
Mercury - A Laboratory Information and Management
System

Todd Merport
Alexander Proskurowski
Katalin Voros

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-149
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-149.html

August 13, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

i

UNIVERSITY OF CALIFORNIA, BERKELEY

CITRIS - MARVELL NANOFABRICATION LABORATORY

THE CENTER FOR 520 SUTARDJA DAI HALL

INFORMATION TECHNOLOGY BERKELEY, CALIFORNIA 94720-1754

RESEARCH IN THE INTEREST OF SOCIETY TEL: 510-809-8600

Mercury

A Laboratory Information

and

Management System

Todd Merport

Alexander Proskurowski

Katalin Voros

Abstract
Mercury is a computer management and information system designed specifically to operate the

Berkeley Marvell NanoLab and to use laboratory resources efficiently. The components of

Mercury are a relational database management system (Ingres), daemons (background processes),

and clients, in a dual, three tier application. This report describes the system design, database

details, implementation technologies, and it gives some detailed examples. The Mercury system

has been in real-time operation since December 2009 in the UC Berkeley NanoLab.

2014

ii

Table of Contents

List of Figures .. iii

Glossary ..iv

I. Introduction and Overview ..1

II. User Experience ...3

 CAPE ..4

 Mercury Client ..5

 Mercury Web ...8

 Additional Informational Modules Available to Lab Members 10

III. Database Design ...12

 Functional Parts ….………………………………………………………………. 13

 Objects, Groups, and Properties …………...……………………………13

 Membership …………………………………………………………….15

 Resources ……………………………………………………………….16

 Activities and the Accounting Process …………………………………17

 Sessions ─ A Group of Laboratory Activities ………………………….19

 Problem Reporting ……………………………………………...……...20

 Reservations ……………………………………………………………21

 Qualifications …………………………………………………………...21

 On-Line Tests ………..……………………………………………….…22

 Inventory ………………………………………………………………...22

IV. Database Details …………………………….…………………………………………...23

 Tables with Pre-Defined Data ………….…………………………………………23

 Tracing a Session…………………….……………………………………………28

 Tables Used in Accounting ……..………………………………………………...29

 Stored Procedures/Triggers (Rules)……………………………………………....31

 Activity Insert Procedure …………………………………………………………31

 Activity Close Procedure …………………………………………….……..…….32

V. Development and Operational Technologies (Dev-Ops)..……………………………....34

 Mercury Server and Client Components ………………………………………...34

 Mercury Client (GUI) ……………………………………………………………36

 Mercury Server Communications to RUMS …………………………………… 38

 Mercury Web………………………………………………………….………….40

 Developer Tools ………………………………………………………………….42

 System Requirements …………………………………………………………….43

 Building, Distribution, and Revision Control ……………………….……..…….43

 Hardware ……………………………………………………………..…………..47

 Independent Modules Connected to Mercury …………………………..………..49

VI. Summary ...52

VII. References ...53

Acknowledgements ..53

Biographies ... 54

Appendix: Mercury XML Documents and Database Summary………………………………....55

iii

List of Figures

Fig. 1. Mercury structure, a dual three tier application system.

Fig. 2. Creation of an accounting activity.

Fig. 3. Schematic outline of computer interactions in the Marvell NanoLab.

Fig. 4. Login terminals in the entrance lobby of the NanoLab.

Fig. 5. Click on the CAPE icon to login.

Fig. 6. Mercury (Client) login window with option to select a project from a drop-down menu.

Fig. 7. Problem reporting page of Mercury Client.

Fig. 8. Mercury Client session viewing equipment.

Fig. 9. Marvell NanoLab web portal (partial view), with access to Mercury Web.

Fig. 10. Mercury Web member page.

Fig. 11. Mercury Web equipment reservation page.

Fig. 12. Example of the Dependencies list of tystar10, poly-Si LPCVD furnace.

Fig. 13. RUMS sensor status display of NanoLab utilities (partial view).

 Inset: Line chart of the measured data with spec limits, for DI water resistivity.

Fig. 14. Mercury database schematic layout (Todd Merport, 2012).

Fig. 15. Example of a group in the database.

Fig. 16. Example of the resources group in the database.

Fig. 17. Detail of the resource ‘equipment’ in the database.

Fig. 18. Membership details of the database.

Fig. 19. Schematic of Resources in the database.

Fig. 20. Schematic of the Accounting module (partial).

Fig. 21. Schematic of the Accounting module showing the recording of charges.

Fig. 22. Accounting activity schematic.

Fig. 23. Activity types and rules.

Fig. 24. Sessions of chargeable activities are posted to projects.

Fig. 25. Problem reporting details of the database.

Fig. 26. Equipment reservation section.

Fig. 27. Qualifications section.

Fig. 28. On-line tests.

Fig. 29. Inventory details in the database.

Fig. 30. Mercury System components.

Fig. 31. Simplified Client Server class diagram.

Fig. 32. Mercury Client.

Fig. 33. jSQL Console example during development phase of MercuryServer.

Fig. 34. Code snippet of Mercury utility program that makes use of Mercury Classes.

Fig. 35. Instance Diagram: a member disables a furnace.

Fig. 36. Mercury Web main Accounting page.

Fig. 37. Configuration page of Online Test.

Fig. 38. Creating new equipment.

Fig. 39. Staff page of Mercury Web.

Fig. 40. NanoLab web servers.

Fig. 41. NanoLab computer infrastructure in 2014.

Fig. 42. Hydra equipment control system.

iv

Fig. 43. Gas Database schematic.

Fig. 44. Resource Utilization Monitoring System, RUMS [3].

Glossary

Apache Tomcat Open source software implementation of the Java Servlet and JavaServer Pages

BCIMS Berkeley Computer-Integrated Manufacturing System

BIRT Business Intelligence Reporting Tool

CAPE Common and Personal Environment

CMOS Complementary Metal-Oxide-Silicon (transistor or process)

daemon A computer program that runs as a background process, rather than being under

the direct control of an interactive user.

EECS Department of Electrical Engineering and Computer Sciences

GPIB General Purpose Interface Bus (Hewlett-Packard)

GUI Graphical User Interface

HYDRA Equipment control system in the NanoLab

IceFaces JSF Java development platform (JavaServer Faces 2)

Java A multifaceted programming language

LN liquid nitrogen

LPCVD Low Pressure Chemical Vapor Deposition

MERCURY Name of the NanoLab’s management and information system

MERCURY CLIENT Program to execute tasks in the NanoLab

MERCURY WEB Web interface to Mercury system

RDBMS Relational Database Management System

Remote desktop A PC connected to the remote server CAPE

RUMS Resource Utilization Monitoring System (environmental sensors)

Poly-Si Polycrystalline silicon

SQL Structured Query Language

SQLServer relational database management system developed by Microsoft

UNIX operating system

1

I. Introduction and Overview

Mercury is a computer management and information system designed specifically to operate the

Berkeley Marvell NanoLab and to use laboratory resources efficiently. Mercury was developed

parallel to the building of the new NanoLab, same as was in the case of its predecessor, the

Microlab 30 years before [1]. However, facilities development and computer systems design of

the new lab (2010) had the advantage of the experience of the old systems behind them. The

Berkeley Computer Integrated Manufacturing System (BCIMS) [2] had 25 years of real-time

experience in constant use, with over two million activities captured and many enhancements

added, upgrading, and fine tuning along the way, provided a solid foundation for the design of

Mercury. The software is named Mercury (not an acronym) after the Roman god that acted as a

messenger.

The components of Mercury are a relational database management system (Ingres), daemons

(background processes), and clients. Mercury is a dual, three tier application (see Fig. 1). The

client program that runs in the laboratory is called Mercury Client. It connects to a session

management daemon, Mercury Server. There is also another system, called Mercury Web, which

provides a web interface to the system and runs under Apache Tomcat. Most of the logic or

business rules for the system are implemented in the database as stored procedures. This helps

insure data integrity and improves speed. It also minimizes duplication of procedures in the

middle tier and clients.

Fig. 1. Mercury structure, a dual three tier application system.

2

Mercury emphasizes accounting by utilizing a double entry accounting system. Activities are

recorded and debited/credited to the appropriate accounts. The system maintains a real-time state

of accounts in contrast to monthly and annual reporting. Further, all transactions in the laboratory

are managed using database transactional facilities. These transactions include lab entries,

equipment usage, and inventory. When members use or manage resources, activities are

generated and information is stored in the journal and ledger. (Fig. 2.)

Fig. 2. Creation of an accounting activity.

This report describes the system as it is in operation in the Berkeley Marvell NanoLab, in 2014,

including database design, equipment communication and control, activities and recharge

accounting, and at first, users’ (laboratory members’), computer (Mercury system) interaction

experience in the lab.

Members

Resources

Activities
Use Create

Journal

Ledger
Record

3

II. User Experience

The Marvell NanoLab at Berkeley is a graduate student semiconductor research facility with full

IC processing capability, involving over 130 pieces of equipment. Students and associated

researchers (collectively called lab members), numbering more than 300 in any given month,

work on their own individual projects on a selected number of tools in diverse combinations.

Protection from cross-contamination is a major concern, along with tool accessibility and

scheduling. Mercury enables the control of this complex environment and allows charging

various research grants according to general laboratory and special equipment use. Computers

are part of the facility and running a semiconductor device process requires computer interaction

every step of the way.

New lab members go through an introductory seminar, which includes information on the

computer system and instructions on its use. First an overview is given of the layers of

interaction, shown in Fig. 3. The user (lab members, staff, and management) has access to the lab

environment through its computer control system, Mercury. Another way to look at this is that

the Mercury computer system, built modularly, connects the equipment, environmental controls,

and user activities with a common, relational database. Information from the database is then

utilized to carry out activities, such as enabling equipment for processing or providing reports.

Fig. 3. Schematic outline of computer interactions in the Marvell NanoLab.

4

CAPE

Upon entering the lab the first step is to login to CAPE (Common And Personal Environment)

from a PC in the lobby (Fig. 4), by clicking on the CAPE icon on the screen (Fig. 5.) CAPE is a

desktop system (Windows Terminal Server) allowing access to Mercury Client, the equipment

controller program in the lab and to restricted internet access through a web browser.

Fig. 4. Login terminals in the entrance lobby of the NanoLab.

Fig. 5. Click on the CAPE icon to login.

5

Once logged in, the user will click on the Mercury (Client) icon to start a lab

session (Fig. 6.) This lets the system and other people inside know that she/he is in

the lab. At that point the user is allowed to select one of several projects, if this is

the case, to which charges are to be made, and accounting functions are initialized.

The Mercury Client (Fig. 8) shows the state of the equipment by status indicators. If

green, the lab user is permitted to enable and disable equipment. The user may also

start the browser for internet access. This is useful for information retrieval, such as

lab manuals, while working inside the lab.

To move to another area in the NanoLab, the user clicks on the HIDECAPE icon.

