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Abstract

Scalable Statistical Methods for Ancestral Inference from Genomic Variation Data

by

Andrew Hans Chan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Developments in DNA sequencing technology over the last few years have yielded un-
precedented volumes of genetic data. The resulting datasets are indispensable for a variety
of purposes, from understanding cancer to answering questions about evolution. Despite the
ease with which one can obtain these large quantities of data, the task of extracting meaning
from the data remains an open and challenging problem. In this work, we develop statisti-
cal methods to infer population genetic parameters from high-throughput sequencing data
through the use of coalescent theory, which stochastically models the evolution of DNA from
generation to generation. Because closed analytic formulas are unknown for many parame-
ters of interest, computational methods such as Markov Chain Monte Carlo and Sequential
Importance Sampling become particularly relevant.

We develop a method using reversible jump MCMC to infer genome-wide variable re-
combination rates and apply it to data from two Drosophila melanogaster populations. Our
analysis of the results reveals several interesting findings. A systematic search for hotspot re-
gions reveals only a few occurrences along the genome, far less than that observed in human.
We apply a wavelet analysis to quantify the differences between the recombination maps of
the two populations, and find that although there is high variability at the fine scales, the
recombination maps demonstrate general agreement at the broad scales. The correlation
between various genomic features is also assessed using the wavelet analysis, and we find, in
contrast to humans, a correlation between recombination and diversity.

In addition, we describe a particle filtering method to sample genealogies from the poste-
rior distribution. Particle filtering is a model estimation technique in the family of sequential
importance sampling methods. It provides the ability to perform inference on a continuous
state space where the distributions under consideration are complex enough such that exact
inference is intractable. The sequentially Markov coalescent, an approximation to the coales-
cent model where the Markov property is imposed along the sequence, is used to decompose
the likelihood of the data into the product of conditional densities and allows inference on
otherwise intractably long sequences of genomic data.
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Chapter 1

Introduction

The past several years have experienced a tremendous growth in the availability of genomic
data. High-throughput sequencing technologies developed by companies such as Illumina,
Life Technologies, Roche, and many others have provided data on a greater scale than ever
seen before. But collecting genomic data is not sufficient; the data must also be analyzed to
answer biological questions of interest. Such questions include those about mutation rate, re-
combination rate, ancient population structure, natural selection, and many more. Typically,
the experiment involves collecting genetic data from a relatively sample of individuals from a
much larger population and examining the patterns of variation to infer population-genetic
parameters of interest.

In order to answer these questions rigorously and quantitatively, we must first construct
an appropriate stochastic process to serve as a lens through which we can analyze the data.
One such model is called the Wright-Fisher diffusion, which naturally describes the evolution
of genetic information from generation to generation. The Wright-Fisher diffusion is capable
of incorporating many aspects of interest to population geneticists, such as mutation, recom-
bination, demography and so on. In its most basic form, it describes a randomly mating (i.e.,
panmictic) population that allows for a rigorous analysis of the probabilities of sampling a
given observation from the population.

Kingman’s coalescent [46] is the dual process to the Wright-Fisher diffusion, and in many
settings is more convenient or even the only feasible approach to understanding or computing
quantities of interest. Whereas the Wright-Fisher diffusion describes the evolution of the
population forward in time, the coalescent explains the history of the observed sample from
the population backward in time. Because many genomic studies are concerned primarily
with the relationships among a sample of individuals, rather than the population as a whole,
the coalescent is often a more convenient framework under which to understand the data.

Despite the theoretical advances made over the last several decades in population genetics,
efficient statistical inference under the coalescent with recombination remains a challenging
open problem. Closed-form analytic formulas for sampling probabilities are known only for
the simplest of cases under the coalescent. For more complex models, heuristics and approx-
imations have been employed to gain a handle on quantifying the data. Many such methods
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are computationally expensive methods, involving some form of sampling such as Markov
Chain Monte Carlo or importance sampling. However, despite the computational expense,
often paired with potentially extreme simplifications to the underlying model, such methods
have proved highly useful and effective at answering many population genetic questions.

In this thesis, we describe two methods for statistical inference under the coalescent.
The first employs the method of composite likelihood to estimate variable recombination
maps. The second uses particle filtering to approximate the posterior distribution on ge-
nealogies along the genome. We applied the composite likelihood method to estimate vari-
able recombination rates in two populations of Drosophila melanogaster and analyzed the
resulting recombination maps toward answering several biologically relevant questions relat-
ing to recombination, such as occurrence of recombination hotspots and the relationship of
recombination to a variety of genomic features.

The structure of the thesis is as follows. The remainder of the chapter will provide an
introduction to population genetics and the coalescent, Chapter 2 describes work on estimat-
ing fine-scale recombination rates, Chapter 3 describes work on particle filtering techniques
for population-genetic inference, and Chapter 4 concludes with a discussion.

1.1 Wright-Fisher Model and the Coalescent

The Wright-Fisher diffusion is derived from the Wright-Fisher model, a discrete time pro-
cess on a finite population of 2N individuals. The population evolves by generation, and
in every generation, a new population is constructed from the previous generation. Because
the population is assumed to be random-mating, every individual in the previous generation
is equally like to be the parent of a given individual in the current generation. An indi-
vidual inherits the genetic properties of his parent, with a small probability µ, called the
mutation rate, which introduces a change to the genetic material. This process continues in
non-overlapping generations until equilibrium is achieved, at which point a relatively small
sample (compared to the population size) of n individuals is taken from the population and
sequenced. This then serves as the genetic data on which inference is performed. Note
that there are many variations and extensions that allow for more biologically realistic and
sophisticated models of population evolution, some of which will be described later. When
the number of individuals is taken to infinity and the time of each generation is scaled to 0,
we obtain the Wright-Fisher diffusion.

The relationship between the coalescent and the Wright-Fisher model is in the ancestry
of the sample of n individuals. Tracing the ancestry backward in time of the individuals
in the sample, we find a genealogy relating the individuals. Given any two individuals,
they will eventually find a most recent common ancestor (MRCA), and this information
can be encoded in a tree with branch lengths in units of coalescent time. This tree also
contains information on mutation events, where the genetic material of lineage differs from
its ancestor.
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It can be shown that the rate of coalescent events between any pair of lineages in the
sample is

(
k
2

)
, where k is the number of lineages in the ancestry. In other words, every pair

of lineages coalesces at a rate of 1. Mutation events occur according to a Poisson process
with rate θ/2, where θ = 2Nµ, the population-scaled mutation rate. Here, N is the effective
population size rather than the census population size. (Note that the limit as N → ∞ of
the population size in the Wright-Fisher model, stated above as 2N , is taken to obtain the
continuous time processes of the Wright-Fisher diffusion and the coalescent.) In practice,
the effective population size must be inferred through other means besides coalescent-based
methods, but with the effective population size in hand, a coalescent time unit can be
interpreted as 2N generations.

Coalescent and mutation events together create the following process that proceeds from
the present to the past: initially there are n lineages that extend backward in time. Uniformly
chosen pairs of lineages coalesce at rate

(
k
2

)
, where k is the number of remaining lineages at

any given time, and every lineage mutates at rate θ/2. Once the coalescent process reaches
the state of one lineage, an ancestral type is chosen for that lineage and its genetic material
is propagated down the tree, incorporating the effects of coalescence and mutation.

1.2 Recombination

Although the model just described is tractable and convenient to work with, it lacks several
aspects of biological realism, of which recombination may be the greatest. Recombination
occurs during the process of meiosis in diploid species and results in gametes that are mosaics
of their parental homologous chromosomes. A recombination breakpoint occurs along the
forming gamete, where the genetic material prior to the breakpoint is inherited from one
chromosome and that after the breakpoint inherits from the homologous chromosome.

Where mutation events occur with probability µ in the Wright-Fisher model, recombi-
nation events occur with probability r, with the individual in the new generation taking on
two parents from the previous generation. The breakpoint occurs uniformly along the new
individual’s genome, either continuously or along discrete points depending on the model,
and the genetic information before the breakpoint comes from one parent and after it the
other parent.

Recombination changes the coalescent process from a pure death process to a birth-
death process. Whereas without recombination, the coalescent process involves only coa-
lescent events that reduce the number of remaining lineages, recombination events provide
a way for process to gain lineages. The rates of coalescent and mutation events remain
the same as before, but every lineage recombines at a rate of ρ/2, where ρ = 2Nr. ρ is
the population-scaled recombination rate and determines the rate in coalescent time units
at which recombination events happen. These two lineages each carry only a portion of
ancestral material depending on which sides of the breakpoint they represent. One lineage
represents the ancestral material before (or to the left) of the breakpoint and the other
represents the ancestral material after (or to the right) of the breakpoint.



CHAPTER 1. INTRODUCTION 4

Besides the significance of recombination in the context of evolution, recombination has
important implications for inference procedures based on patterns of genetic variation. This
stems from the fact that individuals are not merely related to one another in a tree-based
genealogy but in a much more complex genealogy represented by a directed acyclic graph
known as an ancestral recombination graph. This poses both challenges and opportunities
in inference procedures. On the one hand, the underlying model becomes increasingly com-
plicated. On the other, the richness of the relationships among individuals produces more
complex and informative data for inference methods.

A key result of the thesis is a method to infer variable recombination rates. Rather
than assume the recombination breakpoint occurs uniformly along the genome, we allow
for the possibility that the breakpoint may occur with higher probability in some regions
of the genome than others. We model this heterogeneity using an inhomogeneous Poisson
process, and the inference is performed in a Bayesian framework using a composite likelihood
approximation.

1.3 Composite Likelihood

Composite likelihood methods are motivated by the computational infeasibility of standard
likelihood methods in high-dimensional inference. The basic concept of composite likeli-
hood methods is to project high-dimensional likelihood functions to more computationally
tractable low-dimensional likelihood functions. If the projection is performed appropriately,
the composite likelihood approximation can provide a more easily implementable approach
to finding parameters of interest.

A common technique for simplifying the full likelihood is to assume subsets of the com-
ponents of the likelihood are independent when they are in fact not. The likelihood for each
of the subsets is computed, and the product over all such likelihoods is taken to serve as the
pseudo-likelihood. In many cases, the marginal likelihoods for these subsets are substantially
easier to compute than the full likelihood, and this reduction in complexity lends composite
likelihood methods their effectiveness.

In our setting, we use pairwise composite likelihood to decompose the full likelihood
into more manageable components. By computing the likelihoods for pairs of sites (or pairs
of loci) in the genome and taking the product, we obtain a pseudo-likelihood for use in a
Bayesian framework. Computing the likelihood for two-locus data is much more tractable
than for data with more than two loci because only a limited dependency structure needs to
be accounted for, and the computational performance becomes all the more significant when
the computation of such a likelihood is a subroutine of a time-intensive inference scheme
such as MCMC.
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1.4 Reversible Jump Markov Chain Monte Carlo

Standard Markov Chain Monte Carlo (MCMC) schemes are restricted to problems where
the joint distribution of the parameters have a density with respect to a fixed standard
underlying measure. In inference settings where the dimensionality of the parameter vector is
not fixed, a more sophisticated form of MCMC called reversible jump MCMC (rjMCMC) [29]
must be used. rjMCMC methods have been applied successfully to multiple change point
analysis, where the dimensionality is not fixed due to the varying number of change points
representing the parameter vector. In particular, rjMCMC is well suited for inference on
Poisson processes where the rate is assumed to be piecewise constant but changes an unknown
number of times. The state space is then the set of step functions, where the number of
change points is unbounded. Because the dimensionality of the parameter vector can be
unbounded, rjMCMC is often described as a non-parametric inference method.

Reversible jump MCMC is as an extension to the standard Metropolis-Hastings method.
The Metropolis-Hastings method generates samples from the target distribution by proposing
locally modified samples sequentially. Given the current state of the Markov Chain, local
modifications are proposed, and an acceptance ratio is computed for the proposed state. On
acceptance, the Markov Chain moves to the new state, otherwise it remains at the current
state. Many iterations of this procedure produce a large set of (dependent) samples from
the target distribution.

The implicit assumption in Metropolis-Hastings is that the proposed state has the same
dimensionality as the current state, such that the ratio of densities is a valid quantity to
consider. If the proposed state is composed of a different number of dimensions, then this
assumption no longer holds and the method breaks down. Reversible jump MCMC seeks to
address this issue by creating bijections between subspaces of the state space having differ-
ent dimensionality. From a lower dimensional subspace to a higher dimensional subspace,
auxiliary random variables are sampled to match the dimensionality between the lower di-
mensional subspace and the higher dimensional subspace, and a bijection is used to map
the lower dimensional state to the higher dimensional state. Likewise when mapping higher
dimensional states to lower dimensional states: auxiliary random variables are used to match
the dimensionality, and a bijection bridges the higher dimensional states from one subspace
to the lower dimensional states in the other subspace. These bijections are then used to
make the Markov chain reversible across these subspaces. In practice, for most situations
this results in an addition to the Metropolis-Hasting acceptance ratio: the Jacobian of the
bijection from the two subspaces is multiplied into the acceptance ratio. In the setting of
estimating variable recombination rates, the prior on the recombination map is a step func-
tion with an unknown number of change points, and hence rjMCMC is a natural choice for
the inference method.
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1.5 Particle Filtering

Particle filtering is a statistical inference approach for general state space hidden Markov
models. Traditionally, it has been used for time series data, but in the setting of genomics,
position along the genome rather than time is used. Particle filtering techniques for sampling
from the posterior on genealogies is particularly effective when used in conjunction with the
sequentially Markov coalescent, described in Section 1.6.

1.5.1 Importance Sampling

Particle filtering techniques are special instances of Sequential Importance Sampling, a form
of importance sampling where samples are constructed by sampling from a sequence of
proposal distributions. Importance sampling is a technique for approximating otherwise
intractable distributions. The process involves biasing samples toward regions of high density
and weighting them according to the ratio of their likelihood to their proposal density.

Suppose we wish to compute E(f(X)) and a closed analytic form is not available. To
approximate the expectation by direct Monte Carlo, we would sample X(i) from X M times
and the following would be the approximation to E(f(X)):

E(f(X)) ≈ 1

M

M∑
i=1

f(X(i)).

However, in cases where f(x) is close to 0 for many values of x ∈ X , where X is the
support of X, we might instead desire to sample primarily those values for which f(x)
makes a significant contribution to the expectation. Hence a proposal distribution focusing
on high density regions of the space could be more effective than sampling from X directly.
Sampling from a distribution different from the one naturally associated with X results in
biased samples that must then be corrected by the importance weight. The importance
weight can be derived by considering the following set of equations:

E(f(X)) =

∫
X
f(x)p(x)dx

=

∫
X
f(x)

p(x)

q(x)
q(x)dx

≈
M∑
i=1

f(X(i))
p(X(i))

q(X(i))
,

where X(i) is sampled from q(X), the proposal distribution, rather than directly from p(x),
the density of X. Note that for the above equations to hold, we must have q(x) > 0 whenever
p(x) > 0.
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1.5.2 Filtering

A similar argument applies when approximating distributions using importance sampling.
Suppose we wish to approximate a density p(X). The direct Monte Carlos approach would
sample from p(X), and each sample would be a discrete atom in the approximation with
probability 1/M , where M is the number of samples. A better approximation would be
to bias the samples toward high density regions of the distribution. An importance sam-
pling approach samples from q(X), and assigns a weight of p(X)/q(X) to each atom. The
associated probability of each atom is its normalized weight, and this often provides a bet-
ter approximation to the target distribution. In particle filtering, these atoms are called
particles, and they provide a discrete approximation to a continuous distribution.

Filtering refers to computing a given quantity in an online manner, that is, sequentially
updating the estimate on the parameters conditioned on the available data seen so far. If the
data is available all at once, then a technique called smoothing can be used to incorporate
all the data for the estimation at every genomic site (or every time point). These methods
implicitly rely on a Markov property in the underlying sequence of distributions, and this
assumption distinguishes particle filtering from the more general sequential importance sam-
pling techniques. The sequentially Markov coalescent allows particle filtering approaches to
be applied in the context of the coalescent.

1.6 Sequentially Markov Coalescent

The sequentially Markov coalescent (SMC) [58] is an approximation to the full coalescent
model that imposes a Markov constraint on the dependency of genealogies along the sequence.
Every site along the genome has an associated marginal genealogy, represented by a tree. The
collection of marginal genealogies and recombination events is represented by an ancestral
recombination graph (ARG), which fully captures the relationships among the individuals
in the sample along their genomes.

The SMC seeks to simplify the dependency structure of the marginal trees. In the SMC,
the joint distribution on marginal trees can be decomposed into a product of conditional den-
sities such that the conditional density for each marginal tree depends only on the marginal
tree immediately before it. Let p(T1) be the marginal probability for the tree at the first
site, and p(Ti | Ti−1) be the conditional probability for the tree at site i given the tree at site
i− 1 (where Ti represents the tree at site i). The joint distribution on trees along a genome
of L sites is

p(T1, . . . , TL) = p(T1)
L∏
i=2

p(Ti | Ti−1).

The Markov nature of the sequentially Markov coalescent is generally more amenable to
inference procedures than the full coalescent. The SMC has been shown to preserve many
of the salient features of the full coalescent, and hence serves as a good model for inference
despite losing some of the dependency structure. It is difficult to perform inference under
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the full coalescent for a number of reasons, including the enormous state space of ARGs and
the weakly informative nature of data to infer the ARG. This is due to the fact that many
different ARGs result in the same observable data, and hence the extent to which one can
infer the ARG is limited by the degeneracy of the mapping from ARGs to data. The pattern
observed in the data is only dependent on the marginal genealogies along the genome and
not directly on the associated ARG tying the marginal genealogies together. In other words,
conditioned on the marginal genealogies, the likelihood of the data is independent of the
additional information contained in the ARG. The SMC seeks to mitigate these problems
by providing a model that retains many of the features necessary for the inference of desired
parameters while at the same time discarding features with possibly less relevant effects.
Furthermore, the Markov nature of the SMC is particularly convenient because inference in
the hidden Markov setting is well studied in the literature.
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Chapter 2

Fine-scale Recombination Rate
Variation

In this chapter, we describe the method we developed, called LDhelmet, for estimating fine-
scale recombination maps of Drosophila melanogaster from population genomic data. The
task of estimating recombination maps in Drosophila is challenging, in part because of the
high background recombination rate. We first provide a description of the method and then
provide an extensive simulation study to demonstrate that it allows more accurate inference
and exhibits greater robustness to the effects of natural selection and noise compared to a
previous method for studying fine-scale recombination rate variation in the human genome
called LDhat [59, 62].

As an application of our method, a genome-wide analysis of genetic variation data is
performed for two Drosophila melanogaster populations, one from North America (Raleigh,
USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombi-
nation rate variation is widespread throughout the D. melanogaster genome, across all chro-
mosomes and in both populations. At the fine-scale, a conservative, systematic search for
evidence of recombination hotspots suggests the existence of a handful of putative hotspots
each with at least a tenfold increase in intensity over the background rate.

We perform a wavelet analysis, described in Section 2.21 to compare the estimated re-
combination maps in the two populations and to quantify the extent to which recombination
rates are conserved. In general, similarity is observed at very broad scales, but substantial
differences are seen at fine scales. The average recombination rate of the X chromosome
appears to be higher than that of the autosomes in both populations, and this pattern is
much more pronounced in the African population than the North American population. The
correlation between various genomic features—including recombination rates, diversity, di-
vergence, GC content, gene content, and sequence quality—is examined using the wavelet
analysis, and it is shown that the most notable difference between D. melanogaster and
humans is in the correlation between recombination and diversity.
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2.1 Motivation

Recombination is a biological process of fundamental importance in population genetic infer-
ence. The crossing-over of homologous chromosomes during meiosis results in the exchange
of genetic material and the formation of new haplotypes. Accurate estimates of the recom-
bination rate in different regions of the genome help us to understand the molecular and
evolutionary mechanisms of recombination, as well as a host of other important phenomena.
For example, recombination rate estimates are needed in assessing the impacts of natural
selection [34, 69], admixture [67], and disease associations [77].

Recombination rates have been observed to exhibit a number of interesting hetero-
geneities: they are known to vary in magnitude and distribution between species (e.g., [64,
63, 5]), between populations within species [76, 47], and between individuals within popula-
tions [7, 10, 19, 47]. There is also substantial variation in different regions of the genome at
different scales. At the broad-scale, for example, recombination rates in humans are known
to be correlated negatively with the distance from telomeres [62], while at the fine-scale,
recombination events cluster in narrow hotspots of ∼ 2 kb width [59, 62, 77]. In humans,
hotspots are typically defined as those with statistical support in favor of at least a five-fold
increase of the recombination rate [62] over the background or surrounding region, and many
hotspots suggest a ten- or even hundred-fold increase. Such hotspots exhibit a powerful in-
fluence on the recombination landscape; 70–80% of recombination events in humans occur
in 10% of the total sequence [76]. Extensive fine-scale variation and recombination hotspots
have also been found in other species, including chimpanzees [5], Arabidopsis thaliana [22]
and yeast [80].

2.1.1 Drosophila melanogaster

The picture in Drosophila is however less clear. Broad-scale maps of recombination have been
constructed for D. melanogaster by fitting a third-order polynomial to each chromosome
arm [27, 54]. These give an overview of the distribution of recombination along each arm,
quantifying for example earlier observations of declining recombination rates with proximity
to the telomeres and centromeres. Variation on finer scales has been inferred by studies of
linkage disequilibrium (LD) and by breeding experiments. Rapid and consistent decay in
LD [50] leads to an absence of long haplotype blocks. There is scant evidence for hotspots
either at the intensity or prevalence of those found in humans. Experimental studies of
variation have produced local, fine-scale maps in D. melanogaster [71], D. persimilis [74],
and D. pseudoobscura [18, 48], providing a resolution typically on the order of 100 kb in the
regions analyzed. These experimental results suggest that regions of fine-scale variation—
including some mild “hotspots” [18]—do exist in several Drosophila species. For example,
Singh et al.[71] study a 1.2 Mb region of the X chromosome in D. melanogaster, and find
3.5-fold variation in this region, though no hotspots by the criterion mentioned above. These
experimental approaches are cumbersome to recapitulate, however.
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A number of crucial questions concerning Drosophila therefore remain unanswered. It
is not known to what extent this variation is further localized to finer scales, or how com-
mon such variation is across the genome. Further, intra-specific differences in recombina-
tion rate have not been characterized. However, the advent of ambitious projects (e.g.,
see the Drosophila Genetic Reference Panel [54] and the Drosophila Population Genomics
Project [49]) sequencing tens of D. melanogaster genomes each from different global popu-
lations raises the exciting prospect of addressing these and other questions. The patterns
of LD in a random sample of contemporary genome sequences taken from a population
contain a great deal of information regarding historical recombination events, and from
these we can infer recombination rates across the genome. A number of sophisticated and
computationally-intensive statistical approaches have been developed for inferring recombi-
nation rates from such data [4, 52, 59, 82] and for testing for the presence of recombination
hotspots [26, 25], and are ostensibly suitable for this task. In particular, LDhat [60, 59, 4]
is a useful software package which scales well to large datasets, and it has therefore been
applied to estimating recombination rates in humans [59, 62, 77, 76], chimpanzees [5], dogs
[6], yeast [80], and microbes [44], among others.

