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Abstract

Wireless Neural Interface Design

by

Daniel James Yeager

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jan Rabaey, Chair

Neural interfaces promise to radically change medicine. Currently, amputees and persons
su↵ering from debilitating brain disorders lack a way to regain mobility and freedom. By
recording and interpreting signals from the motor control regions of the brain, researchers
have already demonstrated rudimentary control of robotic prosthetic arms in primate and
human trials. Now, the next generation of neural interface electronics must provide the
required advances in size and power consumption to enable long-term viability of complex,
high degree-of-freedom prosthetic devices.

This dissertation presents two complete neural interface systems to address two key chal-
lenges: evading the brain’s foreign body response to achieve long probe longevity, and
scaling wireless, implantable systems to high channel counts. The first, a self-contained,
0.125 mm2, 4-channel wireless recording system, achieves an unprecedented level of minia-
turization. This opens the possibility of free-floating neural nodes in the brain tissue, which
eliminates strain caused by transcranial wires. Ultimately, this may lead to probes that out-
smart the brain’s biological response, and provide stable, long-term recordings for chronic
brain-machine interfaces. The second system achieves an unprecedented level of integration,
combining 64 recording channels, 16 stimulation channels, and neural data compression onto
a single 4.78 mm2 IC. Furthermore, the IC achieves substantial improvements in power and
area versus state-of-the-art. These improvements in performance and functionality enable
neural recording systems that scale up to thousands of channels, or scale down to extremely
compact, low weight, low area, wireless interfaces.
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Chapter 1

Introduction

The human brain is perhaps the most energy-e�cient computer that exists today. Of the
roughly 100 watts that power a human, just 20% is required to enable our complex auditory
and visual processing, planning, decision-making, and memory [1]. The planning, control,
and visual / auditory processing capacity of a personal computer, which consumes 100-200
watts, pales in comparison. For example, the ability of a dedicated supercomputer to best a
human at the game of chess is a recent breakthrough. How the brain can operate with such
remarkable e�ciency and robustness continues to inspire intensive study, from the biology
of neurons to high level models of computation in the brain.

Neural activity in the brain is represented by electrical impulses, called action potentials
(APs) or spikes (Fig. 1.1). These impulses carry information from sensory inputs (ex.,
ears), between neurons responsible for interpretation, decision-making, and memory, and

Axon%
Terminal%

Neuron%

Axon%

Muscle%Cell%Dendrite%

Synapse% Electrode%
Amplifier%

100μV% 1ms%

Ac?on%Poten?al%

Figure 1.1: A neuron transmits action potentials through its axon to other neurons as well as
organs such as muscles. A low-noise amplifier magnifies the electrical potential as measured
by an extracellular electrode. Adapted from [2].
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to muscles and other organs. Neurons have many inputs called dendrites, and many outputs
called axon terminals. When there is su�cient stimulation of a neuron’s inputs, an action
potential is generated in the neuron, which travels through the axon to the terminals. The
connections between terminals (outputs) and dendrites (inputs) are called synapses, which
can be strengthened or weakened over time. This “plasticity” is an important mechanism
in memory and learning [3, 4]. And, this plasticity is essential for robust control of a brain-
controlled prosthetic [5].

Neuroscientists have gained a tremendous understanding of the brain through a spectrum
of non-invasive and invasive methods, where the latter techniques require surgery. Examples
of non-invasive methods include functional magnetic resonance imaging (fMRI) [6] and elec-
troencephalography (EEG) [7]. fMRI uses magnetic resonance imaging to detect changes in
blood flow in the brain, which relates to energy usage by brain cells [8]. This is useful for
understand what areas of the brain are active, but provides relatively coarse spatial (2-3 mm)
and temporal (1-5 s) resolution relative to the size and speed of a neuron. EEG employs
electrodes on the scalp to detect electrical activity in the brain. Due to the filtering a↵ect
of the skull and scalp, as well as the distance of the probe from the brain tissue, spatial (1
- 10 cm) and temporal (DC - 100 Hz) resolution are also very constrained. Broad patterns
such as phases of sleep cycles can be detected [9], and at least one study has linked AP
activity with EEG activity [10]. One benefit of EEG over fMRI is that fMRI relies on a
bulky MRI machine and stationary user, while EEG probes can be (conspicuously) worn
without constricting the user.

Invasive methods involve placing electrically-conductive probes in and on the brain tis-
sue. These two methods are called intracortical recording and electrocorticography (ECoG),
respectively. Intracortical recording, shown in Fig. 1.1, places the probes in close proximity
(<100 µm) to the neurons. This in turn provides a high-fidelity, fine-grained view of the
behavior of individual neurons. ECoG achieves much better spatial and temporal resolution
than EEG by placing the probes within 1-2 mm of the neurons, but still provides an ag-
gregate, population level recording like EEG. Substantial progress has been achieved using
ECoG to understand and predict speech decoding in the brain [11].

The remainder of this dissertation focuses on invasive techniques, and more specifically,
on intracortical recording. The primary reasons for this focus are twofold. First, to date,
the direct recording of action potentials (APs) is the only type of neural interface proven to
provide enough temporal and spatial resolution to control complex robotic prostheses [12].
This is also evident in the approaches taken by recent human clinical trials [13, 14]. Second,
intracortical probes can be used deliver optical or electrical impulses to “stimulate” neurons
and thereby evoke neural activity. With these techniques, neuroscientists have been able to
mimic sensory input to the brain [15]. This could enable sensory feedback from a prosthesis.

When neuroscientists record from an array of intracortical probes, a tremendous amount
of data is generated. Even just 100 recording channels, sampled with 10-bit resolution and
at 20⇥ 103 samples-per-second, produce 150 MB per minute of data. These raw traces hold
little value on their own, so the data is next passed through a spike-detection algorithm. The
algorithm attempts to discriminate between the higher signal-to-noise ratio (SNR) spikes of
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Figure 1.2: An example raster plot showing detected spike locations as black lines. Average
firing rates in a moving 100 ms window are overlaid in red.

nearby neurons and the “biological interference” of many distant, low SNR neurons added to
thermal noise of both the recording electronics and the electrode impedance. The temporal
locations of detected spikes are then saved, often with samples of the detected spikes for
later analysis and verification.

The detected spikes can be viewed in several ways. A raster plot shows activity versus
time, with a vertical line for each detected spike as shown in Fig. 1.2. However, of even
greater value is the average firing rate, in spikes per second, over a moving window between
50 ms and 500 ms (Fig. 1.2). This enables study of correlation between a neuron’s firing rate
and either motor control (ex., arm movement) or perception (ex., auditory stimuli). Fig. 1.3
depicts an idealized example study of firing rate vs. arm reach direction, sometimes called
a tuning curve. This representation helps illustrate one way that neural activity encodes
information; i.e., the firing rate can be modeled as a cosine or gaussian function of the arm
reach direction, with di↵erent neurons tuned to di↵erent directions. Then, using these tuning
curves to reverse decode the intended arm reach direction, a cursor on a computer screen or
robotic arm can then be manipulated in real time via recordings from these neurons.

Algorithms that are based on neuron firing rates rely on an accurate spike detector. This
detector takes as an input the noisy raw recorded waveform (Fig. 1.1) and outputs a binary
decision to represent when spikes occur (Fig. 1.2). Many di↵erent spike detection algorithms
have been proposed in the literature. The most simple algorithm detects spikes via threshold
crossing, which may be set to some multiple of the RMS noise level. Moderate complexity
algorithms attempt to filter the recorded waveform to increase detection accuracy. Examples
include the nonlinear energy operator (NEO) [17], derivative operation, and high-pass filter
[18]. A threshold detection may then be applied to these filtered waveforms. High complexity
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Figure 1.3: Example tuning curves, which represent the average firing rate for di↵erent
neurons vs. the direction of hand reach. For example in vivo data, see [16].

algorithms typically involve correlation with characteristic spikes, basis functions, or average
recorded waveforms [19]. Clustering algorithms may be applied initially to attribute recorded
spikes to neurons and generate characteristic spikes for the correlation operation. Finally, a
threshold operation may be used to detect spikes from the correlation output. These high
complexity algorithms can discriminate between spikes that originate from di↵erent nearby
neurons based on their amplitude, which represents distance [20], and shape [21] (Fig. 1.4).
By sorting spikes rather than attributing all action potentials per electrode to one neuron,
more information is extracted from the recording because this measures firing rates for more
individual neurons.

Electrodes arrays generally lack precise control of electrode placement in the brain tissue,
and electrode locations can shift over time due to many factors. When a neuron is very close
to an electrode and thus has high relative SNR, it is called a single-unit recording. Here, a
simple threshold detector may be su�cient to discriminate spikes from noise. More often,
however, one or more neurons are moderately close to a neuron, resulting in low-SNR spikes.
Here, a moderately-complex algorithm is necessary to accurately discriminate spikes from
noise. When spikes from multiple neurons are present, called multi-unit activity, a high-
complexity algorithm can be used to attribute spikes to individual neurons.

Spike sorting typically employs a computationally-intensive algorithm to correlate mea-
sured spike waveforms against the average waveform for each nearby neuron, which is at odds
with the stringent power requirements that will be discussed in Section 1.2. Fortunately, re-
searchers have also demonstrated reasonable performance without spike sorting [22]. These
tradeo↵s between power consumption and recording quality are a recurring theme through-
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Figure 1.4: Variation in spike shape from di↵erent neurons, normalized to a unit amplitude.
Amplitudes also vary due to di↵erences in distance between neurons and each electrode.

out this dissertation.
The remainder of the introduction includes an overview of therapeutic and scientific

applications for brain interfaces in Section 1.1, and a detailed discussion of challenges in
Section 1.2. A background on neural recording probes, electrical characteristics of recorded
signals, and signal acquisition electronics follows in Sections 1.3, 1.4, 1.5, 1.6, and 1.7. Finally,
Section 1.8 provides an outline of this dissertation.

1.1 Applications of Neural Interfaces

A neural interface is the ability to record and/or evoke neural activity in the brain, which
facilitates study of cognition, memory, perception, and motor control. Neural interfaces
also enable important medical techniques. For example, open-loop deep brain stimulation is
currently used to treat Parkinson’s disease symptoms such as tremors, and ECoG is replacing
ice water as a tool to guide surgical treatment of epilepsy and cancer. However, the most
audacious goal of this research is to achieve a seamless, long-term brain-machine interface
(BMI). This gateway into the brain may someday enable natural brain control of prosthetic
limbs, computer interfaces, and unforeseen new applications. These advances will provide
an incredibly powerful clinical tool to help amputees and those su↵ering from debilitating
brain disorders, as pictured in Fig. 1.5.

Already, breakthrough research in both primate [23] and human [13, 14] studies have
demonstrated the basic feasibility of brain-controlled prosthetic devices. However, there are
a host of technical challenges to overcome before neural interfaces can achieve widespread
clinical adoption. Solving these challenges will require broad interdisciplinary collaboration
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Figure 1.5: Future vision for a seamless brain-controlled prosthesis.

ranging from the physical design of electrodes that reside in and on the brain tissue, to
circuits that record and stimulate neurons via those electrodes, to RF links which provide
power and retrieve data to/from the electronics through the skull. Techniques and designs
to overcome some of these challenges represent the main contribution of this dissertation.

1.2 Challenges

From the early work of Ken Wise in the 1970s to ongoing research e↵orts today, circuit
designers have been working aggressively to make the science-fiction of neural interfaces
a reality. Why have circuit designers spent so long on this problem, and why are neural
interfaces a circuit design problem? The answer lies in the power and data link through the
skull.

Fig. 1.6 shows a conventional wired neural implant. The probe is implanted in the brain
tissue, typically reaching depths of 1-2 mm. An epoxy or dental acrylic fill attempts to seal
the brain and tissue from bacterial infection, and wires carrying the neural signals extend
through the fill to a connector. The high-impedance, low-SNR signals from the electrodes
are prone to 60 Hz interference and electrostatic pickup, which introduces motion artifacts.
To mitigate these problems, a bu↵er amplifier or acquisition IC is placed as close to the
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Figure 1.6: A conventional wired neural interface. Adapted from [24].

implant as possible. Finally, a wired tether carries the neural information to a computer for
storage and processing.

Wires through the skull cause two problems. First, they present a chronic infection risk.
Because the skin cannot bond to the epoxy fill to prevent bacterial influx, a continuous
application of anti-bacterial medicine is required. However, this continued infection risk is
particularly dangerous in the brain, where there is no immune system to ward o↵ infection.
Second, attaching a neural implant to wires leading through the skull interferes with the
natural movement of the brain inside the skull. This creates chronic abrasion from the
movement of the electrodes in the brain, which is theorized to contribute to the buildup of
scar tissue. This scar tissue insulates the electrodes from the neural signals, thereby reducing
the longevity of the implant. It is possible to eliminate these wires, but it places stringent
demands on the implant design, and this is where the circuit designers come in.

To combat the problems with wires, power delivery and data transmission can be per-
formed wirelessly. The power delivery link typically employs near-field, inductive coupling
between two coils. For a transcranial link, the “primary” coil is positioned outside the scalp
and the “secondary” coil lies beneath the skull on the implanted recording platform (“im-
plant”). The primary coil is driven by a transmitter, typically at a single frequency in an
unlicensed band such as 125 kHz or 13.56 MHz. This transmitted power couples onto the
secondary, where a rectifier converts the sinusoidal excitation to DC. Power regulation cir-
cuits create a stable supply voltage from this DC rectifier output. Note that this technique
is currently used in cochlear implants [25], electric toothbrushes [26], and most pertinently,
near-field communication (NFC) radio-frequency identification (RFID) [27].
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The wireless data link often employs backscatter or load modulation, also similar to
RFID tags [27]. Because backscatter communication relies on reflection of the signal from
the primary, very little power is expended by the implant. Some systems have proposed an
active transmitter in the 433 MHz or 915 MHz unlicensed bands, which requires a substantial
radio power budget [28].

