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Abstract

Line Segment-based Aerial Image Registration

by

Youngwook Paul Kwon

Master of Science in Computer Science

University of California, Berkeley

Professor Sara McMains, Chair

Professor Alexei A. Efros, Co-chair

We propose a new segment-based registration system for aerial images of the same
scene taken at different times, from different view points, and/or by different sen-
sors. We introduce a quantitative characterization of the registration difficulty for
a given pair of images. Targeting high registration difficulty input, we exploit on
linear edges in images. In the first step of our registration process, we detect line seg-
ments in each image. Next we conduct a merging step on the detected line segments.
Finally, using the merged line segments as input, we generate possible hypothesis
transformations by choosing three segments in each image. Our collinearity score
metric for the transformations balances considerations of angular and perpendic-
ular distances. After scoring each hypothesis transformation, the highest-scoring
one is selected. For high registration difficulty image pairs, our algorithm shows
significant improvement compared to publicly accessible image registration codes.
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Chapter 1

Introduction

Image registration is the process of estimating a transformation to overlay and align
two images of the same scene taken at different times, from different viewpoints, and/or
by different sensors. As Zitová and Flusser [2003] argue, image registration is a crucial
step in diverse fields such as weather forecasting, integrating information into geographic
information systems (GIS), medicine, cartography, computer vision, etc.

The general automatic registration process consists of four steps: feature detection, fea-
ture description, feature matching, and transformation estimation. The first two steps are to
extract a certain type of feature from each image (feature detection), and to describe each
feature in a quantitative manner (feature description). Then, using the detected features
(control points, CPs) and their descriptions, the correspondence matching (control point
pairs, CPPs) information is extracted by comparing how similar the feature descriptions are
(feature matching). Therefore, a good feature description will retain the same values after
a registration transformation is applied. Finally, transformation can be calculated from the
correspondence matching information. Since the matching information (CPPs) usually in-
cludes outliers, many methodologies use additional information such as spatial constraints to
filter those outliers before calculating the transformation. In other words, the performance
of feature-based algorithms is determined by designing a good local descriptor and distin-
guishing between true matches (inliers) and false matches (outliers). Several techniques will
be discussed in Chapter 2.

Aerial image registration has unique characteristics that make it difficult. First, due
to the limited range of sensors (cameras), the same regions are captured from arbitrarily
different positions and angles of view. Second, two input images to register may be taken
at different times. Some objects/buildings may appear or disappear over time (Fig 1.1).
Images taken during day time and night time may have very different signals (color or gray
intensity) due to light and shadows. Third, images taken with different types of sensors (i.e.,
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Fig. 1.1. Changes in images at different times (here, different years)

(a) Google Satellite (b) Google Map

Fig. 1.2. Example of different looking images (satellite and abstract drawing)

infra-red vs. visible color spectrum) also may have significant changes. In addition, one
may want to register a sensed image of some terrain with a reference image from a different
database. The more severe changes an input image pair has, the more poorly an automatic
registration algorithm works. Moreover, since aerial images deal with large areas, it is hard
to expect and define salient objects a priori. Some regions like the sea are too monotonous
to find any special edges/corners/keypoints. Some grainy regions like forests or waves are
likely to include too many random edges/corners/keypoints. In this case, one may fail to
detect common features in the input images.

Nevertheless, humans are remarkably good at detecting correspondences and registering
images that include partial changes. Humans can register an actual Google satellite image
with an abstract and simplified Google map (Fig 1.2). This implies that humans do not
only rely on local pixel-wise signal processing and matching, since the two images have
different pixel-level information such as colors and oriented gradients. We propose that one
of the important higher-level information that humans utilize is conspicuous boundaries and
linear information such as the unique linear alignment of road networks and the boundary
orientations of buildings.

Then, how can we express the registration difficulty of a certain pair of input images?
Figure 1.3 illustrates a novel way to quantify and visualize the registration difficulty. We
collect pairs of images ranging from ones that are almost the same or include only slight
changes, to ones that include severe changes or monotonous regions and require humans’
ability to register. These pairs are shown in Chapter 3 (for convenience, we name each input
pair of images.) We acquire the CPPs between each image pair based on the well-known
local descriptor “scale invariant feature transform” (SIFT), which many algorithms take as a
building block due to its good performance (Chapter 2). The SIFT descriptor is a 128-tuple
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vector, and the detected features are matched basically based on the nearest descriptor using
Euclidean L2 distance as the metric. The x-axis in Fig 1.3 represents the average distance
of the top 100 nearest pairs. An analogous question about the x-axis would be “how similar
are the most similar CPPs?” The y-axis is the number of CPPs whose distances are less
than 200. An analogous question for y-axis would be “how many CPPs are within a certain
similarity threshold?” Thus, an image pair more in the lower right region means that SIFT
fails to find similar CPPs (matches are highly likely to be outliers), and the number of useful
CPPs is less. For the left upper datasets, SIFT returns a number of similar CPPs. Simply
speaking, as an input image pair places more towards the lower right region of the graph,
the registration difficulty increases.

