
Quantifying the Energy Efficiency of Object Recognition
and Optical Flow

Michael Anderson
Forrest Iandola
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-184
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-184.html

November 24, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Quantifying the Energy Efficiency of Object Recognition and

Optical Flow

Michael Anderson, Forrest Iandola, Kurt Keutzer
UC Berkeley ASPIRE Lab

November 23, 2014

Abstract

In this report, we analyze the computational and performance aspects of current state-
of-the-art object recognition and optical flow algorithms. First, we identify important al-
gorithms for object recognition and optical flow, then we perform a pattern decomposition
to identify key computations. We include profiles of the runtime and energy efficiency
(GFLOPS/W) for our implementation of these applications on a commercial architecture.
Finally, we include an analysis of memory-bandwidth boundedness for optical flow to iden-
tify opportunities for communication-avoiding algorithms.

Our results were measured on an Intel i7-4770K (Haswell) reference platform. A five-
layer convolutional neural network used for object classification achieves 0.70 GFLOPS/W,
which is 21% of the theoretical compute bound for this Haswell processor. On the Horn-
Schunck, Lucas-Kanade, and Brox optical flow methods our implementations achieve 0.0338,
0.0103, and 0.0203 GFLOPS/W respectively. Our implementation achieves 7.9% of the
theoretical bandwidth bound, assuming no cross-iteration memory optimization, for Horn-
Schunk optical flow using the Jacobi solver, and 9.7% of the bandwidth bound for the
conjugate-gradient solver. To improve performance, we will focus first on increasing band-
width utilization, then on doing cross-iteration memory optimizations such as blocking and
tiling the Jacobi solver and employing communication-avoiding linear solvers.

We also compare the runtime-accuracy tradeoffs for each optical flow method. We find
that each method has distinct advantages over the other methods in terms of the runtime-
accuracy tradeoff, so we will continue to develop and support all three methods in the
future.

1 Introduction

In this report, we examine computations required for on-board unmanned aerial vehicle (UAV)
vision processing. Specifically, we focus on object recognition, object tracking, and optical flow.
Given that on-board processing is constrained by power, we focus on quantifying the energy
efficiency and accuracy of current state-of-the-art methods.

We start by decomposing the application capabilities, for example object recognition using
convolutional neural networks, into patterns. This provides a high-level structural and com-
putational understanding of the application. Then we profile performance on a commercial
processor (Intel i7-4770K). To contextualize performance, we calculate the number of floating
point operations (FLOPs) performed for each computation. This allows us to compute a mea-
sure of energy efficiency known as giga-flops per second per watt (GFLOPS/W). For optical
flow, we also count the total number of bytes transferred in the inner loop of the algorithm. This

1

Figure 1: Deep convolutional neural network for object recognition [2]. This network layout
achieved the highest object classification accuracy for ImageNet 2012, and a similar network
won ImageNet 2013. Big data and efficient implementations have made deep learning accurate
and tractable.

allows us to compute the flop-to-byte ratio, which gives an idea of the memory-boundedness of
the algorithm and the potential speedup from communication-avoiding algorithms [1].

In Section 2, we analyze object recognition using convolutional neural networks [2]. We find
that a five-layer convolutional neural network is able to achieve 0.70 GFLOPS/W. In Section
3, we analyze the Horn-Schunck, Lucas-Kande, and Brox optical flow algorithms [3, 4, 5]. We
determine these methods achieve 0.0338, 0.0103, and 0.0203 GFLOPS/W respectively. We
also compute the flop-per-byte ratio for Horn-Schunck and Brox methods and report accuracy
results for all three methods, and we compute the achieved percentage of peak bandwidth for
the Horn-Schunck method. Section 4 concludes our report.

2 Object Recognition

Object recognition is a key enabling technology for a variety of UAV capabilities including
navigation, odometry, and reconnaissance.

2.1 State of the art Algorithm

Within the past 18 months, the computer vision community has seen a large improvement in
accuracy by designing systems based on deep neural networks instead of hand-engineered de-
scriptors. The key algorithms of the deep learning revolution can be traced back to the late
1980s. However, the rise of big data has led to huge labeled datasets (e.g. ImageNet [6] with
>1M labeled images) for training and evaluating object recognition systems. It turns out that
large datasets are a lynchpin of high-accuracy neural networks for object recognition. Addi-
tionally, extremely efficient deep neural network implementations such as Berkeley’s Caffe [7]
expose enough parallelism to make ImageNet a tractable benchmark for deep neural network
object recognition. Today, neural networks such as Alexnet [2] and their ilk (e.g. [8],[9]) provide
state-of-the-art object classification accuracy (up to 88% when scored on top-5 categories) on
the 1000-category ImageNet dataset. We show an illustration of Alexnet in Figure 1.

In the remainder of this section, we analyze the computational patterns and bottlenecks,
GFLOPS/s, and energy for state-of-the-art deep convolutional networks on the Haswell refer-
ence architecture.

2

Figure 2: The ASPIRE “Periodic Table” of computer vision computational patterns.
Computer vision algorithms evolve quickly, but these patterns continue to underpin most com-
puter vision mechanisms. “Number of papers” denotes the number of papers in the CVPR 2011
object recognition track that leverage each pattern.