The CAPE session is now suspended, which means that he is still logged into the

lab, and the session can be reopened at another terminal inside. At another terminal

in the lab, after login to CAPE again the session is reactivated, and the user will see

his desktop as he left it.

Fig. 6. Mercury (Client) login window with option to select a project from a drop-down menu.

Mercury Client is available only from CAPE sessions started in the NanoLab, to use it in

conjunction with equipment in the lab. This means that equipment cannot be enabled /disabled

remotely from non-designated locations, and that the user has to be present for any equipment

activity. This also means that the user is charged laboratory use fees as long as he is logged into

Mercury Client. Satellite labs in other locations (Cory Hall, Surtardja Dai Hall) also can invoke a

CAPE session, but members can only enable equipment associated with the terminal (or client)

location. For certain process steps, such as long furnace runs, the user may leave and not be

charged lab fees; however, equipment fees are accrued as long as the equipment is enabled.

Mercury Client

Clicking on a tool name a pop-up menu presents several action possibilities (inset in Fig. 8).

These are: enable/disable; view/report problems; send mail to all the qualified users of that tool;

view reservations; enter comments and process parameters; viewing of several important aspects

of tool operation, such as tool repairs and maintenance schedules, what utilities are needed to

operate it (dependencies), who used it previously, comments/problem history; members who are

qualified to use it, and the operation manual of the tool. All tool-specific actions are entered here

and maintained in the database.

6

Fig. 7. Problem reporting page of Mercury Client.

Clicking on the Report Problem option the user is presented with the page shown in Fig. 7. This

module is based on FAULTS: An Equipment Maintenance and Repair Tracking System Using a

Relational Database, described in detail in Reference [4]. The module requires that the user

select the appropriate description of the problem from a list of symptoms. He can detail the

problem by adding text in the Description window. Upon hitting the Save button the status

indicator on the front page (Fig. 8) turns yellow or red, depending on the severity of the problem

and an email is sent automatically to the equipment engineer responsible for the tool. Upon

completing the repair the engineer clears the problem by selecting the appropriate fault from the

menu shown, and enters, in the comments section, details of the repair. At that point the problem

report is cleared and the status indicator switches to green.

7

Fig. 8. Mercury Client session viewing equipment.

The bottom part of the Mercury Client interface shows equipment charges incurred during the

session and other system messages.

The left side (or tree) of the Mercury Client interface allows members to select a general

category that is detailed in the right side table list (table). The right side lists can stack similarly

to a way a spreadsheet or browser has tabs to indicate hidden sheets.

The left side of the Mercury Client interface provides useful information to lab members inside

the lab. This includes equipment restrictions listings, utilities and locations, information on lab

charges, materials and chemical availability, equipment qualifications listings, who is in the lab

and who is suspended. There is also an option to login visitors.

The Mercury Client session will stay active until the user clicks on the Logout button in the

Mercury Client window (when leaving the NanoLab). This will log him out of the NanoLab.

8

Mercury Web

Mercury Client has a companion web site called Mercury Web, accessible both through the

Marvell NanoLab web site (Fig. 9) and the Mercury Client (Fig. 7.) Mercury Web allows lab

members to make reservations, view inventory, check equipment status, see who is in the lab,

and do various other tasks that may be done outside the laboratory and will not be charged lab

fees. Mercury Web can be used from any remote location including from home.

Fig. 9. Marvell NanoLab web portal (partial view), with access to Mercury Web.

When clicking on the Mercury Web button (on top of the web portal, Fig. 9) and logging in, the

appropriate Mercury Web page will appear, depending on classification: lab member, staff,

management. Fig. 10 shows the member page, with available actions for lab members. This is

where equipment reservations can be made, check what equipment is being used currently, see

the equipment status board, information obtained about lab members and who is qualified on

what machine. The Member Information is useful when looking for an equipment training

partner. Fig. 11 shows the equipment reservations page.

9

Fig.10. Mercury Web member page

Fig. 11. Mercury Web equipment reservation page.

10

Additional Informational Modules Available to Lab Members

Utilities Monitoring

Utilities required to operate equipment are shown in the pop-up menu of each tool on the

Equipment page of the Mercury Client. Fig. 12 is an example.

Fig. 12. Example of the Dependencies list of tystar10, poly-Si LPCVD furnace.

If a project is especially sensitive to environmental conditions, utilities performance can be

viewed directly on the NanoLab’s web portal (Fig. 9), under Facilities. Clicking on RUMS-Nano

will result in a listing shown in Fig. 13. Clicking on a Sensor Name will create a pop-up window

with the line chart of the measured data, as shown in the inset in Fig. 13. This program is called

RUMS, Resource Utilization Monitoring System and uses its own SQL Server database [3].

Laboratory Fees

The Marvell NanoLab is financed by charging lab-use fees to participating Principal

Investigators (PIs). Each student who conducts her/his research in the lab receives a unique

account number to which charges are accumulated and billed to the assigned research grant. If

there are more than one projects/grants then the user selects the appropriate title to which the

activity is posted. The lab member can view his up-to-date lab charges for the month in Mercury

Web. (Invoicing is done monthly.)

Lab Manuals

Up-to-date equipment operations manuals are available for viewing, both inside and outside the

lab. Mercury Client provides the lab manual in the pop-up menu for the specific tool.

Alternately, the complete manual set is available in Mercury Web and through the Marvell

NanoLab’s web portal, http://NanoLab.berkeley.edu/labmanual.

11

Fig. 13. RUMS sensor status display of NanoLab utilities (partial view).

Inset: Line chart of the measured data with spec limits, for DI water resistivity.

12

III. Database Design

A clever database design that fits the environment and the requirements of laboratory operations

is essential for developing a user-friendly computer management system. The Mercury project

started out with a database design shown in Fig. 14. Blocks of the same color indicate the

following groups:

 Membership, with attributes of members ID, photo, status, research, advisor,

projects; also recognitions, suspensions, and suggestions.

 Grouping, with resource groups, member groups, lineages, groups, and objects.

 All other functions needed for operation of the lab, with parameters for resource

used, problem reports, reports history, reserve, calendar, on-line tests, qualify, history.

 Accounting, with project members, charge classes, charge rules, project funds,

departments, funds, accounting types, accounting rules, activity, journal rules, journal,

ledger, accounting period, and report parameters.

 Resources, with name, locations, equipment, utilities, dependencies, and inv. items.

 Purchase, with items, orders with details, flex-fields, forms, and vendors.

Fig. 14. Mercury database schematic layout (Todd Merport, 2012).

13

This is a typical relational database design with the data organized in relationships to each other;

relationships are specified by column constraints built into the table definitions, transactions are

managed by rules and data is manipulated using stored procedures. Mercury is built on the Ingres

relational database management system (RDBMS), originally developed at UC Berkeley in the

1970s, now a commercially supported product.

The Mercury database was designed with both relational database and object oriented design

patterns. The object patterns provide inheritance such as equipment "is a" resource and

polymorphism where table rows are interchangeable objects that can be passed to procedures,

grouped, or queried as needs arise. Relational systems provide a high degree of organization,

data integrity, standards, and maturity. The goal is a fast, reliable, and flexible system.

Functional Parts

Objects, Groups, and Properties
Mercury has several ways to give things or objects relationships. A relationship can be based on

a group of equipment, members, equipment properties, privileges, or journal entry. Mercury

provides a way of grouping things in the database by defining them as objects. Objects are built

into relationships through the groups, properties, lineages, and objects tables.

The groups table holds a tree like structure. A group’s lineage is at the top level. It defines the

function of the group. For example the lineage member_groups in Fig. 15 can hold members of

a group (identified in the members table) as a parent and the ID of the member is a child in the

groups table.

Accounting
Can edit:
 Accounting, reports
 Members
 Funds
 Projects
 Advisor

Admin
Can change rules:
 Activity Rules/Types
 Charge/Journal Rules
 Groups
 Accounting: Adjust Rates

Inventory
Can edit:
 Add Item/Type
 Agjust Price
 Update
 Check in/out

[Lab]Member
Can make:
 Reservations
 Suggestions
Can view:
 Equip. status
 Qualifications
 Information

Resources
Can edit:
 Equipment
 Utilities
 Problems
 Facilities
 Locations
 Process

Staff
Can edit:
 Calendar
 Qualifications
 Tasks
 Activity
 Inventory
 Staff

Fig. 15. Example of a group in the database.

14

Charge_rules in the Accounting module uses a lineage resources (Fig. 16). The parent is the

resource group specified in charge rules. The child is the resource used in the current activity.

Fig. 17 shows details of the resource ‘equipment’.

Resources group:

Fig. 16. Example of the resources group in the database.

Fig. 17. Detail of the resource ‘equipment’ in the database.

Equipment
asml
autoprobe
balance
canon
etc.

Utilities
AC power
drains
cylinder gas
vacuum pump
etc.

Facilities
Cory Hall
NanoLab

Areas and
Locations

clean room
office
campus

Process
Gateox
poly-Ge
poly-Si
litho
xfetch, etc.

15

Membership

Membership is comprised of a series of relationships besides just personal data. (Fig. 18.) Each

member has one or more advisors, projects and a primary project. Projects have one or more

sources of funding, (pr_funds). A member is part of a basic group: admin, staff, [lab]member and

database privileges are managed by the Ingres system. Groups define access rights to forms and

areas in the Mercury Client or Mercury Web program. A member has a members_status to

indicate if he is ‘active’, ‘inactive’, or ‘extinct’. An ‘active’ status indicates the member is

actively using the facility; an ‘inactive’ status is a suspended account – the member plans to use

the laboratory in the near future; an ‘extinct’ account indicates the member has left the lab on a

permanent basis ─ computer accounts are archived and equipment operation qualifications

purged.

Fig. 18. Membership details of the database.

16

Resources

A laboratory has resources, such as location, equipment, utilities, and inventory. Resources have

a name, description, cost, and status. The resource’s status can indicate if a problem has been

filed on the resource. (Fig. 19.)

Fig. 19. Schematic of Resources in the database.

17

The following are defined as resources and inherit all resource attributes. Resources have

additional attributes specific to their use in the laboratory.

 Equipment: a piece of equipment used in the lab. If the equipment is enabled, a member

name is associated with it. Equipment also has a head (enable message), tail (disable

message).

 Utilities: a utility is gas, power, or some other item connected to equipment to enable its

operation. A utility has a type, location, usage, unit, and operator. Types include power,

water, and gas.

 Inventory: Inventory items have a location, type, current count, minimum count, and re-

order amount.

 Locations: Locations have an area (group of locations), facility (accounting unit), login

flag, and message. A location is generally a room with one or more pieces of equipment.

Labtime is charged to the location “Marvell Lab” or “anylab” (if more than one locations

are managed).

 Facilities: Each location has a ‘facility’ A facility represents an accounting unit. An

example of a facility would be ANYLAB, MARVELL LAB. Caps are used as a rule.

