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Abstract

CPSGrader: Auto-Grading and Feedback Generation for Cyber-Physical Systems

Education

by

Garvit Juniwal

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Formal methods and machine learning together have the potential to enhance technologies

for education. In this thesis, we consider the problem of designing CPSGrader, an automatic

grader for laboratory-based courses in the area of cyber-physical systems. The work is mo-

tivated by a UC Berkeley course in which students program a robot for specified navigation

tasks. Given a candidate student solution (control program for the robot), CPSGrader first

checks whether the robot performs the task correctly under a representative set of envi-

ronment conditions. If it does not, CPSGrader automatically generates feedback hinting

at possible errors in the program. CPSGrader is based on a novel notion of constrained

parameterized tests based on signal temporal logic (STL) that capture symptoms point-

ing to success or causes of failure in traces obtained from a realistic simulator. We define

and solve the problem of synthesizing constraints on a parameterized test such that it is

consistent with a set of reference solutions with and without the desired symptom. We

also develop a clustering-based active learning technique that selects from a large database

of unlabeled solutions, a small number of reference solutions for the expert to label. The

goal is to achieve better accuracy of fault identification with fewer reference solutions as

compared to random selection. We demonstrate the effectiveness of CPSGrader using two
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data sets: one obtained from an on-campus laboratory-based course at UC Berkeley, and

the other from a massive open online course (MOOC) offering. In addition, CPSGrader

was successfully deployed in the laboratory section of this MOOC on the edX platform.

Professor Sanjit A. Seshia
Thesis Committee Chair
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Chapter 1

Introduction

1.1 Formal Methods in Education

Massive open online courses (MOOCs) [1] and related technological advances promise to

bring world-class education to anyone with Internet access. Additionally, MOOCs present

a range of problems to which the field of formal methods has much to contribute. These

include automatic grading, automated exercise generation, and virtual laboratory environ-

ments. In automatic grading, a computer program verifies that a candidate solution pro-

vided by a student is “correct”, i.e., that it meets certain instructor-specified criteria (the

specification). In addition, and particularly when the solution is incorrect, the automatic

grader (henceforth, auto-grader) should provide feedback to the student as to where he/she

went wrong. Automatic exercise generation is the process of synthesizing problems (with

associated solutions) that test students’ understanding of course material, often starting

from instructor-provided sample problems. Finally, for courses involving laboratory assign-

ments, a virtual laboratory (henceforth, lab) seeks to provide the remote student with an

experience similar to that provided in a real, on-campus lab.

Lab-based courses that are not software-only pose a particular technical challenge. An

example of such a course is Introduction to Embedded Systems at UC Berkeley [2]. In this

course, students not only learn theoretical content on modeling, design, and analysis [3],
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but also perform lab assignments on programming an embedded platform interfaced to a

mobile robot [4]. What would an online lab assignment in embedded systems look like?

In an ideal world, we would provide an infrastructure where students can log in remotely

to a computer which has been preconfigured with all development tools and laboratory

exercises; in fact, pilot projects exploring this approach have already been undertaken

(e.g., see [5]). However, in the MOOC setting, the large numbers of students makes such

a remotely-accessible physical lab expensive and impractical. A virtual lab environment,

driven by simulation of real-world environments, appears to be the only solution at present.

For example, the MIT circuits course (MITx 6.002x) uses rudimentary circuit simulation

software [6].

In this thesis, we formalize the auto-grading problem for a virtual lab environment in the

field of embedded and cyber-physical systems (CPS). The virtual lab under consideration

is the one designed for EECS149.1x [7], a MOOC on Cyber-Physical Systems offered on the

edX platform, based on the afore-mentioned on-campus course. Next, we give the details

of this virtual laboratory under consideration.

1.2 Target Laboratory Course

The embedded systems laboratory course offered at University of California, Berkeley

employs a custom mobile robotic platform called the Cal Climber [8], [9]. The Cal Climber

is based on the commercially-available iRobot Create (derived from the iRobot-Roomba

autonomous vacuum cleaner) (Fig. 1.1a), and the National Instruments myRIO embedded

controller. This off-the-shelf platform is capable of driving, sensing bumps and cliffs, exe-

cuting simple scripts, and communicating with an external controller. This configuration

demonstrates the composition of cyber-physical systems, where a robotics platform is mod-

eled as a sub-system and treated as a collection of sensors and actuators potentially located

beyond a network boundary. The problem statement centers on model-based design and is

given as follows (paraphrased from [4]):
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Design a StateChart to drive the Cal Climber. On level ground, your robot should
drive straight. When an obstacle is encountered, such as a cliff or an object, your
robot should navigate around the object and continue in its original orientation.
On an incline, your robot should navigate uphill, while still avoiding obstacles.
Use the accelerometer to detect an incline and as input to a control algorithm
that maintains uphill orientation.

Source files distributed with the Cal Climber laboratory are structured such that stu-

dents only need to implement a function that receives as arguments the most recent values

of the accelerometer and robot sensors and returns desired wheel speeds. This function is

called repeatedly at short regular intervals of time (60 ms in our case) with most recent

sensor and accelerometer data. Students implement this function for controlling the Cal

Climber. In the on-campus course, students first prototype their controller to work within

a simulated environment (without any auto-grading) based on the LabVIEW Robotics

Environment Simulator by National Instruments. The simulator is based on the Open

Dynamics Engine [10] rigid body dynamics software that can simulate robots in a virtual

environment(Fig. 1.1b). In EECS149.1x, the afore-mentioned online version of the course,

the same simulator, extended with the auto-grader described in the present paper, has been

used(Fig. 1.1c).

We refer to the functions implemented by students as solutions or controllers. A solution

is evaluated in a collection of environments against a collection of goal and fault properties,

forming test benches (a notion formalized in the following sections). For this purpose, the

simulator allows to define customized environments (with walls, objects, obstacles, ramps,

etc) described in XML files and we further extended its API to facilitate the exportation of

simulation traces to external property monitoring tools.

1.3 Problem Motivation

As mentioned before, in this thesis we tackle the problem of auto-grading a CPS lab.

Auto-grading is a verification and debugging problem where the objective is to be able to

check whether a student’s solution meets the desired goals and also provide feedback point-

ing to possible causes of failure. The main point we make here is that the dynamical model
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(a) (b)

(c)

Figure 1.1: (a) Cal Climber laboratory platform. (b) Cal Climber in the LabVIEW Robotics

Environment Simulator. (b) Simulator with auto-grading functionality used in EECS 149.1x
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for the virtual lab is so complex that simulation is currently the only verification method

that can be practically employed. Thus, the auto-grader is based on simulation-based veri-

fication. The high-level approach, previously hinted at in a position paper [11], is as follows.

Correctness properties are formalized in signal temporal logic (STL) [12]. Simulation test

benches are created by a combination of manual environment setup and simulation-based

falsification implemented in tools such as Breach [13]. For each lab assignment, there is

an end-to-end correctness property, hereafter referred to as the goal property. If the goal

is satisfied, the student solution (hereafter referred to as a controller) is deemed correct.

Otherwise, it is incorrect, and more analysis must be performed to identify the mistake

(fault) and provide feedback. This latter analysis is based on monitoring simulation traces

of the student controller on a library of known faults, also formalized in STL. If any of

these “fault properties” hold for a student controller, they are provided to the student as

feedback.

This approach, though straightforward on the surface, requires further technical ad-

vances to be effective. The first problem is that the STL properties that encode both

goal and fault properties reference parameters that can vary over the set of environments

and student controllers; in fact, such variation must be allowed. For example, in a real

lab, students may program robots to move at different velocities while performing obstacle

avoidance. If the goal of the lab is only to correctly avoid an obstacle, the speed at which

it does so is irrelevant. However, given the variations in the controllers students design,

setting a reasonable range for parameters such as time or velocity in STL properties can be

tricky. Similarly, environments can also be parametric (for example, the location of obsta-

cles) and tests should be synthesized in a manner that accounts for these variations. Thus,

an effective approach to auto-grading CPS labs requires one to solve a certain parameter

synthesis problem.

We formalize this parameter synthesis problem and give an algorithm to solve it. First,

we define the notion of a parametrized test which is a combination of a parametrized envi-

ronment and a parametrized STL (PSTL) property. A parametrized test is thus a collection

of tests. However, as discussed above, one needs to impose a constraint on this collection
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to capture “legal” variations in student solutions. Such a constraint, termed a sub-domain,

defines the allowed set of parameter valuations. However, manually computing this sub-

domain is tedious and error-prone. We therefore give an algorithmic approach to synthesize

the sub-domain from reference controllers that should/should not pass the test bench. In

practice, it is easier for instructors to provide such reference controllers than it is to man-

ually compute sub-domains. In machine learning terminology, this can be thought of as

the training phase. The resulting constrained parameterized test bench then becomes the

“specification” that determines whether a student solution is correct, and, if not, which

fault is present. In machine learning terminology, this would be the classification phase.

Further, we identify a property, monotonicity, under which we can efficiently compute the

sub-domain, and which holds for the lab of interest.