2.2 Computational Patterns

After several years of work on efficient computer vision in the ParLab and ASPIRE Lab at
Berkeley, we have codified computer vision computations into a “periodic table” of 15 underlying
computational patterns (Figure 2). While computer vision algorithms continue to evolve and
advance, these underlying patterns have remained relatively static over many generations of
computer vision algorithms. Recently, object recognition algorithms have seen a major shift to
deep learning, and it would be easy for computational efficiency researchers to be intimidated
by this – how much of what we know about efficient computer vision will transfer to these
new deep neural algorithms? Well, as it turns out, it is quite reasonable to map deep neural
networks into our periodic table of computer vision patterns (Figure 2). As we will show in
the next paragraph, analyzing the performance and energy efficiency of deep neural networks
is quite easy, so long as we think in terms of well-understood patterns that are less susceptible
to computer vision algorithmic changes.

Broadly, deep neural networks perform feature extraction and recognition by taking an
image and feeding it through several layers of filters and dimensionality adjustments. For
both training and inference, layers are implemented with primitives such as 3D convolution
with multiple kernels, neighborhood max filtering (“max-pooling”), ReLu (removing negative
numbers), and dropout (zeroing out a random collection of values to avoid overfitting). In
Table 1, we map these deep neural network primitives into our periodic table of computer
vision computational patterns.

2.3 Performance and Energy Analysis

We now turn to analyzing the computational complexity, efficiency, and energy of object recog-
nition with convolutional neural networks. As shown in the previous subsection, convolution
dominates the overall computation time in this system. Therefore, we use convolution as a
lower bound in terms of overall FLOP count, leading to slightly conservative but reasonable

3

Layer type Pattern(s)
convolution layer convolution
dropout layer –
ReLu layer convolution (1x1 filter)
max-filtering convolution-style data access pattern

Table 1: Mapping convolutional neural networks to the ASPIRE periodic table of computer
vision patterns.

Layer
Runtime per
50 frames (s)

Input dims Filter dims # filters
Complexity
(# GFLOP)

GFLOPS/s Avg Power (W)
Energy per 50
frames (J)

GFLOPS/s/W

conv1 0.0980 224x224x3 11x11x3 96 10.93 111.46
conv2 0.1806 55x55x48 5x5x48 256 22.39 124.02
conv3 0.0860 27x27x128 3x3x128 384 14.95 173.81
conv4 0.0859 13x13x192 3x3x192 384 11.21 130.52
conv5 0.0756 13x13x192 3x3x192 256 7.48 98.93
TOTAL conv layers 0.5261 66.97 127.28
TOTAL all layers 0.71 >=127.28 94.32 135 95.85 0.70

Table 2: Performance per convolutional layer and overall for the Berkeley Caffe [7] convolutional
neural network, initialized with the Alexnet [2] configuration. Evaluated on the Haswell i7-
4770K reference architecture.

efficiency and energy results.
In Table 2, we show the analysis and results in terms of GFLOPS/s for the convolutional

layers in the Caffe convolutional neural network, using the same configuration as discussed pre-
viously. As you can see in Table 2, the layers funnel down from a 224x224 3-channel input image
down to a 13x13 256-channel feature descriptor map. Given our coarse power measurement tech-
nology, we are able to obtain the power and energy of the overall system, but not of individual
layers. Also, since the computation of neural networks in Caffe is dominated by convolution,
we use the number of GFLOPs in convolution as a lower bound for the overall computational
complexity of all layers in the neural network. This analysis culminates in finding that object
recognition with the Caffe convolutional neural network achieves 0.70 GFLOPS/s/W on the
Intel Haswell reference platform (Table 2). This is 21% of the theoretical compute bound for
this Haswell processor.

3 Optical Flow

Optical flow is a common computer vision application that computes the apparent motion of
each pixel between pairs of images, or between frames in a video. Optical flow information
enables point tracking which can be a powerful capability for UAVs.

Optical flow between two images can be visualized (Figure 3b). Colors indicate direction and
intensity indicates magnitude of pixel motion. Quality of solution is measured using standard
benchmarks such as the Middlebury optical flow benchmark dataset [10] and the KTTI vision
benchmark suite [11]. The quality metrics for optical flow are average angular error (AAE) of
the flow vectors compared to ground truth provided by the these benchmark datasets, as well
as average endpoint error (AEE) of the flow vectors.

There are many different ways to solve optical flow. As of February 2014, the KTTI vision
benchmark results webpage for optical flow reports results for 42 different optical flow methods.
The Middlebury benchmark results webpage reports results for 95 different optical flow methods.

We choose three methods to focus on: Horn-Schunck [3], Brox [5], and Lucas-Kanade [12].
We focus on Horn-Schunck and Brox due to their popularity, along with the general consensus

4

(a) Color indicates direction of the flow and intensity
indicates the magnitude of the flow.

(b) Colorcode mapping colors to flow directions and
magnitudes.

Figure 3: Visualization of optical flow [10].

that the majority of newer methods are simply extensions of these original formulations [13].
We include Lucas-Kanade in our analysis because it considers only local image patches, so it is
fundamentally different than Horn-Schunk and Brox. The Lucas-Kanade method is also much
cheaper to compute.

We will analyze these three optical flow methods in the following subsections. For each
method, as specified in the deliverable text, we will show:

• the high level algorithm description,

• the decomposition into computational and structural patterns,

• profiles of the runtime and energy analysis,

• analysis of computation vs. quality of solution trade-offs, and

• an analysis of memory-boundedness.

We also provide plots comparing all three optical flow methods side-by-side, run with a
variety of parameters, in terms of runtime vs. accuracy.

3.1 Horn-Schunck Method

3.1.1 High level algorithm description

The Horn-Schunck method [3] is formulated as a minimization of the following energy functional:

E =

∫∫
(Ixu+ Iyv + It)

2 + α2

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)
dxdy (1)

5

Ix is the image gradient in the x dimension, Iy is the image gradient in the y dimension, It
is the image gradient in the time dimension, u and v are the x and y components of the flow
vectors, respectively, and α is a parameter that trades off smoothness of the flow field with
the accuracy of the flow nearby a given pixel. The integral is summing this quantity for every
pixel in the image. Since each term in this functional represents a cost, we try to minimize the
functional over all possible flow functions u and v.

