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Abstract
We address the system-level challenge of supporting a dy-

namically changing, complex mix of simultaneously running
applications with diverse requirements including responsive-
ness, throughput, and performance guarantees. In our ap-
proach, called Adaptive Resource Centric Computing (ARCC),
the OS distributes resources to QoS domains called cells,
which are explicitly parallel lightweight containers with guar-
anteed, user-level access to resources. The resource alloca-
tions are dynamically adjusted whenever applications change
state or the mix of applications changes. This paper gives
explicit details about our implementation of ARCC on Tessel-
lation OS, an experimental platform for resource management
on multicore-based computers. We discuss the implementation
of cells, user-level scheduling, and resource allocation poli-
cies. Our running example is a realistic video conferencing
scenario that incorporates parallelism, QoS guarantees, and
dynamic optimization with two-level scheduling. Our system
reduces reserved CPU bandwidth to 69.95% of that of a static
allocation, while still meeting performance and QoS targets.

1. Introduction

Today’s users expect snappy operation from high-quality multi-
media and interactive applications, which need to both provide
responsive user interfaces and meet stringent real-time guar-
antees. Moreover, the need for data security and accessibility
leads to a number of compute-intensive applications, such
as anti-virus scanners or file indexers, executing in the back-
ground and possibly interfering with interactive and multime-
dia applications. An open research challenge is understanding
how an operating system (OS) should best support this dynam-
ically changing and complex mix of applications. Addressing
this challenge means being able to satisfy quality of service
(QoS) requirements while making efficient use of computing
resources — a potentially complex optimization problem.
For example, consider the multi-stream, multi-resolution
video conference in Figure 1. This scenario integrates video
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Figure 1: Multi-stream, multi-resolution video conferencing
with resource-hungry background tasks. Glitch-free behavior
requires both physical guarantees (e.g., CPU, memory, packet
bandwidth) and service-level guarantees (e.g., rendering and
encoding performance, remote network reservations). The
challenge is choosing appropriate resource allocations.

streams from multiple sites, with one site featured by a larger,
higher-resolution image. An outgoing video must be also
encoded and forwarded to each of the remote sites. New
participants may join the conference and others leave, in-
creasing or decreasing the number of streams running at any
given time. While conferencing, participants may collaborate
through browsers, watch shared video clips and search the
web; moreover, compute-intensive tasks, such as virus scans
or file indexing, could run in the background. Each individual
participant introduces a need for a separate, performance guar-
anteed video stream and sufficient computation to render and
composite an image on the shared video screen.

Although providing QoS guarantees to video streams by
over-provisioning resources may be relatively straightforward,
the real challenge is to do so without using static resource



reservations that compromise system utilization or needlessly
drain energy. Resources, in this context, include physical
resources such as CPU cycles or energy and services such as
file storage or network communication. Ideally, applications
with strict performance requirements should be given just
enough resources to meet these requirements consistently,
without siphoning resources from other applications. Further,
unused resources should be identified and deactivated to save
energy.

Unfortunately, applications such as video encoding exhibit
a complex relationship between resources and performance.
Consequently, dynamic, in-situ profiling must be part of any
solution. Further, the diffusion of multicore processors com-
plicates this task by adding on-chip spatial multiplexing and
shared resources that lead to contention and interference be-
tween co-running applications. Parallelizing applications is
not enough for performance; the system must balance re-
sources among competing tasks.

In the following pages, we tackle this system-level opti-
mization problem with a resource-centric approach that we
call Adaptive Resource Centric Computing (ARCC) [20]. Our
approach involves both dynamic resource allocation (adaptive
assignment of resources to applications) and QoS enforcement
(preventing interference between components). We illustrate
our solution in the context of Tessellation OS [21, 20, 22], an
experimental platform for resource management on multicore
computers. In Tessellation, resources are distributed to QoS
domains called cells, which are explicitly parallel, light-weight
containers with guaranteed, user-level access to resources. Fur-
ther, composite resources are constructed by wrapping cells
around existing resources and exporting service interfaces with
QoS contracts. Cells provide our essential mechanism for QoS
enforcement. To reduce the burden on the programmer and
to respond to changes in the environment, we automatically
adjust resource allocations to meet application requirements;
this framework for adaptation is one of our contributions.

Scheduling within cells functions purely at the user-level, as
close to the bare metal as possible, improving efficiency and
eliminating unpredictable OS interference. Our framework
for preemptive scheduling, called Pulse, enables customiza-
tion and support for a wide variety of application-specific
runtimes and schedulers without kernel-level modifications.
Pulse is highly efficient; for instance we wrote an Earliest
Deadline First (EDF) scheduler [34] that runs entirely in user-
space in about 800 lines of code.! In addition to support for
timer interrupts, the Pulse API provides callbacks for adapta-
tion events to notify schedulers when the number of available
cores changes. These notifications permit resource-aware,
application-specific management, which is impossible with
a centralized OS approach. This capability eliminates the
need to build a one-size-fits-all scheduler, thus sidestepping a
difficult design challenge [2].

In contrast, the best-known EDF kernel patch for Linux
(SCHED_DEADLINE) has over 3500 modified lines in over 50 files [9].
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Figure 2: Applications in Tessellation are created as sets of
interacting components hosted in different cells that commu-
nicate over channels. Standard OS services (e.g., the file ser-
vice) are also hosted in cells and accessed via channels.

By separating resource management into dynamic alloca-
tion and QoS enforcement, we are essentially adopting rwo-
level scheduling [32, 37, 21]. While two-level scheduling has
been investigated in the past, leveraging this concept to address
the issues that emerge in the dynamic execution scenarios we
outlined in this introduction raises complex challenges that are
often underestimated. For this reason, we evaluate a complete,
detailed solution that incorporates parallelism, QoS guaran-
tees, and dynamic optimization with two-level scheduling. We
directly address many of the issues that arise from this chal-
lenge, such as timing for interacting control loops, application
resizing, and efficient gang scheduling.

We utilize the multi-stream video conference from Figure 1
as a running example throughout this paper. In one experiment,
our system is able to reduce CPU bandwidth to 69.95% of that
of a static allocation (efficient resource usage), while meeting
the performance target.

2. Tessellation OS: An ARCC Instance

This section briefly describes the key components of Tes-
sellation OS [21, 20, 22]. The Tessellation kernel is a thin,
hypervisor-like layer that provides support for ARCC. It im-
plements cells along with interfaces for user-level scheduling,
resource adaptation, and cell composition. Tessellation cur-
rently runs on x86 hardware platforms (e.g., with Intel’s Sandy
Bridge CPUs).