Another issue with this approach is the availability of “positive” and “negative” ref-

erence controllers. An instructor has to manually look at the simulation video to decide

whether a particular controller is good or bad and then it can be used for training the test

bench. In essence, labeling of controllers is an expensive manual process. We formulate

the problem of obtaining labeled data as an active learning problem. We give a clustering-

based active learning methodology that takes as input a large set of unlabeled controllers

collected over various stages of development and chooses the controllers that an instructor

should label to get high accuracy of classification with fewer number of training examples

as compared to random selection. Since the simulation traces are timed sequences of mul-

tidimensional variables that capture environment and state data, we choose dynamic time

warping distance [14] as a measure of dissimilarity between controller behavior and use that

for clustering.

We believe clustering is useful because amongst many student solutions, the total num-

ber solution strategies are still few. Furthermore, any two solutions that follow the same

strategy will likely have the same set of faults present or absent. Hence, if some clustering

technique can identify each strategy as a separate cluster, then choosing one example from

each cluster should account for a training set with good coverage and the synthesized test

bench will have high accuracy.
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Any auto-grader must have at least two desirable properties: accuracy and efficiency.

The former means that the auto-grader must correctly classify right and wrong student

solutions, and for wrong solutions, correctly explain the mistake (fault). The latter means

that it must run efficiently in practice. For efficiency, we show how monotonicity can be

exploited again to avoid the need to run the entire constrained parametric test bench.

Instead, we define the notion of an adequate test sample and show that it is much smaller in

practice than the entire constrained test bench. We also provide an experimental evaluation

on the on-campus lab demonstrating that our approach is both accurate and efficient in

practice. We also test our active learning approach and show that selection of training

examples based on clustering leads to higher accuracy of classification as compared to

random selection of the same number of training examples, and therefore it can lead to

reduced overhead for instructors in providing labeled data.

1.4 Contributions

To summarize, the main novel contributions of this work are:

• A formalization of the auto-grading problem for simulation-based virtual laboratories

in cyber-physical systems,

• A formalization of the problem of synthesizing a constrained parametric test bench

for the auto-grader along with an efficient solution approach based on monotonicity,

• A novel clustering-based active learning approach to aid in generation of labeled train-

ing data for the synthesis algorithm, and

• An empirical evaluation demonstrating the accuracy and efficiency of CPSGrader,

the auto-grader for the on-campus embedded systems lab, and also the effectiveness

of the clustering-based active learning, on a database of student solutions from: (1)

on-campus offering of the course EECS 149, and (2) the online edition of the same

course on edX (EECS 149.1x.)
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Note that a large part of this thesis is based on the EMSOFT 2014 paper [15], joint work

with Alexandre Donzé, Jeff C. Jensen, and Sanjit A. Seshia.

1.5 Related Work

There is a growing number of efforts to incorporate formal methods into technologies for

education. Singh et al. [16] present an approach to automatically generate problems in high-

school algebra. Sadigh et al. [17] show how the problem of generating variants of exercises in

an Embedded Systems textbook [3] can be mapped to standard problems in formal methods

and apply some of these methods to classes of exercises. Singh et al. [18] present an auto-

grader for a Python programming course, where, similar to the present paper, feedback is

generated based on a library of common mistakes, but, differently, the technical approach

uses an encoding to SAT-based program synthesis. Alur et al. [19] consider auto-grading

DFA construction problems, providing a novel blend of three techniques for assigning partial

grades for incorrect answers. This thesis proposes different formalisms and algorithms, and

represents the first auto-grader for lab assignments in the area of embedded, cyber-physical

systems.

Related work on parameter synthesis for temporal logic and use of clustering for active

learning is covered in later chapters.

The outline of the thesis is as follows. We introduce basic terminology and background

results in Ch. 2. In Ch. 3, we describe the main theoretical contributions, including our

formalization of the problem of synthesis of test benches and solution approach. In Ch. 4, we

describe the clustering-based active learning approach that serves as an aid to the synthesis

algorithm. Experimental results are given in Sec. 5. We conclude with future directions

Ch. 6.
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Chapter 2

Background

2.1 Signals, Controllers, and Environments

Definition 1 (Signal) A (uni-dimensional) signal is a function mapping the time domain

T = R≥0 to the reals R.

Boolean signals, used to represent discrete dynamics, are signals whose values are re-

stricted to false (denoted ⊥) and true (denoted >). Vectors in Rn with n > 1 are denoted

in bold fonts and their components are indexed from 1 to n, for example, p = (p1, · · · , pn).

Likewise, a multi-dimensional signal x is a function from T to Rn such that ∀t ∈ T,

x(t) = (x1(t), · · · , xn(t)). We will use the term “signal” to also refer to multi-dimensional

signals.

Definition 2 (Controller) A controller C is a (deterministic) dynamical system that takes

as input a signal y(t) and computes an output signal u(t). It is common to drop time, and

say u = C(y).

Note that we make no assumption about how a controller computes its output. A

controller can have discrete or continuous dynamics or it can be a hybrid system. As

an example, a program running on the Cal Climber is a controller that takes bumps and
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cliff sensors signals, and accelerometer data as input y(t) = (bump(t), cliff(t), accel(t)), and

responds with the desired left and right wheel speeds as output u(t) = (lws(t), rws(t)).

Definition 3 (Environment) An environment E for a controller C is a dynamical system

generating all inputs to C.

As before, we make no assumptions about the form of the environment. All we assume

is the existence of a simulator that can take representations of E and C, compose them,

and produce execution traces of the composite system. In other words, the simulator is an

oracle that gives semantics to the composite system E‖C.

We only consider deterministic environments, i.e., the composition of a controller and

an environment has deterministic behavior. For example, an arena composed of obstacles

and hills on level ground is an environment for the Cal Climber controller. Formally, a

trace sim(C,E) is a multi-dimensional signal (x(t),y(t),u(t)) consisting of the inputs y

and outputs u of the controller and optionally other signals x regarding the state of the

environment. For example, the position and orientation (in the plane of the ground) of

the robot in the arena x(t) = (pos(t), angle(t)) are a part of the observable environment

state. By varying the environment, or the property being verified on the composition (see

Sec. 2.2), the instructor can test different features of the controller.

2.2 Signal Temporal Logic

Since propositional (linear) temporal logic was introduced by Amir Pnueli [20], variants

have also been proposed. Temporal logics to reason about real-time signals, such as Timed

Propositional Temporal Logic [21], and Metric Temporal Logic (MTL) [22] were introduced

later to deal with dense-time signals. More recently, Signal Temporal Logic [12] was pro-

posed in the context of analog and mixed-signal circuits to deal with dense-time signals

taking values over both discrete and continuous domains. We use STL as the specification

language for the Embedded Systems lab assignment. Goals that the robotic controller must

achieve are expressed as STL properties.
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The primitive constraints, or predicates, in STL take the form µ
.
= f(x) ∼ π, where

f is a scalar-valued function over the signal x, ∼∈ {<,≤,≥, >,=, 6=}, and π is a real

number. Temporal formulas are formed using temporal operators, “always” (denoted as

�), “eventually” (denoted as ♦) and “until” (denoted as U). Each temporal operator is

indexed by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞) or [a,∞) where each of a, b

is a non-negative real-valued constant. If I is an interval, then an STL formula is written

using the grammar:

ϕ := > | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as special cases of the until operator in

the standard way: �Iϕ , ¬♦I¬ϕ,♦Iϕ , >UI ϕ. When the interval I is omitted, we

use the default interval of [0,+∞). The semantics of STL formulas are defined informally

as follows. The signal x satisfies f(x) > 10 at time t (where t ≥ 0) if f(x(t)) > 10. It

satisfies ϕ = �[0,2) (x > −1) if for all time 0 ≤ t < 2, x(t) > −1. The signal x1 satisfies

ϕ = ♦[1,2) x1 > 0.4 iff there exists time t such that 1 ≤ t < 2 and x1(t) > 0.4. The

two-dimensional signal x = (x1, x2) satisfies the formula ϕ = (x1 > 10) U[2.3,4.5] (x2 < 1)

iff there is some time u where 2.3 ≤ u ≤ 4.5 and x2(u) < 1, and for all time v in [2.3, u),

x1(u) is greater than 10. The formal semantics of STL can be found in [12] and is given in

Appendix A.

Parametric Signal Temporal Logic (PSTL) is an extension of STL introduced in [23] to

define template formulas containing unknown parameters. Syntactically speaking, a PSTL

formula is an STL formula where numeric constants, either in the constraints given by the

predicates µ or in the time intervals of the temporal operators, can be replaced by symbolic

parameters.

An STL formula is obtained by pairing a PSTL formula with a valuation function that

assigns a value to each symbolic parameter. For example, consider the PSTL formula

ϕ(π, τ) = �[0,τ ]x > π, with symbolic parameters π (scale) and τ (time). The STL formula

�[0,10]x > 1.2 is an instance of ϕ obtained with the valuation v = {τ 7→ 10, π 7→ 1.2}.
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2.3 Defects and Faults

A controller is usually designed to meet certain goals. For example, the Cal Climber

controller should be able to navigate around obstacles and climb hills. To talk about grading

and feedback generation, we introduce some relevant terminology from the fault testing and

diagnosis literature.

Definition 4 (Defect, symptom and fault) Given a controller and an environment with

some desired goals,

• A defect is a bug in the controller implementation that leads to failure in meeting goals;

• A symptom is an interesting pattern in a simulation trace of the controller-environment

composition that can be characterized, for example, using STL, and

• A fault is a symptom that is present in a trace as a result of some defect in the controller.