Facilities are listed in the facilities table. A facility is also a resource so monthly access

fees can be applied.

Activities and the Accounting Process

Activities are tracked in the lab on the basis on who did what, when. The what is designated as a

‘resource’ and kept in the resources table. As defined above, resources are equipment, utilities,

inventory items, locations, and facilities. Every resource has a type, price, unit, and status

(indicating if a problem has been filed. See Fig. 17.)

Any activity or transaction requires recording the following data in the activity table of the

Accounting module: member, project, location, activity type, and start/stop time stamps; once an

activity is closed, the amount, price, and totals are recorded in the same record. (Figs. 20 and 21.)

Fig. 20. Schematic of the Accounting module (partial).

18

Fig. 21. Schematic of the Accounting module showing the recording of charges.

Members start an activity when they login to the laboratory, enable a piece of equipment, or

check in or check out an inventory item. Prior to an activity being recorded it is checked against

a series of act_ rules, which check, for example, if a member is qualified for the activity. If the

activity passes muster with the rules, a record is placed in the activity table. The activity is

marked as open. When the activity is completed it is marked as closed and a series of tests are

applied to the activity. Journal entries are created based on the activity type, member, location,

and resource. Then charge rules are applied and an additional journal entry may be added as a

credit or debit. When the journal entry is complete, a ledger entry is created unique to the

member, project, and location. The ledger is a summary of the journal activities based on the

accounting period. (Fig. 22.)

Fig. 22. Accounting activity schematic.

Activity

Rules

Charge

Rules

Journal

Rules

Activity

Table

Journal

Table

Ledger

Table

Ledger Rules

(Procedure)

Activity

19

Types of activities accounted for by Mercury are predefined in the activity types (act_types)

table. Any entry into the activity table must include its type. The activity rules table (act_rules) is

used to validate the activity prior to insertion. One example is shown in Fig. 23: activity type

102 equipment usage requires qualification, extends the qualification for 6 months, tests if the

member is in the lab and if the equipment is busy, the auto_close flag is no; after insert another

update is required to close the activity (enable, disable).

Fig. 23. Activity types and rules.

Sessions – A Group of Laboratory Activities

When a member signs into the lab (using Mercury Client), a session is automatically created.

(Fig. 24.) All activities are grouped into a session for the interval between sign-in and sign-out.

Grouping activities into sessions and giving each activity a sequence number in the session

facilitates running the laboratory. For example: a session would be enabling/disabling multiple

equipment and resource-use charges, all to be posted to a project. A session includes all

chargeable activities. (A session is not created, i.e. no charges are generated, if a member uses

Mercury Web.)

Fig. 24. Sessions of chargeable activities are posted to projects.

20

Problem Reporting

Problem reports are generated by staff, members, or automatically via a maintenance calendar.

The main set of tables involved is shown in Fig. 25. Each report is based on a problem with a

resource (resources). A typical case might be a member in the clean room reporting a problem on

“oxford” (equipment). The member will select the generalized type of problem out of a pool of

pre-defined problems. The problems for a resource are linked via the resource_problems table.

Two tables receive inserts when a problem is filed: reports and report_hist. The report_hist table

is updated as the resource is evaluated and repaired, the final update will change the status to

“Clear” and the clear_time field in reports is set to the current date (See Reference [4]). Email is

generated to members with KEYOP or ENG1, ENG2 status in the equipment property tables and

qualified members (when the problem is cleared). If the resource is not locked out, i.e. it is still

usable but with some limitation, Mercury Web or Mercury Clent will show the resource with a

semaphore that is yellow (a warning). A severe problem gets the red semaphore – the member is

unable to enable the equipment. This logic is checked with the activity_insert_proc stored

procedure. If a problem report is filed on a utility, all dependent equipment can be locked out.

For example, a liquid nitrogen (LN) problem can lockout all equipment dependent on LN. The

semaphore seen by the member in this case is black. Problem reports can be generated on

equipment, locations, and utilities.

Fig. 25. Problem reporting details of the database.

21

Reservations

Members make reservations on resources (equipment) through Mercury Web. To prevent a free

for all on popular equipment, various rules are imposed on equipment groups or an individual

machine. Rules are held in the reservation_rules table Fig. 26.) In a given period, reservations

are limited by number of times, total time, and maximum time for a single instance. The

member that made the reservation receives a reminder notice early in the morning of the reserved

day. Enforcing reservations is a matter of lab policy. Members attempting to enable equipment

that has an upcoming reservation will be warned with a pop-up message on Mercury Client.

Fig. 26. Equipment reservation section.

Qualifications

Members get qualified on equipment through training and testing. Once qualified, they get on the

email alias for the equipment. Each time a member uses the equipment, the qualification is

extended for six months. When the qualification expiration date is near, members will receive a

reminder email to extend their qualification. The trainer of the qualified member gets noted in

the training table so management can recognize good citizenship. (Fig. 27.)

Fig. 27. Qualifications section.

22

 On-Line Tests
Members can take tests as part of the qualification process to use the NanoLab and individual

equipment using the On-Line Tests feature of Mercury Web. Fig. 28 shows the tables involved.

Essentially, a test has questions, answers, choices, and a result. Designated staff design and grade

tests.

Fig. 28. On-line tests.

Inventory
Inventory is another resource which is recorded in a Session (and billed at the end of the

session.) Specialty gas use by an equipment is calculated automatically from input data from

RUMS [3] and recorded in the session by Mercury Client. Inventory is managed through

Mercury Web.

Fig. 29. Inventory details in the database.

23

IV. Database Details

Most of the logic is implemented in SQL stored procedures. (Data is inserted into tables by

stored procedures.) Following is a description of the accounting process.

Tables with Pre-Defined Data

Data in these tables can be changed only with the right privileges.

Members Status (members_status)

ID Status Description

1219 a Active

1220 i Inactive

1221 x Extinct

1222 p Pending

Columns:

ID, row id

Status, character indicating member status

Description of status

Activity Types (act_types)

ID Name

100 Lab Fee

101 Lab Time

102 Equipment Use

103 Staff Time

200 Checkout

201 Checkin

202 Inventory Lost

203 Inventory Found

204 Disposal

300 Lab Fee Overcharge

301 Lab Time Overcharge

302 Equipment Use Overcharge

400 Utilities

Columns:

ID, predefined ID

Name, name of type

24

Activity Rules (act_rules)

act_type check_qual renew_qual check_presence check_busy auto_close

100 n NULL n n y

101 y NULL n n n

102 y 6 months y y n

103 n NULL n n y

300 n NULL n n y

301 n NULL n n y

302 n NULL n n y

400 n NULL n n y

Columns:

act_type – id from act_types table

check_qual -- check qualifcations for this activity

renew_qual -- renew qualifications (for 6 months)

check_presence -- require member to be signed in for this activity

check_busy -- make sure there is no contention with another activity for this resource

auto_close -- close this activity right away (for manual log).

Notes:

activity_insert_rule after INSERT on activity -> activity_insert_proc

activity_update_rule after UPDATE on activity -> activity_close_proc

activity_close_proc called when activity is updated. Calls activity_journal_proc and

activity_oc_proc.

activity_journal_proc gets information from closed activity, make journal entry, and uses

journal_rules.

activity_oc_proc applies charge rules.

25

Journal Rules (journal_rules)

act_type trigger object2 object3 object4 debit

100 facility null null null n

100 member facility project act_type y

101 resource member res_group project n

101 member facility project act_type y

102 resource member res_group project n

102 member facility project act_type y

103 resource member res_group null n

103 member facility project act_type y

301 resource member res_group project y

301 member facility project act_type n

302 resource member res_group project y

302 member facility project act_type n

300 resource member res_group null y

300 member facility project act_type n

Columns:

Activity Type (act_type). Activity types are based on real activities such as lab usage,

equipment usage, and inventory check outs.

Main (main).

Trigger (trigger). Each trigger for a given activity will create a separate line in the journal. The

trigger resource is listed as object1 in the journal. Usually a given activity will create two entries

in the journal. A line indicating a credit to the resource used, and a line debiting a member,

facility, and project.

Lineage (lineage), setting object1 by looking at parent group

Level (level), negative number – home many levels to backtrack to find group

Object2 , a resource

Object3 , a resource

Object4, a resource

Debit, create a debit or credit for this entry.

26

Charge Classes (charge_classes)

ID Name

800 no access

801 member

802 staff

803 bmla

804 professor

Columns:

ID – predefined ID for class

Name – class name

Charge Rules (charge_rules)

ch
ar

g
e_

cl
as

s

ac
t_

ty
p
e

ap
p
ly

_
re

s

li
m

it
_
ty

p
e

li
m

it
_
am

o
u
n

t

li
m

it
_
p
er

io
d

li
m

it
_
sc

o
p
e1

li
m

it
_
sc

o
p
e2

re
s_

g
ro

u
p

801 100 1067 a 1.00 m m r 0

801 101 1072 t 1200.00 m m r 0

801 102 1067 t 1400.00 m m a 0

Example for charge_class members

(act_type 100 lab fee, 101 labtime, 102 equipment use)

(apply_res 1067 MARVELL LAB as facility, 1068 Marvel Lab as location)

Columns:

charge_class -- each project-member has a charge class that defines charge rules. The charge

classes are defined in the table charge_classes.

act_type -- activity types indicate what activity occurred such as equipment usage, lab time,

inventory check in. Referenced from table act_types.

apply_res – this could be a room, facility, or a piece of equipment.

limit_type -- defines if the limit should apply to an amount ‘a’ or total ‘t’ from a group of act.

limit_amount -- cut -off amount for rule. For example equipment might be $1400 and labtime

$1200. For charge_class of staff use $0. Single activities use $1.

limit_period -- the period that this rule applies to: day ‘d’, month ‘m’, or year ‘y’.

limit_scope1-- member based scoping. Valid entry are ‘m’, member ONLY.

limit_scope2 -- resource based scope. Define what resources this rule applies: ‘r’ is is single

resource like labfee, ‘a’ is all resources, ‘g’ is a group of resources ‘x’ is except resources

indicated in res_group column.

res_group -- a parent object id in the groups table under lineage ‘resource’. If the entry is ‘0’,

then use the location. A res_group can be a location. All equipment as children for this location

will be included/excluded based on limit_scope2. If a resource in apply_res is in a group under

lineage ‘resource’, the res_group column must be populated with its parent id.