Wireless, implantable neural recording systems face many interrelated challenges that
all stem from two forms of miniaturization. First, to minimize the severity of the surgery,
the implant’s surface area should be kept below approximately 1 cm2. Second, to limit the
implant’s displacement of the brain, the implant should be maximally planar with a thickness
of a few millimeters at most.

Extreme miniaturization creates two specific electrical design constraints. First, the
surface area constraint limits the antenna aperture, which in turn limits the amount of
power that can be wirelessly delivered via inductive coupling through the skull. Prior work
indicates that 10 mW can be delivered to a 1 cm diameter implant coil at 1 cm depth [29,
30, 31, 32]. Second, safety constraints limit the amount by which implanted medical devices
may raise the surrounding tissue to 1 �C, or 40 mW/cm2 [33]. For example, one study
modeled a 6x6 mm2 implant and found the limit to be about 10 mW [34]. Since the limit for
thermal power for a 1 cm2 implant is higher than the delivered power, an implanted storage
mechanism could enable short-duration, high-power activities like stimulation. For example,
a supercapacitor or rechargeable battery could be trickle-charged with surplus power while
recording. During stimulation events, this storage device would be depleted. At any rate,
this limited power budget translates into three main constraints on the continuous recording
electronics that comprise the implant.

The first constraint on the electronics is the thermal noise of the neural recording chan-
nels. Thermal noise requirements place a lower bound on power consumption of the low
noise amplifiers (LNA) that condition signals from the neural electrodes. In a system with
1000 amplifiers, small improvements in amplifier e�ciency dramatically a↵ect the system.
Or, viewed another way, there is a direct tradeo↵ between the power consumption of the
amplifiers and the number of neurons that can be observed.

The second constraint on the electronics is the radio power consumption, which limits
the wireless data rate. Many implants utilize backscatter, similar to passive RFID tags.
This consumes nearly zero power by the implant, but limits uplink (implant to reader) data
rates to approximately 4 Mbps [35]. Each neural channel generates 200 kbps or more of
raw data. A significant percentage of this data contains no neural information, but it does
contain substantial background noise. A previously described, an accurate spike detector is
is required to extract the neural information in the presence of this background noise. Then,
a dataset tailed to the specific application (neuroscience vs. BMI) can be transmitted out
of the skull.

The third constraint on the electronics is limited computational resources. Neuroscien-
tists have built their understanding of the brain, their prototype BMI systems, and research
programs around sophisticated algorithms running on powerful computers. Practical, unob-
trusive BMI systems cannot rely on such computing power, and must compress the neural
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data on the implant in order to satisfy the data rate constraints of the wireless link. Fur-
thermore, this compression must be done within a per-channel power budget comparable
to the amplifier. Fortunately, the neuroscience community is learning that brain-machine
interfaces can be made robust without sophisticated spike sorting algorithms [22]. However,
there is still tremendous room to innovate as neuroscientists are generally unaware of the
circuit implementation power cost of their algorithms, and circuit designers generally lack
access to means of validating that their algorithms work robustly in a clinical setting.

The challenges outlined above highlight the gap between clinical neuroscience and the
attempts of circuit designers to create the next generation of neural recording tools. They
also highlight the monumental e↵ort required to bring a full-featured clinical device to mar-
ket. This discussion has focused primarily on the neural recording path; ultimately, this
neural data must be translated into control signals for a robotic prosthesis. These decoding
algorithms, as well as motor control algorithms, electro-mechanical prosthesis design, and
other technical challenges must also be overcome before a clinical prosthesis can be made.

1.3 Neural Probes

Fig. 1.1 depicts the conceptual setup for extracellular recording. However, Fig. 1.7 shows
a more true-to-scale drawing of planar [36, 37, 38] and needle [39, 40] probes, which are
widely used. As can be seen in Fig. 1.7, probes are designed with a limited surface area such
that each electrode captures signals from a small number of neurons. This limited surface
area translates into a high source impedance, and this in turn influences the design of the
recording electronics.

A probe is typically constructed of metal or silicon and encased in a biocompatible
insulator like parylene. The exposed electrode sites are often made of a porous or textured
metal like platinum to increase surface area and thereby lower impedance. Electrode sites
can vary from less than 100 µm2 to over 1000 µm2. A smooth metal surface results in 0.2
pF/µm2, and rougher surfaces may have five times this capacitance [42, 43]. For example,
a 36 µm diameter probe (1000 µm2) may have a capacitance ranging from 200 pF to 2 nF.
Probe manufacturers and researchers typically report the probe impedance at 1 kHz. For
example, a 200 pF probe impedance translates to 0.8 M⌦ at 1 kHz. For a comprehensive
review of probe manufacturing techniques, prior work and current research e↵orts, see [44].

1.4 Neural Recordings: the Signal and the Noise

A typical extracellular neural recording consists of three signal components: an electro-
chemical o↵set, the low frequency component of the extracellularly-recorded neural activity,
known as the Local Field Potential (LFP), and the high frequency APs. Table 1.1 compares
the frequency range and approximate recording amplitude of these signal components to the
approximate recording noise floor.
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Figure 1.7: Planar (left) and needle (right) neural probes. A rough scale for the size of a
neuron can be seen in the planar probe, where the exposed electrodes are 30 µm in diameter.
Probes range from 1-5 mm in length. Images adapted from [36] and [41].

Table 1.1: Neural Amplifier Input Signal Components

Signal Component Frequency Amplitude

Electrochemical O↵set DC ±50 mV
Local Field Potentials (LFP) 10-300 Hz 5 mVpp

Action Potentials (AP) 500-3000 Hz 50-500 µVpp
Recording Noise Floor 450-10,000 Hz 13.5 µVrms a

There are two natural sources of cortical recording noise: thermal and biological. Thermal
noise is generated by the resistive part of the electrode and tissue interface. The electrode
impedance, and thus noise, is dependent on electrode size; a 1000 µm2 probe contributes
approximately 5 µVrms of thermal noise [45]. Biological noise is simply interference from
neighboring neurons, which naturally falls in the same frequency bands as the desired AP
signals. Prior work has modeled thermal and biological noise during cortical recording using
silicon microelectrodes and found that for a 450 Hz to 10 kHz recording bandwidth, the
recording noise floor is approximately 13.5 µV (based on Section 4.2 and Table I from [46]).

The resulting 70 dB (13.5 µV to 50 mV) input dynamic range requirement of the amplifier
is typically reduced via AC-coupling, where the high-pass corner is set at approximately

1 Based on Section 4.2 and Table I of [46].
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Figure 1.8: Typical components of a neural acquisition channel.

500 Hz to eliminate the o↵set and LFP. This reduces the dynamic range to approximately
32 dB (13.5 µV to 500 µV). Section 1.5 presents a more detailed introduction to circuit
techniques.

1.5 Circuit Techniques for Neural Recording

The field of circuit design for neural recording dates back to the 1970’s when Ken Wise pio-
neered the first e↵orts to integrate an amplifier with the neural probe [47]. Since those first
e↵orts, a barrage of varying circuit design approaches have appeared in the literature. How-
ever, most systems follow an architecture similar to the form shown in FIg. 1.8, which consists
of a low-noise amplifier (LNA), band-pass filter (BPF), variable-gain amplifier (VGA), bu↵er
(BUF), and analog-to-digital converter (ADC).

The first amplifier (LNA) plays an important role in setting the power and noise per-
formance of the system. Because the input-referred noise (IRN) of subsequent amplifiers
are reduced by the gain (often 20-40 dB) of the preceding stages, it is the first stage that
dominates the total IRN. This is why it is referred to as the low-noise amplifier (LNA).
Consequently, the LNA consumes a large fraction of the total system power, and optimizing
the noise e�ciency (power consumed vs noise added to signal) is the focus of many research
e↵orts. Because large transistor area is required to suppress flicker noise, the LNA tends to
also dominate the area of the signal acquisition channels.

The purpose of the BPF is to provide a high-pass cuto↵ around 500 Hz to remove the
DC o↵set and LFP as well as a low-pass cuto↵ around 7-10 kHz to remove high frequency
noise which can alias in-band when sampled by the ADC. The BPF is often integrated into
the LNA and VGA. For example, the capacitive feedback network of the LNA can perform
the high-pass function. Similarly, limiting the bandwidth of the amplifiers can perform the
low-pass function.

The VGA scales neural signal ranging from 50 µVpp to 1 mVpp to the full scale range of
the ADC of around 1.0 V. The BUF provides a low output impedance to drive the sampling
capacitance of the ADC. Finally, the ADC digitizes the neural signals. A resolution of 8-
10 bits is common, ensuring that the quantization noise is minimal and allowing for some
variation in the amplitude of neural spikes.
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Figure 1.9: Widely-used amplifier topology proposed in 2002 by Harrison [48].

In 2002, Reid Harrison applied a technique to emulate a very large resistive impedance
on-chip (1012 ⌦) via MOS pseudo-resistors [48]. This permits small (10 pF) on-chip capaci-
tors to be used for AC coupling of the LNA while maintaining a 1 Hz to 100 Hz high-pass
corner, which is suitable for action potential recording [48]. Moving the AC coupling ca-
pacitors on-chip dramatically increases the number of channels that can be incorporated
on an implantable recording system. This architecture, shown in Fig. 1.9, has been widely
used by subsequent works, and e↵orts have focused on improving the noise e�ciency of
the active devices and the area consumption of the overall recording channel. As another
example, there is a fundamental limit to noise e�ciency, and therefore power and noise
performance can be traded. This ultimately trades channel count against recording fidelity
because recording systems operate on a fixed power budget. As a final example, mismatch
grows as device area shrinks. This loss of robustness and yield can be recovered through
complex and time-consuming calibration techniques.

Attempts to shrink area and improve area e�ciency have exposed a number of tradeo↵s,
as illustrated in Fig. 1.10. For example, in 2012, Rikky Muller introduced a topology to
cancel the DC electrode o↵set while removing the AC-coupling capacitors. This drastically
reduced the size of the recording channel versus prior works. However, this area shrink came
at an expense; the open-loop gain is unsuitable for some applications and the DC-coupled
front end is considered unsafe for some medical applications.
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Figure 1.10: Design tradeo↵s for a neural acquisition channel.

1.6 E�ciency Metrics for Neural Amplifiers

A longstanding metric used to evaluate how e�ciently an amplifier uses its bias current to
reduce noise is called the noise-e�ciency factor (NEF) [49]. Eqn 1.1 defines the NEF, where
k is Boltzmann’s constant (⇡ 1.38 ⇥ 10�23 m2 kg s�2 K�1), T is the temperature in Kelvins
(body temperature = 310 K), VT is the thermal voltage (26.7 mV at body temperature),
ID is the transistor bias current, and BW is the -3 dB amplifier bandwidth. This metric
compares an amplifier’s noise and current consumption to a BJT amplifier with equal -3 dB
bandwidth.

NEF =

s
V

2
ni,rms · Itotal

V

2
ni,rms,bjt · IBJT

= Vni,rms

s
Itotal

4kT · VT · ⇡/2 · BW

(1.1)

The minimum theoretical input-referred noise, Vni,rms of a di↵erential CMOS amplifier
has been analyzed by [50] and is given by Eqn. 1.2, whereK is a process constant representing
the subthreshold gate coupling coe�cient (K ⇡ 0.7). This leads to a minimum theoretical
NEF of approximately 2.0, as given by Eqn. 1.3.
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�����
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(1.3)

The NEF metric has several limitations. First, insu�cient and excessive bandwidths
are not penalized. Neural signals contain a finite signal bandwidth. Insu�cient amplifier
bandwidth distorts and attenuates the neural signal, and excessive amplifier bandwidth
adds noise. Second, the spectral characteristics of the noise are not considered in NEF.
Flicker noise tends impact the neural signal band, and wide amplifiers bandwidths can make
the overall NEF appear attractive while in-band noise performance is poor. Third, NEF
compares current e�ciency, not power e�ciency. The initial reasoning was that noise, to
first order, is not a function of supply voltage. However, an amplifier requires power,
not current, to operate. The power e�ciency factor (PEF) attempts to correct for this by
comparing noise to a BJT amplifier operating at the same supply voltage and bias current
level [51]. The equation for PEF is given by Eqn 1.4, where VDD is the supply voltage.
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Thus, the PEF captures di↵erences in power e�ciency between two amplifiers. For
example, an ideal switching regulator would provide double the battery life for a 1.0 V
amplifier as compared to a 2.0 V amplifier, if they each consume the same current from
their respective supplies. Both the NEF and PEF metrics will be presented through this
dissertation to illustrate how di↵erent circuit design techniques impact these two metrics.

It is important to consider the practical limitations of the PEF metric. A linear regulator
is often required to reduce noise from a switching regulator, and the switching regulator
conversion e�ciency varies as a function of the conversion ratio. In other words, it may be
di�cult to directly compare a 1.2 V recording channel to a 1.0 V recording channel until
the power supply is designed. Battery life is an excellent way to normalize the otherwise
di�cult-to-compare e�ciencies and ine�ciencies of varying approaches.

1.7 Stimulation

Another significant aspect of a neural interface the restoration of sensory feedback. Methods
include electrical and optogenetic stimulation, where stimulation refers to the ability to
excite or suppress the firing rate of nearby neurons. Electrical stimulation involves injection
of a controlled amount of charge into the brain through an electrode, typically at a constant
rate of current. Then, to prevent permanent tissue damage, the charge is removed. The
charge and discharge are typically performed at the same rate of current flow. Optogenetic
stimulation involves DNA modification, typically by virus, to make neurons sensitive to
light. This allows fibre optics or micro-LEDs on an implanted probe to stimulate neurons
via illumination. For more information on charge-based and ontogenetic stimulation, see [52]
and [53], respectively.

1.8 Outline

Chapter 2 surveys prior works on neural amplifiers, data converters, and recording systems.
A tremendous amount of work has been done on individual components, generally ignoring
the integration challenges of very highly scaled system implementations. Yet, some full
systems do exist, and their performance is discussed.