2.1. The Cell Model

Cells are the basic unit of computation and protection in Tes-
sellation. They are performance-isolated resource containers
that export their resources to user level. The software run-
ning within each cell has full user-level control of the cell’s
resources (e.g., CPU cores, memory pages, and I/O devices).

As depicted in Figure 2, applications in Tessellation are
created by composing cells via channels, which provide fast,
user-level asynchronous message-passing between cells. Ap-
plications can then be split into performance-incompatible
and mutually distrusting cells with controlled communica-
tion. Cells provide our basic mechanism for QoS enforcement;



when combined with adaptive resource allocation, they pro-
vide a complete platform on which to build a multi-application
environment.

2.2. Implementing Cells

Tessellation OS implements cells on x86 platforms by par-
titioning resources using space-time partitioning [44, 35], a
multiplexing technique that divides the hardware into a se-
quence of simultaneously-resident spatial partitions. Cores
and other resources are gang-scheduled [38, 24], so cells pro-
vide to their hosted applications an environment that is very
similar to a dedicated machine.

Partitionable resources include CPU cores, memory pages,
and guaranteed fractional services from other cells (e.g., a
throughput reservation of 150 Mbps from the network ser-
vice). They may also include cache slices, portions of memory
bandwidth, and fractions of the energy budget, when hardware
support is available [12, 31, 41, 46]. Section 3 provides details
about our implementation of cells in Tessellation.

The user-level runtime within each cell can be tuned for
a specific application or application domain with a custom
scheduling algorithm. Using our user-level scheduler frame-
work, Tessellation provides pre-canned implementations for
TBB [42] and a number of scheduling algorithms, including
Global Round Robin (GRR), Earliest Deadline First (EDF),
and Speed Balancing [27]. Others may be easily constructed
if necessary. Section 4 provides a detailed discussion of user-
level scheduling in Tessellation and the Pulse API.

2.3. Service-Oriented Architecture

Cells provide a convenient abstraction for building OS services
with QoS guarantees. Such services reside in dedicated cells,
have exclusive control over devices, and encapsulate user-level
device drivers. Each service can thus arbitrate access to its
enclosed devices, and leverage its cell’s performance isola-
tion and customizable scheduler to offer service guarantees to
other cells. Services can shape data and event flows coming
from external sources with unpredictable behavior and pre-
vent other cells from being affected. In keeping with ARCC,
Tessellation treats the services offered by such service cells
as additional resources, and manages them with its adaptive
resource allocation architecture.

Two services in Tessellation that offer QoS guarantees
are: the Network Service, which provides access to network
adapters and guarantees that the data flows are processed with
the agreed levels of throughput; and the GUI Service, which
provides a windowing system with response-time guarantees
for visual applications. These services are utilized in our
macro-benchmarks measurements in Section 6.

2.4. Adaptive Resource Allocation

Tessellation uses an adaptive resource allocation approach to
assign resources to cells. This functionality is performed by
the Resource Allocation Broker (RAB), as shown in Figure 3.
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Figure 3: The Tessellation kernel implements cells through
spatial-partitioning. The Resource Allocation Broker
(RAB)redistributes resources after consulting application-
specific heartbeats and system-wide resource reports.

The RAB distributes resources to cells while attempting to
satisfy competing application performance targets and system-
wide goals, such as deadlines met, energy efficiency, and
throughput. It utilizes resource constraints, application mod-
els, and current performance measurements as inputs to this
optimization. Allocation decisions are communicated to the
kernel and services for enforcement. The RAB reallocates
resources, for example, when a cell starts or finishes or when
a cell significantly changes performance. It can periodically
adjust allocations; the reallocation frequency provides a trade-
off between adaptability (to changes in state) and stability (of
user-level scheduling).

The RAB provides a resource allocation framework that
supports rapid development and testing of new allocation poli-
cies. This framework enables us to explore the potential of
an ARCC-based OS for providing QoS to individual applica-
tions while optimizing resource distribution to achieve global
objectives. In Section 5, we discuss two policies we have
implemented to demonstrate this potential.

3. Space-Time Partitioning Implementation

As shown in Figure 3, the Tessellation kernel comprises two
layers, the Partition Multiplexing Layer (or Mux Layer) and
the Spatial Partitioning Mechanisms Layer (or Mechanism
Layer). The Mechanism Layer performs spatial partitioning
and provides resource guarantees by exploiting hardware par-
titioning mechanisms (when available) or through software
emulation (e.g., cache partitioning via page coloring). Build-
ing on this support, the Mux Layer implements space-time
partitioning and translates resource allocations from the RAB
into an ordered time sequence of spatial partitions.
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Figure 4: Operation of the Mux Layer: Gang scheduling of
overlapping time-triggering cells A and B and an independent
cell C. Cell A is assigned to hardware threads {0,2} and cell
B to hardware threads {1,2}. Hardware thread 3 is dedicated
to cell C. Multiplexers 0, 1, and 2 produce same schedule, but
only activate the cells allocated to their hardware threads. Mul-
tiplexer 3, on the other hand, does not require knowledge of
other multiplexers to schedule its cell.

3.1. Types of Cells

The Mux Layer offers several time-multiplexing policies for
cells, some of them offering high degrees of time predictabil-
ity; they are: 1) non-multiplexed (dedicated access to its as-
signed resources), 2) time triggered (active during predeter-
mined and periodic time windows), 3) event triggered (acti-
vated upon event arrivals, with an upper bound on total proces-
sor utilization), and 4) best effort (without time guarantees).

These multiplexing policies allow users to specify desired
timing behavior for cells within a certain precision (cur-
rently 1 ms). For example, time-triggered and event-triggered
cells both take the parameters period and active_time,
where period > active_time; for an event-triggered cell,
(active_time [ period) is its reserved processing-time fraction.
The Mux Layer then ensures that, if feasible, a set of cells with
different multiplexing policies harmoniously coexist and re-
ceive their specified time guarantees. In this way, Tessellation
offers precise control over cells’ timing behavior, a characteris-
tics that differentiates Tessellation from traditional hypervisors
and virtual machine monitors [14, 29].

3.2. Cell Multiplexers and Gang Scheduling

The Mux Layer in the Tessellation kernel runs a separate
multiplexer on each hardware thread of the system, as de-
picted in Figure 4. The multiplexers, or muxers, control the
time-multiplexing of cells, and collectively implement gang
scheduling [38, 24] in a decentralized manner. They execute
the same scheduling algorithm and rely on a high-precision
global-time base [30] to simultaneously activate a cell on mul-
tiple hardware threads with minimum skew. Our prototype

takes advantage of Intel’s TSC-invariant feature” and the fact
that LAPIC timers are all driven by the bus frequency to have
access to a high-precision global time. In the common case,
the muxers operate independently and do not communicate to
coordinate the simultaneous activation of cells.

