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Abstract

Identification of Hybrid Dynamical Models for Human Movement via Switched System
Optimal Control

by
Ramanarayan Vasudevan
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Ruzena K. Bajcsy, Chair

The empirical observation of human locomotion has found considerable utility in the diag-
nosis of numerous neuromuscular pathologies. Unfortunately without the construction of
a dynamical system model of the measured gait, the effectualness of these observations is
restricted to just the existing diagnostic variety rather than the prediction of potential insta-
bilities in gait or guiding the construction of user specific prosthetics. In order to construct a
dynamical system model of an observed gait in an automated fashion, one requires a family
of representations rich enough to describe the dynamics of gait and an automated proce-
dure to select a particular representation capable of describing a given observation from this
family.

The goal of this thesis is to address these two problems. First, a hybrid dynamical
system representation is introduced that is shown to be capable of describing the discon-
tinuities in dynamics that occur during locomotion. In particular, such a representation is
constructible from observation given an unconstrained Lagrangian which is intrinsic to the
biped after the identification of the sequence of contact points that are enforced during the
observed motion. Second, a specific hybrid dynamical system representation is shown to
be constructible from observed data by optimally switching between the set of vector fields
corresponding to all possible combinations of contact point enforcements.

At this point an algorithm for the computation of an optimal control of constrained
nonlinear switched dynamical systems is devised. The control parameter for such systems
include a continuous-valued input and discrete-valued input, where the latter corresponds
to the mode of the switched system that is active at a particular instance in time. The pre-
sented approach, which this thesis proves converges to local minimizers of the constrained
optimal control problem, first relaxes the discrete-valued input, performs traditional opti-
mal control, and then projects the constructed relaxed discrete-valued input back to a pure
discrete-valued input by employing an extension of the classical Chattering Lemma. This
algorithm is extended by formulating a computationally implementable algorithm that works
by discretizing the time interval over which the switched dynamical system is defined. Impor-



tantly, this thesis proves that the implementable algorithm constructs a sequence of points
by recursive application that converge to the local minimizers of the original constrained
optimal control problem. Four simulation experiments are included to validate the theoret-
ical developments and illustrate its superiority when compared to standard mixed integer
optimization techniques.

The thesis concludes by applying the presented algorithm to perform the identifica-
tion of a hybrid dynamical system representation of two classes of gaits. The first is a
synthetic gait generated by the application of feedback linearization to a classical robotic
bipedal model. For this synthetic observation, the presented identification scheme is able to
correctly identify the correct model. The second set of gaits is one constructed from mo-
tion capture observations of 9 subjects during a flat ground walking experiment. For each
subject, the presented identification scheme determines a distinct hybrid dynamical system
representation. Surprisingly, the identified models for each participant share an identical
discrete structure, or an identical sequence of contact point enforcements.



“The miracle of the appropriateness
of the language of mathematics
for the formulation of the
laws of physics is a wonderful gift
that we neither understand nor deserve.”
-Eugene Wigner
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Chapter 1

Introduction

Human locomotion has been studied at great length for many millennia for numerous rea-
sons. Archaeologists, for example, have speculated that cave drawings from the Paleolithic
Era (approximately 33,000 BCE) that depict humans and animals in motion were likely
motivated by dire survival questions related to the ability to efficiently move from place
to place, escape predators, and hunt for food [4]. Greek philosophers from 500-300 BCE
analyzed and described human movement driven by a need to place harmony to the universe
[51].

More recently, during the 1940s there was an urgent need for an improved understand-
ing of locomotion in order to treat injured World War II veterans. At the University of
California, the meticulous measurements of Eberhart [20] and Inman et al. [39], illustrated
the potential of kinematic analysis of human locomotion in diagnosing physical ailment.
Their work, as illustrated in Figure 1.1, required careful hand calculation of joint evolution
over a set of images captured by a series of cameras that took multiple pictures in rapid
succession. These careful kinematic measurements in 2D were used to quantify “normal”
human movement and were used during corrective prosthetic design.

Advancements in sensing technology, like motion capture systems, have provided new
avenues for the automation of these kinematic measurements. Motivated by the substan-
tial empirical evidence that patients develop adaptive changes in gait patterns as a result
of neuromuscular pathologies that can be detected by comparing joint angle measurement
over time [8, 73, 90|, many biomechanists have employed these systems that require careful
application of markers to joints, to diagnose numerous neuromuscular disorders. Perry et al.
[62] and Sutherland [79], for example, have been pioneers in the application of this type of
gait measurement and subsequent joint angle analysis to assist in the diagnosis of patients
with cerebral palsy.

