
Low-Complexity Message-Passing Algorithms for

Distributed Computation

Nima Noorshams

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-53

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-53.html

May 10, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Low-Complexity Message-Passing Algorithms for Distributed Computation

by

Nima Noorshams

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering & Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Martin J. Wainwright, Chair
Professor Kannan Ramchandran

Professor David Aldous

Spring 2013

Low-Complexity Message-Passing Algorithms for Distributed Computation

Copyright 2013
by

Nima Noorshams

1

Abstract

Low-Complexity Message-Passing Algorithms for Distributed Computation

by

Nima Noorshams

Doctor of Philosophy in Engineering-Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Martin J. Wainwright, Chair

Central to many statistical inference problems is the computation of some quantities defined
over variables that can be fruitfully modeled in terms of graphs. Examples of such quantities
include marginal distributions over graphical models and empirical average of observations
over sensor networks. For practical purposes, distributed message-passing algorithms are well
suited to deal with such problems. In particular, the computation is broken down into pieces
and distributed among different nodes. Following some local computations, the intermediate
results are shared among neighboring nodes via the so called messages. The process is
repeated until the desired quantity is obtained. These distributed inference algorithms have
two primary aspects: statistical properties, in which characterize how mathematically sound
an algorithm is, and computational complexity that describes the efficiency of a particular
algorithm. In this thesis, we propose low-complexity (efficient), message-passing algorithms
as alternatives to some well known inference problems while providing rigorous mathematical
analysis of their performances. These problems include the computation of the marginal
distribution via belief propagation for discrete as well as continuous random variables, and
the computation of the average of distributed observations in a noisy sensor network via
gossip-type algorithms.

i

To my mother for her unconditional love and support, to my father for his keen interest in
knowledge and education, and to my brother for being my best friend.

ii

Contents

List of Figures v

1 Introduction 1
1.1 Graphical Models . 3
1.2 Sensor Networks . 5
1.3 Contributions and Dissertation Overview . 6

2 Background 7
2.1 Undirected Graphical Models . 7

2.1.1 Pairwise Markov Random Fields . 9
2.1.2 Inference via Marginalization . 10

2.2 Belief Propagation Algorithm . 11
2.3 Stochastic Approximation . 15

2.3.1 General Framework and Motivating Examples 15
2.3.2 Theoretical Guarantees . 18

2.4 Gossip Algorithms . 21

3 Stochastic Belief Propagation 23
3.1 Introduction . 23
3.2 Background and Problem Statement . 25
3.3 Description of the SBP Algorithm . 27
3.4 Main Theoretical Results . 30

3.4.1 Guarantees for Tree-Structured Graphs 30
3.4.2 Guarantees for General Graphs . 31
3.4.3 Sufficient Conditions for Contractivity 34

3.5 Proof of the Main Results . 36
3.5.1 Proof of Theorem 6 . 37
3.5.2 Proof of Theorem 7 . 40
3.5.3 Proof of Proposition 1 . 46

3.6 Experimental Results . 47
3.6.1 Simulations on Synthetic Problems 47

iii

3.6.2 Applications in Image Processing and Computer Vision 50
3.7 Conclusion . 51

4 Stochastic Orthogonal Series Message-Passing 54
4.1 Introduction . 54
4.2 Background and Problem Statement . 55

4.2.1 Orthogonal Series Expansion . 57
4.2.2 Stochastic Message Updates . 58

4.3 Description of the SOSMP Algorithm . 59
4.4 Main Theoretical Results . 61

4.4.1 Bounds for Tree-Structured Graphs 62
4.4.2 Bounds for General Graphs . 64
4.4.3 Explicit Rates for Kernel Classes . 64

4.5 Proof of the Main Results . 67
4.5.1 Proof of Theorem 8 . 67
4.5.2 Proof of Theorem 9 . 72
4.5.3 Proof of Theorem 10 . 74

4.6 Experimental Results . 75
4.6.1 Synthetic Data . 75
4.6.2 Computer Vision Application . 78

4.7 Conclusion . 80

5 Efficient Distributed Averaging 83
5.1 Introduction . 83
5.2 Background and Problem Statement . 84

5.2.1 Network-Constrained Averaging . 84
5.2.2 Graph topologies . 85

5.3 Proposed Algorithm and its Properties . 87
5.3.1 Theoretical Guarantees . 87
5.3.2 Optimality of the Results . 88
5.3.3 Description of the Algorithm . 89

5.4 Proof of Theorem 11 . 93
5.4.1 Setting-Up the Proof . 93
5.4.2 Main Steps . 95

5.5 Simulation Results . 96
5.6 Conclusion . 98

A Proofs for Chapter 3 99
A.1 Details of Example 5 . 99
A.2 Proof of Lemma 1 . 100
A.3 Proof of Lemma 2 . 101

iv

A.4 Proof of Lemma 3 . 102

B Proofs for Chapter 4 105
B.1 Proof of Lemma 5 . 105
B.2 Proof of Lemma 6 . 106
B.3 Proof of Lemma 7 . 108
B.4 Proof of Lemma 8 . 109
B.5 Proof of Lemma 9 . 110

C Proofs for Chapter 5 112
C.1 Proof of Lemma 10 . 112
C.2 Proof of Lemma 11 . 115

C.2.1 Two Dimensional Grid . 116
C.2.2 Random Geometric Graph . 117

C.3 Proof of Part (a) of Theorem 11 . 119

v

List of Figures

1.1 Examples of graphical models . 3

2.1 The notion of graph separation . 8
2.2 A two-dimensional grid . 9
2.3 A hidden Markov model . 10
2.4 An example of factor graphs . 12
2.5 Graphical representation of Example 1 . 12
2.6 Message flow between factor and variable nodes 13
2.7 Specification of the BP algorithm . 14

3.1 Graphical representation of message-passing algorithms 26
3.2 Specification of the SBP algorithm . 28
3.3 SBP error vs. the number of iterations on a chain 48
3.4 Effect of increasing state dimension d on SBP 49
3.5 Image denoising application . 51
3.6 Error vs. the running time for image denoising application 52
3.7 Stereo vision, depth recognition, application 53

4.1 Specification of the SOSMP algorithm . 60
4.2 The structure of the tree-induced nilpotent matrix 63
4.3 Normalized error vs. the number of iterations on a chain 76
4.4 Effect of the number of coefficients r, and samples k, on the error 77
4.5 Error vs. the number of iterations for kernel potentials 78
4.6 Final approximation error vs. the number of coefficients r 79
4.7 Two frames taken from a video sequence of moving cars 80
4.8 Color coded images of the estimated motion vectors 82

5.1 Illustration of graph topologies . 86
5.2 Basic operations of the proposed averaging algorithm 90
5.3 Illustration of the inner phase steps . 91
5.4 Error vs. the number of outer loop iterations on grids 97
5.5 Stopping time τ vs. the graph size n . 98

vi

C.1 Illustration of the path ηsu for the case of grid 117
C.2 Illustration of the path ηsu for the case of RGG 119

vii

Acknowledgments

I am grateful to have the opportunity to thank those who have provided me help and support
throughout my time in graduate school at Berkeley. First and for most, I should acknowl-
edge my adviser Prof. Martin J. Wainwright. Working with Martin has been a tremendous
opportunity for me. During my time at Berkeley wireless foundation lab, I learned a great
deal from him, not only technical matters but also other aspects of research including tech-
nical writing and presentation skills. From our whiteboard discussions that lead to some of
the ideas presented in this thesis to writing, Martin’s role has been indispensable and I am
grateful to him. I would like to thank Prof. Kannan Ramchandran, the chair of my qualifi-
cation exam committee, for giving me constructive comments and helpful advice regarding
research and work. I also would like to thank other members of my qual. committee, Prof.
David Aldous, and Prof. Venkat Anantharam. Before joining Martin’s group at the end of
my second year, I had a chance to work with Prof. Ahmad Bahai on cognitive radio wireless
communication and learned a lot from him.

In addition to faculty members at Berkeley, i have enjoyed occasional collaboration with
others. I would like to thank Alekh Agarwal for helpful discussions on stochastic optimiza-
tion techniques, Dr. Pascal Vontobel, the associate editor of the IEEE IT transaction, for
his very careful reading of our SBP paper (Chapter 3), and Prof. Erik Sudderth for helpful
comments on experimental results concerning the SOSMP work (Chapter 4). I also should
thank my undergraduate mentors from Sharif University of Technology, Prof. Massoud
Babaie-Zadeh and Prof. Bagher Shamsollahi. Finally, I would like to thank the members
of the wireless foundation lab and Martin’s research group, my friends, Sahand Negah-
ban, John Duchi, Arash Amini, Garvesh Raskutti, Po-Ling Loh, Sameer Pawar, Venkatesan
Ekambaram, Naveen Goela, Nebojsa Milosavljevic, and Amin Gohari for sitting through my
practice presentations and giving me helpful and constructive feedback.

1

Chapter 1

Introduction

Many practical systems are affected by random variations such as observational error,
communication noise, model uncertainty, and so on. Examples of such systems can be found
in different fields including telecommunications, signal and image processing, computer vi-
sion, machine learning, finance, bioinformatics, among others. The purpose of statistical
inference is to draw conclusions based on data arising from such systems. To characterize
their behavior, the stochastic systems are first modeled, which means the relationship be-
tween random variables are formalized (typically via a set of parameters). Then, based on
some realizations of the data, an estimate of the parameters that best describe the system are
determined. Inference problems have two fundamental aspects: statistical properties that
characterize the behavior of an algorithm (such as consistency, rate of convergence, etc.)
as well as computational complexity that describes the efficiency of a particular algorithm.
In this dissertation, our primary focus will be on the latter. We will provide efficient, low-
complexity solutions to some algorithms with wide range of applications, while analyzing
their statistical behavior.

To describe these concepts more clearly, we consider a concrete example in telecommu-
nication and signal processing. Suppose we want to find the location of a moving access
terminal (such as a smart phone) in an indoor environment where GPS fails [79, 91, 98, 54].
One approach would be to exploit the signal strength received from access points (WiFi
routers). In that case, the problem can be modeled as a hidden Markov chain [21], where
the location of the access terminal is the latent variable, evolving according to a Markov
chain, and at each location the received signal strengths is the observable variable. Given
the movement model and the communication channels, we can formalize the relationship be-
tween the latent random variables (i.e. access terminal locations along the route) via a joint
distribution. In order to estimate a particular location, we need to compute the marginal
distribution, from which maximization or averaging yields the MAP or Bayesian estimates
respectively. Suppose we have n latent variables and also the state space (floor plane) is
discretized so that there exists d possible outcomes for each variable. A naive approach to
solve this problem, that is summing over all variables but one, requires ndn−1 operations.

CHAPTER 1. INTRODUCTION 2

This solution is exact and it always works; however from complexity point of view it is not
feasible. It requires exponentially growing number of computations that can be prohibitive
even for a moderate-size problem. The sum-product algorithm has been proposed [4, 119]
for solving the marginalization problem. It is an iterative message-passing algorithm, where
at each iteration an estimate of the marginals are computed. Moreover, it can be shown that
the estimates on a hidden Markov model converge to the exact solution in a finite number
of iterations, so that the computational complexity is much lower than that of the naive
approach. More precisely, one requires of the order of nd2 computations in order to calculate
all the marginals. In Chapter 3, we show that the dependency of the computational com-
plexity on the state dimension d can be further reduced to linear (as opposed to quadratic)
while preserving the favorable statistical properties.

Central to the inference problems is the computation of some statistical quantities. Ex-
amples of such quantities include the marginal distributions of a joint distribution (in the
case of the previous example), likelihoods, regression functions, averages over a collection
of random variables obtained from a sensor network. Typically, the computation involves
variables that can be well modeled with a graph [30, 16]. A graph G = (V , E) consists of
a set of nodes V and a set of edges E and provides an abstract representation of a set of
objects some of which are connected. In more precise terms, every object is associated to a
unique node or vertex i ∈ V ; moreover, two vertices i, and j are connected by an edge or
link if and only if the pair (i, j) belongs to the set E ⊂ V ×V . The links represent statistical
dependencies among random variables or communication links among physically separated
sensors when nodes represent random variables or sensors respectively.

Due to their nature, distributed computation is well suited for problems on graphs. The
existence of the required infrastructure for the centralized computation is not necessarily
guaranteed in the sensor network application. Also, as will become clear in the following
chapter, a form of the divide and conquer algorithm on graphs can significantly increases the
efficiency of the marginalization algorithm. The general idea behind distributed computation
is to break down the calculation and distribute the pieces among different nodes. Then
following some local computations, every node shares its information with other nodes by
passing the so called messages to its neighbors along the edges of the graph. The received
messages constitute the intermediate results and could be of the form of a d-dimensional
vector, a real-valued function, or a noise-corrupted signal. Every node, uses the received
messages in order to update an estimate of the desired quantity. Of interested to us are the
statistical properties of these estimates, as well as the efficiency of the local computations.
But first we need to formally introduce two popular mathematical models for distributed
computations, graphical models and sensor networks.

CHAPTER 1. INTRODUCTION 3

X1

X2

X3

X4

X5

X6

X7

X1

X2

X3

X4

X5

X6

X7

(a) (b)

Figure 1.1: Examples of graphical models: (a) a Bayesian network, and (b) a Markov random field. There is a one-to-one
mapping between random variables and nodes of the graph. Moreover, in a Baysian netowrk edges are directed (ordered pairs
of nodes), whereas in a Markov ranodm field edges are undirected (unordered pairs of nodes).

1.1 Graphical Models

By bringing together graph theory and probability theory, graphical models provide a general
and flexible framework for describing statistical interactions among random variables [92, 61,
119, 90, 118, 121, 44, 69, 102, 4, 62]. A broad range of fields—among them statistical signal
processing, computer vision, coding theory, bioinformatics, natural language processing—
involve problems with large number of random variables that can be fruitfully formulated in
terms of graphs. A few of such eamples include, positioning and tracking problems that can
be modeled by chains [79, 54, 35], low-density parity-check codes that can be described by
factor graphs [99], some image processing as well as vision problems that can be formulated
by two dimensional grids [112, 60, 15], and text processing that can be modeled by Bayesian
networks [107].

The statistical dependencies among random variables are encoded by the structure of
the graph. This is accomplished by first mapping the random variables to the nodes of
the graph and then factorizing the joint probability distribution over local functions defined
on the graph. There are two common families of graphical models, directed models also
known as Bayesian networks and undirected models also known as Markov random fields.
See Figure 1.1 for an illustration of these two models. Bayesian networks are defined on
directed graphs that is every edge consists of an ordered pair of nodes. It can be shown
that if the directed graphical model is acyclic (i.e. does not include any directed cycles), the
joint probability density becomes equal to the product of a collection of local conditional
probability densities [61]. In contrast to Bayesian networks, Markov random fields are de-
fined on undirected graphs in which each edge is an unordered pair of nodes. As we will see
in the next chapter, probability densities over such graphs also have local factorization, in
particular over positive functions defined on the fully connected sub-graphs. Even though
these two models are closely related, they make different assertions of conditional indepen-

CHAPTER 1. INTRODUCTION 4

dence between random variables. Therefore, depending on the application one might be a
better option than the other. For instance, a Markov random field could a better choice for
problems that involve random variables with no clear causal relationships.

Generally in a graphical model application, we are interested in a conditional distribution
of a set of random variables given another set of random variables. A popular special case
of this problem is the marginalization, meaning the computation of the marginal distribu-
tions from the joint distribution by summing over all the variables but one. The marginal
distributions can be used in a wide range of applications some of which include estimating
the location of a moving target in the positioning application, or estimating the transmitted
signal given the received noisy version in the error-correction application, or detecting an ob-
ject’s movement in a series of video frames in the optical flow application. There are different
approaches to solve these problems efficiently, most notably sampling techniques [44, 69, 102]
and variational algorithms [61, 119, 90, 118, 121].

There are several different sampling methods (such as importance sampling, Gibbs sam-
pling, Metropolis Hastings, etc.) all of which attempt to draw samples from the joint proba-
bility distribution, defined on a graph. Typically, these techniques are a variation of Markov
chain Monte Carlo [69, 102]. They are based on constructing a Markov chain that has the
desired distribution as its stationary distribution and work as follows: the Markov chain is
first initialized arbitrarily and then updated with random jumps. The state of the chain
after many iterations are used as a sample of the desired distribution. This process is re-
peated until enough samples are gathered. Having drawn several joint samples, discarding
the irrelevant components yields an estimate of the marginal distributions.

Parallel to the sampling techniques are the variational algorithms. The basic idea be-
hind variational methods is to characterize the probability distribution as the solution to an
optimization problem and solve the optimization problem (or its relaxed version) instead.
The sum-product algorithm is an attempt to solve the Bethe free energy optimization [121].
Limiting the optimization to the so called “tractable” distributions leads to the mean field
algorithm [90]. Convex relaxation of the optimization space yields the tree-reweighted belief
propagation algorithm [77, 118]. In this thesis our primary focus is on the sum-product
algorithm also known as belief propagation (BP). Belief propagation is an iterative algo-
rithm consisting of a set of local message-passing rounds that provides a fast and efficient
mechanism for computing either exact or approximate marginal distributions [92, 119, 61, 4].
As it turns out BP is a form of divide and conquer algorithm that exploits the particular
form of the factorization induced by a graph. The fundamental idea behind the BP is noth-
ing but the simple distributive law and can be easily applied to other semi-rings such as
max-product, min-sum, etc. suitable for computing the MAP estimator [4].

Even though BP provides and efficient algorithm for the marginalization problem, its
computational and communication costs could be prohibitive for large-scale problems. There-
fore, in the first part of the thesis, we focus on ways to reduce these complexities. In doing
so we will propose lower-complexity alternatives to the BP algorithm for both discrete and
continuous-valued random variables and provide rigorous mathematical analysis of their be-

CHAPTER 1. INTRODUCTION 5

havior. In addition, we will confirm the mathematical guarantees by some experimental
results.

1.2 Sensor Networks

A sensor network is a collection of specially separated autonomous sensors with limited
memory, communication, computation and energy resources. Telecommunications and envi-
ronment monitoring under harsh conditions such as forests fire detection, air quality, ocean
level, and glacier temperature monitoring are among the primary applications of the sensor
networks [120, 117, 122, 67]. Sensors are small, cheap, and easy to implement; therefore, a
large number of them are typically scattered in an environment to be monitored. Lack of
the necessary infrastructure, massive databases, and insufficient memory at each mote all
preclude storing all the data at a central location. Therefore, sensor networks must be ac-
companied with distributed computation techniques. On the other hand, sensors are prone
to failure and have a short life span, which makes designing efficient and robust algorithms
even more essential for such systems.

Graphs provide a natural framework for modeling and understanding problems arising in
sensor networks. More specifically, every sensor is associated to a node in a graph and two
nodes are connected if and only if there is a communication link (normally a two-way channel)
between them. A common model for wireless sensor networks is the random geometric graph
(RGG) [94], where nodes are assumed to be distributed uniformly at random inside the unite
square and two nodes are connected if and only if their euclidean distance is bellow some
threshold. Moreover, there are several different models for communication channels. A
simple model, used by various researchers [28, 116, 18, 31, 12, 11], in order to study sensor
networks, is the noiseless model in which the transmitted signal by a sensor is received by
its neighbors unaltered. A somewhat more realistic model is to consider the effect of noise,
for instance additive white Gaussian noise (AWGN), packet dropping, quantization noise,
etc. [95, 45, 7, 56]. It is also conceivable to consider more complicated and realistic stochastic
models such as flat fading or frequency selective for wireless communication channels [115].

In a typical application of sensor networks, we are interested in reaching a global decision,
based on local information sharing among individual sensors. Each mote, following some
simple processing, transmits its information to its neighbors until they all reach a global
consensus. A class of such problems, of interest to us in this thesis, is the network-constrained
averaging [18, 31, 12, 95, 37]. In more details, we are interested in computing the average
of a set of numbers distributed throughout a network, using an algorithm that is allowed to
pass messages only along edges of the graph. In applications, the average might represent
a statistical estimate of some physical quantity (e.g. temperature, pressure, etc.), or an
intermediate quantity in a more complex algorithm (e.g. log-likelihood for estimation or
gradient for distributed optimization).

A major bulk of the work in the literature focuses on the case of noise-less averaging [18,

CHAPTER 1. INTRODUCTION 6

31, 57, 8, 11, 22]. Moreover, in the noisy case the current algorithms are not optimal [95,
45, 37, 56, 9]. In the last part of the thesis, we propose an order optimal algorithm for the
problem of network-constrained averaging with AWGN channels.

1.3 Contributions and Dissertation Overview

The reminder of the dissertation is organized as follows. We will begin by an overview of
some necessary background, including materials on undirected graphical models, the sum-
product or belief propagation algorithm, stochastic approximation techniques and gossip
type algorithms in Chapter 2. In Chapter 3, we focus on pairwise Markov random fields
with discrete random values and propose the stochastic belief propagation (SBP), a low-
complexity alternative to the belief propagation algorithm. In more specific terms, for pair-
wise Markov random fields over d-state discrete random variables, the SBP algorithm reduces
the per-iteration computational complexity to order d as opposed to d2 for the case of BP.
In addition, the SBP algorithm reduces the per-iteration communication complexity to log d
bits in contrast to order d bits for the usual BP message updates. We also provide nu-
merous mathematical guarantees for SBP including consistency, rate of convergence, and
bounds with high probability for tree-structured as well as general graphical models. More-
over, we provide various experimental results to support theoretical guarantees. Chapter 4
is devoted to a similar problem but one involving continuous-valued random variables. We
propose stochastic orthogonal series message-passing (SOSMP), an efficient message-passing
algorithm for continuous state spaces. We also analyze SOSMP by providing rigorous mathe-
matical guarantees for general graphical models (including almost sure convergence and rate
of convergence), and characterizing the complexity-accuracy trade-off for the models involv-
ing positive semidefinite kernels. In Chapter 5, we turn to a somewhat different problem.
We propose an order optimal algorithm for the network-constrained averaging with AWGN
channels. We prove this claim by providing non-asymptotic bounds on the mean-squared
error for several types of networks including regular cycles and two-dimensional grids as well
as random geometric graphs. Some of the more technical aspects of each chapter will be
deferred to Appendices A, B, and C.

7

Chapter 2

Background

In this chapter, we will review some of the mathematical concepts that will be employed
throughout this thesis. These will include graphical models, the belief propagation algorithm,
stochastic approximation, and gossip algorithms. We begin by reviewing the basic concepts
of undirected graphical models as well as the belief propagation algorithm in Sections 2.1
and 2.2 respectively. Since stochastic approximation and optimization techniques are a
crucial part of this work, we turn to this subject in Section 2.3. Finally, we provide some
basics on gossip algorithms in Section 2.4.

2.1 Undirected Graphical Models

Consider a random vectorX := {X1, X2, . . . , Xn}, where for each v = 1, 2, . . . , n, the variable
Xv takes values

1 in some discrete or continuous space X .2 We assign these random variables
to the vertex set of an undirected graph G = (V , E), indexed by V := {1, 2, . . . , n}. Although
they are certainly different, we sometime ignore the distinction and refer to node v as random
variable Xv and vice versa. In addition to the vertex set, the graph G consists of a collection
of edges E ⊂ V × V , where an unordered pair (u, v) ∈ E if and only if nodes u and v are
connected by an edge. Also self-edges are forbidden, meaning that (v, v) /∈ E for all v ∈ V .

An undirected graphical model, also known as a Markov random field, defines a family of
joint probability distributions over the random vector X. These probability distributions are
assumed to be absolutely continuous with respect to a given measure µ, typically the counting
measure for the case of discrete random variables or the Lebesgue measure for continuous
random variables. The structure of the graph describes the statistical dependencies among
the different random variables—in particular via the notion of graph separation. For a set

1In this thesis, random variables are represented with capital letters such as X,Y, . . ., whereas their
realizations are represented with lowercase letters such as x, y,

2Although our theory allows for distinct state spaces at each node, to streamline our presentation, we
drop the node dependence and assume Xv = X for all v ∈ V.

CHAPTER 2. BACKGROUND 8

A

B

C

X1

X2

X3

X4

X5

X6

X7

X8

Figure 2.1: The notion of graph separation. Set B separates sets A and C. More precisely, every path from a node in set A to
a node in set C goes through a node in set B. Accordingly, the set of random variables {X1, X2, X3} is independent of the set
{X5, X6, X7, X8} given X4.

A, define the sub-vector XA := {Xv|v ∈ A}, similarly defined for sets B and C. We say that

“the random vector XA is independent of XC given XB” (2.1)

if and only if set B separates sets A and C. More specifically, every path from a node in set
A to a node in set C goes through the set B. See Figure 2.1 for an illustration of the graph
separation notion. Every graph G, induces a set of such conditional independence statements
also known as Markov properties. Moreover, it should be noted that such Markov properties
must hold for all members of the family of the probability distributions associated with G.
Therefore, the family of acceptable probability distributions is constrained by the set of all
Markov properties and thus have a particular form of factorization. In order to make this
statement precise, we need to define the notion of cliques. A clique I of a graph is a subset of
vertices that are all joined by edges, and so form a fully connected sub-graph. For instance in
Figure 2.1, the set of variables {X1, X2, X3} and {X5, X6, X7, X8} form cliques of size three
and four respectively. The close connection of the Markov properties induced by the graph
(via graph separation) and cliques are captured by the next theorem. Indeed it can be shown
that a distribution defined on G respects all such conditional independence statements if and
only if it can be factorized over the cliques of G [40, 14].

Theorem 1 (Hammersley-Clifford). Let G be an undirected graphical model with a set of
cliques C. Suppose that the probability density P over a discrete random vector X is factorized
over the cliques of G

P(x1, x2, . . . , xn) ∝
∏

I∈C
ψI(xI), (2.2)

where ψI : X |I| → [0,∞) is the compatibility function. Then the underlying process respects
all the Markov properties (2.1) induced by the graph G. Conversely if P(x) is positive for all

CHAPTER 2. BACKGROUND 9

ψuv

ψu ψv

Figure 2.2: A two-dimensional grid, an example of pairwise Markov random fields. The potential functions ψu and ψv are
associated with nodes u and v, respectively, whereas the potential function ψuv is associated with edge (u, v).

x ∈ X n, and respects all the Markov properties induced by G, then it has a factorization of
the form (2.2).

2.1.1 Pairwise Markov Random Fields

Many applications involve pairwise interactions among nodes. In those instances, since
cliques consist of the set of all vertices V together with the set of all edges E , the general
factorization (2.2) takes the special form

P(x1, x2, . . . , xn) ∝
∏

u∈V
ψu(xu)

∏

(u,v)∈E
ψuv(xu, xv), (2.3)

where ψu : X → (0,∞) is the node potential function for node u, and ψuv : X ×X → (0,∞)
is the edge potential function for the edge (u, v). A factorization of this form (2.3) is known
as a pairwise Markov random field. As a concrete example, consider the two-dimensional
grid shown in Figure 2.2, used in image processing and computer vision applications. It
is important to note that for discrete random variables, there is no loss of generality in
assuming a pairwise factorization of this form; indeed, any graphical model with discrete
random variables can be converted into a pairwise form by suitably augmenting the state
space (e.g., see Yedidia et al. [121] or Wainwright and Jordan [119], Appendix E.3). For the
remainder of this thesis, we focus on the case of a pairwise Markov random fields.

CHAPTER 2. BACKGROUND 10

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Figure 2.3: A hidden Markov model including both hidden variables (X1, X2, X3, X4, X5, X6), represented as white nodes, and
observed variables (Y1, Y2, Y3, Y4, Y5, Y6), represented as shaded nodes.

2.1.2 Inference via Marginalization

In various application contexts, the random vector (X1, X2, . . . , Xn) is an unobserved or
“hidden” quantity, and the goal is to draw inferences on the basis of a collection of obser-
vations (Y1, Y2, . . . , Yn). (See Figure 2.3 for illustration.) The link between the observed
and hidden variables is specified in terms of a conditional probability distribution, which in
many cases can be written in the product form P(y | x) =

∏n
v=1 P(yv | xv). For instance,

in error-control coding using a low-density parity-check code, the vector X takes values in a
linear subspace of GF (2)n, corresponding to valid codewords, and the observation vector Y
is obtained from some form of memoryless channel (e.g., binary symmetric, additive white
Gaussian noise, etc.). In image denoising applications, the vector X represents a rasterized
form of the image, and the observation Y corresponds to a corrupted form of the image.
In terms of drawing conclusions about the hidden variables based on the observations, the
central object is the posterior distribution P(x | y). From the definition of the conditional
probability and the form of the prior and likelihoods, this posterior can also be factorized in
pairwise form

P(x | y) ∝ P(x1, x2, . . . , xn)
n∏

v=1

P(yv | xv)

=
∏

v∈V
ψ̃v(xv)

∏

(u,v)∈E
ψuv(xu, xv), (2.4)

where ψ̃v(xv) := ψv(xv)P(yv | xv) is the new node compatibility function. (Since the obser-
vation yv is fixed, there is no need to track its functional dependence.) Thus, the problem of
inferring data from a posterior distribution can be cast3 as an instance of a pairwise Markov
random field (2.3).

3For illustrative purposes, we have assumed here that the distribution P(y | x) has a product form, but
a somewhat more involved reduction also applies to a general observation model.

CHAPTER 2. BACKGROUND 11

A computational challenge central to the data inference problem is the marginalization
problem, meaning the computation of the single-node marginal distributions

P(xv) :=

∫

X
. . .

∫

X︸ ︷︷ ︸
(n−1) times

P(x1, x2, . . . , xn)
∏

u∈V\{v}
µ(dxu), (2.5)

for each v ∈ V and more generally, higher-order marginal distributions on edges and cliques.
For instance in the error-control coding application, computing the marginal distribution of
a particular bit given the output of a channel, we can detect the most likely value of the bit
that was transmitted. Similarly, in the image denoising problem, the marginal distribution
of a pixel’s value given the corrupted image yields the most likely value of that pixel. Naively
approached, this problem suffers from the curse of dimensionality, since it requires computing
a multi-dimensional integral (for continuous random variables) or summation (for discrete
random variables) over an (n−1)-dimensional space. To clarify a bit, for the case of discrete
random variables, where µ is the counting measure, we have

P(xv) :=
∑

{x′ |x′v=xv}
P (x′1, x

′
2, . . . , x

′
n) . (2.6)

To calculate this summation, brute force is not tractable and requires dn−1 computations.
For any graph without cycles—known as a tree—this computation can be carried far more
efficiently using an algorithm known as the belief propagation, to which we now turn.

2.2 Belief Propagation Algorithm

Belief propagation is an iterative algorithm consisting of a set of local message-passing
rounds, for computing either exact or approximate marginal distributions defined on a graph.
As discussed in the previous section, if approached naively, computing marginal distributions
is intractable. However, exploiting the particular form of the factorization induced by the
graph, BP provides a fast and efficient method for dealing with this problem. In this section,
we will provide an overview of the BP algorithm over the sum-product semi-ring.

In order to formally introduce the message-passing updates, we first need to define the
notion of the factor graph. A factor graph is a graphical representation of factorizations (2.2).
In precise terms, it is a bipartite graph G ′ := (V1∪V2, E ′), consisting of variable nodes indexed
by V1 := {1, 2, . . . , n} and factor nodes V2 := {I|I ∈ C}. Moreover, an edge connects the
variable node i to the factor I (i.e. (i, I) ∈ E ′) if and only if xi belongs to the local function
ψI(·). Figure 2.4 illustrates the factor graph representation of the graphical model depicted in
Figure 2.1. To provide some intuition regarding the message-passing algorithm, we proceed
with a simple example.

CHAPTER 2. BACKGROUND 12

{1, 2, 3} {2, 4} {4, 5} {5, 6, 7, 8}

x1 x2 x3 x4 x5 x6 x7 x8

Figure 2.4: Factor graph representation of the graphical model in Figure 2.1. The bipartite graph has a node corresponding to
each variable (circular nodes) and a node corresponding to each factor (square nodes). The variable node xi is connected to
the factor node I if and only if xi belongs to the factor I.

x1

x2

x3 x4

x1 x2 x3 x4

{1, 3} {2, 3} {3} {3, 4}

(a) (b)

Figure 2.5: Graphical representation of Example 1. (a) Pairwise Markov random field, (b) Factor graph.

Example 1. Consider the probability distribution

P(x1, x2, x3, x4) = ψ13(x1, x3) ψ23(x2, x3) ψ3(x3) ψ34(x3, x4),

defined over the discrete random variables {X1, X2, X3, X4} (see Figure 2.5 for the corre-
sponding graphical representation). Our goal is to compute P(x4), the marginal density over
X4. By definition and use of the distributive law we have

P(x4) =
∑

x1,x2,x3

ψ13(x1, x3) ψ23(x2, x3) ψ3(x3) ψ34(x3, x4)

=
(∑

x3

(∑

x1

ψ13(x1, x3)

︸ ︷︷ ︸
m{1,3}→3

) (∑

x2

ψ23(x2, x3)

︸ ︷︷ ︸
m{2,3}→3

)
ψ3(x3)︸ ︷︷ ︸
m{3}→3

︸ ︷︷ ︸
m3→{3,4}

ψ34(x3, x4)

︸ ︷︷ ︸
m{3,4}→4

)
. (2.7)

CHAPTER 2. BACKGROUND 13

x1 x2 x3 x4

{1, 3} {2, 3} {3} {3, 4}

m{1,3}→3

m{2,3}→3 m{3}→3

x1 x2 x3 x4

{1, 3} {2, 3} {3} {3, 4}

m3→{3,4}

(a) (b)

Figure 2.6: Message flow from (a) factor nodes to variable nodes, and (b) from variable nodes to factor nodes.

The previous equation can be expressed as a set of local message-passing between variable
and factor nodes as depicted in equation (2.7). The message-passing rounds are also shown
in Figure 2.6.

In order to setup the message-passing updates properly, we require some further notation.
For every variable node i ∈ V1 let N (i) := {I|i ∈ I} ⊂ V2 be the set of neighboring factor
nodes and similarly for every I ∈ V2 define N (I) := {i|i ∈ I} ⊂ V1, the set of neighboring
variable nodes. In the BP algorithm, a pair of messages (µ-measurable functions) is assigned
to every edge (i, I) ∈ E ′, one for each direction. In particular, let mi→I be the message sent
from the variable node i to the factor node I, and similarly let mI→i be the message sent
from the factor node I to the variable node i. Then, the message transmitted from a variable
node to a factor node is the product of all incoming messages from neighboring factor nodes.
(For instance, in our previous example, we have m3→{3,4} = m{1,3}→3 m{2,3}→3 m{3}→3.) On
the other hand, the message sent from a factor node to a variable node is obtained by the
product of the local factor and the incoming messages summarized for the desired variable.
(In the example discussed, we have m{3,4}→4 =

∑
x3
m3→{3,4} ψ34(x3, x4)). Upon receiving

all the messages from neighboring factor nodes, each variable node updates its estimate of
the marginal distribution by the product of the incoming messages. The set of BP message-
passing rounds are summarized in Figure 2.7.

For tree-structured (cycle-free) graphs, BP message updates can be derived as a divide-
and-conquer algorithm: we solve a large problem by breaking it down to a set of smaller
ones. The structure of trees provide a natural way of such decomposition. By solving the
problem for the sub-trees emanating from the root first, it can be shown that BP message-
based marginals converge to the exact marginals in a finite number of iterations [92, 62, 119].
More precisely, let diameter of the graph G, denoted by diam(G), be the length of the longest
path between any pair of nodes. Then, we have the following theorem:

Theorem 2 (BP on trees). Consider the sequence of marginals {τ t+1
i (xi)}∞t=0, for i = 1, 2, . . . , n,

generated by the BP algorithm on a tree-structured graphical model G. Then, we have
τ
diam(G)
i (xi) = P(xi).

CHAPTER 2. BACKGROUND 14

Belief Propagation Algorithm:

(I) For all factor nodes I and variable nodes i ∈ I, initialize the messages m0
i→I(xi) = 1

at iteration t = 0.

(II) For iterations t = 0, 1, 2, . . . and i ∈ I, update the messages according to:

• factor to variable node:

mt+1
I→i(xi) =

∫ (
ψI(xI)

∏

j∈N (I)\{i}
mt
j→I(xj)

) ∏

j∈N (I)\{i}
µ(dxj)

• variable to factor node:

mt+1
i→I(xi) =

∏

J∈N (i)\{I}
mt+1
J→i(xi)

• node i update its marginal distribution

τ t+1
i (xi) ∝

∏

I∈N (i)

mt+1
I→i(xi)

Figure 2.7: Specification of the belief propagation algorithm on factor graphs.

