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Abstract
Over the course of the past decade, the evolution of ad-

vanced low-energy microcontrollers has raised three ques-
tions which this paper outlines and addresses.

The first question is: Can a 32-bit platform be constructed
that provides advanced features but fits within the energy
constraints of a wireless sensor network? We answer this
in the affirmative by presenting the design and preliminary
evaluation of Storm – one such system based on an ARM
Cortex-M4 that achieves 2.3µA idle current with a 1.5µS
wake up time.

The second question we answer is: Can this platform
simultaneously meet the very different demands of both
monitoring-type applications and cyber-physical systems?
We demonstrate that this is indeed possible and present the
design trade-offs that must be made to achieve this, yielding
a module with a rich set of exported peripherals that fits in a
16mm x 26mm form factor.

The final question explored by this paper is: If such a
platform is possible, what new opportunities and challenges
would it hold for embedded operating systems? We answer
this by showing that the usage of modern 32 bit microcon-
trollers requires reconsidering system architecture govern-
ing power management, clock selection and inter-module de-
pendencies, as well as offering opportunities for supervisory
code and the coordination of common tasks without CPU in-
tervention.
Categories and Subject Descriptors

B.0 [Hardware]: General; C.3 [Special-Purpose and
Application-Based Systems]
General Terms

Design, Performance
Keywords

Wireless sensor networks, Energy efficiency

1 Introduction
In the early years of wireless sensor network research,

hardware platforms evolved rapidly and operating system
structures were transformed by each new generation. From
1999 until 2004, each release of a significant microcontroller
or radio advance was incorporated into a new open platform,
including WeC [15], Rene [12], Mica [11], MicaZ, iMOTE,
BTnode, EYES, iMOTE2 [16], Telos [17]. But since the
consolidation around 16 bit microcontrollers (MSP430, AT-
mega) and IEEE 15.4 radios (CC2410, RF231) a decade ago,
new platforms have largely been variations in module form
factor, e.g., Epic, Shimmer, despite tremendous growth and
advance in essentially all aspects of the industrial ecosystem
around embedded networks, wearable technology, and cellu-
lar platforms. And, ever since the earliest generations a ba-
sic question was whether it was viable to utilize a full 32-bit
processor, with adequate storage and the associated widely
available tool chains, while meeting a power profile that per-
mitted lifetimes on the scale of battery shelf life and a small
part count. The introduction of xSCALE and ARM micro-
controllers brought down the part count and improved the
active power efficiency, but low power operation remained
an elusive challenge. System-on-a-chip options emerged,
bringing the part count down further, but they had extremely
limited processor architectures and weak tool-chain capabil-
ity. In this paper, we examine whether this situation has fi-
nally changed.

In particular, we address three basic questions.
1. Can we now utilize full-featured, 32-bit microcon-

trollers with enough memory and flash to support so-
phisticated applications with the power profile of a
mote, i.e., idle power of a few uWs, fast wake up, and
efficient active operation?

2. Can the platform serve the distinct needs of the two
dominant usage models: wireless monitoring, with
a few sensors and predictable behavior and cyber-
physical systems with rich I/O, actuation, and dynamic
variation?

3. If so, does such a platform introduce qualitatively new
operating system challenges and opportunities?

We show by developing a new platform around specific
offerings in the Cortex-M family that the answer to the first
two questions is affirmative and by examining aspects of this
solution we outline a new suite of important system oppor-



tubities and challenges. Indeed, the building blocks are fi-
nally of a state where the integration into a system-on-a-chip
is likely to produce extremely general, cost-effective solu-
tions.

Section 2 frames the investigation with an enumeration
and characterization of the demands placed on a modern
wireless embedded platform, forming the criteria for the
evaluation of a next-generation mote. Section 3 discusses
current trends in microprocessor, transceiver and SoC devel-
opment, leading to a blueprint for a wireless embedded sys-
tem that is representative of current trends in industry and
meets the demands of current and future wireless embedded
networks.

Addressing the first question requires not just an analysis
of data sheets; a quantitative, empirical study of the complex-
ities and implications of utilizing next-generation hardware
in sensor networks requires the careful design of a physi-
cal platform. Section 4 presents one such system – Storm
– an example reference platform based upon best-in-class
next-generation components. The process of mapping the
model of a representative wireless embedded system into a
physical instantiation by evaluation of available components
and selective design trade-offs is discussed. A physical mod-
ule design is presented that extends and improves upon the
3Ps [9] to serve the range of usage models from simple sen-
sor networks for monitoring to sophisticated cyber-physical
systems.

The Storm platform is then used as a representative for
next-generation wireless platforms in general for an explo-
ration of new systems opportunities and challenges in Sec-
tion 6. We identify five primary factors – modular power
management, multiple clock domains, inter-module compat-
ibility, chaining of multiple overlapping transfers and in-
creased supervisory control – which lead to a whole-system
optimization framework for real time embedded operating
systems, such as TinyOS. Such intricacies naturally pose
new problems for the architecture of any embedded oper-
ating system aiming to abstract device-specific complexity
from users by utilizing layering and modularity.

2 Requirements of a modern wireless plat-
form

As sensor networks have been utilized as solutions in a
growing number of fields – such as medicine [5], building
management [4] [10], energy usage awareness, security and
ecological studies [14] – the demands placed upon individual
sensor nodes have become more sharply defined.

2.1 Microprocessor resources
Resource bound applications, such as point-of-origin data

analysis or feature extraction, distributed computation, fre-
quency domain techniques, and so on utilize advanced al-
gorithms. However, even simple network stacks generally
fill most of available memory on traditional mote-class plat-
forms. For example, Table 1 lists the program memory and
RAM space requirements for some configurations of appli-
cations that currently ship with TinyOS [1].

Basic applications, such as UDPEcho, barely fit in the
48KB of program space afforded by the MSP430F1611, and

Table 1: Requirements for TinyOS applications targeting
TelosB with BLIP.

Application Flash RAM Config
Null 3530 1506 -

UDPEcho 39092 6752 static
UDPEcho 42400 6864 dhcp
PPPRouter FTBFS FTBFS -

some applications such as the PPPRouter do not fit at all1.
It is clear that even for applications that are not uniquely
large or complex, more program memory is required. Com-
putational requirements vary widely, generally with bursts of
processing and long idle periods.
2.2 Peripheral requirements

In addition to computational and storage resources, many
applications place heavy demands on the peripherals of the
nodes. This is particularly prevalent in cyber-physical sys-
tems where the mote may form the core of a much larger
system composed of several sensors and actuators, requiring
modules such as PWM controllers, external communication
interfaces and high speed analog to digital converters. Some
examples of this include mobile medical devices[19] or em-
bedded robotics[8].

An interesting observation is that although many of these
cyber-physical systems require increased IO, they simulta-
neously require a small form factor [18]. This means that a
fully generic platform must be able to provide a rich set of
peripherals, while also remaining compact.
2.3 Energy budget

Many deeply embedded “deploy and forget” wireless sen-
sor networks utilize battery powered nodes that aim to be
low cost and zero maintenance. The primary requirement
imposed on the systems is that they must be capable of ex-
tremely low idle currents and low duty cycles. In addition,
this category of research often focuses on larger deployments
of cheaper sensors.

