
Programming Layout by Manipulation

Thibaud Hottelier

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-158
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-158.html

August 18, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

I would like to express my profound gratitude to my advisor Ras Bodik for
his active participation and unwavering optimism, without which I would
not have been able to see my research through. Thank you for your
support and your patience.

I would like to thank my dissertation committee: Kimiko Ryokai for
sharing her expertise in designing user studies; Paul Hilfinger for his
insightful comments and challenging questions. I would also like to
extend my appreciation to Per Ljung and Kimmo Kuusilinna, with whom I
spent an exciting summer at Nokia Research.

Finally, I would like to thank Heather Levien for her invaluable help
editing my papers as well as this dissertation.

Programming Layout by Manipulation

by

Thibaud Baptiste Hottelier

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Rastislav Bodík, Chair
Professor Paul Hilfinger
Professor Kimiko Ryokai

Fall 2014

Programming Layout by Manipulation

Copyright 2014
by

Thibaud Baptiste Hottelier

1

Abstract

Programming Layout by Manipulation

by

Thibaud Baptiste Hottelier

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodík, Chair

Creating layouts for documents, GUIs, or data visualizations is a time-consuming and error-
prone process. Non-programmers would like the customization and fine-grained control cur-
rently only possible with handwritten layout engines. Today, such engines are written by profi-
cient programmers. This thesis introduces new techniques for specifying layout and generating
efficient layout engines.

First, we present a new programming methodology which addresses the two central sources
of bugs in layouts: ambiguities and conflicts. Then, we introduce a language of constraints in
which we capture layout specifications formally. Finally, we show how to generate efficient
layout engines automatically. We provide the following individual contributions:

1. The Programming by Manipulation (PBM) paradigm targeted at non-programmers to
establish specifications in visual domains such as layout. We introduce a new type of
user demonstration—manipulation—which is resistant to users’ imprecisions inherent in
drawing. Instead of sketching the desired layout, users steer the exploration of potential
layouts by pointing out what they would like to change.

2. L3, a declarative language for layout specifications. L3 is based on non-directional con-
straints in which the flow of computation is completely abstracted away.

3. A synthesis procedure—grammar modular synthesis—capable of generating layout en-
gines from L3 specifications. Our new algorithm scales to realistic layout specifications
and produces generic engines supporting languages of documents.

To evaluate our work, we present two user studies showing not only that non-programmers
can design interesting visualizations using PBM, but also that proficient programmers are more
productive with PBM than with conventional constraint programming. We also compare the
performance of our synthetized engines with state-of-the-art constraint solvers and show that
our engines are up to two orders of magnitude faster.

i

Contents

Contents i

List of Algorithms iii

List of Code Listings iv

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Dissertation Overview . 2
1.2 Motivating Example . 3
1.3 Programming by Manipulation . 9
1.4 A Language of Constraints for Layout . 12
1.5 Grammar-Modular Synthesis . 15
1.6 Collaborators and Publications . 19

2 Programming by Manipulation 20
2.1 Motivation and Approach . 20
2.2 Overview of Programming by Manipulation . 27
2.3 Creating New Traits From Constraints . 32
2.4 The PBMManipulator . 33
2.5 Evaluation . 42
2.6 Related Work . 49

3 A Language of Constraints for Layout 52
3.1 Motivation and Design Principles . 52
3.2 Overview of L3 . 56
3.3 L3 by Example . 60
3.4 Related Work . 64

4 Grammar-Modular Synthesis 66

ii

4.1 From Program Synthesis to GM Synthesis . 66
4.2 Compiler Architecture . 70
4.3 Modular Synthesis . 70
4.4 Grammar-Modular Synthesis . 78
4.5 Evaluation . 83
4.6 Related Work . 87

5 Conclusion 89

Bibliography 92

iii

List of Algorithms

2.4.1 Finding an initial configuration which is deterministic 37
2.4.2 Computing the ambiguity base of a configuration 39
2.4.3 Computing the set of safe specializations of a configuration 40
2.4.4 Ranking generalization candidates . 42

4.3.1 Synthesize local functions for a block . 75
4.3.2 Constructing a hypergraph summary encoding all possible compositions of local

functions . 76

iv

List of Code Listings

1.3.1 The sample document . 9
1.4.1 Two traits: one mandatory, one containing optional constraints 12
1.4.2 The tree grammar of our treemap language . 15
1.5.1 The constraints defining the hdiv block . 17
1.5.2 The five visitors of the hdiv block . 18
3.2.1 An implementation of the CSS box model in L3 57
3.2.2 An optional trait containing two alternative constraints 58
3.2.3 Conjunctive and disjunctive compositions of traits 58
3.3.1 The specification of a treemap in L3 . 60
3.3.2 The definitions of flexible treemap blocks . 62
3.3.3 A sun burst visualization in L3 . 63

v

List of Figures

1.2.1 A treemap visualization . 4
1.3.1 Demonstrating the node layering of our phylogenetic tree 11
1.4.1 The Cartesian relative coordinate system . 13
1.4.2 A diagram of a scroll-box . 14

2.1.1 Unexpected spring-effects . 21
2.1.2 Dropping constraints leads to unpredictable layouts 22
2.1.3 Creating a treemap with PBM . 25
2.1.4 Three steps to modify a barchart from overlapping bars to stacked bars 26
2.2.1 A sample document for a tree layout . 27
2.2.2 The five configurations explored to specify the node layering of a tree 31
2.2.3 Two examples of ambiguity bases . 32
2.4.1 Generalizing a configuration given a WiW manipulation 41
2.5.1 The five tasks assigned to participants for both user studies 44
2.5.2 The table of switches of the button tool . 45
2.5.3 The paths through the configuration space on the icicles task from the same partici-

pant using both tools . 48

3.1.1 Surprises arise when indirect layout constraints do not entail the desired specifications 53
3.1.2 A Layout inexpressible in CSS . 54
3.2.1 A complex flow layout . 57
3.3.1 Debugging under-constrained languages . 62
3.3.2 A visualization of file system usage using a polar layout 63

4.2.1 The architecture of our L3 compiler . 70
4.3.1 The hypergraph of the dependencies . 73
4.3.2 The three steps of GM synthesis . 78
4.4.1 Encoding alternative productions with hyperpaths 79

vi

List of Tables

1.2.1 A small dataset for our treemap . 4

2.5.1 Non-programmer results . 45
2.5.2 Programmers results . 47

4.5.1 The complexity of L-solvers for each of our three case studies 85
4.5.2 Time to compute the layout in milliseconds for typical document sizes 86

vii

Acknowledgments

Iwould like to expressmyprofound gratitude tomy advisor Ras Bodík for his active participation
and unwavering optimism,withoutwhich Iwould not have been able to seemy research through.
Thank you for your support and your patience.

I would like to thank my dissertation committee: Kimiko Ryokai for sharing her expertise in
designing user studies; Paul Hilfinger for his insightful comments and challenging questions. I
would also like to extend my appreciation to Per Ljung and Kimmo Kuusilinna, with whom I
spent an exciting summer at Nokia Research.

Finally, I would like to thank Heather Levien for her invaluable help editing my papers as
well as this dissertation.

1

Chapter 1

Introduction

In practical terms, this thesis examines how to make layout programming easier and more
accessible. By inferring specifications of visual layouts directly from user demonstrations and
automatically synthesizing efficient layout engines, not only do we increase the productivity
of programmers, but we also bring layout programming to a wider audience of non-technical
users.

Visual layout is the art of arranging visual elements, such as paragraphs or images, in an
aesthetically pleasing manner. Programming layout consists of establishing how the sizes and
positions of each visual element are computed, either as a function of known values (e.g., an
image size) or of runtime inputs (e.g., the screen size). The set of visual elements constitute a
document; the program which computes the layout of a document is called a layout engine.

Both proficient programmers and non-technical users solve layout tasks, either by writing
layout engine code directly (Bostock et al., 2011) or by using tools such as WYSIWYG1 editors
(Viegas et al., 2007). Tools accessible to everyone only allow limited customizability of layout;
usually only the theme/visual appearance can be edited. Fine-grained control over algorithmic
aspects, such as how positions are derived, requires manual modification of the layout engine,
a task which many potential users cannot accomplish. Furthermore, writing a layout engine by
hand is a significant undertaking, even for seasoned programmers. The turnaround between
the conception of a layout design and the first layouts can take days. Prototyping is slow, thus
making design tryouts expensive.

Layout engines are complex programs, not unlike compilers. When writing layout specifica-
tions, for instance by constraining positions of elements, programmers must carefully navigate
between two hazards: ambiguities (under-specification) and conflicts (over-specification). Both
bugs result in unexpected, sometimes non-deterministic layouts. The cascade of consequences
leading to these bugs is difficult to track down and understand, even for experienced pro-
grammers. As a result, debugging is done by trial and error, a tedious process. Moreover, the

1What You See Is What You Get

CHAPTER 1. INTRODUCTION 2

performance of layout engines is critical. For instance, in interactive settings, the layout must be
computed in a fraction of a second to appear responsive.

To address these problems, this dissertation proposes (i) a new programming methodology
for layout, called Programming by Manipulation; (ii) a language of constraints by means of
which layout specifications can be captured concisely; and (iii) a synthesis-assisted compiler
producing efficient layout engines.

Programming by Manipulation (PBM) streamlines layout specification by allying user
demonstrations with guided exploration of the layout design space. By inferring layout specifi-
cations from user demonstrations, Programming by Manipulation makes layout programming
accessible to non-technical users.

We capture layout specifications formally in L3, a declarative layout language based on
constraint satisfaction. By casting layout as a satisfiability problem instead of the more common
optimization formulation (Badros et al., 1999; Schrier et al., 2008), verifying static properties
becomes tractable. As a result, PBM can prevent users from getting stuck in ambiguities or
conflicts (contradictions). L3 specifications are both concise and modular, thus facilitating code
reuse.

Our compiler can generate layout engines automatically from L3 specifications, making
prototyping easy and inexpensive. The resulting engines are correct by construction and are as
efficient as the engines manually written by expert programmers.

1.1 Dissertation Overview
The remainder of this chapter presents Programming by Manipulation informally, using exam-
ples to illustrate the three steps of layout creation: authoring, specification, and compilation. At
each step, we discuss today’s state-of-the-art techniques and present the rationale behind the
major design decisions which led to PBM. The subsequent chapters of this thesis are organized
as follows:

Chapter 2 We present Programming by Manipulation, a new programming methodology
for authoring visual layout, targeted at non-programmers. Our approach addresses the two
central sources of bugs that arise when programming with constraints: ambiguities and conflicts
(inconsistencies). We rule out conflicts by design and exploit ambiguity to explore possible
layout designs.

Our users design layouts by highlighting undesirable aspects of a current design, effectively
breaking spurious constraints and introducing ambiguity by giving some elements freedom
to move or resize. Subsequently, the manipulation tool indicates how the ambiguity can be
removed, by computing how the elements just made free can be positioned or sized with
available constraints.

CHAPTER 1. INTRODUCTION 3

We present the results of our user studies, demonstrating that both non-programmers and
programmers can effectively use our prototype. Our results suggest that PBM is five times more
productive than direct programming with constraints.

Chapter 3 We describe L3 (Language for Layout Languages), our declarative constraint-based
language for visual layout. L3 is based on non-directional constraints and abstracts away the
flow of computation. We explain how to specify new visual elements and create custom layout
specifications of languages of documents. We introduce traits which bundle constraints in a
modular and composable unit to promote code reuse. By restricting the legal nestings of visual
elements, users can create languages of documents in L3. We show that relational attribute
grammars are suitable formalism to capture layout specifications.

Chapter 4 We present Grammar-Modular (GM) synthesis, an algorithm for program syn-
thesis from large tree-structured relational specifications, such as the ones found in layout.
GM synthesis makes synthesis applicable to previously intractable problems by decomposing
them into smaller subproblems, which can be tackled in isolation using off-the-shelf synthesis
procedures. The program fragments thus generated are subsequently composed to form a
program satisfying the overall specification.

We apply GM synthesis to L3 specifications and generate tailored layout engines for lan-
guages of documents. Our experimental results show that GM synthesis can successfully
generate layout engines for non-trivial data visualizations, and that our synthesized engines
are between 39- to 200-times faster than general-purpose constraint solvers.

1.2 Motivating Example
In this section, we explain the general steps in layout creation common to all techniques and
tools. Visual layout is a vast domain which spans three principal applications: graphical user
interfaces (GUIs), data visualizations, and documents. These three application domains have
fuzzy boundaries. For instance, the layout of web pages is a hybrid between document and
GUIs layouts. In this thesis, we focus on data visualization layouts, which offer the richest and
most complex layouts of our three domains.

At a high level, creating a layout entails fixing the sizes and positions of some visual elements
and specifying, in some manner, the rules for computing sizes and positions of the remaining
elements.

More precisely, the visual elements to lay out are arranged in a hierarchical structure—a
tree—called the document. The nodes of the document are either graphical entities or invisible
positioning/grouping units. Each document node is decorated with attributes representing
its sizes, positions, margins, colors, etc. Some attributes are marked as input. They are either
known at design time (e.g., the size of an image), or are runtime constants (e.g., the size of the

CHAPTER 1. INTRODUCTION 4

screen); all other attributes are unknown and must be computed by the layout engine by solving
constraints. Ultimately, the document is passed to the renderer for display.

Layout Creation Independently from the techniques and tools used, the creation of new
layouts can always be divided into the following three tasks: constructing a document from
layout “bricks” called blocks; establishing the layout semantics of each block; and, finally, creating
a layout engine supporting any document constructed from such blocks.

We illustrate each task by creating a treemap (Johnson and Shneiderman, 1991), a data-
visualization based upon recursive tiling that depicts the relative sizes of objects. Treemaps are
popular in finance to show the relative capitalizations of a group of companies2. We start from
a dataset containing a list of companies, together with their capitalization. For our example, we
use the small dataset constituted of six companies shown in Table 1.2.1.

Name of Company A B C D E F
Capitalization 4 12 16 16 8 8

Table 1.2.1. A small dataset for our treemap. Each company is represented by a pair containing its name
together with its capitalization.

Our goal is to create the visualization shown in Figure 1.2.1b. The treemap layout represents
each company by a tile whose area is proportional to the company’s capitalization.

tile (A)

tile (B)
tile (C)

tile (D) tile (E)

tile (F)

root hdiv

vdiv

hdiv

vdiv

hdiv

(a) A document representing the dataset from Table 1.2.1 (b) The layout of the document

Figure 1.2.1. A treemapvisualization.The tree of instances of blocks constituting a document (a), together
with its layout (b). In the document, the hierarchy of dividers (hdiv, vdiv) encodes how the space is tiled.

The first step of the layout creation process consists of choosing a set of layout blocks. Then
we construct a document representing the dataset by nesting the chosen blocks to form a tree.
In essence, the document is a tree of nodes; nodes are instances of blocks. Informally, blocks are
types/classes of nodes. Blocks define the layout semantics of nodes: typically, how each node’s
positions and sizes are computed. As such, blocks act as the types of document nodes.

2See SmartMoney’s Map of the Market at www.marketwatch.com.

www.marketwatch.com

CHAPTER 1. INTRODUCTION 5

For the sake of the example, we are going to assume that we are given blocks with already
correct layout semantics and that no further specification is required. In practice, we would have
to either choose and fine-tune blocks from a library or create new ones ourselves. Choosing and
specifying blocks is one of the crucial steps of layout creation. Each layout technique/tool has
its own specific process.

For our treemap, we use the following four blocks: Document leaves represent companies
and are instances of the tile block. Inner nodes encode how the space is tiled; they are either
horizontal or vertical dividers (hdiv and vdiv blocks). Only tiles have a visual appearance; h/vdivs
are invisible, they only position their children. Finally, the root of the document is a special
root block. By nesting these blocks to form a document, we specify how the treemap is tiled.
Figure 1.2.1a shows one document corresponding to our dataset. Many other tilings are possible.

Layout Computation Once the document is created, the next step consists of creating a layout
engine, i.e. a program capable of computing the layout of the document. That is, computing
values for all document attributes based on input attributes. Each valuation of document
attributes is called a layout. For our treemap, the input attributes are the capitalizations of each
of the companies. Once the layout is computed, the document is passed to the renderer which
draws the document by reading the computed attribute values of each node.

Additionally, when the dataset changes, for instance, with new, up-to-date capitalizations,
the layout engine can be run again on the same document (but with new values for the input
attributes) to update the visualization. When we grow our dataset by adding new companies,
we would like to reuse the same layout engine. As such, our layout engine must be generic
enough to layout other documents constructed from the same set of blocks.

State-of-the-Art

Before describing how to specify block semantics to create a treemap by manipulation, we offer
an overview of how this task would be accomplished without manipulation, using state-of-
the-art tools and techniques. In the process, we outline the challenges faced today by layout
designers.

Programmability How are layouts authored today? There are three main approaches for
creating layouts such as a treemap, each offering a distinct trade-off between ease of use and
how much control the designer has over the layout.

• Canned Layouts At one end of the spectrum, the most accessible approach consists of
picking a “canned” layout from a layout library such as Protovis or D3 (Heer and Bo-
stock, 2010; Bostock et al., 2011). Such libraries provide ready-to-use layout blocks; no
programming skills are necessary. However, the customization of the layout is limited
to selecting a visual “theme”. Visual aspects such as colors can be modified graphically

CHAPTER 1. INTRODUCTION 6

by non-programmers, but the more fundamental and algorithmic aspects of the layout
are fixed. To see why this is insufficient, imagine a biologist creating a phylogenetic tree
representing the evolutionary branching of species. The layering of nodes has an impor-
tant biological meaning. As such, precise control over this aspect of the layout is crucial
to him. This problem is particularly acute for scientific visualizations, which have very
specific layout requirements.

Moreover, layout libraries offer only a limited number of layout designs to choose from.
However, the universe of designs is virtually infinite. By considering only positional
aspects of tree layouts, such as the overall architecture (flat, radial, flower, etc., see Fig-
ure 2.2.3), the layering and space allocation strategies, we count over a hundred plausible
tree designs. It is unlikely that our biologist will readily find the required tree layout in a
library.

• Handwritten Custom Engines At the other end of the spectrum, writing the layout engine
by hand offers the most flexibility. However, this approach requires advanced technical
expertise. As such, it is inaccessible to a large audience of potential users, such as scientists,
most of whom do not program. Furthermore, layout engines are complex programs;
writing them by hand is time consuming. Based upon our experience, this task takes on
the order of days, even for seasoned programmers. As a result, trying out design ideas is
expensive.

• Constraints Constraints offer a middle ground between canned layouts and handwritten
layout engines. Constraints are arguably the most widespread and successful layout
programming technique. For instance, the foundations of TEX are laid upon constraint.
CSS, the ubiquitous web template language, also relies on constraints, although in a
more restricted and indirect manner3. With canned layouts, designers express their intent
indirectly, by composing a document fromavailable blocks. By stating high-level properties
of the layout directly (e.g., element A is left aligned with element B), constraints promise
to yield precise and predictable layouts.

However, programmingwith constraints is error-prone. Bugs in constraints aremanifested
by either ambiguities or conflicts (i.e., inconsistencies). Ambiguities arise when not enough
constraints are stated, resulting in documents which can be laid out in multiple, distinct,
and often unexpected ways. In practice, the layout chosen by the engine is unlikely
to be the indented one. Conflicts are caused by contradictory constraints; fulfilling all
constraints becomes impossible. Consequently, to produce some layout, some constraints
are disregarded by the layout engine, once again causing unexpected layouts. Either way,
both ambiguities and conflicts make the resulting layout difficult to anticipate; it appears
to the programmer as if chosen arbitrarily.

3CSS constraints are limited to unary functions of the parent’s attributes (Hurst et al., 2009).

CHAPTER 1. INTRODUCTION 7

Each of the three approaches has significant drawbacks. Creating complex layouts such as
data visualizations remains a difficult task for non-technical users and a time-consuming and
error-prone one for programmers today.

Performance Computing layout quickly enough is also a major technical challenge. For in-
stance, today’s web pages are typically constituted of over a thousand document nodes, for
each of which dozens of attributes must be computed in a fraction of a second to provide a
responsive user experience in interactive settings. Furthermore, data visualizations tend to be
much larger than web pages.

When layout is expressedwith constraints, the layout engine can be implemented by invoking
a general-purpose constraint solver such as Cassowary (Badros et al., 2001a). Each solution to the
constraints is a distinct layout. In practice, for performance reasons, all web browsers and most
visualization libraries rely on specialized solvers, manually tailored to solve one particular type
of layout. Such handcrafted solvers achieve efficiency by fixing a static traversal schedule of the
document. For instance, all CSS engines computewidth before height. However, such specialized
engines restrict the type of constraint supported, thus limiting the range of expressible layouts.

As an example of the rigidity caused by fixing the computation strategy, assume you would
like to layout a document with a sidebar which must be wide enough to display all of its content
on a single screen but must not overflow past the bottom of the screen. The contents of the main
panel, however, are allowed to overflow. To compute such a layout, one would first compute the
width of the sidebar, given the screen height, and then compute the main area height given the
sidebar width. This design is impossible to implement with CSS, which must always compute
height as a function of width.

To conclude, writing layout engines for constraint-based layout is challenging. The per-
formance of general-purpose constraint solvers is not satisfactory for the strict performance
requirements of layout, and handwritten layout engines place restrictions on layout computa-
tions which restrain designers.

Design Principles

We synthesize the challenges posed by the current layout programming techniques into four
desirable properties, covering both programmability and performance. These properties form
the design principles of Programming by Manipulation.

1. Accessibility Non-technical users should be able to control and customize the algorithmic
aspects of the layout such as, for instance, how the positions of an element are computed.

2. Predictability Layout should be predictable. That is, the layout specification must be de-
terministic: there must exist a unique layout satisfying the specification. The programmer
should be able to build a mental model of the computation taking place in the layout

CHAPTER 1. INTRODUCTION 8

engine. He should be able to understand how the resulting layout is entailed by his
specification.

3. Flexibility The creation of layouts should not be hindered by computational artifacts
imposed by the layout engine such as a fixed computation strategy (Figure 3.1.2). The
layout engine must adapt to the layout specification, and not vice-versa.

4. Efficiency Layout engines should be fast enough to be part of the interactive loop which
responds to user interactions.

From the four design principles outlined above, we derive three technical challenges. This
thesis proposes solutions for each of them:

• How to capture the layout specification at a level of discourse understandable by non-
technical users.

• How to alleviate and, if possible, entirely prevent ambiguities and contradictions, which
we believe are the two principal sources of bugs in layout specifications.

• How to generate efficient layout engines automatically from layout specifications.

We first outline how our approach addresses each of these technical challenges. Then, in the
following three subsections, we describe our solutions informally, using examples, and present
our design rationale.

Our Approach With PBM, designers specify layouts using special demonstrations called
manipulations. Using our manipulation tool (the manipulator), designers correct an existing
layout. Our tool infers the behaviors of blocks from the manipulations performed.

The manipulator prevents users from creating conflicts. Ambiguities are explained with a
visual summary highlighting which aspects of the layout are constrained and which aspects are
still “free”. The manipulator exploits this freedom to propose alternative layouts, facilitating
the exploration of potential layout designs. At the end of the manipulation process, we obtain
a specification of the layout blocks, based on constraints, which is free of both conflicts and
ambiguities.

Finally, by leveraging program synthesis, we compile the layout specification obtained by
manipulation into an efficient layout engine. Our synthesized layout engines are expressed as a
set of traversals over the document tree, like the tailored solvers handcrafted today by expert
programmers.

CHAPTER 1. INTRODUCTION 9

1.3 Programming by Manipulation
We illustrate the Programming by Manipulation workflow by creating a phylogenetic tree.
Phylogenetic trees represent the evolutionary branching of species over time (Figure 1.3.1). We
proceed in two main steps. First, we create a sample document by nesting blocks drawn from a
library of blocks. PBM blocks are flexible: they bundle many alternative constraints, for instance
one per alignment strategy. In a second step, using the manipulator, we “browse” potential
layouts of the sample document. Each layout stems from selecting a distinct combination
of alternative constraints in blocks. Each combination is called a configuration. We steer the
exploration by directly interacting with the layout of the sample document. By choosing one
configuration, the manipulator selects constraints for each block, thus establish their layout
semantics. The result a set of configured blocks in which all alternative constraints have either
been made mandatory or removed. Configured blocks constitute a layout specification.

Walkthrough To construct a phylogenetic tree, we choose the following three blocks from the
PBM library: treeRoot, innerNode, and treeLeaf. By selecting blocks, we define the broad class of
tree layouts, for instance whether the layout is Cartesian or Polar. In our case, we select the three
blocks forming the base of all Cartesian tree layouts. PBM blocks were created by an expert
programmers using L3 constraints.

Our blocks include alternative constraints for each design aspect (e.g., placement of tree
nodes into layers, spacing between layers, spacing between siblings, etc.). For instance, to layer
tree nodes, our library includes the following three alternative constraints: (L1) the same layer
for all nodes; (L2) layering based on tree depth; or (L3) layering based on a node’s distance to
its furthest leaf. Within each layer, other alternative constraints permit siblings to be placed
equidistant to each others, proportionally to their size, or proportionally to the size of their
subtree. The goal of manipulation is to “configure” each flexible block with a definite set of
constraints.

