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Abstract

Resilient Control and Intrusion Detection for SCADA Systems

by

Xia Bonnie Zhu

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Science

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Supervisory Control and Data Acquisition (SCADA) systems are deeply ingrained in the fabric
of critical infrastructure sectors. These computerized real-time process control systems, over geo-
graphically dispersed continuous distribution operations, are increasingly subject to serious dam-
age and disruption by cyber means due to their standardization and connectivity to other networks.
However, SCADA systems generally have little protection from the escalating cyber threats. To
achieve defense-in-depth for SCADA systems by means of intrusion detection and resilient con-
trol, this dissertation strives for a robust stochastic signal and system approach without being
overly-pessimistic. Its main elements are (1) two SCADA-specific comprehensive taxonomies
with one on cyber attacks and the other on intrusion detection system to layout the lay of the land
and shed light to the workspace, (2) one overall framework/architecture for intrusion detection and
resilient control – Xware (3) its measurement fusion assurance component – Trust counter, (4) one
signal-based early-detection and resilient estimation scheme with proved theoretical performance
bounds, for SCADA systems in general. Especially the said Robust General Likelihood Ratio Test
(RGLRT) is generic enough and has been applied to linear dynamical systems in general and be-
yond. (5) The application of RGLRT in network traffic anomaly detection. (6) The application of
RGLRT to anomaly detection for SCADA systems in smart grids through model construction and
identification for both clean renewable energy supply and variable consumer demand.

First, in order to understand the potential danger and to protect SCADA systems, we highlight
their difference from standard Information Technology (IT) systems and present a set of security
property goals. Furthermore, we systematically identify and classify likely cyber attacks including
cyber-induced cyber-physical attacks on SCADA systems are according the SCADA’s hierarchy.
Determined by the impact on control performance of SCADA systems, we use the attack cate-
gorization criteria to stress the commonalities and important features of such attacks that define
unique challenges posed to securing SCADA systems versus traditional IT systems.

Second, in order to address the big challenge of how to modify conventional IT intrusion
detection techniques to suit the needs of SCADA, we explain the nuance associated with the task
of SCADA-specific intrusion detection and frame it in the domain interest of control’s researchers
to illuminate problem space. We present a taxonomy and a set of metrics for SCADA-specific
intrusion detection techniques through heightening their possible use in SCADA systems. In
particular, we enumerate a list of Intrusion Detection Systems (IDS) that have been proposed to
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undertake this endeavor. Drawing upon the discussion, we identify the deficits and voids in current
research. Based upon this taxonomy and analysis on which SCADA-specific IDS strategies are
most likely to succeed, we offer recommendations and future research venues in part through
presenting a prototype of such efforts towards this goal.

Third, we present the overall architecture for instruction detection and resilient control Xware.
It is comprised of two strong footings – Normalcy Checking, a control theoretic, domain knowl-
edge specific, specification-based payload inspection system and a high-speed, real-time, behavioral-
based Network Intrusion Detection System (NIDS). Xware integrates a Trust Counter to verify the
truthfulness of sensor measurements. It also provides exfiltration of confidential information from
within the intranet. Moreover, Xware hardens SCADA system with compensation schemes when
intrusion evades NIDS or unexpected fault occurs to guarantee its performance. It puts things in
perceptive and highlights the overall systematic and holistic approach.

Fourth, we propose the Trust Counter to deal the cases when the possible manifestation of
those potential disruption from cyber attacks can affect the Kalman filter, the primary recursive
estimation method used in the control engineering field. Whereas, to improve such estimation,
data fusion may take place at a central location to fuse and process multiple sensor measurements
delivered over the network. In an uncertain networked control system where the nodes and links
are subject to attacks, false or compromised or missing individual readings can produce skewed
results. To assure the validity of data fusion, a centralized trust rating system is proposed. It eval-
uates the trustworthiness of each sensor reading on top of the fusion mechanism. The ratings are
represented by Beta distribution, the conjugate prior of the binomial distribution and its posterior.
Then an illustrative example demonstrates its efficiency.

Fifth, RGLRT is an earlier anomaly detection and resilient estimation scheme for the cyber-
physical systems, networked control systems to be specific, in an uncertain network environment.
It robustly identifies and detects outliers among real-time multidimensional measurements of dy-
namical systems by using an online window-limited sequential Robust Generalized Likelihood
Ratio (RGLR) test without any prior knowledge of the occurrence time and distribution of the
outliers. The robust sequential testing and quick detection scheme achieves the optimal stopping
time with low rates in both false alarm and misdetection. We propose a set of qualitative and
quantitative metric to measure its optimality in the context of cyber-physical systems. Further,
this resilient and flexible estimation scheme robustly rectifies and cleans data upon both isolated
and patchy outliers while maintain the optimality of the Kalman Filter under the nominal condi-
tion. Its approximated optimality of the robustification performance is shown through stochastic
approximation.

Sixth, we give a network anomaly detection scheme as one of the applications of RGLRT.
The time series model of Autoregressive Integrated Moving Average (ARIMA) progress, finds its
wide usage including network security applications. Model building and anomaly detection based
on such models are often a first and important step towards monitoring unexpected problems and
assuring the soundness and security of those systems being studied. The time variability by the
coefficients in those dynamic regression models is particularly relevant and possibly indicative. To
address this issue, a corresponding framework and a novel anomaly detection approach based on
the Kalman filter for identifying those dynamic models including their parameters and a General
Likelihood Ratio (GLR) test for detecting suspicious changes in the parameters and therefore the
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models is proposed. The idea is shown through experiments and show its promising potential in
terms of accuracy and robustness.

Seventh, we apply RGLRT to anomaly detection for SCADA systems in smart grids. While
the utilization of clean energy resources including wind and solar power sets to grow from filling
the gap of peak hours to taking a larger share in the upcoming smart grid and efficient infrastruc-
ture, the price-incentivized electricity consumption shall alleviate peak hours and reduce power
outages. Both benign faults and malicious attacks threat the reliability and availability of the new
grid. We address these duo problems are from the angle of one fundamental technique used. The
ARIMA time series models play roles at both ends in this new ecosystem: namely, predicting
the variable clean energy resource on the supply side and forecasting the flexible load demand on
the consume side. Model construction and anomaly detection based on such models are often a
first and important step towards monitoring unexpected problems and assuring the soundness and
security of those systems being studied. The time variability of the coefficients in those dynamic
regression models is particularly relevant and possibly indicative. Thus a corresponding frame-
work and a novel anomaly detection approach is introduced. It’s based on a robustified Kalman
Filter for identifying those dynamic models including their parameters and a RGLRT for detecting
suspicious changes in the parameters and therefore the models. Currently, the effectiveness and
robustness of this method is shown through simulation.
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Chapter 1

Introduction

Due to their standardization and connectivity to other networks, Supervisory Control and Data
Acquisition (SCADA) systems are increasingly subject to damage and disruption by cyber means.
However, the issues facing securing SCADA system are: (1) regulation-wise: Lack of policies or
standards, (2) technology-wise: the need for availability, integrity, confidentiality is only met with
limited specialized solutions, (3) economics- and finance-wise: lack of economic justification, (4)
markets-wise: they are legacy systems, where lack of demands from operators: organizational
priorities conflict.

In particular, SCADA present challenges for security engineering due to their requirements
for continuous availability, real-time operation, potential impact on the populace and the physical
world, and legacy deployments. They further play crucial roles in the fabric of critical infrastruc-
ture such as electric power grids, water distribution systems, petroleum and natural gas pipelines,
and manufacturing operations.

The cyber-physical security of real-time, continuous systems necessitates a comprehensive
view and holistic understanding of network security, control theory and the physical system. Ulti-
mately, any viable technical solutions and research directions in securing SCADA systems must lie
in the conjunction of computer security, communication network and control engineering. How-
ever, the very large installed base of such systems means that in many instances we must for a
long time to come rely on retrofitted security mechanisms, rather than having the option to design
them in from scratch. This leads to a pressing need for robust SCADA-specific intrusion detection
systems (IDS) and resilient control.

The goals of this effort are to develop IDS and resilient control technology that can (1) ef-
ficiently detect and block cyber intrusions into SCADA systems in entrenched operational envi-
ronments, in real-time, (2) without interrupting the control performance of the protected system,
(3) without creating extra operational burden or operational reservations due to false alarms, (4)
in the presence of both malicious and messily benign network traffic, (5) and lastly rectify and
compensate the system performance in case some intrusions succeed. The system must operate
in a real-time, robust fashion, with performance adequate to meet the demands of the dynamic
cyber-physical interactions inherent to SCADA systems.

To this end, we formulate a number of objectives,

• Conceptualize control performance - oriented metrics for mentioned security measures,
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• Develop usage- and goal-oriented taxonomies of cyber attacks on SCADA system and
SCADA-specific IDS to shed insight onto the problem domain.

• Establish prudent and plausible threat models,

• Characterize the system architecture, protocol use, network topology, and network activity
of SCADA systems used in power grid, particularly.

• Create models of both normal operation and the allowed range of operation (ala’ specification-
based intrusion detection) to enable detection of new attacks while maintaining low false
alarm rates during legitimate changes of a SCADA system’s dynamics and permitted vari-
ations in its traffic, including valid safety system responses at extreme cases. Unique to
this problem domain, such models can draw upon insight into expected and allowed be-
havior that we can “analytically” derive form the underlying control system principles and
properties.

• Find asymptotic performance bounds on these models.

• Integrate a network IDS with these models to enable a resilient, defense-in-depth, SCADA-
domain network monitoring, and online data clearing & control compensation in case cer-
tain intrusions succeed.

• Construct a test environment to verify the IDS performance in terms of its resistance to eva-
sion and ability to detect and block attacks against a given SCADA system with acceptable
low false alarm rate.

• Conduct experiments to confirm the system’s resilience level in case certain attacks succeed.
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Chapter 2

A Taxonomy of Cyber Attacks on SCADA
Systems

Example is the school of mankind, and
they will learn at no other.

Letters on a Regicide Peace
EDMUND BURKE

Supervisory Control and Data Acquisition (SCADA) systems are deeply ingrained in the fab-
ric of critical infrastructure sectors. These computerized real-time process control systems, over
geographically dispersed continuous distribution operations, are increasingly subject to serious
damage and disruption by cyber means due to their standardization and connectivity to other
networks. However, SCADA systems generally have little protection from the escalating cyber
threats. In order to understand the potential danger and to protect SCADA systems, in this paper,
we highlight their difference from standard IT systems and present a set of security property goals.
Furthermore, we focus on systematically identifying and classifying likely cyber attacks including
cyber-induced cyber-physical attacks on SCADA systems. Determined by the impact on control
performance of SCADA systems, the attack categorization criteria highlights commonalities and
important features of such attacks that define unique challenges posed to securing SCADA sys-
tems versus traditional Information Technology (IT) systems.

The utilization of Supervisory Control and Data Acquisition (SCADA) systems facilities the
management with remote access to real-time data and the channel to issue automated or operator-
driven supervisory commands to remote station control devices, or field devices. They are the
underlying control system of most critical national infrastructures including power, energy, water,
transportation, telecommunication and are widely involved in the constitutions of vital enterprises
such as pipelines, manufacturing plants and building climate control.

Remote locations and proprietary industrial networks used to give SCADA systems a consid-
erable degree of protection through isolation [153, 78]. Most industrial plants now employ net-
worked process historian servers for storing process data and other possible business and process
interfaces. The adoption of Ethernet and transmission control protocol/Internet protocol TCP/IP
for process control networks and wireless technologies such as IEEE 802.x and Bluetooth has
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further reduced the isolation of SCADA networks. The connectivity and de-isolation of SCADA
system is manifested in Figure 2.1.

Figure 2.1: Typical SCADA Components Source: United States Government Account-
ability Office Report. GAO-04-354 [78]

Furthermore, the recent trend in standardization of software and hardware used in SCADA
systems makes it even easier to mount SCADA specific attacks. Thus the security for SCADA
systems can no longer rely on obscurity or on being a function of locking down a system.

These attacks can disrupt and damage critical infrastructural operations, cause major economic
losses, contaminate ecological environment and even more dangerously, claim human lives.

The British Columbia Institute of Technologys Internet Engineering Lab (BCIT/IEL) main-
tains an industrial cyber security incident database [28] with more than 120 incidents logged since
the initiation. Baker et al at McAfee in their 2011 sequel report [19] surveyed 200 IT security ex-
ecutives in 14 counties from critical electricity infrastructure enterprises, where SCADA systems
are widely used, and found out most facilities have been under cyber attacks.

Being one of most sophisticated SCADA malware known to date1, Stuxnet according to Fal-
liere et. al at Symantec [70], takes advantage of multiple Windows zero-day vulnerabilities and
targets the command-and-control software installed in industrial control systems world-wide. It
sabotages facilities by reprogramming Programmable Logic Controllers (PLCs) to operate as the
attackers intend them, most likely out of their specified boundaries while its “misreporting” fea-
ture hides the incident from the network operations center. As of April 21st 2011, more than 50
new Stuxnet-like attacks beckon SCADA threats have been discovered [194].

1In McAfee’s report [19], nearly half of those being surveyed in the electric industry said that they had found
Stuxnet on their systems.
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Most related works have focused on the classification and categorization of attacks on stan-
dard IT systems such as [104, 115, 144], communication standards and/or protocols [167], com-
munication devices [171]. There are work done to enumerate possible attacks on small embed-
ded systems [82, 225]. More recently, SCADA-specific security solutions are proposed [75] and
SCADA-specific Intrusion Detection Systems (IDS) are evaluated [302].

The remainder of this chapter is organized as the follows. Section 2 compares SCADA systems
with standard IT properties that attribute to their security concerns. Section 3 defines desired
security properties, trust model and threat model. Section 4 states vulnerabilities that embedded
in SCADA systems. Section 5,6,7 numerate cyber attacks on hardware, software, communication
stacks respectively. Section 8 concludes.

2.1 Difference from IT
In SCADA systems, or control systems in general, the fact that any logic execution within the

system has a direct impact in the physical world dictates safety to be paramount. Being on the
first frontier to directly face human lives and ecological environment, the field devices in SCADA
systems are deemed with no less importance than central hosts 2 [42]. Also certain operating
systems and applications running on SCADA systems, which are unconventional to typical IT
personnel, may not operate correctly with commercial off-the-shelf IT cyber security solutions.

Furthermore, factors like the continuous availability demand, time-criticality, constrained com-
putation resources on edge devices, large physical base, wide interface between digital and analog
signals, social acceptance including cost effectiveness and user reluctance to change, legacy issues
and so on make SCADA system a peculiar security engineering task.

SCADA systems are hard real-time systems [251] because the completion of an operation after
its deadline is considered useless and potentially can cause cascading effect in the physical world.
The operational deadlines from event to system response imposes stringent constraints: missing
deadline constitutes a complete failure of the system. Latency is very destructive to SCADA
system’s performance: the system does not react in a certain time frame would cause great loss in
safety, such as damaging the surroundings or threatening human lives.

It’s not the length of time frame but whether meeting the deadline or not distinguishes hard
real-time system from soft real-time system. In contrast, soft real-time systems, such as live audio-
video systems, may tolerate certain latency and respond with decreased service quality, eg. drop-
ping frames while displaying a video. Non-major violation of time constraints in soft real-time
systems leads to degraded quality rather than system failure.

Furthermore due to the physical nature, tasks performed by SCADA system and the processes
within each task are often needed to be interrupted and restarted. The timing aspect and task
interrupts can preclude the use of conventional encryption block algorithms.

As Real-time operating system (RTOS), SCADA’s vulnerability also rises from the fact that
memory allocation is even more critical in an RTOS than in other operating systems. Many field

2Although arguably, a compromised central serverl/controller may cause server harm if the field devices don’t
have their own individual and local protection.
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level devices in SCADA system are embedded systems that run years without rebooting but accu-
mulating fragmentation.

Thus, buffer overflow is more problematic in SCADA than in traditional IT.

2.2 Problem Statement
Before we state the security properties that are desirable for SCADA systems to achieve, we

must point out that there are many trade-offs between security and control performance goals.
And we will group attacks according to the hierarchy of the SCADA system.

2.2.1 Security Property Goal
Control systems have many characteristics that are different from traditional IT systems in

terms of risks and operational priorities thus render unique performance and reliability require-
ments besides the use of operating systems and applications being unconventional to typical IT
personnel.

Even where security is well defined, the primary goal in the Internet is to protect the central
server and not the edge client. In process control, an edge device, such as PLC or smart drive
controller, is not necessarily merited less importance than a central host such as data historian
server [42], as they are on the first frontier facing human lives and ecological environment.

These differences between SCADA systems and IT systems demand an adjusted set of security
property goals and thus security and operational strategies.

In the traditional IT community, the set of common desirable security properties are confiden-
tiality, integrity and availability, or CIA in short. The paramount, in IT’s world is confidentiality
and integrity while in control systems is system availability and data integrity as result of human
and plant safety being its primary responsibility.

Particularly, most of computer security research focus on confidentiality. To be SCADA sys-
tem specific, we prioritize security properties of SCADA systems in the order of its importance
and desirability in industry, especially in control engineering sector. The modification we make
addresses the special needs incurred from the unique characteristics of SCADA systems, namely
the time criticality, dispersed distributed-ness and continuous availability.

There are different versions of definition and use of security properties [12] with slight varia-
tions. However, in light to differentiate the uniqueness of control systems from standard IT sys-
tems, it’s necessary for us to stress and explain some more relevant subtleties. Nevertheless, it’s
not to say that these properties we want to highlight are mutual exclusive, absent of over-lapping.

Timeliness

explicitly expresses the time-criticality of control systems, a given resulted from being real-
time system, and the concurrencies in SCADA systems due to being widely dispersed distributed
systems.

