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ANALYSIS OF THE FINITE PRECISION S-STEP BICONJUGATE
GRADIENT METHOD

ERIN CARSON AND JAMES DEMMEL

Abstract. We analyze the s-step biconjugate gradient algorithm in finite precision arithmetic
and derive a bound for the residual norm in terms of a minimum polynomial of a perturbed matrix
multiplied by an amplification factor. Our bound enables comparison of s-step and classical biconju-
gate gradient in terms of amplification factors. Our results show that for s-step biconjugate gradient,
the amplification factor depends heavily on the quality of s-step polynomial bases generated in each
outer loop.

1. Introduction. Krylov subspace methods (KSMs) are a class of iterative al-
gorithms commonly used to solve the linear system Ax = b. In classical KSM imple-
mentations, in iteration n, the updates to the solution xn+1 and residual rn+1 consist
of one or more sparse matrix-vector multiplications (SpMVs) and vector operations
in each iteration. On modern computer architectures, the performance of these oper-
ations is communication-bound ; the movement of data, rather than the computation,
is the limiting factor.

Communication-avoiding KSMs (CA-KSMs), based on s-step formulations ( [4,
6, 8, 12, 27, 23, 24]), reduce the total communication cost by a factor of O(s) by
performing O(s) computation steps per communication step (see, e.g., [3, 7, 13]). This
asymptotic reduction in communication cost yields significant speedups in practice for
many problems [19].

Although CA-KSMs are mathematically equivalent to their classical counterparts,
their finite precision behavior may differ. It has been empirically observed that the
rate of convergence of CA-KSMs deviates further from the convergence of the classical
method as s increases, and that the severity of this deviation is heavily influenced by
the polynomials used for the s-step Krylov bases (see, e.g., [3, 13, 14, 1]).

In this work, we derive Lanczos-type matrix recurrences governing the s-step bi-
conjugate gradient method (BICG) in finite precision arithmetic, which demonstrates
the algorithm’s relationship to classical BICG. Using the recurrence, we extend the
results of Tong and Ye for classical BICG [25] to derive an upper bound on the norm of
the updated residual in finite precision s-step BICG. Our bound provides an analytical
explanation for commonly-observed convergence behavior of s-step BICG.

2. Related work. We briefly outline the available literature on relevant topics,
namely the analysis of KSMs in finite precision and s-step KSMs.

2.1. Analysis of finite precision Krylov methods. There are two primary
effects of roundoff error in finite precision KSMs: the maximum attainable accuracy
of the solution is decreased, and convergence may deteriorate. Much research has
been devoted to better understanding this behavior, and to devise more robust and
stable algorithms.

An upper bound on the maximum attainable accuracy for finite precision KSMs,
limited by the deviation of the Lanczos residual from the true residual, was obtained
by Greenbaum [10]. Greenbaum proved that this bound can be given a priori for
methods like CG, but cannot be predetermined for methods like BICG, which can
have arbitrarily large intermediate iterates. There are also techniques for alleviating
this loss of accuracy, namely, residual replacement strategies, where the computed
residual is replaced by the finite precision evaluation of the true residual at carefully

1



2

chosen iterations (see, e.g., [22, 26]. In this way, agreement between the true and
computed residual is maintained to within a factor of O(ε).

In [11], Greenbaum proved backward stability of the finite precision CG algorithm,
by showing that the computed Ritz values lie in small intervals around the eigenvalues
of A. There are many other analyses of the behavior of various KSMs in finite precision
arithmetic (see, e.g. [17, 16, 25]). The reader is also directed to the bibliography in
[20].

Our analysis is most closely related to the work of Tong and Ye [25]. The authors
derived a bound for the residual norm of classical BICG in finite precision, expressed
as the product of a minimum polynomial of a perturbed matrix and an amplification
factor. Our analysis generalizes the work of Tong and Ye to the s-step BICG case.

2.2. s-step Krylov subspace methods. The first instance of an s-step method
in the literature is Van Rosendale’s s-step CG [27]. Van Rosendale’s implementation
was motivated by exposing more parallelism using the PRAM model. Chronopoulos
and Gear later created the s-step GMRES method with a similar goal [5]. Walker used
s-step bases to improve stability in GMRES by replacing the modified Gram-Schmidt
orthogonalization process with Householder QR [28]. These authors used monomial
bases, and found that convergence often could not be guaranteed for s > 5. It was
later discovered that this behavior was due to the inherent instability of the monomial
basis, which motivated research into the use of other bases for the Krylov subspace.

Hindmarsh and Walker tried a scaled monomial basis to improve convergence [12],
but saw only minimal improvement. Joubert and Carey implemented a scaled and
shifted Chebyshev basis which led to more accurate results [14]. Bai et al. improved
convergence using a Newton basis [1]. Although successively scaling the basis vectors
can lower the condition number of the basis, this computation reintroduces commu-
nication dependencies. Hoemmen solved this using a novel matrix equilibration and
balancing approach as a preprocessing step, which often alleviated the need for scaled
basis vectors [13].

Hoemmen et al. [7, 13, 19] derived communication-avoiding variants of Lanczos,
Arnoldi, CG and GMRES. We use communication-avoiding to specifically refer to
s-step variants implemented using the communication-avoiding matrix powers ker-
nel, which applies to well-partitioned sparse matrices (see, e.g., [18]). Derivations
of communication-avoiding variants of nonsymmetric Lanczos-based KSMs, such as
BICG, CGS, and BICGSTAB can be found in [3].

2.3. s-step BICG. We briefly review s-step BICG for solving Ax = b, where
A ∈ RN×N (see Alg.1). Note that this overview is meant for the familiar reader; in
the interest of space, we defer to numerous other works on the topic, such as [3, 4, 5,
7, 13, 15, 27, 24]. For simplicity, we assume A is full rank.

