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Abstract

The Computational Complexity of Randomness

by

Thomas Weir Watson

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Luca Trevisan, Co-Chair
Professor Umesh Vazirani, Co-Chair

This dissertation explores the multifaceted interplay between efficient computation and prob-
ability distributions. We organize the aspects of this interplay according to whether the
randomness occurs primarily at the level of the problem or the level of the algorithm, and
orthogonally according to whether the output is random or the input is random.

Part I concerns settings where the problem’s output is random. A sampling problem
associates to each input x a probability distribution D(x), and the goal is to output a sample
from D(x) (or at least get statistically close) when given x. Although sampling algorithms
are fundamental tools in statistical physics, combinatorial optimization, and cryptography,
and algorithms for a wide variety of sampling problems have been discovered, there has been
comparatively little research viewing sampling through the lens of computational complexity.
We contribute to the understanding of the power and limitations of efficient sampling by
proving a time hierarchy theorem which shows, roughly, that “a little more time gives a lot
more power to sampling algorithms.”

Part II concerns settings where the algorithm’s output is random. Even when the specifi-
cation of a computational problem involves no randomness, one can still consider randomized
algorithms that produce a correct output with high probability. A basic question is whether
one can derandomize algorithms, i.e., reduce or eliminate their dependence on randomness
without incurring much loss in efficiency. Although derandomizing arbitrary time-efficient
algorithms can only be done assuming unproven complexity-theoretic conjectures, it is possi-
ble to unconditionally construct derandomization tools called pseudorandom generators for
restricted classes of algorithms. We give an improved pseudorandom generator for a new
class, which we call combinatorial checkerboards. The notion of pseudorandomness shows
up in many contexts besides derandomization. The so-called Dense Model Theorem, which
has its roots in the famous theorem of Green and Tao that the primes contain arbitrarily
long arithmetic progressions, is a result about pseudorandomness that has turned out to be
a useful tool in computational complexity and cryptography. At the heart of this theorem
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is a certain type of reduction, and in this dissertation we prove a strong lower bound on
the advice complexity of such reductions, which is analogous to a list size lower bound for
list-decoding of error-correcting codes.

Part III concerns settings where the problem’s input is random. We focus on the topic of
randomness extraction, which is the problem of transforming a sample from a high-entropy
but non-uniform probability distribution (that represents an imperfect physical source of
randomness) into a uniformly distributed sample (which would then be suitable for use by
a randomized algorithm). It is natural to model the input distribution as being sampled by
an efficient algorithm (since randomness is generated by efficient processes in nature), and
we give a construction of an extractor for the case where the input distribution’s sampler
is extremely efficient in parallel time. A related problem is to estimate the min-entropy
(“amount of randomness”) of a given parallel-time-efficient sampler, since this dictates how
many uniformly random output bits one could hope to extract from it. We characterize the
complexity of this problem, showing that it is “slightly harder than NP-complete.”

Part IV concerns settings where the algorithm’s input is random. Average-case complex-
ity is the study of the power of algorithms that are allowed to fail with small probability over
a randomly chosen input. This topic is motivated by cryptography and by modeling heuris-
tics. A fundamental open question is whether the average-case hardness of NP is implied
by the worst-case hardness of NP. We exhibit a new barrier to showing this implication, by
proving that a certain general technique (namely, “relativizing proofs by reduction”) can-
not be used. We also prove results on hardness amplification, clarifying the quantitative
relationship between the running time of an algorithm and the probability of failure over a
random input (both of which are desirable to minimize).
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Chapter 1

Introduction

Since this dissertation is about “the computational complexity of randomness,” we begin
with a discussion of the terms computational complexity and randomness.

1.1 Computational Complexity

Computational complexity theory is often defined as the study of the inherent power and
limitations of efficient computation. Let us explain what this theory is about using the six
basic questions: who, what, where, when, why, how?

Who? Who should care about computational complexity? Everyone! Computation is ubiq-
uitous in the 21st century, and almost every branch of computer science has deep, fundamen-
tal questions that are addressed by computational complexity. For example, computation in
the presence of adversarial behavior, in decentralized settings, and by intelligent agents are
areas where basic questions about feasibility fall under the scope of computational complex-
ity. If computer science were an apple tree, then computational complexity would be the
roots — although you do not pick apples from the roots, they are there, feeding the tree.

What? Using a machine to perform a computation involves feeding an input to the machine,
which later produces an output. What is the computation supposed to accomplish? What is
the goal? This is specified by a computational problem, which in the most general terms is a
relationship between inputs and outputs, a specification of what properties the output should
satisfy for each possible input. Computational problems can take on a variety of forms,
among the most common being function evaluation problems (where the desired output
is unique for each input), search problems (where there are potentially many acceptable
outputs), and optimization problems (where an acceptable output optimizing some objective
function is sought).

How? How does a machine solve a problem? This is the notion of an algorithm. Com-
putational complexity is robust with respect to the details of how “algorithm” is defined.
The model of computation does not matter — any reasonable programming language can
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be used to define what an algorithm is. For solving a problem, it is not good enough just
to know that an algorithm is correct. We also want the algorithm to be efficient, meaning
that it uses only small amounts of computational resources such as running time and mem-
ory space. The consumption of such resources is viewed as a measure of the complexity of
an algorithm. We are interested in the asymptotic behavior of these complexity measures;
that is, we examine the rate of growth of resource consumption in terms of the “size” of
the input. For many natural problems, the näıve approaches to solving them are based on
exhaustive search and lead to very inefficient algorithms. For some of these problems, clever
algorithms have been devised that drastically reduce the resource consumption by exploiting
special structure inherent in the problem. Other problems have resisted the best efforts of
algorithm designers, which suggests these problems may be inherently intractable.

When? Given two algorithms for a problem, it is natural to consider the one that finishes
earlier to be preferable. When does the computation finish? As mentioned above, time is
one of the most important computational resources. This corresponds to the number of
elementary steps an algorithm takes before it halts.

Where? Given two algorithms for a problem, it is natural to consider the one that uses
less memory to be preferable. Where does the computation store its intermediate work?
As mentioned above, space is one of the most important computational resources. If an
algorithm is able to “recycle” the memory it uses throughout the computation by overwriting
old “scratch work” with new scratch work, then it will consume less space.

Why? The central question in computational complexity is: Why is computation the way
it is? Why are efficient algorithms capable of solving certain problems but not others?
The goal is not just to obtain the facts about what algorithms can and cannot do, but to
obtain insight into the nature of computation itself. Rather than focusing on individual
computational problems that people want to solve, the field of computational complexity
tends to focus on problems of a very general nature, and on entire classes of problems
defined in terms of how efficiently they can be solved.

1.2 Randomness

The meaning of the term “randomness” is a matter of philosophical debate, but it is generally
understood to involve uncertainty or unpredictability. For our purposes, randomness is
described using the mathematical theory of discrete probability. A random experiment is
represented by a probability distribution, which assigns a numerical probability to each
possible outcome. This models situations such as a flip of a coin, a roll of a die, and a shuffle
of a deck of cards. Distributions need not be uniform: For example, if a deck of cards starts
in a particular order, then after a single imperfect shuffle, some orders will be more likely
than others, since there will still be significant correlations among the locations of different
cards.

2



Randomness is an indispensable tool in many areas of computer science. Motivated by
such applications, we consider four basic ways randomness crops up, organized in a 2 × 2
matrix as follows: Randomness can be inherent in the problem, with either the desired output
being a probability distribution or the given input being a probability distribution, or useful
for the algorithm, as either a resource used to generate the output or a model for how the
input is generated. We use this matrix as the structure of this dissertation. In this section we
elaborate on the meaning and context of these four categories. The boundaries between these
categories are not sharp; there are many overlaps and connections. In intricate computational
settings, different components may naturally fall into different categories. Nevertheless, each
of the specific topics we study in this dissertation has an “affinity” for a particular category.

Problem Algorithm

Output is random Part I Part II

Input is random Part III Part IV

The problem’s output is random. In addition to function evaluation problems, search
problems, and optimization problems (mentioned in Section 1.1), another important type of
computational problem is sampling problems, for which randomness is inherent in the output
of the problem. A sampling problem associates to each input x a probability distribution
D(x), and the goal is to output a sample from D(x) (or at least get “statistically close”)
when given x. For example, x might encode a graph, and D(x) might be uniform over all
the matchings in the graph.

Sampling algorithms are fundamental tools in statistical physics, combinatorial optimiza-
tion, and cryptography, and algorithms for a wide variety of sampling problems have been
discovered. Comparatively little is known about the inherent limitations of sampling algo-
rithms. We would like to learn why efficient algorithms can solve some sampling problems
but not others, by viewing sampling through the lens of computational complexity.

The algorithm’s output is random. Even when the specification of a computational
problem involves no randomness, we can still consider algorithms whose output is random.
In contrast to the previous category, where algorithms were necessarily randomized since
the output had to be random to be correct, we now consider problems for which there can
conceivably exist deterministic algorithms. Traditionally, randomized algorithms have been
grouped into two types: ones that are always correct and probably efficient (also known as
Las Vegas algorithms), and ones that are always efficient and probably correct (also known
as Monte Carlo algorithms). The latter type is at least as powerful as the former type, since
if an algorithm is probably efficient then it can be modified to halt and output “don’t know”
when its resource consumption is about to become too great (so the modified algorithm
would be always efficient and probably correct).

Algorithms that produce a random output can be viewed as deterministic algorithms
that take two inputs: the main input, and an auxiliary input representing the randomness
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used by the algorithm. The auxiliary input is generally a sequence of independent unbiased
coin flips, in other words, a uniformly random bit string. In this way, randomness can be
viewed as a computational resource. A shorter auxiliary input is preferable to a longer one,
since obtaining a large amount of uniform randomness may be impractical. This suggests
there may be tradeoffs between randomness and other computational resources. For many
problems, randomized algorithms are more time- or space-efficient than known deterministic
algorithms. In some cases they are much more efficient, but is this inherent, or do there exist
deterministic algorithms of comparable efficiency to the randomized ones? A natural objec-
tive is to derandomize algorithms, i.e., reduce or eliminate their dependence on randomness
without incurring much loss in time- or space-efficiency. Famous derandomization successes
include time-efficient primality testing [4] and space-efficient undirected graph connectivity
testing [218]. Computational complexity is especially concerned with derandomizing en-
tire classes of algorithms. Can deterministic algorithms always perform almost as well as
randomized ones?

The problem’s input is random. For some computational problems, the input is a
probability distribution. An algorithm may be given a description of the distribution, or
it may only have access to one or more samples from the distribution. In either case, the
distribution may or may not be assumed to have some sort of succinct description.

One topic in this category is randomness extraction, which addresses the following sce-
nario. Suppose there is a randomized algorithm that assumes access to many uniformly
random bits, but the available physical source of randomness is imperfect and does not
produce a uniform sample, although it does contain a sufficient “amount” of randomness.
Extraction is the problem of taking a sample from the source’s distribution and transform-
ing it into an output that is uniformly distributed (and can thus be fed into a randomized
algorithm). An algorithm that solves this problem is called an extractor, and it is generally
assumed that the extractor does not know what distribution it is trying to extract from (it
only receives a sample from the distribution). Without any restrictions on the source (except
that it contains a sufficient amount of randomness), it turns out that no such deterministic
extractor can exist. However, under various assumptions about the source, extraction be-
comes possible. Designing extractors reveals why efficient computation is robust with respect
to imperfections in sources of randomness.

The algorithm’s input is random. From one perspective, the problem’s input is the
algorithm’s input, so there is no point in making a distinction between the two. But when
we talk about the input being random, we adopt a convention that distinguishes the two
categories. In the previous category, the input was a probability distribution, and an algo-
rithm was required to succeed on each possible input. In the present category, the input can
be anything (a graph, say), and there is a distribution over inputs (or more precisely, an
ensemble of distributions, one for each “input size”). Average-case complexity is the study
of the power and limitations of algorithms that are allowed to fail with some probability
over such a randomly chosen input. In the standard setting of average-case complexity, an
algorithm may output anything when it “fails” (and need not give any indication that its
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output is wrong). In the alternative errorless setting, an algorithm is only allowed to output
the correct answer or “don’t know” and must never output an incorrect answer.

Average-case complexity has two main motivations. One is modeling heuristics — it
is desirable to understand why some problems have algorithms that work well in practice
even though no algorithm is known to be both correct and efficient on all inputs. The
other motivation is cryptography, which rests on the assumption that certain problems are
average-case hard (meaning no efficient algorithm can succeed with high probability over
a random input). In cryptographic settings, allowing an adversary to succeed most of the
time, or even a nonnegligible fraction of the time, would be completely unacceptable.

1.3 Our Contributions

In this section we summarize the results proven in this dissertation. The subsequent chapters
(2 through 8) can each be read independently of the others. We strive to keep the presentation
fairly self-contained throughout this dissertation, but at times we assume some familiarity
with the basics of computational complexity, for which we refer the reader to the textbooks
[17, 98].

1.3.1 Part I

Time seems to be a very valuable computational resource, but is that an illusion? How can
we formalize what it means for time to be valuable? This question is fundamental to our
understanding of computation. The answer offered by computational complexity comes in
the form of time hierarchy theorems, which are results showing that “more time gives more
power to algorithms.” In other words, a time hierarchy shows that there exist problems
that can be solved by algorithms running in a given time bound but not by algorithms
running in a somewhat smaller time bound. In what is widely regarded as the paper that
founded the field of computational complexity, Hartmanis and Stearns [128] proved a time
hierarchy theorem for deterministic algorithms solving problems with yes/no answers (which
are called decision problems or languages). Subsequent work has shown time hierarchies for
other models of computation solving decision problems, though for randomized algorithms
this remains a major open question.

In Chapter 2 (which is based on [272]) we revisit this topic by proving a time hierarchy
theorem for sampling algorithms. This illustrates a hierarchy phenomenon for randomized
algorithms in a context alternative to decision problems. We prove what we call a robust time
hierarchy, showing that “a little more time gives a lot more power to sampling algorithms.”
In other words, there are distributions that can be sampled by algorithms running in a
given time bound, but which algorithms running in a somewhat smaller time bound cannot
even come close to sampling, where closeness is in statistical distance. For probability
distributions over constant-size domains, we prove the best possible result in terms of the
statistical distance. Formally, we prove that for every constant k ≥ 2, every polynomial
time bound t, and every polynomially small ǫ, there exists a family of distributions on k
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elements that can be sampled exactly in polynomial time but cannot be sampled within
statistical distance 1 − 1/k − ǫ in time t. Statistical distance can never exceed 1, and over
a domain of size k the uniform distribution is within statistical distance 1 − 1/k of every
distribution simultaneously, so the above theorem would be false if we eliminated the ǫ term.
As a corollary, we obtain the following general time hierarchy for sampling distributions on
arbitrary-size domains such as {0, 1}n: For every polynomial time bound t and every constant
ǫ > 0, there exists a family of distributions that can be sampled exactly in polynomial time
but cannot be sampled within statistical distance 1− ǫ in time t.

The proof of our time hierarchy involves reducing the situation to a communication
problem over a certain type of noisy channel. To solve the latter problem we use a new
type of list-decodable error-correcting code. Such codes can be constructed using certain
known traditional list-decodable codes, but we give a new construction that is elementary,
self-contained, and tailored to this setting.

Aside from the purely algorithmic motivation for studying sampling problems, another
motivation comes from cryptography. A fundamental component in cryptographic settings
is the ability to sample distributions of a certain form, namely solved instances (i.e., input-
output pairs) of hard problems. Note that if a function is easy to evaluate, then input-
output pairs can be sampled by just picking a uniformly random input and then computing
the corresponding output. Hence, finding explicit functions for which input-output pairs
are hard to sample is tougher than finding explicit functions that are hard to evaluate. We
prove a lower bound on the complexity of sampling input-output pairs of a certain explicit
function. This result appears in Part III (Chapter 5) since it is closely connected to our
result on randomness extraction.

1.3.2 Part II

The most common and successful method for derandomizing classes of algorithms is to con-
struct a pseudorandom generator, which is an efficient algorithm that “fools” every algorithm
in the class by producing a “pseudorandom” output that can be used in place of the truly
random bits expected by the algorithm. A pseudorandom generator uses a short truly ran-
dom seed, and the main goal in constructing pseudorandom generators is to minimize the
seed length. Full derandomization can be achieved by iterating over all seeds, so to minimize
the time overhead the seed should be short.

Although derandomizing arbitrary time-efficient algorithms can only be done assuming
certain major unproven conjectures, a successful research goal has been to unconditionally
construct pseudorandom generators for restricted classes of algorithms. The seminal work
of Impagliazzo, Nisan, and Wigderson [197, 142] gives pseudorandom generators for space-
efficient algorithms, though the seed length is suboptimal. Many of the other classes that
have been studied can be viewed as special cases of space-efficient algorithms, and the goal
for these classes has been to beat the seed length known for the general case. We contribute
to this project in Chapter 3 (which is based on [270, 267]) by constructing an improved
pseudorandom generator for a new class we dub combinatorial checkerboards.

One natural way to define a class is to consider computations that combine the results
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of many smaller independent computations in a simple manner. The combining function
can be thought of as a building block for forming more complex computations. We define
combinatorial checkerboards to be the class of such computations where the combiner is
the parity function. (Combinatorial rectangles, which have been previously studied, are the
case where the combiner is the AND function.) Formally, a combinatorial checkerboard
is a function f : {1, . . . , m}d → {1,−1} of the form f(u1, . . . , ud) =

∏d
i=1 fi(ui) for some

functions fi : {1, . . . , m} → {1,−1} (multiplication of ±1 values corresponds to parity, i.e.,
XOR). The sense in which such functions can be viewed as space-efficient is that, between
evaluating successive fi’s, only one bit of information needs to be kept track of, namely
the parity of the fi’s evaluated so far. If a combinatorial checkerboard f came from a
randomized algorithm solving some problem, then the algorithm’s auxiliary random input
would correspond to f ’s input (a sequence of d rolls of an m-sided die), while the true input
to the algorithm would be implicitly hard-wired into f itself.

We construct a pseudorandom generator that fools combinatorial checkerboards within ǫ
using a seed of length O

(
logm+log d · log log d+log3/2 1

ǫ

)
. This significantly improves on the

seed length of O
(
logm+ log2 d + log d · log 1

ǫ

)
achieved by [142] (except when 1

ǫ
≥ dω(log d)),

and it comes close to having optimal dependence on all the parameters, which would be
O
(
logm+ log d+ log 1

ǫ

)
.

Pseudorandomness is a special case of the more general notion of computational indistin-
guishability. Two distributions are considered computationally indistinguishable from each
other if no efficient algorithm (under some notion of efficiency) can distinguish them in the
sense that the probability the algorithm accepts (outputs 1) is significantly different when
its input is a sample from one distribution versus the other distribution. A distribution is
considered pseudorandom if it is computationally indistinguishable from the uniform distri-
bution. Hence, the goal of a pseudorandom generator is to produce a pseudorandom output
distribution when given a uniformly random seed.

The notions of pseudorandomness and computational indistinguishability show up in
many contexts besides derandomization. The so-called Dense Model Theorem [219], which
has its roots in the famous theorem of Green and Tao [115] that the primes contain arbitrar-
ily long arithmetic progressions, is a result about these notions that has turned out to be a
useful tool in computational complexity and cryptography. We forgo details about the state-
ment of the Dense Model Theorem (including the meaning of “dense”) in this introductory
chapter, but it can be phrased, roughly, as “if a distribution is dense in some pseudorandom
distribution then it is computationally indistinguishable from some dense distribution.” At
the heart of the Dense Model Theorem is a certain type of reduction: an algorithm that re-
futes the former pseudorandomness when given black-box access to hypothetical algorithms
that refute the latter computational indistinguishability. In the theorem statement there is
a “gap” between the efficiency of the distinguishers considered on the former side and those
on the latter side, and this gap is filled in by the efficiency of the reduction itself. This
motivates the study of the complexity of such reductions; a lower bound on the complexity
implies that a gap is inherent.

Here we depart from the usual time and space measures of complexity, and we consider
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measures that are more combinatorial in nature. The query complexity (number of black-box
“calls” the reduction makes to the hypothetical algorithms) was studied by Zhang [278]. In
Chapter 4 (which is based on [266]) we prove a strong (though not tight) lower bound on the
advice complexity for the Dense Model Theorem. The notion of advice shows up in many
areas of computational complexity, and it always refers to a trusted piece of information
that is provided to an algorithm. In our setting, a reduction receives indirect, incomplete
information about the original distribution via the hypothetical algorithms, and the reduction
needs to do a kind of “decoding” to learn about the distribution. The advice complexity
is a measure of the “amount of ambiguity” that needs to be overcome in the decoding. In
addition to clarifying issues about the parameters of the Dense Model Theorem, our lower
bound proof contributes techniques that may be of independent interest, such as a lemma
about majority-of-majorities circuits.

1.3.3 Part III

Recall that for randomness extraction to be possible, we need to assume that the source
distribution comes from some restricted class of distributions. A very natural type of class
to consider is efficiently samplable distributions. In nature, randomness is generated by
efficient processes, so it is reasonable to model a physical source as an efficient sampling
algorithm. (However, this type of sampling algorithm does not fall under the scope of
Part I because it is not “trying to solve” any problem.) The situation here is similar to
the situation with pseudorandom generators: Although extractors for sources with arbitrary
time-efficient samplers can only be constructed assuming certain major unproven conjectures,
it is reasonable to hope for unconditional constructions of extractors for samplers satisfying
more stringent efficiency constraints. This hope was fulfilled for space-efficient samplers in
[153].

In Chapter 5 (which is based on joint work with Anindya De [70, 69]) we unconditionally
construct extractors for distributions with parallel-time-efficient samplers. We consider the
most extreme form of parallel-time-efficiency, where each output bit of the sampler only
depends on a limited number d of the random input bits. When d ≤ o(log n) and the distri-
bution is on n bits and has k ≥ n2/3+γ bits of min-entropy (which is the standard measure of
the “amount” of randomness in this context) for any constant γ > 0, our extractor extracts

Ω(k2/nd) bits that are 2−nΩ(1)
-close to uniform. Why are such parallel-time-efficient algo-

rithms amenable to having their randomness extracted? The key insight involves showing
a connection to so-called low-weight affine sources, for which it is already known (uncondi-
tionally) how to extract randomness [209].

The number of almost-uniformly random bits produced by an extractor depends on the
source distribution’s min-entropy, for which an a priori lower bound is assumed to be known.
A natural question is whether, given the description of a sampler, we can efficiently estimate
the min-entropy of its distribution so that we can plug this parameter into the extractor and
thus extract as much of the randomness as possible. In Chapter 6 (which is based on [269])
we characterize the complexity of this min-entropy estimation problem by showing that an
appropriate formulation is “SBP-complete” (and thus unlikely to be solvable in polynomial
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time). Our result holds even when the sampler is restricted to be parallel-time-efficient (as
in our extractor result).

Note that in both our randomness extraction problem and our min-entropy estimation
problem, the problem’s input is a distribution with a certain type of sampler. However, in
the former case an algorithm is only given a sample as input, whereas in the latter case an
algorithm is given the description of the sampler as input (from which the algorithm could
generate its own samples if it wanted).

1.3.4 Part IV

The complexity class NP consists of all problems with yes/no answers for which a polynomial-
time algorithm can be “convinced” that any given yes-input is indeed a yes-input, provided
the algorithm is given an appropriate “proof” (also called a witness or certificate). This class
captures the complexity of search problems for which acceptable outputs can be verified in
polynomial time.

What makes NP so significant is that a huge number of practically important problems are
among the “hardest” problems in NP, the so-called NP-complete problems. These problems
are all equivalent to each other, in the sense that either they can all be solved in polynomial
time or none of them can. It is widely believed that the latter is the case; this is expressed as
the famous P 6= NP conjecture. But this conjecture merely asserts that no polynomial-time
algorithm can succeed in the worst case (meaning on all inputs). Can NP-complete problems
be efficiently solved in the average case (meaning with high probability over a random input)?
Secure cryptography requires that the answer is no. A central open question in average-case
complexity is whether the average-case hardness of NP is implied by the worst-case hardness
of NP. An affirmative answer would strengthen our confidence in secure cryptography.

The proposition that “if NP is worst-case hard then NP is average-case hard” is certainly
believed to be true, since both sides are believed to be true. A proof of this implication
has turned out to be quite elusive. Why? One research goal has been to exhibit barriers to
proving the implication, by ruling out certain general proof techniques, thereby illuminating
the core difficulties of the issue and explaining why we need separate theories for worst-case
and average-case complexity. In Chapter 7 (which is based on [271, 264]) we contribute to
this project by ruling out relativizing proofs by reduction. To describe what this means, we
first discuss reductions and then discuss relativization.

The notion of a reduction is central in computational complexity. A reduction is, generally
speaking, an efficient algorithm that solves a problem A given the ability to make calls to a
hypothetical algorithm (known as an oracle) that solves another problem B. The existence
of a reduction from A to B shows that if B is “easy” (has an efficient algorithm) then A is
also easy, since B’s algorithm could be plugged into the reduction to obtain an algorithm for
A. Conversely, a reduction shows that if A is hard then B is hard. A worst-case to average-
case reduction for NP is a polynomial-time algorithm that solves an NP-complete problem
(and hence, indirectly, all NP-complete problems) in the worst case given a hypothetical
algorithm that solves some problem in NP in the average case. The existence of such a
reduction would prove the elusive implication. The nonexistence of such a reduction would
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mean that efficient algorithms are not capable of bridging the gap between worst-case and
average-case complexity.

The notion of relativization is syntactically similar to the notion of a reduction, but
it has a different purpose altogether. A relativizing proof, roughly speaking, is one that
manipulates algorithms without looking at or “reverse-engineering” their code. Formally,
relativizing to a problem C means giving all algorithms the ability to make queries to an
oracle for C (i.e., to obtain answers to inputs for C in unit time each). If a proof of a
proposition about computation does not exploit any specific properties of algorithms’ code,
then the proof will carry through when all algorithms are “relative to” any oracle C. A proof
with the latter property is said to relativize. If we exhibit a C relative to which a proposition
is false, then that does not necessarily mean the proposition is false in the unrelativized world,
but it implies that the proposition cannot be proven by relativizing techniques. Hence the
exhibition of the oracle constitutes a barrier to proving the proposition. Note that C need not
be a “natural” problem, since the point is not to show that if C is easy then another problem
is easy. The main technique for constructing oracles is called diagonalization (we also use
diagonalization to prove our time hierarchy theorem in Part I), which produces oracles that
are contrived but nevertheless yield a barrier. Almost all known proofs of theorems about
complexity classes relativize, with a few notable exceptions such as IP = PSPACE [232, 233].
Breaking a relativization barrier requires novel insights about the inner workings of efficient
algorithms.

We show that relativizing proofs by reduction cannot be used to base the average-case
hardness of NP on the worst-case hardness of NP. That is, we exhibit an oracle relative to
which there is no worst-case to average-case reduction for NP. We also handle classes that
are somewhat larger than NP, as well as worst-case to errorless-average-case reductions.

The goal of transforming worst-case hard problems into average-case hard problems can
be seen as an extreme form of what is known as hardness amplification. A less extreme form
(which also has applications in cryptography and derandomization) aims to transform mild
average-case hardness into stronger average-case hardness. A basic objective is to understand
the quantitative relationship between an algorithm’s running time and its probability of
failure over a random input (both of which are desirable to minimize). In Chapter 8 (which
is based on [268]) we prove a hardness amplification result with optimal tradeoff between
the two for the errorless setting. (An optimal tradeoff in the standard, non-errorless setting
was already known.) We now give a more precise description of our result.

A circuit is a structure of logic gates representing the computation of an algorithm on
inputs of a fixed bit length (and circuit size roughly corresponds to running time). The
goal of errorless hardness amplification is to show that if a boolean function f has no size
s errorless circuit that outputs “don’t know” on at most a δ fraction of inputs, then some
boolean function f ′ related to f has no size s′ errorless circuit that outputs “don’t know”
on at most a 1 − ǫ fraction of inputs. Thus the hardness is “amplified” from δ to 1 − ǫ.
Unfortunately, this amplification comes at the cost of a loss in circuit size. This is because
such results are proven by reductions which show that any size s′ errorless circuit for f ′ that
outputs “don’t know” on at most a 1− ǫ fraction of inputs could be used to construct a size
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s errorless circuit for f that outputs “don’t know” on at most a δ fraction of inputs. If the
reduction makes q queries to the hypothesized errorless circuit for f ′, then plugging in a size
s′ circuit yields a circuit of size ≥ qs′, and thus we must have s′ ≤ s/q. Hence it is desirable
to keep the query complexity q to a minimum.

The first results on errorless hardness amplification were obtained by Bogdanov and Safra
[44]. They achieved query complexity O

(
(1
δ
log 1

ǫ
)2 · 1

ǫ
log 1

δ

)
when f ′ is the XOR of several

independent copies of f . We improve the query complexity (and hence the loss in circuit
size) to O

(
1
ǫ
log 1

δ

)
, which is optimal up to constant factors for nonadaptive errorless hardness

amplification reductions. We also give an improved result for errorless hardness amplification
of problems in NP, and we prove a lower bound on the advice complexity (as in Chapter 4)
of errorless hardness amplification reductions.
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Part I

The Problem’s Output is Random
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Chapter 2

Time Hierarchies for Sampling
Distributions

2.1 Introduction

The most commonly studied computational problems in theoretical computer science are
search problems, where there is a relation specifying which outputs are acceptable, and the
goal is to find any acceptable output. Another important type of computational problem
is sampling problems, where the goal is for the output to be distributed according to (or at
least statistically close to) a specified probability distribution.

Sampling problems have received much attention in the algorithms community. For ex-
ample, there has been substantial work on algorithms for sampling graph colorings [90],
independent sets [183, 256], matchings [147, 148], lattice tilings [180, 274], knapsack solu-
tions [192], linear extensions of partial orders [54, 274], factored numbers [24, 152], DNF
solutions [156], eulerian tours [57], stable marriages [37], words from context-free languages
[111], chemical isomers [96], points on algebraic varieties [58], contingency tables [155, 64,
and references within], and spanning trees [206, 273, 157, and references within]. In the
complexity community, historically most research has focused on search problems (and the
special case of decision problems). However, there has been a surge of interest in complexity-
theoretic results that accord sampling problems a status as first-class computational problems
[101, 262, 1, 173, 70, 261, 32]. Many of those works focus on proving lower bounds for explicit
sampling problems on restricted models of computation.

In the context of sampling problems, we revisit the genesis of complexity theory. In their
seminal paper, Hartmanis and Stearns [128] proved a time hierarchy theorem for decision
problems, showing that there are decision problems that are solvable by deterministic algo-
rithms running in time t but not by deterministic algorithms running in time a little less
than t. This is often considered the first result in complexity theory. We study the corre-
sponding question for sampling problems. First, observe that there is a trivial time hierarchy
for exact sampling: In time t, an algorithm can produce a particular output with probability
1/2t, which clearly cannot be done in time less than t. The interesting question is whether
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a robust time hierarchy can be proved, showing that there exists a distribution family that
can be sampled in time t, but that algorithms running in time a little less than t cannot
even come close to sampling (in statistical distance). We succeed in proving such a hierarchy
theorem, showing that algorithms running in a sufficiently smaller amount of time cannot
sample the distribution within a statistical distance that is any constant less than 1. This
is a corollary to our main theorem, which is a quantitatively tight result for distributions on
constant-size domains, showing that algorithms running in a sufficiently smaller amount of
time cannot sample the distribution much better than the trivial statistical distance achieved
by the uniform distribution. Our results can be summarized as “a little more time gives a
lot more power to sampling algorithms.”

There are several proofs of time hierarchy theorems for nondeterministic algorithms and
other models of computation [63, 225, 277, 88], but these proofs do not directly carry over to
our setting. On the surface, our setting may seem more closely related to the long-standing
open problem of proving a hierarchy for polynomial-time randomized algorithms solving
decision problems. The chief difficulty in the latter setting is that an algorithm must satisfy
the “promise” of having bounded error on every input, and it is not known how to guarantee
this while diagonalizing against a randomized algorithm that may not have bounded error.
There is a beautiful line of research that circumvents this obstacle by working in slightly-
nonuniform or average-case settings [25, 87, 104, 89, 204, 116, 254, 205, 159, 146]. Our setting
is intrinsically different because there is no “promise” that could be violated: Whatever
algorithm we consider, it is guaranteed to sample some family of distributions. We have
fundamentally different issues to address.

2.1.1 Results

We start with our definitions. We let [k] = {1, . . . , k} and let N denote the set of positive
integers. For distributions D,D′ on [k], the statistical distance is defined as ‖D − D′‖ =
maxS⊆[k]

∣∣PrD(S)−PrD′(S)
∣∣. Our results hold for any reasonable uniform model of computa-

tion; for concreteness we may assume the model is Turing machines with access to unbiased
independent coin flips.

For a function k : N → N, we define a k-family to be a sequence D = (D1, D2, D3, . . .)
where Dn is a distribution on [k(n)]. For a function δ : N → [0, 1], we say a randomized
algorithm A δ-samples a k-family D if when given n as input, A outputs an element A(n) ∈
[k(n)] such that the output distribution satisfies ‖A(n) − Dn‖ ≤ δ(n). For a function
t : N → N, we say that A runs in time t if for all n ∈ N, A always halts in at most t(n) steps
when given n as input.1 We define

SampTimek,δ(t)

to be the class of k-families δ-sampled by algorithms running in time t.2

1We measure the running time here as a function of the value of the input, not the bit length of the input.
Alternatively, we could view the input as the string 1n and measure the running time as a function of the
bit length.

2If we write something such as SampTimeO(log n),1/2−1/ poly(n)(poly(n)), we formally mean the union of
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Theorem 2.1. For every constant k ≥ 2 and every constant c ≥ 1,

SampTimek,0(poly(n)) 6⊆ SampTimek,1−1/k−ǫ(t)

where ǫ(n) = 1/nc and t(n) = nc.

Corollary 2.2. For every function k(n) ≥ ω(1) and every constant c ≥ 1,

SampTimek,0(poly(n)) 6⊆ SampTimek,1−ǫ(t)

where ǫ = 1/c and t(n) = nc.

Proof of Corollary 2.2. We explain how Theorem 2.1 implies Corollary 2.2 by the contraposi-
tive. Supposing k(n) and c are a counterexample to Corollary 2.2, we claim that k′ and c′ are a
counterexample to Theorem 2.1 where k′ = c′ = c+1. A family D ∈ SampTimek′,0(poly(n))
can be viewed as being in SampTimek,0(poly(n)) (since [k

′] ⊆ [k(n)] for all but finitely many
n) and thus also in SampTimek,1−1/c(n

c). Now to get a SampTimek′,1−1/k′−1/nc′ (nc′) algo-
rithm for D, we just run the SampTimek,1−1/c(n

c) algorithm except that if it outputs a value
> k′ then we output k′ instead. This modification does not cause the statistical distance to
go up. Thus the new algorithm runs in time nc + O(1), and for all but finitely many n it
samples a distribution within statistical distance 1− 1/c ≤ 1− 1/k′ − 1/nc′ from Dn.

2.1.2 Discussion

Our definition of k-families is “unary”, since there is one distribution for each n. We could
alternatively define a k-family to be a function mapping bit strings of length n to distributions
on [k(n)] (for all n). This would more realistically model algorithmic sampling problems, but
our hierarchy results are stronger with the unary definition (since a “non-unary” hierarchy
follows by just ignoring all but one input of each length). Also, in average-case complexity
(see Part IV), unary sampling arises naturally: The random input to an algorithm is often
modeled as coming from an efficiently samplable distribution on {0, 1}n (or [2n], in our
notation) for all n. This can be viewed as a secondary motivation for our results.

For Corollary 2.2 it may seem like it would be cleaner to omit the domain size k from the
complexity classes and just say, for example, that the domain is always {0, 1}∗. However,
this would make the corollary true for trivial reasons: A poly(n)-time samplable distribution
could be supported on bit strings of length > t(n), whereas a t-time samplable distribution
must be supported on bit strings of length ≤ t(n). Corollary 2.2 is only meaningful when
the domain size is at most 2t.

Note that the 1 − 1/k − ǫ statistical distance bound in Theorem 2.1 is tight since the
theorem becomes false if ǫ = 0. This is because the uniform distribution (which is samplable
in constant time) is within statistical distance 1 − 1/k from every distribution on [k]. We
mention that our proof of Theorem 2.1 generalizes straightforwardly to show that for every

SampTimek,δ(t) over all functions of the form k = O(log n), δ = 1/2− 1/ poly(n), and t = poly(n).
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constant k ≥ 2 and all sufficiently constructible monotone functions t and ǫ such that 2t(n) ≤
t(2poly(n)), we have SampTimek,0

(
poly

(
t(poly(n))/ǫ(poly(n))

))
6⊆ SampTimek,1−1/k−ǫ(t).

Finally, we mention that our proofs of Theorem 2.1 and Corollary 2.2 relativize, and that
they carry through without change for quantum algorithms instead of classical randomized
algorithms.

We give the intuition for Theorem 2.1 in Section 2.2. We give the formal proof of
Theorem 2.1 in Section 2.3. One key ingredient in the proof is a certain type of code, which
we construct in Section 2.4.

2.2 Intuition for Theorem 2.1

Why standard techniques do not work. The original deterministic time hierarchy of
[128] is proved by diagonalization: A separate input length ni is reserved for each algorithm
Ai running in the smaller time bound, and an algorithm running in the larger time bound
is designed which, when given an input of length ni, simulates Ai and outputs the opposite
answer. In our setting, Brouwer’s fixed point theorem gives a barrier to using this “direct
complementation” strategy: Suppose we design an algorithm running in the larger time
bound which takes ni and simulates Ai(ni) any number of times (drawing samples from the
distribution Ai(ni) as a black box) and then performs some computation and produces an
output. This algorithm would implement a continuous function from distributions on [k]
to distributions on [k],3 where the input to the function represents the distribution Ai(ni).
This function would have a fixed point, so there would be some distribution, which Ai(ni)
might sample, that would cause the diagonalizing algorithm to produce exactly the same
distribution. The trivial time hierarchy for exact sampling mentioned in the introduction
gets around this by exploiting the fact that Ai(ni) cannot be an arbitrary distribution; it
must be “discretized”. However, the latter observation cannot be used to get a robust time
hierarchy with a nonnegligible statistical distance gap. Another potential way to bypass the
fixed point barrier would be to argue that Ai cannot sample anything close to a fixed point,
but it is not clear how to make this approach work.

Since a straightforward direct complementation does not work, we take as a starting
point the delayed diagonalization technique introduced by Žák [277]. This technique can
be used to prove a time hierarchy for solving decision problems with almost any uniform
model of computation that is syntactic (meaning there is no promise to be satisfied). The
idea is to space out the ni’s so that ni+1 is exponentially larger than ni, and use all the
input lengths from ni to ni+1 − 1 to diagonalize against the ith algorithm Ai. On inputs of
length n ∈ {ni, . . . , ni+1−2} the diagonalizing algorithm copies the behavior of Ai on inputs
of length n + 1, and on inputs of length n = ni+1 − 1 the diagonalizing algorithm “does
the opposite” of Ai on inputs of length ni (by brute force). Thus Ai cannot agree with the
diagonalizing algorithm for all n ∈ {ni, . . . , ni+1 − 1} or we would obtain a contradiction.

The delayed diagonalization technique leads to a straightforward proof of the k = 2 case
of Theorem 2.1, as follows. Let us use D = (D1, D2, . . .) to denote the k-family 0-sampled by

3In general we would talk about [k(ni)], but recall that k is a constant in Theorem 2.1.
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Ai (the algorithm we are diagonalizing against) andD∗ = (D∗
1, D

∗
2, . . .) to denote the k-family

0-sampled by our diagonalizing algorithm. We can let D∗
ni+1−1 be concentrated entirely on

the least likely outcome of Dni
, say M ∈ [2].4 (This is where delayed diagonalization has

an advantage over direct diagonalization: On input ni+1− 1 the diagonalizing algorithm has
enough time to determine M with certainty by brute force, which breaks the “continuity
barrier” that applies to methods that merely sample Dni

.) Now for n = (ni+1 − 2), . . . , ni,
by induction we may assume that PrD∗

n+1
(M) ≥ 1 − ǫ(n + 1)/2 and thus PrDn+1(M) ≥

1/2+ ǫ(n+1)/2 (assuming ‖Dn+1−D∗
n+1‖ ≤ 1/2−ǫ(n+1)).5 By sampling from Dn+1 many

times and taking the majority outcome, we can ensure that PrD∗
n
(M) ≥ 1 − ǫ(n)/2. In the

end we have PrD∗
ni
(M) ≥ 1 − ǫ(ni)/2 while PrDni

(M) ≤ 1/2, which gives a contradiction if

‖Dni
−D∗

ni
‖ ≤ 1/2− ǫ(ni).

This simple argument breaks down when k ≥ 3. Suppose we let D∗
ni+1−1 be concentrated

on M ∈ [k], the least likely outcome of Dni
. If Dni+1−1 is uniform on {1, . . . , k − 1} then

this would be consistent with any M ∈ {1, . . . , k − 1}, since Dni+1−1 would simultaneously
have statistical distance 1−1/(k−1) ≪ 1−1/k from the distributions concentrated on such
M ’s. Note that it is impossible to have statistical distance < 1− 1/k from the distributions
concentrated on all possible M ’s, so Dni+1−1 would be forced to reveal some information
about the correct M , namely it must rule out at least one value.

Tree diagonalization via list-decoding. Here is the first idea we use to fix the above
problem. Instead of using a single input ni to “close the cycle” and obtain a contradiction,
suppose we reserve m inputs ni, ni+1, . . . , ni+m−1 and let Mα be the least likely outcome
of Dni+α for α ∈ {0, 1, . . . , m − 1}. Suppose that on these inputs, our diagonalizing algo-
rithm could somehow obtain (with high probability) a list of m candidates for the sequence
M0,M1, . . . ,Mm−1, where at least one candidate is correct. Then we could have D∗

ni+α put
most of its probability mass on the αth value from the αth candidate sequence. If the αth

candidate sequence is the correct one, then we get PrD∗
ni+α

(Mα) ≥ 1 − ǫ(ni + α)/2 while

PrDni+α(Mα) ≤ 1/k, which gives a contradiction if
∥∥Dni+α −D∗

ni+α

∥∥ ≤ 1− 1/k − ǫ(ni + α).
How do we get a small list of candidates? For some input n∗

i exponentially larger than
ni, suppose we encode the message M0,M1, . . . ,Mm−1 in some way as γ ∈ [k]ℓ and use a
block of ℓ inputs n∗

i , n
∗
i +1, . . . , n∗

i + ℓ−1 to “declare” the codeword γ, by having D∗
n∗
i+j−1 be

concentrated entirely on γj for j ∈ [ℓ].6 Then we are faced with the following communication
problem over a noisy channel: For some smaller inputs n < n∗

i , we would like to recover the
original message so we can “retransmit” it to even smaller inputs (until it eventually reaches
the inputs ni, ni + 1, . . . , ni +m − 1). Our only way to get information about the message
is by sampling from the distributions Dn∗

i+j−1 (for j ∈ [ℓ]), which only weakly reflect the
transmitted codeword (under the assumption that Ai (1 − 1/k − ǫ)-samples D∗). Thus

4M might seem like unusual notation here, but it is convenient in the formal proof, and it stands for
“message”.

5Note that ǫ(n+ 1) is not multiplication; it is the evaluation of the function ǫ on n+ 1.
6For notational reasons, it turns out to be more convenient for us to use 0-based indexing for the sequence

of Mα’s and 1-based indexing for the coordinates of the codeword γ.
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the algorithm Ai being diagonalized against serves as a noisy channel for transmitting the
message from larger inputs to smaller inputs.

As noted above, it is information-theoretically impossible to uniquely recover the original
message when k ≥ 3, but provided we use a suitable encoding we may be able to recover a
small list of candidates. Then for each candidate in the list we could use a disjoint block
of ℓ inputs to retransmit the encoding of that candidate message. More precisely, suppose
there exists a small set S of messages containing the correct one, such that by sampling from
Dn∗

i+j−1 (for j ∈ [ℓ]) we can discover S with high probability. Then for each message in
S we could have a block of ℓ inputs (that are polynomially smaller than n∗

i ) “declare” the
codeword corresponding to that message. Then on even smaller inputs, the diagonalizing
algorithm could sample from D on the inputs in a particular block to recover a small list of
candidates for the message encoded by that block. This leads to a tree structure, illustrated
in Figure 2.1.7 Each node in the tree attempts to transmit a codeword to its children,
after attempting to receive a codeword from its parent by simulating Ai to get samples
from D, and running some sort of list-decoder. Each node can see “which child it is” and
interpret this as advice specifying which message on the list it is responsible for encoding and
transmitting (the hth child is responsible for the lexicographically hth smallest message). The
inputs ni, ni + 1, . . . , ni +m− 1 are the leaves of the tree. The final overall list corresponds
to these leaves; input ni + α would get the αth message of the overall list. So α specifies
a path down the tree, and there must be some path along which the original message is
faithfully transmitted. Provided the tree has height logarithmic in ni and the list at each
node has constant size, the overall list would have size polynomial in ni, and for every input
the diagonalizing algorithm would only need to get polynomially many samples from D on
polynomially larger inputs, and would thus run in polynomial time.

Dealing with random lists and random received words. There are complications with
implementing the above idea. It is too much to hope that when a codeword is transmitted
over the channel, we can recover a unique set S of candidate messages with high probability.
To cut to the chase, what we will be able to guarantee is that there exists a fixed set S of
k − 1 messages (where S depends on the distributions of D on the block we are trying to
receive from) such that we can get a random set of messages T which, with high probability,
contains the correct message and is contained in S. We have no further control over the
distribution of T . When k = 3 this is not a problem: Suppose we use the advice to specify
whether the correct message is lexicographically first or last in S. The child corresponding to
the correct advice will get T = S with some probability, and with the remaining probability
T will contain only the correct message, and in either case the child knows what the correct
message is. The child corresponding to the wrong advice may output garbage, but it does
not matter.

The above argument does not generalize to k ≥ 4. For example, when k = 4 and the
correct message is the middle message in S, if we get |T | = 2 then we do not know whether
the correct message is the first or second message in T . We now describe the key idea to

7The paper [254] uses a similar tree of input lengths but for a different reason.
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solve this problem. For each message in S, consider the probability it is in T . By the
pigeonhole principle, using a constant amount of advice we can identify a significant “gap”
in these probabilities, so that every message in S has probability either above the gap or
below the gap. By taking a certain number of samples of T and intersecting these sets, the
probabilities go down exponentially in the number of samples, so the probabilities below
the gap become vanishingly small while the probabilities above the gap remain very close
to 1. Then by a union bound over the messages in S, we find that with high probability
the intersection of our sampled sets T equals T ∗, the set of messages in S with probabilities
above the gap (which includes the correct message). As described above, since we get the
unique set T ∗ with high probability, we can retransmit the correct codeword provided we
know which message of T ∗ is the correct one. The branching factor of the tree becomes k2

because the advice needs to specify which of k possible “gaps” to use (and thus how many
samples of T to take) as well as the lexicographic index of the correct message within T ∗.8

We now explain the decoding process in more detail. Suppose we are trying to receive
the codeword γ ∈ [k]ℓ transmitted by some block of inputs n, . . . , n+ ℓ− 1. Then for j ∈ [ℓ],
PrD∗

n+j−1
(γj) is close to 1 (assuming we are on the “good” path down the tree) and thus

PrDn+j−1
(γj) is somewhat larger than 1/k (since we are assuming for contradiction that Ai

(1− 1/k− ǫ)-samples D∗). There is some other value κj ∈ [k] such that PrDn+j−1
(κj) < 1/k.

Hence if we repeatedly sample from Dn+j−1 and let ρj ⊆ [k] be the set of values that occur
with frequency at least slightly greater than 1/k in the empirical distribution, then with
high probability we get γj ∈ ρj ⊆ [k]\κj. In general we will not get a unique ρj with high
probability, since under Dn+j−1 some symbols might occur with probability very close to the
threshold used in defining ρj. We view ρ = ρ1 · · · ρℓ as the received word. There is no bound
on the number of “errors” here, but each error is more informative than an erasure (ρj = [k]
would correspond to an erasure). We need a construction of a list-decodable error-correcting
code for this non-traditional setting (which is related to the notion of “list-recovery” from
the list-decoding literature). Our list-decoder is deterministic, but since ρ is random, the list
of messages T is also random. With high probability, T ⊆ S where S is the list of messages
for the received word [k]\κ1 · · · [k]\κℓ.

Constructing the code. By a fairly simple reduction to the traditional setting of list-
decoding, one can use certain known constructions (such as [119]) to handle our non-
traditional setting. We provide a direct, self-contained construction which is tailored to
this setting and is much simpler than the known traditional constructions.

We now discuss our code construction. The codeword for a message is defined by inter-
preting the message as a bit string9 and evaluating all possible surjections f : {0, 1}k−1 → [k]
on all possible sets of k − 1 coordinates of the bit string. It can be shown that this code is
list-decodable in principle (with list size k−1) by using the following lemma: For every set of
k distinct bit strings of the same length, there exist k− 1 coordinates on which they remain
distinct. Our polynomial-time list-decoder uses this lemma in an iterative way, building and

8We actually only need a branching factor of (k−1)2, but for simplicity we round it up to k2 in the proof.
9In the formal proof we actually use m to denote the bit length of the message, rather than the length of

the sequence over [k].
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pruning a set of candidate strings of increasing lengths until it has arrived at the correct set
of messages.

2.3 Proof of Theorem 2.1

As sketched in Section 2.2, the k = 2 case of Theorem 2.1 is a simple application of delayed
diagonalization and estimation by repeated sampling. Henceforth we assume k ≥ 3. We
start by describing a few ingredients we use in the proof.

We need a construction of a code for the following model of error-correction. Codewords
are length-ℓ strings over the alphabet [k], and each coordinate of a codeword can be corrupted
to a subset of [k] containing the correct symbol. More formally, we say a codeword γ ∈ [k]ℓ is
consistent with a received word10 ρ ∈ (P([k]))ℓ if γj ∈ ρj for all j ∈ [ℓ]. A traditional erasure
corresponds to the case ρj = [k], but in our model of error-correction that is forbidden: ρj
must be a strict subset of [k], so each coordinate of the received word is more informative
than an erasure. The tradeoff is that, unlike in traditional error-correction settings, we do
not assume any upper bound on the number of “errors”. We give an elementary construction
of a list-decodable code for this setting.

Theorem 2.3. For every constant k ≥ 3 there exists a polynomial-time encodable code
C : {0, 1}m → [k]ℓ where ℓ = Θk(m

k−1) such that the following holds. For every received
word ρ ∈ (P([k]))ℓ with ρj 6= [k] for all j ∈ [ℓ], there are at most k− 1 messages µ ∈ {0, 1}m
whose codeword C(µ) is consistent with ρ; moreover, the list of all such µ can be found in
polynomial time given ρ.

As mentioned in Section 2.2, an alternative version of Theorem 2.3 (that is adequate for
our purpose) can be derived from sophisticated off-the-shelf components (such as [119]). In
Section 2.4 we give a thorough discussion of the above model of error-correction, describe
the alternative construction, and give our self-contained proof of Theorem 2.3.