3.1.2 Decomposition into computational and structural patterns

Figure 4 contains code that computes optical flow in Python using the Horn-Schunck method
using the variant of the Jacobi solver which was proposed in the Horn-Schunck paper [3].
This solver is also called the iterative 2× 2 blockwise linear solver [14]. This code runs in our
Hindemith framework. The Hindemith framework analyzes the algorithm description in Python
and composes hand-written OpenCL functions to eliminate unnecessary memory traffic that is
common array codes such as this. This particular implementation was designed to match the
implementation found in the ArrayFire example codes [15]. We’ve annotated the code with the
input types, as well as the computational and structural patterns.

The solver consists mainly of Dense Linear Algebra and Structured Grid operations. This
pattern decomposition informs hardware and software implementation choices. For example,
these particular patterns are particularly amenable to vectorization and tiling optimizations so
we expect this application to compile to efficient code using vectorizing compilers or implicitly
parallel languages, and to execute efficiently on vector or SIMD hardware.

We can also solve the Horn-Schunck algorithm using other linear solvers, such as conjugate-
gradient (CG), preconditioned conjugate-gradient (PCG), and red-black Gauss Seidel (RB).
We have also implemented those linear solvers in our Hindemith framework and will present
comparative performance and accuracy results using those linear solvers.

3.1.3 Profiles of runtime and energy analysis

In this section we will analyze the runtime and energy consumption of Horn-Schunck optical
flow using a variety of different linear solvers. We run our experiment on Intel Core i7-4770 CPU
3.4 GHz (Haswell) processor. We use the AMD APP OpenCL SDK compiler and runtime. The
power was taken using the Watts Up Pro? power logger at one second intervals, then averaged
over the duration of multiple executions. The input image pair is RubberWhale from the
Middlebury optical flow benchmark set, which is size 588x384. We do not resize the image. We
represent the images, the flow, and all intermediate data in grayscale single-precision floating
point format. We set the parameter α to 0.1.

Because the Hindemith framework fuses most of these operations together, we do not have
line-by-line profiling information. Instead, we record the runtime and power consumption for
an execution of 400 linear solver iterations. Then we compute the average runtime and energy
per linear solver iteration. Some linear solvers converge faster than others. We will consider
the trade-off between per-iteration efficiency and convergence rate in the next section.

3.1.4 Analysis of computation vs quality of solution trade-offs

As shown in Table 3, different linear solvers have different runtime and energy costs. However,
there is a trade-off between computation and quality of solution that must be explored. More
computationally expensive solvers such as conjugate-gradient converge to a good solution faster
than cheaper solvers like the Jacobi solver. Figure 5 shows the rate of convergence for each of

6

def hs_oflow (im1_data, im2_data, # Input images

D, # Laplacian stencil

Gx, Gy, # Gradient stencils

u, v, # Flow vectors

zero, one, lam2 # Scalars

):

du = zero * u # Dense Linear Algebra

dv = zero * v # Dense Linear Algebra

Ix = Gx*im1_data # Structured Grid

Iy = Gy*im1_data # Structured Grid

It = im1_data -

warp_img2d(im2_data, u, v) # Sparse Linear Algebra

Ix2 = Ix * Ix # Dense Linear Algebra

IxIy = Ix * Iy # Dense Linear Algebra

Iy2 = Iy * Iy # Dense Linear Algebra

Application pattern: Linear Solver

Structural pattern: Iterator

for i in range(200):

ubar = D * du # Structured Grid

vbar = D * dv # Structured Grid

num = Ix * ubar + Iy * vbar + It # Dense Linear Algebra

den = Ix2 + Iy2 + lam2 # Dense Linear Algebra

du = ubar - (Ix * num) / den # Dense Linear Algebra

dv = vbar - (Iy * num) / den # Dense Linear Algebra

return du, dv

Figure 4: Code and pattern decomposition for Horn-Schunck optical flow solved using an Jacobi
linear solver

Solver
Type

Runtime
per Frame
(s)

Average
Power (W)

Energy per
Frame (J) # Iter.

Runtime
per it-
eration
(ms)

Energy per
iteration
(mJ)

GFLOPS
per Watt

Jacobi 0.735 95.16 69.98 400 1.838 174.9 0.0338
CG 1.542 98.39 151.74 400 3.856 379.4 0.0256
PCG 2.193 100.69 220.80 400 5.482 552.0 0.0252
RB 2.539 96.43 244.79 400 6.346 612.0 0.0193

Table 3: Runtime and energy metrics for Horn-Schunck optical flow

7

12	

14	

16	

18	

20	

22	

24	

26	

28	

0	 20	 40	 60	 80	 100	 120	 140	

Av
er
ag
e	
An

gu
la
r	 E

rr
or
	 (A

AE
)	

#	 Itera2ons	

Horn-‐Schunck:	 Quality	 of	 Solu2on	 vs	 #	 Itera2ons	

HS	 Jacobi	

HS	 CG	

HS	 PCG	

HS	 RB	

Figure 5: Quality of solution vs number iterations for different Horn-Schunck linear solvers.

the four linear solvers. The best performing solver, in terms of quality per number of iterations,
is the preconditioned conjugate gradient solver, followed by the red-black Gauss Seidel, and
conjugate gradient solvers.