Although fruitful, this line of research that exploits kinematic measurements has two
principal shortcomings. First, it requires careful sensor placement on the patient being ob-
served, which is time-consuming, difficult to do accurately, and adversely affects the patient’s
gait. Second, these approaches make no attempt to fit a dynamic model to the observed
gait, which limits their predictive potential. Quantitatively answering questions about the
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Figure 1.1: An illustration from [21] of the hand calculations required in order to measure
joint angle evolution in the lower extremities for a patient wearing a prosthetic.

effectiveness of a particular prosthetic design in comparison to another or predicting instabil-
ities in gait employing just the aforementioned kinematic techniques is impossible. However,
as described below for the particular case of quantitatively predicting gait instability, such
questions are straightforward to answer given a dynamical system model of locomotion.
The biomechanics community has appreciated this second deficiency in particular and
has begun trying to fit dynamic models to observed kinematic trajectories. These methods
utilize classical dynamical system models to track observed kinematic trajectories by apply-
ing traditional optimal control techniques [44], applying simulated annealing [59], restricting
torque actuation patterns [60, 61, 67], or performing heuristic step-by-step pseudo-inverse
computations [18, 81, 98]. Unfortunately, classical dynamical system models are incapable of
describing locomotion due to the discontinuities in dynamics inherent in human movement.
The goal of this work is to address this deficiency by constructing a framework capable
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of identifying a dynamical system description of human locomotion in an automated fashion.
In order to accomplish this goal, three separate tasks must be fulfilled. First, a technique
that tracks a participant, without being burdensome, while making guarantees about the
accuracy of the measurement is required. Second, a mathematical construct rich enough to
describe the dynamics of locomotion must be formalized. Finally, an algorithm that takes
the tracking data and identifies a mathematical model capable of explaining the observed
data is necessary. Though admittedly the principal focus of this thesis is to address the
latter two tasks, Section 1.2 describes recent work that addresses each of these problems.

1.1 Applications of Automated Identification of
Locomotion

Before describing our approach to address each of these tasks, we briefly digress to detail
the utility of constructing a dynamical system description of locomotion. The applications
of such an automated identification procedure are numerous, but this section describes how
such a formulation can be used to measure instabilities in gait and devise anthropomorphic
gait in bipedal robots.

Measuring Instabilities in Gait

Amongst those over the age of 65 falls are the leading cause of injury death [43]. For those
who survive a fall, the direct medical costs of falls in 2006 totaled over $28.2 billion dollars
[76]. Frighteningly in addition to the ever increasing size of the overall population, the
percentage of the population over the age of 65 is growing dramatically from approximately
10% to 20% in less than 20 years [45]. Given this impending crisis, the development of
techniques capable of quantifying stability has never been more important.

Many biomechanists have begun devising various biologically inspired measures to eval-
uate the stability of a given gait. Several have considered measures corresponding to stride
speed, stride length, step width, and double support time [36, 53]. Others have considered
measures that are functions of the center of mass or the center of pressure [10]. Unfortu-
nately, a recent study has illustrated that all of these existing measures have little correlation
with the actual probability of falling [13]. In fact, the same study argues that the correct
way to measure the stability of a particular locomotive pattern is to quantify its basin of
attraction. In fact, if this region of attraction is quantified, then a sensitivity to disturbance
immediately follows which corresponds directly to the robustness of the gait.

Recently, new insights into Sum of Squares Programming for a limit cycle have il-
lustrated how the measurement of a region of attraction is possible for hybrid dynamical
systems [55]; however, the application of this technique to human locomotion demands a
hybrid dynamical description of the gait of interest. By utilizing the algorithm presented
in this thesis to autonomously construct a hybrid dynamical description of gait, this recent
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insight can be applied to quantitatively determine for the first time the stability of observed
human locomotion.

Robotics

Since its inception, robotic walking research has spent considerable effort attempting to gen-
erate anthropomorphic gait. The construction of a controller in order to generate human-like
walking requires the determination of the sequence of constraint enforcements during loco-
motion. In each phase of walking the control objectives may be, and often are, dramatically
different. For example, for the specific discrete phases given in Figure 1.2, it might be de-
sirable to design a control law that transitions from domain [lh,[t] to domain [I¢] (i.e. a
controller that forces the heel to lift). Knowing that such a controller is desirable (or even
needed at all) is purely a function of knowing the sequence of constraint enforcements. In
essence, the sequence of constraint enforcement directly affects the nature of walking.