Now let A1, A2, A3, . . . be an enumeration of all randomized algorithms that run in time t
and always output an element of [k]. We use a procedure Estimate(Ai, n, ζ, η) which returns
a vector (π1, π2, . . . , πk) ∈ [0, 1]k such that

(i) with probability at least 1− η,
∣∣πκ − Pr(Ai(n) = κ)

∣∣ ≤ ζ for all κ ∈ [k], and

(ii) with probability 1, π1 + π2 + · · ·+ πk = 1.

In other words, it returns a distribution that probably approximates the distribution of Ai(n).
If ζ, η > 0 then by a standard Chernoff bound, Estimate(Ai, n, ζ, η) can be implemented
in time O

(
t(n) · 1

ζ2
log 1

η

)
by simulating Ai(n) O

(
1
ζ2
log 1

η

)
times and taking the empirical

distribution.11 Also, Estimate(Ai, n, 0, 0) can be implemented in time O(t(n) · 2t(n)).
10Recall that P([k]) denotes the power set of [k].
11We are ignoring the logarithmic factor time overhead usually associated with simulating an algorithm

using a universal algorithm.
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Figure 2.1: Tree of input blocks

Algorithm 1 0-samples a k-family D∗ = (D∗
1, D

∗
2, . . .), and we argue below that it runs

in time poly(n). Thus D∗ ∈ SampTimek,0(poly(n)). We now need to prove that D∗ 6∈
SampTimek,1−1/k−ǫ(t). Suppose for contradiction there exists an i such that Ai (1−1/k−ǫ)-
samples D∗. Let D = (D1, D2, . . .) be the k-family that is 0-sampled by Ai. We have
‖Dn −D∗

n‖ ≤ 1− 1/k − ǫ(n) for all n.
The parameters used in Algorithm 1 are defined in Figure 2.2. We use the inputs from

ni through ni+1 − 1 to diagonalize against Ai. The parameters create a tree structure out
of the inputs, illustrated in Figure 2.1. The tree is a full tree with branching factor k2

and depth log2 ni, with the leaves at level b = 0 and the root at level b = log2 ni. Thus
the number of leaves is (k2)log2 ni. Each node of the tree has a contiguous block of inputs
associated to it. Each leaf’s block only consists of a single input, but each internal node’s
block has ℓi inputs, which represent the coordinates of codewords under the code Ci. Level b
of the tree starts at input ni,b = ndb

i . There are (k2)(log2 ni)−b nodes across level b, indexed by
α ∈

{
0, 1, . . . , (k2)(log2 ni)−b−1

}
, and their blocks of inputs Ni,b,α are consecutive from left to

right across the level. Writing α in base k2 allows us to interpret α as specifying a path down
the tree from the root to the current node. The input n1 is an unspecified constant power
of 2, which just needs to be large enough so the blocks Ni,b,α are all disjoint and log2 n1 > 1.
There exists such an n1 since d ≥ 3k log2 k. Hence line 1 of Algorithm 1 will find unique
values i, b, α (if they exist).

The reason we use message lengthmi =
⌈
log2 k

(k2)log2 ni
⌉
is because our messages represent

sequences of length (k2)log2 ni over the alphabet [k] (one symbol for each leaf of the tree).
We assume there is a canonical way of interconverting between sequences of length (k2)log2 ni

over [k] and messages in {0, 1}mi. It is most convenient for us to use 0-based indexing for the
sequences M0,M1, . . . ,M(k2)log2 ni−1 and 1-based indexing for the messages µ = µ1 · · ·µmi

,
codewords C(µ) = C(µ)1 · · ·C(µ)ℓi, and received words ρ = ρ1 · · · ρℓi.

In general, each block of inputs Ni,b,α attempts to “receive” an encoded message via
a noisy channel from its parent block and “send” the re-encoded message to its children
blocks. Lines 3–24 are the receiving phase, and lines 25–32 are the sending phase. The
receiving is different at the root (b = log2 ni) because the algorithm generates the message
directly without receiving it over a noisy channel. The sending is different at the leaves
(b = 0) because instead of sending, the algorithm uses the message to attempt to deliver
the coup de grâce and ensure that Ai fails to (1 − 1/k − ǫ)-sample D∗ if it has not already
failed somewhere along the chain of “transmissions”. The following claim is the heart of the
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Define d =
⌈
max(2c, 3k log2 k)

⌉

For i ∈ N define:

ni =

{
a sufficiently large constant power of 2 if i = 1

nd(log2 ni−1)+1

i−1 if i > 1

mi =
⌈
log2 k

(k2)log2 ni
⌉

ℓi = Θ(mk−1
i ), the codeword length from Theorem 2.3 for message length mi

Ci = {0, 1}mi → [k]ℓi, the code from Theorem 2.3
Deci = the list-decoder from Theorem 2.3

For i ∈ N, b ∈ {0, 1, . . . , log2 ni}, α ∈
{
0, 1, . . . , (k2)(log2 ni)−b − 1

}
, j ∈ [ℓi] define:

ni,b = ndb

i

ni,b,α =

{
ni,b + α if b = 0

ni,b + αℓi if b > 0

ni,b,α,j =

{
undefined if b = 0

ni,b,α + j − 1 if b > 0

Ni,b,α =

{
{ni,b,α} if b = 0

{ni,b,α,1, . . . , ni,b,α,ℓi} if b > 0

Figure 2.2: Notation for Algorithm 1

analysis. It shows that there exists a path down the tree along which the original message
µ∗ (generated by the root) is faithfully transmitted.

Claim 2.4. For every b ∈ {0, 1, . . . , log2 ni} there exists an α ∈
{
0, 1, . . . , (k2)(log2 ni)−b − 1

}

such that for every n ∈ Ni,b,α, with probability ≥ 1− ǫ(n)/2 Algorithm 1 reaches the sending
phase (lines 25–32) and the µ computed in the receiving phase (lines 3–24) equals µ∗ (the
message generated by the root of the tree on line 8).

Claim 2.5. Algorithm 1 runs in time poly(n).

We now show how to finish the proof of Theorem 2.1 given these claims. By Claim 2.5,
D∗ is indeed in SampTimek,0(poly(n)). Consider the good α from Claim 2.4 for b = 0. On
input n = ni,0,α, with probability ≥ 1−ǫ(n)/2 Algorithm 1 reaches the sending phase and the
µ computed in the receiving phase equals µ∗. Thus the sequence M0,M1, . . . ,M(k2)log2 ni−1

found on line 26 is the same as the sequence generated by the root of the tree on lines 4–7.
Hence Mα = argminκ∈[k]

(
PrDn(κ)

)
and in particular PrDn(Mα) ≤ 1/k. Since PrD∗

n
(Mα) ≥

1 − ǫ(n)/2, this contradicts the fact that ‖Dn −D∗
n‖ ≤ 1 − 1/k − ǫ(n) (which follows from

our contradiction assumption). This finishes the proof of Theorem 2.1. All that remains is
to prove Claim 2.4 and Claim 2.5.

Proof of Claim 2.4. By induction on b = log2 ni, . . . , 0. The base case b = log2 ni is trivial
by the definition of µ∗ (with α = 0 and with probability 1, in fact). Now assume b < log2 ni
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Algorithm 1: Diagonalizing algorithm for Theorem 2.1

Input: n ∈ N

Output: an element of [k]

1 find i, b, α such that n ∈ Ni,b,α

2 if such values do not exist then halt and output an arbitrary element of [k]

3 if b = log2 ni then
4 foreach α′ ∈

{
0, 1, . . . , (k2)log2 ni − 1

}
do

5 let (πα′

1 , . . . , πα′

k ) = Estimate(Ai, ni,0,α′, 0, 0)

6 let Mα′ = argminκ∈[k](π
α′

κ ) (breaking ties arbitrarily)

7 end
8 convert the sequence M0,M1, . . . ,M(k2)log2 ni−1 to a bit string µ ∈ {0, 1}mi

9 else

10 write α in base k2: α =
∑(log2 ni)−b−1

τ=0 ατ (k
2)τ where ατ ∈ {0, 1, . . . , k2 − 1}

11 write α0 in base k: α0 = (q − 1)k + (h− 1) where q, h ∈ [k]

12 let α′ =
∑(log2 ni)−b−2

τ=0 ατ+1(k
2)τ

13 let Q =
(
1/ǫ(ni,b+1)

)4q+2

14 foreach r ∈ [Q] do
15 foreach j′ ∈ [ℓi] do
16 let n′ = ni,b+1,α′,j′

17 let (πj′

1 , . . . , π
j′

k ) = Estimate(Ai, n
′, ǫ(n′)/4, η) where η = ǫ(ni,b+1)/4ℓiQ

18 let ρj′ =
{
κ ∈ [k] : πj′

κ ≥ 1/k + ǫ(n′)/4
}

19 end
20 let Tr = Deci(ρ) ⊆ {0, 1}mi where ρ = ρ1 · · · ρℓi ∈ (P([k]))ℓi

21 end

22 if
∣∣T1 ∩ · · · ∩ TQ

∣∣ < h then halt and output an arbitrary element of [k]
23 let µ be the lexicographically hth smallest element of T1 ∩ · · · ∩ TQ

24 end

25 if b = 0 then
26 convert µ to a sequence M0,M1, . . . ,M(k2)log2 ni−1 over [k]

27 halt and output Mα

28 else
29 compute Ci(µ)
30 find j such that n = ni,b,α,j

31 halt and output Ci(µ)j
32 end
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and the claim holds for b+1. Let α′ ∈
{
0, 1, . . . , (k2)(log2 ni)−b−1−1

}
be the good α from the

induction hypothesis. For each n′ ∈ Ni,b+1,α′ , say n′ = ni,b+1,α′,j′, the induction hypothesis
says that on input n′, with probability ≥ 1− ǫ(n′)/2 Algorithm 1 reaches the sending phase
and the µ computed in the receiving phase equals µ∗. Since b + 1 > 0, by lines 28–32 this
implies that D∗

n′ puts ≥ 1 − ǫ(n′)/2 probability mass on Ci(µ
∗)j′. Since ‖Dn′ − D∗

n′‖ ≤
1− 1/k − ǫ(n′), we find that Dn′ puts ≥ 1/k + ǫ(n′)/2 probability mass on Ci(µ

∗)j′.
We show that there exist q, h ∈ [k] such that α = (k2)α′ + α0 satisfies the desired

properties, where α0 = (q − 1)k + (h− 1). For any such α, suppose n ∈ Ni,b,α and consider
Algorithm 1 on input n. Note that α′ computed on line 12 is indeed the α′ from the induction
hypothesis, and the block Ni,b+1,α′ is the parent of the block Ni,b,α in the tree (see Figure 2.1).

Now consider lines 15–19. For any j′ ∈ [ℓi], let us denote n′ = ni,b+1,α′,j′, and let us
define κj′ to be the least likely outcome of Dn′ (breaking ties arbitrarily). Then Dn′ puts
≥ 1/k+ ǫ(n′)/2 probability mass on Ci(µ

∗)j′ and < 1/k probability mass on κj′. Hence with
probability ≥ 1− η over the estimation on line 17,

πj′

Ci(µ∗)j′
≥

(
1/k + ǫ(n′)/2

)
− ǫ(n′)/4 = 1/k + ǫ(n′)/4

and πj′

κj′
< 1/k + ǫ(n′)/4 and thus

Ci(µ
∗)j′ ∈ ρj′ ⊆ [k]\κj′. (2.1)

Note that with probability 1 we have ρj′ 6= [k] for all j′ and thus ρ is a valid received word.
For any r ∈ [Q], let Er be the event (depending on the randomness of lines 15–19) that
Equation (2.1) holds for all j′ (in the rth iteration of the loop on line 14). We have

Pr(Er) ≥ (1− η)ℓi ≥ 1− ηℓi. (2.2)

Now define
S = Deci

(
[k]\κ1 · · · [k]\κℓi

)
⊆ {0, 1}mi

and note that |S| ≤ k−1. Conditioned on Er, we have µ
∗ ∈ Tr ⊆ S (since Ci(µ

∗) is consistent
with ρ, and all codewords consistent with ρ are also consistent with [k]\κ1 · · · [k]\κℓi). Note
that for different r’s, Tr conditioned on Er are independent and identically distributed. For
each σ ∈ S let us define pσ to be the probability that σ ∈ Tr conditioned on Er. Note that
pµ∗ = 1 and since |S| ≤ k− 1, by the pigeonhole principle there exists a q ∈ [k] such that for
every σ ∈ S, either pσ ≥ exp

(
− (ǫ∗)4q+4

)
or pσ < exp

(
− (ǫ∗)4q

)
where ǫ∗ = ǫ(ni,b+1). We

fix this value of q and the corresponding value Q = (1/ǫ∗)4q+2. For each σ ∈ S, we have

Pr
(
σ ∈ T1 ∩ · · · ∩ TQ

∣∣ E1 ∩ · · · ∩ EQ

)
= (pσ)

Q

and we have either
(pσ)

Q ≥ exp
(
− (ǫ∗)2

)
≥ 1− ǫ(n)/4k

or
(pσ)

Q < exp
(
− (1/ǫ∗)2

)
≤ ǫ(n)/4k
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regardless of which n ∈ Ni,b,α we are considering.12 Defining

T ∗ =
{
σ ∈ S : (pσ)

Q > 1/2
}
,

by a union bound over σ ∈ S we find that

Pr
(
(T1 ∩ · · · ∩ TQ) = T ∗ ∣∣ E1 ∩ · · · ∩ EQ

)
≥ 1− ǫ(n)/4. (2.3)

Since (pµ∗)Q = 1 > 1/2, we have µ∗ ∈ T ∗. Now we fix h ∈ [k] to be such that µ∗ is
the lexicographically hth smallest element of T ∗. Then when (T1 ∩ · · · ∩ TQ) = T ∗, we have∣∣T1 ∩ · · · ∩ TQ

∣∣ ≥ h and so Algorithm 1 reaches the sending phase, and the µ computed in
the receiving phase equals µ∗, as desired. Thus for every n ∈ Ni,b,α where α = (k2)α′ + (q −
1)k + (h− 1) we have

Pr
(
Algorithm 1 reaches the sending phase with µ = µ∗)

≥ Pr
(
(T1 ∩ · · · ∩ TQ) = T ∗)

≥ Pr
(
E1 ∩ · · · ∩ EQ

)
· Pr

(
(T1 ∩ · · · ∩ TQ) = T ∗ ∣∣ E1 ∩ · · · ∩ EQ

)

≥
(
1− ηℓiQ

)
·
(
1− ǫ(n)/4

)

≥ 1− ǫ(n)/2

where the fourth line follows by Inequality (2.2) and Inequality (2.3), and the fifth line follows
by ηℓiQ = ǫ(ni,b+1)/4 ≤ ǫ(n)/4 (where η is as on line 17 of Algorithm 1). This finishes the
proof of Claim 2.4.

Proof of Claim 2.5. Line 1 can be done in poly(n) time by direct computation. If b = log2 ni

then
n ≥ ndlog2 ni

i = 2n
log2 d
i log2 ni ≥ 2n

c
i log2 ni

since d ≥ 2c, and so the number of iterations on line 4 is polylog(n) and the computation on
line 5 takes time O(t(ni) · 2t(ni)) = O(nc

i · 2n
c
i ) ≤ poly(n). Suppose b < log2 ni. Lines 10–13

are simple calculations, and we have Q ≤
(
1/ǫ(nd)

)4k+2 ≤ poly(n) since ni,b+1 = nd
i,b ≤ nd.

We also have mi, ℓi ≤ poly(ni) ≤ poly(n) and so the loops on lines 14 and 15 have poly(n)
iterations. For lines 16 and 17, we have n′ ≤ nd2

i,b ≤ nd2 and ǫ(n′)/4 ≥ 1/ poly(n) and
η ≥ 1/ poly(n) ≥ 1/ exp(poly(n)) so the Estimate procedure takes time poly(n). The
list-decoding on line 20 takes time poly(mi) ≤ poly(n). The sending phase (lines 25–32)
trivially takes time poly(n) since Ci is polynomial-time encodable. Overall, the running
time is poly(n).

2.4 List-Decoding from Ubiquitous Informative Errors

In Section 2.4.1 we discuss the model of error-correction used in the proof of Theorem 2.1.
Then in Section 2.4.2 we give our self-contained proof of Theorem 2.3.

12We can assume without loss of generality that c is large enough in terms of k for these inequalities to
hold (recall that ǫ(n) = 1/nc).
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2.4.1 Discussion of the Model of Error-Correction

Recall that in our model of error-correction, the received word is ρ ∈ (P([k]))ℓ where each
ρj 6= [k], and the goal is to find the list of all messages whose codeword γ ∈ [k]ℓ is consistent
with ρ in the sense that γj ∈ ρj for all j ∈ [ℓ].

We first remark that in this setting, it can be assumed without loss of generality that
|ρj | = k − 1 for all j ∈ [ℓ] (since we can always enlarge each coordinate of the received word
to a superset of size k − 1, then find all the relevant messages, and then output only those
messages whose codeword is consistent with the original received word). However, the way
we have described the code is more convenient for our application.

Our setting is related to the notion of “list-recoverable” codes which has been studied
in the list-decoding literature. In list-recovery, each coordinate of the received word is a
set of symbols, but there are several differences from our setting. We allow each coordinate
of the received word to be as large as possible without becoming an erasure, whereas in
list-recovery each coordinate is usually restricted to be a fairly small set. Also, sometimes in
list-recovery a small fraction of coordinates of the received word are allowed to violate the
size restriction and become erasures. Also, in list-recovery the correct codeword is sometimes
only guaranteed to agree with many coordinates of the received word, whereas we assume it
agrees with all coordinates.

A simple application of the probabilistic method shows that if we drop the requirement
that the encoding and list-decoding can be done in polynomial time, then there exist codes
for our model with list size k−1 (where k is the alphabet size) and codeword length ℓ = Θ(m)
(where m is the message length and the hidden constant depends on k). In other words,
there exist codes with ℓ = Θ(m) such that for every set of k codewords, there exists a
coordinate on which each element of [k] appears exactly once among the k codewords. We
are not aware of explicit constructions of such codes with ℓ = Θ(m), but the polynomial
length in Theorem 2.3 is good enough for our purpose.

For our application in Theorem 2.1, we do not need the list size to be k−1, as long as it is a
constant depending on k. Such codes for our setting follow from certain known constructions
of traditional list-decodable codes. A code is said to be (β, L)-list-decodable if for every
received word in [k]ℓ, there are at most L codewords at relative Hamming distance ≤ β, and
the list of all such codewords can be found in polynomial time. Every (1 − 1/(k − 1), L)-
list-decodable code is also list-decodable under our model with list size (k − 1)L: Given a
received word ρ ∈ (P([k]))ℓ where each |ρj| = k − 1, we can form new “received words”
ρ(1), . . . , ρ(k−1) by letting ρ(g) ∈ [k]ℓ consist of the gth smallest symbol in each coordinate of
ρ. Since a codeword consistent with ρ must have relative Hamming distance ≤ 1− 1/(k− 1)
from some ρ(g), running the traditional list-decoder on each ρ(g) will reveal all the codewords
consistent with ρ.

For a traditional list-decodable code construction to be used for our application via
the above connection, there are several properties it should satisfy: (i) It should work for
constant-size alphabets (some constructions only work for large alphabets). (ii) It should
work for every constant-size alphabet (some constructions require the alphabet to be a
finite field). (iii) The list size should be a constant depending on the alphabet size (some
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constructions have list size polynomial in the message length). Property (iii) is crucial, but
in some cases violations of (i) and (ii) may be fixable by concatenation with a brute-force
code.

The construction of Guruswami and Indyk [119], which uses expanders and spectral
techniques, satisfies all these properties and is (β, L)-list-decodable with L = O

(
1/(1 −

1/k − β)3
)
assuming β < 1 − 1/k. Taking β = 1 − 1/(k − 1), the list size is O(k6), which

becomes O(k7) after applying the reduction from our setting. The list-decoder is randomized,
but that is not a problem for our application in the proof of Theorem 2.1. Thus the result of
[119] yields an alternative version of Theorem 2.3 that is sufficient for our application. This
alternative construction has the following advantages: The codeword length is Θ(m), and the
encoding and list-decoding can be done in linear time. But it has the following disadvantages:
The list size is O(k7) rather than the optimal k − 1, the list-decoder is randomized, and the
proof is much more complicated than our proof of Theorem 2.3. Although it is convenient
to use this off-the-shelf machinery, our code construction demonstrates that such machinery
is overkill and that elementary techniques suffice.

We now mention an interesting contrast between our setting and the traditional error-
correction setting. In the traditional setting, many code constructions are linear (assuming
the alphabet is a finite field). In our model of error-correction, linear codes cannot achieve
the optimal list size of k − 1 (where k is the alphabet size). Here is a counterexample.
Recall that the property for achieving optimal list size is that for every set of k codewords,
there exists a coordinate on which all k symbols appear among those codewords. Suppose
the alphabet is GF (5), and let x1, x2, x3, x4 be any linearly independent message vectors,
and let x5 = 3 × x1 + x2 + x3 + x4. Then for any given coordinate of the codewords, if
y1, ..., y5 ∈ GF (5) are the symbols of the codewords in that coordinate, then they must
satisfy y5 = 3× y1 + y2 + y3 + y4 if the code is linear. It can be verified by brute force that
this particular relation over GF (5) forces two of the yi’s to be equal.

2.4.2 Proof of Theorem 2.3

Before giving our construction of a code C satisfying the properties in Theorem 2.3, we give
a key lemma.

2.4.2.1 A Combinatorial Lemma

For a set S and number a, we let
(
S
a

)
denote the set of all subsets of S of size a. For a string

σ ∈ {0, 1}b and i ∈ [b] and I ⊆ [b], we let σi denote the i
th bit of σ, and we let σI denote the

length-|I| string consisting of the bits of σ indexed by I.

Lemma 2.6. For all 1 ≤ a ≤ b and every set of distinct strings σ1, . . . , σa ∈ {0, 1}b, there
exists an I ∈

(
[b]
a−1

)
such that σ1

I , . . . , σ
a
I ∈ {0, 1}a−1 are distinct.

Proof. By induction on a, with a = 1 and a = 2 being trivial. Suppose a ≥ 3. By the
induction hypothesis there exists an I ′ ∈

(
[b]
a−2

)
such that σ1

I′ , . . . , σ
a−1
I′ are distinct. If σa

I′

is different from each of σ1
I′ , . . . , σ

a−1
I′ then we can take an arbitrary I ⊇ I ′ of size a − 1.
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Otherwise, σa
I′ = σh

I′ for exactly one h ∈ [a − 1]. Since σa 6= σh, there exists an i ∈ [b]\I ′
such that σa

i 6= σh
i , and we can take I = I ′ ∪ {i}.

It is not difficult to see that the a− 1 bound in Lemma 2.6 is tight (there do not always
exist a−2 coordinates on which a distinct bit strings remain distinct). We remark in passing
that Lemma 2.6 can be viewed in terms of a certain “dual” of VC-dimension: While the VC-
dimension of a set of bit strings is the size of a largest set of coordinates on which every
pattern appears at least once, we are interested in the size of a smallest set of coordinates
on which every pattern appears at most once.

2.4.2.2 Code Construction

We now give our construction of the code C for an arbitrary constant k ≥ 3 and message
length m ≥ k. By convention we use the notation µ ∈ {0, 1}m for messages, γ ∈ [k]ℓ for
codewords, and ρ ∈ (P([k]))ℓ for received words.

We define Surjk to be the set of all surjections f : {0, 1}k−1 → [k]. The coordinates of a
codeword are indexed by

(
[m]
k−1

)
×Surjk, in other words by pairs I, f where I is a subset of [m]

of size k − 1 and f : {0, 1}k−1 → [k] is a surjection. We let ℓ =
∣∣( [m]

k−1

)
× Surjk

∣∣ = Θ(mk−1),

and we define the code C : {0, 1}m → [k]ℓ by

C(µ) =
(
f(µI)

)
I∈( [m]

k−1), f∈Surjk
.

In other words, the I, f coordinate of the codeword is the evaluation of f on the bits of the
message indexed by I. Encoding can clearly be done in polynomial time.

It just remains to exhibit a polynomial-time list-decoder for C. Let us fix an arbitrary
received word ρ ∈ (P([k]))ℓ with ρI,f 6= [k] for all I, f . We need to show that there are
at most k − 1 messages whose codewords are consistent with ρ, and that moreover, these
messages can be found in polynomial time given ρ.

For each I ∈
(
[m]
k−1

)
we define List(ρ, I) to be the set of all σ ∈ {0, 1}k−1 such that

f(σ) ∈ ρI,f for all f ∈ Surjk. Note that the set List(ρ, I) can be found efficiently given ρ and
I by trying all possibilities.

Observation 2.7. If µ ∈ {0, 1}m is such that C(µ) is consistent with ρ, then for all I ∈(
[m]
k−1

)
, µI ∈ List(ρ, I).

Lemma 2.8. For all I ∈
(
[m]
k−1

)
, |List(ρ, I)| ≤ k − 1.

Proof. Consider any set of k distinct strings σ1, . . . , σk ∈ {0, 1}k−1. There exists an f ∈ Surjk
such that

{
f(σ1), . . . , f(σk)

}
= [k].13 Therefore since ρI,f 6= [k] there exists an h ∈ [k] such

that f(σh) 6∈ ρI,f , which implies that σh 6∈ List(ρ, I).

13Because of this, we do not actually need to use all possible surjections in the definition of the code C.
We can instead use any collection of functions with the property that for every set of k distinct strings in
{0, 1}k−1, there exists a function in the collection that assigns each of the k strings a different value.
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Algorithm 2: List-decoder for Theorem 2.3

Input: ρ ∈ (P([k]))ℓ with ρI,f 6= [k] for all I, f
Output: set of all µ ∈ {0, 1}m such that C(µ) is consistent with ρ

1 let Sk−1 = List(ρ, [k − 1])
2 foreach n = k, . . . , m do
3 suppose Sn−1 =

{
σ1, . . . , σ|Sn−1|

}
⊆ {0, 1}n−1

4 find an I ∈
(
[n−1]
k−2

)
such that σ1

I , . . . , σ
|Sn−1|
I are distinct

5 let Sn =
{
s ∈ {0, 1}n : s[n−1] ∈ Sn−1 and sI∪{n} ∈ List(ρ, I ∪ {n})

}

6 end
7 output the set of all µ ∈ Sm such that C(µ) is consistent with ρ

Now to see that C is list-decodable in principle, suppose for contradiction that there are k
distinct messages µ1, . . . , µk whose codewords are all consistent with ρ. Applying Lemma 2.6
with a = k and b = m, there exists an I ∈

(
[m]
k−1

)
such that µ1

I , . . . , µ
k
I are distinct. But for all

h ∈ [k], we have µh
I ∈ List(ρ, I) by Observation 2.7. Thus List(ρ, I) ≥ k, which contradicts

Lemma 2.8. Hence for our arbitrary received word ρ, there are at most k−1 messages whose
codewords are consistent with ρ. Algorithm 2 finds this list of messages in polynomial time
given ρ. The correctness of the algorithm follows immediately from the following claim and
line 7 of the algorithm.

Claim 2.9. For all n = (k − 1), . . . , m, the following three properties hold: Sn ⊆ {0, 1}n,
|Sn| ≤ k−1, and for every µ ∈ {0, 1}m such that C(µ) is consistent with ρ we have µ[n] ∈ Sn.

Proof. By induction on n. The base case n = k − 1 is immediate from Lemma 2.8 and
Observation 2.7, so assume n ≥ k and the claim holds for n−1. By the induction hypothesis,
|Sn−1| ≤ k − 1 and so line 4 of the algorithm will succeed by Lemma 2.6 (with a = |Sn−1|
and b = n− 1).

We now verify the three properties of Sn. The property Sn ⊆ {0, 1}n is immediate. To see
that |Sn| ≤ k− 1, suppose for contradiction that there are k distinct strings s1, . . . , sk ∈ Sn.
Then since |List(ρ, I ∪ {n})| ≤ k − 1 (by Lemma 2.8) and shI∪{n} ∈ List(ρ, I ∪ {n}) for

all h ∈ [k], there must exist h1 6= h2 such that sh1

I∪{n} = sh2

I∪{n}. Since sh1

[n−1], s
h2

[n−1] ∈ Sn−1

and sh1
I = sh2

I , we must have sh1

[n−1] = sh2

[n−1] = σh for some h. But now sh1

[n−1] = sh2

[n−1] and

sh1
n = sh2

n , which contradicts our assumption that sh1 and sh2 are distinct. Thus we have
verified that |Sn| ≤ k − 1. To verify the third property, consider an arbitrary µ ∈ {0, 1}m
such that C(µ) is consistent with ρ. By the induction hypothesis, µ[n−1] ∈ Sn−1, and by
Observation 2.7, µI∪{n} ∈ List(ρ, I ∪ {n}). By line 5 of the algorithm, this means that
µ[n] ∈ Sn.

We now discuss the running time of the algorithm. Line 4 can be implemented in poly-
nomial time since an efficient algorithm for finding I can be gleaned from the proof of
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Lemma 2.6 (or less elegantly, since k is a constant, we can just try all possible subsets of
size k − 2). Line 5 can be implemented efficiently by looking at each string in Sn−1 and
considering extending it with each possible symbol in [k] and checking whether the I ∪ {n}
coordinates form a string in List(ρ, I ∪ {n}). Line 7 runs in polynomial time since C is
efficiently encodable and consistency is easy to check.

Since our list-decoding algorithm is correct and runs in polynomial time, this completes
the proof of Theorem 2.3.
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Part II

The Algorithm’s Output is Random
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Chapter 3

Pseudorandom Generators for
Combinatorial Checkerboards

3.1 Introduction

A central question in the theory of computation is whether randomized algorithms are more
powerful than deterministic algorithms. Some computational problems, such as testing
whether a succinctly described polynomial is the zero polynomial, have efficient random-
ized algorithms but are not known to have efficient deterministic algorithms. On the other
hand, a line of research in complexity theory [201, 22, 144, 238, 143, 229, 248] has shown
that under widely believed conjectures (namely the existence of nonuniformly hard func-
tions in certain uniform complexity classes), every polynomial-time randomized algorithm
solving a decision problem can be derandomized to yield a polynomial-time deterministic al-
gorithm solving the same decision problem. These proofs proceed by using the hypothesized
hard function to construct an efficient pseudorandom generator, which is an algorithm that
stretches a short truly random string (the seed) to a long “pseudorandom” string that is
indistinguishable from a long truly random string by any efficient algorithm. Provided the
seed is short enough, one can then cycle over all the seeds in polynomial time, running the
randomized algorithm using the output of the pseudorandom generator for the randomness,
to get a polynomial-time deterministic algorithm for the same decision problem.

Unfortunately, there are no known results that shed light on how to unconditionally con-
struct pseudorandom generators that fool arbitrary polynomial-time randomized algorithms.
Furthermore, there is formal evidence suggesting that unconditionally derandomizing arbi-
trary polynomial-time algorithms is far beyond the reach of current techniques, even if we
do not insist on using a pseudorandom generator [139, 138, 3, 100].

In light of these barriers, a natural goal is to unconditionally construct pseudorandom
generators with good seed lengths for restricted classes of functions. One such class of
functions is those computed by small-width read-once branching programs, which model ran-
domized space-bounded computations. The theory of pseudorandomness for space-bounded
computations has a long and rich history [4, 23, 198, 197, 199, 200, 202, 142, 223, 16, 14,
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212, 56, 218, 222, 86, 220, 187, 172, 40, 52, 53, 235, 163, 109, 66], including very general
results as well as improved results for special cases. One such special case is linear functions
over Z2 [195, 8, 193]. Pseudorandom generators for this class of functions are called small-
bias generators. It is known how to construct small-bias generators whose seed lengths are
optimal up to constant factors [195, 8]. Another special case that has been considered is
combinatorial rectangles [83, 169, 15, 174].

We consider the problem of constructing an explicit pseudorandom generator for a new
class of functions, which we dub combinatorial checkerboards. These functions can be viewed
as

• a special case of small-width read-once branching programs,

• a generalization of linear functions over Z2, and

• a variant of combinatorial rectangles.

Other classes of functions for which constructions of good pseudorandom generators are
known include juntas [195, 8], constant-depth circuits [5, 196, 182, 181, 160, 243, 259, 31,
216, 51, 67, 171], low-degree polynomials [182, 259, 39, 47, 170, 260], polynomial threshold
functions [72, 188, 110, 127, 73], and read-once formulas [42].

3.1.1 Combinatorial Checkerboards

We give four equivalent ways of defining combinatorial checkerboards, which are parameter-
ized by two positive integersm and d. Recall that [m] denotes the set of integers {1, 2, . . . , m}.
For us, it is not important that the elements are integers; we only use [m] as an arbitrary
set of size m.

(1) A combinatorial checkerboard can be defined as a subset of [m]d of the following form.
There are sets S1, . . . , Sd ⊆ [m] such that a point (u1, . . . , ud) ∈ [m]d is in the checker-
board if and only if the number of coordinates i such that ui ∈ Si is odd. (See
Figure 3.1, and note that unlike the example in the figure, the set Si need not be a
contiguous interval.) In contrast, a combinatorial rectangle can be defined similarly
but where a point is in the rectangle if and only if ui ∈ Si holds for all coordinates i.

(2) A combinatorial checkerboard can be defined as a function from [m]d to {0, 1} computed
by a width-2 length-d degree-m layered branching program of the following form. At
layer i ∈ {1, . . . , d}, the branching program reads the ith symbol of the input and
transitions to layer i + 1, and the set of symbols that cause it to cross from top to
bottom is the same as the set of symbols that cause it to cross from bottom to top
(call this set Si). The start state is the bottom node in layer 1, and the accept state
is the top node in layer d+ 1. (See Figure 3.2.) In contrast, a combinatorial rectangle
can be defined similarly but where the start state and the accept state are both on
top, and at layer i ∈ {1, . . . , d}, the bottom node transitions to the bottom node in
layer i + 1 no matter what the ith symbol is (while the behavior at the top node is
arbitrary).
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(3) A combinatorial checkerboard can be defined as a function from [m]d to {0, 1} computed
by a circuit of the following form. There are d input wires, each carrying a symbol
in [m]. Each input wire feeds into a “gate” that computes an arbitrary function from
[m] to {0, 1}, and the resulting d bits are fed into an XOR gate. (See Figure 3.3.) In
contrast, a combinatorial rectangle can be defined similarly but where the XOR gate
is replaced with an AND gate.

(4) A combinatorial checkerboard can be defined as a function from [m]d to {1,−1} com-
puted by a circuit of the following form. There are d input wires, each carrying a
symbol in [m]. Each input wire feeds into a “gate” that computes an arbitrary func-
tion from [m] to {1,−1}, and the resulting d numbers are fed into a multiplication
gate. (See Figure 3.4.) In contrast, a combinatorial rectangle can be defined similarly
but where {1,−1} is replaced with {0, 1}.

For the rest of this chapter, we adopt the fourth view.

Definition 3.1 (Combinatorial Checkerboards). We say f : [m]d → {1,−1} is an
(m, d)-checkerboard if it is of the form f(u1, . . . , ud) =

∏
i∈[d] fi(ui) for some functions

fi : [m] → {1,−1}. We denote this as f =
⊗

i∈[d] fi.
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Definition 3.2 (Pseudorandom Generators). Let C be a class of functions from some
finite universe U to {1,−1}. We say G : {0, 1}s → U is an ǫ-pseudorandom generator for
C if for all f ∈ C,

∣∣Er∈{0,1}s
[
f(G(r))

]
− Eu∈U [f(u)]

∣∣ ≤ ǫ where r and u are both chosen
uniformly at random. We say s is the seed length of G.

3.1.2 Our Result

The rest of this chapter is devoted to proving the following theorem.

Theorem 3.3. There exists an explicit ǫ-pseudorandom generator for the class of (m, d)-
checkerboards with seed length O

(
logm+ log d · log log d+ log3/2 1

ǫ

)
.

Informally, when we say explicit we mean that an efficient algorithm with the desired
behavior is exhibited. (We do not attempt to exactly quantify the time or space efficiency
parameters throughout this chapter.) In the case of Theorem 3.3, the precise meaning is
that there exists a uniform deterministic algorithm A that takes as input the parameters
m, d, ǫ and a string in {0, 1}s (where s is the seed length), outputs an element of [m]d, runs
in time poly

(
logm+ d+ log 1

ǫ

)
, and is such that for all m, d, ǫ the function A(m, d, ǫ, ·) is an

ǫ-pseudorandom generator for the class of (m, d)-checkerboards. A simple probabilistic argu-
ment shows that O

(
logm+ log d+ log 1

ǫ

)
seed length can be achieved if we allow nonexplicit

pseudorandom generators.
Impagliazzo, Nisan, andWigderson [142] proved a result for small-width read-once branch-

ing programs which in particular gives an explicit ǫ-pseudorandom generator for (m, d)-
checkerboards with seed length O

(
logm + log2 d + log d · log 1

ǫ

)
. Our seed length is bet-

ter except when 1
ǫ
≥ dω(log d). If m is a power of 2, then an (m, d)-checkerboard can be

viewed as a polynomial over Z2 of degree at most log2m with d · log2m variables (since

each fi can be viewed as an arbitrary function from Z
log2 m
2 to Z2). Viola [260] constructed

an ǫ-pseudorandom generator for n-variable, degree-k polynomials over Z2 with seed length
O
(
k · logn+2k ·k · log 1

ǫ

)
, which yields an ǫ-pseudorandom generator for (m, d)-checkerboards

with seed length O
(
logm · log d+m · logm · log 1

ǫ

)
, assuming m is a power of 2.1 The latter

seed length is optimal when m is constant but has very poor dependence on m. If m = 2,
then the degree of the polynomial becomes 1 (that is, a (2, d)-checkerboard is equivalent to a
d-variable affine function over Z2) and the result of [260] degenerates to known constructions
of small-bias generators, which have seed length O

(
log d+ log 1

ǫ

)
.

In concurrent and independent work, Gopalan et al. [109] constructed pseudorandom gen-
erators for what they call combinatorial shapes, which are more general than combinatorial
checkerboards. Their result immediately implies a version of Theorem 3.3 with seed length
O
(
logm+ log d+ log2 1

ǫ

)
, which is incomparable to our seed length. One of the components

of our proof (Lemma 3.14 in Section 3.3.1 below) contributes O
(
logm+ log d · log log d

)
to

our seed length, and replacing this particular component with the result of [109] reduces the

1In the proof of Theorem 3.3, we show that we can assume without loss of generality that m is a power
of 2. However, this is not without loss of generality when we apply the result of [260], because the reduction
to the power-of-2 case blows up m to at least 4md/ǫ.

35



contribution to O
(
logm + log d

)
(however, the construction of [109] is much more compli-

cated than our construction for this component). In turn, this implies that Theorem 3.3
actually holds with seed length O

(
logm+ log d+ log3/2 1

ǫ

)
.

For comparison, we mention what is known for combinatorial rectangles. The two best
generators (which have incomparable seed lengths) are due to Impagliazzo, Nisan, and
Wigderson [142], who achieved seed length O

(
logm + log2 d + log d · log 1

ǫ

)
, and Lu [174],

who achieved seed length O
(
logm + log d + log3/2 1

ǫ

)
. The latter result is better than the

former except when 1
ǫ
≥ dω(log d).

3.1.3 Overview of the Proof

We partition the set of (m, d)-checkerboards into a “high-weight case” and a “low-weight
case”. We construct a generator that fools high-weight checkerboards and a different gener-
ator that fools low-weight checkerboards, and we combine the two generators to get a single
generator that fools all checkerboards. (This technique has been used before, for example in
[193, 172].) We now give our definition of the weight of a checkerboard.

Definition 3.4 (Bias and Unbias). The bias of f : U → {1,−1} is β(f) =
∣∣Eu∈U [f(u)]

∣∣
where u is chosen uniformly at random, and the unbias is α(f) = 1− β(f).

Definition 3.5 (Weight). The weight of an (m, d)-checkerboard f =
⊗

i∈[d] fi is defined

to be
∑

i∈[d] α(fi).

Observation 3.6. If f1, . . . , fd, f
′
1, . . . , f

′
d : [m] → {1,−1} are such that

⊗
i∈[d] fi =

⊗
i∈[d] f

′
i

then for each i ∈ [d] we have fi = ±f ′
i and thus α(fi) = α(f ′

i). In particular, the weight of
an (m, d)-checkerboard is independent of the representation as a tensor product.

The real difficulty in proving Theorem 3.3 stems from the fact that the biases β(fi) are
arbitrary numbers in [0, 1]. If we knew that each bias β(fi) were either 0 or 1, then the
techniques of [172, 163] would translate straightforwardly to our setting: The techniques of
[172] would immediately yield a pseudorandom generator with seed length O

(
logm · log 1

ǫ
+

log d+log 1
ǫ
· log log 1

ǫ

)
, and the techniques of [163] would immediately yield a pseudorandom

generator with seed length O
(
logm+ log d · log 1

ǫ

)
.

For the known results on combinatorial rectangles [83, 169, 15, 174], there is an analogous
(but different) notion of “bias”, and these results give techniques for handling arbitrary biases
in [0, 1]. We adapt these techniques to fool low-weight checkerboards. However, in the case
of combinatorial rectangles, there basically is no “high-weight case” — to fool high-weight
rectangles it suffices to fool low-weight rectangles. In our setting we are not so fortunate, and
we must do something genuinely different to fool high-weight checkerboards. To accomplish
the latter, we build on the techniques of Lovett, Reingold, Trevisan, and Vadhan [172].

The threshold we use to distinguish “high-weight” from “low-weight” is Θ
(
log 1

ǫ

)
.
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Lemma 3.7 (High-Weight Case). There exists a universal constant C such that the fol-
lowing holds. There exists an explicit ǫ-pseudorandom generator for the class of (m, d)-
checkerboards of weight at least C · log2 1

ǫ
with seed length O

(
logm+ log d · log log d+ log 1

ǫ
·

log log 1
ǫ

)
, provided m and d are powers of 2.

Lemma 3.8 (Low-Weight Case). There exists an explicit ǫ-pseudorandom generator for
the class of (m, d)-checkerboards of weight less than C · log2 1

ǫ
with seed length O

(
logm +

log d+log3/2 1
ǫ

)
, provided m and d are powers of 2, where C is the constant from Lemma 3.7.

We derive Theorem 3.3 from Lemma 3.7 and Lemma 3.8 in Section 3.2. This just amounts
to showing that (i) we can assume without loss of generality that m and d are powers of 2,
and (ii) the two generators can be combined to fool all checkerboards. Both are simple and
standard; we include the arguments for completeness.

We prove Lemma 3.7 in Section 3.3. Here is the outline of the proof. Suppose we can
construct a generator with seed length O

(
logm+log d·log log d

)
that fools, within a constant,

checkerboards of at least constant weight. Then we can use the following technique of [172]
to get the final generator. First use a hash function to randomly partition the coordinates
into a small number of buckets such that most buckets have at least constant weight. Then
apply the hypothesized generator to each bucket, but instead of using independent seeds
for the different instantiations of the hypothesized generator, sample the seeds from an
appropriate pseudorandom distribution. This technique of [172] only contributes an additive
O
(
log d+ log 1

ǫ
· log log 1

ǫ

)
to the seed length. Thus we just need to be able to fool, within a

constant, checkerboards of at least constant weight. The heart of our proof of Lemma 3.7 is
a new analysis of the generator of Impagliazzo, Nisan, and Wigderson [142] showing that for
this special case, it suffices to use expander graphs of degree polylog d. In [172], the analysis
of the corresponding part of the argument is considerably simpler because the authors exploit
the fact that in their setting, the bias of each coordinate is either 0 or 1.

We prove Lemma 3.8 in Section 3.4. We take as a starting point the techniques of [15, 174].
Numerous small modifications to these techniques are needed. One bigger modification is
the following. Lu’s proof [174] critically makes use of the Bonferroni inequalities, which
state that the probability of a union of events is alternately upper and lower bounded by the
successive truncations of the inclusion-exclusion formula. In our proof we use an alternative
analogous principle which is a bit tougher to prove than the Bonferroni inequalities, but
which follows from elementary combinatorial techniques, and which may be folklore.

3.1.4 Preliminaries

Before diving into the proofs, we mention some conventions that we use for convenience
throughout the proofs. We identify {0, 1}s with [2s], and we always use the latter notation.
Thus for example, a pseudorandom generator with seed length s is a function with domain
[2s]. We may also identify [2s] with [2s1] × [2s2] if s = s1 + s2. We also freely flatten
trees of Cartesian products of sets; for example, we identify

(
(U1 × U2) × (U3 × U4)

)
with

U1 × U2 × U3 × U4.
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3.2 Deriving Theorem 3.3 from Lemma 3.7 and Lemma

3.8

In this section we prove Theorem 3.3.

Definition 3.9. We say π : [m]× [m] → [m] is a quasigroup operation if for every v ∈ [m],
the mappings u 7→ π(u, v) and u 7→ π(v, u) are both permutations.

Definition 3.10. We say a class C of (m, d)-checkerboards is closed under permutations
if the following holds. For all functions f1, . . . , fd : [m] → {1,−1} and all permutations
p1, . . . , pd : [m] → [m], if

⊗
i∈[d] fi ∈ C then

⊗
i∈[d](fi ◦ pi) ∈ C.

Definition 3.11. Given π : [m] × [m] → [m] and G1 : [2s1] → [m]d and G2 : [2s2] → [m]d,
we define

(
G1 +π G2

)
: [2s1]× [2s2] → [m]d by
(
G1 +π G2

)
(r1, r2)i = π

(
G1(r1)i, G2(r2)i

)

for i ∈ [d].

Proposition 3.12. Suppose π : [m]× [m] → [m] is a quasigroup operation, and suppose C1
and C2 are two classes of (m, d)-checkerboards both closed under permutations. If G1 : [2

s1 ] →
[m]d is an ǫ-pseudorandom generator for C1 and G2 : [2s2 ] → [m]d is an ǫ-pseudorandom
generator for C2, then G = G1 +π G2 is an ǫ-pseudorandom generator for C1 ∪ C2.
Proof. Consider an arbitrary f ∈ C1 ∪ C2. Assume f ∈ C1; the other case is symmetric. To
show that ∣∣∣Er1∈[2s1 ],r2∈[2s2 ]

[
(f ◦G)(r1, r2)

]
− Eu∈[m]d[f(u)]

∣∣∣ ≤ ǫ

it suffices to show that for each r2 ∈ [2s2],
∣∣∣Er1∈[2s1 ]

[
(f ◦G)(r1, r2)

]
− Eu∈[m]d[f(u)]

∣∣∣ ≤ ǫ. (3.1)

Fix an arbitrary r2 ∈ [2s2] and define (v1, . . . , vd) = G2(r2). Define an (m, d)-checkerboard
f ′ =

⊗
i∈[d] f

′
i where f ′

i(u) = fi
(
π(u, vi)

)
. Observe that (f ◦ G)(r1, r2) = (f ′ ◦ G1)(r1) holds

for each r1 ∈ [2s1], and thus

Er1∈[2s1 ]
[
(f ◦G)(r1, r2)

]
= Er1∈[2s1 ]

[
(f ′ ◦G1)(r1)

]
(3.2)

(this holds even if π is not a quasigroup operation). Observe that Eu∈[m][fi(u)] = Eu∈[m][f
′
i(u)]

holds for each i ∈ [d] since π is a quasigroup operation, and thus

Eu∈[m]d[f(u)] = Eu∈[m]d[f
′(u)]. (3.3)

Since C1 is closed under permutations and f ∈ C1, we have f ′ ∈ C1. Since G1 is an ǫ-
pseudorandom generator for C1, we have

∣∣∣Er1∈[2s1 ]
[
(f ′ ◦G1)(r1)

]
− Eu∈[m]d[f

′(u)]
∣∣∣ ≤ ǫ. (3.4)

Now Inequality (3.1) follows from Equality (3.2), Equality (3.3), and Inequality (3.4).
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Proposition 3.13. Suppose that for some W there exists an explicit ǫ-pseudorandom gener-
ator G1 for the class C1 of (m, d)-checkerboards of weight at least W with seed length s1, and
there exists an explicit ǫ-pseudorandom generator G2 for the class C2 of (m, d)-checkerboards
of weight less than W with seed length s2. Then there exists an explicit ǫ-pseudorandom
generator for the class of all (m, d)-checkerboards with seed length s1 + s2.

Proof. Let π : [m] × [m] → [m] be any explicit quasigroup operation. For example, we can
identify [m] with {0, 1, . . . , m − 1} and let π be addition modulo m. Observe that both C1
and C2 are closed under permutations. Then Proposition 3.12 guarantees that G1+πG2 is an
explicit ǫ-pseudorandom generator for C1 ∪C2, which is the class of all (m, d)-checkerboards.
Furthermore, G1 +π G2 has seed length s1 + s2.

Proposition 3.13 is also used in the proof of Lemma 3.8. We are now ready to prove
Theorem 3.3.

Proof of Theorem 3.3. Given Lemma 3.7, Lemma 3.8, and Proposition 3.13, the only thing
remaining is to handle when m or d is not a power of 2. Let m′ be the smallest power of 2
that is at least 4md/ǫ, let d′ be the smallest power of 2 that is at least d, and let ǫ′ = ǫ/2.
For the parameters m′, d′, ǫ′, combining Lemma 3.7 with Lemma 3.8 using Proposition 3.13
(with W = C · log2 1

ǫ′
where C is the constant from Lemma 3.7) we find that there exists

an explicit ǫ′-pseudorandom generator G′ for the class of (m′, d′)-checkerboards with seed
length s = O

(
logm′ + log d′ · log log d′ + log3/2 1

ǫ′

)
= O

(
logm+ log d · log log d+ log3/2 1

ǫ

)
.

Now let h : [m′] → [m] be any explicit function such that every element of [m] has at least⌊
m′

m

⌋
preimages and at most

⌈
m′

m

⌉
preimages. Define H : [m′]d

′ → [m]d by H(u1, . . . , ud′) =(
h(u1), . . . , h(ud)

)
. Then we claim that the function G = H◦G′, which also has seed length s,

is an ǫ-pseudorandom generator for the class of (m, d)-checkerboards. Consider an arbitrary
(m, d)-checkerboard f =

⊗
i∈[d] fi, and define f ′ = f ◦H . Notice that f ′ =

⊗
i∈[d′] f

′
i where

f ′
i =

{
fi ◦ h if i ∈ [d]

1 otherwise

where 1 denotes the constant 1 function on [m′]. Since f ′ is an (m′, d′)-checkerboard, we
have ∣∣∣Er∈[2s]

[
(f ′ ◦G′)(r)

]
− Eu∈[m′]d′ [f

′(u)]
∣∣∣ ≤ ǫ/2. (3.5)

Since f ◦G = f ′ ◦G′, we have

Er∈[2s]
[
(f ◦G)(r)

]
= Er∈[2s]

[
(f ′ ◦G′)(r)

]
. (3.6)

A simple calculation shows that for each i ∈ [d] we have
∣∣∣Eu∈[m′]

[
(fi ◦ h)(u)

]
− Eu∈[m][fi(u)]

∣∣∣ ≤ 2m/m′ ≤ ǫ/2d.

