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Abstract. The use of economic incentives has been proposed to manage user de-
mand in smart grids that integrate renewable sources of energy to compensate for
the intrinsic uncertainty in the prediction of the supply generation. We address the
problem of synthesizing optimal energy pricing strategies, while quantitatively
constraining the risk due to uncertainty for the network operator and guaranteeing
quality-of-service for the users. We use Ellipsoidal Markov Decision Processes
(EMDP) to model the decision-making scenario. These models are trained with
measured data and allow to quantitatively capture the uncertainty in the predic-
tion of energy generation. We then cast the constrained optimization problem as
the strategy synthesis problem for EMDPs, with the goal to maximize the total
expected reward constrained to properties expressed using the Probabilistic Com-
putation Tree Logic (PCTL), and propose a novel sound and complete synthesis
algorithm. An experimental comparison shows the effectiveness of our method
with respect to previous approaches presented in the literature.

1 Introduction

Several real-world multi-agent systems exhibit stochastic behavior, and can be modeled
using formalisms such as Markov Decision Processes (MDPs) [29]. Desired properties
of such systems can be both Boolean, e.g., expressible in logics such as probabilistic
computation tree logic (PCTL) [2,3], or quantitative, such as maximizing a reward func-
tion [1]. The synthesis of strategies to satisfy Boolean properties and optimize quantita-
tive measures is naturally a topic of much relevance. Moreover, for probabilistic models
that are inferred from empirical data, it is necessary to design strategies that are robust
to uncertainties in estimated probabilities. In this paper, we present a new approach to
robust strategy synthesis for a class of MDPs with uncertainties, with application to
risk-limiting renewable energy pricing.

Main Motivating Application. Electricity consumption is projected to grow from
18 trillion kWh in 2006 to 32 trillion kWh in 2030, a 77% increase [4]. To avoid catas-
trophic pollution damage to the planet, it is necessary to employ energy sources alter-
native to fossil fuels [5]. In this paper, we focus on wind energy, which currently has
higher capacity than solar energy, and is expected to constitute a significant portion of
renewable generation integrated to the power grids of North America [5].

The correct operation of power systems requires the balance between energy supply
and demand at all times. The risk for the system operator can be quantified both by the
probability of not meeting such a balance constraint, and by the (positive) gap between



demand and supply. High values of either indicator make the occurrence of disruptions,
faults and ultimately blackouts more likely [6]. In grids that only integrate fossil energy
sources, the task for the system operator amounts to dispatch the production of energy
during the day, based on averaged demand profiles. A wealth of deterministic optimiza-
tion frameworks have been developed to solve the energy dispatch problem, aiming to
maximize the operator profits while guaranteeing resiliency also in the presence of one
fault in the network, the so-called N-1 worst-case dispatch [6]. Heavy reliance on wind
generation puts forth big operational challenges [6]. Unlike fossil energy resources,
wind generation is non-dispatchable, i.e., it cannot be harvested by request. Further,
wind availability exhibits high variability across all timescales, which makes it chal-
lenging to forecast (errors can be up to 20% of the forecast value [7]). To compensate
for this supply uncertainty, researchers have proposed the concept of demand response,
i.e., adapting customer energy consumption in response to supply conditions. In smart
grids with two-way communications, real-time pricing protocols can be implemented so
that, unlike the fixed price per unit that is traditionally employed, the price of electricity
can vary according to the supply, to incentivize demand appropriately.

Stochastic modeling and optimization frameworks have been proposed for the prob-
lem of energy pricing and dispatch [8, 9]. These works aim to determine both optimal
pricing and dispatch of non-renewable baseline energy (wind penetration usually ac-
counts only up to 20-30% of the total energy generation, so fossil fuels are still re-
quired). These works though do not explicitly consider the risk of power unbalance
during optimization, and only evaluate the probability of loss of load after synthesis via
Monte Carlo simulation, to evaluate the quality of the proposed solution. Unfortunately,
the resulting evaluation offers little insight to the operator when the risk is too high. In-
deed, Varayia et al. [6] advocate the need for an optimization framework capable of
bounding the risk, interpreted stochastically, at optimization time. Moreover, a mini-
mum amount of delivered energy needs to be guaranteed to the users, since otherwise
operators could potentially increase the energy price to force users out of the system
to obtain power balance at times of little wind generation. We refer to this guaranteed
delivered energy as Quality of Service (QoS) for the users. As summarized in the next
section, our contribution targets these needs.

Paper Contributions. Our first contribution is a novel stochastic model to cap-
ture energy-dispatch and pricing strategies for smart grids with wind energy sources.
The model is an Ellipsoidal Markov Decision Process (EMDP), a special case of the
Convex-MDP (CMDP) model first introduced in [10], i.e., an MDP where transition
probabilities are only known to lie in ellipsoidal sets. While previous works used an-
alytical distributions, e.g., Gaussian [9], to model uncertainty in wind availability, we
use measured data (from the wind farm at Lake Benton, Minnesota, USA), to train a
likelihood model of the wind generation, and give quantitative means to represent the
confidence in the forecast values. We then approximate the likelihood region with an el-
lipsoidal model, which is more accurate than the linear ones often used in the literature,
while remaining computationally tractable. Our empirical approach has the promise of
more faithfully representing the probability distribution of the generated energy because
it is tailored to the specific wind farm under analysis, and it is robust to forecast errors.

As a second contribution, we cast the constrained optimization problem as the strat-
egy synthesis problem for EMDPs, to maximize the total expected reward constrained
to PCTL properties. The optimization aims to maximize the profits for the system oper-
ator, while constraints limit the risk of power unbalance and guarantee the desired QoS
for the users. We focus on Markov Deterministic (MD) strategies, i.e, for each state an



optimal action to take is chosen deterministically, based only on the current state and
not on the entire execution history. Deterministic pricing and dispatch strategies are
easier to adopt in a real-world scenario. Moreover, we encode the sequence of decision
epochs over the day within the model itself, to guarantee the Markov property.

Finally, as our third contribution, we prove that the problem of determining the ex-
istence of an MD strategy for EMDPs, with total expected reward higher than a given
threshold and constrained to specifications in PCTL, is NP-complete, and develop an al-
gorithm to solve the optimization version of the problem, i.e, maximize the reward. The
algorithm can process formulae with multiple and nested quantitative operators, and it is
sound and complete. Its key advantage is the capability of ranking candidate strategies
by the value of their reward. The first proposed strategy that satisfies all PCTL proper-
ties for any resolution of uncertainty is the solution of the synthesis problem. Although
the algorithm worst-case running time is exponential in the size of the EMDP, this capa-
bility may allow considerable speed-ups in practical scenarios. These results hold also
for Interval-MDPs (not considered in the paper). Further, the proposed algorithm can
be applied to a wider range of applications, e.g., semi-autonomous car driving.

The rest of the paper is organized as follows. Section 2 gives background on CMDPs
and PCTL. Section 3 presents related work. In Section 4, we describe the proposed
algorithm for the synthesis of constrained optimal strategies for EMDPs. We then give
details of the EMDP model used to synthesize energy-pricing strategies in smart grids
with renewable sources in Section 5, and present experimental results in Section 6.
Lastly, we conclude and discuss future directions in Section 7.

2 Preliminaries
Definition 2.1. A Probability Distribution (PD) over a finite set Z of cardinality n is
a vector µ ∈ Rn satisfying 0 ≤ µ ≤ 1 and 1Tµ = 1. The element µ[i] represents the
probability of realization of event zi. We call Dist(Z) the set of distributions over Z.

2.1 Convex Markov Decision Process (CMDP)

Definition 2.2. A labeled finite CMDP,MC is a tupleMC = (S, S0, A,Ω,F ,A,X , L),
where S is a finite set of states of cardinality N = |S|, S0 is the set of initial states, A is
a finite set of actions (M = |A|), Ω is a finite set of atomic propositions, F is a finite
set of convex sets of transition PDs, A : S → 2A is a function that maps each state to
the set of actions available at that state, X = S ×A→ F is a function that associates
to state s and action a the corresponding convex set Fas ∈ F of transition PDs, and
L : S → 2Ω is a labeling function.

