Wireless Neural Interface Design

Daniel Yeager

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-218
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-218.html

December 16, 2014




Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.



Wireless Neural Interface Design
by
Daniel James Yeager
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Electrical Engineering and Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Jan Rabaey, Chair
Professor Elad Alon
Professor Robert Knight

Fall 2014



Wireless Neural Interface Design

Copyright 2014
by
Daniel James Yeager



Abstract

Wireless Neural Interface Design
by
Daniel James Yeager
Doctor of Philosophy in Electrical Engineering and Computer Science
University of California, Berkeley
Professor Jan Rabaey, Chair

Neural interfaces promise to radically change medicine. Currently, amputees and persons
suffering from debilitating brain disorders lack a way to regain mobility and freedom. By
recording and interpreting signals from the motor control regions of the brain, researchers
have already demonstrated rudimentary control of robotic prosthetic arms in primate and
human trials. Now, the next generation of neural interface electronics must provide the
required advances in size and power consumption to enable long-term viability of complex,
high degree-of-freedom prosthetic devices.

This dissertation presents two complete neural interface systems to address two key chal-
lenges: evading the brain’s foreign body response to achieve long probe longevity, and
scaling wireless, implantable systems to high channel counts. The first, a self-contained,
0.125 mm?, 4-channel wireless recording system, achieves an unprecedented level of minia-
turization. This opens the possibility of free-floating neural nodes in the brain tissue, which
eliminates strain caused by transcranial wires. Ultimately, this may lead to probes that out-
smart the brain’s biological response, and provide stable, long-term recordings for chronic
brain-machine interfaces. The second system achieves an unprecedented level of integration,
combining 64 recording channels, 16 stimulation channels, and neural data compression onto
a single 4.78 mm? IC. Furthermore, the IC achieves substantial improvements in power and
area versus state-of-the-art. These improvements in performance and functionality enable
neural recording systems that scale up to thousands of channels, or scale down to extremely
compact, low weight, low area, wireless interfaces.
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Chapter 1

Introduction

The human brain is perhaps the most energy-efficient computer that exists today. Of the
roughly 100 watts that power a human, just 20% is required to enable our complex auditory
and visual processing, planning, decision-making, and memory [1]. The planning, control,
and visual / auditory processing capacity of a personal computer, which consumes 100-200
watts, pales in comparison. For example, the ability of a dedicated supercomputer to best a
human at the game of chess is a recent breakthrough. How the brain can operate with such
remarkable efficiency and robustness continues to inspire intensive study, from the biology
of neurons to high level models of computation in the brain.

Neural activity in the brain is represented by electrical impulses, called action potentials
(APs) or spikes (Fig. 1.1). These impulses carry information from sensory inputs (ex.,
ears), between neurons responsible for interpretation, decision-making, and memory, and

Muscle Cell

Dendrite

Neuron
—l —

IIIIII

AXOH Actlon Potentlal

100uV 1ms Axon

Terminal

Synapse

Electrode

Amplifier

Figure 1.1: A neuron transmits action potentials through its axon to other neurons as well as
organs such as muscles. A low-noise amplifier magnifies the electrical potential as measured
by an extracellular electrode. Adapted from [2].
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to muscles and other organs. Neurons have many inputs called dendrites, and many outputs
called axon terminals. When there is sufficient stimulation of a neuron’s inputs, an action
potential is generated in the neuron, which travels through the axon to the terminals. The
connections between terminals (outputs) and dendrites (inputs) are called synapses, which
can be strengthened or weakened over time. This “plasticity” is an important mechanism
in memory and learning [3, 4]. And, this plasticity is essential for robust control of a brain-
controlled prosthetic [5].

