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Abstract

Tracking travel patterns and modes is a goal
that is useful on many levels, including calcu-
lating the transportation emissions of a popu-
lation. Prior efforts to collect this information
have been stymied by low accuracies or reliance
on supplementary devices. In this paper, we de-
scribe a system that improves accuracy by using
prompted recall on the smartphone, and aggre-
gates the information to help detect large scale
patterns. We also present the evaluation of a
prototype implementation that was used to col-
lect data from 44 users in the San Francisco Bay
Area over 3 months.

1 Introduction

Transportation accounts for around 30% of US
Greenhouse Gas (GHG) emissions [14]. While
most efforts at reducing transporation GHG
emissions have focused on automotive technolo-
gies such as electric vehicles and low carbon fu-
els, [5] shows that the carbon reduction goals are
so aggressive that they are unlikely to be suffi-
cient and demand reduction is essential.

For example, even if we assumed that “new
fuel economy would increase to 45 mpg and fuel
carbon content would decrease to 15% below cur-
rent levels, then 2030 CO2 emissions would be
reduced to 1% below 2005 levels, or 24% above
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1990 levels”. If we need to actually reduce emis-
sions to below 1990 levels, we need to reduce the
amount that people drive as well.

Efforts to motivate behavior changes through
outreach campaigns face both personal and
structural barriers - people don’t know their
transportation footprint or its components, and
changes to reduce their footprint are complicated
in a landscape optimized for the single occupant
automobile.

We propose to tackle both these barriers by
tracking users’ transportation modes automati-
cally using their smart phones. This allows us to
provide users with their carbon footprint, split
into components, and also to understand large
scale patterns and propose structural changes.

There have been several prior efforts to track
user activities using smartphones. We have in-
tegrated and extended several of these efforts to
build a complete end-to-end system, with apps
in both the android and iPhone stores. We have
used this system to collect 7439 labelled trips
from 44 unpaid volunteers across 3 months.

There are two main contributions in this pa-
per, one related to the data collection, and the
other to the analysis of the collected data.

1. Our phone app prompts users to confirm the
transportation mode for their trips directly
on the phone. This makes recall very easy
- users don’t have to remember to visit a
website, and can confirm trips directly from
their phone, with at most two clicks. This
allows us to improve the accuracy of the col-
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lected data in two ways.
(a) Instead of building generic classifiers

based on an initial phase of supervised
learning, we are able to collect ground
truth from each user and build person-
alized, user specific models.

(b) We can prompt users only for low con-
fidence trips. This introduces a trade-
off between trip accuracy and user in-
volvement.

Having high accuracy data is important be-
cause [15] shows that low accuracy rates
can introduce significant bias if the detected
trips are used for travel demand models.

2. We aggregrate individual user informa-
tion to perform system level analysis (e.g.
heatmaps, arrival times at work). To our
knowledge, we are the first smartphone
tracking project to go beyond personal
tracking to aggregate, structural tracking.

The paper outline is as follows: in section 2,
we compare our solution to related work, section
3 is a glossary, in section 4 and 5, we present
the technical details of the prototype, in section
6, we perform an exhaustive evaluation of both
the machine learning and system components, in
section 7, we outline future work, and section 8
is the conclusion.

2 Related Work

There have been several efforts in the past to
build automated transportation mode calcula-
tors and personal carbon footprint calculators.
We provide a brief review of them here. We be-
lieve that the technology has finally matured to
the point that it is feasible to use a smartphone
to automatically track user activities on an on-
going basis.

Some characteristics of our system that dis-
tinguish it from earlier efforts are described be-
low. A summary of the existing work, focusing
on these features, is summarized in Table 1.

Sensors We perform the tracking using GPS
data collected from smartphone sensors at

relatively coarse granularity, instead of a
separate GPS device with fine granularity.

Modes We automatically distinguish between
motorized modes (car, bus, train, air) in ad-
dition to non-motorized modes such as walk-
ing and cycling.

Recall We allow users to correct our classifica-
tions by prompting them to confirm their
trip modes directly on the phone. This has
allowed us to build a large set of GPS traces
labelled by user confirmed transportation
mode.

Carbon We provide users with their person-
alized, automatically detected transporta-
tion carbon footprint, and compare it to
their peers and emission reduction goals.
Other carbon footprint calculators typically
require users to enter their information, so
are less precise, and do not provide ongoing
feedback on progress towards goals.