We are interested in the energy it takes to get a given solution quality. In Figure 6, we
plot the quality of solution for each linear solver per Joule. This is calculated by multiplying
the average number of Joules per iteration with the total number of iterations at each point.
As we would expect, Jacobi becomes a more attractive option when we consider Joules instead
of iterations. This is because Jacobi iterations are comparatively cheap in terms of Joules.
Conversely, our implementation of red-black Gauss Seidel proves to be very inefficient when we
consider Joules instead of just iterations.

3.1.5 Analysis of memory-boundedness

For our analysis of memory-boundedness and GFLOPS/Watt, we consider only the inner loop of
the linear solver. In Figure 7, we annotate the number of FLOPS performed for every operation
in the Jacobi linear solver:

One iteration of the Jacobi linear solver for Horn-Schunck computes 28*h*w FLOPS, where
h and w are the height and width of the image respectively. The number of words transferred
between memory and the processor is 9*h*w (to read variables Ix, Iy, It, Ix2, Iy2, du, dv, and
to write variables du, dv). We can use this information to compute the arithmetic intensity
(FLOPS/Byte) of this kernel. Arithmetic intensity is a measure of the memory-boundedness
of a particular algorithm or implementation [16]. Depending on the balance of floating-point
and bandwidth capabilities of a particular device, we can compute a limit on the achievable
performance by multiplying the arithmetic intensity by the peak memory bandwidth, computed
by the STREAM benchmark [17].

The arithmetic intensity of the Jacobi optical flow kernel is 28
4∗9 = 0.778 FLOPS per byte.

We measured a STREAM copy bandwidth of up to 52 GB/Sec on the Haswell reference machine
with an array size set to match the working set of the Jacobi solver (compiler flags: gcc -O3
-fopenmp stream.c -o stream omp -DSTREAM ARRAY SIZE=396536, 8 threads). This means

8

12	

14	

16	

18	

20	

22	

24	

26	

28	

0	 20	 40	 60	 80	 100	 120	 140	

Av
er
ag
e	
An

gu
la
r	 E

rr
or
	 (A

AE
)	

Joules	

Horn-‐Schunck:	 Quality	 of	 Solu=on	 vs	 Joules	

HS	 Jacobi	

HS	 CG	

HS	 PCG	

HS	 RB	

Figure 6: Quality of solution vs number of Joules spent for different Horn-Schunck linear solvers.

ubar = D * du # 9*h*w FLOPS

vbar = D * dv # 9*h*w FLOPS

num = Ix * ubar + Iy * vbar + It # 4*h*w FLOPS

den = Ix2 + Iy2 + lam2 # 2*h*w FLOPS

du = ubar - (Ix * num) / den # 2*h*w FLOPS

dv = vbar - (Iy * num) / den # 2*h*w FLOPS

Figure 7: Number of FLOPS performed for each operation in the Horn-Schunck Jacobi linear
solver

9

Ap0 = (D*p0 + Ix2 * p0 + IxIy * p1) # 13*h*w FLOPS

Ap1 = (D*p1 + Iy2 * p1 + IxIy * p0) # 13*h*w FLOPS

alpha = rsold / sum2d(p0 * Ap0 + p1 * Ap1) # 4*h*w FLOPS

du = du + alpha * p0 # 2*h*w FLOPS

dv = dv + alpha * p1 # 2*h*w FLOPS

r0 = r0 - alpha * Ap0 # 2*h*w FLOPS

r1 = r1 - alpha * Ap1 # 2*h*w FLOPS

rsnew = sum2d(r0 * r0 + r1 * r1) # 4*h*w FLOPS

beta = rsnew / rsold

p0 = r0 + beta * p0 # 2*h*w FLOPS

p1 = r1 + beta * p1 # 2*h*2 FLOPS

rsold = rsnew

Figure 8: Number of FLOPS performed for each operation in the Horn-Schunck conjugate
gradient linear solver

the max achievable performance for this algorithm on the Haswell reference platform, without
cross-iteration memory optimizations, is 0.778 × 52, or 40.4 GFLOPS. Our implementation
actually performs 13*h*w word transfers instead of the 9*h*w theoretical minimum because
the framework breaks the inner loop into two OpenCL kernels. We are currently acheiving 3.21
GFLOPS, which is 8% of the 40.4 GFLOPS limit imposed by the bandwidth-bound, assuming
no cross-iteration memory optimizations. In the future, we can work to improve our bandwidth
performance. The application can also benefit from the cross-iteration memory optimizations.
This includes blocking and tiling the Jacobi solver and employing communication-avoiding
linear solvers.

Figure 8 shows the number of FLOPS computed for the Horn-Schunck method using the
conjugate-gradient solver. One iteration of the conjugate-gradient linear solver for Horn-
Schunck computes 46*h*w FLOPS, where h and w are the height and width of the image
respectively. The number of words transferred between memory and the processor is 15*h*w
(to read variables du, dv, p0, p1, Ix2, IxIy, Iy2, r0, r1, and to write variables p0, p1, r0, r1, du,
dv). This means the arithmetic intensity of this kernel is 46

4∗15 = 0.766 FLOPS per byte. We
measured a STREAM copy bandwidth of up to 33 GB/Sec on the Haswell reference machine
with an array size set to match the working set of the Jacobi solver (compiler flags: gcc -O3
-fopenmp stream.c -o stream omp -DSTREAM ARRAY SIZE=509832, 8 threads). This means
the limit imposed by the bandwidth-bound for this algorithm is 0.766 × 33 or 25.7 GFLOPS.
We are currently acheiving 2.51 GFLOPS, or 9.7% of the limit. In the future, we can work
to improve our bandwidth performance. After optimizing for bandwidth performance, we can
investigate using communication-avoiding linear solvers, which can reduce both the amount of
data transferred and the number of synchronizations performed.