Thus we have
∣∣Eu∈[m′]d′ [f

′(u)]− Eu∈[m]d[f(u)]
∣∣ =

∣∣∣
∏

i∈[d] Eu∈[m′]

[
(fi ◦ h)(u)

]
−∏

i∈[d] Eu∈[m][fi(u)]
∣∣∣
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≤ ∑
i∈[d]

∣∣∣Eu∈[m′]

[
(fi ◦ h)(u)

]
− Eu∈[m][fi(u)]

∣∣∣
≤ ǫ/2

where the second line follows by the simple fact that for all x1, . . . , xd, y1, . . . , yd ∈ [−1, 1]
we have

∣∣∏
i∈[d] xi −

∏
i∈[d] yi

∣∣ ≤ ∑
i∈[d] |xi − yi|. Combining this with Inequality (3.5) and

Equality (3.6) yields
∣∣∣Er∈[2s]

[
(f ◦G)(r)

]
− Eu∈[m]d[f(u)]

∣∣∣ ≤ ǫ.

3.3 The High-Weight Case

This section is devoted to the proof of Lemma 3.7. The main component in the proof of
Lemma 3.7 is Lemma 3.14 below, and the main component in the proof of Lemma 3.14
is Lemma 3.24 below. We prove these three lemmas in Section 3.3.1, Section 3.3.2, and
Section 3.3.3 respectively.

3.3.1 Proof of Lemma 3.7

We first discuss notation. We use G to denote the generator we construct to witness
Lemma 3.7. The parameters m, d, ǫ are fixed, with m and d powers of 2. We can also
assume without loss of generality that log2

1
ǫ
is a power of 2, since otherwise we could de-

crease ǫ to make this so, while only affecting the seed length by a constant factor. For the
rest of this section, we define b = 16 · log2 1

ǫ
, which represents the number of “buckets” of a

certain hash function. We use i ∈ [d] to index coordinates of the original checkerboard and
j ∈ [b] to index buckets. The construction has three steps, and we use s1, s2, s3 to denote
the contributions of the three steps to the final seed length s.

Lemma 3.14 (Step 1). There exists an explicit function G1 : [2s1] → [m]d with s1 =
O
(
logm+ log d · log log d

)
such that if f is an (m, d)-checkerboard of weight at least 1, then

β(f ◦G1) ≤ 3/4.

Lemma 3.15 (Step 2). There exists an explicit function G2 : [2s1] × [2s2 ] → [2s1 ]b with
s2 = O

(
log 1

ǫ

)
such that the following holds. Suppose g =

⊗
j∈[b] gj is a (2s1 , b)-checkerboard

such that
Prj∈[b]

[
β(gj) > 3/4

]
≤ 1/16

where j is chosen uniformly at random. Then β(g ◦G2) ≤ ǫ/4.

Lemma 3.16 (Step 3). There exists a universal constant C ≥ 1 and an explicit function
G3 : [2s3] × [d] → [b] with s3 = O

(
log d + log 1

ǫ
· log log 1

ǫ

)
such that the following holds.

Suppose α1, . . . , αd ∈ [0, 1] are such that
∑

i∈[d] αi ≥ C · log2 1
ǫ
. Then

Prr3∈[2s3 ]

[
Prj∈[b]

[∑
i : G3(r3,i)=j αi < 1

]
> 1/16

]
≤ ǫ/4
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where r3 and j are chosen uniformly at random.

We prove Lemma 3.14 in Section 3.3.2. The proof involves a new analysis of the generator
of Impagliazzo, Nisan, and Wigderson [142] for the setting of combinatorial checkerboards.
The heart of the analysis, which we call the Tree Labeling Lemma, is proven in Section 3.3.3.

Lovett et al. [172] implicitly proved Lemma 3.15, although they did not phrase it in
terms of combinatorial checkerboards. Their proof (which we do not reproduce here) uses
an instantiation of the generator of Impagliazzo, Nisan, and Wigderson [142].

In Lemma 3.16, G3 is viewed as a family of hash functions parameterized by the first
argument. Lovett et al. [172] proved Lemma 3.16 assuming each number αi is 0 or 1, but
their proof goes through for arbitrary αi ∈ [0, 1]. Their proof (which we do not reproduce
here) makes use of a concentration result for sums of k-wise independent random variables,
due to Bellare and Rompel [33].

We now show how Lemma 3.7 follows from Lemma 3.14, Lemma 3.15, and Lemma 3.16.

Proof of Lemma 3.7. We construct a generator G : [2s] → [m]d with s = s1 + s2 + s3 =
O
(
logm+ log d · log log d+ log 1

ǫ
· log log 1

ǫ

)
that witnesses Lemma 3.7. Identifying [2s] with

[2s1]× [2s2]× [2s3], we let

G(r1, r2, r3)i = G1

(
G2(r1, r2)G3(r3,i)

)
i

for i ∈ [d]. That is, the generator first runs G2(r1, r2) to obtain b seeds for G1 and then it
runs G1 on each of these seeds. From the execution of G1 on the jth seed, the generator
obtains d values in [m] but it only keeps those corresponding to indices in the jth bucket of
the hash function G3(r3, ·).

We claim that G witnesses Lemma 3.7. Consider an arbitrary (m, d)-checkerboard f =⊗
i∈[d] fi of weight at least C · log2 1

ǫ
where C is the constant from Lemma 3.16. Note that

β(f) =
∏

i∈[d] β(fi) ≤ e−
∑

i∈[d] α(fi) ≤ ǫ/2.

We just need to argue that β(f ◦G) ≤ ǫ/2, because then it follows that
∣∣∣Er∈[2s]

[
(f ◦G)(r)

]
− Eu∈[m]d[f(u)]

∣∣∣ ≤ β(f ◦G) + β(f) ≤ ǫ/2 + ǫ/2 = ǫ.

Define

Bad =

{
r3 ∈ [2s3 ] : Prj∈[b]

[∑
i : G3(r3,i)=j α(fi) < 1

]
> 1/16

}

and let Good = [2s3 ]\Bad. Applying Lemma 3.16 with αi = α(fi) for each i ∈ [d], we find
that Prr3∈[2s3 ]

[
r3 ∈ Bad

]
≤ ǫ/4. We claim that for each r3 ∈ Good,

∣∣∣Er1∈[2s1 ],r2∈[2s2 ]
[
(f ◦G)(r1, r2, r3)

]∣∣∣ ≤ ǫ/4. (3.7)

This will finish the argument since then

β(f ◦G) ≤
∣∣∣Er1∈[2s1 ],r2∈[2s2 ],r3∈[2s3 ]

[
(f ◦G)(r1, r2, r3)

∣∣ r3 ∈ Good
]∣∣∣ + Prr3∈[2s3 ]

[
r3 ∈ Bad

]
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≤ ǫ/4 + ǫ/4

= ǫ/2.

To prove the claim, fix an arbitrary r3 ∈ Good. For each j ∈ [b] define an (m, d)-checkerboard

f (j) =
⊗

i∈[d] f
(j)
i by

f
(j)
i =

{
fi if G3(r3, i) = j

1 otherwise

where 1 denotes the constant 1 function on [m]. Define a (2s1, b)-checkerboard g =
⊗

j∈[b] gj

by gj = f (j) ◦G1. Note that for each r1 ∈ [2s1], r2 ∈ [2s2], we have

(g ◦G2)(r1, r2) =
∏

j∈[b] gj
(
G2(r1, r2)j

)

=
∏

j∈[b]
∏

i∈[d] f
(j)
i

(
G1

(
G2(r1, r2)j

)
i

)

=
∏

j∈[b]
∏

i : G3(r3,i)=j fi

(
G1

(
G2(r1, r2)j

)
i

)

=
∏

i∈[d] fi

(
G1

(
G2(r1, r2)G3(r3,i)

)
i

)

= (f ◦G)(r1, r2, r3)

by commutativity of multiplication. It follows that

Er1∈[2s1 ],r2∈[2s2 ]
[
(f ◦G)(r1, r2, r3)

]
= Er1∈[2s1 ],r2∈[2s2 ]

[
(g ◦G2)(r1, r2)

]

and hence to prove Inequality (3.7) it suffices to show that β(g ◦ G2) ≤ ǫ/4. If we have∑
i : G3(r3,i)=j α(fi) ≥ 1 then the weight of f (j) is at least 1 and thus by Lemma 3.14 we have

β(gj) ≤ 3/4. Since r3 ∈ Good, we have Prj∈[b]
[
β(gj) > 3/4

]
≤ 1/16. Thus Lemma 3.15

implies that β(g ◦G2) ≤ ǫ/4, as desired.

3.3.2 Proof of Lemma 3.14

In this section we prove Lemma 3.14. The proof uses explicit constructions of expander
graphs. One can view a (2n, 2k, λ)-expander as a symmetric 2n×2n matrix M of nonnegative
integers such that each row and each column sums to 2k, and such that every eigenvalue
of M/2k, except the first, is at most λ in absolute value. An equivalent way of viewing an
expander is as a regular symmetric directed multigraph on 2n vertices with degree 2k whose
adjacency matrix is M . A third view, which we use, is a function E : [2n+k] → [2n] × [2n]
that maps the edges (of which there are 2n+k, and which are identified with the elements of
[2n+k] in an arbitrary way) to their (head, tail) pairs.

Definition 3.17. A (2n, 2k, λ)-expander is a function E : [2n+k] → [2n]× [2n] such that the
2n × 2n matrix M defined by Mν1,ν2 =

∣∣E−1(ν1, ν2)
∣∣ satisfies the following: M is symmetric,

each row and each column sums to 2k, and every eigenvalue of M/2k, except the first, is at
most λ in absolute value.
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Many explicit constructions of good expanders are known [185, 92, 150, 9, 7, 179, 186,
191, 221]. The Gabber-Galil construction [92] in particular yields the following.

Lemma 3.18. For every λ > 0 there exists an integer k = O
(
log 1

λ

)
such that for all integers

n ≥ 1 there exists an explicit (2n, 2k, λ)-expander.

We use the classic Expander Mixing Lemma, which is generally attributed to [6].

Lemma 3.19 (Expander Mixing Lemma). For every (2n, 2k, λ)-expander E, every S ⊆
[2n], and every T ⊆ [2n], we have

∣∣∣Prµ∈[2n+k]

[
E(µ) ∈ S × T

]
− Prν∈[2n][ν ∈ S] · Prν∈[2n][ν ∈ T ]

∣∣∣
≤ λ

√
Prν∈[2n][ν ∈ S] · Prν∈[2n][ν ∈ T ]

where µ and ν are both chosen uniformly at random.

Definition 3.20 (Cartesian Product with Respect to E). Given a (2n, 2k, λ)-expander
E and two functions h1, h2 : [2

n] → U for some finite U , we define h1×E h2 : [2
n+k] → U×U

by (
h1 ×E h2

)
(µ) =

(
h1

(
E(µ)1

)
, h2

(
E(µ)2

))
.

In other words, h1 ×E h2 =
(
h1 × h2

)
◦ E.

Definition 3.21 (Tensor Product with Respect to E). Given a (2n, 2k, λ)-expander E
and two functions h1, h2 : [2

n] → {1,−1}, we define h1 ⊗E h2 : [2
n+k] → {1,−1} by

(
h1 ⊗E h2

)
(µ) = h1

(
E(µ)1

)
· h2

(
E(µ)2

)
.

In other words, h1 ⊗E h2 =
(
h1 ⊗ h2

)
◦ E.

Observation 3.22. For all (2n, 2k, λ)-expanders E and all functions g1, g2 : [2n] → U and
h1, h2 : U → {1,−1} for some finite U , we have

(
h1 ⊗ h2

)
◦
(
g1 ×E g2

)
=

(
h1 ◦ g1

)
⊗E

(
h2 ◦ g2

)
.

Proposition 3.23. For all (2n, 2k, λ)-expanders E and all functions h1, h2 : [2
n] → {1,−1},

we have
β
(
h1 ⊗E h2

)
≤ β(h1)β(h2) + λ ·

(
α(h1) + α(h2)

)
.

Proof. We may assume without loss of generality that Eν∈[2n][h1(ν)] ≥ 0 and Eν∈[2n][h2(ν)] ≥
0 because replacing h1 by −h1 and/or h2 by −h2 changes none of the quantities in the
inequality we wish to prove. Now we have

β
(
h1 ⊗E h2

)
− β(h1)β(h2)

≤
∣∣∣Eµ∈[2n+k]

[(
h1 ⊗E h2

)
(µ)

]
− Eν∈[2n][h1(ν)] · Eν∈[2n][h2(ν)]

∣∣∣
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=
∣∣∣Eµ∈[2n+k]

[(
h1 ⊗E h2

)
(µ)

]
− Eν1∈[2n],ν2∈[2n]

[(
h1 ⊗ h2

)
(ν1, ν2)

]∣∣∣

= 2 ·
∣∣∣Prµ∈[2n+k]

[(
h1 ⊗E h2

)
(µ) = −1

]
− Prν1∈[2n],ν2∈[2n]

[(
h1 ⊗ h2

)
(ν1, ν2) = −1

]∣∣∣

≤ 2 ·
∣∣∣Prµ∈[2n+k]

[(
h1 ×E h2

)
(µ) = (−1, 1)

]
− Prν1∈[2n],ν2∈[2n]

[(
h1 × h2

)
(ν1, ν2) = (−1, 1)

]∣∣∣+

2 ·
∣∣∣Prµ∈[2n+k]

[(
h1 ×E h2

)
(µ) = (1,−1)

]
− Prν1∈[2n],ν2∈[2n]

[(
h1 × h2

)
(ν1, ν2) = (1,−1)

]∣∣∣

by simple manipulations. Since every row of the matrix corresponding to E has the same
sum, we find that

Prµ∈[2n+k]

[(
h1 ×E h2

)
(µ)1 = −1

]
= Prν1∈[2n]

[
h1(ν1) = −1

]

and thus
∣∣∣Prµ∈[2n+k]

[(
h1 ×E h2

)
(µ) = (−1, 1)

]
− Prν1∈[2n],ν2∈[2n]

[(
h1 × h2

)
(ν1, ν2) = (−1, 1)

]∣∣∣

=
∣∣∣Prµ∈[2n+k]

[(
h1 ×E h2

)
(µ) = (−1,−1)

]
− Prν1∈[2n],ν2∈[2n]

[(
h1 × h2

)
(ν1, ν2) = (−1,−1)

]∣∣∣

≤ λ
√
Prν∈[2n]

[
h1(ν) = −1

]
· Prν∈[2n]

[
h2(ν) = −1

]

= 1
2
λ
√
α(h1)α(h2)

by applying the Expander Mixing Lemma with S = h−1
1 (−1) and T = h−1

2 (−1) and using
the fact that α(h1) = 2 · Prν∈[2n]

[
h1(ν) = −1

]
and α(h2) = 2 · Prν∈[2n]

[
h2(ν) = −1

]
. A

symmetric argument gives

∣∣∣Prµ∈[2n+k ]

[(
h1 ×E h2

)
(µ) = (1,−1)

]
− Prν1∈[2n],ν2∈[2n]

[(
h1 × h2

)
(ν1, ν2) = (1,−1)

]∣∣∣
≤ 1

2
λ
√

α(h1)α(h2).

Putting the pieces together, we have

β
(
h1 ⊗E h2

)
− β(h1)β(h2) ≤ 2λ

√
α(h1)α(h2) ≤ λ ·

(
α(h1) + α(h2)

)

by the arithmetic mean – geometric mean inequality.

In the proof of Proposition 3.23 we showed a stronger bound than the one given in the
statement, and we weakened it via the arithmetic mean – geometric mean inequality. We
did this because our arguments exploit the additive structure of the weaker bound. A result
similar to Proposition 3.23 was proven in [172], though the proof in that paper is direct (not
going through the Expander Mixing Lemma) and achieves a slightly different bound.

We are now ready to prove Lemma 3.14.

Proof of Lemma 3.14. The generator G1 we construct has the same form as the generator
of Impagliazzo, Nisan, and Wigderson [142] but with a different setting of parameters.
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For ℓ = 0, . . . , log2 d we define a function G
(ℓ)
1 :

[
2log2 m+kℓ

]
→ [m]2

ℓ
as follows, where

k = O(log log d) is the value corresponding to λ = 1
8 log2 d

according to Lemma 3.18. We

let G
(0)
1 be the identity function, and for ℓ > 0 we let G

(ℓ)
1 = G

(ℓ−1)
1 ×Eℓ

G
(ℓ−1)
1 where Eℓ is

an explicit
(
2log2 m+k(ℓ−1), 2k, λ

)
-expander. Then we take G1 = G

(log2 d)
1 . Note that the seed

length of G1 is s1 = log2m+ k · log2 d = O
(
logm+ log d · log log d

)
as required.

We claim that G1 witnesses Lemma 3.14. Let f =
⊗

i∈[d] fi be an arbitrary (m, d)-
checkerboard of weight at least 1. Consider a full binary tree with exactly d leaves which
correspond to the coordinates i = 1, . . . , d from left to right. Let ρ denote the root. We say
the leaves are at level 0, their parents are at level 1, and so on, with ρ at level log2 d. For
each node v at level ℓ we define a function f (v) : [m]2

ℓ → {1,−1} as follows. If v is a leaf,
say the ith one, then we let f (v) = fi. If v is an internal node with children v1 and v2 then
we let f (v) = f (v1) ⊗ f (v2). In other words, f (v) =

⊗
i∈[2ℓ] f

(v)
i where f

(v)
i = fiv+i−1 where iv

is the index of the leftmost leaf in v’s subtree. Observe that f = f (ρ). For each node v at
level ℓ we define F (v) = f (v) ◦G(ℓ)

1 .
Thus our goal is to show that β

(
F (ρ)

)
≤ 3/4. For each node v at level ℓ ≥ 1 with children

v1 and v2, applying Observation 3.22 with h1 = f (v1) and h2 = f (v2) and g1 = g2 = G
(ℓ−1)
1 we

find that F (v) = F (v1) ⊗Eℓ
F (v2). Now we have the following two things.

(i) For each internal node v with children v1 and v2, applying Proposition 3.23 with
h1 = F (v1) and h2 = F (v2) we find that

β
(
F (v)

)
≤ β

(
F (v1)

)
β
(
F (v2)

)
+ λ ·

(
α
(
F (v1)

)
+ α

(
F (v2)

))
.

(ii) For each leaf v, say the ith one, we have f (v) ◦G(0)
1 = fi, and hence

∑
leaves v α

(
F (v)

)
=

∑
i∈[d] α(fi) ≥ 1.

Using the notation βv = β
(
F (v)

)
and αv = α

(
F (v)

)
for each node v, Lemma 3.14 now follows

immediately from the following lemma, which is proved in Section 3.3.3.

Lemma 3.24 (Tree Labeling Lemma). Suppose a full binary tree with d leaves has each
node v labeled with numbers αv, βv ∈ [0, 1] with αv + βv = 1, such that

(i) for each internal node v with children v1 and v2 we have βv ≤ βv1βv2 + λ ·
(
αv1 + αv2

)

where λ = 1
8 log2 d

, and

(ii)
∑

leaves v αv ≥ 1.

Then the root node ρ satisfies βρ ≤ 3/4.

3.3.3 Proof of the Tree Labeling Lemma

We now prove Lemma 3.24. We give the intuition in Section 3.3.3.1 and then the formal
argument in Section 3.3.3.2.
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3.3.3.1 Intuition

Very roughly, the intuition is as follows. For each node v, βv represents an approximation to
the product of βw over all the leaves w in v’s subtree. Thus for the root ρ, βρ represents an
approximation to

∏
leaves v βv ≤ e−

∑
leaves v αv ≤ 1/e. However, each internal node v introduces

an “error” of λ ·
(
αv1 +αv2

)
in addition to the errors already accumulated at the children v1

and v2. If these errors are small on average throughout the tree, then βρ will be small. On
the other hand, if the errors are large on average, then this means the labels αv are large on
average and hence the labels βv are small on average, so we expect βρ to be small in this case
as well. However, this is just intuition for why the lemma is true, and the formal argument
does not follow the dichotomy suggested by this intuition.

In the formal argument we attempt to reduce to a “worst-case scenario”, by which we
mean that all the inequalities in both (i) and (ii) in the statement of Lemma 3.24 hold as
equalities. Provided the tree obeys a certain “monotonicity” property, we can decrease the
α labels and increase the β labels to reach such a worst-case scenario. For a worst-case
scenario, we can argue that the “errors” (as in the previous paragraph) must be small on
average, and thus the new value of βρ must be small. Since we only increased all the β labels,
the original value of βρ must also be small.

It turns out that the aforementioned monotonicity property is obeyed provided the β
labels of all nodes are not too small. What if βv is too small for some node v? Then we
would like to conclude that βρ is small. Unfortunately, in general it might be the case that
βρ > βv, for example if v is a child of ρ and the other child of ρ has a β label very close to
1.2 However, a calculation shows that βρ cannot be too much larger than βv, so we are still
safe.

3.3.3.2 Formal Argument

First, suppose there exists a node v with βv ≤ 1/2. Then we can prove βρ ≤ 3/4 as follows.
Let v0, v1, v2, . . . , vℓ denote the path from v to ρ, with v = v0 and ρ = vℓ. Then for each
i ∈ {1, . . . , ℓ}, we have βvi ≤ βvi−1

+ 2λ by condition (i) in the statement of Lemma 3.24.
Since ℓ ≤ log2 d, we conclude that

βρ ≤ βv + 2λ · log2 d = βv + 1/4 ≤ 3/4.

Thus we are done, assuming there exists a node v with βv ≤ 1/2. To prove the latter,
suppose for contradiction that βv > 1/2 holds for all v. We show that this implies βρ ≤ 1/2,
which is a contradiction.

Let us assign new labels α′
v, β

′
v ∈ [0, 1] with α′

v + β ′
v = 1 to each node v as follows. For

the leaf nodes, let α′
v equal αv except arbitrarily decrease some of them so as to achieve∑

leaves v α
′
v = 1. Then working our way up the tree, for each internal node v with children

v1 and v2 let β ′
v = β ′

v1β
′
v2 + λ ·

(
α′
v1 + α′

v2

)
. For each internal node v with children v1 and v2,

define the error label δ′v = λ ·
(
α′
v1
+ α′

v2

)
, and for a leaf v define δ′v = 0. We say the leaves

2This issue would arise even if we tried to take advantage of the stronger version of Proposition 3.23 that
results by not applying the arithmetic mean – geometric mean inequality.

46



are at level 0, their parents are at level 1, and so on, with ρ at level log2 d. We have the
following three claims.

Claim 3.25. For each node v, we have β ′
v ≤

∏
leaves w in v’s subtree

β ′
w+

∑
nodes w in v’s subtree

δ′w.

Claim 3.26. For each node v at level 2 or higher with children v1 and v2, we have δ′v ≤
δ′v1 + δ′v2 .

Claim 3.27. For each node v, we have β ′
v ≥ βv.

We now stitch the three claims together to get the desired contradiction. By Claim 3.25
we have

β ′
ρ ≤ ∏

leaves v β
′
v +

∑
nodes v δ

′
v ≤ e−

∑
leaves v α′

v +
∑

nodes v δ
′
v = 1/e+

∑
nodes v δ

′
v.

Claim 3.26 implies that for each ℓ ∈ {2, . . . , log2 d} we have

∑
nodes v at level ℓ δ

′
v ≤ ∑

nodes v at level ℓ− 1 δ
′
v.

Since
∑

leaves v δ
′
v = 0 and

∑
nodes v at level 1 δ

′
v = λ ·∑leaves v α

′
v = λ

we find that
∑

nodes v δ
′
v ≤ λ · log2 d = 1/8. Using Claim 3.27 we conclude that

βρ ≤ β ′
ρ ≤ 1/e+ 1/8 ≤ 1/2

which is the desired contradiction.
We now prove the three claims. Claim 3.27 is the only part where we need the assumption

that βv > 1/2 holds for all nodes v.

Proof of Claim 3.25. We prove this by structural induction on the tree. If v is a leaf then
this holds trivially with equality. Suppose v is an internal node with children v1 and v2 and
the claim holds for v1 and v2. Then we have

β ′
v = β ′

v1
β ′
v2
+ δ′v

≤ β ′
v1

∏
leaves w in v2’s subtree β

′
w + δ′v +

∑
nodes w in v2’s subtree δ

′
w

≤ ∏
leaves w in v1’s subtree β

′
w ·∏leaves w in v2’s subtree β

′
w+

δ′v +
∑

nodes w in v1’s subtree δ
′
w +

∑
nodes w in v2’s subtree δ

′
w

=
∏

leaves w in v’s subtree β
′
w +

∑
nodes w in v’s subtree δ

′
w

where the first inequality follows by the induction hypothesis for v2 and by β ′
v1 ≤ 1, and the

second inequality follows by the induction hypothesis for v1 and by
∏

leaves w in v2’s subtree β
′
w ≤

1.
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Proof of Claim 3.26. Consider a node v at level 2 or higher with children v1 and v2. Let v1,1
and v1,2 be v1’s children, and let v2,1 and v2,2 be v2’s children. Note that

β ′
v1

≥ β ′
v1,1

β ′
v1,2

≥ 1− α′
v1,1

− α′
v1,2

.

Thus α′
v1

≤ α′
v1,1

+ α′
v1,2

and similarly α′
v2

≤ α′
v2,1

+ α′
v2,2

. It follows that

δ′v = λ ·
(
α′
v1
+ α′

v2

)

≤ λ ·
(
α′
v1,1

+ α′
v1,2

+ α′
v2,1

+ α′
v2,2

)

= δ′v1 + δ′v2 .

Proof of Claim 3.27. We prove this by structural induction on the tree. For a leaf v, β ′
v ≥ βv

holds by definition. For an internal node v with children v1 and v2, assume that β ′
v1

≥ βv1

and β ′
v2

≥ βv2 . Then

β ′
v − βv ≥

(
β ′
v1
β ′
v2
+ λ ·

(
α′
v1
+ α′

v2

))
−

(
βv1βv2 + λ ·

(
αv1 + αv2

))

=
(
β ′
v1 − βv1

)(
βv2 − λ

)
+
(
β ′
v2 − βv2

)(
β ′
v1 − λ

)

≥ 0

since βv2 > 1/2 ≥ λ and β ′
v1 ≥ βv1 > 1/2 ≥ λ.

This finishes the proof of Lemma 3.24.

3.4 The Low-Weight Case

This section is devoted to the proof of Lemma 3.8. The main component in the proof of
Lemma 3.8 is Lemma 3.34 below, and one of the key tools in the proof of Lemma 3.34
is Lemma 3.36 below. We prove these three lemmas in Section 3.4.1, Section 3.4.2, and
Section 3.4.3 respectively.

3.4.1 Proof of Lemma 3.8

We first discuss notation. The parameters m, d, ǫ are fixed, with m and d powers of 2. Let
C be the constant from Lemma 3.7. Given a function h : U1×U2 → U3, we use the notation
h(u1, ·) to represent the function from U2 to U3 that maps u2 to h(u1, u2). The construction
has five steps, and we use s1, s2, s3, s4, s5 to denote the contributions of the five steps to the
final seed length s.

Lemma 3.28 (Step 1). There exists an explicit ǫ/4-pseudorandom generator G1 : [2s1] ×
[m1]

d1 → [m]d for the class of (m, d)-checkerboards of weight less than C · log2 1
ǫ
with s1 =

O
(
log d+log 1

ǫ

)
and m1 = (m+d)O(1) and d1 =

(
1
ǫ

)O(1)
such that for all (m, d)-checkerboards

f and all r1 ∈ [2s1], f ◦G1(r1, ·) is an (m1, d1)-checkerboard. Moreover, m1 and d1 are powers
of 2.
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Lemma 3.29 (Step 2). There exists an explicit ǫ/4-pseudorandom generator G2 : [2s2] ×
[m2]

d2 → [m1]
d1 for the class of (m1, d1)-checkerboards with s2 = O

(
logm + log d + log 1

ǫ

)

and m2 =
(
1
ǫ

)O(1)
and d2 = d1 such that for all (m1, d1)-checkerboards f and all r2 ∈ [2s2],

f ◦G2(r2, ·) is an (m2, d2)-checkerboard. Moreover, m2 is a power of 2.

Lemma 3.30 (Step 3). There exists an explicit ǫ/4-pseudorandom generator G3 : [2s3] ×
[m3]

d3 → [m2]
d2 for the class of (m2, d2)-checkerboards of weight less than C ·log2 1

ǫ/2
with s3 =

O
(
log3/2 1

ǫ

)
and m3 = 2O(log3/2 1

ǫ
) and d3 = 2O(log1/2 1

ǫ
) such that for all (m2, d2)-checkerboards

f and all r3 ∈ [2s3], f ◦G3(r3, ·) is an (m3, d3)-checkerboard. Moreover, m3 and d3 are powers
of 2.

Lemma 3.31 (Step 4). There exists an explicit ǫ/4-pseudorandom generator G4 : [2
s4] →

[m3]
d3 for the class of (m3, d3)-checkerboards with s4 = O

(
log3/2 1

ǫ

)
.

Lemma 3.32 (Step 5). There exists an explicit ǫ/2-pseudorandom generator G5 : [2
s5] →

[m2]
d2 for the class of (m2, d2)-checkerboards of weight at least C · log2 1

ǫ/2
with s5 = O

(
log 1

ǫ
·

log log 1
ǫ

)
.

The parameters in the first four steps are essentially the same as those used by Lu
[174]. At a very high level, the motivation for these steps is as follows. Applying the
generator of Impagliazzo, Nisan, and Wigderson [142] directly would give a seed length
with poor dependence on the dimension d, so the plan is to first reduce the dimension
and then (Step 4) apply the generator of [142]. Step 3 reduces the dimension quite nicely,
balancing a tradeoff between how much the dimension is reduced and the cost in seed length
to accomplish this dimension reduction. However, achieving the strong parameters of Step 3

requires that the parameter m has been reduced to
(
1
ǫ

)O(1)
. Step 2 accomplishes this, but it

requires the dimension to have already been reduced to
(
1
ǫ

)O(1)
. Fortunately, the latter can

be accomplished (Step 1) without any further requirements. We refer to Lu’s paper [174]
for more intuition about the parameters. Step 5 is needed because the dimension reduction
steps only work for low-weight checkerboards, but Step 1 and Step 2 do not always preserve
the low-weight property.

Lemma 3.28 and Lemma 3.30 are special cases of a more general result (Lemma 3.34
below) which is stated and proven in Section 3.4.2. The proof is an adaptation of an argument
due to Lu [174] (which itself generalizes an argument due to Armoni et al. [15]).

Lemma 3.29 follows from a result of Nisan and Zuckerman [202], which uses extractors.
Lu [174] used a similar lemma for combinatorial rectangles, which he obtained by plugging in
an extractor due to Goldreich and Wigderson [105] and giving a somewhat simplified version
of Nisan and Zuckerman’s argument for his setting. Lemma 3.29 can be obtained using the
same extractor with essentially the same parameters as in [174]. Although Lu’s simplified
argument does not directly work for combinatorial checkerboards, Nisan and Zuckerman’s
original argument still applies, yielding Lemma 3.29. We do not reproduce the proof of
Lemma 3.29 here.
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Lemma 3.31 is an instantiation of the generator of Impagliazzo, Nisan, and Wigderson
[142], and Lemma 3.32 is just an instantiation of Lemma 3.7. We now prove a simple
proposition showing how the above pseudorandom generators can be composed with each
other (a similar proposition was used in [15, 174] though with different terminology).

Proposition 3.33. Suppose G′′ : [2s
′′
] × [m′′]d

′′ → [m′]d
′
is an ǫ′-pseudorandom generator

for some class C′ of (m′, d′)-checkerboards such that for all (m′, d′)-checkerboards f and all
r′′ ∈ [2s

′′
], f ◦ G′′(r′′, ·) is an (m′′, d′′)-checkerboard. Further suppose G′′′ : [2s

′′′
] → [m′′]d

′′
is

an ǫ′′-pseudorandom generator for the class of all (m′′, d′′)-checkerboards. Then the function
G′ : [2s

′′
]×[2s

′′′
] → [m′]d

′
defined by G′(r′′, r′′′) = G′′(r′′, G′′′(r′′′)

)
is an (ǫ′+ǫ′′)-pseudorandom

generator for C′.

Proof. Consider any f ∈ C′. By the pseudorandom property of G′′ we get

∣∣∣Er′′∈[2s′′ ],u∈[m′′]d′′
[
(f ◦G′′)(r′′, u)

]
− Eu∈[m′]d′ [f(u)]

∣∣∣ ≤ ǫ′. (3.8)

For each r′′ ∈ [2s
′′
], since f ◦ G′′(r′′, ·) is an (m′′, d′′)-checkerboard, by the pseudorandom

property of G′′′ we get

∣∣∣∣Er′′′∈[2s′′′ ]

[((
f ◦G′′(r′′, ·)

)
◦G′′′

)
(r′′′)

]
− Eu∈[m′′]d′′

[(
f ◦G′′(r′′, ·)

)
(u)

]∣∣∣∣ ≤ ǫ′′.

Noticing that ((
f ◦G′′(r′′, ·)

)
◦G′′′

)
(r′′′) = (f ◦G′)(r′′, r′′′)

and (
f ◦G′′(r′′, ·)

)
(u) = (f ◦G′′)(r′′, u)

we find that
∣∣∣Er′′∈[2s′′ ],r′′′∈[2s′′′ ]

[
(f ◦G′)(r′′, r′′′)

]
− Er′′∈[2s′′ ],u∈[m′′]d′′

[
(f ◦G′′)(r′′, u)

]∣∣∣

≤ Er′′∈[2s′′ ]

[∣∣∣Er′′′∈[2s′′′ ]
[
(f ◦G′)(r′′, r′′′)

]
− Eu∈[m′′]d′′

[
(f ◦G′′)(r′′, u)

]∣∣∣
]

≤ ǫ′′.

Combining this with Inequality (3.8) yields

∣∣∣Er′′∈[2s′′ ],r′′′∈[2s′′′ ]
[
(f ◦G′)(r′′, r′′′)

]
− Eu∈[m′]d′ [f(u)]

∣∣∣ ≤ ǫ′ + ǫ′′.

Lemma 3.8 now follows straightforwardly.

Proof of Lemma 3.8. Combining G3 with G4 using Proposition 3.33 yields an explicit ǫ/2-
pseudorandom generator for the class of (m2, d2)-checkerboards of weight less than C ·log2 1

ǫ/2

with seed length s3+s4. Combining this generator with G5 using Proposition 3.13 we obtain
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an explicit ǫ/2-pseudorandom generator for the class of all (m2, d2)-checkerboards with seed
length s3 + s4 + s5. Combining this generator with G2 using Proposition 3.33 yields an
explicit 3ǫ/4-pseudorandom generator for the class of (m1, d1)-checkerboards with seed length
s2+ s3+ s4+ s5. Finally, combining this generator with G1 using Proposition 3.33 we obtain
an explicit ǫ-pseudorandom generator for the class of (m, d)-checkerboards of weight less
than C · log2 1

ǫ
with seed length s1 + s2 + s3 + s4 + s5 = O

(
logm+ log d+ log3/2 1

ǫ

)
.

3.4.2 Dimension Reduction

In this section, m, d, ǫ are free parameters (not necessarily the same as the fixed values that
were assumed throughout Section 3.4.1). Again, C is the constant from Lemma 3.7.

Lemma 3.34 (Dimension Reduction). Let m and d be powers of 2, and let 2 ≤ k ≤
d be an integer parameter. There exists an explicit ǫ-pseudorandom generator G : [2s] ×
[m′]d

′ → [m]d for the class of (m, d)-checkerboards of weight less than C · log2 1
ǫ
with s =

k · max(log2 d, log2 d
′) and m′ = max(d,m)k and d′ = 2O( 1

k
·log 1

ǫ
) such that for all (m, d)-

checkerboards f and all r ∈ [2s], f ◦G(r, ·) is an (m′, d′)-checkerboard. Moreover, m′ and d′

are powers of 2.

To obtain Lemma 3.28, just use k = 2 and plug in ǫ/4 for ǫ. To obtain Lemma 3.30, just
use k = Θ

(
log1/2 1

ǫ

)
and plug in m2 for m, d2 for d, and ǫ/4 for ǫ. In both instantiations, the

generator given by Lemma 3.34 actually fools a slightly larger class of checkerboards than
necessary.

In the proof of Lemma 3.34 we employ the standard k-wise independent generator. It
turns out that using almost k-wise independence does not improve the final seed length in
Lemma 3.8, for the same reason it does not help in [174]. We refer to the latter paper for a
discussion of this issue.

Lemma 3.35. Let n1, n2, k be positive integers. There exists an explicit function h : [2s] ×
[2n1] → [2n2] with s = k ·max(n1, n2) such that for every S ⊆ [2n1 ] with |S| ≤ k, the random
variables h(r, ν1) for ν1 ∈ S are fully independent and uniformly distributed, where r ∈ [2s]
is chosen uniformly at random.

See [250] for a folklore proof of Lemma 3.35, which is based on using the seed to specify a
polynomial of degree < k over the field with 2max(n1,n2) elements. We also need the following
tool.

Lemma 3.36 (Parity Version of Bonferroni Inequalities). Let E1, . . . , Eℓ be events in
any finite probability space. Let p be the probability that an odd number of Ei’s hold. For
k = 1, . . . , ℓ let

tk =
∑k

κ=1(−2)κ−1
∑

S⊆[ℓ] : |S|=κPr
[⋂

i∈S Ei

]
.

Then (i) p ≤ tk if k is odd, (ii) p ≥ tk if k is even, and (iii) p = tℓ.

We prove Lemma 3.36 in Section 3.4.3 below. We are now ready to prove Lemma 3.34.
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Proof of Lemma 3.34. Let d′ = 2⌈
2C+1
k−1

log2
1
ǫ
⌉. By convention, we use the notation i ∈ [d],

j ∈ [d′], u ∈ [m], w ∈ [m′], and r ∈ [2s]. Let h1 : [2s] × [d] → [d′] and h2 : [m′] × [d] → [m]
be k-wise independent generators given by Lemma 3.35. For r ∈ [2s] and j ∈ [d′] we define
Ir,j =

{
i ∈ [d] : h1(r, i) = j

}
.

For i ∈ [d] we define
G(r, w1, . . . , wd′)i = h2

(
wh1(r,i), i

)
.

That is, we use h1 to partition the d coordinates into d′ buckets, and for each bucket we use
an independent seed for h2 to generate the symbols for the coordinates in that bucket. We
claim that G witnesses Lemma 3.34. For an arbitrary (m, d)-checkerboard f =

⊗
i∈[d] fi and

arbitrary r ∈ [2s], define the (m′, d′)-checkerboard f ′ =
⊗

j∈[d′] f
′
j where

f ′
j(w) =

∏
i∈Ir,j fi

(
h2(w, i)

)
.

Observe that f ′(w1, . . . , wd′) =
∏

i∈[d] fi
(
G(r, w1, . . . , wd′)i

)
. Thus f ′ = f ◦G(r, ·) and hence

f ◦ G(r, ·) is an (m′, d′)-checkerboard. It remains to prove that G is an ǫ-pseudorandom
generator for the class of (m, d)-checkerboards of weight less than C · log2 1

ǫ
. Fix an arbitrary

(m, d)-checkerboard f =
⊗

i∈[d] fi of weight less than C · log2 1
ǫ
.

Claim 3.37. For every r ∈ [2s] and j ∈ [d′] we have
∣∣∣∣Ew∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)]
−E(u1,...,ud)∈[m]d

[∏
i∈Ir,j fi(ui)

]∣∣∣∣ ≤ ∑
S⊆Ir,j : |S|=k

∏
i∈S α(fi).

Proof of Claim 3.37. Fix arbitrary r ∈ [2s] and j ∈ [d′]. Let µi = − sgn
(
Eu∈[m][fi(u)]

)
for

i ∈ [d] (and if Eu∈[m][fi(u)] = 0 then let µi = ±1 arbitrarily). Note that

Pru∈[m]

[
fi(u) = µi

]
= α(fi)/2.

Define br,j = (−1)|Ir,j |+1
∏

i∈Ir,j µi. For every (u1, . . . , ud) ∈ [m]d, we have
∏

i∈Ir,j fi(ui) = br,j
if and only if the number of i ∈ Ir,j such that fi(ui) = µi is odd. Relative to our fixed r and
j, for any distribution D on [m]d and any integer k′ ≥ 1 we define

t
(D)
k′ =

∑k′

κ=1(−2)κ−1
∑

S⊆Ir,j : |S|=κPr(u1,...,ud)∼D
[
∀i ∈ S : fi(ui) = µi

]
.

Applying Lemma 3.36 identifying Ir,j with [ℓ] and letting Ei′ be the event that fi(ui) =

µi where i is the i′th element of Ir,j, we find that Pr(u1,...,ud)∼D
[∏

i∈Ir,j fi(ui) = br,j
]
lies

between t
(D)
k−1 and t

(D)
k inclusive. (This follows from part (i) and part (ii) when k ≤ |Ir,j|

and from part (iii) when k > |Ir,j|.) Now let U denote the uniform distribution over [m]d,
and let D be the distribution

(
h2(w, 1), . . . , h2(w, d)

)
where w ∈ [m′] is chosen uniformly

at random. By the k-wise independence of h2, we have t
(D)
k = t

(U)
k and t

(D)
k−1 = t

(U)
k−1. Now

since Prw∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)
= br,j

]
and Pr(u1,...,ud)∈[m]d

[∏
i∈Ir,j fi(ui) = br,j

]
both lie

between t
(U)
k−1 and t

(U)
k inclusive, we have

∣∣∣∣Prw∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)
= br,j

]
− Pr(u1,...,ud)∈[m]d

[∏
i∈Ir,j fi(ui) = br,j

]∣∣∣∣
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≤
∣∣t(U)

k − t
(U)
k−1

∣∣
= 2k−1

∑
S⊆Ir,j : |S|=k Pr(u1,...,ud)∈[m]d

[
∀i ∈ S : fi(ui) = µi

]

= 2k−1
∑

S⊆Ir,j : |S|=k

∏
i∈S α(fi)/2

= 1
2

∑
S⊆Ir,j : |S|=k

∏
i∈S α(fi).

It follows that
∣∣∣∣Ew∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)]
− E(u1,...,ud)∈[m]d

[∏
i∈Ir,j fi(ui)

]∣∣∣∣

= 2 ·
∣∣∣∣Prw∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)
= br,j

]
− Pr(u1,...,ud)∈[m]d

[∏
i∈Ir,j fi(ui) = br,j

]∣∣∣∣
≤ ∑

S⊆Ir,j : |S|=k

∏
i∈S α(fi).

This finishes the proof of the claim.

We now continue with the proof of Lemma 3.34. We have

∣∣∣Er∈[2s],(w1,...,wd′)∈[m′]d′
[
(f ◦G)(r, w1, . . . , wd′)

]
− E(u1,...,ud)∈[m]d

[
f(u1, . . . , ud)

]∣∣∣

≤ Er∈[2s]

[∣∣∣E(w1,...,wd′)∈[m′]d′
[
(f ◦G)(r, w1, . . . , wd′)

]
− E(u1,...,ud)∈[m]d

[
f(u1, . . . , ud)

]∣∣∣
]

= Er∈[2s]

[∣∣∣∣
∏

j∈[d′] Ew∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)]
−∏

j∈[d′] E(u1,...,ud)∈[m]d
[∏

i∈Ir,j fi(ui)
]∣∣∣∣

]

≤ Er∈[2s]

[
∑

j∈[d′]

∣∣∣∣Ew∈[m′]

[∏
i∈Ir,j fi

(
h2(w, i)

)]
− E(u1,...,ud)∈[m]d

[∏
i∈Ir,j fi(ui)

]∣∣∣∣

]

≤ Er∈[2s]

[∑
j∈[d′]

∑
S⊆Ir,j : |S|=k

∏
i∈S α(fi)

]

=
∑

j∈[d′]
∑

S⊆[d] : |S|=k Prr∈[2s][S ⊆ Ir,j] ·
∏

i∈S α(fi)

=
∑

j∈[d′]
∑

S⊆[d] : |S|=k
1

(d′)k
·∏i∈S α(fi)

= 1
(d′)k−1

∑
S⊆[d] : |S|=k

∏
i∈S α(fi)

≤ 1
(d′)k−1 · 1

k!

∑
(i1,...,ik)∈[d]k

∏
κ∈[k] α(fiκ)

= 1
(d′)k−1 · 1

k!

(∑
i∈[d] α(fi)

)k

< 1
(d′)k−1 · 1

k!

(
C · log2 1

ǫ

)k

where the fourth line follows by the simple fact that for all x1, . . . , xd′ , y1, . . . , yd′ ∈ [−1, 1]
we have

∣∣∏
j∈[d′] xj −

∏
j∈[d′] yj

∣∣ ≤ ∑
j∈[d′] |xj − yj|, the fifth line follows by Claim 3.37, the

seventh line follows by the k-wise independence of h1, and the other lines follow by simple

manipulations. All that remains is to show that 1
(d′)k−1 · 1

k!

(
C · log2 1

ǫ

)k ≤ ǫ. We have
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(d′)k−1 ≥
(
1
ǫ

)2C+1
. Using the standard bound k! ≥

(
k
e

)k
we have

1
k!

(
C · log2 1

ǫ

)k ≤
(

e·C·log2 1
ǫ

k

)k

≤ eC·log2 1
ǫ ≤

(
1
ǫ

)2C

where the middle inequality follows by a little calculus (and holds no matter what k is).

We conclude that 1
(d′)k−1 · 1

k!

(
C · log2 1

ǫ

)k ≤
(
1
ǫ

)2C
/
(
1
ǫ

)2C+1
= ǫ. This finishes the proof of

Lemma 3.34.

3.4.3 Proof of Lemma 3.36

Let Ω denote the sample space. Let P : Ω → {0, 1} be the indicator for the event that an
odd number of Ei’s hold, and for S ⊆ [ℓ] let χS : Ω → {0, 1} be the indicator for the event⋂

i∈S Ei. For k = 1, . . . , ℓ let Tk : Ω → Z be defined by

Tk(x) =
∑k

κ=1(−2)κ−1
∑

S⊆[ℓ] : |S|=κ χS(x).

We have p = E[P ] and tk = E[Tk]. To prove the lemma, it suffices to show that for all x ∈ Ω,
(i) P (x) ≤ Tk(x) if k is odd, (ii) P (x) ≥ Tk(x) if k is even, and (iii) P (x) = Tℓ(x).

Fix an arbitrary x ∈ Ω and let ℓx =
∣∣{i : x ∈ Ei

}∣∣. Note that

Tk(x) =
∑min(k,ℓx)

κ=1 (−2)κ−1
(ℓx
κ

)
= 1

2
− 1

2
T ′
k(x)

where

T ′
k(x) =

∑min(k,ℓx)
κ=0 (−2)κ

(ℓx
κ

)
.

Now if k ≥ ℓx then by the binomial theorem we have

T ′
k(x) =

∑ℓx
κ=0 1

ℓx−κ(−2)κ
(ℓx
κ

)
= (−1)ℓx

and thus P (x) = Tk(x). This establishes (iii) since ℓ ≥ ℓx, and it establishes (i) and (ii)
assuming k ≥ ℓx. Now assume k ≤ ℓx. We claim that T ′

k(x) ≤ −1 if k is odd, and T ′
k(x) ≥ 1

if k is even. Assuming the claim, (i) follows by P (x) ≤ 1, and (ii) follows by P (x) ≥ 0.
We already established the claim for k = ℓx, and the claim trivially holds for k = 0. For
κ = 0, . . . , ℓx define τκ(x) = 2κ

(
ℓx
κ

)
so that T ′

k(x) =
∑k

κ=0(−1)κτκ(x). Note that the sequence
τ0(x), τ1(x), . . . , τℓx(x) is unimodal, since for κ ≥ 1 we have

τκ(x)/τκ−1(x) = 2(ℓx − κ+ 1)/κ

which is at least 1 when κ ≤ 2
3
(ℓx + 1) and at most 1 when κ ≥ 2

3
(ℓx + 1). We now show

by induction on k = 0, 1, . . . ,
⌊
2
3
(ℓx + 1)

⌋
that the claim holds for these values of k (and a

symmetric argument shows by induction on k = ℓx, ℓx − 1, . . . ,
⌈
2
3
(ℓx + 1)

⌉
that the claim

holds for these values of k). For the base cases, we know the claim holds for k = 0, and for
k = 1 we have T ′

k(x) = 1 − 2ℓx ≤ −1 since ℓx ≥ k = 1. Now assuming the claim holds for
k−2, we prove it for k. Assume k is even (a symmetric argument handles the case k is odd).
We have T ′

k−2(x) ≥ 1 and T ′
k(x) = T ′

k−2(x)− τk−1(x) + τk(x) ≥ 1 since τk(x) ≥ τk−1(x). This
finishes the proof of Lemma 3.36.
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Chapter 4

Advice Lower Bounds for the Dense
Model Theorem

4.1 Introduction

The question of whether the prime numbers contain arbitrarily long arithmetic progressions
was a long-standing and famous open problem until Green and Tao [115] answered the
question in the affirmative in a breakthrough paper in 2004. A key ingredient in their proof
is a certain transference principle which, very roughly, states the following. Let U denote
the set of positive integers. Then for every D ⊆ U , if there exists an R ⊆ U such that D is
dense in R and R is “indistinguishable” from U , then there exists an M ⊆ U such that M
is dense in U and D is “indistinguishable” from M . Tao and Ziegler [239] proved a much
more general version of the transference principle, which has come to be known as the Dense
Model Theorem (since M is a dense “model” for D).

Reingold, Trevisan, Tulsiani, and Vadhan [219] demonstrated the relevance of the Dense
Model Theorem to computer science, and they gave a new proof which is much simpler and
achieves better parameters than the proof of Green, Tao, and Ziegler. Gowers [112] inde-
pendently came up with a similar proof. In addition to the original application of showing
that the primes contain arbitrarily long arithmetic progressions, the Dense Model Theo-
rem has found applications in differential privacy [190], pseudoentropy and leakage-resilient
cryptography [30, 219, 81], and graph decompositions [219], as well as further applications
in additive combinatorics [113, 114]. Subsequent variants of the Dense Model Theorem have
found applications in cryptography [95] and pseudorandomness [245].

To formally state the Dense Model Theorem, we first need some definitions. We identify
{0, 1}2n with the set of functions from {0, 1}n to {0, 1}. We use Dn to denote the set of all
distributions on {0, 1}n. The domain {0, 1}n could be replaced by any finite set of size 2n;
we use the domain {0, 1}n for concreteness.

Definition 4.1. We say D1 ∈ Dn is δ-dense in D2 ∈ Dn if for all x ∈ {0, 1}n, PrD1 [x] ≤
1
δ
PrD2 [x].

Definition 4.2. We say f ∈ {0, 1}2n ǫ-distinguishes D1, D2 ∈ Dn if
∣∣ED1[f ]− ED2[f ]

∣∣ > ǫ.
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δ-dense
D −−−−−−−−−−→ R

(ǫ, F )-indistinguishable

xy

xy (ǫ′, F ′)-indistinguishable

M −−−−−−−−−−→ U
δ-dense

Figure 4.1: Relations among distributions in the Dense Model Theorem

Definition 4.3. For F ⊆ {0, 1}2n, we say D1, D2 ∈ Dn are (ǫ, F )-indistinguishable if there
is no f ∈ F that ǫ-distinguishes D1 and D2.