Aggregate We aggregate individual user data
in order to obtain an aggregate overview of
the data. We use this to determine tem-
poral information, such as the distribution
of arrival and departure times at work, and
spatial information, such as the most popu-
lar bike and car routes. To our knowledge,
we are the first smartphone tracking project
to go beyond personal tracking to aggregate,
structural tracking.

Upload We integrate with a third party appli-
cation (Moves) for the GPS data collection.
This architecture allows us to potentially
integrate with the existing location history
tracking mechanisms that the smartphone
OSes use for their personal assistants (Sir-
i/Google Now), which allows us to take ad-
vantage of their work in optimizing smart-
phone battery life.

3 Glossary

1. Trips and sections: The data received
from Moves is pre-segmented into trips, each
of which consists of one or more sections. A
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UbiGreen
[6]

PIER [11] Reddy
(2010) [13]

Zheng
(2010) [16]

FMS [2] PhD Thesis
[8]

QT [9]

Device separate phone phone separate phone phone phone
Modes walk + cycle

+ transport
walk + cycle
+ transport

walk + cycle
+ transport

walk + cycle
+ bus + car

walk + cy-
cle + bus
+ subway +
motorbike +
car

walk + cycle
+ transit +
car

walk + cy-
cle + bus +
train + car

Recall on phone python
script

offline web web manual web, op-
tional

Carbon green/non
green

?? N N N N Y

Aggregation N N N N ?? N N
Upload N auto w/

manual
trigger

manual ?? auto w/
manual
trigger

manual auto

Users 14 5, 30 16,1,16 65 34, 27 6 135
Length 1-4 wks 1 day, 6 mos 15 mins, 4

wks, 1 day
10 mos 14 days 3 mos 3 weeks

Table 1: Summary of existing work focusing on features relevant to this paper

trip is a logical transition from one location
to another, and may consist of multiple sec-
tions, each of which is potentially using a
separate mode. Figure 1 shows a trip from
work to home that consists of three sections.

Figure 1: Examples of trips and sections

2. Unclassified sections: Trip sections that
were detected using phone sensors but have
not yet been confirmed by the user.

3. Classified sections: Trip sections that
have been displayed to the user and con-
firmed as accurate or inaccurate.

4. Predicted mode: Mode predicted by our
inference algorithm.

5. Confirmed mode: Mode confirmed by the
user.

4 System architecture

The system architecture diagram is shown in Fig-
ure 2. The various components are briefly de-
scribed below.

Figure 2: System architecture

4.1 Phone app

We have developed phone apps for both the an-
droid and iPhone platforms. These are available
for general install using the app stores on both
platforms. The apps perform 5 basic functions.

1. Authenticate the user using OAuth. We
currently support authentication using
google (Fig. 3), and plan to extend to other
authentication providers in the future.

2. Obtain authentication to access to the data
collected by the Moves app installed on the
same phone. Note that we only perform au-
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Figure 3: Example of trip notification and au-
thentication screen

thentication on the phone, the actual data
access occurs on the server (Fig. 3).

3. Use the background sync mechanism on
each individual platform to periodically
read and cache unclassified trips from the
server and save classified trips to the server.
The mechanism used on iOS is “Background
Fetch”[1], and the mechanism used on an-
droid is the “SyncAdapter”[7].

4. Display a notification prompting the user to
classify unclassified trips (Fig. 3)

5. When the app is launched, display a list of
unclassified trips and allow the user to con-
firm them.(Fig. 4)

4.2 Web app

The web app is responsible for exposing a REST
API that provides access to the data in several
forms. It is a fairly lightweight process that
primarily reads data directly from a MongoDB
instance and does not perform significant post-
processing. A complete list of the current API
methods is provided in Table 2. In addition, the
webapp exposes a visualization UI for the aggre-
gate functions that is built using Javascript and
NVD3, invoking the REST API for the data. Se-
lected screenshots of the web UI are shown in
Figure 5.

Figure 4: Sample list of trip sections and the
detail of one section showing the route taken

4.3 Offline analysis scripts

In order to have a responsive interface, we per-
form the bulk of the processing offline in batch
mode. The results of the offline processing are
stored in the database for easy access by the we-
bapp layer.