In the second step, we construct a sample document using our three flexible blocks. The
purpose of the sample document is to provide a support on which we will demonstrate the
desired layout. As such, we do not need to encode a large dataset into the sample document.
A small but representative subset will suffice. To avoid confusion between the representation
of the document as a tree of nodes and its layout, which is also a tree, we show the sample
document in XML.

1 <treeRoot>
2 <innerNode><treeLeaf/><treeLeaf/></innerNode>
3 <innerNode>
4 <innerNode><treeLeaf/><treeLeaf/></innerNode>
5 <treeLeaf/>
6 </innerNode>

CHAPTER 1. INTRODUCTION 10

7 </treeRoot>

Listing 1.3.1. The sample document.Weare going to demonstrate the desired layout using this document.
It is constructed from the three flexible tree blocks drawn from the PBM library.

Recall that blocks are flexible in that they bundle alternative constraints. The manipulator
starts by selecting an arbitrary set of alternative constraints (i.e., an arbitrary configuration),
solves them, and displays the resulting layout. Of course, this layout is unlikely to be the desired
one; we correct it by manipulation. At a high-level, PBM proceeds as follow: First, we highlight
one undesirable aspect of the layout by displacing one or more nodes. This constitutes a what is
wrong (WiW) manipulation. The manipulator responds by removing spurious constraints, thus
introducing ambiguities in the layout. Themanipulator also proposes how these ambiguities can
be resolved. Each resolution corresponds to adding new constraints. We choose one resolution
and repeat this process until we achieve the desired layout.

We illustrates this process in detail on Figure 1.3.1. We find the initial configuration unde-
sirable: inner nodes and leaves have been placed in the same layer (L1). To correct the layout,
we drag one inner node downward (WiW manipulation), asking the manipulator to remove
constraints L1, thereby introducing freedom to move some elements (these are the new ambigu-
ities). This moves the system to configuration B. Unlocked icons indicate partially constrained
nodes. These are (ambiguous) nodes that are free to move. A dashed line explains that the
selected node can move vertically. The manipulator proposes alternative options to “fix” these
free nodes; each is represented by an icon. For each such icon, some constraints are enabled.
When we drag the selected node and hovers it above one such icon, the manipulator shows a
preview of the resulting layout. Dropping the node into one such position adds the selected
constraints (L3 for inner nodes, L2 for leaves) leading to configuration C. C has no ambiguity.
We can now proceed to identify the next layout error (layering of leaves) and repeat this process,
moving from C to E.

UsingAmbiguities toDrive Exploration Unfortunately, themanipulator cannot prevent both
ambiguities and conflicts while letting users browse configurations freely. When removing or
adding constraints throughmanipulations, wewill be confronted by one or the other, depending
on which operation is performed first. PBM rules out conflicts while explaining ambiguities
with visual summaries.

PBM prevents conflicts from occurring by proposing to add constraints only if they are
conflict-free.When blocks are fully constrained (there is no freedom/ambiguity left), PBM forces
users to first remove constraints using a WiW manipulation before they can add new ones. The
manipulator explains ambiguities visually, using dashed-lines to summarize the freedom that is
present in the layout. For instance, in layout B of Figure 1.3.1, the purple node is vertically free.
That is, its vertical coordinate is unconstrained. As such, it could be laid out anywhere along
the dashed-line, subject to available constraints. The manipulator proposes alternative positions

CHAPTER 1. INTRODUCTION 11

1) User identifies undesirably positioned elements (here, inner nodes
and leaves are vertically aligned with the root). Next, he drags the
incorrectly positioned element(s), as if breaking the layout constraints
that hold the element(s) in the wrong position. This is a what is wrong
(WiW) manipulation.

2) Manipulator uses the manipulation to relax the layout constraints
so that elements dragged in the manipulation become unconstrained
and are thus free to move. The manipulator also computes the
alternative sets of constraints that can be enabled to make the layout
constraints unambiguous again.

3) User examines alternative layouts by dragging the element along the
newly introduced freedom. He selects the desired layout by dropping
the element into that position.

Starting
Configuration

WiW Manipulation

Manipulator

Manipulator disables constraints
that set the vertical positions of
inner nodes and leaves (L1).

Manipulator enables constraints
computing vertical position of
inner nodes (L3) and leaves (L2).

5) User repeats this process, identifying and correcting the remaining
wrongly placed elements. Here, some leaves remain placed incorrectly.

Resolution of
ambiguities

Freedom/Ambiguity

Free/Ambiguous Nodes

Alternative positions

Introduction of
ambiguities/freedom

4) Manipulator enables the corresponding constraints in response to
the user’s selection. The result is a non-ambiguous layout.

A

B

C
D

E

Figure 1.3.1. Demonstrating the node layering of our phylogenetic tree. The hand icon illustrates the
manipulation performed by the user. In configurations A and B, links between tree nodes are too short
to be visible.

CHAPTER 1. INTRODUCTION 12

for the purple node, enabling us to browse candidate layouts by alternatively introducing and
removing ambiguities in the design. By explaining ambiguities at a level understandable by
non-technical users, PBM turns ambiguities into a mechanism for exploring the space of layout
designs.

Interestingly, recent work took the opposite approach. ALE (Zeidler et al., 2013), a state-
of-the-art graphical user interface builder, rules out ambiguities by design and explain con-
flicts by computing the maximum satisfiable set of constraints. We believe that, compared
to conflicts, ambiguities are more amenable to be conveyed with summaries understandable
by non-programmers. To explain a conflict, one must show why something is impossible, a
property intrinsically difficult to visualize.

1.4 A Language of Constraints for Layout
To demonstrate the layout of our phylogenetic tree, we constructed a sample document by
instantiating flexible blocks. Blocks are created by an expert programmer using L3, a declarative
language of constraints. Constraints are packaged in composable modules called traits. L3

supports definitions of small “domain-specific” languages of documents using tree grammars.

Blocks Recall that a document is a tree of nodes. A block is akin to the type of a document
node and determines its layout semantics. Blocks define a set of attributes (e.g., positions and
sizes) as well as constraints over these attributes. To promote code reuse, blocks are constructed
by composing small bundles of constraints called traits. Within blocks, some constraints are
optional; others are mandatory. Optional constraints provide flexibility, non-programmers can
add or remove them using the manipulator. Mandatory constraints capture essential features
such as the definition of coordinate systems. All constraints are local; they refer to attributes of
the direct parent and children in the document hierarchy.

To illustrate the features of L3, we show two traits, both used in the definition of the hdiv
block of the treemap.

1 mandatory trait RelCartesian {
2 top + height = bot
3 left + width = right
4 x = parent.x + left
5 y = parent.y + top
6 }

8 optional trait HAlignChild0 {
9 child0.left = 0

10 child0.right = width
11 child0.right = child1.left
12 child0.left = child1.left
13 child0.right = 0

CHAPTER 1. INTRODUCTION 13

14 child0.left = width
15 ...
16 }

18 block hdiv with RelCartesian, HAlignChild0, ...

Listing 1.4.1. Two traits: one mandatory, one containing optional constraints. Both are composed (to-
gether with other traits) to define the hdiv block. Optional constraints will be configured by manipulation.
Equal symbols denote equality, not assignment. Qualifiers parent and childN are used to refer to attributes
of the parent and of the Nth child, respectively. Attributes left and top are the horizontal and vertical
displacements of a node with respect to its parent.

The first trait (RelCartesian) sets up a relative coordinate system based on the built-in (absolute)
Cartesian coordinates. As shown in Figure 1.4.1, the origin is in the top left corner. With the
relative coordinative system, each box can position itself relative to its parent via the left, top
attributes. These attributes control the horizontal/vertical displacement of a node (green box)
with respect to the top-left corner of its parent (blue box). All constraints of RelCartesian are
mandatory.

(0,0)
y

x top
left

width

height

x

y

Figure 1.4.1. The Cartesian relative coordinate system. Using attributes left and top defined by RelCarte-
sian, the green box can be positioned relative to its parent, the blue box. Blue attributes belong to the
blue box; green attributes belong to the green box.

The second trait (HAlignChild0) enumerates horizontal alignment strategies. These con-
straints are optional; a subset of them will be selected by manipulation. For instance, the first
constraint (child0.left = 0) set the left displacement of the first child of a node to zero. As a
result, the child and its parent (green and blue boxes in Figure 1.4.1) are left-aligned. For this
particular trait, in most cases, only a single constraint will be selected at any given time.

Non-Directionality One key feature of L3 constraints is their non-directionality: they abstract
away the flow of computation. For instance, the constraint stating that two children are left
justified (child0.left = child1.left) does not specify whether the first child is positioned in function
of the second child or vice versa. We delegate the determination of the flow of computation to
the compiler, thus raising the level of abstraction. The non-directionality of L3 constraints has
the following two benefits:

CHAPTER 1. INTRODUCTION 14

• Non-directionality enables the same block to be reused across layouts requiring distinct
flows of computations. This feature is particularly useful in interactive layouts, where
values may flow in either direction depending on the user’s action. Imagine a scroll-
box with a slider indicating the position of the viewport (Figure 1.4.2). The respective
positions of the slider and the content displayed in the viewport are bound by the following
relationship:

slider_position
slider_height

=
content_position
content_height

When the user drags the slider, the position of the content must be updated by the layout
engine. Conversely, when the user grows the content, for instance by typing text, the
position of the slidermust be recomputed. In either case, the same constraint is maintained.
With directional constraints, we would have to create two scroll-box blocks, one for each
flow of computation. Non-directionality lets us capture both scenarios concisely, with the
same L3 constraint, thus promoting code reuse. Furthermore, from the same specification,
we can automatically generate two layout engines, each updating the scroll-box layout in
response to one of the two user interactions.

B

A
D

C Slider

Content

Viewport

Figure 1.4.2. A diagram of a scroll-box. Labels denote the slider position (A), the slider height (B),
the content position (C), and the content height (D).

• Non-directional constraints greatly simplify the implementation of the manipulator by
abstracting away functional dependencies (i.e., the set of attributes read and computed by
each constraint). Values must be available for all attributes read by a constraint before it
can be used to compute more attributes. For instance, with directional constraints, the
manipulator would have to ensure the absence of cyclic dependencies when adding or
removing optional constraints. By delegating this task to the L3 compiler, the manipulator
can focus on interpreting users’ manipulations.

Languages of Documents Datasets inevitably change and grow. Therefore, layout specifica-
tions must be general enough to apply to updated documents reflecting such changes. In L3,
programmers can define languages of documents by specifying which block nestings are legal.
For our treemap visualization (Figure 1.2.1), we can define a language of treemap documents

CHAPTER 1. INTRODUCTION 15

by restricting block nestings as follows: (i) leaves of the document must be instance of the tile
block; (ii) inner document nodes must be instances of either hdiv or vdiv; (iii) hdiv and vdiv nodes
must alternate; and (iv) the root of the document is an instance of the root block. Languages
of documents are specified with regular tree grammars. We show below the grammar for our
language of treemaps.

S ::= root(H)
H ::= hdiv(V, V) V ::= vdiv(H, H)

| tile() | tile()

Listing 1.4.2. The tree grammar of our treemap language.Non-terminals are capital letters, terminals
are blocks. Notice how the grammar enforces the alternation of hdiv and vdiv blocks

Note that the document shown in Figure 1.2.1a belongs to our treemap language. Given a
language of documents, our L3 compiler is capable of generating layout engines supporting any
document belonging to the language.

1.5 Grammar-Modular Synthesis
To generate layout engines automatically from L3 specifications, we introduce a new pro-
gram synthesis algorithm called grammar-modular synthesis. Program synthesis (Manna and
Waldinger, 1980; Pnueli and Rosner, 1989) is the task of transforming high-level specifications
(e.g., relations) into executable programs (e.g., functions). Before we outline our algorithm, let
us take a step back and discuss the possible implementations of layout engines. There are two
kinds of layout engines for constraint-based layouts:

• General-Purpose Constraint Solvers Each document defines implicitly a constraint system
over its attributes as the conjunction of all block constraints. As such, given a document,
a general-purpose constraint solver can compute its layout (Sannella, 1994; Badros et al.,
2001a). Such solvers perform a potentially expensive backtracking search to find a solution
to the constraints; no analysis is performed off-line. In general, these engines support a
broad class of constraints.

• Tree Traversals Layout engines expressed as a series of traversals over the document
tree can solve the layout in linear time. Their efficiency stems from a static traversal
schedule; i.e. they do not determine dynamically which attributes must be evaluated next.
These engines are usually implemented manually by expert programmers for a specific,
restricted class of constraints. In practice, for performance reasons, all web browsers and
most visualization libraries use tree-traversal layout engines.

Instead of solving L3 constraints with a general-purpose constraint solver, we leverage program
synthesis to generate tree-traversal layout engines tailored to a language of documents expressed

CHAPTER 1. INTRODUCTION 16

in L3. In essence, synthesis automates the optimizations currently performed by the expert
programmers who write tree-traversal layout engines for visualization libraries.

There are two technical challenges preventing us from using state-of-the-art synthesis
techniques such as Sketch or Comfusy (Solar-Lezama et al., 2006; Kuncak et al., 2010):

• Scalability Layout specifications are significantly larger than what state-of-the-art syn-
thesizers can currently handle. For instance, the average web page contains over one
thousand document nodes, each with dozen of attributes. Current synthesis techniques
scale up to approximately 100 program variables.

• Genericity Program synthesis techniques generate one program from one relational
specification. In layout, each document constitutes a layout specification. As a result,
regardless of scalability, such techniques generate layout engines supporting only a single
document. When the document is modified, for instance by adding more companies and
subdivisions in a treemap, the layout specification implicit in the document also changes.
As a result, a new layout engine must be synthesized. To be practically useful, our layout
engines must be generic enough to handle languages of documents. Thus we need a
synthesis procedure capable of handling specifications of languages of documents.

Grammar-modular (GM) synthesis builds on top of state-of-the-art synthesis techniques to
meet the requirements outlined above. The key benefit of our synthesis is shifting the cost of
the backtracking search performed by general-purpose constraint solvers to compilation time,
leaving only value propagations and function applications for layout time. Our algorithm takes
advantage of the tree structure present in documents to decompose the specification into smaller
subproblems. Each subproblem can then be tackled in isolation with standard techniques and
their results are combined to form a layout engine.

Grammar-Modular Synthesis To synthesize a layout engine, we first decompose the L3 speci-
fication of a layout language at the level of blocks. Each block becomes an independent synthesis
problem. Then we use existing synthesis techniques to generate as many local functions as possi-
ble for each block. Each local function computes some of attributes of its block in terms of other
attributes from the same block. In essence, we functionalize the non-directional L3 constraints;
each local function represents one possible flow of computation. The final step consists of choos-
ing some local functions in each block and compose them together to create a layout engine.
This is the crucial step of GM synthesis. The resulting layout engine is an attribute grammar
(Knuth, 1968). That is, the execution of the local functions is syntax-directed by the structure of
the document to layout. As such, the resulting layout engine is capable of computing the layout
of any document constructed from the same set of blocks. Ultimately, the attribute grammar
can be scheduled into efficient tree traversals.

CHAPTER 1. INTRODUCTION 17

Example We illustrate GM synthesis on our treemap example. The goal is to create a layout
engine for our language of treemaps (Listing 1.4.2). The specification of a language of documents
is a set of configured blocks together with a grammar of legal nestings. Recall that by configuring
blocks with the manipulator, we selected a subset of alternative constraints which are now
mandatory; all non-selected constraints were removed. We show below all the constraints
defining the hdiv block after configuration by manipulation.

1 configured block hdiv {
2 top + height = bot
3 left + w = right
4 x = parent.x + left
5 y = parent.y + top
6 parent.scale = scale
7 scale * cap = height * width
8 height = child0.height = child1.height
9 children.top = 0

10 child0.left = 0
11 child0.right = child1.left
12 cap = child0.cap + child1.cap
13 }

Listing 1.5.1. The constraints defining the hdiv block. At this point, the hdiv block has been configured
by manipulation; all constraints are mandatory.

By applying synthesis locally on the hdiv block alone, we functionalize L3 constraints into
local functions. Each local function computes some attributes of hdiv in terms of other hdiv
attributes. For instance, the constraint scale ∗ cap = height ∗ width yields the following four
local functions:

scale :=
height ∗ width

cap
cap :=

height ∗ width
scale

height :=
scale ∗ cap

width
width :=

scale ∗ cap
height

The first local function can compute the scale if the height, width, and capitalization are known.
Each local function performs one possible propagation of values among the four attributes
bound by the constraint. Informally, we refer to such propagations of values as alternative flows
of computation.

The next step consists of determining which of these four functions must be used in the
layout engine. To do so, we now reason globally, on the entire language of treemaps. The goal
is to select just enough local functions within each block to be able to compute all attributes.
Choosing a sufficient set of local functions is the crux of GM synthesis. By doing so, we determine
the flow of computation through each block. In fact, the set of selected local functions can be
thought of as the semantic/evaluation rules of an attribute grammar.

CHAPTER 1. INTRODUCTION 18

We show below the local functions selected by GM synthesis for the hdiv block:

bot := (height + top) right := (width + le f t)
x := (le f t + parent.x) y := (top + parent.y)

scale := parent.scale cap := (child0.cap + child1.cap)
child0.height := height child1.height := height

child0.top := 0.0 child1.opt := 0.0
child0.le f t := 0.0 child1.le f t := child0.right

height :=
scale ∗ cap

width

At this point, we have constructed a layout engine capable of solving any document in our
language of treemap (Listing 1.4.2).

Finally, an attribute grammar scheduler can compile the set of selected local functions into
tree traversals. For instance, in our example, the cap attributes are computed first with a bottom-
up traversal, then the scale attributes are computed top-down. The final layout engine for our
language of treemaps is constituted of five tree traversals.

Our compiler uses the Superconductor (Meyerovich et al., 2013) attribute grammar scheduler
which can produce parallel and incremental layout engines. Ultimately, our layout engines are
compiled down to JavaScript and can be easily deployed in any web browser. We show below
the final product of the compilation: the five visitors of the hdiv block.

1 hdiv.prototype.visit0 = function() {
2 this.getChild(0).left = 0.0;
3 this.getChild(0).top = 0.0;
4 this.getChild(1).top = 0.0;
5 }

7 hdiv.prototype.visit1 = function() {
8 this.cap = this.getChild(0).cap +
9 this.getChild(1).cap;

10 }

12 hdiv.prototype.visit2 = function() {
13 this.right = this.width + this.left;
14 this.scale = this.parent_scale;
15 this.height = this.scale * this.cap / this.width;
16 this.getChild(0).parent_scale = this.scale;
17 this.getChild(0).height = this.height;
18 this.getChild(1).parent_scale = this.scale;
19 this.getChild(1).height = this.height;
20 }

22 hdiv.prototype.visit3 = function() {

CHAPTER 1. INTRODUCTION 19

23 this.getChild(1).left = this.getChild(0).right;
24 }

26 hdiv.prototype.visit4 = function() {
27 this.bot = this.height + this.top;
28 this.x = this.parent_x + this.left;
29 this.y = this.parent_y + this.top;
30 this.getChild(0).parent_x = this.x;
31 this.getChild(0).parent_y = this.y;
32 this.getChild(1).parent_x = this.x;
33 this.getChild(1).parent_y = this.y;
34 }

Listing 1.5.2. The five visitors of the hdiv block implemented in JavaScript. Visitors 0, 2, and 4 are
executed in top-down traversals; visitors 1 and 3 are executed bottom-up.

Using grammar-modular synthesis, we compiled the L3 specification of our treemap lan-
guage (itself configured by manipulation) into an efficient layout engine.

1.6 Collaborators and Publications
The work described in thesis is the fruit of a collaboration with Rastislav Bodík, James Ide,
Doug Kimelman, Per Ljung, and Kimiko Ryokai and has been introduced in prior publications
(Hottelier et al., 2014; Hottelier and Bodik, 2014).

20

Chapter 2

Programming by Manipulation

This chapter introduces a new programming methodology targeted at non-programmers for
specifying document layout—Programming by Manipulation (PBM). Users demonstrates the
desired layout on a sample document, directly interacting with its concrete layout by means of
special demonstrations called manipulations. The layout specifications are captured formally in
a language of constraints called L3 (Chapter 3). Such specifications can ultimately be compiled
to an executable layout engine working not only on the sample document used to demonstrate
the layout, but also on other documents constructed from the same blocks (Chapter 4).

We start by introducing the principles behind PBM: how we exploit ambiguities to navi-
gate the space of possible layout designs and how we prevent users from entering conflicting
requirements (Section 2.1). The following two sections (Sections 2.2 and 2.3) focus on the pro-
gramming methodology and present PBM from a user’s point of view. Then, we formalize the
concepts behind PBM and describe the central component (the PBM manipulator) as well as its
implementation (Section 2.4). Finally, we present our evaluation of the effectiveness of PBM and
report the results of two user studies on both proficient programmers and non-programmers
(Section 2.5).

2.1 Motivation and Approach
Today, the task of building complex layouts such as data visualizations requires the advanced
technical expertise of trained programmers. Libraries of “prepackaged” layouts offer only
limited design options to non-programmers. As as result, custom visualizations are out of reach
of many potential users, such as scientists, most of whom do not program. Before presenting
our solution, we summarize the programmability challenges posed by constraints.

CHAPTER 2. PROGRAMMING BY MANIPULATION 21

Programming with Constraints

By stating properties of the layout directly, constraints promise to yield a precise, high-level,
and predictable layout specification. However, manipulating constraints directly can be tedious
and error-prone. Specifically, programmers must carefully navigate between two hazards: ambi-
guities and conflicts. Ambiguities arise when we do not state enough constraints of the goal
layout (under-specification) allowing multiple distinct layouts to satisfy the constraint system.
The first solution found by the solver is unlikely to be the intended one. Worse, the selected
solution might be different each run, causing non-determinism. As such, ambiguities make the
resulting layout unpredictable for users. However, by stating too much (over-specification) we
risk introducing conflicts, i.e., inconsistencies among constraints. When a conflict occurs, there
exists no layout satisfying all constraints. Our user study (Section 2.5) shows that resolving such
conflicts can be challenging, even for experienced programmers. In practice, the solver is often
allowed to drop some constraints, sometimes based on a priority hierarchy, until the system
admits one or more solutions (Badros et al., 2001a; Zeidler et al., 2012).

Button1 Button2 Button3

 LongButton4 LongButton5

(a) Expected layout

Button1 Button2 Button3

LongButton4 LongButton5

(b) Computed layout

Figure 2.1.1. Unexpected spring-effects. On a document with 2 rows of buttons, we give the same
preferred height (i.e., the same spring force) to all buttons. We expect layout (a) but get layout (b) instead.
The combined spring force of the three buttons of the top row is stronger than that of the two buttons of
the second row, effectively squeezing them vertically. Example from Zeidler et al. (2012).

Ambiguities are commonly alleviated by casting layout as an optimization problem. If at
most one layout maximizes the utility metric, the ambiguity is removed. Leaving aside the
difficulty of capturing layout esthetics with a mathematical metric, optimization does not fully
address the problem. For instance, it is well known that optimization-induced “spring-effects”
result in unexpected layouts (Zeidler et al., 2012), forcing designers to twiddle with constant
parameters by trial and error (Figure 2.1.1). Furthermore, ambiguities are reintroduced when
conflicts are handled by dropping constraints, because there may be alternative ways to drop
constraints, each leading to a distinct layout. This choice falls back upon the solver, which does
not have adequate information to make an educated guess, even with priorities attached to
constraints.

For example, with CSS, text overflowing the borders of a container is a classic illustration
of conflict resolution not matching the designer’s intent. This phenomenon occurs with only
two boxes: Box A containing the text with a preferred width of 200px, and its decoration, box B,

CHAPTER 2. PROGRAMMING BY MANIPULATION 22

set to half as wide as the window (Figure 2.1.2a). The designer would like A to be contained
inside B. In CSS, this is expressed indirectly by making A a child of B. When the user resizes
the window to 300px, CSS will overflow the text of A out of B (Figure 2.1.2b). If B has a visible
border, the resulting layout is unlikely to please.

width=window.width

B: width=50%parent

A: width=200px

(a) A conflicting document

w=400

w=200

w=200

w=300

w=200

w=200

w=300

w=150

w=200

(b) Three layouts, each results from dropping one constraint (from left to
right): the containment constraint (A contains B), A’s width constraint, and
the window’s width constraint.

Figure 2.1.2. Dropping constraints leads to unpredictable layouts.When the window width is 300px,
the document is conflicting (a). To display the document, solvers drop some constraints, creating many
alternative ways to lay out the document. Three of which are shown (b).

Ultimately, ambiguities and conflicts have the same consequences for users: the resulting
layout may be unpredictable and may appear to be chosen arbitrarily. The only certain method
for determining the effects of constraints is to run the solver and examine its output. This
limitation motivated the programming of constraints by demonstration.