As far as our scope of experience, we found that many algorithms work well only within a
very limited range of input data and fail to correctly register the “difficult” images. Much pre-
vious research reports results only for registration performance experiments where evaluation
is only on input image sets where a counterpart image is artificially made by adding some
filters such as noise and blurring, and/or applying an affine transformation to an original
image. These kinds of image pairs are highly likely to place in the upper left region.

In this report, we propose a registration system that covers aerial images of diverse
difficulty levels, and estimates an affine transformation. To emulate humans’ approach of
using higher-level information, we focus on line segments (or their extended full lines) of the
image. Lines are robust to occlusions and small changes, and man-made regions such as
towns and airports have many feature lines.
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After discussing related work (Chapter 2) and presenting our target dataset (Chapter 3),
we introduce our aerial image registration algorithm in Chapter 4 and then show the results
in Chapter 5.
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Chapter 2

Related work

2.1 Feature detection and matching
Zitová and Flusser broadly divide feature matching techniques into area-based and feature-

based approaches [2003]. Area-based methods focus more on feature matching than feature
detection (Zitová and Flusser [2003]). Area-based methods usually do not attempt to detect
salient objects in images, but try to find correspondences by comparing fixed certain win-
dows (windows of predefined size or even entire images) in the reference image with sliding
windows in the other image. We can compare the two windows using correlation-like meth-
ods, Fourier methods, etc. (Zitová and Flusser [2003]). Area-based methods have several
limitations and are especially vulnerable to changes in images. For example, since even the
shape of a window (usually a rectangle) in the reference image can be distorted by a trans-
formation, then it may be naive to expect to find a good correspondence with the window of
the original shape in the sensed image. Loveless [2013] states that the following conditions
are required for successful registration: the images from the same or similar sensors, the
same or similar viewpoints, similar lighting conditions, and enough overlapping area.

Feature-based approaches put more emphasis on the feature detection stage than feature
matching, and make an effort to detect distinctive features, called control points (CPs), that
can provide useful clues about correspondences. Feature descriptors and similarity measures
between the descriptors are used for the feature matching stage. Many descriptors have
been proposed. Rahtu et al. [2005] propose an area-based affine invariant descriptor using
multiscale autoconvolution (MSA). A comprehensive review on the comparison of affine
region detectors may be found in Mikolajczyk et al. [2005]. Mikolajczyk and Schmid [2005]
compare local descriptor performances for test cases generated using affine transformations,
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scale changes, rotation, blur, jpeg compression, and illumination changes. They have found
that the scale invariant feature transform (SIFT), proposed by Lowe [2004], has the best
results for most of the tests, with lower performance for textured scenes or when edges are
not reliable.

Due to the good performance of SIFT, many image registration algorithms take SIFT as
their feature descriptor. To filter incorrect matches, they refine the feature description and
propose scale–orientation joint restriction criteria for estimating a similarity transformation.
Ma et al. [2010] obtain CPs not only from SIFT but also from normalized cross correlation,
which is an area-based method. They conduct outlier screening procedures for the two types
of CPs individually. Liu et al. [2012] propose an illumination and affine invariant descriptor
by focusing on the pros and cons of SIFT and MSA. Li et al. [2009] experimented and showed
the limitations of SIFT on multidate, multispectral, and multisensor remote images.