A general symptom, such as the inability to meet an end-to-end correctness goal (for

example, obstacle avoidance), is a fault that could be the result of multiple defects in the

controller. On the other hand, certain specific faults could be mapped to specific kinds

of defects. As an example, consider an obstacle avoidance strategy for the Cal Climber

controller, implemented in a language like C. The strategy states that every time the bump

sensor signal indicates a bump, the robot backs up, moves some distance to either right

or left and then re-orients by turning in-place until the heading direction is same as the

original direction angle0. A controller will check the guard |angle(t) - angle0| ≤ ε for some

small ε > 0 to determine when to stop turning in the re-orientation mode. A defect can

be introduced by replacing this guard by the exact equality check angle(t) == angle0. This

modification usually leads to failure in practice, because the controller implementation polls

its sensors at certain intervals, and therefore, it is highly unlikely that the sensor value at

some polled time t, angle(t), will be exactly angle0. The fault resulting from this defect is

that in the re-orientation mode, the robot keeps turning in-place while making full circles

multiple times. We call this the circle fault and will revisit it again in the paper.
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The ability to classify traces that present a fault from those that do not is important

for auto-grading. Using this classification, we can not only separate correct solutions from

incorrect ones but also generate diagnostic feedback for failed traces by monitoring for

relevant faults that will likely correspond to known defects.

2.4 Dynamic Time Warping Distance (DTW)

In time series analysis, dynamic time warping (DTW) [24] is an algorithm for measuring

similarity between two temporal sequences which may vary in time or speed. For instance,

similarities in movement patterns of two Cal Climber controllers could be detected using

DTW, even if one was moving at a faster wheel speed than the other, or if the matching

sub-patterns occur at different absolute times. DTW has been applied to temporal se-

quences of video, audio, and graphics data. In general, DTW is a method that calculates

an optimal match between two given sequences (e.g. time series) with certain restrictions.

The sequences are “warped” non-linearly in the time dimension to compute the optimal se-

quence alignment for which the two sequences match closely. Hence, the distance between

two sequences is agnostic of shifting and scaling, making DTW suitable for our purpose.

DTW can be extended to multi-dimensional timed sequences [14].

2.5 Density-Based Spatial Clustering (DBSCAN)

Density-based spatial clustering (DBSCAN) [25] clusters the samples based on provided

estimation of the density of cluster nodes. It can take as input pre-computed pairwise

distances between samples and does not need the feature vectors to be given explicitly.

The number of clusters does not need to be specified in advance. DBSCAN starts off by

finding small groups of points that are very close to each other and marks these groups as

potential clusters. It then expands each cluster by including other close neighbours. It can

find arbitrarily shaped clusters and is robust to outliers. These features make it a good fit

for our application.
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Chapter 3

Synthesis of Test Benches

In this chapter, we formally define the auto-grading problem, the technical challenge in

synthesizing a constrained parametrized set of tests, and our approach to solve this problem.

For the purpose of examples in this chapter, we always assume the controller is a Cal

Climber program and the environment is an arena with one robot, multiple obstacles and

fixed inclines (flat rectangular planks) placed on level ground. Positions in the arena are

given using x, y, and z coordinates (in meters). Orientation in the x− y plane is given by

the yaw angle varying from −180 to 180 degrees, increasing in counter-clockwise direction

with 0 aligned with y-axis. The initial position and orientation of the robot is also a part

of the environment.

3.1 Constrained Parametrized Tests

One of the fundamental notions for auto-grading is that of a test.

Definition 5 (Test) A pair (E,ϕ) of an environment E and an STL formula ϕ is called a

test. A test passes for a controller C if and only if sim(C,E) |= ϕ.
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Note that our definition of a test is different from the more common definition because

in addition to controller inputs (provided in form of an environment), it also contains an

assertion specified via STL.

For the end-to-end correctness property (goal), we will employ the convention that the

STL formula ϕ in a test for this goal is the negation of the property that we want to hold.

In other words, if a test “passes,” it actually means that the correctness property did not

hold for that test case. The reason for this convention is that it allows us to treat STL

formulas encoding correctness goals and fault symptoms in a symmetric fashion, something

that is required for the main technical results of this paper. Hereafter we will treat the STL

property as specifying a fault unless explicitly stated otherwise.

Example 1 Consider an environment E0 with a square obstacle occupying the region

[4.5, 5.5] × [5.0, 5.5]. The initial position of the robot is 〈5.0, 4.9〉 and the initial orienta-

tion is 0. Consider the STL property ϕ = �(pos.y ≤ 5.5) which states that the robot is

never able to reach a point with y coordinate more than 5.5. If the test (E0, ϕ) passes, we

can assert that the robot did not meet the goal of being able to avoid the obstacle.

Consider a vector of symbolic parameters p = (p1, p2, · · · , pn). A valuation function v

maps each symbolic parameter to a concrete value (for example, in Rn) and v(pi) denotes

the value of parameter pi in v. The set of all possible valuations of p, its domain, is U.

Definition 6 (Parametrized Test) A parametrized environment is an environment with

unknown parameters, denoted E(p). A parametrized test Γ(p) = (E(p), ϕ(p)) is a pair of

a parametrized environment E(p) and a PSTL formula ϕ(p). Given any valuation v ∈ U,

Γ(v(p)) = (E(v(p)), ϕ(v(p))) is a concrete test.

Example 2 Consider the same environment E0 from Example 1 except that the initial

orientation of the robot is an unknown parameter θinit that can take one of two possible

values {−45, 45}. (See Figure 3.1a.) Consider the PSTL property ϕ0(π) = �(pos.y >

5.5 ⇒ πl < pos.x < πu), where π = (πl, πu), with unknown parameters πl and πu that can
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take one of three possible values {−∞, 5.0,∞} each. The property states that if the robot is

able to get around the obstacle and reach a point pos.y > 5.5, then pos.x is always in the

interval (πl, πu). The pair Γ0(θinit, π) = (E0(θinit), ϕ0(π)) is an example of a parameterized

test.

Definition 7 (Satisfaction Region) The satisfaction region Ω(C, Γ(p)) of a controller C

on a parametrized test Γ(p) is the set of all valuations v of p such that Γ(v(p)) passes for

C, i.e., Ω(C,Γ(p)) = {v ∈ U|Γ(v(p)) passes for C}.

Definition 8 (Test Bench) Given a parameterized test Γ(p) and a set of valuations ρ ⊆ U,

the pair (Γ(p), ρ) is called a constrained parametrized test, simply referred to as test bench.

The set of valuations ρ is called the sub-domain of the test bench. We say that test bench

(Γ(p), ρ) succeeds for a controller C iff there exists a v ∈ ρ such that Γ(v(p)) passes for C

or equivalently, Ω(C,Γ(p)) ∩ ρ is non-empty.

Since a test bench typically includes both the goal properties (determining whether a

student controller is correct or not) and the fault properties (determining the mistakes the

student made), the crux of the auto-grading problem is to synthesize a test bench that can

accurately classify an “unlabeled” controller as correct/incorrect and with the fault(s), if

any. Treating goal and fault properties uniformly, we seek to synthesize a test bench to

classify whether an unlabeled controller exhibits faulty behaviors.

To auto-grade, for every known fault, we create a test bench. If the test bench succeeds

for an unlabeled controller, we can conclusively label it as one exhibiting faulty behavior.

The sub-domain of a test bench essentially identifies the set of tests that indicate the

presence of the fault. As mentioned earlier, a test bench can also be used in a similar way

to check if a given controller meets goal requirements by formulating the failure to meet the

goal as a fault.

Example 3 Consider the parameterized test Γ0 from Example 2. Consider the sub-domain

ρ0 = {[θinit 7→ 45, π 7→ (5.0,∞)], [θinit 7→ −45, π 7→ (−∞, 5.0)]}. For a controller, if either
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of valuations in ρ0 leads to a test that passes, it provides good evidence that the robot is

either unable to avoid the obstacle or it is not able to proceed in the initial direction. (See

Figure 3.1a.) So the test bench (Γ0(θinit, π), ρ0) can be used to capture this failure to meet

desired goals.

Example 4 Consider an environment E1 with a fixed incline s.t. the uphill direction

is along the orientation 0. The initial location of the robot is fixed at the center of

the bottom boundary of the incline. The initial orientation of the robot is a parameter

θinit ∈ [−180, 180]. We wish to determine whether a given controller (in an initial ori-

entation pointing towards the incline) fails to climb within reasonable time. This can be

expressed via the STL property ϕ1(h, τ) = �[0,τ ](pos.z ≤ h), that states that the robot is

not able to reach the height h, within time τ . The parametrized test bench Γ1(θinit, h, τ) =

(E1(θinit), ϕ1(h, τ)), combined with the sub-domain ρ1 = {[θinit 7→ vθinit
, h 7→ vh, τ 7→

vτ ]s.t. |vθinit
| < 90∧ vτ > 60∧ vh ≤ 0.4} can reliably capture the failure to climb to a height

above 0.4 m within 60 secs for some initial orientation pointing towards the hill.

3.2 Synthesis of Test Bench Constraints

Designing a test bench for a fault involves (i) creating a parametrized test bench, and

(ii) finding a sub-domain of the parameters such that it reliably captures the fault. While

creating a parametrized test bench by hand is easy, in our experience manually coming up

with the sub-domain is tedious. It not only requires the instructor to be a relative expert

in STL and run-time verification, but also requires careful observation of traces where the

fault is known to be present and not present, and a number of iterations of trial and error.

