
Formal Techniques for the Verification and Optimal
Control of Probabilistic Systems in the Presence of

Modeling Uncertainties

Alberto Puggelli

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-155
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-155.html

August 15, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Formal Techniques for the Verification and Optimal Control of Probabilistic Systems in the
Presence of Modeling Uncertainties

by

Alberto Alessandro Angelo Puggelli

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto L. Sangiovanni-Vincentelli, Chair
Professor Elad Alon

Professor Sanjit A. Seshia
Professor Shmuel Oren

Fall 2014

Formal Techniques for the Verification and Optimal Control of Probabilistic Systems in the
Presence of Modeling Uncertainties

Copyright 2014
by

Alberto Alessandro Angelo Puggelli

1

Abstract

Formal Techniques for the Verification and Optimal Control of Probabilistic Systems in the
Presence of Modeling Uncertainties

by

Alberto Alessandro Angelo Puggelli

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

We present a framework to design and verify the behavior of stochastic systems whose parameters
are not known with certainty but are instead affected by modeling uncertainties, due for example
to modeling errors, non-modeled dynamics or inaccuracies in the probability estimation. Our
framework can be applied to the analysis of intrinsically randomized systems (e.g., random back
off schemes in wireless protocols) and of abstractions of deterministic systems whose dynamics are
interpreted stochastically to simplify their representation (e.g., the forecast of wind availability).

In the first part of the dissertation, we introduce the model of Convex Markov Decision Pro-
cesses (Convex-MDPs) as the modeling framework to represent the behavior of stochastic systems.
Convex-MDPs generalize MDPs by expressing state-transition probabilities not only with fixed
realization frequencies but also with non-linear convex sets of probability distribution functions.
These convex sets represent the uncertainty in the modeling process.

In the second part of the dissertation, we address the problem of formally verifying properties
of the execution behavior of Convex-MDPs. In particular, we aim to verify that the system behaves
correctly under all valid operating conditions and under all possible resolutions of the uncertainty
in the state-transition probabilities. We use Probabilistic Computation Tree Logic (PCTL) as the
formal logic to express system properties. Using results on strong duality for convex programs, we
present a model-checking algorithm for PCTL properties of Convex-MDPs, and prove that it runs
in time polynomial in the size of the model under analysis. The developed algorithm is the first
known polynomial-time algorithm for the verification of PCTL properties of Convex-MDPs. This
result allows us to lower the previously known algorithmic complexity upper bound for Interval-
MDPs from co-NP to P, and it is valid also for the more expressive (convex) uncertainty models
supported by the Convex-MDP formalism.

We apply the proposed framework and model-checking algorithm to the problem of formally
verifying quantitative properties of models of the behavior of human drivers. We first propose
a novel stochastic model of the driver behavior based on Convex Markov chains. The model is
capable of capturing the intrinsic uncertainty in estimating the intricacies of the human behavior
starting from experimentally collected data. We then formally verify properties of the model ex-

2

pressed in PCTL. Results show that our approach can correctly predict quantitative information
about the driver behavior depending on his/her attention state, e.g., whether the driver is attentive
or distracted while driving, and on the environmental conditions, e.g., the presence of an obstacle
on the road.

Finally, in the third part of the dissertation, we analyze the problem of synthesizing optimal
control strategies for Convex-MDPs, aiming to optimize a given system performance, while guar-
anteeing that the system behavior fulfills a specification expressed in PCTL under all resolutions
of the uncertainty in the state-transition probabilities. In particular, we focus on Markov strategies,
i.e., strategies that depend only on the instantaneous execution state and not on the full execution
history. We first prove that adding uncertainty in the representation of the state-transition proba-
bilities does not increase the theoretical complexity of the synthesis problem, which remains in the
class NP-complete as the analogous problem applied to MDPs, i.e., when all transition probabil-
ities are known with certainty. We then interpret the strategy-synthesis problem as a constrained
optimization problem and propose the first sound and complete algorithm to solve it.

We apply the developed strategy-synthesis algorithm to the problem of generating optimal
energy pricing and purchasing strategies for a for-profit energy aggregator whose portfolio of en-
ergy supplies includes renewable sources, e.g., wind. Economic incentives have been proposed to
manage user demand and compensate for the intrinsic uncertainty in the prediction of the supply
generation. Stochastic control techniques are however needed to maximize the economic profit for
the energy aggregator while quantitatively guaranteeing quality-of-service for the users. We use
Convex-MDPs to model the decision-making scenario and train the models with measured data,
to quantitatively capture the uncertainty in the prediction of renewable energy generation. An ex-
perimental comparison shows that the control strategies synthesized using the proposed technique
significantly increase system performance with respect to previous approaches presented in the
literature.

i

If the whole world I once could see
On free soil stand, with the people free

Then to the moment might I say,
Linger awhile... so fair thou art.

Johann Wolfgang von Goethe, Faust

ii

Contents

Contents ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivations . 1
1.2 Dissertation Overview . 2
1.3 Main Contributions . 8
1.4 Dissertation Outline . 9
1.5 Related Publications . 10

2 A Framework to Model Probabilistic Systems 11
2.1 Convex Markov Decision Processes (Convex-MDPs) 11

2.1.1 Preliminary Definitions . 12
2.1.2 The Modeling Formalism . 14

2.1.2.1 Rewards . 17
2.1.2.2 Modeling Assumptions . 17

2.1.3 Models of Uncertainty . 18
2.1.3.1 Interval Model . 19
2.1.3.2 Likelihood Model . 19
2.1.3.3 Ellipsoidal Model . 21
2.1.3.4 Entropy Model . 22
2.1.3.5 Multiple Models of Uncertainty Within the Same Convex-MDP . 23

2.1.4 Resolution of Non-Determinism and Uncertainty 23
2.1.4.1 Adversaries and Strategies . 23
2.1.4.2 Nature . 25

2.2 Probabilistic Computation Tree Logic (PCTL) . 27
2.2.1 PCTL Semantics . 28

2.2.1.1 PCTL Semantics for the Verification Problem 29
2.2.1.2 PCTL Semantics for the Control Problem 30

iii

2.2.2 Expressing System Properties in PCTL 32
2.2.3 Soundness and Completeness . 33

2.2.3.1 Soundness and Completeness for Model-Checking Algorithms . . 33
2.2.3.2 Soundness and Completeness for Strategy-Synthesis Algorithms . 34

3 Related Work 35
3.1 Probabilistic Modeling Frameworks . 35

3.1.1 Modeling Formalisms . 36
3.1.1.1 Discrete-Time Probabilistic Models 36
3.1.1.2 Continuous-Time Probabilistic Models 37
3.1.1.3 Partially-Observable Markov Decision Processes 38

3.1.2 Formal Logics . 39
3.1.2.1 Qualitative Logics . 39
3.1.2.2 Quantitative Logics . 40

3.2 Verification Algorithms . 41
3.2.1 Model Checking . 41

3.2.1.1 Model Checking Qualitative Properties 41
3.2.1.2 Model Checking Quantitative Properties 42

3.2.2 Statistical Model Checking . 44
3.2.3 Approximate Probabilistic Bisimulation 45
3.2.4 Model-Checking Tools . 46

3.3 Control Algorithms . 47
3.3.1 Synthesis of Control Strategies for Unconstrained Reward Maximization . . 48
3.3.2 Synthesis of Control Strategies from Specifications in a Formal Logic . . . 49

4 Probabilistic Model-Checking with Uncertainties 51
4.1 Theoretical Complexity of PCTL model checking for Convex-MDPs 51

4.1.1 Problem Definition and Algorithm Overview 52
4.1.2 Optimal Adversaries and Natures . 53
4.1.3 New Results in Complexity . 55

4.2 Model-Checking Routines . 57
4.2.1 Next Operator . 57
4.2.2 Bounded Until Operator . 58
4.2.3 Unbounded Until Operator . 60

4.2.3.1 Convex Programming Procedure (CP) 62
4.2.3.2 Value Iteration Procedure (VI) 66

4.2.4 Instantaneous Reward Operator . 69
4.2.5 Bounded Cumulative Reward Operator . 70
4.2.6 Cumulative Reward Operator . 71

4.2.6.1 Convex Programming Procedure (CP) 73
4.2.6.2 Value Iteration Procedure (VI) 74

4.2.7 Summary of the Properties of the Model-Checking Routines 75

iv

4.3 Experimental Evaluation of the Model Checker 76
4.3.1 Overview of the Software Implementation 76
4.3.2 Case Studies . 77

4.3.2.1 Distributed Consensus Protocol 78
4.3.2.2 ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local

Addresses . 81
4.3.2.3 The Dining Philosophers Problem 85

5 Formal Verification of the Performance of a Car Driver 90
5.1 Problem Description . 90

5.1.1 Motivating Applications . 91
5.1.2 Problem Description . 92
5.1.3 Contributions . 94

5.2 Related Work . 95
5.2.1 Cognitive Models . 95
5.2.2 Engineering Models . 97

5.3 Proposed Model . 98
5.3.1 Data-Driven Characterization of the Library of Atomic Actions 99
5.3.2 Stochastic Modeling . 102
5.3.3 Model of a Complex Maneuver . 104

5.4 Experimental Results . 105

6 Optimal Control with Uncertainties 110
6.1 Problem Definition . 110
6.2 Strategy Hierarchy for Convex-MDPs . 111
6.3 Execution Unrolling for Finite-Horizon Convex-MDPs 113
6.4 Theoretical Complexity of the Synthesis Problem for MD Strategies 115
6.5 A Synthesis Algorithm for MD Strategies . 118

6.5.1 Optimization Engine . 120
6.5.2 Verification Engine . 123
6.5.3 Algorithm Analysis . 124

7 Optimal Energy Scheduling and Pricing in Smart-Grids with Renewable Sources 127
7.1 Problem Description . 127

7.1.1 Contributions . 130
7.2 Related Work . 132

7.2.1 Stochastic strategy-synthesis Frameworks 133
7.3 Proposed Model . 136
7.4 Experimental Results . 145

8 Conclusions and Future Work 152
8.1 Conclusions . 152

v

8.2 Future Work . 154

Bibliography 159

A Example of the LP Formulation to Verify the Unbounded Until Operator 172

B Proof of Convergence of the Contraction Mapping 173

C Python Implementation of the Verification Algorithm 177

D Generation of the MIQCP Formulation of the Strategy Synthesis Problem in Python 205

vi

List of Figures

2.1 Graphical representation of (a) a probability distribution, (b) a convex set, (c) a convex
function, and (d) a function jointly-convex in x and y. 13

2.2 (a) Example of a convex uncertainty set. (b) The three steps to take a transition in a
Convex-MDP. 15

2.3 Example of a Convex-MDP. 16
2.4 Example of (a) an Interval and (b) an Ellipsoidal uncertainty sets. 20
2.5 Example of an Ellipsoidal-MDP. 21
2.6 Example of an Induced DTMC. 26

4.1 Example of a Convex-MDP for which only history-dependent adversaries are optimal. . 54
4.2 Graphical representation of the primal-dual transformation introduced in Equation 4.17.

The optimal values of the primal ν(x) and dual d(x) problems coincide because strong
duality holds. Moreover, the dual cost function g(λ,x) always overestimates the pri-
mal optimal value ν(x). We dropped the superscript a and subscript s for clarity. . . . 63

4.3 Block-diagram of the interfaces among the different software packages used to imple-
ment the verification algorithm. 76

4.4 Class inheritance diagram for the Python implementation of the model-checking algo-
rithm. 77

4.5 Study of the impact of modeling uncertainties over the performance of a distributed
consensus protocol. 79

4.6 The figure reports the results of the analysis of the scalability of the CP procedure to
verify the Unbounded Until (U) operator. 80

4.7 Study of the impact of modeling uncertainties over the predictions of the performance
of the ZeroConf protocol. 82

4.8 Expected performance of the ZeroConf protocol for different levels of confidence in
the estimation of the model parameters. 83

4.9 Runtime analysis of the proposed model-checking algorithm applied to the ZeroConf
case-study. 84

4.10 Study of the impact of modeling uncertainties on the Dining Philosopher problem. . . . 86
4.11 Study of the impact of modeling uncertainties on the Dining Philosopher problem (bis). 87
4.12 Runtime analysis of the proposed model checker for the Dining Philosopher problem. . 88

vii

5.1 Example of an observed set of trajectories showing the change in lateral and longitu-
dinal directions with respect to the center of the car. 101

5.2 Example of a Convex-MC modeling a simple driving maneuver. 103
5.3 Convex Markov Chain representing a complex maneuver performed by a driver. 105
5.4 The figure shows a comparison among the model-checking results of properties of

the model of the performance of a car driver for the different models of uncertainty
analyzed in this case study. 106

5.5 The figure shows a comparison of the values of maximum probability of reaching an
unsafe state for distracted and attentive driving while sweeping the value of confidence
level. 107

5.6 The figure reports the model-checking results of all the analyzed properties for three
subjects. 108

6.1 Example of a Convex-MDP for which only history-dependent strategies are optimal. . 113
6.2 Example of the transformation of a Convex-MDP model required to encode 3 steps of

the execution history. 114
6.3 Simple Interval-MDP used to illustrate the differences between the model-checking

and the strategy-synthesis problems. 116
6.4 The figure shows a block diagram of the proposed algorithm for the synthesis of MD

strategies. 119

7.1 The figure shows the input data available to the energy aggregator to guide its decision
process (dashed) and the control actions of the aggregator (solid). 138

7.2 The figure shows a zoom-in of the Ellipsoidal-MDP model used to generate optimal
energy pricing and purchasing strategies to be adopted by an energy aggregator, and
its unrolled version along the sequence of decision epochs. 141

7.3 The figure shows a simplified Ellipsoidal-MDP model used to generate optimal energy
pricing and purchasing strategies to be adopted by an energy aggregator. 143

7.4 The figure shows the trend of the expected performances of the system at the different
iterations of the strategy-synthesis algorithm. 146

7.5 The figure shows the trend of the expected economic profit for the energy aggregator
as a function of the confidence level CL in the forecast of wind availability. Each curve
is associated to a different value of wind penetration ηW 148

7.6 The figure shows a comparison via Monte Carlo simulation of the performances of the
energy aggregator when operating following strategies synthesized using the proposed
approach or using two alternative approaches presented in the literature. 150

viii

List of Tables

1.1 Known Upper-Bound on the Complexity of PCTL model checking 5

2.1 PCTL semantics for Convex-MDPs in the verification settings 29
2.2 PCTL semantics for for Convex-MDPs in the control settings 30
2.3 Conversion table between equivalent CTL* and PCTL properties 32

3.1 Algorithmic Complexity of PCTL Model Checking 43

4.1 Summary of the Properties of the Model-Checking Routines 75
4.2 Runtime Comparison . 81

5.1 PCTL Properties Verified on the Driver Models . 106

7.1 Table of symbols for the energy pricing and purchasing case study 137
7.2 Performance Analysis . 147

ix

Acknowledgments

My experience as a Ph.D. student has lasted longer than I would have ever imagined and it has
surprised me in every single moment. More than anything else, it has been incredibly different
from how I pictured it in my mind the first time I stepped inside Cory Hall, the house of the
Electrical Engineering department at UC Berkeley. Being an engineer, probably more deeply in
my heart than what I dare to admit, I have a strong aversion to surprises. But the past five years
have been, by far, the most intense of my life, an experience that I will never forget. Interestingly,
looking back at these years, I now realize that each single event has been instrumental to bring
me where I am now, even though it was hard to see it at that time. And I certainly made it up to
writing this dissertation because of my stubbornness, but also thanks the great people that I met
along these years. I have always liked meeting and knowing new people, and Berkeley has allowed
me to meet some of the most exciting people that I have ever had the pleasure to spend time with.
The next few paragraphs are dedicated to them.

First, I would like to thank my adviser prof. Sangiovanni-Vincentelli for all the inspiration
that his visionary ideas about the future of the design and control of cyber-physical systems have
given to me along these years. He has been the first one to believe in me in Berkeley. He has also
opened up for me a wide variety of opportunities and has enabled all the great collaborations with
researchers both in Berkeley and in other American institution that have made my experience in
Berkeley unique.

Simply to follow the chronological order in joining the research group, I would like to thank
second my co-adviser prof. Elad Alon. I have no difficulty to say that I had never met a sharper
person in my life before and interacting with him has always been a pleasant and rewarding intel-
lectual challenge. I believe that the intensity and the high technical content of the conversations
with him have made me a better engineer, and I am deeply grateful to him for this. And his
guidance has gone beyond the technical aspects of my graduate career.

Although not officially an adviser of mine, I would like to express my deepest gratitude to
prof. Sanjit Seshia. He has been a brilliant guidance for all the most important projects that I
have worked on during my studies and his careful review of all stages of my work has always been
extremely useful to improve the quality of the final results. In fact, I owe to a comment of his
the intuition that brought to the development of the polynomial-time model-checking algorithm
described in the dissertation.

I would also like to thank prof. Seth Sanders for serving in my qualifying exam committee,
for the constant support and enthusiasm shown for my research and for his great class on power
electronics. Moreover, my gratitude goes to prof. Shmuel Oren for serving on my qualifying exam
and dissertation committee and for his precious comments and explanations on the structure of the
energy market. I believe that the technical relevance of my dissertation has substantially increased
thanks to his help.

There are many reasons why UC Berkeley is considered one of the best universities in the
world, but one of them is certainly the exceptional quality of the faculties working here. I would
like to thank all the instructors of the classes that I have taken because each of them has enriched
my technical knowledge. Moreover, I got inspired by the incredible passion that all the instructors

x

have always put in their job. In particular, I would like to thank prof. Jaijeet Roychowdhury, prof.
Andreas Kuehlmann, prof. James Demmel, prof. Haideh Khorramabadi, prof. Simone Gambini,
prof. El Ghaoui and prof. Vladimir Stojanovic.

I had the fortune to work, collaborate or at least interact with many more professors at Berkeley
and in other universities. In particular, my thanks also go to prof. Edward Lee, prof. Luca Carloni,
prof. Borivoje Nikolić and prof. Andrei Vladimirescu. Special thanks to prof. David Parker to
help me integrate the algorithms presented in this dissertation within the PRISM Model Checker.

Also, I would like to thank my managers and co-workers during the two internships at Texas
Instruments. Their guidance and vision have deeply motivated me and have shown me how great
of an environment a big company in the US can be. Thanks in particular to Fernando Mujica, Tim
Fischer, Tom Vrotsos, Yonghui Tang, Chika Soh, Ajith Amerasekera, Arthur Redfern.

Thanks also to the Lion Semiconductor team, Wonyoung Kim, Hanh-Phuc Le, John Crossley,
Tao Tong, Fred Chen, Thomas Li. I am quite excited about the future of our adventure!

One of the most positive experiences during my Ph.D. has been the possibility to interact and
work with incredibly talented and motivated students. Their passion and knowledge have enriched
me professionally. Moreover, and more importantly, they have proved to be extremely nice people
from a personal perspective.

I would like to thank first John Crossley and Hanh-Phuc Le. They have been exceptional co-
workers and friends outside school. And what we have done together so far might just have been
the beginning of a much longer adventure.

My thanks also go to Brian Zimmer. Honestly, he has been the person that I have had the most
pleasure working with during these years for his exceptional punctuality and precision and great
attitude towards solving the many difficulties that we faced.

Many thanks also to Wenchao Li, Dorsa Sadigh and Katie Driggs-Campbell, the co-authors of
the publications reported in this dissertation, for the precious help in developing these technical
results and for being great friends also outside school. It has been a great pleasure working and
celebrating with you!

Thank you to Matt Spencer, for all his wisdom, for all the lessons of American culture and the
fun during the summer in Dallas, and for implicitly reminding me in almost all our conversations
that I still have a long way before being really able to understand spoken English. It has been great
being roommates!

Thanks to Chung-Wei Lin for the help in preparing for the preliminary exam and his excep-
tional attitude towards problem-solving.

Besides studying for classes, working on research, and trying to have some real life outside
school, UC-Berkely requires also to teach two classes to get a doctoral degree. While teaching
has in fact being an extremely positive experience, something that I would really like to do again
in the future, my gratitude now goes to my two co-teaching assistants Bonjern Yang and Filip
Maksimovic for the precious help in fulfilling this requirement. I have learnt a lot from them and I
believe we had quite some fun together. Thanks also to the students of the two classes that I taught,
ultimately it is their passion and work to make the classes successful.

Being part of two research groups and collaborating with many others, I had the pleasure to in-
teract with a lot more students and researchers, who have also become friends in life. My thanks go

xi

to Rachel Nancollas, Liangpeng Guo, John Finn, Antonio Iannopollo, Nikunj Bajaj, Mehdi Maa-
soumy, Daniela De Venuto, Michele Petracca, Baruch Sterin, Nathan Narevsky, Nicholas Sutardja,
Viki Szortyka, Ali Moin, Greg Lacaille, Luke Calderin, Costis Sideris, Kosta Trotskovsky, DJ Seo,
Jaeduk Han, Pengpeng Lu, Seobin Jung, Yue Lu, Lingkai Kong, Yida Duan, Chintan Thakkar,
Kwangmo Jung, Kristel Deems, Ben Keller, Stevo Bailey, Yunsup Lee, Milovan Blagojevic, Pi-
Feng Chiu, Mohammed Mozumdar, Tobias Welp, Rikky Muller, Steven Callender, Mike Lorek,
Fabien Chraim, Sayak Ray, Baruch Sterin, Martin Cochet, all the DOP and BWRC students, in
particular the Ravenites and the BAG team.

Thanks to the ”steal-the-glass” folks, Filip Maksimovic, Claire Lochner, Nathan Narevsky,
David Burnett, Brian Zimmer, Daniel Drew, Brad Wheeler, it was great to collect glasses together
all summer long.

Thanks also to all the co-interns during the two summers spent in Dallas working for Texas
Instruments. Those experiences have been great largely because of the fun of the time spent
together. In particular, thanks to Pradeep Shenoy, Samantha Summerson, Jonathon Spaulding,
Douglas Adams, Georgios Angelopoulos, Phil Nadeau.

Many thanks also to the exceptional staff at the DOP center, at BWRC and in the EECS de-
partment, in particular to Christopher Brooks, Brian Richards, Bira Coelho, Fred Burghardt, James
Dunn, Olivia Nolan, Leslie Nishiyama, Sarah Jordan, Shirley Salanio, Xuan Quach.

I will always be in debt to Eleonora De Re for sharing with me all the challenges and successes
of the first years of our graduate carrier. I wish you the best luck for your life!

Thanks also to Elizabeth Liu for all the happiness that she has brought to my life. I will never
forget what we have done together.

Thanks also to all my friends in Italy. It has been quite difficult to keep in touch due to the
physical distance, but it has been great to know that I could always rely on you to spend awesome
time back at home. Thanks in particular to those who have visited, either in Berkeley or somewhere
else in the US.

Finally, I would like to thank my family, my mother, father and sister, for the unconditional
support in all these years. Being so far away has been a challenge for all of us, but we have shown
how great of a family we are by being close to one another in spirit despite the physical distance.
Thank you for understanding every time I was too busy to talk or planning to do things together,
for coming to visit so often, for all the nice moments spent together, and the fun that you have
brought to my life. All these moments have meant a lot to me and I will be always grateful to you
for them.

1

Chapter 1

Introduction

We begin the chapter by introducing the motivations behind the work described in this dissertation.
We then give an overview of the key analyzed topics and summarize the main achieved contribu-
tions. Finally, we outline the content of the rest of the dissertation. While the discussion in the
following of the chapter is kept informal for ease of exposition, this material should be consid-
ered as a guide to facilitate the understanding of the presented material and to introduce also the
non-expert reader to the analyzed subject.

1.1 Motivations
A system is referred to as stochastic if its dynamics exhibit a probabilistic behavior, i.e., the state
is only known probabilistically, according to some probability density distribution. The study of
stochastic systems has great importance for at least three reasons. First, some systems are indeed
stochastic in nature because of the presence of actual randomization (for example, random back-
off schemes in wireless transmission protocols). Second, they represent a powerful modeling tool
to abstract complex deterministic behaviors (for example, the electricity power demand of a city
neighborhood can be captured by its mean and standard deviation varying during the day, since
capturing the actual deterministic data would be too computationally expensive). Third, interpret-
ing a system as stochastic is strictly more expressive than a deterministic interpretation, since any
deterministic behavior can trivially be represented using a delta probability density distribution.
The opposite is instead not true, i.e., a deterministic framework cannot represent stochastic be-
haviors. In this dissertation, we will analyze formal techniques for the functional verification and
optimal control of stochastic systems.

Formal verification addresses the need of exhaustively validating the correct functionality of
systems that exhibit too many behaviors (due to their complexity) to be fully tested through sim-
ulation. Since the cost of putting in the market a faulty product, and then recall it to fix it, is

CHAPTER 1. INTRODUCTION 2

unbearable for most businesses, formal verification is playing an increasingly bigger role in the
development flow of electronic systems. Formal verification techniques for deterministic systems
have already reached a reasonable level of maturity, although some level of domain-specific ex-
pertise is still often required to abstract the main system behaviors and improve the scalability of
the analysis. For example, Electronic Design Automation (EDA) tools are capable of verifying the
functionality of digital systems containing billions of integrated devices (e.g., the central process-
ing units of computers), shortening design iteration cycles and empowering the digital revolution
era. Although techniques for the verification of the behavior of stochastic systems have not reached
the same maturity of their deterministic counterpart, the research community has recently shown
an increasing interest on this topic, due to its relevance in many practical applications.

Techniques to control the behavior of a given system (e.g., a plant) have been for centuries at
the heart of automation. For example, linear proportional-integral-derivative (PID) controllers have
been employed since the XIX century to regulate the speed of the first mechanical engines. Given
the present trend in system design towards performance maximization (e.g., maximize the compu-
tational capabilities of a digital accelerator) with constrained resource availability (e.g., power), the
simple control of a system might no longer be enough. With optimal control, we refer to techniques
capable of exhaustively searching the space of available system parameters to synthesize control
strategies that achieve the best performance given a set of formally defined constraints on the
available resources. While the field of optimal control for linear and non-linear (but well-behaved)
systems whose behavior can be captured by ordinary differential equations (ODEs) has been ex-
haustively researched, there is currently a strong interest in extending the developed techniques
also to the optimal control of stochastic systems.

Algorithms for functional verification and for the synthesis of optimal control strategies op-
erate on models of the system under analysis, so the guarantees that they generate can only be
as accurate as the models themselves. When analyzing stochastic systems, the activity of model
creation is particularly critical since model parameters, e.g., state-transition probabilities, capture
the dynamics of physical systems or of abstractions of complex deterministic systems, and are of-
ten estimated only through a finite number of experimental observations. As a consequence, the
value of these parameters can be affected by uncertainties, due for example to unmodeled dynam-
ics, measurement errors or approximations of the real system by mathematical models. It would
thus beneficial to employ functional verification and optimal control methods capable of taking the
uncertainties in the estimation of the model parameters into account.

Motivated by these considerations, in this dissertation we will present formal techniques for
the functional verification and optimal control of stochastic systems capable of producing results
that are robust to uncertainties in the estimation of model parameters.

1.2 Dissertation Overview
Central to the human process of understanding the behavior of the environment around us is the
creation of models. If we aim to formally verify and control the performance of stochastic systems,
we further need a “language” to unequivocally specify the required system properties. In fact, in

CHAPTER 1. INTRODUCTION 3

the last two decades, a number of mathematical formalisms to capture the behavior of stochastic
systems and formally define their expected performance have been introduced. In Chapter 2, we
will introduce the analyzed formalisms to model and specify properties of stochastic systems.

Specifically, we will focus on two modeling formalisms (and their extensions), Discrete-Time
Markov Chains (DTMCs) [46] and Markov Decision Processes (MDPs) [26], widely used to for-
mally represent systems that exhibit random or probabilistic behaviors. Properties of deterministic
systems can be assessed using qualitative analysis which returns a Boolean answer, “yes” or “no”,
depending on whether the property is satisfied or not. For example, we might be interested in
determining whether “the hand-shaking protocol will terminate within 3 clock cycles”. Stochastic
systems, on the other hand, need quantitative analysis [98] to answer questions such as “what is
the probability that a request will be eventually served?”. Properties of these systems can be ex-
pressed and analyzed using logics such as Probabilistic Computation Tree Logic (PCTL) [72] —
a probabilistic logic derived from CTL which includes a probabilistic operator P and a reward
operatorR .

Central to the content of this dissertation is the consideration that any formal guarantee on
the correct functionality and controlled performance of the system under analysis can be only as
good as the model of the system on which the verification and the control synthesis routine was
run. In particular, part of the presented work aims to provide formalisms to represent errors or
uncertainties in the modeling process, so that the generated guarantees can account for them.

In particular, one critical step in the modeling of probabilistic systems is the estimation of
state transition probabilities. When modeling randomized protocols (e.g., a randomized consen-
sus protocol), transition probabilities are usually inferred from the ideal behavior of the system.
For example, a probability of 0.5 is assigned to the two possible results of a coin toss. On the
other hand, when modeling a stochastic physical system (e.g., the quality of a wireless channel),
transition probabilities are inferred by performing a measurement campaign and by computing the
occurrence frequencies of each possible (discretized) observation of the physical phenomenon. For
example, if 4 out of 10 packets sent across a wireless channel drop, the probability of successful
transmission will be estimated to be 0.6. While widely adopted for their intrinsic simplicity and
computational tractability, these techniques for the estimation of transition probabilities might fail
to capture some critical behavior of the system under analysis. For randomized protocols, faulty
agents or agents under a security attack might fail to behave as in the ideal scenario. Continuing
with the example of the coin toss, a security attack might translate into an equivalent biased coin
toss, in which, for example, expected probabilities might be 0.4 for “tail” and 0.6 for “head”. In
the estimation of physical processes, on the other hand, the finite precision in taking measurements
and the finite number of measurements that can be taken in a practical scenario limit the accuracy
of the inferred transition probabilities and hence introduce uncertainties in the modeling process.

Formal statistical techniques to capture the uncertainty in the estimation of transition proba-
bilities do exist and they have been widely studied in the statistics and optimal control commu-
nity [125]. Most of these techniques assume that the transition probabilities are not known with
precision but only lie in an uncertainty set of potentially observable probabilities. To keep com-
putation tractable, these uncertainty sets are usually convex, e.g., a closed interval, an ellipsoid or
a likelihood region. Also in the verification community, the concept of transition uncertainty has

CHAPTER 1. INTRODUCTION 4

been proposed. Interval-valued Discrete-Time Markov Chains (IDTMCs) have been introduced to
capture modeling uncertainties [93]. IDTMCs are DTMC models where each transition probabil-
ity is assumed to lie within a compact range. Two semantic interpretations have been proposed for
these models [150]: Uncertain Markov Chains (UMCs) and Interval Markov Decision Processes
(IMDPs). A UMC is interpreted as a family of (possibly uncountably many) DTMCs, where each
member of the family is a DTMC whose transition probabilities lie within the interval range given
in the UMC. In IMDPs, the uncertainty is resolved through non-determinism. Each time a state
is visited, a transition distribution within the interval range is adversarially picked, and a proba-
bilistic step is taken accordingly. Thus, IMDPs allow modeling a non-deterministic choice made
from a set of (possibly uncountably many) choices. For both semantics, the verification problem
amounts to determine whether a desired property holds also under the worst-case resolution of
uncertainty. In this dissertation, we will not consider UMCs and focus on IMDPs. From a mod-
eling standpoint, IMDP semantics represents the worst-case scenario of UMCs, since in IMDPs
a new adversarial state-transition probability distribution is chosen at each step, while in UMCs
the adversarial transition probability distribution is chosen only once. Further the development of
verification algorithms for UMCs has been proven by Chatterjee et al. [38] to be harder than for
IMDPs, so UMCs are less amenable to a scalable analysis.

An interval model of uncertainty may appear to be the most intuitive to analyze. However,
there may be significant advantages in being able to accommodate more expressive (and less pes-
simistic) uncertainty sets in addition to intervals. Bental et al. analyzed a financial portfolio
optimization case-study in which uncertainty arises from estimating the rate of return for each
asset [23]. The authors claim that the interval model of uncertainty is too conservative in this sce-
nario, because it would suggest to invest the whole capital into the asset with the largest worst-case
return. The ellipsoidal model of uncertainty proposed in that paper returns instead a solution that
spreads the capital across multiple assets, a more profitable strategy in the long run. As a further
example, Kreinovich et al. [94] consider the problem of estimating transition probabilities from
measurements. If the probabilities x are normally distributed with mean µ, and covariance matrix
Σ, the ellipsoid defined by (x− µ)TΣ−1(x− µ) ≤ 1 is a valuable approximation that eliminates
“almost” impossible outliers, which would otherwise be included by an interval approximation.
Further, depending on the field, researchers use different models to represent uncertainty. Maxi-
mum likelihood models are often used, for example, to estimate chemical reaction parameters [11].
Entropy models are instead used when the available data points are limited or it is costly to collect
them, e.g., in text segmentation [118] and political vote prediction [63].

In order to increase the expressiveness of the model under verification, we will thus introduce
in Chapter 2 the model of Convex-MDP (CMDP), i.e., an MDP whose state transition probabilities
are only known to lie within convex uncertainty sets.

Once the system under analysis has been appropriately modeled, it is possible to formally ver-
ify its properties and to synthesize optimal control strategies to maximize its performance. Chap-
ter 4 and Chapter 6 will present theoretical and algorithmic results on the problem of developing
techniques for the functional verification and optimal control of stochastic systems, respectively.

In the area of formal verification, we will focus on the popular technique of model check-

CHAPTER 1. INTRODUCTION 5

Table 1.1: Known Upper-Bound on the Complexity of PCTL model checking

Model Complexity Reference
DTMC P [72]
IMDP co-NP [38]
IMDP P [ours]

Convex-MDP P [ours]

ing [41]. The model-checking problem can be formalized as a decision problem. Given a model M
and property φ, the model-checking problem answers whether M satisfies property φ. If M does
not satisfy φ, the model-checking algorithm produces a counterexample. This formal verification
technique is a rigorous mathematical approach in proving the correctness of a system based on state
space exploration, and it has been widely applied both to deterministic [41] and to stochastic [99]
systems.

Before the work presented in this dissertation, the upper-bound on the complexity of model
checking PCTL properties on IMDPs was known to be PSPACE [150], and the result was later
improved to co-NP [38]. These results rely on the construction of an MDP encoding all the behav-
iors of the IMDP under analysis. For each state in the new MDP, the set of available transitions
is mapped to the Basic Feasible Solutions (BFS) of the set of inequalities specifying the transition
probabilities of the IMDP. Since, in the worst case, the number of BFS is exponential in the number
of states in the IMDP, the equivalent MDP can have size exponential in the size of the IMDP. Given
the aforementioned results, no computationally efficient algorithm was known for the verification
of formal properties of systems whose transition probabilities were captured by uncertainty sets.

In this dissertation, we present the first-known polynomial-time algorithm (in both size of the
model and size of the formula) for the verification of IMDP properties expressed using the same
fragment of PCTL considered by the authors of [38, 150] (the operators with a finite time hori-
zon are disallowed). This shows that the problem is in the complexity class P (also known as
PTIME). We then extend the algorithm to full PCTL (allowing also operators with finite time
horizon), and show that its time complexity only increases to pseudo-polynomial in the maximum
integer time horizon. Furthermore, we show that the proposed algorithms can be extended to verify
Convex-MDPs for a wide and relevant class of convex uncertainty sets (e.g., sets expressed with
the ellipsoidal, likelihood and entropy models of uncertainty), while maintaining the same com-
plexity results proven for IMDPs. Moreover, different models of uncertainty can be used within
the same Convex-MDP to represent different sources of uncertainty, thus further increasing the
expressiveness of the proposed approach. We also note that the complexity results presented in
previous work [38, 150] cannot be trivially extended to the verification of Convex-MDPs. This is
because BFS are not defined for generic convex inequalities, so the construction of the MDP en-
coding all the behaviors of the IMDP would not be possible. The complexity results are compared
in Table 1.1.

In the area of optimal control, we tackle the problem of synthesizing strategies to maximize

CHAPTER 1. INTRODUCTION 6

system performances expressed in terms of rewards (equivalently, the same results can be proven
for the dual problem of minimizing a cost). We focus on finite-horizon History-dependent Deter-
ministic (HD) strategies, i.e., for each state an optimal action to take is chosen deterministically,
based on the entire (finite) execution history of the decision process. Although the limitation to
finite-horizon strategies may be restrictive in some applications, control techniques operating on
a finite (receding) horizon are widely spread nowadays, for example in the context of model pre-
dictive control [62]. As it will be explained in further details in Chapter 3, History-dependent
Random (HR) strategies are in general more powerful than deterministic strategies, i.e., they can
produce a higher expected reward. Nevertheless, we focus on deterministic strategies since they
are usually easier to implement in practical scenarios, like the one presented in Chapter 7, because
they guarantee the repeatability of the controller behavior. Using a classical construction [142],
we will then show that the problem of synthesizing finite-horizon history-dependent deterministic
strategies can be reformulated as the synthesis problem for Markov-deterministic (MD) strategies,
i.e., strategies for which an optimal action for each state is taken based only on the current state.

Leveraging results previously described about the formal verification of Convex-MDPs, we
will prove that the problem of computing an MD strategy for a Convex-MDP model, with total ex-
pected reward higher than a given threshold and constrained to specifications expressed in PCTL,
is NP-complete. We will then focus our attention to the optimization version of the problem, i.e.,
maximize the reward of the Convex-MDP while guaranteeing that the model obeys to an arbitrary
PCTL specification, and present the first sound and complete algorithm to solve this problem. The
key advantage of the proposed algorithm is its capability of ranking candidate strategies by the
value of their reward. The first proposed strategy that satisfies the PCTL specification for all reso-
lutions of uncertainty is the solution of the synthesis problem. Although the algorithm worst-case
running time is exponential in the size of the model, this capability may allow considerable speed-
ups in practical scenarios. Finally, we note that, while the presented theoretical and algorithmic
results are valid for all models of uncertainty analyzed in this dissertation, the applicability of the
proposed algorithm is, in fact, limited to the interval and ellipsoidal uncertainty sets. This is due
to the lack of availability, at the time of writing, of off-the-shelf optimization engines capable of
solving the convex problems that get formulated when other models of uncertainty, e.g., likelihood
or entropy, are considered.

Many other modeling formalisms and algorithms for the verification and synthesis of control
strategies for stochastic systems have been presented in the literature. While a comparison of
the newly proposed results with previous work is interesting from a theoretical perspective, the
ultimate metric to evaluate the relevance of the proposed work is represented by its capability of
enabling an effective analysis and understanding of real-world systems and of their properties. In
Chapter 5 and Chapter 7, we will show how we applied the proposed algorithms to two case studies
of high practical relevance.

In Chapter 5, we present a model of the performance of individuals while driving a car and
quantitatively analyze its properties. In particular, our approach enables a personalized assessment
of the driving performance of each single individual. The applications for the analysis of the human
behavior while driving are numerous, ranging from personalized teaching strategies, aiming to

CHAPTER 1. INTRODUCTION 7

address specific weaknesses of a driver, and personalized rates for car insurance, to, in the longer
term, real-time automated assistance to the driver while performing a maneuver. In our approach,
we first develop a stochastic model of the driver performance, capable of predicting the expected
driven trajectories. We use the formalism of Convex Markov Chains (Convex-MCs) to create such
a model. The prediction is based on the future environment surrounding the car, the state of the
driver (i.e., attentive or distracted), and the history of steering maneuvers for a given individual,
which was collected using a car simulator [35]. Further, we express the transition probabilities
of the generated Convex-MC model using uncertainty sets, to capture the inherent ambiguity in
capturing the complexity of the human behavior using a finite set of measured data. Finally, using
PCTL as our formal language, we verify logical properties of the model of the driver. Our main
focus is to quantify the effects of different attention levels on the quality of driving, by analyzing
the driver behaviors while they are either attentive or distracted. For example, we will evaluate
the “maximum probability of exiting the road for a distracted driver while performing a complex
maneuver like a double turn”.

As a second case study, in Chapter 7, we analyze the problem of synthesizing optimal energy
pricing and purchasing strategies for a for-profit energy aggregator whose portfolio of energy sup-
plies includes renewable sources, e.g., wind. It is nowadays commonly accepted that the exploita-
tion of renewable sources of energy will be necessary to sustain the ever increasing energy demand
while avoiding the irremediable pollution of the environment caused by fossil sources [65]. Nev-
ertheless, many difficulties need to be solved before enabling a full takeover of renewables over
fossil supplies. One of these difficulties lies in the unpredictability of the availability of renewable
supplies, which forces power-networks and business entities managing the production and delivery
of energy to still heavily rely on fossil supplies to guarantee energy availability to users at all times.
It is predicted that in the (near) future, smart-grids will employ real-time control systems capable
of reacting to changes in renewables availability and allow a higher exploitation of these green
resources [167]. We contribute to the effort of developing such real-time control strategies. First,
we develop a novel stochastic model to synthesize energy pricing and purchasing strategies to be
adopted by an energy aggregator whose portfolio of energy supplies includes renewable sources.
The model is an Ellipsoidal-MDP, i.e., a Convex-MDP with ellipsoidal uncertainty sets. We use
measured data (from the wind farm at Lake Benton, Minnesota, USA [170]) to train a likelihood
model of the wind generation. We then approximate the likelihood region with an ellipsoidal
model, which is more accurate than the linear ones often used in the literature, while remaining
computationally tractable. Our empirical approach has the promise of more faithfully representing
the probability distribution of the generated energy because it is tailored to the specific wind farm
under analysis, and it is robust to forecast errors. Second, we cast the constrained optimization
problem as the strategy synthesis problem for Ellipsoidal-MDPs, with the goal of maximizing the
total expected reward of the model while constraining its behavior to satisfy a PCTL specification.
In this specific scenario, the optimization aims to maximize the economical profit of the energy
aggregator while guaranteeing the desired quality-of-service for the users.

CHAPTER 1. INTRODUCTION 8

1.3 Main Contributions
In this dissertation we argue that:

It is fundamental to take uncertainties in the estimation of model parameters into account when
creating models of stochastic processes describing the behavior of physical systems or abstractions
of complex deterministic systems, since both model-checking and optimal control results can be
highly sensitive to parameter variations. The theoretical and algorithmic techniques presented in
the rest of the dissertation enable such robust analysis, and are demonstrated with two relevant
case studies.

We divide the contributions presented in this dissertation into three main categories.
Theory. We present new results about the theoretical complexity of model checking and op-

timal control strategy synthesis for Convex-MDPs, i.e., MDPs whose transition probabilities are
only known to lie in convex uncertainty sets.

First, we prove that the problem of model checking a PCTL property of a Convex-MDP is
in the complexity class P (also known as PTIME), if we disallow the operators with a finite time
horizon.

Second, we prove that the problem of determining Markov-Deterministic strategies for Convex-
MDPs with total expected reward larger or equal to a given value and satisfying a PCTL specifica-
tion is NP-complete.

Algorithms. We propose scalable algorithms to model check and to optimally control Convex-
MDPs.

First, we present the first-known polynomial-time algorithm (in both size of the model and size
of the formula) for the verification of PCTL properties in which we disallow the operators with a
finite time horizon. We then extend the algorithm to full PCTL (allowing also operators with a finite
time horizon) and show that the algorithmic time complexity only increases to pseudo-polynomial
in the maximum integer time horizon.

Second, we propose the first sound and complete algorithm to synthesize Markov-Deterministic
strategies for Convex-MDPs. The synthesized strategies fulfill specifications expressed using the
full PCTL syntax and maximize the expected reward of the Convex-MDP (or, dually, they mini-
mize the expected cost).

Applications. Finally, we demonstrate the relevance of our approach by applying the proposed
techniques to two case studies.

First, we model and quantitatively analyze properties of the performance of individuals while
driving a car. The model is a Convex Markov chain where the uncertainty stems from the ambiguity
of capturing the complexity of the human behavior in a finite model. We then analyze quantitative
properties of the model like the “maximum probability of exiting the road for a distracted driver
while performing a complex maneuver like a double turn”.

Second, we analyze the problem of synthesizing optimal energy pricing and purchasing strate-
gies for a for-profit energy aggregator whose portfolio of energy supplies includes renewable
sources. We use a Convex-MDP to model the decision-making scenario and aim to maximize
the economical profit for the energy aggregator, while guaranteeing the desired quality-of-service

CHAPTER 1. INTRODUCTION 9

for the users. The synthesized strategies are robust to the uncertainty in the prediction of the avail-
ability of renewable sources.

1.4 Dissertation Outline
The rest of the dissertation is organized as follows.

In Chapter 2, we introduce the framework used in this dissertation to model the behavior of
probabilistic systems. We first formally introduce the concept of Convex-MDPs, as first introduced
in the work developed jointly with W. Li, A. L. Sangiovanni-Vincentelli and S. A. Seshia [139].
We then describe the analyzed convex models of uncertainty. Finally, we define the Probabilistic
Computation Tree Logic (PCTL), i.e., the logic used in this work to formally express properties of
Convex-MDPs.

In Chapter 3, we survey related work in the literature both in the fields of formal verification
and optimal control for stochastic systems. In this chapter, we focus on the theoretical results
presented in the literature, while we postpone the presentation of the related work about the case
studies to the corresponding chapters. We will first review several formalisms proposed in the
literature to capture the behavior and express properties of stochastic systems. We then report
techniques for the functional verification and control-strategy synthesis of these systems.

In Chapter 4, we present the main theoretical results about the model checking of PCTL
properties for Convex-MDPs, developed jointly with W. Li, A. L. Sangiovanni-Vincentelli and
S. A. Seshia [139]. We first formally define the model-checking problem for Convex-MDPs. We
then prove results about its theoretical complexity and give details about the proposed model-
checking algorithm. Finally, we experimentally evaluate the runtime properties of the model-
checking algorithm on case studies.

In Chapter 5, we present results about the quantitative analysis of the performance of a car
driver. We first formally introduce the analyzed problem and motivate its relevance. We then sur-
vey related work in the field of modeling of the human behavior. Finally, we present the proposed
Convex-MC model of the car driver and report results about the quantitative analysis of the be-
havior of individual drivers performing a complex maneuver. This work has been developed in
collaboration with D. Sadigh, K. Driggs-Campbell, W. Li, V. Shia, R. Bajcsy, A. L. Sangiovanni-
Vincentelli, S. S. Sastry, and S. A. Seshia [147]. In particular, the idea of using a Convex-MC
model to represent the performance of a car driver is due to D. Sadigh and K. Driggs-Campbell.

In Chapter 6, we present the main theoretical results about the synthesis of optimal control
strategies for Convex-MDPs constrained to specifications expressed in PCTL, developed jointly
with A. L. Sangiovanni-Vincentelli and S. A. Seshia [141]. We first formally define the strategy-
synthesis problem. We then prove the result about the theoretical complexity of the problem and
give details about the proposed algorithm for the synthesis of Markov deterministic control strate-
gies.

In Chapter 7, we present the results about the synthesis of control strategies to regulate the
pricing and purchasing of energy for a for-profit energy aggregator whose portfolio of energy
supplies includes renewable sources. We first introduce the analyzed problem and motivate its rel-

CHAPTER 1. INTRODUCTION 10

evance. We then survey related work in the field of energy dispatch and pricing in smart-grids with
renewables. Finally, we present the proposed Ellipsoidal-MDP model of the analyzed decision-
making scenario and report results about the system performance when regulated according to the
synthesized control strategies.

Lastly, in Chapter 8, we draw a few final conclusions about the presented work and discuss
future research directions both from a theoretical and from an application perspective.

1.5 Related Publications
The material presented in this dissertation is an extended version of the results reported in the
following publications.

• [139] A. Puggelli, W. Li, A. L. Sangiovanni-Vincentelli, and S. A. Seshia. Polynomial-
Time Verification of PCTL Properties of MDPs with Convex Uncertainties. In: Computer
Aided Verification (CAV). Ed. by N. Sharygina and H. Veith. Vol. 8044. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pp. 527-542. July 2013.

• [141] A. Puggelli, A. L. Sangiovanni-Vincentelli, and S. A. Seshia. Robust Strategy Synthe-
sis for Probabilistic Systems Applied to Risk-Limiting Renewable-Energy Pricing. In: Pro-
ceedings of the ACM/IEEE International Conference on Embedded Software (EMSOFT).
October 2014.

• [147] D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Bajcsy, A. L. Sangiovanni-
Vincentelli, S. S. Sastry, and S. A. Seshia. “Data-Driven Probabilistic Modeling and Ver-
ification of Human Driver Behavior”. In: Formal Verification and Modeling in Human-
Machine Systems. AAAI Spring Symposium Series. March 2014.

11

Chapter 2

A Framework to Model Probabilistic
Systems

We formally introduce the framework used in this work to model the behavior and express proper-
ties of stochastic systems. The chapter is divided into two main sections. In the first section, after
reporting some basic definitions of concepts from convex theory, we introduce the model of Convex-
MDPs, i.e., Markov Decision Processes whose state-transition probabilities are only known to lie
in convex uncertainty sets. We then provide details about the mathematical representation of the
four convex models of uncertainty commonly used in statistics that we analyzed in this work. We
end the section by describing the procedures to resolve the non-determinism and the uncertainty
in a Convex-MDP. In the second section, we introduce the Probabilistic Computation Tree Logic
(PCTL), i.e., the formal logic that we use to express properties of Convex-MDPs. After describ-
ing the logic syntax, we formally define the problems of model checking and optimal control for
Convex-MDPs to underline the differences in the semantics of PCTL between the verification and
the control problem. We conclude the section by defining the concepts of soundness and complete-
ness of algorithms for the model checking and optimal control of Convex-MDPs.

2.1 Convex Markov Decision Processes (Convex-MDPs)
Markov Decision Processes (MDPs) have been widely used to model systems that exhibit a stochas-
tic behavior, with applications ranging from robot path-planning and sensor-network packet schedul-
ing to supply-chain management and financial-portfolio optimization [142]. We chose this mod-
eling formalism due to its promise of having a large impact in the design and verification of real-
world systems. Our work builds upon these previous results and develops novel techniques for the
formal verification and optimal control of Convex-MDPs, i.e., Markov Decision Processes whose
state transitions are only known to lie in convex uncertainty sets. In order to have the instruments

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 12

to mathematically prove the results described in the rest of the dissertation, this section formally
introduces the model of Convex-MDPs.

2.1.1 Preliminary Definitions
We begin by reporting a few definitions from statistics and convex theory, with the goal of keeping
the presented material as self-contained as possible. In particular, we give the definitions of random
variable, probability distribution, expected value, convex set, convex function, and jointly-convex
function, which will be used in the rest of the dissertation.

Definition 2.1. Random Variable. A random variable is a function X : E → R which associates
to each event e in the sample space E a real number. We distinguish between discrete and con-
tinuous random variables depending on whether the set E contains a finite or countably infinite
(discrete) or uncountably infinite (continuous) number of elements, respectively.

Definition 2.2. Probability Distribution. The Probability Distribution (PD) for a discrete random
variable X defined over a finite set E of cardinality n is a vector µ ∈ Rn satisfying:

0 ≤ µ ≤ 1, and
1Tµ = 1.

where we use 1Tµ =
∑n−1

i=0 µ[i]. The element µi = µ[i] represents the probability of realization
of the event ei. We call Dist(E) the set of distributions over E.

Intuitively, we interpret a PD µ as a point in the positive orthant of Rn, the ith coordinate of
which is the probability of realization of the event ei. Further, we require the sum of the elements
of µ to be equal to 1. A graphical representation of a PD in R2 is shown in Figure 2.1(a).

Definition 2.3. Expected Value. The expected value of a discrete random variable X defined
over a finite set E of cardinality n with probability distribution µ is the sum of the values of
X(ei), ∀ei ∈ E, each weighted by the probability µi of event ei to happen. Formally:

E[X] =
n∑
i=1

µi ·X(ei)

Intuitively, the expected value E[X] measures the value of X that is to be expected when
performing a random experiment on the sample space E.

Definition 2.4. Convex Set. A set C is convex if the line segment between any two points in C lies
entirely in C, i.e., if for any ci, cj ∈ C and any α with 0 ≤ α ≤ 1, the following holds [30]:

αci + (1− α)cj ∈ C

A graphical representation of a convex set in R2 is shown in Figure 2.1(b).

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 13

y

x

µ2

µ1

µ

(a)

c1

c2

c3

c4

(b)

h(x)

xx1 x2

(c)

x

h(x, y)

y

y1

x1

y2

x2

(d)

Figure 2.1: (a) A probability distribution in R2 can be interpreted as a point µ lying on the line
µ1 + µ2 = 1. (b) Example of convex set. Each line segment connecting two points in the set
lies entirely in the set. (c) Example of convex function. Each line segment connecting two points
belonging to the function lies entirely above the function. (d) Example of a function jointly-convex
in x and y, i.e., a convex function in which variables x and y have been explicitly isolated.

Definition 2.5. Convex Function. A function h : RN → R is convex if its domain D is a convex
set, and for all x1,x2 ∈ D and α with 0 ≤ α ≤ 1, the following inequality holds [30]:

h (αx1 + (1− α)x2) ≤ αh(x1) + (1− α)h(x2)

Intuitively, this definition states that function h is convex if and only if any line segment that
connects two points belonging to h lies entirely above the function itself. A graphical representa-

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 14

tion of a convex function is shown in Figure 2.1(c).

Definition 2.6. Jointly-Convex Function. A function h : RN × RM → R is jointly-convex in
x ∈ RN and y ∈ RM if its domain D = Dx × Dy is a convex set, and for all x1,x2 ∈ Dx,
y1,y2 ∈ Dy and α with 0 ≤ α ≤ 1, the following inequality holds:

h (αx1 + (1− α)x2, αy1 + (1− α)y2) ≤ αh(x1,y1) + (1− α)h(x2,y2)

Intuitively, this definition extends the previous result about convex functions to functions in
which two (each possibly vectorial) variables have been explicitly isolated. A graphical represen-
tation of a function jointly convex in variables x and y is shown in Figure 2.1(d).

2.1.2 The Modeling Formalism
We now formally define the Convex-MDP model. The definition extends the one for MDPs by
introducing the concept of uncertainty set of probability distributions. This material builds upon
work by Nilim and El Ghaoui [125], and it represents a novel contribution of this dissertation.

Definition 2.7. Convex-MDP. A Convex-MDP is a tupleMC = (S, S0, A,Ω,F ,A,X , L), where:
S is a finite set of states with cardinality N = |S|;
S0 is the set of initial states;
A is a finite set of actions with cardinality M = |A|;
Ω is a finite set of atomic propositions;
F is a finite set of convex sets of transition PDs;
A : S → 2A is a function that maps each state to the set of actions

available at that state;
X = S × A→ F is a function that associates to state s and action a the corresponding

convex set Fas ∈ F of transition PDs, and
L : S → 2Ω is a labeling function.

The set Fas = Distas(S) represents the uncertainty in defining a transition distribution for
MC given state s and action a. We call fas ∈ Fas an observation of this uncertainty. A graphical
example of a convex uncertainty set of transition distributions is shown in Figure 2.2(a). Also,
fas ∈ RN and we can collect the vectors fas , ∀s ∈ S into an observed transition matrix F a ∈ RN×N .
Abusing terminology, we call Fa the uncertainty set of the transition matrices, and F a ∈ Fa.
Fas is interpreted as the row of Fa corresponding to state s. Finally, fasisj = fasi [j] is the observed
probability of transitioning from si to sj when action a is selected.

In general, the data-type of a ∈ A(si) can be different from the one of b ∈ A(sj), if si 6= sj . In
fact, the data-type of a ∈ A(si) does not play any role in the process of selecting an action. Each
action can just be considered as a label attached to the corresponding uncertainty set of transition
PDs, chosen by the designer such that it is easier to associate a physical meaning to it.

Remark 2.1. Although we consider Convex-MDPs as the underlying modeling formalism, the
proposed techniques can be trivially extended also to Convex Markov Chains (Convex-MCs), which
can be seen as Convex-MDPs with a single action, i.e., M = 1.

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 15

A transition between state s to state s′ in a Convex-MDP occurs in three steps as shown in Fig-
ure 2.2(b). First, an action a ∈ A(s) is chosen. The selection of a is nondeterministic. Secondly,
an observed PD fas ∈ Fas is chosen. The selection of fas models uncertainty in the transition. Lastly,
a successor state s′ is chosen randomly, according to the transition PD fas .

A path π inMC is a finite or infinite sequence of states of the form

s0

f
a0
s0s1−−−→ s1

f
a1
s1s2−−−→ s2

f
a2
s2s3−−−→ · · · ,

where si ∈ S, ai ∈ A(si) and faisi,si+1
> 0, ∀i ≥ 0. We indicate with Πfin (Πinf) the set of all

finite (infinite) paths ofMC . πs[i] (πa[i]) is the ith state (selected action) along the path and, for
finite paths, last(π) is the last state visited in π ∈ Πfin. Πs = {π | π[0] = s} is the set of paths
starting in state s.

A Convex-MDPMC has finite-horizon if the number of decision epochs of the model is finite.
In other words, the set of infinite paths is empty, i.e., Πinf = ∅.MC is infinite-horizon otherwise.

Definition 2.8. Absorbing State. State s ∈ S is called absorbing if for any action a ∈
A(s), the Convex-MDP never leaves s after entering it. Formally, s ∈ S is absorbing if
fass = 1, ∀fas ∈ Fas , ∀a ∈ A(s).

Size of a Convex-MDP. We determine the size R of the Convex-MDPMC as follows. MC
has N states, O(M) actions per state and O(N2) transitions for each action. Let Da

s denote the

fas2

fas1

fas1 + fas2 = 1

(0.35, 0.65)

(0.75, 0.25)

(a)

Non-Determinism
Select a ∈ A(s)

s

Uncertainty
Select fas ∈ Fas

Stochasticity
Select s′ ∈ S

s, a, fas

s, a

s′

(b)

Figure 2.2: (a) Example of a convex uncertainty set Fas in the two-dimensional space R2. Any
point fas of the plane within the thick-line shape and lying on the probability simplex is a valid PD
for the Convex-MDP. (b) The three steps that occur during a transition between state s ∈ S and
s′ ∈ S in a Convex-MDP.

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 16

s0	

rs=0	

{ϑ}	

s1	

rs=1	

{∅}	

	

s3	

rs=0	

{ϑ}	

s2	

rs=1	

{ω}	

[0.6, 0.8]	

[0.2, 0.5]	

0.5	

0.5	

1	

[0.3, 0.4]	

[0.4, 0.6]	

[0.3, 0.7]	

[0.5, 0.8]	

[0.1, 0.5]	

1	

a	

b	

b	

a	

a	

 a	

Figure 2.3: Example of a Convex-MDPMC . In particular, S = {s0 · · · s3}, S0 = {s0},A = {a, b},
Ω = {ω, ϑ}, A : {s1, s2} → {a} ; {s0, s3} → {a, b}, L : {s0, s3} → ϑ ; {s2} → ω.
Uncertainty in transition probabilities is captured in the intervals shown next to each transition.
For example, Fas0 = {fas0 ∈ RN | [0, 0.6, 0.2, 0] ≤ fas0 ≤ [0, 0.8, 0.5, 0],

∑
s′∈S f

a
ss′ = 1}.

The reward structure r associated to MC is as follows: rs : {s0, s3} → 0 ; {s1, s2} → 1,
ra : {(s0, b), (s2, a)} → 0 ; {(s0, a), (s3, a), (s1, a)} → 1 ; {(s3, b)} → 2. The values of ra are
not shown in the figure to avoid clutter.

number of constraints required to express the uncertainty setFas (e.g.,Da
s = O(2N) for the interval

model, to express the upper and lower bounds of the transition probabilities from state s to all states
s′ ∈ S), and let D the maximum number of such constraints across all states and actions ofMC ,
formally:

D = max
s∈S,a∈A

Da
s

The overall sizeR ofMC is thus:

R = O(N2M +NMD)

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 17

2.1.2.1 Rewards

Rewards allow modeling additional quantitative measures of a Convex-MDP, e.g., a profit associ-
ated to reaching a specific state. We associate rewards to states and to actions available in each
state.

Definition 2.9. Reward Structure. A reward structure for a Convex-MDPMC is a tuple r = (rs, ra)
comprising a state reward function rs : S → R≥0 and an action reward function ra : S × A→ R≥0.

We will only consider Convex-MDPs with positive rewards. Nevertheless, we note that it is
possible to apply the algorithms proposed in this dissertation also when interpreting rewards as
quantities to minimize (e.g., costs). An extension to other classes of Convex-MDPs, e.g., with
both positive and negative rewards, is possible in some specific cases, but not considered in this
dissertation. For more details, the interested reader is referred to the work by Puterman [142].

Definition 2.10. Path Reward. Given a (possibly infinite) path π with horizon k ∈ N ∪ +∞, the
path reward for π is:

rewr(π, k) =
k∑
i=0

(rs(πs[i]) + ra(πs[i], πa[i]))

We will only consider Convex-MDPs such that rewr(π, k) exists and it is finite ∀π ∈ Πfin ∪ Πinf .
These include finite and infinite-horizon Convex-MDPs (k ∈ N ∪ {+∞}) with zero-reward ab-
sorbing states. If the Convex-MDP contains states s ∈ S such that the path reward rewr(π, k) = +∞
for some path π ∈ Πs, we will preprocess the Convex-MDP underlying graph to disconnect those
states, and then compute the path reward for the remaining states on the new graph.

Figure 2.3 shows a simple Convex-MDPMC , where intervals have been used to express un-
certainty in the transitions.

2.1.2.2 Modeling Assumptions

In the previous section, we introduced the most general definition of Convex-MDPs. In order to
derive provably-correct algorithms for the verification and control of these models, we need to
partially restrict the set of allowable behaviors that can be expressed using this formalism. In this
section, we list the assumptions under which we developed the algorithms presented in the rest
of the dissertation. In general, only models that satisfy all these assumptions can be verified and
optimally controlled using the algorithms presented in Chapter 4 and Chapter 6.

Assumption 2.1. Rectangular Uncertainty. Fa can be factored as the Cartesian product of its
rows, i.e., its rows are uncorrelated. Formally:

Fa = Fas0 × · · · × F
a
sN−1

, ∀a ∈ A

Nilim and El Ghaoui refer to this assumption as rectangular uncertainty [125].

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 18

The assumption of rectangular uncertainty guarantees that each row of the uncertain transition
matrix Fa can be treated separately from the others. This assumption thus largely simplifies the
problem of selecting the observed state-transition probability distribution fas ∈ Fas , because it
allows the selection of one such distribution at a time without considering the others. Since the
tasks of model checking and optimally controlling properties of Convex-MDPs indeed involve
determining the optimal state-transition probability distributions, as explained in in Chapter 4 and
Chapter 6, this assumption also simplifies the development of algorithms for such problems.

Assumption 2.2. Transition Persistency. If the probability of a transition is zero (non-zero) for at
least one PD in the uncertainty set, then it is zero (non-zero) for all PDs. Formally:

∃fas ∈ Fas : fass′ = (6=)0 =⇒ ∀fas ∈ Fas : fass′ = (6=)0

The assumption guarantees the correctness of the preprocessing verification routines used later in
this work, which rely on the reachability of the states of the Convex-MDP underlying graph.

We note that this assumption is not particularly restrictive and it can instead be interpreted as a
good modeling guideline. Only state transitions that can never happen for physical or implemen-
tation reasons should be assigned probability equal to 0, while state transitions that might happen
should always be assigned some non-zero probability. If the transition is unlikely to happen the
probability should just be appropriately low.

Assumption 2.3. Convex-MDP Semantics. Convex-MDPs model nondeterministic choices made
from a convex set of uncountably many choices. Each time a state is visited, a transition distribu-
tion within the set is adversarially picked, and a probabilistic step is taken accordingly.

The same semantics is defined for IMDPs by Sen et al. [150].

2.1.3 Models of Uncertainty
In this section, we formally introduce the convex models of uncertainty analyzed in this disserta-
tion. We note that, in general, our results are not valid for arbitrary convex uncertainty models. To
explain the condition that a model of uncertainty needs to satisfy in order to be analyzable using the
proposed algorithms, we report the optimization problems that will be developed in details in Sec-
tion 4.2.3 and Section 6.5.2. To model check and optimally control properties of Convex-MDPs,
we will need to solve optimization problems in the form:

Primal: ν∗(x) = max
fas ∈Fas

xT fas ⇒ Dual: d∗(x) = min
λa
s∈Das

g(λas ,x) (2.1)

for which we give both the primal and dual formulation, both parametrized by vector x. In Prob-
lem (2.1) the primal variable is fas ∈ Fas and the dual variable is λas .

We are now ready to state the condition that a model of uncertainty needs to satisfy to be
analyzable using the proposed algorithms:

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 19

Assumption 2.4. Joint-Convexity. Given a Convex-MDP MC , for all convex uncertainty sets
Fas ∈ F , the dual function g(λas ,x) in Problem (2.1) is jointly-convex in both λas and x.