It includes both the responsiveness aspect of the system, e.g. a command from controller to
actuator should be executed in real-time by the latter, and the timeliness of any related data being



7

delivered in its designated time period, by which, we also mean the freshness of data, i.e., the data
is only valid in its designated time period. Or in a more general sense, this property describes that
any queried, reported, issued and disseminated information shall not be stale but corresponding
to the real-time and the system is able and sensitive enough to process request, which may be of
normal or of legitimate human intervention in a timely fashion, such as within a sampling period.
In reality, if arrives late or repeatedly to the specified node, a message is no longer any good, be it
a correct command to an actuator or a perfect measurement from a sensor with intact content. As
a matter of fact, any replay of data easily breaches this security goal.

Moreover, this property also implicitly implies the order of updates among peered sensors, es-
pecially if they are observing the same process or correlated processes. The order of data arrival at
central monitor room may play an important factor in the representation of process dynamics and
affect the correct decision making of either the controlling algorithms or the supervising human
operators.

In a nutshell, all right data should be processed in right time, which unfolds an underpinning
security goal – secure time provision.

Availability

means when any component of a SCADA system, may it be a sensory or servomechanical
device, communication or networking equipment, or radio channel; computation resource and
information such as sensor readings and controller commands etc. that transmits or resides within
the system should be ready for use when is needed. Most of SCADA controlled processes are
continuous in nature. Unexpected outages of systems that control industrial processes are not
acceptable. This desired property for both SCADA systems control performance and security
goal requires that the security mechanism employed onto SCADA systems, including but not
limited to the overall cryptographic system, shall not degrade the maintainability, operability ,
and its accessibility at emergency, of the original SCADA system without those security oriented
add-ons.

Integrity

requires data generated, transmitted, displayed, stored within a SCADA system being genuine
and intact without unauthorized intervention, including both its content, which may also include
the header for its source, destination and time information besides the payload itself. A very
related terminology is authenticity, in the context of SCADA system, it implies that the identity
of sender and receiver of any information shall be genuine. Using our definition of integrity, then
authenticity falls within the same category. One can image how disastrous the consequence can
be, if a control command is redirected to an actuator other than its intended receiver or fake or
wrong source information of a sensor measurement being reported to the central controller. The
intra-message integrity means specifically the content of message to be genuine and inter-message
integrity refers to assure data integrity, the protocol must prevent an adversary from constructing
unauthentic messages, modifying messages that are in transit, reordering messages, replaying old
messages, or destroying messages without detection.
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Confidentiality

refers to that unauthorized person should not have any access to information related to the
specific SCADA system. At current stage, this need is dwarfed by the desirability of availability
in a control performance-centric setting. SCADA systems measure and control physical processes
that generally are of a continuous nature with commands and responses are simple and repetitive.
Thus the messages in SCADA systems are relatively easy to predict. Hence confidentiality is
secondary in importance to data integrity.

However, the confidentiality of critical information such as passwords, encryption keys, de-
tailed system layout map and etc. shall rank high when it comes to security concerns in industry.
Applicable reinforcement should be imposed in this aspect. Also, the information regarding phys-
ical content flowed within the control algorithm may be subject to leaking critical message to side
channel attacks.

The drastic difference in the ordering of desired security properties is mostly due to that
SCADA systems are demanded to be real-time operating and continuously functioning.

Graceful Degradation

requires the system being capable of keeping the attack impact local and withholding tinted
data flow within tainted region without further escalating into a full scale, full system cascading
event.

Again, all these desired security properties are not mutual exclusive but closely related. For
example, by breaching integrity, an adversary can change control signals to cause a device mal-
function which might ultimately affect the availability of the network. Overall, a tightly enforced
access control may render confidentiality, integrity, availability , timeliness and graceful degra-
dation as well.

2.2.2 Trust Model
Given that we focus on the cyber attacks on SCADA system, we restrain our attention to attacks

mounted through cyber means 3 and assume the basic physical security is provided. Particularly,
the SCADA server or Master Terminal Unit is physically secure, i.e., we assume there are no direct
physical tampering on the server where the main control and estimation algorithms reside. Brute
force physical sabotage such as cutting wires and cables from communication and power supply
or hammering devices or radio jamming are out the scope of this paper.

Furthermore, we assume that the control and estimation algorithms are programmed securely.

3As stated in previous sections, these cyber attacks are most likely resulted in physical destruction in SCADA
systems.
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2.2.3 Threat Model
Typical threats to sensor networks and to conventional IT systems are also threats to SCADA

systems if the adversarial have means to exploit the vulnerabilities of SCADA systems4. The
adversary sources include but not limited to hostile governments, terrorist groups, foreign intel-
ligence services, industrial spies, criminal groups, disgruntled employees, bot-network operators,
phishers, spywaremalware authors, spammers, and attackers [80]. We assume attacks come from
one side of SCADA center only and there’s no collusion.

2.3 Vulnerability
The current common practice of SCADA system leaves window open to various vulnerabili-

ties. To name a few, the entrenched factors are not limited to public information like a company’s
network infrastructure, insecure network architecture, operating system vulnerabilities enabled
trap doors to unauthorized users and the use of wireless devices. In particular, the lack of real-
time monitoring and proper encryption is very detrimental.

Cyber attacks on SCADA system can take routes through Internet connections, business or
enterprise network connections and or connections to other networks, to the layer of control net-
works then down the level of field devices. More specifically, the common attack vectors are

• Backdoors and holes in network perimeter

• Vulnerabilities in common protocols

• Attacks on field devices through cyber means

• Database attacks

• Communications hijacking and Man-in-the-middle attacks

• Cinderella attack on time provision and synchronization

From the point view of a control engineer, possible attacks can be grouped into following
categories

• bogus input data to the controller introduced by compromised sensors and/or exploited net-
work link between the controller and the sensors

• manipulated and misleading output data to the actuators/reactors from the controller due
to tempered actors/ reactors or compromised network link between the controller and the
actuators

• controller historian
4 Note we are making a rather conservative assumption in light of exploring the potentials of cyber security issues

in the SCADA system domain. Any further suitable and refined threat model depends on the cost effectiveness of the
security measures.
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• Denial of Service – missing the deadlines of needed task actions.

There is still little reported information about actual SCADA attacks nor scenarios designed
by red-teams, despite the growing awareness of security issues in industrial networks. However,
by leveraging the existing solution and understanding of the conventional IT system, we use the
SCADA hierarchy as a reference plane. Then the classification of cyber attacks can fall into the
following categories.

2.4 Cyber Attacks on Hardware
Attacker might gain unauthenticated remote access to devices and change their data set points.

This can cause devices to fail at a very low threshold value or an alarm not to go off when it should.
Another possibility is that the attacker, after gaining unauthenticated access, could change the
operator display values so that when an alarm actually goes off, the human operator is unaware of
it. This could delay the human response to an emergency which might adversely affect the safety
of people in the vicinity of the plant. Some of the detailed procedure of achieve such attacks are
given out in later section when we describe specific SCADA protocols.

The main issue in preventing cyber attacks on hardware is access control. With that in mind,
we should mention one of the representative attacks in this category, namely the doorknob-rattling
attack. The adversary performs a very few common username and password combinations on
serval computers that results in very few failed login attempts. This attack can go undetected
unless the data related to login failures from all the hosts are collected and aggregated to check for
doorknob-rattling from any remote destination.

2.5 Attacks on Software
As listed in earlier sections, SCADA system employs a variety of software to meet its func-

tionality demands. Also there are large databases reside in data historians besides many relational
database applications used in cooperate and plant sessions.

Hosting centralized database , data historians contain vital and potentially confidential process
information. These data are not only indispensable for technical reasons, such as that many control
algorithms rely on past process data to make correct decisions, but also for business purposes, such
as electricity pricing.

Although we’ve assumed the algorithms of these softwares are trustworthy, there are still vul-
nerabilities associated with their implementations. The most common implementation flaw is
buffer overflow among others such as format string, integer overflow and etc. The fact that most
control applications are written in C requires us to take extra precaution with this vulnerability.

2.5.1 No Privilege Separation in Embedded Operating System
VxWorks was the most popular embedded operating system in 2005 and claimed 300 million

devices in 2006 [212], which is a platform developed by Wind River Systems and has since been
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acquired by Intel [190]. VxWorks has been used to power everything from the Apple Airport
Extreme access points to the Mars rovers and the C-130 Hercules aircraft [182]. VxWorks itself is
essentially a monolithic kernel with applications implemented as kernel tasks, This means that all
tasks generally run with the highest privileges and there is little memory protection between these
tasks.

2.5.2 Buffer Overflow
Many attacks boil down to cause buffer overflow as their eventual means to corrupt the in-

tended behavior of the program and cause it to run amok. Some general methods are stack smash-
ing and manipulating function pointer.

The effect of such attacks can take forms such as resetting passwords, modifying content,
running malicious code and so on.

The buffer overflow problem in SCADA system takes two fronts. One front is on the worksta-
tions and servers which are similar to standard IT systems.

For example, WellinTech KingView 6.53 HistorySvr, an industrial automation software for
historian sever widely used in China, has a heap buffer overflow vulnerability that could potentially
become the risk of a Stuxnet type mishap if not patched [32] .

The other front manifests itself in field devices and other components that rely on RTOS
thereof inherent the susceptible memory challenge. Exploits can take advantage of the fixed mem-
ory allocation time requirement in RTOS system to have more successful launchings. Let alone
that many field devices run for years without rebooting. Therefore, these SCADA components,
especially in legacy networks, are subject to accumulated memory fragmentation, which leads to
program stall.

The Hardware/Software Address Protection (HSAP) technique offered by [246] including
hardware boundary check method and function pointer XOR method to deal with stack smash-
ing attack and function pointer attack in embedded systems , respectively.

2.5.3 SQL Injection
Most small and industrial- strength database applications can be accessed using Structured

Query Language (SQL) statements for structural modification and content manipulation. In light
of data historians and web accessibility in current SCADA systems, SQL injection, one of the top
Web attacks, has a very strong implication on the security of SCADA system.

The typical unit of execution of SQL which comes in many dialects loosely based around
SQL-92 ANSI standard is query, which is a collection of statements that typically return a single
result set. SQL injection occurs when an adversary is able to manipulate data input into an Web
application, which fails properly sanitize user-supplied input, and to insert a series of unexpected
SQL statements into a query. Thus it is possible to manipulate a database in several unanticipated
ways. Moreover, if a “command shell” store procedure is enabled, an attacker can move further
to prompt level. The process will run with the same permissions as the component that executed
the command. The impact of this attack can allow attackers to gain total control of the database
or even execute commands on the system.
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In the case studied in [206], where the store procedure in SQL server (shown in Fig.2.2) is
enabled by default. Thus an attacker still can get into SCADA system even though two LAN cards
are installed.

Figure 2.2: SQL Attack

Intentionally malicious changes to databases can cause catastrophic damage.

2.6 Attacks on the Communication Stack
We break down the attacks on the communication stack by using the TCP/IP or the Internet

reference model and highlight some of those may have more potentials in harming SCADA sys-
tems, in particular on network layer, transport layer, application layer and the implementation of
protocols.

The UDP back door on port 0x4321 on thousands of devices is known in the public since at
least spring 2002.

There are many well-known TCP/IP attacks in literature, readers please refer to [115, 104] for
more details.

2.6.1 Network Layer
Diagnostic Server Attacks through UDP port

Adversaries have access to the same debugging tools that any RTOS developers do. They
can read symbol tables, step through the assembly, etc., considering also that many attackers
don’t even need code-level knowledge. For example Wind River Systems VxWorks weak default
hashing algorithm in standard authentication API for VxWorks is susceptible to collisions, an
attacker can brute force a password by guessing a string that produces the same hash as a legitimate
password 5. Or through VxWorks debug service runs UDP on port 17185, which is enabled by

5US-Cert VU #840249.
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default, an attacker can execute the following attacks without any authentication required while
maintaining a certain level of stealthiness such as remote memory dump, remote memory patch,
remote calls to functions, remote task management 6.

The VxWorks Wind DeBug (WDB) is an RPC-based protocol which uses UDP can explored
over the Internet by downloading hacking software and adding targets to a host list before running
the script.

Idle Scan

is to blind port scan by bouncing off a dumb “zombie” host, often a preparation for attack. Both
MODBUS and DNP3 have scan functionalities prone to such attacks when they are encapsulated
for running over TCP/IP.

Smurf

is a type of address spoofing, in general, by sending a continuous stream of modified Internet
Control message Protocol(ICMP) packets to the target network with the sending address is iden-
tical to one of the target computer addresses. In the context of SCADA systems, if an PLC acts on
the modified message, it may either crash or dangerously send out wrong commands to actuators.

Address Resolution Protocol (ARP) Spoofing/Poisoning

The ARP is primarily used to translate IP addresses to Ethernet Medium Access Control
(MAC) addresses and to discover other connected interfaced device on the LAN. The ARP spoof-
ing attack is to modify the cached address pair information.

By sending fake ARP messages which contain false MAC addresses in SCADA systems, an
adversary can confuse network devices, such as network switches. When these frames are false-
fully sent to another node, packets can be sniffed; or to an unreachable host, DoS is launched;
or intentionally to an host connected to different actuators, then physical disasters of different
scales are initiated.

Static MAC address is one of the counter measures. However, certain network switches do not
allow static setting for a pair of MAC and IP address. Segmentation of the network may also be a
method to alleviate the problem in that such attacks can only take place within same subnet.

Chain/Loop Attack

In a chain attack, there is a chain of connection through many nodes as the adversary moves
across multiple nodes to hide his origin and identity. In case of a loop attack, the chain of connec-
tions is in a loop make it even harder to track down his origin in a wide SCADA system.

6US-Cert VU #362332
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2.6.2 Transport Layer
SYN flood is to saturate resources by sending TCP connection requests faster than a machine

can process.
SCADA protocols, particularly those running over top of transport protocols such as TCP/IP

have vulnerabilities that could be exploited by attacker through methodologies as simple as inject-
ing malformed packets to cause the receiving device to respond or communicate in inappropriate
ways and result in the operator losing complete view or control of the control device.

2.6.3 Application Layer
Currently, there is no strong security control in protocols used in SCADA systems, such as

DNP3 without secure authentication, Modbus,Object Linking and Embedding (OLE) for Process
Control (OPC), Inter-Control Center Communications Protocol (ICCP). Practically there is no au-
thentication on source and data such that for those who have access to a device through a SCADA
protocol, they can often read and write as well. The write access and diagnostic functions of these
protocols are particular vulnerable to cyber and cyber induced physical attacks.

One of possible attacks in both SCADA and conventional IT systems is DNS forgery. Such
attack is to send a fake DNS reply with a matching source IP, destination port, request ID, but
with an attacker manipulated information inside, so that this fake reply may be processed by the
client before the real reply is received from the real DNS server. For more details on those attacks
studied in conventional IT systems, please refer to [104].

Next, we list potential attacks associated with more SCADA specific protocols.

MODBUS

Modbus [187] is a de facto standard of application layer protocol used in industrial networks.
It comes with different flavors from plain Modbus to Modbus+ to Modbus/TCP. A Modbus client
(or master) can send a request to a Modbus server (or slave)7 with a function code that specifies the
action to be taken and a data field that provides the additional information. The general Modbus
frame is shown in Figure (2.3).

Figure 2.3: A typical Modbus frame

Among currently little published accounts on attacks against Modbus, Digital Bond [210]
has conducted intrusion detection work on studying its potential weakness. Their detection rules

7Initially, Modbus was a master-slave protocol for serial buses. When implementing Modbus over TCP, a Modbus
master is a TCP client, and a Modbus slave is a TCP server.
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include denial of service (e.g., rebooting Modbus servers, configuring them to provide no ser-
vicecalled listen-only mode, and crashing servers with a large size request), reconnaissance (e.g.,
unauthorized reading of data, and gathering device information), and unauthorized write requests.

Byres and his company have used Achilles Vulnerability Test Platform to perform security
tests on Modbus to discover vulnerabilities [42, 43] .

Given that Modbus does not have encryption or any other security measures, there are many
ways to directly explore such weakness on the function code level. The function codes 0x05 and
0x0F are used to write a single or multiple outputs (coils) to either ON or OFF in a remote device,
respectively. This means that an adversary can turn off and suppress output(s) remotely thus to
create a false sense of situation at the HMI end. Unauthorized writes can be accomplished through
using function codes 0x06 and 0x10. Accordingly, the forged data may be written to either a single
or multiple registers in a remote device. If Modbus is implemented on serial line, function code
0x11 can be used to gather information from a remote device, such as a controller’s description.
Function code 0x08 is used for diagnostics on serial line. However, combined with subfunction
code 0x01, it can initialize and restart the slave (server) port and clear out the communication
event counter, which is a ideal attack vector. When combined with subfunction code 0x04, the
diagnostics function code can force a remote device into its Listen Only Mode. Similarly, Mod-
bus+ has a function code (08) for log cleaning that can enable an attacker to clear stats of data
manipulation and denial of service events.

DNP3

DNP3 is used between master control stations and remote computers or controllers called
outstations for the electric utility industry and water companies. DNP3 is implemented by sev-
eral manufacturers due to its small memory consumption. Its function code 0x0D can reset and
reconfigure DNP3 outstations by forcing them to perform complete power cycle. During the
re-initialization to default values, many devices clear all queues as well. An attacker can take
advantage of this property to cause delay in outstations before they accept requests again. Fur-
thermore, function code 0x13 enable loading new outstation configurations. With unauthorized
access, an attacker can manipulate the remote devices with manipulated setting values, suppress
output and or create false alarms.