On the other hand, instructors can easily come up with a set of reference controllers: a set

C+ of positive-labeled controllers that are all known to exhibit the faulty behavior, and a

set C− of negative-labeled controllers that are all known to not exhibit the faulty behavior.

We define below the problem of synthesizing a sub-domain from a set C+ of positive-

labeled controllers and a set C− of negative-labeled controllers.
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Problem 1 Given the following: (1) a parameterized test Γ(p) with a domain U for pa-

rameters p, and (2) two sets C+ and C− of controllers. Synthesize a sub-domain ρ ⊆ U

s.t. test bench (Γ(p), ρ) does not succeed for any C ∈ C− and succeeds for all C ∈ C+.

We can see that any sub-domain that does not intersect with Ω(C, Γ(p)) for any C ∈ C−

and has a non-empty intersection with Ω(C,Γ(p)) for every C ∈ C+ satisfies the require-

ments in Problem 1. From amongst all these possibilities, we choose the following (also

illustrated in Figure 3.1b)

ρ =
⋃

C∈C+
Ω(C,Γ(p)) \

⋃
C∈C−

Ω(C,Γ(p)) (3.1)

For convenience, we use Ω(C+,Γ(p)) (and Ω(C−,Γ(p))) to refer to
⋃

C∈C+
Ω(C,Γ(p)) (and⋃

C∈C−
Ω(C,Γ(p))). The rationale behind this choice of ρ is two-fold:

1. To increase coverage of fault detection for unlabeled controllers, we wish to include as

much of Ω(C+,Γ(p)) in ρ as possible because every parameter valuation in that set

corresponds to a test that passed on some positively-labeled controller, i.e. a controller

that exhibits the faulty behavior.

2. For the tests corresponding to valuations that are not in either one of Ω(C+,Γ(p)) or

Ω(C−,Γ(p)), we choose a lenient grading route and do not include them in ρ. This

means that if an unlabeled controller does not pass on any test that lies in Ω(C+,Γ(p)),

it will not be labeled as one exhibiting the fault. This is how instructors often grade labs

in practice, i.e., if tests conclude that a solution may or may not be faulty, it is considered

to be non-faulty, pending a more detailed manual review. Here we are also assuming that

we have a good range of positive and negative labeled controllers that cover a wide variety

of ways in which the fault may or may not be exhibited.

To generate ρ as in Eqn. 3.1, we compute Ω, as discussed next.
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C1, C2 positive example controllers

C3, C4 negative example controllers
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Figure 3.1: (a) Environment E0 from Examples 1, 2, and 3 with robot R and obstacle O.

The two trajectories shown by dotted lines meet the goals for the cases θ = 45 and θ = −45.

(b) The hatched region is the sub-domain ρ obtained from satisfaction regions of positive

and negative controller examples.

3.3 Computing the Satisfaction Region

Given a controller C and a parametrized test Γ(p) with p = (p1, p2, · · · , pk), we wish to

compute Ω(C,Γ(p)). We assume that all parameters are numerical. Every parameter that is

not finite valued is discretized by sampling uniformly at some granularity within reasonable

lower and upper bounds. By this construction, the domain U is now a finite k-dimensional

array and can be written as a Cartesian product of finite sets U1 × U2 × · · · × Uk, where pi

takes values in the set Ui. We assume some indexing on each Ui such that U[j1, j2, · · · , jk]

refers to the element of U formed by picking the ji-th element from each Ui. Moreover,

we assume that this indexing is consistent with the natural order defined over each Ui

(i.e., a lower index implies a smaller value). Let N = max
i

(|Ui|). The size of U is O(Nk).

Given this representation of U, Ω(C,Γ(p)) can be represented by a k-dimensional bit-array,

such that, Ω(C,Γ(p))[j1, j2, · · · , jk] = 1 iff the test Γ(U[j1, j2, · · · , jk](p)) passes on the

test Γ(U[j1, j2, · · · , jk](p)) passes on C. The most näıve way to compute Ω(C,Γ(p)) is
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to perform the test Γ(v(p)) for every valuation v(p) ∈ U. We describe a more efficient

approach to do this in cases where the test bench is monotonic in one or more parameters.

Definition 9 (Monotonicity) Given an order 4 on a parameter pi in the parameter vector

p = (p1, p2, · · · , pk), a parameterized test Γ(p) is monotonic in pi if for every controller C

∀v, v′ v(pi) 4 v
′(pi), ∀j 6= i · v′(pj) = v(pj)

Γ(v(p)) passes for C ⇒ Γ(v′(p)) passes for C (3.2)

Example 5 Consider the parameterized test Γ1(θinit, h, τ) from Example 4. Consider the

order ≤ over h and two values vh ≤ v′h. For any controller C, if Γ1(vθinit
, vh, vτ ) passes, it

means that the pos.z always stays below vh for the time interval [0, vτ ], which implies that it

stays below v′h as well and hence Γ1(vθinit
, v′h, vτ ) will pass. Thus Γ1(θinit, h, τ) is monotonic

in h.

Similarly, for the order ≥ on the parameter τ and two values vτ ≥ v′τ , if a test

Γ1(vθinit
, vh, vτ ) passes for any controller, it means that the pos.z always stays below vh

for the time interval [0, vτ ], which implies that the same is true for the time interval [0, v′τ ]

and hence the test Γ1(vθinit
, vh, v

′
τ ) will also pass.

We can extend the definition of monotonicity to sets of parameters by defining required

orders on tuples of parameter values. For example, Γ1(θinit, h, τ) is monotonic in (h, τ) if

we consider 4 as the order, where (vh, vτ ) 4 (v′h, v
′
τ ) iff vh ≤ v′h and vτ ≥ v′τ . Note that we

do not need separate monotonically increasing and decreasing parameterized tests since we

can always invert the order on the parameter and keep the definition consistent.

Note that the definition of monotonicity allows a parameterized test to be monotonic

in environment parameters but, so far in practice we have never encountered cases when

this happens. Checking that a parameterized test is monotonic in certain parameters that

only occur in the PSTL part of the test can be done by reduction to satisfiability modulo

theories (SMT) as described in more detail by Jin et al. [26]. This is an offline step carried

out at the time of design of a parameterized test.
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Definition 10 (Monotone Bit-Array) For two indices j = [j1, j2, · · · , jk] and j′ =

[j′1, j
′
2, · · · , j′k] of a k-dimensional bit-array A, we say j ≤ j′ iff j1 ≤ j′1, j2 ≤ j′2, · · · , jk ≤ j′k.

The array A is said to be monotone if for any indices j and j′ s.t. j ≤ j′, A[j] = 1 implies

that A[j′] = 1.

We now describe how monotonicity proves to be a useful property to efficiently com-

pute Ω(C,Γ(p)). First consider the case when Γ(p) is monotonic in all k parameters

p1, p2, · · · , pk. Owing to monotonicity, we can index the valuations using their respective

orders s.t. for any controller C, the k-dimensional bit-array representation of Ω(C,Γ(p)) is

monotone. We describe an algorithm to compute Ω(C,Γ(p)) in three separate cases.

3.3.1 Case: k=1

For the single parameter p1 we can perform a binary search within its domain to de-

termine the index b such that Γ(U[j1 = b](p)) does not pass on C while Γ(U[j1 = b + 1])

passes. We would have to perform O(logN) tests.

3.3.2 Case: k=2

For two parameters p1 and p2, say we have the 2-d array of indices [1 · · ·U ]× [1 · · ·V ].

We start at the index 〈row = 1, col = V 〉. At each step we perform the test Γ(U[j1 =

row, j2 = col](p)) on C. If the test passes, we mark the complete column Ω(C,Γ(p))[j1 ≥

row, j2 = col] with 1s (we can do this because of monotonicity) and decrement col by 1. If

the test does not pass, we mark the complete row Ω(C,Γ(p))[j1 = row, j1 ≤ col] with 0s

and increment row by 1. We do this until we have covered the whole array. We would have

to perform O(max(U, V )) = O(N) tests since we mark out a complete row or column after

every test. Figure 3.2a shows an intermediate step in a run of this algorithm.
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3.3.3 Case: k≥3

For more than 2 parameters, we enumerate over all possible valuations of first k− 2 pa-

rameters and use the case for k = 2 for the 2-d sub-array obtained by fixing p1, p2, · · · , pk−2.

We would have to perform O(Nk−1) tests. We cannot hope to do (asymptotically) better

than this as it is shown in [27] that searching in a monotone d-dimensional array where

each dimension is of size at most n is lower bounded by c2(d)nd−1, where c2(d) = O(d
−1
2 )

for d ≥ 2.

For the general case, let Γ(p) be non-monotonic in the first k − d parameters and

monotonic in the d others. We enumerate over all possibilities of the first k− d parameters

and apply the algorithm for monotonic parameters to the d dimensional sub-array obtained

by fixing p1, p2, · · · , pk−d.

Using the above approach, we can compute Ω(C+,Γ(p)), Ω(C−, Γ(p)) and ρ =

Ω(C+,Γ(p)) \ Ω(C−,Γ(p)), all represented in the form of k-dimensional bit-arrays.

3.4 Adequate Test Samples for Grading

Checking whether a new controller C succeeds on a test bench (Γ(p), ρ) amounts to

searching for a valuation in ρ such that Γ(v(p)) passes for C. The naive approach to solve

the search problem is to enumerate all valuations in ρ. We describe a more efficient search

strategy when Γ(p) is monotonic in one or more parameters.

