
Learning with Parsimony for Large Scale Object
Detection and Discovery

Hyun Oh Song

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-148
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-148.html

August 12, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Learning with Parsimony for Large Scale Object Detection and Discovery

by

Hyun Oh Song

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Jitendra Malik

Professor Bruno Olshausen
Professor Alexei Efros

August 2014

Learning with Parsimony for Large Scale Object Detection and Discovery

Copyright 2014
by

Hyun Oh Song

1

Abstract

Learning with Parsimony for Large Scale Object Detection and Discovery

by

Hyun Oh Song

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Approximately 85% of internet traffic is estimated to be visual data. Conventional object
detection algorithms are not yet suitable to harness this unconstrained, massive visual data
because they require laborious bounding box annotations for training and large scale infer-
ence is infeasibly slow due to model complexity. In this thesis, I present two instantiations
of model parsimony for large scale object detection and discovery. For model inference, I
present sparselet models which significantly reduce model inference complexity by utilizing a
shared representation, reconstruction sparsity, and parallelism to enable real-time multiclass
object detection with deformable part models at 5Hz with almost no decrease in task perfor-
mance. For model learning, I present a framework for training object detectors using only
one-bit image level annotations of object presence without any instance level annotations
(i.e. bounding boxes). This framework provides approximately 50% relative improvement
in localization accuracy (as measured by average precision) over the current state of the art
weakly supervised learning methods on standard benchmark datasets.

i

To my parents.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Outline . 2

2 Preliminary 4
2.1 Notations . 4
2.2 Overview of object detection and evaluation 4
2.3 Dictionary learning and sparse coding . 5
2.4 Submodularity . 7

3 Generalized sparselet models for real-time multiclass object recognition 10
3.1 Introduction . 10
3.2 Related Work . 11
3.3 Sparselets . 12
3.4 Discriminative activation of generalized sparselets 18
3.5 Application of generalized sparselets . 21
3.6 Experiments . 24
3.7 Conclusion . 29

4 On learning to localize objects with minimal supervision 31
4.1 Introduction . 31
4.2 Related work . 32
4.3 Problem formulation . 32
4.4 Finding objects via submodular cover . 33
4.5 Iterative refinement with latent variables . 36
4.6 Experiments . 40
4.7 Conclusion . 43

iii

5 Weakly-supervised discovery of visual pattern configurations 44
5.1 Introduction . 44
5.2 Related work . 46
5.3 Approach . 47
5.4 Experiments . 52
5.5 Conclusion . 53

6 Conclusion 55

Bibliography 56

iv

List of Figures

1.1 Google image search results with keyword “sather tower”. Majority of the re-
trieved images contain the tower somewhere in the image. 2

2.1 Example person detection result on a previously unseen test image. (Figure
reproduced with permission from Ross Girshick) 5

2.2 Precision-recall curve and average precision for the example detection image Fig.
2.1. The black vertical bars represent each confidence thresholds. Average pre-
cision(AP) is the area under the precision-recall curve. Mean average precision
(mAP) is the result of averaging AP over different categories. (Figure reproduced
with permission from Ross Girshick) . 6

2.3 Example bipartite graph G = {U ,V , E} . 9

3.1 System concept. 12
3.2 Overview diagram of object detection with sparselets. Once we evaluate the

image with learned sparselets, the reconstruction phase can be done via efficient
sparse matrix vector multiplications. 13

3.3 Computation graph for a multiclass problem with K = 3. Let the sparselet size
be m and the number of blocks be p = 2. We define w = (wᵀ

1,w
ᵀ
2,w

ᵀ
3)ᵀ in

RKpm. Each per-class classifier wk in Rpm is partitioned into p blocks such that
wk = (bᵀ

k1,b
ᵀ
k2)ᵀ. An input vector x in Rpm is partitioned into subvectors such

that x = (cᵀ
1, c

ᵀ
2)ᵀ. The feature map Φ(x, k) in RKpm is defined as: Φ(x, 1) =

(xᵀ, 0, . . . , 0)ᵀ; Φ(x, 2) = (0, . . . , 0,xᵀ, 0, . . . , 0)ᵀ; Φ(x, 3) = (0, . . . , 0,xᵀ)ᵀ. The
edges in the graph encode the dot products computed while solving argmax

k∈{1,2,3}
wᵀΦ(x, k). 16

3.4 (Left) 128 of the 256 sparselets learned from 20 DPMs trained on the PASCAL
VOC 2007 dataset. (Right) The top 16 sparselets activated for the motorbike
category. 23

3.5 Reconstruction error for all 20 object categories from PASCAL 2007 dataset as
sparselet parameters are varied. The precomputation time is fixed in the top
figure and the representation space is fixed on the bottom. Object categories are
sorted by the reconstruction error by 6× 6 in the top figure and by 1× 1 in the
bottom figure. 24

v

3.6 Mean average precision (mAP) vs. sparsity for object detection on the PASCAL
2007 dataset (left) and for 9 classes from ImageNet (right). The dictionary learned
from the PASCAL detectors was used for the novel ImageNet classes. “Original”
is the original linear model; “Reconstructive sparselets” is the baseline method
from [86]; the remaining methods correspond to discriminative learning [41] with
each of the regularizers described in Sec. 3.4. 26

3.7 Average classification accuracy vs. speedup factor for Caltech-{101,256}. 27
3.8 Run time comparison for DPM implementation on GPU, reconstructive sparselets

and discriminatively activated sparselets in contrast to CPU cascade. 28

4.1 Illustration of the graph G with V (top row) and U (bottom row). Each box b ∈ V
is connected to its closest neighbors from positive images (one from each image).
Non-discriminative boxes occur in all images equally, and may not even have
any boxes from positive images among their closest neighbors – and consequently
no connections to U . Picking the green-framed box v in V “covers” its (green)
highlighted neighbors Γ(b). 34

4.2 Visualizations of top 5 nearest neighbor proposal boxes with positive labels in the
first cluster, S1 for all 20 classes in PASCAL VOC dataset. From left to right,
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog,
horse, motorbike, person, plant, sheep, sofa, train, and tvmonitor. 37

4.3 In the refinement stage, we formulate a multiple instance learning bag per image
and bag instances correspond to each window proposals from selective search.
Binary bag labels correspond to image-level annotations of whether the target
object exists in the image or not. (Left) ground truth bounding boxes color
coded with category labels. green: person, yellow: dog, and magenta: sofa,
(Right) visualization of 100 random subset of window proposals. 38

4.4 Visualization of some common failure cases of constructed positive windows by[82]
vs our method. Red bounding boxes are constructed positive windows from [82].
Green bounding boxes are constructed positive windows from our method. . . . 40

5.1 Left: bipartite graph G that defines the utility function F and identifies discrimi-
nativeness; right: graph GC that defines the diversifying independence constraints
M. We may pick C1 (yellow) and C3 (green) together, but not C2 (red) with
any of those, since it is redundant. If we identify overlapping patches in G and
thus the covering F , then we would only ever pick one of C1, C2 and C3, and no
characteristic configurations could be identified. 48

5.2 Examples of discovered patch “clusters” for aeroplane, motorbike, and cat. The
discovered patches intuitively look like object parts, and are frequent but suffi-
ciently different. 50

5.3 Automatically discovered foreground estimation box (magenta), hard negative
(white), and the patch (yellow) that induced the hard negative. Note that we are
only showing the largest one out of (up to) four hard negatives per image. . . . 51

vi

5.4 Example detections on test set. Green: our method, Red: the previous chapter . 53
5.5 Example configurations that have high degree in graph GP . The green and yellow

boxes show the discovered discriminative visual parts, and the magenta box shows
the bounding box that tightly fits their configuration. 54

vii

List of Tables

3.1 Statistics of average precision for all 20 classes over five trials of constructing the
dictionary from five randomly chosen classes (five different dictionaries per class).
The last column (Full Dict) denotes the result when all 20 classes were used to
construct the dictionary. 30

4.1 10 fold average and standard deviation of the test accuracy on MIL dataset. The
two methods start from the same initialization introduced in [2] 41

4.2 Detection average precision (%) on PASCAL VOC 2007-6x2 test set. First three
baseline methods report results limited to left and right subcategories of the objects. 41

4.3 Detection average precision (%) on full PASCAL VOC 2007 test set. 41

5.1 Detection average precision (%) on full PASCAL VOC 2007 test set. 53
5.2 Effect of our hard negative examples on full PASCAL VOC 2007 test set. 53

viii

Acknowledgments

I am grateful for all the wonderful experience and the people I met in Berkeley. First,
I would like to thank Trevor Darrell for being a great advisor, mentor, and leader. Trevor
encouraged me to identify the big picture and be an independent researcher. I am grateful to
my thesis committee members, Jitendra Malik, Bruno Olshausen, and Alyosha Efros for the
feedback and guidance. I would also like to thank and acknowledge that my Ph.D. research
have been greatly influenced by postdoctoral scholars Ross Girshick and Stefanie Jegelka. I
am also grateful to Pedro Felzenszwalb for sharing his deep insights through Skype meetings.

Thanks Michael Jordan, Martin Wainwright, Richard Karp, Alex Smola, and Dan Klein
for the greatest classes I’ve ever taken.

Thanks to my collaborators Tim Althoff, Mario Fritz, Christopher Geyer, Chunhui Gu,
Zaid Harchaoui, Yong Jae Lee, Julien Mairal, and Stefan Zickler.

Thanks to fellow SDH denizens and group members, Pablo Arbelaez, Jon Barron, Jeff
Donahue, Panna Felsen, Georgia Gkioxari, Dave Golland, Chunhui Gu, Sergio Guadarrama,
Saurabh Gupta, Bharath Hariharan, Lisa Ann Hendricks, Judy Hoffman, Yangqing Jia,
Allie Janoch, Abhishek Kar, Sergey Karayev, Jon Long, Trevor Owens, Evan Shelhamer,
Eric Tzeng, Oriol Vinyals, Ning Zhang.

Finally, special thanks to my family for all the love and support.

My Ph.D. research has been generously supported by Samsung Scholarship Foundation.

1

Chapter 1

Introduction

One of the central problems in artificial intelligence is giving machines the ability to un-
derstand and analyze visual input data. Although humans can effortlessly solve the task of
understanding the scene and describing what objects are where, the task performance still
remains unsatisfactory for machines. After several AI winters[99] have passed, the research
community recently have shown encouraging progress due to ever growing quantity of visual
data and improving computing performance. However, many existing algorithms still suffer
from scalability with the size of the data and rely on laborious human supervision. This the-
sis proposes a step towards learning and making inferences for large scale object detection
and discovery with parsimony. First instantiation of parsimony proposes a compressed dis-
criminative model learned with inference complexity parsimony for computational efficiency.
Second instantiation of parsimony addresses the question of how to train models with human
supervision parsimony.

Domains of modest complexity typically have hundreds to thousands of categories, and as
one considers unconstrained search problems, the space of possible categories becomes prac-
tically unlimited. In this regard, conventional recognition algorithms become infeasibly slow
due to model complexity. This thesis first shows an efficient discriminative machinery which
significantly reduces the inference complexity by compressing the model structure with al-
most no loss in accuracy while providing speed ups as well as easy to analyze guarantees.

Furthermore, the classical paradigm for learning object recognition models is to have human
annotators label each object instance in all training images with a bounding box. However,
this exhaustive labeling is extremely costly and is not scalable with the size of the data. Fur-
thermore, the increasing prominence of sparsely and noisily labeled data nurtures a growing
demand for learning models that can cope with a minimal amount of supervision. The mas-
sive amount of textually tagged visual data (for example, images queried from web image
search as in Figure 1.1) inspires a challenging research problem of whether we can still train
object detection models with image level object presence/absence labels only. Concretely,
the goal is to use weakly labelled images to learn to localize the target image in previously

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Google image search results with keyword “sather tower”. Majority of the
retrieved images contain the tower somewhere in the image.

unseen test images. Recent work[97, 33, 72, 82, 87] has explored learning methods that
decreasingly rely on strong supervision. This thesis also proposes a model that can learn
from weakly labeled images (human supervision parsimony) with theoretical performance
guarantees.

1.1 Outline

Chapter 2 provides a self contained introduction to machine learning algorithms this thesis
builds on and also a brief overview of object detection. This chapter is aimed to introduce
basic concepts and intuition particularly on dictionary learning and sparse coding, submod-
ularity, and constrained submodular maximization.

Chapter 3 addresses the question about how to learn compressed discriminative models for
efficient for multi-class, multi-convolutional inference. This chapter describes a framework
that simultaneously utilizes shared representation, reconstruction sparsity, and parallelism to

CHAPTER 1. INTRODUCTION 3

enable real-time multiclass object detection with deformable part models at 5Hz on a laptop
computer with almost no decrease in task performance. The framework is trained in standard
structured output prediction formulation and is generically applicable for speeding up object
recognition systems where the computational bottleneck is in multiclass, multi-convolutional
inference. The experiments demonstrate the efficiency and task performance of our method
on PASCAL VOC 2007, subset of ImageNet, Caltech101 and Caltech256 dataset. The source
code for the sparselet model is available on Github at https://github.com/rksltnl/sparselet-
release1

Chapter 4 focuses on the problem of learning to localize objects with minimal supervision.
This chapter proposes a new method that achieves this goal with access to only image-level
labels of whether the objects are present or not (such as images in figure 1.1). The approach
combines a discriminative submodular cover problem for automatically discovering a set of
positive object windows with a smoothed latent SVM formulation. The latter allows us to
leverage efficient quasi-Newton optimization techniques. The experiments demonstrate that
the proposed approach provides a 50% relative improvement in mean average precision over
the current state-of-the-art on PASCAL VOC 2007 detection. The source code is available
on Github at https://github.com/rksltnl/Song-ICML2014-release1

Chapter 5 provides a novel extension to the previous chapter and propose an approach that
automatically identifies discriminative configurations of visual patterns that are characteris-
tic of a given object class. This chapter formulates the problem as a constrained submodular
optimization problem and demonstrate the benefits of the discovered configurations in rem-
edying mislocalizations and finding informative positive and negative training examples.
Together, these lead to state-of-the-art weakly-supervised detection results on the PASCAL
VOC dataset. The source code will be made available on Github.

Chapter 6 concludes this thesis with future works and concluding remarks.

https://github.com/rksltnl/sparselet-release1
https://github.com/rksltnl/sparselet-release1
https://github.com/rksltnl/Song-ICML2014-release1

4

Chapter 2

Preliminary

This chapter gives a self contained introduction to some of the fundamental machine learning
algorithms this thesis builds upon and also a brief overview on object detection.

2.1 Notations

This thesis uses plain lower case letter x for scalars, bold lower case letter x for vectors,
capital letter X for matrices or sets. The I [·] operator denotes the indicator function which
is 1 if its argument is true and 0 otherwise. The diag (·) operator create a diagonal matrix
with it’s input vector on the diagonal entries. The 〈·, ·〉 operator denotes matrix inner
product. Finally, the � operator denotes the element wise matrix Hadamard product.

2.2 Overview of object detection and evaluation

Given an input image, the goal of object detection is to produce an output describing what
objects are where [40]. Concretely, the task is to train discriminative models (i.e. person
detector) which can localize all target objects (i.e. people) with tight bounding boxes on
previously unseen images. Figure 2.1 illustrates an example person detection image. Orange
boxes and the numbers above the boxes represent inferred locations and the corresponding
confidence scores. Purple boxes represent ground truth boxes (typically obtained from hu-
man annotators) for evaluating the learned models.

Evaluating object detection performance is done by computing average precision(AP) based
on detections on previously unseen held out dataset. Figure 2.2 illustrates this process.
First, all the detections are sorted by the confidence score. Then, each detection boxes are
checked to see if there are any nearby ground truth boxes with significant overlap and are
assigned binary {correct, incorrect} labels. Concretely, given a predicted detection box Bp,
a nearest ground truth box Bgt, and overlap threshold θth (convention is to use θth = 0.5),

CHAPTER 2. PRELIMINARY 5

ground truth ‘person’ boxes

0.9

0.6

0.2

‘person’ detector predictions

Figure 2.1: Example person detection result on a previously unseen test image. (Figure
reproduced with permission from Ross Girshick)

the binary label is computed as follows:

isCorrect (Bp) = I
[

area (Bp ∩Bgt)

area (Bp ∪Bgt)
≥ θth

]
Then, thresholding at multiple confidence values, one can compute the corresponding preci-
sion(P) and recall(R). For a concrete example, in figure 2.2 at the first threshold (the first
black vertical bar in between the rider detection and the sheep detection), the precision is
1.0 and the recall is 1

Number of people in the dataset
. Computing the precision and recall values at

multiple threshold values create the precision recall curve as shown in figure 2.2. The final
evaluation metric is then the area under the PR curve which is called average precision (AP).

2.3 Dictionary learning and sparse coding

Sparse models have appealing characteristics in that they are more interpretable and cheaper
to use due to compactness. The objective of dictionary learning and sparse coding problem
is to learn a dictionary of bases, D = [d1, . . . ,dm] which can represent input data {x}ni=1

via sparse linear combination of the dictionary elements with minimum reconstruction error.
Equation 2.1 shows formal optimization problem. Note that the dictionary can either be
overcomplete m > d or undercomplete m < d depending on the application. Few example
applications for overcomplete dictionary are image denoising, super-resolution, inpainting

CHAPTER 2. PRELIMINARY 6

...