Given the local form of the updates (Figure 2.7), the same message-passing updates can also
be applied to more general graphs, which yields the “loopy” form of the belief propagation.
(In this thesis we do not differentiate between the loopy and the normal form of the BP
and we refer to both as BP.) The behavior of the ordinary BP algorithm to a graph with
cycles—in contrast to the tree-structured case—is more complicated. On one hand, for
strictly positive potential functions (as considered here), a version of Brouwer’s fixed point
theorem can be used to establish existence of fixed points [119]. However, in general, there
may be multiple fixed points, and BP convergence is not guaranteed. Accordingly, various
researchers have studied conditions that are sufficient to guarantee uniqueness of fixed points
and/or convergence of the ordinary BP algorithm (e.g., [113, 49, 78, 103]). In addition,
BP is known to be extremely effective for computing approximate marginals in numerous
applications [62, 4, 121, 119].

CHAPTER 2. BACKGROUND 15

2.3 Stochastic Approximation

In this section, we review some of the stochastic approximation techniques that are a crucial
part of this thesis. Basically, stochastic approximation provides a general framework for
analyzing the behavior of dynamical systems and associated algorithms in the presence of
random variates. The range of scientific fields and applications that are affected by such
techniques are astonishing. From a simple application of finding the roots of an unknown
function from noise-corrupted observations to more complicated applications in adaptive
signal processing, communication systems, artificial neural networks, and control theory,
one can find footprints of stochastic approximation and optimization techniques. A common
thread in all these applications is having a dynamical system in the presence of uncertainty
(noise). In order to track the behavior of such systems, one requires adaptive algorithms
with small increments that fits well within the framework of stochastic approximation. Since
the seminal work of Robbins and Monro [101] in 1951, there has been a tremendous amount
of research both in theory and in application. In this section we provide a brief overview of
stochastic approximation referring the interested readers to numerous books and papers [65,
13, 23, 17, 71, 72, 59, 70, 63, 64].

2.3.1 General Framework and Motivating Examples

Stochastic approximation, in its abstract form, consists of a simple stochastic difference
equation with small step size. Consider a dynamical system with parameter vector θt ∈ Rn

at time t = 0, 1, In order to monitor and tune these parameters, we require to monitor
the system. This task can be accomplished via the stochastic state vector X t+1 ∈ Rm.
Typically, the adaptive rule to update the system parameters from time t to t+ 1 will be of
the form:4

θt+1 = θt + ηt H
(
θt, X t+1

)
. (2.8)

Here ηt is a small positive step size and H is the observation function, which essentially
determines how the parameters are updated. In order to motivate this formulation and
demonstrate its widespread appeal, let us consider some simple examples.

Example 2 (Robbins-Monro). Our first example concerns finding a root of a function
from noisy observations. Consider a real-valued function f : R → R with a unique root θ∗

and suppose our goal is to estimate the root. If the function were known and differentiable,

4It is also possible to consider second order perturbation of the form

θt+1 = θt + ηt H
(
θt, Xt+1

)
+ (ηt)2 ǫt

(
θt, Xt+1

)
.

For in depth analysis of such systems see the book [13].

CHAPTER 2. BACKGROUND 16

then classic numerical techniques such as Newton’s method could be applied. More precisely,
one can form a sequence of estimators {θt}∞t=0 from the recursion

θt+1 = θt − f(θt)

f ′(θt)
,

where f ′(·) denotes the derivative of the function f(·). It is known [19] that if f ′(θ), is
negative and bounded in the neighborhood of θ∗, and |θ0 − θ∗| is sufficiently small, then
θt → θ∗ geometrically fast as t → ∞. An alternative method, which does not require
differentiability, is to consider the following recursion for sufficiently small step size η,

θt+1 = θt + η f(θt).

Now suppose that the function f is not known and we only have access to it via noisy
observations. More specifically, instead of f(θt) at time t, we observe its noise-corrupted
version Y t. To deal with this problem, Robbins and Monro [101] proposed the estimators
{θt}∞t=0 derived from

θt+1 = θt + ηt Y t,

where the positive step sizes {ηt}∞t=0 satisfy η
t → 0 as t→∞,

∑∞
t=0 η

t =∞, and
∑∞

t=0(η
t)2 <∞.

It should be noted that the observation error Y t − f(θt) could be a complicated function
of the past (i.e. {θτ}tτ=0); however, the necessary condition for convergence is to have
E
[
Y t − f(θt) | {θτ}tτ=0

]
= 0.

Example 3 (Kiefer-Wolfowitz). Consider a concave function f(θ) (f : Rn → R), and
suppose we want to find its unique maximizer θ∗. If the function were known and differ-
entiable, then standard algorithms such as gradient ascent [19] can be used to estimate θ∗.
More specifically, we can form the estimators

θt+1 = θt + η ∇f(θt), for t = 0, 1, . . .,

where η > 0 is a small step size and ∇f(θt) denotes the gradient of the function f , computed
at θt. Now suppose we don’t have access to the function f and wish to maximize it only by
observing a random function F with the correct mean (i.e. E[F (θ)] = f(θ)). Intuitively,
one could replace the gradient in the previous equation with its stochastic approximate and
hope the estimators converge to the correct maximizer. Kiefer and Wolfowitz proposed
and analyzed the following algorithm [59]. Let ei denote the standard unite vector in the
ith direction for i = 1, 2, . . . , n and let {at}∞t=0 be a sequence of finite difference intervals.
Composing the approximate derivative in the ith direction by

Y t
i :=

1

2 at
[
F (θt + atei) − F (θt − atei)

]
,

CHAPTER 2. BACKGROUND 17

we define the approximate gradient

Y t := [Y t
1 , Y

t
2 , . . . , Y

t
n]
T ∈ Rn,

at each iteration t = 0, 1, Then, we update the parameter θt according to

θt+1 = θt + ηt Y t.

In this algorithm, the sequences {at}∞t=0, and {ηt}∞t=0 satisfy a
t → 0,

∑∞
t=0 η

t =∞,
∑∞

t=0 a
tηt <∞,

and
∑∞

t=0(η
t/at)2 <∞ (e.g. ηt = t−1, and at = t−1/3).

Example 4 (Adaptive equalization). Our final example deals with a more practical
problem that is of great importance in adaptive signal processing and telecommunication
systems [89]. Suppose we wish to transmit information through a linear time-invariant
channel with impulse response h = [h0, h1, . . . , hℓ−1]T . Denoting the data to be transmitted
by {xi}∞i=0 and adopting the convention that xi = 0 for i < 0, the output of the channel will
be

yk =
ℓ−1∑

i=0

hi xk−i + νk, for k ≥ 0,

where νk denotes the contaminating noise, normally modeled as an additive white Gaussian
random variable. The receiver’s objective is to estimate the transmitted signal from the
output of the channel by maximizing the likelihood

x̂k = argmax
xk

P(xk | y0, y1, . . .).

Typically in telecommunication systems, we have ℓ ≥ 2 that leads to inter-symbol interfer-
ence and could seriously affect the communication’s quality, even if the noise is negligible.
Therefore, we need to devise a method to invert the effect of the channel. There are differ-
ent approaches to deal with this issue. A popular method is to first learn the channel by
transmitting a universally known training sequence and then reverse its effect. However, in
many instances (specially in wireless communications) the channel is subject to significant
temporal variations and requires an adaptive algorithm to keep track of the changes. An
alternative approach is to consider an equalizer (a linear time-invariant filter) and gradually
tune its parameters to match the inverse channel. Let θ := [θ0, θ1, . . . , θn−1]T denote the
equalizer’s parameters. Passing the channel output through the equalizer, we obtain

zk =
n−1∑

i=0

θi yk−i, for k ≥ 0,

from which quantization yields x̂k = Π(zk), the estimate of the input signal xk. Here, Π(·)
denotes a quantization scheme that maps the space of the output of the equalizer to the space

CHAPTER 2. BACKGROUND 18

of the input signal. In order to minimize the mean-squared error E[(xk− x̂k)2] and keep track
of the changes in the channel, we need to tune the equalizer’s parameters adaptively. This
task can be accomplished as follows: we first initialize the equalizer at time t = 0. Then, for
each iteration t = 0, 1, . . ., we compute the output of the equalizer at instant t according to
zt =

∑n−1
i=0 θ

t
iyt−i. Finally, defining

Y t := (Π(zt)− zt) [yt, yt−1, . . . , yt−n+1]
T ,

we update the equalizer via

θt+1 = θt + ηt Y t,

where ηt is a small positive step size. This procedure is repeated until convergence.

So far we have stated the general form of the stochastic approximation and provided
motivating examples. As illustrated by these examples, typically, the purpose of an adaptive
algorithm is to track an unknown parameter θ∗. Therefore, a few questions can be raised
regarding the stochastic sequence {θt}∞t=0 generated by the update equation (2.8). The first
question concerns the asymptotic consistency of the algorithm. Given the assumption that
the desired quantity θ∗ is unique, under what conditions do we have θt → θ∗ almost surely as
t→∞? The second question concerns the asymptotic efficiency of the algorithm. Assuming
that θt converges to θ∗, how fast does it take place? Here, we are interested in the asymp-
totic distribution of a suitably normalized random sequence of the form {

√
t (θt − θ∗)}∞t=0.

The reminder of this section is devoted to addressing these questions. Later on the thesis,
we develop more refined, non-asymptotic bounds (similar to the ones developed by other
researchers in the optimization context [55, 46]) on the mean-squared error E

[
‖θt− θ∗‖22

]
at

each iteration t = 0, 1,

2.3.2 Theoretical Guarantees

There are numerous asymptotic results regarding the stochastic approximation in the lit-
erature, results concerning the “finite vs. infinite horizon”, “constant vs. decreasing step
size”, “bounded vs. unbounded state space”, “Martingale difference vs. correlated noise”,
etc. Here, we only present some of the typical results relevant to our work. For an exten-
sive treatment of the subject matter, see the excellent books by Kushner and Yin [65] and
Benveniste, Metivier, and Priouret [13].

Much of the asymptotic analysis of stochastic approximation is based on exploiting the
so-called ordinary differential equation (ODE) method [70, 63, 64, 13]. At a high level, the
main idea is that the noise effect becomes averaged out in the long run (asymptotically);
thus the behavior of the system can be explained by a mean ODE. The analysis is based
on interpolating the discrete sequence {θt}∞t=0 into a continuous-time process with intervals

CHAPTER 2. BACKGROUND 19

equal to {ηt}tt=0. Denoting the continuous-time parameter by ζ ∈ R+, one can define the
interpolated process

θ(ζ) := θt, for
t∑

τ=0

ητ ≤ ζ <

t+1∑

τ=0

ητ .

The asymptotic of the discrete sequence (t → ∞) is the same as the asymptotic of the
interpolated process (ζ → ∞). It is the asymptotic behavior of the interpolated sequence
that is modeled by that of a mean ODE. In order to make these ideas precise, we need to
make some assumptions:

Assumption 1. The dynamic process of the state vector X t+1 can be represented by a
Markov chain controlled by θt i.e.

P(X t+1 | X t, X t−1, . . . ; θt, θt−1, . . .) = P(X t+1 | X t; θt).

Assumption 2. There exist a regular mean vector field defined by

h(θ) := lim
t→∞

Eθ[H(θ,X t)], (2.9)

where the expectation is taken place with respect to X t for a fixed value of θ. Moreover, the
ODE

d θ

d ζ
= h(θ), (2.10)

has an attractor θ∗ with the domain of attraction D∗.5

Assumption 3. The sequence of step sizes {ηt}∞t=0, satisfy ηt ≥ 0,
∑∞

t=0 η
t = ∞, and∑∞

t=0(η
t)α <∞, for some α > 1.

With these assumptions we have the following theorem:

Theorem 3 (Asymptotic consistency). Consider the sequence {θt}∞t=0, generated by the
update equation (2.8) with the initial point θ0 ∈ Q, where Q is a compact subset of the
domain of attraction D∗. Also for a fixed compact set Q′ ∈ Rm, consider the set of trajectories
(θt, X t+1) that hit the compact set Q×Q′ infinitely often. Then, under the Assumptions 1, 2,
and 3, we have

θt
a.s.−→ θ∗, almost surely as t→∞.

5Normally the attractor is a single point but this may not always be the case. Also the domain of
attraction is the set of starting points θ(0), such that θ(ζ)→ θ∗ as ζ →∞.

CHAPTER 2. BACKGROUND 20

Theorem 3 is rather general. It does not address the verification of the boundedness condition
that is the trajectory (θt, X t+1) intersect a compact set infinitely often. However, it should
be noted that often in practice, parameters {θt}∞t=0 belong to a closed and bounded space;
therefore, the condition is automatically satisfied. In order to guarantee the validity of the
boundedness condition, several authors [65, 72] have proposed a two-phase algorithm, in
which after the update (2.8) the parameter θt+1 gets projected onto some compact space.
There are other results that does not require the verification of the boundedness condition.
The next theorem, associated to the case of Robbins and Monro, provides the same result
under somewhat more restrictive conditions. (We will make use of the this theorem in the
following chapters). Suppose the problem of stochastic approximation satisfy:

Assumption 4. The dynamic process of the state vector X t+1 can be controlled by θt i.e.

P(X t+1 | X t, X t−1, . . . ; θt, θt−1, . . .) = P(X t+1 | θt).
Assumption 5. There exist a constant c such that

Eθ
[
‖H(θ,X)‖22

]
≤ c (1 + ‖θ‖22),

where the expectation is taken place with respect to the random variable X for a fixed θ.

Assumption 6. The mean vector field defined in (2.9), satisfy the following stability con-
dition: there exists θ∗ such that

sup
θ 6=θ∗

(θ − θ∗)T h(θ) < 0.

With these assumptions, we have:

Theorem 4 (Robbins-Monro). Consider the sequence {θt}∞t=0, generated by the update
equation (2.8). Then, under the Assumptions 3 (for α = 2), 4, 5, and 6, we have

θt
a.s.−→ θ∗, almost surely as t→∞.

In addition to consistency, we are also interested in the rate of convergence to which we now
turn. But first, we need to define some further notation. Let h′ denote the Hessian matrix
of the mean vector field

h′ :=
d h

d θ
.

Moreover, let Σ be the covariance matrix

Σ(θ) :=
∞∑

t=0

covθ[H(θ,X t), H(θ,X0)],

where covθ denotes the covariance operator when the parameter θ is fixed.

CHAPTER 2. BACKGROUND 21

Assumption 7. Assume the covariance Σ(θ) exists for θ = θ∗, the attractor of the ODE (2.10).
In addition, suppose eigenvalues of the Hessian matrix h′(θ∗), computed at θ = θ∗, have real
values strictly less than −1/2.

The following theorem, address the issue of the rate of convergence.

Theorem 5 (Asymptotic efficiency). Suppose the step size ηt is of the order of 1/t, i.e.
there exist constants c1 and c2 such that c1/t ≤ ηt ≤ c2/t, for all t = 1, 2, Then under
the Assumptions 1, 2, and 7, we have

√
t (θt − θ∗)

d−→ N(0, C), as t→∞,

where the convergence is in distribution, and N(0, C) is a multivariate Gaussian random
variable with zero mean and covariance C. Moreover, C is the unique, symmetric, positive
semi definite solution of the Lyapunov equation

C
(I
2
+ h′(θ∗)

)T
+
(I
2
+ h′(θ∗)

)
C + Σ(θ∗) = 0. (2.11)

Theorem 5 provides a more refined result for the stochastic approximation algorithm. Under
some stability condition (Assumption 7), the sequence of normalized errors, {

√
t(θt − θ∗)}∞t=0,

converges to a Gaussian distribution with zero mean and finite covariance. This result state
that, roughly speaking, the squared error ‖θt−θ∗‖22 decays as c/t, for some constant c derived
from the Lyapunov equation (2.11).

2.4 Gossip Algorithms

As discussed in the previous chapter, normally in sensor and peer-to-peer networks, we are
interested in computing a global quantity based on local observations made by every mote.
Obviously flooding the network—that is, having nodes act as relays and pass along whatever
they receive until everybody obtains the whole information—is not feasible due to memory
and energy constraints. Gossip type algorithms provide a distributed method to achieve that
objective. As suggested by its name, it is inspired by the way a “gossip” gets distributed
in a social network. In a nutshell, at every iteration a sensor wakes up, chooses one of its
neighbors at random and pass along the “gossip” (the estimate of the desired quantity).
Upon acquiring the new information, the receiving sensor updates its own “gossip”. This
procedure is repeated till the entire network obtains the whole information and reaches a
consensus.

Network-constrained averaging is a special but important instance of such problems. Con-
sider a graph G = (V , E) modeling a sensor network and suppose every sensor i = 1, 2, . . . , n
has an observation θ0i at time t = 0. By exchanging messages along edges of the graph,
the network’s objective is to reach a consensus on the global average θ := (

∑n
i=1 θ

0
i)/n. In

CHAPTER 2. BACKGROUND 22

particular, denoting the vector of estimates θt = [θt1, θ
t
2, . . . , θ

t
n]
T at iteration t = 0, 1, . . ., we

are interested in the convergence θt → θ~1 as t → ∞, where ~1 denotes the all one vector.
There are various ways of achieving this objective. For illustrative purposes, we consider the
one proposed by Boyd et al. [18] concerning the case of noiseless communication.

At iteration t, one node, say node i, wakes up and picks one of its neighbors,6 say node
j, with probability pij. Then, nodes i and j update their estimates at time t + 1 with the
average of their current estimates; more specifically, they set θt+1

i = θt+1
j = (θti + θtj)/2. The

rest of the nodes remain unchanged, i.e. θt+1
k = θtk, for k 6= i, j. These updates can be

written in the vector form

θt+1 = W t θt for t = 0, 1, . . ., (2.12)

where W t is a symmetric and stochastic averaging matrix. Boyd et al. proved that the
algorithm is strongly consistent meaning that θt

a.s.−→ θ~1, almost surely as t→∞. Moreover,
they showed that the rate of convergence is inversely proportional to the second smallest
eigenvalue of the matrix I−E

[
W t
]
, also known as the spectral radius. This quantity that is

closely related to the mixing time of a random walk with jump probabilities [pij], provides a
measure of information diffusion in the network.

As it turns out, even for the optimum set of jump probabilities, the previous algorithm
diffuses very slowly. In particular, for popular sensor network models of grid and random
geometric graph, obtaining an accurate solution requires order n2 iterations. Changing
the averaging matrix W t, in order to obtain faster diffusion, researcher have proposed more
efficient averaging algorithms [31, 12]. By averaging nodes that are not necessarily neighbors,
Dimakis et al. [31] proposed geographic gossip that drops factors of

√
n and

√
n/ log n from

the required number of communications for the cases of grid and RGG respectively. On
the other hand, by establishing a stochastic route and averaging alongside it, Benezit et
al. [12] reduced the number of communications to n (essentially the optimal scaling) for the
cases of grid and RGG. Both of these algorithms consider perfect, noiseless communications.
However, more realistic models should account for random variations such as noise. Simple
updates of the form (2.12) will fail in the noisy environments. Therefore, we need to use
stochastic approximation techniques (discussed in Section 2.3), suitable for dealing with
noise effects. When the communication channels are modeled as AWGN, Rajagopal and
Wainwright [95] analyzed a damped version of the usual consensus updates, and provided
scaling of the iteration number as a function of the graph topology and size. We will discus
the problem of network scaling for noisy averaging in more detail in Chapter 5.

6Here the set of neighbors include the node i itself. In the case of choosing i, the update will not change,
i.e. θt+1

i = θti .

23

Chapter 3

Stochastic Belief Propagation

3.1 Introduction

In this chapter, we focus on the problem of implementing the belief propagation message-
passing for high-dimensional discrete random variables. In many applications of BP, the
messages themselves are high-dimensional in nature, either due to discrete random variables
with a very large number of possible realizations d (which will be referred to as the number
of states), due to factor nodes with high degree, or due to continuous random variables that
are discretized. Examples of such problems include disparity estimation in computer vision,
tracking problems in sensor networks, and error-control decoding. For such problems, it
may be expensive to compute and/or store the messages, and as a consequence, BP may
run slowly, and be limited to small-scale instances. Motivated by this challenge, researchers
have studied a variety of techniques to reduce the complexity of BP in different applications
(e.g., see the papers [38, 110, 76, 51, 53, 58, 27, 106, 50, 20, 66, 105, 114, 97] and references
therein). At the core of the BP message-passing is a matrix-vector multiplication, with
complexity scaling quadratically in the number of states d. Certain graphical models have
special structures that can be exploited so as to reduce this complexity. For instance, in
applications to the decoding of low-density parity-check codes in channel coding (e.g., [39,
62]), the complexity of message-passing, if performed naively, would scale exponentially in
the factor degrees. However, a clever use of the fast Fourier transform over GF(2r) reduces
this complexity to linear in the factor degrees (e.g., see the paper [105] for details). Other
problems arising in computer vision involve pairwise factors with a circulant structure for
which the fast Fourier transform can also reduce complexity [38]. Similarly, computation can
be accelerated by exploiting symmetry in factors [58], or additional factorization properties of
the distribution [76]. In the absence of structure to exploit, other researchers have proposed
different types of quantization strategies for BP message updates [27, 53], as well as stochastic
methods based on particle filtering or non-parametric belief propagation (e.g., [5, 110, 32])
that approximate continuous messages by finite numbers of particles. For certain classes

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 24

of these methods, it is possible to establish consistency as the number of particles tends to
infinity [32], or to establish non-asymptotic results inversely proportional to the square root
of the number of particles [51]. As the number of particles diverges, the approximation error
becomes negligible, a property that underlies such consistency proofs. Researchers have also
proposed stochastic techniques to improve the decoding efficiency of binary error-correcting
codes [114, 97]. These techniques, which are based on encoding messages with sequences of
Bernoulli random variables, lead to efficient decoding hardware architectures.

The main contribution of this chapter is to propose a novel low-complexity algorithm,
which we refer to as stochastic belief propagation (SBP) and provide rigorous mathematical
analysis of its performance. As suggested by its name, it is an adaptively randomized version
of the BP algorithm, where each node only passes randomly selected partial information to
its neighbors at each round. The SBP algorithm has two features that make it practically
appealing. First, it reduces the computational cost of BP by an order of magnitude; in
concrete terms, for arbitrary pairwise potentials over d states, it reduces the per iteration
computational complexity from quadratic to linear—that is, from Θ

(
d2
)
to Θ

(
d
)
.1 Second,

it significantly reduces the message/communication complexity, requiring transmission of
only log2 d bits per edge as opposed to (d− 1) real numbers in the case of BP.

Even though SBP is based on low-complexity updates, we are able to establish conditions
under which it converges (in a stochastic sense) to the exact BP fixed point, and moreover,
to establish quantitative bounds on this rate of convergence. These bounds show that SBP
can yield provable reductions in the complexity of computing a BP fixed point to a toler-
ance δ > 0. In more precise terms, we first show that SBP is strongly consistent on any
tree-structured graph, meaning that it converges almost surely to the unique BP fixed point;
in addition, we provide non-asymptotic upper bounds on the ℓ∞ norm (maximum value) of
the error vector as a function of iteration number (Theorem 6). For general graphs with
cycles, we show that when the ordinary BP message updates satisfy a type of contraction
condition, then the SBP message updates are strongly consistent, and converge in normal-
ized mean-squared error at the rate O(1/t) to the unique BP fixed point, where t is the
number of iterations. We also show that the typical performance is sharply concentrated
around its mean (Theorem 7). These theoretical results are supported by simulation studies,
showing the convergence of the algorithm on various graphs, and the associated reduction
in computational complexity that is possible.

The remainder of this chapter is organized as follows. We begin in Section 3.2 with
background and problem statement. In Section 3.3, we provide a precise description of the
SBP, before turning in Section 3.4 to statements of our main theoretical results, as well
as discussion of some of their consequences. Section 3.5 is devoted to the proofs of our
results, with more technical aspects of the proofs deferred to the Appendices. In Section 3.6,

1The notation f(d) = O(g(d)) means that there exists a fixed constant c so that f(d) ≤ c g(d), whereas
f(d) = Θ(g(d)) means that there exists constants c and c′ such that c′ g(d) ≤ f(d) ≤ c g(d), for sufficiently
large d.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 25

we demonstrate the correspondence between our theoretical predictions and the algorithm’s
practical behavior. Finally, we conclude the chapter in Section 3.7.

3.2 Background and Problem Statement

In this section, we set-up the notation and state the precise formulation of the problem.
Consider a pair wise Markov random field G = (V , E) over the discrete random variables
{X1, X2, . . . , Xn} each of which taking values in some space X := {1, 2, . . . , d} with cardinal-
ity d. The probability densities associated with this graphical model is factorized accroding
to

P(x1, x2, . . . , xn) ∝
∏

u∈V
ψu(xu)

∏

(u,v)∈E
ψvu(xv, xu), (3.1)

where ψu : X → (0,∞) denotes the node potential for u ∈ V , and ψuv : X ×X → (0,∞) de-
notes the edge potential for (u, v) ∈ E . As discussed in the previous chapter, a computational
challenge important to many applications is the computation of the marginal distributions

P(x1) :=
∑

x′
2

· · ·
∑

x′n

P (x1, x
′
2, . . . , x

′
n) , (3.2)

similarly defined for other variables. A naive approach to this problem would incur dn−1 com-
putation which becomes intractable even for small problems. However, this computational
challenge can (to some extent) be resolved by the BP algorithm. Since all factor nodes on
a pairwise Markov random field have degree less than or equal to two, BP message updates
take a simple form on such graphical models.

In order to define the message-passing updates, we require some further notation. For
each node u ∈ V , let ~E(u) := {(u→ v) | v ∈ N (u)} denote the set of all directed edges
emanating from u, where N (u) := {v | (u, v) ∈ E} denote its set of neighbors. Moreover, we

define ~E := ∪u∈V ~E(u), the set of all directed edges in the graph; note that ~E has cardinality
2|E|. In the BP algorithm, one message mu→v ∈ Rd is assigned to every directed edge

(u → v) ∈ ~E . By concatenating all of these d-dimensional vectors, one for each of the 2|E|
members of ~E , we obtain a D-dimensional vector of messages m = {mu→v}(u→v)∈~E , where
D := 2|E|d.

At each round t = 0, 1, 2, . . ., every node u ∈ V calculates a message mt+1
u→v ∈ Rd to be

sent to its neighbor v ∈ N (u). In mathematical terms, this operation can be represented as
an update of the form mt+1

u→v = Fu→v(mt) where Fu→v : RD → Rd is the local update function
of the directed edge (u→ v). In more detail, for each xv ∈ X , we have

mt+1
u→v(xv) = [Fu→v(m

t)](xv) = κ
∑

xu∈X

(
ψvu(xv, xu) ψu(xu)

∏

w∈N (u)\{v}
mt
w→u(xu)

)
, (3.3)

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 26

s2

s1

v u

w2

w1

mw2→u

mw1→u

mu→v

s2

s1

v u

w2

w1

ms2→v

ms1→v

mu→v

(a) (b)

Figure 3.1: Graphical representation of message-passing algorithms. (a) Node u transmits the message mu→v = Fu→v(m),
derived from (3.3), to its neighbor v. (b) Upon receiving all the messages, node v updates its marginal estimate.

where κ is a normalization constant chosen to ensure that
∑

xv
mt+1
u→v(xv) = 1. Figure 3.1(a)

provides a graphical representation of the flow of information in this local update. It is
worth mentioning that mt+1

u→v is only a function of the messages mt
w→u for w ∈ N (u)\{v}.

Therefore, we have Fu→v : R(ρu−1)d → Rd, where ρu is the degree of the node u. Since it
is clear from the context and for the purpose of reducing the notation overhead, we say
mt+1
u→v = Fu→v(mt) instead of mt+1

u→v = Fu→v({mt
w→u}w∈N (u)\{v}).

By concatenating the local updates (3.3), we obtain a global update function F : RD → RD

of the form

F (m) = {Fu→v(m)}(u→v)∈~E . (3.4)

Typically, the goal of message-passing is to obtain a fixed point, meaning a vector m∗ ∈ RD

such that F (m∗) = m∗ and (3.3) can be seen as an iterative way of solving this fixed-point
equation. For any tree-structured graph, it is known that the update (3.4) has a unique
fixed point. For a general graph (with some mild conditions on the potentials; see Yedidia et
al. [121] for details), it is known that the global update (3.4) has at least one fixed point, but
it is no longer unique in general. However, there are various types of contraction conditions
that can be used to guarantee uniqueness on a general graph (e.g., [113, 49, 78, 103]). Given
a fixed point m∗, node v computes its marginal (approximation) τ ∗v by combining the local
potential function ψv with a product of all incoming messages as

τ ∗v (xv) = κ ψv(xv)
∏

u∈N (v)

m∗u→v(xv), (3.5)

where κ is a normalization constant chosen so that
∑

xv∈X τ
∗
v (xv) = 1. See Figure 3.1(b) for

an illustration of this computation. For any tree-structured graph, the quantity τ ∗v (xv) is
equal to the single-node marginal P(xv), as previously defined (3.2). For a graph with cycles,

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 27

the vector τ ∗v represents an approximation to the single-node marginal, and is known to be
a useful approximation for many classes of graphical models.

When applied to a pairwise graphical model with random variables taking d states,
the number of summations and/or multiplications required by the original BP algorithm
is Θ

(
d2
)
per iteration and per edge as can be seen by inspection of the message update

equation (3.3). This quadratic complexity—which is incurred on a per iteration, per edge
basis—is prohibitive in many applications, where the state dimension may be on the order
of thousands. As discussed earlier in Section 3.1, although certain graphical models have
particular structures that can be exploited to reduce the complexity of the updates, not all
problems have such special structures, so that a general-purpose approach is of interest. In
addition to computational cost, a standard BP message update can also be expensive in
terms of communication cost, since each update requires transmitting (d− 1) real numbers
along each edge. For applications that involve power limitations, such as sensor networks,
reducing this communication cost is also of interest.

3.3 Description of the SBP Algorithm

We now turn to a description of the SBP, a low-complexity message-passing algorithm on
pairwise Markov random fields. Stochastic belief propagation is an adaptively randomized
form of the usual BP message updates that yields savings in both computational and com-
munication costs. It is motivated by a simple observation—namely, that the message-passing
update along the directed edge (u → v) can be formulated as an expectation over suitably
normalized columns of a compatibility matrix (see (3.6)). Here the probability distribution
in question depends on the incoming messages, and changes from iteration to iteration. This
perspective leads naturally to an adaptively randomized variant of BP: instead of computing
and transmitting the full expectation at each round—which incurs Θ(d2) computational cost
and requires sending Θ(d) real numbers—the SBP algorithm simply picks a single normalized
column with the appropriate (message-dependent) probability, and performs a randomized
update. As we show, each such operation can be performed in Θ(d) time and requires trans-
mitting only log2 d bits, so that the SBP message updates are less costly by an order of
magnitude.

With this intuition in hand, we are now ready for a precise description of the SBP
algorithm. Let us view the edge potential function ψuv as a matrix of numbers ψuv(i, j), for
i, j = 1, . . . , d. For the directed edge (u→ v), define the collection of column vectors

Γuv(:, j) :=
ψvu(:, j)∑d
i=1 ψvu(i, j)

, (3.6)

and marginal weights βuv(j) :=
(∑d

i=1 ψvu(i, j)
)
ψu(j), for j = 1, 2, . . . , d. Note that, the

columns of the compatibility matrix Γuv are normalized to sum to one: i.e.,
∑d

i=1 Γuv(i, j) = 1

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 28

for all j = 1, 2, . . . , d. We assume that the column vectors Γuv(:, j) and normalization
constants βuv(j) have been pre-computed and stored, which can be done in an off-line manner
and requires Θ(d2) operations. In addition, the algorithm makes use of a positive sequence
of step sizes {λt}∞t=0. In terms of these quantities, the SBP algorithm consists of the steps
shown in Figure 3.2.

Stochastic Belief Propagation Algorithm:

(I) Initialize the message vector m0 ∈ RD
+ .

(II) For iterations t = 0, 1, 2, 3, . . ., and for each directed edge (u→ v) ∈ ~E :

(a) Compute the product of incoming messages:

M t
u→v(j) =

∏

w∈N (u)\{v}
mt
w→u(j) for j ∈ {1, . . . , d}. (3.7)

(b) Pick a random index J t+1
u→v ∈ {1, 2, . . . , d} according to the probability distri-

bution

ptu→v(j) ∝ M t
u→v(j) βuv(j) for j ∈ {1, . . . , d}. (3.8)

(c) For a given step size λt ∈ (0, 1), update the message mt+1
u→v ∈ Rd

+ via

mt+1
u→v = (1− λt)mt

u→v + λt Γuv(:, J
t+1
u→v). (3.9)

Figure 3.2: Specification of stochastic belief propagation.

The per iteration per edge computational complexity of the SBP algorithm lies in calcu-
lating the probability mass function pu→v, defined in (3.8); generating a random index Ju→v
according to the mass function (3.8), and performing the weighted update (3.9). Denoting
the maximum degree of the graph by ρmax, we require at most (ρmax − 1)d multiplications
to compute Mu→v. Moreover, an additional 2d operations are needed to compute the prob-
ability mass function pu→v. On the other hand, generating a random index Ju→v, can be
done with less than d operations by picking a number U uniformly at random from [0, 1]
and setting2 Ju→v := inf

{
j :
∑j

ℓ=1 pu→v(ℓ) > U
}
. Finally the update (3.9) needs 3d + 3

operations. Adding up these contributions, we find that the SBP algorithm requires at most

2It is known that for any distribution function G(·), the random variable G−1(U) has the distribution
G(·).

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 29

(ρmax+5)d+3 multiplications and/or summations per iteration per edge to update the mes-
sages. As can be seen from (3.3), the regular BP complexity is Θ

(
d2
)
. Therefore, for graphs

with bounded degree (of most interest in practical applications), the SBP message updates
have reduced the per iteration computational complexity by a factor of d. In addition to
computational efficiency, SBP provides us with a significant gain in message/communication
complexity over BP. This can be observed from the fact that the normalized compatibility
matrix Γuv is only a function of edge potentials ψvu, hence known to the node v. There-
fore, node u has to transmit only the random column index Ju→v to node v, which can be
done with log2 d bits. This is a significant gain over BP that requires transmitting a (d− 1)-
dimensional vector of real numbers per edge at every round. Here we summarize the features
of our algorithm that make it appealing for practical purposes.

• Computational complexity : SBP reduces the per iteration complexity by an order of
magnitude from Θ(d2) to Θ(d).

• Communication complexity : SBP requires transmitting only log2 d bits per edge in
contrast to transmitting a (d − 1)-dimensional vector of real numbers in the case of
BP.

The remainder of this chapter is devoted to understanding when, and if so, how quickly
the SBP message updates converge to a BP fixed point. Let us provide some intuition as to
why such a behavior might be expected. Recall that the update (3.9) is random, depending
on the choice of index J chosen in step II(b). Suppose that we take expectations of the
update (3.9) only over the distribution (3.8), in effect conditioning on all past randomness in
the algorithm. (We make this idea precise via the notion of σ-fields in our analysis.) Doing
so yields that the expectation of the update (3.9) is given by

E
[
mt+1
u→v | mt

u→v
]
= (1− λt)mt

u→v + λt
d∑

j=1

Γuv(:, j) p
t
u→v(j).

Recalling the definitions (3.6) and (3.8) of the matrix Γuv and mass function pu→v, respec-
tively, and performing some algebra yields

E
[
mt+1
u→v | mt

u→v
]
= (1− λt)mt

u→v

+ λt
d∑

j=1

ψvu(:, j)∑d
i=1 ψvu(i, j)

∏
w∈N (u)\{v}m

t
w→u(j) βuv(j)∑d

ℓ=1

∏
w∈N (u)\{v}m

t
w→u(ℓ) βuv(ℓ)

= (1− λt)mt
u→v + λt Fu→v(m

t).