Throughout the remainder of the paper, 0i,` denotes a zero matrix of size i × `
and 0i is a column vector of i zeros. We use I to denote the square identity matrix;
dimensions are either given as a single subscript, or are implicit from context. We use
ei to denote the ith column of appropriately sized I.

In each outer loop k of s-step BICG, we generate Krylov bases with the current
search direction and residual vectors, psk and rsk, which we denote as V pk, having
basis length s + 1, and V rk, having basis length s. The basis vectors, or columns of

V pk =
[
vpk,0, . . . , v

p
k,s

]
, are generated by the three-term polynomial recurrence

vpk,i+1 = γi (A− θiI) vpk,i + σiv
p
k,i−1 (2.1)
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Algorithm 1 s-step BICG

1: x0, r0 = r̃0 = b−Ax0, p0 = p̃0 = r0, k = 0
2: while not converged do
3: Calculate V pk, V

r
k, V

p̃
k, V

r̃
k, Bk

4: V k = [V pk, V
r
k], Ṽ k = [V p̃k, V

r̃
k], Gk = Ṽ

T

k V k
5: p′k,0 = [1, 01,2s]

T
, r′k,0 = [01,s+1, 1, 01,s−1]

T
, x′k,0 = [02s+1]

6: p̃′k,0 = [1, 01,2s]
T

, r̃′k,0 = [01,s+1, 1, 01,s−1]
T

7: for j = 0 : s− 1 do
8: αsk+j = ((r̃′k,j)

TGkr
′
k,j)/((p̃

′
k,j)

TGkBkp
′
k,j)

9: x′k,j+1 = x′k,j + αsk+jp
′
k,j

10: r′k,j+1 = r′k,j −Bk
(
αsk+jp

′
k,j

)
11: r̃′k,j+1 = r̃′k,j −Bk

(
αsk+j p̃

′
k,j

)
12: βsk+j+1 = ((r̃′k,j+1)TGkr

′
k,j+1)/((r̃′k,j)

TGkr
′
k,j)

13: p′k,j+1 = r′k,j+1 + βsk+j+1p
′
k,j

14: p̃′k,j+1 = r̃′k,j+1 + βsk+j+1p̃
′
k,j

15: end for
16: xsk+s = V kx

′
k,s + xsk, rsk+s = V kr

′
k,s, psk+s = V kp

′
k,s

17: r̃sk+s = Ṽ kr̃
′
k,s, p̃sk+s = Ṽ kp̃

′
k,s

18: k = k + 1
19: end while
20: return xsk

with starting vector vpk,0 = psk. We assume we use the same recurrence in constructing
vrk,i. The choice of parameters γi, θi, and σi play a large role in determining the quality
of the resulting basis, which in turn affects both stability and convergence in s-step
BICG. We denote V k = [V pk, V

r
k]. We also denote Vk = [V pk , 0N , V

r
k , 0N ] where V pk

and V rk are V pk and V rk, resp., with their last columns omitted.
Within the inner loop, in step j of outer loop k, we update the length-(2s +

1) coefficients for the BICG vectors as linear combinations of the columns in V k
(rather than explicitly update the length-N BICG vectors, as in classical BICG). The
coefficient vectors are denoted with prime symbols (i.e., rsk+j = V kr

′
k,j , and similarly

for psk+j and xsk+j). The inner iteration updates then become

r′k,j+1 = r′k,j − αsk+jBkp′k,j and (2.2)

p′k,j+1 = r′k,j+1 + βsk+j+1p
′
k,j , (2.3)

where

Bk =

[ [
Ck,s+1 0s+1,1

] [
Ck,s 0s,1

] ] ,
with

Ck,j =



θ0 −σ1/γ1

1/γ0 θ1
. . .

1/γ1
. . . −σj−1/γj−1
. . . θj−1

1/γj−1


.
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We can rearrange (2.2) and (2.3) as

Bkp
′
k,j =

1

αsk+j

(
r′k,j − r′k,j+1

)
and (2.4)

r′k,j = p′k,j − βsk+jp′k,j−1. (2.5)

Premultiplying (2.5) by V k, we obtain

Vkr
′
k,j = Vkp

′
k,j − βsk+jVkp′k,j−1. (2.6)

This equation is valid for 1 ≤ j < s, since p′k,−1 is undefined. When j = 0, we have

Vkr
′
k,0 = V k−1r

′
k−1,s

= V k−1
(
p′k−1,s − βskp′k−1,s−1

)
= Vkp

′
k,0 − βskVk−1p′k−1,s−1,

which gives a valid expression for the j = 0 case.
Now, let

R′k,j =
[
r′k,0, r

′
k,1, . . . , r

′
k,j

]
and P ′k,j =

[
p′k,0, p

′
k,1, . . . , p

′
k,j

]
.

We can write (2.6) in block form as

VkR
′
k,j = VkP

′
k,jUk,j − βskVk−1p′k−1,s−1eT1 , (2.7)

where

Uk,j =


1 −βsk+1

1
. . .

. . . −βsk+j
1

 .
Premultiplying (2.7) by A, we obtain

AVkR
′
k,j = AVkP

′
k,jUk,j − βskAVk−1p′k−1,s−1eT1 . (2.8)

We can also write (2.4) in block form as

BkP
′
k,j = R′k,jLk,jΛ

−1
k,j −

1

αsk+j
r′k,j+1e

T
j+1, (2.9)

where Λk,j = diag (αsk, . . . , αsk+j) and

Lk,j =


1
−1 1

. . .
. . .

