did not migrate prior to absorption. Thus, denoting the space of migrational histories
by Q, the state space for the MCG can be represented S = R≥0 ×H ×Q, and the MCG at locus
ℓ ∈ L by sℓ = (tℓ, hℓ, Qℓ) ∈ S.

As before, we begin by considering the distribution of Sℓ induced by the conditional genealogical
process. The migration and absorption dynamics at a single locus can be described by a continuous-
time Markov process with a finite state space. The states can be divided into two groups: for each
of the d ∈ D, the state rd corresponds to residence within deme d, and the state ad corresponds to
absorption into some haplotype within deme d. Letting D = {1, 2, . . . , q}, and ordering the states
by (r1, . . . , rq, a1, . . . , aq), the Markov process is specified by the following rate matrix,

Z =

(
Υ−A A

0 0

)
, (2.84)

where Υ = (υdd′/2)d,d′∈D and υdd = υd, is the matrix of migration rates which govern the transitions
between the first group of states (the residence states), and A is the diagonal matrix

A =



κ−1
1 n1 · · · 0
...

. . .
...

0 · · · κ−1
q nq


 (2.85)
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A0(n1) A0(n2)Cc

τ (a)

τ (b)

τ (c)

τ (d)

η(a)

η(b)

(a)

A0(n1) A0(n2)Cc

s1 = (τ (a), η(a), Q(a))

s2 = s3 = (τ (b), η(b), Q(b))

(b)

A0(n1) A0(n2)Cc

s1 = (τ (a), η(a), 1)

s2 = s3 = (τ (b), η(b), 2)

(c)

Figure 2.4. Illustration of the approximations to the conditional coalescent with recombination and
migration, assuming two demes D = {1, 2}, where deme 1 ∈ D is shown in white and deme 2 ∈ D
is shown in light grey. The trunk genealogy A0(nd) for each of the two demes d ∈ D is indicated,
along with the conditional genealogy Cc. (a) The genealogical interpretation. Absorption events,
and the corresponding absorption time (τ (a) and τ (b)) and haplotype (η(a) and η(b)), are indicated by
dot-dashed horizontal lines. The times of the migration events (τ (c) and τ (d)) are also indicated. (b)
The corresponding sequential interpretation. The marginal genealogies (s1, s2, and s3) at the first,
second, and third locus are shown as dotted, dashed, and solid lines, respectively. We denote the two
distinct migrational histories by Q(a) =

(
(0, 1), (τ (d), 2), (τ (c), 1)

)
and Q(b) =

(
(0, 1), (τ (d), 2)

)
. (c)

The corresponding sequential interpretation where just the absorption time, deme, and haplotype
are recorded. The gap in each MCG indicates that the specific migrational history is not preserved.
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which governs the transition into the second group (the absorption states). The diagonal form of
A ensures that the absorbed state ad can be reached only if the ancestral lineage currently resides
in deme d. The absorption rate within deme d is inversely proportional to the relative size of the
deme, κ−1

d , and proportional to the number of trunk-lineages nd in deme d, as in the genealogical
description in Section 2.2.3. Finally, because the absorption states are also absorbing in the context
of the Markov chain, the rows of Z corresponding to these states are set to zero.

Using this process and the theory of continuous-time Markov processes, the marginal density
ζ(·) of the MCG sℓ is given by

ζ(sℓ) =

( p∏

i=1

Z(rdmi−1
, rdmi−1

, tmi − tmi−1)

)(
ndmp ,hℓ

ndmp
· Z(rdmp , admp , tℓ − tmp )

)
, (2.86)

where Z(α, β, t) = − exp(t ·Zα,α) ·Zα,β/Zα,α is the probability of transitioning from state α to state
β in time t for the process specified by Z. The first factor corresponds to each of the p migration
events in Qℓ, and the second factor to the absorption event. Because the rates of absorption into
each of the lineages within the absorption deme are identical, the absorption lineage is chosen
uniformly at random within the absorption deme.

Conditioning on Sℓ−1 = sℓ−1 = (Qℓ−1, tℓ−1, hℓ−1), the MCG Sℓ, for ℓ ≥ 2, is distributed
according to a process similar to that described in Section 2.3.2. As before, there is no recombination
between loci ℓ − 1 and ℓ with probability exp(−ρbtℓ−1), and in this case Sℓ = sℓ−1. Otherwise,
the time Tr of the first recombination breakpoint is distributed exponentially with parameter ρb,
truncated at time tℓ−1. The lineage associated with locus ℓ is then subject to the marginal migration
and absorption process, starting in the resident deme of the MCG sℓ−1 at time Tr. Letting b =
(ℓ− 1, ℓ) ∈ B, the transition density φb(·|sℓ−1) is given by

φb(sℓ|sℓ−1) = e−ρbtℓ−1 · δsℓ−1,sℓ +

∫ tℓ−1∧tℓ

0
δQℓ−1[↓tr],Qℓ[↓tr] · ρbe

−ρbtr · ζ(tℓ − tr, hℓ, Qℓ[↑ tr])dtr,

(2.87)

where we have denoted by Qℓ[↓ t] the sequence of migration events Qℓ truncated at time t, and
by Qℓ[↑ t] the sequence of migration events induced by Qℓ starting at time t. Thus, in the second
term, the δ factor ensures that, prior to the recombination event the sequence of migration events
in sℓ−1 and sℓ are identical.

Finally, because the mutation process does not depend on the deme in which a lineage resides,
the emission density on alleles ξℓ(·|sℓ) is identical to (2.75). In principle, π̂SMC(ed,h|n) can thus
be computed using the forward recursion detailed in Section 2.3.1. However, in practice, much of
the mathematical and computational simplicity is lost due to the MCG state space S, which has
infinite dimension due to the presence of the migrational history. We next consider an additional
approximation that enables practicable computation.

Absorption Deme Only

In order to reduce the MCG state space S, we restrict the migrational history to the deme in
which absorption occurred. As a result, the sequence of MCGs is no longer Markov, even under
the sequentially Markov assumption. For example, suppose the absorption deme at locus ℓ is d;
then knowledge that the absorption deme at locus ℓ − 1 is d′ 6= d increases the probability that
the absorption deme at locus ℓ + 1 is d′, introducing a non-Markov dependence. Nonetheless, it
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(1) (2) (3)

tr

sℓ−1sℓ−1sℓ−1

sℓ

(a)

(1) (2) (3)

tr
dr

sℓ−1sℓ−1sℓ−1

sℓ

(b)

Figure 2.5. Illustration of the process for sampling the MCG Sℓ conditioned on Sℓ−1 = sℓ−1,
with population structure and migration. (a) Given the full migrational history Qℓ−1, the MCG Sℓ

is sampled by (1) realizing recombination events, with breakpoint b = (ℓ − 1, ℓ) ∈ B, as a Poisson
process with rate ρb on the MCG sℓ−1, (2) removing the lineage associated with locus ℓ−1 branching
from each breakpoint, so that only the lineage more recent than the first breakpoint, at time Tr = tr,
remains, (3) creating a new lineage associated with locus ℓ at the first breakpoint, and in the deme
in which the recombination event occurred, and subjecting this lineage to migration and absorption
events, producing the MCG Sℓ = sℓ. (b) Given only the deme in which absorption occurred Dℓ−1 =
dℓ−1, the process is similar to that above; in step (2) the deme Dr in which recombination occurred
is not known, and so is sampled conditional on the absorption deme Dℓ−1 = dℓ−1 and recombination
time Tr = tr. The remainder of the process occurs as before, producing the MCG Sℓ = sℓ.

is possible to further approximate this non-Markov process by a Markov process by integrating
over the possible migrational histories consistent with the given absorption deme. We denote the
resulting approximation to π̂SMC by π̂SMC-ADO, where “ADO” is an abbreviation for “absorption
deme only”.

Denote the absorption deme at locus ℓ by dℓ ∈ D, so that the reduced MCG state space is
given by Ŝ = R≥0 ×H×D, and the MCG at locus ℓ is given by the triple ŝℓ = (tℓ, hℓ, dℓ) ∈ Ŝ. As
before, the migration and absorption distribution at a single locus are specified by the rate matrix
Z. Because ŝℓ only specifies the absorption deme, the reduced marginal density ζ(·) is given by

ζ(ŝℓ) =
ndℓ,hℓ

ndℓ
·
[
ZeZtℓ

]
rα,adℓ

. (2.88)

Because the rates of absorption into each lineage of the absorption deme are identical, the absorption
lineage is chosen uniformly at random within the absorption deme. By virtue of not incorporating
information about the entire migration history, (2.88) is considerably simpler than (2.86).

Conditioning on Ŝℓ−1 = ŝℓ−1 = (tℓ−1, hℓ−1, dℓ−1), the MCG Ŝℓ, for ℓ ≥ 2, is distributed accord-
ing to a process similar to that described above. As before, there is no recombination at b = (ℓ−1, ℓ)
with probability exp(−ρbtℓ−1), and otherwise the time Tr of the first recombination breakpoint is
distributed exponentially with parameter ρb, truncated at time tℓ−1. The difference in this case is
that the deme Dr in which recombination occurs is not known. Conditioned on Ŝℓ−1 = ŝℓ−1 and
the time of recombination Tr = tr, the density f(·|ŝℓ−1, tr) of the deme in which recombination
occurs Dr is given by,

f(d|ŝℓ−1, tr) =

[
eZtr

]
rα,rd

[
ZeZ(tℓ−1−tr)

]
rd,adℓ−1[

ZeZtℓ−1
]
rα,adℓ−1

. (2.89)
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Conditioned on the time Tr = tr and deme Dr = dr at which recombination occurs, the lineage
associated with locus ℓ is then subject to the marginal migration and absorption process, starting
in deme Dr at time Tr. This process yields the transition distribution φb(·|ŝℓ−1) given by

φb(ŝℓ|ŝℓ−1)

= e−ρbtℓ−1 · δŝℓ−1,ŝℓ

+

∫ tℓ−1∧tℓ

0
ρbe

−ρbtr
∑

dr∈D

f(dr|ŝℓ−1, tr)

(
ndℓ,hℓ

ndℓ
·
[
ZeZ(tℓ−tr)

]
rdr ,adℓ

)
dtr.

(2.90)

Once again, the mutation process does not depend on the deme in which a lineage resides,
and so the emission distribution on alleles ξℓ(·|ŝℓ) is again identical to (2.75). Thus, in principle,
π̂SMC-ADO(ed,h|n) can be approximated using the forward recursion detailed in Section 2.3.1, sub-
stituting in the reduced initial and transition distributions. We thoroughly describe a practical
implementation for the recursion in Chapter 3, and consider the accuracy of the approximation to
π̂SMC-ADO in light of empirical results in Chapter 4.

2.3.4 Single-deme, two-haplotype

Finally, we demonstrate how the CSD π̂SMC can be extended to conditionally sampling more than
one haplotype. As before, let n = (nh)h∈H and consider sampling two haplotypes conditioned on
n according to the trunk-conditional coalescent of Section 2.2.2. Embedded within the conditional
genealogy at locus ℓ ∈ L is an MCG sℓ, and disregarding mutation events, sℓ is specified by,

1. The MCG for the first haplotype, denoted by m(1)

ℓ = (t(1)ℓ , h
(1)

ℓ ), comprising the absorption
time t(1)ℓ and haplotype h(1)

ℓ .

2. The MCG for the second haplotype, denoted by m(2)

ℓ = (t(2)ℓ , h(2)

ℓ ), comprising the absorption
time t(2)ℓ and haplotype h(2)

ℓ .

3. The coalescence time, denoted by t(c)ℓ , within sℓ of the first and second conditionally sampled
haplotype. We set t(c)ℓ = ∅ to denote that there is no coalescence event within sℓ at locus ℓ.

See Figure 2.6 for an illustration. Observe that if the two haplotypes coalesce prior to absorption,
the MCGs for each haplotype must be identical; formally t(c) 6= ∅ implies that m(1) = m(2) = m,
and moreover that t(c) < t(1), t(2). By the contrapositive, m(1) 6= m(2) implies that t(c) = ∅. Thus,
letting M = R≥0 ×H, the MCG state space S is given by

S =
{
(m(1),m(2), t(c)) ∈ M×M× (R≥0 ∪ ∅) : t(c) 6= ∅ ⇒ m(1) = m(2) > t(c)

}
. (2.91)

For ease of notation, we shall also frequently write, for t ∈ R≥0 and s = (m(1),m(2), t(c)) ∈ S, that
t < s to indicate that either t(c) = ∅ and t < t(1), t(2) or t(c) 6= ∅ and t < t(c) < t(1), t(2).

In unconditionally sampling the MCG Sℓ, the lineages associated with each of the two haplo-
types are free in the sense that they are subject to the coalescence and absorption events specified
by the genealogical process. In contrast, in sampling the MCG Sℓ conditional upon Sℓ−1 = sℓ−1,
the lineages associated with each of two haplotypes are initially anchored to the lineages of sℓ−1.
However, when a recombination event occurs on the shared lineage, the lineage associated with
locus ℓ is no longer anchored, and becomes free. Though we did not require the terminology, we
made use of this logic in Sections 2.3.2 and 2.3.3 in order to write down the marginal and transition
distributions. Thus, letting b = (ℓ− 1, ℓ) ∈ B, we define the following densities,
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Cc A0(n)

τ (c)
τ (a)

τ (b)

η(a)

η(b)

(a)

s1 A0(n)[1]

m(1)

1 = m(2)

1 = (τ (a), η(a))

(b)

s2 A0(n)[2]

m(1)

2 = (τ (a), η(a))

m(2)

2 = (τ (b), η(b))

(c)

Figure 2.6. Illustration of the corresponding genealogical and sequential interpretations of a con-
ditional genealogy Cc with respect to the trunk genealogy A0(n) for two conditionally sampled
haplotypes. (a) The genealogical interpretation. Absorption events, and the corresponding absorp-
tion time (τ (a) and τ (b)) and haplotype (η(a) and η(b), respectively), are indicated by dot-dashed
horizontal lines. (b) The corresponding sequential interpretation. The marginal genealogies at the
first and second locus (s1 and s2) are provided. Note that t(c)1 = τ (c) and t(c)2 = ∅.

f (f)

t (mℓ): The density associated with sampling the one-haplotype MCG Mℓ conditioned on the
lineage being free at time t.

f (a)

b,t (mℓ|mℓ−1): The density associated with sampling the one-haplotype MCG Mℓ conditioned on
the lineage being anchored to Mℓ−1 = mℓ−1 ∈ M at time t.

f (f,f)

t (sℓ): The density associated with sampling the two-haplotype MCG Sℓ conditioned on both
of the lineages being free at time t.

f (f,a)

b,t (sℓ|mℓ−1) [f (a,f)

b,t (sℓ|mℓ−1)]: The density associated with sampling the two-haplotype MCG
Sℓ conditioned on the lineage associated with haplotype 1 [respectively, haplotype 2] being
free, and the lineage associated with haplotype 2 [respectively, haplotype 1] being anchored
to the one-haplotype MCG Mℓ−1 = mℓ−1 ∈ M at t.

f (a,a)

b,t (sℓ|sℓ−1): The density associated with sampling the two-haplotype MCG Sℓ conditioned on
the lineages associated with both haplotypes being anchored to two-haplotype MCG Sℓ−1 =
sℓ−1 ∈ S at t.

Observe that f (f)

0 (·) and f (a)

b,0(·|mℓ+1) are precisely the one-haplotype marginal and transition

distributions discussed in Section 2.3.2. In precisely the same way, f (f,f)

0 (sℓ) and f (a,a)

b,0 (sℓ+1|sℓ)
are the two-haplotype marginal and transition distributions. We now demonstrate a technique for
deriving expressions for these densities in a systematic way. The technique is a generalization of
the basic reasoning used in the previous sections. Critically, it is possible for anchored lineages
to become free via recombination, but free lineages cannot become anchored without reducing the
total number of lineages; thus, it is possible to write densities involving more (anchored) lineages
in terms of densities involving fewer (anchored) lineages.

We begin by re-deriving the one-haplotype densities in this more general setting. Considering
first the density f (f)

t (·), the single free lineage is absorbed into each lineage of the trunk genealogy
A0(n) at rate 1, so that the total rate is |n| = n. Integrating over the time of the absorption event,

f (f)

t (mℓ) =

∫ ∞

t
δta,tℓ

nhℓ

n
ne−n(ta−t)dta = nhℓ

e−n(tℓ−t) (2.92)
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for tℓ > t. For the density f (a)

b,t (·|mℓ), the anchored lineage is subject to recombination at rate ρb;
if recombination occurs, the lineage becomes free at the time of recombination. Integrating over
these possibilities and the time of the recombination event,

f (a)

b,t (mℓ|mℓ−1) = e−ρb(tℓ−1−t)δmℓ,mℓ−1
+

∫ tℓ−1

t
ρbe

−ρb(tr−t)f (f)

ℓ,tr
(mℓ)dtr

= e−ρb(tℓ−1−t)δmℓ,mℓ−1
+ nℓ−1

∫ tℓ−1∧tℓ

t
ρbe

−ρb(tr−t)e−n(tℓ−tr)dtr,

(2.93)

for tℓ−1, tℓ > t, where the second equality is by direct substitution, taking into account the time
boundary for f (f)

t (·). As anticipated, these expressions are identical to those derived in Section 2.3.2
when setting t = 0.

Continuing with the two-haplotype density f (f,f)

t (·), each of the two free lineages is absorbed
into each lineage of the trunk genealogy A0(n) at rate 1, and the two free lineages coalesce at rate
2, so that the total rate is 2n+ 2. If a lineage is absorbed, the remaining lineage becomes a single
free lineage at the time of absorption, and if the two lineages coalesce, the resulting lineage becomes
a single free lineage at the time of coalescence. Thus, integrating over the time of the first event,

f (f,f)

t (sℓ) =

∫ ∞

t
(2n + 2)e−(2n+2)(te−t)

[
2

2n+ 2
δ
te,t

(c)
ℓ

f (f)

te (m)

+
n

2n+ 2

(
δ
te,t

(1)
ℓ

n
h
(1)
ℓ

n
f (f)

te (m(2)

ℓ ) + δ
te,t

(2)
ℓ

n
h
(2)
ℓ

n
f (f)

te (m(1)

ℓ )
)]
dte

=
[
1− δ

t
(c)
ℓ

,∅

]
2e−(2n+2)(t

(c)
ℓ

−t)f (f)

t
(c)
ℓ

(m)

+
[1

(t
(1)
ℓ

<t
(2)
ℓ

)

]
e−(2n+2)(t

(1)
ℓ

−t)n
h
(1)
ℓ

f (f)

t
(1)
ℓ

(m(2)

ℓ )

+
[1

(t
(2)
ℓ

<t
(1)
ℓ

)

]
e−(2n+2)(t

(2)
ℓ

−t)n
h
(2)
ℓ

f (f)

t
(2)
ℓ

(m(1)

ℓ ),

(2.94)

for sℓ > t. For the two-haplotype density f (f,a)

b,t (·|mℓ−1), the anchored lineage is subject to re-
combination at rate ρb and the free lineage is subject to absorption into each lineage of the trunk
genealogy and coalescence with the anchored lineage, at rates 1 and 2, respectively. The total rate
of events is ρb + n+ 2. If no event occurs prior to the absorption of the anchored lineage, the free
lineage becomes a single free lineage at the time of absorption. Otherwise, if recombination occurs,
the anchored lineage becomes free and there are two free lineages; if absorption or coalescence
occurs, there remains a single anchored lineage at the time of the event. Integrating over these
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possibilities and the time of the first event,

f (f,a)

b,t (sℓ|m
(2)

ℓ−1) = e−(ρb+n+2)(t
(2)
ℓ−1−t)δ

m
(2)
ℓ

,m
(2)
ℓ−1

f (f)

ℓ,t
(2)
ℓ−1

(m(1)

ℓ−1)

+

∫ t
(2)
ℓ−1

t
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ρbf
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+ 2δ
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(c)
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b,te
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where t(2)ℓ−1, sℓ > t. The reasoning and outcome for f (a,f)

b,t (·|m(1)

ℓ−1) is identical, with all of the one-
haplotype MCG labels reversed.

Finally, for the two-haplotype distribution f (a,a)

b,t (·|sℓ−1), either coalescence or an absorption
event occurs first within sℓ−1. In each situation, recombination occurs on each lineage at rate ρb so
that the total rate is 2ρb. If recombination does not occur, the result is a single anchored lineage,
and if it does occur, the result is a single anchored lineage and a single free lineage. Integrating
over these possibilities and the time of the recombination event,
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(2.96)

where sℓ, sℓ−1 < t. Though we don’t reproduce the work here, it is practically straightforward
to obtain closed-form expressions for the two-haplotype marginal density ζ(·) = f (f,f)

0 (·) and the
two-haplotype transition density φb(·|sℓ−1) = f (a,a)

b,0 (·|sℓ−1) by direct substitution of the relevant
expressions into (2.94) and (2.96). In Appendix B.2, we provide a proof that the two-haplotype
transition density φb(·|sℓ−1) satisfies detailed balance with respect to the two-haplotype marginal
density ζ(·), analogous to the one-haplotype case described in Section 2.3.2.

Finally, we consider the emission densities. We first consider the case that the two haplotypes
have been sampled separately, so that the two observed alleles (a1, a2) ∈ Aℓ×Aℓ at locus ℓ ∈ L are
ordered. For convenience, we define the density fℓ(·|a

′, t) associated with the mutation process at
locus ℓ for time t ∈ R≥0, and starting with allele a′ ∈ Aℓ,

fℓ(a|a
′, t) = e−θℓt

∞∑

m=0

(θℓt)
m

m!

[(
Φ(ℓ)

)m]
a′,a

. (2.97)
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Letting Sℓ = sℓ ∈ S, if t(c)ℓ = ∅, the two observed alleles are entirely independent, and if t(c)ℓ 6= ∅
we may partition with respect to the unknown common allele at the time of coalescence. Note
that this latter operation is a very simple application of Felsenstein’s algorithm (Felsenstein, 1981).
Therefore,

ξℓ((a1, a2)|sℓ) =
[
δ
t
(c)
ℓ

,∅

]
fℓ(a1|h

(1)

ℓ [ℓ], t(1)ℓ )fℓ(a2|h
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+
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t
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,∅

] ∑

a∈Aℓ

fℓ(a|hℓ[ℓ], tℓ)fℓ(a1|a, t
(c)

ℓ )fℓ(a2|a, t
(c)

ℓ ).
(2.98)

In many cases, the two haplotypes are not sampled separately, so that the alleles at each locus
are not ordered; this type of data is often referred to as unphased. For example, in the two locus
case, the observed data may be the alleles a1, a2 ∈ A1 at locus 1, and b1, b2 ∈ A2 at locus 2, but
without knowledge as to whether the haplotypes are (a1, b1), (a2, b2) ∈ H or (a1, b2), (a2, b1) ∈ H.
Denoting the alleles of the unphased data by {a1, a2} and summing over the possible orderings,
which are a priori equally likely,

ξℓ({a1, a2}|sℓ) =
1

2

(
ξℓ((a1, a2)|sℓ) + ξℓ((a2, a1)|sℓ)

)
. (2.99)

Thus, the CSP π̂SMC(h1, h2|n) can be computed using the forward recursion detailed in Sec-
tion 2.3.1 can be applied, substituting in the initial, transition, and (phased or unphased) emission
densities derived in this section. This is in contrast to the recursion for π̂PS described in Sections
2.1.2 and 2.2.2, which is not immediately applicable to unphased data; in fact, the most straight-
forward way to apply these recursions is to sum over each possible phasing, of which there are an
exponential number, further reducing the efficiency of the recursion.

Finally, note that the general technique described in this section could, in principle, be extended
to more than two haplotypes, and to structured populations and other demographic scenarios of the
type illustrated in Section 2.3.3. In practice, however, without further approximation, we anticipate
that the requisite algebra and even the ultimate closed-form solutions would become overly-complex
for more than a very modest number of haplotypes.

2.3.5 Relationships among approximate CSDs

Throughout this chapter, we have stated and proved several relationships between π̂PS and π̂SMC and
previously proposed CSDs, such as π̂SD and π̂FD. In this section, these relationships are revisited and
summarized. Begin by recalling that, in the absence of recombination, and for a single conditionally
sampled haplotype π̂FD = π̂SD = π̂PS = π̂SMC. The first equality is by construction, as described in
Section 1.4.2, the second equality stated in Proposition 2.5, and the final equality is by construction,
as described in Section 2.3. While π̂FD and π̂SD are not defined for more than one conditionally
sampled haplotype, the final equality π̂PS = π̂SMC holds for an arbitrary number of conditionally
sampled haplotypes. Finally, in the special case of a one-locus PIM model, for which recombination
is not applicable, Proposition 2.3 proves that the CSDs are correct.

We next consider the case when ρb = ρ for all b ∈ B and the limit ρ → ∞. We have seen that
π̂FD, π̂PS, and π̂SMC all have the same limiting decomposition into a product of one-locus CSDs,
demonstrated in Section 1.4.2, Section 2.1.2, and Section 2.3.2, respectively. As stated above, the
one-locus CSDs are also identical, and so in this limit π̂FD = π̂PS = π̂SMC. Moreover, for a PIM
model, the one-locus CSDs are correct, and therefore each of the resulting multiple-locus CSDs are
also correct.
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Figure 2.7. Illustration of the relationship between various CSDs. The CSD at the head of each
arrow can be seen as an approximation to the CSD at the tail. Each arrow is also annotated with a
(short) description of this approximation. The CSDs below the dashed line can be cast as an HMM:
those above the dotted line have a continuous and infinite state space, while those below (including
the discretized version of π̂SMC, denoted π̂SMC(P), to be described in Section 3.2 and the Gaussian
quadrature discretized version of π̂FD, which we denote π̂FD-GQ) have a finite and discrete state
space and are therefore amenable to simple dynamic programming algorithms. For more thorough
descriptions of each approximation, see the main text. The equality π̂SMC = π̂LC has only been
proved in the setting of a single conditionally sampled haplotype.

Finally, we consider the more general case, when the recombination rate is not restricted. As
described in Section 2.3.1, π̂SMC is an approximation to π̂PS based on a sequentially Markov inter-
pretation of the MCGs. Similarly, we have shown in Theorem 2.14 that, for a single conditionally
sampled haplotype, π̂SMC = π̂NC, where π̂NC is a modification to the conditional coalescent for which
coalescence events are disallowed. More generally, we have conjectured that for multiple condition-
ally sampled haplotypes, π̂SMC = π̂LC, where π̂LC is a modification to the conditional coalescent for
which coalescence events between lineages with non-overlapping ancestral loci are disallowed.

In order to understand the relationship between π̂FD and π̂SMC, we express π̂FD in an HMM
framework similar to π̂SMC. Let n = (nh)h∈H with |n| = n, and recall from Section 1.4.2 that
π̂FD extends π̂SD by introducing a recombination event at each breakpoint with probability ρb/(n+
ρb). Recombination events split the haplotype into intervals, and each interval is then sampled
independently using π̂SD; each interval is characterized by a haplotype chosen uniformly at random
from n, and a time chosen according to an exponential distribution with rate n. For locus ℓ ∈ L,
denote by (Tℓ,Hℓ) the random time and haplotype associated with the interval to which the locus
belongs. Because the recombination events are independent, the sequence of random states is
Markov, with marginal density

ζ (FD)(tℓ, hℓ) = nhℓ
e−ntℓ , (2.100)

and, letting b = (ℓ− 1, ℓ) ∈ B, transition density

φ(FD)

b (tℓ, hℓ|tℓ−1, hℓ−1) =
n

n+ ρb
· δtℓ−1,tℓδhℓ−1,hℓ

+
ρb

n+ ρb
·
nhℓ

n
e−tℓ , (2.101)
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where the first term and second terms in the transition densities correspond to no recombination
and recombination, respectively, at breakpoint b ∈ B. Finally, conditioned on (Tℓ,Hℓ) = (tℓ, hℓ),
the allele at locus ℓ is independently sampled by mutating allele hℓ[ℓ] a random number mℓ times,
where mℓ is Poisson-distributed with mean θℓtℓ/n. The emission density is therefore

ξ(FD)

ℓ (a|tℓ, hℓ) = e−θℓtℓ

∞∑

m=0

(
θℓtℓ

)m

m!
·
[(

Φ(ℓ)
)m]

hℓ[ℓ],a
. (2.102)

Comparing these equations to (2.73),(2.74), and (2.75), respectively, the HMM formulation of
π̂FD is identical to π̂SMC with the exception of the transition density. Relative to the transition
density associated with π̂SMC, the transition density for π̂FD makes two assumptions: first, the
probability of recombination is independent of tℓ−1; and second, conditioned on recombination at
b = (ℓ − 1, ℓ) ∈ B, the distribution of Tℓ is independent of tℓ−1. In the context of the trunk-
conditional coalescent process, both of these independence assumptions are false, and we therefore
expect that π̂SMC is a better approximation to the true CSD than π̂FD.

In order to develop practicable algorithms for evaluating the CSP associated with π̂SMC and
π̂FD, it is necessary to discretize the continuous state space. The discretization procedure for π̂SMC

will be considered in detail in Section 3.2. As discussed in Section 1.4.2, Fearnhead and Donnelly
(2001) use Gaussian quadrature to discretize π̂FD. Finally, recall from Section 1.4.3 that the CSD
π̂LS is a simplification to a discretized version of π̂FD. The relationships between these CSDs is
summarized in Figure 2.7.



Chapter 3

Algorithms & Implementation

In the previous chapter, we introduced several techniques for obtaining an approximate conditional
sampling distribution (CSD) for the coalescent with recombination. We discussed these techniques
in the context of obtaining an approximate CSD that is both highly accurate and efficiently com-
putable, the latter mandated by the large and growing repository of genetic and genomic data. In
this chapter, we quantify the computational efficiency of evaluating the conditional sampling prob-
ability (CSP) associated with each CSD, providing several concrete algorithms and the associated
asymptotic time complexities.

We demonstrate that explicit evaluation of the CSP associated with π̂PS, resulting from di-
rect application of the diffusion-generator approximation, or equivalently the trunk-conditional
coalescent, has computational complexity super-exponential in the number of loci, and is therefore
computationally intractable for even modestly sized samples (Paul and Song, 2010). The CSD π̂SMC,
resulting from the sequentially Markov approximation, can be approximated by a discrete-space
HMM, and the associated CSP evaluated with computational complexity linear in the number of
loci (Paul et al., 2011). Finally, taking advantage of the particular form of the forward and back-
ward recursions in the context of the CSP computation, it is possible to obtain an algorithm that
is, in practice, substantially faster than that obtained using ordinary HMM methodology (Paul and
Song, 2012).

3.1 Computing π̂
PS

We begin by considering computation of the CSP in the multiple-locus setting of Section 2.1.2.
Letting c = (cg)g∈G and n = (nh)h∈H, recall that the recursion (2.12) for π̂PS(c|n) is given by

π̂PS(c|n) =
1

N

∑

g∈G

cg

{( ∑

h∈H:hfg

nh

)
π̂PS(c− eg|n)

+
∑
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(cg′ − δg,g′)π̂PS(c − eg + eC(g,g′)|n)

+
∑

ℓ∈L(g)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,g[ℓ]π̂PS(c− eg + eMa

ℓ
(g)|n)

+
∑

b∈B(g)

ρbπ̂PS(c− eh + eR−
b
(h) + eR+

b
(h))|n)

}
,

(3.1)
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where N =
∑

g∈G cg
(
c + n − 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

)
. In this general setting, there is no

known closed-form solution for this recursion. The procedure for exact computation of π̂PS(c|n) is
therefore repeated application of the recursion (3.1), which yields a set of coupled linear equations.
As described in Section 2.1.2, each variable in the resulting set of equations has form π̂PS(c

′|n),
and letting L(c′) be the total number of specified loci in c′, L(c′) ≤ L(c). As a result, the set
of coupled linear equations is finite and can be numerically solved. We have generally found that
iterative procedures, such as the Gauss-Seidel method, perform well.

Regardless of the specific numerical technique used, computational complexity is lower-bounded
by the number of coupled equations in the system. Even in the case of a single conditionally sampled
haplotype, the following proposition assures us that there is a very large number of such equations.

Theorem 3.1. Let η ∈ H and c = eη and n = (nh)h∈H with |n| = n. Suppose that the number
of alleles at each locus ℓ ∈ L is given by |Aℓ| = s. Then for |L| = k loci, the number of equations
Q(k, s) generated by repeated application of (3.1) is given by

Q(k, s) =

k∑

j=0

(
k

j

)
Bjs

j ≥ Bk+1, (3.2)

where Bj is the j-th Bell number (Sloane, 1998). The second inequality is strict for s > 1.