2.1.2 Challenges

Estimating fine-scale recombination rates from newly published D. melanogaster genomes
is, however, challenging for several reasons: First, these data exhibit a much higher density
of single nucleotide polymorphisms (SNPs) than those of other species and of earlier tech-
nologies. For example, the African data exhibits a mean SNP rate of about 1 SNP per 38 bp
for a sample of size 22, far higher than those of other recent sequencing projects (e.g., [76]).
This promises an unprecedented opportunity to localize recombination rate variation to very
fine scales, but making full use of these data raises further challenges in computational and
statistical efficiency. Second, data generated from short-read sequencing technologies give
rise to numerous missing alleles. It would be highly advantageous to be able to make use of
sites in which some alleles are missing without the exponential increase in LDhat’s running
time that this entails. Third, the background recombination parameter in D. melanogaster
is known to be an order of magnitude higher than in humans (the species for which LDhat’s
prior distributions and parameters are typically calibrated) and it is not clear how this will
affect the accuracy of subsequent rate estimates. Fourth, there is a growing consensus that
a considerable fraction of the genome of some Drosophila species is influenced by adaptive
substitutions [70, 69]. Recurrent selective sweeps combined with genetic hitchhiking affect
patterns of variation across many kilobases of sequence and have the potential to invalidate
inferences of recombination, even leading to the possibility of spurious signals of recombi-
nation hotspots [68, 73]. By contrast, the footprints of positive selection in recent human
evolution are less widespread [34]. The model underlying LDhat assumes a neutrally evolving
population of constant size. While LDhat is known to be robust to mis-specification of the
demographic model [59], its susceptibility to the effects of selection is less clear cut.
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2.1.3 Approach

We develop a new method, called LDhelmet, which addresses the above critical issues. While
it employs a reversible-jump Markov Chain Monte Carlo (rjMCMC) mechanism similar to
that of LDhat, our method has a number of modifications that render key advantages. Briefly,
by utilizing recent theoretical advances in asymptotic sampling distributions [40, 39, 41, 12,
42, 11], we introduce several analytic improvements to the computation of likelihoods in the
underlying population genetic model, which reduce Monte Carlo errors and simultaneously
provide likelihoods for all relevant samples with an arbitrary number of missing alleles.
Our refinements further improve accuracy by allowing us to make full use of a tetra-allelic
mutation model in which realistic mutation patterns between the four nucleotides A, C,
G, T can be taken into account. Additionally, we utilize information from the available
genomes of outgroup species by using them to infer a distribution on the ancestral allele
at each polymorphic site in D. melanogaster. Taken together, our method enables us to
compute fine-scale, genome-wide recombination rates with considerably improved accuracy
and efficiency. LDhelmet generally produces recombination maps that are less noisy than
that of LDhat’s. In particular, while LDhat can infer spurious hotspots under certain types
of selection, we demonstrate that our approach is much more robust.

We apply our method to data taken from two D. melanogaster populations, one from
North America and the other from Africa, and estimate fine-scale recombination maps for
each population. Then, through a wavelet analysis, we capture levels of variability and
correlation of the two recombination maps, and provide a quantitative view of genome-wide
inter-population comparison of recombination rates in D. melanogaster. We also employ
the wavelet analysis to examine the correlation between various genomic features, including
recombination rates, diversity, divergence, GC content, gene content, and sequence quality.
At the fine-scale, we perform a conservative, systematic search for evidence of the existence of
recombination hotspots and find a handful of putative hotspots each with at least a tenfold
increase in intensity over the background rate. Also, we compare our recombination rate
estimates with existing experimental genetic maps.

2.2 Outline of Method

Given a sample of chromosomes from a population, LDhat estimates the recombination map
ρ within a Bayesian setting, placing a prior on the map. To avoid overfitting, ρ is assumed
to be a step function (i.e., a piecewise constant function). The prior is a distribution on
the number of times ρ changes value, the locations of such changes, and the value of each
piecewise constant segment. We employ reversible-jump MCMC (rjMCMC) [29] to sample
from a posterior distribution over a sample space of step functions where different parts of
the space have different numbers of parameters.

Denote the likelihood of ρ and θ by P(D | ρ, θ), where D represents a set of phased
haplotypes. Rather than compute the full likelihood, which is in general intractable except
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for a very small sample, we compute an approximation known as the pairwise composite
likelihood [38, 60]. For every pair of SNPs in a short region, the pairwise likelihood is
computed under the coalescent with recombination, and the product over all such pairwise
likelihoods serves as an approximation to the full likelihood. This approach scales well to
large datasets, and has been demonstrated through simulation studies to provide a reasonable
approximation to the full likelihood [60]. The two-locus likelihoods are precomputed and
stored in a lookup table for computational efficiency. There is one likelihood table for
every choice of mutation parameter θ, and likelihoods are precomputed over a grid of the
recombination parameter ρ.

2.3 Two-locus Recursion Relation

We generate two-locus likelihood lookup tables by solving solving recursion relations [28] (see
also [23, 40, 39, 41, 12]). These recursion relations necessitate the solution of large systems
of equations in the possible observed sample configurations. However, the one-mutation-per-
site assumption leads to gains in efficiency that make such systems soluble.

2.3.1 One-locus Model

To illustrate, consider first a random sample drawn from a single locus. We use the notation
q(m; θ) to denote the probability that a sample of m alleles taken at random from the
population in some fixed order leads to the one-locus configuration m = (mj)j=1,...,K , where
mj is the number of samples with allele j; if we are modeling, say, the evolution of DNA
nucleotides, then K = 4 and j ∈ {A,C,G, T}. (It is implicit that this probability is also a
function of the mutation transition matrix P at this locus.) It is well known (e.g., [30]) that
q(m; θ) satisfies

m(m− 1 + θ)q(m; θ) =
K∑
i=1

mi(mi − 1)q(m− ei; θ) + θ

K∑
i,j=1

mjPijq(m− ej + ei; θ), (2.1)

for which a closed-form solution is not known in general. Here, ei denotes a unit vector with
ith entry 1 and the rest zero. In a later section, we describe a method for using outgroup data
to infer which of the alleles in our samples is ancestral. When the identity of the ancestral
allele (i.e., the allele of the most recent common ancestor of the sample) is presumed known,
say type a, the appropriate boundary condition for use with (2.1) is

q(ej; θ) =

{
1, if j = a,

0, otherwise.

As an alternative to working with (2.1), we can seek a solution for the joint probability
of obtaining the configuration m with the event that it arose as the result of precisely s
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mutation events in the history of the sample, a probability we denote by q(m, s; θ). Then
we have [30]:

m(m− 1 + θ)q(m, s; θ) =
K∑
i=1

mi(mi− 1)q(m−ei, s; θ) + θ

K∑
i,j=1

mjPijq(m−ej +ei, s− 1; θ),

(2.2)
with

q(ej, s; θ) =

{
1, if j = a and s = 0,

0, otherwise.

The advantage of the one-mutation-per-site assumption is then apparent: q(m, 1; θ) is
known in closed-form [42, 11]:

q(m, 1; θ) = Pad
θma!md!

m(θ + 1)(θ + 2) · · · (θ +m− 1)

ma∑
l=1

(
ma − 1

l − 1

)(
m− 1

l

)−1
1

θ + l
, (2.3)

where the only nonzero entries of m arema andmd, corresponding to a sample comprising ma

copies of the ancestral allele type a andmd copies of a derived allele type d. Hence, in this case
we entirely circumvent the need for a numerical solution to a large system of linear equations.
Provided the mutation rate per site is sufficiently small, the error |q(m; θ)−q(m, 1; θ)| should
be negligible.

We can make similar gains in a two-locus model by reducing a large system of equations
to a much smaller system, albeit one that still requires a numerical solution. The idea is
similar to that described above, though notation is more complicated: the precise form of
the system is provided in Section 2.3.2. The largest sample size we work with is n = 37. This
leads to a very large system of equations that must be solved: Accounting for symmetries,
the total number of complete configurations of size n = 37 is approximately 1,300. When
we count all configurations encountered in the RAL data—including those with missing
alleles—this number rises to 27 × 106. In the two locus case, the quantity of interest is
q(n, 1, 1; θ, ρ), the probability of obtaining the two-locus configuration n together with the
events that there was precisely one mutation event at each of the two loci. Here, θ denotes
the mutation rate and ρ denotes the recombination rate between the two loci. Provided we
work with the reduced system of equations for q(n, 1, 1; θ, ρ) as outlined above, it becomes
feasible to solve the system for every sample of size n = 37, and thus to generate exactly
solved lookup tables for later use. Table 2.1 shows the running time of this recursion-based
likelihood computation as a function of sample size n.

2.3.2 Two-locus Model

Suppose we sample n haplotypes, observing their alleles at each of two loci and obtaining
configuration n = (a, b, c). Here c = (cij) is a matrix of the counts of haplotypes for which
both alleles were observed; cij is the number of haplotypes with allele i at the first locus
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and allele j at the second locus. We also allow for the possibility that a haplotype had
data missing at one locus: a = (ai)i=1...,K is the vector of counts of haplotypes with allele i
observed at the first locus and missing data at the second locus, and b = (bj)j=1,...,L is the
vector of counts of haplotypes with allele j observed at the second locus and missing data
at the first locus.

Further, let:

a =
K∑
i=1

ai, ci· =
L∑
j=1

cij, c =
K∑
i=1

L∑
j=1

cij,

b =
L∑
j=1

bj, c·j =
K∑
i=1

cij, n = a+ b+ c.

The probability that, when we sample n haplotypes in some fixed order, we obtain a set
consistent with configuration n, is denoted by q(n; θA, θB, ρ). This probability is a function
of θA, θB, and ρ: the mutation rates at the two loci, and the recombination rate between
them. The respective mutation transition matrices at the two loci, which we denote P A

and PB, are fixed. A system of equations for q(n; θA, θB, ρ) is given in [40]. We denote
by q(n, s1, s2; θA, θB, ρ) the joint probability of obtaining n with the events that there were
precisely s1 mutations in the history of the sample at the first locus and s2 mutations in
the history of the sample at the second locus. The corresponding system of equations for
q(n, s1, s2; θA, θB, ρ) is:

[n(n− 1) + θA(a+ c) + θB(b+ c) + ρc]q((a, b, c), s1, s2; θA, θB, ρ) =

K∑
i=1

ai(ai − 1 + 2ci·)q((a− ei, b, c), s1, s2; θA, θB, ρ)

+
L∑
j=1

bj(bj − 1 + 2c·j)q((a, b− ej, c), s1, s2; θA, θB, ρ)

+
K∑
i=1

L∑
j=1

[
cij(cij − 1)q((a, b, c− eij), s1, s2; θA, θB, ρ)

+ 2aibjq((a− ei, b− ej, c + eij), s1, s2; θA, θB, ρ)

]

+ θA

K∑
i=1

[
L∑
j=1

cij

K∑
t=1

PA
ti q((a, b, c− eij + etj), s1 − 1, s2; θA, θB, ρ)

+ ai

K∑
t=1

PA
ti q((a− ei + et, b, c), s1 − 1, s2; θA, θB, ρ)

]

+ θB

L∑
j=1

[
K∑
i=1

cij

L∑
t=1

PB
tj q((a, b, c− eij + eit), s1, s2 − 1; θA, θB, ρ)
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+ bj

L∑
t=1

PB
tj q((a, b− ej + et, c), s1, s2 − 1; θA, θB, ρ)

]

+ ρ
K∑
i=1

L∑
j=1

cijq((a + ei, b + ej, c− eij), s1, s2; θA, θB, ρ), (2.4)

where eij is a unit matrix whose (i, j)th entry is one and the rest are zero. As before, we
suppose that we know the identity of the ancestral haplotype, say (λA, λB). Then we replace
the relevant instances of (2.4) with the following:

q((0, b, eij), s1, s2; θA, θB, ρ) =

{
q((0, b + ej,0), 0, s2; θA, θB, ρ) if i = λA and s1 = 0,

0 otherwise,

q((a,0, eij), s1, s2; θA, θB, ρ) =

{
q((a + ei,0,0), s1, 0; θA, θB, ρ) if j = λB and s2 = 0,

0 otherwise,

q((ei,0,0), s1, s2; θA, θB, ρ) =

{
1 if i = λA and s1 = s2 = 0,

0 otherwise,

q((0, ej,0), s1, s2; θA, θB, ρ) =

{
1 if j = λB and s1 = s2 = 0,

0 otherwise.
(2.5)
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Table 2.1: Running times (in seconds) for solving recursions and computing Padé
coefficients. The second column is the time to solve the two-locus recursion to compute the
likelihood of a single value of ρ for all sample configurations of size n. The third column is
the time to compute 11 Padé coefficients for all sample configurations of size n. Recall that
the recursion must be solved afresh for every value of ρ in the lookup table. On the other
hand, the Padé coefficients are used to construct a rational function of ρ that approximates
the likelihood; once the Padé coefficients are determined, evaluating the likelihood is instan-
taneous. A single 2.5 Ghz core was used in this benchmarking to provide representative
estimates of the running time. However, note that both the recursion and Padé coefficient
computations are highly parallelizable, which we exploit in the implementation of LDhelmet.
Also note that the presence of missing data does not increase the running time for either
computation.

Sample size n Two-locus recursion (seconds) Padé coefficients (seconds)
10 0.1 5
20 11 429
30 189 5271
40 1523 26405
50 7755 75704
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2.4 Population-scaled Recombination Parameter

Our method seeks to infer the fine-scale map of the population-scaled recombination rate
in D. melanogaster, in which recombination occurs only in females. The population-scaled
recombination rate between a pair of sites in the X chromosome is defined as ρX = 8

3
NX
e r

X
f ,

where NX
e is the effective population size for X and rXf is the probability of recombination

between the sites per generation per X chromosome in females. The population-scaled re-
combination rate between a pair of sites in an autosome is defined as ρA = 2NA

e r
A
f , where

NA
e is the effective population size for the autosome and rAf is the recombination rate be-

tween the sites per generation per autosome in females. Furthermore, NX
e and NA

e are
defined as NX

e = 9NfNm/(4Nm + 2Nf ) and NA
e = 4NfNm/(Nf + Nm), where Nf and Nm

denote the effective number of female and male individuals in the population. If we assume
Nf = Nm = Ne/2, we obtain ρX = 2Ner

X
f and ρA = 2Ner

A
f .

In contrast to recombination, mutation occurs in both males and females. We denote
the X chromosome mutation rates in females and males as µXf and µXm, respectively, and
the autosomal mutation rates in females and males as µAf and µAm, respectively. Then, the

population-scaled mutation rates for X and the autosomes are given by θX = 4
3
NX
e (2µXf +µXm)

and θA = 2NA
e (µAf + µAm), respectively. Further, if Nf = Nm = Ne/2, then the expressions

simplify to θX = Ne(2µ
X
f + µXm) and θA = 2Ne(µ

A
f + µAm).

In our statistical model, we allow the recombination rate to vary across the genome. We
use ρ to denote generically the population-scaled recombination map, which is a function
of genomic position. For ease of notation, we do not add a subscript to ρ to distinguish
between X and autosome; it should be clear from the context which is intended. Similarly,
we use θ to denote generically the population-scaled mutation rate.

Our objective is to estimate the recombination map ρ from population genomic DNA
sequence data. Our approach introduces several key improvements to the method LDhat [60,
59] (v2.1 used throughout), which was first developed for estimating fine-scale recombination
maps in humans.

2.5 Features of the Method

To accommodate the higher recombination rate observed in D. melanogaster, we introduce
several key modifications and additions to LDhat to improve the accuracy and robustness
of recombination map estimation. Instead of using importance sampling to compute the
two-locus likelihoods, we compute them by solving a systems of recursion relations, thereby
producing more accurate lookup tables. An additional benefit of this approach is that we
can handle large amounts of missing data at no additional computational cost, since the
likelihoods of configurations with missing data naturally appear in the system of recursions.
Our method incorporates a general tetra-allelic mutation model, whereas LDhat assumes a
diallelic model. As a consequence, we can handle complex mutation patterns between the A,
C, G, T nucleotides. Furthermore, our method can use different mutation transition matrices
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for different sites at no extra computational cost. We make use of the recent work [40, 39,
41, 12] on asymptotic sampling distributions to incorporate a larger range of ρ values in the
lookup table in a computationally tractable manner. The lookup table exhibits a finer grid
resolution for values of ρ in regions of higher likelihood curvature, for improved accuracy. We
infer a distribution on the ancestral allele at each site and use this information to compute
more refined likelihoods. The prior for the recombination map is more flexible and can be
tailored to the particular species under analysis. For example, when analyzing a species that
is believed to have significantly higher recombination rates than that of humans, as is the
case for D. melanogaster, one should not use the same prior as for humans.

To improve computational tractability, we assume that each site underwent at most one
mutation in the entire genealogical history of the sample. This assumption is reasonable for
small values of θ, as is the case for D. melanogaster, and it provides several computational
advantages, described in the following sections.

2.6 Missing Data

Because the two-locus recursion relation is solved jointly for every configuration, this also
gives us exact solutions for every subconfiguration at no extra computational cost. In par-
ticular, we emphasize that we also obtain likelihoods for all relevant configurations with
any missing data, at no extra computational cost. By contrast, when LDhat encounters a
configuration in which some alleles are missing, its approach is to marginalize over missing
alleles by summing over the relevant entries in its lookup table for fully-specified haplotypes,
but the time required for this computation scales poorly with the number of missing alleles.
The extent of missing data in the D. melanogaster genomes is such that this approach is
impracticable. On the data we analyzed, we masked all alleles with a quality less than 30.
For the RAL lines, about 20% of the data was missing, and for the RG lines, about 8% of
the data was missing. The more missing data there is, the more expensive marginalization
becomes, and the greater the number of distinct configurations present in the data.

2.7 Incorporating a Tetra-allelic Mutation Model

One key advantage of our approach is that it can make use of all four alleles (A, C, G,
T) in sequence data, together with the ancestral alleles inferred from outgroup sequences.
This is achieved with modifications to the boundary conditions of the appropriate two-
locus recursion described above. In combination with the one-mutation-per-site assumption,
this allows us to use a full 4 × 4 transition matrix P = (Pij)i,j∈{A,C,G,T} to model realistic
mutation patterns between nucleotides, with no significant amount of extra computation:
Suppose the ancestral allele at each of a given pair of segregating sites is known to be A
and C, respectively. At the first site some chromosomes exhibit a derived G allele, and at
the second site some chromosomes exhibit a derived T allele. Because of the one-mutation-
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per-site assumption and the decoupling of the genealogical and mutational processes under
neutrality, it is easy to see that the likelihood of this two-locus configuration has a dependence
on P only through a single multiplicative factor PAGPCT . Hence, this expression can be
factorized completely out of the two-locus likelihoods and hence from our lookup tables. The
remaining quantity, which represents the probability of observing a particular configuration
up to the identities of the alleles involved, can be multiplied by the relevant pair of entries
in P for any observed combination of nucleotides. To be precise, if q(n, 1, 1; θ, ρ) denotes
our solution to the system of equations described above, this argument shows we can write

q(n, 1, 1; θ, ρ) = PAGPCTF (n; θ, ρ), (2.6)

for some function F independent of P . [The single-locus analogue of this result is evident in
equation (2.3).] We then need to store only F (n; θ, ρ). If later we see the same combination
of haplotype counts but for a different combination of nucleotides, we can reuse this quantity
and multiply it by different relevant entries in P . For simplicity, in our analysis we used
the same P for each site in the genome, but note that, because of the factorization in (2.6),
it is possible to use different mutation transition matrices for different sites at no extra
computational cost.

This approach easily generalizes to the case where the ancestral allele is not known or
where we only have a distribution on the ancestral allele at each site. We can simply take the
weighted average over each of the four possible combinations of ancestral alleles, weighted
with respect to their distributions. In the case where no information is known about the
ancestral alleles, this reduces to using the stationary distribution of P as the distribution
over ancestral alleles at each site.

2.8 Estimation of Mutation Transition Matrices

Because we are now able to make full use of a tetra-allelic mutation model, we developed a
method to estimate the 4× 4 mutation transition matrix P from empirical data, for subse-
quent use in our recombination rate inference. We use the following parsimony-based method
to estimate P by inferring the ancestral allele at each site in D. melanogaster by comparison
with aligned outgroup reference genomes of D. simulans, D. erecta, and D. yakuba. We
designate the ancestral allele at each dimorphic site in D. melanogaster using the following
rule. If the alleles of the three outgroups are not all missing at this site and together exhibit
precisely one of the four possible nucleotides, and if this allele agrees with one of the two
observed in D. melanogaster, then this is designated as the ancestral allele. Otherwise, it is
considered unknown and discarded from the analysis. (We also discarded triallelic and tetra-
allelic sites.) A related approach is used in the Drosophila Population Genomics Project in
the estimation of divergence. We tried both more and less restrictive parsimony rules, as
well as excluding CpG sites from our analysis; neither variation substantially altered our
results.
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Given a large collection of SNPs in our dataset for which the ancestral allele is known, we
can infer the identities of the alleles involved in the mutation event at each polymorphic site.
For example, an A/G polymorphism with A ancestral implies a historical A 7→G transition.
The relative frequencies of each type of event, normalized to account for varying genomic
content of the four nucleotides, determines our empirical estimate of P . To be precise, let fA

denote the total number of A nucleotides in the D. melanogaster genome, of which fAC, fAG,
and fAT have been inferred to be A 7→C, A 7→G, and A 7→T polymorphisms, respectively. (For
consistency we restrict all these definitions only to those monomorphic or dimorphic sites
for which sufficient, consistent outgroup information is also available, as required above.)
We make analogous definitions for fi and fij, for each i, j ∈ {A,C,G,T}. Finally, let
M = maxi∈{A,C,G,T}{(

∑
j 6=i fij)/fi}, the largest empirical frequency of mutation away from

any particular nucleotide. The appropriate choice for P is given by

Pij =


fij
fiM

, i 6= j,

1−
∑
j 6=i

fij
fiM

, i = j.