−1 1

 .
If we premultiply (2.9) by V k and postmultiply by Uk,j , we obtain

V kBkP
′
k,jUk,j = V kR

′
k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1,
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which can be written

AVkP
′
k,jUk,j = VkR

′
k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1 (2.10)

since AVk = V kBk and V kR
′
k,j = VkR

′
k,j for j ≤ s− 1. We can then combine (2.8)

and (2.10) to obtain

AVkR
′
k,j = VkR

′
k,j T̂k,j −

βsk
αsk−1

Vk−1r
′
k−1,s−1e

T
1 −

1

αsk+j
V kr

′
k,j+1e

T
j+1, (2.11)

where T̂k,j = Lk,jΛ
−1
k,jUk,j + e1

βsk

αsk−1
eT1 . Note when k = 0, βsk

αsk−1
is defined to be 0.

We can now combine outer loop iterations in block form to write the s-step BICG
recurrence for iterations 0 through sk + j. Let Vk = [V0, V1, . . . , Vk]. Let

R′k,j =


R′0,s−1

R′1,s−1
. . .

R′k,j


and

Tk,j =


1
α0

− β1

α0

− 1
α0

1
α1

+ β1

α0

. . .

. . .
. . . βsk+j

αsk+j−1

− 1
αsk+j−1

1
αsk+j

+
βsk+j

αsk+j−1

 .

Then by (2.11), we can write

AVkR′k,j = VkR′k,jTk,j −
1

αsk+j
V kr

′
k,j+1e

T
sk+j+1.

Since we can write the residual vectors as Rn = [r0, . . . , rn] = VkR′k,j , where
n = sk + j, we can write the above as

ARn = RnTn −
1

αn
rn+1e

T
n+1,

which gives us the same governing equation for iterations 0 through sk + j as the
classical BICG algorithm in exact arithmetic [25]. Note that a similar relation holds
for the dual Krylov vectors r̃sk+j and p̃sk+j .

3. s-step BICG in finite precision. The goal of this section is to derive a
Lanczos-type recurrence for finite precision s-step BICG of the form

AVkR′k,j = VkR′k,jTk,j −
1

αsk+j
V kr

′
k,j+1e

T
sk+j+1 + ε∆k,j

and upper bound the size of the error term ε∆k,j . We assume a standard model of
floating point arithmetic, where

fl (αx+ y) = αx+ y + δ1, where |δ1| ≤ ε2 |αx|+ |y|+O(ε2), and

fl (Ax) = Ax+ δ2, where |δ2| ≤ εN |A| |x|+O(ε2),
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where x, y ∈ RN , α ∈ R. In the remaining analysis we drop higher powers of ε for
simplicity. Let ε be the machine precision unit. For simplicity of notation, we now
let r′k,j , p

′
k,j , x

′
k,j , αsk+j , rk,s, pk,s, βsk+j , V k, and Bk be the computed quantities in

finite precision s-step BICG.

At the (sk + j)
th

iteration, to compute r′k,j+1 we first compute Bkp
′
k,j and have

fl
(
Bkp

′
k,j

)
= Bkp

′
k,j + g, where |g| ≤ ε(2s+ 1) |Bk|

∣∣p′k,j∣∣ .
Then

r′k,j+1 = fl
(
r′k,j − αsk+j · fl

(
Bkp

′
k,j

))
= r′k,j − αsk+jBkp′k,j − αsk+jg + g′, (3.1)

where
∣∣g′∣∣ ≤ ε(∣∣r′k,j∣∣+ 2

∣∣αsk+j∣∣∣∣Bkp′k,j∣∣). Let δr′k,j
= (αsk+jg+ g′)/ (ε |αsk+j |). Then

using (3.1) we obtain

1

αsk+j

(
r′k,j+1 − r′k,j

)
= −Bkp′k,j + εδr′k,j

,

where ∣∣δr′k,j

∣∣ ≤ (2s+ 1)
∣∣Bk∣∣∣∣p′k,j∣∣+

∣∣r′k,j∣∣∣∣αsk+j∣∣ + 2
∣∣Bkp′k,j∣∣. (3.2)

Similarly,

p′k,j+1 = fl
(
r′k,j+1 + βsk+j+1p

′
k,j

)
= r′k,j+1 + βsk+j+1p

′
k,j + f,

where |f | ≤ ε
(∣∣∣r′k,j+1

∣∣∣+ 2 |βsk+j+1|
∣∣∣p′k,j∣∣∣). Letting δp′k,j+1

= f/ε, we have

p′k,j+1 = r′k,j+1 + βsk+j+1p
′
k,j + εδp′k,j+1

,

where ∣∣δp′k,j+1

∣∣ ≤ ∣∣r′k,j+1

∣∣+ 2
∣∣βsk+j+1

∣∣∣∣p′k,j∣∣. (3.3)

Rearranging (3.2) and (3.3), we can write

Bkp
′
k,j =

1

αsk+j

(
r′k,j − r′k,j+1

)
+ εδr′k,j

and

r′k,j = p′k,j − βsk+jp′k,j−1 + εδp′k,j
, (3.4)

and premultiplying (3.4) by Vk gives

Vkr
′
k,j = Vkp

′
k,j − βsk+jVkp′k,j−1 + εVkδp′k,j

.