Programming by Demonstration

The advent of Programming by Demonstration (PBD) gave rise to GUI builders. They enable
users to express layout by example, from which the necessary layout constraints are inferred
automatically. By lowering the level of discourse to concrete visual entities (widgets), away
from abstract positioning rules, demonstrations make layout programming accessible to a wider
audience. For visual domains such as layout, a natural form of demonstration is a paper and
pencil sketch. However, users’ drawings contain small errors and imprecisions: they cannot
be interpreted literally by PBD systems. For this reason, GUI builders adopted a constructive
approach: instead of drawing the entire layout at once, users demonstrate step by step, by
progressively adding widgets onto a canvas. However, even with demonstrations, the central
issue remains: ambiguities and conflicts creep in during demonstrations, for example when
a new widget cannot be inserted without breaking a constraint on existing widgets. When a
conflict or ambiguity occurs, users have no other recourse than diving into the constraints to
resolve them manually, it may be a challenging task for someone who does not program.

We illustrate this problem with an example inspired by ALE (Lutteroth et al., 2008; Zeidler
et al., 2013). Using a GUI builder, we add two text boxes next to each other and horizontally
justified on a window 240px wide. We set the width of each text-box to 100px. By adding a

CHAPTER 2. PROGRAMMING BY MANIPULATION 23

third widget to the same row whose width must be at least 50px to be displayed properly, a
combo-box for instance, we create a conflict. The sum of width of our three widgets is over 240px.
When faced with this situation, XCode silently drops the width constraint of the text-boxes.
ALE extracts the relevant conflicting constraints to help the designer understand and eventually
repair the constraints manually.

We conclude that the fundamental causes behind the difficulty of programming with
constraints—ambiguities and conflicts—have not been fully addressed. There has been ex-
citing recent work in this area (Zeidler et al., 2013). Most notably, ALE has introduced a language
fragment (ALE excluding manual constraints) that is free of both ambiguities and conflicts. In
terms of programmability, this is an ideal language. However, some layouts can be difficult to
express. For instance, to center a widget globally, users need to manually add constraints from
outside this fragment, which may reintroduce conflicts.

Design Principles

With the understanding that ambiguities and conflicts are the central programmability issues to
address, let us now look at which other properties are desirable to build a practical system for
specifying layouts by demonstration. In particular, we look at the needs of data visualization
which is arguably the most challenging of our 3 layout domains (beside document and GUI).

Data visualization spans across the entire spectrum of layout types, from flow layouts to
guillotine layouts. Contrary to GUI layouts, data visualizations can be non-boxy (a radial tree)
or recursive (a treemap). As such, our approach cannot be tailored to any particular types of
layouts.

Datasets, which users turn into documents, inevitably change and grow. Therefore, layout
engines must be generic enough to be reusable for new, updated data. Moreover, scientific
datasets can be massive; users must be able to demonstrate the layout semantics on a small
subset of the data and then run the resulting layout engine on the full dataset.

Finally, as with all visual domains, user demonstrations of layouts are never pixel-perfect;
they contain small imprecisions which should not derail the PBD process.

We summarize our design principles in the following four points:

1. Ambiguities and conflicts must either be ruled out or be explained at a level of discourse
understandable by non-programmers.

2. The system must be resistant to the small imprecisions present in drawing-based demon-
strations.

3. The language of constraints must be rich enough to capture a wide class of data visualiza-
tions, including recursive and non-boxy ones.

4. Users must be able to demonstrate the desired layout on a small subset of their data. The
demonstration must generalize to other datasets.

CHAPTER 2. PROGRAMMING BY MANIPULATION 24

Programming by Manipulation

We propose Programming by Manipulation (PBM), a new example-driven programming par-
adigm, based on guided exploration of the space of layout configurations. We cast layout as
a satisfaction problem, avoiding the reliance on an optimization utility function. To help our
designer select constraints just sufficient to yield a single solution, we develop a manipulation
methodology that guarantees the absence of conflicts and actively steers the user away from
ambiguities by explaining them visually and proposing potential resolutions. Our manipulation
explores a design point opposite to ALE (Zeidler et al., 2013), which rules out ambiguities and
explains conflicts.

Creating a data-visualization with PBM proceeds in two main stages (Figure 2.1.3a). First,
the user selects the broad class of the layout, e.g., a tree, by building a sample document.
This document is constructed by instantiating building blocks from a library. Each block is
flexible, in that it encapsulates a large set of constraints that are individually activated based on
configuration switches. For instance, most blocks provide one constraint per alignment strategy,
and a switch controls which strategy the block should use. By choosing which blocks to use,
the user already defines the principal characteristics of the layout: is the layout flow-based (e.g.,
a tree) or guillotine-based (e.g., a treemap); is it radial or Cartesian? The sample document is a
partial specification of the layout; it is partial because the configuration switches have not yet
been set. This configuration process happens in the second step, where the user browses through
possible configurations, each yielding a different layout. The user does not toggle switches
directly. Instead, he steers the exploration by manipulating the layout of the sample document
by dragging blocks.

Our tool—the PBM manipulator—allows the user to perform two moves: (i) generalizing the
layout by disabling some constraints, thereby introducing ambiguities; or (ii) specializing the lay-
out by enabling new constraints, effectively resolving ambiguities. Generalizations are expressed
with a new type of demonstration which tolerates imprecisions in manual demonstrations, so-
called what is wrong (WiW) manipulations (Figure 2.1.4a). Like StopThat interactions (McDaniel
and Myers, 1999), WiW manipulations are negative demonstrations. Instead of indicating what
the desired layout should be, the user points out one incorrect aspect of the current layout by
dragging a block away from its constrained position. To interpret suchmanipulations, themanip-
ulator only considers the “direction” of the WiWmanipulation as opposed to the final locations
of the displaced blocks. Behind the scenes, the manipulator determines which constraints to
toggle off to allow the block to move in the demonstrated direction (Figure 2.1.4b). It does so by
choosing the ones for which the newly introduced ambiguities best align with the direction
of the WiW manipulation. We have essentially sidestepped the interferences originating from
the inherent imprecisions of user drawings. Specializations are expressed by letting the user
choose one layout feature among a range of options (Figure 2.1.4c). Only safe specializations
(conflict-free) are proposed.

Once the layout has been configured, we knowwhich constraints to use: we have established

CHAPTER 2. PROGRAMMING BY MANIPULATION 25

tile tile

tile tile

tile tile

vdiv

hdiv

vdiv

hdiv

hdiv

(a) First the user create a sample document, a tree of blocks (left). Then, starting from an arbitrary initial
configuration (middle), the user manipulates the layout (of the sample document) until obtaining the final
(desired) configuration (right).

(b) The final configuration can now be applied to larger datasets (documents).

Figure 2.1.3. Creating a treemap with PBM. The 3 stages (a) to establish a layout specification, which is
reusable (b).

the complete specification of the layout. We can finally turn the configuration into a layout
engine which takes the document as a runtime input and lays it out (Figure 2.1.3b).

Design Rationale

In the next two paragraphs, we take a step back to explain the design rationale behind the
following two features of PBM: (i) why exploration is a crucial feature of our approach; and
(ii) why we choose to prevent conflicts and explain ambiguities, and not vice-versa.

Let’s start by noting that the space of layouts established by the sample document is too large
to be explored exhaustively: the total number of combinations of switches grows exponentially
with the number of optional constraints. As such,we need an effectiveway to converge quickly on
interesting layouts. Our early prototypes askedusers to sketch the desired layout by repositioning
all layout elements in one big demonstration. They performed rather poorly: the combination of
switches inferred was rarely producing the desired layout, leaving users perplexed and without
knowing neither what they did wrong nor how to improve their demonstration. The reasons
for this failure are twofold: (i) drawing imprecisions create interferences; (ii) users are unaware
of which layouts are expressive from the constraints embedded in the sample document. While
the first point is specific to our domain, visual layout, the second point is a fundamental flaw of

CHAPTER 2. PROGRAMMING BY MANIPULATION 26

(a)WiWManipulation (b) Generalization (c) Specialization

Figure 2.1.4. Three steps to modify a barchart from overlapping bars to stacked bars. By dragging the
green box upward, past its snapping radius (a), we break its vertical positioning constraint. To explore
alternative layouts, freedom is introduced in response to our WiW manipulation by the PBM system (b).
Both green boxes, two instances of the same block, are now vertically free. Finally, by dropping one of
the green boxes onto the topmost specialization site (red icon), we fix the vertical position of both green
bars at once by adding a new constraint to the configuration (c).

traditional programming by demonstration: Lau eloquently points out in “Why PBD Fails” (Lau,
2009) that opaque design spaces whose boundaries are not discoverable by users is one of the
main reason PBD systems have not been as successful as expected. The target program, as
represented in a user’s mind, is often not expressible. Interestingly, Lau notes that there often
exists an equivalent program or a close approximation which is expressible and for which users
would settle. This led us to our exploration-centric approach which enables users to discover by
themselves good enough layouts.

Unfortunately, we cannot shield users from both ambiguities and conflicts: starting from a
deterministic layout of the sample document, to hop to the next deterministic layout, we must
toggle switches to both disable (generalize) and enable (specialize) constraints. Depending
on which operation is performed first, the user will be confronted at the intermediate point
with either an ambiguous or conflicting layout. We argue that conflicts are more difficult to
explain than ambiguities. Ambiguities can be conveyed by examples, by showing a range of
possible layouts. Whereas, to explain conflicts, one must spell out why something is impossible,
a task intrinsically more difficult to visualize. For this reason, we chose to prevent users from
ever creating conflicts and to alleviate ambiguities by explaining them with visual cues. We
condense all ambiguities into a few “axes of freedom” which convey not only which blocks
are unconstrained, but also which layout aspects of those blocks remain to be specified. For
instance, a block might have a fixed horizontal position while being unconstrained vertically.

CHAPTER 2. PROGRAMMING BY MANIPULATION 27

2.2 Overview of Programming by Manipulation
This section provides a detailed overview of layout by manipulation, using a phylogenetic tree
as a running example (Figure 2.2.2). The goal for our user is to establish the core aspects of
layout, such as position, size, alignment, and margins.

To create any visualization, we first need to construct a sample document. In a second step,
we will configure this document by directly manipulating its layout. Concretely, since we cast
layout specification as a satisfaction problem, we must find a combination of constraints leading
to a single, unique layout. This combination of constraints constitutes our “layout configuration”.
Once established, we can reuse the same configuration to create other documents which will
share the same layout properties. In CSS terminology, a layout configuration would be called a
template.

Creating a Sample (Unconfigured) Document

To create a sample document, the layout designer selects blocks from a library and nests them:
a document is a tree of instances of blocks. We call each block instance a (document) node. By
choosing which blocks to use, the layout designer is already painting the broad strokes of the
layout: a barchart and a tree are built from radically different blocks. For our phylogenetic tree,
we nest instances of three blocks: treeRoot is the root of our sample document, inner nodes
are instances of innerNode, and the leaves are treeLeaf. Figure 2.2.1 shows one possible sample
document for our phylogenetic tree. The sample document must be representative of the type of
documents to be supported by the layout configuration. In practice, we found that documents
with about 10 to 20 nodes are most useful. A tree with a single node does not provide enough
information. However, our biologist’s full dataset of over one hundred nodes for a phylogenetic
tree has too many entities, making manipulation difficult. We discuss how to specify “families”
of documents in Section 3.2.

Library of Traits/Blocks

tree
Root

inner
Node

tree
Leaf

Sample Document

Configuration Switches

Figure 2.2.1. A sample document for a tree layout. The user chooses three blocks in the library: treeRoot,
innerNode, and treeLeaf. Each block defines configuration switches controlling which constraints are
enabled. The user creates a sample document by nesting instances of blocks.

CHAPTER 2. PROGRAMMING BY MANIPULATION 28

Blocks Blocks are crafted from constraints by an expert programmer. They have flexible layout
behavior controlled by configuration switches that enable or disable individual constraints. It
is the role of manipulation to configure these switches. Each block contains both attributes
(e.g., sizes and positions) and constraints. Some attributes are known constants, for instance
the size of an image, while others need to be computed at runtime. The constraints defining a
block range not only over its own attributes but also over those of its neighbors in the document
hierarchy.

Since blocks are reusable across many visualizations, we collect them in a library. Each
block also bundles an English description of its function for layout designers. Other frequently
used blocks include horizontal/vertical dividers for guillotine layouts (h/vdiv), grouping boxes
(hbox, vbox, hvBox) for box-based layouts, floating elements for flow-layouts (floatBox), as well
as various containers. We introduce the language constraints behind blocks in Section 2.4 and
detail it further in Chapter 3.

Layout Under the hood, a document is a constraint system composed as a conjunction of
all enabled constraints. As such, each configuration (of switches) yields a different constraint
system. The set of all possible configurations forms the configuration space. Given a configuration,
the layout of a document is a solution to its constraint system. In other words, a layout is an
assignment of values for each document’s attributes, such that all enabled constraints are
satisfied. Depending on how many layouts exist for a document, we distinguish three kinds of
documents:

• A document is deterministic if it admits exactly one layout.

• A document which admits more than one layout is ambiguous.

• A document for which there exists no layout is inconsistent: some of its constraints are
conflicting.

We compute the layout of a configured document by solving the corresponding constraint
system. Modern solvers such as Z3 (De Moura and Bjørner, 2008) can handle documents with
hundreds of blocks in less than a second. Finally, once the document is laid out, it can be passed
to a renderer for display.

A layout engine is an executable layout configuration: a program which takes as input any
document built from the same set of blocks and computes a layout for it. Some templates
can be compiled into efficient tree-traversal layout engines. Unlike general purpose constraint
solvers, such engines do not perform a costly backtracking search. We discuss how to compile
configurations to layout engines in Chapter 4.

CHAPTER 2. PROGRAMMING BY MANIPULATION 29

Demonstrating the Layout Configuration

To establish the finer aspects of the visualization, the layout designer explores the configuration
space in search of the configuration which yields the best layout of the sample document. We
built a tool supporting this exploration-centric workflow: the PBM manipulator, devised to
help layout designers finding an interesting layout quickly, even in huge configuration spaces.
PBM turns conventional demonstrations upside down: Instead of directly demonstrating the
goal, layout designers highlight one layout aspect (e.g., horizontal alignment) they would like
to change by dragging one document node away from its constrained position. We call such
manipulations “what is wrong” (WiW) manipulations.

The manipulator presents the layout of the sample document according to the currently
active configuration. The exploration always starts from an arbitrary configuration that yields
a deterministic document. Then, by manipulating the layout itself, the layout designer can
make a step in the direction of his choosing, which enables him to hop from configuration to
configuration. To steer the exploration, the layout designer either (i) points out an incorrect
layout feature; or (ii) chooses an alternative layout from among a range of options. Figure 2.2.2
details the exploration steps and Figure 1.3.1 illustrates the user interactions, both on our
phylogenetic tree. In four manipulations, we establish the desired tree layering.

The layout designer’s manipulations are translated into two types of “moves” through the
configuration space. One move introduces ambiguities and the other one resolves them:

• Generalizations introduce ambiguities by switching off one1 constraint currently enabled,
effectively weakening the constraint system of the sample document. By toggling off one
constraint, we move to a new configuration which admits a superset of the layouts of the
current configuration. Generalizations are expressed with WiW manipulations: the user
highlights incorrect aspects of the layout by dragging nodes to displace them from the
position constrained by the current configuration. Generalizations are triggered by the
“Break Rules” button (Figure 2.2.3a).

• Specializations resolve ambiguities by strengthening the constraint system of the current
configuration. To do so, we switch on one disabled constraint, which brings us to a new
configuration admitting a subset of the current configuration layouts. To specialize a
layout, users choose one layout from a list of alternatives.

To browse configurations effectively, layout designers need to understand the nature of the
configuration space: they need to know both “where they are” and “where they can go”. While
removing constraints (generalization) is always possible, adding constraints (specialization) can
create conflicts. As such, the manipulator must also convey which constraints can be added

1Constraints are actually switched on or off in groups to handle interdependencies and subsumption. To
simplify the presentation, we assume that only one constraint is toggled after each step.

CHAPTER 2. PROGRAMMING BY MANIPULATION 30

safely to specialize the current configuration. This translates into two responsibilities for the
manipulator: explaining ambiguities and proposing potential resolutions.

Introducing Ambiguities by Breaking Constraints To control the introduction and resolu-
tion of ambiguities, users need to know not only which nodes are free (i.e., not fully constrained)
but also which aspects (e.g., height or horizontal position) of the nodes are free. A naive solution
would be to display each and every possible layout of the sample document. Unfortunately, this
is impractical: an ambiguous configuration may admit a very large, sometimes even unbounded,
number of layouts. For example, in the barchart illustrated in Figure 2.1.4, we remove the vertical
stacking constraint of the green bars through a generalization step. As a result, their vertical
positions become completely unconstrained, yielding an unbounded number of ways to lay
out the green bars. This example illustrates the need to synthesize all ambiguities present in a
document into a brief summary, understandable by users at a glance.

We visualize the ambiguity of a layout with dashed lines, which show which nodes are free
and how they are free to move. We call these dashed lines axes of freedom. More technically, we
summarize the ambiguity with an ambiguity base, which is an algebraic base of the space of all
admissible layouts of the sample document. The ambiguity base is the same concept as the base
of the solution space of a system of equations in linear algebra. In essence, we condense all
admissible layouts into the set of independent dimensions. To translate this base into a graphical
summary understandable by users, we display one admissible layout, augmented with axes
of freedom, one per dimension of the ambiguity base. The manipulator highlights free nodes
with unlocked icons. When the user selects a free node, the manipulator displays its axes of
freedom. For ambiguity dimensions related to positional attributes, we represent each with
a dashed line. Similarly, for attributes related to sizes of elements, we overlay a double arrow
mimicking familiar resizing icons. To do so, the manipulator understands the visual semantics
of common block attributes. Figures 2.2.3a and 2.2.3b show two ambiguous configurations and
their respective axes of freedom, both on Cartesian and polar layouts.

As a bonus, we can use the ambiguity base to make browsing more intuitive through
semantic snapping (Hudson and Yeatts, 1991). For instance, nodes which are dragged beyond
the layouts admissible by current configuration should resists the user’s action by snapping
back to a legal position. As a result, users can “feel” constraints by manipulating nodes. This
also enables us to explain generalizations with the following UI metaphor: by dragging a node
past its snapping radius, the user is“breaking” constraints. We detail how to compute ambiguity
bases in Section 2.4.

Proposing Resolutions (Specializations) After the designer breaks some constraints, he pro-
ceeds to remove the ambiguity by introducing other constraints. Our tool proposes safe resolu-
tions by computing which constraints can be enabled without creating a conflict. Each of these
constraint yields a safe specialization of the current configuration

CHAPTER 2. PROGRAMMING BY MANIPULATION 31

1 Generalization, disabling:
@TreeNode
-- Poffset / Pspacing = Root.length - length
-- Poffset = depth * Pspacing
-- Pspacing = 0
@TreeLeaf
-- Poffset / Pspacing = Root.length - length
-- Poffset = depth * Pspacing

2 Specialization, enabling:
@TreeNode
++ Poffset / Pspacing = Root.length - length
++ Root.length * Pspacing = Window.width
@TreeLeaf
++ Poffset = depth * Pspacing

3 Generalization, disabling:
@TreeLeaf
-- Poffset = depth * Pspacing

4 Specialization, enabling:
@TreeLeaf
++ Poffset / Pspacing =
 Root.length - length

A B

C D

E

Figure 2.2.2. The five configurations explored to specify the node layering of a tree. The hand icon
illustrates the manipulation performed by the user. Configurations B&D are ambiguous; their axes of
freedom are shown only for the selected node. To illustrate the effects of generalizations and specializa-
tions, we give the constraints disabled (red) and enabled (green) by each manipulation. The constraints
shown control the computation of Poffset, the distance between a node and its parent. For each node, the
depth attribute is the distance to the root node; the length attribute is the distance to its farthest leaf.

CHAPTER 2. PROGRAMMING BY MANIPULATION 32

(a) A flat ambiguity base and the manipulator ’s GUI (b) Radial

Figure 2.2.3. Two examples of ambiguity bases. Ambiguous (free) nodes are indicated with unlocked
icons. The manipulator displays the ambiguity base of the selected node with axes of freedom (dashed-
lines). Here, the bases of each selected node are constituted of a single axis. To enable users to “feel”
constraints, each node moves freely along its axes of freedom, but resists displacement in other directions
by snapping to its axes. We also show the manipulator’s user interface (a). The “Break Rules” button
triggers generalizations.

To communicate available specializations to the layout designer, we represent each of them
as a point in the ambiguity space. Given a free node, we mark the points on its axes of freedom
where the node would be positioned if that specialization were chosen. Our interface uses
semantic snapping to emphasize these specialization points (Hudson and Yeatts, 1991). The
user chooses one of them by drag&dropping a free node onto one of its specialization points.
For example, in Figure 2.1.4b, the green bars are vertically free. The underlying block behind
both green bars embeds multiple vertical alignment constraints. In this simple case, each green
bar could be positioned, relative to its respective blue bar, below, above, or vertically aligned
along its bottom edge. Each of these positions is marked on the axis of freedom of each green
bar, providing a visual enumeration of the potential resolutions. Behind the scenes, each of
these positions constitute a specialization of the current configuration. To select one, the user
drags and drops one green bar onto a marked site, as illustrated in Figure 2.1.4c.

2.3 Creating New Traits From Constraints
In this section, we briefly explain how the expert programmer creates new traits. Each trait
bundles constraints pertaining to one layout aspect such has horizontal alignment. The expert
programmer maintains a library of traits in which the user can choose and compose traits to
form new blocks. To give the flavor of L3, we present two examples of traits. For a detailed
description of L3, we refer the reader to Chapter 3.

The same constraints are reused across many blocks: for instance, all boxy blocks implement
the CSS box model which defines margins, borders and padding. To avoid duplicating such

CHAPTER 2. PROGRAMMING BY MANIPULATION 33

concepts in every block, the library supports composable modules of constraints called traits.
Beside box models, we have traits for concepts such as horizontal/vertical alignment, grouping,
spacing, justification, guillotine dividers, etc. Under the hood, our language of constraints
is based on SMT theories (Barrett et al., 2010) which provides an expressive set of primitive
constructs.

We present below one trait setting up a polar coordinate system. It is used by all our radial
layouts (e.g., Figure 2.2.3b).

1 mandatory trait Polar2Cartesian {
2 x = radius * cos(angle)
3 y = radius * sin(angle)
4 }

While most constraints are enabled by configuration switches, there exists a few mandatory
ones for essential features such as coordinate systems, as shown above. We show below a
trait of optional constraints for controlling the horizontal alignment of the first child of a box.
The optional keyword indicate that not all constraints must be upheld; the user will choose
a subset of them by manipulation. Note that the configuration switches are implicit. Equal
symbols signify equality, not assignment.

1 optional trait HAlignChild0 {
2 child0.left = 0
3 child0.right = width
4 child0.right = child1.left
5 child0.left = child1.right
6 child0.right = 0
7 child0.left = width
8 ...
9 }

The first pair of constraints aligns the left/right edge of the (first) child with the corresponding
edge of its parent. The next pair places the child to the left/right of its sibling. The last pair of
constraints place the child just outside its parent, on the left/right of it.

2.4 The PBMManipulator
In this section, we present the foundations behind the PBM manipulator, the principal compo-
nent of PBM. Themanipulator interprets user manipulations and translates them into either gen-
eralizations or specializations. We start by enumerating the tasks which must be accomplished
by the manipulator. Then, we formalize key concepts such as generalization and specialization
which were introduced in the previous two sections (Sections 2.2 and 2.3). Finally, we explain
how the manipulator fulfills each of its tasks and outline our implementation.

CHAPTER 2. PROGRAMMING BY MANIPULATION 34

The manipulator has to function out-of-the-box with any blocks written by the expert pro-
grammer, and do so without requiring any modification. In essence, the manipulator must be
constraint-agnostic. The responsibilities of the manipulator can be summarized in five compu-
tational tasks. Given a sample document, the manipulator must:

1. Find a deterministic configuration. This is configuration is the starting point of the user-
guided exploration.

2. Given a configuration, compute the layout of the sample document.

3. Given a configuration, compute its ambiguity base.

4. Given configuration, compute which specializations are safe (i.e., conflict-free).

5. Given a WiW manipulation, generalize the current configuration.

We accomplish these five tasks by encoding the entire configuration space defined by the
sample document in SMT theories. Conveniently, our satisfiability approach to layout lets us
cast all five manipulator tasks as satisfiability queries. Before detailing the computation of each
manipulator task, let us introduce the formal bases on which we will define generalizations,
specializations, and finally ambiguity bases.

Preliminaries

We start by stating formally concepts whichwere previously introduced informally in Section 2.2.
Recall that a block is defined by a set of constraints, some of which can be activated or disabled
by configuration switches. Blocks are detailed in Section 3.2.

Definition 1 (Document). A document is a tree of block-labeled nodes. For every document d, let
rel(d) be the underlying constraint system representing d.

Formally, rel(d) is constructed by taking the conjunction of the constraints behind each
node in d. The variables of rel(d) are either (i) document attributes; or (ii) boolean configuration
switches.

Definition 2 (Configuration). A configuration of a document is a boolean valuation of its configu-
ration switches. We write dc to denote the document d configured with configuration c.

Let rel(dc) be the constraints system resulting from applying configuration c to document d.
Formally, rel(dc) is constructed by substituting each configuration switch of rel(d) by its value
in c. As such, the only variables remaining in rel(dc) are document attributes.