Currently, there exists a fractured landscape in the bipedal walking community when
one considers this sequence of constraint enforcements. Traditionally, most models of bipedal
robots have employed a single domain model [2, 33, 80, 94], which assumes an instantaneous
double support phase and usually excludes the presence of feet (models of this form began
with the so-called compass gait biped, which did not have knees or feet). Adding feet to the
bipedal robot results in the need to extend the potential sequence of constraint enforcements
beyond a single phase, which is typically done by either adding a phase where the heel is off
the ground or a double support phase where both feet are on the ground, or any combination
thereof [16, 72, 82].

This lack of consistency among models in the literature motivates the desire to de-
termine if there does in fact exist a single “universal” sequence of constraint enforcements
that should be used when modeling bipedal robots, especially when the goal is to obtain
human-like bipedal walking. As is illustrated in Chapter 8 after the application of the sys-
tem identification procedure presented in this thesis on human data, there is considerable
empirical evidence for just such a “universal” sequence of constraint enforcements.

1.2 Steps Required for Automated Identification

This section describes how this thesis formulates the three tasks required in order to identify
a model capable of describing locomotion.

Markerless Tracking with Guarantees

Though it is considered here only briefly, markerless tracking from cameras is in fact a
fundamental problem in computer vision. This type of tracking is usually done by employing
local photometric descriptors. Traditionally these descriptors are constructed in order to be
invariant to a specific class of transformations while remaining robust to noise.
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Figure 1.2: An example of a sequence of constraint enforcements. The red dots indicate the
constraints enforced in each discrete phase (or domain)

Most popular local descriptors such as complex filters [71], gradient location and ori-
entation histograms [57], shape contexts [6], scale invariant feature transforms [52], spin
images [40], and steerable filters [27] are constructed with the goal of remaining invariant
under affine transformations as this is what occurs when a viewpoint changes relative to a
rigid object with locally planar regions. Unfortunately these descriptors are only verified em-
pirically to be invariant to affine transformations. Even more troublingly, the class of affine
transformations are only a subset of continuous deformations which describe how non-rigid
objects transform, such as a human during locomotion or a cloth being folded.

We recently wrote several recent papers to address these deficiencies of existing pho-
tometric descriptors by devising a notion of topological invariance under the assumption of
locally bounded deformation [49, 50]. As illustrated in Figure 1.3, this notion of topological
invariance, which significantly outperforms existing descriptors, allows for the construction of
a distinct, provably invariant descriptor that can be employed to perform markerless tracking
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(a) Frame 1 (b) Frame 2

Figure 1.3: An illustration of the type of tracking achieved by using the methodology pre-
sented in [49, 50]. The green circles are the points being tracked and the green
lines are drawn in during post-processing.

of human movement from cameras.

Representing Locomotion

As described earlier, due to the discontinuities that arise in dynamics during locomotion,
classical dynamical systems are incapable of describing human motion. In this thesis, hy-
brid dynamical models that describe the interaction between continuous-time dynamics and
discrete-event dynamics are utilized in order to describe human motion [11]. Such systems
have been used in a variety of modeling applications including automobiles and locomotives
employing different gears [37, 69], biological systems [28], situations where a control mod-
ule has to switch its attention among a number of subsystems [48, 68, 91], manufacturing
systems [15] and situations where a control module has to collect data sequentially from a
number of sensory sources [12, 22].

These hybrid dynamical models have even been used in the robotics community to
describe bipedal locomotion [34]. In Chapter 2 we formalize these hybrid dynamical models
and illustrate how a quantitative description of human locomotion is completely specified
by an unconstrained Lagrangian for a biped and a sequence of contact point enforcements.
More importantly, in Chapter 2, we show that given a set of potential contact points, one
can in fact write down a set of potential vector fields describing the dynamics of human
locomotion while satisfying that set of contact points. One can then attempt to identify a
hybrid dynamical model for gait from given tracking data by switching between this set of
potential vector fields.
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Identifying a Model

In fact, this optimal tracking problem is a switched system optimal control problem. The
control parameter for such systems has both a discrete component corresponding to the
schedule of discrete modes of the switched system visited and two continuous components
corresponding to the duration of time spent in each mode in the mode schedule and the
continuous input. The determination of an optimal control for this class of hybrid systems
is particularly challenging due to the combinatorial nature of calculating an optimal mode
schedule.