We compute the number of GFLOPS for the rest of the Horn-Schunck linear solvers using
a similar approach. This allows us to compute the GFLOPS/W values in Table 3.

10

Figure 9: Figure from the original Lucas-Kanade paper (1981) [12]: “We wish to find the
disparity vector h which minimizes some measure of the difference between F (x+ h) and G(x)
for x in some region of interest R.”[12]

3.2 Lucas-Kanade Method

3.2.1 Problem Formulation

The Lucas-Kanade method is works by examining local regions across a pair of image and com-
puting a displacement vector for each local region [12, 4]. The method can be visualized using
a figure from the original 1981 paper [12], shown here as Figure 9. The displacement vector for
each local region is computed using a least squares solution to the optical flow equation solved
simultaneously for each pixel in the region. The Lucas-Kanade algorithm iterates solving this
least squares problem and warping the image until a local minimum is found. This process is
summarized and contextualized in a review of Horn-Schunck by Baker and Matthews [4].

3.2.2 Pattern Decomposition

Figure 10 shows our implementation of Horn-Schunck that runs in Python, as well as our Hin-
demith framework. We’ve annotated the code with the input types, as well as the computational
and structural patterns within the application.

Like Horn-Schunck, this method consists of mainly the Dense Linear Algebra and Struc-
tured Grid computational patterns. This tells us that the application will be amenable to
optimizations such as tiling and vectorization. However, there is a data-dependent array index-
ing operation, image warping, that falls under the Sparse Linear Algebra pattern. This means
that we won’t be able to statically partition the computation given that dependences between
operations are not known until runtime.

3.2.3 Profiles of runtime and energy analysis

We evaluate the runtime and energy performance of Lucas-Kanade optical flow using the same
machine, methodology, and input data as was used for the Horn-Schunck analysis in Section
3.1.3. In this case, we only run one iteration of Lucas-Kanade and our window size is 4x4. The
energy per iteration is much higher than Horn-Schunck, but the energy per problem is much
lower.

11

def lk_oflow (I1, I2, # Input images

u, v, # Flow vectors

Gx, Gy): # Gradient stencils

Ix = Gx * I2 # Structured Grid

Iy = Gy * I2 # Structured Grid

Structural pattern: Iterator

for i in range(2):

WarpedI2 = warp_img2d(I2, u, v) # Sparse Linear Algebra

WarpedIx = warp_img2d(Ix, u, v) # Sparse Linear Algebra

WarpedIy = warp_img2d(Iy, u, v) # Sparse Linear Algebra

ErrorImg = I1 - WarpedI2 # Dense Linear Algebra

Structured Grid

du, dv = lk_least_squares(ErrorImg, WarpedIx, WarpedIy)

u = u + du # Dense Linear Algebra

v = v + dv # Dense Linear Algebra

return u, v

Figure 10: Code and pattern decomposition for Lucas-Kanade optical flow

Runtime per
Frame (s)

Average
Power (W)

Energy per
Frame (J) # Iter.

Runtime
per itera-
tion (ms)

Energy per
iteration
(mJ)

GFLOPS
per Watt

0.02286 59.84 1.368 1 22.86 1368 0.0103

Table 4: Runtime and energy metrics for Lucas-Kanade optical flow using a 4x4 window size

12

8	

13	

18	

23	

28	

33	

1	 2	 3	 4	
Av

er
ag
e	
An

gu
la
r	 E

rr
or
	 (A

AE
)	

Lucas-‐Kanade:	 Quality	 of	 Solu<on	 vs.	 #	 Itera<ons	

Lucas	 Kanade	

Figure 11: Quality of solution for multiple Lucas Kanade iterations using a 4x4 window size

3.2.4 Analysis of computation vs quality of solution trade-offs

Figure 11 shows the quality of solution (average angular error) of the Lucas-Kanade method for
our benchmark image. The average angular error for the Lucas-Kanade method is lower than
both the Horn-Schunck and the Brox methods for the same image. However, the Lucas-Kanade
solution is much cheaper to compute.

3.2.5 Analysis of memory-boundedness

The Lucas-Kanade algorithm is dominated by the number of FLOPs required for the solution to
the local least squares problems. This depends on the size of the window under consideration.
For larger windows, the computation will likely be compute-bound, for very small windows the
computation will most likely be memory-bound.

We run our tests with a 4x4 window. In this case, the number of FLOPS computed per
pixel is 2*2*winsize*winsize, plus 3 FLOPS for computing the error image and adding the
displacements to the flow vectors. So the total number of FLOPS for our example is 67*h*w,
where h and w are the height and width of the image. This FLOP count is used to compute
GFLOPS per Watt in Table 4.

3.3 Brox Method

3.3.1 Problem Formulation

The Brox method is a recent algorithm for optical flow that attains high-quality results but
also comparitvely computationally intensive [5]. It is based on an energy-minimization approach
similar to the Horn-Schunck method. However, the functional to be minimized has additional
terms that add complexity to the formulation but produce a higher-quality result.