We define two convenience functions—on(c) and o f f (c)—which return, respectively, the
set of enabled and disabled switches of configuration c.

CHAPTER 2. PROGRAMMING BY MANIPULATION 35

Definition 3 (Layout). A layout of document d under configuration c is a solution of rel(dc). A con-
figuration is conflicting if rel(dc) admits no layout, deterministic if rel(dc) admits exactly one layout,
and ambiguous if rel(dc) admits two or more layouts. Let a safe configuration be either deterministic
or ambiguous.

In practical terms, a layout is a mapping from document attributes to values. We write x.a
to refer attribute a from the node x. Given a layout l, l[x.a] denotes the value of attribute a from
x in layout l.

The space of all possible configurations of a document has a lattice structure. Let C be the set
of all configurations for a given document. We define the partial order v on C as follows:

∀c1, c2 ∈ C. c1 v c2 ⇔ on(c1) ⊆ on(c2).

As such, L = (C,v) forms a complete subset lattice. The lattice order is connected with the
solutions of rel(dc), as shown below:

Lemma 1. Configurations and layouts of a given document obey the following correspondence:

∀c1, c2 ∈ C. c1 v c2 ⇔ rel(dc1) ⊇ rel(dc2).

Consequently, we can also view the order v as a measure of determinism. Greater configu-
rations are more deterministic thus less ambiguous. The infimum (bottom element) of L is the
configuration with the most ambiguity: none of its constraints are enabled. Conversely, to supre-
mum (top element) of L is the configuration with all constraints enabled. This configuration is
likely to be conflicting.

Recall that the manipulator prevents users from encountering conflicting configurations. As
such, users only explore a subset of the configurations of C, the safe ones. To formally define
generalizations and specializations—the two moves users can make through the configuration
space—we introduce a new lattice containing only safe configurations. Let Ls = (Cs,v) be
the lattice representing the space of explorable configurations, where Cs ⊆ C is the set of safe
configurations. Since we have removed conflicting configurations, Ls is only a lower semi-lattice.

We are now ready to define generalizations and specializations on Ls. Generalizations can be
viewed as moving down one level in Ls. Conversely, specializations are defined as moving up
in Ls by one level.

Definition 4 (Generalization/Specialization). Let gen(c) = max(lb(c) \ c) and spec(c) =
min(ub(c) \ c) denote, respectively, the set of generalizations and specializations of configuration
c, where lb/up denotes the set of lower/upper bounds in Ls and max/min denotes the set of maxi-
mal/minimal elements in Cs with respect to v.

CHAPTER 2. PROGRAMMING BY MANIPULATION 36

Intuitively, gen(c) are the configurations immediately below c in the lattice Ls. Conversely,
spec(c) are the configurations immediately above c. Note that spec(c) = ∅ for all deterministic
configurations. Interestingly, the process of navigating the space of configurations by manipula-
tion is not monotonic: by alternating generalizations and specializations, the user moves both
up and down in Ls.

Finding an Initial Configuration and Computing Layout

To accomplish the five computational tasks of themanipulator, we encode both rel(d) and rel(dc)
in SMT theories (Barrett et al., 2010). This enables us to phrase each of of the five manipulator
tasks in terms of satisfiability queries. As a result, we can leverage the power of SMT solvers to
perform heavy computations. Our implementation of the manipulator uses Z3 (De Moura and
Bjørner, 2008) as solver. We briefly outline our encoding before explaining how to compute the
manipulator tasks.

We encode rel(d) by prefixing optional constraints with boolean guards acting as configura-
tion switches:

guard1⇒ optional_cstrnt1∧ mandatory_cstrnt ∧
guard2⇒ optional_cstrnt2∧ . . .

Each individual constraint is further encoded in the appropriate SMT theory. To produce
parametric layout engines capable of working on multiple documents built out of the same set
of blocks, we make the assumption that all nodes of the same block type obey the same set
of constraints. We enforce this property by sharing the same guard variables across all nodes
labeled with the same block.

Initial Configuration The first computational task consists of finding an initial configuration
which deterministic. While it would be possible to exhaustively compute all safe configurations
(Cs) by enumerating the solutions of rel(d), such an enumeration would be impractical since
Cs can be very large (exponential in the number of optional constraints). Furthermore, most
configurations would likely never be visited by users, effectively wasting computations. To
avoid a costly enumeration, we opted for a greedy approach: we query the solver for more
deterministic (more switches toggled on) configurations until we obtain a deterministic one, as
illustrated in Algorithm 2.4.1. Once an initial deterministic configuration has been found, all
computations are performed on-demand, in response to users’ actions.

There exists documents for which Algorithm 2.4.1 will not find a deterministic configuration.
Such cases arise in when an ambiguous configuration c has no upper-bound in Ls other than
itself. In other words, when an ambiguous configuration which cannot be made deterministic
by enabling one or more of its currently disabled constraints; doing so would always result in a

CHAPTER 2. PROGRAMMING BY MANIPULATION 37

Algorithm 2.4.1. Finding an initial configuration which is deterministic.Note that solu-
tions to rel(d) provides us not only with a safe configuration c but also with one possible
layout l of dc.
Input: A sample document d
Output: A deterministic configuration of d

begin
/* Start with an arbitrary configuration c and its layout l. */

(c, l)← SatModel(rel(d))
while IsSat(rel(dc) ∧ ¬l) do /* Check if c is ambiguous. */

Son ←
∧

s∈on(c) s = >
Smore ←

∨
s∈o f f (c) s = >

/* Find a new configuration with at least one more switch

enabled. Such a configuration is guaranteed to exist only

in well-formed documents. */

(c, l)← SatModel(rel(d) ∧ Son ∧ Smore)
end
return c

end

conflicting configuration. In such cases, Algorithm 2.4.1 fails when it queries the solver for a
safe configuration more deterministic than the current one.

We define a class of well-formed documents on which Algorithm 2.4.1 always succeeds.

Definition 5 (Well-Formed Documents). A document d iswell-formed iff all ambiguous configura-
tions have at least one upper bound in Ls other than itself. That is, ∀c ∈ Cs. ub(c) ⊃ c. Or equivalently,
iff for every ambiguous configuration c of d there exists at least one configuration switch s in o f f (c)
such that rel(dc) ∧ s = > is satisfiable.

Lemma 2. Algorithm 2.4.1 always successfully find a deterministic configuration on well-formed doc-
uments.

We consider that it is the responsibility of the expert programmer to ensure that documents
are well-formed when creating traits. Note that malformed documents pose problems beyond
just computing the initial configuration. When navigating the space of configurations, mal-
formed documents create situations in which the user faces a configuration with ambiguities
but cannot resolve them because there exists no safe specialization. Hemust first introduce more
ambiguities (i.e., generalize) to reach a configuration which can be specialized. Such situations
are counter-intuitive thus undesirable.

Computing Layout The second computational task, computing the layout of d under con-
figuration c, can be performed simply by querying a satisfiable assignment to the document

CHAPTER 2. PROGRAMMING BY MANIPULATION 38

attributes of rel(dc). To do so, we encode to constraint system of a configured document, rel(dc)
by replacing each boolean guard in rel(d) by its value in c.

Computing the Ambiguity Base

For the third computational task, the manipulator computes the ambiguity base of a configura-
tion. Recall that the ambiguity base is needed to augment layouts shown to users with axes of
freedoms which visually convey which ambiguities are present in the current configuration.
Informally, an ambiguity base is a summary of all the layouts admissible by a document d under
a given configuration c.

More formally, an ambiguity base is an algebraic base of the solution space of rel(dc). If
document d has n attributes, each ambiguity base of d (one per configuration) spans a subspace
of Rn. The ambiguity base of deterministic configurations has zero dimension; it is a single
point in Rn. The base of ambiguous configurations has one or more dimensions.

Definition 6 (Ambiguity Base). Given a document d and a configuration c, the ambiguity base of
c is an algebraic base of the solutions of rel(dc). Each point in the ambiguity base is a layout of d under
configuration c.

Unfortunately, computing ambiguity bases for all but the smallest documents is intractable in
practice. If all constraints in d are linear equalities, Gaussian elimination can compute ambiguity
bases efficiently. But in practice, we observed that most layouts contain non-linear constraints
and sometimes also inequalities. For such constraints, the best known algorithm to compute
ambiguity bases is Cylindrical Algebraic Decomposition (CAD) (Collins, 1975), which has a
worst-case complexity triply exponential in the number of document attributes. Even small
documentswith a dozen boxes can have over hundred attributes. As such, usingCAD to compute
ambiguity bases would be prohibitively expensive, especially since the manipulator must be fast
enough to be used interactively. Consequently, our implementation of the manipulator relies on
an approximation of ambiguity bases which is fast to compute.

Given a configuration c, we approximate its ambiguity base by computing the subset of
document attributes which can admit more than one than one value in dc. Each such attri-
bute becomes one independent dimension of the approximated ambiguity base. As such, our
approximation ignores all relationships between attributes forming the ambiguity base. For
instance, the size of an image might be unconstrained with the exception of its aspect ratio:
4 ∗ height = 3 ∗ width. Such relationships are lost by our approximation: we will consider
both height and width to be independent dimensions. Algorithm 2.4.2 describes how to compute
approximated ambiguity bases.

Definition 7 (Approximate Ambiguity Base). Given a document d and a configuration c, let M
be the subset of attributes of d which admit multiple values in the solutions of rel(dc). The canonical

CHAPTER 2. PROGRAMMING BY MANIPULATION 39

(or natural) base stemming from turning each attribute in M into a unit vector is an approximated
ambiguity base.

In essence, we over-approximate the precise ambiguity base with an enveloping base of
higher dimensionality. In practice, we found that our approximated bases were good enough
for explaining to users which ambiguities are present in a given configuration.

Lemma 3. Approximated ambiguity bases are sound over-approximations. The approximated ambi-
guity base of a configuration c spans the entire subspace defined by the precise ambiguity base of c.
Consequently, for all configurations, the dimensionality of the approximated ambiguity base is always
larger or equal to that of the precise ambiguity base.

Algorithm 2.4.2. Computing the ambiguity base of a configuration. Recall that a docu-
ment is a tree of nodes labeled with blocks. Notice that we do not need to iterate over all
document attributes since all nodes of the same block type share the same constraints.
Consequently, we only iterate over all attributes once per block, as opposed to once per
node.
Input: A sample document d and a configuration c
Output: An approximated ambiguity base of c

begin
B← ∅
/* Find one layout of dc. */

l ← SatModel(rel(dc))
foreach box b in d do

foreach attribute a of box b do
/* Lookup value of a for any instance of b in l. */

Let x be any node labeled with block b in d.
v← l[x.a]
/* Check if a can have a value other than v. */

if IsSat(rel(dc) ∧ (x.a 6= v)) then
B← B ∪ {b.a}

end
end

end
return B

end

CHAPTER 2. PROGRAMMING BY MANIPULATION 40

Computing Generalizations and Specializations

It remains to explain the last two computational tasks of the manipulator: (i) computing the set
of safe specializations of the current configuration; and (ii) generalizing a configuration given a
WiW manipulation. We start with computing safe specializations.

Formally, for any configuration c, we must compute spec(c), the set of safe specializations
over Ls. We can do so with a straightforward iterative process (Algorithm 2.4.3). For each
disabled configuration switch s in c, we enable s and attempt to compute a layout for the
resulting configuration. We reject all configurations which do not admit any layout and thus
are conflicting.

Algorithm 2.4.3. Computing the set of safe specializations of a configuration.Wedenote
by c[s := >] the configuration resulting from enabling switch s in c
Input: A sample document d and a configuration c
Output: The set of safe specializations spec(c)

begin
R← ∅
foreach switch s in o f f (c) do

if IsSat(rel(dc) ∧ s = >) then
R← R ∪ {c[s := >]}

end
end
return R

end

Unlike specializations, generalizations are always safe: conflicts cannot be introduced by
disabling constraints. However, contrary to specializations which are chosen explicitly by the
user when he drops a element onto a specialization point, generalizations are selected indirectly
with WiWmanipulations. To generalize the current configuration, the manipulator must decide
which constraints to disable (or equivalently which ambiguities to introduce) based on the
user’s WiW manipulation.

First, we compute gen(c), the set of candidate generalizations of the current configuration c.
Since generalizing is always safe, this is set is simply an enumeration of all configurations with
one less switch toggled on than c. Our task is to choose the “best” candidate with respect to the
WiW manipulation. Intuitively, the best candidate is the configuration whose ambiguities are
most in line with the WiW manipulation. For the sake of explanation, let’s assume that only
one block was displaced by the user. Consequently, we abstract the WiW manipulation into one
vector, capturing the direction of displacement. Then, we rank candidates by computing a score
based on how many dimensions of their ambiguity base align with the manipulation vector.

CHAPTER 2. PROGRAMMING BY MANIPULATION 41

m

Original
 Layout

Manipulated
 Layout

(a) Manipulation

x

y

width

Ambiguity base:
{x, y, width}

m

(b) Candidate 1

x

height

width

Ambiguity base:
{x, height, width}

m
(c) Candidate 2

Figure 2.4.1. Generalizing a configuration given a WiW manipulation. On a document consisting of a
single box, the user performs the following WiW manipulation: shrinking the box in half, effectively
dividing both its height andwidth by 2 (a). This manipulation is represented by the vector ~m. We consider
two generalization candidates and show their respective ambiguity base (b&c). The manipulation vector
aligns with one dimension (width) of the first candidate’s base. However, the same manipulation vector
aligns with two dimensions (height, width) of the second ambiguity base. Consequently, we would
prefer candidate 2 over candidate 1. Informally, the best candidate is the one whose ambiguities express
~m most completely.

Informally, we are counting how many of the principal components of the manipulation vector
can be expressed in terms of the ambiguity base, as illustrated in Figure 2.4.1.

Definition 8 (WiWManipulation). Given a document d, aWiWmanipulation is a vector ~m in Rn,
where n is the number of attributes of d, capturing the changes to the layout of d made by the user.

More technically, we compute the dot-product between the manipulation vector ~m and each
dimension of the ambiguity base, both normalized to unit length. We consider that ~m aligns
with an ambiguous dimension if their dot-product is greater than some threshold. We chose 1√

k
,

where k is the dimensionality of the ambiguity base. This threshold corresponds to the value of
the components of a unit vector of dimension k whose components are all equal. In practice, we
found that this threshold seems to work well. To rank generalization candidates, we assign to
them a score equal to the number of dimensions which align with ~m. Algorithm 2.4.4 details
the score computation.

Once the scores for all generalization candidates have been computed, the manipulator
chooses the candidate with the highest score. Note that our ranking method does not impose a
total order on candidates, but we found ties to be a rare occurrence in practice. As a last resort,
we break ties by also considering the positions of the displaced elements and selecting the
configuration admitting the closest layout with respect to a sum of squared differences metric.
Let lm be the layout of the document d after being manipulated by the user. We break ties by

CHAPTER 2. PROGRAMMING BY MANIPULATION 42

Algorithm 2.4.4. Ranking generalization candidates. The score represents how well the
ambiguities of the candidate align with the WiW manipulation performed by the user.
Input: A generalization candidate c and a WiW manipulation ~m.
Output: A score capturing how well the ambiguities of c align with ~m.

begin
r ← 0

~m0 ←
~m
‖~m‖

B← AmbiguityBase(c)
k← rank(B)
foreach dimension ~d of B do

// We assume that ~d is already unit length.

if ~d · ~m0 ≥ 1√
k
then

r ← r + 1
end

end
return r

end

choosing the configuration c which minimizes

δ(lm, c) := min
l∈rel(dc)

∑
node
x∈d

∑
attribute

a∈x

(lc[x.a]− lm[x.a])2

 .

To compute δ(lm, c) without having to enumerate all layouts admitted by dc, we perform a
binary search on the minimum value of δ(lm, c) for any layout of dc.

2.5 Evaluation
We evaluate our new methodology—PBM—for designing data-visualizations, together with
our prototype implementation along the following two axes:

1. Can non-programmers successfully use the manipulator to design data visualizations?

2. Can proficient programmers also benefit from PBM by increasing their productivity with
the help of the manipulator?

To investigate these two questions, we conducted two user studies. In the first, we asked
non-programmers to configure five data visualizations using the manipulator. To answer the

CHAPTER 2. PROGRAMMING BY MANIPULATION 43

second question, we performed a within-subject study on seasoned programmers. We asked
them to complete the same five visualization tasks both with the manipulator and with an
interface mimicking standard constraint programming.

Non-Programmers

We recruited 11 participants (3 males, 8 females, ages 22 to 39) either students or staff from
outside the engineering disciplines, largely from the Biology and Linguistics departments.
Participants were selected for their lack of formal training in programming. When shown a
picture of an icicle graph and asked whether they could program a layout template producing
this type of visualization, all participants answered no.

Experimental Setup Each session proceeded as follows: Participants were first introduced
to the manipulator by a 10 minute long, written tutorial, culminating in a simple exercise.
Each participant was tasked with creating five visualizations (Figure 2.5.1): two barcharts, one
icicle layout, one treemap, and a custom tree layout. These tasks were chosen to showcase
the applicability of our method to a variety of layouts, while offering a gradual increase in
complexity. Each task consisted of a short introduction motivating the visualization, followed
by an illustration of the goal layout. For each task, candidates were given the same set of flexible
blocks. Our study did not evaluate the selection of blocks. To complete each task, candidates
had to produce the goal layout in 10 minutes or less using the manipulator.

Results All participants but one solved each of the five tasks within the time limit. One
participant was not able to complete the icicle graph. Results are summarized in Table 2.5.1.
The treemap is a particularly interesting case: Participants found creative, unexpected ways
to complete the task with 8 unique paths through the design space to the goal layout. The
shortest path goes through 7 configurations, whereas the longest explores 19, indicating that
PBM supports a range of ways to configure a template and accommodates many different
thinking processes.

Programmers

To make a fair comparison with manual constraints programming, we focus on the significant
aspects of programming, such as resolving ambiguities and conflicts, while abstracting away
irrelevant factors like language syntax. To do so, we built a second programming tool which
mimics the relevant part of programming with constraints. Instead of typing code, participants
toggled GUI switches to enable/disable constraints. In essence, we have reduced the task of
constraint programming to finding a set of constraints leading to the desirable layout. We refer
to the mock-up tool as the “button” tool.

CHAPTER 2. PROGRAMMING BY MANIPULATION 44

	

(a) Barchart A

	

(b) Barchart B

	

(c) Icicles

	

(d) Treemap

	

(e) Tree

Figure 2.5.1. The five tasks assigned to participants for both user studies. The left layout is the starting
configuration, and the right layout is the goal configuration. The tasks were designed to be progressively
increasing in difficulty.

CHAPTER 2. PROGRAMMING BY MANIPULATION 45

Completion Time [s] Steps

Barchart A 11 (100%) 17 ± 19 3.6
Barchart B 11 (100%) 64 ± 30 8.4
Icicles 10 (91%) 60 ± 88 8.5
Treemap 11 (100%) 137 ± 55 14.8
Tree 11 (100%) 64 ± 28 5.4

Table 2.5.1. Non-programmer results. The columns indicate for each of the five tasks: the number of
participants who successfully completed the task; the median time taken in seconds with the standard
deviation; and the average number of steps to the goal.

Figure 2.5.2. The table of switches of the button tool. Programmers enabled/disabled constraints by
toggling them directly.

The interface of the button tool is divided in two: The top half displays the current layout.
Users can scroll and zoom in/out, but no other interaction such as dragging an element is
possible. The second half is a table of toggle switches controlling constraints, as shown in
Figure 2.5.2. The table has one row per block. Each row contains all the constraints pertaining to
one layout element. Columns organize constraints by category, such as “horizontal alignment”
or “height computation”. Within each cell, each switch is labeled with simplified pseudo-code
of the constraint it toggles. If a conflicting set of constraints is enabled, the button tool reports
that the selected constraints cannot be satisfied, and no layout is displayed in the top half. The
button tool does not provide a debugging aid for identifying conflicting constraints such as
the maximum satisfiable subset or the unsat core. However, to explain ambiguous layouts, the
button tool does provide the same visual aids as the manipulator: the tool shows one possible
layout augmented with axes of freedom representing the base of ambiguity for each partially
constrained block.

CHAPTER 2. PROGRAMMING BY MANIPULATION 46

Experimental Setup We recruited 16 participants (13 male, 3 female, of ages between 22 and
30), students and staff from engineering departments, mainly Computer Science. All participants
had taken at least one CS class and had been programming for at least 3 years. When shown an
illustration of an icicle graph, all participants but one claimed they could write a layout template
producing this type of visualization.

The programmer study is a within-subject experiment: every participants used both the
button tool and the manipulator to solve the set of five layout tasks twice. We reused the same
five tasks from the non-programmer study. To compensate for learning effects, half of the
participants started with the button tool, and half with the manipulator. The setup for this
study was similar to the non-programmer setup. Participants first read a written, 10 minute
long tutorial introducing the first tool, then did a warm-up exercise, and then solved the five
layout tasks using the first tool. They then repeated this process (both tutorial and tasks) with
the second tool. Finally, we interviewed participants for 10 minutes about which tool they found
to be more effective and improvements they would make to either of the tools.

To compare the productivity of participants with each tool, we measured the following
indirect indicators: time taken and the length of the path in the design space from the start
layout to the goal. Each step in the path corresponds to a configuration which was reached,
either by demonstrations or by toggling constraints with switches.

Results All tasks but two were completed within the 10 minute time limit. One participant
could not complete the treemap, and another did not finish the tree, both while using the button
tool. Results are summarized in Table 2.5.2. We performed an ANOVA of completion times with
task and tool as independent factors. The times were log-transformed to make the distribution
closer to a Gaussian. We observed a strong main effect of the tool (F = 345, p� 0.001), and
significant effect of the task (F = 72, p� 0.001). Since the tasks were specifically chosen to be
gradually increasing in difficulty, this was expected. The manipulator increased the speed of
programmers by a factor ranging from 2.5 (Barchart A) to 10.6 (Barchart B). Across all tasks, the
median speed-up was 5.3. To analyse the effect of the tool on path lengths, we used a Wilcoxon
signed-rank test. We found that the manipulation tool required fewer steps through the design
space than the button tool, with strong confidence (V = 3236, p � 0.001). Here again, we
observed that paths are approximately 3.6 times shorter on average across all tasks with the
manipulator.

Discussion

Our first user study demonstrates that non-programmers can successfully design data visual-
izations using the manipulator, while the second study shows that programmers would also be
more productive with PBM when programming constraints. It is important to note that, in our
experiments, the button tool provided instantaneous feedback. The consequences of toggling
constraints were immediately visible. In practice, the situation is often worse; programmers

CHAPTER 2. PROGRAMMING BY MANIPULATION 47

Button Tool Manipulation Tool

Completion Time [s] Steps Completion Time [s] Steps

Barchart A 16 (100%) 102 ± 50 11.9 16 (100%) 9 ± 5.6 3.0
Barchart B 16 (100%) 80 ± 59 12.7 16 (100%) 24 ± 15 5.8
Icicles 16 (100%) 362 ± 185 25.0 16 (100%) 37 ± 74 7.3
Treemap 15 (94%) 478 ± 278 25.9 16 (100%) 64 ± 38 10.9
Tree 15 (94%) 264 ± 160 30.3 16 (100%) 54 ± 52 6.9

Table 2.5.2. Programmers results. For each tool and for each of the five tasks, we report the number of
participants who successfully completed the task; the median time taken in seconds with the standard
deviation; and the average number of steps.

must wait for the compilation-execution cycle to finish before seeing the results of their modifi-
cations, thereby increasing the time cost of making changes. Consequently, in practice, longer
paths to the goal layout are more detrimental to productivity, and the ability of PBM to quickly
converge on the goal becomes more relevant.

We have combined the results from both studies to compare the difference in productivity
between programmers and non-programmers using the manipulator. Non-programmers took
on average 53% longer than the subset of programmers who started with the manipulator. This
is to be expected, since programmers are more familiar with concepts such as constraints: they
are able to build a mental model of the inner workings of our tool faster than non-programmers.
We argue that a 53% increase in time spent is a small price to pay to enable non-programmers
to accomplish tasks which were previously out of reach.

To further understand how participants used each tool; which actions led to dead ends, where
users spent time thinking; and where they got stuck; we have examined in detail the traces
from programmers with each tool.Figure 2.5.3 shows two such traces, one per tool, taken by one
participant on the moderately difficult icicle chart. The two traces we have chosen are typical
of what we have observed on this task. Note that this particular participant started with the
manipulator.