Learning from prior platforms and their evaluation, such
as the TelosB [17], two primary characteristics influence the
energy efficiency of the system: the current in the processor’s
lowest useful power saving mode and the wake-up cost. We
qualify this with “useful” because many components provide
power saving modes that, while impressive, are difficult to
use except in specialized applications. The most common
are power saving modes where the contents of SRAM are
not retained, or where all clocks are stopped and no inter-
rupts can occur. We define the lowest useful power mode as
one where there is at least one timer running that is capa-
ble of waking the processor up to full running state at some
predetermined time in the future. This naturally leads to the
second important metric of how long it takes the processor to
leave this low power mode and begin executing instructions.
2.4 Adaptability

The requirements placed on the system with respect to
resources, peripherals and energy may vary with modes of

1This was true at the time of writing: commit ID 14411b7dbe5d5



Table 2: Component minimum operating voltages in various
mote platforms.

Platform MCU MCU Flash Flash Radio
TelosB 1.8 2.7 2.7 1.6
Epic 1.8 2.7 2.5 1.6

MicaZ 2.7 2.7 2.5 1.6
Storm 1.7 1.7 1.8 1.8

operation. For example, a cyber-physical system may have
little peripherals activity while it does significant computa-
tion in order to implement advanced algorithms to control its
actuators, or it may idle for long periods; a deeply embed-
ded system may on occasion require the ability to interface
with a large bank of external sensors via GPIO. This com-
mon combination of requirements makes a platform such as
the Imote2 [16] have limited applicability because while it
offers increased computational resources, it also comes with
a high idle current(390 µA [16]) and monetary cost.

This adaptability requirement is a moving target – the
characteristics of a system may not remain constant, even
within a specific application. A example of this is a net-
work of solar powered sensors. Here, when there is no avail-
able sunshine, the nodes may be in a very conservative power
mode, only acquiring sensor data with a low duty cycle. But,
when sun becomes available, the nodes utilize the plentiful
energy and perform calculations, transfer data across the net-
work or become routing nodes for other lower power nodes.
These applications place a large dynamic range requirement
on the capabilities of node hardware.
2.5 Storage

The primary reasons for including a flash chip are that it
allows for storage of sensor data while the radio is unavail-
able, and it enables storing of alternate program images for
over-the-air firmware updating. In most platforms, the ex-
ternal flash chip requires a higher voltage than the MCU, as
shown in Table 2. This means, for example, that a mote run-
ning from two rechargeable AA batteries offering 2.4V will
be unable to utilize the flash.

An oft overlooked aspect of storage is the program mem-
ory flash within the processor itself. Although this is typi-
cally designed for a lower number of erase/write cycles so
has limited applicability for data storage, it is important for
over-the-air updates. If the internal flash requires a much
higher voltage to program than the rest of the system re-
quires to operate, then it will constrain the applications for
which the platform can be used.
3 Current technological options

The technology available for use in wireless sensor net-
works has evolved over the past decade and the options for
the constituent modules in a platform have grown. This sec-
tion reviews the advances that have been made in each cat-
egory and establishes a blueprint for a platform constructed
from best-in-class components.
3.1 Microcontroller

A microcontroller can be gauged on two broad character-
istics: its capabilities, and the energy that it consumes to of-

fer those capabilities. While microcontrollers have seen sig-
nificant development in both directions over the past decade,
for the purposes of this paper we opted to keep the energy
characteristics comparable to existing ultra low energy sen-
sor platforms, while maximizing available feature set. This
is primarily because the idle currents of ultra-low-power
MCUs are comparable to the idle currents of other com-
ponents on the board, so decreasing MCU idle energy con-
sumption further is of little benefit. This choice is also moti-
vated by the observation that it is easier to predict the effects
of increased energy efficiency – longer battery life – whereas
the effects of a richer set of capabilities provides a more in-
teresting area for research, as explored in Section 6.

To form a baseline energy profile, we opted to use the ul-
tra low power characteristics of the popular TelosB platform
as, at the time of writing, it has the most impressive idle cur-
rents and wake up times. The reported idle current is just 5.1
µA with a wake up time of 6 µS [17].

Within this energy bracket, the biggest microcontroller
design choice is which architecture to use. Is the choice to
use a 16 bit processor still valid given the proliferation of
low-energy 32-bit processors? If we consider that the algo-
rithms being developed for sensor networks are growing in
complexity and we are seeing a proliferation of computation-
ally demanding applications even in small battery powered
devices, we can conclude that – assuming it meets the en-
ergy demands and other criteria – a 32 bit processor would
be useful. Of the available 32 bit architectures, the three that
are most common are ARM, MIPS and x86.

Of these, only ARM processors are available in with the
required power consumption, and we have seen an explo-
sion of developments, with new microcontrollers based on
the ARM Cortex-M family of processors being released ev-
ery month. This widespread popularity means that there are
mature product options available from multiple vendors –
making it likely that among the many choices of processor
available, there exists a subset that meet the requirements of
embedded wireless platforms.

An additional benefit of choosing a well used architec-
ture such as the ARMv7E-M offered by the ARM Cortex-
M4 microcontrollers is that porting code written for a given
processor to newer processors is likely to be far easier. This
is important in the context of academia where research is of-
ten done by students who finish and move on, leaving code
that must be maintained by those unfamiliar to it.

As noted in Section 2, many of the problems that cur-
rently plague researchers are related to the amount of avail-
able program space. The 10KB of SRAM offered by the
MSP430 is often ample space for a conservative developer,
but the 48KB of flash is artificially constraining, especially
with a more complex network stack. The move to a 32 bit
processor increases the size of instructions, so a given pro-
gram would correspond to greater flash occupancy, as seen in
Section 5.3. Fortunately, however, there are several Cortex-
M microprocessors available with well over 256KB of flash.

In addition to plentiful computational resources and mem-
ory, several Cortex-M microprocessors introduce a feature
that Atmel names “Sleepwalking”. The feature is present
in offerings from multiple vendors, although it goes by dif-



Table 3: Estimated power consumption across the Cortex-M
range for TSMC 90LP fabrication [6]

Processor µW/Mhz DMIPS/Mhz
Cortex-M0 16 1.21

Cortex-M0+ 9.8 1.31
Cortex-M3 33 1.89
Cortex-M4 33 1.91

ferent names such as “Peripheral Reflex System” in proces-
sors from Silabs. This capability allows certain peripheral
events to be connected to other peripheral triggers so that
rudimentary event chains can occur without any processor
intervention. The subsystem also undertakes to enable the
clocks that the triggered modules depend on when they are
triggered, and disable them afterwards. The implications of
this feature are discussed more in Section 6.4.

Although argument for ARM Cortex-M processors ap-
pears conclusive, the question of whether to go for the least
capable or the most capable processor in the range, being
the Cortex-M0+ or the Cortex-M4 respectively, still remains.
We advocate the Cortex-M4 for two reasons. The first is a re-
iteration of the argument made earlier: it is easier to predict
the effects of increased energy efficiency, so it is more inter-
esting to study the effects of innovative features. The second
is that when whole-system energy costs are accounted for, it
is often the case that a faster processor leads to lower total
power consumption.