For correct gang scheduling, the muxers need to maintain
an identical view of the system’s state whenever a scheduling
decision is made. Hence, each muxer makes not only its own
scheduling decisions but also reproduces the decisions made
by other (related) muxers with overlapping schedules. In the
worst case, each muxer must schedule the cell activations
happening in every hardware thread in the system, but the
RAB tries to avoid such unfavorable mappings.

Muxers communicate in the uncommon case of events that
change the scheduling of cells. Such events include when a
cell yields its resources, when a device interrupt requires the
activation of an event-triggered cell that has previously yielded
its resources, and when the RAB requests a redistribution of
resources among cells (see Section 3.3). The muxer that first
receives a given event initiates the communication by propagat-
ing the event to the other (related) muxers via inter-processor
interrupt (IPI) multicast. Communication between muxers can
leverage message passing depending on architectural support,
but often proceeds via shared memory.

The scheduling algorithm implemented by the muxers is
tickless; i.e., timer interrupts are issued only when necessary.
For example, in the common case, a cell with a non-preemptive
user-level runtime (e.g., based on Lithe [40]) running purely
computational code is interrupted only when it is to be multi-
plexed. A tickless environment minimizes both the direct cost
(cycles spent in the kernel) and indirect cost (cache pollution)
of timer-interrupt overhead [13]. For a cell with a preemptive
user-level runtime, muxers make timer interrupts occur more
often (e.g., periodically) during the cell’s timeslices to trigger
user-level runtime’s scheduling logic (see Section 4).

The muxers implement gang-scheduling for all of the cell
types mentioned in Section 3.1 using a variant of Earliest
Deadline First (EDF) [34], combined with the Constant Band-
width Server (CBS) [11] reservation scheme. We chose EDF
for time-triggered cells because it enables the muxers to di-
rectly utilize the timing parameters specified for these cells.
CBS, on the other hand, isolates each event-triggered cell
from other cell activations, and ensures the cell a fraction
(f = active_time / period) of processing capacity on each hard-
ware thread assigned to the cell. Further, CBS offers event-
triggered cells responsiveness by allowing them to exploit the
available slack without interfering with other cells. For short
activation time (e.g., for event processing in service cells), an
event-triggered cell is activated with an immediate deadline if
it has not used up its time allocation.

For implementation simplicity, the muxers use CBS to
schedule best-effort cells. Unlike event-triggered cells, best-

2 The invariant timestamp counter (TSC) runs at a constant rate.



1 void make_sched_decision(local_sched, cur_time) {
2 update_runnable_Q (local_sched , cur_time)

3

4 cell_2_activate =

5 get_cell_2_activate (local_sched ,

6 cur_time)

7 next_alarm =

8 when_is_next_alarm (cell_2_activate ,

9 local_sched)

10 set_alarm_at(next_alarm)

11 send_end_of_interrupt ()
12 switch_cell (cell_2_activate)

Listing 1: Multiplexer’s function for scheduling cells.

effort cells are always kept in the runnable queue. Each best-
effort cell is given a fixed small reservation (e.g., 2% with
active_time = 5 ms and period = 100 ms) to ensure that it
always makes progress.

Listing 1 shows pseudo-code for the multiplexer scheduling
function. It is called by kernel’s interrupt-handler functions
(e.g., the timer interrupt handler) after disabling interrupts
and suspending the currently active cell (if any). The function
first calls update_runnable_0Q(...) thatembeds EDF/CBS
logic; this helper function updates the time-accounting vari-
ables of the cells that were just interrupted, as well as the
scheduler’s runnable queue. Next, in line 5 it determines the
cell to activate or the need to leave an empty timeslice on the
local hardware thread; in making this decision it considers
cells that have been assigned to the local hardware thread and
those overlapping cells that have not (see Figure 4). Then,
it obtains and sets the time for the next timing interrupt in
lines 8 and 10, respectively. Finally, the function signals the
end of interrupt handling (line 11), and calls the non-returning
function switch_cell (...), which activates a cell if given,
or halts the hardware thread otherwise.

We evaluate Tessellation’s multiplexing accuracy by run-
ning a CPU-intensive application kernel in multiple time-
multiplexed cells (i.e., time-triggered, event-triggered, and
best-effort cells). Each cell is run alone first to determine
its performance in isolation, and then multiplexed with other
cells on the same hardware threads. We observe that a time-
triggered cell with 25% hardware thread reservation achieves
near identical performance when run alone or with other cells.
Similarly, an event-triggered cell with a 20% reservation runs
the same when alone, with a best-effort cell, or with a time-
triggered cell with 25% reservation. As expected, two best-
effort cells scheduled on the same hardware threads each
achieve 50% of their performance when run alone. Conse-
quently, the Tessellation kernel effectively isolates CPU-bound
cells sharing the same hardware threads.

We also measured Tessellation’s gang-scheduling skew in
a 3-core cell (with hyper-threading disabled) across 10,000
wake ups. At the cell entry point, each thread records its
timestamp counter (TSC). Since the system has synchronized
TSCs, we measure skew as the largest difference between any

Max Min  Average Std. Dev.
TSC cycles 4980 148 2721 843
microseconds 1.468 0.044 0.802 0.249

Table 1: Gang scheduling skew results.

Max Min  Average Std. Dev.
TSC cycles 29462 3600 7197 1018
microseconds  8.685  1.061 2.122 0.300

Table 2: Time multiplexing latency results.

two TSC values at each wake up point. On average, we found
sub-microsecond gang-scheduling skew (see Table 1) and low
time-multiplexing latency (see Table 2).

3.3. Redistributing Resources among Cells

To request a redistribution of privileged resources among cells
(e.g., resizing cells, changing timing parameters, or start-
ing new cells), the RAB passes the new distribution to the
Mux Layer via the update_cells(...) system call (only
accessible to this service). The Tessellation kernel responds to
requested changes by altering the scheduling of cells.

To implement changes, each muxer has two scheduler in-
stances: one active and one inactive. The Mux Layer first vali-
dates the new resource distribution and, if successful, proceeds
to serve the request. Next, it resets and prepares the inactive
schedulers, and establishes the global time in the near future
(with a safety margin of at least 1 ms) at which the muxers
will synchronously swap their active and inactive schedulers.
Until the swap occurs, no other adaptation event can take
place. At the specified time, the muxers swap their schedulers
and perform other actions related to the relocation of cells
(e.g., re-routing device interrupts). This approach allows the
Mux Layer to process resource-distribution requests almost en-
tirely without disturbing the system’s operation with only the
overhead of switching schedulers and other cell-relocation ac-
tions. Note that if a subset of muxers is involved in a resource
redistribution, only that subset performs the switch.