Division by M ensures that, without loss of generality, one entry in the diagonal of P is zero.
By allowing the diagonal entries of P to be nonzero, different nucleotides can have different
overall mutation rates. The total “effective” mutation rate—that is, mutations not involving
the diagonal entries of P—is calibrated against classical infinite-sites-based estimators: for
RAL this is θeffective = 0.006 per bp (autosomes) and θeffective = 0.004 per bp (X chromosome).
For RG we used θeffective = 0.006 per bp for all chromosomes. Since we are to use a general
tetra-allelic model in which both effective and ineffective mutations are permitted to occur,
the appropriate choice of θ for use with P is such that it exhibits the same overall rate of
effective mutations:

θeffective = θ
∑
i

(
fi∑
k fk

∑
j 6=i

Pij

)
.

2.9 Ancestral Allele Distribution

When it is not known which of the two alleles at a polymorphic site is ancestral, one can use
the stationary distribution of P as a prior distribution over the ancestral allele. However,
when additional information is available, such as sequence data from an outgroup, we can
use the information to update our prior beliefs about the identity of the ancestral allele, thus
allowing a more accurate estimate of the recombination map. In our application, we used the
D. simulans outgroup information to update our prior distributions on the ancestral alleles
of the D. melanogaster samples. Specifically, for each D. melanogaster genome, we used the
software psmc [51] to estimate, at each site, a distribution on the time to the most recent
ancestor (TMRCA) of the D. melanogaster and D. simulans genomes. Given the TMRCA,
we integrate over possible mutations occurring according to P along the two branches, to
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obtain a distribution on the ancestral allele. Finally, for each site, we aggregate each of
these pairwise distributions into a single distribution on the ancestral allele, and use this
distribution in the computation of our likelihoods.

Suppose we have one genomic sequence of Drosophila simulans and n sequences of
Drosophila melanogaster. Let S represent the sequence of D. simulans and M (k) repre-
sent the sequence of the kth D. melanogaster, where Sl denotes the lth base of the sequence,
and Sl̂ represents the sequence with the exclusion of the lth base. Given (S,M (k)), let T

(k)
l

be the time to the most recent common ancestor (tmrca) at locus l; f
(k)
l (t | Ml̂, Sl̂) be

the density of the tmrca conditioned on both their sequences but excluding the lth locus;
and A

(k)
l be the ancestral allele at the lth locus, i.e., the allele of the most recent common

ancestor (mrca).
To compute the distribution on the ancestral allele at the lth locus conditioned on M (k)

and S, we use Bayes’ theorem to obtain

P(A
(k)
l = i |M (k), S)

=

∫∞
0 p(A

(k)
l = i,M (k), S, T

(k)
l = t)dt

P(M (k), S)

=

∫∞
0 P(M

(k)
l , S

(k)
l | A(k)

l = i, T
(k)
l )p(A

(k)
l = i, T

(k)
l = t)dt

P(M (k), S)

=

∫∞
0 P(M

(k)
l | A(k)

l = i, T
(k)
l = t)P(Sl | A

(k)
l = i, T

(k)
l = t)P(A

(k)
l = i)f

(k)
l (t |M (k)

l̂
, Sl̂)dt∑

j

∫∞
0 P(M

(k)
l | A(k)

l = j, T
(k)
l = t)P(Sl | A

(k)
l = j, T

(k)
l = t)P(A

(k)
l = j)f

(k)
l (t |M (k)

l̂
, Sl̂)dt

.

(2.7)

In equation (2.7), the prior on the ancestral allele at locus l, P(A
(k)
l = i), is given by the

stationary distribution of the allele frequencies from the mutation matrix P . (In the above, p

denotes a joint probability of discrete events together with the density for T
(k)
l .) The density

on the tmrca, f
(k)
l (t | M (k)

l̂
, Sl̂), is estimated using Li and Durbin’s psmc [51]. In practice,

we use psmc to compute f
(k)
l (t |M (k), S) and assume f

(k)
l (t |M (k), S) ≈ f

(k)
l (t |M (k)

l̂
, Sl̂).

The remaining two probabilities, P(M
(k)
l | A(k)

l = i, T
(k)
l = t) and P(Sl | A(k)

l = i, T
(k)
l =

t), are computed as follows. For the computation of P(M
(k)
l | A

(k)
l = i, T

(k)
l = t), let P = (Pij)

denote the mutation matrix, and let r
(k)
l specify the number of mutations that have occurred

at the lth locus of the kth D. melanogaster sequence during time T
(k)
l .
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Then we have

P(M
(k)
l = j | A(k)

l = i, T
(k)
l = t) =

∞∑
s=0

P(r
(k)
l = s | T (k)

l = t)(P s)ij

=
∞∑
s=0

(
θt

2

)s
e−θt/2

s!
(P s)ij

=
∞∑
s=0

[(
θt

2
P

)s]
ij

e−θt/2

s!

=
[
e
θt
2

(P−I)
]
ij
,

where I is the identity matrix with the same dimensions as P . The computation for P (Sl |
A

(k)
l = j, T

(k)
l = t) is analogous.

After computing P(A
(k)
l = i |M (k), S) for every k and given l, we heuristically aggregate

these pairwise probabilities to estimate P(A
(k)
l = i | M (1), . . . ,M (n), S) as follows. Let t̄

(k)
l

be the posterior mean of f
(k)
l (t |M (k), S), i.e.:

t̄
(k)
l =

∫ ∞
0

tf
(k)
l (t |M (k), S)dt,

and define τl = maxk t̄
(k)
l . We approximate P(A

(k)
l = i |M (1), . . . ,M (n), S) as

P(A
(k)
l = i |M (1), . . . ,M (n), S) ≈

∑n
k=1 P(A

(k)
l = i |M (k), S)f

(k)
l (τl |M (k)

l̂
, Sl̂)∑

j

∑n
k=1 P(A

(k)
l = j |M (k), S)f

(k)
l (τl |M (k)

l̂
, Sl̂)

,

which is a weighted average of P(A
(k)
l = i | M (k), S) over k, weighted by the density of the

tmrca evaluated at τl for each k. This averaging should mitigate effects such as genotyping
errors and incomplete lineage sorting in individual D. melanogaster genomes.

2.10 Padé Approximants

Recall that LDhat’s lookup tables are precomputed over a grid: ρ = 0, 1, . . . , 100. For a pair
of sites with a recombination rate greater than 100, the likelihood at ρ = 100 is used as an
approximation. This can create systematic errors in the likelihood [40]. Instead, for ρ > 100
we compute accurate approximations to the two-locus likelihood using the method of Padé
summation described in Jenkins & Song [41]. Briefly, one Taylor expands q(n, s1, s2; θ, ρ)
about ρ =∞ and uses the method of Jenkins & Song to compute the first few terms in the
expansion. In practice this Taylor series rapidly diverges for values of ρ of interest, but it
can be made into an accurate, convergent approximation of q(n, s1, s2; θ, ρ) by replacing this
truncated series with a rational function approximation whose own Taylor series agrees as
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far as possible, a technique known as Padé summation. We modified the analysis of Jenkins
& Song to account for our new system of equations. We precompute 11 Padé coefficients
(up to 1/ρ10 in the Taylor series expansion of the likelihood about ρ =∞) for every sample
configuration of size n, which gives an extremely accurate approximation for every ρ > 100
(not just integral values). Usually, the “join” between the Padé approximant for ρ > 100 and
the true likelihood for ρ ≤ 100 is indistinguishable. We also employ a “defect heuristic” [41]
with threshold parameter ε = 40 to correct for potential effects from singularities in the Padé
approximants. As in the direct computation of the likelihoods from the system of equations,
obtaining the Padé coefficients for a given configuration also yields the coefficients for all its
subconfigurations. This approach is therefore well-suited to data with a large proportion of
missing data. Table 2.1 shows the running time for the Padé coefficient computation as a
function of sample size n.

Modifications to the approach described in [41] are made, following from the boundary
conditions given above. These can be converted into modifications of entries of the dynamic
programming tables given in [41]. For example, using (2.5) we have that

q((a,0, eiλB), 1, 0; θA, θB, ρ) = q((a + ei,0,0), 1, 0; θA, θB, ρ)

= q(a + ei, 1; θA) +
0

ρ
+

0

ρ2
+ . . . ,

where q(a + ei, 1; θA) is the one-locus solution given by equation (2.3). Notice that this
expansion is in fact independent of ρ, from which it follows (by comparison with eq. (3.7) of
[41]) that a number of entries in the dynamic programming tables are modified. For example,
the second row in the dynamic programming table for the configuration (a,0, eiλB) is set to
zero. Other boundary conditions may be interpreted in a similar fashion.

2.11 Lookup Table Grid Resolution

One can imagine that it would be useful to have a more refined lookup table in regions of
higher curvature of the likelihood. In such regions simply using integral values of ρ might be
too coarse. Since the lookup tables will be used for every conceivable pairwise dataset, we
should be interested in the expected curvature of the likelihood curve at ρ, across datasets
drawn under a model with the same ρ. (That is, the curvature at some ρ0 is most important
for datasets that we are likely to see when the recombination rate really is ρ0.) This is
reflected by Fisher’s information:

I(ρ0) = −Eρ0
[
∂2

∂ρ2
lnL(ρ;D)

]
,

which can be estimated from an existing lookup table using the second-order central differ-
ence operator. As is evident from Figure 2.1, curvatures are generally higher in the range
0 ≤ ρ ≤ 10, and so we changed the increment between ρ values in the lookup table from 1
to 0.1 in this range.
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Figure 2.1: Fisher’s information for two=-locus samples. Fisher’s information for two-
locus samples of size n = 37 using lookup tables for θ = 0.006 and under the infinite-sites
assumption. The ancestral haplotype is assumed to be known.

2.12 Prior and Block Penalty

LDhelmet places a prior distribution on the number of change points, the positions of the
change points, and the heights of the change points in the recombination map. The prior
on the number of change points is, as in LDhat, a Poisson distribution with mean equal to
(S−2) exp(−ξ), where S is the number of SNPs in the data and ξ is a user-defined parameter
called the block penalty. The positions of the change points are distributed uniformly, and
the distribution on the heights of the change points is user-settable as exponential, gamma
or log-normal.

One should be mindful that LDhat was designed for background recombination rates an
order of magnitude less than that used in the simulations. In particular, LDhat implements
the exponential prior but the mean is hard-coded for human data. Adjusting the mean of
the prior according to the expected background recombination rate is necessary to obtain
meaningful results. For example, using a prior suitable for humans on Drosophila-type
data produces poor estimates with little to none of the true variation in the underlying
recombination map (simulations not shown). To facilitate a comparison, we modified the
source code of LDhat such that its prior was similar to the one used by LDhelmet. Without
such modifications, the estimates from LDhat were not comparable to LDhelmet’s estimates.
In the simulations and analysis, we used an exponential prior with the mean adjusted for
the expected background rate of D. melanogaster.
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2.13 Proposal Distribution and Metropolis-Hastings

Ratios

The rjMCMC procedure proposes one of four moves per iteration:

1. Change the rate of a change point.

2. Reposition a change point.

3. Split a change point into two change points.

4. Merge two change points into one change point.

The Change move is selected with probability 0.4 and the others are each selected with
probability 0.2. The proposed state is then made according to the chosen move.

The Change move selects a change point uniformly at random (excluding the initial
change point and the final change point) and proposes changing its rate r to

r′ = eUr,

where U ∼ Uniform([−1/2, 1/2]).
The Metropolis-Hastings ratio for the Change move is

l′r′

lr
(r′ − r)

1
r ,

where l is the likelihood of the current state, l′ is the likelihood of the proposed state, r is
the rate of the selected change point, and r is the mean of the prior on rates.

The Reposition move selects a change point uniformly at random (excluding the initial
change point and the final change point) and proposes moving it to another SNP. The new
SNP is chosen uniformly at random from among those strictly between the change points to
the left and right of the selected change point.

The Metropolis-Hastings ratio for the Reposition move is

l′

l
,

where l is the likelihood of the current state and l′ is the likelihood of the proposed state.
The Split move selects a change point uniformly at random (excluding the initial change

point and the final change point) and adds a new change point at a uniformly random SNP
between the selected change point and the change point to its right. The rate of the selected
change point is proposed to be

r′ = r

(
u

1− u

) pr−pn
pr−p

,
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where r is the current rate of the selected change point, u is a sample from Uniform([0, 1]),
pr is the position of the right change point, pn is the position of the new change point, and
p is the position of the selected change point.

The rate of the new change point is then set to

rn =
1− u
u

.

The Metropolis-Hastings ratio for the Split move is

l′(S − k)(k − 1)

l(S − 2)2
e−ξ−

r′+rn−r
r

Pmerge

Psplit

(r′ + rn)2

rr
,

where l is the likelihood of the current state, l′ is the likelihood of the proposed state, S
is the number of SNPs, k is the number of change points before proposing to add the new
change point, ξ is a user-specified parameter called the block penalty, r is the mean of the
prior on rates, r is the current rate of the selected change point, Pmerge is the probability of
proposing a Merge move, and Psplit is the probability of proposing a Split move.

The Merge move selects a change point uniformly at random (excluding the initial change
point and the final change point) and removes it. The rate of the change point to the left of
the removed change point is set to

r′ = r
p−pl
pr−pl
l · r

pr−p
pr−pl ,

where r is the rate of the selected change point, rl is the rate of the change point to the left
of the selected change point, p is the position of the selected change point, pl is the position
of the change point to the left, and pr is the position of the change point to the right.

The Metropolis-Hastings ratio for the Merge move is

l′(S − 2)2

l(S − k)(k − 1)
eξ−

rl+r−r
′

r
Psplit

Pmerge

r′r

(rl + r)2
,

where l is the likelihood of the current state, l′ is the likelihood of the proposed state, S
is the number of SNPs, k is the number of change points before proposing to remove the
selected change point, ξ is a specified parameter called the block penalty, rl is the rate of
the change point to the left of the selected change point, r is the mean of the prior on rates,
Psplit is the probability of proposing a Split move, and Pmerge is the probability of proposing
a Merge move.

2.14 Selecting Parameters

The block penalty controls the extent of variation in the estimated recombination map. In
general, the higher the block penalty, the smoother the estimated map. We carried out a
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simulation study to choose a conservative penalty value to reduce false positive inference of
hotspots, at the expense of tolerating more false negatives.

We considered the following three scenarios: no recombination variation (constant rate),
moderate variation (with a hotspot of width 2 kb and intensity 10× the background rate),
and high variation (with a hotspot of width 2 kb and intensity of 50× the background
rate, such as that seen in humans). We simulated 100 datasets of each kind, with a fixed
background rate of ρ = 10 per kb in all cases. After considering a variety of evaluation
metrics for measuring the accuracy of an estimated map, we found the `1-distance between
the true map and the estimated map to be the simplest to interpret and assess, where the
`1-distance is the sum of the point-wise differences between the true and estimated maps.
For the three scenarios described above, Figure 2.2 shows the average `1-distances between
the true recombination maps and the estimated maps for various block penalty values and
recombination landscapes. For each dataset, we ran LDhelmet for 250,000 iterations after a
50,000 iteration burn-in. We observed that noise from overfitting is reduced for higher block
penalties. Based on our simulation study, we chose a conservative block penalty of 50 in our
analysis of the real data.

In our simulation study for evaluating the choice of block penalty on realistic data (Fig-
ure 2.5), we used the program MaCS [17] to simulate a 1 Mb region with a highly variable
recombination map. (We used n = 22 and θ = 0.008; output was postprocessed to incor-
porate an empirical tetra-allelic mutation model.) The map’s variability was taken from a
1 Mb excerpt of the estimated recombination map of the X chromosome for the RAL sample.
The total recombination rate for the region was then rescaled to match the mean (per Mb)
rate of the RAL X chromosome (to create a “RAL-like” map) or the RG X chromosome (to
create a “RG-like” map; see Figure 2.5).



CHAPTER 2. FINE-SCALE RECOMBINATION RATE VARIATION 29

0 10 20 30 40 50
block penalty

0

200

400

600

800

1000

` 1
 d

is
ta

n
ce

 (
ρ
)

no hotspot

hotspot 10×
hotspot 50×

Figure 2.2: Plot of the average `1-distance between the true and estimated re-
combination maps. Each plot shows the results averaged over 100 simulated datasets
per block penalty for a given recombination landscape. In each simulation, we considered
a 25 kb region with the background recombination rate of ρ = 10/kb. “no hotspot”: The
true recombination map is constant. “hotspot 10×”: In the middle of the 25 kb region, the
true recombination map has a hotspot of width 2 kb and intensity 10× the background rate.
“hotspot 50×”: In the middle of the 25 kb region, the true recombination map has a hotspot
of width 2 kb and intensity 50× the background rate.



CHAPTER 2. FINE-SCALE RECOMBINATION RATE VARIATION 30

2.15 Data

The mean coverage of the RAL data was ≥ 10×. Regions of residual heterozygosity and
regions of identity-by-descent between genomes were masked in the RAL data, in addition
to a quality filter of Q30 applied to both populations. Preliminary analysis by the DPGP2
group found evidence of admixture among 5 of the 22 RG lines we considered, in addition to
evidence for minor levels of identity-by-descent between genomes. To maintain a reasonable
sample size, these regions were not masked in the results. We did repeat several of our anal-
yses with these regions excluded and generally found little difference. Despite the extensive
filtering, which increases the amount of missing data, the runtime complexity of our method
does not increase from a lack of data, as it does for LDhat.

The data were divided into overlapping blocks of 4,400 SNPs each, with 200 SNPs of
overlap on either end of a block. For every block, LDhelmet was run for 3,000,000 iterations
after 300,000 iterations of burn-in. The map for each chromosome or chromosome arm was
constructed by removing 200 SNPs from the ends of the blocks and concatenating the blocks
together.

2.16 Simulation Study on the Impact of Natural

Selection

In order to simulate datasets that had been affected by natural selection, we focused on
modeling the effects of sites experiencing positive, genic selection, i.e. selective sweeps. We
investigated two modeling scenarios: First, the effect of a single, strong sweep with its
strength, fixation time, and location treated as fixed parameters. Under some parameter
combinations, we expect such sweeps to substantially reduce observed polymorphism lev-
els. Second, we considered data generated under the influence of a recurrent sweep model,
in which the ages and genomic locations of sweeps occur randomly. In this scenario, we
chose the parameters of the model (selection coefficient and rate of fixation of beneficial
mutations) such that expected polymorphism levels were concordant with observations in
D. melanogaster. While the second scenario is likely to be a more realistic model for the
forces affecting variation in D. melanogaster genomes, its inherent randomness introduces
additional noise. The first scenario allows us to study the effects of a sweep with particular
characteristics under a controlled environment.

Under both scenarios, we again simulated data under three possible recombination land-
scapes: a flat recombination rate of ρ = 10 per kb except for a 2 kb-wide hotspot at the
center of the sequence, of relative strength 1 (no hotspot), 10, or 50; we also post-processed
all outputs to allow for a full tetra-allelic mutation model, using the mutation transition ma-
trix P RAL. To reconstruct the recombination maps of simulated data, we used the following
parameters for LDhelmet and LDhat: 250,000 iterations after 50,000 iterations of burn-in
for LDhelmet, and 1,000,000 iterations after 100,000 iterations of burn-in for LDhat. We
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chose the number of iterations such that the two methods would require about the same
computational time.

2.16.1 Single Sweep Model

In order to simulate datasets that had experienced a single hard sweep, we used the software
mbs [75]. Using mbs, we simulated the trajectory of a selected allele backwards from its
fixation time at the present back to the random time of its birth, then post-processed the
software’s output to translate the trajectory such that its fixation time was instead at time
Tfix in the past. (This lets us condition on Tfix, which is otherwise not possible using the
software.) Subject to this trajectory we then used mbs to simulate n = 37 samples of 25 kb of
sequence in the vicinity of the selected site. We simulated 100 trajectories for each possible
combination of the following choices of parameter: selection strength 4Nes = 0, 10, 102,
103, and 104 (where s is the relative fitness); Tfix = 0.01, 0.1, 0.5, 1, and 5, in units of 4Ne

generations; and three possible recombination landscapes (see above). For each trajectory
we simulated, independently, a 25 kb sample with the selected site at coordinate −100,
−50, −10, 0, 5, or 12.5 kb with respect to the start coordinate of the sequences. In total,
this procedure generated 100× 6× 5× 5× 3 = 45, 000 independent datasets for input into
LDhelmet and LDhat.

2.16.2 Recurrent Sweep Model

In order to simulate datasets experiencing hard sweeps at random times and locations, we
modified the software rsweep [43] to allow for a recombination hotspot rather than a constant
recombination landscape. As above, we simulated datasets of n = 37 samples of 25 kb of
sequence, this time under three realistic recurrent sweep models:

(RS1) s = 10−5, 2Neλ = 2× 10−3,

(RS2) s = 10−4, 2Neλ = 2× 10−3,

(RS3) s = 10−2, 2Neλ = 2× 10−5,

where s is the selection coefficient of new beneficial mutations and 2Neλ is the rate of fixation
of beneficial mutations. In each case we took Ne = 2.5×106. The first parameter combination
is one of frequent, weak sweeps, and similar to the parameters estimated in [2]. The third
combination is one of infrequent but stronger sweeps and similar to the parameters estimated
in [43]. The second combination is intermediate between the two. Under a recurrent sweep
model, selective sweeps occur at random times at a rate governed by 2Neλ and at a location
in the genome chosen uniformly at random. Sweeps both within the sequenced 25 kb and
in flanking sequence can affect the observed data and are accounted for in the simulation
software [43].
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We considered ρ = 10 per kb for comparison with the single sweep model. As in the
single sweep model, we simulated 100 datasets under each parameter combination, generating
100 × 3 × 3 = 900 independent datasets for input into LDhelmet. As for the single sweep
simulations, we ran LDhelmet for 250,000 iterations after 50,000 iterations of burn-in.

2.17 Simulation Study on the Impact of Demographic

History

In order to simulate datasets that had been affected by a nonstandard demographic history,
we used the software msHOT [33]. We investigated four realistic demographic histories:

(G1) Exponential growth at rate 100 initiated 0.023Ne generations ago (a tenfold increase
by the present time),

(G2) Exponential growth at rate 10 initiated 0.161Ne generations ago (a fivefold increase by
the present time),

(B1) A bottleneck initiated 0.5Ne generations ago, with a transient reduction to size
0.00001Ne lasting 0.00002Ne generations,

(B2) A bottleneck initiated 0.0055Ne generations ago, with a transient reduction to size
0.029Ne lasting 0.00375Ne generations.

The first three models were proposed by Haddrill et al. [32] as reasonable fits to their
(African) data, while the fourth is taken from [78] for a European population. We note
that the precise demographic history of D. melanogaster populations remains poorly un-
derstood, and that these models simply serve as reasonable examples for investigating the
robustness of our method. It is probable that there exist better fitting demographic models;
indeed, Haddrill et al. ultimately favor their bottleneck model over any growth model.