27

Charge Rules Example (names are used instead of ids of flags)

c
h
a
rg

e
_
c
la

s
s

a
c
ti
v
it
y
 t
y
p
e

re
s
o
u
rc

e

lim
it
 t
y
p

e

lim
it
 a

m
o

u
n
t

lim
it
 p

e
ri

o
d

lim
it
 s

c
o
p

e
1

lim
it
 s

c
o
p

e
2

re
s
o
u
c
e

 g
ro

u
p

bmla Lab Fee MARVELL
LAB

activity 1 month member resource

bmla Lab Fee MICROLAB activity 1 month member resource

bmla Lab Time Marvell Lab total 1600 month member resource

bmla Lab Time microlab total 1600 month member resource

member Equipment
Use

MARVELL
LAB

total 1400 month member all

member Equipment
Use

MICROLAB total 1400 month member except 197
Cory

member Equipment
Use

crestec total 2400 month member resource 197
Cory

member Lab Fee MARVELL
LAB

activity 1 month member resource

member Lab Fee MICROLAB activity 1 month member resource

member Lab Time Marvell Lab total 1200 month member resource

member Lab Time microlab total 1200 month member resource

professor Equipment
Use

MARVELL
LAB

total 1400 month member all

professor Equipment
Use

MICROLAB total 1400 month member all

professor Lab Fee MARVELL
LAB

activity 1 month member resource

professor Lab Fee MICROLAB activity 1 month member resource

professor Lab Time Marvell Lab total 1200 month member resource

professor Lab Time microlab total 1200 month member resource

staff Equipment
Use

MARVELL
LAB

total 0 month member all

staff Equipment
Use

MICROLAB total 0 month member all

staff Lab Fee MARVELL
LAB

activity 0 month member resource

staff Lab Fee MICROLAB activity 0 month member resource

staff Lab Time Marvell Lab total 0 month member resource

staff Lab Time microlab total 0 month member resource

28

Tracing a Session

Session Creation Sequence

1. Click on Mercury Client.

2. Login screen appears. Database user is “defuser2”

3. Member types in login name. Database queries for last project. Shows up in drop-down.

4. Member types password. New database session is created. The validation of the login is

checked with the connect() method (through the jdbc driver). The ip address is checked

after authentication for a valid remote host (kept in hosts table). If the remote host is not

valid, an Exception is thrown but it is caught by the Server and returned to the client. For

the gui client, an error appears as a popup message. If a login corresponds to

OPERATOR, the user is authenticated but database macros are not invoked to log the

user into the lab. This is useful for utility scripts that access the database. If the

remote_location macro is set by the client, the ip address of the originating socket is reset

to the macro's value. This is used when invoking a client from a terminal server as a way

to determine the real originating ip address; the new ip address still must be associated

with a registered host and location. The remote_location macro is registered as a user

macro. It is restored if the user logs out and logs in again from the same client invocation.

5. Member now owns session. Three database groups defined and managed by rmdbs:

admin, member, and staff.

6. If all is well at this point, the server session (DBSession) will create a labtime session and

activity. A row is inserted into the sessions and activity table. The session id is stored on

the Mercury Server. The client will access this ID when inserting an equipment usage

activity (it must be linked to the current session). A stored procedure in the database will

automatically increment the sequence of the session for this activity and link the session

id into the activity table.

Session Table – entries created by the Mercury server after authentication.

id login location project start_time stop_time sequence

17916 merport 1072 1274 Sep … Sep … 1

17917 merc_m01 1072 1275 Sep … Sep … 1

Journal Example

act_type tr_id time object1 object2 object3 object4 debit credit

101 14 Sep 3

2008

14:32:11

1072

(location)

1216

(member)

0

(null)

1275

(project)

0.00

50.40

101 14 Sep 3

2008

14:32:11

1216

(member)

1067

(Facility)

1275

(project)

101

(act_type)

50.40 0.00

29

Tables used in Accounting

Activity

id

se
ss

_
id

se
q
u
en

ce

ac
t_

ty
p
e

m
em

b
er

p
ro

je
ct

re
so

u
rc

e

am
o
u
n
t

p
ri

ce

to
ta

l

en
tr

y
_
ti

m
e

ac
t_

ti
m

e

st
at

u
s

7 17909 2 102 1216 1275 4507 2859.00 0.64 1829.76 entry_time acct_time c

8 17914 1 101 1211 1274 1072 0.00 0.00 0.00 entry_time acct_time c

Columns:

id – auto generated id

sess_id – from sessions.id

sequence – sequence of this session

act_type – from act_types.id

member – from members.id

project – from projects.id

resource – from resources.id

amount – number of units used in this activity

price – price per unit

total – amount * price

entry_time – time when entry is inserted into

 activity table (activity opened).

acct_time – time when activity is closed

 (elapsed time is acct_time – entry_time).

status – o open, c closed, m manlog, R re-create

comment (not shown) – for manual entries.

Sessions

 – entries created by the Mercury server after authentication.

id login location project start_time stop_time sequence

17916 merport 1072 1274 Sep … Sep … 1

17917 merc_m01 1072 1275 Sep … Sep … 1

Columns:

id – system generated id

login – member that logged into the Mercury client

location – location id

project – member project for this session

start_time – session start time

stop_time – session end time

sequence – number of sequences in this session

30

Journal

id act_type tr_id time main object1 object2 object3 object4 debit credit

17918 102 7 acct_time 1 4507 1216 0 1275 0.00 1829.76

17921 102 7 acct_time 1 1216 1067 1275 102 1829.76 0.00

17924 302 12 acct_time 1 4507 1216 0 1275 429.76 0.00

Columns:

id – system generated act_type – references act_types.id

tr_id – references activity.id

time – time activity was closed

main – always 1 (future use for multiple statements?)

object1-4 – see journal rules below.

debit

credit

journal_rules table: used by activity_journal_proc

for journal entries. The trigger column maps to object1 in the journal.

Ledger

ID year month main object1 object2 object3 object4 name debit credit

17932 2009 0 1 1072 1216 0 1275 NULL 51.03 0.00

17934 2009 3 1 1216 1067 1275 101 NULL 0.00 51.03

Columns:

id – system generated id

year – fiscal year

month – month in fiscal year, month 1 = july. month 0 = summary for entire fiscal year.

main –

object1-4 -- defined from journal

name --

debit – summation of debits for year, month

credit – summation of credits for year, month

ledger is updated in journal_insert_proc. Summary of charges when

object1=object1…object4=object4

31

Stored Procedures/Triggers (Rules)

Mercury takes advantage of relational database technology: efficiency, data integrity,

redundancy, and maturity. Much of the code to insure valid entries, user permissions,

calculations, and data entries are implemented by database stored procedures. Keeping this type

of code close to the data helps uncouple “business logic” from the client side – where change is

continual. This school of thought is widely accepted although debates still rage on.

Two examples of stored procedures in Mercury are given. The activity_insert_procedure is

triggered when a member logs in, enables equipment, or does anything that has a charge

associated with their action. The activity_close_proc is triggered when the activity has ended

such as logging out of the lab or disabling equipment.

Activity Insert Proc (activity_insert_proc)

Description:

Test parameters for activity entry based on activity rules, session values, activity status, and

authenticated user.

Usage:

activity_insert_proc (id, sess_id, member, seq, resource, act_type, status, amount)

id, the row id of this activity

sess_id, session id for this group of activities

member, id of the member triggering this activity

seq, sequence number for this session

resource, id of resource that is the object of this activity

act_type, activity type from the act_types table,

status, o-open, c-closed,a-auto-close,m-manlog.

amount, total use (can be minutes,days, qty).

Callers:

activity_insert_rule (after insert on activity). New values are passed to activity_insert_proc.

DBSession.java FormUtilities.java

Return Value:

None

Examples:

labtime insert from dbsession object:

INSERT into ACTIVITY(sess_id,act_type, member,resource)

VALUES(:sess_id,101,:userid,:location)

Note :sess_id,:userid,:location are variable names

inserting an equipment activity

INSERT into activity(act_type,member,sess_id,resource)

VALUES(102,:userid,:sessionid,:resourceid)

Note :userid,:sessionid,:resourceid are variable names

32

Implementation:

1. Test activity type and status. If the activity type is 100, labfee and status not ‘m’

manlog, raise an error (labfees can only be applied with type manlog).

2. Create a unique row id.

3. Find out who has authenticated for the current session (ingres variable current_user).

Determine the members’s row id. Check if member belongs to the staff or admin

group.

4. Test activity status. If type ‘m’, manlog, member must be staff. Otherwise raise an

error.

5. If activity status ‘m’, and member is staff. Close the activity. Otherise

6. determine the sequence, session location, and project from the sessions table.

7. Determine the session area from the location table.

8. Update the sequence number (activity number for this session). Sanity check on

sequence number.

9. Make sure non-staff have a valid project (otherwise raise an error).

10. If the activity type is 101, labtime, charge access fee if needed (labfee) and close

activity.

11. Start testing activity rules.

a. see if resource is locked (ie, for a problem report)

b. see if resource is busy (someone else is using it)

c. see is the user is in the proper location to create activity (except staff)

d. test qualification. Execute procedure qualify_proc. This procedure will raise

an error if a member is not qualified.

12. Update activity entry time to ‘now’, entry_time.

13. Close activity is amount is greater than 0 or activity status = ‘a’, auto_close.

Activity Close Procedure (activity_close_proc)

Description:

This procedure runs when the status field is updated in the activity table. It is triggered from the

activity_close_rule. Nicely closes activity. Sets the activity close time (acct_time) to ‘now’ and

sets amount based on the entry time and the close time (unless the unit is each or use).

Determines the charge class and calls Activity Journal Procedure and

Activity OverCharge Procedure.

Usage:

activity_close_proc(id , old_status , status)

id, activity row id,

old_status, previous activity status prior to update.

status, newly updated status.

Caller:

Activity Close Rule (activity_close_rule) when activity status is updated.

Return Value:

none.

33

Implementation:

1. Test old and new status.

a. if old.status is ‘R’, recreate and new.status is ‘c’, close, return.

b. if old_status is ‘c’ and new status is not ‘R’, recreate, return

c. if new.status is not ‘c’ or ‘R’, raise an error.

2. Get fields from the activity table for this activity.

3. Populate charge class from primary project for the member creating this activity.

(project is normally determined from the session information. If the old.status is ‘m’

and new.status is not ‘R’, set the charge_class based on the project in the session for

this activity (why not populate directly from activity table?).

4. Populate the location and facility variable for this activity’s resource.

5. Find the userid for the currently authenticated user. Determine if user is staff.

6. If status is not ‘R’

a. if activity member is not authenticated user, update activity row with a

comment (‘activity was closed by ..’).

b. if the price is zero in the activity table, find the unit and price for this resource.

7. If status in not ‘R’

a. Determine amount.

b. update total

c. update activity with total and activity close time (acct_time).

8. If new.status is not ‘R’ update the equipment.membername and sessions.stoptime.

9. If new status is ‘R’, update set the status in the activity table to the old.status and set a

comment ‘Activity Recreated’.

10. Execute procedure activity_journal_proc(id,acct_time).

11. Execute procedure activity_oc_proc(id, charge_class, old.status).

34

V. Development and Operational
Technologies (Dev-Ops)

MercuryServer and MercuryClient Components

MercuryServer and MercuryClient are both Java applications that make up two of the three tiers

in the Mercury system (Fig. 1). MercuryServer acts as man-in-the-middle handling

communications between the client and the database. MercuryServer is started up on a server

type computer and runs in the background listening for connections on a secure socket port.