Right before the muxers simultaneously switch their sched-
ulers, each muxer suspends the active cell on its hardware
thread (if any). Upon the first activation of each cell after the
scheduler exchange, the kernel sets the resource-redistribution
event flag for the cell if its hardware-thread count has changed.
This alerts the cell’s second-level scheduler to take necessary
action, such as migrating threads or creating new ones, in
response to the resource-redistribution event. This reactive
adaptation process is discussed in detail in Section 4.4.

While running our experiments, we have observed that
.) returns on average after 30 us, while
the entire process described above often takes less than 2 ms
with a safety margin of 1 ms for the scheduler exchange.

update_cells (..
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Figure 5: Cumulative distributions of frame processing la-
tency for the 60-fps video with the global round-robin (GRR)
and global early-deadline-first (EDF) schedulers.

4. Custom and Adaptive User-Level Schedulers

In Tessellation, scheduling within cells occurs purely at the
user-level, as close as possible to the bare metal, to improve
efficiency and eliminate OS interference. To make user-level
scheduling practical for application developers, we developed
Pulse—an efficient framework for constructing application-
specific schedulers without kernel-level modifications.

In this section, we start by illustrating how applications can
benefit from using a custom scheduler, as opposed to a one-
size-fits-all scheduler; then, we show how to build schedulers
with the Pulse framework and illustrate how Pulse handles
preemption and core allocation/revocation.

4.1. Customizing a User-Level Scheduler

The search for a single, optimal OS scheduler is a hot topic in
the OS community (e.g., refer to the CFS versus BFS debate in
Linux [2]). The advantage of Tessellation’s user-level schedul-
ing approach is that each cell can independently define its
ideal scheduler, thus dispensing with the need for a complex
global scheduler. In the following experiment, we highlight
the advantages of choosing the “correct” scheduler.

We run a real-time video decoder on Tessellation that oper-
ates on two H.264 videos with different characteristics, using
one thread per video. The videos have a resolution of 640x360
and 750x430, respectively, and we require the two videos to
play at 60 and 30 frames per second (fps), respectively. The
video decoder uses FFMPEG’s libavcodec library [6], and we
run the experiment on a Intel Core 17-3770 desktop.

We measured the number of deadlines missed (i.e., decoding
latency that exceeds, respectively, 1/60 and 1/30 of a second)
with a global round-robin (GRR) scheduler versus a global
EDF scheduler. The EDF scheduler is a natural fit, as it allows
one to specify the period and deadline for both decoding tasks,
while the round-robin scheduler multiplexes runnable threads
with a 1-ms timeslice, regardless of deadline. Figure 5 shows
the cumulative distributions of frame processing latency for
both schedulers for the 60-fps video.

1 void init(num_threads, thread_func) {

2 initialize (global_q)

3 for (i = 0; i < num_threads; i++) {

4 threads[i] = pulse_thread alloc(stack_size)
5 pulse ctx_make (threads[i], thread_func, i)
6 push(global_q, threads[i])

7 }

8 active_threads = num_threads

9 pulse _sched reg(sched_callbacks)

10 }

11

12 void enter () {

13 run_next_thread ()

14 )

15

16 void tick(ctx) {

17 pulse_ctx_copy (threads[vhart_id ()], ctx)
18 push_lock (global_q, threads[vhart id()])
19 run_next_thread ()

20 }

22 void yield(ctx) {

23 pulse ctx copy (threads[vhart id ()], ctx)
24 push_lock (global_q, threads[vhart_id ()])

25 run_next_thread ()

26 }

27

28 void done() {

29 atomic_dec(active_threads)

30 pulse thread free ()

31 run_next_thread ()

32}

33

34 void run_next_thread () {

35 while (atomic_read(active_threads) > 0) {
36 ctx = pop_lock(global_q)

37 if (ctx != NULL) {

38 pulse_ctx_restore_enable_ ticks (ctx)
39 }

40 pulse_sched_ctx_done ()

41 }

42}

43

44  void adapt(old_n, new_n, ctx[]) {

45 if (vhart_id() != 0) return

46 for (i = 0; i < old_n; i++) {

47 pulse_ctx_copy (threads[i], ctx[i])
48 push(global_q, threads[i])

49 }

50 }

Listing 2: Simple Round Robin scheduler using Pulse. Func-
tions that are underlined are implemented in the Pulse library.

The EDF-scheduled video decoder misses no deadline for
the 30-fps video, and 0.4% of the deadlines for the 60-fps
video. The GRR-scheduled decoder, on the other hand, misses
7.3% and 36.3% of the 30- and 60-fps videos’ deadlines, re-
spectively. In this experiment, the EDF scheduler behaves
much better with the video application because it exploits
the notion of deadline. However, the EDF scheduler is diffi-
cult to use for applications without natural deadlines making
round-robin schedulers necessary in many situations. Thus,
cell-specific user-level schedulers are an advantage of Tessel-
lation over traditional OS designs.



4.2. Writing Application Schedulers

Tessellation’s preemptive user-level scheduling framework,
Pulse, makes it easy to implement schedulers by taking care
of all the details of: 1) interfacing with the kernel, 2) mapping
user threads to hardware threads (harts), and 3) ensuring that
application schedulers see consistent state when interrupted
by adaptation events (i.e., changes to the resources available
to a cell). Application schedulers link with the Pulse library
and must implement five callbacks:

e enter () is called when code first runs on a hart;

e tick (ctx) iscalled onevery timer tick and is passed the ac-
tive application thread context when the interrupt occurred;

e yield(ctx) is called when an application thread yields
and is passed the application thread context that yielded;

e done () is called when an application thread terminates;

e adapt (old_n, new_n, ctx[]) is called on an adapta-
tion event and is passed the number of harts before the
event (o1d_n), the number of harts after the event (new_n),
and an array of the application thread contexts that were
running on the original harts before the event.

Listing 2 shows pseudo-code for a simple Round Robin
scheduler. The application calls the init function (line
1) in the main function, which runs on a single hart be-
fore the OS starts code running on all cores. Pulse’s
helper functions pulse_thread_alloc, pulse_ctx_make
and pulse_thread_free serve to manage relevant data struc-
tures, that are pushed onto a global queue. Finally the sched-
uler is registered with Pulse via the pulse_sched_reg call.