1. GPS trace retrieval We currently read
GPS traces using the Moves app, which also
conveniently breaks up the traces into trips
and sections. As we integrate with other
sources, we may need to incorporate trip de-
tection algorithms here as well.

2. Home and work location Once we have
the raw trip sections for each user, we de-
tect home and work locations automatically.
This is used for detecting commute trips.

3. Commute mode sections In order to sup-
port statistics on commute behaviour such
as the arrival time at work, we classify trip
sections as commute and non-commute.

4. Mode inference We use several features
generated from the GPS data in order to
automatically infer the mode of unclassified
trips. This includes not just non-motorized
modes such as walk and bike, but also,
uniquely, motorized modes such as car, bus,
train and air.
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API name PII? Method Description
/result/commute.modeshare.distance N GET Distance travelled by each mode in commute trips
/result/internal.modeshare.distance N GET Distance travelled by each mode inside the UC Berke-

ley campus
/result/commute.modeshare/zipcode/zc N GET Number of trips in each mode for a particular zip code
/result/commute.distance.to N GET Distance travelled during commute to work
/result/commute.distance.from N GET Distance travelled during commute from work
/result/commute.arrivalTime N GET Time at which users arrived at work
/result/commute.departureTime N GET Time at which users left work
/result/heatmap/carbon N GET Carbon intensity of various zip codes
/result/heatmap/pop.route/cal N GET Popular routes within the UC Berkeley campus
/result/heatmap/pop.route/commute/selMode N GET Popular routes for a particular commute mode
/result/carbon/all/summary N GET Aggregate transportation carbon footprint
/tripManager/getUnclassifiedSections Y POST The list of sections that a user needs to classify
/tripManager/setSectionClassification Y POST User confirmed ground truth
/compare Y POST The personalized carbon footprint for a particular user
/movesCallback Y POST Moves auth code that is exchanged for an access token

Table 2: List of current API methods

4.4 Security and Authentication

Since our data is privacy sensitive, we have clas-
sified the methods that expose it into two groups
- ones that expose Personally Identifiable Infor-
mation (PII) and ones that don’t. As we can
see from Table 2, all methods that expose PII
are HTTP POST methods, and require a JSON
Web Token (JWT) for authentication. These are
currently accessed from the phone apps, where
we generate the JWT by authenticating with
Google.

We perform two levels of authentication. We
use OAuth to authenticate the user account.
This allows the same user to access their data
from multiple devices. We also use OAuth to au-
thenticate with our GPS trace provider (Moves)
- this gives us the permission to read the list of
trips and sections that they have collected.

5 Algorithm details

5.1 Home detection

For this heuristic, we make the assumption that
the first trip section made after 5am each day,
has a high probability of originating from home.
We combine these trips to determine the user’s
home location using the following steps:

1. We generate a cluster of the starting points
of each trip using a distance threshold of

200 meters to account for the noise from the
GPS data.

2. Then, we calculate the kernel density within
the threshold for every candidate home lo-
cation.

3. The location with the maximal density is
defined to be the users home.

5.2 Workplace detection

Traditional techniques for detecting work loca-
tion assume that the user has a relatively regu-
lar schedule at least for each weekday. Given our
student-heavy sample population, we knew that
users may have different working places, class-
rooms, etc. In order to address this, we detect
the work location for each user at each weekday.
We define the place that a user spends most of
the time in a day (except home) as his/her work
location.

5.3 Commute trip detection

Once home and work location is complete, we
attempt to compute the “to” commute, which
is the trip from home to work, and the “from”
commute, which is the trip from work to home.
The heuristic that we use for this is described
below.

1. For the “to” commute, we find the first trip
segment that a user made after 5am from
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Figure 5: Arrival times at work and popular bi-
cycle commute routes during the last two weeks
of Apr 2014 (2014-04-17 to 2014-05-01)

home. This is the segment that corresponds
to the user leaving home. We then iterate
over subsequent trip segments until we find
one that ends at work. We label this set of
trip segments as the “to” commute trip.

2. Similarly, for the “from” commute, we find
the last trip that a user made after 3pm
that ended at home, and iterate over pre-
vious trips until we find one that starts at
the work location for that particular day.

3. If the iteration for either the “to” or “from”
commutes does not terminate (ie we are un-
able to find a trip that started or ended at
work), we assume that the user didn’t make
any commute trips that day.