The main optimization problem is to minimize an energy functional with two terms. The
first term enforces adherence to the gray-value constancy and gradient constancy assumptions,
and the second term enforces smoothness in the flow field. In these equations we use the
notation from the original paper, where the image coordinates (both x and y) are represented
by a vector x, and the flow field (both u and v) are represented by a vector u:

E(u, v) = EData + αESmooth (2)

13

The EData term penalizes deviations from the gray-value constancy assumption and the
gradient constancy assumption:

EData(u, v) =

∫
Ω

(|I(x+ w)− I(x)|2 + γ|∇I(x+ w)−∇I(x)|2)dx (3)

The ESmooth tern penalizes flow functions that are not smooth. That is, typically pixels
that are nearby one another move in similar directions and at similar speeds. So we assume
the change in flow should not vary much in either space or time:

ESmooth(u, v) =

∫
Ψ(‖∇3u‖2 + ‖∇3v‖2)dx (4)

The Ψ function is added to this penalty function in order to reduce the influence of outliers.
ε is 1E-3:

Ψ(s2) =
√
s2 + ε2 (5)

3.3.2 Pattern Decomposition

The following code computes optical flow in Python using the Brox method and the conjugate-
gradient linear solver. This particular implementation was designed to match the implemen-
tation found in the OpenCV library [18]. However, this code does run in our Hindemith
framework. We’ve annotated the code with the input types, as well as the computational and
structural patterns.

def brox_oflow (I1, I2, # Input images

Gx, Gy, # Gradient stencils

u, v, # Flow vectors

pointfive, zero, eps, # Scalars

brox_alpha, brox_beta, gamma, # Parameters

A # Structured sparse matrix

):

du = zero * u # Dense Linear Algebra

dv = zero * v # Dense Linear Algebra

tex_Ix0 = Gx * I1 # Structured Grid

tex_Iy0 = Gy * I1 # Structured Grid

tex_Ix = Gx * I2 # Structured Grid

tex_Iy = Gy * I2 # Structured Grid

tex_Ixx = Gx * tex_Ix # Structured Grid

tex_Iyy = Gy * tex_Iy # Structured Grid

tex_Ixy = Gx * tex_Iy # Structured Grid

Application pattern: Non-convex non-linear solver

Outer fixed-point iterations

for outer in range(5):

Warp images

Iz = warp_img2d(I2, u, v) - I1 # Sparse Linear Algebra

Ix = warp_img2d(tex_Ix, u, v) # Sparse Linear Algebra

Ixz = Ix - tex_Ix0 # Dense Linear Algebra

Ixy = warp_img2d(tex_Ixy, u, v) # Sparse Linear Algebra

Ixx = warp_img2d(tex_Ixx, u, v) # Sparse Linear Algebra

Iy = warp_img2d(tex_Iy, u, v) # Sparse Linear Algebra

14

Iyz = Iy - tex_Iy0 # Dense Linear Algebra

Iyy = warp_img2d(tex_Iyy, u, v) # Sparse Linear Algebra

pd1 = (Iz + Ix * du + Iy * dv) # Dense Linear Algebra

pd2 = (Ixz + Ixx * du + Ixy * dv) # Dense Linear Algebra

pd3 = (Iyz + Ixy * du + Iyy * dv) # Dense Linear Algebra

PsiData = pointfive / # Dense Linear Algebra

sqrt(pd1*pd1 + gamma*(pd2*pd2 + pd3*pd3) + eps)

Set up linear system

gx0 = Gx * (u + du) # Structured Grid

gy0 = Gy * (u + du) # Structured Grid

gx1 = Gx * (v + dv) # Structured Grid

gy1 = Gy * (v + dv) # Structured Grid

PsiSmooth = pointfive / # Dense linear Algebra

sqrt(gx0*gx0 + gy0*gy0 + gx1*gx1 + gy1*gy1 + eps)

set_brox_matrix(A, PsiSmooth, brox_alpha) # Structured Grid

du_coef0 = PsiData * (Ix * Ix + gamma * (Ixx * Ixx + Ixy * Ixy)) # DLA

dv_coef0 = PsiData * (Ix * Iy + gamma * (Ixx * Ixy + Ixy * Iyy)) # DLA

du_coef1 = PsiData * (Iy * Ix + gamma * (Iyy * Ixy + Ixy * Ixx)) # DLA

dv_coef1 = PsiData * (Iy * Iy + gamma * (Iyy * Iyy + Ixy * Ixy)) # DLA

b0 = zero - (PsiData * Ix * Iz + gamma * PsiData *

(Ixx * Ixz + Ixy * Iyz) + A * (u + du)) # DLA

b1 = zero - (PsiData * Iy * Iz + gamma * PsiData *

(Iyy * Iyz + Ixy * Ixz) + A * (v + dv)) # DLA

Application pattern: Linear system of equations

Solve CG for du, dv

r0 = b0 - (A*du + du_coef0 * du + dv_coef0 * dv) # Structured Grid

r1 = b1 - (A*dv + du_coef1 * du + dv_coef1 * dv) # Structured Grid

p0 = b0 - (A*du + du_coef0 * du + dv_coef0 * dv) # Structured Grid

p1 = b1 - (A*dv + du_coef1 * du + dv_coef1 * dv) # Structured Grid

rsold = sum2d(r0 * r0 + r1 * r1) # Dense Linear Algebra

for inner in range(40):

Ap0 = (A * p0 + du_coef0 * p0 + dv_coef0 * p1) # Structured Grid

Ap1 = (A * p1 + du_coef1 * p0 + dv_coef1 * p1) # Structured Grid

alpha = rsold / sum2d(p0 * Ap0 + p1 * Ap1) # Dense Linear Algebra

du = du + alpha * p0 # Dense Linear Algebra

dv = dv + alpha * p1 # Dense Linear Algebra

r0 = r0 - alpha * Ap0 # Dense Linear Algebra

r1 = r1 - alpha * Ap1 # Dense Linear Algebra

rsnew = sum2d(r0 * r0 + r1 * r1) # Dense Linear Algebra

beta = rsnew / rsold # Dense Linear Algebra

p0 = r0 + beta * p0 # Dense Linear Algebra

p1 = r1 + beta * p1 # Dense Linear Algebra

rsold = rsnew

return du, dv

Like Horn-Schunck, Brox is mainly Dense Linear Algebra and Structured Grid operations
which means it will run well on architectures that support vector or SIMD execution.