Let us start with the trace from the button tool. At the beginning, this participant got lost in
highly ambiguous layouts and backtracked twice (steps 6 and 7), in effect revisiting the same
configurations again. To recover, he eventually backtracked all the way back to the starting point.
Then, he started exploring layouts in another direction but got stuck on a conflict (steps 9 to 16)
shortly afterward. It took him eight attempts and a large amount of time—more than two thirds
of the total time spent on this task—to resolve the conflict. Toward the end of the trace (step 23),

CHAPTER 2. PROGRAMMING BY MANIPULATION 48

A

B

C

D

E

D

A

F

H I

J

K

J

L

Conflicting Layouts
Ambiguous Layouts

−1

1

3

5

7

1 3 5 7 9 11 13 15 17 19 21 23 25N
u
m

b
er

 o
f

A
m

b
ig

o
u
s

D
im

en
si

o
n
s

Layout Type

Deterministic

Ambiguous

Conflicting

(a) Button tool

A

F

H

M

N

O

L

Conflicting Layouts
Ambiguous Layouts

−1

1

3

5

7

1 3 5 7 9 11 13 15 17 19 21 23 25N
u
m

b
er

 o
f

A
m

b
ig

o
u
s

D
im

en
si

o
n
s

Layout Type

Deterministic

Ambiguous

(b) PBM manipulator

Figure 2.5.3. The paths through the configuration space on the icicles task from the same participant
using both tools. Each configuration is uniquely identified by a capital letter. A thin dashed-line high-
lights configurations explored twice due to backtracking. Configurations along the x axis (0 ambiguous
dimension) are deterministic. Conflicting configurations are represented with a negative number of
ambiguous dimensions.

this participant was deceived one more time by ambiguities, causing him to backtrack again
before finally reaching the goal.

Let us now look at the second trace, from the manipulator. Interestingly, our participant
took a completely distinct path through the design space: Only the start and goal layout engines
are common to both traces. Not only did the manipulator prevent our participant from creating
conflicting configurations, but it also kept our participant in a portion of the configuration space
with lower degrees of ambiguity. Recall that the same visual cues (axes of freedom) are used by
both tools to explain ambiguities. But even with those aids, understanding what is and is not
constrained in layouts with high degrees of ambiguities remains difficult. Highly ambiguous
layouts tend to overwhelm users with toomuch information. Consequently, users aremore likely
to add an undesirable constraint by mistake in resolving ambiguities. When such mistakes are
corrected, the same configuration is explored twice, thereby creating a backtracking step. This
“lost in ambiguities” phenomenon highlights the importance of steering users towards layouts
with few ambiguities. By proposing possible resolutions for each dimension of ambiguities, PBM
encourages users to settle ambiguities immediately after their introduction. Our participant

CHAPTER 2. PROGRAMMING BY MANIPULATION 49

dealt with at most three degrees of ambiguity, versus six with the button tool. As a result, he
never had to backtrack from an erroneous specialization.

In the interviews concluding each session of the programmer study, all but one participant
stated they would use the manipulator rather than the button tool if given the choice. The one
participant who preferred the button tool stated that “the button tool was more challenging thus
more fun”. Participants expressed frustration with debugging conflicts with the button tool. A
common request was to disable (grey out) buttons which would trigger a conflict if toggled.
These comments reinforce our belief that addressing ambiguities and conflicts is essential to
making constraint programming more accessible.

On the negative side, participants from the programmers study reported feeling a “lack of
control”: they would have liked to see how layout engines are modified by their manipulations
and which constraints are added or removed. We designed the user interface of the manipu-
lator with non-programmers in mind: constraints are completely hidden beneath the UI. For
technically-literate audiences, we are considering optionally displaying the layout engine code
and using animations to highlight the changes created by each manipulation.

2.6 Related Work
This chapter builds on the foundations laid by PBD systems, GUI builders, and the recent work
on fully automatic layout inference.

PBD Systems

Programming By Demonstration (Nevill-Manning, 1993; Cypher et al., 1993) has been applied to
a wide class of domains such as repetitive GUI interactions (Lau andWeld, 1999), text edits (Lau
et al., 2000), or string and integer programs (Singh and Gulwani, 2012b,a). Most these PBD
systems rely on a refinement strategy in which the set of candidate programs is progressively
narrowed down to a singleton as the user provides more demonstrations. Version space alge-
bra (Lau et al., 2003) provides the theoretical foundations for such refinement frameworks. As
noted by Lau et al. (2003), refinement approaches are difficult to extend to domains in which
demonstrations are noisy or imprecise, like layout. Due to the narrowing process, a single
imprecision can rule out the desired program, causing the PBD process to fail eventually when
it converges to an empty set of potential candidate.

In contrast, PBM was designed for noisy domains such as layout. Our approach does not
follow a monotonic narrowing; it is exploration-centric. We focus on enabling users to navigate
efficiently large spaces of candidates to find interesting layouts quickly. If a generalization or
specialization is not fruitful, users can backtrack to a previously seen layout. As such, impreci-
sions can at worse cause detours but will never prevent users from reaching the goal layout.

CHAPTER 2. PROGRAMMING BY MANIPULATION 50

However, we cannot offer termination guarantees. It is theoretically possible to loop over the
same set of configurations forever.

GUI Builders

With GUI builders, users can construct user interfaces graphically by progressively adding
widgets to a canvas. In particular, we note Peridot (Myers and Buxton, 1986) and its successor
Lapidary (Myers et al., 1989), Druid (Singh et al., 1990), IBuild (Vlissides and Tang, 1991),
Rockit (Karsenty et al., 1993), and most recently ALE (Zeidler et al., 2013). In such systems, each
time a widget is added, new layout constraints fixing its position are inferred, sometimes with
the help of semantic snapping (Hudson and Yeatts, 1991). More advanced systems such as ALE
produce flexible GUIs which adaptively resize to occupy the space available. Naturally, GUI
builders are tailored toward UI boxy or tabstop layouts (Hashimoto and Myers, 1992; Lutteroth
et al., 2008); it is unclear whether these techniques can be adapted to recursive layouts common
in data visualizations, such as a radial tree.

PBM and GUI builders have orthogonal techniques to refine the layout specification. PBM
starts from a full, complete but incorrect specification, and progressively adjust it by en-
abling/disabling constraints. In contrast, GUI builders start with an empty specification (an
empty canvas) and progressively infer more constraints as widgets are added to the canvas,
effectively completing the specification incrementally.

Most GUI builders delegate the resolution of conflicts and ambiguities to users. Our user
study suggests that this is a challenging task. Recent work has focused on this programmability
challenge: ALE (Lutteroth et al., 2008; Zeidler et al., 2013) is a layout editor which guarantees that
the layout is well-defined (non-ambiguous) and explains conflicts by computing the maximum
satisfiable set of constraints. ALE also defines a safe, conflict-free fragment of the layout language
(one without manual constraints). This comes at the cost of some expressiveness; for instance,
centering globally is not possible. We took the opposite approach and chose to rule out conflicts
but tolerate ambiguities. We believe that ambiguities (and their resolution) are easier to convey
to users than conflicts. We condense all ambiguities into a summary: a set of “axes of freedom”
understandable at a glance by non-programmers. ALE and PBM have orthogonal approaches
to how a layout is constructed. We start from a full, complete but incorrect specification, and
progressively adjust it by enabling and disabling constraints. In contrast, ALE starts with an
empty specification and progressively fleshes it out by inferring more constraints as widgets
are added to the layout.

Automatic Layout Inference

Fully automatic methods for layout generation have been studied as well. Layout can be inferred
from topological descriptions (Weitzman andWittenburg, 1994; Bateman et al., 2001), or directly
fromuser-drawnmock-ups (Sinha andKarim, 2013). In the latter work, a subdivision of the space

CHAPTER 2. PROGRAMMING BY MANIPULATION 51

expressed as a tree of vertical and horizontal dividers is extracted from a single demonstration, a
mock-up. This hierarchy is then encoded with CSS rules which can be laid out by a web browser.
Since a single mock-up may not be a sufficient specification of the layout, user guidance is
invoked to deal with the ambiguity. This user guidance takes the form of configuration options
which include manually fixing some of the subdivision steps.

52

Chapter 3

A Language of Constraints for Layout

In this chapter, we present L3 (Language for Layout Languages), a constraint-based layout
language. L3 allows programmers to define new layout blocks. These blocks are flexible: non-
technical users can configure their layout semantics by manipulation (Chapter 2). Once config-
ured, L3 layout specifications can be compiled into executable layout engines using grammar-
modular synthesis (Chapter 4).

We start by describing three challenges in layout programming—expressibility, extensibility,
and predictability—and justify our design decisions (Section 3.1). Then we give an overview of
the key features of L3 (Section 3.2) and showcase our language through examples (Section 3.3).

3.1 Motivation and Design Principles
Visual layout spans at least three domains, each with dedicated languages: CSS (Bos et al., 2011;
Lie and Bos, 1997) is an example of a document layout language; and QML (Digia/Qt Project,
2011) targets GUI layouts. Both are popular, mainstream languages in which designers declar-
atively define documents from existing blocks. These languages also provide layout engines
capable of solving all such documents.

We describe L3—a constraint-based, declarative language for visual layout. L3 includes
support for definition of new layout blocks and creation of small “domain-specific” languages
of documents. The L3 compiler can automatically generate layout engines tailored to such
languages. L3 can be used to create flexible blocks for Programming by Manipulation or to
specify layout directly, without manipulation.

Expressiveness and Extensibility

Layout languages such as CSS and QML support the creation of documents, but they come
with a fixed set of layout blocks, each defining intrinsic constraints on how an element is to

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 53

be positioned relative to other elements. The inability to declare new blocks has at least three
consequences:

• Inextensibility New layout blocks must be introduced by modifying the layout engine.
QML permits C++ procedures that compute custom sizing or positioning. In a web
browser, the layout engine cannot be extended, so new layouts are created with custom
JavaScript code, bypassing the native layout engine. Neither approach lends itself to easy
prototyping of new layouts.

• Rigidity Programmers often resort to “side-effect” layout programming. Rather than
directly expressing properties of the desired layout, such as relative positions of the
visible elements, programmers must often express constraints indirectly, by composing the
document from available blocks. The intent is that satisfaction of the indirect properties
entails the desired properties. Unfortunately, the entailment is hard to reason about, in
part because the constraints are implicit in the definition of the blocks.

Furthermore, the entailment may not hold in general, leading to unpleasant surprises
(Figure 3.1.1). In CSS, a classic illustration of this phenomenon is grid layouts implemented
with floats. The goal is to place ten icons in a 5x2 grid. We set icon sizes and column
widths to fit five icons on one line, with the remainder overflowing to the next line. This
is an indirect way to express our goal. These constraints do create a grid design—until an
icon must be resized to accommodate an oversized caption, which pushes icons to the
third line, ruining our intended grid design.

Figure 3.1.1. Surprises arise when indirect layout constraints do not entail the desired specifi-
cations. The oversized icon shifted the second row, rather than localizing the effect of its oversize.

• Limited Expressiveness The fixed layout computation strategy places restrictions on
layout designs. While new layout behaviors can be created through the composition of the
available blocks, expressiveness by composition is limited. In particular, layout engines
that achieve efficiency by fixing a static traversal schedule of the document—for example,
CSS engines compute width before height—may rule out some desired layouts.

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 54

As an example of a CSS-inexpressible layout, assume you want to lay out a document
with a sidebar which must be computed to be wide enough to display all of its content on
a single screen without overflowing the bottom of the screen (Figure 3.1.2). The contents
of the main panel, however, are allowed to overflow. To compute such a layout, one would
first compute the width of the sidebar, given the screen height, and then compute the main
area height, given the sidebar width. Surprisingly, such a simple design is impossible to
implement with CSS, which must always compute heights as functions of widths.

A

B

D

C

Figure 3.1.2. A Layout inexpressible in CSS. The width of the sidebar (B) is computed from the
height of the screen (A) so that its content fits in a single screen. Then renaming width (C) allocated
for the main panel, whose height (D) may overflow if necessary.

Our language, L3, allows definition of new layout blocks, not just documents. Furthermore,
by specifying which nestings of blocks are legal, programmers can create small languages of
documents, specialized for one particular type of layout. Layout needs vary across domains. A
magazine like NewYorker.com emphasizes perfect text layout, while a web-mail like Gmail.com
is tabular and uses sophisticated scroll-boxes. We believe that small, domain-specific, layout
languages can avoid the limitations of large—one size fits all—languages by providing very
specific building blocks.

L3 offers the following advantages over mainstream layout languages:

• Explicit Constraints New blocks are programmed by setting constraints on arbitrary
properties of visual elements. Desired layouts can thus be expressed directly, avoiding
the invisible cascade of consequences arising from built-in implicit constraints.

• Non-directional constraints When a constraint states that “A is aligned with B,” it does
not specify whether the position of A is computed from B or vice versa. This (global)
determination is delegated to the L3 compiler. Our constraints are (non-directional) re-
lations, rather than (directional) functions, thus freeing programmers from reasoning
about artifacts of computation, raising the level of abstraction. For the sidebar problem,
for instance, it is sufficient to state that the height of the sidebar is no greater than the

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 55

screen height. The L3 compiler will produce a layout engine that will, from the screen
size, compute the sidebar width, from which the text height will be computed.

Non-directionality is also useful in interactive layouts, where mutual constraints are
common and the computation may flow in either direction, depending on the user’s inter-
action. For instance, in a scroll-box, moving the content moves the scrollbar, while moving
the scrollbar moves the content (Figure 1.4.2). This example is detailed in Section 1.4.

• Layout Engine Generation New layout blocks are introduced declaratively, without ex-
tending an operational layout engine. The L3 compiler generates the corresponding layout
engine automatically.

Predictable and Diagnosable Constraints

Existing layout languages use constraints that can be dropped when they cannot all be satisfied
(see Section 2.1). General-purpose languages like CSS are large with complex and sometime
obscure interactions between constraints embedded in blocks. When undesirable interactions re-
sult in inconsistencies, the engine silently drops constraints. This behavior renders programming
with CSS unpredictable and hinders debugging.

Document layout has been specified with constraints in prior research languages (see Sec-
tion 3.4). These languages cast layout as an optimization problem, either by maximizing a utility
metric or by trying to satisfy as many constraints as possible. Optimization- based approaches
are more expressive—they can capture spring networks, unlike satisfiability constraints. While
these semantics make constraint relaxation systematic, the designer still cannot entirely predict
the resulting layout due to spring-effects (see Section 2.1 and Figure 2.1.1).

We propose to specify layout with satisfaction constraints, which means that all constraints
must be satisfied. (L3 programmers are still allowed to specify alternative constraints with
disjunctions.) Casting layout as a constraint satisfaction problem offers the following two
benefits:

• Predictability Satisfiability constraints predictably control the resulting layout. Because
each constraint is always satisfied, the programmer is assured that “what you state is
what you get”.

• Analysability Satisfiability facilitates static analysis of L3 constraints, enabling the manip-
ulator to prevent conflicts, summarize ambiguities, and efficiently compute both general-
izations and specializations. When programming without the manipulator, a challenge
is to ensure that the constraints uniquely determine the layout. We detect at compile
time when they do not, and given a document, we present two distinct layouts to the
programmer. Visualizing these two layouts helps with understanding which constraints
are missing (Figure 3.3.1).

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 56

3.2 Overview of L3

In this section, we present a high-level overview of L3 from a programmer’s perspective. Recall
that documents are trees of nodes; each node is labeled with a block. Blocks define the layout
semantics of document nodes: typically how each node’s positions and sizes are computed. As
such, the block of a node is akin to its type. Each block gives a visual appearance and attributes
to the document node. Some attributes can be marked as input; these are run-time constants
unknown at compile time, e.g. the size of an image or the size of the top-level window. The
layout semantics of blocks are defined by placing constraints on attributes. Solving a document
amounts to computing the value of all attributes, given input values, in accordance with the
blocks’ semantics.

A layout specification consists of two parts: (i) a definition of the semantics of each layout
block; and (ii) a description of which nestings of nodes are allowed in documents. Together,
both parts constitute a definition of a language of documents and their layout semantics.

Block Semantics

Each block defines a set of attributes and places constraints over them. L3 constraints are local—
only variables from the direct parent or children in the document hierarchy can be referred
to.

L3 constraints are also non-directional—they leave the flow of computation unspecified, up
to the compiler. By capturing multiple flows of computation at once, non-directionality enables
very concise descriptions of blocks with mutually dependent attributes. For instance, we can fix
the aspect ratio of an image while leaving open whether the height is computed from the width
or vice-versa.

Under the hood, our language of constraints is based on SMT theories (Barrett et al., 2010)
which provide an expressive set of primitive constructs. The techniques presented in this
thesis are independent of the logical theories used to express constraints. Both the manipulator
(Section 2.4) and the L3 compiler (Chapter 4) only require a decision procedure capable of
answering satisfiability queries over constraints. Our examples and implementation rely on
polynomial equations and linear inequalities over reals augmented with basic trigonometric
functions as well as operators max and min. Empirically, we found such constraints rich enough
for a wide class of layouts and visualizations. For instance, polynomials are frequently used
to capture ratios of relative sizes as in the scroll-box (Figure 1.4.2). Figure 3.2.1 illustrates the
power and versatility of our constraints with an example of flow-layout with justification.

Blocks are either configured (all constraints are mandatory), or flexible (there are optional/al-
ternative constraints). By bundling optional constraints, flexible blocks make their specification
customizable by non-technical users using Programming by Manipulation. The manipulator
compiles flexible blocks into configured blocks where all optional constraints either have been

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 57

(a) Left Justification (b) Full Justification

Figure 3.2.1. A complex flow layout. We illustrate the expressibility of our constraints by capturing text-
layout. Proper typesetting of text block is arguably the most complex part of layout. The difficulty resides
in finding the right place to insert line-breaks and adjusting the word spacing to obtain an aesthetically
pleasing result (Achugbue, 1981). Both line-break insertions and word-spacing are computed as part of
the layout. In the figure on the left, the user is making a WiW manipulation to go from left justification
to full justification.

selected and made mandatory or have been discarded. Configured blocks can also be declared
directly by programmers to specify layout without PBM.

Traits The same constraints are reused across many blocks: for instance, all boxy blocks
implement theCSS boxmodelwhich definesmargins, borders andpadding. To avoid duplicating
such concepts in every block, L3 supports composable modules of constraints called traits. There
are two kinds of traits:mandatory traits bundle a set of constraints conjunctively, whereas optional
traits introduce flexibility by bundling constraints disjunctively: any subset of their constraints
(including the empty set) may be satisfied.

We show below one of the most frequently used mandatory traits which defines the CSS
box model. Since our constraints are non-directional, equal symbols represent equalities, not
assignment.

1 mandatory trait CssBoxModel {
2 top + total_height = bot
3 left + total_width = right
4 x = parent.content_x + left
5 y = parent.content_y + top
6 margin_left + border_left + padding_left = content_x - x
7 margin_top + border_top + padding_top = content_y - y
8 padding_left + width + padding_right = inner_width
9 padding_top + height + padding_bot = inner_height

10 border_left + inner_width + border_right = border_width
11 border_top + inner_height + border_bot = border_height
12 margin_left + border_width + margin_right = total_width
13 margin_top + border_height + margin_bot = total_height
14 }

Listing 3.2.1. An implementation of the CSS box model in L3.

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 58

As example of an optional trait, we show a vertical grouping trait proposing two ways of
computing the height of container so that it encompasses both of its children.

1 optional trait VerticalGroup {
2 height = max(child0.total_height, child1.total_height)
3 height = child0.total_height + child1.total_height
4 }

Listing 3.2.2. An optional trait containing two alternative constraints.

For instance, in Figure 2.1.4a, the column blocks grouping one green bar and one blue one
vertically use the first constraint (Line 2) initially. This constraint is then disabled by a WiW
manipulation (Figure 2.1.4b) and finally, the second constraint (Line 3) is chosen by the user
(Figure 2.1.4c).

Trait Composition The result of composing traits together is a new trait with the union of
each trait’s attributes and the conjunction of each trait’s constraints. Trait and block are the same
language construct; the distinction is only there to let programmers state whether a bundle of
constraints is complete or only partial and meant to be composed.

Mandatory traits can also be composed optionally, creating a bundle of constraints which can
be enabled or disabled at once by manipulation. This feature is useful when a group of related
and interdependent constraints must be treated as an atomic unit. In the example below,myBlock
is constructed by compositing three mandatory traits. CssBoxModel is composed conjunctively,
but VerticalStack and TopAlign are composed optionally, as denoted by the trailing ? in the block
definition (Line 11).

1 mandatory trait VerticalStack {
2 child0.top = 0
3 child1.top = child0.bot
4 }

6 mandatory trait TopAlign {
7 child0.top = 0
8 child1.top = 0
9 }

11 block myBlock with CssBoxModel, TopAlign?, VerticalStack?, ...

Listing 3.2.3. Conjunctive and disjunctive compositions of traits.

In fact, optional traits are syntactic sugar for multiple optional compositions of mandatory
traits containing a single constraint.

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 59

Language of Documents

By statingwhich nestings of blocks are legal, we define a language of documents. Such languages
are specified with a regular tree grammar1. Each terminal of the tree grammar corresponds to a
block-labeled node. Consequently, every derivable tree forms a document. Listing 1.4.2 shows
the definition of a treemap language directly with a tree grammar.

Fundamentally, the languages of documents can be viewed as relational attribute grammars.
A relational attribute grammar is an attribute grammar with constraints (i.e., relations) instead
of update functions (Knuth, 1968; Deransart and Maluszynski, 1985).

L3 also has awidget construct which can be used to define languages from recursive document
trees. Widgets provide an alternative way to specify a language of documents which does not
requires knowledge of the grammar formalism. An equivalent definition of our language of
treemaps using widgets is shown below.

1 block root with ...
2 block hdiv with ...
3 block vdiv with ...
4 block leaf with ...

6 widget Hdiv() {
7 layouts {
8 leaf
9 hdiv { Vdiv() Vdiv() }

10 }
11 }

13 widget Vdiv() {
14 layouts {
15 leaf
16 vdiv { Hdiv() Hdiv() }
17 }
18 }

20 language treemaps {
21 root { Hdiv() }
22 }

The layouts section of each widget declares subtrees of nodes which will be instantiated in place
of the widget to create a document. As such, each such subtree is akin to the production rule
of a grammar. For example, the Hdiv widget represents either a leaf (Line 8) or an hdiv node
whose children are a pair of Vdiv widgets (Line 9). In essence, widgets make trees of nodes a
first class construct. Widgets can be recursively referenced, enabling the creation of languages

1Regular tree-languages can be viewed as the set of derivation trees of a context-free word grammar (Comon
et al., 2007).

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 60

containing an unbounded number of documents. In the example shown above, Hdiv and Vdiv
are mutually recursive.

3.3 L3 by Example
We showcase the features of L3 in three examples drawn from data visualizations and web page
layout. In particular, we reflect on our design principles and evaluate L3 empirically along the
following two axes:

• Expressiveness Can L3 express layout not realizable in mainstream languages such as CSS?
Does non-directionality keep layout specifications concise and close to what a natural
language specification might be?

• Programmability Do traits provide a meaningful decomposition of layout semantics lead-
ing to code reuse? Does our satisfiability approach to layout facilitate the identification of
errors?

We evaluate our compiler and the performance of the layout engines generated in Chapter 4.

Treemap

Treemaps are a popular visualization in financial circles to compare the market values of
companies (see Section 1.2). Figure 1.2.1 shows a (small) treemap document and its layout.
Recall that treemaps are constructed from three main blocks: hdiv, vdiv, and tile.

Let us first write down the layout specifications in English: (i) hdiv and vdiv partition their
space horizontally/vertically among their children; (ii) the area of a tile is proportional to its
capitalization; and (iii) the capitalization of an internal node is regarded as being the sum of the
capitalizations of its children.

We meet the first requirement by composing two traits: LeftAligned and VerticalStack for the
vertical divider (block vdiv); TopAligned and HorizontalStack for the horizontal one. The second
and third requirements encode the essence of treemaps. We express them by introducing one
new trait: TreeMap.

1 mandatory trait LeftAligned {
2 child0.left = 0
3 child1.left = 0
4 }

6 mandatory trait TreeMap {
7 scale * cap = height * width
8 cap = child0.cap + child1.cap
9 }

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 61

11 configured block vdiv with LeftAligned, VerticalStack,
12 SumHeights, EqualWidths,
13 TreeMap, SimpleBoxModel,
14 RelCartesian
15 configured block hdiv with ...
16 configured block tile(@cap) with TreeMap, SimpleBoxModel,
17 RelCartesian
18 configured block root with CartesianRoot {
19 3 * height = 4 * width
20 }

Listing 3.3.1. The specification of a treemap in L3. The “@” symbol in the declaration of the cap attribute
in block tile denotes a runtime input. In the TreeMap trait, scale is a constant converting dollars into
squared pixel. VerticalStack is defined in Listing 3.2.3.

We also compose RelCartesian to set up relative coordinates (Listing 1.4.1) and SimpleBoxModel,
a simpler version of CssBoxModel (Listing 1.4.1)

Discussion Treemaps are particularly hard to build with document layout languages like
CSS. Computing sizes and positions of each node based on their area is incompatible with
assumptions hardwired into these languages. We are not aware of any treemap implementation
on the web which does not use a handcrafted JavaScript layout engine.

The translation from informal English specification to constraints was straightforward. Using
traits, our code closely follows the structure of the informal specification by using the same
decomposition. We hope that our language allows specifications that are closer to the human
thought process, and that consequently our language is more approachable and easier to use
than other layout languages.