Other papers focus on the lines in images. Line matching is more difficult than point
matching [Dubrofsky and Woodham, 2008]. First, the end points of detected line segments
are not reliable. Second, the orientations of feature lines are not invariant under perspective
transformation. Chou and Tsai [1993] propose an iterative scheme to match line segments
for the purpose of stereo vision matching. Schmid and Zisserman [1997] propose a line
matching method using cross-correlation-based matching score. Similar to Chou and Tsai,
they use epipolar geometry of the views under the situation that the camera positions are
known. Coiras et al. [2000] propose a line-segment-based image registration technique for
multisource images by defining a similarity function for the two sets of line segments. Habib
and Alruzouq [2004] use line segments as features and propose a matching strategy using a
modified iterated Hough transform. For the purpose of stereo matching, Bay et al. [2005] de-
tect line segments using Canny edge detection, identify initial candidate matches using color
information, and filter outlier matches using topological information. Dubrofsky and Wood-
ham [2008] describe a methodology to utilize point correspondences and line correspondences
together for homography (Section 2.2) estimation.

2.2 Transform model estimation
From the control point pairs information, a mapping function between the sensed image

and reference image is determined. There are various types of mapping functions such as
similarity transforms, affine transforms, projective transforms, and transforms with higher
degrees of freedom such as polynomial models.

Similarity transforms include translation and rotation, uniform scaling, and any com-
positions of them. Using homogeneous coordinates, a similarity transform can be written
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as x′y′
1

 =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

xy
1

 , (2.1)

where (x′, y′) is a CP in the reference image, (x, y) is its corresponding CP in the sensed
image, θ is the rotation angle, (tx, ty) is the translation vector, and s is the scale factor.
A non-rigid transformation that preserves distances after mapping can be regarded as a
special case of the similarity transform with scale of 1. Under similarity transforms, shapes
of objects are preserved.

Affine transformations are a superset of similarity transforms that also include scaling
with different aspect ratios, reflection, skew, and compositions of them. Sets of parallel lines
remain parallel after an affine transformation. Using homogeneous coordinates, an affine
transform can be written asx′y′

1

 =

a11 a12 a13
a21 a22 a23
0 0 1

xy
1

 (2.2)

=

1 0 tx
0 1 ty
0 0 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 k 0
0 1 0
0 0 1

sx 0 0
0 sy 0
0 0 1

xy
1

 , (2.3)

where sx and sy are the scale factors in the x and y axes respectively, and k is the skew
factor. Because this model has six degrees of freedom, at least three non-collinear CP pairs
are required to solve the system.

Projective transformations (called homography) can represent any mapping in projective
space. Using homogeneous coordinates, a projective transformation can be written asx′y′

z′

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

 . (2.4)

Note that, because the projective transformation matrix is a homogeneous matrix, it has
eight degrees of freedom. At least four linearly independent CP pairs are required to solve
the system.

While these global mappings such as similarity, affine, and projective transformation can
cover a large range of geometric transformations with a few parameters in a simple and
global manner, sometimes we need local mappings when, for example, objects in the scene
are flexible and have some distortion, as in medical imaging application, and they can not
be registered globally in nature. These types of transformation are beyond the scope of our
current work. Refer to Zitová and Flusser [2003] for more details.

In aerial image applications, because the sensors are generally very far from objects, the
input images can be regarded as flat planes. Since affine transformations are sufficient to
represent transformations between general aerial images, they are commonly assumed, and
we also assume affine transformation for our aerial image registration problem.
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Chapter 3

Dataset
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(a) greentest: Different frames from an aerial video. Given from LLNL.

(b) circular_road: Different frames from an aerial video. Given from LLNL.

(c) mountain: Google Satellite (left) and Google Earth (right)
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(d) depth_map: A LiDAR depth (left) and an estimated depth (right). Given
from Kim et al. [2014]

(e) coast: Unknown somewhere. Excerpt from Google image search

(f) shane: Photo (left) and infra-red image (right). Given from Lawrence Liver-
more National Laboratory (LLNL).
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(g) livermore2: A random place in Livermore in different years. Excerpt from
Google Earth.

(h) livermore1: Somewhere in Livermore, CA, 2004 and 2012. Excerpt from
Google map.
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(i) map: Google map (left) and Google Satellite (right) of a random place in San
Francisco

Fig. 3.-2. Our input dataset. We order the input image pairs in registration difficulty order
in Fig 1.3, from the easiest to highest.
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Chapter 4

Algorithm

4.1 Line Segment Detection
To detect line segments in images, we choose von Gioi et al.’s Line Segment Detector

(LSD) algorithm [2012], while others use Hough transform [Dubrofsky and Woodham, 2008;
Habib and Alruzouq, 2004] or Canny edge extractor [Coiras et al., 2000; Schmid and Zis-
serman, 1997]. Hough transform extracts not line segments but full lines in images, from
which the line segments would need to be extracted. The Canny edge extractor requires a
threshold parameter δ [Canny, 1986], and the detected edges are not guaranteed to be linear.
The LSD algorithm detects line segments and runs in linear time without parameter tuning.
Figures 4.1 and 4.2 show the results of the LSD compared to the Canny edge extractor.