2.6.4 Attacks on Implementation of Protocols
Protocol vulnerabilities can reveal themselves as segmentation faults, stack, heap or buffer

overflows, etc., all of which can cause the protocol implementation to fail resulting in a potential
exploit.

Meanwhile, certain protocol implementations, such as ICCP servers, only allow users to read
values, and there are a number of protocols that are in the process of adding security controls to
address this deficiency.

Nevertheless, [210] argues that SCADA implementation vulnerabilities are more important
than lack of security controls in SCADA protocols.
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TCP/IP

First of all, in light of the migration to Windows from UNIX in operating system used by
many sectors in SCADA systems, there are several attacks specifically exploit the implementation
of TCP/IP protocols in Windows. Although there are patches available, restrained to be on-line
continuously, it’s very likely that these machines do not have up-to-dated patches. Here, we only
name a few well known ones.

• WinNuke takes advantage of the absence of status flag URG in handling the TCP protocol.

• TearDrop/NearTear and Ssping utilize implementation error of fragmentation handling in
TCP/IP protocol.

A nightmare scenario can be that one company’s network is compromised and a polymorphic
worm takes down most servers and any unpatched SCADA servers running Windows.

Secondly, these protocol stacks can and do suffer from various vulnerabilities commonly found
due to poor software design and coding practices.

OPC

OPC servers use Microsoft’s OLE technology8 to provide real-time information exchange be-
tween software applications and process hardware.

At the OPC interface level, the item write function takes two parameters: an item handle and
a value to write to it. If the server maps handles to memory addresses and fails to validate a
client-provided handle, the IO interfaces write function allows an attacker to write any value to
any memory address, a primitive which can be easily exploited to run arbitrary code on the server
(e.g. through stack return addresses ). It is an even larger issue that an OPC server can be remotely
compromised and used to launch attacks on other systems. Because OPC servers are often exposed
in the Demilitarized Zone (DMZ), this could be a communication chain that could allow control
system exploitation from the enterprise network or Internet.

[27] gives three possible OPC attack scenarios, of which are all associated with extra open
ports:

• Collateral Damage by OPC-Unaware Malware;

• Opportunistic OPC Denial of Service Attack;

• Intelligent, aggressive attack against OPC hosts through a man-in-the-middle (MITM) tech-
nique

ICCP

The most serious and exposed SCADA protocol stacks are those that are used to exchange
information with business partners, such as ICCP, or those used to exchange information between
the corporate network and control center network.

8Also known as the Component Object Model, or COM



17

According to the LiveData ICCP Server white paper [268], LiveData ICCP server contains a
heap-based buffer overflow. The LiveData implementation of ISO Transport Service over TCP
(RFC 1006) is vulnerable to a heap-based buffer overflow. By sending a specially crafted packet
to a vulnerable LiveData RFC 1006 implementation, a remote attacker may be able to trigger the
overflow to execute arbitrary code or crash a LiveData ICCP Server to cause a denial of service.

UCA

UCA was expected to be more robust standard than DNP3 when the Electric Power Research
Institute (EPRI) decided to use it to serve the SCADA needs of the electric utilities. It’s based on
the Manufacturing Message Specification from ISO standard 9506.

MMS

Tamarack MMSd is an implementation of Manufacturing Message Specification (MMS) pro-
tocol, an international standard (ISO 9506), dealing with messaging system for transferring real
time process data and supervisory control information between networked field devices and/or
computer applications.

Tamarack MMSd9 components do not properly handle malformed RFC 1006 packets either.
This vulnerability may allow a remote, unauthenticated attacker to cause a denial of service con-
dition.

2.7 Discussion
The cyber-physical security of real-time, continuous systems necessitates a comprehensive

view and holistic understanding of network security, control theory and the physical system. Ul-
timately, any viable technical solutions and research directions in securing SCADA systems must
lie in the conjunction of computer security, communication network and control engineering. The
idea of looking into the problem in the context of control performance holds its solid bearings.
However, the very large installed base of such systems means that in many instances we must
for a long time to come rely on retrofitted security mechanisms, rather than having the option to
design them in from scratch. This leads to a pressing need for robust SCADA-specific intrusion
detection systems (IDS) and resilient control.

Our next step is to categorize the attacks in terms of their manifestation and realization in order
to shed more light into intrusion prevention and detection.

9 Vulnerability Note VU#372878



18

Chapter 3

SCADA-specific Intrusion
Detection/Prevention Systems: A Survey
and Taxonomy

Due to standardization and connectivity to the Internet, Supervisory Control and Data Acqui-
sition (SCADA) systems now face the threat of cyber attacks. SCADA systems were designed
without cyber security in mind and hence the problem of how to modify conventional Information
Technology (IT) intrusion detection techniques to suit the needs of SCADA is a big challenge. We
explain the nuance associated with the task of SCADA-specific intrusion detection and frame it
in the domain interest of control’s researchers to illuminate problem space. We present a taxon-
omy and a set of metrics for SCADA-specific intrusion detection techniques by heightening their
possible use in SCADA systems. In particular, we enumerate Intrusion Detection Systems (IDS)
that have been proposed to undertake this endeavor. We draw upon the discussion to identify
the deficits and voids in current research. Finally, we offer recommendations and future research
venues based upon our taxonomy and analysis on which SCADA-specific IDS strategies are most
likely to succeed, in part through presenting a prototype of our efforts towards this goal.

Defined by IEEE Standard (C37.1-1994) [45] , a Supervisory Control and Data Acquisition
(SCADA) system includes all control, indication, and associated telemetering equipment at the
master station, and all of the complementary devices at the (Remote Terminal Unit) RTU(s)1. A
typical SCADA system includes hardware, software and communication protocols that connect
together the different layers in the hierarchy. For more detailed exposition of SCADA system
compositions, readers please refer to resources such as [256, 153]

Being one of the primary categories of control systems, SCADA systems are generally used for
large, geographically dispersed distribution operations, such as electrical power grids, petroleum
and gas pipelines, water and wastewater (sewage) systems and other critical infrastructures [256].
They not only provide management with remote access to real-time data from Distributed Control
Systems (DCSs) and Programmable Logic Controllers (PLCs) but also enable operational con-

1RTUs are special purpose data acquisition and control units designed to support SCADA remote stations. These
field devices are often equipped with wireless radio interfaces to support remote situations where wire based commu-
nications are unavailable.
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trol center to issue automated or operator-driven supervisory commands to remote station control
devices.

One of the enabling elements in SCADA systems is the set of various communication pro-
tocols employed within the hierarchical system [12, 64, 153]. Their functionalities range from
processing raw data transmission to handling high-level exchange between different networks
and domains. These protocols have strong implications on the security of SCADA system. We
name a few most popular ones: Modbus, Profibus, Distributed Network Protocol (DNP3) and
Utility Communications Architecture (UCA), Foundation Fieldbus, Common Industrial Protocol
(CIP), Controller Area Network(CAN), Object Linking and Embedding (OLE) for Process Con-
trol (OPC) and Inter-Control Center Communications Protocol [153].

Most industrial plants now employ networked process historian servers storing process data
and other possible business and process interfaces, such as using remote Windows sessions to
DCSs or direct file transfer from PLCs to spreadsheets. This integration of SCADA networks with
other networks has made SCADA vulnerable to various cyber threats. The adoption of Ethernet
and TCP/IP for process control networks and wireless technologies such as IEEE 802.x, Zigbee,
Bluetooth, WiFi, plus WirelessHART and ISA SP100 [64, 153] has further reduced the isolation
of SCADA networks. The connectivity and de-isolation of the SCADA system is manifested in
Fig.2.1.

Furthermore, the recent trend in standardization of software and hardware used in SCADA
systems [153] potentially makes it even easier to mount SCADA-specific attacks2. These attacks
can disrupt and damage critical infrastructural operations, contaminate the ecological environ-
ment, cause major economic losses and, even more dangerously, claim human lives [90, 5, 81].
These likely “penalty costs” due to lack of protection and aversion to loss [138, 267, 242] push us
to consider seeking protection measures with reasonable cost-effectiveness [196].

3.0.1 Why SCADA-specific Intrusion Detection Systems?
Had we not started with the legacy systems but been freed from difficulties such as interoper-

ability [161, 204] instead, we may apply and implement many known security measures directly.
Among them, a sound implementation and viable deployment of one Intrusion Detection System
(IDS) can manifest itself as an add-on intelligence component to the existing SCADA systems
with minimum hardware cost or operational changes, leveraging many entrenched SCADA com-
ponent infrastructures and technologies.

To this end, the industrial and academic control security community has started to build In-
trusion Detection Systems (IDS) specifically for SCADA systems ([49, 191, 195, 204, 230, 233,
262, 263, 287]).

Nevertheless, it is important to realize that when we borrow tools from other fields, there are
situations and conditions that our original set of assumptions might not hold. A SCADA system is
different from the conventional IT system in the following ways [256]: it is a hard real-time sys-
tem; its timeliness and availability at all times is very critical and its terminal devices have limited
computing capabilities and memory resources [59]. Additionally, in the existing SCADA systems,
there are weak authentication mechanisms to differentiate human users or privilege separation or

2In the paper, we interchange the use of intrusion and attack equivalently.
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user account management to control access and so on [204]. Such fundamental weakness in ac-
cess control leaves door open to attacks. These differences challenge design and implementation
of SCADA-specific IDSs.

Meanwhile, among the attempts to date, some authors [49] may consider that SCADA systems
usually have a relatively static topology3, a presumably regular network traffic4 and use simple
protocols, hence monitoring them may not be more difficult than doing so in enterprise systems.
But such assumptions are not fully validated yet as barely any mentioned work has been tested
on real operational SCADA system network traffic. The related details are to be discussed in
subsequent sections.

Furthermore, the cyber-physical security of real-time, continuous systems necessitates a com-
prehensive view and holistic understanding of network security, control theory and physical sys-
tems. The focus and terminologies by convention in each field have partial overlaps and their own
field-specific interpretations for these overlapped lingoes. One of the barriers faced by researchers
in IDS for SCADA is the occupational or cultural and lingo differences between IT and control
personnel. Thus this paper aims to convey the idea of intrusion detection and prevention in the
setting a SCADA system by leveraging the classic control engineering and theory view point.

The ultimate goal of much needed work in this area is to achieve satisfactory control per-
formance in a continuous 24× 7, real-time, realistic environment, where normalized behavior
co-exists with benign noises, honest mistakes, natural components and or systems faults plus po-
tential malicious cyber intrusions.

Towards concrete progress beyond generic discussions, it’s important for us to survey and
evaluate up-to-date research efforts in this area and reflect on the soundness of the overall method-
ologies. We may want to ask:

• Whether these techniques and approaches have addressed the specifical needs of SCADA
systems ? Furthermore,

• Whether we are being simply handicapped by the special needs of current SCADA systems
in terms of security engineering efforts? Or

• Whether we are leveraging the entrenched SCADA infrastructure components and technolo-
gies?

3.0.2 Contribution
In this paper, we make the following contributions:

• First systematic and thorough effort in investigating and assessing the landscape of up-to-
date SCADA-specific intrusion detection techniques and systems;

• Explain the nuance of SCADA-specific IDS and provide clear definitions plus a taxonomy
and a set of metrics of SCADA-specific IDS;

3Under the assumption that there is no wireless sensor network involved.
4Due to the scarce accessibility to operational SCADA traces known to the public, we are conservative at taking

the leap of faith yet.
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• Ease the interoperability between conventional IT security and control systems research by
framing the intrusion detection problem in a setting favorable to SCADA systems’ continu-
ous operation, withstanding the possible presence of adversary and unintentional faults;

• Bring in cross-discipline insights to tailor the special needs entailed by SCADA systems by
leveraging entrenched SCADA components and technologies and provide future direction;

• Show a prototype of our efforts in this arena.

3.0.3 Definitions and Difficulties from Ambiguities
To resolve the ambiguity of same terminologies that bear different meanings in control the-

ory (including systems & control and fault detection & isolation) and IT (particularly, operating
system and security engineering), we intend to unify the terms to ease the misunderstanding and
highlight the end goal of providing engineers and researchers insights into the problems facing
networked control systems [304].

Fault: a non-hostility-induced deviation from the system’s specified behavior including honest
mistakes caused by honest people and component failures or defects.

Anomaly: refers to malicious and intrusive event plus abnormal yet non-intrusive behavior
including (faulty and noisy/messy) actions;

Misuse: includes both malicious and unintentional misuse;
Detection: alarm alerts issued in the presence of true anomaly or misuse.
False alarm/positive: alarm alerts issued in the absence of real anomaly and/or misuse when

there is normal traffic/behavior only..
False negative or missed detection: missed detection in the presence of a real intrusion.
Note: Any large network is a very “noisy” environment even at the packet level.

3.0.4 Related Work
Since SCADA-specific IDS research is a rather new arena, we decide to resort to the classics

in the standard IT field for references.
As observed by John McHugh in [176]

The point is that the taxonomy must be constructed with two objectives in mind:
describing the relevant universe and applying the description to gain insight into the
problem at hand.

Both Stefan Axelsson [15] and John Mchugh [177] have thorough work on classification of
intrusion detection systems. Many evaluation and assessment principles on SCADA-specific IDS
in this paper are derived from their works.

The unified view is to consider intrusion detection as a signal detection problem as framed by
Stefan Axelsson [16], where we consider the normal network traffic as background data. If we
view background data and responses as noise and attack data and responses as signal, the IDS
problem can be characterized as one of detecting a signal in the presence of noise. This school of
thought is much in line with the standard control theory [46].
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3.1 On Real Time Intrusion Detection Types
We adapt a taxonomy of real-time intrusion detection to facilitate the choice for control’s

researchers as well.
In the early days of IDS research, two major approaches known as signature detection and

anomaly detection were developed.
In between these two approaches, there lie the probabilistic- and specification-based methods

for intrusion detection. A probabilistic approach is also termed as a statistical or a Bayes method
[152] with probabilistically encoded models of misuse. It has some potential to detect unknown
attacks. A specification-based approach constructs a model of what is allowed, enforces its
predefined policy and raises alerts when the observed behavior is outside this model. It has a
high potential for generalization and leverages against new attacks [20]. This technique has been
proposed as a promising alternative that combines the strengths of signature-based and anomaly-
based detection.

Instead of finding the deviation and unknowns, specification-based method [20, 148] defines
what’s allowable in terms of network traffic behavior/patterns. This method sounds promising.
But it might be tedious to enumerate all possibly allowable patterns.

Complementary to the above knowledge based classification, there are also behavioral detec-
tion approaches5. They capture behavior patterns associated with certain attacks which are not
necessarily illegitimate in semantic sense. They may also abstract allowable normal interaction as
well. Such methods are quite promising, especially in conjunction with other methods [290].

Table 3.1 gives the overall comparison.

Knowledge based Approach Basis Attacks Detected Generalization
or behavioral based

Knowledge Signature Misuse Known No
Knowledge Anomaly Learned models of normal Must appear anomalous Yes
Knowledge Probabilistic Model learning Match patterns of misuse Some

Hybrid Specification Construct normal model Must violate specs Yes
Behavioral Behavioral Capture behavioral pattern Match patters of behavior Yes

Table 3.1: Comparison of Intrusion Detection System Approaches

5 A thoroughly stringent and meticulous categorization is not the focus of this paper. Interested readers may refer
to [15, 177] for more detailed taxonomies on IDS
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3.2 Proposed SCADA-specific Intrusion Detection/Prevention
Systems

3.2.1 Model-Based IDS for SCADA Using Modbus/TCP
The group at SRI [49] adapted the specification-based approach for intrusion detection to

SCADA systems that rely on Modbus/TCP. This work renders a multi-algorithm IDS appliance
containing pattern anomaly recognition, Bayes analysis of TCP headers, and stateful protocol
monitoring complemented with customed Snort rules. Alerts are forwarded to the correlation
framework.

They offer three model-based techniques to characterize the expected/acceptable system be-
havior according to the Modbus/TCP specification and to detect potential attacks that violate these
models.

3.2.2 Anomaly-Based Intrusion Detection
We discuss two anomaly-based intrusion detection systems in this section.

AutoAssociative Kernel Regression and Statistical Probability Ratio test SPRT

Yang et al [287] use the AutoAssociative Kernel Regression (AAKR) model coupled with the
Statistical Probability Ratio test (SPRT) and apply them to a simulated SCADA system.

The fundamental methodology is pattern matching. Predetermined features representing net-
work traffic and hardware operating statistics are used by the AAKR model to predict the “correct”
behavior. Then new observations are compared with past observations denoted as normal behav-
ior. The comparison residuals are fed into SPRT to determine whether is anomalous or not.

Besides DoS attacks, ping flood, jolt2 attacks, bubonic attacks, simultaneous jolt2 and bubonic
attacks, the authors also consider insider attack scenarios.

Multi-Agent IDS Using Ant Clustering Approach and Unsupervised Feature Extraction

Tsang and Kwong [262] propose an unsupervised anomaly-learning model - the Ant Colony
Clustering Model (ACCM) in a multi-agent, decentralized IDS to reduce data dimensionality and
increase modeling accuracy. The idea is bio-inspired from nature to construct statistical patterns
of network data into near-optimal clusters for classification.

3.2.3 Configurable Middleware-Level Detection
Næss et al [195] presents a configurable Embedded Middleware-level Intrusion Detection Sys-

tem (EMISDS) framework. It’s implemented within MicroQoSCORBA, a CORBA-based middle-
ware framework, with high configurability achieved with the Interface Definition Language (IDL)
compiler and code generation tools [178].