Definition 11 (Adequate Test Sample) An adequate test sample α ⊆ ρ is a set of valua-

tions s.t. for any controller C, (Γ(p), ρ) succeeds on C iff there is at least one v ∈ α for

which Γ(v(p)) passes for C.

Definition 12 (Corner) A corner in a monotone k-dimensional bit-array A is an index

j = [j1, j2, · · · , jk] s.t. A[j] = 0 and ∀1 ≤ l ≤ k, if the index [j1, j2, · · · , jl + 1, · · · , jk] lies

within the bounds of A, then A[j1, j2, · · · , jl + 1, · · · , jk] = 1.
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First consider the case when a parameterized test Γ(p) is monotonic in all parameters

p = (p1, p2, · · · , pk). Say we have computed Ω(C+,Γ(p)), Ω(C−,Γ(p)) and ρ = Ω(C+,Γ(p))\

Ω(C−,Γ(p)) in k-dimensional bit-array form.

Proposition 1 The set α comprising of all valuations U[j] s.t. j is a corner of Ω(C−,Γ(p))

and Ω(C+,Γ(p))[j] = 1, is a minimal adequate test sample for (Γ(p), ρ).

Proof. We first show that α is adequate then we show α is also minimal. For this

proof, we refer to Ω(C+,Γ(p)) by Ω+ and Ω(C+,Γ(p)) by Ω−.

Assume Γ(v(p)) passes for C for some v ∈ α. Let the index of this valuation be jv. By

definition of α, Ω+[jv] = 1 and jv is a corner of Ω− implying Ω−[jv] = 0. From the way

we have defined ρ, we can say that ρ[jv] = 1 or v ∈ ρ which means (Γ(p), ρ) succeeds for

C. For reverse implication, assume (Γ(p), ρ) succeeds for C, it means that it is possible

to find an index j = [j1, j2, · · · , jk] s.t. U[j] ∈ ρ (equivalently, ρ[j] = 1) and Γ(v(p)) passes

for C (equivalently, Ω(C,Γ(p))[j] = 1). Since j ∈ ρ, we have Ω+[j] = 1 and Ω−[j] = 0.

If j is a corner of Ω−, then we have U[j] ∈ α and we are done. If not, then there exists

1 ≤ l ≤ k, j′ = [j1, j2, · · · , jl + 1, · · · , jk] s.t. Ω−[j′] = 0. By monotonicity, we also have

Ω+[j′] = 1 and Ω(C,Γ(p))[j′] = 1. If j′ is a corner of Ω−, then U[j] ∈ α and we are done.

Else we set j to j′ and proceed again in the same way. Since U is finite, this procedure is

guaranteed to terminate at a corner of Ω−.

To show minimality, we remove some arbitrary valuation v from α and show that it

becomes inadequate. Say jv is the index corresponding to v. Consider a controller C

s.t. Ω(C,Γ(p))[j] = 1 iff j ≥ jv. Since jv is a corner of Ω−, for every index j 6= jv and j ≥ jv,

we have that Ω−[j] = 1. This means there is no corner of Ω− in Ω(C,Γ(p)) apart from jv.

Hence, we will not be able to find another v′ ∈ α, v′ 6= v s.t. Γ(v′(p)) passes on C, even

though (Γ(p), ρ)) succeeds on C. This means α becomes inadequate if we remove any of its

elements, thus making it minimal.�

Figure 3.2b shows an example of a minimal adequate test sample for the 2-d case.

To compute α, similar to Sec. 3.3; in case k = 1, we can do a binary search to find the

corner; in case k = 2, we can we can find corners by starting at the boundary of the
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Figure 3.2: (a) An intermediate step in a run of the algorithm used to compute Ω(C,Γ(p))

for two monotonic parameters p = (p1, p2). The arrows indicate the tests that are

performed. Monotonicity allows us to compute whole of Ω(C,Γ(p)) by performing

O(max(U, V )) tests. (b) For the case of two monotonic parameters (increasing in the di-

rections shown by arrows), the dashed (and dotted) lines represent the boundary between

cells containing 0s and 1s for Ω(C+,Γ(p)) (and Ω(C−,Γ(p))). The shaded part is ρ. The

hatched cells are corners of Ω(C−,Γ(p)) and the shaded hatched cells comprise the minimal

adequate test sample.
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2-d array and eliminating rows and columns; and in case k ≥ 3, we can enumerate over

first k − 2 parameters and apply the case for k = 2 on the rest. For the general case of

k − d non-monotonic and d monotonic parameters, we enumerate over all possibilities of

first k − d parameters, and keep accumulating the adequate test sample calculated for the

d-dimensional monotone sub-array obtained by fixing the first k − d parameters.

We conclude this section with a remark about an alternative mathematical formulation.

If we treat a monotone bit-array as a partially-ordered set (poset) O, then, the satisfaction

region Ω(C,Γ(p)) of some controller C is an upward closed subset of O. The sub-domain ρ

is now the intersection of an upward-closed (Ω+) and another downward-closed set (U\Ω−).

With some effort, we can show that the minimal adequate test sample α corresponds to the

maximal elements of ρ. However, we find the monotone bit-array formulation more useful

for our purposes because it is a special case of a poset that allows for efficient algorithms (as

given in Sec. 3.3.1 and 3.3.2) for computation of α, which is not obvious with the general

poset formulation.

3.5 Related Work

Parameter synthesis for PSTL formulas has been studied before [23], [26]. Unlike our

work, these efforts seek to find specific parameter values rather than sub-domains, and are

not directly usable in the auto-grading context of this paper. A symbolic approach to PSTL

parameter synthesis has been discussed in [23], which reports that an enumerative approach

outperforms the symbolic one.

We also note related work in the area of fault localization only using execution traces

(black-box localization) [28], [29]. However, these techniques apply to digital systems and

are not directly usable in our context of hybrid systems with continuous variables.
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Chapter 4

Clustering-Based Active Learning

In this chapter, we give the details of an active learning algorithm based on clustering,

that we use to select the set of controllers that should be labeled to serve as the training

set. For ease of presentation in this chapter, we make a simplifying assumption that pa-

rameterized tests do not contain any environment parameters. For parameterized tests that

contain environment parameters, we can apply the same technique by enumerating over the

environement parameters. The synthesis algorithm described in Sec. 3.3 is used as a black

box training module Train, which takes as input a parameterized test Γ(p) = (ϕ(p), E)

(again without environment parameters), and two sets of controllers C+ and C− (positively

and negatively labeled training data), and gives as output a test bench (Γ(p), ρ). A syn-

thesized test bench (Γ(p), ρ)(also referred to as a classifier in this chapter), is then used by

a classification module Classify that can label new solutions as being faulty or not. In

other words, given a dataset D of solutions, Classify will output a partition of D into two

sets D0 and D1, of solutions labeled 0 and 1, corresponding to fault being present and not

respectively.

Generating labeled data for the training module is expensive. An instructor would have

to manually look at the simulation video to determine whether solution is faulty or not.

This is the problem we tackle here. How can we make generation of training examples easier

and more efficient?
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4.1 Iterative Synthesis of Test Benches by Active Learning

Active Learning [30] is a form of machine learning where the learning algorithm is able

to interactively query the user to get the correct labels for new data points. Our problem fits

well within this definition. We extend the training module with another selection module

Select that decides which new controller(s) to get a correct label for. The overall active

learning procedure is iterative. Algorithm 1 takes a dataset of solutions, an expert labeling

oracle (that generates true labels), and a parameterized test corresponding to a fault as

input, and outputs a synthesized test bench. The algorithm works iteratively by using

clustering to select the controllers to be added to the training data and using the synthesis

procedure described in Sec. 3.3 at each step. The training module first generates a classifier

based on some sets of training controllers. Depending on the results of the classifier, the

controllers labeled as 0 and 1 are separately clustered by a clustering module Cluster.

Using the clusters formed, the selection module Select chooses new controllers to get

correct labels for. All the selected controllers that were incorrectly labeled by the classifier

are now added to the training set and the classifier is trained again. This continues until no

fresh training data is added. Details of the clustering algorithm and the selection module

are given in the following sections.

4.2 Clustering with Precomputed Distances

Cluster performs density-based spatial clustering (DBSCAN) on a set of unlabeled

controllers. DBSCAN only takes pairwise distances among the data points as input. There

is no need to specify a feature vector or the number of cluster apriori. We use multi-

dimensional dynamic time warping (DTW) (with point-wise Euclidean distance) as the

measure of distance between two controllers for a given environment. More concretely, say

for a parameterized test Γ(p) = (ϕ(p), E), the set of variables that occur in the formula ϕ

is V . Given a controller C, we can obtain a simulation trace sim(C,E), which is a multi-

dimensional timed sequence. Note however, that the classification would only depend on the
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Algorithm 1: IterativeSynthesis

Input: A dataset of student solutions D, a true labeling oracle O, and a

parameterized test Γ(p) = (ϕ(p), E) corresponding to some fault

Output: A classifier (Γ(p), ρ) for D

1 C+, C− ← ∅

2 repeat

3 (Γ(p), ρ)← Train(Γ(p), C+, C−)

4 D0,D1 ← Classify((Γ(p), ρ),D)

5 θ0, θ1 ← Cluster(D0),Cluster(D1)

6 R0,R1 ← Select(θ0),Select(θ1)

7 C+
∆ = {C s.t. (C ∈ R0 ∧ O(C) = with fault)}

8 C+ = C+ ∪ C+
∆

9 C−∆ = {C s.t. (C ∈ R1 ∧ O(C) = without fault)}

10 C− = C− ∪ C−∆
11 until C+

∆ or C−∆ is empty

12 return (Γ(p), ρ)
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variables V , hence we project out rest of the variables from the simulation trace sim(C,E).