We simulated 100 datasets under each model and under each of three recombination
landscapes: a flat recombination rate of ρ = 10 per kb except for a 2 kb-wide hotspot at
the center of the sequence, of relative strength 1 (no hotspot), 10, or 50. This provided
100 × 4 × 3 = 1, 200 independent datasets in total. We also post-processed all outputs
from the infinite-sites-based software to allow for a full tetra-allelic mutation model, using
the mutation transition matrix P RAL and the mutation rate θ = 0.008 per bp. We ran
LDhelmet for 250,000 iterations after 50,000 iterations of burn-in.

2.18 Search for Recombination Hotspots

We used a conservative approach to identify candidate recombination hotspots. From the
recombination maps for RAL and RG we first identified putative hotspots—regions in which
the recombination rate exceeded ten times the mean for that chromosome arm, and which
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were greater than 500 bp in length. We discarded regions of length less than 500 bp on the
grounds that such narrow peaks can be produced occasionally as spurious artifacts of the
rjMCMC procedure.

To further filter the remaining candidate hotspots, we applied an independent method,
sequenceLDhot [25], to the same data, in order to test for the presence of hotspots in these
regions. The software uses a computationally-intensive importance sampling framework to
construct likelihood ratios in sliding windows to evaluate the evidence for the presence of a
hotspot in that window. To reduce computation time we focused on 50 kb regions centered
on the autosomal putative hotspots. We modified sequenceLDhot’s default parameters,
which are tuned for interrogating human data, as follows. We used θ = 0.008 per site, and
for the background recombination rate we used the estimated mean across the local 50 kb
containing the hotspot of interest. We specified the software’s grid for hotspot likelihoods to
be in the range 10–100 times the background rate, and tested windows of 500 bp sliding in
steps of 250 bp, using a composite likelihood comprising ten SNPs. Other parameters were
unchanged. We reduced SNP density to be comparable to the data on which the software had
been calibrated [25], by discarding sites with any missing alleles and singleton SNPs, though
we obtained similar results without such a reduction (not shown). In constructing our final
list of candidate hotspots, we retained only those which overlapped one of sequenceLDhot’s
‘extended hotspot regions’, constructed conservatively from windows with a likelihood ratio
greater than 10. To improve power in the search for hotspots, we included five additional
lower coverage RG genomes in this analysis.

2.19 Wavelet Analysis

To put the recombination maps into a suitable time-series format, we used the
(log-transformed) cumulative recombination rate across each δt = 250 bp window. We found
that this provided good resolution at high frequencies, with little further improvement using
smaller bins. To facilitate a comparison between RAL and RG, we used the maps estimated
from sample size n = 22 in both populations.

2.19.1 Continuous Wavelet Transform

Continuous wavelet transforms are useful for visualization purposes and for feature extrac-
tion, and the methods of wavelet coherence [79, 31] are based on them. All our plots of
wavelet power are therefore based on continuous transforms, using software provided by [31]
which convolves the data with the Morlet wavelet (parametrized by a frequency parameter
ω0; we take ω0 = 6). This choice of wavelet is reasonable because it is simple, widely used,
and provides a sensible balance between time and frequency localization.

At large scales, the wavelet transform is influenced by data distant from a given position—
possibly even outside the range of the data. The region of the time-frequency domain
distorted by the consequent introduction of unwanted edge effects is said to be inside the
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cone of influence, which we define following [79] as the region in which wavelet power for a
discontinuity at the edge drops by a factor of e−2. Results using the transform inside the
cone of influence should be treated with caution.

To assess the significance of regions of the local wavelet power spectrum of high power,
we assumed as a background power spectrum that of an autoregressive process of order 1
(AR(1)), whose underlying power spectrum is red noise. This serves as a simple, parametric
way of positing an expected power spectrum for a dataset varying about some mean value
and allowing for some autocorrelation. The distribution of the observed wavelet power taken
with respect to the Morlet wavelet is, for each position and scale, then proportional to a
χ2

2 distribution under this model [79]. The autoregression parameter of the null model was
estimated as that which best fit our observed data.

In order to identify regions of correlation of the wavelet transforms for the RAL and
RG data, we performed a wavelet coherence analysis. Wavelet coherence is a (smoothed)
measure of correlation which is computed as a function of both position and scale; we used
the formulation given in [31]. To assess the significance of regions of high coherence, we again
assume AR(1) models underlying the two datasets, and obtain critical coherence values using
Monte Carlo simulation as described in [31] (with 1,000 Monte Carlo samples and 10 scales
per octave).

2.19.2 Discrete Wavelet Transform

Because the scale index of a continuous wavelet transform varies continuously, coefficients
at nearby scales encode similar information and a great deal of the transformed data is
superfluous. On the other hand, the discrete wavelet transform provides a decomposition
of the data into a minimal number of independent coefficients. It is therefore suitable for
modeling purposes, since the transform is constructed so that variation in a signal at one
scale is orthogonal to that at a different scale. Within the discrete set of scales chosen, those
with important or significant variation can be identified unambiguously. In our linear model
analyses we take the discrete wavelet transform based on the Haar wavelet, using methods
and R scripts provided by [72]. Indeed, the paper by Spencer et al. [72] provides an excellent
overview of the use of the discrete wavelet transforms in analyzing genomic data, and we
refer the interested reader there for further details. Our analysis differs from theirs in several
respects: (i) We analyzed five chromosome arms from two populations, giving ten datasets in
total compared to their two, (ii) Since our data has much improved SNP density, we binned
our data into 250 bp windows rather than 1 kb, giving a fourfold improved resolution, (iii) To
control for the influence of local sequence quality, we used quality score information directly
rather than read depth.

In addition to wavelet transforming the 250 bp-binned recombination map, we also binned
and transformed a number of other genomic features: Diversity was computed as the mean,
across pairs of samples within the population, of the fraction of sites that differed between
the pair, out of a total of the number of sites for which both samples had data available.
Divergence was computed as the diversity between the D. melanogaster and D. simulans
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reference sequences, which were available as part of a multiple sequence alignment along
with the data from [49]. GC content was computed as the fraction of the total number
of sequenced positions in the window (across all samples within the population) that were
called as G or C. Gene content was computed for each window as the fraction of the window
annotated as exonic; genome annotations were obtained from FlyBase (release 5.45, http:
//www.flybase.org [56]). Sequence quality scores were taken directly from the FASTQ files
of the original data. Note that divergence and gene content data are the same for RAL and
RG, explaining their identical power spectra in Figure 2.24.

2.20 Results

We applied our method to samples from two populations of D. melanogaster : Raleigh, USA
(RAL) and Gikongoro, Rwanda (RG). The RAL dataset consisted of the genomes (Release
1.0) of 37 inbred lines sequenced at a coverage of ≥ 10× by the Drosophila Population
Genomics Project [49] (DPGP, http://www.dpgp.org/). The RG dataset comprised 22
genomes (Release 2.0) from haploid embryos sequenced at a coverage of ≥ 25× by the
Drosophila Population Genomics Project 2 (DPGP2, http://www.dpgp.org/dpgp2/DPGP2.
html).

2.20.1 Mutation Transition Matrices

We were able to designate the ancestral allele in 1,755,040 of 2,475,674 high quality (quality
score Q ≥ 30) SNPs in the RAL sample (70.9%), and 2,213,312 out of 3,134,295 high quality
SNPs in the RG sample (70.6%). These collections of polarized SNPs yielded the following
estimates for the mutation transition matrix P , with rows and columns ordered as A, C, G,
T:

P RAL =


0.47 0.10 0.23 0.19
0.27 0.00 0.14 0.59
0.59 0.14 0.00 0.27
0.20 0.23 0.10 0.47

 and P RG =


0.48 0.09 0.24 0.20
0.24 0.00 0.14 0.62
0.62 0.14 0.00 0.24
0.20 0.24 0.09 0.47

 .
These results imply that simple diallelic models are inadequate for the Drosophila popula-
tions. As expected, we see a transition:transversion bias. We also observe a higher overall
mutation rate away from C and G nucleotides—this pattern persists even after excluding
CpG sites from our analysis (not shown). Indeed, each of the four nucleotides exhibits its
own characteristic mutation distribution. There appears to be no significant difference be-
tween the transition matrices for the two populations. This is partly explained by the shared
history of the two populations: There were 2,990,025 sites for which: (i) data were available
in both populations, (ii) two alleles were observed in the combined sample, and (iii) one of
the two alleles was assignable as ancestral. Of these, 925,569 (31.0%) were polymorphic in
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both populations, 800,118 (26.8%) were private to RAL, 1,262,109 (42.2%) were private to
RG, and 2,229 (0.1%) were fixed differences.

For simplicity, we used the same mutation transition matrix for all sites in the genome.
However, we note that our method can easily handle site-specific mutation transition matrices
at no extra computational cost.

2.20.2 Accuracy of the Method in the Neutral Case

To assess the accuracy of estimated recombination maps, we carried out an extensive simu-
lation study with various simple recombination patterns, first assuming selective neutrality
(the case with natural selection is discussed in the subsequent section).

The simulations assumed a finite-sites, tetra-allelic mutation model, with the mutation
transition matrix P RAL shown above and the population-scaled mutation rate θ = 0.008
per bp. We used these transition matrix and mutation rate in LDhelmet’s inference. For
LDhat, we used the corresponding effective mutation rate θeffective = 0.006 per bp (see Sec-
tion 2.8). Incidentally, we note that 0.006 per bp is the estimated effective mutation rate for
the autosomes of RAL lines [49].

Figure 2.3 shows representative examples of LDhelmet’s and LDhat’s results. As the figure
illustrates, our method LDhelmet generally produces recombination maps that are less noisy
than that of LDhat’s; in particular, LDhelmet produces spurious “spikes” less frequently
than does LDhat. To illustrate the impact of the spikes on the total genetic distance, the
corresponding cumulative recombination maps comparing LDhelmet and LDhat are shown in
Figure 2.4. Additional comparisons between LDhelmet and LDhat can be found in Table 2.2,
and SNP statistics of the datasets are listed in Table 2.3.

In general, we observed that LDhelmet is able to identify the location of hotspots reliably.
Furthermore, in the scenario considered in the second row of Figure 2.3, the width and height
of the hotspot could be estimated very accurately; on average the total rate in the hotspot
region could be estimated within 2.5% of the true value.

To test the performance of LDhelmet in a more realistic scenario, we simulated 1 Mb
regions each with a substantial amount variation in recombination rate and with a high
average rate representative of the interior of the D. melanogaster X chromosome. To spec-
ify realistic levels of recombination rate variability in these regions, we took as the true
recombination map a 1 Mb excerpt from our estimated map for the RAL sample. To spec-
ify realistic absolute levels of recombination, we rescaled this map to match the mean (per
megabase) recombination rates inferred for the X chromosomes of RAL and of RG. In Fig-
ure 2.5, LDhelmet’s estimated recombination maps for these two scenarios are illustrated in
blue, while the true maps are shown in red. These results demonstrate that, even when the
average recombination rate is high, LDhelmet with our chosen block penalty in the rjMCMC
is able to capture the pattern of fine-scale variation rather well. However, we note that in
the top plot of Figure 2.5, in which case the true average rate is ρ = 21 per kb, the estimated
map tends to be slightly more variable than the true map. In contrast, if the true average
recombination rate is substantially higher, as in the bottom plot of Figure 2.5 with the true
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average rate of 170 per kb but otherwise the same pattern of variation, the estimated map
tends to be somewhat smoother than the true map. Clearly, there is no single block penalty
value that is universally optimal in all cases, but the value we have chosen seems to yield
reasonable results for D. melanogaster.
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Figure 2.3: Comparison of the results of LDhelmet and LDhat for 25 datasets sim-
ulated under neutrality. In each plot, different colors represent the results for different
datasets. The left and right columns show the estimated recombination maps of LDhelmet

and LDhat, respectively, using the same block penalty of 50. Our method LDhelmet generally
produces less noisy estimates than that produced by LDhat. (First Row) Each dataset was
simulated with a constant recombination rate of 0.01 per bp. (Second Row) Each dataset
was simulated with a hotspot of width 2 kb starting at location 11 kb. The background
recombination rate was 0.01 per bp, while the hotspot intensity was 10× the background
rate, i.e., 0.1 per bp. The maps are shown in their entirety, including potential edge effects.
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Figure 2.4: Comparison of the cumulative recombination maps of LDhelmet and
LDhat for 25 datasets simulated under neutrality In each plot, different colors repre-
sent the cumulative recombination maps for different datasets. The datasets in these plots
correspond to the same datasets used in Figure 2.3. The thick dashed line indicates the
true cumulative recombination map for the given recombination landscape. The left and
right columns show the estimated recombination maps of LDhelmet and LDhat, respectively,
using the same block penalty of 50. (First Row) Each dataset was simulated with a con-
stant recombination rate of 0.01 per bp. (Second Row) Each dataset was simulated with a
hotspot of width 2 kb starting at location 11 kb. The background recombination rate was
0.01 per bp, while the hotspot intensity was 10× the background rate, i.e., 0.1 per bp. The
cumulative maps are shown in their entirety, including potential edge effects.
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Table 2.2: Summary of comparison between LDhelmet and LDhat in the neutral case.
Based on 100 simulated datasets for a 25 kb region. “No Hotspot” corresponds to the case of a
constant recombination map, whereas “Hotspot 10×” corresponds to the case with a 2 kb wide
hotspot situated at the center of the region. The first row shows the regional average of ρ obtained
by LDhelmet and LDhat, averaged over the 100 datasets. The second row shows the total rate in
the hotspot region, averaged over the datasets. The third row shows the percentage of datasets for
which the estimate had at least one false peak with height ≥ 5 times the background rate. The
fourth row shows the percentage of datasets for which the estimate had at least one false peak with
height ≥ 10 times the background rate. The fifth row shows the percentage absolute error of the
estimated ρ average outside the hotspot region from the true ρ average outside the hotspot region.
The true ρ average outside the hotspot region is ρ = 0.01/bp. To account for edge effects, 2.5 kb
from each end of the map were removed prior to computing the statistics.

No Hotspot Hotspot 10×
Measure of Accuracy True Value LDhelmet LDhat True Value LDhelmet LDhat
ρ average (per bp) 0.01 0.0097 0.0109 0.0172 0.0184 0.0203
Total hotspot area 20.0 19.0 20.3 200.0 195.2 210.0
% with false peak ≥ 5× 5% 30% 4% 30%
% with false peak ≥ 10× 2% 21% 4% 21%
% abs. error outside hotspot 14% 23% 15% 20%

Table 2.3: SNP densities (per kb) of neutral and single-sweep simulations. The mean,
minimum, maximum and standard deviation of the SNP density for the datasets used in Tables 2.2
and 2.4. The simulations assumed a finite-sites, tetra-allelic mutation model, with mutation matrix
PRAL and θ = 0.008, which is the effective population-scaled mutation rate adjusted for PRAL (see
Section 2.8).

Neutral Single-Sweep Model
No Hotspot Hotspot 10× No Hotspot Hotspot 10×

Mean 21.82 21.68 18.15 18.38
Min 18.32 17.40 14.84 14.68
Max 26.12 25.72 24.08 22.76
Std dev 1.71 1.38 1.64 0.61
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Figure 2.5: LDhelmet results on simulations with realistic variable recombination
rates. In each study, the program MaCS [17] was used to simulate data, with sample size
22, for a 1 Mb region with the variable recombination map shown in red. (We used θ =
0.008; output was postprocessed to incorporate an empirical tetra-allelic mutation model.)
Estimated recombination maps are shown in blue. The same block penalty of 50 was used
in both cases. (Top) The average recombination rate for the region is about 21 per kb,
representative of the interior of the North American X. (Bottom) The average recombination
rate for the region is 8× higher than the above case, representative of the interior of the
African X.
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2.20.3 Impact of Positive Selection on Inference

It has been previously shown [45, 68, 73] that hitchhiking can induce seemingly similar
patterns of linkage disequilibrium as that created by recombination hotspots, while McVean
[57] has argued that the precise signatures of selective sweeps and hotspots actually differ.
To test the robustness of our method to natural selection, we simulated data under various
scenarios with positive selection and recombination rate variation, and assessed the impact
on our estimates of recombination rates. We generated data using a range of values for the
selection strength and fixation time. See Section 2.16.2 for details of the simulation setup.

The results of LDhelmet and LDhat for a few cases are shown in Figure 2.6; each plot shows
the results for 25 simulated datasets illustrated in 25 different colors. The corresponding
cumulative recombination maps are shown in Figure 2.7. For both methods, the estimated
recombination maps are in general noisier than that for the neutral case (c.f., Figure 2.3),
though LDhelmet is still more robust than LDhat. As can be seen in Figure 2.6, LDhat

tends to produce false inference of elevated recombination rates near the selected site more
frequently than does LDhelmet. A more detailed comparison is provided in Table 2.4 and
SNP statistics of the datasets are listed in Table 2.3. Overall, although strong positive
selection causes more noise and fluctuations in our estimates, it does not seem to produce
a strong bias to the extent that would consistently lead to false inference of recombination
hotspots.

The noise in our estimates of the recombination rate in the presence of selection depends
on several factors. Specifically, we observed that the accuracy of our estimates decreases as
the selection strength increases, whereas the accuracy improves as the distance between the
selected site and the region of estimation increases. Furthermore, the more recent the time
of fixation, the noisier are the estimates.

In addition to the case of a single, recent selective sweep, we also assessed the impact of
recurrent selective sweeps [2, 43] on the estimation of recombination rates. Assuming that
beneficial mutations fixate randomly at a given rate, we simulated three different sets of
datasets with a background recombination rate of 10 per kb, as detailed in Section 2.16.2.
The degree to which recurrent sweeps reduce diversity in each model is summarized in
Table 2.5. In model RS3, which has infrequent but strong sweeps, the mean number of
SNPs reduces by more than a factor of 8 relative to the neutral model. Such a drastic
drop in diversity significantly reduces the ability to perform accurate statistical inference of
recombination. To infer the location of a recombination hotspot, for example, at least a few
SNPs must be present in the hotspot and near its edges.

The results of recombination rate estimation under recurrent sweep models are summa-
rized in Tables 2.6 and 2.7. Compared to a single sweep, recurrent selective sweeps tend
to decrease the accuracy of recombination rate estimates more noticeably. Furthermore, in-
frequent but strong selective sweeps (model RS3) have more severe impact on the accuracy
than do frequent but weaker selective sweeps (model RS1). As discussed above and can be
seen in Table 2.7, detecting recombination hotspots in model RS3 would pose a great chal-
lenge. Overall, LDhelmet generally underestimates the recombination rate in the presence
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of selection, suggesting that it is unlikely to produce spurious hotspots because of selection.

Table 2.4: Summary of comparison between LDhelmet and LDhat in the case of single
selective sweep. Based on 100 simulated datasets for a 25 kb region. For each dataset, a selected
site was placed at position 5 kb and the population-scaled selection coefficient was set to 1000.
The fixation time of the selected site was 0.01 coalescent units in the past. The column and the
row labels are the same as in Table 2.2. As for Table 2.2, 2.5 kb from each end of the map were
removed prior to computing the statistics to account for edge effects.

No Hotspot Hotspot 10×
Measure of Accuracy True Value LDhelmet LDhat True Value LDhelmet LDhat
ρ average (per bp) 0.01 0.0079 0.0108 0.0172 0.0162 0.0220
Total hotspot area 20.0 14.7 15.4 200.0 169.8 224.6
% with false peak ≥ 5× 10% 42% 8% 34%
% with false peak ≥ 10× 6% 39% 5% 24%
% abs. error outside hotspot 39% 58% 30% 56%

Table 2.5: SNP densities (per kb) of recurrent-sweep and demography simula-
tions. The statistics for each selection or demography scenario are merged over the three
recombination landscapes (i.e., no hotspot, hotspot 10× and hotspot 50×). The simula-
tions use θRAL and P RAL as parameters. The third column shows the SNP density per kb
across the hundred datasets, and the fourth column shows the standard deviation. For the
definitions of the scenario names, refer to Section 2.16.2 and Section 2.17 of the main text.
“Control” refers to a control dataset with constant population size and no selection.

Simulation Type Model Mean Std dev
Recurrent Sweeps RS1 18.22 1.66

RS2 4.10 1.05
RS3 2.71 1.24

Demography G1 12.86 1.07
G2 15.85 1.24
B1 13.84 2.78
B2 5.53 2.14

Neutral Control 22.51 1.49
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Figure 2.6: Comparison of the results of LDhelmet and LDhat for 25 datasets simu-
lated under strong positive selection. In each plot, different colors represent the results
for different datasets. The left and right columns show the estimated recombination maps of
LDhelmet and LDhat, respectively, using the same block penalty of 50. In each simulation,
the selected site was placed at position 5 kb and the population-scaled selection coefficient
was set to 1000. The fixation time of the selected site was 0.01 coalescent unit in the past.
Although the estimated recombination maps are in general noisier than that for the neutral
case (c.f., Figure 2.3), LDhelmet is more robust than LDhat. As illustrated in the plots,
LDhat produces false inference of elevated recombination rates near the selected site more
frequently than does LDhelmet. The same scenarios of recombination patterns as in Fig-
ure 2.3 were considered: (First Row) with a constant recombination rate of 0.01 per bp, and
(Second Row) with a hotspot of width 2 kb starting at location 11.5 kb. The background
recombination rate was 0.01 per bp, while the hotspot intensity was 10× the background
rate, i.e., 0.1 per bp. The maps are shown in their entirety, including potential edge effects.
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Figure 2.7: Comparison of the cumulative recombination maps of LDhelmet and
LDhat for 25 datasets simulated under strong positive selection. In each plot, differ-
ent colors represent the results for different datasets. The datasets in these plots correspond
to the same datasets used in Figure 2.6. The thick dashed line indicates the true cumulative
recombination map for the given recombination landscape. The left and right columns show
the estimated recombination maps of LDhelmet and LDhat, respectively, using the same
block penalty of 50. In each simulation, the selected site was placed at position 5 kb and
the population-scaled selection coefficient was set to 1000. The fixation time of the selected
site was 0.01 coalescent units in the past. The same scenarios of recombination patterns
as in Figure 2.3 were considered: (First Row) with a constant recombination rate of 0.01
per bp, and (Second Row) with a hotspot of width 2 kb starting at location 11.5 kb. The
background recombination rate was 0.01 per bp, while the hotspot intensity was 10× the
background rate, i.e., 0.1 per bp. The cumulative maps are shown in their entirety, including
potential edge effects.
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Table 2.6: Average recombination rates for recurrent sweeps simulations. The
accuracy of the recombination rate estimate for model RS3, containing infrequent but strong
selective sweeps, was considerably worse than that for model RS1, containing frequent but
weaker selective sweeps. The mean number of SNPs in model RS3 was a factor of 8 less than
that in the selectively neutral “Control” model, thus reducing the ability to perform accurate
statistical inference of recombination. See Section 2.16.2 for the details of the models. For
each recombination landscape, the median estimated average recombination rate is shown
in the left column (“est.”) and the percent error is shown in the right (“% err.”). The true
average recombination rate for each recombination landscape is shown in parenthesis.