The following is quantitatively the best known version of the theorem, due to Zhang [278]
(building on [219, 26]).

Theorem 4.4 (Dense Model Theorem). For every F ⊆ {0, 1}2n and every D ∈ Dn, if
there exists an R ∈ Dn such that D is δ-dense in R and (R,U) are (ǫ′, F ′)-indistinguishable
where U ∈ Dn is the uniform distribution, then there exists an M ∈ Dn such that M is
δ-dense in U and (D,M) are (ǫ, F )-indistinguishable, where ǫ′ ≥ Ω(ǫδ) and F ′ consists of all
linear threshold functions with ±1 coefficients applied to O

(
(1/ǫ2) log(1/δ)

)
functions from

F .

The relations among the four distributions in Theorem 4.4 are illustrated in Figure 4.1.
We remark that the theorem also holds when we allow [0, 1]-valued functions f rather
than just {0, 1}-valued functions f . The proof of [219] gives the same result but where
O
(
(1/ǫ2) log(1/ǫδ)

)
functions from F are combined to get a function from F ′. The orig-

inal proof of [239] achieves an F ′ which is qualitatively simpler, namely all products of
poly(1/ǫ, 1/δ) functions from F , but it only achieves ǫ′ ≥ exp(− poly(1/ǫ, 1/δ)).1 We note
that the dependence ǫ′ ≥ Ω(ǫδ) is tight in two senses.

• The Dense Model Theorem is actually false when ǫ′ > ǫδ, even if F ′ = {0, 1}2n. See
[278] for the simple argument.

• The following converse to the Dense Model Theorem holds: If there exists an M ∈ Dn

such that M is δ-dense in U and (D,M) are (ǫ, F )-indistinguishable, then there exists
an R ∈ Dn such that D is δ-dense in R and (R,U) are (ǫ′, F ′)-indistinguishable, where

ǫ′ = ǫδ and F ′ = F . To see this, note that U = δM + (1 − δ)M̂ for some M̂ ∈ Dn,

so we can let R = δD + (1 − δ)M̂ ; then D is δ-dense in R, and for every f ∈ {0, 1}2n
we have ER[f ] − EU [f ] = δ

(
ED[f ] − EM [f ]

)
and thus if

∣∣ER[f ] − EU [f ]
∣∣ > ǫ′ then∣∣ED[f ]− EM [f ]

∣∣ > ǫ.

1Another proof that also achieves this is given in [219].
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The Dense Model Theorem has an undesirable feature: The class F ′ is more complex
than the class F . Thus, if we wish to conclude that D and M are indistinguishable for a
class F , we need to assume that R and U are indistinguishable for a more complex class F ′.
The less complex F ′ is, the stronger the theorem is. The reason for this loss in complexity is
because the theorem is proved using a black-box reduction. In other words, the contrapositive
is proved: We assume that for every M δ-dense in U there exists a function from F that
ǫ-distinguishes D and M , and we show that some of these functions can be plugged into the
reduction to get a function that ǫ′-distinguishes R and U . Thus the resulting function is
necessarily more complex than the functions that get plugged into the reduction. There are
three notions of complexity that are interesting to address in this context.

1. Computational complexity. If F consists of functions computed by small constant-depth
circuits (AC0), then can we let F ′ consist of functions computed by (slightly larger)
constant-depth circuits? This is not known to be true when ǫ′ ≥ Ω(ǫδ), because the
reductions of [219, 278] involve a linear threshold function, which cannot be computed
by small constant-depth circuits. Is it necessary that the reduction computes a linear
threshold function? The original result of [239] shows that this is not necessary if ǫ′ is
inverse exponentially small.

2. Query complexity. If F consists of functions computed by circuits of size s, then F ′ will
need to consist of functions computed by circuits of a larger size s′ — but how much
larger? If the reduction makes q queries to functions from F , then plugging in size-s
circuits for these functions yields a circuit of size ≥ q·s, and thus we must have s′ ≥ q·s.
Hence it is desirable to minimize q. Can we do better than q ≤ O

(
(1/ǫ2) log(1/δ)

)
as

in Theorem 4.4?

3. Advice complexity. Suppose F consists of functions computed by uniform algorithms
running in time t (that is, a single algorithm computes a sequence of functions, one for
each n = 1, 2, 3, . . . ,). Then can we let F ′ consist of functions computed by uniform al-
gorithms running in some (slightly larger) time t′? (Here, the distributions D,M,R, U
would need to be sequences of distributions, and a distinguisher would only be required
to succeed for infinitely many n.) The proofs of [219, 278] do not yield this, because the
reductions need a nonuniform advice string to provide some extra information about
the nth distribution D.2 How many bits of advice are needed?

When we call item 1 computational complexity, we are referring to resources that are di-
rectly associated with the circuit computing the reduction. All three notions of complexity,
however, fall under the scope of “computational complexity” in general (the topic of this
dissertation).

Before proceeding we draw attention to the fact that, as we just alluded to, the advice
strings used by the reductions of [219, 278] depend on D but do not depend on R. Hence
something a little stronger than Theorem 4.4 actually holds: Although the statement of

2The paper [219] also proves a version of the Dense Model Theorem that satisfies a certain technical
relaxation of being “uniform”, where ǫ figures into the quantification over all algorithms and all n.
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Theorem 4.4 says we need to assume that for some R in which D is δ-dense, there is no
function in F ′ that ǫ′-distinguishes R and U , we actually only need to assume that there is
no function in F ′ that simultaneously ǫ′-distinguishes U from every R in which D is δ-dense
(the quantifiers are swapped). We are interested in proving lower bounds on the complexity
of this type of black-box reduction for the Dense Model Theorem, where the advice does not
depend on R.

The query complexity was considered by Zhang [278], who showed that for a certain
type of nonadaptive black-box reduction, Ω

(
(1/ǫ2) log(1/δ)

)
queries are necessary when ǫ′ ≥

Ω(ǫδ) and ǫ ≥ δO(1), matching the upper bound of O
(
(1/ǫ2) log(1/δ)

)
for this case. In this

chapter we consider the advice complexity. We show that for arbitrary black-box reductions,
Ω
(√

(1/ǫ) log(1/δ) · log |F |
)
advice bits are necessary when ǫ′ ≥ Ω(ǫδ) and ǫ ≥ δO(1), which

comes close to matching the upper bound of O
(
(1/ǫ2) log(1/δ) · log |F |

)
for this case. Our

result also holds for much more general settings of the parameters (with some degradation
in the lower bound). Proving lower bounds on the computational complexity remains open.

Let us formally state what we mean by a black-box reduction. Recall the standard
notation [k] = {1, . . . , k}.
Definition 4.5. An (n, ǫ, δ, ǫ′, k, α)-reduction (for the Dense Model Theorem) is a function

Dec :
(
{0, 1}2n

)k × {0, 1}α → {0, 1}2n

such that for all f1, . . . , fk ∈ {0, 1}2n and all D ∈ Dn, if for every M ∈ Dn that is δ-dense
in the uniform distribution U ∈ Dn there exists an i ∈ [k] such that fi ǫ-distinguishes D and
M , then there exists an advice string a ∈ {0, 1}α such that for every R ∈ Dn in which D is
δ-dense, Dec(f1, . . . , fk, a) ǫ

′-distinguishes R and U .

The proofs of [219, 278] work by exhibiting such reductions. The functions
{
f1, . . . , fk

}

correspond to the class F (which, if we were considering uniform algorithms, would be the
restrictions of all the algorithms in the class to a particular input length n). We now state
our theorem.

Theorem 4.6. If there exists an (n, ǫ, δ, ǫ′, k, α)-reduction for the Dense Model Theorem,
and if w > 1 is an integer such that 2w+2 · δw/160 ≤ ǫ′, then

α ≥
⌊

1
160w

√
(1/ǫ) log2(1/δ)

⌋
· log2 k − log2w − 1

provided 2n ≥ w log2 k
ǫδ2(ǫ′)2

, ǫ ≤ 1/64 log2(1/δ), and k ≥ 1/16ǫ4.

For the case where ǫ′ ≥ Ω(ǫδ) and ǫ ≥ δO(1) (which is reasonable), the condition 2w+2 ·
δw/160 ≤ ǫ′ is met provided w is a sufficiently large constant and δ is less than a sufficiently
small constant,3 and thus we get a lower bound α ≥ Ω

(√
(1/ǫ) log(1/δ) · log k

)
. Note that

the three conditions at the end of the statement of Theorem 4.6 are very generous.4

3The statement of Theorem 4.6 requires δ < 2−160. This constant can be drastically improved; we chose
2−160 since it is convenient for the proof.

4The bound 2n ≥ w log
2
k

ǫδ2(ǫ′)2 can be relaxed somewhat. We chose this bound since it is reasonable and is
convenient to state.
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We point out that the black-box reductions we consider can be viewed as a kind of ana-
logue of list-decoders for error-correcting codes. In the setting of list-decoding, the decoder
is given a received word and is required to output a list containing all the codewords that
are within a certain Hamming distance of the received word. In the setting of “dense model
decoding”, the distribution D is analogous to the correct codeword, and the decoder is only
provided with some “corrupted” information about D, namely the functions f1, . . . , fk. Note
that these functions contain some information about D, since D can be distinguished from
any M δ-dense in U using one of the fi’s. The decoder must output a list (corresponding
to all possible values of the advice string a ∈ {0, 1}α), but the goal is less ambitious than
finding D itself; the list just needs to contain a function that distinguishes U from every
R in which D is δ-dense. Thus advice lower bounds for the Dense Model Theorem are a
kind of analogue of list size lower bounds for list-decoding. See Section 4.1.1 for previous
work on list size lower bounds (as well as other previous work that is relevant to the topic
of this chapter). For the case of approximate local list-decoding (also known as hardness
amplification), getting the number of advice bits from poly(1/ǫ) down to the lower bound
of Ω(log(1/ǫ)) proved to be quite a challenge [136, 137]. In contrast, we show that in the
setting of the Dense Model Theorem, the known advice lengths are already in the right
regime, namely poly(1/ǫ).

The rest of this chapter is devoted to proving Theorem 4.6. In Section 4.2 we give some
intuition for the proof, and then in Section 4.3 we give the formal proof. We now give a quick
preview of some of the ingredients that go into the proof. We use the probabilistic method to
find a class of functions f1, . . . , fk for which many advice strings are needed to “cover” all the
distributions D that do not have dense models. The key technical ingredients in the analysis
include (1) a combinatorial argument identifying when several distributions D cannot share
the same advice string, and (2) an analysis of a majority of majorities applied to overlapping
sets of p-biased bits, where the sets form an almost-disjoint family (see Figure 4.2). The
latter analysis makes use of extremely tight lower bounds on the tail probabilities of the
binomial distribution, which we also prove.

4.1.1 Related Work

Lu, Tsai, and Wu [178] proved lower bounds on the computational complexity, query com-
plexity, and advice complexity of black-box reductions for the Hardcore Lemma (which was
introduced by Impagliazzo [133]). Our proof bears some similarity to their advice lower
bound proof, but it diverges significantly. Zhang [278] proved tight lower bounds on the
query complexity of nonadaptive black-box reductions for the Dense Model Theorem, again
with a proof somewhat reminiscent of the corresponding argument in [178].

There has been extensive work on lower bounds for black-box hardness amplification
and list-decoding of error-correcting codes. Regarding advice complexity, Guruswami and
Vadhan [122] and Blinovsky [38] proved a tight Ω(1/ǫ2) list size lower bound for decoding
arbitrary binary error-correcting codes up to radius 1/2− ǫ. Lu, Tsai, and Wu [177] proved
similar advice lower bounds for black-box hardness amplification. List size lower bounds for
decoding from erasures can be found in [117, 268] (see Chapter 8). Regarding query com-
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Figure 4.2: The majority of majorities

plexity, Shaltiel and Viola [231] proved lower bounds for nonadaptive black-box hardness
amplification, matching the upper bounds known for the XOR Lemma [166, 133, 102, 161].
Artemenko and Shaltiel [19] proved lower bounds for adaptive black-box hardness amplifica-
tion, which are not tight in general but are tight in some settings. Regarding computational
complexity, Shaltiel and Viola [231] showed that decoders for black-box hardness amplifi-
cation must implicitly compute majority on Θ(1/ǫ) bits and hence such decoders cannot
be implemented with small constant-depth circuits when ǫ is small. Gutfreund and Roth-
blum [123] showed that adaptive local list-decoders for binary codes must implicitly compute
majority on Θ(1/ǫ) bits to handle radius 1/2− ǫ, under a restriction on the list size.

4.2 Intuition

According to Definition 4.5, for Dec to succeed as a reduction, it must be the case that for
all f1, . . . , fk ∈ {0, 1}2n and all D ∈ Dn, if D has no “dense model” then there is some advice
string a such that Dec(f1, . . . , fk, a) “covers” D in a certain sense. To show that Dec needs
many advice strings in order to succeed, we find functions f1, . . . , fk ∈ {0, 1}2n and a large
family of distributions in Dn such that

(i) each distribution in the family has no dense model (with respect to f1, . . . , fk), and

(ii) each function f ∈ {0, 1}2n covers few of the distributions in the family.

So (i) implies that each distribution in the family needs to get covered, while (ii) implies
that for each advice string a, Dec(f1, . . . , fk, a) does not cover very many of them. Since the
family is large, many advice strings are needed.

First we describe a technique for achieving (i), then we describe a technique for achieving
(ii), and then we show how to consolidate the techniques to achieve both properties simul-
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taneously. When we say D has no “dense model” we mean that for every M ∈ Dn that is
δ-dense in U there exists an i ∈ [k] such that fi ǫ-distinguishes D and M . When we say a
function “covers” D we mean that it ǫ′-distinguishes R and U for every R ∈ Dn in which
D is δ-dense. The only distributions D we need to consider are uniform distributions over
subsets of {0, 1}n.

Given f1, . . . , fk ∈ {0, 1}2n, what is an example of a distribution with no dense model?
Suppose we pick any I ⊆ [k] of size 1/4ǫ and we let XI be the set of all x ∈ {0, 1}n such
that fi(x) = 1 for the majority of i ∈ I. Suppose we take DI to be the uniform distribution
over XI . Then we have Prx∼DI , i∼I [fi(x) = 1] ≥ 1/2 + 2ǫ where i ∼ I means picking i ∈ I
uniformly at random. If XI is roughly a δ/2 fraction of {0, 1}n, then every distribution M
that is δ-dense in U has at least half its mass outside of XI , on strings x where Pri∼I [fi(x) =
1] ≤ 1/2 − 2ǫ. It is possible to show that Prx∼M, i∼I [fi(x) = 1] < Prx∼DI , i∼I [fi(x) = 1]− ǫ
and thus there exists an i ∈ I (depending on M) such that fi ǫ-distinguishes DI and M .
So if |XI | ≈ (δ/2)2n then DI has no dense model. This is the technique we use for finding
distributions without dense models.

Now, what is an example of a pair of distributions such that no function can cover both
simultaneously? If we can show that every pair of distributions in the family is like this,
then we will have achieved (ii). Because of an issue described below, we actually need to
consider small collections of distributions rather than just pairs, but for now we consider
pairs. Suppose D is uniform over some X ⊆ {0, 1}n of size roughly (δ/2)2n, and similarly
D′ is uniform over some X ′ ⊆ {0, 1}n of size roughly (δ/2)2n. If X ∩X ′ = ∅, then it can be
shown that no function covers both D and D′.5 Furthermore, if |X ∩X ′| is at most roughly
ǫ′2n then this property still holds.

To consolidate the two techniques, we would like to find a large family of sets I ⊆ [k]
each of size 1/4ǫ, such that

(A) |XI | ≈ (δ/2)2n for each I in the family, and

(B) the pairwise intersections of the XI ’s (for I in the family) all have size at most roughly
ǫ′2n.

This would imply that the corresponding distributions DI (for I in the family) have no
dense models, and no function would cover more than one of them, so (i) and (ii) would be
achieved.

We choose the functions f1, . . . , fk ∈ {0, 1}2n randomly in some way, and we argue that
for an appropriate family of sets I, properties (A) and (B) both hold with high probability.
Property (A) suggests that we should choose p so that the probability a majority of 1/4ǫ
independent coins each with expectation p come up 1 is exactly δ/2. Then we can set
fi(x) = 1 with probability p independently for each i ∈ [k] and each x ∈ {0, 1}n, so for
each I of size 1/4ǫ, Pr[x ∈ XI ] = δ/2. Then by concentration, |XI | ≈ (δ/2)2n with high
probability over f1, . . . , fk.

5Actually, there is an issue having to do with the absolute value signs in the definition of distinguishing;
this is dealt with in the formal proof.
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If we choose f1, . . . , fk randomly in this way, how big will |XI ∩ XI′| be, for I and I ′

in the family? By concentration, we would have that with high probability over f1, . . . , fk,
|XI ∩XI′ | is roughly 2n times Pr[x ∈ XI ∩XI′] (which is the same for all x ∈ {0, 1}n), so we
would like the latter probability to be ≤ ǫ′. So what is the probability that the conjunction
of two majorities of p-biased bits is 1? The best case is if I ∩ I ′ = ∅, in which case the
probability is exactly (δ/2)2. There are two problems with this.

(1) We cannot get a very large family of sets I if we require them to be pairwise disjoint.

(2) This requires ǫ′ ≥ (δ/2)2. In a typical setting where ǫ′ ≥ Ω(ǫδ), this would require
ǫ > δ, which is an odd and somewhat severe restriction.

To solve problem (1), we use the natural idea to allow the sets I to be pairwise almost-
disjoint, rather than disjoint (which allows us to get a much larger family). So if |I ∩ I ′|
is at most some value b, how small does b have to be to ensure that the probability both
majorities are 1 is not much more than (δ/2)2? We analyze this using the following trick:
If both majorities are 1, then the fraction of coins that are 1 among I ∪ I ′ is at least q,
where q = 1/2−2ǫb = 1/4ǫ−b

1/2ǫ
≤ |I|/2+|I′|/2−b

|I∪I′| . Using an extremely tight characterization of the

tail probabilities of the binomial distribution (which we prove using known techniques but
which we could not find in the literature), we can show that p ≈ 1/2−

√
ǫ log(1/δ) and the

probability of getting ≥ q fraction of 1’s among the |I∪I ′| coins is not much more than (δ/2)2

provided q is at least a constant factor closer to 1/2 than p is, say q ≈ 1/2−
√

ǫ log(1/δ)/4.

Thus it suffices to have b ≈
√
ǫ log(1/δ)/8ǫ ≥ Ω

(√
(1/ǫ) log(1/δ)

)
. Since the family of sets

I needs to be in the universe [k], there exists such a family of roughly kb many sets with
pairwise intersections bounded in size by b. Since each function can cover DI for only one
I in the family, roughly kb advice strings are needed, which gives an advice lower bound of
roughly log(kb) ≥ Ω

(√
(1/ǫ) log(1/δ) · log k

)
.

Problem (2) is solved in the formal proof by considering small collections of sets from the
family, rather than pairs. The parameter w in Theorem 4.6 is used to determine how big
these collections should be. Then instead of requiring that the conjunction of two majorities
accepts with small probability, we need that the majority of several majorities accepts with
small probability, which explains where Figure 4.2 comes from.

4.3 Formal Proof

In Section 4.3.1, Section 4.3.2, and Section 4.3.3 we give preliminary lemmas, definitions,
and notation. Then in Section 4.3.4 we give the proof of Theorem 4.6.

4.3.1 Binomial Distribution Tail

We let Tail(m, p, q) denote the probability that when m independent coins are flipped each
with probability p of heads, at least a q fraction of the coins are heads (in other words, the
probability the (m, p) binomial distribution is at least qm). For our proof of Theorem 4.6
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we need extremely tight upper and lower bounds on the value of Tail(m, p, q). Such bounds
can be given in terms of the fundamental quantity

RE(q‖p) = q log2(
q
p
) + (1− q) log2(

1−q
1−p

)

which is known by a variety of names such as relative entropy, information divergence, and
Kullback-Leibler distance.6

We need the following fact, which can be seen using derivatives.

Fact 4.7. For all 1/4 ≤ p ≤ q ≤ 3/4, we have 2(q − p)2 ≤ RE(q‖p) ≤ 4(q − p)2.

We also need the following standard and well-known form of the Chernoff-Hoeffding
bound.

Lemma 4.8. For all m ≥ 1 and all 0 ≤ p ≤ q ≤ 1, we have Tail(m, p, q) ≤ 2−RE(q‖p)m.

Lemma 4.8 is very tight, as shown by the following lemma, which we prove for complete-
ness.

Lemma 4.9. For all m ≥ 1 and all 1/4 ≤ p ≤ q ≤ 1, we have Tail(m, p, q) ≥ 1
48

√
m

·
2−RE(q‖p)m.

Proof. First, assume that qm is an integer. Then lower bounding Tail(m, p, q) by the first
term of the sum, we have

2RE(q‖p)m · Tail(m, p, q) ≥ 2RE(q‖p)m ·
(
m
qm

)
pqm(1− p)(1−q)m

= qqm(1−q)(1−q)m

pqm(1−p)(1−q)m ·
(
m
qm

)
pqm(1− p)(1−q)m

= qqm(1− q)(1−q)m ·
(
m
qm

)

≥ qqm(1− q)(1−q)m · 1
3
√
qm

· 1
qqm(1−q)(1−q)m

≥ 1
3
√
m

where the fourth line follows by Stirling approximations. Now suppose qm is not an integer,
and let q′ = ⌈qm⌉/m. Then we have Tail(m, p, q) = Tail(m, p, q′) ≥ 1

3
√
m
· 2−RE(q′‖p)m. We

claim that RE(q′‖p)− RE(q‖p) ≤ 4/m, from which it follows that 2−RE(q′‖p)m/2−RE(q‖p)m ≥
1/16 and thus Tail(m, p, q) ≥ 1

48
√
m
·2−RE(q‖p)m. We now argue the claim. Since q′ ≤ q+1/m,

we have q′ log2(
q′

p
) − q log2(

q
p
) ≤ (1/m) log2(

1
p
) + q log2(

q+1/m
q

). We have (1/m) log2(
1
p
) ≤

2/m since p ≥ 1/4, and we have q log2(
q+1/m

q
) ≤ q · 2/qm = 2/m. Thus q′ log2(

q′

p
) −

q log2(
q
p
) ≤ 4/m. Since q′ ≥ q, we have (1− q′) log2(

1−q′

1−p
)− (1− q) log2(

1−q
1−p

) ≤ 0. Summing
gives the claim.

6RE is more often notated D or DKL, but we use RE to avoid confusion with our distributions D.
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Although Lemma 4.9 is very simple and general, for our purpose we can only use it for a
limited range of parameters, namely when ǫ ≫ δ. This is because RE(q‖p) could be so close
to 0 that 1

48
√
m

completely swamps 2−RE(q‖p)m, in which case Lemma 4.9 is not very tight.
To handle the full range of ǫ and δ, we use the following stronger lower bound for the case
q = 1/2.

Lemma 4.10. For all m ≥ 9 and all 1/4 ≤ p < 1/2, we have

Tail(m, p, 1/2) ≥ min
(

1
256

, 1
128

√
m(1/2−p)

)
· 2−RE(1/2‖p)m.

Proof. Let q = ⌈m/2⌉/m. Let h = ⌊√m/3⌋, and note that 1 ≤ h ≤ (1− q)m. We have

2RE(q‖p)m · Tail(m, p, q) = qqm(1−q)(1−q)m

pqm(1−p)(1−q)m ·∑(1−q)m
i=0

(
m

qm+i

)
pqm+i(1− p)(1−q)m−i

= qqm(1− q)(1−q)m ·∑(1−q)m
i=0

(
m

qm+i

)(
p

1−p

)i

= qqm(1− q)(1−q)m ·∑(1−q)m
i=0

(
m
qm

)(
p

1−p

)i ∏i
j=1

(
1 + m−2qm−i

qm+j

)

≥ 1
3
√
qm

·∑(1−q)m
i=0

(
p

1−p

)i ∏i
j=1

(
1 + m−2qm−i

qm+j

)

≥ 1
3
√
qm

·∑(1−q)m
i=0

(
p

1−p

)i(
1− 2(i+1)

m

)i

≥ 1
3
√
qm

·
(
1− 2(h+1)

m

)h ·∑h
i=0

(
p

1−p

)i

≥ 1
3
√
qm

·
(
1− 2h(h+1)

m

)
·∑h

i=0

(
p

1−p

)i

≥ 1
6
√
qm

·∑h
i=0

(
p

1−p

)i

= 1
6
√
qm

· 1−( p
1−p

)h+1

1− p
1−p

≥ 1
6
√
qm

· 1−e
−(1−

p
1−p )h

1− p
1−p

where the fourth line follows by
(
m
qm

)
≥ 1

3
√
qm

· 1
qqm(1−q)(1−q)m which holds by Stirling approxi-

mations, the fifth line follows by 1/2 ≤ q ≤ 1/2 + 1/2m, and the eighth line follows by the
definition of h and m ≥ 9. If (1− p

1−p
)h < 1 then the expression is at least

1
6
√
qm

· 1−
(
1− 1

2
(1− p

1−p
)h
)

1− p
1−p

= h
12

√
qm

≥ 1
64
.

If (1− p
1−p

)h ≥ 1 then the expression is at least

1
6
√
qm

· 1−1/e
1− p

1−p
≥ 1

10
√
qm

· 1
1− p

1−p
≥ 1

10
√
qm

· 1
4·(1/2−p)

≥ 1
32

√
m(1/2−p)

where the last inequality uses m ≥ 9. Thus we have shown that in either case,

Tail(m, p, 1/2) = Tail(m, p, q) ≥ min
(

1
64
, 1

32
√
m(1/2−p)

)
· 2−RE(q‖p)m.
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To finish the proof, we just need to show that 2−RE(q‖p)m/2−RE(1/2‖p)m ≥ 1/4. For this,
it suffices to show that RE(q‖p) − RE(1/2‖p) ≤ 2/m. Since q ≤ 1/2 + 1/2m, we have

q log2(
q
p
)−(1/2) log2(

1/2
p
) ≤ (1/2m) log2(

1
p
)+(1/2) log2(

1/2+1/2m
1/2

). We have (1/2m) log2(
1
p
) ≤

1/m since p ≥ 1/4, and we have (1/2) log2(
1/2+1/2m

1/2
) ≤ (1/2) · 2/m = 1/m. Thus q log2(

q
p
)−

(1/2) log2(
1/2
p
) ≤ 2/m. Since q ≥ 1/2, we have (1− q) log2(

1−q
1−p

)− (1−1/2) log2(
1−1/2
1−p

) ≤ 0.

Summing yields RE(q‖p)− RE(1/2‖p) ≤ 2/m.

4.3.2 Combinatorial Designs

For our proof of Theorem 4.6 we need the existence of large families of almost-disjoint
subsets of a finite set. Such combinatorial designs have numerous applications in theoretical
computer science, one of the more famous being in the pseudorandom generator construction
of Nisan and Wigderson [201].

Definition 4.11. An (ℓ, k, s, b)-design is a family of sets I1, . . . , Iℓ ⊆ [k] all of size s such
that |Ij ∩ Ij′| ≤ b for every j 6= j′.

Lemma 4.12. For every k, s, b there exists an (ℓ, k, s, b)-design with ℓ ≥ kb/8, provided
k ≥ 16s4.

There is nothing very novel about this lemma, and this precise version follows from
a result in [82], but we provide a simple, self-contained proof here. The proof uses the
probabilistic method with a simple concentration bound for the hypergeometric distribution.

Proof. If b = 0 then the lemma holds trivially, so assume b ≥ 1. Let ℓ = ⌈kb/8⌉. We pick
sets I1, . . . , Iℓ independently and uniformly at random from all subsets of [k] of size s, and
we argue that with positive probability I1, . . . , Iℓ forms an (ℓ, k, s, b)-design. We claim that
for every j, j′ ∈ [ℓ] with j 6= j′, Pr

[
|Ij ∩ Ij′| > b

]
≤ 2k−b/2. From this it follows by a union

bound that

Pr
[
I1, . . . , Iℓ does not form an (ℓ, k, s, b)-design

]
≤

(
ℓ
2

)
· 2k−b/2 < ℓ2 · k−b/2 ≤ 1

where the final inequality ⌈kb/8⌉ ≤ kb/4 follows by k ≥ 16 and b ≥ 1. To prove the claim,
consider any j 6= j′ and fix any particular choice of Ij. Now consider picking points i1, . . . , is ∈
[k] independently and uniformly at random (with replacement). Since the expected number
of points that land in Ij is s2/k, a standard relative-error form of the Chernoff bound tells
us that

Pri1,...,is
[
|{h : ih ∈ Ij}| > b

]
≤

(
es2

bk

)b ≤ k−b/2

using es2 ≤ k1/2 and b ≥ 1 (where e is the base of the natural logarithm). The probability
that i1, . . . , is are all distinct is at least 1 −

(
s
2

)
/k ≥ 1/2 by a union bound and using

k ≥ s2. Conditioning on the event that i1, . . . , is are all distinct is equivalent to sampling
Ij′ = {i1, . . . , is} of size s uniformly at random, and probabilities increase by at most a factor
of 2 conditioned on this event. Thus Pr

[
|Ij ∩ Ij′| > b

]
≤ 2k−b/2, as claimed.
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4.3.3 Notational Preliminaries

The parameters n, ǫ, δ, ǫ′, k, and w are fixed as in the statement of Theorem 4.6, and we always
use D,M,R, U (possibly subscripted) to denote distributions in Dn, in their respective roles
as in Definition 4.5.

We let Maj denote the majority function on bit strings, and for even length strings we
break ties by returning 1. We let And denote the and function on bit strings. We let Majt

denote the function that takes t bit strings and returns their majorities as a length-t bit
string. We use ◦ for function composition.

We also adhere to the following notational conventions. We use x for elements of {0, 1}n
and X for subsets of {0, 1}n. We use f for elements of {0, 1}2n (identified with functions
from {0, 1}n to {0, 1}) and F for subsets of {0, 1}2n. We use [k] to index functions f , and
we use i for elements of [k] and I for subsets of [k]. We use [ℓ] to index subsets I (as in
Definition 4.11), and we use j for elements of [ℓ] and J for subsets of [ℓ]. Furthermore, we
generally use s for the size of I, and t for the size of J .

The following notation is with respect to fixed f1, . . . , fk ∈ {0, 1}2n. Given I ⊆ [k] we
define

• fI is the function that takes x ∈ {0, 1}n and returns the length-|I| bit string (fi(x))i∈I ;

• XI is the set of x ∈ {0, 1}n on which Maj ◦fI returns 1;

• DI is the uniform distribution over XI (and if XI = ∅ then DI is undefined).

The following notation is with respect to fixed f1, . . . , fk ∈ {0, 1}2n and fixed I1, . . . , Iℓ ⊆
[k]. Given J ⊆ [ℓ] we define

• fIJ is the function that takes x ∈ {0, 1}n and returns the |J |-tuple (fIj (x))j∈J ;

• XIJ is the set of x ∈ {0, 1}n on which Maj ◦Maj|J | ◦fIJ returns 1.

We use ∼ to denote sampling from a distribution (for example x ∼ D), and we use the
convention that sampling from a set (for example i ∼ I) means sampling from the uniform
distribution over that set.

4.3.4 Proof of Theorem 4.6

Consider an arbitrary function

Dec :
(
{0, 1}2n

)k × {0, 1}α → {0, 1}2n.

Supposing that α <
⌊

1
160w

√
(1/ǫ) log2(1/δ)

⌋
· log2 k − log2w − 1, we show that Dec is not

an (n, ǫ, δ, ǫ′, k, α)-reduction. We first introduce some terminology to make things concise.
Given f1, . . . , fk ∈ {0, 1}2n, a dense model for D ∈ Dn is an M ∈ Dn that is δ-dense in the
uniform distribution U ∈ Dn and is such that for all i ∈ [k], fi does not ǫ-distinguish D and
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M . We say a function f ∈ {0, 1}2n covers D ∈ Dn if for every R ∈ Dn in which D is δ-dense,
f ǫ′-distinguishes R and U .

Thus to show that Dec is not an (n, ǫ, δ, ǫ′, k, α)-reduction, we need to find f1, . . . , fk ∈
{0, 1}2n such that some D has no dense model but is not covered by Dec(f1, . . . , fk, a) for
any advice string a ∈ {0, 1}α.

4.3.4.1 Distributions Without Dense Models

The following claim is our tool for finding distributions that have no dense models.

Claim 4.13. For every f1, . . . , fk ∈ {0, 1}2n and every I ⊆ [k] of size 0 < s ≤ 1/4ǫ (for
some s), if 0 < |XI | ≤ (2δ/3)2n then DI has no dense model.

Proof. We only consider the case when s is odd (essentially the same argument works when
s is even). Suppose we pick i ∈ I uniformly at random. Then for each x ∈ XI we have
Pri∼I [fi(x) = 1] ≥ 1/2+1/2s ≥ 1/2+2ǫ, and for each x ∈ {0, 1}n\XI we have Pri∼I [fi(x) =
1] ≤ 1/2− 1/2s ≤ 1/2− 2ǫ. Thus we have Prx∼DI , i∼I [fi(x) = 1] ≥ 1/2 + 2ǫ. Now consider
an arbitrary M that is δ-dense in U . We have

Prx∼M, i∼I [fi(x) = 1]

≤ Prx∼M [x 6∈ XI ] · (1/2− 2ǫ) +
∑

x∗∈XI
Prx∼M [x = x∗] · Pri∼I [fi(x

∗) = 1]

≤
(
1− |XI |/δ2n

)
· (1/2− 2ǫ) +

∑
x∗∈XI

(1/δ2n) · Pri∼I [fi(x
∗) = 1]

=
(
1− |XI |/δ2n

)
· (1/2− 2ǫ) + (|XI |/δ2n) · Prx∼DI , i∼I [fi(x) = 1]

≤ (1/3) · (1/2− 2ǫ) + (2/3) · Prx∼DI , i∼I [fi(x) = 1]

= Prx∼DI , i∼I [fi(x) = 1]− (1/3) ·
(
Prx∼DI , i∼I [fi(x) = 1]− (1/2− 2ǫ)

)

≤ Prx∼DI , i∼I [fi(x) = 1]− (1/3) · 4ǫ.

Here the third line follows because Pri∼I [fi(x
∗) = 1] > 1/2−2ǫ holds for all x∗ ∈ XI and thus

the whole expression only gets larger by shifting probability mass from {0, 1}n\XI to XI .
Similarly, the fifth line follows because the fourth line is a convex combination of 1/2−2ǫ and
Prx∼DI , i∼I [fi(x) = 1], so the whole expression gets larger by shifting weight to the larger of
the two.

Since Prx∼DI , i∼I [fi(x) = 1] − Prx∼M, i∼I [fi(x) = 1] > ǫ, there must exist an i ∈ I such
that EDI

[fi] − EM [fi] > ǫ and thus fi ǫ-distinguishes DI and M . Hence M is not a dense
model for DI . This finishes the proof of Claim 4.13.

4.3.4.2 Distributions That Cannot Be Covered

We say a function f ∈ {0, 1}2n positively covers D ∈ Dn if for every R ∈ Dn in which D
is δ-dense, ER[f ] − EU [f ] > ǫ′ (note the absence of absolute value signs). Observe that if
f ∈ {0, 1}2n covers D then either f or its complement positively covers D. This is because
if there existed R1, R2 ∈ Dn in which D is δ-dense and such that ER1 [f ] < EU [f ] < ER2 [f ],
then some convex combination R3 of R1 and R2 would have ER3 [f ] = EU [f ]. However, D
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would be δ-dense in R3 since the set of R in which D is δ-dense is convex, so f would not
cover D.

Claim 4.14. For every f1, . . . , fk ∈ {0, 1}2n, every I1, . . . , Iℓ ⊆ [k] (for some ℓ), and every
J ⊆ [ℓ] of size t > 1 (for some t), if |XIJ | ≤ (ǫ′/2)2n and |XIj | ≥ (δ/2− ǫ′/4)2n for all j ∈ J
then there is no function that simultaneously positively covers DIj for all j ∈ J .

Proof. Assume that |XIJ | ≤ (ǫ′/2)2n and |XIj | ≥ (δ/2 − ǫ′/4)2n for all j ∈ J . Consider
an arbitrary f ∈ {0, 1}2n and let X be the set of x ∈ {0, 1}n such that f(x) = 1. For
τ ∈ {0, 1, . . . , t} let X(τ) be the set of x ∈ {0, 1}n such that there are exactly τ values of
j ∈ J for which x ∈ XIj (in other words, (Majt ◦fIJ )(x) has Hamming weight τ). Note that

XIJ =
⋃t

τ=t′ X
(τ) where t′ = ⌈t/2⌉. Let π = minj∈J

[
EDIj

[f ]
]
. Then for every j ∈ J we have

|X ∩XIj | ≥ π · |XIj | ≥ π · (δ/2− ǫ′/4)2n. We have

(t/2) ·
(
|X|+ |XIJ |

)
≥ (t/2) · |X ∩XIJ |+ t · |X ∩XIJ |
≥ ∑t

τ=0 τ · |X ∩X(τ)|
=

∑
j∈J |X ∩XIj |

≥ t · π · (δ/2− ǫ′/4)2n

which implies that

|X| ≥ π · (δ − ǫ′/2)2n − |XIJ | ≥ πδ2n − ǫ′2n = (π − ǫ′/δ) · δ2n

since π ≤ 1 and |XIJ | ≤ (ǫ′/2)2n. We might have π − ǫ′/δ < 0, but this is not problematic.
Let M be a distribution δ-dense in U that maximizes EM [f ], and observe that

EM [f ] = min
(
|X|/δ2n, 1

)
≥ π − ǫ′/δ.

We have U = δM + (1 − δ)M̂ for some M̂ ∈ Dn. Let j ∈ J be such that EDIj
[f ] = π, and

define the distribution R = δDIj + (1− δ)M̂ so that DIj is δ-dense in R. Then we have

ER[f ] = δπ + (1− δ) EM̂ [f ]

and

EU [f ] = δEM [f ] + (1− δ) EM̂ [f ] ≥ δπ − ǫ′ + (1− δ) EM̂ [f ] = ER[f ]− ǫ′

so f does not positively cover DIj . This finishes the proof of Claim 4.14.

4.3.4.3 Setting the Parameters

Define s = ⌊1/4ǫ⌋ and t = w and b =
⌊

1
20t

√
(1/ǫ) log2(1/δ)

⌋
. By Lemma 4.12 there exists

an (ℓ, k, s, b)-design I1, . . . , Iℓ with ℓ = ⌈kb/8⌉ (note that we do have k ≥ 16s4). Define p to
be such that Tail(s, p, 1/2) = δ/2.
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Claim 4.15. 1
2

√
ǫ log2(1/δ) ≤ 1/2− p ≤ 2

√
ǫ log2(1/δ) ≤ 1/4.

Proof. The bound 2
√
ǫ log2(1/δ) ≤ 1/4 holds by our assumption ǫ ≤ 1/64 log2(1/δ). To

prove the upper bound on 1/2− p, define p′ = 1/2− 2
√

ǫ log2(1/δ) ≥ 1/4. Then we have

Tail
(
s, p′, 1/2

)
≤ 2−RE(1/2‖p′)s ≤ 2−2(1/2−p′)2s = δ8ǫs ≤ δ8/5 < δ/2

by Lemma 4.8 and Fact 4.7, and where the penultimate inequality uses ǫ ≤ 1/20. Thus
p ≥ p′. To prove the lower bound on 1/2− p, assume it does not hold. Then we would have
the contradiction

δ/2 ≥ min
(

1
256

, 1
128

√
s(1/2−p)

)
· 2−RE(1/2‖p)s

≥ min
(

1
256

, 1

32
√

log2(1/δ)

)
· 2−RE(1/2‖p)s

≥ δ1/2 · 2−RE(1/2‖p)s

≥ δ1/2 · 2−4(1/2−p)2s

≥ δ1/2 · 2−(1/2−p)2/ǫ

≥ δ1/2 · δ1/4

where the first line follows by Lemma 4.10 (note that we do have s ≥ 9), the third line follows
by7 δ ≤ 2−16, and the fourth line follows by Fact 4.7. This finishes the proof of Claim 4.15.

4.3.4.4 The Majority of Majorities

We choose f1, . . . , fk randomly by setting fi(x) = 1 with probability p independently for
each i ∈ [k] and each x ∈ {0, 1}n.

Claim 4.16. For every J ⊆ [ℓ] of size t and every x ∈ {0, 1}n, we have Prf1,...,fk [x ∈ XIJ ] ≤
ǫ′/4.

Proof. Define t′ = ⌈t/2⌉. Note that if (Maj ◦Majt ◦fIJ )(x) = 1 then there exists a subset
J ′ ⊆ J of size t′ such that (And ◦Majt

′ ◦fIJ′ )(x) = 1. Thus we have

Prf1,...,fk
[
(Maj ◦Majt ◦fIJ )(x) = 1

]

≤ 2t ·maxJ ′⊆J : |J ′|=t′ Prf1,...,fk
[
(And ◦Majt

′ ◦fIJ′ )(x) = 1
]
.

Consider an arbitrary J ′ ⊆ J of size t′. Define m =
∣∣⋃

j∈J ′ Ij
∣∣ and notice that since I1, . . . , Iℓ

is an (ℓ, k, s, b)-design, by inclusion-exclusion we have

t′s−
(
t′

2

)
b ≤ m ≤ t′s. (4.1)

7The existence of w in the statement of Theorem 4.6 actually implies δ ≤ 2−160.
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Define s′ = ⌈s/2⌉ and q = 1/2− t′b/2s. If (And ◦Majt
′ ◦fIJ′ )(x) = 1 then for each j ∈ J ′ we

have
∑

i∈Ij fi(x) ≥ s′ and so by inclusion-exclusion we have

∑
i∈

⋃
j∈J′ Ij

fi(x) ≥
(∑

j∈J ′

∑
i∈Ij fi(x)

)
−

(
t′

2

)
b ≥ t′s′ −

(
t′

2

)
b ≥ qt′s ≥ qm.

It follows that

Prf1,...,fk
[
(And ◦Majt

′ ◦fIJ′ )(x) = 1
]

≤ Prf1,...,fk

[∑
i∈

⋃
j∈J′ Ij

fi(x) ≥ qm
]

= Tail(m, p, q)

≤ 2−RE(q‖p)m

=
(
2−RE(1/2‖p)s)(m/s)·(RE(q‖p)/RE(1/2‖p))

≤
(
δ1/10

)(m/s)·(RE(q‖p)/RE(1/2‖p))

where the third line follows by Lemma 4.8 and the fifth line follows by nonnegativity of RE
and

2−RE(1/2‖p)s ≤ 2−2(1/2−p)2s ≤ δǫs/2 ≤ δ1/10

which holds by Fact 4.7, Claim 4.15, and ǫ ≤ 1/20. We have

m/s ≥ t′ − (t′)2b/2s ≥ t′/2 ≥ t/4 (4.2)

by (4.1) and b ≤ s/t′ (which can be shown using the final inequality in Claim 4.15). We also
have t′b/2s ≤ 1

8

√
ǫ log2(1/δ) and thus q − p ≥ 3

4
(1/2− p) by Claim 4.15. Hence by Fact 4.7

we have
RE(q‖p)/RE(1/2‖p) ≥ (q−p)2

2(1/2−p)2
≥ ( 3

4
(1/2−p))2

2(1/2−p)2
≥ 1/4. (4.3)

Using (4.2) and (4.3) we get

Prf1,...,fk
[
(And ◦Majt

′ ◦fIJ′)(x) = 1
]

≤
(
δ1/10

)(t/4)·(1/4)
= δt/160.

We conclude that
Prf1,...,fk [x ∈ XIJ ] ≤ 2t · δt/160 ≤ ǫ′/4.

This finishes the proof of Claim 4.16.

4.3.4.5 Putting It All Together

For every j ∈ [ℓ] and every x ∈ {0, 1}n, we have Prf1,...,fk [x ∈ XIj ] = Tail(s, p, 1/2) = δ/2.
Standard relative-error forms of the Chernoff bound give

Prf1,...,fk
[
|XIj | < (δ/2− ǫ′/4)2n

]
≤ e−2n(ǫ′)2/16δ

Prf1,...,fk
[
|XIj | > (2δ/3)2n

]
≤ e−2nδ/54

Prf1,...,fk
[
|XIJ | > (ǫ′/2)2n

]
≤ e−2nǫ′/12
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where the latter holds for each J ⊆ [ℓ] of size t, using Claim 4.16. Thus by a union bound
we have

Prf1,...,fk

[
(δ/2− ǫ′/4)2n ≤ |XIj | ≤ (2δ/3)2n for all j ∈ [ℓ] and
|XIJ | ≤ (ǫ′/2)2n for all J ⊆ [ℓ] of size t

]

≥ 1− ℓ · e−2n(ǫ′)2/16δ − ℓ · e−2nδ/54 −
(
ℓ
t

)
· e−2nǫ′/12

> 0

since 2n ≥ t log2 k
ǫδ2(ǫ′)2

. Fix a choice of f1, . . . , fk such that the above event occurs.

For every J∗ ⊆ [ℓ] of size 2t − 1, there is no a ∈ {0, 1}α such that Dec(f1, . . . , fk, a)
simultaneously covers DIj for all j ∈ J∗, because otherwise for some J ⊆ J∗ of size t, either
Dec(f1, . . . , fk, a) or its complement would simultaneously positively cover DIj for all j ∈ J ,
which would contradict Claim 4.14.

So for each a ∈ {0, 1}α, the number of j ∈ [ℓ] such thatDIj is covered by Dec(f1, . . . , fk, a)
is at most 2t − 2. This implies that the number of j ∈ [ℓ] for which there exists an a ∈
{0, 1}α such that Dec(f1, . . . , fk, a) covers DIj is at most 2α · (2t − 2) < kb/8 ≤ ℓ since
α ≤ (b/8) log2 k − log2 t − 1. Thus there exists a j ∈ [ℓ] such that DIj is not covered by
Dec(f1, . . . , fk, a) for any a ∈ {0, 1}α. By Claim 4.13, DIj has no dense model, so Dec is not
an (n, ǫ, δ, ǫ′, k, α)-reduction. This finishes the proof of Theorem 4.6.
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Part III

The Problem’s Input is Random
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Chapter 5

Extractors and Lower Bounds for
Locally Samplable Sources

5.1 Introduction

Randomness extraction is the following general problem. Given a sample from an imperfect
physical source of randomness, which is modeled as a probability distribution on bit strings
of length n, we wish to apply an efficient deterministic algorithm to the sample to produce an
output which is almost uniformly distributed (and thus is suitable for use by a randomized
algorithm). Of course, to extract randomness from a source, the source needs to “contain” a
certain amount of randomness in the first place. It is well established that the most suitable
measure of the amount of randomness in a source is its min-entropy (a distribution is said
to have at least k bits of min-entropy if each outcome occurs with probability at most 2−k).
However, even if the source is known to have at least n−1 bits of min-entropy, no algorithm
can extract even a single bit that is guaranteed to be close to uniformly distributed (see,
for example, [250, 228] for proofs of this folklore observation). To deal with this problem,
researchers have constructed seeded extractors (introduced by [202]), which have access to a
short uniformly random seed that is statistically independent of the source and which acts
as a catalyst for the extraction process (see [226, 250, 228] for introductions).

However, there is a sense in which seeded extractors are overkill: They are guaranteed to
work for completely arbitrary sources that have high enough min-entropy. It is reasonable
to assume the physical source of randomness has some limited structure, in which case
deterministic (that is, seedless) extraction may become viable. There are several classes of
sources for which researchers have constructed good deterministic extractors. One such class
is independent sources, where the n bits are partitioned into blocks which are assumed to be
statistically independent of each other [60, 74, 27, 49, 28, 211, 227, 208, 29, 207, 210, 215,
240, 167]. Other such classes include so-called bit-fixing sources [59, 154, 94, 209], affine
sources [93, 50, 209, 71, 276, 168], polynomial sources [77, 34], and algebraic varieties [76].

Trevisan and Vadhan [246] considered deterministic extractors for the class of sources
that are samplable by efficient algorithms given uniform random bits. One may initially be
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concerned that extracting randomness from such sources is somehow circular or vacuous:
We are assuming uniform random bits are used to sample the source, and our goal then is
to “undo” the sampling and get uniform random bits back. The point is that this class of
sources is just a model for physical sources. This is motivated by the following postulate
about the universe: A physical source of randomness is generated by an efficient process in
nature, so it is reasonable to model the source as being sampled by an efficient algorithm.

Trevisan and Vadhan constructed extractors for the class of sources samplable by gen-
eral time-bounded algorithms, but their constructions are conditional on (somewhat non-
standard) complexity-theoretic conjectures. It is common in other areas of research, such as
proving lower bounds and constructing pseudorandom generators, that proving unconditional
limits on the power of time-bounded algorithms is beyond the reach of current techniques.
Thus researchers consider more restricted types of algorithms, such as small-space algorithms
and bounded-depth circuits, which are combinatorially simple enough for us to prove uncon-
ditional results. Hence it is natural to try to construct unconditional deterministic extractors
for sources samplable by such restricted algorithms. Kamp et al. [153] succeeded in doing so
for small-space samplers with streaming/one-way access to the random input bits.

However, at the time the paper this chapter is based on was written, it was an open
problem to construct an unconditional deterministic extractor for sources samplable by
polynomial-size constant-depth circuits with unbounded fan-in gates. A basic obstacle is
that this requires that input-output pairs of the extractor cannot be sampled by such cir-
cuits, and it was not even known how to construct an explicit function with the latter
property. For example, although the parity function is known not to have subexponential-
size constant-depth circuits [275, 129], input-output pairs can be sampled very efficiently:
Just take uniformly random bits x1, . . . , xn and output x1, x1⊕x2, x2⊕x3, . . . , xn−1⊕xn, xn.
In independent and concurrent work, Viola [261] has constructed unconditional deterministic
extractors for sources samplable by polynomial-size constant-depth circuits with unbounded
fan-in gates, which in particular yields an explicit function whose input-output pairs cannot
be sampled by such circuits (see Section 5.1.3).

Our goal in this chapter is to expand the frontier of unconditional deterministic ran-
domness extraction for sources with low-complexity samplers. We succeed in constructing
extractors for sources samplable by small-depth circuits with bounded fan-in gates (which
corresponds to the class NC0 when the depth is constant). This is equivalent to requiring
that each output bit of the sampler only depends on a small number of input bits. We call
such sources locally samplable. Even constructing extractors for sources where each output
bit depends on at most one input bit is nontrivial, as such sources are a natural generalization
of bit-fixing sources.

As pointed out above, a necessary condition for a function to be an extractor for sources
sampled by a class of algorithms is that input-output pairs of the function cannot be sampled
by such algorithms. Finding explicit functions with the latter property is tougher than finding
explicit functions that are hard to compute, because if a function is easy to compute, then
input-output pairs can be obtained by just sampling a random input and then computing the
corresponding output. Viola [262] initiated the study of finding explicit boolean functions
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whose input-output pairs are hard to sample for low-complexity samplers (specifically, local
samplers). Another contribution of this chapter is an application of our extractor result to
obtain an improvement of Viola’s result.