This equation is valid for 1 ≤ j < s, since p′k,−1 is undefined. When j = 0, we have

Vkr
′
k,0 = fl(V k−1r

′
k−1,s)

= V k−1r
′
k−1,s + εφrk−1 and

Vkp
′
k,0 = fl(V k−1p

′
k−1,s)

= V k−1p
′
k−1,s + εφpk−1,



7

where
∣∣φrk−1∣∣ ≤ (2s+ 1)

∣∣V k−1∣∣∣∣r′k−1,s∣∣ and
∣∣φpk−1∣∣ ≤ (2s+ 1)

∣∣V k−1∣∣∣∣p′k−1,s∣∣. Then for
j = 0, we can write

Vkr
′
k,0 = V k−1r

′
k−1,s + εφrk−1

= V k−1

(
p′k−1,s − βskp′k−1,s−1 + εδp′k−1,s

)
+ εφrk−1

= Vkp
′
k,0 − εφ

p
k−1 − βskVk−1p

′
k−1,s−1 + εV k−1δp′k−1,s

+ εφrk−1

= Vkp
′
k,0 − βskVk−1p′k−1,s−1 + ε

(
V k−1δp′k−1,s

+ φrk−1 − φ
p
k−1

)
.

Now, let ∆R′k,j
=
[
δr′k,0

, . . . , δr′k,j

]
and ∆P ′k,j

=
[
02s+1, δp′k,1

, . . . , δp′k,j

]
. We can

then write

VkR
′
k,j =VkP

′
k,jUk,j − βskVk−1p′k−1,s−1eT1 + εVk∆P ′k,j

+ ε
(
V k−1δp′k−1,s

+ φrk−1 − φ
p
k−1

)
eT1 and (3.5)

BkP
′
k,j =R′k,jLk,jΛ

−1
k,j −

1

αsk+j
r′k,j+1e

T
j+1 + ε∆R′k,j

. (3.6)

Premultiplying (3.5) by A gives

AVkR
′
k,j =AVkP

′
k,jUk,j − βskAVk−1p′k−1,s−1eT1 + εAVk∆P ′k,j

+ εA
(
V k−1δp′k−1,s

+ φrk−1 − φ
p
k−1

)
eT1 , (3.7)

and premuliplying (3.6) by V k gives

V kBkP
′
k,j =VkR

′
k,jLk,jΛ

−1
k,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1 + εVk∆R′k,j

(3.8)

for j ≤ s− 1.
Now, to write the error in s-step BICG in the context of classical BICG, we must

account for error in computation of the s-step bases. Rearranging the finite precision
evaluation of (2.1), we obtain

Avpk,i =
1

γi
vpk,i+1 + θiv

p
k,i −

σi
γi
vpk,i−1 + εδvpk,i

,

where we can write
∣∣δvpk,i

∣∣ as

∣∣δvpk,i

∣∣ =
(
N + 2

)∣∣A∣∣∣∣vpk,i∣∣+ 3
∣∣θivpk,i∣∣+

3
∣∣σivpk,i−1∣∣∣∣γi∣∣ .

Since we generate vrk,i by the same recurrence, we also have

∣∣δvrk,i

∣∣ =
(
N + 2

)∣∣A∣∣∣∣vrk,i∣∣+ 3
∣∣θivrk,i∣∣+

3
∣∣σivrk,i−1∣∣∣∣γi∣∣ .

Letting ∆Vk
=
[
δpvk,0

, . . . , δpvk,s−1
, 0, δrvk,0

, . . . , δrvk,s−2
, 0
]
, we can then write the finite

precision basis computation as

AVk = V kBk + ε∆Vk
. (3.9)
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Using (3.9), we can write (3.8) as

(AVk − ε∆Vk
)P ′k,j = VkR

′
k,jLk,jΛ

−1
k,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1 + εVk∆R′k,j

,

which can be rearranged to obtain

AVkP
′
k,j = VkR

′
k,jLk,jΛ

−1
k,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1 + εVk∆R′k,j

+ ε∆Vk
P ′k,j . (3.10)

Postmultiplying (3.10) by Uk,j gives

AVkP
′
k,jUk,j =VkR

′
k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1

+ ε
(
Vk∆R′k,j

Uk,j + ∆Vk
P ′k,jUk,j

)
, (3.11)

and combining (3.11) and (3.7), we obtain

AVkR
′
k,j =VkR

′
k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j
V kr

′
k,j+1e

T
j+1 − βskAVk−1p′k−1,s−1eT1 (3.12)

+ ε
(
AVk∆P ′k,j

+ Vk∆R′k,j
Uk,j + ∆Vk

P ′k,jUk,j

)
(3.13)

+ εA
(
V k−1δp′k−1,s

+ φrk−1 − φ
p
k−1

)
eT1 . (3.14)

Since

βskAVk−1p
′
k−1,s−1e

T
1 =βsk(V k−1Bk−1 + ∆Vk−1

)p′k−1,s−1e
T
1

=βskV k−1

(
1

αsk−1
(r′k−1,s−1 − r′k−1,s) + εδr′k−1,s−1

)
eT1

+ βsk∆Vk−1
p′k−1,s−1e

T
1

=
βsk
αsk−1

Vk−1r
′
k−1,s−1e

T
1 −

βsk
αsk−1

(Vkr
′
k,0 − εφrk−1)eT1

+ εβskVk−1δr′k−1,s−1
eT1 + βsk∆Vk−1

p′k−1,s−1e
T
1 ,

we can write (3.14) as

AVkR
′
k,j = VkR

′
k,j T̂k,j −

βsk
αsk−1

Vk−1r
′
k−1,s−1e

T
1 −

1

αsk+j
V kr

′
k,j+1e

T
j+1 + ε∆k,j ,

where

∆k,j =AVk∆P ′k,j
+AVk−1δp′k−1,s

eT1 + Vk∆R′k,j
Uk,j − βskVk−1δr′k−1,s−1

eT1 (3.15)

+ ∆Vk
P ′k,jUk,j − βsk∆Vk−1

p′k−1,s−1e
T
1 +

(
A(φrk−1 − φ

p
k−1)− βsk

αsk−1
φrk−1

)
eT1 .