No Hotspot Hotspot 10× Hotspot 50×
(10 per kb) (17.2 per kb) (49.2 per kb)

Model est. % err. est. % err. est. % err.
RS1 8.5 −15.0 15.6 −9.3 44.9 −8.7
RS2 4.4 −56.0 8.6 −50.0 45.0 −8.5
RS3 0.9 −91.0 1.3 −92.4 2.3 −95.3

Control 9.3 −7.0 16.4 −4.7 53.9 9.6

Table 2.7: Hotspot areas for recurrent sweeps simulations. For each recombination
landscape, the median estimated hotspot area is shown in the left column (“est.”) and the
percent error is shown in the right (“% err.”). The true hotspot area for each recombination
landscape is shown in parenthesis. “Control” refers to a neutral model. See Section 2.16.2
for the details of the models and Table 2.6 for related results.

No Hotspot Hotspot 10× Hotspot 50×
(20) (200) (1000)

Model est. % err. est. % err. est. % err.
RS1 16.6 −16.8 179.8 −10.1 889.6 −11.0
RS2 8.9 −55.5 38.2 −80.9 773.0 −22.7
RS3 1.7 −91.4 2.6 −98.7 4.5 −99.5

Control 18.2 −9.0 183.5 −8.3 1100.0 10.0
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2.20.4 Impact of Demography on Inference

We also tested our method on datasets simulated under a variety of demographic scenarios.
Specifically, the demographic models we considered are those proposed by Haddrill et al. [32],
and by Thornton & Andolfatto [78], comprising two exponential growth models and two
bottleneck models. As in the neutral simulations, we assumed a finite-sites, tetra-allelic
mutation model, with the mutation transition matrix P RAL and the mutation rate θ = 0.008
per bp. See Section 2.17 for details on the other parameters used in the simulations.

Tables 2.8 and 2.9 show the results of recombination rate estimation in this simulation
study. Although the estimates are clearly less accurate compared to the case with constant
population size, they are reasonably accurate in most cases. Note that the overall trend is
to underestimate the true rates, in some cases only slightly.

As in the case of recurrent selective sweeps, demography may decrease diversity, thus
hindering statistical inference of recombination. Table 2.5 includes the SNP statistics for the
demography models we considered. In model B2, which involves a very recent bottleneck, a
reduction in diversity by about a factor of 4 was observed, partly explaining the particularly
poor estimates of the recombination rate. Table 2.10 shows that the average SNP density
of the D. melanogaster data; note that the average SNP density of each chromosome is
substantially greater than the SNP density observed in simulation model B2.

Table 2.8: Average recombination rates for demography simulations. Here, “Con-
trol” refers to a neutral model with constant population size. Model B2 involved a very recent
bottleneck, and we observed a reduction in diversity by about a factor of 4 relative to the
Control model. This reduction in diversity partly explains the particularly poor estimates
of the recombination rate for model B2. The estimates for the other models are reasonably
accurate, although they are clearly nosier compared to that for the Control model. See
Section 2.17 for the details of the models. For each recombination landscape, the median
estimated average recombination rate is shown in the left column (“est.”) and the per-
cent error is shown in the right (“% err.”). The true average recombination rate for each
recombination landscape is shown in parenthesis.

No Hotspot Hotspot 10× Hotspot 50×
(10 per kb) (17.2 per kb) (49.2 per kb)

Model est. % err. est. % err. est. % err.
G1 5.8 −42.0 10.1 −41.3 38.6 −21.5
G2 7.7 −23.0 12.8 −25.6 52.2 6.1
B1 7.2 −28.0 10.2 −40.7 28.8 −41.5
B2 1.2 −88.0 3.9 −77.3 20.0 −59.3

Control 9.3 −7.0 16.4 −4.7 53.9 9.6
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Table 2.9: Hotspot areas for demography simulations. For each recombination land-
scape, the median estimated hotspot area is shown in the left column (“est.”) and the
percent error is shown in the right (“% err.”). The true hotspot area for each recombina-
tion landscape is shown in parenthesis. “Control” refers to a neutral model with constant
population size. See Section 2.17 for the details of the models and Table 2.8 for related
results.

No Hotspot Hotspot 10× Hotspot 50×
(20) (200) (1000)

Model est. % err. est. % err. est. % err.
G1 11.6 −41.9 116.6 −41.7 752.0 −24.8
G2 15.2 −23.8 131.9 −34.1 1032.6 3.3
B1 14.2 −29.1 25.6 −87.2 471.0 −52.9
B2 1.6 −92.2 31.0 −84.5 205.2 −79.5

Control 18.2 −9.0 183.5 −8.3 1100.0 10.0

Table 2.10: SNP densities (per kb) of the real Drosophila data.

Chromosome Arm RAL RG
2L 24.54 25.49
2R 22.56 24.21
3L 22.29 25.20
3R 19.77 20.79
X 14.92 28.15
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2.20.5 Population-specific Average Recombination Rates

The population-specific average recombination rate for each major chromosome arm is sum-
marized in Table 2.11, which shows that the average rate for the African (RG) population
is higher than that for the North American (RAL) population. This difference could be ex-
plained partially, but not entirely, by a difference in population size. Note that the average
recombination rate in the X chromosome appears to be higher than that in the autosomes,
much more so in RG than in RAL. Table 2.11 shows the ratio of the average recombination
rate of RG to that of RAL for each chromosome arm. Although the ratio is more or less
consistent for the autosomes, the ratio for the X chromosome is significantly higher. Hence,
a difference in population size could explain the higher recombination rate estimates in RG
for the autosomes, but it does not explain the significant increase in the recombination rate
for the X chromosome of RG over RAL. Furthermore, for RAL, that the observed average re-
combination rate of the X chromosome is higher than that of autosomes is unexpected given
that an excess of LD is observed on the X chromosome of this population [49, 54]. In both
populations, arm 3R has a notably reduced recombination rate compared to the other arms.
This reduction is more pronounced in RG than in RAL, which could be partly explained by
the fact that, in African populations, arm 3R has the largest number of common inversions
[3].

To study the effect of sample size on the estimation of recombination rates, we subsampled
a 2 Mb excerpt of chromosome arm 2L from each population over several repeated trials. We
performed the subsampling on an excerpt rather than the entire genome for computational
reasons. The averages of the estimates are shown in Table 2.12. Despite a slight increase
in the estimate as sample size increases, the effect is small and appears to diminish with
increasing sample size. We also analyzed the whole-genome RAL dataset down-sampled
to match the sample size (i.e., 22) of RG. As Table 2.11 shows, the genome-wide average
estimates produced using 22 genomes of RAL were only slightly lower than those produced
using all 37 genomes. Encouragingly, our estimate (107.3 per kb) of the recombination rate
for the X chromosome of RG is similar to the previous estimates for other African populations
obtained using a different method: Haddrill et al. [32] estimated 84, 89, and 47 per kb for
the X recombination rate in three African populations.

To assess the effect of SNP density, we thinned the SNPs on chromosome arm 2L and
chromosome X of the RG dataset to the corresponding SNP densities of RAL, and performed
inference on the resulting data. The results summarized in Table 2.13 show that although
SNP density indeed influences the ability to estimate recombination rates, the impact is not
nearly large enough to account for the difference between the observed recombination rates
of RAL and RG on the X chromosome.

Finally, as there exist several inversions in D. melanogaster, we analyzed regions of inver-
sion excluding individuals known to carry the inversion [20]. The comparison of excluding
individuals with inversions and the original analysis is shown in Table 2.14. Note that for
each inversion, only a small number of individuals carry it. We found that excluding the
individuals with inversions did not significantly affect the recombination rate estimates.
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Table 2.11: The average recombination rate for each major chromosome arm. Note
that RG has higher recombination rates than that of RAL. This difference could be explained
partially, but not entirely, by a difference in population size. In RG, the average recombi-
nation rate of X is substantially higher than that of the autosomes. In both populations,
arm 3R has a notably lower recombination rate than do the other arms. We also analyzed
a smaller RAL dataset down-sampled to match the sample size of RG. The numbers in
parentheses denote sample sizes.

ρ per kb Ratio
Chromosome arm RAL(37) RAL(22) RG(22) RG(22):RAL(37) RG(22):RAL(22)

2L 13.3 12.4 33.2 2.5 2.7
2R 13.4 12.4 34.5 2.6 2.8
3L 13.4 12.1 44.9 3.4 3.7
3R 9.6 8.1 17.8 1.9 2.2
X 14.8 13.4 107.3 7.3 8.0

Table 2.12: Subsampling of real data. To assess the effect of subsampling individuals, we
subsampled a 2 Mb excerpt from chromosome arm 2L for both the RAL and RG datasets.
We performed subsampling four times, and each row is the average of the four subsampled
datasets. The column labeled n is the number of individuals in each subsample. The
percentiles are given in the three rightmost columns. The results show that sample size has
a slight positive bias, but does not impact estimates greatly.

Percentile (ρ per kb)
n 2.5% 50% 97.5%

RAL

17 6.1 6.2 6.5
27 7.2 7.3 7.4
37 7.8 7.8 7.9

RG

12 8.1 8.4 9.2
17 9.0 9.0 9.2
22 9.2 9.3 9.4
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Table 2.13: Thinned SNPs on RG dataset. To assess the effect of SNP density on the
recombination rate inference, we thinned the SNPs on chromosome arm 2L and chromosome
X of RG to the SNP density of RAL. The 2.5%, 50% and 97.5% percentiles are shown for
estimates. The number of SNPs in the original dataset and in the thinned dataset are shown
in the fourth column. For chromosome arm 2L, the change in SNP density is negligible.
For chromosome X, the difference in SNP density is significant. The results show that SNP
density impacts the estimate, but not to the extent of the difference observed between RAL
and RG on chromosome X.

Percentile (ρ per kb)
Dataset Arm Type # SNPs 2.5% 50% 97.5%

RG

2L Original 586476 33.0 35.9 39.4
Thinned 564673 32.5 35.5 38.9

X Original 631205 110.0 121.4 134.1
Thinned 334647 97.5 106.8 117.4

Table 2.14: Exclusion of individuals with inversions. To assess the effect of inversions
on the recombination rate estimate, we excluded individuals known to carry the given in-
version, and performed inference on the remaining sample. 0.5 Mb was added to both ends
of the region to eliminate possible edge effects.The ρ average is over the inversion region
only. The column labeled Original gives the estimate using the entire sample. The column
labeled Excluded gives the estimate excluding the individuals with the given inversion. The
inversion region length and the number of individuals with the inversion are provided in the
rightmost two columns.

Original Excluded Inversion # with
Dataset Arm Inversion ρ per kb ρ per kb length (Mb) inversion

RAL

2L 2Lt 16.97 16.45 10.9 3
2R 2RNS 17.34 16.66 4.9 2
3R 3RK 11.80 11.39 14.4 1
3R 3RMO 12.51 14.56 14.6 7
3R 3RP 12.49 11.35 8.3 1

RG

2L 2Lt 54.44 50.80 10.9 2
2R 2RNS 53.93 50.81 4.9 1
3R 3RP 22.44 17.24 8.3 4
X 1Be 106.26 103.21 1.8 3
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2.20.6 Comparison with Experimental Genetic Maps

LDhelmet’s fine-scale recombination maps for RAL and RG are illustrated in Figure 2.8;
files containing the corresponding numerical values are publicly available. To assess the ac-
curacy of our recombination estimates obtained via statistical analysis of population genetic
variation data, we compared them to genetic maps obtained experimentally.

Singh et al.[71] examined the fine-scale recombination rate variation over a 1.2 Mb region
of the D. melanogaster X chromosome using a genetic mapping approach, by crossing an
African line with a line presumably of North American origin (a cross between two lines from
Bloomington Drosophila Stock Center). For their experiment, Singh et al. genotyped 8 SNPs
and identified two flanking genes, white and echinus, with visible phenotypes. They found
statistically significant heterogeneity in this region, with differences in rate up to 3.5-fold.
In Figure 2.9, estimates from LDhelmet for both the RAL and RG samples are shown, along
with the genetic map from [71]. Both estimates from LDhelmet mostly fall within the 95%
confidence intervals of the empirical estimate, with the exception of the outermost intervals.
The three maps share the same overall shape, including the location of the highest peak.
We find 4.5-fold variation in the RG estimate, which is comparable to the 3.5-fold variation
obtained by Singh et al. The high correlation among the three maps give us confidence that
our estimates from the statistical analysis of population genetic data accurately represent
the true underlying recombination map.

In a second study, we compared our chromosome-wide recombination estimates with a
consensus genetic map for each chromosome arm based on data hosted at the FlyBase website
(http://www.flybase.org [56]). To facilitate a comparison with this map, resolution of
which is roughly 200 kb, we binned our data into the same cytogenetic subdivisions [49]
and LOESS-smoothed the results, with a span of 15%; a correspondingly LOESS-smoothed
version of the FlyBase data was kindly provided to us by C.H. Langley. A comparison of
the maps is shown in Figure 2.10; evidently, the three estimates show broad agreement,
each capturing key features such as the spike in recombination near position 10 Mb on arm
2L, as well as a series of dramatic changes in recombination rate across chromosome X.
When the recombination map for RAL is regressed on the FlyBase maps, the coefficient of
determination, or proportion of variability explained by the simple linear regression model, is
R2 = 0.54, 0.57, 0.37, 0.53 and 0.50 for chromosome arms 2L, 2R, 3L, 3R, and X, respectively;
the corresponding values for RG are R2 = 0.55, 0.63, 0.45, 0.42, and 0.41. These correlations
are lower than those seen in a comparison of statistically- versus experimentally-derived maps
in humans (e.g. R2 = 0.97 [62]), though in that case the experimental data from pedigrees
were of higher quality. As noted by Langley et al. [49], data on which the FlyBase map is
based is highly edited and based on heterogeneous experimental conditions with sometimes
conflicting results.
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Figure 2.8: LDhelmet’s estimated fine-scale recombination maps for RAL and RG
populations of D. melanogaster. The North American sample (RAL) comprised 37
genomes, while the African sample (RG) comprised 22 genomes.



CHAPTER 2. FINE-SCALE RECOMBINATION RATE VARIATION 54

Figure 2.9: Comparison of LDhelmet estimates to the empirical genetic map of
Singh et al.[71]. The experimental genetic map of Singh et al.[71] is shown in black with
95% confidence intervals. The LDhelmet estimate for the RAL sample is shown in blue, while
the estimate for the RG sample is shown in red. The LDhelmet estimates were converted
into units of cM/Mb by normalizing them to have the same total genetic distance as the
empirical map for the region. The three maps demonstrate high correlation, especially near
the center of the region, where they share the highest peak in the same interval.
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Figure 2.10: Comparison with FlyBase genetic map. Plotted for each chromosome arm are
the estimated recombination maps using our method and the consensus experimental map hosted
at FlyBase [56]. To ease comparison each map is LOESS-smoothed using a span of 15%. LDhelmet
estimates were converted into units of cM/Mb by normalizing them to have the same total genetic
distance as the empirical map.
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2.20.7 Recombination Hotspots

As discussed in Section 2.1, it is well known that in humans and many other eukaryotes
recombination tends to cluster in recombination hotspots, regions of approximately 2 kb
wide in which the rate of recombination may be one or more orders of magnitude higher
than the background rate [59, 62, 77, 19]. However, it is an open question whether hotspots
exist in the D. melanogaster genome, or to what extent recombination rates vary on a fine
scale.

We first searched for the most extreme forms of recombination rate variation—namely,
recombination hotspots. Using a highly conservative approach, we initially identified nine-
teen and five putative autosomal recombination hotspots from the RAL and RG data, re-
spectively. Of these, respectively six and four were also detected by the hotspot detection
software sequenceLDhot [25]. These ten hotspots, the width of which ranges between 0.5 kb
and 6.8 kb, are listed in Table 2.15. All were found in genic regions, with all except one
overlapping exons and one contained within an intron. An example of a RAL hotspot is
shown in Figure 2.11, where we also show the RG recombination map. The fine-scale recom-
bination maps in this region for the two populations are clearly highly correlated, with both
RAL and RG exhibiting a tenfold increase in recombination rate within almost identical
4 kb intervals, though only the hotspot of RAL was also found by sequenceLDhot. We note
that the power of sequenceLDhot may be further reduced by the apparent preference (not
shown) for putative hotspots to reside in regions in which the “local” background rate is
higher than that of the chromosome arm as a whole. In light of these factors, it is likely
that several more hotspots would have been found in one or both populations under a more
relaxed definition, though it is clear that they are far scarcer, and less hot, than in humans.
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Figure 2.11: A putative hotspot found by LDhelmet and confirmed by
sequenceLDhot. (Top): Estimated recombination rate for RAL (blue) and RG (red) in
a 50 kb region of chromosome 3R, and their respective mean recombination rates in this re-
gion (dotted). (Bottom): Evidence of recombination hotspots in the same region, evaluated
according to sequenceLDhot. The dotted line shows the likelihood ratio cutoff we used.
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2.20.8 Genome-wide Fine-scale Recombination Rate Variability

It is apparent from both RAL and RG maps shown in Figure 2.8 that recombination rates
vary on multiple scales, from the very fine to the very broad, as has been observed in a
number of other species [59, 62, 22, 80, 5]. It is clear, for example, that recombination
rates tail off towards each end of the arm, with the reduction towards the telomere much
more precipitous than the pericentromeric reduction. The latter reduction is evident from
as far as the start of heterochromatic sequence a few megabases from the centromere, in
agreement with other broad-scale estimates of recombination [27, 54], although we do not
find a complete absence of recombination here.

Figure 2.12 shows that the recombination rate in the X chromosome between positions
10 kb and 20 kb is noticeably higher than the rate in the subtelomeric region to the right.
This trend is much more pronounced in the North American X than in the African X,
consistent with a previous study by Anderson et al.[1]. The telomere-associated sequence
(TAS), located to the left of position 10 kb, was not available in our data, but Anderson et
al. provided evidence that the TAS region in the North American X exhibits even higher
recombination rate than that in the subtelomeric region between positions 10 kb and 20 kb.

As shown in Figure 2.8, the largest difference between the estimated recombination maps
of the two populations is observed in the X chromosome. First, the recombination map in
the African X is generally much higher than that in the North American X. Second, there is
noticeably less variation in the estimated African X recombination map. As mentioned earlier
in the discussion of our simulation study, when the average recombination rate is as high as
that of the African X, the amount of variation in our estimated map tends to be somewhat
lower than the true variation. Hence, the observed reduction in variation could be partially
attributed to our method being not sensitive enough in that range of very high rates. More
generally, it is also true that Fisher’s information for data on sequence variation is lower in
regions of high recombination (Figure 2.1), which could create an inherent limitation in our
ability to infer recombination rate changes here.
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Table 2.15: Putative recombination hotspots in D. melanogaster found by our
method. These putative hotspots were confirmed by the hotspot detection software
sequenceLDhot [25].

Width Ratio to
Dataset Arm Gene Start End (kb) #SNPs ρ per kb arm mean

RAL

2L CR43314 11966311 11966880 0.6 20 140.8 11
3L CG9384, CG17173 14759823 14761142 1.3 30 177.9 13
3R Cys 10394533 10395940 1.4 42 100.8 10
3R CG7530 10552022 10553677 1.7 65 110.6 11
3R Ccap 18526587 18527115 0.5 23 122.1 13
3R CG2010, Trc8 25320629 25324745 4.1 169 154.9 16

RG

2R DJ-1α, AGO1 9830014 9830946 0.9 53 547.3 14
2R CG15706, Tsf3 12109706 12116536 6.8 344 545.2 14
2R CG4927, CG8317 12460329 12466422 6.1 255 431.4 11
3R nAcRβ-96A 20339494 20340164 0.7 33 219.7 12
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Figure 2.12: Fine-scale recombination maps for the X chromosome subtelomeric
region. The telomere is at the left end of the region. The recombination rate between
positions 10 kb and 20 kb is considerably higher than the rate in the subtelomeric region
immediately to the right. This trend is much more pronounced in the North American X
than in the African X, consistent with a previous study [1].
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2.20.9 Recombination around Transcription Start Sites

To assess the pattern of recombination around genes, we plotted the average recombina-
tion rate as a function of distance from the transcription start sites (TSS). As shown in
Figure 2.13, the plots for RAL and RG show high similarity in shape, despite differences
between their fine-scale recombination maps. Also, note that the plots follow a similar pat-
tern as in human [62, 77, 19], chimpanzee [5], and mouse [13], although the gene density of
D. melanogaster is much higher than that of the other species.
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Figure 2.13: Distribution of recombination rates relative to transcription start
sites. Plots for RAL (solid) and RG (dashed) of the average estimated recombination rate
as a function of distance from the midpoint of the nearest transcription start site (TSS) to
the left (negative x-axis) and to the right (positive x-axis) of every base. A 5-kb averaging
window was used to smooth the estimates.
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2.21 A Wavelet Analysis

To carry out a more methodical analysis of recombination rate variation within and between
the two populations, and its correlation with other genomic features, we performed a wavelet
analysis. Wavelet analyses are suitable for detecting localized, intermittent periodicities em-
bedded in the data, across a range of possible scales. Our inputs are two sets of discrete
“time”-series data representing the recombination maps of RAL and RG, binned into a re-
combination rate in each 250 bp window. Each is transformed into a collection of coefficients
indexed by position (“time”) and scale, and describe the variation in the input signal at each
position and scale. The scale index may be discrete or continuous, and we make use of both
types of transform as appropriate. Although the wavelet transform may be complex-valued,
it can be summarized by a plot of its (local) power : the square of the norm of the wavelet
coefficients at each position and scale. Taking the mean power across all positions yields the
(global) wavelet power spectrum, which summarizes how the total variability in the signal is
explained by heterogeneity at different scales. Further, a correlation between the wavelet
coefficients from two different “time”-series datasets can identify how a change in one signal
predicts a change in the other, at a given scale. One advantage of the wavelet approach is
that one does not have to choose the appropriate window size in advance, which is impor-
tant since analyses of genomic data on different pre-chosen scales can give conflicting results
(e.g., [72, 48, 69]).

2.21.1 Interpretation

To illustrate, continuous wavelet transforms of the recombination maps of chromosome arm
2L are shown in Figure 2.14; wavelet transforms for the rest of the genome are shown in
Figures 2.15–2.18. For brevity we focus on chromosome arm 2L throughout. We can interpret
these transforms with reference to the wavelet transform of a constant recombination map,
which would yield essentially zero power (dark blue) everywhere. Clearly the transform is
highly inconsistent with a constant map. Regions of high power, shown at the red end of
the spectrum and corresponding to wavelet coefficients of large magnitude, are consistent
with variation in recombination rate at the given location (x-axis) and at the given scale
(y-axis). Intuitively, a location of high local power in the wavelet transform suggests that a
useful proportion of the variability in our dataset is well-explained if we track it by placing
a wavelet function at this position and with the appropriate width corresponding to this
scale. One way to evaluate the most significant regions of the time-frequency domain is to
compare the transformed data with the transform of a null first-order autoregressive process
with the same variance; thus, we allow for some variability as we scan along the data from
left to right, and identify those regions (black contours in the figures) with wavelet power
significantly above the null expectation.