Proof. Each variable present in the set of equations is of the form π̂PS(c
′|n), where c′ has L(c′)

specified loci, and 0 ≤ L(c′) ≤ k. For a given value |L(c′)| = j, there are
(
k
j

)
unique sets of specified

loci, and each of the j specified loci can have any of the |Aℓ| = s alleles. Finally, the specified loci
can be partitioned into j arbitrary haplotypes, and the number of such partitions is given by the
j-th Bell number. These considerations yield the first equality. The inequality follows from the
recursive identity on Bell numbers, Bk+1 =

∑k
j=0

(k
j

)
Bj , and is therefore strict when s > 1.

If we further assume a PIM model, the mutation term in CSP recursion (2.20) is simplified,
and the following corollary holds,

Corollary 3.2. In the same setting as Proposition 3.1, and given a PIM model, the number of
equations QPIM(k) generated by repeated application of (2.20) is given by

QPIM(k) =
k∑

j=0

(
k

j

)
Bj = Bk+1. (3.3)

Proof. In contrast to the general finite-alleles case given above, each locus can have only the allele
specified in haplotype η, as mutation produces an unspecified allele. Thus, the combinatorial factor
associated with per-locus polymorphism is removed from (3.2), resulting in the first equality. The
second equality is by the same recursive identity on the Bell numbers.

Because the Bell numbers {Bj} grow super-exponentially with j, the number of variables in
the system of linear equations also grow super-exponentially, even for a PIM model. Thus, direct
computation of the CSP by generation and solution of the system of equations is computationally
practicable for only small numbers (less than k ≈ 10) of loci. Note that we have only counted the
number of variables in the system of linear equations. In practice, this serves as a lower bound for
the computational complexity of generating and solving the equations; moreover, such solutions
are prone to numerical instability due to the very small probabilities involved. We next consider
two additional approximations that provide some level of algorithmic scalability.
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3.1.1 Limiting coalescence

Recall from Section 2.2.2, that by appropriately limiting coalescence events, the recursive expres-
sions for computing the CSP can be simplified. For a single haplotype η ∈ G, the CSDs associated
with limiting and disallowing coalescence, denoted by π̂LC and π̂NC respectively, coincide. Letting
η ∈ G and n = (nh)h∈H with |n| = n, and assuming a PIM model, (2.59) yields the following
recursion for the CSP π̂LC(eη|n) = π̂NC(eη|n),

π̂NC(eη |n) =
1

N

{ ∑

h∈H:hfη

nh +
∑

ℓ∈L(η)

θℓΦ
(ℓ)
η[ℓ]π̂NC(eMℓ(η)|n)

+
∑

b∈B(η)

ρbπ̂NC(eR−
b
(η)|n)π̂NC(eR+

b
(η))|n)

}
,

(3.4)

where N = n+
∑

ℓ∈L(η) θℓ+
∑

b∈B(η) ρb. As described in Section 2.2.2, the recursion (3.4) is proper,
and so the CSP π̂NC(eη|n) can be evaluated using dynamic programming or memoization, rather
than constructing and numerically or algebraically solving a system of coupled linear equations. We
can determine the computational complexity of such a solution by counting the number of states
that must be enumerated, and considering the associated complexity of computing each such value,

Theorem 3.3. Let η ∈ H and n = (nh)h∈H with |n| = n. Then for |L| = k loci, and assum-
ing a PIM model, the number of states QNC-PIM(k) that must be enumerated in a simple dynamic
programming solution of (3.4) is given by

QNC-PIM(k) = 2k, (3.5)

and the asymptotic time complexity of the associated dynamic program is given by O(nk · 2k).

Proof. Each variable enumerated has form π̂NC(eη′ |n) for some η′ ∈ G. Considering only whether
the allele at each locus within η′ is specified or unspecified, there are 2k such haplotypes. Moreover,
because we have assumed a PIM model, each locus ℓ ∈ L with specified allele must have the allele
η[ℓ], as mutation yields an unspecified allele. Thus, the number of states is given by (3.5).

The time complexity of evaluating π̂NC(eη′ |n) within the dynamic program, assuming that the
π̂NC terms on the right-hand-side have been evaluated, is dominated by the first term, which can
be trivially evaluated with asymptotic time complexity O(nk). The remaining two terms can then
be evaluated with time complexity O(k) ⊂ O(nk), providing the second result.

Though the number of enumerated states, and therefore the computational complexity, is still
exponential in the number of loci k, this represents a substantial improvement over evaluating the
recursion for π̂PS, which requires constructing and solving a coupled system of linear equations with
the number of equations super-exponential in k. In practice, however, it is still only possible to
extend this solution to k ≈ 20.

3.1.2 Limiting mutations

We next examine the form of the recursion (3.4) associated with π̂NC, with the objective of finding
a sensible polynomial-time approximation. Observe that it is necessary to consider a state for
each mutational configuration of the k loci; as described for a PIM model, there are 2k such



80 Algorithms & Implementation

configurations, accounting for the exponential computational complexity obtained above. This
remains true even in the absence of recombination (when ρb = 0, for all b ∈ B), indicating the
complexity is primarily due to the mutation process. Though it is unreasonable to entirely disallow
mutation, as we have done for coalescence, it is possible to artificially limit the number of mutational
configurations that are explicitly considered.

Formally, let η ∈ G and n = (nh)h∈H with |n| = n. Let π̂Alt be an arbitrary alternative CSD,
and denote by π̂NC-A the CSD with associated CSP recursion,

π̂NC-A(eη |n) =
1

N

{( ∑

h∈H:hfη

nh

)
+

∑

ℓ∈L(η)

θℓ
∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]π̂Alt(eMη

ℓ
(a)|n)

+
∑

b∈B(η)

ρbπ̂NC-A(eR+
b
(η))π̂NC-A(eR+

b
(η)|n)

}
,

(3.6)

where N = n +
∑

ℓ∈L(η) θℓ +
∑

b∈B(η) ρb. This is precisely the recursion (3.4) for π̂NC, limited
to states that have not yet mutated. Genealogically, this corresponds to applying the process
associated with π̂NC to lineages that have not mutated; if a mutation does occur on a lineage, the
process associated with π̂Alt is applied, backward in time, thereafter. Observe that in the limit∑

ℓ∈L θℓ → 0, regardless of the alternative CSD π̂Alt used, π̂NC-A(c|n) → π̂NC(c|n).
By choosing π̂Alt to be a CSD for which the CSP can be evaluated efficiently, the resulting

approximate CSP π̂NC-A(eη|n) can be evaluated efficiently. Assuming |Aℓ| = s for all ℓ ∈ L and
that the number of loci is |L| = k, then O(s · k3) CSPs associated with π̂Alt must be evaluated.
Empirically, we have found that good results are obtained by setting π̂Alt = π̂SMC(P), where π̂SMC(P)

is the discretized version of π̂SMC to be discussed in Section 3.2. As we shall demonstrate, the
computational complexity of evaluating the CSP π̂NC-A(eη|n), setting π̂Alt = π̂SMC(P), is polynomial
in the number of loci, a dramatic improvement over the previously described exponential-complexity
algorithms. Nonetheless, the technique can only practically be extended to k ≈ 500, impeding
application to modern genomic data.

3.2 Computing π̂
SMC

We have demonstrated in the previous section that computing the CSP associated with the CSD
π̂PS is computationally challenging. Though some progress was made by considering genealogical
approximations, such as limiting coalescence, application to genomic-scale datasets remains im-
practicable, even when conditionally sampling a single haplotype. In this section, we consider the
sequentially Markov CSD π̂SMC discussed in Section 2.3, and describe an algorithm for the evaluat-
ing the associated CSP that is linear in the number of loci. Provided our earlier observation that
π̂SMC is equivalent to π̂LC, this result is remarkable.

Recall that the CSD π̂SMC is naturally cast as an HMM, where the hidden state at each lo-
cus ℓ ∈ L represented by the marginal conditional genealogy (MCG), denoted sℓ ∈ S, and the
corresponding observed state is the collection of alleles at the locus ℓ of conditionally sampled
haplotypes. Because the state space S of MCGs is continuous, however, the dynamic programming
algorithms associated with the classical HMM forward and backward recursions are not applica-
ble. However, by discretizing the continuous component of S, we are once again able to obtain a
dynamic programming algorithm, resulting in an approximate algorithm for computing the CSP
associated with π̂SMC that is linear in the number of loci.



3.2 Computing π̂SMC 81

3.2.1 Single-deme, one-haplotype

Let η ∈ H and n = (nh)h∈H with |n| = n, and consider computing the CSP π̂SMC(eη|n). Recall
from Section 2.3.2 that in the single-deme setting for a single conditionally sampled haplotype, the
MCG at locus ℓ ∈ L is given by sℓ = (tℓ, hℓ) ∈ S = R≥0×H, where tℓ is the absorption time and hℓ
is haplotype associated with the absorption lineage. The initial, transition, and emission densities
are given by (2.73), (2.74), and (2.75), respectively.

Transforming time

Recall that marginal absorption time Tℓ at each locus ℓ ∈ L is exponentially distributed with
parameter n. In order to use the same discretization for all n, we follow Stephens and Donnelly
(2000) and Fearnhead and Donnelly (2001), and transform the absorption time to a more natural
scale in which the marginal absorption time is independent of n. Define the transformed MCG at
locus ℓ ∈ L by s̃ℓ = (t̃ℓ, hℓ) where t̃ℓ = ntℓ. Applying this transformation to the initial, transition,
and emission densities yields the following transformed densities,

ζ(s̃ℓ) =
nhℓ

n
e−t̃ℓ , (3.7)

φb(s̃ℓ|s̃ℓ−1) = e−
ρb
n
t̃ℓ−1δs̃ℓ−1,s̃ℓ +

nhℓ

n

∫ t̃ℓ−1∧t̃ℓ

0

ρb
n
e−

ρb
n
tre−(t̃ℓ−tr)dtr, (3.8)

and

ξℓ(h[ℓ]|s̃ℓ) = e−
θℓ
n
t̃ℓ

∞∑

k=0

(θℓn t̃ℓ)
k

k!

(
Φ(ℓ)

)k
hℓ[ℓ],h[ℓ]

. (3.9)

As desired, using this time-rescaled model, the marginal absorption time at each locus is exponen-
tially distributed with parameter 1. Because this distribution is independent of n and the coalescent
model parameters {ρℓ} and {θℓ}, we expect that a single discretization of the transformed absorp-
tion time is appropriate for a wide range of haplotype configurations and parameter values. Using
these time-transformed states, we thus re-write the CSP π̂SMC(eη|n)

π̂SMC(eη|n) =

∫

S
fk(s̃k)ds̃k, (3.10)

where the density fℓ(·) is given by

fℓ(s̃ℓ) = ξℓ(η[ℓ]|s̃ℓ) ·

∫

S
φ(ℓ−1,ℓ)(s̃ℓ|s̃ℓ−1)fℓ−1(s̃ℓ−1) ds̃ℓ−1, (3.11)

for 1 < ℓ ≤ k, with base case

f1(s̃1) = ξℓ(η[1]|s̃1) · ζ(s̃1). (3.12)

Recall that, as described in Section 2.3.1, the forward densities fℓ(·), and also the initial, transition,
and emission densities, generally depend on both the conditionally sampled haplotype η and the
previously sampled configuration n (and also the model parameters). In order to simplify notation,
we have suppressed this dependence.
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Discretizing time

Our next objective is to discretize the absorption time t̃ ∈ R≥0. Let 0 = τ0 < τ1 < · · · < τm = ∞ be
a finite strictly increasing sequence in R≥0∪{∞} so that P = {[τj−1, τj)}j=1,...,m is a finite partition
of R≥0, into |P| = m intervals. This general partition will serve as the requisite discretization for
absorption time; later in this section we provide some guidance on specific choices for the partition
P. The discretized space of MCGs is denoted by S̈ = P × H, and the discretized MCG at locus
ℓ ∈ L is denoted by s̈ℓ = (pℓ, hℓ) ∈ S̈, where pℓ ∈ P is the time interval in which absorption occurs,
and hℓ ∈ H is the absorption haplotype.

Towards formulating a P-discretized version of the dynamics exhibited by the transformed
HMM, we define the following P-discretized version of the marginal, transition, and emission den-
sities; overloading our present notation, we denote these densities by ζ(s̈ℓ), φb(s̈ℓ|s̈ℓ−1), and ξℓ(a|s̈ℓ),
respectively. The discretized marginal density is obtained by integrating the transformed marginal
density over the unknown transformed absorption time T̃ℓ ∈ pℓ,

ζ(s̈ℓ) =

∫

pℓ

ζ(t̃ℓ, hℓ)dt̃ℓ =
nhℓ

n
· x(pℓ), (3.13)

where x(p) =
∫
p e

−t̃dt̃. The discretized transition density is similarly obtained by integrating the

transformed transition density over the unknown absorption time T̃ℓ ∈ pℓ, and partitioning with
respect to the unknown absorption time T̃ℓ−1 ∈ pℓ−1. The latter is necessary because the discretized
transition density is formally conditioned on the event {T̃ℓ−1 ∈ pℓ−1} rather than {T̃ℓ−1 = t̃ℓ−1}.
Thus, making use of the pℓ−1-truncated marginal distribution on the MCG at locus ℓ− 1,

φb(s̈ℓ|s̈ℓ−1) =
1

ζ(s̈ℓ−1)

∫

pℓ

∫

pℓ−1

φb(t̃ℓ, hℓ|t̃ℓ−1, hℓ−1)ζ(t̃ℓ−1, hℓ−1)dt̃ℓ−1dt̃ℓ

= yb(pℓ−1) · δs̈ℓ−1,s̈ℓ + zb(pℓ|pℓ−1) ·
nhℓ

n
,

(3.14)

with analytic expressions for yb(·) and zb(·|·) provided in Appendix C.1. Finally, the discretized
emission density is obtained by integrating the transformed emission density over the unknown
transformed absorption time T̃ℓ ∈ pℓ, which is necessary because the discretized emission density
is formally conditioned on the event {T̃ℓ ∈ pℓ} rather than {T̃ℓ = t̃ℓ}. As before, making use of the
pℓ−1-truncated marginal distribution on the MCG at locus ℓ− 1,

ξℓ(a|s̈ℓ) =
1

ζ(s̈ℓ−1)

∫

pℓ

ξℓ(a|t̃ℓ, hℓ)ζ(t̃ℓ−1, hℓ−1)dt̃ℓ =

∞∑

k=0

v(k)

ℓ (pℓ) ·
(θℓ/n)

k

k!

(
Φ(ℓ)

)k
hℓ[ℓ],a

, (3.15)

with an analytic expression for v(k)

ℓ (·) provided in Appendix C.1. Note that we have not introduced
any additional approximation in computing the discretized marginal, transition, and emission den-
sities; the computation of these densities follows from elementary probability theory.

We next wish to write the key HMM forward recursion for the discretized space of MCGs. We
thus define the discretized forward density fℓ(s̈ℓ):

fℓ(s̈ℓ) =

∫

pℓ

fℓ(t̃ℓ, hℓ)dt̃ℓ. (3.16)

Unfortunately, we cannot directly obtain a recursion for the discretized forward density fℓ(s̈ℓ) via
the recursion (3.11) for the transformed forward density fℓ(t̃ℓ, hℓ). We therefore make an additional
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approximation, that the transformed transition and emission densities, φb(·|t̃, h) and ξℓ(·|t̃, h),
respectively, depend on the interval p ∈ P, such that t̃ ∈ p, but not on the actual transformed time
t̃. Formally, letting p ∈ P, then for all t̃ ∈ p, we approximate

φb(·|t̃, h) ≈ φb(·|p, h), and (3.17)

ξℓ(·|t̃, h) ≈ ξℓ(·|p, h). (3.18)

Observe that, under the assumption of well-behaved transition and emission densities, these ap-
proximations can be made arbitrarily accurate by using increasingly refined partitions P of R≥0.
Thus, using the recursive definition (3.11) of the transformed density fℓ(t̃ℓ, hℓ), and applying the
approximations, (3.17) and (3.18),

fℓ(s̈ℓ) =

∫

pℓ

fℓ(t̃ℓ, hℓ)dt̃ℓ

=

∫

pℓ

ξℓ(η[ℓ]|t̃ℓ, hℓ) ·

∫

S
φ(ℓ−1,ℓ)(t̃ℓ, hℓ|t̃ℓ−1, hℓ−1)fℓ−1(t̃ℓ−1, hℓ−1) ds̃ℓ−1dt̃ℓ

≈ ξℓ(η[ℓ]|s̈ℓ) ·
∑

s̈ℓ−1∈S̈

φ(ℓ−1,ℓ)(s̈ℓ|s̈ℓ−1)fℓ−1(s̈ℓ−1)

(3.19)

With the support of this approximate discretized forward recursion, we can thus write

π̂SMC(P)(eη|n) =
∑

s̈k∈S̈

Fk(s̈k) ≈
∑

s̈k∈S̈

fk(s̈k) = π̂SMC(eη|n), (3.20)

where the discretized forward density is defined

Fℓ(s̈ℓ) = ξℓ(η[ℓ]|s̈ℓ) ·
∑

s̈ℓ−1∈S̈

φ(ℓ−1,ℓ)(s̈ℓ|s̈ℓ−1)Fℓ−1(s̈ℓ−1), (3.21)

with base case
F1(s̈1) = ξ1(η[1]|s̈1) · ζ(s̈1). (3.22)

In summary, equations (3.20), (3.21), and (3.22) provide the requisite P-discretized recursions
necessary to use the classical forward algorithm for HMMs. Observe that the fact that the Markov
property holds on the discretized state space S̈ = P ×H follows from the assumptions (3.17) and
(3.18) (Rosenblatt, 1959). In fact, the relevant discretized forward recursions may alternatively
be obtained by assuming that the Markov property holds on S̈ and writing down the relevant
transition and emission probabilities with the interpretations given above. In the remainder of
this section, we examine some general properties of the discretized dynamics, and also provide one
method for choosing a discretization P. The computational complexity of evaluating π̂SMC(P)(eη|n)
is examined in Section 3.3.

Properties of the discretization

Recall the detailed-balance condition (2.77) associated with the marginal and transition densities
for π̂SMC. Using expressions for the discretized marginal and transition densities, (3.13) and (3.14),
along with the non-discretized detailed balance condition (2.77), it is possible to verify that

φb(s̈ℓ|s̈ℓ−1)ζ(s̈ℓ−1) = φb(s̈ℓ−1|s̈ℓ)ζ(s̈ℓ). (3.23)
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Thus, the discretized marginal and transition densities satisfy an analogous detailed balance con-
dition. As discussed in Section 2.3.2, the stated Markov process is therefore reversible, and the
discretized marginal distribution is stationary under the given transition dynamics. Because we
start the Markov process using the discretized marginal distribution, this property ensures that the
CSP computation for π̂SMC(P) will yield the same result regardless of whether we proceed from left
to right, as in (3.20), or from right to left, for any discretization P.

Furthermore, recall the locus-skipping property (2.79) associated with π̂SMC. Using the ex-
pression for the discretized transition density (3.14) along with the non-discretized locus-skipping
property (2.79), it is possible to show that an analogous property approximately holds for π̂SMC(P),

∑

s̈ℓ∈S̈

φ(ℓ−1,ℓ)(s̈ℓ|s̈ℓ−1) · φ(ℓ,ℓ+1)(s̈ℓ+1|s̈ℓ) ≈ φ(ℓ−1,ℓ+1)(s̈ℓ+1|s̈ℓ−1), (3.24)

where the non-equality is a direct consequence of (3.17). As indicated in Section 2.3.2, this approx-
imation is useful in scenarios when data is missing (i.e. η[ℓ] is unknown for one or more ℓ ∈ L), as
it reduces the computational complexity of the dynamic program. Again, this approximation holds
for any discretization P, and the approximation error will decrease for more refined partitions.

Discretization choice

Finally, we discuss a method for choosing a discretization P of the absorption time. Recalling
that the marginal transformed absorption time is exponentially distributed with parameter 1, let
{(w(j), t(j))}j=1,...,m be the m-point Gaussian quadrature associated with the function f(t) = e−t

(Abramowitz and Stegun, 1972, Section 25.4.45). Set τ0 = 0, and for each value j = 1, . . . ,m, set
τj such that ∫ τj

τj−1

e−tdt = w(j). (3.25)

Note that
∑m

j=1w
(j) = 1, and therefore τm = ∞, and the points 0 = τ0 < · · · < τm = ∞ determine

a partition P = {[τj−1, τj)}j=1,...,m of R≥0. This partition may then be used to compute π̂SMC(P);
we shall henceforth write π̂SMC(d) for the d-point Gaussian quadrature-discretized version of π̂SMC.

The use of Gaussian quadrature evokes the work of Stephens and Donnelly (2000) and Fearnhead
and Donnelly (2001). Although the method we employ is related, it is different in that we do not
use the quadrature directly (for example, the values of the quadrature points {t(j)} are never used
explicitly); rather we use the Gaussian quadrature as a reasonable way of choosing a partition P.
We briefly note that we experimented with other methods of discretization, including using the
Gaussian quadrature points and weights as in Stephens and Donnelly (2000), but these techniques
failed to satisfy the detailed-balance condition, and did not produce superior results.

3.2.2 Multiple-deme, one-haplotype

Suppose D is a finite set of demes; let η ∈ H, α ∈ D and n = (nd,h)d∈D,h∈H with |n| = n, and
consider computing the CSP π̂SMC(eα,η|n). Recall from Section 2.3.3 that the MCG at locus ℓ ∈ L
is given by sℓ ∈ S = R≥0 × H × Q, where Q is the space of full migrational histories. Though
this is the correct space of MCGs to consider for the sequentially Markov CSD π̂SMC, the infinite
dimensionality of the space Q presents practical computational difficulties.

For this reason, we proposed the CSD π̂SMC-ADO. At locus ℓ ∈ L, the MCG associated with
π̂SMC-ADO is given by ŝℓ = (tℓ, hℓ, dℓ) ∈ Ŝ, where Ŝ = R≥0 × H × D; the values tℓ and hℓ are
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the absorption time and haplotype, and dℓ is the absorption deme. As described in Section 2.3.3,
restricting the state space to the absorption deme instead of the full migrational history introduces
a non-Markov dependence into the sequence of MCGs; it is nonetheless possible to approximate
the sequence by a Markov process, with marginal and transition densities given by (2.88), (2.90),
and common emission density (2.75).

Because the space of MCGs Ŝ associated with the CSD π̂SMC-ADO is of finite-dimension, we
proceed with developing a practicable algorithm for approximating the CSP π̂SMC-ADO(eα,η|n). As in
the previous section for a single-deme, it remains necessary to discretize the continuous component
of the state space Ŝ associated with absorption time; however, unlike the single-deme setting,
the marginal density (2.88) does not have a natural time re-scaling, such that the transformed
density does not depend on n, and so we do not attempt to re-scale time. We note at the outset,
however, that this implies that the eventual choice of discretization must be sensitive both to the
configuration n and to the parameters associated with the migration model.

Discretizing time

As previously, let 0 = τ0 < τ1 < · · · < τm = ∞ be a finite strictly increasing sequence in R≥0∪{∞}
so that P = {[τj−1, τj)}j=1,...,m is a partition of R≥0 into |P| = m intervals. The discretized space of
MCGs is denoted by S̈ = P×H×D and the MCG at locus ℓ ∈ L is denoted by s̈ℓ = (pℓ, hℓ, dℓ) ∈ S̈,
where pℓ ∈ P is the time interval in which absorption occurs, and hℓ ∈ H and dℓ ∈ D are the
absorption haplotype and deme, respectively.

The P-discretized marginal, transition, and emission densities are computed using the same
basic probability theory described in Section 3.2.1. In particular, for the discretized marginal
density, we obtain

ζ(s̈ℓ) =

∫

pℓ

ζ(tℓ, hℓ, dℓ)dtℓ = x(pℓ, dℓ) ·
ndℓ,hℓ

ndℓ
, (3.26)

where, recalling that the matrix Z governs the absorption process,

x(p, d) =

∫

p

(
ZeZt

)
rα,ad

dt. (3.27)

Similarly, for the discretized transition density, we obtain

φb(s̈ℓ|s̈ℓ−1)

=
1

ζ(s̈ℓ−1)

∫

pℓ

∫

pℓ−1

φb(tℓ, hℓ, dℓ|tℓ−1, hℓ−1, dℓ−1)ζ(tℓ−1, hℓ−1, dℓ−1)dtℓ−1dtℓ

= yb(pℓ−1, dℓ−1)δs̈ℓ−1,s̈ℓ + zb(pℓ, dℓ|pℓ−1, dℓ−1) ·
ndℓ,hℓ

ndℓ
,

(3.28)

where explicit expressions of yb(·) and zb(·|·) are provided in Appendix C.2. Finally, for the dis-
cretized emission density, we obtain

ξℓ(a|s̈ℓ) =
1

ζ(s̈ℓ)

∫

pℓ

ξℓ(a|tℓ, hℓ)ζ(tℓ, hℓ, dℓ))dtℓ, (3.29)

and we again provide a more explicit form of this quantity in Appendix C.2. Note that the emission
probability (2.75) in the continuous case is only dependent on the time of absorption and the allele
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hℓ[ℓ] of the absorption haplotype. The discretized analog (3.29) on the other hand also depends on
the deme that the absorption haplotype resides in. This is due to the fact that the latter emission
probability is conditioned on absorption in a particular deme at any time in the discretized interval;
because the rate of absorption depends on the deme, the distribution on absorption time, and hence
the emission probability, must also depend on the deme.

As in Section 3.2.1, in order to write the HMM forward recursion for the discretized space of
the MCGs, we make an additional approximation. Formally, letting p ∈ P, then for all t ∈ p, we
approximate

φb(·|t, h, d) ≈ φb(·|p, h, d), and (3.30)

ξℓ(·|t, h, d) ≈ ξℓ(·|p, h, d). (3.31)

These approximations in conjunction with the discretized marginal, transition, and emission
densities provided above yields a discretized forward recursion that approximates the CSP
π̂SMC-ADO(eα,η|n). As before, approximating Fℓ(s̈ℓ) ≈

∫
pℓ
fℓ(tℓ, hℓ, dℓ)dtℓ, we obtain the discretized

approximation

π̂SMC(P)(eα,η |n) =
∑

s̈k∈S̈

Fk(s̈ℓ) ≈

∫

Ŝ
fk(ŝk)dŝk = π̂SMC-ADO(eα,η|n) ≈ π̂SMC(eα,η|n), (3.32)

where the first approximate equality is due to the discretization, (3.30) and (3.31), and the second
approximate equality is due to the restriction of the full migrational history to the deme in which
absorption occurs. The discretized forward density Fk(s̈ℓ) is defined as in (3.21) and (3.22). As
before, the P-discretized recursions enable the classical forward algorithm for HMMs to be used to
evaluate the CSP π̂SMC(P)(eα,η|n).

Discretization choice

Recall that in Section 3.2.1, for a single deme, the transformed absorption time is marginally
distributed as an exponential random variable with rate parameter 1; it was therefore natural
to use Gaussian quadrature associated with the function f(t) = e−t to obtain the discretization
intervals. In the present setting, for a structured population including migration, there is no such
natural time transformation or related evident choice for the discretization intervals. In practice,
we have obtained reasonable and numerically stable results by using a logarithmic discretization.
To produce a discretization P comprising |P| = m intervals, we set

τj = −
1

r
log

(
m− j

m

)
, (3.33)

where r is the harmonic mean of the absorption rates in each deme r =
(∏

d∈D κ
−1
d nd

)1/q
. Observe

that 0 = τ0 < · · · < τm = ∞, and so the resulting discretization P is well-defined.

3.2.3 Backward algorithm and marginal decoding

In addition to the general HMM forward recursion described in Section 2.3.1, there exists a corre-
sponding backward recursion (Cappé et al., 2005). Letting c and n be haplotype configurations,
the CSP π̂SMC(c|n) can be expressed in terms of the backward recursion,

π̂SMC(c|n) =

∫

S
ξ
(n)
ℓ (c[1]|s1) · e

(c,n)
k (s1) ds1, (3.34)
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where e
(c,n)
ℓ (·) is defined (for 1 ≤ ℓ < k) by

e
(c,n)
ℓ (sℓ) =

∫

S
ξ
(n)
ℓ+1(c[ℓ+ 1]|sℓ+1) · φ

(n)
(ℓ,ℓ+1)(sℓ+1|sℓ) · e

(c,n)
ℓ+1 (sℓ+1) dsℓ+1, (3.35)

with base case
e
(c,n)
k (sk) = 1. (3.36)

As for the forward recursion, the MCG state space S is continuous, and explicit evaluation of
the integrals is not generally possible. Fortunately, the preceding work in Sections 3.2.1 and 3.2.2
on discretizing the MCG state space is directly applicable; recall that S̈ is the discretized space
of MCGs. For a single conditionally sampled haplotype η ∈ H, then analogous to equations
(3.20),(3.21) and (3.22), it is possible to compute π̂SMC(P)(eη|n) ≈ π̂SMC(eη|n),

π̂SMC(P)(eη |n) =
∑

s̈1∈S̈

ξ1(η[1]|s̈1)E1(s̈1), (3.37)

where the discretized backward density is defined, for 1 ≤ ℓ < k

Eℓ(s̈ℓ) =
∑

s̈ℓ+1∈S̈

ξℓ+1(η[ℓ + 1]|s̈ℓ+1)φ(ℓ,ℓ+1)(s̈ℓ+1|s̈ℓ)Eℓ+1(s̈ℓ+1), (3.38)

with base case
Ek(s̈k) = 1. (3.39)

Much as the discretized forward recursion, the discretized backward recursion can be used, in
conjunction with dynamic programming, to evaluate the CSP π̂SMC(P)(eη|n) with computational
complexity linear in the number of loci.

Finally, we consider marginal decoding on the discretized HMM associated with the CSD
π̂SMC(P). In this context, marginal decoding provides the posterior distribution for the random
MCG S̈ℓ at an arbitrary locus ℓ ∈ L; as we discuss in Chapter 4, this distribution is useful in
several applications of the CSD. General HMM methodology (Cappé et al., 2005) stipulates that
the posterior probability pℓ(s̈ℓ|c,n) of the MCG s̈ℓ ∈ S̈ is given by

pℓ(s̈ℓ|c,n) =
Fℓ(s̈ℓ)Eℓ(s̈ℓ)∑
s̈∈S̈ Fℓ(s̈)Eℓ(s̈)

, (3.40)

where Fℓ(s̈ℓ) and Eℓ(s̈ℓ) are the forward and backward values associated with the forward and
backward recursions. Thus, by computing and caching the forward and backward values at each
locus ℓ ∈ L, and for each relevant s̈ℓ ∈ S̈, marginal decoding at an arbitrary locus can be efficiently
realized. In Section 3.3.3, we re-visit the problem of marginal decoding, and demonstrate that it is
possible to substantially reduce the associated time and space complexity.

3.3 Computing π̂
SMC(P) efficiently

In the previous section, we described a P-discretized approximation π̂SMC(P) to the CSD π̂SMC, and
derived discretized versions of the marginal, transition, and emission densities. The CSP associ-
ated with the discretized approximation can be efficiently computed using the forward algorithm for
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HMMs. The computational complexity of the algorithm is linear in the number of loci, represent-
ing a fundamental improvement over exact algorithms associated with π̂PS and π̂SMC, for which the
computational complexity of the best known exact algorithms are super-exponential and exponen-
tial in the number of loci, respectively. As we shall demonstrate, however, the constants associated
with the forward algorithm remain large, thus making it difficult or impossible to directly apply
the algorithm to genomic-scale data.

In this section, we examine the forward algorithm in detail, and propose two related optimiza-
tions that help to overcome this limitation. Consider sampling a large number of sequences from a
population. If the sampled sequences are very long, it is likely that nearly all of them will be unique.
However, for most relatively short regions, the number of unique subsequences will be reduced due
to the effects of linkage disequilibrium, or alternatively, finite recombination rates between loci.
This intuition forms the basis of the first optimization, which locally reduces the complexity of
the forward algorithm, thereby improving efficiency. The collection of locally unique subsequences
on which this optimization depends are formalized as a partition C of the sampled sequences; we
characterize the optimal partition given the sampled sequences, and provide a fast algorithm for
approximating this optimum.

A second common feature of the sampled sequences is an abundance of non-polymorphic sites.
These sites are informative – for example, a local over-abundance of non-polymorphic sites indicates
a recent common ancestor, which in turn indicates a low propensity for recombination – and should
be included in the analysis. Leveraging the fact that non-polymorphic sites do not differentiate
the sequences, we show that it is possible to reduce the complexity of the forward algorithm at
non-polymorphic sites. Note that this is different from simply ignoring non-polymorphic sites;
instead, we propose algorithmic improvements to efficiently incorporate non-polymorphic sites into
the analysis.