✓ 𐄂✓ ✓𐄂 𐄂

0.9 0.8 0.6 0.5 0.2 0.1

Figure 2.2: Precision-recall curve and average precision for the example detection image Fig.
2.1. The black vertical bars represent each confidence thresholds. Average precision(AP)
is the area under the precision-recall curve. Mean average precision (mAP) is the result
of averaging AP over different categories. (Figure reproduced with permission from Ross
Girshick)

(see [64] for more details). This thesis will make use of undercomplete dictionary so as to
compress the data into compact representation to harness computational efficiency. More
details on the link between undercomplete dictionary and sparse codes versus the computa-
tional efficiency are in chapter 3.

min
αij ,dj

n∑
i=1

||xi −
m∑
j=1

αijdj||22

subject to ||αi||0 ≤ λ0, ∀i = 1, . . . , n

||dj||22 ≤ 1, ∀j = 1, . . . ,m

(2.1)

Although the above optimization is NP-hard, greedy algorithms such as orthogonal matching
pursuit algorithm (OMP) [65] can be used to efficiently compute an approximate solution.

CHAPTER 2. PRELIMINARY 7

OMP iteratively estimates the optimal matching projections of the input signal onto the
dictionary D. The above optimization problem is convex with respect to D if αi is fixed,
and so we can optimize the objective in a coordinate descent fashion by iterating between
updating αi while fixing D and vice versa. For our experiments we use the online dictionary
learning algorithm from [64].

2.4 Submodularity

This section introduces fundamental concepts and algorithms on submodular maximization
which we build upon in Chapters 4 and 5. A lot of the material in this section is borrowed
from [53].

Definition 1 (Submodularity). A set function F : 2V → R which takes as input a subset
S ⊆ V of finite ground set V and assigns a function value F (S) is called submodular if
∀A ⊆ B ⊆ V and k ∈ V \ B, it holds that F (A ∪ {k}) − F (A) ≥ F (B ∪ {k}) − F (B). Or
equivalently, a function F : 2V → R is submodular if ∀A,B ⊆ V , F (A ∩ B) + F (A ∪ B) ≤
F (A) + F (B).

Note that the latter definition with set union and intersections does not require the a set to
be a subset of another set.

Definition 2 (Monotonicity). A set function F : 2V → R is monotone if ∀A ⊆ B ⊆ V , it
holds that F (A) ≤ F (B).

Maximizing a general (non-monotone) submodular function without constraints is NP-hard
(Max-cut is a special case). Also, maximizing a monotone submodular function is NP-hard
for many constraints, even for cardinality constraints, max|S|≤k F (S). A monotone sub-
modular function can be approximately maximized via a greedy algorithm. This algorithm
subsequently selects an element from the ground set that has the maximal marginal gain
with respect to the current selection. The algorithm approximately maximizes the prob-
lem by greedily selecting elements from the ground set which has the best marginal gain.
Concretely, the algorithm proceeds by selecting

Si := Si−1 ∪
{

argmax
{e}/∈Si−1

F (Si−1 ∪ {e})− F (Si−1)

}
,

until k elements have been chosen.

When the function is not only submodular but also nonnegative monotone, a result from
[68] guarantees the approximation factor of about 63%. That is, denoting S∗ as the maxi-
mizer and S† as the greedy solution, F (S∗) ≥ (1− 1/e)F

(
S†
)
. We now introduce a richer

class of constraints beyond the cardinality constraint through the notion of matroids and
the corresponding approximation guarantees.

CHAPTER 2. PRELIMINARY 8

Definition 3 (Matroid). A matroid (V , Ik) consists of a ground set V and a family Ik ⊆ 2V

of “independent sets” that satisfy three axioms: (1) ∅ ∈ Ik; (2) downward closedness: if
S ∈ Ik then T ∈ Ik for all T ⊆ S; and (3) the exchange property: if S, T ∈ Ik and |S| < |T |,
then there is an element v ∈ T \ S such that S ∪ {v} ∈ Ik.

A “matroid constraint” means that we demand that the solution must be in I, i.e., the
selected set is an independent set in the matroid. A few examples of matroid constraints
include:

Partition matroid Suppose the ground set is partitioned into non overlapping groups,
V =

⋃
iGi, Gi

⋂
iGj = ∅ ∀i, j. A partition matroid constraints the number elements which

can be chosen from each group Gi. Formally, I = {S ⊆ V | |S ∩Gi| ≤ k, ∀ i = 1, . . . , p}.

Graphic matroid Let G = {V , E} be an arbitrary graph. Graphic matroid constraints the
choice of subset of edges in the graph such that the selected nodes must not contain any
cycles and thus must be a tree or forrest. Formally, I = {S ⊆ V | S does not have a cycle}.

Linear matroid Let V be n column vectors vi ∈ Rm where n >> m. Now, picking a
collection of column vectors linearly independent of each other can be written as a matroid
constraint. In this case, we use a linear matroid with I = {S = v1, . . . , v|S|| rank(S) = |S|}.

In case of matroid constraints, the maximization problem maxS∈I F (S) can be approximately
maximized with the greedy algorithm.

Si := Si−1

⋃ {
argmax

{e}/∈Si−1 : Si−1∪{e}∈I
F (Si−1 ∪ {e})− F (Si−1)

}
,

which progressively selects elements from the ground set with the largest marginal gain until
no more feasible elements can be added. The following theorem [7] provides the approxima-
tion guarantee for arbitrary number of matroid intersections.

Theorem 1 (Matroid intersection [7, 53]). Supposed (V, I1) , . . . , (V, Ip) are p matroids, and
I = ∩iIi. That is I consists of all subsets of V that are independent in all p matroids.
Even though (V, I) is not generally a matroid anymore, the greedy algorithm is guaranteed
to produce a solution so that f(SG) ≥ 1

p+1
maxS∈I f(S).

Example: bipartite matching
The following example shows that matching in a bipartite graph can be expressed as inter-
section of two matroid constraints. Fig. 2.3 shows an example bipartite graph G = {U ,V , E}.
A set of edges S ⊆ E form a matching if each node is adjacent to at most one edge in S.
Formally, this can be written as intersection of two partition matroids with set cardinality
n,m for sets U ,V respectively.

CHAPTER 2. PRELIMINARY 9

M = {E , I}, I = IU ∩ IV
IU = {S ⊆ E| |S ∩ EUi | ≤ 1, ∀ i = 1, . . . n}
IV = {S ⊆ E| |S ∩ EVi | ≤ 1, ∀ i = 1, . . .m},

(2.2)

where EUi denotes the set of edges with left end point in the node ui and EVi denote the set
of edges with the right end point in the node vi.

U : V :

u1

u2

u3

u4

u5

v1

v2

v3

v4

Figure 2.3: Example bipartite graph G = {U ,V , E}

Lemma 3 in Chapter 5 uses these results to prove a matroid intersection bound on a graph.

10

Chapter 3

Generalized sparselet models for
real-time multiclass object recognition

3.1 Introduction

Real-time category level recognition is a core requirement for visual competence in everyday
environments. Domains of modest complexity typically have hundred to thousands of cate-
gories, and as one considers unconstrained search problems, the space of possible categories
becomes practically unlimited. On top of that, modern object models [31, 5] consists of
mixture of hundreds to thousands of object filters.

As the number of categories grows, individual models are increasingly likely to become
redundant. In the case of part-based models this redundancy can be exploited by construct-
ing models with shared parts. In this regard, shared intermediate representations are highly
appealing due to their potential for gains in computational and statistical efficiency. These
representations appear under a variety of guises, such as steerable filter banks [37], low-rank
approximations for collaborative filtering [79], and shared part models for object detection
[105, 71, 44].

Recently, sparselets [86, 41] were introduced as a new shared intermediate representation
for multiclass object detection with deformable part models (DPMs) [31] by me. In this
application, each sparselet can be thought of as a small, generic part (e.g., a corner or edge)
that is shared between all object categories. The parts of a DPM, for any class, are then
constructed by tiling sparse linear combinations (“activations”) of the sparselet mini-parts.
With this representation, sparselets reconstruct approximate part responses using a sparse
matrix-vector product instead of exhaustive convolutions.

In contrast to standard applications of sparse coding, where features are encoded as
sparse combinations of overcomplete dictionary elements, sparselet models learn a dictionary
of model parameters, and the models themselves are encoded as sparse combinations of
dictionary elements. This leads to a compression of the models that can be exploited to
speed-up computation.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 11

The computational efficiency gains of this approach were demonstrated in a GPU sparse-
lets implementation of DPM detection that outperformed a baseline GPU implementation
by a factor of 3x to 5x, and outperformed the CPU version of the cascade algorithm in [32]
by a factor of 15x, with almost no loss in detection average precision. The sparsity level
used in this construction naturally trades off a decrease in detection accuracy for greater
speed. However, the reconstructive method for learning activations proposed in [86] is brit-
tle, and pushing slightly beyond these speedup factors leads to a substantial loss in detection
accuracy.

This chapter also helps unify sparselets with the steerable part models of [74]. The fun-
damental differences between the two methods lies in how they accelerate inference and how
they are trained. Steerable part models use a small part dictionary with dense linear com-
binations and discriminative training, whereas sparselets use a larger dictionary with sparse
linear combination, and a reconstructive error training paradigm. With regard to dictio-
nary size and linear combination density, the two approaches can be viewed as operating
at different points within the same algorithm design space. The remaining difference, then,
lies in the training method. This chapter unifies the two approaches by showing how to
train sparselet activations discriminatively, or alternately, how to train steering coefficients
sparsely.

3.2 Related Work

Our work is related to three strands of active research: (1) part sharing with compositional
models [90, 35, 105, 71, 44], (2) sparse coding and dictionary learning [54, 64, 63], and (3)
modeling and learning with low-rank approximations [37, 66, 100]. None of these methods,
however, simultaneously exploit shared interclass information and discriminative sparsity
learning to speed up inference while maintaining task performance.
A preliminary version of our system was described in [86, 41]. First we introduce the notion
of generalized sparselets in structured output prediction problem [91, 88] and analyze the
computational gains in efficiency. Also, we formulate a discriminative sparselet activation
training framework and several regularization schemes that lead to improved sparsity and
task performance. We experimentally demonstrate that the proposed sparselet activation
learning algorithm substantially outperforms reconstructive sparselets and generalizes to
previously unseen object categories.

This chapter is structured as follows. In Sec. 3.3, we start with a brief overview of
sparselets [86] and formulate structured output prediction with generalized sparselets [41]. In
Sec. 3.4, we describe how discriminative sparselet activation training fits into the framework
and discuss several regularization methods for sparse activation learning. In Sec. 3.5, we
discuss important applications of the proposed approach to multiclass object detection with
mixtures of deformable part models [31] and to multiclass image classification. Before we
conclude in Sec. 3.7, we provide experimental results on multiclass object detection and
multiclass image classification problems in Sec. 3.6.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 12

input
image

*

intermediate
representation

DPM_bicycledecompose

Bicycle
detections

reconstructDPM_car

DPM_horse

Sparselet

dictionary...
pre-processing reconstructionoffline

dictionary learning

Figure 3.1: System concept.

3.3 Sparselets

In general, convolution of a feature pyramid with thousands of object model filters becomes
the major computational bottleneck in multiclass object detection tasks. Sparselet model
tackles this problem by learning a dictionary of “universal” object models that generalizes
to previously unseen classes and expressing filter convolutions stage as sparse linear combi-
nations of sparselet convolutions. Fig. 3.1 illustrates the concept in three stages. Also, the
sparselet dictionary size is independent on number of classes and the speedup offered by the
method approaches the ratio between number of classes and the sparsity in reconstruction
weights as number of classes increases.

Sparse reconstruction of object models

Formally, a sparselet model is completely defined by a dictionary S = [s1, . . . , sd] in Rm×d,
where each column si in Rm is called a sparselet. We formulate the following optimization
problem to derive sparselet models which reconstruct linear object filters W = [w1, ...,wK]
in Rm×K pooled from a set of training models via sparse linear combination.

min
αij ,sj

K∑
i=1

||wi −
d∑
j=1

αijsj||22

subject to ||αi||0 ≤ λ0 ∀i = 1, ..., K

||sj||22 ≤ 1 ∀j = 1, ..., d

(3.1)

Although the above optimization is NP-hard, greedy algorithms such as orthogonal
matching pursuit algorithm (OMP) [65] can be used to efficiently compute an approximate
solution. OMP iteratively estimates the optimal matching projections of the input signal

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 13

Sparse activation
vectors

 Final
detection

Reconstructed
 responses

Learned
sparselets

Response
 matrix

Input
image

 Reconstruction Pre-processing

Figure 3.2: Overview diagram of object detection with sparselets. Once we evaluate the
image with learned sparselets, the reconstruction phase can be done via efficient sparse
matrix vector multiplications.

onto the dictionary S. The above optimization problem is convex with respect to S if αi
is fixed, and so we can optimize the objective in a coordinate descent fashion by iterating
between updating αi while fixing S and vice versa. For our experiments we use the online
dictionary learning algorithm from [64].

Precomputation and efficient reconstruction

We can precompute convolutions for all sparselets, and by linearity of convolution we can
then use the activation vectors estimated for a target object detector to approximate the
convolution response we would have obtained from convolution with the original filters.
Denoting the feature pyramid of an image as Ψ, we have

Ψ ∗wi ≈ Ψ ∗
∑
j

αijsi =
∑
j

αij (Ψ ∗ si) (3.2)

Concretely, we can recover individual part filter responses via sparse matrix multiplica-
tion (or lookups) with the activation vector replacing the heavy convolution operation as
shown in Eqn. 3.3:

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 14



—— Ψ ∗w1 ——
—— Ψ ∗w2 ——

...

...

...

...
–— Ψ ∗wK —–


≈



–— α1 —–
–— α2 —–

...

...

...

...
–— αK —–




—— Ψ ∗ s1 ——
—— Ψ ∗ s2 ——

...

—— Ψ ∗ sd ——

 (3.3)

where the first matrix is the matrix of sparse activation vectors and the second matrix
is a matrix of all sparselet responses. The sparselet responses Ψ ∗ si are independent of any
filter, and thus their cost can be amortized over all filters from all object models. Figure
3.2 shows the overview of the approach. In the remainder of this section we present a novel
generalization of this technique. First, we illustrate how to generalize sparselets for simple
multiclass linear classifiers, and then for any linear structured output prediction model.

Generalized sparselets for structured output prediction

Consider a set of K linear classifiers parameterized by the weight vectors w1, . . . ,wK each
in Rn. An input feature vector x ∈ Rn is assigned to a class fw(x) ∈ {1, . . . , K} according
to the rule

fw(x) = argmax
k∈{1,...,K}

wᵀ
kx. (3.4)

Our objective is to reduce the computational cost of computing Eq. 3.4.
We begin by partitioning each parameter vector wk into several m-dimensional blocks.

A block is a subvector of parameters chosen so that the set of all blocks admits a sparse
representation over S. Concretely, in the examples that follow blocks will be chosen to be
fragments of part filters in a deformable part model (see Fig. 3.4), or simply contiguous
subvectors of the parameters in a bag-of-visual-words classifier. For clarity, we will assume
that n = pm for some positive integer p. We can rewrite each linear classifier in terms of
its blocks, bki in Rm, such that wk = (bᵀ

k1, . . . ,b
ᵀ
kp)

ᵀ. Similarly, we can partition an input
feature vector into m-dimensional subvectors, ci in Rm, such that x = (cᵀ

1, . . . , c
ᵀ
p)

ᵀ.
Given a sparselet model S, we can approximate any vector b ∈ Rm as a sparse linear

combination of the sparselets in S

b ≈ Sα =
d∑

i=1,

αi 6=0

αisi, (3.5)

where α = (α1, . . . , αd)
ᵀ ∈ Rd is a sparselet activation vector for b. The quality of the

approximation depends on the fixed dictionary and the chosen activation vector. Now, the

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 15

dot product in Eq. 3.4 can be approximated as

wᵀ
kx = (bᵀ

k1, . . . ,b
ᵀ
kp)(c

ᵀ
1, . . . , c

ᵀ
p)

ᵀ

=

p∑
i=1

bᵀ
kici ≈

p∑
i=1

(Sαki)
ᵀci =

p∑
i=1

αᵀ
ki(S

ᵀci). (3.6)

We note two important properties of Eq. 3.6: (1) the sparselet responses Sᵀci are indepen-
dent of any particular classifier, and (2) the subsequent product with αki can be computed
efficiently by accessing only the nonzero elements of αki. In the following, let λ0 be the
average number of nonzero elements in each αki.