This assumption holds for all the uncertainty models analyzed by Nilim and El Ghaoui [125],
which represent a wide and expressive collection of uncertainty models, commonly used in statis-
tics. As a consequence, we believe that this assumption does not limit the expressivity of the
proposed approach in practical applications.

Among the models of uncertainty presented by Nilim and El Ghaoui [125], we introduce in the
rest of the section the interval, likelihood, ellipsoidal and entropy models.

2.1.3.1 Interval Model

The interval model of uncertainty has been the first one introduced in the verification literature [93].
Intuitively, closed intervals can be used to capture lower and upper bounds on the estimated tran-
sition probabilities. These bounds can be formally collected in uncertainty sets Fas , as follows:

Fas = {fas ∈ RN | 0 ≤ fas ≤ fas ≤ f
a

s ≤ 1,
N−1∑
i=0

fas [i] = 1} (2.2)

where fas , f
a

s ∈ RN are the element-wise lower and upper bounds of fas . Intuitively, the wider the
interval, the higher the uncertainty in estimating the transition probabilities. This model is suitable
when the transition matrix components are individually estimated by statistical data. An example
of Fas for a two-dimensional case (N = 2) is graphically represented in Figure 2.4(a).

We can now define:

Definition 2.11. Interval-MDP. An Interval-MDP is a Convex-MDPMC for which every uncer-
tainty set Fas ∈ F is expressed using Set (2.2).

To avoid confusion in the following, we note here that an Interval-MDP is a special case of
Convex-MDP, as defined in Definition 2.11, while an IMDP is a special case of Convex-MC, as
introduced by Sen et al. [150].

2.1.3.2 Likelihood Model

The likelihood model is appropriate when the transition probabilities between states are deter-
mined experimentally. The resulting empirical frequencies of transition associated to action a ∈ A
are collected in matrix Ha. Uncertainty in the transition matrices can then be described by the
likelihood region [108]:

Fa = {F a ∈ RN×N | F a � 0, F a1 = 1,
∑

s,s′ h
a
ss′ log(fass′) ≥ βa}

where βa < βamax =
∑

s,s′ h
a
ss′ log(hass′) represents the uncertainty level. Since the likelihood

region above does not satisfy Assumption 2.1, it must be approximated by a projection onto each

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 20

fas2

fas1

fas1 + fas2 = 1

fa
s1

= 0.2 f
a

s1
= 0.7

f
a

s2
= 0.8

fa
s2

= 0.1

(0.28, 0.72)

(0.6, 0.4)

(a)

fas2

fas1

(0.32, 0.68)

(0.7, 0.3)

fas1 + fas2 = 1

(b)

Figure 2.4: (a) Example of an interval uncertainty set Fas in the two-dimensional space R2. Any
point fas of the plane within the thick-line rectangle and lying on the probability simplex is a valid
PD for the Interval-MDP. (b) Example of an ellipsoidal uncertainty set Fas in the two-dimensional
space R2. Any point fas of the plane within the thick-line ellipsoid and lying on the probability
simplex is a valid PD for the Ellipsoidal-MDP.

row of the transition matrix. We obtain:

Fas = {fas ∈ RN | fas ≥ 0,
N−1∑
i=0

fas [i] = 1,
∑
s′

hass′ log(fass′) ≥ βas} (2.3)

with:
βas < βas,max =

∑
s′

hass′ log(hass′) (2.4)

Intuitively, the larger (in absolute value) the parameter βas , the higher the uncertainty in estimating
the transition probabilities. Even with this approximation, likelihood regions are less conserva-
tive uncertainty representations than intervals, which arise from a further projection onto the row
components.

We define:

Definition 2.12. Likelihood-MDP. A Likelihood-MDP is a Convex-MDPMC for which every un-
certainty set Fas ∈ F is expressed using Set (2.3).

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 21

s0	

rs=1	

{ϑ}	

s1	

rs=3	

{∅}	

s3	

rs=0	

{abs}	

s2	

rs=1	

{ϑ}	

b	

a 	

rb= 6	

K=0.1	

ra= 9	

K=0.2	

h02
b = 0.25

h01
b = 0.75

h02
a = 0.35

h03
a = 0.65

h23
a =1

h33
a =1

h12
b =1

h12
a = 0.8

h11
a = 0.2

b
 	

a	

a	

a	

Figure 2.5: Example of an Ellipsoidal-MDP ME . In particular, S = {s0 · · · s3},
S0 = {s0}, A = {a, b}, Ω = {ϑ, abs}, A : {s0, s1} → {a, b} ; {s2, s3} → {a},
L : {s0, s2} → ϑ ; {s3} → abs. The parameters of the ellipsoids expressing the uncertainty in
the estimation of transition probabilities are shown next to each transition. Finally, the reward
structure r associated to ME is as follows: rs : {s3} → 0 ; {s0, s2} → 1 ; {s1} → 3,
ra : {(s1, a), (s2, a), (s3, a)} → 0 ; {(s0, a)} → 9 ; {(s0, b)} → 6. Only the non-zero values of
ra are shown in the figure to avoid clutter.

2.1.3.3 Ellipsoidal Model

Ellipsoidal models can be seen as a second-order approximation of the likelihood model [125].
The transition frequencies associated to action a ∈ A are collected in matrix Ha. Uncertainty in
each row of Ha can be described by the likelihood region gas :

gas = {fas ∈ RN|
∑

s′ h
a
ss′ log(fass′)≥βas}

where βas < βas,max =
∑

s′ h
a
ss′ log(hass′) represents the uncertainty level. The second-order ap-

proximation of gas is [125]:

gas ≈

{
fas ∈ RN |

∑
s′

(fass′ − hass′)
2

hass′
≤(Kas)

2

}
(2.5)

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 22

with:
Kas = 2(βas,max − βas) ≥ 0 (2.6)

representing the uncertainty level. Intuitively, the larger the parameter Kas , the higher the uncer-
tainty in estimating the transition probabilities. We then write in conic form the approximation of
gas in Equation (2.5), and intersect it with the probability simplex

∆N = {fas ∈ RN |
N−1∑
i=0

fas [i] = 1,fas ≥ 0}

to obtain the uncertainty set:

Fas = {fas ∈ RN | fas ≥ 0,
N−1∑
i=0

fas [i] = 1, ‖Ea
s (fas − has) ‖2 ≤ 1, Ea

s � 0} (2.7)

with Ea
s = (Kas)

−1 × diag
(
(hass0)

−0.5, · · · , (hassN)−0.5
)
� 0 positive definite. An example of Fas

for a two-dimensional case (N = 2) is graphically represented in Figure 2.4(b).
We can now define:

Definition 2.13. Ellipsoidal-MDP. An Ellipsoidal-MDP is a Convex-MDP where every uncertainty
set Fas ∈ F is expressed using Set (2.7).

In Figure 2.5, we show a simple Ellipsoidal-MDPME as an example of a Convex-MDP with
non-linear convex uncertainty sets.

2.1.3.4 Entropy Model

The entropy model of uncertainty can be viewed as a variation of the likelihood model. In the
likelihood setting we bound the divergence from an empirically extracted distribution, whereas in
the entropy setting we bound the divergence from a reference analytical distribution q [125]. We
will thus consider sets:

Fas =

{
fas ∈ RN | fas ≥ 0,

N−1∑
i=0

fas [i] = 1,
∑
s′

fass′ log

(
fass′

qass′

)
≤ βas

}
(2.8)

where again βas represents the uncertainty level. Intuitively, the larger (in absolute value) the
parameter βas , the higher the uncertainty in estimating the transition probabilities.

We define:

Definition 2.14. Entropy-MDP. An Entropy-MDP is a Convex-MDP where every uncertainty set
Fas ∈ F is expressed using Set (2.8).

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 23

2.1.3.5 Multiple Models of Uncertainty Within the Same Convex-MDP

We conclude this section with an important consideration. While so far we have only defined
Convex-MDPs for which all uncertainty sets Fas ∈ F were expressed with only one uncertainty
set (e.g., Interval-MDPs), the algorithms proposed in this dissertation are in fact valid also for
Convex-MDPs in which the uncertainty sets Fas ∈ F are expressed using different models of un-
certainty from one another. Intuitively, this is due to the fact that the presented techniques rely
on results of convex duality theory, which are not specific to a single model of uncertainty, but
instead apply to a broad class of convex functions, as it will be explained in Chapter 4 and Chap-
ter 6. This feature greatly increases the modeling expressivity, since the designer can use different
models to express uncertainty in the estimation of transition probabilities in different parts of the
system. For example, in the study of the performance of a random back-off scheme in a wireless
protocol, the interval model can be used to express uncertainty in estimating the expected back-
off time, while the likelihood model, more suitable to represent transition probabilities extracted
from experimental data, can be used to express uncertainty in estimating the quality of the wireless
channel.

These considerations are summarized in the following remark.

Remark 2.2. Each set Fas ∈ F within the same Convex-MDP can be expressed with a different
uncertainty model to represent different sources of uncertainty, as long as each uncertainty model
satisfies Assumption 2.4.

2.1.4 Resolution of Non-Determinism and Uncertainty
In order to analyze quantitative properties of the developed models, we need to generate a proba-
bility space over the set of finite and infinite paths Π = Πfin∪Πinf of the Convex-MDPMC [168].
However, a probability space can only be constructed once non-determinism and uncertainty have
been resolved. Intuitively, this means that it is necessary to generate procedures (or functions)
capable of selecting, at each step of the execution of theMC , an action a ∈ A(s) and an observed
transition probability distribution fas ∈ Fas for each state s ∈ S, so that a transition to the following
state s′ ∈ S can be then executed stochastically.

In this section, we formally introduce the terminology used to refer to these procedures, fol-
lowing the notation developed in the verification and optimal control literature.

2.1.4.1 Adversaries and Strategies

Depending on whether we are considering the verification or the optimal control problem, we will
refer to each possible resolution of non-determinism as an adversary or as a strategy, respectively.
Strategies are sometimes also referred to as policies. While there is no difference between adver-
saries and strategies from a mathematical perspective, we maintain the difference in terminology
introduced in the literature to reflect the difference in semantics between the two concepts, as it
will be explained in detail in Section 2.2.1. To ease the reader in differentiating between adver-

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 24

saries and strategies, we will use the symbol α to refer to adversaries and the symbol σ to refer to
strategies.

Both adversaries and strategies are functions that choose an action a ∈ A(s) in each state
s ∈ S of MC . We differentiate among four classes of adversaries/strategies, depending on how
this selection is made.

1. History-dependent (H). An adversary/strategy is history-dependent if the choice of a is
taken based on the sequence of previously visited states.

2. Markov (M). An adversary/strategy is Markov if the choice of a is taken based only on the
last visited state.

3. Randomized (R). An adversary/strategy is randomized if the choice of a is taken stochasti-
cally among the available actions in A(s).

4. Deterministic (D). An adversary/strategy is deterministic if the choice of a is taken deter-
ministically.

We now give the formal definition of History-dependent Randomized (HR) adversaries and
strategies.

Definition 2.15. Adversary. A History-dependent Randomized (HR) adversary for MC is a
function α = Πfin × A → [0, 1], which associates to each finite path π ∈ Πfin and action
a ∈ A of MC a probability for a to be chosen in the last visited state last(π) of π, such that∑
A(last(π)) α(π, a) = 1, and a ∈ A(last(π)) if α(π, a) > 0.

We call Adv the set of all adversaries α ofMC .

Definition 2.16. Strategy. A History-dependent Randomized (HR) strategy forMC is a function
σ = Πfin × A → [0, 1], which associates to each finite path π ∈ Πfin and action a ∈ A ofMC a
probability for a to be chosen in the last visited state last(π) of π, such that

∑
A(last(π)) σ(π, a) = 1,

and a ∈ A(last(π)) if σ(π, a) > 0.

We call Σ the set of all strategies σ ofMC .
The other classes of adversaries and strategies represent a special case of the HR ones, so their

definition can be derived from Definitions 2.15 and 2.16. In particular, an adversary α (strategy
σ) is Markov (M) if it depends only on last(π). Also, α (σ) is Deterministic (D) if α(π, a) = 1
(σ(π, a) = 1) for some a ∈ A(last(π)).

After fixing an adversary α or a strategy σ, all the non-determinism in MC is resolved. In
particular, MC is reduced to an induced Convex Markov Chain (Convex-MC). Since in the rest
of the dissertation we will only consider deterministic adversaries (strategies), we only give the
definition of Induced Convex-MC for deterministic α (σ).

Definition 2.17. Induced Convex-MC. For a Convex-MDPMC = (S, S0, A,Ω,F ,A,X , L) and a
deterministic adversary α (strategy σ), the induced Convex-MC isMα(σ)

C = (Πfin, S0,Ω,F ,X ′, L′)
where:

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 25

• the set of states ofMα(σ)
C is the set Πfin of finite paths ofMC;

• the sets of initial states S0, atomic prepositions Ω and uncertainty sets F remain unchanged;

• For any π ∈ Πfin, function X becomes:

X ′(π, a) =

{
X (last(π), a) if α(π, a) = 1 (σ(π, a) = 1)

∅ otherwise.

• the labeling function L becomes L→ L′(π) = L(last(π)), ∀π ∈ Πfin.

In general, the induced Convex-MCMα(σ)
C has a (countably) infinite number of states. How-

ever, in the case of Markov deterministic (MD) adversaries (strategies), its state space is isomor-
phic to S andMC can be reduced to an |S|-state Convex-MC. In particular, we obtain the induced
Convex-MC Mα(σ)

C = (S, S0,Ω,F ,X ′, L′). Intuitively, the only convex set Fas ∈ F of transi-
tion PDs available at each state s ∈ S is the one corresponding to the action a ∈ A(s) such that
α(s, a) = 1 (σ(s, a) = 1).

2.1.4.2 Nature

We call a nature each possible resolution of uncertainty in the Convex-MDP MC , i.e., a nature
chooses a transition probability distribution fas ∈ Fas for each state and action ofMC .

Analogously to adversaries and strategies, also a nature can be categorized as history-dependent
(H), Markov (M), randomized (R) and deterministic (D). We report the formal definition of an HR
nature in the following.

Definition 2.18. Nature. Given action a ∈ A, a history-dependent randomized (HR) nature is the
function ηa : Πfin × Falast(π) → [0, 1], which associates to each finite path π ∈ Πfin and next-
state transition probability distribution falast(π) ∈ Falast(π) on the states S ofMC a probability for
falast(π) to be chosen in the last visited state last(π) of π, such that

∫
Fa
last(π)

ηa(π, falast(π)) = 1, and

falast(π) ∈ Falast(π) if ηa(π, falast(π)) > 0.

We call Nat the set of all natures ηa ofMC .
We derive the definitions also for the other categories of nature as follows. A nature ηa is

Markov (M) if it depends only on last(π). Further, ηa is deterministic (D) if ηa(π, falast(π)) = 1 for
some falast(π) ∈ Falast(π).

After fixing an adversary α or a strategy σ and a nature ηa, all the non-determinism and uncer-
tainty in the Convex-MDPMC is resolved. In particular, MC is reduced to an induced Discrete
Time Markov Chain (DTMC). In the following, we give the definition of Induced DTMC for de-
terministic α (σ) and deterministic ηa.

Definition 2.19. Induced DTMC. For a Convex-MDP MC = (S, S0, A,Ω,F ,A,X , L), a de-
terministic adversary α (strategy σ) and a deterministic nature ηa, the induced DTMC is
Mα(σ),ηa

C = (Πfin, S0,Ω, Steps, L
′) where:

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 26

• the set of states ofMα(σ),ηa

C is the set Πfin of finite paths ofMC;

• the sets of initial states S0 and atomic prepositions Ω remain unchanged;

• For any π, π′ ∈ Πfin, we define function Steps : Πfin × Πfin → [0, 1] to compute the
probability of transitioning between two states ofMα(σ),ηa

C . Formally:

Steps(π, π′) =


fasi [j] if α(π, a) = 1 (σ(π, a) = 1), ηa(π, fasi) = 1,

last(π) = si, last(π
′) = sj

0 otherwise.

By construction,
∑

π′ Steps(π, π
′) = 1, ∀π ∈ Πfin;

• the labeling function L becomes L→ L′(π) = L(last(π)), ∀π ∈ Πfin.

Figure 2.6 shows (part of) one of the Induced-DTMCs from the Convex-MDP of Figure 2.3.
Again, in the case of Markov deterministic (MD) adversaries (strategies) and natures, the state

space of the induced DTMC is isomorphic to S andMC can be reduced to an |S|-state DTMC.
There exists a one-to-one mapping between the infinite paths of the DTMCMα(σ),ηa

C and the
infinite paths of Convex-MDP MC when operating according to adversary α (strategy σ) and
nature ηa. This means that the DTMC yields, for an initial state s ∈ S0, a probability space
Prob

α(σ),ηa

s over these infinite paths. In the next section, we will show how it is possible to use the
probability space Probα(σ),ηa

s to analyze quantitative properties of the Convex-MDPMC .

s0

s0, s1

0.7

s0, s2
0.3

s0, s1, s10.5

s0, s1, s20.5

s0, s2, s1
1

s0, s1, s1, s10.5

s0, s1, s1, s20.5

s0, s1, s2, s1
1

s0, s2, s1, s10.5

s0, s2, s1, s20.5

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2.6: Example of one of the Induced DTMCs from the Convex-MDP in Figure 2.3. We
assumed a deterministic adversary (strategy) that selects action a in state s0 (α(σ)(s0, a) = 1),
and a deterministic nature that selects the PD fas0 = [0, 0.7, 0.3, 0] in s0, when action a is selected
(ηa(s0, f

a
s0

) = 1).

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 27

2.2 Probabilistic Computation Tree Logic (PCTL)
In order to formally verify and optimally control properties of Convex-MDPs, we need an appro-
priate “language” to unambiguously specify such properties. We use Probabilistic Computation
Tree Logic (PCTL), a probabilistic logic derived from CTL which includes a probabilistic operator
P [72] and a reward operatorR [60]. The syntax of this logic is defined as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | P onp [ψ] | R r
onv[ρ] state formulas

ψ ::= X φ | φ1 U≤k φ2 | φ1 U φ2 path formulas

ρ ::= I=k | C≤k | C φ rewards

where ω ∈ Ω is an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1], v ∈ R≥0, k ∈ N and r is a
reward structure for a Convex-MDP as introduced in Definition 2.9.

Path formulas ψ use the temporal operators Next (X), Bounded Until
(
U≤k) and Unbounded

Until (U). Intuitively, X [φ] is true if φ is satisfied in the next state; φ1 U≤k φ2 is true if φ2 is
satisfied within k time-steps and φ1 holds up until that point; and φ1 U φ2 is true if φ2 is satisfied
at some point in the future and φ1 holds up until then. These formulas are evaluated over paths and
only allowed as parameters to the P onp [ψ] operator.

Reward formulas use the temporal operators Instantaneous Reward
(
I=k

)
, Bounded Cumu-

lative Reward
(
C≤k) and Cumulative Reward (C). Intuitively, the Instantaneous reward opera-

tor computes the reward of the state entered after k steps of execution of the Convex-MDP; the
Bounded Cumulative Reward operator computes the reward accumulated during k steps of execu-
tion; the Cumulative Reward operator computes the reward accumulated before reaching a state
satisfying φ. These formulas are evaluated over reward structures and only allowed as parameters
to theR onv [ρ] operator.

Intuitively, the P and R operators check whether the satisfaction probability of some path
formula (reward) is always above or below the numerical threshold p (v). Further, we will allow
the quantitative versions of the P and R operators, which instead simply compute the maxi-
mum/minimum probability (reward) of the formula itself. To express such operators, we will use
the syntax P min[ψ]/P max[ψ] (R min[ρ]/R max[ρ]).

Remark 2.3. The quantitative version of the P andR operators cannot be nested within a PCTL
formula.

We can now determine the size of a PCTL formula as follows.
Size of a PCTL formula We define the size Q of a PCTL formula as the number of Boolean

connectives and probabilistic and reward operators not containing a temporal operator with a finite
time horizon (Next, Unbounded Until and Cumulative Reward), plus the number of probabilistic
and reward operators containing a temporal operator with a finite time horizon (Bounded Until,
Instantaneous Reward and Bounded Cumulative Reward) times the the maximum time horizon
kmax in the formula. Formally:

Q = #OPNo Bound + #OPBounded × kmax

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 28

2.2.1 PCTL Semantics
The interpretation or semantics of the logic PCTL varies depending on whether we aim to model
check a property of the Convex-MDP or to optimally control the model to maximize its perfor-
mance. Before defining the two corresponding semantics of the logic, we (informally) define the
two problems that will be analyzed in the rest of the dissertation. The formal definitions of these
problems will be given in Chapter 4 and Chapter 6, respectively.

• Formal Verification. In the verification settings, we aim to verify whether the Convex-MDP
MC satisfies a given PCTL property φ under all resolutions of non-determinism and uncer-
tainty. As a consequence, we interpret adversaries and natures as playing together against
the model, with the goal of makingMC fail property φ. The model-checking procedure will
aim to identify the worst-case adversary and nature and verify thatMC still satisfies φ also
under these worst-case conditions.

• Optimal Control. In the control settings, we aim to synthesize a strategy for the Convex-
MDPMC such that the model performance gets optimized, while havingMC satisfy a given
PCTL property φ under all resolutions of uncertainty. From a game-theory perspective, we
interpret strategies and natures as playing a game against one another, where strategies aim
to maximize system performance while natures aim to minimize such performance to have
MC fail property φ.

Intuitively, in both settings, we interpret nature as representing errors and inaccuracies in the mod-
eling process or unexpected (e.g., faulty) behaviors of the system. Consequently, we aim to con-
sider the most adversarial effect of such modeling shortcomings. In the verification settings, we
further assume that the system has already been designed so that its behavior is already determined.
We thus aim to check whether such a system does indeed satisfy a given property also under its
worst-case behavior. In the control settings, on the other hand, the system has not been fully de-
signed yet, and we aim to set its behavior by means of a strategy such that its performance gets
optimized.

In this dissertation, we will not consider the problem of Parameter Synthesis, which is the
dual of the formal verification one, i.e., strategies and natures play together to maximize system
performance. This problem arises when the designer has the capability of setting the value of
some parameter of the system which varies continuously, e.g., the component concentration in a
chemical process, and he or she is interested in selecting the parameter value that maximizes a
given system performance1. While also this problem is of high practical interest, the development
of a scalable procedure to solve it has so far been elusive to the verification community. Further
analysis on the matter is left as a promising future direction.

In the following, we define the semantics of PCTL for the verification and the control settings.
1In the context of the Convex-MDP modeling formalism, these parameters are captured in terms of state-transition

probabilities.

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 29

2.2.1.1 PCTL Semantics for the Verification Problem

In the verification settings, we aim to verify whether the Convex-MDPMC satisfies a given PCTL
property φ under all resolutions of non-determinism and uncertainty. This can be done by generat-
ing the induced DTMCsMα,ηa

C for all adversaries α ∈ Adv and natures ηa ∈ Nat, and checking
whether all such induced DTMCs satisfy the PCTL property φ (universal quantification).

Considering a run ofMC starting from state s ∈ S, we define:

Ps(α, η
a)[ψ]

4
= Probα,η

a

s

(
{π ∈ Πα,ηa

s | π |= ψ}
)

(2.9)

the probability of taking a path π ∈ Πs that satisfies ψ under adversary α and nature ηa. In Equa-
tion (2.9), Probα,ηas is the probability space generated by the induced DTMC Mα,ηa

C . Pmax
s [ψ]

(Pmin
s [ψ]) denote the maximum (minimum) probability Ps(α, ηa)[ψ] across all adversaries α ∈ Adv

and natures ηa ∈ Nat, and the vectors Pmax[ψ] ∈ RN (Pmin[ψ] ∈ RN) collect these probabilities
∀s ∈ S. If α and ηa are Markov deterministic (MD) in state s, we write Ps(a, fas), where a and fas
are the action and resolution of uncertainty that are deterministically chosen at each execution step
by α and ηa.

For a Convex-MDP MC , and a property φ, we will write MC, s |=Adv,Nat φ to denote that,
when starting from a state s ∈ S,MC satisfies φ for any α ∈ Adv and ηa ∈ Nat. We will then
collect all states s ∈ S satisfying φ in the satisfiability set:

Sat(φ) = {s ∈ S | MC, s |=Adv,Nat φ} (2.10)

To compute properties involving the reward operator R , we further define three random vari-

Table 2.1: PCTL semantics for Convex-MDPs in the verification settings

s |= True
s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P /p [ψ] iff Pmax
s ({π ∈ Πs | π |= ψ}) / p

s |= P .p [ψ] iff Pmin
s ({π ∈ Πs | π |= ψ}) . p

π |= X φ iff π[1] |= φ
π |= φ1 U≤k φ2 iff ∃i ≤ k | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1

π |= φ1 U φ2 iff ∃k ≥ 0 | π |= φ1 U≤k φ2

s |= R /v [ρ] iff Emaxs (ρ) / v

s |= R .v [ρ] iff Emins (ρ) . v

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 30

ables over the sets of paths starting from state s ∈ S, i.e., Πs:

I=k : Πs → R≥0 with I=k (π) , rs(π(k)) (2.11)

C≤k : Πs → R≥0 with C≤k (π) , rewr(π, k) (2.12)

C φ : Πs → R≥0 with C (π) ,

{
∞ if π[i] 6∈ Sat(φ), ∀i ∈ N
rewr(π, k

Sat(φ)) otherwise
(2.13)

where rewr(π, k) is the path reward as introduced in Definition 2.10, Sat(φ) is the set of states
satisfying property φ, and kSat(φ) is the minimum integer number of steps in path π to reach a state
in Sat(φ) starting from s, i.e., kSat(φ) = min{k ∈ N | π[k] ∈ Sat(φ)}.

For any ρ ∈ {I=k ,C≤k ,C }, Es(α, ηa)[ρ] denotes the expected value of the random variable
ρ when the execution of the Convex-MDP is controlled by adversary α and nature ηa. Moreover,
Emaxs [ρ] (Emins [ρ]) denotes the maximum (minimum) expected value of ρ, Es(α, ηa)[ρ], across all
adversaries α ∈ Adv and natures ηa ∈ Nat, and the vectors Emax[ρ] ∈ RN (Emin[ρ] ∈ RN) collect
the expected values of the reward ∀s ∈ S.

The semantics of the logic is reported in Table 2.1, where we write |= instead ofMC |=Adv,Nat

for simplicity.

2.2.1.2 PCTL Semantics for the Control Problem

In the control settings, we aim to synthesize a strategy σ under which the Convex-MDP MC
maximizes some given performance while at the same time satisfying a PCTL specification φ under
all resolutions of uncertainty. We can thus map the synthesis task to a constrained optimization
problem, where we aim to optimize the system performance constrained to specification φ.

As a quantitative measure to express the system performance, we will use the total expected
reward, defined as follows.

Table 2.2: PCTL semantics for for Convex-MDPs in the control settings
s |= True
s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P /p [ψ] iff P σ,maxs ({π ∈ Πs | π |= ψ}) / p
s |= P .p [ψ] iff P σ,mins ({π ∈ Πs | π |= ψ}) . p
π |= X φ iff π[1] |= φ

π |= φ1 U≤k φ2 iff ∃i ≤ k | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1

π |= φ1 U φ2 iff ∃k ≥ 0 | π |= φ1 U≤k φ2

s |= R /v [ρ] iff Eσ,maxs (ρ) / v

s |= R .v [ρ] iff Eσ,mins (ρ) . v

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 31

Definition 2.20. Total Expected Reward. Given a Convex-MDP MC , the total expected reward
for state s ∈ S under strategy σ ∈ Σ is defined as:

Wσ
s := min

ηa∈Nat
Eσ,ηa(rewr(π, k))) (2.14)

where we minimize across the action range ηa ∈ Nat of the adversarial nature the expected reward
over all paths π ∈ Πs with horizon k starting from s and visited under strategy σ. In the following,
we will also use the symbol Wσ

S0
to represent the sum of the expected rewards Wσ

s over all the
initial states s ∈ S0.

We will only consider Convex-MDPs such that Wσ
s exists and it is finite ∀s ∈ S,∀σ ∈ Σ. These

include finite and infinite-horizon Convex-MDPs (k ∈ N ∪ {+∞}) with zero-reward absorbing
states. If the Convex-MDP contains states s ∈ S such that the path reward Wσ

s = +∞ for some
path π ∈ Πs under strategy σ, we will preprocess the Convex-MDP underlying graph to disconnect
those states, and then compute the path reward under strategy σ for the remaining states on the new
graph. Further, we note that it is possible to apply the algorithms proposed in this dissertation also
when interpreting rewards as quantities to minimize (e.g., costs). An extension to other classes of
Convex-MDPs, e.g., with both positive and negative rewards, is possible in some specific cases,
but not considered in this dissertation. For more details, the interested reader is referred to the
work by Puterman [142].

Given a strategy σ ∈ Σ, we can then verify whetherMC satisfies specification φ by generating
the induced DTMCs Mσ,ηa

C for all natures ηa ∈ Nat, and checking whether all such induced
DTMCs satisfy the PCTL property φ. Analogously to the verification settings, we define:

Ps(σ, η
a)[ψ]

def
= Probσ,η

a

s

(
{π ∈ Πσ,ηa

s | π |= ψ}
)

(2.15)

the probability of taking a path π ∈ Πs that satisfies ψ under strategy σ and nature ηa. In Equa-
tion (2.15), Probσ,ηas is the probability space generated by the induced DTMCMσ,ηa

C . P σ,max
s [ψ]

(P σ,min
s [ψ]) denote the maximum (minimum) probability Ps(σ, ηa)[ψ] across all natures ηa ∈ Nat,

for a fixed strategy σ, and the vectors Pσ,max[ψ] ∈ RN (Pσ,min[ψ] ∈ RN) collect these probabilities
∀s ∈ S.

For a Convex-MDPMC , strategy σ, and property φ, we will writeMC, σ, s |=Nat φ to denote
that, when starting from a state s ∈ S, and operating under σ, MC satisfies property φ for any
ηa ∈ Nat. We will then collect all states s ∈ S satisfying φ under strategy σ in the satisfiability
set:

Satσ(φ) = {s ∈ S | MC, σ, s |=Nat φ} (2.16)

The three temporal operators I=k ,C≤k ,C appearing in reward properties are defined simi-
larly to the ones introduced in Equation (2.11)-(2.13) for the PCTL semantics for the verification
problem, and will not be redefined. For any ρ ∈ {I=k ,C≤k ,C }, Eσ,maxs [ρ] (Eσ,mins [ρ]) denotes the
maximum (minimum) expected value of the random variable ρ under strategy σ across all natures
ηa ∈ Nat.

The semantics of the logic is reported in Table 2.2, where we write s |= instead ofMC, σ, s |=Nat

for simplicity.

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 32

We now collect all strategies σ ∈ Σ under which all the initial states s ∈ S0 ofMC satisfy the
PCTL specification φ in the set:

Σφ = {σ ∈ Σ | S0 ⊆ Satσ(φ)} (2.17)

The goal of the strategy-synthesis algorithm will be to determine the strategy σ∗ ∈ Σφ that maxi-
mizes Wσ

S0
, i.e., ∀σ ∈ Σφ,Wσ

S0
≤Wσ∗

S0
.

2.2.2 Expressing System Properties in PCTL
The relevance of a formal logic lies in its capability of expressing a wide variety of properties of
the system under analysis, i.e., in its expressivity. In this section, we show how to express system
properties using PCTL. In particular, we consider properties expressed in the qualitative logic
CTL*, a logic widely used in the verification community, and re-write these properties using the
PCTL syntax to give guidelines to the readers in how to translate commonly-used properties into
PCTL. The material in this section is partially taken from work by Hansson and Jonsson [72].

Remark 2.4. The logic PCTL allows to compute the quantitative version of all the properties
described in this section, i.e., the satisfaction probability does not need to be either 0 or 1, but it is
allowed to be any real number p in the interval 0 ≤ p ≤ 1.

We start by defining the shortcut temporal operator Weak Until UW :

P ≥p[φ1 UW φ2] ≡ ¬P >1−p [¬φ2 U ¬(φ1 ∨ φ2)]

P >p[φ1 UW φ2] ≡ ¬P ≥1−p [¬φ2 U ¬(φ1 ∨ φ2)]

Intuitively, the Weak Until operator is a variance of the (strong) Unbounded Until operator (U),
which does not require φ2 to be ever satisfied, as long as φ1 is always satisfied starting from the
initial states s ∈ S0.

We report in Table 2.3 a list of commonly used CTL* properties rewritten using the PCTL
syntax. In other words, the properties in the two columns of the table are equivalent (≡), i.e., they
have the same satisfying states. In Table 2.3, 0 ≤ p ≤ 1 is the satisfaction probability and k ∈ N
is a natural number. Intuitively, the formula A ψ means that all execution paths satisfy property ψ;

Table 2.3: Conversion table between equivalent CTL* and PCTL properties

CTL* PCTL
A ψ P ≥1[ψ]
E ψ P >0[ψ]

AG φ P ≥1[φ UW ¬True]
A F φ P ≥1[True U φ]
EG φ P >0[φ UW ¬True]
E F φ P >0[True U φ]

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 33

E ψ that there exists a path satisfying ψ with non-zero probability; AG φ means that φ is always
satisfied in all states that can be reached with non-zero probability; AF φ means that a state where
φ is satisfied will be eventually reached with probability equal to 1; E G φ means that there is a
non-zero probability for globally satisfied, and; EF φmeans that there exists a state where φ holds,
which can be reached with non-zero probability.

We can now define the two following shortcut operators:

P ≥p[F φ] ≡ P ≥p [True U φ]

P ≥p[G φ] ≡ P ≥p [φ UW ¬True]
P ≥p[G φ] ≡ P <1−p [F ¬φ]

Intuitively, P ≥p[F φ] means that φ eventually holds with a probability of at least p, and P ≥p[Gφ]
means that φ holds continuously with a probability of at least p.

Finally, we define the Lead-to operator , introduced originally by Owicki and Lamport [128]:

P ≥p[φ1 φ2] ≡ AG (φ1 → P ≥pF φ2)

Intuitively, this operator enforces the system to eventually satisfy property φ2 whenever φ1 be-
comes true, with probability not lower than p.

2.2.3 Soundness and Completeness
In the rest of the dissertation, we will compare the runtime of the proposed verification and
strategy-synthesis algorithms to other results reported in the literature. We thus need metrics to
assess the correctness of the different approaches in order to fairly compare their runtime per-
formance. In this dissertation, we use soundness and completeness as necessary conditions to
determine the correctness of an algorithm.

Definition 2.21. An algorithm is correct only if it is sound and complete.

Intuitively, an algorithm is sound if any reported solution is indeed a solution of the analyzed
problem. Further, an algorithm is complete if it always generates a solution for the analyzed
problem if such a solution exists (dually, an algorithm is complete if no solution to the analyzed
problem exists if the algorithm reports so).

We now define soundness and completeness specifically for the verification and optimal control
problems analyzed in this dissertation.

2.2.3.1 Soundness and Completeness for Model-Checking Algorithms

The verification of a PCTL state formula φ can be viewed as a decision problem. The model-
checking algorithm V needs to determine whether a state s ∈ S0 is (or is not) contained in the set
Sat(φ) defined in Equation (2.10). We can thus define the following properties for V :

CHAPTER 2. A FRAMEWORK TO MODEL PROBABILISTIC SYSTEMS 34

Definition 2.22. Soundness of a model-checking algorithm. A model-checking algorithm V for
the verification of PCTL properties of Convex-MDPs is sound if a state s ∈ S inMC does satisfy
PCTL property φ if the algorithm reports so. Formally:

s ∈ SatV (φ)⇒ s ∈ Sat(φ)

where SatV (φ) is the computed satisfiability set, while Sat(φ) is the actual satisfiability set.

Definition 2.23. Completeness of a model-checking algorithm. A model-checking algorithm V
for the verification of PCTL properties of Convex-MDPs is complete if a state s ∈ S inMC does
not satisfy PCTL property φ if the algorithm reports so. Formally:

s 6∈ SatV (φ)⇒ s 6∈ Sat(φ)

where SatV (φ) is the computed satisfiability set, while Sat(φ) is the actual satisfiability set.

2.2.3.2 Soundness and Completeness for Strategy-Synthesis Algorithms

The strategy-synthesis problem from a PCTL specification φ can be viewed as a constrained opti-
mization problem. The strategy-synthesis algorithm SS needs to determine the strategy σ∗ ∈ Σφ

that maximizes Wσ
S0

. We can thus define the following properties for SS:

Definition 2.24. Soundness of a strategy-synthesis algorithm. Given a Convex-MDP MC , a
strategy-synthesis algorithm SS from a PCTL specification φ is sound if the synthesized strategy
σ∗ does maximize Wσ

S0
among all strategies σ ∈ Σφ, if the algorithm reports so. Formally:

σ∗SS = argmax
σ∈Σφ

Wσ
S0
⇒ σ∗ = argmax

σ∈Σφ

Wσ
S0

where σ∗SS is the strategy synthesized by SS, while σ∗ is the actual strategy that maximizes Wσ
S0

.

Definition 2.25. Completeness of a strategy-synthesis algorithm. Given a Convex-MDP MC ,
a strategy-synthesis algorithm SS from a PCTL specification φ is complete if the set of strategy
σ ∈ Σφ is empty, if the algorithm reports so. In other words, algorithm SS is complete if it
correctly reports that the constrained optimization problem is unfeasible. Formally:

Σφ,SS = ∅ ⇒ Σφ = ∅

where Σφ,SS is the set of strategies that satisfy specification φ computed by SS, while Σφ is the
actual set of strategies that satisfy specification φ.

We will show in Chapter 4 and Chapter 6 that algorithms for the verification and optimal control
of probabilistic (reward) formulas φ = P onp [ψ] (φ = R onv [ρ]) in the presence of uncertainties
require to solve convex optimization problems over the set R of the real numbers. Optima of these
problems can be arbitrary real numbers, so, in general, they can be computed only to within a
desired accuracy εd. We consider an algorithm to be sound and complete if the error in determining
the satisfaction probabilities of φ is bounded by such a parameter εd, since the returned result will
still be accurate enough in most practical applications.

35

Chapter 3

Related Work

In this chapter, we give an overview of related work presented in the literature both in the area of
formal verification and of optimal control. We focus only on work related to the theoretical and al-
gorithmic contributions of this dissertation, while we defer the presentation of the work related to
the two analyzed case studies (the verification of the behavior of a human driver and the synthesis
of energy pricing strategies in smart grids) to the corresponding chapters. We follow the structure
of the dissertation in presenting the material of this chapter. We first discuss several modeling
formalisms used to capture the behavior of stochastic systems. Second, we review formal logics
introduced to express properties of these systems. Third, both for the verification and optimal con-
trol problem, we review a number of proposed algorithmic techniques and analyze their theoretical
complexity. This study clarifies the contributions in theoretical complexity described in this disser-
tation. We conclude by presenting several model-checking tools proposed in the literature and by
analyzing their capabilities.

3.1 Probabilistic Modeling Frameworks
In this section, we report modeling formalisms and formal logics introduced in the literature to
model and express properties of stochastic systems. We will compare each of the reported re-
sults with the framework presented in Chapter 2 in terms of expressivity, i.e., how accurately and
extensively they can represent system dynamics and properties.

Remark 3.1. Overall, we will see that there is a clear trade-off between modeling expressivity and
theoretical complexity of the model-checking and control problems. The most expressive models
and formal logics can indeed capture many details of the analyzed systems and express intricate
properties to check the correctness of their behavior. On the other hand, the resulting model-
checking and optimal control problems are often intractable in the most general forms, and only
approximated algorithms or algorithms operating on fragments of the logics exist to solve them.

CHAPTER 3. RELATED WORK 36

3.1.1 Modeling Formalisms
In this section, we review several modeling formalisms that have been used to capture the behavior
of stochastic systems. In particular, we will focus on highlighting the differences in terms of
modeling expressivity with respect to the Convex-MDP formalism introduced in this dissertation,
in order to guide the reader in choosing the most appropriate modeling style for his or her specific
application.

3.1.1.1 Discrete-Time Probabilistic Models

Stochastic models like Discrete-Time Markov Chains (DTMCs) [46] and Markov Decision Pro-
cesses (MDPs) [26] have been widely used in the last decades to formally represent systems that
exhibit random or probabilistic behaviors. In these models, the system execution is represented
as a sequence of discretized steps among a finite set of states, each capturing a snapshot of the
system dynamics. Transitions are performed randomly according to a pre-characterized probabil-
ity distribution function. Moreover, both models satisfy the Markov property, i.e., the behavior of
the future of the process only depends upon the current state and not on the rest of the execution
history. In DTMCs, the system dynamics are purely stochastic and the system transitions between
states autonomously at each execution step. On the other hand, in MDPs multiple possible actions
are available at each state, and each action is associated to a different state-transition probability
distribution. A controller or adversary can choose which action to take at each execution step to
drive the system execution. We notice that DTMCs can be interpreted as a special case of MDPs,
in which only one action is available at each state.

Convex-MDPs generalize MDPs by allowing transitions to be expressed in terms of convex
sets of probability distributions, to capture uncertainties in the modeling process. A simplified
formalism allowing only closed-interval sets to represent uncertainties has been first introduced by
Kozine and Utkin in [93] as Interval-valued Discrete-Time Markov Chains (IDTMCs). Two seman-
tic interpretations have been proposed for these models [150]: Uncertain Markov Chains (UMCs)
and Interval Markov Decision Processes (IMDPs)1. A UMC is interpreted as a family of (possibly
uncountably many) DTMCs, where each member of the family is a DTMC whose transition prob-
abilities lie within the interval range given in the UMC. The transition probabilities for each state
are fixed at the beginning of the execution and they remain the same across the whole execution. In
IMDPs, instead, the uncertainty is resolved through non-determinism. Each time a state is visited,
a transition distribution within the interval constraints is picked by the adversarial nature, and a
probabilistic step is taken accordingly. Thus, IMDPs allow modeling a non-deterministic choice
made from a set of (possibly uncountably many) choices. In this dissertation, we focused on this
second semantic interpretation, as stated in Assumption 2.3.

1IMDPs are not to be confused with Interval-MDPs as introduced in Section 2.1.3.1. Interval-MDPs allow model-
ing non-determinism in state-transition probabilities, while IMDPs are DTMCs with closed-interval uncertainty sets.
In fact, Interval-MDPs get reduced to IMDPs only after all non-determinism has been resolved by fixing a strategy or
adversary for the Interval-MDP model.

CHAPTER 3. RELATED WORK 37

The IDTMC formalism was then extended to consider also non-linear convex uncertainty mod-
els by Nilim and El Ghaoui [125] in the context of robust control. These modeling formalism
have since then been used in applications in which it was important to capture uncertainties in
the modeling process, due for example to modeling errors, non-modeled dynamics or inaccuracies
in the estimation of transition probabilities. Such applications include the modeling of biolog-
ical reactions [11], weather forecast [125], financial portfolio dynamics [23], and election-vote
systems [63], just to name a few.

3.1.1.2 Continuous-Time Probabilistic Models

In the modeling formalisms presented so far, execution time evolves in fixed discrete steps. The
dynamics of continuous time systems can thus only be approximated by setting the duration of the
discretization step to be appropriately short, in order to capture all the desired system dynamics.
While this discretization technique can indeed be effective for a broad category of systems (for ex-
ample, the ones analyzed in this dissertation), other systems might require very short discretization
steps and the representation of a long execution time in order to achieve the desired accuracy, thus
making the discretization of their execution prohibitive from a computational perspective. This is
the case for example for models of complex chemical reactions. Formalisms capable of capturing
the concept of continuous (real-valued) time are thus desirable to model such systems.

Continuous-Time Markov Chains (CTMCs) have been proposed to address this problem [159].
In CTMCs, the time spent in each state is not fixed, and it instead takes non-negative real values ac-
cording to a predefined exponential distribution. State transitions are then executed stochastically
as in DTMCs, and the execution is represented as sequence of visited states. CTMCs have indeed
received wide adoption both to model chemical reactions [8] and I/O queues in computational
systems [3].

Probabilistic Timed Automata (PTA) have been proposed by Segala [149] to combine discrete
probabilistic choices, real time and non-determinism. PTA are automata equipped with a finite set
of real-valued clocks. In a PTA, a transition between locations is enabled when a guard condition,
possibly including checks on the values of the clocks, gets satisfied. Transitions are instantaneous,
but time elapses when the automata is within a location. When a transition is enabled, the next
visited location is chosen stochastically according to a predefined probability distribution.

We note that both CTMCs and PTA can be transformed into MDPs by discretizing their execu-
tion into a finite number of steps [152, 100], so that the techniques for model checking and optimal
control presented in this dissertation can be applied. In fact, we will show in Section 4.3.2.2 an
example of such a transformation applied to a PTA model. However, the transformation usually
comes at the cost of a substantial increase in the number of states in the model, in particular if the
chosen discretization step is short with respect to the execution window to be analyzed. Verifica-
tion and control techniques specialized in the analysis of these systems do exist and can sometimes
achieve better performance in terms of accuracy of the results and runtime. On the other hand,
these models have been overall less studied in the literature, so they do not benefit from the rich-
ness of theoretical and algorithmic results already developed for MDPs. The interested reader is
referred to the work by Hartmanns et al. [74] for more details.

CHAPTER 3. RELATED WORK 38

3.1.1.3 Partially-Observable Markov Decision Processes

In the modeling formalisms presented above, it was assumed that a full knowledge of the system to
be modeled was available both at the time of model creation and during the execution of the model
itself. Partially-Observable MDPs (POMDPs) [120] have been introduced to model systems for
which such a full knowledge is not available and the uncertainty in estimating the system state
is instead central to the modeling problem. These models have been used for a wide range of
applications including human-machine interfaces, quality-control and machine replacement, robot
path-planning and automated health-care assistance [120].

POMDPs model a decision process in which it is assumed that the system dynamics are deter-
mined by an underlying MDP, but the instantaneous state cannot be directly observed. When an
action is taken and a transition to a new state is made, it is not possible to determine in which state
the model has transitioned, but instead the model returns an observation, which gives a “hint” of
what the new state is. Based on this observation, it is possible to maintain a probability distribution,
called belief state, over the set of possible states. The belief state can then be used to estimate the
probability of being in a specific state of the underlying MDP at each execution step. Instead of a
sequence of visited states, a POMDP thus visits a sequence of belief states, based on the history of
observations and on the observation probabilities specified for each state of the underlying MDP.

POMDPs are extremely expressive models, but their high expressivity has hindered the de-
velopment of effective algorithms to analyze and control properties of these systems. In fact,
most verification and control problems applied to POMDPs are undecidable or intractable, and
only approximate algorithms have been developed. We report here only results about the synthe-
sis of optimal strategies to control the execution of POMDPs2. In MDPs, the strategy-synthesis
problem amounts to find an optimal mapping, i.e., a strategy, from states to actions, to deter-
mine which action to take in each state. In POMDPs, instead, the control problem aims to find
a mapping from probability distributions over states, i.e., the belief states, to actions. Under the
assumption that for each belief state there are a finite number of actions and a finite number of
observations, there are only a finite number of possible next belief states, each corresponding to a
pair (action, observation). The POMDP can thus be reduced to a continuous-space MDP, i.e., an
MDP with uncountably infinite states. In this continuous-state MDP, each state represents a belief
state of the original POMDP, hence the need for uncountably infinite states. On the other hand, the
number of available transitions at each state of the continuous-space MDP is finite, and transition
probabilities are easily derived from the transitions and observation probabilities of the POMDP.
Adaptations of the classical strategy-synthesis algorithm for MDPs based on the Bellman recursion
have then been applied to synthesize control strategies for the continuous-space MDPs [158, 85].

2We note that these algorithms simply focus on the maximization of some reward function of the POMDP without
enforcing the model to satisfy any predefined specification during its execution, as we instead do for Convex-MDPs in
the results presented in Chapter 6.

CHAPTER 3. RELATED WORK 39

3.1.2 Formal Logics
In this dissertation, we use Probabilistic Computation Tree Logic as the formal logic to express
properties of Convex-MDPs. We use this logic because it allows expressing quantitative proper-
ties of the analyzed Convex-MDP models, which are extremely useful in characterizing the per-
formance of probabilistic systems. For example, we can express the property “The probability
that the mechanical arm hits a human operator while lifting a car is less than 10−9”, and then
verify whether the property holds or not. However, PCTL is not the only formal logic used to
express properties of probabilistic systems. In this section we review several alternative formal
logics introduced in the literature, and compare them with PCTL in terms of expressivity. The list
of analyzed formal logics is not meant to be comprehensive and it just reports the logics that are
most used in the literature.

3.1.2.1 Qualitative Logics

Qualitative logics allow one to express only properties that need to hold almost certainly or almost
never, i.e., with probability equal to 1 or 0, respectively. The most widely used qualitative logics
are the Computation Tree Logic Star (CTL*) [54] and its two sub-logics Linear Temporal Logic
(LTL) [137] and Computation Tree Logic (CTL) [40]. The syntax of CTL* is defined as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | A [ψ] | E [ψ] state formulas
ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | X ψ | F ψ | G ψ | ψ1 U ψ2 path formulas

where ω ∈ Ω is an atomic proposition. This logic defines two path quantifiers. The universal
quantifier A enforces the path formula ψ to hold across all execution paths; the existential quantifier
E requires at least one path to satisfy ψ. The temporal operators are defined as follows. Next (X)
is satisfied if ψ holds in the next state; Globally (G) if ψ holds in all states; Eventually (F) if it
is possible to reach a state satisfying ψ; and Unbounded Until (U) if it is possible to reach a state
satisfying ψ2 while only visiting states satisfying ψ1.

These temporal logics differ depending on how they handle branching in the underlying com-
putation tree representing the system execution. In LTL, operators are provided for describing
events along a single computation path. The logic thus disallows path quantifiers. CTL, instead,
restricts the set of formulas allowed by CTL* by enforcing every temporal operator in the formula
to be preceded by a path quantifier. Finally, CTL* combines both branching-time and linear-time
operators. In fact, there exist properties that can be expressed in LTL and not in CTL and vice
versa, while the more expressive CTL* combines all the properties that can be formulated using
the two sub-logics.

CTL* and its sublogics allow to express safety (informally, something negative will never hap-
pen), liveness (informally, something positive will eventually happen) and fairness (informally,
something will happen infinitely often) properties of a system. For example, using LTL, it is pos-
sible to express the liveness property “Globally, if a request occurs, then it will be eventually
acknowledged”, using the syntax φ = G (req → F ack).

CHAPTER 3. RELATED WORK 40

Overall, qualitative logics are widely used for their simplicity and expressivity. These logics
have been extensively studied in the last forty years and they are very well understood both by the
research community and by the users of verification tools. A wealth of theoretical and algorithmic
results have been developed to analyze properties of probabilistic systems (e.g., DTMCs, CTMCs,
MDPs) and a number of efficient model-checking tools have been implemented, as it will be de-
scribed in the following. On the other hand, these logics cannot express quantitative properties, a
fundamental limitation in the analysis of systems that cannot be proven error-free under all circum-
stances, but whose behavior is still acceptable as long as the probability of failure is sufficiently
low. Noticeably, any system including a physical component (e.g., a plant) belongs to this category.
Such a physical component can be modeled using one of the formalism introduced in Section 3.1.1
and its probability of failure can be annotated within the model in terms of a transition probability
to a failure state. A quantitative logic can then be used to query the probability for the system
to transition to the failure state. Hence explained the importance of quantitative logics, which are
introduced next.

3.1.2.2 Quantitative Logics

Quantitative logics allow to express properties that need to be satisfied with probability larger or
smaller than a given real-valued threshold 0 ≤ p ≤ 1.

Probabilistic-LTL (PLTL) is an extension of LTL, which maintains the full expressivity of
LTL while adding the possibility to express also quantitative properties [15]. We will see in Sec-
tion 3.2.1 that the high expressivity of this logic comes at the price of also higher complexity of
the model-checking problem.

In this dissertation, we use Probabilistic-CTL (PCTL) as formal logic to represent properties of
Convex-MDPs, as introduced in Section 2.2. PCTL is a logic derived from CTL, which disables the
path-quantifier operators and instead introduces a probabilistic operatorP [72]. We have shown in
Section 2.2.2 that PCTL is a highly expressive logic, capable of specifying a wide range of system
properties. On the other hand, PCTL does not allow arbitrarily nested path formulas, i.e., two path
operators can only be connected using a state operator. Therefore, PCTL cannot express arbitrary
liveness and fairness properties.

To overcome this shortcoming of the PCTL logic, alternative logics, such as ω-PCTL and
Probabilistic Branching Time Logic (PBTL), have thus been developed [38, 19].

The logic ω-PCTL allows the specification of Büchi conditions and it can express any ω-regular
condition. The syntax of the logic is defined as:

φ ::= True | a | ¬φ | φ1 ∧ φ2 | P onp [ψ] state formulas

ψ ::= X φ | φ1 U≤k φ2 | φ1 U φ2 | ψω path formulas
ψ ::= Büchi(φ) | coBüchi(φ) | ψω1 ∧ ψω2 | ψω1 ∨ ψω2 infinitary path formulas

where a is an atomic proposition. The canonical Rabin and Street conditions can be expressed as
a conjunction and disjunction of Büchi and coBüchi conditions. As a consequence, ω-PCTL can
express Rabin and Street conditions, and, in turns, any ω-regular property. We refer the reader

CHAPTER 3. RELATED WORK 41

to the article by Thomas [163] for more details on this derivation. The logic ω-PCTL thus offers
advantages in terms of expressivity in the specification of properties of stochastic systems. As in
the case of PLTL, though, the higher expressivity comes at the cost of an increase of the complexity
of the model-checking problem.

Certain liveness properties cannot be satisfied by concurrent systems unless some fairness as-
sumptions on the behavior of the adversary is enforced. The logic PBTL was introduced to allow
expressing such fairness assumptions on specifications expressed in PCTL [19]. In particular,
although not as expressive as ω-PCTL, the logic PBTL can formulate properties enforcing both
fairness or strong fairness conditions on the system behavior.

Finally, we introduce the Continuous Stochastic Logic (CSL), a logic specifically developed to
express properties of CTMCs [14]. The syntax of the logic is defined as follows.

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | P onp[ψ] state formulas
ψ ::= φ1 U [t1,t2]φ2 U [t3,t4] · · · path formulas

where 0 ≤ p ≤ 1 and ti ∈ R is a real valued number expressing a time instant in an appropriate
unit of measure (e.g., seconds). CSL is a quantitative logic, since it allows a probabilistic operator
P , analogous to the one defined for PCTL. Moreover, path formulas allow to express the property
that a system will remain in a state satisfying φ1 before making a transition within t2 time units
to a state satisfying φ2, and to concatenate the syntax expressing these transitions for an arbitrary
number of times.

3.2 Verification Algorithms
In this section, we review several formal techniques that have been proposed in the literature to
verify properties of probabilistic systems. In particular, we will focus on results applying to MDPs,
unless differently specified.

3.2.1 Model Checking
The model-checking problem can be formalized as a decision problem. Given a structure M and
a property φ, the model-checking problem answers whether M satisfies property φ, written as
M |= φ. If M does not satisfy the property, i.e., M 6|= φ, the model-checking algorithm pro-
duces a counterexample. This formal verification technique is a rigorous mathematical approach
in proving the correctness of a system based on an exhaustive state-space exploration [41]. In the
following, we give details about the complexity class of the model-checking problem for properties
expressed using different kinds of formal logics, and briefly report the most successful algorithmic
approaches used to solve the model-checking problem.

3.2.1.1 Model Checking Qualitative Properties

The problem of model checking a CTL formula on an MDP is in the class P and efficient model-
checking algorithms and tools have been implemented [40]. Briefly, these algorithms rely on

CHAPTER 3. RELATED WORK 42

the reachability analysis on the states of the underlying state-transition graph of the model. A
property is satisfied if the system reaches at least one of the states satisfying the CTL formula
almost certainly or almost never starting from any initial state.

On the other hand, for properties expressed with the full LTL logic, the model-checking prob-
lem for MDPs is known to be polynomial in the size of the model but double-exponential in the
size of the LTL formula. In general, the model-checking algorithm for LTL is performed in two
steps. First, the system model gets composed with the Büchi automaton representation of the prop-
erty to be verified. This step is responsible for the exponential explosion of the model state space.
Secondly, the LTL model-checking problem is reduced to checking whether an accepting state in
the composition of the system with the Büchi automaton is visited infinitely often. Noticeably,
as a consequence of the high worst-case time complexity for the general case, researchers [136]
have focused instead on properties expressed with a subset of LTL, known as GR(1), for which
polynomial-time model-checking algorithms exist.

3.2.1.2 Model Checking Quantitative Properties

The model-checking problem for PLTL properties of MDPs follows the same steps of the analo-
gous problem for LTL formulas. A probability space is defined over the product of the original
model to be verified and the Büchi automaton representing the property to be verified. The prob-
ability of satisfying the LTL specification is then equal to the probability of reaching a satisfying
state in the product model. Given the similarity of the solution method, it is easy to prove that the
model-checking problem is double exponential in the size of the formula and polynomial in the
size of the system, as for the model checking of LTL formulas.

The model checking of PLTL formulas has been investigated also for the model of Interval
Markov Chains (IMCs). In that setting, the complexity increases and the problem has been proven
to be in EXPSPACE, and PSPACE-hard [22].

The model checking of PCTL properties for MDPs has been known to be in P for a long
time [72]. The theoretical complexity of the problem of model checking PCTL specifications for
IDTMCs was instead addressed by Sen et al. [150]. Since the two semantic interpretations of
IDTMCs, as introduced in Section 3.1.1.1, yield different model-checking results, the complexity
characterization was given separately for each interpretation. For the IMDP semantics, the prob-
lem was shown to be at most in PSPACE [150], and the result was later improved to co-NP by
Chatterjee et al. [38]. These results rely on the construction of an equivalent MDP that encodes
all behaviors of the IMDP. For each state in the new MDP, the available state transitions can be
mapped to the Basic Feasible Solutions (BFSs) of the set of inequalities specifying the transition
probabilities of the original IMDP. Since in the worst case the number of BFSs is exponential in
the number of states of the IMDP, the equivalent MDP can have size exponential in the size of the
original IMDP. The lower bound on the theoretical complexity of the problem was set by the same
authors to be P.

In this dissertation, specifically in Chapter 4, we improve the previously best-known complex-
ity result of co-NP [38] to P, for the fragment of PCTL in which we disallow all operators with a

CHAPTER 3. RELATED WORK 43

Table 3.1: Algorithmic Complexity of PCTL Model Checking

Model W/o U≤k , I=k , C≤k W/ U≤k , I=k , C≤k

DTMC [72] O(poly(R)×Q) O(poly(R)×Q× log(kmax))
IMDP [38] O(exp(R)×Q) O(exp(R)×Q× log(kmax))

Convex-MDP [ours] O(poly(R)×Q) O(poly(R)×Q× kmax)

finite time horizon (i.e., the Bounded Until (U≤k), Instantaneous Reward (I=k) and Bounded
Cumulative Reward (C≤k) operators). We also characterize the complexity of our algorithm for
the full PCTL syntax based on the size R of the Interval-MDP model, the size Q of the PCTL
formula, and the maximum bound kmax of the operators with a finite time horizon. Our algorithm
runs in O(poly(R) × Q × kmax) time, which is pseudo-polynomial in kmax (i.e., polynomial if
kmax is counted in its unary representation and exponential if kmax is counted in its binary repre-
sentation). Moreover, the same complexity results hold also when non-linear (convex) models of
uncertainty are used to express uncertainty in the state-transition probabilities, i.e., for the broader
class of Convex-MDPs.

In the following, we give an intuitive explanation of why algorithms for the PCTL model
checking of MDPs run in time polynomial in kmax counted in its binary representation, while the
same result does not apply when considering Convex-MDPs. In particular, we restrict our attention
on the Bounded Until operator, but the same reasoning applies also for the Instantaneous Reward
and Bounded Cumulative Reward operators. The difference stems from the computation of the
set Sat

(
P onp

[
φ1 U≤k φ2

])
. For MDPs, this computation involves raising the transition matrices

F a,∀a ∈ A to the (kmax)
th power, to model the evolution of the system in kmax steps. Matrix

exponentiation is an operation that takes O(log(kmax)) steps. Matrix exponentiation can also be
performed in the model-checking algorithm proposed by Sen et al. [150], on the transition matrix of
the exponentially-larger MDP that encodes all behaviors of the original IMDP. As a consequence,
the results on theoretical complexity for IMDPs [38, 150] can be extended to the full PCTL syntax
(although the operators with a finite time horizon were not explicitly considered in those works). In
our implementation of the model-checking algorithm, instead, we cannot do matrix exponentiation,
because the transition matrix F a ∈ Fa selected by the nature might change at each step, if the
optimal nature is history-dependent. The unrolling of the execution history of the Convex-MDP
thus needs to be done one step at a time. While the possibility of performing matrix exponentiation
allows to derive a lower theoretical complexity result for MDPs, such a computation is seldom used
in practical implementations of the model-checking algorithms, because the transition matrix of
an MDP is often sparse and repeatedly squaring it would cause fill-ins [60]. Moreover, we note
that both Q and kmax are typically small in practical applications [11, 101, 103], so the dominant
factor for runtime is the size of the model R. Hence, the increase in complexity results does not
hinder the applicability of our approach to real-world case studies. We summarize the results in
theoretical complexity in Table 3.1.

The model checking of ω-PCTL properties of DTMCs is decidable in P. On the other hand,
the problem is only decidable in PSPACE (co-NP) when applied to the UMC (IMDP) semantic

CHAPTER 3. RELATED WORK 44

interpretation of IDTMCs [38]. As a consequence, no efficient model-checking algorithms are
known for IDTMCs and ω-PCTL has not found wide applicability for such models.

Also the model checking of PBTL properties of DTMCs and MDPs is decidable in P. On
the other hand, the problem of model checking PBTL properties on Convex-MDPs has not been
studied yet and it represents an interesting direction for future work.

Finally, the problem of model checking time bounded properties of CTMCs was proven to
be decidable in P by Baier et al. [17]. This result was obtained via a reduction to the problem
of computing transient state probabilities for CTMCs, which can be performed efficiently using
techniques like uniformisation.

3.2.2 Statistical Model Checking
Statistical model checking has appeared as an alternative approach in the landscape of formal
methods to address the problem of analyzing properties of stochastic systems [174]. Instead of
exhaustively exploring all system behaviors, in statistical model checking the stochastic system
under analysis is simulated for finitely many runs. Hypothesis testing is then used to infer whether
the simulated samples provide a statistical evidence for the satisfaction or violation of the specifi-
cation.

This technique has been applied to the estimation of the satisfaction probability of properties
expressed in PCTL, among other logics, for a wide variety of modeling formalisms. In fact, the
main advantage of statistical model-checking techniques is their capabilities of processing any
stochastic system that can be simulated, without imposing any further constraint on the modeling
approach. Moreover, statistical model checking is arguably able to process systems of large size,
since their behavior does not need to be exhaustively explored but just simulated, possibly in
parallel across multiple machines. While the accuracy of the estimated satisfaction probability
does depend on the number of simulations, approximations of such probability are incrementally
produced by the algorithm, so the designer can obtain intermediate results of the model-checking
problem, which could already provide the required insight on system functionality.

On the other hand, statistical model checking suffers from several drawbacks. From a theoret-
ical perspective, statistical model checking is not an exact method, and the computed satisfaction
probabilities are just approximations of the real ones. This means that this technique can be only
used to prove the robust satisfaction of a quantitative property, i.e., the actual probability of satis-
fying a given specification needs to be bounded away from the threshold to which it is compared.
More specifically, given a structure M and a property φ, we call H0 the hypothesis that M |= φ,
and H1 the alternative hypothesis, i.e., that M 6|= φ. The probability of accepting H1 (H0) given
that H0 (H1) holds can only be bound to be at most α > 0 (β > 0), but never set to be null,
unless in the limit of infinite samples. The error bounds α and β are supplied as parameters to the
model-checking procedure, and their value sets a trade-off between the accuracy in the result and
the runtime of the verification algorithm. Furthermore, in terms of modeling expressivity, statis-
tical model checking can only be used to analyze fully-stochastic systems, i.e., non-determinism
cannot be resolved. The reason of such limitation lies in the fact that this verification technique

CHAPTER 3. RELATED WORK 45

does not have any mechanism to resolve non-determinism, i.e., statistical model checking cannot
determine what is the worst-case adversary for the probabilistic model.

Finally, we note that statistical model checking could be, in principle, applied also to the verifi-
cation of stochastic models with uncertain transition probabilities, i.e., Uncertain Markov Chains3.
In particular, the state-transition distribution could be randomly drawn from the uncertainty set at
each execution step of the simulation, according to a uniform distribution across the uncertainty
set. We note that such an approach would result in an estimation of the expected or average reso-
lution of uncertainty within the uncertainty set. On the other hand, the model-checking algorithm
presented in Chapter 4 is capable of computing the worst-case resolution of uncertainty within a
convex uncertainty set. Both approaches can indeed provide useful insight to the designer, so they
should both be applied to the analysis of system properties.