In formally describing the optimizations, we restrict attention to the CSD π̂SMC(P) in the
multiple-locus and single-deme setting, described in Section 3.2.1. Recall that the discretized
MCG at locus ℓ ∈ L is denoted by s̈ℓ = (pℓ, hℓ) ∈ S̈ = P ×H, where P is a partition of R≥0 into m
intervals, and pℓ ∈ P is the absorption interval of the MCG. Letting η ∈ H and n = (nh)h∈H, the
CSP π̂SMC(P)(eη|n) can be expressed

π̂SMC(P)(eη|n) =
∑

s̈ℓ∈S̈n

Fk(s̈k), (3.41)

where the discretized forward density is defined, for 1 ≤ ℓ ≤ k,

Fℓ(s̈ℓ) = ξℓ(η[ℓ]|s̈ℓ) ·
∑

s̈ℓ−1∈S̈n

φ(ℓ−1,ℓ)(s̈ℓ|s̈ℓ−1)Fℓ−1(s̈ℓ−1), (3.42)

with base case
F0(s̈0) = ζ(s̈0), (3.43)

where the P-discretized marginal, transition, and emission densities are given by (3.13), (3.14), and
(3.15), respectively. Observe that we have restricted the summations to the space S̈n = P×Hn ⊂ S̈,
where Hn = {h ∈ H : nh > 0} is the space of haplotypes with positive multiplicity in n. It can
be verified that Fℓ(·, h) = 0 for all h ∈ H such that nh = 0, and therefore this modification does
not affect the computation. Hereafter, we write that |Hn| = nu, so that |S̈n| = mnu. In order to
regularize the forward recursion, we have also extended it to a fictitious 0-th locus; it can be verified
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Algorithm 1 Compute π̂SMC(P)(eη|n) using the ordinary forward algorithm

1: for all s̈0 ∈ S̈n do

2: Compute F0(s̈0) by (3.43)
3: end for

4: for ℓ = 1 → k do

5: for all s̈ℓ ∈ S̈n do

6: Compute Fℓ(s̈ℓ) using (3.42)
7: end for

8: end for

9: Compute π̂SMC(P)(eη|n) using (3.41)

that, given an arbitrary value of ρ(0,1) to be used for computing the transition density φ(0,1)(s̈1|s̈0),
this modification does not affect the computation.

As a point of reference, we begin with the most basic forward algorithm (Cappé et al., 2005),
provided in Algorithm 1. Within the critical loop, lines 4–8, all of the required quantities on the
right hand side of the recursion (3.42) for Fℓ(s̈ℓ) have been computed by the previous iteration, or
in the initialization, lines 1–3; the forward algorithm is therefore a dynamic programming solution
to the recursion for the forward variable Fℓ(·). The time complexity of line 6 is O(mnu), of lines
5–7 is O((mnu)

2), and of lines 4–8 is O(k(mnu)
2). The initialization, lines 1–3, and termination,

line 9 both have time complexity O(mnu), and so the overall time complexity is O(k(mnu)
2).

In the remainder of this section, we demonstrate how the ideas above can be used to refine
the discretized forward recursion, and in turn to construct more efficient dynamic programs. We
present these refinements in the context of two sufficient conditions, and later revisit the sufficient
conditions to show that the optimizations are applicable, either in whole or in part, to alternative
CSDs, such as those of Fearnhead and Donnelly (2001) and Li and Stephens (2003), or to more
complex demographic scenarios, such as structured populations with migration.

As a measure of real-world performance, asymptotic complexity analyses often leave much to
be desired. Consider, for example, a sample in which 1 out of every 1000 sites is polymorphic.
Letting k = |L| be the total number of sites, and kp ≤ k the number of polymorphic sites, then
formally O(k) = O(kp). Nevertheless, for the present purposes, we would like to distinguish between
an algorithm that operates on each of the k sites and an algorithm that operates only on the kp

polymorphic sites, as the latter will be some 1000× faster; we thus write the complexities for the
two algorithms as O(k) and O(kp), respectively.

3.3.1 Improving efficiency via the transition distribution

Consider the marginal and transition distributions on MCGs, with densities ζ(·) and φb(·), defined
in (3.13) and (3.14), respectively. In the marginal distribution, the absorption haplotype is inde-
pendent of the absorption interval, and uniformly distributed; conditioned on recombination, the
same is true for the transition distribution. We therefore, observe the following property,

Property 1. The initial and transition densities, ζ(·) and φb(·), take the following functional form

ζ(s̈ℓ) = x(pℓ) ·
nhℓ

n
,

φb(s̈ℓ|s̈ℓ−1) = yb(pℓ−1) · δs̈ℓ−1,s̈ℓ + zb(pℓ|pℓ−1) ·
nhℓ

n
,

where x(·), yb(·), zb(·|·) are known analytic expressions.
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Algorithm 2 Compute π̂SMC(eη|n) using a forward-type algorithm improved by considering Prop-
erty 1
1: for all p0 ∈ P do

2: Compute F0(p0, h0) by (3.48), ∀h0 ∈ Hn

3: Compute Q0(p0) using (3.44)
4: end for

5: for ℓ = 1 → k do

6: for all pℓ ∈ P do

7: Compute Uℓ−1(pℓ) using (3.45)
8: Compute Fℓ(pℓ, hℓ) using (3.47), ∀hℓ ∈ Hn

9: Compute Qℓ(pℓ) using (3.44)
10: end for

11: end for

12: Compute π̂SMC(eη|n) using (3.46)

For the CSD π̂SMC(P), the analytic expressions for x(·), yb(·), zb(·|·) are given in Appendix C.1.
Using Property 1 in conjunction with definitions,

Qℓ(pℓ) =
∑

hℓ∈Hn

Fℓ(pℓ, hℓ), and (3.44)

Uℓ(pℓ+1) =
∑

pℓ∈P

z(ℓ,ℓ+1)(pℓ+1|pℓ)Qℓ(pℓ), (3.45)

we can express (3.41), (3.42), and (3.43) as

π̂SMC(eη |n) =
∑

pk∈P

Qk(pk), (3.46)

where, for 1 < ℓ ≤ k,

Fℓ(s̈ℓ) = ξℓ(η[ℓ]|s̈ℓ)

[
y(ℓ−1,ℓ)(pℓ)Fℓ−1(s̈ℓ) +

nhℓ

n
Uℓ−1(pℓ)

]
, (3.47)

with base case
F0(s̈0) = x(p0) ·

nh0

n
. (3.48)

Making use of these refined recursions directly, the dynamic program in Algorithm 2 can be used
to compute π̂SMC(eη|n). The time complexity of lines 7, 8, and 9 are O(m), O(nu), and O(nu),
respectively, and the time complexity of lines 6–10 is therefore O(m(m+nu)). As a result, the time
complexity for lines 5–11, and for the algorithm as a whole, is O(km(m+ nu)).

Algorithm 2 represents a substantial improvement over the quadratic dependence on nu in
the ordinary forward algorithm for HMMs, given in Algorithm 1. The key improvement is that
the quantity Uℓ−1(pℓ) is reused in computing each value of Fℓ(pℓ, hℓ), which is made possible by
the independence described in Property 1. This simple optimization has been generally adopted
(Fearnhead and Donnelly, 2001; Li and Stephens, 2003; Paul et al., 2011), and serves as a baseline
for improvement.

3.3.2 Improving efficiency via the emission distribution

The MCG at locus ℓ ∈ L, representing the hidden state of the HMM, is denoted by a tuple
s̈ℓ = (pℓ, hℓ). However, the emission distribution, with density ξℓ(·|s̈ℓ) defined by (3.15), associated
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with the observed allele η[ℓ] depends on the absorption haplotype hℓ ∈ Hn only through the allele
hℓ[ℓ] ∈ Aℓ. As a result,

Property 2. Consider a subset B ⊂ Hn such that there exists an allele a with h[ℓ] = a for all
h ∈ B. Then, for each absorption interval pℓ ∈ P, the emission distribution ξℓ(·|pℓ, hℓ) is identical
for all hℓ ∈ B. We indicate this fact by writing ξℓ(·|pℓ, hℓ) = ξℓ(·|pℓ,B) for all hℓ ∈ B.

With this in mind, define a partition C of the haplotype configuration n to be a collection of blocks
of the form (B, ℓs, ℓe), where B ⊂ Hn and 1 ≤ ℓs ≤ ℓe ≤ k, such that

• For every (B, ℓs, ℓe) ∈ C, there exists a sub-haplotype x such that h[ℓs : ℓe] = x for all h ∈ B.

• For every haplotype h ∈ Hn and 1 ≤ ℓ ≤ k, there exists exactly one (B, ℓs, ℓe) ∈ C with h ∈ B
and ℓs ≤ ℓ ≤ ℓe.

For a given locus ℓ ∈ L, a configuration partition C induces a natural partition of the haplotypes
Hn, denoted by Cℓ, and Property 2 applies to each B ∈ Cℓ. In the next sections, we present new
forward recursions and dynamic programming algorithms valid for an arbitrary partition C.

The computational complexity of these algorithms will depend on C through two functions,
namely Ψ(C) and Ω(C), defined as follows: For locus ℓ, define ψℓ(C) = |Cℓ|, the number of blocks in
Cℓ, and define ωℓ(C) to be the total number of haplotypes in blocks of the configuration partition
ending at locus ℓ. Then,

Ψ(C) =
k∑

ℓ=1

ψℓ(C) =
k∑

ℓ=1

|Cℓ|,

Ω(C) =
k∑

ℓ=1

ωℓ(C) =
∑

(B,ℓs,ℓe)∈C

|B|.

In some cases, we are primarily concerned with polymorphic loci, and so we define Ψp(C) to be the
analog of Ψ(C) summed over only polymorphic loci.

Finally, we define the trivial partition CT for haplotype configuration n as the partition con-
taining a single block ({h}, 1, k) for each h ∈ Hn. Note that Ψ(CT) = k · nu and Ω(CT) = nu. See
Figure 3.1 for an illustration of both CT and two non-trivial configuration partitions.

A general configuration partition

Let C be a configuration partition of n. Begin by defining

Qℓ(pℓ,B) =
∑

hℓ∈B

Fℓ(pℓ, hℓ), (3.49)

so that Qℓ(pℓ) =
∑

B∈Cℓ
Qℓ(pℓ,B). Now suppose (B, ℓs, ℓe) ∈ C. Applying Definition (3.49) and

Property 2 to (3.47), then for ℓs ≤ ℓ ≤ ℓe,

Qℓ(pℓ,B) = ξℓ(η[ℓ]|p,B)

[
y(ℓ−1,ℓ)(p)Qℓ−1(p,B) +

nB
n
Uℓ−1(p)

]
, (3.50)
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(a)

(b)

(c)

Figure 3.1. Illustration of three alternative configuration partitions. Each row represents a hap-
lotype, with white and black circles representing the allele at each of 8 polymorphic loci. The
color of haplotype indicates the block to which it belongs. (a) The trivial configuration partition
CT; Ψp(CT) = 40 and Ω(CT) = 5. (b) A non-trivial configuration partition, C; Ψp(C) = 24 and
Ω(C) = 12. (c) The configuration partition Cs found by the algorithm described in Section 3.3.2 for
s = 3; Ψp(Cs) = 24 and Ω(Cs) = 15.

where we have defined nB =
∑

h∈B nh. Similarly, by induction, and making use of (3.47) and (3.50),
it is possible to show that, for ℓs ≤ ℓ ≤ ℓe and hℓ ∈ B,

Fℓ(pℓ, hℓ) = Tℓ(pℓ,B) · Fℓs−1(pℓ, hℓ) +
nhℓ

nB

(
Qℓ(pℓ,B)− Tℓ(pℓ,B)Qℓs−1(pℓ,B)

)
, (3.51)

where Tℓ(pℓ,B) =
∏ℓ

ℓ′=ℓs
ξℓ′(η[ℓ

′]|pℓ,B) · y(ℓ−1,ℓ)(pℓ), and solves the recursion,

Tℓ(pℓ,B) = ξℓ(η[ℓ]|pℓ,B) · y(ℓ−1,ℓ)(pℓ) · Tℓ−1(pℓ,B), (3.52)

for ℓs ≤ ℓ ≤ ℓe, with base case Tℓs−1(p,B) = 1.
For each block (B, ℓs, ℓe) ∈ C, we take advantage of (3.50) and (3.52) to directly compute

Qℓ(p,B) and Tℓ(p,B) for each value of pℓ ∈ P, at every locus ℓs ≤ ℓ ≤ ℓe. At the end of the
block, when ℓ = ℓe, the finer-grain values Fℓ(pℓ, hℓ) are computed for each pℓ ∈ P and hℓ ∈ B using
(3.51), and subsequently used to compute initial values for blocks beginning at locus ℓ + 1. The
associated dynamic program to compute the CSP π̂SMC(eη|n) is given in Algorithm 3. Observe that
Algorithm 2 is a special case of this algorithm for C = CT.

Within Algorithm 3, the time complexity of line 8 is O(m); of line 9 is O(ψℓ(C)); and of lines
10 and 11 is O(ωℓ(C)). Thus, the time complexity of lines 7–12, and is O(m(m+ ψℓ(C) + ωℓ(C))),
and the time complexity of the entire algorithm is O(km2 + m(Ψ(C) + Ω(C))). Thus, if it is
possible to obtain a configuration partition C for n such that Ψ(C)+Ω(C) is substantially less than
Ψ(CT) + Ω(CT) = knu + nu, our new algorithm may be considerably faster than Algorithm 2;
constructing such a configuration partition is the subject of Section 3.3.2.

The absence of polymorphism

In many reasonable evolutionary scenarios, a great many loci will not be polymorphic. Accommo-
dating such loci in the analysis is important and can be done efficiently making use of Property 2.
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Algorithm 3 Compute π̂SMC(eη|n) using a forward-type algorithm improved by considering Prop-
erties 1 and 2, for a configuration partition C
1: for all p0 ∈ P do

2: Compute F0(p0, h) using (3.48), ∀h0 ∈ Hn

3: Compute Q0(p0,B) using (3.49) and T0(p0,B) = 1, ∀(B, 1, ℓe) ∈ C
4: Compute Q0(p0) using (3.49)
5: end for

6: for ℓ = 1 → k do

7: for all pℓ ∈ P do

8: Compute Uℓ−1(pℓ) using (3.45)
9: Compute Qℓ(pℓ,B) and Tℓ(pℓ,B) using (3.50) and (3.52), ∀(B, ℓs, ℓe) ∈ C such that ℓs ≤ ℓ ≤ ℓe; compute

Qℓ(pℓ) using (3.49)
10: Compute Fℓ(pℓ, hℓ) using (3.51), ∀hℓ ∈ B and ∀(B, ℓs, ℓ) ∈ C
11: Compute Qℓ(pℓ,B) using (3.49) and Tℓ(pℓ,B) = 1, ∀(B, ℓ+ 1, ℓe) ∈ C
12: end for

13: end for

14: Compute π̂SMC(eη|n) using (3.46)

In particular, for a non-polymorphic locus ℓ, Property 2 applies to the trivial set B0 = Hn, and
therefore the emission distribution can be written ξℓ(·|p,B0) = ξℓ(·|p); moreover, Qℓ(p) = Qℓ(p,B0).

Suppose consecutive loci ℓ∗s , . . . , ℓ
∗
e are not polymorphic. Rewriting equations (3.50) and (3.51)

for block (B0, ℓ
∗
s , ℓ

∗
e ) yields, for ℓ

∗
s ≤ ℓ ≤ ℓ∗e ,

Qℓ(pℓ) = ξℓ(η[ℓ]|pℓ) ·

[
y(ℓ−1,ℓ)(pℓ)Qℓ−1(pℓ) + Uℓ−1(pℓ)

]
, (3.53)

and, for ℓ∗s ≤ ℓ ≤ ℓ∗e and hℓ ∈ B0 = Hn,

Fℓ(pℓ, hℓ) = Tℓ(pℓ) · Fℓ∗s−1(pℓ, hℓ) +
nhℓ

n

(
Qℓ(pℓ)− Tℓ(pℓ)Qℓ∗s−1(pℓ)

)
, (3.54)

where Tℓ(pℓ) =
∏ℓ

ℓ′=ℓ∗s
ξℓ′(η[ℓ

′]|pℓ) · y(ℓ−1,ℓ)(pℓ) and solves the recursion

Tℓ(pℓ) = ξℓ(η[ℓ]|pℓ) · y(ℓ−1,ℓ)(pℓ) · Tℓ−1(pℓ), (3.55)

for ℓ∗s ≤ ℓ ≤ ℓ∗e , with base case Tℓ∗s−1(pℓ) = 1.
Now let C be a configuration partition with (B, ℓs, ℓe) ∈ C. Suppose that there is a stretch of

non-polymorphic loci ℓ∗s , . . . , ℓ
∗
e , and that ℓs ≤ ℓ∗s ≤ ℓ∗e ≤ ℓe. Applying definition (3.49) to (3.54),

yields, for ℓ∗s ≤ ℓ ≤ ℓ∗e ,

Qℓ(pℓ,B) = Tℓ(pℓ)Qℓ∗s−1(pℓ,B) +
nB
n

[
Qℓ(pℓ)− Tℓ(pℓ)Qℓ∗s−1(pℓ)

]
. (3.56)

Similarly considering the definition of Tℓ(pℓ,B) along with (3.55),

Tℓ(pℓ,B) = Tℓ(pℓ) · Tℓ∗s−1(pℓ,B). (3.57)

Algorithm 3 can be modified to accommodate such stretches of non-polymorphic loci as a special
case, making use of (3.53) and (3.55) to directly compute the values of Qℓ(pℓ) and Tℓ(pℓ) for each
pℓ ∈ P, and at each non-polymorphic locus ℓ. If we then assume (without loss of generality) that
each (B, ℓs, ℓe) ∈ C has ℓe at a polymorphic locus, then at the final non-polymorphic locus, for
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Algorithm 4 Computation of π̂SMC(eη|n) improved by considering Properties 1 and 2, and a
special case for non-polymorphic loci, for a configuration partition C such that ∀(B, ℓs, ℓe) ∈ C, ℓe
is polymorphic
1: Algorithm 3, lines 1–5; and set T0(p0) = 1 ∀p0 ∈ P and ℓ∗s = 1
2: for ℓ = 1 → k do

3: for all pℓ ∈ P do

4: if locus ℓ is polymorphic then

5: if locus ℓ− 1 is not polymorphic then

6: Compute Qℓ−1(pℓ,B) and Tℓ−1(pℓ,B) using (3.56) and (3.57), ∀(B, ℓs, ℓe) ∈ C such that ℓs ≤ ℓ ≤ ℓe
7: end if

8: Algorithm 3, lines 8–11
9: Set Tℓ(pℓ) = 1 and ℓ∗s = ℓ+ 1
10: else

11: Compute Uℓ−1(pℓ), Qℓ(pℓ), and Tℓ(pℓ) using (3.45), (3.53), and (3.55)
12: end if

13: end for

14: end for

15: Compute π̂SMC(eη|n) using (3.46)

which ℓ = ℓ∗e , (3.56) and (3.57) may be used to compute Qℓ(pℓ,B) and Tℓ(pℓ,B) for each pℓ ∈ P
and B ∈ Cℓ. This modification is detailed in Algorithm 4.

Within Algorithm 4, the time complexity of lines 6 and 9 is O(1), of line 8 is O(m+ψℓ(C)+ωℓ(C)),
and of line 11 is O(m). As a result, the time complexity of lines 2 – 14, and of the entire algorithm,
is O(km2+m(Ψp(C)+Ω(C))). Relative to Algorithm 3, less computation needs to be done for non-
polymorphic loci; thus, in the typical case of many non-polymorphic loci, this dynamic program
will have a decreased running time. For C = CT, the time complexity is O(km2 + kpmnu).

An optimization for non-polymorphic loci

The key recursions (3.53) and (3.55) for non-polymorphic loci can be written in matrix form.
Consider an ordering P = {p(1), . . . , p(m)}, and define the quantities:

• The m-dimensional column vectors Qℓ and Tℓ, with the i-th entry given by Qℓ(p
(i)) and

Tℓ(p
(i)), respectively.

• The (m × m)-dimensional diagonal matrices Eℓ and Yℓ, with the (i, i)-th entry given by
ξℓ(η[ℓ]|p

(i)) and y(ℓ−1,ℓ)(p
(i)), respectively.

• The (m×m)-dimensional matrix Zℓ, with the (i, j)-th entry given by z(ℓ−1,ℓ)(p
(i)|p(j)).

Then (3.53) and (3.55) can be written in the following matrix forms,

Qℓ = Eℓ(Yℓ + Zℓ)Qℓ−1 (3.58)

Tℓ = EℓYℓTℓ−1, (3.59)

Now, suppose that the mutation model is symmetric and the mutation rate constant for all loci.
Then Eℓ = E , for all non-polymorphic loci ℓ ∈ L. Similarly if the recombination rate between each
pair of loci is constant, then Yℓ = Y and Zℓ = Z for all non-polymorphic loci ℓ ∈ L. With these
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Algorithm 5 Computation of π̂SMC(eη |n) improved by considering Properties 1 and 2, and a special
optimized case for non-polymorphic loci, for a configuration partition C such that ∀(B, ℓs, ℓe) ∈ C,
ℓe is polymorphic
1: Algorithm 4, line 1
2: for polymorphic ℓ ∈ {1 → k} do

3: for all pℓ ∈ P do

4: if locus ℓ− 1 is not polymorphic then

5: Compute Qℓ−1(pℓ) and Tℓ−1(pℓ) using (3.60)
6: end if

7: Algorithm 4, lines 5–9
8: end for

9: end for

10: Compute π̂SMC(eη|n) using (3.46)

assumptions, for ℓ∗s ≤ ℓ ≤ ℓ∗e ,

Qℓ = E(Y + Z)Qℓ−1 = (E(Y + Z))ℓ−ℓ∗s+1Qℓ∗s−1, (3.60)

Tℓ = EYTℓ−1 = (EY)ℓ−ℓ∗s+1Tℓ∗s−1, (3.61)

and the values of (E(Y +Z))r and (EY)r can be pre-computed (either by eigenvalue decomposition
or repeated multiplication) for a relevant range of r-values. Using this technique for explicitly
computing only the necessary values of Qℓ(p) and Tℓ(p), stretches of non-polymorphic loci can be
analytically skipped.

The modified dynamic program associated with this optimization is given in Algorithm 5. The
time complexity of line 5 is O(m), and of line 7 O(m+ψℓ(C)+ωℓ(C)). Thus, the time complexity of
lines 2–9, and for the entire algorithm, is O(kpm

2 +m(Ψp(C) +Ω(C))). This refinement once again
reduces the computation required for non-polymorphic loci, and so we might expect substantial
improvements in performance over Algorithms 3 and 4. For the choice C = CT, the time complexity
is O(kpm(m+ nu)).

Note that the assumptions necessary for Algorithm 5, namely a symmetric mutation model
and uniform mutation and recombination rates, can be relaxed, but at the expense of additional
pre-computation. For example, given non-uniform, but locally similar recombination rates, pre-
computation might be performed for each of several rates; each stretch of non-polymorphic loci
could then use the pre-computed values associated with the closest recombination rate.

A fast algorithm for configuration partitions

Thus far, we have assumed that a configuration partition C was specified, and showed that, for
Algorithms 3–5, the time complexity depends on C through the functions Ψ(C) (or Ψp(C)) and
Ω(C), and more particularly their sum. These complexity results are summarized in Table 3.1, for
both a general configuration partition C and assuming the trivial configuration partition C = CT.
It is intuitively clear that a configuration partition minimizing Ω will naturally maximize Ψ (as
in CT), and vice versa; minimizing a convex combination of these quantities is therefore difficult.
In this section, we propose a fast and simple parameterized algorithm for constructing reasonably
good configuration partitions.

Given a configuration n, the algorithm proceeds sequentially over the loci: Initially, set ℓs = 1.
Given ℓs, find the largest polymorphic locus ℓe such that ℓs ≤ ℓe ≤ k, and the number of unique
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C = CT General C
Algorithm 3 O(km · (m+ nu)) O(km2 +m · (Ψ(C) + Ω(C)))
Algorithm 4 O(km2 + kpmnu) O(km2 +m · (Ψp(C) + Ω(C)))
Algorithm 5 O(kpm · (m+ nu)) O(kpm

2 +m · (Ψp(C) + Ω(C)))

Table 3.1. A summary of the optimized algorithms for computing π̂SMC(m), along with their asymp-
totic time complexities, for both a general configuration partition C and assuming the trivial config-
uration partition C = CT. As described in the text, Algorithm 3 with C = CT is formally equivalent
to Algorithm 2

sub-haplotypes between loci ℓs and ℓe is at most some threshold parameter s. Then, for each unique
sub-haplotype x between ℓs and ℓe, group all h ∈ Hn such that h[ℓs : ℓe] = x into the same block B
and add (B, ℓs, ℓe) to the configuration partition. Set ℓs = ℓe +1 and repeat until the final locus k is
reached. An example configuration partition resulting from this algorithm is shown in Figure 3.1(c).

Applying this procedure to configuration n with threshold parameter s results in a configuration
partition which we denote Cs. Observe that for s = |Hn|, we obtain Cs = CT, which minimizes
Ω. On the other hand, for s = 2 (in the bi-allelic case), the algorithm produces a configuration
partition that minimizes Ψp. Using intermediate values of s should then produce the intermediate
configuration partitions that are of interest.

A plot of Ψp(Cs) and Ω(Cs) for several values of s is given in Figure 3.2(a) for a particular
haplotype configuration n, which was generated using coalescent simulation. As anticipated, there
is an inverse relationship between Ψp(Cs) and Ω(Cs). In order to gauge the effect of different
combinations of Ψp and Ω on the running time, the CSP π̂SMC(eη|n) was computed for each of the
configuration partition Cs for several values of s, and the associated time recorded; the results are
plotted in Figure 3.2(b). As our intuition suggested, the running time depends substantially on the
choice of C, and, in accordance with the asymptotic time complexity results, depends linearly on
both Ψp and Ω.

By fitting a linear model to the data, we can deduce the constants associated with Ψp and
Ω, which the asymptotic results alone cannot provide. Though the particular values for these
constants will depend on the implementation and hardware, their ratio should be relatively robust
to these details, and therefore informative for choosing an optimal trade-off between Ψp and Ω. We
have found that the constant associated with Ψp is approximately 1.5 times that associated with
Ω, suggesting that running time is minimized for a choice of C that minimizes 1.5 ·Ψp(C) + Ω(C).
Further, making use of the above algorithm, we define

s∗ = argmin
s

{
1.5 ·Ψp

(
Cs

)
+Ω

(
Cs

)}
,

and C∗ = Cs. In practice the value s∗ is found using binary search, and determining C∗ is very
fast. This definition will be used frequently in Chapter 4, as C∗ (and the analogous result for
Algorithm 2, using Ψ in place of Ψp) provides a good, though not necessarily optimal, choice for C.

3.3.3 Backward algorithm and marginal decoding

We have thus far considered optimizations and algorithms for evaluating the forward recursion
associated with the HMM formulation of the CSP π̂SMC(P). Recall from Section 3.2.3 that there is
also a backward recursion (3.38) associated with the same HMM. We here state, but do not explic-
itly demonstrate, that for each optimized forward recursion, there exists an analogous optimized
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Figure 3.2. The relationship of Ψp(Cs), Ω(Cs), and running time for several values of s ∈
(2, . . . , 500) and a particular configuration n. The configuration n was generated using coalescent
simulation for 500 individuals, each having 100000 bi-allelic loci, using population-scaled mutation
rate θ = 0.005 per locus and population-scaled recombination rate ρ = 0.001 per breakpoint, and
resulting in kp = 1724 polymorphic loci and nu = 324 unique haplotypes. (a) Plot of the values
of Ψp(Cs) and Ω(Cs) for each value of s, demonstrating the tradeoff between small Ψp (small s
values), and small Ω (large s values). (b) Plot including the empirically observed running time of
Algorithm 5 used to compute π̂SMC(eη|n), for arbitrary η ∈ Hn. As predicted by the asymptotic
time complexity results, running time appears to depend linearly on both Ψp and Ω values, and
fitting a linear model indicates the constant associated with Ψp is approximately 1.5 times greater
than the constant associated with Ω.

backward recursion. Consequently, Algorithms 1–5 each have a backward analogue, with identical
time and space complexity.

Recall from Section 3.2.3 that marginal decoding can be efficiently realized by pre-computing
and storing both the forward and backward values, Fℓ(s̈ℓ) and Eℓ(s̈ℓ), at every s̈ℓ ∈ S̈n and for
every ℓ ∈ L. Using Algorithm 2, this can be accomplished with time complexity O(km(m + nu))
and space complexity O(kmnu). Following this pre-computation, marginal decoding at an arbitrary
locus can be accomplished by directly applying (3.40) with associated time complexity O(mnu).

Using the optimized recursions and dynamic programming algorithms, it is possible to compute
and store substantially less. Consider, for example, Algorithm 4 and the recursions of Section 3.3.2.
Suppose each computed value of Fℓ(s̈ℓ) (that is, for each ℓ ∈ L with (B, ℓs, ℓ) ∈ C and for s̈ℓ ∈ P×B)
is cached, and similarly, each computed value of Qℓ(pℓ,B), Tℓ(pℓ,B), Qℓ(pℓ), and Tℓ(pℓ) is cached.
Then by using only cached values, Fℓ(s̈ℓ) can be computed for all s̈ℓ ∈ S̈n with time complexity
O(mnu) using (3.51), in conjunction with (3.56) and (3.57). Combined with the analogous backward
computations, a marginal decoding can accomplished at locus ℓ ∈ L by applying (3.40) with time
complexity O(mnu).

By using Algorithm 4 in place of Algorithm 2, the required pre-computation can realized with
time complexity O(km2+m(Ψp(C)+Ω(C))) and space complexity O(km+m(Ψp(C)+Ω(C)), repre-
senting a substantial and practically beneficial improvement over the baseline algorithm. The same
techniques can be applied using Algorithm 3 and Algorithm 5 in place of Algorithm 4. Moreover,
if a particular application requires only a coarse-grained marginal decoding, consisting of a proba-
bility distribution over discretized time and the sets comprising the partition Cℓ, the computations
can again be simplified. Using these general principles, many posterior inference tasks can be car-



98 Algorithms & Implementation

ried out more efficiently, with respect to both time and space complexity, than by using the most
general HMM methodology.

3.3.4 Applicability to related CSDs

Though we have developed optimized algorithms for the CSD π̂SMC(P) provided a single condition-
ally sampled haplotype in the absence of population structure, it is natural to question whether
similar optimizations are applicable to related CSDs, such as those proposed by Fearnhead and
Donnelly (2001) and by Li and Stephens (2003). In Sections 3.3.1 and 3.3.2, we have provided two
sufficient conditions: Property 1, which stipulates that, upon recombination, a new haplotype is
chosen independently and uniformly at random; and Property 2, which stipulates that the emis-
sion distribution depends only on the allele at the current locus of the hidden haplotype. It is
straightforward to verify that both π̂FD and π̂LS do satisfy both of these properties, and so the
optimizations described are immediately applicable. Moreover, stronger forms of Property 1 hold
for both π̂FD and π̂LS, enabling additional optimization. Though we have not empirically analyzed
the resulting algorithms, asymptotic complexity results suggest that the improvements in efficiency
will be qualitatively comparable to those obtained for π̂SMC(P).

It is also interesting to consider variants of π̂SMC(P) for more complex demographic scenarios
such as a structured population including migration, as described in Section 3.2.2. Observe that in
this setting, Property 1 is not satisfied, as the haplotypes are only sampled independently within
the current deme, and the optimizations are therefore not applicable. Nonetheless, a relaxed version
of Property 1 incorporating the population structure, is satisfied, along with Property 2, and we
conjecture that analogous optimizations are possible. The outcome is similar if π̂SMC is extended to
conditionally sampling two haplotypes, as described in Section 2.3.4. More generally, we anticipate
the properties akin to Property 1 and Property 2 can be used to derive similar optimizations for a
broad class of population genetic HMMs.



Chapter 4

Results & Applications

In the past decade, the conditional sampling distribution (CSD) has found a wide range of applica-
tions in population genetics. In part, this is due to the fact that many general statistical procedures
requiring the joint analysis of many individuals can be naturally rephrased in terms of one or more
CSDs. Moreover, the CSD is intuitively appealing, and, as demonstrated in the previous chapters,
well-suited to efficient approximation. In this chapter, we describe and extend several frequently
used CSD-based statistical methods, and also empirically assess both the relative accuracy and
computational efficiency of our proposed approximate CSDs.