5.1.1 Results

We first give the formal definitions of extractors and locally samplable sources.
A distribution on a finite set S is said to have min-entropy at least k if each element of

S occurs with probability at most 2−k. The statistical distance between two distributions
D1 and D2 on a finite set S is defined to be ‖D1 − D2‖ = maxT⊆S

∣∣PrD1[T ] − PrD2 [T ]
∣∣. If

‖D1−D2‖ ≤ ǫ then we also say D1 and D2 are ǫ-close. If f : S → S ′ and D is a distribution
on S, then we let f(D) denote the distribution on S ′ obtained by drawing a sample from D
and applying f to it. When we mention a distribution multiple times in an expression, all
instantiations refer to a single sample from the distribution; for example,

(
D, f(D)

)
denotes

the distribution obtained by sampling w ∼ D and outputting the pair
(
w, f(w)

)
. We use Un

to denote the uniform distribution on {0, 1}n. If C is a class of distributions on {0, 1}n, then
a function Ext : {0, 1}n → {0, 1}m is called a (k, ǫ)-extractor for C if for every distribution
D ∈ C with min-entropy at least k,

∥∥Ext(D) − Um

∥∥ ≤ ǫ. Informally, when we say an
extractor is explicit we mean that a uniform polynomial-time deterministic algorithm with
the desired behavior is exhibited.

We define a d-local sampler to be a function f : {0, 1}r → {0, 1}n such that each output
bit depends on at most d input bits. In other words, for every j ∈ {1, . . . , n} there exists
a subset Ij ⊆ {1, . . . , r} with |Ij| ≤ d and a function fj : {0, 1}|Ij| → {0, 1} such that the
jth output bit of f is obtained by evaluating fj on the input bits indexed by Ij. The output
distribution of the sampler is f(Ur). We say a distribution D on {0, 1}n is a d-local source
if there exists a d-local sampler (with any input length r) whose output distribution is D.

We have three main theorems. Our first main theorem gives an extractor for locally
samplable sources.

Theorem 5.1. For every constant γ > 0 there exists a constant β > 0 such that there exists
an explicit (k, ǫ)-extractor for the class of d-local sources with output length m = k2/8nd and
error ǫ = 2−nβ

, provided k ≥ n2/3+γ and d ≤ β log n.

Our second main theorem gives an extractor for 1-local sources (which generalize bit-
fixing sources), achieving better min-entropy requirement and better output length than
Theorem 5.1.

Theorem 5.2. For every constant γ > 0 there exists a constant β > 0 such that there exists
an explicit (k, ǫ)-extractor for the class of 1-local sources with output length m = k − o(k)
and error ǫ = 2−nβ

, provided k ≥ n1/2+γ .

Our third main theorem concerns the problem of finding explicit functions whose input-
output pairs are hard to sample, as discussed in the paragraph right before Section 5.1.1.
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Theorem 5.3. There exists a universal constant β > 0 and an explicit function F : {0, 1}n →
{0, 1} such that for every d-local source D on {0, 1}n+1 with d ≤ β logn,

∥∥D−
(
Un, F (Un)

)∥∥ ≥
1/2− 2−nβ

.

5.1.2 Techniques

We now discuss the techniques we use to prove these three theorems. The proof of Theo-
rem 5.1 has three steps.

The first step is to construct a certain extractor for 1-local sources (which in particular
yields Theorem 5.2). To do this, we observe that extractors for so-called low-weight affine
sources also work for 1-local sources. Rao [209] constructed an extractor for low-weight affine
sources. Using Rao’s extractor off-the-shelf would lead to a weaker version of Theorem 5.1
with min-entropy requirement k ≥ n1−γ for some constant γ > 0. To improve the min-
entropy requirement, we construct an improved extractor for low-weight affine sources by
building on [209]. While Rao’s extractor handles affine sources of min-entropy at least k and
weight at most kγ for some constant γ > 0, our improvement handles sources with weight
at most k1−γ for any constant γ > 0. The key ingredient in our improvement is the strong
condenser of Guruswami, Umans, and Vadhan [121]. We present this step in Section 5.3 and
Section 5.7.

The second step is to show that extractors for 1-local sources also work for o(log n)-local
sources. To do this, we relate the problem to a concept we call superindependent matchings in
bipartite graphs, and we prove a combinatorial lemma about the existence of such matchings.
We present this step in Section 5.4.

The third step is to increase the output length of the extractor using the technique of
“obtaining an independent seed” introduced by Gabizon et al. [94] (see also [227]). Com-
bining step 1 and step 2 yields an extractor with output length Ω(k2/nd32d). To increase
the output length to Ω(k2/nd), we adapt the technique from [94]. A key ingredient in our
argument is a lemma due to Vadhan [249], which is a strengthened version of a classic lemma
due to Nisan and Zuckerman [202]. While the result of [94] achieves output length k − o(k)
for bit-fixing sources, we lose a factor of Ω(k/n) in the output length due to the way we use
Vadhan’s lemma, and we lose another factor of Ω(1/d) since conditioning on p bits of the
output of a d-local sampler could cause a loss of pd bits of min-entropy. We present this step
in Section 5.5.

Viola [262] proved a version of Theorem 5.3 where the statistical distance lower bound
is only 1/2 − O(1/ logn), and the d-local sampler is restricted to use at most n + n1−δ

random bits for any constant δ > 0. His function F is what he calls “majority mod p”.
Using a different function F (namely, any bit of the extractor underlying Theorem 5.1),

we simultaneously improve the lower bound to 1/2 − 2−nΩ(1)
and eliminate the restriction

on the number of random bits. Our proof of Theorem 5.3 uses ideas similar to Viola’s,
but is actually somewhat simpler given the extraction property of F . In [262], Viola also
showed that for symmetric functions F , one cannot hope to get such a strong lower bound
for samplers that are polynomial-size constant-depth circuits. Our extractor function F is
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not symmetric. We present the proof of Theorem 5.3 in Section 5.6.1

5.1.3 Concurrent Work

In independent and concurrent work, Viola [261] obtained extractors for d-local sources with
d ≤ no(1) and for sources sampled by polynomial-size constant-depth circuits. The high
level idea behind the extractor is the same as in our work: Show that the given source is
close to a convex combination of 1-local sources, and use the extractor in [209]. However,
the proofs in [261] are much more involved than in this chapter. For d-local sources with
d ≤ no(1), Viola requires min-entropy k ≥ n3/4+γ (for any constant γ > 0) and achieves

output length m = Ω̃(k3/n2d3) and error ǫ = 2−nΩ(1)
(though the output length can be

improved to Ω(k2/nd) using the technique we present in Section 5.5 based on [94]). When
d ≤ o(log n) he obtains a result similar to our Theorem 5.1 but with worse output length:
He requires min-entropy k ≥ n2/3+γ and achieves output length m = Ω(k2/nd22d) and error

ǫ = 2−nΩ(1)
. For sources sampled by polynomial-size constant-depth circuits, he requires

min-entropy k ≥ n2/3+γ and achieves output length m = Ω(k2/n1+Ω(1)) and error ǫ = n−ω(1).

5.1.4 Previous Work on the Power of Locally Computable Func-
tions

There has been a substantial amount of work on whether various complexity-theoretic and
cryptographic objects can be computed locally. Several works [80, 175, 249, 13, 279, 68]
have studied the problem of constructing locally computable seeded extractors (that is, the
extractor itself is locally computable, as opposed to our setting where the sampler for the
source is locally computable). A variety of works [65, 193, 12, 13, 145, 10, 11] have given
positive and negative results on the existence of locally computable pseudorandom genera-
tors. Several works [130, 99, 12, 62, 43] have studied the possibility of locally computable
one-way functions. Goldwasser et al. [106] gave positive and negative results on interactive
proof systems with locally computable verifiers. Arora et al. [18] show that the adjacency
list of certain logarithmic-degree expander graphs can be computed with constant locality,
and they ask whether the same holds for constant-degree expander graphs.

5.2 Preliminaries

In this chapter we work with bipartite graphs G = (L,R,E), where L,R are disjoint finite
sets (the left and right nodes) and E is a set of unordered pairs where one element comes
from L and the other from R. The distance between two nodes is the number of edges on a
shortest path between them.

1We also mention in passing that Lovett and Viola [173] exhibited an explicit distribution on {0, 1}n that
cannot be sampled within statistical distance 1−1/nΩ(1) by polynomial-size constant-depth circuits, namely
the uniform distribution over the codewords of any asymptotically good error-correcting code. However, this
distribution is not of the same form as sampling input-output pairs.
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To every function f : {0, 1}r → {0, 1}n we associate a bipartite graph G = (L,R,E)
where L = {1, . . . , r}×{in}, R = {1, . . . , n}×{out}, and

{
(i, in), (j, out)

}
∈ E if and only if

the jth output bit of f depends on the ith input bit of f (that is, for some setting of all input
bits except the ith, the jth output bit equals the ith input bit or its complement). Note that
we include no unnecessary edges, and the graph is unique. We use Ij × {in} to denote the
set of neighbors of (j, out) and Ji × {out} to denote the set of neighbors of (i, in). Observe
that if f(Ur) has min-entropy at least k, then there are at least k non-isolated nodes in L,
and in particular r ≥ k.

We say f is a d-local sampler if each node in R has degree at most d, and we say a
distribution on {0, 1}n is a d-local source if it equals f(Ur) for some d-local sampler f (with
any input length r). We say f is a (d, c)-local sampler if each node in R has degree at most d
and each node in L has degree at most c, and we say a distribution on {0, 1}n is a (d, c)-local
source if it equals f(Ur) for some (d, c)-local sampler f (with any input length r).

Suppose Y is a finite set of indices, (py)y∈Y is a distribution on Y , and for each y ∈ Y ,
Dy is a distribution on a finite set S. Then the convex combination

∑
y∈Y pyDy is defined

to be the distribution on S obtained by sampling y according to (py)y∈Y , then outputting a
sample from Dy.

Lemma 5.4. Suppose Ext : {0, 1}n → {0, 1}m is any function and D =
∑

y∈Y pyDy is a
distribution on {0, 1}n. Then for every ǫ ≥ 0,

∥∥Ext(D)− Um

∥∥ ≤ ǫ+ Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um

∥∥ > ǫ
]
.

Proof. First, observe that Ext(D) =
∑

y∈Y py Ext(Dy). Now for every T ⊆ {0, 1}n we have
∣∣PrExt(D)[T ]− PrUm [T ]

∣∣

=
∣∣∣
∑

y∈Y py
(
PrExt(Dy)[T ]− PrUm [T ]

)∣∣∣
≤ ∑

y∈Y py
∣∣PrExt(Dy)[T ]− PrUm[T ]

∣∣

≤ ǫ · Pry∼(py)y∈Y

[∣∣PrExt(Dy)[T ]− PrUm [T ]
∣∣ ≤ ǫ

]
+ 1 · Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um

∥∥ > ǫ
]

≤ ǫ+ Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um

∥∥ > ǫ
]

which gives the desired bound on
∥∥Ext(D)− Um

∥∥.

Corollary 5.5. Suppose every distribution in C with min-entropy at least k can be written
as a convex combination

∑
y∈Y pyDy where

Pry∼(py)y∈Y

[
Dy is in C′ and has min-entropy at least k′] ≥ 1− δ.

Then every (k′, ǫ′)-extractor for C′ is also a (k, ǫ)-extractor for C where ǫ = ǫ′ + δ.

Corollary 5.6. Suppose every distribution in C with min-entropy at least k is a convex
combination of distributions in C′ with min-entropy at least k′. Then every (k′, ǫ)-extractor
for C′ is also a (k, ǫ)-extractor for C.
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Lemma 5.7. Every d-local source with min-entropy at least k is a convex combination of
(d, c)-local sources with min-entropy at least k − nd/c.

Proof. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n whose output distribution
has min-entropy at least k, and let G = (L,R,E) be the associated bipartite graph. Since
|E| ≤ nd, there are at most nd/c nodes in L with degree greater than c; without loss of
generality these nodes are {r − ℓ + 1, . . . , r} × {in} for some ℓ ≤ nd/c. For each string
y ∈ {0, 1}ℓ, define fy : {0, 1}r−ℓ → {0, 1}n as fy(x) = f(x, y) (hard-wiring the last ℓ bits
to y). Then f(Ur) =

∑
y∈{0,1}ℓ

1
2ℓ
fy(Ur−ℓ). Moreover, each fy(Ur−ℓ) is a (d, c)-local source

with min-entropy at least k − nd/c, since if some z ∈ {0, 1}n and y∗ ∈ {0, 1}ℓ satisfied
Prx∼Ur−ℓ

[
fy∗(x) = z

]
> 1/2k−nd/c then we would have

Prx∼Ur−ℓ,y∼Uℓ

[
f(x, y) = z

]
≥ Pry∼Uℓ

[y = y∗] ·Prx∼Ur−ℓ

[
f(x, y∗) = z

]
> 1

2ℓ
· 1
2k−nd/c ≥ 1/2k

contradicting that f(Ur) has min-entropy at least k.

In this chapter we also make use of seeded extractors. A function Ext : {0, 1}n×{0, 1}t →
{0, 1}m is called a seeded (k, ǫ)-extractor if for every distribution D on {0, 1}n with min-
entropy at least k,

∥∥Ext(D,Ut) − Um

∥∥ ≤ ǫ where Ut is independent of D. We say Ext is a
strong seeded (k, ǫ)-extractor if for every distribution D on {0, 1}n with min-entropy at least
k,2

Pry∼Ut

[∥∥Ext(D, y)− Um

∥∥ ≤ ǫ
]

≥ 1− ǫ.

We say Ext is linear if for every seed y ∈ {0, 1}t, the function Ext(·, y) : {0, 1}n → {0, 1}m
is linear over F2, where Fq denotes the finite field of size q.

If z ∈ {0, 1}n and J ⊆ {1, . . . , n}, then we let z|J ∈ {0, 1}|J | denote the substring of z
indexed by the coordinates in J . If D is a distribution on {0, 1}n and J ⊆ {1, . . . , n}, then
we let D|J denote the marginal distribution on the coordinates in J .

Finally, all logarithms in this chapter are base 2.

5.3 1-Local Sources

An affine source is a distribution on {0, 1}n which is uniform over an affine subspace (where
{0, 1}n is viewed as a vector space over F2). If the subspace has dimension k then it has
size 2k and hence the source has min-entropy k. The distribution can be sampled by picking
x1, . . . , xk ∈ {0, 1} uniformly at random and outputting z0 + x1z1 + · · · + xkzk where z0 ∈
{0, 1}n is a shift vector and z1, . . . , zk ∈ {0, 1}n are a basis of the associated linear subspace.
The source is said to be a weight-c affine source if there exist basis vectors z1, . . . , zk each of
which has Hamming weight at most c.

Observation 5.8. Every (1, c)-local source is also a weight-c affine source.

2According to this definition, every strong seeded (k, ǫ)-extractor is also a seeded (k, 2ǫ)-extractor.
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Proof. Consider an arbitrary (1, c)-local sampler f : {0, 1}k → {0, 1}n and assume without
loss of generality that there are no isolated nodes on the left side of the associated bipartite
graph. For each i ∈ {1, . . . , k}, let Ji × {out} be the set of neighbors of (i, in), and let
1Ji ∈ {0, 1}n be the characteristic vector of this set. For each i ∈ {1, . . . , k} we have
|Ji| ≤ c and hence 1Ji has Hamming weight at most c (since f is a (1, c)-local sampler). It is
straightforward to verify that the output distribution of f is sampled by picking x1, . . . , xk ∈
{0, 1} uniformly at random and outputting f(0k)+x11J1+ · · ·+xk1Jk . Moreover, the vectors
1Ji are linearly independent.

Rao [209] (building on [208]) constructed extractors for low-weight affine sources.

Theorem 5.9 ([209]). There exist universal constants C, γ > 0 such that for all k ≥ logC n

there exists an explicit (k, 2−kΩ(1)
)-extractor with output length m = k − o(k) for the class of

weight-kγ affine (and in particular, (1, kγ)-local) sources.

We improve Rao’s result to obtain the following theorem, which we prove in Section 5.7.

Theorem 5.10. There exists a universal constant C > 0 such that for every constant γ > 0
and all k ≥ logC/γ n there exists an explicit (k, 2−kΩ(1)

)-extractor with output length m =
k − o(k) for the class of weight-k1−γ affine (and in particular, (1, k1−γ)-local) sources.

We now explain how Theorem 5.2 follows from Theorem 5.10, Lemma 5.7, and Corol-
lary 5.6. We first note the following immediate corollary of Theorem 5.10.

Corollary 5.11. For every constant γ > 0 there exists a constant β > 0 such that for all
k ≥ n1/2+γ there exists an explicit (k, 2−nβ

)-extractor with output length m = k − o(k) for
the class of weight-n1/2 affine (and in particular, (1, n1/2)-local) sources.

Lemma 5.7 implies that every 1-local source with min-entropy at least k ≥ n1/2+γ is a
convex combination of (1, n1/2)-local sources with min-entropy at least k − n1/2 ≥ k − o(k).
Theorem 5.2 then follows from Corollary 5.6 and Corollary 5.11.

Bourgain [50], Yehudayoff [276], and Li [168] constructed extractors for linear min-entropy
affine sources (of arbitrary weight), achieving better error but worse output length than
Theorem 5.10.

Theorem 5.12 ([50]). For every constant δ > 0 there exists an explicit (δn, 2−Ω(n))-extractor
with output length m = Ω(n) for the class of affine (and in particular, 1-local) sources.

Theorem 5.12 can be used to improve the error in Theorem 5.1 and Theorem 5.2 when
k ≥ Ω(n) and d ≤ O(1). We omit the details, so as to avoid having a laundry list of results.
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5.4 d-Local Sources

The following theorem shows that to get extractors for d-local sources, it suffices to construct
extractors for 1-local sources.

Theorem 5.13. Every (k′, ǫ′)-extractor for (1, 2nd/k)-local sources is also a (k, ǫ)-extractor
for d-local sources, where k′ = k2/4nd32d and ǫ = ǫ′ + e−k′/4.

Assuming k ≥ n2/3+γ (for constant γ > 0) and d ≤ β log n (for small enough constant
β > 0) in Theorem 5.13, we find that it suffices to have a (k′, ǫ′)-extractor for (1, c)-local
sources where k′ ≥ n1/3+γ and c = 2nd/k ≤ n1/3 ≤ (k′)1−γ. Such an extractor is given by

Theorem 5.10, with error ǫ′ = 2−nΩ(1)
(and thus ǫ = ǫ′+e−k′/4 ≤ 2−nΩ(1)

). This already yields
a version of Theorem 5.1 with output length k′ − o(k′) = Ω(k2/nd32d).

As a corollary to Theorem 5.13, we also find that if we could construct an explicit
extractor for 1-local sources with min-entropy at least nγ for arbitrarily small constants
γ > 0 (with output length m ≥ 1 and error ǫ ≤ 1/2, say) then we would get explicit
extractors for o(logn)-local sources with min-entropy at least n1/2+γ for arbitrarily small
constants γ > 0. This n1/2 min-entropy barrier is common in extractor constructions.

5.4.1 Superindependent Matchings

We first prove a combinatorial lemma that is needed for the proof of Theorem 5.13.

Definition 5.14. Given a bipartite graph G = (L,R,E), we say a set of edges M ⊆ E is a
superindependent matching if there is no path of length at most two in G from an endpoint
of an edge in M to an endpoint of a different edge in M .

Lemma 5.15. Suppose G = (L,R,E) is a bipartite graph with no isolated nodes and such
that each node in L has degree at most c and each node in R has degree at most d. Then G
has a superindependent matching of size at least |L|/d2c.

Proof. Let M be a largest superindependent matching in G, and suppose for contradiction
that |M | < |L|/d2c. Note that for each node in R, the number of nodes in L within distance
three in G is at most d

(
1 + (c − 1)(d − 1)

)
≤ d2c. Thus the number of nodes in L within

distance three of the right endpoints of edges in M is at most |M | · d2c < |L|. Hence there
exists a node u ∈ L at distance greater than three from the right endpoint of every edge in
M . Since G has no isolated nodes, there exists a node v ∈ R such that {u, v} ∈ E. Note
that there is no path of length at most two from either u or v to an endpoint of an edge
in M , since otherwise a simple case analysis would show that u is within distance three of
the right endpoint of an edge in M . Thus M ∪ {{u, v}} is a superindependent matching,
contradicting the maximality of M .
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5.4.2 Proof of Theorem 5.13

Suppose Ext : {0, 1}n → {0, 1}m is a (k′, ǫ′)-extractor for (1, 2nd/k)-local sources. By
Corollary 5.6 and Lemma 5.7 it suffices to show that Ext is a (k/2, ǫ)-extractor for (d, c)-
local sources where c = 2nd/k. The plan is to show that every (d, c)-local source with
min-entropy at least k/2 is a convex combination of (1, c)-local sources most of which have
min-entropy at least k′, and then apply Corollary 5.5.

So consider an arbitrary (d, c)-local sampler f : {0, 1}r → {0, 1}n whose output distribu-
tion has min-entropy at least k/2, and let G = (L,R,E) be the associated bipartite graph.

If we obtain G̃ from G by removing any isolated nodes, then G̃ still has at least k/2 nodes

on its left side. Applying Lemma 5.15 to G̃ tells us that G has a superindependent matching
M of size at least k/(2d2c). Let ℓ = |M |, and without loss of generality assume that the left
endpoints of M are L′ = {1, . . . , ℓ} × {in}. We write inputs to f as (x, y) where x ∈ {0, 1}ℓ
and y ∈ {0, 1}r−ℓ. Since M is superindependent, each node in R is adjacent to at most
one node in L′. Thus if we define fy : {0, 1}ℓ → {0, 1}n as fy(x) = f(x, y) (hard-wiring
the last r − ℓ input bits to y) then for each y, fy is a (1, c)-local sampler. Observe that
f(Ur) =

∑
y∈{0,1}r−ℓ

1
2r−ℓfy(Uℓ).

Let Gy = (L′, R, Ey) denote the bipartite graph associated with fy. As implied by the
proof of Observation 5.8, the min-entropy of fy(Uℓ) is the number of nodes in L′ that are
non-isolated in Gy. Although each node in L′ is non-isolated in G (since M ⊆ E), edges
incident to L′ may disappear when we hard-wire y. We claim that with high probability over
y, plenty of nodes in L′ are still non-isolated in Gy and hence fy(Uℓ) has high min-entropy.
For i ∈ {1, . . . , ℓ} let (ji, out) ∈ R be the neighbor of (i, in) in M , and let Iji × {in} be the
set of neighbors of (ji, out) in G. Since the jthi output bit of f depends on the ith input bit,
there exists a string wi ∈ {0, 1}|Iji |−1 such that hard-wiring the input bits corresponding to
Iji\{i} to wi leaves the edge

{
(i, in), (ji, out)

}
in place, and in particular ensures that (i, in)

is non-isolated. Since M is superindependent, the sets Iji for i ∈ {1, . . . , ℓ} are pairwise
disjoint and in particular, each Iji\{i} ⊆ {ℓ+1, . . . , r}. We assume the bits of y are indexed
starting at ℓ+1, so for example y|{ℓ+1} is the first bit of y. By the disjointness, we find that
the events y|Iji\{i} = wi (for i ∈ {1, . . . , ℓ}) are fully independent over y ∼ Ur−ℓ. Moreover,

each of these events occurs with probability at least 1/2d−1 since |wi| ≤ d− 1. Thus we have

Pry∼Ur−ℓ

[
fy(Uℓ) does not have min-entropy at least k′]

= Pry∼Ur−ℓ

[∣∣{i ∈ {1, . . . , ℓ} : (i, in) is non-isolated in Gy

}∣∣ < k′
]

≤ Pry∼Ur−ℓ

[∣∣{i ∈ {1, . . . , ℓ} : y|Iji\{i} = wi

}∣∣ < k′
]

≤ e−k/8d2c2d

by a standard Chernoff bound.
To summarize, we have shown that every (d, c)-local source with min-entropy at least

k/2 is a uniform convex combination of (1, c)-local sources, at most e−k/8d2c2d fraction of
which do not have min-entropy at least k′. It now follows from Corollary 5.5 that Ext is a
(k/2, ǫ)-extractor for (d, c)-local sources. This finishes the proof of Theorem 5.13.
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5.5 Increasing the Output Length

Combining the results from Section 5.3 and Section 5.4 yields an extractor for d-local sources
with output length Ω(k2/nd32d), provided d ≤ o(log n) and the min-entropy k is at least
n2/3+γ . In this section we show how to improve the output length to Ω(k2/nd), which is a
significant improvement when k ≥ Ω(n) and d is large. We present the general method in
Section 5.5.1, and then we apply the general method to obtain Theorem 5.1 in Section 5.5.2.

5.5.1 The General Method

We now present our general theorem on increasing the output length of extractors for d-local
sources (Theorem 5.19 below), which uses the technique of “obtaining an independent seed”.
As in [94], the strategy is to take the output of a deterministic extractor and use part of it
to sample a set of coordinates of the source, which are then plugged into a seeded extractor,
using the other part of the deterministic extractor’s output as the seed. The key property of
d-local sources that enables us to adapt the technique from [94] is that conditioning on any
p bits of the source gives a convex combination of d-local sources that lose at most pd in the
min-entropy.

A key ingredient (which was not used in [94]) is a fundamental lemma of Nisan and
Zuckerman [202], which roughly says that if we sample the coordinates appropriately, then
the min-entropy rate of the marginal distribution on those coordinates is almost as high as
the min-entropy rate of the whole source.3 However, the original Nisan-Zuckerman lemma
loses a logarithmic factor in the min-entropy rate. We use a strengthened version of the
lemma, due to Vadhan [249], which only loses a constant factor.

We use
({1,...,n}

p

)
to denote the set of subsets of {1, . . . , n} of size p.

Definition 5.16. We say Samp : {0, 1}s →
({1,...,n}

p

)
is a (µ, η)-sampler if for every g :

{1, . . . , n} → [0, 1] with 1
n

∑n
j=1 g(j) ≥ µ it holds that Prσ∼Us

[
1
p

∑
j∈Samp(σ) g(j) < µ/2

]
≤ η.

Lemma 5.17 ([249]). There exists a universal constant α > 0 such that the following holds.
Suppose Samp : {0, 1}s →

({1,...,n}
p

)
is a

(
k/2n log(4n/k), η

)
-sampler and D is a distribution

on {0, 1}n with min-entropy at least k. Then with probability at least 1 −
√

η + 2−αk over

σ ∼ Us it holds that D|Samp(σ) is
√

η + 2−αk-close to a distribution with min-entropy at least
pk/4n.

We also need the following lemma from [94], which we state in a slightly nonstandard
way for convenience when we apply the lemma.

Lemma 5.18 ([94]). Consider any distribution on {0, 1}s1 ×{0, 1}s2 ×{0, 1}s3 which is ǫ′-
close to uniform, and suppose σ is in the support of the marginal distribution on the second
coordinate. Then the marginal distribution on the first and third coordinates, conditioned on
the second coordinate being σ, is (ǫ′2s2+1)-close to uniform.
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Ingredients:
Ext′ : {0, 1}n → {0, 1}m′

Ext′1 : {0, 1}n → {0, 1}s is the first s bits of Ext′

Ext′2 : {0, 1}n → {0, 1}m′−s is the last m′ − s bits of Ext′

Samp : {0, 1}s →
({1,...,n}

p

)

SExt : {0, 1}p × {0, 1}m′−s → {0, 1}m
Result:

Ext : {0, 1}n → {0, 1}m defined as Ext(z) = SExt
(
z|Samp(Ext′1(z))

,Ext′2(z)
)

Figure 5.1: Increasing the output length of an extractor for d-local sources

We now present the general theorem on increasing the output length.

Theorem 5.19. Consider the construction in Figure 5.1, and let α be as in Lemma 5.17.
Suppose Ext′ is a (k′, ǫ′)-extractor for d-local sources, Samp is a

(
k/2n log(4n/k), η

)
-sampler,

and SExt is a seeded (pk/4n, ǫ′′)-extractor. Then Ext is a (k, ǫ)-extractor for d-local sources,

where k = k′ + pd and ǫ = ǫ′(2s+1 + 1) + 2
√
η + 2−αk + ǫ′′.

Proof. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n whose output distribution
has min-entropy at least k, and let G = (L,R,E) be the associated bipartite graph. Our
goal is to show that

∥∥Ext
(
f(Ur)

)
− Um

∥∥ ≤ ǫ.

Let us call σ ∈ {0, 1}s good if f(Ur)|Samp(σ) is
√

η + 2−αk-close to a distribution with

min-entropy at least pk/4n, and bad otherwise. For each σ we let U
(σ)
r be the uniform

distribution over w ∈ {0, 1}r such that Ext′1
(
f(w)

)
= σ.4

Claim 5.20. For each good σ,
∥∥Ext

(
f(U

(σ)
r )

)
− Um

∥∥ ≤ ǫ′2s+1 +
√

η + 2−αk + ǫ′′.

Assuming Claim 5.20, we can prove the theorem as follows. Observe that

f(Ur) =
∑

σ∈{0,1}s Prw∼Ur

[
Ext′1

(
f(w)

)
= σ

]
f(U

(σ)
r ).

Then using the shorthand ǫ′′′ = ǫ′2s+1 +
√

η + 2−αk + ǫ′′ we have

∥∥Ext
(
f(Ur)

)
− Um

∥∥ ≤ ǫ′′′ + Prw∼Ur

[∥∥Ext
(
f(U

(σ)
r )

)
− Um

∥∥ > ǫ′′′ where σ = Ext′1
(
f(w)

)]

≤ ǫ′′′ + Prw∼Ur

[
Ext′1

(
f(w)

)
is bad

]

≤ ǫ′′′ + ǫ′ + Prσ∼Us [σ is bad]

≤ ǫ′′′ + ǫ′ +
√
η + 2−αk

= ǫ

3Min-entropy rate just means the min-entropy divided by the length of the source.
4Formally, we only consider σ’s in the support of Ext′1

(
f(Ur)

)
.
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where the first line follows by Lemma 5.4, the second line follows by Claim 5.20, the third
line follows by

∥∥Ext′1
(
f(Ur)

)
−Us

∥∥ ≤ ǫ′ (since f(Ur) is a d-local source with min-entropy at
least k ≥ k′), and the fourth line follows by Lemma 5.17.

It remains to prove Claim 5.20. Consider an arbitrary fixed good σ ∈ {0, 1}s, and
without loss of generality assume the nodes in L adjacent to Samp(σ)× {out} are {r − ℓ+
1, . . . , r}×{in} for some ℓ ≤ pd. For each string y ∈ {0, 1}ℓ, define fy : {0, 1}r−ℓ → {0, 1}n as
fy(x) = f(x, y) (hard-wiring the last ℓ bits to y). Then each fy(Ur−ℓ) is a d-local source with
min-entropy at least k − ℓ ≥ k′ (see the proof of Lemma 5.7), and this is the key point that
enables us to use the technique of [94]. Thus,

∥∥Ext′
(
fy(Ur−ℓ)

)
− Um′

∥∥ ≤ ǫ′. Now consider
the joint distribution

(
Ur|{r−ℓ+1,...,r},Ext

′
1

(
f(Ur)

)
,Ext′2

(
f(Ur)

))
.

That is, sample (x, y) ∼ Ur and output y along with both parts of Ext′
(
f(x, y)

)
. We have

just argued that conditioned on the first coordinate of this distribution being any particular
y ∈ {0, 1}ℓ, the marginal distribution of the other two coordinates is ǫ′-close to uniform.
Thus the entire distribution is ǫ′-close to uniform. By Lemma 5.18 (with s1 = ℓ, s2 = s, and
s3 = m′ − s), the joint distribution

(
U

(σ)
r |{r−ℓ+1,...,r},Ext

′
2

(
f(U

(σ)
r )

))

is (ǫ′2s+1)-close to the uniform distribution
(
Uℓ, Um′−s

)
where Uℓ and Um′−s are independent.

Let us define f (σ) : {0, 1}ℓ → {0, 1}p by f (σ)(y) = f(x, y)|Samp(σ) for any x ∈ {0, 1}r−ℓ (this
value does not depend on x since nodes in Samp(σ) × {out} are only adjacent to nodes in
{r − ℓ+ 1, . . . , r} × {in}). Then we have

Ext
(
f(U

(σ)
r )

)
= SExt

(
f (σ)

(
U

(σ)
r |{r−ℓ+1,...,r}

)
,Ext′2

(
f(U

(σ)
r )

))

and thus ∥∥Ext
(
f(U

(σ)
r )

)
− SExt

(
f (σ)(Uℓ), Um′−s

)∥∥ ≤ ǫ′2s+1. (5.1)

Letting D denote a distribution on {0, 1}p with min-entropy at least pk/4n that f (σ)(Uℓ) =

f(Ur)|Samp(σ) is
√

η + 2−αk-close to (such a D exists since σ is good), we have

∥∥SExt
(
f (σ)(Uℓ), Um′−s

)
− SExt

(
D,Um′−s

)∥∥ ≤
√

η + 2−αk. (5.2)

Since SExt is a seeded (pk/4n, ǫ′′)-extractor, we have

∥∥SExt
(
D,Um′−s

)
− Um

∥∥ ≤ ǫ′′. (5.3)

Combining Inequality (5.1), Inequality (5.2), and Inequality (5.3) yields Claim 5.20. This
finishes the proof of Theorem 5.19.
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5.5.2 Applying Theorem 5.19

In order to apply Theorem 5.19, we need explicit constructions of Ext′, Samp, and SExt.
An appropriate construction of Samp is given by the following lemma.

Lemma 5.21 ([202]). There exists an explicit (µ, η)-sampler Samp : {0, 1}s →
({1,...,n}

p

)

with s = 4 logn · log 1
η
, provided µp ≥ 64 log 1

η
and η < 1/16.

The interesting thing about samplers as defined in Definition 5.16 is that they produce
a set of fixed size. (Typically, samplers produce either a multiset of fixed size or a set of
random size, and the latter is sufficient for the argument in [94].) Nisan and Zuckerman [202]
proved Lemma 5.21 by partitioning the n coordinates into p blocks, picking one coordinate
from each block in an O(log 1

η
)-wise independent way, and using the concentration bounds

of [224, 33].5 Vadhan [249] also constructed a sampler that produces a set of fixed size,
and with better seed length for a certain range of parameters. However, his seed length is
actually not good enough for our range of parameters.

As for the seeded extractor SExt, plenty of known constructions are good enough for our
purpose. For example, we can use the following construction, due to Raz, Reingold, and
Vadhan.

Theorem 5.22 ([213]). There exists an explicit seeded (k, ǫ)-extractor SExt : {0, 1}n ×
{0, 1}t → {0, 1}m with t = O

(
(log2 n+ log 1

ǫ
) · log k

)
and m = k.

At last, we can prove Theorem 5.1.

Proof of Theorem 5.1. Assume k ≥ n2/3+γ and d ≤ β logn for small enough constant β > 0.
Then for some constant β ′ > 0 to be specified shortly, define the following parameters.

• ǫ′ = 2−nβ′

• k′ = k/2

• m′ = (k′)2/8nd32d

• p = k/2d

• µ = k/2n log(4n/k)

• η = 2−nβ′/2

• s = 4 logn · log 1
η

• ǫ′′ = 2−n1/4

5Actually, Nisan and Zuckerman proved a version with slightly different constants and where the sampler
only needs to work for boolean functions g, but the proof goes through to yield Lemma 5.21.
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• m = pk/4n

• t = m′ − s

As shown in the discussion after the statement of Theorem 5.13, combining Theorem 5.13
with Theorem 5.10 yields an explicit (k′, ǫ′)-extractor Ext′ : {0, 1}n → {0, 1}m′

for d-local
sources, provided β ′ is small enough. By Lemma 5.21 there exists an explicit (µ, η)-sampler
Samp : {0, 1}s →

({1,...,n}
p

)
. Since t ≥ ω

(
(log2 p+log 1

ǫ′′
)· logm

)
, by Theorem 5.22 there exists

an explicit seeded (m, ǫ′′)-extractor SExt : {0, 1}p×{0, 1}t → {0, 1}m. Thus by Theorem 5.19,

Ext is a (k, ǫ)-extractor for d-local sources, where ǫ = ǫ′(2s+1+1)+ 2
√
η + 2−αk + ǫ′′ ≤ 2−nβ

provided β is small enough.

5.6 Improved Lower Bounds for Sampling Input-Output

Pairs

For this section, we define a (d, c, k)-local sampler to be a (d, c)-local sampler with at least
k non-isolated nodes on the left side of its associated bipartite graph (that is, it makes
nontrivial use of at least k random bits). We say a distribution on {0, 1}n is a (d, c, k)-local
source if it equals f(Ur) for some (d, c, k)-local sampler f (with any input length r). Note
that a (d, c, k)-local source might not have min-entropy at least k.

Theorem 5.23. Suppose Ext : {0, 1}n → {0, 1} is a (0, ǫ)-extractor for (d, 8d, n/4)-local
sources, where d < n/8. Then for every d-local source D on {0, 1}n+1 we have

∥∥D −(
Un,Ext(Un)

)∥∥ ≥ 1/2− ǫ− 2−n/2.

It might seem suspicious that we are assuming Ext is a (0, ǫ)-extractor. We are not, in
fact, extracting from sources with 0 min-entropy — it is possible to derive a lower bound
on the min-entropy of any (d, 8d, n/4)-local source.6 The point is that for Theorem 5.23,
we do not care about the min-entropy, only the number of non-isolated input nodes. Before
proving Theorem 5.23, we show how it implies Theorem 5.3.

Proof of Theorem 5.3. In the proof of Theorem 5.13, we implicitly showed that for all
n, k, d, c, ǫ′, every (k′, ǫ′)-extractor for (1, c)-local sources is also a (k, ǫ)-extractor for (d, c)-
local sources where k′ = k/d2c2d and ǫ = ǫ′ + e−k′/4 (by replacing k/2 with k in the proof).
The only property of having min-entropy at least k we used in that proof was that the
sampler must make nontrivial use of at least k random bits; thus we can conclude that the
extractor is a (0, ǫ)-extractor for (d, c, k)-local sources.

Assume d ≤ β log n for some small enough constant β > 0. Set c = 8d and k = n/4
and k′ = k/d2c2d = n/32d32d ≥ n1/2. Using γ = 1/2 in Theorem 5.10, there exists an

explicit (k′, ǫ′)-extractor for (1, c)-local sources with output length 1, where ǫ′ = 2−nΩ(1)

6Specifically, a combinatorial argument shows that the source must have many bits that are fully inde-
pendent of each other and that each have probability ≥ 1/2d for both outcomes 0 and 1. A lower bound on
the min-entropy can be derived from this fact.
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(since k′ ≥ logω(1) n and (k′)1/2 ≥ c and k′ − o(k′) ≥ 1). By the observation in the previous
paragraph, this function is a (0, ǫ)-extractor for (d, 8d, n/4)-local sources with error ǫ =

2−nΩ(1)
. Theorem 5.3 follows immediately from this and Theorem 5.23.

Proof of Theorem 5.23. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n+1, and
let G = (L,R,E) be the associated bipartite graph. Since |E| ≤ (n+ 1)d, there are at most
(n + 1)/8 nodes in L with degree greater than 8d. Also, at most d ≤ (n − 1)/8 nodes in
L are adjacent to (n + 1, out). Without loss of generality, the nodes in L that either have
degree greater than 8d or are adjacent to (n+ 1, out) are {r − ℓ+ 1, . . . , r} × {in} for some
ℓ ≤ (n+1)/8+(n−1)/8 = n/4. For each string y ∈ {0, 1}ℓ, define fy : {0, 1}r−ℓ → {0, 1}n+1

as fy(x) = f(x, y) (hard-wiring the last ℓ bits to y) and let Gy = (L′, R, Ey) be the associated
bipartite graph, where L′ = {1, . . . , r−ℓ}×{in}. Observe that f(Ur) =

∑
y∈{0,1}ℓ

1
2ℓ
fy(Ur−ℓ).

We define the tests

T1 =
{
z ∈ {0, 1}n+1 : ∃x ∈ {0, 1}r−ℓ, y ∈ {0, 1}ℓ such that f(x, y) = z and∣∣{i ∈ {1, . . . , r − ℓ} : (i, in) is non-isolated in Gy

}∣∣ < n/4
}

and
T2 =

{
z ∈ {0, 1}n+1 : Ext(z|{1,...,n}) 6= z|{n+1}

}

(in other words, the support of
(
Un,Ext(Un)

)
is the complement of T2). Finally, we define

the test T = T1 ∪ T2.

Claim 5.24. Prf(Ur)[T ] ≥ 1/2− ǫ.

Claim 5.25. Pr(Un,Ext(Un))[T ] ≤ 2−n/2.

Combining the two claims, we have
∣∣Prf(Ur)[T ]−Pr(Un,Ext(Un))[T ]

∣∣ ≥ 1/2− ǫ−2−n/2, thus

witnessing that
∥∥f(Ur)−

(
Un,Ext(Un)

)∥∥ ≥ 1/2− ǫ− 2−n/2.

Proof of Claim 5.24. It suffices to show that for each y ∈ {0, 1}ℓ, Prfy(Ur−ℓ)[T ] ≥ 1/2 − ǫ.
If y is such that

∣∣{i ∈ {1, . . . , r − ℓ} : (i, in) is non-isolated in Gy

}∣∣ < n/4 then of course
Prfy(Ur−ℓ)[T1] = 1. Otherwise, fy(Ur−ℓ) is a (d, 8d, n/4)-source on {0, 1}n+1. Note that
(n + 1, out) is isolated in Gy; we define by ∈ {0, 1} to be the fixed value of the (n + 1)st

output bit of fy, and we define f ′
y : {0, 1}r−ℓ → {0, 1}n to be the first n output bits of fy.

Since f ′
y(Ur−ℓ) is a (d, 8d, n/4)-source on {0, 1}n, we have

∥∥Ext
(
f ′
y(Ur−ℓ)

)
−U1

∥∥ ≤ ǫ and thus
Prb∼Ext(f ′

y(Ur−ℓ))[b 6= by] ≥ 1/2− ǫ. In other words, Prfy(Ur−ℓ)[T2] ≥ 1/2− ǫ. This finishes the
proof of Claim 5.24.

Proof of Claim 5.25. By definition, Pr(Un,Ext(Un))[T2] = 0. Note that |T1| ≤ 2n/2 since
each string in T1 can be described by a string of length at most ℓ + n/4 ≤ n/2, namely
an appropriate value of y along with the bits of x such that the corresponding nodes in
L′ are non-isolated in Gy. Since

(
Un,Ext(Un)

)
is uniform over a set of size 2n, we get

Pr(Un,Ext(Un))[T1] ≤ 2n/2/2n = 2−n/2. This finishes the proof of Claim 5.25.

This finishes the proof of Theorem 5.23.
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5.7 Improved Extractors for Low-Weight Affine Sources

We now describe the proof of Theorem 5.10. To do this, we need a construction of linear
strong seeded extractors with good seed length, which we present in Section 5.7.1. Then in
Section 5.7.2 we derive Theorem 5.10.

5.7.1 A Linear Strong Seeded Extractor with Seed Length logn+

O(log k)

Our goal in this section is to prove the following theorem.7

Theorem 5.26. There exists a constant c such that for all k ≥ c log2 n there exists an
explicit linear strong seeded (k, 1/4)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m with t =
log n+ c log k and m = k1/4.

It is very important to us that the seed length here has log n and not O(logn). If instead
we use an extractor with c logn in the seed length, then in Theorem 5.10 we would only be
able to get an extractor for the class of weight-k(1/c)−γ affine sources as opposed to weight-
k1−γ affine sources.

We also note that without the linearity property, such an extractor is explicitly con-
structed and stated in [121, Theorem 5.12]. We construct such an extractor with the lin-
earity property by using a construction from [121] and then bootstrapping it with another
known construction. To do this, we first define and construct objects called linear strong
condensers.

Definition 5.27. We say C : {0, 1}n × {0, 1}t → {0, 1}m is a strong k →ǫ k
′ condenser if

for every distribution D on {0, 1}n with min-entropy at least k,

Pry∼Ut

[
C(D, y) is ǫ-close to a distribution with min-entropy at least k′] ≥ 1− ǫ.

Recall that we say C is linear if for every y ∈ {0, 1}t, the function C(·, y) : {0, 1}n →
{0, 1}m is linear over F2.

Our construction of a linear strong condenser is the same as one of the constructions in
[121], which in turn is based on an idea from [120]. However, we need to argue about its
linearity as well as the parameters, so we state the construction and result of [121] here.
Consider a finite field Fq for some q = 2t. Let ζ be a generator of the multiplicative group
F
∗
q. Then the function C : Fn′

q × Fq → F
m′

q is as follows.

Given f = (f0, . . . , fn′−1) ∈ F
n′

q , we interpret it as a polynomial f : Fq →
Fq such that f : y 7→ ∑

0≤i<n′ fiy
i. We now describe C as C : (f, y) 7→(

f(y), f(ζy), . . . , f(ζm
′−1y)

)
.

7We note that Theorem 5.26 can be generalized by setting the parameters appropriately in our argument.
For general error ǫ, we can get seed length logn + O(log(k/ǫ)), and the output length can be improved to
k1−α for any constant α > 0 at the expense of increasing the lower bound on k. However, we only prove the
version we need for Theorem 5.10.

89



Observation 5.28. For all y ∈ Fq, the function C(·, y) : f 7→ C(f, y) is Fq-linear.

Observation 5.29. For q = 2t, there is an isomorphism between (Fq,+) and (Ft
2,⊕). Fur-

ther, this isomorphism is computable in time polynomial in t.

Thus we can interpret C as a function C : {0, 1}n×{0, 1}t → {0, 1}m where n = n′ · t and
m = m′ · t. Further, C is F2-linear, and it is polynomial time computable since a generator
of F∗

q can be computed in time polynomial in t [234]. The fact that C is a strong condenser
follows from [121, Theorem 7.2].

Theorem 5.30 ([121]). For every ℓ ≤ n such that 2ℓ is an integer, and for every α, ǫ > 0,
the function C : {0, 1}n × {0, 1}t → {0, 1}m as defined above is a

strong (1 + 1/α)ℓd+ log(1/ǫ) →√
3ǫ ℓd− 2 condenser

with t ≤ (1 + 1/α)d and m ≤ (1 + 1/α)ℓd where d =
⌈
α log(4nℓ/ǫ)

⌉
, provided ℓd ≥ log(1/ǫ).

The following important corollary follows by setting parameters correctly in the result.
Assume k ≥ c log2 n for some large constant c > 0, and set the parameters as follows.

• ǫ = 1/28

• α = (log k)/(28 · log n)

• ℓ = k/(28 · log n)
This implies the following.

• d =
⌈
(log k)(logn+log k−log logn+O(1))

28·logn

⌉
= (log k)(logn+log k−log logn)(1+o(1))

28·logn

• t ≤
(
logn + log k − log logn

)(
1 + (2 log k/ logn)

)
≤ log n+ 5 log k

• m ≤ k
28·logn · (log n+ 5 log k) ≤ k

• ℓd ≥ (k log k)/(216 · logn) ≥ k1/2 + 2

• k ≥ (1 + 1/α)ℓd+ log(1/ǫ)

Hence, we now get the following corollary.

Corollary 5.31. There exists a constant c such that for all k ≥ c log2 n there exists an
explicit linear strong k →1/8 k

1/2 condenser C : {0, 1}n × {0, 1}t → {0, 1}m with t = logn +
5 log k and m = k.

We now recall that the strong seeded extractors in [241, 214] are also linear.

Theorem 5.32 ([241]). There exists an explicit linear strong seeded (n1/2, 1/8)-extractor
Ext : {0, 1}n × {0, 1}t → {0, 1}m with t = O(logn) and m = n1/4.

Theorem 5.26 follows from Corollary 5.31 and Theorem 5.32.
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5.7.2 Proof of Theorem 5.10

In this section we prove Theorem 5.10. As we have said before, Rao [209] proves the same
kind of theorem except it is weaker in the upper bound on the weight allowed for the affine
sources. Our extractor construction uses the same steps as [209], except the components
used in our construction are tailor-made for our purposes thus helping us achieve better
parameters. Throughout this section, all references to particular theorems in [209] actually
refer to the ECCC version of the paper (technical report TR08-015). Also, throughout this
section we let c be the constant from Theorem 5.26.

In order to describe the better extractors, we first recall the following linear error-
correcting code construction (the BCH code).

Theorem 5.33. For every d < n there exists an explicit parity check function P : Fn
2 → F

m
2

for a linear code with distance greater than d, such that m = O(d logn).

We now recall the following claim from [209, Lemma 6.1].

Claim 5.34. Let P : Fn
2 → F

m
2 be a parity check function for a linear code with distance

greater than d. Let D be any weight-w affine source with min-entropy at least d/w. Then
P (D) is an affine source with min-entropy at least d/w.

Combining Theorem 5.33 and Claim 5.34 (using d = k1−γ/2), we get the following.

Lemma 5.35. For every constant γ > 0 and all k there exists an explicit linear function
P : Fn

2 → F
m
2 with m = O(k1−γ/2 · log n) such that if D is a weight-k1−γ affine source with

min-entropy at least k, then P (D) is an affine source with min-entropy at least kγ/2.

Now let γ and k be as in Theorem 5.10. Let m0 = O(k1−γ/2 · log n) be the output length
from Lemma 5.35. Let Ext1 : {0, 1}m0 × {0, 1}t1 → {0, 1}m1 be the linear strong seeded
extractor from Theorem 5.26 set up to work for min-entropy kγ/4c (which is less than kγ/2

and is at least c log2m0 assuming k ≥ log10c/γ n). Thus we have t1 = logm0+(γ/4) log k and
m1 = kγ/16c. In Figure 5.2 we present the routine Low-Convert from [209]. The following
lemma was proven in [209, Lemma 6.3]. We note that for this, the error of Ext1 only needs
to be < 1/2.

Definition 5.36. A distribution D on {0, 1}ℓ×ℓ′ is said to be an affine somewhere random
source if D is an affine source and for some 1 ≤ i ≤ ℓ, the ith row of D is uniformly random.

Lemma 5.37. For every constant γ > 0, if D is a weight-k1−γ affine source with min-
entropy at least k ≥ log10c/γ n, then LC(D) is an affine somewhere random source of size
2t1 ×m1.

Note that the number of rows in the output of LC is 2t1 = m0 · kγ/4 = O(k1−γ/4 · log n) ≤
k1−γ/8. At this stage, we also point out how Theorem 5.26’s optimized dependence of the
seed length on the length of the source is crucial for the construction. For the rest of the
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Low-Convert(D)

Input: x ∈ {0, 1}n
Output: z ∈ {0, 1}2t1×m1

Subroutines used: P : {0, 1}n → {0, 1}m0 from Lemma 5.35, and Ext1 : {0, 1}m0 ×{0, 1}t1 →
{0, 1}m1 from Theorem 5.26. Here m0 = O(k1−γ/2 · log n), t1 = logm0 + (γ/4) log k, and

m1 = kγ/16c.

For 1 ≤ i ≤ 2t1 , the ith row of the output is defined by LC(x)i = Ext1
(
P (x), i

)
.

Figure 5.2: Low-Convert

Affine-Convert(D)

Input: x ∈ {0, 1}n
Output: z ∈ {0, 1}2t1×m2

Subroutines used: LC : {0, 1}n → {0, 1}2t1×m1 from Lemma 5.37, and

Ext2 : {0, 1}n × {0, 1}t2 → {0, 1}m2 from Theorem 5.38. Here t2 = m1 and m2 = k − o(k).