Therefore, in an average sense, the SBP message update is equivalent to (a damped version
of the) usual BP message update. The technical difficulties lie in showing that despite the
fluctuations around this average behavior, the SBP updates still converge to the BP fixed
point when the stepsize or damping parameter λt is suitably chosen. We now turn to precisely
this task.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 30

3.4 Main Theoretical Results

Thus far, we have proposed a low-complexity stochastic variant of the usual belief propaga-
tion algorithm. In contrast to the usual deterministic updates, this algorithm generates a
random sequence {mt}∞t=0 of message vectors. This randomness raises two natural questions:

• Is the SBP algorithm strongly consistent? More precisely, assuming that the ordinary
BP algorithm has a unique fixed point m∗, under what conditions do we have mt → m∗

almost surely as t→∞?

• When convergence occurs, how fast does it take place? The computational complexity
per iteration is significantly reduced, but what are the trade-offs incurred by the number
of iterations required?

The goal of this section is to provide some precise answers to these questions, ones which
show that under certain conditions, there are provable gains to be achieved by the SBP
algorithm. We begin with the case of trees, for which the ordinary BP message updates
are known to have a unique fixed point for any choice of potential functions. For any tree-
structured problem, the upcoming Theorem 6 guarantees that the SBP message updates are
strongly consistent, and moreover that in terms of the elementwise ℓ∞ norm they converge
in expectation at least as quickly as O(1/

√
t), where t is the number of iterations. We then

turn to the case of general graphs. Although the BP fixed point need not be unique in
general, a number of contractivity conditions that guarantee uniqueness and convergence of
ordinary BP have been developed (e.g., [113, 49, 78, 103]). Working under such conditions,
we show in Theorem 7 that the SBP algorithm is strongly consistent, and we show that
the normalized mean-squared error decays at least as quickly as O(1/t). In addition, we
provide high probability bounds on the error at each iteration, showing that the typical
performance is highly concentrated around its average. Finally, in Section 3.4.3, we provide
a new set of sufficient conditions for contractivity in terms of node/edge potentials and
the graph structure. As we discuss, our theoretical analysis shows not only that SBP is
provably correct, but also that in various regimes, substantial gains in overall computational
complexity can be obtained relative to the ordinary BP.

3.4.1 Guarantees for Tree-Structured Graphs

We begin with the case of a tree-structured graphical models. As a special case, the hidden
Markov chain shown in Figure 2.3 is an instance of such graphs. Recall that for some integer
r ≥ 1, a square matrix A is said to be nilpotent of degree r if Ar = 0. (We refer the reader to
Horn and Johnson [47] for further background on nilpotent matrices and their properties.)
Also recall the definition of the diameter of a graph G, denoted by diam(G), as the length
(number of edges) of the longest path between any pair of nodes in the graph. For a tree, this
diameter can be at most n− 1, a bound achieved by the chain graph. In stating Theorem 6,

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 31

we make use of the following definition: for vectors x, y ∈ RD, we write x � y if and only
if x(i) ≤ y(i) for all i = 1, 2, . . . , D. Moreover, for an arbitrary x ∈ RD, let |x| denote the
vector obtained from taking the absolute value of its elements. With this notation in hand,
we are now ready to state our first result.

Theorem 6 (Tree-structured graphs). For any tree-structured Markov random field, the
sequence of messages {mt}∞t=0 generated by the SBP algorithm with step size λt = 1/(t+ 1),
has the following properties:

(a) The message sequence {mt}∞t=0 converges almost surely to the unique BP fixed point m∗

as t→∞.

(b) There exist a nilpotent matrix A ∈ RD×D of degree at most r = diam(G) such that the
D-dimensional error vector mt −m∗ satisfies the elementwise inequality

E
[
|mt −m∗|

]
� 4 (I − 2A)−1

~1√
t

(3.10)

for all iterations t = 1, 2,

Remarks: The proof of this result is given in Section 3.5.1. Part (a) shows that the SBP
algorithm is guaranteed to converge almost surely to the unique BP fixed point, regardless
of the choice of node/edge potentials and the initial message vector. Part (b) refines this
claim by providing a quantitative upper bound on the rate of convergence: in expectation,
the ℓ∞ norm of the error vector is guaranteed to decay at the rate O(1/

√
t). It is worth

noting that the upper bound in part (b) is likely to be conservative at times, since the inverse
matrix (I − 2A)−1 may have elements that grow exponentially in the graph diameter r. As
shown by our experimental results, the theory is overly conservative in this way, as SBP still
behaves well on trees with large diameters (such as chains). Indeed, in the following section,
we provide results for general graphs under contractive conditions that are less conservative.

3.4.2 Guarantees for General Graphs

Our next theorem addresses the case of general graphs. In contrast to the case of tree-
structured graphs, depending on the choice of potential functions, the BP message updates
may have multiple fixed points, and need not converge in general. A sufficient condition
for both uniqueness and convergence of the ordinary BP message updates, which we assume
in our analysis of SBP, is that the update function F , defined in (3.4), is contractive. In
particular, it suffices that there exist some 0 < µ < 2 such that

‖F (m)− F (m′)‖2 ≤
(
1− µ

2

)
‖m−m′‖2. (3.11)

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 32

Recalling the normalized compatibility matrix with columns Γuv(:, j) := ψvu(:, j)ψu(j)/βuv(j),
we define its minimum and maximum values per row as follows:3

B0
uv(i) := min

j∈X
Γuv(i, j) > 0, and B

0

uv(i) := max
j∈X

Γuv(i, j) < 1. (3.12)

The pre-factor in our bounds involves the constant

K(ψ) := 4

∑
(u→v)∈~E

(
maxi∈X B

0

uv(i)
)

∑
(u→v)∈~E

(
mini∈X B

0
uv(i)

) . (3.13)

With this notation, we have the following result:

Theorem 7 (General graphs). Suppose that the BP update function F : RD → RD satisfies
the contraction condition (3.11).

(a) Then BP has a unique fixed point m∗, and the SBP message sequence {mt}∞t=0, generated
with the step size λt = O(1/t), converges almost surely to m∗ as t→∞.

(b) With the step size λt = α/(µ · (t+ 2)) for some fixed 1 < α < 2, we have

E
[
‖mt −m∗‖22

]

‖m∗‖22
≤ 3α K(ψ) α2

2α µ2(α− 1)

(
1

t

)
+
‖m0 −m∗‖22
‖m∗‖22

(
2

t

)α
(3.14)

for all iterations t = 1, 2,

(c) With the step size λt = 1/(µ · (t+ 1)), we have

E
[
‖mt −m∗‖22

]

‖m∗‖22
≤ K(ψ)

µ2

(
1 + log t

t

)
; (3.15)

also for every 0 < ǫ < 1 and t ≥ 2, we have

‖mt −m∗‖22
‖m∗‖22

≤ K(ψ)

µ2

(
1 +

8√
ǫ

)(
1 + log t

t

)
(3.16)

with probability at least 1− ǫ.
3As will be discussed later, we can obtain a sequence of more refined (tighter) lower {Bℓ

uv(i)}∞ℓ=0
and

upper {Bℓ

uv(i)}∞ℓ=0
bounds by confining the space of feasible messages.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 33

Remarks: The proof of Theorem 7 is given in Section 3.5.2. Here we discuss some of
the various guarantees that it provides. First, part (a) of the theorem shows that the SBP
algorithm is strongly consistent, in that it converges almost surely to the unique BP fixed
point. This claim is analogous to the almost sure convergence established in Theorem 6(a)
for trees. Second, the bound (3.14) in Theorem 7(b) provides a non-asymptotic bound on
the normalized mean-squared error E[‖mt −m∗‖22]/‖m∗‖22. For the specified choice of step-
size (1 < α < 2), the first component of the bound (3.14) is dominant, hence the expected
error (in squared ℓ2-norm) is of the order 1/t. Therefore, after t = Θ(1/δ) iterations, the
SBP algorithm returns a solution with MSE at most O(δ). At least superficially, this rate
might appear faster than the 1/

√
t rate established for trees in Theorem 6(b); however, the

reader should be careful to note that Theorem 6 involves the element-wise ℓ∞-norm, which
is not squared, as opposed to the squared ℓ2-norm studied in Theorem 7. Finally, part (c)
provides bounds, both in expectation and with high probability, for a slightly different step
size choice. On one hand, the bound in expectation (3.15) is of the order O(log t/t), and
so includes an additional logarithmic factor not present in the bounds from part (b). How-
ever, as shown in the high probability bound (3.16), the squared error is also guaranteed
to satisfy a sample-wise version of the same bound with high probability. This theoretical
claim is consistent with our later experimental results, showing that the error exhibits tight
concentration around its expected behavior.

Let us now compare the guarantees of SBP to those of BP. Under the contraction condi-
tion of Theorem 7, the ordinary BP message updates are guaranteed to converge geometri-
cally quickly, meaning that Θ(log(1/δ)) iterations are sufficient to obtain δ-accurate solution.
In contrast, under the same conditions, the SBP algorithm requires Θ(1/δ) iterations to re-
turn a solution with MSE at most δ, so that its iteration complexity is larger. However, as
noted earlier, the BP message updates require Θ(d2) operations for each edge and iteration,
whereas the SBP message updates require only Θ(d) operations. Putting the pieces together,
we conclude that:

• on one hand, ordinary BP requires Θ
(
|E| d2 log(1/δ)

)
operations to compute the fixed

point to accuracy δ;

• in comparison, SBP requires Θ
(
|E| d (1/δ)

)
operations to compute the fixed point to

expected accuracy δ.

Consequently, we see that as long the desired tolerance is not too small—in particular, if
δ ≥ 1/d—then SBP leads to computational savings. In many practical applications, the
state dimension is on the order of 103 to 105, so that the precision δ can be of the order 10−3

to 10−5 before the complexity of SBP becomes of comparable order to that of BP. Given that
most graphical models represent approximations to reality, it is likely that larger tolerances
δ are often of interest.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 34

3.4.3 Sufficient Conditions for Contractivity

Theorem 7 is based on the assumption that the update function is contractive, meaning
that its Lipschitz constant L is less than one. In past work, various authors have developed
contractivity conditions, based on analyzing the log messages, that guarantee uniqueness
and convergence of ordinary BP (e.g., [113, 49, 78, 103]). Our theorem requires contractivity
on the messages (as opposed to log messages), which requires a related but slightly different
argument. In this section, we show how to control L and thereby provide sufficient conditions
for Theorem 7 to be applicable.

Our contractivity result applies when the messages under consideration belong to a set
of the form

S :=
{
m ∈ RD

∣∣∣
∑

i∈X
mu→v(i) = 1, Buv(i) ≤ mu→v(i) ≤ Buv(i) ∀(u→ v) ∈ ~E , ∀i ∈ X

}
,

(3.17)

for some choice of the upper and lower bounds—namely, Buv(i) and Buv(i) respectively. It
turns out that the BP update function on the directed edge (u→ v) is a convex combination
of the normalized columns Γuv(:, j) for j = 1, . . . , d. Therefore, recalling the definition (3.12),

we haveB0
uv(i) ≤ muv(i) ≤ B

0

uv(i), for all i = 1, . . . , d. Thus, for all iterations t = 0, 1, . . ., the

messages always belong to a set of the form (3.17) with Buv(i) = B0
uv(i) and Buv(i) = B

0

uv(i).

Since the bounds (B0
uv(i), B

0

uv(i)) do not involve the node potentials, one suspects that they
might be tightened at subsequent iterations, and indeed, there is a progressive refinement of
upper and lower bounds of this form. Assuming that the messages belong to a set S at an
initial iteration, then for any subsequent iterations, we are guaranteed the inclusion

m ∈ F (S) :=
{
F (m′) ∈ RD | m′ ∈ S

}
, (3.18)

which then leads to the refined upper and lower bounds

B1
uv(i) := inf

m∈S

{ d∑

j=1

Γuv(i, j)
βuv(j)Mu→v(j)∑d
ℓ=1 βuv(ℓ)Mu→v(ℓ)

}
, and

B
1

uv(i) := sup
m∈S

{ d∑

j=1

Γuv(i, j)
βuv(j)Mu→v(j)∑d
ℓ=1 βuv(ℓ)Mu→v(ℓ)

}
,

where we recall the quantity Mu→v(j) =
∏

w∈N (u)\{v}mw→u(j) previously defined (3.7).
While such refinements are possible, in order to streamline our presentation, we focus pri-

marily on the zero’th order bounds Buv(i) = B0
uv(i) and Buv(i) = B

0

uv(i).
Given a set S of the form (3.17), we associate with the directed edges (u → v) and

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 35

(w → u) (where w ∈ N (u)\{v}) the non-negative numbers

Φ1(u→ v) :=
∑

w∈N (u)\{v}

(
φu→v,w→u (φu→v,w→u + χu→v,w→u)

) 1

2 , and (3.19a)

Φ2(w → u) :=
∑

v∈N (u)\{w}

(
φu→v,w→u (φu→v,w→u + χu→v,w→u)

) 1

2 , (3.19b)

where

φu→v,w→u := max
j∈X

sup
m∈S

{
βuv(j)Mu→v(j)∑d
k=1 βuv(k)Mu→v(k)

1

mw→u(j)

}
, and (3.20a)

χu→v,w→u := max
j∈X

sup
m∈S

{
βuv(i)Mu→v(i)(∑d

k=1 βuv(k)Mu→v(k)
)2

d∑

j=1

βuv(j)Mu→v(j)

mw→u(j)

}
. (3.20b)

Recall the normalized compatibility matrix Γuv ∈ Rd×d on the edge (u, v), as previously
defined in (3.6). Since Γuv is a stochastic matrix with positive entries, the Perron-Frobenius
theorem [47] guarantees that the maximal eigenvalue is equal to one, and is associated with
a pair of left and right eigenvectors (unique up to scaling) with positive entries. Since Γuv is
column-stochastic, any multiple of the all-one vector ~1 can be chosen as the left eigenvector.
Letting zuv ∈ Rd denote the right eigenvector with positive entries, we are guaranteed that
~1T zuv > 0, and hence we may define the matrix Γuv − zuv~1T/(~1T zuv). By construction, this
matrix has all of its eigenvalues strictly less than 1 in absolute value (Lemma 8.2.7, [47]).

Proposition 1. The global update function F : RD → RD defined in (3.4) is Lipschitz with
constant at most

L := 2 max
(u,v)∈E

|||Γuv −
zuv~1

T

~1T zuv
|||2 max

(u→v)∈~E
Φ1(u→ v) max

(w→u)∈~E
Φ2(w → u), (3.21)

where ||| · |||2 denotes the maximum singular value of a matrix.

In order to provide some intuition for Proposition 1, let us consider a simple but illuminating
example.

Example 5 (Potts model). The Potts model [38, 112, 60] is often used for denoising,
segmentation, and stereo computation in image processing and computer vision. It is a
pairwise Markov random field that is based on edge potentials of the form

ψvu(i, j) =

{
1 if i = j, and

γ if i 6= j.
,

for all edges (u, v) ∈ E and i, j ∈ {1, 2, . . . , d}. The parameter γ ∈ (0, 1] can be tuned to en-
force different degrees of smoothness: at one extreme, setting γ = 1 enforces no smoothness,

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 36

whereas a choice close to zero enforces a very strong type of smoothness. (To be clear, the
special structure of the potts model can be exploited to compute the BP message updates
quickly; our motivation in considering it here is only to provide a simple illustration of our
contractivity condition.)

For the Potts model, we have βuv(j) = ψu(j) (1+(d−1)γ), and hence Γuv is a symmetric
matrix with

Γuv(i, j) =

{
1

1+(d−1)γ if i = j
γ

1+(d−1)γ if i 6= j.

Some straightforward algebra shows that the second largest singular value of Γuv is given by
(1− γ)/(1 + (d− 1)γ), whence

max
(u,v)∈E

|||Γuv −
zuv~1

T

~1T zuv
|||2 =

1− γ
1 + (d− 1)γ

.

The next step is to find upper bounds on the terms Φ1(u → v) and Φ2(w → u), in
particular by upper bounding the quantities φu→v,w→u and χu→v,w→u, as defined in equa-
tions (3.20a) and (3.20b) respectively. In Appendix A.1, we show that the Lipschitz function
of F is upper bounded as

L ≤ 4 (1− γ) (1 + (d− 1)γ) max
u∈V

{
(ρu − 1)2

γ2ρu
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}2}
,

where ρu is the degree of node u. Therefore, a sufficient condition for contractivity in the
case of the Potts model is

max
u∈V

{
(ρu − 1)

γρu
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}}
<

(
1

4 (1− γ) (1 + (d− 1)γ)

) 1

2

. (3.22)

To gain intuition, consider the special case in which the node potentials are uniform, so
that ψu(j)/(

∑d
ℓ=1 ψu(ℓ)) = 1/d for j = 1, 2, . . . , d. In this case, for any graph with bounded

node degrees, the bound (3.22) guarantees contraction for all γ in an interval [ǫ, 1]. For
non-uniform node potentials, the inequality (3.22) is weaker, but it can be improved via the
refined sets (3.18) discussed previously.

3.5 Proof of the Main Results

We now turn to the proofs of our two main results, namely Theorems 6 and 7, as well
as the auxiliary result, Proposition 1, on contractivity of the BP message updates. For

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 37

our purposes, it is convenient to note that the ordinary BP update can be written as an
expectation of the form

Fu→v(m
t) = E [Γuv(:, J

t+1
u→v)], (3.23)

for all t = 0, 1, Here the expectation is taken place over the randomness induced by J t+1
u→v

chosen randomly according to the probability mass function ptu→v (3.8).

3.5.1 Proof of Theorem 6

We begin by stating a lemma that plays a central role in the proof of Theorem 6.

Lemma 1. For any tree-structured Markov random field, there exists a nilpotent matrix
A ∈ RD×D of degree at most r = diam(G) such that

|F (m)− F (m′)| � A |m−m′|, (3.24)

for all m,m′ ∈ S.
The proof of this lemma is somewhat technical, so that we defer it to Appendix A.2. In
interpreting this result, the reader should recall that for vectors x, y ∈ RD, the notation
x � y denotes inequality in an elementwise sense—i.e., x(i) ≤ y(i) for i = 1, . . . , D.

An immediate corollary of this lemma is the existence and uniqueness of the BP fixed
point. Since we may iterate inequality (3.24), we find that

|F (ℓ)(m)− F (ℓ)(m′)| � Aℓ |m−m′|,
for all iterations ℓ = 1, 2, . . ., and arbitrary messages m, m′, where F (ℓ) denotes the com-
position of F with itself ℓ times. The nilpotence of A ensures that Ar = 0, and hence
F (r)(m) = F (r)(m′) for all messages m, and m′. Let m∗ = F (r)(m) denote the common
value. The claim is that m∗ is the unique fixed point of the BP update function F . This can
be shown as follows: from Lemma 1 we have

|F (m∗) − m∗| = |F (r+1)(m) − F (r)(m)| � A |F (r)(m) − F (r−1)(m)|.
Iterating the last inequality for the total of r times, we obtain

|F (m∗) − m∗| � Ar |F (m) − m| = 0,

and hence F (m∗) = m∗. On the other hand, the uniqueness of the BP fixed point is a direct
consequence of the facts that for any fixed point m∗ we have F (r)(m∗) = m∗, and for all
arbitrary messages m, m′ we have F (r)(m) = F (r)(m′). Accordingly, we see that Lemma 1
provides an alternative proof of the well-known fact that BP converges to a unique fixed
point on trees after at most r = diam(G) iterations.

We now show how Lemma 1 can be used to establish the two claims of Theorem 6.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 38

Part (a): Almost Sure Consistency

We begin with the almost sure consistency claim of part (a). By combining all the local
updates, we form the global update rule

mt+1 = (1− λt)mt + λt νt+1 for iterations t = 0, 1, 2, . . ., (3.25)

where νt+1 := {Γuv(:, J t+1
u→v)}(u→v)∈~E is the D-dimensional vector obtained from stacking up

all the normalized columns Γuv(:, J
t+1
u→v). Defining the vector Y t+1 := νt+1−F (mt) ∈ RD, we

can rewrite the update equation (3.25) as

mt+1 = (1− λt)mt + λt F (mt) + λt Y t+1 for t = 0, 1, 2, (3.26)

With our step size choice λt = 1/(t + 1), unwrapping the recursion (3.26) yields the repre-
sentation

mt =
1

t

t−1∑

ℓ=0

F (mℓ) +
1

t

t∑

ℓ=1

Y ℓ.

Subtracting the unique fixed point m∗ from both sides then leads to

mt −m∗ =
1

t

t−1∑

ℓ=1

(F (mℓ)− F (m∗)) +
1

t

t∑

ℓ=1

Y ℓ +
1

t
(F (m0)− F (m∗))

︸ ︷︷ ︸
Zt

, (3.27)

where we have introduced the convenient shorthand Zt. We may apply the triangle inequality
to each element of this vector equation; doing so and using Lemma 1 to upper bound the
terms |F (mℓ)− F (m∗)|, we obtain the element-wise inequality

|mt −m∗| � 1

t

t−1∑

ℓ=1

A |mℓ −m∗| + |Zt| for t = 1, 2,

Since Ar is the all-zero matrix, unwrapping the last inequality r = diam(G) times yields the
element-wise upper bound

|mt −m∗| � Gt
0 + AGt

1 + A2Gt
2 + · · ·+ Ar−1Gt

r−1, (3.28)

where the terms Gt
ℓ are defined via the recursion Gt

ℓ :=
(∑t−1

j=1G
j
ℓ−1
)
/t for ℓ = 1, . . . , r − 1,

with initial conditions Gt
0 := |Zt|.

It remains to control the sequences {Gt
ℓ}∞t=1 for ℓ = 0, 1, . . . , r − 1. In order to do so, we

first establish a martingale difference property for the variables Y t defined prior to (3.26).

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 39

For each t = 0, 1, 2, . . ., define the σ-field F t := σ(m0,m1, . . . ,mt), as generated by the
randomness in the messages up to time t. Based on the representation (3.23), we see that
E
[
Y t+1|F t

]
= ~0, showing that {Y t+1}∞t=0 forms martingale difference sequence with respect

to the filtration {F t}∞t=0. From the definition, it can be seen that the entries of Y t+1 are
bounded; more precisely, we have |Y t+1(i)| ≤ 1 for all iterations t = 0, 1, 2, . . ., and all
states i = 1, 2, . . . D. Consequently, the sequence {Y ℓ}∞ℓ=1 is a bounded martingale difference
sequence.

We begin with the term Gt
0. Since Y ℓ is a bounded martingale difference, standard

convergence results [34] guarantee that |∑t
ℓ=1 Y

ℓ|/t → ~0 almost surely. Moreover, we have

the bound |F (m0)−F (m∗)|/t � ~1/t. Recalling the definition of Zt from (3.27), we conclude
that Gt

0 = |Zt| converges to the all-zero vector almost surely as t → ∞. In order to extend
our argument to the terms Gt

ℓ for ℓ = 1, . . . , r − 1, we make use of the following fact: for
any sequence of real numbers {xt}∞t=0 such that xt → 0, we also have (

∑t−1
ℓ=0 x

ℓ)/t→ 0 (e.g.,
see Royden [104]). Consequently, for any realization ω such that the deterministic sequence
{Gt

0(ω)}∞t=0 converges to zero, we are also guaranteed that the sequence {Gt
1(ω)}∞t=0, with

elements Gt
1(ω) = (

∑t−1
j=1G

j
0(ω))/t, converges to zero. Since we have shown that Gt

0
a.s.→ 0, we

conclude that Gt
1

a.s.→ 0 as well. This argument can be iterated, thereby establishing almost
sure convergence for all of the terms Gt

ℓ. Putting the pieces together, we conclude that the
vector |mt−m∗| converges almost surely to the all-zero vector as t→∞, thereby completing
the proof of part (a).

Part (b): Bounds on Expected Absolute Error

We now turn to part (b) of Theorem 6, which provides upper bounds on the expected
absolute error. We establish this claim by exploiting some martingale concentration inequal-
ities [24]. From part (a), we know that {Y t}∞t=1 is a bounded martingale difference sequence,
in particular with |Y t(i)| ≤ 1. Applying the Azuma-Hoeffding inequality [24] yields the tail
bound

P

(
1

t
|

t∑

ℓ=1

Y ℓ(i)| > γ

)
≤ 2 exp

(
− t γ2

2

)
,

for all γ > 0, and i = 1, 2, . . . , D. By integrating this tail bound, we can upper bound the
mean: in particular, we have

E

[
1

t
|

t∑

ℓ=1

Y ℓ(i)|
]

=

∫ ∞

0

P

(
1

t
|

t∑

ℓ=1

Y ℓ(i)| > γ

)
dγ ≤

√
2π

t
,

and hence

E
[
Gt

0

]
= E

[
|Zt|

]
�
√

2π

t
~1 +

~1

t
� 4√

t
~1. (3.29)

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 40

Turning to the term Gt
1, we have

E[Gt
1] =

1

t

t−1∑

ℓ=1

E[Gℓ
0]

(i)

� 1

t

t−1∑

ℓ=1

4√
ℓ
~1

(ii)

� 2 · 4√
t
~1,

where step (i) uses the inequality (3.29), and step (ii) is based on the elementary upper

bound
∑t−1

ℓ=1 1/
√
ℓ ≤ 1 +

∫ t−1
1

1/
√
x dx < 2

√
t. By repeating this same argument in a re-

cursive manner, we conclude that E
[
Gt
ℓ

]
� (2ℓ · 4/

√
t)~1 for ℓ = 2, 3, . . . , r − 1. Taking the

expectation on both sides of the the inequality (3.28) and substituting these upper bounds,
we obtain

E
[
|mt −m∗|

]
� 4

(r−1∑

ℓ=0

2ℓAℓ
)

~1√
t

= 4 (I − 2A)−1
~1√
t
,

where we have used the fact that Ar = 0.

3.5.2 Proof of Theorem 7

We now turn to the proof of Theorem 7. Note that since the update function is contractive,
the existence and uniqueness of the BP fixed point is an immediate consequence of the
Banach fixed-point theorem [3].

Part (a): Almost Sure Consistency

We establish part (a) by applying the Robbins-Monro theorem, a classical result from
stochastic approximation theory (see Theorem 4 from Section 2.3). In order to do so, we
begin by writing the update (3.9) in the form

mt+1
u→v = mt

u→v − λt
[
mt
u→v − Γuv(:, J

t+1
u→v)

]
︸ ︷︷ ︸

Huv(mt
u→v ,J

t+1
u→v)

,

where for any realization J̄u→v ∈ {1, 2, . . . , d}, the mapping mu→v 7→ Huv(mu→v, J̄u→v)
should be understood as a function from Rd to Rd. By concatenating together all of these
mappings, one for each directed edge (u→ v), we obtain a family of mappings H(·, J̄) from
RD to RD, one for each realization J̄ ∈ {1, 2, . . . , d}2|~E| of column indices.

With this notation, we can write the message update of the SBP algorithm in the compact
form

mt+1 = mt − λt H(mt, J t+1), (3.30)

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 41

valid for for t = 1, 2, . . ., and suitable for application of the Robbins-Monro theorem. In
order to apply this result, we need to verify its hypotheses. First of all, it is easy to see that
we have a bound of the form

E
[
‖H(m, J)‖22

]
≤ c (1 + ‖m‖22),

for some constant c. Moreover, the conditional distribution of the vector J t+1, given the
past, depends only on mt; more precisely we have

P
(
J t+1|J t, J t−1, . . . ,mt,mt−1, . . .

)
= P

(
J t+1|mt

)
.

Lastly, defining the averaged function h(m) := E
[
H(m, J)|m

]
= m − F (m), the final

requirement is to verify that the fixed point m∗ satisfies the stability condition

inf
m∈S\{m∗}

〈m−m∗, h(m)〉 > 0, (3.31)

where 〈·, ·〉 denotes the Euclidean inner product, and S denotes the compact set in which
the messages lie. Using the Cauchy-Schwartz inequality and the fact that F is Lipschitz
with constant L = 1− µ/2, we obtain

〈m−m∗, h(m)− h(m∗)〉 = ‖m−m∗‖22 − 〈m−m∗, F (m)− F (m∗)〉
≥ µ

2
‖m−m∗‖22 > 0, (3.32)

where the strict inequality holds for all m 6= m∗. Since m∗ is a fixed point, we must have
h(m∗) = m∗ − F (m∗) = 0, which concludes the proof.

Part (b): Non-Asymptotic Bounds on Normalized Mean-Squared Error

Let et := (mt −m∗)/‖m∗‖2 denote the re-normalized error vector. In order to upper bound
E
[
‖et‖22

]
for all t = 1, 2, . . ., we first control the quantity ‖et+1‖22 − ‖et‖22, corresponding to

the increment in the squared error. Doing some simple algebra yields

‖et+1‖22 − ‖et‖22 =
1

‖m∗‖22
(
‖mt+1 −m∗‖22 − ‖mt −m∗‖22

)

=
1

‖m∗‖22
〈mt+1 −mt, mt+1 +mt − 2m∗〉.

Recalling the update equation (3.30), we obtain

‖et+1‖22 − ‖et‖22 =
1

‖m∗‖22
〈−λtH(mt, J t+1), −λtH(mt, J t+1) + 2(mt −m∗)〉

=
(λt)2

‖m∗‖22
‖H(mt, J t+1)‖22 −

2λt

‖m∗‖22
〈H(mt, J t+1), mt −m∗〉. (3.33)

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 42

Now taking the expectation on both sides of (3.33) yields

E[‖et+1‖22]− E[‖et‖22] =
(λt)2

‖m∗‖22
E
[
‖H(mt, J t+1)‖22

]
− 2λt

‖m∗‖22
E
[
E
[
〈H(mt, J t+1), mt −m∗〉|F t

]]

=
(λt)2

‖m∗‖22
E
[
‖H(mt, J t+1)‖22

]
− 2λt

‖m∗‖22
E
[
〈h(mt)− h(m∗), mt −m∗〉

]
,

(3.34)

where we used the facts that E[H(mt, J t+1)|F t] = h(mt) and h(m∗) = 0. We continue
by upper bounding the term G1 = ‖H(mt, J t+1)‖22/‖m∗‖22 and lower bounding the term
G2 = 〈h(mt)− h(m∗), mt −m∗〉/‖m∗‖22.

Lower bound on G2: Recalling (3.32) from our proof of part (a), we see that

G2 ≥
µ

2
‖et‖22. (3.35)

Upper bound on G1: From the definition of the update function, we have

‖H(mt, J t+1)‖22 =
∑

(u→v)∈~E

‖mt
u→v − Γuv(:, J

t
u→v)‖22 ≤ 2

∑

(u→v)∈~E

(
‖mt

u→v‖22 + ‖Γuv(:, J tu→v)‖22
)
.

Recalling the bounds (3.12) and using the fact that vectors mt
u→v and Γuv(:, J

t
u→v) sum to

one, we obtain

‖H(mt, J t+1)‖22 ≤ 2
∑

(u→v)∈~E

(
max
i∈X

B
0

uv(i)
) (
‖mt

u→v‖1 + ‖Γuv(:, J tu→v)‖1
)

= 4
∑

(u→v)∈~E

(
max
i∈X

B
0

uv(i)
)
.

On the other hand, we also have

‖m∗‖22 ≥
∑

(u→v)∈~E

(
min
i∈X

B0
uv(i)

)
‖m∗uv‖1 =

∑

(u→v)∈~E

(
min
i∈X

B0
uv(i)

)
.

Combining the pieces, we conclude that the term G1 is upper bounded as

G1 ≤ K(ψ) := 4

∑
(u→v)∈~E

(
maxi∈X B

0

uv(i)
)

∑
(u→v)∈~E

(
mini∈X B

0
uv(i)

) . (3.36)

Since both G1 and G2 are non-negative, the bounds (3.36) and (3.35) also hold in ex-
pectation. Combining these bounds with the representation (3.34), we obtain the upper
bound

E[‖et+1‖22]− E[‖et‖22] ≤ K(ψ) (λt)2 − λtµ E[‖et‖22],

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 43

or equivalently

E[‖et+1‖22] ≤ K(ψ) (λt)2 + (1− λtµ) E[‖et‖22].

Setting λt = α/(µ(t+ 2)) and unwrapping this recursion yields

E[‖et+1‖22] ≤
K(ψ) α2

µ2

t+2∑

i=2

(
1

i2

t+2∏

ℓ=i+1

(
1− α

ℓ

))
+

t+2∏

ℓ=2

(
1− α

ℓ

)
E[‖e0‖22], (3.37)

where we have adopted the convention that the inside product is equal to one for i = t+ 2.
The following lemma, proved in Appendix A.3, provides a useful upper bound on the products
arising in this expression:

Lemma 2. For all i ∈ {1, 2, . . . , t+ 1}, we have

t+2∏

ℓ=i+1

(
1− α

ℓ

)
≤
(
i+ 1

t+ 3

)α
.

Substituting this upper bound into the inequality (3.37) yields

E[‖et+1‖22] ≤
K(ψ) α2

µ2(t+ 3)α

t+2∑

i=2

(i+ 1)α

i2
+

(
2

t+ 3

)α
E[‖e0‖22]

≤ K(ψ) α2

µ2(t+ 3)α
(3
2

)α t+2∑

i=2

1

i2−α
+

(
2

t+ 3

)α
E[‖e0‖22].

It remains to upper bound the term
∑t+2

i=2 1/i
2−α. Since the function 1/x2−α is decreasing in

x for α < 2, we have the integral upper bound
∑t+2

i=2 1/i2−α ≤
∫ t+2

1
1/x2−α dx, which yields

E[‖et+1‖22] ≤

(
3
2

)α K(ψ) α2

µ2(1−α)
1

(t+3)α
+
(

2
t+3

)α
E[‖e0‖22] if 0 < α < 1

3
2
K(ψ)
µ2

log(t+2)
t+3

+ 2
t+3

E[‖e0‖22] if α = 1(
3
2

)α K(ψ) α2

µ2(α−1)
(t+2)α−1

(t+3)α
+
(

2
t+3

)α
E[‖e0‖22] if 1 < α < 2

.

If we now focus on the range of α ∈ (1, 2), which yields the fastest convergence rate, some
simple algebra yields the form of the claim given in the theorem statement.

Part (c): High Probability Bounds

Recall the algebra at the beginning of Section 3.5.2. Adding and subtracting the conditional
mean of the second term of (3.33) yields

‖et+1‖22 − ‖et‖22 =
(λt)2

‖m∗‖22
‖H(mt, J t+1)‖22 −

2λt

‖m∗‖22
〈h(mt), mt −m∗〉+ 2λt 〈Y t+1, et〉,

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 44

where we have denoted the term

Y t+1 :=
h(mt)−H(mt, J t+1)

‖m∗‖2
.

Recalling the bounds on G1 = ‖H(mt, J t+1)‖22 / ‖m∗‖22 and G2 = 〈h(mt), mt −m∗〉 / ‖m∗‖22
from part (b), we have

‖et+1‖22 − ‖et‖22 ≤ K(ψ) (λt)2 − µλt‖et‖22 + 2λt 〈Y t+1, et〉,

or equivalently

‖et+1‖22 ≤ K(ψ) (λt)2 + (1− µλt)‖et‖22 + 2λt 〈Y t+1, et〉.

Substituting the step size choice λt = 1/(µ(t+1)) and then unwrapping this recursion yields

‖et+1‖22 ≤
K(ψ)

µ2(t+ 1)

t+1∑

τ=1

1

τ
+

2

µ (t+ 1)

t∑

τ=0

〈Y τ+1, eτ 〉

≤ K(ψ)

µ2

1 + log(t+ 1)

t+ 1
+

2

µ (t+ 1)

t∑

τ=0

〈Y τ+1, eτ 〉. (3.38)

Note that by construction, the sequence {Y τ}∞τ=1 is a martingale difference sequence with
respect to the filtration F τ = σ(m0,m1, . . . ,mτ) that is E

[
Y τ+1 | F τ

]
= ~0 and accord-

ingly E
[
〈Y τ+1, eτ 〉

]
= 0 for τ = 0, 1, 2, We continue by controlling the stochastic term

(
∑t

τ=0〈Y τ+1, eτ 〉)/(t+ 1)—namely its variance,

var

(
1

t+ 1

t∑

τ=0

〈Y τ+1, eτ 〉
)

=
1

(t+ 1)2
E

[(t∑

τ=0

〈Y τ+1, eτ 〉
)2
]

=
1

(t+ 1)2

t∑

τ=0

E
[
〈Y τ+1, eτ 〉2

]

︸ ︷︷ ︸
T1

+
2

(t+ 1)2

∑

0≤τ2<τ1≤t
E
[
〈Y τ1+1, eτ1〉〈Y τ2+1, eτ2〉

]

︸ ︷︷ ︸
T2

.