Multiclass classification is a special case of structured output prediction. To complete
the description of generalized sparselets for structured output prediction, consider the linear
discriminant function

fw(x) = argmax
y∈Y

wᵀΦ(x,y) (3.7)

where the input x comes from an arbitrary input space X , and fw outputs an element from
the label space Y . In the following subsection, we give concrete examples of how the weight
vector w is partitioned into blocks and analyze the computational cost for three scenarios:
multiclass classification, multiclass convolutional classifiers and part based models.

Computational cost analysis

We can analyze generalized sparselets for multiclass classification by looking at the cost of
computing bᵀ

kici for a single block i and for all classes k. The original classifiers require Km
additions and multiplications. The generalized sparselet approach has a shared cost of dm
operations for computing the sparselet responses, ri = Sᵀci, and a cost of Kλ0 operations for
computing αᵀ

kiri for all classes. The overall speedup is thus Km/(dm+Kλ0). To make this
value large, the dictionary size d should be much smaller than the number of classes K, and
the average number of nonzero coefficients in the activation vectors should be much less than
the sparselet size m. As the number of classes becomes large, the cost of computing sparselet
responses becomes fully amortized which leads to a maximum theoretical speedup of m/λ0

[86]. This emphasizes the importance of a sparse representation, in contrast, for example,
to the dense steering coefficients in [74]. This analysis shows that generalized sparselets are
most applicable to multiclass problems with a large number of classes. This is a regime
of growing interest, especially in computer vision as exemplified by new datasets such as
ImageNet [14], which includes more than 10,000 categories [15]. In Sec. 3.6 we show results
on the Caltech-{101,256} [27, 46] datasets demonstrating that even with only one or two
hundred classes generalized sparselets can accelerate simple linear classifiers.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 16

B :

C :

b11 b12 b21 b22 b31 b32

c1 c2

Figure 3.3: Computation graph for a multiclass problem with K = 3. Let the sparselet size
be m and the number of blocks be p = 2. We define w = (wᵀ

1,w
ᵀ
2,w

ᵀ
3)ᵀ in RKpm. Each

per-class classifier wk in Rpm is partitioned into p blocks such that wk = (bᵀ
k1,b

ᵀ
k2)ᵀ. An

input vector x in Rpm is partitioned into subvectors such that x = (cᵀ
1, c

ᵀ
2)ᵀ. The feature map

Φ(x, k) in RKpm is defined as: Φ(x, 1) = (xᵀ, 0, . . . , 0)ᵀ; Φ(x, 2) = (0, . . . , 0,xᵀ, 0, . . . , 0)ᵀ;
Φ(x, 3) = (0, . . . , 0,xᵀ)ᵀ. The edges in the graph encode the dot products computed while
solving argmax

k∈{1,2,3}
wᵀΦ(x, k).

To generalize the analysis to the structured prediction setting, we rewrite the speedup as
Qm/(dm+Qλ0), where Q is defined to be the number of times a given subvector of feature
values is multiplied with a unique parameter block. Intuitively, Q counts the number of times
the intermediate sparselet response is reused while solving the argmax in Eq. 3.7. The value
of Q depends on the specific feature map Φ(x, y) and inference algorithm.

For clarity, we will assume that n = pm for some integer p, where m is the length of
each sparselet si in the sparselet dictionary S. This assumption can be removed with simple
modifications to the discussion that follows. We partition w into a set of blocks bi in Rm

such that w = (bᵀ
1, . . . ,b

ᵀ
p)

ᵀ.
Let A be an algorithm such that A(w, x) computes fw(x) — i.e., it solves the argmax

in Eq. 3.7. We are going to build a bipartite graph G = (B ∪ C, E) that represents certain
computations performed by A. The graph depends on A’s inputs w and x, but to lighten
notation we will omit this dependence.

Each node in G corresponds to a vector in Rm. With a slight abuse of notation we will
label each node with the vector that it is in correspondence with. Similarly, we will label the
edges with a pair of vectors (i.e., nodes), each in Rm. We define the first set of disconnected
nodes in G to be the set of all blocks in w: B = {b1, . . . ,bp}. We will define the second set
of disconnected nodes, C, next.

Any algorithm that computes Eq. 3.7 will perform some number of computations of the
form bᵀc, for a block b ∈ B and some vector c ∈ Rm. The vectors c appearing in these
computations are most likely subvectors of Φ(x, y) arising from various values of y. The
graph G is going to represent all unique computations of this form. Conceptually, we can
construct C by running the algorithm A and adding each unique vector c that appears in a
computation of the form bᵀc to C. The edge set E connects a node b ∈ B to a node in c ∈ C

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 17

if and only if A performs the computation bᵀc. For a specific algorithm A, we can construct
G analytically. An example graph for a multiclass classification problem is given in Fig. 3.3.

Graph G’s edges encode exactly all of the computations of the form bᵀc and therefore we
can use it to analyze the computational costs of A with and without generalized sparselets.

Obviously, not all of the computation performed by A are of the form captured by the
graph. For example, when generalized distance transforms are used by A to solve in the
computation of Eq. 3.7 for deformable part models, the cost of computing the distance
transforms is outside of the scope of G (and outside the application of sparselets). We let
the quantity T (w, x) account for all computational costs not represented in G.

We are now ready to write the number of operations performed byA(w, x). First, without
sparselets we have

TOriginal(w, x) = T (w, x) +m
∑
c∈C

deg(c), (3.8)

where deg(v) is the degree of a node v in G. The second term in Eq. 3.8 accounts for the
m additions and multiplications that are performed when computing bᵀc for a pair of nodes
(b, c) ∈ E .

When sparselets are applied, the cost becomes

TSparselets(w, x) = T (w, x) + dm|C|+ λ0

∑
c∈C

deg(c), (3.9)

The second term in Eq. 3.9 accounts for the cost of precomputing the sparselet responses,
r = Sᵀc (cost dm), for each node in C. The third term accounts for the sparse dot product
α(b)ᵀr (cost λ0) computed for each pair (b, c) ∈ E , where α(b) is the sparselet activation
vector for b.

The speedup is the ratio TOriginal/Tsparselets.

T (w, x) +m
∑|C|

i=1 deg(cj)

T (w, x) + dm|C|+ λ0

∑|C|
i=1 deg(cj)

(3.10)

In all of the examples we consider in this chapter, the degree of each node in C is a single
constant: deg(c) = Q for all c ∈ C. In this case, the speedup simplifies to the following.

T (w, x) +Q|C|m
T (w, x) + dm|C|+Q|C|λ0

(3.11)

If we narrow our scope to only consider the speedup restricted to the operations of A
affected by sparselets, we can ignore the T (w, x) terms and note that the |C| factors cancel.

Qm

dm+Qλ0

(3.12)

This narrowing is justified in the multiclass classification case (with K classes) where the
cost T (w, x) amounts to computing the maximum value of K numbers, which is negligible

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 18

compared to the other terms. We also observe that Q = K, yielding the following speedup.

Km

dm+Kλ0

(3.13)

The computation graph for a simple multiclass example with K = 3 is given in Fig. 3.3. For
more intuition, we consider two examples below.

Multiclass convolutional classifiers. Consider the multiclass setting and let
w = (wᵀ

1, . . . ,w
ᵀ
K)ᵀ in RKn. As before, each wk is partitioned into p blocks. But now,

instead of an n-dimensional input feature vector, consider larger input vectors x ∈ Rq,
q � n, and the feature map Φ(x, (k, y)) = (0, . . . , 0,xᵀ

y:n, 0, . . . , 0)ᵀ. We write xy:n to denote
the length-n subvector of x starting at position y. This subvector is placed into the k-th
“slot” of Φ (corresponding to the slot for wk in w). The label space Y consists of all valid
(class, position) pairs (k, y). This setup is equivalent to the problem of searching for the sub-
vector of x that has maximum correlation with a weight vector in {wk}. A concrete example
of this is multiclass object detection with Dalal and Triggs style scanning window detec-
tors [12]. In contrast to the non-convolutional multiclass setting, now each block of w must
be multiplied with each subvector of x while scanning for the maximum response (imagine
“sliding” each wk over x while computing a dot product at each position), and thus Q = Kp.

Part-based models. Another common situation that leads to a large Q value is when
w parameterizes a set of “parts” and fw(x) computes the optimal assignment of the parts
to locations y in the input x. For example, a location y might be a position in a sentence or
an image. In this problem setting, there is a (typically very large) pool of feature vectors,
where each vector in the pool describes one location in x. The feature map Φ(x, y) acts on a
label y by installing the selected subset of local feature vectors into the appropriate slots of
Φ. These problems typically also involve pairwise interactions between the labels assigned
to some pairs of parts. When these interactions form a tree, dynamic programming can be
used to efficiently compute the optimal label assignments. In the dynamic programming
algorithm, the dot product between each part model and each local feature vector must
be evaluated. As a concrete example, consider the deformable part models of [31]. For this
model, the dynamic programming algorithm implicitly generates the large set of local feature
vectors through the convolution of each part with a histogram of oriented gradients (HOG)
feature image [12, 31]. Given object detectors for K classes, each with N parts, each of which
is partitioned into p blocks, this model and algorithm result in Q = KNp. The part-based
structure of this problem increases sparselet response reuse by a factor of N .

3.4 Discriminative activation of generalized sparselets

Throughout the rest of this chapter we consider linear models defined by parameter vectors
that are partitioned into K slots: w = (wᵀ

1, . . . ,w
ᵀ
K)ᵀ. In the multiclass setting, slots

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 19

correspond to the individual classifiers. More generally, slots might be structures like the
filters in a deformable part model. Generalized sparselets may be applied to any subset of
the slots. For a slot wk to which sparselets are applied, it is further partitioned into pk
blocks: wk = (bᵀ

k1, . . . ,b
ᵀ
kpk

)ᵀ. The {wk} may have different dimensions, as long as each is
a multiple of the sparselet dimension m.

In [86], the task of learning the sparselet model S from a training set of parameter blocks
{bki} was naturally posed as a sparse coding dictionary learning problem [54, 64]. The
objective was to find a dictionary S and activation vectors {αki} that minimize reconstruction
error, subject to an `0-pseudo-norm sparsity constraint on each activation vector. Then, given
the learned dictionary S, the activation vectors for a model w (either previously unseen or
from the training set) were learned by minimizing reconstruction error, subject to the same
sparsity constraint.

The experimental results in [86] show that task performance (average precision for ob-
ject detection) quickly degrades to undesirable levels as the activation vectors are made
increasingly sparse. This result is intuitive given the reconstructive activation vector learn-
ing method used in [86]. When reconstruction error is low (i.e. low sparsity), the original
decision boundary of the model is roughly preserved. However, as sparsity increases, and
the reconstruction error becomes larger, the decision boundary of the reconstructed model
changes in an uncontrolled way and may no longer be discriminative for the target task.

Our solution is to replace reconstruction error with a discriminative objective. To do
this (assuming a fixed dictionary), we propose to rewrite the original optimization problem
used for training the linear model in terms of sparselet responses, which now act as training
features, and the activation vectors, which now act as the model parameters. To achieve
sparsity, we augment this new objective function with a sparsity inducing regularizer. As we
show below, the somewhat obvious choice of `1 regularization leads to unsatisfactory results,
motivating the development of an alternative approach.

Learning discriminative activation vectors

Here we consider learning the activation vectors for a predictor w in the structural SVM
(SSVM) framework [91, 88]. The SSVM training equation is

w∗ = argmin
w

λ

2
‖w‖2

2+

1

M

M∑
i=1

max
ŷ∈Y

(wᵀΦ(xi, ŷ) + ∆(yi, ŷ))−wᵀΦ(xi, yi),

(3.14)

where ∆(y, y′) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 3.14 in
terms of the activation vector parameters and sparselet responses. For clarity, assume the
slots of w have been arranged so that slots 1 through s are represented with sparselets, and

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 20

slots s + 1 through K are not.1 For each slot wk = (bᵀ
k1, . . . ,b

ᵀ
kpk

)ᵀ that is represented by
sparselets, we define a corresponding activation parameter vector αk = (αᵀ

k1, . . . ,α
ᵀ
kpk

)ᵀ ∈
Rpkd. Let α = (αᵀ

1, . . . ,α
ᵀ
s)

ᵀ and w̃ = (wᵀ
s+1, . . . ,w

ᵀ
K)ᵀ, and define the new model parameter

vector β = (αᵀ, w̃ᵀ)ᵀ.
We transform the feature vector in a similar manner. For a feature vector slot Φk(x, y) =

(cᵀ
1, . . . , c

ᵀ
pk

)ᵀ that will be represented by sparselets, we transform the features into sparselet

responses: Φ̃k(x, y) = (cᵀ
1S, . . . , c

ᵀ
pk

S)ᵀ ∈ Rpkd. The fully transformed feature vector is

Φ̃(x, y) = (Φ̃
ᵀ
1(x, y), . . . , Φ̃

ᵀ
s(x, y),Φᵀ

s+1(x, y), . . . ,Φᵀ
K(x, y))ᵀ. The resulting objective is

β∗ = argmin
β

R(α) +
λ

2
‖w̃‖2

2

+
1

M

M∑
i=1

max
ŷ∈Y

(
βᵀΦ̃(xi, ŷ) + ∆(yi, ŷ)

)
− βᵀΦ̃(xi, yi),

(3.15)

where R(α) is a regularizer applied to the activation vectors.

Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [89]
RLasso(α) = λ1‖α‖1

II. Elastic net penalty [106]
REN(α) = λ1‖α‖1 + λ2‖α‖2

2

III. Combined `0 and `2 penalty
R0,2(α) = λ2‖α‖2

2 subject to ‖α‖0 ≤ λ0

The first two regularizers lead to convex optimization problems, however the third does
not. We consider two alternative methods for approximately minimizing Eq. 3.15 when
R(α) = R0,2(α). Both of these methods employ a two step process. In the first step, a
subset of the activation coefficients is selected to satisfy the constraint ‖α‖0 ≤ λ0. In the
second step, the selection of nonzero variables is fixed (thus satisfying the sparsity constraint)
and the resulting convex optimization problem is solved. We consider the following variable
selection strategies.

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter
slot.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 21

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso

or REN with λ1 set to overshoot the target number of nonzero variables λ0. We then
rank the nonzero activation coefficients by their magnitudes and select the λ0 variables
with the largest magnitudes. Each variable in the selected variable set’s complement
is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables
by minimizing the reconstruction error between parameter blocks and their sparse cod-
ing approximation subject to the constraint ‖α‖0 ≤ λ0. In practice, we use orthogonal
matching pursuit [65] as implemented in SPAMS software package [64]. This produces
the same initial set of activation vectors as the baseline method [86]. However, we then
learn the selected variables discriminatively according to Eq. 3.15.

3.5 Application of generalized sparselets

We first focus on the application of our novel sparselet activation vector learning approach
to object detection with mixtures of deformable part models [31] in order to facilitate direct
comparison with the results in [86]. In brief, the deformable part model (DPM) from [31] is
specified by a root filter that models the global appearance of an object class and a set of N
part filters that capture local appearance. The part filters are attached to the root filter by
flexible “springs” that allow the model to match the image with a deformed arrangement of
parts. In practice, several DPMs are combined into one mixture model to better represent
more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z.
Let z = (c, ρ0, . . . , ρN) specify a mixture component c ∈ {1, . . . , C}, root filter location ρ0,
and part filter locations ρ1, . . . , ρN for a model with C components and N part filters. The
score function can be written as

score(x, z) = wc +
N∑
i=0

wᵀ
ciψci(x, ρi)

+
N∑
i=1

dᵀ
ciδci(ρ0, ρi) = wᵀΦ(x, z),

(3.16)

where wci are the weights in filter i of component c, dci are the quadratic deformation
parameters specifying the stiffness of the spring connecting the root filter and part filter i of
component c, and wc is a score bias. The feature functions ψci(x, ρi) and δci(ρ0, ρi) are local
image features (HOG) and deformation features, respectively. The score can be written as
a single dot production between

w = (w1, . . . , wC ,w
ᵀ
10, . . . ,w

ᵀ
1N , . . . ,w

ᵀ
C0, . . . ,w

ᵀ
CN ,

dᵀ
11, . . . ,d

ᵀ
1N , . . . ,d

ᵀ
C1, . . . ,d

ᵀ
CN)ᵀ

(3.17)

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 22

and a sparse cumulative feature vector Φ(x, z) that is laid out with the same slots as w.
We apply sparselets to all filter slots of w, i.e., the {wci}. The part filters all have the

same 6× 6 shape, but the root filters, both within a mixture model and across classes, have
a variety of dimensions. Unlike [86] and [74] we decompose the root filters, not just the
part filters. To do this, we employ 3 × 3 sparselets and pad the root filters with an extra
one or two rows and columns, as needed, to ensure that their dimensions are multiples of
3. Summed over the models for all 20 object classes [30] in the PASCAL VOC 2007 dataset
[23], there are a total of 4954 3× 3 subfilters. In our experiments below, we represent all of
these subfilters by sparse linear combinations of only 256 sparselets — effectively achieving
more than an order of magnitude reduction in the number of model parameters. The HOG
image features are 32-dimensional, leading to a sparselet size of m = 288. Our dictionary
is thus undercomplete — which is desirable from a runtime perspective. Our experimental
results confirm that the sparselets spans a sufficient subspace to represent the subfilters in
the 20 PASCAL classes (Sec. 3.6), as well as to generalize to previously unseen classes from
the ImageNet dataset (Sec. 3.6). Our DPM sparselets are visualized in Fig. 3.4.