Observe that highest power (red color) is seen in Figure 2.14 at the broadest scales (long
periods) and at very fine scales. The former reflects the centromeric and telomeric decline
in recombination rate, and we see that the centromeric decline has a more pronounced effect
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on the largest periods (though we caution that these signals are below the cone of influence,
a region whose wavelet transform may be unduly distorted by edge effects [79]). Analogous
patterns are evident in the other chromosome arms (Figures 2.15–2.18). Notice also that very
fine-scale variation is manifested in high power regions at small periods (e.g., Figure 2.14,
right-hand plots). While there exists some previous evidence for localized fine-scale variation
in recombination rate in D. melanogaster [71], our finding that it is widespread across the
genome is novel.
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Figure 2.14: Local wavelet power spectrum of recombination rate variation across
chromosome arm 2L. The whole arm is shown on the left, and a detailed (central) 1 Mb is
shown on the right, for RAL and RG. Black contours denote regions of significant power at the
5% level, and the white contour denotes the cone of influence. Color scale is relative to a white
noise process with the same variance. Lower panels show estimates of the corresponding
recombination maps.
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Figure 2.15: Local wavelet power spectrum of recombination rate variation in
chromosome arm 2R. A power spectrum is shown for RAL and RG. Black contours
denote regions of significant power at the 5% level, and the white contour denotes the cone
of influence. Color scale is relative to a white-noise process with the same variance. The
lower panels shows estimates of the corresponding genetic maps.
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Figure 2.16: Local wavelet power spectrum of recombination rate variation in
chromosome arm 3L. A power spectrum is shown for RAL and RG. Black contours
denote regions of significant power at the 5% level, and the white contour denotes the cone
of influence. Color scale is relative to a white-noise process with the same variance. The
lower panels shows estimates of the corresponding genetic maps.
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Figure 2.17: Local wavelet power spectrum of recombination rate variation in
chromosome arm 3R. A power spectrum is shown for RAL and RG. Black contours
denote regions of significant power at the 5% level, and the white contour denotes the cone
of influence. Color scale is relative to a white-noise process with the same variance. The
lower panels shows estimates of the corresponding genetic maps.
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Figure 2.18: Local wavelet power spectrum of recombination rate variation in
chromosome X. A power spectrum is shown for RAL and RG. Black contours denote
regions of significant power at the 5% level, and the white contour denotes the cone of
influence. Color scale is relative to a white-noise process with the same variance. The lower
panels shows estimates of the corresponding genetic maps.
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2.21.2 Correlation at Various Scales

Although there is some correlation in fine-scale variation between the two populations (for
example, its lower volatility in region 11.2–11.25 Mb of arm 2L; see the right column of
Figure 2.14), it is far from strong. To explore how well correlated the two maps are at each
scale, we computed the pairwise correlations between wavelet coefficients of the two maps,
after applying a discrete (Haar) wavelet transform following [72] (Figures 2.19, 2.20). This
choice of transform decomposes a dataset into a series of wavelet coefficients for each of a
discrete set of scales. The decomposition provides a series of detail coefficients measuring
changes between neighboring observations, and a series of smooth coefficients which provides
a smooth approximation of the original signal [24]. The correlation, at a given scale, between
the detail coefficients of the wavelet transform of two maps can then be computed, and
those with significantly high correlation identify the scales at which the two maps do co-
vary. Across all arms and across all except the broadest scales there is a highly significant
correlation in the variability of the two maps (Kendall’s rank correlation, two-tailed test at
1% significance). The lack of correlation at broader scales is probably due to lack of power:
for example, at the 1% level there are too few data points for this test to have any power at
any scale broader than 4 Mb.

Given the similarities between the two populations, it is perhaps not surprising that their
recombination rates are highly correlated when assessed globally. To further elucidate how
this correlation varies in different regions of the genome, we performed a wavelet coherence
analysis, which can be regarded informally as calculating a squared correlation coefficient
between the variation of the two maps at each position as well as at each scale. Wavelet
coherence analysis thus evaluates correlations in local, rather than global, power. Results
are shown in Figures 2.21 and 2.22. It is clear that the correlation between the two maps is
found nonuniformly along the chromosome. While there is high correlation at all positions at
the broadest (megabase) scales, at smaller scales there exist regions of very low correlation,
even when the overall correlation between the two maps at this scale is high. For example,
the average coherence between the two maps at the 256 kb scale is 0.59 over the whole of
2L, compared to only 0.19 in the region 5–6 Mb. (Note that the persistently high correlation
seen near position 20 Mb across many scales, reflects a particular region of missing data
in both populations, and hence flat recombination.) Although the existence of regions of
low coherence is partly explained by statistical error (Figure 2.23), it does not explain the
drop fully. Thus, at least some isolated regions of low correlation are consistent with the
idea that biological differences between the two populations create local differences in the
recombination rate.
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Figure 2.19: Pairwise correlation of detail wavelet coefficients of RAL and RG
recombination maps for chromosome arm 2L. Black circles denote Kendall’s rank
correlation between pairs of detail coefficients at each scale. Crosses denote the correlation
that would be required for significance at the 1% level in a two-tailed test; red crosses are
those scales at which the correlation is in fact significant.
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Figure 2.20: Pairwise correlation of detail wavelet coefficients of RAL and RG
recombination maps for chromosome arms 2R, 3L, 3R, and X. Black circles denote
Kendall’s rank correlation between pairs of detail coefficients at each scale. Crosses denote
the correlation that would be required for significance at the 1% level in a two-tailed test;
red crosses are those scales at which the correlation is in fact significant.
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Figure 2.21: Wavelet coherence analysis comparing RAL against RG. (Left):
Wavelet coherence of the two maps for chromosome arm 2L. The cone of influence is shown
in white. (Right): For each arm, the plot shows the fraction of the genome with significantly
high coherence at the 5% level, at each scale.
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some arms 2R, 3L, 3R, X. The cone of influence is shown in white.
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Figure 2.23: Positive control for wavelet coherence analysis. (Left): Coherence plot
for two independent estimates of the recombination map across chromosome arm 2L using
the same (RG) dataset. (Right): The fraction of chromosome arm 2L with significantly high
coherence at the 5% level, at each scale.
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2.22 Correlation of Recombination Rates with Other

Genomic Features

The use of wavelets enables us to compare how changes in the rate of recombination along the
genome correlate with other genomic features. For each population we computed pairwise
correlations between the detail coefficients of the following features: diversity (mean frac-
tion of pairwise differences between each individual in the population, within sequenced nu-
cleotides), divergence (fraction of differences between the reference sequences of melanogaster
and simulans), GC content, gene content (fraction of sites annotated as exonic), and se-
quence quality (Phred score), as well as the recombination rate, with each feature measured
in 250 bp windows. Results are shown in Figures 2.24 and 2.25, and follow a similar analysis
performed by Spencer et al. [72] on human data. From these results we can make a number
of observations detailed below.

2.22.1 The Power Spectra of Each Genomic Feature

As in humans, we find the greatest heterogeneities in divergence and GC content at the
finest scales, and in gene content at intermediate scales. Heterogeneity in diversity and
recombination are strikingly different when we compare RAL and RG: recombination shows
the greatest heterogeneity at fine scales in RAL and at intermediate scales in RG (as in
humans); the reverse is true of diversity. These patterns are broadly repeated for each arm
(Figure 2.25), although it should be noted that the lack of heterogeneity in recombination at
fine scales in the RG data may partly be a consequence of its high background recombination
rate leading to lower resolution (as discussed above; see Figure 2.1). Limitations such as
these notwithstanding, the broad agreement between chromosome arms gives ground for
optimism that the signals are not swamped by noise.

2.22.2 Pairwise Covariation of Genomic Features

The off-diagonal plots in Figure 2.24 provide a great deal of information about the covariation
of several pairs of genomic features. Some are predictable and also found in humans [72].
For example, there is a strong positive correlation between diversity and divergence at fine
and intermediate scales, consistent with variation in mutation rates at different positions in
the genome. As a second example, both the negative correlation between gene content and
diversity and the negative correlation between gene content and divergence are predicted by
the observation that exons tend to be under greater selective constraint.

Perhaps the most notable difference between D. melanogaster and humans is seen when
we examine the correlation between recombination and diversity. In humans this correlation
is weak and extends only up to approximately the 4 kb scale. Spencer et al. [72] therefore
infer that the influence of recombination on changes in diversity is primarily local in nature
and driven by recombination hotspots. In D. melanogaster—for both the RAL and RG
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Figure 2.24: Global wavelet power spectrum and pairwise correlations of detail
wavelet coefficients of RAL and RG data for chromosome arm 2L. Diagonal plots
show the global wavelet power spectrum of each feature of the RAL (blue) and RG (red)
data. Off-diagonal plots show Kendall’s rank correlation between pairs of detail coefficients at
each scale, with respect to the wavelet decomposition of the two indicated features. Crosses
denote the correlation that would be required for significance at the 1% level in a two-tailed
test; red crosses are those scales at which the correlation is in fact significant. The bottom
left and top right plots correspond to RAL and RG, respectively.
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data—the positive correlation between recombination and diversity is stronger and acts up
to intermediate scales, approximately 2–256 kb. Interestingly, the correlation at very fine
scales, < 2 kb, is weaker and for some chromosome arms nonsignificant (see Figure 2.25).
These findings suggest both that a local influence of recombination hotspots on diversity is
weaker or absent in D. melanogaster, consistent with the paucity of hotspots found in our
search described above, and that some other phenomenon exerts an effect on diversity, but
not divergence, over much larger scales. Clearly, one candidate is the action of selection,
whose impact on the correlation between recombination and diversity is well appreciated [8,
9, 48, 71, 74, 49]. The scale up to which we have been able to detect this correlation, around
256 kb (with some differences according to the population and chromosome arm examined),
is surprisingly large given that the footprints of selective sweeps are typically in the region
of up to ∼ 20 kb [69, 49].

Finally, it is notable that there is a significant negative correlation between the recom-
bination rate and gene content at intermediate scales, in both RAL and RG and across all
chromosome arms (though the signal is weaker on the X chromosome). This is consistent
with the apparent preference for crossovers to occur outside exonic sequence [61], although
we note that the effect does not appear to act at the finest scales—recall also that all but
one of the putative hotspots identified in Table 2.15 do in fact overlap with exonic sequence.

2.22.3 A Linear Model Analysis

Given the strong but imperfect correlation between the recombination maps of RAL and RG,
can we use the same genomic features to predict the regions in which the two maps might
differ? To extend the analysis above and to address this question, we used a linear model
analysis of the wavelet coefficients of each recombination map, using wavelet coefficients of
other features as predictors. This analysis is similar to that described in [72], though their
interest was in the prediction of changes in diversity rather than recombination. For each
population and at each scale, we fit a linear model for the detail coefficients of the recom-
bination map using as predictors the detail coefficients of wavelet transforms of sequence
quality, gene content, GC content, divergence, and diversity (Tables 2.16A, 2.17A–2.20A).
We find changes in diversity to be a strong predictor of changes in recombination across
all chromosome arms and across many scales, though the effect is on some arms somewhat
weaker (and nonsignificant) at the finest scales. Again, this is in contrast to the primarily
local relationship between changes in diversity and recombination in humans. In addition
to diversity, there are additional positive influences of GC content and sequence quality at
fine scales; a weak negative influence of gene content at intermediate scales; and, in RG
only, a negative influence of sequence quality at broad scales. Each of these signals is much
weaker on the X chromosome (Table 2.20A), except the influence of diversity as a predictor
of recombination, which still extends up to the megabase scale despite much higher absolute
rates of recombination on this chromosome. The positive association between GC content
and recombination is consistent with biased gene conversion [72, 74] and/or codon bias [18,
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74], though we note an apparent negative correlation between GC content and recombination
at broader scales (Figures 2.24, 2.25).

When the recombination map from the other population is added as an additional co-
variate, it is the strongest predictor of recombination rate at all but the broadest scales (Ta-
bles 2.16B, 2.17B–2.20B). Of the remaining covariates, those which were previously highly
significant predictors now generally have reduced impact. However, their p-values at several
scales are still highly significant, indicating that they offer explanatory power of the recombi-
nation rate over and above that provided by the recombination map of the other population.
In particular, diversity remains a strong positive predictor of levels of recombination over
most scales.
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Table 2.16: Linear model for wavelet transform of recombination map of chromo-
some arm 2L. (A) In a linear model for the detail coefficients of the wavelet transform
of the recombination map of chromosome arm 2L, covariates are the detail coefficients of
wavelet transforms of data quality, gene content, GC content, divergence, and diversity.
Shown is the –log10 p-value of the regression coefficient at the given scale, as determined by a
t-test. Colored boxes indicate significant relationships, with red positive and blue negative.
Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.

A
RAL

Quality 9.12 24.88 28.77 15.26 8.04 1.54 1.09 1.31 0.10 1.78 0.65 0.05
Exons 0.41 1.26 0.97 2.08 1.48 4.92 8.73 6.24 0.73 0.92 0.11 0.04
GC 2.69 7.53 5.38 4.56 0.07 0.39 0.37 1.61 0.68 0.16 0.46 0.89
Divergence 0.54 0.97 0.09 0.35 0.13 0.76 0.64 1.65 0.36 1.16 0.11 0.04
Diversity 5.58 4.96 10.00 14.84 17.00 13.08 17.72 6.76 12.34 1.29 4.92 3.04
Adjusted r2 0.00 0.01 0.02 0.03 0.05 0.10 0.25 0.24 0.39 0.20 0.50 0.67
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

Quality 16.21 18.92 7.47 1.13 0.25 6.56 0.37 4.26 4.36 2.66 2.34 0.69
Exons 1.03 0.65 0.70 0.33 0.77 1.30 3.92 1.52 0.84 0.68 0.31 0.33
GC 2.64 4.08 3.11 3.70 1.00 0.07 0.05 0.12 0.18 0.32 1.90 0.52
Divergence 0.04 0.28 0.15 1.02 0.33 0.40 0.63 0.37 0.01 0.27 0.06 0.14
Diversity 6.25 3.67 6.53 17.21 17.18 33.27 17.58 19.02 16.15 5.11 5.93 4.41
Adjusted r2 0.00 0.01 0.01 0.03 0.05 0.15 0.23 0.38 0.48 0.38 0.61 0.81
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

B
RAL

RG map 23.24 45.06 57.62 47.49 43.80 35.86 15.95 11.87 5.46 2.92 2.91 1.38
Quality 8.01 20.57 23.00 11.61 4.78 1.01 0.47 0.78 0.27 1.10 0.61 0.03
Exons 0.33 1.21 0.92 2.17 1.28 3.71 4.73 3.58 0.29 0.64 0.25 0.04
GC 2.49 6.28 4.26 3.34 0.06 0.30 0.16 1.32 0.60 0.25 0.14 0.35
Divergence 0.52 0.80 0.00 0.25 0.09 0.89 0.59 0.94 0.65 0.90 0.19 0.14
Diversity 5.13 4.20 7.64 10.73 11.31 7.82 11.14 1.96 5.93 0.31 2.22 0.52
Adjusted r2 0.00 0.02 0.05 0.08 0.14 0.23 0.34 0.38 0.48 0.32 0.66 0.76
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

RAL map 23.67 45.22 58.36 46.84 41.39 31.87 14.06 9.17 4.05 3.02 1.97 1.46
Quality 15.72 15.23 3.52 0.25 0.14 7.04 0.48 2.75 2.98 1.41 1.11 0.11
Exons 1.00 0.45 0.37 0.07 0.09 0.03 1.52 0.36 0.53 0.25 0.50 0.26
GC 2.47 3.30 2.27 2.18 0.34 0.26 0.02 0.30 0.15 0.22 1.20 0.10
Divergence 0.07 0.23 0.28 0.70 0.10 0.46 0.51 0.39 0.12 0.68 0.06 0.73
Diversity 5.94 3.25 5.34 13.01 11.13 23.81 10.44 11.85 8.38 4.31 2.84 1.26
Adjusted r2 0.01 0.02 0.04 0.08 0.14 0.26 0.32 0.47 0.53 0.48 0.68 0.87
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024
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Table 2.17: Linear model for wavelet transform of recombination map of chromo-
some arm 2R. (A) In a linear model for the detail coefficients of the wavelet transform
of the recombination map of chromosome arm 2R, covariates are the detail coefficients of
wavelet transforms of data quality, gene content, GC content, divergence, and diversity.
Shown is the –log10 p-value of the regression coefficient at the given scale, as determined by a
t-test. Colored boxes indicate significant relationships, with red positive and blue negative.
Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.

A
RAL

Quality 6.58 15.49 16.81 8.92 14.46 8.80 7.43 3.41 4.87 8.08 1.87 1.83
Exons 0.85 0.81 1.86 2.04 6.98 8.46 6.06 4.21 4.16 3.86 1.17 0.38
GC 4.04 1.76 1.80 1.45 3.00 2.28 0.22 0.60 0.35 0.71 0.08 0.21
Divergence 0.17 0.04 0.07 1.91 1.11 0.53 0.54 0.69 0.16 0.31 0.14 0.03
Diversity 4.60 2.95 2.73 5.35 8.12 6.47 12.05 6.43 2.13 1.87 1.48 2.09
Adjusted r2 0.00 0.00 0.01 0.02 0.07 0.11 0.24 0.27 0.31 0.58 0.37 0.68
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

Quality 1.27 4.36 1.33 0.32 0.11 0.24 1.53 0.32 0.23 2.46 0.01 0.20
Exons 0.14 2.28 2.66 1.39 0.93 4.25 0.94 0.89 1.03 1.64 0.07 0.19
GC 2.00 3.36 3.43 0.31 0.60 0.40 0.01 1.77 0.07 0.01 0.94 0.00
Divergence 0.42 1.29 0.20 1.14 0.01 0.13 0.15 3.18 0.02 0.32 0.17 0.30
Diversity 4.66 7.62 12.99 16.49 18.25 16.75 25.88 16.68 11.90 2.83 6.13 1.44
Adjusted r2 0.00 0.00 0.01 0.02 0.05 0.12 0.28 0.38 0.44 0.56 0.67 0.51
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

B
RAL

RG map 26.17 35.32 47.13 56.43 56.31 43.22 24.41 13.19 19.89 5.76 5.53 3.08
Quality 6.41 13.74 15.17 6.56 8.49 3.74 4.17 2.18 0.66 3.51 0.28 1.30
Exons 0.87 0.61 1.34 1.43 5.53 4.38 3.56 1.79 0.77 2.25 1.12 0.10
GC 3.79 1.38 1.17 1.35 2.09 2.58 0.70 0.75 0.47 0.64 0.32 0.53
Divergence 0.14 0.01 0.05 2.45 1.08 0.77 0.48 1.46 0.75 0.10 0.12 0.22
Diversity 4.36 2.45 1.60 3.12 4.43 2.63 3.43 2.35 1.44 1.37 0.23 1.41
Adjusted r2 0.00 0.01 0.04 0.08 0.17 0.26 0.39 0.41 0.66 0.71 0.72 0.89
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

RAL map 25.95 35.44 46.67 55.63 56.75 40.87 21.47 7.92 16.56 4.34 3.31 3.12
Quality 0.96 3.25 0.46 0.29 0.38 0.72 1.77 0.11 0.26 0.42 0.27 0.71
Exons 0.19 2.08 2.19 0.75 0.00 1.56 0.14 0.26 0.39 0.07 0.43 0.04
GC 1.78 3.14 3.22 0.07 0.24 0.57 0.48 1.69 0.33 0.14 0.60 0.11
Divergence 0.41 1.26 0.20 1.62 0.25 0.28 0.04 4.04 1.11 0.47 0.13 0.83
Diversity 4.32 7.03 11.83 13.79 12.66 9.62 13.96 7.99 4.18 1.48 2.74 0.14
Adjusted r2 0.00 0.01 0.03 0.08 0.16 0.26 0.40 0.45 0.69 0.66 0.79 0.84
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024
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Table 2.18: Linear model for wavelet transform of recombination map of chromo-
some arm 3L. (A) In a linear model for the detail coefficients of the wavelet transform
of the recombination map of chromosome arm 3L, covariates are the detail coefficients of
wavelet transforms of data quality, gene content, GC content, divergence, and diversity.
Shown is the –log10 p-value of the regression coefficient at the given scale, as determined by a
t-test. Colored boxes indicate significant relationships, with red positive and blue negative.
Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.

A
RAL

Quality 5.37 12.20 14.07 20.63 2.92 12.72 6.05 7.51 0.83 1.99 1.25 0.38
Exons 0.43 0.78 2.09 1.53 2.01 7.33 6.95 2.57 3.70 2.20 0.66 0.99
GC 5.97 6.33 5.22 1.35 0.08 0.68 0.19 0.07 0.11 1.21 0.78 1.19
Divergence 0.54 2.58 0.35 0.32 2.31 0.17 0.29 1.00 1.15 0.44 0.16 0.72
Diversity 4.43 4.38 4.75 7.53 9.94 11.01 10.18 9.91 5.50 4.15 4.29 5.65
Adjusted r2 0.00 0.00 0.01 0.03 0.04 0.15 0.20 0.25 0.43 0.51 0.67 0.88
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

Quality 5.10 14.22 4.30 2.43 0.04 1.09 6.09 2.31 3.42 0.64 0.61 1.39
Exons 0.68 1.03 0.66 1.09 1.96 5.03 4.20 1.71 0.95 0.21 0.08 1.44
GC 2.55 6.96 1.92 2.04 0.35 0.17 0.51 0.06 0.63 0.48 1.17 2.18
Divergence 0.02 1.23 0.51 1.68 0.38 1.21 0.02 1.04 0.17 0.08 1.38 0.22
Diversity 1.32 2.15 0.98 7.62 11.60 16.57 21.79 17.20 15.68 6.32 9.02 7.14
Adjusted r2 0.00 0.01 0.00 0.01 0.03 0.11 0.23 0.32 0.51 0.41 0.79 0.92
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

B
RAL

RG map 18.62 48.20 38.39 50.24 44.70 18.86 10.64 11.14 2.40 1.23 3.20 0.96
Quality 4.78 9.81 12.15 15.93 1.19 9.82 5.68 5.86 0.63 1.57 0.83 0.22
Exons 0.49 0.69 1.96 1.19 1.26 5.20 4.60 1.39 3.29 1.78 0.67 0.31
GC 5.57 4.87 4.41 0.65 0.03 0.37 0.08 0.35 0.07 1.12 0.71 0.58
Divergence 0.54 2.53 0.31 0.09 3.10 0.03 0.15 0.68 0.98 0.49 0.59 0.29
Diversity 4.04 4.04 4.19 5.13 5.46 5.89 6.51 4.43 3.62 3.16 1.01 1.69
Adjusted r2 0.00 0.02 0.03 0.08 0.13 0.21 0.26 0.37 0.46 0.53 0.78 0.90
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

RAL map 18.81 47.84 38.36 52.65 45.56 22.02 10.01 11.77 1.12 0.91 2.29 0.68
Quality 4.64 11.65 2.28 0.51 0.12 3.09 7.53 3.66 3.53 0.72 1.06 0.68
Exons 0.74 0.86 0.36 0.66 1.16 2.21 1.98 0.44 0.41 0.01 0.13 1.24
GC 2.28 6.23 1.53 2.27 0.43 0.55 0.57 0.34 0.65 0.73 0.70 1.33
Divergence 0.04 0.84 0.34 1.40 0.95 0.97 0.03 0.65 0.12 0.01 1.58 0.15
Diversity 1.22 1.84 0.79 6.78 8.08 14.22 17.11 12.63 12.85 4.94 4.50 2.29
Adjusted r2 0.00 0.02 0.02 0.07 0.12 0.19 0.29 0.44 0.52 0.42 0.84 0.93
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024
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Table 2.19: Linear model for wavelet transform of recombination map of chromo-
some arm 3R. (A) In a linear model for the detail coefficients of the wavelet transform
of the recombination map of chromosome arm 3R, covariates are the detail coefficients of
wavelet transforms of data quality, gene content, GC content, divergence, and diversity.
Shown is the –log10 p-value of the regression coefficient at the given scale, as determined by a
t-test. Colored boxes indicate significant relationships, with red positive and blue negative.
Also shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.