Next, this document details the design and measurement results from two neural interface
implementations. First, Chapter 3 presents a tiny (0.125 mm2) four-channel neural sensor
with bidirectional wireless communication, which opens the possibility of free-floating neural
nodes in the brain tissue. For reference, this system is smaller than most single neural
amplifiers found in the literature. By eliminating wires to the sensor, applied mechanical
forces due to wires are also eliminated, which originate from motion of the brain tissue
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relative to the dura and skull. The end goal is to reduce the brain’s biological response in
which insulating scar tissue forms around electrodes and consequently degrades recording
SNR.

Second, Chapter 4 presents a system to bridge the gap between long-term neuroscience
research and today’s biomedical needs by integrating 64 recording channels, 16 stimulation
channels, and neural data compression onto a single 4.78 mm2 IC. The low power and area
of this chip can enable neural recording systems that scale up to thousands of channels, or
scale down to extremely compact, low weight, low area, wireless interfaces. The IC achieves
a level of integration not previously demonstrated in the literature or in commercial designs.
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Chapter 2

Prior Work

An comprehensive technical review of integrated circuits for neural recording can be found
in [45], including a history of the field, neural probes, and recording systems. Rather than
provide a broad, comprehensive review, this chapter aims to highlight the forefront of the
field and the benchmark for contributions.

2.1 Low Noise Amplifiers

Table 2.1 presents a summary of state-of-the-art neural amplifier designs where leading met-
rics are highlighted in bold. For a review of metrics to compare neural amplifiers, see Sec-
tion 1.6. Rai [54] and Wattanapanitch [55] achieve excellent NEF, while Liew [56] achieves
excellent PEF. Rai and Liew achieve low NEF through current-reuse topologies, while Wat-
tanapanitch utilizes degeneration and current scaling in the transconductance vs. load de-
vices to reduce noise.

Muller [57] achieves a very compact design, consuming 5-10x less area than competing
designs. This low area comes at the cost of open-loop gain and a DC-coupled front end,
which limits use in some applications. In particular, stimulation can induce voltages that
may damage the recording IC. Also, safety precautions for medical devices often necessitate
AC coupling to prevent large DC voltages from reaching the body in the case of a faulty
or damaged recording IC [45]. Furthermore, use of active load devices cause poor noise
performance. Several notable techniques are introduced: a VCO-based ADC both filters
and digitizes the signal, and mixed-signal feedback improves dynamic range by canceling the
DC electrode o↵set and LFP. An improved design is presented in Chapter 3 that improves
noise e�ciency while maintaining low area usage.

Because flicker noise decreases with frequency, it plays a less significant role as the am-
plifier bandwidth increases. Wattanapanitch [50] is significant for simultaneously achieving
a low NEF and a low bandwidth, e↵ectively mitigating flicker noise contributions. However,
strict matching requirements incur an area penalty, and a large number of stacked devices
results in a high supply voltage. In [55], both the supply voltage and area are significantly
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Table 2.1: Prior work on low noise neural amplifiers

Author Muller Wattanapanitch Rai Liew
Reference [57] [50] [54] [56]

Year 2012 2007 2009 2011
Area (mm2) 0.013 0.16 0.4 0.073
Process (nm) 65 500 130 130
Supply (V) 0.5 2.8 1.0 0.5

Power (µW) 5.04 7.56 12.5 0.86
HP (kHz) 0.3 0.045 0.023 0.3
LP (kHz) 10 5.32 11.5 7.5
BW (kHz) 9.7 5.275 11.5 7.2

Noise (µVrms) 4.9 3.06 1.95 5.32
NEF 6.09 2.67 2.48 3.17
PEF 18.55 19.95 6.14 5.03

improved, but NEF degrades to 4.4 and PEF degrades to 34.5. Improvements to this design
are presented in Chapter 4, resulting in area, NEF, PEF and supply voltage improvements.

2.2 Analog to Digital Converters

A successive approximation register (SAR) ADC is a popular choice for neural acquisition
channels due to their potential for low power and area. A resolution between 8 and 10 bits is
often chosen to provide 50 to 60 dB of nominal dynamic range. The e↵ective number of bits
(ENOB) is often 1-2 bits below the resolution due to mismatch and noise, which results in
about 40 to 50 dB of real dynamic range. ADC performance is often quantified by a figure
of merit (FOM) equal to Power/(2ENOB

fs), which represents the average energy consumed
per bit of the ADC conversion.

The ADC, more than any other component in the signal chain, places stringent con-
straints on the preceding bu↵er. This is due to the setting requirements of the sampling
capacitance of the ADC. A large sampling capacitor can demand substantial power con-
sumption in the bu↵er to settle within 1 LSB during each sampling window. Publications of
stand-alone ADCs with record-breaking performance have no impact if they place crippling
demands on the bu↵er. Finally, because the ADC itself tends to consume a relatively small
fraction of system power, it is often optimized only to the point where the LNA and other
components dominate. Some ADCs also require a precision VDD/2 reference, which can then
necessitate a second low impedance (high power consumption) bu↵er.

One example of a highly-optimized SAR can be found in [58]. Input capacitance is kept
to 250 fF at 10 bit resolution (9.4 bit ENOB), supply voltage is a reasonable 1.1 V, and the
design achieves a FOM of 6.5 fJ per conversion step. To digitize one neural channel, the
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ADC consumes 100 nW at 20 kHz. Other components of the recording channel, such as the
LNA, render this ADC power negligible. For low-voltage system applications, a follow-up
paper achieved 2.2 fJ / step FOM performance at 600 mV supply voltage [59]. For neural
recording applications, no further optimization is currently required.

2.3 Neural Interface Systems

A wide variety of neural interface systems have appeared in the literature. Table 2.2 presents
a survey those systems leading in integration and/or performance. Some include an active or
passive (backscatter, see Chapter 3) radios (“Radio”), and some include a wireless power de-
livery system (“RF Pwr.”). The radio provides the data link through the scalp and/or skull.
Wireless power allows long term operation of an implanted system and is often delivered by
magnetic coupling, as described in Section 1.2.

There are many interesting points of comparison in Table 2.2. Despite two systems
achieving excellent LNA NEF (< 3) and others achieving poor LNA NEF (> 5), the power
consumption for full recording channels is relatively constant. All of the systems consume
between 23 to 35 µW per recording channel. It is unclear if this reflects a focus on the
LNA FOM for the sake of publication or a struggle with the system integration challenges.
Regardless, it has now been demonstrated that a full neural acquisition channel can be
implemented in 1.1 µW [56]. The next wave of system builders must meet these performance
levels in order to achieve the channel count demanded by neuroscientists.

Chae [60] demonstrates 128 recording channels integrated with an on-chip high-data-
rate radio that can transmit the raw stream from all channels simultaneously. On-chip
DSP provides spike detection and feature extraction (min / max) for one selected channel.
Application of the DSP to all channels would triple the total power budget, at 100 µW
per channel. Lack of a power delivery mechanism prohibits long term use as an implanted
system. Finally, wireless range is not reported. Nevertheless, the system is noteworthy for
successfully recording and transmitting 128 channels wirelessly with a 6 mW power budget.

Azin [18] and Rhew [61] successfully integrate recording, compression, and stimulation.
Chen [19] utilizes a system-in-package approach to connect a 16-channel recording IC to a
combined 16-channel DSP and 8-channel stimulation IC; quoted area and power are for the
DSP / stimulation IC only. The recording channel count of these systems are insu�cient for
all but the most rudimentary prosthesis control. Lastly, the system by Rhew requires a 5 V
battery for stimulation, which is not recharged by the wireless power delivery system. Thus,
none of these systems are implantable.

Lee [62], Sodagar [28, 63], and Harrison [64] present recording systems without stimula-
tion. Wireless data and power transmission are included, allowing long term implantation.
Lee relies on direct transmission of the raw recordings, like Azin. Therefore this system can-
not scale in channel count. The systems by Sodagar and Harrison provide spike detection and
packetization of compressed spike events. At 75 µW and 35 µW and roughly 0.1 mm2 per
recording channel, significant reductions in power and area are required to scale up channels
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counts. Furthermore, provisions for stimulation are necessary to provide sensory feedback in
BMI applications.

In summary, levels of functionality and area consumption vary greatly between published
systems. Total chip area is likely set by the silicon sponsor’s generosity and not necessarily
by economic or application constraints. Some systems lack data compression and/or stimu-
lation, and the compression loss and data formats vary widely. No systems o↵er a firing-rate
option, which compresses the data rate to the level where 1000’s of channels could be wire-
lessly recorded. As the field of neural engineering matures, a more standard feature set,
driven by proven application requirements, will emerge.
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Table 2.2: Survey of Neural Recording and Stimulation Systems

Chae Azin Rhew Chen Lee Sodagar Harrison
System Specs. [60] [18] [61] [19] [62] [28] [64] Units

System
Technology 350 350 180 350 500 500 500 nm
VDD 3.3 1.5 1.8 5.0 3.0 1.8 3.3 V
O↵-Chip Ant 1 µF DC-DC Amp Ant Ant Ant

Bat ADC Cap Cap Cap
Power 6 0.375 0.468 10.46 5.85 14.4 8 mW
Area 63.4 10.9 4 28.3 16.2 217 25.4 mm2

Radio Yes Yes Yes No Yes Yes Yes
RF Pwr. No No Yes No Yes Yes Yes

Amp/ADCa

Channels 128 8 4 16 32 64 100
Power 23.4 25.8 61.25 NA 25 75 35.2 µW
Area 0.039 0.3122 0.354 NA 0.162 0.072 0.16 mm2

Gain 57-60 51-65.6 54 NA 66-78 59.7 60 dB
HP 0.1-100 1-525 700 NA 1 0.1-100 250 Hz
LP 2-20 5-12 6 NA 10 9.1 5 kHz
Noise 4.9 3.12 NR NA 4.95 8.0 5.1 µVrms
NEF 2.7 2.9 NR NA 5.6 21 9.3
PEF 24.2 12.6 NR NA 93 973 286

Stimulationa

Channels 0 8 8 8 0 0 0
Imax - 0.0945 2x 4.2 6.25 - - - mA

6x 0.116 - - -
Area - 0.038 0.05 0.7 - - - mm2

Compressiona

Power 100 3.28 34.5 256.9 - NR 17.6 µW
Area NR 0.0676 0.8 0.191 - NR NR mm2

Outputs
Raw ADC No 1 Ch. Yes Yes Yes 1 Ch. 1 Ch.
Epochs Yes No Yes Yes No No No
Events No Yes No Yes No Yes Yes
Firing Rates No No No No No No No
Other P-P - LFP PCA - - -

a Amp/ADC, Stimulation, and Compression power are given per recording / stimulation channel.
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Chapter 3

A Fully-Integrated Wireless Neural
Sensor

3.1 Introduction

To date, the direct recording of action potentials (APs) is the only type of brain-machine
interface (BMI) proven to provide enough temporal and spatial resolution to control com-
plex robotic prostheses. However, the implantation of micro-electrode arrays to record APs
causes scar tissue formation, severely degrading the recording signal-to-noise ratio (SNR)
over time. Studies indicate that reducing the amount of tissue displaced by an implant and
eliminating the long-term damage caused by ‘micro-motion’ e↵ects may mitigate a biological
response [65]. Micro-motion is the independent movement of an implant with respect to the
brain, resulting in tissue abrasion. This e↵ect can be reduced by eliminating the interface
cables and utilizing a wireless link to transfer power and data. Furthermore, the implant
should be su�ciently small and light to entirely free-float in brain tissue, eliminating friction
with the dura or skull.

Prior work (e.g. [62, 28, 41]) has developed wirelessly powered neural interfaces that
utilize large external antennas and bulky o↵-chip capacitors. To enable an electrode-sized
implant to float in brain tissue, a system-on-chip (SoC) solution with an order of magnitude
reduction in active circuit area is required. This reduction in area also reduces the available
power, necessitating a similar reduction in power consumption of the circuits. This work
achieves a 10x reduction in area and 58x reduction in power, per channel, compared to prior
state-of-the-art wirelessly powered systems. This enables a fully-integrated wireless SoC
without the use of any o↵-chip components.

The proposed system (Fig. 3.1) utilizes a subcranial interrogator to power and communi-
cate with an array of implanted, free-floating AP sensors through the brain’s dura. The dura
is the outermost membrane surrounding the brain and performs an important biological role;
therefore, it is desirable to re-close it after implantation. The sensor nodes are implanted
lengthwise, allowing the 4 electrodes to extend deep enough to reach relevant neurons. Four
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Figure 3.1: A conceptual diagram of the implementation of a BMI utilizing the developed
wireless neural sensor. The sensor free-floats under the dura, while receiving power from and
communicating to an interrogator beneath the skull.

data acquisition channels amplify and digitize the sensed neural potentials into an 800 kbps
data stream via 10b, 20 kHz ADCs. A single receive (RX) coil on the sensor couples perpen-
dicularly to a superdural transmit (TX) coil and achieves both power and data transmission
simultaneously. To further minimize the node’s area/volume and maximize the antenna size,
the RX coil is placed on top of the active circuitry.

This chapter was originally published as [66] and [67]. Broadly, the author’s contributions
focused on the RF front end, communication protocol, digital logic, and acquisition channel
amplifiers. The first coauthor, William Biederman, focused on the wireless link, antenna
design, system integration, as well as several circuit blocks including the bandgap reference,
acquisition channel ADC, and SC current reference. The third coauthor, Nathan Narevsky,
also contributed to system integration, verification of the acquisition channel mixed-signal
feedback loop, and software for signal processing of the communication channel.
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3.2 System Design

Realization of the system illustrated in Fig. 3.1 is limited by the available power at the node
and the communication protocol data rate. Power delivered to the node is maximized by
careful selection of the the wireless transmission frequency (Section 3.2.1). To enable robust
multi-node communication while providing a low-overhead reference clock to the nodes, the
communication protocol is optimized for this application (Section 3.2.2). Finally, the system
architecture (Section 3.2.3) outlines the co-operation of circuit blocks, which ultimately
enables low-noise neural potential recordings under a highly constrained power budget.