These points aside, the two series of processor are close
enough in power characteristics that other factors dominate
(the fabrication process, selected peripherals etc). Table 3
shows ARM’s characterizations for the standalone Cortex
core’s power usage but as will be seen in Section 4, the real
power consumption of a Cortex-based processor is far more
dependent on the vendor specific configuration than on the
processor core itself.

For these reasons, the best-in-class microcontroller tech-
nology at the moment is likely to be based on an ARM
Cortex-M4 core.

3.2 Radio
When radio transceivers are evaluated for energy con-

strained embedded wireless systems, there are two major fac-
tors that are typically considered. The first is the time it takes
for the radio to exit its low power sleep mode until it is able
to transmit. This is typically considered to be important be-
cause other components in the system remain powered up
while the radio is starting, and because the radio itself draws
higher current during this time.

The second is the current drawn during transmission and
reception. The radio often dominates the power budget of a
mote especially for nodes in the mesh that need to remain
active for long periods of time in order to route traffic for
others. While the MCU can go into deep sleep and be woken
by the radio interrupt, the radio itself must remain actively
listening. As such, low power listening modes are important
even though they come at the cost of reduced gain.

802.15.4 radio transceivers have not experienced nearly as

explosive a proliferation as microcontrollers. A modern ra-
dio, therefore, offers core functionality similar to those used
in previous generations of embedded wireless platforms al-
beit at a lower energy cost and a lower price point (the TI
CC2520 currently costs half what the previous generation TI
CC2420 costs). In addition, the inclusion of hardware ac-
celerated MAC features such as automatic CSMA/CA, au-
tomatic retransmission and automatic acknowledgement has
appeared in at least one radio transceiver, as discussed in
Section 4.

3.3 Flash
As discussed in Section 2, current generations of wireless

platforms often utilize flash chips that are unable to operate
at the low end of the system’s supply voltage range. There
are, however, several flash chips available that are designed
to run at different voltage ranges. For example, Micron man-
ufactures serial NOR flash in 2Gb densities that can run from
1.7V to 2.0V.

Unfortunately, this poses a problem. One can choose
the higher voltage flash as used in previous generations so
that the mote is capable of running from 3.3V, but then the
flash cannot be used when running from low voltage power
sources. The alternative is that a 1.8V flash chip is used and
then the whole mote is run at 1.8V, but then care must be
taken to regulate input battery voltage such that the voltage
never exceeds 2V. The latter is not a bad choice, as advances
in switched mode power supply regulators have led to com-
pact, high-frequency buck converters capable of achieving
excellent efficiency with small inductors [3]. This would
mean that a mote could last longer off the same power sup-
ply.

There is one critical drawback to the mandatory low volt-
age option that prevented us from choosing it. If the system
were to run at 1.8V, then all IO would have to be at 1.8V.
There are many sensors and components available that are
unable to operate at such low voltages and precluding their
use would limit the generality of the platform.

Fortunately, recent advances have yielded flash chips ca-
pable of full functionality over a 1.8V to 3.6V range, albeit
at a comparatively low density. This development allows for
the platform to truly run at low voltages while still retaining
the ability to operate at higher voltages, a hitherto unreach-
able goal.

3.4 Trends in System-on-Chip design
We are beginning to see developments in System on Chip

technology where a powerful microprocessor is combined
with a radio transceiver. While the combination of a micro-
controller and radio in a single package is not new, it is only
recently that chip miniaturization has allowed for this com-
bination to utilize processors such as the Cortex-M4 and to
be paired with radio transceivers that are themselves impres-
sive.

A prime example of this is the Freescale MKW2xDx
series that combines a 50Mhz Cortex-M4, 802.15.4 radio
transceiver, 512KB of flash and 64KB of SRAM in an
8x8mm land grid array package [2]. This is essentially a
first-class mote in a single package. This particular chip is,
at the time of writing, still a brand new product that has not
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reached general availability but represents a trend in indus-
try. We predict that there will soon be a proliferation of such
SoCs at competitive prices.

The next step from integration of the radio into the SoC
is the integration of an energy source into the package,
a concept which although not currently prevalent in mass
produced products, has been proven possible with stacked
dice [13].

4 Can a 32-bit processor be low power
enough?

With the context of available technology established, in
this section we address the first question posed by Section
1: Is it possible for a system based on a fully-featured 32
bit microprocessor to perform within a tight energy bud-
get? We answer in the affirmative by way of example with
Storm, a reference platform based on a SAM4L 48 Mhz
Cortex-M4 microcontroller, AT86RF233 802.15.4 radio and
AT45DB081E 8 Mbit flash that serves as both a set of de-
sign guidelines for constructing 32 bit platforms with “mote-
class” energy budgets and as a means for empirical evalua-
tion of such a system in Section 5.3.

4.1 Overview
We begin with a brief overview of the platform before

diving into the components that constitute it. Figure 1 shows
the architecture of the Storm module in the main block, with
components on the carrier indicated outside the block. The
individual parts and peripheral signals of the module are il-
lustrated in Figure 2. Note that most of these signals are
multiplexed, and only one of their possible functionalities is
indicated.

4.2 Microcontroller
Although Section 3 concludes that an ARM Cortex-M4 is

the current best-in-class embedded processor, this does not
narrow down the available choices much. There are, at the
time of writing, 196 licensees of the Cortex-M family of in-
tellectual property [7]. Each of these licensees represents
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one vendor who in turn combines this processor with var-
ious peripherals, memory and flash. Even after the all the
functionality is fixed, different vendors use different fabrica-
tion processes, leading to different costs and energy usage.
Table 4 shows a few of the hundreds of Cortex-M4 proces-
sors from a handful of vendors. These selections are all the
most capable of their respective families, but not necessarily
the flagship family from the vendor.

After evaluating several offerings from nearly a dozen
vendors, a few guidelines emerged to narrow it down to the
finally selected chip – the ATSAM4L. These discriminators
were, in the order of efficacy:

• The available flash and RAM on the chip

• The available packaging and pin count

• The availability of the product – many very promising
chips are advertised as being available but are in fact
several months from production.

• The comprehensiveness of the documentation – if the
necessary figures of merit are not described in the
datasheet, they are evidently not important to the man-
ufacturer.

• The current consumption of a useful low-power mode
and its wake up time

• The granularity of its low power modes
The Atmel ATSAM4LC8CA, indicated in bold in Table 4,

was chosen as it had best-in-class energy characteristics, suf-
ficient flash, RAM and IO, as well as a comprehensive power
management system and significantly better documentation



Table 4: A small sample of available Cortex-M4 processors
Vendor Device fmax(Mhz) SRAM(KB) Flash(KB) Sleep(µA) Wake(µS)
NXP LPC408x 120 96 512 550 240

STMicro STM32F372xx 72 32 256 1.32 42.7
Silabs EFM32WG990 48 32 256 0.95 2

Freescale K20Dx 50 16 128 1.3 130
Atmel SAM4L 48 64 512 3 1.5

than other vendors.
A noteworthy feature of the processor is that it has 16

independent DMA channels. While the MSP430 family
had DMA, the limited number of channels and the multi-
plexing of communication peripherals contained it’s implica-
tions. The SAM4L, however, has several more independent
communication mechanisms, so the impact of the DMA is
greater.