A
RAL

Quality 9.15 14.12 11.51 12.13 10.37 6.99 8.05 4.26 2.38 0.94 0.05 1.62
Exons 0.43 0.27 1.90 2.09 1.55 5.62 2.18 7.94 3.02 2.05 0.77 1.07
GC 2.98 2.98 1.60 0.70 0.03 0.96 0.77 0.15 0.25 0.27 0.22 1.69
Divergence 0.20 1.30 0.19 0.12 0.10 0.21 0.31 0.50 1.58 0.05 0.03 0.90
Diversity 0.80 8.81 10.73 18.82 27.24 22.71 14.83 5.81 5.20 2.82 0.97 1.43
Adjusted r2 0.00 0.00 0.01 0.03 0.09 0.16 0.21 0.30 0.41 0.40 0.28 0.30
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

Quality 9.14 13.46 15.50 4.82 2.54 1.17 0.31 0.69 0.63 0.97 0.24 1.03
Exons 0.91 1.49 2.89 1.74 2.21 4.51 4.51 6.63 1.60 2.60 0.33 0.01
GC 0.83 1.20 0.97 0.78 0.40 0.45 0.29 0.56 0.88 0.76 0.04 1.95
Divergence 0.23 0.10 0.36 0.38 0.25 0.37 0.41 0.22 0.49 0.03 0.33 0.45
Diversity 8.78 9.10 13.83 17.23 28.09 20.90 18.50 13.66 8.64 7.76 2.90 3.86
Adjusted r2 0.00 0.01 0.02 0.04 0.10 0.17 0.26 0.43 0.37 0.58 0.33 0.74
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

B
RAL

RG map 29.79 58.35 45.48 34.45 46.73 19.13 20.15 7.80 3.20 3.26 1.88 2.45
Quality 8.38 11.65 7.59 9.29 6.03 3.49 5.18 3.95 1.89 0.57 0.19 1.89
Exons 0.39 0.17 1.31 1.59 0.70 2.93 0.10 2.93 2.16 1.34 0.94 0.82
GC 2.82 2.56 1.21 0.51 0.07 0.93 1.49 0.35 0.21 0.01 0.32 1.32
Divergence 0.20 1.50 0.16 0.33 0.24 0.18 0.27 1.04 1.42 0.18 0.16 1.84
Diversity 0.62 7.46 9.44 14.87 17.74 17.88 11.07 2.81 3.70 1.04 0.30 0.07
Adjusted r2 0.01 0.02 0.04 0.07 0.18 0.23 0.33 0.39 0.46 0.50 0.41 0.68
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

RAL map 29.31 57.37 44.51 33.51 43.57 17.01 14.23 6.82 1.69 1.97 1.82 0.56
Quality 8.19 10.13 12.58 3.36 1.65 0.79 0.51 1.11 0.60 0.61 0.36 0.38
Exons 0.85 1.37 2.28 1.27 1.36 2.58 3.07 3.26 0.49 1.17 0.91 0.03
GC 0.70 1.14 0.82 0.85 0.43 0.58 0.26 0.36 0.39 0.45 0.17 0.61
Divergence 0.20 0.25 0.39 0.45 0.18 0.34 0.27 0.40 0.29 0.06 0.27 0.62
Diversity 8.47 8.34 12.01 13.28 16.81 14.23 9.86 10.33 5.87 4.80 2.44 2.29
Adjusted r2 0.01 0.02 0.04 0.07 0.19 0.23 0.34 0.49 0.39 0.62 0.45 0.75
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024
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Table 2.20: Linear model for wavelet transform of recombination map of chromo-
some X. (A) In a linear model for the detail coefficients of the wavelet transform of the
recombination map of chromosome arm X, covariates are the detail coefficients of wavelet
transforms of data quality, gene content, GC content, divergence, and diversity. Shown is
the –log10 p-value of the regression coefficient at the given scale, as determined by a t-test.
Colored boxes indicate significant relationships, with red positive and blue negative. Also
shown in the adjusted r2. (B) As above, but with the recombination map of the other
population as an additional covariate.

A
RAL

Quality 2.46 4.71 3.64 2.48 0.82 0.62 0.36 0.11 2.11 0.54 0.35 1.57
Exons 1.43 2.11 0.03 1.18 0.31 0.10 2.18 1.95 0.79 2.11 0.53 1.51
GC 1.54 2.02 2.11 0.91 0.71 0.01 1.61 0.68 0.01 0.01 0.47 1.19
Divergence 0.11 0.03 0.05 0.13 0.02 0.01 0.65 0.02 0.26 0.45 0.08 1.01
Diversity 0.55 0.59 2.26 5.30 11.04 13.94 19.30 11.85 6.16 1.93 0.24 3.21
Adjusted r2 0.00 0.00 0.00 0.01 0.02 0.05 0.18 0.23 0.25 0.28 0.03 0.57
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

Quality 1.68 0.81 0.36 1.41 4.81 8.64 10.49 3.12 1.48 0.12 0.15 1.15
Exons 0.48 0.90 0.06 0.53 0.16 0.11 0.11 2.35 0.62 2.73 0.67 0.01
GC 0.32 2.13 1.30 1.18 1.67 0.65 0.12 0.36 0.11 0.63 0.95 1.70
Divergence 0.04 0.14 0.61 0.97 1.24 0.08 0.02 0.31 0.94 0.45 0.13 0.23
Diversity 3.33 5.88 3.24 5.29 15.37 26.97 24.56 17.46 12.69 4.25 2.75 3.89
Adjusted r2 0.00 0.00 0.00 0.01 0.03 0.11 0.20 0.37 0.43 0.43 0.51 0.75
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

B
RAL

RG map 1.75 3.74 11.81 13.72 25.39 17.48 13.42 8.96 6.38 2.70 2.45 0.82
Quality 2.39 4.36 3.13 2.23 0.81 0.36 0.20 0.25 1.02 0.22 0.24 0.40
Exons 1.44 2.17 0.02 1.32 0.24 0.07 1.49 0.53 0.38 1.28 0.01 1.26
GC 1.53 1.93 1.90 0.77 0.34 0.26 1.58 0.70 0.31 0.34 0.21 0.84
Divergence 0.11 0.03 0.02 0.06 0.16 0.02 0.81 0.00 0.41 0.73 0.64 0.56
Diversity 0.52 0.53 1.98 4.71 8.50 8.98 12.52 4.94 3.23 0.91 0.07 1.44
Adjusted r2 0.00 0.00 0.01 0.02 0.07 0.12 0.27 0.33 0.39 0.38 0.24 0.62
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024

RG

RAL map 1.79 4.04 12.42 14.08 25.45 17.84 14.48 10.32 5.67 3.11 3.02 0.49
Quality 1.64 0.74 0.22 1.71 5.11 8.45 10.35 2.62 1.60 0.03 0.01 0.66
Exons 0.50 0.96 0.04 0.74 0.02 0.17 0.24 1.58 0.37 1.24 0.36 0.18
GC 0.30 2.05 1.12 1.03 1.33 0.58 0.31 0.13 0.07 0.38 0.78 1.44
Divergence 0.04 0.14 0.61 0.97 1.22 0.12 0.11 0.30 1.10 0.80 0.36 0.24
Diversity 3.33 5.91 3.39 4.85 13.05 22.64 18.24 12.28 9.12 3.38 3.33 1.89
Adjusted r2 0.00 0.00 0.01 0.02 0.09 0.18 0.29 0.47 0.52 0.53 0.67 0.75
Scale (kb) 0.5 1 2 4 8 16 32 64 128 256 512 1024
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Figure 2.25: Global wavelet power spectrum and pairwise correlations of detail
wavelet coefficients of RAL and RG data for chromosome arms 2R, 3L, 3R,
and X. Diagonal plots show the global wavelet power spectrum of each feature of the RAL
(blue) and RG (red) data. Off-diagonal plots show Kendall’s rank correlation between pairs
of detail coefficients at each scale, with respect to the wavelet decomposition of the two
indicated features. Crosses denote the correlation that would be required for significance at
the 1% level in a two-tailed test; red crosses are those scales at which the correlation is in
fact significant. The lower left triangle and upper right triangle of plots correspond to RAL
and RG, respectively.
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Chapter 3

Particle Filtering in the SMC

3.1 Introduction

We use a special case of sequential importance sampling (SIS) called particle filtering [21]
to perform Bayesian inference on haplotype data under the sequentially Markov coalescent
(SMC) [58, 14]. We propose genealogies with at most one mutation to reduce the state
space of the inference procedure, and consider only the segregating sites and the number
of bases between them. We further assume that the ancestral allele is known, though it is
straightforward to place a prior on the ancestral allele and adjust the inference accordingly.

Consider a discrete-time Markov process {Xj}Lj=1, where Xj is the two-locus ARG for
SNPs j and j − 1, and

X1 ∼ µ(x1)

Xj | (Xj−1 = xj−1) ∼ f(xj | xj−1).

The variable j indexes the SNPs in the haplotype data, which consists of L+1 SNPs, starting
from SNP 0 and ending at SNP L.

We wish to estimate {Xj} but only observe {Yj}j=Lj=0 . Each haplotype is in {0, 1}L+1,
where 0 denotes an ancestral allele and 1 denotes a derived allele. We assume that given
{Xj}, the observations {Yj} are statistically independent and their marginal densities are
given by

Yj | (Xj = xj) ∼ g(yj | xj).

We assume a constant-sized population and that the population-scaled mutation rate θ
and the population-scaled recombination rate ρ are known.

3.2 Sampling Procedure

Particle filtering requires sampling independent particles from a proposal distribution and
weighting them according to an importance weight. The weighted particles, with normalized
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weights, serve as an approximation to the target distribution. The sampling algorithm
operates as follows.

For n = 1:

1. Sample trees T i0 conditioned on y0 according to Wiuf and Donnelly [83].

2. Apply the transition function to T i0 to obtain X i
1.

3. Compute the weights

w1(X i
1) =

g(y1 | X i
1)µ(X i

1)

q(X i
1)

.

and let W i
1 be the normalized weights.

For j = 2 . . . L:

1. Sample X i
j ∼ q(Xj | yj, X i

j−1).

2. Compute the incremental weights

αj(X
i
j−1:j) =

g(yj | X i
j)f(X i

j | X i
j−1)

q(X i
j | yj, X i

j−1)
.

and let W i
j be the normalized weights.

Denote by tj,l the first (or left) marginal tree of xj and by tj,r the second (or right)
marginal tree of xj. Then g(yj | xj) is

g(yj | xj) = p(yj | tj,r)

=
γj
tj,r

[
θ

2
tj,re

− θ
2
tj,r

]
≈ γj
tj,r

[
θ
2
tj,r

1 + θ
2
tj,r

,

]

where γj is the length of the branch subtending all and only the derived alleles in tj,r, and
tj,r is the total branch length of the tree tj,r. The approximation is made assuming θ is
small. One way to view the approximation is as the probability of one mutation occurring
conditioned on the event that at most one mutation occurs. The transition probability
f(xj | xj−1) is

f(xj | xj−1) = p(xj | tj−1,r) =
p(xj)

p(tj−1,r)
.
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The incremental weight αj(xj−1:j) is given by

αj(xj−1:j) =
g(yj | xj)f(xj | xj−1)

q(xj | yj, xj−1)

=
p(yj | tj,r)p(xj | tj−1,r)

q(xj | yj, xj−1)

=
γj
tj,r

[
θ

2
tj,re

− θ
2
tj,r

]
p(xj)

p(tj−1,r)q(xj | yj, xj−1)

≈ γj
tj,r

[
θ
2
tj,r

1 + θ
2
tj,r

]
p(xj)

p(tj−1,r)q(xj | yj, xj−1)

The prior on the initial state, µ(x1), is the likelihood of x1,

µ(x1) = p(x1),

and the weight w1 is given by

w1(X i
1) =

g(y1 | X i
1)µ(X i

1)

q(X i
1)

=
γj
tj,r

[
θ
2
tj,r

1 + θ
2
tj,r

]
p(x1)

q(x1)
.

The following sections describe the proposal distribution we use in the particle filtering.

3.3 Continuous-time Markov Chain

The process generating ARGs can be viewed as a continuous-time Markov chain since the
process backward in time depends only on the current state. We begin with a description
of the state space, describe the construction of the infinitesimal generator, and demonstrate
applications of the generator. In the following, an ARG specifically refers to a two-locus
ARG unless otherwise noted.

3.3.1 State Space

Let [n], where n is a positive integer, be the set of integers from 1 to n. Let B be the power
set of [n] and define Y to be subsets Y ⊆ B where

∀y, y′ ∈ Y, y 6= y′ : y ∩ y′ = ∅⋃
y∈Y

y = [n]

∀y ∈ Y : y 6= ∅
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In other words, Y is a partition of [n] and Y is the set of possible partitions. The elements
of Y are called tree states and represent the state of a tree at any given point in time.

To incorporate the data into the Markov chain, define a color to be an element in C =
{∅, 0, 1}, where 0 indicates an ancestral lineage or allele, 1 indicates a derived lineage or
allele, and ∅ indicates an uncolored lineage or allele. Then the data for a given site can be
defined as D ∈ Cn, i.e. the alleles of the individuals at a given site. In this context, we
condition only on the data for the right tree of the ARG.

For notational purposes, we will need to define the following projection functions:
Pζ((l, r, c)) = l and PΩ((l, r, c)) = r, where (l, r, c) ∈ V = B × B × C. Informally, these
projection functions extract the left tree state and the right tree state, respectively, from an
ARG state, which is defined formally in the following. Furthermore, define C((l, r, c)) = c
to be a function that extracts the color from (l, r, c) ∈ V .

Define S to be subsets S ⊆ V where

∀s, s′ ∈ S, s 6= s′ : Pζ(s) ∩ Pζ(s′) = ∅
∀s, s′ ∈ S, s 6= s′ : PΩ(s) ∩ PΩ(s′) = ∅⋃
s∈S

Pζ(s) = [n]⋃
s∈S

PΩ(s) = [n]

∀s ∈ S : Pζ(s) 6= ∅ ∨ PΩ(s) 6= ∅
∀s ∈ S : PΩ(s) = ∅ → C(s) = ∅
∀s ∈ S : PΩ(s) 6= ∅ → C(s) ∈ {0, 1}

The elements of S are called ARG states and serve as the states in the continuous-time
Markov chain for generating ARGs. Another way to look at the ARG state is as a bipartite
matching between blocks of two partitions, where every block is labeled with a color (possibly
the null color). The blocks represent lineages, where the elements of each block indicate the
lineages that have coalesced to produce the combined lineage. It is possible that a block on
one side of the ARG will not be matched with a block from the other side of the block. In
that case, it is matched with the null set ∅ to indicate that it is not a joint lineage.

3.3.2 Infinitesimal Generator

Define the infinitesimal generator Q as follows. Let the components of Q be indexed by
(S, S ′) ∈ S × S.

Define s ∪ s′ for s, s′ ∈ V as

s ∪ s′ = (l, r, c) ∪ (l′, r′, c′) =


(l ∪ l′, r ∪ r′, c′) if c = c′

(l ∪ l′, r ∪ r′, c′) if c = ∅
(l ∪ l′, r ∪ r′, c) if c′ = ∅
∅ otherwise
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Intuitively, this is corresponds to the coalescence of two lineages. The color must match
for two lineages to coalesce, and once coalesced, a new lineage is formed and is represented
by the set of leaves contained by the lineage.

The components of the infinitesimal generator are then as follows.

QS,S′ =



1, if ∃s ∈ S, u ∈ S, s′ ∈ S ′ : s ∪ u = s′ ∧ S\{s, u} = S ′\{s′},
ρ
2
, if ∃s ∈ S, s′ ∈ S ′, u′ ∈ S ′ : s = s′ ∪ u′ ∧ S\{s} = S ′\{s′, u′},
θ
2
, ∃s ∈ S, s′ ∈ S ′ : Ĉ(s) = 1 ∧ Ĉ(s′) = 0 ∧ Pζ(s) = Pζ(s′),

∧ PΩ(s) = PΩ(s′) ∧ S\{s} = S ′\{s′},
−
∑

S′′ QS,S′′ , if S = S ′,
0, otherwise.

The above formula defines the infinitesimal generator of the continuous-time Markov
chain for constructing an ARG jointly with the data at its right locus. The first case with rate
1 represents a coalescence event, the second case with rate ρ/2 represents a recombination
event, and the third case with rate θ/2 represents a mutation event. These events are
transitions in the continuous-time Markov chain.

An ARG can be constructed from a continuous-time Markov chain of ARG states. The
initial state is wa1 = {({i}, {i}, Di)}ni=1 and the transitions follow Q. Recall that D ∈ Cn
and represents the data at the right locus of the ARG. A realization of the continuous-time
Markov chain with infinitesimal generator Q generates an ARG from the joint distribution of
the ARG and the data at its right locus. By running the Markov chain from the initial state
to a state containing only one lineage on each side of the tree, one can generate an ARG
from distribution on ARGs conditioned on the data. By using this infinitesimal generator in
the following sections, we compute several densities and likelihoods that are useful for the
proposal distribution.

3.4 ARG Densities

With Q in hand, we can now compute several quantities of interest. However, we first need
to define some additional notation. For joint event i, define the transition of the event to
be wi = (wti , w

a
i , w

b
i ) ∈ R × S × S, where wti is the waiting time until the event occurs, wai

is the source state, and wbi is the destination state. Define a sequence of joint events as
w = {wi}mi=1.

Define the following additional projection functions. For X ∈ S, let P̂ζ(X) = {Pζ(x) |
x ∈ X} ∈ V and let P̂ζ(wi) = (wti , P̂ζ(wai ), P̂ζ(wbi )) ∈ R×Y ×Y . These projection functions
extend the previous projection functions to operate on transitions (pairs of states). Finally,
given a matrix A, let Ai,j denote component (i, j) of the matrix. For an ARG described by
w,

p(w, D) =
m∏
i=1

Qwai ,w
b
i
exp(−Qwai ,w

b
i
wti).
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m is the total number of transitions in w. As an aside, m can be arbitrarily large because
the transitions in w might be recombination events, and the number of recombination events
in an ARG is unbounded. Again, recall that D ∈ Cn represents the alleles at the right locus
of the ARG. The above equation follows from the product of the densities of exponential
waiting times.

We now wish to compute the likelihood for a set of ARGs instead of a single ARG. We
will specify the set of ARGs with h, a subset of events describing an ARG, and integrate
over all the ARGs consistent with h. Namely, for a given h,

p(h, D) =

∫
f(h)

p(w, D)dw

where
f(h) = {w | ∀h ∈ h,∃w ∈ w : h = w}.

f(h) is the set of ARGs consistent with h.
To compute the above integral, we will use matrix exponentiation as in [35, 55]. Let

M (t) = exp(Qt). Then we have

p(h, D) =
m∏
i=1

∑
r∈S
r 6=hbi

M
hti
hai ,r

Qr,hbi
,

where m is the number of events in the ARG.
We now need to integrate over all ARGs consistent with a given left tree. For marginal

event i, define the transition to be vi = (vti , v
a
i , v

b
i ) ∈ R × Y × Y . Define a sequence of

marginal events as v = {vi}mi=1. For v describing the tree at the left locus of an ARG,

p(v, D) =

∫
g(v)

p(w, D)dw

where
g(v) = {w | ∀v ∈ v, ∃w ∈ w : v = P̂ζ(w)}.

g(v) is the set of ARGs consistent with a given left tree described by v. To compute the
above integral using matrix exponentiation, define

ξ(v) = {h | ∀v ∈ v,∃h ∈ h : v = P̂ζ(h) ∧ vt = ht}.

Then we have
p(v, D) =

∑
h∈ξ(v)

p(h, D). (3.1)

This can be computed efficiently using dynamic programming by recording the probabilities
for h ∈ S for every vti and using the Markov property.
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3.5 Conditioned Paths

The first step in sampling from the proposal distribution is to sample joint transitions con-
ditioned on the left tree. For every transition v in v describing the left tree, there is a set of
ARG transitions w consistent with v,

η(v) = {w ∈ V | P̂ζ(w) = v}

The computation of (3.1) requires recording the probabilities for h ∈ S for every vti . These
can be used to compute the probability of being in a given state at some vti . The density of
starting in S and making a transition from any state to S ′ at time t is

p(S
t→ S ′, D) =

∑
r∈S
r 6=S′

M t
S,rQr,S′ .

In the computation of (3.1), we constructed a dynamic programming table that records the
probabilities for every ARG state indexed by the times in v, meaning that we have a separate
set of probabilities for every vti . Recall that v is the sequence of coalescence transitions that
describe the left of the ARG, m is the number of elements in the sequence. In the dynamic
programming table, at each time vti , which are the times of the coalescence transitions in
the left tree of the ARG, we record the probability of being any state in S, which is the
space of all ARG states. (In practice, we only record states relevant to the transitions in
v, since conditioned on v, many states are will have zero probability and do not need to be
recorded.) To sample wm, we sample a final state from this table of probabilities indexed at
time vtm (the last time of v). Conditioned on the final state (Sm), we sample the previous
state Sm−1 at time m− 1 from the following distribution,

p(Sm−1, D) ∝
m−1∏
i=1

∑
r∈S
r 6=Sm

M
vtm−1

Sm−1,r
Qr,Sm .