The set Fas = Distas(S) represents the uncertainty in defining a transition distribution
forMC given state s and action a. We call fas ∈ Fas an observation of this uncertainty.
Also, fas ∈ RN and we collect the vectors fas ,∀s ∈ S into an observed transition matrix
F a ∈ RN×N . Abusing terminology, we call Fa the uncertainty set of the transition
matrices, and F a ∈ Fa. Fas is interpreted as the row of Fa corresponding to state s.
Finally, fasisj = fasi [j] is the observed transition probability from si to sj under action
a. The data-type of a ∈ A(si) can be different from the one of b ∈ A(sj), if si 6= sj .

To model uncertainty in state transitions, we make the following assumptions:
Assumption 2.1. Fa can be factored as the Cartesian product of its rows, i.e., its rows
are uncorrelated. Formally, for every a ∈ A, Fa = Fas0 × · · · × F

a
sN−1

. In [11] this
assumption is referred to as rectangular uncertainty.



Assumption 2.2. [CMDP Semantics] CMDPs model non-deterministic choices made
from a convex set of uncountably many choices. Each time a state is visited, a transi-
tion distribution within the set is adversarially picked, and a probabilistic step is taken
accordingly. (The same semantics is used for IMDPs in [12].)

A transition between state s to state s′ in a CMDP occurs in three steps. First, an ac-
tion a ∈ A(s) is chosen. The selection of a is nondeterministic. Secondly, an observed
PD fas ∈ Fas is chosen. The selection of fas models uncertainty in the transition. Lastly,
a successor state s′ is chosen randomly, according to the transition PD fas .

A path π inMC is a finite or infinite sequence of the form s0
fa0s0s1−−−→ s1

fa1s1s2−−−→, · · · ,
where si ∈ S, ai ∈ A(si) and faisi,si+1

> 0 ∀i ≥ 0. We indicate with Πfin (Πinf )

the set of all finite (infinite) paths ofMC . πs[i] (πa[i]) is the ith state (selected action)
along the path and, for finite paths, last(π) is the last state visited in π ∈ Πfin. Πs =
{π | π[0] = s} is the set of paths starting in state s.

The algorithm presented in Section 4 can be applied both to the interval and ellip-
soidal models of uncertainty [10] (and to a mix of them), but in this paper we will focus
on the latter one since it is more suitable for the application analyzed in Section 5.
This model is a second-order approximation of the likelihood model of uncertainty
(likelihood models are often used when transition probabilities are determined exper-
imentally), and it is more accurate than a linear one [11]. The transition frequencies
associated to action a ∈ A are collected in matrix Ha. Uncertainty in each row of Ha

can be described by the likelihood region gas :

gas={fas ∈ RN|
∑
s′ h

a
ss′ log(f

a
ss′)≥βas } ≈ {fas ∈ RN|∑

s′
(fass′−h

a
ss′)

2

ha
ss′

≤(Kas )
2} (1)

where βas < βas,max =
∑
s′ h

a
ss′ log(h

a
ss′) represents the uncertainty level. Equation (1)

also shows on the right the second-order approximation of gas , with Kas = 2(βas,max −
βas ) ≥ 0 representing the uncertainty level. We then write the approximation of gas in
conic form, and intersect it with the probability simplex, to obtain the uncertainty set:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1, ‖Eas (fas − has) ‖2 ≤ 1, Eas � 0} (2)

where matrix Eas = (Kas )
−1 × diag

(
(hass0)

−0.5, · · · , (hassN )
−0.5) � 0.

We determine the size R of the CMDPMC as follows.MC has N states, O(M)
actions per state and O(N2) transitions for each action. Let Da

s denote the number of
constraints required to express the rectangular uncertainty setFas , andD = max

s∈S,a∈A
Da
s .

The overall size ofMC is thusR = O(N2M +NMD).

Strategies and Nature To analyze quantitative properties, we need a probability space
over infinite paths [13]. However, a probability space can only be constructed once
nondeterminism and uncertainty have been resolved. We call each possible resolution
of nondeterminism a strategy, which chooses an action in each state ofMC .
Definition 2.3. Strategy. A randomized strategy forMC is a function σ = Πfin×A→
[0, 1], with

∑
A(last(π)) σ(π, a) = 1, and a ∈ A(last(π)) if σ(π, a) > 0. We call ΣMC

the set of all strategies σ ofMC .
Conversely, we call a nature [11] each possible resolution of uncertainty, i.e., a nature
chooses a transition PD for each state and action ofMC .



Definition 2.4. Nature. Given action a ∈ A, a randomized nature is the function ηa :
Πfin×Dist(S)→ [0, 1] with

∫
Fa
last(π)

ηa(π, fas ) = 1, and fas ∈ Falast(π) if ηa(π, fas ) >

0. We call Nat the set of all natures ηa ofMC .

A strategy σ (nature ηa) is Markovian (M) if it depends only on last(π). Also, σ (ηa)
is deterministic (D) if σ(π, a) = 1 for some a ∈ A(last(π)) (ηa(π, fas ) = 1 for some
fas ∈ Falast(π)). As explained later, we will consider only MD strategies. There are in
total I =|As0| × · · · × |AsN |= O(MN ) MD strategies, collected in the set ΣMD

MC .
After fixing a strategy σ, all the non-determinism inMC is resolved. For MD strate-

gies, we obtain the induced Convex Markov Chain (CMC)Mσ
C = (S, S0, Ω,F ,X , L).

Mσ
C has still sizeR since the state space S does not change for MD strategies. Further,

the only convex set Fas ∈ F of transition PDs available at each state s ∈ S is the one
corresponding to the action a ∈ A(s) such that σ(s, a) = 1.

Rewards. Rewards allow modeling additional quantitative measures of a CMDP, e.g.,
profit. We associate rewards to states and to actions available in each state.

Definition 2.5. A reward structure for a CMDPMC is a tuple r = (rs, ra) comprising
a state (action) reward function rs : S → R≥0 (ra : S ×A→ R≥0). Given a (possibly
infinite) path π with horizon T ∈ N ∪ +∞, the path reward for π is rew(r)(π) =
ΣT
t=0rs(πs[t]) + ra(πs[t], πa[t]).

In this paper, we will rank the available MD strategies for the CMDP based on their
total expected reward.

Definition 2.6. The total expected reward for state s ∈ S under strategy σ ∈ ΣMD
MC is

defined as:
Wσ
MC,s := min

ηa∈Nat
Eσ,η

a

MC (rew(r)) (3)

where we minimize the expected reward over all paths starting from s with horizon T
visited under strategy σ across the action range ηa ∈ Nat of the adversarial nature.

For simplicity, we will only consider CMDPs such that Wσ
MC,s exists and it is finite

∀s ∈ S,∀σ ∈ ΣMD
MC . These include infinite-horizon CMDPs (T = +∞) with zero-

reward absorbing states (ω = abs), as the ones used in Section 5. For more details, see
[1]. Further, according to Assumption 2.2, we can substitute ηa ∈ Nat with fas ∈ Fas ,
and only consider MD natures.

2.2 Probabilistic Computation Tree Logic (PCTL)

We use PCTL, a probabilistic logic derived from CTL which includes a probabilistic
operator P [2] and a reward operator R [14], to express properties of CMDPs [3]. The
syntax of this logic is defined as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | Ponp [ψ] | Rronv[ρ] state formulas

ψ ::= X φ | φ1 U ≤kφ2 | φ1 U φ2 path formulas

ρ ::= I =k | C ≤k | F φ rewards

with ω ∈ Ω an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1], v ∈ R≥0 and k ∈ N.
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rs=1	  
{ϑ}	  

s1	  
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b
	  	  

a	  

a	  a	  

Fig. 1: Example EMDP.