Since we have

E
[
〈Y τ1+1, eτ1〉〈Y τ2+1, eτ2〉

]
= E

[
E
[
〈Y τ1+1, eτ1〉〈Y τ2+1, eτ2〉 | F τ1

]]

= E
[
〈Y τ2+1, eτ2〉 E

[
〈Y τ1+1, eτ1〉 | F τ1

]]
= 0,

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 45

for all τ1 > τ2, the cross product term T2 vanishes. On the other hand, the martingale
difference sequence is bounded. This can be shown as follows: from part (b) we know
‖H(mτ , Jτ+1)‖2/‖m∗‖2 ≤

√
K(ψ); also using the fact that ‖·‖2 is convex, Jensen’s inequality

yields ‖h(mτ)‖2/‖m∗‖2 ≤
√
K(ψ); therefore, we have

‖Y τ+1‖2 ≤
‖H(mτ , Jτ+1)‖2

‖m∗‖2
+
‖h(mτ)‖2
‖m∗‖2

≤ 2
√
K(ψ).

Moving on to the first term T1, we exploit the Cauchy Schwartz inequality in conjunction
with the fact that the martingale difference sequence is bounded to obtain

E
[
〈Y τ+1, eτ 〉2

]
≤ E

[
‖Y τ+1‖22 ‖eτ‖22

]
≤ 4K(ψ) E

[
‖eτ‖22

]
.

Taking the expectation on both sides of the inequality (3.38) yields

E
[
‖eτ‖22

]
≤ K(ψ)

µ2

1 + log τ

τ
;

and hence we have

E
[
〈Y τ+1, eτ 〉2

]
≤ 4K(ψ)2

µ2

1 + log τ

τ
,

for all τ ≥ 1. Moreover, since

‖m0‖2
‖m∗‖2

≤
(∑

(v←u)∈~E
(
maxi∈X B

0

uv(i)
)

∑
(v←u)∈~E

(
mini∈X B

0
uv(i)

)
) 1

2

=

√
K(ψ)

4
,

the initial term E
[
〈Y 1, e0〉2

]
≤ 4 K(ψ) E

[
‖e0‖22

]
is upper bounded by 4 K(ψ)2. Finally,

putting all the pieces together, we obtain

var

(
1

t+ 1

t∑

τ=0

〈Y τ+1, eτ 〉
)
≤ 4K(ψ)2

µ2 (t+ 1)2

t∑

τ=1

1 + log τ

τ
+

4K(ψ)2

(t+ 1)2

(i)

≤ 4K(ψ)2

µ2

(1 + log(t+ 1))2 + 4

(t+ 1)2
,

where inequality (i) follows from the facts
∑t

τ=1(1 + log τ)/τ ≤ (1 + log t)2, and µ < 2.
Consequently, we may apply Chebyshev’s inequality [24] to control the stochastic deviation∑t+1

τ=1 〈Y τ+1, eτ 〉/(t+ 1). More specifically, for γ > 0 (to be specified) we have

P

(∣∣ 2

µ (t+ 1)

t∑

τ=0

〈Y τ+1, eτ 〉
∣∣ > γ

)
≤ 16K(ψ)2

µ4 γ2
(1 + log(t+ 1))2 + 4

(t+ 1)2
. (3.39)

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 46

We now combine our earlier bound (3.38) with the tail bound (3.39), making the specific
choice

γ =
4K(ψ)

µ2
√
ǫ

√
(1 + log(t+ 1))2 + 4

t+ 1
,

for a fixed 0 < ǫ < 1, thereby concluding that

‖et+1‖22 ≤
K(ψ)

µ2

1 + log(t+ 1)

t+ 1
+

4K(ψ)

µ2
√
ǫ

√
(1 + log(t+ 1))2 + 4

t+ 1
,

with probability at least 1− ǫ. Simplifying the last bound, we obtain

‖et+1‖22 ≤
K(ψ)

µ2

(
1 +

8√
ǫ

)
1 + log(t+ 1)

t+ 1
,

for all t ≥ 1, with probability at least 1− ǫ.

3.5.3 Proof of Proposition 1

Recall the definition (3.8) of the probability mass function {pu→v(j)}j∈X used in the update
of directed edge (u→ v). This probability depends on the current value of the message, so
we can view it as being generated by a function qu→v : RD → Rd that performs the mapping
m 7→ {pu→v(j)}j∈X . In terms of this function, we can rewrite the BP message update equa-
tion (3.3) on the directed edge (u→ v) as Fu→v(m) = Γuv qu→v(m), where the renormalized
compatibility matrix Γuv was defined previously (3.6). We now define the D × D block
diagonal matrix Γ := blkdiag{Γuv}(u→v)∈~E , as well as the function q : RD → RD obtained
by concatenating all of the functions qu→v, one for each directed edge. In terms of these
quantities, we rewrite the global BP message update in the compact form F (m) = Γ q(m).

With these preliminaries in place, we now bound the Lipschitz constant of the mapping
F : RD → RD. Given an arbitrary pair of messages m,m′ ∈ S, we have

‖F (m)− F (m′)‖22 = ‖Γ
(
q(m)− q(m′)

)
‖22 =

∑

(u→v)∈~E

‖Γuv
(
qu→v(m)− qu→v(m′)

)
‖22. (3.40)

By the Perron-Frobenius theorem [47], we know that Γuv has a unique maximal eigenvalue
of 1, achieved for the left eigenvector ~1 ∈ Rd, where ~1 denotes the vector of all ones. Since
the d-dimensional vectors qu→v(m) and qu→v(m′) are both probability distributions, we have
〈~1, qu→v(m)− qu→v(m′)〉 = 0. Therefore, we conclude that

Γuv
(
qu→v(m)− qu→v(m′)

)
=
(
Γuv −

zuv~1
T

~1T zuv

)(
qu→v(m)− qu→v(m′)

)
,

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 47

where zuv denotes the right eigenvector of Γuv corresponding to the eigenvalue one. Com-
bining this equality with the representation (3.40), we find that

‖F (m)− F (m′)‖22 =
∑

(u→v)∈~E

‖
(
Γuv −

zuv~1
T

~1T zuv

)(
qu→v(m)− qu→v(m′)

)
‖22

≤ max
(u,v)∈E

|||Γuv −
zuv~1

T

~1T zuv
|||22 ‖q(m)− q(m′)‖22. (3.41)

It remains to upper bound the Lipschitz constant of the mapping q : RD → RD previously
defined.

Lemma 3. For all m 6= m′, we have

‖q(m)− q(m′)‖2
‖m−m′‖2

≤ 2 max
(u→v)∈~E

Φ1(u→ v) max
(w→u)∈~E

Φ2(w → u), (3.42)

where the quantities Φ1(u→ v), and Φ2(w → u) were previously defined in (3.19a) and (3.19b).

As the proof of Lemma 3 is somewhat technical, we defer it to Appendix A.4. Combining
the upper bound (3.42) with the earlier bound (3.41) completes the proof of the proposition.

3.6 Experimental Results

In this section, we present a variety of experimental results that confirm the theoretical pre-
dictions, and show that SBP is a practical algorithm. We provide results both for simulated
graphical models, and real-world applications to image denoising and disparity computation.

3.6.1 Simulations on Synthetic Problems

We start by performing some simulations for the potts model, in which the edge potentials
are specified by a parameter γ ∈ (0, 1], as discussed in Example 5. The node potentials are
generated randomly, on the basis of fixed parameters µ ≥ σ > 0 satisfying µ + σ < 1, as
follows: for each u ∈ V and label i 6= 1, we generate an independent random variable Zu;i
uniformly distributed on the interval (−1,+1), and then set

ψu(i) =

{
1 i = 1

µ+ σZu;i i ≥ 2
.

For a fixed graph topology and collection of node/edge potentials, we first run BP to
compute the fixed point m∗.4 We then run the SBP algorithm to find the sequence of

4We stop the BP iterations when ‖mt+1 −mt‖2 becomes less than 10−4.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 48

10
0

10
1

10
2

10
−2

10
−1

10
0

Number of iterations

N
or

m
al

iz
ed

 s
qu

ar
ed

 e
rr

or

10
0

10
1

10
2

10
−2

10
−1

10
0

Number of iterations

N
or

m
al

iz
ed

 s
qu

ar
ed

 e
rr

or
(a) (b)

Figure 3.3: The panels illustrate the normalized squared error ‖mt−m∗‖2
2
/‖m∗‖2

2
versus the number of iterations t for a chain

of size n = 100 and state dimension d = 64. Each plot contains 10 different sample paths. Panel (a) corresponds to the coupling
parameter γ = 0.02 whereas panel (b) corresponds to γ = 0.05. In all cases, the SBP algorithm was implemented with step size
λt = 2/(t+ 1), and the node potentials were generated with parameters (µ, σ) = (0.1, 0.1).

messages {mt}∞t=0 and compute the normalized squared error ‖mt −m∗‖22/‖m∗‖22. In cases
where the normalized mean-squared error is reported, we computed it by averaging over 20
different runs of the algorithm. (Note that the runs are different, since the SBP algorithm
is randomized.)

In our first set of experiments, we examine the consistency of the SBP on a chain-
structured graph, as illustrated in Figure 2.3, representing a particular instance of a tree.
We implemented the SBP algorithm with step size λt = 2/(t + 1), and performed simula-
tions for a chain with n = 100 nodes, state dimension d = 64, node potential parameters
(µ, σ) = (0.1, 0.1), and for two different choices of edge potential γ ∈ {0.02, 0.05}. The result-
ing traces of the normalized squared error versus iteration number are plotted in Figure 3.3;
each panel contains 10 different sample paths. These plots confirm the prediction of strong
consistency given in Theorem 6(a)—in particular, the error in each sample path converges
to zero. We also observe that the typical performance is highly concentrated around its
average, as can be observed from the small amount of variance in the sample paths.

Our next set of simulations are designed to study the effect of increasing of the state
dimension d on convergence rates. We performed simulations both for the chain with n = 100
nodes, as well as a two-dimensional square grid with n = 100 nodes. In all cases, we
implemented the SBP algorithm with step sizes λt = 2/(t+1), and generated the node/edge
potentials with parameters (µ, σ) = (0.1, 0.1) and γ = 0.1 respectively. In Figure 3.4, we plot
the normalized mean-squared error (estimated by averaging over 20 trials) versus the number
of iterations for the chain in panel (a), and the grid in panel (b). Each panel contains four
different curves, each corresponding to a choice of state dimension d ∈ {128, 256, 512, 1024}.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 49

10
0

10
1

10
2

10
−2

10
−1

Number of iterations

N
or

m
al

iz
ed

 m
ea

n
sq

ua
re

d
er

ro
r

d=128
d=256
d=512
d=1024

10
0

10
1

10
2

10
−3

10
−2

10
−1

Number of iterations

N
or

m
al

iz
ed

 m
ea

n
sq

ua
re

d
er

ro
r

d=128
d=256
d=512
d=1024

(a) (b)

Figure 3.4: Effect of increasing state dimension on convergence rates. Plots of the normalized mean-squared error
E
[

‖mt −m∗‖2
2

]

/‖m∗‖2
2

versus the number of iterations for two different graphs: (a) chain with n = 100 nodes, and
(b) two-dimensional square grid with n = 100 nodes. In both panels, each curve corresponds different state dimension
d ∈ {128, 256, 512, 1024}. All simulations were performed with step sizes λt = 2/(t + 1), and the node/edge parameters
were generated with parameters (µ, σ) = (0.1, 0.1) and γ = 0.1 respectively.

For the given step size, Theorem 7 guarantees that the convergence rate should be upper
bounded by 1/tα (α ≤ 1) with the number of iterations t. In the log-log domain plot, this
convergence rate manifests itself as a straight line with slope −α. For the chain simulations
shown in panel (a), all four curves exhibit exactly this behavior, with the only difference with
increasing dimension being a vertical shift (no change in slope). For the grid simulations
in panel (b), problems with smaller state dimension exhibit somewhat faster convergence
rate than predicted by theory, whereas the larger problems (d ∈ {512, 1024}) exhibit linear
convergence on the log-log scale.

As discussed previously, the SBP message updates are less expensive by a factor of d.
The top two rows of Table 3.1 show the per iteration running time of both BP and SBP
algorithms, for different state dimensions as indicated. As predicted by theory, the SBP
running time per iteration is significantly lower than BP, scaling linearly in d in contrast
to the quadratic scaling of BP. To be fair in our comparison, we also measured the total
computation time required for either BP or SBP to converge to the fixed point up to a
δ-tolerance, with δ = 0.01. This comparison allows for the fact that BP may take many
fewer iterations than SBP to converge to an approximate fixed point. Nonetheless, as shown
in the bottom two rows of Table 3.1, in all cases except one (chain graph with dimension
d = 128), we still see significant speed-ups from SBP in this overall running time. This gain
becomes especially pronounced for larger dimensions, where these types of savings are more
important.

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 50

d = 128 d = 256 d = 512 d = 1024

Chain

BP (per iteration) 0.0700 0.2844 2.83 18.0774
SBP (per iteration) 0.0036 0.0068 0.0145 0.0280

BP (total) 0.14 0.57 5.66 36.15
SBP (total) 0.26 0.27 0.29 0.28

Grid

BP (per iteration) 0.1300 0.5231 5.3125 32.5050
SBP (per iteration) 0.0095 0.0172 0.0325 0.0620

BP (total) 0.65 3.66 10.63 65.01
SBP (total) 0.21 1.31 0.65 0.62

Table 3.1: Comparison of BP and SBP computational cost for two different graphs each with n = 100 nodes. For each graph
type, the top two rows show per iteration running time (in seconds) of the BP and SBP algorithms for different state dimensions.
The bottom two rows show total running time (in seconds) to compute the message fixed point to δ = 0.01 accuracy.

3.6.2 Applications in Image Processing and Computer Vision

In our next set of experiments, we study the SBP on some larger scale graphs and more
challenging problem instances, with applications to image processing and computer vision.
Message-passing algorithms can be used for image denoising, in particular, on a two dimen-
sional square grid where every node corresponds to a pixel. Running the BP algorithm on
the graph, one can obtain (approximations to) the most likely value of every pixel based on
the noisy observations. In this experiment, we consider a 200 × 200 image with d = 256
gray-scale levels, as showin in Figure 3.5(a). We then contaminate every pixel with an
independent Gaussian random variable with standard deviation σ = 0.1, as shown in Fig-
ure 3.5(b). Enforcing the potts model with smoothness parameter γ = 0.05 as the edge
potential, we run BP and SBP for the total of t = 5 and t = 100 iterations, respectively,
to obtain the refined images (see panels (c) and (d), respectively, in Figure 3.5). Figure 3.6
illustrates the mean-squared error versus the running time for both BP and SBP denoising.
As one can observe, despite smaller jumps in the error reduction, the per-iteration running
time of SBP is substantially lower than BP. Overall, SBP has done a marginally better job
than BP in a substantially shorter amount of time in this instance. Note that the purpose
of this experiment is not to analyze the potential of SBP (or for that matter BP) in image
denoising, but to rather observe their relative performances and computational complexities.

Finally, in our last experiment, we apply SBP to a computer vision problem. Graphical
models and message-passing algorithms are popular in application to the stereo vision prob-
lem [112, 60], in which the goal is to estimate objects depth based on the pixel dissimilarities
in two (left and right view) images. Adopting the original model in Sun et al. [112], we use a
form of the prior to enforce smoothness, and also use the observation potentials given in the
Sun et al. paper. We then run BP and SBP (with step size 3/(t + 2)) for a total of t = 10
and t = 50 iterations respectively in order to estimate the pixel dissimilarities. The results
for the test image “map” are presented in Figure 3.7. Here, the maximum pixel dissimilarity

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 51

(a) (b)

(c) (d)

Figure 3.5: Image denoising application, (a) original image, (b) noisy image, (c) refined image obtained from BP after t = 5
iterations, and (d) refined image obtained from SBP after t = 100 iterations. The image is 200 × 200 with d = 256 gray-scale
levels. The SBP step size, the potts model parameter, and noise standard deviation are set to λt = 1/(t + 1), γ = 0.05, and
σ = 0.1, respectively.

is d = 32, which makes stereo vision a relatively low-dimensional problem. In this particular
application, the SBP is faster by about a factor of 3 − 4 times per iteration; however, the
need to run more iterations makes it comparable to BP. This is to be expected since the
state dimension d = 32 is relatively small, and the relative advantage of SBP becomes more
significant for larger state dimensions d.

3.7 Conclusion

In this chapter, we have developed and analyzed a new and low-complexity alternative to the
BP message-passing. The SBP algorithm has per iteration computational complexity that

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 52

0 100 200 300 400 500 600 700

180

200

220

240

260

280

300

320

340

360

380

Running time (sec)

M
ea

n
sq

ua
re

d
er

ro
r

BP
SBP

Figure 3.6: Mean-squared error versus the running time (in seconds) for both BP and SBP image denoising. The simulations
are performed with the step size λt = 1/(t + 1), and the potts model parameter γ = 0.05 on a 200 × 200 image with d = 256
gray-scale levels. The noise is assumed to be additive, independent Gaussian random variables with standard deviation σ = 0.1.

scales linearly in the state dimension d, as opposed to the quadratic dependence of BP, and
a communication cost of log2 d bits per edge and iteration, as opposed to d− 1 real numbers
for standard BP message updates. Stochastic belief propagation is also easy to implement,
requiring only random number generation and the usual distributed updates of a message-
passing algorithm. Our main contribution was to prove a number of theoretical guarantees
for the SBP message updates, including convergence for any tree-structured problem, as
well as for general graphs for which the ordinary BP message update satisfies a suitable
contraction condition. In addition, we provided non-asymptotic upper bounds on the SBP
error, both in expectation and in high probability.

The results described here suggest a number of directions for future research. First, the
ideas exploited here have natural generalizations to problems involving continuous random
variables and also other algorithms that operate over the sum-product semi-ring, including
the generalized belief propagation algorithm [121] as well as reweighted sum-product algo-
rithms [118]. More generally, the BP algorithm can be seen as optimizing the dual of the
Bethe free energy function [121], and it would be interesting to see if SBP can be interpreted
as a stochastic version of this Bethe free energy minimization. It is also natural to consider
whether similar ideas can be applied to analyze stochastic forms of message-passing over other
semi-rings, such as the max-product algebra that underlies the computation of maximum
a posteriori (MAP) configurations in graphical models. In this paper, we have developed

CHAPTER 3. STOCHASTIC BELIEF PROPAGATION 53

(a) (b)

(c) (d)

Figure 3.7: Stereo vision, depth recognition, application, (a) reference image, (b) ground truth, (c) BP estimate after t = 10
iterations, and (d) SBP estimate after t = 50 iterations. The algorithms are applied to the standard “map” image with
maximum pixel dissimilarity d = 32. The SBP step size is set to λt = 3/(t+ 2).

SBP for applications to Markov random fields with pairwise interactions. In principle, any
undirected graphical model with discrete variables can be reduced to this form [121, 119];
however, in certain applications, such as decoding of LDPC codes over non-binary state
spaces, this could be cumbersome. For such cases, it would be useful to derive a variant
of SBP that applies directly to factor graphs with higher-order interactions. Moreover, the
results derived in this paper are based on the assumption that the co-domain of the potential
functions do not include zero. We suspect that these condition might be relaxed, and similar
results could be obtained. Finally, our analysis for general graphs has been done under a
contractivity condition, but it is likely that this requirement could be loosened. Indeed, the
SBP algorithm works well for many problems where this condition need not be satisfied.5

5The materials of this chapter have been published in papers [84, 87].

54

Chapter 4

Stochastic Orthogonal Series
Message-Passing

4.1 Introduction

In the previous chapter, we proposed a new low-complexity alternative to the belief prop-
agation algorithm for the case of discrete random variables. However, in many applica-
tions of graphical models, we encounter random variables that take on continuous values
(as opposed to discrete). For instance, in computer vision, the problem of optical flow
calculation is most readily formulated in terms of estimating a vector field in R2. Other
applications involving continuous random variables include tracking problems in sensor net-
works, vehicle localization, image geotagging, and protein folding in computational biol-
ogy. With certain exceptions (such as multivariate Gaussian problems), the marginaliza-
tion problem is very challenging for continuous random variables: in particular, the mes-
sages correspond to functions, so that they are expensive to compute and transmit, in
which case BP may be limited to small-scale problems. Motivated by this challenge, re-
searchers have proposed different techniques to reduce complexity of BP in different ap-
plications [5, 110, 111, 52, 32, 51, 27, 53, 20, 66, 106, 1]. For instance, various types of
quantization schemes [27, 53] have used to reduce the effective state space and consequently
the complexity. In another line of work, researchers have proposed stochastic methods in-
spired by particle filtering [5, 110, 111, 32, 51, 52]. These techniques are typically based on
approximating the messages as weighted particles [32, 51], or mixture of Gaussians [111, 52].
Other researchers [106] have proposed the use of kernel methods to simultaneously estimate
parameters and compute approximate marginals in a simultaneous manner.

In this chapter, we present a low-complexity alternative to BP with continous variables.
Our method, which we refer to as stochastic orthogonal series message-passing (SOSMP), is
applicable to general pairwise Markov random fields, and is equipped with various theoretical
guarantees. As suggested by its name, the algorithm is based on combining two ingredients:

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 55

orthogonal series approximation of the messages, and the use of stochastic updates for effi-
ciency. In this way, the SOSMP updates lead to a randomized algorithm with substantial
reductions in communication and computational complexity. Our main contributions are to
analyze the convergence properties of the SOSMP algorithm, and to provide rigorous bounds
on the overall error as a function of the associated computational complexity. In particular,
for tree-structured graphs, we estabish almost sure convergence, and provide an explicit in-
verse polynomial convergence rate (Theorem 8). For loopy graphical models on which the
usual BP updates are contractive, we also establish similar convergence rates (Theorem 9).
Our general theory provides quantitative upper bounds on the number of iterations required
to compute a δ-accurate approximation to the BP message fixed point, as we illustrate in
the case of kernel-based potential functions (Theorem 10).

The reminder of this chapter is organized as follows. We begin in Section 4.2, with
the necessary background and the problem statement. Section 4.3 is devoted to a precise
description of the SOSMP algorithm. In Section 4.4, we state our main theoretical results and
develop some of their corollaries. In Section 4.5, we provide the proofs of our main results,
with some of the technical aspects deferred to the appendices. In order to demonstrate the
algorithm’s effectiveness and confirm theoretical predictions, we provide some experimental
results, on both synthetic and real data, in Section 4.6. Finally, we conclude the chapter in
Section 4.7.

4.2 Background and Problem Statement

We begin by giving a precise description of the problem. Consider a pairwise Markov random
field G = (V , E), consisting of a collection of vertices V = {1, 2, . . . , n}, along with a collection
of edges E ⊂ V × V . For each v ∈ V , let Xv be a random variable taking values in some
continuous space X . As discussed in the previous chapters, the pairwise Markov random field,
defines a family of joint probability distributions over the random vector X = {Xv|v ∈ V},
in which each density must factorize in terms of local potential functions associated with
edges and nodes of the graph. More precisely, we consider the probability density p that
respect the graph structure

p(x1, x2, . . . , xn) ∝
∏

u∈V
ψu(xu)

∏

(u,v)∈E
ψvu(xv, xu). (4.1)

Here ψu : X → (0,∞) is the node potential function, whereas ψvu : X ×X → (0,∞) denotes
the edge potential function.

The problem of marginalization, of utmost importance to many applications (see Sec-
tion 2.1), suffers from the curse of dimensionality, since it requires computing a multi-

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 56

dimensional integral over an (n− 1)-dimensional space

p(xv) :=

∫

X
. . .

∫

X︸ ︷︷ ︸
(n−1) times

p(x1, x2, . . . , xn)
∏

u∈V\{v}
dxu (4.2)

at each node v ∈ V . Part of this exponential explosion can be circumvented by the use of
the BP algorithm. In order to define the message-passing updates, we require some further
notation. For each node u ∈ V , recall the definition of the neighborhood N (u) = {v ∈ V |
(u, v) ∈ E}, the set of directed edges emanating from u, ~E(u) = {(u→ v) | v ∈ N (u)}, as
well as ~E = ∪u∈V ~E(u), from Section 3.2. LetM denote the set of all probability densities
defined on the space X—that is

M =
{
m : X → [0,∞)

∣∣
∫

X
m(x)dx = 1

}
.

The messages passed by the BP algorithm are density functions, taking values in the space
M. More precisely, we assign one message mu→v ∈ M to every directed edge (u→ v) ∈ ~E ,
and we denote the collection of all messages by m := {mu→v, (u→ v) ∈ ~E}. Note that the

full collection of messages m takes values in the product spaceM|~E|.
At an abstract level, the BP algorithm generates a sequence of message densities {mt}

in the space M|~E|, where t = 0, 1, 2 . . . is the iteration number. The update of message
mt to message mt+1 can be written in the form mt+1 = F(mt), where F :M|~E| →M|~E|

is a non-linear operator. This global operator is defined by the local update operators1

Fu→v :M|~E| → M, one for each directed edge of the graph, such that mt+1
u→v = Fu→v(mt).

In more detail, the message update takes the form

[Fu→v(mt)](·)︸ ︷︷ ︸
mt+1

u→v(·)

:= κ

∫

X

{
ψvu(·, xu) ψu(xu)

∏

w∈N (u)\{v}
mt
w→u(xu)

}
dxu, (4.3)

where κ is a normalization constant chosen to enforce the normalization condition
∫

X
mt+1
u→v(xv) dxv = 1.

Moreover, at each iteration t = 0, 1, . . ., each node u ∈ V transmits the message mt+1
u→v (that

is a real-valued function) to neighbor v ∈ N (u).

By concatenating the local updates (4.3), we obtain a global update operator F :M|~E| →M|~E|,
as previously discussed. The goal of the BP message-passing is to obtain a fixed point, mean-
ing an element m∗ ∈M|~E| such that F(m∗) = m∗. Given a fixed point m∗, each node v ∈ V

1 It is worth mentioning, and important for the computational efficiency of BP , that mu→v is only a
function of the messages mw→u for w ∈ N (u)\{v}. Therefore, we have Fu→v :Mρu−1 → M, where ρu is
the degree of the node u. However, we suppress this local dependence so as to reduce notational clutter.

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 57

computes its marginal approximation τ ∗v ∈ M by combining the local potential function ψv
with a product of all incoming messages as

τ ∗v (xv) ∝ ψv(xv)
∏

u∈N (v)

m∗u→v(xv). (4.4)

Although the BP algorithm is considerably more efficient than the brute force approach
to marginalization, the message update equation (4.3) still involves computing an integral
and transmitting a real-valued function (message). With certain exceptions (such as multi-
variate Gaussians), these continuous-valued messages do not have finite representations, so
that this approach is computationally very expensive. Although integrals can be computed
by numerical methods, the BP algorithm requires performing many such integrals at each
iteration, which becomes very expensive in practice. In this chapter, our goal is to develop
low-complexity alternatives to BP for the case of continuous-valued random variables. Before
doing so, we begin with some background on the main underlying ingredients: orthogonal
series expansion, and stochastic message updates.

4.2.1 Orthogonal Series Expansion

As mentioned before, for continuous random variables, each message is a density function
in the space M ⊂ L2(X). We measure distances in this space using the usual L2 norm
‖f − g‖22 :=

∫
X (f(x)− g(x))2 dx. A standard way in which to approximate functions is via

orthogonal series expansion. In particular, let {φj}∞j=1 be an orthonormal basis of L2(X),
meaning a collection of functions such that

∫

X
φi(x)φj(x) dx

︸ ︷︷ ︸
:=〈φi, φj〉

=

{
1 when i = j

0 otherwise.
(4.5)

Any function f ∈ M ⊂ L2(X) then has an expansion of the form f =
∑∞

j=1 ajφj, where
aj = 〈f, φj〉 are the basis expansion coefficients.

Of course, maintaining the infinite sequence of basis coefficients {aj}∞j=1 is also compu-
tationally intractable, so that any practical algorithm will maintain only a finite number r
of basis coefficients. For a given r, we let f̂r ∝

[∑r
j=1 ajφj

]
+
be the approximation based

on the first r coefficients. (Applying the operator [t]+ = max{0, t} amounts to projecting∑r
j=1 ajφj onto the space of non-negative functions, and we also normalize to ensure that it

is a density function.) In using only r coefficients, we incur the approximation error

‖f̂r − f‖2L2

(i)

≤ ‖
r∑

j=1

ajφj − f‖2L2

(ii)
=

∞∑

j=r+1

a2j (4.6)

where inequality (i) uses non-expansivity of the projection, and step (ii) follows from Parse-
val’s theorem [88]. Consequently, the approximation error will depend both on

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 58

• how many coefficients r that we retain, and

• the decay rate of the expansion coefficients {aj}∞j=1.

For future reference, it is worth noting that the local message update (4.3) is defined in
terms of an integral operator of the form

f(·) 7→
∫

X
ψvu(·, x) f(x) dx. (4.7)

Consequently, whenever the edge potential function ψvu has desirable properties—such as
differentiability and/or higher order smoothness—then the messages also inherit these prop-
erties. With an appropriate choice of the basis {φj}∞j=1, such properties translate into decay
conditions on the basis coefficients {aj}∞j=1. For instance, for α-times differentiable functions
expanded into the Fourier basis, the Riemann-Lebesgue lemma [100] guarantees that the
coefficients aj decay faster than (1/j)2α. We develop these ideas at greater length in the
sequel.

4.2.2 Stochastic Message Updates

In order to reduce the approximation error (4.6), the number of coefficients r needs to be
increased (as a function of the ultimate desired error δ). Since increases in r lead to increases
in computational complexity, we need to develop effective reduced-complexity methods. In
this section, we describe (at a high-level) how this can be done via a stochastic version of
the BP message-passing updates.

We begin by observing that message update (4.3), following some appropriate normaliza-
tion, can be cast as an expectation operation. This equivalence is essential, because it allows
us to obtain unbiased approximations of the message update using stochastic techniques. In
particular, let us define the normalized compatibility function

Γuv(·, xu) := ψvu(·, xu)
ψu(xu)

βuv(xu)
, where βuv(xu) := ψu(xu)

∫

X
ψvu(xv, xu) dxv. (4.8)

By construction, for each xu, we have
∫
X Γuv(xv, xu) dxv = 1.

Lemma 4. Given an input collection of messages m, let Y be a random variable with density
proportional to

[pu→v(m)](y) ∝ βuv(y)
∏

w∈N (u)\{v}
mw→u(y). (4.9)

Then the message update equation (4.3) can be written as

[Fu→v(m)](·) = EY
[
Γuv(·, Y)

]
. (4.10)

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 59

Proof. Let us introduce the convenient shorthand M(y) =
∏

w∈N (u)\{v}
mw→u(y). By defini-

tion (4.3) of the message update, we have

[Fu→v(m)](·) =

∫
X
(
ψvu(·, y) ψu(y)M(y) dy∫

X
∫
X
(
ψvu(x, y) ψu(y)M(y)

)
dy dx

.

Since the integrand is positive, by Fubini’s theorem [34], we can exchange the order of
integrals in the denominator. Doing so and simplifying the expression yields

[Fu→v(m)](·) =

∫

X

ψvu(·, y)∫
X ψvu(x, y) dx︸ ︷︷ ︸

Γuv(·,y)

βuv(y)M(y)∫
X βuv(z)M(z) dz︸ ︷︷ ︸

[pu→v(m)](y)

dy, (4.11)

which establishes the claim.

Based on Lemma 4, we can obtain a stochastic approximation to the message update by
drawing k i.i.d. samples Yi from the density (4.9), and then computing

∑k
i=1 Γuv(·, Yi) / k.

Given the non-negativity and chosen normalization of Γuv, note that this estimate belongs to
M by construction. Moreover, it is an unbiased estimate of the correctly updated message,
which plays an important role in our analysis. It is also worth mentioning that a similar idea
is used in the stochastic belief propagation algorithm proposed in Chapter 3.

4.3 Description of the SOSMP Algorithm

In this section, we turn to the description of the SOSMP algorithm. The SOSMP algorithm
involves a combination of the orthogonal series expansion techniques and stochastic methods
previously described. Any particular version of the algorithm is specified by the choice of
basis functions {φj}∞j=1 and two positive integers: the number of coefficients r that are
maintained, and the number of samples k used in the stochastic update. Prior to running
the algorithm, for each directed edge (u→ v), we pre-compute the inner products

γuv;j(xu) :=

∫

X
Γuv(xv, xu)φj(xv) dxv,

︸ ︷︷ ︸
〈Γuv(·, xu), φj(·)〉

for j = 1, . . . , r. (4.12)

When ψvu is a symmetric and positive semidefinite kernel function, these inner products
have an explicit and simple representation in terms of its Mercer eigendecomposition (see
Section 4.4.3). In the general setting, these r inner products can be computed via standard
numerical integration techniques. Note that this is a fixed (one-time) cost prior to running
the algorithm.

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 60

SOSMP algorithm for marginalization:

1. At time t = 0, initialize the message coefficients

a0u→v;j =
1

r
for all j = 1, . . . , r, and (u→ v) ∈ ~E .

2. For iterations t = 0, 1, 2, . . ., and for each directed edge (u→ v)

(a) Form the projected message approximation m̂t
w→u(·) =

[∑r
j=1 a

t
w→u;jφj(·)

]
+
,

for all w ∈ N (u)\{v}.
(b) Draw k i.i.d. samples Yi from the probability density proportional to

βuv(y)
∏

w∈N (u)\{v}
m̂t
w→u(y), (4.13)

where βuv was previously defined in equation (4.8).

(c) Use the samples {Y1, Y2, . . . , Yk} from step (b) to compute

b̃t+1
u→v;j :=

1

k

k∑

i=1

γuv;j(Yi) for j = 1, 2, . . . , r, (4.14)

where the function γuv;j is defined in equation (4.12).

(a) For step size ηt = 1/(t + 1), update the r-dimensional message coefficient
vectors atu→v 7→ at+1

u→v via

at+1
u→v = (1− ηt) atu→v + ηt b̃t+1

u→v. (4.15)

Figure 4.1: The SOSMP algorithm for continuous state spaces.

At each iteration t = 0, 1, 2, . . ., the algorithm maintains an r-dimensional vector of basis
expansion coefficients

atu→v = (atu→v;1, . . . , a
t
u→v;r)

T ∈ Rr, on directed edge (u→ v) ∈ ~E .

This vector should be understood as defining the current message approximation mt
u→v on

the directed edge (u→ v) via the expansion

mt
u→v(·) :=

r∑

j=1

atu→v;j φj(·) (4.16)

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 61

We use at =
{
atu→v | (u → v) ∈ ~E

}
to denote the full set of r |~E| coefficients that are

maintained by the algorithm at iteration t. With this notation, the algorithm consists of
a sequence of steps, detailed in Figure 4.1, that perform the update at 7→ at+1, and hence
implicitly the update mt 7→ mt+1.

As can be seen by inspection of the steps in Figure 4.1, each iteration requires O(rk)
floating point operations per directed edge, which yields a total of O(rk |~E|) operations per
iteration.

4.4 Main Theoretical Results

We now turn to the theoretical analysis of the SOSMP algorithm, and guarantees relative
to the fixed points of the true BP algorithm. For any tree-structured graph, the BP algo-
rithm is guaranteed to have a unique message fixed point m∗ = {m∗u→v, (u → v) ∈ ~E}.
For graphs with cycles, uniqueness is no longer guaranteed, which would make it difficult to
compare with the SOSMP algorithm. Accordingly, in our analysis of the loopy graph, we
make a natural contractivity assumption, which guarantees uniqueness of the fixed point m∗.

The SOSMP algorithm generates a random sequence {at}∞t=0, which define message ap-
proximations {mt}∞t=0 via the expansion (4.16). Of interest to us are the following questions:

• under what conditions do the message iterates approach a neighborhood of the BP
fixed point m∗ as t→ +∞?

• when such convergence takes place, how fast is it?

In order to address these questions, we separate the error in our analysis into two terms:
algorithmic error and approximation error. For a given r, let Πr denote the projection
operator onto the span of {φ1, φ2, . . . , φr}. In detail, given a function f represented in terms
of the infinite series expansion f =

∑∞
j=1 ajφj, we have

Πr(f) :=
r∑

j=1

ajφj.