15

Solver
Type

Runtime
per
Frame (s)

Average
Power
(W)

Energy
per
Frame
(J) # Iter.

Runtime
per it-
eration
(ms)

Energy
per it-
eration
(mJ)

GFLOPS
per Watt

CG 6.527 101.4 662.1 1400 4.662 472.9 0.0202
PCG 8.656 104.2 901.8 1400 6.183 644.1 0.0203

Table 5: Runtime and energy metrics for Brox optical flow

We can also solve the Brox algorithm using other linear solvers, such as preconditioned
conjugate-gradient (PCG) [19] and red-black Gauss Seidel. We have also implemented precon-
ditioned conjugate-gradient in our Hindemith framework and will present comparative perfor-
mance and accuracy results using both linear solvers.

3.3.3 Profiles of runtime and energy analysis

We evaluate the runtime and energy performance of Brox optical flow using the same machine,
methodology, and input data as was used for the Horn-Schunck analysis in Section 3.1.3. In
this case, we do seven warping iterations on the image, five outer iterations and 40 linear solver
iterations, for a total of 1400 linear solver iterations. We set the parameter α to 0.197 and the
parameter γ to 50.0. The energy per iteration is for Brox is slightly more than the energy per
iteration for Horn-Schunk even though it is the same linear solver. This is because Brox uses
an explicit sparse matrix, requiring more memory traffic.

3.3.4 Analysis of computation vs quality of solution trade-offs

Currently our Brox implementation achieves an average angular error of 7.33 when solved with
the preconditioned conjugate-gradient algorithm using seven warping iterations, five fixed-point
iterations, and 40 PCG iterations (1400 total iterations). For traditional CG with the same
setup, we are currently achieving an average angular error of 8.89. As shown in Figures 13
and 14, these are among the highest accuracy results we were able to produce on our two
benchmarks. It is difficult to contextualize the quality of these solutions compared to published
figures because our two images come from the Middlebury training set and most published
results report accuracy on the test set. The Middlebury optical flow benchmark webpage lists
accuracy results for many published methods on the test set.

3.3.5 Analysis of memory-boundedness

The following analysis is for the Brox method using the conjugate-gradient solver. We consider
the inner loop of the conjugate-gradient solver, shown in Figure 12. The only difference between
this and the Horn-Schunck conjugate-gradient analysis is that the matrix must be represented
explicitly, meaning it requires 5*h*w words to be transferred from memory to the processor.
The Horn-Schunck sparse matrix, in contrast, could be represented implicitly.

One iteration of the conjugate-gradient linear solver for Brox computes 46*h*w FLOPS,
where h and w are the height and width of the image respectively. The number of words
transferred between memory and the processor is 20*h*w (to read variables A, du, dv, p0, p1,
Ix2, IxIy, Iy2, r0, r1, and to write variables p0, p1, r0, r1, du, dv). This means the arithmetic

16

Ap0 = (A * p0 + du_coef0 * p0 + dv_coef0 * p1) # 13*h*w FLOPS

Ap1 = (A * p1 + du_coef1 * p0 + dv_coef1 * p1) # 13*h*w FLOPS

alpha = rsold / sum2d(p0 * Ap0 + p1 * Ap1) # 4*h*w FLOPS

du = du + alpha * p0 # 2*h*w FLOPS

dv = dv + alpha * p1 # 2*h*w FLOPS

r0 = r0 - alpha * Ap0 # 2*h*w FLOPS

r1 = r1 - alpha * Ap1 # 2*h*w FLOPS

rsnew = sum2d(r0 * r0 + r1 * r1) # 4*h*w FLOPS

beta = rsnew / rsold

p0 = r0 + beta * p0 # 2*h*w FLOPS

p1 = r1 + beta * p1 # 2*h*w FLOPS

rsold = rsnew

Figure 12: Number of FLOPS computed for each operation in the Brox conjugate-gradient
linear solver

intensity of this kernel is 46
4∗20 = 0.575 FLOPS per byte. Since this solver is similar to Horn-

Schunck we will take a similar approach to optimizing it: First maximize bandwidth utilization,
then apply cross-iteration optimizations and communication-avoiding algorithms [1].

3.4 Comparison of Optical Flow Methods

In Figures 13 and 14, we compare the performance of all three optical flow methods and the
linear solvers in terms of both accuracy and runtime on two Middlebury benchmark images [10].
Figure 13 shows the accuracy/speed tradeoff for the Dimetrodon benchmark image, and Figure
14 shows the accuracy/speed tradeoff for the RubberWhale image. These results are on an
AMD Radeon 7990 GPU, our fastest platform. We run a number of different parameterizations
of each optical flow method. We vary the number of solver iterations, number of warping
iterations, number of pyramid levels, and linear solver type. Each point in the plot represents
a single run. For Lucas-Kanade, we vary the radius between 3, 5, and 7 pixels wide. For Horn-
Schunck we set α to 0.1. For the Brox method, we set α to 0.197 and γ to 50.0. Finally, we
apply a 5× 5 median filter between warping iterations and pyramid levels to improve accuracy.

The fastest, least accurate points belong to the Lucas Kanade method. As we would expect,
the Brox method is generally the most accurate and the slowest. The Horn-Schunck method
lies somewhere in between. The best performing linear solver varies depending on both the
benchmark image and the error metric.

4 Conclusion

We’ve explored state-of-the-art algorithms and approaches for object recognition and optical
flow. These are two important application capabilities for future embedded vision environments
such as on-board unmanned aereal vehicle (UAV) video processing.