3.2.1 Frequency Selection

The maximum available power for a given node size is determined by the transmission
distance and the frequency of operation. The minimum transmission distance for this system
is determined by the thickness of the dura above the primary motor cortex (M1), which has
a µ + 3� thickness measuring 0.61 mm in humans [68]. In biological media, operating
at a frequency between 1-3 GHz minimizes channel loss for edge-to-edge coupling [69] and
reduces the RX coil size by several orders of magnitude compared to [62, 28, 41]. Thus,
the transmission frequency for this system was selected to be 1.5 GHz, trading a reduction
in node size and channel loss for an increase in the specific absorption rate (SAR). Based
on simulations, the estimated channel loss through 0.6 mm of brain tissue is approximately
20 dB, which correlates well to measurements in air as discussed in Section 3.6.1.

3.2.2 Communication Protocol

The proposed system enables a single interrogator to wirelessly power multiple implanted
nodes. However, each node generates 800 kbps of neural data which it must continuously
stream to the interrogator. Time interleaving the communication of N nodes reduces the
energy per bit by a factor of N, requires N times the data rate per node, and incurs N
timing overheads between the time-interleaved communication intervals. Instead, we propose
simultaneous transmission by all nodes in unique frequency bands. For this 5-node system,
each node’s backscatter is Miller-encoded at a programmable subcarrier frequency between
2 MHz and 10 MHz. Fig. 3.2 shows conceptual time domain waveforms of 5 wireless packets
with this system’s possible subcarrier frequencies (2, 4, 6, 8, 10 MHz). Fig. 3.3 shows
the frequency spectrum of 5 nodes transmitting simultaneously. Finally, Fig. 3.3 shows
a simulated time domain waveform received from 5 nodes (Raw), the band-pass filtered
waveform (Filtered) isolating the Miller 4 node and the resulting data as modulation (M4)
and raw bits (Data).

The Miller subcarrier frequency of each node must be precise enough such that the
interrogator can filter the responses from each frequency channel. The nodes generate a
precise local clock with the help of the interrogator, which sends a short downlink beacon
pulse every 50 µs. The nodes recover this 20 kHz clock, which initiates the ADC conversions
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Figure 3.2: Theory of a Miller encoded communication scheme for multi-node interrogation
showing miller encoded waveforms (2,4,6,8,10 MHz) for a data set.
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Figure 3.3: Theory of a Miller encoded communication scheme for multi-node interrogation
showing the resulting frequency spectrum from 5 nodes communicating simultaneously.
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Figure 3.4: Theory of a Miller encoded communication scheme for multi-node interrogation
showing the recovered raw waveform before and after bandpass filtering, and the recovered
original transmitted M4 signal and equivalent data.

of neural potentials as well as communication of the 40-bit data packets containing the
ADC output. The 2-10 MHz Miller subcarrier clock is generated by a frequency-locked loop
(FLL), which locks to a multiple of the 20 kHz beacons. The circuit details are presented in
Section 3.3.2.

To initiate downlink communication, the interrogator sends two consecutive beacons,
followed by PPM data. The encoding format is similar to EPC Gen2 RFID [70]. After
receiving the response from a unique ID query, the interrogator initializes each node with its
unique subcarrier frequency. Downlink communication is only used for initialization of the
nodes. Since the downlink configuration packets are infrequent, the node discards the ADC
sample when being programmed.

3.2.3 System Architecture

The system architecture, shown in Fig. 3.5, is ultimately determined by the specifications of
the neural potential recording channels as well as the limited area and power available for
circuit design. The high data rate and need for a precise clock necessitate an interrogator-
provided time base. Section 3.3 presents the demodulator, which enables recovery of the
low-duty-cycle beacons, and the frequency locked loop (FLL), which generates the Miller
subcarrier clock. The lack of a battery or external antenna requires highly optimized wire-
less power delivery. Section 3.4 describes the inductive link optimization as well as the
rectifier, regulator, and bias generation. Lastly, the wide dynamic range of neural poten-
tials necessitates an aggressive mixed-signal topology to achieve low input referred noise.
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Figure 3.5: System diagram, subdivided into three primary circuit blocks: Power manage-
ment, communication circuitry, and data acquisition.

Section 3.5 details the design as well as the measurement results of the data acquisition
components. Section 3.6 presents the testing results of the fully integrated neural node and
validates the system functionality in vivo. Finally, Section 3.7 compares these results to
prior work.

3.3 Communication Circuitry

The communication circuitry must facilitate high date rate, multi-node communication under
an extremely constrained power budget, without the use of an o↵-chip crystal reference.
Two key circuit blocks enable the system’s communication protocol: the demodulator and
FLL. The proposed demodulator, described in Section 3.3.1, must recover low-duty cycle
pulses, which is often impractical in conventional designs. This permits a low overhead clock
recovery scheme, which provides a reference clock for the FLL. The FLL, which is described
in Section 3.3.2, is then responsible for producing a Miller subcarrier modulation clock with
minimal power overhead.

3.3.1 Demodulator

Conventional RFID demodulators use a dedicated rectifier to track the RF envelope, which
is then low-pass filtered to generate the mean RF value. The original recovered RF envelope
and the low-pass filtered output are used as comparator inputs to perform data slicing. In
this system, it is desirable for the interrogator to send low (⇠1%) duty cycle timing beacons
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Figure 3.6: Top: The implemented demodulator schematic utilizes two peak detectors and
a replica detector to extract VH , Venv, and VL, which represent the high, instantaneous,
and low envelopes, respectively. A switched capacitor filter calculates Vmean, the mean of
the high and low envelopes. Bottom: A conceptual waveform showing the high and low
envelopes which are recovered from the peak detector/replica and are averaged to generate
slicing threshold for the sampling comparator.

to minimize supply ripple and protocol overhead. Therefore, the low-pass filter used in a
traditional demodulation scheme would provide a poor reference voltage for data slicing.
Furthermore, the use of a dedicated rectifier for envelope detection loads the RF input and
thereby decreases system e�ciency.

Ideally, the data slicing threshold should be set equal to the mean of the high and low
recovered RF envelopes, as shown in the graph in Fig. 3.6. In this work, peak detectors are
used to recover the RF envelope (Fig. 3.6) instead of a dedicated rectifier. Because they
do not significantly load the RF input, two separate peak detectors can be used to recover
the instantaneous data envelope independently from the slicing reference. By decoupling the
short decay time constant necessary to detect beacons from the long time constant necessary
to preserve the slicing threshold during modulation, a highly asymmetric duty cycle can be
used.

Fig. 3.6 shows the schematic of the proposed peak detector-based demodulation scheme.
The data envelope peak detector has a small capacitor at its output, Venv, which enables
tracking of short 250 ns OOK pulses. Conversely, the high envelope peak detector output,
VH , has a large output capacitance to retain the maximum envelope voltage while data
modulation occurs. The low envelope, VL, is generated by a replica circuit, and a switched
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Figure 3.7: Frequency-locked loop for subcarrier generation. Recovered beacons reset the
accumulator (rst) and evaluate the comparator (eval). The comparator increments or decre-
ments the second accumulator (up/dn), which in turn controls the DCO tuning bits (ctl). Fi-
nally, programmable dividers generate the output Miller subcarrier (fsc) and internal 2 MHz
clock (f2MHz).

capacitor network generates the mean voltage, Vmean, of VH and VL. Finally, a clocked
comparator generates the decoded digital output by comparing Venv to the slicing threshold,
Vmean.

3.3.2 Frequency Synthesis with FLL

Fig. 3.3 shows the spectrum of the communication channels, which are spaced apart by
2 MHz. If the center frequencies of the channels drift by more than approximately 10%,
the spectrum from adjacent channels will begin to overlap and cause communication errors.
Generating a sub-microwatt clock with better than 10% accuracy across mismatch and pro-
cess corners typically requires trimming, which is undesirable in a tiny IC with no room for
engineering pads or large metal lines for trimming. Furthermore, in this system, as well as
in RFID tags and other battery-less sensors, a crystal reference is prohibitively bulky.

Many RFID tags divide down an uncertain local clock using a programmable clock di-
vider. The divider value is calculated from reference timing that is communicated by the
reader [70]. This incurs very little power overhead because of the low clock frequencies and
data rates required in typical RFID applications. In this system, the nearly 1 Mbps data
rate necessitates Miller subcarrier frequencies at or above 1 MHz, which would incur a large
power overhead when synthesized using clock division. For example, in order to reduce the
maximum clock divider residual error to 10% for a 10 MHz subcarrier, an input clock fre-
quency of 50 MHz is required. Some systems have proposed injection locking to the received
RF carrier [71]. However, the circuitry required to recover and divide down a gigahertz clock
incurs a substantial power overhead of 14 µA in [71].

In this work, we use an FLL to generate Miller subcarriers ranging from 6-10 MHz, and
lower subcarriers ranging from 2-4 MHz are generated via fixed, low-power dividers. The FLL
reference is provided by the interrogator, which can a↵ord space for a precision frequency
reference. The schematic of the FLL is shown in Fig. 3.7. The 20 kHz beacons, sent by the
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interrogator and recovered by the demodulator, provide a reference clock. A digital counter
measures the DCO frequency by counting the number of DCO periods in each reference
period. The comparison reference (REF ) is set to the ratio fDCO/ 20 kHz. A 2 MHz clock is
also generated for the switched-capacitor (SC) current reference and for the ⌃� DAC in the
data acquisition channels. Finally, an up/down signal updates the DCO control bits stored
in a 5-bit accumulator. This provides approximately 250 kHz resolution and su�cient range
to span 6-10 MHz over process corners. This results in a maximum residual error of 4.2% at
6 Mhz.

Because the modulation switch creates input amplitude variations that are indistinguish-
able from downlink modulation, the node cannot both talk and listen without prohibitively
complex and power-hungry circuitry. Thus, if the FLL frequency is initially set slightly lower
than the target communication rate, the node will talk over every second beacon. The FLL
will slow down the clock until it has locked at half of the target frequency because it has
no way to detect that it is skipping beacons while it is talking. Therefore, to prevent errant
locking, the node does not transmit until the FLL detects a lock condition. The communica-
tion interval in which the node transmits cannot drift because transmissions are initiated by
the beacons, which e↵ectively phase-locks the node to the beacons. Finally, the lock signal
is reset when the node needs to change its Miller subcarrier frequency, since the FLL must
change its output frequency.

3.4 Power Management

The power management circuits convert the inductively-coupled RF power source into a
stable DC supply voltage and bias currents for the system. Section 3.4.1 describes the co-
optimization of the antenna coil and the rectifier, which convert the incident RF power into
an unregulated DC supply. Bias generation is discussed in Section 3.4.2, including a basic
bias source for the other power management blocks as well as a precision bias generator for
the data acquisition channels. The voltage reference and regulator, described in Section 3.4.3,
provide a stable 500 mV supply for the digital core and data acquisition channels. Finally,
the power-on reset circuit is used to sequence start-up and is described in Section 3.4.4.

The rectifier, regulator, �VGS/R current reference, power-on-reset were designed by the
author. The wireless link, inductive coils, bandgap reference, and SC bias current reference
were designed by a coauthor, William Biederman.

3.4.1 Wireless Power Transfer Optimization

A carefully optimized wireless power link minimizes the required amount of transmit power,
reducing tissue heating and power consumption of the interrogator. Eqn. 3.1 approximates
the power transfer e�ciency, ⌘, where Q

0 represents the loaded quality factor, Q, of the the
transmit (T ) and receive (R) inductors [72].
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⌘ = k

2
Q

0
TQ

0
R (3.1)

Since the amount of magnetic flux captured by the node is constrained by its physical
size, the coupling, k, is fixed for a given coil separation. The receive coil quality factor, QR is
determined by the geometry of the metal turns, as well as constants such as the loss tangent
of the silicon substrate. As the number of turns increases, the quality factor decreases due
to the required reduction in metal width for a given area constraint, as well as increased
substrate losses.

In contrast to the coil Q, the rectifier e�ciency improves with the number of turns (to
first order) due to the increasing open circuit voltage of the coil. The open circuit voltage
is given by Eqn. 3.2, where Ptx is the amount of transmitted power and Rp is the e↵ective
source impedance of the coil at resonance. Rp can be expressed in terms of the inductance
and quality factor as shown in Eqn. 3.3. Improvements in rectifier e�ciency must be weighed
against losses in power transfer e�ciency (⌘). Optimizations in MATLAB showed that 6
turns maximized the total power transfer e�ciency of the link.

Voc =
p

⌘PtxRp (3.2)

Rp = !LQ (3.3)

The rectifier is designed to source 10.5 µW (15 µA at 700 mV) and 120 pF of output
capacitance reduces supply ripple during communication. A two-stage self-synchronous rec-
tifier topology, shown in Fig. 3.8, was found to maximize RF to DC conversion e�ciency in
this operating region. The coil was designed in an extra-thick aluminum redistribution layer
(RDL) with a patterned ground shield (PGS). It occupies almost 500 µm x 250 µm of area
in the top metal layers above other circuits and achieves a quality factor and inductance of
approximately 8 and 18 nH, respectively. The resulting Rp is 1.36 k⌦, yielding a simulated
rectifier e�ciency of 24%.

3.4.2 Bias Current Generation

The task of bias current generation is divided between two groups of circuits. The first group,
including biases the regulator, DCO, and demodulator, requires an independent current
source that is not dependent on the clock or regulator. A standard�VGS/R current reference,
powered from the unregulated supply, biases these circuits.