For each directed edge (u→ v) ∈ ~E , define the functional error

∆t
u→v := mt

u→v − Πr(m∗u→v) (4.17)

between the message approximation at time t, and the BP fixed point projected onto the
first r basis functions. Moreover, define the approximation error at the BP fixed point as

Aru→v := m∗u→v − Πr(m∗u→v). (4.18)

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 62

Since ∆t
u→v belongs to the span of the first r basis functions, the Pythagorean theorem

implies that the overall error can be decomposed as

‖mt
u→v −m∗u→v‖2L2 = ‖∆t

u→v‖2L2︸ ︷︷ ︸
Estimation error

+ ‖Aru→v‖2L2︸ ︷︷ ︸
Approximation error

. (4.19)

Note that the approximation error term is independent of the iteration number t, and can
only be reduced by increasing the number r of coefficients used in the series expansion. Our
analysis of the estimation error is based on controlling the |~E|-dimensional error vector

ρ2
(
∆t
)

:=
{
‖∆t

u→v‖2L2 , (u→ v) ∈ ~E
}
∈ R|

~E|, (4.20)

and in particular showing that it decreases as O(1/t) up to a lower floor imposed by the
approximation error. In order to analyze the approximation error, we introduce the r-
dimensional vector of approximation errors

ρ2
(
Ar
)
:=
{
‖Aru→v‖2L2 , (u→ v) ∈ ~E

}
∈ R|

~E|. (4.21)

By increasing r, we can reduce this approximation error term, but at the same time, we
increase the computational complexity of each update. In Section 4.4.3, we discuss how
to choose r so as to trade-off the estimation and approximation errors with computational
complexity.

4.4.1 Bounds for Tree-Structured Graphs

With this set-up, we now turn to bounds for tree-structured graphs. Our analysis of the
tree-structured case controls the vector of errors ρ2

(
∆t
)
using a nilpotent matrix N ∈ Rr×r

determined by the tree structure (see the previous chapter). Recall that a matrix N is
nilpotent with order ℓ if N ℓ = 0 and N ℓ−1 6= 0 for some ℓ. As illustrated in Figure 4.2, the
rows and columns of N are indexed by directed edges. For the row indexed by (u → v),
there can be non-zero entries only for edges in the set {(w → u), w ∈ N (u)\{v}}. These
directed edges are precisely those that pass messages relevant in updating the message from
u to v, so that N tracks the propagation of message information in the graph. As shown
in Chapter 3 (see Lemma 1), the matrix N with such structure is nilpotent with degree at
most the diameter of the tree.

Moreover, our results on tree-structured graphs impose one condition on the vector of
approximation errors Ar, namely that

inf
y∈X

Πr
(
Γuv(x, y)

)
> 0, and |Aru→v(x)| ≤

1

2
inf
y∈X

Πr
(
Γuv(x, y)

)
(4.22)

for all x ∈ X and all directed edges (u → v) ∈ ~E . This condition ensures that the L2-norm
of the approximation error is not too large relative to the compatibility functions. Since

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 63

1

2

3 4

m1→2

m1→2

m2→1

m2→1 m3→2

m3→2

m2→3

m2→3

m2→4

m2→4

m4→2

m4→2

(a) (b)

Figure 4.2: (a) A simple tree with |E| = 3 edges and hence |~E| = 6 directed edges. (b) Structure of nilpotent matrix N ∈ R|~E|×|~E|

defined by the graph in (a). Rows and columns of the matrix are indexed by directed edges (u → v) ∈ ~E; for the row indexed
by (u→ v), there can be non-zero entries only for edges in the set {(w → u), w ∈ N (u)\{v}}.

supx,y∈X |Πr
(
Γuv(x, y)

)
− Γuv(x, y)| → 0 and supx∈X |Aru→v(x)| → 0 as r → +∞, assuming

that the compatibility functions are uniformly bounded away from zero, condition (4.22)
will hold once the number of basis expansion coefficients r is sufficiently large. Finally, our
bounds involve the constants

Bj := max
(u,v)∈E

sup
y∈X
〈Γuv(·, y), φj〉. (4.23)

With this set-up, we have the following guarantees:

Theorem 8. Suppose that X is closed and bounded, the node and edge potential functions are
continuous, and that condition (4.22) holds. Then for any tree-structured model, the sequence
of messages {mt}∞t=0 generated by the SOSMP algorithm have the following properties:

(a) There is a nilpotent matrix N ∈ R|
~E|×|~E| such that the error vector ρ2

(
∆t
)
converges

almost surely to the set

B :=
{
e ∈ R|

~E| | |e| � N(I −N)−1ρ2
(
Ar
)}
, (4.24)

where � denotes elementwise inequality for vectors.

(b) Furthermore, for all iterations t = 1, 2, . . ., we have

E
[
ρ2
(
∆t
)]
�
(
12

r∑

j=1

B2
j

) (I − log t N)−1

t
(N ~1 + 8) + N(I −N)−1ρ2

(
Ar
)
. (4.25)

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 64

Remarks: To clarify the statement in part (a), it guarantees that the difference ρ2
(
∆t
)
−

ΠB
(
ρ2
(
∆t
))

between the error vector and its projection onto the set B converges almost
surely to zero. Part (b) provides a quantitative guarantee on how quickly the expected
absolute value of this difference converges to zero. In particular, apart from logarithmic
factors in t, the convergence rate guarantees is of the order O(1/t).

4.4.2 Bounds for General Graphs

Our next theorem addresses the case of general graphical models. To ensure the uniqueness
of the fixed point and convergence of BP, a sufficient condition is contraction of the BP
update operator. In our analysis of the SOSMP algorithm for a general graph, we impose
the following form of contractivity: there exists a constant 0 < γ < 2 such that

‖Fu→v(m)−Fu→v(m′)‖L2 ≤
(
1− γ

2

) √ 1

|N (u)\{v}|
∑

w∈N (u)\{v}
‖mw→u −m′w→u‖2L2 , (4.26)

for all directed edges (u → v) ∈ ~E , and feasible messages m, and m′. We say that the
ordinary BP algorithm is γ-contractive when condition (4.26) holds.

Theorem 9. Suppose that the ordinary BP algorithm is γ-contractive, and consider the
sequence of messages {mt}∞t=0 generated with step-size ηt = 1/(γ (t + 1)). Then for all
t = 1, 2, . . ., the error sequence {∆t

u→v}∞t=0 is bounded in mean-square as

E
[
ρ2
(
∆t
)]
�
[(

8
∑r

j=1B
2
j

γ2

)
log t

t
+

1

γ
max

(u→v)∈~E
‖Aru→v‖2L2

]
~1. (4.27)

where Aru→v = m∗u→v − Πr(m∗u→v) is the approximation error on edge (u→ v).

Remarks: Theorem 9 guarantees that under the contractivity condition (4.26), the SOSMP
iterates converge to a neighborhood of the BP fixed point. The error offset depends on the
approximation error term that decays to zero as r is increased. Moreover, disregarding the
logarithmic factor, the convergence rate is O(1/t), which is the best possible for a stochastic
approximation scheme of this type [81, 2].

4.4.3 Explicit Rates for Kernel Classes

Theorems 8 and 9 are generic results that apply to any choices of the edge potential functions.
In this section, we pursue a more refined analysis of the number of arithmetic operations
that are required to compute a δ-uniformly accurate approximation to the BP fixed point

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 65

m∗, where δ > 0 is a user-specified tolerance parameter. By a δ-uniformly accurate approx-
imation, we mean a collection of messages m such that

max
(u→v)∈~E

E
[
‖mu→v −m∗u→v‖2L2

]
≤ δ. (4.28)

In order to obtain such an approximation, we need to specify both the number of coefficients
r to be retained, and the number of iterations that we should perform. Based on these
quantities, our goal is to the specify the minimal number of basic arithmetic operations T (δ)
that are sufficient to compute a δ-accurate message approximation.

We study this issue in the context of kernel-based potential functions. In many applica-
tions, the edge potentials ψvu : X ×X → R+ are symmetric and positive semidefinite (PSD)
functions, frequently referred to as kernel functions. In detail, a PSD kernel function has
the property that for all natural numbers n and {x1, . . . , xn} ⊂ X , the n× n kernel matrix
with entries ψvu(xi, xj) is symmetric and positive semidefinite. Commonly used examples
include the Gaussian kernel ψvu(x, y) = exp(−γ‖x− y‖22), the closely related Laplacian ker-
nel, and other types of kernels that enforce smoothness priors. Any kernel function defines a
positive semidefinite integral operator, namely via equation (4.7). When X is compact and
the kernel function is continuous, then Mercer’s theorem [100] guarantees that this integral
operator has a countable set of eigenfunctions {φj}∞j=1 that form an orthonormal basis of
L2(X). Moreover, the kernel function has the expansion

ψvu(x, y) =
∞∑

j=1

λj φj(x)φj(y), (4.29)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues, all guaranteed to be non-negative. In general,
the eigenvalues might differ from edge to edge, but we suppress this dependence for simplicity
in exposition. We study kernels that are trace class, meaning that the eigenvalues are
absolutely summable (i.e.,

∑∞
j=1 λj <∞).

For a given eigenvalue sequence {λj}∞j=1 and some tolerance δ > 0, we define the critical
dimension r∗ = r∗(δ; {λj}) to be the smallest positive integer r such that

λr ≤ δ. (4.30)

Since λj → 0, the existence of r∗ < +∞ is guaranteed for any δ > 0.

Theorem 10. In addition to the conditions of Theorem 9, suppose that the compatibility
functions are defined by a symmetric PSD trace-class kernel with eigenvalues {λj}. If we
run the SOSMP algorithm with r∗ = r∗(δ; {λj}) basis coefficients, then it suffices to perform

T (δ; {λj}) = O
(
r∗ ·

(r∗∑

j=1

λ2j
) (

1/δ
)
log(1/δ)

)
(4.31)

arithmetic operations per edge in order to obtain a δ-accurate message vector m.

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 66

The proof of Theorem 10 is provided in Section 4.5.3. It is based on showing that the
choice (4.30) suffices to reduce the approximation error to O(δ), and then bounding the
total operation complexity required to also reduce the estimation error.

Theorem 10 can be used to derive explicit estimates of the complexity for various types of
kernel classes. We begin with the case of kernels in which the eigenvalues decay at an inverse
polyomial rate: in particular, given some α > 1, we say that they exhibit α-polynomial decay
if there is a universal constant C such that

λj ≤
C

jα
for all j = 1, 2, (4.32)

Examples of kernels in this class include Sobolov spline kernels [42], which are a widely used
type of smoothness prior. For example, the spline class associated with functions that are
s-times differentiable satisfies the decay condition (4.32) with α = 2s.

Corollary 1. In addition to the conditions of Theorem 9, suppose that the compatibility
functions are symmetric kernels with α-polynomial decay (4.32). Then it suffices to perform

Tpoly(δ) = O
((

1/δ
) 1+α

α log(1/δ)
)

(4.33)

operations per edge in order to obtain a δ-accurate message vector m.

The proof of this corollary is immediate from Theorem 10: given the assumption λj ≤ C/jα,

we see that r∗ ≤ (C/δ)
1

α and
∑r∗

j=1 λ
2
j = O(1). Substituting into the bound (4.31) yields the

claim. Corollary 1 confirms a natural intuition—namely, that it should be easier to compute
an approximate BP fixed point for a graphical model with smooth potential functions. Dis-
regarding the logarithmic factor (which is of lower-order), the operation complexity Tpoly(δ)
ranges ranges from O

(
(1/δ)2

)
, obtained as α → 1+ all the way down to O

(
1/δ
)
, obtained

as α→ +∞.
Another class of widely used kernels are those with exponentially decaying eigenvalues:

in particular, for some α > 0, we say that the kernel has α-exponential decay if there are
universal constants (C, c) such that

λj ≤ C exp(−cjα) for all j = 1, 2, (4.34)

Examples of such kernels include the Gaussian kernel, which satisfies the decay condi-
tion (4.34) with α = 2 (e.g., [108]).

Corollary 2. In addition to the conditions of Theorem 9, suppose that the compatibility
functions are symmetric kernels with α-exponential decay (4.34). Then it suffices to perform

Texp(δ) = O
(
(1/δ)

(
log(1/δ)

) 1+α
α

)
. (4.35)

operations per edge in order to obtain a uniformly δ-accurate message vector m.

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 67

As with our earlier corollary, the proof of this claim is a straightforward consequence of Theo-
rem 10. Corollary 2 demonstrates that kernel classes with exponentially decaying eigenvalues
are not significantly different from parametric function classes, for which a stochastic algo-
rithm would have operation complexity O(1/δ). Apart from the lower order logarithmic
terms, the complexity bound (4.35) matches this parametric rate.

4.5 Proof of the Main Results

We now turn to the proofs of our main results. They involve a collection of techniques from
concentration of measure, stochastic approximation, and functional analysis.

4.5.1 Proof of Theorem 8

Our goal is to bound the error

‖∆t+1
u→v‖2L2 = ‖mt+1

u→v − Πr(m∗u→v)‖2L2 =
r∑

j=1

[
at+1
u→v;j − a∗u→v;j

]2
, (4.36)

where the final equality follows by Parseval’s theorem. Here {a∗u→v;j}rj=1 are the basis expan-
sion coefficients that define the best r approximation to the BP fixed pointm∗. The following
lemma provides an upper bound on this error in terms of two related quantities. First, we
let {btu→v;j}∞j=1 denote the basis function expansion coefficients of the Fu→v(m̂t)—that is,

Fu→v(m̂t) =
∞∑

j=1

btu→v;jφj.

Second, for each j = 1, 2, . . . , r, define the deviation

ζt+1
u→v;j := b̃t+1

u→v;j − btu→v;j,

where the coefficients b̃t+1
u→v;j are updated in Step 2(c) Figure 4.1.

Lemma 5. For each iteration t = 0, 1, 2, . . ., we have

‖∆t+1
u→v‖2L2 ≤ 2

t+ 1

r∑

j=1

t∑

τ=0

[
bτu→v;j − a∗u→v;j

]2

︸ ︷︷ ︸
Deterministic term Dt+1

u→v

+
2

(t+ 1)2

r∑

j=1

{ t∑

τ=0

ζτ+1
u→v;j

}2

︸ ︷︷ ︸
Stochastic term St+1

u→v

(4.37)

The proof of this lemma is relatively straightforward; see Appendix B.1 for the details. Note
that inequality (4.37) provides an upper bound on the error that involves two terms: the

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 68

first term Dt+1
u→v depends only on the expansion coefficients {bτu→v;j, τ = 0, . . . , t} and the BP

fixed point, and therefore is a deterministic quantity when we condition on all randomness in
stages up to step t. The second term St+1

u→v, even when conditioned on randomness through

step t, remains stochastic, since the coefficients b̃t+1
u→v (involved in the error term ζt+1

u→v) are
updated stochastically in moving from iteration t to t+ 1.

We split the remainder of our analysis into three parts: (a) control of the deterministic
component; (b) control of the stochastic term; and (c) combining the pieces to provide a
convergence bound.

Upper-bounding the deterministic term

By the Pythagorean theorem, we have

t∑

τ=0

r∑

j=1

[
bτu→v;j − a∗u→v;j

]2 ≤
t∑

τ=0

‖Fu→v(m̂t)−Fu→v(m∗)‖2L2 (4.38)

In order to control this term, we make use of the following lemma, proved in Appendix B.2:

Lemma 6. For all directed edges (u→ v) ∈ ~E , there exist constants {Lu→v,w→u, w ∈ N (u)\{v}}
such that

‖Fu→v(m̂t) − Fu→v(m∗)‖L2 ≤
∑

w∈N (u)\{v}
Lu→v,w→u ‖m̂t

w→u − m∗w→u‖L2

for all t = 1, 2,

Substituting the result of Lemma 6 in equation (4.38) and performing some algebra, we find
that

t∑

τ=0

r∑

j=1

[
bτu→v;j − a∗u→v;j

]2 ≤
t∑

τ=0

(∑

w∈N (u)\{v}
Lu→v,w→u ‖m̂τ

w→u − m∗w→u‖L2

)2

≤ (ρu − 1)
t∑

τ=0

∑

w∈N (u)\{v}
L2
u→v,w→u ‖m̂τ

w→u − m∗w→u‖2L2 , (4.39)

where ρu is the degree of node u ∈ V . By definition, the message m̂τ
w→u is the L2-projection

of mτ
w→u ontoM. Since m∗w→u ∈M and projection is non-expansive, we have

‖m̂τ
w→u − m∗w→u‖2L2 ≤ ‖mτ

w→u − m∗w→u‖2L2

= ‖∆τ
w→u‖2L2 + ‖Arw→u‖2L2 , (4.40)

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 69

where in the second step we have used the Pythagorean identity and recalled the definitions
of estimation error as well as approximation error from (4.17) and (4.18). Substituting the
inequality (4.40) into the bound (4.39) yields

t∑

τ=0

r∑

j=1

[
bτu→v;j − a∗u→v;j

]2 ≤ (ρu − 1)
t∑

τ=0

∑

w∈N (u)\{v}
L2
u→v,w→u

(
‖∆τ

w→u‖2L2 + ‖Arw→u‖2L2

)
.

Therefore, introducing the convenient shorthand L̃u→v,w→u := 2 (ρu − 1) L2
u→v,w→u, we have

shown that

Dt+1
u→v ≤

1

t+ 1

t∑

τ=0

∑

w∈N (u)\{v}
L̃u→v,w→u

(
‖∆t

w→u‖2L2 + ‖Arw→u‖2L2

)
. (4.41)

We make further use of this inequality shortly.

Controlling the stochastic term

We now turn to the stochastic part of the inequality (4.37). Our analysis is based on the
following fact, proved in Appendix B.3:

Lemma 7. For each t ≥ 0, let Gt := σ(m0,m1, . . . ,mt) be the σ-field generated by all mes-

sages through time t. Then for every fixed j = 1, 2, . . . , r, the sequence ζt+1
u→v;j = b̃t+1

u→v;j − btu→v;j
is a bounded martingale difference with respect to {Gt}∞t=0. In particular, we have |ζt+1

u→v;j| ≤ 2Bj,
where Bj was previously defined (4.23).

Based on Lemma 7, standard martingale convergence results [34] guarantee that for each
j = 1, 2, . . . , r, we have

∑t
τ=0 ζ

τ+1
u→v;j/(t + 1) converges to 0 almost surely (a.s.) as t → ∞,

and hence

St+1
u→v =

2

(t+ 1)2

r∑

j=1

{ t∑

τ=0

ζτ+1
u→v;j

}2

= 2
r∑

j=1

{ 1

t+ 1

t∑

τ=0

ζτ+1
u→v;j

}2 a.s.−→ 0. (4.42)

Furthermore, we can apply the Azuma-Hoeffding inequality [24] in order to characterize
the rate of convergence. For each j = 1, 2, . . . , r, define the non-negative random variable

Zj :=
{∑t

τ=0 ζ
τ+1
u→v;j

}2
/(t+ 1)2. Since |ζτ+1

u→v;j| ≤ 2Bj, for any δ ≥ 0, we have

P
(
Zj ≥ δ

)
= P

(√
Zj ≥

√
δ
)
≤ 2 exp

(
− (t+ 1) δ

8 B2
j

)
,

for all δ > 0. Moreover, Zj is non-negative; therefore, integrating its tail bound we can
compute the expectation

E[Zj] =

∫ ∞

0

P
(
Zj ≥ δ

)
dδ ≤ 2

∫ ∞

0

exp
(
− (t+ 1) δ

8 B2
j

)
dδ =

16B2
j

t+ 1
,

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 70

and consequently

E[|St+1
u→v|] ≤

32
∑r

j=1B
2
j

t+ 1
. (4.43)

Establishing convergence

We now make use of the results established so far to prove the claims. Substituting the
upper bound (4.41) on Dt+1

u→v into the decomposition (4.37) from Lemma 5, we find that

‖∆t+1
u→v‖2L2 ≤ 1

t+ 1

t∑

τ=0

∑

w∈N (u)\{v}
L̃u→v,w→u

{
‖∆τ

w→u‖2L2 + ‖Arw→u‖2L2

}
+ St+1

u→v. (4.44)

For convenience, let us introduce the vector T t+1 = {T t+1
u→v | (u→ v) ∈ ~E} ∈ Rr with entries

T t+1
u→v :=

1

t+ 1

{ ∑

w∈N (u)\{v}
L̃u→v,w→u ‖∆0

w→u‖2L2

}
+ St+1

u→v. (4.45)

Now define a matix N ∈ Rr×r with entries indexed by the directed edges and set to

Nu→v, w→s :=

{
L̃u→v,w→u if s = u and w ∈ N (u)\{v}
0 otherwise.

(4.46)

In terms of this matrix and the error terms ρ2
(
·
)
previously defined in equations (4.20)

and (4.21), the scalar inequalities (4.44) can be written in the matrix form

ρ2
(
∆t+1

)
� N

[1

t+ 1

t∑

τ=1

ρ2
(
∆τ
)]

+ N ρ2
(
Ar
)
+ T t+1, (4.47)

where � denotes the element-wise inequality based on the orthant cone.
From Lemma 1 in Chapter 3, the matrix N is guaranteed to be nilpotent with degree ℓ

equal to the graph diameter. Consequently, unwrapping the recursion (4.47) for a total of
ℓ = diam(G) times yields

ρ2
(
∆t+1

)
� T t+1

0 + N T t+1
1 + . . . + N ℓ−1 T t+1

ℓ−1 + (N + N2 + . . . + N ℓ) ρ2
(
Ar
)
,

where we define T t+1
0 ≡ T t+1, and then recursively T t+1

s := (
∑t

τ=1 T
τ
s−1)/(t+1) for s = 1, 2, . . . , ℓ− 1.

By the nilpotency of N , we have the identity I +N + . . .+N ℓ−1 = (I −N)−1; so we can
further simplify the last inequality

ρ2
(
∆t+1

)
�

ℓ−1∑

s=0

N s T t+1
s + N (I −N)−1 ρ2

(
Ar
)
. (4.48)

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 71

Recalling the definition B :=
{
e ∈ Rr | |e| � N(I −N)−1ρ2

(
Ar
)}

, inequality (4.48) implies
that

∣∣ρ2
(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))∣∣ �
ℓ−1∑

s=0

N s T t+1
s . (4.49)

We now use the bound (4.49) to prove both parts of Theorem 8.

Proof of Theorem 8(a): To prove the almost sure convergence claim in part (a), it suffices
to show that for each s = 0, 1, . . . , ℓ−1, we have T ts

a.s.−→ 0 as t→ +∞. From equation (4.42)
we know St+1

u→v → 0 almost surely as t→∞. In addition, the first term in (4.45) is at most
O(1/t), so that also converges to zero as t → ∞. Therefore, we conclude that T t0

a.s.−→ 0 as
t→∞.

In order to extend this argument to higher-order terms, let us recall the following elemen-
tary fact from real analysis [104]: for any sequence of real numbers {xt}∞t=0 such that xt → 0,
then we also have (

∑t
τ=0 x

τ)/t → 0. In order to apply this fact, we observe that T t0
a.s.−→ 0

means that for almost every sample point ω the deterministic sequence {T t+1
0 (ω)}∞t=0 con-

verges to zero. Consequently, the above fact implies that T t+1
1 (ω) = (

∑t
τ=1 T

τ
0 (ω))/(t+ 1)→ 0

as t → ∞ for almost all sample points ω, which is equivalent to asserting that T t1
a.s.−→ ~0.

Iterating the same argument, we establish T t+1
s

a.s.−→ ~0 for all s = 0, 1, . . . , ℓ − 1, thereby
concluding the proof of Theorem 8(a).

Proof of Theorem 8(b): Taking the expectation on both sides of the inequality (4.48)
yields

E
[
|ρ2
(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))
|
]
�

ℓ−1∑

s=0

N s E[T t+1
s]. (4.50)

so that it suffices to upper bound the expectations E[T t+1
s] for s = 0, 1, . . . , ℓ − 1. In Ap-

pendix B.4, we prove the following result:

Lemma 8. Define the r-vector ~v :=
{∑r

j=1B
2
j

}
(4N~1 + 32). Then for all s = 0, 1, . . . , ℓ− 1

and t = 0, 1, 2, . . .,

E[T t+1
s] � ~v

t+ 1

(s∑

u=0

(log(t+ 1))u

u!

)
, (4.51)

Using this lemma, the proof of part (b) follows easily. In particular, substituting the

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 72

bounds (4.51) into equation (4.50) and doing some algebra yields

E
[
|ρ2
(
∆t+1

)
− ΠB

(
ρ2
(
∆t+1

))
|
]
�

ℓ−1∑

s=0

N s

s∑

u=0

(log(t+ 1))u

u!

(~v

t+ 1

)

� 3
ℓ−1∑

s=0

(log (t+ 1))s N s
(~v

t+ 1

)

� 3 (I − log (t+ 1)N)−1
(~v

t+ 1

)
,

where again we used the fact that N ℓ = 0.

4.5.2 Proof of Theorem 9

Recall the definition of the estimation error ∆t
u→v from (4.17). By Parseval’s identity we

know that ‖∆t
u→v‖2L2 =

∑r
j=1(a

t
u→v;j − a∗u→v;j)2. For convenience, we introduce the following

shorthands for mean squared error on the directed edge (u→ v)

ρ2(∆t
u→v) := E[‖∆t

u→v‖2L2] = E

[r∑

j=1

(atu→v;j − a∗u→v;j)2
]
,

as well as the ℓ∞ error

ρ2
max

(∆t) := max
(u→v)∈~E

E[‖∆t
u→v‖2L2],

similarly defined for approximation error

ρ2
max

(Ar) := max
(u→v)∈~E

‖Aru→v‖2L2 .

Using the definition of ρ2(∆t
u→v), some algebra yields

ρ2(∆t+1
u→v)− ρ2(∆t

u→v) = E

[r∑

j=1

(
at+1
u→v;j − a∗u→v;j

)2 −
r∑

j=1

(
atu→v;j − a∗u→v;j

)2]

= E

[r∑

j=1

{
at+1
u→v;j − atu→v;j

} {(
at+1
u→v;j − atu→v;j

)
+ 2

(
atu→v;j − a∗u→v;j

)}]
.

From the update equation (4.15), we have

at+1
u→v;j − atu→v;j = ηt

(̃
bt+1
u→v;j − atu→v;j

)
,

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 73

and hence

ρ2(∆t+1
u→v)− ρ2(∆t

u→v) = U t
u→v + V t

u→v, (4.52)

where

U t
u→v := (ηt)2

r∑

j=1

E
[(̃
bt+1
u→v;j − atu→v;j

)2]
, and (4.53a)

V t
u→v := 2ηt

r∑

j=1

E
[(̃
bt+1
u→v;j − atu→v;j

) (
atu→v;j − a∗u→v;j

)]
. (4.53b)

The following lemma, proved in Appendix B.5, provides upper bounds on these two terms.

Lemma 9. For all iterations t = 0, 1, 2, . . ., we have

U t
u→v ≤ 4 (ηt)2

r∑

j=1

B2
j , and (4.54a)

V t
u→v ≤ ηt

(
1− γ

2

)
ρ2

max
(Ar) + ηt

(
1− γ

2

)
ρ2

max
(∆t) − ηt(1 +

γ

2
)ρ2(∆t

u→v). (4.54b)

We continue upper-bounding ρ2(∆t+1
u→v) by substituting the results of Lemma 9 into equa-

tion (4.52), thereby obtaining

ρ2(∆t+1
u→v) ≤ 4 (ηt)2

r∑

j=1

B2
j + ηt

(
1− γ

2

)
ρ2

max
(Ar)

+ ηt
(
1− γ

2

)
ρ2

max
(∆t) +

{
1− ηt(1 + γ

2
)
}
ρ2(∆t

u→v)

≤ 4 (ηt)2
r∑

j=1

B2
j + ηt

(
1− γ

2

)
ρ2

max
(Ar) +

(
1− ηtγ

)
ρ2

max
(∆t).

Since this equation holds for all directed edges (u → v), taking the maximum over the
left-hand side yields the recursion

ρ2
max

(∆t+1) ≤ (ηt)2B2 + ηt
(
1− γ

2

)
ρ2

max
(Ar) +

(
1− ηtγ

)
ρ2

max
(∆t), (4.55)

where we have introduced the shorthand B2 = 4
∑r

j=1B
2
j . Setting ηt = 1/(γ (t + 1)) and

unwrapping this recursion, we find that

ρ2
max

(∆t+1) ≤ B2

γ2

t+1∑

τ=1

1

τ (t+ 1)
+

2− γ
2γ

ρ2
max

(Ar)

≤ 2B2

γ2
log(t+ 1)

t+ 1
+

1

γ
ρ2

max
(Ar),

which establishes the claim.

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 74

4.5.3 Proof of Theorem 10

As discussed earlier, each iteration of the SOSMP algorithm requires O(r) operations per
edge. Consequently, it suffices to show that running the algorithm with r = r∗ coefficients
for (

∑r
j=1 λ

2
j)(1/δ) log(1/δ) iterations suffices to achieve mean-squared error less than δ.

The bound (4.27) consists of two terms. In order to characterize the first term (estimation
error), we need to bound Bj defined in (4.23). Using the orthonormality of the basis functions
and the fact that the supremum is attainable over the compact space X , we obtain

Bj = max
(u,v)∈E

sup
y∈X

λj φj(y)∫
X ψvu(x, y) dx

= O(λj).

Therefore, the estimation error decays at the rate O
(
(
∑r

j=1 λ
2
j) (log t/t)

)
, so that t =

O
(
(
∑r

j=1 λ
2
j)(1/δ) log(1/δ)

)
iterations are sufficient to reduce it to O(δ).

The second term (approximation error) in the bound (4.27) depends only on the choice
of r, and in particular on the r-term approximation error ‖Aru→v‖2L2 = ‖m∗u→v−Πr(m∗u→v)‖2L2 .
To bound this term, we begin by representingm∗u→v in terms of the basis expansion

∑∞
j=1 a

∗
jφj.

By the Pythagorean theorem, we have

‖m∗u→v − Πr(m∗u→v)‖2L2 =
∞∑

j=r+1

(a∗j)
2. (4.56)

Our first claim is that
∑∞

j=1(a
∗
j)

2/λj < ∞. Indeed, since m∗ is a fixed point of the
message update equation, we have

m∗u→v(·) ∝
∫

X
ψvu(·, y)M(y) dy,

where M(·) := ψu(·)
∏

w∈N (u)\{v}m
∗
w→u(·). Exchanging the order of integrations using Fu-

bini’s theorem, we obtain

a∗j = 〈m∗u→v, φj〉 ∝
∫

X
〈φj(·), ψvu(·, y)〉M(y) dy. (4.57)

By the eigenexpansion of ψvu, we have

〈φj(·), ψvu(·, y)〉 =
∞∑

k=1

λk 〈φj, φk〉 φk(y) = λj φj(y).

Substituting back into our initial equation (4.57), we find that

a∗j ∝ λj

∫

X
φj(y)M(y) dy = λj ãj,

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 75

where ãj are the basis expansion coefficients of M . Since the space X is compact, one can
see that M ∈ L2(X), and hence

∑∞
j=1 ã

2
j <∞. Therefore, we have

∞∑

j=1

(a∗j)
2

λj
∝

∞∑

j=1

λj ã
2
j < +∞,

where we used the fact that
∑∞

j=1 λj <∞.
We now use this bound to control the approximation error (4.56). For any r = 1, 2, . . .,

we have

∞∑

j=r+1

(a∗j)
2 =

∞∑

j=r+1

λj
(a∗j)

2

λj
≤ λr

∞∑

j=r+1

(a∗j)
2

λj
= O(λr),

using the non-increasing nature of the sequence {λj}∞j=1. Consequently, by definition of r∗

(4.30), we have

‖m∗u→v − Πr∗(m∗u→v)‖2L2 = O(δ),

as claimed.

4.6 Experimental Results

In this section, we describe some experimental results that help to illustrate the theoretical
predictions discussed in Section 4.4.

4.6.1 Synthetic Data

We begin by running some experiments for a simple model, in which both the node and edge
potentials are mixtures of Gaussians. More specifically, we form a graphical model with
potential functions of the form

ψu(y) =
3∑

i=1

πu;i exp

(
−(y − µu;i)2

2σ2
u;i

)
, for all u ∈ V , and (4.58a)

ψvu(x, y) =
3∑

i=1

πvu;i exp

(
−(x− y)2

2σ2
vu;i

)
for all (u, v) ∈ E , (4.58b)

where the non-negative mixture weights are normalized (i.e.,
∑3

i=1 πvu;i =
∑3

i=1 πu;i = 1).
For each vertex and edge and for all i = 1, 2, 3, the mixture parameters are chosen randomly
from uniform distributions over the range σ2

u;i, σ
2
vu;i ∈ (0, 0.5] and µu;i ∈ [−3, 3].

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 76

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Number of iterations

N
or

m
al

iz
ed

 e
rr

or

Figure 4.3: Plot of normalized error et/e0 vs. the number of iterations t for 10 different sample paths on a chain of size n = 100.
The dashed lines are sample paths whereas the solid line is the mean square error. In this experiment node and edge potentials
are mixtures of three Gaussians (4.58) and we implemented SOSMP using the first r = 10 Fourier coefficients with k = 5
samples.

For a chain-structured graph with n = 100 nodes, we first compute the fixed point of
standard BP, using direct numerical integration to compute the integrals, so to compute (an
extremely accurate approximation of) the fixed point m∗. In particular, we approximate the
integral update (4.3) with its Riemann sum over the range X = [−5, 5] and with 100 samples
per unit time. We compare this “exact” answer to the approximation obtained by running
the SOSMP algorithm using the first r = 10 Fourier basis coefficients and k = 5 samples.
Having run the SOSMP algorithm, we compute the average squared error

et :=
1

2|~E|r
∑

(u→v)∈~E

r∑

j=1

[atu→v;j − a∗u→v;j]2 (4.59)

at each time t = 1, 2,
Figure 4.3 provides plots of the error (4.59) versus the number of iterations for 10 different

trials of the SOSMP algorithm. (Since the algorithm is randomized, each path is slightly
different.) The plots support our claim of of almost sure convergence, and moreover, the
straight lines seen in the log-log plots confirm that convergence takes place at a rate inverse
polynomial in t.

In the next few simulations, we test the algorithm’s behavior with respect to the number of
expansion coefficients r, and number of samples k. In particular, Figure 4.4(a) illustrates the
expected error, averaged over several sample paths, vs. the number of iterations for different

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 77

10
0

10
1

10
2

10
3

10
−1

10
0

Number of iterations

N
or

m
al

iz
ed

 e
rr

or

r=2
r=3
r=5
r=10

10
0

10
1

10
2

10
3

10
−2

10
−1

Number of iterations
N

or
m

al
iz

ed
 e

rr
or

k=1
k=2
k=5
k=10

(a) (b)

Figure 4.4: Normalized mean squared error E[et/e0] verses the number of iterations for a Markov chain with n = 100 nodes, using
potential functions specified by the mixture of Gaussians model (4.58). (a) Behavior as the number of expansion coefficients is
varied over the range r ∈ {2, 3, 5, 10} with k = 5 samples in all cases. As predicted by the theory, the error drops monotonically
with the number of iterations until it hits a floor. The error floor, which corresponds to the approximation error incurred by
message expansion truncation, decreases as the number of coefficients r is increased. (b) Mean squared error E[et] verses the
number of iterations t for different number of samples k ∈ {1, 2, 5, 10}, in all cases using r = 10 coefficients. Increasing the
number of samples k results in a downward shift in the error.

number of expansion coefficients r ∈ {2, 3, 5, 10} when k = 5 fixed; whereas Figure 4.4(b)
depicts the expected error vs. the number of iterations for different number of samples
k ∈ {1, 2, 5, 10} when r = 10 is fixed. As expected, in Figure 4.4(a), the error decreases
monotonically, with the rate of 1/t, till it hits a floor corresponding the offset incurred by
the approximation error. Moreover, the error floor decreases with the number of expansion
coefficients. On the other hand, in Figure 4.4(b), increasing the number of samples causes a
downward shift in the error. This behavior is also expected since increasing the number of
samples reduces the variance of the empirical expectation in equation (4.14).