Methods employing the CSD can be roughly partitioned into several overlapping categories.
One such category is parametric inference based on the sampling probability, or likelihood, of a
sample. For small samples, the sampling probability can be computed directly using CSD-based
importance sampling (Stephens and Donnelly, 2000; Fearnhead and Donnelly, 2001; De Iorio and
Griffiths, 2004a,b; Griffiths et al., 2008); for larger samples, importance sampling can be used in con-
junction with composite methods (Hudson, 2001; Fearnhead and Donnelly, 2002). Alternatively,
the sampling probability can be approximated directly using a decomposition into approximate
conditional sampling probabilities; this technique is referred to as the product of approximate con-
ditionals (PAC) method (Li and Stephens, 2003). In conjunction with expectation-maximization,
and Markov chain Monte Carlo, these methods have been fruitfully used for the estimation of
fine-scale recombination rates (Li and Stephens, 2003; Crawford et al., 2004; McVean et al., 2004;
Fearnhead and Smith, 2005), gene conversion parameters (Gay et al., 2007; Yin et al., 2009), and
population demography (Davison et al., 2009).

It is also possible to directly employ the genealogical interpretation of the CSD. In particular,
provided a CSD that can be cast as an HMM, such as the sequentially Markov CSD π̂SMC described
in Section 2.3, the hidden states can be inferred and used directly. This technique has been used
for admixture inference (Sundquist et al., 2008; Price et al., 2009; Wegmann et al., 2011), for which
genomic segments corresponding to ancestral populations are identified, for inference of colonization
history and structure (Hellenthal et al., 2008; Lawson et al., 2012), and within a pseudo-Gibbs
framework for statistically phasing genotype data into haplotype data and imputing missing data
(Stephens and Scheet, 2005; Li and Abecasis, 2006; Marchini et al., 2007; Howie et al., 2009; Li
et al., 2010). We remark that the latter methods can also be used for multi-sample genotype calling
and phasing for next-generation sequence data (Nielsen et al., 2011).

In all such applications, the fidelity with which the surrogate CSD π̂ approximates the true
CSD π directly impacts the quality of the resulting inference. Similarly, because the methods
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generally rely on iterative Monte Carlo or expectation maximization techniques, with nearly all of
the running time expended on CSD computation, the surrogate CSD π̂ must be computationally
efficient. We remark that many of the above techniques require several hours, or in some cases
days, to produce a result, even for relatively modest non-genomic datasets (Howie et al., 2009);
consequently, the choice of CSD is often made on the basis of efficiency, and at the expense of
accuracy (Li and Stephens, 2003; Stephens and Scheet, 2005; Scheet and Stephens, 2006; Browning
and Browning, 2007).

The remainder of this chapter is organized as follows. We first empirically assess both the
relative accuracy and computational efficiency of our proposed CSDs; we find that our CSDs are
generally more accurate, and using the algorithms and optimizations described in Sections 3.2
and 3.3, more computationally efficient than previously-proposed CSDs. We next describe and
extend two commonly-used CSD-based computational kernels, importance sampling and the PAC
method, and evaluate their performance using the CSDs developed herein. Finally, we propose a
novel CSD-based method for efficiently sampling the marginal genealogy at an given locus from
an approximate posterior distribution; this method is directly applicable for techniques requiring
ancestral inference, including the identification of regions that are identical by descent, and the
identification of risk-increasing polymorphisms in case-control association studies.

4.1 Empirical Accuracy and Timing

In this section, we empirically investigate the accuracy of our proposed approximate CSDs, and
compare the results with the accuracy of the frequently-used CSDs π̂FD and π̂LS, described in
Sections 1.4.2 and 1.4.3. We are specifically interested in the CSDs π̂PS and π̂SMC, described in
Chapter 2, as well as the P-discretized approximation π̂SMC(P), described in Section 3.2. We also
empirically investigate the running time associated with CSP computation, particularly provided
the algorithmic optimizations introduced in Section 3.3.

Directly assessing the accuracy of the CSDs requires evaluating the CSP associated with the
true CSD π. In order to compute this quantity, we rely on importance sampling, a Monte Carlo
technique described in Section 4.2, to estimate the ordered sampling probabilities comprising the
definition (1.61) of the CSP. Even within this Monte Carlo framework, the size of samples that can
be analyzed is modest, limited in practice to n ≤ 10 haplotypes and k ≤ 10 loci. Consequently, in
order to understand the behavior of the approximate CSDs for larger samples, it is necessary to use
successive approximations to the CSD π. We remark that although interpretation is confounded
when using an approximate CSD in place of π, it remains possible to obtain useful information
about the relationship of the various CSDs.

4.1.1 Data simulation

For simplicity, we consider a 2-allele model with Φ(ℓ) = Φ0 =
(
0
1
1
0

)
, θℓ = θ for ℓ ∈ L, and ρb = ρ

for b ∈ B. We also assume that there is no population structure, and consequently no migrational
process. With the objective of sampling a k-locus n-haplotype configuration n, we propose the
following distinct coalescent-based methodologies, parameterized by θ0 and ρ0.

M1: Directly sample the k-locus n-haplotype configuration n, using the coalescent with recombi-
nation, setting θ = θ0 and ρ = ρ0.
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M2: Set k0 ≫ k, and sample a k0-locus n-haplotype configuration n0, using the coalescent with
recombination, setting θ = θ0 and ρ = ρ0. Restrict the configuration to the central k poly-
morphic loci, recording their positions, to form the k-locus n-haplotype configuration n.

The first methodology (M1) simulates genomic data; consequently, setting θ0 and ρ0 to biologically-
motivated values, most of the loci in the sampled configuration n will be non-polymorphic, reflecting
the common biological observation. In contrast, the second methodology (M2) produces a simulated
configuration wherein all of the loci of n are polymorphic by construction. The latter is useful for
producing non-trivial haplotype configurations with a small number of loci, comparable to the SNP
data commonly used for population genetic analyses.

Provided a k-locus n-haplotype configuration n, we sample a k-locus n-haplotype conditional
configuration C = (eη,n− eη) by selecting a single haplotype η from n uniformly at random. For
notational convenience, we define the CSP π̂(C) = π̂(eη |n− eη). For a dataset C simulated using
method M1, we evaluate π̂(C) using the true parameter values, θℓ = θ0 and ρb = ρ0 for all ℓ ∈ L
and b ∈ B. For a dataset C simulated using method M2, we evaluate π̂(C) using parameter values
θℓ = θ0 for all ℓ ∈ L, and ρb = ρ0 · db, where db is the distance, in loci, between the associated
polymorphic sites. Observe that in in the latter case, the resulting CSP is computed for a model
that is inequivalent to that which produced the data; nonetheless, the operation is well-defined,
and frequently used in practice.

4.1.2 Accuracy

We evaluate the accuracy of a CSD π̂ relative to a reference CSD π0 using the expected absolute
log-ratio (ALR) error,

ALRErrk,n(π̂|π0) ≈
1

N

N∑

i=1

∣∣∣∣ log10
(
π̂(C(i))

π0(C(i))

)∣∣∣∣, (4.1)

where N denotes the number of simulated data sets and C(i) is a k-locus n-haplotype con-
ditional configuration sampled using one of the methods indicated above. For example, if
ALRErrk,n(π̂|π0) = 1, the CSP obtained using π̂ differs from that obtained by π0 by a factor
of 10, on average, for a randomly sampled k-locus n-haplotype conditional configuration.

Experiment 1: High mutation and recombination rate

For the first experiment, conditional haplotype configurations were simulated using method M1,
setting θ0 = 1 and ρ0 = 4. Biologically, θ0 = 1 corresponds to a very high mutation rate; though
such rates can occur in retroviruses (McVean et al., 2002), our primary objective in this experiment
is directly assessing the accuracy of CSDs π̂PS and π̂SMC for a small number k ≤ 10 of loci and a
small number n ≤ 20 of haplotypes. The CSP for π̂PS is evaluated directly using the recursion, and
the CSP for π̂SMC is evaluated using the identity π̂SMC = π̂NC and the recursion for π̂NC. The true
CSD π is used as the reference, and the associated CSP estimated using importance sampling.

We examine the accuracy ALRErrk,n(·|π) as function of the number of loci k and the number of
haplotypes n, for each of the CSDs π̂PS, π̂SMC, π̂FD, and π̂LS. The results are plotted in Figure 4.1(a)
and Figure 4.1(b), respectively. In this setting, the accuracy of the approximate CSDs π̂PS and π̂SMC

are nearly identical, and considerably better than both π̂FD and π̂LS. We remark that these results
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Figure 4.1. Absolute log-ratio (ALR) error (4.1) for data simulated using method M1 with θ0 = 1
and ρ0 = 4. The error ALRErrk,n(·|π) is evaluated as a function of the number of loci k and the
number of haplotypes n for the approximate CSDs π̂PS, π̂SMC, π̂FD, and π̂LS, relative to the true
CSD π. The accuracies of π̂PS and π̂SMC are comparable, and considerably better than both π̂FD

and π̂LS. For each datapoint, N = 250 conditional configurations were simulated, (a) 2 ≤ k ≤ 10,
n = 6. (b) k = 4, 2 ≤ n ≤ 20.

are obtained by averaging over N = 250 configurations, and do not imply that the CSPs produced
by π̂PS and π̂SMC are always more accurate than those produced by π̂FD and π̂LS.

All of the approximate CSDs become less accurate as the number of loci increases. Importantly,
however, the improvement in accuracy observed for CSDs π̂PS and π̂SMC, relative to π̂FD and π̂LS, is
amplified for larger numbers of loci; this result may have significant consequence at a genomic scale,
in which many thousands of segregating loci are considered. In contrast, the accuracy of the CSDs
converge as the number of haplotypes n increases. Recall from Section 1.4 that in the limit n→ ∞
the true CSD is described by a sample taken uniformly at random from the previously-observed
haplotypes; all of the approximate CSDs we consider exhibit the correct behavior in this limit,
accounting for their convergence with one another. As the number of haplotypes decreases, π̂LS

becomes less accurate, while π̂PS and π̂SMC become more accurate, providing further evidence that
the true CSD is modeled more accurately by our proposed CSDs.

Experiment 2: Biologically realistic SNP data

For the second experiment, conditional haplotype configurations were simulated using method M2,
setting θ0 = 0.01 and ρ0 = 0.1. Biologically, θ0 = 0.01 is a moderate mutation rate, so that the
sampled configurations represent realistic SNP data. As before, we assess the accuracy of CSDs
π̂PS and π̂SMC for a small number k ≤ 10 of loci and a small number n ≤ 20 of haplotypes, using
the true CSD π as the reference.

As in the previous experiment, we examine the accuracy ALRErrk,n(·|π) as function of the
number of loci k and the number of haplotypes n, for each of the CSDs π̂PS, π̂SMC, π̂FD, and π̂LS.
The results are plotted in Figure 4.2(a) and Figure 4.2(b), respectively. The approximate CSDs π̂PS

and π̂SMC are, on average, more accurate than the approximate CSDs π̂FD and π̂LS. The differences
in accuracy, however, are less pronounced than in the previous experiment; quantifying the precise
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Figure 4.2. Absolute log-ratio (ALR) error (4.1) for data simulated using method M2 with θ0 = 0.01
and ρ0 = 0.1. The error ALRErrk,n(·|π) is evaluated as a function of the number of loci k and the
number of haplotypes n for the approximate CSDs π̂PS, π̂SMC, π̂FD, and π̂LS, relative to the true
CSD π. Compared to Figure 4.1, the differences in accuracy are less pronounced, but still π̂PS and
π̂SMC show an improvement relative to π̂FD and π̂LS. For each datapoint, N = 250 conditional
configurations were simulated, (a) 2 ≤ k ≤ 10, n = 6. (b) k = 4, 2 ≤ n ≤ 20.

cause and degree of this effect remains an open problem, and requires further theoretical and
empirical investigation.

In concordance with the previous experiment, all of the CSDs become less accurate as the
number of loci increases. Observe that π̂SMC is more accurate than π̂PS, a surprising result because
the CSD π̂SMC is itself an approximation of π̂PS. Preliminary investigation (data not shown) suggests
that this effect is local, and does not persist for larger numbers of loci k; once again, this hypothesis
requires further investigation. Finally, as the number of haplotypes in the conditional configuration
increases, the accuracy of the different CSDs converge; for small numbers of haplotypes π̂LS is less
accurate than π̂PS and π̂SMC, though the difference is once again less pronounced.

Experiment 3: The effect of discretization

In the third experiment, we investigate the effect of discretization on accuracy, particularly as
the number of loci k increases. Denote by π̂SMC(m) the CSD resulting from the discretization
P comprising |P| = m intervals, produced using the Gaussian quadrature method described in
Section 3.2. For comparison, we include the CSDs π̂FD and π̂LS, and the CSD π̂NC-A, described in
Section 3.1.2, setting π̂Alt = π̂SMC(16). Requisite conditional haplotype configurations were simulated
using method M2, setting θ0 = 0.01 and ρ0 = 0.05.

For k > 10 loci, it is computationally impracticable to estimate the CSP associated with the
true CSD π; it is similarly difficult to directly evaluate the CSP associated with the CSD π̂PS. We
therefore use π̂SMC as the reference CSD, evaluating the CSP using the identity π̂SMC = π̂NC and
the recursion for π̂NC. We examine the accuracy ALRErrk,n(·|π̂SMC) as a function of the number
of loci, for n = 10 haplotypes and k ≤ 20 loci. The results are plotted in Figure 4.3. Observe
that π̂SMC(m) approximates π̂SMC closely, with the fidelity of the approximation increasing with the
number of intervals m in the discretization. The approximation π̂NC-A is indistinguishable from
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Figure 4.3. Absolute log-ratio (ALR) error (4.1) for data simulated using method M2 with θ0 = 0.01
and ρ0 = 0.05. The error ALRErrk,n(·|π̂SMC) is evaluated for n = 10 haplotypes, and as a function
of the number of loci k for the approximate CSDs π̂SMC(m), π̂NC-A, π̂FD, and π̂LS, relative to π̂SMC.
The CSD π̂SMC(m) approximates π̂SMC very well, and produces more accurate result than π̂FD and
π̂LS. For each datapoint, N = 250 conditional configurations were simulated.

π̂SMC. Moreover, as k increases, both π̂FD and π̂LS continue to diverge from π̂SMC, suggesting the
disparity in accuracy, directly observed in the previous experiments, increases for larger value of
k. We tentatively conclude that, even for small values of m, the CSD π̂SMC(m) is substantially more
accurate than both π̂FD and π̂LS.

For k > 20 loci, it becomes computationally impracticable to evaluate the CSP associated with
π̂SMC. In Figure 4.4, we observed that the CSD π̂NC-A is nearly indistinguishable from π̂SMC; we
therefore use π̂NC-A as the reference CSD. Once again, we examine the accuracy ALRErrk,n(·|π̂NC-A),
and the analogously-defined signed log-ratio (SLR) error SLRErrk,n(·|π̂NC-A) as a function of the
number of loci, for n = 10 haplotypes and k ≤ 100 loci. The results are plotted in Figures 4.4(a)
and 4.4(b). The trends observed in Figure 4.4 are recapitulated in 4.4(a), suggesting that they
continue to hold for substantially larger values of k. Interestingly, 4.4(b) shows that π̂FD and π̂LS

produce CSPs that are, on average, smaller than π̂NC-A (and π̂SMC); for example, π̂LS produces
values that are, on average, a factor of 10 smaller than π̂NC-A for k = 100. In conjunction with our
conclusion that π̂SMC is more accurate than π̂LS and π̂FD, this suggests a similar systematic error
with respect to the true CSD.

4.1.3 Timing

We next empirically investigate the running time required to evaluate each of the CSPs. The
CSDs π̂SMC and π̂NC-A are computed using the algorithms provided in Section 3.1. For the moment,
we restrict attention to computing π̂SMC(m) using Algorithm 2, the baseline algorithm described
in Section 3.3.1; π̂FD and π̂LS are computed using the analogous dynamic programming algorithms
provided in Fearnhead and Donnelly (2001) and Li and Stephens (2003) and the associated released
software. In Table 4.1, we present the timing results for conditional configurations generated using
simulation method M2, setting θ0 = 0.01 and ρ0 = 0.05, with n = 10 haplotypes and k ≤ 100 loci.

Looking across each row, it is evident that the running time under π̂SMC(m), π̂FD, and π̂LS depends
linearly on the number of loci k, matching the asymptotic time complexity. Similarly, the running
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Figure 4.4. Log-ratio error for data simulated using method M2 with θ0 = 0.01 and ρ0 = 0.05.
The error is evaluated for n = 10 haplotypes, and as a function of the number of loci k for the
approximate CSDs π̂SMC(m), π̂FD, and π̂LS, relative to π̂NC-A. The improvement in accuracy of
π̂SMC(m) over π̂LS and π̂FD is amplified as the number of loci k increases; moreover, both π̂LS and
π̂FD produce significantly smaller values than π̂NC-A (and π̂SMC). For each datapoint, N = 250
conditional configurations were simulated. (a) The absolute log-ratio error ALRErrk,n(·|π̂NC-A). (b)
The signed log-ratio error SLRErrk,n(·|π̂NC-A).

time under π̂NC-A is well-matched by the theoretical cubic dependence on k. Comparing π̂SMC(m),
π̂FD, and π̂LS, observe that the running time for π̂SMC(4) is approximately a factor of 10 slower than
π̂LS, and approximately a factor of 2 slower than π̂FD. Similarly, π̂SMC(8) is approximately a factor of
20 and 4 slower than π̂LS and π̂FD, respectively; and π̂SMC(16) is approximately a factor of 40 and 8
slower than π̂LS and π̂FD, respectively. Importantly, these factors are constant in the number of loci
k. Also note that the time required to compute the CSD for π̂SMC(m) appears to depend linearly,
rather than quadratically, on the number of discretization intervals m for the values considered.

Finally, we assess the speed-up obtained by using the optimized algorithms for computing
π̂SMC(P) described in Section 3.3. Recall that our optimizations are realized in Algorithms 3–5,
each of which relies on a partition C of the haplotype configuration n. We have characterized
optimal such partitions, and proposed a simple and fast method for constructing good partitions
C = C∗. For the sake of comparison, we also consider the trivial partition C = CT. Relative to Al-
gorithm 3, Algorithms 4 and 5 represent successive improvements in efficiency for non-polymorphic
loci. Finally, recall that setting C = CT in Algorithm 3 is equivalent to Algorithm 2, applied above.

The optimized algorithms, along with their asymptotic time complexities, are summarized in
Table 3.1. For a fixed number of haplotypes n, and assuming coarse homogeneity across the genome,
the running times of each of these algorithms is asymptotically linear in the number of loci. We
are interested in determining the constants associated with this linear behavior for each algorithm.
Note, however, that for the cases when C = CT, the time complexities do not depend on n directly,
but rather the number of unique haplotypes nu. For a particular value of n, the quantity nu will
increase with the number of loci under consideration until nu = n; only at this point do the running
times become linear in the number of loci. A similar argument can be made for a more general
configuration partition C. In order to attain and analyze the linear behavior for the modestly-sized
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Number of Loci
Method Complexity k = 10 k = 20 k = 60 k = 100

π̂SMC = π̂NC O(ck · n) 6.4 × 100 4.8× 104 NA NA
π̂NC-A O(k3 · n) 2.9 × 100 2.3× 101 5.6× 102 2.5× 103

π̂SMC(16) O(k · (nm+m2)) 1.0 × 10−1 2.1× 10−1 6.1× 10−1 1.0× 100

π̂SMC(8) O(k · (nm+m2)) 4.6 × 10−2 9.6× 10−2 3.0× 10−1 4.7× 10−1

π̂SMC(4) O(k · (nm+m2)) 2.3 × 10−2 5.1× 10−2 1.6× 10−1 2.8× 10−1

π̂FD O(k · n) 1.1 × 10−2 2.7× 10−2 7.7× 10−2 1.3× 10−1

π̂LS O(k · n) 2.1 × 10−3 4.6× 10−3 1.5× 10−2 2.5× 10−2

Table 4.1. Asymptotic time complexity and empirically observed average running time. The second
column shows asymptotic time complexity (with the value c indicating an unknown constant) and
the last four columns show empirically observed average running time (in milliseconds) required to
compute the CSP under various CSDs, for n = 10 and the number of loci k as specified within the
table; “NA” indicates that the computation could not be completed within a reasonable amount of
time. Results were obtained on a single core of a MacPro with dual quad-core 3.0GHz Xeon CPUs.

Number of Haplotypes
Method Implementation n = 100 n = 2000 n = 5000

π̂SMC(16) Algorithm 3, C = CT 45 (1.0×) 870 (1.0×) 2153 (1.0×)
π̂SMC(16) Algorithm 4, C = CT 3.5 (13×) 21 (41×) 54 (40×)
π̂SMC(16) Algorithm 5, C = CT 0.63 (71×) 18 (48×) 49 (44×)

π̂SMC(16) Algorithm 3, C = C∗ 3.8 (12×) 7.8 (110×) 10.3 (208×)
π̂SMC(16) Algorithm 4, C = C∗ 3.0 (15×) 3.5 (250×) 3.9 (546×)
π̂SMC(16) Algorithm 5, C = C∗ 0.14 (320×) 0.68 (1300×) 1.17 (1845×)

π̂FD Fearnhead and Donnelly (2001) 7.47 (6×) 149 (6×) 367 (6×)
π̂LS Li and Stephens (2003) 1.96 (23×) 39.4 (23×) 96.5 (23×)

Table 4.2. A summary of several key statistics from Figure 4.5. The table indicates the time (in
seconds) required to compute the CSP π̂SMC(α|n) for |n| = n, per 1× 105 loci. The speed-up versus
Algorithm 3 with C = CT, equivalent to the commonly used Algorithm 2, is given in parentheses.
See Tables 3.1 and 4.1 for the asymptotic time complexities associated with each algorithm.

configurations that are considered, we formally interpret even non-unique haplotypes to be unique,
thereby forcing nu = n.

We use simulation method M1, with θ0 = 0.005 and ρ0 = 0.001 to produce haplotype con-
figurations with k = 2 × 105 loci and n ≤ 5000 haplotypes, for each of several values of n. We
compute the partitions CT and C∗, and subsequently record the running time of each algorithm in
computing π̂SMC(m)(eη|n), for a haplotype η chosen from n uniformly at random. Throughout, we
use a time discretization consisting of m = 16 intervals. The running times are plotted, on a loga-
rithmic scale, as a function of n in Figures 4.5(a) and 4.5(b), for C = CT and C = C∗, respectively.
For comparison, we also include the running times for the CSD π̂FD and π̂LS, computed as before,
using the dynamic programming algorithms provided in Fearnhead and Donnelly (2001) and Li and
Stephens (2003) and the associated released software.

From Figure 4.5(a), for which C = CT, it is clear that our refinements for non-polymorphic loci
have practical benefits, as Algorithms 4 and 5 perform substantially better than Algorithm 3, and
also better than the standard implementation of π̂FD and π̂LS. The asymptotic results summarized



4.1 Empirical Accuracy and Timing 107

n

ti
m
e
(m

s)

0 1000 2000 3000 4000 5000

1
×

10
2

1
×

10
4

1
×

10
6

π̂FD

π̂LS

π̂SMC(16), Algorithm 3

π̂SMC(16), Algorithm 4

π̂SMC(16), Algorithm 5

(a)

n

ti
m
e
(m

s)

0 1000 2000 3000 4000 5000

1
×

10
2

1
×

10
4

1
×

10
6

(b)

Figure 4.5. Log-scaled plots of the running time (in milliseconds) required to compute
π̂SMC(16)(eη|n) for n with 2 × 105 loci and |n| = n, as a function n, for each of Algorithms 3–5.
The algorithms used to compute π̂FD (Fearnhead and Donnelly, 2001) and π̂LS (Li and Stephens,
2003) are analogous to Algorithm 3 with C = CT. Configurations were generated using coalescent
simulation as described in the text, and results obtained on a single core of a MacPro with dual
quad-core 3.0GHz Xeon CPUs. (a) C = CT, the trivial configuration partition. (b) C = C∗, the
configuration partition described in Section 3.3.2.

in Table 3.1 suggest the running time of Algorithm 5 is a factor of k/kp faster than Algorithm 3.
This factor is roughly reflected in the logarithmic plot of Figure 4.5(a) as a vertical shift, with
deviations occurring because kp increases (slowly) with n. Similarly, as n increases, the asymptotic
results indicate that computation is dominated by the O(kpmnu) term for both Algorithms 4 and 5;
this is reflected in Figure 4.5(a) by a near identity in running times for these algorithms for larger
values of n.

Comparing Figure 4.5(b) to Figure 4.5(a), the benefits of taking C = C∗ can be observed. For
each algorithm, this optimization improves performance substantially, particularly as the number
of haplotypes n increases. Given the results for Algorithm 4 in particular, it is clear that the
key quantity Ψp(C) + Ω(C), taken from Table 3.1, increases more slowly with n for C = C∗ than
for C = CT. Finally, as in the previous case, the asymptotic results for general C indicate that
computation is dominated by the O(m(Ψp(C) + Ω(C))) term for both Algorithms 4 and 5; the
associated convergence of running times appears to be occurring in Figure 4.5(b), though more
slowly than in Figure 4.5(a); thus, Algorithm 5 is a practically useful alternative to Algorithm 4,
even for larger values of n.

Though general trends are clear from Figure 4.5, the logarithmic scale makes it difficult to
appreciate the magnitude of the effects of the optimizations. As mentioned earlier, assuming rough
homogeneity over the genome, the computation time increases linearly with the number of loci. In
Table 4.2, we summarize the constant associated with this linear behavior as the time required to
process 105 loci, along with the speed-up relative to the baseline, Algorithm 2 for π̂SMC(16). Observe
that Algorithm 4, with C = C∗, which can be applied in complete generality, provides a speed-up
of 15×, 250×, 546× for sample sizes n = 100, n = 2000, and n = 5000, respectively; and in most
cases, Algorithm 5 can be applied, which increases these speed-ups to 320×, 1300×, and 1845×,
respectively. Importantly, the speed-up increases with the number of haplotypes n; moreover, even
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for modest values of n, the optimized algorithms provide a substantial speed-up relative to standard
implementations of π̂FD and π̂LS.

4.2 Importance Sampling

In this section, we return to the problem of computing the sampling probability associated with
a haplotype configuration. Because exact evaluation of the sampling probability is generally im-
practicable, we consider a Monte Carlo method, importance sampling (Liu, 2008). Compared to
naive Monte Carlo, importance sampling (IS) seeks to minimize the variance of the estimator by
judicious choice of a proposal distribution. In the context of computing the sampling probability,
Stephens and Donnelly (2000) showed that the optimal such proposal distribution can be expressed
in terms of the true CSD; using an approximate surrogate CSD then results in a sub-optimal,
but still reasonable, proposal distribution. We introduce the practical CSD-based approach to IS
in the presence of recombination described by Fearnhead and Donnelly (2001), and propose two
optimizations to improve efficiency.

4.2.1 IS Motivation

Let n = (nh)h∈H be a haplotype configuration. As described in Chapter 1, the ordered sampling
probability q(n) can be exactly evaluated by constructing and either numerically or algebraically
solving a finite set of coupled linear equations. However, the number of equations in the system
grows super-exponentially with the number of loci and the number of haplotypes of the configuration
n, limiting the practical applicability of this method to configurations with k ≤ 5 loci and n ≤ 5
haplotypes. Thus, in order to evaluate q(n) for larger haplotype configurations, we appeal to Monte
Carlo methods. Let n̂ be the untyped configuration associated with n, and recall from Section 1.3
that a typed history F for n̂ is given by

F = (v0, e1, v1, . . . , eτ , vτ ), (4.2)

where vi is the typed configuration after the i-th genealogical event ei, and the untyped configuration
associated with v0 is n̂. Moreover, such a typed history can be sampled directly using the coalescent
process, and we denote the corresponding density by p(·|n̂). We can therefore partition with respect
to the typed history to obtain the following expression for q(n),

q(n) =

∫
p(n|F)p(F|n̂)dF ≈

1

M

M∑

j=1

p(n|F (j)), (4.3)

where p(n|F) = 1 if v0 = n and 0 otherwise. The latter Monte Carlo approximation then assumes
that the typed histories {F (j)}j=1,...,M are sampled independently from the coalescent process,
with density p(·|n̂). In practice, even for modestly-sized configuration n, the probability that
p(n|F (j)) = 1 for a randomly sampled history F (j) is very small, and in order to obtain an estimator
with acceptably low variance, the number of sampled histories M must be impracticably large.

IS attempts to improve the Monte Carlo estimator by biasing the sampled histories toward
regions of high probability. Formally, introduce an alternative proposal distribution on histories,
with associated density q(·|n̂), and with support including {F : p(n|F) > 0}. Then (4.3) can be
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expressed,

q(n) =

∫
p(n|F)

p(F|n̂)

q(F|n̂)
q(F|n̂)dF ≈

1

M

M∑

j=1

p(n|F (j))
p(F (j)|n̂)

q(F (j)|n̂)︸ ︷︷ ︸
w(j)

=
1

M

M∑

j=1

w(j), (4.4)

where the typed histories {F (j)}j=1,...,M are sampled independently from the proposal distribution,
and {w(j)}j=1,...,M are the associated importance weights. Note that the proposal distribution q(·|n̂)
may explicitly depend on the configuration n.

4.2.2 Optimal proposal distribution

An optimal proposal distribution minimizes the variance of the resulting estimator (4.4), or equiv-
alently, the variance of the importance weights {w(j)}j=1,...,M . Setting the proposal distribution
equal to the posterior distribution on typed histories, with density p(·|n) immediately yields, for
the importance weight w(j),

w(j) = p(n|F (j))
p(F (j)|n̂)

q(F (j)|n̂)
= p(n|F (j))

p(F (j)|n̂)

p(F (j)|n)
= p(n|n̂) = q(n), (4.5)

where the penultimate equality is by Bayes’ Law, and the final equality by definition. Because
the resulting importance weight does not depend on the sampled history F (j), the variance of
the importance weights is 0, and a single sample is required to determine the ordered sampling
probability q(n). Thus, the optimal proposal distribution is precisely the posterior distribution.

Though obtaining the posterior distribution and density is generally as difficult as the problem
of evaluating the sampling probability, Stephens and Donnelly (2000) observe that the posterior
sequence of events and typed configurations {(ei, vi)}i=1,...,τ is Markov backward in time, and the
posterior density therefore admits the decomposition,

p(F|n) = p(e1, v1|v0)p(e2, v2|v1) · · · p(eτ , vτ |vτ−1) =
τ∏

i=1

p(ei, vi|vi−1), (4.6)

where v0 = n. The stated Markov property is evident from the construction of Section 1.3.1, and in
particular the graphical model representation of Figure 1.4. Moreover, using the same construction,
in conjunction with Bayes’ Law, it is possible to derive the following expression for the Markov
posterior transition density,

p(ei, vi|vi−1) = p(vi−1|ei, vi)p(ei|ui−1) ·
q(vi)

q(vi−1)
. (4.7)

Recall that the first two factors of the final expression are specified directly by the genealogical pro-
cess, and are explicitly provided for the coalescent with recombination in Section 1.3.2. Moreover,
recalling the definition (1.61) of the CSP, the ratio of ordered sampling probabilities can generally
be written as a ratio of CSPs. For the genealogical process described in Section 1.3.2,

q(vi)

q(vi−1)
=





1
π(eh|vi−1−eh)

, for vi = vi−1 − eh,

π(eMa
ℓ
(h)|vi−1−eh)

π(eh|vi−1−eh)
, for vi = vi−1 − eh + eMa

ℓ
(h),

π(eRb(h,h
′)+eRb(h

′,h)|vi−1−eh)

π(eh|vi−1−eh)
, for vi = vi−1 − eh + eRb(h,h′) + eRb(h′,h).

(4.8)



110 Results & Applications

The Markov property of the posterior distribution on histories suggests sampling the history starting
in the present, with v0 = n, and proceeding backward in time. At the i-th step, the pair (ei, vi) is
sampled conditional on vi−1, and this process is iterated until a single haplotype |vi| = 1 remains.
Though this optimal method is not realizable, as we can not generally evaluate the true CSP,
in the following section we describe the approximations necessary to obtain a practical proposal
distribution and IS procedure.