Neuroscientists have gained a tremendous understanding of the brain through a spectrum
of non-invasive and invasive methods, where the latter techniques require surgery. Examples
of non-invasive methods include functional magnetic resonance imaging (fMRI) [6] and elec-
troencephalography (EEG) [7]. fMRI uses magnetic resonance imaging to detect changes in
blood flow in the brain, which relates to energy usage by brain cells [8]. This is useful for
understand what areas of the brain are active, but provides relatively coarse spatial (2-3 mm)
and temporal (1-5 s) resolution relative to the size and speed of a neuron. EEG employs
electrodes on the scalp to detect electrical activity in the brain. Due to the filtering affect
of the skull and scalp, as well as the distance of the probe from the brain tissue, spatial (1
- 10 cm) and temporal (DC - 100 Hz) resolution are also very constrained. Broad patterns
such as phases of sleep cycles can be detected [9], and at least one study has linked AP
activity with EEG activity [10]. One benefit of EEG over fMRI is that fMRI relies on a
bulky MRI machine and stationary user, while EEG probes can be (conspicuously) worn
without constricting the user.

Invasive methods involve placing electrically-conductive probes in and on the brain tis-
sue. These two methods are called intracortical recording and electrocorticography (ECoG),
respectively. Intracortical recording, shown in Fig. 1.1, places the probes in close proximity
(<100 pm) to the neurons. This in turn provides a high-fidelity, fine-grained view of the
behavior of individual neurons. ECoG achieves much better spatial and temporal resolution
than EEG by placing the probes within 1-2 mm of the neurons, but still provides an ag-
gregate, population level recording like EEG. Substantial progress has been achieved using
ECoG to understand and predict speech decoding in the brain [11].

The remainder of this dissertation focuses on invasive techniques, and more specifically,
on intracortical recording. The primary reasons for this focus are twofold. First, to date,
the direct recording of action potentials (APs) is the only type of neural interface proven to
provide enough temporal and spatial resolution to control complex robotic prostheses [12].
This is also evident in the approaches taken by recent human clinical trials [13, 14]. Second,
intracortical probes can be used deliver optical or electrical impulses to “stimulate” neurons
and thereby evoke neural activity. With these techniques, neuroscientists have been able to
mimic sensory input to the brain [15]. This could enable sensory feedback from a prosthesis.

When neuroscientists record from an array of intracortical probes, a tremendous amount
of data is generated. Even just 100 recording channels, sampled with 10-bit resolution and
at 20 x 103 samples-per-second, produce 150 MB per minute of data. These raw traces hold
little value on their own, so the data is next passed through a spike-detection algorithm. The
algorithm attempts to discriminate between the higher signal-to-noise ratio (SNR) spikes of
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Figure 1.2: An example raster plot showing detected spike locations as black lines. Average
firing rates in a moving 100 ms window are overlaid in red.

nearby neurons and the “biological interference” of many distant, low SNR neurons added to
thermal noise of both the recording electronics and the electrode impedance. The temporal
locations of detected spikes are then saved, often with samples of the detected spikes for
later analysis and verification.

The detected spikes can be viewed in several ways. A raster plot shows activity versus
time, with a vertical line for each detected spike as shown in Fig. 1.2. However, of even
greater value is the average firing rate, in spikes per second, over a moving window between
50 ms and 500 ms (Fig. 1.2). This enables study of correlation between a neuron’s firing rate
and either motor control (ex., arm movement) or perception (ex., auditory stimuli). Fig. 1.3
depicts an idealized example study of firing rate vs. arm reach direction, sometimes called
a tuning curve. This representation helps illustrate one way that neural activity encodes
information; i.e., the firing rate can be modeled as a cosine or gaussian function of the arm
reach direction, with different neurons tuned to different directions. Then, using these tuning
curves to reverse decode the intended arm reach direction, a cursor on a computer screen or
robotic arm can then be manipulated in real time via recordings from these neurons.

Algorithms that are based on neuron firing rates rely on an accurate spike detector. This
detector takes as an input the noisy raw recorded waveform (Fig. 1.1) and outputs a binary
decision to represent when spikes occur (Fig. 1.2). Many different spike detection algorithms
have been proposed in the literature. The most simple algorithm detects spikes via threshold
crossing, which may be set to some multiple of the RMS noise level. Moderate complexity
algorithms attempt to filter the recorded waveform to increase detection accuracy. Examples
include the nonlinear energy operator (NEO) [17], derivative operation, and high-pass filter
[18]. A threshold detection may then be applied to these filtered waveforms. High complexity
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Figure 1.3: Example tuning curves, which represent the average firing rate for different
neurons vs. the direction of hand reach. For example in vivo data, see [16].