Prior Work on Switched System Optimal Control

There has been considerable interest in devising algorithms to perform optimal control of
such systems. Even Branicky et al.’s seminal work which presented many of the theoreti-
cal underpinnings of hybrid systems includes a set of sufficient conditions for the optimal
control of such systems using quasi-variational inequalities [11]. Though compelling from
a theoretical perspective, the application of this set of conditions to the construction of a
numerical optimal control algorithm for hybrid dynamical systems requires the application
of value iterations which is particularly difficult in the context of switched systems, wherein
the switching between different discrete modes is specified by a discrete-valued input signal.

The algorithms to solve the switched system optimal control problem in particular
can be divided into two distinct groups according to whether they do or do not rely on
the Maximum Principle [63, 66, 78]. Given the difficulty of the problem, both groups of
approaches sometimes employ similar tactics during algorithm construction. A popular such
tactic is one formalized by Xu et al. who proposed a bi-level optimization scheme that at
a low level optimized the continuous components of the problem while keeping the mode
schedule fixed and at a high level modified the mode schedule [97].

We begin by describing the algorithms for switched system optimal control that rely
on the Maximum Principle. One of the first such algorithms, presented by Alamir et al.,
applied the Maximum Principle directly to a discrete time switched dynamical system [1].
In order to construct such an algorithm for a continuous time switched dynamical system,
Shaikh et al. employed the bi-level optimization scheme proposed by Xu et al. and applied
the Maximum Principle to perform optimization at the lower level and applied the Hamming
distance to compare different possible nearby mode schedules [74].

Given the algorithm that we construct in this paper, the most relevant of the approaches
that rely on the Maximum Principle is the one proposed by Bengea et al. who relax the
discrete-valued input and treat it as a continuous-valued input over which they can apply the
Maximum Principle to perform optimal control [7]. A search through all possible discrete
valued inputs is required in order to find one that approximates the trajectory of the switched
system due to the application of the constructed relaxed discrete-valued input. Though such
a search is expensive, the existence of a discrete-valued input that approximates the behavior
of the constructed relaxed discrete-valued input is proven by the Chattering Lemma [9].
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Unfortunately this combinatorial search is unavoidable by employing the Chattering Lemma
since it provides no means to construct a discrete-valued input that approximates a relaxed
discrete-valued input with respect the trajectory of the switched system. Summarizing, those
algorithms that rely on the Maximum Principle construct powerful necessary conditions for
optimality. Unfortunately their numerical implementation for nonlinear switched systems is
fundamentally restricted due to their reliance on approximating strong or needle variations
with arbitrary precision as explained in [56].

Next, we describe the algorithms that do not rely on the Maximum Principle but rather
employ weak variations. Several have focused on the optimization of autonomous switched
dynamical systems (i.e. systems without a continuous input) by fixing the mode sequence
and working on devising first [23] and second order [41] numerical optimal control algorithms
to optimize the amount of time spent in each mode. In order to extend these optimization
techniques, Axelsson et al. employed the bi-level optimization strategy proposed by Xu et
al., and after performing optimization at the lower-level by employing a first order numerical
optimal control algorithm to optimize the amount of time spent in each mode while keeping
the mode schedule fixed, they modified the mode sequence by employing a single mode
insertion technique [5].

There have been two major extensions to Axelsson et al.’s algorithm. First, Wardi
et al., extend the approach by performing several single mode insertions at each iteration
[92]. Second, we extended Axelsson et al.’s approach to make it applicable to constrained
switched dynamical systems with a continuous-valued input [30, 31]. Though these single
mode insertion techniques avoid the computational expense of considering all possible mode
schedules during the high-level optimization, this improvement comes at the expense of
restricting the possible modifications of the existing mode schedule, which may introduce
undue local minimizers, and at the expense of requiring a separate optimization for each of
the potential mode schedule modifications, which is time consuming.