3.2.3 Approximate Probabilistic Bisimulation
We conclude the overview of formal methods for the verification of probabilistic systems by intro-
ducing the concept of probabilistic bisimulation.

Model-checking techniques are known to suffer from the state explosion problem, i.e., the
number of states required to represent the system and the properties to be verified rapidly becomes
too large to be efficiently processed. To overcome this problem, abstractions of the original systems
can be created to reduce its state-space. On the other hand, it is fundamental to guarantee that such
an abstraction preserves the same behavior of the system, at least in the context of the property to
be verified. Bisimulation is an equivalence relation between the state-spaces of the original and
abstracted systems often used in the context of formal verification. It should be noted, though,
that the computation of an exact abstraction, i.e., one which is guaranteed to maintain the same
system behavior, might be a task even more computationally intensive than the model-checking
one performed on the original model. Approximate Bisimulations have thus been introduced to
reduce the computational requirement of creating a system abstraction, while formally bounding
the maximum introduced error in representing the dynamics of the original system.

These techniques have recently been applied to the problem of guaranteeing robustness to
PCTL model checking by creating Approximate Probabilistic Bisimulations (APBs) of Markov
Chains [48]. In particular, the existence of an APB to a Labeled Markov Chain (LMC) with
precision ε is proven to imply the preservation of ε-robust PCTL formulas in the LMC. As a
consequence, the APB can be used in place of the original system as long as an error bounded
by the constant ε in the satisfaction probabilities can be tolerated.

This work differs from ours because we aim to check PCTL formulas of MDPs whose transition
probabilities are affected by uncertainties due to estimation errors or imperfect information about
the environment. In other words, these uncertainties have a clear “physical” meaning and they are
not to be traced back to mathematical approximations generated in the process of abstraction of the
system behavior. Further, our goal is different in that we aim to expose the effect of uncertainties

3We use the term Uncertain Markov Chains to refer to Markov chains with arbitrary uncertainty sets of state-
transition probability distributions. Since in statistical model checking the system is simulated, we do not need to
require the uncertainty set to be convex.

CHAPTER 3. RELATED WORK 46

(small perturbations) in the model behavior on the satisfaction of the property that we are verifying,
to guide the designer to appropriately model the system dynamics.

Finally, the concept of probabilistic bisimulations has recently been applied to Convex-MDP
models [75]. The authors propose algorithms to compute the bisimulation quotients in time poly-
nomial in the size of the model and exponential in the uncertain branching of the property to be
verified. Experimental results show that a substantial state space reduction can be achieved by
applying this approach, so that the algorithms developed in this dissertation can then be run more
effectively.

3.2.4 Model-Checking Tools
In parallel to the formalization of the aforementioned theoretical results, the verification commu-
nity has also worked on the development of tools for the model checking of probabilistic systems.
In the following we briefly introduce the most relevant ones.

At the time of writing, the PRISM Model Checker appears to be at the frontier of the available
model-checking tools [99]. The tool has been used to analyze a multitude of applications, from
communication protocols and biological pathways to security problems. PRISM is capable of
analyzing several different probabilistic models (e.g., discrete and continuous-time Markov Chains
(DTMCs/CTMCs), Markov Decision Processes (MDPs), Probabilistic Timed Automata (PTA))
and properties expressed in a variety of specification languages (e.g., PCTL, LTL, CSL). Along the
years, the tool has been used to verify and analyze properties of a heterogeneous set of systems,
ranging from biochemical reactions and power-management units to security protocols and many
others.

INFAMY [70] is a tool for the model checking of CSL formulas on infinite-state CTMCs. In
particular, INFAMY is capable of handling the time-bounded subclass of the logic CSL. While
conventional model checkers explore the given model exhaustively, a costly operation due to state
explosion, or even an impossible one if the model is infinite, INFAMY only explores the model up
to a finite depth, with the depth bound being computed on-the-fly. In particular, the computation
of the depth bound is configurable to adapt to the characteristics of the specific class of the model
under analysis and to the desired accuracy in the computed results. INFAMY has been applied to
the study of protein-synthesis procedures and of several queuing protocols.

The Markov Reward Model Checker (MRMC) [86] supports PCTL and CSL (and the exten-
sions of these logics to include rewards) model checking for several probabilistic models, including
MDPs, DTMCs and CTMCs. MRMC supports reward-bounded reachability probabilities (a prop-
erty is satisfied if the accumulated reward to reach the satisfying states is below/above a given
threshold), property-driven minimization of the size of the system bisimulation, and precise on-
the-fly steady-state detection.

The Erlangen-Twente Markov Chain Checker (ETMCC) [79] is a software tool which supports
the automatic checking of properties given as CSL or aCSL [80] formulas. It supports models
expressed with the formalism of finite CTMCs, labelled with atomic propositions and/or transition
names. The tool has been used to verify the correct functionality of cyclic server polling systems
and to detect software failures in a multiprocessor mainframe.

CHAPTER 3. RELATED WORK 47

VESTA [151] is a tool to perform statistical analysis of probabilistic systems. In particular, it
supports statistical model checking and statistical evaluation of expected values of temporal expres-
sions. VESTA supports the verification of PCTL and CSL properties of both DTMCs and CTMCs.
Furthermore, VESTA supports the statistical computation of expected values of expressions written
in a query language called Quantitative Temporal Expressions (QUATEX). The tool has been used
to verify system performance in several case studies, including the analysis of Denial-of-Service
(DoS) security attacks, in which it is important to estimate the success probability of such attacks.

Finally, Ymer [173] is a tool for the model checking of PCTL and CSL properties of infinite-
space DTMCs and CTMCs. It implements statistical model-checking techniques in order to be able
to (approximately) solve also models with infinite state space. In particular, Ymer uses distributed
discrete-event simulation to rapidly generate multiple execution traces and acceptance sampling to
determine convergence of the model-checking algorithm.

Remark 3.2. The development of a model-checking algorithm for PCTL properties of Convex-
MDP is a novel contribution of this dissertation, since this formalism is not currently supported by
any available tool. A Python implementation of the proposed algorithms is available [1]. More-
over, at the time of writing, the author is working on the integration of the proposed algorithms
into the PRISM Model Checker distribution. The interested reader is invited to refer to the PRISM
website [2] for more details about the date of the public release or to contact the author of this
dissertation directly.

3.3 Control Algorithms
The formalism of MDPs has originally been introduced by the work of Bellman [21] and Howard [81]
in the context of the synthesis of control strategies for stochastic systems with the goal to maximize
(minimize) a given reward (cost) function. We refer to this problem as an unconstrained optimiza-
tion of the behavior of the MDP, since no additional constraint on the execution of the MDP is
enforced.

More recently, MDPs have also become popular in the context of the synthesis of control strate-
gies to satisfy a given specification expressed using a formal logic [16, 56, 103, 114, 148]. Indeed,
formal logics are able to express more complex constraints to guide the execution of the decision
process, a required feature in several applications (e.g., robot path-planning). We refer to this
problem as a feasibility problem, since the synthesis algorithm aims to determine a strategy which
satisfies the given specification, without requiring any specific system property to be optimized.

In Chapter 6, we will present the first sound and complete algorithm to synthesize strategies
of Convex-MDPs capable of optimizing a given cost function and enforcing the model to obey to
a specification expressed using the full PCTL syntax. Our algorithm can thus be seen as a con-
strained optimization and it combines the features of both approaches described above. Moreover,
our algorithm can be applied also to the more general formalism of Convex-MDPs.

In this section, we review previous work in the areas of synthesis of unconstrained optimal
strategies and of synthesis of control strategies from specifications in a formal logic.

CHAPTER 3. RELATED WORK 48

3.3.1 Synthesis of Control Strategies for Unconstrained Reward
Maximization

In this section, we will only consider the problem of reward maximization, but all the reported
results are valid also for the dual problem of cost minimization. Several classes of cost functions
have been considered in the literature to maximize the reward of the execution of an MDP [142].
In particular, we report:

• Total Expected Reward. By total reward, it is in generally meant the sum of the state
and action rewards associated to an execution path of the MDP. The total expected reward
criterion thus aims to find the control strategy for the MDP under analysis that maximizes
the expected value of the sum of the state and action rewards across all the execution paths
allowed by the control strategy.

• Discounted Total Expected Reward. The discounted total expected reward is a variant of
the total expected reward that introduces discounts, i.e., weights, in the value of the state
and action rewards, depending on how far away the states (actions) are visited (taken) in the
system execution. In other words, if we consider a discount factor 0 ≤ λ ≤ 1, the reward of
a state (action) visited (taken) after k steps gets discounted by a factor λk. This approach has
the advantage of weighting less the rewards that are farther away in the execution history,
thus modeling the fact that events more remote in the future are less likely to be predicted,
so they should be considered less in the computation of the instantaneous control strategy.

• Average Reward. The average reward criterion aims to maximize the average reward (and
not the sum across an execution path) of the states (actions) visited (taken) during an execu-
tion path.

The problem of synthesizing optimal control strategies for MDPs for all the classes of cost
functions introduced above can be solved in polynomial time for finite-horizon MDPs and, with
mild assumptions on the utilized reward structure and on the structure of the MDP underlying
graph, also for infinite-horizon MDPs [142]. These results descend from the fact that Markov de-
terministic strategies are optimal for the synthesis problem. Efficient algorithms based on dynamic
programming have then been developed [142]. They rely on some variation of the famous Bell-
man recursion [21], presented in the following for the case of the synthesis of Markov deterministic
strategies to optimize the total expected reward cost function.

V (s) = rs(s) + max
a∈A(s)

(
ra(s, a) +

∑
s′∈S

fass′ × V (s′)

)
In the formula above, r is a reward structure for the MDP, V (s) is a variable whose value represents
the total expected reward for state s ∈ S, and fass′ is the probability of transitioning to state s′ when
starting from s and selecting action a. Intuitively, the maximization problem iterates across all
the actions available at each state, and it selects the action which results in the highest expected
reward.

CHAPTER 3. RELATED WORK 49

The computation of such a recursion begins by assigning a total expected reward value V (sN)
to the terminal states of the MDP and then recurses backwards in the execution path of the MDP
by computing at each iteration the total expected reward of the states visited one step earlier, until
all the initial states are reached.

The problem of synthesizing control strategies to maximize the total expected reward and the
discounted expected reward for Convex-MDPs has been studied by Nilim and El Ghaoui [125].
Also for Convex-MDPs, the synthesis problem can be solved in time polynomial in the size of
the model by applying a clever modification of the Bellman recursion, which computes at each
recursion step the worst-case resolution of the uncertainty in the state-transition probability distri-
bution within the convex uncertainty set. In particular, the authors solve the following “max-min”
problem:

V (s) = rs(s) + max
a∈A(s)

min
fas ∈Fas

(
ra(s, a) +

∑
s′∈S

fass′ × V (s′)

)
where we remind that Fas is the convex uncertainty set associated to state s ∈ S and action
a ∈ A(s). The main contribution in the work by Nilim and El Ghaoui [125] is the development
of polynomial-time optimization routines based on duality theory to solve the inner optimization
problem.

3.3.2 Synthesis of Control Strategies from Specifications in a Formal Logic
The problem of strategy synthesis for MDPs from PCTL specifications was first studied by
Baier et al. [16]. Control strategies for MDPs are divided into four categories depending on: 1)
whether the transition is chosen deterministically (D) or randomly (R); 2) the choice does (does
not) depend on the sequence of previously visited states (Markov (M) and history-dependent (H)).
It was proven that the four types of strategies form a strict hierarchy:

MD ≺ MR ≺ HD ≺ HR

where we use A ≺ B to indicate that class of strategies A is strictly less powerful than class
of strategies B, i.e., there exist MDPs MC and PCTL formulas φ such that for no strategy in A
MC can satisfy φ, whereasMC can satisfy φ for some strategy in B. Moreover, the problem of
determining whether it exists an MD/MR (HD/HR) strategy that meets all specifications was found
to be NP-complete (elementary).

Kučera et al. [96] showed how to synthesize MR controllers that are robust to linear perturba-
tions via a reduction to a formula in the first-order logic of reals. This work is the closest to the
results presented in Chapter 6, albeit we consider also non-linear convex models of uncertainties.
Further, the monolithic formulation of the synthesis problem proposed in that work might cause an
explosion of the algorithmic runtime. In fact, to the best of our knowledge, the algorithm has not
been applied to any real-world case study.

The algorithm for the synthesis of control strategies presented in Chapter 6 is the first sound
and complete algorithm capable of processing formulas expressed in the full PCTL syntax. Other

CHAPTER 3. RELATED WORK 50

algorithms to solve simplified versions of the synthesis problem have previously been presented in
the literature. Lahijanian et al. [103] and Kwiatkowska and Parker [102] adapted routines for the
model checking of PCTL properties of MDPs to the strategy-synthesis problem. These algorithms
run in time polynomial in the model size, but they are not complete [103] or can handle properties
with only one quantitative operator [102].

The synthesis of multi-strategies for MDPs is studied by Draeger et al. [50]. A multi-strategy
is a function that associates not only one action a ∈ A(s) to each state of the model, but the whole
subset of actions Asat ∈ A(s) available at each state that guarantee the satisfiability of the given
PCTL specification. The advantage of this approach is that the controller can then arbitrarily select
any strategy among those allowed by the synthesized multi-strategy, according, for example, to
additional constraints or to a cost function not specified (because unknown) at the time of synthesis.
The proposed monolithic formulation of the multi-strategy synthesis problem can, on the other
hand, handle only a subset of PCTL properties.

A large body of research has been developed to consider the synthesis problem within the
context of game theory. So far, we have considered a synthesis problem in which all model states
are either controllable (the controller can select the action to take in that state) or purely stochastic
(there is only one action available at the state), a problem referred to in game-theory as a 11

2
-player

game. In the more general version of the problem, some of the states in which non-determinism
is present are not controllable. These states are referred to as environment, and the choice of the
action to take in such states is set by an adversary. Solving a 21

2
-player game amounts to find a

strategy for the controller such that the given specification is satisfied for any adversary operating
on the environment states. Within the context of 21

2
-player games, researchers have studied the

theoretical complexity and proposed synthesis algorithms both for qualitative [6, 36, 44, 43, 59]
and quantitative [7, 31, 37] specifications expressed in a variety of formal logics.

In particular, Brazdil et al. [31] studied two-player games with winning objectives expressed
in PCTL. Also our formulation can be interpreted as a game, where the controller plays against
nature. On the other hand, following the Convex-MDP semantics defined in Assumption 2.3,
we give nature the power of selecting a different strategy at each execution step, while the work
presented in [31] aims to analyze the more complex problem of finding the single optimal strategy
for nature. Our formulation is useful to model time-varying processes (e.g., the power generated
by renewable sources of energy), and an optimal strategy for the controller can be synthesized
algorithmically, as it will be shown in Chapter 6. The existence of an optimal strategy for the
controller and nature in the formulation of [31] is instead undecidable in general, and it becomes
decidable only for a fragment of the PCTL logic.

Finally, Wolff et al. [172] studied the problem of synthesizing an optimal control for Convex-
MDPs satisfying a specification expressed in the fragment of the PLTL logic which allows to use
only one probabilistic operator. The proposed technique first converts the LTL specification to a
Rabin automaton, whose size is worst-case doubly exponential in the size of the LTL formula. It
then composes the automaton with the MDP, and it finally runs the robust dynamic programming
procedure proposed by Nilim and El Ghaoui [125] to solve for the optimal control policy.

51

Chapter 4

Probabilistic Model-Checking with
Uncertainties

In this chapter, we present our contributions regarding the formal verification of PCTL properties
of Convex-MDPs. The chapter is divided in three sections. In the first section, we formally define
the problem of PCTL model checking for Convex-MDPs and prove the main results about the
theoretical complexity of this problem. In the second section, we give details about the routines for
the verification of the temporal operators defined in the PCTL syntax. In particular, we prove the
soundness and completeness of each routine and derive its algorithmic complexity. Finally, in the
third section, we overview the software implementation of the previously described routines and
apply the model-checking algorithm to the analysis of three case studies. We use this experimental
evaluation both to evaluate the impact of modeling uncertainties on model-checking results and to
assess the runtime performance of the proposed algorithm on problems of increasing size.

4.1 Theoretical Complexity of PCTL model checking for
Convex-MDPs

Our proof of the results about the theoretical complexity of PCTL model checking for Convex-
MDPs is constructive, i.e., we develop a sound and complete algorithm to solve the model-checking
problem, characterize its algorithmic complexity and use this result to set an upper-bound on the
theoretical complexity of the problem. Since we will show that the computed upper-bound coin-
cides with the previously known lower-bound P, as described in Section 3.2.1.2, we conclude that
our results characterize exactly the theoretical complexity of the problem.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 52

4.1.1 Problem Definition and Algorithm Overview
We begin by formally define the problem of PCTL model checking for Convex-MDPs.

Definition 4.1. PCTL Model Checking for Convex-MDPs. Given a Convex-MDP
MC = (S, S0, A,Ω,F ,A,X , L) of size R and a PCTL formula φ of size Q over a set of atomic
propositions Ω, verify whetherMC models φ, i.e.,MC |= φ, by computing the set Sat(φ) ∈ S of
states satisfying φ over the uncertainty sets Fas ∈ F , and checking if the set of initial states S0 is
contained in Sat(φ) ∈ S. Formally:

MC |= φ ⇔ S0 ⊆ Sat(φ)

We now overview the algorithmic procedure used to model check PCTL properties of Convex-
MDPs. The overview will clarify what are the routines that need to be developed to solve the
model-checking problem.

As in the verification of CTL [72], the algorithm traverses bottom-up the parse tree for φ,
recursively computing the set Sat(φ′) of states satisfying each sub-formula φ′. At the end of the
traversal, the algorithm computes the set Sat(φ) of states satisfying φ and it determines ifMC |= φ
by checking if S0 ⊆ Sat(φ). For the qualitative PCTL operators, the satisfying states are computed
as follows:

Sat (True) = S (4.1)
Sat(ω) = {s ∈ S | ω ∈ L(s)} (4.2)
Sat(¬φ) = S \ Sat(φ) (4.3)

Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2) (4.4)

For the quantitative PCTL operators, the algorithm needs to compute:

Sat (P /p [ψ]) = {s ∈ S | Pmax
s (ψ) / p} (4.5)

Sat (P .p [ψ]) =
{
s ∈ S | Pmin

s (ψ) . p
}

(4.6)
Sat (R /v [ρ]) = {s ∈ S | Emaxs (ρ) / v} (4.7)

Sat (R .v [ρ]) =
{
s ∈ S | Emins (ρ) . v

}
(4.8)

for each of the temporal operators defined in Section 2.2, i.e., the Next (X), Bounded Until(
U≤k), Unbounded Until (U), Instantaneous Reward

(
I=k

)
, Bounded Cumulative Reward(

C≤k) and Cumulative Reward (C) operators.
We will thus need to develop routines to compute each of the sets defined above. Further, we

require a routine to be sound and complete, as defined in Section 2.2.3.1, to be suitable to correctly
solve the model-checking problem.

For the qualitative fragment of the PCTL logic, we can leverage results already presented in
the literature [5, 60]. It is also easy to prove that these routines are sound and complete, because
they are based on reachability analysis over the finite number of states ofMC [60]. We will thus
assume these routines to be available in the rest of the dissertation.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 53

In this chapter, we will instead focus on developing sound and complete routines to compute
Sets (4.5) - (4.8) for Convex-MDPs and we will characterize their algorithmic complexity to set an
upper bound on the theoretical complexity of the model-checking problem.

4.1.2 Optimal Adversaries and Natures
According to the semantics of the PCTL logic, as defined in Section 2.2.1.1, a state s ∈ S verifies
(models) a property φ if and only if the state satisfies φ for all adversaries α ∈ Adv and na-
tures ηa ∈ Nat. Nevertheless, in order to guarantee the termination of the verification algorithm,
we cannot enumerate all adversaries and natures and verify φ for each. In fact, there would be un-
countably infinite natures to be verified, given that we defined the uncertainty sets in the continuous
space RN . We instead need techniques to quickly determine the optimal (in the worst-case sense)
adversary and nature and just verify that the property is satisfied when such an optimal adversary
and nature control the execution of the Convex-MDP, to then infer that the property holds (does
not hold) for all adversaries and natures.

In this section, we determine the optimal adversary and nature for each temporal operator of
the PCTL logic. Such a classification will then guide the development of the corresponding model-
checking routines.

We begin by analyzing the temporal operators not containing any finite bound on the number of
steps of execution of the Convex-MDP, i.e., the Next (X), Unbounded Until (U) and Cumulative
Reward (C) operators. Starting from a result presented by Puterman about MDPs [142], we prove
that there always exist optimal Markov deterministic (MD) adversaries and natures to verify these
properties. Intuitively, this means that we will need to determine only one optimal adversary and
nature, which will be chosen deterministically. Moreover, the Markov property means that we
need to consider only one step of the execution of the Convex-MDP, so the optimal adversary
will simply be one of the actions a ∈ A(s) available at state s ∈ S and the optimal nature will
be a point fas ∈ Fas in the convex set Fas associated to action a at state s. Formally, we can
compute Sets (4.5) - (4.8) by solving for each state s ∈ S the optimization problems on the left
in the following equations and by comparing (on the right) the computed optimal value with the
satisfaction thresholds p for the P operator and r for theR operator:

Pmax
s [ψ] = max

a∈A(s)
max
fas ∈Fas

Ps(a, f
a
s)[ψ] ⇒ Pmax

s [ψ]
?

≤ p (4.9)

Pmin
s [ψ] = min

a∈A(s)
min
fas ∈Fas

Ps(a, f
a
s)[ψ] ⇒ Pmin

s [ψ]
?

≥ p (4.10)

Emaxs [ρ] = max
a∈A(s)

max
fas ∈Fas

Es(a, fas)[ρ] ⇒ Emaxs [ρ]
?

≤ v (4.11)

Emins [ρ] = min
a∈A(s)

min
fas ∈Fas

Es(a, fas)[ρ] ⇒ Emins [ρ]
?

≥ v (4.12)

We prove the optimality of Markov deterministic adversaries and natures in the following
proposition.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 54

Proposition 4.1. Given a Convex-MDP MC and a target state st ∈ S, there always exist de-
terministic and memoryless adversaries and natures forMC that achieve the maximum/minimum
probability/reward of reaching st, if the following conditions hold:

• A is finite;

• the inner optimization in Problems (4.9) – (4.12) always attains its optimum ν∗s (a) over
the sets Fas ,∀s ∈ S,∀a ∈ A(s), i.e., there exists a finite feasible fas ∈ Fas such that
Ps(a, f

a
s)[ψ] = ν∗s (a) (Es(a, fas)[ρ] = ν∗s (a)).

Sketch of proof. The proof is divided into two parts. First, we use Banach fixed-point theo-
rem [142] to prove the existence of an adversary and a nature that achieve the maximum (min-
imum) probabilities of reaching st. Second, we prove that at least one such adversary and nature
is memoryless and deterministic. The proof extends the one in Puterman [142], Theorem 6.2.10.
We need to prove that Problems (4.9) – (4.12) always attain the maximum (minimum) over the
feasibility sets Fas , i.e., ∀s ∈ S,∀a ∈ A(s),∃fas ∈ Fas : ||fas ||2 < ∞, Ps(a, fas)[ψ] = ν∗s (a)
(Es(a, fas)[ψ] = ν∗s (a)). This is indeed true for all the convex sets Fas considered in this disserta-
tion. The interval and ellipsoidal models result in compact sets Fas on which Weierstrass theorem
holds. For the likelihood and entropy model we use the notion of consistency, which guarantees
the existence and uniqueness of a point in Fas where the optimum is attained.

The verification of temporal operators containing a finite bound on the number of steps of
execution of the Convex-MDP, i.e., the Bounded Until

(
U≤k), Instantaneous Reward

(
I=k

)
and Bounded Cumulative Reward

(
C≤k) operators, requires instead history-dependent determin-

istic (HD) adversaries and natures in the general case. As an example, we verify the property
φ = R ≤1 [I=3] for the Convex-MDP shown in Figure 4.1. In order to do so, we need to compute
Emaxs0

[I=3]. It is easy to see that the optimal adversary takes the self-loop b twice and then selects
action a, which yields expected instantaneous reward of 2. No Markov adversary can achieve such
reward value. Intuitively, the adversary may need to wait in some states until the time comes to
take a step towards states in which the reward is large.

As a consequence, the verification of temporal operators containing a finite time horizon will
require the unrolling of k steps of the execution of the Convex-MDP. For each step, following a
reasoning similar to the one in Proposition 4.1, it is possible to show that deterministic adversaries

s0

rs = 1
s1

rs = 2
s2

rs = 1
a

b
a

a

Figure 4.1: Example of a Convex-MDP for which only history-dependent adversaries are optimal.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 55

and natures are optimal. In conclusion, we will need to solve Problems (4.9) – (4.12) k times for
each state and then collect the results of the last iteration to compute Sets (4.5) - (4.8).

Remark 4.1. The careful reader might find counter-intuitive that the model checking of the Un-
til operator simply requires the computation of a Markov adversary and nature, while a history-
dependent adversary and nature are required for the Bounded Until operator, given that the former
can be interpreted as the limit version of the latter for k → +∞. The explanation comes from re-
alizing that the Until operator characterizes a steady-state property of the Convex-MDP, i.e., a
regime in which the adversary and nature always choose the same action and transition proba-
bility distribution at each step of the execution. As a consequence, only the steady-state action
and transition probability distribution need to be determined to correctly compute the satisfaction
probabilities. On the other hand, the Bounded Until operator characterizes a transient property,
i.e., a regime in which the adversary and nature might choose a different action or probability dis-
tribution in consecutive steps, depending on the dynamics of the Convex-MDP. Consequently, each
step of the execution of the model needs to be characterized to correctly compute the satisfaction
probabilities.

The same reasoning applies also to the Cumulative Reward and Bounded Cumulative Reward
operators.

4.1.3 New Results in Complexity
Using the results of Section 4.1.2, we developed model-checking routines to solve Problems (4.9) –
(4.12) for each temporal operator allowed in the PCTL syntax. These routines encode the transi-
tions ofMC into convex programs and solve them. From the returned solution, it is then possible
to determine the quantitative satisfaction probabilities Pmax/min

s [ψ] (Emax/mins [ρ]) ∀s ∈ S, which
get compared to the threshold p (v) to compute the sets Sat (P onp [ψ]) (Sat (R onv [ρ])).

To prove the results on algorithmic complexity for the developed model-checking routines, we
use the following key result from convex theory [124].

Proposition 4.2. Given the convex program:

min
x
f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · ,m
hj(x) = 0 j = 1, · · · , p

with x ∈ Rn, fi, i = 1, · · · ,m convex functions and hj, j = 1, · · · , p affine functions, the optimum
ν∗ can be found to within ±εd in time complexity that is polynomial in the size of the problem
(n,m, p) and log(1/εd).

We are now ready to state the main contribution of this chapter:

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 56

Theorem 4.1. Complexity of PCTL model checking for Convex-MDPs.

1. The problem of model checking a PCTL formula φ without any temporal operator with a
finite time horizon (i.e., only using the X , U , C operators) on a Convex-MDPMC of size
R is in P.

2. A formula φ′ containing temporal operators with a finite time horizon can be model checked
with time complexity O (poly(R)× pseudo−poly(Q)), i.e., polynomial in the size of MC
and pseudo-polynomial in the maximum time horizon kmax of the U≤k , I=k , C≤k

operators.

Sketch of proof. For the first part, we start by reminding from Chapter 3 that the lower bound on
the theoretical complexity of the problem of PCTL model checking for Convex-MDPs is P. We are
thus left to show that the upper-bound coincides with the lower-bound to establish the results on
theoretical complexity.

The proof is constructive. Our verification algorithm parses φ in time linear in the number
of operators of φ [72], computing the satisfiability set of each operator. For the non-probabilistic
operators, the satisfiability sets can be computed in time polynomial inR using set operations, i.e.,
set inclusion, complementation and intersection.

For the probabilistic and reward operators, we leverage Proposition 4.2 and prove that the
proposed verification routines:

1. solve a number of convex problems polynomial inR;

2. generate these convex programs in time polynomial inR.

The correctness and time-complexity for formulas involving the Next (X), Unbounded Until
(U) and Cumulative Reward (C) operators are formalized in Lemma 4.1, 4.3 and 4.7 (Sec-
tion 4.2.1, 4.2.3 and 4.2.6). It thus follows that the overall algorithm runs in time polynomial inR
and in the size of φ.

For the operators with a finite time horizon, we will need to unroll up to kmax steps of the
execution of the Convex-MDP and for each step solve the convex Problems (4.9) – (4.12), which
can be done in time polynomial in R. This explains the additional term in the formula of the
algorithmic complexity. We notice that the term pseudo-polynomial refers to the fact that the
algorithmic complexity is polynomial (exponential) in kmax if kmax is represented in unary (bi-
nary) format in computer memory. The detailed results about the Bounded Until

(
U≤k), Instan-

taneous Reward
(
I=k

)
and Bounded Cumulative Reward

(
C≤k) operators are formalized in

Lemma 4.2, 4.5 and 4.6 (Section 4.2.2, 4.2.4 and 4.2.5).

Referring to the material presented in Section 4.1.2, we can interpret the results in Theorem 4.1
as stating that the PCTL formulas that admit optimal Markov deterministic adversaries and natures
can be model checked in time polynomial in the size of the formula, while PCTL formulas that
require history-dependent deterministic adversaries and natures need additional algorithmic com-
plexity to unroll the execution of the analyzed Convex-MDP. For both classes of formulas, the
model-checking algorithm is instead polynomial in the sizeR of the Convex-MDP.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 57

4.2 Model-Checking Routines
In this section, we give details about the routines used to model check the quantitative operators
allowed in the PCTL syntax, i.e., the probability P and rewardR operators. We instead refer the
reader to the work by Forejt et al. [60] for details about the model-checking routines of the qual-
itative fragment of the logic, which rely on reachability analysis of the Convex-MDP underlying
graph and whose results do not change after introducing uncertainties in the model.

For brevity, we only consider properties in the form φ = P /p[ψ] (φ = R /v[ρ]), but the results
can trivially be extended to φ = P.p[ψ] (φ = R.v[ρ]) by replacing the optimization operator “max”
(“min”) with “min” (“max”) in the optimization problems derived in the following.

4.2.1 Next Operator
The Next operator X [φ1] computes the states from which it is possible to reach a state satisfying φ1

in one execution step. For example, if the Convex-MDP models an assembly line assigning a state
to each station of the line, the Next operator might be used to verify that all states are capable of
reaching a state further along in the assembly line within one execution step, to avoid backlogging.

Formally, properties for this operator are expressed as:

φ = P /p[X φ1]

The pseudocode of the model-checking routine for the Next operator is shown in Algorithm 4.1.
First, the set Syes = Sat(φ1) of all states satisfying φ1 is computed (line 3). Second (line 4−6), for
each state s ∈ S, the algorithm computes the satisfaction probabilities as defined in Equation (4.9)
considering only the immediate transitions from each state, i.e., by solving the problem:

Pmax
s [X φ1] = max

a∈A(s)
max
fas ∈Fas

∑
s′∈Syes

fass′ (4.13)

Algorithm 4.1: Next Operator.

1: InputMC = (S, S0, A,Ω,A,F , L), φ = P /p[X φ1]
2: Output The set y = Sat(φ)

3: Compute Syes = Sat(φ1)
4: for all s ∈ S do
5: Pmax

s [Xφ1] = max
a∈A(s)

max
fas ∈Fas

∑
s′∈Syes f

a
ss′

6: end for
7: y = {s ∈ S | Pmax

s / p}

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 58

In Problem (4.13), the inner optimization problem is a convex program since Fas is one of the
convex sets introduced in Section 2.1.3. Finally, the computed probabilities are compared to the
threshold p to select the states that satisfy φ (line 7).

Remark 4.2. The sets Fas can be expressed with models of uncertainty different from one another
∀s ∈ S,∀a ∈ A(s), since each instance of the inner optimization problem in Problem 4.13 gets
solved independently from the others.

Lemma 4.1. Model Checking of the Next Operator. The routine to verify the Next operator is
sound, complete and guaranteed to terminate with algorithmic complexity that is polynomial in the
sizeR ofMC .

Proof. From Problem (4.13) we see that there is one “inner” convex program for each state s ∈ S
and action a ∈ A(s), for a total of at most MN problems. Each problem has at most N unknowns,
representing the probability of transitioning from state s to state s′ for s′ ∈ Syes. Moreover,
it has N + 1 constraints to guarantee that the solution lies in the probability simplex, and Da

s

constraints to enforce the solution to be within the uncertainty set Fas . According to the definition
in Section 2.1, the total number of unknowns and constraints for each convex program is thus linear
in R. Using Proposition 4.2, each inner problem is solved in time polynomial in R. Soundness
and completeness also follow directly from Proposition 4.2, which states that the optimum of
Problem (4.13) can be found to within the desired accuracy ±εd in time linear in log(1/εd).

We verify φ = P ≤0.4[X ω] for the Convex-MDP shown in Figure 2.3. Trivially, Syes = {s2}.
Setting up the inner problem for state s0 and action a, we get:

P a,maxs0 = max
f01,f02

f02

s.t. 0.6 ≤ f01 ≤ 0.8; 0.2 ≤ f02 ≤ 0.5; f01 + f02 = 1

with solution P a,max
s0

[Xω] = 0.4. Repeating ∀a ∈ A, ∀s ∈ S, we get Pmax[Xω] = [0.4, 0.5, 0, 0.6],
so Sat(φ) = {s0, s2}.

4.2.2 Bounded Until Operator
The Bounded Until operator φ1 U≤k φ2 computes the states from which it is possible to reach a
state satisfying φ2 within k execution steps while visiting only states satisfying φ1. For example,
if the Convex-MDP models a hand-shaking protocol, the Bounded Until operator might be used to
verify that the “acknowledgment” packet gets sent within 3 steps of execution, while visiting only
states in which the correctness of the received packet is checked (e.g., parity check, packet origin,
etc.).

Formally, properties for this operator are expressed as:

φ = P /p[φ1 U≤k φ2]

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 59

Algorithm 4.2: Bounded Until Operator.

1: InputMC = (S, S0, A,Ω,A,F , L), φ = P /p[φ1 U≤k φ2]
2: Output The set y = Sat(φ)

3: Compute Syes, Sno and S?

4: for i = 1 : k do
5: for all s ∈ S? do
6: xis = max

a∈A(s)
max
fas ∈Fas

∑
s′ f

a
ss′x

i−1
s′

7: end for
8: end for
9: Pmax[φ1 U≤k φ2] = xk

10: y = {s ∈ S | Pmax
s / p}

The pseudocode of the model-checking routine for the Bounded Until operator is shown in
Algorithm 4.2. First, the sets:

Syes
def
= Sat(φ2)

Sno
def
= S \ (Sat(φ1) ∪ Sat(φ2))

S? = S \ (Sno ∪ Syes)

are precomputed using classical reachability routines over the Convex-MDP underlying graph [60]
(line 3). As explained in Section 4.1.2, Markov adversaries are not sufficient to maximize the
satisfaction probability Pmax[φ1 U≤k φ2], so we need to unroll the execution of the Convex-
MDP for k steps. This is done at lines 4 − 9, where the maximum satisfaction probabilities
Pmax[φ1 U≤k φ2] = xk = Gk(0) to satisfy φ are computed for all states s ∈ S applying k
times mapping G defined as:

xi = Gi(xi−1) =


0; 1; ∀s ∈ Sno; ∀s ∈ Syes;

0; ∀s ∈ S? ∧ i = 0;

max
a∈A(s)

max
fas ∈Fas

∑
s′

fass′x
i−1
s′ ∀s ∈ S? ∧ i > 0

(4.14)

and x−1 = 0 ∈ RN . Finally, the computed probabilities are compared to the threshold p to select
the states that satisfy φ (line 10).

Remark 4.3. The sets Fas can be expressed with models of uncertainty different from one another
∀s ∈ S,∀a ∈ A(s), since each optimization problem in Mapping (4.14) gets solved independently
from the others.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 60

Lemma 4.2. Model Checking of the Bounded Until Operator. The routine to verify the Bounded
Until operator is sound, complete and guaranteed to terminate with algorithmic complexity that is
polynomial in the sizeR ofMC and pseudo-polynomial in the time horizon k of U≤k .

Proof. For the first part, the proof is similar to the one for the Next Operator. The sets Syes, Sno

and S? are precomputed in time polynomial in R using conventional reachability routines over
the Convex-MDP underlying graph [60]. To apply Mapping (4.14), we need to solve O(MQ)
“inner” convex programs with Q = |S?|, i.e., one ∀s ∈ S?,∀a ∈ A(s). Each problem has at
most N unknowns, N + 1 +Da

s constraints, and it is solved in time polynomial inR. Further, the
pseudo-polynomial complexity in k comes from applying Mapping (4.14) k times.

We now study how the numerical errors intrinsic to the solution of a convex program propagate
across the k iterations of the algorithm. By Proposition 4.2, we can state that each inner problem
can be solved with accuracy ±εinn in time linear in log(1/εinn). On the other hand, we are left
to prove the soundness and completeness of the overall solution, since the εinn-approximations in
computing xi,∀i get propagated at each iteration, and might in principle result in a larger error at
the end of the procedure. We call εis the error accumulated at step i for state s, xis = xis,id + εis,
where xis,id is the solution with no error propagation, and εks the error in the final solution. Also,
fa,is ∈ Fas is the optimal solution of the inner problem at step i. We solve this difficulty by noting
that the optimal value of the the inner problem is computed by multiplying vector xi by fa,is ∈ Fas ,
with 1T fas = 1,∀fas ∈ Fas ,∀a ∈ A(s). At the first, second and ith iteration:

x1
s = x1

s,id + ε1s = fa,1s x0 + εinn

x2
s = fa,2s x1 + εinn = fa,2s

(
F a,1x0 + εinn1

)
+ εinn = fa,2s F a,1x0 + 2εinn

xis = fa,is xi−1 + εinn = fa,is
(
F a,i−1xi−1 + (i− 1)εinn1

)
+ εinn = fa,is F a,i−1 . . . F a,1x0 + iεinn

so εis increases linearly with i. The desired accuracy εd of the final solution can thus be guaranteed
by solving each inner problem with accuracy εinn = εd/k.

We verify property φ = P ≤0.6[ϑ U≤1ω] for the Convex-MDP shown in Figure 2.3. First, we
compute the sets Syes = {s2}, Sno = {s1} and S? = {s0, s3}. By applying Mapping (4.14) once,
we obtain Pmax[ϑ U≤1ω] = [0.4, 0, 1, 0.6] and Sat(φ) = {s0, s1, s3}.

4.2.3 Unbounded Until Operator
The Unbounded Until operator φ1 U φ2 computes the states from which it is possible to eventually
reach a state satisfying φ2 while visiting only states satisfying φ1. For example, if the Convex-
MDP models an electric power system with a backup unit, the Unbounded Until operator might
be used to verify that all the states in which the main power generator fails can be reached only by
visiting states in which the backup unit is operational, so that it can then be possible to switch to
the backup to maintain functionality of the overall system.

Formally, properties for this operator are expressed as:

φ = P /p[φ1 U φ2]

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 61

Algorithm 4.3: Unbounded Until Operator.

1: InputMC = (S, S0, A,Ω,A,F , L), φ = P /p[φ1 U φ2]
2: Output The set y = Sat(φ)

3: Compute Syes, Sno and S?

4: Pmax[φ1 U φ2] = ComputeProbabilities()
5: y = {s ∈ S | Pmax

s / p}

The pseudocode of the model-checking routine for the Unbounded Until operator is shown in
Algorithm 4.3. First, the sets

Syes
def
= Sat(φ2)

Sno
def
= S \ (Sat(φ1) ∪ Sat(φ2))

S? = S \ (Sno ∪ Syes)

are precomputed using classical reachability routines over the Convex-MDP underlying graph [60]
(line 3). Second, the maximum probability to satisfy φ, as defined in Equation (4.9), is computed
for all states s ∈ S by calling the procedure “ComputeProbabilities()” (line 4). Finally, the com-
puted satisfaction probabilities are compared to the threshold p to determine the satisfiability set
Sat(φ) (line 5).

In the rest of the section, we propose two implementations of the procedure “ComputeProb-
abilities()”, both returning the exact solution modulo rounding errors due to the machine finite
resolution. The first implementation is based on Convex Programming (CP), while the second is
based on Value Iteration (VI). We report both implementations since they differ in applicability
and runtime performance. The CP procedure has algorithmic complexity provably polynomial in
R, but it can only be applied to Convex-MDPs that satisfy Assumption 2.4. On the other hand, the
VI procedure can be applied to any convex model of uncertainty, but its algorithmic complexity
depends not only on the problem size but also on the problem data. In general, the user is invited to
use both procedures for the model checking of the problem at hand and select the one that performs
better for the specific scenario of interest.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 62

4.2.3.1 Convex Programming Procedure (CP)

We start from the classical Linear Programming (LP) formulation to solve the problem without the
presence of uncertainty [60]:

min
x

xT1

s.t. xs = 0; ∀s ∈ Sno; (4.15)
xs = 1; ∀s ∈ Syes;
xs ≥ xTfas ∀s ∈ S?, ∀a ∈ A(s)

where Pmax[φ1 U φ2] = x∗ is computed solving only one LP. Intuitively, Problem (4.15) selects
the optimal (in the worst-case sense) adversary by selecting the highest upper bound on the values
of the satisfaction probabilities xs across the actions a ∈ A(s) available at each state s ∈ S?.
Problem (4.15) has N unknowns and N − Q + MQ constraints, where Q = |S?| = O(N), so its
size is polynomial inR.

Since the Unbounded Until operator admits optimal Markov deterministic adversaries and na-
tures, as proved in Proposition 4.1, we can rewrite Problem (4.15) when uncertainties are added to
the model as:

min
x

xT1

s.t. xs = 0; ∀s ∈ Sno; (4.16)
xs = 1; ∀s ∈ Syes;
xs ≥ max

fas ∈Fas
(xTfas) ∀s ∈ S?, ∀a ∈ A(s)

i.e., we further maximize the lower bound on xs across the action range of the adversarial nature.
The decision variable of the inner problem is fas and its optimal value ν∗(x) is parametrized in the
outer problem decision variable x. Problem (4.16) can be written in convex form for an arbitrary
uncertainty model by replacing the last constraint with a set of constraints, one for each point inFas .
However, this approach results in infinite constraints if the set Fas contains infinitely many points,
as in the cases considered in this work, making the problem unsolvable. We solve this difficulty
using duality, which allows to rewrite Problem (4.16) with a number of additional constraints only
polynomial in the size R of the Convex-MDP. For each state s ∈ S? and action a ∈ A(s), we
replace the primal inner problem in the outer Problem (4.16) with its dual:

νas (x) = max
fas ∈Fas

xT fas ⇒ das(x) = min
λa
s∈Das

g(λas ,x) (4.17)

where λas is the (vector) Lagrange multiplier and Das is the feasibility set of the dual problem. In
the dual problem, the decision variable is λas and its optimal value das(x) is again parametrized in
the outer problem decision variable x. The dual function g(λas ,x) and the set Das are convex by
construction in λas for arbitrary uncertainty models, so the dual problem is convex. Further, since

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 63

f ,λ

ν(x) = d(x)

Dual Cost Function: g(λ,x)

Primal Cost Function: xT f

Figure 4.2: Graphical representation of the primal-dual transformation introduced in Equa-
tion 4.17. The optimal values of the primal ν(x) and dual d(x) problems coincide because strong
duality holds. Moreover, the dual cost function g(λ,x) always overestimates the primal optimal
value ν(x). We dropped the superscript a and subscript s for clarity.

also the primal problem is convex, strong duality holds, i.e., νas = das , ∀ x ∈ RN , because the
primal problem satisfies Slater’s condition [30] for any non-trivial uncertainty set Fas .

As shown in Figure 4.2, the cost function g(λas ,x) of the dual problem always overestimates
the primal optimal value νas (x) for any value of the dual variable λas . When substituting the primal
problems with the dual problems in Problem (4.16), we can thus drop the inner optimization oper-
ators because the outer optimization operator will nevertheless aim to find the least overestimates,
i.e., the dual optimal values das ,∀s ∈ S, a ∈ A(s), to minimize its own cost function. We get the
CP formulation:

min
x

xT1 min
x,λ

xT1

s.t. xs = 0; s.t. xs = 0; ∀s ∈ Sno; (4.18a)
xs = 1; ⇒ xs = 1; ∀s ∈ Syes; (4.18b)

xs ≥ min
λas∈Das

g (λas ,x) xs ≥ g (λas ,x) ; ∀s ∈ S?,∀a ∈ A(s); (4.18c)

λas ∈ Das ∀s ∈ S?,∀a ∈ A(s) (4.18d)

The decision variables of Problem (4.18) are both x and λas , so the CP formulation is convex only if
the dual function g(λas ,x) is jointly convex in λas and x. While this condition cannot be guaranteed
for arbitrary uncertainty models, we prove constructively that it holds for the ones considered in

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 64

the dissertation. For example, for the interval model, Problem (4.18) reads:

min
x,λa

s

xT1

s.t. xs = 0; ∀s ∈ Sno;
xs = 1; ∀s ∈ Syes; (4.19)

xs ≥ λa1,s − (f sa)
Tλa2,s + (f

s

a)
Tλa3,s; ∀s ∈ S?,∀a ∈ A(s);

x + λa2,s − λ
a
3,s − λ

a
1,s1 = 0; ∀s ∈ S?,∀a ∈ A(s);

λa2,s ≥ 0, λa3,s ≥ 0 ∀s ∈ S?,∀a ∈ A(s)

with λas = [λa1,s,λ
a
2,s,λ

a
3,s]. Problem (4.19) is an LP, so trivially jointly convex in x and λas .

Analogously, Problem (4.18) for the ellipsoidal model becomes:

min
xs,λa

s

xT

s 1

s.t. xs = 0 ∀s ∈ Sno

xs = 1 ∀s ∈ Syes (4.20)

xs ≥ λa1,s + λa2,s + ha
s
TEa

sλ
a
3,s ∀s ∈ S?,∀a ∈ A

‖λa3,s‖2 ≤ λa2,s ∀s ∈ S?,∀a ∈ A
x− λa1,s1− Ea

s
Tλa3,s = 0 ∀s ∈ S?,∀a ∈ A

which is a Second-Order Cone Program (SOCP), so again trivially jointly-convex in x and λas .
For the likelihood model, Problem (4.18) reads:

min
xs,λa

s

xT

s 1

s.t. xs = 0; ∀s ∈ Sno; (4.21a)
xs = 1; ∀s ∈ Syes; (4.21b)

xs ≥ λa1,s − (1 + βas)λa2,s+λ
a
2,s

∑
s′ h

a
ss′ log

(
λa2,sh

a
ss′

λa1,s−xs′

)
; ∀s ∈ S?, ∀a ∈ A(s); (4.21c)

λa1,s ≥ max
s′∈S

xs′ ; ∀s ∈ S?, ∀a ∈ A(s) (4.21d)

λa2,s ≥ 0 ∀s ∈ S?, ∀a ∈ A(s) (4.21e)

We prove its joint convexity in x and λas as follows. The cost function and Constraints (4.21a),
(4.21b), (4.21d) and (4.21e) are trivially convex. Constraint (4.21c) is generated by a primal-dual
transformation, so, according to convex theory, it is convex in the dual variables λas by construc-
tion. Moreover, convex theory also guarantees that the affine subtraction of x from λas preserves
convexity under the condition enforced by Constraint (4.21d), so we conclude that Problem (4.21)
is convex.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 65

Finally, for the entropy model, Problem (4.18) can be written as:

min
xs,λa

s

xT

s 1

s.t. xs = 0; ∀s ∈ Sno; (4.22a)
xs = 1; ∀s ∈ Syes; (4.22b)

xs ≥ λa1,s log
(∑

s′ qss′ exp
(
xs′
λa1,s

))
+ βsλ

a
1,s; ∀s ∈ S?,∀a ∈ A(s); (4.22c)

λas ≥ 0 ∀s ∈ S?, ∀a ∈ A(s) (4.22d)

We prove its joint convexity in x and λas as follows. The cost function and Constraints (4.22a),
(4.22b) and (4.22d) are trivially convex. Constraint (4.22c) is generated by a primal-dual trans-
formation, so, according to convex theory, it is convex in the dual variables λas by construction.
Moreover, we prove that it is also jointly convex in x by induction on the numberNS of next states
s′ ∈ S for state s. As a base case, NS = 1, and we can rewrite the constraint as:

xs ≥ λa1,s log (qss′) + xs′ + βsλ
a
1,s

which is affine in λas and x, so trivially jointly convex. We now assume that the constraint is
jointly convex for NS = n, and prove that it is jointly convex also for NS = n+ 1. This result
immediately follows from observing that increasing NS simply introduces one more term in the
summation, so if the constraint is jointly convex for NS = n it must remain jointly convex also
for NS = n + 1, since an affine addition preserves convexity according to convex theory. We
conclude that Problem (4.22) is convex.

For general Convex-MDPs, we repeat here Assumption 2.4:

Assumption 4.1. Joint-Convexity. Given a Convex-MDP MC , for all convex uncertainty sets
Fas ∈ F , the dual function g(λas ,x) in Equation (4.17) is jointly-convex in both λas and x.

According to Proposition 4.2, Problem (4.18) can thus be solved in polynomial time. Also for
this formulation, Pmax[φ1 U φ2] = x∗, so all the satisfaction probabilities can be computed by
solving only one convex problem.

Remark 4.4. We note that we can combine models of uncertainty different from one another within
a single CP formulation, since each instance of the dual problem in Equation (4.17) is indepen-
dent from the others. Moreover, according to Assumption 2.1, all uncertainty sets Fas ∈ F , ∀s ∈
S,∀a ∈ A(s) are independent from one another, so the convexity of the CP formulation is pre-
served. As an example, if both the interval and ellipsoidal models are used, the overall CP formu-
lation is an SOCP.

We can now summarize the results of this section in the following Lemma.

Lemma 4.3. Model Checking of the Unbounded Until Operator Using the CP Procedure. The
CP procedure to verify the Unbounded Until operator is sound, complete and guaranteed to termi-
nate with algorithmic complexity polynomial in the sizeR ofMC , ifMC satisfies Assumption 4.1.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 66

Proof. The CP procedure solves only one convex program to compute the satisfaction probabilities
Pmax[φ1 U φ2] = x∗ of all states s ∈ S. This convex program gets generated in time polynomial
in R as follows. We formulate Constraints (4.18c) and (4.18d) for all s ∈ S? and a ∈ A(s),
i.e., O(MQ) constraints, where Q = |S?| = O(N). They are derived from MQ primal-dual
transformations as in Equation (4.17). Each primal inner problem has N unknowns, N + 1 con-
straints to represent the probability simplex and Da

s constraints to represent the uncertainty set
Fas . From duality theory, the corresponding dual inner problem has N + 1 + Da

s unknowns and
2N + 1 +Da

s constraints. Overall, Problem (4.18) has O ((N + 1 +D)MQ) more unknowns and
O ((2N + 1 +D)MQ) more constraints of Problem (4.15), so its size is still polynomial in R.
Further, if MC satisfies Assumption 4.1, Problem (4.18) is convex. Using Lemma 4.2, we then
conclude that it can be solved in time polynomial in R. Finally, when strong duality holds for the
transformation in Equation (4.17), soundness and completeness of the final solution are preserved
because the dual and primal optimal value of each inner problem are equivalent.

We verify φ = P ≥0.4[ϑ U ω] on the Convex-MDP shown in Figure 2.3. Problem (4.18)
written with the data of the model has 19 variables and 11 constraints (attached in Appendix A).
The solution reads: Pmin[ϑ U ω] = [0.2, 0, 1, 0.46], and, in conclusion, Sat(φ) = {s2, s3}.

4.2.3.2 Value Iteration Procedure (VI)

In this section, we present an alternative procedure for the model checking of the Unbounded Until
operator based on Value Iteration (VI). While the CP procedure formulates a single convex program
to compute the satisfaction probabilities all at once, the VI procedure brakes the overall problem
into multiple subproblems and iterates through them until it reaches the solution. Intuitively, the
procedure runs the iteration introduced for the Bounded Until operator (Mapping (4.14)) until the
desired level of accuracy εd in the estimation of the satisfaction probabilities Pmax[φ1 U φ2] is
achieved. In order to prove the soundness and correctness of the procedure, we will first show
that the procedure converges to the exact solution in the limit of infinite iterations. We will then
discuss exiting conditions to achieve the desired accuracy εd in the solution and how to handle
error propagation across iterations.

To prove the soundness and completeness of the procedure, we will use the following results:

Definition 4.2. Contraction. Let (B, d) be a metric space and g : B → B a function. Function g
is a contraction if there is a real number θ such that 0 ≤ θ < 1 and

d (g(u), g(v)) ≤ θd(u, v) ∀u, v ∈ B

Proposition 4.3. Contraction Mapping. Let (B, d) be a complete metric space and g : B → B a
contraction. Then, for x ∈ B there exists a unique point x∗ ∈ B such that:

g(x∗) = x∗ and lim
k→+∞

gk(x) = x∗

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 67

In particular, we use the same mapping g = G defined in Mapping (4.14) and repeated here for
convenience:

xi = Gi(xi−1) =


0; 1; ∀s ∈ Sno; ∀s ∈ Syes;

0; ∀s ∈ S? ∧ i = 0;

max
a∈A(s)

max
fas ∈Fas

∑
s′

fass′x
i−1
s′ ∀s ∈ S? ∧ i > 0

(4.23)

with the sets Sno, Syes and S? defined in Section 4.2.3.
To evaluate how distant from the exact solution the estimate at the current iteration is, we use

the infinity norm ‖ . ‖∞ of a vector v ∈ RN .

Definition 4.3. Infinity Norm. Given a vector v ∈ RN , the infinity norm of v is defined as:

‖ . ‖∞ = max (| v1 |, · · · , | vN |)

We can now prove that:

Proposition 4.4. Mapping G is a contraction over the metric space (RN , ‖ . ‖∞).

Sketch of proof. The proof is based on results presented in [15, 24, 172] adapted to account for
uncertainties in the model. The full derivation and the constructive steps to compute θ from the
Convex-MDP data can be found in Appendix B. The value of θ is derived in Equation (B.4).

We now state the main results of this section:

Lemma 4.4. Model Checking of the Unbounded Until Operator Using the VI Procedure. The
VI procedure to verify the Unbounded Until operator is sound and complete, i.e.,

Pmax[φ1 U φ2] = lim
k→+∞

Gk(x) (4.24)

Proof. To prove soundness and completeness, we prove that the fixed point x∗ computed by repeat-
edly applying Mapping (4.23) converges to an optimal adversary and nature. By contradiction, if
x∗ was not optimal, the optimization problems in Mapping (4.23) would find a new optimal point,
with no need to keep track of the iteration history because Proposition 4.1 states that there exists
a Markov optimal adversary and nature. However, this would contradict Lemma 4.4, which states
that Mapping (4.23) is a contraction. We conclude that x∗ is optimal.

Remark 4.5. The VI routine can handle arbitrary models of uncertainty, in particular also ones
that do not satisfy Assumption 4.1, because the inner convex optimization problem in Mapping (4.23)
computes the optimal adversarial natures at iteration i, fa,is , using the values of the satisfaction
probabilities xi−1 computed in the previous iteration. As a consequence, we do not need to require
joint-convexity in fas and x to solve the optimization problem.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 68

The higher flexibility in handling diverse models of uncertainty comes at a cost. In fact, we
will prove next that the required number of iterations K to compute the satisfaction probabilities
Pmax[φ1 U φ2] = xK within the desired accuracy±εd depends not only on the problem sizeR but
also on the problem data, i.e., the numerical values of the estimated transition probabilities.

We start by noting that the result in Proposition 4.4 allows us to bound the error in the estimation
of Pmax[φ1 U φ2] at the end of the ith iteration by:

εi = ‖Pmax[φ1 U φ2]− xi‖∞ ≤ ε0
θi

1− θ

where ε0 is the initial error in the estimation which can be trivially bounded by ε0 ≤ 1. We can
thus obtain a sufficient condition to guarantee that the accuracy in the solution is bounded by ±εd:

εi ≤ εd ⇒ | Pmax
s [φ1 U φ2]− xi |≤ εd, ∀s ∈ S?

The resulting bound K on the number of iterations is:

θK

1− θ
≤ εd ⇒ K ≥ log[εd(1− θ)]

log(θ)
(4.25)

Since the contraction parameter θ depends on the model data, as derived in Appendix B (Equa-
tion (B.4)), we conclude that also the number of iterations K required to converge to the desired
accuracy εd varies in general with the model data.

In a practical application, the computation of the contraction parameter θ and the correspond-
ing required number of iterations K is quite sensitive to numerical errors, since the evaluation of
Equation (4.25) involves the computation of the ratio of the logarithms of two small numbers. As a
consequence, in our software implementation of the VI procedure, we used a different stopping cri-
terion based on relative tolerance. In particular, the procedure stops the iteration of Mapping (4.23)
when:

δr > max
s∈S?

(
|xis − xi−1

s |
xis

)
(4.26)

The required δr to achieve accuracy εd, i.e., δ∗r , depends on the Convex-MDP model and is de-
termined by trial-and-error, a common practice in iterative procedures (e.g., the ODE solver in a
circuit simulator). To determine δ∗r , we compute several approximations of Pmax[φ1 U φ2] while
decreasing δr by steps of 10×. We heuristically stop when no probability Pmax

s [φ1 U φ2],∀s ∈ S?,
changes more than εd after checking Criterion (4.26) for δ∗r and δ∗r/100. Finally, errors in solv-
ing the inner problems, as introduced in Section 4.2.2, are propagated across iterations. We call
εinn the accuracy in solving one iteration of the inner problem. If the VI procedure exits after
K iterations and εd < K × εinn, the procedure needs to be run again after decreasing εinn to,
approximately, εinn < εd/K.

We use the VI routine with εd = 10−3 to verify again φ = P≥0.4[ϑ U ω] in the example in
Figure 2.3. After 5 iterations, we get Pmin[ϑ U ω] = [0.2, 0, 1, 0.46] and Sat(φ) = {s2, s3}.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 69

Algorithm 4.4: Instantaneous Reward Operator

1: InputMC = (S, S0, A,Ω,A,F , L), φ = R /v[I=k]
2: Output The set y = Sat(φ)

3: Initialize x0 = rs
4: for i = 1 : k do
5: for all s ∈ S do
6: xis = max

a∈A(s)
max
fas ∈Fas

∑
s′ f

a
ss′x

i−1
s′

7: end for
8: end for
9: Emax[I=k] = xk

10: y = {s ∈ S | Emaxs / v}

4.2.4 Instantaneous Reward Operator
The Instantaneous Reward operator I=k computes the expected reward of the state entered after
k steps of the execution of the Convex-MDP. For example, if the Convex-MDP models an I/O
queue for a wireless node and the reward structure represents the queue size in each state, then the
instantaneous reward operator may compute the maximum expected size of the queue after the first
k = 2 rounds of the algorithm to build the network backbone.

Formally, properties for this operator are expressed as:

φ = R r
/v[I=k]

The pseudocode of the model-checking routine for the Instantaneous Reward operator is shown
in Algorithm 4.4. First, we initialize the vector x0 ∈ RN with the value of the state reward function
rs evaluated for each state s ∈ S (line 3). As explained in Section 4.1.2, Markov adversaries are
not sufficient to maximize the expected instantaneous reward Emax[I=k], so we need to unroll
the execution of the Convex-MDP for k steps. This is done at lines 4 − 9 where the maximum
instantaneous rewards Emax[I=k] = xk = Jk(x0) are computed for all states s ∈ S applying k
times mapping J defined as:

xi = J(xi−1) = max
a∈A(s)

max
fas ∈Fas

∑
s′

fass′x
i−1
s′ ∀s ∈ S (4.27)

Finally, the computed instantaneous rewards are compared to the threshold v (line 10).

Remark 4.6. The sets Fas can be expressed with models of uncertainty different from one another
∀s ∈ S,∀a ∈ A(s), since each inner optimization problem in Mapping (4.27) gets solved indepen-
dently from the others.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 70

Lemma 4.5. Model Checking of the Instantaneuous Reward Operator. The routine to verify the
Instantaneous Reward operator is sound, complete and guaranteed to terminate with algorithmic
complexity that is polynomial in the sizeR ofMC and pseudo-polynomial in the time horizon k of
I=k .

Proof. The proof follows the same reasoning of the one for the Bounded Until operator in Sec-
tion 4.2.2 and it is not repeated for brevity.

We verify property φ = R ≤0.95[I=1] for the Convex-MDP shown in Figure 2.3. First, we
initialize x0 = [0, 1, 1, 0]. Applying once Mapping (4.27), we get Emax[I=1] = [1, 1, 1, 0.9] and
Sat(φ) = {s3}.

4.2.5 Bounded Cumulative Reward Operator
The Bounded Cumulative Reward operator C≤k computes the expected reward accumulated
during k steps of the execution of the Convex-MDP. For example, if the Convex-MDP models a
computation system and the reward structure represents the energy spent to execute an instruction,
then the Bounded Cumulative Reward operator may compute the total expected energy spent after
executing k = 100 instructions.

Formally, properties for this operator are expressed as:

φ = R r
/v[C≤k]

The pseudocode of the model-checking routine for the Bounded Cumulative Reward operator
is shown in Algorithm 4.5. First, we initialize the vector x0 = 0 ∈ RN (line 3). As explained in
Section 4.1.2, Markov adversaries are not sufficient to maximize the expected bounded cumulative

Algorithm 4.5: Bounded Cumulative Reward Operator

1: InputMC = (S, S0, A,Ω,A,F , L), φ = R /v[C≤k]
2: Output The set y = Sat(φ)

3: Initialize x0 = 0
4: for i = 1 : k do
5: for all s ∈ S do
6: xis = rs(s) + max

a∈A(s)

[
ra(s, a) + max

fas ∈Fas

∑
s′ f

a
ss′x

i−1
s′

]
7: end for
8: end for
9: Emax[C≤k] = xk

10: y = {s ∈ S | Emaxs / v}

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 71

reward Emax[C≤k], so we need to unroll the execution of the Convex-MDP for k steps. This is
done at lines 4− 9 where the maximum bounded cumulative rewards Emax[C≤k] = xk = Lk(x0)
are computed for all states s ∈ S applying k times mapping L defined as:

xi = L(xi−1) = rs(s) + max
a∈A(s)

[
ra(s, a) + max

fas ∈Fas

∑
s′

fass′x
i−1
s′

]
∀s ∈ S (4.28)

Finally, the computed bounded cumulative rewards are compared to the threshold v (line 10).

Remark 4.7. The sets Fas can be expressed with models of uncertainty different from one another
∀s ∈ S,∀a ∈ A(s), since each inner optimization problem in Mapping (4.28) gets solved indepen-
dently from the others.

Lemma 4.6. Model Checking of the Bounded Cumulative Reward Operator. The routine to
verify the Bounded Cumulative Reward operator is sound, complete and guaranteed to terminate
with algorithmic complexity that is polynomial in the sizeR ofMC and pseudo-polynomial in the
time horizon k of C≤k .

Proof. The proof follows the same reasoning of the one for the Bounded Until operator in Sec-
tion 4.2.2 and it is not repeated for brevity.

We verify property φ = R ≤3[C≤2] for the Convex-MDP shown in Figure 2.3. First, we ini-
tialize x0 = [0, 0, 0, 0]. After the first (second) iteration of Mapping (4.28), we get x1 = [1, 2, 1, 2]
(x2 = [2.8, 3.5, 3, 3.6]). We can thus set Emax[C≤2] = x2 and Sat(φ) = {s0, s2}.

4.2.6 Cumulative Reward Operator
The Cumulative Reward operator C φ1 computes the expected reward accumulated during the
execution of the Convex-MDP before reaching a state satisfying φ1. For example, if the Convex-
MDP models an I/O queue for a wireless node and the reward structure represents the number of
attempted transmissions, then the cumulative reward operator may compute the expected number
of retransmissions before successfully sending a packet across the lossy wireless channel.

Formally, properties for this operator are expressed as:

φ = R r
/v[C φ1]

The pseudocode of the model-checking routine for the Cumulative Reward operator is shown
in Algorithm 4.6. First, the sets

Syes
def
= Sat(φ1)

S∞
def
= S \ {s ∈ S | ∀π ∈ Πs, ∃j ∈ N s.t. π[j] ∈ Syes}

S? def
= S \ (S∞ ∪ Syes)

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 72

Algorithm 4.6: Cumulative Reward Operator.