(3.16)

Writing ∆k,j = [δsk, . . . , δsk+j ], we have that the (sk+ j + 1)th column of ∆k,j is

δsk+j = AVkδp′k,j
+ Vkδr′k,j

− βsk+jVkδr′k,j−1
+ ∆Vk

r′k,j−1, (3.17)
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for j > 0, and

δsk =AVk−1δp′k−1,s
+ Vkδr′k,0

− βskVk−1δr′k−1,s−1
+ δpvk,0 − βsk+j∆Vk−1

p′k−1,s−1

+

(
A(φrk−1 − φ

p
k−1)− βsk

αsk−1
φrk−1

)
(3.18)

for j = 0.
Using the inequalities

∣∣βsk+jp′k,j−1∣∣ ≤ ∣∣p′k,j∣∣+ ∣∣r′k,j∣∣+O(ε) and
∣∣r′k,j−1∣∣ ≤ ∣∣r′k,j∣∣+∣∣αsk+j−1∣∣∣∣Bkp′k,j−1∣∣+O(ε), we can bound the norm of the columns as

∣∣δsk+j∣∣ ≤((N + 6)
∣∣A∣∣∣∣Vk∣∣+ (2s+ 8)

∣∣V k∣∣∣∣Bk∣∣+

(
1∣∣αsk+j∣∣ +

∣∣βsk+j∣∣∣∣αsk+j−1∣∣
)∣∣Vk∣∣)∣∣r′k,j∣∣

+

(
2
∣∣A∣∣∣∣Vk∣∣+ (4s+ 7)

∣∣V k∣∣∣∣Bk∣∣
)∣∣p′k,j∣∣, (3.19)

if j > 0. For the j = 0 case, we have

∣∣δsk∣∣ ≤((N + 2s+ 7)
∣∣A∣∣∣∣V k−1∣∣+ (2s+ 8)

∣∣V k−1∣∣∣∣Bk−1∣∣
)∣∣r′k−1,s∣∣ (3.20)

+

(
1∣∣αsk∣∣ +

(2s+ 2)
∣∣βsk∣∣∣∣αsk−1∣∣

)∣∣V k−1∣∣∣∣r′k−1,s∣∣

+

(
(2N + 4s+ 16)

∣∣A∣∣∣∣V k−1∣∣+ (6s+ 22)
∣∣V k−1∣∣∣∣Bk−1∣∣)∣∣p′k−1,s∣∣ (3.21)

We can thus write the finite precision s-step BICG recurrence for iterations 0
through sk + j as

AVkR′k,j = VkR′k,jTk,j −
1

αsk+j
V kr

′
k,j+1e

T
sk+j+1 + ε∆k,j , (3.22)

where ∆k,j = [∆0,s−1,∆1,s−1, . . . ,∆k,j ].

3.1. Comments. Note that we can write n iterations of finite precision classical
BICG as n iterations of finite precision s-step BICG with s > n, performed in the
standard basis. That is, we have a single outer loop iteration k = 0 and j = n inner
loop iterations, with V0 = In, B0 = A, R′0,n = R0,n, and P ′0,n = P0,n. Now, since
V0 = In, ∆V0

= 0, and since k = 0, φrk−1,φpk−1, and δpk−1,s
are defined to be zero.

Plugging in to (3.15), we get

∆0,n = A∆P0,n + ∆R0,nU0,n,

which reproduces the error term (modulo a factor of 2) obtained by Tong and Ye for
finite precision classical BICG [25].

Also note that from (3.15), we can see that the first four terms on the right-hand
side correspond to the two terms in Tong and Ye’s analysis for classical BICG, and
the remaining terms correspond to the error in computing the s-step Krylov bases
and the change of basis operation. We can also see that a bound on the size of the
error in each column of the finite precision recurrence depends on both the magnitude
of the error in computing the s-step Krylov bases, i.e., ‖∆Vk

‖, as well as the size of
the bases, i.e., ‖Vk‖.
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3.2. Diagonal scaling. As in [25], it will be more convenient to work with a
scaled version of (3.22) in subsequent sections. Let Zk,j = [z0,0, . . . , zk,j ] = VkR′k,jD

−1
k,j

where

Dk,j = diag
(∥∥V0r′0,0∥∥ , . . . ,∥∥V0r′0,s−1∥∥ ,∥∥V1r′1,0∥∥ , . . . ,∥∥Vkr′k,j∥∥) .

We can then write the scaled version of (3.22) as

AZk,j = Zk,j T̄k,j −
1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1 + ε∆̄k,j , (3.23)

where T̄k,j = Dk,jTk,jD−1k,j ,

ᾱsk+j =
∥∥Vkr′k,j∥∥αsk+j/ ‖r0‖ =

∥∥Vkr′k,j∥∥αsk+j/ ∥∥V0r′0,0∥∥ = eTsk+j+1T̄ −1k,j e1,

and

∆̄k,j = ∆k,jD
−1
k,j .

4. Bounds on ‖rsk+j+1‖ for finite precision s-step BICG. In this subsec-
tion, we upper bound the norm of the updated residual computed in iteration sk + j
of s-step BICG. First, we will review a series of Lemmas proved by Tong and Ye [25].
The proofs shown below are nearly identical to those given by Tong and Ye [25], al-
though we have changed the notation and indexing for consistency with our s-step
formulation1.

Lemma 4.1. Assume

AZk,j = Zk,j T̄k,j −
1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1

with r0 = ‖r0‖ z0. Then for any polynomial ρ(x) =
∑sk+j+1
i=0 ψix

i of degree ≤ sk +
j + 1,

ρ(A)z0 = Zk,jρ(T̄k,j)e1 + csk+jV kr
′
k,j+1,

where csk+j = (−1)sk+j+1ψsk+j+1/(α0 · · ·αsk+j ‖r0‖).