1.3 Contributions and Organization

In this thesis, we begin in Chapter 2 by formalizing hybrid dynamical systems and detailing
how the identification of a mathematical description of human locomotion can be under-
stood as a switched system optimal control problem. Then, inspired by the potential of
the Chattering Lemma, we devise a first order numerical optimization algorithm for the
optimal control of constrained nonlinear switched systems. Our approach to solve this prob-
lem, which is described in Chapter 3, first relaxes the optimal control problem by treating
the discrete-valued input to be continuous-valued. After this optimization is complete, an
extension of the Chattering Lemma that we devise, allows us to design a projection that
takes the computed relaxed discrete-valued input back to a “pure” discrete-valued input
while controlling the quality of approximation of the trajectory of the switched dynamical
system generated by applying the projected discrete-valued input rather than the relaxed
discrete-valued input.
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In Chapter 4, we prove that the sequence of points generated by recursive application
of our first order numerical optimal control algorithm converge to a point that satisfies
a necessary condition for optimality of the constrained nonlinear switched system optimal
control problem. We then describe in Chapter 5 how our algorithm can be formulated in order
to make numerical implementation feasible. In fact, we prove in Chapter 6 that the sequence
of points generated by the recursive application of this numerically implementable algorithm
converge to a point that satisfies a necessary condition for optimality of the constrained
nonlinear switched system optimal control problem.

In Chapter 7, we implement this algorithm and compare its performance to a commer-
cial mixed integer optimization algorithm on 4 separate problems and illustrate its superior
performance with respect to speed and quality of constructed minimizer. Finally, in Chap-
ter 8, we detail the performance of our algorithm in performing automated identification
of locomotion on 2 examples. The first example is a synthetic one for which we know the
ground truth data and the second is a 9 person human walking experiment. From the data
constructed from this experiment, we identify a single universal sequence of switched systems
visited by all the participants during walking. In addition to the aforementioned publica-
tions, portions of this thesis have appeared in [3, 84, 87]. Other portions are currently in the
review process [85, 86] and in the preparation process [88].
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A Conceptual Algorithm for Hybrid
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Chapter 2

The Identification Problem

In this chapter, we define hybrid systems and illustrate how a sequence of constraint enforce-
ments in addition to an unconstrained Lagrangian is sufficient to fully describe locomotion.
Next, we formulate the switched system optimal control problem. We conclude by describing
how the identification of a hybrid system description of locomotion can be cast as a switched
system optimal control problem. Before proceeding with this analysis, we define the function
spaces and norms used throughout this thesis.

2.1 Norms and Function Spaces

This thesis focuses on functions with finite L?-norm and finite bounded variation. To for-
malize this notion, we require a norm. For each x € R™, p € N, and p > 0, we let ||x||p
denote the pnorm of . For each A € R™™, p € N, and p > 0, we let [|Al|, , denote the
induced p—norm of A.

Given these definitions, we say a function, f : [0,1] — ), where Y C R", belongs to
L3([0,1],Y) with respect to the Lebesgue measure on [0, 1] if:

1l = ( / 1 Hf(t)\lﬁdtf < . 2.1)

We say a function, f:[0,1] — y where ) C R”, belongs to L>([0, 1], Y) with respect
to the Lebesgue measure on [0, 1] if

[ £l =inf{a >0 | f(z)|, < o for almost every z € [0,1]} < oco. (2.2)

In order to define the space of functions of finite bounded variation, we first define the
total variation of a function. Given P, the set of all finite partitions of [0, 1], we define the
total variation of f :[0,1] — Y by:

1£1l gy = sup {Z_: 1 (0) = £ 3L, € P} : (2.3)

J=0
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Note that the total variation of f is not a norm but rather a seminorm, i.e. it does not
separate points. Regardless, we use the norm symbol for the total variation throughout this
paper. We say that f is of bounded variation if || f||py < 0o, and we define BV ([0,1],)) to
be the set of all functions of bounded variation from [0, 1] to V.

There is an important connection between the functions of bounded variation and weak
derivatives, which we rely on throughout our analysis. Given f : [0,1] — Y, we say that f
has a weak derivative if there exists a Radon signed measure p over [0, 1] such that, for each
smooth bounded function v,

/O Feyo(t)dt = — /0 () dp(t). (2.4)

dp(t)
dt

is the weak derivative of f. Note that f is in general a distribution. Perhaps the most
common example of weak derivative is the Dirac Delta, which is the weak derivative of the
Step Function. The following result is fundamental in our analysis of functions of bounded
variation:

Moreover, we say that f = where the derivative is taken in the Radon—Nikodym sense,

Theorem 1 (Exercise 5.11in [99]). If f € BV([0,1], ), then f has a weak derivative, denoted
f. Moreover,

1l = / 1)) d. (2.5)

We omit the proof of this result since it is beyond the scope of this paper. More details
about the functions of bounded variation and weak derivatives can be found in Sections 3.5
and 9 in [26] and Section 5 in [99].