5.4 Mode detection

Our mode detection algorithm builds on the
work done in[16]. We originally attempted to
use the general (G) and advanced (A) features
described in that paper. However, because they

used dedicated GPS devices, they were able to
obtain data points at 2 sec granularity. In con-
trast, our readings were obtained from smart-
phones, which meant that they were at a much
coarser granularity. This was typically 30 secs,
but could be as large as several minutes. This
meant that the features they used, such as speed
and acceleration, might not be very accurate,
and so the resulting accuracies, specially for mo-
torized modes, were low.

We augmented their basic and advanced fea-
tures with spatiotemporal features. As described
in Section 6.1, this allowed us to increase the ac-
curacy for motorized modes from 30-40% to 60-
70%.

1. Bus/Train (B): From the training set,
we automatically determine bus and train
station locations by looking at the start
and end points of bus and train trip sec-
tions, and using the DBSCAN [4] from
the scikit-learn library [12] algorithm to
cluster them into stations. We then add fea-
tures which indicate whether or not a trip
section started from a known bus or train
station.

2. Location (L): We add the lat/lng coordi-
nates of the start and end points of the trip
sections as raw features. This allows us to
match against trip sections in the training
set between the same pair of locations.

3. Time (T): We add the hour of the trip as a
feature. This allows us to avoid overfitting
with the location parameter. If a user uses
two different modes between the same pair
of locations, then adding the time makes it
more likely that we will be able to distin-
guish between the two types of trips.

We used the scikit-learn [12] library to eval-
uate the use of various models based on this set
of features.

5.5 Carbon footprint calculation

At a high level, computing the carbon footprint
of transportation involves two components.

1. The distance travelled
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Figure 6: Aggregate transportation carbon foot-
print (2014-04-17 - 2014-05-01)

2. The energy consumed per unit distance

This system allows us to greatly improve the ac-
curacy of the first piece. However, for the second
piece, we just use the averages for each trans-
portation mode from published data [10]. We
use this data to calculate the following metrics,
as shown in Figure 6:

1. a user’s individual carbon footprint (dis-
played in the phone app only)

2. the average carbon footprint of the people
who have installed the app

3. the footprint if the user drove everywhere
4. the California SB 375 mandate to reduce per

capita carbon emissions from transportation
by 15% by 2035.

5. the California EO S-3-05 mandate to reduce
carbon emissions to 80% of 1990 levels by
2050. The target we show assumes a pro-
portional reduction across sectors, and cal-
culates the corresponding value for passen-
ger vehicle emissions.

6. finally, we show the potential carbon foot-
print achievable if a user changed their com-
mute pattern so that all short trips (< 3
miles) were through non-motorized trans-
port and all long trips (> 3 miles) were
through the most efficient motorized trans-
port (train). This provides users a concrete
and achievable goal that they can work to-
wards.

6 Experimental results

This paper focuses the technical details of con-
structing a platform for estimating the trans-
portation GHG emissions for a population. We
present an evaluation of the technical details of
the platform, including the learning techniques
used for automated mode estimation, and the
performance of the system with increasing load.

Although users consented to our privacy pol-
icy [3] by downloading the apps from the app
stores, they did not provide explicit consent to
having their data used for research. So this anal-
ysis will not include an analysis of their travel
patterns. We expect to publish papers with that
analysis in the future, which will be based on
data collected with explicit consent.

6.1 Machine learning

6.1.1 Data exploration

The machine learning results are based on 7439
trip sections collected from 44 users in the San
Francisco Bay Area for a period of roughly 3
months (2014-04-12 to 2014-07-18). Since the
data collection was not part of a formal study
and participants were not compensated for their
efforts, data collection was not uniform, with
participants starting and stopping collection at
various times. In order to characterise the skew,
the distribution of trip sections in time and
across users is shown in Figure 9 and Figure 10.
As we can see, although the total number of
sections detected stayed relatively constant, the
number of confirmed sections went down every
month. This suggests that collecting background
information is easier than requesting user feed-
back and confirmation. Further, the distribution
of total and confirmed trips across users indicates
that there are users who gave up on the app af-
ter a short time, users who like to run the app
in the background but don’t confirm trips, and
users who confirm trips religiously.

The distribution of the confirmed trips is
shown in Figure 11. As we can see, this is heav-
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Figure 7: Confusion matrices for different combinations of features and models

ily weighted towards walking trips. This reflects
both a population weighted towards students on
an urban campus, and the fact that even motor-
ized transport trips frequently involve walking at
one of both ends.