Table 1: PCTL semantics forMC .
s |= True
s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P/p(.p) [ψ] iff Pσ,max(min)s ({π ∈ Πs | π |= ψ}) / p(.p)
s |= R/v(.v) [ρ] iff Eσ,max(min)s (rew(r, ρ)) / v(.v)
π |= X φ iff π[1] |= φ
π |= φ1 U ≤kφ2 iff ∃i ≤ k | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1

π |= φ1 U φ2 iff ∃k ≥ 0 | π |= φ1 U≤kφ2

rew(r,F φ)(π) := Σ
tφ
t=0rs(πs[t]) + ra(πs[t], πa[t]),

tφ = min{t | πs[t] |= φ}

Path formulas use the Next (X ), Bounded Until
(
U ≤k

)
and Unbounded Until (U )

operators. They are evaluated over paths and only allowed as parameters to the P oper-
ator. Reward formulas use the Instanteneous

(
I =k

)
, Bounded Cumulative

(
C ≤k

)
and

Cumulative (F ) operators. The size Q of a PCTL formula is defined as the number of
Boolean connectives plus the number of P and R operators in the formula. We define

Pσ,η
a

s [ψ]
def
= Prob

(
{π ∈ Πσ,ηa

s | π |= ψ}
)

the probability of taking a path π ∈ Πs

that satisfies ψ under strategy σ and nature ηa. Pσ,maxs [ψ] (Pσ,mins [ψ]) denote the max-
imum (minimum) probability Pσ,η

a

s [ψ] across all natures ηa ∈ Nat, for a fixed strategy
σ. An analogous definition holds also for reward properties, which can be expressed
also using (multiple) reward structures different from the one use to maximize the to-
tal expected reward. For a CMDP MC , strategy σ, and property φ, we will also use
MC , σ |=Nat φ to denote that, when starting from any initial state s ∈ S0, and operat-
ing under σ,MC satisfies φ for any ηa ∈ Nat. The semantics of the logic is reported
in Table 1, where we write |= instead of σ |=Nat for simplicity.

To illustrate our results, we will use the EMDPMC in Fig. 1, with S = {s0 · · · s3},
S0 = {s0}, A = {a, b}, Ω = {ϑ, abs}, A : {s0, s1} → {a, b} ; {s2, s3} → {a},
L : {s0, s2} → ϑ ; {s3} → abs. The parameters of the uncertainty ellipsoids are shown
next to each transition.

3 Related Work

Related work falls into two main categories: renewable-energy pricing in smart grids,
and strategy synthesis from PCTL specifications for probabilistic systems.

The integration of renewable energy sources in power grids has motivated the de-
velopment of stochastic frameworks to solve the energy-pricing problem. The work
in [15] presents a risk-limiting optimization framework. That effort focuses on model-
ing the uncertainty in energy availability on the supply side, but it does not consider the
problem of controlling user demand through economic incentives. The effectiveness of
demand response in balancing supply and demand in power grids was studied in [8],
and a stochastic framework to optimize operator profits was presented in [9]. We closely
follow the optimization setup presented in these works, but we also constrain the op-
erator risk and the user QoS at synthesis time. Finally, Varaiya et al. argued the need
to quantitatively constraint the operator risk in [6]. The risk-limiting dispatch approach
proposed in that work is optimal for properties of the form P≥1 or P≤0, but sub-optimal
for properties with satisfaction threshold p ∈ (0, 1). Further, QoS is not considered.



The problem of strategy synthesis for MDPs from PCTL specifications was first
studied in [16]. Strategies are divided into four categories depending on: 1) whether
the transition is chosen deterministically (D) or randomly (R); 2) the choice does (does
not) depend on the sequence of previously visited states (Markovian (M) and history-
dependent (H)). Also, it is proven that the four types of strategies form a strict hierar-
chy (MD ≺ MR ≺ HD ≺ HR), and that determining whether it exists an MD/MR
(HD/HR) strategy that meets all specifications is NP-complete (elementary). Kučera et
al. [17] show how to synthesize MR controllers that are robust to linear perturbations
via a reduction to a formula in the first-order logic of reals. This work is the closest
to ours, albeit we consider also non-linear models of uncertainties. Also, to the best of
our knowledge, the algorithm has not been applied to any case study. In [18] and [19]
routines for the verification of PCTL properties of MDPs are adapted to the strategy
synthesis problem. These algorithms are polynomial in the model size, but they are not
complete [18] or can handle properties with only one quantitative operator [19]. Fi-
nally, [20] studies the synthesis of multi-strategies for MDPs. This approach can handle
only a subset of PCTL properties and it only considers MDPs with no uncertainties.

4 Constrained Total Expected Reward Maximization for CMDPs

We formally define the optimization problem under analysis, prove that its decision
problem version is NP-complete, and present an algorithm to solve the former.

Constrained Total Expected Reward Maximization for EMDPs. Given an EMDP
MC , a reward structure r, and a PCTL formula φ, determine strategy σ∗ forMC such
that:

σ∗ = argmax
σ∈ΣMDMC ,φ

Wσ
MC,s (4)

where ΣMD
MC,φ is the set of Markov-Deterministic strategies for whichMC satisfies φ

for any ηa ∈ Nat, starting from any s ∈ S0 and operating under σ ∈ Σφ. The same
results hold for the dual problem of minimizing the EMDP total expected cost.

We will use the following lemmas (the proofs are available in the references):

Lemma 4.1. Complexity of PCTL model-checking for CMDPs [10]. Verifying that
a CMDPMC satisfies a PCTL formula φ is solvable in polynomial time.

Lemma 4.2. Computation of the total expected reward for CMCs [11]. Given a
CMC, its total expected reward is computable in polynomial time.

Lemma 4.3. Complexity of PCTL strategy synthesis for MDPs [16]. The problem
of determining the existence of an MD strategy σ for an MDPM such thatM, σ |= φ
is NP-complete.

We now prove that the decision problem version of Problem (4) is NP-complete.

Theorem 4.1. The problem of determining the existence of an MD strategy σ for an
EMDPMC , with total expected reward Wσ

MC,s larger or equal to WT and satisfying
specifications φ in PCTL, is NP-complete.

Proof. Given a candidate solution σc, we can in polynomial time: 1) check whether
MC , σc |=Nat φ by Lemma 4.1; 2) compute Wσc

MC on the induced CMC Mσc
C by



Op#miza#on	  Engine	  
(strategy	  ranking)	  

Feasible:	  
Candidate	  op#mal	  solu#on	  

NO:	  addi#onal	  constraint	  

Op#mal	  strategy	  that	  sa#sfies	  proper#es	  No	  schedule	  sa#sfies	  proper#es	  

Verifica#on	  Engine	  
(verifies	  if	  proper#es	  are	  sa#sfied)	  

Unfeasible	   YES	  

Fig. 2: Lazy algorithm for constrained optimization.

Lemma 4.2. σc is a solution if and only if check 1) passes and Wσc
MC ≥WT . This proves

that the problem is in NP. To prove NP-hardness, we reduce the problem in Lemma 4.3
to the one under analysis. We set WT = 0, and describe transition probabilities with
point ellipses, i.e., ellipses with null axes (K → +∞ in Equation (1)). ut

In the rest of the section, we describe an algorithm to solve Problem (4). We use
a lazy approach, conceptually similar to the ones proposed in [21] and, for non-linear
constraints, [22]. As shown in Fig. 2, the algorithm is split into two main routines com-
municating in a loop. The optimization engine (OE) is responsible to generate a candi-
date strategy σc. The candidate solution is then passed to the verification engine (VE)
which checks whetherMC satisfies φ for all resolutions of uncertainty, i.e., ∀ηa ∈ Nat,
when operating under σc. If the check passes, σ∗ = σc and the algorithm terminates.
Otherwise, the VE generates an additional constraint for the OE to prevent the previous
σc to be selected again, and the loop repeats. The novelty of our approach is devising a
mathematical formulation for the OE capable of generating candidate strategies in order
of optimality with respect to the total expected reward. The first candidate strategy that
also satisfies all PCTL properties becomes the solution of the synthesis problem. The
next subsections give details on the OE and VE and analyze the algorithm properties.