In our next set of experiments, still on a chain with n = 100 vertices, we test the behavior
of the SOSMP algorithm on graphs with edge potentials of varying degrees of smoothness.
In all cases, we use node potentials from the Gaussian mixture ensemble (4.58) previously
discussed, but form the edge potentials in terms of a family of kernel functions. More
specifically, consider the basis functions

φj(x) = sin

(
(2j − 1)π(x+ 5)

10

)
for j = 1, 2,

each defined on the interval [−5, 5]. It is straightforward that the family {φj}∞j=1 forms an

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 78

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

Number of iterations

N
or

m
al

iz
ed

 e
rr

or

r=2
r=3
r=4
r=5

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Number of iterations
N

or
m

al
iz

ed
 e

rr
or

r=2
r=3
r=4
r=5

(a) (b)

Figure 4.5: Plot of the estimation error et/e0 verses the number of iterations t for the cases of (a) α = 0.1 and (b) α = 1. The
BP messages are smoother when α = 1, and accordingly the SOSMP estimates are more accurate with the same number of
expansion coefficients. Moreover, the error decays with the rate of 1/t till it hits a floor corresponding to the approximation
error incurred by truncating the message expansion coefficients.

orthonormal basis of L2[−5, 5]. We use this basis to form the edge potential functions

ψvu(x, y) =
1000∑

j=1

(1
j

)α
φj(x) φj(y), (4.60)

where α > 0 is a parameter to be specified. By construction, each edge potential is a positive
semidefinite kernel function satisfying the α-polynomial decay condition (4.32).

Figure 4.5 illustrate the error curves for two different choices of the smoothness parameter:
panel (a) shows α = 0.1, whereas panel (b) shows α = 1. For the larger value of α shown in
panel (b), the messages in the BP algorithm are smoother, so that the SOSMP estimates are
more accurate with the same number of expansion coefficients. Moreover, similar to what
we have observed previously, the error decays with the rate of 1/t till it hits the error floor.
Note that this error floor is lower for the smoother kernel (α = 1) compared to the rougher
case (α = 0.1); note the difference in axis scaling between panels (a) and (b). Moreover, as
predicted by our theory, the approximation error decays faster for the smoother kernel, as
shown by the plots in Figure 4.6, in which we plot the final error, due purely to approximation
effects, versus the number of expansion coefficients r. The semilog plot of Figure 4.6 shows
that the resulting lines have different slopes, as would be expected.

4.6.2 Computer Vision Application

Moving beyond simulated problems, we conclude by showing the SOSMP algorithm in ap-
plication to a larger scale problem that arises in computer vision—namely, that of optical

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 79

2 2.5 3 3.5 4 4.5 5

10
−6

10
−5

10
−4

Number of expansion coefficients

F
in

al
 a

pp
ro

xi
m

at
io

n
er

ro
r

(o
ffs

et
)

α=0.1
α=1

Figure 4.6: Final approximation error vs. the number of expansion coefficients for the cases of α = 0.1 and α = 1. As predicted
by the theory, the error floor decays with a faster pace for the smoother edge potential.

flow estimation [10]. In this problem, the input data are two successive frames of a video
sequence. We model each frame as a collection of pixels arrayed over a

√
n×√n grid, and

measured intensity values at each pixel location of the form {I(i, j), I ′(i, j)}
√
n

i,j=1. Our goal
is to estimate a 2-dimensional motion vector xu = (xu,1, xu,2) that captures the local motion
at each pixel u = (i, j), i, j = 1, 2, . . . ,

√
n of the image sequence.

In order to cast this optical flow problem in terms of message-passing on a graph, we
adopt the model used by Boccignone et al. [15]. We model the local motion Xu as a 2-
dimensional random vector taking values in the space X = [−d, d] × [−d, d], and associate
the random vector Xu with vertex u, in a 2-dimensional grid (see Figure 2.2). At node
u = (i, j), we use the change between the two image frames to specify the node potential

ψu(xu,1, xu,2) ∝ exp

(
− (I(i, j)− I ′(i+ xu,1, j + xu,2))

2

2σ2
u

)
.

On each edge (v, u), we introduce the potential function

ψvu(xv, xu) ∝ exp

(
− ‖xv − xu‖

2

2σ2
vu

)
,

which enforces a type of smoothness prior over the image.
To estimate the motion of a truck, we applied the SOSMP algorithm using the 2-

dimensional Fourier expansion as our orthonormal basis to two 250 × 250 frames from a

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 80

(a) (b)

Figure 4.7: Two frames, each of dimension 250× 250 pixels, taken from a video sequence of moving cars.

truck video sequence (see Figure 4.7). We apply the SOSMP algorithm using the first r = 9
coefficients and k = 3 samples. Figure 4.8 shows the HSV (hue, saturation, value) codings
of the estimated motions after t = 1, 10, 40 iterations, in panels (a), (b) and (c) respectively.
Panel (d) provides an illustration of the HSV encoding: hue is used to represent the an-
gular direction of the motion whereas the speed (magnitude of the motion) is encoded by
the saturation (darker colors meaning higher speeds). The initial estimates of the motion
vectors are noisy, but it fairly rapidly converges to a reasonable optical flow field. (To be
clear, the purpose of this experiment is not to show the effectiveness of SOSMP or BP as a
particular method for optical flow, but rather to demonstrate its correctness and feasibility
of the SOSMP in an applied setting.)

4.7 Conclusion

In this chapter, we have presented and analyzed the SOSMP algorithm for running BP in
models with continuous variables. It is based on two forms of approximation: a deterministic
approximation that involves projecting messages onto the span of r basis functions, and a
stochastic approximation that involves approximating integrals by Monte Carlo estimates.
These approximations, while leading to an algorithm with substantially reduced complexity,
are also controlled: we provide upper bounds on the convergence of the stochastic error,
showing that it goes to zero as O(log t/t) with the number of iterations, and also control on
the deterministic error. For graphs with relatively smooth potential functions, as reflected

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 81

in the decay rate of their basis coefficients, we provided a quantitative bound on the total
number of basic arithmetic operations required to compute the BP fixed point to within δ-
accuracy. We illustrated our theoretical predictions using experiments on simulated graphical
models, as well as in a real-world instance of optical flow estimation.

Our work leaves open a number of interesting questions. First, although we have focused
exclusively on models with pairwise interactions, it should be possible to develop forms of
SOSMP for higher-order factor graphs. Second, the bulk of our analysis was performed
under a type of contractivity condition, as has been used in past work [113, 49, 78, 103] on
convergence of the standard BP updates. However, we suspect that this condition might be
somewhat relaxed, and doing so would demonstrate applicability of the SOSMP algorithm
to a larger class of graphical models.2

2The materials of this chapter have been published in [86] and submitted to [85].

CHAPTER 4. STOCHASTIC ORTHOGONAL SERIES MESSAGE-PASSING 82

(a) (b)

(c) (d)

Figure 4.8: Color coded images of the estimated motion vectors after (a) t = 1, (b) t = 10, (c) t = 40 iterations. Panel (d)
illustrates the HSV color coding of the flow. The color hue is used to encode the angular dimension of the motion, whereas
the saturation level corresponds to the speed (length of motion vector). We implemented the SOSMP algorithm by expanding
in the two-dimensional Fourier basis, using r = 9 coefficients and k = 3 samples. Although the initial estimates are noisy, it
converges to a reasonable optical flow estimate after around 40 iterations.

83

Chapter 5

Efficient Distributed Averaging

5.1 Introduction

As disscused in Chappter 1, the problem of network-constrained averaging is to compute
the average of a set of numbers distributed throughout a graph, using an algorithm that
is allowed to pass messages only along edges of the graph. The focus of this chapter is a
noisy version of this problem, in which inter-node communication is modeled by an additive
white Gaussian noise (AWGN) channel. There is now an extensive literature on network-
averaging, consensus problems, as well as distributed optimization and estimation (e.g., see
the papers [18, 31, 28, 116, 57, 8, 11, 12, 22, 74, 73]). The bulk of the earlier work has focused
on the noiseless variant, in which communication between nodes in the graph is assumed
to be noiseless. A more recent line of work has studied versions of the problem with noisy
communication links (e.g., see the papers [45, 37, 95, 7, 109, 56, 9] and references therein).

Given the communication randomness, any algorithm is necessarily stochastic, and the
corresponding sequence of random variables can be analyzed in various ways. The simplest
question to ask is whether the algorithm is consistent—that is, does it compute an approxi-
mate average or achieve consensus in an asymptotic sense for a given fixed graph? A more
refined analysis seeks to provide information about this convergence rate. In this chapter,
we do so by posing the following question: for a given algorithm, how does number of itera-
tions required to compute the average to within δ-accuracy scale as a function of the graph
topology and number of nodes n? For obvious reasons, we refer to this as the network scaling
of an algorithm, and we are interested in finding an algorithm that has optimal scaling law.

The issue of network scaling has been studied by a number of authors in the noiseless
setting, in which the communication between nodes is perfect. Of particular relevance here is
the work of Benezit et al. [12], who in the case of perfect communication, provided a scheme
that has essentially optimal message scaling law for random geometric graphs. A portion
of the method proposed in this chapter is inspired by their scheme, albeit with suitable
extensions to multiple paths that are essential in the noisy setting. The issue of network

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 84

scaling has also been studied in the noisy setting; in particular, past work by Rajagopal and
Wainwright [95] analyzed a damped version of the usual consensus updates, and provided
scalings of the iteration number as a function of the graph topology and size. However, our
new algorithm has much better scaling than the method [95].

The main contributions of this work are the development of a novel two-phase (outer
and inner phase) algorithm for network-constrained averaging with noise, and establishing
the near-optimality of its network scaling. At a high level, the outer phase of our algorithm
produces a sequence of iterates {θτ}∞τ=0 based on a recursive linear update with decaying
step size, as in stochastic approximation methods. The system matrix in this update is a
time-varying and random quantity, whose structure is determined by the updates within the
inner phase. These inner rounds are based on establishing multiple paths between pairs of
nodes, and averaging along them simultaneously. By combining a careful analysis of the
spectral properties of this random matrix with stochastic approximation theory, we prove
that this two-phase algorithm computes a δ-accurate version of the average using a number of
iterations that grows with the graph diameter (up to logarithmic factors).1 As we discuss in
more detail following the statement of our main result, this result is optimal up to logarithmic
factors, meaning that no algorithm can be substantially better in terms of network scaling.

The remainder of this chapter is organized as follows. We begin in Section 5.2 with
background and formulation of the problem. In Section 5.3, we describe our algorithm, and
state various theoretical guarantees on its performance. We then provide the proof of our
main result in Section 5.4. Section 5.5 is devoted to some simulation results that confirm
the sharpness of our theoretical predictions.

5.2 Background and Problem Statement

We begin in this section by introducing necessary background and setting-up the problem
more precisely.

5.2.1 Network-Constrained Averaging

Consider a collection {θ0i }ni=1 of n numbers. In statistical settings, these numbers would be
modeled as independent identically distributed (i.i.d.) draws from an unknown distribution
Q with mean µ. In a centralized setting, a standard estimator for the mean is the sample
average θ :=

[∑n
i=1 θ

0
i

]
/n. When all of the data can be aggregated at a central location, then

computation of θ is straightforward. In this paper, we consider the network-constrained ver-
sion of this estimation problem, modeled by an undirected graph G = (V , E) that consists
of a vertex set V = {1, 2, . . . , n}, and a collection of edges E , where (i, j) ∈ E if and only if
vertices i and j are connected. For i ∈ V , we view each measurement θ0i as associated with

1Recall that the graph diameter is the minimal number of edges needed to connect any two pairs of nodes
in the graph.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 85

vertex i. (For instance, in the context of sensor networks, each vertex would contain a mote
and collect observations of the environment.) The edge structure of the graph enforces com-
munication constraints on the processing: in particular, the presence of edge (i, j) indicates
that it is possible for sensors i and j to exchange information via a noisy communication
channel. Conversely, sensor pairs that are not joined by an edge are not permitted to com-
municate directly.2 Every node has a synchronized internal clock, and acts at discrete times
t = 1, 2, For any given pair of sensors (i, j) ∈ E , we assume that the message sent from i
to j is perturbed by an independent identically distributed N(0, σ2) variate. Although this
additive white Gaussian noise (AWGN) model is more realistic than a noiseless model, it is
conceivable that other stochastic channel models might be more suitable for certain types of
sensor networks, and we leave this exploration for future research.

Given this set-up, of interest to us are stochastic algorithms that generate sequences
{θt}∞t=0 of iterates contained within Rn, and we require that the algorithm be graph-respecting,
meaning that in each iteration, it is allowed to send at most one message for each direction
of every edge (i, j) ∈ E . At time t, we measure the distance between θt and the desired
average θ via the average (per node) mean-squared error, given by

MSE(θt) :=
1

n

n∑

i=1

E
[
(θti − θ)2

]
. (5.1)

In this chapter, our goal is for every node to compute the average θ up to an error
tolerance δ. In addition, we require almost sure consensus among nodes, meaning

P
(
θti = θtj ∀ i, j = 1, 2, . . . , n

)
→ 1 as t→∞.

Our primary goal is in characterizing the rate of convergence as a function of the graph
topology and the number of nodes, to which we refer as the network-scaling function of the
algorithm. More precisely, in order to study this network scaling, we consider sequences of
graphs {Gn} indexed by the number of nodes n. For any given algorithm (defined for each
graph Gn) and a fixed tolerance parameter δ > 0, our goal is to determine bounds on the
quantity

TG(n; δ) := inf
{
t = 1, 2, . . . | MSE(θt) ≤ δ

}
. (5.2)

Note that TG(n; δ) is a stopping time, given by the smallest number of iterations required to
obtain mean-squared error less than δ on a graph of type G with n nodes.

5.2.2 Graph topologies

Of course, the question that we have posed will depend on the graph type, and this paper
analyzes three types of graphs, as shown in Figure 5.1. The first two graphs have regular

2Moreover, since the edges are undirected, there is no difference between edge (i, j) and (j, i); moreover,
we exclude self-edges, meaning that (i, i) /∈ E for all i ∈ V.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 86

@
@@b b�

��
b

b@
@@

bb

�
��b

b

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

b

r(n)
BB
b

����b

��
b

�
�
�
�
b

b
�
��b

b E
EE
b

A
AAb

(a) (b) (c)

Figure 5.1: Illustration of graph topologies. (a) A single cycle graph. (b) Two-dimensional grid with four-nearest-neighbor
connectivity. (c) Illustration of a random geometric graph (RGG). Two nodes are connected if their distance is less than r(n).
The solid circles represent the center of squares.

topologies: the single cycle graph in panel (a) is degree two-regular, and the two-dimensional
grid graph in panel (b) is degree four-regular. In addition, we also analyze an important class
of random graphs with irregular topology, namely the class of random geometric graphs.
As illustrated in Figure 5.1(c), a random geometric graph (RGG) in the plane is formed
according by placing n nodes uniformly at random in the unit square [0, 1]× [0, 1], and the
connecting two nodes if their Euclidean distance is less than some radius r(n). It is known
that an RGG will be connected with high probability as long as r(n) = Ω(

√
log n/n) that

is there exists a constant c such that r(n) ≥ c
√
log n/n. See Penrose [94] for discussion of

this and other properties of random geometric graphs.
A key graph-theoretic parameter relevant to our analysis is the graph diameter, denoted

by Dn = diam(Gn). The path distance between any pair of nodes is the length of the shortest
path joining them in the graph, and by definition, the graph diameter is the maximum
path distance taken over all node pairs in the graph. It is straightforward to see that
Dn = Θ(n) for the single cycle graph, and that Dn = Θ(

√
n) for the two-dimensional grid.

For a random geometric graph with radius chosen to ensure connectivity, it is known that
Dn = Θ(

√
n/ log n).3

Finally, in order to simplify the routing problem explained later, we divide the unit square
into m2 sub-regions (squares) of side length

√
1/n in case of grid, and for some constant

c > 0, of side length
√
c log n/n in case of RGG. Here we have m =

√
n for the regular

grid, and m =
√
n/(c log n) for the RGG. We also assume that each node knows its location

and is aware of the center of these m2 sub-regions namely (xi, yj) i, j = 1, 2, . . . ,m. As a
convention, we assume that (x1, y1) is the left bottom square, to which we refer to as the

3The notation f(n) = O(g(n)) means that there exists some constant c ∈ (0,∞) and n0 ∈ N such
f(n) ≤ cg(n) for all n ≥ n0, whereas f(n) = Ω(g(n)) means that f(n) ≥ c′g(n) for all n ≥ n0. The notation
f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n)).

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 87

first square.
By construction, in a regular grid, each square will contain one and only one node which

is located at the center of the square. Also, from known properties of RGGs [94, 43], each of
the given subregions will contain at least one node with high probability (w.h.p.). Moreover,
an RGG is regular w.h.p, meaning that each square contains Θ (log n) nodes (see Lemma
1 in the paper [31]). Accordingly, in the remainder of the paper, we assume without loss
of generality that any given RGG is regular. Note that by construction, the transmission
radius r(n) is selected so that each node in each square is connected to every other node in
four adjacent squares.

5.3 Proposed Algorithm and its Properties

In this section we state our main result which is followed by a detailed description of the
proposed algorithm.

5.3.1 Theoretical Guarantees

Our main result guarantees the existence of a graph-respecting algorithm with desirable
properties. Recall the definition of the graph respecting scheme, as well as the definition of
our AWGN channel model given in Section 5.2. In the following statement, the quantity c0
denotes a universal constant, independent of n, δ, and σ2.

Theorem 11. For the communication model in which each link is an AWGN channel with
variance σ2, there is a graph-respecting algorithm such that:

a) Nodes almost surely reach a consensus. More precisely, we have

θt
a.s.−→ θ̃ ~1 as t→∞, (5.3)

for some θ̃ ∈ R.

b) After T = TG(n; δ) iterations, the algorithm satisfy the following bounds on the MSE(θT):

i) For fixed tolerance δ > 0 sufficiently small, we have MSE(θT) = O(σ2δ) after

Tcyc(n; δ) ≤ c0 n max
{1
δ
log

1

δ
,
MSE(θ0)

σ2δ2

}

iterations for a single cycle graph.

ii) For fixed tolerance δ > 0 sufficiently small, we have MSE(θT) = O(σ2δ) after

Tgrid(n; δ) ≤ c0
√
n max

{1
δ
log

1

δ
,
MSE(θ0)

σ2δ2

}

iterations for the regular grid in two dimensions.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 88

iii) Assume that δ = δ̃/(log n)2, for some fixed δ̃ sufficiently small. Then we have

MSE(θT) = O
(
σ2δ̃
)
after

TRGG(n; δ) ≤ c0
√
n(log n)3 max

{1
δ̃
log

(log n)2

δ̃
,
MSE(θ0)

σ2δ̃2

}

iterations for a regular random geometric graph.

Here c0 is some constant independent of n, δ, and σ2, whose value may change from line
to line.

Remarks: A few comments are in order regarding the interpretation of this result. First,
it is worth mentioning that the quality of the different links does not have to be the same.
Similar arguments apply to the case where noises have different variances. Second, although
nodes almost surely reach a consensus, as guaranteed in part (a), this consensus value is not

necessarily the same as the sample mean θ̄. The choice of θ̃ is intentional to emphasize this
point. However, as guaranteed by part (b), this consensus value is within σ2δ distance of
the actual sample mean. Since the sample mean itself represents a noisy estimate of some
underlying population quantity, there is little point to computing it to arbitrary accuracy.
Third, it is worthwhile comparing part (b) with previous results on network scaling in the
noisy setting. Rajagopal and Wainwright [95] analyzed a simple set of damped updates,
and showed that Tcyc(n; δ) = O

(
n2
)
for the single cycle, and that Tgrid(n) = O

(
n
)
for the

two-dimensional grid. By comparison, the algorithm proposed here and our analysis thereof
has removed factors of n and

√
n from this scaling.

5.3.2 Optimality of the Results

As we now discuss, the scalings in Theorem 11 are optimal for the cases of cycle and grid and
near-optimal (up to logarithmic factor) for the case of RGG. In an adversarial setting, any
algorithm needs at least Ω(Dn) iterations, where Dn denotes the graph diameter, in order to
approximate the average; otherwise, some node will fail to have any information from some
subset of other nodes (and their values can be set in a worst-case manner). Theorem 11
provides upper bounds on the number of iterations that, at most, are within logarithmic
factors of the diameter, and hence are also within logarithmic factors of the optimal latency
scaling law. For the graphs given here, the scalings are also optimal in a non-adversarial
setting, in which {θ0i }ni=1 are modeled as chosen i.i.d. from some distribution. Indeed, for a
given node j ∈ V , and positive integer t, we let N (j; t) denote the depth t neighborhood of
j, meaning the set of nodes that are connected to j by a path of length at most t. We then
define the graph spreading function ψG(t) = minj∈V |N (j; t)|. Note that the function ψG is
non-decreasing, so that we may define its inverse function ψ−1G (s) = inf{t | ψG(t) ≤ s}. As
some examples:

• for a cycle on n nodes, we have ψG(t) = 2t, and hence ψ−1G (s) = s/2.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 89

• for a n-grid in two dimensions, we have the upper bound ψG(t) ≤ 2t2, and hence the
lower bound ψ−1G (s) ≥

√
s/2.

• for a random geometric graph (RGG), we have the upper bound ψG(t) = Θ(t2 log n),
which implies the lower bound ψ−1G (s) = Θ(

√
s/ log n)

After t steps, a given node can gather the information of at most ψG(t) nodes. For the
average based on ψG(t) nodes to be comparable to θ, we require that ψG(t) = Ω(n), and
hence the iteration number t should be at least Ω(ψ−1G (n)). For the three graphs considered
here, this leads to the same conclusion, namely that Ω(Dn) iterations are required. We note
also that using information-theoretic techniques, Ayaso et al. [6] proved a lower bound on
the number of iterations for a general graph in terms of the Cheeger constant [25]. For the
graphs considered here, the Cheeger constant is of the order of the diameter.

5.3.3 Description of the Algorithm

We now describe the algorithm that achieves the bounds stated in Theorem 11. At the
highest level, the algorithm can be divided into two types of phases: an inner phase, and
an outer phase. The outer phase produces a sequence of iterates {θτ}, where τ = 0, 1, 2, . . .
is the outer time scale parameter. By design of the algorithm, each update of the outer
parameters requires a total ofM message-passing rounds (these rounds corresponding to the
inner phase), where in each round the algorithm can pass at most two messages per edge (one
for each direction). To put everything in a nutshell, the algorithm is based on establishing
multiple routes, averaging along them in an inner phase and updating the estimates based
on the noisy version of averages along routes in an outer phase. Consequently, if we use
the estimate θτ , then in the language of Theorem 11, it corresponds to T = Mτ rounds of
message-passing. Our goal is to establish upper bounds on T that guarantee the MSE is
O(σ2δ). Figure 5.2 illustrates the basic operations of the algorithm.

Outer phase

In the outer phase, we produce a sequence of iterates {θτ}∞τ=1 according to the recursive
update

θτ+1 = θτ − ǫτ
{
Lτ θτ + vτ

}
. (5.4)

Here {ǫτ}∞τ=1 is a sequence of positive decreasing step sizes. For a given precision, δ, we set
ǫτ = 1/(τ +1/δ). For each τ , the quantity Lτ ∈ Rn×n is a random matrix, whose structure is
determined by the inner phase, and vτ ∈ Rn is an additive Gaussian term, whose structure
is also determined in the inner phase. As will become clear in the sequel, even though L and
v are dependent, they are both independent of θ. Moreover, given L, the random vector v
is Gaussian with bounded variance.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 90

Two-phase algorithm for distributed consensus:

• Inner phase:

– Deciding the averaging direction

– Choosing the head nodes

– Establishing the routes

– Averaging along the routes

• Outer phase:

– Based on the averages along the routes, update the estimates according to

θτ+1 = θτ − ǫτ
{
Lτ θτ + vτ

}

Figure 5.2: Basic operations of a two-phase algorithm for distributed consensus.

Inner phase

The inner phase is the core of the algorithm and it involves a number of steps, as we describe
here. We use s = 1, 2, . . . ,M to index the iterations within any inner phase, and use {γs}Ms=1

to denote the sequence of inner iterates within Rn. For the inner phase corresponding to
outer update from θτ → θτ+1, the inner phase takes the initialization γ1 ← θτ , and then
reduces as output γM → θτ+1 to the outer iteration. In more detail, the inner phase can be
broken down into three steps, which we now describe in detail.

Step 1, deciding the averaging direction: The first step is to choose a direction in
which to perform averaging. In a single cycle graph, since left and right are viewed as the
same, there is only one choice, and hence nothing to be decided. In contrast, the grid or RGG
graphs require a decision-making phase, which proceeds as follows. One node in the first
(bottom left) square, wakes up and chooses uniformly at random to send in the horizontal
or vertical direction. We code this decision using the random variable ζ ∈ {−1, 1}, where
ζ = −1 (respectively ζ = +1) represents the horizontal (respectively vertical) direction. To
simplify matters, we assume in the remainder of this description that the averaging direction
is horizontal, with the modifications required for vertical averaging being standard.

Step 2, choosing the head nodes: This step applies only to the grid and RGG graphs.
Given our assumption that the node in the first square has chosen the horizontal direction,
it then passes a token message to a randomly selected node in the above adjacent square.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 91

s s s s s

s s s s s

s s s s s

s s s s s

s s s s s

c@
@

s11

c�
�
�
��

s12

c
s13

c@
@
s14

c

s15

s s s s s

s s s s s

s s s s s

s s s s s

s s s s s

P1

c

@
@c c�

�
cPPPPPPc

P2
c c�

�
c c

@
@@c

P3

c���
cHHHHc�����c c

P4

c c

@
@c c����

c

P5
c������c c

@
@c c

(a) (b)

Figure 5.3: (a) The node labeled s11 in the first square, chooses the horizontal direction for averaging (ζ = −1); it passes the
token vertically to inform other nodes to average horizontally. Nodes who receive the token pass it to another node in the above
adjacent square. (b) The head nodes s1j , j = 1, 2, . . . ,m, as determined in the first step, establish routes horizontally (Pj ,
j = 1, 2, . . . ,m) and then average along these paths.

The purpose of this token is to determine which node (referred to as the head node) should
be involved in establishing the route passing through the given square. After receiving the
token, the receiving node passes it to another randomly selected node in the above adjacent
square and so on. Note that in the special case of grid, there is only one node in each
square, and so no choices are required within squares. After m rounds, one node in each
square (x1, yj), j = 1, 2, . . . ,m ((xi, y1), i = 1, 2, . . . ,m) receives the token, as illustrated in
Figure 5.3. Note that again in a single cycle graph, there is nothing to be decided, since the
direction and head nodes are all determined.

Step 3, establishing routes and averaging: In this phase, each of the head nodes
establishes a horizontal path, and then perform averaging along the path, as illustrated in
Figure 5.3(b). This part of algorithm involves three substeps, which we now describe in
detail.
• For j = 1, 2, . . . ,m, each head node s1j selects a node s2j uniformly at random (u.a.r.) from

within the right adjacent square, and passes to it the quantity γ11j. Given the Gaussian
noise model, node s2j then receives the quantity

γ̃11j = γ11j + v1j, where v1j ∼ N(0, σ2),

and then updates its own local variable as γ22j = γ12j + γ̃11j. We then iterate this same
procedure—that is, node s2j selects another s3j u.a.r. from its right adjacent square, and

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 92

passes the message γ22j. Overall, at round i of this update procedure, we have

γi+1
(i+1)j = γi(i+1)j + γ̃iij,

where γ̃iij = γiij + vij, and vij ∼ N(0, σ2). At the end of round m, node smj can compute a
noisy version of the average along the path Pj : s1j → s2j → · · · → smj, in particular via
the rescaled quantity

ηj :=
γmmj
m

=
1

m

m∑

l=1

θτslj + vj for j = 1, 2, . . . ,m.

Here the variable vj ∼ N(0, σ2/m), since the noise variables associated with different edges
are independent.

• At this point, for each j = 1, 2, . . . ,m, each node smj which has the noisy version, ηj,
of the path average along route Pj; can share this information with other nodes in the
path by sending ηj back to the head node. A naive way to do this is as follows: node

smj makes m copies of ηj—namely, η
(l)
j = ηj, l = 1, 2, . . . ,m—and starts transmitting one

copy at a time back to the head node. Nodes along the path simply forward what they
receive, so that after m − i + m − 1 time steps, node sij receives m noisy copies of the

average, η̃
(l)
ij = η

(l)
j + v

(l)
ij where v

(l)
ij ∼ N(0, (m − i)σ2). Averaging the m copies, node sij

can compute the quantity

γ3m−i−1ij :=
1

m

m∑

l=1

η̃
(l)
ij =

1

m

m∑

l=1

θτslj + wij,

where wij = vj +
(∑m

l=1 v
(l)
ij

)
/m. Since the noise on different links and different time steps

are independent Gaussian random variables, we have wij ∼ N(0, σ2
i), with

σ2
i =

1

m
σ2 +

(
1− i

m

)
σ2 =

(
1− (i− 1)

m

)
σ2 ≤ σ2.

Therefore, at the end of M = Θ(m) rounds, for each j = 1, 2, . . . ,m, all nodes have the
average of the estimates in the path Pj that is perturbed by Gaussian noise with variance
at most σ2. Since m = Θ(Dn), we have M = Θ(Dn).

• At the end of the inner phase τ , nodes that were involved in a path use their estimate
of the average along the path to update θτ , while estimate of the nodes that were not
involved in any route remain the same. A given node sij on a path updates its estimate
via

θτ+1
sij

=
(
1− ǫτ1

)
θτsij + ǫτ1 γ

3m
ij , (5.5)

where ǫτ1 = O
(
1/(τ + 1/δ)

)
. On the other hand, using 〈·, ·〉 to denote the Euclidean

inner product, we have γ3mij = 〈w, θτ 〉+ vsij , where w is the averaging vector of the route

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 93

Pj with the entries w(slj) = 1/m for l = 1, 2, . . . ,m, and zero otherwise. Combining the
scalar updates (5.5) yields the matrix-form update

θτ+1 = θτ − ǫτ1
[
(I −W τ) θτ + vτ1

]
, (5.6)

where the matrix W τ = W (τ ;P1,P2, . . . ,Pm, ζ) is a random averaging matrix induced
by the choice of routes P1,P2, . . . ,Pm and the random directions ζ. The noise vector
vτ1 ∼ N(0, C ′) is additive noise. Note that for any given time, the noise at different nodes
are correlated via the matrix C ′, but for different time instants τ 6= τ ′, the noise vectors vτ1
and vτ

′

1 are independent. Moreover, from our earlier arguments, we have the upper bound
max
i=1,...,n

C ′ii ≤ σ2.

5.4 Proof of Theorem 11

We now turn to the proof of Theorem 11. At a high-level, the structure of the argument
consists of decomposing the vector θτ ∈ Rn into a sum of two terms: a component within
the consensus subspace (meaning all values of the vector are identical), and a component in
the orthogonal complement. Using this decomposition, the mean-squared error splits into a
sum of two terms and we use standard techniques to bound them. As will be shown, these
bounds depend on the parameter δ, noise variance, the initial MSE, and finally the (inverse)
spectral gap of the update matrix. The final step is to lower bound the spectral gap of our
update matrix.

5.4.1 Setting-Up the Proof

Recalling the averaging matrix W τ from the update (5.6), we define the Laplacian matrix
Sτ := I −W τ . We then define the average matrix W := E

[
W τ
]
, where the expectation is

taken place over the randomness due to the choice of routes;4 in a similar way, we define the
associated (average) Laplacian S := I −W . Finally, we define the rescaled quantities

ǫτ := λ2(S) ǫ
τ
1, Lτ :=

1

λ2(S)
Sτ , and vτ :=

1

λ2(S)
vτ1 , (5.7)

where we recall that λ2(·) denotes the second smallest eigenvalue of a symmetric matrix. In
terms of these rescaled quantities, our algorithm has the form

θτ+1 = θτ − ǫτ [Lτ θτ + vτ], (5.8)

4 For the single cycle graph, there is only one route that involves all the nodes at each round, so W τ is
deterministic in this case.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 94

as stated previously in the update equation (5.4). Moreover, by construction, we have
vτ ∼ N(0, C) where C = C ′/[λ2(S̄)]2. We also, for theoretical convenience, set

ǫτ1 =
1

λ2(S̄) (τ + 1/δ)
, (5.9)

or equivalently ǫτ = 1/(τ + 1/δ) for τ = 1, 2,
We first claim that the matrix W is symmetric and (doubly) stochastic. The symmetry

follows from the fact that different routes do not collide, whereas the matrix is stochastic
because every row of W (depending on whether the node corresponding to that row partici-
pates in a route or not) either represents an averaging along a route or is the corresponding
row of the identity matrix. Consequently, we can interpret W as the transition matrix of
a reversible Markov chain. It is an irreducible Markov chain, because within any updating
round, there is a positive chance of averaging nodes that are in the same column or row,
which implies that the associated Markov chain can transition from one state to any other
in at most two steps. Moreover, the stationary distribution of the chain is uniform (i.e.,
π = ~1/n).

We now use these properties to simplify our study of the sequence {θτ}∞τ=1 generated by
the update equation (5.8). Since S is real and symmetric, it has the eigenvalue decomposition
S = UΛU∗, where U = [u1 u2 . . . un] is a unitary matrix (that is, U∗U = In).

5 Moreover,
we have Λ = diag{λ1(S), λ2(S), . . . , λn(S)}, where λi(S) is the eigenvalue corresponding to
the eigenvector ui, for i = 1, 2, . . . , n. Since L = (I −W)/λ2(S), the eigenvalues of L and
W are related via

λi(L) =
1

λ2(S)
(1− λn+1−i(W))

=
1

1− λn−1(W)
(1− λn+1−i(W)).

Since the largest eigenvalue of an irreducible Markov chain is one (with multiplicity one) [41],
we have 1 = λn(W) > λn−1(W) ≥ . . . ≥ λ1(W), or equivalently

0 = λ1(L) < λ2(L) ≤ . . . ≤ λn(L),

with λ2(L) = 1. Moreover, we have S~1 = L~1 = ~0, so that the first eigenvector u1 = ~1/
√
n

corresponds to the eigenvalue λ1(L) = 0. Let Ũ denote the matrix obtained from U by
deleting its first column, u1. Since the smallest eigenvalue of L is zero, we may write
L = Ũ Λ̃Ũ∗, where Λ̃ = diag{λ2(L), . . . λn(L)}, Ũ∗Ũ = In−1, and Ũ Ũ∗ = In − ~1~1∗/n. With
this notation, our analysis is based on the decomposition

θτ = ατ
~1√
n

+ Ũ βτ , (5.10)

5In this chapter, we denote the transpose of a matri or a vector by (·)∗.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 95

where we have defined ατ := 〈~1/√n, θτ 〉 ∈ R and βτ := Ũ∗θτ ∈ Rn−1. Since ~1∗Lτ = ~0∗ for all
τ = 1, 2, . . ., from the decomposition (5.10) and the form of the updates (5.8), we have the
following recursions,

ατ+1 = ατ − ǫτ
~1∗√
n
vτ , and (5.11)

βτ+1 = βτ − ǫτ
[
Lτ βτ + Ũ∗vτ

]
. (5.12)

Here L is an (n− 1)× (n− 1) matrix defined by the relation

U∗LτU =

[
0 ~0∗

~0 Lτ

]

n×n
.

5.4.2 Main Steps

As we show, part (a) of the theorem requires some intermediate results of the proof of
part (b); accordingly, we defer it to Appendix C.3. With this set-up, we now state the
two main technical lemmas that form the core of Theorem 11. Our first lemma, proved
in Appendix C.1, concerns the behavior of the component sequences {ατ}∞τ=0 and {βτ}∞τ=0

which evolve according to equations (5.11) and (5.12) respectively.

Lemma 10. Given the random sequence {θτ}∞τ=0 generated by the update equation (5.4), we
have

MSE(θτ) =
1

n
var
(
ατ
)

︸ ︷︷ ︸
eτ
1

+
1

n
E[‖βτ‖22]

︸ ︷︷ ︸
eτ
2

. (5.13)

Furthermore, eτ1 and eτ2 satisfy the following bounds:

(a) For each iteration τ = 1, 2, . . ., we have

eτ1 ≤
2 σ2 δ

[λ2(S̄)]2
. (5.14)

(b) Moreover, for each iteration τ = 1, 2, . . . we have

eτ2 ≤
σ2

[λ2(S̄)]2
log(τ + 1/δ − 1)

τ + 1/δ − 1
+ e02

1/δ − 1

τ + 1/δ − 1
, (5.15)

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 96

From Lemma 10, we conclude that in order to guarantee an O
(
σ2δ/[λ2(S̄)]

2
)
bound on the

MSE, it suffices to take τ such that

1/δ − 1

τ + 1/δ − 1
≤ σ2 δ

e02 [λ2(S̄)]
2
, and

log(τ + 1/δ − 1)

τ + 1/δ − 1
≤ δ.