4.2.3 Practical importance sampling

Letting π̂ be an approximate CSD, and substituting the associated CSP into (4.8) immediately
yields a practicable proposal distribution. Before proceeding, however, we revisit the general IS
formulation. Motivated by the optimal proposal distribution, we hereafter consider proposal dis-
tributions that exhibit the corresponding Markov property,

q(F|n̂) =
τ∏

i=1

q(ei, vi|vi−1), (4.9)

where v0 = n, and

q(ei, vi|vi−1) ∝ p(vi−1|ei, vi)p(ei|ui−1) ·
q̂(vi)

q̂(vi−1)
. (4.10)

Observe that we have replaced the ratio of ordered sampling probabilities with a ratio of approximate
ordered sampling probabilities, to be computed using an approximate CSD; the proportionality
results from this approximation. By construction, any history F obtained from such a distribution
has p(n|F) = 1. Moreover, the density p(·|n̂) associated with the prior distribution of histories can
be similarly decomposed using the Markov construction of the coalescent,

p(F|n̂) =

[ τ∏

i=1

p(ei|ui−1)

][ τ∏

i=1

p(vi−1|ei, vi)

]
p(vτ ) = p(vτ )

τ∏

i=1

p(ei|ui−1)p(vi−1|ei, vi), (4.11)

where u0 = n̂ and ui is the untyped configuration associated with vi. As a consequence of
(4.9),(4.10), and (4.11), the importance weight w associated with the history F can be written

w =
p(F|n̂)

q(F|n̂)
= p(vτ )

τ∏

i=1

ci−1 ·
q̂(vi−1)

q̂(vi)︸ ︷︷ ︸
wi

= p(vτ ) ·
τ∏

i=1

wi, (4.12)

where ci is the constant of proportionality associated with vi−1 in (4.10). Thus, as the history F is
sampled, starting in the present and proceeding backward in time, the corresponding importance
weight w can be multiplicatively updated. This formulation is an example of sequential importance
sampling (SIS), for which both the sample and importance weight are constructed sequentially (Liu,
2008); we remark that Jenkins (2012) has explored advanced SIS techniques, including resampling,
for coalescent models.

Finally, we consider the space of histories from which F is sampled. Recall the reduced coalescent
with recombination, introduced in Section 1.3.2, for which the genealogical history of non-ancestral
loci is not explicitly constructed; in sampling a haplotype configuration, such non-ancestral loci can
then be left unspecified. Using the reduced model, the space of histories is dramatically reduced,



4.2 Importance Sampling 111

ei ∈ E(ui−1) Lineage(s) vi
p(vi−1|ei, vi)
×p(ei|ui−1)

q̂(vi)/q̂(vi−1)

Coalescence I g ∈ G vi−1 − eg 2
N

1
π̂(eg |vi−1−eg)

Coalescence II g, g′ ∈ G : g f g′
vi−1 − eg − eg′

+ eC(g,g′)
2
N

π̂(eC(g,g′)|vi−1−eg−eg′)

π̂(eg+eg′ |vi−1−eg−eg′ )

Mutation, ℓ ∈ L g ∈ G : ℓ ∈ L(g)
vi−1 − eg
+ eMa

ℓ
(g)

Φ
(ℓ)
a,g[ℓ] ·

θℓ
N

π̂(eMa
ℓ
(g)|vi−1−eg)

π̂(eg |vi−1−eg)

Recombination,
b ∈ B

g ∈ G : b ∈ B(g)
vi−1 − eg
+ eR−

b
(g)+eR+

b
(g)

ρb
N

π̂(e
R−

b
(g)

+e
R+

b
(g)

|vi−1−eg)

π̂(eg |vi−1−eg)

Table 4.3. Specification of the proposal transition density for each event. Let vi−1 be a typed
haplotype configuration with associated untyped configuration ui−1. The support of the proposal
transition density q(·|vi−1) is all pairs (ei, vi) such that ei ∈ E(ui−1) and vi−1 ∈ V(vi, ei). Each pair
is specified in the table, along with explicit forms computing the unnormalized proposal transition
probability (4.10) and the incremental importance weight (4.12). Setting vi−1 = n′, the normaliza-
tion constant is given by N =

∑
g∈G

n′
g

(
n′ − 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

)
.

providing a considerable improvement in importance sampling efficiency. Specific values associated
with both the proposal transition distribution (4.10) and the incremental importance weight (4.12)
for the reduced coalescent with recombination are tabulated in Table 4.3.

Thus, letting π̂ be an arbitrary approximate CSD, the expressions in Table 4.3 completely
specify the IS procedure. Observe that there is no direct method for sampling from proposal
distribution. Instead, it is necessary, at the i-th step, to enumerate all event-configuration pairs
(ei, vi) in the support of the proposal transition distribution, compute the proposal transition
probability for each pair, normalize the resulting probabilities, and finally sample a pair at random
according to the normalized probabilities. As the number of event-configuration pairs is large,
the selection process represents a substantial computational burden, and Fearnhead and Donnelly
(2001) propose the following two-step approximation. First, select a labelled partially-specified
haplotype from vi−1 = n′ using the prior distribution; a haplotype with type η ∈ G is chosen with
probability

p(η|n′) =
n′ − 1 +

∑
ℓ∈L(η) θℓ +

∑
b∈B(η) ρb

∑
g∈G n

′
g

(
n′ − 1 +

∑
ℓ∈L(g) θℓ +

∑
b∈B(g) ρb

) . (4.13)

Following selection of the labelled haplotype, an event-configuration pair is selected conditional on
the event incorporating the selected labelled haplotype. The full proposal transition probability
is then the product of the haplotype proposal probability and the conditional event-configuration
proposal probability; the corresponding incremental importance weight is given by the quotient of
the incremental prior and the appropriately normalized two-step proposal transition probability.

Additionally, explicit evaluation of the ratio of CSPs associated with the second class of co-
alescence events (Coalescence II, in Table 4.3) requires computing the CSP for two conditionally
sampled haplotypes. Recalling that π̂FD is only defined for a single conditionally sampled haplotype,
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Fearnhead and Donnelly (2001) suggest approximating the ratio as follows,

π̂(eC(g,g′)|vi−1 − eg − eg′)

π̂(eg + eg′ |vi−1 − eg − eg′)
≈

π̂(eC(g,g′)|vi−1 − eg − eg′)

π̂(eg|vi−1 − eg)π̂(eg′ |vi−1 − eg − eg′)
. (4.14)

The ratio of CSPs associated with a recombination event can be similarly approximated. Observe,
however, that for computationally-tractable CSDs π̂ making the sequentially Markov assumption,
including π̂SMC = π̂LC = π̂NC, π̂FD, and π̂LS, the following identity holds,

π̂(eR−
b
(g) + eR+

b
(g)|vi−1 − eg)

π̂(eg|vi−1 − eg)
=
π̂(eR−

b
(g)|vi−1 − eg)π̂(eR+

b
(g)|vi−1 − eg)

π̂(eg|vi−1 − eg)
. (4.15)

In conjunction with the two-step proposal transition probability described above, using these ex-
pressions provides an efficiently computable proposal transition distribution. Finally, we remark
that while we have described the proposal transition distribution in terms of atomic events speci-
fying individual labeled lineages, a practical implementation should aggregate events of the same
type, rather than explicitly enumerating them; for example, provided the haplotype chosen in the
first step is of type η, the proposal probability of coalescence with any of the nη − 1 remaining
haplotypes of type η can be computed at once.

4.2.4 Parent independent mutation

Recall from Section 2.2.2 that, provided a PIM model and a mutation event at locus ℓ ∈ L, locus
ℓ is non-ancestral in the haplotype ancestral to the mutation event. This observation yields a
further-reduced recursion (1.26) for the ordered sampling probability q(n), and can also be used to
reduce the space of histories for IS. Before describing this improvement, we demonstrate that even
a non-PIM model can be decomposed into a PIM component and non-PIM component; consider a
mutation model with scaled mutation rate θ and stochastic mutation matrix Φ, and define

φ =
∑

a∈A

φa, where φa = min
a′∈A

Φa′,a. (4.16)

Further defining the PIM mutation model

θPIM = θ · φ, ΦPIM = (φa/φ)a∈A, (4.17)

and the non-PIM mutation model

θnon-PIM = θ · (1− φ), Φnon-PIM =
(
(Φa,a′ − φa′)/(1 − φ)

)
a,a′∈A

, (4.18)

it can be verified that the two mutation models jointly produce the same sampling distribution as
the original model. Observe that, provided a stochastic mutation matrix Φ that exhibits PIM, the
resulting decomposition is trivial, as φ = 1.

In the context of exact CSP evaluation using a recursive expression, such a decomposition of the
mutation model has no computational benefit. However, in the context of IS, for which individual
histories are constructed, the decomposed mutation model provides a mechanism for sampling
histories with reduced complexity with high probability. In particular, we consider two alternative
classes of mutation events, one for each of the mutation models in the decomposition; the row
associated with the mutation event in Table 4.3 can thus, in complete generality, be replaced by
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ei ∈ E(ui−1) Lineage(s) vi
p(vi−1|ei, vi)
×p(ei|ui−1)

q̂(vi)/q̂(vi−1)

Mutation I, ℓ ∈ L g ∈ G : ℓ ∈ L(g)
vi−1 − eg
+ eMℓ(g)

φ
(ℓ)
a

φ(ℓ) ·
θℓ·φ

(ℓ)

N

π̂(eMℓ(g)
|vi−1−eg)

π̂(eg |vi−1−eg)

Mutation II, ℓ ∈ L g ∈ G : ℓ ∈ L(g)
vi−1 − eg
+ eMa

ℓ
(g)

Φ
(ℓ)
a,g[ℓ]

−φ
(ℓ)
g[ℓ]

1−φ(ℓ) · θℓ(1−φ(ℓ))
N

π̂(eMa
ℓ
(g)|vi−1−eg)

π̂(eg |vi−1−eg)

Table 4.4. Modification of the proposal transition densities in Table 4.3 to incorporate two classes
of mutation events. As described in the text, the general mutation process can be decomposed
into a PIM and non-PIM process; Mutation I events correspond to the PIM process, and Mutation
II events to the non-PIM process. The normalization constant N is identical to that provided in
Table 4.3.

the two rows in Table 4.4, resulting in a modified IS procedure. Importantly, the ratio q̂(vi)/q̂(vi−1)
is larger for a PIM mutation event (Mutation I) than for a corresponding non-PIM mutation event
(Mutation II). Consequently, provided a sufficiently large value of φ, many proposed mutation
events are PIM, providing a reduction in complexity of the associated history, and a corresponding
reduction in the variance of the importance weights.

Finally, recall that it is generally possible to alter the mutation model while retaining the same
sampling distribution. Provided the mutation model described above, then for any value of c such
that c ≥

∑
a′∈A Φa,a′ for all a ∈ A, the following c-parameterized model produces an identical

sampling distribution,

θc = cθ, Φc = (Φ′
a,a′)a,a′∈A where Φ′

a,a′ =

{
1− 1

c

∑
a′∈AΦa,a′ , if a = a′

1
cΦa,a′ , otherwise.

(4.19)

Thus, the value c can be chosen to maximize the value φ associated with PIM mutation in the
decomposed model. We have been unable to determine an analytic expression for such a maximizing
c, but the value can be obtained using straightforward numerical techniques. We remark, however,
that altering the value of θ can adversely affect the efficiency of the IS procedure. Similarly, using
a decomposed mutation model requires computing the proposal transition probability associated
with additional events, also affecting the efficiency of the IS procedure. In practice, the latter effect
is diminished by the algorithmic optimization described below.

4.2.5 Algorithmic optimization

We next consider the computation required to sample each event-configuration pair. Recall that,
employing the two-step transition proposal distribution described in Section 4.2.3, a haplotype
is first sampled from the prior distribution, and an event-configuration pair is then sampled by
enumerating event-configuration pairs incorporating the haplotype, and computing each proposal
transition probability. Provided that the sampled haplotype is of type η ∈ G, and assuming that
the number of alleles is given by |Aℓ| = s for all ℓ ∈ L, the number of PIM and non-PIM mutation
events is given by |L(η)| · (s+ 1), and the number of recombination events is given by |B(η)|. The
number of mutation and recombination events is therefore O(k), where k is the number of loci.

Moreover, as indicated in Tables 4.3 and 4.4, computing the proposal transition probabil-
ity associated with each mutation event requires computing the CSP π̂(eMa

ℓ
(η)|vi−1 − eη) or
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π̂(eMℓ(η)|vi−1−eη), and using (4.15), computing the proposal transition probability associated with
each recombination event requires computing the CSPs π̂(eR−

b
(η)|vi−1−eη) and π̂(eR+

b
(η)|vi−1−eη).

Consequently, using a sequentially-Markov CSD, such as π̂SMC(P) or π̂FD, with time complexity linear
in the number of loci k, the overall time complexity associated computing proposal transition prob-
abilities for mutation and recombination events is O(k2). In practice, this accounts for a substantial
proportion of the overall computation.

However, because the conditionally sampled haplotype in each of the requisite CSPs is derived
from η ∈ G, there is opportunity to re-use computation. Assuming π̂ = π̂SMC(P), consider computing
and storing the forward and backward values associated with the CSP π̂SMC(P)(eη|n − eη), which
can be accomplished in O(k) time. Then, using properties of the HMM formulation of π̂SMC(P),

π̂SMC(P)(eMa
ℓ
(η)|vi−1 − eη) =

∑

s̈ℓ∈S̈

Fℓ(s̈ℓ)Eℓ(s̈ℓ) ·
ξℓ(a|s̈ℓ)

ξℓ(η[ℓ]|s̈ℓ)
, (4.20)

where Fℓ and Eℓ are the forward and backward probabilities and ξℓ is the emission density, all at
locus ℓ ∈ L. Similarly, for recombination, assuming b = (ℓ, ℓ+ 1) ∈ B,

π̂SMC(P)(eR−
b
(η)|vi−1 − eη) =

∑

s̈ℓ∈S̈

Fℓ(s̈ℓ), (4.21)

π̂SMC(P)(eR+
b
(η)|vi−1 − eη) =

∑

s̈ℓ∈S̈

ζ(s̈ℓ) ·Eℓ−1(s̈ℓ), (4.22)

where ζ is the marginal density. Thus, each such computation can be accomplished with time
complexity O(|S̈ |), and critically, this is constant in the number of loci. Thus, by pre-computing the
forward and backward values for π̂SMC(P)(eη|n−eη), and using the above method to compute each of
the relevant CSPs, the overall time complexity for computing the proposal transition probabilities
for mutation and recombination events is O(k).

As will be demonstrated, this optimization confers a practical benefit, and increases the size of
samples to which IS can be applied. We also note that the method can, in principle, be used with the
algorithmic optimizations for computing π̂SMC detailed in Section 3.3, though typical IS applications
involve few haplotypes and few non-polymorphic loci, limiting their utility. Finally, we remark that
the CSPs associated with coalescence events, which involve a second haplotype, cannot generally
be evaluated using the pre-computed forward and backward values for π̂SMC(P)(eη|n− eη); we thus
leave further optimization and improvement of the IS procedure as a future research direction.

4.2.6 Empirical results

The convergence of the above IS framework for a particular haplotype configuration is often assessed
using the effective sample size (ESS), defined

ESS = N ·
µ2

µ2 + σ2
≈ N ·

µ̂2

µ̂2 + σ̂2
, (4.23)

where N is the number of samples drawn from the proposal distribution, and µ and σ2 are the
mean and variance of the corresponding importance weights. Observe that, although the mean µ
of the importance weights is the sampling probability for the haplotype configuration, and does
not depend on the particular proposal distribution, the variance σ2 does depend on the proposal
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distribution. Importantly, ESS increases monotonically with decreasing variance σ2, and is therefore
a natural measure for comparing the efficiency of proposal distributions; in particular, the optimal
proposal distribution has σ2 = 0 and ESS = N .

Because the true mean µ and variance σ2 are unknown, and the ESS is approximated using the
sample mean µ̂ and sample variance σ̂2. In practice, this approximation makes the ESS difficult to
use for assessing convergence, as both the sample mean and variance themselves are random; even
for modestly-sized haplotype configurations, we have found that these quantities, particularly the
sample variance, converge very slowly, often substantially changing after hundreds of thousands of
samples, representing hours or days of runtime. Unfortunately, we are unaware of a resolution to
this problem, and our recourse is to use the largest practicable value of N .

Hereafter assuming that N is chosen large enough to obtain an adequate estimate of the true
mean µ and variance σ2, and therefore the true ESS, we are interested in using the ESS to compare
the efficiency of the proposal distributions described above. In order to incorporate the computa-
tional efficiency of the proposal distribution, we consider the ESS per unit of time,

ESSRate =
ESS

t
=

µ2

µ2 + σ2
·
N

t
, (4.24)

where t is the time (in seconds) required to draw the N samples from the proposal distribution.
The first factor, which we refer to as the per-sample effective sampling rate, depends only on the
statistical properties of the proposal distribution. The second factor, which we refer to as the per-
second sampling rate, depends on both the statistical properties and the computational efficiency of
the proposal distribution. Both of these quantities are useful for understanding the overall efficiency
of an IS procedure.

Using the ESS framework, we compare the efficiency of the following IS methodologies: the
procedure (FD) introduced by Fearnhead and Donnelly (2001) and described in Section 4.2.3, for
both π̂ = π̂FD and π̂ = π̂SMC(4); the PIM procedure (PIM) described in Section 4.2.4 for π̂ = π̂SMC(4);
and the optimized PIM procedure (PIM-Optimized) described in Section 4.2.5 for π̂ = π̂SMC(4). We
simulate data under the coalescent with recombination for a single panmictic population, setting
θℓ = θ = 1 for all ℓ ∈ L and ρb = ρ = 1 for all b ∈ B. For each value of k ∈ {4, 8, 12, 16, 20},
25 k-locus 10-haplotype configurations were generated. This simulation procedure is analogous to
method M1, described in Section 4.1.1. Using each of the above IS methodologies, we computed the
sampling probability associated with each haplotype configuration, stopping when ESS ≥ 10000 or
N = 100000. We then computed the per-sample effective sampling rate, the per-second sampling
rate, and the overall ESSRate, and averaged the results across haplotype configurations. The results
are presented in Figure 4.6.

We begin by considering the log-scaled effective sampling rate (ESR), presented in Figure 4.6(a).
Observe that the ESR decreases exponentially with with the number of loci, illustrating one reason
that IS sampling, at least in its present form, does not scale beyond small haplotype configurations.
Within this general trend, the PIM and PIM-Optimized procedures are nearly indistinguishable,
the expected result as the difference between the procedures is purely algorithmic and does not
affect the relevant distributions. Moreover, as predicted, these procedures perform considerably
better than FD; as described above, this is due to the fact that the space of explored genealogies is
markedly reduced for the former, reducing the complexity of the problem. Finally, note that within
the FD procedure, using π̂ = π̂SMC(4) in place of π̂ = π̂FD does produce an improvement, and this
improvement increases with the number of loci. This is in concordance with our earlier finding in
Section 4.1, indicating that π̂SMC(4) is more accurate than π̂FD.
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Figure 4.6. Empirically observed average effective sampling rate (ESR), sampling rate (SR), and
effective sampling size rate (ESSRate) for several importance sampling procedures, as a function
of the number of loci, k. The importance sampling procedures labeled FD correspond to the basic
procedure introduced by Fearnhead and Donnelly (2001), setting π̂ = π̂SMC(4) and π̂ = π̂FD. The
procedures labeled PIM and Opt correspond to the improvements/optimizations described in Sec-
tion 4.2.4 and Section 4.2.5. For each value of k ∈ {4, 8, 12, 16, 20}, N = 25 10-haplotype k-locus
haplotype configurations were generated using coalescent simulation with θ = 1 and ρ = 1. (a) The
effective sampling rate. (b) The sampling rate. (c) The effective sample size rate, computed as the
product of the the effective sampling rate and the sampling rate.

We next consider the log-scaled sampling rate (SR), presented in Figure 4.6(b). Once again,
the sampling rate decreases rapidly, though sub-exponentially, with the number of loci. In contrast
to the ESR, it is clear that the PIM-optimized procedure performs better than the simple PIM
procedure, due to the algorithmic improvement. The simple PIM procedure also performs better
than the FD procedure for π̂ = π̂SMC(4); once again, this is due to the reduced complexity of each
sampled genealogy. Observe that, within the FD procedure, using π̂ = π̂SMC(4) in place of π̂ = π̂FD

reduces performance due to the increased computational complexity of π̂SMC(4) relative to π̂FD;
critically, however, the performance is reduced by a constant factor, independent of the number of
loci.

Finally, in Figure 4.6(c), we consider the log-scaled ESSRate, the product of the ESR and SR.
As expected, the PIM-optimized procedure is the best, providing a 2× improvement in IS efficiency
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over the PIM procedure and a 15× improvement over the FD procedure for k = 20 loci. We
anticipate that this improvement will continue to grow with the number of loci. Within the FD
procedure, observe that using π̂ = π̂SMC(4) in place of π̂ = π̂FD reduces overall efficiency; however,
this effect is reduced as the number of loci increases, and we anticipate that for k > 20 loci, π̂SMC(4)

will produce a more efficient IS procedure. In conclusion, we remark that, though we have produced
some improvements in overall IS efficiency using both statistical and algorithmic improvements, IS
remains impracticable for all but very small haplotype configurations.

4.3 Approximate Likelihood Methods

In the previous section, we described the use of importance sampling to approximate the probability,
or likelihood, of a haplotype configuration in the multiple-locus, single-deme setting. Though we
were able to improve the efficiency of importance sampling by incorporating parent independent
mutation and a judicious implementation, the procedure remains impracticable for even modestly
sized samples. In this section, we describe several approximate likelihood frameworks, for which
the computational complexity scales linearly with the size of the sample.

We note at the outset that the use of approximate likelihood methods in population genetics is
already an established research area. Hudson (2001) and Fearnhead and Donnelly (2002) considered
composite likelihoods formed by considering products over pairs and small sets of loci, respectively.
The former provides the foundation for the estimation of fine-scale recombination rates (McVean
et al., 2004; Chan et al., 2012), and the latter provides the foundation for the estimation of recom-
bination hotspots (Fearnhead and Smith, 2005). Explicitly related to the CSD, Li and Stephens
(2003) proposed a decomposition of the sampling probability into a product of approximate CSPs,
referred to as the product of approximate conditionals (PAC) likelihood. Incorporated into both
Bayesian and frequentist frameworks, PAC likelihoods have been used to infer recombination rates
(Li and Stephens, 2003), gene conversion parameters (Gay et al., 2007; Yin et al., 2009), and
population demography (Davison et al., 2009; Sheehan et al., 2012).

Though the PAC likelihood was introduced concomitantly with the approximate CSD π̂LS (Li
and Stephens, 2003), it can be evaluated using any approximate CSD, including π̂SMC(P). Im-
portantly, for all known approximate CSDs, the PAC likelihood depends on the ordering of the
approximate CSPs. In order to reduce this dependence, Li and Stephens suggest defining the
PAC likelihood as the arithmetic mean over a small number of randomly-chosen orderings. In
Section 4.3.1, we provide a more explicit description of the PAC likelihood, and also introduce
two alternative composite likelihoods that do not depend on CSP ordering. In Sections 4.3.2 and
4.3.3, we make use of these approximate likelihoods in an ML framework to estimate migration and
recombination rates. We remark that these example applications are primarily intended to demon-
strate that the CSD π̂SMC(P) can be used for estimation in an approximate likelihood framework,
and also to evaluate the effect of using the alternative composite likelihoods.

4.3.1 Composite and approximate likelihoods

Let D be a finite set of demes, and n = ed(1),h(1) + · · · + ed(n),h(n) be a structured haplotype
configuration, where d(i) ∈ D and h(i) ∈ H for 1 ≤ i ≤ n. Recalling that q(n) is the ordered sampling
probability of the configuration under a population genetic model, by repeated application of the
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definition (1.61) of the CSP,

q(n) =

n∏

i=1

π
(
ed(i),h(i)

∣∣∣n−
i∑

j=1

ed(j),h(j)

)
, (4.25)

where π is the exact CSD for the population genetic model. Because the density q(·) is exchangeable,
the prescribed haplotype ordering does not affect the result, and we therefore obtain an identical
result for n = ed(σ(1)),h(σ(1)) + · · ·+ed(σ(n)),h(σ(n)), where σ is an arbitrary permutation on {1, . . . , n}.

As it is not generally possible to evaluate the CSP associated with the exact CSD π, Li and
Stephens (2003) suggest replacing the exact CSD with an approximate CSD π̂ for which the requisite
CSPs can be efficiently evaluated,

q(n) ≈
n∏

i=1

π̂
(
ed(i),h(i)

∣∣∣n−
i∑

j=1

ed(j),h(j)

)
. (4.26)

Provided an approximate CSP π̂, the exchangeability property described above no longer holds,
and the approximate likelihood generally depends on the specific ordering of haplotypes in the
configuration n. In practice, we have found that even for moderately-size samples, the approximate
likelihood can fluctuate by many orders of magnitude depending on the ordering. We also remark
that the extent to which the approximate likelihood varies with the ordering depends on the choice
of CSD π̂; those CSDs that are more accurate, as described in Section 4.1, generally produce
narrower ranges of approximate likelihoods (data not shown).

In order to reduce the dependence this estimate on the ordering chosen, Li and Stephens suggest
taking the arithmetic mean over approximately 20 randomly selected orderings. Thus, letting Σ be
a set of randomly-selected permutations on {1, . . . , n}, with |Σ| = 20, the PAC likelihood is defined

q̂PAC(n) =
1

|Σ|

∑

σ∈Σ

n∏

i=1

π̂
(
ed(σ(i)),h(σ(i))

∣∣∣n−
i∑

j=1

ed(σ(i)),h(σ(j))

)
. (4.27)

In the context of likelihood-based estimation, it is critical to select a single permutation set Σ, and
define the approximate likelihood q̂PAC(·) with respect to that permutation set.

Inspired by the locus-wise composite likelihoods mentioned above, we also consider two
haplotype-wise composite methods. The first of these, the leave-one-out composite likelihood (LCL),
formulates the likelihood as a product of CSPs, each the result of sampling a single haplotype con-
ditioned on the remaining haplotypes. We take the n-th root in order to provide the interpretation
of the LCL as the geometric mean the n leave-one-out CSPs,

q̂LCL(n) ∝

[ n∏

i=1

π̂(ed(i),h(i) |n− ed(i),h(i))

]1/n
. (4.28)

We have used proportionality rather than equality to reflect that the composite likelihood does
not directly approximate the true likelihood, but rather serves as a proxy for the purposes of
inference, for which it is only necessary to know (or approximate) the likelihood up to a constant
or proportionality.

The second haplotype-wise composite method, the pairwise composite likelihood (PCL), formu-
lates the likelihood as a product of pairwise CSPs, each the result of sampling a single haplotype
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Figure 4.7. Re-scaled log likelihood surfaces for two haplotype configurations (generated for υ0 =
0.10, indicated by a vertical line in the plots), and for each of the three approximate likelihood
formulations (LCL, PAC, PCL) described in the text, setting π̂ = π̂SMC(P) and provided the true
values of θ and ρ. (a) A case for which all of the likelihood surfaces are similar (b) A case for which
the LCL likelihood surface is substantially different than the likelihood surfaces for PAC and PCL

conditioned on a single alternative haplotype. As before, we take the (n2)-th root in order to
provide the interpretation of the PCL as the geometric mean of the n2 pairwise CSPs,

q̂PCL(n) ∝

[ n∏

i=1

n∏

j=1

π̂(ed(i),h(i) |ed(i),h(j))

]1/n2

(4.29)

Unlike the PAC-based likelihood, neither the LCL nor PCL composite likelihoods depend on the
prescribed haplotype ordering, and so it is unnecessary to define the likelihood with respect to a
particular permutation set.

4.3.2 Estimation of migration rates

To demonstrate the utility of our approximate CSD π̂SMC(P), we consider the problem of estimating
migration rates for data simulated under the coalescent with recombination and migration. Assume
a structured population with two demes, D = {1, 2}, and set the population proportion within
each deme κ1 = κ2 = 0.5 and the migration rates υ12 = υ21 = υ. We use a 2-allele model,
setting θℓ = θ = 5 × 10−2 for all ℓ ∈ L, and ρb = ρ = 5 × 10−2 for all b ∈ B. For each value of
υ = υ0 ∈ {0.01, 0.10, 1.00, 10.0}, 100 haplotype configurations with n1 = n2 = 10 haplotypes in
each of the two demes and k = 104 loci were generated. This simulation procedure is analogous to
method M1, described in Section 4.1.1

Observe that the per-individual mutation and recombination rates are both approximately
104 · 5× 10−2 = 5× 102. In humans, for which average per-base mutation and recombination rates
are on the order of 10−3, these values correspond to a genomic sequence on the order of 500kb. We
thus reason that the simulated haplotypes are representative of a relatively longer genomic sequence
that has been “compressed”, for reasons of computational efficiency, into 104 loci. Further, we chose
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the range of migration rates to be concordant with recent estimates in humans (Gutenkunst et al.,
2009; Gravel et al., 2011), as well as Drosophila (Wang and Hey, 2010).

For each of the three approximate likelihood formulations described above, q̂LCL, q̂PAC, and
q̂PCL, we set π̂ = π̂SMC(P) with discretization P chosen using the logarithmic procedure detailed
in Section 3.2.2 for |P| = 8, and consider the approximate likelihood surface for the parameter υ,
fixing the values of θ and ρ to the true values used for simulation. Figure 4.7 shows the likelihood
surfaces for two example configurations (generated as described above) for data simulated using
parameter υ0 = 0.10. Perhaps most importantly, the likelihood surfaces appear to be unimodal and
otherwise well-behaved. In Figure 4.7(a), the likelihood curves are quite similar to one another,
and the maximum likelihood occurs near the true parameter. This is not generally true, however,
as evidenced by Figure 4.7(b), for which the likelihood surface for the LCL method is substantially
different than that of PAC and PCL.

We next consider the behavior of the maximum likelihood estimate (MLE) under each of the
likelihood approximations. For each simulated dataset, we compute, using golden section search,
the MLE migration rate υ̂. For each MLE, we then evaluate log2(υ̂/υ0), where υ0 is the true
migration rate used to generate the dataset. Using the transformed MLE, results for different
values of υ0 are directly comparable; a correct estimate of the migration rate produces a value of
0, and under- and overestimation by a factor of two produce values of −1 and 1, respectively. Box
plots for the transformed MLE under each likelihood approximation and for each true migration
rate υ0 ∈ {0.01, 0.10, 1.00, 10.0} are presented in Figure 4.8.

Observe that the LCL-based MLE performs poorly for υ0 = 0.01 (see Figure 4.8(a)), consistently
underestimating the true value; this may be because the final haplotype to be sampled is generally
very similar to previously sampled haplotypes within the deme, obviating the need for migration
events within the conditional genealogy. Intuitively, this effect should be diminished when the data
are produced using larger migration rates, which does appears to be the case (see Figures 4.8(b)–
4.8(d)). On the other hand, the PCL-based MLE performs poorly for υ0 = 10.0, again consistently
underestimating the true value. This may be because, for large migration rates, there simply is not
enough information in a pairwise analysis of the haplotypes to determine the true rate; intuitively,
this effect should be diminished when the data are produced using smaller migration rates, relative
to the rate of recombination. This is indeed the case, and in fact, for smaller migration rates, the
PCL-based MLE is well-correlated with the PAC-based MLE (data not shown).

The PAC-based MLE appears not to suffer at either of these extremes. We speculate that this
is because PAC incorporates both pairwise and higher-order terms, making it less susceptible to the
problems we observe with the LCL- and PCL-based MLEs; we remark that Li and Stephens (2003)
came to a similar conclusion for recombination rates. Perhaps most importantly, the PAC-based
estimation is quite accurate, demonstrating that, using the CSD π̂SMC(P), it is possible to obtain
excellent estimates of the migration rate.

4.3.3 Estimation of recombination rates

Motivated by our results for estimating migration rates, we next consider the problem of estimating
recombination rates in a single panmictic population. As before, we assume a 2-allele model, setting
θℓ = θ = 5 × 10−2 for all ℓ ∈ L, and ρb = ρ for all b ∈ B. For each value of the recombination
rate ρ = ρ0 ∈ {0.005, 0.0.01, 0.05, 0.10}, 100 haplotype configurations of n = 20 haplotypes and
k = 104 loci were simulated. As described above, we reason that the simulated haplotypes are
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Figure 4.8. Box plots (produced using the software package R, and including outliers) for the
quantity log2(υ̂/υ0) over 100 samples, where υ0 is the migration rate used for simulation, and υ̂ is
the ML migration rate for each of the three approximate likelihood formulations (LCL, PAC, PCL)
described in the text, setting π̂ = π̂SMC(P) and provided the true values of θ and ρ. The value υ̂ is
computed using golden section search in the interval (υ0 · 10−1, υ0 · 10). (a) υ0 = 0.01 (b) υ0 = 0.10
(c) υ0 = 1.00 (d) υ0 = 10.0. Note that the median of the LCL estimator in (a) lies on the lower
bound of the interval, and therefore at least half of the estimates reach this bound and are likely
smaller.
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representative of a relatively longer genomic sequence that has been “compressed”, for reasons of
computational efficiency, into 104 loci.