(a) Input image (b) LSD (c) Canny, δ = 0.2 (d) Canny, δ = 0.5

Fig. 4.1. Line segment detector and Canny edge extractor (example 1).
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(a) Input image (b) LSD

(c) Canny, δ = 0.2 (d) Canny, δ = 0.5

Fig. 4.2. Line segment detector and Canny edge extractor (example 2).

(a) Before merging (b) After merging

Fig. 4.3. Line segment merging step.

4.2 Line Segment Merging
The line segments detected using LSD are incomplete in the sense that a single salient

and useful line segment may be detected as a few broken and/or overlapped segments. To
deal with this incompleteness, we add a merging step. Fig 4.3 illustrates the results of our
procedure. We merge two line segments if they are (i) collinear (within a threshold) and (ii)
overlapped. We describe as follows how to check the collinearity and overlap for two given
line segments s and s′.

First, we define a distance function Dθd(s, s
′) over two line segments s and s′. This

definition is based on that of Coiras et al.’s work [2000], but modified from a non-symmetric
distance to a symmetric distance. As in Fig 4.4, for two given line segments s and s′, we
can calculate the angular difference ∆θ, and the perpendicular distance ∆d, where ∆θ is the
acute angle that s and s′ (or their extended lines) make, and ∆d is the maximum of two
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s

s′

d

d′

∆θ ∆d = max(d, d′)

Fig. 4.4. The angular distance ∆θ and the perpendicular distance ∆d

perpendicular distances: that from the midpoint of s to the line containing s′ (d′ in Fig 4.4),
and the that from the midpoint of s′ to the line containing s (d in Fig 4.4). Then we define
the distance function Dθd(s, s

′) between the two line segments s and s′ as:

Dθd(s, s
′) =

1√
2

√
(
∆θ

θδ
)2 + (

∆d

dδ
)2, (4.1)

where θδ and dδ are thresholds for angular difference and perpendicular distance, respectively.
We set θδ = 5◦, dδ = 5. For example, if s and s′ are collinear, then ∆θ = 0, and ∆d = 0, and
therefore, Dθd(s, s

′) = 0 (and vice versa). As ∆θ or ∆d increases, Dθd(s, s
′) increases. If s

and s′ differ by ∆θ = θδ, and ∆d = dδ, then Dθd(s, s
′) = 1.

Then we define a collinearity score Col(s, s′), which represents how collinear two given
line segments s and s′ are, as below:

Col(s, s′) =

{
1−Dθd(s, s

′), if Dθd(s, s
′) ≤ 1,

0, otherwise.

Thus, if the distance between s and s′ is zero (or, s and s′ are collinear), the collinearity
score is equal to 1. If the distance is greater than 1, the collinearity score is zero. Fig 4.5
shows example scores of different line segment pairs. We regard s and s′ as collinear for the
merging step if Col(s, s′) is non-zero. The strictness of the collinearity test can be adjusted
by the thresholds θδ and dδ.

The merging step is done as follows. Let S be the entire set of detected segments from
an image. For a given line segment s, let Scol(s) be the set of all segments collinear with s:

Scol(s) = {si | Col(s, si) 6= 0,∀si ∈ S}. (4.2)

To check the overlap condition, we project all segments in Scol onto a virtual parallel line
as illustrated in Fig 4.6. The two endpoints of each segment si ∈ Scol can be represented
as two parametric real numbers, left(si) and right(si) (left(si) < right(si)). The smaller
parametric number is considered to be “lexicographically left.” We examine overlaps using
the parametric numbers. When the left point of a segment sj starts before the right point
of a collinear segment si, or left(sj) ≤ right(si), we merge si and sj. The two end points
of the new merged line are min(left(si), left(sj)) and max(right(si), right(sj)) (the lexi-
cographically leftmost and rightmost points). Fig 4.7 illustrates the result of the merging
step.
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Col(s, s′) Dθd(s, s
′) ∆d ∆θ
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(b) 0.854 0.146 0.740 1.6◦

(c) 0.800 0.200 0.756 2.7◦

(d) 0.124 0.876 3.098 12.3◦

(e) 0 3.515 23.575 18◦

(f) 0 5.003 35.320 4.7◦

Fig. 4.5. Examples of the scores Col(s, s′) for six sample input pairs
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Fig. 4.6. Projection to 1D parametric space.
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(a) Line segments with im-
age

(b) Segments only (c) Segments after merging

Fig. 4.7. The (a) and (b) show the detected lines using LSD. The coloring is just for the
visual help to distinguish individual line segment. The (c) shows the 30 longest segments
after the merging step.