Note that the first inequality is satisfied when τ ≥ e02[λ2(S̄)]
2/(σ2δ2). Moreover, doing a

little bit of algebra, one can see that τ = (2/δ) log(1/δ)− (1/δ− 1) is sufficient to satisfy the
second inequality. Accordingly, we take

τ = max
{1
δ
log

1

δ
,
e02 [λ2(S̄)]

2

σ2 δ2

}

outer iterations.
The last part of the proof is to bound the second smallest eigenvalue of the Laplacian

matrix S. The following lemma, which we prove in Appendix C.2, addresses this issue.
Recall that λ2(·) denotes the second smallest eigenvalue of a matrix.

Lemma 11. The averaged matrix S that arises from our protocol has the following properties:

(a) For a cycle and a regular grid we have λ2(S̄) = Ω(1), and

(b) for a random geometric graph, we have λ2(S̄) = Ω(1/ log n), with high probability.

It is important to note that the averaged matrix S is not the same as the graph Laplacian
that would arise from standard averaging on these graphs. Rather, as a consequence of
establishing many paths and averaging along them in each inner phase, our protocol ensures
that the matrix behaves essentially like the graph Laplacian for the fully connected graph.

As established previously, each outer step requires M = O(Dn) iterations. Therefore, we
have shown that it is sufficient to take a total of

T = O
(
Dn max

{1
δ
log

1

δ
,
e02 [λ2(S̄)]

2

σ2 δ2

})

transmissions per edge in order to guarantee a O(σ2δ/[λ2(S̄)]
2) bound on the MSE. As we

will see in the next section, assuming that the initial values are fixed, we have e01 = 0,
hence MSE(θ0) = e02. The claims in Theorem 11 then follow by standard calculations of the
diameters of the various graphs and the result of the Lemma 11.

5.5 Simulation Results

In order to demonstrate the effectiveness of the proposed algorithm, we conducted a set of
simulations. More specifically, we apply the proposed algorithm to four nearest-neighbor
square grids of different sizes. We initially generate the data θ0i , i = 1, 2, . . . , n as random

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 97

5 10 15 20 25 30 35 40 45 50

10
−1

Number of Outer Iterations

M
ea

n−
sq

ua
re

d
E

rr
or

n = 502

n = 302

Figure 5.4: Mean-squared error versus the number of outer loop iterations for grids with n ∈ {302, 502} nodes. As expected
the MSE monotonically decreases, which supports the convergence claim.

N(1, 1) variables and fix them throughout the simulation. So for each run of the algorithm
the initial data is fixed. In implementing the algorithm, we adopt σ2 = 1 as the channel noise
variance, and we set the tolerance parameter δ = 0.1, leading to the step size ǫτ = 1/(10+τ).
We estimated the mean-squared error, defined in equation (5.1), by taking the average over
50 sample paths. As discussed in Section 5.3, every outer phase update requiresM = O

(√
n
)

time steps.
Figure 5.4 shows the mean-squared error versus the number of outer loop iterations; the

panel contains two different curves, one for a graph with n = 302 nodes, and the other for
n = 502 nodes. As expected, the MSE monotonically decreases as the number of iterations
increases, showing convergence of the algorithm. More importantly, the gap between the two
plots is negligible. This phenomenon, which is predicted by our theory, is explored further
in our next set of experiments.

In order to study the network scaling of the grid more precisely, for a given set of graph
sizes, we compute the number of the outer iterations τ = τ(n, δ), such that MSE(θτM) ≤ σ2δ.
Recall that this stopping time is the focus of Theorem 11(b). Figure 5.5 provides a box plot
of this stopping time τ versus the graph size n. Theorem 11(b) predicts that this stopping
time should be inversely proportional to the spectral gap of the Laplacian matrix S, which
for the grid scales as Ω(1) (in particular, see Lemma 11). As shown in Figure 5.5, over a
range of graphs of size varying from n = 1000 to n = 10000, the stopping time is roughly
constant (τ ≈ 25), which is consistent with the theory.

CHAPTER 5. EFFICIENT DISTRIBUTED AVERAGING 98

0 2000 4000 6000 8000 10000
20

21

22

23

24

25

26

27

28

29

30

Size of the graph

N
um

be
r

of
 o

ut
er

 it
er

at
io

ns

Figure 5.5: Stopping time τ = τ(n, δ) vs. the graph size n. For different graph sizes, we compute the first outer phase time
instance τ(n, δ), such that MSE(θτM) ≤ σ2δ. Here we have fixed the parameters to σ2 = 1, and δ = 0.1. As you can see, over
a range of graphs of size varying from 1000 to 10000, this stopping time is roughly constant (≈ 25), which is consistent with
the theory (Theorem 11(b) and Lemma 11).

5.6 Conclusion

In this paper, we proposed and analyzed a two-phase graph-respecting algorithm for comput-
ing averages in a network, where communication is modeled as an additive white Gaussian
noise channel. We showed that it achieves consensus, and we characterized the rate of con-
vergence as a function of the graph topology and graph size. For our algorithm, this network
scaling is within logarithmic factors of the graph diameter, showing that it is near-optimal,
since the graph diameter provides a lower bound for any algorithm.

There are various issues left open in this work. First, while the AWGN model is more
realistic than noiseless communication, many channels in wireless networks may be more
complicated, for instance involving fading, interference and other types of memory. In prin-
ciple, our algorithm could be applied to such channels and networks, but its behavior and
associated convergence rates remain to be analyzed. In a separate direction, it is also worth
noting that gossip-type algorithms can be used to solve other problems, such as distributed
optimization problems (e.g., [80, 96, 33]) and kernel density estimation (e.g., [48]). Com-
plexity reduction and studying the issue of optimal network scaling for such problems is also
of interest.6

6The materials of this chapter have been published in papers [82, 83].

99

Appendix A

Proofs for Chapter 3

A.1 Details of Example 5

In this appendix, we verify the sufficient condition for contractivity (3.22). Recall the defi-
nition (3.12) of the zero’th order bounds. By construction, we have the relations

Buv(i) = B0
uv(i) =

γ

1 + (d− 1)γ
, and

Buv(i) = B
0

uv(i) =
1

1 + (d− 1)γ
for all i ∈ X and (u→ v) ∈ ~E .

Substituting these bounds into the definitions (3.20a) and (3.20b) and doing some simple
algebra yields the upper bounds

φu→v,w→u ≤ max
j∈X

{
βuv(j)

∏
s∈N (u)\{v,w}Bus(j)

∑d
ℓ=1 βuv(ℓ)

∏
s∈N (u)\v Bus(ℓ)

}

=
1 + (d− 1)γ

γρu−1
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}
,

and

χu→v,w→u ≤ max
j∈X

{
βuv(j)

∏
s∈N (u)\v Bus(j)

∑d
ℓ=1 βuv(ℓ)

∏
s∈N (u)\v Bus(ℓ)

}
max
j∈X

{
1

Bwu(j)

}

=
1 + (d− 1)γ

γρu
max
j∈X

{
ψu(j)∑d
ℓ=1 ψu(ℓ)

}
,

where we have denoted the degree of the node u by ρu. Substituting these inequalities
into expression (3.21) and noting that γ ≤ 1, we find that the global update function has

APPENDIX A. PROOFS FOR CHAPTER 3 100

Lipschitz constant at most

L ≤ 4 (1− γ)(1 + (d− 1)γ) max
u∈V

{
(ρu − 1)2

γ2ρu
max
j∈X

{
ψu(j)∑
ℓ ψu(ℓ)

}2}
,

as claimed.

A.2 Proof of Lemma 1

By construction, for each directed edge (u → v), the message vector mu→v belongs to the
probability simplex—that is,

∑
i∈X mu→v(i) = 1, and mu→v � ~0. From equation (3.23),

the vector mu→v is a convex combination of the columns of the matrix Γuv. Recalling
bounds (3.12), we conclude that the message vector must belong to the set S, as defined

in (3.17), in particular with Buv(i) = B0
uv(i) and Buv(i) = B

0

uv(i). Note that the set S is
compact, and any member of it has strictly positive elements under our assumptions.

For directed edges (u → v) and (w → s), let ∂Fu→v

∂mw→s
∈ Rd×d denote the Jacobian matrix

obtained from taking the partial derivative of the update function Fu→v with respect to
the message vector mw→s. By inspection, the function Fu→v is continuously differentiable;
consequently, the function ∂Fu→v(i;m)

∂mw→s(j)
is continuous, and hence must achieve its supremum over

the compact set S. We may use these Jacobian matrices to define a matrix Au→v,w→s ∈ Rd×d

with entries

Au→v,w→s(i, j) := max
m∈S

∣∣∣∣
∂Fu→v(i;m)

∂mw→s(j)

∣∣∣∣, for i, j = 1, . . . , d.

We then use these matrices to define a larger matrix A ∈ RD×D, consisting of 2|E|×2|E| sub-
blocks each of size d×d, with the sub-blocks indexed by pairs of directed edges (u→ v) ∈ ~E .
In particular, the matrix Au→v,w→s occupies the sub-block indexed by the edge pair (u→ v)
and (w → s). Note that by the structure of the update function F , the matrix Au→v,w→s
can be non-zero only if s = u and w ∈ N (u)\{v}.

Now let ∇F ∈ RD×D denote the Jacobian matrix of the update function F . By the
integral form of the mean value theorem, we have the representation

F (m)− F (m′) =

[∫ 1

0

∇F (m′ + τ(m−m′)) dτ
]
(m−m′).

Applying triangle inequality separately to each component of this D-dimensional vector and
then using the definition of A, we obtain the elementwise upper bound

|F (m)− F (m′)| � A |m−m′|.

APPENDIX A. PROOFS FOR CHAPTER 3 101

It remains to show that A is nilpotent: more precisely, we show that Ar is the all-zero
matrix, where r = diam(G) denotes the diameter of the graph G. In order to do so, we first
let B ∈ R2|E|×2|E| be the “block indicator” matrix—that is, its entries are given by

B(u→ v, w → s) =

{
1 if Au→v,w→s 6= 0

0 otherwise.

Based on this definition, it is straightforward to verify that if Br = 0 for some positive integer
r, then we also have Ar = 0. Consequently, it suffices to show that Br = 0 for r = diam(G).

Fix a pair of directed edges (u → v) and (w → s), and some integer ℓ ≥ 1. We first
claim that the matrix entry Bℓ(u→ v, w → s) is non-zero only if there exists a backtrackless
directed path of length ℓ + 1 from w to v that includes both s and u, meaning that there
exist nodes s1, s2, . . . , sℓ−2 such that

w ∈ N (s) \ s1, s1 ∈ N (s2) \ s3, . . . , and sℓ−2 ∈ N (u) \ v.
We prove this claim via induction. The base case ℓ = 1 is true by construction. Now
supposing that the claim holds at order ℓ, we show that it must hold at order ℓ + 1. By
definition of matrix multiplication, we have

Bℓ+1(u→ v, w → s) =
∑

(y→x)∈~E

Bℓ(u→ v, y → x) B(y → x, w → s).

In order for this entry to be non-zero, there must exist a directed edge (y → x) that forms
a (ℓ + 1)-directed path to (u → v), and moreover, we must have s = y, and w ∈ N (y) \ x.
These conditions are equivalent of having a backtrackless directed path of length ℓ+ 2 from
w to v, with s and u as intermediate nodes, thereby completing the proof of our intermediate
claim.

Finally, we observe that in a tree-structured graph, there can be no directed path of
length greater than r = diam(G). Consequently, our intermediate claim implies that Br = 0
for any tree-structured graph, which completes the proof.

A.3 Proof of Lemma 2

Noting that it is equivalent to bound the logarithm, we have

log
t+2∏

ℓ=i+1

(
1− α

ℓ

)
=

t+2∑

ℓ=i+1

log

(
1− α

ℓ

)
≤ −α

t+2∑

ℓ=i+1

1

ℓ
, (A.1)

where we used the fact that log(1 − x) ≤ −x for x ∈ (0, 1). Since the function 1/x is
decreasing, we have

t+2∑

ℓ=i+1

1

ℓ
≥
∫ t+3

i+1

1

x
dx = log(t+ 3) − log(i+ 1). (A.2)

APPENDIX A. PROOFS FOR CHAPTER 3 102

Substituting inequality (A.2) into (A.1) yields

log
t+2∏

ℓ=i+1

(
1− α

ℓ

)
≤ α

(
log(i+ 1) − log(t+ 3)

)
,

from which the claim stated in the lemma follows.

A.4 Proof of Lemma 3

Let ∇q(m) ∈ RD×D denote the Jacobian matrix of the function q : RD → RD evaluated at
m. Since q is differentiable, we can apply the integral form of the mean value theorem to
write

q(m)− q(m′) =
[∫ 1

0

∇q(m′ + τ(m−m′)) dτ
]
(m−m′).

From this representation, we obtain the upper bound

‖q(m)− q(m′)‖2 ≤
[∫ 1

0

|||∇q(m′ + λ(m−m′))|||2 dλ
]
‖m−m′‖2

≤ sup
m∈S
|||∇q(m)|||2 ‖m−m′‖2,

showing that it suffices to control the quantity supm∈S |||∇q(m)|||2.
Let ∂qu→v(m)

∂mw→s
be the d × d matrix of partial derivatives of the function qu→v : RD → Rd

obtained from taking the partial derivatives with respect to the message vector mw→s ∈ Rd.
We then define a 2|E| × 2|E|-dimensional matrix A with the entries

A(u→ v, w → s) :=

{
supm∈S |||∂qu→v(m)

∂mw→s
|||2 if s = u, and w ∈ N (u)\{v}

0 otherwise.
(A.3)

Our next step is to show that supm∈S |||∇q(m)|||2 ≤ |||A|||2. Let y = {yu→v}(u→v)∈~E be

an arbitrary D-dimensional vector, where each sub-vector yu→v is an element of Rd. By

APPENDIX A. PROOFS FOR CHAPTER 3 103

exploiting the structure of ∇q(m) and y, we have

‖∇q(m) y‖22 =
∑

(u→v)∈~E

‖
∑

w∈N (u)\{v}

∂qu→v(m)

∂mw→u
yw→u‖22

(i)

≤
∑

(u→v)∈~E

(∑

w∈N (u)\{v}
‖∂qu→v(m)

∂mw→u
yw→u‖2

)2

(ii)

≤
∑

(u→v)∈~E

(∑

w∈N (u)\{v}
|||∂qu→v(m)

∂mw→u
|||2‖yw→u‖2

)2

(iii)

≤
∑

(u→v)∈~E

(∑

w∈N (u)\{v}
A(u→ v, w → u)‖yw→u‖2

)2

,

where the bound (i) follows by triangle inequality; the bound (ii) follows from definition of
the operator norm; and the final inequality (iii) follows by definition of A.

Defining the vector z ∈ R2|E| with the entries zw→u = ‖yw→u‖2, we have established the
upper bound ‖∇q(m) y‖22 ≤ ‖Az‖22, and hence that

‖∇q(m) y‖22 ≤ |||A|||22 ‖z‖22 = |||A|||22 ‖y‖22,
where the final equality uses the fact that ‖y‖22 = ‖z‖22 by construction. Since both the
message m and vector y were arbitrary, we have shown that supm∈S |||∇q(m)|||2 ≤ |||A|||2, as
claimed.

Our final step is to control the quantities supm∈S |||∂qu→v(m)
∂mw→s

|||2 that define the entries of
A. In this argument, we make repeated use of the elementary matrix inequality [47]

|||B|||22 ≤
(

max
i=1,...,n

n∑

j=1

|Bij|
)

︸ ︷︷ ︸
|||B|||∞

(
max
j=1,...,n

n∑

i=1

|Bij|
)

︸ ︷︷ ︸
|||B|||1

, (A.4)

valid for any n× n matrix.
Recall the definition of the probability distribution (3.8) that defines the function qu→v : RD → Rd,

as well as our shorthand notation Mu→v(k) =
∏

w∈N (u)\{v}mw→u(k). Taking the derivatives
and performing some algebra yields

∂qu→v(i ; m)

∂mw→u(j)
=

d∑

k=1

∂qu→v(i ; m)

∂Mu→v(k)

∂Mu→v(k)

∂mw→u(j)

=
∂qu→v(i ; m)

∂Mu→v(j)

Mu→v(j)

mw→u(j)

=
−βuv(i)Mu→v(i) βuv(j)(∑d

k=1 βuv(k)Mu→v(k)
)2

Mu→v(j)

mw→u(j)
,

APPENDIX A. PROOFS FOR CHAPTER 3 104

for i 6= j, and w ∈ N (u)\{v}. For i = j, we have

∂qu→v(i ; m)

∂mw→u(i)
=

∂qu→v(i ; m)

∂Mu→v(i)

Mu→v(i)

mw→u(i)

=

[
βuv(i)∑d

k=1 βuv(k)Mu→v(k)
− βuv(i)

2 Mu→v(i)(∑d
k=1 βuv(k)Mu→v(k)

)2
]
Mu→v(i)

mw→u(i)
.

Putting together the pieces leads to the upper bounds

|||∂qu→v(m)

∂mw→u
|||1 ≤ 2 max

j∈X

{
βuv(j)Mu→v(j)∑d
k=1 βuv(k)Mu→v(k)

1

mw→u(j)

}
, and

|||∂qu→v(m)

∂mw→u
|||∞ ≤ max

i∈X

{
βuv(i)Mu→v(i)∑d
k=1 βuv(k)Mu→v(k)

1

mw→u(i)

+
βuv(i)Mu→v(i)(∑d

k=1 βuv(k)Mu→v(k)
)2

d∑

j=1

βuv(j)Mu→v(j)

mw→u(j)

}
.

Recalling the definitions (3.20a) and (3.20b) of φu→v,w→u and χu→v,w→u respectively, we find
that

|||∂qu→v(m)

∂mw→u
|||1 ≤ 2 φu→v,w→u, and |||∂qu→v(m)

∂mw→u
|||∞ ≤ φu→v,w→u + χu→v,w→u.

Thus, by applying inequality (A.4) with B = ∂qu→v(m)
∂mw→u

, we conclude that

|||∂qu→v(m)

∂mw→u
|||22 ≤ 2 φu→v,w→u (φu→v,w→u + χu→v,w→u).

Since this bound holds for any message m ∈ S, we conclude that each of the matrix entries
A(u→ v, w → u) satisfies the same inequality. Again applying the basic matrix inequal-
ity (A.4), this time with B = A, we conclude that |||A|||2 is upper bounded by

2
(

max
(u→v)∈~E

∑

w∈N (u)\{v}

(
φu→v,w→u (φu→v,w→u + χu→v,w→u)

) 1

2

)

(
max

(w→u)∈~E

∑

v∈N (u)\w

(
φu→v,w→u (φu→v,w→u + χu→v,w→u)

) 1

2

)
,

which concludes the proof.

105

Appendix B

Proofs for Chapter 4

B.1 Proof of Lemma 5

Subtracting a∗u→v;j from both sides of the update (4.15) in Step 2(c), we obtain

at+1
u→v;j − a∗u→v;j = (1− ηt)

[
atu→v;j − a∗u→v;j

]
+ ηt

[
btu→v;j − a∗u→v;j

]
+ ηt ζt+1

u→v;j. (B.1)

Setting ηt = 1/(t+ 1) and unwrapping the recursion (B.1) then yields

at+1
u→v;j − a∗u→v;j =

1

t+ 1

t∑

τ=0

[
bτu→v;j − a∗u→v;j

]
+

1

t+ 1

t∑

τ=0

ζτ+1
u→v;j.

Squaring both sides of this equality and using the upper bound (a + b)2 ≤ 2a2 + 2b2, we
obtain

(
at+1
u→v;j − a∗u→v;j

)2 ≤ 2

(t+ 1)2

{ t∑

τ=0

[
bτu→v;j − a∗u→v;j

]}2

+
2

(t+ 1)2

{ t∑

τ=0

ζτ+1
u→v;j

}2

.

Summing over indices j = 1, 2, . . . , r and recalling the expansion (4.36), we find that

‖∆t
u→v‖2L2 ≤

r∑

j=1

{
2

(t+ 1)2

{ t∑

τ=0

[
bτu→v;j − a∗u→v;j

]}2

+
2

(t+ 1)2

{ t∑

τ=0

ζτ+1
u→v;j

}2
}

(i)

≤ 2

(t+ 1)

r∑

j=1

t∑

τ=0

[
bτu→v;j − a∗u→v;j

]2

︸ ︷︷ ︸
Deterministic term Dt+1

u→v

+
2

(t+ 1)2

r∑

j=1

{ t∑

τ=0

ζτ+1
u→v;j

}2

.

︸ ︷︷ ︸
Stochastic term St+1

u→v

Here step (i) follows from the elementary inequality

{ t∑

τ=0

[
bτu→v;j − a∗u→v;j

]}2

≤ (t+ 1)
t∑

τ=0

[
bτu→v;j − a∗u→v;j

]2
.

APPENDIX B. PROOFS FOR CHAPTER 4 106

B.2 Proof of Lemma 6

Recall the probability density

[pu→v(m)](·) ∝ βuv(·)
∏

w∈N (u)\{v}
mw→u(·)

defined in Step 2 of the SOSMP algorithm. Using this shorthand notation, the claim of
Lemma 4 can be re-written as [Fu→v(m)](x) = 〈Γuv(x, ·), [pu→v(m)](·)〉. Therefore, applying
the Cauchy-Schwartz inequality yields

|[Fu→v(m)](x)− [Fu→v(m′)](x)|2 ≤ ‖Γvu(x, ·)‖2L2 ‖pu→v(m) − pu→v(m
′)‖2L2 .

Integrating both sides of the previous inequality over X and taking square roots yields

‖Fu→v(m) − Fu→v(m′)‖L2 ≤ Cuv ‖pu→v(m) − pu→v(m
′)‖L2 ,

where we have denoted the constant Cuv :=
(∫
X |Γuv(x, y)|2dydx

)1/2
.

Next step would be to upper bound the term ‖pu→v(m) − pu→v(m′)‖L2 . In order to do
so, we first show that pu→v(m) is a Frechet differentiable operator [36, 68, 26] on the space
M′ := convhull{m∗,⊕(u→v)∈~EM′

u→v}, where

M′
u→v :=

{
m̂u→v

∣∣∣ m̂u→v =
[
EY∼f

[
Πr
(
Γuv(·, Y)

)]]
+
, for some probability density f

}
,

denotes the space of all feasible SOSMP messages on the directed edge (u→ v). Doing some
calculus using the chain rule, we calculate the partial directional (Gateaux) derivative [26,
93] of the operator pu→v(m) with respect to the function mw→u. More specifically, for an
arbitrary function hw→u, we have

[Dw→u pu→v(m)](hw→u) =
βuv
∏

s∈N (u)\{v,w}ms→u

〈Muv, βuv〉
hw→u

− βuvMuv

〈Muv, βuv〉2
〈hw→u, βuv

∏

s∈N (u)\{v,w}
ms→u〉,

whereMuv =
∏

w∈N (u)\{v}mw→u. Clearly the Gateaux derivative is linear and continuous. It
is also bounded as will be shown now. Massaging the operator norm’s definition, we obtain

sup
m∈M′

|||Dw→u pu→v(m)|||2 = sup
m∈M′

sup
hw→u∈M′

w→u

‖[Dw→u pu→v(m)](hw→u)‖L2

‖hw→u‖L2

≤ sup
m∈M′

supx∈X βuv(x)
∏

s∈N (u)\{v,w}ms→u(x)

〈Muv, βuv〉

+ sup
m∈M′

‖βuvMuv‖L2 ‖βuv
∏

s∈N (u)\{v,w}ms→u‖L2

〈Muv, βuv〉2
. (B.2)

APPENDIX B. PROOFS FOR CHAPTER 4 107

Since the space X is compact, the continuous functions βuv andms→u achieve their maximum
over X . Therefore, the numerator of (B.2) is bounded and we only need to show that the
denominator is bounded away from zero.

For an arbitrary messagemu→v ∈M′
u→v there exist 0 < α < 1 and a bounded probability

density f so that

mu→v(x) = α m∗u→v(x) + (1− α)
[
EY∼f

[
Γ̃uv(x, Y)

]]
+
,

where we have introduced the shorthand Γ̃uv(·, y) := Πr(Γuv(·, y)). According to Lemma 4,
we know m∗u→v = EY [Γuv(·, Y)], where Y ∼ pu→v(m∗). Therefore, denoting p∗ = pu→v(m∗),
we have

mu→v(x) ≥ α EY∼p∗ [Γuv(x, Y)] + (1− α) EY∼f [Γ̃uv(x, Y)]

= EY∼(αp∗+(1−α)f)[Γ̃uv(x, Y)] + α EY∼p∗ [Γuv(x, Y)− Γ̃uv(x, Y)]. (B.3)

On the other hand, since X is compact, we can exchange the order of expectation and
projection using Fubini’s theorem to obtain

EY∼p∗ [Γuv(·, Y)− Γ̃uv(·, Y)] = m∗u→v − Πr(m∗u→v) = Aru→v.

Substituting the last equality into the bound (B.3) yields

mu→v(x) ≥ inf
y∈X

Γ̃uv(x, y) − |Aru→v(x)|.

Recalling the assumption (4.22), one can conclude that the right hand side of the above
inequality is positive for all directed edges (u → v). Therefore, the denominator of the
expression (B.2) is bounded away from zero and more importantly supm∈M |||Dw→upu→v(m)|||2
is attainable.

Since the derivative is a bounded, linear, and continuous operator, the Gateaux and
Frechet derivatives coincides [26, 93] and we can use the mean value theorem (Luenberger
[75], page 176) to obtain the following upper bound

‖pu→v(m) − pu→v(m
′)‖L2 ≤

∑

w∈N (u)\{v}
sup

0≤α≤1
|||Dw→u pu→v(m′ + α (m−m′))|||2 ‖mw→u − m′w→u‖L2 .

Setting Lu→v,w→u := Cuv supm∈M′ |||Dw→u pu→v(m)|||2 and putting the pieces together yields

‖Fu→v(m) − Fu→v(m′)‖L2 ≤
∑

w∈N (u)\{v}
Lu→v,w→u ‖mw→u − m′w→u‖L2 ,

for all m,m′ ∈M′.

APPENDIX B. PROOFS FOR CHAPTER 4 108

The last step of the proof is to verify that m∗ ∈M′, and m̂t ∈M′ for all t = 1, 2, By
definition we have m∗ ∈M′. On the other hand, unwrapping the update (4.15) we obtain

atu→v;j =
1

t

t−1∑

τ=0

b̃τ+1
u→v;j

=
1

t

t−1∑

τ=0

1

k

k∑

ℓ=1

∫

X
Γuv(x, Yℓ) φj(x) dx

=

∫

X
EY∼p̂[Γuv(x, Y)] φj(x) dx,

where p̂ denotes the empirical probability density. Therefore, mt
u→v =

∑r
j=1 a

t
u→v;j φj is

equal to Πr(EY∼p̂[Γuv(·, Y)]), thereby completing the proof.

B.3 Proof of Lemma 7

We begin by taking the conditional expectation of b̃t+1
u→v;j, previously defined (4.14), given

the filteration Gt and with respect to the random samples {Y1, . . . , Yk} i.i.d.∼ [pu→v(m̂)](·).
Exchanging the order of expectation and integral1 and exploiting the result of Lemma 4, we
obtain

E[̃bt+1
u→v;j | Gt] =

∫

X
[Fu→v(m̂t)](x) φj(x) dx = btu→v;j, (B.4)

and hence E[ζt+1
u→v;j | Gt] = 0, for all j = 1, 2, . . . , r and all directed edges (u → v) ∈ ~E .

Also it is clear that ζt+1
u→v;j is Gt-measurable. Therefore, {ζτ+1

u→v;j}∞τ=0 forms a martingale
difference sequence with respect to the filtration {Gτ}∞τ=0. On the other hand, recalling the
bound (4.23), we have

|̃bt+1
u→v;j| ≤

1

k

k∑

ℓ=1

|〈Γuv(·, Yℓ), φj〉| ≤ Bj. (B.5)

Moreover, exploiting the result of Lemma 4 and exchanging the order of the integration and
expectation once more yields

|btu→v;j| = |〈EY [Γuv(·, Y)], φj〉| = |EY [〈Γuv(·, Y), φj〉]| ≤ Bj, (B.6)

where we have Y ∼ [pu→v(m̂t)](y). Therefore, the martingale difference sequence is bounded,
in particular with

|ζt+1
u→v;j| ≤ |̃bt+1

u→v;j| + | btu→v;j| ≤ 2Bj.

1Since Γuv(x, y)φi(x)[pu→v(m̂
t)](y) is absolutely integrable, we can exchange the order of the integrals

using Fubini’s theorem.

APPENDIX B. PROOFS FOR CHAPTER 4 109

B.4 Proof of Lemma 8

We start by uniformly upper-bounding the terms E[|T t+1
u→v|]. To do so we first need to bound

‖∆t
u→v‖L2 . By definition we know ‖∆t

u→v‖2L2 =
∑r

j=1[a
t
u→v;j − a∗u→v;j]

2; therefore we only
need to control the terms atu→v;j and a

∗
u→v;j for j = 1, 2, . . . , r.

By construction, we always have |̃bt+1
u→v;j| ≤ Bj for all iterations t = 0, 1, Also,

assuming that |a0u→v;j| ≤ Bj, without loss of generality, a simple induction using the update
equation (4.15) shows that |atu→v;j| ≤ Bj for all t. Moreover, using a similar argument leading
to (B.6), we obtain

|a∗u→v;j| = |〈EY [Γuv(·, Y)], φj〉| = |EY [〈Γuv(·, Y), φj〉]| ≤ Bj,

where we have Y ∼ [pu→v(m∗)](y). Therefore, putting the pieces together, recalling the
definition (4.45) of T t+1

u→v yields

E[|T t+1
u→v|] ≤

4

t+ 1

∑

w∈N (u)\{v}
L̃u→v,w→u

r∑

j=1

B2
j +

32

t+ 1

r∑

j=1

B2
j .

Concatenating the previous scalar inequalities yields E[T t+1
0] � ~v/(t+1), for all t ≥ 0, where

we have defined the r-vector ~v :=
{∑r

j=1B
2
j

}
(4N~1 + 32).

We now show, using an inductive argument, that

E[T t+1
s] � ~v

t+ 1

s∑

u=0

(log(t+ 1))u

u!
, (B.7)

for all s = 0, 1, 2, . . . and t = 0, 1, 2, We have already established the base case s = 0.
For some s > 0, assume that the claim holds for s− 1. By the definition of T t+1

s , we have

E[T t+1
s] =

1

t+ 1

t∑

τ=1

E[T τs−1]

� ~v

t+ 1

t∑

τ=1

{1
τ

+
s−1∑

u=1

(log τ)u

u! τ

}
,

where the inequality follows from the induction hypothesis. We now make note of the
elementary inequalities

∑t
τ=1 1/τ ≤ 1 + log t, and

t∑

τ=1

(log τ)u

u! τ
≤
∫ t

1

(log x)u

u! x
dx =

(log t)(u+1)

(u+ 1)!
, for all u ≥ 1

from which the claim follows.

APPENDIX B. PROOFS FOR CHAPTER 4 110

B.5 Proof of Lemma 9

Upper-bounding the term U t
u→v: By construction, we always have |̃bt+1

u→v;j| ≤ Bj for all
iterations t = 0, 1, 2, Moreover, assuming |a0u→v;j| ≤ Bj, without loss of generality, a sim-
ple induction on the update equation shows that |atu→v;j| ≤ Bj for all iterations t = 0, 1,
On this basis, we find that

U t
u→v = (ηt)2

r∑

j=1

E
[(̃
bt+1
u→v;j − atu→v;j

)2] ≤ 4 (ηt)2
r∑

j=1

B2
j ,

which establishes the bound (4.54a).

Upper-bounding the term V t
u→v: It remains to establish the bound (4.54b) on V t

u→v. We
first condition on the σ-field Gt = σ(m0, . . . ,mt) and take expectations over the remaining
randomness, thereby obtaining

V t
u→v = 2ηt E

[
E
[r∑

j=1

(̃
bt+1
u→v;j − atu→v;j

) (
atu→v;j − a∗u→v;j

) ∣∣Gt
]]

= 2ηt E
[r∑

j=1

(
btu→v;j − atu→v;j

) (
atu→v;j − a∗u→v;j

)]
,

where {btu→v;j}∞j=1 are the expansion coefficients of the function Fu→v(m̂t) (i.e. btu→v;j =

〈Fu→v(m̂t), φj〉), and we have recalled the result E[̃bt+1
u→v;j|Gt] = btu→v;j from (B.4). By Par-

seval’s identity, we have

T :=
r∑

j=1

(
btu→v;j − atu→v;j

) (
atu→v;j − a∗u→v;j

)

= 〈Πr(Fu→v(m̂t))−mt
u→v, m

t
u→v − Πr(m∗u→v)〉.

Here we have used the basis expansions

mt
u→v =

r∑

j=1

atu→v;jφj, and Πr(m∗u→v) =
r∑

j=1

a∗u→v;jφj.

Since Πr(mt
u→v) = mt

u→v and Fu→v(m∗) = m∗u→v, we have

T = 〈Πr
(
Fu→v(m̂t)−Fu→v(m∗)

)
, mt

u→v − Πr(m∗u→v)〉 − ‖mt
u→v − Πr(m∗u→v)‖2L2

(i)

≤ ‖Πr
(
Fu→v(m̂t)−Fu→v(m∗)

)
‖L2 ‖mt

u→v − Πr(m∗u→v)‖L2 − ‖mt
u→v − Πr(m∗u→v)‖2L2

(ii)

≤ ‖Fu→v(m̂t)−Fu→v(m∗)‖L2 ‖mt
u→v − Πr(m∗u→v)‖L2 − ‖mt

u→v − Πr(m∗u→v)‖2L2 .

APPENDIX B. PROOFS FOR CHAPTER 4 111

where step (i) uses the Cauchy-Schwarz inequality, and step (ii) uses the non-expansivity of
projection. Applying the contraction condition (4.26), we obtain

T ≤
(
1− γ

2

)
√√√√

∑
w∈N (u)\{v}

‖m̂t
w→u −m∗w→u‖2L2

|N (u)| − 1
‖mt

u→v − Πr(m∗u→v)‖L2

− ‖mt
u→v − Πr(m∗u→v)‖2L2

≤
(
1− γ

2

){1

2

∑
w∈N (u)\{v} ‖mt

w→u −m∗w→u‖2L2

|N (u)| − 1
+

1

2
‖mt

u→v − Πr(m∗u→v)‖2L2

}

− ‖mt
u→v − Πr(m∗u→v)‖2L2 ,

where the second step follows from the elementary inequality ab ≤ a2/2 + b2/2 and the
non-expansivity of projection onto the space of non-negative functions. By the Pythagorean
theorem, we have

‖mt
w→u −m∗w→u‖2L2 = ‖mt

w→u − Πr(m∗w→u)‖2L2 + ‖Πr(m∗w→u)−m∗w→u‖2L2

= ‖∆t
w→u‖2L2 + ‖Arw→u‖2L2 .

Using this equality and taking expectations, we obtain

E[T] ≤
(
1− γ

2

){1

2

∑
w∈N (u)\{v}[ρ

2(∆t
w→u) + ‖Arw→u‖2L2]

|N (u)| − 1
+

1

2
ρ2(∆t

u→v)

}
− ρ2(∆t

u→v)

≤
(1
2
− γ

4

)
ρ2

max
(Ar) +

(1
2
− γ

4

)
ρ2

max
(∆t) − (

1

2
+
γ

4
) ρ2(∆t

u→v).

Since V t
u→v = 2ηt E[T], the claim follows.