For each of the three approximate likelihood formulations described above, q̂LCL, q̂PAC, and
q̂PCL, we set π̂ = π̂SMC(P) with discretization P chosen using the Gaussian quadrature procedure
detailed in Section 3.2.1 for |P| = 8, and fix θ to the true value used for simulation. For each
simulated dataset, we compute, using golden section search, the MLE recombination rate ρ̂ and
log2(ρ̂/ρ0), where ρ0 is the true recombination rate used to generate the dataset. As before,
using the transformed MLE, results for different values of ρ0 are directly comparable. Box plots
for the transformed MLE under each likelihood approximation and for each true migration rate
ρ0 ∈ {0.005, 0.0.01, 0.05, 0.10} are presented in Figure 4.9.

In contrast to the ML estimation of migration, both the LCL and PAC estimates of recom-
bination rate are generally biased upward. As demonstrated in Figures 4.9(a)–4.9(d), the bias is
maximal for the smallest value of ρ0, and decreases for larger values of ρ0. In order to understand
the source of this bias, we have investigated the LCL estimator in detail. We observe that when
ρ0 is small and few recombinations occur, the resulting likelihood surfaces for the CSPs comprising
q̂LCL are markedly heterogeneous, both in their absolute value, and in their component-wise MLE;
the resulting composite likelihood surface is therefore sensitive to the precise balance of the com-
ponent CSPs. In general, the balance produces an upward bias, but the effect is mediated as ρ0
becomes larger, and the likelihood surfaces for the component CSPs more homogeneous. Provided
the correlation between the LCL and PAC estimates (data not shown), we anticipate that a sim-
ilar effect occurs for the PAC estimate. In contrast, the PCL estimate of recombination is biased
downward; moreover, the bias is minimal for the smallest value of ρ0, and increases for larger values
of ρ0. A possible explanation is that there is are too few polymorphic sites in a pairwise analysis
to provide support for a high recombination rate; intuitively, this effect should be diminished for
recombination rates that are smaller relative to the mutation rate. A similar explanation was posed
previously for the downward biased migration rate estimate using the PCL approximate likelihood.

Finally, we remark that although the results of approximate likelihood based estimation of
recombination rate are difficult to interpret, they are not entirely defective. In all cases, the
median estimate is within a factor of 4 of the truth, and the distribution of estimates is narrow,
suggesting the potential for an empirically-driven correction similar to that proposed by Li and
Stephens (2003). Moreover, this type of result is not exclusive to π̂SMC. Setting π̂ = π̂FD, we
obtained similar results, and Li and Stephens (2003) also report biased estimates of ρ in some
settings. Because the PAC likelihood is used extensively for parameter estimation, we believe that
it would be useful to carry out a comprehensive study on the bias and variance of the MLE, for a
wider variety of parameter settings and choices for the approximate CSD π̂.

4.4 Pseudo-Posterior Sampling

In the previous section, we demonstrated that it is possible to approximate the probability, or
likelihood, of a haplotype configuration as a product of approximate CSPs. Critically, because the
CSP can evaluated efficiently for large class of approximate CSDs, including π̂SMC(P), the resulting
likelihoods can be used for computationally efficient statistical inference, for example to estimate
model parameters. In contrast, known methods for exact or consistent likelihood computation,
including numerically solving the recursion for sampling probability (as in Section 1.2.2) and Monte
Carlo methods such as importance sampling (as in Section 4.2), are computationally impracticable.
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Figure 4.9. Box plots (produced using the software package R, and including outliers) for the
quantity log2(ρ̂/ρ0) over 100 samples, where ρ0 is the migration rate used for simulation, and ρ̂ is
the ML recombination rate for each of the three approximate likelihood formulations (LCL, PAC,
PCL) described in the text, setting π̂ = π̂SMC(8) and provided the true value of θ. The value ρ̂ is
computed using golden section search in the interval (ρ0 · 10−1, ρ0 · 10). (a) ρ0 = 0.005 (b) ρ0 = 0.01
(c) ρ0 = 0.05 (d) ρ0 = 0.10.
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We next consider the problem of ancestral inference: provided a population genetic sample, we
may wish to infer whether a mutation occurred more than once at a polymorphic locus, the ancestry
of an admixed group of individuals at a particular locus, or the degree of relatedness within and
between groups of individuals. Such questions are naturally addressed by explicitly invoking the
genealogy relating the individuals in the sample, and not simply a likelihood. Because the true
genealogy is not typically known, a theoretically well-motivated procedure is to integrate over the
posterior distribution of genealogies, assuming the appropriate coalescent-based prior distribution.
Much as in computing the sample likelihood, though it is possible to sample from the true posterior
distribution using Monte Carlo methods, known techniques are computationally impracticable for
even modestly-sized samples.

Recall that a genealogy relating individuals in a sample induces, at each locus, a marginal tree.
In this section, we propose two related CSD-based pseudo-posterior distributions on the marginal
tree at a specified locus, conditioned on the observed sample; notably, the observed sample includes
information at all loci, which impacts inference of the marginal tree at the specified locus. Though
a posterior distribution on the marginal tree at one locus is less beneficial than the posterior
distribution on full genealogies (or, similarly, the joint posterior distribution on the collection of
marginal trees at all loci), it is sufficient for many questions of interest, including the examples
given above. Importantly, the marginal trees sampled from the pseudo-posteriors include time
information, but do not explicitly include mutation events; the latter can be efficiently incorporated
using, for example, Felsenstein’s algorithm (Felsenstein, 1981).

The central idea in constructing the pseudo-posterior distributions is to make direct use of the
marginal conditional genealogies (MCGs) associated with the genealogical interpretation of π̂SMC.
By interpreting an absorption event within the MCG as a coalescence event, we infer coalescence
events within the marginal tree. The primary complication with this approach is then integrat-
ing coalescence events across the MCGs associated with several CSDs. We address this issue by
constructing a posterior process for each MCG, and then combining these processes into a single
posterior process for the marginal tree. Letting n be a haplotype configuration, and specifying an
arbitrary locus ℓ ∈ L, the two pseudo-posterior distributions on marginal trees are then formed by
considering different combinations of the MCG posterior processes:

Pairwise: The CSPs {π̂SMC(eη|eη′)} for each pair η, η′ ∈ Hn result in an MCG posterior process
at locus ℓ for each pair of haplotypes. The pairwise MCG posterior processes are transformed
into a posterior coalescence process for each pair of lineages in the tree, and these processes
are then combined to produce a posterior process on marginal trees.

Leave-one-out: The CSPs {π̂SMC(eη |n−eη)} for each η ∈ Hn result in a directed MCG posterior
process at locus ℓ for each haplotype. The directed MCG posterior processes are transformed
into a posterior coalescence process for each pair of lineages in the tree, and these processes
are then combined to produce a posterior process on marginal trees.

In Section 4.4.1, the problem is introduced formally, and relevant notation described. In Sec-
tion 4.4.2, the construction of the MCG posterior process is discussed, and in Sections 4.4.3 and
4.4.4, the pairwise and leave-one-out methodologies are described in detail, respectively. We re-
mark at the outset that a guiding principle in our development of pseudo-posterior distributions is
that, in the absence of data, the pseudo-posterior distributions should reduce to the known prior
distribution on marginal trees, given by Kingman’s coalescent (Kingman, 1982a).
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4.4.1 Sampling marginal trees

Let n = eh(1) + · · · + eh(n) be a haplotype configuration. Towards sampling a marginal tree, we
define a lineage set L as a partition of {1, . . . , n}, representing the state of the tree at a particular
time, where each lineage µ ∈ L is the set of haplotypes subtended by the lineage. The initial lineage
set L(0) contains a single lineage associated with each of the n haplotypes, and the lineage set L(r)

contains each of the n − r lineages after r coalescence events. A marginal tree T is then specified
by a sequence of coalescence events T = (E(1), . . . , E(n−1)), where E(r) is the r-th coalescence event.
The coalescence event E(r) comprises a coalescence time and a pair of distinct coalescing lineages
µ, ν ∈ L(r−1), and produces the lineage set L(r) by joining the lineages µ and ν into a single lineage.

We first consider sampling a marginal tree T under the prior coalescent process, namely King-
man’s coalescent. Suppose that r coalescence events have already been sampled, so that the current
set of lineages is L(r), with |L(r)| = n− r. Recall that for the prior coalescent process, each pair of
distinct lineages µ, ν ∈ L(r) coalesce at rate 1 so that the total rate is

(n−r
2

)
. The process transi-

tions when the first pair of lineages coalesce; the time and pair of lineages then determine the event
E(r+1) and the lineage set L(r+1). This procedure is iterated until the final event E(n−1) has been
determined, thus completing the sampled marginal genealogy T .

Similarly, consider sampling a marginal tree T under the posterior process, conditioned on
the observed haplotype configuration n. Again, suppose that r coalescence events have already
been sampled, so that the current set of lineages is L(r). Then for each pair of distinct lineages
µ, ν ∈ L(r), denote by σ(r)

µν(t) the time-heterogenous posterior rate of coalescence between lineages µ
and ν at time t ∈ R≥0. The rate σ

(r)
µν(t) generally depends on the configuration n and the previous r

coalescence events; for simplicity, we suppress this dependence in our notation. Entirely analogous
to the prior process described above, the posterior coalescent process transitions when the first pair
of lineages coalesce, determining the coalescence event E(r+1) and the lineage set L(r+1), and this
procedure is iterated until the final event E(n−1) has been determined, thus completing the sampled
marginal genealogy T .

In contrast to the prior process, the posterior coalescent process is not time-homogeneous, as
the posterior rates depend on the time t, and so it is necessary to consider the absolute time in
sampling the tree T . In practice, it is necessary to discretize the absolute time into a finite set
of intervals, denoted P, so that for all t ∈ p ∈ P, σ(r)

µν(t) = σ(r)
µν(p). Nonetheless, observe that

by setting σ(r)
µν(p) = 1 for all µ, ν ∈ L(r) and all p ∈ P, the posterior process is reduced to the

prior process. In the following sections, we describe two methods for approximating the discretized
posterior rates of coalescence; these approximations can then be used in the present framework to
sample trees from a pseudo-posterior.

4.4.2 MCG posterior process

Suppose we wish to sample a single haplotype conditional on the previously-observed configuration
n = eh(1) + · · · + eh(n) using the CSD π̂SMC. Recall from Section 2.3.2 that in the single-deme
setting, the random MCG at an arbitrary locus is denoted by a pair S = (T,H), where T denotes
the absorption time, and H the absorption haplotype. The marginal distribution on S is described
by a genealogical process wherein the lineage associated with conditionally sampled haplotype is
absorbed into each of the n haplotypes at homogenous rate 1. Letting s = (t, h) ∈ S = R≥0×H, the
density ζ(s) is given by (2.73). As above, we discretize the continuous component of S associated
with absorption time into the set of intervals P, and consider absorption into a specific, labeled
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haplotype h(i) where i ∈ {1, . . . , n}. Letting (p, i) ∈ P×{1, . . . , n}, we deduce from the genealogical
process the density,

ζ(p, i) =

∫

p
e−ntdt. (4.30)

Conversely, given an arbitrary density f(·) over the space P × {1, . . . , n} of discretized, labeled
MCGs, it is possible to construct a marginal genealogical process inducing this density. Critically,
because the density f(·) is over the discretized space of MCGs, the rates associated with the
genealogical process are constant within each interval p ∈ P, but are not generally constant between
intervals. Before proceeding, it is convenient to define several functions associated with f(·); for
p ∈ P and i ∈ {1, . . . , n},

f(p) =
n∑

i=1

f(p, i), f̂(p) =
f(p)∑

p′≥p f(p
′)
, f̂(p, i) =

f(p, i)∑
p′≥p f(p

′)
. (4.31)

These functions correspond to the total probability of being absorbed in interval p, the total prob-
ability of being absorbed in interval p conditioned on not being absorbed prior to p, and the
probability of being absorbed into the labeled haplotype eh(i) in interval p conditioned on not being
absorbed prior to p. Denote by λ(p) the total rate of absorption during the time interval p. Then
using the theory of continuous-time Markov processes,

λ(p) =





− 1
|p| log

(
1− f̂(p)

)
, for p < pF,

n, for p = pF,

(4.32)

where pF is the final (infinite) discretization interval. The rate of absorption in the final interval pF

cannot be deduced from the density f(·); we have thus chosen to set the total rate in this interval
equal to the total prior rate, n. Further denoting by λi(p) the rate of absorption into the lineages
associated with labeled haplotype eh(i) during the time interval p ∈ P,

λi(p) =
f̂(p, i)

f̂(p)
· λ(p) =





− f̂(p,i)

f̂(p)
· 1
|p| log

(
1− f̂(p)

)
, for p < pF,

f̂(p,i)

f̂(p)
· n, for p = pF.

(4.33)

Using (4.33) it can easily be verified that setting f = ζ, defined in (4.30), yields the correct
homogenous prior absorption rate, λi(p) = 1, for all i ∈ {1, . . . , n} and p ∈ P.

Now, let η ∈ H, and consider computing π̂SMC(P)(eη|n). As described in Section 3.3.3, using
marginal decoding, it is possible to compute an approximate posterior density ϑ(·) on the space
P × {1, . . . , n} for a particular locus ℓ ∈ L. Setting f = ϑ and using (4.33), it is thus possible to
deduce the approximate absorption rates associated with a posterior marginal genealogical process
at locus ℓ. Unlike the prior genealogical process, the rates {λi(p)}p∈P associated with the posterior
process are not generally time-homogenous.

We will also be interested in computing posterior rates associated with a lineage set L. Letting
f(·) be a density on the space P×L, it is possible to compute, using an equation entirely analogous
to (4.32) the total rate of absorption λ(p) during time interval p ∈ P; as before, the rate of
absorption in the final discretization interval must be independently specified. Similarly, using an
equation entirely analogous to (4.33), it is possible to calculate the rate of absorption λµ(p) into
lineage µ ∈ L during time interval p. The precise methodology for constructing the density f(·) is
described in the following sections.



4.4 Pseudo-Posterior Sampling 127

4.4.3 Pairwise pseudo-posterior

Consider sampling a marginal coalescent tree T at locus ℓ ∈ L from the pseudo-posterior conditioned
on configuration n. Given that the first r coalescence events have been sampled, the current set
of lineages is denoted by L(r), and the objective is sample the (r + 1)-th coalescence event E(r+1),
comprising a time and a pair of distinct lineages µ, ν ∈ L(r). The process for sampling this event
is determined by the non-homogeneous posterior rates of coalescence between each such pair of
lineages {σ(r)

µν(p)}p∈P . In this section, we describe how to approximate these rates by appropriately
combining the posterior distributions on MCGs for pairs of labeled haplotypes.

Let h(i) and h(j) be distinct labeled haplotypes of the configuration n. As described in Sec-
tion 3.3.3, posterior decoding for the CSP π̂SMC(P)(eh(i) |eh(j)) provides a posterior distribution on
MCGs at locus ℓ. Denote the corresponding density by ϑij(·), so that ϑij(p) is the probability of
the lineage associated with haplotype h(i) being absorbed into the trunk lineage associated with
haplotype h(j) during the time interval p. These densities, computed for each pair of labeled haplo-
types, h(i) and h(j), form the building blocks of the posterior lineage rates. We assume a symmetric
mutation model, so that the density ϑij(·) is invariant with respect to the ordering of i and j.

In order to provide some intuition, consider first approximating the posterior lineage coalescence
rates {σ(0)

µν(p)}p∈P when no coalescence events have occurred. Each lineage in µ ∈ L(0) is a singleton,
so that µ = {i} for some 1 ≤ i ≤ n. For an arbitrary pair of distinct lineages µ, ν ∈ L(0), and
assuming without loss of generality that µ = {i} and ν = {j}, we set f(p) = ϑij(p) for all p ∈ P,
and use (4.32) to obtain the associated rates {λ(p)}p∈P , setting λ(pF) = 1. By the symmetry stated
above, these rates are independent of the ordering of µ and ν, and so we set, for all p ∈ P,

σ(0)
µν(p) = λ(p). (4.34)

These rates are produced for each unordered pair of lineages µ, ν ∈ L(0), and together provide a
pseudo-posterior distribution for the first coalescence event E(1).

We next consider the more general case, after r coalescences have occurred, and the current
set of lineages is given by L(r). For an arbitrary pair of distinct lineages µ, ν ∈ L(r), recall that
µ, ν ⊂ {1, . . . , n} and µ ∩ ν = ∅. As in the initial case, when r = 0, we define a density f(·) on
the space P, this time by combining the pairwise densities ϑij(·) for each i ∈ µ and j ∈ ν. Note
that there are a variety of ways to combine these densities; in the absence of a strong theoretical
foundation, we choose a technique that is intuitively straightforward. For each pair of haplotypes,
h(i) and h(j) with i ∈ µ and j ∈ ν, we envision an ongoing posterior MCG process, associated
with the CSP computation π̂SMC(P)(eh(i) |eh(j)), and the rate within a particular time interval p ∈ P
is determined by joining these processes together. We thus compute the rate σ(r)

µν(p) using the
following procedure:

1. Condition each posterior MCG distribution on known information. For h(i) and h(j) with i ∈ µ
and j ∈ ν, the known information is that absorption has not occurred prior to the interval
p ∈ P. The probability of absorption during the interval p ∈ P, conditioned on absorption
not having occurred is then

ϑ̂ij(p) =
ϑij(p)∑

p′≥p ϑij(p
′)
. (4.35)

2. Directly define the probability f̂(p) as the arithmetic mean of the associated MCG probabil-
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ities for all pairs h(i) and h(j) with i ∈ µ and j ∈ ν,

f̂(p) =
1

|µ||ν|

∑

i∈µ

∑

j∈ν

ϑ̂ij(p). (4.36)

3. Finally, substituting the derived value of f̂(p) into (4.32) yields the rate λ(p), with λ(pF) = 1.
As before, this rate is independent of the ordering of lineages µ and ν, and so we set

σ(r)
µν(p) = λ(p). (4.37)

As before, such posterior lineage rates can be produced for each unordered pair of lineages µ, ν ∈
L(r), and together provide a pseudo-posterior distribution for the (r+1)-th coalescence event E(r+1).
Setting r = 0, this procedure is equivalent to the procedure described above for determining the first
coalescence event. Moreover, when no data are provided, it is evident that f(p) = ϑij(p) =

∫
p e

−tdt

for all i ∈ µ and j ∈ ν, and therefore σ(r)
µν(p) = λ(p) = 1 for all µ, ν ∈ L(r), yielding the prior process

on trees, as desired.
Thus, in order to compute the pairwise pseudo-posterior for an arbitrary locus ℓ ∈ L, it is

necessary to compute the marginal decoding at locus ℓ associated with the CSP π̂SMC(P)(eh(i) |eh(j))
for each unordered pair of distinct haplotypes h(i) and h(j). Given these densities, the above
formulation, which involves only elementary arithmetic, can be used to efficiently sample trees
from the pseudo-posterior. Importantly, computing the marginal decoding for multiple loci can
also be done efficiently by storing additional forward and backward values, particularly using the
algorithms described in Section 3.3; marginal trees can then be sampled at each of these loci without
the overhead of re-computing each of the pairwise CSPs.

Finally, let µ, ν ∈ L(r−1) and suppose µ, ν ∈ L(r) so that neither lineage µ nor ν was involved in
the r-th coalescence event E(r). Then by the above description, σ(r−1)

µν (p) = σ(r)
µν(p) for all p ∈ P.

Similarly, let µ1, µ2, ν ∈ L(r−1) and suppose that lineages µ1 and µ2 are chosen to coalesce into
lineage µ in the r-th coalescence event E(r). Then applying the given definitions, for p < pF ∈ P,

σ(r)
µν(p) = −

1

|p|
log

(
1−

1

|µ||ν|

∑

i∈µ

∑

j∈ν

ϑ̂ij(p)

)

= −
1

|p|
log

(
1−

1

|µ1|+ |µ2|

(1
ν

∑

i∈µ1

∑

j∈ν

ϑ̂ij(p) +
1

ν

∑

i∈µ2

∑

j∈ν

ϑ̂ij(p)
))

= −
1

|p|
log

(
1

|µ1|+ |µ2|

(
|µ1| exp(|p| · σ

(r−1)
µ1ν (p)) + |µ2| exp(|p| · σ

(r−1)
µ2ν (p))

))
.

(4.38)

The rates {σ(r)
µν(p)}µ,ν∈L(r) can therefore be written in terms of the rates {σ(r−1)

µν (p)}µ,ν∈L(r−1) , and
the rates for r = 0 are immediate from the marginal decodings. Aside from providing an optimiza-
tion for sampling from the pairwise pseudo-posterior, this formulation bears some resemblance to
the venerable UPGMA algorithm (Sokal and Michener, 1958), used for the construction of ultra-
metric binary trees (e.g. marginal coalescent trees) given pairwise distances. We might therefore
think of the pairwise pseudo-posterior as a stochastic interpretation of the UPGMA algorithm.

4.4.4 Leave-one-out pseudo-posterior

The pairwise pseudo-posterior described in the previous section is straightforward to describe and
implement. By construction, however, the posterior rates {σ(r)

µν(p)}p∈P for lineages µ, ν ∈ L(r)
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are derived by considering only pairs of labeled haplotypes, h(i) and h(j) with i ∈ µ and j ∈ ν. In
principle, it should be possible to provide a more accurate pseudo-posterior by considering larger sets
of haplotypes, thereby capturing more complex interactions. In this section, we employ the MCGs
associated with the CSP π̂SMC(P)(h

(i)|n − eh(i)) for each labeled haplotype h(i), and estimate the
posterior rates {σ(r)

µν(p)}p∈P by appropriately combining the MCG posterior distributions. Observe
that each such posterior distribution thus involves all haplotypes of n.

Let h(i) be a labeled haplotype within the configuration n and ℓ ∈ L a specified locus. As
described in Section 3.3.3, posterior decoding for the CSP π̂SMC(P)(eh(i) |n−eh(i)) provides a posterior
distribution on MCGs at locus ℓ. Denote the corresponding density by ϑi(·), so that ϑi(p, j) is the
probability of the lineage associated with haplotype h(i) being absorbed into the trunk lineage
associated with haplotype h(j) during the time interval p. These densities, computed for each
labeled haplotypes h(i) form the building blocks of the posterior lineage rates.

In order to provide some intuition, consider first approximating the posterior lineage coalescence
rates {σ(0)

µν(p)}p∈P when no coalescence events have occurred. As before, for an arbitrary pair of
distinct lineages µ, ν ∈ L(0), we may assume without loss of generality that µ = {i} and ν = {j}.
Then set f(p, j) = ϑi(p, j) and use (4.33) to obtain the associated rates {λj(p)}p∈P . We then define
the directed lineage coalescence rate σ(0)

µ→ν(p) = λj(p) for all p ∈ P, setting λ(pF) = n−1. Reversing
the indices, we similarly obtain an expression for the directed lineage coalescence rate σ(0)

ν→µ(p), and
finally write, for all p ∈ P,

σ(0)
µν(p) =

1

2

(
σ(0)
µ→ν(p) + σ(0)

ν→µ(p)
)
. (4.39)

Note that we have used an arithmetic mean over the directed lineage coalescence rates. These rates
are produced for each unordered pair of lineages µ, ν ∈ L(0), and together provide a pseudo-posterior
distribution for the first coalescence event E(1).

We next consider the more general case, after r coalescences have occurred, and the current set
of lineages is given by L(r). As before, for an arbitrary pair of distinct lineages µ, ν ∈ L(r), recall
that µ, ν ⊂ {1, . . . , n} and µ∩ ν = ∅. As in the initial case, when r = 0, we define a density f(·) on
the space P×{1, . . . , n} this time by combining the MCG densities ϑi(·) for each i ∈ µ and j ∈ ν, to
determine the directed coalescence rates σ(r)

µ→ν(p) and σ(r)
µ→ν(p), respectively; the arithmetic mean

of the directed rates is then used to determine the undirected coalescence rate σ(r)
µν(p). As before,

there are a variety of ways to combine MCG densities, and in the absence of a strong theoretical
foundation, we proceed using a technique analogous to the pairwise method described above. For
each haplotype i ∈ µ, we envision an ongoing posterior MCG process, associated with the CSP
computation π̂SMC(P)(eh(i) |n− eh(i)), and in order to compute the coalescence rate σ(r)

µ→ν(p), we use
the following procedure:

1. Condition each posterior MCG distribution on known information. For h(i) with i ∈ µ, the
known information is the previous coalescence events (E(1), . . . , E(r)) and that absorption has
not occurred prior to the current interval p. The probability of absorption into the lineage
associated with haplotype h(j) with j 6= i during the interval p ∈ P, conditioned on known
information is then

ϑ̂i(p, j|E
(1), . . . , E(r)) =

ϑi(p, j|E
(1), . . . , E(r))∑

p′≥p ϑi(p
′, j|E(1), . . . , E(r))

, (4.40)

where ϑ̂i(·|E
(1), . . . , E(r)) is the density associated with conditioning on the known coalescence

events, and will be discussed in greater detail below.
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2. Directly define the probability f̂(p, j) as the arithmetic mean of the associated MCG proba-
bilities for all h(i) with i ∈ µ.

f̂(p, j) =
1

|µ|

∑

i∈µ

ϑ̂i(p, j|(E
(1), . . . , E(r))), (4.41)

and the probabilities f̂(p, ν ′) for each ν ′ ∈ L(r)\{µ}, by summing f̂(p, j) over all j ∈ ν ′,

f̂(p, ν ′) =
∑

j∈ν′

f̂(p, j), (4.42)

3. Finally, substituting the derived values of f̂(p, ν ′) into (4.33), with λ(pF) = n− r − 1, yields
the rate λν(p). We then set the directed coalescence rate

σ(r)
µ→ν(p) = λν(p) (4.43)

Taking the arithmetic mean of σ(r)
µ→ν(p) and the similarly deduced σ(r)

ν→µ(p) then yields the undi-
rected coalescence rate σ(r)

µν(p). Such posterior lineage rates can be produced for each unordered pair
of lineages µ, ν ∈ L(r), and together provide a pseudo-posterior distribution for the (r+1)-th coales-
cence event E(r+1). As before, setting r = 0 this procedure is equivalent to the procedure described
above for determining the first coalescence event. We next describe a method for approximating
the conditional MCG density ϑi(·|E

(1), . . . , E(r)).

Conditional MCG density

Recall from the above description that the conditional MCG density ϑi(·|E
(1), . . . , E(r)) is used

in order to sample the next coalescence event, E(r+1). Intuitively, then, this density is associated
with the MCG process for the next absorption event, conditioned the previous coalescence events
(E(1), . . . , E(r)), where each coalescence event E(u) comprises a time tu ∈ R≥0 and two distinct
lineages µu, νu ∈ L(u). Starting with the unconditional MCG density, the following mathematically
imprecise adjustments are necessary: for each coalescence event E(u) with 1 ≤ u ≤ r,

• If i ∈ µu, then in the context of the CSP, the lineage associated with h(i) has been absorbed
into the trunk lineages associated with each haplotype h(j) for j ∈ νu at time tu. In order
to consider the next absorption event, it is necessary to disallow absorption prior to the
coalescence time tu, and further to disallow absorption after time tu into the trunk lineage
associated with h(j), for all j ∈ νu. The situation is reversed if i ∈ νu.

• If i /∈ µu and i /∈ νu, then in the context of the CSP, the trunk lineages associated with
haplotypes h(i′) for i′ ∈ µu and h(j′) for j′ ∈ νu should be identified after time tu.

An appealing and straightforward way to mathematically realize these adjustments is to directly
modify the unconditional MCG density, ϑi(·). Note that the events (E(1), . . . , E(r)) determine the
lineage set L(r), and let µ ∈ L(r) such that i ∈ µ, and let pc ∈ P such that tr ∈ pc. Then from the
conditioned MCG density,

ϑi(p, j|E
(1), . . . , E(r)) ∝

{
0, if p < pc or j ∈ µ,
ϑi(p, j)/|ν|, if p ≥ pc and j ∈ ν ∈ L(r), ν 6= µ.

(4.44)
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Observe that this formulation appears to have the intended qualitative effects: absorption is for-
mally disallowed where it should be and the probabilities for haplotypes associated with coalescence
events not involving h(i) have been appropriately adjusted so that, when summed, give the arith-
metic mean probability.

There remain two problems with this mathematical formulation. The first can be observed by
considering to the case with no observed data, wherein the total rate of absorption during each
time interval should be n− r − 1 for sampling the (r + 1)-th coalescence event. As described, the
above mathematical formulation yields a total rate of n − 1, and genealogies sampled using this
formulation will have coalescence times that are, on average, too small. This problem can be fixed
by considering the alternative CSP π̂(r)

SMC(P)(eh(i) |n − eh(i)), for which the prior rate of absorption
into each trunk lineage is (n− r − 1)/(n − 1), and so the total rate of absorption is n− r − 1. We
denote the posterior decoding associated with this CSP by ϑ(r)

i (p, j), and replace ϑi(p, j) with this
density on the right-hand side of (4.44).

A second, more subtle, problem is related to the range of coalescence events. The formulation
provided in the first line of (4.44) is equivalent to conditioning on the absorption haplotype not
being h(j) for any j ∈ µ and the absorption interval p being greater than or equal to pc, but only
at locus ℓ. In principle, at either locus ℓ − 1 or ℓ + 1, the absorption haplotype may be h(j) for
some j ∈ µ and the absorption interval p may be less than pc; these possibilities erroneously affect
the MCG density ϑ(r)

i (p, j) at locus ℓ. Suppose that we associate a range (ℓ(u)s , ℓ(u)e ) with each
coalescence event E(u), such that ℓ(u)s ≤ ℓ ≤ ℓ(u)e . Then for a coalescence event E(u) with i ∈ µu,
it is possible, using an efficient local update to the CSP computation π̂(r)

SMC(P)(eh(i) |n − eh(i)), to
condition on absorption not occurring prior to interval tu and the absorption haplotype not being
h(j) after time tu for the entire range (ℓ(u)s , ℓ(u)e ). Again, the resulting density on MCGs at locus ℓ
can then be substituted into (4.44). The range of a coalescence event can be efficiently sampled by
a simple modification to the forward and backward algorithms, once the time lineages associated
with the coalescence event have been sampled.

Finally, we comment that the techniques we have proposed to compute the requisite density
ϑi(p, j|E

(1), . . . , E(r)) are complex, and incorporate several ad hoc decisions. The requirement that
the overall sampling method reduce to the prior when no data is observed gives some guidance,
but still affords many choices. Thus, we believe it is worthwhile to seek out alternatives to this
formulation which are, at a minimum, more intuitively appealing and mathematically concise.

4.4.5 Evaluating the pseudo-posterior

We conclude this section by remarking that a key remaining research element in the construction
of the pseudo-posterior is a framework for evaluation. In this context, evaluation is challenging
for two reasons: first, it is difficult to obtain or sample from the true posterior distribution; and
second, the posterior distributions are over trees, which are mathematically complex objects. For
the former, it is possible to obtain samples from the true posterior distribution using Monte Carlo
methods, such as importance sampling, but this methodology is only practicable for small data
sets. Alternatively, for data simulated under the coalescent process, the true marginal tree is
known, and so it is possible to compare to pseudo-posterior distribution to the true marginal tree;
unfortunately, we have found that, in practice, the posterior distributions under consideration are
relatively diffuse, and so it is difficult to draw strong conclusions in this way.

Moreover, comparing distributions on trees is challenging in its own right, particularly because
the trees under consideration have continuous-valued lengths. We have considered several lower-
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dimensional statistics on trees, such as the time to most recent common ancestor (TMRCA), the
partitions induced by the tree at various time points, and the simple tree topology obtained by
disregarding branch lengths; for the latter two, we have made use of the existing literature on
metrics (Simovici and Jaroszewicz, 2006) on partitions and tree topologies. Using these statistics,
it is possible to compute the average distance over a posterior distribution of marginal trees to the
true marginal tree and, in conjunction with the Wasserstein (or earth mover) distance (Rueshen-
dorff, 1998), to compare distributions on tree statistics. Although preliminary results using these
techniques is promising, there remains considerable research to be done.



Chapter 5

Discussion & Future Work

For much of the history of population genetics, there has been a paucity of genetic data from
which to draw concrete conclusions about the mechanisms and natural history of evolution. With
the emergence of high-throughput sequencing in the past decade, however, such genetic and ge-
nomic data is being produced at an ever-increasing rate. Though evolutionary models, such as the
Wright-Fisher diffusion and the coalescent, are a cornerstone of population genetic theory, statis-
tical inference under these models remains a challenging computational problem. To cope with
the recent profusion of data, modern population genetic methods must therefore realize a balance
between computational efficiency and fidelity to these underlying evolutionary models. A promising
class of such methods employ the conditional sampling distribution (CSD).