4.3 Radio
The radio is an important component to select, as it is

inescapably responsible for a significant share of the energy
budget. Fortunately, as discussed in Section 3, there are only
a handful of choices available. These are laid out in Table 5.
The Freescale offering is a (currently) unreleased SoC that
includes a Cortex-M4 core on-die.

As we are targeting compatibility with existing infrastruc-
ture, it made sense to use 2.4GHz IEEE 802.15.4, making the
two obvious choices for the radio chip the second generation
TI CC2520, and the Atmel AT86RF233. The CC2520 would
be the easier chip to develop support for, as it is the newer
version of the ubiquitous CC2420. The chip is, however,
already more than five years old and lacks several features
that the newer Atmel chip offers. Both chips are the flag-
ship 802.15.4 transceivers from their respective vendors at
the time of writing.

One key difference between the Atmel and the TI chip is
that the AT86RF233 is capable of automatic retransmission
of packets that require acknowledgement but do not receive
it, enabling automatic CSMA/CA. The TI CC2520 does not
automatically perform CSMA/CA activities, although it does
export the CCA line to the microcontroller directly, allowing
for faster manual response to an assessment than the in-band
CCA signal from the RF233.

When combined with the peripheral event systems found
in modern microcontrollers, the automatic CSMA/CA with
retransmission can offer significant advantages over the soft-
ware CSMA/CA methods that are currently employed. The
SAM4L, for example, can be configured so that it sends a
wake up command to the radio, prepares the packet in mem-
ory and goes to sleep. When the radio IRQ line is asserted
to indicate it is ready for transmission, the clock for the SPI
clock domain is automatically started, the packet is copied
via DMA from MCU memory to the radio and transmis-
sion is triggered. As soon as this process completes, the
SPI clock is automatically stopped again all utilizing the pe-
ripheral event system. This means that the entire process of
sending a packet, from the radio wake up command to when
the ACK is received, can be performed without waking up

the processor. With the CC2520, the MCU would need to
wake up, check for acknowledgement, wait some back-off
time if the acknowledgement did not arrive, and then trigger
retransmission.

For reception, both chips feature automatic acknowledge-
ment. The CC2520 has the feature to specify which ad-
dresses should receive ACKs with the frame pending bit au-
tomatically set - this feature is not present on the RF233.
This is quite useful if motes are utilizing the frame pend-
ing signal as, in the absence of this feature, the MCU would
have to wake up after frame reception, parse the address, de-
termine if the bit should be set or not and configure the radio
accordingly before the ACK is sent. It was decided that this
did not constitute a big enough problem to outweigh the au-
tomatic retransmission for two reasons, the first is that it is
likely that the MCU will want to wake up and receive the
packet from the radio as soon as it is received anyway, so the
burden of setting the frame pending bit may prove to be in-
significant. The second is that, at least in our use cases, full
duplex communication tends to be short lived and the frame
pending bit is not of paramount importance.

In the past, with the AT86RF230, the automatic acknowl-
edgments were tied to automatic address filtering - rendering
them useless if the mote needs to snoop on traffic addressed
to other motes. The RF233 changes this by adding support
for 802.15.4-2006 promiscuous mode separately from the
automatic acknowledgement address match. This allows for
the chip to receive all packets, even if it only acknowledges
packets that are addressed to it directly.

Weighing the features, the possibility of automatic CS-
MA/CA was deemed more useful than selective automatic
acknowledgments. This combined with the better power and
signal strength characteristics was enough to convince us that
the Atmel radio chip was the better choice.

The radio subsystem extends beyond just the transceiver
chip itself, however, and includes some thought into how
the antenna will be connected to the radio. The Telos and
Epic motes utilized a lumped element balun with the final
capacitor having two possible locations. This serves as an
assembly-time switch between an external antenna connec-
tor and a PCB trace antenna connector. To reduce size, BOM
cost and variability during manufacture, we decided to use a
single integrated balun/filter that was designed specifically
for matching the RF233 to a 50 Ω single-ended antenna.

The final major change in the radio subsystem is the use
of an antenna diversity switch instead of using an assembly-
time capacitor location choice. This allows a single universal
module to utilize both an external antenna mounted via U.FL



Table 5: Key metrics for select radio transceivers
Year Vendor Device TX RX Wake Sleep TX RX CCA AES Auto Auto

(dBm) (dBm) (µs) (µA) (mA) (mA) ACK RE-TX
2013 Atmel RF233 +4 -101 450 0.02 13.8 11.8 Y Y Y Y
2007 Ti CC2520 +5 -98 500 1 33.6 24.8 Y Y Y N
2013 Freescale MKW24D512V +8 -102 - - 18 19.5 Y Y - -

and a chip or PCB trace antenna connected via the signal ex-
ported on the edge of the module. This decision was made
after observing the usage of Telos motes in an educational
environment, it was realized that a given mote is often re-
tasked. Having the ability to swap between a larger, more
powerful whip antenna and a more compact chip antenna
without altering the hardware would increase the generality
of the mote.
4.4 Flash

As discussed in Section 2, it is important to have a flash
chip that offers sufficient storage for program images and
data, but also that operates over the full voltage range of
the device. These requirements lead to a very small pool
of available options

At the time of design, Adesto Technologies was releasing
a new 64 Mbit flash chip - the AT45DB641E - that operates
over a supply range of 1.7V to 3.6V. This would allow the
entire system to operate over 1.8V to 3.6V. The downside is
that this flash is not yet readily available. The prototype ver-
sions of the platform used for evaluation in this paper utilize
the smaller 8 Mbit density edition, although the production
configuration will use the 64 Mbit version that the vendor
assures us will be available by Q3 2014.

The AT45DB641E flash offers comparable power charac-
teristics to the chips selected for previous motes. The lowest
power mode utilises 1 µA, which is significantly less than the
15 µA consumed by the AT45DB161D used by the Epic or
the 10 µA used by the Telos’ M25P80. Programming con-
sumes 14 mA, which although slightly higher than the flash
used in the Epic, is still reasonable.

The radio chip and the flash chip are placed on the same
SPI bus, which is also connected externally. The reasons for
this are threefold. Firstly, although there are five possible SPI
channels on the microprocessor, the primary SPI bus is more
energy efficient than the USART SPI channels. Secondly, the
primary SPI bus has four logical channels, with independent
automatic chip select capabilities, baud rates, programmable
inter-byte delays and polarities so there is no need to adjust
configurations between flash and radio access. Finally, the
primary SPI peripheral encodes the channel and chip select
into each word that is written to the transmit register. This al-
lows for a single DMA transfer to encode a sequence of mul-
tiple commands, even to different devices on the bus. This
final point is of import when one wishes to transmit a packet
to the radio as it allows for queuing multiple commands re-
quiring the CS line to be de-asserted between them.

5 Diverse design points
We turn our attention to addressing the second question

posed in Section 1: can a platform meet the requirements of

both monitoring systems with strict power requirements and
cyber-physical systems with diverse peripheral and IO?

This too, is answered in the affirmative by considera-
tion of two aspects in the platform design: how the module
presents the IO and how core system requirements are han-
dled. We then present a set of microbenchmarks to evaluate
the system and show how the design has enabled an example
cyber-physical system.