The second group, which includes data acquisition blocks such as the amplifiers and
ADCs, can remain o↵ until the system has powered on. However, supply rejection is critical
to prevent modulation of the amplifier gain and ADC conversion gain. A precision current
reference, shown in Fig. 3.9, forces 300 mV across a resistor. The accuracy of poly resistors
is dependent on the poly width, thus creating an area/variability tradeo↵. Since the inter-
rogator provides a reliable frequency reference, a SC resistor was used to break this tradeo↵.
The equivalent resistance of an SC resistor is 1/(fC), and thus a small capacitance can be
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Figure 3.8: A high-Rp on-chip coil increases the open circuit voltage and maximizes the
e�ciency of the self-synchronous rectifier. 120 pF of on-chip decoupling capacitance is im-
plemented with thick-oxide native devices.
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Figure 3.9: Switched-capacitor bias current generation schematic, utilizing two-phase non-
overlapping clocks.

utilized to generate a nA current reference instead of a large resistor. This allows substantial
area savings and reduces variability in our process. The SC resistor utilizes non-overlapping
clocks to minimize error and the 300 mV op-amp reference voltage is generated using a
pseudo-resistor voltage divider from the regulated supply.
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Figure 3.10: Discrete-time LDO regulator schematic utilizing a comparator with capacitive
o↵set cancelation and a charge pump loop filter.

3.4.3 Voltage Regulation

Uplink and downlink backscatter communication induce unregulated supply ripple at the
programmable subcarrier frequency ranging from 31.25 mV at 2 MHz to 6.25 mV at 10 MHz
(assuming a 15 µA load on the 120 pF decoupling capacitor). A discrete time linear regulator,
shown in Fig. 3.10, is used to provide a low noise supply for the neural data acquisition
circuitry, as well as minimize the dynamic and leakage power of the digital communication
logic. A strong-arm comparator [73] with capacitive o↵set cancellation (OSpos, OSneg) is used
instead of a linear amplifier in order to provide a high gain-bandwidth with minimal power
consumption. A charge pump based loop filter sets the bandwidth as well as output ripple
while consuming minimal power and area. Native Vth NMOS power devices are used for
both the analog (Avdd) and replica digital (Dvdd) supplies. The regulator consumes less than
300 nA at the maximum supply voltage and occupies 55 µm x 54 µm. Input and output
capacitors, including the 120 pF decoupling capacitor for Vunreg, consume 450 µm x 63 µm.
The measured PSRR across frequency is shown in Fig. 3.11. With a worst case PSRR of
27 dB, communication-induced supply ripple is reduced to less than 1.5 mV.

The regulator requires a robust precision voltage reference with low area and power con-
sumption. By utilizing a SC bandgap architecture proposed in [74], the reference eliminates
the use of resistors, op-amps, process-sensitive MOS Vth or leakage-based techniques. This
bandgap topology provides drastic area and power savings over the previous state-of-the-art,
consuming only 138 nA of current and 0.0055 mm2 of area. Furthermore, the design en-
ables operation with an unregulated supply voltage as low as 650 mV at 37�C, which helps
minimize the dropout voltage of the system.
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Figure 3.11: The measured discrete-time LDO regulator supply rejection across frequency.

3.4.4 Power-On Reset

Both the regulator and the bandgap reference require a clock to function and the oscillator
requires a regulated supply to provide a stable clock frequency. Thus, a power-on reset
(POR) signal is needed to transfer the oscillator from an unregulated to a regulated supply,
and ensure that all circuits power on successfully.

In steady state, the loop gain of the system is less than unity and, therefore, the system
is stable. However, before the oscillator starts, the regulator output is stuck at an unknown
voltage. Hence, the primary goal of the POR circuit is to assert the reset signal until the
clock has been established.

The POR circuit, shown in Fig. 3.12, utilizes a complementary pair of SC resistors that
overpower the MOS pseudo resistors when clocked. A standard level shifter is used to
convert the internal analog voltages to a digital output. When the node initially powers on,
the capacitors pull the internal nodes into the reset state. This pulls up the regulator and
bandgap outputs and enables the oscillator to start. The oscillator clocks the SC resistors and
turns o↵ the POR. Due to the large-valued pseudo resistors and the absence of amplifiers
or other analog circuits, the POR consumes only 10 nW in steady state (simulated) and
occupies 225 µm2.

3.5 Data Acquisition

As discussed in Section 1.4, a typical neural potential recording consists of three components:
DC o↵set, LFP and APs. The 70 dB (13.5 µV to 50mV) of input dynamic range is typically
reduced via AC-coupling, where the high-pass corner is set at approximately 500 Hz to
eliminate the o↵set and LFP. Synthesizing this filter corner frequency on chip with passives
can consume substantial die area, which scales poorly with the process node. Instead, this
work utilizes a DC-coupled, mixed-signal data acquisition architecture, shown in Fig. 3.13
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Figure 3.12: Power-on reset schematic. Switched-capacitor resistors pull up against pseudo-
resistors, disabling the reset signal after several clock cycles.

and originally proposed in [57]. The o↵set and LFP are canceled in the analog domain to
alleviate the dynamic range constraints, and filters are synthesized in the digital domain,
thereby eliminating bulky passive components.

Also discussed in Section 1.4, the input signal from the electrode contains noise from both
the biological background chatter and also the thermal noise of the electrode interface. This
varies with electrode material and dimensions; we modeled it to be approximately 13.5 µV
(based on Section 4.2 and Table I from [46]). Many neural amplifiers target noise floors as
low as 1-3 µV (ex. [50, 75, 76]), significantly below this recording noise floor, which results in
wasted power. Consequently, in this work we targeted a comparatively large amplifier input
referred noise of 6-7 µV, allowing power minimization without significantly contributing to
recording noise. The total recording and amplifier input referred noise is equal to the sum
of their variances, shown in Eqn. 3.4. With an amplifier input referred noise of 6.5 µV, the
total estimated recording input referred noise, �Total, is approximately 15 µV.

�Total =
q
�

2
Amp + �

2
Therm + �

2
Bio (3.4)

For applications requiring a lower noise floor, the same design procedure and circuit
topology can be applied. As more power is spent in the LNA and subsequent amplifiers
to reduce noise, the power overhead from the ADC and digital logic will constitute a lower
fraction of the total power, and the noise e�ciency of the system will improve.

The following subsections describe the design of the LNA, VGA, DAC, and ADC. Cali-
bration and biasing techniques are also discussed, which ensure robust operation over process
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Figure 3.13: Amplifier block diagram utilizing mixed signal feedback to cancel DC o↵set and
LFP signal.

corners at a 500 mV supply voltage. Finally, a performance summary is given. The ADC
was designed by a coauthor, William Biederman. The remainder of this chapter was the
work of the author.

3.5.1 Amplifier

The amplifier consists of three open-loop gain stages, shown in Fig. 3.13. The entire acqui-
sition channel is powered from the 500 mV supply. The input capacitance of the LNA was
limited to 250 fF di↵erential / 1 pF common-mode to enable compatibility with a wide range
of electrodes. The LNA and VGA utilize weak positive feedback to achieve maximum gains
of 15 dB and 20 dB, respectively. The VGA gain is modulated by shunting the di↵erential
resistor load, allowing gain ranging from approximately 0-20 dB.

The LNA gain is su�ciently large that its noise dominates the total system noise, which
is 6.5 µVrms. The LNA consumes 2.2 µA and occupies 54 µm x 72 µm. The low noise
floor, power, and area are enabled via the mixed signal architecture as well as the use of
calibrated poly resistor loads. To prevent the resistors from dominating the chip area, trim
and auto-calibration are used.

3.5.2 ADC and Mixed-Signal Feedback

A fully-di↵erential VCO-based ADC digitizes the neural signal, and mixed-signal feedback
removes the LFP signal via a current DAC and the o↵set via modulation of the LNA input
device width [57]. The ADC topology provides a compact layout of 640 µm2, low power
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Figure 3.14: Measured amplifier frequency response over various high-pass corners, normal-
ized to peak gain.

consumption of 290 nW including integrating counters, and obviates the need for an anti-
aliasing filter due to its sinc transfer function.

A 10-bit ⌃�-modulated current DAC cancels the LFP signal in the analog domain. A
digital accumulator in the feedback path drives the LFP DAC, creating a high-pass corner.
The corner frequency is wirelessly programmable by adjusting the feedback gain (Fig. 3.14).
The input referred noise of the LFP DAC is well below the system noise floor.

The o↵set cancellation DAC is implemented by modulating the LNA input device width.
This enables o↵set cancellation with a very minimal increase in input noise across the DAC
range and eliminates the input AC coupling capacitors. An overflow condition in the LFP in-
tegrator is used to adjust the o↵set DAC, or a wireless programming command can manually
set the control bits.

3.5.3 Calibration and Biasing

The combination of aggressive power minimization, low voltage operation, and process vari-
ation in 65nm necessitate compensating calibration circuitry. In this work, an active input
biasing circuit for the LNA (Fig. 3.15) provides a precise headroom of 100 mV across the
tail current source despite substantial transistor VTH variations that could otherwise pinch
o↵ either the input devices or the tail device.

There is a tradeo↵ between the process variability of poly resistors and the resistor width,
which translates to area. However, doubling the device width requires doubling the length,
and thus quadrupling the area, in order to achieve the same resistance. Here, the 200 k⌦ LNA



CHAPTER 3. A FULLY-INTEGRATED WIRELESS NEURAL SENSOR 37

!"
!"

#$"

%&&"
" '"
"()*" +,,$*"

-%&&"
" '"
"

./0"

+/*"

Figure 3.15: Amplifier front-end calibration, input and output common mode biasing, and
cross-coupled gain boost.

load resistors are upsized in both length and width to keep variation to a manageable range.
However, mega-ohm resistors in the VGA and DAC utilize near-minimum poly widths and
consequently require trimming. The bias and resistor calibration takes place in two discrete
steps. First, the global amplifier bias current is adjusted to produce a 300 mV LNA output
common mode. Then, a global resistor calibration circuit forces an output common mode of
300 mV on a replica amplifier stage.

3.5.4 Performance

At the highest gain setting, the data acquisition channels provide a 1 µV LSB and achieve
an input referred noise of 6.5 µVrms. The input referred noise was measured while wirelessly
powered and using all on-chip voltage references, regulator, and bias currents. The measured
noise spectrum with and without the LFP cancelation loop is shown in Fig. 3.16. The full
acquisition channel consumes 3 µA at 0.5 V, yielding an NEF / NEF2VDD of 4.34 / 9.42,
and improves on the prior state-of-the-art NEF2VDD of 17.96 in [57] by nearly 2x.

3.6 System Results

Although most circuit blocks were broken out and verified individually, much of the chal-
lenge in this system design is to maintain consistent performance when all components are
integrated together and operating over a wireless link. Therefore, to verify functional and
robust system operation, several full system tests were also performed. This section discusses
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Figure 3.16: Measured amplifier noise spectrum with and without the LFP loop enabled.

the testing to verify the wireless operation range (Section 3.6.1), multi-node communication
(Section 3.6.2), simultaneous channel recordings (Section 3.6.3), and operation of the system
in vivo (Section 3.6.4).

3.6.1 Wireless Operational Range

To measure the wireless transmission distance, a node was attached to a micro-manipulator
oriented for perpendicular (edge-to-edge) coupling with the TX coil. A photograph of the
testing setup is shown in Fig. 3.17. Using the micro-manipulator, the node was moved along
the Z-axis of the TX coil while the TX power was swept to find the minimum operating
value at a given distance. Ansys HFSS simulations show that the estimated path loss for our
system in air matches the measured minimum transmitter power (accounting for rectification
and modulation losses) and the comparison is shown in Fig. 3.17 with fitted trend lines. A
transmission distance of 1 mm in air is achievable with approximately 50 mW of transmit
power. The path loss in the brain was simulated to be approximately 6 dB larger than in
air, yielding an equivalent transmission distance of 0.6 mm in vivo.

3.6.2 Single and Multi-Node Communication Tests

To verify communication functionality, commands with a known response (e.g. changing
the subcarrier frequency) were issued and the correct responses were validated. The on-chip
digital communication output is connected to the modulation switch for wireless backscatter
and also to a direct bu↵ered output for wired verification. Wireless communication tests were
performed using a spectrum analyzer in conjunction with COTS components. A measured
wireless data packet with a 4 MHz subcarrier is shown in Fig. 3.18, with 2% duty cycle
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Figure 3.17: Left: Setup for wireless operational range testing. The IC is attached to a
micro-manipulator using double-sided tape. Right: Simulated path loss compared to the
measured minimum TX power required for operation in air.

interrogator beacons visible at 0 µs and 50 µs. This packet was measured using a spectrum
analyzer and shows power (in dBm) reflected from the node during backscatter.

The use of a FDMA communication scheme allows interrogation of multiple wireless
nodes simultaneously from a single antenna. Two sensor nodes were wirelessly programmed
to have di↵erent subcarrier frequencies using the same antenna. A spectrum analyzer was
used to observe the frequency spectrum, and the measured output is shown in Fig. 3.19.
The corresponding simultaneous 4 MHz and 8 MHz backscatter can be filtered into indepen-
dent data streams for decoding, as demonstrated by Fig. 3.4. The multi-node time domain
backscatter from Fig. 3.19 is shown in Fig. 3.20 after filtering to isolate the Miller 4 node.
The ideal (simulated) waveform is also shown for comparison. Small di↵erences in the wave-
forms are due to the fact that the exact interference from other nodes is a function of the
random, uncorrelated data that each node is transmitting.

Simulations of the bit error rate (BER) were performed in MATLAB for various numbers
of nodes and the results are shown in Fig. 3.21. Initially, in all simulations, the sensitivity
improves with increasing SNR. However, above 10 dB SNR, the BER becomes limited by
interference (as opposed to thermal noise) in environments with 4 or more nodes. With any
number of nodes, a 10 dB SNR provides an acceptable BER for this application.
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Figure 3.18: A wireless packet encoded with Miller modulation. Backscatter communication
of 40 bits of signal acquisition data is initiated by a pulse from the transmitter (seen on
either side of the packet).
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Figure 3.20: The measured time domain waveform after filtering of M4 during a multi-node
interrogation test. Results are compared to an ideal filtered waveform, and the equivalent
Miller waveform with decoded data is shown.
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Figure 3.22: A wirelessly-powered system recording and transmitting a 1.6 kHz, 150 µV sine
wave input from all channels simultaneously.