Proof. First, we will prove by induction that for 1 ≤ i ≤ sk + j

AiZk,je1 = Zk,j T̄ ik,je1. (4.1)

For i = 1, we have

AZk,je1 =

(
Zk,j T̄k,j −

1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1

)
e1 = Zk,j T̄k,je1.

Now, assume (4.1) holds for some i < sk + j. Then

Ai+1Zk,je1 = A(AiZk,je1)

= A(Zk,j T̄k,je1)

=

(
Zk,j T̄k,j −

1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1

)
T̄ ik,je1

= Zk,j T̄k,j T̄ ik,je1 = Zk,j T̄ i+1
k,j e1,

1One lemma presented is slightly different than what appears in [25] due to a minor mathematical
error that we correct.
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where we have used the fact that eTsk+j+1T̄ ik,je1 = 0 when i < sk + j. Therefore the
inductive hypothesis holds. Now consider the case i = sk + j. We then have

Ask+j+1Zk,je1 = A(Zk,j T̄ sk+jk,j e1)

=

(
Zk,j T̄k,j −

1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1

)(
T̂
sk+j

k,j e1

)
.

Since it can be shown that eTsk+j+1T̄
sk+j
k,j e1 = (−1)sk+j

∥∥∥Vkr′k,j∥∥∥ (α0 · · ·αsk+j ‖r0‖)−1

and ᾱsk+j =
∥∥∥Vkr′k,j∥∥∥αsk+j/ ‖r0‖, we have

Ask+j+1Zk,je1 = Zk,j T̄k,j T̄ sk+jk,j e1

= Zk,j T̄ sk+j+1
k,j e1 +

(−1)sk+j+1

α0 · · ·αsk+j ‖r0‖
V kr

′
k,j+1.

The lemma follows.

We now use this result in proving the following identity.

Lemma 4.2. Assume

AZk,j = Zk,j T̄k,j −
1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1

with r0 = ‖r0‖ z0 and ᾱsk+j = eTsk+j+1T̄
−1
k,j e1. Assume that WT ∈ R(sk+j+1)×N is a

matrix such that WTZk,j = I and WTV kr
′
k,j+1 = 0sk+j+1. Then for any polynomial

ρ(x) of degree not exceeding sk + j with ρ(0) = 1, we have

V kr
′
k,j+1 =

(
I −AZk,j T̄ −1k,j W

T
)
ρ(A)r0.

Proof. First, we multiply by T̄ −1k,j e1 to get

AZk,j T̄ −1k,j e1 =

(
Zk,j T̄k,j −

1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1

)
T̄ −1k,j e1,

which allows us to write

V kr
′
k,j+1

‖r0‖
= z0 −AZk,j T̄ −1k,j e1.

Now, let ρ(x) = 1 + xφ(x), with φ(x) =
∑sk+j
i=0 ψi+1x

i a polynomial of degree not
exceeding sk + j. Then

V kr
′
k,j+1

‖r0‖
= z0 −AZk,j T̄ −1k,j e1 + (ρ(A)z0 − ρ(A)z0)

= −Aφ(A)z0 −AZk,j T̄ −1k,j e1 + ρ(A)z0

= −AZk,jφ(T̄k,j)e1 −AZk,j T̄ −1k,j e1 + ρ(A)z0

= −AZk,j(φ(T̄k,j) + T̄ −1k,j )e1 + ρ(A)z0

= −AZk,j T̄ −1k,j ρ(T̄k,j)e1 + ρ(A)z0. (4.2)
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By Lemma 4.1, recall that

ρ(A)z0 = Zk,jρ(T̄k,j)e1 + csk+jV kr
′
k,j+1,

and, multiplying by WT , we have

WT ρ(A)z0 = WT
(
Zk,jρ(T̄k,j)e1 + csk+jV kr

′
k,j+1

)
= ρ(T̄k,j)e1,

since WTZk,j = I and WTV kr
′
k,j+1 = 0sk+j+1. Now, we can write

V kr
′
k,j+1

‖r0‖
= −AZk,j T̄ −1k,j W

T ρ(A)z0 + ρ(A)z0

=
(
I −AZk,j T̄ −1k,j W

T
)
ρ(A)z0,

and substituting z0 = r0/ ‖r0‖, we obtain

V kr
′
k,j+1 =

(
I −AZk,j T̄ −1k,j W

T
)
ρ(A)r0,

which gives the desired result.

The following lemma describes the construction of the basis W .

Lemma 4.3. Assume that z0, . . . , zsk+j+1 ∈ RN are linearly independent and
write Zk,j = [z0, . . . , zsk+j ], Zk,j = [Zk,j , zsk+j+1]. Then WT

0 = [Isk+j+1, 0sk+j+1]Z+
k,j

has the property WT
0 Zk,j = I and WT

0 zsk+j+1 = 0sk+j+1. Furthermore, its spectral
norm is minimal among all matrices having this property.

Proof. By the definition of W0, Z+
k,j = [W0, w]T for some w. Since we assume

z0, . . . , zsk+j+1 are linearly independent,

[W0, w]T [Zk,j , zsk+j+1] = Z+
k,jZk,j = I.