4.3 Transformation
We follow Hartley and Zisserman [2003] to solve the affine transformation between two

images. Because an affine transformation has six degrees of freedom, one can solve an affine
transformation from three control point pairs (CPPs) as follows. Given that a CPP of a point
p in image 1 and p′ in image 2 (p and p′ are represented as 3 × 1 vectors in homogeneous
coordinates), the 3× 3 affine transformation T : p→ p′ satisfies:

p′ = Tp. (4.3)

Then the affine transformation T that maps the points {p1,p2,p3} to {p′1,p′2,p′3} respec-
tively is uniquely solved by:

P ′ = TP (4.4)

or equivalently

T = P ′P−1. (4.5)

where

P :=
[
p1 | p2 | p3

]
(4.6)

P ′ :=
[
p′1 | p′2 | p′3

]
. (4.7)
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Note that P, P’ and T are all 3× 3 matrices. In order for T to exist, P must be full rank, or
in other words, {p1,p2,p3} should not be collinear.

We check all the possible transformations that can be acquired from the detected line
segments information, instead of estimating the transformation based on feature description,
because we assume the two input images may include severe changes, in which case there is
no appropriate point-level descriptor.

Let S and S ′ be the sets of detected line segments from image 1 and image 2, respectively.
We choose any three non-parallel segments {si, sj, sk} ∈ S and {s′l, s′m, s′n} ∈ S ′ from each
set. Both sets of three non-parallel segments (or their extended full lines) yield three inter-
section points, which we order counter-clock wise and denote (p1,p2,p3) and (p′1,p

′
2,p

′
3),

respectively. In this setting, note that we do not know which point corresponds to which;
there are three possible cases: the three points (p1,p2,p3) may correspond to (p′1,p

′
2,p

′
3),

(p′2,p
′
3,p

′
1) or (p′3,p

′
1,p

′
2). Because we exclude the reflection transformations (aerial im-

ages are always collected above the ground), the counter-clock-wise order itself should be
preserved.

Denote a case C: (p1,p2,p3)C and (p′1,p
′
2,p

′
3)C . Hypothesizing that these are true

CPPs, we solve for the affine transformation TC using equation 4.5. We repeat this process,
testing every combination of three segments chosen from S and S ′. We will discuss how to
evaluate a matching score of score(TC) in section 4.4. The optimal transformation T ∗ is the
one with the best matching score:

T ∗ = arg max
C

score(TC). (4.8)

This process requires a huge number of calculations because the number of possible com-
binations is so large. In order to reduce computation, we limit the search to the most
promising candidates by selecting the triples of segments only from the longest 30 line seg-
ments each in S and S ′. Since the evaluation process is independent, parallel computation
can be easily applied.

4.4 Matching Score
In this section, we define the matching score function score(TC) for a given hypothesis

transformation TC . Let STC be the transformation of S by TC . The idea is that if TC is a true
transformation, STC and S ′ will be in harmony. In other words, many common segments in
STC and S ′ will be collinear.

For a segment s ∈ STC , define a function best(s, S ′) as:

best(s, S ′) = max
s′∈S′

(Col(s, s′)). (4.9)
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This function searches for the segment s′ ∈ S ′ that is most collinear with s. Then we define
a matching score function:

scoreS→S′(TC) =
1

|STC |
∑
s∈STC

(best(s, S ′)), (4.10)

where |STC | is the cardinality of STC .
Note that S can be transformed into the coordinate system of S ′ by TC , and S ′ can

be transformed into the coordinate system of S by TC−1. Since the mapping score is not
symmetric, we calculate the mapping score for the latter direction as well.

scoreS′→S(TC
−1) =

1

|S ′TC−1|
∑

s′∈S′TC−1

(best(s′, S)) (4.11)

The final mapping score is their average:

score(TC) =
1

2
scoreS→S′(TC) +

1

2
scoreS′→S(TC

−1). (4.12)

Fig 4.8 visualizes the choice of the three line segments (per image) that yields the trans-
formation with the best matching score. It also shows the three intersections in each image,
for which there are three possible ways to pair them. The color of these points (red, green,
and blue) represents the pairing relationship. Fig 4.9 shows the registration result and how
the S and S ′ are finally matched. In Fig 4.10, we compare our result with Fedorov et al.’s
work [2003a] (online demo: Fedorov et al. [2003b]), and image registration using SIFT (online
open source: ? ), since these are the only algorithms that we can access.