3.6.3 Wirelessly-Powered Full System Test

Verification of the complete system functionality with simultaneous recordings from all four
input channels was performed on bench-top. The system was die-attached to a PCB above a
TX coil and inputs were bonded out to facilitate easier testing. A 1.6 kHz, 150 µV sine wave
was applied to all four inputs while the system was powered wirelessly through the PCB
inductive link. Fig. 3.22 shows the decoded output of all four channels recorded during a
testing trial. The outputs show ADC and amplifier performance consistent with the results
of stand-alone measurements performed in Section 3.5. The digitally-encoded modulation
waveform was connected to the modulation switch and bu↵ered directly o↵ chip to an FPGA,
which was used to gather long data streams.

3.6.4 Wirelessly-Powered In Vivo Recording

The system was tested in vivo to verify performance with a realistic signal source. To
reduce testing overhead and measurement uncertainty, the system was wirelessly powered
outside the animal and a single channel was connected to a pre-implanted microwire array,
which could also be connected to a standard rack-mount recording system for validation of
recordings. Fig. 3.23 shows a diagram of the testing setup used to obtain in vivo recordings.

One adult male Long-Evans rat was chronically implanted with microwire arrays bilater-
ally in the primary motor cortex (M1). Arrays consisted of teflon-coated tungsten microwires
(35 µm diameter, 250 µm electrode spacing, 250 µm row spacing; Innovative Neurophysi-
ology, Inc., Durham, NC, USA). The array in the right hemisphere contained 32 recording
channels (8x4 configuration), while the array in the left hemisphere contained 16 recording
channels (8x2 configuration). All animal procedures were approved by the UC Berkeley
Animal Care and Use Committee.
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Figure 3.23: The setup for in vivo recording trials utilized a rat which was implanted with
a microwire array. The system was die-attached to a PCB to facilitate wireless powering
and signal interfacing. In order to gather long data streams, a FPGA was used to bu↵er the
on-chip Miller-encoded neural data.

Extracellular recordings were performed for several consecutive days, more than one
month after the surgery. Clearly identified waveforms with a high signal-to-noise ratio were
chosen for further investigation as single unit responses. Putative single units were validated
based on waveform shape, reproducibility, amplitude, and duration. We also verified that the
characteristics of the inter-spike interval distributions were close to Poisson and exhibited a
clear absolute refractory period.

Fig. 3.24 shows the recorded waveform from one trial capturing multiple APs. The
amplifier gain was set to its maximum, and the LFP feedback cancelation high-pass corner
was set to be approximately 500 Hz. Recorded noise levels varied between recording sites
from 15 µV to 20 µV. These noise measurements agree with expectations of the biological
noise level as described in Section 3.5.

3.7 Conclusion

This system was fabricated in a 65 nm LP CMOS process with 4 recording channels, power
conditioning, communication logic, RF front end, and antenna integrated into an area of
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Figure 3.24: One example trial of wirelessly powered in vivo neural data from a live rat.
The LFP feedback cancelation high-pass corner was set and measured to be approximately
500 Hz.

Table 3.1: Comparison of neural recording systems with wireless telemertry.

Author Chae [60] Lee [62] Sodagar [28] Harrison [41] This Work

O↵-Chip (Ant, Cap) Ant Ant, Cap Ant, Cap Ant, Cap None

Wirelessly Powered No Yes Yes Yes b
Yes

In Vivo Results No No Yes Yes Yes

# Channels 128 32 64 88 c
4

Total Power (mW) 6 5.85 14.4 13.5 0.0105

Avg. Power (µW/Ch) 47 183 220 153 2.6

Total Area (mm2) 63.36 16.2 217 27.3 0.125

Avg Area (mm2/Ch) 0.495 0.506 3.39 a 0.310 0.031

Amp. Noise (µVrms) 4.9 4.95 8.0 5.1 6.5

Noise Meas. Wired Wireless Wireless Wired b
Wireless

Process (nm) 350 500 500 500 65

a Incl. o↵-chip
b
In vivo tests and noise measurements used wired power

c Not incl. REF channels
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Table 3.2: Summary of System Performance

Power / Signaling Frequency 1.5 GHz
Uplink Comm. Frequencies (MHz) 2, 4, 6, 8, 10

Downlink / Uplink Data Rate 1 Mbit (Half-Duplex)
Unregulated / Regulated Supply Voltage 700 mV / 500 mV
Rectifier Vin,min (15 µA @ 700 mV load) 1.07 V

Regulator PSRR / Dropout 27 dB / 50 mV
Neural Signal Amplifier Gain 46 dB (1-10 kHz)

Input Referred Noise 6.5 µV
Single Amp Bias Current 3 µA (1.5 µW)

ADC Sampling Rate 20 kHz
Number of Channels 4
Total Chip Area 0.125 mm2

Total Chip Power 10.5 µW
(2.625 µW/Ch)

4"Amplifier"Channels"

Decoupling"Cap"and"Bus"

Power"Man."and"Comm."

(a) Chip layout.
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Figure 3.25: Chip layout and die photo of the full system, showing the input bonding pads,
the RX coil and PGS (active area is underneath).

0.125 mm2. The top-level layout is shown in Fig. 3.25a, and the die photo is shown in
Fig. 3.25b, with the 4 inputs, power/communication coil and PGS visible. The node was
wirelessly powered and interrogated using a custom PCB antenna and COTS components in
a bench-top and in an in vivo setting. Table 3.2 summarizes the performance of the system.
The complete sensor has no o↵-chip components and consumes 15 µA from an unregulated
voltage source of 700 mV, for a total power consumption of 10.5 µW (2.6 µW/channel) in
under 500 µm x 250 µm.

Table 3.1 compares this system to prior neural recording systems with wireless telemetry.
This work reduces the average power per channel by 18x compared to [60] and 58x compared
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to [41]. Although [41] used a larger (500 nm) process, passives used to build the analog
filters consume substantial area even in modern processes. Compared to [41], this work
reduces the average area per channel by 10x, and decreases the amplifier and ADC area to
110 µm x 100 µm, compared to 400 µm x 400 µm (for an amplifier, comparator and DAC).

Probe longevity is one of the primary challenges that limit clinical deployment of brain-
controlled prosthetic devices today. Repeated surgeries to replace neural probes is unrealistic
given the risks and potential complications of each surgery. The main contribution of this
chapter is a complete wireless system that is small enough to integrate onto a free-floating
neural probe. As discussed in Section 3.1, elimination of micro-motion from a wired tether
may help mitigate the brain’s biological response, which encapsulates neural probes and
reduces the recording SNR over time.

Several key contributions enabled this system. First, the co-optimized communication
protocol and modulation / demodulation circuitry provide the required power delivery and
data transmission at low power and area overhead. Second, optimizations of the recording
channel architecture, originally proposed in [57], provide a nearly 2x improvement in PEF.
This was important, as the recording channels account for 40% of the system power even after
this optimization. Finally, careful design of the supporting circuitry, including the regulator,
reference, and biasing, contribute to the low power and area of the fully-integrated system.

At minimum, this system allows study of how neural probe design a↵ects probe longevity
without the confounding factors introduced by wired tethers to the probe. This may lead to
improved probe designs, improved tethers, and a reference point for probe longevity. Note
that a complete, implantable neural interface that is based on this system also requires a
second wireless power link to deliver power and data through the scalp (as in [77], skull, or
chest. When the high required channel counts of BMI applications are not required, the losses
of two wireless links can be tolerated. However, for clinical BMI solutions, the combined
losses of two wireless power links prohibit scaling to thousands of channels. The next chapter
presents a system-on-chip solution to address the requirements of BMI applications.
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Chapter 4

A Fully-Integrated Neuromodulation
SoC

The previous chapter explored the limits of miniaturization and energy e�ciency for a wire-
less implantable recording device. The work presented in this chapter aims to translate
those advances into a useful, scalable tool for BMI and neuroscience research. Controlling
a high degree-of-freedom (DOF) prosthesis (human hand = 27, human arm = 7) requires a
tremendous number of neurons. It is estimated that fast, robust control of a simple 6-DOF
arm requires upwards of 1000 neurons [12, 78]. Achieving this channel count in a wirelessly-
powered implantable recording device requires the advancements in power and area that were
achieved in the previous chapter, while retaining the precision and calibration-free nature
of traditional recording channels. Moreover, integrated spike detection and compression are
necessary to reduce data rates to a practical level for a wireless link. Finally, an integrated
stimulator is required to provide the sensory feedback in a closed-loop BMI.

This chapter presents a fully-integrated SoC with the highest complexity and lowest
power/area per recording and stimulation site reported to date. This SoC achieves significant
improvements in area, power and signal compression over current state of the art (e.g. [18,
61, 19]). When arrayed across the brain, 16 ICs provide 1024 recording and 128 stimulation
sites. This would require 6.67 mW and 320 kbps, which can be delivered through the skull
as shown by [64, 79].

4.1 System Vision

Fig. 4.1 shows our vision for a wireless implantable recording and stimulation platform. A
base station outside the skull transmits power to the sub-cranial platform, which lies between
the skull and the brain tissue. Compliant cables tether probes implanted in the brain tissue
to recording electronics on the implanted platform. There were several motivations for this
architecture. First, the compliant tethers between the probes and the implant eliminate the
power losses of the wireless link in Chapter 3. This is critical when scaling to high channel
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Figure 4.1: Berkeley wireless neural interface vision.

counts. Second, by placing the implant beneath the skull (and potentially beneath the dura),
the implant can move with the brain relative to skull. This eliminates strain caused by wires
leading through the skull as in [28, 77]. Third, the implant can support a large number
of neural interface ICs, and the implant substrate can accommodate fast, low power data
links to the aggregator. The aggregator can be customized to support an RFID data link
to the interrogator, a subdermal wire to a prosthesis, or a closed-loop system for treatment
of Parkinson’s. Lastly, the implant can be sized to provide a su�ciently large inductive coil
for wireless power delivery and data transfer. The flexible tethers decouple the implant size
and rigidity from the probes, and also allow researcher to continue development of probes
and tethers independent of the recording electronics. Note that the recording ICs can by
bonded to the probes to reduce the wire count in the tether to 5 conductors (power, ground,
data in, data out, clock) versus 64 conductors (one per electrode); this is left to the system
designer.

The IC architecture, shown in Fig. 4.2, combines 64 channels of real-time neural recording
with on-chip compression and dual stimulation on 8 selectable channels without any o↵-chip
components, paving the way for closed-loop neuromodulation. This work was originally
published as [80]. The design of the recording channels, which is the author’s contribution,
is presented here. The compression and stimulation circuits were designed by coauthors
Nathan Narevsky and William Biederman, respectively, and design details may be found in
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Figure 4.2: Berkeley wireless neural interface chip block diagram.

[81]. System integration was largely the work of Jaclyn Leverett, and [82] presents a wireless
headstage for animal recordings that is based on this IC. Section 4.2 presents the design and
Section 4.3 presents the measurement results of the data acquisition components. Finally,
Section 4.4 presents the in vivo testing results of the fully integrated system.

4.2 Acquisition Channel Design

The requirements for the acquisition channels are significantly di↵erent than those presented
in Chapter 3. First, this system is designed to be compatible with large (2 - 3 V) stimulation
common-mode voltages. Second, the chip should be safe even in the case of gate-oxide fail-
ures. Tissue damage may occur if the supply voltage becomes connected to an electrode [45].
The first and second requirements necessitate AC coupling. Third, the input-referred gain of
the recording channels must be both precise and accurate, as defined by [83]. This necessi-
tates either closed-loop gain or sophisticated, automated, on-chip gain calibration. Because
the closed-loop gain approach is less complex, and initial studies suggested that the tradi-
tional area penalties of a closed-loop design could be mitigated, that approach is taken here.
Finally, substantial area reduction is required versus state-of-the-art AC coupled recording
channels. Architectural and circuit design techniques are applied to mitigate this concern.

Fig. 4.3 presents the top-level block diagram for the acquisition channel. The inputs are
AC-coupled by on-chip 10 pF capacitors. Eight rows, each consisting of 8 amplifiers and an
ADC, form the 64 recording channels. A time-multiplexed switched-capacitor ADC driver
utilizes separate sampling capacitors for each of its 8 input channels, thereby decoupling the
fast settling requirements of the ADC from the low bandwidth requirements of the input
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Figure 4.3: Block diagram of a recording channel row. Eight rows, each containing 8 ampli-
fiers time-multiplexed onto a 10-bit SAR ADC, comprise the 64 channel array.

signal. Finally, a 10-bit SAR ADC digitizes the amplified signals.
The input-referred gain is set through closed loop feedback to provide accurate, calibra-

tion-free operation. The LNA, VGA, and BUF provide gains of 26 dB, 6-30 dB, and 12 dB,
respectively, with a total of 44-68 dB of gain. This results in an input-referred full-scale at
the 10-bit 1.0 V ADC of approximately 200 µVpp to 6.3 mVpp. The gain, bandwidth and
bias current (noise performance) are individually adjustable on a per-channel basis, enabling
power savings on high SNR electrodes. However, as is critical for a 1000 channel implantable
system, the default settings are su�cient for most applications.

4.2.1 Amplifier Design

The amplifier consists of three AC-coupled closed-loop gain stages, shown in Fig. 4.3. The
LNA must provide low input-referred thermal and flicker noise down to approximately
500 Hz, adequate gain to suppress noise of succeeding stages, AC coupling to reject in-
put DC o↵set, and su�ciently high input impedance (>10 M⌦ at 10 kHz). The VGA must
provide variable gain, low-pass filtering to reduce noise aliasing at the ADC, and su�ciently-
low noise to avoid degrading SNR from the LNA. Finally, the bu↵er (BUF) must provide
rail-to-rail swing at the ADC input, settling within 1 LSB, and minimal loading on the VGA.
By decoupling these design requirements into 3 separate stages, each can be optimized in-
dependently to maximize their performance.