In this thesis, we have undertaken a theoretical and algorithmic investigation of the CSD for
coalescent models including recombination, and made several contributions to this expanding field,
including a family of principled CSDs that are both more accurate and more computationally
efficient than previously-proposed CSDs. We have also refined and extended two well-known appli-
cations of the CSD, and introduced a novel procedure for sampling marginal genealogies from an
approximate posterior distribution. In this chapter, we briefly review these contributions, discuss
them in the context of both previous and current research in the field, and propose several future
research directions.

The CSD π̂PS

The motivation for much of our research is the seminal work of Stephens and Donnelly (2000)
and De Iorio and Griffiths (2004a,b). The CSD was first introduced in the context of population
genetics by the former, and the latter proposed the diffusion-generator approximation, by which
a one-locus CSD can be algebraically derived directly from the Wright-Fisher diffusion dual to
the coalescent model. Importantly, for the special case of a parent independent mutation (PIM)
model, the resulting CSD is equal to the true CSD, providing evidence that the approximation is
reasonable. The diffusion-generator approximation has been extended to two loci, separated by
recombination, by Griffiths et al. (2008); however, the ensuing derivation of the CSD relies on an
additional approximation, is limited to PIM models, and cannot be generalized beyond two loci.

In Section 2.1, we described a complete generalization of the diffusion-generator approxima-
tion to an arbitrary finite-sites finite-alleles model (Paul and Song, 2010). The ensuing CSD
derivation does not require additional approximations, and the resulting CSD, which we denote
π̂PS, accommodates an arbitrary number of conditionally sampled haplotypes. The generalized

133



134 Discussion & Future Work

diffusion-generator technique can, in principle, be used to derive an approximate CSD for an arbi-
trary time-homogeneous coalescent model. To illustrate this point, we have derived variants of the
CSD π̂PS for the coalescent with recombination, both with and without population structure and
migration, and parameterized by an arbitrary mutation model. For a single locus, the CSD π̂PS

is equivalent to the CSD of De Iorio and Griffiths (2004a,b); for two or more loci, however, π̂PS is
distinct from all previously-proposed CSDs, including π̂FD (Fearnhead and Donnelly, 2001), π̂LS (Li
and Stephens, 2003), and π̂GJS (Griffiths et al., 2008).

In parallel with the generalization of the diffusion-generator approximation, we have introduced
an intuitive genealogical process for the CSD π̂PS, the trunk-conditional coalescent, described in Sec-
tion 2.2. Provided a collection of previously sampled haplotypes, the trunk-conditional coalescent
produces a conditional genealogy relating an untyped collection of conditionally sampled haplotypes
to each other and the previously sampled haplotypes. A central feature of the trunk-conditional
coalescent is the assumption that the unknown genealogy for the collection of previously sampled
haplotypes is the trunk genealogy, within which haplotypes do not mutate, recombine, or coalesce
(see Figure 2.1 for an illustration); lineages of the conditional genealogy are then absorbed into
the lineages of the trunk. In order to compensate for the trunk genealogy assumption, the rate
of non-absorption events within the conditional genealogy are doubled relative to the analogous
coalescent process. It is remarkable that this simple genealogical process produces the same CSD,
π̂PS, as the diffusion-generator approximation.

In contrast to the diffusion-generator approximation, the trunk-conditional coalescent admits
a natural extension to time-inhomogeneous population models including variable population size
and sub-population splits and merges. Consider, for example, a single panmictic population: time-
inhomogeneous population size is incorporated by assuming that the relative population size t
time units in the past is given by κ(t); the rates of both coalescence and absorption are then
scaled by the factor (κ(t))−1. In conjunction with the methods introduced in Section 2.2.3 for
incorporating population structure and migration, it is thus possible to obtain a generalization
of π̂PS for an arbitrary time-inhomogeneous structured population model, including migration,
variable population size, and sub-population splits and mergers. We remark that, although the
trunk-conditional coalescent for π̂PS remains well-specified for such time-inhomogeneous models,
the methodology introduced in Section 1.3.1 for deriving an explicit recursion for the conditional
sampling probability (CSP) is no longer applicable. It is possible, in principle, to extend the
recursive framework to explicitly incorporate time, but exact solutions can no longer be obtained.
We further discuss such extensions in the context of the sequentially Markov CSD below.

The trunk-conditional coalescent also exposes potential problems with the CSD π̂PS. For ex-
ample, recall from Section 2.2.2 that, upon absorption of a lineage into the trunk genealogy, the
allelic type of the absorption haplotype is propagated forward on the lineage; in order to account
for the absence of mutations on the trunk lineage, the mutation rate is doubled. Thus, at locus
ℓ ∈ L, provided the allelic type of the absorption haplotype is a1 ∈ Aℓ and the absorption time is
t, the probability of conditionally sampling an allele of type a2 ∈ Aℓ is given by

ξℓ(a2|t, a1) =
[
etθℓ(Φ

(ℓ)−I)
]
a1,a2

. (5.1)

Recalling the unconditional coalescent, described in Section 1.3.2, a natural mutation process would
be to choose an allelic type a ∈ Aℓ at the time of absorption from the stationary probability
conditioned on the allelic type of the absorption haplotype t time units later, and propagate this
type forward on the lineage in the conditional genealogy, all at a non-doubled rate. Denoting by
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φℓ(·) the stationary density of the mutation process, the associated probability is given by

ξ′ℓ(a2|t, a1) =
∑

a∈Aℓ

φℓ(a)

φℓ(a1)

[
et

θℓ
2
(Φ(ℓ)−I)

]
a,a1

[
et

θℓ
2
(Φ(ℓ)−I)

]
a,a2

. (5.2)

In general, ξℓ(a2|t, a1) 6= ξ′ℓ(a2|t, a1). However, if the mutation model specified by Φ(ℓ) is reversible,

ξ′ℓ(a2|t, a1) =
∑

a∈Aℓ

φℓ(a)

φℓ(a1)

[
et

θℓ
2
(Φ(ℓ)−I)

]
a,a1

[
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2
(Φ(ℓ)−I)

]
a,a2

=
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[
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θℓ
2
(Φ(ℓ)−I)

]
a1,a

[
et

θℓ
2
(Φ(ℓ)−I)

]
a,a2

=
[
etθℓ(Φ

(ℓ)−I)
]
a1,a2

= ξℓ(a2|t, a1),
(5.3)

where the second equality follows immediately from reversibility, and the third equality by the
Chapman-Kolmogorov equation. Moreover, a large class of reasonable mutation models are re-
versible, including all 2-locus models, parent independent mutation (PIM) models, and models
that are symmetric in the sense that Φa1,a2 = Φa2,a1 for all a1, a2 ∈ Aℓ.

A more pressing problem is evident when population structure and migration are incorporated
into the trunk-conditional coalescent. As described in Section 2.2.3, the rates of migration in the
conditional genealogy are doubled to account for the absence of migration in the trunk genealogy.
However, it is not clear whether such a rate-doubled process can be reconciled with the unconditional
coalescent with migration, described in Section 1.3.3, which permits all lineages to migrate. For
example, consider a biologically plausible model of two demes D = {1, 2}, for which migration
from deme 1 ∈ D to deme 2 ∈ D occurs at a high rate, and in the reverse direction at a low
rate: a haplotype sampled in deme 2 must migrate, backward in time, to deme 1 to be absorbed
into a haplotype previously sampled from deme 1, a low-probability event. The trunk-conditional
coalescent thus discards the high-probability event that absorption actually occurs in deme 2,
following migration of the previously sampled haplotype. Though such problems are avoided by
selecting deme-symmetric models of population structure, it remains an open problem to extend the
trunk-conditional coalescent to gracefully cope with biologically relevant non-symmetric models.

Finally, because the trunk genealogy is time-homogeneous, the rate of absorption into the
trunk is constant. Recalling that the trunk genealogy acts as a surrogate for the true unknown
genealogy relating the previously sampled individuals, the assumed constant rate of absorption
may introduce inaccuracy. Sheehan et al. (2012) suggest retaining the essential form of the trunk
genealogy, but altering the rate of absorption in accordance with Kingman’s coalescent (Kingman,
1982a). Provided n previously sampled individuals, denote by An(t) the prior distribution on the
number of lineages ancestral to the n individuals at time t; the total rate of absorption at time
t is then taken to be the expected value of An(t). Because this expectation, and therefore the
absorption rate, is monotonically decreasing in t, the resulting variation on the trunk genealogy
is referred to as the wedding cake genealogy. Importantly, by adopting such a modified trunk
genealogy, the one-locus PIM model, known to be exact for π̂PS in a single panmictic population, is
altered, and therefore degraded. More generally, we advise prudence in making ad hoc alterations
to the trunk-conditional coalescent, as the consequences may be unpredictable and far-reaching.

The CSD π̂SMC

As described in Sections 2.1 and 2.2, the CSP associated with the CSD π̂PS is subject to a recursive
expression related to the recursive expression for the unconditional sampling probability. In prin-
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ciple, explicit evaluation of the CSP is possible by repeated application of the recursive expression,
which results in a finite system of coupled linear equations that can be algebraically or numerically
solved. We showed in in Section 3.1, however, the number of equations in the system grows super-
exponentially with the number of loci, restricting practical application of this method. By making
suitable genealogical simplifications to the trunk-conditional coalescent, however, it is possible to
obtain approximations to π̂PS with desirable computational properties.

Inspired by the work of Wiuf and Hein (1999) and McVean et al. (2004), we have consid-
ered a sequentially Markov approximation to the trunk-conditional coalescent (Paul et al., 2011;
Steinrücken et al., 2012), described in Section 2.3. At each locus, a conditional genealogy induces
a marginal conditional genealogy (MCG), relating the conditionally sampled haplotypes to each
and to the previously sampled haplotypes at the locus under consideration; due to the process of
recombination, the MCGs may be different at distinct loci. The central idea is then to construct a
Markov approximation for the sequence of random MCGs. The resulting sequentially Markov CSD
is denoted π̂SMC, and is provably equivalent to a trunk-conditional coalescent model for which a
certain class of coalescence events are disallowed. Importantly, π̂SMC can be cast as a hidden Markov
model (HMM), wherein the hidden state at each locus is the MCG at the locus, and the observed
state is the associated allelic configuration for the conditionally sampled haplotypes. To illustrate
the construction of π̂SMC, in Sections 2.3.2–2.3.4 we have derived the requisite HMM densities for
the coalescent with recombination, both with and without population structure.

In general, the space of MCGs for the CSD π̂SMC is continuous-valued; consequently, standard
HMM methodologies, which require a finite hidden state space, are not immediately applicable. In
Section 3.2, we describe a procedure for discretizing the continuous space of MCGs into a finite
space for a single conditionally sampled haplotype; by increasing the granularity of the discretiza-
tion, the CSD π̂SMC can be approximated to an arbitrary degree of accuracy. Thus, using standard
HMM methodologies, the discretized form of π̂SMC admits efficient computation; for example, eval-
uating the CSP has time complexity linear in the number of loci, a dramatic improvement over the
exponential or super-exponential time complexities associated with π̂PS. Moreover, as described in
Section 3.3, by specializing the HMM methodologies to the specific densities associated with π̂SMC

for a single panmictic population, we obtain optimized algorithms. These optimizations take ad-
vantage of structural features common to large genomic samples, including linkage disequilibrium
and an abundance of non-polymorphic loci.

The CSD π̂FD (Fearnhead and Donnelly, 2001) can also be cast as an HMM, and directly com-
pared to π̂SMC in the case of a single panmictic population. As described in Section 2.3.5, it is
thus possible to interpret π̂FD as a sequentially Markov approximation to π̂PS, implicitly requiring
two additional approximations: first, the probability of recombination between loci ℓ − 1 and ℓ is
independent of the MCG at the locus ℓ − 1; and second, conditioned on a recombination event
occurring, the distribution of the MCG the locus ℓ is independent of the MCG at the locus ℓ− 1.
In the context of both the unconditional coalescent and the trunk-conditional coalescent process,
both of these independence assumptions are fallacious, providing an explanation for the empiri-
cally observed deterioration in accuracy relative to π̂SMC. The CSD π̂LS (Li and Stephens, 2003)
can similarly be interpreted as a sequentially Markov approximation to π̂PS, requiring additional
approximations that improve computational efficiency, but at further expense of accuracy.

The sequentially Markov approximation can also be applied to the time-inhomogeneous forms
of the trunk-conditional coalescent described above. Importantly, it remains possible to construct
the key densities associated with the HMM formulation of π̂SMC; by further discretizing the con-
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tinuous space of MCGs, a form of π̂SMC amenable to efficient evaluation is obtained. Sheehan
et al. (2012) have applied this procedure to obtain a CSD for a single panmictic population with
time-inhomogeneous size; research on obtaining a generalized form of π̂SMC incorporating multiple
populations with migration, and time-inhomogeneity, including sub-population splits and mergers,
is also presently underway. We anticipate that the latter will be generally more accurate than
previously-proposed CSDs (Price et al., 2009; Hellenthal et al., 2008; Lawson et al., 2012) deriving
from π̂LS. The algorithmic optimizations described above are not immediately applicable to forms
of π̂SMC for coalescent models incorporating complex demography, and a secondary future research
direction is the development and application of related optimizations.

When conditionally sampling more than one haplotype, the concrete inference procedures de-
scribed herein are no longer immediately applicable. In this more general setting, the MCG state
space is tree-like. Though it is, in principle, possible to discretize the state space and proceed
with inference using the resulting finite space of discretized MCGs, the space grows rapidly with
the number of conditionally sampled haplotypes and number of intervals in the discretization; the
resulting discrete HMM is thus no longer amenable to efficient computation. There are other pos-
sibilities for obtaining a computationally practicable approximation to π̂SMC, for example the use
of Monte Carlo algorithms such as importance sampling or Markov chain Monte Carlo. Exploring
these possibilities is an exciting future research direction. We remark that, in the absence of pre-
viously sampled haplotypes, the CSD π̂SMC is identical to the sequentially Markov coalescent, and
we believe that recent research (Hobolth et al., 2007; Dutheil et al., 2009; Li and Durbin, 2011) in
this area may foster efficient approximations for π̂SMC, and vice versa.

Applications

In Section 4.1, we empirically investigated the accuracy and computational efficiency of our pro-
posed CSDs. In general, our CSDs, including π̂PS and π̂SMC, are more accurate than previously
proposed CSDs, such as π̂FD and π̂LS. Importantly, the improvement in accuracy is amplified for
increasing numbers of loci. Moreover, using our optimized algorithms for the discretized form of
π̂SMC, we have demonstrated a substantial computational speed-up relative to standard algorithms
used for π̂FD and π̂LS. Consequently, π̂SMC is a promising candidate for a wide range of CSD-based
applications, including those enumerated at the beginning of Chapter 4; we anticipate that, relative
to previously proposed CSDs, π̂SMC will produce more accurate results for such applications.

We have explicitly demonstrated the utility of our work in the context of several CSD-based
methods. Importance sampling (IS), introduced in the context of the coalescent by Stephens and
Donnelly (2000) is one such method, used for both estimation of the sampling probability and
ancestral inference. In Section 4.2, we adapted the IS technique introduced by Fearnhead and Don-
nelly (2001) to use π̂SMC, and also proposed two extensions that dramatically improve the efficiency.
Interestingly, using π̂SMC in place of π̂FD produces only a minimal improvement in efficiency; we
hypothesize that inherent inaccuracy in the IS technique may be overwhelming the improvements
in accuracy of π̂SMC, and regard further interpretation and improvement as an interesting future re-
search direction. A second well-established application of the CSD is approximate likelihood-based
inference of model parameters, particularly using the product of approximate conditionals (PAC)
approximate likelihood (Li and Stephens, 2003). In Section 4.3, we use π̂SMC, both within the PAC
framework and two other composite likelihood frameworks, to estimate migration and recombina-
tion rates. We obtain promising results, though estimation of the recombination rate is generally
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biased; interpreting and correcting this bias, either in the approximate likelihood framework or in
the CSD itself, is another interesting research direction.

Finally, in Section 4.4, we have proposed two novel CSD-based methods for efficiently sampling
the marginal genealogy at a particular locus from an approximate posterior distribution. These
methods rely on the CSD π̂SMC, and the central idea is to directly interpret the posterior distribu-
tion on MCGs as a posterior rate of coalescence events. By appropriately combining these posterior
rates, it is possible to construct a pseudo-posterior process for marginal genealogies that is analo-
gous to the coalescent prior process. Preliminary results are promising, and fully developing and
evaluating the pseudo-posterior process are exciting future research directions. We believe that
the pseudo-posterior can be fruitfully used in a variety of application contexts, particularly for
questions of ancestral inference, including quantifying identity by descent along the genome, and
within case-control association studies for identifying disease correlated polymorphism.



Bibliography

Abramowitz, M. and Stegun, I. A., editors. 1972. Handbook of mathematical functions with formu-
las, graphs, and mathematical tables. Dover Publications Inc., New York.

Bhaskar, A. and Song, Y. S. 2012. Closed-form asymptotic sampling distributions under the
coalescent with recombination for an arbitrary number of loci. Advances in Applied Probability,
44, 391–407.

Bhaskar, A., Kamm, J. A., and Song, Y. S. 2012. Approximate sampling formulae for general
finite-alleles models of mutation. Advances in Applied Probability, 44, 408–428.

Browning, B. L. and Browning, S. R. 2007. Rapid and accurate haplotype phasing and missing
data inference for whole genome association studies using localized haplotype clustering. Am. J.
Hum. Genet., 81,(5) 1084–1097.
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Appendix A

Table of Common Notation

Fully-specified haplotypes (Section 1.1)

L The set of loci, L = {1, . . . , k}, where k is the number of loci.
B The set of breakpoints, B = {(1, 2), . . . , (k − 1, k)}.
Aℓ The set of alleles at locus ℓ ∈ L.
H The space of fully-specified haplotypes, H = A1 × · · · ×Ak.
h[ℓ] ∈ Aℓ The allele at locus ℓ ∈ L of h ∈ H. More generally, h[ℓs : ℓe] is the sub-

haplotype for the loci ℓ, ℓs ≤ ℓ ≤ ℓe.
Ma

ℓ (h) ∈ H For ℓ ∈ L, the haplotype derived form h ∈ H by setting h[ℓ] = a.
Rb(h, h

′) ∈ H For b = (ℓ, ℓ + 1) ∈ B, the haplotype derived by joining sub-haplotype
h[1 : ℓ] with sub-haplotype h′[ℓ+ 1 : k].

Partially-specified haplotypes (Section 1.1)

• An unspecified allele.
G The space of partially-specified haplotypes, G = (A1∪{•})×· · ·×(Ak∪{•}).
L(g) Given g ∈ G, the set of specified loci in g.
B(g) Given g ∈ G, the set of recombination breakpoints between the left- and

right-most specified loci.
g f g′ Given g, g′ ∈ G, a binary relation indicating compatibility.
C(g, g′) ∈ G Given g, g′ ∈ G with gfg′, the haplotype derived from g and g′ by merging

the two haplotypes, as defined in (1.1).
Mℓ(g) ∈ G Given ℓ ∈ L(g), the haplotype derived from g ∈ G by setting g[ℓ] = •.
R−

b (g) ∈ G Given b ∈ B(g), the haplotype derived from g ∈ G by joining the sub-
haplotype g[1, ℓ] with the complementary sub-haplotype of unspecified al-
leles. The reverse construction is used for R+

b (g) ∈ G.

Haplotype configurations (Sections 1.1 and 1.3.1)

n = (nh)h∈H A fully-specified haplotype configuration comprising nh haplotypes of type
h. Similarly, a partially-specified configuration n = (ng)g∈G . We frequently
assume an arbitrary ordering or labeling of the constituent haplotypes.
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n[ℓ] The one-locus configuration induced by haplotype configuration n at locus
ℓ ∈ L. More generally, n[ℓs : ℓe] is the configuration induced by n for the
set of loci ℓ such that ℓs ≤ ℓ ≤ ℓe.

n̂ An untyped configuration comprising untyped (or place-holder) haplotypes,
often including additional ancestral information. We frequently assume an
arbitrary ordering or labeling of the constituent untyped haplotypes.

|n|, |n̂| The number of haplotypes in a typed or untyped configuration.

Structured haplotype configurations (Section 1.2.3)

D A finite set of demes, D = {1, . . . , q}.
n = (nd,h)d∈D,h∈H A fully-specified structured haplotype configuration comprising nd,h haplo-

types of type h in deme d. We frequently assume an arbitrary ordering or
labeling of the constituent haplotypes within each deme.

nd The haplotype configuration in deme d ∈ D induced by n = (nd,h)d∈D,h∈H.

Parameters (Sections 1.2.2 and 1.2.3)

θℓ The scaled mutation rate at locus ℓ ∈ L.

Φ(ℓ) The |Aℓ| × |Aℓ|-dimension stochastic matrix governing mutations.
ρb The scaled recombination rate at breakpoint b ∈ B.
κd The relative size of deme d ∈ D, such that

∑
d∈D κd = 1.

υdd′ The scaled migration rate, backward in time, from deme d ∈ D to deme
d′ ∈ D with d′ 6= d. We also write υd =

∑
d′∈D υdd′ .

Genealogies (Sections 1.3.1, 1.3.2, and 2.2.1)

An̂ An untyped genealogy associated with untyped configuration n̂. Similarly,
An is a typed genealogy associated with typed configuration n.

Cĉ An untyped conditional genealogy (including absorption events) associated
with untyped configuration ĉ. Similarly, Cc is a typed conditional genealogy
associated with typed configuration c.

A0(n) The improper typed trunk genealogy (including no genealogical events)
associated with typed configuration n.

An̂[ℓ], Cĉ[ℓ] The marginal genealogy and conditional genealogy, respectively, induced
by An̂ and Cĉ at locus ℓ. More generally, An̂[ℓs : ℓe] and Cĉ[ℓs : ℓe] are the
marginal genealogies induced by the set of loci ℓ such that ℓs ≤ ℓ ≤ ℓe.

Genealogical processes (Section 1.3.1)

Ei, Ui, Vi The i-th random genealogical event, backward in time, and the untyped
and typed configurations after the i-th genealogical event. Note that a
particular typed configuration Vi = v entails the corresponding untyped
configuration Ui = u.
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p(·|u) The density of events Ei conditioned on Ui−1 = u. The support is given by
E(u), and given Ei = e ∈ E(u), the untyped configuration Ui−1 = e(u) is
uniquely determined.

p(·|v, e) The density of typed configurations Vi conditioned on Vi+1 = v and Ei = e.
The support is given by V(v, e).

Sequentially Markov CSD (Sections 2.3.1 and 2.3.2)

S The space of marginal conditional genealogies (MCGs) associated with a
particular trunk-conditional coalescent model.

Sℓ The random MCG at locus ℓ ∈ L, without mutation events.
Tℓ,Hℓ The random absorption time and haplotype associated with Sℓ for a single

conditionally sampled haplotype.

ζ(n)(·) The marginal density on the MCG Sℓ for all ℓ ∈ L.

φ
(n)
b (·|sℓ−1) The density on MCG Sℓ conditioned on Sℓ−1 = sℓ−1, and provided b =

(ℓ− 1, ℓ) ∈ B. Used as the transition density for π̂SMC.

ξ
(n)
ℓ (·|sℓ) The density on emitted alleles at locus ℓ ∈ L conditioned on Sℓ = sℓ.

Discretization for π̂SMC (Sections 3.2.1 and 3.3.2)

P A discretization of R≥0. Letting 0 = τ0 < τ1 < · · · < τm = ∞ be a strictly
increasing sequence, P = {[τj−1, τj)}j=1,...,m.

S̈ The space of discretized marginal conditional genealogies (MCGs) associ-
ated with a particular trunk-conditional coalescent model.

C A configuration partition C = {(B, ℓs, ℓe)} where B ⊂ H and 1 ≤ ℓs ≤ ℓe ≤ k
such that each locus of each haplotype in a configuration n is represented in
precisely one block (B, ℓs, ℓe). C = CT is the trivial configuration partition
comprising a single block for each haplotype.

Cℓ The partition of haplotypes induced by C at a particular locus ℓ ∈ L.
Ψ(C) Given a configuration partition C, Ψ(C) =

∑
ℓ∈L |Cℓ| is a summation of the

size of the C-induced haplotype partition at each locus. Similarly, Ψp(C) is
a summation over only polymorphic loci.

Ω(C) Given a configuration partition C, Ω(C) =
∑

(B,ℓs,ℓe)∈C
|B| is a summation

of the number of haplotypes in each block of C.
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Appendix B

Longer Proofs

B.1 Proof of equivalence of π̂
NC

and π̂
SMC

Recalling the definition (2.71) of the forward probability f
(eη ,n)
ℓ (sℓ), we define the generalized

forward probability fℓ′,ℓ(η, sℓ), which describes the joint probability of observing loci ℓ′ : ℓ of η and
Sℓ = sℓ

fℓ′,ℓ(η, sℓ) = ξℓ(c[ℓ]|sℓ) ·

∫

S
φ(ℓ−1,ℓ)(sℓ|sℓ−1) · fℓ′,ℓ−1(η, sℓ−1) dsℓ−1, (B.1)

for ℓ′ < ℓ, with base case

fℓ,ℓ(η, sℓ) = ξ
(n)
ℓ (c[ℓ]|sℓ) · ζ(sℓ), (B.2)

where the marginal, transition, and emission densities are provided in (2.73), (2.74), and (2.75),

respectively. Observe that f
(eη ,n)
ℓ (sℓ) = f1,ℓ(η, sℓ). For notational convenience, we have suppressed

dependence on n in the generalized forward density, and moved the dependence on η into the
function. We now provide a more detailed proof of Theorem 2.14 from the main paper.

Proof of Theorem 2.14. We begin by showing inductively that, for ℓ, ℓ′ ∈ L with ℓ′ ≤ ℓ and sℓ ∈ S,
the probability fℓ′,ℓ(η, sℓ) is equal to the probability gℓ,ℓ′(η, sℓ), defined by the following genealogical
recursion [c.f. Griffiths and Tavaré (1994)],

gℓ′,ℓ(η, sℓ) =

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

[
nhℓ

δ(ℓ
′:ℓ)

η,hℓ
δte,tℓ

+
∑

λ∈L(ℓ′:ℓ)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ(M

a
λ(η), sℓ − te)

+
∑

β∈B(ℓ′:ℓ)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ(η, sℓ − te)

]
,

(B.3)

where the N(ℓ′,ℓ) is the (ℓ′ : ℓ)-restricted rate of events,

N(ℓ′,ℓ) = n+
∑

λ∈L(ℓ′:ℓ)

θλ +
∑

β∈B(ℓ′:ℓ)

ρβ. (B.4)

For notational convenience, we have adopted the following conventions: given MCG sℓ ∈ S and
t ∈ R≥0, we write sℓ − t = (tℓ − t, hℓ) ∈ S; similarly, we express the (ℓ′ : ℓ)-restricted delta function
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δ(ℓ
′:ℓ)

η,hℓ
= δη[ℓ′:ℓ],hℓ[ℓ′:ℓ]; finally, we set β = (ℓs, ℓe) ∈ B, and that b = (ℓ− 1, ℓ) ∈ B. Setting ℓ′ = ℓ,

gℓ,ℓ(η, sℓ) =

∫ tℓ

te=0
e−N(ℓ,ℓ)te

[
nhℓ

δ(ℓ)η,hℓ
δte,tℓ + θℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]gℓ,ℓ(M

a
ℓ (η), sℓ − te)

]
. (B.5)

Substituting gℓ,ℓ = fℓ,ℓ on the right-hand side,

∫ tℓ

te=0
e−N(ℓ,ℓ)te

[
nhℓ

δ(ℓ)η,hℓ
δte,tℓ + θℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]fℓ,ℓ(M

a
ℓ (η), sℓ − te)

]

= e−N(ℓ,ℓ)tℓnhℓ
δ(ℓ)η,hℓ

+

∫ tℓ

te=0
e−N(ℓ,ℓ)teθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − te)ζ(sℓ − te)

= nhℓ
e−N(ℓ,ℓ)tℓ

(
δ(ℓ)η,hℓ

+

∞∑

m=0

( ∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]

[
(Φ(ℓ))m

]
hℓ[ℓ],a

)∫ tℓ

te=0
θℓ

(
θℓ(tℓ − te)

)m

m!

)

= nhℓ
e−N(ℓ,ℓ)tℓ

(
δ(ℓ)η,hℓ

+
∞∑

m=0

[
(Φ(ℓ))m+1

]
hℓ[ℓ],η[ℓ]

(
θℓtℓ

)m+1

(m+ 1)!

)

= ξℓ(sℓ)ζ(sℓ) = fℓ,ℓ(η, sℓ),

(B.6)

Thus, fℓ,ℓ satisfies the recursion for gℓ,ℓ, and so we conclude that fℓ,ℓ = gℓ,ℓ. Inductively assuming
that fℓ′,ℓ = gℓ′,ℓ for all ℓ, ℓ′ ∈ L such that 0 ≤ ℓ − ℓ′ < j, let ℓ′, ℓ ∈ L such that ℓ − ℓ′ = j.
Substituting gℓ′,ℓ = fℓ′,ℓ on the right-hand side of (B.3), we obtain

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

[
nhℓ

δ(ℓ
′:ℓ)

η,hℓ
δte,tℓ

+
∑

λ∈L(ℓ′:ℓ)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]fℓ′,ℓ(M

η
λ(a), sℓ − te)

+
∑

β∈B(ℓ′:ℓ)

ρβ

(∫

sℓs∈S
fℓ′,ℓs(η, sℓs)

)
fℓe,ℓ(η, sℓ − te)

]
.

(B.7)

We consider this expression one term at a time. Beginning with the first term:

∫ tℓ

te=0
e−N(ℓ′,ℓ)tenhℓ

δ(ℓ
′:ℓ)

η,hℓ
δte,tℓ

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)tenhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δte,tℓ−1

[
e−(θℓ+ρb)teδ(ℓ)η,hℓ

δsℓ−1,sℓ

]
.

(B.8)

Moving on to the second term of (B.7), expand using the definition (B.1) of fℓ′,ℓ, and apply the
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inductive hypothesis to replace the resulting fℓ′,ℓ−1 terms with the corresponding gℓ′,ℓ−1 terms:

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

∑

λ∈L(ℓ′:ℓ)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]fℓ′,ℓ(M

a
λ(η), sℓ − te)

=

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]

× ξℓ(η[ℓ]|sℓ − te)

∫

sℓ−1∈S
φb(sℓ − te|sℓ−1)gℓ′,ℓ−1(M

a
λ(η), sℓ−1)dsℓ−1dte

+

∫ tℓ

0
e−N(ℓ′,ℓ)teθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]

× ξℓ(a|sℓ − te)

∫

S
φb(sℓ − te|sℓ−1)gℓ′,ℓ−1(η, sℓ−1).

(B.9)

Concentrating on the first sub-term of (B.9), making the substitution tℓ−1 → tℓ−1+te, and changing
the order of integration, we obtain

∫

sℓ−1∈S

∫ tℓ∧tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]

gℓ′,ℓ−1(M
a
λ(η), sℓ−1 − te)

×

[
e−θℓteξℓ(η[ℓ]|sℓ − te) · e

−ρbteφb(sℓ − te|sℓ−1 − te)

]
.

(B.10)

Now concentrating on the second sub-term of (B.9) and expanding using definition (B.3) of gℓ′,ℓ−1:

∫ tℓ

te=0
e−N(ℓ′,ℓ)teθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]

ξℓ(a|sℓ − te)

∫

sℓ−1∈S
φb(sℓ − te|sℓ−1)

×

∫ tℓ−1

tq=0
e−N(ℓ′,ℓ−1)tq

[
nhℓ−1

δ(ℓ
′ :ℓ−1)

η,hℓ−1
δtq ,tℓ−1

+
∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ−1(M

a
λ(η), sℓ−1 − tq)

+
∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

tq=0
e−N(ℓ′,ℓ−1)tq

[
nhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δtq ,tℓ−1

+
∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ−1(M

a
λ(η), sℓ−1 − tq)

+
∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − tq)

]

×

[ ∫ tq∧tℓ

te=0
e−θℓteθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − te) · e

−ρbteφb(sℓ − te|sℓ−1 − te)

]
,

(B.11)
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with the equality obtained by making the substitutions tℓ−1 → tℓ−1 + te and tq → tq + te and then
changing the order of integration. Finally, moving onto the third term of (B.7), expand using the
definition of fℓ′,ℓ−1, and apply the inductive hypothesis to replace the resulting fℓ′,ℓ−1 terms with
the corresponding gℓ′,ℓ−1 terms:

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

∑

β∈B(ℓ′:ℓ)

ρb

(∫

sℓs∈S
fℓ′,ℓs(η, sℓs)

)
fℓe,ℓ(η, sℓ − te)

=

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)

× ξℓ(η[ℓ]|sℓ − te)

∫

sℓ−1∈S
φb(sℓ − te|sℓ−1)gℓe,ℓ−1(η, sℓ−1)

+

∫ tℓ

te=0
e−N(ℓ′,ℓ)teρb

(∫

sℓ−1∈S
gℓ′,ℓ−1(η, sℓ−1)

)
· gℓ(η, sℓ − te).