For 1 ≤ i ≤ 2t1 , the ith row of the output is defined by AC(x)i = Ext2
(
x,LC(x)i

)
.

Figure 5.3: Affine-Convert

argument to go through, we require the number of rows in LC(x) (namely 2t1) to be smaller
than k. If we used a linear strong seeded extractor for which t1 ≥ c′ logm0 then this would
force m0 < k1/c′ . However, our use of Theorem 5.33 and Claim 5.34 requires m0 > w,
which would imply that we need w < k1/c′. Instead, using our optimized extractor from
Theorem 5.26, we are able to handle any weight w ≤ k1−γ .

In order to define the next routine, we recall an extractor construction from [214] for a
particular setting of parameters.

Theorem 5.38 ([214]). There exists an explicit linear strong seeded (k, ǫ)-extractor Ext2 :
{0, 1}n × {0, 1}t → {0, 1}m with t = O(log3(n/ǫ)) and m = k − O(log3(n/ǫ)).

We set up Ext2 to work for min-entropy k − 2t1 ·m1 ≥ k − k1−γ/8+γ/16c = k − o(k) and

seed length t2 = m1 and thus we get output length m2 = k − o(k) with error 2−kΩ(1)
. In

Figure 5.3 we present the routine Affine-Convert from [209]. The following lemma was
proven in [209, Theorem 6.5].
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Lemma 5.39. For every constant γ > 0, if D is a weight-k1−γ affine source with min-
entropy at least k ≥ log10c/γ n, then AC(D) is 2−kΩ(1)

-close to a convex combination of affine
somewhere random sources of size 2t1 ×m2.

Lemma 5.39 says that the output of AC(D) is close to a convex combination of affine
somewhere random sources. Since the length of each row is m2 and the number of rows is
2t1 ≤ k1−γ/8 ≤ m

1−γ/9
2 ≪ m2, we can apply the routine Affine-SRExt from [209]. The

following lemma was proven in [209, Theorem 5.1].8

Lemma 5.40. For every constant α > 0 there exists an explicit function A : {0, 1}k1−α×k →
{0, 1}m such that if D is an affine somewhere random source of size k1−α×k, then

∥∥A(D)−
Um

∥∥ ≤ 2−kΩ(1)
where m = k − o(k).

Theorem 5.10 follows from Lemma 5.39 and Lemma 5.40.

8We note that [209, Theorem 5.1] discusses affine somewhere random sources of size k0.7 × k. However,
it is straightforward to see that the result just requires the number of rows in the affine somewhere random
source to be polynomially smaller than the length of each row.
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Chapter 6

The Complexity of Estimating
Min-Entropy

6.1 Introduction

Deterministic randomness extraction is the problem of taking a sample from an imperfect
physical source of randomness (modeled as a probability distribution on bit strings) and
applying an efficient deterministic algorithm to transform it into a uniformly random string,
which can be used by a randomized algorithm (see [228, 250] for surveys of this topic). For
such extraction to be possible, the source of randomness must satisfy two properties: (i) it
must contain a sufficient “amount of randomness”, and (ii) it must be “structured”, meaning
that it has a simple description.

Regarding property (i), the most useful measure of the “amount of randomness” is the
min-entropy, which is the logarithm of the reciprocal of the probability of the most likely
outcome. In other words, if a distribution has high min-entropy then every outcome has
small probability. The number of uniformly random bits produced by the extractor cannot
exceed the min-entropy of the source, and one of the goals in designing extractors is to
get as close to the min-entropy as possible. Regarding property (ii), if the distribution is
generated by an efficient process in the physical world, then it can be modeled as being
sampled by an efficient algorithm given uniform random bits. This sampling algorithm is
a simple description of the distribution. Trevisan and Vadhan [246] initiated the study of
extracting from efficiently samplable distributions. Assuming certain complexity-theoretic
conjectures, they constructed extractors for time-efficient samplers.1 Kamp et al. [153] gave
an unconditional construction of extractors for space-efficient samplers with streaming (one-
way) access to their random input bits. De and Watson [70] (see Chapter 5) and Viola [261]
gave constructions of extractors for local samplers (where each output bit of the sampler
only depends on a small number of the random input bits), and Viola [261] generalized this
to get extractors for samplers that are constant-depth circuits (of the AC0 type). Viola [263]
has constructed extractors for sequential-access one-tape Turing machine samplers.

1We mention that a somewhat related but incomparable problem was studied in [75].
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All of these extractor constructions need to be given a lower bound on the min-entropy of
the distribution. The output length of the extractor depends on this lower bound. Thus, if we
had a sampling algorithm (assumed to model the physical source), it would be nice to know
the min-entropy so we could plug this parameter into the extractor, and thus extract as much
of the randomness as possible.2 This motivates the following computational problem: Given
an efficient algorithm that outputs a sample from a probability distribution, estimate the
min-entropy of the distribution. The upshot of our results is that this problem is intractable
even for the extremely simple samplers studied in [153, 70, 261], and we pinpoint the precise
complexity of the problem.

Goldreich, Sahai, and Vadhan [103] considered the problem of estimating the Shannon
entropy of a distribution sampled by a given circuit. They showed that an appropriate formu-
lation of the problem is complete for the complexity class NISZK (non-interactive statistical
zero-knowledge) and is thus believed to be intractable. For the min-entropy version, we
show that the problem is interreducible with the “approximate lower bound” problem that
was famously studied by Goldwasser and Sipser [107]. The latter formulation of multiplica-
tive approximate counting of NP witnesses deserves its own complexity class. Indeed, the
class has already been named SBP by [48], and it is perhaps the only natural example of a
class sandwiched between MA and AM. We prove that the min-entropy estimation promise
problem is SBP-complete even when restricted to 3-local samplers (as studied in [70, 261]).

For logarithmic-space samplers that have one-way access to their randomness (as studied
in [153]), it turns out that our min-entropy estimation promise problem has already been
studied (though in a very different context and with different terminology) by Lyngsø and
Pedersen [184], who proved that an equivalent problem is NP-complete. We discuss the
relationship between their problem and our problem.

6.1.1 Definitions

The min-entropy of a distribution D over a finite set S is H∞(D) = mins∈S log2
(
1/PrD[s]

)
.

Let Ur denote the uniform distribution over {0, 1}r. If A : {0, 1}r → {0, 1}m is an algorithm
that takes r uniformly random bits and outputs m bits, then A(Ur) denotes the output
distribution of A. We write A(U) with the convention that U = Ur for the appropriate value
of r. We consider three classes of sampling algorithms.

• Circuits are the usual boolean circuits.

• d-Local samplers are functions where each of the m output bits depends on at most d
of the r input bits (where d is a constant).

• Logarithmic-space samplers can be defined in several equivalent ways; the following is
the most convenient for us. The sampler is a layered directed graph where each edge

2We remark that the aforementioned extractor constructions do not assume knowledge of the sampling
algorithm itself, only knowledge of the class of algorithms the sampler comes from. It is not known how to
exploit knowledge of the description of the distribution for extraction purposes, except in trivial cases such
as when the distribution is uniform over an affine subspace of GF (2)n.
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goes from one layer to the immediate next layer. There is a unique start vertex in layer
0. For each vertex except the ones in the last layer, there is at least one outgoing edge,
and the outgoing edges are labeled with a probability distribution. Each vertex except
the start vertex is labeled with a bit. A sample is obtained by taking a random walk
(starting at the start vertex) and outputting the bit labels of the visited vertices.3

Such d-local samplers and logarithmic-space samplers have been studied in other contexts
besides randomness extraction. For example, there are many positive and negative results
on whether d-local samplers can implement pseudorandom generators and one-way functions
(see Section 5.1.4 for extensive pointers to the literature). Trevisan et al. [247] showed how
to efficiently perform near-optimal prefix-free compression of distributions with logarithmic-
space samplers.

The min-entropy estimation problem that we study is formulated in terms of promise
problems (see [97] for a survey on promise problems).

Definition 6.1. For any class A of algorithms, A-Min-Ent-Gap is the following promise
problem.

A-Min-Ent-GapYES =
{
(A, h) : A ∈ A and H∞(A(U)) ≤ h

}

A-Min-Ent-GapNO =
{
(A, h) : A ∈ A and H∞(A(U)) > h+ 1

}

Taking A to be circuits, d-local samplers, or logarithmic-space samplers, we get the prob-
lems Circuit-Min-Ent-Gap, d-Local-Min-Ent-Gap, and Logspace-Min-Ent-Gap.
The size of the input (A, h) is the bit length of the description of the algorithm A, plus
the bit length of the integer h. Note that if one of these problems has a polynomial-time
algorithm, then the min-entropy can be estimated within an additive 1 in polynomial time
by trying all possible values of h ∈ {0, 1, . . . , m} (or using binary search).

Throughout this chapter, when we talk about reductions and completeness, we are always
referring to deterministic polynomial-time mapping reductions.

Definition 6.2. prSBP is the class of promise problems Π = (ΠYES,ΠNO) for which there
exist polynomial-time algorithms M,K (where M outputs a bit and K outputs a nonnegative
integer) and a polynomial p such that the following hold for all x ∈ {0, 1}∗.

x ∈ ΠYES =⇒
∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣ ≥ K(x)

x ∈ ΠNO =⇒
∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣ < K(x)/2

Equivalently, prSBP is the class of all promise problems reducible to the following promise
problem Circuit-Count-Gap.

Circuit-Count-GapYES =
{
(C, k) : C is a circuit that accepts ≥ k inputs

}

Circuit-Count-GapNO =
{
(C, k) : C is a circuit that accepts < k/2 inputs

}

SBP is defined as the class of languages in prSBP.

3The model in [153] is the same except the output bits are on the edges rather than on the vertices (Mealy
style rather than Moore style). The two models are equivalent up to a small difference in the size of the
graph.
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Böhler, Glaßer, and Meister [48] introduced the class SBP (which stands for “small
bounded-error probability”) and provided a fairly comprehensive study of it from a structural
complexity perspective, analyzing its relationship to other classes (inclusions and relativized
separations), its closure properties, and the possibility of it having complete languages. We
have MA ⊆ SBP ⊆ AM, where MA ⊆ SBP follows by observing that the standard proof of
MA ⊆ PP [255] automatically yields a multiplicative gap, and SBP ⊆ AM follows imme-
diately from the Goldwasser-Sipser lower bound protocol [107]. Both inclusions relativize.
There is an oracle relative to which SBP 6⊆ Σ2P [48] and thus MA 6= SBP (since MA ⊆ Σ2P
relativizes), and there is an oracle relative to which AM 6⊆ PP [255] and thus SBP 6= AM
(since SBP ⊆ PP relativizes). Since AM can be derandomized to NP under complexity
assumptions [162, 20, 189, 230], it is believed that SBP = NP. The factor of 1/2 in the gap
in Definition 6.2 is arbitrary and can be replaced by 1− 1/q(|x|) for any polynomial q, by a
standard trick.4

Although very few papers explicitly mention the class SBP, the Goldwasser-Sipser pro-
tocol for Circuit-Count-Gap has countless applications in complexity and cryptography,
and thus SBP has been implicitly studied many times. For example, it is shown in [2, 21]
that EprSBP contains languages of circuit complexity Ω(2n/n).

6.1.2 Results

Theorem 6.3. Circuit-Min-Ent-Gap is prSBP-complete.

Theorem 6.4. 3-Local-Min-Ent-Gap is prSBP-complete.

Theorem 6.5. Logspace-Min-Ent-Gap is prNP-complete.

We prove Theorem 6.3 and Theorem 6.4 in Section 6.2. In our proof of Theorem 6.3, we
implicitly use a “closure under nondeterminism” property of SBP, which was not shown in
[48]. This is analogous to how AM (and trivially, MA) is “closed under nondeterminism”.
In Section 6.4 we explicitly state and prove a more general form of this property of SBP.
The general form is not needed for our theorems about min-entropy, but it demonstrates the
robustness of the class SBP and may be useful for future results about SBP.

Regarding Theorem 6.4, our proof shows that the completeness holds even when each
output bit of the sampler is the disjunction of exactly three unnegated input bits. Note that
the min-entropy of a 1-local sampler’s distribution is trivial to compute exactly since the
distribution is affine. The complexity of estimating min-entropy for 2-local samplers remains
open.

During our proof of Theorem 6.4, we also show that Monotone-2-Sat-Count-Gap

(which is defined in the natural way) is prSBP-complete. It was previously known (pre-
sumably folklore) that this problem is in prBPP iff NP = RP (roughly speaking, it is
“NP-complete modulo randomness”). This is implied by our result, which more precisely

4Modify K so its output is raised to the power q, and modify M so its number of accepted strings y is
also raised to the power q (by taking y1, . . . , yq(|x|) ∈ {0, 1}p(|x|) and accepting iff M(x, yi) = 1 for all i).
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quantifies the complexity in terms of deterministic reductions. Also, it follows from our argu-
ment that the exact threshold analogue of Monotone-2-Sat-Count-Gap (distinguishing
≥ k satisfying assignments from < k satisfying assignments) is PP-complete (under map-
ping reductions), and that #Monotone-2-Sat (where the goal is to output the number of
satisfying assignments) is #P-complete (under one-query reductions). The former did not
seem to be known. The latter is well-known, but the only proof we could find mentioned in
the literature is due to Valiant [252, 253] and is based on the #P-completeness of computing
the permanent. Our argument is much more elementary and demonstrates that this heavy
machinery is not needed for the #P-completeness of #Monotone-2-Sat.

We discuss Theorem 6.5 in Section 6.3. The prNP-hardness follows without difficulty
from a result of Lyngsø and Pedersen on hidden Markov models [184]. To cut to the chase,
the only issue is that their result allows the sampler to output strings of different lengths,
while our definition requires it to output fixed-length strings. This issue is straightforward
to resolve.

6.1.3 Related Work

Goldreich et al. [103] showed that the variant of Circuit-Min-Ent-Gap where Shannon
entropy replaces min-entropy and the roles of YES and NO instances are interchanged is
prNISZK-complete. Dvir et al. [78] gave some upper and lower bounds on the complexity of
estimating various types of entropy for distributions where a sample is obtained by plugging a
uniform input into a sequence of low-degree multivariate polynomials over a finite field. Dvir
et al. [78] also studied the complexity of estimating Shannon entropy for d-local samplers
and for logarithmic-space samplers that have two-way access to their randomness.

Other papers that are in a somewhat similar spirit as ours include [194, 85, 41, 36]. See
Section 5.1.4 for an overview of past work on locally computable functions.

The study of multiplicative approximate counting of NP witnesses was initiated in [237].
Derandomization of approximate counting was studied in [230]. See [79] for a more algorith-
mic perspective on the complexity of approximate counting. Kuperberg [164] showed that
two variants of SBP are actually equal: SBQP (the quantum variant) and A0PP (the variant
where we consider a difference of two #P functions rather than a single #P function). Ka-
banets et al. [151] defined and studied a complexity class that captures additive approximate
counting in a more direct way than BPP does.

6.2 Proof of Theorem 6.3 and Theorem 6.4

Theorem 6.3 and Theorem 6.4 follow from the following four lemmas.

Lemma 6.6. Circuit-Min-Ent-Gap ∈ prSBP.

Lemma 6.7. Circuit-Min-Ent-Gap is prSBP-hard.

Lemma 6.8. d-Sat-Count-Gap reduces to (d+ 1)-Local-Min-Ent-Gap.
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Lemma 6.9. Monotone-2-Sat-Count-Gap is prSBP-hard.

Lemma 6.7 is implied by Lemma 6.8 and Lemma 6.9. However, the proof of Lemma 6.7
serves as a warmup for the proof of Lemma 6.8, and only the former is needed for Theorem 6.3.

By Lemma 6.9, Monotone-2-Sat-Count-Gap is prSBP-complete. This problem was
previously known to be prNP-hard, by combining any reduction to Vertex-Cover with a
“blow-up” trick that is usually attributed to [149, 236]. To get the prSBP-completeness, we
need to use a particular reduction to Vertex-Cover, satisfying certain properties.

We now prove the above four lemmas.

Proof of Lemma 6.6. We reduce Circuit-Min-Ent-Gap to Circuit-Count-Gap. Given
an instance (A, h) of Circuit-Min-Ent-Gap where A : {0, 1}r → {0, 1}m is a circuit and
without loss of generality h ≤ min(r,m), we construct a circuit C : {0, 1}m× ({0, 1}r)m+1 →
{0, 1} by

C(x, y1, . . . , ym+1) =

{
1 if A(yi) = x for all i

0 otherwise

and let k = 2(r−h)(m+1). We show the following two things.

(A, h) ∈ Circuit-Min-Ent-GapYES =⇒ (C, k) ∈ Circuit-Count-GapYES

(A, h) ∈ Circuit-Min-Ent-GapNO =⇒ (C, k) ∈ Circuit-Count-GapNO

For the YES case, the assumption H∞(A(Ur)) ≤ h means there exists an x ∈ {0, 1}m such
that PrA(Ur)[x] ≥ 1/2h and thus there are ≥ 2r−h strings y for which A(y) = x. Thus there
are ≥ 2(r−h)(m+1) choices of y1, . . . , ym+1 for which A(yi) = x for all i, which implies that C
accepts ≥ k inputs. For the NO case, the assumption H∞(A(Ur)) > h+1 means that for all
x ∈ {0, 1}m, PrA(Ur)[x] < 1/2h+1 and thus there are < 2r−h−1 strings y for which A(y) = x.
Thus there are < 2(r−h−1)(m+1) choices of y1, . . . , ym+1 for which A(yi) = x for all i. By
summing over x, this implies that C accepts < 2m · 2(r−h−1)(m+1) = k/2 inputs.

Proof of Lemma 6.7. We reduce Circuit-Count-Gap to Circuit-Min-Ent-Gap. Given
an instance (C, k) of Circuit-Count-Gap where C : {0, 1}n → {0, 1} is a circuit and
without loss of generality 1 ≤ k ≤ 2n, by the standard amplification trick we may assume
that C accepts ≥ k inputs in the YES case and < k/8 inputs in the NO case. We construct
a circuit A : {0, 1}n × {0, 1}2n → {0, 1}2n by

A(y, z) =

{
12n if C(y) = 1

z otherwise

and let h be the smallest integer such that 1/2h ≤ k/2n. We show the following two things.

(C, k) ∈ Circuit-Count-GapYES =⇒ (A, h) ∈ Circuit-Min-Ent-GapYES

(C, k) ∈ Circuit-Count-GapNO =⇒ (A, h) ∈ Circuit-Min-Ent-GapNO

99



For the YES case, the assumption that C accepts ≥ k inputs implies that PrA(U3n)[1
2n] ≥

k/2n ≥ 1/2h and thus H∞(A(U3n)) ≤ h. For the NO case, the assumption that C accepts
< k/8 inputs implies that

PrA(U3n)[1
2n] ≤ Pry∼Un [C(y) = 1] + Prz∼U2n [z = 12n]

< (k/8)/2n + 1/22n

< (k/4)/2n

< 1/2h+1

by the minimality of h. Since 12n is the most probable string under A(U3n), this implies that
H∞(A(U3n)) > h + 1.

Proof of Lemma 6.8. Given an instance (ϕ, k) of d-Sat-Count-Gap,5 where ϕ is a d-Sat
formula having n variables and m clauses and without loss of generality 1 ≤ k ≤ 2n, by
the standard amplification trick we may assume that ϕ has ≥ k satisfying assignments in
the YES case and < k/8 satisfying assignments in the NO case. (This does not affect the
constant d, since the amplified formula is just a conjunction of several copies of the original
d-Sat formula on disjoint variables.) Suppose the ith clause of ϕ consists of the literals
ℓi,1∨· · ·∨ ℓi,d. We construct a (d+1)-local function A : {0, 1}n×{0, 1}2n → {0, 1}m·2n where
the first input is the variables of ϕ (denoted y) and the bits of the second input are labeled
as zj . We let the i, j bit of the output (for i ∈ {1, . . . , m}, j ∈ {1, . . . , 2n}) be

A(y, z)i,j = ℓi,1 ∨ · · · ∨ ℓi,d ∨ zj

and let h be the smallest integer such that 1/2h ≤ k/2n. We show the following two things.

(ϕ, k) ∈ d-Sat-Count-GapYES =⇒ (A, h) ∈ (d+ 1)-Local-Min-Ent-GapYES

(ϕ, k) ∈ d-Sat-Count-GapNO =⇒ (A, h) ∈ (d+ 1)-Local-Min-Ent-GapNO

Note that for any fixed assignment y, if the ith clause is satisfied then the i, j output bits
are all 1 (with probability 1 over random z), and if the ith clause is not satisfied then the
i, j output bits are uniformly distributed (equal to z). It follows that if y satisfies ϕ then
PrA(y,U2n)[1

m·2n] = 1, and if y does not satisfy ϕ then PrA(y,U2n)[1
m·2n] = 1/22n. In either case,

1m·2n is a most probable string under A(y, U2n), and thus 1m·2n is a most probable string
under A(U3n).

For the YES case, the assumption that ϕ has ≥ k satisfying assignments implies that

PrA(U3n)[1
m·2n] ≥ Pry∼Un[y satisfies ϕ] ≥ k/2n ≥ 1/2h

and thus H∞(A(U3n)) ≤ h. For the NO case, the assumption that ϕ has < k/8 satisfying
assignments implies that

PrA(U3n)[1
m·2n] = 1 · Pry∼Un [y satisfies ϕ] + (1/22n) · Pry∼Un[y does not satisfy ϕ]

5In fact, the proof works for arbitrary d-CSPs over the binary alphabet.
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< (k/8)/2n + 1/22n

< (k/4)/2n

< 1/2h+1

by the minimality of h. Since 1m·2n is a most probable string, this implies that H∞(A(U3n)) >
h+ 1.

Proof of Lemma 6.9. We reduceCircuit-Count-Gap toMonotone-2-Sat-Count-Gap.
Given an instance (C, k) of Circuit-Count-Gap where without loss of generality k ≥ 1,
by the standard amplification trick we may assume that C accepts ≥ k inputs in the YES
case and < k/4 inputs in the NO case. We first apply the standard parsimonious reduction
from Circuit-Sat to 3-Sat to obtain a formula ϕ with the same number of satisfying
assignments as C. Next we apply a careful reduction from 3-Sat to Vertex-Cover: For
each clause of ϕ, create seven vertices representing the satisfying assignments for the three
variables in the clause, and put an edge between two vertices if they conflict (i.e., they assign
some variable opposite truth values). Let G denote this graph, and let ℓ = 6m where m is
the number of clauses in ϕ. This particular reduction has the following two properties: (i) it
is parsimonious (i.e., the number of vertex covers of G of size at most ℓ equals the number
of satisfying assignments of ϕ), and (ii) every vertex cover of G has size at least ℓ.

Next we apply the “blow-up” trick. Create a new graph G′ by transforming each vertex
of G into a cloud of 10m vertices and transforming each edge of G into a complete bipartite
graph between its two clouds. We view G′ as a Monotone-2-Sat formula ϕ′ where vertices
become variables and edges become clauses, and we let k′ = k · (210m − 1)m. We show the
following two things.

(C, k) ∈ Circuit-Count-GapYES =⇒ (ϕ′, k′) ∈ Monotone-2-Sat-Count-GapYES

(C, k) ∈ Circuit-Count-GapNO =⇒ (ϕ′, k′) ∈ Monotone-2-Sat-Count-GapNO

Each vertex cover of G, say S of size s, gives rise to (210m − 1)7m−s vertex covers of G′ as
follows: For each cloud representing a vertex in S, include all vertices of the cloud, and for
each cloud representing a vertex not in S, include any subset of the cloud except the entire
cloud. These are indeed vertex covers of G′, and every vertex cover of G′ can be obtained in
this way. Hence the vertex covers of G′ are partitioned according to the vertex cover of G
they correspond to. The total number of vertex covers of G′, and hence the total number of
satisfying assignments of ϕ′, is thus

∑

s

(210m − 1)7m−s · (number of vertex covers of G of size s).

For the YES case, the assumption that C accepts ≥ k inputs implies that G has ≥ k
vertex covers of size at most ℓ (by property (i)), which implies that the number of satisfying
assignments of ϕ′ is ≥ k · (210m − 1)7m−ℓ = k′. For the NO case, the assumption that C
accepts < k/4 inputs implies that G has: 0 vertex covers of size < ℓ (by property (ii)), < k/4
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vertex covers of size = ℓ (by property (i)), and trivially ≤ 27m vertex covers of size > ℓ. Thus
the number of satisfying assignments of ϕ′ is

< (k/4) · (210m − 1)7m−ℓ + 27m · (210m − 1)7m−ℓ−1 = k′/4 + k′ · 27m/k(210m − 1) < k′/2.

6.3 Proof of Theorem 6.5

First note that Logspace-Min-Ent-Gap ∈ prNP since the most probable output string
can be nondeterministically guessed, and then the probability of that string can be computed
exactly by simple dynamic programming. The prNP-hardness follows without difficulty from
a result of Lyngsø and Pedersen on hidden Markov models [184]; we now elaborate.

A hidden Markov model consists of a (time-invariant) Markov chain with a designated
start state, where each state is either “silent” or has a distribution over symbols from some
alphabet. Running the Markov chain for a certain number of steps yields a random output
string whose length is the number of non-silent states visited. The result of [184] shows,
by a clever reduction from Max-Clique, that it is NP-hard to estimate the probability of
the most likely output string, even in the special case where the Markov chain is a DAG
with a unique source and sink (which are the only silent states) and where each non-silent
state deterministically outputs a bit. In fact, the result shows that the gap version of the
estimation problem is prNP-hard with a multiplicative gap of nΩ(1) (where n is the size of
the Markov chain), by using the tight lower bounds on the approximability of Max-Clique

(see [131] and the references within).
The hidden Markov model produced by the reduction in [184] may output bit strings of

different lengths on different runs. We fix this and make the model conform to our definition
of logarithmic-space samplers as follows. Letting m denote the length of a longest path in
the DAG, take m copies of the DAG (except the source) and put each copy in a separate
layer, which represents a time step. Retain all the original transitions but make them go
between adjacent layers, and make the sink always transition to itself in the next layer. Now
each non-source vertex outputs two bits: The copies of the sink output 00, and the copies
of non-sinks output 1 followed by their original bit. We can then make each vertex output a
single bit at the cost of doubling the number of layers. Each output string (of length ≤ m)
of the original model corresponds injectively to an output string of length 2m of this new
sampler (which inserts 1’s in every other position and then pads with 00’s). The output
distribution is the same, so in particular the highest probability of an output is the same.
Thus it is prNP-hard to estimate the min-entropy with an additive gap of Ω(log n) (which
is stronger than the gap of 1 stated in Theorem 6.5).

Interestingly, it is also shown in [184] that for logarithmic-space samplers, estimating the
statistical distance between two distributions is closely related to estimating the min-entropy
of a distribution. In contrast, for polynomial-size circuits it is known that estimating the
statistical distance is closely related to estimating the Shannon entropy (see [251]).
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6.4 SBP is Closed Under Nondeterminism

Consider the following nondeterministic generalization of Circuit-Count-Gap: Given
(C, k) where C is a circuit that takes two inputs y and z, does there exist a y for which
C accepts ≥ k strings z, or is it the case that for all y, C accepts < k/2 strings z? In show-
ing that Circuit-Min-Ent-Gap ∈ prSBP, we implicitly showed that the above promise
problem is in prSBP, by the standard trick of amplifying the gap. We now observe that it
remains in prSBP even if we allow the location of the gap to depend on the nondeterministic
guess.

Definition 6.10. prNSBP is the class of promise problems Π = (ΠYES,ΠNO) for which there
exist polynomial-time algorithms M,K (where M outputs a bit and K outputs a nonnegative
integer) and a polynomial p such that the following hold for all x ∈ {0, 1}∗.

x ∈ ΠYES =⇒ ∃y ∈ {0, 1}p(|x|) :
∣∣{z ∈ {0, 1}p(|x|) : M(x, y, z) = 1

}∣∣ ≥ K(x, y)

x ∈ ΠNO =⇒ ∀y ∈ {0, 1}p(|x|) :
∣∣{z ∈ {0, 1}p(|x|) : M(x, y, z) = 1

}∣∣ < K(x, y)/2

NSBP is defined as the class of languages in prNSBP.

Analogously to Circuit-Count-Gap, it is possible to define a promise problem such
that prNSBP is the class of all promise problems reducible to that problem.

Theorem 6.11. prNSBP = prSBP and thus NSBP = SBP.

The basic idea is to modify the computation so the number of accepted z’s (for a given
y) is multiplied by an efficiently computable factor, so as to shift the threshold to be close to
some value that does not depend on y (indeed, does not even depend on x). Then as before we
can use the amplification trick so that the gap swamps out the effect of the nondeterministic
y. However, there is a slight wrinkle to iron out: If K(x, y) = 0 then we cannot shift the
threshold by multiplying it by something. But in this case x is automatically a YES instance,
so if we happen to observe K(x, y) = 0 then we can just accept while ignoring z.

Proof of Theorem 6.11. We reduce an arbitrary Π ∈ prNSBP (with associated M,K, p) to
Circuit-Count-Gap. Given x ∈ {0, 1}n, we let p denote p(n) and we assume without
loss of generality that 0 ≤ K(x, y) ≤ 2p + 1 for all y ∈ {0, 1}p. We construct a circuit

C : {0, 1}p ×
(
{0, 1}p × {0, 1}p+3

)2p → {0, 1} by

C
(
y, (zi, wi)

2p
i=1

)
=

{
1 if K(x, y) = 0 ∨ ∀i

[
M(x, y, zi) = 1 ∧ wi < ⌈2p+3/K(x, y)⌉

]

0 otherwise

where the wi’s are viewed as binary integers, and we let k = (2p+3)2p. We show the following
two things.

x ∈ ΠYES =⇒ (C, k) ∈ Circuit-Count-GapYES

x ∈ ΠNO =⇒ (C, k) ∈ Circuit-Count-GapNO
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For the YES case, consider the good y from Definition 6.10. If K(x, y) = 0 then C accepts
y, (zi, wi)

2p
i=1 for every choice of (zi, wi)

2p
i=1, and thus the total number of accepted inputs is

≥ (22p+3)2p ≥ k. On the other hand, assume K(x, y) > 0. Since M(x, y, zi) = 1 holds
for ≥ K(x, y) choices of zi, and wi < ⌈2p+3/K(x, y)⌉ holds for ⌈2p+3/K(x, y)⌉ choices of
wi, the conjunction of these holds for ≥ K(x, y) · ⌈2p+3/K(x, y)⌉ ≥ 2p+3 choices of zi, wi.
Hence C accepts y, (zi, wi)

2p
i=1 for ≥ (2p+3)2p = k choices of (zi, wi)

2p
i=1, and thus the total

number of accepted inputs is also ≥ k. For the NO case, consider an arbitrary y. We
must have K(x, y) > 0. Since M(x, y, zi) = 1 holds for < K(x, y)/2 choices of zi, and
wi < ⌈2p+3/K(x, y)⌉ holds for ⌈2p+3/K(x, y)⌉ choices of wi, the conjunction of these holds
for < (K(x, y)/2) · ⌈2p+3/K(x, y)⌉ ≤

(
2p+3+K(x, y)

)
/2 ≤ 2p+3 · (5/8) choices of zi, wi (using

K(x, y) ≤ 2p + 1). Hence C accepts y, (zi, wi)
2p
i=1 for <

(
2p+3 · (5/8)

)2p
choices of (zi, wi)

2p
i=1.

Summing over y, the total number of accepted inputs is < 2p ·
(
2p+3 ·(5/8)

)2p
= k ·(25/32)p <

k/2.
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Part IV

The Algorithm’s Input is Random
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Chapter 7

Relativized Worlds Without
Worst-Case to Average-Case
Reductions for NP

7.1 Introduction

The study of average-case complexity concerns the power of algorithms that are allowed to
make mistakes on a small fraction of inputs. Of particular importance is the relationship
between worst-case complexity and average-case complexity. For example, cryptographic ap-
plications require average-case hard problems, and it would be desirable to base the existence
of such problems on minimal, worst-case complexity assumptions.

For the class PSPACE, it is known that worst-case hardness and average-case hardness
are equivalent [22]. That is, if PSPACE is worst-case hard then it is also average-case hard.
For the class NP, the situation is not well-understood. A central open problem in average-
case complexity is to prove that if NP is worst-case hard then it is also average-case hard.
Considering the lack of progress toward proving this proposition, a natural goal is to exhibit
barriers to proving it, by ruling out certain general proof techniques. Bogdanov and Tre-
visan [46] considered the possibility of a proof by reduction. Building on [84], they showed
that the proposition cannot be proven by a nonadaptive randomized reduction unless the
polynomial-time hierarchy collapses; it remains open to provide evidence against the exis-
tence of adaptive reductions.1 Another possibility that has been considered is a relativizing
proof. In 1995, Impagliazzo and Rudich claimed [134] that they had constructed a relativized
heuristica, which is a world in which NP is worst-case hard but average-case easy, thus rul-
ing out this possibility. However, they have since retracted their claim. We make progress
toward obtaining relativized heuristica, by ruling out the possibility of a relativizing proof
by reduction. Our barrier holds even for adaptive reductions. More formally, we prove that

1It can be shown without difficulty that there is no deterministic adaptive worst-case to average-case
reduction for NP unless P = NP.
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there exists an oracle relative to which there is no reduction of type

(
NP,PSamp

)
⊆ HeurBPP ⇒ NP ⊆ BPP

where
(
NP,PSamp

)
is the class of distributional NP problems under polynomial-time sam-

plable distributions, and HeurBPP is the class of distributional problems with polynomial-
time average-case randomized algorithms.

We also generalize this result in various ways. The proposition that if NP is worst-case
hard then it is also average-case hard concerns average-case algorithms that may output the
wrong answer on a small fraction of inputs. In light of the aforementioned barriers, it is
natural to consider the following proposition, which is potentially easier to prove: If NP is
worst-case hard then it is also hard for errorless average-case algorithms, which may output
“don’t know” on a small fraction of inputs but must never output the wrong answer.2 Our
result generalizes to rule out relativizing proofs by reduction of this proposition. Further,
we show how to rule out relativizing proofs by reduction that if NP is worst-case hard then
certain classes larger than NP are errorless-average-case hard.

Independently of our work, Impagliazzo [135] has succeeded in constructing a relativized
heuristica; we discuss his result in Section 7.1.3 below.

7.1.1 Notions of Reductions and Relationship to Previous Work

Various models of worst-case to average-case reductions for NP have been considered in the
literature, and they can be informally classified as follows.

For the moment let us gloss over the issue of which distribution on inputs an average-case
algorithm is judged with respect to. A worst-case to average-case reduction for NP must
show that for every L1 ∈ NP there exists an L2 ∈ NP such that if L2 has a polynomial-time
average-case algorithm then L1 has a polynomial-time worst-case algorithm. The worst-case
algorithm for L1 depends on the hypothesized average-case algorithm for L2 in some way,
which we call the decoding. There are the following four natural types of dependence, in
decreasing order of strength.

(1) Black-box dependence means that the worst-case algorithm for L1 has oracle access to
the average-case algorithm for L2, and it must solve L1 on all inputs for every oracle
that solves L2 on most inputs, regardless of whether the oracle represents an efficient
algorithm.

(2) The worst-case algorithm for L1 might have oracle access to the average-case algorithm
for L2 but only be guaranteed to solve L1 when the oracle is, in fact, an efficient
average-case algorithm for L2.

(3) The worst-case algorithm for L1 might require the code of an efficient average-case
algorithm for L2.

2An equivalent notion of an errorless average-case algorithm is one that always outputs the correct answer
but whose running time is only “polynomial-on-average” [165].
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(4) The dependence can be arbitrary, meaning that if L2 has an efficient average-case
algorithm then L1 has an efficient worst-case algorithm. This type of dependence
allows for arbitrary proofs that if NP is worst-case hard then it is also average-case
hard.

For the first three types, the algorithm that solves L1 with the aid of a hypothesized average-
case algorithm for L2 is called the reduction itself. In this chapter we consider type (1)
decoding. Note that since our results are about relativization, the reductions we consider
have access to two oracles: the reduction oracle (representing the hypothesized average-case
algorithm) and the relativization oracle.

Bogdanov and Trevisan [46] also considered type (1) decoding. They showed that such a
reduction cannot exist unless the polynomial-time hierarchy collapses, provided the reduction
is nonadaptive in its oracle access to the hypothesized average-case algorithm. Compared to
the Bogdanov-Trevisan barrier, our barrier has the advantages that it is unconditional and
it applies to adaptive reductions, but has the disadvantage that it only applies to reductions
that relativize.

Gutfreund et al. [124] showed a positive result, namely that there is a worst-case to
average-case reduction for NP with type (2) decoding, under a distribution on inputs that is
samplable in slightly-superpolynomial time. Building on this result, Gutfreund and Ta-Shma
[125] showed that under a certain weak derandomization hypothesis, there is a worst-case to
average-case reduction from NP to nondeterministic slightly-superpolynomial time with type
(2) decoding, under the uniform distribution on inputs. Moreover, the results of [124, 125]
relativize.

A natural goal is to extend our results to handle type (2) decoding. However, this
turns out to be as hard as extending our results to handle type (4) decoding (which was
independently accomplished by Impagliazzo [135], at least for NP). For example, we claim
that relative to every oracle, the following are equivalent.

(A) There is no reduction of type

(
NP,PSamp

)
⊆ HeurBPP ⇒ NP ⊆ BPP

with type (2) decoding.

(B)
(
NP,PSamp

)
⊆ HeurBPP and NP 6⊆ BPP.

Clearly (B) implies (A). To see that (A) implies (B), consider two cases. If NP ⊆ BPP,
then there is a trivial reduction that ignores the hypothesized HeurBPP algorithm for(
NP,PSamp

)
. If

(
NP,PSamp

)
6⊆ HeurBPP, then there is some problem in

(
NP,PSamp

)

for which every algorithm is vacuously an appropriate type (2) decoder, because the universal
quantification over HeurBPP algorithms for that problem is over an empty set.

The classes PPP and PSPACE both have an O(n)-query worst-case to average-case re-
duction under the uniform distribution, with type (1) decoding, using multilinear extensions
[22]. Moreover, these results relativize.
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For certain promise problems regarding lattices, e.g., certain versions of the shortest vec-
tor problem, worst-case to average-case reductions to problems in

(
NP,PSamp

)
are known,

with type (1) decoding. However, these lattice problems are not known or believed to be
NP-hard. We refer to [45, 217] for surveys of these results.

Another aspect of worst-case to average-case reductions is the encoding, which refers to
the way in which L2 depends on L1. Black-box encoding means that the algorithm that
defines L2 has oracle access to L1, and for every language L1 (not just those in NP), if the
corresponding L2 has an efficient average-case algorithm then L1 has an efficient worst-case
algorithm (via one of the above four types of decoding).

Viola [257, 258] proved two results about worst-case to average-case reductions with
black-box encoders implementable in the polynomial-time hierarchy. In [257] he proved
unconditionally that such a reduction with type (1) decoding does not exist. In [258] he
proved that if such a reduction with type (4) decoding exists then PH is average-case hard,
and thus basing the average-case hardness of PH on the worst-case hardness of PH in this
way is no easier than unconditionally proving the average-case hardness of PH.

7.1.2 Results

Our first result concerns the class BPPNP
‖ . Recall that AvgZPP denotes the class of distri-

butional problems with polynomial-time errorless average-case randomized algorithms.

Theorem 7.1. There exists an oracle relative to which there is no reduction of type

(
BPPNP

‖ ,PSamp
)
⊆ AvgZPP ⇒ UP ⊆ BPP.

Note that the type of reduction considered in Theorem 7.1 is weaker than a worst-case to
average-case reduction for NP, because BPPNP

‖ is larger than NP, AvgZPP is smaller than
HeurBPP, and UP is smaller than NP. Ruling out weaker reductions yields a stronger result.

If we restrict our attention to reductions that use a limited number of queries, then we
can handle classes even larger than BPPNP

‖ .

Theorem 7.2. For every polynomial q there exists an oracle relative to which there is no
q-query reduction of type

(
PH,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP.

Since BPPNP
‖ ⊆ PH holds relative to every oracle, it may appear at first glance that

Theorem 7.2 subsumes Theorem 7.1. The reason it does not is because of the order of the
quantifiers. In Theorem 7.2, the reduction may not make as many queries as it likes; it may
only make a fixed polynomial q number of queries even though its running time may be an
arbitrarily high degree polynomial.

If we are willing to sacrifice all but two queries, then we can go quite a bit further than
PH.
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Theorem 7.3. For every uniform complexity class of languages C there exists an oracle
relative to which there is no 2-query reduction of type

(
C,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP.

The term “uniform complexity class of languages” has a somewhat technical meaning,
which is explained in Section 7.2, but it encompasses all “ordinary” complexity classes such
as PSPACE and EXPEXP.

Our theorems can be generalized in various ways. For example, Theorem 7.1 and Theo-
rem 7.2 both hold with AvgZPP replaced by the deterministic version AvgP, by essentially
the same proofs.3 We have chosen to state the results using AvgZPP because we feel it is
more natural to allow randomized algorithms in average-case complexity. As another exam-
ple, Theorem 7.1 holds with BPP replaced by BQP, by inserting a quantum query lower
bound for the OR function [35] at the appropriate point in the argument, instead of a ran-
domized lower bound. We have chosen the particular statements of our three theorems so
as to highlight the interesting aspects and make the relationships among them clear.

In the original ECCC version of the paper this chapter is based on [265], we also proved
two results similar to Theorem 7.1. One is a generalization of Theorem 7.1 where BPPNP

‖ is
generalized to allow multiple rounds of adaptivity in the NP oracle access (up to o(n/ logn)
rounds). In the other result, BPPNP

‖ is replaced with the class BPPpath, which was introduced
in [126] and which captures the power of polynomial-time randomized computations condi-
tioned on efficiently testable events. Relative to every oracle, PNP

‖ ⊆ BPPpath ⊆ BPPNP
‖ ,

and thus this result is subsumed by Theorem 7.1. However, our proof of the BPPpath result
is still interesting because the heart of the proof is genuinely different from the heart of our
proof of Theorem 7.1, and it exploits the definition of BPPpath in a particularly intuitive
way, without going through approximate counting. We refer the reader to [265] for details
about these results.

7.1.3 Independent Work

Independently of our work, Impagliazzo [135] has succeeded in constructing a relativized
heuristica, even for errorless average-case algorithms. In fact, he constructs an oracle relative
to which

(
NP,PSamp

)
⊆ AvgP but UP 6⊆ P/poly. Thus relative to his oracle, there is no

worst-case to average-case reduction for NP with any of the four types of decoding discussed
in Section 7.1.1. This subsumes our result for NP (which only applies to black-box decoding).

The results of [135] do not subsume our results for classes higher than NP, although
Impagliazzo conjectures that this may be possible using his techniques. Furthermore, our
techniques can be adapted without difficulty (though we do not argue this here) to show
that there exists an oracle relative to which there is no reduction of type

(
NP,PSamp

)
⊆ HeurBPP ⇒

(
NP,PSamp

)
⊆ AvgZPP

3For Theorem 7.1 exactly the same proof works; for Theorem 7.2 a minor tweak is needed.
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while it remains open to prove that there exists an oracle relative to which
(
NP,PSamp

)
⊆

HeurBPP but
(
NP,PSamp

)
6⊆ AvgZPP.

Another benefit of this chapter is that our techniques are genuinely different (and more
elementary) than Impagliazzo’s. The outline of his argument is that he puts a random per-
mutation into the oracle so that inverting the permutation is a worst-case hard NP problem,
and to make NP average-case easy he puts the answers to all NP problems into the oracle
but “censors” a certain small fraction of the answers in a way that preserves the worst-case
hardness of inverting the permutation. Ensuring consistency between the conflicting require-
ments is a delicate business, and involves results on random restrictions of so-called matching
DNFs. In contrast, our proof of our result for NP does not use such machinery. While much
of the work in Impagliazzo’s proof is in the analysis rather than the construction of the
oracle, our argument is more directly adversarial. We use a potential function technique
to guide the construction to converge to an oracle with the desired properties. We employ
elementary counting arguments to achieve this.

Also, our proofs of Theorem 7.2 and Theorem 7.3 illustrate a new connection between
lower bounds for error-correcting codes and relativized lower bounds.

7.1.4 Organization

In Section 7.2 we provide preliminaries, which clarify the precise meanings of our theorems.
In Section 7.3 we give the intuition for our proofs. In Section 7.4 we describe the basic setup
that is common to the formal proofs of all three theorems. Section 7.5 contains the formal
proof of Theorem 7.1. Section 7.6 contains the formal proof of Theorem 7.2. Section 7.7
contains the formal proof of Theorem 7.3.

7.2 Preliminaries

We refer the reader to the textbooks [17, 98] for background on complexity theory and
definitions of standard complexity classes. We refer the reader to the survey paper [45] for
background on average-case complexity. In this section we provide preliminaries that are
not completely standard.

7.2.1 Complexity Classes

For any randomized algorithm M , we let Mr denote M using internal randomness r.
We now define the average-case complexity classes we need. In average-case complexity,

we study distributional problems (L,D) where L is a language and D = (D1, D2, . . .) is
an ensemble of probability distributions, where Dn is distributed over {0, 1}n. Recall that
PSamp denotes the class of polynomial-time samplable ensembles, and U denotes the class
consisting of only the uniform ensemble U . If C is a class of languages and D is a class of
ensembles then (C,D) =

{
(L,D) : L ∈ C and D ∈ D

}
.
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Definition 7.4. HeurBPP denotes the class of distributional problems (L,D) that have a
polynomial-time heuristic scheme, that is, a randomized algorithm M that takes as input x
and δ > 0, runs in time polynomial in |x| and 1/δ, and for all n and all δ > 0 satisfies

Pr
x∼Dn,r

[
Mr(x, δ) 6= L(x)

]
≤ δ.

Definition 7.5. AvgZPP denotes the class of distributional problems (L,D) that have a
polynomial-time errorless heuristic scheme, that is, a randomized algorithm M that takes as
input x and δ > 0, runs in time polynomial in |x| and 1/δ, always outputs L(x) or ⊥, and
for all n and all δ > 0 satisfies

Pr
x∼Dn,r

[
Mr(x, δ) = ⊥

]
≤ δ.

7.2.2 Reductions

In this section we informally explain what we mean when we say there exists a reduction of
type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1
where C′

2, C2, C′
1, C1 are four complexity classes. In Section 7.2.3 below we give formal defini-

tions for the specific classes to which our theorems apply.
A complexity class is a set of computational problems, such as languages or distributional

problems. We assume for concreteness that each of C1 and C2 is defined in the following way.
By an input-output relationship we mean a randomized function. There is a set of algorithms,
each of which induces an input-output relationship. That is, each algorithm takes an input
and produces an output sampled from some distribution depending on the input. There
is a predicate that indicates for each input-output relationship and each computational
problem whether the input-output relationship solves the problem. There is a notion of
computational resources used by the algorithms, and an algorithm is said to be efficient if
it satisfies certain resource constraints. The class is defined as the set of problems solved
by efficient algorithms. This type of definition encompasses classes defined in terms of
(uniform or nonuniform) deterministic, randomized, or quantum algorithms, but it could be
generalized to handle other models as well.

We also assume that for C1 there is an analogous set of algorithms that can make queries to
a reduction oracle, which represents an input-output relationship.4 We assume that plugging
any algorithm from C2’s set into the reduction oracle yields an algorithm from C1’s set.

Now suppose P1 is a computational problem of the appropriate kind for C1 and P2 is a
computational problem of the appropriate kind for C2.

Definition 7.6. A reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1
4In particular, the reduction oracle is not like a relativization oracle, which just answers queries to a

language.
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is an algorithm from C1’s set of reduction oracle algorithms, such that (i) for every reduction
oracle that solves P2 according to C2, the reduction solves P1 according to C1, and (ii) for every
reduction oracle, the reduction satisfies C1’s resource constraints if we pretend each query to
the reduction oracle uses any amount of resources allowed by C2’s resource constraints.

In other words, if the reduction oracle is correct then the reduction is correct, and if we
pretend the reduction oracle is efficient then the reduction is efficient.

Note that if we plug an actual, efficient algorithm for P2 (according to C2) into the
reduction oracle of such a reduction, then the reduction becomes an efficient algorithm for
P1 (according to C1). Thus if there exists a reduction satisfying Definition 7.6 then P2 ∈ C2
implies P1 ∈ C1. But the reduction must work even when the reduction oracle is an input-
output relationship that is not efficiently implementable.

As an example, suppose C2 = BPTIME(2n
ǫ
). Then the reduction must solve P1 according

to C1 when the reduction oracle is any randomized function from {0, 1}∗ to {0, 1} that, on
input w, returns P2(w) with probability ≥ 2/3.5 Further, the reduction must satisfy the
resource constraints of C1 when we pretend each query of length n to the reduction oracle
takes time O(2n

ǫ
).

Definition 7.7. We say there exists a reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1

if for every P1 ∈ C′
1 there exists a P2 ∈ C′

2 and a reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1.

We make a few remarks about Definition 7.7.

• When C′
1 has an appropriately complete problem P1, this is equivalent to saying there

exists a P2 ∈ C′
2 and a reduction of the above type, for the fixed problem P1.

• Note that we do not require that the reduction is uniform in the sense of there being
a fixed algorithm R that computes the reduction for every P1 ∈ C′

1 given the code for
a C′

1-type algorithm for P1.

• Note that when we say there is a reduction of the above type, this assertion gets weaker
as C′

2 and C1 get larger and C2 and C′
1 get smaller.

5One might wonder about reductions that can also choose the randomness used by the reduction oracle.
While this would be more general in one sense, it would be more restrictive in the sense that it would limit
the randomness complexity of the reduction oracle. In this chapter, queries are always just inputs to an
input-output relationship as defined above.
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7.2.3 Relativization

When we relativize to an oracle language A, every computation gets unrestricted oracle
access to A. This includes samplers and reductions. Thus reductions have access to two
oracles: the reduction oracle and the relativization oracle. When we write RB,A we mean B
is the reduction oracle and A is the relativization oracle for reduction R.

To illustrate the formal framework set up so far, we give the precise statement of The-
orem 7.1. There exists a language A and a language L1 ∈ UPA such that for all languages

L2 ∈
(
BPPNP

‖
)A

, all ensembles D ∈ PSampA, and all polynomial-time randomized reduc-

tions R◦,◦, R◦,A is not of type

(L2, D) ∈ AvgZPPA ⇒ L1 ∈ BPPA.

The latter means that there exists an x ∈ {0, 1}∗ and a randomized function B : {0, 1}∗ ×
R>0 → {0, 1,⊥} which is a valid AvgZPP oracle for (L2, D), such that

Pr
r,B

[
RB,A

r (x) = L1(x)
]

< 2/3

where the probability is over both the internal randomness of R and the randomness of B
(each query is answered with fresh independent randomness). When we say B is a valid
AvgZPP oracle for (L2, D) we mean that B(w, δ) always returns L2(w) or ⊥, and for all n
and all δ > 0,

Pr
w∼Dn,B

[
B(w, δ) = ⊥

]
≤ δ.