The system model is comprised of anomaly and misuse detection while leaving the flexibility
to specify the interaction of middle-level information within the IDS.
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3.2.4 Intrusion Detection and Event Monitoring in SCADA Networks
Oman and Phillips [204] from the University of Idaho give a very clear exposition on the im-

plementation of a SCADA power-grid testbed for intrusion detection and event monitoring. They
are producing comprehensive intrusion signatures for unauthorized access to SCADA devices be-
sides baseline-setting files for those devices.

3.2.5 Model for Cyber-Physical Interaction
Power Plant interfacing Substations through Probabilistic validation of attack-effect bind-
ings (PVAEB)

Rrushi and Campbell [233] look into the attacks on IEC 61850 [126], the protocol used for
communication between electricity substation and power plant (a nuclear power plant is referred).

The authors present the semantic correlation between the dynamics of nuclear reactors in the
power plant and those of the generated electricity provision in the substation through structural
equations modeling (SEM). For each logical node of IEC 61850, they apply Bayesian Belief Net-
works (BBN) to enumerate probability distributions attributed by its associated data individually.
Then the authors use Stochastic Activity Network (SAN) to verify such bindings and to spot in-
trusions.

All construction of attack-effects are based on known failure models.

Workflow-based non-intrusive approach for enhancing the survivability of critical infras-
tructures in Cyber Environment

Xiao et al [282] proposed an approach based on workflow, a technique to automate existing
processes to incorporate the detections of both known attack patterns and known unsafe states.

This work leverages the presumably existing survivability-related knowledge and protection
scheme. They consider that each essential component in the physical layer has a corresponding
node in the workflow.

A simplified water treatment system is studied through simulation to illustrate the idea.

3.3 Comparison
The overall comparisons of the proposed systems are listed in Table 3.2 and Table 3.3. The

rationale behind choosing the features we used for comparison is out of operational concerns
besides performance issues.

3.3.1 Intrusion Detection
Particularly, we’d like to look into the intrusion detection methods used in each system, seen

in Table 3.4
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3.3.2 SCADA-Specific-ness
We compare how SCADA’s special needs are being addressed in each proposed system with

results shown in Table 3.5

3.4 Evaluation

3.4.1 Design Pitfalls and Evaluation Criteria
Looking at IT standard IDSs, McHugh [176] criticizes many aspects of the DARPA/LL eval-

uation. In terms of modeling, both signature and probabilistic IDSs model misuse, the illegal
behavior of an intrusion. Anomaly-based IDSs empirically and statistically model normal system
usage and behavior. Specification-based IDSs define what is allowable under protocol and policy
specification. All these model-based approaches bear certain common drawbacks:

• Inaccurate models can lead to false alarms and/or missed detections.

• Modeling can be expensive and difficult if the system and/or user activity is complex.

Anderson states [12] “In general, if you build an intrusion detection system based on data-
mining techniques, you are at serious risk of discriminating.”

Paxson has a similar argument, even more from a technical point of view [208] that one of the
pitfalls of machining learning based IDS techniques is the lack of illumination for the rationale
behind many approaches on how they decide to take such approach; and why they succeed in
doing so or why they fail in achieving.

According to Axelsson [15], McHugh [177] and Paxson [208], we shall look for

• soundness

• completeness

• timeliness

• choice of metrics, statistical models, profiles

• system design;

• social implications

• feedback: or how to decide actionable events

The SCADA-specific angles we look at are: What are their contributions, limitations or room
for improvement, extensibleness in terms of

• How do they frame the work including assumptions, logics and conclusions?

• What kind of security properties do they want to achieve? Do they achieve and how?
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• What are their trust model, threat model and attack scenarios? How plausible?

• What are the illuminations they bring into the problem space;

• What’s the selling point of their approach?

• What kind of detection algorithms they’ve used that suit SCADA systems particularly well

1. either through leveraging the entrenched components and/or technologies used in the
specific SCADA physical systems under their study;

2. or restrict their attention to a more focused and potentially narrowed workspace that
are more relevant to specific SCADA physical system under their study when applying
generic methods.

• What are the subtle points they bring out that might have been simply left out by a non-
SCADA-security expert?

• What’s unique in the cyber-physical interactions?

• How is the detection performance in terms effectiveness and efficiency? Effectiveness is
reflected through high detection rate and low false alarm rate; efficiency overheads.

3.4.2 Evaluation Results
Strength

Intrusion detection research for SCADA systems to date has been quite limited, with the three
most prominent and critical deficiencies being

• the lack of a well-considered threat model;

• the absence of addressing false alarm and false negative (mis-detection) rates; and

• the need to empirically ground the development of IDS mechanisms in the realities of how
such systems operate in practice, including the diversity of traffic they manifest and the need
to tailor IDS operation to different SCADA environments.

From the above evaluation of existing IDSs for SCADA systems, we can see that the current
bottleneck problems faced by research and design henceforth implementation and deployment of
IDS for SCADA are the scarcity in access to operational SCADA system (network traffic) traces
and the lack of prudent yet novel threat models, or attack scenarios.

Barely any of these systems has a performance evaluation on the false alarms that it generates.
However, given the availability demand of SCADA systems, we believe this is an issue that must
be addressed well before IDS can be implemented and deployed in SCADA systems at large scale.
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3.5 Future Directions
Ultimately, any viable technical solutions and research directions in securing SCADA systems

must lie in the conjunction of computer security, communication network and control engineering.
However, the very large installed base of such systems means that in many instances we must for a
long time to come rely on retrofitted security mechanisms, rather than having the option to design
them in from scratch. This leads to a pressing need for deployable, robust, SCADA-specific
intrusion detection systems (IDS).

We shall aim to capture the characteristics of a specific SCADA system under study with full
situational awareness, including the dynamics of the physical plant being monitored, its com-
munication patterns, system architecture, network traffic behavior, and specific application-level
protocols used.

3.5.1 Our Future Work
We propose a JIE 6, a viable intrusion detection and self-hardening system for SCADA system.

In terms of the functionalities of intrusion detection and prevention, our proposed JIE would
be able to

• efficiently detect and block cyber intrusions into SCADA systems in real operational envi-
ronments, and in real-time,

• without interrupting the control performance of the protected system,

• without creating extra operational burdens or operational reservations due to false alarms,

• in the presence of both malicious and messily benign network traffic. The system must
operate in a real-time, robust fashion, with performance adequate to meet the demands of
the dynamic cyber-physical interactions inherent to SCADA systems.

3.6 Discussion
As argued by Rakaczky [224], the ease of deployment requires the intrusion detection/prevention

strategy to minimize the associated personnel overhead.
The model-based system for SCADA system using Modubs/TCP addresses Modbus protocol

encapsulated within TCP/IP. The idea can be generalized to other control system protocols as well.
Since SCADA networks are built of resource-constrained embedded systems, the IDS using

the middleware-level detection has the advantage of directly accessing message signatures and

6This is the 40th hexagram of I Ching, or, Yi Jing, The Book of Changes, comprising of 64 hexagrams plus their
commentaries and transformations as strategic interpretation of chance event. It literally means Problem Solving or
Deliverance. The essence of this strategy is: Don’t trouble troubles until trouble troubles you; If it does, then act
quick.
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parameter values without decoding the raw network packets. But there is a tradeoff in the risk
involved in handling embedded responses to attacks.

Both model-based intrusion detection and middleware-level intrusion detection build models
to specify the normal behavior of the network traffic and compare the SCADA traffic against these
models to detect potential anomalous behavior. Model-based detection is an important comple-
ment to signature-based approaches.

The specification-based IDS has an inviting advantage to SCADA systems and networked
control systems in general.
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Chapter 4

Xware – an Overall Architecture of a
SCADA-specific Security Solution

Security is a process, not a product.

BRUCE SCHNEIER

A SCADA-specific defense-in-depth security engineering solution framework: Xware as shown
in figure. 4.1 is presented in this chapter.

This system tailors the special needs entailed by SCADA systems through leveraging the en-
trenched SCADA components and technologies. It provides reliable performance in the face of
malicious intrusion, unintentional faults, honest mistakes, benign noise, extreme cases besides
predefined allowable behavior thus very low in both false positive and false negative rates. We
give an overview of the system’s design with emphasis on prudent threat model. Xware is com-
prised of two strong footings – Normalcy Checking, a control theoretic, domain knowledge spe-
cific, specification-based payload inspection system and a high-speed, real-time, behavioral-based
NIDS (Network Intrusion Detection System). Xware integrates a Trust Counter to verify the
truthfulness of sensor measurements. It also provides exfiltration of confidential information from
within the intranet. Moreover, Xware hardens SCADA system with compensation schemes when
intrusion evades NIDS or unexpected fault occurs to guarantee its performance. It puts things in
perceptive and highlights the overall systematic and holistic approach.
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Chapter 5

Trust Counter –Data Fusion Assurance for
the Kalman Filter in Uncertain Networks

Trust is cheaper than control

JON MELL

This chapter depicts Trust Counter, an important component of the proposed Xware that mea-
sures trustworthiness of each sensor reading before fusing them in an estimation-performance-
centric way and feeding it to a central location.

Due to standardization and connectivity to other networks, networked control systems, a vital
component of many nations’ critical infrastructures, face potential disruption. Its possible mani-
festation can affect the Kalman filter, the primary recursive estimation method used in the control
engineering field. Whereas, to improve such estimation, data fusion may take place at a cen-
tral location to fuse and process multiple sensor measurements delivered over the network. In
an uncertain networked control system where the nodes and links are subject to attacks, false or
compromised or missing individual readings can produce skewed results. To assure the validity
of data fusion, this paper proposes a centralized trust rating system that evaluates the trustworthi-
ness of each sensor reading on top of the fusion mechanism. The ratings are represented by Beta
distribution, the conjugate prior of the binomial distribution and its posterior. Then an illustrative
example demonstrates its efficiency.

Control systems1 are deeply ingrained in the fabric of critical infrastructure sectors including
power grids; oil and gas pipeline systems; water treatment and distribution; railroads and mass
transit; and widely involved in the constitutions of vital enterprises such as manufacturing plants
and building climate control [79].

Most industrial plants now employ networked process historian servers storing process data
plus other possible business and process interfaces2. This integration of networked control systems
with other networks has made control systems vulnerable to various cyber threats. The adoption of

1 Control Systems are computer-based systems that are used in many industries to monitor and control sensitive
processes and physical functions [79].

2For example, using remote Windows sessions to Distributed Control Systems or direct file transfer from Program
Logic Controllers to spreadsheets.
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Ethernet and TCP/IP for process control networks and wireless technologies such as IEEE 802.x,
Zigbee, Bluetooth, WiFi [64, 153] and so on has further reduced the isolation of control networks.
The connectivity and de-isolation of a control system is manifested in Fig.??. Furthermore, the
recent trend in standardization of software and hardware used in control systems makes it possible
to mount control specific attacks. The continuous availability, hard deadline, legacy issues and
low computation power of the end devices are among the things that have been keeping ready
security measures from immediate implementation and deployment.

Such uncertainty may potentially affect the performance of networked control systems. Specif-
ically, we address its likely manifested impact on the Kalman filter based estimation, a key func-
tionality of control systems, and propose a possible countermeasure.

Typically, a central location collects measurements from multiple sensors to achieve higher
accuracy in estimation as shown in Fig 5.1.

Figure 5.1: An Example of Centralized Data Fusion for Networked Control Systems

The discrete time linear dynamical system and measurement model are the following, where i
is the index of sensors.

xt+1 = Axt +wt (5.1)
yi,t = Cixt + vi,t (5.2)

where xt ∈Rn is the state vector, yt ∈Rm is the output vector, wt ∈Rp is white Gaussian noise
with zero mean and covariance Q > 0 and vi,t’s ∈Rm are white Gaussian noises with covariance
Ri > 0. wt and vi,t’s are independent. The initial system state x0 is Gaussian with zero mean and
covariance ∑0. We assume x0 is independent of wt and vi,t’s.

Then individual measurements yi,t undergo fusion before feeding into the Kalman filter, which
will be further discussed in later sections.

Furthermore, we shall briefly recap the standard Kalman filtering algorithm and the Kalman
filter based data fusion methods in a theoretically benign setting plus mention two well known
examples of trust rating systems in practice, dealing with potential malicious situations.
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5.0.1 Standard Kalman Filter

Pt|t = E[(xt− x̂t|t)(xt− x̂t|t)
′
|yt]

x̂t+1|t = E[xt+1|yt]

Pt+1|t = E[(xt+1− x̂t+1|t)(xt+1− x̂t+1|t)
′
|yt]

ŷt+1|t = E[yt+1|yt].

The prediction phase for x̂t+1|t and Pt+1|t of the Kalman filter is independent of the observation
process with:

x̂t+1|t = Ax̂t|t (5.3)

Pt+1|t = APt|tA
′
+Q (5.4)

For the update phase of the Kalman filter, we have

x̂t+1|t+1 = x̂t+1|t +Pt+1|tC
′
(CPt+1|tC

′
+R)−1

(yt+1−Cx̂t+1|t) (5.5)

Pt+1|t+1 = APtA
′
+Q−Pt+1|tC

′
(CPt+1|tC

′
+R)−1

CPt+1|t (5.6)

The accuracy of measurement improves as more sensors collaborate. Naturally, this leads to
the question of how to fuse data from multiple sensors.

5.0.2 Data Fusion
The two most commonly used methods for the Kalman filter based data fusion are state-vector

fusion and measurement fusion [76]. State-vector fusion involves fusing a joint state estimate
through individual estimates produced by each sensor from its individual Kalman filter, whereas
the measurement fusion method directly fuses the sensor measurements to obtain a weighted mea-
surement and feeds it into a single Kalman filter to derive a final state estimate.

The measurement fusion method provides a better overall estimation performance and de-
mands a relative lower computation load on each sensor node. The state-vector fusion method is
only effective when the Kalman filters are consistent [76], whereas modeling errors introduced by
linearization in many realistic applications often violate this condition. For this reason, we focus
our attention on measurement fusion to illustrate the idea.

Note so far we only discuss things in a benign setting whereas in reality there are many mali-
cious situations. To motivate our problem formulation and proposed solution, we name two of the
well-known examples in practice that handle such uncertainty.
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5.0.3 Trust Rating Systems
Google uses robots to crawl the web pages and then to store their information into their

database to calculate the pagerank value. Therefore, Google is characterized as a centralized
reputation system [286].

Netscape 8 includes a new “Trust Rating” system that attempts to tell users which sites are
“safe”. Netscape shows an on-screen indication when it believes a site to be trustworthy [65].

Each system includes a component, or trust counter, to compute and store related trustwor-
thiness information.

Paper Organization
After motivating the problem, section 5.1 gives the problem formulation including the fusion

method, trust and threat model and the overall assurance idea; section 5.2 explains the details of
how the trust rating system works with section 5.3 showing a simple illustrative example.

5.1 Problem Formulation
Among several possible methods for measurement fusion, we choose to fuse observations from

different sensors with the inverse of the sensor’s variance as weighting factor.

yt = [
N

∑
i=1

R−1
i (t)]−1

N

∑
i=1

R−1
i (t)yi,t (5.7)

This method is optimal in the sense of minimum-mean-square-error (MMSE) with a consistent
observation vector dimension to have a lower computational load. Note the noise covariance of
fused measurement takes the form Rt = [∑N

i=1 R−1
i (t)]−1. We name this functionality as fuser.

Before moving on to the details of assurance system, it’s necessary to outline the trust and
threat model.

5.1.1 Trust Model
We assume the central location, where the fuser and trust counter reside, is secure 3.

5.1.2 Threat Model
We assume that the nodes and links are in an uncertain environment, which is subject to attacks

from the outside world. Attacks can affect the integrity and availability of the data, such as the
man-in-the-middle attack, that may change or delete the data content. Or by taking down certain
links, the absence of data from certain nodes may be mistreated as readings being zero.

3By resorting to central processing, we restrain ourselves from potential attacks such as bad mouthing in dis-
tributed systems.
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5.1.3 Assurance
Facing these potential threats, we add a trust rating system (Fig 5.2) with details in section 5.2.

Figure 5.2: The Architecture for Fusion Assurance

The architecture adds a trust counter that maintains the trustworthiness and untrustworthiness
values of each nodes, on top of the original fusion mechanism, seen in Fig 5.2.

5.2 Trust Rating System
αi and βi represent the corresponding ratings for nodei and are determined by equation 5.8.

These two values range with (0,1) and depend on the offset contributed by the variation of the
existing overall median upon the introduction of the reading from this particular node. If the
new median is off beyond a preset threshold value, namely |m̂i−m| > T hreshold, the node has
untrustworthiness of 1 and trustworthiness 0. Or if its reading doesn’t introduce notable difference
from the existing median, then the node has trustworthiness 1 and untrustworthiness 0. Otherwise,
if the resulted change is within the threshold, |m̂i−m| < T hreshold, then its trustworthiness is
proportional to the change it introduced versus the threshold value T hreshold−|m̂i−m|

T hreshold . It’s worth
pointing out that the median of all measurements yi is a robust metric to quantify the individual
measurement [118].

(αi,βi) =


(1,0), i f |m̂i−m|= 0
(T−|m̂i−m|

T ,0) i f |m̂i−m|< T
(0,1), i f |m̂i−m|> T

(5.8)

In fact, the trust ratings are represented by Beta distribution [135] with α and β as its parame-
ters.

Beta(α,β) =
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (5.9)

∀0≤ x≤ 1,α≥ 0,β≥ 0.