MercuryClients are started from members’ desktops or terminal servers and connect to the server

via network socket protocols. Once the client receives a socket, the Server will create a Session

thread with a unique session ID (independent of a database session). The MercuryClient has a

limited number of rights with the initial connection as an anonymous user. Server side classes

are instantiated and added to a list of objects available for the session. Once the member is

authenticated, a hosts table will be checked to insure the client is in a valid predefined network or

at a specific IP address. An authenticated client is permitted to submit macros to the server that

are predefined SQL statements. The client can also invoke remote procedure calls on session

objects such as the EquipmentManager to send messages to data acquisition and control systems.

All server objects accessible to the client are managed by an Authority Manager. (Figs. 30, 31.)

Fig. 30. Mercury System components.

35

Fig. 31. Simplified Client Server Class Diagram

36

Once a client starts a session a Manager class keeps track of the session time and intervals

between activities. If the client is inactive for a given period of time the Manager will logout the

client session and send mail to the member indicating the that he was logged out automatically.

The server also insures one session per user (gracefully logging out a member from an old

session if a new session is started).

Remote objects are handled with a Request object wrapper class. This class simply holds the

name of the object and parameters. It is packed at the client and unpacked at the server or vise-

versus.

Mercury Client (GUI)

Fig. 32 shows the GUI based Mercury Client used by lab members and staff. The GUI is

modeled based on current look-and-feels of pc-based applications; i.e. drop-down menus,

multiple-panes, and tabs. Actions by the user proceed in a left to right fashion. On the left hand

tree, a task is chosen that will bring up a populated table. An Action menu item is available to

perform actions on the entire table such as printing or searching. If a row on a table is selected

with a mouse click, numerous row based actions are available from enabling equipment to

making a comment.

Fig. 32. Mercury Client.

37

Mercury Console Client

The jSQL is a command line terminal access console to the Mercury server and its back-end

components. On a basic level SQL queries are possible, but more sophisticated use allows

remote object invocation and flexible, expandable, automated testing of the server, database, and

equipment control. Fig. 33 show a jSQL session executing a procedure similar to a Wand (the lab

control program used in the Microlab) disable program. Commands to the jSQL program can be

produced automatically using external scripts to automate system testing or create an input for

another program; ie, the Unix way.

Fig. 33. jSQL Console example during development phase of MercuryServer

(query of properties table).

Mercury Utility Applications

Aside for the jSQL client and Mercury Clent, utility based clients can be created by using

Mercury Classes as a framework to develop applications. The code snipped in Fig. 34. shows one

such application to send reservation reminders to lab members. Other applications in a similar

vein include calendar reminders with maintenance postings and mail alias creation based on

equipment engineers, and qualified members.

38

…..

public class MKReservedMail

 extends AbstractApplication {

 private Vector memvec = new Vector();

 public MKReservedMail() {

 }

 /**

 * populateMemberVector. Insert results from the reserve query into

 * the memvec vector. The vector is a collection of MemRes object.

 */

 public void populateMemberVector() {

 // query the database and populate vector.

 Integer rid;

 String today = "";

 int rows = 0;

 MemRes mr;

 DataSource query1;

 IDatabase database = ADatabase.getDB();

 java.util.Date dt;

 DateFormat plain = DateFormat.getInstance();

 // manipulate date string

 query1 = database.execute(sql_today.eval());

….

Fig. 34. Code snippet of Mercury utility program that makes use of Mercury Classes.

Mercury Server Communications to RUMS

When a member disables equipment that uses specialty gases, a property in the database tells

the MercuryServer to query the Resource Monitoring System (RUMS) for data collected

between enable and disable times and then calculate the volume of gas used, query the Resource

table for the cost/volume, and create an entry in the activity table for the charge. The algorithm

for gas volume calculation uses step interpolation (points are not equally spaced), and trapezoidal

integration. An instance diagram in Fig. 35. steps through the gas acquisition and charge process

in steps (vertical) and object (horizontal) interaction.

39

Fig. 35. Instance Diagram: a member disables a furnace.

40

Mercury Web

Mercury Web is a web application that provides lab members and staff access to the Mercury

system through any web browser. Mercury Web is written in Java. It uses IceFaces JSF

framework for the presentation layer, SQL queries and stored procedures to access and update

data in the Ingres RDBMS, and the BIRT reporting engine which allows creating various reports

in PDF, Word, Excel, and PowerPoint formats. Mercury Web runs under Apache Tomcat and

Apache httpd server; the latter serves as an additional level of security. Mercury Web includes

the following major modules: Accounting (Fig. 36), Inventory, Member Management, Online

Tests (Fig. 37), Facilities (Fig. 38), Reservations, Calendar, and Tasks.

The Accounting module is used for day to day tasks, such as crediting, debiting, and updating

transactions, defining and editing fund sources. It also provides various monthly and yearly

financial statements and reports. Member and staff account setup and administration is also

performed using accounting module. (Fig. 36.)

Fig. 36. Mercury Web main Accounting page.

Online Tests module allows creating, taking, and grading tests online, completely replacing

paper based tests. When creating test one can select from various question types such as multiple

choice, single choice, true/false, essay, mandatory (failing to answer this question automatically

fails entire test) questions. If the test does not have any essay questions it is graded automatically

and members know their result immediately. Otherwise notification email is send to the

designated grader. Once the test is graded member is notified about results by email. (Fig. 37.)

41

Fig. 37. Configuration page of Online Test.

The Facilities module is used to define resources (equipment, utilities, and locations) and create

associations between them. (Fig. 38.)

Fig. 38. Creating new equipment.

42

The Staff page provides quick links to most common task performed by staff. (Fig. 39.)

Fig. 39. Staff page of Mercury Web.

Developer Tools

CVS, http://www.gnu.org/software/cvs

Ingres, http://community.actian.com/wiki/Ingres_DBMS_Home

Ingres Documentation http://docs.actian.com/

nanoxml,http://sourceforge.net/projects/nanoxml

beanshell,http://www.beanshell.org

netbeans, http://www.netbeans.org

BIRT, http://www.eclipse.org/birt

Java, http://www.oracle.com/us/technologies/java/overview/index.html

Apache, http://www.apache.org

Tomcat, http://projects.apache.org/projects/tomcat.html

Sendmail, http://www.sendmail.org

IceFaces, http://www.icesoft.org/java/home.jsf

Make, http://www.gnu.org/software/make/manual/make.html

http://community.actian.com/wiki/Ingres_DBMS_Home
http://www.sendmail.org/
http://www.gnu.org/software/make/manual/make.html

43

System Requirements

These requirements do not address individual user disk storage, office-type applications, and

other run-of-the mill computer requirements.

Hardware-Server: Servers can be distributed and linked through network protocols. A Linux

based set of servers is probably the most economical. The number and power of each server is

dependent on institutional needs. Servers can be setup in multiple roles or as fallback in case of

failure. Specifics for the NanoLab are shown in figures 40 and 41. Servers need to run the

following applications:

Relational Database Management System: Ingres

Web Server: Apache with Secure Socket Layers

Servlet Container and Web Server: Apache Tomcat

Java Runtime Environment and Development Kit to run Mercury Server

Mail Server: SendMail (Linux/Solaris)

Keep in mind that each system will require disk and power supply redundancy and off-site

backup.

Hardware-Client: Windows Terminal Server

(authenticated sessions need to be active as members move from terminal to terminal).

Software-Java Client: Java Run-time Edition

Building, Distribution, and Revision Control

Mercury is a well-engineered system. The team that created it intensely debated, tested features,

technologies, look and feel, and other aspects of the system. Overall, the design is based on the

successful and long-lived BCIMS system (operations of the Microlab) and industry best

practices. As any engineered product, successful maintenance after the hectic release requires

attentive and experienced staff to apply fixes and refinements, and knowledgably advocate for

the system’s health. Building the system should only be taken on by journeymen level

programmers. It goes without saying that the software industry has very short product cycles.

New installations may require fixes just to manage components that are no longer supported,

have security issues, or are soon to be deprecated.

Code developed for the project is kept under revision control. These files are organized in a

directory hierarchy based on their functionality. Since Mercury is composed of a variety of

components, some third party tools used in Mercury are not maintained by the developers. The

tools are maintained and distributed on their project web sites.

Files are kept under source control using CVS (Concurrent Version System). Developers keep a

local copy of these files for editing and testing. They will then check the files back into the

repository. Mercury can be developed and run on Windows, Solaris, and Linux based platforms.

CVS nicely plugs in to the Netbeans and Eclipse (IDE) Integrated Development Environments.

44

Mercury System CVS Repositories

~mercury/

 | ----- Mercury # Mercury Client/Server/Util applications

 | ----- Mercury Web # Web Based applications build with IceFaces 1.6

 | ----- MercuryIce # Web Based applications build with IceFaces 3.1

 | ----- Mercury WebCommon # Common library for Mercury Web and

MercuryIce

 | ----- Mercury WebReports # BIRT reports for Mercury Web

 | ----- MercuryIceReports # BIRT reports for MercuryIce

 | ----- cvs_emitter # CVS emitter for BIRT

 | ----- ErrorValve # Mercury Web specific error valve for Tomcat

 | ----- IceFaces # Custom version of IceFaces 1.6.2

Mercury Repository

Mercury

|----- database # Ingres schema and utilities

|----- src # Mercury Client/Server/Util source

|----- lib # third party class and jar files

Mercury Production Server Directory Structure

server

|----- config # properties files and xml (server only)

|----- lib # class and jar files

|----- bin # startup and utility scrips

|----- store #

Mercury Production Client Directory Structure

client

|----- config # properties files and xml (server only)

|----- lib # class and jar files

|----- bin # startup and utility scrips

|----- resources # icons

The build for distribution/production takes place on Unix Systems using the "ant. The following

targets are available:

45

build.xml

|----- compile # compiles all source files

|----- jar # makes all required (server, client, and util) jar files.

|----- server_dist # creates server distribution

|----- client_dist # creates client distribution

|----- full_dist # creates both client and server distribution

|----- clean # cleans build directories (class and jar)

|----- dist_clean # in addition to executing clean target cleans dist directories.

Target directory where distribution (client or server) is installed is controlled by the following

properties defined in build.xml

 <property name="server_prefix" value="/usr/local/NanoLab/home/mercury" />

 <property name="client_prefix" value="r:\\Mercury" />

Mercury Web Repository:

Mercury Web is a Netbeans project, so it follows Netbeans 5.5 Visual Web Project directory

structure.

MercuryIce Repository:

MercuryIce is an Eclipse project, so it follows Netbeans 5.5 Dynamic Web Project directory

structure.

Mercury WebCommon Repository:

MercuryCommon is a Netbeans project, so it follows Netbeans 5.5 Java Class Library directory

structure.