When we say R◦,◦ runs in polynomial time, this includes the fact that each query B(w, δ)
to the reduction oracle is charged time polynomial in |w| and 1/δ. In other words, δ must
always be at least inverse polynomial. Throughout this chapter we tacitly assume that
“polynomial-time reductions” have this restriction, since C2 is always AvgZPP. We clarify
that D ∈ PSampA means that for some randomized algorithm S◦, SA(n) runs in time
polynomial in n and outputs a sample distributed according to Dn. Finally, we clarify that(
BPPNP

‖
)A

is the class of languages L2 for which there exists a language L3 ∈ NPA and a
polynomial-time randomized algorithm M◦,◦ that accesses its first oracle nonadaptively, such
that for all x ∈ {0, 1}∗,

Pr
r

[
ML3,A

r (x) = L2(x)
]

≥ 2/3.

Regarding Theorem 7.2 and Theorem 7.3, there is one further issue to consider. For
reductions that are allowed an unlimited number of queries (like in Theorem 7.1), the error
probability of 1/3 in the definition of BPP is unimportant since it can be amplified from
1/2 − 1/ poly(n) to 1/2poly(n). However, amplification increases the number of queries, so
the error probability is not arbitrary for Theorem 7.2 and Theorem 7.3. For example, the
existence of a q-query

(
1/2− 1/ poly(n)

)
-error reduction of type

(
PH,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP
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does not seem to imply the existence of a q-query 1/3-error reduction of the same type, but
it still does imply that if

(
PH,PSamp

)
⊆ AvgZPP then UP ⊆ BPP. For this reason, we

allow an error probability of 1/2 − 1/ poly(n) (for arbitrarily high degree polynomials) in
Theorem 7.2 and in Theorem 7.3.

7.2.4 Uniform Complexity Classes

We now precisely define the restriction on C in Theorem 7.3.

Definition 7.8. We say that C is a uniform complexity class of languages if there is a
countable collection of functions {M1,M2, . . .} mapping oracle languages A to languages
MA

i , such that the following three conditions all hold.

• For every i and every x, MA
i (x) only depends on a finite number of bits of A.

• For every i and every x there exists a property Pi,x(A) that only depends on the bits of
A that MA

i (x) depends on, such that CA =
{
MA

i : ∀x Pi,x(A)
}
.

• For every i and every linear-time computable function f : {0, 1}∗ → {0, 1}∗ there exists
a j such that for all A the following two conditions hold: MA

j = MA
i ◦f , and if MA

i ∈ CA

then MA
j ∈ CA.

The second condition says the class is defined by a property of the computation (for
example, bounded error) holding for all inputs. The third condition says the class is closed
under linear-time deterministic mapping reductions. Observe that BPPNP

‖ , PH, PSPACE,

and EXPEXP are all examples of uniform complexity classes under this definition.

7.3 Intuition

In Section 7.3.1 we describe the intuition behind the proof of Theorem 7.1. Then in Sec-
tion 7.3.2 we describe the intuition behind the proofs of Theorem 7.2 and Theorem 7.3.

7.3.1 Intuition for Theorem 7.1

We start by informally describing how to construct an oracle relative to which there is no
reduction of type (

NP,U
)
⊆ HeurBPP ⇒ UP ⊆ BPP.

To obtain Theorem 7.1 we must strengthen HeurBPP to AvgZPP,6 strengthen U to PSamp,
and strengthen NP to BPPNP

‖ . We describe how to do these things below.
Fix an arbitrary NP-type algorithm M and an arbitrary polynomial-time randomized

reduction R, and fix a sufficiently large n. For simplicity we assume that on inputs of length

6Usually AvgZPP is thought of as being a weaker class than HeurBPP (since AvgZPP ⊆ HeurBPP), but
it is stronger in our situation.
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n, R only queries the reduction oracle on inputs of length nd (for some positive integer d)
and only with some fixed polynomially small δ; thus we can omit the δ from the queries. We
consider relativization oracles of the form A : {0, 1}n×{0, 1}n → {0, 1}, which we think of as
2n×2n tables. Let LA

1 : {0, 1}n → {0, 1} be defined by LA
1 (x) =

∨
y A(xy). That is, L

A
1 is the

language of strings x such that there exists a 1 in the xth row of A. Let LA
2 : {0, 1}nd → {0, 1}

denote the language computed by MA. We only consider A,LA
1 , L

A
2 at these input lengths

since all other input lengths are irrelevant.
We explain how to diagonalize against the pair M,R. We wish to construct an A such

that for some x ∈ {0, 1}n and some deterministic7 reduction oracle B : {0, 1}nd → {0, 1},
B agrees with LA

2 on at least a 1 − δ fraction of inputs and RB,A(x) outputs LA
1 (x) with

probability < 2/3. This will show that R fails to be a reduction of type

(
LA
2 , U

)
∈ HeurBPPA ⇒ LA

1 ∈ BPPA.

We also need to ensure that there is at most one 1 in each row of A so that LA
1 ∈ UPA,

but this will fall right out of the construction. We construct A through an iterative process,
and we use a potential function argument to show that this process makes steady progress
toward our goal. The process iteratively modifies the relativization oracle, and we use A
to denote the relativization oracle throughout the whole process.8 Thus the table denoted
by A changes many times throughout our argument, and the languages LA

1 and LA
2 change

accordingly. Initially A is all 0’s.
Let us consider the computation of R on some input x. It is trying to figure out whether

there is a 1 in the xth row of A, in other words, compute LA
1 (x). It has two sources of

information about LA
1 (x): the relativization oracle A itself, and the reduction oracle B. If

R did not have access to B, then we could diagonalize in a standard way: Observe how R
behaves given that the xth row of A is all 0’s. If R outputs 1 with high probability, then
we are done. If R outputs 1 with low probability, then we find a bit in the xth row that R
queries with only tiny probability and flip that bit (such a bit must exist because R does
not have enough time to keep an eye on the entire row); then R still outputs 1 with low
probability, but now x ∈ LA

1 . Thus R must rely on the reduction oracle B for help.
Our construction has two stages. The goal of stage 1 is to gain the upper hand by

rendering B useless to R. Then in stage 2 we deliver the coup de grâce with the standard
diagonalization argument. We cannot guarantee that B is useless for every x, but we only
need it to be useless for some x. Specifically, suppose we could set up A in such a way that
there exists an x such that

(1) the xth row of A is all 0’s, and

(2) for all y, flipping A(xy) would cause LA
2 (w) to change for at most a δ fraction of w’s.

7B will be deterministic here even though randomness is allowed; this makes the result stronger.
8More formally, we could say we define a sequence of relativization oracles A0, A1, A2, . . . that leads to

some final version Ak = A. We omit the subscripts throughout the argument and simply refer to A with the
understanding that this means the “current” version.
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Then declaring B to be LA
2 for the particular A we have set up, we know that we can leave

A alone or we can flip any bit in the xth row, and for all these possibilities B is a valid
HeurBPP oracle for the new LA

2 . Then we can observe the behavior of R on input x, using
this fixed B for the reduction oracle, and diagonalize against R in the standard way with
the assurance that whatever happens to A during this second stage, B will remain valid.

How do we set up A so that such an x exists? We do this iteratively. In each iteration,
we find a certain x whose row is currently all 0’s, which is our “best guess” for the good x.
If condition (2) is satisfied for this x, then we are done. Otherwise, there is some column
y that violates condition (2). Then we flip the bit A(xy) to 1 and continue with the next
iteration. We just need to show that there are < 2n iterations before we succeed. For this,
we define a potential function ΦA that assigns an energy value to A. The key is to show that
if y violates condition (2) for our best guess x, then flipping A(xy) must cause a significant
decrease in potential. Since ΦA must remain bounded, there cannot be too many iterations
before M is beaten into submission and our best guess x works.

Let us hold off on the definition of ΦA and focus on finding a best guess x. Our ultimate
goal is to ensure that if we flip any bit in the xth row, most of the inputs to LA

2 “don’t
notice”. There is an asymmetry between inputs that are accepted by MA and those that are
rejected. If w ∈ {0, 1}nd

is such that MA(w) rejects, then if any of the exponentially many
computation paths “notices” a change in A, the whole computation could become accepting.
However, if MA(w) accepts, then we can pick an arbitrary accepting computation path of
MA(w) to be the “designated” one. Only polynomially many bits of A are queried by M
on this path, and as long as none of these bits is flipped, w “won’t notice” any change to A
because MA(w) will still accept. In particular, there are only polynomially many x’s such
that MA(w) queries some bit in the xth row on the designated path. Thus for every w with
LA
2 (w) = 1, the vast majority of x have the property that flipping any bit in the xth row

does not cause LA
2 (w) to change to 0. By an averaging argument, most x have the property

that for most w ∈ {0, 1}nd
, flipping any bit in the xth row does not cause LA

2 (w) to change
from 1 to 0. For the current A, there must exist an x with the latter property and such that
the xth row is all 0’s, since (by induction) we know there are not very many x’s with a 1 in
their row currently. This is our best guess x.

We know that flipping any bit in the xth row causes only a small fraction of all w ∈ {0, 1}nd

to change from 1 to 0 under LA
2 . This is good, but it is only half the story. We would also

like that flipping any bit in the xth row causes only a small fraction of w’s to change from
0 to 1. Suppose we budget a δ/2 fraction of w’s to change from 1 to 0, and a δ/2 fraction
to change from 0 to 1. Now if some y violates condition (2), then it must be the case that
flipping A(xy) causes at least a δ/2 fraction of w’s to change from 0 to 1. We want to define
the potential function so that having w’s change from 0 to 1 under LA

2 causes a decrease in
potential. A natural choice is

ΦA = Pr
w∼U

nd

[
LA
2 (w) = 0

]
.

Flipping A(xy) causes at least a δ/2 probability mass to leave the event LA
2 (w) = 0. However,

as much as a δ/2 probability mass could enter the event due to w’s that change from 1 to
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0, which could essentially cancel out the drop in potential from the w’s that changed from 0
to 1! The solution is to change our budgeting. If we budget a δ/3 fraction of w’s to change
from 1 to 0 and a 2δ/3 fraction to change from 0 to 1, then flipping A(xy), where y violates
condition (2), causes at least a 2δ/3 probability mass to leave the event, while at most a
δ/3 probability mass enters the event. Thus ΦA goes down by at least δ/3, and there are at
most 3/δ < 2n iterations before our best guess x works. This concludes the argument.

Very roughly, the big picture is as follows. For an input that is accepted by MA, it is
easy to ensure that the answer under LA

2 does not change when we make modifications to A.
For an input that is rejected by MA, we cannot ensure that the answer does not change, but
the point is that if it does change, then we can ensure that it does not change again, since
the input is now accepted.

7.3.1.1 Intuition for Strengthening HeurBPP to AvgZPP

Let x denote our best guess at the end of stage 1. Suppose we knew that there exists a set
W ⊆ {0, 1}nd

of density at most δ such that for all w 6∈ W and all y, flipping A(xy) does
not change LA

2 (w). Then setting

B(w) =

{
LA
2 (w) if w 6∈ W

⊥ if w ∈ W
(7.1)

where A is the relativization oracle at the end of stage 1, we would have that B is a valid
AvgZPP oracle for LA

2 no matter whether we leave A alone or flip any bit in the xth row.
Then we could diagonalize in the standard way, by observing how R behaves on input x
using this fixed B and the current A, and either leaving A alone or flipping some bit in the
xth row to make R output the wrong answer with high probability.

The existence of such a W is too much to ask for. However, this is only because we
were trying to find a B that would remain a valid AvgZPP oracle for all of the 2n + 1
diagonalization options. We do not really need all these options. Let Y be an arbitrary fixed
set of columns of size |Y | = 4t, where t is the running time of R on inputs of length n. Then
running R on input x with any fixed B and the current A, there must be a y ∈ Y such that
A(xy) gets queried with probability ≤ 1/4. If R outputs 1 with probability ≤ 1/3 then after
flipping this A(xy), R outputs 1 with probability < 2/3 and hence errs. Thus it suffices
to have 4t+ 1 diagonalization options, namely leaving A alone or flipping some A(xy) with
y ∈ Y . Suppose we knew that there exists a set W ⊆ {0, 1}nd

of density at most δ such that
for all w 6∈ W and all y ∈ Y , flipping A(xy) does not change LA

2 (w). Then defining B as
in Equation (7.1), we could diagonalize by either leaving A alone or flipping A(xy) for some
y ∈ Y with the assurance that whatever happens, B will remain valid.

Now the existence of such a W is not too much to ask for. Using the argument for the
HeurBPP case with a small adjustment of parameters, we can ensure that flipping any bit
in the xth row causes LA

2 (w) to change for at most a δ/4t fraction of w’s. Then we can take
W to be the set of all w such that there exists a y ∈ Y such that flipping A(xy) changes
LA
2 (w).
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7.3.1.2 Intuition for Strengthening U to PSamp

There are two approaches: one that is direct, and one that uses a result of Impagliazzo and
Levin [140]. Neither is difficult. We first describe the direct approach.

First, observe that if Und were replaced by some other distribution on {0, 1}nd
that is

independent of A, then the whole argument above would carry through, just by replacing
“fraction of w’s” with “probability mass of w’s” under this distribution. Now in addition to
M and R, we need to worry about an arbitrary polynomial-time sampler S, and we need
to ensure that B is a valid AvgZPP oracle for

(
LA
2 , D

A
)
, where DA denotes the distribution

sampled by SA(nd). If S did not query A at all, then DA would be independent of A and
thus we could use the same argument, by the above observation. Two issues arise because
S is allowed to query A. First, when we flip a bit during stage 1, this affects

ΦA = Pr
w∼DA

[
LA
2 (w) = 0

]

in terms of not only the event but also the distribution. Second, when we flip a bit during
stage 2, this affects the distributional problem

(
LA
2 , D

A
)
for which B needs to be a valid

AvgZPP oracle, in terms of not only the language but also the distribution.
Handling these issues is just a matter of tweaking the argument to ensure that our

modifications to A cause only small statistical deviations in DA. Specifically, consider the
beginning of an iteration of stage 1, and let D denote DA for the current A (thus D is fixed
and will not react to changes in A). Now suppose we choose our best guess x as before,
but based on this distribution D. Then by the above argument we know that for every y,
flipping A(xy) would either cause

Pr
w∼D

[
LA
2 (w) = 0

]

to go down by a significant amount, or cause LA
2 (w) to change with only small probability

over w ∼ D. It can be shown that this is good enough for our purpose provided that for all
y, flipping A(xy) results in a DA that is statistically very close to D. To ensure the latter,
we choose our best guess x not only so that the xth row is all 0’s and flipping any bit in the
xth row only causes a small probability mass of w ∼ D to change from 1 to 0 under LA

2 , but
also so that the probability SA(nd) queries any bit in the xth row is small. This is possible
because the vast majority of x’s satisfy the latter condition since S runs in polynomial time.

An alternative approach to handling PSamp uses a result due to Impagliazzo and Levin
[140]. They proved that if C is a class of languages containing NP and satisfying certain
simple closure properties, then relative to every oracle, there exists a reduction of type

(
C,U

)
⊆ AvgZPP ⇒

(
C,PSamp

)
⊆ AvgZPP.

The proof of this result appears in [45, Section 5.2] and is based on a result of Impagliazzo
and Luby on distributionally inverting one-way functions [141]. By composing this reduc-
tion with the hypothesized reduction, we can assume without loss of generality that the
distributional problem we are reducing to uses the uniform ensemble. In the formal proof
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of Theorem 7.1, rather than use the Impagliazzo-Levin result we opt to directly handle the
samplable ensembles because doing so makes the argument self-contained at only a slight
cost in complicatedness.

7.3.1.3 Intuition for Strengthening NP to BPPNP
‖

There exists a simple reduction of type

(
NP,PSamp

)
⊆ HeurBPP ⇒

(
BPPNP

‖ ,PSamp
)
⊆ HeurBPP

(and this fact relativizes). Thus if we consider HeurBPP rather than AvgZPP, then the result
for BPPNP

‖ follows from the result for NP by composing reductions. To handle AvgZPP, we

directly adapt the NP argument to work for BPPNP
‖ . Let us revert from PSamp to U .

Instead of a single algorithmM we have a pairM,N whereN is an NP-type algorithm and
M is a polynomial-time randomized algorithm that accesses its first oracle nonadaptively. We
let LA

3 denote the language computed by NA, and we let LA
2 denote the language computed

by MLA
3 ,A (assuming bounded error is satisfied for every input).9 Let us make the simplifying

assumption that M has oracle access only to LA
3 and not to A. (Extending the argument to

the general case is not difficult; it just involves taking an extra precaution when picking our
best guess x to ensure that hardly any w’s “notice” changes to A via the second oracle.)

The differences from the above proof are in the definition of the potential function ΦA, the
choice of our best guess x, and the argument that if some y violates condition (2) for our best

guess x, then flipping A(xy) causes a significant decrease in potential. LetM
LA
3

r (w)j ∈ {0, 1}∗
denote the jth query to LA

3 made by the computation M
LA
3

r (w) (in our simplified setting, this
query does not depend on A), and consider the bits

LA
3

(
MLA

3
r (w)j

)

over the choice of w, r, j. We define ΦA to be the fraction of these bits that are 0.
Consider an arbitrary iteration of stage 1, and let A denote the current relativization

oracle. By choosing our best guess x appropriately, we can ensure that the xth row of A
is all 0’s, and no matter what y is, only a tiny fraction of the w, r, j bits go from 1 to 0
when we flip A(xy) (and thus bits going from 1 to 0 can only contribute a tiny increase
in potential). Suppose there is a y such that flipping A(xy) causes LA

2 (w) to change for
a significant fraction of w’s. We want it to be the case that flipping A(xy) also causes a
significant decrease in potential, and for this it suffices to show that a significant fraction of
w, r, j bits go from 0 to 1. Let A′ denote A with A(xy) flipped to 1. For each w such that
LA′

2 (w) 6= LA
2 (w), it must be the case that

MLA′

3
r (w) 6= MLA

3
r (w) (7.2)

9We again only deal with LA
2 on inputs of length nd, but we consider LA

3 on all input lengths. We could
assume all queries M makes to its first oracle have the same length, but it turns out this would not make
the proof any simpler.
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for at least 1/3 of the r’s. Thus we know that Inequality (7.2) holds for a significant fraction
of pairs w, r. If Inequality (7.2) holds for w, r then there must exist a j such that the w, r, j
bit changes when we go from A to A′. But the fraction of pairs w, r such that the w, r, j bit
goes from 1 to 0 for some j is tiny (at most polynomially larger than the fraction of triples
w, r, j that go from 1 to 0). Thus a significant fraction of pairs w, r are such that the w, r, j
bit goes from 0 to 1 for some j, and hence a significant fraction (possibly a polynomially
smaller fraction) of triples w, r, j go from 0 to 1. Thus we have a significant decrease in
potential when we flip A(xy).

7.3.2 Intuition for Theorem 7.2 and Theorem 7.3

It is well-known that error-correcting codes can be used to construct worst-case to average-
case reductions, at least for large complexity classes such as PSPACE [22, 238]. To be
applicable, the codes must have very efficient encoders (since this dictates the complexity of
the language being reduced to) and very efficient decoders (since this dictates the complexity
of the reduction itself). Our strategy for proving Theorem 7.2 and Theorem 7.3 is to set
up the relativization oracle in such a way that error-correcting codes are in some sense the
only way to construct worst-case to average-case reductions of the appropriate types, and
then argue that the efficiency of the resulting encoders and decoders is too good to be true.
That is, we would like to be able to extract a good error-correcting code from any purported
reduction and then apply known lower bounds on the efficiency of encoders and decoders for
such codes. For Theorem 7.2, we use a result due to Viola [257] which states that good error-
correcting codes10 cannot be encoded by small constant-depth circuits. For Theorem 7.3,
we use a lower bound due to Kerenidis and de Wolf [158] on the length of 2-query locally
decodable codes.

Our approach for Theorem 7.2 and Theorem 7.3 is in some sense a dual approach to the
one we used for Theorem 7.1. As before, we have a reduction R that is trying to solve a
problem with the aid of a relativization oracle A and a reduction oracle B. Before, our goal
was to render B useless to R so we could focus on how R interacted with A. Now, our goal
is to render A useless to R so we can focus on how R interacts with B. Before, we found a
good row of A and filled in that row adversarially. Now, we find a good column of A and fill
in that column adversarially.

Unlike in the proof of Theorem 7.1, we cannot use the Impagliazzo-Levin result to reduce
PSamp to U since it uses too many queries. But again, directly handling the samplable
ensembles presents no major difficulties. Thus, for the rest of this section we assume PSamp
is replaced by U .

The basic setup is the same as before. We have an algorithmM (PH-type for Theorem 7.2
or arbitrary complexity for Theorem 7.3). We have a polynomial-time randomized reduction
R that uses a limited number of queries to the reduction oracle. For simplicity we assume that
on inputs of length n, R only queries the reduction oracle on inputs of length nd (for some
positive integer d) and only with some fixed polynomially small δ. We construct a sequence

10His result even applies to list-decodable codes, but we do not need this stronger result.
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of relativization oracles A : {0, 1}n×{0, 1}n → {0, 1}, and we define LA
1 : {0, 1}n → {0, 1} by

LA
1 (x) =

∨
y A(xy), and we let LA

2 : {0, 1}nd → {0, 1} denote the language computed by MA.

For the final version of A, we want RB,A(x) to output LA
1 (x) with probability < 1/2+1/nlogn

for some x ∈ {0, 1}n and some B : {0, 1}nd → {0, 1,⊥} that agrees with LA
2 on at least a

1− δ fraction of inputs and returns ⊥ on the rest. We have 1/2 + 1/nlogn instead of 2/3 for
the reason discussed at the end of Section 7.2.3.

Let us start by pretending that R never queries A. Then it is completely straightforward
to extract a good binary error-correcting code from M,R: Pick an arbitrary column y and
define

C : {0, 1}2n → {0, 1}2n
d

by viewing the input as a function Z : {0, 1}n → {0, 1} and the output as a function
C(Z) : {0, 1}nd → {0, 1} given by C(Z) = LAZ

2 where AZ denotes the relativization oracle
with Z as the yth column and 0’s everywhere else. If R really is of the hypothesized type no
matter which Z we use, then it immediately follows that R is a decoder that recovers any
bit Z(x) = LAZ

1 (x) of the information word from any corrupted code word B that has at
most a δ fraction of erasures (and no flipped bits).

For Theorem 7.2, note that C has relative minimum distance > δ and each bit of C
is encodable by a small constant-depth circuit since M is a PH-type algorithm with oracle
access to Z [91]. This contradicts a result of Viola [257] which says that such a code cannot
exist. Thus there must be some Z for which R is not of the hypothesized type.

For Theorem 7.3, note that C is a 2-query locally decodable code in the sense that
each bit of the information word can be recovered with probability at least 1/2 + 1/nlogn

assuming there are at most a δ fraction of erasures.11 Since the code word length is only
quasipolynomial in the information word length, this contradicts a result of Kerenidis and
de Wolf [158] which says that the length of such a code must be nearly exponential.12 Thus
there must be some Z for which R is not of the hypothesized type. Since the lower bound
holds regardless of the complexity of encoding, we can handle any uniform complexity class
of languages.

Now we return to the “real world” where R may query A. Then the above argument,
with an arbitrary fixed y, does not work because R might know y in which case R can easily
go look up the answers to LA

1 in the yth column. We must choose y so as to “hide” the
answers from R. Restricting the number of queries R can make to B is essential for this: If
R can make n queries then M can easily let R know what y is by explicitly writing y over and
over again in the truth table LA

2 , and R would have no trouble retrieving this information
from any B that has sufficient agreement with LA

2 . (Of course in Theorem 7.2, R can use
n, or any fixed polynomial, number of queries. But this is easily remedied by just adding
2poly(n) columns to the table A, with a high enough degree polynomial, so that we can hide
the answers from R. Henceforth we assume R only uses no(1) queries, so that we can stick

11Usually, locally decodable codes are defined in terms of flipped bits rather than erasures, but they are
equivalent up to small differences in parameters.

12The lower bound is only nearly exponential since the relative minimum distance and the advantage over
1/2 in correct decoding probability are subconstant in our case.
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with 2n columns.)
Suppose we could choose y so that for every x and every B : {0, 1}nd → {0, 1,⊥}, the

probability that RB,0(x) (where 0 denotes the all 0’s relativization oracle) queries a bit in
the yth column is at most 1/2nlogn. Then we would know that for every Z, every x, and
every B that is valid for LAZ

2 , the probability RB,0(x) outputs LAZ
1 (x) is within 1/2nlogn of

the probability RB,AZ (x) outputs LAZ
1 (x) and is hence at least 1/2 + 1/2nlogn. This would

suffice for a contradiction, because we could use RB,0 for the decoder. Actually this property
of y is more than we really need. If we replace “every x” with “most x” then we could just
remove the bad x’s from consideration, at a small loss in the information word length, and
we would still get a contradiction. Now to find such a y, we use the fact that quantifying
over all B is the same as quantifying over all paths of adaptivity in R’s access to B, and
there are a limited number of such paths. Specifically, for every x and every r there are only
a small number of columns of the relativization oracle that get queried by R◦,0

r (x) over all
possible reduction oracles (namely, at most the running time of R times 3 to the number
of reduction oracle queries). By an averaging argument, there is some y such that for most
x’s, all but a 1/2nlogn fraction of r’s are such that RB,0

r (x) does not query any bit in the yth

column, for any B. This is good enough for our purpose.
The bottom line is that there are basically only two ways M could help R solve LA

1 :
by telling R the answers, or by telling R where to find the answers in A. The former is
impossible because then we would have an error-correcting code that is too good to be true,
and the latter is impossible because R cannot make enough queries to B to retrieve the
identity of y.

7.4 Generic Setup for the Formal Proofs

We first need the following complicated-looking lemma, which just says that in all three
of our theorems, we can assume without loss of generality that on inputs of length n, any
candidate reduction only queries the reduction oracle on inputs of length nd and only with
δ = 1/nd for some positive integer d.

Lemma 7.9. For every polynomial-time randomized reduction R◦,◦ (where the reduction or-
acle is of the form {0, 1}∗ × R>0 → {0, 1,⊥}) there exists a polynomial-time randomized
reduction R◦,◦

clean
and a positive integer d such that the following holds. For every polynomial-

time sampler S◦ there exists a polynomial-time sampler S◦
clean

, and for every uniform com-
plexity class of languages C and every i there exists an iclean, such that for every relativization
oracle A, the following properties all hold.

• If R◦,A is of type (
MA

i , D
A
)
∈ AvgZPPA ⇒ L ∈ BPPA

for some language L, where DA is the ensemble sampled by SA, then R◦,A
clean

is of type
(
MA

iclean
, DA

clean

)
∈ AvgZPPA ⇒ L ∈ BPPA

where DA
clean

is the ensemble sampled by SA
clean

.
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• On inputs of length n, Rclean only queries the reduction oracle on inputs of length nd

and only with δ = 1/nd.

• Rclean always makes the same number of queries to the reduction oracle as R does.

• If MA
i ∈ CA then MA

iclean
∈ CA.

Proof sketch. The basic idea is to take the answers to all the inputs to MA
i up to the longest

length R on inputs of length n could possibly query the reduction oracle, and put them in
some larger input length nd. Here d needs to be large enough that 1/nd times the longest
length R could query is less than the smallest value of δ that R could possibly query (which
is at least inverse polynomial). The reason for multiplying by the longest length is that an
error of 1/nd in the AvgZPP oracle could get amplified by this amount when restricted to any
particular input length that is stored “within” nd. The index iclean is just the j guaranteed
by Definition 7.8 for index i and the mapping reduction we just informally described.

We now describe the basic setup that is common to the proofs of all three theorems.
However, this setup will need to be customized a bit for each of the three proofs.

We have a uniform complexity class of languages C with enumeration {M1,M2, . . .}.
Consider an arbitrary triple i, S, R where i ∈ N, S is a polynomial-time sampler, and R is
a polynomial-time randomized reduction. Using Lemma 7.9 we can assume without loss of
generality that on inputs of length n, R only queries the reduction oracle on inputs of length
nd and only with δ = 1/nd for some positive integer d. For an arbitrary relativization oracle
A ⊆ {0, 1}∗ we make the following definitions. Let LA

1 denote the NPA language defined by

LA
1 =

{
x : ∃y such that |y| = |x| and xy ∈ A

}
.

If MA
i defines a language in CA then let LA

2 denote this language.13 Let DA denote the
PSampA ensemble defined by SA.

We wish to construct a relativization oracle A∗ so that LA∗

1 ∈ UPA∗

(by ensuring that in
the definition of LA∗

1 , y is always unique if it exists) and so that for all i, S, R, either MA∗

i

fails to define a language in CA∗
, or otherwise

Pr
rR,B

[
RB,A∗

rR
(x) = LA∗

1 (x)
]

< 2/3

for some x ∈ {0, 1}∗ and some randomized function B : {0, 1}∗ × R>0 → {0, 1,⊥} which is
a valid AvgZPP oracle for

(
LA∗

2 , DA∗)
, thereby ensuring that the reduction R◦,A∗

fails to be
of type (

LA∗

2 , DA∗) ⊆ AvgZPPA∗ ⇒ LA∗

1 ⊆ BPPA∗

.

We construct a sequence of relativization oracles by starting with ∅ and adding strings
and never taking them back out. We take A∗ to be the limit of this sequence. Throughout

13Technically MA
i equals the language LA

2 according to Definition 7.8, but the notation LA
2 is more conve-

nient for the proofs.
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the proofs, we simply refer to the “current” A with the understanding that this is the set of
strings that have been included so far. We diagonalize against each triple i, S, R in sequence.
After each round of diagonalization, we have the requirement that A∗ matches the current
A up through a certain input length, and we know that the current A contains no strings
longer than that length. Now consider an arbitrary round, and suppose i, S, R is the triple
to diagonalize against.

If there exists an A′ consistent with the requirements of previous rounds and such that
MA′

i fails to define a language in CA′
, say with x as the violating input, then we update A

to match A′ up through the largest input length MA′

i (x) can query, and we require that A∗

matches the new A up through this input length. This ensures that MA∗

i fails to define a
language in CA∗

, and we can move on to the next round.
Otherwise, we know that whatever we do to A, LA

2 will always be defined. Choose n
large enough so that the following three things hold.

• The relativization oracle is fresh for all input lengths ≥ n.

• The asymptotic constraints throughout the arguments are satisfied.

• The “relevant computations” all run in time nlogn without a big O.

The “relevant computations” include S on input nd, R on inputs of length n, and (depending
on the theorem) possibly the underlying computations of Mi on inputs of length nd. We
construct A at input length 2n to ensure that at the end of this round,

Pr
rR,B

[
RB,A

rR
(x) = LA

1 (x)
]

< 2/3

for some x ∈ {0, 1}n and some randomized function B : {0, 1}nd → {0, 1,⊥} which is a
valid AvgZPP oracle for

(
LA
2 , D

A
)
at input length nd with respect to δ = 1/nd. Note that

it makes sense to run RB,A(x) since this computation only queries B on inputs of length nd

and only with δ = 1/nd (so we are justified in omitting the δ). This suffices to diagonalize
against i, S, R because we can require that A∗ matches the new A up through input length
nlogn and up through the longest input length Mi can query on inputs of length nd, thus
ensuring the following three things.

• LA∗

1 (x) = LA
1 (x).

• RB,A∗
(x) behaves the same as RB,A(x).

• LA∗

2 |nd = LA
2 |nd and DA∗

nd = DA
nd, which implies that B is a valid AvgZPP oracle for(

LA∗

2 , DA∗)
at input length nd with respect to δ = 1/nd and can thus be extended to

a full valid AvgZPP oracle for
(
LA∗

2 , DA∗)
without changing the behavior of RB,A∗

(x).
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7.5 Proof of Theorem 7.1

We use the setup from Section 7.4, customized as follows. We have C = BPPNP
‖ , and

Mi corresponds to a pair M,N where M is a BPP◦
‖-type algorithm and N is an NP-type

algorithm. Thus LA
2 is the

(
BPPNP

‖
)A

language computed by MLA
3 ,A where LA

3 denotes the

NPA language computed by NA. Also, M on inputs of length nd, as well as N on all inputs
that could be queried by M on inputs of length nd, count as “relevant computations” and
thus all run in time nlogn without a big O.

Assume without loss of generality that for some positive integer e, M on inputs of length

nd always makes exactly ne queries to its first oracle, and let M
LA
3 ,A

rM (w)j ∈ {0, 1}∗ denote
the jth of these queries when the input is w and the randomness is rM .

7.5.1 Main Construction

Recall that M,N, S,R, n are fixed. For all relativization oracles A (not just the one we have
constructed so far) we define the potential

ΦA = E
rS ,rM ,j

[
1− LA

3

(
MLA

3 ,A
rM

(
SA
rS
(nd)

)
j

)]

where j ∈ {1, . . . , ne} is chosen uniformly at random. The construction has two stages.

Stage 1. This stage proceeds in iterations. For a given iteration, let A denote the current
relativization oracle after the previous iteration. If there exist x ∈ {0, 1}n and y ∈ {0, 1}n
such that x 6∈ LA

1 and ΦA∪{xy} ≤ ΦA − 1/n3 logn then update A := A ∪ {xy} and continue
with the next iteration. Otherwise, halt stage 1 and proceed to stage 2.

The following lemma is the technical heart of the proof of Theorem 7.1. We first finish
the proof of Theorem 7.1 assuming the lemma, and then we prove the lemma in Section 7.5.2.

Lemma 7.10. At the end of stage 1, there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and for

all y ∈ {0, 1}n,

Pr
rS

[
L
A∪{xy}
2

(
SA
rS
(nd)

)
6= LA

2

(
SA
rS
(nd)

)]
≤ 1/8nd+logn (7.3)

and
Pr
rS

[
SA∪{xy}
rS

(nd) 6= SA
rS
(nd)

]
≤ 1/2nd. (7.4)

Stage 2. Let A denote the current relativization oracle at the end of stage 1, and let x be
as guaranteed by Lemma 7.10. Let Y ⊆ {0, 1}n be an arbitrary set of size 4nlogn. Define a
deterministic reduction oracle B : {0, 1}nd → {0, 1,⊥} by

B(w) =

{
LA
2 (w) if L

A∪{xy}
2 (w) = LA

2 (w) for all y ∈ Y

⊥ otherwise
.
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There are two cases.

Case 1. If
Pr
rR

[
RB,A

rR
(x) = 1

]
> 1/3

then we will use A for the relativization oracle at the beginning of the next round of diago-
nalization, without changing it. Since x 6∈ LA

1 , we have

Pr
rR

[
RB,A

rR
(x) = LA

1 (x)
]

< 2/3.

We just need to verify that B is a valid AvgZPP oracle for
(
LA
2 , D

A
)
at input length nd with

respect to δ = 1/nd. Obviously, B(w) always returns LA
2 (w) or ⊥, by our definition of B.

We have

Pr
w∼DA

nd

[
B(w) = ⊥

]
= Pr

rS

[
B
(
SA
rS
(nd)

)
= ⊥

]

= Pr
rS

[
∃y ∈ Y such that L

A∪{xy}
2

(
SA
rS
(nd)

)
6= LA

2

(
SA
rS
(nd)

)]

≤
∑

y∈Y
Pr
rS

[
L
A∪{xy}
2

(
SA
rS
(nd)

)
6= LA

2

(
SA
rS
(nd)

)]

≤
∑

y∈Y
1/8nd+logn

= |Y | · 1/8nd+logn

= 1/2nd

≤ 1/nd = δ

where the fourth line follows by Lemma 7.10. Thus we have succeeded in diagonalizing
against M,N, S,R as described at the end of Section 7.4.

Case 2. If
Pr
rR

[
RB,A

rR
(x) = 1

]
≤ 1/3

then for each y ∈ Y we define

πy = Pr
rR

[
RB,A

rR
(x) queries A(xy)

]
.

Since RB,A(x) runs in time nlogn, we have
∑

y∈Y πy ≤ nlogn. Thus there exists a y ∈ Y

such that πy ≤ nlogn/|Y | = 1/4. Fix this y. We will update the relativization oracle to be

A ∪ {xy} for the end of this round of diagonalization. Since x ∈ L
A∪{xy}
1 , we have

Pr
rR

[
RB,A∪{xy}

rR
(x) = L

A∪{xy}
1 (x)

]
≤ Pr

rR

[
RB,A

rR
(x) = 1 or RB,A∪{xy}

rR
(x) 6= RB,A

rR
(x)

]

≤ Pr
rR

[
RB,A

rR
(x) = 1 or RB,A

rR
(x) queries A(xy)

]
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≤ Pr
rR

[
RB,A

rR
(x) = 1

]
+ πy

≤ 1/3 + 1/4

< 2/3.

We just need to verify that B is a valid AvgZPP oracle for
(
L
A∪{xy}
2 , DA∪{xy}) at input

length nd with respect to δ = 1/nd. Since y ∈ Y , we have that for all w, if B(w) 6= ⊥ then

B(w) = LA
2 (w) = L

A∪{xy}
2 (w), by our definition of B. We also have

Pr
w∼D

A∪{xy}

nd

[
B(w) = ⊥

]
= Pr

rS

[
B
(
SA∪{xy}
rS

(nd)
)
= ⊥

]

≤ Pr
rS

[
B
(
SA
rS
(nd)

)
= ⊥ or SA∪{xy}

rS
(nd) 6= SA

rS
(nd)

]

≤ Pr
rS

[
B
(
SA
rS
(nd)

)
= ⊥

]
+ Pr

rS

[
SA∪{xy}
rS

(nd) 6= SA
rS
(nd)

]

≤ 1/2nd + 1/2nd

= 1/nd = δ

where the fourth line follows by the calculation from case 1 and by Lemma 7.10. Thus we
have succeeded in diagonalizing against M,N, S,R as described at the end of Section 7.4.

7.5.2 Proof of Lemma 7.10

For all A (not just the one we have constructed so far) and all rS, rM , j, let us define

ΦA
rS ,rM ,j = 1− LA

3

(
MLA

3 ,A
rM

(
SA
rS
(nd)

)
j

)

and
ΦA

rS ,rM
= E

j

[
ΦA

rS ,rM ,j

]

so that ΦA = ErS ,rM

[
ΦA

rS ,rM

]
. We always have 0 ≤ ΦA ≤ 1.

From here on out, A denotes the current relativization oracle at the end of stage 1. Since
there are at most n3 logn iterations before stage 1 terminates, we have

Pr
x∈{0,1}n

[
x ∈ LA

1

]
≤ n3 logn/2n

where x is chosen uniformly at random. For x ∈ {0, 1}n define

px = Pr
rS ,rM

[
∃y ∈ {0, 1}n such that MLA

3 ,A
rM

(
SA
rS
(nd)

)
queries A(xy)

]
.

Since MLA
3 ,A(w) runs in time nlog n for all w ∈ {0, 1}nd

, we have
∑

x px ≤ nlogn and thus

Pr
x∈{0,1}n

[
px > 1/n3 logn

]
< n4 logn/2n.
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For every v ∈ LA
3 pick an arbitrary accepting computation path of NA(v) to be the “desig-

nated” path. For x ∈ {0, 1}n define

qx = Pr
rS ,rM ,j

[
MLA

3 ,A
rM

(
SA
rS
(nd)

)
j
∈ LA

3 and ∃y ∈ {0, 1}n such that

NA
(
MLA

3 ,A
rM

(
SA
rS
(nd)

)
j

)
queries A(xy) on the designated path

]

where j is chosen uniformly at random. Since NA(v) runs in time nlogn for every v of interest,
we have

∑
x qx ≤ nlogn and thus

Pr
x∈{0,1}n

[
qx > 1/n4 logn

]
< n5 logn/2n.

For x ∈ {0, 1}n define

sx = Pr
rS

[
∃y ∈ {0, 1}n such that SA

rS
(nd) queries A(xy)

]
.

Since SA(nd) runs in time nlogn, we have
∑

x sx ≤ nlog n and thus

Pr
x∈{0,1}n

[
sx > 1/n3 logn

]
< n4 logn/2n.

By a union bound we find that

Pr
x∈{0,1}n

[
x 6∈ LA

1 and px ≤ 1/n3 logn and qx ≤ 1/n4 logn and sx ≤ 1/n3 logn
]

> 1−
(
n3 logn/2n

)
−

(
n4 logn/2n

)
−

(
n5 logn/2n

)
−
(
n4 logn/2n

)

> 0.

Thus there exists an x ∈ {0, 1}n such that x 6∈ LA
1 and px ≤ 1/n3 logn and qx ≤ 1/n4 logn

and sx ≤ 1/n3 logn. Fix this x. We claim that this x satisfies the conditions of Lemma 7.10.
Suppose for contradiction that there exists a y ∈ {0, 1}n such that either Inequality (7.3) does
not hold or Inequality (7.4) does not hold. Fix this y. We claim that ΦA∪{xy} ≤ ΦA−1/n3 logn,
thus contradicting the fact that stage 1 halted. Henceforth we let A′ denote A ∪ {xy}. We
partition the joint sample space of S’s internal randomness and M ’s internal randomness
into five events.

E1 =
{
(rS, rM) : SA′

rS
(nd) 6= SA

rS
(nd)

}

E2 =
{
(rS, rM) : (rS, rM) 6∈ E1 and MLA

3 ,A
rM

(
SA
rS
(nd)

)
queries A(xy)

}

E3 =
{
(rS, rM) : (rS, rM) 6∈ E1 ∪ E2 and ∃j such that MLA

3 ,A
rM

(
SA
rS
(nd)

)
j
∈ LA

3 \LA′

3

}

E4 =
{
(rS, rM) : (rS, rM) 6∈ E1 ∪ E2 ∪ E3 and ∃j such that MLA

3 ,A
rM

(
SA
rS
(nd)

)
j
∈ LA′

3 \LA
3

}

E5 =
{
(rS, rM) : (rS, rM) 6∈ E1 ∪ E2 ∪ E3 ∪ E4

}
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Claim 7.11. PrrS ,rM
[
(rS, rM) ∈ E1

]
≤ 1/n3 logn and for all (rS, rM) ∈ E1, Φ

A′

rS ,rM
−ΦA

rS ,rM
≤

1.

Claim 7.12. PrrS ,rM
[
(rS, rM) ∈ E2

]
≤ 1/n3 logn and for all (rS, rM) ∈ E2, Φ

A′

rS ,rM
−ΦA

rS ,rM
≤

1.

Claim 7.13. PrrS ,rM
[
(rS, rM) ∈ E3

]
≤ 1/n3 logn and for all (rS, rM) ∈ E3, Φ

A′

rS ,rM
−ΦA

rS ,rM
≤

1.

Claim 7.14. PrrS ,rM
[
(rS, rM) ∈ E4

]
≥ 1/n2 logn and for all (rS, rM) ∈ E4, Φ

A′

rS ,rM
−ΦA

rS ,rM
≤

−1/ne.

Claim 7.15. PrrS ,rM
[
(rS, rM) ∈ E5

]
≤ 1 and for all (rS, rM) ∈ E5, Φ

A′

rS ,rM
− ΦA

rS ,rM
≤ 0.

From these five claims it follows that

ΦA′ − ΦA = E
rS ,rM

[
ΦA′

rS ,rM
− ΦA

rS ,rM

]

=

5∑

k=1

E
rS ,rM

[
ΦA′

rS ,rM
− ΦA

rS ,rM

∣∣∣ (rS, rM) ∈ Ek

]
· Pr
rS ,rM

[
(rS, rM) ∈ Ek

]

≤ 1/n3 logn + 1/n3 logn + 1/n3 logn − 1/ne+2 logn

≤ − 1/n3 logn

which is what we wanted to show.

Proof of Claim 7.11. The first assertion follows because

Pr
rS ,rM

[
(rS, rM) ∈ E1

]
≤ Pr

rS

[
SA
rS
(nd) queries A(xy)

]
≤ sx ≤ 1/n3 logn.

The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.

Proof of Claim 7.12. The first assertion follows because

Pr
rS ,rM

[
(rS, rM) ∈ E2

]
≤ Pr

rS ,rM

[
MLA

3 ,A
rM

(
SA
rS
(nd)

)
queries A(xy)

]
≤ px ≤ 1/n3 logn.

The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and ΦA

rS ,rM
≥ 0.

Proof of Claim 7.13. The first assertion follows because

Pr
rS ,rM

[
(rS, rM) ∈ E3

]

≤ Pr
rS ,rM

[
∃j such that MLA

3 ,A
rM

(
SA
rS
(nd)

)
j
∈ LA

3 \LA′

3

]
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≤ Pr
rS ,rM

[
∃j such that M

LA
3 ,A

rM

(
SA
rS
(nd)

)
j
∈ LA

3 and

NA
(
M

LA
3 ,A

rM

(
SA
rS
(nd)

)
j

)
queries A(xy) on the designated path

]

≤ ne · qx
≤ 1/n3 logn

where the second-to-last line follows using a union bound and the last line follows because
qx ≤ 1/n4 logn. The second assertion follows trivially from the fact that ΦA′

rS ,rM
≤ 1 and

ΦA
rS ,rM

≥ 0.

Proof of Claim 7.14. This is, in some sense, the crux of the whole proof. Since 1/n3 logn ≤
1/2nd, Claim 7.11 implies that Inequality (7.4) holds and therefore Inequality (7.3) does not
hold. We claim that if (rS, rM) 6∈ E1 ∪ E2 ∪ E3 ∪ E4 then

MLA′

3 ,A′

rM

(
SA
rS
(nd)

)
= MLA

3 ,A
rM

(
SA
rS
(nd)

)
.

This is because every query M
LA
3 ,A

rM

(
SA
rS
(nd)

)
makes to its second oracle has the same answer

under A′ and A, and every query it makes to its first oracle has the same answer under LA′

3

and LA
3 . Thus the computations M

LA′

3 ,A′

rM

(
SA
rS
(nd)

)
and M

LA
3 ,A

rM

(
SA
rS
(nd)

)
proceed identically,

making the same queries and receiving the same answers, and hence they produce the same
output. The first assertion now follows because

Pr
rS ,rM

[
(rS, rM) ∈ E4

]

≥ Pr
rS ,rM

[
(rS, rM) 6∈ E1 ∪ E2 ∪ E3 and MLA′

3 ,A′

rM

(
SA
rS
(nd)

)
6= MLA

3 ,A
rM

(
SA
rS
(nd)

)]

≥ Pr
rS ,rM

[
MLA′

3 ,A′

rM

(
SA
rS
(nd)

)
6= MLA

3 ,A
rM

(
SA
rS
(nd)

)]
−

3∑

k=1

Pr
rS ,rM

[
(rS, rM) ∈ Ek

]

≥ Pr
rS

[
LA′

2

(
SA
rS
(nd)

)
6= LA

2

(
SA
rS
(nd)

)]
/3−

3∑

k=1

Pr
rS ,rM

[
(rS, rM) ∈ Ek

]

> 1/24nd+logn − 1/n3 logn − 1/n3 logn − 1/n3 logn

≥ 1/n2 logn

where the third line follows by a union bound and the second-to-last line follows by the
negation of Inequality (7.3) and by Claim 7.11, Claim 7.12, and Claim 7.13.

We now argue the second assertion. Since (rS, rM) 6∈ E1, we have S
A′

rS
(nd) = SA

rS
(nd). Let

w denote this string. Since (rS, rM) 6∈ E1 ∪ E2, we have

MLA′

3 ,A′

rM
(w)j = MLA

3 ,A
rM

(w)j
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for all j. Let vj denote these strings, and note that ΦA′

rS ,rM ,j = 1 − LA′

3 (vj) and ΦA
rS ,rM ,j =

1 − LA
3 (vj). Since (rS, rM) 6∈ E3, we have ΦA′

rS ,rM ,j ≤ ΦA
rS ,rM ,j for all j. By the definition of

E4, we have ΦA′

rS ,rM ,j = 0 and ΦA
rS ,rM ,j = 1 for some j. Therefore,

ΦA′

rS ,rM
− ΦA

rS ,rM
=

1

ne

∑

j

(
ΦA′

rS ,rM ,j − ΦA
rS ,rM ,j

)
≤ − 1/ne.

Proof of Claim 7.15. The first assertion is trivial. We now argue the second assertion. In
the proof of Claim 7.14 we argued that if (rS, rM) 6∈ E1∪E2∪E3∪E4 then the computations

M
LA′

3 ,A′

rM

(
SA′

rS
(nd)

)
and M

LA
3 ,A

rM

(
SA
rS
(nd)

)
proceed identically, making the same queries and

receiving the same answers. In particular, ΦA′

rS ,rM ,j = ΦA
rS ,rM ,j for all j, which implies that

ΦA′

rS ,rM
= ΦA

rS ,rM
.

7.6 Proof of Theorem 7.2

Fix a polynomial q. We use the setup from Section 7.4, customized as follows. We have
C = PH, and Mi corresponds to a PH-type algorithm M . We redefine

LA
1 =

{
x : ∃y such that |y| = |x|+ 2q(|x|) and xy ∈ A

}

using |y| = |x| + 2q(|x|) instead of |y| = |x|, and thus we need to construct A at input
length 2n + 2q(n) rather than 2n. We only diagonalize against reductions R that use at
most q queries to the reduction oracle. Also, M on inputs of length nd counts as “relevant
computations” and thus runs in time nlogn without a big O. For the reason discussed at the
end of Section 7.2.3, we have the stronger requirement that at the end of this round,

Pr
rR,B

[
RB,A

rR
(x) = LA

1 (x)
]

< 1/2 + 1/nlogn

with 1/2 + 1/nlogn instead of 2/3. Finally, note that it can never be the case that MA fails
to define a language in PHA, since PH is a syntactically defined class.

We generalize the notion of a reduction oracle: If B : {0, 1}nd → {0, 1,⊥}N is a determinis-
tic function then running RB,A

rR
(x) means that for each w, the ith time the computation queries

B(w) it gets B(w)(i) as a response. Thus a randomized function B : {0, 1}nd → {0, 1,⊥} is
a distribution over such deterministic functions, where each B(w)(i) is independent and the
distribution of B(w)(i) depends only on w and not on i.

7.6.1 Main Construction

Recall that M,S,R, n are fixed. Let A denote the current relativization oracle at the begin-
ning of this round. For x ∈ {0, 1}n and y ∈ {0, 1}n+2q(n) define

px,y = Pr
rR

[
∃B : {0, 1}nd → {0, 1,⊥}N and ∃x′ ∈ {0, 1}n such that RB,A

rR
(x) queries A(x′y)

]
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and
py = E

x∈{0,1}n

[
px,y

]

where x is chosen uniformly at random. For each x ∈ {0, 1}n and rR, the computation
RB,A

rR
(x) has at most 3q(n) computation paths over the possible responses it could get from

B (recall that A is fixed). On each of these computation paths, RB,A
rR

(x) can query at

most nlogn bits of A since it runs in time nlogn. Thus there are at most nlogn3q(n) pairs
(x′, y) ∈ {0, 1}n × {0, 1}n+2q(n) for which there exists a B : {0, 1}nd → {0, 1,⊥}N such that
RB,A

rR
(x) queries A(x′y). It follows that

∑
y py ≤ nlog n3q(n) and thus

Pr
y∈{0,1}n+2q(n)

[
py > 1/2nlogn

]
< 2n2 logn3q(n)/2n+2q(n)

where y is chosen uniformly at random. For y ∈ {0, 1}n+2q(n) define

sy = Pr
rS

[
∃x′ ∈ {0, 1}n such that SA

rS
(nd) queries A(x′y)

]
.