For object recognition, we identified convolutional neural networks as a target for analysis,
implementation and optimization. We measured an energy efficiency (GFLOPS/W) of 0.70 for
a convolutional neural network with five convolutional layers performing an object recognition
task. This is 21% of the theoretical compute bound for this Haswell processor.

17

0.0 0.5 1.0 1.5 2.0
Runtime (s)

0

5

10

15

20

Av
er

ag
e

An
gu

la
r E

rr
or

 (a
ae

)

Average Angular Error vs. Runtime for Dimetrodon Benchmark

HSJACOBI
HSCG
HSPCG
HSRB
LK
BroxCG
BroxPCG

0.0 0.5 1.0 1.5 2.0
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

En
dp

oi
nt

 E
rr

or
 (e

pe
)

Average Endpoint Error vs. Runtime for Dimetrodon Benchmark

HSJACOBI
HSCG
HSPCG
HSRB
LK
BroxCG
BroxPCG

Figure 13: Comparison of optical flow methods. Accuracy vs. runtime on the Dimetrodon
benchmark image using many different configurations. Run on AMD Radeon 7990.

0.0 0.5 1.0 1.5 2.0
Runtime (s)

0

5

10

15

20

Av
er

ag
e

An
gu

la
r E

rr
or

 (a
ae

)

Average Angular Error vs. Runtime for RubberWhale Benchmark

HSJACOBI
HSCG
HSPCG
HSRB
LK
BroxCG
BroxPCG

0.0 0.5 1.0 1.5 2.0
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

En
dp

oi
nt

 E
rr

or
 (e

pe
)

Average Endpoint Error vs. Runtime for RubberWhale Benchmark

HSJACOBI
HSCG
HSPCG
HSRB
LK
BroxCG
BroxPCG

Figure 14: Comparison of optical flow methods. Accuracy vs. runtime on the RubberWhale
benchmark image using many different configurations. Run on AMD Radeon 7990

18

We also identified three important optical flow approaches: Horn-Schunck, Lucas-Kanade,
and Brox. We analyzed and implemented optimized versions of these approaches. They achieve
0.0338, 0.0103 and 0.0203 GFLOPS/W respectively. We achieve 7.9% of the theoretical band-
width bound, assuming no cross-iteration memory optimization, for Horn-Schunk optical flow
using an Jacobi solver, and 9.8% of the bandwidth bound for the conjugate-gradient solver. To
improve performance on optical flow, we will focus on increasing bandwidth utilization. We
were not surprised by the low performance because that the code was previously tuned for
GPUs. Also, we expect the Intel OpenCL compiler will generate better results than the AMD
compiler, which is our current setup. After improving memory bandwidth utilization, we plan
to add cross-iteration memory optimizations such as blocking and tiling the Jacobi solver and
communication-avoiding linear solvers.

Finally, we identified a meaningful accuracy vs. runtime tradeoff between the three optical
flow approaches. Each method shows distinct advantages in terms of the accuracy-runtime
tradeoff compared to the other two. We conclude from this that we should continue to develop
all three optical flow methods in the future.

References

[1] Mark Hoemmen. Communication-Avoiding Krylov Subspace Methods. PhD thesis, Univer-
sity of California, Berkeley, 2010.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Neural Information Processing Systems (NIPS),
2012.

[3] Berthold KP Horn and Brian G Schunck. Determining Optical Flow. Artificial intelligence,
17(1):185–203, 1981.

[4] Simon Baker and Iain Matthews. Lucas-Kanade 20 Years On: A Unifying Framework.
International Journal of Computer Vision, 56(3):221–255, 2004.

[5] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy
optical flow estimation based on a theory for warping. In Computer Vision-ECCV 2004,
pages 25–36. Springer, 2004.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In Computer Vision and Pattern Recognition (CVPR), 2009.

[7] Yangqing Jia and et al. Caffe. caffe.berkeleyvision.org.

[8] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolutional
networks. ArXiV technical report, 2013.

[9] Matthew Zeiler. Clarifai. clarifai.com.

[10] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard
Szeliski. A database and evaluation methodology for optical flow. International Journal
of Computer Vision, 92(1):1–31, 2011.

19

[11] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A New Performance Measure and
Evaluation Benchmark for Road Detection Algorithms. In International Conference on
Intelligent Transportation Systems (ITSC), 2013.

[12] Bruce D Lucas, Takeo Kanade, et al. An Iterative Image Registration Technique with an
Application to Stereo Vision. In IJCAI, volume 81, pages 674–679, 1981.

[13] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of optical flow estimation and their
principles. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 2432–2439. IEEE, 2010.

[14] Louis Le Tarnec, François Destrempes, Guy Cloutier, and Damien Garcia. A proof of
convergence of the Horn-Schunck optical flow algorithm in arbitrary dimension. SIAM
Journal on Imaging Sciences, 7(1):277–293, 2014.

[15] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vishwanath Venugopalakrish-
nan, Krunal Patel, and John Melonakos. ArrayFire: a GPU acceleration platform. SPIE
Defense, Security, and Sensing, 2012.

[16] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an Insightful Visual
Performance Model for Multicore Architectures. Communications of the ACM, 52(4):65–
76, 2009.

[17] John D McCalpin. A Survey of Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE TCCA Newsletter, pages 19–25, 1995.

[18] Gary Bradski. The OpenCV library. Doctor Dobbs Journal, 25(11):120–126, 2000.

[19] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point trajectories by gpu-
accelerated large displacement optical flow. In 11th European Conference on Computer
Vision (ECCV 2010), pages 438–451. Springer, 2010.

20