algorithms typically involve correlation with characteristic spikes, basis functions, or average
recorded waveforms [19]. Clustering algorithms may be applied initially to attribute recorded
spikes to neurons and generate characteristic spikes for the correlation operation. Finally, a
threshold operation may be used to detect spikes from the correlation output. These high
complexity algorithms can discriminate between spikes that originate from different nearby
neurons based on their amplitude, which represents distance [20], and shape [21] (Fig. 1.4).
By sorting spikes rather than attributing all action potentials per electrode to one neuron,
more information is extracted from the recording because this measures firing rates for more
individual neurons.

Electrodes arrays generally lack precise control of electrode placement in the brain tissue,
and electrode locations can shift over time due to many factors. When a neuron is very close
to an electrode and thus has high relative SNR, it is called a single-unit recording. Here, a
simple threshold detector may be sufficient to discriminate spikes from noise. More often,
however, one or more neurons are moderately close to a neuron, resulting in low-SNR, spikes.
Here, a moderately-complex algorithm is necessary to accurately discriminate spikes from
noise. When spikes from multiple neurons are present, called multi-unit activity, a high-
complexity algorithm can be used to attribute spikes to individual neurons.

Spike sorting typically employs a computationally-intensive algorithm to correlate mea-
sured spike waveforms against the average waveform for each nearby neuron, which is at odds
with the stringent power requirements that will be discussed in Section 1.2. Fortunately, re-
searchers have also demonstrated reasonable performance without spike sorting [22]. These
tradeoffs between power consumption and recording quality are a recurring theme through-
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Figure 1.4: Variation in spike shape from different neurons, normalized to a unit amplitude.
Amplitudes also vary due to differences in distance between neurons and each electrode.

out this dissertation.

The remainder of the introduction includes an overview of therapeutic and scientific
applications for brain interfaces in Section 1.1, and a detailed discussion of challenges in
Section 1.2. A background on neural recording probes, electrical characteristics of recorded
signals, and signal acquisition electronics follows in Sections 1.3, 1.4, 1.5, 1.6, and 1.7. Finally,
Section 1.8 provides an outline of this dissertation.

1.1 Applications of Neural Interfaces

A neural interface is the ability to record and/or evoke neural activity in the brain, which
facilitates study of cognition, memory, perception, and motor control. Neural interfaces
also enable important medical techniques. For example, open-loop deep brain stimulation is
currently used to treat Parkinson’s disease symptoms such as tremors, and ECoG is replacing
ice water as a tool to guide surgical treatment of epilepsy and cancer. However, the most
audacious goal of this research is to achieve a seamless, long-term brain-machine interface
(BMI). This gateway into the brain may someday enable natural brain control of prosthetic
limbs, computer interfaces, and unforeseen new applications. These advances will provide
an incredibly powerful clinical tool to help amputees and those suffering from debilitating
brain disorders, as pictured in Fig. 1.5.

Already, breakthrough research in both primate [23] and human [13, 14] studies have
demonstrated the basic feasibility of brain-controlled prosthetic devices. However, there are
a host of technical challenges to overcome before neural interfaces can achieve widespread
clinical adoption. Solving these challenges will require broad interdisciplinary collaboration
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Figure 1.5: Future vision for a seamless brain-controlled prosthesis.

ranging from the physical design of electrodes that reside in and on the brain tissue, to
circuits that record and stimulate neurons via those electrodes, to RF links which provide
power and retrieve data to/from the electronics through the skull. Techniques and designs
to overcome some of these challenges represent the main contribution of this dissertation.

1.2 Challenges

From the early work of Ken Wise in the 1970s to ongoing research efforts today, circuit
designers have been working aggressively to make the science-fiction of neural interfaces
a reality. Why have circuit designers spent so long on this problem, and why are neural
interfaces a circuit design problem? The answer lies in the power and data link through the
skull.