Once Sm−1 is sampled, we recurse to sample the rest of Si for i = 1, . . . ,m− 2. These Si
then lead directly to w because any consecutive pair of Si, Si+1 defines a transition in the
Markov chain.

Note that this is only a subset of the entire number of transitions needed to define an
ARG uniquely, and this is where we use matrix exponentiation to integrate over all the other
possible events.

The normalization constant is computed by summing over the joint densities, which is
straightforward to execute. Therefore, this recursively samples conditioned transitions from
the final state back to the initial state. Although we now have a subset of the transitions
sampled, we still need to sample the remaining of the transitions in the ARG to produce a
particle. To do this, we will use a technique called uniformization.
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3.6 Uniformization

Uniformization [36] is a technique for transforming a continuous-time Markov chain into a
discrete-time Markov chain. Once in discrete-time form, a Markov chain is often easier to
analyze or use. In our context, we use uniformization to sample a path in a continuous-time
Markov chain conditioned on the initial state and the final state, and the total time of the
path t.

Define

P = I +
1

λ
Q,

where I is the identity matrix and λ is

λ = max
S
|QS,S|.

Let Z be the discrete-time Markov process, and let the initial state be S0 and the final
state be Sf . Then the number of transitions N occurring in time t is

P(N = n | Z0 = S0, Zn = Sf ) = e−λt
(λt)n

n!

P n
S0,Sf

M t
S0,Sf

.

The times of the transitions t1, . . . , tn are uniformly distributed over [0, t]. The transition
probabilities are

P(Zi = Si | Zi−1 = Si−1, Zn = Sf ) =
PSi−1,SiP

n−i
Si,Sf

P n−i+1
Si−1,Sf

Given the initial and final states, and the time between the two states, one can sample a
path satisfying the boundary conditions using the above transition probabilities.

3.7 Proposal Distribution

The procedure for sampling from the proposal distribution is summarized as follows.

1. Use matrix exponentiation to compute the quantities described above.

2. Sample a conditioned path given the left tree.

3. Conditioned on this path, use uniformization to sample the remaining joint transitions.

4. Project the resulting ARG onto the right tree.

This produces a particle from the optimal proposal distribution

p(Tn|Dn, Tn−1)

for n ≥ 2. For n = 1, we use the method from [83], described in Section 3.9, to sample
directly from the posterior.



CHAPTER 3. PARTICLE FILTERING IN THE SMC 90

3.8 Importance Weights

Because we sample from the optimal proposal distribution, the importance weights for sites
n ≥ 2 are

p(Dn, Tn | Tn−1)

q(Tn | Dn, Tn−1)
=
p(Dn, Tn | Tn−1)

p(Tn | Dn, Tn−1)

=
p(Dn, Tn, Tn−1)p(Dn, Tn−1)

p(Tn−1)p(Tn, Dn, Tn−1)

=
p(Dn, Tn−1)

p(Tn−1)

It is straightforward to compute p(Tn−1). We can compute p(Dn, Tn−1) using (3.1) since
p(Dn, Tn−1) = p(v, Dn), where Tn−1 is described by v.

3.9 Initial Tree

Wiuf and Donnelly [83] provide a way to sample from the posterior distribution on trees
conditioned on one mutation occurring on the tree. Let j be the number of derived lineages
remaining, and let k be the total number of lineages remaining (both ancestral and derived).
When j ≥ 2, two ancestral lineages coalesce with probability

k − j − 1

k − 1

and two derived lineages coalesce with probability

j

k − 1
.

When one derived lineage remains, the probability that two ancestral lineages coalesce is

k − 2

k − 1

and the probability that the remaining derived lineage mutates to an ancestral lineage is

1

k − 1
.

The times between transitions are exponentially distributed with rate(
k

2

)
.
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We marginalize over the mutation event as follows. First consider the proposal density
without marginalization. The density is the product of the following components: the jump
chain transitions, the waiting times, the ancestral lineage selection probabilities, and the
derived lineage selection probabilities.

The jump chain transitions and the derived lineage selection probabilities are the same
regardless of the tree (for a fixed number of derived alleles and ancestral alleles in the sample).
Namely, the probability of the jump chain transitions is

j(j − 1) . . . 1 · (l − 1)(l − 2) . . . 1

(j + l − 1)(j + l − 2) . . . 1
, (3.2)

where j is the initial number of derived alleles in the sample and l is the initial number of
ancestral alleles (hence j + l = n, where n is the sample size). The probability of selecting
the pairs of derived lineages for coalescence is(

j

2

)−1(
j − 1

2

)−1

. . .

(
2

2

)−1

. (3.3)

The waiting time for epoch r, where r indexes the epochs from the present to the past,
is the sum of two exponential random variables with rate

(
kr
2

)
, where kr is the number of

remaining lineages in the epoch.
The density of the waiting times is(

n

2

)(
n− 1

2

)
. . .

(
kr∗

2

)(
kr∗

2

)(
kr∗ − 1

2

)
. . .

(
2

2

)
× exp

(
−
[(
n

2

)
u1 +

(
n− 1

2

)
u2 + . . .+

(
kr∗

2

)
ur∗1 +

(
kr∗

2

)
ur∗2

+

(
kr∗ − 1

2

)
ur∗+1 + . . .+

(
2

2

)
un−1

])
, (3.4)

where r∗ is the epoch in which the mutation event occurs, and ui is the waiting time for
epoch i. ur∗1 is the waiting time from the coalescence event just before the mutation until
the mutation occurs, and ur∗2 is the waiting time from the time of the mutation until the
next coalescence event. (Note that the mutation event does not start another epoch.)

The probability of selecting the pairs of ancestral lineages for coalescence is(
l

2

)−1(
l − 1

2

)−1

. . .

(
kr∗

2

)−1(
kr∗

2

)−1(
kr∗ − 1

2

)−1

. . .

(
2

2

)−1

. (3.5)

Consider the epochs in which the mutation can occur for a given tree. These epochs are
the ones starting from the time when one derived lineage remains until the time this lineage
coalesces with the rest of the tree (after it experiences a mutation event). Supposing that
the mutation occurs in epoch r′, the density of the waiting time ur′ is(

kr′

2

)2

ur′e
−(kr′2 )ur′ .
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The proposal density qinitial for the initial tree where the mutation event occurs in epoch r∗

is the product of the probabilities for the jump chain (3.2), derived lineage pair selection (3.3),
ancestral lineage pair selection (3.5), and the waiting times (3.4). The marginalized proposal
density is

qinitial ·
(
kr∗
2

)(
kr∗
2

) ∑
r′

(
kr′
2

)2
ur′ exp

(
−
(
kr′
2

)
ur′
)(

kr′
2

)
·
(
kr′
2

)
exp

(
−
(
kr′
2

)
ur′
) = qinitial

∑
r′

ur′ = qinitial · γ,

where r′ is over all the epochs in which the mutation event can occur, and γ is the length of
the branch subtending all the derived alleles. Therefore, the importance weight, integrated
over the mutation event, is simply the non-integrated importance weight multiplied by γ.

3.10 Systematic Resampling

Systematic resampling is a resampling method that attempts to minimize the variance of
the importance weights. Rather than resampling according to the multinomial distribution,
systematic resampling proceeds by sampling

U1 ∼ Uniform([0, 1/N ])

and defining

Ui = U1 +
i− 1

N

for 1 ≤ i ≤ N , where N is the number of particles. The number of times particle j is
resampled is then

Nj =

∣∣∣∣∣
{
Uk

∣∣∣ j−1∑
i=1

Wj ≤ Uk <

j∑
i=1

Wj

}∣∣∣∣∣ ,
where Wj are the normalized particle weights.

This resampling approach is straightforward to implement and provides good performance
in a variety of situations. We perform resampling whenever the effective sample size (ESS)
falls below N/2, where the ESS is defined to be

ESS =
1∑
jW

2
j

.

For the initial site, because we use the method in [83] to sample from the optimal proposal
distribution, the ESS is always n, which is the heighest achievable ESS. For subsequent sites,
the ESS depends on the variance of p(Dn | Tn−1), which could potentially be large, leading
to a lower ESS. Intuitively, if the data at site n cannot be explained by the tree at the
previous site, then the particle filter will suffer from greater degeneracy. In other words,
particle filtering works best when the sequential distributions across sites do not vary too
quickly.
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3.11 Results

To evaluate the particle filtering method, we generated datasets using Hudson’s ms coalescent
simulator [37]. We fixed the parameters to ρ = 0.01 and θ = 0.001, with a constant popula-
tion size. We also conditioned on the number of segregating sites by repeatedly generating
datasets until a dataset of the desired number of segregating sites was obtained. Note that
this is different from the option in ms to “condition” on the number of segregating sites, as
ms will first generate a tree and place ea fixed number of mutations on it. This does not
produce the trees from the distribution conditioned on a given number of segregating sites.
We conditioned on 5 segregating sites and used a sample size of 4. We used a particle filter
wtih 1000 samples and compared the the estimate from using data at only one site compared
to conditioning on all the data. The summary statistics we used were tree length (the sum
of the branch lengths), time to most recent common ancestor (TMRCA), and the expected
age of of the mutation. Note that given a genealogy and assuming exactly one mutation, the
expected age of the mutation is the average between the TMRCA of the derived alleles and
the time when the MRCA of the derived alleles coalesces with an ancestral lineage. Figures
3.1, 3.2, and 3.3 show the posterior distributions for a single dataset.

The results show that the posterior distribution with this sample size is relatively dis-
persed, and that the actual variance of the summary statistics computed above is fairly high.
However, as one would expect, the use of more data to infer the properties of the distribution
on genealogies at any given site provides more accurate posterior inference. Conditioning on
a single site does not incorporate linkage disequilibrium information present in the data set.
When the recombination rate is low, the effects of linkage disequilibrium are stronger, and
the patterns of variation from the linkage disequilibrium can provide supporting evidence for
the posterior distribution.

Table 3.1 compares between the particle filtering and conditioning on a single site the
absolute relative error of the posterior mean with respect to the tree length, the TMRCA,
and the expected age of mutation, averaged over 100 datasets. The estimates from the
particle filtering can still have high variance due to the nature of the model and data. That
is, even the exact posterior distribution potentially has high variance and any estimate will
deviate somewhat from the truth. Due to the computational expense of the particle filtering,
conditioning on a dataset with a large sample size and many segregating sites would require
additional algorithmic improvements to scale the method.
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Figure 3.1: Estimate of tree length using particle filtering. The histogram shows the
posterior distribution on the tree length of the last site conditioned on all the data, using
particle filtering (PF), shown in blue; the posterior distribution on tree length conditioned
only on the last site, shown in green; and the true tree length, shown in black. The parameters
are ρ = 0.01, θ = 0.001, 5 segregating sites, a sample size of 4, and 1000 particles.

Table 3.1: Absolute relative error of estimates. The absolute relative error of the
estimates for tree length, TMRCA, and expected age of mutation are shown, comparing
the particle filtering method, which conditions on multiple sites, and the posterior estimate
conditioned on a single site. The relative error is averaged over 100 datasets, with ρ = 0.01,
θ = 0.001, 5 segregating sites, sample size of 4, and 1000 particles.

Tree length TMRCA Expected age of mutation
PF 0.362 0.370 0.260
one site 0.750 0.715 0.492
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Figure 3.2: Estimate of TMRCA using particle filtering. The histogram shows the
posterior distribution on the TMRCA of the last site conditioned on all the data, using
particle filtering (PF), shown in blue; the posterior distribution on the TMRCA conditioned
only on the last site, shown in green; and the true TMRCA, shown in black. The parameters
are ρ = 0.01, θ = 0.001, 5 segregating sites, a sample size of 4, and 1000 particles.
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Figure 3.3: Estimate of expected age of mutation using particle filtering. The
histogram shows the posterior distribution on the expected age of the mutation for the last
site conditioned on all the data, using particle filtering (PF), shown in blue; the posterior
distribution on the expected age of the mutation conditioned only on the last site, shown
in green; and the true expected age of the mutation, shown in black. The parameters are
ρ = 0.01, θ = 0.001, 5 segregating sites, a sample size of 4, and 1000 particles.
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Chapter 4

Discussion

We have developed a new method, LDhelmet, which is able to provide accurate estimates of
recombination rates using genomic data from D. melanogaster. Although our focus has been
on this species, the features of our method should offer improvements in the estimation of
recombination in other species too. For example, the desire to efficiently incorporate sites in
which some alleles are missing is a common issue when data are generated by next-generation
sequencing technologies. We believe that our method will find many further applications in
other datasets.

In addition, we have described a method using particle filtering for approximating pos-
terior genealogies under the SMC. The particle filtering proposal distribution uses matrix
exponentiation to integrate over the recombination events, and to compute the joint likeli-
hood of a marginal tree and the data. These quantities are used to sample from the optimal
proposal distribution, which is the posterior distribution on particles given the particle at
the previous site and the current data. Although our method in its current form works only
with small samples, we believe that with additional well-motivated approximations to the
method, it can be scaled to larger sample sizes.

4.1 Population Comparison

Using our method based on the composite likelihood approximation, LDhelmet, we have per-
formed a genome-wide comparison of fine-scale recombination rates between two populations
of D. melanogaster, one from Raleigh, USA (labeled RAL) and the other from Gikongoro,
Rwanda (labeled RG). While earlier studies have largely been confined to regions of mod-
erate resolution, we find extensive fine-scale variation across all chromosomes and in both
populations. A notable difference between the two recombination maps is the higher overall
recombination rate in RG than in RAL. Our method estimates the composite parameter
2Nerf , where Ne is the effective population size and rf is the (female) rate of recombination
per generation, so this difference is partly explained by a difference in effective population
size. However, further differences between chromosomes—namely, the inflated recombination
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rates in the X chromosome relative to autosomes—lead us to invoke biological differences
too, particularly the role of polymorphic inversions. There may also be other, unappreciated,
biological factors causing an increase in rf on the X chromosome.

4.1.1 X Chromosome

In addition to the higher absolute rate of recombination in RG, a further difference between
the populations merits discussion: the relative increase in recombination on the X chromo-
some compared to the autosomes is much more pronounced in RG than in RAL. In the
African population, estimates of the ratio ρX/ρA lie in the range 2.4 ∼ 6.0, whereas in the
North American population they lie in the range 1.1 ∼ 1.5 (Table 2.11). There are several
possible explanations for the difference between the two populations.

First, RAL may have experienced a historical population bottleneck. The effect of a
population bottleneck on LD is stronger on the X chromosome than on the autosomes [81]
(a similar effect on diversity is also seen [65]). Thus, a population bottleneck leads to an
increase in LD on the X chromosome over and above the increase on the autosomes. A
bottleneck in the non-African population is a sensible proposition since D. melanogaster is
a human commensal of African origin which has colonized North America more recently.
Bottlenecks in non-African populations of D. melanogaster have been inferred from genetic
data by others [32, 78]. As shown in our simulation study, bottlenecks tend to cause our
method to underestimate the true recombination rate, so the bottleneck explanation would
be consistent with the fact that our recombination rate estimates for RAL are lower than
that for RG. Second, the impact of polymorphic inversions may be greater in RG, since
the African population has a high frequency of polymorphic inversions in the autosomes
and in the centromere-proximal X. The observed increase in the recombination rate in the
African X could be partially attributed to interchromosomal effect [53, 66]. A third possible
explanation is the more efficient role of selection on the X chromosome when non-neutral
mutations are recessive: such mutations can more easily be exposed to the action of selection
in their hemizygous state in males. This effect will be more pronounced in RAL if it has
undergone greater selective pressures, as seems likely in its adaptation to a new environment.
Unraveling the relative importance of these possible explanations merits further investigation.

4.1.2 Fine-scale Differences

At fine-scales, we also find extensive differences between the recombination maps of the two
populations, for which a simple difference in effective population size is not a sufficient ex-
planation. Wavelet coherence analysis reveals high correlation at broad scales but regions
of low correlation at fine scales, as has been documented among human populations, and in
comparison between humans and chimpanzees [76, 47]. The advantage of a wavelet coherence
approach is that it further identifies the locations of similarities and differences. However,
the causes of these differences remain to be understood. One noteworthy result of our anal-
ysis is that changes in diversity are a strong positive predictor of changes in recombination
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in one population, even when the recombination map of the other population is included as
a covariate. A possible explanation for this observation is that the two populations have un-
dergone separate selective sweeps, with sufficient impact on the genome that the correlation
between recombination and diversity can still be detected even when the recombination map
of the other population is used as a covariate. We note that a partial overlap in the signature
of selective sweeps was also found by Langley et al. [49]. Using a metric based on valleys of
diversity, they found that 44% of diversity valleys in RAL overlapped with those found in
an African sample. There are of course other possible explanations for the observed correla-
tions between diversity and recombination; it is known that background selection—the loss
of neutral diversity due to linked deleterious mutations—can also induce such a correlation
(see Charlesworth [15, 16] and references therein). The relative importance of these types of
selection in distinguishing the two populations is obviously deserving of further study.

4.2 Recombination Hotspots

Access to a fine-scale map lets us address a crucial question of the distribution of recombina-
tion in Drosophila: whether they localize into recombination hotspots. Using a conservative
approach, we found a few regions with solid statistical support for a local elevation of at
least 10 times the background recombination rate (see Table 2.15). With the caveat that
we used a high block penalty in the rjMCMC and employed a stringent hotspot detection
strategy, overall our findings support the belief that extreme localization of recombination
into hotspots is not prevalent in D. melanogaster ; in humans, on the other hand, the list
of well-supported hotspots exceeds 30,000 [77], many of which exhibit much more than a
tenfold increase and have a common mechanism for recruiting the recombination machinery
[7, 10, 63]. Singh et al.[71] therefore reserve the term “recombination peaks” for the milder
variability they find, and it could be the case that what we have found are the most ex-
treme examples of these peaks. Having said that, we also note that, as discussed earlier in
our simulation study, the ability to perform accurate statistical inference of recombination
(in particular, detecting hotspots) gets significantly reduced when recurrent strong selective
sweeps are in play. It is hence possible that there are actually more hotspots in the D.
melanogaster genome than our study could find.

4.3 Motifs

We have focused on estimating and characterizing the recombination map itself and on
its correlation with a set of important genomic annotations, but given such a map one can
tackle many further problems. The question of primary sequence influences of recombination
localization can now be addressed with much greater power. In humans, the 13 bp motif
CCNCCNTNNCCNC has been found to be over-represented in hotspots, consistent with
its recruitment of the protein PRDM9 which has been implicated in the hotspot usage [10,
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63]. Searches for motifs in Drosophila that correlate with fine-scale recombination rate have
been undertaken in D. pseudoobscura [18, 48], D. persimilis [74], and D. melanogaster [61].
Motifs that correlate with fine-scale recombination in humans are also significant in some of
these species [48, 74], which is unexpected given the rapid turnover of motif usage in humans
and chimpanzees [63]. In a recent pedigree study, Miller et al. [61] were able to localize with
high precision fifteen crossover events on the X chromosome of D. melanogaster. From these
they identified the 7 bp motif GTGGAAA as significantly enriched in the vicinity of these
crossovers. Further study is required to validate this motif and to search for others, and our
maps should prove useful in this regard.

4.4 Natural Selection

Finally, our work should be of interest since a fine-scale recombination map is a prerequisite
of studies seeking to estimate the influence of natural selection on the genome [34]; those
lacking such a map retain this caveat [69]. Although these inferences of recombination and
selection rely on the same data and have the potential to distort each other, it is reassuring
that our method is robust to the influence of positive selection, and that it shows good
agreement with existing experimental estimates of recombination. In our simulation studies
we focused on the effects of hard sweeps, since they are thought to be an important mode
of adaptation in Drosophila [43, 70, 69] and are expected to have the strongest effect on
patterns of variation. Aside from additional noise resulting from a reduction in diversity,
there is little bias introduced by failing to include selection in the assumed model, at least
under the parameters we considered. This is consistent with the observation that a recurrent
sweep model does not have a striking effect on LD beyond that predicted by the reduction
in diversity [81]. Nonetheless, further investigation is warranted on the effects of other types
of selection, and on the development of methods that can account for recombination and
selection jointly.

4.5 Particle Filtering in the SMC

The method we employed for variable recombination rate estimation relies on the composite
likelihood approximation. As demonstrated in in this thesis, this approach works particularly
well for the inference of recombination rates. However, for the inference of other parameters
of interest, such as population size, demography and selection, a composite likelihood ap-
proximation may be less effective and might in fact lead to significant biases. Furthermore,
a simple and sensible interpretation of the underlying model that a composite likelihood
approach implies is often difficult to find.

The SMC is a well-motivated approximation to the full coalescent. It begins by approx-
imating the full coalescent by imposing the Markov condition along the genome. This has
many benefits to tractability in addition to being motivated by several important reasons in
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the context of inference, as described in [58, 14]. The model furthermore circumvents one of
the most prohibitive difficulties in the inference of any parameters of interest on full genome
data: the significantly long length of the genome. While it does not simplify the matter of
inference on large sample sizes, the full coalescent model rapidly becomes intractable. Under
the SMC, however, the length of the genome in many cases will only be a linear term in the
runtime of an inference algorithm.

We have shown that the use of matrix exponentiation as used in [35, 55] provides a
method to sample directly from the optimal proposal distribution in the context of parti-
cle filtering. Although computationally intensive, several approximations can be made to
improve tractability. One such approximation is to assume at most one mutation per site,
which dramatically decreases the size of the state space. This is a reasonable assumption
when dealing with low mutation rates. The recombination events in a two-locus ARG can
then be integrated out of the likelihood, resulting in a much better proposal distribution
within the particle filtering framework. Combined with uniformization [36], it is possible to
sample from the optimal proposal distribution, which minimizes the variance of the impor-
tance weights.

Compared to a composite likelihood method, particle filtering is orders of magnitude
slower, and our method in its current form can handle only small sample sizes. Hence, it
cannot be used easily in a more general inference framework such as rjMCMC, which requires
that every sample’s likelihood be computed very quickly. Nonetheless, the approximation
that particle filtering and the SMC provide could be considered much more rigorous and
easier to analyze because it rests on an arguably stronger mathematical foundation.

The posterior distribution on genealogies can prove useful in certain analyses and can also
be used to guide parameter inference. Although several methods exist for particle filtering
to estimate parameters (see [21] for a review), they are not straightforward to apply to our
problem. However, the posterior genealogies, even without direct parameter inference, still
provide insight on likely parameters and can be useful in downstream analysis.
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