5.1 Form factor and assembly
Cyber-physical systems require both large numbers of IO

and small form factors. In the design of the Storm module
this requirement required careful design to meet. While pre-
vious module designs have emphasized exporting as many
internal signals as possible in order to increase generality
and facilitate easy debugging, the sheer number of signals
present in the Storm platform makes that an untenable propo-
sition. The Epic core, for example, utilized castellated edges
in an LCC-68 form factor to export its IO [9], which was
enough to cover the signals of interest but would not cover
even just the GPIO on the Storm.

As a brief summary, the microprocessor utilized by Storm
has 78 IO connections excluding pins reserved for power,
voltage references, and programming. In addition to this
there are 8 pins that could be exported by the radio and the
flash. To export every useful signal while still providing
sound power connections would require either a high den-
sity connector, a ball grid array connection, or an artificially
increased module size to allow for all the connections to be
made on the edge.

All of the available form factors have problems associ-
ated with them. A high density connector would increase
the height of the complete assembly when mated with a car-
rier, limiting usefulness in space constrained mobile sensing
applications. In addition connectors have a tendency to be-
come unavailable and are often a significant portion of the
BOM cost (at the time of writing, the cost of the pair of
mating 51-pin connectors used in the MICAz and MICA2
motes adds up to over $6 - greater than the cost of the $5
radio transceiver). Even if a cheap high density connector
with guaranteed availability was found, motes deployed in
the field often experience mechanical failures with connec-
tors.

They second option of a soldered connection on the un-
derside of the module, such as a ball grid array or land grid
array would not add to the BOM cost, and would not in-
crease the height of the final assembly. The key downside
to such a connection is that it would then require specialized
equipment to assemble onto the carrier and clean - exactly
the problem we are attempting to avoid.



Table 6: Storm external peripheral and IO capabilities
Peripheral Count

GPIO / sync IRQ 63
USB Host 1

PWM Channels 12
USART2 4

Primary SPI channels 2
ADC channels 14
I2C channels 2 master + 2 master/slave
Async IRQ3 9

16bit PD DAC4 2
10bit DAC 1

8bit sync capture 1

The third solution - to artificially increase the PCB size to
allow for all connections to appear on the edge of the PCB
- would allow for cheap, mechanically sound and easy to
mount modules at the cost of increased PCB area. This is
still not ideal, as we wish to create a platform for use in space
constrained environments as well.

The compromise is a variation of the third – to export
the most useful subset of signals as castellated connections
on the board such that the total board size is not increased
beyond a useful size. In addition, an observation was made
that for many applications, the enclosure may be longer in
one dimension with less penalty than if it were uniformly
increased in size over two dimensions. This is often because
the battery may already be rectangular, or because the sensor
is being worn on a finger or a wrist - both allowing longer
thinner objects.

As such, a rectangular PCB measuring 26 mm by 16 mm
was chosen with castellated edges having a 1mm pitch. This
yields 80 connections as the corners cannot have routed vias
for manufacturability reasons. Of these, 9 are related to
power and voltage references, 3 for the antenna and the RF
shield and 5 for programming. The remaining 63 are avail-
able as GPIO. Table 6 lists a subset of the exported function-
ality of the module.

There are only 6 internal GPIO connections that are not
exported, as they would have shadowed more useful signals.
These are the radio IRQ line, the radio sleep/transmit line,
the radio reset, the radio clock, the radio chip select and the
flash chip select.

As the flash and radio are both on the primary SPI bus that
is exported outside the module, it is still easy to do low level
inspection of communication between the devices on that
bus. Figure 3 for example shows the start of a RPL DODAG
Information Object packet being received by the platform as
part of the verification of functionality in the code size test
discussed in Section 5.3. The absence of the radio chip se-
lect line is not critical, as the command boundaries can be
inferred by the inter-frame delay and known start sequences.

As well motivated by [9], separating concerns between a
core module and carrier boards allows for continued innova-
tion in the applications of sensor networks with application
specific peripheral circuity while still isolating researchers

from the task of designing the core functionality which re-
quires deep expertise. A solder on module allows the plat-
form to cater to the “3 P’s”: prototype, pilot and produc-
tion [9] as it is easy to probe and debug during prototyping,
but remains cost effective during pilot and production.

In addition to these arguments, there is an additional rea-
son to separate the core module from the application specific
circuitry - manufacturability. High density microprocessors
and compact radio transceivers are now only available in
packages that are not possible to work with without special-
ized equipment, whereas the castellated edges form factor
leads to a compact and essentially free method of connection
with sensor boards that remains easy to hand solder without
any specialized equipment. An example carrier board can be
seen in Section 5.4.
5.2 Power

Sensing platforms have diverse power supplies, ranging
from coin cell batteries to solar panels to energy harvesting
circuits. To remain useful for all these applications the mod-
ule is capable of operating with full functionality over 1.8V
to 3.6V.

For space constrained systems, the processor can be oper-
ated in linear mode, where it derives its internal core voltage
by linearly regulating the power supply down to the 1.65V
used to drive the internal logic and clocks. For operation
from power supplies that regularly drop to below 2.1V or are
externally regulated to 1.8V this is the optimal configuration.

For use cases where the carrier can fit a small 22 µH in-
ductor and the power supply mostly stays above 2.1V, the
processor can be operated in buck mode. When dealing with
voltage supplies of 3.6V as common with Lithium Polymer
or Lithium Ion batteries, this results in a reduction of pro-
cessor power consumption of more than 50%, even with the
inefficiencies of the buck converter. As the current require-
ments of the processor are low, the inductor can be very
small. The recommended inductor measures 3mm x 3mm
x 1mm and costs $0.3, but smaller alternatives are available
for slightly higher cost.

If all of the sensors that the mote is interfacing with are
capable of operating at 1.8V, the ideal power configuration
is to run the processor in linear mode and externally step
down the power supply so that the entire system runs at 1.8V.
The leakage current of all components decreases as the sup-
ply voltage decreases, and the active current of the radio and
flash also decrease. Such a configuration would significantly
prolong the lifetime of the mote running from higher volt-
age battery packs. For example, the radio transmission cur-
rent would appear to be only 7.6 mA to a Lithium Polymer
battery running at 3.7V assuming a conversion efficiency of
90%, well within the capabilities of modern high frequency
buck converters ([3] for example).

Experience with carrier boards for the Epic has led us
to believe that while exporting separate power rails theo-
retically allows for external filtering and isolation between
power domains, in reality routing constraints or other factors
lead many engineers designing carrier boards to deviate from
ideal power trace layout. As an example, a low impedance
ground connection should ideally be implemented using via-
free traces from the various power domain ground pins to



Figure 3: The initial bytes of a RPL DIO being received as observed via the external SPI bus

a central star-connection. In reality, implementing such a
connection severely restricts the routing of other signals of
interest on the board, many of them with equally demanding
routing constraints - such as USB or analogue traces.

To attempt to mitigate this, we do not provide separate
power rails for flash, radio and MCU externally, but rather
use the module as the center of the ground star, with the con-
nection between domains handled internally. Ground traces
on the carrier board should run from the module to the var-
ious other connections on the board directly - preventing
ground loops. As this leaves the PCB space under the mod-
ule free for other routing and does not require traces that con-
nect to multiple pins on the module - which tends to naturally
form loops around the module - we reduce the difficulty of
meeting routing constraints for other signals.