Fig. 1.6 shows a conventional wired neural implant. The probe is implanted in the brain
tissue, typically reaching depths of 1-2 mm. An epoxy or dental acrylic fill attempts to seal
the brain and tissue from bacterial infection, and wires carrying the neural signals extend
through the fill to a connector. The high-impedance, low-SNR signals from the electrodes
are prone to 60 Hz interference and electrostatic pickup, which introduces motion artifacts.
To mitigate these problems, a buffer amplifier or acquisition IC is placed as close to the
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Figure 1.6: A conventional wired neural interface. Adapted from [24].

implant as possible. Finally, a wired tether carries the neural information to a computer for
storage and processing.

Wires through the skull cause two problems. First, they present a chronic infection risk.
Because the skin cannot bond to the epoxy fill to prevent bacterial influx, a continuous
application of anti-bacterial medicine is required. However, this continued infection risk is
particularly dangerous in the brain, where there is no immune system to ward off infection.
Second, attaching a neural implant to wires leading through the skull interferes with the
natural movement of the brain inside the skull. This creates chronic abrasion from the
movement of the electrodes in the brain, which is theorized to contribute to the buildup of
scar tissue. This scar tissue insulates the electrodes from the neural signals, thereby reducing
the longevity of the implant. It is possible to eliminate these wires, but it places stringent
demands on the implant design, and this is where the circuit designers come in.

To combat the problems with wires, power delivery and data transmission can be per-
formed wirelessly. The power delivery link typically employs near-field, inductive coupling
between two coils. For a transcranial link, the “primary” coil is positioned outside the scalp
and the “secondary” coil lies beneath the skull on the implanted recording platform (“im-
plant”). The primary coil is driven by a transmitter, typically at a single frequency in an
unlicensed band such as 125 kHz or 13.56 MHz. This transmitted power couples onto the
secondary, where a rectifier converts the sinusoidal excitation to DC. Power regulation cir-
cuits create a stable supply voltage from this DC rectifier output. Note that this technique
is currently used in cochlear implants [25], electric toothbrushes [26], and most pertinently,
near-field communication (NFC) radio-frequency identification (RFID) [27].
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The wireless data link often employs backscatter or load modulation, also similar to
RFID tags [27]. Because backscatter communication relies on reflection of the signal from
the primary, very little power is expended by the implant. Some systems have proposed an
active transmitter in the 433 MHz or 915 MHz unlicensed bands, which requires a substantial
radio power budget [28].

Wireless, implantable neural recording systems face many interrelated challenges that
all stem from two forms of miniaturization. First, to minimize the severity of the surgery,
the implant’s surface area should be kept below approximately 1 cm?. Second, to limit the
implant’s displacement of the brain, the implant should be maximally planar with a thickness
of a few millimeters at most.

Extreme miniaturization creates two specific electrical design constraints. First, the
surface area constraint limits the antenna aperture, which in turn limits the amount of
power that can be wirelessly delivered via inductive coupling through the skull. Prior work
indicates that 10 mW can be delivered to a 1 cm diameter implant coil at 1 cm depth [29,
30, 31, 32]. Second, safety constraints limit the amount by which implanted medical devices
may raise the surrounding tissue to 1 °C, or 40 mW /cm? [33]. For example, one study
modeled a 6x6 mm? implant and found the limit to be about 10 mW [34]. Since the limit for
thermal power for a 1 cm? implant is higher than the delivered power, an implanted storage
mechanism could enable short-duration, high-power activities like stimulation. For example,
a supercapacitor or rechargeable battery could be trickle-charged with surplus power while
recording. During stimulation events, this storage device would be depleted. At any rate,
this limited power budget translates into three main constraints on the continuous recording
electronics that comprise the implant.

The first constraint on the electronics is the thermal noise of the neural recording chan-
nels. Thermal noise requirements place a lower bound on power consumption of the low
noise amplifiers (LNA) that condition signals from the neural electrodes. In a system with
1000 amplifiers, small improvements in amplifier efficiency dramatically affect the system.
Or, viewed another way, there is a direct tradeoff between the power consumption of the
amplifiers and the number of neurons that can be observed.