We compute DTW distance on the resulting multi-dimensional timed sequence.

4.3 Selection of Training Data from Clusters

The selection module implements the policy used for selecting data points to be added

to the training set. This is done bearing in mind that the training algorithm works well

if the training data is balanced in terms of number of positive and negative examples.

Training data balancing is a standard technique in machine learning [31]. This is specially

important in our context because some faults are rare, and other are very common (in

non-final versions of solutions), and hence the occurrence of positive and negative examples

is imbalanced.

For initialization of the training set during the first iteration, we cluster all the samples

using the clustering module. We then select a randomly chosen sample from each cluster,

look up its label and add to the training set. If the number of samples for positive and

negative training is skewed, we continue picking more training instances until either a

threshold upper bound is reached or we are unable to reduce the skew any further. To

reduce the skew, we randomly pick a cluster from which a minority instance was obtained

(positive or negative) and sample again hoping to obtain another instance of the minority

class thereby reducing the skew.

Once the initialization step is complete, we move on to running the classifier and ob-

taining predicted labels on the test set. If the accuracy on the test set is not 100%, we try

and improve our training set by adding examples of samples which were marked wrongly.

In order to achieve that, we re-cluster all the samples (test and training) in each class sep-

arately, randomly pick a cluster which has not been already represented in the training set

(i.e. the cluster and the training set has no sample in common) and pick a random sample

from the same. We do this for both class and add the respective sample to the training set if

the predicted label was not same as the actual label. This step is performed in a loop until

we are unable to increase the size of the training set or 100% accuracy has been achieved.
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4.4 Related Work

DTW has been previously used for classification of temporal sequences of video, audio,

and graphics data [32], using an algorithm similar to k-nearest neighbours [33]. Active

learning is a popular methodology for cases where obtaining training data is expensive,

using strategies like uncertainty sampling, expected model change, expected error reduction,

etc. [30] We have not seen past work that applies clustering based strategies for active

learning.
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Chapter 5

Evaluation

The design and initial experimental evaluation of CPSGrader was done using a collection

of solutions implemented by 50 groups of students as part of the laboratory component of

the Fall 2013 instance of the EECS 149 class at UC Berkeley.

The code was anonymized and collected automatically using post-build commands so

that each group provided a variable number of versions, most of which being intermediate

non-final solutions. The lab was organized in two sessions, one focusing on the obstacle

avoidance problem, and another focusing on the hill climbing. In this section, we describe

the set of test benches that we used to establish diagnostics with respect to each goal. For

each test bench, we first manually label a set T of 100 randomly selected student solutions.

We select 30 solutions out of the 100 while maintaining balance between the number of

positive and negative examples which are input to the synthesis algorithm. To elaborate,

if we have more than 15 each of positive and negative examples (say 45 positive and 55

negative) then we select some 15 examples of each type arbitrarily. If either one of positive

or negative examples is less than 15 (say 5 positive and 95 negative), then we select all

instances of the type of example that is scarce and select the remainder of the 30 from the

other type (in the example, we will take 5 positive and 25 negative). This is a standard

technique in machine learning done to improve coverage and reduce bias in case a fault is

rare [31]. In Sec. 5.1 and 5.2, for each test bench, we describe (1) the fault symptom and the
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corresponding PSTL formula, (2) environment and STL parameters, and their monotonic

nature, (3) synthesized sub-domain and adequate test sample, and (4) synthesis time per

training example.

In Sec 5.3.1, we measure accuracy of the grader by comparing labels generated by the

auto-grader against another set of manually graded solutions (disjoint from T ). We also

demonstrate efficiency in terms of the average grading time per solution.

The auto-grader designed as described above was used in the MOOC version EECS

149.1x. Since we perform synthesis of test benches based on a training set obtained form

the on-campus version of the course, in Sec. 5.3.2 we evaluate the accuracy of the grader

on a set of student solutions collected from the MOOC to show robustness of the grader on

a new data set that might have different kinds of variations. We also study the correlation

of overall grades assigned by the auto-grader as compared to grades assigned by an expert

manual grader in Sec. 5.4.

In Sec. 5.5, we evaluate the iterative synthesis algorithm Alg. 1 (referred to as ISyn in

the rest of the chapter) by comparing it against the technique Random where we randomly

choose the training set and show that ISyn can obtain higher overall accuracy, with a

smaller size of training set used.

In Sec. 5.6, we propose a semi-automated methodology for identifying new fault scenarios

using solutions that do not pass the objectives but also do not exhibit any faults in our

library. This methodology is based on clustering of simulation traces.

Experiments are performed using a single core of a 2.3 GHz processor with 8 GB of

memory. Since more than one tests share the same environment configuration, we run sim-

ulations for all solutions in all the environment configurations as needed for our evaluation

in a pre-processing step and store traces to files. Each simulation is run for 60 secs of virtual

time with a step size of 5 ms which takes about 10 secs of system time. For each test bench,

in Sec. 5.1 and 5.2, we report running times of the synthesis algorithm that computes the

sub-domain and the adequate test sample, and in Sec. 5.3.1, we report running times of

the auto-grader which checks for existence of a passing test in the adequate test sample.
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These running times do not include time required for simulation since we are reading traces

from files. When using the auto-grader in loop with the simulator, we need one simulation

for every environment in each test bench per solution (the aggregate is lower in practice

because more than one test benches share the same environment). All simulations are run

using NI Robotics Simulator. STL monitoring is performed using Breach [13]. The synthe-

sis modules and grading software with an extended library of faults is made available at the

CPSGrader website [34].

5.1 Obstacle Avoidance

In assessing faults in obstacle avoidance, we use an environment E3(θinit) which contains

an obstacle occupying the region [4.5, 5.5]×[5.0, 5.5]. Initial position of the robot is (5.0, 4.9).

The parameter θinit encodes the initial orientation of the robot.

Failing simple obstacle avoidance (avoid front)

This test bench checks whether the robot can get past the obstacle when started with

the initial orientation θinit = 0, facing the obstacle directly.

• Parameterized Test: (E3(0), ϕorient) with ϕorient = �[0,τ ](pos.y < ymin). If ϕorient is

satisfied for suitable values of τ and ymin, it indicates failure to avoid the obstacle.

• Parameters: (τ, ymin)

• Domain:1 (τ, ymin) ∈ {60 : −5 : 10} × {3.0 : 0.1 : 7.0}

• Monotonicity: τ monotonic for ≥ and ymin monotonic for ≤.

• Synthesized sub-domain: See Figure 5.1a

• Adequate Test Sample: {(60, 5.7), (55, 4.9), (50, 4.6)}

• Average synthesis time per training example: 1.9 sec

1The notation {a : d : b} denotes the set {a, a + d, a + 2d, · · · , a + kd}, where k is the greatest integer
s.t. if d ≥ 0 then a + kd ≤ b else if d < 0 then a + kd ≥ b
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Figure 5.1: (a) Test bench avoid front. Green (lightly shaded) region is the computed sub-

domain. Red (dark shaded) region is the set of tests excluded from the sub-domain because

they are triggered on at least one negative example. White (unshaded) region is the set of

tests that are not triggered on any negative or positive example. Little black squares are

the points in the adequate test sample. (b) Test bench circle.

Failing re-orienting after obstacle avoidance (avoid left/avoid right)

This test bench checks whether the robot can get past the obstacle and keep heading in

the initial heading direction. We perform the test in two possible initial orientations; facing

left (θinit = 45) or right (θinit = −45). We show details for the case θinit = 45.

• Parameterized Test: (E3(45), ϕreorient) with ϕreorient = �[0,τ ] (pos.y < ymin ∨ pos.x >

xmax). If ϕreorient is satisfied for suitable values of τ , xmax and ymin, it indicates either

failure to avoid the obstacle or failure to re-orient in the correct heading direction.

• Parameters: (τ, ymin, xmax)

• Domain: (τ, ymin, xmax) ∈ {60 : −5 : 10} × {3.0 : 0.1 : 7.0} × {6.0 : −0.1 : 3.0}

• Monotonicity: τ monotonic for ≥; ymin monotonic for ≤ and xmax monotonic for ≥.

• Synthesized sub-domain: Due to more than 2 parameters, it is not possible to show it in

a figure.

• Adequate Test Sample: {(60, 5.4, 4.2), (55, 5.4, 5.0), (50, 4.8, 5.8), (10, 4.4, 5.8)}
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• Average synthesis time per training example: 26.2 sec

Strict equality check (circle)

This test bench investigates the circle fault mentioned in Section 2.3. The purpose of

the test is to detect that at some time instant t0, the robot bumps into the obstacle, then

turns about itself with a maximum period of τ , while remaining close to its position at t0

with a margin of δ.