The central counter updates the trust ratings of nodei based on ri truthful and si bogus obser-
vations. Given that the two sets of observations are binary, i.e., truthful or not and bogus or not,
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they follow Binomial distribution. Indeed, the Beta distribution is the conjugate prior of the Bino-
mial distribution and its posterior as well. By using a Bayesian parameter estimation of binomial
distribution, it follows that

Bin(ri + si,ri)∗Beta(αi,βi)

Normalization
= Beta(αi + ri,βi + si) (5.10)

5.2.1 Update Algorithm
The sequences of truthful/bogus observations of a given measurement evolve, as the status of

the uncertain network may vary. We must update the ratings in order to reflect the latest status.

ri
t = λri

t−1 +αi

si
t = λsi

t−1 +βi, (5.11)

where λ is a discounting factor ranging from 0 to 1 to reflect the fact that the older the infor-
mation, the less it worths.

Thus the future (projected ) truthfulness of a measurement from a given node can be estimated
as

Ti = E[Beta(ri +1,si +1)]

=
ri +1

ri + si +2
(5.12)

Hence the fused measurement under assurance is

yt = [
N

∑
i=1

TiR−1
i (t)]−1

N

∑
i=1

TiR−1
i (t)yi,t (5.13)

where, Ti is the truthfulness for each corresponding node measurement determined by the central
trust rating system.

5.3 Example
As an illustration, in this section, we demonstrate the idea through simple examples.
There are 30 identical sensors uniformly distributed over the surveillance region. We model

the discrete dynamics and measurement of the evader as

xt+1 = Aext +wt

yi,t = Cixt + vi,t (5.14)

where w and v are white Gaussian noises with zero mean and covariance Qe = diag (0.152,0.152,0.152,0.152)
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and Ri = R = diag(0.152,0.152), and δ = 0.5 is the sampling period.

Ae =


1 0 δ 0
0 1 0 δ

0 0 1 0
0 0 0 1

 Ci =C


1 0
0 1
0 0
0 0


T

(5.15)

Figure 5.3: Tracking without Trust Rating

Figure 5.4: Tracking with Trust Rating

From Fig.5.3 and Fig.5.5, we can see the accuracy improves for measurements with trust
rating.

The similar holds true when we use 1000 nodes and observe how the estimation error varies
as more readings are compromised, shown in Fig.5.5
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Figure 5.5: Estimation Error: ... dot line indicates with trust rating, – solid line without

5.4 Related Work
There are works making the effort to use reputation frameworks in distributed systems such as

[77]. However, it’s hard to work around the problems such as compromised nodes being message
passing leader or bad mouthing from compromised nodes.

While in our setting, we think it’s doable to apply this method in module fashion such that the
trust computing base can be limited to the central location only.

5.5 Discussion
In a networked control system setting, where the nodes and links are subject to attacks, the

usage of a centralized trust rating system shows the potential to assure the validity of nodes’
readings. By using Beta distribution, it only requires storing two parameters thus it’s simple yet
intuitive. This approach provides intermediate assurance to the data fusion used by the Kalman
filter before full-scale implementation of security solutions to the networked control systems.
Particularly, this mechanism can facilitate the disambiguation between honest yet rare events and
malicious ones. It’s implemented in our follow-on work.
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Chapter 6

Robust General Likelihood Ratio Test

Faster Higher Stronger

Olympic Motto

This chapter gives the gist of Robust General Likelihood Ratio Test (RGLRT) in the context of
SCADA security in particular.

The adaptation of large-scale Wireless Sensor Networks (WSN) has enabled Supervisory Con-
trol And Data Antiquation (SCADA) systems with critical remote monitoring. Meanwhile the
large networks are prone to benign components failures and malicious attacks. To address such
problems, we present an earlier anomaly detection and resilient estimation scheme for the cyber-
physical systems, networked control systems to be specific, in an uncertain network environment.
It robustly identifies and detects outliers among real-time multidimensional measurements of dy-
namical systems by using an online window-limited sequential Robust Generalized Likelihood
Ratio (RGLR) test without any prior knowledge of the occurrence time and distribution of the
outliers. The robust sequential testing and quick detection scheme achieves the optimal stopping
time with low rates in both false alarm and misdetection. We propose a set of qualitative and
quantitative metric to measure its optimality in the context of cyber-physical systems.

Further, this resilient and flexible estimation scheme robustly rectifies and cleans data upon
both isolated and patchy outliers while maintain the optimality of the Kalman Filter under the
nominal condition. We show the approximated optimality of the robustification performance
through stochastic approximation. We also offer a simple simulation example to illustrate our
ideas.

Supervisory Control And Data Antiquation (SCADA) systems are deeply ingrained in the fab-
ric of critical infrastructure sectors including power grids; oil and gas pipeline systems; water
treatment and distribution; railroads and mass transit; and widely involved in the constitutions of
vital enterprises such as manufacturing plants and building climate control [79]. The Wireless
Sensor Network (WSN) has been an emerging application in SCADA systems. In the monitoring
and control of moving or remote machinery , wireless sensor networks have compelling economic
and engineering advantages over their wired counterparts [218]). They may also deliver crucial
information in real-time from environments and processes where data collection is impossible or
impractical with wired sensors. Individual sensors simultaneously sense an process and transmit
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measured information over a lossy wireless network to a control center, which processes the data
and produces an optimal estimate of the state.

However, the uncertainties in the SCADA system itself [296] and in the wireless sensor net-
works including both benign component faults and malicious attacks may skew the sensor mea-
surements and thus that of the estimation and control command results.

What motivates us to address the issue of outlier-detection and -mitigation is multifaceted.
First, outliers are often a clear indication of environmental noise level and potentially faults in
sensors or malicious attacks in the system [306]. As for their impact on the applications, in gen-
eral the performance of linear least squares estimates may degrade remarkably when plant or
observation disturbances are non-Gaussian, particularly when the non-Gaussianness, i.e., outlier,
is of a heavy-tailed variety giving rise to occasional very large values [265, 116, 117]. In light of
the prevalent and broad usage of the Kalman filter in engineering fields and SCADA systems in
particular, we are mostly interested the skewing impact of outliers [179] having on the Kalman
filter among many other decision making algorithms that are subject to outliers. The state es-
timation error can grow without bound since the estimate is a linear function of the observation
noise. Outliers skew and affect the performance of many decision making algorithms, the standard
Kalman filter , and potentially leads to divergency [74] and instability [238] and destabilize the
whole controller.

On the other hand, the difficultly of online detection of outliers lies in that moments-based
procedures themselves are not robust upon outliers [30, 120]. Furthermore, the fact that the ad-
versaries have control over inputs makes the detection task more complicated.

The CUSUM (Cumulative Summation) method and its variants are widely used for anomaly
detection. As pointed out in [25],[254], its major drawback is that it requires a priori knowledge on
information after change, i.e. the intensity of the anomaly etc. But in practice, such information
are not predicable. Given that our work is closely related to CUSUM, sequential analysis and
hypothesis testing in general, we deem that the related sequential testing approaches deserve a
brief exposition in more details in the following Section 6.1.

To address robustness issues, [310] proposes a filtering technique that ensures an estimation
error variance with a guaranteed upper bound given the norm-bounded time-varying parameter
uncertainty in both the system state and output measurement matrices. Their focus doesn’t include
outlier detection though. [260] uses a weighted least squares-like approach by introducing weights
for each data sample. A data sample with a smaller weight has a weaker contribution when
estimating the current time step’s state. They treat the problem as an expectation maximization
(EM) learning problem with maximization over all available data points at every time step while
using a variational factorial approximation of the true posterior distribution to get analytically
tractable inference. [132] removes the drifting tracking points using Kalman filter when the flow
based tracking approach is possibly prone to outliers due to its aperture problem.

Hammes [95] studies robust positioning algorithms for transmitter devices over wireless net-
works where the non-line-of-sight propagation effects lead to erroneous signal parameter esti-
mates. The framework of an extended Kalman filter (EKF) is rewritten into a linear regression
model at each time step while non-parametric pdf estimation is used for position estimation within
a parametric signal model to solve for position and velocity of the user equipment.

Contribution of our work:
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• we offer a simplified taxonomy/comparison of change detection methods;

• we present a resilient and flexible estimation scheme robustly rectifies and cleans data upon
both isolated and patchy outliers while maintain the optimality of the Kalman Filter under
the nominal condition;

• we propose an online window-limited sequential Robust Generalized Likelihood Ratio (RGLR)
test without any prior knowledge of the occurrence time or the distribution of the outliers;

• the robust sequential testing bears optimal stopping time,i.e., asymptotically shortest detec-
tion delay time while maintaining lowest false alarm rate.

The rest of this paper is organized as the following, Section 2. gives a brief exposition of hypoth-
esis testing and a taxonomy/comparison of related work; Section 3 states the problem formulation
including performance metrics; Section 4. presents the resilient estimation; Section 5. describes
the scheme for outlier detection; Section 6. shows simulation results, evaluation and discussion.
Section 7. Concludes.

6.1 Hypothesis Testing
In this section, we give an overall review of hypothesis testing, sequential analysis and detec-

tion before listing a simplified taxonomy.
Let M be the set of probability measures on the real line R and let P0,P1 be two distinct

elements of M, having densities p0, p1 with respect to some measure ω. Denote {zk}m
0 sequence

of identically independently distributed (iid) observations of a random variable Z with distribution
D. The testing problem is hypotheses {

H0 : D = P0
H1 : D = P1

(6.1)

Let pθi , dependent on a parameter θ, be the respective densities of Pi for i = 0,1 with respect
to some dominating measure ω.

To discriminate between two we may either use the likelihood ratio test provided by the
Neyman-Pearson lemmma, or Wald’s sequential probability ratio test.

Recall that log-likelihood ratio is defined as s(θ,z, i) = log
pθ1(z)
pθ0(z)

Sn = ∑
n
i=1 s(θ,z, i) = ∑

n
i=1 log

pθ1(zi)

pθ0(zi)

(6.2)

6.1.1 Fixed Sample Size Test
For the Neyman-Pearson test, the sample size is fixed and we reject hypothesis H0 if Sn is too

large.
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6.1.2 Sequential Probability Ratio Testing
Wald’s Sequential Hypothesis Testing (SHT), or the Sequential Probability Ratio Testing (SPRT)

scheme [270] in 1947 not only enjoys the benefits of relatively small sampling size as that of single
sampling schemes in the detection of large changes, but also retains a desirable expected sampling
size before action is taken when dealing with small changes in magnitude [205].

The task of SHT becomes
S0 = 0
Sk+1 = log p1(Zk)

p0(Zk)
+S(k), k ≥ 1

N = inf{n≥ 1 : Sn /∈ [L,U ]},
(6.3)

The SHT decision rule dN follows,

dN =

{
H1 if SN ≥U
H0 if SN ≤ L (6.4)

where L ≈ ln FN
1−FA

and U ≈ ln1−FN
FA

with FA being the predefined false alarm rate and FN the
predefined false negative rate or the missed detection rate upon user’s choice and tuning.

Under the assumptions that hypothesis H0 is of the distribution P0 with a probability function
p0 and H1 of P1 and p1. Pick 2 numbers a,b with a < 0 < b and define the decisive sample number
(the stopping rule or the detection rule)

N = inf{n≥ 1 : Sn ≤ a or Sn ≥ b} (6.5)

with inf0 6= ∞.
Wald [270] proved that N is almost surely finite under both P0 and P1. The testing procedure

is to stop at stage N and reject T0 if Sn ≥ b and accept H0 if Sn ≤ a (hence reject H1). We denote
this test SPRT (a,b,P0,P1). The average sample numbers are E j[N], j = 0,1, where E j denotes
expectation under Pj. The error probabilities are α = P0(Sn ≥ b) and β = P1(Sn ≤ a).The SPRT
is optimum in the following sense. Consider any other testing procedure with corresponding
elements α′,β′,E0,E1 then (cf. Lehmann 1959 [159]), it holds that{

α′ ≤ α

β′ ≤ β
⇒
{
E0[N] ≤ E0[N]′

E1[N] ≤ E1[N]′
(6.6)

SPRT’s major strength lies in two-fold that it’s a recursive online scheme and optimal in sample
size for both hypothesis with theoretical proof on bounds. However, it assumes θ1, the distribution
after change is known, while in reality, especially for the goal of this paper, it is not.

Sequential Detection

Closely related to sequential testing theory is the theory of sequential change-point detec-
tion. Page [205] and Shiryaev [248] modified Wald’s SPRT and developed the cumulative sum
(CUSUM) [205] and the Shiryaev-Roberts charts [248] respectively to improve the sensitivity of
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the Shewhart charts [247]. The goal of optimality in the Shiryaev-Roberts-Pollak (SRP) sense is
to minimize the worst-case average delay subject to the upper bound of a false alarm whereas in
Lorden’s sense is to minimize the upper bound of the worst case delay subject the upper bound of
a false alarm [166].

The CUSUM [26, 33, 88, 188] test is one of the most successful algorithms of sequential
change detection. The CUSUM procedure developed in 1954 calculates the cumulative sum of
samples from a process Xn with weights ωn in the following fashion,{

S0 = 0
Sn+1 = max(0,Sn +Xn−ωn)

The stopping rule or the detection rule is that: when the value of S exceeds a certain threshold
value, a change in value has been found 1.

Widespread applications and theory development in quality control [168, 188, 235], fault
detection [51, 276], surveillance [121, 133], anomaly detection [252, 172] are stemmed from
CUSUM and/or CUSUM alike procedures.

Some of the methods proposed over the years were originally ad hoc procedures and were later
proven to possess optimality properties including both Wald’s SPRT or Page’s CUSUM. Others
remain popular though sub-optimal such as Shewhart [247] and Exponentially-Weighted Moving
Average (EWMA) [228] control charts.

The overall comparison and a simplified taxonomy is summarized in Table. 6.1.
For a more detailed review on sequential analysis or sequential change-point detection in-

volving multivariate and dependent observations, interested readers please refer to [154] and [25]
respectively.

6.2 Problem Formulation
First we recap estimation and identification in state-space models and the statistical approach

based on the Kalman filter and likelihood techniques.

6.2.1 A General State Space Model Setting
Let positive integer k = 0,1, . . . denotes discrete time, then stochastic state-space model in

discrete time has the following form

state: xk+1 = Fkxk +Gkuk +wk (6.7)
observation: yk = Hkxk + Jkuk + vk (6.8)

where xk ∈ Rn is the (hidden) internal state vector,
uk ∈ Rr is the input vector,

1Note the above formula (6.7) only detects changes in the positive direction. When negative changes need to be
found as well, the min operation should be used instead of the max operation, and this time a change has been found
when the value of S is below the (negative) value of the threshold value.
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yk ∈ Rm is the output i.e. observation (measurement) vector.
wk ∈Rr, the process (plant) (6.7) noise vector, is a white Gaussian noise sequence with zero mean
and covariance matrix Qk > 0.
vk ∈ Rm, the observation (measurement) (6.8) noise vector, is a white Gaussian noise sequence
with zero mean and covariance matrix Rk > 0.
{Fk} the state transition matrix, {Hk} the observation matrix, {Gk} and {Jk} the control matrices
are known sequences of matrices with appropriate dimensions.
The initial system state vector x0 is Gaussian with zero mean and covariance matrix P0. We assume
that the initial state x0 and the two noise sequences wk, vk are mutually independent. We will use
observation and measurement interchangeably.

In summary, (6.7) is a recursive state model of the linear dynamical process (plant), and (6.8), a
linear observation model of the system. Note such a model (6.7)-(6.8) is a Markov model, namely
the pair (Xk+1;Yk) is a Markov process.

6.2.2 Kalman Filter
The Kalman filter provides one particular estimate of the state xk of the system (6.7)-(6.8).

It’s a minimum variance estimate of the state, namely the conditional mean 2 of xk given the past
observations {:::;yk−2;yk−1}. We denote this one-step ahead prediction as x̂k+1|k.

As shown in Fig.6.1, the overall flow diagram of the Kalman Filter, it’s an on-line recursive
algorithm. To illustrate its recursion, we decompose its procedure into two phases, namely the
predication phase and measurement update phase.

Fig.6.2 illustrates the recursive procedure of the Kalman filter, noting at each time step, only
current and previous step are involved. That is to say no batch operation is required. This is
precisely what makes the Kalman filter an online algorithm.

6.2.3 Outliers’ Distribution Model
We shall point out that employing a outliers’ distribution model only gives us a somewhat

plausible and trackable model for generating outliers [174] and for illustrating the impact of out-
liers on estimation performance. That is not to say that our detection scheme is dependent on the
outliers’ distributions, otherwise it is not robust nor effective.

There are several types heavy-tailed or alternatively referred to as fat-tailed distributions 3 in
wide use[175]. Alternatively, the contaminated normal distributions is one specific instance of
the more generic mixture distribution model for outliers [93] which will suffice for purposes of
our current exposition. To be more specific, the outliers are generated through the contaminated-

2When the Gaussian assumption concerning the noises is removed, the Kalman filter gives the linear minimum
variance estimate of the state, namely the smallest unconditional error covariance among all linear estimates, but, in
general, this estimate is not the conditional mean (Goodwin and Sin, 1984).

3A fat tail is a property of some probability distributions exhibiting extremely large kurtosis particularly relative
to the ubiquitous Gaussian which itself is an example of an exceptionally thin tail distribution. Fat tail distributions
have power law decay.
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Figure 6.1: The Kalman Filter Flow Chart
innovation: ek+1 = yk+1− ŷk+1: to “correct”

update: x̂k+1|k+1 = x̂k+1|k +Kk+1ek+1;
1-step predication: x̂k+1|k = Fkx̂k|k +Gkuk

xk,uk,yk,wk,vk: the state, input, observation, process noise, observation noise vector; Fk,Hk,Gk and Jk: the
state “transition”, observation, control matrices.

normal distribution with degenerate central component [174]

CN(t;γ,σ2) = (1− γ)N(t;0,0)+ γN(t;0,σ2) (6.9)

That is to say the process xt is observed perfectly about 100(1− γ) percent of the time and is
corrupted by outliers about 100γ percent of the time, where 0.01≤ γ≤ 0.25.