In our first attempt to express a treemap, we forgot to specify the desired aspect ratio in
the root block (Line 19). When this constraint is omitted, documents are ambiguous: they have
many valid layouts, one per aspect ratio. To help programmers debug layout specifications, the
L3 compiler can exhibit some of the possible layouts as visual guidance. Figure 3.3.1 shows
the document as well as two possible layouts produced by our compiler. Upon seeing the two
layouts, it immediately became clear what the source of the ambiguities was, and fixing the bug
was easy. We believe that providing designer-friendly debugging information is key to making
constraint-based languages accessible to a wider audience of less experienced programmers. By
rejecting our first incorrect attempt at the specification of treemaps, L3 prevented the common
scenario of ambiguous documents showing discrepancies when laid out on multiple platforms.
Such differences in layout often appear inexplicable to designers. The ability to detect these
bugs statically is one of the strengths of our satisfiability approach to layout.

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 62

tile

tile

tile

tile

tile

root hdiv
vdiv

vdiv hdiv

(a) One document (b) Two layouts

Figure 3.3.1. Debugging under-constrained languages. The two treemaps on the right have the same
area but a different aspect ratio.

Flexible Treemap

In the previous section, we constructed a treemap from configured blocks, without using
manipulation. Let us now create a treemap by defining flexible blocks whose specifications can
be customized with PBM.

We replace mandatory traits with optional traits. For instance, we replace LeftAligned with
two traits bundling constraints for horizontal alignment, one for each child: HAlignChild0 and
HAlignChild1.

1 optional trait HAlignChild0 {...}
2 optional trait HAlignChild1 {
3 child1.left = 0
4 child1.right = width
5 child0.right = child1.left
6 child0.left = child1.right
7 child1.right = 0
8 child1.left = width
9 child1.left = child0.left

10 child1.right = child0.right
11 }

13 optional SimpleHeights {
14 height = child0.total_height = child1.total_height
15 height = max(child0.total_height, child1.total_height)
16 height = child0.total_height + child1.total_height
17 }

19 block hdiv with HAlignChild0, HAlignChild1,
20 VAlighChild0, VAlignChild1,
21 SimpleHeights, SimpleWidths,
22 TreeMap, SimpleBoxModel, RelCartesian
23 block vdiv with HAlignChild0, HAlignChild1,
24 VAlighChild0, VAlignChild1,
25 SimpleHeights, SimpleWidths,

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 63

26 TreeMap, SimpleBoxModel, RelCartesian

Listing 3.3.2. The definitions of flexible treemap blocks. The specifications of hdiv and vdiv are custom-
ized by manipulation.

Notice that the hdiv and vdiv blocks have identical definitions. They share the same universe
of optional constraints. The semantic differences between these two blocks are established by
manipulation. Using the manipulator, the user will configure these blocks with distinct sets of
constraints.

The only trait specific to treemap visualizations is the TreeMap trait. All other traits embody
concepts reused across many other layouts and visualizations.

Sun Burst

Our second visualization uses a polar coordinate system to lay out concentric disks (Figure 3.3.2).
For instance, such “sun burst” layouts are used to represent file system usage. In this case, the
document is the filesystem tree, inner nodes are directories and leaves are files. Each file is
annotated with its size. We show below the (simplified) definition of the directory block.

Figure 3.3.2. A visualization of file system usage using a polar layout.

1 mandatory trait Polar2Cartesian {
2 x = radius * cos(angle)
3 y = radius * sin(angle)
4 }

6 mandatory trait Wedge {
7 children.radius = radius + height
8 span * parent.size = parent.span * size

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 64

9 child0.angle = angle
10 child1.angle = angle + child0.span
11 }

13 configured block dir with Wedge, Polar2Cartesian {
14 size = child0.size + child1.size
15 height = 20
16 }
17 configured block file(@size) {...}

Listing 3.3.3. A sun burst visualization in L3. The size of each file is a runtime input. The height of each
wedge could also have been a runtime input.

With this second sun burst example, we show that L3 makes no assumption about the layout
model. We are not restricted to “boxy” layouts, unlike GUI languages like QML or document
languages like CSS. L3 constraints enable concise descriptions of new layout elements.

CSS3 FlexBoxes

For our last example, we look at a feature of graphical user interfaces: grid-based layouts. The
draft of the new revision of CSS includes a proposal of a new box model targeted specifically at
GUIs: flexboxes (Deakin et al., 2011). One of the goals of the proposal is to introduce a grid-based
layout system with well-defined semantics. Each flexbox divides its space into either columns
or rows. Each column (or row) specifies its desired width (or height) with a flex attribute. The
flex attribute is a runtime input and controls the allocation of the widths of columns following a
weighted sum distribution. Flexboxes can be implemented easily with L3. We show below the
key constraints encoding vertical flexibility.

1 trait VerticalFlex {
2 total_flex = child0.flex + child1.flex
3 total_flex * child0.height = child0.flex * height
4 total_flex * child1.height = child1.flex * height
5 }

7 block vflex(@flex) with CssBoxModel, VerticalFlex, ...

3.4 Related Work
L3 builds upon a long history of declarative layout languages. Constraints have been used in
many languages to specify layout. See Hurst et al. (2009) for a recent overview of the field. In
particular, we note the constraint-based formulations of two existing and widely used layout
languages: CSS and SVG (Badros et al., 1999, 2001b).

CHAPTER 3. A LANGUAGE OF CONSTRAINTS FOR LAYOUT 65

In the GUI domain, Freeman-Benson (1993) explains how to convert an existing user interface
to constraints. Numerous constraint-based specifications for GUI have also been proposed (My-
ers, 1988; Feiner, 1988; Myers et al., 1989, 1990; Helm et al., 1992; Maloney, 1992; Lutteroth
et al., 2008). In document layout, constraints have also been extensively been studied, most
notably for web pages (Borning et al., 1997, 2000; Badros et al., 1999; Hurst et al., 2003). In par-
ticular, Meyerovich (2013) formalizes the core of CSS with directional constraints. Another
line of work investigates adaptive document layout, capable of adjusting to media of various
sizes (Jacobs et al., 2003; Schrier et al., 2008). For data visualizations, Protovis (Heer and Bostock,
2010) and its successor D3 (Bostock et al., 2011) are two popular languages. The problem of
specifying three dimensional layouts has also been explored (Elliott et al., 1994).

Finally, layout can also be specified declaratively from topological descriptions (Weitzman
and Wittenburg, 1993, 1994; Di Iorio et al., 2008).

Much of the aforementioned work focuses on expressibility and solving efficiency. In contrast,
we are concerned primarily with programmability, by preventing conflicts and explaining
ambiguities. Typically, layout has been phrased as an optimization problem either bymaximizing
a utility metric or by satisfying as many constraints as possible.

We chose to cast layout as a satisfaction problem with the following benefits: satisfiability is
a simpler problem in terms of computability; rich constraints such as polynomials, which are
common in visualizations, become tractable. Satisfaction also enables a deeper level of analysis:
the manipulator relies on satisfiability queries to prevent conflicts, summarize ambiguities,
and efficiently compute both generalizations and specializations. Furthermore, satisfiability
constraints let us leverage existing program synthesis techniques to generate layout engines
automatically.

66

Chapter 4

Grammar-Modular Synthesis

This chapter examines how constraint-based layout languages, such as L3 (Chapter 3), can be
solved efficiently. The technique proposed here is based on program synthesis—the problem of
translating high-level specifications into programs directly executable. We present Grammar-
Modular (GM) synthesis, an algorithm for synthesis of programs from tree-structured relational
specifications. We show how GM synthesis can compile L3 to efficient tree-traversal layout
engines.

We start by introducing the program synthesis problem and then discuss the challenges
posed by our domain, layout (Section 4.1). In Section 4.3, we introduce GM synthesis for single
relations. Then we generalize our algorithms to grammars of relations and discuss the complete-
ness of our approach (Section 4.4). Finally, we present our experimental results on synthesis of
layout engines (Section 4.5).

Even though the challenges posed by layout led us to develop GM synthesis, the techniques
presented in this chapter are generic. We use GM synthesis to compile L3 layout specifications
to tailored layout engines but the algorithm is applicable to any hierarchical specification
expressible as a relational attribute grammar; it could, perhaps, be used to raise the level of
abstraction in compiler construction, which is often specified as a functional attribute grammar.

4.1 From Program Synthesis to GM Synthesis
By raising the level of abstraction, automatic synthesis of programs from specifications has the
potential to make programming easier. Program specifications can often be stated as a relation
between inputs and outputs, for instance, with pre and post conditions. Then we can synthesize
a program by turning the relation (specification) into a function (program) according to an
input/output (known/unknown) partition of the relation’s variables. This type of program
synthesis is usually called functional synthesis. In this chapter, we focus on relations expressible
in propositional SMT logics (Barrett et al., 2010).

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 67

A key benefit of functional synthesis is enabling programmers to use declarative constraints
(i.e., relations) without incurring the cost of solving constraints. Generally, constraints are com-
puted at runtime by a solver for a particular input (i.e., initial conditions). By synthesizing
functions from constraints, we obviate the need for constraint solving at runtime and shift this
cost to compilation time. Intuitively, the synthesized functions execute only value propagations
and bypass the backtracking search performed by constraint solvers. In situations where the
same constraint system must be solved multiple times with varying inputs, the same synthe-
sized functions can be reused, making the performance gains brought by synthesis even more
attractive.

Our goal is to scale functional synthesis to large relations. At heart, functional synthesis
is a quantifier elimination problem: we eliminate variables from the relation until all outputs
can be expressed only in terms of inputs. Recent work such as Comfusy (Kuncak et al., 2010)
has brought program synthesis to mainstream compilers. Comfusy is an extension of Scala
allowing relational constraints in functional programs. In essence, Comfusy translates the
execution of a quantifier-elimination procedure on a particular relation into SMT formula
whose models capture the key steps of quantifier elimination. Ultimately, given such steps,
Comfusy can construct functions computing the outputs. In fact, such functions can be viewed as
specialized solvers tailored for one particular constraint system. In practice, the efficiency of the
translation and scalability of SMT solvers limit the size of relations which can be functionalized,
i.e., for which we can compute (executable) functions. Empirically, we found that quantifier-
elimination based approaches do not scale to the large specifications of our domain, document
and visualization layout.

Synthesis of Layout Engines

Layout specifications are naturally expressed with constraints (Hurst et al., 2009). Constraint-
based languages such as L3 (Chapter 3), CCSS (Badros et al., 1999), and ALE (Zeidler et al., 2013)
are both powerful and versatile. Even CSS, the ubiquitous web template language, relies on
constraints, although in a more restricted and indirect manner (Hurst et al., 2009). As shown
in Chapter 2, constraints also enable the inference of layout specifications directly from user
demonstrations (Myers et al., 1989; Hottelier et al., 2014).

Layout engines compute attributes such as the sizes and positions of all visual elements from
input attributes, which are runtime constants (e.g., the window size). When layout is specified
with constraints, solving them quickly enough (less than half a second) to enable smooth user
interactions is a major technical challenge. Today, the average webpage has over a thousand
elements, each with dozens of attributes (Souders, 2013). Since layout engines are executed
numerous times, for instance, to handle resize-window events or to adapt to new data values,
the potential cumulative runtime savings from synthesizing specialized “function” solvers are
large. For these reasons, we believe that automatic generation of layout engines is a prime target
for functional synthesis.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 68

Layout can be computed either by solving constraints at runtime (i.e., after input values
are provided) with a general-purpose solver, or by handcrafting a solver (engine) tailored to a
particular type of visualization. Handcrafted solvers are usually implemented as a bounded set
of tree traversals over a hierarchical document labeled with constraints. Today, general-purpose
solvers are too slow for interactive settings (up to 200x slower than handcrafted solvers, see
Section 4.5). As such, all browsers andmost visualization libraries such as D3 and Protovis (Heer
and Bostock, 2010; Bostock et al., 2011), rely on handcrafted solvers. However, writing such
solvers is time-consuming. As a result, trying out design ideas is expensive.

Functional synthesis promises to combine the performance of handcrafted engines with the
ease of use of constraint solvers. By applying functional synthesis to the relational specification
of layouts, we generate a solver specialized for a particular set of constraints. In essence, we au-
tomate the tedious optimizations currently performed manually by visualization programmers.
Ultimately, layout is a domain in which functional synthesis could have a significant impact.

However, scaling synthesis to large relations is a challenge; so far, synthesis has mostly
been limited to producing program fragments. Our experiments show that Comfusy scales
to 100 variables at most. However, the relations describing layout can range over 104 program
variables, more than one order of magnitude larger than what state-of-the-art synthesis tools
can handle. We present Grammar-Modular (GM) synthesis, a technique to scale functional
synthesis to large and hierarchical relations, such as data-visualization specifications.

Modular Synthesis

To scale synthesis to large relations, we rely on the presence of a hierarchical structure to trade
completeness for scalability. Specifications can often be written as conjunctions of smaller rela-
tions. We exploit this structure to decompose the synthesis problem into smaller subproblems
whose solutions can eventually be combined together to functionalize the overall relation. We
call this technique modular synthesis.

Layout specifications, for instance, naturally give rise to a hierarchical decomposition. The
data to be laid out is commonly represented as a tree of nodes—the document. Each document
node is encoded as its own conjunct. We can apply synthesis on each node individually and then
combine the results together to create an engine computing the layout for the whole document.

The key technical challenge of modular synthesis is the construction of a global function
satisfying the overall relation, from the local functions produced by applying functional synthe-
sis on each sub-relation. We cast the creation of a global function as (function) compositions of
local functions. By doing so, we trade completeness for efficiency: modular synthesis cannot
perform deduction across decomposition boundaries (only function composition), so a relation
that can be functionalized globally may not be functionalizable in a modular way. The smaller
relations may not be functional and hence the necessary local functions cannot be produced.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 69

Grammar-Modular Synthesis

So far we have outlined how modular synthesis can generate functions solving one particular
relation. In the layout domain, each type of document node instantiates the same local constraints.
For performance, we would like to avoid applying the GM synthesizer anew for each relation
(i.e. document). We would like to avoid not only re-synthesis of local functions, but also the
expensive composition of the global function, and simply thread local functions together based
on the tree structure of the document.

Imagine you have written a specification of a simple visualization: a barchart. The synthesis
techniques presented so far would generate an engine specific to this particular barchart. That
is, the engine would only function on a single document. Our constraints bind a fixed set of
variables; relations for barcharts with a different number of bars have a different number of
variables. If the dataset changes to require more bars, a new engine must be synthesized.

To be practically useful, we must synthesize engines capable of adapting to such changes by
handling multiple documents, each with a particular number of bars, for instance. That is, the
engine must be generic enough to solve multiple relations, even an unbounded number of rela-
tions. Figure 2.1.3 shows two documents from a language of treemaps (defined in Listing 1.4.2)
laid out by the same synthesized engine.

In essence, we generalize program synthesis to accept not a fixed relation but a language
of relational specifications. We restrict ourselves to regular tree-languages of relations whose
variable sharing structure forms a tree. By doing so, we can represent the synthesized program
as a set of functions whose composition is syntax-directed by the structure of the relation.
Fundamentally, we are converting a relational attribute grammar1 into a traditional, functional
attribute grammar that is statically schedulable. We call this technique grammar-modular (GM)
synthesis. Given a language of relations and an input/output partition of its variables, we
synthesize a functional attribute grammar capable of computing the outputs of any relation
in the language. More technically, we generalize modular synthesis to grammars of relations
by handling alternative and recursive productions. To guarantee that our functional attribute
grammars are statically schedulable, we reject grammars with cyclic dependencies between
attributes, thereby forbidding fixed-point computations.

Regular tree-languages include most layout languages, including data visualizations. GM
synthesis enables automatic generation of layout engines from specifications of layout languages.
Such languages define both syntactically legal documents and their layout semantics. Each
such grammar defines a language of documents and its layout semantics. The layout engine,
a functional attribute grammar, computes all document attributes (e.g., sizes, position) given
runtime-inputs (e.g., window size), which are given as values of some attributes. Eventually, the
layout engine can be scheduled to tree traversals with the same form as handcrafted engines. In
fact, from the same relational specification, we can synthesize distinct layout engines, depending

1A relational attribute grammar is an attribute grammar with constraints (i.e., relations) instead of update
functions (Knuth, 1968; Deransart and Maluszynski, 1985).

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 70

on which attributes are inputs and which attributes are computed, which is useful in interactive
situations. For instance, in a scroll-box, when the user moves the slider, the document position
can be computed from the slider and vice versa. Each such user interaction triggers a different
flow of attribute updates, but maintains the same constraints.

4.2 Compiler Architecture
Recall that L3 layout specifications consist of two parts: (i) a definition of the layout semantics of
each block; and (ii) a description of which nestings of nodes are allowed in documents. Together,
both parts constitute a relational attribute grammar (Knuth, 1968) which defines a language of
documents together with layout semantics (Section 3.2).

Given a set of blocks and a tree grammar, our synthesizer outputs a layout engine, in the
form of a functional attribute grammar (Knuth, 1968), capable of computing the layout of all
derivable documents. Figure 4.2.1 shows the architecture our L3 compiler.

Synthesizer (π)

Blocks/Relations

Recomposer

Tree grammar Document
&

Runtime inputs

Layout Engine AG

To rendering

Compile time Run time

GM synthesizer

Local
functions

Figure 4.2.1. The architecture of our L3 compiler. The first step of GM synthesis—decomposition—is
not shown. The attribute grammar scheduler is out of the scope of this thesis. Its output is the layout
engine itself.

We guarantee that the resulting functional attribute grammars are always statically sche-
dulable. Such attribute grammars are compilable to efficient tree traversals (Meyerovich et al.,
2013). In contrast with the backtracking search employed by general-purpose constraint solvers,
our layout engines perform only value propagations and function applications. The search
happens at synthesis (compile) time. Assuming deterministic specifications, our synthesized
engines always compute the same layout as general-purpose constraints solvers.

4.3 Modular Synthesis
In this section, we first formalize concepts introduced previously and then present GM synthesis
applied to layout engines. To simplify the presentation, we start by explaining our technique on
a language containing a single document (i.e., the grammar has a single derivation). In a second

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 71

step, we generalize our approach to languages of documents and discuss the completeness of
GM synthesis (Section 4.4).

Preliminaries

For the sake of readability, we introduce the following notations: Let f : Dm → Dn be a
function computing n variables given m variables, all in domain D. We denote by f̂ [I, O] the
function f lifted to symbolic variables, where I is the list of variables read (|I| = m), and O
is the list of variables computed (|O| = n). For example, if f (x1, x2)

def
= (x1 + x2, 2x1 − x2)

then f̂ [{a, b}, {c, d}] represents c := a + b and d := 2a − b. We purposely abstract away
the mapping of variables onto arguments. Similarly, for relations of arity m + n, for instance
R(x1, x2, x3)

def
= x1 + x2 = x3, we write (a, b, c) ∈ R̂ to denote a + b = c. For convenience, we

extend our notation to lists of variables and write O = f̂ (I) and (I ∪O) ∈ R̂. In the context of
layout, variables range over Q and are called attributes.

Functional Synthesis The functional synthesis problem is to find a total function f given
a relation R and a partition of its variables into input/output lists I, O, respectively, such
that (I ∪ f̂ (I)) ∈ R̂ for valuations of I. Such a function exists if R is functional in I. That is,
(I ∪O) ∈ R̂ ∧ (I ∪ f̂ (I)) ∈ R̂ =⇒ O = f̂ (I) holds. As such, f is semantically unique
(but may have multiple implementations). For convenience, we say that f functionalizes R with
respect to inputs I.

We write πI,O(R) to denote the procedure finding such a function; the procedure fails if the
function does not exist. GM synthesis relies on a functional synthesizer (π) to perform synthesis
locally, on the subproblems created by decomposing the specification. π can be implemented
using existing techniques (see Section 4.5).

Blocks and Documents We start with definitions of blocks and documents.

Definition 9 (Block). A block is a pair (V, R), where V is a finite set of attributes and R is a relation
over V. Some attributes of V can be marked as inputs, i.e. runtime constants. The relation R is the
conjunction of the constraints defining the layout semantics of the block. We assume that R is in CNF.
That is, R is a conjunction of clauses cl0 ∧ . . . ∧ cln.

Definition 10 (Document). A document is a tree of block-labeled nodes. Each document node contains
the attributes and the relation of its block. As such, a block acts as the “type” of a node and through the
layout constraints in the relation, the block establishes its layout semantics.

To represent semantic connections between document nodes, we place additional equality
constraints between attributes from a parent and its children (in the tree hierarchy). Formally, a
connection c, denoted by (A, B)c, is an equality constraint between the sets of attributes A and
B. For now, both A and B are singleton sets.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 72

Finally, given a document d, let Id be the set of attributes of d marked as input. Let Od
be all other (non-input) attributes of d. Let rel(d) be the relation representing the underlying
constraint system of d. Formally, rel(d) is the conjunction of the the relation of every document
node as well as the equality constraints stemming from connections between nodes.

Definition 11 (d-Solver). Given a document d, a d-solver is a function f [Id, Od]which functionalizes
rel(d).

Modular Synthesis To synthesize a d-solver for a particular document, the simplest approach
would be to use π directly and compute πId,Od(rel(d)). This is impractical in practice for all
but the most trivial documents, since rel(d) may be large and have more than a thousand of
attributes. Consequently, we need a way to divide d-solver synthesis into simpler, independent
subproblems. Our approach relies on the following hypothesis: the d-solver can be expressed
as a composition of smaller, “local” functions, synthesized from each subproblem individually.

Given a document d, we synthesize a d-solver in three steps: (i) we decompose the speci-
fication (rel(d)) into conjuncts; (ii) we perform synthesis locally, on each individual conjunct,
thus obtaining local functions; and (iii) we select and compose just enough local functions to
construct a global function computing all attributes of d, thus creating a d-solver. Before we
detail each of the three steps, we highlight the algorithmic challenges by constructing a d-solver
for a small document with the help of an oracle.

Example

Let us consider a document comprising two nodes labeled with block a def
= (Va, Ra) and block

b def
= (Vb, Rb), respectively. The specification of each block is shown below:

Va
def
= {x, y, z, i} Ra

def
= x = i ∧ i + z = y

Vb
def
= {x, y} Rb

def
= x = y

Our document has one input, denoted by attribute i. For the sake of the explanation, we abstract
away connections. Instead, our two nodes directly share connected attributes. Here, both nodes
share attributes x and y. As such, the specification of the document—rel(d)—is simply Ra ∧ Rb.
To create a d-solver, we must synthesize a function computing attributes Od = {x, y, z} from
input attribute Id = {i}.

Decomposition (Step 1) The first step is to decompose rel(d). We follow the document struc-
ture and create two subproblems, one per node of the document.

Local Synthesis (Step 2) The second step consists of generating local functions for each
node of the document. First, we ask the oracle to partition each block relation into subsets

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 73

of clauses. Intuitively, each subset corresponds to one “pass” of the global function through
the corresponding block. Then we ask the oracle to partition the attributes of each block into
input/output sets. Finally, we synthesize local functions for each of set of clauses using our
functional synthesis procedure π. Without the oracle, we would need to enumerate all partitions
of clauses, as well as all partitions of attributes.

For our example document, block a is made of two clauses: x = i and i + z = y. The oracle
partitions Ra into subsets s0

def
= {x = i} and s1

def
= {i + z = y}. Then the oracle partitions Va

into an input set Ia
def
= {i, y} and an output set Oa

def
= {x, z}. Given these two partitions, we

generate local functions for each set of clauses s0 and s1 using π. Of course, such functions are
not guaranteed to exist. In this case, πIa,Oa(s0) yields the function f1

def
= x := i, and πIa,Oa(s1)

produces f2
def
= z := y− i

We apply the same process on block b. Since Rb is made of a single clause, the oracle trivially
partitions Rb into Rb itself. The oracle splits Vb into Ib

def
= {x} and Ob

def
= {y}, then by applying

πIb,Ob(Rb), we obtain the function f3
def
= y := x.

Recomposition (Step 3) The third step consists of constructing a global function functionaliz-
ing rel(d) by selecting a subset of local functions and composing them together. This is the key
step of GM synthesis.

Since the oracle produced exactly the necessary functions, we now merely need to order
them to satisfy their dependencies. That is, for each local function, the attributes read must be
computed before the function is applied. We encode function dependencies using a hypergraph
whose vertices are attributes andwhose edges represent local functions (Figure 4.3.1). The source
of each edge indicates the set of attributes read and its destination the set of attributes computed.
A topological sort of the hypergraph reveals the order in which to compose local functions.
Here, by applying f1 first, then f3, and finally f2, we obtain the desired global function.

i x

y z

f1

f2 f3 Block b Block a

Figure 4.3.1. The hypergraph of the dependencies of f1, f2, and f3. Note that the local function f2 is
represented by a hyperedge with two sources: i and y.

Implementing the Oracle Let’s take a step back and analyze the role of the oracle. We relied
on the oracle twice during the local synthesis step: the first time to partition block relations into
subsets of clauses, and the second time to partition the attributes of each block into input/output

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 74

sets. Each of these local oracular decisions must be coordinated to achieve global properties not
apparent at the local (i.e., block) level:

• Function Selection When looking at a block in isolation, we do not know how many local
functions are needed to compute all of its attributes. In our example, the attributes of
block a are computed with two local functions, in two steps: the value of y is required
to compute z, but block b can compute y only if block a has already computed x. If we
performed local synthesis directly on block a’s relation (Ra), without decomposing it into
subsets of clauses, we would be restricting ourselves to solving block a with a single local
function, which is not possible in our example.