2.2 From Constraints to Models

In this section, we introduce a definition of a hybrid system applicable to gait description.

Hybrid Systems on a Cycle

Since steady state locomotion is periodic, we define a subclass of hybrid systems, hybrid
systems on a cycle, in order to describe gait. In order to define this subclass, we begin by
defining a directed graph. A graph is a tuple G = (V| E), where V is a set of vertices and
E CV xVisaset of edges; an edge e € E can be written as e = (4, 7) and the source of e,
denoted source(e), is ¢, and the target of e, denoted target(e), is j.

A directed cycle (or just a cycle) is a graph ¢ = (V| E) such that the edges and vertices
can be written as:

V = {Uo,U1,...,Up_1}, (26)

E = {60 = (Uo,Ul), Ce >€p—1 = (Up—I;UO)}-
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Since in the case of a cycle, the edges are completely determined by the vertices, we denote
a cycle by:
I Vg —2> V1 =2+ —> Up—1

Example 1. The domain graph pictured in Figure 1.2 has an underlying graph that is a
directed cycle. In particular, there are J vertices and edges, which results in the cycle:

ly = [lh,Ut] — [lt] — [lt,rh] — [lt,Th,Tt]. (2.7)

Utilizing the notion of a directed cycle, we can define a subclass of hybrid systems of
interest in this thesis:

Definition 1. A hybrid system on a cycle is a tuple
H=(D,USA, ), (2.8)
where
o (= (V,FE) is a directed cycle,
e D ={D,}ev is a set of domains where D, C R" is compact,

e U C R™ is the set of admissible controls and is bounded and conver,

S = {Sc}eck is a set of guards, where S, C D, is a closed subset,

A ={A.}eck is a set of reset maps, where A, : R® — R™ is a smooth map,

f:RxR"xUxV — R, where f(-,+,-,v) is a vector field on vertex v € V (i.e.
(t) = f(t,x(t),u(t),v) fort € R, z(t) € D,, and u(t) € U)

Given an initial condition inside of a particular vertex, an execution of a hybrid system
on a cycle evolves as a standard dynamical system until a guard is reached. In this case a
“jump” occurs via an application of the reset map to a new domain of the system as specified
by the target of the edge that indexes the guard that has been reached. The evolution then
continues as a standard dynamical system and the process is repeated.

Hybrid Systems from Constraints

The remainder of this section discusses how a Lagrangian for a biped together with a sequence
of active constraints allows one to explicitly construct a hybrid model of the system. We
begin with a biped in 3 dimensions; however, note that the discussion that follows is also
applicable in the 2 dimensional case.

We first construct a Lagrangian for a biped when no assumptions on ground contact are
made. As in Figure 2.1, let Ry be a fixed inertial or world frame, and R} be a reference frame
attached to the body of the biped which is specified by a position in R? and an orientation
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Figure 2.1: An illustration of the placement of coordinate systems used during the derivation
of the Lagrangian.

in SO(3). Consider a configuration space for the biped P, that is usually specified by
a collection of relative angles between successive links. Concatenating the description of
the body frame and the configuration space, we define the generalized configuration space
P = R? x SO(3) x P,.. The evolution of the generalized coordinates for the biped are then
given by p: [0,00) — P.

Unconstrained Equations of Motion

Letting TP denote the tangent space of the generalized configuration space as defined in
Chapter 3 of [47], the Lagrangian of the biped, £ : TP — R, can be stated in terms of
kinetic and potential energies as:

L(p(t), p(t)) = T(p(t),p(t)) — V(p(t)), (2.9)
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where (p(t),p(t)) € TP. The Euler-Lagrange Equation yields the equations of motion.
Though the ensuing analysis follows for general multi-link systems, we focus on the case of
rigid body systems since the examples of locomotion identification we consider in Chapter 8
are all restricted to the rigid body variety. In particular, the equations of motion for rigid
body systems can be stated as follows:

M(p(1))p(t) + C(p(t), p(t)) = N(p(t))u(t), (2.10)

where M(p(t)) € RIPXIPlis the inertia matrix, u(t) € R™ is an admissible vector of actu-
ations, N(p(t)) € RIP¥™ is the actuator distribution matrix, C(p(t),p(t)) € RIP! contains
the Coriolis, gravity terms and non-conservative forces grouped into a single vector and |P|
is the dimension of the generalized configuration space [58]. Though the formulas for these
matrices are not described here since it falls beyond the scope of this thesis, their construc-
tion for multi-link rigid body systems, like the bipeds considered in this thesis, only requires
knowledge of the masses and lengths of the various component links. In fact, given these
masses and lengths, the construction of this vector field can be done symbolically entirely
inside of Mathematica [96].