4.1 Optimization Engine

In Problem (5) on the left, we start with the classical linear-programming (LP) formu-
lation to maximize the total expected reward for MDPs [1].

min
x,l

xT1 max
x,z,l,n

xT1

s.t. xs − las = ras + xTfas ; ⇔ s.t. xs − las + nas = ras + xTfas ; ∀s∈S,∀a∈A(s) (5a)
las ≤ Bzas , nas ≤ Bzas ; ∀s∈S,∀a∈A(s) (5b)

zT
s 1 =Ms − 1; ∀s∈S (5c)

xs, l
a
s ≥ 0 xs, l

a
s , n

a
s ≥ 0, zas ∈ {0, 1}∀s∈S,∀a∈A(s)

Vector x collects the total expected reward for each state s ∈ S (at the end of the
optimization Wσc

MC,s = xs,∀s ∈ S), and variables las are slack variables for each
constraint. Also, ras = rs(s) + ra(s, a),∀s ∈ S, ∀a ∈ A. Since the slack variables
have negative sign, the slack can only be negative, i.e., the left-hand side (LHS) can
only be larger or equal than the right-HS (RHS). The “min” operator makes sure that,
for each state, the constraint with the highest RHS has null slack, i.e., las = 0. The
optimal strategy can then be reconstructed by selecting the action a ∈ A(s),∀s ∈ S
corresponding to the constraint with null slack, e.g., σc(s0, a) = 1 if las0 = 0. Our
goal is modifying such a formulation to allow a sub-optimal solution to be selected, in
case the optimal solution does not satisfy the PCTL specifications. We now describe
an equivalent formulation to the original problem that is more suitable to achieve this
goal. We will describe in Section 4.2 how to add constraints to this formulation to
actually select sub-optimal solutions in order of optimality. We refer to Problem (5) on
the right. We associate a binary variable zas to each action for every state, so the problem



becomes a Mixed-Integer Linear Program (MILP). zajsi = 0 if action aj is chosen for
state si, and Constraint (5c) guarantees that only one action can be selected for each
state (Ms=|A(s)|). For example, σc(s0, a) = 1 if zas0 = 0. We then associate to each
constraint a second slack variable nas , with sign opposite to las . For selected actions,
zaisi = 0, Constraint (5b) makes sure that zajsi = 0 implies lajsi = 0 ∧ najsi = 0, so that
the corresponding Constraint (5a) sets the value of xs (B is a big number with respect
to the problem data). For unselected actions, zaksi = 1, variable laksi > 0 (naksi > 0) if
selecting action ak had resulted in a lower (higher) value of xsi . With these constraints,
any action can be selected. We, finally, change the optimization operator to “max”, so
that, at the first iteration of the algorithm, the total expected reward gets maximized.

We now proceed to consider uncertainties in the transition probabilities. Constraint (5a)
gets updated to Constraint (6) on the left, since the adversarial nature tries to minimize
the expected reward. The new constraint can be made linear again for an arbitrary uncer-
tainty model by replacing it with a set of constraints, one for each point inFas . However,
this approach results in infinite constraints if the set Fas contains infinitely many points,
as in the cases considered in the paper, thus making the problem not solvable. Using
a construction similar to the one presented in [10], we solve this difficulty for the el-
lipsoidal uncertainty model using duality. In Constraint (6) on the left, we replace the
primal inner problem with its dual, ∀s ∈ S, a ∈ A(s):

xs − las + nas = ras + min
fas ∈Fas

xTfas ⇒ xs − las + nas = ras + max
λas∈Das

g (λas ,x) (6)

λa
s =

[
λa1,s, λ

a
2,s, λ

a
3,s

]
Vector Lagrange multiplier

g (λas ,x) = λa1,s − λa2,s − ha
s
TEasλ

a
3,s Dual cost function

Das = {λas | ‖λa3,s‖2 ≤ λa2,s, x− λa1,s1+ Eas
Tλa

3,s = 0} Dual feasibility set

The dual problem is convex by construction [23] and has size polynomial in R [10].
Since also the primal problem is convex, strong duality holds, i.e., the primal and dual
optimal solutions coincide, because the primal problem satisfies Slater’s condition [23]
for any non-trivial uncertainty set Fas . Any dual solution underestimates the primal
solution. When substituting the primal problem with the dual in Constraint (6), we can
drop the inner optimization operator because the outer optimization operator will never-
theless aim to find the least underestimate to maximize its cost function. We get the full
formulation for the OE (the quantifiers ∀s ∈ S, ∀a ∈ A(s) are equal to Problem (5)):

max
x,λ,l,n,z

xT
s 1 max

x,λ,z,l,n
xT1

s.t. xs − las + nas = ras + g (λas ,x) ; ⇒ s.t. xs − las + nas = ras + λa1,s − λa2,s − ha
s
T
Easλ

a
3,s;

las ≤ Bzas , nas ≤ Bzas ; las ≤ Bzas , nas ≤ Bzas ;
zT
s 1 =Ms − 1; zT

s 1 =Ms − 1; (7)
xs, l

a
s , n

a
s ≥ 0, λas ∈ Das , zas ∈ {0, 1} xs, l

a
s , n

a
s , λ

a
2,s ≥ 0, λa

3,s ≥ 0, zas ∈ {0, 1};
‖λa3,s‖2 ≤ λa2,s, x− λa1,s1+ Eas

Tλa
3,s = 0

For the ellipsoidal model, Problem (7) is a Mixed-Integer Quadratic-Constrained Pro-
gram (MIQCP), which we solve using the back-end optimizer Gurobi [24].

4.2 Verification Engine

After fixing a candidate strategy σc, all the non-determinism in MC is resolved. The
VE has thus the task of checking whether the induced Ellipsoidal-MC (EMC)Mσc =



(S, S0, Ω,F ,X , L) satisfies the PCTL formula φ for all resolutions of uncertainty, i.e.,
∀ηa ∈ Nat. We use the sound and complete verification algorithm presented in [10]. the
main result presented there (EMCs are a special case of CMDPs). If the EMC satisfies
φ, then the optimal strategy has been found and σ∗ = σc. Otherwise, the VE needs
to generate an additional constraint to be passed to the OE, so that the same candidate
solution does not get selected anymore. If vector zc = [zas0 · · · z

a
sN ] collects all the

binary decision variables that were set to zero in the previous round of optimization,
i.e., the variables corresponding to the previously selected actions, we just need to add
constraint:

zT

c1 = 1 (8)

so that it is not possible to select the same set of actions again.
As an example, we optimize the total expected reward of the EMDP in Fig. 1 sub-

ject to property φ = P≥0.8[ϑU abs]. The first iteration of the OE generates strategy
σc1, which selects actions [b, a, a, a] for states [s0 · · · s3], with Wσc1

s0 = 10.625, but
the VE reports Pσc1,mins0 [ϑU abs] = 0.207, so the strategy is rejected. The VE adds
the constraint zbs0 + zas1 + zas2 + zas3 = 1 to the OE formulation, which generates
σc2 ([a, a, a, a]), with Wσc1

s0 = 10.188, at the second generation. The VE computes
Pσc2,mins0 [ϑU abs] = 1, and the algorithm terminates reporting σ∗ = σc2.

4.3 Algorithm Analysis

We prove soundness (if a strategy σ∗ is returned, it indeed optimally solves Prob-
lem 4), completeness (if no solution is returned, no strategy σ ∈ ΣMD

MC exists such
thatMC , σ |=Nat φ) and analyze the runtime performance of the proposed algorithm.

Theorem 4.2. The algorithm presented in this section to solve Problem 4 is sound,
complete and has runtime exponential in the sizeR of the EMDP and polynomial in the
size Q of the PCTL specification.

Proof. Problem (7) returns the MD strategy σc that maximizes Wσ
MC among those still

available. By Lemma 4.1, the VE is sound, so if it returns MC , σc |=Nat φ, indeed
σ∗ = σc (exit arrow at the bottom-right corner of Fig. 2). The VE is also complete, so if
it returnsMC , σc 6|=Nat φ, the current σc can be discarded. This is done by generating
a constraint of the form of Constraint (8), which removes only the current σc from the
strategies to be explored by the OE. This proves the soundness of the overall algorithm.

Failure of finding a solution is declared only by the OE, when Problem (7) becomes
unfeasible because all available strategies have previously been discarded by the VE
(exit arrow at the bottom-left corner of Figure 2). This proves completeness.

Finally, the algorithm goes at most through I = O(MN ) iterations. (Recall that
M is the number of actions, and N the number of states of the EMDP.) Each requires
solving an instance of Problem (7) and a verification check (done in time polynomial in
R and Q by Lemma 4.1). Problem (7) can be solved by branch-and-bound algorithms
in time exponential in the number of binary variables (whose number is constant) and
polynomial in the number of constraints (whose number is polynomial in R at the first
iteration, and it grows at each iteration limited by I = O(MN )). The total complexity
isO(MN×

(
2MN×poly(MN )+poly(Q))

)
, exponential inR and polynomial inQ. ut

The algorithm performs better on problems which do have a feasible solution, arguably
the most interesting ones, while the optimization step could be removed if the goal is to



prove unfeasibility. As an alternative to our approach, σ∗ could be determined by testing
all I available MD strategies, and selecting the one with the highest reward among those
satisfying φ [16]. We believe (and experimentally show in Section 6) that our approach
can achieve better running time by decoupling the problem into an optimization and a
verification part and by testing strategies in order of optimality. Finally, speed-ups can
be obtained by implementing online routines for integer-constraint simplification and to
produce more succinct certificates of unfeasibility from the VE [21,22]. These routines
are outside the scope of this paper and will be covered in future work.