The enter callback (line 12) is initially executed in parallel
on each hart. The scheduler calls run_next_thread (line
34), which tries to pop a thread off the global queue and run
it using the pulse_ctx_restore function provided by Pulse.
The tick (line 16) and yield (line 22) callbacks save the
application context to a scheduler data structure indexed by
the hart number (vhart_id ()), push it onto the global queue,
and call run_next_thread.

Note that the functions used to manipulate the global queue,
push_lock and pop_1lock, synchronize using a global lock
(not shown in the code). All locks in the scheduler implemen-
tation must use synchronization functions provided by Pulse
because of the way adaptation is handled, as explained in Sec-
tion 4.4. Another requirement for adaptation support is that
the scheduler code should never spin without yielding control
to Pulse; this is the purpose of the pulse_sched ctx_done
function at line 40.

Adaptation is simple for the global Round Robin scheduler.
In the adapt callback (line 44), a single scheduler thread (on
vhart 0) iterates through the provided application contexts,
copies them to a local array, pushes pointers to them into the
global queue, and returns to Pulse. If the number of harts
has decreased, there will be fewer scheduler threads running,
but since this simple implementation only depends on having

one scheduler thread per hart, the change will not affect the
implementation. If the number of harts increased, then new
scheduler threads will be started at the entry callback.

While we illustrated this global Round Robin scheduler
for its simplicity, Pulse allows efficient implementation of
more complex scheduling algorithms. For example, we imple-
mented a user-level EDF scheduler with support for priority
inheritance synchronization mechanisms (avoiding the pitfall
of priority inversion) in about 800 lines of C code.

4.3. Preemption Handling in Pulse

When a timer event occurs, the kernel saves the context of the
interrupted task to userspace and clears an atomically acces-
sible, user-writable TT1CkS_ENABLED flag before switching to
a userspace handler.” The kernel allows the user-level sched-
uler to decide when it should re-enable ticks; Pulse currently
does not support re-entrant schedulers, so it expects that ticks
will remain disabled until the scheduler switches to an appli-
cation context. Pulse provides a context switching function,
pulse_ctx_restore_enable_ticks, that switches to an
application context and re-enables ticks (line 38 in Listing 2).

Since scheduler threads can migrate to different hardware
threads during adaptation events, each TICKS_ENABLED flag is
specific to a scheduler thread. We currently use the FS segment
register on x86 architectures to hold this flag.* Specifically,
each scheduler thread is given an entry in the cell’s local de-
scriptor table (LDT) that points to a single TICKS_ENABLED
word. Each thread’s FS register is set to index the LDT ap-
propriately such that any atomic access to $fs: (0x0) will
correctly modify TICKS_ENABLED.

4.4. Adaptation Handling in Pulse

Tessellation’s user-level runtimes must react to resource redis-
tributions from the kernel. When the resources available to a
cell vary (i.e., an adaptation event occurs), the kernel copies all
previously running contexts into user-space structures, sets a
(per-cell) flag indicating that an adaptation event is in progress,
and calls Pulse. To simplify our design, we do not support
multiple outstanding adaptation events: an event must termi-
nate before a new one starts; if a cell breaks this requirement,
it triggers a termination failure. We claim this approach is
sufficient for experimentation and avoids over-engineering, as
adaptation events are expected to happen at a coarse time scale
and to be handled quickly.

When Pulse responds to an adaptation event, it checks each
previously running context to determine if it is a scheduler
or application context (it is enough to check if ticks are dis-
abled, indicating a scheduler context). If there are interrupted
scheduler contexts, Pulse will activate an auxiliary scheduler
to deal with all the outstanding scheduler contexts before any
application contexts. The auxiliary scheduler ensures that the

3For non-preemptive cells, TICKS_ENABLED is always clear.
4We are investigating non-architecture specific methods to atomically
control a thread-local variable.



Cycles Nanoseconds
Average Std. Dev. | Average Std. Dev.
Ist Level | 4279 358 1452 121
2nd Level | 4711 335 1598 114
Total 8990 3050

Table 3: Thread Switch Latency Results

application scheduler is never aware that it was interrupted, so
that it never has to deal with inconsistent scheduler states.

If an adaptation event increases the number of available
hardware threads (harts), the auxiliary scheduler has sufficient
harts to simply switch to each outstanding scheduler context
on a different hart and allow those to run in parallel until they
switch to application contexts and re-enable ticks. Then, on the
next timer tick, Pulse will determine that the adaptation event
is still in progress and that the saved contexts are now purely
application contexts. Pulse then saves the application contexts
into an array, which it passes to the application scheduler
via the adapt callback. When the adapt callback returns,
Pulse clears the adaptation flag, marking the adaptation event
as complete, and then calls the application scheduler’s tick
callback to resume normal scheduling.

If an adaptation event decreases the number of harts, there
may not be enough harts to simultaneously run each outstand-
ing scheduler context to completion. Consequently, the aux-
iliary scheduler runs the outstanding scheduler contexts in a
globally cooperative, Round Robin manner; i.e., a scheduler
context runs until it either completes and transitions into an ap-
plication context, or yields into Pulse, allowing other contexts
to run. While a cooperative scheduler simplifies the design, it
adds the requirement that application schedulers never block.
For this reason, Pulse provides synchronization functions and
the pulse_sched_ctx_done function, described in the ex-
ample scheduler in Section 4.2.

Another consequence of using a Round Robin auxiliary
scheduler is that a scheduler context could complete on any
of the available harts, meaning that the underlying hart ID
might change, possibly breaking an application scheduler that
relies on hart IDs to index data structures. To prevent this
problem and ensure that adaptation events are transparent to
the application scheduler, the auxiliary scheduler virtualizes
the hart IDs and makes sure that each user thread always gets
the same unique ID when calling the function vhart_id (),
regardless of the actual hart in use.

4.5. Scheduler Performance

The user-level implementation of scheduling allows for low
latency thread switching. Table 3 shows thread-switch latency
on a quad-core, 3.3GHz Intel Core i5-3550. We measured the
time taken in both the kernel (1st level) and userspace (2nd
level), for a single thread on a single core using the global
Round Robin scheduler. The results are averaged over 10,000
interrupts. This cost is hence the minimum associated with a
context switch, which will also be impacted by the number of

running threads, cache effects, and other factors.

5. Resource Brokerage

Without automatic resource allocation, the best way to attain
performance goals is to profile applications and statically pro-
vision resources for the worst case. In contrast, Tessellation’s
kernel and user-level scheduler mechanisms create a unique
platform for investigating dynamic resource allocation poli-
cies. In Tessellation, we have created a Resource Allocation
Broker (RAB) that utilizes information about the system and
applications to provide resource allocations to the kernel and
services (e.g., Network Service and GUI Service). The Broker
can use a variety of allocation strategies, and next we describe
two approaches we have implemented. We start by explaining
the basic framework.