1: InputMC = (S, S0, A,Ω,A,F , L), φ = R /v[C φ1]
2: Output The set y = Sat(φ)

3: Compute Syes and S∞

4: Emax[C φ] = ComputeRewards()
5: y = {s ∈ S | Emaxs / v}

are precomputed using classical reachability routines over the Convex-MDP underlying graph [60]
(line 3). In particular, the set S∞ contains the states s ∈ S starting from which it exists at least
one path in the execution of the Convex-MDP which does not visit states satisfying φ1. Since the
optimal adversary would select that path to maximize the expected reward, the maximum expected
reward for the states s ∈ S∞ is infinite, i.e., EmaxS∞ [C φ1] = +∞. We thus preprocess the Convex-
MDP underlying graph to disconnect all states s ∈ S∞. Second, the maximum expected rewards
to satisfy φ, as defined in Equation (4.11), are computed for all states s ∈ S \ S∞ by calling the
procedure “ComputeRewards()” (line 4). Finally, the computed probabilities are compared to the
threshold v to determine the satisfiability set Sat(φ) (line 5).

Similarly to the analysis of the Unbounded Until operator, in the rest of the section we propose
two implementations of the procedure “ComputeRewards()”, both returning the exact solution
modulo rounding errors due to the machine finite resolution. The first implementation is based
on Convex Programming (CP), while the second is based on Value Iteration (VI). We report both
implementations since they differ in applicability and runtime performance. The CP procedure has
algorithmic complexity provably polynomial inR, but it can only be applied to Convex-MDPs that
satisfy Assumption 2.4. On the other hand, the VI procedure can be applied to any convex model
of uncertainty, but its algorithmic complexity depends not only on the problem size but also on the
problem data. In general, the user is invited to use both procedures for the model checking of the
problem at hand and select the one that performs better for the specific scenario of interest.

Since most of the material in this section can be derived following the same steps already
presented about the verification of the Unbounded Until operator in Section 4.2.3, in the following
we only report the final results for each procedure. The reader is invited to refer to Section 4.2.3
for a complete derivation.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 73

4.2.6.1 Convex Programming Procedure (CP)

We start from the classical Linear Programming (LP) formulation to solve the problem without the
presence of uncertainty:

min
x

xT1

s.t. xs = 0; ∀s ∈ Syes; (4.29)

xs ≥ rs(s) + ra(s, a) + xTfas ∀s ∈ S?,∀a ∈ A(s)

where Emax[C φ1] = x∗ is computed solving only one LP. Intuitively, Problem (4.29) selects the
optimal (in the worst-case sense) adversary by selecting the highest upper bound on the values of
the expected rewards xs across the actions a ∈ A(s) available at each state s ∈ S?. The main
difference with respect to the formulation for the Unbounded Until operator in Problem (4.15) is
the addition of the reward functions rs and ra evaluated ∀s ∈ S,∀a ∈ A(s).

Since the Cumulative Reward operator admits optimal Markov deterministic adversaries and
natures, as proved in Proposition 4.1, we can rewrite Problem (4.29) when uncertainties are added
to the model as:

min
x

xT1

s.t. xs = 0; ∀s ∈ Sno; (4.30)
xs = 1; ∀s ∈ Syes;
xs ≥ rs(s) + ra(s, a) + max

fas ∈Fas
(xTfas) ∀s ∈ S?,∀a ∈ A(s)

i.e., we further maximize the upper bound on the expected rewards x across the action range of the
adversarial nature.

Following the same steps presented in Section 4.2.3.1, we substitute all inner primal problems
in Problem (4.30) with the corresponding dual problems. Thanks to strong duality, we are guaran-
teed that this transformation does not change the result of the outer optimization problem. We then
drop all the dual inner optimization operators and obtain the CP formulation:

min
x,λ

xT1

s.t. xs = 0; ∀s ∈ Syes; (4.31)

xs ≥ rs(s) + ra(s, a) + g (λas ,x) ; ∀s ∈ S?,∀a ∈ A(s);

λas ∈ Das ∀s ∈ S?,∀a ∈ A(s)

where λas is the (vector) Lagrange multiplier, g (λas ,x) is the cost function of the dual problem and
Das is the feasibility set for each dual problem.

In general, the CP procedure can only be applied to Convex-MDPs that satisfy Assumption 2.4,
repeated here for convenience.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 74

Assumption 4.2. Joint-Convexity. Given a Convex-MDP MC , for all convex uncertainty sets
Fas ∈ F , the dual function g(λas ,x) in Problem (4.31) is jointly-convex in both λas and x.

Remark 4.8. We note that we can combine models of uncertainty different from one another within
a single CP formulation, since each instance of the dual function g(λas ,x) in Problem (4.31) is
independent from the others. Moreover, according to Assumption 2.1, all uncertainty sets Fas ∈
F , ∀s ∈ S,∀a ∈ A(s) are independent from one another, so the convexity of the CP formulation
is preserved. As an example, if both the interval and ellipsoidal models are used, the overall CP
formulation is an SOCP.

We can now summarize the results of this section in the following Lemma.

Lemma 4.7. Model Checking of the Cumulative Reward Operator Using the CP Procedure.
The CP procedure to verify the Cumulative Reward operator is sound, complete and guaranteed
to terminate with algorithmic complexity polynomial in the sizeR ofMC , ifMC satisfies Assump-
tion 4.2.

Sketch of proof. The proof follows the same reasoning of the one for Lemma 4.3 in Section 4.2.3.1.

We verify φ = R ≤3[C ω] on the Convex-MDP shown in Figure 2.3 using the CP procedure.
The solution reads: Emax[C ω] = [5, 2, 0, 5], and, in conclusion, Sat(φ) = {s1, s2}.

4.2.6.2 Value Iteration Procedure (VI)

In this section, we present an alternative procedure for the model checking of the Cumulative
Reward operator based on Value Iteration (VI). Analogously to the description of the CP procedure,
also the derivation of the VI procedure closely follows the steps described for the Unbounded Until
operator in Section 4.2.3.2. We thus report here only the main results.

Intuitively, the VI procedure unrolls the execution of the Convex-MDP until all the existing
paths to reach the set of states satisfying φ1 have been explored, so that the expected reward accu-
mulated before reaching the target states can be computed. Since in general there might exist paths
of arbitrary length to reach the target states, the expected reward can only be approximated. We
will call εd the desired level of accuracy in the estimation of the expected reward Emax[Cφ1]. In the
following, we prove the soundness and correctness of the procedure by showing that it converges
to the exact solution in the limit of infinite iterations. We refer the reader to Section 4.2.3.2 for a
discussion on the exiting conditions to achieve the desired accuracy εd.

We use the following mapping L:

xi = L(xi−1) =


+∞ s ∈ S∞

0 ∀s ∈ Syes

rs(s) + max
a∈A(s)

[
ra(s, a) + max

fas ∈Fas

∑
s′ f

a
ss′x

i−1
s′

]
∀s ∈ S?

(4.32)

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 75

with the sets Syes, S∞ and S? defined in Section 4.2.6.1.
We can now prove that:

Proposition 4.5. Mapping L is a contraction over the metric space (RN , ‖ . ‖∞).

Sketch of proof. The proof closely follows the one for the Unbounded Until operator in Ap-
pendix B.

We now state the main result of this section:

Lemma 4.8. Model Checking of the Cumulative Reward Operator Using the VI Procedure.
The VI procedure to verify the Cumulative Reward operator is sound and complete, i.e.,

Emax[C φ1] = lim
k→+∞

Lk(x) (4.33)

Sketch of proof. The proof closely follows the one for the Unbounded Until operator in Sec-
tion 4.2.3.2.

We use the VI routine with εd = 10−3 to verify again φ = R ≤3[C ω] in the example in Figure
2.3. After 16 iterations, we get Emax[C ω] = [4.997, 1.999, 0, 4.998] and Sat(φ) = {s1, s2}.

4.2.7 Summary of the Properties of the Model-Checking Routines
We conclude the section with a summary of the main properties of the presented model-checking
routines. We refer to Table 4.1. For each operator defined in the PCTL syntax, we list in columns
2 − 3 whether the optimal (in the worst-case sense) adversary and nature are Markov or History-
Dependent (for all operators, there exist a deterministic optimal adversary and nature). In column
4 − 5, we report the algorithmic complexity results for the model-checking routine. In particular,
we differentiate between complexity in the size of the Convex-MDP model (R) and in the size of
the PCTL formula Q.

Table 4.1: Summary of the Properties of the Model-Checking Routines

Operator
Optimal Adversary and Nature Algorithmic Complexity
Markov History-Dependent inR in Q

X
√

- poly poly
U≤k X

√
poly pseudo-poly(k)

U
√

- poly poly
I=k X

√
poly pseudo-poly(k)

C≤k X
√

poly pseudo-poly(k)
C

√
- poly poly

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 76

PRISM
Model Parser

Data-structure creation

Convex-MDP Model Checker
Formula Parser

Formulate and solve
convex problems
X ,U≤k ,U (VI)
I=k ,C≤k ,C (VI)

MOSEK
Solve convex problems

U (CP), C (CP)

Figure 4.3: Block-diagram of the interfaces among the different software packages used to im-
plement the verification algorithm. For each solver, we also list the supported routines for the
verification of PCTL operators.

4.3 Experimental Evaluation of the Model Checker
The main focus of this dissertation is the application of the developed algorithms to problems of
practical relevance. Two factors need to be considered to achieve this goal. First, the development
of Convex-MDP models of relevant systems for which modeling uncertainties in the transition
probabilities do have an impact in the model-checking results. Second, the runtime of the verifica-
tion algorithm needs to scale acceptably also when running on models of size that reflects actual
applications. In this section, we first present an overview of the software implementation of the
developed algorithms. We then analyze three case studies of systems of practical importance to
assess the impact of uncertainties on the verification results and to experimentally evaluate the
runtime performance of the proposed model checker. We will instead present the newly devel-
oped model of the performance of a car driver and results about the verification of its properties in
Chapter 5.

4.3.1 Overview of the Software Implementation
We implemented the proposed verification algorithm in Python, and interfaced it with PRISM [99]
to extract information about the Convex-MDP model. We used MOSEK [122] to solve the LPs
and SOCPs generated for the verification of Convex-MDPs with interval and ellipsoidal models
of uncertainties, while we implemented customized numerical solvers for the other models of
uncertainty. The core software implementation in Python uses PRISM as the front-end tool to
read in the model description. It then formulates the convex problems required to model check the
properties of interest. Finally, the convex problems are solved either using the internal solvers or
the external back-end solver MOSEK, depending on the operator to be verified and on the adopted
model of uncertainty. Figure 4.3 shows a block diagram of the interfaces among the different
software packages.

The code implementing the verification routines is reported in Appendix C. It exploits the
Object-Oriented Programming (OOP) paradigm to maximize the code reuse across the different
models of uncertainty and ease the development of convex-programming solvers for additional
models of uncertainties not considered in this dissertation. In particular, only the routines to for-

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 77

Class Convex-MDP
Traverse formula parse tree

Manipulate model data-structures
Implement model-checking routines for all PCTL operators

Compute optimal adversary
Process model-checking results

Class Interval-MDP
Formulate convex problems

Compute optimal nature

Class Ellipsoidal-MDP
Formulate convex problems

Compute optimal nature

Class Likelihood-MDP
Formulate convex problems

Compute optimal nature

Class Entropy-MDP
Formulate convex problems

Compute optimal nature

Figure 4.4: Class inheritance diagram for the Python implementation of the model-checking al-
gorithm. Each block represents a class and the arrow points to the class which inherits. For each
class, we also list the implemented functionality.

mulate and solve the inner optimization problems in Problems (4.9) – (4.12), for the computation
of the optimal nature, are customized to each uncertainty model. Conversely, the code takes ad-
vantage of the weakly-typed data structures in Python to share all the other functionalities across
all models of uncertainty, including the routines to formulate and solve the outer optimization
problems in Problems (4.9) – (4.12) for the computation of the optimal adversary. We report a
block-diagram of the class inheritance hierarchy in Figure 4.4.

The implemented tool is available open-source at [1]. At the time of writing, the verification
algorithms are also being integrated within PRISM. The goals of such an effort are twofold. First,
we aim to exploit the memory-efficient data-structures used in PRISM to further increase the scal-
ability of the proposed approach. Second, we believe that the integration within the state-of-the-art
tool for the verification of stochastic systems will ease the adoption of the techniques proposed
in this dissertation also by users already familiar with the PRISM working environment. The in-
terested reader is invited to refer to the PRISM website [2] for more details about the date of the
public distribution or to contact the author of this dissertation directly.

4.3.2 Case Studies
We tested the implemented model checker by analyzing the following three case studies:

• a distributed stochastic consensus protocol where one of the participating processes is faulty
or behaving maliciously because under a security attack;

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 78

• a wireless dynamic configuration protocol for IPv4 addresses operating across a lossy phys-
ical link;

• the dining philosopher problem, which can be used to model electronic systems sharing a
limited resource (e.g., data memory).

The goals of these experiments are two-fold:

1. quantitatively evaluate the impact of uncertainty on the results of verification of PCTL prop-
erties of Convex-MDPs;

2. assess the runtime scalability of the proposed approach to problems of increasing size.

The runtime data were obtained on a 2.4 GHz Intel Xeon with 32GB of RAM.

4.3.2.1 Distributed Consensus Protocol

Consensus problems arise in many distributed environments, where a group of distributed pro-
cesses attempt to reach an agreement about a decision to take by accessing some shared entity. A
consensus protocol ensures that the processes will eventually take the same decision, even if they
start with initial guesses that might differ from one another.

We analyze the randomized consensus protocol first presented by Aspnes and Herlihy [13]
and subsequently further analyzed by Kwiatkowska et al. [101]. The protocol guarantees that
the processes return a preference value v ∈ {1, 2}, with probability parameterized by a process
independent value R (R ≥ 2) and the number of processes P participating in the protocol. The
processes communicate with one another by accessing a shared counter of value c. The protocol
proceeds in rounds. At each round, a process flips a local coin, increments or decrements the
shared counter depending on the outcome of the coin flip and then reads its value c. If c ≥ PR
(c ≤ −PR), the process chooses v = 1 (v = 2). Note that the larger the value of R, the longer
it takes on average for the processes to reach a decision. Non-determinism is used to model the
asynchronous access of the processes to the shared counter, so the overall protocol is modeled as
an MDP.

We verify the property Agreement: all processes must agree on the same decision, i.e., choose
a value v ∈ {1, 2}. We compute the minimum probability of Agreement and compare it against
the theoretical lower bound (R−1)/2R, as derived by Aspnes and Herlihy [13]. In PCTL syntax:

P min [ψ] := Pmin
s0

[F ({finished} ∧ {all coins equal 1})] (4.34)

where F [φ] := True U φ and s0 is the state representing the beginning of the protocol.
While previous work [101] analyzed the protocol properties assuming an ideal behavior from

all participating processes, we consider the case where one of the processes is unreliable or ad-
versarial, i.e., it throws a biased coin instead of a fair coin. Specifically, the probability of either
outcome lies in the uncertainty interval [(1−u)p0, (1+u)p0], where p0 = 0.5 according to the pro-
tocol. This setting is relevant to analyze the protocol robustness when a process acts erroneously

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 79

Figure 4.5: The figure shows the value of Equation (4.34) as a function of the value of parameter
R while varying the uncertainty level u.

due to a failure or a security breach. In particular, our approach allows to study attacks that de-
liberately hide under the noise threshold of the protocol. In such attacks, the compromised node
defers agreement by producing outputs whose statistical properties are within the noise tolerance
of an uncompromised node, so that it is harder to detect its malicious behavior.

Figure 4.5 shows the effect of different levels of uncertainty on the computed probabilities
when P = 4 processes participate in the protocol. With no uncertainty (u = 0), Pmin

s0
[ψ] increases

asR increases, because a largerR drives the decision regions further apart, making it more difficult
for the processes to decide on different values of v. As R goes to infinity, Pmin

s0
[ψ] approaches the

theoretical lower bound limR→∞(R − 1)/2R = 0.5. However, when uncertainties are added to
the model, the behavior changes substantially. For a small level of uncertainty (u = 1%), the
satisfaction probability Pmin

s0
[ψ] reaches the maximum for R = 4 and it then soon decreases for

increasing R. In this scenario, the proposed modeling and verification approaches can thus be
used to determine the value of the system parameter R which maximizes system performance.
With a larger uncertainty (e.g., u = 15%), Pmin

s0
[ψ] instead goes monotonically to 0. A possible

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 80

Figure 4.6: The figure reports the results of the analysis of the scalability of the CP procedure. In
particular, it shows the trends of the size N + T of the analyzed Convex-MDP (top), the sum of
variables and constraints of the C + V formulated convex program (center) and the runtime of the
model-checking algorithm (bottom), as a function of the model parameter R.

explanation is that the faulty process has more opportunities to deter agreement for a high value of
R, since R also determines the expected time to termination. Results thus show that the protocol
is vulnerable to uncertainties. This fact may have serious security implications, i.e., a denial-of-
service attack could reduce the availability of the distributed service, since a compromised process
may substantially alter the expected probability of agreement. This analysis can also give insight
to the protocol designer on how to optimally set the noise threshold to detect malicious behavior
in the participating processes. The threshold should be the maximum value of uncertainty which
gives a non-monotonic behavior in Pmin

s0
[ψ] and parameterR should be set to achieve the maximum

of such satisfaction probability. For the problem at hand, the threshold should be set to u = 1%
and parameter R = 4.

The consensus protocol gives us the opportunity to study the scalability of the CP procedure,

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 81

Table 4.2: Runtime Comparison

Tool
P = 2 P = 2 P = 2 P = 4 P = 4 P = 4 P = 6
R = 2 R = 7 R = 128 R = 2 R = 32 R = 44 R = 4

N + T = 764 2, 604 47, 132 97, 888 1, 262, 688 1, 979, 488 14, 211, 904

CP 0.02s 0.1s 2.1s 8.3s 1, 341s 2, 689 TO

PRISM 0.01s 0.09s 196s 1s 2, 047s TO 1860s

PARAM 22.8s 657s TO TO TO TO TO

by evaluating Equation (4.34) while sweeping R both for P = 2 and P = 4. We set the Time Out
(TO) to one hour. In Figure 4.6, we plot the sum (N+T) of the number of states (N) and transitions
(T) of the Convex-MDP, which are independent of the uncertainty in the transition probabilities,
to represent the model size (top), the sum (V + C) of the number of variables (V) and constraints
(C) of the generated LP instances of Problem (4.19) (center), and the running time tCP of the
model-checking algorithm (bottom). V + C always scales linearly with N + T (the lines have the
same slope), supporting the polynomial complexity result for our algorithm. Instead, tCP scales
linearly only for smaller problems (P = 2), while it has a higher-order polynomial behavior for
larger problems (P = 4) (the line is still a straight line on logarithmic axes but with a steeper slope,
so it represents a higher-order polynomial behavior). This behavior depends on the performance
of the chosen numerical solver, and it can improve benefiting of future advancements in the solver
implementation. In Table 4.2, we compare the CP procedure with two tools, PRISM [99] and
PARAM [69], in terms of runtime, for varying values of P and R. Although neither tool solves
the same problem addressed in this dissertation, the comparison is useful to assess the practicality
of the proposed approach. In particular, PRISM only verifies PCTL properties of MDPs with no
uncertainties. PARAM instead derives a symbolic expression of the satisfaction probabilities as a
function of the model parameters, to then find the parameter values that satisfy the property. Hence,
PRISM only considers a special case of the models considered in this work, while our approach
only returns the worst-case scenario computed by PARAM. Results show that the CP procedure
runs faster than PRISM for some benchmarks, but it is slower for larger models. This is expected
since the scalability of our approach depends mainly on the problem size, while the performance
of the iterative engine in PRISM depends on the problem size and on the number of iterations
required to achieve convergence, which is dependent on the problem data. Finally, our approach is
orders of magnitude faster than PARAM, so it should be preferred to perform worst-case analysis
of system performances.

4.3.2.2 ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local Addresses

The ZeroConf protocol [39, 100] is an Internet Protocol (IP)-based configuration protocol for local
(e.g., domestic) networks. In such a local context, each device should configure its own unique
IP address when it gets connected to the network, with no user intervention. The protocol thus
offers a distributed ”plug-and-play” solution in which address configuration is managed by in-
dividual devices when they are connected to the network. The network is composed of DVtot

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 82

devices. After being connected, a new device chooses randomly an IP address from a pool of
IPA = 65024 available ones, as specified by the standard. The address is non-utilized with prob-
ability p0 = 1−DVtot/IPA. It then sends messages to the other devices in the network, asking
whether the chosen IP address is already in use. If no reply is received, the device starts using the
IP address, otherwise the process is repeated.

The protocol is both probabilistic and timed. Probability is used in the randomized selection
of an IP address and to model the eventuality of message loss; timing defines intervals that elapse
between message retransmissions. The protocol has been modeled by Kwiatkowska et al. [100] as
an MDP using the digital clock semantic of time. In this semantic, time is discretized in a finite set
of epochs which are mapped to a finite number of states in an MDP, indexed by the epoch variable
te. To enhance the user experience and, in battery-powered devices, to save energy, it is important
to guarantee that a newly-connected device manages to select a unique IP address within a given

Figure 4.7: The figure shows the trend of the value of Equation (4.35) as a function of the confi-
dence level CL for different values of the protocol parameter dl, i.e., the time deadline after which
the protocol declares failure.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 83

deadline dl. For numerical reasons, we study the maximum probability of not being able to select
a valid address within dl. In PCTL syntax:

P max [ψ] := Pmax
s0

[¬{unique address} U {te > dl}] (4.35)

where s0 is the state representing the moment in which the device gets connected to the network.
We analyzed how network performances vary when there is uncertainty in estimating: 1) the

probability of selecting an IP address, and; 2) the probability of message loss during transmission.
The former may be biased in a faulty or malicious device. The latter is estimated from empirical
data, so it is approximated. Further, the chosen semantic interpretation of the Convex-MDP behav-
ior, as stated in Assumption 2.3, which allows a nature to select a different transition distribution at
each execution step, properly models the time-varying characteristics of the transmission channel.

In Figure 4.7, we added uncertainty only to the probability of message loss using the likelihood
model, which is suitable for empirically-estimated probabilities. Using classical results from statis-

Figure 4.8: The figure shows the trend of the value of Equation (4.35) as a function of the number of
devices in the network for different level of confidence in the estimations of the model parameters.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 84

tics [125], we computed the value of parameter βas in Set (2.3) corresponding to several confidence
levels CL in the measurements. In particular, 0 ≤ CL ≤ 1 and CL = 1−cdfχ2

d

(
2 ∗ (βas,max − βas)

)
,

where cdfχ2
d

is the cumulative density function of the Chi-squared distribution with d degrees of
freedom (d = 2 here because there are two possible outcomes, message lost or received). Results
show that the value of Pmax

s0
[ψ] increases by up to ∼10× for decreasing CL, while classical model

checking would only report the value for CL = 1, which coarsely over-estimates network perfor-
mance. The plot can be used by a designer to choose dl to make the protocol robust to varying
channel conditions, or by a field engineer to assess when the collected measurements are enough
to estimate network performances.

In Figure 4.8, we combine different models of uncertainty, i.e., we also add uncertainty in the
probability of selecting the new IP address using the interval model. This probability thus lies in the

Figure 4.9: The figure shows the trend of the number of states and transitions of the analyzed
Convex-MDP (top) and the runtime for increasing values of the protocol parameter dl. The run-
time trend is also overlaid to a first-order and a second-order polynomial fit to highlight its linear
increase.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 85

interval [(1−u)p0, (1+u)p0]. We, arbitrarily, fix dl = 25 and sweep DVtot in the range [10−100],
which covers most domestic applications, to study how network congestion affects the value of
Equation (4.35). We study four scenarios: the ideal scenario, returned by classical model-checking
techniques; the confident, normal, conservative scenarios, where we add increasing uncertainty to
model different knowledge levels of the network behavior, a situation that often arises during the
different design phases, from conception to deployment. Results show that Pmax

s0
[ψ] gets up to

∼15× higher than the ideal scenario, an information that designers can use to determine the most
sensitive parameters of the system and to assess the impact of their modeling assumptions on the
estimation of network performances.

Finally, in Figure 4.9, we report at the top the sum of the number of states (N) and transitions
(T) of the Convex-MDP, as defined in Section 4.3.2.1, and, at the bottom, the verification runtime
tV I of the Value Iteration procedure, as functions of the value of the model parameter dl. As the
figure shows, the size of the model N + T increases linearly with the value of dl. To highlight
the fact that also the verification runtime tV I scales linearly, we fit tV I for 10 ≤ dl ≤ 35 with a
first and a second-order polynomials and extrapolated the two polynomial behaviors up to dl = 52.
Results show that indeed the trend of tV I is closer to the linear than to the quadratic behavior.

4.3.2.3 The Dining Philosophers Problem

We analyze the classical Dining Philosopher Problem [51, 107]. Briefly, n philosophers are sitting
at a table with n available forks. Each philosopher can either think or eat: when he becomes
hungry, he needs to pick both the fork on his right and on his left before eating. Since there are
not enough forks to allow all philosophers to eat together, they need to follow steps according to a
stochastic protocol to eat in turns. We consider this case study relevant because it can be used to
model real shared-resources stochastic protocols [107].

We model the uncertainty of the philosophers in deciding which fork to pick first. While the
nominal protocol assigns 0.5−0.5 probability to the left and right fork, we assume that these values
are only known with CL = ±10% confidence. We will use all the uncertainty models presented
in Section 2.1.3 to represent the uncertainty in the estimation of the transition probabilities. Even
though only the interval model has a practical relevance for this case study, for reasons similar
to the ones for the stochastic consensus protocol presented in Section 4.3.2.1, this analysis will
allow us to compare the impact of the different models of uncertainty on the verification results. In
particular, the parameters for each model of uncertainty corresponding to the chosen level of con-
fidence CL can be set using the approach suggested by Nilim and El Ghaoui [125]. For example,
for the interval model, the probabilities lie in the interval [45% − 55%]. Within this setting, we
aim to determine what is the quantitative minimum probability for any philosopher to eat within k
steps of the protocol after he becomes hungry. In PCTL syntax:

P min [ψ] := Pmin
S0

[
F≤k {Eating}

]
(4.36)

with initial states S0 = Sat(Hungry). Figure 4.10 shows the evolution of the value of Equa-
tion (4.36) as a function of the number of protocol steps k. As expected, the probability of eating

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 86

!"#$%&"'("&)$%*+'&,-'./"0,'

Figure 4.10: The figure shows the evolution of Equation (4.36) for increasing values of the number
of protocol steps k for different models of uncertainties in modeling transition probabilities. The
inset shows the relative deviation of the value of Equation (4.36) with respect to the model with no
uncertainties.

steadily increases as the number of steps increases. However, the plot also shows that adding un-
certainty decreases this probability with respect to the certain scenario. The inset of Figure 4.10
shows the relative deviation in probability with respect to the certain case, defined as:

Relative deviation =
P max
∗ [ψ]− P max

Certain [ψ]

P max
Certain [ψ]

with ∗ ∈ {Interval,Ellipsoidal,Likelihood,Entropy}.
As the figure shows, a ±10% uncertainty can cause a deviation up to 35% in the computed

probabilities, and the deviation is always higher than 10% for k ≤ 60. Further, the deviation
is larger for the Interval and Ellipsoidal models, since they are the most conservative among the
considered ones, as explained in Section 2.1.3.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 87

Figure 4.11: The figure shows the evolution of Equation (4.37) for increasing values of the number
of protocol steps k for different models of uncertainties. The inset shows the relative deviation of
the value of Equation (4.37) with respect to the model with no uncertainties.

While the results shown in Figure 4.10 guarantee that each philosopher will eventually be able
to eat after becoming hungry, it might be interesting to determine what is the expected number of
protocol steps after which this happens. We can evaluate such a protocol performance by equipping
the Convex-MDP model of the protocol with a reward structure r defined as follows:

r =

{
rs = 0 ∀s ∈ S
ra = 1 ∀s ∈ S,∀a ∈ A(s)

Intuitively, reward structure r counts the number of steps of the protocol by assigning a cost of 1 to
each transition. We can now compute the expected number of steps which a philosopher needs to
wait before eating after becoming hungry, by evaluating the following property in PCTL syntax:

R max [ρ] := EmaxS0
[C {Eating}] (4.37)

with initial states S0 = Sat(Hungry). In particular, we will compute such expected cumulative
reward for models in which the uncertainty in the estimation of transition probabilities is repre-
sented using the interval model, while varying the uncertainty level u in the estimation of the

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 88

model transition probabilities. Figure 4.11 at the top shows the evolution of the expected number
of steps as a function of the number of philosophers sitting at the table. As expected, the number
of protocol steps steadily increases as the number of philosophers increases because of the higher
contention of the shared resources. Moreover, the plot shows that adding uncertainty further in-
creases the expected number of steps with respect to the scenario with no uncertainties (u = 0%).
At the bottom of Figure 4.11, we show the relative increase in the number of steps with respect to
the scenario with no uncertainties, defined as:

Relative increase =
R max

u=∗ [ρ]−R max
u=0% [ρ]

R max
u=0% [ρ]

with ∗ ∈ {5%, 10%, 15%, 20%}.
A ±20% uncertainty can cause an increase up to 60% in the expected number of steps (for

n = 6 philosophers), and even a ±5% uncertainty causes an increase higher than 10%. We con-
clude that an uncertainty in the transition probability distribution can have a drastic impact in the
performance of the system. If this model was used to represent a real shared-resources stochastic
protocol, we could infer that a misbehavior of one of the system agents, due for example to a fault,
could substantially alter the expected system performance.

Figure 4.12: Runtime analysis of the proposed routine for the model checking of the Bounded
Until operator. The figure shows the sum N + T of the number of states and transitions in the
Convex-MDP (top) and the runtime results for the different models of uncertainty for k = 100
steps.

CHAPTER 4. PROBABILISTIC MODEL-CHECKING WITH UNCERTAINTIES 89

Lastly, we evaluate the runtime performance of the routine to model check the Bounded Until
operator while varying the number of philosophers at the table (n ∈ {3, 4, 5, 6}). We (arbitrarily)
set k = 100. Figure 4.12 shows at the top that the size of the model, represented by the sum
N+T of the states and transitions of the Convex-MDP, increases polynomially with the number of
philosophers sitting at the table (a straight line on the log axes). At the bottom, Figure 4.12 shows
that also the runtime increases polynomially with the model size. The interval and ellipsoidal
models run faster because the inner convex optimization problems can be solved using simpler
atomic operations (sum and multiplication) than the likelihood and entropy models (logarithm and
exponentiation). The experimental evaluations thus shows that also the routine for the verification
of the Bounded Until operator scales polynomially with the size of the Convex-MDP.

90

Chapter 5

Formal Verification of the Performance of a
Car Driver

In this chapter, we describe how we applied the proposed model-checking algorithm to the prob-
lem of automatically assessing the performance of individuals while driving a car. In particular,
we will focus on how the driving performance gets influenced by environmental factors, e.g., the
presence of an obstacle along the road, and by the level of attention of the driver, e.g., attentive or
distracted by a text message on the phone. We first introduce the analyzed problem and motivate
its relevance in applications ranging from the development of personalized teaching strategies to
correct misbehaviors and the computation of personalized car insurance rates to, ultimately, the
automated assistance to the driver in semi-autonomous cars. Secondly, we review related ap-
proaches proposed in the literature aiming to capture the performance and behavior of human
drivers. We then present the Convex Markov Chain model that we developed to capture the be-
havior of individuals while performing complex maneuvers in a car, e.g., a double turn. Moreover,
we show how to use convex uncertainties sets to capture in the model the inevitable inaccuracies
introduced in the modeling of the intricacies of the human behavior. We conclude by reporting
experimental results showing that it is indeed possible to automatically assess peculiar behaviors
of individuals by applying the proposed approach.

5.1 Problem Description
In this section, we first present the main applications that motivated our research, we then introduce
the problem of modeling the behavior of an individual while driving and, finally, we highlight the
main contributions presented in this chapter.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 91

5.1.1 Motivating Applications
The problem of modeling the behavior, intent and performance of a human subject while driving
a car has long been studied, due to the relevance of the problem to applications ranging from
teaching techniques for safer driving [83] and issuing of more effective driving regulations and
norms [61] to, more recently, the personalization of car insurance rates [113] and the development
of autonomous and semi-autonomous control techniques to reduce the number of fatalities [33].

The topic of driver behavior modeling lies at the intersection of multiple research disciplines,
both in the engineering field and in social sciences. The psychology community has extensively
researched the topic in order to develop the most effective teaching techniques for new and expe-
rienced (but reckless) drivers [83]. In particular, it is acknowledged that drivers’ attitudes while
learning may predict their future performance on the road after being licensed. In the current “era
of rage” [83], it is thus fundamental to quantitatively study the consequences of the driver emo-
tional status and attitude on the driving performance, so that it is possible to educate drivers to
follow current regulations and avoid them to express their anger (or other feelings) while driving,
by performing dangerous maneuvers.

Another area where the modeling of driver behavior has long been essential is in the decision
process of authorities and regulators for transport safety, where the consideration of driver perfor-
mance is used in setting standards and rules governing new and future regulations of the vehicle
control systems, road infrastructures and traffic management [61]. Similarly, models of the driver
behavior are necessary for the study of accidents and investigation of root causes.

As a third application of the proposed technique, we mention that a few car insurance com-
panies in the United States (among which Progressive, State Farm and All State) have recently
started voluntary programs in which drivers accept to have a small device installed into their car
to monitor how they actually drive [113]. Instead of profiling drivers based just on the traditional
factors – age, location of residence, history of accidents and traffic violations – these car insurance
companies thus allow “usage-based” or “pay-as-you-drive” insurance rates. Noticeably, at the
present time, the insurance rate can only decrease, but never increase, for the drivers participating
in these programs. The main limitation of such an approach is the need for a large amount of data
to accurately profile the driving habits of the participants. While, potentially, the monitoring de-
vices could just be left constantly on, concerns have been raised about the privacy implications of
such a technique, since, for example, also the location of the car (through a GPS) is relayed to the
insurance company, which can thus know where the driver is at all times. An alternative approach
could instead employ a relatively short training phase (e.g., 3 months), in which measured data
get collected, followed by an off-line analysis phase, in which mathematical models of the driver
behavior, trained with the collected data, are analyzed to estimate the likelihood of accidents and
infer the driving patterns of the subject under analysis, without requiring an explicit monitoring of
the driver.

As a final application for models of the behavior of human drivers, we report that there has
been an increasingly high interest in the control community inside and outside academia for the
development of techniques to automatically assist the driver while performing a maneuver. Four
states in the United States (Nevada, Michigan, Florida and California) have already authorized test-

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 92

ing of autonomous vehicles on public roads, and several European and American companies have
started equipping their high-tier models with control units capable of performing simple maneu-
vers automatically, like distance keeping and lane changing. As a further example, we note that the
“automatic gearbox” of certain vehicles is an automated control systems that adapts dynamically
and independently to different driving styles, measured through intrinsic evaluation of behavioral
variables, such as rate of accelerator pressure, overall speed, etc. Another example is the system
that manages the availability of in-vehicle information systems (IVIS), such as telephones or ra-
dios. In this case, certain IVIS managers adapt to the environmental situations, by inhibiting or
discouraging the use of certain IVIS in risky situations.

Although the final goal is the deployment of fully autonomous cars (like the Google Au-
tonomous Car [117]), the human driver will be likely required to perform occasional tasks in the
first deployments of these systems, for example to counteract to unforeseen situations. The study of
the interaction between humans and the automated system will thus be of paramount importance,
for example to understand when and how to release the control of the vehicle back to the human in
the presence of a sudden threat (e.g., a sharp turn on a slippery road) so that he or she has time to
react. Models of the human behavior are thus required to develop the appropriate interface to the
machine [27] and control algorithms are being developed to increase the accuracy of the maneuver
and assess the presence of threats, to, ultimately, enhance the safety of the passengers [12, 95, 165,
166, 169].

5.1.2 Problem Description
The rapid sequence of “technology revolutions” that have characterized the last 40 years have
pushed the execution of ever more complex tasks from the human operator towards automation.
However, even in the cases of totally automatic systems, it is not possible to avoid the assessment
of the human-in-control principle, as the (possibly remote) operator of the fully automatic systems
remains to be accounted for in the design and development processes. For these reasons, the
development of techniques to appropriately account for the user and controller of technologically
advanced systems is one of the most relevant issues for the design of new products.

In parallel to the development of the technology, the need to account for the behavior of the
human being has progressively evolved from considering the human subject as a manual controller
to the concept of human supervisor of automatic control systems. The evaluation of the behavioral
performance has been replaced by the analysis of cognitive and mental processes. In other words,
the demand for modeling manual and behavioral activities has been replaced and combined with
the need for modeling cognition.

The main challenge in capturing the human behavior in a mathematical model is that any mental
process is fairly contextual and substantially different from one person to another. The initial linear
models, capable of only capturing simple tasks, have thus been gradually replaced by nonlinear and
even probabilistic models, based upon artificial intelligence (AI) principles, such as artificial neural
networks, genetic algorithms and stochastic decision processes [112]. The problem of modeling
the human behavior becomes even more challenging if we consider a complex behavioral task such
as vehicle driving.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 93

Usually, car driving is described as a task containing three different levels of demands [143].
At the strategic level, the driver plans the general route of a journey. For example, the driver
chooses the route and the transportation mode and evaluates resulting costs and time consumption.
At the tactical level, the driver has to perform maneuvers, for instance, turning at an intersection or
accepting a given distance to the car in front. Finally, at the control (stabilisation) level the driver
has to execute simple (automatic) action patterns, which together form a maneuver, for example,
changing the gear and turning the steering wheel.

Following this division of the driving task, models of the performance of the driver are usually
assigned to three different levels: knowledge-based, rule-based and skill-based behavior [129].
Skill-based behavior is described as data-driven, meaning that skills (e.g., lane keeping) are per-
formed without conscious control and use of attention resources. They are immediate and efficient.
Rule-based behavior, on the other hand, occurs under conscious control and requires attention (e.g.,
stopping at a traffic light). Therefore, it is less immediate and efficient. Finally, knowledge-based
behavior involves problem solving and is relevant when it is not clear how to act in a specific sit-
uation (e.g., how to reach the desired destination). Thus, an important aspect of knowledge-based
behavior is that reasoning is required.

Given the complexity of the analyzed problem, any successful strategy to cope with it needs
to focus on modeling only the aspects of the driver behavior that are relevant to the specific ap-
plication in mind, without aiming to create a single omni-comprehensive model. In the rest of the
chapter, we will describe a model that captures the skill-based and rule-based behaviors of indi-
viduals. Indeed, we will create models of the performance of the driver while performing complex
maneuvers, e.g., a double turn, which require conscious control of the vehicle and of the surround-
ings. Moreover, we will show how to personalize the performance predicted by the model to the
specific characteristics (or skills) of each driver, which are performed unconsciously and differ
from subject to subject.

The overall aim of our modeling effort will then be to predict the future trajectory driven by
the individual under analysis over a relatively long time horizon (30 seconds to one minute). Our
approach makes this prediction based on the analysis of the history of driving patterns of the human
subject, on his or her mental state and on the surrounding environmental conditions.

We believe that such an analysis targets the needs of the applications described at the beginning
of the section. Teaching techniques indeed focus on how to perform complex maneuvers to correct
possible misbehaviors peculiar to each driver. An analysis of the common behaviors across a
large population of individuals might help in shaping future road regulations, e.g., in setting the
maximum speed limits. Car insurance rates can be computed for each individual based on the
history of his or her driving patterns and on the likelihood of such patterns to cause accidents.
Finally, an accurate prediction of the car trajectory lies at the core of any automated control system
aiming to assist the driving task. A further extension of our approach to capture also knowledge-
based behavior will further benefit these applications and is left as future work.

Finally, we note that a common thread of research across many of the applications described
above is the study of the impact of driver distraction on the performance of the driver [10, 20, 42,
144]. This includes distraction caused by cell phone calls and text messaging, which account for
22− 50% of all accidents [90]. From an analysis perspective, the changes of driving performance

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 94

between attentive and distracted drivers have been researched to increase people awareness on
the possible fatal consequences that distracted driving can cause. From a control perspective,
potential solutions to the driver distraction problem rely on semi-autonomous or “human-in-the-
loop” control techniques [111], some of which try to predict the car trajectory based on estimations
of the driver behavior and actively take control of the car if the probability of threat is higher than
a given threshold. For instance, existing techniques perform a braking maneuver if a collision is
predicted. To correctly take human actions into consideration before intervention, modeling the
driver behavior is thus of crucial importance.

In summary, the modeling approach presented in this chapter gives quantitative techniques to
exhaustively evaluate the performance of an individual while driving. Moreover, we give particular
emphasis to the study of the variation of driving performance for different attention levels. The
main contributions presented in this chapter are highlighted in the next section.

5.1.3 Contributions
As a first contribution, we developed a novel probabilistic model of the driver performance,
which predicts the driven trajectories using a Convex Markov Chain (Convex-MC) model, i.e., a
Markov chain in which the transition probabilities are only known to lie in convex uncertainty
sets, as presented in Chapter 2. The prediction of the trajectory is based on the future environment
surrounding the car, the attention state of the driver (i.e., attentive or distracted), and the history
of steering maneuvers for a given individual, which we collected using a car simulator [35]. For
each environment and attention state of the driver, the model predicts a set of trajectories for the
subsequent time interval based on empirical observations of past behaviors. These predictions are
then used as transition probabilities within the stochastic model of the driver performance. Due to
the ambiguity that inherently affects the measured data used to estimate the transition probabilities,
we allow state-transition probabilities to be expressed in terms of uncertainty sets, which can be
rigorously defined based on statistical techniques. This framework allows a more conservative
prediction of the driver behavior and gives guidelines to the model developer to determine when
the collected data are statistically relevant to correctly infer properties of the system.

Due to the criticality of the system under consideration, formal techniques to verify proper-
ties of the constructed model are required to rigorously assess the validity of the model and give
guarantees of its safety and liveness. As a second contribution, we show how to analyze quan-
titative properties of the Convex-MC model of the driver expressed in Probabilistic Computation
Tree Logic (PCTL), using the polynomial-time model-checking algorithm presented in Chapter 4.
Our main focus is to quantify the effects of different attention levels on the quality of driving,
by formally analyzing the driver behaviors while they are either attentive or distracted. PCTL is
a suitable choice because it allows to express quantitative properties of a system, as opposed to
other logics, e.g., LTL, which only allow qualitative properties. For example, we aim to determine
whether “the maximum probability of exiting the road for a distracted driver is higher than 90%”,
while LTL would only allow to inquire whether “eventually a distracted driver will exit the road”,
a property that would trivially be always true for some of the executions of the model, without
giving insight about how likely the event would actually take place.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 95

Remark 5.1. We have chosen to study the problem of modeling the behavior of car drivers (among
other possible topics) because the number and variety of applications described in this section
shows that the topic is a highly fertile field of research, where contributions from multiple disci-
plines are still needed in order to reach an omni-comprehensive understanding of the subject. In
particular, quantitative techniques to analyze the system dynamics are still not fully developed, and
the problem of estimating the long-term evolution of the system (30 seconds to one minute) is still
far from having been solved, due to the variety and complexity of the events that can happen in
such a long time span. We believe that the stochastic modeling techniques presented in this dis-
sertation represent a promising approach to analyze the problem, since they allow the abstraction
of complex deterministic dynamics with simpler probabilistic evolutions of the system and because
they are also equipped with formal techniques to capture the uncertainty in the estimation of the
model parameters.

Moreover, the proposed fast (polynomial) implementation of the model-checking algorithm of-
fers a scalable technique that allows the rapid analysis of large models. These characteristics are
necessary to capture the complexity of the system under analysis both when the models are used
for off-line applications, like insurance rate calculation or the development of teaching strategies,
and, even more so, when the application is the automated real-time assistance of the driver.

5.2 Related Work
Models of the behavior of human subjects in the context of car driving can be classified into two
main categories: cognitive models and engineering models (also referred to as non-cognitive or
probabilistic). The model described in this chapter belongs to the second category of engineering
models. Nevertheless, to give a full overview of the different approaches used in the literature, in
the following we will describe each category and give examples of models developed using each
strategy.

5.2.1 Cognitive Models
A cognitive model is an approximation of the human cognitive processes, i.e., the mental process-
ing of information, the application of knowledge, and the selection of preferences, which involve
using one’s working memory, comprehending and producing language, calculating, reasoning,
problem solving, and decision making.

Cognitive models can be developed within or without a cognitive architecture. In contrast to
cognitive architectures, cognitive models tend to be focused on a single cognitive phenomenon or
process (e.g., performing a driving maneuver), how two or more processes interact (e.g., the mon-
itoring of other approaching cars), or to make behavioral predictions for a specific task (e.g., how
to take over another slower car). Cognitive architectures tend instead to be focused on the struc-
tural properties of the modeled system, and help constrain the development of cognitive models
within the architecture, i.e., they provide the methodology and building components that can then

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 96

be used to generate the cognitive model of a specific task. Some of the most popular architectures
for cognitive modeling include Soar [106] and ACT-R [9].

A cognitive model in Soar is created by defining an agent, which represents the modeled indi-
vidual. All the knowledge in a Soar agent is then represented as if-then rules (or “productions, in
Soar terminology). The problem of modeling the behavior of a human while performing a task can
be roughly described as a search through the problem space (the collection of different states which
can be reached by the system at a particular time) for a goal state (which represents the completion
of the task). This is implemented by searching for the states which bring the system gradually
closer to its goal. Each move consists of a decision cycle. This is composed of an elaboration
phase, in which a variety of different pieces of knowledge bearing the problem are loaded to the
agent’s working memory, and a decision procedure, which weighs what was found on the previous
phase and assigns preferences to ultimately decide the next action to be taken.

All decisions are made through the combination of relevant knowledge at run-time. In Soar,
every decision is based on the current interpretation of sensory data, on any relevant knowledge
retrieved from the long-term memory and on the contents of the working memory, which contains
all of a Soar agent’s dynamic information about its world and its internal state and which can be
expanded by knowledge created by prior problem solving.

The ACT-R architecture offers the following building blocks to create a cognitive model: mod-
ules, buffers and pattern matchers.

Modules are classified in perceptual-motor modules, which take care of the interface with the
real world (or with a simulation of the real world), and memory modules, which describe the
different layers in which the human memory is organized. The most critical perceptual-motor
modules in ACT-R are the visual and the manual modules, since those are the most used sensing
and actuating interfaces used by human beings. Further, there are two kinds of memory modules
in ACT-R: declarative memory, which stores facts such as “Washington, D.C. is the capital of the
United States”, or “2+3=5”, and; procedural memory, made of productions, i.e., knowledge about
how we do things (e.g., knowledge about how to drive, or about how to perform addition).

A model written in ACT-R accesses its modules through buffers. For each module, a dedicated
buffer serves as the interface with that module. The content of the buffers at a given moment in
time represents the state of the ACT-R model at that moment.

Finally, the pattern matcher searches for a production that matches the current state of the
buffers. Only one such production can be executed at a given moment. That production, when
executed, can modify the buffers and thus change the state of the system. Thus, in ACT-R cognition
unfolds as a succession of production firings.

We conclude this section by mentioning how to evaluate the quality of a cognitive model, since
the “outputs” of such a model are made of a sequence of mental processes, and not of “mathe-
matical” quantities which would be more familiar to the engineering community. According to
the creators and developers of these cognitive architectures [9], the ultimate metric to determine
whether a cognitive model properly captures the dynamics of the human mental process while per-
forming a task is to compare its “results” to the behavior of a human subject in terms of the time

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 97

to perform the task and the accuracy in executing the task.

5.2.2 Engineering Models
Engineering models, also known as non-cognitive or probabilistic models, abstract the intricacies
of the mental process using mathematical formalisms. We further subdivide these models into two
categories.

In the first category, we collect models whose goal is to infer the intentions of the human driver
(e.g., to change the lane) in order to determine the optimal way to assist him or her while perform-
ing the maneuver. Since it would be impossible to succinctly capture all the complexity of the
human behavior in a deterministic fashion, these models usually employ probabilistic formalisms,
like Markov chains [134], Hidden Markov Models [97], discrete-event stochastic simulations [49]
and many others [4].

A second category of engineering models aims instead to solve the complementary problem
of predicting the future trajectory of the vehicle in order to issue control commands to guarantee
the safety of the performed maneuver (e.g., braking if the distance from the car in front is not
maintained). In this context, often deterministic models with a short-term receding horizon are
used [134, 169].

The approach proposed in the rest of the chapter combines features of both the categories
described above, by using short-term deterministic predictions of the vehicle trajectory within a
long-term probabilistic framework, capable of capturing the full evolution of a complex maneuver.

A similar approach mixing characteristics of both categories was described by Pentland and
Lin [134]. This paper proposes to model the behavior of a car driver using a discrete-time Markov
chain in which each state has continuous dynamics estimated using a Kalman filter. The usage of
short-term continuous models is motivated by the need of capturing the smoothness and continuity
of the human behavior while performing short actions. Longer-term discrete transitions among
states of the Markov chain are instead used to capture the richness and variability of the human
behavior, which is recognized as a highly non-linear system that cannot be predicted by a linear
filter on a longer time frame. The required information to infer the actual state of the driver can
be captured using measurements. Probabilities to transition among states of the Markov chain are
computed by ranking the bank of Kalman filters representing the system dynamics depending on
how well they predict the collected measurements. In order to avoid an explosion of the complexity
of the transition estimation problem, the authors suggest to preprocess the Markov chain model.
Indeed, not all states can transition to any other state, since the behavior of human drivers usually
follows sequences of actions while performing a maneuver. For example, to change the lane, the
driver will first check in the back mirror to make sure that the destination lane is empty, he will
then activate the light signals and finally stir the wheel to perform the maneuver. Such a simpli-
fication substantially reduces the candidate next states when analyzing a complex maneuver, and
contributes in assigning correct weights to the candidate next states. Finally, the authors suggest to
decompose the human behavior into modes, each characterized by its own dynamics. For example,
the authors distinguish between relaxed driver and tight driver.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 98

5.3 Proposed Model
In this section, we give details on how we created a probabilistic model of the performance of
individuals while driving a car. The primary goal of the modeling effort is to give an accurate
prediction of the future trajectories of the car over a medium-term horizon (30 seconds to one
minute), so that the automated system has time to either warn the driver about the possible pres-
ence of threats or even take the control of the car to perform defensive actions (e.g., braking) and
guarantee the safety of the maneuver. In order to achieve this goal, it is fundamental to be able
to capture and analyze in the model the whole execution of complex maneuvers, e.g., a sequence
of a right and a left turn, and to study how decisions made early in the maneuver can affect later
decisions. Following a growing consensus from recent literature on the topic [169], our approach
postulates that the driver state, e.g., attentive or distracted, and the environmental conditions, e.g.,
the presence of an obstacle along the road, must be considered to increase the accuracy of the pre-
diction. By means of this comprehensive system description, we believe that we can indeed reach
the level of accuracy in the prediction of the driver performance that is required in the development
of automated analysis and control algorithms to assist drivers in their task.

As it will be described in details in the following sections, we collected empirical observations
of the behavior of multiple drivers in a simulation environment, in order to create personalized
driver models tuned to the characteristics of each individual. Such a personalized tuning is fun-
damental to produce analysis and control results that can indeed address the peculiarities of the
driving style of each subject. Conversely, a generic modeled averaged across a population of in-
dividuals could not be easily used to predict the performance of any of the subjects, due to the
high diversity (variance) of the human behavior. Once the data are collected, they get catego-
rized to form a library of atomic actions performed by the driver, e.g., driving straight. These
atomic components get then composed together to form the model of the arbitrary maneuver to
analyze. Finally, time and space of the execution of the maneuver are discretized to form a dis-
crete time Convex Markov Chain (Convex-MC) representing the maneuver, so that it is possible
to quantitatively analyze the model properties adopting the model-checking algorithm presented in
Chapter 4. An arbitrary level of accuracy in the model can be obtained by appropriately choosing
the discretization step, at the expense of longer runtime of the model-checking algorithm. In our
experiments, we chose a time step of 1.2s, which is approximately the human reaction time while
driving, to make sure that our assumptions hold with negligible loss in terms of accuracy.

The following section describes the experimental setup and methods used to develop the driver
model.

Remark 5.2. The developed approach allows the analysis also of complex maneuvers that were
not explicitly performed by the individuals while driving in the car simulator. The analyzed ma-
neuvers get instead composed from a library of atomic actions, e.g., driving straight or turning left,
which get pre-characterized for each driver starting from the empirical data. Such an approach
is fundamental to keep the training data set and time limited, while still being able to analyze a
posteriori the rich variety of more complex maneuvers and scenarios that any driver needs to face
on a daily basis.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER 99

5.3.1 Data-Driven Characterization of the Library of Atomic Actions
The study of short-term (atomic) actions of drivers has been long researched in the literature [153,
169], because it is useful to implement automated correction maneuvers to assist the driver, i.e.,
trajectory correction while making a turn. Briefly, these methods aim to infer the future trajectory
of the vehicle on a short-time horizon, e.g., one second. While our ultimate goal is the analysis of
long-term complex maneuvers to estimate the driver intensions and to anticipate possible threats,
we start from the characterization of these atomic actions because they will then become the build-
ing blocks to create the stochastic model of the complex maneuver. Indeed, short-term actions can
be represented with high accuracy also by employing simple linear dynamic models of the vehicle
trajectory, while we will see that we need to use a stochastic framework to analyze longer-term
maneuvers to account for the randomness intrinsic to the system evolution in the long-term. This
two-tier modeling approach can provide reasonably accurate results if the following assumption,
which is commonly used in the literature [169], holds:

Assumption 5.1. Repeatability of the Driver Habits. It is assumed that humans act in a repeatable
manner, meaning that they are likely to drive in a similar way if the environmental conditions are
analogous with only some inconsistency due to environment variations and human errors.

We train the models of the atomic actions with measured data collected by observing individu-
als while driving a car on CarSim, a standard car simulation software used by industry [35]. We use
the Microsoft Kinect [119] as input sensor to observe the driver pose in real-time, and collect data
on the observed steering angle every 30ms, to reconstruct the driven trajectories. Over 20 subjects,
both male and female with ages ranging from 20 to 80 years and with varying levels of experience,
were asked to drive for an hour through four predetermined courses to collect training data and
observe peculiar driving habits in different external environments and for different levels of driver
attention. In particular, to simulate distracted driving, we provided the subjects with a phone where
an application was installed to prompt them to answer the call or text while continuing to drive.
More details about the measurement setup and the data collection procedures are available in the
work by Shia et al. [153].

In its simplest instance, a library of atomic actions would be populated of models corresponding
to, for example, driving on a straight segment of road, and making a right or left turn. Such an
approach would on the other hand result in an over-simplification of the dynamics of the driving
task. In order to capture the variety of scenarios a driver needs to face on a daily basis, we instead
create the models of the atomic actions using the approach described by Shia et al. [153] and
Vasudevan et al. [169]. According to this method, even during an atomic action, the driver behavior
is dependent on particular modes, which are determined by:

1. the future environment external to the car, e.g., an obstacle along the road, and;

2. the attention state of the driver, e.g., attentive or distracted by a text message.

We selected the four training courses to test different driving scenarios. In particular, we asked the
driver to drive on:

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER100

• a course with no obstacles and without being distracted by a text message (scenario 1);

• a course with no obstacles but while being distracted by a text message (scenario 2);

• a course with an obstacle and without being distracted by a text message (scenario 3);

• a course with an obstacle and while being distracted by a text message (scenario 4);

Each scenario was composed of a sequence of straight segments of road, left and right turns, and,
for the last three scenarios, the obstacle or the distraction were introduced only for part of the
course. In order to associate the large body of collected data to the corresponding mode where the
data were collected without making unnecessary assumptions, the data is automatically clustered
using the k-means algorithm [73], which allows for flexibility in determining which data belong to
which mode in an unsupervised manner. This also allows to test the quality of the characterization
of each mode, since modes that were not assigned enough data by the k-means algorithm had to
be re-characterized with additional training data in order to be faithful in predicting the behavior
of the driver. In the setup utilized in this case study, these clusters or modes are created from the
following data sets:

1. Driver Pose. This data set contains the past two seconds of observations of skeleton data
of the individual, specifically the positions of the wrist, elbow, and shoulder joints. These
data are used to infer automatically the attention state of the driver. For example, if the
algorithm detects that the driver is turned watching outside the simulator screen, we associate
the corresponding steering angle measurements to distracted driving.

2. Environment Estimation. This data set contains a feature vector for the future four seconds
of the outside environment, including road bounds and curvature, obstacle locations, and the
car’s deviation from the lane center.

The clustering algorithm uses a tiered structure. It first clusters the steering angle data based on
the vector of environmental modes, and it then further clusters the results of the previous iteration
using the vector of driver pose modes. Empirical considerations suggested us to use 150 clusters,
k1 = 50 environment clusters at the first tier and k2 = 3 pose clusters at the second tier, to achieve
the desired level of accuracy in the model [153]. This allowed us to compare driver behaviors in
matching environmental conditions for different driver attention states.

Once the data has been clustered into modes, the future 1.2 seconds (a time frame comparable
to the human reaction time) of the driver steering angle inputs associated to each mode become the
prediction for that scenario. The predicted steering angle inputs where passed to a linear model
of the vehicle dynamics to generate the future vehicle trajectories [169]. In our setup, we assume
that the driver is driving at approximately 60 miles per hour. This assumption does not limit our
approach and is appropriate in a highway scenario. A sample trajectory set is shown in Figure 5.1.
This graph shows the change of lateral direction of each trajectory in meters from a given initial
condition for the future 1.2s. As it is apparent from the figure, some of the trajectories stay within
the lane, some drift outside of the lane and some others diverge to the left lane.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER101

Figure 5.1: Example of an observed set of trajectories showing the change in lateral and longitu-
dinal directions with respect to the center of the car (at ∆y = 0). The bottom red line marks the
beginning of the curb, while the yellow line marks the beginning of the left lane.

We can now create the library of atomic actions. We do so by processing each trajectory
set and by thresholding the end-points of the trajectories. If most end-points have an horizontal
displacement from the initial point smaller than half the lane width, we associate the set to the
atomic action driving straight (as for the set of trajectories shown in Figure 5.1). Conversely,
if most trajectories end up to the left (right) of the lane, we associate the trajectory set to the
atomic actions turning left (right). Such an approach allows us to infer the driver’s intentions
while driving. We further note that our library of atomic actions is in fact composed of many
flavors of each action, in which not only the direction is specified but also the environmental
conditions and the driver attention state in which the corresponding trajectories were driven. For
example, the atomic action associated to the data set shown in Figure 5.1 could be expressed as:
“Driving straight in the presence of an obstacle and focused on driving”. Indeed, we see that most
trajectories do keep the lane, but sometimes the car tends to drift towards the left lane or even the
curb, translating into dangerous behaviors. Overall, this approach creates a driver model that is
able to continuously predict the future vehicle trajectories and, by extension, the behavior of the
driver, as it moves through a given environment with a given attention level.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER102

In conclusion, the models of the atomic actions developed so far answer the question: “Given
the mode the driver is currently in, how will he or she drive in the next 1.2s?” By identifying the
modes using observations of the environment and of the driver attention level, the associated future
steering angle inputs can be used as a prediction of the driver behavior.

5.3.2 Stochastic Modeling
In this section, we show how to create a stochastic model of the driver behavior capable of rep-
resenting complex maneuvers. In particular, we compose the atomic actions tuned to the char-
acteristics of each individual as introduced in Section 5.3.1 to form the model of the complex
maneuver. Each atomic action is annotated with labels describing the environmental and driver
attention modes associated to it. We instantiate atomic actions from the library as states of our
model. Transitions between instances of atomic actions are then defined in a probabilistic fashion
by considering the predicted behavior within each atomic action.

To illustrate our methodology, we explain how to convert the trajectory data in Figure 5.1 to the
model shown in Figure 5.2. We start by associating the state S0 to the atomic action represented
in Figure 5.1. Given the environmental information associated to the atomic action, we know
that the trajectory starts in the center of the right lane of a two-lane road. Using standard values
for the size of the car and width of the lane, we classify the trajectories within the set in three
subsets, lane changing, lane keeping, or drifting, depending of the final y−coordinate. Moreover,
the trajectories that exit the safe region of the road toward the curb are identified as Unsafe, those
that remain in the middle of the road are marked Right Lane, while those that tend towards the left
lane are identified as Left Lane. We can now associate a new state to each of these maneuvers,
S1, S2, S3, representing the three locations where the car may be in the next time step.

Finally, the empirical probabilities to perform each maneuver (and thus transition into a new
state) are calculated by examining the percentage of trajectories within the cluster that terminate in
the corresponding region (see labels in Figure 5.1). The second column of the table in Figure 5.2
reports the computed probabilities for the example under analysis.

One of the main limitations of the described approach stems from the fact that a limited set
of training data is used to model the wide variety of the behaviors of an individual while driving
a car. We now introduce uncertainty sets around the derived probabilities to accommodate for
estimation errors and give quantitative means to express the quality of the estimation of the driver
behavior starting from empirical measurements. In particular, the size of the uncertainty set will
vary according to the level of confidence in the collected measures (a larger set indicates less
confidence). In our experiments, we used both the interval and likelihood uncertainty models. The
interval model is intuitive to understand and will be used as a baseline for our quantitative analysis.
Given a confidence level 0 ≤ CL ≤ 1 in the measurements and an empirical probability p0, we
compute the transition probability interval [CL × p0, (2 − CL) × p0]. We also use the likelihood
model of uncertainty because it is less conservative than the interval one and it is largely used in
the scientific community to represent uncertainties on data collected through measurements. Using
classical results from statistics [125], we can compute the value of parameter βas from Set (2.3)
corresponding to a confidence level CL. In particular, CL = 1− cdfχ2

d

(
2 ∗ (βas,max − βas)

)
, where

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER103

cdfχ2
d

is the cumulative density function of the Chi-squared distribution with d degrees of freedom
(d = 3 in this example because there are three possible next states) and βas,max defined as in
Section 2.1.3.2.

S0

S3

S2

S1

Right Lane
Unsafe

Left Lane
Transition

Transition Probability Probability
Interval

S0 → S1 0.02 [0.019,0.021]
S0 → S2 0.935 [0.888,0.982]
S0 → S1 0.045 [0.043,0.047]

Figure 5.2: Example of a Convex-MC modeling a simple maneuver. The intervals expressing the
uncertainty in estimating the transition probability among states from a trajectory set are collected
in the third column in the table on the right. We used a confidence level CL = 95%.

We are now ready to formally describe the created stochastic model using the formalism of
Convex-MCs1, as introduced in Chapter 2. In our Convex-MC models,MC = (S, S0,Ω,F , X, L),
we let S represent the set of instantiated atomic actions, and S0 ∈ S represent the set of initial
states. We assign a subset of the labels collected in the set Ω to each atomic action to encode the
environmental and driver attention modes. For example, labels can mark atomic actions performed
on the right or left lane, and associate them to a right or left turn or to a straight segment of road.
Labels are also used to mark Safe (Unsafe) states if they are within (outside) the road boundaries.
We also label a state as Accelerating or Braking, if the value of acceleration is above or below a
chosen threshold, and Swerving if the number of swerving trajectories is above a threshold (swerv-
ing marks potentially dangerous driving). We label the goal set of states as Final, to mark the
end of the complex maneuver. Finally, we use the labels Attentive and Distracted to mark the
corresponding driver attention mode. The full set of labels used in this case study is:

Ω = {Right Turn, Left Turn, Straight, Right Lane,
Left Lane, Safe, Unsafe, Braking, Accelerating,
Swerving, Final, Attentive, Distracted}

The set F collects all the convex sets of uncertain transition probability distributions, each
encoding the chosen confidence level and uncertainty model. Mapping X : S → F associates
each state with the corresponding convex uncertainty set of probability distributions to the next
states. Finally, the labeling function L maps each state to the corresponding set of labels in Ω.

Because the atomic actions used to create the stochastic model contain information about the
driver attention state, the procedure described here can be applied to both attentive and distracted

1In this case study, we use Convex-MCs and not Convex-MDPs because we do not model any decision process
during the execution of the maneuver, and our model just transitions stochastically from one state to the other. We
note that Convex-MCs can be in fact interpreted as Convex-MDPs with only one action per state, i.e., M = |A| = 1,
so all the results presented in Chapter 2 and Chapter 4 still hold.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER104

drivers. This allows us to determine quantitative changes in behavior for a specific driver depend-
ing on his or her attention level.

Finally, we note that the presented modeling technique can be iterated to create a stochastic
model of the behavior of the car driver while performing an arbitrary maneuver, under the assump-
tion that the library of atomic actions contains enough elements to reconstruct the whole maneuver.
We introduce a more elaborated example in Section 5.3.3, where we describe the procedure to cre-
ate the model of a driver performing a double turn. Such a complex maneuver was not explicitly
performed by any driver during the training session, and instead the stochastic model was created
by composing sub-blocks from the library of atomic actions.