The fully-di↵erential LNA and VGA gain stages are shown in Figs. 4.4 and 4.5. The
LNA is based on [50], which heavily degenerates the input-stage current sources to nearly
eliminate their noise contribution. Simultaneously, the output stage employs substantially
lower bias current, which drastically reduces the noise contribution of the output stage. This
enables high gain without the noise penalty of transistor load devices. Both the LNA and
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VGA utilize thick-oxide input devices; this prevents contention with the pseudo-resistor DC
feedback and maintains compatibility with large stimulator transient voltages.

In this work, the LNA utilizes precision replica biasing that enables a substantial supply
reduction to 1.0 V while retaining the low-flicker-noise poly degeneration resistors. Next,
a fully di↵erential architecture relaxes the stringent matching requirements in [50] because
the common-mode feedback (CMFB) serves to absorb mismatch between the PMOS current
sources. This would otherwise require consume substantial area; this LNA requires 13.4x
less area than [50]. Finally, a level shifter decouples input and output common-mode levels
for the DC-feedback path (Fig. 4.7). This satisfies the input common mode requirements of
the thick oxide input devices. The capacitive feedback is fed back directly from the LNA
output, eliminating drive requirements of the level shifter.
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8x$
1x$

1x$
1x$

1x$IREF$ 16x$IREF$ 2x$IREF$

1x$

VBP$
400$

VBP$
800$

VBP$
900$

VBN$
300$

VBN$
$300$

+$

VOUT$ _$+$

CMFB$
Figure 4.4: LNA folded cascode core schematic.
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Figure 4.5: VGA cascode
core schematic.

The LNA utilizes vertical metal-insulator-metal (MIM) capacitors for AC-coupling and
feedback, which enables placement of the capacitors over the active circuits in order to
minimize die area. The VGA instead uses small, low-overhead 50 fF lateral metal-oxide-metal
(MOM) unit capacitors to adjust the gain from 2x to 32x, where the feedback capacitance
ranges from 16x 50 fF to 1x 50 fF, and the series capacitance is fixed at 32x 50 fF. By
decreasing the e↵ective load capacitance as the closed-loop gain increases, the variation in
the VGA bandwidth across gain settings is minimized. Switched capacitor feedback resistors
tune the high-pass corner, achieving approximately 100 Hz to 1 kHz high-pass corner range
for any gain setting. If the SC resistors are not clocked, the MOS pseudo resistors set
the high-pass corner at approximately 10 Hz, subject to process variation. The layout is
presented in Section 4.2.4.
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Figure 4.8: Bias current and 900mV cascode bias (“VBP900”) generation.

Fig. 4.8 shows the unit current reference generation. A supply-referenced resistor string
voltage DAC sets the target bias voltages. An opamp forces 200 mV across a 3 M⌦ poly
resistor, creating 67 nA reference currents for each row. This reference current is divided by
6 to distribute a unit current of 11 nA to each bias DAC for each LNA, VGA and BUF. For
example, most testing was performed with a DAC setting of 5, which results in about 56 nA
IREF .

Fig. 4.8 also illustrates the first cascode reference generation replica stage. To provide
100 mV of headroom for the PMOS current source, the gate of the PMOS cascode is set
by an opamp to provide at 900 mV cascode’s source. The remaining cascode bias voltages
are generated by similar replica topologies, except that the 67 nA reference current biases
subsequent opamps instead of a resistor. The entire bias generation circuit occupies 0.03 mm2

and consumes 2.2 µA, which serves all 64 channels.
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4.2.2 ADC Bu↵er

Each ADC bu↵er (BUF) must serially settle 8 channels onto its respective ADC’s 260 fF
ADC input capacitance at 160 kHz (8 x 20 kHz). As shown in Fig. 4.3, each VGA drives a
separate 400 fF BUF sampling capacitor to allow maximum settling time for the VGA. The
settling time for the VGA and evaluation time for the BUF are shown in Fig. 4.11. The
BUF feedback capacitors are reset after evaluation. Settling for the next VGA evaluation
therefore always starts from zero, e↵ectively mitigating crosstalk between amplifiers.

To minimize power consumption, the conversion time of 6.25 µs (1/160 kHz) is divided
unevenly as depicted in Fig. 4.11. The 6.25 µs is divided between 10 ADC conversion cycles
and N sampling cycles. N=22 resulted in a convenient 32x clock (5.12 MHz), which is 1/4 of
the 20.475 MHz system clock. Consequently, the BUF must settle within 22/32 of the 6.25 µs
ADC conversion window, or 4.3 µs. This settling time (To) is divided between slewing and
gm/C settling. The BUF requires 1.2 µA to settle at 8x 20 kHz, equivalently, 150 nA per
20 kHz amplifier.
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Figure 4.9: ADC bu↵er core schematic.
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Figure 4.10: Bu↵er feedback schematic.

4.2.3 10-bit SAR ADC Design

The 10b SAR ADC schematic is shown in Fig. 4.13, and the bottom-plated sampled ADC
capacitor DAC is shown in Fig. 4.14. Custom 260 aF MOM unit capacitors allow for a
compact, low power ADC. The two capacitor DACs consume approximately 100x70 µm.
The capacitor array has 4 thermometer bits to limit DNL, and the remaining 6 bits are
binary-switched.
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Figure 4.13: ADC top level schematic.

To avoid charge pumps and swings beyond the rails or a power-hungry VDD/2 reference,
half of the top plates are charged to VDD and the other half are charged to GND during
the sampling phase, e↵ectively creating a VDD/2 reference. No area overhead is incurred
because ADCs are constructed with unit capacitors, and half of the unit capacitors for each
bit are allocated to the VDD and GND arrays. The LSB and the fixed capacitor e↵ectively
balance out, with one on each side of the array.

The required sampling capacitance of a SAR ADCs given thermal noise constraints is
highly sensitive to the required resolution. The following equations provide the thermal noise
and matching requirements for the capacitors.

Nq ⇡
�2

12
(4.1)

Nt =
kBT

C

(4.2)
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Figure 4.14: Bottom-plate sampled ADC capacitor array with sampling and evaluation
switches. The array is composed of unit capacitors; half of the unit capacitors for each
bit are sampled with respect to VDD and GND, respectively, which creates an e↵ective
500 mV reference.
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(4.3)
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VFS

2B � 1
(4.4)

C � 12kBT
22B

V

2
FS

⇡ 52fF |VFS=1V
B=10 (4.5)

CUNIT � 12kBT
2B

V

2
FS

⇡ 51aF |VFS=1V
B=10 (4.6)

For a 10-bit ADC constructed with unit capacitors, the minimum unit capacitor is ap-
proximately 51 aF if the thermal noise is to be less than the quantization noise. However,
most CMOS technologies do not provide standard capacitors below approximately 1 fF, and
moreover, achieving 10-bit resolution typically requires larger unit capacitors. By analyz-
ing mismatch statistics of metal-oxide-metal (MOM) lateral finger capacitors ranging from
400 aF to 100 fF, a regression for 1� mismatch was estimated as 1

2.3
p
C

for C in fF which
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should result in 0.87% unit mismatch for 250 aF unit capacitors. Equations 4.7 and 4.8 give
the mismatch for a 6 bit binary (BB), 4 bit thermometer (BT ) array.

�INL ⇡ 2B/2�1
�✏ = 16�✏ |B=10 (4.7)

�DNL ⇡ 2(BB+1)/2
�✏ = 11.3�✏ |BB=6 (4.8)

Careful e↵orts were taken to minimize systematic mismatch. First, a common-centroid
layout cancels gradients and di↵erences between the left and right capacitor arrays (Fig. 4.14).
Second, two dummy cells are placed on each side of the array to mitigate edge e↵ects. Third,
the LSB capacitors are centered in the array to prevent gradient e↵ects that cannot be
canceled out to the small number of unit capacitors. To a large degree, these e↵orts are
successful. Results are presented in Section 4.3.2.

4.2.4 Layout

Layout of a 64 channel amplifier array requires careful planning to avoid crosstalk. For
example, parasitic feedback paths could cause oscillation, and crosstalk between clock and
input could introduce noise. To prevent potential issues, the input signals are shielded from
the pads to the LNA. Bias voltages from the bias generator are also shielded; NMOS voltages
are ground-shielded, and PMOS bias voltages are VDD-shielded. This means that supply
noise perturbs the gate and source of transistors in the same way. Bias currents are routed as
currents, not voltages, until as close to the amplifier as possible. This keeps signal impedances
low during long routes, helping reduce susceptibility to disturbance. Finally, cascode bias
voltages and bias currents are decoupled to their respective supplies via thick-oxide MOS
capacitors (to minimize leakage) inside the amplifiers.

The layouts of the amplifier and ADC are shown in Fig. 4.15. The large LNA MIM
capacitors and small VGA MOM unit capacitors are clearly visible. Routing of input and
output signals occurs along the bottom. Bias currents are routed along the top; they come
from a mirror in the center of the row. Bias voltages are routed in a vertical shielded
channel through the middle of the AMP. Finally, supply and ground rings around each pixel
automatically connect when pixels are tiled.

The layout of a row, which containing 8 amplifiers and 1 ADC, is shown in Fig. 4.16.
The LNA inputs route automatically to the left and right edges of the row, while the VGA
outputs route automatically to the BUF/ADC in the middle. Bias voltages pass vertically,
which necessitates connection by a horizontal strap at the array level. This horizontal strap
then connects to the bias generator. The die photo, presented in Section 4.3, elucidates the
floorpan, and required routing, at the top level.
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Figure 4.15: Layout of the amplifier and ADC.
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Figure 4.16: Layout of a row of 8 amplifiers and 1 ADC.

4.3 Characterization

The system was fabricated in TSMC 65nm LP CMOS and occupies 4.78 mm2 including
pads. A die photo is shown in Figure 4.17 with key circuit blocks outlined and annotated.

4.3.1 Amplifier Measurement Results

The high-pass tuning range was characterized for a low (46 dB) and high (66 dB) gain setting.
Results are shown in Figs. 4.18 and 4.19, respectively. The resultant corner frequencies are
then plotted in Fig. 4.20. Approximately 100 Hz to 1 kHz high-pass corner frequencies are
achievable across the gain settings. The theoretical and measured range of gain are plotted
in 4.21, demonstrating the gain tuning range of 44-66 dB.
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Figure 4.17: Die photo of the 64-channel recording, dual stimulation and integrated com-
pression IC.

Closed loop gain varies the most at the highest gain setting, where the variation in
open-loop amplifier gain begins to a↵ect the closed loop gain. Fig. 4.22 shows a transient
recording for a full array with a 100 µVrms input at 1 kHz. Peak to peak gain variation at
the highest gain setting was measured at 0.9 dB and a standard deviation of 2.2% and is
shown in Fig. 4.22,. At the second highest gain setting, peak variation reduced to 0.7 dB,
or 1.7% standard deviation.

The measured amplifier input referred noise spectrum is plotted in Fig. 4.23. The noise
data was taken with an input signal present, which is used to calculated the input-referred
noise. The input signal fundamental was blanked (set the average noise of its neighbors),
but harmonics were not blanked and are seen in the noise spectral plot. These harmonics
minimally a↵ect the total integrated noise and were thus ignored. The final input-referred
integrated noise, as measured through the on-chip ADC, was 7.5 µVrms.
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4.3.2 ADC Measurement Results

The measured DNL and INL are shown in Figs. 4.24, 4.25, and 4.24. The peak DNL is
approximately 1 LSB, and the peak INL is approximately 1.5 LSB. This results in an ENOB
ranging from 8.2 to 8.6 bits for the 4 measured samples. ADC achieves an ENOB of at least
8.2 bits across the four samples.

However, Fig. 4.25 shows that the layout clearly su↵ers from systematic mismatch. In
order to preserve symmetry, the first and second LSB capacitors and the fixed capacitor are
centered in the array, and the remainder of those rows are filled with dummy capacitors.
The DNL plot shows that the first and second LSBs are more correlated to each other than
to the third LSB. This suggests that the dummy capacitor induces mismatch which was not
captured in extracted simulation.

The mismatch may be due to mask corrections such as OPC which are not always mod-
eled. The use of a 2.5D extraction tool may also have contributed, as it fails to fully capture
fringing fields. Lastly, lithographic, etching, or density gradients may have a↵ected the
manufacturing.
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Figure 4.24: Measured ADC DNL for 4
chips, with a peak of 1 bit.
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Figure 4.25: Measured ADC DNL about
midpoint for 4 chips, revealing correlation
between chips.

4.3.3 Performance Summary

Table 4.1 lists key performance metrics for components of the signal acquisition channels.
This work achieves the lowest area per channel (0.0258 mm2 including biasing and digitiza-
tion) for a closed-loop, AC-coupled design by 3x versus [56] and 6x versus [55]. This area
e�ciency enables a substantial increase in number of recording channels per chip, as well as
integration of on-chip compression and stimulation. Note that this design consumes 2.3x the
area of our previous open-loop design [67]. However, that design required per-channel gain
calibration that we considered unsuitable for deployment in complex systems with hundreds
to thousands of channels.
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Figure 4.26: Measured ADC INL for 4 chips, with a peak of approximately 1.5 bits. The
average INL for the 4 samples is overlaid as a dark blue trace.