Latent SVM

The DPMs in [31] are learned by optimizing a latent SVM (LSVM):

w∗ = argmin
w

λ

2
‖w‖2+

1

M

M∑
i=1

max

(
0, 1− yi max

z∈Z(xi)
wᵀΦ(xi, z)

)
.

(3.18)

The objective function in Eq. 3.18 is not convex in w and in practice a local optimum is
found by coordinate descent on an auxiliary function that upper bounds Eq. 3.18 (see [31]
for details). The coordinate descent algorithm alternates between two steps. In the first
step, the set Z(xi) is made singleton — for each positive example — by setting its only
member to be an optimal latent value assignment for example xi. This step results in a
convex optimization problem that has the same form as a structural SVM. It is therefore
straightforward to apply discriminative activation learning to a LSVM: we follow the same
coordinate descent scheme and apply the SSVM problem transformation from Sec. 3.4 to
the LSVM’s convex optimization subproblem.

Our implementation is based on the voc-release4 source code from [30]. To optimize
the transformed objective function Eq. 3.15 when R(α) is either RLasso(α) or REN(α), we
modified the default stochastic subgradient descent (SGD) code to implement the truncated
gradient descent update of Langford et al. [57]. This method achieves actual sparsity by
shrinking parameters and then truncating small values every few SGD iterations.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 23

Figure 3.4: (Left) 128 of the 256 sparselets learned from 20 DPMs trained on the PASCAL
VOC 2007 dataset. (Right) The top 16 sparselets activated for the motorbike category.

Visualizing learned DPM sparselets

Each DPM sparselet can be visualized as a 3×3 filter. In Fig. 3.4 (left) we show the positive
weights of 128 of the 256 sparselets that we learned from DPMs for the 20 classes from the
PASCAL VOC 2007 dataset. Regular structures, such as horizontal, vertical, and diagonal
edges, as well as arcs and corners, are visible. We can order the sparselets activated for a
particular category model by sorting them by the magnitude of their activation coefficients.
Fig. 3.4 (right) shows the top 16 sparselets for the motorbike category. Some of the activated
sparselets resemble circular fragments of wheels.

Image classification

To illustrate generalized sparselets applicability beyond DPMs, we evaluated our approach
on the Caltech-101 [27] (102 classes, including background) and Caltech-256 (257 classes)
[46] datasets. Since our aim is not state-of-the-art accuracy, but rather to demonstrate our
learning method, we implemented sparselets atop a basic, publicly available image classifi-
cation framework. Specifically, we used the phow caltech101 method included in VLFeat
[93]. This approach trains one-against-all linear SVMs using bag-of-visual-words features
(600 word vocabulary, 2× 2 and 4× 4 spatial pooling, and an approximate χ2 feature map
[94]). In Sec. 3.6 we experiment with two block sizes, m ∈ {100, 200}. These values of m
lead to 36720 (or 18360) blocks in total for the 102 Caltech-101 classifiers, and 92520 (or
46260) blocks in total for the 257 Caltech-256 classifiers. We represent all of these blocks as
sparse linear combinations of d = 40 sparselets.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 24

3.6 Experiments

0

0.2

0.4

0.6

0.8

1

1.2

Object categories

R
ec

o
n
st

ru
ct

io
n
 e

rr
o
r

Fixed precomputation time and reconstruction time

1×1

2×2

3×3

6×6

0

0.5

1

1.5

2

Object categories

R
ec

o
n
st

ru
ct

io
n
 e

rr
o
r

Fixed representation space and reconstruction time

1×1

2×2

3×3

6×6

Figure 3.5: Reconstruction error for all 20 object categories from PASCAL 2007 dataset
as sparselet parameters are varied. The precomputation time is fixed in the top figure
and the representation space is fixed on the bottom. Object categories are sorted by the
reconstruction error by 6× 6 in the top figure and by 1× 1 in the bottom figure.

We performed four sets of experiments, one with dictionary construction, one with model
reconstruction, two with multiclass object detection, and the last one with multiclass im-
age classification. The first experiment evaluates the sensitivity of the sparselet dictionary
learned from random subset of object classes. The second experiment was designed to eval-
uate the effect of sparselet block size when the precomputation time is fixed versus when
the representation space is fixed. The third experiment compares each of the regularization
methods described in Sec. 3.4. The fourth experiment was designed to evaluate how well

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 25

a set of sparselets learned on one set of models generalizes to a new set of models when
learning the activation vectors in our discriminative framework.

Sensitivity to heterogeneity of object classes used in dictionary
construction

To test how sensitive the learned dictionary of sparselets is with respect to the set of ob-
ject classes used for the dictionary construction, we designed the following experiment on
PASCAL VOC 2007 [23] dataset. For a test object class, we ran five trials of constructing
the dictionary from five randomly chosen object models excluding the test object class (five
different dictionaries per class). Empirically, (Table 3.1), a dictionary learned from randomly
chosen subset of the object classes shows negligible loss in average precision compared to
the dictionary learned from all the classes with insignificant standard deviation. This also
shows the dictionary learned on a subset of object classes generalizes to previously unseen
object classes.

Effect of different sparselet block sizes

In practice we can divide a part filter into smaller subfilters before computing the sparselet
representation. The subfilter size (which equals the sparselet size) determines certain runtime
and memory tradeoffs. Let F be a hF ×wF × l filter, and let the sparselet size be hs×ws× l.
We require that hs and ws are divisors of hF and wF , respectively, and divide F into an
hF/hs×wF/ws array of tiled subfilters. We approximate (or “reconstruct”) a filter response
by summing over approximate subfilter responses.

Given precomputed sparselet responses, reconstructing the response to F requires at most
λ0(hF/hs)(wF/ws) operations. Low-cost approximation is essential, so we fix the reconstruc-
tion budget for F at λ0(hF/hs)(wF/ws) ≤ BR. Within this budget, we can use fewer, smaller
sparselets, or more, larger sparselets. We consider two other budget constraints. Precom-
putation time BP : convolving an input with the entire sparselet dictionary requires hswsld
operations. For a fixed budget hswsld ≤ BP , we can use more, smaller sparselets, or fewer,
larger sparselets. Representation space BS: the space required to store the intermediate
representation is proportional to the dictionary size d.

We evaluated the filter reconstruction errors for 4 different subfilter sizes. For these
experiments we fixed the reconstruction budget λ0(hF/hs)(wF/ws) = 112 by setting λ0 to
be {112, 28, 13, 3} for subfilter size of {6×6, 3×3, 2×2, 1×1}. Fig. 3.5 (left) shows the result
as the subfilter sizes vary while both the precomputation time and reconstruction time budget
is fixed. We set the dictionary size d = {128, 512, 1152, 4608} for {6× 6, 3× 3, 2× 2, 1× 1}
sized sparselets to fix the precomputation budget hswsd = 4608.

For fixed reconstruction and precomputation budgets BR and BP , we studied the effect
of varying sparselet size. Empirically, filter reconstruction error always decreases as we
decrease sparselet size. When there are not too many classes, the precomputation time is

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 26

not fully amortized and we would like to make BP small. For a fixed, small BP we minimize
reconstruction error by setting hs and ws to small values as shown is Fig. 3.5 (top). However,
as we make the sparselets smaller, d grows, possibly making the representation space budget
BS too large. In our experiments, we balance memory usage with sparselet size by setting
hs and ws to 3.

When precomputation is amortized, minimizing precomputation time is less important.
However, in this case we are still concerned with keeping the intermediate representation
reasonably small. Fig. 3.5 (bottom) shows the results as the subfilter sizes vary while both
the representation space and reconstruction time budget is fixed. We fixed the dictionary
size d = 512 for this experiment. By fixing the response and representation space budgets,
we observe that using more, larger sparselets minimizes reconstruction error (at the expense
of requiring a larger precomputation budget) as shown in Fig. 3.5 (bottom).

Comparison of regularization methods

81 88 94 97 99

15

18

20

23

25

28

30

33

Sparsity (%)

m
A

P
 (

%
)

PASCAL VOC 2007 object detection

Original

Reconstructive sparselets

R−Lasso

R−EN

R−0,2 ORT

R−0,2 OMP

81 88 94 97 99

20

23

25

28

31

33

36

39

41

Sparsity (%)

m
A

P
 (

%
)

ImageNet object detection (9 classes)

Original

Reconstructive sparselets

R−0,2 OMP

Figure 3.6: Mean average precision (mAP) vs. sparsity for object detection on the PASCAL
2007 dataset (left) and for 9 classes from ImageNet (right). The dictionary learned from the
PASCAL detectors was used for the novel ImageNet classes. “Original” is the original linear
model; “Reconstructive sparselets” is the baseline method from [86]; the remaining methods
correspond to discriminative learning [41] with each of the regularizers described in Sec. 3.4.

We evaluated the reconstructive sparselets [86] and the discriminatively trained activa-
tion vectors [41] on the PASCAL VOC 2007 dataset [23]. Fig. 3.6 (left) shows the mean
average precision (mAP) at various activation vector sparsity levels. We set the sparsity
regularization constant λ1 to {0.010, 0.015, 0.020} for the lasso penalty (“R-Lasso”) and to
{0.025, 0.030, 0.035} for the elastic net penalty (“R-EN”). For the combined `0 and `2 penalty,
λ0 was set to {48, 32, 16, 8, 4, 2}.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 27

The `1-based regularization methods were very difficult to tune. Adjusting λ1 to hit
a desired sparsity level requires an expensive grid search. Additionally, the ratio between
hinge-loss and the regularization term varied significantly between different classes, leading
to a wide range of sparsity levels. Ultimately, these methods also underperformed in terms
of mAP. Combined `0 and `2 regularization (“R–0,2 ORT” and “R–0,2 OMP”), in contrast,
produces exactly the desired sparsity level and outperforms all other methods by a large
margin. One interesting observation is that the mAP margin grows as the activation vectors
become increasingly sparse.

Universality and generalization to previously unseen categories

To test the hypothesis that our learned dictionary of sparselets, in conjunction with the
proposed discriminative activation training, are “universal” and generalize well, we used the
sparselet dictionary learned from 20 PASCAL classes and evaluated detection performance
on novel classes from the ImageNet [14] dataset. We selected 9 categories (sailboat, bread,
cake, candle, fish, goat, jeep, scissors and tire) that have substantial appearance changes
from the PASCAL classes. Fig. 3.6 (right) shows that our method generalizes well to novel
classes and maintains competitive detection performance even in the high sparsity regime.

Image classification with generalized sparselets

1 2.2 4.4 5.2 6.4 7.1
37

40

43

46

49

52

55

58

61

64

67

Speedup factor

A
cc

u
ra

cy
 (

%
)

Caltech−101

Original

Reconstructive sparselets m=100

Reconstructive sparselets m=200

R−0,2 OMP m=100

R−0,2 OMP m=200

1 2.5 4.7 7.7 8.9 14.6
10

12

14

16

18

20

22

24

26

28

30

A
cc

u
ra

cy
 (

%
)

Speedup factor

Caltech−256

Figure 3.7: Average classification accuracy vs. speedup factor for Caltech-{101,256}.

Fig. 3.7 compares classification accuracy versus speedup factor (averaged over 6 machines
with different CPU types). Generalized sparselets consistently provide a good speedup,
however only the discriminatively trained sparselet activation models provide high accuracy,

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 28

1 2 3 4 5 6 7 8 9 10
14

16

18

20

22

24

26

28

30

32

Speedup factor over CPU cascade

m
A

P
 (

%
)

GPU DPM

Discriminatively activated sparselets

Reconstructive sparselets

Figure 3.8: Run time comparison for DPM implementation on GPU, reconstructive sparselets
and discriminatively activated sparselets in contrast to CPU cascade.

occasionally besting the original classifiers. In these experiments, we used a fixed dictionary
size d = 40. We explored two block sizes m = 100 or 200. Each curve shows results at three
sparsity levels: 0.6, 0.8, and 0.9. We trained and tested with 15 images per class on both
datasets. As predicted by our cost analysis, increasing the class count (from 102 to 257)
magnifies the speedup factor.

Run time experiments

We performed two sets of experiments to measure the wall clock runtime performance with
and without GPU.

GPU experiment Fig. 3.8 shows the relative comparisons for DPM implementation
on GPU, reconstructive sparselets and discriminatively activated sparselets. For sparselets,
dictionary size K was set to 256 and the sparsity parameter λ0 was varied in the following
range {48, 32, 16, 8, 4, 2} which corresponds to {81, 88, 94, 97, 98, 99}% sparsity respectively.
As a reference for comparison, CPU cascade took 8.4547e+04 seconds to detection all 20
classes on all 4952 PASCAL VOC2007 test images (about 17 seconds per image).

In all the GPU experiments, detection thresholds were automatically adjusted at runtime
via binary search to deliver 5000±10 detections per object class, per frame. This was done to
ensure sufficient detection coverage for approaching each object category’s maximum-recall
point, while limiting memory consumption and runtime of the non-maximum suppression
algorithm to a known upper bound.

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 29

CPU cascade experiment was performed on a quad-core Intel Core i5-2400 CPU @
3.10GHz with 8GB of RAM. GPU experiments were conducted on NVIDIA GeForce GTX
580 with 3GB of memory.

Single core CPU experiment On a single core CPU experiment (Intel Core i7) with
8GB memory, we compare our method against our efficient baseline implementation of DPM
which utilizes SSE floating point SIMD instructions.

The sparsity level {81, 88, 94, 97, 98, 99}% resulted in {2.63, 3.99, 10.92, 15.81, 19.90, 22.57}
times speedup in filter convolution stage and {1.83, 2.25, 3.16, 3.39, 3.51, 3.54} times speedup
in end-to-end detection of 20 PASCAL classes per image. The variance of the experiments
over test images were insignificant. The wall clock processing time for the baseline DPM
code was 46.64 and 59.77 seconds per image per core respectively to evaluate the 20 class de-
tectors. The end-to-end speedup factor for the cascade method with respect to the baseline
DPM code was 3.04.

Even though the convolution stage is substantially accelerated via sparselets, other stages
of the DPM framework (i.e. distance transform, zero padding filter responses) upper bounds
the maximum possible end-to-end detection speedup (if the convolution stage and zero
padding convolution responses takes 0 seconds) to be about 4X per core. However, our im-
plementation of sparselets nearly reaches maximum possible speedup (up to 3.5X). In both
GPU and CPU implementations, discriminatively activated sparselets significantly outper-
formed reconstructive sparselets in the high speedup, high sparsity regime.

For completeness, we plan to maintain a project webpage with demo videos, benchmark wall
clock time results, and the source code at the following link:

http://www.eecs.berkeley.edu/∼song/sparselets/

3.7 Conclusion

We described an efficient object recognition model that simultaneously utilizes model redun-
dancy and reconstruction sparsity to enable real-time multiclass object recognition. We also
showed that the framework generalizes to any structured output prediction problem. The
experimental result show that fixed number of sparselets learned from one dataset generalizes
to novel objects from other datasets. This allows for reusing the pretrained sparselets with
various other designs of activation vectors. In the future, we would like to design more flex-
ible activation vectors to enable computational complexity logarithmic in number of object
classes.

http://www.eecs.berkeley.edu/~song/sparselets/

CHAPTER 3. GENERALIZED SPARSELET MODELS FOR REAL-TIME
MULTICLASS OBJECT RECOGNITION 30

Average Precision

Mean STD Max Min Full Dict

aeroplane 0.2922 0.0065 0.3024 0.2851 0.2966

bicycle 0.5542 0.0133 0.5747 0.5430 0.5688

bird 0.0690 0.0365 0.0948 0.0143 0.0343

boat 0.1236 0.0075 0.1352 0.1175 0.1394

bottle 0.1995 0.0104 0.2170 0.1903 0.2298

bus 0.4788 0.0129 0.4883 0.4581 0.5009

car 0.5479 0.0036 0.5526 0.5436 0.5640

cat 0.1296 0.0287 0.1631 0.0870 0.1432

chair 0.2008 0.0062 0.2075 0.1934 0.2057

cow 0.2226 0.0028 0.2258 0.2196 0.2384

diningtable 0.2136 0.0068 0.2215 0.2051 0.2381

dog 0.0574 0.0287 0.1054 0.0344 0.0590

horse 0.5408 0.0036 0.5442 0.5367 0.5542

motorbike 0.4611 0.0105 0.4721 0.4446 0.4724

person 0.3538 0.0080 0.3622 0.3459 0.3834

pottedplant 0.1048 0.0084 0.1163 0.0954 0.1127

sheep 0.1435 0.0148 0.1575 0.1236 0.1622

sofa 0.2940 0.0262 0.3144 0.2584 0.3191

train 0.4205 0.0102 0.4319 0.4039 0.4481

tvmonitor 0.3884 0.0059 0.3966 0.3826 0.3791

Table 3.1: Statistics of average precision for all 20 classes over five trials of constructing
the dictionary from five randomly chosen classes (five different dictionaries per class). The
last column (Full Dict) denotes the result when all 20 classes were used to construct the
dictionary.