Then WT
0 Zk,j = Isk+j+1 and WT

0 zsk+j+1 = 0sk+j+1.
Now, assume W is some other matrix such that WTZk,j = I and WT zsk+j+1 =

0sk+j+1 hold. Then WT [Zk,j , zsk+j+1] = [Isk+j+1, 0sk+j+1]. Thus, WTZk,jZ
+
k,j =

[Isk+j+1, 0sk+j+1]Z+
k,j = WT

0 . Hence ‖W0‖ ≤ ‖W‖ ·
∥∥∥Zk,jZ+

k,j

∥∥∥ ≤ ‖W‖.
We can now present the main result.

Theorem 4.4. Assume (3.23) holds and let WT
0 = [Isk+j+1, 0sk+j+1]Z+

k,j ∈
R(sk+j+1)×N . If z0, . . . , zsk+j+1 are linearly independent, then∥∥V kr′k,j+1

∥∥ ≤ (1 +Kk,j) min
ρ∈Psk+j+1,ρ(0)=1

‖ρ(A+ δAk,j)r0‖ , (4.3)

where Kk,j =
∥∥∥(AZk,j − ε∆̄k,j)T̄ −1k,j W

T
0

∥∥∥ and δAk,j = −ε∆k,jZ
+
k,j.

Proof. Since z0, . . . , zsk+j+1 are linearly independent, Z+
k,jZk,j = I. Then δAk,j =

−ε∆̄k,jZ
+
k,j ∈ RN×N satisfies δAk,jZk,j = −ε∆̄k,j . Thus (3.23) can be written as

(A+ δAk,j)Zk,j = Zk,j T̄k,j −
1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1. (4.4)
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Then, by Lemma 4.2, for any ρ ∈ Psk+j+1 with ρ(0) = 1, we obtain

V kr
′
k,j+1 = (I − (A+ δAk,j)Zk,j T̄ −1k,j W

T
0 ) · ρ(A+ δAk,j)r0

= (I − (AZk,j − ε∆̄k,j)T̄ −1k,j W
T
0 ) · ρ(A+ δAk,j)r0.

Thus, we can bound the norm of the left hand side by∥∥V kr′k,j+1

∥∥ ≤ (1 +
∥∥(AZk,j − ε∆̄k,j)T̄ −1k,j W

T
0

∥∥) · ∥∥ρ(A+ δAk,j)r0
∥∥.

Since this holds for any ρ(x) with ρ(0) = 1, the inequality is true for the minimizing
polynomial, which leads to the bound.

Note that τk,j = minρ∈Psk+j+1,ρ(0)=1 ‖ρ(A+ δAk,j)r0‖ is the (sk + j)th residual
norm of exact GMRES applied to the perturbed matrix A + δAk,j , which decreases
monotonically with increasing (sk + j).

Since we have Kk,j =
∥∥(AZk,j − ε∆̄k,j)T̄ −1k,j W

T
0

∥∥, we can bound Kk,j as

Kk,j ≤
(√

sk + j + 1
∥∥A∥∥+ ε

∥∥∆̄k,j

∥∥)∥∥T̄ −1k,j

∥∥ · ∥∥W0

∥∥.
Then, assuming

∥∥T̄ −1k,j

∥∥ and
∥∥W0

∥∥ are bounded,
∥∥V kr′k,j+1

∥∥ is on the order O(τk,j).
We therefore expect convergence of the s-step BICG residual when Kk,j increases at
a slower rate than τk,j decreases, for all values of k.

Unfortunately, as in the BICG case, we can not determine Kk,j a priori, although
we can make some meaningful observations based on the bound in (4.3). Clearly, the
terms ε∆̄k,j in Kk,j and

Note that in the case of CG (SPD A), we have
∥∥V kr′k,j+1

∥∥
2

=
∥∥rsk+j+1

∥∥
2

=∥∥e∗sk+j+1

∥∥
A

, where e∗sk+j denotes the solution error e∗sk+j = x∗ − xsk+j for true
solution x∗. Thus in this case Theorem 4.4 gives a bound on the error of finite precision
s-step CG. It remains future work to determine under what conditions

∥∥e∗sk+j+1

∥∥
A
<∥∥e∗sk+j∥∥A for s-step CG.

5. The linearly dependent case. In the analysis above, we assumed linear
independence among the residual vectors (which are scalar multiples of the Lanczos
vectors). For many linear systems, however, convergence of classical BICG in finite
precision is still observed despite numerical rank deficiency of the basis. In [25] it
is shown how the residual norm can be bounded absent the assumption of linear
independence, which gives insight into why convergence still occurs in such cases.
We will now prove similar bounds, relaxing the constraint that z0, . . . , zsk+j+1 ∈ RN
be linearly independent. Again, our analysis extends that of Tong and Ye [25] for
classical BICG.

We note that in the s-step case, there are two potential causes of a rank-deficient
basis. Since we have Rk,j = Vk,jR′k,j , linear dependence can occur as a result of the
finite precision Lanczos process, as in the classical method, as well as from numerical
rank deficiencies in the generated s-step polynomial bases Vk.

Given A ∈ RN×N and B ∈ RN ′×N ′ , AE−EB = Z corresponds to the linear sys-
tem with coefficient matrix A⊗IN ′−IN⊗B. This system has a unique solution if and

only if λ(A)∩λ(B) = ∅, or, equivalently, if sep(A,B) :=
∥∥(A⊗ IN ′ − IN ⊗B)−1

∥∥−1 >
0, which depends on the spectral gap of A and B (see [9]).

Theorem 5.1. Assume (3.23) holds, and let µ be a complex number such that
sep(A− µI, T̄k,j)� 0. Then∥∥V kr′k,j+1

∥∥ ≤ Kk,j min
ρ∈Psk+j+1,ρ(0)=1

(∥∥ρ(T̄k,j)
∥∥+ ‖ρ(A− µI)‖

)
‖r0‖,
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where

Kk,j =

√
sk + j + 1(sep(A− µI, T̄k,j) + |µ|) + ε

∥∥∆̄k,j

∥∥
F

sep(A− µI, T̄k,j)
·max

(
1, ‖ρ(A− µI)‖ ·

∥∥ρ(T̄k,j)
∥∥) .