Since SA(nd) runs in time nlogn, we have
∑

y sy ≤ nlogn and thus

Pr
y∈{0,1}n+2q(n)

[
sy > 1/2nd

]
< 2nd+logn/2n+2q(n).

By a union bound we find that

Pr
y∈{0,1}n+2q(n)

[
py ≤ 1/2nlogn and sy ≤ 1/2nd

]

> 1−
(
2n2 logn3q(n)/2n+2q(n)

)
−
(
2nd+logn/2n+2q(n)

)

> 0.

Thus there exists a y ∈ {0, 1}n+2q(n) such that py ≤ 1/2nlogn and sy ≤ 1/2nd. Fix this y.
Now

Pr
x∈{0,1}n

[
px,y ≥ 1/nlogn

]
≤ 1/2

and thus there exists a set X ⊆ {0, 1}n of size |X| = 2n−1 such that for all x ∈ X , px,y <
1/nlogn. To prove the theorem, it suffices to show that there exists a Z ⊆

{
xy : x ∈ X

}
, an

x ∈ X , and a randomized function B : {0, 1}nd → {0, 1,⊥} which is a valid AvgZPP oracle
for

(
LA∪Z
2 , DA∪Z) at input length nd with respect to δ = 1/nd, such that

Pr
rR,B

[
RB,A∪Z

rR
(x) = LA∪Z

1 (x)
]

< 1/2 + 1/nlogn

because we can then update the relativization oracle to be A ∪ Z for the end of this round.
Suppose for contradiction that this does not hold. We can assume that rS is sampled

uniformly at random from {0, 1}nlogn
when S is run on input nd. Define an error-correcting

code
C : {0, 1}2n−1 → {0, 1}2n

log n

133



as follows, where the information word is viewed as a subset Z ⊆
{
xy : x ∈ X

}
and the

code word is viewed as a function C(Z) : {0, 1}nlogn → {0, 1}.

C(Z)(rS) = LA∪Z
2

(
SA
rS
(nd)

)

Claim 7.16. The relative minimum distance of C is > 1/2nd.

We prove Claim 7.16 shortly. Let k denote the number of quantifiers M uses, and recall
that M runs in time nlog n on inputs of length nd. Since each bit of C(Z) corresponds to
running MA∪Z on a fixed input of length nd, each bit of C(Z) is computable by a circuit
of depth k and size 2n

log n
where each input to the circuit is the output of a deterministic

computation running in time nlogn with oracle access to A∪Z. Since A is fixed, each of the
inputs to this circuit is computable by a DNF with top fan-in 2n

log n
and bottom fan-in nlogn

whose inputs correspond to strings in
{
xy : x ∈ X

}
, that is, coordinates of the information

word.
The bottom line is that there exists a binary error-correcting code with information word

length 2n−1 and relative minimum distance > 1/2nd such that each bit of the code word is
computable by a circuit of depth k + 2 and size 22n

log n
nlogn. This contradicts the following

result of Viola.

Theorem 7.17 ([257]). If there exists a binary error-correcting code with information word
length ν and relative minimum distance γ such that each bit of the code word is computable
by a circuit of depth κ and size σ, then νγ ≤ O(logκ−1 σ).

Theorem 7.17 holds regardless of the rate of the code.

Proof of Claim 7.16. In Figure 7.1 we exhibit a decoder that can handle up to a 1/2nd

fraction of erasures. For an arbitrary Z ⊆
{
xy : x ∈ X

}
, assume that C ′ agrees with C(Z)

on at least a 1 − 1/2nd fraction of rS’s and outputs ⊥ on the rest. Then we just need to
show that Z ′ = Z. We do this by showing that for an arbitrary x ∈ X ,

Pr
rR,B

[
RB,A

rR
(x) = LA∪Z

1 (x)
]

> 1/2

which implies that xy ∈ Z ′ if and only if x ∈ LA∪Z
1 if and only if xy ∈ Z.

We start by showing that B is a valid AvgZPP oracle for
(
LA∪Z
2 , DA∪Z) at input length

nd with respect to δ = 1/nd. We have that B(w) always equals LA∪Z
2 (w) or ⊥, since if rS is

such that SA
rS
(nd) = w and C ′(rS) 6= ⊥ then

C ′(rS) = C(Z)(rS) = LA∪Z
2

(
SA
rS
(nd)

)
= LA∪Z

2 (w).

We have

Pr
rS ,B

[
B
(
SA
rS
(nd)

)
= ⊥

]
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• Input: C ′ : {0, 1}nlogn → {0, 1,⊥}

• Output: Z ′ ⊆
{
xy : x ∈ X

}
given by

Z ′ =
{
xy : Pr

rR,B

[
RB,A

rR
(x) = 1

]
> 1/2

}

where the randomized function B : {0, 1}nd → {0, 1,⊥} is defined by

Pr
B

[
B(w) = b

]
= Pr

rS

[
C ′(rS) = b

∣∣∣ SA
rS
(nd) = w

]

if
Pr
rS

[
SA
rS
(nd) = w

]
> 0

and otherwise
Pr
B

[
B(w) = ⊥

]
= 1

Figure 7.1: Decoder for Claim 7.16

=
∑

w∈{0,1}nd

Pr
rS ,B

[
B
(
SA
rS
(nd)

)
= ⊥

∣∣∣ SA
rS
(nd) = w

]
· Pr
rS ,B

[
SA
rS
(nd) = w

]

=
∑

w∈{0,1}nd

Pr
B

[
B(w) = ⊥

]
· Pr
rS

[
SA
rS
(nd) = w

]

=
∑

w∈{0,1}nd

Pr
rS

[
C ′(rS) = ⊥

∣∣∣ SA
rS
(nd) = w

]
· Pr
rS

[
SA
rS
(nd) = w

]

= Pr
rS

[
C ′(rS) = ⊥

]

≤ 1/2nd

and

Pr
rS

[
SA∪Z
rS

(nd) 6= SA
rS
(nd)

]
≤ Pr

rS

[
∃z ∈ Z such that SA

rS
(nd) queries A(z)

]
≤ sy ≤ 1/2nd

and thus

Pr
w∼DA∪Z ,B

[
B(w) = ⊥

]
= Pr

rS ,B

[
B
(
SA∪Z
rS

(nd)
)
= ⊥

]

≤ Pr
rS ,B

[
B
(
SA
rS
(nd)

)
= ⊥ or SA∪Z

rS
(nd) 6= SA

rS
(nd)

]

≤ Pr
rS ,B

[
B
(
SA
rS
(nd)

)
= ⊥

]
+ Pr

rS

[
SA∪Z
rS

(nd) 6= SA
rS
(nd)

]
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≤ 1/2nd + 1/2nd

= 1/nd = δ.

Now we have

Pr
rR,B

[
RB,A∪Z

rR
(x) 6= RB,A

rR
(x)

]
≤ E

B

[
Pr
rR

[
∃z ∈ Z such that RB,A

rR
(x) queries A(z)

]]

≤ E
B

[
px,y

]

= px,y

< 1/nlogn

and thus

Pr
rR,B

[
RB,A

rR
(x) = LA∪Z

1 (x)
]

≥ Pr
rR,B

[
RB,A∪Z

rR
(x) = LA∪Z

1 (x) and RB,A∪Z
rR

(x) = RB,A
rR

(x)
]

≥ Pr
rR,B

[
RB,A∪Z

rR
(x) = LA∪Z

1 (x)
]
− Pr

rR,B

[
RB,A∪Z

rR
(x) 6= RB,A

rR
(x)

]

>
(
1/2 + 1/nlogn

)
− 1/nlogn

= 1/2

where the third line follows by our contradiction assumption.

7.7 Proof of Theorem 7.3

We use the setup from Section 7.4, customized as follows. We only diagonalize against
reductions R that use at most 2 queries to the reduction oracle. For the reason discussed at
the end of Section 7.2.3, we have the stronger requirement that at the end of this round,

Pr
rR,B

[
RB,A

rR
(x) = LA

1 (x)
]

< 1/2 + 1/nlogn

with 1/2 + 1/nlogn instead of 2/3. The proof is so similar to the proof of Theorem 7.2 that
we just sketch how it plays out. We can work with |y| = n (rather than |y| = n + 2q(n) as
in the proof of Theorem 7.2).

7.7.1 Main Construction

Recall that Mi, S, R, n are fixed. Let A denote the current relativization oracle at the begin-
ning of this round. There exists a y ∈ {0, 1}n such that py ≤ 1/4nlogn and sy ≤ 1/2nd, and
there exists a set X ⊆ {0, 1}n of size |X| = 2n−1 such that for all x ∈ X , px,y ≤ 1/2nlogn.
Then there exists a Z ⊆

{
xy : x ∈ X

}
, an x ∈ X , and a randomized function

B : {0, 1}nd → {0, 1,⊥} which is a valid AvgZPP oracle for
(
LA∪Z
2 , DA∪Z) at input length

nd with respect to δ = 1/nd, such that

Pr
rR,B

[
RB,A∪Z

rR
(x) = LA∪Z

1 (x)
]

< 1/2 + 1/nlogn
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since otherwise we can extract an error-correcting code

C : {0, 1}2n−1 → {0, 1}2n
log n

with the following properties. There is a randomized decoder that can handle up to a 1/2nd

fraction of erasures, and it recovers any bit of the information word with probability at least

(
1/2 + 1/nlogn

)
− 1/2nlogn = 1/2 + 1/2nlogn.

To recover any bit, the decoder runs RB,A(x) for some x ∈ {0, 1}n and some randomized
function B. Since R makes at most 2 queries to B, and since each query to B can be
answered with at most 1 query to the corrupted code word C ′, the decoder makes at most
2 queries to C ′.

The bottom line is that there exists a binary error-correcting code with information word
length 2n−1 and code word length 2n

logn
and a decoder that uses 2 queries to recover any

bit of the information word with probability at least 1/2 + 1/2nlogn when at most a 1/2nd

fraction of the code word bits are erased. This contradicts the following result of Kerenidis
and de Wolf.

Theorem 7.18 ([158]). If there exists a binary error-correcting code with information word
length ν and code word length µ and a decoder that uses 2 queries to recover any bit of the
information word with probability at least 1/2+ ǫ when at most a γ fraction of the code word
bits are erased, then µ ≥ 2Ω(γǫ3ν).

Remarkably, the proof of Theorem 7.18 is based on quantum information theory. Kereni-
dis and de Wolf proved the stronger bound µ ≥ 2Ω(γǫ2ν) assuming that the decoder is guar-
anteed to work even if a γ fraction of the code word bits are flipped rather than just erased.
The extra ǫ in the exponent in Theorem 7.18 grossly accounts for the generalization from
flips to erasures. It may be possible to prove the stronger bound for erasure decoders, but
Theorem 7.18 as stated is already good enough for our purpose.

The complexity of Mi is immaterial because Theorem 7.18 holds without any constraints
on the efficiency of the encoder.
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Chapter 8

Query Complexity in Errorless
Hardness Amplification

8.1 Introduction

Traditionally, an algorithm for solving a computational problem is required to be correct on
all inputs and is judged in terms of its efficiency (the amount of computational resources
it uses). One criticism of this model is that it is too strict: In practice, an algorithm only
needs to be correct on “real-world” inputs and not on contrived worst-case inputs. To address
this issue within the framework of complexity theory, researchers developed the theory of
average-case complexity (starting with the work of Levin [165]). In this theory, an algorithm
is judged in terms of both its efficiency and the fraction of inputs on which it fails to solve the
problem correctly. The topic of this chapter is the relationship between these two measures
of the quality of an algorithm.

There are two standard settings for average-case complexity. In the original setting
proposed by Levin [165], one only considers errorless algorithms, which are required to
output the correct answer or “don’t know” on each input.1 An errorless algorithm is judged
in terms of both its efficiency and the fraction of inputs on which it outputs “don’t know”. We
refer to this setting as errorless average-case complexity. In the other setting, one considers
arbitrary algorithms which may output the wrong answer rather than just “don’t know” on
an input. We refer to this setting as non-errorless average-case complexity. Errorless average-
case complexity is an intermediate setting between worst-case complexity and non-errorless
average-case complexity.

We first discuss non-errorless average-case complexity. A boolean function is said to
be mildly average-case hard if no efficient algorithm can compute it on almost all inputs.
Applications such as derandomization and cryptography require functions that are strongly
average-case hard, meaning that no efficient algorithm can compute the function on notice-

1Actually, Levin proposed considering algorithms that are correct on all inputs but which are efficient
“on average” with respect to a random input. Under a suitable formalization, such algorithms are equivalent
to errorless algorithms that may fail on a small fraction of inputs but are efficient on all inputs.
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ably more than half the inputs. This motivates hardness amplification, which is the problem
of transforming a mildly average-case hard function into a strongly average-case hard func-
tion. A classic result in this area is the XOR Lemma [166, 133, 102, 144], which states that
the XOR of sufficiently many independent copies of a mildly average-case hard function is
strongly average-case hard, provided the model of efficient algorithms is small circuits.

However, the XOR Lemma (as well as the numerous subsequent results on hardness
amplification) incurs an unfortunate loss in circuit size. Suppose the original function f is
mildly average-case hard in the sense that no size s circuit succeeds on at least a 1−δ fraction
of inputs, and we wish for the new function f ′ to be strongly average-case hard in the sense
that no size s′ circuit succeeds on at least a 1/2 + ǫ fraction of inputs. Then we would
like s′ to be as large as possible, but the XOR Lemma requires that s′ is actually smaller
than s. This is because such results are proven by reductions which show that if f ′ is not
strongly average-case hard, then a circuit witnessing this could be used to construct a circuit
witnessing that f is not mildly average-case hard. If the reduction makes q queries to the
hypothesized circuit, then plugging in a size s′ circuit yields a circuit of size ≥ qs′, and thus
we must have s′ ≤ s/q. Hence the query complexity q governs the loss in circuit size. For
the XOR Lemma, the query complexity is well-understood. The proof due to Impagliazzo
[133] and Klivans and Servedio [161] shows that q = O

(
1
ǫ2
log 1

δ

)
queries are sufficient, and

Shaltiel and Viola [231] showed that in a certain sense, q = Ω
(

1
ǫ2
log 1

δ

)
queries are necessary.

Bogdanov and Safra [44] initiated the study of hardness amplification in Levin’s original
setting of errorless average-case complexity. A boolean function is said to be mildly errorless
average-case hard if no efficient errorless algorithm (say, size s circuit) can compute it on
almost all inputs (say, a 1−δ fraction). A function is said to be strongly errorless average-case
hard if no efficient errorless algorithm (say, size s′ circuit) can compute it on a noticeable
fraction of inputs (say, an ǫ fraction). Note that in the non-errorless setting, computing
a boolean function on half the inputs is trivial (using constant 0 or constant 1), but in
the errorless setting, computing a boolean function on even a small fraction of inputs is
nontrivial. The goal of errorless hardness amplification is to transform a mildly errorless
average-case hard function f into a strongly errorless average-case hard function f ′. Such
results suffer from a loss in circuit size for the same reason as in the non-errorless setting.
Bogdanov and Safra [44] showed that q = O

(
(1
δ
log 1

ǫ
)2 · 1

ǫ
log 1

δ

)
queries are sufficient when

f ′ is the XOR of several independent copies of f . The result of Shaltiel and Viola [231] can
be modified without difficulty to show that in a certain sense, q = Ω

(
1
ǫ
log 1

δ

)
queries are

necessary. We close the gap by showing that q = O
(
1
ǫ
log 1

δ

)
queries are sufficient.

Another natural goal for hardness amplification is to guarantee that if f represents an
NP language at some input length, then f ′ also represents an NP language at some input
length. In the non-errorless setting this goal has been studied in numerous works [203, 242,
132, 244, 55, 176, 108], and in the errorless setting this goal has been studied by Bogdanov
and Safra [44]. We significantly improve the query complexity of the Bogdanov-Safra result.
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8.1.1 The Errorless XOR Lemma

Given f : {0, 1}n → {0, 1} we define f⊕k : {0, 1}n×k → {0, 1} as follows: f⊕k(x1, . . . , xk) =
f(x1)⊕ · · · ⊕ f(xk).

2

Definition 8.1 (Errorless Average-Case Hardness). We say a circuit A : {0, 1}n →
{0, 1,⊥} is a δ-errorless circuit for f : {0, 1}n → {0, 1} if

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and

(ii) Prx[A(x) = ⊥] ≤ δ where x ∈ {0, 1}n is chosen uniformly at random.

We say f is (s, δ)-hard if it has no δ-errorless circuit of size ≤ s.

Theorem 8.2 (Query-Optimal Errorless XOR Lemma). If f is (s, δ)-hard then f ′ =
f⊕k is (s′, 1− ǫ)-hard where s′ = s/

(
4
ǫ
ln 2

δ

)
, provided k ≥ 16

δ
ln 2

ǫ
.

We prove Theorem 8.2 in Section 8.2.3 Bogdanov and Safra [44] proved a version of
Theorem 8.2 where s′ = s/

(
k2 · 2

ǫ
ln 2

δ

)
, provided k ≥ 2

δ
ln 2

ǫ
.4 Even for the best value of

k, they only achieve O
(
(1
δ
log 1

ǫ
)2 · 1

ǫ
log 1

δ

)
query complexity. Also, our bound on the query

complexity does not depend on k.
We prove Theorem 8.2 by a reduction similar to the one used in [44]. Our contribution is

a new, tight analysis of the reduction. The crux of the reduction is a randomized procedure
that solves f errorlessly (meaning that for each input x it may output f(x) with some
probability and ⊥ with some probability, but it never outputs f(x)) while making one query
to a hypothesized (1 − ǫ)-errorless circuit A′ for f ′. Suppose for some β > 0 we knew that
≤ δ/2 fraction of inputs x are bad in the sense that the probability the procedure outputs
f(x) is < β. Then by amplifying the success probability on the good inputs and hard-
wiring the randomness appropriately, we obtain a δ-errorless circuit A for f , via a reduction
with query complexity O

(
1
β
log 1

δ

)
. The heart of our improvement over the Bogdanov-Safra

proof is in arguing that we can take β = ǫ/4. To prove this, we suppose the fraction of
bad inputs is > δ/2 and prove that then A′ must compute f ′ on < ǫ fraction of inputs.
The procedure outputs f(x) if and only if the query is an input on which A′ computes f ′;
furthermore the distribution of this query (x1, . . . , xk) is obtained by setting xi = x for a
uniformly random i and picking x1, . . . , xi−1, xi+1, . . . , xk uniformly at random. Consider the
following two distributions on queries to A′: the uniform distribution, and the distribution
obtained by picking a random bad x and running the procedure on input x. We know A′

2In the terminology of Chapter 3, f⊕k is a combinatorial checkerboard where all the component functions
are f .

3In the statement of Theorem 8.2, it would be more accurate to say s′ = s/
(
4
ǫ ln

2
δ

)
− O(1) to account

for the trivial circuitry needed to combine the results of the 4
ǫ ln

2
δ queries the reduction makes. Throughout

this chapter, we ignore such details. We also ignore details arising from the fact that numbers such as 4
ǫ ln

2
δ

might not be integers.
4Actually, their proof gives s′ = s/

(
k2 · 2

ǫn
)
, provided k ≥ 1

δ ln
2
ǫ , but a minor tweak to their proof yields

the stated result.
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computes f ′ with probability < β = ǫ/4 under the latter distribution, and we wish to show
that A′ computes f ′ with probability < ǫ under the former. For this, we show the two
distributions are “close” in the sense that the probability of any event under the former is
less than twice the probability under the latter plus ǫ/2. The argument involves a dichotomy:
Since we assume a large fraction of x’s are bad, a uniform query is unlikely to have few bad
coordinates. Assuming there are many bad coordinates, we can essentially pretend there is
one bad coordinate and then argue that we have overcounted the probability by a lot. This
is the intuition for the ideas behind the proof of Theorem 8.2.

It can be shown that Ω
(
1
ǫ
log 1

δ

)
queries are needed by any nonadaptive black-box reduc-

tion achieving errorless hardness amplification, regardless of how f ′ is constructed from f (see
Section 8.1.3 for the precise statement). Since our proof of Theorem 8.2 (and the Bogdanov-
Safra proof) is by a nonadaptive black-box reduction, this shows that Theorem 8.2 is optimal
in a sense. Shaltiel and Viola [231] gave a general technique for lower bounding the query
complexity of nonadaptive black-box reductions, and they noted that their technique applies
to non-errorless hardness amplification (including the XOR Lemma and the Direct Product
Lemma) and to constructions of pseudorandom generators from average-case hard functions.
Similarly, we observe that their technique applies to errorless hardness amplification. Arte-
menko and Shaltiel [19] have proven a Ω

(
1
ǫ

)
query lower bound even for adaptive black-box

reductions. The optimal Ω
(
1
ǫ
log 1

δ

)
lower bound for adaptive reductions remains open.

8.1.2 Monotone Errorless Amplification

Consider the problem of errorless hardness amplification within NP. That is, if f is com-
putable in nondeterministic polynomial time, then we want f ′ to also be computable in
nondeterministic polynomial time. Taking f ′ = f⊕k does not guarantee this. We instead
consider more general constructions of the form f ′ = C ◦ fk where C : {0, 1}k → {0, 1}, and
fk : {0, 1}n×k → {0, 1}k is defined as fk(x1, . . . , xk) =

(
f(x1), . . . , f(xk)

)
. In the setting of

the XOR Lemma, the combiner function C is the k-bit parity function. If C is monotone
(that is, C(y1, . . . , yk) ≤ C(z1, . . . , zk) whenever yi ≤ zi for all i ∈ [k]) and f and C are both
computable in nondeterministic polynomial time, then f ′ is guaranteed to be computable in
nondeterministic polynomial time. This approach dates back to [203, 132].

Bogdanov and Safra [44] showed that this construction yields errorless hardness amplifi-
cation provided the monotone combiner function C satisfies a certain combinatorial property.
To describe this property, we need some definitions from [44] (though we use somewhat dif-
ferent notation). Fix b ∈ {0, 1}. Given a monotone function C : {0, 1}k → {0, 1} and a
string y ∈ {0, 1}k, we say that coordinate i ∈ [k] is b-sensitive if flipping the ith bit of y
causes the value of C to flip from b to b, and we let σ(C, y, b) denote the set of b-sensitive
coordinates. That is,

σ(C, y, b) =
{
i ∈ [k] : C(y) = b and C(y ⊕ ei) = b

}
.

Note that if C(y) = b then σ(C, y, b) = ∅ and if C(y) = b then by the monotonicity of C,
σ(C, y, b) only contains coordinates i such that yi = b. For p ∈ [0, 1], we use y ∼p {0, 1}k to
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denote that y is sampled from the p-biased distribution, that is, each bit is independently
set to 1 with probability p.

Definition 8.3. For b ∈ {0, 1}, a function C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier if
C is monotone and

Pr
y∼p{0,1}k

[∣∣σ(C, y, b)
∣∣ ≥ t

]
≥ 1− ρ.

Note that a monotone function C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier if and only
if its monotone complement C† : {0, 1}k → {0, 1} is a (t, ρ, 1 − p, b)-amplifier, where C† is
defined as

C†(y1, . . . , yk) = C(y1, . . . , yk).

For reasons discussed in [44], it is necessary to consider the following one-sided version
of Definition 8.1.

Definition 8.4 (One-Sided Errorless Average-Case Hardness). For b ∈ {0, 1}, we
say a circuit A : {0, 1}n → {0, 1,⊥} is a (δ, b)-errorless circuit for f : {0, 1}n → {0, 1}
if

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and

(ii) Prx[A(x) = ⊥] ≤ δ where x ∈ f−1(b) is chosen uniformly at random.

We say f is (s, δ, b)-hard if it has no (δ, b)-errorless circuit of size ≤ s.

Note that if f is (s, δ)-hard then f is either (s/2, δ, 0)-hard or (s/2, δ, 1)-hard.

Theorem 8.5 (Monotone Errorless Amplification Lemma). For b ∈ {0, 1}, if f is
(s, δ, b)-hard and C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier then f ′ = C ◦ fk is (s′, 1− ǫ)-
hard where s′ = s/

(
k
t
· 4
ǫ
ln 2

δ

)
, provided t ≥ 16

δ
ln 4

ǫ
, ρ ≤ ǫ/4, and p = Prx

[
f(x) = 1

]
.

We prove Theorem 8.5 in Section 8.3. Bogdanov and Safra [44] proved a version of Theo-
rem 8.5 where s′ = s/

(
k3 · 64

ǫ2
ln 2

δ

)
, provided t ≥ 4

δ
ln 8

ǫ
and ρ ≤ ǫ/2. Their argument involves

considering the subcubes of {0, 1}n×k given by fk(x1, . . . , xk) = y for each y individually
and then combining the results for the different subcubes using a nontrivial probabilistic
argument. We show how to give a direct argument that handles all the subcubes simulta-
neously. This idea alone actually simplifies the proof and reduces the query complexity to
O
(
k2 · 1

ǫ
log 1

δ

)
. Combining this idea with the ideas from our analysis in the proof of Theo-

rem 8.2 allows us to further reduce the query complexity to O
(
k
t
· 1
ǫ
log 1

δ

)
. We believe this

bound on the query complexity cannot be improved without exploiting some non-obvious
structural property of (t, ρ, p, b)-amplifiers; however, we could not come up with a compelling
way to formalize this.

Bogdanov and Safra [44] showed how to construct good amplifiers (with large t and small
ρ) and how to use Theorem 8.5 with these amplifiers to do uniform and nonuniform errorless
hardness amplification within NP.
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8.1.3 Black-Box Lower Bounds

We give lower bounds on the query complexity and advice complexity of black-box errorless
hardness amplification proofs. We allow ourselves to identify strings with functions; for
example, we identify {0, 1}2n with the set of all functions from {0, 1}n to {0, 1}.
Definition 8.6. An (n, n′, δ, ǫ, α)-black-box errorless hardness amplification is defined to

be a pair (Enc,Dec) with Enc : {0, 1}2n → {0, 1}2n
′

and Dec : {0, 1,⊥}2n
′

× {0, 1}α →
{0, 1,⊥}2n, such that for all f ∈ {0, 1}2n and A′ ∈ {0, 1,⊥}2n

′

there exists an a ∈ {0, 1}α
such that the following holds, where f ′ = Enc(f) and A = Dec(A′, a). If

(i) A′(x′) ∈ {f ′(x′),⊥} for all x′ ∈ {0, 1}n′
, and

(ii) Prx′[A′(x′) = ⊥] ≤ 1− ǫ,

then

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and

(ii) Prx[A(x) = ⊥] ≤ δ.

We say it is q-query if there is an algorithm that takes (x, a) as input, makes q (possibly
adaptive) queries to A′, and outputs A(x). We further say it is nonadaptive if the algorithm
makes its queries to A′ nonadaptively.

In fact, our lower bounds hold even for the following weaker type of reduction.

Definition 8.7. An (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplification

is defined to be a pair (Enc,Dec) with Enc : {0, 1}2n → {0, 1}2n
′

and Dec : {0, 1,⊥}2n
′

×
{0, 1}α → {0, 1}2n, such that for all f ∈ {0, 1}2n and A′ ∈ {0, 1,⊥}2n

′

there exists an
a ∈ {0, 1}α such that the following holds, where f ′ = Enc(f) and A = Dec(A′, a). If

(i) A′(x′) ∈ {f ′(x′),⊥} for all x′ ∈ {0, 1}n′
, and

(ii) Prx′[A′(x′) = ⊥] ≤ 1− ǫ,

then Prx[A(x) 6= f(x)] ≤ δ. We say it is q-query if there is an algorithm that takes (x, a)
as input, makes q (possibly adaptive) queries to A′, and outputs A(x). We further say it is
nonadaptive if the algorithm makes its queries to A′ nonadaptively.

In the proof of Theorem 8.2 we show that there exists a q-query nonadaptive (n, n′, δ, ǫ, α)-
black-box errorless hardness amplification where q = 4

ǫ
ln 2

δ
, n′ = kn, and α =

(
log2 k+ (k−

1)n+ 1
)
· q, provided k ≥ 16

δ
ln 2

ǫ
.

Theorem 8.8. There exists a universal constant c > 1 such that the following holds. If
there exists a q-query nonadaptive (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness
amplification then q ≥ 1

c
· 1
ǫ
ln 1

δ
, provided n ≥ c, n′ ≥ c, 2−n/c ≤ δ ≤ 1/3, 2−n/c ≤ ǫ ≤ 1/3,

and α ≤ 2n/c.
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Shaltiel and Viola [231] proved a similar result for the fully non-errorless setting (with
the conclusion q ≥ 1

c
· 1
ǫ2
ln 1

δ
). Their proof can be adapted to our setting as follows. Where

they use noise that flips a bit with probability 1/2− ǫ, instead use noise that masks the bit
with ⊥ with probability 1 − ǫ and reveals the correct bit with probability ǫ. Where they
use noise that flips a bit with probability 1/2, instead use “noise” that masks the bit with
⊥ with probability 1. The rest of their proof goes through with some minor changes but
without major changes.

Building on the techniques of [231], Artemenko and Shaltiel [19] proved the following
lower bound, which applies to adaptive reductions but which falls short of the tight Ω

(
1
ǫ
log 1

δ

)

lower bound by a factor of log 1
δ
.

Theorem 8.9. There exists a universal constant c > 1 such that the following holds. If there
exists a q-query (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplification then
q ≥ 1

c
· 1
ǫ
, provided n ≥ c, n′ ≥ c, 2−n/c ≤ δ ≤ 1/3, 2−n/c ≤ ǫ ≤ 1/3, and α ≤ 2n/c.

We now turn our attention to lower bounds on advice complexity.

Theorem 8.10. If there exists an (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness

amplification then 2α ≥ log3
1
ǫ
, provided δ < 1/8 and ǫ ≥ 1/1.011.01

2n

.

We prove Theorem 8.10 in Section 8.4. In the fully non-errorless setting, lower bounds
on advice complexity correspond to lower bounds on list size for approximately list-decoding
error-correcting codes from flipped bits. Such a lower bound was given in [177] (see also
[122]). In the non-errorless to errorless setting, lower bounds on advice complexity corre-
spond to lower bounds on list size for approximately list-decoding error-correcting codes
from erasures. For unique decoding, such lower bounds were given in [118, 61]. Our proof
of Theorem 8.10 is simpler and cleaner than the proofs of the latter results (at the cost of
achieving worse constants), and it handles approximate decoding. Also, the presentation
in [118], which is geared toward coding theorists, views the rate, list size, and fraction of
erasures as constants for an infinite family of codes. Our presentation is geared toward com-
plexity theorists, who are interested more generally in the asymptotic relationships among
all the parameters.

It is an open problem to prove some sort of uniform version of the Errorless XOR Lemma.
Impagliazzo et al. [137] proved a sort of uniform version of the (non-errorless) XOR Lemma,
but their techniques do not seem to apply to the errorless setting.

8.1.4 Preliminaries

We use the following standard Chernoff bound several times.

Theorem 8.11. If X1, . . . , Xτ are fully independent indicator random variables each with
expectation π, then Pr

[∑τ
j=1Xj < πτ/2

]
< e−πτ/8.
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8.2 Proof of Theorem 8.2

We prove the contrapositive. Suppose f ′ is not (s′, 1− ǫ)-hard and thus there is a circuit A′

of size ≤ s′ such that

(i) A′(x1, . . . , xk) ∈
{
f ′(x1, . . . , xk),⊥

}
for all x1, . . . , xk, and

(ii) Prx1,...,xk

[
A′(x1, . . . , xk) = ⊥

]
≤ 1− ǫ.

We give a nonuniform reduction that makes 4
ǫ
ln 2

δ
nonadaptive queries to A′ and combines

the results with some trivial computation, yielding a circuit A that witnesses that f is
not (s, δ)-hard. To start out, we give a randomized algorithm (Algorithm 3) that solves f
errorlessly using oracle access to A′ and oracle access to f . The oracle queries to f only
depend on the randomness (and not on the input), and later we will hard-wire a particular
choice of randomness to get a circuit without oracle access to f .

Algorithm 3: Reduction for Theorem 8.2

Input: x ∈ {0, 1}n
Output: f(x) or ⊥

1 repeat 4
ǫ
ln 2

δ
times

2 pick i ∈ [k] and x1, . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n uniformly at random
3 if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ then halt and output

f(x1)⊕ · · · ⊕ f(xi−1)⊕ A′(x1, . . . , xi−1, x, xi+1, . . . , xk)⊕ f(xi+1)⊕ · · · ⊕ f(xk)

4 end
5 halt and output ⊥

Define the good set

G =

{
x ∈ {0, 1}n : Pr

i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥

]
≥ ǫ/4

}
,

and define the bad set B = {0, 1}n\G. That is, G is the set of inputs for which each iteration
of the loop has at least an ǫ/4 probability of producing output.

Claim 8.12. |B| ≤ (δ/2) · 2n.
Proof. Suppose for contradiction that |B| > (δ/2) · 2n. Let γ = |B|/2n+1. We define the
event

W =
{
(x1, . . . , xk) ∈ {0, 1}n×k :

∣∣{i : xi ∈ B
}∣∣ ≥ γk

}
.

That is, W is the event that at least a γ fraction of coordinates are bad. We have

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥

]
≤ Pr

x1,...,xk

[
(x1, . . . , xk) 6∈ W

]
+

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W

]
.
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We show that both terms on the right side are < ǫ/2, thus contradicting property (ii) of A′.

Bounding the first term. Applying Theorem 8.11 with Xi as the indicator variable for
xi ∈ B, and with τ = k and π = |B|/2n, we have

Pr
x1,...,xk

[
(x1, . . . , xk) 6∈ W

]
< e−k·|B|/2n+3

< e−kδ/16 ≤ ǫ/2

where the middle inequality follows by our assumption on |B| and the last inequality follows
by k ≥ 16

δ
ln 2

ǫ
.

Bounding the second term. For each S ⊆ [k] we define the event

WS =
{
(x1, . . . , xk) ∈ {0, 1}n×k : ∀i xi ∈ B ⇔ i ∈ S

}
.

Note that the WS’s are disjoint and

W =
⋃

S : |S|≥γk

WS.

We have

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W

]

=
∑

S : |S|≥γk

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

≤ 1

γk

∑

S⊆[k]

|S| · Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γk

∑

i∈[k]

∑

S∋i
Pr

x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γk

∑

i∈[k]
Pr

x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and xi ∈ B

]

=
1

γk

∑

i∈[k]

∑

x∈B
Pr

x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥

∣∣ xi = x
]
· Pr
x1,...,xk

[xi = x]

=
1

γk2n

∑

x∈B

∑

i∈[k]
Pr

x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥

]

=
1

γk2n

∑

x∈B
k · Pr

i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥

]

<
1

γk2n

∑

x∈B
k · ǫ/4

=
ǫ/4

γ2n
· |B|
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= ǫ/2

where the second and fifth lines follow by the disjointness of the WS’s, and the remaining
lines follow by simple rearrangements.

The rest of the proof of Theorem 8.2 is similar to the argument from [44]. First we note
that for all x ∈ {0, 1}n and all choices of randomness, Algorithm 3 does indeed output either
f(x) or ⊥. This follows trivially from the fact that if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥
then

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = f(x1)⊕ · · · ⊕ f(xi−1)⊕ f(x)⊕ f(xi+1)⊕ · · · ⊕ f(xk)

by property (i) of A′. Next we observe that for each x ∈ G, we have

Pr
randomness

[
Algorithm 3 outputs ⊥

]
≤

(
1− ǫ/4

) 4
ǫ
ln 2

δ ≤ δ/2.

Therefore

Pr
x, randomness

[
Algorithm 3 outputs ⊥

]
≤ Pr

x

[
x ∈ B

]
+

E
x

[
Pr

randomness

[
Algorithm 3 outputs ⊥

] ∣∣∣∣ x ∈ G

]

≤ δ/2 + E
x

[
δ/2

∣∣ x ∈ G
]

= δ

where the second inequality follows by Claim 8.12 and by the above observation. It follows
that there exists a setting of the randomness such that

(i) Algorithm 3 outputs f(x) or ⊥ for all x, and

(ii) Prx
[
Algorithm 3 outputs ⊥

]
≤ δ.

To get a circuit A that witnesses that f is not (s, δ)-hard, just hard-wire the randomness
and the values of f(x1) ⊕ · · · ⊕ f(xi−1) ⊕ f(xi+1) ⊕ · · · ⊕ f(xk) needed for this choice of
randomness, and plug in the hypothesized circuit A′. Since A′ has size ≤ s′ and Algorithm 3
makes 4

ǫ
ln 2

δ
queries to A′, A has size ≤ s′ · 4

ǫ
ln 2

δ
= s. Note that Algorithm 3 can trivially

be implemented with nonadaptive access to A′.

8.3 Proof of Theorem 8.5

We prove the contrapositive. Suppose f ′ is not (s′, 1− ǫ)-hard and thus there is a circuit A′

of size ≤ s′ such that

(i) A′(x1, . . . , xk) ∈
{
f ′(x1, . . . , xk),⊥

}
for all x1, . . . , xk, and
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(ii) Prx1,...,xk

[
A′(x1, . . . , xk) = ⊥

]
≤ 1− ǫ.

We give a nonuniform reduction that makes k
t
· 4
ǫ
ln 2

δ
nonadaptive queries to A′ and combines

the results with some trivial computation, yielding a circuit A that witnesses that f is not
(s, δ, b)-hard. To start out, we give a randomized algorithm (Algorithm 4) that solves f
errorlessly using oracle access to A′ and oracle access to f and σ(C, ·, b). The oracle queries
to f and σ(C, ·, b) only depend on the randomness (and not on the input), and later we will
hard-wire a particular choice of randomness to get a circuit without oracle access to f or
σ(C, ·, b).

Algorithm 4: Reduction for Theorem 8.5

Input: x ∈ {0, 1}n
Output: f(x) or ⊥

1 repeat k
t
· 4
ǫ
ln 2

δ
times

2 pick i ∈ [k] and x1, . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n uniformly at random
3 if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b) where

y =
(
f(x1), . . . , f(xi−1), b, f(xi+1), . . . , f(xk)

)

then halt and output A′(x1, . . . , xi−1, x, xi+1, . . . , xk)
4 end
5 halt and output ⊥

Define the good set

G =

{
x ∈ f−1(b) :

Pr
i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b)

]
≥ ǫt/4k

}

where y is as in line 3 of Algorithm 4, and define the bad set B = f−1(b)\G. That is, G is the
set of inputs in f−1(b) for which each iteration of the loop has at least an ǫt/4k probability
of producing output.

Claim 8.13. |B| ≤ (δ/2) ·
∣∣f−1(b)

∣∣.

Proof. Suppose for contradiction that |B| > (δ/2) ·
∣∣f−1(b)

∣∣. Let γ = |B|/2
∣∣f−1(b)

∣∣. We
define the event

W =

{
(x1, . . . , xk) ∈ {0, 1}n×k :

∣∣∣
{
i : xi ∈ B and i ∈ σ

(
C, fk(x1, . . . , xk), b

)}∣∣∣ ≥ γt

}
.
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That is, W is the event that at least a γt/k fraction of coordinates are both bad and b-
sensitive. We have

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥

]
≤ Pr

x1,...,xk

[
(x1, . . . , xk) 6∈ W

]
+

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W

]
.

We show that both terms on the right side are < ǫ/2, thus contradicting property (ii) of A′.

Bounding the first term. We have

Pr
x1,...,xk

[
(x1, . . . , xk) 6∈ W

]
≤ Pr

x1,...,xk

[∣∣σ
(
C, fk(x1, . . . , xk), b

)∣∣ < t
]
+

Pr
x1,...,xk

[
(x1, . . . , xk) 6∈ W

∣∣∣
∣∣σ
(
C, fk(x1, . . . , xk), b

)∣∣ ≥ t
]
.

To show that this is < ǫ/2, we show that the first of the two terms on the right side is ≤ ǫ/4
and the second is < ǫ/4. Since C is a (t, ρ, p, b)-amplifier, we have

Pr
x1,...,xk

[∣∣σ
(
C, fk(x1, . . . , xk), b

)∣∣ < t
]

= Pr
y∼p{0,1}k

[∣∣σ(C, y, b)
∣∣ < t

]
≤ ρ ≤ ǫ/4.

We have

Pr
x1,...,xk

[
(x1, . . . , xk) 6∈ W

∣∣∣
∣∣σ
(
C, fk(x1, . . . , xk), b

)∣∣ ≥ t
]

= E
y∼p{0,1}k

[
Pr

x1,...,xk

[
(x1, . . . , xk) 6∈ W

∣∣∣ fk(x1, . . . , xk) = y
] ∣∣∣∣

∣∣σ(C, y, b)
∣∣ ≥ t

]
.

Fix any y ∈ {0, 1}k such that
∣∣σ(C, y, b)

∣∣ ≥ t, and for now let us abbreviate σ(C, y, b) as σ.
Then we have

Pr
x1,...,xk

[
(x1, . . . , xk) 6∈ W

∣∣∣ fk(x1, . . . , xk) = y
]

= E
(xi)i6∈σ

[
Pr

(xi)i∈σ

[
(x1, . . . , xk) 6∈ W

∣∣∣ f(xi) = b ∀i ∈ σ
] ∣∣∣∣ f(xi) = yi ∀i 6∈ σ

]

since σ ⊆
{
i : yi = b

}
. Now fix any (xi)i 6∈σ such that f(xi) = yi for all i 6∈ σ. Then we have

Pr
(xi)i∈σ

[
(x1, . . . , xk) 6∈ W

∣∣∣ f(xi) = b ∀i ∈ σ
]

= Pr
(xi)i∈σ

[∣∣{i ∈ σ : xi ∈ B
}∣∣ < γt

∣∣∣ f(xi) = b ∀i ∈ σ
]

≤ Pr
(xi)i∈σ

[∣∣{i ∈ σ : xi ∈ B
}∣∣ < γ · |σ|

∣∣∣ f(xi) = b ∀i ∈ σ
]
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where the inequality follows by t ≤ |σ|. Applying Theorem 8.11 with Xj as the indicator
variable for xi ∈ B where i is the jth value in σ and xi is chosen uniformly from f−1(b), and
with τ = |σ| and π = |B|/

∣∣f−1(b)
∣∣, we have that the latter quantity is less than

e−|σ|·|B|/8|f−1(b)| < e−|σ|·δ/16 ≤ e−tδ/16 ≤ ǫ/4

where the first inequality follows by our assumption on |B|, the middle inequality follows by
|σ| ≥ t, and the last inequality follows by t ≥ 16

δ
ln 4

ǫ
. This establishes that

Pr
x1,...,xk

[
(x1, . . . , xk) 6∈ W

∣∣∣
∣∣σ
(
C, fk(x1, . . . , xk), b

)∣∣ ≥ t
]

< ǫ/4.

Bounding the second term. This is similar to the corresponding part of the analysis in
the proof of Theorem 8.2. For each S ⊆ [k] we define the event

WS =
{
(x1, . . . , xk) ∈ {0, 1}n×k : ∀i

(
xi ∈ B and i ∈ σ

(
C, fk(x1, . . . , xk), b

))
⇔ i ∈ S

}
.

Note that the WS’s are disjoint and

W =
⋃

S : |S|≥γt

WS.

Using the shorthand y as in line 3 of Algorithm 4, we have

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W

]

=
∑

S : |S|≥γt

Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

≤ 1

γt

∑

S⊆[k]

|S| · Pr
x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γt

∑

i∈[k]

∑

S∋i
Pr

x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γt

∑

i∈[k]
Pr

x1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and xi ∈ B and i ∈ σ

(
C, fk(x1, . . . , xk), b

)]

=
1

γt

∑

i∈[k]

∑

x∈B
Prx1,...,xk

[
A′(x1, . . . , xk) 6= ⊥ and i ∈ σ

(
C, fk(x1, . . . , xk), b

) ∣∣∣ xi = x
]
·

Prx1,...,xk
[xi = x]

=
1

γt2n

∑

x∈B

∑

i∈[k]
Pr

x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b)

]

=
1

γt2n

∑

x∈B
k · Pr

i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b)

]
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<
1

γt2n

∑

x∈B
k · ǫt/4k

=
ǫ/4

γ2n
· |B|

≤ ǫ/2

where the second and fifth lines follow by the disjointness of the WS’s, the last line follows by∣∣f−1(b)
∣∣ ≤ 2n, and the remaining lines follow by simple rearrangements. For the seventh line,

we used the fact that x ∈ B implies f(x) = b and thus y = fk(x1, . . . , xi−1, x, xi+1, . . . , xk).

We now finish the proof of Theorem 8.5. First we note that for all x ∈ {0, 1}n and
all choices of randomness, Algorithm 4 does indeed output either f(x) or ⊥. This follows
trivially from the facts that A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ implies

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = f ′(x1, . . . , xi−1, x, xi+1, . . . , xk)

by property (i) of A′, and i ∈ σ(C, y, b) implies f ′(x1, . . . , xi−1, x, xi+1, . . . , xk) = f(x), where
y is as in line 3 of Algorithm 4. Next we observe that for each x ∈ G, we have

Pr
randomness

[
Algorithm 4 outputs ⊥

]
≤

(
1− ǫt/4k

) k
t
· 4
ǫ
ln 2

δ ≤ δ/2.

Therefore, picking x ∈ f−1(b) uniformly at random, we have

Pr
x, randomness

[
Algorithm 4 outputs ⊥

]
≤ Pr

x

[
x ∈ B

]
+

E
x

[
Pr

randomness

[
Algorithm 4 outputs ⊥

] ∣∣∣∣ x ∈ G

]

≤ δ/2 + E
x

[
δ/2

∣∣ x ∈ G
]

= δ

where the second inequality follows by Claim 8.13 and by the above observation. It follows
that there exists a setting of the randomness such that

(i) Algorithm 4 outputs f(x) or ⊥ for all x ∈ {0, 1}n, and

(ii) Prx
[
Algorithm 4 outputs ⊥

]
≤ δ where x ∈ f−1(b) is chosen uniformly at random.

To get a circuit A that witnesses that f is not (s, δ, b)-hard, just hard-wire the randomness
and the correct responses to the σ(C, ·, b) queries (which only depend on the randomness
and not on x), and plug in the hypothesized circuit A′. In fact, the iterations for which
i 6∈ σ(C, y, b) for this particular choice of randomness can simply be eliminated. Since A′

has size ≤ s′ and Algorithm 4 makes ≤ k
t
· 4
ǫ
ln 2

δ
queries to A′, A has size ≤ s′ · k

t
· 4
ǫ
ln 2

δ
= s.

Note that Algorithm 4 can trivially be implemented with nonadaptive access to A′.
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8.4 Proof of Theorem 8.10

Let (Enc,Dec) be an (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplification

with δ < 1/8 and ǫ ≥ 1/1.011.01
2n

. We use the notation ∆(f1, f2) for the relative Hamming
distance between bit strings f1 and f2. We begin with a completely standard claim that
asserts the existence of a good error-correcting code. We include the proof for completeness.

Claim 8.14. There exists an F ⊆ {0, 1}2n such that

(1) ∀f1, f2 ∈ F : if f1 6= f2 then ∆(f1, f2) > 2δ, and

(2) |F | = 4 log3
1
ǫ
.

Proof. Pick F ⊆ {0, 1}2n randomly by choosing f1, . . . , f4 log3 1
ǫ
∈ {0, 1}2n independently

uniformly at random and setting F =
{
f1, . . . , f4 log3 1

ǫ

}
. To prove (1) and (2), it suffices to

show that

Pr
[
∃i1, i2 ∈ {1, . . . , 4 log3 1

ǫ
} : i1 6= i2 and ∆(fi1 , fi2) ≤ 2δ

]
< 1.

For each pair i1 6= i2, since δ < 1/8 we have

Pr
[
∆(fi1 , fi2) ≤ 2δ

]
≤ Pr

[
∆(fi1 , fi2) < 1/4

]
< e−2n/16

by applying Theorem 8.11 with Xj as the indicator variable for fi1(x) 6= fi2(x) where x is
the jth string in {0, 1}n, and with τ = 2n and π = 1/2. By a union bound, the probability

in question is at most
(
4 log3

1
ǫ

)2 · e−2n/16 < 1 since ǫ ≥ 1/1.011.01
2n

.

For the rest of the proof of Theorem 8.10 we fix a set F as in Claim 8.14.

Claim 8.15. There exists an E ⊆ F and an A′ ∈ {0, 1,⊥}2n
′

such that

(i) ∀f ∈ E : A′(x′) ∈ {f ′(x′),⊥} for all x′ ∈ {0, 1}n′
, where f ′ = Enc(f), and

(ii) Prx′[A′(x′) = ⊥] ≤ 1− ǫ, and

(iii) |E| = log3
1
ǫ
.

Proof. For each x′ ∈ {0, 1}n′
let mx′ = majorityf∈F Enc(f)(x′), breaking a tie arbitrarily,

and define
Mx′ =

{
f ∈ F : Enc(f)(x′) = mx′

}
.

For any set E ⊆ F , define

M−1
E =

{
x′ ∈ {0, 1}n′

: E ⊆ Mx′

}
.
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We construct a sequence of sets E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Elog3
1
ǫ
⊆ F such that for all i,

|Ei| = i and
∣∣M−1

Ei

∣∣ ≥ 2n
′
/3i. Then we can take E = Elog3

1
ǫ
and

A′(x′) =

{
mx′ if x′ ∈ M−1

E

⊥ otherwise

and (i), (ii), and (iii) all follow immediately. We do the construction inductively. The base
case i = 0 is trivial. Now assume i ∈

{
0, 1, . . . , log3

1
ǫ
− 1

}
and we have a set Ei ⊆ F with

|Ei| = i and
∣∣M−1

Ei

∣∣ ≥ 2n
′
/3i. For each x′ ∈ M−1

Ei
, since i ≤ |F |/4 we have

Pr
f∈F\Ei

[f ∈ Mx′] =
|Mx′\Ei|
|F\Ei|

≥
1
2
|F | − i

|F | − i
≥ 1/3

where f is chosen uniformly at random. Thus for some f ∈ F\Ei we have Prx′∈M−1
Ei

[f ∈
Mx′ ] ≥ 1/3 where x′ is chosen uniformly at random. For this fixed f , setting Ei+1 = Ei∪{f}
we have |Ei+1| = |Ei|+ 1 = i+ 1 and

∣∣M−1
Ei+1

∣∣ =
∣∣{x′ ∈ M−1

Ei
: f ∈ Mx′

}∣∣ =
∣∣M−1

Ei

∣∣ · Pr
x′∈M−1

Ei

[f ∈ Mx′ ] ≥
∣∣M−1

Ei

∣∣/3 ≥ 2n
′

/3i+1.

This finishes the induction step.

Now to prove Theorem 8.10, suppose for contradiction that 2α < log3
1
ǫ
. Then by the

pigeonhole principle there must exist f1, f2 ∈ E such that f1 6= f2 and the advice string
corresponding to f1 and A′ equals the advice string corresponding to f2 and A′. Call this
advice string a, and let A = Dec(A′, a). By Definition 8.7, we must have ∆(A, f1) ≤ δ and
∆(A, f2) ≤ δ. But this is impossible because ∆(f1, f2) > 2δ by property (1) in Claim 8.14.
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