The Mercury Client on Windows

There is a batch file that can be used to start the mercury client. It is client.bat. This script is

automatically generated during the build process.

Computers used by NanoLab staff, that use Microsoft Windows operating systems are part of the

departments “Active Directory” structure that manages identities and resources on the network.

As such the computers in the NanoLab are part of an organization unit under the EECS domain.

In the EECS domain, a group policy is set so that all client computers mount the R: drive

automatically that is on one of the NanoLab Window's Servers. R: to \\NanoLab2\Mercury. The

Windows Mercury distribution is copied to this location.

file://Nanolab2/Mercury

46

In the NanoLab, members connect to a Windows terminal server, CAPE, with their unique

account and start up their Mercury Clent sessions.

The Windows Mercury distribution is copied to C:\Mercury\ on CAPE2.

NOTE: any host connecting to Mercury requires its IP address registered in the Mercury

database "hosts" table.

The Client or Server on Solaris or Linux

Starting the server on Linux or Solaris is done automatically during the boot process by

/etc/rc3.d/S90mercury. The same script is used to shutdown server on system reboot or

shutdown. Alternatively the script can be run manually with start or stop parameter to

respectively bring up or down the server.

mercury_util: a wrapper script to start various Mercury utility programs.

Unix startup scripts read CLASSPATH and other distribution information from a file called

mercury_env. mercury_env is created from the build process.

Some programs require a user name password to initiate utility program or to use as an

unauthenticated user. These data are kept in a file with the password as an encrypted version of

the system password. The password is later decrypted on MercuryServer.

Mercury requires the use of "Sendmail" Mail Transport Agent. The server has an object available

to the client to send messages and will send a message if a session expires through a time-out.

Executable utilities (compiled from java) are run daily to generate aliases maintanence messages,

and reservation reminders. These programs require Sendmail as well.

(MKCalendar, MKAlias, MKReservedMail)

Properties and Configuration Files used on Mercury

mercury_root/resources/client.conf # Server addresses and ports.

mercury_root/config/server.conf # Final Variables for the server: timeouts, paths, ports, and

classes.

Building and Using the Ingres Relational Database System.

Downloading, Installing, Configuring,

The Ingres database can be downloaded from www.actian.com

47

Important install options.

1) Use ingres date

2) Do not use strict ANSI/ISO compliance.

3) JDBC connection is through the DataAccessServer

Since there are various software components in Mercury, appropriate versions of the jdbc driver

may be required for compatibility.

Creating and Populating the Mercury Database

Building database tables and procedures are dependent on ordering. Bigbang may not work

unless sources are properly ordered to consider dependencies. Bigbang destroys the database,

creates the database, and then adds tables, procedures, and data.

1) cd database/schema; gmake bigbang

2) To create groups

 ./mercury_util groups create

3) To create appropriate grants on tables and stored procedures

cd database/schema/access; gmake access

Note some procedures and tables will have data preloaded. This is lab specific.

Hardware

Fig. 40. NanoLab web servers.

48

print580sd

Brother

HL-5470 DW

rums4

win2k3

Nanolab

580

Gowning

IDF5

hostname

[function]

OS

key

microlab4

Crestec

Server

win2k3

Solaris10

Microsoft

Computer Systems Infrastructure Sutardja Dai Hall

crestec

Crestec Client

winxp

386

Print520-lj600

HP LaserJet

600 M603

520

Print242

Brother Laser Printer

242

UPS

plotter

HPDesignJet T1100PS

Linux

145

mercury2

MercuryWeb

Production

cape2

Win2k8

Terminal Server

mercury3

Development

Fedora

mercurydb

MercuryDB

Production

RedHat

microlab5

Win2k3

Terminal Server

neon

Win2k3

Symantec Server

nanolab2

Win2k8

 File Server

Terminals (9)

Windows 7

3
rd

 Floor

Terminals (8)

Windows 7

5
th
 Floor

Staff Workstations (23)

Windows 7

Staff Workstations (6)

Windows 7

Terminals (6)

Window 7

Rums2

FacilityMonitoring

win2k3

NetVanta 1335 PoE

For Camera System

382A

gcapg-pc2

Pattern generator

PC interface

Tytan

(tytalk server)

HydraServer3

mercury4

Artwork

RedHat

silicon3

NIS master

Production

silicon2

NFS

Production

Fig. 41. NanoLab computer infrastructure in 2014.

49

Independent Modules Connected to Mercury

Equipment Interlock System – Hydra

The equipment control system hardware is based on the Agilent 349080A Multifunction

Switch/Measure unit equipped with multiplexing high-density magnetic latching relays. The

system is configured to send a pulse to an addressed channel which is connected to a Hydra

interlock box. The 349080A has a serial, GPIB, and network interfaces allowing for very flexible

operation. The software interface between Mercury and Hydra is part of the Mercury system

complex. (Fig. 42.)

Fig. 42. Hydra equipment control system.

50

Gases Database
Semiconductor processing in the lab requires 46 different types of gases; 95-100 cylinders of

specialty gases are in use at any one time, and 60 cylinders are spare stock. Because of its

complexity the Gas Database is separate from the general parts inventory database, accessible

by an interactive Objects-by-Forms system by staff. (Fig. 43) The program utilizes Microsoft

Access on an SQL (Structured Query Language) server, to present a web-based interface for the

viewer and interactive access to the inventory manager.

Fig. 43. Gas Database schematic.

Utilities Monitoring System and Database
An important aspect of managing a semiconductor laboratory is tight control of the laboratory

environment and utilities needed to operate processing equipment. RUMS, a Resource

Utilization Monitoring System, was developed as a separate, standalone system, which is closely

connected to Mercury. RUMS provides Mercury with vital environmental data, which Mercury

processes as part of the equipment control program. Simply, Mercury will not allow use of a tool

unless environmental specifications are met. RUMS was the subject of an earlier report by T.

Duncan, T.K. Chen, D. Pestal and T. Merport [3] and will not be detailed here; an example of the

graphical user interface (GUI) is shown in Fig. 13. The schematic outline of the components is

presented in Fig. 44.

RUMS employs a National Instruments data acquisition card in a dedicated PC with Windows

2000 platform, connected by Ethernet to the lab’s main server. Data is transmitted to the RUMS

computer from a variety of locations by either current sensors or contact closure sensors, through

direct wiring to a connector box and the PC. Data management, displays, and alarm emails were

provided by the Rums Server application software, utilizing National Instruments’ LabVIEW.

A huge portion of the development of RUMS was compiling an accurate database of an

equipment and utilities matrix. Utilities dependencies were determined for each piece of

equipment and documented in the RUMS database. Data includes entries for all tools, each

depending on some of the 25 utilities needed to maintain the lab. When a utility failure occurs,

the program sends an immediate alarm to assigned staff and users of the machines affected.

51

Fig. 44. Resource Utilization Monitoring System, RUMS [3].

52

VI. Summary

Mercury is a well-engineered system. The team that created it intensely debated, tested features,

technologies, look and feel, and other aspects of the system. Overall, the design is based on the

successful and long-lived BCIMS system (used in the Microlab) and industry best practices. The

dual system of Mercury Client for using equipment and processes inside the lab and of Mercury

Web for non-critical activities simplifies and streamlines computer operations and provides

additional security. Information is stored in a common database and retrieved by each module as

needed.

The Mercury database was designed with both relational database and object oriented design

patterns. The object patterns provide inheritance such as equipment "is a" resource and

polymorphism where table rows are interchangeable objects that can be passed to procedures,

grouped, or queried as needs arise. Relational systems provide a high degree of organization,

data integrity, standards, and maturity. The goal is a fast, reliable, and flexible system.

The Accounting module is used for day to day tasks as well as to create end of month financial

statements and reports. The Inventory module helps to maintain the inventory of supplies and

parts used in the lab. Member Management provides member and staff account setup and

administration. Online Tests allow creating, taking, and grading tests online, completely

replacing paper based tests. Facilities are used to define resources (equipment, utilities, and

locations) and create associations between them. The Reservation modules allow lab members to

reserve frequently used equipment.

The Mercury system has built in flexibility to enable simultaneous operations of multiple

facilities, each with its own equipment, facility and charge rules. It is capable to produce separate

or merged financial reports. Maintenance of the Mercury system, operations in the Berkeley

NanoLab with over 500 individual yearly accounts and a staff of 26 employees, requires two full

time programmer/analysts. After four years of real time operation the system is running at 99.9%

uptime.

53

VII. References

[1] K. Voros, "History of the UC Berkeley Microlab," Technical Report No. UCB/EECS-2013-

158, University of California, Berkeley, September 2013.

[2] L. J. Massa-Lochridge, "BCIMS: The Berkeley Computer Integrated Manufacturing System,"

ERL Memorandum No. UCB/ERL M95/46, University of California, Berkeley, June 1995.

[3] T. Duncan, T.K. Chen, D. Pestal and T. Merport, "RUMS - Resource Utilization Monitoring

System," ERL Mamorandum No. ECB/ERL 03/43, University of California, Berkeley,

November 2003.

[4] D. C. Mudie, "FAULTS: An Equipment Maintenance and Repair Tracking System Using a

Relational Database," ERL Memorandunm No. UCB/ERL M91/44, University of California,

Berkeley, May 1991.

Acknowledgements

The authors thank Prof. David Hodges for initiating and supporting the project of computer

control in the Microlab, from the time that the lab was built in 1982. The original software,

developed by students, was further enhanced by Microlab staff. As the technology developed,

upgrades were frequently and scrupulously made by the lab’s computer staff who applied new

software tools to keep the system up-to-date. The original system, BCIMS, ran for 28 years and

was the basis for the design of the Mercury system. Prof. Hodges’ interest and mentorship is

hereby gratefully acknowledged.

Several programmers designed and coded Mercury or helped lay its foundation, particularly

David Mudie, Ferenc Varju, Tim Duncan, and Eniko Seen. During the design phase inputs from

Bill Murray and John Shott at Stanford were valuable. Some of their ideas such as multiple

projects and utilities disabling dependent equipment made it into Mercury.

Additionally, input from Microlab staff members provided clarity that was crucial to Mercury's

adaptation. Special thanks are due to Rosemary Spivey and Susan Kellogg-Smith. They provided

detailed information, testing and feedback during the development of the Accounting module.

Bob Hamilton provided input from the facility/maintenance point of view and filtered

suggestions from his staff. Bill Flounders supplied useful suggestions as the project went along

and quickly became an expert user once it was released. He then added modifications, fixes

as needed by the NanoLab. We thank you all.

54

Biographies

Todd Merport has worked in electronics and software beginning in 1982

when he repaired circuits at G. E. Intersil systems. He later worked as an

Engineering Technician for Dalmo Victor (a defense contractor) bread-

boarding and testing high-voltage power supplies and radar simulators. He has

also worked for Agilent Technologies and U.C. Berkeley. At U.C. Berkeley

Todd worked for the Civil and Environmental Engineering Department as a

Senior Development Engineer and at the Microlab/NanoLab managing

computer systems. Currently, Todd develops code for Android based mobile

devices. Todd was awarded the Chancellor’s Special Achievement Award in 1991.