5.3.3 Model of a Complex Maneuver
As a more elaborated example of our modeling approach, we created a Convex-MC model of the
road segment shown in Figure 5.3. The road consists of the sequence of sections: straight, right
turn, left turn and another straight, so we can interpret the maneuver as a double turn. States are
assigned to different locations on the road. Each state is an atomic action that is chosen from the
library of atomic actions characterized for each driver. We let {S0, · · · , S15} represent the set of
states. S0 is the initial state, and Si = {Di, Ai} for i ∈ {0, 1, 2, 7, 8, 11, 12} represent a set of two
different states, one for distracted driving and one for attentive driving. We labeled as Attentive the
states where the human driver’s pose suggests that both hands of the driver were on the steering
wheel. States are labeled as Distracted if the human pose suggests that the driver was holding a
phone or sending a text message.

We created two different models to represent scenarios with (without) an obstacle on the road
just before the right turn (Figure 5.3 on the left and right, respectively). In the scenario with
the obstacle, some trajectories in S0 terminate on the left lane, represented by state S1. With no
obstacle, trajectories in S0 instead either keep the right lane or drift outside of the boundaries to an
Unsafe state. States {S3, S4, S5, S6, S9, S10, S13} correspond to Unsafe states since they are all out
of the boundaries of the road; the rest of the states are Safe states. States {S14, S15} are marked
as Final states. The Right Lane and Left Lane labels correspond to states {S0, S2, S8, S12, S15}
and {S1, S7, S11, S14}, respectively. The rest of the labels in Ω depend on the specific driving
style of each subject. For example, some individuals tend to break more often while performing
the double turn, while others drive more smoothly. These differences will affect the results of the
analysis of the behavior of each individual driver, as it will be shown in Section 5.4. Probability
distributions for transitions between states are assigned as we discussed in Section 5.3.2. In fact,
Figure 5.2 shows the transition probability distribution from S0 to S1, S2 and S3 in Figure 5.3 (left),
in the case of attentive driving. The comparison and analysis of the two models in Figure 5.3 are
discussed in Section 5.4.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER105

S3

S5

S4
S9

S6

S10
S13

S14 S15

D2, A2D1, A1

D0, A0

D8, A8

D7, A7

D12, A12D11, A11

S3

S5

S9

S6

S10
S13

S14 S15

D2, A2

D0, A0

D8, A8

D7, A7

D12, A12D11, A11

With Obstacle in the Lane No Obstacle in the Lane

Figure 5.3: Convex Markov Chain representing a double turn. States {Di, Ai} represent a set of
two states one labeled Distracted and the other Attentive. We created two models to describe a
scenario in which there is an obstacle to be avoided at the beginning of the maneuver (left) or no
obstacle along the path (right).

5.4 Experimental Results
In this section, we show how to analyze quantitative properties of the performance of car drivers
for the two road models introduced in Section 5.3.3. We use the PRISM model checker [99], as
our front-end tool to enter the model of the driver behavior, and the model-checking algorithm
presented in Chapter 4 as our back-end engine to analyze the model properties, so that we can use
likelihood and interval sets to express uncertainty in the estimation of state transition probabilities
(PRISM does not support uncertainty sets).

We verify the PCTL properties reported in Table 5.1. For each property, we separately con-

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER106

Table 5.1: PCTL Properties Verified on the Driver Models

P1 Pmax/Pmin [Attention U Unsafe]
P2 Pmax/Pmin [(Attention ∧ ¬Swerving) U Final]
P3 Pmax/Pmin [(Attention ∧ Right Lane) U Final]
P4 Pmax/Pmin [(Attention ∧ ¬Braking) U Final]
Attention is a placeholder for either Attentive or Distracted

sider both attention levels, attentive and distracted, and compute both the maximum and minimum
satisfaction probabilities, to give the range of predictions obtainable from the model. Property P1
computes the probability of reaching an Unsafe state while performing the maneuver. Proper-
ties P2 - P3 - P4 compute the probabilities of successfully reaching one of the final states without

No Uncertainty Model Likelihood Model Interval Model
0.0

0.2

0.4

0.6

0.8

1.0

P
m
a
x

s 0
[ψ

]

Maximum Probability of Reaching an Unsafe State (P1)

No Uncertainty Model Likelihood Model Interval Model
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
m
in

s 0
[ψ

]

Minimum Probability of Remaining on the Right Lane (P3)

Attentive w/o obstacle
Attentive w/o obstacle

Attentive w/o obstacle
Attentive w/o obstacle

Figure 5.4: The figure shows a comparison among the model-checking results for properties P1
and P3 for the different models of uncertainty analyzed in this case study.

.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER107

swerving, by always staying on the right lane, and without braking, respectively. Overall, these
properties allow to capture different driving styles among subjects and to assess possible threats or
misbehaviors of the drivers.

In Figure 5.4, we compare the model-checking results when using a model with no uncertainty,
a model with interval uncertainties and a model with likelihood uncertainties. We assume 95%
confidence level for both the interval and the likelihood models. For ease of graphical comparison,
we only report results for one subject and only for the maximum satisfaction probability of P1
(top) and minimum satisfaction probability of P3 (bottom). The results for the other subjects and
properties follow a similar trend. As expected, the probability of reaching an unsafe (safe) state is
higher when the driver is distracted (attentive) and in the presence (absence) of an obstacle along
the road. Further, we note that:

• probabilities computed for models with no uncertainty are significantly lower (higher), which
implies that this method is potentially too optimistic for an appropriate threat assessment;

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Confidence Level

10-1

100

P
m
a
x

s 0
[ψ

]

Maximum Probability of Reaching an Unsafe State (P1)

Attentive
Distracted

Figure 5.5: The figure shows a comparison of the values of maximum probability of reaching an
unsafe state for distracted and attentive driving while sweeping the value of confidence level CL.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER108

• even a low value ofCL causes the computed probabilities to increase (decrease) substantially
for the interval model, which might thus result in overly-conservative estimations, and;

• the likelihood model appears to be a good trade-off between the other two methods.

In the analysis presented in the rest of the section, we will use the likelihood model, which is
often used when probabilities are estimated from experimental data because it is more statistically
accurate than comparable methods.

Next, we examine the effects of different confidence levels on the results of the model-checking
algorithm, and we compare the performance for a driver between when he is attentive and when he
is distracted while driving. Figure 5.5 shows the model-checking results for property P1 and for
values of confidence level CL ranging from 60% to 99% for one driver. Results show that the prob-
ability of reaching an unsafe state is always lower in the case of attentive driving. The probability

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

P
1

Models with Obstacle

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

Models without Obstacle

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

P
2

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

P
3

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

P
4

Attentive
Distracted

S1 S2 S3
0.0
0.2
0.4
0.6
0.8
1.0

Figure 5.6: The figure reports the model-checking results of all the analyzed properties for three
subjects. For each subject and property, the vertical bar marks the range between minimum and
maximum satisfaction probability.

CHAPTER 5. FORMAL VERIFICATION OF THE PERFORMANCE OF A CAR DRIVER109

of reaching an unsafe state also decreases as we increase the confidence level, since the analysis
becomes progressively less conservative. The model developer can use this plot to determine when
the collected measurements are statistically relevant to estimate the driver performance, or, anal-
ogously, a developer of real-time control algorithms can use this information to assess how many
data need to be collected from sensors and processed before being able to faithfully predict the
future development of the system dynamics.

Moreover, we note that the trend shown in Figure 5.5 repeats for all the other subjects. How-
ever, the disparity between the results for attentive and distracted driving varies for each driver, and
also the sensitivity to the level of confidence. Lower sensitivity to the confidence level is a sign of
more repeatable behavior of the driver, since the few collected data points were already enough to
predict his or her behavior accurately. This information can thus also be used to score the driving
habits of each driver.

Finally, we report the collected model-checking results for three subjects (S) and for all four
properties (P) in Figure 5.6. This analysis highlights the differences of driving styles among the
subjects. For example, we note that results for property P3 show that subject S2 often ended up on
the left lane while performing the maneuver, while subjects S1 and S3 managed to keep the right
lane in most cases, indicating a higher precision in performing the maneuver, both in the presence
of an obstacle and when the road was free. Further, results for property P4 show that subjects S1
and S2 tended to brake often when performing the maneuver, while S3 travelled along the road
braking rarely. Since braking while performing a turn might cause threats due to loss of grip and
sliding, subjects S1 and S2 might be advised to pay more attention and break before entering the
double-turn and not during the maneuver. Analogously, a real-time control system might just detect
the presence of a double turn (e.g., through the use of a GPS) and defensively break before starting
the maneuver to increase the safety of the passengers. Finally, for all subjects, the presence of the
obstacle increased the probability of reaching an unsafe state, as expected. Such a contingency
might be detected by an automated system by using front-cameras and defensive maneuvers might
be initiated to minimize the probability of threats.

110

Chapter 6

Optimal Control with Uncertainties

In this chapter, we address the problem of synthesizing control strategies for Convex-MDPs. The
synthesized strategy optimizes a given system performance expressed in terms of total expected
reward while guaranteeing that the system behavior complies to a specification written in PCTL
under all resolutions of uncertainty. After formally defining the analyzed problem, we survey the
classes of strategies available to control the execution of a Convex-MDP. We then focus our atten-
tion on Markov deterministic (MD) strategies. We first prove the NP-completeness of the problem
of synthesizing an MD strategy from a PCTL specification with no operators with a finite time hori-
zon such that the total expected reward of the Convex-MDP is higher than a given threshold. We
then propose the first sound and complete algorithm to synthesize the MD strategy that maximizes
the total expected reward of the Convex-MDPs, among those that satisfy the PCTL specification
under all resolutions of uncertainty. Also PCTL specifications containing operators with a finite
time horizon can be processed by the synthesis algorithm by first unrolling the finite execution of
the Convex-MDP under analysis.

6.1 Problem Definition
The problem of controlling the behavior of a stochastic system naturally arises in many applica-
tions, ranging from robot path-planning and supply-chain management to the optimization of a
financial portfolio. For example, in the context of robot path-planning, we might be interested
in synthesizing a strategy such that the robot can reach Destination A while avoiding all unsafe
regions if no item of type 1 is available in such regions, and then reach Destination B through
regions that are safe or at which items of type 2 are available with probability greater than 50%,
while minimizing the total length of the path to be travelled.

As it is evident from the previous example, the control problem aims to optimize some de-
sired performance of the system (e.g., minimize the length of the path to be travelled), while also

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 111

constraining the behavior of the system to fulfill a given specification.
In this chapter, we address the problem of synthesizing control strategies for stochastic systems

modeled using the Convex-MDP formalism. The synthesized strategies optimize the expected
value of a given system performance expressed using the metric of the total expected reward, while
at the same time constraining the execution of the Convex-MDP to fulfill a specification expressed
using PCTL for any resolution of the uncertainty in the state-transition probabilities. We formally
define the analyzed problem in the following.

Definition 6.1. Constrained Total Expected Reward Maximization for Convex-MDPs. Given a
Convex-MDP MC , a reward structure r, and a PCTL specification φ, synthesize strategy σ∗ for
MC such that:

σ∗ = argmax
σ∈Σφ

Wσ
S0

(6.1)

where Wσ
S0

is the sum of the expected rewards over all the initial states s ∈ S0 ofMC , and Σφ is
the set of strategies for whichMC satisfies φ for any ηa ∈ Nat, starting from any state s ∈ S0 and
operating under σ ∈ Σφ.

Intuitively, we cast the strategy-synthesis problem into a constrained optimization problem.
The feasible set of the problem is represented by all the strategies that guarantee that the execution
ofMC satisfies the PCTL specification φ for any resolution of uncertainty within the action range
of the adversarial nature. Within the feasible set, we then aim to select the strategy that maximizes
the total expected reward of MC over the reward structure r. From a game-theory perspective,
we interpret strategies and natures as playing a game against one another, where strategies aim to
maximize system performance while natures aim to minimize such performance to haveMC fail
specification φ.

Remark 6.1. The techniques described in this chapter can also be applied to the dual prob-
lem of cost minimization, which arises when interpreting rewards as quantities to be minimized.
This translates into replacing all “max” operators with “min” operators and vice versa in Prob-
lem (6.1) and in the mathematical derivations in the rest of the chapter.

We review in the next session the different classes of strategies available to control a Convex-
MDP.

6.2 Strategy Hierarchy for Convex-MDPs
We repeat for convenience the definition of the four classes of strategies for Convex-MDPs, as
defined in Chapter 3.

1. History-dependent (H). A strategy is history-dependent if the choice of a ∈ A(s) for each
state s ∈ S is taken based on the sequence of previously visited states.

2. Markov (M). A strategy is Markov if the choice of a is taken based only on the last visited
state.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 112

3. Randomized (R). A strategy is randomized if the choice of a is taken stochastically among
the available actions in A(s).

4. Deterministic (D). A strategy is deterministic if the choice of a is taken deterministically.

As it has been proved by Baier [15] and intuitively shown in the example in Figure 4.1, history-
dependent strategies are in general strictly more powerful than Markov ones, i.e., there exist spec-
ifications written in PCTL that only history-dependent strategies can fulfill, while any Markov
strategy would fail. Moreover, it is intuitive to understand that randomized strategies are strictly
more powerful than deterministic ones, given that a deterministic strategy is in fact a special case
of a randomized strategy, in which the probability distribution associated to the actions available
in each state is a Dirac delta function. Formally, we can build the following hierarchy to classify
strategies to control the execution of Convex-MDPs:

MD ≺ MR ≺ HD ≺ HR (6.2)

where we use A ≺ B to indicate that class of strategies A is strictly less powerful than class
of strategies B. In particular, following the same reasoning presented in Section 4.1.2, we can
argue that history-dependent strategies are more powerful than the Markov counterpart when the
PCTL specification includes temporal operators with a finite time horizon (i.e., Bounded Until,
Instantaneous Reward and Bounded Cumulative Reward), while Markov strategies are sufficient
when these operators are disallowed and specifications are written only using the Next, Unbounded
Until and Cumulative Reward operators.

In Section 6.4, we will show that the problem of strategy synthesis for Convex-MDPs is more
complex than the verification one, and it requires higher computational effort. In fact, the prob-
lem is NP-complete even when considering the simplest class of MD strategies, and no efficient
(polynomial-time) algorithm is known at the present time to solve it. The problem becomes even
more complex for the synthesis of more powerful strategies. Since the focus of this dissertation is
to develop scalable algorithms capable of analyzing real-world practical systems, in the following
we will disallow the usage of temporal operators with a finite time horizon and only consider the
synthesis of MD strategies.

This constraint on the allowable specifications represents a limitation in our approach. Never-
theless, we will show in Section 6.3 that it is possible to explicitly unroll the execution of a finite
number of steps of the Convex-MDP within the model itself. An MD strategy synthesized on the
unrolled model can then be interpreted as a HD strategy for the original model. As a consequence,
we can argue that our approach is able to synthesize also HD strategies for PCTL properties con-
taining a finite time horizon.

Moreover, also the exclusion of randomized strategies from the proposed synthesis algorithm
might not be too stringent in practical applications. In fact, there exist classes of systems in which
randomized strategies would not be acceptable by the user, because they would prevent the re-
peatability of the system executions. For example, if the Convex-MDP model is used to synthesize
optimal dynamic voltage scaling strategies in multi-power domain Systems-on-Chip, only deter-
ministic strategies would be acceptable to guarantee that the system operates always in the same

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 113

manner and to be able to trace back potential problems. In general, it can be proven that random-
ized strategies achieve better performance in the expected value sense [15]. On the other hand, they
obviously have higher variance in the produced outcomes, thus possibly causing extra-challenges
in the testing and maintenance of a system.

For completeness, we mention that there are instead other applications which would indeed
benefit of randomized strategies, for example the problem of synthesizing strategies to maximize
the profit of a financial portfolio. In general, randomized strategies are more powerful when they
hinder the capability of an adversarial agent (e.g., another financial firm) to counteract effectively
to the strategy of the system to be controlled. While deterministic strategies are easier to predict
and challenge for the adversarial agent, a randomized strategy creates a less predictable behavior,
thus possibly generating on average a better performance. The study of algorithms to generate
random strategies for Convex-MDPs is thus left as an exciting further research direction for future
work.

6.3 Execution Unrolling for Finite-Horizon Convex-MDPs
In this section, we show by means of an example how to synthesize history-dependent strategies
for a Convex-MDPMC satisfying a PCTL specification φ containing operators with a finite time
horizon (i.e., Bounded Until, Instantaneous Reward and Bounded Cumulative Reward). In partic-
ular, we reduce the problem of synthesizing a history-dependent strategy forMC to the problem
of synthesizing a Markov strategy for a new Convex-MDP modelM′

C containing the unrolling of
the execution of the original Convex-MDPMC for kmax steps, where kmax is the maximum time
horizon in the operators contained in specification φ. Moreover, we show how to reformulate the
PCTL specification into a new formula φ′ containing only operators with no finite time horizon
(i.e., Next, Unbounded Until and Cumulative Reward). The optimal HD strategy forMC can then
be obtained by collecting the sequence of actions selected by the optimal MD strategy for M′

C
along the unrolled execution. This is, in fact, a classical construction [142], and we will use it also
in the case study presented in Chapter 7.

We now present the example under analysis. We refer to the Convex-MDPMC shown in Fig-
ure 6.1, which was already introduced in Section 4.1.2 and which is reported here for convenience.

s0

rs = 1
s1

rs = 2
s2

rs = 1
a

b
a

a

Figure 6.1: Example of a Convex-MDP for which only history-dependent strategies are optimal.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 114

We aim to synthesize the optimal strategy σ to satisfy specification:

φ = R r
≥2[I=3]

It is easy to see that the optimal strategy σ is history-dependent. It takes the self-loop b twice
and then selects action a, which yields expected instantaneous reward of 2, so that MC, σ |= φ.

s0,0

rs = 0
s1,0

rs = 0
s2,0

rs = 0

s0,1

rs = 0
s1,1

rs = 0
s2,1

rs = 0

b
a

a
a

s0,2

rs = 0
s1,2

rs = 0
s2,2

rs = 0

b
a

a
a

s0,3

rs = 1
s1,3

rs = 2
s2,3

rs = 1

b
a

a
a

abs
rs = 0

Figure 6.2: Example of the transformation of a Convex-MDP model required to encode 3 steps of
the execution history.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 115

Moreover, there is no Markov strategy for MC that could achieve such a reward, so the model
would not be able to satisfy φ if strategies were limited to be Markov.

We now apply the reduction introduced at the beginning of the section. In particular, we refer
to the Convex-MDPM′

C shown in Figure 6.2, which was obtained by unrolling the execution of
M′
C for k = 3 steps and by adding a final deterministic transition to an absorbing state, labeled

as abs. In M′
C , we add a further index to each state to record the step of the execution history

that the state belongs to. For example, state s1,2 ∈ S ′ represents state s1 ∈ S at the second step
of the execution. Moreover, we annotate with rewards only the states inM′

C associated to the last
execution step, to avoid counting the same reward multiple times.

We now reformulate specification φ as φ′ using the Cumulative Reward operator:

φ′ = R r
≥2[C abs]

The optimal Markov strategy σ′ for M′
C selects action b in states s0,0 and s0,1 and action a

in state s0,2. By collecting this sequence of optimal actions selected by σ′, we obtain the same
history-dependent strategy σ synthesized for MC and the same expected reward of 2. Also for
M′
C , we can thus writeM′

C, σ
′ |= φ′.

The reduction introduced in this section reformulates the problem of synthesizing history-
dependent strategies to the problem of synthesizing Markov strategies. Such a reduction allows
us to argue that the algorithm presented in Section 6.5 can handle properties expressed with the
full PCTL syntax, i.e., also with operators with a finite time horizon.

However, we notice that the reduction comes at the cost of an increase of the number of states
and transitions in the Convex-MDP model which is linear in the time horizon k. Such a penalty
is particularly severe in the context of strategy synthesis because such a problem is NP-complete
(as it will be proved in Section 6.4), and the best-known algorithms to solve it have worst-case
runtime execution exponential in the size of the Convex-MDP model. As a consequence, great
attention must be paid in setting the number of execution steps, i.e., the time horizon k, that need
to be unrolled, in order to limit the exponential increase in runtime to the strict necessary.

6.4 Theoretical Complexity of the Synthesis Problem for MD
Strategies

In this section, we present the main theoretical results of this chapter about the theoretical com-
plexity of the problem of synthesizing optimal MD control strategies for Convex-MDPs. We begin
by redefining the synthesis problem introduced in Definition 6.1 with the additional limitation of
considering only MD strategies.

Definition 6.2. Constrained Total Expected Reward Maximization for Convex-MDPs using MD
Strategies. Given a Convex-MDP MC , a reward structure r, and a PCTL specification φ con-
taining no operator with a finite time horizon, determine the MD strategy σ∗ forMC such that:

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 116

σ∗ = argmax
σ∈ΣMD

φ

Wσ
S0

(6.3)

where ΣMD
φ is the set of Markov-Deterministic strategies for which MC satisfies φ for any

ηa ∈ Nat, starting from any s ∈ S0 and operating under σ ∈ ΣMD
φ .

Before formalizing the results on theoretical complexity, we give an intuitive explanation of
why the complexity of the synthesis problem for MD strategies differs from the polynomial-time
result proven for the model-checking problem in Theorem 4.1. For simplicity, in this explanation
we set the reward for each state and action inMC to be zero, so that all strategies result in the same
(null) total expected reward and we can pick any strategy that satisfies specification φ. To make the
explanation more concrete, we will aim to synthesize an MD strategy for the Interval-MDPMC
shown in Figure 6.3 such thatMC satisfies the following PCTL specification:

φ = P ≥0.4[X ω] ∧ P ≥0.4[X ϑ]

We consider the satisfaction probabilities for state s1, which is the initial state of MC . We
consider one Next operator at a time, as it was done in the context of model checking. We notice
that action a maximizes the satisfaction probability for the first Next operator, i.e., it would result
in P a,min

s1
[X ω] = 0.7. On the other hand, it would causeMC to fail the requirement expressed

using the second Next operator, since P a,min
s1

[X ϑ] = 0.2. Action b is suboptimal in satisfying the
first Next operator, since it results in P b,min

s1
[X ω] = 0.45. Nevertheless this probability value is

still higher than the threshold p = 0.4, so b would satisfy the first Next operator. Moreover, action
b satisfies also the second Next operator, since it results in P b,min

s1
[X ϑ] = 0.45. As a result, the

optimal MD strategy is:
σ∗ : {s0, s2} → a, {s1} → b

In the context of verification, we need to verify that all strategies satisfy the PCTL specification
(universal quantification). The model-checking algorithm can consider one PCTL operator at a
time, determine the worst-case adversary for that operator and verify that the property still holds
for such an adversary. When run on the previously described example, the algorithm would have

s0

ω
s1 s2

ϑ

[0.2, 0.3][0.6, 0.8] a

b [0.45, 0.55][0.45, 0.55]

a a

Figure 6.3: Simple Interval-MDP used to illustrate the differences between the model-checking
and the strategy-synthesis problems.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 117

reported that MC does not satisfy φ. In the context of control of a Convex-MDP, instead, the
strategy-synthesis algorithm needs to determine whether it exists a strategy that does satisfy the
PCTL specification (existential quantification). As a consequence, the synthesis algorithm cannot
simply compute the best-case strategy for each operator, because a strategy that is sub-optimal for
each operator could in fact be the only one that satisfies all of them. For each operator in φ, and
for each state s ∈ S, the algorithm needs instead to store all the actions that satisfy the operator,
and then find the combination of actions that satisfy all operators, if such a combination exists.
It should be apparent from this example that the combinatorial nature of the strategy-synthesis
problem will require more computational effort than the model-checking problem in order to be
solved.

We now formalize the results on theoretical complexity. In particular, as it is commonly done
when proving results of this kind, we will consider the decision problem version of Problem 6.2,
i.e., we do not ask for the MD strategy that maximizes the total reward ofMC , but simply for an
MD strategy that results in a total expected reward higher than a given threshold WT and which
satisfies the PCTL specification φ under all resolutions of uncertainty.

In preparation of the main result, we introduce the following lemmas.

Lemma 6.1. Complexity of PCTL Model Checking for Convex-MDPs. Given a Convex-MDP
MC , the problem of model checking a PCTL formula φ containing no operator with a finite time
horizon is decidable in P. Further, there exist sound and complete algorithms to solve the model-
checking problem.

Sketch of proof. The result on theoretical complexity immediately follows from the first part of
Theorem 4.1. Further, a sound and complete algorithm for the PCTL model checking of Convex-
MDPs was presented in Section 4.2.

Lemma 6.2. Computation of the Total Expected Reward for Convex-MCs. It is possible to com-
pute the total expected reward WS0 of a Convex-MC in polynomial time.

Sketch of proof. We refer the reader to the results presented by Nilim and El Ghaoui [125], which
introduce polynomial-time algorithms to compute the total expected reward of Convex-MDPs and
Convex-MCs. Their approach relies on the classical Bellman recursion on the state transitions of
the Convex-MDP, and on clever formulations of the convex programs to be solved at each step of
the recursion to resolve the uncertainty in the transitions.

Lemma 6.3. Complexity of the Synthesis of MD Strategies for MDPs from PCTL Specifications.
The problem of determining the existence of an MD strategy σ for an MDPM such thatM, σ |= φ
is NP-complete.

Sketch of proof. We omit the technicalities of the proof for brevity. The interested reader is referred
to the work by Baier [15]. Intuitively, the same reasoning illustrated on the example of Figure 6.3
can be applied also when analyzing MDPs. In particular, the proof by Baier [15] does not consider
the presence of a total expected reward for the MDP to be maximized and just focuses on the
problem of synthesizing an MD strategy σ that satisfies the PCTL specification φ, as we did in the
example above.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 118

We are now ready to prove the main theoretical result of this chapter about the complexity of
the strategy-synthesis problem introduced in Definition 6.2.

Theorem 6.1. Complexity of MD Strategy Synthesis for Convex-MDPs from a PCTL Specifica-
tion. The problem of determining the existence of an MD strategy σ for a Convex-MDPMC , with
total expected reward Wσ

S0
larger or equal to WT and satisfying a PCTL specification φ containing

no operator with a finite time horizon under all resolutions of uncertainty is NP-complete.

Proof. As in all proofs of NP-completeness, we need to prove the following facts:

• that the analyzed problem is in NP, i.e., given a candidate solution it is possible to verify in
polynomial-time whether the solution does satisfy the problem or not;

• that the analyzed problem in NP-hard, i.e., that another known NP-hard problem can be
reduced in polynomial-time to it.

For the first part of the proof, we notice that, given a candidate solution σc, we can in polynomial
time:

1. check whetherMC, σc |=Nat φ by Lemma 6.1, and;

2. compute Wσc
S0

on the induced Convex-MCMσc
C by Lemma 6.2.

Strategy σc is a solution of the problem if and only if check 1) passes and if the computed total
expected reward is larger than the given threshold, i.e., Wσc

S0
≥WT . This concludes the proof that

the problem is in NP.
To prove NP-hardness, we reduce the problem introduced in Lemma 6.3 to the one under

analysis. We set WT = 0, and describe state-transition probabilities with point intervals (in the
case of Interval-MDPs), i.e., intervals in which the lower and upper bound coincide. By doing this,
the solution returned by an algorithm solving the analyzed problem can directly be interpreted as
a solution for the problem in Lemma 6.3.

The result of NP-hardness in the proof of Theorem 6.1 should have been expected given the
result reported in Lemma 6.3 on a simpler problem. The main contribution of Theorem 6.1 is
instead in showing that the synthesis problem of MD strategies for Convex-MDPs remains in the
same complexity class of the analogous problem applied to MDPs, i.e., considering uncertainties
in the estimation of the state-transition probabilities does not increase the theoretical complexity
of the problem.

6.5 A Synthesis Algorithm for MD Strategies
In this section, we describe the first sound and complete algorithm to solve the strategy-synthesis
problem for Convex-MDPs introduced in Definition 6.2. While previously proposed approaches

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 119

Optimization Engine
Synthesizes the strategy with the highest reward

Verification Engine
Does the Convex-MDP satisfy the PCTL specification?

Feasible
Candidate
solution σc

NO
Additional

conflict clause

Optimal strategy σ∗
YES

No strategy satisfies specification φ

Unfeasible

Figure 6.4: The figure shows a block diagram of the proposed algorithm for the synthesis of MD
strategies.

were not complete or were valid only for a sub-class of PCTL properties, as explained in Sec-
tion 3.3, our approach can handle arbitrary PCTL specifications1 and it is sound and complete, as
it will be proven at the end of this section.

We begin with an overview of the chosen approach which will help understanding the rest of
the results proposed in the section.

We use a lazy approach based on strategy-iteration, conceptually similar to works previously
proposed in the literature [71, 126]. As shown in Figure 6.4, the algorithm is split into two main
routines communicating in a loop. At each iteration, the optimization engine (OE) is responsible to
generate a candidate strategy σc1 . Strategy σc1 is guaranteed to maximize the total expected reward
Wσ

S0
of the Convex-MDP under analysis, but it does not necessarily satisfy the PCTL specification

φ, since the OE formulation does not contain any information about φ. The candidate solution σc1 is
then passed to the verification engine (VE) which checks whether the Convex-MDP satisfies φ for
all resolutions of uncertainty under the action range of the adversarial nature, i.e., ∀ηa ∈ Nat, when
operating under σc1 . If the check passes, σ∗ = σc1 and the algorithm terminates. Otherwise, the VE
generates an additional constraint for the OE to prevent σc1 to be selected again. We can interpret
this constraint as a conflict clause, i.e., a formal explanation (clause) that the problem is unfeasible
(conflict). The OE reads-in this additional constraint and generates a new candidate strategy σc2 ,
which is the strategy that maximizes the total expected reward Wσ

S0
among the remaining ones, i.e.,

the strategies in the set ΣMD \ {σc1}, and the loop repeats. The algorithm terminates when either
a strategy σcj is found at the jth iteration which satisfies specification φ (termination with success)

1If the PCTL specification contains an operator with a finite time horizon k, the execution of the Convex-MDP
needs to be unrolled for k steps, as explained in Section 6.3, before the proposed algorithm can be applied.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 120

or when all strategies σ ∈ ΣMD have been explored and none satisfies specification φ (termination
with failure).

The novelty of our approach is devising the mathematical formulation for the OE capable of
generating at each iteration the candidate strategy that maximizes the total expected reward among
those still available. The first candidate strategy that also satisfies the PCTL specification φ, as
verified by the VE, becomes the solution of the synthesis problem. Such a strategy is feasible
(satisfies φ) and it is guaranteed to result in the maximum total reward among the strategies that
satisfy φ, so it solves the strategy-synthesis problem introduced in Definition 6.2 exactly.

Remark 6.2. In general, there is not guarantee on the uniqueness of the optimal strategy σ∗, i.e.,
multiple strategies with the same expected reward might exist, each satisfying φ. Since every such
strategy is equivalent from the user perspective, the algorithm just reports the first one found.
Alternatively, all strategies with the same total expected reward could be generated by continuing
the iteration between the OE and the VE until a reduction in the expected reward was detected,
and by reporting all synthesized strategies satisfying φ.

The next subsections give details on the mathematical formulations of the optimization and
verification engines and analyze the algorithm properties.

6.5.1 Optimization Engine
In this section, we give details about the mathematical formulation for the optimization engine
(OE).

We start with the classical linear-programming (LP) formulation to maximize the total expected
reward for MDPs [142].

min
x,l

∑
s∈S0

xs

s.t. xs − las = ras + xTfas ; ∀s ∈ S,∀a ∈ A(s) (6.4)
xs, l

a
s ≥ 0 ∀s ∈ S,∀a ∈ A(s)

Vector x collects the total expected reward for each state s ∈ S (at the end of the optimization
Wσc

s = xs,∀s ∈ S), and the cost function sums the total expected rewards for all the initial states
s ∈ S0. We then set Wσc

S0
=
∑

s∈S0
xs. Variables las are slack variables for each constraint. Further,

we write ras = rs(s) + ra(s, a),∀s ∈ S,∀a ∈ A to simplify the notation. Since the slack variables
have negative sign, the slack can only be negative, i.e., the left-hand side (LHS) can only be larger
or equal than the right-hand side (RHS). The “min” operator makes sure that, for each state, the
constraint with the highest RHS has null slack, i.e., las = 0. The optimal MD strategy σc can then
be reconstructed by selecting the action a ∈ A(s),∀s ∈ S corresponding to the constraint with
null slack, e.g., σc(s0, a) = 1 if las0 = 0.

Our goal is to modify such a formulation to allow a sub-optimal solution to be selected, because
we will use this feature to discard strategies σc that have been proven by the VE not to satisfy
the PCTL specification φ. To achieve this goal, we now describe an equivalent formulation of

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 121

Problem (6.4). This formulation produces the same result of Problem (6.4), but it is more suitable
to allow the selection of sub-optimal solutions. We will describe in Section 6.5.2 how to add
constraints to this new formulation to actually select sub-optimal solutions in decreasing order of
total expected reward Wσ

S0
.

We refer to Problem (6.5):

max
x,z,l,n

∑
s∈S0

xs

s.t. xs − las + nas = ras + xTfas ; ∀s ∈ S,∀a ∈ A(s) (6.5a)
las ≤ Bzas , nas ≤ Bzas ; ∀s ∈ S,∀a ∈ A(s) (6.5b)
zT

s 1 = Ms − 1; ∀s ∈ S (6.5c)
xs, l

a
s , n

a
s ≥ 0, zas ∈ {0, 1} ∀s ∈ S,∀a ∈ A(s)

We associate a binary variable zas to each action for every state, so the problem becomes a Mixed-
Integer Linear Program (MILP). At the end of the optimization, zajsi = 0 if action aj is chosen
for state si, and Constraint (6.5c) guarantees that only one action can be selected for each state
(Ms = |A(s)|). For example, σc(s0, a) = 1, if zas0 = 0.

We then associate to each constraint a second slack variable nas , with sign opposite to las . If
action aj is selected at state si, i.e., zajsi = 0, Constraint (6.5b) makes sure that zajsi = 0 implies
l
aj
si = 0 ∧ najsi = 0, so that the corresponding Constraint (6.5a) can set the correct value of xs. We

use constant B to represent a big number with respect to the problem data. Constant B needs to
be higher than the reward computed for any state, i.e., B ≥ xs,∀s ∈ S, but not excessively high to
avoid convergence problems in the optimization algorithm when solving Problem (6.5).

If action ak is not selected at state si, i.e., zaksi = 1, variable laksi > 0 (naksi > 0) implies that
selecting action ak would have resulted in a lower (higher) value of xsi . With these constraints,
any action can be selected. We, finally, change the optimization operator to “max”, so that, at the
first iteration of the algorithm, the total expected reward gets maximized.

We now proceed to consider uncertainties in the transition probabilities. Constraint (6.5a) gets
updated to Constraint (6.6), since the adversarial nature tries to minimize the expected reward.
The decision variable of the inner problem is fas and its optimal value ν(x) is parametrized in the
outer problem decision variable x. The new constraint can be made linear again for an arbitrary
uncertainty model by replacing it with a set of constraints, one for each point in Fas . However,
this approach results in infinite constraints if the set Fas contains infinitely many points, as for
the models of uncertainty considered in this dissertation, thus making the problem not solvable.
We solve this difficulty using duality, which allows to rewrite Constraint (6.6) with a number of
additional constraints only polynomial in the size R of the Convex-MDP. In Constraint (6.7), we
replace the primal inner problem with its dual, ∀s ∈ S, a ∈ A(s):

xs − las + nas = ras + min
fas ∈Fas

xTfas (6.6)

⇓
xs − las + nas = ras + max

λa
s∈Das

g
(
λas ,x

)
(6.7)

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 122

where λas is the (vector) Lagrange multiplier, Das is the feasibility set of the dual problem and
g
(
λas ,x

)
is the dual cost function. We notice that the optimal value of the dual problem d(x) is

again parametrized in the outer problem decision variable x.
The dual problem is convex by construction in the dual variable λas [30] and it has size polyno-

mial inR, according to results from convex theory. Since also the primal problem is convex, strong
duality holds, i.e., the primal and dual optimal values coincide ν(x) = d(x), because the primal
problem satisfies Slater’s condition [30] for any non-trivial uncertainty set Fas . Any dual solution
underestimates the primal optimal solution. When substituting the primal problem with the dual
in Constraint (6.7), we can drop the inner optimization operator because the outer optimization
operator will nevertheless aim to find the least underestimate to maximize its cost function. We
thus get the formulation:

max
x,λ,l,n,z

∑
s∈S0

xs

s.t. xs − las + nas = ras + g
(
λas ,x

)
; ∀s ∈ S,∀a ∈ A(s)

las ≤ Bzas , nas ≤ Bzas ; ∀s ∈ S,∀a ∈ A(s) (6.8)
zT

s 1 = Ms − 1; ∀s ∈ S
xs, l

a
s , n

a
s ≥ 0,λas ∈ D

a
s , z

a
s ∈ {0, 1} ∀s ∈ S,∀a ∈ A(s)

Finally, we get the full formulation for the OE in Problem (6.9), where we replace each dual
cost function g

(
λas ,x

)
with the epigraph variable tas and add an additional constraint on tas to

bound its value to the value of g. This transformation is quite common in the formulation of
convex problems, since only linear functions are allowed in equality constraints. We notice that
the transformation does not, in fact, change the optimization result, since the outer optimization
operator will enforce tas = g

(
λas ,x

)
at optimum.

max
x,λ,l,n,z,t

∑
s∈S0

xs

s.t. xs − las + nas = ras + tas ; ∀s ∈ S,∀a ∈ A(s)

tas ≤ g
(
λas ,x

)
; ∀s ∈ S,∀a ∈ A(s) (6.9)

las ≤ Bzas , nas ≤ Bzas ; ∀s ∈ S,∀a ∈ A(s)

zT

s 1 = Ms − 1; ∀s ∈ S
xs, l

a
s , n

a
s ≥ 0,λas ∈ D

a
s , z

a
s ∈ {0, 1} ∀s ∈ S,∀a ∈ A(s)

Similarly to the CP formulation in Problem (4.18), the decision variables of Problem (6.9)
include both x and λas , so Problem (6.9) is convex only if the dual function g(λas ,x) is jointly
convex in λas and x. While this condition cannot be guaranteed for arbitrary uncertainty models, it
is possible to show constructively that it holds for the ones considered in the dissertation, following
the same reasoning presented in Section 4.2.3.1.

For example, for the interval model of uncertainty, Problem (6.9) can be written as Prob-
lem (6.10), which is a Mixed-Integer Linear Program (MILP), so trivially jointly convex in x

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 123

and λas .

max
x,λ,z,l,n

∑
s∈S0

xs

s.t. xs − las + nas = ras + tas ; ∀s ∈ S,∀a ∈ A(s)

tas ≤ λa1,s + (f sa)
Tλa2,s − (f

s

a)
Tλa3,s; ∀s ∈ S,∀a ∈ A(s) (6.10)

las ≤ Bzas , nas ≤ Bzas ; ∀s ∈ S,∀a ∈ A(s)

zT

s 1 = Ms − 1; ∀s ∈ S
xs, l

a
s , n

a
s ,λ

a
2,s ≥ 0, λa3,s ≥ 0, zas ∈ {0, 1}; ∀s ∈ S,∀a ∈ A(s)

x− λa2,s + λa3,s − λ
a
1,s1 = 0 ∀s ∈ S,∀a ∈ A(s)

with λas = [λa1,s,λ
a
2,s,λ

a
3,s].

For the ellipsoidal model, Problem (6.9) can be written as Problem (6.11), which is a Mixed-
Integer Quadratic-Constrained Program (MIQCP), so again trivially jointly convex in x and λas .

max
x,λ,z,l,n

∑
s∈S0

xs

s.t. xs − las + nas = ras + tas ; ∀s ∈ S,∀a ∈ A(s)

tas ≤ λa1,s − λa2,s − (ha
s)TEa

sλ
a
3,s; ∀s ∈ S,∀a ∈ A(s) (6.11)

las ≤ Bzas , nas ≤ Bzas ; ∀s ∈ S,∀a ∈ A(s)

zT

s 1 = Ms − 1; ∀s ∈ S
xs, l

a
s , n

a
s , λ

a
2,s ≥ 0, λa3,s ≥ 0, zas ∈ {0, 1}; ∀s ∈ S,∀a ∈ A(s)

‖λa3,s‖2 ≤ λa2,s, x− λa1,s1 + (Ea
s)Tλa3,s = 0 ∀s ∈ S,∀a ∈ A(s)

The Python code used to generate the MIQCP formulation is reported in Appendix D.
For general Convex-MDPs, we repeat here Assumption 2.4:

Assumption 6.1. Joint-Convexity. Given a Convex-MDP MC , for all convex uncertainty sets
Fas ∈ F , the dual function g(λas ,x) in Constraint (6.7) is jointly-convex in both λas and x.

Remark 6.3. We note that we can combine models of uncertainty different from one another within
a single formulation of Problem (6.9), since each instance of Constraint (6.7) is independent from
the others. As an example, if both the interval and ellipsoidal models are used, the overall formu-
lation of Problem (6.9) is an MIQCP.

6.5.2 Verification Engine
In this section, we give details about the mathematical formulation for the verification engine (VE),
i.e., the routine responsible to determine if the analyzed Convex-MDP satisfies specification φ for
any resolution of uncertainty when operating under the control of strategy σc.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 124

After fixing the candidate strategy σc returned by the OE, all the non-determinism in MC is
resolved. We can thus reduce MC to the induced Convex-MC Mσc

C = (S, S0,Ω,F ,X , L). The
VE can then be run on Mσc

C to determine whether it satisfies the PCTL specification φ for all
resolutions of uncertainty, i.e., ∀ηa ∈ Nat. To accomplish this task, we use the sound and complete
model-checking algorithm presented in Chapter 4, and run it to determine whetherMσc

C |=Nat φ.
If the Convex-MC satisfies φ, then the optimal strategy has been found and σ∗ = σc. Other-

wise, the VE needs to generate an additional constraint to be passed to the OE, so that the same
candidate solution does not get selected anymore. If vector zc = [zas0 · · · z

a
sN−1

] collects all the
binary decision variables that were set to zero in the previous round of optimization, i.e., the vari-
ables corresponding to the actions selected at each state under strategy σc, we simply need to add
the following constraint:

N−1∑
i=0

zc[i] ≥ 1 (6.12)

in order to prevent the selection of the same set of actions again. Intuitively, Constraint (6.12)
guarantees that at least one action from the previously selected set does not get selected any more
(its value is set to 1) in the subsequent iterations.

As an example, we optimize the total expected reward of the Ellipsoidal-MDP in Figure 2.5
subject to specification φ = P ≥0.8[ϑ U abs]. The first iteration of the OE generates strategy σc1 ,
which selects actions [b, a, a, a] for states [s0 · · · s3], and which results in Wσc1

s0 = 10.625. On the
other hand, the VE reports P σc1 ,min

s0 [ϑ U abs] = 0.207, so strategy σc1 is rejected. The VE adds
the constraint zbs0 + zas1 + zas2 + zas3 ≥ 1 to the OE formulation. At the second iteration, the OE
generates strategy σc2 which selects actions [a, a, a, a], and results in Wσc2

s0
= 10.188. The VE

computes P σc2 ,min
s0 [ϑ U abs] = 1, which satisfies specification φ. The algorithm thus terminates

reporting σ∗ = σc2 . The full formulation of the MIQCP problem used to generate the optimal
strategy is reported in Appendix D.

6.5.3 Algorithm Analysis
In this section, we prove the soundness and completeness of the proposed strategy-synthesis al-
gorithm and we analyze its runtime performance. We summarize the results of this section in the
following theorem.

Theorem 6.2. The algorithm presented in Section 6.5 to solve the strategy-synthesis problem intro-
duced in Definition (6.2) is sound, complete and has worst-case runtime exponential in the size R
of the Convex-MDPMC and polynomial in the sizeQ of the PCTL specification φ, ifMC satisfies
Assumption 6.1.

Proof. To prove soundness, we need to show that the strategy σ∗ returned in a run of the algo-
rithm reporting success is indeed the strategy that maximizes the total expected reward Wσ

S0
of the

Convex-MDP among those that satisfy the PCTL specification φ under all resolutions of uncer-
tainty. Problem (6.9) returns the MD strategy σc that maximizes Wσ

S0
among those still available.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 125

By Lemma 6.1, the VE is sound, so if it returns that MC, σc |=Nat φ, indeed σ∗ = σc. This
exit condition is represented by the exit arrow at the bottom of Figure 6.4. By Lemma 6.1, the
VE is also complete, so if it returnsMC, σc 6|=Nat φ, the current σc under analysis can indeed be
discarded, since it cannot be the solution of the synthesis problem. This is done by generating a
constraint of the form of Constraint (6.12), which removes only the current σc from the strategies
to be explored by the OE. This proves the soundness of the overall algorithm.

To prove completeness, we need to show that indeed no strategy σ ∈ ΣMD fulfills the PCTL
specification φ if the synthesis algorithm reports failure. We can do so by realizing that it is only the
OE to declare failure of finding a solution. This happens when Problem (6.9) becomes unfeasible
because all the available strategies σ ∈ ΣMD have previously been discarded by the VE. This exit
condition is represented by the exit arrow at the top of Figure 6.4. This proves the completeness of
the overall algorithm.

Finally, we evaluate the worst-case runtime of the algorithm by counting the maximum number
of required iterations and then analyzing the computation requirements to perform each iteration.
To ease the reader in following the derivation below, we recall from Section 2.1.2 that M is the
cardinality of the set of actions A available in the Convex-MDP, and N is the cardinality of the set
of states S of the Convex-MDP.

To evaluate the total number of iterations, we need to determine the cardinality of the set ΣMD

of all the available MD strategies. There are in total I = |As0| × |As1| × · · · × |AsN−1
| = O(MN)

MD strategies, i.e., all possible permutations of the actions available at each state s ∈ S. We set
|ΣMD| = I and the algorithm goes at most through I = O(MN) iterations.

Each iteration of the algorithm requires solving an instance of Problem (6.9) and a verification
check in the VE. Problem (6.9) can be solved by branch-and-bound algorithms in time exponen-
tial in the number of binary variables (whose number is O(MN) and it remains constant across
iterations) and polynomial in the number of constraints. The number of constraints is polyno-
mial in R at the first iteration, and it grows by one at each iteration for a maximum number of
additional constraints limited by I = O(MN). Overall, the complexity of solving an instance of
Problem (6.9) isO

(
2MN ×poly(MN)

)
. Furthermore, the verification check in the VE can be done

in time polynomial inR and Q by Lemma 6.1, ifMC satisfies Assumption 6.1.
Finally, we conclude that the worst-case runtime of the proposed strategy-synthesis algorithm

isO(MN ×
(
2MN ×poly(MN) + poly(Q))

)
, which is exponential inR and polynomial inQ.

The analysis of the algorithmic runtime shows that the algorithm performs better on problems
that do have a feasible solution, arguably the most interesting ones, since they do not require to
visit all the MD strategies σ ∈ ΣMD. On the other hand, the optimization step could be removed
to save time if the goal was to prove unfeasibility.

We further notice that, as an alternative to our approach, σ∗ could be determined by testing all
I available MD strategies, and selecting the one with the highest reward among those satisfying
φ, as hinted to by Baier et al. [16]. We believe (and experimentally show in Section 7.4) that our
approach can achieve shorter runtime by partitioning the overall strategy-synthesis problem into
an optimization and a verification step and by testing strategies in order of optimality.

CHAPTER 6. OPTIMAL CONTROL WITH UNCERTAINTIES 126

Finally, speed-ups can be obtained by implementing online routines for integer-constraint sim-
plification and to produce more succinct certificates of unfeasibility from the VE [71, 126]. The
description and implementation of these routines are outside the scope of this dissertation and are
left as an interesting direction of future work to improve the scalability of the proposed algorithm
to the analysis of larger problems.

127

Chapter 7

Optimal Energy Scheduling and Pricing in
Smart-Grids with Renewable Sources

In this chapter, we describe how we applied the proposed synthesis algorithm to the problem of
generating optimal energy pricing and purchasing strategies for a per-profit energy aggregator
whose portfolio of energy supplies includes renewable sources, e.g., wind. We first introduce the
analyzed problem and motivate its relevance in the context of the energy-market structure. Sec-
ondly, we review related solutions proposed in the literature to set a comparison point with the
proposed approach. We then present the Convex-MDP model that we developed to capture the
decision-making process that is set up by the energy aggregator to maximize its economic profits
while accounting for the fluctuations in the availability of the renewable sources. In particular, we
show that the model is capable of capturing the uncertainties in the prediction of the availability
of wind-generated energy. We conclude by reporting experimental results on the performance of
the energy aggregator operating under the guidance of the optimal strategy synthesized using the
proposed control algorithm. Results show both that the proposed analysis can help in gaining
further insight in the economic structure of the decision process and that, in the average case, the
energy aggregator can pursue market strategies that are more robust to uncertainties in the wind
prediction with respect to other solutions proposed in the literature.

7.1 Problem Description
In this section, we first define the analyzed problem and we then summarize the contributions
presented in this chapter.

As stated in a recent report from the International Energy Agency, electricity consumption
world-wide is projected to grow from 18 trillion kWh in 2006 to 32 trillion kWh in 2030, a 77%
increase [82]. To avoid catastrophic pollution damage to the planet, it is necessary to employ

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 128

energy sources alternative to fossil fuels [65]. In fact, an acceleration in the deployment of renew-
ables is already taking place in Europe, Asia and North America. In this chapter, we focus on wind
energy, which nowadays has higher capacity than solar energy, and is expected to constitute a sig-
nificant portion of renewable generation integrated to the power grids of North America [65]. We
nevertheless note that our approach is easily extendable also to solar energy, should the application
require it.

The correct operation of power systems requires the balance between energy supply and de-
mand at all times. The operation risk for the power-network can be quantified both by the prob-
ability of not meeting such a balance constraint, and by the (positive) gap between demand and
supply. High values of either indicator make the occurrence of disruptions, faults and ultimately
blackouts more likely [167]. In grids that only integrate fossil energy sources, the task for the
system operator amounts to dispatch the production of energy during the day, based on averaged
demand profiles.

This topic has been studied in several publications due to its relevance both from a political
and an economic perspective. As a first approach, deterministic optimization frameworks have
been developed to solve the energy dispatch problem, aiming to maximize the social welfare of the
different agents (suppliers and consumers) operating in the energy market. Such an optimization
translates into finding an equilibrium point in which no system agent can achieve higher benefits
(e.g., lower energy cost for the consumers) without damaging another agent in the system. Fur-
thermore, the optimization was carried out while also enforcing constraints on the resiliency of the
network in the presence of one fault in the network, the so-called N-1 worst-case dispatch [167].

When considering the need for limiting operation risk, it is apparent that a high penetration of
wind generation puts forth big challenges [133]. Unlike fossil energy resources, wind generation
is non-dispatchable, i.e., it cannot be harvested by request. Further, wind availability exhibits high
variability across all timescales, which makes it difficult to forecast (errors can be up to 20% of the
forecast value [138]).

To compensate for supply uncertainty, researchers have proposed the concept of demand re-
sponse (also known as demand side management (DSM)), i.e., the management of customer energy
consumption in response to supply conditions [76, 89, 92, 130, 156]. In these studies, it was im-
plicitly assumed that every building (or even apartment) is equipped with a smart meter connected
to the power grid. The smart meter communicates in real time with the grid and it is capable
of rescheduling tasks that require energy consumption depending on the energy price. Indeed, a
large fraction of the total daily electricity consumption in the U.S. is from residential and small
commercial energy users, e.g., water heaters and dish washers, which do not need to operate at a
specific moment but only within a time interval, e.g., some time overnight [138]. Traditionally,
these energy users pay a fixed price per unit of electricity, which represents an average cost of
power generation over a given time-frame (e.g., a season). In smart grids with two-way commu-
nications, real-time pricing protocols can be implemented so that price can vary according to the
availability of energy supply, to incentivize (disincentivize) energy demand [28]. As a simplified
example, we could foresee a scenario in which the smart meter does schedule the load only when
the energy price communicated by the smart grid goes below some (user-) preset threshold.

A wealth of stochastic optimization frameworks have thus been proposed [25, 34, 45, 76, 92,

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 129

121, 123, 131, 132, 133, 145, 146, 154, 157, 161, 164, 171, 175]. These works aim first to optimize
the dispatch of non-renewable baseline energy to be integrated with the renewable energy supply
to meet the total demand. In fact, in current power-networks, wind penetration usually accounts
only up to 30-40% of the total energy generation, so fossil generation is still required. The goal
of these stochastic frameworks is still to maximize the expected value of the social welfare of the
agents participating in the energy market. On the other hand, they employ stochastic optimization
techniques to guarantee the satisfaction of the power balance constraint despite the uncertainty in
the predictions of wind availability. More recent works also include the co-synthesis of optimal
energy pricing strategies to manage the customer consumption through economic incentives [76,
92] or the rescheduling of customer loads to maintain more constant load profiles [89, 130, 156].

The scenario described so far refers to the management of smart-grids at the national (or state)
level by an Independent System Operator (ISO). Such operation is generally controlled by well-
defined regulations (e.g., set by the Federal Energy Regulatory Commission (FERC) [58] in the
United States). ISOs (or energy suppliers) are non-profit organizations which aim to maximize the
social welfare of the agents participating in the system and which, in the United States, set energy
prices following the principle of “Just and Reasonable rates” mandated in the Federal Power Act
Section 205.

At the regional or local level, instead, a wider variety of businesses and organizations operate
within the energy market. In this chapter, we will consider the interaction of an energy aggrega-
tor (or energy broker) with the energy market. An energy aggregator can be a for-profit company
acting as a middleman or negotiator on behalf of a group of customers, to obtain the best deal or
contract terms from the energy suppliers operating the power-network. Examples of such organi-
zations in the United States include ENERNOC [55], Opower [127] and GoodEnergy [64], just to
name a few.

In particular, we will focus on the problem of generating optimal energy pricing and purchasing
strategies for a for-profit energy aggregator whose portfolio of energy supplies includes renewable
sources, e.g., wind. We consider a micro-system in which the energy aggregator purchases energy
from the energy market and sell energy products to the users that have subscribed to its services.
Being a for-profit organization, the energy aggregator aims to maximize its own economic profit.
In fact, regulations do not strictly dictate the behavior of private agents operating in the energy
market. On the other hand, the aggregator operates in a competitive market, so it needs to wisely
set its energy pricing and purchasing strategies in order to successfully remain in business.

Similarly to the behavior of the full smart-grid, we assume that, at all times, the aggregator
decides to maintain a balance between supply and demand within its portfolio. We consider such
a constraint as a reasonable choice to be included in the aggregator business plan, to reduce the
variability of its portfolio. We note in any case that such a requirement is not as stringent for an
energy aggregator as it is instead at the full smart-grid level, since the energy aggregator usually
operates only on a fraction of the total market and it can potentially buy or sell energy with a short
notice on the spot energy market.

The scenario analyzed in this chapter is similar in spirit to the work analyzed by He et al. [76],
since also that work aims to optimize the economic profit of the agent under consideration.

That work though does not explicitly consider the risk of power unbalance during optimiza-

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 130

tion, and only evaluate the probability of loss of load (also known as load shedding) after syn-
thesis, via Monte Carlo simulation, to evaluate the quality of the proposed solution. Unfortu-
nately, these results offer little insight to the aggregate when the estimated risk is too high. Indeed,
Varaiya et al. [167] advocated the need for a stochastic optimization framework capable of bound-
ing the risk a priori, i.e., at optimization time. The returned control strategy can then be considered
the optimal one among those that guarantee an acceptable risk of power unbalance.

Moreover, more constraints to the optimization problem need to be added to guarantee that a
minimum amount of energy gets actually delivered to the users. Without such a constraint, the
energy aggregator could potentially over-increase the energy price to force users out of the system.
This behavior of the energy aggregator would indeed guarantee power balance at times of little
wind generation, but it would be unfair to the service subscribers. In the following of the chapter,
we will refer to this minimum guaranteed delivered energy as Quality of Service (QoS) for the
users.

The scenario depicted in this chapter represents only a small portion of the intricacies of the en-
ergy market. As future work, we plan to incorporate the interaction between the energy aggregator
and the full market structure to more accurately model the complex real-world application.

We summarize in the following the main contributions of this chapter.

7.1.1 Contributions
Our first contribution is a novel stochastic model capable of capturing the decision process set
up by an energy aggregator to generate energy pricing and purchasing strategies in a market struc-
ture integrating wind energy sources. The model is an Ellipsoidal Markov Decision ProcessME

(Ellipsoidal-MDP), a special case of Convex-MDP, which was introduced in Section 2.1.3.3. While
previous works used analytical distributions, e.g., Gaussian [76], to model uncertainty in wind
availability, we use measured data (from the wind farm at Lake Benton, Minnesota, USA [170]),
to train a likelihood model of the wind generation. Moreover, the statistical framework presented
in Section 2.1.3 gives quantitative means to represent the confidence in the forecast values. We
then approximate the likelihood region with an ellipsoidal model, which is more accurate than the
linear ones often used in the literature, while remaining computationally tractable. Our empirical
approach has the promise of more faithfully representing the probability distribution of the gen-
erated energy because it is tailored to the specific wind farm under analysis, and it is robust to
forecast errors.

As a second contribution, we cast the strategy-synthesis problem as a constrained optimization
problem for Ellipsoidal-MDPs. The optimization aims to maximize the economic profits for the
energy aggregator, while constraints limit the risk of power unbalance and guarantee the desired
QoS for the users. We show how to formulate the constraints in terms of a PCTL specification
and use the total expected reward to measure the profit of the energy aggregator. We can thus use
the strategy-synthesis algorithm presented in Chapter 6 to solve the problem. We focus on finite-
horizon History-dependent Deterministic (HD) strategies, i.e., for each state of the Ellipsoidal-
MDP an optimal action to take is chosen deterministically, based on the entire (finite) execution
history of the decision process. The limitation to finite-horizon strategies is not restrictive, since

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 131

energy pricing and purchasing decisions are taken on a daily basis. As explained in Section 6.2,
History-dependent Random (HR) strategies are in general more powerful, i.e., they can produce
a higher expected reward. Nevertheless, we focus on deterministic strategies because we believe
that deterministic pricing strategies are easier to adopt in a real-world scenario, since they can be
better understood by the system agents (e.g., the household users). Using the reduction introduced
in Section 6.3, we then unroll within the model the finite sequence of decision epochs over the
day, and construct a second Ellipsoidal-MDPM′

E in which we replicate the states of the original
Ellipsoidal-MDP ME at each decision epoch. In the strategy synthesis for M′

E , we focus on
Markov deterministic (MD) strategies. As it was shown in Section 6.3, the desired HD strategy for
each state s ofME can then be reconstructed by collecting the sequence of optimal MD actions
for each replica s′ of s along the decision epochs ofM′

E .
Finally, as our third contribution, we experimentally show that the energy pricing and pur-

chasing strategies synthesized using the proposed formulation better fulfill the system specifica-
tions and produce a higher expected profit for the energy aggregator than other solutions proposed
in the literature [76, 167]. In particular, we use a Monte Carlo simulation to validate our approach.
We first synthesize three different control strategies using our approach and the two previously
proposed approaches [76, 167]. We then run a Monte Carlo simulation of the system under the
control of each of the synthesized strategies and collect the system performance in terms of profit
for the energy aggregator, risk of power unbalance and QoS for the users. We finally compute the
average of these performances across the Monte Carlo runs to estimate the expected value of these
quantities and compare the performances among the three different approaches. In addition, we
note that our approach is the only one that allows studying the trade-off between a more accurate
forecast of the wind-availability (which is more costly) and the expected profit in managing the
energy portfolio, thus it gives further insight to the energy operator about the economic trade-offs
that are present in the decision process for optimal pricing and purchasing of renewable energy.

Remark 7.1. We have chosen to analyze the problem of synthesizing control strategies to be
adopted by a for-profit energy aggregator, among other available applications, mainly for two
reasons. First, the integration of renewables in the energy supply chain nowadays represents a
top priority in the agenda of most developed countries, and a lot of research is being developed
to solve a variety of challenges that are still present. This is an exciting field in rapid expansion
and efforts on several aspects of the problem will still be needed to make the scenario described
in this section truly possible. The development of more effective control techniques for such power
networks is one of these challenges.

Second, the planning of energy pricing and purchasing strategies is an application that can
indeed benefit of formal and exhaustive optimization techniques. Given the time scales of the
network operation (strategies get roughly update on a daily basis) and the amount of energy pro-
cessed by a smart-grid (a wind-farm with 100 turbines produces on average 600GWh in a year,
enough to power 50,000 households), the runtime and the utilization of computational resources
of the proposed strategy-synthesis algorithm are not going to play a crucial role to determine the
applicability of this approach to the problem. On the other hand, performance improvements of
even a few percents enabled by exhaustive optimization techniques can quickly become relevant, if

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 132

considered in absolute terms. Continuing the previous example, an improvement of performance
of one wind-farm by only 1% might result in 500 more households to be powered by renewable
energy!

7.2 Related Work
In this section, we review related approaches proposed in the literature to solve the more general
problem of energy pricing and dispatch in smart-grids that integrate renewables. For each analyzed
work, we briefly describe the proposed strategy-synthesis technique.

The problem of optimal energy dispatch in power-grids has been studied for a long time, start-
ing from networks which integrated only non-renewable supply sources [91]. In particular, the first
proposed techniques used a deterministic approach, in which all system quantities were supposed
to be known with certainty and in which the system dynamics were assumed to evolve in a repeat-
able way. The goal of these techniques was to synthesize the network structure and to dispatch
enough reserve energy supply to guarantee that the overall network could sustain the failure of
any of its components (either a generator or a transmission line) without compromising its correct
functionality, i.e., with no interruption of the service. In these frameworks, it was assumed that
only one failure, also called contingency, could happen at a single time, since the probability of
the occurrence of a second failure before the first one could be repaired was deemed to be negli-
gible. Not surprisingly, these techniques were referred to as N-1 contingency analysis, where N
is the number of network components. Moreover, the optimization problem aimed to maximize
the social welfare of the agents operating in the system. These deterministic approaches had the
advantage of allowing more compact formulations of the strategy-synthesis problems, and faster
solution times. On the other hand, they could not be trivially extended to the analysis of power
networks integrating renewable sources, because of the obvious shortcoming of not being able to
capture the variability in the availability of renewables. In particular, deterministic approaches
could work well only when the renewables penetration, i.e., the percentage of energy provided by
renewable sources, was just a small fraction of the total supplied energy [167].

In order to synthesize control strategies also in smart-grids with higher penetration of renew-
ables, a wealth of stochastic approaches have been proposed [25, 34, 45, 76, 92, 121, 123, 131,
132, 133, 145, 146, 154, 157, 161, 164, 171, 175]. Two sources of stochastic behavior were mod-
eled. First and foremost, the availability of renewable energy, which can vary substantially even
between consecutive decision epochs and which cannot be dispatched but only harvested when
available. Due to such variability, reserve non-renewable energy supplies need to be scheduled
to guarantee power balance at all times and their dispatch needs to be optimized to maximize the
aggregate social welfare of the system agents [29, 105, 133]. Secondly, the user demand, which
started being considered not only as an environmental variable which the smart-grid operator only
had to react to, but also as a control knob to help guaranteeing power balance in the grid at all
times [89, 92, 115, 155]. Moreover, both these two sources of stochastic behavior started being
considered at the same time to obtain even higher performances from the smart-grid [76, 130, 167].
The results obtained employing these approaches showed that it is indeed possible to allow higher

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 133

penetration of renewables by adopting a stochastic synthesis framework.
Our approach focuses on a portion of the complex structure of the energy market and considers

the problem of generating optimal energy pricing and purchasing strategies for a for-profit energy
aggregator whose portfolio of energy supplies includes renewable sources. Our contribution ex-
pands previously proposed stochastic approaches because it not only considers the randomness in
the prediction of availability of renewables and user demand, but it also allows capturing math-
ematically the uncertainty in modeling such random predictions. In fact, as it will be shown in
Section 7.4, our technique allows to quantitatively assess the impact of uncertainties in the predic-
tions on the decision process, offering the energy aggregator a more comprehensive analysis of the
economic and functional dynamics of the system.

Due to their higher relevance to the techniques proposed in this chapter, in the following we will
focus only on stochastic optimization frameworks and present an overview of the most influential
works presented in the literature.