6.2.4 Further Property Assumptions
Furthermore, for some integer d, let (Rd,B,λ) be a measure space, where R is the real line,

B the Borel σ-algebra, and λ the Lebesgue measure. Let F be a zero-mean probability measure
on (Rd,B) such that F is absolutely continuous with respect to λ and admits the density f in
accordance with Radon-Nikodym theorem.

We have a sequence of identically independently distributed (iid) observations {zk}m
0 of a

random variable Z with a probability density pθ(Z) that is dependent on one scalar parameter
only. The parameter θ = θ0 before a unknown change time ν and θ = θ1 after ν.

Note that change time ν is unknown. We either consider ν as a nonrandom unknown value or a
random unknown value with unknown distribution. In other words, we deal with a nonparametric
approach as far as this change time ν is concerned. In practice, either it is very difficult to have a
priori information about the distribution of the change times, or this distribution is nonstationary
(i.e. it doesn’t have an invariant mean nor variance). This is particularly meaningful for our
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Figure 6.2: The recursive operation of the Kalman Filter: a combination of the high-level diagram
in Fig.6.1 and the formulations in section 6.2.2

problem setting, giving that we have no a priori knowledge of when the intrusion thus outliers
or anomalies would occur at all. That’s the reason why certain basic tools can’t directly suit our
problem.

Our security model is that the SCADA center itself is secure and so are the core programs.
We assume the attack is session based, should it arise over the network.

By “resilient”, we stress the importance of the flexility and parsimoniousness of the overall
strategy. Without incurring too large overhead, it shall maintain the systems’s optimal performance
under nominal conditions while strive for near optimal performance should atypical situations
arise without being unduly affected by spurious observations.

6.2.5 Meaningful Metrics for Recursive Robust Estimation
It’s only appropriate to bring up the issue of the robustness of estimation schemes when we ad-

dress outliers. Conceptually, the definition of robustness4 we use here stipulates that small changes
from an assumed nominal model would only introduce small changes in estimate, according to
both Tukey [265] and Huber [213]. Furthermore, robust-resistant, a purely data-oriented notion
defined by Tukey [266], refers that an estimate is called resistant if changing a small fraction of the

4The word “robust” is loaded with many if not often inconsistent meanings.
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data by large amounts results in little change to the estimate. That is to say the capability against
gross error and outliers.

Formulation wise, while the minimax approach is pessimistic, it provides an optimum lower
bound on performance. Let: T be a class of estimates, F a class of distributions, and V (T,F) the
asymptotic variance of T ∈ T when the distribution is F ∈ F. Then the minimax robust estimate
T0 and its associated least favorable distribution F0 satisfy

min
T∈T

max
F∈F

V (T,F) =V (T0,F0) = max
F∈F

min
T∈T

V (T,F) (6.10)

Naturally, this can be viewed as a game in which we choose T ∈ T, nature chooses F ∈ F and
V (T,F) is the payoff. This game has a saddle point pair (T0,F0) if T0 and F0 satisfy the above
(6.10).

Furthermore, for multivariate, dependent Markovian (state space model) without process noises,
analytically the asymptotic variance is still a good choice of

Plus, in this paper, this goal is to achieve optimally estimating and tracking the state of stochas-
tic time-variant linear dynamic system rather than obtaining minimum asymptotic estimation er-
ror. Thus approximations of a conditional mean estimator which is known for its unbiasedness
and minimum error variance [11], are targeted [241].

6.2.6 Sequential Detection Performance Measure
False Alarm Constraints

Often the methodology of optimal change-point detection pursues stopping rules that achieve
the best balance of the mean detection delay and the rate of false alarms or minimize the mean
delay under a fixed false alarm probability [22]. In order to establish a sound sequential detection
performance measure, we must first lay out the associated false alarm probability constraints that
the asymptotic lower bound for the detection delay is subject to.

E(ν)(T −ν)1{T≥ν} = E
(ν)(T −ν)+ (6.11)

Accordingly, three related false alarm probability constraints in the ascendant order of stringency
are listed as follows:

• For iid observations, due to Shiryaev [248], the Bayesian view concerns the mean delay to
detection under the average false alarm

P(T < ν) =
∞

∑
k=1

πα(k)P0(T < k)≤ α (6.12)

where πα is a prior distribution of the change time ν.

• Whereas the ARL (Average Run Length) [205] to false alarm constraint in a minimax for-
mulation

E0[T ]≥ γ > 1 (6.13)
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is the worst case in Lorden’s sense [166], and is no smaller than a given number γ > 1
when the quality parameter remains fixed θ. The objective is to find the stopping rule that
minimizes the worst-case delay subject to an upper bound on the false alarm rate.

• For non-independent observations, Lai proposed a change-of-measure argument [155], the
most stringent one among the three, to guarantee a lower bound on the window-limited
stopping time, or the detection delay:

sup
ν≥1

P0(ν≤ T < ν+mα) ≤ α, where

liminf
mα

| logα|
> I−1 but

logmα = o(logα) as α→ 0. (6.14)

The reason we choose the most stringent false alarm constraint, namely Lai’s change-of-
measure argument (6.14) lies in that it meets our desire to have as low as possible false alarm
while achieving an asymptotic lower bound for the detection delay.

Correspondingly, as α→ 0 for a positive integer I, the asymptotic lower bound for the detec-
tion delay is

E(ν)(T −ν)+ ≥ {P0(T ≥ ν)/I +o(1)}|logα|
uniformly in ν≥ 1 . (6.15)

6.3 Resilient Estimation
Contaminated Observations with additive outliers Suppose at an unknown time ν, the sen-

sor measurement (observation)yk (6.8) is subject to some additive outliers or anomaly, formally

ỹk = yk + yaok1{k ≥ ν} (6.16)
= Hkxk + Jkuk + ṽk (6.17)
= Hkxk + Jkuk + vk + yaok1{k ≥ ν} (6.18)

where ỹk is the observed data and the yaok are the additive outliers 1{k ≥ ν}, either in isolation or
in cluster, 1{k ≥ ν} is a compact notion of an indictor function indicating the occurrence of the
outliers (anomaly),

1 =

{
1 k ≥ ν

0 k < ν
(6.19)

Theorem 1. A robust state estimate suffices above conditions is optimal in the min-max sense, i.e.
having minimum variance over the least favorable contaminating distributions. It can take the
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following form with x̆k|k
4
= E[x̃k|ỹk] , compared to the original Kalman filter.

x̆k+1|k = Fk+1x̆k|k (6.20)

P̃k+1|k = Fk+1P̃k|kFT
k+1 +Qk+1 (6.21)

K̃k+1 = P̃k+1|kHT
k+1Σ̃

−1
k+1 (6.22)

x̆k+1|k+1 = x̆k+1|k + K̃k+1(ỹk+1−Hk+1x̆k+1|k− Jk+1uk+1) (6.23)

P̃k+1|k+1 = (I− K̃k+1Hk+1)P̃k+1|k (6.24)

with the robustified (censored) covariance matrix of the innovation (residual) becoming,

Σ̃k = HkP̃k|k−1HT
k +R

1
2
k WkR

1
2
k (6.25)

where
Wk = diag{w1k, · · · ,wmk} (6.26)

and w1k, · · · ,wmk would be defined later in the proof.

Proof: : We first show the result through construction. It is straightforward that the state
estimator x̆k|k corresponding to x̂k|k =E[xk|yk,uk] of the original Kalman filter can be obtained by
minimizing

x̌k+1|k+1 =

argmin { (x̌k+1|k− xk+1)
T (Pk+1|k)

−1(x̌k+1|k− xk+1)

+ (ỹk+1−Hk+1xk+1− Jk+1uk+1)
T (Rk)

−1

× (ỹk+1−Hk+1xk+1− Jk+1uk+1)} (6.27)

with respect to xk+1 ∈ Rn, or equivalently

x̌k|k = argmin{
n

∑
i=1

(pik−aikxk)
2 +

m

∑
j=1

(s jk−b jkxk−q jk)
2} (6.28)

where pk = (Pk|k−1)
− 1

2 x̆k|k−1,sk = (Rk)
− 1

2 ỹk,qk = (Rk)
− 1

2 Jkuk,ak = (Pk|k−1)
− 1

2 ,bk = (Rk)
− 1

2 Hk,
so that pik, sik and q jk are the i−th component of the vectors pk ∈ Rn×1, sk ∈ Rn×1 and qk ∈ Rn×1

correspondingly; aik ∈ R1×n and bik ∈ R1×n are the i− row vector of the matrix ak ∈ Rn×n and
bk ∈ Rn×n correspondingly. In the case of M−estimation, the least squares solution is replaced by

x̆k|k = argmin{
n

∑
i=1

(pik−aikxk)
2 +

m

∑
j=1

ρ j(s jk−b jkxk−q jk)
2} (6.29)
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where the ρ j are suitable score functions with derivatives, i.e. influence function ψ j, or psi-
function used in robust statistics. One of Huber’s psi-function is

ψH(Z) =
{

for |Z| ≤ s
s sgn(Z) f or |Z| > s (6.30)

is often used5. It gives robust estimates of location which are optimal in the min-max sense, having
minimum variance over the least favorable contaminating distributions.

The normal equations for x̆k|k corresponding to (6.29) have the form

n

∑
i=1

aT
ik(pik−aikx̆k|k)+

m

∑
j=1

bT
jkψ j(s jk−b jkx̆k|k−q jk) = 0 (6.31)

and can be solved explicitly only in some special cases. This is quite pragmatic as well, sensors
are normally set with bound values in practice.

Alternatively, one can use the approximated normal equations if we approximate6 x̆k|k by x̆k|k−1
when using the weight function w jk as the following,

n

∑
i=1

aT
ik(pik−aikx̆k|k)+

m

∑
j=1

w jkbT
jk(s jk−b jkx̆k|k−q jk) = 0 (6.32)

where the weight functions w jk, j = 1, . . . ,m are

w jk =
ψ j(s jk−b jkx̆k|k−q jk)

s jk−b jkx̆k|k−q jk
(6.33)

Using (6.32) and some algebra, we obtain robustified (censored) covariance matrix of the
innovation (residual),

Σ̃k = HkP̃k|k−1HT
k +R

1
2
k WkR

1
2
k (6.34)

where Wk = diag{w1k, · · · ,wmk}

6.4 Robust Outlier Detection
The overall procedure is shown as in Figure 6.3.

6.4.1 System model with outliers contaminated observations
Following the definition of the contaminated measurement ỹk (6.16-6.19), the state x̃k, the

estimate x̆k|k, and the output residual ẽk of the Kalman filter upon the outliers occurred at time ν

5The recommended choice of s in (6.30) is s = u1−ε where uα is the α-quantile of N(0,1) (e.g., s = 1.883 for a
3% contamination of data.

6They can be considered as a recursive variant of the normal equations from the Iterative Weighted Least Squares
IWLS method which is a popular algorithm for numerical calculation of M-estimates.
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Figure 6.3: Block Diagram of Robust Outlier Detection and Resilient Estimation

can be expressed in the relations of their nominal counterparts, as

x̆k|k = x̂k|k + β(k,ν)yao
ẽk = ek + ρ(k,ν)yao

(6.35)

where the terms β(k,ν),ρ(k,ν) would be defined later.
Conditioned on the past outputs yk and input signals uk, the innovation ek has the conditional

mean E[ek]. Let’s denote µk = E[ek], then

µk = E[ek] =

{
ρ(k,ν)yaok k ≥ ν

0 k < ν
(6.36)

where ν,yao are unknown. The ρ(k, t) are matrices that can be recursively evaluated after initial-
ization ρ(t, t) = 0,β(t−1, t) = 0,

β(k, t) = Fk−1β(t−1,k)+Kkρ(k, t) (6.37)
ρ(k+1, t) = −Ht+1Fkβ(k, t)+ I (6.38)

where β(k, t) and ρ(k, t) are the difference of the estimate x̆k|k, residual ẽk under outliers, compar-
ing with their nominal counterparts as stated in (6.35), to be evaluated recursively in parallel for
k ≥ t and for every fixed t, one for each t within a moving window t ∈ {n−m, · · · ,n−m′}.
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Meanwhile, the covariance matrix of the innovation is

Vk = E[(ek−E[ek])(ek−E[ek])
T ] (6.39)

=

{
Σ̃k k ≥ ν

Σk k < ν
(6.40)

= Σ̃k (6.41)

It’s easy to verify the design purpose, for k < ν weight functions w jk = 1 , ∀ j ∈ [1,m] thus Σ̃k = Σk

6.4.2 Robust Sequential Probability Ratio Tests
According to Huber [119], a statistical procedure is called robust if its performance is in-

sensitive to small deviations of the idealized theoretical model. In terms of the robustness of
a test, it shall withstand small arbitrary departures from both the null hypothesis (robustness of
validity) and the specified alternatives (robustness of efficiency ) [120]. When encountering de-
viation, the classical probability ratio test is not robust in the following sense: a single outlying
data point thus deviating factor p1(x j)/p0(x j) equal (or almost equal) to 0 or ∞ may unduely
impact the test statistic T (x) = ∏

n
1 p1(x j)/p0(x j) therefore may totally skew the final hypothe-

sis or probability test outcome. By censoring the single factors at some fixed numbers c′ < c′′

for sequential probability ratio test, one can replace the test statistic by T ′(x) = ∏
n
1 π(x j), where

π(x j) = max{c′,min{c′′, p1(x j)
p0(x j
}}.

Note that we have precisely done so in the stage of resilient estimation that one of the key
components of our test statistics, the covariance matrix of the innovation (residual), Σ̃k (6.34) or
V (6.39), has been “censored”.

Detection Rules

Without assuming any prior knowledge of parameter η, the RGLR rule maximizes the log
likelihood ratio over a window of inputs and decide the time to raise an alarm according to certain
rule, which we will state without formally proving as certain steps have showed by Huber [119]
and Quang [223] in a sequential testing setting .
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Theorem 2. The following stopping rule is optimal and robust

NG = inf{n : max
n−M≤t≤n−M′

sup
η

n

∑
i=k

log[ f (Σ̃−1/2
i

×(ei−ρ(i, t)η))/ f (Σ̃−1/2
i ei)]≥ cλ}

= inf{n : max
n−m≤t≤n−m′

(
n

∑
i=k

ρ
T (i, t)Σ̃−1

i ei)
T

·(
n

∑
i=k

ρ
T (i, t)Σ̃−1

i ρ(i, t))−1

·(
n

∑
i=k

ρ
T (i, t)Σ̃−1

i ei)/2≥ cλ} (6.42)

where f (y) = e
−‖y‖2

2 /(2π)ζ/2 denotes the ζ-dimensional normal density, ζ = dim(η), and m′+1≥
ζ so that the matrix inversions in (7.28) are valid.

In essence, we are looking at an optimal stopping time problem:not to stop too early to
produce a false alarm nor to stop too late to miss a real anomalous event.

Huber [119] showed that in the neighborhoods of the idealized underlying distributions, which
is the least favorable situation for both Type I (false alarm) and Type II (miss detection) error
probabilities, the so called censored probability ratio test is most robust in a well defined minimax
sense.

In light that our test statistic has undergone the censoring processing at the robustified esti-
mation stage, so our concerns translate into whether the corresponding sequential testing still are
least favorable for errors.

Quang [223] further proved that with the limiting maximum error probabilities less 1/2, such
sequential test is also least favorable for ASN Average Sample Number and asymptotically mini-
max with respect to expected sample sizes.

6.4.3 Threshold and Window size Choice
Note that (7.27) computes ρ(t,k) recursively over the each window. How to optimally choose

M,M̃ and cλ in general is a difficult problem [25] for online practices particularly due to the
coupling effect between the threshold and window size on the asymptotical performance of the
detection rule. But for off-line operations, the choice of window size is less demanding as all the
data set is available, it’s only a matter of computation time.

The threshold c in the rule NW subject to the false alarm probability criterion P0(NW ≤ m)
can be computed by using Monte Carlo computation of P0(NW ) together with the method of suc-
cessive linear approximation combined with bisection search for iterative solution of the equation
P0(NW ≤ m).

With the window size M, we have M∼ alogγ where E0(T )∼ γ, and a > 1
I(θ,0) . The importance

sampling procedure procedure for Monte Carlo computation of P0(Nw≤m) involves the following
steps as shown in Algorithm. 1,



59

Algorithm 1 Importance Sampling for P0

while N ≥ 0 do {run N times}
generate ν ∈ {1,m} and θ ∈ N(0, p)
for t ≤ min(NW ,m) do

if t ≤ ν then
covt(et)←Vt
Et(et)← 0

else
covt(et)← Ṽt
Et(et) = ρ(t,ν)θ

end if
for 1≤ k ≤ i≤ t ≤ m do

Ct,k← I +Σt
i=kρT (i,k)V−1

i ρ(i,k)
dt,k← Σt

i=kρT (i,k)V−1
i ei

Lt ←
Σt

k=1(detCt,k)−1/2exp(dT
t,kC−1

t,K dt,k/2)+1−t
m

end for
end for
N← N−1

end while
P0(T ≤ m)← ∑

N L−1
n,W

N

Note that E0(T ) ∼ m
P0(T≤m) ,∼ logγ, thus threshold c in the rule NW subject to the false alarm

probability criterion P0(NW ≤ m/γ) can be computed by using the above procedure for Monte
Carlo computation of P0(NW together with the method of successive linear approximation com-
bined with bisection search for iterative solution of the equation P0(NW ≤ m/γ).