4.5 Filtering
For the purpose of reducing unnecessary computation, before measuring a score of the

hypothesis transformation TC , we examine TC by decomposing it into the six elements of
the affine transformation: tx (translation in x), ty (translation in y), sx (scale in x), sy (scale
in y), θ (rotation angle), k (shear). The “true” transformation should have these elements
in certain limited ranges. For example, a tx or ty so large that it means that the two input
images are not even overlapped is not appropriate. If TC has a very large sx or sy, it is highly
likely to be a wrong answer. The rules we use are as follows, considering TC to be valid only
when:

• translation: |tx|, |ty| < min(image height, image width);

• scale: 1/3 < sx, sy < 3;
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(a) A choice of three line segments from Im-
age 1, and their intersections

(b) A choice of three line segment choice from Image 2,
and their intersections

Fig. 4.8. The three line segments highlighted in red in the two images is the choice that yields
the optimal transformation T ∗. The three circles in each image indicate the intersection
points of the three chosen segments. The circle color represents correspondence between the
points.
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(a) Registered image (b) Registered line segments

Fig. 4.9. (a) shows the registration result using the optimal transformation T ∗. (b) visualizes
how S and S ′ are finally matched.

(a) Our algorithm (b) UCSB (c) MATLAB

Fig. 4.10. Result comparison: (a) Our algorithm (b) Fedorov et al. [2003b]
(c) SIFT implemented by Vedaldi [2006]
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• skew: |k| < 0.2; and

• rotation: no constraint.

If TC violates one of these conditions, we do not need to calculate its matching score. We
discard the choice and keep repeating the process with another choice. If we have stricter
rules, we can save more computations by discarding more frequently.
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Chapter 5

Results

In this chapter, we show our results compared to Fedorov et al. [2003b] and Vedaldi
[2006]. We order the input image pairs in registration difficulty order, from the easiest to
highest. As the registration difficulty increased, other algorithms fail easily. We show that
our registration algorithm is outstanding especially for the input images in high registration
difficulty.
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(a) Our algorithm (b) Our algorithm with line segments

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi [2006]

Fig. 5.1. Result: greentest
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(a) Our algorithm (b) Our algorithm with line segments

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi [2006]

Fig. 5.2. Result: circular_road
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(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi [2006]

Fig. 5.3. Result: mountain
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(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi [2006]

Fig. 5.4. Result: depth
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(a) Our algorithm (b) Our algorithm with line segments

(c) Fedorov et al. [2003b] (d) SIFT by Vedaldi [2006]

Fig. 5.5. Result: coast
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(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b]

Registration Failure

(d) SIFT by Vedaldi [2006]

Fig. 5.6. Result: shane
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(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b]

Registration Failure

(d) SIFT by Vedaldi [2006]

Fig. 5.7. Result: livermore1
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(a) Our algorithm (b) Our algorithm with line segments

Registration Failure

(c) Fedorov et al. [2003b]

Registration Failure

(d) SIFT by Vedaldi [2006]

Fig. 5.8. Result: map
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Chapter 6

Conclusion

We propose a new segment-based registration system for multimodal aerial images with
a wide range of registration difficulties. We first visually show the registration difficulty in
a quantitative manner. In the first step of our registration process, we detect line segments
in each image using the LSD algorithm. Next we conduct the merging step on the detected
line segments. Finally, using the merged line segments as input, we generate possible hy-
pothesis affine transformations by choosing three segments in each image. After scoring each
hypothesis transformation based on the score metric, the highest-scoring one is selected.

This algorithm can easily be extended to projective transformations or higher degrees
of transformations by choosing four or more segments instead of three, and then solving a
hypothesis transformation based on the choice. This is exactly the same procedure, however
it will have a larger searching space and more intense computation.

Obviously, one limitation is computation time. As future work, we plan to reduce the
search space. In addition, we consider taking this registration algorithm as an initial trans-
formation estimate, and then performing additional micro-tuning afterwards to get an even
more accurate final transformation result.
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