7.2.1 Stochastic strategy-synthesis Frameworks
Bouffard et al. [29] solved the problem of energy dispatch in smart-grids integrating renewable
sources by adapting previously proposed (by the same authors) stochastic techniques for the schedul-
ing of supply reserves in networks where one of the generators can fail. In fact, they consider the
wind variability analogous to a “fault” (or malfunction) of one of the dispatchable energy sup-
plies, since in both cases the generated supply is lower than expected and energy reserves need to
be scheduled to counteract to this contingency. Analogously to our approach, they define a finite
number of possible scenarios, i.e., a sequence of pairs of real numbers expressing the wind avail-
ability and the user demand at each decision epoch (in our setting, a scenario is an execution path
of the Ellipsoidal-MDP), and compute the probability of each scenario to occur. They then cast
the energy dispatch problem into a constrained optimization problem. Their cost function tries to
minimize the expected value of a social welfare cost function, which includes the network operator
costs, the energy price for users and the amount of “load-shedding”, i.e., the amount of energy that
is not delivered to the users because it exceeds the available supply. Constraints are then added
to guarantee the power balance and the operation within the thermal and voltage ratings of the
network (this set of constraints is referred to as “security”) at all times and that each supply gen-
erator operates within its correct functional regime. The constrained optimization is run over all
scenarios at the same time and each quantity is weighted by the probability for the corresponding
scenario to take place. In this way, scenarios that are less likely to happen are allowed to result in
worse performances in terms of profits for the network operator and costs for the users.

Differently from our approach, they consider the expected value of the user demand as an
environmental variable, i.e., fixed externally and not controllable by the network operator, when
determining the available operating scenarios. At optimization time, they then assume that the op-
erator can instead deterministically finely tune the actual user demand using economic incentives.
We take an opposite approach and assume that the energy aggregator can control the expected
value of user demand by using economic incentives, but that the actual realization of user demand
is stochastic and non-controllable by the aggregator. Moreover, our framework not only considers

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 134

a finite number of scenarios about the availability of renewable energy sources, but it also allows
capturing mathematically the uncertainty in creating such a finite discretization of the continuous
random variable representing the availability of renewables.

The problem of optimal energy dispatch (or unit commitment) was also extensively analyzed
by Papavasiliou and Oren [132, 131] and Papavasiliou et al. [133]. These works expand the contri-
butions by Bouffard et al. [29] in at least three ways. First, they consider a larger scale centralized
unit commitment problem, aiming to provide a complete strategy for the Independent System Op-
erator (ISO) spanning a longer time horizon and a wider network size. In order to do so, as a sec-
ond contribution, these authors propose novel stochastic optimization techniques to allow higher
scalability of the proposed synthesis algorithm. In particular, they propose a two-stage Lagrangian
relaxation algorithm which was experimentally proven to better spread the computation load across
subproblems than other solutions presented in the literature [52, 67, 77]. Furthermore, as a third
contribution, they propose a more accurate model of the available wind-energy availability, based
on the inverse Gaussian distribution.

In our work, we consider uncertainty sets to model the variability in the available wind energy,
which are derived starting from empirical data. Our approach has the promise of being independent
to any specific analytical distribution, thus potentially better tailoring the specific characteristics of
the wind mill farm under analysis.

The effectiveness of adopting techniques to manage user demand via economic incentives to
help balancing supply and demand in power grids was studied, among others, by Koch et al. [92]
and by Lu et al. [115]. In particular, these researchers focused on the analysis of Thermostati-
cally Controlled Loads (TCLs), e.g., refrigerators, which are usually controlled by a dead-band
hysteretic (ON/OFF) control. In short, the main idea is to devise techniques to coordinate the
functionality of multiple TCLs and to spread their ON times by load shifting, so that not all loads
are ON (OFF) at the same time, causing spikes (droops) in the energy demand. While from the
user perspective such a load shifting would have negligible consequences, the dispatch of energy
sources by the network operator could be substantially simplified.

While these approaches share a common problem description, they differ in the way the solve
the optimal control problem. Koch et al. [92] formulate the control problem in terms of a Model
Predictive Control (MPC) framework. The underlying model of the system is a linear time-
invariant representation of a population of TCLs. The system state captures the distribution of
the population across discretized temperature-related bins, and the system evolves with linear dy-
namics across the different states, depending on how many loads are ON/OFF at a given time.
The optimal control strategy is inferred in a receding-horizon fashion by predicting at all decision
epochs the future evolution of the system and by turning ON/OFF the loads in order to achieve
the maximum spread of the ON times while guaranteeing that all loads remain below the target
maximum temperature.

Lu et al. [115] instead develop a state-queuing model of TCLs capable of capturing the dy-
namics of the load power consumption in response to different load shifting strategies, in order to
evaluate the economic benefits and feasibility of each strategy. The advantage of this approach is
its high expressivity and the researchers show how to embed into the model information about the

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 135

environment temperature and about the randomness of the user interaction with the system (e.g., a
user might increase the temperature of a refrigerator by opening its door), in order to obtain more
accurate estimations of the system dynamics. The model is then simulated for different available
load shifting strategies and the optimal one is selected.

Three different techniques for demand response were analyzed by Papavasiliou and Oren [130].
In particular, the authors focus on the deferrable nature of several demand response resources (e.g.,
the charging of electrical vehicles). The first analyzed strategy, which is used as a comparison
point, considers the centralized co-optimization of generation and demand by the system operator.
Although this scenario is not achievable in practice, it sets a reference of the best attainable per-
formances of the grid. As a second strategy, they analyze demand bids with real-time pricing [28],
in which part of the total demand is elastic, i.e., variable, to changes in the energy price. The
system operator can thus partially influence the total demand by changing the energy price. As a
third strategy, the authors study the coupling of renewable suppliers with deferrable loads. In this
scenario, an energy aggregator can purchase renewable energy and it then manages a set of loads.
If the supply is below the demand, it can defer some of the loads (by paying a penalty) within
a maximum time window or purchase more energy from the real-time wholesale market in case
the maximum time window for deferral has expired. This approach distributes the centralized co-
optimization of the first strategy and thus it makes it more realistic to be implemented in practice.
The comparison among the three strategies show that demand-side bidding results in lower cost
with respect to coupling, but it fails to capture the user elasticity across different time windows
thus resulting in higher load losses.

The scenario presented by He et al. [76] is the one that we follow most closely in setting up our
strategy-synthesis framework. In that work, the researchers consider both the availability of renew-
able energy and the user demand as stochastic processes, and they assume that the system operator
can control the expected value of user demand by using economic incentives. The decision process
evolves on two time scales. On day-ahead, the network operator can decide how much baseline
non-renewable energy to schedule for the following day. In real-time, after observing the realiza-
tion of wind availability, it further sets the energy price for users to incentivize (disincentivize) their
demand, and it schedules further fast-start non-renewable supply, if needed, to guarantee power
balance at all times. The strategy-synthesis problem is then cast as an unconstrained optimization
problem and solved analytically.

We follow very closely the same setup, but we add constraints to the optimization problem
to guarantee acceptable values of risk of power unbalance for the system operator and quality of
service to the users at optimization time. Indeed, the approach proposed by He et al. could only
evaluate system performance after the optimization, via Monte Carlo simulation. Such an approach
thus gives little insight to the energy aggregator on how to manage its portfolio if the synthesized
performances are not acceptable, and domain expertise and trial-and-error on the optimization
inputs would be needed to obtain admissible results. Our approach has instead the advantage of
automatically exploring the search space and detect the optimal strategy among those that satisfy
all system specifications.

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 136

In our work, we aim to answer the call by Varaiya et al. [167] to develop strategy-synthesis
techniques capable of quantitatively constraining the risk for the energy aggregator at optimization
time. Also in that work, the researchers consider the randomness of both the renewable energy
availability and of the user demand and they investigate pricing strategies to manage user demand
in order to help the operator to guarantee power balance at all times. With respect to the formulation
proposed by He et al. [76], they also enforce limits at optimization time on the maximum acceptable
probability of loss of load. They then cast the optimization problem as a recursion on multiple time
scales, and solve the problem analytically when the probability of loss of load is enforced to be
equal to 0.

Our approach extends this technique in at least two ways. First, the proposed strategy-synthesis
algorithm also processes system specifications for which the satisfaction threshold is an arbitrary
real number p in the closed interval p ∈ [0, 1]. Second, our approach is capable of considering
more complex specifications, expressed using arbitrary reward structures. In particular, we will
put constraints at optimization time not only on the Loss-of-Load Probability (LoLP) as in the
work by Varaiya et al. [167], but also on the quantitative amount of Expected Energy Not Served
(EENS) and on the Quality-of-Service (QoS) for the service subscribers. Moreover, our framework
is easily extendible to consider even further specifications if needed because it can process arbitrary
PCTL specifications, as explained in Chapter 6.

7.3 Proposed Model
In this section, we present the Convex-MDP model and the formulation of the strategy-synthesis
problem that we used to generate energy pricing and purchasing strategies that are robust to uncer-
tainties in the forecast of the renewable energy supplies. All the symbols used in the case study are
collected in Table 7.1.

While many possible pricing strategies have been proposed, in the following we will mainly
refer to the scenarios presented by He et al. [76], Stoft et al. [160] and Varaiya et al. [167], because
the scenario depicted in those works is the closest to our setup of the synthesis problem.

The analyzed scenario is sketched in Figure 7.1. Three agents operate in the system:

1. Energy Aggregator. The energy aggregator manages a portfolio of energy supply sources
and it provides energy to a pool of customers that subscribe to its services. Its goal is to max-
imize its profit, while guaranteeing that, at all times, the aggregate energy supply matches
the demand of the users subscribed to the service, to avoid disruptions in the service or ex-
cessive economic losses due to the need of selling or buying energy on the spot market at the
last minute.

2. Traditional Users. Traditional users are users of the network whose behavior more closely
resembles the one of users nowadays (e.g., households). These users can decide a priori
(e.g., when signing the contract) how much energy to use based on its expected price, which
is computed based on the average cost of power generation over a given time-frame (e.g.,
a season). On the other hand, traditional users cannot adjust their energy consumption in

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 137

Table 7.1: Table of symbols for the energy pricing and purchasing case study

W Wind energy (stochastic variable)
µW Empirical probability distribution of W
w Observation of W
Dt Traditional-user demand (stochastic variable)
dt Observation of Dt

Do Opportunistic-user demand (stochastic variable)
do Observation of Do

T1-slot Unit day-ahead decision timeframe
T2-slot Unit real-time decision timeframe
K Number of T2-slots in a T1-slot
u Unit energy price for traditional users
v Unit energy price for opportunistic users
vobs Actual value of v set in real-time
Q baseline energy supply purchased for a T1-slot
q baseline energy supply purchased for a T2-slot
f fast-start energy supply purchased for a T2-slot
fobs Actual value of f set in real-time
c1 Unit cost of baseline energy
c2 Unit cost of fast-start energy
cp Unit cancellation cost of baseline energy
ME Ellipsoidal-MDP used to model the energy pricing and purchasing problem
M′

E Unfolded version ofME across the K T2-slots
FS Maximum fast-start energy available to purchase in a T2-slot
γt Elasticity of traditional users
γo Elasticity of opportunistic users
∆k Surplus of supply on demand

EENSM Maximum allowed value of Expected Energy Not Served
LoLPM Maximum allowed value of Loss of Load Probability
QoSm Minimum allowed value of QoS to guarantee to the users

real-time in case the actual energy price is raised by the energy aggregator. While users
nowadays sign contracts that hold unchanged for months (or years), we will consider the
more general case in which traditional users can decide on a daily basis how much energy
they are going to use in the following day. Nevertheless, they will not be able to adaptively
change their energy consumption in real-time, i.e., right before scheduling the load. We will
use the stochastic variable Dt to refer to the energy demand of traditional users, and the
positive real number dt ∈ R+ to refer to an observation of such demand.

3. Opportunistic Users. Opportunistic users differ from traditional users because they are

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 138

Real-time
price	

Day-ahead
price	

Energy Aggregator	

Energy dispatch and pricing	

Baseline	

 Wind	

 Fast-start	

Traditional	

Users	

Opportunistic	

Users	

Day-ahead	

dispatch	

Real-time
dispatch	

Uncertain
demand	

Uncertain
supply	

Supply	

Demand	

Figure 7.1: The figure shows the input data available to the energy aggregator to guide its decision
process (dashed) and the control actions of the aggregator (solid).

capable of rescheduling in real-time their energy demand, depending on the energy price. At
the time of signing the contract with the energy aggregator, these users accept the possibility
of paying higher worst-case energy prices when the supply is lower, in exchange of lower
expected prices. We will use the stochastic variable Do to refer to the energy demand of
opportunistic users, and the positive real number do ∈ R+ to refer to an observation of such
demand.

Three energy sources are available to the energy aggregator:

1. Wind. Wind is the renewable energy source considered in this case study, although a similar
analysis could be carried out for any other renewable energy (e.g., solar). In general, the
two characteristics of renewables that are the most relevant for the analyzed problem are:
1) they are a cheap source of energy, so the energy aggregator tries to use them as much
as possible, when available; 2) they are non-dispatchable, so their availability can only be
forecast. For example, wind energy gets harvested by wind mills in a wind farm. We created
a stochastic model to represent the distribution of the available energy produced by a wind
farm. In order to train our model, we used experimental data directly measuring the value of
energy produced by the wind farm. The alternative approach of measuring the wind speed
and infer analytically the energy produced by the farm is usually less accurate [32], so it was
not considered. Moreover, for simplicity, in the following we will not consider the problem
of energy curtailment, which occurs when the wind is too strong and the wind mills need
to be stopped to avoid damages [29]. We will use the stochastic variable W to refer to the
energy generated by the wind, and the positive real numberw ∈ R+ to refer to an observation
of such generated energy.

2. Baseline Generators. Baseline generators (e.g., thermal units) are a dispatchable source
of energy. Supplies that belong to this category have medium range cost (unit cost, c1) for

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 139

the energy aggregator, but they have slow ramp rates and limited unloaded capacity, so they
cannot be used in the event of an unforecast supply droop. We will use variable q ∈ R+ to
refer to the amount of purchased baseline energy.

3. Fast-start Generators. Fast-start generators (e.g., gas turbines) are a dispatchable source of
energy. They are the most expensive supply source for the energy aggregator (unit cost, c2),
but they have fast ramp rate, so they can be used in case of emergency to avoid the demand to
be in excess of the supply. We will use variable f ∈ R+ to refer to the amount of purchased
fast-start energy.

We note that, at least in the short term, it is expected that the penetration of renewables in the
energy supply of a power-network (i.e., the percentage of energy supplied by renewable sources)
will be at most around 30−40%, so both renewable and not-renewable sources are needed to cover
the whole demand.

To achieve its goals, the energy aggregator needs to take two kinds of decisions. First, it needs
to purchase non-renewable sources through bilateral contracts with the ISO or from the wholesale
spot market, to guarantee that the aggregate energy supply matches the demand. In other words, it
needs to determine the values of q and f , such that:

w + q + f = dt + do (7.1)

at all times. Second, it needs to set the retail price of energy for its service subscribers, to maximize
its profits and incentivize users to increase or decrease consumption depending on the expected
energy availability.

As proposed in the literature [76], we assume that energy pricing and scheduling decisions
are made on a daily basis. Such a timeframe allows for reasonably accurate predictions of wind
availability and gives enough time to each system agent to react to the decisions of the other agents.
As a consequence, the decision process needs to span a 24-hour time horizon. In particular, the
24-hour period gets divided into T1-slots of equal length (e.g., T1 = 1h), and each T1-slot into K
T2-slots (e.g., T2 = 30min, K = 2).

The energy aggregator maximizes its economic profit by taking decisions on two time-scales,
day-ahead and real-time. On day-ahead, for each T1-slot, it purchases Q units of baseline energy,
with q = Q/K units per T2-slot, and sets the price for traditional users (u), so that they can decide
on day-ahead when to schedule their demand in the following day. The choice of u determines the
expected demand of traditional users (E[Dt]). In real-time, for each T2-slot, the aggregator first
observes the values of traditional-user demand dt and wind availability w. It then sets the price
for opportunistic users (v), which sets the expected demand of opportunistic users (E[Do]). Third,
it purchases more fast-start energy (f) or sells back part of the already purchased baseline energy
(q), depending on wind availability and user demand, to balance supply and demand. We notice
that it is profitable for the energy aggregator to sell back the over-purchased baseline energy q
because by doing so it pays only unit cost cp instead of c1 (we model a loss associated to buying
and selling back energy). In fact, in real scenarios, cp < c1 < c2 and wind-energy is assumed to
be free for brevity [76]. The aggregator thus tries to use as much wind energy as possible and to

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 140

purchase on day-ahead only the exact amount of required baseline energy by paying c1× q, not to
incur in real-time in economic losses (cp × q) or in the extra cost for fast-start supplies (c2 × f).
Since more profitable strategies might imply a higher reliance on the uncertain wind energy or an
increase in the energy prices (u and v), correct system functionality needs limits on the risk of
energy unbalance and guarantees on the QoS for the users.

There are three sources of stochastic behavior in the analyzed system: traditional (Dt) and op-
portunistic (Do) user demand and wind-energy supply (W). We thus use a stochastic optimization
framework. The result of the optimization should return optimal strategies about:

1. the day-ahead decisions (Q and u), and;

2. the real-time decisions (f and v) for each possible observation of W and Dt at each T2-slot.

In real-time, the actual decisions (vobs and fobs) will be taken deterministically among the synthe-
sized ones based on the observed values w and dt, i.e., the actual wind availability and traditional-
user demand. Moreover, we notice that, by rearranging Equation (7.1), we can write an expression
for the amount of fast-start energy to be purchased:

f = max(0, dt + do − w − q) (7.2)

which needs to hold at all times to guarantee power balance in the aggregator portfolio. As a
consequence, we will not explicitly consider variable f in the following and just compute its value
on-the-fly when needed, using Equation (7.2). In summary, we will optimize over one T1-slot (the
decision problem is periodic, so we can run one optimization for each T1-slot stand-alone), and
aim to determine optimal values for Q, u and v.

We use the Ellipsoidal-MDP ME = (S, S0, A,Ω,F ,A,X , L), which we partially sketch in
Figure 7.2 (top). The range of values of all problem variables are bounded and uniformly dis-
cretized to keep the state and action spaces finite. States s ∈ S are a tuple s = (w, dt, do), where
w, dt, do refer to the observed values of available wind energy and user demand in that state. Since
we consider only one T1-slot per time, we model only one choice of optimal energy purchase Q
and pricing for traditional users u, which the aggregator will announce on day-ahead for the cor-
responding T1-slot. This decision is taken at the initial state s0, where the model forks among the
available pairs (Q, u) ∈ A. The process then transitions through K decision epochs corresponding
to each T2-slot, as follows. First, values of wind energy (w) and traditional-user demand (dt) are
stochastically chosen according to the corresponding distributions (described below). Note that the
expected value of traditional-user demand E[Dt] depends on the decision u taken in s0, while the
distribution of wind energy W is the same for all decisions (Q, u) and it depends on the forecast
values. Second, for each observation of W and Dt, a decision on v ∈ A is taken1. This choice sets
the expected value of the opportunistic-user demand E[Do]. Third, the opportunistic-user demand
(do) is stochastically chosen. To transition between epochs a new value of wind energy w (the
backward arrow in Figure 7.2 (top)) is chosen and the steps repeat.

1We note that the data-type of action v is different from the data-type of pair (Q, u), as allowed in Section 2.1.

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 141

wα, 0, 0

w1α,dt,1α,do,1γ

w1α,dt,1α,do,1β

k=0	

 k=1	

 k=2	

v1
a

v1
a

v1
av1

b

v1
b

Qa, ua

Qb, ub

Qa, ub

w1β , 0, 0

 s0

0, 0, 0

w1α, 0, 0
w1α,dt,1α, 0

w1β ,dt,1β , 0
w1β ,dt,1α, 0

w1α,dt,1β , 0

w1α,dt,1α,do,1α

w1α,dt,1α,do,1δ
v1
b

w2β , 0, 0

w2α, 0, 0

wα,dt,α,do,γ

wα,dt,α,do,β
va

va

va
vb

Qa, ua

Qb, ub

Qa, ub

wβ , 0, 0

 s0

0, 0, 0

wα,dt,α, 0

wβ ,dt,β , 0
wβ ,dt,α, 0
wα,dt,β , 0

wα,dt,α,do,α

wα,dt,α,do,δ
vb

vb

ab uQ ,

ab uQ ,

Figure 7.2: Sketch ofME (top) andM′
E (bottom), which isME unrolled across decision epochs.

For the two Ellipsoidal-MDPs, the corresponding initial state s0 is shown on the left. Each state
is represented by the tuple (w, dt, do) of observations of W,Dt, Do. The pairs (Q, u) represent
the day-ahead decisions about purchasing of baseline energy Q and energy pricing for traditional
users u. Two arrows per decision depart from each state because in this figure we assumed only
two discretization levels for each quantity (labeled with greek letters α, β, · · ·). We only show
the state graph in the Ellipsoidal-MDPs related to decision (Qa, ua), but similar state graphs are
present also for the other decision pairs (Qa, ub), (Qb, ua), (Qb, ub), as hinted by the dashed arrows
departing from s0.

In general, the optimal decision v at each epoch depends on previous observations of wind
availability (w) and user demand (dt, do), so v is history-dependent. To synthesize control strategies
using the algorithm proposed in Chapter 6, we need to unroll the sequence of decision epochs in
the Ellipsoidal-MDP M′

E = (S ′, S0, A
′,Ω,F ′,A′,X ′, L′), as shown in Figure 7.2 (bottom). In

M′
E , we have explicitly marked each quantity with an additional subscript k = 1, · · · , K to refer

to the corresponding T2-slot. Each state s ∈ S of ME (apart from the initial state) has been
replicated K times inM′

E , s → s1, s2, · · · , sK . After K decision epochs, the states transition to

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 142

an absorbing state (not shown in Figure 7.2). Since now all decision epochs are explicitly codified
in the model, Markov strategies are optimal forM′

E . The corresponding optimal history-dependent
strategy forME can be reconstructed for each state s ∈ S by collecting the sequence of optimal
decisions returned by the algorithm in the replicas s1, s2, · · · , sK . In the following, we will thus
only considerM′

E . Moreover, as an additional advantage, different wind distributions can be used
to transition between different epochs inM′

E , while only one distribution could be used inME .
This gives the possibility to account for the time-varying nature of the wind availability also on the
finer time scale of the T2-slot. Overall, the modeling expressivity is thus increased. In Figure 7.3,
we give a more detailed example ofM′

E for K = 2.
State transition probabilities are computed using the following stochastic models.
User Demand. The demand of both traditional (Dt) and opportunistic (Do) users is modeled

using Gaussian distributions [76], with Dt ∼ N (αtu
γt , βtE[Dt]), and Do ∼ N (αov

γo , βoE[Do]).
Parameter γt < 0 (γo < 0) is the elasticity of the traditional (opportunistic) users, i.e., the ratio of
the percentage change of the expected demand to that of price variation. Formally:

γt =
u

E[Dt]
· ∂E[Dt]

∂u
γo =

u

E[Do]
· ∂E[Do]

∂u

Parameters αt, αo, βt, βo are fitting parameters. To compute transition probabilities, we truncate
and discretize the continuous probability distributions in equally-sized intervals, pick the middle
point of each interval as the discretization value and then integrate the probability distribution
across the interval, to determine how likely the system transitions to that discretized value.2

Wind-Energy Availability. We created a stochastic model of the available wind energy starting
from measured data collected from the wind farm at Lake Benton, Minnesota, USA [170]. The
goal is to take forecast values into account, while also considering the intrinsic inaccuracies of these
predictions. First, we compute the (discrete) empirical probability distribution µW of a training set
of collected wind-energy data. Second, we divide a new set of data in T2-slots, and consider
the average value for each new T2-slot as the forecast energy value. We then scale µW to have
such expected value E[Wk], thus obtaining µWk

. Finally, we compute the ellipsoidal Sets (2.7)
F ′as (collected in F ′) to represent uncertainty in the transition probability between two discretized
wind-energy levels in two consecutive T2-slots. Transition frequencies are computed by counting
observed transitions in the training set of data. Further, using classical results from statistics [125],
we can compute the value of parameter βas from Set (2.1.3.3) corresponding to a desired confidence
level CL in the measurements. In particular, 0 ≤ CL ≤ 1 and

CL = 1− cdfχ2
d

(
2 ∗ (βas,max − βas)

)
where cdfχ2

d
is the cumulative density function of the Chi-squared distribution with d degrees of

freedom (d is equal to the number of bins used to discretize W). As explained in Section 2.1.3, the
2For simplicity, we assume that the distributions ofDt andDo are known with certainty. In fact, these distributions

are usually estimated much more accurately than the wind forecast, by analyzing the history of measured data [76].
Nevertheless, adding uncertainty models also for these distributions can indeed give further insight in the system
dynamics and it is left as future work.

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 143

w 1
α
,d

t,1
α
,d

o,
1β

k=
0	

k=
1	

k=
2	

v 1a

v 1a

Q
a ,
ua

Q
b ,
ub

Q
a ,
ub

w 1
β
,0
,0

s 0

0,
0,

0

w 1
α
,0
,0

w 1
α
,d

t,1
α
,0

w 1
β
,d

t,1
β
,0

w 1
β
,d

t,1
α
,0

w 1
α
,d

t,1
β
,0

w 1
α
,d

t,1
α
,d

o,
1α

v 1b

w
2β
,0
,0

w
2α
,0
,0

w 1
α
,d

t,1
α
,d

o,
1δ

w 1
α
,d

t,1
α
,d

o,
1γ

w 1
α
,d

t,1
β
,d

o,
1β

w 1
α
,d

t,1
β
,d

o,
1α

w 1
α
,d

t,1
β
,d

o,
1δ

w 1
α
,d

t,1
β
,d

o,
1γ

w 1
β
,d

t,1
α
,d

o,
1β

w 1
β
,d

t,1
α
,d

o,
1α

w 1
β
,d

t,1
α
,d

o,
1δ

w 1
β
,d

t,1
α
,d

o,
1γ

w 1
β
,d

t,1
β
,d

o,
1β

w 1
β
,d

t,1
β
,d

o,
1α

w 1
β
,d

t,1
β
,d

o,
1δ

w 1
β
,d

t,1
β
,d

o,
1γ

w
2α
,d

t,2
α
,d

o,
2β

v 1a

w
2α
,d

t,2
α
,0

w 2
α
,d

t,2
β
,0

w
2α
,d

t,2
α
,d

o,
2α

w
2α
,d

t,2
α
,d

o,
2δ

w
2α
,d

t,2
α
,d

o,
2δ

w
2α
,d

t,2
β
,d

o,
2β

w
2α
,d

t,2
β
,d

o,
2α

w
2α
,d

t,2
β
,d

o,
2δ

w
2α
,d

t,2
β
,d

o,
2γ

w
2β
,d

t,2
α
,d

o,
2β

w
2β
,d

t,2
α
,d

o,
2α

w
2β
,d

t,2
α
,d

o,
2δ

w
2β
,d

t,2
α
,d

o,
2γ

w
2β
,d

t,2
β
,d

o,
2β

w
2β
,d

t,2
β
,d

o,
2α

w
2β
,d

t,2
β
,d

o,
2δ

w
2β
,d

t,2
β
,d

o,
2γ

s N
−1

ab
s

v 1b

v 1a v 1a v 1b v 1b

v 1a

v 2a v 2b v 2b

v 2a

w 2
β
,d

t,2
β
,0

w 2
β
,d

t,2
α
,0v 2a v 2b v 2b

v 2a

a
b
u

Q
,

Fi
gu

re
7.

3:
T

he
fig

ur
e

sh
ow

s
M
′ E

fo
r
K

=
2

an
d

tw
o

di
sc

re
tiz

at
io

n
le

ve
ls

fo
r

ea
ch

qu
an

tit
y.

W
e

sh
ow

th
e

fu
ll

st
at

e
gr

ap
h

in
th

e
E

lli
ps

oi
da

l-
M

D
P

re
la

te
d

to
de

ci
si

on
(Q

a
,u

a
).

Si
m

ila
r

st
at

e
gr

ap
hs

ar
e

pr
es

en
t

al
so

fo
r

th
e

ot
he

r
de

ci
si

on
pa

ir
s

(Q
a
,u

b
),

(Q
b
,u

a
),

(Q
b
,u

b
),

as
hi

nt
ed

by
th

e
da

sh
ed

ar
ro

w
s

de
pa

rt
in

g
fr

om
s 0

.

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 144

sets F ′as computed using this procedure are second-order approximations of likelihood estimators
of the wind-energy availability. Moreover, an increasing value of parameter βas , which sets the
uncertainty level in wind forecasting, can be used in the sequence of decision epochs to model the
fact that forecast farther-away in time are less accurate.

In order to account for system performances, we provide the states with thick circles in Fig-
ure 7.2 (bottom) with three reward structures. These structures express the profit and risk of
the energy aggregator and the QoS for the users. We choose those states because the quantities
Dt,k, Do,k,Wk are all fully observable in them, thus allowing the evaluation of the system perfor-
mances. We set:

rProfits,k [$] = udt,k+vkdo,k−(cp∆k+c1(q−∆k))1
A
∆k≥0 −(c1q−c2∆k)1

B
∆k<0 (7.3a)

rLoLs,k [MWh] = max(0, XE[Wk] + Y E[Dt,k +Do,k]−∆k) (7.3b)

rQualitys,k [MWh] = dt,k + do,k (7.3c)

with ∆k = wk+q−dt,k−do,k representing the surplus of supply on demand,X and Y defined in the
following, and 1 the indicator function. Reward (7.3a) subtracts purchasing costs to the aggregator
revenue to compute the net profit. Indicator 1A (1B) corresponds to the scenario when the sum
of day-ahead purchased baseline energy and of wind energy is sufficient (insufficient) to cover the
demand. In the latter case, fast-start energy needs to be purchased in real-time. Reward (7.3b)
computes the Loss of Load (LoL). In practical scenarios, the amount of fast-start energy available
in real-time is limited. Often this limit is computed with the formula FS ≤ XE[W]+Y E[Dt+Do]
(e.g., X = 3%, Y = 10%) [53]. If ∆ + FS < 0 the service incurs in a LoL, with potentially risky
consequences. Reward (7.3c) accounts for user demand incentivized by energy pricing.

Finally, we mark all states with ∆ + FS < 0 with the label risk, and use label abs for the
absorbing state, so Ω = {risk, abs}.

The optimal strategy σ∗ = (u∗, Q∗, v∗k), 1 ≤ k ≤ K is the solution of the constrained optimiza-
tion problem:

W∗s0 = max
Q,u

min
fas ∈F ′as

Eσ,f
a
s

W EσDtmax
vk

EσDorewrProfit(π,K)

s.t.M′
E, σ

∗ |=Nat φ where: (7.4)

φ = RrLoL

≤EENSM [C abs] ∧RrQuality

≥QoSm [C abs] ∧ P≥1−LoLPM [¬risk U abs]

In Problem (7.4), we maximize the expected value of the aggregator profit W∗s0 under the
worst-case resolution of uncertainty in the wind-energy forecast by summing the instantaneous
state rewards rProfits along the paths π ∈ Πfin of K steps ofM′

E , corresponding to the K T2-slots.
By replicating the decision process for each of the K T2-slots while building model M′

E , every
K-step execution path traverses all decision epochs, so the computed reward, as introduced in
Definition 2.10, will account for the sum of the contributions of each decision epoch.

Moreover, according to the semantics defined in Table 2.2, the PCTL specification φ constrains
the expected aggregator risk and user QoS across the decision horizon. EENSM is the desired
maximum value of Expected Energy Not Served, LoLPM is the maximum allowed value of Loss of

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 145

Load Probability (these two properties limit the risk for the aggregator), andQoSm is the minimum
value of QoS that needs to be guaranteed to the users.

Remark 7.2. While in the current formulation of the problem the cost function maximizes the eco-
nomic profit of the energy aggregator, any other social welfare cost function (as the ones considered
by Bouffard et al. [29] and Papavasiliou et al. [133]) can be considered with minimal changes to
the optimization problem. Indeed, this can be done by equipping the Ellipsoidal-MDP model of
the system with an appropriate reward function to account for the different metric to be optimized.

7.4 Experimental Results
In this section, we present experimental results about the performance of the energy aggregator
when operating following the optimal control strategy generated by solving Problem (7.4). The
goals of this section fall into two main categories. First, we aim to characterize the performance of
the strategy-synthesis algorithm and give insight about its functionality. Second, we will apply the
algorithm more specifically to the energy pricing and purchasing problem and present results on:

• the analysis of the impact of uncertainties in the forecast of the availability of wind energy
on the economic trade-offs that drive the decision process of the energy aggregator and;

• the performance of the energy aggregator when operating under different control strategies,
to show that the strategy synthesized using the proposed approach can achieve better perfor-
mances on average than other solutions presented in the literature.

The constrained optimization problems used to synthesize optimal control strategies were solved
using the convex solver Gurobi [68]. Experimental runtime data were obtained on a 2.4 GHz Intel
Xeon machine with 32GB of RAM.

To simplify the syntax in the rest of the section, we define the following quantities:

Profit := W∗s0
EENS := RrLoL, σ∗, max

s0
[C abs]

QoS := RrQuality , σ∗, min
s0

[C abs]
1− LoLP := P σ∗, min

s0
[¬risk U abs]

where the min and max operators refer to the action range of nature Nat. As defined in Sec-
tion 2.2, these quantities represent the quantitative values of rewards and satisfaction probability,
which will then be compared to the corresponding thresholds (EENSM , QoSm, LoLPM) in Prob-
lem (7.4) to determine the satisfaction of φ, i.e., whetherM′

E, σ
∗ |=Nat φ.

In the following experiments, we will normalize the Profit to the maximum computed profit
value for each set of experiments, labeled as ProfitM , to ease the interpretation of the results.
Moreover, we set T1 = 1h, T2 = 30min so K = 2, and consider two pricing options both for
traditional (ua and ub) and opportunistic users (va and vb). If not otherwise stated, we will use

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 146

Figure 7.4: The figure shows the trend of the expected performances of the system at the different
iterations of the strategy-synthesis algorithm in terms of aggregator profit (top), Quality of Service
(QoS) for the users (middle) and Loss of Load Probability (LoLP) (bottom). At each iteration,
these performances are evaluated by the verification engine, to assess whether the control strategy
explored by the optimization engine satisfies the system specifications.

CL = 90%. Furthermore, we will discretize the wind energy W in 5 bins, and traditional Dt,
opportunistic Do demands and baseline supply Q in 2 bins. Finally, we set:

QoSm = 80%
∑

k E[Dt,k +Do,k]

LoLPM = 10%

EENSM = 5%
∑

k E[Wk + q]

The other parameter values were taken from references [66, 76].
In Figure 7.4, we show the trend of the expected system performances as a function of the

iteration of the synthesis algorithm. The energy aggregator Profit monotonically decreases until
the proposed candidate strategy σc meets all specifications. We note that 1 − LoLP and QoS
(EENS, not shown, has a trend similar to 1−LoLP) instead vary non-monotonically. Intuitively,

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 147

Table 7.2: Performance Analysis
W bins 5 10 15 20
Profit 1 0.98 0.97 0.965

1− LoLP 0.99 0.99 0.99 0.99
EENS 0.98 0.98 0.98 0.98
QoS 1.01 1.01 1.01 1.01

Runtime 144s 400s 1368s 3289s
#Iter. 223 53 547 332
N + T 1343 2719 4115 5591

#MD Strat. (I) 4096 4.2e6 4.3e9 4.4e12

this is because the Profit can be increased in at least two different ways, as described in the
following.

• In the first approach, the energy aggregator purchases less baseline energy Q. This strategy
thus relies more on wind energy to cover the demand and it reduces the costs associated to
the purchasing of non-renewable energy. On the other hand, this approach results in a higher
risk of power unbalance because the fast-start energy might not be enough to compensate
for the under-dispatch of baseline energy. Iterations associated to such an approach will thus
result in a high value of LoLP and EENS.

• In a second approach, the energy aggregator increases the energy price v for opportunistic
users. This strategy has the effect of forcing more users to decrease their power consumption,
but it does not reduce the aggregator profit because each of the remaining users pays a higher
price. While advantageous for the energy aggregator, it is apparent that this approach is
unfair to the users and it thus results in a reduction of the value of QoS.

The optimal strategy that satisfies all specifications will strike a balance between the two ap-
proaches just described. By ranking strategies by expected Profit, our algorithm is capable of
selecting such optimal strategy despite the complex parameter interdependences of the model un-
der analysis.

In Table 7.2, we compare synthesis results while varying the number of discretization bins for
W (all values are normalized to the corresponding target specification to ease the comparison).
First, we note that the expected system performances do not substantially vary by changing the
number of bins, thus supporting our choice of 5 bins in the other experiments. Second, we collect
runtime results for problem of increasing size, where we use N + T , i.e., the sum of the number
of states and of the number of transitions in the Ellipsoidal-MDP, as a proxy of the model size.
Results show that the algorithm can handle in reasonable time problems more than 10 times larger
than the ones analyzed by Lahijanian et al. [103], who presented the only other algorithm proposed
in the literature capable of accepting arbitrary PCTL formulas (further, we remind from Chapter 3
that this algorithm was not complete and it does not accept state-transition uncertainty sets). We
believe that this improvement in the scalability of the algorithm is mainly due to the effective

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 148

decomposition of the constrained optimization problem into an unconstrained optimization step
and into a verification step, both exploiting decades of advances in mixed-integer and non-linear
optimization engines [68] and in verification algorithms [26, 99, 139]. Third, we observe that the
total number of MD strategies I:

I = |As0| × |As1 | × · · · × |AsN | = O(MN)

grows indeed exponentially with the number of states to be controlled, as expected. As a conse-
quence, the approach of verifying all the I MD strategies σ ∈ ΣMD, which is always available
in an NP-complete problem and is an alternative to the approach proposed in Chapter 6, is not
practical on problems of even medium size. In fact, such an exponential increase of the search
space motivates further future work to find techniques to prune more rapidly non-interesting re-

Figure 7.5: The figure shows the trend of the expected economic profit for the energy aggregator as
a function of the confidence level CL in the forecast of wind availability. Each curve is associated
to a different value of wind penetration ηW .

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 149

gions of the search space. In particular, this can be done by generating shorter conflict clauses in
the verification engine.

In Figure 7.5, we study the effect of different confidence levels CL in the wind-energy forecast
on the expected Profit of the aggregator, while keeping all constraints constant and only sweeping
the value of wind penetration ηW , with:

ηW =
K∑
k=1

E[Wk]

E[Wk + q]

where we do not include at the denominator the expected value of the fast-start energy E[f], be-
cause such energy is used only in emergency, if the forecast of the availability of renewable energy
was wrong. For high values of CL, higher profits can be expected for increasing ηW , since wind
energy is assumed free. This analysis, the only one available using strategy-synthesis algorithms
that cannot capture modeling uncertainties, would thus suggest the energy aggregator to rely more
heavily on wind energy. On the other hand, our approach shows that, for low values of CL, higher
wind penetration amplifies more the effect of uncertainties on the expected performances of the
aggregator. In fact, for CL ≤ 90%, the trend of expected profits is even reversed, and low wind
penetration guarantees higher profits. This is indeed to be expected, since a more conservative
strategy only relying on non-renewable supplies guarantees fewer energy wastes and a lower risk
of power unbalance when there is little information about the availability of renewable energy. The
energy aggregator can use these curves to better select the mixture of energy supplies to be em-
ployed, and to assess the return of investment in employing more accurate (and expensive) forecast
techniques to better predict what to expect by using renewable sources.

Finally, in Figure 7.6 we compare results with two other formulations for energy pricing pro-
posed in the literature.

• He et al. [76] solve the optimization problem without enforcing any constraint on the risk
of power unbalance and on the QoS for users, i.e., they just optimize the energy aggregator
profit.

• Varaiya et al. [167] set limits only on the acceptable LoLP. In fact, their approach is not
trivially extendable to reward properties expressed using the R operator. Moreover, they
solve optimally (in fact, analytically) only for LoLP = 0, i.e., they enforce the risk of power
unbalance to be null.

Comparison is done by solving the three different strategy-synthesis formulations and then run-
ning Monte Carlo simulations (1000 runs) of the controlled system on test data (different from
the training ones) to evaluate its performance (Profit, EENS and QoS). This can be done by
executing the induced Convex-MC for K steps, collecting the observed system performances for
each run, and then taking the mean value of each performance across runs. We repeat such pro-
cess while varying the wind penetration level ηW , to assess the impact of renewable sources on
the synthesized strategies. The values of EENS and QoS are normalized to the thresholds of the
corresponding specification, so, ideally, the reported values should all be equal to 1.

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 150

As expected, the unconstrained strategy by He et al. [76] has higher Profit (up to 5%) com-
pared to our approach, but it also has up to 12% more EENS and 10% less QoS, since these
performances are not constrained at optimization time. The strategy by Varaiya et al. [167] guar-
antees null EENS, but it has up to 6% lower Profit (due to over-constraining EENS) and
10% less QoS (which is left unconstrained). Moreover, we note that system performance tend to
be similar among all approaches for low levels of wind penetration, while discrepancies increase
when the aggregator portfolio relies more heavily on renewables. This is indeed expected, since all
approaches produce similar results when strategies rely mainly on the deterministic availability of
non-renewable energy. On the other hand, when the stochastic behavior of the system is enhanced
by relying more on wind energy, the importance of constraining system performance at optimiza-

0.05 0.10 0.15 0.20 0.25 0.30
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

P
ro

fi
t/

P
ro

fi
t M

Performance Comparison vs Varaiya et al. [167] and He et al. [76]

Ours
[167]
[76]

0.05 0.10 0.15 0.20 0.25 0.30
0.0
0.2
0.4
0.6
0.8
1.0
1.2

E
E

N
S/

E
E

N
S M

Ours
[167]
[76]

0.05 0.10 0.15 0.20 0.25 0.30
Wind Penetration ηW

0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02

Q
oS
/Q

oS
m Ours

[167]
[76]

Figure 7.6: The figure shows a comparison via Monte Carlo simulation of the performances of the
energy aggregator when operating following strategies synthesized using the proposed approach or
using two alternative approaches presented in the literature. We show the energy aggregator profit
at the top, the Expected Energy Not-Served (EENS) in the middle, and the Quality of Service
(QoS) for the users at the bottom.

CHAPTER 7. OPTIMAL ENERGY SCHEDULING AND PRICING IN SMART-GRIDS
WITH RENEWABLE SOURCES 151

tion time becomes more apparent. Results show that the aggregator performances obtained using
the proposed approach remain quite close to the target specification thresholds across all values of
wind penetration.

Remark 7.3. We note that the algorithmic runtime may increase exponentially as we tighten the
specification thresholds (QoSm, LoLPM , EENSM), since it becomes increasingly more difficult
to find a solution within the exponentially-sized search space. Nevertheless, the chosen values for
these thresholds were tight enough to improve the quality of alternative energy pricing strategies
proposed in the literature, while maintaining the runtime acceptable for this application.

152

Chapter 8

Conclusions and Future Work

In this chapter, we summarize the main contributions presented in the dissertation and highlight
new promising directions of research to be pursed as future work.

8.1 Conclusions
The complexity of today’s embedded systems has reached unprecedented levels. Formal tech-
niques to assist the design and verification of these systems are needed to shorten design iterations
and guarantee correct functionality and satisfactory performance early in the development cycle.
These formal methods often rely on deriving a probabilistic model of the underlying system, hence
the formal guarantees they provide are only as good as the estimation of the process dynamics.
In a real setting, these estimations are affected by uncertainties due for example to unmodeled
dynamics, measurement errors or approximations of the real system by mathematical models. It
is thus fundamental to mathematically capture the uncertainties in the modeling process in order
to produce sensible analysis results. Moreover, fast algorithmic runtime is a necessary attribute
for these design and verification techniques, so that they can successfully process systems of large
size, as required by today’s real-world applications.

In this dissertation, we have presented a comprehensive framework to allow the modeling, ver-
ification and control of stochastic systems in the presence of uncertainties in the modeling process.
In particular, we presented time efficient algorithms to model check and optimally control these
systems, and we applied these techniques to two real-world case studies, to show the feasibility of
our approach.

We started by introducing the model of Convex-Markov Decision Processes (Convex-MDPs),
i.e., MDPs whose state transition probabilities are only known to lie within convex uncertainty sets.
This formalism is able to model non-determinism and stochasticity, as regular MDPs, and it is fur-
thermore capable of mathematically capturing uncertainties in the estimation of the state-transition

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 153

probabilities of the model. As such, Convex-MDPs represent a highly expressive formalism to
model the behavior of the wide class of systems whose dynamics are not fully known or specified.
Noticeably any system containing a physical component belongs to this category, so Convex-MDPs
have the potential of becoming a premiere framework to model the behavior of embedded systems.

We then addressed the problem of model checking properties of Convex-MDPs expressed in
Probabilistic Computation Tree Logic (PCTL). PCTL allows querying a wide variety of quantita-
tive properties of a system, e.g., “What is the maximum probability that the system will eventually
send an acknowledgment if it receives a request?”. Such properties are fundamental for the analy-
sis of systems that cannot be proven error-free under all circumstances but whose behavior is still
acceptable as long as the probability of failure is sufficiently low.

Using results on strong duality for convex programs, we proved that the PCTL model-checking
problem for Convex-MDPs is decidable in P for the fragment of PCTL without operators with
a finite time horizon. For the entire PCTL syntax, the algorithmic complexity just increases to
pseudo-polynomial in the maximum value of time horizon. This result allowed us to lower the
previously known complexity upper bound for the problem of PCTL model checking for Convex-
MDPs from co-NP to P, and it is valid for a wide class of non-linear convex uncertainty models,
including the ellipsoidal, likelihood and entropy models, which are commonly used to capture the
stochastic behavior of cyber-physical systems.

Furthermore, the new result on theoretical complexity allowed us to develop the first polynomial-
time algorithm for the PCTL model checking of Convex-MDPs. An experimental analysis of the
algorithmic runtime showed that the proposed algorithm does indeed scale to the analysis of large
systems and it is faster than the state-of-the-art model checker PRISM for some problem instances.

We used the developed algorithm to analyze the behavior of human drivers while performing
complex maneuvers in a variety of environmental conditions, e.g., with or without an obstacle
on the road, and distracted or not while driving. Such analysis is useful in several applications,
including personalized correction of driving misbehaviors, personalized computation of car insur-
ance rate, and, ultimately, real-time automated driving assistance in semi-autonomous cars. We
trained a Convex Markov Chain (Convex-MC) model of the performance of a driver with data
collected using a car simulator. We then used the model-checking algorithm to estimate the driver
behavior while performing a complex maneuver, e.g., how likely he or she would successfully
complete a double turn while being distracted by a text message. Results show that personalized
assessment of the driving performance is indeed possible. As an example, it is possible to automat-
ically determine if a driver tends to break too often, and then intervene to correct this misbehavior.

We finally addressed the problem of synthesizing control strategies for Convex-MDPs, with
the goal of maximizing a given system performance while guaranteeing that the system execution
satisfies a specification expressed in PCTL for all resolutions of uncertainty in the state-transition
probabilities of the model. In other words, we analyzed techniques to solve a game between
a controller, which aims to maximize the system performance, and the modeling uncertainties,
which are interpreted as adversarial and which try to cause the system to fail.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 154

We first proved that the strategy-synthesis problem is in the complexity class NP-complete also
when convex uncertainty sets are added to the model. This result shows that adding uncertainties
does not make the problem more complex than the version without uncertainties, which is also
NP-complete.

We then cast the synthesis problem into a constrained optimization problem, where the con-
straint is represented by the PCTL specification and the system performance has to be optimized.
To solve the problem, we presented the first sound and complete synthesis algorithm capable of
processing specifications expressed using the full PCTL syntax. The algorithm avoids a blind
strategy enumeration by ranking the available strategies in order of optimality, i.e., it iteratively
determines the strategy that maximizes the system performance among those that have not been
explored yet, and checks whether such a strategy satisfies the PCTL specification. The first strat-
egy that satisfies the specification is thus guaranteed to be also the solution of the constrained
optimization problem.

We applied the synthesis algorithm to the problem of determining optimal energy pricing and
purchasing strategies to be adopted by a for-profit energy aggregator whose portfolio of energy
supplies includes renewable sources, e.g., wind. The synthesis problem aims to maximize the
economic profit of the energy aggregator while minimizing the risk of power unbalance within the
portfolio and guaranteeing the desired Quality-of-Service (QoS) level for the service subscribers.
Uncertainties in the model creation stem from the difficulties in predicting the availability of the
renewable sources of energy, and were statistically characterized using measured data from a wind-
mill farm. Results showed that the energy aggregator risks and user QoS can be both effectively
constrained at design time, and that more accurate predictions of the expected economic profit can
be obtained with respect to state of the art solutions, by taking the uncertainty in the availability of
the renewable sources into consideration.

8.2 Future Work
We believe that the results presented in this dissertation have opened up the path to numerous
further research directions. These span the theoretical, algorithmic and application aspects of the
presented work.

From the theoretical side, it would be interesting to extend the proposed results to consider also
different frameworks to model stochastic systems and to analyze other formal logics to express
system properties.

While Markov Decision Processes (MDPs) have been widely used in the literature in a variety
of applications, system designers would benefit from a wider availability of modeling options. In
general, the results discussed in this dissertation best apply to the modeling of systems that inte-
grate a computation (cyber) component (e.g., a controller) and a physical component (e.g., a plant).
The extension of such results to the analysis of Continuous-Time Markov Chains (CTMCs) [159],
Probabilistic Timed Automata (PTA) [149] and Hybrid Automata (HA) [78], all widely used for-
malisms for the analysis of cyber-physical systems, would thus represent a promising next step of
research. In fact, we have shown in Chapter 4 that the proposed approach can already be applied

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 155

to the analysis of PTA (and CTMCs) by appropriately converting these models into MDPs through
a discretization of the time evolution of the system dynamics. On the other hand, specialized tech-
niques for the analysis of these systems might be able to achieve higher accuracy in the results and
shorter runtime, so they might be worth exploring.

We have shown in Chapter 2 that Probabilistic Computation Tree Logic (PCTL) can express
a wide variety of quantitative safety and liveness properties of a stochastic system. On the other
hand, it cannot express arbitrary liveness properties and enforce arbitrary fairness conditions. It
would thus be interesting to extend the proposed techniques to other more expressive formal logics,
like Probabilistic Branching Time Logic (PBTL) [19] and ω-PCTL [38]. These logics have already
been studied in the context of the analysis of models with no uncertainties, but more work needs to
be developed to improve the theoretical complexity of the model-checking and strategy-synthesis
problems in the presence of modeling uncertainties.

Overall, the suggested strategy to be pursued to extend the proposed results should start by for-
mulating the model-checking or the strategy-synthesis problems on models with no uncertainties in
terms of a linear program (LP) or mixed-integer linear program (MILP). It would then be possible
to apply the dual transformations exemplified in Chapter 4 (for model checking) and Chapter 6 (for
strategy synthesis) to include uncertainties. In this way, adding uncertainties would not increase the
complexity of the model-checking and control problems with respect to the analogous problems
for models without uncertainties. For example, we conjecture that properties of Convex-MDPs
expressed with the full Probabilistic Linear Temporal Logic (PLTL) can be model checked in time
polynomial in the size of the model and double-exponential in the size of the formula by starting
from the LP formulation of the analogous problem for MDPs presented by Baier et al. [18].

New directions for research are present also from the algorithmic side.
First, conditions to relax the rectangular uncertainty assumption, i.e., the requirement for the

state-transition probability distributions to be independent from one another among different states,
can be investigated. Indeed, such an assumption is not fundamental to derive the convex program-
ming formulations of the model-checking and strategy-synthesis algorithms, and it was made to
ease the exposition of the material. In fact, as a less stringent condition on the functional relation
between state-transition probability distributions of different states, we can simply require that
such a functional relation maintains the convexity of the final mathematical programming formu-
lation of the verification and control problems. Although we conjecture that this condition cannot
be satisfied for arbitrary non-linear functional relations among state-transition probability distribu-
tions, it would be worth exploring scenarios in which a specific functional relation (e.g., a linear
combination) has a concrete physical meaning for the application under analysis, and re-derive the
convex programming formulations in such a scenario. The main advantage of such a construction
would be to decrease the action range of the adversarial nature on the system, thus increasing the
modeling expressivity and resulting in a less conservative and more realistic analysis of the system
behavior.

Specifically related to the strategy-synthesis algorithm presented in Chapter 6, it would be
important to investigate techniques to generate more concise constraints to prove the failure of the
verification step of the synthesis loop, in order to prune more effectively the search space for the

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 156

optimization engine. The approach proposed in this dissertation is capable of discarding only one
candidate strategy per iteration. On the other hand, it is reasonable to expect that in some scenarios
a few bad choices of actions in key states of the Convex-MDP might be already enough to prevent
the satisfaction of the PCTL specification, no matter what is the action assignment for the other
states in the model. Detecting such a core reason of failure in meeting the specifications would
allow to prune more effectively the search space, with exponential speed-ups in the algorithmic
runtime. In fact, techniques to generate compact reasons of failure of conjunctions of mixed-integer
convex clauses have already been proposed in the literature [71, 126]. More work still needs to be
done to adapt such techniques to the specific structure of the strategy-synthesis problem.

The quest towards achieving shorter and shorter algorithmic running time is never ending. In
fact, an exciting new realm of real-time applications for the verification and control algorithms
could be explored, if it was possible to solve the optimization problems in a matter of milliseconds
or less. While such a runtime can hardly be achieved with a software implementation of the convex
programming solver, a hardware implementation of the solver can achieve substantial speed-ups
thanks to its inherent parallelization. Analog circuits to solve linear programs have indeed already
been demonstrated [162], and are capable of solving linear programs with a fixed structure in a
matter of microseconds. Although a new circuit implementation would be required for any new
instance of the optimization problem, in many applications, noticeably the real-time control of
physical systems, the same problem instance needs to be solved over and over again during the
system execution while only varying the problem parameters, to determine at each time step the
control signals to be actuated. The migration of the convex problems presented in this dissertation
to a hardware implementation thus appears as a promising solution to extend the applicability of
the proposed verification and optimal control approaches.

Finally, and most importantly, the relevance of the presented work will be tested by applying
the proposed framework to the analysis and design of complex real-world applications. In this
dissertation, we have already analyzed the performance of a human driver, and synthesized optimal
energy pricing and purchasing strategies to be adopted by an energy aggregator whose portfolio
includes renewables, but plenty further fields could potentially benefit from the presented results.
In the following, we list a few of them.

The topic of improving the energy efficiency of commercial and residential buildings, which
account for a large percentage of the total primary energy consumption in all developed and devel-
oping countries, has received a lot of attention in the last decade. In fact, this task is considered of
outmost importance in the development agenda of several governments of Western countries [87].
The roadmap to enable the realization of these green buildings foresees the deployment of sen-
sor and actuator networks within the buildings. These networks are capable of sensing internal
(e.g., the presence of people) and external (e.g., the weather conditions) changes and promptly
react (e.g., by changing the HVAC settings), to optimize energy efficiency without reducing the
perceived comfort. A number of challenges need to be faced in order to guarantee the correct
functionality of these solutions, spanning the whole stack of the OSI layers [84, 110, 116, 140].
The analysis and control framework proposed in this dissertation can be applied to assess and con-
trol the performance of these networks by capturing the behavior of the digital controllers, of the

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 157

analog sensors and actuators and of the uncertain physical environment of the building.
The topic of energy management has been widely investigated also at the level of a single in-

tegrated circuit. In fact, nowadays Systems-on-Chip (SoCs) integrate an unprecedented amount
of functionality and are ubiquitously present around us, enabling the new computation revolution.
Given the explosion of both the number of mobile electronic devices, and of the number of servers
to support the computational “cloud”, it is fundamental to maximize the energy efficiency of elec-
tronic systems both to increase their battery life and to reduce operation costs. Energy consumption
can be reduced in SoCs by partitioning the integrated circuit in multiple “energy-domains” and by
providing to each domain only the energy that is strictly necessary to maintain correct functional-
ity, a technique called Dynamic Voltage and Frequency Scaling (DVFS). While simple in principle,
such an approach presents enormous challenges to be fully exploited and it is an active topic of
research in the community [47, 88, 104, 135]. The modeling framework presented in this dis-
sertation can be used to verify and control the functionality of SoCs adopting DVFS. The model
state can capture snapshots of the data flow within the SoC during execution. The actions avail-
able at each state can represent the operating voltages and frequencies for each energy domain in
the system, and a reward structure can capture the total consumed energy associated to choosing
a given action. The strategy-synthesis algorithm can then be used to find the DVFS strategy that
minimizes energy consumption, while the model-checking algorithm can be applied to verify the
correct transmission of data packets across different energy domains.

The verification of the model of the performance of a human driver presented in Chapter 5
represents just the first step towards the more ambitious goal of designing and verifying the con-
trol system for autonomous and semi-autonomous cars. Autonomous and semi-autonomous car
driving is recently receiving very high attention in both the academic and industrial research com-
munities [111]. In fact, several car companies, including Volvo, Mercedes, BMW, GM, Toyota, are
already equipping their high-tier cars with technology capable of automatically performing simple
tasks like distance keeping or lane changing. Moreover, Google has recently started the first on-
the-road experimentations of the Google Self-Driving Car [117], a fully autonomous car capable
of driving itself to the desired destination, and four states in the United States (Nevada, Michigan,
Florida and California) have already authorized testing of autonomous vehicles on public roads.
The challenges presented by this project are unprecedented and they will involve solutions from a
heterogeneous set of disciplines, ranging from mechanical engineering and control theory to em-
bedded software development [57, 109]. Abstraction techniques to represent the complex model
dynamics will play a key role in this effort, and the capability of formally capturing the uncertain-
ties in the modeling process will be fundamental, given the number of undefined environmental
conditions at design time (e.g., the surroundings of the car while moving in a high-traffic city
road). The application of the techniques developed in this dissertation to autonomous cars thus
offer several opportunities. For example, the strategy-synthesis algorithm could be run in real-
time in a receding-horizon fashion to optimally control the navigation of the autonomous vehicle
while robustly accounting for uncertainties in the prediction of the future environmental dynamics.
Furthermore, the model-checking algorithm could be run on the outputs of the other controllers
composing the system to guarantee that the composition of the different control strategies success-
fully achieves the desired goals (e.g., reaching the destination while maintaining the passengers

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 158

safe).

In conclusion, the fields of verification and optimal control of stochastic systems have attracted
a lot of attention in the last decade, but we believe that they have not reached yet full maturity.
Many opportunities exist for further research and it appears that this is the perfect time to work on
these topics and produce results that can indeed shape the research directions of the community in
the years to come.

159

Bibliography

[1] Alberto Puggelli’s home page on the website of the EECS Department at the University of
California, Berkeley. Online: http://www.eecs.berkeley.edu/˜puggelli/.

[2] The PRISM Model Checker. Online: http://www.prismmodelchecker.org/.

[3] J. Abate and W. Whitt. “Transient Behavior of the M/M/l Queue: Starting at the Origin”.
In: Queueing Systems 2.1 (1987), pp. 41–65.

[4] N. Ahmed, E. de Visser, T. Shaw, R. Parasuraman, A. Mohammed-Ameen, and M. Camp-
bell. “A Look at Probabilistic Gaussian Process, Bayes Net, and Classifier Models for
Prediction and Verification of Human Supervisory Performance”. In: Formal Verification
and Modeling in Human-Machine Systems. AAAI Spring Symposium Series. Mar. 2014.

[5] L. de Alfaro. “Formal Verification of Probabilistic Systems”. Ph.D. Dissertation. Stanford
University, 1997.

[6] L. de Alfaro and T. A. Henzinger. “Concurrent omega-Regular Games”. In: Proceedings.
of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS). June 2000,
pp. 141–154.

[7] L. de Alfaro and R. Majumdar. “Quantitative Solution of omega-Regular Games”. In: Jour-
nal of Computer and System Sciences 68.2 (2004), pp. 374–397.

[8] D. F. Anderson and T. G. Kurtz. “Continuous Time Markov Chain Models for Chemical
Reaction Networks”. In: Design and Analysis of Biomolecular Circuits. Ed. by H. Koeppl,
G. Setti, M. di Bernardo, and D. Densmore. Springer New York, 2011, pp. 3–42.

[9] J. R. Anderson. “ACT: A Simple Theory of Complex Cognition”. In: American Psycholo-
gist, 51.4 (Apr. 1996), pp. 355–365.

[10] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma. “Design and Development
of an Optimal-Control-Based Framework for Trajectory Planning, Threat Assessment, and
Semi-Autonomous Control of Passenger Vehicles in Hazard Avoidance Scenarios”. In:
Robotics Research. Ed. by C. Pradalier, R. Siegwart, and G. Hirzinger. Vol. 70. Springer
Tracts in Advanced Robotics. Springer Berlin Heidelberg, 2011, pp. 39–54.

[11] A. Andreychenko, L. Mikeev, D. Spieler, and V. Wolf. “Parameter Identification for Markov
Models of Biochemical Reactions”. In: Computer Aided Verification (CAV). Ed. by G.
Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 83–98.

http://www.eecs.berkeley.edu/~puggelli/
http://www.prismmodelchecker.org/

BIBLIOGRAPHY 160

[12] G. Aoude, B. Luders, K. Lee, D. Levine, and J. How. “Threat Assessment Design for
Driver Assistance System at Intersections”. In: Proceedings of the 13th International IEEE
Conference on Intelligent Transportation Systems (ITSC). 2010, pp. 1855–1862.

[13] J. Aspnes and M. Herlihy. “Fast Randomized Consensus Using Shared Memory”. In: Jour-
nal of Algorithms 11.3 (1990), pp. 441–461.

[14] A. Aziz, K. Sanwal, V. Singhal, and B. Brayton. “Verifying Continuous Time Markov
Chains”. In: Computer Aided Verification (CAV). Springer-Verlag, 1996, pp. 269–276.

[15] C. Baier. “On Algorithmic Verification Methods for Probabilistic Systems”. PhD thesis.
Universität Mannheim, Mannheim, Germany, 1998.

[16] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. “Controller Synthesis for
Probabilistic Systems”. In: Exploring New Frontiers of Theoretical Informatics. Vol. 155.
Springer US, 2004, pp. 493–506.

[17] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. “Model Checking Continuous-
Time Markov Chains by Transient Analysis”. In: Computer Aided Verification (CAV). Ed.
by E. A. Emerson and A. P. Sistla. Vol. 1855. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2000, pp. 358–372.

[18] C. Baier and J. -P. Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008.

[19] C. Baier and M. Kwiatkowska. “Model Checking for a Probabilistic Branching Time Logic
with Fairness”. In: Distributed Computing 11 (1998), pp. 125–155.

[20] D. Basacik and A. Stevens. “Scoping Study of Driver Distraction”. In: Transport Research
Laboratory. Road Safety Research Report 95 (2008).

[21] R. E. Bellman. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.

[22] M. Benedikt, R. Lenhardt, and J. Worrell. “LTL Model Checking of Interval Markov
Chains”. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Ed. by N. Piterman and S. A. Smolka. Vol. 7795. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 32–46.

[23] A. Ben-Tal and A. Nemirovski. “Robust Solutions of Uncertain Linear Programs”. In:
Operations Research Letters 25.1 (1999), pp. 1–13.

[24] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2011.

[25] D. Bertsimas, E. Litvinov, X. A Sun, J. Zhao, and T. Zheng. “Adaptive Robust Optimiza-
tion for the Security Constrained Unit Commitment Problem”. In: IEEE Transactions on
Power Systems 28.1 (Feb. 2013), pp. 52–63.

[26] A. Bianco and L. Alfaro. “Model Checking of Probabilistic and Nondeterministic Sys-
tems”. In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS).
Ed. by P. S. Thiagarajan. Vol. 1026. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1995, pp. 499–513.

BIBLIOGRAPHY 161

[27] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. “Using Formal Verification to Evaluate
Human-Automation Interaction: A Review”. In: IEEE Transactions on Systems, Man, and
Cybernetics: Systems 43.3 (May 2013), pp. 488–503.

[28] S. Borenstein and S. Holland. “On the Efficiency of Competitive Electricity Markets with
Time-Invariant Retail Prices”. In: RAND Journal of Economics 36.3 (Autumn 2005), pp. 469–
493.

[29] F. Bouffard and F. D. Galiana. “Stochastic Security for Operations Planning with Signif-
icant Wind Power Generation”. In: IEEE Transaction on Power Systems. Vol. 23. 2. May
2008, pp. 306–316.

[30] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, MA: Cambridge Univer-
sity Press, 2004.

[31] T. Brazdil, V. Brozek, V. Forejt, and A. Kučera. “Stochastic Games with Branching-Time
Winning Objectives”. In: 21st Annual IEEE Symposium on Logic in Computer Science
(LICS). Aug. 2006, pp. 349–358.

[32] K. Brokish and J. Kirtley. “Pitfalls of Modeling Wind Power Using Markov Chains”. In:
IEEE/PES Power Systems Conference and Exposition (PSCE). Mar. 2009, pp. 1–6.

[33] C. Cacciabue. Modelling Driver Behaviour in Automotive Environments. Critical Issues in
Driver Interactions with Intelligent Transport Systems. Springer, 2007.