31

Chapter 4

On learning to localize objects with
minimal supervision

4.1 Introduction

The classical paradigm for learning object detection models starts by annotating each object
instance, in all training images, with a bounding box. However, this exhaustive labeling
approach is costly and error prone for large-scale datasets. The massive amount of textually
annotated visual data available online inspires a different, more challenging, research prob-
lem. Can weakly-labeled imagery, without bounding boxes, be used to reliably train object
detectors?

In this alternative paradigm, the goal is to learn to localize objects with minimal super-
vision [96, 98]. We focus on the case where the learner has access to binary image labels that
encode whether an image contains the target object or not, without access to any instance
level annotations (i.e., bounding boxes).

Our approach starts by reducing the set of possible image locations that contain the
object of interest from millions to thousands per image, using the selective search window
proposal technique introduced by [92]. Then, we formulate a discriminative submodular cover
algorithm to discover an initial set of image windows that are likely to contain the target
object. After training a detection model with this initial set, we refine the detector using
a novel smoothed formulation of latent SVM [2, 31]. We employ recently introduced object
detection features, based on deep convolutional neural networks [21, 43], to represent the
window proposals for clustering and detector training.

Compared to prior work on weakly-supervised detector training, we show substantial
improvements on the standard evaluation metric (detection average precision on PASCAL
VOC). Quantitatively, our approach achieves a 50% relative improvement in mean average
precision over the current state-of-the-art for weakly-supervised learning.

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 32

4.2 Related work

Our work is related to three active research areas: (1) weakly-supervised learning, (2) unsu-
pervised discovery of mid-level visual elements, and (3) co-segmentation.

We build on a number of previous approaches for training object detectors from weakly-
labeled data. In nearly all cases, the task is formulated as a multiple instance learning (MIL)
problem [62]. In this formulation, the learner has access to an image-level label indicating the
presence or absence of the target class, but not its location (if it is present). The challenge
faced by the learner is to find the sliver of signal present in the positive images, but absent
from the negative images. The implicit assumption is that this signal will correspond to the
positive class.

Although there have been recent works on convex relaxations [61, 48], most MIL algo-
rithms start from an initialization and then perform some form of local optimization. Early
efforts, such as [96, 98, 39, 34, 11, 10, 8], focused on datasets with strong object-in-the-center
biases (e.g. Caltech-101). This simplified setting enabled clarity and focus on the MIL for-
mulation, image features, and classifier design, but masked the vexing problem of finding a
good initialization in data where such helpful biases are absent.

More recent work, such as [83, 82], attempts to learn detectors, or simply automatically
generate bounding box annotations from much more challenging datasets such as PASCAL
VOC [24]. In this data regime, focusing on initialization is crucial and carefully designed
heuristics, such as shrinking bounding boxes [78], are often employed.

Recent literature on unsupervised mid-level visual element discovery [19, 80, 22, 50, 76]
uses weak labels to discover visual elements that occur commonly in positive images but
not in negative images. Discovered visual element representation were shown to successfully
provide discriminative information in classifying images into scene types. The most recent
work [18] presents a discriminative mode seeking formulation and draws connections between
discovery and mean-shift algorithms [38].

The problem of finding common structure is related to the challenging setting of co-
segmentation [77, 49, 1], which is the unsupervised segmentation of an object that is present
in multiple images. While in this chapter we do not address pixel-level segmentation, we
employ ideas from co-segmentation: the intuition behind our submodular cover framework
in Section 4.4 is shared with CoSand [52]. Finally, submodular covering ideas have recently
been applied to (active) filtering of hypothesis after running a detector, and without the
discriminative flavor we propose [4, 9].

4.3 Problem formulation

Our goal is to learn a detector for a visual category from a set of images, each with a binary
label. We model an image as a set of overlapping rectangular windows and follow a standard
approach to detection: reduce the problem of detection to the problem of binary classification
of image windows. However, at training time we are only given image-level labels, which

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 33

leads to a classic multiple instance learning (MIL) problem. We can think of each image as
a “bag” of instances (rectangular windows) and the binary image label y = 1 specifies that
the bag contains at least one instance of the target category. The label y = −1 specifies
that the image contains no instances of the category. During training, no instance labels are
available.

MIL problems are typically solved (locally) by finding a local minimum of a non-convex
objective function, such as MI-SVM [2]. In practice, the quality of the local solution de-
pends heavily on the quality of the initialization. We therefore focus extensively on finding
a good initialization. In Section 4.4, we develop an initialization method by formulating a
discriminative set multicover problem that can be solved approximately with a greedy al-
gorithm. This initialization, without further MIL refinement, already produces good object
detectors, validating our approach. However, we can further improve these detectors by
optimizing the MIL objective. We explore two alternative MIL objectives in Section 4.5.
The first is the standard Latent SVM (equivalently MI-SVM) objective function, which can
be optimized by coordinate descent on an auxiliary objective that upper-bounds the LSVM
objective. The second method is a novel technique that smoothes the Latent SVM objective
and can be solved more directly with unconstrained smooth optimization techniques, such
as L-BFGS [70]. Our experimental results show modest improvements from our smoothed
LSVM formulation on a variety of MIL datasets.

4.4 Finding objects via submodular cover

Learning with LSVM is a chicken and egg problem: The model weights are needed to infer
latent annotations, but the latent annotations are needed to estimate the model weights.
To initialize this process, we approximately identify jointly present objects in a weakly
supervised manner. The experiments show a significant effect from this initialization. Our
procedure implements two essential assumptions: (i) the correct boxes are similar, in an
appropriate feature space, across positive images (or there are few modes), and (ii) the
correct boxes do not occur in the negative images. In short, in the similarity graph of all
boxes we seek dense subgraphs that only span the positive images. Finding such subgraphs
is a nontrivial combinatorial optimization problem.

The problem of finding and encoding a jointly present signal in images is an old one, and
has been addressed by clustering, minimum description length priors, and the concept of
exemplar [13, 59, 67, 52]. These approaches share the idea that a small number of exemplars
or clusters should well encode the shared information we are interested in. We formalize this
intuition as a flexible submodular cover problem. However, we also have label information at
hand that can help identify correct boxes. We therefore integrate into our covering framework
the relevance for positively versus negatively labeled images, generalizing ideas from [19].
This combination allows us to find multiple modes of the object appearance distribution.

Let P be the set of all positive images. Each image contains a set BI = {b1, . . . , bm} of
candidate bounding boxes generated from selective search region proposals [92]. In practice,

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 34

...

Figure 4.1: Illustration of the graph G with V (top row) and U (bottom row). Each box
b ∈ V is connected to its closest neighbors from positive images (one from each image).
Non-discriminative boxes occur in all images equally, and may not even have any boxes
from positive images among their closest neighbors – and consequently no connections to U .
Picking the green-framed box v in V “covers” its (green) highlighted neighbors Γ(b).

there are about 2000 region proposal boxes per image and about 5000 training images in the
PASCAL VOC dataset. Ultimately, we will define a function F (S) on sets S of boxes that
measures how well the set S represents P . For each box b, we find its nearest neighbor box
in each (positive and negative) image. We sort the set N (b) of all such neighbors of b in
increasing order by their distance to b. This can be done in parallel. We will define a graph
using these nearest neighbors that allows us to optimize for a small set of boxes S that are
(i) relevant (occur in many positive images); (ii) discriminative (dissimilar to the boxes in
the negative images); and (iii) complementary (capture multiple modes).

We construct a bipartite graph G = (V ,U , E) whose nodes V and U are all boxes occurring
in P (each b occurs once in V and once in U). The nodes in U are partitioned into groups BI :
BI contains all boxes from image I ∈ P . The edges E are formed by connecting each node
(box) b ∈ V to its top k neighbors inN (b) ⊆ U from positive images. Figure 4.1 illustrates the
graph. Connecting only to the top k neighbors (instead of all) implements discriminativeness:
the neighbors must compete. If b occurs in positively and negatively labeled images equally,
then many top-k closest neighbors in N (b) stem from negative images. Consequently, b will
not be connected to many nodes (boxes from P) in G. We denote the neighborhood of a set
of nodes S ⊆ V by Γ(S) = {b ∈ U | ∃(v, b) ∈ E with v ∈ S}.

Let S ⊆ V denote a set of selected boxes. We define a covering score covI,t(S) for each
I that is determined by a covering threshold t and a scalar, nondecreasing concave function

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 35

g : R+ → R+:
covI,t(S) = g(min{t, |Γ(S) ∩ BI |}). (4.1)

This score measures how many boxes in BI are neighbors of S and thus “covered”. We gain
from covering up to t boxes from BI – anything beyond that is considered redundant. The
total covering score of a set S ⊆ V is then

F (S) =
∑

I∈P
covI,t(S). (4.2)

The threshold t balances relevance and complementarity: let, for simplicity, g = id. If t = 1,
then a set that maximizes covI,t(S) contains boxes from many different images, and few
from a single image. The selected neighborhoods are very complementary, but some of them
may not be very relevant and cover outliers. If t is large, then any additionally covered box
yields a gain, and the best boxes b ∈ V are those with the largest degree. A box has large
degree if many of its closest neighbors in N (b) are from positive images. This also means b
is discriminative and relevant for P .

Lemma 1. The function F : 2V → R+ defined in Equation 4.2 is nondecreasing and sub-
modular.

A set function is submodular if it satisfies diminishing marginal returns : for all v and
S ⊆ T ⊆ V \ {v}, it holds that F (S ∪ {v})− F (S) ≥ F (T ∪ {v})− F (T).

Proof. First, the function S 7→ |Γ(S) ∩ BI | is a covering function and thus submodular: let
S ⊂ T ⊆ V \ b. Then Γ(S) ⊆ Γ(T) and therefore

|Γ(T ∪ {b})| − |Γ(T)| = |Γ(b) \ Γ(T)| (4.3)

≤ |Γ(b) \ Γ(S)| (4.4)

= |Γ(S ∪ {b})| − |Γ(S)|. (4.5)

The same holds when intersecting with BI . Thus, covt,I(S) is a nondecreasing concave func-
tion of a submodular function and therefore submodular. Finally, F is a sum of submodular
functions and hence also submodular. Monotonicity is obvious.

We aim to select a representative subset S ⊆ V with minimum cardinality:

min
S⊆V
|S| s.t. F (S) ≥ αF (V) (4.6)

for α ∈ (0, 1]. We optimize this via a greedy algorithm: let S0 = ∅ and, in each step τ , add
the node v that maximizes the marginal gain F (Sτ ∪ {v})− F (Sτ).

Lemma 2. The greedy algorithm solves Problem 4.6 within an approximation factor of 1 +

log
(

kg(1)
g(t)−g(t−1)

)
= O(log k).

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 36

Lemma 3 says that the algorithm returns a set Ŝ with F (Ŝ) ≥ αF (V) and |Ŝ| ≤
O(log k)|S∗|, where S∗ is an optimal solution. This result follows from the analysis by
[101] (Thm. 1) adapted to our setting. To get a better intuition for the formulation 4.6 we
list some special cases:
Min-cost cover. With t = 1 and g(a) = a being the identity, Problem 4.6 becomes a min-
cost cover problem. Such straightforward covering formulations have been used for filtering
after running a detector [4].
Maximum relevance. A minimum-cost cover merely focuses on complementarity of the
selected nodes S, which may include rare outliers. At the other extreme (t large), we would
merely select by the number of neighbors ([19] choose one single N (b) that way).
Multi-cover. To smoothly move between the two extremes, one may choose t > 1 and g to
be sub-linear. This trades off representation, relevance, and discriminativeness.

In Figure 5.5, we visualize top 5 nearest neighbors with positive labels in the first chosen
cluster S1 for all 20 classes on the PASCAL VOC data. Our experiments in Section 4.6 show
the benefits of our framework. Potentially, the results might improve even further when
using the complementary mode shifts of [18] as a pre-selection step before covering.

4.5 Iterative refinement with latent variables

In this section, we review the latent SVM formulation, and we propose a simple smoothing
technique enabling us to use classical techniques for unconstrained smooth optimization.
Figure 4.3 illustrates our multiple instance learning analogy for object detection with one-
bit labels.

Review of latent SVM

For a binary classification problem, the latent SVM formulation consists of learning a decision
function involving a maximization step over a discrete set of configurations Z. Given a data
point x in Rp that we want to classify, and some learned model parameters w in Rd, we
select a label y in {−1,+1} as follows:

y = sign

(
max
z∈Z

wᵀφ(x, z)

)
, (4.7)

where z is called a “latent variable” chosen among the set Z. For object detection, Z is
typically a set of bounding boxes, and maximizing over Z amounts to finding a bounding
box containing the object. In deformable part models [31], the set Z contains all possible
part configurations, each part being associated to a position in the image. The resulting
set Z has exponential size, but (4.7) can be solved efficiently with dynamic programming
techniques for particular choices of φ.

Learning the model parameters w is more involved than solving a simple SVM problem.
We are given some training data {(xi, yi)}ni=1, where the vectors xi are in Rp and the scalars

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 37

Figure 4.2: Visualizations of top 5 nearest neighbor proposal boxes with positive labels in
the first cluster, S1 for all 20 classes in PASCAL VOC dataset. From left to right, aeroplane,
bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike,
person, plant, sheep, sofa, train, and tvmonitor.

yi are binary labels in {1,−1}. Then, the latent SVM formulation becomes

min
w∈Rd

1

2
‖w‖2

2 + C

n∑
i=1

`

(
yi, max

z∈Z
wᵀφ(xi, z)

)
, (4.8)

where ` : R×R→ R is the hinge loss defined as `(y, ŷ) = max(0, 1− yŷ), which encourages
the decision function for each training example to be the same as the corresponding label.
Similarly, other loss functions can be used such as the logistic or squared hinge loss.

Problem (4.8) is nonconvex and nonsmooth, making it hard to tackle. A classical tech-
nique to obtain an approximate solution is to use a difference of convex (DC) programming
technique, called concave-convex procedure [103, 102]. We remark that the part of (4.8) cor-
responding to negative examples is convex with respect to w. It is indeed easy to show that

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 38

Figure 4.3: In the refinement stage, we formulate a multiple instance learning bag per image
and bag instances correspond to each window proposals from selective search. Binary bag
labels correspond to image-level annotations of whether the target object exists in the image
or not. (Left) ground truth bounding boxes color coded with category labels. green: person,
yellow: dog, and magenta: sofa, (Right) visualization of 100 random subset of window
proposals.

each corresponding term can be written as a pointwise maximum of convex functions, and
is thus convex [see 6]: when yi = −1, ` (yi,maxz∈Z wᵀφ(xi, z)) = maxz∈Z `(yi,w

ᵀφ(xi,x)).
On the other hand, the part corresponding to positive examples is concave, making the ob-
jective (4.8) suitable to DC programming. Even though such a procedure does not have any
theoretical guarantee about the quality of the optimization, it monotonically decreases the
value of the objective and performs relatively well when the problem is well initialized [31].

We propose a smooth formulation of latent SVM, with two main motives. First, smooth-
ing the objective function of latent SVM allows the use of efficient second-order optimization
algorithms such as quasi-Newton [70] that can leverage curvature information to speed up
convergence. Second, as we show later, smoothing the latent SVM boils down to considering
the top-N configurations in the maximization step in place of the top-1 configuration in the
regular latent SVM. As a result, the smooth latent SVM training becomes more robust to
unreliable configurations in the early stages, since a larger set of plausible configurations is
considered at each maximization step.

Smooth formulation of LSVM

In the objective (4.8), the hinge loss can be easily replaced by a smooth alternative, e.g.,
squared hinge, or logistic loss. However, the non-smooth points induced by the following
functions are more difficult to handle

fxi
(w) := max

z∈Z
wᵀφ(xi, z). (4.9)

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 39

We propose to use a smoothing technique studied by [69] for convex functions.

Nesterov’s smoothing technique We only recall here the simpler form of Nesterov’s
results that is relevant for our purpose. Consider a non-smooth function that can be written
in the following form:

g(w) := max
u∈∆
〈Aw,u〉 , (4.10)

where u ∈ Rm, A is in Rm×d, and ∆ denotes the probability simplex, ∆ = {x :
∑m

i=1 xi =
1, xi ≥ 0}. Smoothing here consists of adding a strongly convex function ω in the maximiza-
tion problem

gµ(w) := max
u∈∆

[
〈Aw,u〉 − µ

2
ω(u)

]
. (4.11)

The resulting function gµ is differentiable for all µ > 0, and its gradient is

∇gµ(w) = Aᵀu?(w), (4.12)

where u?(w) is the unique solution of (4.11). The parameter µ controls the amount of
smoothing. Clearly, gµ(w) → g(w) for all w ∈ W as µ → 0. As [69] shows, for a given
target approximation accuracy ε, there is an optimal amount of smoothing µ(ε) that can
be derived from a convex optimization perspective using the strong convexity parameter of
ω(·) on ∆ and the (usually unknown) Lipschitz constant of g. In the experiments, we shall
simply learn the parameter µ from data.