5.1. Resource Allocation Broker (RAB)

The RAB runs in its own cell and communicates with ap-
plications through channels, as shown in Figure 3. When
a cell is started, it registers with the RAB and provides an
application-specific performance target, such as desired a
frame rate. These metrics are provided in the form of a time in
milliseconds. For example, an application with a desired rate
of 30 frames per second would specify a performance target
of 33 ms per frame. While the cell is running, the Broker
receives periodic performance reports, called heartbeats [26],
containing measured performance values from the cell (e.g.,
the time to render a frame for a video application). These mea-
sured values correspond to the performance target provided by
the cell when it registered with the Broker, so a value that is
larger than the target would mean that the application is not
meeting its goals. The RAB also provides an interface for cells
to update their performance targets while they are running.

Ideally, performance targets would be inferred by the system
or provided by a more trusted source than the applications
themselves. However, we chose this design point since it
was straightforward to implement and we wanted to focus our
efforts on exploring resource allocation approaches that could
take advantage of the additional information.

RAB also accesses information from system-wide perfor-
mance counters, such as cache-miss statistics and energy mea-
surements, which enables policies to take system-wide goals
into account in their allocations. For example, the Broker
could reduce resource allocations of non-critical applications
if the system power is too high.

The RAB monitors cells’ performance using heartbeats and
compares it to target rates, adjusting resource allocations as
required. Allocation decisions are communicated to the kernel
(using update_cells(...)) and services (using channels)
for enforcement. The reallocation frequency is adjustable.
However, in most of our allocation approaches we try to avoid
frequent reallocation, leaving the user-level scheduler to han-
dle fine-grained resource management.



Next, we present two resource allocation approaches. Sec-
tion 5.2 describes a control-theory based approach to adjust
processor allocations. Section 5.3 describes an optimization-
based approach for multi-dimensional resource allocation that
uses application models. We present these policies because
we believe they are good demonstrations of the potential of
an adaptive OS for efficiently guaranteeing application perfor-
mance; however, there may be many more such policies.

5.2. Performance-To-Allocation Policy

The first resource allocation technique [50] uses feedback con-
trollers to automatically allocate the right amount of a single
resource type to applications with performance goals. We re-
fer to this technique as POTA (PerfOrmance-To-Allocation).
While different types of resources exist (compute, storage, I/O
bandwidth), in many cases resources of a single type become
the performance bottleneck; so, POTA estimates the amount
of the bottleneck resource needed to maintain a desired perfor-
mance level.

In Tessellation, we use POTA to estimate resource require-
ments for compute-bound streaming applications hosted in
cells. The performance of such applications is expressed as a
throughput measurement. We assume the throughput depends
on the availability of compute resources (i.e., cores and CPU
bandwidth).

To estimate the amount of compute resources for an appli-
cation to maintain the desired throughput level, we capture the
relationship between resource availability and performance
with a linear model. Then, we synthesize a controller able to
estimate resource needs based on the model.

The linear model used is:
tk+1)=a-t(k)+b-r(k)
where #(k) and ¢(k + 1) are throughput values at control steps
k and (k+ 1) on a window of P seconds, and r(k) is the
fraction of compute resources the application can use during

the time quantum (k,k + 1). The terms a and b characterize
the application’s workload and scalability, respectively.

For a given application, the model’s parameters are esti-
mated online using the application’s measured throughput and
a recursive least-squares algorithm. Two implicit parameters
of the model are: the sampling period 7 and the time window
of throughput measurements w. Intuitively, we observe the
application every Tms and evaluate its performance over the
last Tms. The actual value of T depends on the application
and the required control granularity. We make no assumptions
on the actual values, but require w =T .

Once the parameters a and b are identified, a proportional-
integral (PI) controller uses the model and the application’s
heartbeats with throughput values to determine the necessary
amount (without much excess) of resources for the application
to meet its performance target. For brevity, we do not present
the controller’s canonical derivation, but its final time-domain

expression is:

k) = rk—1)+ 1P

.lpr.e(kfl)

e(k)—a

Here, e(k) =7 —t(k) is the performance error at step k with
respect to the desired throughput 7, #(k) is the resource need
estimate at step k, r(k) is the resource allocation at step &,
and p is a controller parameter. Choosing p € (0, 1) ensures
that the closed loop is asymptotically stable and it converges
without oscillations.

In Tessellation, the model and controller for each cell (host-
ing a given application) are implemented in the RAB. This
way the RAB can establish the resource needs of the cells and
redistribute the resources accordingly.

5.3. Multidimensional Optimization Policy

The second resource allocation technique is called PA-
CORA [17], which stands for Performance-Aware Convex
Optimization for Resource Allocation. PACORA formulates
resource allocation as an optimization problem built from two
types of application-specific functions: a response time func-
tion and a penalty function. PACORA uses convex optimiza-
tion [18] to efficiently determine the ideal resource allocation
across all active cells by minimizing the total penalty of the
system.

Response time functions (RTF) represent the expected re-
sponse time of a cell as a function of the resources allocated to
it. The response time is an application-specific measure of the
performance of the application, such as the time to produce a
frame or the time from a service request to its response. This
information is provided to PACORA through the heartbeats
interface. By varying the resource allocations and collecting
heartbeat information, PACORA can determine how well each
cell scales with a particular resource. Using the performance
history of the cell, we fit the model:

T(w,a) =7+ Wi
( 7 ) ’ i€r§€n \/ai*a/
Here 7 is the response time, i and j are resource types, n is the
total number of resource types, a; and a; are the allocations
of resource types i and j, and w; ; is the application-specific
weight for the term representing resources i and j.

Penalty functions embody user-level goals of the applica-
tion. Although similar to priorities, they are functions of the
response time rather than simply values so can explicitly rep-
resent deadlines. Knowing the deadlines lets the system make
optimizations that are difficult in today’s systems, such as run-
ning just fast enough to make the deadline. Like priorities, the
penalty functions are set by the system on behalf of the user.

PACORA’s penalty functions 7 are non-decreasing
piecewise-linear functions of the response time 7 of the form
7(t) = max(0, (Tt — d)s), where d represents the deadline of
the application and s (slope) defines the rate the penalty in-
creases as response time increases. For applications without
response time constraints the deadline can be set to 0.