[34] P. Carpentier, G. Cohen, J.-C. Culioli, and A. Renaud. “Stochastic Optimization of Unit
Commitment: A New Decomposition Framework”. In: IEEE Transactions on Power Sys-
tems 11.2 (May 1996), pp. 1067–1073.

[35] CarSim Mechanical Simulation.
http://www.carsim.com.

[36] K. Chatterjee and T. A. Henzinger. “Simple Stochastic Parity Games”. In: Proceedings
of the 17th Workshop on Logic in Computer Science (LICS). Vol. 2803. LNCS. Springer,
2003, pp. 100–113.

[37] K. Chatterjee, M. Jurdziński, and T. A. Henzinger. “Quantitative Stochastic Parity Games”.
In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
Society for Industrial and Applied Mathematics, 2004, pp. 121–130.

[38] K. Chatterjee, K. Sen, and T. A. Henzinger. “Model-Checking ω-Regular Properties of In-
terval Markov Chains”. In: Foundations of Software Science and Computational Structures
(FOSSACS). Ed. by R. Amadio. Vol. 4962. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008, pp. 302–317.

[39] S. Cheshire, B. Adoba, and E. Gutterman. “Dynamic Configuration of IPv4 Link Local
Addresses”. Available from http://www.ietf.org/rfc/rfc3927.txt.

[40] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Synchronization Skeletons Us-
ing Branching Time Temporal Logic”. In: Logics of Programs. Ed. by D. Kozen. Vol. 131.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1982, pp. 52–71.

http://www.carsim.com
http://www.ietf.org/rfc/rfc3927.txt

BIBLIOGRAPHY 162

[41] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[42] E. Coelingh, L. Jakobsson, H. Lind, and M. Lindman. “Collision Warning with Auto Brake:
a Real-Life Safety Perspective”. In: Proceedings of the 20th International Technical Con-
ference on the Enhanced Safety of Vehicles (ESV). June 2007.

[43] A. Condon. “On Algorithms for Simple Stochastic Games”. In: Advances in Computa-
tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science. American Mathematical Society, 1993, pp. 51–73.

[44] A. Condon. “The Complexity of Stochastic Games”. In: Information and Computation 96
(1992), pp. 203–224.

[45] E. M. Constantinescu, V. M. Zavala, M. Rocklin, S. Lee, and M. Anitescu. “A Compu-
tational Framework for Uncertainty Quantification and Stochastic Optimization in Unit
Commitment with Wind Power Generation”. In: IEEE Transactions on Power Systems
26.1 (Feb. 2011), pp. 431–441.

[46] C. Courcoubetis and M. Yannakakis. “The Complexity of Probabilistic Verification”. In:
Journal of ACM 42.4 (July 1995), pp. 857–907.

[47] J. Crossley, A. Puggelli, H. -P. Le, B. Yang, R. Nancollas, K. Jung, L. Kong, N. Narevsky,
Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-Vincentelli, and E. Alon. “BAG: A Designer-
Oriented Integrated Framework for the Development of AMS Circuit Generators”. In: 2013
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Nov. 2013,
pp. 74–81.

[48] A. D’Innocenzo, A. Abate, and J.-P. Katoen. “Robust PCTL Model Checking”. In: Pro-
ceedings of the 15th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC). Beijing, China: ACM, 2012, pp. 275–286.

[49] B. Donmez, C. Nehme, and M.L. Cummings. “Modeling Workload Impact in Multiple
Unmanned Vehicle Supervisory Control”. In: IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans 40.6 (Nov. 2010), pp. 1180–1190.

[50] K. Draeger, V. Forejt, M. Kwiatkowska, D. Parker, and M. Ujma. “Permissive Controller
Synthesis for Probabilistic Systems”. In: Proc. 20th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Vol. 8413. LNCS.
Springer, Mar. 2014, pp. 531–546.

[51] M. Duflot, L. Fribourg, and C. Picaronny. “Randomized Dining Philosophers without Fair-
ness Assumption”. In: Distributed Computing 17.1 (2004), pp. 65–76.

[52] J. Dupacova, N. Growe-Kuska, and W. Römisch. “Scenario Reduction in Stochastic Pro-
gramming: An Approach Using Probability Metrics”. In: Mathematical Programming 95
(2003), pp. 493–511.

[53] E. Ela. Operating Reserves and Variable Generation. NREL Technical Report. [Online]:
http://www.nrel.gov/docs/fy11osti/51978.pdf. Aug. 2011.

http://www.nrel.gov/docs/fy11osti/51978.pdf

BIBLIOGRAPHY 163

[54] E. A. Emerson and J. Y. Halpern. ““Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time Temporal Logic”. In: Journal of the ACM 33.1 (Jan. 1986), pp. 151–
178.

[55] ENERNOC. http://www.enernoc.com/.

[56] G. E. Fainekos, S. G. Loizou, and G. J. Pappas. “Translating Temporal Logic to Controller
Specifications”. In: Proceedings of the 45th Conference on Decision and Control (CDC).
Dec. 2006, pp. 899–904.

[57] P. Falcone, F. Borrelli, J. Asgari, H.E. Tseng, and D. Hrovat. “Predictive Active Steering
Control for Autonomous Vehicle Systems”. In: IEEE Transactions on Control Systems
Technology 15.3 (May 2007), pp. 566–580.

[58] Federal Energy Regulatory Commission (FERC). http://www.ferc.gov/.

[59] J. Filar and K. Vrieze. Competitive Markov Decision Processes. New York, NY, USA:
Springer-Verlag New York, Inc., 1996.

[60] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. “Automated Verification Tech-
niques for Probabilistic Systems”. In: Formal Methods for Eternal Networked Software
Systems (SFM). Ed. by M. Bernardo and V. Issarny. Vol. 6659. LNCS. Springer, June 2011,
pp. 53–113.

[61] R. Fuller and E. Farrell. “Operation Life-Saver Assessment.” In: Project OLA RS 459
(2001).

[62] C. E. Garcı́a, D. M. Prett, and Morari M. “Model Predictive Control: Theory and Practice
- A Survey”. In: Automatica 25.3 (1989), pp. 335–348.

[63] J. Gill. “An Entropy Measure of Uncertainty in Vote Choice”. In: Electoral Studies 24
(2005), pp. 371–392.

[64] GoodEnergy. http://www.goodenergy.com/.

[65] A. Gore. An Inconvenient Truth. New York: Rodale, 2006.

[66] C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong,
S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton, N. Rau, D. Reppen, A Schneider,
M. Shahidehpour, and C. Singh. “The IEEE Reliability Test System-1996. A Report Pre-
pared by the Reliability Test System Task Force of the Application of Probability Methods
Subcommittee”. In: IEEE Transactions on Power Systems 14.3 (Aug. 1999), pp. 1010–
1020.

[67] N. Growe-Kuska, K. C. Kiwiel, M. P. Nowak, W. Römisch, and I. Wegner. “Power Man-
agement in a Hydro-Thermal System Under Uncertainty by Lagrangian Relaxation”. In:
Volumes in Mathematics and Its Applications. Vol. 128. IMA. New York: Springer-Verlag,
2002, pp. 39–70.

[68] Gurobi Optimizer. [Online]: http://www.gurobi.com/.

http://www.enernoc.com/
http://www.ferc.gov/
http://www.goodenergy.com/
http://www.gurobi.com/

BIBLIOGRAPHY 164

[69] E. M. Hahn, T. Han, and L. Zhang. “Synthesis for PCTL in Parametric Markov Decision
Processes”. In: NASA Formal Methods. Ed. by M. Bobaru, K. Havelund, G. J. Holzmann,
and R. Joshi. Vol. 6617. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, pp. 146–161.

[70] E. Hahn, H. Hermanns, B. Wachter, and L. Zhang. “INFAMY: An Infinite-State Markov
Model Checker”. In: Computer Aided Verification (CAV). Ed. by A. Bouajjani and O.
Maler. Vol. 5643. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,
pp. 641–647.

[71] C. Hang, P. Manolios, and V. Papavasileiou. “Synthesizing Cyber-Physical Architectural
Models with Real-Time Constraints”. In: Computer Aided Verification (CAV). Berlin, Hei-
delberg: Springer-Verlag, 2011, pp. 441–456.

[72] H. Hansson and B. Jonsson. “A Logic for Reasoning About Time and Reliability”. In:
Formal Aspects of Computing 6.5 (1994), pp. 512–535.

[73] J. A. Hartigan and M. A. Wong. “Algorithm AS 136: A K-Means Clustering Algorithm”.
In: Journal of the Royal Statistical Society. 28.1 (1979), pp. 100–108.

[74] A. Hartmanns and H. Hermanns. “A Modest Approach to Checking Probabilistic Timed
Automata”. In: Proceedings of the 6th International Conference on the Quantitative Eval-
uation of Systems (QEST). Sept. 2009, pp. 187–196.

[75] V. Hashemi, H. Hatefi, and J. Krcál. “Probabilistic Bisimulations for PCTL Model Check-
ing of Interval MDPs”. In: Proceedings of the 1st International Workshop on Synthesis of
Continuous Parameters (SynCoP). Apr. 2014, pp. 19–33.

[76] M. He, S. Murugesan, and J. Zhang. “Multiple Timescale Dispatch and Scheduling for
Stochastic Reliability in Smart Grids with Wind Generation Integration”. In: Proceedings
of the 30th IEEE International Conference on Computer Communications (INFOCOM).
2011, pp. 461–465.

[77] H. Heitsch and W. Römisch. “Scenario Reduction in Stochastic Programming”. In: Com-
putational Optimization and Applications 24 (2003), pp. 187–206.

[78] T. A Henzinger. “The Theory of Hybrid Automata”. In: Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science (LICS). July 1996, pp. 278–292.

[79] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. “ETMCC: Model Checking
Performability Properties of Markov Chains.” In: DSN. IEEE Computer Society, 2003,
pp. 673–.

[80] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. “Towards Model Checking
Stochastic Process Algebra”. In: Integrated Formal Methods. Ed. by W. Grieskamp, T.
Santen, and B. Stoddart. Vol. 1945. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2000, pp. 420–439.

[81] R. A. Howard. Dynamic Programming and Markov Processes. Cambridge, MA: Technol-
ogy Press of Massachusetts Institute of Technology, 1960.

BIBLIOGRAPHY 165

[82] International Energy Agency, World Energy Outlook 2009. [Online]: http://www.
worldenergyoutlook.org/docs/weo2009/WEO2009_es_english.pdf.

[83] L. James. Road Rage and Aggressive Driving: Steering Clear of Highway Warfare. Prometheus
Books, 2000.

[84] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. “Design and Implementation of a
High-Fidelity AC Metering Network”. In: Proceedings of the International Conference on
Information Processing in Sensor Networks (IPSN). IEEE. 2009, pp. 253–264.

[85] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. “Planning and Acting in Partially
Observable Stochastic Domains”. In: Artificial Intelligence 101.12 (1998), pp. 99–134.

[86] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. “The Ins and
Outs of the Probabilistic Model Checker MRMC”. In: Performance Evaluation 68.2 (Feb.
2011), pp. 90–104.

[87] C. J. Kibert. Sustainable Construction: Green Building Design and Delivery. Hoboken,
N.J. : John Wiley & Sons, 2013.

[88] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks. “System Level Analysis of Fast, Per-
Core DVFS Using On-Chip Switching Regulators”. In: Proceedings of the 14th IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA). Feb. 2008,
pp. 123–134.

[89] B. Kirby. “Spinning Reserve from Responsive Loads”. In: (2003).

[90] S. Klauer. “The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using
the 100-Car Naturalistic Driving Study”. In: National Highway Traffic Safety Administra-
tion (2006).

[91] U. G. Knight. Power Systems in Emergencies: From Contingency Planning to Crisis Man-
agement. Chichester, UK: John Wiley & Sons, 2001.

[92] S. Koch, Mathieu J. L., and Callaway D. S. “Modeling and Control of Aggregated Het-
erogeneous Thermostatically Controlled Loads for Ancillary Services”. In: Proceedings of
the 15th Power Systems Computation Conference (PSCC). Aug. 2011.

[93] I. O. Kozine and L. V. Utkin. “Interval-Valued Finite Markov Chains”. In: Reliable Com-
puting 8.2 (2002), pp. 97–113.

[94] V. Kreinovich, A. Neumaier, and G. Xiang. Towards a Combination of Interval and Ellip-
soid Uncertainty. Tech. rep. UTEP-CS-07-42b. Department of Computer Science, UT-El
Paso, 2008.

[95] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J. Pappas. “Courteous Cars”.
In: IEEE Robotics Automation Magazine 15.1 (Mar. 2008), pp. 30–38.

[96] A. Kučera and O. Stražovský. “On the Controller Synthesis for Finite-State Markov De-
cision Processes”. In: Proceedings of the 25th Foundations of Software Technology and
Theoretical Computer Science (FSTTCS). Vol. 3821. LNCS. Springer Berlin Heidelberg,
2005, pp. 541–552.

http:// www.worldenergyoutlook.org/docs/ weo2009/WEO2009_es_english.pdf
http:// www.worldenergyoutlook.org/docs/ weo2009/WEO2009_es_english.pdf

BIBLIOGRAPHY 166

[97] N. Kuge, T. Yamamura, O. Shimoyama, and A. Liu. “A Driver Behavior Recognition
Method Based on a Driver Model Framework”. In: Modelling Driver Behaviour in Au-
tomotive Environments. Ed. by P. C. Cacciabue. Warrendale, PA: Society of Automotive
Engineers, 1998, pp. 3–25.

[98] M. Kwiatkowska. “Quantitative Verification: Models, Techniques and Tools”. In: The 6th

Joint Meeting on European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering: Companion Papers. ESEC-FSE
companion ’07. New York, NY, USA: ACM, 2007, pp. 449–458.

[99] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-Time Systems”. In: Computer Aided Verification (CAV). Ed. by G. Gopalakrishnan
and S. Qadeer. Vol. 6806. LNCS. Springer, July 2011, pp. 585–591.

[100] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. “Performance Analysis of Prob-
abilistic Timed Automata Using Digital Clocks”. In: Formal Modeling and Analysis of
Timed Systems (FORMATS). Ed. by K. G. Larsen and P. Niebert. Vol. 2791. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004, pp. 105–120.

[101] M. Kwiatkowska, G. Norman, and R. Segala. “Automated Verification of a Randomized
Distributed Consensus Protocol Using Cadence SMV and PRISM”. In: Computer Aided
Verification (CAV). Ed. by G. Berry, H. Comon, and A. Finkel. Vol. 2102. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2001, pp. 194–206.

[102] M. Kwiatkowska and D. Parker. “Automated Verification and Strategy Synthesis for Prob-
abilistic Systems”. In: Proc. 11th International Symposyum on Automated Technology for
Verification and Analysis (ATVA). Vol. 8172. LNCS. Springer, 2013, pp. 5–22.

[103] M. Lahijanian, S. B. Andersson, and C. Belta. “Temporal Logic Motion Planning and Con-
trol with Probabilistic Satisfaction Guarantees”. In: IEEE Transactions on Robotics 28.2
(2012), pp. 396–409.

[104] H. P. Le, S. R. Sanders, and E. Alon. “Design Techniques for Fully Integrated Switched-
Capacitor DC-DC Converters”. In: IEEE Journal of Solid-State Circuits 46.9 (Sept. 2011),
pp. 2120–2131.

[105] X. Le and M. D. Ilić. “Model Predictive Dispatch in Electric Energy Systems with Inter-
mittent Resources”. In: IEEE International Conference on Systems, Man and Cybernetics
(SMC). Oct. 2008, pp. 42–47.

[106] J. F. Lehman, J. Laird, and P. Rosenbloom. “A Gentle Introduction to Soar, an Architecture
for Human Cognition”. In: Invitation to Cognitive Science. Ed. by S. Sternberg and D.
Scarborough. MIT Press, 1996.

[107] D. Lehmann and M. Rabin. “On the Advantage of Free Choice: A Symmetric and Fully
Distributed Solution to the Dining Philosophers Problem”. In: Proceedings of the 8th An-
nual ACM Symposium on Principles of Programming Languages (POPL). 1981, pp. 133–
138.

BIBLIOGRAPHY 167

[108] E. Lehmann and G. Casella. Theory of Point Estimation. Springer-Verlag, New York, 1998.

[109] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer,
O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S.
Thrun. “Towards Fully Autonomous Driving: Systems and Algorithms”. In: IEEE Intelli-
gent Vehicles Symposium (IV). June 2011, pp. 163–168.

[110] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, and D. Culler. “TinyOS: An Operating System for Sensor Networks”.
In: Ambient intelligence. Springer, 2005, pp. 115–148.

[111] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia. “Synthesis for Human-in-the-Loop Control
Systems”. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Ed. by E. Ábrahám and K. Havelund. Vol. 8413. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 470–484.

[112] C.-C. Lin, H. Peng, and J. W. Grizzle. “A Stochastic Control Strategy for Hybrid Electric
Vehicles”. In: Proceedings of the American Control Conference (ACC). Vol. 5. June 2004,
pp. 4710–4715.

[113] Linking Driving Behavior to Automobile Accidents and Insurance Rates.
http://www.progressive.com/Content/pdf/newsroom/snapshot_
report_final_070812.pdf.

[114] S. G. Loizou and K. J. Kyriakopoulos. “Automatic Synthesis of Multiagent Motion Tasks
Based on LTL Specifications”. In: Proceedings of the 43rd IEEE Conference on Decision
and Control (CDC). 2004, pp. 153–158.

[115] N. Lu, D. P. Chassin, and S. E. Widergren. “Modeling Uncertainties in Aggregated Ther-
mostatically Controlled Loads Using a State Queueing Model”. In: IEEE Transactions on
Power Systems 20.2 (May 2005), pp. 725–733.

[116] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. L. Sangiovanni-Vincentelli. “Co-Design
of Control Algorithm and Embedded Platform for Building HVAC Systems”. In: Proceed-
ings of the ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS). Apr.
2013, pp. 61–70.

[117] J. Markoff. “Google Cars Drive Themselves, in Traffic”. In: The New York Times 10 (2010),
A1.

[118] A. McCallum, D. Freitag, and F. C. N. Pereira. “Maximum Entropy Markov Models for In-
formation Extraction and Segmentation”. In: Proceedings of the 17th International Confer-
ence on Machine Learning (ICML). ICML ’00. Morgan Kaufmann Publishers Inc., 2000,
pp. 591–598.

[119] Microsoft Kinect.
http://www.xbox.com/en-US/KINECT.

[120] G. E. Monahan. “A Survey of Partially Observable Markov Decision Processes: Theory,
Models, and Algorithms”. In: Management Science 28.1 (Jan. 1982), pp. 1–16.

http://www.progressive.com/Content/pdf/newsroom/snapshot_report_final_070812.pdf
http://www.progressive.com/Content/pdf/newsroom/snapshot_report_final_070812.pdf
http://www.xbox.com/en-US/KINECT

BIBLIOGRAPHY 168

[121] J. M. Morales, A. J. Conejo, and J. Perez-Ruiz. “Economic Valuation of Reserves in Power
Systems with High Penetration of Wind Power”. In: IEEE Transactions on Power Systems
24.2 (May 2009), pp. 900–910.

[122] MOSEK. http://www.mosek.com.

[123] T. Mount, L. Anderson, J. Cardell, A. Lamadrid, S. Maneevitjit, B. Thomas, and R. Zim-
merman. “The Economic Implications of Adding Wind Capacity to a Bulk Power Trans-
mission Network Applied Economics and Management”. In: Technical Report. Cornell
University, Ithaca, NY, 2008.

[124] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Society for Industrial and Applied Mathematics, 1994.

[125] A. Nilim and L. El Ghaoui. “Robust Control of Markov Decision Processes with Uncertain
Transition Matrices”. In: Operations Research 53.5 (2005), pp. 780–798.

[126] P. Nuzzo, A. Puggelli, S. A. Seshia, and A. L. Sangiovanni-Vincentelli. “CalCS: SMT
Solving for Non-linear Convex Constraints”. In: Proceedings of the Conference on Formal
Methods in Computer-Aided Design (FMCAD). FMCAD Inc., 2010, pp. 71–80.

[127] Opower. http://opower.com/.

[128] S. Owicki and L. Lamport. “Proving Liveness Properties of Concurrent Programs”. In:
ACM Transactions of Programming Languages and Systems 4.3 (July 1982), pp. 455–495.

[129] M. Panou, E. Bekiaris, and V. Papakostopoulos. “Modelling Driver Behaviour in European
Union and International Projects”. In: Modelling Driver Behaviour in Automotive Environ-
ments. Ed. by P. C. Cacciabue. Springer London, 2007, pp. 3–25.

[130] A. Papavasiliou and S. S. Oren. “Large-Scale Integration of Deferrable Demand and Re-
newable Energy Sources”. In: IEEE Transactions on Power Systems 29.1 (Jan. 2014),
pp. 489–499.

[131] A. Papavasiliou and S. S. Oren. “Multiarea Stochastic Unit Commitment for High Wind
Penetration in a Transmission Constrained Network”. In: Operations Research 61.3 (2013),
pp. 578–592.

[132] A. Papavasiliou and S. S. Oren. “Supplying Renewable Energy to Deferrable Loads: Al-
gorithms and Economic Analysis”. In: IEEE Power and Energy Society General Meeting
(PES). July 2010, pp. 1–8.

[133] A. Papavasiliou, S. S. Oren, and R. P. O’Neill. “Reserve Requirements for Wind Power In-
tegration: A Scenario-Based Stochastic Programming Framework”. In: IEEE Transactions
on Power Systems 26.4 (Nov. 2011), pp. 2197–2206.

[134] A. Pentland and A. Lin. “Modeling and Prediction of Human Behavior”. In: Neural Com-
putation 11 (1995), pp. 229–242.

[135] P. Pillai and K. G. Shin. “Real-Time Dynamic Voltage Scaling for Low-Power Embedded
Operating Systems”. In: Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2001, pp. 89–102.

http://opower.com/

BIBLIOGRAPHY 169

[136] N. Piterman, A. Pnueli, and Y. Sa’ar. “Synthesis of Reactive(1) Designs”. In: Verification,
Model Checking, and Abstract Interpretation. Ed. by E. A. Emerson and K. S. Namjoshi.
Vol. 3855. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 364–
380.

[137] A. Pnueli. “The Temporal Logic of Programs”. In: Proceedings of the 18th Annual Sympo-
sium on the Foundations of Computer Science (FOCS). Oct. 1977, pp. 46–57.

[138] K. Porter and J. Rogers. “Survey of Variable Generation Forecasting in the West”. In:
NREL Subcontract Report SR-5500-54457. Apr. 2012, p. 56.

[139] A. Puggelli, W. Li, A. L. Sangiovanni-Vincentelli, and S. A. Seshia. “Polynomial-Time
Verification of PCTL Properties of MDPs with Convex Uncertainties”. In: Computer Aided
Verification (CAV). Ed. by N. Sharygina and H. Veith. Vol. 8044. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, July 2013, pp. 527–542.

[140] A. Puggelli, M. M. R. Mozumdar, L. Lavagno, and A. L. Sangiovanni-Vincentelli. Routing-
Aware Design of Indoor Wireless Sensor Networks Using an Interactive Tool. Dec. 2013.

[141] A. Puggelli, A. L. Sangiovanni-Vincentelli, and S. A. Seshia. “Robust Strategy Synthesis
for Probabilistic Systems Applied to Risk-Limiting Renewable-Energy Pricing”. In: Pro-
ceedings of the ACM/IEEE International Conference on Embedded Software (EMSOFT).
Oct. 2014.

[142] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 1994.

[143] J. Rasmussen. Information Processing and Human-Machine Interaction: An Approach to
Cognitive Engineering. New York, NY, USA: Elsevier Science Inc., 1986.

[144] M. Regan, J. Lee, and K. Young. Driver distraction: Theory, effects, and mitigation. CRC
Press, 2008.

[145] P. A. Ruiz, R. C. Philbrick, and P. W. Sauer. “Wind Power Day-Ahead Uncertainty Man-
agement through Stochastic UC Policies”. In: Power Systems Conference and Exposition.
Mar. 2009, pp. 1–9.

[146] S. M. Ryan, R. J.-B. Wets, D. L. Woodruff, C. Silva-Monroy, and J.-P. Watson. “Toward
Scalable, Parallel Progressive Hedging for Stochastic Unit Commitment”. In: IEEE Power
and Energy Society General Meeting (PES). July 2013, pp. 1–5.

[147] D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Bajcsy, A. L. Sangiovanni-
Vincentelli, S. S. Sastry, and S. A. Seshia. “Data-Driven Probabilistic Modeling and Ver-
ification of Human Driver Behavior”. In: Formal Verification and Modeling in Human-
Machine Systems. AAAI Spring Symposium Series. Mar. 2014. URL: http://www.
aaai.org/ocs/index.php/SSS/SSS14/paper/view/7749/7759.

http://www.aaai.org/ocs/index.php/SSS/SSS14/paper/view/7749/7759
http://www.aaai.org/ocs/index.php/SSS/SSS14/paper/view/7749/7759

BIBLIOGRAPHY 170

[148] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. “A Learning Based Ap-
proach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic
Specifications”. In: To appear in Proceedings of the 53rd IEEE Annual Conference on De-
cision and Control (CDC). 2014.

[149] R. Segala. “Modeling and Verification of Randomized Distributed Real-Time Systems”.
PhD thesis. Massachusetts Institute of Technology, Cambridge, MA, 1995.

[150] K. Sen, M. Viswanathan, and G. Agha. “Model-Checking Markov Chains in the Presence
of Uncertainties”. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Ed. by Holger Hermanns and Jens Palsberg. Vol. 3920. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2006, pp. 394–410.

[151] K. Sen, M. Viswanathan, and G. Agha. “VESTA: A Statistical Model-Checker and Ana-
lyzer for Probabilistic Systems”. In: Proceedings of the 2nd International Conference on
the Quantitative Evaluation of Systems (QEST). Sept. 2005, pp. 251–252.

[152] R. F. Serfozo. “An Equivalence between Continuous and Discrete Time Markov Decision
Processes”. In: Operations Research 27.3 (May 1979), pp. 616–620.

[153] V. A Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, T. Lin, F. Borrelli, and R. Bajcsy.
“Semiautonomous Vehicular Control Using Driver Modeling”. In: IEEE Transactions on
Intelligent Transportation Systems PP.99 (2014), pp. 1–14.

[154] T. Shiina and J. R. Birge. “Stochastic Unit Commitment Problem”. In: International Trans-
actions in Operational Research 11.95 (2004), pp. 19–32.

[155] R. Sioshansi. “Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind
Generation”. In: IEEE Transactions on Power Systems 25.2 (May 2010), pp. 741–748.

[156] R. Sioshansi. “OR Forum: Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid
Electric Vehicle Charging, Costs, and Emissions”. In: Operations Research 60.3 (2012),
pp. 506–516.

[157] R. Sioshansi and W. Short. “Evaluating the Impacts of Real Time Pricing on the Usage
of Wind Power Generation”. In: IEEE Transactions on Power Systems 24.2 (May 2009),
pp. 516–524.

[158] E. J. Sondik. “The Optimal Control of Partially Observable Markov Processes.” PhD thesis.
Stanford University, Stanford, CA, 1971.

[159] W. Stewart. “Introduction to the Numerical Solution of Markov Chains”. In: Princeton
University Press (1994).

[160] S. Stoft. Power System Economics: Designing Markets for Electricity. New York, NY: John
Wiley & Sons, 2002.

[161] S. Takriti, J. R. Birge, and E. Long. “A Stochastic Model for the Unit Commitment Prob-
lem”. In: IEEE Transactions on Power Systems 11.3 (Aug. 1996), pp. 1497–1508.

BIBLIOGRAPHY 171

[162] D. Tank and J. J. Hopfield. “Simple ’Neural’ Optimization Networks: An A/D Converter,
Signal Decision Circuit, and a Linear Programming Circuit”. In: IEEE Transactions on
Circuits and Systems 33.5 (May 1986), pp. 533–541.

[163] W. Thomas. “Languages, Automata, and Logic”. In: Handbook of Formal Languages.
Springer, 1996, pp. 389–455.

[164] A. Tuohy, P. Meibom, E. Denny, and M. O’Malley. “Unit Commitment for Systems with
High Wind Penetration”. In: IEEE Transactions on Power Systems 24.2 (May 2009), pp. 592–
601.

[165] C. Urmson et al. “Autonomous Driving in Urban Environments: Boss and the Urban Chal-
lenge”. In: Journal of Field Robotics 25.8 (2008), pp. 425–466.

[166] P. Varaiya. “Smart Cars on Smart Roads: Problems of Control”. In: IEEE Transactions on
Automatic Control 38.2 (Feb. 1993), pp. 195–207.

[167] P. P. Varaiya, F. F. Wu, and J. W. Bialek. “Smart Operation of Smart Grid: Risk-Limiting
Dispatch”. In: Proceedings of the IEEE 99.1 (2011), pp. 40–57.

[168] M.Y. Vardi. “Automatic Verification of Probabilistic Concurrent Finite State Programs”.
In: Proceedings of the 26th Annual Symposium on the Foundations of Computer Science
(FOCS). Oct. 1985, pp. 327–338.

[169] R. Vasudevan, V. Shia, G. Yiqi, R. Cervera-Navarro, R. Bajcsy, and F. Borrelli. “Safe Semi-
Autonomous Control with Enhanced Driver Modeling”. In: American Control Conference
(ACC). June 2012, pp. 2896–2903.

[170] Y. H Wan. Long-term Wind Power Variability. NREL Technical Report TP-5500-53637.
[Online]: http://www.nrel.gov/docs/fy12osti/53637.pdf. Jan. 2012.

[171] J. Wang, M. Shahidehpour, and Z. Li. “Security-Constrained Unit Commitment with Volatile
Wind Power Generation”. In: IEEE Transactions on Power Systems 23.3 (Aug. 2008),
pp. 1319–1327.

[172] E. Wolff, U. Topcu, and R. Murray. “Robust Control of Uncertain Markov Decision Pro-
cesses with Temporal Logic Specifications”. In: International Conference on Decision and
Control (CDC). 2012, pp. 3372–3379.

[173] H. L. S. Younes. “Ymer: A Statistical Model Checker”. In: Computer Aided Verification
(CAV). Ed. by Kousha Etessami and SriramK. Rajamani. Vol. 3576. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2005, pp. 429–433.

[174] H. L. S. Younes and R. G. Simmons. “Probabilistic Verification of Discrete Event Systems
Using Acceptance Sampling”. In: Computer Aided Verification (CAV). Ed. by E. Brinksma
and K. G. Larsen. Vol. 2404. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2002, pp. 223–235.

[175] J. Zhang, J. D. Fuller, and S. Elhedhli. “A Stochastic Programming Model for a Day-Ahead
Electricity Market with Real-Time Reserve Shortage Pricing”. In: IEEE Transactions on
Power Systems 25.2 (May 2010), pp. 703–713.

http://www.nrel.gov/docs/fy12osti/53637.pdf

172

Appendix A

Example of the LP Formulation to Verify
the Unbounded Until Operator

This appendix reports the full LP formulation that was used to verify property φ = P ≥0.4[ϑ U ω]
on the example in Figure 2.3. Problem (4.19) written with the data of the model has 19 variables
and 11 constraints. Note that variables are constrained by default to be non-negative in most
publicly-available LP solvers, so the LP formulation only reports variables that should instead be
treated as unconstrained (labeled as “free”).

max
x,λa1,s,λ

a
2,s,λ

a
3,s

x0 + x3 (A.1)

Subject to: x2 = 1

x1 = 0

x0 ≤ λa1,s0 + 0.6λa2,s0s1 + 0.2λa2,s0s2 − 0.8λa3,s0s1 − 0.5λa3,s0s2
x1 − λa1,s0 + λa3,s0s1 − λ

a
2,s0s1

= 0

x2 − λa1,s0 + λa3,s0s2 − λ
a
2,s0s2

= 0

x0 ≤ x3

x3 ≤ λa1,s3 + 0.1λa2,s3s0 + 0.5λa2,s3s1 + 0.3λa2,s3s2 − 0.5λa3,s3s0 − 0.8λa3,s3s1 − 0.4λa3,s3s2
x0 − λa1,s3 + λa3,s3s0 − λ

a
2,s3s0

= 0

x1 − λa1,s3 + λa3,s3s1 − λ
a
2,s3s1

= 0

x2 − λa1,s3 + λa3,s3s2 − λ
a
2,s3s2

= 0

x3 ≤ λb1,s3 + 0.3λb2,s3s3 + 0.4λb2,s3s2 − 0.7λb3,s3s3 − 0.6λb3,s3s2
x2 − λb1,s3 + λb3,s3s2 − λ

b
2,s3s2

= 0

x3 − λb1,s3 + λb3,s3s3 − λ
b
2,s3s3

= 0

Free: λa1,s0 , λ
a
1,s3
, λb1,s3

173

Appendix B

Proof of Convergence of the Contraction
Mapping

In this appendix, we give details about the proof of Proposition 4.4.
To keep the appendix self-contained, we re-define:

Definition B.1. Contraction. Let (B, d) be a metric space and g : B → B. Function g is a
contraction if there is a real number θ, 0 ≤ θ < 1, such that:

d (g(u), g(v)) ≤ θd(u, v) ∀u, v ∈ B (B.1)

In the following, we will use:

Proposition B.1. Contraction Mapping. Let (B, d) be a complete metric space and g : B → B a
contraction. Then there exists a unique point x∗ ∈ B such that:

g(x∗) = x∗

Additionally, if x ∈ B, then:
lim

k→+∞
gk(x) = x∗

We use the mapping g = G defined as:

xi = Gi(xi−1) =


0; 1; ∀s ∈ Sno; ∀s ∈ Syes;

0; ∀s ∈ S? ∧ i = 0;

max
a∈A(s)

max
fas ∈Fas

∑
s′

fass′x
i−1
s′ ∀s ∈ S? ∧ i > 0

(B.2)

where Syes def= Sat (P ≥1[φ1 U φ2]), Sno def= Sat (P ≤0[φ1 U φ2]) and S? = S \ (Sno ∪ Syes).
To simplify notation in the proof, we use the weighted maximum norm ‖ . ‖w of a vector

v ∈ RN defined as:

‖ . ‖w = max
i=1···N

| vi |
wi

(B.3)

APPENDIX B. PROOF OF CONVERGENCE OF THE CONTRACTION MAPPING 174

where wi is the scalar weight associated to each element of v.
The results presented in the following are actually valid for any vector w | wi > 0,∀i ∈ RN ,

since a contraction drives the residual norm to 0, which is independent of w. It is thus correct to
use the infinity norm, i.e., w = 1, in Section 4.2.3.2.

We can now state:

Proposition B.2. Mapping G is a contraction over the metric space (RN , ‖ . ‖w).

Proof. The proof follows closely the ones in references [15], [24] (Vol. II, Section 2.4) and [172].
Those proofs refer to the control settings, where the optimal strategy can be selected. Hence, the
contraction needs to hold for only one of the available strategies, i.e., the optimal one (existential
quantification). Conversely, in the verification settings, the contraction needs to hold across all
available adversaries, because we consider the worst-case resolution of non-determinism (univer-
sal quantification).

Further, as in the work by Wolff et al. [172], we quantify across all nature behaviors. This
quantification is possible thanks to Assumption 2.2, which guarantees that if the probability of a
transition is zero (non-zero) for at least one probability distribution in the uncertainty set, then it is
zero (non-zero) for all probability distributions in the set.

For the sake of brevity, in the following we will only consider the calculation of Pmin
s [ψ], but

the same reasoning applies also for the maximization problem.
We start from partitioning the state space S into the three subsets Syes, Sno and S?. Since

the probabilities Pmin
s [ψ] are fixed in all states s ∈ Syes ∪ Sno (Pmin

s [ψ] = 1 if s ∈ Syes and
Pmin
s [ψ] = 0 if s ∈ Sno), we do not need to consider these states explicitly. In particular, we

perform the following transformation on the Convex-MDP underlying graph. We collapse the set
Syes into one terminal state t, and eliminate all states s ∈ Sno from the graph. This transformation
is fundamental, together with Assumption 2.2, to guarantee that all possible adversaries Adv are
proper in the transformed Convex-MDP, i.e., any adversary almost certainly reaches the terminal
state t for all transition matrices F a ∈ Fa,∀a ∈ A [24].

We will now work with the new state space S† = S? ∪ {t}, and, for simplicity, we redefine
N = |S†|. We further partition S† as follows. Let S1 = {t} and for q = 2, 3, · · · compute:

Sq = {s ∈ S† | s 6∈ S1 ∪ · · · ∪ Sq−1, min
a∈A(s)

max
s′∈S1∪···∪Sq−1

min
fas ∈Fas

fass′ > 0}

Let r be the largest integer such that Sr is nonempty. Since all adversaries are proper, we are
guaranteed that ∪rq=1Sq = S†.

We now need to choose weights ws,∀s ∈ S† such that G is a contraction with respect to ‖.‖w.
First, we take the ith component wi to be the same for states si in the same set Sq. Then we set
wi = yq if si ∈ Sq, where y1, · · · , yr are scalars satisfying:

1 = y1 < y2 < · · · < yr

Further, let:
ξ = min

q=2,··· ,r
min
a∈A

min
s∈Sq

min
fas ∈Fas

∑
s′∈S1∪···∪Sq−1

fass′

APPENDIX B. PROOF OF CONVERGENCE OF THE CONTRACTION MAPPING 175

with, by Assumption 2.2, 0 < ξ ≤ 1.
The rest of the proof goes as follows. First, we will show that if we can find y2, · · · , yr such

that, for q = 2, · · · , r:
yr
yq

(1− ξ) +
yq−1

yq
≤ θ

for some θ < 1, then G is a contraction. Second, we will prove that such values always exist. We
begin by defining:

Gs(x) = min
a∈A(s)

min
fas ∈Fas

xT fas

Ga
s(x) = min

fas ∈Fas
xT fas

i.e., the element of the output of mapping G corresponding to state s ∈ S†, when mapping G is
applied to vector x ∈ RN , and the same element when mapping G is evaluated only at the fixed
action a ∈ A(s).

For all vectors v,u ∈ RN , we determine a ∈ A(s) such that:

a = argmin
A(s)

Gs(u)

We can thus write for all s ∈ S†:

Gs(v)−Gs(u) = Gs(v)−Ga
s(u)

≤ Ga
s(v)−Ga

s(u)

=
∑

s′ (V
a
ss′vs′ − Ua

ss′us′)

≤
∑

s′M
a
ss′ (vs′ − us′)

where:

Va
s = argmin

fas ∈Fas
vT fas

Ua
s = argmin

fas ∈Fas
uT fas

Ma
ss′ = max {V a

ss′ (vs′ − us′) , Ua
ss′ (vs′ − us′)}

Let q(s) be a function such that state s belongs to the set Sq(s). Then, for any constant c:

‖v − u‖w ⇒ vs − us ≤ cyq(s), ∀s ∈ S†

APPENDIX B. PROOF OF CONVERGENCE OF THE CONTRACTION MAPPING 176

We can thus write ∀s ∈ Sq and q = 1, · · · , r:

Gs(v)−Gs(u)

cyq(s)
≤ 1

yq(s)

∑
s′∈S†

Ma
ss′yq(s′)

≤
yq(s)−1

yq(s)

∑
s′∈S1∪···∪Sq(s)−1

Ma
ss′

+
yr
yq(s)

∑
s′∈Sq(s)∪···∪Sr

Ma
ss′

=

(
yq(s)−1

yq(s)
− yr
yq(s)

) ∑
s′∈S1∪···∪Sq(s)−1

Ma
ss′

+
yr
yq(s)

≤
(
yq(s)−1

yq(s)
− yr
yq(s)

)
ξ +

yr
yq(s)

≤ θ

We have thus proved that:
Gs(v)−Gs(u)

wi
≤ cθ

for an arbitrary state s ∈ S†. Taking the maximum over S†, we get:

‖G(v)−G(u)‖w ≤ cθ, ∀u,v ∈ RN s.t. ‖v − u‖ ≤ c

so G is a contraction over the metric space (RN , ‖ . ‖w), and:

θ = max
1≤q≤r

yr
yq

(1− ξ) +
yq−1

yq
(B.4)

is the corresponding contraction factor.
Finally, we constructively prove by induction that it is always possible to find scalars y1, · · · , yr

such that the above assumptions hold. As the base case, we set y0 = 0, y1 = 1. At the induction
step, we suppose that y2, · · · , yq have already been determined. If ξ = 1, we set yq+1 = yq + 1. If
ξ < 1, we set yq+1 = 1

2
(yq +mq) where:

mq = min
1≤i≤q

{
yi +

ξ

1− ξ
(yi − yi−1)

}
With these choices, we are guaranteed that:

mq+1 = min
{
mq, yi +

ξ

1− ξ
(yi − yi−1)

}
so, by induction, we have that yq < yq+1 < mq+1, and we can construct the required sequence.

177

Appendix C

Python Implementation of the Verification
Algorithm

We give details about the software implementation of the model-checking algorithm. In particular,
we present the code implementation in Python, due to its higher readability. The full Python
implementation can be found at [1]. The Java implementation of the code will instead be available
open source within the PRISM Model Checker distribution.

As explained in Chapter 4, the tool exploits class inheritance to maximize the reuse of code
across the different flavors of Convex-MDPs. In particular, as shown in Figure C.1, the classes
for Interval/Ellipsoidal/Likelihood/Entropy-MDPs all inherit from a common Convex-MDP class.
The Convex-MDP class contains the code to model check every operator in the PCTL logic. The
subclasses instead only implement the specific routines to determine the worst-case resolution
of uncertainty for the corresponding uncertainty model, i.e., they solve the inner optimization
problems in Equation (4.9)-(4.12) on the left, reported below for convenience.

Pmax
s [ψ] = max

a∈A(s)
max
fas ∈Fas

Ps(a, f
a
s)[ψ] ⇒ Pmax

s [ψ]
?

≤ p

Pmin
s [ψ] = min

a∈A(s)
min
fas ∈Fas

Ps(a, f
a
s)[ψ] ⇒ Pmin

s [ψ]
?

≥ p

Emaxs [ρ] = max
a∈A(s)

max
fas ∈Fas

Es(a, fas)[ρ] ⇒ Emaxs [ρ]
?

≤ v

Emins [ρ] = min
a∈A(s)

min
fas ∈Fas

Es(a, fas)[ρ] ⇒ Emins [ρ]
?

≥ v

To ease the comprehension of the code, we first introduce the data structures used to store the
model data. In particular, we will show an example of the content of these data structures for the
simple Interval-MDP introduced in Chapter 2 and reported below in Figure C.2 for convenience.

The data structure fastIdx is a list (across states) of lists (across actions) of lists of next state

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 178

Class Convex-MDP
Traverse formula parse tree

Manipulate model data-structures
Implement model-checking routines for all PCTL operators

Compute optimal adversary
Process model-checking results

Class Interval-MDP
Formulate convex problems

Compute optimal nature

Class Ellipsoidal-MDP
Formulate convex problems

Compute optimal nature

Class Likelihood-MDP
Formulate convex problems

Compute optimal nature

Class Entropy-MDP
Formulate convex problems

Compute optimal nature

Figure C.1: Class inheritance diagram for the Python implementation of the verification algorithm.
Each block represents a class and the arrow points to the class which inherits. For each class, we
also list the implemented functionality.

indices. For the Interval-MDP in the example, fastIdx contains:

[

/* State s0, action a and b*/ [[1, 2], [3]],

/* State s1, action a*/ [[1, 2]],

/* State s2, action a*/ [[1]],

/* State s3, action a and b*/ [[0, 1, 2], [2, 3]]

]

The data structure par1 is a list (across states) of lists (across actions) of lists (across next
states) of uncertain transition probabilities. For example, for the interval model of uncertainty, the
transitions probabilities are stored as a list containing the list of lower bounds and the list of upper
bounds on the transition probabilities. If a transition is not associated to an uncertainty set, only
the certain transition probability is reported. For the Interval-MDP in the example, par1 contains:

[

/* State s0, action a and b*/ [[[0.6, 0.2], [0.8, 0.5]], [[1.0]]],

/* State s1, action a*/ [[[0.5, 0.5]]],

/* State s2, action a*/ [[[1.0]]],

/* State s3, action a and b*/ [[[0.1, 0.5, 0.3], [0.5, 0.8, 0.4]], [[0.4, 0.3], [0.6, 0.7]]]

]

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 179

s0	

rs=0	

{ϑ}	

s1	

rs=1	

{∅}	

	

s3	

rs=0	

{ϑ}	

s2	

rs=1	

{ω}	

[0.6, 0.8]	

[0.2, 0.5]	

0.5	

0.5	

1	

[0.3, 0.4]	

[0.4, 0.6]	

[0.3, 0.7]	

[0.5, 0.8]	

[0.1, 0.5]	

1	

a	

b	

b	

a	

a	

 a	

Figure C.2: Example of a Convex-MDP MC . In particular, S = {s0 · · · s3}, S0 = {s0},
A = {a, b}, Ω = {ω, ϑ}, A : {s1, s2} → {a} ; {s0, s3} → {a, b}, L : {s0, s3} → ϑ ; {s2} → ω.
Uncertainty in transition probabilities is captured in the intervals shown next to each transition.
For example, Fas0 = {fas0 ∈ RN | [0, 0.6, 0.2, 0] ≤ fas0 ≤ [0, 0.8, 0.5, 0],

∑
s′∈S f

a
ss′ = 1}.

The reward structure r associated to MC is as follows: rs : {s0, s3} → 0 ; {s1, s2} → 1,
ra : {(s0, b), (s2, a)} → 0 ; {(s0, a), (s3, a), (s1, a)} → 1 ; {(s3, b)} → 2. The values of ra are
not shown in the figure to avoid clutter.

In the following, we first report the commented code for the implementation of the model-
checking routines for the temporal operators of the PCTL logic (Next, Bounded Until and the
Value Iteration routine for Unbounded Until). Only the routine computing the maximum satisfac-
tion probability is reported for brevity. The routines for the verification of the reward operators
follow a similar pattern. We then give details about the procedures to solve the inner optimization
problems (both maximization and minimization) for the interval and ellipsoidal models of uncer-
tainty. We conclude by reporting the routines to formulate the monolithic instances of the convex
problems used to model check the Unbounded Until operator using the CP procedure, as presented
in Section 4.2.3.1.

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 180

Next Operator
1 # R o u t i n e t o compute Pmax [Xphi] , i . e . , t h e p r o b a b i l i t y o f r e a c h i n g a s t a t e

s a t i s f y i n g p h i i n one s t e p .
2 # C l a s s : Convex−MDP
3 # I n p u t s :
4 # l i s t [i n t] y e s S t a t e s : l i s t o f i n d i c e s o f t h e s t a t e s t h a t s a t i s f y p h i
5 # O u t p u t s :
6 # l i s t [dou b l e] x new : l i s t o f s a t i s f a c t i o n p r o b a b i l i t i e s f o r each s t a t e
7 d e f computeNextMax (s e l f , y e s S t a t e s) :
8 # R e t r i e v e t h e i n d i c e s o f t h e s t a t e s r e a c h a b l e i n one s t e p f o r a l l s t a t e s
9 # and a c t i o n s (f a s t I d x) and t h e i n f o r m a t i o n a b o u t t h e convex u n c e r t a i n t y

10 # s e t (pa r1)
11 f a s t I d x , pa r1 = s e l f . c o m p u t e U n c e r t a i n t i e s ()
12
13 # I n i t i a l i z e t h e r e s u l t l i s t
14 x new = [0] * s e l f . n S t a t e s
15 f o r s i n y e s S t a t e s :
16 x new [s] = 1
17
18 # Save a l o c a l copy of t h e r e s u l t l i s t
19 x = x new [:]
20 # For each s t a t e (s) , i t e r a t e t h r o u g h a l l t h e a c t i o n s t o d e t e r m i n e
21 # t h e maximum s a t i s f a c t i o n p r o b a b i l i t y .
22 # The l i s t f a s t I d x s t o r e s , f o r each s t a t e , a l i s t (i d x s) o f l i s t s (i d x) o f
23 # n e x t s t a t e i n d i c e s , each a s s o c i a t e d t o an a c t i o n (a) a v a i l a b l e a t t h e
24 # s t a t e .
25 # For each a c t i o n , s o l v e t h e i n n e r o p t i m i z a t i o n problem and t h e p i c k t h e
26 # h i g h e s t v a l u e (max) a c r o s s a l l a c t i o n s .
27 # Note : i f t h e t r a n s i t i o n i s d e t e r m i n i s t i c , i . e . , t h e r e i s on ly one n e x t
28 # s t a t e a v a i l a b l e (l e n (i d x) ==1) , do n o t c a l l t h e i n n e r o p t i m i z a t i o n
29 # problem and j u s t a s s i g n t h e s a t i s f a c t i o n p r o b a b i l i t y a s s o c i a t e d
30 # t o t h e n e x t s t a t e .
31 f o r s , i d x s i n enumera t e (f a s t I d x) :
32 x new [s] = max ([x [i d x [0]] i f l e n (i d x) ==1 \
33 e l s e s e l f . computeCurrentMax ([x [i] f o r i i n i d x] , pa r1 [s] [a]) \
34 f o r a , i d x i n enumera t e (i d x s)])
35
36 r e t u r n x new

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 181

Bounded Until Operator
1 # R o u t i n e t o compute Pmax [ph i1 U<=k ph i2] , i . e . , t h e p r o b a b i l i t y o f r e a c h i n g a
2 # s t a t e s a t i s f y i n g ph i2 w i t h i n k s t e p s w h i l e on ly v i s i t i n g s t a t e s
3 # s a t i s f y i n g ph i1 .
4 # C l a s s : Convex−MDP
5 # I n p u t s :
6 # l i s t [i n t] y e s S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s

s a t i s f y i n g p r o p e r t y ph i2
7 # l i s t [i n t] m a y b e S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s f o r

which t h e s a t i s f a c t i o n p r o b a b i l i t y i s unknown
8 # i n t k : maximum bound on t h e number o f a l l o w a b l e s t e p s
9 # O u t p u t s :

10 # l i s t [dou b l e] x new : l i s t o f s a t i s f a c t i o n p r o b a b i l i t i e s f o r each s t a t e o f t h e
model

11 d e f computeBUntilMax (s e l f , y e s S t a t e s L i s t , m a y b e S t a t e s L i s t , s t e p s) :
12 # R e t r i e v e t h e i n d i c e s o f t h e s t a t e s r e a c h a b l e i n one s t e p f o r a l l t h e
13 # s t a t e s i n m a y b e S t a t e s L i s t (f a s t I d x U n t i l) and t h e i n f o r m a t i o n a b o u t
14 # t h e convex u n c e r t a i n t y s e t (pa r1)
15 # Note : f a s t I d x U n t i l i s j u s t a r e d u c e d v e r s i o n o f f a s t I d x where on ly t h e
16 # l i s t s c o r r e s p o n d i n g t o s t a t e s i n m a y b e S t a t e s L i s t a r e saved .
17 f a s t I d x U n t i l , pa r1 = s e l f . c o m p u t e U n c e r t a i n t i e s U n t i l (m a y b e S t a t e s L i s t)
18
19 # I n i t i a l i z e t h e r e s u l t l i s t
20 x new = [0] * s e l f . n S t a t e s
21 f o r s i n y e s S t a t e s L i s t :
22 x new [s] = 1
23
24 # I f t h e r e i s no s t a t e i n m a y b e S t a t e s L i s t , r e t u r n t h e s a t i s f a c t i o n
25 # p r o b a b i l i t i e s
26 i f n o t m a y b e S t a t e s L i s t :
27 r e t u r n x new
28
29 # I n i t i a l i z e t h e i t e r a t i o n
30 s t e p = 0
31 # I t e r a t e u n t i l t h e number o f s t a t e s has r e a c h e d t h e bound
32 w h i l e (s t e p < k) :
33 # S t o r e a l o c a l copy of t h e s a t i s f a c t i o n p r o b a b i l i t i e s computed a t t h e
34 # p r e v i o u s i t e r a t i o n s t e p
35 x = x new [:]
36 # I t e r a t e t h r o u g h a l l s t a t e s i n m a y b e S t a t e s L i s t
37 f o r s , i d x s i n enumera t e (f a s t I d x U n t i l) :
38 # For each s t a t e (s) , i t e r a t e t h r o u g h a l l t h e a c t i o n s t o
39 # d e t e r m i n e t h e maximum s a t i s f a c t i o n p r o b a b i l i t y .
40 # The l i s t f a s t I d x U n t i l s t o r e s , f o r each s t a t e , a l i s t (i d x s) o f
41 # l i s t s (i d x) o f n e x t s t a t e i n d i c e s , each a s s o c i a t e d t o an
42 # a c t i o n (a) a v a i l a b l e a t t h e s t a t e .
43 # For each a c t i o n , s o l v e t h e i n n e r o p t i m i z a t i o n problem
44 # and t h e p i c k t h e h i g h e s t v a l u e (max) a c r o s s a l l a c t i o n s .
45 # Note : i f t h e t r a n s i t i o n i s d e t e r m i n i s t i c , i . e . , t h e r e i s on ly
46 # one n e x t s t a t e a v a i l a b l e (l e n (i d x) ==1) , do n o t c a l l t h e i n n e r

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 182

47 # o p t i m i z a t i o n problem and j u s t a s s i g n t h e s a t i s f a c t i o n
48 # p r o b a b i l i t y a s s o c i a t e d t o t h e n e x t s t a t e .
49 x new [m a y b e S t a t e s L i s t [s]] = max ([x [i d x [0]] i f l e n (i d x) ==1 \
50 e l s e s e l f . computeCurrentMax ([x [i] f o r i i n i d x] , pa r1 [s] [a]) \
51 f o r a , i d x i n enumera t e (i d x s)])
52
53 # I n c r e m e n t t h e i t e r a t i o n c o u n t
54 s t e p += 1
55
56 r e t u r n x new

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 183

Unbounded Until Operator - Value Iteration Procedure
1 # R o u t i n e t o compute Pmax [ph i1 U ph i2] , i . e . , t h e p r o b a b i l i t y o f r e a c h i n g a
2 # s t a t e s a t i s f y i n g ph i2 w h i l e on ly v i s i t i n g s t a t e s s a t i s f y i n g ph i1 .
3 # C l a s s : Convex−MDP
4 # I n p u t s :
5 # l i s t [i n t] y e s S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s

s a t i s f y i n g p r o p e r t y ph i2
6 # l i s t [i n t] m a y b e S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s f o r

which t h e s a t i s f a c t i o n p r o b a b i l i t y i s unknown
7 # O u t p u t s :
8 # l i s t [dou b l e] x new : l i s t o f s a t i s f a c t i o n p r o b a b i l i t i e s f o r each s t a t e o f t h e

model
9 d e f computeUnti lMaxVI (s e l f , y e s S t a t e s L i s t , m a y b e S t a t e s L i s t) :

10 # R e t r i e v e t h e i n d i c e s o f t h e s t a t e s r e a c h a b l e i n one s t e p f o r a l l t h e
11 # s t a t e s i n m a y b e S t a t e s L i s t (f a s t I d x U n t i l) and t h e i n f o r m a t i o n a b o u t
12 # t h e convex u n c e r t a i n t y s e t (pa r1)
13 # Note : f a s t I d x U n t i l i s j u s t a r e d u c e d v e r s i o n o f f a s t I d x where on ly t h e
14 # l i s t s c o r r e s p o n d i n g t o s t a t e s i n m a y b e S t a t e s L i s t a r e saved .
15 f a s t I d x U n t i l , pa r1 = s e l f . c o m p u t e U n c e r t a i n t i e s U n t i l (m a y b e S t a t e s L i s t)
16
17 # I n i t i a l i z e t h e r e s u l t l i s t
18 x new = [0] * s e l f . n S t a t e s
19 f o r s i n y e s S t a t e s L i s t :
20 x new [s] = 1
21
22 # I f t h e r e i s no s t a t e i n m a y b e S t a t e s L i s t , r e t u r n t h e s a t i s f a c t i o n
23 # p r o b a b i l i t i e s
24 i f n o t m a y b e S t a t e s L i s t :
25 r e t u r n x new
26
27 # I t e r a t e u n t i l r e a c h i n g t h e f i x e d p o i n t
28 d e l t a = 1e−3
29 e p s i l o n = 1e−6
30 c u r r e n t = −1.
31 w h i l e (1) :
32 x = x new [:]
33 # For each s t a t e (s) , i t e r a t e t h r o u g h a l l t h e a c t i o n s t o
34 # d e t e r m i n e t h e maximum s a t i s f a c t i o n p r o b a b i l i t y .
35 # The l i s t f a s t I d x U n t i l s t o r e s , f o r each s t a t e , a l i s t (i d x s) o f
36 # l i s t s (i d x) o f n e x t s t a t e i n d i c e s , each a s s o c i a t e d t o an
37 # a c t i o n (a) a v a i l a b l e a t t h e s t a t e .
38 # For each a c t i o n , s o l v e t h e i n n e r o p t i m i z a t i o n problem
39 # and t h e p i c k t h e h i g h e s t v a l u e (max) a c r o s s a l l a c t i o n s .
40 # Note : i f t h e t r a n s i t i o n i s d e t e r m i n i s t i c , i . e . , t h e r e i s on ly
41 # one n e x t s t a t e a v a i l a b l e (l e n (i d x) ==1) , do n o t c a l l t h e i n n e r
42 # o p t i m i z a t i o n problem and j u s t a s s i g n t h e s a t i s f a c t i o n
43 # p r o b a b i l i t y a s s o c i a t e d t o t h e n e x t s t a t e
44 f o r s , i d x s i n enumera t e (f a s t I d x U n t i l) :
45 x new [m a y b e S t a t e s L i s t [s]] = max ([x new [i d x [0]] i f l e n (i d x) ==1 \
46 e l s e s e l f . computeCurrentMax ([x new [i] f o r i i n i d x] , pa r1 [s] [a]) \

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 184

47 f o r a , i d x i n enumera t e (i d x s)])
48
49 # S t o p p i n g c r i t e r i o n
50 # R e l a t i v e t o l e r a n c e c o n d i t i o n a c r o s s a l l t h e s t a t e s i n
51 # m a y b e S t a t e s L i s t
52 # STOP , i f no p r o b a b i l i t y i n t h e i n i t i a l s t a t e s has changed by more
53 # t h a n e p s i l o n a f t e r d e c r e a s i n g d e l t a by 100x
54 # Note : t h e c o m p u t a t i o n o f t h e a b s o l u t e v a l u e o f t h e d i f f e r e n c e
55 # between t h e r e s u l t s o f two c o n s e c u t i v e i t e r a t i o n s i s n o t r e q u i r e d ,
56 # b e c a u s e s a t i s f a c t i o n p r o b a b i l i t i e s i n c r e a s e m o n o t o n i c a l l y
57 i f (d e l t a > max ([(x new [s]−x [s]) / x new [s] f o r s i n m a y b e S t a t e s L i s t])) :
58 approx = i n t (max ([x new [s] f o r s i n s e l f . i n i t S t a t e]) * 1 / e p s i l o n)
59 i f approx == c u r r e n t :
60 i f done :
61 b r e a k
62 i f n o t done :
63 d e l t a /= 1 0 .
64 done = True
65 e l s e :
66 c u r r e n t = approx
67 done = F a l s e
68 d e l t a /= 1 0 .
69
70 r e t u r n x new

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 185

Procedure to solve the inner convex problem for the interval model of uncertainty.
This procedure solve the following convex optimization problem (in the maximization case):

νas (x) = max
fas ∈Fas

(xTfas)

where νas (x) is the candidate satisfaction probability in state s if action a is chosen, x ∈ RN is a
vector containing the current estimations of the satisfaction probabilities of the next-states reach-
able from s if choice a is taken and Fas is the convex uncertainty set associated to this transition.

If there is no uncertainty in the transition, the set Fas degenerates to a point fas ∈ RN . The
solution of the problem can then be trivially computed by a vector-vector multiplication:

νas (x) = xTfas

In the non-degenerated case, the uncertainty set is defined as:

Fas = {fas ∈ RN | 0 ≤ fas ≤ fas ≤ f
a

s ≤ 1,1T fas = 1}

i.e., it is a subset of RN delimited by the intervals associated to the probabilities of transitioning
to the next states, and further intersected with the probability simplex. Such intervals represent
a range of possible weights to be associated to the values of the known vector x. In order to
maximize the value of νas (x), we would like to give maximum weight to the largest element of
x. This is not immediately possible, though, because we need first to guarantee that all the lower
bounds on the probability to transition to each of the next states get satisfied. After satisfying all
lower bounds, we can start processing the elements of x from the largest to the smallest and assign
maximum weight, within the upper bound of each interval, to the elements of x in descending
order of magnitude. This iteration has to stop when the sum of the assigned weights reaches the
limit of 1, enforced by the probability simplex.

Finally, we note that, for the minimization case, all the reasoning above remains valid, but the
elements of x are processed in ascending order of magnitude to minimize the value of νas (x). The
code implementing this procedure is reported below.

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 186

1 # R o u t i n e t o compute : nu=max { f i n F} (f *x)
2 # where :
3 # nu i s t h e c a n d i d a t e s a t i s f a c t i o n p r o b a b i l i t y o f s t a t e s i f a c t i o n a i s

chosen
4 # F i n t h e i n t e r v a l u n c e r t a i n t y s e t a s s o c i a t e d t o s t a t e s and a c t i o n a ,
5 # f a r e a l i z a t i o n o f u n c e r t a i n t y , and
6 # x i s t h e v e c t o r o f (t e m p o r a r i l y computed) s a t i s f a c t i o n p r o b a b i l i t i e s o f t h e

n e x t s t a t e s r e a c h a b l e from s i f a c t i o n a i s chosen
7
8 # C l a s s : I n t e r v a l −MDP
9 # I n p u t s :

10 # l i s t [dou b l e] x : l i s t o f o f (t e m p o r a r i l y computed) s a t i s f a c t i o n p r o b a b i l i t i e s
o f t h e n e x t s t a t e s r e a c h a b l e from s i f a c t i o n a i s chosen

11 # l i s t [l i s t [dou b l e]] F : l i s t o f l i s t s o f d o u b l e s c o n t a i n i n g lower and upper
bounds o f t h e i n t e r v a l r a n g e s

12 # O u t p u t s :
13 # d ou b l e nu : i s t h e c a n d i d a t e s a t i s f a c t i o n p r o b a b i l i t y o f s t a t e s i f a c t i o n a

i s chosen
14 d e f computeCurrentMax (s e l f , x , F) :
15 # F i r s t , check whe the r t h e t r a n s i t i o n i s a c t u a l l y u n c e r t a i n , i . e . ,
16 # whe the r F c o n t a i n s lower and uppe r bounds o r n o t .
17 i f l e n (F) == 2 :
18 # U n c e r t a i n t y , a s s i g n lower / uppe r bounds t o l i s t s iL / iU
19 iL = F [0]
20 iU = F [1]
21 e l s e :
22 # No u n c e r t a i n t y , j u s t pe r fo rm a v e c t o r−v e c t o r m u l t i p l i c a t i o n
23 r e t u r n sum ([v [0] * v [1] f o r v i n z i p (x , F [0])])
24
25 # Beg inn ing o f t h e convex o p t i m i z a t i o n
26 # S o r t t h e i n d i c e s o f t h e e l e m e n t s o f v e c t o r x from t h e one p o i n t i n g t o
27 # t h e l a r g e s t e l e m e n t t o t h e one p o i n t i n g t o t h e s m a l l e s t .
28 # Note : s e t ” r e v e r s e = F a l s e ” t o s o l v e t h e m i n i m i z a t i o n problem
29 i d x S o r t = [v [0] f o r v i n s o r t e d (enumera t e (x) , key=lambda v : v [1] , r e v e r s e =

True)]
30
31 # Make s u r e t h a t t h e lower bounds i n a l l t h e t r a n s i t i o n p r o b a b i l i t i e s
32 # g e t s a t i s f i e d
33 nu = sum (map (lambda v , w: v*w, x , iL))
34 # t o t P s t o r e s how much we i gh t we can s t i l l a s s i g n
35 # t o t h e e l e m e n t s o f x a f t e r a l l l ower bounds
36 # a r e s a t i s f i e d
37 t o t P = 1 . − sum (iL)
38
39 # P r o c e s s t h e e l e m e n t s o f x i n d e s c e n d i n g o r d e r o f magni tude
40 f o r i i n i d x S o r t :
41 # Compute t h e s i z e o f t h e i n t e r v a l
42 d e l t a = iU [i] − iL [i]
43 # I f t h e s i z e o f t h e i n t e r v a l i s s m a l l e r
44 # t h e n t h e w e i gh t t h a t i s s t i l l a v a i l a b l e . . .