(B.12)

Concentrating on the first sub-term of (B.12), making the substitution tℓ−1 → tℓ−1 + te, and
changing the order of integration, we obtain:

∫

sℓ−1∈S

∫ tℓ∧tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − te)

×

[
e−θℓteξℓ(η[ℓ]|sℓ − te) · e

−ρbteφb(sℓ − te|sℓ−1 − te)

]
.

(B.13)

Now concentrating on the second sub-term of (B.12) and expanding using definition (B.3) of gℓ′,ℓ−1:
∫ tℓ

te=0
e−N(ℓ′,ℓ)teρbgℓ(η, sℓ − te)

×

∫

sℓ−1∈S

∫ tℓ−1

tq=0
e−N(ℓ′,ℓ−1)tq

[
nhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δtq ,tℓ−1

+
∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ−1(M

a
λ(η), sℓ−1 − tq)

+
∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

tq=0
e−N(ℓ′,ℓ−1)tq

[
nhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δtq ,tℓ−1

+
∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ−1(M

a
λ(η), sℓ−1 − tq)

+
∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − tq)

]

×

[ ∫ tq∧tℓ

te=0
e−θℓteξℓ(η[ℓ]|sℓ − te) · e

−ρbteρbnhℓ
e−n(tℓ−te)

]
,

(B.14)

with the equality obtained by using the base definition (B.2) for fℓ,ℓ, making the substitutions
tℓ−1 → tℓ−1 + te and tq → tq + te, and changing the order of integration.
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Having expanded each term of our key expression (B.7), aggregate common terms across the

resulting sub-expressions. Collecting the nhℓ−1
δ(ℓ

′:ℓ−1)

η,hℓ−1
terms from (B.8),(B.11), and (B.14),

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)tenhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δte,tℓ−1

×

[
e−(θℓ+ρb)teδ(ℓ)η,hℓ

δsℓ−1,sℓ

+

∫ te∧tℓ

tq=0
e−θℓtqθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − tq) · e

−ρbtqφb(sℓ − tq|sℓ−1 − tq)

+

∫ te∧tℓ

tq=0
e−θℓtqξℓ(η[ℓ]|sℓ − tq) · e

−ρbtqρbnhℓ
e−n(tℓ−tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)tenhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δte,tℓ−1

×

[
e−ρbtℓ−1δsℓ−1,sℓ ·

(
e−θℓtℓδ(ℓ)η,hℓ

)

+ e−ρbtℓ−1δsℓ−1,sℓ

(∫ tℓ

tz=0
e−θℓtzθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − tz)

)

+

∫ tℓ−1∧tℓ

tq=0
ρbe

−ρbtqnhℓ
e−n(tℓ−tq)

(∫ tq

tz=0
e−θℓtzθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − tz)

)

+

∫ tℓ−1∧tℓ

tq=0
ρbe

−ρbtqnhℓ
e−n(tℓ−tq)

(
e−θℓtqξℓ(η[ℓ]|sℓ − tq)

)]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)tenhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δte,tℓ−1

× ξℓ(η[ℓ]|sℓ)

[
e−ρbtℓ−1δsℓ−1,sℓ +

∫ tℓ−1∧tℓ

tq=0
ρbe

−ρbtqnhℓ
e−n(tℓ−tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)tenhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δte,tℓ−1

×

[
ξℓ(η[ℓ]|sℓ)φb(sℓ|sℓ−1)

]
,

(B.15)

where the first equality is obtained by making use of the δte,tℓ−1
and δsℓ−1,sℓ expressions and expand-

ing φb(sℓ − tq|sℓ−1 − tq) using (2.74) and exchanging integrals, the second equality is obtained by
combining the first/second and third/fourth term and using a straightforward identity for ξℓ(η[ℓ]|sℓ),
and final equality by again making use of the (2.74). Similarly, collecting the gℓ′,ℓ−1(M

a
ℓ (η), sℓ−1−tq)
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terms from the resulting sub-expressions (B.10),(B.11), and (B.14),

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ−1(M

a
λ(η), sℓ−1 − te)

×

[
I(te≤tℓ)e

−θℓteξℓ(η[ℓ]|sℓ − te) · e
−ρbteφb(sℓ − te|sℓ−1 − te)

+

∫ te∧tℓ

tq=0
e−θℓtqθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − tq) · e

−ρbtqφb(sℓ − tq|sℓ−1 − tq)

+

∫ te∧tℓ

tq=0
e−θℓtqξℓ(η[ℓ]|sℓ − tq) · e

−ρbtqρbnhℓ
e−n(tℓ−tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[ℓ]gℓ′,ℓ−1(M

a
λ(η), sℓ−1 − te)

×

[
I(te≤tℓ)e

−ρbteφb(sℓ − te|sℓ−1 − te)

(
e−θℓteξℓ(η[ℓ]|sℓ − te)

)

+ I(te≤tℓ)e
−ρbteφb(sℓ − te|sℓ−1 − te)

(∫ te

tz=0
e−θℓtzθℓ

∑

a∈Aℓ

Φ(ℓ)a, η[ℓ]ξℓ(a|sℓ − tz)

)

+

∫ te∧tℓ

tq=0
ρbe

−ρbtqnhℓ
e−n(tℓ−tq)

(∫ tq

tz=0
e−θℓtzθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − tz)

)

+

∫ te∧tℓ

tq=0
ρbe

−ρbtqnhℓ
e−n(tℓ−tq)

(
e−θℓtqξℓ(η[ℓ]|sℓ − tq)

)]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[ℓ]gℓ′,ℓ−1(M

a
ℓ (η), sℓ−1 − te)

× ξℓ(η[ℓ]|sℓ)

[
I(te≤tℓ)e

−ρbteφb(sℓ − te|sℓ−1 − te) +

∫ te∧tℓ

tq=0
ρbe

−ρbtqnhℓ
e−n(tℓ−tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ−1(M

a
ℓ (η), sℓ−1 − te)

×

[
ξℓ(η[ℓ]|sℓ)φb(sℓ|sℓ−1)

]
,

(B.16)

where the first equality is obtained by using the following expansion for φb(sℓ − tq|sℓ−1 − tq),

φb(sℓ − tq|sℓ−1 − tq) = I(te≤tℓ)e
−ρb(te−tq) · φb(sℓ − te|sℓ−1 − te)

+

∫ (te∧tℓ)−tq

tz=0
ρbe

−ρbtznhℓ
e−n(tℓ−tq−tz),

which can be verified in the present context, namely that tq ≤ te ≤ tℓ−1 and tq ≤ tℓ. The second
equality is obtained by combining the first/second and third/fourth term and using a straightfor-
ward identity for ξℓ(η[ℓ]|sℓ), and the final equality by once again appealing to the above identity.
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Collecting the gℓe,ℓ−1(η, sℓ−1 − tq) terms from (B.13), (B.11), and (B.14):

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs

gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − te)

×

[
I(te≤tℓ)e

−θℓteξℓ(η[ℓ]|sℓ − te) · e
−ρbteφb(sℓ − te|sℓ−1 − te)

+

∫ te∧tℓ

tq=0
e−θℓtqθℓ

∑

a∈Aℓ

Φ
(ℓ)
a,η[ℓ]ξℓ(a|sℓ − tq) · e

−ρbtqφb(sℓ − tq|sℓ−1 − tq)

+

∫ te∧tℓ

tq=0
e−θℓtqξℓ(η[ℓ]|sℓ − tq) · e

−ρbtqρbnhℓ
e−n(tℓ−tq)

]

=

∫

sℓ−1∈S

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ−1(η, sℓ−1 − te)

×

[
ξℓ(η[ℓ]|sℓ)φb(sℓ|sℓ−1)

]
.

(B.17)

Thus, combining equations (B.15),(B.16), and (B.17), we may re-write (B.7):

ξℓ(η[ℓ]|sℓ)

∫

sℓ−1∈S
φb(sℓ|sℓ−1) ·

∫ tℓ−1

te=0
e−N(ℓ′,ℓ−1)te

[
nhℓ−1

δ(ℓ
′:ℓ−1)

η,hℓ−1
δte,tℓ−1

+
∑

λ∈L(ℓ′:ℓ−1)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]

gℓ′,ℓ−1(M
a
λ(η), sℓ−1 − te)

+
∑

β∈B(ℓ′:ℓ−1)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe:ℓ−1(η, sℓ−1 − te)

]

= ξℓ(η[ℓ]|sℓ)

∫

sℓ−1∈S
φbsℓ|sℓ−1)gℓ′,ℓ−1(η, sℓ−1)

= fℓ′,ℓ(η, sℓ),

(B.18)

where the first equality is obtained by definition (B.3) for gℓ′,ℓ−1, and the second equality by using
the inductive hypothesis and definition (B.1). Thus, fℓ′,ℓ satisfies the recursion for gℓ′,ℓ, and so we
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conclude that fℓ′,ℓ = gℓ′,ℓ. Moreover,
∫

sℓ∈S
gℓ′,ℓ(η, sℓ) =

∫

sℓ∈S

∫ tℓ

te=0
e−N(ℓ′,ℓ)te

[
nhℓ

δ(ℓ
′:ℓ)

η,hℓ
δte,tℓ

+
∑

λ∈L(ℓ′:ℓ)

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]gℓ′,ℓ(M

a
λ(η), sℓ − te)

+
∑

β∈B(ℓ′:ℓ)

ρβ

(∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

)
gℓe,ℓ(η, sℓ − te)

]

=
1

N(ℓ′,ℓ)

[ ∑

h∈H:
h[ℓ′:ℓ]=η[ℓ′:ℓ]

nh

+
∑

λ∈L(η[ℓ′:ℓ])

θλ
∑

a∈Aλ

Φ
(λ)
a,η[λ]

∫

sℓ∈S
gℓ′,ℓ(M

a
λ(η), sℓ)

+
∑

β∈B(η[ℓ′:ℓ])

ρβ

∫

sℓs∈S
gℓ′,ℓs(η, sℓs)

∫

sℓ∈S
gℓe,ℓ(η, sℓ)

]
,

(B.19)

where the first equality is by definition (B.3), and the second equality obtained by exchanging the
integrals and making the substitution tℓ → tℓ − te. Thus,

∫
sℓ∈S

gℓ′,ℓ(η, sℓ) satisfies the recursion

(2.59) for π̂NC(eη[ℓ
′, ℓ]|n[ℓ′, ℓ]) and we conclude that

∫
sℓ∈S

gℓ′,ℓ(η, sℓ) = π̂NC(eη[ℓ
′ : ℓ]|n[ℓ′, ℓ]). Thus,

π̂SMC(eη|n) =

∫

sk∈S
f1,k(η, sk) =

∫

sk∈S
g1,k(η, sk) = π̂NC(eη |n), (B.20)

thereby establishing the desired identity.

B.2 Proof of detailed balance for two-haplotype π̂
SMC

We have shown that the Markov process associated with one-haplotype CSD π̂SMC, governed by
transition density f (a)

b,0 , satisfies detailed balance with respect to the marginal density f (f)

0 . We
begin by stating and proving a general form of this result as a proposition, preceded by two minor
lemmas. Recalling the definitions of Section 2.3.4,

Lemma B.1. Let mℓ = (tℓ, hℓ) ∈ M. For t, t′ < tℓ,

f (f)

t (mℓ) = e−n(t′−t)f (f)

t′ (mℓ).

As a consequence, letting mℓ−1 = (tℓ−1, hℓ−1) ∈ M, then for t, t′ < tℓ−1, tℓ,

f (f)

t (mℓ−1) · f
(f)

t′ (mℓ) = f (f)

t (mℓ) · f
(f)

t′ (mℓ−1).

Proof. Using expression (2.92) for f (f)

t ,

e−n(t′−t)f (f)

t′ (mℓ) = e−n(t′−t) · nhℓ
e−n(tℓ−t′) = nhℓ

e−n(tℓ−t) = f (f)

t (mℓ).

Lemma B.2. Let mℓ−1,mℓ ∈ M. Then for t < tℓ−1, tℓ, t
′ and t′ < tℓ,

f (a)

b,t (mℓ|mℓ−1) =
[1(t′<tℓ−1)

]
· e−ρ(t′−t) · f (a)

b,t′(mℓ|mℓ−1) +

∫ t′∧tℓ−1

t
ρe−ρ(tr−t) · f (f)

tr (mℓ)dtr.
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Proof. Beginning with the right hand side, and using expression (2.93) to expand f (a)

b,t′(mℓ|mℓ−1),

[1(t′<tℓ−1)

]
· e−ρ(t′−t) · f (a)

b,t′(mℓ|mℓ−1) +

∫ t′∧tℓ−1

t
ρe−ρ(tr−t) · f (f)

tr (mℓ)dtr

= e−ρ(tℓ−1−t) · δmℓ,mℓ−1
+

[1(t′<tℓ−1)

]
·

∫ tℓ−1∧tℓ

t′
ρe−ρ(tr−t) · nhℓ

e−n(tℓ−tr)dtr

+

∫ t′∧tℓ−1

t
ρe−ρ(tr−t) · f (f)

tr (mℓ)dtr

= e−ρ(tℓ−1−t) · δmℓ,mℓ−1
+

∫ tℓ∧tℓ−1

t
ρe−ρ(tr−t) · f (f)

tr (mℓ)dtr

= f (a)

b,t (mℓ|mℓ−1).

Proposition B.3. Let mℓ,mℓ−1 ∈ M. Then for t, t′ < tℓ−1, tℓ, the following detailed balance
condition holds for the densities f (a)

b,t and f (f)

t′ :

f (a)

b,t (mℓ|mℓ−1) · f
(f)

t′ (mℓ−1) = f (a)

b,t (mℓ−1|mℓ) · f
(f)

t′ (mℓ).

Proof. Using the expression (2.93) to expand f (a)

b,t (mℓ|mℓ−1), and applying Lemma B.1,

f (a)

b,t (mℓ|mℓ−1) · f
(f)

t′ (mℓ−1)

= e−ρ(tℓ−1−t) · δmℓ,mℓ−1
· f (f)

t′ (mℓ−1) +

[ ∫ tℓ−1∧tℓ

t
ρe−ρ(tr−t) · f (f)

tr (mℓ)dtr

]
· f (f)

t′ (mℓ−1)

= e−ρ(tℓ−t) · δmℓ−1,mℓ
· f (f)

t′ (mℓ) +

[ ∫ tℓ∧tℓ−1

t
ρe−ρ(tr−t) · f (f)

tr (mℓ−1)dtr

]
· f (f)

t′ (mℓ)

= f (a)

b,t (mℓ−1|mℓ) · f
(f)

t′ (mℓ).

We now move on the analogous detailed balance result for the two-haplotype CSD π̂SMC. We
begin by defining an auxiliary distribution, and using it to relate the previously defined distributions
in a series of lemmas. The final lemma provides a condition that is analogous to Lemma B.1. The
auxiliary distribution is associated with sampling the conditional genealogy sℓ conditioned on the
marginal conditional genealogy m(2)

ℓ , and starting at time t. Denoting the density f (1|2)

t ,

f (1|2)

t (sℓ|m
(2)

ℓ ) =
[
1− δ

t
(c)
ℓ

,∅

]
· 2e−(n+2)(t

(c)
ℓ

−t)

+
[1

(t
(1)
ℓ

<t
(2)
ℓ

)

]
· e−(n+2)(t

(1)
ℓ

−t)n
h
(1)
ℓ

+
[1

(t
(1)
ℓ

>t
(2)
ℓ

)

]
· e−(n+2)(t

(2)
ℓ

−t) · f (f)

t
(2)
ℓ

(m(1)

ℓ )

(B.21)

Then we can immediately establish the following simple lemma

Lemma B.4. Let sℓ ∈ S. Then for t, t′ < sℓ,

f (1|2)

t (m(1)

ℓ , t(c)ℓ |m(2)

ℓ ) = e−(n+2)(t′−t) · f (1|2)

t′ (m(1)

ℓ , t(c)ℓ |m(2)

ℓ ).

As a consequence, letting sℓ−1 ∈ S, then for t, t′ < sℓ−1, sℓ,

f (1|2)

t (m(1)

ℓ , t(c)ℓ |m(2)

ℓ ) · f (1|2)

t′ (m(1)

ℓ−1, t
(c)

ℓ−1|m
(2)

ℓ−1) = f (1|2)

t (m(1)

ℓ−1, t
(c)

ℓ−1|m
(2)

ℓ−1) · f
(1|2)

t′ (m(1)

ℓ , t(c)ℓ |m(2)

ℓ ).
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Proof. As in the proof of Lemma B.1, this is a simple algebraic identity.

The next two lemmas provide two simple sampling relations. In order to (unconditionally)
sample the MCG sℓ, it is sufficient to first (unconditionally) sample m(2)

ℓ , and then sample sℓ
conditioned on m(2)

ℓ . Similarly, to sample the MCG sℓ conditioned on m(2)

ℓ−1, it is sufficient to first

sample m(2)

ℓ conditioned on m(2)

ℓ−1, and then sample the MCG sℓ conditioned on m(2)

ℓ .

Lemma B.5. Let sℓ ∈ S. Then for t < sℓ,

f (f,f)

t (sℓ) = f (1|2)

t (sℓ|m
(2)

ℓ ) · f (f)

t (m(2)

ℓ ).

Proof. Expanding factor f (1|2)

t (sℓ|m
(2)

ℓ ) using expression (B.21), and applying Lemma B.1,

f (1|2)

t (sℓ|m
(2)

ℓ ) · f (f)

t (m(2)

ℓ )

=
[
1− δ

t
(c)
ℓ

,∅

]
· 2e−(2n+2)(t

(c)
ℓ

−t) · f (f)

t
(c)
ℓ

(mℓ)

+
[1

(t
(1)
ℓ

<t
(2)
ℓ

)

]
· e−(2n+2)(t

(1)
ℓ

−t)n
h
(1)
ℓ

· f (f)

t
(1)
ℓ

(m(2)

ℓ )

+
[1

(t
(1)
ℓ

>t
(2)
ℓ

)

]
· e−(2n+2)(t

(2)
ℓ

−t)n
h
(2)
ℓ

· f (f)

t
(2)
ℓ

(m(1)

ℓ )

= f (f,f)

t (sℓ),

where the final equality is by (2.94).

Lemma B.6. Let sℓ ∈ S and m(2)

ℓ−1 ∈ M. Then for t < sℓ, t
(2)

ℓ−1,

f (f,a)

b,t (sℓ|m
(2)

ℓ−1) = f (1|2)

t (sℓ|m
(2)

ℓ ) · f (a)

b,t (m
(2)

ℓ |m(2)

ℓ−1).

Proof. Expanding factors f (1|2)

t (sℓ|m
(2)

ℓ ) and f (a)

b,t (m
(2)

ℓ |m(2)

ℓ−1) using expression (B.21) and
Lemma B.2, respectively, and recollecting those terms containing integrals,

f (1|2)

t (sℓ|m
(2)

ℓ ) · f (a)

b,t (m
(2)

ℓ |m(2)

ℓ−1)

=
[
1− δ

t
(c)
ℓ

,∅

]
· 2e−(n+2)(t

(c)
ℓ

−t) ·
(1

(t
(c)
ℓ

<t
(2)
ℓ−1)

· e−ρ(t
(c)
ℓ

−t)f (a)

b,t
(c)
ℓ

(mℓ|m
(2)

ℓ−1)
)

+
[1

(t
(1)
ℓ

<t
(2)
ℓ

)

]
· e−(n+2)(t

(1)
ℓ

−t)n
h
(1)
ℓ

·
(1

(t
(1)
ℓ

<t
(2)
ℓ−1)

· e−ρ(t
(1)
ℓ

−t)f (a)

b,t
(1)
ℓ

(m(2)

ℓ |m(2)

ℓ−1)
)

+
[1

(t
(1)
ℓ

>t
(2)
ℓ

)

]
· e−(n+2)(t

(2)
ℓ

−t) · f (f)

t
(2)
ℓ

(m(1)

ℓ ) ·
(
e−ρ(t

(2)
ℓ−1−t)δ

m
(2)
ℓ−1,m

(2)
ℓ

)

+ f (1|2)

t (sℓ|m
(2)

ℓ ) ·

∫ t
(2)
ℓ−1∧sℓ

t
ρe−ρ(tr−t) · f (f)

tr (m(2)

ℓ )dtr

=
[
1− δ

t
(c)
ℓ

,∅

]
· 2e−(ρ+n+2)(t

(c)
ℓ

−t) · f (a)

b,t
(c)
ℓ

(mℓ|m
(2)

ℓ−1)

+
[1

(t
(1)
ℓ

<t
(2)
ℓ

)

]
· e−(ρ+n+2)(t

(1)
ℓ

−t)n
h
(1)
ℓ

· f (a)

b,t
(1)
ℓ

(m(2)

ℓ |m(2)

ℓ−1)

+
[1

(t
(1)
ℓ

>t
(2)
ℓ

)

]
· e−(ρ+n+2)(t

(2)
ℓ

−t)δ
m

(2)
ℓ−1,m

(2)
ℓ

· f (f)

t
(2)
ℓ

(m(1)

ℓ )

+

∫ t
(2)
ℓ−1∧sℓ

t
ρe−(ρ+n+2)(tr−t) · f (f,f)

tr (sℓ)dtr

= f (f,a)

b,t (sℓ|m
(2)

ℓ−1),
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where the penultimate equality is obtained by applying Lemmas B.4 and B.5 to the final term, and
the final equality by (2.95)

We establish the final key lemma before proving the main proposition.

Lemma B.7. Let sℓ−1, sℓ ∈ S. Then for t, t′ < sℓ−1, sℓ,

f (f,a)

b,t′ (sℓ|m
(2)

ℓ−1) · f
(f,f)

t (sℓ−1) = f (f,a)

b,t′ (sℓ−1|m
(2)

ℓ ) · f (f,f)

t (sℓ).

By symmetry, we may also conclude that

f (a,f)

b,t′ (sℓ|m
(2)

ℓ−1) · f
(f,f)

t (sℓ−1) = f (a,f)

b,t′ (sℓ−1|m
(2)

ℓ ) · f (f,f)

t (sℓ).

Proof. Using Lemmas B.5 and B.6, to expand f (f,f)

t (sℓ−1) and f
(f,a)

b,t′ (sℓ|m
(2)

ℓ−1), respectively,

f (f,a)

b,t′ (sℓ|m
(2)

ℓ−1) · f
(f,f)

t (sℓ−1)

=
[
f (1|2)

t′ (sℓ|m
(2)

ℓ ) · f (a)

b,t′(m
(2)

ℓ |m(2)

ℓ−1)
]
·
[
f (1|2)

t (sℓ−1|m
(2)

ℓ−1) · f
(f)

t (m(2)

ℓ−1)
]

=
[
f (1|2)

t′ (sℓ|m
(2)

ℓ ) · f (1|2)

t (sℓ−1|m
(2)

ℓ−1)
]
·
[
f (a)

b,t′(m
(2)

ℓ |m(2)

ℓ−1) · f
(f)

t (m(2)

ℓ−1)
]

=
[
f (1|2)

t′ (sℓ−1|m
(2)

ℓ−1) · f
(1|2)

t (sℓ|m
(2)

ℓ )
]
·
[
f (a)

b,t′(m
(2)

ℓ−1|m
(2)

ℓ ) · f (f)

t (m(2)

ℓ )
]

=
[
f (1|2)

t′ (sℓ−1|m
(2)

ℓ−1) · f
(a)

b,t′(m
(2)

ℓ−1|m
(2)

ℓ )
]
·
[
f (1|2)

t (sℓ|m
(2)

ℓ ) · f (f)

t (m(2)

ℓ )
]

= f (f,a)

b,t′ (sℓ−1|m
(2)

ℓ ) · f (f,f)

t (sℓ),

where the second equality is obtained by rearranging factors, the third equality by applying
Lemma B.4 and Proposition B.3, the fourth equality by rearranging factors, and the final equality
by Lemma B.5 and Lemma B.6.

Proposition B.8. Let sℓ, sℓ−1 ∈ S. Then for t, t′ < sℓ−1, sℓ, the following detailed balance condi-
tion holds for the densities f (a,a)

b,t and f (f,f)

t′ ,

f (a,a)

b,t (sℓ|sℓ−1) · f
(f,f)

t′ (sℓ−1) = f (a,a)

b,t (sℓ−1|sℓ) · f
(f,f)

t′ (sℓ).

This implies that f (f,f)

0 is a stationary distribution for the Markov chain governed by transition
density f (a,a)

b,0 .
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Proof. Expanding factors f (a,a)

b,t (sℓ|sℓ−1) and f
(f,f)

t′ (sℓ−1) using (2.96) and (2.94), respectively,

f (a,a)

b,t (sℓ|sℓ−1) · f
(f,f)
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ℓ−1)

][
n
h
(1)
ℓ−1

e−(n+1)·(t
(1)
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+
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+

∫ sℓ−1∧sℓ
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=
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(c)
ℓ
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]
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(c)
ℓ

−t)δ
t
(c)
ℓ−1,t

(c)
ℓ

· f (a)

b,t
(c)
ℓ−1

(mℓ−1|mℓ)

][
e−(n+1)·(t

(c)
ℓ

−t′) · f (f)

t
(c)
ℓ

(mℓ)

]

+

[[1
(t

(1)
ℓ

<t
(2)
ℓ

)

]
· e−2ρ(t

(1)
ℓ

−t)δ
m

(1)
ℓ−1,m

(1)
ℓ

· f (a)

b,t
(1)
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(m(2)

ℓ−1|m
(2)

ℓ )

][
n
h
(1)
ℓ

e−(n+1)·(t
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ℓ
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]

+
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ℓ

)
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(2)
ℓ
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m

(2)
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· f (a)
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−t′) · f (f)

t
(2)
ℓ

(m(1)

ℓ )

]
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t
ρe−2ρ(tr−t)

[
f (f,a)

b,tr
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(2)

ℓ ) + f (a,f)

b,tr
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dtr · f

(f,f)

t′ (sℓ)

= f (a,a)

b,t (sℓ−1|sℓ) · f
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t′ (sℓ),

where the second equality is obtained by applying Proposition B.3 and Lemma B.7, and the final
equality by (2.96) and (2.94).



Appendix C

Analytic Forms

C.1 Single-deme, single-haplotype

Given a discretization P of R≥0, the discretized marginal, transition, and emission densities are
defined by (3.13), (3.14), and (3.15), respectively. Critically, these densities can be written in
terms of the quantities x(p), yb(p), zb(p

′|p) and v(k)

ℓ (p), where p, p′ ∈ P. We now provide analytic
expressions for each of these quantities, derived by evaluating the requisite integrals. Suppose that
p = [τi−1, τi) and p

′ = [τj−1, τj). Then

x(p) = e−τi−1 − e−τi , (C.1)

and

yb(p) =
1

x(p)

n

ρb + n
(e−

ρb+n

n
τi−1 − e−

ρb+n

n
τi). (C.2)

For ρb 6= n,

zb(p
′|p) =

1

x(p)

ρb
ρb − n

·





x(p)
(
x(p′)− n

ρb
(e−

ρb
n
τj−1 − e−

ρb
n
τj )

)
, if j < i,

x(p′)
(
x(p)− n

ρb
(e−

ρb
n
τi−1 − e−

ρb
n
τi)

)
, if j > i,

x(p)
(
x(p)− n

ρb
(e−

ρb
n
τi−1 − e−

ρb
n
τi)

)

−ρb−n
ρb

n
ρb+n(e

−
ρb+n

n
τi−1 − e−

ρb+n

n
τi)

− n
ρb
(e−τi−1e−

ρb
n
τi − e−τie−

ρb
n
τi−1), if j = i,

(C.3)

and for ρb = n,

zb(p
′|p) =

1

x(p)
·





x(p)
(
x(p′) + (τj−1e

−τj−1 − τje
−τj )

)
, if j < i,

x(p′)
(
x(p) + (τi−1e

−τi−1 − τie
−τi)

)
, if j > i,

x(p)
(
x(p) + (τi−1e

−τi−1 − τie
−τi)

)

−(τi−1 − τi)e
−(τi−1+τi) − 1

2(e
−2τi−1 − e−2τi), if j = i.

(C.4)

Finally,

v(k)

ℓ (p) =
1

x(p)

k∑

j=0

( n

θℓ + n

)j+1 k!

(k − j)!
[e−

θℓ+n

n
τi−1τk−j

i−1 − e−
θℓ+n

n
τiτk−j

i ]

=
n

θℓ + n

(
v(k−1)

ℓ (p) · k +
e−

θℓ+n

n
τi−1τki−1 − e−

θℓ+n

n
τiτki

x(p)

)
.

(C.5)
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Note that recursive structure of v(k)

ℓ (·), in conjunction with the infinite sum in (3.15), suggest an
efficient method for approximating the emission density by using partial sums.

C.2 Multiple-deme, single-haplotype

The matrix exponentials associated within the initial (2.88) and transition (2.90) densities associ-
ated with the CSD π̂SMC-ADO can be approximated to arbitrary precision by using partial sums in
the definition of the matrix exponential. However, to obtain the desired explicit analytic forms for
the discretized marginal, transition, and emission densities, defined in (3.26), (3.28), and (3.29),
respectively, we propose a different approach.

Suppose that the matrix Z is diagonalizable (which is true if and only if Υ is diagonalizable),
then there exists a matrix V = (v1, . . . , v2q), the columns of which are the eigenvectors vi of
Z, and a diagonal matrix Λ = diag(λ1, . . . , λ2q), where λi are the eigenvalues of Z, such that
Z = V ΛV −1. Using this eigen-decomposition, the matrix exponential (etZ)i,j can be expressed as∑2q

k=1 e
tλk(vkwk)i,j , where wi is the i-th row of the matrix V −1. Note that for a non-diagonalizable

matrix, a similar eigen-decomposition can be obtained using generalized eigenvectors and the Jordan
normal form, and similar, though more involved, explicit computations can be performed.

Recall that, as in the single-deme case, the discretized marginal and transition densities can be
written in terms of the quantities x(p, d), yb(p, d), and zb(p

′, d′|p, d) where p, p′ ∈ P and d, d′ ∈ D.
We now provide analytic expressions for each of these quantities, derived by using the spectral
representation and evaluating the requisite integrals. Suppose that p = [τi−1, τi) and p

′ = [τj−1, τj).
For convenience, define

Iba(λ) =

∫ b

t=a
eλtdt =

{
1
λ(e

λb − eλa), if λ 6= 0,

b− a, if λ = 0.
(C.6)

Then the quantities of interest can be expressed

x(p, d) =

2q∑

k=1

(vkwk)rα,adλkI
τi
τi−1

(λk), (C.7)

and

yb(p, d) =
1

x(p, d)

2q∑

k=1

(vkwk)rα,adλkI
τi
τi−1

(λk − ρb), (C.8)

and

zb(p
′, d′|p, d) =

ρb
x(p, d)

∑

dr∈D

2q∑

k=1

2q∑

m=1

2q∑

n=1

(vkwk)rα,rdr (vmwm)rdr ,ad(vnwn)rdr ,ad′

×

[
eλmτieλnτj I

τi∧τj
0 (λk − λm − λn − ρ)

− eλmτieλnτj−1I
τi∧τj−1

0 (λk − λm − λn − ρ)

− eλmτi−1eλnτj I
τi−1∧τj
0 (λk − λm − λn − ρ)

+ eλmτi−1eλnτj−1I
τi−1∧τj−1

0 (λk − λm − λn − ρ)

]
.

(C.9)
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Finally, from (3.29) one can show that, letting p = [τi−1, τi) ∈ P, h ∈ H, and d ∈ D,

ξℓ(η[ℓ]|p, h, d) =
1

x(p, d)

∑

a∈Aℓ

2q∑

k=1

(xjyj)h[ℓ],η[ℓ](vkwk)rα,adλkI
τi
τi−1

(λk + θℓωj − θℓ) (C.10)

where we have used the eigen-decomposition Φ(ℓ) = XΩX−1 of the mutation matrix. Here, Ω =
diag(ω1, . . . , ω|Aℓ|) is the diagonal matrix of eigenvalues, X = (x1, . . . , x|Aℓ|) is the matrix which
has the eigenvectors of the mutation matrix as columns, and yj denotes the j-th row of X−1.