5 Supply Scheduling and Energy Pricing with Renewable Sources

We model the pricing and dispatch problem following the scenario sketched in Fig. 3a [6,
9, 25]. An extended description is in Appendix A. Three agents operate in the sys-
tem: the network operator, and two types of users, traditional and opportunistic. Fur-
ther, three energy sources are available: non-dispatchable wind, and two dispatchable
sources, base-line and fast-start generators. The network operator takes two kinds of
decisions: 1) dispatch of non-renewable sources, to guarantee that the aggregate energy
supply matches the demand; 2) pricing of energy, to maximize profits and incentivize
users to join or leave the network depending on energy availability. Traditional and
opportunistic users react to pricing decisions on different timescales. Traditional users
only react to day-ahead pricing to decide how much energy they are willing to pur-
chase, while opportunistic users are capable of rescheduling in real-time their energy
demand, depending on the energy price, in exchange of lower expected prices. A 24-
hour period gets divided into T1-slots of equal length (e.g. T1 = 1h), and each T1-slot
into K T2-slots (e.g. T2 = 30min,K = 2) [9]. The operator maximizes its economic
profit by taking decisions on the two time-scales: 1) on day-ahead, for each T1-slot, it
dispatches Q units of base-line energy (unit cost, c1), with q = Q/K units per T2-slot,
and sets the price for traditional users (u), so that they can decide when to schedule
their demand; 2) in real-time, for each T2-slot, it sets the price for opportunistic users
(vk, 1 ≤ k ≤ K), and dispatches the production of more fast-start energy (c2) or can-
cels part of the already dispatched base-line energy (paying cp instead of c1), depending
on wind availability and user demand, to balance supply and demand. In real scenar-
ios, cp < c1 < c2 and wind-energy is assumed to be free for brevity [9]. The operator
thus tries to use as much wind energy as possible and to dispatch on day-ahead the ex-
act amount of base-line energy, not to incur in real-time in cancellation costs or in the
extra cost for fast-start supplies. Since more profitable strategies might imply a higher
reliance on the uncertain wind energy or an increase in energy prices, correct system
functionality needs limits on energy-unbalance risks and QoS guarantees for users.

There are three sources of stochastic behavior: traditional (Dt) and opportunistic
(Do) user demand and wind-energy supply (W ). We thus use a stochastic optimization
framework. We focus on day-ahead decisions (Q and u), which are taken based on the
expected value of Dt, Do,W . Real-time decisions (vk) are instead taken deterministi-
cally based on the observed values. Nevertheless, in day-ahead, the operator needs to
predict the optimal value of vk for each possible observation of Wk and Dt,k, since
Do,k depends on that decision, so also vk is a decision variable. We will optimize over
one T1-slot (the decision problem is periodic, so we can run one optimization for each
T1-slot stand-alone), and aim to determine optimal values for Q, u and vk, 1 ≤ k ≤ K.

We use the Ellipsoidal-MDPME = (S, S0, A,Ω,F ,A,X , L) sketched in Fig. 3b.
All quantities are bounded and uniformly discretized to keep the state and action spaces
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Fig. 3: a) Network operator inputs (dashed) and outputs (solid). b) Sketch ofME as-
suming two discretization levels for each quantity (labeled with superscripts).

finite. States s ∈ S are a tuple s = (Dt,k, Do,k,Wk, tk), where 1 ≤ k ≤ K indexes one
of the K T2-slots and Dt,k, Do,k,Wk refer to the observed values of user demand and
wind energy in that state. At the initial state s0, the operator makes the day-ahead de-
cisions on energy dispatch Q and pricing for traditional users u (pair (Q, u) ∈ A). The
process then transitions through K decision epochs, as follows. First, values of wind
energy (Wk) and traditional user demand (Dt,k) are stochastically chosen according to
the corresponding distributions (described below). Second, for each observation of Wk

and Dt,k, a decision on vk ∈ A is made and the opportunistic user demand (Do,k) is
stochastically chosen. To transition between epochs a new value of wind energy Wk+1

is chosen and the steps repeat. At the end, the states transition to an absorbing state.
State transition probabilities are computed using the following stochastic models.

User demand. The demand of both traditional (Dt) and opportunistic (Do) users is
modeled using Gaussian distributions [9], with Dt ∼ N (αtu

γt , βtE[Dt]), and Do ∼
N (αov

γo , βoE[Do]). Parameter γt (γo) is the elasticity of the traditional (opportunistic)
users, i.e., the ratio of the percentage change of the expected demand to that of price
variations, formally: γt = u/E[Dt] · ∂E[Dt]/∂u. Parameters αt, αo, βt, βo are fitting pa-
rameters. To compute transition probabilities, we truncate and discretize the continuous
PDs in equally-sized intervals, pick the middle point of each interval as the discretiza-
tion value and then integrate the PD across the interval to determine how likely the
system transitions to that discretized value. In principle, also user demand can be ex-
pressed using data-driven uncertainty models, but we did not consider this in this paper.

Wind-energy availability. We created a stochastic model of the available wind en-
ergy starting from measured data collected from the wind farm at Lake Benton, Min-
nesota, USA. The goal is to take forecast values into account, while also considering
the intrinsic inaccuracies of these predictions. First, we compute the (discrete) empirical
PD µW of a training set of collected wind-energy data. Second, we divide a new set of
data in T2-slots, and consider the average value for each new T2-slot as the forecast en-
ergy value. We then scale µW to have such expected value E[Wk], thus obtaining µWk

.
Finally, we compute ellipsoidal Sets (2) Fas (collected in X ) to represent uncertainty
in the transition probability between two discretized energy levels in two consecutive



T2-slots. Transition frequencies are computed by counting observed transitions in a
training set of data. Further, using classical results from statistics [11], we can compute
the value of parameter β from Set (1) corresponding to a desired confidence level CL in
the measurements. In particular, 0 ≤ CL ≤ 1 and CL = 1 − cdfχ2

d
(2 ∗ (βmax − β)),

where cdfχ2
d

is the cumulative density function of the Chi-squared distribution with d
degrees of freedom (d is equal to the number of bins used to discretize W ).

We provide the states with thick circles in Fig. 3b with three reward structures to
express the profit and risk of the operator and the QoS for the users. We choose those
states because the quantities Dt,k, Do,k,Wk are all fully observable in them, thus al-
lowing the computation of the rewards. We set:

rProfits,k [$] = uDt,k+vkDo,k−(cp∆k+c1(q−∆k))1
A
∆k≥0−(c1q−c2∆k)1

B
∆k<0 (9a)

rLoLs,k [MWh] = max(0, X%E[Wk] + Y%E[Dt,k +Do,k]−∆k) (9b)

rQualitys,k [MWh] = Dt,k +Do,k (9c)

with ∆k =Wk+ q−Dt,k−Do,k representing the surplus of supply on demand, and 1
the indicator function. Reward (9a) subtracts operating costs to the operator revenue to
compute the net profit. Indicator 1A (1B) corresponds to the scenario when the sum of
day-ahead dispatched and wind energy is sufficient (insufficient) to cover the demand.
In the latter case, fast-start energy needs to be dispatched in real-time. Reward (9b)
computes the Loss of Load (LoL). In practical scenarios, the amount of fast-start energy
available in real-time is limited. Often this limit is computed with the formula FS ≤
X%E[W ] + Y%E[Dt +Do] (e.g. X = 3, Y = 10) [26]. If ∆+ FS < 0 the network
incurs in a LoL, with potentially risky consequences. Reward (9c) accounts for user
demand incentivized by energy pricing. Finally, we mark all states with ∆ + FS < 0
with the label risk, and use label abs for the absorbing state, so Ω = {risk, abs}.