112

Appendix C

Proofs for Chapter 5

C.1 Proof of Lemma 10

We begin by observing that

E
[
(θτ − θ̄~1) (θτ − θ̄~1)∗

]
= F1 + F2 + F3,

where F1 := E
[
(ατ −√nθ̄)2

]
~1~1∗/n, the second term is given by F2 := E

[
Ũβτ (βτ)∗Ũ∗

]
, and

F3 := E

[
(ατ −√nθ̄)

~1√
n
(βτ)∗Ũ∗

]
+ E

[
(ατ −√nθ̄) Ũβτ

~1∗√
n

]
.

Since Ũ has orthonormal columns, all orthogonal to the all one vector (~1∗Ũ = ~0), it follows
that trace(F2) = E

[
‖βτ‖22], and trace(F3) = 0.

It remains to compute trace(F1). Unwrapping the recursion (5.11) and using the fact
that initialization θ0 implies α0 =

√
nθ yields

ατ =
√
nθ −

τ−1∑

l=0

ǫl 〈
~1√
n
, vl〉, (C.1)

for all τ = 1, 2, Since vl, l = 0, 1, . . . , τ−1, are zero mean random vectors, from equation
(C.1) we conclude that E[ατ] =

√
nθ̄ 1 and accordingly, trace(F1) = var

(
ατ
)
. Recalling the

definition of the MSE (5.1) and combining the pieces yields the claim (5.13).

Part (a): From equation (C.1), it is clear that each ατ is Gaussian with mean
√
nθ. It

remains to bound the variance. Using the i.i.d. nature of the sequence vl ∼ N(0, C), we

1Here we have assumed that the initial values, θ0i , i = 1, 2, . . . , n, are given (fixed).

APPENDIX C. PROOFS FOR CHAPTER 5 113

have

var
(
ατ
)

= E

[(τ−1∑

l=0

ǫl 〈
~1√
n
, vl〉

)2]
=

τ−1∑

l=0

(ǫl)2

n
〈~1, C~1〉 =

τ−1∑

l=0

(ǫl1)
2 〈~1, C ′~1〉

n
,

where we have recalled the rescaled quantities (5.7). Recalling the fact that C ′ii ≤ σ2 and
using the Cauchy-Schwarz inequality, we have C ′ij ≤

√
C ′iiC

′
jj ≤ σ2. Hence, for δ ∈ (0, 1),

we obtain

var
(
ατ
)
≤ n σ2

τ−1∑

l=0

(ǫl1)
2 =

n σ2

[λ2(S̄)]2

τ−1∑

l=0

1

(1/δ + l)2

≤ n σ2

[λ2(S̄)]2

(
δ2 +

∫ ∞

1/δ

1

x2
dx
)

=
n σ2 δ (1 + δ)

[λ2(S̄)]2
≤ 2 n σ2 δ

[λ2(S̄)]2
;

from which rescaling by 1/n establishes the bound (5.14).

Part (b): Defining H(βτ , vτ) := Lτβτ + Ũ∗vτ , the update equation (5.12) can be written
as

βτ+1 = βτ − ǫ τH(βτ , vτ),

for τ = 1, 2, In order to upper bound eτ+1
2 , defined in (5.13), we need to control eτ+1

2 −eτ2.
Doing some algebra yields

eτ+1
2 − eτ2 =

1

n
E
[
〈βτ+1 − βτ , βτ+1 + βτ 〉

]

=
1

n
E
[
〈−ǫ τH(βτ , vτ), −ǫ τH(βτ , vτ) + 2 βτ 〉

]
,

and hence

eτ+1
2 − eτ2 =

(ǫτ)2

n
E
[
‖H(βτ , vτ)‖22

]
− 2ǫτ

n
E
[
〈H(βτ , vτ), βτ 〉

]
.

Since βτ is independent of both Lτ and vτ , by conditioning on the βτ and using the tower
property of expectation, we obtain

E
[
〈H(βτ , vτ), βτ 〉

]
= E

[
〈E
[
L
]
βτ , βτ 〉

]
.

By construction all the eigenvalues of E
[
L
]
are greater than one, hence

〈E
[
L
]
βτ , βτ 〉 ≥ ‖βτ‖22.

APPENDIX C. PROOFS FOR CHAPTER 5 114

Putting the pieces together, we obtain

eτ+1
2 ≤ 1

n
(ǫτ)2 E

[
‖H(βτ , vτ)‖22

]
+ (1− 2ǫτ) eτ2

=
1

n
(ǫτ)2 E

[
‖Lτβτ‖22

]
︸ ︷︷ ︸

F1

+
1

n
(ǫτ)2 E

[
‖Ũ∗vτ‖22

]
︸ ︷︷ ︸

F2

+(1− 2ǫτ) eτ2, (C.2)

where we used the fact that E
[
〈Lτβτ , Ũ∗vτ 〉

]
= 0. We continue by upper bounding the terms

F1 := E
[
‖Lτβτ‖22

]
, and F2 := E

[
‖Ũ∗vτ‖22

]
. First, we bound the former. By definition of the

l2-operator norm, we have

E
[
‖Lτβτ‖22

]
≤ E

[
|||Lτ |||22 ‖βτ‖22

]
,

where ||| · |||2 denotes the operator norm [47]. On the other hand, using the fact that

Lτ = Ũ∗(I −W τ)Ũ/λ2(S̄) (recall the identities of the Section 5.4.1) yields2

|||Lτ |||2 ≤
1

λ2(S̄)
(1 + |||W τ |||2) =

2

λ2(S̄)
.

Therefore, we have the following bound on F1

F1 ≤
4

[λ2(S̄)]2
E
[
‖βτ‖22

]
. (C.3)

Turning to term F2, we have

F2 = E

[
(vτ)∗

(
I −

~1~1∗

n

)
vτ
]
≤ trace

(
cov(vτ)

)
≤ n σ2

[λ2(S̄)]2
. (C.4)

Substituting the inequalities (C.3) and (C.4) into (C.2), we obtain the following recursive
bound on eτ+1

2

eτ+1
2 ≤ σ2 (ǫτ)2

[λ2(S̄)]2
+
(
1 − 2ǫτ +

4 (ǫτ)2

[λ2(S̄)]2

)
eτ2.

Recall the definitions (5.7) and (5.9). If δ ≤ [λ2(S̄)]
2/4, then we have

1− 2ǫτ +
4(ǫτ)2

[λ2(S̄)]2
≤ 1− ǫτ ,

2Let v be an eigenvector of the matrix W τ corresponding to the eigenvalue λ 6= 1. Since ~1∗v = 0, there
exist an (n− 1)-dimensional vector u such that v = Ũu. Therefore we have,

Ũ∗(I −W τ)Ũu = Ũ∗(I −W τ)v = (1− λ)Ũ∗v = (1− λ)u.

So by subtracting one from the eigenvalues of Ũ∗(I −W τ)Ũ , we obtain the non-one eigenvalues of W τ .

APPENDIX C. PROOFS FOR CHAPTER 5 115

and hence

eτ+1
2 ≤ σ2 (ǫτ)2

[λ2(S̄)]2
+ (1− ǫτ) eτ2, (C.5)

for all τ = 1, 2, Unwrapping the inequality (C.5) yields

eτ+1
2 ≤ σ2

[λ2(S̄)]2

τ∑

k=0

(ǫk)2
τ∏

l=k+1

(1− ǫl) +
τ∏

l=0

(1− ǫl) e02. (C.6)

On the other hand, the product
∏τ

l=k+1(1 − ǫl) forms a telescopic series and is equal to
(k + 1/δ)/(τ + 1/δ). Substituting this fact into the equation (C.6) yields

eτ+1
2 ≤ σ2

[λ2(S̄)]2

τ∑

k=0

1

(k + 1/δ) (τ + 1/δ)
+ e02

1/δ − 1

τ + 1/δ

(i)

≤ σ2

[λ2(S̄)]2
log(τ + 1/δ)

τ + 1/δ
+ e02

1/δ − 1

τ + 1/δ
,

where step (i) uses the following inequality

τ∑

k=0

1

k + 1/δ
≤
∫ τ+1/δ

1/δ−1

1

x
dx ≤ log(τ + 1/δ),

valid for δ ∈ (0, 1/2).

C.2 Proof of Lemma 11

In the case of cycle there is only one averaging path and all the nodes are involved in that at
each round so the averaging matrix, W , is fixed. More precisely, we have W = W = ~1~1∗/n.
Therefore, W is a rank 1 matrix with λn−1(W) = 0 and accordingly we have λ2(S) =
1− λn−1(W) = 1.

For the case of grid or random geometric graphs, we use the Poincare inequality [29]. A
version of this theorem can be stated as follows: Let A = [aij] denote the transition matrix
of an irreducible aperiodic time reversible Markov chain with stationary distribution π. For
each ordered pair of nodes (s, u) in the transition diagram, choose one and only one path
ηsu = (s, s1, s2, . . . , sl, u) between s and u and define

|ηsu| :=
1

πs ass1
+

1

πs1 as1s2
+ . . .+

1

πsl aslu
. (C.7)

Then the Poincare coefficient is

κ := max
e∈E′

∑

ηsu∋e
|ηsu| πs πu, (C.8)

APPENDIX C. PROOFS FOR CHAPTER 5 116

where E ′ is the set of directed edges formed in the previous step. Defining this quantity, the
theorem states that λn−1(A) ≤ 1− 1/κ or equivalently,

1− λn−1(A) ≥
1

κ
. (C.9)

We apply this theorem to the Markov chain formed by W ; the idea is to upper bound its
Poincare coefficient.

C.2.1 Two Dimensional Grid

We first define a path ηsu for every pair of nodes {s, u}. Two different cases can be distin-
guished here. For an illustration of the path ηsu see Figure C.1.

Case 1: Nodes s and u do not belong to the same column or row. In this case, we
consider a two-hop path ηsu = (s→ w → u), where w = (xu, ys) is the vertex of the rectangle
constructed by s and u. Note that xu is the x-coordinate of u and ys is the y-coordinate of s.
Since nodes {s, w} and {w, u} are averaged 1/2 of the time, we have Wsw = Wwu = 1/(2m).
Substituting this into (C.7) and using the fact that π = ~1/n yields

|ηsu| =
1

Wsw πs
+

1

Wwu πw
= 4mn.

Case 2: Nodes s and u belong to the same row or column. In this case, we set ηsu = (s→ u)
which leads to

|ηsu| =
1

Wsu πs
= 2mn.

Moreover, a given edge e = (s→ w) is involved in at most m paths. As node u varies in
the corresponding column or row, we obtain m− 1 paths in case 1, and one path in case 2.
Combining the pieces, we compute the Poincare coefficient

κ = max
e∈E′

∑

ηsu∋e
|ηsu| πs πu ≤ m

4mn

n2
= 4.

Finally, from equation (C.9), we have

λ2(S) = 1− λn−1(W) ≥ 1

κ
≥ 1

4
,

which concludes the proof for the case of a grid-structured graph.

APPENDIX C. PROOFS FOR CHAPTER 5 117

r r r r

r r r r

r r r r

r r r r

s w

u

6

r r r r

r r r r

r r r r

r r r r

s u
-

(a) (b)

Figure C.1: Illustration of the path ηsu for a grid-structured graph. (a) Case 1, where nodes s and u do not belong to the same
column or row. (b) Case 2, where nodes s and u belong to the same column or row. This choice of ηsu yield a tight upper
bound on the Poincare coefficient.

C.2.2 Random Geometric Graph

For the RGG, we follow the same proof structure: namely, we first find a path for each pair
of nodes {s, u}, and then upper bound the Poincare coefficient for the Markov chain W . We
first introduce some useful notation. Let C : V → {1, 2, . . . ,m}2 be the mapping that takes
a node as its input and returns the sub-square of that node. More precisely, for some s ∈ V
we have

C(s) = (i, j) if s ∈ (i, j)-th square i, j = 1, 2, . . . ,m.

Furthermore, we enumerate the nodes in square C(s) = (i, j) from 1 to nij where nij denotes
the total number of nodes in C(s). Recall that by regularity assumption of the RGG we have
b log n ≥ nij ≥ a log n for some constants b > a. We refer to the label of node s as NC(s)(s)
where NC(s)(·) is the enumeration operator for the square C(s). Also let n∗ = mini,j nij
denote the minimum number of nodes in one sub-square which by assumption is greater
than a log n. We split the problem into three different cases. Figure C.2 illustrates these
there different cases.

Case 1: Nodes s and u do not belong to the the same column or row. In this case, a two
hop path ηsu = (s→ w → u) is considered. First, we pick C(w), the vertex of the rectangle
constructed by C(s) and C(u) with the same x-coordinate as C(u) and the same y-coordinate
as C(s). Now choose a node, w, inside C(w) such that

NC(w)(w) = NC(s)(s) + NC(u)(u) mod n∗. (C.10)

APPENDIX C. PROOFS FOR CHAPTER 5 118

Since each square has at least n∗ nodes, such a choice can be made. On the other hand, since
nodes in each square is picked uniformly at random in the averaging phase and there are at
most b log n nodes in each square (for some constant b) we haveWsw,Wwu ≥ 1/(2m(b log n)2),
where the factor of 2 is due to the choice of ζ, the averaging direction. Substituting this
inequality into (C.7), we obtain

|ηsu| =
1

Wsw πs
+

1

Wwu πw
≤ 4b2mn (log n)2.

Furthermore, from equation (C.10), we see that for a fixed s there are at most b/a nodes in
the square C(u) that result in choosing w. Therefore, edge e : (s→ w) is involved in at most
(m− 1) b/a such paths.

Case 2: Nodes s and u belong to the same row or column. In this case, by setting
ηsu = (s→ u), we obtain

|ηsu| =
1

Wsu πs
≤ 2b2mn (log n)2.

Note that there is only one path containing e of this type.

Case 3: Nodes s and u belong to the same square, meaning C(s) = C(u). In this case a
node w is chosen in a square adjacent to C(s) according to (C.10) such that C(w) is to the
right of C(s); unless C(s) is in the last column, in which case C(w) is to the left of C(s). The
same argument as case 1 would give us a bound on |ηsu|. As for the upper bound on the
number of paths: the edge e : (s→ w) is involved in at most b/a such paths.

Combining all the pieces, we obtain

|ηsu| ≤ 4b2mn (log n)2 ∀ s, u ∈ V ,

and

max
e∈E′

∑

s,u

I{ηsu ∋ e} ≤ m
b

a
+ 1.

Substituting these two inequalities into (C.8) yields

κ ≤
(
m
b

a
+ 1

) 4b2mn (log n)2

n2
≤ 2mb

a

4b2mn (log n)2

n2
= c1 log n

for some constant c1. Therefore, from Poincare Theorem, we have

λ2(S) = 1− λn−1(W) ≥ 1

κ
≥ 1

c1 log n
,

which concludes the second part of Lemma 11.

APPENDIX C. PROOFS FOR CHAPTER 5 119

q q q q

q q q q

q q q q

q q q q

as
a

w
������:�

�
�
��
au

q q q q

q q q q

q q q q

q q q q

as
a
u

������:

q q q q

q q q q

q q q q

q q q q

as���:a

w
@

@I
au

(a) (b) (c)

Figure C.2: Illustration of the path ηsu for the case of RGG. (a) Case 1, where nodes s and u belong to the sub-squares in
different row and columns (b) Case 2, where nodes s and u belong to the sub-squares in the same row or column. (c) Case 3,
nodes s and u belong to the same square.

C.3 Proof of Part (a) of Theorem 11

We now return to the proof of part (a) of Theorem 11. Combining equations (5.10) and
(C.1) yields

θτ = (θ − wτ)~1 + Ũβτ , (C.11)

where wτ =
[∑τ−1

l=0 ǫ
l 〈~1/√n, vl〉

]
/
√
n. As previously established, we know that E[wτ] = 0

and var(wτ) ≤ 2σ2δ/[λ2(S̄)]
2 for all τ = 1, 2, . . . and δ ∈ (0, 1). Therefore, invoking a result

on convergence of series with bounded variance (Theorem 8.3 from Chapter 1 of [34]), we
have

wτ
a.s.−→ w as τ →∞, (C.12)

for some random variable w. Since wτ is a sum of independent Gaussian random variables
(and hence Gaussian), it is absolutely integrable [34]. Therefore, we have E[w] = limτ→∞ E[wτ] = 0
and also var(w) = limτ→∞ var(wτ) ≤ 2σ2δ/[λ2(S̄)]

2.
Now we move on to the next part of the proof, analyzing the sequence {βτ}∞τ=1. Recalling

the update equation (5.12), our problem can be cast within the framework of the stochastic
approximation theory, discussed in Chapter 2. In particular, the state sequence is {βτ}∞τ=1,
the noise sequence is formed by zero-mean i.i.d. random vectors, the decreasing sequence
is ǫτ = 1/(τ + 1/δ), and finally H(β, v) = −(Lβ + Ũ∗v) is a linear function with the mean
vector field h(β) = E[H(β, v) | β] = −E[L]β. Note because we removed the zero eigenvalue
from the average Laplacian matrix, the matrix E[L] has all positive eigenvalues, and so γ∗ = 0
is the unique stable point of the linear differential equation dγ(ζ)/dζ = −E[L]γ. Therefore,
an application of the Robbins Monro theorem 4 guarantees that

βτ
a.s.−→ 0 as τ →∞. (C.13)

APPENDIX C. PROOFS FOR CHAPTER 5 120

Substituting the results (C.12) and (C.13) into equation (C.11), we obtain

θτ
a.s.−→ (θ − w)~1 as τ →∞.

In other words, nodes will almost surely reach a consensus; moreover, the consensus value,
θ̃ = θ − w, is within 2σ2δ/[λ2(S̄)]

2 distance of the true sample mean.

121

Bibliography

[1] D. Achilioptas and F. McSherry. On spectral learning of mixtures of distributions. In
18th Annual Conference on Learning Theory (COLT), July 2005.

[2] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans-
actions on Information Theory, 58(5):3235–3249, May 2012.

[3] R. P. Agarwal, M. Meehan, and D. O’Regan. Fixed Point Theory and Applications.
Cambridge University Press, 2004.

[4] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Transactions on
Information Theory, 46(2):325–343, March 2000.

[5] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transaction on
Signal Processing, 50(2):174–188, 2002.

[6] O. Ayaso, D. Shah, and M. Dahleh. Information theoretic bounds for distributed com-
putation over networks of point-to-point channels. IEEE Transactions on Information
Theory, 56(12):6020–6039, 2010.

[7] T. C. Aysal, M. J. Coates, and M. G. Rabbat. Distributed average consensus with
dithered quantization. IEEE Transactions on Signal Processing, 56:4905–4918, 2008.

[8] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione. Broadcast gossip algorithms
for consensus. IEEE Transactions on Signal Processing, 57:2748–2761, 2009.

[9] A. G. Dimakis B. Nazer and M. Gastpar. Neighborhood gossip: Concurrent averaging
through local interference. In Proc. IEEE ICASSP, 2009.

[10] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. Black, and R. Szeliski. A database and
evaluation methodology for optical flow. International Journal of Computer Vision,
92(1):1–31, March 2011.

BIBLIOGRAPHY 122

[11] F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli. Weighted gossip: Dis-
tributed averaging using non-doubly stochastic matrices. In Proc. IEEE International
Symposium on Information Theory, 2010.

[12] F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli. Order-optimal consen-
sus through randomized path averaging. IEEE Transaction on Information Theory,
56(10):5150–5167, 2010.

[13] A. Benveniste, M. Metivier, and P. Priouret. Stochastic Approximations and Adaptive
Algorithms. Springer-Verlag New York, Inc., New York, 1990.

[14] J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. Roy.
Stat. Soc. Series B, 36:192–236, 1974.

[15] G. Boccignone, A. Marcelli, P. Napoletano, and M. Ferraro. Motion estimation via
belief propagation. In Proceedings of the International Conference on Image Analysis
and Processing, 2007.

[16] B. Bollobas. Modern Graph Theory. Springer-Verlag, New York, 1998.

[17] V. S. Borkar. Stochastic Approximation: A Dynamical System Viewpoint. Cambridge
University Press, Cambridge, UK, 2008.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE
Transactions on Information Theory, 52:2508–2530, 2006.

[19] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

[20] M. Briers, A. Doucet, and S. S. Singh. Sequential auxiliary particle belief propagation.
In Proceedings of the 8th International Conference on Information Fusion, pages 826–
834, 2005.

[21] O. Cappe, E. Moulines, and T. Ryden. Inference in Hidden Markov Models. Springer,
New York, 2010.

[22] F. Cattivelli and A. H. Sayed. Diffusion lms strategies for distributed estimation. IEEE
Transactions on Signal Processing, 58(3):1035–1048, March 2010.

[23] H. Chen. Stochastic Approximation and its Applications. Kluwer Academic Publishers,
Dordrecht, Netherlands, 2002.

[24] F. Chung and L. Lu. Concentration inequalities and martingale inequalities: A survey.
Internet Mathematics, 3(1):79–127, 2006.

BIBLIOGRAPHY 123

[25] Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[26] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Springer-
Verlag, London, 2013.

[27] J. Coughlan and H. Shen. Dynamic quantization for belief propagation in sparse spaces.
Computer Vision and Image Understanding, 106(1):47–58, 2007.

[28] M. H. deGroot. Reaching a consensus. Journal of the American Statistical Association,
69(345):118–121, March 1974.

[29] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. Ann.
Applied Probability, 1:36–61, 1991.

[30] R. Diestel. Graph Theory. Springer-Verlag, New York, 2000.

[31] A. G. Dimakis, A. Sarwate, and M. J. Wainwright. Geographic gossip: Efficient av-
eraging for sensor networks. IEEE Trans. Signal Processing, 53:1205–1216, March
2008.

[32] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.
Springer, New York, 2001.

[33] J. Duchi, A. Agawarl, and M. J. Wainwright. Dual averaging for distributed optimiza-
tion: Convergence analysis and network scaling. Technical Report arXiv:1005.2012,
UC Berkeley, May 2010.

[34] R. Durrett. Probability: Theory and Examples. Duxbury Press, New York, NY, 2005.

[35] V. N. Ekambaram and K. Ramchandran. Distributed high accuracy peer-to-peer local-
ization in mobile multipath enviroments. In IEEE Global Communications Conference,
pages 1–5, 2010.

[36] M. Fabian, P. Habala, P. Hajek, V. Montesinos, and V. Zizler. Banach Space Theory:
The Basis for Linear and Nonlinear Analysis. Springer, New York, 2011.

[37] F. Fagnani and S. Zampieri. Average consensus with packet drop communication.
SIAM J. on Control and Optimization, 2007. To appear.

[38] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70(1):41–54, 2006.

[39] R. G. Gallager. Low-Density Parity-Check Codes. PhD thesis, Cambridge, MA, 1963.

[40] G. R. Grimmett. A theorem about random fields. Bulletin of the London Mathematical
Society, 5:81–84, 1973.

BIBLIOGRAPHY 124

[41] G.R. Grimmett and D.R. Stirzaker. Probability and Random Processes. Oxford Science
Publications, Clarendon Press, Oxford, 1992.

[42] C. Gu. Smoothing spline ANOVA models. Springer Series in Statistics. Springer, New
York, NY, 2002.

[43] P. Gupta and P. Kumar. The capacity of wireless networks. IEEE Trans. on Inf.
Theory, 46(2):388–404, Mar 2000.

[44] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Barnes and Noble,
New York, 1964.

[45] Y. Hatano, A. K. Das, and M. Mesbahi. Agreement in presence of noise: pseudogra-
dients on random geometric networks. In Proceedings of the 44th IEEE Conference on
Decision and Control, December 2005.

[46] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex
optimization. Journal of Machine Learning, 69(2-3):169–192, 2007.

[47] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cam-
bridge, 1985.

[48] Y. Hu, H. Chen, J. Lou, and J. Li. Distributed density estimation using non-
parameteric statistics. In Proceedings of the 27th International Conference on Dis-
tributed Computing Systems, pages 28–36, 2007.

[49] A. T. Ihler, J. W. Fisher, and A. S. Willsky. Loopy belief propagation: convergence
and effects of message errors. Journal of Machine Learning Research, 6:905–936, May
2005.

[50] A. T. Ihler, A. J. Frank, and P. Smyth. Particle-based variational inference for con-
tinuous systems. In Proceedings Advances in Neural Information Processing Systems
(NIPS), pages 826–834, 2009.

[51] A. T. Ihler and D. McAllester. Particle belief propagation. In Proceedings Confer-
ence on Artificial Intelligence and Statistics, Clearwater, Florida, USA, pages 256–263,
2009.

[52] M. Isard. PAMPAS: Real-valued graphical models for computer vision. In Proceedings
IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 613–
620, 2003.

[53] M. Isard, J. MacCormick, and K. Achan. Continuously-adaptive discretization for
message-passing algorithms. In Proceedings Advances in Neural Information Processing
Systems, Vancouver, Canada, pages 737–744, 2009.

BIBLIOGRAPHY 125

[54] A. Jovicic, I. Klimek, C. Measson, T. Richardson, and L. Zhang. Mobile device po-
sitioning using learning and cooperation. In 46th Annual Conference on Information
Sciences and Systems, pages 1–6, 2012.

[55] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stochastic approximation ap-
proach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609,
2009.

[56] S. Kar and J. M. F. Moura. Distributed consensus algorithm in sensor networks with
imperfect communication: link failures and channel noise. IEEE Transactions on
Signal Processing, 57(5):355–369, Jan 2009.

[57] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate informa-
tion. In Proc. IEEE Conf. Foundation of Computer Science (FOCS), 2003.

[58] K. Kersting, B. Ahmadi, and S. Natarajan. Counting belief propagation. In Proceedings
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, Canada,
2009.

[59] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. Annals of Mathematical Statistics, 23:462–466, 1952.

[60] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using belief
propagation and a self-adapting dissimilarity measure. In Proceedings 18th Interna-
tional Conference on Pattern Recognition, Hong Kong, pages 15–18, 2006.

[61] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, 2009.

[62] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transaction on Information Theory, 47(2):498–519, 2001.

[63] H. J. Kushner. General convergence results for stochastic approximations via weak
convergence theory. Journal of mathematical analysis and applications, 61:490–503,
1977.

[64] H. J. Kushner and D. S. Clark. Stochastic Approximation for Constrained and Uncon-
strained Systems. Springer-Verlag, Berlin and New York, 1978.

[65] H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Springer-Verlag New York, Inc., New York, 2003.

[66] X. Lan, S. Roth, D. Huttenlocher, and M. J. Black. Efficient belief propagation
with learned higher-order markov random fields. Lecture Notes in Computer Science,
3952:269–282, 2006.

BIBLIOGRAPHY 126

[67] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulcher, D. M. Fratantoni, and R. E.
Davis. Colective motion, sensor networks, and ocean sampling. Proceedings of the
IEEE, 95(1):48–74, 2007.

[68] J. Lindenstrauss, D. Preiss, and J. Tiser. Frechet Differentiability of Lipschitz Func-
tions and Porous Sets in Banach Spaces. Princeton University Press, New Jersey,
2012.

[69] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York,
NY, 2001.

[70] L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic
Control, 22:551–575, 1977.

[71] L. Ljung, G. Pflug, and H. Walk. Stochastic Approximation and Optimization of
Random Systems. Birkhauser Verlag Basel, Berlin, Germany, 1992.

[72] L. Ljung and T. Soderstorm. Theory and Practice of Recursive Identification. MIT
Press, Cambridge, USA, 1983.

[73] C. G. Lopes and A. H. Sayed. Incremental adaptive strategies over distributed net-
works. IEEE Transactions on Signal Processing, 55(8):4064–4077, August 2007.

[74] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive networks:
Formulation and performance analysis. IEEE Transactions on Signal Processing,
56(7):3122–3136, July 2008.

[75] D. G. Luenberger. Optimization by Vector Space Methods. Wiley, New York, 1969.

[76] J. J. McAuley and T. S. Caetano. Faster algorithms for max-product message passing.
Journal of Machine Learning Research, 12:1349–1388, 2011.

[77] T. Meltzer, C. Yanover, and Y. Weiss. Globally optimal solutions for energy minimiza-
tion in stereo vision using reweighted belief propagation. In International Conference
on Computer Vision, June 2005.

[78] J. M. Mooij and H. J. Kappen. Sufficient conditions for convergence of the sum-product
algorithm. IEEE Transactions on Information Theory, 53(12):4422–4437, December
2007.

[79] C. Morelli, M. Nicoli, V. Rampa, and U. Spagnolini. Hidden Markov models for radio
localization in mixed LOS/NLOS conditions. IEEE Transaction on Signal Processing,
55:1525–1542, 2007.

BIBLIOGRAPHY 127

[80] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54:48–61, 2009.

[81] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in
Optimization. New York, 1983.

[82] N. Noorshams and M. J. Wainwright. A near-optimal algorithm for network-
constrained averaging with noisy links. In Proceedings of the IEEE International Sym-
posium on Information Theory, 2010.

[83] N. Noorshams and M. J. Wainwright. Non-asymptotic analysis of an optimal algorithm
for network-constrained averaging with noisy links. IEEE Journal of Selected Topics
in Signal Processing, 5(4):833–844, August 2011.

[84] N. Noorshams and M. J. Wainwright. Stochastic belief propagation: Low-complexity
message-passing with guarantees. In Proceedings of the 49th Annual Allerton Confer-
ence on Communication, Control, and Computing, 2011.

[85] N. Noorshams and M. J. Wainwright. Belief propagation for continuous state spaces:
Stochastic message-passing with quantitative guarantees. Submitted to the Journal of
Machine Learning Research, December 2012.

[86] N. Noorshams and M. J. Wainwright. Quantized stochastic belief propagation: Efficient
message-passing for continuous state spaces. In Proceedings of the IEEE International
Symposium on Information Theory, 2012.

[87] N. Noorshams and M. J. Wainwright. Stochastic belief propagation: A low-complexity
alternative to the sum-product algorithm. IEEE Transaction on Information Theory,
59(4):1981–2000, April 2013.

[88] A. V. Oppenheim and R. W. Schafer. Digital Signal Processing. Prentice-Hall, Engle-
wood Cliffs, NJ, 1975.

[89] A. V. Oppenheim, S. Willsky, and H. Nawab. Signals and Systmes. Prentice-Hall,
Englewood Cliffs, NJ, 1997.

[90] G. Parisi. Statistical Field Theory. Addison-Wesley, 1988.

[91] A. S. Paul and E. A. Wan. RSSI-Based indoor localization and tracking using sigma-
point kalman smoothers. IEEE Journal of Selected Topics in Signal Processing,
3(5):860–873, 2009.

[92] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufman, San Mateo, 1988.

BIBLIOGRAPHY 128

[93] J. P. Penot. Calculus Without Derivatives. Springer, New York, 2013.

[94] M. Penrose. Oxford studies in probability, Random Geometric Graphs. Oxford Univ.
Press, Oxford U.K., 2003.

[95] R. Rajagopal and M. J. Wainwright. Network-based consensus averaging with general
noisy channels. IEEE Transaction on Signal Processing, 59(1):373–385, 2011.

[96] S. Sundhar Ram, A. Nedic, and V. V. Veeravalli. Distributed subgradient projection
algorithm for convex optimization. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 3653–3656, 2009.

[97] A. C. Rapley, C. Winstead, V. C. Gaudet, and C. Schlegel. Stochastic iterative de-
coding on factor graphs. In Proceedings 3rd International Symposium on Turbo Codes
and Related Topics, Brest, France, pages 507–510, 2003.

[98] F. Reichenbach and D. Timmermann. Indoor localization with low complexity in
wireless sensor networks. In IEEE Internaitonal Conference on Industrial Informatics,
pages 1018–1023, 2006.

[99] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press,
2008.

[100] F. Riesz and B.S. Nagy. Functional Analysis. Dover Publications Inc., New York, 1990.

[101] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[102] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New
York, 1999.

[103] T. G. Roosta, M. J. Wainwright, and S. S. Sastry. Convergence analysis of reweighted
sum-product algorithms. IEEE Transactions on Signal Processing, 56(9):4293–4305,
September 2008.

[104] H. L. Royden. Real Analysis. Prentice-Hall, New Jersey, 1988.

[105] H. Song and J. R. Cruz. Reduced-complexity decoding of q-ary LDPC codes for
magnetic recording. IEEE Transaction on Magnetics, 39(2):1081–1087, 2003.

[106] L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin. Kernel belief propa-
gation. In Proceedings Artificial Intelligence and Statistics, Ft. Lauderdale, Florida,
USA, 2011.

[107] A. N. Srivastava and M. Sahami. Text Mining: Classification, Clustering, and Appli-
cations. Chapman-Hall, Boca Raton, 2009.

BIBLIOGRAPHY 129

[108] I. Steinwart and A. Christmann. Support Vector Machines. Springer, New York, 2008.

[109] Han I Su and A. El Gamal. Distributed lossy averaging. In Proc. IEEE International
Symposium on Information Theory, 2009.

[110] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric
belief propagation. In Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, Madison, Wisconsin, USA, volume 1, pages 605–612, 2003.

[111] E. B. Sudderth, A. T. Ihler, M. Israd, W. T. Freeman, and A. S. Willsky. Nonparamet-
ric belief propagation. Communications of the ACM Magazine, 53(10):95–103, 2010.

[112] J. Sun, H. Y. Shum, and N. N. Zheng. Stereo matching using belief propagation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–800, 2003.

[113] S. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs measures. In
Proceedings 18th confernce on Uncertainty in Artificial Intelligence, Alberta, Canada,
volume 18, pages 493–500, August 2002.

[114] S. S. Tehrani, W. J. Gross, and S. Mannor. Stochastic decoding of LDPC codes. IEEE
Communications Letters, 10(10):716–718, 2006.

[115] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge
University Press, Cambridge, UK, 2005.

[116] J. Tsitsiklis. Problems in decentralized decision-making and computation. PhD thesis,
Department of EECS, MIT, 1984.

[117] W. Tsujita, A. Yoshino, H. Ishida, and T. Moriizumi. Gas sensor network for
air-pollution monitoring. Elsevier Journal of Sensors and Actuators B: Chemical,
110(2):304–311, 2005.

[118] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds on
the log partition function. IEEE Transaction on Information Theory, 51(7):2313–2335,
July 2005.

[119] M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc, Hanover, MA 02339, USA, 2008.

[120] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees.
Deploying a wireless sensor network on an active volcano. IEEE Journal of Internet
Computing, 10(2):18–25, 2006.

[121] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transaction on Information The-
ory, 51(7):2282–2312, July 2005.

BIBLIOGRAPHY 130

[122] L. Yu, N. Wang, and X. Meng. Real-time forest fire detection with wireless sensor
networks. In International Conference on Wireless Communications, Networking and
Mobile Computing, pages 1214–1217, 2005.

	List of Figures
	Introduction
	Graphical Models
	Sensor Networks
	Contributions and Dissertation Overview

	Background
	Undirected Graphical Models
	Pairwise Markov Random Fields
	Inference via Marginalization

	Belief Propagation Algorithm
	Stochastic Approximation
	General Framework and Motivating Examples
	Theoretical Guarantees

	Gossip Algorithms

	Stochastic Belief Propagation
	Introduction
	Background and Problem Statement
	Description of the SBP Algorithm
	Main Theoretical Results
	Guarantees for Tree-Structured Graphs
	Guarantees for General Graphs
	Sufficient Conditions for Contractivity

	Proof of the Main Results
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Proposition 1

	Experimental Results
	Simulations on Synthetic Problems
	Applications in Image Processing and Computer Vision

	Conclusion

	Stochastic Orthogonal Series Message-Passing
	Introduction
	Background and Problem Statement
	Orthogonal Series Expansion
	Stochastic Message Updates

	Description of the SOSMP Algorithm
	Main Theoretical Results
	Bounds for Tree-Structured Graphs
	Bounds for General Graphs
	Explicit Rates for Kernel Classes

	Proof of the Main Results
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10

	Experimental Results
	Synthetic Data
	Computer Vision Application

	Conclusion

	Efficient Distributed Averaging
	Introduction
	Background and Problem Statement
	Network-Constrained Averaging
	Graph topologies

	Proposed Algorithm and its Properties
	Theoretical Guarantees
	Optimality of the Results
	Description of the Algorithm

	Proof of Theorem 11
	Setting-Up the Proof
	Main Steps

	Simulation Results
	Conclusion

	Proofs for Chapter 3
	Details of Example 5
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Proofs for Chapter 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9

	Proofs for Chapter 5
	Proof of Lemma 10
	Proof of Lemma 11
	Two Dimensional Grid
	Random Geometric Graph

	Proof of Part (a) of Theorem 11