Smoothing the latent SVM We now apply Nesterov’s smoothing technique to the latent
SVM objective function. As we shall see, the smoothed objective takes a simple form, which
can be efficiently computed in the latent SVM framework. Furthermore, smoothing latent
SVM implicitly models uncertainty in the selection of the best configuration z in Z, as shown
by [56] for a different smoothing scheme.

In order to smooth the functions fxi
defined in (4.9), we first notice that

fxi
(w) = max

u∈∆
〈Axi

w,u〉, (4.13)

where Axi
is a matrix of size |Z| × d such that the j-th row of Axi

is the feature vector
φ(xi, zj) and zj is the j-th element of Z. Considering any strongly convex function ω and
parameter µ > 0, the smoothed latent SVM objective is obtained by replacing in (4.8)
• the functions fxi

by their smoothed counterparts fxi,µ obtained by applying (4.11) to (4.13);
• the non-smooth hinge-loss function l by any smooth loss.

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 40

Objective and gradient evaluations An important issue remains the computational
tractability of the new formulation in terms of objective and gradient evaluations, in order
to use quasi-Newton optimization techniques. The choice of the strongly convex function ω
is crucial in this respect.

There are two functions known to be strongly convex on the simplex: i) the Euclidean
norm, ii) the entropy. In the case of the Euclidean-norm ω(u) = ‖u‖2

2, it turns out that
the smoothed counterpart can be efficiently computed using a projection on the simplex, as
shown below.

u?(w) = argmin
u∈∆

∥∥∥∥ 1

µ
Aw − u

∥∥∥∥2

2

, (4.14)

where u?(w) is the solution of (4.11). Computing Aw requires a priori O(|Z|d) operations.
The projection can be computed in O(|Z|) [see, e.g., 3]. Once u? is obtained, computing the
gradient requires O(d‖u?‖0) operations, where ‖u?‖0 is the number of non-zero entries in u?.

When the set Z is large, these complexities can be improved by leveraging two properties.
First, the projection on the simplex is known to produce sparse solutions, the smoothing
parameter µ controlling the sparsity of u?; second, the projection preserves the order of
the variables. As a result, the following heuristic can be justified. Assume that for some
N < |Z|, we can obtain the top-N entries of Aw without exhaustively exploring Z. Then,
performing the projection on these reduced set of N variables yields a vector u′ which can
be shown to be optimal for the original problem (4.14) whenever ‖u′‖0 < N . In other words,
whenever N is large enough and µ small enough, computing the gradient of fxi,µ can be done
in O(Nd) operations. We use this heuristic in all our experiments.

Figure 4.4: Visualization of some common failure cases of constructed positive windows
by[82] vs our method. Red bounding boxes are constructed positive windows from [82].
Green bounding boxes are constructed positive windows from our method.

4.6 Experiments

We performed two sets of experiments, one on a multiple instance learning dataset [2] and
the other on the PASCAL VOC 2007 data [23]. The first experiment was designed to com-

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 41

Dataset LSVM w/o bias SLSVM w/o bias LSVM w/ bias SLSVM w/ bias

musk1 70.8 ± 14.4 80.3 ± 10.3 81.7 ± 14.5 79.2 ± 13.4

musk2 51.0 ± 10.9 79.5 ± 10.4 80.5 ± 9.9 84.3 ± 11.4

fox 51.5 ± 7.5 63.0 ± 11.8 57.0 ± 8.9 61.0 ± 12.6

elephant 81.5 ± 6.3 88.0 ± 6.7 81.5 ± 4.1 87.0 ± 6.3

tiger 79.5 ± 8.6 85.5 ± 6.4 86.0 ± 9.1 87.5 ± 7.9

trec1 94.3 ± 2.9 95.5 ± 2.6 95.3 ± 3.0 95.3 ± 2.8

trec2 69.0 ± 6.8 83.0 ± 6.5 86.5 ± 5.7 83.8 ± 7.4

trec3 77.5 ± 5.8 90.0 ± 5.8 85.5 ± 6.3 86.0 ± 6.5

trec4 77.3 ± 8.0 85.0 ± 5.1 85.3 ± 3.6 86.3 ± 5.2

trec7 74.5 ± 9.8 83.8 ± 4.0 82.5 ± 7.0 81.5 ± 5.8

trec9 66.8 ± 5.0 70.3 ± 5.7 68.8 ± 8.0 71.5 ± 6.4

trec10 71.0 ± 9.9 84.3 ± 5.4 80.8 ± 6.6 82.8 ± 7.3

Table 4.1: 10 fold average and standard deviation of the test accuracy on MIL dataset. The
two methods start from the same initialization introduced in [2]

Method
aeroplane bicycle boat bus horse motorbike

mAP
left right left right left right left right left right left right

[16] 9.1 23.6 33.4 49.4 0.0 0.0 0.0 16.4 9.6 9.1 20.9 16.1 16.0

[72] 7.5 21.1 38.5 44.8 0.3 0.5 0.0 0.3 45.9 17.3 43.8 27.2 20.8

[17] 5.3 18.1 48.6 61.6 0.0 0.0 0.0 16.4 29.1 14.1 47.7 16.2 21.4

[78] 30.8 25.0 3.6 26.0 21.3 29.9 22.8

[82] with our features 23.2 15.4 5.1 2.0 6.2 17.4 11.6

Cover + SVM 23.4 43.5 8.1 33.9 24.7 40.2 29.0

Cover + LSVM 28.2 47.2 9.6 34.7 25.2 39.8 30.8

Table 4.2: Detection average precision (%) on PASCAL VOC 2007-6x2 test set. First three
baseline methods report results limited to left and right subcategories of the objects.

VOC2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mAP

[83] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0.0 13.9

Cover + SVM 23.4 43.5 22.4 8.1 6.2 33.9 33.8 30.4 0.1 17.9 11.5 17.1 24.7 40.2 2.4 14.8 21.4 15.1 31.9 6.2 20.3

Cover + LSVM 28.2 47.2 17.6 9.6 6.5 34.7 35.5 31.5 0.3 21.7 13.2 20.7 25.2 39.8 12.6 18.6 21.2 18.6 31.7 10.2 22.2

Cover + SLSVM 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

Table 4.3: Detection average precision (%) on full PASCAL VOC 2007 test set.

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 42

pare the multiple instance learning bag classification performance of LSVM with Smooth
LSVM (SLSVM). The second experiment evaluates detection accuracy (measured in average
precision) of our framework in comparison to baselines.

Multiple instance learning datasets

We evaluated our method in Section 5 on standard multiple instance learning datasets [2].
For preprocessing, we centered each feature dimension and `2 normalize the data. For fair
comparison with [2], we use the same initialization, where the initial weight vector is obtained
by training an SVM with all the negative instances and bag-averaged positive instances.
For this experiment, we performed 10 fold cross validation on C and µ. Table 4.1 shows
the experimental results. Without the bias, our method significantly performs better than
LSVM method and with the bias, our method shows modest improvement in most cases.

Weakly-supervised object detection

To implement our weakly-supervised detection system we need suitable image features for
computing the nearest neighbors of each image window in Section 4.4 and for learning ob-
ject detectors. We use the recently proposed R-CNN [43] detection framework to compute
features on image windows in both cases. Specifically, we use the convolutional neural
network (CNN) distributed with DeCAF [21], which is trained on the ImageNet ILSVRC
2012 dataset (using only image-level annotations). We avoid using the better performing
CNN that is fine-tuned on PASCAL data, as described in [43], because fine-tuning requires
instance-level annotations.

We report detection accuracy as average precision on the standard benchmark dataset
for object detection, PASCAL VOC 2007 test [23]. We compare to five different baseline
methods that learn object detectors with limited annotations. Note that other baseline
methods use additional information besides the one-bit image-level annotations. [16, 17] use
a set of 799 images with bounding box annotations as meta-training data. In addition to
bounding box annotations, [16, 17, 72] use extra instance level annotations such as pose,
difficult and truncated. [82, 78] use difficult instance annotations but not pose or truncated.
First, we report the detection average precision on 6 subsets of classes in table 4.2 to compare
with [16, 17, 72].

To evaluate the efficacy of our initialization, we compare it to the state-of-the-art al-
gorithm recently proposed by [82]. Their method constructs a set of positive windows by
looping over each positive image and picking the instance that has the maximum distance
to its nearest neighbor over all negative instances (and thus the name negative data mining
algorithm). For a fair comparison, we used the same window proposals, the same features
[43], the same L2 distance metric, and the same PASCAL 2007 detection evaluation criteria.
The class mean average precision for the mining algorithm was 11.6% compared to 29.0%
obtained by our initialization procedure. Figure 4.4 visualizes some command failure modes
in our implementation of [82]. Since the negative mining method does not take into account

CHAPTER 4. ON LEARNING TO LOCALIZE OBJECTS WITH MINIMAL
SUPERVISION 43

the similarity among positive windows (in contrast to our method) our intuition is that the
method is less robust to intra-class variations and background clutter. Therefore, it often
latches onto background objects (i.e. hurdle in horse images, street signs in bus images), onto
parts of the full objects (i.e. wheels of bicycles), or merges two different objects (i.e. rider
and motorcycle). It is worth noting that [72, 82] use the CorLoc metric1 as the evaluation
metric to report results on PASCAL test set. In contrast, in our experiments, we exactly
follow the PASCAL VOC evaluation protocol (and use the PASCAL VOC devkit scoring
software) and report detection average precision.

Table 5.1 shows the detection result on the full PASCAL 2007 dataset. There are two
baseline methods [83, 78] which report the result on the full dataset. Unfortunately, we were
not able to obtain the per-class average precision data from the authors of [78] except the
class mean average precision (mAP) of 15.0%. As shown in Table 5.1, the initial detector
model trained from the constructed set of positive windows already produces good object
detectors but we can provide further improvement by optimizing the MIL objective.

4.7 Conclusion

We developed a framework for learning to localize objects with one-bit object presence labels.
Our results show that the proposed framework can construct a set of positive windows to train
initial detection models and improve the models with the refinement optimization method.
We achieve state-of-the-art performance for object detection with minimal supervision on the
standard benchmark object detection dataset. Source code will be available on the author’s
website.

1CorLoc was proposed by [16] to evaluate the detection results on PASCAL train set

44

Chapter 5

Weakly-supervised discovery of visual
pattern configurations

5.1 Introduction

The growing amount of sparsely and noisily labeled image data promotes the need for ro-
bustly learning detection methods that can cope with a minimal amount of supervision.
A prominent example of this scenario is the abundant availability of labels at the image
level (i.e., whether a certain object is present in the image or not), while detailed annota-
tions of the exact location of the object are tedious and expensive and, consequently, scarce.
Learning methods that handle image-level labels circumvent the need for such detailed an-
notations and therefore have the potential to effectively utilize the massive and ever-growing
textually annotated visual data available on the Web. In addition, such weakly supervised
methods can be more robust than fully supervised ones if the detailed annotations are noisy
or ill-defined.

Motivated by these developments, recent work has explored learning methods that de-
creasingly rely on strong supervision. Early ideas for weakly supervised detection [97, 33]
paved the way by successfully learning part-based object models, albeit on simple object-
centric datasets (e.g., Caltech-101). Since then, a number of approaches [72, 82, 87] have
attempted to learn models on more realistic and challenging data sets that feature large
intra-category appearance variations and background clutter. To cope with those difficul-
ties, these methods typically generate multiple candidate regions and retain the ones that
occur most frequently in the positively labeled images. However, due to intra-category varia-
tions and deformations, the identified (single) patches often correspond to only a part of the
object, such as a human face instead of the entire body. Such mislocalizations are a frequent
problem for weakly supervised detection methods. Figure 5.4 illustrates some examples.

Mislocalization and too large or too small bounding boxes are problematic in two respects.
First, they obviously affect the accuracy of the detection method. Detection is commonly
phrased as multiple instance learning and addressed with non-convex optimization methods

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 45

that alternatingly guess the location of the objects as positive examples (since the true
location is unknown) and train a detector based on those guesses. Such methods are therefore
heavily influenced by good initial localizations. Second, a common approach is to train the
detector in stages, while adding informative “hard” negative examples to the training data. If
we are not given accurate true object localizations in the training data, these hard examples
must be derived from the detections identified in earlier rounds, and these initial detections
may only use image-level annotations. The higher the accuracy of the initial localizations,
the more informative is the augmented training data – and this is key to the accuracy of the
final learned model.

In this work, we address the issue of mislocalizations by identifying characteristic, dis-
criminative configurations of multiple patches (rather than a single one). This part-based
approach is motivated by the observation that automatically discovered single “discrimina-
tive” patches often correspond to object parts. In addition, wrong background patches (e.g.,
patches of water or sky) occur throughout the positive images, but do not re-occur in typ-
ical configurations. In particular, we propose an effective method that takes as input a set
of images with labels of the form “the object is present”/“not present”, and automatically
identifies characteristic part configurations of the given object.

To identify such co-occurrences, we use two main criteria. First, useful patches are
discriminative, i.e., they occur in many positively labeled images, but not in the negatively
labeled ones. To identify such patches, we use a discriminative covering formulation similar
to the previous chapter. However, our end goal is to discover multiple patches in each
image that represent different parts, i.e., they may be close but may not be overlapping
too much. In covering formulations, one may discourage overlaps by saying that for two
overlapping regions, one “covers” the other, i.e., they are treated as identical. But this is
a transitive relation, and the density of possible regions in detection would imply that all
regions are identical, strongly discouraging the selection of more than one part per image.
Partial covers face the challenge of scale invariance. Hence, we take a different approach
and formulate an independence constraint. This second criterion ensures that we select
regions that may be close but non-redundant and not fully overlapping. We show that this
constrained selection problem corresponds to maximizing a submodular function subject to
a matroid intersection constraint, which leads to approximation algorithms with theoretical
worst-case bounds. Given candidate parts identified by those two criteria, we effectively
find frequently co-occurring configurations that take into account relative position, scale and
viewpoint.

We demonstrate multiple benefits of the discovered configurations. First, we observe
that combinations of patches can produce more accurate spatial coverage of the full object,
especially when the most discriminative pattern corresponds to an object part. Second, any
overlapping region between the co-occurring visual patterns is likely to cover a part (but not
the full) of the object of interest (see intersecting regions between green and yellow boxes in
Figure 5.5); thus, they can be used to generate very informative hard negatives for training,
and those can reduce localization errors at test time.

In short, our main contribution is a novel weakly-supervised object detection method that

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 46

automatically discovers frequent configurations of discriminative visual patterns and exploits
them for training more robust object detectors. In our experiments on the challenging
PASCAL VOC dataset, we find the inclusion of our discriminative, automatically detected
configurations to outperform all state-of-the-art methods.

5.2 Related work

Weakly-supervised object detection. Training object detectors is usually done in a fully-
supervised fashion using tight bounding box annotations that cover the object of interest
(e.g., [29]). To reduce laborious bounding box annotation costs, recent weakly-supervised
approaches [97, 33, 72, 82, 87] train detectors using binary object-presence labels without
any object-location information.

Early efforts [97, 33] focused on simple datasets that have a single prominent object
in each image (e.g., Caltech-101). More recent approaches [72, 82, 87] focus on the more
challenging PASCAL dataset, which contains multiple objects in each image and large intra-
category appearance variations. Of these, the previous chapter achieve state-of-the-art re-
sults by finding discriminative image patches that occur frequently in the positive images but
rarely in the negative images using deep Convolutional Neural Network (CNN) features [55]
and a submodular cover formulation. We use a similar approach to identify discrimina-
tive patches. But, contrary to the previous chapter who assume patches to contain entire
objects, we allow patches to contain full objects or merely object parts. Thus, we aim to
automatically piece together those patches to produce better full-object estimates. To this
end, we augment the covering formulation and identify patches that are both representative
and explicitly mutually different. We will see that this leads to more robust object estimates
and further allows our system to intelligently select “hard negatives” (mislocalized objects),
both of which improve detection performance.

Visual data mining. Existing approaches discover high-level object categories [85, 45,
25], mid-level patches [81, 19, 51], or low-level foreground features [58] by grouping similar
visual patterns (i.e., images, patches, or contours) according to their texture, color, shape,
etc. Recent methods [19, 51] use weakly-supervised labels to discover discriminative visual
patterns. We use related ideas, but formulate the problem as a submodular optimization over
matroids, which leads to approximation algorithms with theoretical worst-case guarantees.
Covering formulations have also been used in [4, 9], but after running a trained object de-
tector. An alternative discriminative approach, but less scalable than covering, uses spectral
methods [107].

Modeling co-occurring visual patterns. Modeling the spatial and geometric rela-
tionship between co-occurring visual patterns (objects or object-parts) often improves visual
recognition performance [97, 33, 84, 75, 104, 58, 29, 26, 81, 60]. Co-occurring patterns are
usually represented as doublets [81], higher-order constellations [97, 33] or star-shaped mod-
els [29]. Among these, our work is most inspired by [97, 33], which learns part-based models
using only weak-supervision. However, we use more informative features and a different for-

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 47

mulation, and show results on more difficult datasets. Our work is also related by [60], which
discovers high-level object compositions (“visual phrases” [26]) using ground-truth bounding
box annotations. In contrast to [60], we aim to discover part compositions to represent full
objects and do so without any bounding box annotations.