• Parameterized Test: (E3(0), ϕcircle)

ϕcircle(t0, δ, τ) = ♦(ϕbump(t0) ∧ ♦[0,2τ ](ϕfullturn(t0, δ)))

Where ϕbump(t0) = bump(t0) ≡ TRUE and ϕfullturn is given by ϕfullturn(t0, δ, τ) = (ϕθ∼0∧

ϕclose(t0, δ)U[0,τ ](ϕθ∼180 ∧ ϕclose(t0, δ)U[0,τ ]ϕθ∼0)) where ϕclose(t0, δ) = dist(pos(t0), pos)

< δ for some distance function dist and ϕθ∼0 and ϕθ∼180 assess that angle is close to

0 degrees and 180 degrees, respectively. The suitable value for the parameter t0 can

be determined by the first collision instant with the obstacle, which is common to all

solutions since they all start moving forward in the same direction (say this common

value is t0). We fix t0 to t0.

• Parameters: (τ, δ)

• Domain: (τ, δ) ∈ {1 : 1 : 10} × {−0.025 : 0.01 : 0.2}

• Monotonicity: τ monotonic for ≤ and δ monotonic for ≤

• Synthesized sub-domain: See Figure 5.1b

• Adequate Test Sample: {(5.5, 0.195), (10.0, 0.075)}

• Average synthesis time per training example: 2.7 sec

5.2 Hill Climbing

To assess faults in the hill climbing part of the assignment, we use an environment E4(β)

which contains a hill. The parameter β encodes the initial configuration of the robot. It

can take two values B and M . In B the robot starts at the bottom of the hill facing 45
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degrees rightwards of uphill and in M the robot starts on the hill (midway between bottom

and top) facing downhill.

Failing simple hill climb (hill climb)

This test bench checks whether the robot fails to reach near the top of the hill. We

perform this test for both possible values of β.

• Parameterized Test: (E4, ϕhill) with ϕhill = �[0,τ ](pos.z ≤ h). If ϕhill is satisfied for

suitable values of τ and h, it indicates failure to reach near top of the hill.

• Parameters: (β, τ, h)

• Domain: (β, τ, h) ∈ {B,M} × {60 : −5 : 10} × {−0.1 : 0.01 : 0.7}

• Monotonicity: τ monotonic for ≥ and h monotonic for ≤

• Synthesized sub-domain: See Figure 5.2

• Adequate Test Sample: {(M, 55, 0.41), (M, 50, 0.37), (M, 35, 0.35), (M, 15, 0.33), (M,

10, 0.31), (B, 55, 0.45), (B, 50, 0.34), (B, 45, 0.18), (B, 40, 0.07)}

• Average synthesis time per training example: 6.2 sec
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Figure 5.2: (a) Test bench hill climb (β = M) (b) Test bench hill climb (β = B)
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Figure 5.3: Test bench what hill

Failure to detect hill (what hill)

This test bench checks the failure of robot to detect when it is oh a hill. This is a

specific bug which leads to failure in hill climbing. We use the environment E4 with β = B.

• Parameterized Test: (E4(B), ϕhilldet) with ϕhilldet = ♦[0,τ1](ϕfwd U[τ2,+∞]ϕcliff), where

ϕfwd assesses that the robot is moving forward and ϕcliff assess firing of cliff sensor. If

this property is satisfied for suitable values of τ1 and τ2, it means that the robot keeps

driving straight until it hits a cliff even if it is on a hill instead of re-orienting towards

uphill direction.

• Parameters: (τ1, τ2)

• Domain: (τ1, τ2) ∈ {0 : 1 : 60} × {60 : −1 : 0}

• Monotonicity: τ1 monotonic for ≥ and τ2 monotonic for ≤

• Synthesized sub-domain: See Figure 5.3

• Adequate Test Sample: {(1, 0), (41, 12), (60, 13)}

• Average synthesis time per training example: 8.3 sec
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No filtering (filter)

This test bench checks whether the reason for a failure to climb a hill is the absence

of a low-pass filter applied to the accelerometer data to smoothen it. We check this by

performing the test hill climb with E4 but applying a low-pass filter to the accelerometer

data externally (before it is fed into the controller). If the robot is able to climb the hill

with an external filter but fails to do so without it, we can conclude that absence of the

filter is the bug.

5.3 Accuracy of Classification

To measure accuracy we use the synthesized test benches to label a set of student

solutions (disjoint from the training set) and compare the labels assigned by the auto-

grader to manually assigned labels. We evaluate on the set of solutions collected from both

the on-campus offering of the course as well as the MOOC version.

5.3.1 On-campus EECS 149

Table 5.1 shows obtained accuracy results and average running times for 8 test benches.

The running times do not include time needed for simulation. For each solution, simulation

in a total of 6 environment configurations is collectively needed for the 8 test benches (2

environments are shared). Note that we find a majority of solutions that are not able to

meet goals but that is expected because our solution set has preliminary and intermediate

versions of the solutions as well. We also find that accuracy is poorer in the hill climbing

cases, which shows that variation in student solutions is higher in that part of the lab.

5.3.2 edX MOOC EECS 149.1x

Table 5.2 shows obtained accuracy results by running CPSGrader on student solutions

collected from the MOOC. Here we find that a majority of solutions meet the goals and this

is because most solutions are collected from the final assignment submissions. The overall
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Test Bench N+ N++ N− N−− Tavg
avoid front 74 74 27 27 0.119
avoid left 78 78 23 23 0.158
avoid right 82 82 19 19 0.148
circle 2 2 99 99 0.382
hill climb (β = B) 49 36 345 345 0.111
hill climb (β = M) 35 32 359 359 0.120
what hill 220 216 174 156 0.288
filter 8 7 354 339 0.412

Table 5.1: N+ is the number of solutions with fault (manually labeled). N++ is the

number of solutions that the auto-grader correctly labeled as faulty. N− and N−− are

defined similarly for solutions without fault. Tavg is the average labeling time per solution

in seconds.

accuracy is poorer as compared to the on-campus dataset but that is expected because all

test benches are synthesized using reference solutions chosen from within the on-campus

data set. The test bench filter is excluded from this evalution because accelerometer filtering

was added as a default in the simulator for the MOOC offering.

Test Bench N+ N++ N− N−−

avoid front 189 181 1018 1014
avoid left 172 167 1035 1035
avoid right 172 169 1035 960
circle 10 10 1197 1196
hill climb (β = B) 360 304 234 230
hill climb (β = M) 236 175 358 346
what hill 314 312 280 194

Table 5.2: Notation is same as in Table 5.1

5.4 Grade Correlation

We study how the overall grades assigned by an expert are related to the grades assigned

by CPSGrader on the MOOC data. Overall grades are calculated based on how many

assignemnt goals (avoid front, avoid right, avoid left, hill climb) the solution meets and does

not depend on the presence/absence of specific faults (circle, what hill, filter). The faults are
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only meant for feedback and debugging support. We assign 1 point for each goal met, thus

grading on a scale of 0 to 5. Table 5.3 notes the number of solutions that achieved each grade

bar. The correlation coefficient of expert grades v/s CPSGrader assigned grades is found to

be 0.87. These results show that CPSGrader assigns grades that are highly correlated with

expert grades. The grade distribution appears to be slightly skewed towards lower grades

for CPSGrader as compared to expert grades. This is against the intuition that the test

benches in CPSGrader are designed to be lenient and needs further investigation.

Grade Bar Expert CPSGrader

0 14 11
1 11 12
2 11 32
3 182 216
4 185 209
5 192 115

Table 5.3: Number of solutions at each grader bar for the Expert grader and CPSGrader.

5.5 Effectiveness of Iterative Synthesis

To evaluate the active learning technique developed in Sec. 4.1, we compare our tech-

nique ISyn against the technique Random where we choose our training set uniformly

at random from the complete dataset. We evaluate the two techniques based on overall

accuracy achieved, the size of training set used, and the balance of training labels. For each

fault, we train the test bench using both ISyn and Random and then test the accuracy

of the obtained test bench on a disjoint set of solutions. To simplify the comparison, we set

the upper bound on the number of training instances used in ISyn and total number of

randomly chosen samples in Random as 30. In some cases, ISyn may terminate with less

than 30 examples in the training set if the clustering algorithm is not able to find enough

number of clusters. To compare accuracy we note the True Positive Rate (TPR), True Neg-

ative Rate (TNR), and F-score for both techniques. The F-score is specifically insightful

for our current application auto-grading, because the classifier is inherently lenient and a

better classifier would be the one that can identify at least a few cases on existence of faults
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in the solutions. Analysis results for the 7 distinct faults are shown in Table 5.4. From the

table, it can be seen that F-score is individually higher in case of ISyn than Random for

all the faults except avoid left, thus leading to the conclusion that ISyn leads to better

accuracy of classification than Random for equal or lesser size of training set. It is difficult

to diagnose the reason for the avoid left exception because the algorithm depends on the fine

tuning of many different parameters of both DTW and DBSCAN. For the fault avoid right,

we see that ISyn performs significantly better than Random for positive examples but

worse for negative examples. In this case the reason is that ISyn ends up selecting only

13 (30 being the upper bound) training examples because Cluster cannot find enough

number of clusters even for a wide range of configuration settings.

As we noted before, training data balancing is important for the training algorithm to

work well. In order to evaluate how well-balanced are the training sets obtained using the

two techniques, we use balancing ratio i.e. the ratio of number of negative training examples

and number of positive training examples. The closer this value is to 1, the better balanced

are the two training sets. Table 5.4 gives a clear break down of the number of positive and

negative training examples used for each fault per technique. In our evaluation, we find

that this ratio was ∼4.3 for Random while it was ∼1.2 for ISyn , ISyn leads to more

balanced training sets.