In addition, we found that with carrier boards designed for
the Epic, the analogue supply was sometimes directly con-
nected to the digital supply externally5 or that the filtering
circuitry for the analogue supply increased the complexity
of the carrier. To avoid placing an expertise requirement on
users of the platform while also ensuring a clean signal, the
analog rail is derived from the single supply and filtered on
the module. It is not exported externally, preventing noise
from coupling onto the analog domain.

Traces to the ADC pins should be routed differentially
and utilize the differential ADC capabilities of the MCU
thereby providing accurate analogue readings without requir-
ing careful external routing. For more advanced carriers that
have an external analogue power domain, the module exports
positive and negative analogue voltage reference inputs so
that the MCU can be configured for single-ended analogue-
to-digital conversion.

5.3 Micro benchmarks
While the platform is new, benchmarking is ongoing, and

the TinyOS support is nascent, we are still in a position to
address one of the primary questions that the platform is de-
signed to answer: is it possible to gain all the features of
a modern 32 bit microprocessor while fitting within the en-
ergy constraints associated with a sensor network node? We
present a preliminary answer to this question in the form of
two characterization experiments: idle current consumption
and active current consumption. We also provide one data
point towards exploring the effect of a 32 bit architecture on
code size.

5such as on the Irene, the Epic Interface A, or the Common Sense badge

Table 7: Idle power comparison between a TelosB and a
Storm

Voltage TelosB µA Storm µA
3.300 8.8 21.0
3.000 7.1 13.8
2.700 5.7 7.2
2.400 - 3.8
2.100 - 2.6
1.800 - 2.3

To characterize the first metric, we measure the current
draw of the mote while running the TinyOS Null applica-
tion. As the Storm platform is designed to run at low voltages
(despite being capable of running at 3.3V) the experiment is
performed at multiple points across its operating range. Note
that the TelosB is not measured below 2.7V as the device is
no longer fully functional below that point – the MSP430
cannot self-write and the external flash cannot be read. In
contrast, the Storm platform retains full functionality down
to 1.8V. The results are presented in Table 7.

To measure active power characteristics, we measure the
power consumption of the device while it is running a com-
putation of the sum of squares over a set of samples. This
calculation is useful because it represents a realistic use case:
if the energy of aggregating samples at the sensor is less than
that of transmitting the full set of samples over the network
for analysis, then aggregation should be performed. To fur-
ther expand the test to cover energy per unit computation
instead of just energy per unit time, the runtime of the task
was measured externally.

In the interests of comparison with platforms running at
4 Mhz, such as the TelosB, both 4Mhz configurations and
48Mhz configurations were tested.

The code for the task used can be found in Listing 1, with
the results of the experiment presented in Table 8. It can be
seen that the answer to the question posed is a resounding
yes: it is possible for a modern 32 bit processor to be more
energy efficient than the currently used ultra-low-power 16
bit processors. In fact, at the configuration that is likely to be
most common (3.3V supply, 48Mhz with external inductor)
the energy consumed for the operation is just 17% of that
consumed by the TelosB, the current best-in-class low energy
research platform.

As a preliminary validation of functionality and measure-



Table 8: Benchmark power comparison results. The bold line indicates the anticipated common configuration
Device Supply (V) CFG Freq (Mhz) Run time (µS) Current (mA) Energy (µJ) Percentage
TelosB 3.3 - 4 712.7 2.29 5.386 100%
Storm 3.3 LDO 4 393.0 1.049 1.360 25%
Storm 3.3 BUCK 4 393.5 0.501 0.651 12%
Storm 1.8 LDO 4 393.7 0.896 0.634 11%
Storm 3.3 LDO 48 32.8 13.625 1.479 27%
Storm 3.3 BUCK 48 32.9 8.602 0.934 17%
Storm 1.8 LDO 48 32.9 13.124 0.777 14%

Listing 1: Active power consumption and code efficiency
test listing
int16 t buffer [256];
uint64 t acc;
task void workload()
{

uint16 t i;
acc = 0;
for (i = 0; i < 256; i++)

acc += ((int32 t)buffer[i]) ∗ ((int32 t)buffer[i]);
}

ment of code size, a modified UDPEcho application was de-
ployed to both TelosB and Storm platforms. Both were ad-
justed to periodically transmit broadcast packets in addition
to their standard functionality. This application is a good test
for code size as it includes RPL and BLIP, forming a com-
prehensive network stack. The application as compiled for
the MSP430 requires 39280 bytes whereas the application
compiled for Storm requires 87032 byes, more than double.
We verified that the packets broadcast were received by both
platforms – so the code sizes represent working images that
were not broken by optimization. As the SAM4L includes
more than 10x the flash of the MSP430, the implications of
this increase in code size are not currently significant, but
may influence over-the-air updates. We defer a full discus-
sion of this problem and possible solutions to future work.
5.4 Example use in a cyber-physical system

One of the first consumers of the Storm platform, and a
prime example of a cyber-physical system crossing multiple
design points is the Personal Environmental Control System
(PECS) that we are currently developing for increasing en-
ergy efficiency and occupant comfort in buildings.

The system consists of smart furniture augmented with
sensors, heating capabilities and cooling capabilities, along
with 802.15.4 and Bluetooth Low Energy radio connectiv-
ity. Here, the embedded wireless platform must be able to
capture readings from temperature, relative humidity, occu-
pancy, battery voltage and CO2 sensors while also perform-
ing actuation in the form of pulse width modulation on six
channels. In addition to this, depending on user interaction
the device may be called upon to communicate via USB or
interact with a user via a color touch screen. In total, the sys-
tem requires no less than 58 GPIO pins comprised of SPI,
I2C, multiple UARTs, PWM and external interrupts.

Figure 4: The PECS control board

The difficulty in this device is that it has a very wide dy-
namic range of requirements: it must be capable of excep-
tionally low idle currents while the device is not in use, but
it must also be capable of the computation associated with a
graphics screen. In addition, there are several states in be-
tween while the user has indicated their preferences and the
system is acting upon them.

6 Opportunities and Challenges
With the first two questions posed by this paper answered,

we turn to the final question: does this new category of
platform introduce qualitatively new operating system chal-
lenges and opportunities? This too is answered in the affir-
mative, and we explore five examples of these.

6.1 Modular power management
While the SAM4L and similar microcontrollers offer fea-

tures that allow for more optimal solutions to new and exist-
ing problems - such as several DMA channels, Sleepwalking
and independent communication modules - these all come
at a cost of increased power consumption. This energy can
largely be broken into two categories - static leakage and
dynamic power dissipation. While reducing static leakage
largely does not fall into the domain of user concerns, it does
result in processors becoming more energy efficient when
operated at lower voltages. This is one of the reasons why
the Storm platform was designed to have full functionality



at 1.8V. The latter category of dynamic power consumption,
however, requires cooperation from the user of the chip, with
implications for the design of the operating system.

The approach taken by most advanced, low energy micro-
controllers is to separate the functionality they provide into
modules that can be individually enabled and disabled. Un-
fortunately this modularity at the hardware level no longer
mirrors the modularity of the software system.