• Flow of Computation While we know the overall (document) inputs, at the block level,
we need to determine which attributes are known (inputs) and which attributes will be
computed (outputs). The flow of computation is a property of the whole document and
is unknown when synthesizing local functions. In fact, the same node may be traversed
multiple times by the global function, each time invoking one local function, like the node
(labeled) a in our example.

We used the oracle to simplify our synthesis algorithm which conceptually relies on global
reasoning to synthesize local functions. To gain scalability, we restrict the generation of local
functions to block-local reasoning. In the absence of a benevolent oracle, we synthesize local
functions considering both all partitions of clauses into subsets and all partitions of attributes
into input/output sets. As a result of this exhaustive enumeration, we obtain many more local
functions than needed for the construction of the global function. We “implement” the oracle in
the recomposition step, in which we must now select which local functions to use. We perform
the selection symbolically, by reasoning on a hypergraph summarizing all flows of computation.
By selecting local functions, we are indirectly making the same two decisions the oracle made:
for each block, we select a clause partition and an input/output partition.

Formalization

We formalize the three steps of GM-synthesis (decomposition, local synthesis, and recomposi-
tion) for a language of a single document (Figure 4.3.2). Let d be this document.

Decomposition (Step 1) Conveniently, the structure of the document provides us with an ini-
tial decomposition where related constraints are already clustered together by the programmer:
we decompose rel(d) at nodes/blocks boundaries.

Note that there is no best granularity of decomposition: it is a trade-off between scalability
and completeness of our approach. Finer decompositions lead to smaller relations and hence
to more efficient local synthesis, but sometimes small relations are not functionalizable; they

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 75

need to be conjuncted with other relations to be functional. We discuss completeness of GM
synthesis in Section 4.4.

Local Synthesis (Step 2) To start, let us define local functions formally.

Definition 12 (Local Function). Given a block (V, R def
= cl0 ∧ . . . ∧ cln), a local function is a

quadruple (f , I, O, S) where

1. I and O are lists of input/output attributes such that I ⊆ V, O ⊆ V, and I ∩O = ∅,

2. S ⊆ {cl0, . . . , cln} is a subset of clauses,

3. f functionalizes S with respect to inputs I: f = πI,O(S).

Note that executing the local function (f , I, O, S) assigns the attributes computed by f with
values satisfying all clauses in S.

To generate asmany local functions as possible, for each block (V, R) in d, we enumerate both
all partitions of clauses of R and all input/output partitions of V, as detailed in Algorithm 4.3.1.

Algorithm 4.3.1. Synthesize local functions for a block.

Input: A block b def
= (V, cl0 ∧ . . . ∧ cln)

Output: A set of local functions over attributes V

begin
R← ∅
foreach subset S ⊆ {cl0, . . . , cln} do

foreach partition of V into sets I and O do
if (f , I, O, S) = πI,O (S) exists then

Add (f , I, O, S) to R.
end

end
return R

end

Recomposition (Step 3) We reduce the problem of choosing and composing local functions to
finding a particular kind of spanning tree on a hypergraph. The hypergraph encodes a summary
of all possible flows of computation between attributes of the document.

Definition 13 (Hypergraph Summary). Given a document d, an hypergraph summary Hd
def
= (V, E)

is such that V is the set of attributes of d and E is a set of local functions. Each local function (f , I, O, S)
is representedwith the hyperedge (I, O), where I is the set of source attributes andO the set of destination
attributes.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 76

Since connections are equality constraints between sets of attributes, we can also represent
them with local functions. Recall that, for now, each connection (A, B) is such that A and B are
singleton. Let A def

= {a} and B def
= {b}. The connection (A, B) is equivalent to (id, A, B, {a = b})

where id is the identity function.
We construct the hypergraph Hd as follows: For each node n in d labeled with block b, we

instantiate the set of local functions of b on the attributes of n. Finally, we add two hyperedges
per connection, one for each possible flow of values, either up or down in the document tree.
Algorithm 4.3.2 details this process.

Algorithm 4.3.2. Constructing a hypergraph summary encoding all possible composi-
tions of local functions.
Input: A document d and a set of connections C
Output: A hypergraph summary of d

begin
E← ∅
foreach node n in d labeled with block b do

Add {(I, O) | (f , I, O, S) ∈ Algo1(b)} to E.
end
foreach connection (A, B) in C do

Add {(A, B), (B, A)} to E.
end
return (Id ∪Od, E)

end

Before we define the d-solver in terms of paths in Hd, let us note the following two facts
about the hypergraph summary Hd. First, each hyperpath encodes a function reading its source
attributes and computing its destination attributes.

Lemma 4. Each hyperpath p = f0, . . . , fn in Hd encodes a function fp[Ip, Op] = f0 ◦ . . . ◦ fn.
Let Ii, Oi be the input/output sets of fi, the ith function in p. Then Op =

⋃
0≤i≤n Oi and Ip =

(
⋃

0≤i≤n Ii) \Op. From properties of hyperpaths, it follows that:

1. The dependencies of each local function on the path are satisfied. For each function fi with i > 0,
we have Ii ⊆

⋃
0≤j≤i−1 Oj ∪ Ip.

2. Each attribute is computed at most once: For any pair of functions fi and f j in p such that i 6= j,
we have Oi ∩Oj = ∅.

Lemma 5. Every function fp defined by a hyperpath p in Hd satisfies the conjunction of clauses of its
local functions. Let p = f0 . . . fn be a hyperpath representing function fp. Let (fi, Ii, Oi, Si) be the ith
function in p. Then fp functionalizes

∧
0≤i≤n Si. We say that fp satisfies all clauses traversed.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 77

Lemma 5 follows directly from the fact that, by construction, each local function (fi, Ii, Oi, Si)
functionalizes Si. Finally, let us define the subset of paths which can be executed.

Definition 14 (Executable Path). A hyperpath p in Hd is executable iff it starts from the document
inputs. That is, the function fp[Ip, Op] encoded by p is such that Ip ⊆ Id.

We are now ready to state under which conditions a hyperpath encodes a d-solver. That is, a
global function which functionalizes rel(d) with respect to the document inputs Id.

Definition 15. The hyperpath p is an executable covering spanning tree iff all of the following three
conditions hold: (i) p is executable; (ii) p is a spanning tree; and (iii) p traverses all clauses of rel(d).
We call the third condition coverage.

Theorem 1. Each executable covering spanning p in Hd encodes a global function which functionalizes
rel(d) with respect to document input Id.

Since p is an executable spanning tree, it follows that both Ip ⊆ Id and Op = Od. From the
coverage condition and using Lemma 5, we conclude that fp functionalizes rel(d).

Theorem 2. If there exists an executable covering spanning tree in Hd, then rel(d) is functional in Id.

Since every local function composing the covering spanning tree stems from a functional
set of clauses (with respect to local function inputs), one can show that the set of all traversed
clauses is functional with respect to Id. Note that there may be multiple covering spanning
trees. Each such tree encodes a semantically equivalent global function, but they may differ
syntactically (Figure 4.3.2).

Together, Theorems 1 and 2 show that our approach is correct: the d-solvers synthesized
always fulfil the specification. Note that finding a spanning tree in a hypergraph is NP-complete
(Warme, 1998). In the next subsection, we explain how to encode the search for a d-solver in
SMT after generalizing our approach to languages of documents.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 78

cl1 cl2 cl3 cl4 cl5 Clauses

Subsets of
Clauses

Local
Functions

Global
Function

S1 S2

f1 f2

fg=f1 • f2

3 Recomposition

2 Local Synthesis

1 Decomposition
S3 S4

f3 f4

fg=f3 • f4

Figure 4.3.2. The three steps of GM synthesis. This diagram shows that two distinct decompositions
can lead to syntactically different, yet semantically equivalent, d-solvers.

4.4 Grammar-Modular Synthesis
In this section, we generalize the modular synthesis technique presented so far to grammar-
modular synthesis for languages of documents. In essence, to support grammars producing
more than a single document, we need to handle alternative and recursive productions. By
alternatives, we refer to non-terminals having more than one production. We start by formally
defining languages of documents and language solvers.

Definition 16 (Language). A language of documents is regular tree grammar L whose terminals
are block-labeled nodes. Each tree in L forms a document. Each production of L can place semantic
connections between attributes of a parent node and its children.

Definition 17 (L-Solver). Given a language L, a L-solver is a statically schedulable functional attri-
bute grammar which defines a d-solver for every document d ∈ L.

A language of documents together with blocks definitions form a relational attribute gram-
mar. As a result, we can view the synthesis of a L-solver as converting a relational attribute
grammar into a statically schedulable functional attribute grammar. As such, to construct a
L-solver, we compute: (i) the mode of all attributes together with a corresponding subset of
local functions; and (ii) a total order over attributes. The modes capture whether attributes are
inherited or synthesized. The total order prevents cyclic dependencies, which guarantees that
the resulting functional attribute grammar is statically schedulable.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 79

a

b1 b2

a

(a) The two derivable documents

a
x

b1

x
b2

x

(b) Their hypergraph summary

Figure 4.4.1. Encoding alternative productions with hyperpaths. A language of two documents, each
stemming from one production of an alternative non-terminal (a), Algorithm 4.3.2 encodes the connection
({a.x}, {b1.x, b2.x}) with two hyperedges, thereby enforcing the same flow of computation for both
documents (b).

Synthetizing L-Solvers
Given a language L, we synthesize a L-solver as follows: First, we create a witness document
which exhibits all productions of the grammar of L. Then we create a hypergraph summary of
L by applying Algorithm 4.3.2 on the witness document. Finally, from the hypergraph summary,
we construct an SMT formula whose models encode both attribute modes and a subset of local
functions. Together, they form a L-solver.

Thewitness document can be produced easily by unrolling the grammar until every terminal
(i.e., node) appears in the document. By doing so, we ensure that rel(dw) contains all constraints
of L.

Connections across alternative productions can be encoded directly as hyperedges with
multiple sources or destinations. Conveniently, properties of hyperpaths guarantee that all pro-
ductions of the same non-terminal will share the samemode (i.e., the same flow of computation).
For example, consider the following language where block a may have either block b1 or b2 as
child. Attribute a.x is connected to either b1.x or b2.x.

S ::= a(B) with a.x = B.x
B ::= b1() | b2()

We encode the two alternative productions of the non-terminal B with a single connection c:
({a.x}, {b1.x, b2.x})c. When creating the hypergraph summary, Algorithm 4.3.2 encodes c with
two hyper-edges (one with two destinations and one with two sources) representing values
flowing either up or down through both derivations (Figure 4.4.1).

To handle recursion, we relax the definition of covering spanning trees (Definition 15) to
carefully allow some cycles, those which are created by recursion and do not represent true
cyclic dependencies of attributes.

SMT Encoding We encode the existence of a L-solver as an SMT query.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 80

Let dw be the witness document of L, and let Hdw = (V, E) be its hypergraph summary.
Recall that V is the set of all attributes of dw. Let F ⊆ E be the set of local functions which
are not connections, augmented with one function modeling inputs: (−,∅, Idw ,∅). Each local
function (f , I, O, S) ∈ F is encoded with one boolean flag e f , which is true if f is used in the
L-solver; we say that f is selected.

We encode each attribute x ∈ V with two variables:

1. One boolean mx, representing the mode of x: mx can either be inherited (↓) or synthesized
(↑).

2. One integer lx used to impose a total order on all attributes.

We partition the connections of L two subsets: (i) R, the set of recursive connections, those
which stem from recursive nonterminals; and (ii) N, the set of non-recursive connections. Every
connection (A, B)c ∈ N ∪ R is encoded with one boolean mc representing the mode of the
connection: either inherited (↓) or synthesized (↑).

For each block (V, R) of L, we encode each clause cl of R with one boolean named ecl .
Finally, we define bmode(x), a function converting the grammar mode of attribute x (in-

herited or synthesized) to a “block” mode (in or out) representing whether x is an input or an
output of its block. The block mode is equivalent to modes of logic programs: attributes marked
in are computed outside the block and propagated to it through connections; attributes marked
out are computed within the block by a local function.

bmode(x) :=

{
in if ∃(A, B)c ∈ N. (x ∈ A ∧mx =↑) ∨ (x ∈ B ∧mx =↓),
out otherwise.

We break our encoding in five parts: (i) connections; (ii) local functions; (iii) the spanning
property; (iv) schedulability; and (v) soundness. We explain each of them individually.

Connections The first part encodes the relationship between the mode of a connection and
the mode of the attributes connected.

φConn((A, B)c) :=

(
mc =↓ =⇒

∧
x∈B

mx =↓
)
∧

(
mc =↑ =⇒

∧
x∈A

mx =↑
)

Functions The second part is divided into two conjuncts: The first conjunct captures the
relationship between local functions and attribute modes. Notice that we do not constrain the
input of local functions to have an in mode. Doing so would prevent chaining of local functions
within the same block, preventing the L-solver from invoking multiple local functions during

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 81

the same traversal. The second conjunct records all clauses of rel(dw) traversed by the subset of
local functions selected.

φFun(f , I, O, S) :=

(
e f =⇒

∧
x∈O

bmode(x) = out

)
∧

∧
cl∈S

ecl

Spanning The third part guarantees that each attribute x is computed by a local function, a
non-recursive connection, or inductively by recursion. Note that requiring every attribute to be
computed at least once is not sufficient to ensure the soundness of the L-solver. Consider the
following grammar with two blocks a def

= ({x}, x = 2) and b def
= ({x}, x = 1):

S ::= a(B) with a.x = B.x
B ::= b()

Note the connection between the attributes a.x and b.x. The only document derivable from
this grammar has no solution. However, if we allowed attributes to be computed twice, then
we would find a L-solver which first assigns 1 to b.x and then assigns 2 to b.x. This example
illustrates how the same attribute may be assigned two distinct values, each satisfying one half
of the specification. To reject such grammars, we require every attribute to be computed exactly
once. As a result, our L-solvers are single-assignment attribute grammars, a class of attribute
grammars simpler to schedule. We define the logical connective � to be true iff exactly one of
its clauses is true.

φSpan(x) :=
⊙

{e f | (f , I, O, S) ∈ F ∧ x ∈ O} ∪
{mc =↓ | (A, B)c ∈ N ∧ x ∈ B} ∪
{mc =↑ | (A, B)c ∈ N ∧ x ∈ A} ∪
{mc =↑ | (A, B)c ∈ R ∧ x ∈ B}


Schedulability The fourth part guarantees the absence of cyclic dependencies by enforcing
a total order on attributes. Note, that we only consider the non-recursive connections (N) to
allow cycles of attributes caused by grammar recursion. That is, every cyclic path in subgraph
of selected local functions must include one recursive connection.

φSched :=
∧

(A,B)c∈N

(
mc =↓ =⇒

∧
x∈B

lx > max
y∈A

(ly)

)
∧

∧
(A,B)c∈N

(
mc =↑ =⇒

∧
x∈A

lx > max
y∈B

(ly)

)
∧

∧
(f ,I,O,S)∈F

(
I ⊃ ∅∧ e f =⇒

∧
x∈O

lx > max
y∈I

(ly)

)

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 82

Soundness The final part guarantees that the L-solver functionalizes rel(dw). We ensure that
the local functions selected traverse (cover) all the clauses of (all the blocks of) rel(dw).

φSound :=
∧

cl∈rel(dw)

ecl

L-Solver Finally, by taking the conjunction of all five parts, we obtain a formula whose models
encode both the subset of selected local functions (e f variables) as well as modes for all attributes
(mx variables) and for all connections (mc variables).

φ :=
∧

(A,B)c∈N∪R

φConn((A, B)c) ∧ φSched ∧ φSound ∧

∧
(f ,I,O,S)∈F

φFun(f , I, O, S) ∧
∧

x∈V
φSpan(x)

The translation of models of φ to functional attribute grammars is straightforward: The e f
booleans indicate which local functions to use. Note that φ also contains a static schedule of
the attribute grammar encoded in the lx variables. In general, our formalism is too abstract to
model important execution characteristics like cache locality or parallelization opportunities.
We throw away the schedule found and delegate this task to a dedicated attribute grammar
scheduler (Meyerovich et al., 2013).

Completeness

GM synthesis is correct (Theorems 1 and 2); the solvers generated are sound: they always satisfy
the specification. However, GM synthesis is also incomplete and might fail to find a solver, even
when one exists. In Section 4.5, we show that GM synthesis is sufficiently complete in practice.

Recall that GM synthesis relies on the following hypothesis: the global function is expressible
as compositions of local functions. The granularity of the decomposition affects whether our
hypothesis holds. Coarser initial decompositions (i.e., blocks) yield more local functions at the
expense of creating larger local synthesis problems, thus decreasing efficiency. Note that the
number of local functions synthesized grows monotonically with the size of blocks only because
we consider all subsets of clauses when performing local synthesis.

We call the loss of completeness due to decomposition the cost of modularity, to distinguish
it from the loss of completeness incurred due to any incompleteness of π. In the next two
paragraphs, we state a condition for hierarchical linear systems of equations; this condition
is necessary and sufficient to guarantee zero cost of modularity. Finally, we define a class of
constraints for which modularity always incurs no cost. For clarity, we state these two properties
considering a single document; they are generalizable by induction on the document grammar.

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 83

Linear Equations Without loss of generality, we abstract away connections: blocks share
connected variables directly, as in the example of Section 4.3. We also assume that the local
synthesis procedure π is complete.

Since we are limiting ourselves to linear equations, let the system rel(d) be represented by
the matrix of coefficients Md. The decomposition of rel(d) into blocks corresponds to a partition
of the rows of Md.

Theorem 3 (Completeness Condition). GM synthesis is complete for linear equations iff Md can be
triangularized (i) using row combinations (i.e., adding a linear combination of rows to another) only
between rows belonging to the same block and (ii) using row interchanges for any pair of rows.

We give an outline of the proof. The first step is to show that the recomposition step of
GM synthesis performs the equivalent of back-substitutions on Md (assuming Md is upper
triangular). For linear equations, local synthesis reduces to row combinations within each
block. Indeed, row combinations together with row interchanges form a complete quantifier
elimination procedure for linear equations: Gaussian elimination. As such, the power of the
local synthesis (π) is exactly row combinations. By requiring Md to be triangular modulo row
interchange after local synthesis, we ensure that rel(d) is solvable with back-substitutions only.

Equality Constraints There exists a (very restricted) class of constraints for which modularity
has no cost, regardless of the decomposition: equality constraints. If all atoms of rel(d) are
equalities between pairs of attributes, GM synthesis reduces to computing the equivalence
classes of rel(d). It is possible to show that equivalences classes are indirectly computed as part
of the recomposition step, thus guaranteeing the completeness of modular synthesis.

Of course, equality constraints are too restrictive for all but the most trivial specifications.
However, using the same line of reasoning, this result can be extended to demonstrate that
the cost of modularity is not affected by the introduction of new equality constraints. As such,
simple factorizations of the specification, such as breaking down large constraints into smaller
ones have no effect on completeness; a reassuring property for specification authors.

4.5 Evaluation
In this section, we evaluate GM Synthesis along the following three axes:

• Scalability and Completeness Since GM synthesis trades completeness for scalability (to
a degree controllable with the granularity of decomposition, see Section 4.4), is GM
synthesis both scalable and complete enough to synthesize L-solvers for realistic layout
languages?

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 84

• Performance How does the solving speed of our L-solvers compare with state-of-the-art,
general-purpose constraint solvers? How do L-solvers and general-purpose constraint
solvers scale as document size increases?

• Parameterizable Layout Engines Can our layout specifications yield multiple L-solvers,
each synthesized for a different set of input attributes, one per user interaction (e.g.,
resize)? This benefit results from using non-directional constraints which capture flows of
values in several directions.

Experimental Setup GM synthesis is parametrized by the local synthesis procedure π. In our
experiments, we implemented π with a combination of Sketch (Solar-Lezama et al., 2006) for
linear relations and Gröbner Bases (from Mathematica) for polynomial equations. There are
many other procedures which could be used to implement π. We note Comfusy (Kuncak et al.,
2010) and Mjollnir (Monniaux, 2008).

We used the Superconductor attribute grammar scheduler (Meyerovich et al., 2013) to
compile L-solvers to (sequential) tree traversals. The resulting traversals are implemented in
JavaScript and operate directly on the browser DOM. As a result, our custom L-solvers can
easily be deployed in any web browser. Figures 2.1.3a and 2.1.3b have been laid out by one of
our L-solvers.

All our benchmarks were run on a 2.5GHz Intel Sandy Bridge processor with 8Gb of RAM.

Scalability and Completeness

To show that GM synthesis is widely applicable, we demonstrate it on layout languages drawn
from the three major layout domains. Our case studies cover: (i) document (webpage) layout;
(ii) Graphical User Interface (GUI); and (iii) data visualization. Each of the three languages
presented below is full-fledged and computes all attributes needed for rendering.

1. Our first case study is a guillotine layout language where a set of horizontal and vertical
dividers partition the space. A subset of CSS can be encoded in such languages (Sinha
and Karim, 2013). The guillotine language totals 30 constraints. This is the only language
in which all constraints are linear.

2. Our second case study is a language of flexible grids (Feiner, 1988). Such languages are
frequently used to layout widgets in graphical user interfaces (Hurst et al., 2009). The
sizes of each cell of the grid are allocated based on a weighted sum, producing non-linear
constraints. The weight of each cell is a runtime input. The grid language consists of 47
constraints.

3. Finally, a language of treemaps (Johnson and Shneiderman, 1991), a visualization of
hierarchical datasets popular in finance. The screen is tiled recursively, based on the area

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 85

occupied by each subtree of the document (Figure 1.2.1). Each leaf has a runtime input
corresponding to its relative area. Constraints involving area computations are non-linear.
The treemap language has 40 constraints.

Our GM synthesizer is sufficiently complete to successfully generate a L-solver for each
of the three case studies. The synthesis took less than five minutes, an acceptable compilation
time, with the local synthesis step and the recomposition step using approximately equal halves.
To illustrate the complexity of the L-solvers obtained after scheduling, Table 4.5.1 lists the
number of tree traversals, the number of local functions used, and size of the JavaScript code.
For reference, Firefox’s layout engine for CSS uses four passes (Atkinson, 2014). Finally, the
number of lines of code reported includes only the layout engine itself (i.e., the computation of
document attributes); code related to rendering has been explicitly excluded.

We also compare our work with direct functional synthesis techniques, such as Comfusy
and Sketch. Such techniques are limited to synthesis of d-solvers, they do not generalize to
languages of documents. As such, we apply them on a single small document of 127 nodes.
Neither Comfusy nor Sketch could synthesize a d-solver in less than one hour. These results
indicate that GM synthesis strikes the right balance between completeness and scalability of
synthesis for our domain.

Language Tree Traversals Local Functions SLOC

Total Selected

Guillotine td 289 74 189
Grid td ; bu ; td 385 89 283
Treemap td ; bu ; td ; bu ; td 394 91 341

Table 4.5.1. The complexity of L-solvers for each of our three case studies. The second column shows
the number and type of tree passes over the document: td denotes a top-down pass and bu a bottom-up
one. The third columns reports the number of local functions synthesized and the number of local
functions used. Finally, the fourth column shows the number of lines of JavaScript code.

Performance

We compare the performance of our synthesized L-solvers with Z3 (De Moura and Bjørner,
2008), a state-of-the-art constraint solver. Note that our solvers are implemented in JavaScript,
a relatively slow language. Z3 solves the constraint system defined by the document (rel(d))
at runtime. In essence, we measure the ability of GM synthesis to shift the cost of solving
constraints from runtime to compile time.

We measured the time to compute the layout of documents from 255 to 16383 nodes, for
each of the 3 layout languages outlined above. We argue that such document sizes are typical:

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 86

the front page of www.nytimes.com contains over 3000 nodes and data-visualizations tend to
be much larger. For each case study, we chose the fastest SMT theory which could express the
layout specification. Interestingly, the non-linear arithmetic solver was faster than bivectors for
both the grid and treemap languages. For guillotine, we used linear real arithmetic. Table 4.5.2
summarizes our results.

Doc Size Guillotine Grid Treemap

GM Z3 GM Z3 GM Z3

255 3 705 5 707 8 680
1023 10 2310 19 1494 49 1935
4095 41 12800 81 8403 120 8935

16383 162 >3 min 213 — 261 —

Table 4.5.2. Time to compute the layout in milliseconds for typical document sizes. Missing entries
(—) indicate “unknown” answers (Z3 produced no model). Notice that our L-solvers scale linearly with
the document size.

Our L-solvers scale linearly with size of the document, whereas Z3 exhibits exponential
behavior on the largest (16383 nodes) document for all three languages. This asymptotic speedup
is explained by GM synthesis moving the backtracking-search performed at runtime by Z3 to
compile time, leaving only function applications to runtime.

On the medium sized document (1023 nodes), L-solvers are between 39 and 231 times faster
than Z3. On the largest document, Z3 was unable to compute a layout within 3 minutes (either
timing out or reporting “unknown”) for all three case studies. Our results show that across the
three case studies, our L-solvers are fast enough (<0.5 second) for interactive settings.

Parameterizable Layout Engines

We demonstrate empirically the expressiveness of non-directional constraints by synthesizing
multiple L-solvers from the same specification. Each solver responds to a distinct event or
user-interaction by updating the layout. For instance, when the user resizes the main window,
one L-solver recomputes the layout using the new width and height as input. We illustrate the
power of non-directionality on our language of treemaps.