Since ISyn on an average performs better than Random on both accuracy measure

and balancing measure, we believe that ISyn is a better choice for creating smaller yet

more effective training set than random sampling.

5.6 Investigating Unknown Faults Using Clustering

CPSGrader works with a fixed pre-defined library of faults and associated test benches.

This raises a natural question. How do we handle the presence of a fault that does not

exist in the library yet? In other words, how do we extend this library in a data driven

fashion? We attempt to answers these questions partly via semi-automated investigation

of the solutions that do not meet the goals of the assignment and also do not exhibit any
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Test Bench Training Set Size TPR TNR F-score
Random ISyn Random ISyn Random ISyn Random ISyn

avoid front 23/133 + 7/74 15/133 + 15/74 133/133 133/133 67/74 70/74 0.97 0.99
avoid left 23/164 + 7/45 15/164 + 15/45 164/164 164/164 42/45 39/45 0.99 0.98
circle 1/7 + 29/200 3/7 + 11/200 0/7 6/7 200/200 193/200 0.00 0.60
hill climb(β = B) 26/427 + 4/63 14/427 + 16/63 427/427 427/427 55/63 60/63 0.99 1.00
hill climb(β = M) 28/442 + 2/48 29/442 + 1/48 442/442 442/442 11/48 18/48 0.96 0.97
avoid right 24/169 + 6/40 10/169 + 3/40 70/169 169/169 40/40 26/40 0.59 0.96

Table 5.4: Comparison of ISyn and Random . Training Set Size denotes the (number of

positive examples selected in the training set)/(total number of positive examples in data

set) + (number of negative examples selected in the training set)/(total number of negative

examples in the data set). TPR is the true positive rate of the trained classifier. TNR is

the true negative rate.

faults in the existing library. We perform this analysis separately for obstacle avoidance and

hill climbing objectives. For both the objectives, we first isolate the set of solutions that

do not meet goals of the assignment (obstacle avoidance - avoid right, avoid front, avoid left;

hill climbing - hill climb) and also do not exhibit any faults existing in the library (circle,

what hill, filter). Then we cluster the simulation traces of this set of solutions (in some

simple default environment that tests the objective) using DBSCAN over pairwise DTW

distances as described previously for active learning. We then do manual analysis of the

clusters found by looking at similarities between the simulation traces found within a cluster

and also the source code of the controllers. This leads to several interesting findings which

we describe next. This analysis was carried out using the data from on-campus offering.

For the obstacle avoidance objective, we isolated a total of 114 solutions with unknown

faults. DBSCAN forms 4 clusters of size 85, 17, 5, and 5 (2 points were identified as noise.)

Investigation of how the minority clusters (17, 5, 5) differed from the majority one leads

to two interesting findings: (1) Symptom: After hitting the obstacle once, the robot drives

away in a direction 90 degrees rightwards of the initial orientation and rams into the wall

on the right. Possible Defect: Presence of an extraneous unguarded transition that switches

from re-orient to the drive mode; (2) Symptom: After hitting the obstacle first, and then

hitting the wall on the right, the robot drives away in a direction 180 degrees from the

initial orientation. Possible Defect: Improper use of the angle sensor while checking for
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re-orientation success. The angle reads between -180 and 180 and hence absolute values

should be used when comparing differences. For e.g., a guard that check for angle < 0 will

become true both when angle crosses from 1 to -1 and 179 to -179 degrees. Both these

symptoms are easy to characterize as STL formulae.

For the hill climbing objective, we isolated a total of 174 solutions with unknown faults.

DBSCAN forms 3 clusters of size 159, 4, and 4 (7 points were identified as noise.) The traces

in the minority clusters are hard to distinguish from the traces in the majority cluster, hence

we do not have interesting findings for this case.

5.7 Discussion

The experimental evaluation indicates that CPSGrader is both accurate and efficient.

The test benches used in our evaluation capture common mistakes made by students, as ob-

served in an on-campus offering, and even simply identifying these mistakes can be valuable

feedback.

In a course survey filled by students of the edX MOOC EECS 149.1x after completion of

the course, 86% of the students reported the feedback generated by the auto-grader critical

in helping them debug and solve the lab exercises. The lab also featured an optional hard-

ware track. Among the students who chose to work on hardware, more than 90% reported

that their solutions that were developed on the virtual lab (equipped with CPSGrader)

worked on the hardware with no or minor modifications.

The parameter synthesis requires a set of “good” and “bad” solutions. We show that

a small number of labeled examples (30) is enough to get reasonable accuracy in two dif-

ferent scenarios. However, generation of labeled examples with good coverage of possible

variations in students solutions requires an instructor to view the simulation video and la-

bel a reasonably large number of student solutions until all major variations are covered.

We show that this process can be made easier with our clustering-based iterative synthesis

approach, achieving better accuracy with fewer number of training examples.
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Chapter 6

Conclusion and Future Work

In this thesis, we have formalized the auto-grading problem for laboratory assignments

in cyber-physical systems, and presented a formal, algorithmic approach to solve it based

on parameter synthesis. The approach is general and can apply beyond the particular

motivating lab setting considered here. The theoretical treatment makes no assumptions

about the form of the controller, environment, and simulation model. Note also that our

approach can be used with any black-box simulator. We also designed and evaluated a

clustering-based active learning technique for selection of labeled training examples for the

synthesis algorithm. Again, this clustering-based active learning approach is general and

can apply to any setting involving learning from time-series data.

There are several interesting directions for future work. One direction is to introduce

cost or reward metrics into the model to quantify the quality of a student solution. Mon-

itoring these metrics over a set of tests can help assign partial credit or extra credit to

student solutions. For example, in a problem involving robot navigation to a goal location,

a controller that gets closer, or takes less time, should intuitively receive more credit than

one that does not. Another direction is to develop STL mining based methods for synthe-

sizing the form of the STL formulae in test benches. More interesting would be to extend

the work on identifying unknown faults by developing a general approach to synthesize test

benches directly from unlabeled examples of student solutions in an unsupervised way.
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As mentioned, the auto-grader has already been successfully deployed in an actual

MOOC, EECS149.1x [7], and we have run user studies on its effectiveness. In a course

survey filled by students of the edX MOOC EECS 149.1x after completion of the course,

86% of the students reported the feedback generated by the auto-grader critical in helping

them debug and solve the lab exercises. The lab also featured an optional hardware track.

Among the students who chose to work on hardware, more than 90% reported that their

solutions that were developed on the virtual lab (equipped with CPSGrader) worked on the

hardware with no or minor modifications.

We are exploring many avenues to use CPSGrader in other classes and labs. One inter-

esting topic is analog and mixed signal circuits, for which Time Frequency Logic (TFL [35])

could be used instead of STL.

Finally, beyond the application to education, we note that our technique can be applied

to debugging problems for embedded controllers where we can assume a plausible fault

model and where monotonicity holds; e.g., for industrial control systems where monotonicity

of PSTL has already been found widespread [26].
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[15] G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia, “CPSGrader: Synthesizing temporal logic testers
for auto-grading an embedded systems laboratory,” in Proceedings of the 14th International Conference
on Embedded Software (EMSOFT), October 2014.

[16] R. Singh, S. Gulwani, and S. Rajamani, “Automatically generating algebra problems,” in Intl. Conf.
of the Association for the Advancement of Artificial Intelligence (AAAI), 2012.

[17] D. Sadigh, S. A. Seshia, and M. Gupta, “Automating exercise generation: A step towards meeting the
MOOC challenge for embedded systems,” in Workshop on Embedded Systems Education (in conjunction
with ESWeek), Tampere, Finland, October 2012.

[18] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation for introductory pro-
gramming assignments,” in Programming Languages Design and Implementation (PLDI), 2013.

[19] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan, “Automated grading of DFA con-
structions,” in Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI),
August 2013.

[20] A. Pnueli, “The temporal logic of programs,” in Symposium on Foundations of Computer Science, 1977,
pp. 46–57.

[21] R. Alur and T. A. Henzinger, “A really temporal logic,” in Symposium on Foundations of Computer
Science, 1989, pp. 164–169.

[22] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-Time Syst., vol. 2,
no. 4, pp. 255–299, 1990.
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[35] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. A. Smolka, “On temporal logic and
signal processing,” in ATVA, ser. Lecture Notes in Computer Science, S. Chakraborty and M. Mukund,
Eds., vol. 7561. Springer, 2012, pp. 92–106.

47

http://dx.doi.org/10.1007/s10618-012-0250-5
http://dx.doi.org/10.1023/A%3A1009745219419
http://www.cpsgrader.org


Appendix A

STL Semantics

The formal semantics of signal temporal logic (STL) are given as follows:

Definition 13 The satisfaction of an STL formula relative to a signal x at time t is defined
inductively as

(x, t) |= µ iff x satisfies µ at time t
(x, t) |= ¬ϕ iff (x, t) |=/ ϕ
(x, t) |= ϕ1 ∧ ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 U[a,b] ϕ2 iff ∃t′ ∈ [t+ a, t+ b] s.t.

(x, t′) |= ϕ2 and
∀t′′ ∈ [t+ a, t′), (x, t′′) |= ϕ1

Extension of the above semantics to other kinds of intervals (open, open-closed, and closed-
open) is straightforward. We write x |= ϕ as a shorthand of (x, 0) |= ϕ.
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