6.5 Experiments and Evaluation
Currently, we are using synthetic data to conduct experiments. We model the discrete dynam-

ics and two-dimensional measurement of the tracked object as

xt+1 = Aext +wt

yi,t = Cixt + vi,t (6.43)

where w and v are white Gaussian noises with zero mean and covariance Qe = diag (0.152,0.152,0.152,0.152)
and Ri = R = diag(0.152,0.152), and δ = 0.5 is the sampling period.

Ae =


1 0 δ 0
0 1 0 δ

0 0 1 0
0 0 0 1

 Ci =C


1 0
0 1
0 0
0 0


T

(6.44)
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The reason of employing such examples lies in that

• its multidimensionality suffices the complexity purpose;

• it’s generic enough to illustrate the impact of outliers.

6.5.1 Resilient Estimation Performance
As stated in Section 6.2.5, we evaluate the estimation performance in terms of the error vari-

ance. Figure 6.4 shows that our resilient estimation scheme performance better than the standard
Kalman filter upon randomly injected outliers while maintaining the latter’s under nominal condi-
tions.

Figure 6.4: Tracking Error Comparison: The lower panel shows the performance of our Resilient
Estimation is identical to that of the standard Kalman filter under nominal condition while having
much smaller errors upon outliers at time T = 10,30,60.

6.5.2 Robust Outlier Detection Performance
With randomly injected outliers where the false alarm constraint is achieved through Monte

Carlo simulation, our approach successfully detects multiple them as shown Figure 6.5.

6.5.3 Limitation and Discussion
As Pearson discussed in [209], the MT-filter used in this work can be inapplicable when the

covariance matrix on which the Kalman filter is based becomes singular. One way to deal with
singular covariance matrices for the Kalman filter is to use Singular Value Decomposition [61,
283].
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6.6 Discussion
The deployment of large-scale WSN profoundly changes the operation of SCADA systems.

While such advancement facilities convenience of efficiency, it also exposes SCADA systems and
WSN to more potential of uncertainty if the reliability and security aspect is not well addressed.
We start the first steps, namely the resilient estimation, towards the concept and realization of the
resilient control, which stipulates to maintain the optimality of standard operations under nominal
conditions and to adapt abnormal situations through alleviating their impact. We also present
an online robust outlier detection scheme that is optimal according to a stringent performance
measure. Furthermore, this is accomplished without incurring large overhead. Future work lies in
the direction of implement these methodologies on real data.
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(a)Detection of 3 outliers

(b)Detection of 4 outliers

Figure 6.5: Detection of Multiple Outliers
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Chapter 7

Revisit Dynamic ARIMA-Based Anomaly
Detection

A detailed application of RGLRT is given out in this chapter. The time series model of Au-
toregressive Integrated Moving Average (ARIMA) progress, finds its wide usage in natural, social,
economic and network applications. Model building and anomaly detection based on such mod-
els are often a first and important step towards monitoring unexpected problems and assuring the
soundness and security of those systems being studied. The time variability by the coefficients in
those dynamic regression models is particularly relevant and possibly indicative. Thus we intro-
duce a corresponding framework and a novel anomaly detection approach based on the Kalman
filter for identifying those dynamic models including their parameters and a General Likelihood
Ratio (GLR) test for detecting suspicious changes in the parameters and therefore the models. We
illustrate the idea through experiments and show its promising potential in terms of accuracy and
robustness.

The most popular time series technique is the Autoregressive Integrated Moving Average
(ARIMA) [37, 106, 36, 39] model due to its versatility in capturing dynamics and forecasting
predictions. In light that model building lays the foundation for anomaly detection [158], conse-
quently a fair share of the work on machine learning, signal processing and time-series analysis
is devoted to detecting outliers or anomalies in time-series and ARIMA to be specific [237]. The
existence of anomalies in ARIMA models and their detection arise in a variety of settings in-
cluding but not limited to natural [108, 184], social [63, 273], economic [197, 73, 163, 8] and
network service [281, 288] and network security [151, 291, 284, 91, 231] applications. The time
varying structural parameters not only possibly challenge the model fidelity [264] thus undermine
the intended effectiveness of its usage but also likely reflect the intrinsic nature of the system that
evolves over time [203]. More specifically, any sudden change of these parameters is an indication
of some atypical behavior within the system including benign faults [25] and/or malicious attacks
[131]. In particular, in the arena of network security, network traffic anomalies may occur due to
security threats such as Distributed Denial of Service (DDoS) attacks and network worms.

The work on network anomogrphy [291] by Zhang et al. inspired our extension. According
to their investigation, one of the most successful and robust methods in detecting network traffic
anomalies combining Box-Jenkins modeling (ARIMA) with L1 norm minimization.
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CUSUM (Cumulative Summation) method and its variants are widely used for anomaly de-
tection. As pointed out in [25, 254], its major drawback is that it requires a prior knowledge on
information after change, i.e. the intensity of the anomaly etc. But in practice, such information
are not predicable.

We look at the problem through a novel angle and take advantage of the by-product due to
the parameter learning and estimation process in the ARIMA model building stage to pre-screen
possible anomalies without incurring extra drastic computation burden. It also prevents those
anomalies from poisoning the correct model- and baseline-building from the start.

Our goal is to find a quick way to detect such anomalies manifested in the form of change in the
system model. The identification and estimation of ARIMA models’ parameters is often the first
step before any further analysis and often can be achieved through maximum likelihood estima-
tion. The exact likelihood is computed via a state-space representation of the ARIMA process, and
the innovations and their variance found by a Kalman filter [139]. We use a General Likelihood
Ratio (GLR) test [277, 25], which doesn’t require any a prior knowledge of the anomalies, for
detecting suspicious changes in the parameters and therefore the models. Along with the Kalman
filter [139], this GLR procedure also adaptively filters the ARIMA parameter estimation in case
of missing anomalous observations.

Organization of the paper: We first review the procedure of ARIMA-based anomaly detection
in Section 2 with emphasis on the model-building and its transition to a state space model in which
the Kalman filter that facilities model estimation and anomaly detection. In Section 3 we describe
the GLR test for identifying sudden change in dynamic ARIMA model. Then we illustrate the
idea through simulation experiments in Section 4 before conclude in Section 5.

7.1 ARIMA Modeling
While we address the derivation of model-building through a concrete example of anomaly

detection on the network level, it’s worth pointing the methodology is applicable to other situa-
tions.

The link traffic and Origin-Destination (OD) traffic matrix follow

b j = A jx j (7.1)

where A j is an n×m routing matrix, x j is a length-n vector of unknown OD flow traffic volumes,
and b j is a length-m vector of link loads1, at time interval j.

If we first assume that the routing matrices A j are time-invariant and are denoted by A. Then
we can combine all t linear systems (7.1) into a single equation

B = AX , (7.2)

where B = [b1b2 · · · ,bt ] is link traffic data over time t by having b j as its column vectors, and
similarly X = [x1x2 · · · ,xt ].

1Note that the link load vector b j also includes the aggregated traffic at different ingress/egress points; the corre-
sponding rows in A j encode the OD flows that enter/exit the network at these points.
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In the notation introduced by Box and Jenkins [37], models are summarized as ARIMA(p,d,q).
A model described as ARIMA(0, 1, 2) means that it contains p = 0 (zero) autoregressive param-
eters and q = 2 moving-average parameters which were computed for the time series after it was
differenced once (d = 1).

7.1.1 Time Series Expression
A general ARIMA model of order (p, d, q) can be expressed as:

zk−
p

∑
i=1

φizk−i = ek−
q

∑
j=1

θ jzk− j (7.3)

where zk is obtained by differencing the original time series d times (when d ≥ 1) or by subtracting
the mean from the original time series (when d = 0), ek is the forecast error at time k, φi(i =
1, ..., p) and θ j( j = 1, ...,q) are the autoregression and movingaverage coefficients, respectively.
Let I denote the t× t identity matrix, ∇ denote the backshift matrix and 1 denote the t× t unity
matrix with each entry = 1.

Z =

 B(I−∇)d ∇ =

0 1 0 . . . 0
0 0 1 . . . 0

· · ·
0 0 0 . . . 1
0 0 0 . . . 0

, d ≥ 1

B(I− 1
t 1) d = 0

(7.4)

E = BT,where the transformation matrix (7.5)
T = (7.6){
(I−∇)d(I−∑

p
i=1 φi∇

i)(I−∑
q
j=1 θ j∇

j) d ≥ 1
(I− 1

t 1)(I−∑
p
i=1 φi∇

i)(I−∑
q
j=1 θ j∇

j) d = 0

In terms of the classical ARIMA techniques used for anomaly detection , the forecast errors
indicate anomalous link traffic, B̃ = E. That is, traffic behavior that cannot be well captured by
the model is considered anomalous.

7.1.2 State-Space Representation
The discrete time linear dynamical system and measurement model are the following, where i

is the index of sensors.

xt+1 = Atxt +wt (7.7)
yt = Ctxt + vt (7.8)

where xt ∈ Rs is the state vector, yt ∈ Ro is the output vector, wt ∈ Rs is white Gaussian noise
with zero mean and covariance Q > 0 and vt’s ∈ Ro are white Gaussian noises with covariance
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Rt > 0. wt and vt’s are independent. The initial system state x0 is Gaussian with zero mean and
covariance ∑0. We assume x0 is independent of wt and vt’s.

7.1.3 The ARIMA(p,d,q) Process in a State-Space Model
Harvey and Pierse [107] derive a state-space representation of a general ARIMA(p,d,q) model

with backshift operator L to denote the effect of (Lz)k = zk−1, then

φ(L)∆dyt = ψ(L)εt

Let r = max(p,q+1), the state transition equation can be written as a (r+d)×1 system

xt = Axt−1 +Bεt (7.9)

=

 0r×d
10 · · ·0 δ · · ·δ
0d−1×r Id−1 : 0

xt−1 +

[
θ

0d×1

]
εt

where

=


φ1 1 0 · · · 0

φ2 0 1 . . . ...
...

... 0 . . . 0
φr−1 0 · · · 0 1
φr 0 · · · 0 0

 , ψ =


1
θ1
...

θr−2
θr−1


and−δ j is the coefficient on L j in the expansion of4d = (1−L)d . This state space representation
has p+q+1 hyperparameters and a measurement equation given by

yt = Cxt (7.10)
= [101×r−1δ1 · · ·δd]xt (7.11)

7.1.4 Kalman Filter based Exact Maximum Likelihood Estimation of ARIMA
The Kalman filter [139] is a recursive algorithm for generating Minimum Mean Square Error

(MMSE) predictions in a state space model. The state space representation is a very general
formulation for linear models and it enables the Kalman filter to deal with time varying parameters,
measurement errors and missing observations easily. As a by-product, if Gaussian errors are
assumed, the filter allows the computation of the log-likelihood function of the state space model.
This allows the model parameters to be easily estimated by maximum likelihood methods.
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Standard Kalman Filter

x̂t|t = E[xt |yt]

Pt|t = E[(xt− x̂t|t)(xt− x̂t|t)
′
|yt]

x̂t+1|t = E[xt+1|yt]

Pt+1|t = E[(xt+1− x̂t+1|t)(xt+1− x̂t+1|t)
′
|yt]

ŷt+1|t = E[yt+1|yt].

where Pt+1|t is the covariance matrix of the estimation.
The Kalman filter comprises two steps.
The prediction phase for x̂t+1|t and Pt+1|t of the Kalman filter is independent of the observa-

tion process with :

x̂t+1|t = Ax̂t|t (7.12)

Pt+1|t = APt|tA
′
+Q (7.13)

For the update phase of the Kalman filter, given the residual or prediction error

ẽt = yt+1−Cx̂t+1|t (7.14)

and its estimated variance
Ft =CtPt+1|tC

′
t +Rt (7.15)

x̂t+1|t+1 = x̂t+1|t +Pt+1|tC
′
F−1

t

(yt+1−Cx̂t+1|t) (7.16)

Pt+1|t+1 = APtA
′
+Q−Pt+1|tC

′
F−1

t

CPt+1|t (7.17)

7.1.5 The Log-likelihood function
Assuming that the noises are normally distributed, the log-likelihood function for the model

can be computed from the residual, prediction error ẽt and its associated variance Ft

LL = −nT
2

log(2πσ
2)− 1

2

T

∑
t=1

log |Ft |

− 1
2σ2

T

∑
t=1

(ẽt)
′
F−1

t ẽt (7.18)
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Due to the fact that

∂LL
∂σ2 =

nT
2σ2 +

1
2σ4

T

∑
t=1

(ẽt)
′
F−1

t ẽt

= 0,

we have

σ̃
2 =

T

∑
t=1

(ẽt)
′
F−1

t ẽt

nT
.

Thus the concentrated log-likelihood function of the model can be maximized with respect to
(φ,θ) to find the Maximum Likelihood Estimate (MLE) of the hyperparameter θ

LL∗(φ,θ) = n logS(φ,θ)+
n

∑
t=1

log ft (7.19)

= −nT
2

log(2π)− nT
2
− 1

2

T

∑
t=1

log |Ft |

−nT
2

log(
T

∑
t=1

(ẽt)
′
F−1

t ẽt

nT
) (7.20)

Smoothing. Based on all information available up to time t−1, the Kalman filter can function
as a smoother with above mentioned recursions work backwards in time to smooth the regression
model [106].

7.1.6 Identification of ARIMA and Model Estimation
Let I be the set of indices corresponding to all the ingress points in the link load vectors bi.

The series of subvectors bI
i will be the input data for model selection and parameter estimation 2.

2Note this choice is due to their ready avilability and the fact that ingress traffic is largely invariant to internal
topology and routing changes.
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Choice of the degree of differencing d∗

Given that the optimal degree of differencing is often the one at which the standard deviation
of the differenced series is the lowest [60], we carry out the following steps ∀d ∈ {0,1,2,3,4}

Zd = [zd,i]
t
i=1(1−L)d[bI

i ]
t
i=1 (7.21)

E[Zd] =
1
t

t

∑
i=1

zd,i (7.22)

Var[Zd] =
1
t

t

∑
i=1
|zd,i−E[Zd]|22 (7.23)

then d∗ = argmin
d

Var[Zd] (7.24)

Estimate φ and θ given (d∗)

Provided (p,d,q) and input vector series {bI
k}, we can estimate the autoregression and moving-

average coefficients φi and θ j by constructing a state-space model as (7.10) in Section 7.1.3 and
then applying the Kalman filter procedure as in Section 7.1.4 to compute the maximum log-
likelihood function LL∗(φ,θ) (7.20 ) for each (p,q) ∈ 0,1,2,3,4.

Selection on Model Order (p,q)

Information based criteria are designed to achieve a good balance between model parsimony
and low prediction error [39, 60] such as Akaikefor Information Criterion (AIC) or Bayesian
information criterion (BIC). we use AIC as our model selection criterion, which generally is

AIC = 2k−2ln(LL∗(φ,θ)) (7.25)

where k is the number of parameters in the statistical model, and LL∗(φ,θ) is the maximized value
of the likelihood function for the estimated model (7.20 ). For each (p,q)∈ 0,1,2,3,4 we estimate
φ and θ (as in Section 7.1.6) and compute the resulting AIC based on the residuals and the model
complexity. We then choose the pair of (p, q) with the lowest AIC.

(p,q)∗ = argmin
(p,q)∈0,1,2,3,4

AIC (7.26)

7.2 Generalized Likelihood Ratio Test for Identifying Sudden
Change in Dynamic ARIMA Model

Willsky and Jones (1976) [277] introduced the Window-limited GLR rules in the context of de-
tecting abrupt additive system changes in linear state-space models. Such abstract system changes
may occur due to benign environmental changes or unintentional system component faults or ma-
licious activities. The idea is to implement a Kalman filter based on the assumption of no abrupt
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system changes, and to monitor the measurement residuals of the filter to determine if a change
has occurred and adjusts the filter accordingly.

Recall the state-space stochastic linear dynamical system (7.7) and measurement model (7.8)
in Section 7.1.2, if at an unknown time τ the system undergoes additive changes in the sense that
u′t1{t≤τ} is added to the right-hand side of (7.7), i.e.

xt+1 = Atxt +wt +u′t1{t≤τ}

then the innovations are still independent Gaussian vectors with covariance matrices Ft , but their
means mt = E((̃e)) = ρ(t,τ)η for t ≥ τ instead of the baseline values mt = 0 for t < τ. After the
initialization of their associated ρ(k,k) = 0, α(k,k) = 0, β(k− 1,k) = 0, the matrices ρ(t,k) can
be evaluated recursively for t ≥ k through the following steps:

α(t +1,k) = Akα(t,k)+ I (7.27)
β(t,k) = Ak−1β(t−1,k)+Pt|t−1CT

k F−1
k ρ(t,k)

ρ(t +1,k) = Ct+1(α(t +1,k)−Atβ(t,k))

7.2.1 Detection Rules
Without assuming any prior knowledge of parameter η, the GLR rule maximizes the log likeli-

hood ratio over a window of inputs and decide the time to raise an alarm according to the following
rule,

NG = inf{n : max
n−M≤t≤n−M′

sup
η

n

∑
i=k

log[ f (F−1/2
i

×(ei−ρ(i, t)η))/ f (F−1/2
i ei)]≥ cλ}

= inf{n : max
n−m≤t≤n−m′

(
n

∑
i=k

ρ
T (i, t)F−1

i ei)
T

·(
n

∑
i=k

ρ
T (i, t)F−1

i ρ(i, t))−1

·(
n

∑
i=k

ρ
T (i, t)F−1

i ei)/2≥ cλ} (7.28)

where f (y) = e
−‖y‖2

2 /(2π)ζ/2 denotes the ζ-dimensional normal density, ζ = dim(η), and m′+1≥
ζ so that the matrix inversions in (7.28) are valid.