Wireless systems demand simultaneous low noise and low power, which is characterized
by the noise / current e�ciency (NEF) and noise / power e�ciency (PEF=NEF2VDD). For
comparison with other works, the LNA alone consumes 1.2 µW excluding biasing, and has
an NEF and PEF of 3.6 and 12.9, respectively. However, this alone is meaningless; the entire
recording channel’s power consumption must be considered. Here, each channel consumes
1.84 µW including biasing and digitization, resulting in system NEF and PEF of 4.45 and
19.8, respectively. This compares favorably with [55] (NEF=5.4, PEF=52.5). Excellent PEF
is achieved by [56] (NEF=3.6, PEF=6.6), which may be partially due to a lower-flicker-noise
process. Nevertheless, there may be opportunities to further optimize this design for better
noise e�ciency. In particular, the LNA performance should be able to approach [50] because
the poly-resistor degeneration was not foregone as in [55]. Excessive measured flicker noise
in this design did not match foundry models, and further investigation is required to uncover
the culprit.

Table 4.2 lists the per-channel power, area, and gain, broken down by component. The
power and area of the BUF and ADC are shared among 8 channels, and are divided ac-
cordingly. The bias generation is shared by all 64 channels, and is divided by 64 to give
per-channel cost. The bulk (68%) of the power in this design is spent to achieve low noise
in the LNA. The VGA requires significantly less power than the LNA at 18% of the total
budget. Finally, the time-multiplexed BUF and ADC combined only require of 11% of the
power per channel.
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Table 4.1: Component Performance Summary

LNA Gain 26 dB
NEF 3.6
PEF 12.9

VGA Gain 6-27 dB
Swing ±250 mV

BUF Gain 12 dB
Swing ±1 V

ADC ENOB 8.2 bits
Conv. Rate 160 ksps

DNL 0.84 LSB
INL 1.5 LSB

Power 800 nW
Area 9200 µm2

Bias Gen Power 2.18 µW
Area 0.03 mm2

Channel Gain 44-65 dB
IRN 7.5 µVrms

Power 1.84 µW
NEF 4.45
PEF 19.8

Table 4.2: E↵ective Per-Channel Power, Area, and Gain

Component Power (µW) Power (%) Area (µm2) Area (%)

LNA 1.26 68.4 11,900 46.2
VGA 0.33 17.9 6,700 26.0
BUF 0.12 6.5 1150 4.5
ADC 0.10 5.4 823 3.2

Bias Gen 0.034 1.8 470 1.8
Routing - - 4738 18.3

TOTAL 1.84 100 25,781 100
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Figure 4.27: The in vivo neuromodulation test system is composed of a microwire implanted
array, a compact headstage containing the SoC, a base station, and a Graphical User Interface
(GUI).

4.4 In Vivo Testing

4.4.1 Measurement Setup

A diagram of the testing system designed to seamlessly obtain in vivo data is displayed in
Figure 4.27, which includes a compact 0.65” x 0.8” headstage, a base station, and a Graphical
User Interface (GUI) [84]. The SoC was incorporated onto the headstage, which was created
to sit atop a small animal’s head and connect to an implant in the brain. Information is
transferred between the headstage and the base station via a 2.6mm diameter µHDMI cable
using Low Voltage Di↵erential Signaling (LVDS) for high speed communication. The base
station serves as an intermediary between the headstage and the computer’s GUI. From the
GUI, the user can select which channel(s) to record, as well as send stimulation commands
and adjust compression levels on a per channel basis. A screen capture of the GUI recording
test signals through the ASIC is presented in Fig. 4.28.
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Figure 4.28: A screen capture of the GUI with test signals present. The GUI is able to
display waveforms in real time as well as log data to a file.
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Figure 4.29: A screen capture of the GUI in overlay mode with test signals present. The
GUI is able to display detected spike overlays using data from either the chip epochs or from
full-streams using NEO or threshold-based software spike detection.

Extracellular recordings were performed using a 16-channel microwire array implanted
in the visual cortex of an adult Long-Evans rat. Arrays consisted of teflon-coated tung-
sten microwires (35µm diameter, 250µm electrode spacing, 250µm row spacing; Innovative
Neurophysiology, Inc., Durham, NC, USA). All animal procedures were approved by the
UC Berkeley Animal Care and Use Committee. Extracellular recordings were performed for
several consecutive days, more than one month after the surgery. Clearly identified wave-
forms with a high signal-to-noise ratio were chosen for further investigation as single unit
responses. Putative single units were validated based on waveform shape, reproducibility,
amplitude, and duration. We also verified that the characteristics of the inter-spike interval
distributions were close to Poisson and exhibited a clear absolute refractory period.

4.4.2 In Vivo Measurements

A typical subset of recorded in vivo data is shown in Fig. 4.30, which displays time-aligned
epochs recorded from one channel. In order to verify in vivo compression accuracy, all
three forms of the SoC’s outputs were aligned in time, as displayed in Fig. 4.31. Each
epoch data packet includes a time stamp, which allows for spike detection confirmation
when superimposed onto the raw data stream. In addition, accurate firing rate calculations
were verified by ensuring that the firing rate counter incremented with each spike event. As
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Figure 4.30: Time-aligned epochs recorded from one channel of in vivo neural data.

described previously, the SoC computes firing rates over a programmable window of time,
which in this case was 26.2ms.

Fig. 4.31 illustrates the dramatic di↵erences in data rate between the compression modes.
With a conservatively-high average firing rate of 50 Hz on each channel, firing rates and
epochs provides compression ratios of 700x and 8.3x, respectively. With an average firing
rate of 50Hz per channel, the total digital power is 77.63 µW for firing rates and 113.6 µW
for epochs. These results are significant because firing rates have been demonstrated to be
su�cient for BMI control [85].

With a challenging 4.3 dB SNR, the detector achieves a 93.5% true positive (TP) rate and
a 0.1% false positive (FP) rate. At 20 kHz sampling rate, this FP rate creates an additional,
false 20 Hz background firing rate. This FP rate can be further reduced by sacrificing TP
detection rate. If epoch compression mode is used, software post-processing can eliminate
these false detections. See [74] for an illustration of this SNR, and more details on the
detection algorithm and results.
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Figure 4.31: Raw streams, epochs, and firing rates of in vivo recorded data.

4.5 Conclusion

The key metrics of the design are summarized in Table 4.3 and compared with the state
of the art. This work reduces the average amplifier power per channel by 14x and area
per channel by 12x compared to [18] while achieving comparable NEF and PEF. The key
enabling factors in achieving low area included use of MIM capacitors over the active circuits
to implement the LNA AC coupling and careful design and optimization of the remaining
feedback capacitors using low overhead, low-valued MOM capacitors. The key factor in
achieving low supply voltage, and thus low power consumption, was a precise replica biasing
approach. Lastly, current consumption was optimized through several approaches. The LNA,
which dominates the total power budget, was designed based on a very e�cient existing
design [50]. Other topologies in the literature, especially current-reuse [54, 60, 56], were
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Table 4.3: System Comparison

System Specs. This Work Azin [18] Rhew [61] Chen [19] Units

Technology 65 350 180 350 nm
VDD 1.2a 1.5 1.8 5.0 V
O↵-Chip None 1 µF DC-DC Amp IC

Amp/ADC
Channels 64 8 4 16
Powerb 1.81 25.8 61.25 N/A µW
Areab 0.0258 0.3122 0.354 N/A mm2

Gain 45-65 51-65.6 54 N/A dB
LP 10-1000 1-525 700 N/A Hz
HP 3-8 5-12 6 N/A kHz
Noise 7.5 3.12 N/R N/A µVrms
NEF 3.6 2.9 N/R N/A
PEF 12.9 12.6 N/R N/A

Stimulation
Channels 8 8 8 8
Imax

c 0.9 0.0945 2x 4.2 6.25 mA
6x 0.116

Areac 0.0169 0.038 0.05 0.7 mm2

Digital
Powerb 1.21d 3.28 34.5 256.9 µW
Aread 0.0105 0.0676 0.8 0.191 mm2

Outputs
Raw ADC Yes 1 Ch. Yes Yes
Epochs Yes No Yes Yes
Events No Yese No Yes
Firing Rates Yes No No No
Other - LFP PCAf

a 1.2 V unregulated input voltage; 1.0 V analog supply, 0.8 V digital supply.
b Per recording channel.
c Per stimulation site.
d 1.21 µW (Firing Rates) & 1.775 µW (Epochs).
e 1 raw channel and its discrimination events, or 8 channels of discrimination events.
f Outputs can include detected events, the extracted features, or the classification results.
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found to have excessive flicker noise contributions in our process given a 10 pF constraint
on the AC coupling capacitors (which limits the input transistor sizes). Other important
techniques to reduce current consumption included distributed bu↵er sampling capacitors
and optimized ADC unit capacitors which result in low area and low sampling capacitance
of 260 fF. This in turn reduces the required drive power by the preceding circuits.

This SoC also integrates two fully-on-chip current stimulators with 8 V compliance volt-
age and 8 selectable, di↵erential stimulation sites. This design reduces the total stimulator
area per site by 2.25x compared to [18]. A power saving adiabatic architecture recycles
charge to e�ciently drive the high capacitance of typical stimulation probes. The stimulator
can also drive LEDs for ontogenetic stimulation, but charge recycling benefits are lost. A
coauthor, William Biederman, was responsible for the stimulation circuit, and further details
are found in [67].

Finally, the SoC also integrates custom logic for 64-channel spike detection and compres-
sion. This block consumes 2.7x less power and 6.4x less area per channel compared to [18]
while implementing more features. Three operating modes are selectable on a per-channel
basis, including raw streaming data, epochs, and firing rates. An on-chip FIFO eases bu↵er-
ing requirements on an aggregator or radio. A coauthor, Nathan Narevsky, was responsible
for the compression logic, and further details are found in [67].

Finally, the SoC was integrated onto a low power wired headstage for evaluation. System
integration and facilitation of animal recordings was largely the work of a coauthor, Jaclyn
Leverett. Successful capture of in vivo measurements from an awake rodent require a robust,
tightly-integrated PCB, both mechanically and electrically. Two problems are common
when attempting live recordings: interference from 60 Hz and 120 Hz sources and motion
artifacts. Interference can originate from computers, lighting, and power supplies, which
couple onto high impedance signal lines. Use of battery power (as opposed to 60 Hz power
supplies) and careful wiring to avoid ground loops are helpful to avoid pickup of interference.
Motion artifacts are signals induced from capacitive coupling onto high-impedance signal
wires - typically between the probes and recording channels. To minimize motion artifacts,
a small headstage that avoids creating torque on the implant connector, as well as a flexible,
compliant cable for wired testing, are key.

Lastly, and perhaps most importantly, strong teamwork and leadership were essential in
the realization of this SoC. Three state-of-the-art subsystems (recording, compression, stim-
ulation) were integrated together, requiring collaboration, communication, cross-validation,
co-simulation, and testing. Furthermore, there is a substantial delta in work between a single
amplifier and a full neuromodulation SoC. Amortization of non-glamorous layout, system
infrastructure, and testing hardware/software helped to lessen the burden of system inte-
gration. Finally, a shared vision for the system and its potential impact also helped drive
the project. The high integration level, low power consumption, and compact size of this
system, provide the next step in enabling fully-implanted, wirelessly-powered, high-density
neural interfaces in the human body.
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Chapter 5

Conclusion

The first generation of BMI, including cochlear implants and deep-brain stimulation, have
radically improved the lives of the deaf and those su↵ering from Parkinson’s disease. Clinical
treatments for diseases and injuries resulting in paralysis represent the second generation of
BMI. Neuroscientists have now demonstrated working, brain-controlled robotic prostheses
[13, 14]. Transforming these research e↵orts into deployable clinical tools requires contribu-
tions in many fields, including neural recording electronics. This dissertation presents two
neural interface systems to address two key challenges: evading the brain’s foreign body
response to achieve long probe longevity, and scaling wireless, implantable systems to high
channel counts.

The first system, presented in Chapter 3, explores the limits of miniaturization to in-
crease probe longevity. Wireless power delivery, bidirectional communication, 4 acquisition
channels, and an antenna are squeezed into 0.125 mm2. This enables free-floating neural
probes, which are free of micro-motion e↵ects from wired tethers. Due to the high wireless
power delivery losses, this system aims to provide neuroscientists with a limited number of
high-longevity neural channels. However, the combined losses of two wireless power links
(one through the skull, one through the dura) will prohibit use in BMI systems with 1000’s of
channels. Furthermore, the open-loop gain and DC-coupled front end do not lend themselves
to neuroscience research or clinical applications for reasons discussed in Chapter 4.

The second system, discussed in Chapter 4, targets the high channel counts required
to control complex, high-DOF robotic prostheses from a wireless neural implant. This in
turn requires low area, low power, and low data rate per neural recording channel. To meet
these demands, 64 recording channels, neural data compression, bias generation, and power
conditioning are integrated onto a single 4.78 mm2 IC in under 500 µW of power. This
enables systems that scale up to thousands of channels distributed across the brain, or scale
down to extremely compact, low weight, low area, wireless interfaces.
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5.1 Future Work

Substantial work remains before this research can impact the medical domain. This pro-
ductization may be better left to industry as the complexity and scope reach beyond what
a graduate student can readily tackle. For example, an aggregation IC is needed to collect
firing rates from an array of recording ICs and to coordinate stimulation. Integration of a
microprocessor, such as an ARM M0, on the aggregation IC will enable customization of
the BMI solution for each patient. It will also provide neuroscientists a programmable plat-
form to experiment with closed-loop algorithms to treat Parkinson’s disease and potentially
other diseases such as epilepsy. Furthermore, either a subdermal wire or a wireless link to
an externally-worn interrogator / base station (see Fig. 4.1) is required to transfer control
signals to the prosthesis from the aggregator. Current deep-brain stimulators wire power
from a battery in the chest cavity, through the neck, to the stimulation probe in the brain
tissue; a similar technique may provide the fastest, most near-term data link for clinical
applications.

In addition to an aggregator, further work on neural probes is required to reach the
an acceptable implant working life. In general, a brain surgery to replace neural probes
is impractical; ideally, the probes will outlast the patient. Probe failure modes have been
studied extensively [86]. Flexible tethers [87], miniaturized probes [88, 89], biocompatible
materials [90], and stimulation [91] hold promise in the race to evade the biological response.
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