6.1.2 Evaluation metrics

We do not auto-classify the run mode, which is
rarely used for commuting, or the mixed mode,
which is used when the Moves app did not split
up trip sections correctly. Both of these also (see
Fig. 11) have very few entries in our dataset. We
do, however, auto-classify air because air trips
contribute significantly to carbon emissions.

Further, since the distribution of trip modes
is skewed, the overall accuracy might be a mis-
leading metric. If the class specific accuracies are

not uniform, the overall accuracy may simply re-
flect the proportion of high accuracy classes in
the dataset. So we evaluate the accuracy of our
learning methods separately for each mode. We
do this by generating a confusion matrix using
stratified 5-fold validation, as shown in 1.

for (train, test) ∈ kFolds do
model = algo.fit(X[train], y[train]);
yPred = model.predict(X[test]);
cmRaw = confusion matrix(y[test], yPred);
// [610 12 1];
rptSum = repeat(sum).reshape();
// [623 623 623];
thisCm = cmRaw / rptSum // [98 2 0];
sumCm = sumCm + thisCm // [188 10 2];

end
avgPctCm = sumPctCm / kFolds

Algorithm 1: Stratified k-fold confusion ma-
trix computation
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Figure 8: Confusion matrices for non-linear kernels

Figure 9: Number of confirmed trip sections per
month

A second evaluation metric is around high con-
fidence classifications. The phone app currently
prompts the user for every trip section. In fu-
ture work (Section 7, we would like to reduce
the confirmation burden by prompting only for
trips where the auto-classification has low prob-

Figure 10: Number of confirmed trip sections per
user

ability. In order to evaluate the effectiveness of
this strategy, we look at the percentage of high
confidence classifications, and in order to eval-
uate its correctness, we look at the accuracy of
only the high confidence classifications.
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Figure 11: Number of confirmed trip sections per
mode

Feature set walk cycle bus train car air
Generic 95 85 34 37 88 69.0
G+A 95 85 30 36 89 65.0
G+A+L 96 88 48 55 92 83.0
G+A+B 95 85 63 49 89 74.0
G+A+B+L 96 88 66 63 91 79.0
G+A+B+L+T 95 88 71 62 91 83.0

Table 3: Accuracy with different sets of features

6.1.3 Feature and model selection

There are several potential sets of features and
models that we can choose from. Based on the
work done in [16], we start with random forests
as the model and explore various feature sets,
and then we pick one feature set and validate
the choice of model.

The confusion matrices for the general and
advanced features from [16], and the spatio-
temporal features described in Section 5.4, using
a random forest as the learning technique, are
shown in Figure 7.

We see here that the spatial features provide
the greatest improvement in accuracy, and the
best accuracy is obtained when both spatial fea-
tures are combined. The current temporal fea-
ture does not improve the accuracy significantly,
but does not hurt either. So, we select the
G+A+B+L+T feature set for further analy-
sis.

After selecting features, we evaluated the use
of other learning algorithms. In [16], the other
algorithms evaluated were primarily parame-
teric, and did not perform well. In Figure 7,
we reproduced this result using a linear SVM
in which the paramters were tuned using grid

Figure 12: Autoclassification metrics using ran-
dom forests(right) or linear SVM

search. We also tried a different non-parametric
method (k-nn), which was better than the para-
metric method, but worse than random forests.

Since the bad performance of linear models
may be due to the fact that the data is not lin-
early separable, we also explore the use of non-
linear kernels (rbf, poly, sigmoid) with linear
models (SGD, LDA, SVM). A grid with these results
is shown in 8. As we can see, LDA and SVM work
better than SGD, and the poly and sigmoid ker-
nels work better than rbf. However, the best re-
sults with parametric models are still worse than
the random forest result, specially for the train

mode.

Finally, Figure 12 shows us the number of high
confidence trips, and their accuracy as compared
to the overall accuracy. As expected, for ran-
dom forests, the overall accuracy is already re-
ally high, but limiting it to high confidence trips,
increased it by about 10% to almost 100%. Un-
fortunately, only around 50% of the trips can be
auto-classified, so while we are correct, we are
not that efficient.