Proof. By (3.23),

(A− µI)Zk,j = Zk,j T̄k,j −
1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1 + ε∆̄k,j − µZk,j . (5.1)

Then since sep(A− µI, T̄k,j) > 0, the equation

(A− µI)Ek,j = Ek,j T̄k,j − ε∆̄k,j + µZk,j (5.2)

has a unique solution Ek,j with

‖Ek,j‖F ≤
∥∥−ε∆̄k,j + µZk,j

∥∥
F

sep(A− µI, T̄k,j)
≤
ε
∥∥∆̄k,j

∥∥
F

+ |µ|
√
sk + j + 1

sep(A− µI, T̄k,j)
.

Combining (5.1) and (5.2), we can write

(A− µI)(Zk,j + Ek,j) = (Zk,j + Ek,j)T̄k,j −
1

ᾱsk+j

V kr
′
k,j+1

‖r0‖
eTsk+j+1.

Thus, for any ρ ∈ Psk+j+1, ρ(0) = 1, we have, by (4.2),

V kr
′
k,j+1

‖r0‖
= ρ(A− µI)(Zk,j + Ek,j)e1 − (A− µI)(Zk,j + Ek,j)T̄ −1k,j ρ(T̄k,j)e1,

and thus ∥∥∥V kr′k,j+1

∥∥∥
‖r0‖

≤ (‖Zk,j‖+ ‖Ek,j‖) ‖ρ(A− µI)‖

+ ‖A− µI‖ (‖Zk,j‖+ ‖Ek,j‖)
∥∥∥T̄ −1k,j

∥∥∥∥∥ρ(T̄k,j)
∥∥ .

Since

‖Zk,j‖+ ‖Ek,j‖ ≤
√
sk + j + 1 +

ε
∥∥∆̄k,j

∥∥
F

+ |µ|
√
sk + j + 1

sep(A− µI, T̄k,j)
,

we obtain the desired result.
Note that in this case, if µ is such that sep(A− µI, T̄k,j) is large, the quantity

Kk,j depends heavily on
∥∥∥T̄ −1k,j

∥∥∥. The minimizing polynomial part of the bound now

depends on both ρ(T̄k,j) and ρ(A− µI).

6. Extensions: perturbation theory. We can think of (4.4) as an exact sub-
space relation for a perturbed A, i.e., the quantities Vk, R′k,j , and Tk,j produced by
the finite precision s-step BICG algorithm satisfy an exact subspace recurrence (4.4)
for the perturbed system A + δAk,j . This means that the eigenvalues of the com-
puted matrix Tk,j generated by the s-step algorithm are among the eigenvalues of the
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perturbed matrix A − ε∆k,jR+
k,jV

+
k . In the next theorem, we bound the distance of

these eigenvalues to eigenvalues of unperturbed matrix A.
Theorem 6.1. Let A be a normal n×n matrix of full rank. For each eigenvalue

µ of the matrix Tk,j computed by the finite precision s-step (BI)CG method, there
exists an eigenvalue λ of A such that∣∣γ − µ∣∣ ≤ ε∥∥∆k,j

∥∥
2

∥∥R′+k,j∥∥2∥∥V+
k

∥∥
2

(6.1)

Proof. Note that T̄k,j = Dk,jTk,jD−1k,j has the same eigenvalues as Tk,j . By
application of the Bauer-Fike theorem [2] to (4.4), there exists an eigenvalue of γ of
A such that ∣∣γ − µ∣∣ ≤ ε∥∥∆̄k,jZ

+
k,j

∥∥
2
. (6.2)

We can then write ∥∥∆̄k,jZ
+
k,j

∥∥
2

=
∥∥∆k,jD

−1
k,jDk,jR′+k,jV

+
k

∥∥
2

(6.3)

≤
∥∥∆k,j

∥∥
2

∥∥R′+k,j∥∥2∥∥V+
k

∥∥
2

(6.4)

The right hand side above can be shown to depend on κ(Vk) and κ(R′k,j). The
above theorem means that the Lanczos vectors computed by the s-step (BI)CG algo-
rithm, VkR′k,j , span Krylov spaces of a matrix within ε

∥∥∆k,jR+
k,jV

+
k

∥∥ of A. Similar
observations have been made for classical finite precision Krylov methods [21, 29].

In [21], Paige shows that for classical Lanczos without reorthogonalization, the
perturbed matrix is very close to A until a Ritz value has stabilized. It is an open
question whether a similar result (perhaps with additional restrictions on Vk) applies
to the s-step case.
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[11] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.



16

[12] A. Hindmarsh and H. Walker, Note on a Householder implementation of the GMRES
method, Tech. Report UCID-20899, Lawrence Livermore National Lab., CA., 1986.

[13] M. Hoemmen, Communication-avoiding Krylov subspace methods, PhD thesis, EECS Dept.,
U.C. Berkeley, 2010.

[14] W. Joubert and G. Carey, Parallelizable restarted iterative methods for nonsymmetric linear
systems. Part I: theory, Int. J. Comput. Math., 44 (1992), pp. 243–267.

[15] C. Leiserson, S. Rao, and S. Toledo, Efficient out-of-core algorithms for linear relaxation
using blocking covers, J. Comput. Syst. Sci. Int., 54 (1997), pp. 332–344.

[16] G. Meurant, The Lanczos and conjugate gradient algorithms: from theory to finite precision
computations, SIAM, 2006.
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