The optimal strategy σ∗ = (u∗, Q∗, v∗k), 1 ≤ k ≤ K is the solution of problem:

W∗ME ,s0 = max
Q,u

min
fas ∈Fas

Eσ,f
a
s

W EσDt
∑K
k=1 max

vk
EσDorew(r

Profit
s )

s.t.ME , σ
∗ |=Nat φ where: (10)

φ = Rr
LoL

≤EENSM [F abs] ∧Rr
Quality

≥QoSm [F abs] ∧ P≥1−LoLPM [¬riskU abs]

which can be solved with the algorithm presented in Section 4. In Problem (10), we
maximize the sum of the expected operator profit across the K T2-slots for the worst-
case resolution of uncertainty in the wind-energy forecast. According to the semantics
defined in Table 1, the PCTL specification φ constraints the expected operator risk
and user QoS across the decision horizon. EENSM is the desired maximum value of
Expected Energy Not Served, LoLPM is the maximum allowed value of Loss of Load
Probability (these two properties limit the risk for the operator), and QoSm is the the
minimum value of QoS that needs to be guaranteed to the users.

6 Experimental Results
We implemented the algorithm in Python, and interfaced it with PRISM [28] as a front-
end for entering models and with Gurobi [24] as the back-end optimizer. Experiments
were run on a 2.4 GHz Intel Xeon with 32GB of RAM.

In this section, we present experimental results obtained by solving Problem (10)
using the proposed algorithm. Our goals are to give insight about the algorithm func-
tionality, compare its scalability to other strategy-synthesis approaches, and show that



the synthesized energy-pricing strategies can achieve better performances than other
solutions presented in the literature. We define the following quantities:

Profit := W∗ME ,s0
EENS := Rr

LoL,σ∗,max
s0 [F abs]

QoS := Rr
Quality,σ∗,min
s0 [F abs] 1− LoLP := Pσ

∗,min
s0 [¬riskU abs]

where themin andmax operators refer to the action range of natureNat. As defined in
Section 2.2, these quantities represent the quantitative values of rewards and satisfaction
probability that then get compared to the corresponding thresholds (EENSM , QoSm,
LoLPM ) in Problem (10) to determine the satisfaction of φ. We will then normalize the
Profit to ProfitM , the maximum computed profit value for each set of experiments.
We set T1 = 1h, T2 = 30min so K = 2, and consider two pricing options both for
traditional and opportunistic users. If not otherwise stated, we will use CL = 90%, and
discretize the wind energy W in 5 bins, and traditional Dt, opportunistic Do demands
and base-line supplyQ in 2 bins. We setQoSm = 80%

∑
k E[Dt,k +Do,k], LoLPM =

10%, EENSM = 5%
∑
k E[Wk + q]. The other parameter values were taken from [9].

In Fig. 4, we show the trend of the expected system performance as a function of
the synthesis algorithm iteration (enlarged figures are available in App. B). The Profit
monotonically decreases until the proposed candidate strategy σc meets all specifica-
tions. We note that 1 − LoLP and QoS (EENS, not shown, has a trend similar to
1−LoLP ) instead vary non-monotonically. Intuitively, this is because the Profit can
be increased either by scheduling less base-line energy Q, to reduce cancellation costs
cp but incurring in a higher risk, or by increasing the energy price v for opportunistic
users, with consequent reduction of QoS. By ranking strategies by expected Profit,
our algorithm is capable of selecting the optimal strategy despite the complex param-
eter interdependences in the model under analysis. In Table 2, we compare synthesis
results while varying the number of discretization bins for W (all values are normal-
ized to the corresponding target specification). First, we note that the expected system
performances do not substantially vary by changing the number of bins, thus support-
ing our choice of 5 bins in the other experiments. Second, runtime results show that
the algorithm can handle in reasonable time problems of size more than 10× larger
than the ones analyzed by [18], the only other algorithm proposed in the literature ca-
pable of accepting arbitrary PCTL formulas (we use N + Tr, the sum of states and
transitions in the EMDP, to represent the model size). Third, results show that the al-
ternative approach of verifying all the I MD strategies σ ∈ ΣMD is not practical, due
to the exponential increase of I (as defined in Section 2.1) with the problem size. In
Fig. 5, we study the effect of different confidence levels CL in the wind-energy forecast
on the expected Profit for the operator, while varying the value of wind penetration
ηW =

∑K
k=1

E[Wk]/E[Wk + q] and keeping all constraints constant. At high CL, higher
profits can be expected for increasing ηW (wind energy is assumed free). On the other
hand, for low CL, higher wind penetration creates more uncertainty thus lowering the
expected Profit. The network operator can use these curves to assess the return of
investment in employing more accurate (and expensive) forecast techniques. Finally, in
Fig. 6 we compare results with two other energy-pricing formulations proposed in the
literature. He et al. [9] solve the optimization problem without enforcing any constraint.
Varaiya et al. [6] only put limits on the acceptable LoLP (their approach is not trivially
extendable to reward properties expressed using the R operator) and solve optimally
only for LoLP = 0. Comparison is done by solving the different optimization prob-
lems and then running Monte Carlo simulations (1000 runs) of the controlled system on



test data (different from the training ones) to evaluate its performance (Profit,EENS
and QoS). As expected, the unconstrained strategy from [9] has higher Profit (up to
5%), but also up to 12% more EENS and 10% less QoS, compared to our approach.
The strategy from [6] guarantees null EENS, but it has up to 6% less Profit (due to
over constraining EENS) and 10% less QoS (which is left unconstrained). As a final
remark, we note that runtime may increase exponentially as we tighten the specifica-
tion thresholds (QoSm, LoLPM , EENSM ), since it becomes increasingly difficult
to find a solution within the exponentially-sized search space. Nevertheless, the chosen
values were tight enough to improve the quality of alternative energy-pricing strategies
proposed in the literature, while maintaining the runtime acceptable for this application.
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Table 2: Performance Analysis
W bins 5 10 15 20
Profit 1 0.98 0.97 0.965

1− LoLP 0.99 0.99 0.99 0.99
EENS 0.98 0.98 0.98 0.98
QoS 1.01 1.01 1.01 1.01

Runtime 144s 400s 1368s 3289s
#Iter. 223 53 547 332
N + Tr 1343 2719 4115 5591

#MD Strat. (I) 4096 4.2e6 4.3e9 4.4e12

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Confidence level CL

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ro
fi
t/
P
ro
fi
t M

Operator Profit vs. Confidence in Wind Forecast

ηW=0.05

ηW=0.10

ηW=0.15

ηW=0.20

ηW=0.25

ηW=0.30

Fig. 5: Profit vs. confidence in forecast.

0.05 0.10 0.15 0.20 0.25 0.300.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

P
ro
fi
t/
P
ro
fi
t M

Performance Comparison vs Varaiya et al. [3] and He et al. [6]

Ours

[3]

[6]

0.05 0.10 0.15 0.20 0.25 0.300.0
0.2
0.4
0.6
0.8
1.0
1.2

E
E
N
S
/E
E
N
S
M

Ours

[3]

[6]

0.05 0.10 0.15 0.20 0.25 0.30
Wind Penetration ηW

0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02

Q
oS
/Q
oS

m Ours
[3]
[6]
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proaches via Monte Carlo simulation.

7 Conclusions and Future Work
We first proposed a novel algorithm for the synthesis of control strategies for MDPs,
satisfying properties expressed in PCTL and robust to uncertainties in the transition
probabilities. We then applied the algorithm to the problem of renewable-energy pricing
in smart grids and showed that network-operator risks can be effectively constrained at
design time and that more accurate predictions of the expected profit can be obtained
by taking the uncertainty of wind availability into consideration.

As future work, we plan to investigate techniques to generate more concise con-
straints to prove failure of the verification, in order to prune more effectively the search
space for the optimization engine, and to apply the proposed strategy synthesis approach
to further case studies, e.g., semi-autonomous car driving.
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Appendices

A Supply Scheduling and Energy Pricing with Renewable Sources

In this appendix, we provide extra material to more extensively describe the case study
analyzed in the paper, i.e., supply scheduling and energy pricing in smart-grids that
integrate renewable sources, to help the reader better appreciate the presented results.
For further details, we refer the reader to the work presented in [6, 9, 25].

We model the energy pricing and dispatch problem following the scenario sketched
in Fig. 7a. Three agents operate in the system: the network operator, and two types of
users, traditional and opportunistic. Further, three energy sources are available: non-
dispatchable wind, and two dispatchable sources, base-line (e.g., thermal units) and
fast-start generators (e.g., gas turbines).