The second constraint on the electronics is the radio power consumption, which limits
the wireless data rate. Many implants utilize backscatter, similar to passive RFID tags.
This consumes nearly zero power by the implant, but limits uplink (implant to reader) data
rates to approximately 4 Mbps [35]. Each neural channel generates 200 kbps or more of
raw data. A significant percentage of this data contains no neural information, but it does
contain substantial background noise. A previously described, an accurate spike detector is
is required to extract the neural information in the presence of this background noise. Then,
a dataset tailed to the specific application (neuroscience vs. BMI) can be transmitted out
of the skull.

The third constraint on the electronics is limited computational resources. Neuroscien-
tists have built their understanding of the brain, their prototype BMI systems, and research
programs around sophisticated algorithms running on powerful computers. Practical, unob-
trusive BMI systems cannot rely on such computing power, and must compress the neural
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data on the implant in order to satisfy the data rate constraints of the wireless link. Fur-
thermore, this compression must be done within a per-channel power budget comparable
to the amplifier. Fortunately, the neuroscience community is learning that brain-machine
interfaces can be made robust without sophisticated spike sorting algorithms [22]. However,
there is still tremendous room to innovate as neuroscientists are generally unaware of the
circuit implementation power cost of their algorithms, and circuit designers generally lack
access to means of validating that their algorithms work robustly in a clinical setting.

The challenges outlined above highlight the gap between clinical neuroscience and the
attempts of circuit designers to create the next generation of neural recording tools. They
also highlight the monumental effort required to bring a full-featured clinical device to mar-
ket. This discussion has focused primarily on the neural recording path; ultimately, this
neural data must be translated into control signals for a robotic prosthesis. These decoding
algorithms, as well as motor control algorithms, electro-mechanical prosthesis design, and
other technical challenges must also be overcome before a clinical prosthesis can be made.

1.3 Neural Probes

Fig. 1.1 depicts the conceptual setup for extracellular recording. However, Fig. 1.7 shows
a more true-to-scale drawing of planar [36, 37, 38| and needle [39, 40] probes, which are
widely used. As can be seen in Fig. 1.7, probes are designed with a limited surface area such
that each electrode captures signals from a small number of neurons. This limited surface
area translates into a high source impedance, and this in turn influences the design of the
recording electronics.

A probe is typically constructed of metal or silicon and encased in a biocompatible
insulator like parylene. The exposed electrode sites are often made of a porous or textured
metal like platinum to increase surface area and thereby lower impedance. Electrode sites
can vary from less than 100 um? to over 1000 um?. A smooth metal surface results in 0.2
pF/um?, and rougher surfaces may have five times this capacitance [42, 43]. For example,
a 36 um diameter probe (1000 um?) may have a capacitance ranging from 200 pF to 2 nF.
Probe manufacturers and researchers typically report the probe impedance at 1 kHz. For
example, a 200 pF probe impedance translates to 0.8 M(2 at 1 kHz. For a comprehensive
review of probe manufacturing techniques, prior work and current research efforts, see [44].

1.4 Neural Recordings: the Signal and the Noise

A typical extracellular neural recording consists of three signal components: an electro-
chemical offset, the low frequency component of the extracellularly-recorded neural activity,
known as the Local Field Potential (LFP), and the high frequency APs. Table 1.1 compares
the frequency range and approximate recording amplitude of these signal components to the
approximate recording noise floor.
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Figure 1.7: Planar (left) and needle (right) neural probes. A rough scale for the size of a
neuron can be seen in the planar probe, where the exposed electrodes are 30 um in diameter.
Probes range from 1-5 mm in length. Images adapted from [36] and [41].

Table 1.1: Neural Amplifier Input Signal Components

Signal Component Frequency Amplitude
Electrochemical Offset DC +50 mV
Local Field Potentials (LFP) 10-300 Hz 5 mVpp

Action Potentials (AP) 500-3000 Hz 50-500 uwVpp

Recording Noise Floor 450-10,000 Hz 13.5 uVrms ¢

There are two natural sources of cortical recording noise: thermal and biological. Thermal
noise is generated by the resistive part of the electrode and tissue interface. The electrode
impedance, and thus noise, is dependent on electrode size; a 1000 pm? probe contributes
approximately 5 puVrms of thermal noise [45]. Biological noise is simply interference from
neighboring neurons, which naturally falls in the same frequency bands as the desired AP
signals. Prior work has modeled thermal and biological noise during cortical recording using
silicon microelectrodes and found that for a 450 Hz to 10 kHz recording bandwidth, the
recording noise floor is approximately 13.5 uV (based on Section 4.2 and Table I from [46]).