5.3 Approach

Our goal is to find a discriminative set of parts or patches that co-occur in many of the
positively labeled images in the same configuration. We address this goal in two steps.
First, we find a set of patches that are discriminative, i.e., they tend to occur mainly in
positive images. Second, we use an efficient approach to find co-occurring configurations of
pairs of such patches. Our approach easily extends beyond pairs; for simplicity and to retain
configurations that occur frequently enough, we here restrict ourselves to pairs.

Discriminative candidate patches. For identifying discriminative patches, we begin
with a construction similar to that of the previous chapter. Let P be the set of positively
labeled images. Each image I contains candidate boxes {bI,1, . . . , bI,m} found via selective
search [92]. For each bI,i, we find its closest matching neighbor bI′,j in each other image I ′

(regardless of the image label). The K closest of those neighbors form the neighborhood
N (bI,i), the remaining ones are discarded.

Discriminative patches will have neighborhoods mainly within images in P , i.e., if B(P)
is the set of all patches from images in P , then N (b)∩B(P) ≈ K. To identify a small, diverse
and representative set of such patches, like the previous chapter, we construct a bipartite
graph G = (U ,V , E), where both U and V contain copies of B(P). Each patch b ∈ V is
connected to the copy of its nearest neighbors in U – these will be K or less, depending on
whether the K nearest neighbors of b occur in B(P) or in negatively labeled images. The
most representative patches maximize the covering function

F (S) = |Γ(S)|, (5.1)

where Γ(S) = {u ∈ U | (b, u) ∈ E for some b ∈ S} is the neighborhood of S ⊆ V in the
bipartite graph. Figure 5.1 shows a cartoon illustration. The function F is monotone and
submodular, and the C maximizing elements (for a given C) can be selected greedily [68].

However, if we aim to find part configurations, we must select multiple, jointly informative
patches per image. Patches selected to merely maximize coverage can still be redundant,
since the most frequently occurring ones are often highly overlapping. A straightforward
modification would be to treat highly overlapping patches as identical. This identification
would still admit a submodular covering model as in Equation 5.1. But, in our case, the
candidate patches are very densely packed in the image, and, by transitivity, we would have
to make all of them identical. In consequence, this would completely rule out the selection
of more than one patch in an image and thereby prohibit the discovery of any co-occurring
configurations.

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 48

V

U

Figure 5.1: Left: bipartite graph G that defines the utility function F and identifies discrim-
inativeness; right: graph GC that defines the diversifying independence constraints M. We
may pick C1 (yellow) and C3 (green) together, but not C2 (red) with any of those, since it is
redundant. If we identify overlapping patches in G and thus the covering F , then we would
only ever pick one of C1, C2 and C3, and no characteristic configurations could be identified.

Therefore, we take a different approach, differing from the previous chapter whose goal
is to identify single patches, and not part-based configurations. We constrain our selection
such that no two patches b, b′ ∈ V can be picked whose neighborhoods overlap by more than
a fraction of θ. By overlap, we mean that the patches in the neighborhoods of b, b′ overlap
significantly (they need not be identical). This notion of diversity is reminiscent of NMS
and similar to that in [19], but we here phrase and analyze it as a constrained submodular
optimization problem. Our constraint can be expressed in terms of a different graph GC =
(V , EC) with nodes V . In GC , there is an edge between b and b′ if their neighborhoods overlap
prohibitively, as illustrated in Figure 5.1. Our family of feasible solutions is

M = {S ⊆ V | ∀ b, b′ ∈ S there is no edge (b, b′) ∈ EC}. (5.2)

In other words, M is the family of all independent sets in GC . We aim to maximize

maxS⊆V F (S) s.t. S ∈M. (5.3)

This problem is NP-hard. We solve it approximately via the following greedy algorithm.
Begin with S0 = ∅, and, in iteration t, add b ∈ argmaxb∈V\S |Γ(b)\Γ(St−1)|. As we add b, we
delete all of b’s neighbors in GC from V . We continue until V = ∅. If the neighborhoods Γ(b)
are disjoint, then this algorithm amounts to the following simplified scheme: we first sort all
b ∈ V in non-increasing order by their degree Γ(b), i.e., their number of neighbors in B(P),
and visit them in this order. We always add the currently highest b in the list to S, then
delete it from the list, and with it all its immediate (overlapping) neighbors. The following
lemma states an approximation factor for the greedy algorithm, where ∆ is the maximum
degree of any node in GC .

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 49

Lemma 3. The solution Sg returned by the greedy algorithm is a 1/(∆ + 2) approximation
for Problem 5.2: F (Sg) ≥ 1

∆+2
F (S∗). If Γ(b)∩Γ(b′) = ∅ for all b, b′ ∈ V, then the worst-case

approximation factor is 1/(∆ + 1).

The proof relies on phrasing M as an intersection of matroids.

Definition 4 (Matroid). A matroid (V , Ik) consists of a ground set V and a family Ik ⊆ 2V

of “independent sets” that satisfy three axioms: (1) ∅ ∈ Ik; (2) downward closedness: if
S ∈ Ik then T ∈ Ik for all T ⊆ S; and (3) the exchange property: if S, T ∈ Ik and |S| < |T |,
then there is an element v ∈ T \ S such that S ∪ {v} ∈ Ik.

Proof. (Lemma 3) We will argue that Problem 5.2 is the problem of maximizing a monotone
submodular function subject to the constraint that the solution lies in the intersection of
∆ + 1 matroids. With this insight, the approximation factor of the greedy algorithm for
submodular F follows from [36] and that for non-intersecting Γ(b) from [47], since in the
latter case the problem is that of finding a maximum weight vector in the intersection of
∆ + 1 matroids.

It remains to argue thatM is an intersection of matroids. Our matroids will be partition
matroids (over the ground set V) whose independent sets are of the formMk = {S | |S∩e| ≤
1, for all e ∈ Ek}. To define those, we partition the edges in GC into disjoint sets Ek, i.e.,
no two edges in Ek share a common node. The Ek can be found by an edge coloring – one
Ek and Mk for each color k. By Vizing’s theorem [95], we need at most ∆ + 1 colors. The
matroid Mk demands that for each edge e ∈ Ek, we may only select one of its adjacent
nodes. All matroids together say that for any edge e ∈ E , we may only select one of the
adjacent nodes, and that is the constraint in Equation 5.2, i.e. M =

⋂∆+1
k=1 Mk. We do not

ever need to explicitly compute Ek and Mk; all we need to do is check membership in the
intersection, and this is equivalent to checking whether a set S is an independent set in GC ,
which is done by the deletions in the algorithm.

From the constrained greedy algorithm, we obtain a set S ⊂ V of discriminative patches.
Together with its neighborhood Γ(b), each patch b ∈ V forms a representative cluster. Fig-
ure 5.2 shows some example patches derived from the labels “aeroplane” and “motorbike”.
The discovered patches intuitively look like “parts” of the objects, and are frequent but
sufficiently different.

Finding frequent configurations. The next step is to find frequent configurations
of co-occurring clusters, e.g., the head patch of a person on top of the torso patch, or a
bicycle with visible wheels. A “configuration” consists of patches from two clusters Ci, Cj,
their relative location, and their viewpoint and scale. In practice, we give preference to pairs
that by themselves are very relevant and maximize a weighted combination of co-occurrence
count and coverage max{Γ(Ci),Γ(Cj)}.

All possible configurations of all pairs of patches amount to too many to explicitly write
down and count. Instead, we follow an efficient procedure for finding frequent configura-
tions. Our approach is inspired by [60], but does not require any supervision. We first

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 50

Figure 5.2: Examples of discovered patch “clusters” for aeroplane, motorbike, and cat. The
discovered patches intuitively look like object parts, and are frequent but sufficiently differ-
ent.

find configurations that occur in at least two images. To do so, we consider each pair of
images I1, I2 that have at least two co-occurring clusters. For each correspondence of cluster
patches across the images, we find a corresponding transform operation (translation, rescale,
viewpoint change). This results in a point in a 4D transform space, for each cluster corre-
spondence. We quantize this space into B bins. Our candidate configurations will be pairs
of cluster correspondences ((bI1,1, bI2,1), (bI1,2, bI2,2)) ∈ (Ci × Ci), (Cj × Cj) that fall in the
same bin, i.e., share the same transform, and have the same relative location. Between a
given pair of images, there can be multiple such pairs of correspondences. We keep track
of those via a multi-graph GP = (P , EP) that has a node for each image I ∈ P . For each
correspondence ((bI1,1, bI2,1), (bI1,2, bI2,2)) ∈ (Ci×Ci), (Cj ×Cj), we draw an edge (I1, I2) and
label it by the clusters Ci, Cj and the common relative position. As a result, there can be
multiple edges (I1, Ij) in GP with different edge labels.

The most frequently occurring configuration can now be read out by finding the largest
connected component in GP induced by retaining only edges with the same label. We use
the largest component(s) as the characteristic configurations for a given image label (object
class). If the component is very small, then there is not enough information to determine
co-occurrences, and we simply use the most frequent single cluster. (This may also be
determined by a statistical test.) The final single “correct” localization will be the smallest
bounding box that contains the full configuration.

Discovering mislocalized hard negatives. Discovering frequent configurations can
not only lead to better localization estimates of the full object, but they can also be used to
generate mislocalized estimates as “hard negatives” when training the object detector. We
exploit this idea as follows. Let b1, b2 be a discovered configuration within a given image.
These patches typically constitute parts or, in some cases, a part and the full object. Our
foreground estimate is the smallest box that includes both b1 and b2. Hence, any region
within the foreground estimate that does not overlap simultaneously with both b1 and b2

will capture only a fragment of the foreground object. We extract the four largest such
rectangular regions (see white boxes in Figure 5.3) as “hard” negative examples.

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 51

Figure 5.3: Automatically discovered foreground estimation box (magenta), hard negative
(white), and the patch (yellow) that induced the hard negative. Note that we are only
showing the largest one out of (up to) four hard negatives per image.

Specifically, we parameterize any rectangular region with [xl, xr, yt, yb], i.e., its x-left,
x-right, y-top, and y-bottom coordinate values. Let the bounding box of bi be [xli, x

r
i , y

t
i , y

b
i],

and foreground estimate [xlf , x
r
f , y

t
f , y

b
f], and let xl = max(xl1, x

l
2), xr = min(xr1, x

r
2), yt =

max(yt1, y
t
2), yb = min(yb1, y

b
2). We generate four hard negatives: [xlf , x

l, ybf , y
t
f], [xr, xrf , y

b
f , y

t
f],

[xlf , x
r
f , y

t
f , y

t], [xlf , x
r
f , y

b, ybf]. If either b1 or b2 is very small in size relative to the foreground,
the resulting hard negatives can have high overlap with the foreground, which will introduce
undesirable noise (false negatives) when training the detector. Thus, we shrink any hard
negative that overlaps with the foreground estimate by more than 50%, until its overlap is
50% (we adjust the boundary that does not coincide with any of the foreground estimation
boundaries).

Finally, it is important to note that simply taking arbitrary rectangular regions that
overlap with the foreground estimation box by some threshold will not always generate useful
hard negatives. If the overlap threshold is too low, the selected regions will be uninformative,
and if the overlap threshold is too high, the selected regions will cover too much of the
foreground. Our approach selects informative hard negatives more robustly by ruling out
the overlapping region between the configuration patches, which is very likely be part of the
foreground object.

Mining positives and training the detector. While the discovered configurations
typically lead to better foreground localization, their absolute count can be relatively low
compared to the total number of positive images. This is due to inaccuracies in the initial
patch discovery stage: for a frequent configuration to be discovered, both of its patches
must be accurately found. Thus, we also mine additional positives from the set of remaining
positive images P ′ that did not produce any of the discovered configurations.

To do so, we train an initial object detector, using the foreground estimates derived
from our discovered configurations as positive examples, and the corresponding discovered
hard negative regions as negatives. In addition, we mine negative examples as in [29]. We
run the detector on all selective search regions in P and retain the region with the highest
detector score as an additional positive training example. Our final detector is trained on
this augmented training data, and iteratively improved by latent SVM (LSVM) updates
(see [29, 87] for details).

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 52

5.4 Experiments

In this section, we analyze (1) detection performance of the models trained with the dis-
covered configurations, and (2) impact of the discovered hard negatives on detection perfor-
mance.

Implementation details. We employ a recent region based detection framework [42,
87] and use the same fc7 features from the CNN model [20] on region proposals [92] through-
out the experiment. For discriminative patch discovery, we use K = |P|/2, θ = K/20.
For correspondence detection, we discretize the 4D transform space of {x: relative hor-
izontal shift, y: relative vertical shift, s: relative scale, p: relative aspect ratio} with
∆x = 30 px,∆y = 30 px,∆s = 1 px/px,∆p = 1 px/px. We choose this binning scheme by
visually examining few qualitative examples so that scale, aspect ratio agreement between
the two paired instances are more strict, while their translation agreement is more loose in
order to handle deformable objects. More details regarding be transform space binning can
be found in [73].

Discovered configurations. Figure 5.5 qualitatively illustrates discovered configura-
tions (green and yellow boxes) and foreground estimates (magenta boxes) that have high
degree in graph GP for all classes in the PASCAL dataset. Our method consistently finds
meaningful combinations such as a wheel and body of bicycles, face and torso of people, loco-
motive basement and upper body parts of trains/buses, window and body frame of cars, etc.
Some failures include cases where the algorithm latches onto different objects co-occurring
in consistent configurations such as the lamp and sofa combination (right column, second
row from the bottom in Figure 5.5).

Weakly-supervised object detection. Following the evaluation protocol of the PAS-
CAL VOC dataset, we report detection results on the PASCAL test set using detection av-
erage precision. For a direct comparison with the state-of-the-art weakly-supervised object
detection method the previous chapter, we do not use the extra instance level annotations
such as pose, difficult, truncated and restrict the supervision to the image level object pres-
ence annotations. Table 5.1 compares our detection results against two baseline methods
[83, 87] which report the result on the full dataset. As shown in Table 5.1, our method
improves detection performance on the majority of the classes (consistent improvement on
rigid man-made object classes). It is worth noting that our method shows significant im-
provement on the person class (arguably most important category in the PASCAL dataset).
Figure 5.4 shows some example high scoring detection results on the test set.

Impact of discovered hard negatives. To analyze the effect of our discovered hard
negatives, we compare to two baseline cases: (1) not adding any negative examples from
positives images (2) adding image regions around the foreground estimate as conventionally
implemented in fully supervised object detection algorithms [28, 42]. We use the criterion
from [42], where all image regions in positive images with overlap score (intersection area
over union area with respect to foreground regions) less than 0.3 are used as “neighboring”
negative image regions on positive images. Table 5.2 shows the effect of our hard negative
examples in terms of detection average precision, for all classes (mAP). The experiment

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 53

Figure 5.4: Example detections on test set. Green: our method, Red: the previous chapter

aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mAP

[83] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0.0 13.9

the previous chapter 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

ours + SVM 31.9 47.0 21.9 8.7 4.9 34.4 41.8 25.6 0.3 19.5 14.2 23.0 27.8 38.7 21.2 17.6 26.9 12.8 40.1 9.2 23.4

ours + LSVM 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6

Table 5.1: Detection average precision (%) on full PASCAL VOC 2007 test set.

w/o hard negatives neighboring hard negatives discovered hard negatives

ours + SVM 22.5 22.2 23.4

ours + LSVM 23.7 23.9 24.6

Table 5.2: Effect of our hard negative examples on full PASCAL VOC 2007 test set.

shows that adding “neighboring negative regions” does not lead to noticeable improvement
over not adding any negative regions from positive images, while adding our automatically
discovered hard negative regions improves the detection performance more substantially.

5.5 Conclusion

We presented a novel weakly-supervised object detection method that discovers frequent
configurations of discriminative visual patterns. We showed that the discovered configura-
tions provide more accurate spatial coverage of the full object and provide a way to generate
useful hard negatives. Together, these lead to state-of-the-art weakly-supervised detection
results on the challenging PASCAL VOC dataset.

CHAPTER 5. WEAKLY-SUPERVISED DISCOVERY OF VISUAL PATTERN
CONFIGURATIONS 54

Figure 5.5: Example configurations that have high degree in graph GP . The green and
yellow boxes show the discovered discriminative visual parts, and the magenta box shows
the bounding box that tightly fits their configuration.

55

Chapter 6

Conclusion

This thesis presented a framework for learning and making inferences with parsimony for
large scale object detection and discovery. This work not only shows the theoretical analysis
and guarantees about the presented models but also demonstrates the state of the art empiri-
cal results on challenging benchmark datasets. For inference, I’ve presented sparselet models
to address the model complexity parsimony for efficient multiclass, multi-convolutional infer-
ence. For learning, I’ve presented detection models to address human supervision parsimony.
The proposed model demonstrates state of the art detection performance with minimal su-
pervision. I plan to maintain the code repository on Github at https://github.com/rksltnl.