Although the first layer of dependencies matches that of
previous generations of microcontrollers – a USART mod-
ule has a set of registers corresponding to its configuration
for example – every module has intricate and dynamic links
to modules which have no counterpart in the high level user
view of the operating system yet require information from
the user. A concrete example is that of a module such as
the Power Manager which is depended upon by several other
modules in the system but only if the user application intends
on reconfiguring the modules at a later state. If the configura-
tion is fixed, then the module can be disabled, saving energy.
To revert this decision requires restarting the chip.

In addition to userspace dependencies on device-specific
“hidden” components, peripherals have dependencies on
parts of the chip being serviced by different components. For
instance the peripheral event control system that enables the
Sleepwalking functionality interacts with almost every pe-
ripheral on the device.

While the methods in the past have avoided obtrusive
inter-module dependencies by observing the underlying con-
figuration registers, this method is no longer tractable: the
time and energy spent by the system observing such configu-
ration is E ∝ M×S where E is the total energy, M is the num-
ber of modules, and S is the typical state space that needs to
be observed to configure a given module. Unfortunately, due
to energy saving techniques and the clock distribution struc-
ture discussed in Section 6.2, S is not constant, but rather pro-
portional to M. This renders E ∝∼ M2. As microprocessors
become more complex, this register observation technique
will not scale. Considering that the architecture of TinyOS
and nesC lends itself to static analysis at compile time, there
is an opportunity for resolving this problem by increasing the
intelligence of the tools.
6.2 Multiple clock domains

The fine-grained module enable flags, while effective, are
not sufficient for ultra-low power operation as although a
module that is not logically performing any action - such
as incrementing a counter or driving an IO pin - consumes
less energy, there are still losses in the module as it reads the
configuration flag that is keeping it disabled on every clock
cycle. To prevent this, the clock source for the module is also
gated, which as a side effect reduces the energy lost to para-
sitic capacitances in the clock distribution circuitry between
the gate and the module. Here, the chip designers must make
a trade-off: the higher up in the clock distribution tree the
clock is gated, the greater the energy savings, but also the
coarser the power management controls. To achieve the best
of both worlds, some chips - like the SAM4L - utilize several
layers of clock gating and module enable/disable flags.

Most modules do not need to operate at the same speed
as the CPU, however, so they often have input clock divider

allowing the internal logic in the module to operate at a dif-
ferent speed to the input clock. This is somewhat wasteful,
however, as dividing a fast clock to produce a slow one uses
more energy than simply using a slow clock.

To mitigate this, modules are separated into clock do-
mains that can have different clock sources. A clock domain
running at, say, 12 Mhz with the modules operating with a di-
visor of 1 consumes less energy than a clock domain running
at 48 Mhz and the modules within operating with a clock di-
visor of 4, despite the apparent frequency being the same. To
further expand the range of choices, there are several clock
sources that are identical in frequency, but have differing ac-
curacies, start-up times and power consumptions.

This arrangement poses two challenges for clock manage-
ment in an embedded operating system. The first is that the
per-module divisors are typically quite limited in their range
so, depending on which modules are enabled, the clock do-
main frequency can only be adjusted within specific ranges
while keeping the behavior of all the peripherals in that do-
main constant. The second is that the high level concept of a
clock source now needs to encapsulate factors such as start-
up time and accuracy. To further complicate matters, some
clocks configurations are “soft” constraints: a synchronous
SPI transfer for instance can change frequency arbitrarily
without effect as long as the clock remains within the range
tolerable by the devices on the bus.

The net effect of these changes to clock management is
that, given more than one way of achieving an application
level goal, the most energy efficient way of achieving that
goal is dependent on other unrelated parts of the application.
A simple example is that of completing an SPI DMA trans-
fer. If no fast clock is currently required by other parts of
the application, the transfer will use the least amount of en-
ergy if fed from the 115 Khz system RC clock that is always
operational. If, however, an unrelated part of the application
is using something that requires the DFLL or the PLL to be
active, then the static costs of that clock source have already
been paid and the net energy cost of the SPI transfer will be
lower if fed from that clock source.

It is important to realize that the module requesting the
transfer cannot simply observe the clock configuration reg-
isters to determine which clock to use. Over and above the
energy usage being proportionate to a growing state space
problem mentioned earlier, a consumer of a clock, it needs
to know for how long that clock will be available, or obtain
a strong reference to the clock that will prevent it from be-
ing disabled. The former is not observable from the registers
so forms an inter-module dependency. The latter could lead
to a priority inversion problem, where an unimportant task
opportunistically locks a high power clock with transient de-
pendents, preventing it from being disabled.

While this phenomenon has been present to some extent
in the microprocessors typically used for sensor networks
they have always posed a tractable problem because the mod-
ule dependencies have been fairly contained. As the number
of peripherals on a chip grow, however, and the total state
space of the microcontroller expands, there arises a need
for new methods of tacking power management and policy.
While this paper does not propose a definitive solution, we
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Figure 5: Complex inter-module dependencies introduced by
power management and shared clock domains

will briefly explore the problem.
6.3 Inter-module compatibility

Code design for embedded systems often emphasizes
modularity and separation of concerns. TinyOS hardware
abstraction layering best practices, as laid out in TEP 2, sug-
gest that the peripherals and modules present in a platform be
separated with as fine a granularity as possible at the lowest
level - the Hardware Presentation Layer (HPL). This implies,
for instance, that the HPL code for a UART would be inde-
pendent from the HPL code for a Timer or an ADC module.
The various parts of the system should remain isolated and
may even be implemented by different authors.

On top of the HPL there is the Hardware Adaptation
Layer and the Hardware Interface Layer. It is even more true
at these layers that dependencies between modules should
not bleed through. A typical HIL component provides a
clean, user friendly interface to a piece of device function-
ality, even going as far as to software emulate missing func-
tionality in order to make the user’s experience better.

The clear benefit of such an architecture is that it makes it
possible to develop very complex platform-independent ser-
vices and applications that are not only capable of targeting
the multitude of currently available platforms, but also fu-
ture platforms – as evidenced by the intricate RPL and BLIP
stack that Storm supports even its infancy.

Unfortunately, this modularity is at odds with the global
view required to reach optimal energy states and maintaining
this isolation between modules while concurrently fully uti-
lizing the available low-energy features is going to become
more difficult as processors evolve.

As an example, Figure 5 illustrates the TinyOS stack for
an application that connects the network, several sensors and
some Timers on a Cortex-M4 based platform. The first thing
to note is the high degree of cross-dependencies between the
HAL layer and the HPL layer. In the absence of a complete
overhaul to the way dependencies are managed in TinyOS,
the only way for a HAL layer to guarantee that the dependen-
cies of its module are met is to interact with the HPL com-

ponents of everything that the module depends on. While
these dependencies do not leak through to the user, they are
still considered harmful as it means that HAL code is not
portable, even between processors in the same family – the
addition of a single new timer requires altering all modules
that could potentially utilize that timer as a clock source.

The second point to note is that, apart from the ASyn-
chronous Timer (AST), the other peripherals are in the same
clock domain. This means that the configuration of the clock
domain source must be calculated as a group, using the con-
straints imposed by all the modules and their consumers.

The third point to note is that the power management re-
quires high-level knowledge from system services in order to
calculate an efficient power state. To see why this is so, con-
sider the current method for ensuring low-energy operation,
which is to compute the lowest power state achievable when-
ever the result is deemed likely to have changed. This is the
approach suggested in TEP 112. In order to approach opti-
mality, the power state calculation must be aware of not just
the current configuration of modules in the system but also
of the intent of components using those modules, something
not derivable from configuration registers.