Given the response time and penalty functions, PACORA
formulates resource allocation as an optimization problem
designed to minimize the total penalty of the system. This
approach is analogous to minimizing user dissatisfaction with
the user experience due to missed deadlines. The optimization
selects the allocations for all resources and resource types at
once, thereby enabling the system to make tradeoffs between
resource types. For example, the system could choose to
allocate more memory bandwidth in lieu of on-chip cache, or
one large core instead of several small cores.

A succinct mathematical characterization of this resource
allocation scheme is the following:

Minimize Z 7Ty (Tp(ap ... apn))

peEP
Subjectto Y ap,<A,r=1,...n
pEP
and a,, >0

Here 7, is the penalty function for application p, T, is its RTF,
ap,r is the allocation of resource r to application p, and A, is
the total amount of resource r available.

PACORA is convex by construction, so that optimization
can be solved quickly with low overhead. We have observed in
our experiments that solving this optimization in Tessellation
takes 350 pus. PACORA also formulates RTF creation as a
convex optimization problem, which takes 4 ps. Section 6.2
demonstrates how Tessellation uses PACORA to allocate re-
sources in our video conference scenario.

6. Case-study Evaluation

Now we demonstrate how the polices described in Section 5
can be used to efficiently allocate resources for different parts
of the video conference scenario described in Section 1. In
Section 6.1, we use POTA to provide a consistent frame rate
for encoding the user’s outgoing video feed without over-
provisioning resources, despite variable execution phases. Sec-
tion 6.2 demonstrates using PACORA as the overall resource
brokerage system, dividing resources between incoming video
streams, a file indexer, and outgoing network data.

Our test platform is an Intel server containing two 2.66-
GHz Xeon X5550 quad-core processors with hyper-threading
enabled and a 1-Gbps Intel Pro/1000 Ethernet network adapter.

6.1. Leveraging POTA Policy for Stable Performance

We use POTA to allocate resources to a video-encoder applica-
tion that produces an outgoing video stream. The performance
requirement on the video encoder is to output 30 fps to allow
a high-quality, glitch-free video experience. Figure 6 shows
the frame rate achieved under two possible resource-allocation
solutions conceived to meet that performance requirement.
We use the x264 video encoder from the PARSEC 2.1 bench-
mark suite with a downscaled (512x288 pixels) version of the
original input. The encoder runs in a cell, and we adjust the
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encoding settings so that the encoder is able to meet the 30-
fps requirement throughout the run with 8 hyperthreads fully
dedicated to it, which represents our 100% allocation.

The most straightforward way to achieve the desired QoS
is to statically reserve the 8 hyperthreads for the (non-
multiplexed cell hosting) video encoder. Figure 6a shows the
application’s throughput measured with a 1-second moving
average. While the encoder runs fast enough to meet the perfor-
mance requirement, the output frame rate varies depending on
the characteristics of the video input (i.e., X264 goes through
different execution phases [47]), leading to exceedingly fast
performance for a significant portion of the execution. This
situation is not ideal for two reasons: 1) the application uses
more resources than needed during part of its execution, and
2) since the output data is consumed at constant rate, faster
phases lead to increased buffering requirements.

With POTA, we set the performance target to 30 fps and let
the system to dynamically determine the CPU-bandwidth allo-
cation for a time-triggered cell hosting the encoder.” Figure 6b
shows that POTA is able to dynamically vary the amount of
CPU-bandwidth granted to the video encoder and keep the
performance very close to the 30-fps mark, while not over-
allocating resources. In fact, POTA allocates 69.95% of the
CPU bandwidth that the static allocation uses — which leaves
a resource slack that can be either employed in other useful
work or idled to take advantage of power-saving mechanisms.
Moreover, POTA avoids the need for a large buffer to store the
excess of data produced in the faster phase.

6.2. Adapting Multiple Resources

This experiment demonstrates using PACORA to allocate
cores and network bandwidth to 3 applications (video player,
file indexer, network hog) in our video conference scenario,
and shows the complete adaptive loop in Tessellation.

Our streaming video application is a multi-threaded,
network-intensive workload intended to simulate video chat
applications like Skype [10] and Facetime [5]. We have 9
incoming video streams each handled by a thread in our video
cell, which uses Pulse EDF scheduler (see Section 4). Each
thread receives frames from the network service, decodes
them using libffmpeg, and sends them to the GUI service for
display. Videos are encoded offline in H.264 format using
libx264, transported across the network via a TCP connec-
tion from a Linux Xeon ES5-based server. We use Big Buck
Bunny [1] for each video. Videos can be small or large (al-
though only one may be large at a time) and are resized by a
keyboard command. Small videos require roughly 90 kbit/s
while large require 275 kbit/s of network bandwidth. Tessella-
tion provides each video stream a separate network bandwidth
allocation, and the videos share their core allocations using
the EDF scheduler.

3 Since we have only one application, the resource brokerage step is trivial:
it just allocates the fraction of resources the controller requests.
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Figure 6: Two resource-allocation solutions to meet the performance requirements of a streaming application. The application is
the x264 video encoder running on 8 cores. The static allocation wastes resources, while POTA does not.
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Our file indexer application is psearchy, a pthread-based par-
allel application from the MOSBENCH benchmark suite [7].
It runs on top of a pthread-compatible runtime system im-
plemented in Pulse. The TCP bandwidth hog is a simple,
single-threaded application that transmits data at the fastest
possible rate, similar to Dropbox [4] or an FTP server.

Figure 7 shows the allocations of the applications and video
frame rates as Tessellation runs and adapts to the video re-
sizes. The first adaptation event occurs at ¢ = 2s, when PA-
CORA changes the allocations from their initial settings to
application-specific allocations. All network allocations were
initially set to 120 kbits/s, and as shown in Figures 7a and
7b, PACORA changes all of the video threads to 96 kbits/s,
just above the required network bandwidth for small videos.
PACORA removes all bandwidth from the file indexer since
it does not use network bandwidth and gives the remaining
bandwidth in the system to the network hog.® We also see in
Figure 7d that Tessellation removes cores from the video cell
and gives them to the file indexer, utilizing the mechanisms
described in Sections 3 and 4 to do so.

Additional resizing events occur at 25, 35, 52, 58 and 65
seconds, when videos 1, 2, 3, and 4 change size. As shown
in Figures 7a and 7b, PACORA reduces the network hog’s
allocation in order to give sufficient bandwidth to the large
video. However, when all the videos are small the bandwidth
is returned to the network hog. Figure 7d shows that larger
videos do not need enough additional processing power to
require an increase in cores, so the core allocations do not
change after the initial adaptation. Figure 7c shows that the
videos do not drop below the required frame rate except when
resizing.’