Contact Points and Constraints

The continuous dynamics of the hybrid system on a cycle depend on which constraints are
enforced at any given time, while the discrete dynamics depend on the change in constraints.
Constraints and their enforcement are dictated by the number of contact points of the
system with the ground or itself. Specifically, we define the set of contact points as C =
{c1,¢a,..., ¢}, where each ¢; is a specific type of contact possible in the biped, either with
the ground or with the biped itself (such as the knee locking).

Example 2. In the instance of a biped with just foot contact, we can consider 4 contact
points of interest:

C ={lh,lt,rh,rt}, (2.11)

where [h and It indicate the left heel and toe, and rh and rt indicate right heel and toe,
respectively.

Contact points introduce a holonomic constraint on the system that must be held
constant for a contact point to be maintained. Each of these holonomic constraints can be
described by a vector-valued function g. : P — R" for ¢ € C and n. € N and satisfaction of
this constraint can be described by g.(p(t)) = constant € R™e.

Example 3. Consider again the biped with just foot contact, as in Fxample 2. To describe
the set of holonomic constraints, consider a reference frame R. at the contact point ¢ €
{lh,lt,rh,rt} such that the azis of rotation about this point (either the heel or toe) is in the
z direction (the axis pointing up) as illustrated in Figure 2.1. The holonomic constraint can
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then be written as:
pe(p(t))

9:(p) = | Pex |, (2.12)
Soc,y

where p.(p(t)) is the position of the contact point given the generalized coordinate p(t) € P
and pe, ey € ST describe the orientation of reference frame R, relative to Ry by specifying
the rotation about the x and y azis of Ry, respectively.

Observe that in this previous example, if ¢.(p(t)) = constant then the foot contact
point is fixed but allowed to rotate about the heel or toe depending upon the specific type
of foot contact. It is useful to express the collection of all holonomic constraints in a single
matrix g(p(t)) € RVl where N = > __.n., and |C| denotes the cardinality of C. In the
instance of Example 3, this can be written as:

glh(p(t)) ?néh>> @nm @nm

_ @nlt gie(p(1 @nu @nz
g(p(t)) B @nrh ®nrh grh(p(t)) @nrh

On,, On,, On,, grt(p(t)),

where ©,,, denotes the column vector of all zeros of size n, € N.

The second class of constraints that are important during the construction of a hybrid
system on a cycle description of human locomotion are unilateral constraints, h. for ¢ € C.
These are scalar valued functions, h. : P — R, that dictate the set of admissible configura-
tions of the system; that is h.(p(t)) < 0 implies that the configuration of the system is not
violating the unilateral constraint for the contact point c.

o

(2.13)

Example 4. In the case of foot contact, assuming that biped is walking on flat ground, the
unilateral constraints are the height of a contact point above the ground:

he(p(t)) = —pe.-(p(t)) <0, (2.14)

where p..(p(t)) is the position of the z-coordinate of the contact point.

These can be put in the form of a matrix h(p(t)) € RP*IPl in the same manner as
holonomic constraints where | P| denotes the dimension of the generalized configuration space
P.

Domain Specification

For a particular periodic sequence of contact point enforcements, we can associate a directed
cycle. We call this association the domain specification. To define this formally, we assign to
each vertex in the directed cycle a binary vector describing which contact points are active
in that vertex:
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Definition 2. Let ¢ = (V, E) be a cycle and C = {cy,¢a, ..., ¢k} a set of contact points. A
domain specification is a function B : { — Z% such that [B(v)]; = 1 if ¢; is enforced in v and
[B(v)]; = 0 otherwise.

Example 5. In the case of the domain graph £, given in Example 1 and set of contact points
C = {lh,it,rh,rt}, the domain specification is given by B, : €, — Z3 where By([lh,It]),
B.([lt]), Bu([it,rh]) and B,([it,rh,rt]) are given by:

0

o O =
O~~~ O
=)

Hybrid System Construction

Now, we demonstrate that given a Lagrangian and a domain specification, a hybrid system
on a cycle can be explicitly constructed. Observe that since the Lagrangian is intrinsic
to the biped being considered, this implies that a domain specification alone dictates the
mathematical model that describes a particular locomotion pattern for that biped.