In contrast, if we see the same metrics for the
tuned linear SVM, we find that it is more ef-
ficient because there are more high confidence
predictions. Unfortunately, this high confidence
is not warranted - the accuracy of even the high
confidence trips with a threshold of 99% is only
50%.
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Figure 13: Various percentages for users with >
150 confirmed trips

6.2 User models

As described earlier, most prior work has as-
sumed that an initial phase of supervised learn-
ing (training) will be used to build classifiers
which will then be used for ongoing classification
of large scale passive data collection.

However, as we have seen, it is hard to get
high accuracies with this method. One of the
reasons for this might be that there is high vari-
ability across users, which is hard to reconcile
into a single generic model. For example, using
a speed based feature for classification is chal-
lenging because one user is a strong bicyclist who
likes to get a good workout on her commute, and
the other is a beginner who likes to amble along
a bike path to soak in nature. Similarly, using
spatial features can be complicated if two differ-
ent users typically take different modes to cover
the same routes.

Given these constraints, it seemed conceivable
that user specific models might provide better
results. In order to test this hypothesis, we took
all users who had more than 150 confirmed trips,
and built user models, in which we considered
only the prior trips for that user. The results
are shown in Figure 13.

Note that the overall accuracy does not appear
to be correlated with the total number of sec-
tions, although it does appear to be loosely cor-

Figure 14: Confusion matrices for high accuracy
user models

ubuntu@ip-10-217-24-94:~/Safety_Infrastructure/CFC_WebApp$ date

Mon Jul 21 06:30:53 UTC 2014

ubuntu@ip-10-217-24-94:~/Safety_Infrastructure/CFC_WebApp$ free

total used free shared buffers cached

Mem: 604332 590904 13428 0 42772 309932

-/+ buffers/cache: 238200 366132

Swap: 0 0 0

Figure 15: Snapshot of memory usage

related with the percentage of walk+bike (non
motorized) trips. This is probably because, as
we saw earlier, the accuracies of non-motorized
modes are higher.

However, we see some cases in which the ac-
curacy is high although the percent of non-
motorized trips is fairly low. We pick two of
these and plot confusion matrices for them.

The results are shown in Figure 14. As we can
see, the motorized mode accuracies are higher
than a combined model. This indicates that this
is a promising area to explore.

6.3 System scalability

Our initial prototype system runs on an Amazon
AWS micro instance with 1 vCPU and 1 GiB of
RAM. In practice, since this runs on virtualized
infrastructure, Figure 15 shows that the usable
memory was signficantly lower.

During the construction of the system, we did
not add any explicit profiling. However, we did
retain all logs, and are able to reconstruct scal-
ability curves using them. These give us an in-
dication of the focus areas to scale to a larger
system.

The metrics that we evaluated are shown in
Table 4. Note that some of these metrics are
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Figure 16: Size of the sections table file in MB

generated from scripts that are run periodically
using cron jobs, so we can measure the total run
time in addition to the time taken for each opera-
tion. It is also easier to compare the performance
across times of day for cronjobs since they run in
a predictable schedule. It is harder to do this for
user generated metrics, since user requests don’t
necessarily occur at predictable times.

Figure 16 shows the growth in the mongo DB
sections.bson file with the growth in the num-
ber of sections. Since we store both confirmed
and unconfirmed sections in the database, the
database size should depend on the total number
of sections. As we can see, the trend is almost
perfectly linear.

Figure 17 and 18 shows the mean time for one
retrieval and total run time of the data retrieval
script. As we can see, this operation was initially
very efficient, except for the 8am run, probably
due to contention with the commute trip detec-
tion. However, around 10th June, the operation
has begun to slow down at all times of the day.
This is particularly bad after we turn on the ma-
chine learning pipeline. The last run (on 15th
July) takes close to an hour for every run.

From Figure 19, we see that the commute trip
classification scales more or less continuously un-
til we reach a sharp discontiuity around the 10th
of July. That point is not associated with any
system changes, but after it, the run time for the
commute sections run extends for almost the en-
tire day. This means that the commute section
script is running almost all the time.

From Figure 20, we see that the run time for

Figure 17: Mean time to pull data from Moves
for a single user

the machine learning pipeline increases steadily
until it takes up almost the entire 4 hours be-
tween runs. At that point, the pipeline is run-
ning almost constantly, and conflicting with the
commute trip classification script above. We also
see, by looking at the breakdown of one of the
long runs that the step of converting the raw sec-
tion data into a feature matrix dominates over
everything else.