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 187

45 i f (d e l t a<t o t P) :
46 # . . . a s s i g n maximum wei gh t w i t h i n
47 # t h e uppe r bound of t h e i n t e r v a l t o t h e c u r r e n t e l e m e n t
48 # of x , and u p d a t e t h e v a l u e o f t h e r e m a i n i n g
49 # w e i gh t . . .
50 nu += d e l t a *x [i]
51 t o t P −= d e l t a
52 e l s e :
53 # . . . o t h e r w i s e , a s s i g n a l l t h e we igh t t h a t i s
54 # l e f t t o t h e c u r r e n t e l e m e n t o f x
55 # and b r e a k t h e loop
56 nu += t o t P *x [i]
57 b r e a k
58
59 r e t u r n nu
60

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 188

Procedure to solve the inner convex problem for the ellipsoidal model of uncertainty.
We aim again to solve the following convex optimization problem (in the maximization case):

νas = max
fas ∈Fas

(xTfas) (C.1)

where the uncertainty setFas is obtained by intersecting the probability simplex with the ellipsoidal
region defined in Equation 2.5. In particular, we rewrite Problem (C.1) in canonical primal form:

νas = max
fas

xT fas

s.t. 1T fas = 1 (C.2)∑
s′

(fss′ − hss′)2

hss′
≤ (Kas)2

fas ≥ 0

We report now a dual formulation of Problem (C.2) that we experimentally found to be solvable
in a shorter time than the primal formulation. Intuitively, the faster performance is achieved be-
cause this formulation allows to write the analytical expression of the dual solution das of the inner
problem as a function of the state probabilities x. The analytical expression can then be rapidly
evaluated using the known values of vector x. This material is inspired by results by Nilim and El
Ghaoui [125]. In the following, we drop the superscript a and subscript s to increase readability.

The Lagrangian operator associated to Problem (C.2) reads:

L(x, f , µ, ξ, η) = xT f + µ(1− 1T f) + ξT f + η

(
K2 −

∑
s′

(fs′ − hs′)2

hs′

)
(C.3)

The primal optimal value can be computed as:

ν(x) = max
f

min
µ,ξ≥0,η≥0

L(x, f , µ, ξ, η) (C.4)

By the minimax theorem [30], we obtain an upper bound on the value of ν(x) by inverting the
“max” and “min” operators:

d(x) = min
µ,ξ≥0,η≥0

max
f
L(x, f , µ, ξ, η) (C.5)

Problem (C.2) satisfies Slater’s condition [30] for any non-trivial uncertainty set, so strong
duality holds and ν(x) = d(x). We can thus solve Problem (C.5) instead of Problem (C.2) while
preserving the soundness and completeness of the model-checking procedure. As a first step, we
compute the dual function g(x, µ, ξ, η) by solving the inner problem in Equation (C.5), i.e., we
aim to compute:

g(x, µ, ξ, η) = max
f
L(x, f , µ, ξ, η) (C.6)

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 189

We can solve Problem (C.6) by setting the gradient of the Lagrangian to zero, and solving for
the optimal primal solution f∗:

∂L
∂fs0

= x0 − µ+ ξ0 − 2η
hs0

(fs0 − hs0) = 0 f ∗s0 =
hs0
2η

(x0 − µ+ ξ0) + hs0

∂L
∂fs1

= x1 − µ+ ξ1 − 2η
hs1

(fs1 − hs1) = 0 ⇒ f ∗s1 =
hs1
2η

(x1 − µ+ ξ1) + hs1

· · · · · ·
∂L
∂fsN

= xN − µ+ ξN − 2η
hsN

(fsN − hsN) = 0 f ∗sN =
hsN
2η

(xN − µ+ ξN) + hsN
(C.7)

Substituting f∗ back into Problem C.6, we obtain the dual function:

g(x, µ, ξ ≥ 0, η ≥ 0) = µ+ ηK2 +
∑
s′

(hs′(xs′ − µ+ ξs′)) +
1

4η

∑
s′

(hs′(xs′ − µ+ ξs′)
2)

(C.8)

We can now compute d solving the dual problem:

d(x) = min
µ,ξ≥0,η≥0

g(x, µ, ξ, η) (C.9)

Before further proceeding, we note that, for monotonicity reasons, we can trivially set ξ∗ = 0.
We thus aim to solve the following optimization problem:

d(x) = min
µ,η≥0

g(x, µ, η) = min
µ,η≥0

µ+ ηK2 +
∑
s′

(hs′(xs′ − µ)) +
1

4η

∑
s′

(hs′(xs′ − µ)2) (C.10)

We first set the partial derivatives of the dual function g to zero and compute the optimal dual
solution (µ∗, η∗). Formally:

∂g
∂µ

= 1− 2h
4η

(x− µ1)T − 1Th = 0 µ∗(x) =
∑

s′ hs′xs′

⇒
∂g
∂η

= K2 − h(x−µ1)2T

4η2
= 0 η∗(x) = 1

2K

√∑
s′ hs′(xs′ − µ)2

(C.11)

The optimal value can then be computed as:

d(x) = g(µ∗(x), η∗(x))

Finally, we report the primal and dual formulations to solve the analogous minimization prob-
lem. In the primal Problem (C.2), we change the optimization operator from “max” to “min”:

νas = max
fas

xT fas

s.t. 1T fas = 1∑
s′

(fss′ − hss′)2

hss′
≤ (Kas)2

fas ≥ 0

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 190

Following the same steps presented above, we obtain the corresponding dual problem (again
we dropped subscripts and superscripts):

d(x) = min
µ,η≥0

g(x, µ, η) = max
µ,η≥0

µ− ηK2 +
∑
s′

(hs′(xs′ − µ))− 1

4η

∑
s′

(hs′(xs′ − µ)2)

which admits the optimal solution:
∂g
∂µ

= 1 + 2h
4η

(x− µ1)T − 1Th = 0 µ∗(x) =
∑

s′ hs′xs′

⇒
∂g
∂η

= −K2 + h(x−µ1)2T

4η2
= 0 η∗(x) = 1

2K

√∑
s′ hs′(xs′ − µ)2

And, again:
d(x) = g(µ∗(x), η∗(x))

In the following, we report the Python routines used to solve the problems formulated above,
both for the maximization and minimization cases.

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 191

1 # R o u t i n e t o compute : d=g (muˆ{*} , e t a ˆ{*})
2
3 # C l a s s : E l l i p s o i d a l −MDP
4 # I n p u t s :
5 # l i s t [dou b l e] x : l i s t o f o f (t e m p o r a r i l y computed) s a t i s f a c t i o n p r o b a b i l i t i e s

o f t h e n e x t s t a t e s r e a c h a b l e from s i f a c t i o n a i s chosen
6 # l i s t [l i s t [dou b l e]] F : l i s t o f l i s t s o f d o u b l e s c o n t a i n i n g t h e e x p e r i m e n t a l

t r a n s i t i o n f r e q u e n c i e s and t h e u n c e r t a i n t y p a r a m e t e r K
7 # O u t p u t s :
8 # d ou b l e d : (by d u a l i t y e q u a l t o nu) i s t h e c a n d i d a t e s a t i s f a c t i o n p r o b a b i l i t y

o f s t a t e s i f a c t i o n a i s chosen
9 d e f computeCurrentMax (s e l f , x , F) :

10 # F i r s t , check whe the r t h e t r a n s i t i o n i s a c t u a l l y u n c e r t a i n , i . e . ,
11 # whe the r F c o n t a i n s lower and uppe r bounds o r n o t .
12 i f l e n (F) == 2 :
13 # U n c e r t a i n t y , a s s i g n e x p e r i m e n t a l t r a n s i t i o n f r e q u e n c i e s
14 # t o l i s t h and t h e u n c e r t a i n t y p a r a m e t e r K
15 h = F [0]
16 K = F [1] [0]
17 e l s e :
18 # No u n c e r t a i n t y , j u s t pe r fo rm a v e c t o r−v e c t o r m u l t i p l i c a t i o n
19 r e t u r n sum ([v [0] * v [1] f o r v i n z i p (x , F [0])])
20
21 # Dete rmine t h e i n d e x of t h e e l e m e n t o f x wi th t h e h i g h e s t
22 # magni tude
23 i d x = max (x ra ng e (l e n (v)) , key=v . g e t i t e m)
24 Ks = K*K
25 # Per form an i n i t i a l s a n i t y check t o d e t e r m i n e
26 # whe the r t h e q u a d r a t i c c o n s t r a i n t i s b i n d i n g
27 # or n o t . I f such a c o n s t r a i n t i s n o t b i n d i n g
28 # j u s t g i v e maximum wei gh t t o t h e e l e m e n t o f
29 # x wi th h i g h e s t magn i tude
30 h i = h [i d x]
31 i h i = 1.− h i
32 i f i h i + i h i * i h i / h i <= Ks :
33 # Q u a d r a t i c c o n s t r a i n t i s n o t b i n d i n g
34 r e t u r n x [i d x]
35
36 # Computa t ion o f t h e o p t i m a l v a l u e o f mu
37 mu = 0 .
38 f o r i , h i i n enumera t e (h) :
39 mu += h i *x [i]
40 # Computa t ion o f t h e te rm under t h e s q u a r e
41 # r o o t s i g n i n t h e e x p r e s s i o n o f t h e o p t i m a l e t a
42 s = 0 .
43 f o r i , h i i n enumera t e (h) :
44 i n n = x [i] − mu
45 s += h i * i n n * i n n
46 # I f t h e o p t i m a l e t a i s n u l l , j u s t g i v e a l l t h e we ig h t
47 # t o t h e e l e m e n t o f x wi th h i g h e s t v a l u e

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 192

48 i f n o t s :
49 r e t u r n x [i d x]
50 # Computa t ion o f t h e o p t i m a l v a l u e o f e t a
51 e t a = 1 . / (2 . * K) * (s * * 0 . 5)
52
53 # E v a l u a t i o n o f t h e o p t i m a l v a l u e o f f u n c t i o n g
54 r e t u r n e t a *Ks+mu+s / (4 * e t a)

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 193

1 # R o u t i n e t o compute : d=g (muˆ{*} , e t a ˆ{*})
2
3 # C l a s s : E l l i p s o i d a l −MDP
4 # I n p u t s :
5 # l i s t [dou b l e] x : l i s t o f o f (t e m p o r a r i l y computed) s a t i s f a c t i o n p r o b a b i l i t i e s

o f t h e n e x t s t a t e s r e a c h a b l e from s i f a c t i o n a i s chosen
6 # l i s t [l i s t [dou b l e]] F : l i s t o f l i s t s o f d o u b l e s c o n t a i n i n g t h e e x p e r i m e n t a l

t r a n s i t i o n f r e q u e n c i e s and t h e u n c e r t a i n t y p a r a m e t e r K
7 # O u t p u t s :
8 # d ou b l e d : (by d u a l i t y e q u a l t o nu) i s t h e c a n d i d a t e s a t i s f a c t i o n p r o b a b i l i t y

o f s t a t e s i f a c t i o n a i s chosen
9 d e f computeCurren tMin (s e l f , v , N) :

10 # F i r s t , check whe the r t h e t r a n s i t i o n i s a c t u a l l y u n c e r t a i n , i . e . ,
11 # whe the r F c o n t a i n s lower and uppe r bounds o r n o t .
12 i f l e n (F) == 2 :
13 # U n c e r t a i n t y , a s s i g n e x p e r i m e n t a l t r a n s i t i o n f r e q u e n c i e s
14 # t o l i s t h and t h e u n c e r t a i n t y p a r a m e t e r K
15 h = F [0]
16 K = F [1] [0]
17 e l s e :
18 # No u n c e r t a i n t y , j u s t pe r fo rm a v e c t o r−v e c t o r m u l t i p l i c a t i o n
19 r e t u r n sum ([v [0] * v [1] f o r v i n z i p (x , F [0])])
20
21 # Dete rmine t h e i n d e x of t h e e l e m e n t o f x wi th t h e l o w e s t
22 # magni tude
23 i d x = min (x ra ng e (l e n (v)) , key=v . g e t i t e m)
24 Ks = K*K
25 # Per form an i n i t i a l s a n i t y check t o d e t e r m i n e
26 # whe the r t h e q u a d r a t i c c o n s t r a i n t i s b i n d i n g
27 # or n o t . I f such a c o n s t r a i n t i s n o t b i n d i n g
28 # j u s t g i v e maximum wei gh t t o t h e e l e m e n t o f
29 # x wi th h i g h e s t magn i tude
30 h i = h [i d x]
31 i h i = 1.− h i
32 i f i h i + i h i * i h i / h i <= Ks :
33 # Q u a d r a t i c c o n s t r a i n t i s n o t b i n d i n g
34 r e t u r n x [i d x]
35
36 # Computa t ion o f t h e o p t i m a l v a l u e o f mu
37 mu = 0 .
38 f o r i , h i i n enumera t e (h) :
39 mu += h i *x [i]
40 # Computa t ion o f t h e te rm under t h e s q u a r e
41 # r o o t s i g n i n t h e e x p r e s s i o n o f t h e o p t i m a l e t a
42 s = 0 .
43 f o r i , h i i n enumera t e (h) :
44 i n n = x [i] − mu
45 s += h i * i n n * i n n
46 # I f t h e o p t i m a l e t a i s n u l l , j u s t g i v e a l l t h e we ig h t
47 # t o t h e e l e m e n t o f x wi th h i g h e s t v a l u e

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 194

48 i f n o t s :
49 r e t u r n x [i d x]
50 # Computa t ion o f t h e o p t i m a l v a l u e o f e t a
51 e t a = 1 . / (2 . * K) * (s * * 0 . 5)
52
53 # E v a l u a t i o n o f t h e o p t i m a l v a l u e o f f u n c t i o n g
54 r e t u r n −nu* ks+mu−s / (4 * nu)

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 195

Finally, we present the routines to generate the Convex Programming formulations of Prob-
lem (4.18) to model check the Unbounded Until operator, both for the interval and the ellipsoidal
models of uncertainty. The generated convex programs can the be solved using MOSEK [122].

1 # R o u t i n e t o g e n e r a t e t h e CP f o r m u l a t i o n o f t h e convex problem t o model−check
2 # t h e Unbounded U n t i l o p e r a t o r , i . e . , t o compute t h e s a t i s f a c t i o n
3 # p r o b a b i l i t i e s Pmax / min [ph i1 U ph i2]
4
5 # C l a s s : I n t e r v a l −MDP
6 # I n p u t s :
7 # l i s t [i n t] y e s S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s

s a t i s f y i n g p r o p e r t y ph i2
8 # l i s t [i n t] m a y b e S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s f o r

which t h e s a t i s f a c t i o n p r o b a b i l i t y i s unknown
9 # l i s t [i n t] n o S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s f o r which

t h e s a t i s f a c t i o n p r o b a b i l i t y i s 0
10 # b o o l e a n MIN: g e n e r a t e s t h e f o r m u l a t i o n t o compute t h e minimum (maximum)

s a t i s f a c t i o n p r o b a b i l i t i e s i f t r u e (f a l s e)
11 # O u t p u t s :
12 # l i s t [dou b l e] x new : l i s t o f s a t i s f a c t i o n p r o b a b i l i t i e s f o r each s t a t e o f t h e

model
13 d e f computeCP (s e l f , y e s S t a t e s L i s t , m a y b e S t a t e s L i s t , n o S t a t e s L i s t , MIN) :
14 # R e t r i e v e t h e i n d i c e s o f t h e s t a t e s r e a c h a b l e i n one s t e p f o r a l l t h e
15 # s t a t e s i n m a y b e S t a t e s L i s t (f a s t I d x U n t i l) and t h e i n f o r m a t i o n a b o u t
16 # t h e convex u n c e r t a i n t y s e t (pa r1)
17 # Note : f a s t I d x U n t i l i s j u s t a r e d u c e d v e r s i o n o f f a s t I d x where on ly t h e
18 # l i s t s c o r r e s p o n d i n g t o s t a t e s i n m a y b e S t a t e s L i s t a r e saved .
19 f a s t I d x U n t i l , pa r1 = s e l f . c o m p u t e U n c e r t a i n t i e s U n t i l (m a y b e S t a t e s L i s t)
20
21 # I n i t i a l i z e t h e r e s u l t l i s t
22 x new = [0] * s e l f . n S t a t e s
23 f o r s i n y e s S t a t e s L i s t :
24 x new [s] = 1
25
26 # I f t h e r e i s no s t a t e i n m a y b e S t a t e s L i s t , r e t u r n t h e s a t i s f a c t i o n
27 # p r o b a b i l i t i e s
28 i f n o t m a y b e S t a t e s L i s t :
29 r e t u r n x new
30
31 # Wr i t e t h e c o s t f u n c t i o n min / max t h e sum of t h e s a t i s f a c t i o n

p r o b a b i l i t i e s
32 # of t h e s t a t e s i n t h e m a y b e S t a t e s L i s t
33 o b j e c t i v e = ’ [o b j e c t i v e \%s \ ’ o b j \ ’]\ n ’\% \
34 (’ maximize ’ i f MIN e l s e ’ min imize ’)
35 o b j e c t i v e += ’+ ’ . j o i n (map (lambda s : ’ x ’+ s t r (s) , m a y b e S t a t e s L i s t)) + ’\n ’
36 o b j e c t i v e += ’ [/ o b j e c t i v e]\ n ’
37
38 # D e c l a r e t h e v a r i a b l e s x c o n t a i n i n g t h e s a t i s f a c t i o n p r o b a b i l i t i e s
39 # of t h e s t a t e s i n t h e m a y b e S t a t e s L i s t
40 a l l V a r i a b l e s = ’ [v a r i a b l e s]\ n ’

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 196

41 a l l V a r i a b l e s += ’ ’ . j o i n (map (lambda s : ’ x ’+ s t r (s) , m a y b e S t a t e s L i s t))
42
43 # I n i t i a l i z e t h e s t r i n g s c o n t a i n i n g t h e c o n s t r a i n t s and v a r i a b l e bound
44 # d e c l a r a t i o n s .
45 # For t h e v a r i a b l e bounds , we w i l l f i r s t s e t a l l v a r i a b l e s t o be p o s i t i v e
46 # and t h e n o v e r w r i t e t h i s command t o s e t t h e r e q u i r e d v a r i a b l e s t o be
47 # unbounded
48 c o n s t r a i n t s = ’ [c o n s t r a i n t s]\ n ’
49 bounds = ’ [bounds]\ n ’
50 bounds += ’ [b] 0 <= * [/ b]\ n ’
51
52 # D e c l a r e t h e l i s t c o n t a i n i n g t h e unbounded v a r i a b l e s
53 f r e e s = []
54 # I n i t i a l i z e t h e c o u n t e r s t o s t o r e t h e model s t a t i s t i c s
55 # P a s s i n g t h e s e v a l u e s t o MOSEK h e l p t h e s o l v e r t o a l l o c a t e memory
56 # more e f f i c i e n t l y .
57 varCoun t = 0 # Number o f v a r i a b l e s
58 consCount = 0 # Number o f c o n s t r a i n t s
59 ANZCount = 0 # Number o f non−z e r o s i n t h e problem t a b l e a u
60 # S t a r t w r i t i n g t h e c o n s t r a i n t s
61 # I t e r a t e t h r o u g h a l l t h e s t a t e s s i n m a y b e S t a t e s L i s t
62 f o r s , i d x s i n enumera t e (f a s t I d x U n t i l) :
63 # I t e r a t e t h r o u g h each a c t i o n a a s s o c i a t e d t o t h e s t a t e
64 f o r a , i d x i n enumera t e (i d x s) :
65 # P r o c e s s c e r t a i n t r a n s i t i o n s
66 i f l e n (pa r1 [s] [a]) == 1 :
67 # Wr i t e c o n s t r a i n t x s − f *x <= 0
68 # or x s − f *x >= 0
69 # f o r t h e min / max problem , r e s p e c t i v e l y
70 v a r i a b l e s = ’ ’
71 RHS = 0 .
72 v a r i a b l e s += ’ x ’ + s t r (m a y b e S t a t e s L i s t [s])
73 ANZCount += 1
74 # P r o c e s s one t r a n s i t i o n t o a n e x t s t a t e p e r t ime
75 f o r i n e x t , n e x t i n enumera t e (i d x) :
76 i f n e x t i n n o S t a t e s L i s t :
77 # Noth ing t o be done , s i n c e x s =0 i f s i n n o S t a t e s L i s t
78 c o n t i n u e
79 i f n e x t i n y e s S t a t e s L i s t :
80 # J u s t modify t h e v a l u e o f t h e RHS, s i n c e x s =1
81 # i f s i n y e s S t a t e s L i s t
82 RHS += pa r1 [s] [a] [0] [i n e x t]
83 e l s e :
84 # Add t h e te rm f s s ’ * x t o t h e LHS
85 v a r i a b l e s += s t r (−pa r1 [s] [a] [0] [i n e x t]) \
86 + ’ x ’ + s t r (n e x t)
87 ANZCount += 1
88 # Add t h e c o n s t r a i n t and i n c r e m e n t c o u n t e r
89 c o n s t r a i n t s += ’\ t [con \ ’ c\%d \ ’] ’\%(consCount) + v a r i a b l e s \
90 + (’ <= ’ i f MIN e l s e ’ >= ’) + s t r (RHS) + ’ [/ con]\ n ’

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 197

91 consCount += 1
92 e l s e :
93 # P r o c e s s u n c e r t a i n t r a n s i t i o n
94 # F i r s t c o n s t r a i n t i n t h e form
95 # x s − l ambda 1 − iL * lambda 2 + iU * lambda 3 <= 0
96 # or x s − l ambda 1 + iL * lambda 2 − iU * lambda 3 >= 0
97 # f o r t h e min / max problem , r e s p e c t i v e l y
98 v a r i a b l e s = ’ ’
99 v a r i a b l e s += ’ x ’ + s t r (m a y b e S t a t e s L i s t [s])

100 # D e c l a r e lambda 1 as unbounded v a r i a b l e
101 f r e e s . append (’ l 1 ’ + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’ + s t r (a))
102 v a r i a b l e s += ’− ’ + f r e e s [−1] + ’ ’
103 a l l V a r i a b l e s += ’ ’ + f r e e s [−1]
104 varCoun t += 1
105 # P r o c e s s one lower bound p e r t ime
106 f o r i n e x t , low i n enumera t e (pa r1 [s] [a] [0]) :
107 varCoun t += 1
108 v a r i a b l e s += (s t r (− low) i f MIN e l s e ’+ ’+ s t r (low)) + \
109 ’ l 2 ’ + s t r (m a y b e S t a t e s L i s t [s]) + \
110 ’ ’ + s t r (a) + ’ ’ + s t r (i n e x t) + ’ ’
111 a l l V a r i a b l e s += ’ ’ + ’ l 2 ’ + s t r (m a y b e S t a t e s L i s t [s]) + \
112 ’ ’ + s t r (a) + ’ ’ + s t r (i n e x t)
113 # P r o c e s s one uppe r bound p e r t ime
114 f o r i n e x t , up i n enumera t e (pa r1 [s] [a] [1]) :
115 varCoun t += 1
116 v a r i a b l e s += (’+ ’+ s t r (up) i f MIN e l s e s t r (−up)) + \
117 ’ l 3 ’ + s t r (m a y b e S t a t e s L i s t [s]) + \
118 ’ ’ + s t r (a) + ’ ’ + s t r (i n e x t) + ’ ’
119 a l l V a r i a b l e s += ’ ’ + ’ l 3 ’ + s t r (m a y b e S t a t e s L i s t [s]) + \
120 ’ ’ + s t r (a) + ’ ’ + s t r (i n e x t)
121 # Wr i t e t h e c o n s t r a i n t and u p d a t e t h e model s t a t i s t i c s
122 c o n s t r a i n t s += ’\ t [con \ ’ c\%d \ ’] ’\%(consCount) + v a r i a b l e s \
123 + (’ <= ’ i f MIN e l s e ’ >= ’) + ’ 0 [/ con]\ n ’
124 ANZCount += 2 + 2* l e n (pa r1 [s] [a] [0])
125 consCount += 1
126 # Second c o n s t r a i n t i n t h e form
127 # x s − l ambda 2 + lambda 3 − l ambda 1 = 0
128 # or x s + lambda 2 − l ambda 3 − l ambda 1 = 0
129 # f o r t h e min / max problem , r e s p e c t i v e l y
130 # Add one c o n s t r a i n t f o r each t r a n s i t i o n t o a n e x t s t a t e
131 f o r i n e x t , n e x t i n enumera t e (i d x) :
132 v a r i a b l e s = ’ ’
133 RHS = ’ 0 ’
134 i f n e x t i n n o S t a t e s L i s t :
135 # Noth ing t o be done , s i n c e x s =0 i f s i n n o S t a t e s L i s t
136 p a s s
137 e l i f n e x t i n y e s S t a t e s L i s t :
138 # J u s t modify t h e v a l u e o f t h e RHS, s i n c e x s =1
139 # i f s i n y e s S t a t e s L i s t
140 RHS = ’−1 ’

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 198

141 e l s e :
142 # Add t h e te rm x s ’ t o t h e LHS
143 v a r i a b l e s = ’ x ’ + s t r (n e x t)
144 ANZCount += 1
145 # Add t h e r e s t o f t h e v a r i a b l e s t o t h e LHS
146 v a r i a b l e s += ’ − ’ + f r e e s [−1] + (’ + l 3 ’ i f MIN e l s e \
147 ’ − l 3 ’) + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’ + s t r (a) + ’ ’ \
148 + s t r (i n e x t) + (’ − l 2 ’ i f MIN e l s e ’ + l 2 ’) + \
149 s t r (m a y b e S t a t e s L i s t [s]) + ’ ’+ s t r (a) + ’ ’+ s t r (i n e x t) + ’ ’
150 # Add t h e c o n s t r a i n t
151 c o n s t r a i n t s += ’\ t [con \ ’ c\%d \ ’] ’\%(consCount) \
152 + v a r i a b l e s + ’= ’ + RHS + ’ [/ con]\ n ’
153 consCount += 1
154 ANZCount += 3
155
156 # I f t h e r e a r e unbounded v a r i a b l e s , add them t o t h e bound d e c l a r a t i o n s
157 i f f r e e s :
158 bounds += ’ [b] ’ + ’ , ’ . j o i n (f r e e s) + ’ f r e e [/ b]\ n ’
159
160 # T e r m i n a t e t h e s t r i n g c o n t a i n i n g t h e v a r i a b l e , c o n s t r a i n t and bound
161 # d e c l a r a t i o n s
162 a l l V a r i a b l e s += ’ [/ v a r i a b l e s]\ n ’
163 c o n s t r a i n t s += ’ [/ c o n s t r a i n t s]\ n ’
164 bounds += ’ [/ bounds]\ n ’
165
166 # Wr i t e a l l t h e s t r i n g c o n t a i n i n g t h e model s t a t i s t i c s
167 h i n t s = ’ [h i n t s]\ n ’
168 h i n t s += ’\ t [h i n t NUMVAR] \%d [/ h i n t]\ n ’\%(varCoun t + l e n (m a y b e S t a t e s L i s t))
169 h i n t s += ’\ t [h i n t NUMCON] \%d [/ h i n t]\ n ’\%(consCount)
170 h i n t s += ’\ t [h i n t NUMANZ] \%d [/ h i n t]\ n ’\%(ANZCount)
171 h i n t s += ’ [/ h i n t s]\ n ’
172
173 # Wri t e t h e f i l e c o n t a i n i n g t h e problem f o r m u l a t i o n
174 f = open (’LP . opf ’ , ’w’)
175 f . w r i t e (h i n t s)
176 f . w r i t e (a l l V a r i a b l e s)
177 f . w r i t e (o b j e c t i v e)
178 f . w r i t e (c o n s t r a i n t s)
179 f . w r i t e (bounds)
180 f . c l o s e ()
181
182 # C a l l MOSEK t o s o l v e t h e convex problem
183 c a l l ([’ mosek ’ , ’LP . opf ’])
184
185 # Read t h e s o l u t i o n f i l e and r e t r i e v e t h e o p t i m a l s o l u t i o n
186 r = open (’LP . s o l ’ , ’ r ’)
187 s s = r . r e a d ()
188 r e s = r e . f i n d a l l (’ x [0−9]+[\ t] + [A−Z] + [\ t]+[0−9]\ . [0−9]+ e [+−][0−9]+ ’ , s s)
189 r . c l o s e ()
190 f o r r i n r e s :

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 199

191 s l i c e d = r . s p l i t ()
192 x new [i n t (s l i c e d [0] [1 :])] = f l o a t (s l i c e d [−1])
193
194 r e t u r n x new

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 200

1 # R o u t i n e t o g e n e r a t e t h e CP f o r m u l a t i o n o f t h e convex problem t o model−check
2 # t h e Unbounded U n t i l o p e r a t o r , i . e . , t o compute t h e s a t i s f a c t i o n
3 # p r o b a b i l i t i e s Pmax / min [ph i1 U ph i2]
4
5 # C l a s s : E l l i p s o i d a l −MDP
6 # I n p u t s :
7 # l i s t [i n t] y e s S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s

s a t i s f y i n g p r o p e r t y ph i2
8 # l i s t [i n t] m a y b e S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s f o r

which t h e s a t i s f a c t i o n p r o b a b i l i t y i s unknown
9 # l i s t [i n t] n o S t a t e s L i s t : l i s t o f i n d i c e s o f t h e precomputed s t a t e s f o r which

t h e s a t i s f a c t i o n p r o b a b i l i t y i s 0
10 # b o o l e a n MIN: g e n e r a t e s t h e f o r m u l a t i o n t o compute t h e minimum (maximum)

s a t i s f a c t i o n p r o b a b i l i t i e s i f t r u e (f a l s e)
11 # O u t p u t s :
12 # l i s t [dou b l e] x new : l i s t o f s a t i s f a c t i o n p r o b a b i l i t i e s f o r each s t a t e o f t h e

model
13 d e f computeCP (s e l f , y e s S t a t e s L i s t , m a y b e S t a t e s L i s t , n o S t a t e s L i s t , MIN) :
14 # R e t r i e v e t h e i n d i c e s o f t h e s t a t e s r e a c h a b l e i n one s t e p f o r a l l t h e
15 # s t a t e s i n m a y b e S t a t e s L i s t (f a s t I d x U n t i l) and t h e i n f o r m a t i o n a b o u t
16 # t h e convex u n c e r t a i n t y s e t (pa r1)
17 # Note : f a s t I d x U n t i l i s j u s t a r e d u c e d v e r s i o n o f f a s t I d x where on ly t h e
18 # l i s t s c o r r e s p o n d i n g t o s t a t e s i n m a y b e S t a t e s L i s t a r e saved .
19 f a s t I d x U n t i l , pa r1 = s e l f . c o m p u t e U n c e r t a i n t i e s U n t i l (m a y b e S t a t e s L i s t)
20
21 # I n i t i a l i z e t h e r e s u l t l i s t
22 x new = [0] * s e l f . n S t a t e s
23 f o r s i n y e s S t a t e s L i s t :
24 x new [s] = 1
25
26 # I f t h e r e i s no s t a t e i n m a y b e S t a t e s L i s t , r e t u r n t h e s a t i s f a c t i o n
27 # p r o b a b i l i t i e s
28 i f n o t m a y b e S t a t e s L i s t :
29 r e t u r n x new
30
31 # Wr i t e t h e c o s t f u n c t i o n min / max t h e sum of t h e s a t i s f a c t i o n

p r o b a b i l i t i e s
32 # of t h e s t a t e s i n t h e m a y b e S t a t e s L i s t
33 o b j e c t i v e = ’ [o b j e c t i v e \%s \ ’ o b j \ ’]\ n ’\% \
34 (’ maximize ’ i f MIN e l s e ’ min imize ’)
35 o b j e c t i v e += ’+ ’ . j o i n (map (lambda s : ’ x ’+ s t r (s) , m a y b e S t a t e s L i s t)) + ’\n ’
36 o b j e c t i v e += ’ [/ o b j e c t i v e]\ n ’
37
38 # D e c l a r e t h e v a r i a b l e s x c o n t a i n i n g t h e s a t i s f a c t i o n p r o b a b i l i t i e s
39 # of t h e s t a t e s i n t h e m a y b e S t a t e s L i s t
40 a l l V a r i a b l e s = ’ [v a r i a b l e s]\ n ’
41 a l l V a r i a b l e s += ’ ’ . j o i n (map (lambda s : ’ x ’+ s t r (s) , m a y b e S t a t e s L i s t))
42
43 # I n i t i a l i z e t h e s t r i n g s c o n t a i n i n g t h e c o n s t r a i n t s and v a r i a b l e bound
44 # d e c l a r a t i o n s .

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 201

45 # For t h e v a r i a b l e bounds , we w i l l f i r s t s e t a l l v a r i a b l e s t o be p o s i t i v e
46 # and t h e n o v e r w r i t e t h i s command t o s e t t h e r e q u i r e d v a r i a b l e s t o be
47 # unbounded
48 c o n s t r a i n t s = ’ [c o n s t r a i n t s]\ n ’
49 bounds = ’ [bounds]\ n ’
50 bounds += ’ [b] 0 <= * [/ b]\ n ’
51
52 # D e c l a r e t h e l i s t c o n t a i n i n g t h e unbounded v a r i a b l e s
53 f r e e s = []
54 # I n i t i a l i z e t h e c o u n t e r s t o s t o r e t h e model s t a t i s t i c s
55 # P a s s i n g t h e s e v a l u e s t o MOSEK h e l p t h e s o l v e r t o a l l o c a t e memory
56 # more e f f i c i e n t l y .
57 varCoun t = 0 # Number o f v a r i a b l e s
58 consCount = 0 # Number o f c o n s t r a i n t s
59 ANZCount = 0 # Number o f non−z e r o s i n t h e problem t a b l e a u
60 # S t a r t w r i t i n g t h e c o n s t r a i n t s
61 # I t e r a t e t h r o u g h a l l t h e s t a t e s s i n m a y b e S t a t e s L i s t
62 f o r s , i d x s i n enumera t e (f a s t I d x U n t i l) :
63 # I t e r a t e t h r o u g h each a c t i o n a a s s o c i a t e d t o t h e s t a t e
64 f o r a , i d x i n enumera t e (i d x s) :
65 # P r o c e s s c e r t a i n t r a n s i t i o n s
66 i f l e n (pa r1 [s] [a]) == 1 :
67 # Wr i t e c o n s t r a i n t x s − f *x <= 0
68 # or x s − f *x >= 0
69 # f o r t h e min / max problem , r e s p e c t i v e l y
70 v a r i a b l e s = ’ ’
71 RHS = 0 .
72 v a r i a b l e s += ’ x ’ + s t r (m a y b e S t a t e s L i s t [s])
73 ANZCount += 1
74 # P r o c e s s one t r a n s i t i o n t o a n e x t s t a t e p e r t ime
75 f o r i n e x t , n e x t i n enumera t e (i d x) :
76 i f n e x t i n n o S t a t e s L i s t :
77 # Noth ing t o be done , s i n c e x s =0 i f s i n n o S t a t e s L i s t
78 c o n t i n u e
79 i f n e x t i n y e s S t a t e s L i s t :
80 # J u s t modify t h e v a l u e o f t h e RHS, s i n c e x s =1
81 # i f s i n y e s S t a t e s L i s t
82 RHS += pa r1 [s] [a] [0] [i n e x t]
83 e l s e :
84 # Add t h e te rm f s s ’ * x t o t h e LHS
85 v a r i a b l e s += s t r (−pa r1 [s] [a] [0] [i n e x t]) \
86 + ’ x ’ + s t r (n e x t)
87 ANZCount += 1
88 # Add t h e c o n s t r a i n t and i n c r e m e n t c o u n t e r
89 c o n s t r a i n t s += ’\ t [con \ ’ c\%d \ ’] ’\%(consCount) + v a r i a b l e s \
90 + (’ <= ’ i f MIN e l s e ’ >= ’) + s t r (RHS) + ’ [/ con]\ n ’
91 consCount += 1
92 e l s e :
93 # P r o c e s s u n c e r t a i n t r a n s i t i o n
94 # F i r s t c o n s t r a i n t i n t h e form

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 202

95 # x s − l ambda 1 + lambda 2 + h * E * lambda 3 <= 0
96 # or x s − l ambda 1 − l ambda 2 − h * E * lambda 3 >= 0
97 # f o r t h e min / max problem , r e s p e c t i v e l y
98 v a r i a b l e s = ’ ’
99 v a r i a b l e s += ’ x ’ + s t r (m a y b e S t a t e s L i s t [s])

100 l 1 = ’ l 1 ’ + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’ + s t r (a)
101 # D e c l a r e lambda 1 as unbounded v a r i a b l e
102 f r e e s . append (l 1)
103 v a r i a b l e s += ’− ’ + l 1 + ’ ’
104 a l l V a r i a b l e s += ’ ’ + l 1
105 varCoun t += 1
106 l 2 = ’ l 2 ’ + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’ + s t r (a)
107 v a r i a b l e s += (’ + ’ i f MIN e l s e ’ − ’) + l 2
108 a l l V a r i a b l e s += ’ ’ + l 2
109 varCoun t += 1
110 # Compute t h e i n v e r s e o f t h e u n c e r t a i n t y p a r a m e t e r K
111 # f o r c o n v e n i e n c e
112 o n e o v e r k s = 1 . / pa r1 [s] [a] [1] [0]
113 # P r o c e s s one t r a n s i t i o n t o a n e x t s t a t e p e r t ime
114 f o r i n e x t , n e x t i n enumera t e (pa r1 [s] [a] [0]) :
115 l 3 = ’ l 3 ’ + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’ + s t r (a) + \
116 ’ ’ + s t r (i n e x t)
117 v a r i a b l e s += (’+ ’ i f MIN e l s e ’− ’) \
118 + s t r (o n e o v e r k s * n e x t * * 0 . 5) + ’ ’ + l 3 + ’ ’
119 a l l V a r i a b l e s += ’ ’ + l 3
120 # D e c l a r e lambda 3 as unbounded v a r i a b l e
121 f r e e s . append (l 3)
122 # Update model s t a t i s t i c s and w r i t e c o n s t r a i n t
123 varCoun t += l e n (pa r1 [s] [a] [0])
124 ANZCount += 3 + l e n (pa r1 [s] [a] [0])
125 c o n s t r a i n t s += ’\ t [con \ ’ c\%d \ ’] ’\%(consCount) + v a r i a b l e s + \
126 (’ <= ’ i f MIN e l s e ’ >= ’) + ’ 0 [/ con]\ n ’
127 consCount += 1
128 # Second c o n s t r a i n t i n t h e form
129 # x s − l ambda 1 + E * lambda 3 = 0
130 # or x s − l ambda 1 − E * lambda 3 = 0
131 # f o r t h e min / max problem , r e s p e c t i v e l y
132 # Add one c o n s t r a i n t f o r each t r a n s i t i o n t o a n e x t s t a t e
133 f o r i n e x t , n e x t i n enumera t e (i d x) :
134 v a r i a b l e s = ’ ’
135 RHS = ’ 0 ’
136 i f n e x t i n n o S t a t e s L i s t :
137 # Noth ing t o be done , s i n c e x s =0 i f s i n n o S t a t e s L i s t
138 p a s s
139 e l i f n e x t i n y e s S t a t e s L i s t :
140 # J u s t modify t h e v a l u e o f t h e RHS, s i n c e x s =1
141 # i f s i n y e s S t a t e s L i s t
142 RHS = ’−1 ’
143 e l s e :
144 # Add t h e te rm x s ’ t o t h e LHS

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 203

145 v a r i a b l e s = ’ x ’ + s t r (n e x t)
146 ANZCount += 1
147 # Add t h e r e s t o f t h e v a r i a b l e s t o t h e LHS
148 v a r i a b l e s += ’ − ’ + l 1 + (’ + ’ i f MIN e l s e ’ − ’) + \
149 s t r (o n e o v e r k s / pa r1 [s] [a] [0] [i n e x t] * * 0 . 5) + \
150 ’ l 3 ’ + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’+ s t r (a) + ’ ’ \
151 + s t r (i n e x t)
152 # Add t h e c o n s t r a i n t
153 c o n s t r a i n t s += ’\ t [con \ ’ c\%d \ ’] ’\%(consCount) +
154 v a r i a b l e s + ’= ’ + RHS + ’ [/ con]\ n ’
155 consCount += 1
156 ANZCount += 2
157 # Q u a d r a t i c c o n i c c o n s t r a i n t
158 # Adding t h i s c o n s t r a i n t a s a c o n i c bound s u b s t a n t i a l l y
159 # s i m p l i f i e s t h e s o l u t i o n o f t h e SOCP
160 # C o n s t r a i n t i n t h e form norm (lambda 3) <= lambda 2
161 bounds += ’ [cone quad] ’ + l 2 + ’ , ’ + \
162 ’ , ’ . j o i n ([’ l 3 ’ + s t r (m a y b e S t a t e s L i s t [s]) + ’ ’+ s t r (a) + \
163 ’ ’+ s t r (i n e x t) f o r i n e x t i n r a n g e (l e n (pa r1 [s] [a] [0]))]) \
164 + ’ [/ cone]\ n ’
165
166 # I f t h e r e a r e unbounded v a r i a b l e s , add them t o t h e bound d e c l a r a t i o n s
167 i f f r e e s :
168 bounds += ’ [b] ’ + ’ , ’ . j o i n (f r e e s) + ’ f r e e [/ b]\ n ’
169
170 # T e r m i n a t e t h e s t r i n g c o n t a i n i n g t h e v a r i a b l e , c o n s t r a i n t and bound
171 # d e c l a r a t i o n s
172 a l l V a r i a b l e s += ’ [/ v a r i a b l e s]\ n ’
173 c o n s t r a i n t s += ’ [/ c o n s t r a i n t s]\ n ’
174 bounds += ’ [/ bounds]\ n ’
175
176 # Wr i t e a l l t h e s t r i n g c o n t a i n i n g t h e model s t a t i s t i c s
177 h i n t s = ’ [h i n t s]\ n ’
178 h i n t s += ’\ t [h i n t NUMVAR] \%d [/ h i n t]\ n ’\%(varCoun t + l e n (m a y b e S t a t e s L i s t))
179 h i n t s += ’\ t [h i n t NUMCON] \%d [/ h i n t]\ n ’\%(consCount)
180 h i n t s += ’\ t [h i n t NUMANZ] \%d [/ h i n t]\ n ’\%(ANZCount)
181 h i n t s += ’ [/ h i n t s]\ n ’
182
183 # Wri t e t h e f i l e c o n t a i n i n g t h e problem f o r m u l a t i o n
184 f = open (’SOCP . opf ’ , ’w’)
185 f . w r i t e (h i n t s)
186 f . w r i t e (a l l V a r i a b l e s)
187 f . w r i t e (o b j e c t i v e)
188 f . w r i t e (c o n s t r a i n t s)
189 f . w r i t e (bounds)
190 f . c l o s e ()
191
192 # C a l l MOSEK t o s o l v e t h e convex problem
193 c a l l ([’ mosek ’ , ’SOCP . opf ’])
194

APPENDIX C. PYTHON IMPLEMENTATION OF THE VERIFICATION ALGORITHM 204

195 # Read t h e s o l u t i o n f i l e and r e t r i e v e t h e o p t i m a l s o l u t i o n
196 r = open (’SOCP . s o l ’ , ’ r ’)
197 s s = r . r e a d ()
198 r e s = r e . f i n d a l l (’ x [0−9]+[\ t] + [A−Z] + [\ t]+[0−9]\ . [0−9]+ e [+−][0−9]+ ’ , s s)
199 r . c l o s e ()
200 f o r r i n r e s :
201 s l i c e d = r . s p l i t ()
202 x new [i n t (s l i c e d [0] [1 :])] = f l o a t (s l i c e d [−1])
203
204 r e t u r n x new

205

Appendix D

Generation of the MIQCP Formulation of
the Strategy Synthesis Problem in Python

In this appendix, we first report the Python code used to formulate Problem (6.11) starting from
the model data of an Ellipsoidal-MDP. We then list the full formulation of the MIQCP problem
generated to synthesize the optimal control strategy for the Ellipsoidal-MDP in Figure 2.5.

1 # R o u t i n e t o g e n e r a t e t h e MIQCP f o r m u l a t i o n o f t h e o p t i m i z a t i o n e n g i n e
2 # i n t h e f i r s t i t e r a t i o n o f t h e s t r a t e g y s y n t h e s i s a l g o r i t h m f o r t h e
3 # e l l i p s o i d a l model o f u n c e r t a i n t y
4
5 # C l a s s : E l l i p s o i d a l −MDP
6 # I n p u t s :
7 # b o o l e a n MIN: g e n e r a t e s t h e f o r m u l a t i o n t o compute t h e minimum (maximum)

s a t i s f a c t i o n p r o b a b i l i t i e s i f t r u e (f a l s e)
8 # rewardName : name of t h e reward s t r u c t u r e t o compute t h e t o t a l e x p e c t e d

reward on
9 # O u t p u t s :

10 # GRB. model model : Gurobi model o f t h e MIQCP o p t i m i z a t i o n problem
11 d e f g e n e r a t e C o r e P r o b l e m (s e l f , MIN, rewardName) :
12 # R e t r i e v e t h e i n d i c e s o f t h e s t a t e s r e a c h a b l e i n one s t e p f o r a l l t h e
13 # s t a t e s i n m a y b e S t a t e s L i s t (f a s t I d x) , t h e i n f o r m a t i o n a b o u t
14 # t h e convex u n c e r t a i n t y s e t (pa r1) , and t h e reward s t r u c t u r e f o r
15 # s t a t e r e w a r d s (r e w S t a t e s) and
16 # a c t i o n r e w a r d s (rewTrans)
17 # For more d e t a i l s on t h e u n d e r l y i n g da t a−s t r u c t u r e s , s e e
18 # Appendix C
19 f a s t I d x , par1 , r e w S t a t e s , rewTrans = \
20 s e l f . c o m p u t e U n c e r t a i n t i e s A n d R e w a r d s (rewardName)
21
22 # I n s t a n t i a t e an empty Gurobi model
23 model = Model (” qcp ”)
24 # C r e a t e a d i c t i o n a r y t o s t o r e t h e t o t a l e x p e c t e d reward v a r i a b l e s ,
25 # i . e . , v a r i a b l e s x i n t h e f o r m u l a t i o n i n C h a p t e r 6
26 rewVars = {}

APPENDIX D. GENERATION OF THE MIQCP FORMULATION OF THE STRATEGY
SYNTHESIS PROBLEM IN PYTHON 206

27 # A s s o c i a t e a v a r i a b l e t o each s t a t e
28 f o r i i n r a n g e (s e l f . n S t a t e s) :
29 rewVars [’ x ’+ s t r (i)] = model . addVar (name= ’ x ’+ s t r (i))
30 i n i t V a r s = []
31 # E x p l i c i t l y enumera t e t h e reward v a r i a b l e s a s s o c i a t e d
32 # t o t h e i n i t i a l s t a t e s
33 f o r i i n s e l f . i n i t S t a t e :
34 i n i t V a r s . append (’ x ’+ s t r (i))
35
36 # S t o r e t h e d e c l a r e d v a r i a b l e s i n t h e model
37 # (r e q u i r e d by t h e Gurobi API)
38 model . u p d a t e ()
39
40 # C r e a t e d i c t i o n a r i e s f o r t h e s l a c k , d u a l and i n t e g e r v a r i a b l e s
41 s l a c k V a r s = {}
42 d u a l V a r s = {}
43 i n t V a r s = {}
44
45 # Wr i t e o b j e c t i v e f u n c t i o n
46 # min / max of t h e sum of t h e reward v a r i a b l e s
47 # a c r o s s t h e i n i t i a l s t a t e s
48 o b j = quicksum ([rewVars [key] f o r key i n i n i t V a r s])
49 model . s e t O b j e c t i v e (obj , GRB. MINIMIZE i f MIN e l s e GRB. MAXIMIZE)
50
51 # I n i t i a l i z e d a t a s t r u c t u r e s t o c o l l e c t model s t a t i s t i c s
52 i c = 0 # number o f i n t e g e r c o n s t r a i n t s
53 i c s = [] # names o f t h e i n t e g e r c o n s t r a i n t
54 l c = 0 # number o f l i n e a r c o n s t r a i n t s
55 l c s = [] # names o f t h e l i n e a r c o n s t r a i n t s
56 qc = 0 # number o f q u a d r a t i c c o n s t r a i n t s
57 qcs = [] # names o f t h e q u a d r a t i c c o n s t r a i n t s names
58 f r e e s = [] # Unbounded v a r i a b l e s
59
60 # Compute ” b i g ’ ’ B
61 # R e t r i e v e t h e reward v a l u e s a s s o c i a t e d t o a l l t r a n s i t i o n s
62 f l a t = []
63 map (f l a t . ex tend , [s e l f . f a s t T r a n R e w a r d s [i i d x] [i i] f o r i i d x , i d x i n \
64 enumera t e (s e l f . f a s t I d x) f o r i i , i i n enumera t e (i d x)])
65 maxTranReward = max (f l a t)
66 s e l f . bigB = s e l f . n S t a t e s * (max (r e w S t a t e s) +maxTranReward)
67
68 # Dete rmine t h e a b s o r b i n g s t a t e s , i . e . , s t a t e s wi th on ly one a c t i o n
69 # and a s e l f−l oop t r a n s i t i o n o f p r o b a b i l i t y 1
70 a b s o r b i n g = [s f o r s , i d x s i n enumera t e (f a s t I d x) i f l e n (i d x s) == 1 \
71 and l e n (i d x s [0]) == 1 and i d x s [0] [0] == s]
72 # E n f o r c e t h e reward i n t h e s e s t a t e s t o be z e r o
73 # (t h e s e c o n s t r a i n t s h e l p t h e c o n v e r g e n c e o f t h e n u m e r i c a l s o l v e r
74 f o r s i n a b s o r b i n g :
75 model . a d d C o n s t r (rewVars [’ x ’+ s t r (s)] == 0 , ’ l c ’+ s t r (l c))
76 l c += 1

APPENDIX D. GENERATION OF THE MIQCP FORMULATION OF THE STRATEGY
SYNTHESIS PROBLEM IN PYTHON 207

77
78 # Wr i t e c o n s t r a i n t s
79 # P r o c e s s one s t a t e a t a t ime
80 f o r s , i d x s i n enumera t e (f a s t I d x) :
81 # I f s i s a b s o r b i n g , n o t h i n g t o be done
82 i f s i n a b s o r b i n g :
83 c o n t i n u e
84 # S t a t e s wi th m u l t i p l e a c t i o n s a s s o c i a t e d a r e
85 # t r e a t e d d i f f e r e n t l y . The f i r s t s t e p i s t h u s
86 # t o d e t e r m i n e i f t h e s t a t e has m u l t i p l e a c t i o n s
87 # a s s o c i a t e d t o i t o r n o t
88 m u l t A c t i o n s = True
89 i f l e n (i d x s) == 1 :
90 # on ly one a c t i o n
91 # No e x t r a c o n s t r a i n t t o add
92 m u l t A c t i o n s = F a l s e
93
94 # P r o c e s s i n g s t a t e s wi th m u l t i p l e a c t i o n s
95 # Add e x t r a c o n s t r a i n t s s p e c i f i c t o s t a t e s
96 # wi th m u l t i p l e a c t i o n s
97 e l s e :
98 # S t o r e t h e s u f f i x used t o u n i q u i f y v a r i a b l e names
99 s u f s = []

100 # I t e r a t e t h r o u g h a l l a c t i o n s a s s o c i a t e d t o a s t a t e
101 f o r a i n r a n g e (l e n (i d x s)) :
102 s u f = s t r (s) + ’ ’ + s t r (a)
103 # Add t h e s l a c k and i n t e g e r v a r i a b l e s t o t h e model
104 s l a c k V a r s [’ l ’ + s u f] = model . addVar (name= ’ l ’ + s u f)
105 s l a c k V a r s [’ n ’ + s u f] = model . addVar (name= ’ n ’ + s u f)
106 i n t V a r s [’ z ’ + s u f] = model . addVar (v t y p e =GRB. BINARY, \
107 name= ’ z ’ + s u f)
108 s u f s . append (s u f)
109 model . u p d a t e ()
110 # Add t h e i n t e g e r c o n s t r a i n t t o e n f o r c e on ly one a c t i o n t o be
111 # s e l e c t e d among t h o s e a v a i l a b l e
112 model . a d d C o n s t r (quicksum ([i n t V a r s [’ z ’+ s u f] f o r s u f i n s u f s]) \
113 == l e n (i d x s) − 1 , ’ i c ’+ s t r (i c))
114 i c s . append (’ i c ’+ s t r (i c))
115 i c += 1
116 # I t e r a t e t h r o u g h a l l t h e s l a c k v a r i a b l e s and add
117 # t h e c o n s t r a i n t s t o s e t t h e s l a c k s t o z e r o i f t h e
118 # a c t i o n i s s e l e c t e d
119 f o r s u f i n s u f s :
120 model . a d d C o n s t r (s l a c k V a r s [’ n ’ + s u f] − \
121 s e l f . bigB * i n t V a r s [’ z ’+ s u f] <= 0 , ’ i c ’+ s t r (i c))
122 i c s . append (’ i c ’+ s t r (i c))
123 i c += 1
124 model . a d d C o n s t r (s l a c k V a r s [’ l ’ + s u f] − \
125 s e l f . bigB * i n t V a r s [’ z ’+ s u f] <= 0 , ’ i c ’+ s t r (i c))
126 i c s . append (’ i c ’+ s t r (i c))

APPENDIX D. GENERATION OF THE MIQCP FORMULATION OF THE STRATEGY
SYNTHESIS PROBLEM IN PYTHON 208

127 i c += 1
128
129 # Now add c o n s t r a i n t s t o compute t h e t o t a l e x p e c t e d reward f o r
130 # e v e r y s t a t e
131 f o r a , i d x i n enumera t e (i d x s) :
132 s u f = s t r (s) + ’ ’ + s t r (a)
133 # C e r t a i n t r a n s i t i o n s
134 i f l e n (pa r1 [s] [a]) == 1 :
135 # Add a c o n s t r a i n t i n t h e form
136 # x s − f *x − l + n = r s + r s a
137 # Note : add s l a c k v a r i a b l e s on ly t o c o n s t r a i n t s
138 # f o r s t a t e s wi th m u l t i p l e a c t i o n s
139 model . a d d C o n s t r (rewVars [’ x ’+ s t r (s)] + quicksum (\
140 [−pa r1 [s] [a] [0] [i n e x t]* rewVars [’ x ’+ s t r (n e x t)] f o r i n e x t ,\
141 n e x t i n enumera t e (i d x)]) + (− s l a c k V a r s [’ l ’+ s u f]+ \
142 s l a c k V a r s [’ n ’+ s u f] i f m u l t A c t i o n s e l s e 0 .) == \
143 r e w S t a t e s [s] + rewTrans [s] [a] [0] , ’ l c ’+ s t r (l c))
144 l c s . append (’ l c ’+ s t r (l c))
145 l c += 1
146 e l s e : # U n c e r t a i n t r a n s i t i o n
147 # Add s l a c k v a r i a b l e s t o t h e model
148 d u a l V a r s [’ l a 1 ’+ s u f] = model . addVar (name = ’ l a 1 ’+ s u f)
149 # D e c l a r e unbounded v a r i a b l e
150 f r e e s . append (d u a l V a r s [’ l a 1 ’+ s u f])
151 d u a l V a r s [’ l a 2 ’+ s u f] = model . addVar (name = ’ l a 2 ’+ s u f)
152 f o r n e x t i n r a n g e (l e n (i d x)) :
153 d u a l V a r s [’ l a 3 ’+ s u f + s t r (n e x t)] = model . addVar (name \
154 = ’ l a 3 ’+ s u f + s t r (n e x t))
155 model . u p d a t e ()
156
157 # Compute t h e i n v e r s e o f t h e u n c e r t a i n t y p a r a m e t e r K
158 # f o r c o n v e n i e n c e
159 o n e o v e r k s = 1 . / pa r1 [s] [a] [1] [0]
160 # F i r s t c o n s t r a i n t i n t h e form
161 # x s − lam 1 − lam 2 − h*E* lam 3 − l + n = r s + r s a
162 # x s − lam 1 + lam 2 + h*E* lam 3 − l + n = r s + r s a
163 # For t h e min / max problem r e s p e c t i v e l y
164 model . a d d C o n s t r (rewVars [’ x ’+ s t r (s)] −d u a l V a r s [’ l a 1 ’+ s u f]\
165 + (−1. i f MIN e l s e + 1 .) * d u a l V a r s [’ l a 2 ’+ s u f] \
166 + quicksum ([(−1 i f MIN e l s e +1) * o n e o v e r k s * n e x t ** 0 .5 \
167 * d u a l V a r s [’ l a 3 ’+ s u f + s t r (i n e x t)] f o r i n e x t , n e x t i n \
168 enumera t e (pa r1 [s] [a] [0])]) + (− s l a c k V a r s [’ l ’+ s u f]+ \
169 s l a c k V a r s [’ n ’+ s u f] i f m u l t A c t i o n s e l s e 0 .) == \
170 r e w S t a t e s [s] + rewTrans [s] [a] [0] , ’ l c ’+ s t r (l c))
171 l c s . append (’ l c ’+ s t r (l c))
172 l c += 1
173 # Second c o n s t r a i n t i n t h e form
174 # x s − l ambda 1 − E * lambda 3 = 0
175 # x s − l ambda 1 + E * lambda 3 = 0
176 # For t h e min / max problem r e s p e c t i v e l y

APPENDIX D. GENERATION OF THE MIQCP FORMULATION OF THE STRATEGY
SYNTHESIS PROBLEM IN PYTHON 209

177 f o r i n e x t , n e x t i n enumera t e (i d x) :
178 model . a d d C o n s t r (rewVars [’ x ’+ s t r (n e x t)] − \
179 d u a l V a r s [’ l a 1 ’+ s u f] + (−1 i f MIN e l s e +1) * \
180 o n e o v e r k s / pa r1 [s] [a] [0] [i n e x t] * * 0 . 5 * \
181 d u a l V a r s [’ l a 3 ’+ s u f + s t r (i n e x t)] == 0 , ’ l c ’+ s t r (l c))
182 l c s . append (’ l c ’+ s t r (l c))
183 l c += 1
184 # T h i r d c o n s t r a i n t (q u a d r a t i c) i n t h e form
185 # norm (lambda 3) <= lambda 2
186 model . addQConst r (quicksum ([d u a l V a r s [’ l a 3 ’+ s u f \
187 + s t r (i n e x t)]* d u a l V a r s [’ l a 3 ’+ s u f + s t r (i n e x t)] f o r \
188 i n e x t i n r a n g e (l e n (pa r1 [s] [a] [0]))]) <= \
189 d u a l V a r s [’ l a 2 ’+ s u f]* d u a l V a r s [’ l a 2 ’+ s u f] , ’ qc ’+ s t r (qc))
190 qcs . append (’ qc ’+ s t r (qc))
191 qc += 1
192
193 # S e t t h e lower bound t o − i n f i n i t y
194 # f o r unbounded v a r i a b l e s
195 f o r v i n f r e e s :
196 v . s e t A t t r (’ l b ’ ,−GRB. INFINITY)
197
198 model . u p d a t e ()
199
200 r e t u r n model

We now report the full MIQCP formulation that was used to maximize the total expected
reward on the Ellipsoidal-MDP in the example of Figure 2.5, subject to satisfying property
φ = P ≥0.8[ϑ U abs]. Problem (6.11) written with the data of the model has 24 variables and
21 constraints. In this appendix, we have rounded all real-valued constants to the third decimal
digit, but higher accuracy was used when we solved the problem numerically. The value of the
“big” number B is:

B = |N | × (rmaxs + rmaxa) = 4× (3 + 9) = 48

where rmaxs (rmaxa) is the maximum value of the state (action) reward across all states (transitions).
Note that variables are constrained by default to be non-negative, so the MIQCP formulation

only reports variables that should instead be treated as unconstrained (labeled as “free”). More-
over, two variables are binary. Finally, we report also the additional constraint generated by the
verification engine after the first iteration of the strategy-synthesis algorithm. This constraint is
added only during the second (and final) iteration.

APPENDIX D. GENERATION OF THE MIQCP FORMULATION OF THE STRATEGY
SYNTHESIS PROBLEM IN PYTHON 210

max
x,λ,z,l,n

x0 (D.1)

Subject to: x3 = 0

x0 − la0 + na0 = 10 + λa1,s0 − λ
a
2,s0
− 2.958λa3,s0s2 − 4.031λa3,s0s3

x2 − λa1,s0 + 8.452λa3,s0s2 = 0

x3 − λa1,s0 + 6.202λa3,s0s3 = 0

‖λa3,s0‖2 ≤ λa2,s0

x0 − lb0 + nb0 = 7 + λb1,s0 − λ
b
2,s0
− 8.66λb3,s0s1 − 5λb3,s0s2

x1 − λb1,s0 + 11.547λb3,s0s1 = 0

x2 − λb1,s0 + 20λb3,s0s2 = 0

‖λb3,s0‖2 ≤ λb2,s0

la0 ≤ 48za0
na0 ≤ 48za0

lb0 ≤ 48zb0

nb0 ≤ 48zb0

za0 + zb0 = 1

0.8x1 − la1 + na1 = 3 + 0.8x2

x1 − lb1 + nb1 = 3 + x2

za1 + zb1 = 1

la1 ≤ 48za1
na1 ≤ 48za1

lb1 ≤ 48zb1

nb1 ≤ 48zb1
x2 = 1 + x3

Free: λa1,s0 , λ
b
1,s0

Binary: za0 , z
b
0, z

a
1 , z

b
1

Extra constraint

zb0 + za1 ≥ 1

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations
	Dissertation Overview
	Main Contributions
	Dissertation Outline
	Related Publications

	A Framework to Model Probabilistic Systems
	Convex Markov Decision Processes (Convex-MDPs)
	Preliminary Definitions
	The Modeling Formalism
	Rewards
	Modeling Assumptions

	Models of Uncertainty
	Interval Model
	Likelihood Model
	Ellipsoidal Model
	Entropy Model
	Multiple Models of Uncertainty Within the Same Convex-MDP

	Resolution of Non-Determinism and Uncertainty
	Adversaries and Strategies
	Nature

	Probabilistic Computation Tree Logic (PCTL)
	PCTL Semantics
	PCTL Semantics for the Verification Problem
	PCTL Semantics for the Control Problem

	Expressing System Properties in PCTL
	Soundness and Completeness
	Soundness and Completeness for Model-Checking Algorithms
	Soundness and Completeness for Strategy-Synthesis Algorithms

	Related Work
	Probabilistic Modeling Frameworks
	Modeling Formalisms
	Discrete-Time Probabilistic Models
	Continuous-Time Probabilistic Models
	Partially-Observable Markov Decision Processes

	Formal Logics
	Qualitative Logics
	Quantitative Logics

	Verification Algorithms
	Model Checking
	Model Checking Qualitative Properties
	Model Checking Quantitative Properties

	Statistical Model Checking
	Approximate Probabilistic Bisimulation
	Model-Checking Tools

	Control Algorithms
	Synthesis of Control Strategies for Unconstrained Reward Maximization
	Synthesis of Control Strategies from Specifications in a Formal Logic

	Probabilistic Model-Checking with Uncertainties
	Theoretical Complexity of PCTL model checking for Convex-MDPs
	Problem Definition and Algorithm Overview
	Optimal Adversaries and Natures
	New Results in Complexity

	Model-Checking Routines
	Next Operator
	Bounded Until Operator
	Unbounded Until Operator
	Convex Programming Procedure (CP)
	Value Iteration Procedure (VI)

	Instantaneous Reward Operator
	Bounded Cumulative Reward Operator
	Cumulative Reward Operator
	Convex Programming Procedure (CP)
	Value Iteration Procedure (VI)

	Summary of the Properties of the Model-Checking Routines

	Experimental Evaluation of the Model Checker
	Overview of the Software Implementation
	Case Studies
	Distributed Consensus Protocol
	ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local Addresses
	The Dining Philosophers Problem

	Formal Verification of the Performance of a Car Driver
	Problem Description
	Motivating Applications
	Problem Description
	Contributions

	Related Work
	Cognitive Models
	Engineering Models

	Proposed Model
	Data-Driven Characterization of the Library of Atomic Actions
	Stochastic Modeling
	Model of a Complex Maneuver

	Experimental Results

	Optimal Control with Uncertainties
	Problem Definition
	Strategy Hierarchy for Convex-MDPs
	Execution Unrolling for Finite-Horizon Convex-MDPs
	Theoretical Complexity of the Synthesis Problem for MD Strategies
	A Synthesis Algorithm for MD Strategies
	Optimization Engine
	Verification Engine
	Algorithm Analysis

	Optimal Energy Scheduling and Pricing in Smart-Grids with Renewable Sources
	Problem Description
	Contributions

	Related Work
	Stochastic strategy-synthesis Frameworks

	Proposed Model
	Experimental Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Example of the LP Formulation to Verify the Unbounded Until Operator
	Proof of Convergence of the Contraction Mapping
	Python Implementation of the Verification Algorithm
	Generation of the MIQCP Formulation of the Strategy Synthesis Problem in Python