In essence, we are looking at an optimal stopping time problem:not to stop too early to
produce a false alarm nor to stop too late to miss a real anomalous event.



71

7.2.2 Threshold and Window size Choice
Note that (7.27) computes ρ(t,k) recursively over the each window. How to optimally choose

M,M̃ and cλ in general is a difficult problem [25] for online practices particularly due to the
coupling effect between the threshold and window size on the asymptotical performance of the
detection rule. But for off-line operations, the choice of window size is less demanding as all the
data set is available, it’s only a matter of computation time.

The threshold c in the rule NW subject to the false alarm probability criterion P0(NW ≤ m)
can be computed by using Monte Carlo computation of P0(NW together with the method of suc-
cessive linear approximation combined with bisection search for iterative solution of the equation
P0(NW ≤ m).

7.3 Experiments
Given that ARIMA data sets share the commonality in the perspectives of basic model char-

acteristics and in the interest of time and access, at current stage we’ve used two small publicly
available ARIMA time series datasets [53, 57] besides simulation data and synthetic anomaly
generation to test our method.

In order to broaden the scope of anomalies, we inject synthetic ones into the data set in a
fashion similar to [254].

• By smoothing the original signal, we extract the long-term statistical trend from the data set.

• Add Gaussian noise to the smoothed signal.

• Add different anomaly combinations in terms of number, time, strength.

As shown in Figure 7.1, the synthetic dataset captures the trend in the original dataset and
provides the simulation with more plausibility.

7.3.1 Detection Rates
For the real ARIMA dataset, we adjust the portion of the dataset being investigated by the de-

tection algorithm as a way to control the occurrence of the anomalies. Whereas for the synthetic
dataset, the number or size of the anomalies is easily controlled by the dosage of artificial anoma-
lies that we inject into the synthetic dataset. Note that the synesthetic basically is considered
anomaly free before any injection as it’s a product of smoothing and de-noising of the original
dataset. When using the synthetic dataset, each result is based on 1000 simulations.

Sensitivity to Window Size Although theoretically all window sizes can be computed pre-
cisely, we still would like to observe how they affect the performance of detection. Without an-
alytically specify a precise window size to achieve the asymptotical optimality, there’s a tradeoff
between the window size and the detection sensitivity. When window size is too long, the recur-
sive Kalman filtering itself may graduate smooth out the edginess of the anomaly. While window
size is too small, the maximization requirement associated with the general likelihood may be met
less than sufficiency.
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Figure 7.1: Steps for synthetic generation of anomaly where the last panel is the synthetic data
with anomaly injected at time period from 60 to 65.

Figure 7.2: Detection Rate (with different window size) in response to the anomaly size N

Note for the synthetic dataset shown in Figure 7.2, when the anomaly size is 4, the detection
performance seems to downgrade quite a bit. The likely explanation is that we lump 3 anomalies
close together while keep them quite separate in other size cases.

Sensitivity to Threshold
Similarly, it’s interesting to verify how sensitive the detection rate can be under the influence of

the threshold chosen for the detection rule. As shown in Figure 7.3, we pick an arbitrary threshold
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Figure 7.3: Detection Rate (with different threshold) in response to the anomaly size N

at 8 to contrast the other two cases, of which 5.5 is the value calculated through formal derivation
and the same value used for testing on detection sensitivity to window size in Section 7.3.1. When
threshold is too high (as the case of 8 here), so would miss detection rate. Note that for the case of
3 anomalies close together, it somehow made the high threshold case work better on the synthetic
dataset than on the real dataset where the 3 anomalies are rather isolated. Also when the threshold
is too low (as the case of 3 here), so would false alarm rate.

7.3.2 Detection Delay
Obviously our method has at least minimum window-length delay in issuing in alarms. This is

due to the fact that at every time step, it requires a maximization over window-length data points
in order to calculate the generalized likelihood in exchange for not demanding for any a priori
knowledge of the potential anomalies.

Sensitivity to Anomaly Strength: When using the synthetic dataset with injected anomalies,
we notice that the proposed Kalman-GLR scheme has longer mean detection delay (and is more
prone to false alarms when detect anomalies using smaller threshold). In Figure 7.4, the mean
delay time beyond 100 means it’s in fact a miss detection as the magnitude of the anomaly is to
weak to be detected.

7.4 Discussion
In this chapter, we describe the comprehensive procedure of building an ARIMA model and

propose to identify anomalies during the process of model parameter estimation with the aid from
the Kalman filter and GLR test. This approach also prevents such anomalies from poisoning the
baseline-building.

Next step we plan to test out the robust methodology developed in [308]. Furthermore we’d



74

Figure 7.4: Mean Detection Delay (under different threshold) in response to the anomaly size N

like to apply our method to traffic data collected from the Abilene network [1] to study towards
the simplification of threshold-setting.
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Chapter 8

Anomaly Detection for Clean Energy
Resources Prediction and Power
Consumption Forecast in the Smart Grid

A tale of two cities

This chapter shows further development of RLRT and its application that is closely related to
anomaly detection SCADA systems and smart grids, i.e. anomaly detection for both clean energy
resources prediction and power consumption forecase [303] . The advancement in computing and
hardware technologies ushers in a new era. While the utilization of clean energy resources includ-
ing wind and solar power sets to grow from filling the gap of peak hours to taking a larger share in
the upcoming smart grid and efficient infrastructure, the price-incentivized electricity consump-
tion shall alleviate peak hours and reduce power outages. But anomalies including both benign
faults and malicious attacks threat the reliability and availability of the new grid. To address these
duo problems, we aim from the angle of one fundamental technique used. The Autoregressive In-
tegrated Moving Average (ARIMA) time series models play roles at both ends in this new ecosys-
tem: namely, predicting the variable clean energy resource on the supply side and forecasting the
flexible load demand on the consume side. Model construction and anomaly detection based on
such models are often a first and important step towards monitoring unexpected problems and
assuring the soundness and security of those systems being studied. The time variability of the
coefficients in those dynamic regression models is particularly relevant and possibly indicative.
Thus we introduce a corresponding framework and a novel anomaly detection approach based on
a robustified Kalman Filter for identifying those dynamic models including their parameters and a
Robust General Likelihood Ratio (RGLR) test for detecting suspicious changes in the parameters
and therefore the models. Currently, the effectiveness and robustness of this method is shown
through simulation. At two ends of the smart grid, both the clean energy resource supply and
electricity power consumption require reliable and accurate predication.

Variable Clean Energy Resources Prediction With the integration of clean energy into elec-
tricity grids, it is becoming increasingly important to obtain accurate forecasts. Advancements in
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wind and solar forecasting technology aim to make renewable energy reliability a reality. In par-
ticular, due to its versatility, building and applying the Autoregressive Integrated Moving Average
(ARIMA) time series model enjoys its popularity among industrial and engineering applications
such as wind power, solar energy level prediction and power grid load forecasting [113], [84]. For
example, Kavasseri et al studied day-ahead wind speed forecasting using f-ARIMA models [141],
Nielsen et al built a wind power prediction system that is based on ARIMA [200], [199]; Makarov
et al from California Independent System Operator (ISO) wind generation and forecasting service
deemed ARIMA as the persistence models suitable for the short term wing generation forecasting
and real-time dispatch in the Grid Control Centers [170]; Milligan et al applied ARIMA models to
both wind speed and wind power output [184]. For a more comprehensive and state-of-art survey
on short-term prediction of wind power, interested readers please refer to [84].

ARIMA models also suit the needs of the demand side of smart grid.
Flexible Smart Grid Load Demand Forecast In general, ARIMA models address well the is-

sue of high level short-term hourly load forecasting in traditional power grids [10]. Furthermore,
ARIMA modeling techniques show their prowess in capturing the flexible and price-sensitive
short-term hourly overall load demand response enabled by the deployment of smart grid [55].
Given that one of the key drivers of the deployment of smart grid, buildings consume approxi-
mately 73% of the total electrical energy in the United States [145], it’s efficient to monitor down
to the building-level electricity consumption. ARIMA models have been applied to building-
related applications ranging from modeling building electricity consumption [198] and forecast-
ing and controlling the peak demand in commercial buildings [114], to optimizing the operation
of cold storage in a large building [146].

The ubiquitous integration of computers in the smart grid – in the generation, transmission,
distribution and metering in homes also introduces malicious security risks besides benign faults
throughout the system [143], [68]. Stuxnet [70], one of most sophisticated control system mal-
ware known to date, has become the game changer in the field, in terms of demonstrating the
severity and therefore raising people’s awareness of such issues 1 [274] as described by Falliere
et. al at Symantec [70], As of April 21st. 2011, There are more than 50 new Stuxnet-like attacks
discovered [194] that beckon threats to the Supervisory Control and Data Acquisition SCADA,
the underlying control system of the smart grid. The resources of vulnerabilities can be generic
and board. Thus our fault and threat model is impact-oriented. We analyze the consequence of
their occurrences manifested in the data that would sway the model construction of both the clean
energy resource supply and power consumption forecast without excluding the cases where the
adversaries purposely poisoning the model construction.

The idea of ARIMA-based anomaly detection is based on whether the data deviate afar from
the model predication. Thus the accuracy of the model construction itself is important.

Alternatively, CUSUM (Cumulative Summation) method and its variants are widely used for
anomaly detection. As pointed out in [25],[254], its major drawback is that it requires a priori
knowledge on information after change, i.e. the intensity of the anomaly etc. But in practice, such
information are not predicable.

We look the problem through a novel angle and take advantage the by-product due to the pa-

1In McAfee’s report [18], nearly half of those being surveyed in the electric industry said that they had found
Stuxnet on their systems.
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rameter learning and estimation process in the ARIMA model building stage to pre-screen possible
anomalies without incurring extra drastic computation burden. It also prevents those anomalies
from poisoning the correct model- and baseline-building from the start. We take precaution of
the skewing and deviating effect of outliers on identifying procedures by applying robustifying
measures and integrating a recursive variant of the M-estimator, a Huber function [119], into the
Kalman filter [139] via an recursively reweighted least squares implementation. Our Robust Gen-
eral Likelihood Ratio test rectifies and cleans data upon both isolated and patchy outliers while
maintain the optimality of the Kalman Filter under the nominal condition. Furthermore it can
be theoretically shown that our procedures are of the quickest and optimal detection thus we can
achieve the goal of ‘nipping it in the bud’. The robust sequential testing bears optimal stopping
time, i.e. asymptotically shortest detection delay time while maintaining lowest false alarm rate.
For the interest of briefness, readers can refer to Chapter 6 and Chapter 7 for more details.

8.1 Experiments

8.1.1 Data Sets – Real Wind Power Data
The Transmission Expansion Planning Policy Committee (TEPPC) of the Western Electricity

Coordinating Council (WECC) provided us with wind power data. Particularly, we use its CA2
location profile 2A2 includes Westwind, Antelope and other substations in California) with 3570
MW capacity as of 2006, as shown in Fig. 8.1.

It’s easy to identify that the difference order d is 1 as visually its autocorrelation plot shown in
Figure 8.2.

Due to the non-stationarity in the raw data series, its mean and variance diverge as time pro-
ceeds.

8.1.2 Simulated Data
In order to illustrate the idea of the commonality shared by both the variable clean energy and

power consumption in the perspectives of basic model characteristics and in the interest of time
and access, without loss of generality, we decide to employ a simulated ARIMA data set as shown
in Figure 8.3.

8.1.3 Fogies Attack
An attacker can manipulate the data through means such as protocol defects, social engineer-

ing, man-in-the-middle attacks etc. SCADA and smart grid specific attacks [296] to accomplish
their goals.

Random outliers are injected into the data set randomly to capture this effect as shown 8.4.

2C
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Figure 8.1: Wind Power Hourly Measurements: (Up) 2006 Whole Year, (Bottom) 10 days of
Midsummer 2006.

Figure 8.2: The Autocorrelation Plot
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Figure 8.3: Simulated ARIMA Data: (Up) One Year, (Bottom) 10 days of Midsummer .

Figure 8.4: Simulated ARIMA Data: (Up) 10 days of Midsummer, (Bottom) With Outliers .
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8.1.4 Countermeasure strategy – Parry
In light of the stealthiness of Stuxnet and the long-term hazard of a deviated baseline launched

by likely furtive attackers, the main of our work can serve as a prevention measure in the sense
that we take precaution during the model-building stage to prevent attackers from landing their
intrusions earlier on3 .

Given that ARIMA data sets share commonality in the perspectives of basic model character-
istics and in the interest of time and access, at the current stage we’ve used two small publicly
available ARIMA time series datasets [53, 57] besides simulation data and synthetic anomaly
generation to test our method.

With randomly injected outliers where the false alarm constraint is achieved through Monte
Carlo simulation, our approach successfully detects them.

8.1.5 Performance Analysis
Comparison with GLR

Given that GLR is based on the standard Kalman filter, assuming the dynamics after change
also follow Gaussian. GlR doesn’t function well at all when outliers are injected into the raw data
sequence.

8.2 Discussion
With the ever rising demand of clean energy and fast increasing deployment of smart grid on

the horizon, the generic nature of this study and investigation shows a promising utility in proac-
tively suggesting a feasible solution to anomaly detection including benign faults and malicious
attacks for both variable clean energy resource supply and flexible power consumption. Next
step we plan to apply it to real wind data in conjunction with simulated user demand sensitive to
pricing.

3In fencing, the primary function of a parry is to prevent an opponent’s attack from landing
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Chapter 9

Conclusion and Future Plans

In this dissertation, the landscape of cyber attacks and intrusion detection systems for SCADA
systems has been clearly outlined. As an initial effort, an in-depth SCADA-specific security solu-
tion Xware is proposed. A versatile early detection scheme RGLRT along with resilient estimation
approach shows its effectiveness in detecting anomalies.

9.1 RGLRT
The strength of RGLRT lies in that it does not require a priori knowledge of the distributions

of the attacks or benign anomalies, i.e., neither their mean nor their variance, which is a clear
advantage against SPRT in real life. Furthermore its close relation with the state space setting and
the Kalman filter gives it a special advantage against non-parametric CUSUM in the engineering
field. I’ve explored two main types of its application, namely

• to detect outliers and anomalies through measurements in the Kalman filter when the latter
is used for predication and estimation of a dynamical model ;

• to detect outliers and anomalies in the parameters of a model, ARIMA, to be specific, by way
of states variables in the Kalman filter when the latter is used to do parameter estimation.

How to expand the application range of the RGLRT is the next step that I am pursuing. Practically,
the task of simplifying the window size selection is still worth more consideration.

9.2 Resilient Control
So far, this dissertation works has shown the promise of resilient estimation and the potential

of resilient control. Much theory development is needed in the niche of resilient control verse
the conventual robust control and minimax approach. With smart grids and the new intelligent
infrastructure on the horizon, the concept of resilient control has profound meaning and impact on
the development technicality as well.
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9.3 Network Intrusion Detection
Network intrusion detection research for SCADA systems to date has been quite limited, with

the three most prominent and critical deficiencies being: the lack of a well-considered threat
model; the absence of addressing false alarm and false negative (mis-detection) rates; and the
need to empirically ground the development of IDS mechanisms in the realities of how such sys-
tem operate in practice, including the diversity of traffic they manifest and the need to tailor IDS
operation to different SCADA environments. To this end, I focus on developing flexible, compre-
hensive SCADA-oriented IDS analysis; I do not endeavor to provide rigorous, all-encompassing
SCADA security.

I will begin with considering how to effectively categorize cyber attacks into taxonomies that
illuminate the problem space, considering three distinct dimensions:– how attacks manifest in
appearance as seen in network traffic (defense perspective);– how attacks are constructed and
the accompanying resources required to realize them (attacker and prevention perspective);– the
damage implications of different types of attacks (victim perspective). I next aim to capture the
characteristics of a specific SCADA system under study (a segment of the power grid) with full
situational awareness, including the dynamics of the physical plant being monitored, its com-
munication patterns, system architecture, network traffic behavior, and specific application-level
protocols used, ranging from the dominate Modbus/TCP and DNP3 to newer protocols such as
WirelessHART and ISA100.

After study of this SCADA system, I will develop attack trees and derive from it prudent threat
models. This will include consideration of evasion mechanisms attackers can employ in light of
the applications in use (beyond those already known for TCP/IP). I will derive application-level
protocol specifications and implementation specifics and from these construct analyzers for an
open-source IDS. At the heart of this effort I envision development of ”normalcy checking,” i.e.,
a combination of techniques designed to capture two envelopes of possible system activity: (1)
definitely safe operations and (2) definitely unsafe operations. When identifiable, the first of these
can be safely ignored; the second merits immediate attention/blocking; and the middle ground
between the two requires additional analysis. The first technique I will draw upon in this regard
is specification-based intrusion detection that constructs the control system’s overall allowable
behavior, i.e., as seen from the application level, and reflecting the monitored plant dynamics, in-
cluding its valid extreme cases. The second uses encodings of misuse signatures and their possible
variants. The third draws upon models derived from the control system’s formal dynamics; this
aspect is unique to the problem domain and holds great promise for refining the scope to which I
will apply the analysis. I will draw upon traces of live operation to develop and tune this system. I
will incorporate our detection mechanisms into NIDS to realize an operational system, validating
its efficacy using, first, commercial SCADA emulation software; then synthesized traffic created
in the DETER testbed; then on new traces from the operational environments; followed by live
”shadow” operation. For our testbed, we will construct a test environment consisting of physi-
cal PLCs and IEDs to emulate the SCADA system under study, where we inject designed attack
traffic along with traffic synthesize from traces separate from those used in developing and tuning
the system in order to assess false positive and false negative rates. The final proof, necessarily,
will come from prototype in situ deployment, which will require ongoing interactions with the
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SCADA system’s operational staff.
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