Imagine a treemap representing the market capitalization of companies. The leaves of the
document are companies while inner nodes encode the tiling of the screen (Figure 1.2.1a). Let’s
consider the following two events: (i) the values of all companies are updated; and (ii) the user
resizes the treemap.

Each event defines its own set of runtime inputs from which all remaining attributes are
computed. For the first event, the set of runtime inputs is the “value” attribute of each company

www.nytimes.com

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 87

(i.e., leaf nodes). Given new values, the layout engine must update the sizes of each node,
including the overall size of the treemap (root node). In contrast, the second event updates the
overall size of the treemap. As such the runtime inputs are the height/width of the root node.
The values of leaves remain unchanged, and the layout engine must recompute the scaling
parameter converting values (dollars) into areas (squared pixels).

From the same specification, our synthesizer generates two L-solvers, one per set of runtime
inputs. For the first event, we obtain (after scheduling) a five pass L-solver, whereas the second
event yields a three pass L-solver.

The ability to capture multiple flows of computation within the same specification indicates
that relational attribute grammars are a concise formalism for expressing interactive layouts.

4.6 Related Work
GM synthesis builds upon previous work in program synthesis. Our work is closely related to
constraint planning, mode inference in attribute grammars, and logic programming.

Program Synthesis

Functional synthesis, a subset of program synthesis (Manna and Waldinger, 1971, 1980), is an
instance of the AE-paradigm, also known as the Skolem paradigm for synthesis (Pnueli and Ros-
ner, 1989). GM synthesis builds upon functional synthesis procedures, such as Comfusy (Kuncak
et al., 2010) or Sketch (Solar-Lezama et al., 2006), by enabling modular decompositions of speci-
fications to gain scalability.

Constraint Planning (CP)

The task of finding a d-solver can be cast as a multi-way (i.e. non-directional) constraint planning
problem for which solvers like SkyBlue (Sannella, 1994) and QuickPlan (Vander Zanden, 1996)
have been proposed. In CP, each “planning constraint” corresponds to a set of clauses in our
framework. Similar to our d-solver setting, given a set of planning constraints, each associated
with local functions (methods), a planner finds a sufficient subset of functions that computes all
attributes. In contrast with our approach, a programmer is responsible for providing enough
local functions as well as partitioning relations, to satisfy special requirements of the algorithm.
QuickPlan works in quadratic-time by imposing a clever restriction on planning constraints:
each local function must mention all variables of its planning constraint, either as input or as
output. The programmer satisfies this restriction by intelligently factoring clauses into planning
constraints when writing local functions. In our setting, the same information is left to the
oracle (i.e., we search over the space of all factorizations). As illustrated in Section 4.3, our
oracle partitions the relation of each block into subsets of clauses, each corresponding to one

CHAPTER 4. GRAMMAR-MODULAR SYNTHESIS 88

planning constraint. Without this step, we would be restricted to computing all attributes of each
block with a single local function, which would prevent creating layout engines for documents
requiring multiple tree passes. In essence, we cannot use QuickPlan to compute d-solvers,
because we do not know upfront how many passes are needed. In practice, we synthesize local
functions for all subsets of clauses. As a result, we obtain many more local functions than in
the traditional constraint planning setting. Naively encapsulating local functions into planning
constraints meeting QuickPlan’s simplifying assumption would create an exponential explosion.
With one planning constraint per subset of clauses, QuickPlan’s complexity would become
(2n)2 where n is the number of clauses. In general, constraint planning for non-directional
constraints is NP-complete (Maloney, 1992).

We distinguish ourselves by supporting not only finite relations but also tree grammars
of relations, enabling the same L-solver to lay out multiple documents (datasets), while still
guaranteeing a static schedule.

Attribute Grammar

Our modular synthesis algorithm has close connections with relational attribute grammars and
logic programming. Deransart and Maluszynski (1985) give theoretic constructions demonstrat-
ing how relational grammars, functional grammars and directed clause programs are related to
one another. Mode analysis (Debray and Warren, 1988) techniques for logic programs, which
compute whether clause arguments of logical programs are input or output, could be—in
principle—transposed to attribute grammars to compute whether attributes are inherited or
synthesized. The principal goal of mode inference is to learn static properties enabling compiler
optimizations. To this end, such techniques rely on abstract domains to soundly perform over-
approximations of modes. Our work differs in two ways. First, to obtain executable L-solvers,
we must compute exact modes for all attributes. As such, we cannot apply techniques trading
precision for scalability or termination. Secondly, our approach is modular. For each block, we
synthesize a set of local functions, which can be viewed as sets of possible modes for a block.
Local functions are computed independently for each block and can be reused across layout
languages. Mode analysis techniques based on abstract interpretation operate on the whole
program.

Constraint Logic Programming (CLP)

In constraint logic programming (Yap, 2004; Apt, 2003; Apt and Wallace, 2007), constraint
systems are flat and unstructured while we exploit the tree structure to produce L-solvers in a
modular fashion. Furthermore, given a relational specification of a document and a valuation of
its inputs, CLP tools search for one layout (i.e., solution) among the potentially many, whereas
we ensure that the specification is functional with respect to document inputs. That is, the layout
is uniquely determined by inputs (i.e., deterministic).

89

Chapter 5

Conclusion

Today, new visual layouts are designed and implemented by everyone, from non-technical
users to seasoned programmers. Current constraint-based layout languages may be declarative
and high-level but still require significant programming knowledge to be used effectively.
Prototyping layout remains time-consuming, even for proficient programmers.

This thesis presented a framework for specifying visual layout. By inferring layout specifica-
tions from demonstrations and automatically generating layout engines, our framework makes
layout programming both easier and more accessible. The framework is divided into three
components: a programming methodology (Programming by Manipulation), a specification
language (L3), and compiler-producing executable layout engines. With PBM, users steer the
exploration of layout designs by directly displacing blocks of a sample document (Chapter 2).
PBM customizes flexible layout blocks, which are specified in L3. At heart, L3 phrases layout as
a constraint satisfaction problem and abstracts away the flow of computation (Chapter 3). The
L3 compiler is based on a new synthesis algorithm—grammar-modular synthesis—capable of
generating tailored layout engines for custom languages of documents (Chapter 4).

Programming byManipulation has been evaluated by two user studies on both programmers
and non-programmers. The first study shows that non-programmers can design interesting
visualizations using our PBM tool. The second study demonstrates that proficient programmers
are more productive with PBM than with conventional constraint programming. Furthermore,
we have implemented grammar-modular synthesis in our L3 compiler and compared the
performance of the resulting engines with state-of-the-art constraint solvers on three layout
languages.

This chapter concludes this thesis with a summary of contributions and a discussion of
potential directions for future work.

CHAPTER 5. CONCLUSION 90

Contributions

Programming by Manipulation addresses the two central sources of bugs that arise when
programming with constraints: ambiguities and conflicts (inconsistencies). We rule out conflicts
by design and exploit ambiguity to explore potential layouts. We introduce a new type of
user demonstration—the What is wrong (WiW) manipulation—which is resistant to users’
imprecisions inherent in visual domains such as layout. With such manipulations, users can
break constraints and subsequently introduce new ones. Instead of sketching the desired layout,
users steer the exploration of designs by pointing out what they would like to change on a given
layout. Only the direction of the manipulation is interpreted. Our tool is capable of computing
and summarizing ambiguities visually. In our user studies, we have found PBM to be 5-times
more productive than direct programming with constraints.

L3 enables concise and reusable layout specifications using non-directional satisfaction
constraints. L3 guarantees that all constraints are always satisfied, enabling programmers to
predictably and reliably control the resulting layout. Unlike most other layout languages, new
layout elements can be introducedwithout stepping out of the language. Non-directionality frees
designers from reasoning about artifacts of computation, thus raising the level of abstraction
and increasing code reuse.

Grammar-modular synthesis exploits the hierarchical structure of layout specifications
to scale synthesis to large relations at the cost of completeness. GM synthesis decomposes
specifications into smaller subproblems, which can be tackled in isolation by off-the-shelf
synthesis procedures. Our three case studies show not only that GM synthesis scales to large
specifications which could not be tackled by state-of-the-art tools, but also that the layout
engines generated outperform general-purpose constraint solvers by one order of magnitude.
In our experiments, the theoretical incompleteness of GM synthesis did not materialize. We
showed that GM synthesis is sufficiently complete to successfully generate layout engines for
non-trivial data visualizations, and that our synthesized engines are between 39- to 200-times
faster than general-purpose constraint solvers. For our domain, layout, we believe that GM
synthesis strikes the right balance between scalability of synthesis, completeness of synthesis,
and performance of the resulting layout engines.

Future Work

Participants from our user studies seem interested in a tool combining the manipulator with
document authoring so that the sample document can be edited while specifying layout. Our
participants were also very enthusiastic about using themanipulator to customize CSS templates.
This boils down to expressing CSS with constraints, which has been partially done (Badros et al.,
1999). If one could capture all of CSS, a manipulation-based layout system for the web becomes
possible, opening PBM to a very large audience.

With PBM, the desired layout is demonstrated on a sample document. As in software

CHAPTER 5. CONCLUSION 91

testing, a good sample document exercises most of the layout. If the sample document is not
representative of the language of documents, undesirable layout behaviors may surprise the user
whenmoving to larger documents. It would be interesting to investigate under which conditions
the sample document can be proven sufficient to prevent such situations from occurring.

Another important direction for future work is to study the scalability limits of PBM. The
largest tasks of our user studies had slightly over one million configurations. Is there a limit
on the size configuration space after which manipulations are ineffective? As the number of
configurations grows, is it always possible for users to distinguish layouts with manipulations?

L3 factorizes recurrent constraints inside traits. A natural question is whether it is possible
to decompose the universe of all layout designs into a set of overarching concepts spanning
across data visualizations, GUIs, and documents. If so, can we capture each such concept with
one trait and create a library of constraints sufficient to express most layouts? Similarly, the
limits of satisfiability constraints for layout remain unexplored. For which layouts are richer
constraints absolutely required?

Finally, GM synthesis could be applied to domains beyond document layout. For instance,
the techniques presented in this paper could potentially generate an attribute grammar-based
type-checker from relational type system specifications. The underlying domain of attributes
would have to be extended to data types richer than real numbers.

92

Bibliography

Achugbue, J. O. (1981). On the line breaking problem in text formatting. In Proceedings of the
ACM SIGPLAN SIGOA Symposium on Text Manipulation, pages 117–122, New York, NY, USA.
ACM.

Apt, K. (2003). Principles of Constraint Programming. Cambridge University Press, New York,
NY, USA.

Apt, K. R. and Wallace, M. (2007). Constraint Logic Programming Using Eclipse. Cambridge
University Press, New York, NY, USA.

Atkinson, E. (2014). Personal communication.

Badros, G. J., Borning, A., Marriott, K., and Stuckey, P. (1999). Constraint cascading style sheets
for the web. In Proceedings of the 12th Annual ACM Symposium on User Interface Software and
Technology, UIST ’99, pages 73–82, New York, NY, USA. ACM.

Badros, G. J., Borning, A., and Stuckey, P. J. (2001a). The cassowary linear arithmetic constraint
solving algorithm. ACM Transactions on Computer-Human Interaction (TOCHI), 8(4):267–306.

Badros, G. J., Tirtowidjojo, J. J., Marriott, K., Meyer, B., Portnoy, W., and Borning, A. (2001b).
A constraint extension to scalable vector graphics. In Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, pages 489–498, New York, NY, USA. ACM.

Barrett, C., Stump, A., and Tinelli, C. (2010). The Satisfiability Modulo Theories Library. www.
smt-lib.org.

Bateman, J., Kleinz, J., Kamps, T., and Reichenberger, K. (2001). Towards constructive text, dia-
gram, and layout generation for information presentation. Computational Linguistics, 27(3):409–
449.

Borning, A., Lin, R., and Marriott, K. (1997). Constraints for the web. In Proceedings of the Fifth
ACM International Conference on Multimedia, MULTIMEDIA ’97, pages 173–182, New York,
NY, USA. ACM.

www.smt-lib.org
www.smt-lib.org

BIBLIOGRAPHY 93

Borning, A., Lin, R. K.-H., and Marriott, K. (2000). Constraint-based document layout for the
web. Multimedia Systems, 8(3):177–189.

Bos, B., Çelik, T., Hickson, I., and Lie, H. W. (2011). Css 2.1 spec. w3.org/TR/CSS2/.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven documents. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2301–2309.

Collins, G. E. (1975). Hauptvortrag: Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Proceedings of the 2NdGI Conference on Automata Theory and Formal
Languages, pages 134–183, London, UK, UK. Springer-Verlag.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., and
Tommasi, M. (2007). Tree automata techniques and applications. Available on: www.grappa.
univ-lille3.fr/tata.

Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B. A., and Turran-
sky, A., editors (1993). WatchWhat I Do: Programming by Demonstration. MIT Press, Cambridge,
MA, USA.

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg. Springer-Verlag.

Deakin, N., Hickson, I., and Hyatt, D. (2011). Flexible box layout module (w3c working draft).
www.w3.org/TR/css3-flexbox/.

Debray, S. K. and Warren, D. S. (1988). Automatic mode inference for logic programs. Journal of
Logic Programming, 5(3):207–229.

Deransart, P. and Maluszynski, J. (1985). Relating logic programs and attribute grammars.
Journal of Logic Programming, 2(2):119–155.

Di Iorio, A., Furini, L., Vitali, F., Lumley, J., and Wiley, T. (2008). Higher-level layout through
topological abstraction. In Proceedings of the Eighth ACM Symposium on Document Engineering,
DocEng ’08, pages 90–99, New York, NY, USA. ACM.

Digia/Qt Project, . (2011). Qml reference documentation (version 4.7). doc.qt.nokia.com/4.
7-snapshot/qtquick.html.

Elliott, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. (1994). Tbag: A high level framework for
interactive, animated 3d graphics applications. In Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pages 421–434, New York, NY,
USA. ACM.

w3.org/TR/CSS2/
www.grappa.univ-lille3.fr/tata
www.grappa.univ-lille3.fr/tata
www.w3.org/TR/css3-flexbox/
doc.qt.nokia.com/4.7-snapshot/qtquick.html
doc.qt.nokia.com/4.7-snapshot/qtquick.html

BIBLIOGRAPHY 94

Feiner, S. K. (1988). A grid-based approach to automating display layout. In Proceedings on
Graphics Interface ’88, pages 192–197, Toronto, Ont., Canada, Canada. Canadian Information
Processing Society.

Freeman-Benson, B. N. (1993). Converting an existing user interface to use constraints. In
Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, UIST
’93, pages 207–215, New York, NY, USA. ACM.

Hashimoto, O. andMyers, B. A. (1992). Graphical styles for building interfaces by demonstration.
In Proceedings of the 5th Annual ACMSymposium onUser Interface Software and Technology, UIST
’92, pages 117–124, New York, NY, USA. ACM.

Heer, J. and Bostock, M. (2010). Declarative language design for interactive visualization. IEEE
Transactions on Visualization and Computer Graphics, 16(6):1149–1156.

Helm, R., Huynh, T., Lassez, C., and Marriot, K. (1992). A linear constraint technology for
interactive graphic systems. In Proceedings of the Conference on Graphics Interface ’92, pages
301–309, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Hottelier, T. and Bodik, R. (2014). Program synthesis for hierarchical specifications. Technical
Report UCB/EECS-2014-139, EECS Department, University of California, Berkeley.

Hottelier, T., Bodik, R., and Ryokai, K. (2014). Programming by manipulation for layout. In
Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST’
14, New York, NY, USA. ACM.

Hudson, S. E. and Yeatts, A. K. (1991). Smoothly integrating rule-based techniques into a
direct manipulation interface builder. In Proceedings of the 4th Annual ACM Symposium on
User Interface Software and Technology, UIST ’91, pages 145–153, New York, NY, USA. ACM.

Hurst, N., Li, W., and Marriott, K. (2009). Review of automatic document formatting. In
Proceedings of the 9th ACM Symposium on Document Engineering, DocEng ’09, pages 99–108,
New York, NY, USA. ACM.

Hurst, N., Marriott, K., and Moulder, P. (2003). Cobweb: A constraint-based web browser. In
Proceedings of the 26th Australasian Computer Science Conference - Volume 16, ACSC ’03, pages
247–254, Darlinghurst, Australia, Australia. Australian Computer Society, Inc.

Jacobs, C., Li, W., Schrier, E., Bargeron, D., and Salesin, D. (2003). Adaptive grid-based document
layout. ACM Transactions on Graphics (TOG), 22(3):838–847.

Johnson, B. and Shneiderman, B. (1991). Tree-maps: A space-filling approach to the visualization
of hierarchical information structures. In Proceedings of the 2Nd Conference on Visualization ’91,
VIS ’91, pages 284–291, Los Alamitos, CA, USA. IEEE Computer Society Press.

BIBLIOGRAPHY 95

Karsenty, S., Landay, J. A., and Weikart, C. (1993). Inferring graphical constraints with rockit.
In Proceedings of the Conference on People and Computers VII, HCI’92, pages 137–153, New York,
NY, USA. Cambridge University Press.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical systems theory, 2(2):127–
145.

Kuncak, V., Mayer, M., Piskac, R., and Suter, P. (2010). Complete functional synthesis. In Proceed-
ings of the 2010ACMSIGPLANConference on Programming LanguageDesign and Implementation,
PLDI ’10, pages 316–329, New York, NY, USA. ACM.

Lau, T. (2009). Why pbd systems fail: Lessons learned for usable ai. AI Magazine, pages 65–67.

Lau, T., Domingos, P., and Weld, D. S. (2003). Learning programs from traces using version
space algebra. In Proceedings of the 2nd international conference on Knowledge capture, K-CAP
’03, pages 36–43, New York, NY, USA. ACM.

Lau, T. A., Domingos, P., and Weld, D. S. (2000). Version space algebra and its application
to programming by demonstration. In Proceedings of the Seventeenth International Conference
on Machine Learning, ICML ’00, pages 527–534, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Lau, T. A. and Weld, D. S. (1999). Programming by demonstration: an inductive learning
formulation. In Proceedings of the 4th international conference on Intelligent user interfaces, IUI
’99, pages 145–152, New York, NY, USA. ACM.

Lie, H. W. and Bos, B. (1997). Cascading Style Sheets. Addison Wesley Longman.

Lutteroth, C., Strandh, R., and Weber, G. (2008). Domain specific high-level constraints for user
interface layout. Constraints, 13(3):307–342.

Maloney, J. H. (1992). Using Constraints for User Interface Construction. PhD thesis, University of
Washington, Seattle, WA, USA.

Manna, Z. and Waldinger, R. (1980). A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–121.

Manna, Z. and Waldinger, R. J. (1971). Toward automatic program synthesis. Communications of
the ACM, 14(3):151–165.

McDaniel, R. G. and Myers, B. A. (1999). Getting more out of programming-by-demonstration.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’99, pages
442–449, New York, NY, USA. ACM.

BIBLIOGRAPHY 96

Meyerovich, L. (2013). Parallel Layout Engines: Synthesis and Optimization of Tree Traversals. PhD
thesis, EECS Department, University of California, Berkeley.

Meyerovich, L. A., Torok, M. E., Atkinson, E., and Bodik, R. (2013). Parallel schedule synthesis
for attribute grammars. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, pages 187–196, New York, NY, USA. ACM.

Monniaux, D. (2008). A quantifier elimination algorithm for linear real arithmetic. In Proceedings
of the 15th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR ’08, pages 243–257, Berlin, Heidelberg. Springer-Verlag.

Myers, B. A. (1988). Creating User Interfaces by Demonstration. Academic Press Professional, Inc.,
San Diego, CA, USA.

Myers, B. A. and Buxton, W. (1986). Creating highly-interactive and graphical user interfaces by
demonstration. InProceedings of the 13th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’86, pages 249–258, New York, NY, USA. ACM.

Myers, B. A., Giuse, D. A., Dannenberg, R. B., Kosbie, D. S., Pervin, E., Mickish, A., Zanden,
B. V., and Marchal, P. (1990). Garnet: Comprehensive support for graphical, highly interactive
user interfaces. Computer, 23(11):71–85.

Myers, B. A., Zanden, B. V., and Dannenberg, R. B. (1989). Creating graphical interactive
application objects by demonstration. In Proceedings of the 2Nd Annual ACM SIGGRAPH
Symposium on User Interface Software and Technology, UIST ’89, pages 95–104, New York, NY,
USA. ACM.

Nevill-Manning, C. (1993). Programming by demonstration. New Zealand Journal of Computing,
4:15–24.

Pnueli, A. and Rosner, R. (1989). On the synthesis of a reactive module. In Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, pages
179–190, New York, NY, USA. ACM.

Sannella, M. (1994). Skyblue: A multi-way local propagation constraint solver for user interface
construction. In Proceedings of the 7th Annual ACM Symposium on User Interface Software and
Technology, UIST ’94, pages 137–146, New York, NY, USA. ACM.

Schrier, E., Dontcheva, M., Jacobs, C., Wade, G., and Salesin, D. (2008). Adaptive layout for
dynamically aggregated documents. In Proceedings of the 13th International Conference on
Intelligent User Interfaces, IUI ’08, pages 99–108, New York, NY, USA. ACM.

Singh, G., Kok, C. H., and Ngan, T. Y. (1990). Druid: A system for demonstrational rapid user
interface development. In Proceedings of the 3rd Annual ACM SIGGRAPH Symposium on User
Interface Software and Technology, UIST ’90, pages 167–177, New York, NY, USA. ACM.

BIBLIOGRAPHY 97

Singh, R. and Gulwani, S. (2012a). Learning semantic string transformations from examples.
Proceedings of the VLDB Endowment, 5(8):740–751.

Singh, R. and Gulwani, S. (2012b). Synthesizing number transformations from input-output
examples. In Proceedings of the 24th International Conference on Computer Aided Verification,
CAV’12, pages 634–651, Berlin, Heidelberg. Springer-Verlag.

Sinha, N. and Karim, R. (2013). Compiling mockups to flexible uis. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 312–322, New
York, NY, USA. ACM.

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., and Saraswat, V. (2006). Combinatorial
sketching for finite programs. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XII, pages 404–415, New
York, NY, USA. ACM.

Souders, S. (2013). How fast are we going now? www.stevesouders.com/blog/2013/05/09/
how-fast-are-we-going-now/.

Vander Zanden, B. (1996). An incremental algorithm for satisfying hierarchies of multiway
dataflow constraints. ACM Transactions on Programming Languages and Systems (TOPLAS),
18(1):30–72.

Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., and McKeon, M. (2007). Manyeyes: A site
for visualization at internet scale. IEEE Transactions on Visualization and Computer Graphics,
13(6):1121–1128.

Vlissides, J. M. and Tang, S. (1991). A unidraw-based user interface builder. In Proceedings of the
4th Annual ACM Symposium on User Interface Software and Technology, UIST ’91, pages 201–210,
New York, NY, USA. ACM.

Warme, D. M. (1998). Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis,
University of Virginia, Charlottesville, VA, USA.

Weitzman, L. and Wittenburg, K. (1993). Relational grammars for interactive design. In Visual
Languages, 1993., Proceedings 1993 IEEE Symposium on, pages 4–11.

Weitzman, L. andWittenburg, K. (1994). Automatic presentation ofmultimedia documents using
relational grammars. In Proceedings of the Second ACM International Conference on Multimedia,
MULTIMEDIA ’94, pages 443–451, New York, NY, USA. ACM.

Yap, R. H. C. (2004). Constraint processing. Theory and Practice of Logic Programming, 4(5-6):755–
757.

www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/
www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/

BIBLIOGRAPHY 98

Zeidler, C., Lutteroth, C., Sturzlinger, W., and Weber, G. (2013). The auckland layout editor: An
improved gui layout specification process. In Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology, UIST ’13, pages 343–352, New York, NY, USA. ACM.

Zeidler, C., Lutteroth, C., and Weber, G. (2012). Constraint solving for beautiful user inter-
faces: How solving strategies support layout aesthetics. In Proceedings of the 13th International
Conference of the NZ Chapter of the ACM’s Special Interest Group on Human-Computer Interaction,
CHINZ ’12, pages 72–79, New York, NY, USA. ACM.

	Contents
	List of Algorithms
	List of Code Listings
	List of Figures
	List of Tables
	1 Introduction
	1.1 Dissertation Overview
	1.2 Motivating Example
	1.3 Programming by Manipulation
	1.4 A Language of Constraints for Layout
	1.5 Grammar-Modular Synthesis
	1.6 Collaborators and Publications

	2 Programming by Manipulation
	2.1 Motivation and Approach
	2.2 Overview of Programming by Manipulation
	2.3 Creating New Traits From Constraints
	2.4 The PBM Manipulator
	2.5 Evaluation
	2.6 Related Work

	3 A Language of Constraints for Layout
	3.1 Motivation and Design Principles
	3.2 Overview of L3
	3.3 L3 by Example
	3.4 Related Work

	4 Grammar-Modular Synthesis
	4.1 From Program Synthesis to GM Synthesis
	4.2 Compiler Architecture
	4.3 Modular Synthesis
	4.4 Grammar-Modular Synthesis
	4.5 Evaluation
	4.6 Related Work

	5 Conclusion
	Bibliography