Olek Proskurowski started his studies at the Warsaw University of

Technology. He graduated from the University of Southern California in 1993

with a B.S. degree in Computer Science. He worked as a Software Engineer for

IA Corporation and also at CSC Corporation, Oakland, CA, as a Senior

Software Engineer. He joined the UC Berkeley Microlab in 2006; he is now

the Computer Systems Manager for the Marvell Nanofabrication Laboratory.

Katalin Voros graduated from the Drexel Institute of Technology

(Philadelphia) in 1966 with a B.S. degree in Physics. She worked as a process

engineer for Philco-Ford Microelectronics (bipolar ICs), Solid State Scientific,

Inc. (RF transistors, CMOS circuits), and Microwave Semiconductor

Corporation (high frequency power transistors). She joined RCA's David

Sarnoff Research Center in Princeton, New Jersey in 1980 as an associate

member of technical staff, in high density bulk CMOS (SRAM) development.

In 1984 Ms. Voros received her MS degree in Engineering Science in the

Department of Electrical Engineering and Computer Sciences at the University

of California, Berkeley, where she was retained in the Microfabrication Laboratory as a process

development engineer. A Principal Development Engineer, Ms. Voros was Operations Manager

of the UC Berkeley Microlab, from 1986-2010. She also participated in an inter-departmental

research group studying competitive manufacturing in the semiconductor industry. She retired as

R&D Engineering Manager in June 2013.

Ms. Voros is a member of the Electrochemical Society, and a Senior Life Member of

IEEE. She is a recipient of the University of California, Berkeley, Administrative & Professional

Staff Distinguished Achievement Award (1991), the Berkeley Staff Assembly's Excellence in

Management Award (1995 and 2001) and the Chancellor's Outstanding Staff Award (2011). She

received the Gold Cross of Merit of the Republic of Hungary in 2009. After 30 years with the

University of California, Berkeley, upon retirement Katalin Voros had been conferred the title

R&D Engineering Manager Emerita.

55

Appendix

Mercury XML Documents

Description

The Mercury software system uses XML documents to dynamically generate Java code that once

executed will generate GUI components, fields and database queries. This paradigm allows user

interface elements to be updated without recompiling the source code (a great help for

developers). XML data can be fetched from flat files or stored in a database.

The most common use of XML documents in Mercury is a Client request to the Server to supply

Java code as a script. The Client will execute the script. Here is an an example of how XML

documents are used when the Client logs into Mercury Client and selects an item from the left

hand tree.

When the member is authenticated the document MAIN_WINDOW.xml is fetched from the

Mercury Server. The user interface is generated.

A code fragment from MAIN_WINDOW:

<?xml version="1.0"?>
<script>
...
private String[][] treeObjects = {
 {"member", "Tasks"},
 {"member_admin", "Administration"}
 };
private Object[][] member = {
 { "Resources" } ,{
 new URLInfo("Equipment", "TAB_EQUIPMENT"),
 new URLInfo("Utilities", "TAB_UTILITIES"),
 new URLInfo("Locations", "TAB_LOCATIONS")},
 { "Fees"}, {
 new URLInfo("Chemicals", "CHEMICALS"),
 new URLInfo("Materials", "MATERIALS"),
 new URLInfo("Equipment fees", "EQUIPMENTFEES"),
 new URLInfo("General Lab fees", "FEES"),
 new URLInfo("My Lab Charges", "MYLABCHARGES")},
 { "View"}, {
 new URLInfo("View Qualifications", "QUALIFICATIONS"),
 new URLInfo("Who is suspended", "SUSPENSIONS"),
 new URLInfo("Who is in the lab", "LABWHO")},
 {"NanoLab"},
 { new URLInfo("Visitors", "VISITORS")}
 };
...
</script>

56

The Client Will populate its tree nodes and leafs with the objects described by the strings

“Resources”, ”Fees”, ”View”, “NanoLab”.

From there the member can select an item from the tree. In the screen shot above “Equipment” is

selected. This is handled by the Mercury Client in the MJTreeTable class. The Client passes the

node name to the server and retrieves the associated XML document.

Code segment from MJTreeTable Client Class:

...
 private void myLeftMouseSingleClick(DefaultMutableTreeNode aNode) {
 nodeInfo = aNode.getUserObject();
...
 if (aNode.isLeaf()) {
 URLInfo urlLink = (URLInfo) nodeInfo;
 if (urlLink.xmlFileName != null) {
 // create table view
 try {
 (ClientApplication.getInterpreter()).set("componentTitle",
 nodeInfo.toString());
 } catch (EvalError ee) {
 System.out.println(ee);
 }
 String getDocument = XConnection.getConnection().getXML(
 urlLink.xmlFileName);
 if (getDocument != null) {
 ClientApplication.evaluate(getDocument, this);
….

57

Below is a sample of the XML document, TAB_EQUIPMENT, sent by the server. It has the

information needed to populate the “Equipment” table (to be seen by non-staff only).

<?xml version="1.0"?>
<script>

<table id="equipmentTable_m" name = "Equipment" >
 <sql id="equipmentTable_mSQL">
 SELECT r.name,r.status ,r.descrip + ' (' + r2.name + ')' as DESCRIPTION,e.membername, NULL as

time_enabled, r.id
 FROM resources r, equipment e, resources r2
 WHERE e.id=r.id
 AND e.location = r2.id
 AND r.retired = 'n' AND r.visibility = 'm'
 and e.membername is null
 UNION
 SELECT r.name, r.status, r.descrip + '(' + r2.name + ')' as DESCRIPTION, e.membername,
 INT4(INTERVAL ('minute',DATE ('now') - DATE (entry_time))),r.id
 FROM resources r, equipment e, resources r2, activity a
 WHERE r.id = e.id
 AND r.retired = 'n' AND r.visibility != 's' AND e.location = r2.id AND e.id = a.resource
 AND a.status = 'o'
 ORDER by r.name
 </sql>
</table>
</script>

Once TAB_EQUIPMENT.xml is loaded and executed, the right table on the Client user interface

is populated with equipment items, shown in Fig. 8.

There are two widely accepted open source software tools (along with Java) that Mercury utilizes

to implement this task. The first is a lightweight XML parser, NanoXML; the second is a Java

scripting language BeanShell (which is to be included in the formal Java specification shortly).

To create the dynamically generated Java code, a plain-text XML document is parsed with the

XML parser. The parser notifies the IXMBuilder interface (which is registered with the parser)

of events while parsing the document such as starting or ending of an element or attribute. Once

the document parsing is completed, the results from the builder ─ Java language source code ─

are interpreted by the BeanShell interpreter. The Mercury system implementation of the

IXMLBuilder interface is a class ScriptBuilder.

58

Grammar

Described below is a Document Type Definition (DTD) or language grammar for Mercury’s

XML documents.

<ELEMENT “root” (object+)>

<ELEMENT object >

<!ATTLIST object

id CDATA #IMPLIED

class CDATA #REQUIRED

set-accessor CDATA #IMPLIED

script CDATA # IMPLIED >

<!ELEMENT script CDATA #REQUIRED>

object: one of

object

alias

alias: one of

ScriptBuilder.CLASSES[]

set-accessor:

action text name default title label …

Note on typography:

Constant-width is used for literals.

Bold-italicized is used for identifiers.

The first line of the DTD is implied and not actually used in the XML document.

The ScriptBuilder.CLASSES[] array is specified in the configuration file gui.conf.

If alias is used as object, the class attribute is not required.

set-accessor is the suffix of a set accessor used for the actual Java class to which the element

refers. set is the implied prefix of the method name. The table below shows more detail.

Attribute set-accessor Java
action = ”$value” setAction(value);
text = “value” setText(“value);
name = “value” setName(“value”);
default = “true” setDefault(true);
script = “doLogin” setShell(shell); setScript(“doLogin()”);

If value has a $ prefix or is specified as true or false, quotes will be removed in the

corresponding Java function. If the attribute is script, an additional line of Java, setShell(shell) is

created before the setScript(“value”) method is called. The shell is a Bean Shell interpreter object

instance. A null attribute value will result in an empty parameter in the resulting Java method.

59

Every element’s attribute id value is used as a parameter for the parent elements add method (see

Example 1). The last line of the XML generated script adds the first element parsed to the to a

named object root (see Example 1). The BeanShell interpreter has a handle to this object. If the

attribute id is not specified, an object reference will be generated automatically by the

ScriptBuilder.

This last example shows how a simple XML document is parsed when used to generate a user

interface component. In this case a Send Mail dialog:

XML Java

<?xml version="1.0" ?>
<window title="Send Mail" resizable="true">
<form id="form1" clear="true">
 <object class="XLabel"

label="From"><macro name="from"

id="from" value="mercury@silcion"

writable="false" /></object>
<input label="To"><macro name="to"

mandatory="true" id="to" /></input>
<input label="Subject"><macro

name="subject" id="subject" /></input>
<edit label="Message"><macro

name="message" id="data" /></edit>
<cancel text="Cancel" />
<submit text="Send" default="true"

script="connection.sendMail(to.getValu

e(), subject.getValue(), data.getValue())"

/>
</form>
</window>

import Java.text.*;
import Client.gui.*;
import Client.app.*;
import common.remote.Request;
import Client.connect.ADatabase;
import common.data.DataSource;
import common.data.SQL;

Client.gui.XWindow window_1 = new Client.gui.XWindow();
window_1.setTitle("Send Mail");
window_1.setResizable(true);
Client.gui.Form form1 = new Client.gui.Form();
form1.setClear(true);
XLabel object_2 = new XLabel();
object_2.setLabel("From");
common.data.ObjectMacro from = new

common.data.ObjectMacro();
from.setName("from");
from.setValue("mercury@silcion");
from.setWritable(false);
object_2.add(from);
Client.gui.XTextField input_3 = new Client.gui.XTextField();
input_3.setLabel("To");
common.data.ObjectMacro to = new

common.data.ObjectMacro();
to.setName("to");
to.setMandatory(true);
input_3.add(to);
Client.gui.XTextField input_4 = new Client.gui.XTextField();
input_4.setLabel("Subject");
common.data.ObjectMacro subject = new

common.data.ObjectMacro();
subject.setName("subject");
input_4.add(subject);
Client.gui.XTextArea edit_5 = new Client.gui.XTextArea();
edit_5.setLabel("Message");
common.data.ObjectMacro data = new

60

common.data.ObjectMacro();
data.setName("message");
edit_5.add(data);
Client.gui.Form.CancelButton cancel_6 = new

Client.gui.Form.CancelButton();
cancel_6.setText("Cancel");
Client.gui.Form.SubmitButton submit_7 = new