From Figure 21, we see a similar pattern with
the API calls - they start off fast, go up with
time, and have a discontinuity around the begin-
ning of July. Since these are user visible response
times, we plot the min, mean, max and 99% re-
sponse time. The max and 99% response times
are particularly concerning - the user is not going
to wait for the 11 minutes that it takes to return
results in the worst case, and the 30 sec max to
return the section list means that 30 sec window
allocated by iOS to run background fetch will be
exhausted, and the app will be killed before it
can display any notifications.

However, Figure 22 shows that even during the
times when the response times were acceptable,
the distribution of response times is neither uni-
form, nor does it follow a diurnal demand pat-
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Metric Invocation Description
DB size N/A Size of the exported sections.bson file, in MB
Data retrieval */2, */4 Script that connects to Moves, retrives trip data for each user, and saves it to the

database. Sleeps for 2 minutes after reading data for every 10 users in order to stop
overwhelming Moves. Originally ran every two hours, switched to every 4 hours
when the classification pipeline was enabled.

Commute sections 7 Script that reads sections for a user, determines home and work locations and com-
mute trips, and saves the commute flag back to the database

Pipeline */4 Script that reads the confirmed sections as the training set and auto-classifies un-
classified and unconfirmed sections

getUnclassifiedSections N/A API call to read the sections that need to be classified by this user
compare N/A API call to read the carbon footprint results for this user

Table 4: List of scalability metrics

Figure 18: Run time of the script to pull data
from Moves

tern. Instead, the response time is higher dur-
ing one contiguous chunk and negligible at other
times. The higher response times probably oc-
cur during times of contention with the commute
trip detection.

7 Future work

Our primary focus for future work will be on
improving the phone layer, the web layer, and
the analytics.

Figure 19: Run time of the script to detect com-
mute sections

7.1 Phone layer

The primary challenge at the phone layer is to
motivate people to share their trips. We need to
do this by both reducing the work, and increas-
ing the rewards. We can reduce effort by im-
proving phone app design further, and increase
rewards through some form of gamification. In
addition, although the Moves team is working
on optimizing power consumption, the increased
power drain is still noticeable. We should con-
sider our data needs and see if it is possible to
write our own data gathering that is more opti-
mized to our workload.

7.2 Web layer

The most immediate challenge at the web layer
is that of scalability. We clearly need to move up
from the micro instance, but that might not be
sufficient. Note that even when we had only a
small number of sections and weren’t running the
machine learning pipeline, the contention with
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Figure 20: Run time of the script to detect com-
mute sections

the commute classification had a visible impact
on both trip retrieval and API response times.
We may need to either tune MongoDB, or switch
to a different storage technique that will reduce
the overhead caused by contention.

A longer-term challenge is that of data access
and visualization. The current web app displays
a subset of data that we believe will be useful
at the aggregate level. However, we can easily
imagine that there might be other queries that
might also be interesting to other researchers.
How do we change the web app to support richer
visualizations, and have the option for them to
be open ended? Do we support a rich query lan-
guage for even more powerful access? How do
we do so without sacrificing privacy?

7.3 Analytics

Finally, we want to run additional analytics to
recommend actions that users and planners can
take to reduce carbon emissions. We need to
think of these potential recommendations, and
then implement the code to detect them using
external data sources. We also need to improve
the carbon emission calculation to take into ac-
count more complex factors such as carpooling,
fuel efficiency and so on.

Figure 21: Response time for API calls

Figure 22: Distribution of the response times for
the compare API call

8 Conclusion

We successfully built and evaluated a system to
collect trip patterns for 44 users in the San Fran-
cisco Bay Area over 3 months. We are able to
get accuracies of 60-95% in the automatic de-
tecton of trip modes using a set of speed and
spatial features modelled using a random forest.
Prompting users for only for low confidence trips
will allow us to retain high accuracies while re-
ducing user burden. We are able to perform ag-
gregated analysis of travel patterns in the back-
ground, with the addition of some heuristics.

Our system currently runs on an Amazon
AWS micro instance, but is having issues scaling
as we add more analytics. While we clearly need
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to move to a bigger server, high response times
caused by contention even when the dataset was
smaller seem to indicate that more fundamental
architectural changes may be needed.
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