All of the runtime functions used in this experiment were
built automatically from measured values using RAB’s heart-
beat interface. These results demonstrate that using Tessella-
tion’s kernel, Pulse, and the RAB, we are able to implement
a resource-allocation approach that can efficiently assign re-
sources to applications and adapt the resource allocations as
the system changes state. As a result using an ARCC style sys-
tem, we do not need to sacrifice utilization in order to provide
performance guarantees.

7. Related Work

A number of research efforts have focused on the problem of
adaptive resource allocation to meet QoS objectives in multi-
application scenarios. Redline [52] is an adaptive resource
manager that attempts to maximize application responsiveness
and system utilization. Like Tessellation, Redline supports
heterogeneous workloads, but Redline does not provide the
same guarantees as Tessellation, since QoS-bound tasks may
be demoted to best-effort if the system becomes overloaded.

%We have artificially limited the available cores to 8 and the available
network bandwidth to 1500 kbits/s to make the resources more constrained.
7Glitches while resizing are an artifact of the application implementation.
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Tessellation avoids this by using admission control and gang-
scheduled time-multiplexing classes with guaranteed timing.
AutoControl [39] is a feedback-based resource-allocation
system for shared virtualized infrastructure in data centers. It
operates at the hypervisor level to allocate CPU and disk I/O
bandwidth to virtual machines (VMs) in order to mitigate bot-
tlenecks. While Tessellation’s cells resemble some aspects of
VMs, they are intended to provide better performance isolation
and more precise control and are lighter-weight containers.

SEEC [26] is a self-aware programming model designed to
facilitate the development of adaptive computing systems on
multicore platforms. As with SEEC, Tessellation aims at pro-
viding a general and extensible framework for self-adapting
computing. However, SEEC explores a user-level extension
to commodity OSs. Tessellation, on the other hand, is built
with the belief that an OS designed for resource isolation
and adaptation can yield finer control. AcOS [15] is an auto-
nomic resource management layer to extend commodity OSs.
AcOS considers application performance goals and temper-
ature thresholds to implement a dynamic performance and
thermal management (DPTM) control loop to cap temperature
without impairing QoS. The scope of AcOS is closer to Tes-
sellation than SEEC is; the main difference is that AcOS lever-
ages commodity OSs to support autonomic resource manage-
ment, while Tessellation builds this support from the ground
up. Moreover, neither AcOS nor SEEC in practice consider
OS services as part of the resource allocation problem.

METE [48] is a platform for end-to-end on-chip resource
management for multicore processors; its main goal is to
dynamically provision hardware resources to applications to
achieve performance targets. METE requires hardware parti-
tioning mechanisms to provide QoS (and is evaluated only in a
simulation environment), while Tessellation builds support for
resource partitioning into the OS and works on real hardware.

Tessellation has similarities to several recent manycore OSs.
The use of message-passing communication via user-level
channels is similar to Barrelfish [16]. However, Barrelfish
is a multikernel OS that assumes no hardware assistance for
cache coherence, and does not focus on adaptive resource
allocation. The way Tessellation constructs user-level services
is similar to fos [51]. Services in Tessellation are QoS-aware
and cells are partitioned based on applications rather than
physical cores. Tessellation is similar to Corey [19] in that we
also try to restrict sharing of kernel structures.

Tessellation adopts a microkernel philosophy [33], in which
OS services are implemented in user-space and applications
interact with them via message passing. Unlike in traditional
microkernels, however, each service residing in a separate cell
is explicitly parallel and performance-isolated, and includes
an independent user-level runtime. The runtime customiza-
tion in Tessellation is influenced by Exokernel [23]. However,
Tessellation tries to mitigate some of the problems of exoker-
nels by providing runtimes and services for the applications.
Tessellation has some similarities to the K42 OS [49]. Both



implement some OS services in user-space, but K42 uses pro-
tected procedure calls to access them, where Tessellation uses
user-level channels.

Tessellation and Nemesis OS [25] both emphasize on ensur-
ing QoS for multimedia applications. Nemesis also relies on
OS services and message passing, but on uniprocessors.

Through mechanisms such as control groups [3], the
isolcpus boot option, thread affinity, IRQ affinity masking,
and libnuma [8], Linux supports thread performance isolation.
However, achieving isolation from per-CPU kernel threads is
not possible without modifying the Linux kernel [13]. Tessel-
lation’s tickless environment, however, provides guaranteed
isolation between threads.

Resource partitioning has also been presented in McRT [45]
and Virtual Private Machines (VPM) [36]. The concepts of
VPM and cells are similar, but VPM lacks inter-cell communi-
cation and has not been implemented yet.

Gang-scheduling [38] is a classic concept and has also been
applied to other OSs — most similarly in Akaros [43]. How-
ever, unlike other systems, Tessellation supports cells with
different timing behaviors. Our gang-scheduling implemen-
tation and that of Fong et al. [24] both rely on high-precision
synchronized clocks. But ours focuses on a single node while
theirs on a cluster computing environment.

Kato and Ishikawa’s work on Gang EDF [28] differs from
ours in several ways. Their algorithm is centralized and fo-
cuses on a single resource type (parallel tasks on processors),
while ours is decentralized, incorporates scheduling disci-
plines besides EDF, and considers multiple resources (e.g.,
cache ways and memory pages). Also, they couple resource
placement with scheduling, such that each scheduling deci-
sion involves a bin-packing operation. While their approach
may result in better CPU utilization, ours does not suffer the
performance overhead of bin-packing.

8. Discussion and Conclusion

In this paper, we describe our experiences designing and con-
structing the kernel- and user-level mechanisms to efficiently
distribute guaranteed resources for predictable application per-
formance. These mechanisms implemented in Tessellation
include precise gang-scheduled privileged resources, adaptive
user-level schedulers, and the framework and policies to con-
trol the resource allocation. We demonstrate this system in
action running on current x86 hardware with real applications
using two cutting-edge resource allocation policies, POTA and
PACORA, and show that it could potentially be used to guar-
antee performance without sacrificing utilization. Many of the
mechanisms we explore in our new OS could be retrofitted to
an existing OS, and we believe the demonstrations of mini-
mizing missed deadlines and maximizing system utilization in
this paper provide a good proof-of-concept of the potential of
these mechanisms in current and future operating systems.
We are now working to evolve the ideas of ARCC and
Tessellation to provide efficient resource management and
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guarantees in distributed environments. In these scenarios, the
resources are no longer entirely on-chip and could include new
partitioning hardware, such as Audio Video Bridging-enabled
devices, novel sensors and screens, and compute clusters.
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