The resulting 70 dB (13.5 uV to 50 mV) input dynamic range requirement of the amplifier
is typically reduced via AC-coupling, where the high-pass corner is set at approximately

! Based on Section 4.2 and Table I of [46].
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Figure 1.8: Typical components of a neural acquisition channel.

500 Hz to eliminate the offset and LFP. This reduces the dynamic range to approximately
32 dB (13.5 uV to 500 pV). Section 1.5 presents a more detailed introduction to circuit
techniques.

1.5 Circuit Techniques for Neural Recording

The field of circuit design for neural recording dates back to the 1970’s when Ken Wise pio-
neered the first efforts to integrate an amplifier with the neural probe [47]. Since those first
efforts, a barrage of varying circuit design approaches have appeared in the literature. How-
ever, most systems follow an architecture similar to the form shown in Flg. 1.8, which consists
of a low-noise amplifier (LNA), band-pass filter (BPF), variable-gain amplifier (VGA), buffer
(BUF), and analog-to-digital converter (ADC).

The first amplifier (LNA) plays an important role in setting the power and noise per-
formance of the system. Because the input-referred noise (IRN) of subsequent amplifiers
are reduced by the gain (often 20-40 dB) of the preceding stages, it is the first stage that
dominates the total IRN. This is why it is referred to as the low-noise amplifier (LNA).
Consequently, the LNA consumes a large fraction of the total system power, and optimizing
the noise efficiency (power consumed vs noise added to signal) is the focus of many research
efforts. Because large transistor area is required to suppress flicker noise, the LNA tends to
also dominate the area of the signal acquisition channels.

The purpose of the BPF is to provide a high-pass cutoff around 500 Hz to remove the
DC offset and LFP as well as a low-pass cutoff around 7-10 kHz to remove high frequency
noise which can alias in-band when sampled by the ADC. The BPF is often integrated into
the LNA and VGA. For example, the capacitive feedback network of the LNA can perform
the high-pass function. Similarly, limiting the bandwidth of the amplifiers can perform the
low-pass function.

The VGA scales neural signal ranging from 50 uVpp to 1 mVpp to the full scale range of
the ADC of around 1.0 V. The BUF provides a low output impedance to drive the sampling
capacitance of the ADC. Finally, the ADC digitizes the neural signals. A resolution of 8-
10 bits is common, ensuring that the quantization noise is minimal and allowing for some
variation in the amplitude of neural spikes.
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Figure 1.9: Widely-used amplifier topology proposed in 2002 by Harrison [48].

In 2002, Reid Harrison applied a technique to emulate a very large resistive impedance
on-chip (10 Q) via MOS pseudo-resistors [48]. This permits small (10 pF) on-chip capaci-
tors to be used for AC coupling of the LNA while maintaining a 1 Hz to 100 Hz high-pass
corner, which is suitable for action potential recording [48]. Moving the AC coupling ca-
pacitors on-chip dramatically increases the number of channels that can be incorporated
on an implantable recording system. This architecture, shown in Fig. 1.9, has been widely
used by subsequent works, and efforts have focused on improving the noise efficiency of
the active devices and the area consumption of the overall recording channel. As another
example, there is a fundamental limit to noise efficiency, and therefore power and noise
performance can be traded. This ultimately trades channel count against recording fidelity
because recording systems operate on a fixed power budget. As a final example, mismatch
grows as device area shrinks. This loss of robustness and yield can be recovered through
complex and time-consuming calibration techniques.

Attempts to shrink area and improve area efficiency have exposed a number of tradeoffs,
as illustrated in Fig. 1.10. For example, in 2012, Rikky Muller introduced a topology to
cancel the DC electrode offset while removing the AC-coupling capacitors. This drastically
reduced the size of the recording channel versus prior works. However, this area shrink came
at an expense; the open-loop gain is unsuitable for some applications and the DC-coupled
front end is considered unsafe for some medical applications.
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Figure 1.10: Design tradeoffs for a neural acquisition channel.