Client.gui.Form.SubmitButton();
submit_7.setText("Send");
submit_7.setDefault(true);
submit_7.setShell(shell);
submit_7.setScript("connection.sendMail(to.getValue(),

subject.getValue(),data.getValue())");
form1.add(object_2);
form1.add(input_3);
form1.add(input_4);
form1.add(edit_5);
form1.add(cancel_6);
form1.add(submit_7);
window_1.add(form1);
root.add(window_1);

61

Database Summary (Aug. 2014)

Tables

acctperiod

act_rules

act_types

activity

advisor_type

advisors

area_reserve

areas

billaddresses

boolean

buddies

buddies_messages

calendar

charge_classes

charge_rules

college

comments

company

debug

departments

dependencies

equip_devel

equip_move

equipment

equipstats

facilities

flexfields

funds

groups

history

hosts

inven_items

inven_types

inventory

journal

journal_rules

ledger

lineages

locations

mail_conf

mask_request

mask_request_layers

member_groups

member_pict

members

members_status

messages

migrate

new_department

objects

onlineanswers

onlinechoices

onlinequestions

onlinetest_type

onlinetesthosts

onlinetests

overcapfee

parameter_history

parameters

period

periodic

pr_funds

pr_members

prgroup

problems

problemstats

proc_mod

process_monitoring

process_monitoring_da

ta

process_monitoring_eq

uipments

process_monitoring_fi

eld_groups

process_monitoring_fi

elds

process_monitoring_fi

les

process_monitoring_ph

otos

process_monitoring_re

ports

projects

properties

purchfillins

purchforms

purchitems

purchorders

purchtypes

qualification_rules

qualify

qualify_history

questionresults

rates

recognitions

rep_types

report_hist

report_params

reports

res_notes

res_procedures

res_types

research

research_focus

reservation_rules

reserve

resource_groups

resource_manuals

resource_problems

resource_procedures

resources

safety_incidents

sequences

server_session

session_archive

sessions

shipaddresses

shipinstructs

shipmethods

staff

staffrate

suggestions

surcharge_exclusion

surcharge_rules

suspensions

symptoms_mail

synchronize

tasks

taxrate

testresults

training

units

university

us_states

util_oprs

util_types

utilities

vendors

visitors

voice_messages

62

Procedures

acctperiod_insert_proc

act_type_delete_proc

act_type_insert_proc

act_type_update_proc

activity_close_proc

activity_insert_proc

activity_journal_proc

activity_oc_proc

advisor_type_delete_proc

advisors_delete_proc

advisors_insert_proc

ajust_group

area_reserve_insert_proc

areas_insert_proc

billaddresses_insert_proc

calendar_insert_proc

charge_classes_insert_proc

charge_rules_insert_proc

charge_rules_update_proc

check_access_fee

college_delete_proc

comment_templates_insert_proc

comments_insert_proc

company_delete_proc

debug_insert_proc

debug_msg_proc

departments_delete_proc

departments_insert_proc

dependencies_insert_proc

dependent_report_update_proc

equip_devel_insert_proc

equip_downtime_proc

equip_downtime_proc_t

equipment_delete_proc

equipment_insert_proc

equipment_insert_proc_noreturn

equipment_update_proc

equipstats_insert_proc

equipstats_update_proc

facilities_delete_proc

facility_insert_proc

facility_update_proc

filter_by_facility

flexfields_insert_proc

funds_delete_proc

funds_insert_proc

funds_update_proc

get_ml_number

get_parent_object

get_periods

get_price

get_price_all

get_resource_location

groups_delete_proc

groups_insert_proc

history_insert_proc

history_insert_proc2

hosts_insert_proc

inven_insert_proc

inven_item_delete_proc

inven_item_insert_proc

inven_item_update_proc

inven_items_insert_proc

inven_types_insert_proc

journal_insert_proc

journal_rules_insert_proc

ledger_insert_proc

ledger_update_proc

location_insert_proc

location_update_proc

locations_delete_proc

membergroups_insert_proc

membergroups_update_proc

members_insert_proc

members_status_insert_proc

members_update_proc

messages_insert_proc

new_department_delete_proc

new_report

new_report2

next_id

onlineanswers_insert_proc

onlinechoices_delete_proc

onlinechoices_insert_proc

onlinechoices_update_proc

onlinequestions_delete_proc

onlinequestions_insert_proc

onlinequestions_update_proc

onlinetests_delete_proc

onlinetests_insert_proc

onlinetests_update_proc

parameter_history_insert_proc

parameters_insert_proc

period_insert_proc

populate_location

populate_utility

pr_funds_delete_proc

pr_funds_insert_proc

63

pr_members_delete_proc

pr_members_insert_proc

problem_insert_proc

problem_update_proc

problemstats_insert_proc

problemstats_update_proc

proc_mod_delete_proc

proc_mod_insert_proc

proc_mod_update_proc

projects_delete_proc

projects_insert_proc

projects_update_proc

prop_insert_proc

purchfillins_insert_proc

purchforms_insert_proc

purchitems_insert_proc

purchorders_insert_proc

purchtypes_insert_proc

qualification_rules_before_inser

t_proc

qualification_rules_delete_proc

qualification_rules_insert_proc

qualify_extend_by_name_proc

qualify_extend_proc

qualify_extend_rules_proc

qualify_history_insert_proc

qualify_history_insert_proc2

qualify_insert_proc

qualify_proc

questionresults_delete_proc

questionresults_insert_proc

recognitions_insert_proc

recognitions_update_proc

report2_insert_proc

report_update_proc

res_notes_insert_proc

res_notes_update_proc

res_procedures_insert_proc

res_procedures_update_proc

res_rules_before_insert_proc

res_rules_delete_proc

res_type_insert_proc

res_type_update_proc

research_delete_proc

research_focus_delete_proc

research_insert_proc

reservation_rules_insert_proc

reserve_delete_proc

reserve_insert_proc

resource_manuals_update_proc

resource_problems_insert_proc

resource_procedures_update_proc

resource_update_price_proc

resourcegroups_delete_proc

resourcegroups_insert_proc

resourcegroups_update_proc

resources_delete_proc

resources_insert_proc

safety_insert_proc

server_session_insert_proc

server_session_proc

sessions_insert_proc

shipaddresses_insert_proc

shipinstructs_insert_proc

shipmethods_insert_proc

staff_delete_proc

staff_insert_proc

staff_proc

staff_remove_proc

suggestions_insert_proc

suggestions_update_proc

surcharge_apply_proc

surcharge_exclusion_delete_proc

surcharge_rules_delete_proc

surcharge_rules_insert_proc

suspensions_insert_proc

tasks_insert_proc

testresults_delete_proc

testresults_insert_proc

testresults_submit_proc

testresults_update_proc

training_insert_proc

university_delete_proc

us_states_insert_proc

util_oprs_insert_proc

util_types_insert_proc

utilities_delete_proc

utilities_insert_proc

utilities_update_proc

vendors_insert_proc

visitor_insert_proc

64

 Triggers

acctperiod_insert_rule

act_type_delete_rule

act_type_insert_rule

act_type_update_rule

activity_close_rule

activity_insert_rule

activity_insert_rule

advisor_delete_rule

advisor_type_delete_rule

advisors_insert_rule

area_reserve_rule

areas_insert_rule

billaddresses_insert_rule

calendar_insert_rule

charge_classes_insert_rule

charge_rules_insert_rule

charge_rules_update_rule

charge_rules_update_rule

college_delete_rule

comments_insert_rule

company_delete_rule

debug_insert_rule

departments_delete_rule

departments_insert_rule

dependencies_insert_rule

equip_devel_insert_rule

equipment_delete_rule

equipstats_insert_rule

facilities_delete_rule

flexfields_insert_rule

funds_coa_rule

funds_delete_rule

funds_insert_rule

funds_update_rule

groups_delete_rule

groups_insert_rule

groups_update_rule

history_insert_rule

hosts_insert_rule

inven_insert_rule

inven_item_delete_rule

inven_items_insert_rule

inven_types_insert_rule

journal_insert_rule

journal_rules_insert_rule

ledger_insert_rule

locations_delete_rule

membergroups_insert_rule

membergroups_update_rule

members_insert_rule

members_status_insert_rule

members_status_rule

members_status_rule

members_update_rule

messages_insert_rule

new_department_delete_rule

onlinechoices_delete_rule

onlinechoices_insert_rule

onlinechoices_update_rule

onlinechoices_update_rule

onlinechoices_update_rule

onlinequestions_delete_rule

onlinequestions_insert_rule

onlinequestions_update_rule

onlinequestions_update_rule

onlinequestions_update_rule

onlinetests_delete_rule

onlinetests_insert_rule

onlinetests_update_rule

onlinetests_update_rule

onlinetests_update_rule

onlinetests_update_rule

onlinetests_update_rule

parameter_history_insert_rule

parameters_insert_rule

period_insert_rule

pr_funds_delete_rule

pr_funds_insert_rule

pr_members_delete_rule

pr_members_insert_rule

problem_insert_rule

problem_update_rule

problemstats_insert_rule

proc_mod_delete_rule

projects_insert_rule

projects_update_rule

prop_insert_rule

purchfillins_insert_rule

purchforms_insert_rule

purchitems_insert_rule

purchorders_insert_rule

purchtypes_insert_rule

qualification_rules_before_insert_rul

e

qualification_rules_delete_rule

qualification_rules_insert_rule

qualify_delete_rule

qualify_history_insert_rule

qualify_insert_rule

qualify_insert_rule2

qualify_update_rule

qualify_update_rule

questionresults_delete_rule

recognitions_insert_rule

recognitions_update_rule

report2_insert_rule

report2_insert_rule

report_update_rule1

report_update_rule2

res_notes_insert_rule

res_notes_update_rule

res_procedures_insert_rule

res_procedures_update_rule

res_rules_before_insert_rule

res_rules_delete_rule

res_type_insert_rule

res_type_update_rule

research_delete_rule

research_insert_rule

reservation_rules_insert_rule

reserve_delete_rule

reserve_insert_rule

reserve_insert_rule

resource_manuals_rule

resource_price_rule

resource_price_rule

resource_problems_insert_rule

resource_procedures_insert_rule

resource_procedures_update_rule

resource_update_price_rule

resourcegroups_delete_rule

resourcegroups_insert_rule

resourcegroups_update_rule

resources_delete_rule

resources_insert_rule

safety_insert_rule

server_session_insert_rule

sessions_insert_rule

shipaddresses_insert_rule

shipinstructs_insert_rule

shipmethods_insert_rule

suggestions_insert_rule

suggestions_update_rule

surcharge_exclusion_delete_rule

surcharge_rules_delete_rule

surcharge_rules_insert_rule

suspensions_insert_rule

tasks_insert_rule

testresults_delete_rule

training_insert_rule

university_delete_rule

us_states_insert_rule

util_oprs_insert_rule

util_types_insert_rule

utilities_delete_rule

vendors_insert_rule