The network operator aims to maximize its economic profit and to guarantee the
correct operation of the network, by enforcing the supply and demand to be balanced
at all times. The operator is provided with two sources of energy to guarantee power
balance. First, classical fossil-based energy, which still accounts for the majority of the
energy supply (nowadays, the penetration of renewable sources is rarely beyond 30%
of the total energy supplied by the network). Fossil-energy supplies gets further divided
into base-line (e.g., thermal units) which need to be dispatched with longer notice (e.g.,
a day) but have lower operational cost, and into fast-start (e.g., gas turbines) which can
be dispatched on a short notice (e.g., half an hour) but have higher costs. As a second
source of energy, the operator can count on renewable sources (we focused on wind-
based energy generation, but a similar reasoning applies to other kinds of renewable
sources, e.g., solar). As a further degree of freedom for the network operator to guaran-
tee power balance in the network, we assume a scenario in which network users dynam-
ically respond to changes in the price of energy by adapting their demand. This scenario
is referred to in the literature with the concept of demand response. When the price of
energy increases, users decrease their energy consumption and vice-versa. The network
operator can thus compensate for renewable supply uncertainty, by dynamically adapt-
ing the price of energy. Decisions on price energy are taken based on the information
about wind-energy availability. This information is provided on two time-scales. On
day-ahead, the operator is provided with forecast values of energy availability for the
following day. Although forecasting techniques have substantially improved in the last
decades, this information is still affected by high uncertainty. In real-time, the operator
has instead full observability of the wind-energy availability and it can finely adjust the
energy price taking the additional information into account. Overall the operator needs
to take two kinds of decisions: 1) dispatch of non-renewable sources, to guarantee that
the aggregate energy supply (renewable plus fossil) matches the demand; 2) pricing of
energy, to maximize profits and incentivize users to join or leave the network depending
on energy availability.

On the demand side, researchers have foreseen a scenario in which users will be
able to react to changes in energy-pricing on two time-scales. Most users (referred to as
traditional) will require some notice before being able to react. We use variable Dt to
represent the amount of energy (in MWh) demanded by traditional users. A fraction of
the users (referred to as opportunistic) will instead try to adapt their demand (Do) on a



shorter notice in exchange for example of lower expected energy prices. For simplicity,
we will use the assumption made in the literature that traditional users respond to day-
ahead energy-pricing decisions made by the operator, while opportunistic users can
adjust their demands in real-time.

A 24-hour period gets divided into T1-slots of equal length (e.g. T1 = 1h), and each
T1-slot into K T2-slots (e.g. T2 = 30min,K = 2) [9]. On day-ahead, the operator: 1)
posts the price of energy for each T1-slot, based on the available forecast value of wind-
energy, so that traditional users can decide when to schedule their activities (which
require energy consumption Dt); 2) dispatches Q units of base-line energy for each
T1-slot (unit cost, c1), with q = Q/K units per T2-slot. In real-time, after observing
the available amount of wind energy and the actual level of demand Dt of traditional
users, the operator: 1) sets the price for opportunistic users (vk, 1 ≤ k ≤ K) for each
T2-slot; 2) dispatches the production of more fast-start energy (unit cost, c2) or cancels
part of the already dispatch base-line energy (paying cp instead of c1), depending on
wind availability and user demand, to guarantee the power balance at all times. In real
scenarios, cp < c1 < c2 and wind-energy is supposed to be free for brevity [9]. The
operator thus tries to use as much wind energy as possible and to dispatch on day-
ahead the exact amount of base-line energy, not to incur in real-time in cancellation
costs or in the extra cost for fast-start supplies. Since more profitable strategies might
imply a higher reliance on the uncertain wind energy or an increase in energy prices
to incentivize users to leave the network1, correct system functionality needs limits on
energy-unbalance risks and QoS guarantees for users.

There are three sources of stochastic behavior: traditional (Dt) and opportunistic
(Do) user demand and wind-energy supply (W ). We thus use a stochastic framework
to solve the decision-making problem. We focus on day-ahead decisions (Q and u),
which are taken based on the expected value of Dt, Do,W . Real-time decisions (vk)
are instead taken deterministically based on the observed values. Nevertheless, in day-
ahead, the operator still needs to predict which will be the optimal value of vk for each
possible observation of W and Dt, since Do,k depends on that decision, so also vk is
a decision variable in the day-ahead decision problem. We will optimize over one T1-
slot (the decision problem is periodic, so we can run one optimization for each T1-slot
stand-alone), and aim to determine optimal values for Q, u and vk, 1 ≤ k ≤ K.

We use the Ellipsoidal-MDPME = (S, S0, A,Ω,F ,A,X , L) sketched in Fig. 7b.
All quantities are bounded and uniformly discretized to keep the state and action spaces
finite. States s ∈ S are a tuple s = (Dt,k, Do,k,Wk, tk), where 1 ≤ k ≤ K indexes one
of the K T2-slots and Dt,k, Do,k,Wk refer to the observed values of user demand and
wind energy in that state. At the initial state s0, the operator makes the day-ahead de-
cisions on energy dispatch Q and pricing for traditional users u (pair (Q, u) ∈ A). The
process then transitions through K decision epochs, as follows. First, a value of wind
energy (Wk) and traditional user demand (Dt,k) is stochastically chosen according to
the corresponding distributions (described below). Second, for each observation of Wk

1 Even if there are fewer users in the network, the ones that remain in the network need to pay
more, thus maintaining the operator profit high while reducing the risk of power unbalance.
This solution may be acceptable for the operator but it is obviously disadvantageous for the
users.
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Fig. 7: a) Network operator inputs (dashed) and outputs (solid). b) Sketch ofME as-
suming two discretization levels for each quantity (labeled with superscripts).

and Dt,k, a decision on vk ∈ A is made and the opportunistic user demand (Do,k) is
stochastically chosen. To transition between epochs a new value of wind energy Wk+1

is stochastically chosen and the steps then repeat. At the end, all states transition to an
absorbing state. State transition probabilities are computed using the following stochas-
tic models.

User demand. The demand of both traditional (Dt) and opportunistic (Do) users is
modeled using Gaussian distributions [9], with Dt ∼ N (αtu

γt , βtE[Dt]), and Do ∼
N (αov

γo , βoE[Do]). Parameter γt (γo) is the elasticity of the traditional (opportunistic)
users, i.e., the ratio of the percentage change of the expected demand to that of price
variations, formally: γt = u/E[Dt] · ∂E[Dt]/∂u. Parameters αt, αo, βt, βo are fitting pa-
rameters. To compute transition probabilities, we truncate and discretize the continuous
PDs in equally-sized intervals, pick the middle point of each interval as the discretiza-
tion value and then integrate the PD across the interval to determine how likely the
system transitions to that discretized value. In principle, also user demand can be ex-
pressed using data-driven uncertainty models, but we did not consider this in this paper.

Wind-energy availability. We created a stochastic model of the available wind en-
ergy starting from measured data collected from the wind farm at Lake Benton, Min-
nesota, USA. The goal is to take forecast values into account, while also considering
the intrinsic inaccuracies of these predictions. First, we compute the (discrete) empirical
PD µW of a training set of collected wind-energy data. Second, we divide a new set of
data in T2-slots, and consider the average value for each new T2-slot as the forecast en-
ergy value. We then scale µW to have such expected value E[Wk], thus obtaining µWk

.
Finally, we compute ellipsoidal Sets (2) Fas (collected in X ) to represent uncertainty



in the transition probability between two discretized energy levels in two consecutive
T2-slots. Transition frequencies are computed by counting observed transitions in a
training set of data. Further, using classical results from statistics [11], we can compute
the value of parameter β from Set (1) corresponding to a desired confidence level CL in
the measurements. In particular, 0 ≤ CL ≤ 1 and CL = 1 − cdfχ2

d
(2 ∗ (βmax − β)),

where cdfχ2
d

is the cumulative density function of the Chi-squared distribution with d
degrees of freedom (d is equal to the number of bins used to discretize W ).