1.6 Efficiency Metrics for Neural Amplifiers

A longstanding metric used to evaluate how efficiently an amplifier uses its bias current to
reduce noise is called the noise-efficiency factor (NEF) [49]. Eqn 1.1 defines the NEF, where
k is Boltzmann’s constant (&~ 1.38 x 107* m? kg s72 K1), T is the temperature in Kelvins
(body temperature = 310 K), V¢ is the thermal voltage (26.7 mV at body temperature),
Ip is the transistor bias current, and BW is the -3 dB amplifier bandwidth. This metric
compares an amplifier’s noise and current consumption to a BJT amplifier with equal -3 dB
bandwidth.

NEF = Viirms * liotat__ V.. Liotal (1.1)
Vn%l,rms,bjt ’ ]BJT A AKT - VT . 7T/2 - BW ’

The minimum theoretical input-referred noise, V,,; .ms of a differential CMOS amplifier
has been analyzed by [50] and is given by Eqn. 1.2, where K is a process constant representing
the subthreshold gate coupling coefficient (K a 0.7). This leads to a minimum theoretical
NEF of approximately 2.0, as given by Eqn. 1.3.

4kT - VT ™
. =,/ — "B 1.2
Vmﬂ"ms \/ L2 . ]D 9 W ( )
2
NEFju = % ~ 2.0 (1.3)
K=0.7

The NEF metric has several limitations. First, insufficient and excessive bandwidths
are not penalized. Neural signals contain a finite signal bandwidth. Insufficient amplifier
bandwidth distorts and attenuates the neural signal, and excessive amplifier bandwidth
adds noise. Second, the spectral characteristics of the noise are not considered in NEF.
Flicker noise tends impact the neural signal band, and wide amplifiers bandwidths can make
the overall NEF appear attractive while in-band noise performance is poor. Third, NEF
compares current efficiency, not power efficiency. The initial reasoning was that noise, to
first order, is not a function of supply voltage. However, an amplifier requires power,
not current, to operate. The power efficiency factor (PEF) attempts to correct for this by
comparing noise to a BJT amplifier operating at the same supply voltage and bias current
level [51]. The equation for PEF is given by Eqn 1.4, where Vpp is the supply voltage.
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Thus, the PEF captures differences in power efficiency between two amplifiers. For
example, an ideal switching regulator would provide double the battery life for a 1.0 V
amplifier as compared to a 2.0 V amplifier, if they each consume the same current from
their respective supplies. Both the NEF and PEF metrics will be presented through this
dissertation to illustrate how different circuit design techniques impact these two metrics.

It is important to consider the practical limitations of the PEF metric. A linear regulator
is often required to reduce noise from a switching regulator, and the switching regulator
conversion efficiency varies as a function of the conversion ratio. In other words, it may be
difficult to directly compare a 1.2 V recording channel to a 1.0 V recording channel until
the power supply is designed. Battery life is an excellent way to normalize the otherwise
difficult-to-compare efficiencies and inefficiencies of varying approaches.

1.7 Stimulation

Another significant aspect of a neural interface the restoration of sensory feedback. Methods
include electrical and optogenetic stimulation, where stimulation refers to the ability to
excite or suppress the firing rate of nearby neurons. Electrical stimulation involves injection
of a controlled amount of charge into the brain through an electrode, typically at a constant
rate of current. Then, to prevent permanent tissue damage, the charge is removed. The
charge and discharge are typically performed at the same rate of current flow. Optogenetic
stimulation involves DNA modification, typically by virus, to make neurons sensitive to
light. This allows fibre optics or micro-LEDs on an implanted probe to stimulate neurons
via illumination. For more information on charge-based and ontogenetic stimulation, see [52]
and [53], respectively.

1.8 Outline

Chapter 2 surveys prior works on neural amplifiers, data converters, and recording systems.
A tremendous amount of work has been done on individual components, generally ignoring
the integration challenges of very highly scaled system implementations. Yet, some full
systems do exist