As an example of this, significant energy could be saved
by switching an ongoing SPI DMA operation to the 115Khz
system clock as the processor core can reach its full idle
state and maintain the DMA using Sleepwalking - essen-
tially reducing the energy consumption to the bare mini-
mum and allowing the SPI clock domain to automatically
shut down upon completion of the DMA operation without
processor intervention. Such a useful optimization can only
occur if the power policy calculation is aware of application
level information such as if the DMA transfer had a dead-
line or not. The option to relegate the decision to the user
is also not easily selected, as the slower clock SPI DMA
is only more energy efficient if there are no other modules
demanding that a higher speed oscillator be kept running.
This would mean that the isolated SPI consuming compo-
nent would need global view about the constraints of other
components in the system in order to make an effective deci-
sion.
6.4 Chaining multiple background transfers

The Sleepwalking feature discussed in Section 3 has sig-
nificant implications for the way in which common tasks are
implemented. Several of the tasks that previously required
coordination from the processor can now happen while the
processor is in a very low power mode – the same power
mode that was characterized at 2.5 µA idle current in Section
5.3.

Apart from introducing resource dependency and power
management complexities similar to those already discussed,
this has consequences for how embedded operating systems
export functionality to users. One such implication is that
there are now several more ways of accomplishing the same
goals, and the trade-offs between them are dynamic, chang-
ing at run-time based on factors that are outside the visibility
of a given component. In fact, it is common for the most en-
ergy efficient means of performing a task to change while the
task is still in operation. For example, if no other tasks are
pending and the current executing task can be implemented
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as a peripheral event chain, then spending the energy to move
peripherals to low power clocks and going to sleep becomes
the most energy efficient option.

One possible way of abstracting this complexity from
users is to become more declarative rather than imperative.
This would allow the underlying system to choose the best
method of actualizing a given application intent. While
declarative languages in an embedded space have been ex-
plored [20], these have not addressed such paradigms in the
context of a fully generic language on hardware that intrin-
sically lends itself to runtime resolution of intent into imple-
mentation.

A subset of the opportunities and challenges posed by
background transfers can be seen in the difference in total en-
ergy consumption due to task scheduling – the existence of
16 independent DMA channels and comprehensive periph-
eral DMA support means that many of the common tasks
done by a sensing platform can be done in parallel or in the
background.

As an example, consider a typical sensor that periodically
wakes up, reads sensor values and sends the sensor data over
the radio. There are sufficient DMA channels that the UART,
ADC and radio can be done primarily in the background,
requiring only a few cycles to begin the transfer. There may
also be a sensor that requires bit banging (say a standards
non-compliant I2C temperature sensor) which utilizes busy
waits so can not be read over DMA.

The first pass at a system might be to post tasks that read
the three sensors, and then pack and send the packet with
the sensor data as illustrated in Figure 6. This is subopti-
mal because the UART takes long enough to complete that
the processor needs to go to sleep and re-awaken in order to
process the packet.

One possible optimization would be to recognize that the
packet transmission could occur at the start of the next wake
up period, thereby cutting out a sleep and wakeup. This is
illustrated in Figure 7. Note that, depending on the scheduler,
tasks may be randomly dispatched making it possible for the
bit-bang task to be scheduled before the other two sensors,
as shown.

This ordering is not guaranteed to yield a total energy
consumption less than in Figure 6, though, as although the
UART transmission occurs while the processor is in a low
power state, the communication peripheral clock domain
must now be powered over a longer period of time that it
was in the first scenario.

ADC

UART

PACKET

B.B I2C

0 715400

Active task

BG task

Time

Figure 7: A naı̈ve task schedule with packet transmission
preceding data acquisition
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Figure 8: A carefully ordered schedule that minimizes time
awake

Inspection of the tasks, however, will see that they are
sensitive to dispatch order. Merely rearranging the tasks, as
in Figure 8, so that the DMA operations are begun before
the foreground bit-bang IO yields a total active time identi-
cal to Figure 7 but with no active DMA operations or clock
domains at the end.

While task scheduling is certainly not a new problem, dis-
covering ways of hiding the intricacies of the solution from
the user will certainly play a bigger part in embedded oper-
ating systems to come. To understand why this is an interest-
ing problem, consider how the user should ensure that task
scheduling occurs in an optimal order. Without providing the
scheduler with additional information about task deadlines,
resource usage and estimation completion times, the user is
left with a solution that would require modifying each indi-
vidual component that is posting tasks and adding a manual
dispatch of the next task upon its completion. This depen-
dency between unrelated components contradicts the princi-
ples of modularity.

The challenges posed here can be summarized as an open
question: how can global-view-requiring energy-optimal op-
eration be achieved in modern microcontrollers without in-
troducing inter-component dependencies that compromise
the layering and modularity principles of embedded operat-
ing systems?
6.5 Supervisory control

Many Cortex-M4 microcontrollers feature Memory Pro-
tection Units. This allows the processor to restrict access to
up to eight individual variable-sized blocks of memory so
that they are only modifiable by the processor running in su-
pervisory mode.

This has interesting implications for motes attempting to
implement reliable over-the-air programming. While there
are several options for program image dissemination that en-
sure that program images are not corrupt, the actual problem



of ensuring that the program image is logically correct re-
mains difficult. This is largely because an incorrect program
can enter an infinite loop, preventing any future over-the-air
updates and potentially preventing the code that is supposed
to load a golden image from running.

The ability to protect arbitrary memory ranges, however,
allows supervisory code to create a software-defined grenade
timer that triggers a non-maskable-interrupt into a privileged
subroutine that could, for example, ensure that the payload
program image was maintaining radio contact with the mesh.

In addition to the MPU, the Flash Patch and Breakpoint
unit allows the supervisory code to intercept the read access
of a given flash location and replace the result with one stored
in RAM. This facilitates the dynamic redirection of function
calls (among other things), allowing for more flexible instru-
mentation of payload code. For example the grenade timer
could be reset upon receipt of a certain type of packet or a
certain code path in the payload.

The key change here is that a malicious or logically incor-
rect payload is unable to bypass the grenade timer by direct
manipulation of control registers – something that was possi-
ble with watchdog timers in previous generations of embed-
ded wireless platforms.
7 Conclusion

This paper outlines and addresses three questions posed
by the technological advancements of the past decade, show-
ing that:

1. It is indeed possible to construct a powerful embed-
ded wireless platform based on a 32-bit microproces-
sor while meeting the energy profile of the current best-
in-class ultra-low-power “mote”. This is shown by the
presentation and preliminary evaluation of Storm – one
such system with a rich feature set, and best-in-class
energy characteristics.

2. It is possible for the platform to simultaneously cater
to the needs of both wireless monitoring and cyber-
physical systems. We demonstrate the design princi-
ples enabling this development, showing that a solder-
on-module with selectively exported IO is sufficiently
versatile to meet a diversity of design points.

3. The use of feature-rich 32-bit processors brings with
it new challenges and opportunities for operating sys-
tem design. Principally we explored the issues of
power management, clock distribution, modularity,
background operations and supervisory control.
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