We provide the states with thick circles in Fig. 7b with three reward structures to
express the profit and risk of the operator and the QoS for the users. We choose those
states because the quantities Dt,k, Do,k,Wk are all fully observable in them, thus al-
lowing the computation of the rewards. We set:

rProfits,k [$] = uDt,k+vkDo,k−(cp∆k+c1(q−∆k))1
A
∆k≥0−(c1q−c2∆k)1

B
∆k<0 (11a)

rLoLs,k [MWh] = max(0, X%E[Wk] + Y%E[Dt,k +Do,k]−∆k) (11b)

rQualitys,k [MWh] = Dt,k +Do,k (11c)

with ∆k =Wk+ q−Dt,k−Do,k representing the surplus of supply on demand, and 1
the indicator function. Reward (11a) subtracts operating costs to the operator revenue to
compute the net profit. Indicator 1A (1B) corresponds to the scenario when the sum of
day-ahead dispatched and wind energy is sufficient (insufficient) to cover the demand.
In the latter case, fast-start energy needs to be dispatched in real-time. Reward (11b)
computes the Loss of Load (LoL). In practical scenarios, the amount of fast-start energy
available in real-time is limited. Often this limit is computed with the formula FS ≤
X%E[W ] + Y%E[Dt +Do] (e.g. X = 3, Y = 10) [26]. If ∆+ FS < 0 the network
incurs in a LoL, with potentially risky consequences. Reward (11c) accounts for user
demand incentivized by energy pricing. Finally, we mark all states with ∆ + FS < 0
with the label risk, and use label abs for the absorbing state, so Ω = {risk, abs}.

The optimal strategy σ∗ = (u∗, Q∗, v∗k), 1 ≤ k ≤ K is the solution of problem:

W∗ME ,s0 = max
Q,u

min
fas ∈Fas

Eσ,f
a
s

W EσDt
∑K
k=1 max

vk
EσDorew(r

Profit
s )

s.t.ME , σ
∗ |=Nat φ where: (12)

φ = Rr
LoL

≤EENSM [F abs] ∧Rr
Quality

≥QoSm [F abs] ∧ P≥1−LoLPM [¬riskU abs]

which can be solved with the algorithm presented in Section 4. In Problem (12), we
maximize the sum of the operator profit across the K T2-slots for the worst-case reso-
lution of uncertainty in the wind-energy forecast. According to the semantics defined in
Table 1, the PCTL specification φ constraints the expected operator risk and user QoS
across the decision horizon. EENSM is the desired maximum value of Expected En-
ergy Not Served, LoLPM is the maximum allowed value of Loss of Load Probability
(these two properties limit the risk for the operator), and QoSm is the the minimum
value of QoS that needs to be guaranteed to the users.



B Experimental Results

We implemented the algorithm in Python, and interfaced it with PRISM [28] as a front-
end for entering models and with Gurobi [24] as the back-end optimizer. Experiments
were run on a 2.4 GHz Intel Xeon with 32GB of RAM.

In this section, we present experimental results obtained by solving Problem (10)
using the proposed algorithm. Our goals are to give insight about the algorithm func-
tionality, compare its scalability to other strategy-synthesis approaches, and show that
the synthesized energy-pricing strategies can achieve better performances than other
solutions presented in the literature. We define the following quantities:

Profit := W∗ME ,s0
EENS := Rr

LoL,σ∗,max
s0 [F abs]

QoS := Rr
Quality,σ∗,min
s0 [F abs] 1− LoLP := Pσ

∗,min
s0 [¬riskU abs]

where themin andmax operators refer to the action range of natureNat. As defined in
Section 2.2, these quantities represent the quantitative values of rewards and satisfaction
probability that then get compared to the corresponding thresholds (EENSM , QoSm,
LoLPM ) in Problem (10) to determine the satisfaction of φ. We will then normalize the
Profit to ProfitM , the maximum computed profit value for each set of experiments.
We set T1 = 1h, T2 = 30min so K = 2, and consider two pricing options both for
traditional and opportunistic users. If not otherwise stated, we will use CL = 90%,
and discretize the wind energy W in 5 bins, and traditional Dt, opportunistic Do de-
mands and base-line supply Q in 2 bins. We set QoSm = 80%

∑K
k E[Dt,k +Do,k],

LoLPM = 10%, EENSM = 5%
∑K
k E[Wk + q]. The other parameter values were

taken from [9].
In Fig. 8, we show the trend of the expected system performance as a function of

the synthesis algorithm iteration. The Profit monotonically decreases until the pro-
posed candidate strategy σc meets all specifications. We note that 1− LoLP and QoS
(EENS, not shown, has a trend similar to 1−LoLP ) instead vary non-monotonically.
Intuitively, this is because the Profit can be increased either by scheduling less base-
line energy Q, to reduce cancellation costs cp but incurring in a higher risk, or by in-
creasing the energy price v for opportunistic users, with consequent reduction of QoS.
By ranking strategies by expected Profit, our algorithm is capable of selecting the
optimal strategy despite the complex parameter interdependences in the model under
analysis. In Table 3, we compare synthesis results while varying the number of dis-
cretization bins for W (all values are normalized to the corresponding target specifica-
tion). First, we note that the expected system performances do not substantially vary by
changing the number of bins, thus supporting our choice of 5 bins in the other experi-
ments. Second, runtime results show that the algorithm can handle in reasonable time
problems of size more than 10× larger than the ones analyzed by [18], the only other
algorithm proposed in the literature capable of accepting arbitrary PCTL formulas (we
useN+Tr, the sum of states and transitions in the EMDP, to represent the model size).
This is mainly due to the effective decomposition of the constrained optimization prob-
lem into an unconstrained optimization step and a verification step, exploiting decades
of improvements in mixed-integer and non-linear optimization engines [24] and in ver-
ification algorithms [3,10,28]. Third, results show that the alternative approach of veri-
fying all the I MD strategies σ ∈ ΣMD is not practical, due to the exponential increase



of I (as defined in Section 2.1) with the problem size. In Fig. 9, we study the effect of
different confidence levels CL in the wind-energy forecast on the expected Profit for
the operator, while varying the value of wind penetration ηW =

∑K
k=1

E[Wk]/E[Wk + q]

and keeping all constraints constant. At high CL, the plot shows that higher profits can
be expected for increasing ηW (wind energy is assumed free in the model). On the other
hand, for low CL, higher wind penetration creates more uncertainty thus lowering the
expected Profit. The network operator can use these curves to assess the return of
investment in employing more accurate (and expensive) forecast techniques. Finally,
in Fig. 10 we compare results with two other energy-pricing formulations proposed in
the literature. He et al. [9] solve the optimization problem without enforcing any con-
straint. Varaiya et al. [6] only put limits on the acceptable LoLP (their approach is not
trivially extendable to properties expressed using the R operator) and solve optimally
only for LoLP = 0. Comparison is done by solving the different optimization prob-
lems and then running Monte Carlo simulations (1000 runs) of the controlled system on
test data (different from the training ones) to evaluate its performance (Profit,EENS
and QoS). As expected, the unconstrained strategy from [9] has higher Profit (up to
5%), but also up to 12% more EENS and 10% less QoS, compared to our approach.
The strategy from [6] guarantees null EENS, but it has up to 6% less Profit (due to
over constraining EENS) and 10% less QoS (which is left unconstrained). As a final
remark, we note that runtime may increase exponentially as we tighten the specifica-
tion thresholds (QoSm, LoLPM , EENSM ), since it becomes increasingly difficult
to find a solution within the exponentially-sized search space. Nevertheless, the chosen
values were tight enough to improve the quality of alternative energy-pricing strategies
proposed in the literature, while maintaining the runtime acceptable for this application.

Table 3: Performance Analysis
W bins 5 10 15 20
Profit 1 0.98 0.97 0.965

1− LoLP 0.99 0.99 0.99 0.99
EENS 0.98 0.98 0.98 0.98
QoS 1.01 1.01 1.01 1.01

Runtime 144s 400s 1368s 3289s
#Iter. 223 53 547 332
N + Tr 1343 2719 4115 5591

#MD Strat. (I) 4096 4.2e6 4.3e9 4.4e12
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Fig. 8: The figure shows the trend of three quantitative performances of the system as
a function of the iteration number. LoLPM , QoSm represent the numerical thresholds
specified in property φ. ProfitM is the maximum achievable profit, obtained at the
first iteration which is unconstrained.
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able profit, corresponding to ηW = 0.3, CL = 1.
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Fig. 10: Comparison to alternative approaches via Monte Carlo simulation.
QoSm, EENSM represent the numerical thresholds specified in property φ. ProfitM
is the maximum achievable profit, obtained by the unconstrained optimization approach
in [9] for maximum wind penetration ηW = 0.3.
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