In future research, I plan to expand my work on efficient convolutional classifiers to other
areas of machine learning and computer vision, and also build on my experience in learning
object detectors with large scale unconstrained data. First, deep learning methods with
convolutional neural networks (DCNN) recently have shown promising results on bench-
mark object recognition datasets. However, it is often required to run days if not weeks of
computation on GPU architectures to train DCNN models. The computational bottleneck
in the DCNN framework is in multi-layer convolution with thousands of filters. I plan to
approach this computational burden along the lines of the sparselet concept: learn a dis-
criminatively trained family of matrices with special structures (i.e. low rank and sparse,
Toeplitz, Hadamard, etc) which are more computationally tractable as the complexity of
the training model increases. The second line of future research is about designing efficient
and practical algorithms for dealing with massive amount of negative data. This is a re-
laxed setting from the fully unsupervised setting, where we still work with the smaller set of
fully labelled data for positives but utilize the large scale unconstrained data for negatives.
The classical solution on handling large scale negative data in computer vision and machine
learning community comes under the guise of streaming based data mining or bootstrapping.
Some of the drawbacks of these classical approaches include restrictions on the choice of loss
functions, lack of analysis on practical convergence criteria. I plan to explore a theoretical
connection between streaming based data mining and generalized importance sampling.

https://github.com/rksltnl

56

Bibliography

[1] B. Alexe, T. Deselaers, and V. Ferrari. “Classcut for Unsupervised Class Segmenta-
tion”. In: ECCV. 2010.

[2] S Andrews, I Tsochantaridis, and T Hofmann. “Support vector machines for multiple-
instance learning”. In: NIPS. 2003.

[3] F. Bach et al. “Optimization with Sparsity-Inducing Penalties”. In: Foundations and
Trends in Machine Learning 4.1 (2012), pp. 1–106.

[4] O. Barinova, V. Lempitsky, and P. Kohli. “On Detection of Multiple Object Instances
using Hough Transforms”. In: IEEE TPAMI (2012).

[5] L. Bourdev and J. Malik. “Poselets: Body Part Detectors Trained Using 3D Human
Pose Annotations”. In: ICCV. IEEE. 2009, pp. 1365–1372.

[6] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[7] Calinescu et al. “Maximizing a submodular set function subject to a matroid con-
straint”. In: SIAM Journal on Computing (2012).

[8] X. Chen, A. Shrivastava, and A. Gupta and. “NEIL: Extracting Visual Knowledge
from Web Data”. In: ICCV. 2013.

[9] Y. Chen et al. “Active Detection via Adaptive Submodularity”. In: ICML. 2014.

[10] O. Chum and A. Zisserman. “An exemplar model for learning object classes”. In:
CVPR. 2007.

[11] D. Crandall and D. Huttenlocher. “Weakly supervised learning of part-based spatial
models for visual object recognition”. In: ECCV. 2006.

[12] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection”.
In: CVPR. IEEE. 2005.

[13] T. Darrell, S. Sclaroff, and A. Pentland. “Segmentation by Minimal Description”. In:
ICCV. 1990.

[14] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR.
IEEE. 2009.

BIBLIOGRAPHY 57

[15] J. Deng et al. “What does classifying more than 10,000 image categories tell us?” In:
ECCV. 2010.

[16] T. Deselaers, B. Alex, and V. Ferrari. “Localizing objects while learning their appear-
ance”. In: ECCV. 2010.

[17] T. Deselaers, B. Alex, and V. Ferrari. “Weakly supervised localization and learning
with generic knowledge”. In: IJCV (2012).

[18] C. Doersch, A. Gupta, and A. Efros. “Mid-level visual element discovery as discrimi-
native mode seeking”. In: NIPS. 2013.

[19] C. Doersch et al. “What makes Paris look like Paris?” In: SIGGRAPH. 2012.

[20] J. Donahue et al. “DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition”. In: arXiv e-prints arXiv:1310.1531 [cs.CV] (2013).

[21] J. Donahue et al. “DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition”. In: ICML. 2014.

[22] I. Endres, K. Shih, and D. Hoeim. “Learning collections of part models for object
recognition”. In: CVPR. 2013.

[23] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2007 (VOC2007)
Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/ index.html.

[24] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”. In: In-
ternational Journal of Computer Vision 88.2 (June 2010), pp. 303–338.

[25] A. Faktor and M. Irani. “Clustering by Composition Unsupervised Discovery of
Image Categories”. In: ECCV. 2012.

[26] A. Farhadi and A. Sadeghi. “Recognition Using Visual Phrases”. In: CVPR. 2011.

[27] L. Fei-Fei, R. Fergus, and P. Perona. “One-shot learning of object categories”. In:
IEEE TPAMI 28.4 (2006), pp. 594–611.

[28] P. Felzenszwalb, D. McAllester, and D. Ramanan. “A Discriminatively Trained, Mul-
tiscale, Deformable Part Model”. In: CVPR. 2008.

[29] P. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based
Models”. In: IEEE TPAMI 32.9 (2010).

[30] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively Trained De-
formable Part Models, Release 4. http://people.cs.uchicago.edu/~pff/latent-release4/.

[31] P. F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based
Models”. In: IEEE TPAMI 32.9 (2010), pp. 1627–1645.

[32] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester. “Cascade object detection with
deformable part models”. In: CVPR. 2010.

[33] R. Fergus, P. Perona, and A. Zisserman. “Object class recognition by unsupervised
scale-invariant learning”. In: CVPR. 2003.

~

BIBLIOGRAPHY 58

[34] R. Fergus, P. Perona, and A. Zisserman. “Weakly supervised scale-invariant learning
of models for visual recognition”. In: IJCV (2007).

[35] S. Fidler, M. Boben, and A. Leonardis. “Learning Hierarchical Compositional Rep-
resentations of Object Structure”. In: Object Categorization: Computer and Human
Vision Perspectives. Ed. by Sven Dickinson et al. Cambridge University Press, 2009.

[36] M.L. Fisher, G.L. Nemhauser, and L.A. Wolsey. “An analysis of approximations for
maximizing submodular set functions - II”. In: Math. Prog. Study 8 (1978), pp. 73–87.

[37] W.T. Freeman and E.H. Adelson. “The design and use of steerable filters”. In: IEEE
TPAMI 13.9 (1991), pp. 891–906.

[38] K. Fukunaga and L. Hostetler. “The estimation of the gradient of a density function,
with applications in pattern recognition”. In: Information Theory (1975).

[39] C. Galleguillos et al. “Weakly supervised object localization with stable segmenta-
tions”. In: ECCV. 2008.

[40] R. Girshick. “From Rigid Templates to Grammars: Object Detection with Structured
Models”. PhD thesis. University of Chicago, 2012.

[41] R. Girshick, H. Song, and T. Darrell. “Discriminatively Activated Sparselets”. In:
ICML. 2013.

[42] R. Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: arXiv e-prints (2013).

[43] R. Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: CVPR. 2014.

[44] R.B Girshick, P.F. Felzenszwalb, and D. McAllester. “Object detection with grammar
models”. In: NIPS. 2011.

[45] K. Grauman and T. Darrell. “Unsupervised learning of categories from sets of partially
matching image features”. In: CVPR. 2006.

[46] G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Category Dataset. Tech. rep.
7694. California Institute of Technology, 2007. url: http://authors.library.

caltech.edu/7694.

[47] T.A. Jenkyns. “The efficacy of the “greedy” algorithm”. In: Proc. of 7th South Eastern
Conference on Combinatorics, Graph Theory and Computing. 1976, pp. 341–350.

[48] A. Joulin and F. Bach. “A convex relaxation for weakly supervised classifiers”. In:
ICML. 2012.

[49] A. Joulin, F. Bach, and J. Ponce. “Discriminative clustering for image co-segmentation”.
In: CVPR. 2010.

[50] M. Juneja et al. “Blocks that shout: Distinctive parts for scene classification”. In:
CVPR. 2013.

http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694

BIBLIOGRAPHY 59

[51] M. Juneja et al. “Blocks that Shout: Distinctive Parts for Scene Classification”. In:
CVPR. 2013.

[52] G. Kim et al. “Distributed Cosegmentation via Submodular Optimization on Anisotropic
Diffusion”. In: ICCV. 2011.

[53] A. Krause and D. Golovin. “Submodular Function Maximization”. In: Chapter in
Tractability: Practical Approaches to Hard Problems (to appear) (2014).

[54] K. Kreutz-Delgado et al. “Dictionary learning algorithms for sparse representation”.
In: Neural computation 15.2 (2003), pp. 349–396.

[55] A. Krizhevsky and I. Sutskever G. Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: NIPS. 2012.

[56] P Kumar, B Packer, and D Koller. “Modeling Latent Variable Uncertainty for Loss-
based Learning”. In: ICML. 2012.

[57] J. Langford, L. Li, and T. Zhang. “Sparse online learning via truncated gradient”. In:
JMRL 10 (2009), pp. 777–801.

[58] Y. J. Lee and K. Grauman. “Foreground Focus: Unsupervised Learning From Par-
tially Matching Images”. In: IJCV 85 (2009).

[59] B. Leibe, A. Leonardis, and B. Schiele. “Combined Object Categorization and Seg-
mentation with an Implicit Shape Model”. In: Wkshp on Statistical Learning in Com-
puter Vision. 2004.

[60] C. Li, D. Parikh, and T. Chen. “Automatic Discovery of Groups of Objects for Scene
Understanding”. In: CVPR. 2012.

[61] Y. Li et al. “Convex and Scalable Weakly Labeled SVMs”. In: ICML. 2013.

[62] P.M. Long and L. Tan. “PAC learning axis aligned rectangles with respect to product
distributions from multiple-instance examples”. In: Proc. Comp. Learning Theory.
1996.

[63] J. Mairal, F. Bach, and J. Ponce. “Task-Driven Dictionary Learning”. In: IEEE
TPAMI 32.4 (2012).

[64] J. Mairal et al. “Online Dictionary Learning for Sparse Coding”. In: ICML. ACM.
2009.

[65] Stphane Mallat and Zhifeng Zhang. “Matching Pursuit With Time-Frequency Dic-
tionaries”. In: IEEE Trans. on Signal Processing 41 (1993), pp. 3397–3415.

[66] R. Manduchi, P. Perona, and D. Shy. “Efficient deformable filter banks”. In: IEEE
Trans. on Signal Processing 46.4 (1998), pp. 1168–1173.

[67] K. Micolajczyk, G. Leibe, and B. Schiele. “Multiple Object Class Detection with a
Generative Model”. In: CVPR. 2006.

BIBLIOGRAPHY 60

[68] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. “An analysis of approximations
for maximizing submodular set functions—I”. In: Mathematical Programming 14.1
(1978), pp. 265–294.

[69] Y Nesterov. “Smooth minimization of non-smooth functions”. In: Mathematical Pro-
gramming 103.1 (2005).

[70] J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

[71] P. Ott and M. Everingham. “Shared parts for deformable part-based models”. In:
CVPR. IEEE. 2011, pp. 1513–1520.

[72] M. Pandey and S. Lazebnik. “Scene recognition and weakly supervised object local-
ization with deformable part-based models”. In: ICCV. 2011.

[73] D. Parikh, C. L. Zitnick, and T. Chen. “From Appearance to Context-Based Recog-
nition: Dense Labeling in Small Images”. In: CVPR. 2008.

[74] H. Pirsiavash and D. Ramanan. “Steerable Part Models”. In: CVPR. IEEE. 2012.

[75] T. Quack et al. “Efficient Mining of Frequent and Distinctive Feature Configurations”.
In: ICCV. 2007.

[76] M. Raptis, I. Kokkinos, and S. Soatto. “Discovering discriminative action parts from
mid-level video representations”. In: CVPR. 2012.

[77] C. Rother et al. “Cosegmentation of Image Pairs by Histogram Matching Incorporat-
ing a Global Constraint into MRFs”. In: CVPR. 2006.

[78] O. Russakovsky et al. “Object-centric spatial pooling for image classification”. In:
ECCV. 2012.

[79] B. Sarwar et al. “Application of Dimensionality Reduction in Recommender SystemsA
Case Study”. In: Proc. ACM WebKDD Workshop. 2000.

[80] S. Singh, A. Gupta, and A. Efros. “Unsupervised discovery of mid-level discriminative
patches”. In: ECCV. 2012.

[81] S. Singh, A. Gupta, and A. A. Efros. “Unsupervised Discovery of Mid-Level Discrim-
inative Patches”. In: ECCV. 2012.

[82] P. Siva, C. Russell, and T. Xiang. “In defence of negative mining for annotating
weakly labelled data”. In: ECCV. 2012.

[83] P. Siva and T. Xiang. “Weakly supervised object detector learning with model drift
detection”. In: ICCV. 2011.

[84] J. Sivic and A. Zisserman. “Video Data Mining Using Configurations of Viewpoint
Invariant Regions”. In: CVPR. 2004.

[85] J. Sivic et al. “Discovering Object Categories in Image Collections”. In: ICCV. 2005.

[86] H. Song et al. “Sparselet Models for Efficient Multiclass Object Detection”. In: ECCV.
Springer-Verlag. 2012.

BIBLIOGRAPHY 61

[87] H. O. Song et al. “On learning to localize objects with minimal supervision”. In:
ICML. 2014.

[88] B. Taskar, C. Guestrin, and D. Koller. “Max-Margin Markov Networks”. In: NIPS.
2003.

[89] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the
Royal Statistical Society Series B (1996), pp. 267–288.

[90] A. Torralba, K.P. Murphy, and W.T. Freeman. “Sharing visual features for multiclass
and multiview object detection”. In: IEEE TPAMI 29.5 (2007), pp. 854–869.

[91] I. Tsochantaridis et al. “Large margin methods for structured and interdependent
output variables”. In: JMRL 6.2 (2006), pp. 1453–1484.

[92] J. Uijlings et al. “Selective search for object recognition”. In: IJCV. 2013.

[93] A. Vedaldi and B. Fulkerson. VLFeat: An Open and Portable Library of Computer
Vision Algorithms. http://www.vlfeat.org/. 2008.

[94] A. Vedaldi and A. Zisserman. “Efficient Additive Kernels via Explicit Feature Maps”.
In: IEEE TPAMI 34.3 (2011).

[95] V.G. Vizing. “On an estimate of the chromatic class of a p-graph”. In: Diskret. Analiz.
3 (1964), pp. 25–30.

[96] M. Weber, M. Welling, and P. Perona. “Towards automatic discovery of object cate-
gories”. In: CVPR. 2000.

[97] M. Weber, M. Welling, and P. Perona. “Unsupervised Learning of Models for Recog-
nition”. In: ECCV. 2000.

[98] M. Weber, M. Welling, and P. Perona. “Unsupervised learning of models for recogni-
tion”. In: ECCV. 2000.

[99] Wikipedia. AI winter — Wikipedia, [Online; accessed 22-July-2014]. 2014. url: http:
//en.wikipedia.org/wiki/AI_winter.

[100] Lior Wolf, Hueihan Jhuang, and Tamir Hazan. “Modeling Appearances with Low-
Rank SVM”. In: CVPR. 2007.

[101] L. Wolsey. “An analysis of the greedy algorithm for the submodular set covering
problem”. In: Combinatorica 2 (1982), pp. 385–393.

[102] C.N. Yu and T Joachims. “Learning Structural SVMs with Latent Variables”. In:
ICML. 2009.

[103] A.L. Yuille and A. Rangarajan. “The Concave-Convex Procedure”. In: Neural Com-
putation 15.4 (2003), pp. 915–936.

[104] Y. Zhang and T. Chen. “Efficient Kernels for Identifying Unbounded-order Spatial
Features”. In: CVPR. 2009.

http://www.vlfeat.org/
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter

BIBLIOGRAPHY 62

[105] L.L. Zhu et al. “Part and Appearance Sharing: Recursive Compositional Models for
Multi-View Multi-Object Detection”. In: CVPR. IEEE. 2010, pp. 1919–1926.

[106] H. Zou and T. Hastie. “Regularization and variable selection via the elastic net”. In:
Journal of the Royal Statistical Society Series B (2005), pp. 301–320.

[107] James Zou et al. “Contrastive Learning Using Spectral Methods”. In: NIPS. 2013.

	Contents
	List of Figures
	List of Tables
	Introduction
	Outline

	Preliminary
	Notations
	Overview of object detection and evaluation
	Dictionary learning and sparse coding
	Submodularity

	Generalized sparselet models for real-time multiclass object recognition
	Introduction
	Related Work
	Sparselets
	Discriminative activation of generalized sparselets
	Application of generalized sparselets
	Experiments
	Conclusion

	On learning to localize objects with minimal supervision
	Introduction
	Related work
	Problem formulation
	Finding objects via submodular cover
	Iterative refinement with latent variables
	Experiments
	Conclusion

	Weakly-supervised discovery of visual pattern configurations
	Introduction
	Related work
	Approach
	Experiments
	Conclusion

	Conclusion
	Bibliography