Continuous Dynamics

Each of the domains of the hybrid system on a cycle can be defined as equal to the tangent
space of the generalized configuration space of the unconstrained biped. The vector field in
each mode is constructed by imposing the constraints as specified by the domain specification,
B. For the vertex v € V, the holonomic constraints that are imposed are given by:

go(p(t)) = g(p(t))B(v), (2.15)

where the domain specification dictates which constraints are enforced.
Differentiating the holonomic constraint yields a kinematic constraint:

K (p()p(2) = 0, (2.16)

where IC,(p(t)) = RowBasis (W) is a basis for the row space of the Jacobian (this
P

removes any redundant constraints so that /C, has full row rank). The kinematic constraint
yields the constrained dynamics in that vertex:

M(p(1))p(t) + C(p(t), p(t)) = N(p(t))u(t) + Ko(p(t)) o (p(1), (1)), (2.17)

which enforces the holonomic constraint; here M, C' and N are as in Equation (2.10) and
F,(p(t),p(t)) is a wrench (or a Lagrange multiplier) that ensures that the holonomic con-
straint is maintained [58]. Differentiating the kinematic constraint, we have:

Ko (p(£))i(t) + Ko(p(£))p(t) = 0. (2.18)



CHAPTER 2. THE IDENTIFICATION PROBLEM 18

Letting z(t) = (p(t), p(t)), Equations (2.17) and (2.18) specify the wrench and a vector field
that can be written as f(¢, z(t),u(t),v) for the vertex v € V.

We make several important observations. Notice that only the holonomic constraints
rather than the unilateral constraints appear in the constrained vector field. Moreover,
notice that the actual position to be maintained by the contact point as determined by the
holonomic constraint never appears inside of the vector field.

Discrete Dynamics

We now construct the guards and reset maps for a hybrid system on a cycle using the domain
specification. For the vertex v € V' and from the wrench F,(p(t),p(t)), one can ensure that
the contact point is enforced by considering the following inequalities:

Fy(p(t),p(t)) <0, (2.19)

These are coupled with the unilateral constraint in each mode, h,(p(t)) = h(p(t))B(v), to
yield the set of admissible configurations:

. Fy(p(t), p(t)) }
A, (p(t), p(t)) = ’ <0. 2.20
el = | PO (220)
The guard is just the boundary of the domain with the additional assumption that the set of
admissible configurations is decreasing, i.e., the vector field is pointed outside of the domain,
or for an edge e = (v,v’) € E,

Se = {(p(t), p(1)) € TP : Ay(p(t), p(t)) = 0 and A, (p(t), p(t)) < 0}. (2.21)

The reset map can be defined as equal to the identity.

Switched System Optimal Control

The result of this analysis is that given a domain specification and a biped (which deter-
mines just the unconstrained Lagrangian), the hybrid model on a cycle for the biped for a
specific periodic locomotion is completely determined. Given a set of contact points, one can
immediately write down a set of vector fields corresponding to all possible combinations of
contact point enforcements. Recall that the constrained vector field does not depend on the
specific location at which the holonomic constraint must be maintained. Given tracking data
corresponding to locomotion, one can try to identify a hybrid model on a cycle by trying to
optimally switch between these different possible vector fields in a manner that minimizes
the difference between the observed and generated data.

2.3 The Switched System Optimal Control Problem

In order to formalize this approach, we require several additional definitions.
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Optimization Spaces

Given a set of contact points, C, one can write down the set of all possible vector fields
corresponding to the enforcement of all combinations of contact points. Let this set of all
possible vector fields be denoted Q = {1,2,...,q}. We are then interested in the control of
systems whose trajectory is governed by a set of vector fields f : R x R" x R™ x Q — R".
Each of these distinct vector fields is called a mode of the switched system. To formalize the
optimal control problem, we define three spaces: the pure discrete input space, D, the relazed
discrete input space, D,., and the continuous input space, U. Throughout the document, we
employ the following convention: given the pure or relaxed discrete input d, we denote its
1—th coordinate by d;.

Before formally defining each space, we require some notation. Let the ¢g-simplex, 37,

be defined as:
q
Ej{:{(dl,...,dq)e[O,l]q\Zdizl}, (2.22)
i=1
and let the corners of the g-simplex, ¥, be defined as:

Zg:{(dl,...,dq)6{0,1}q|zq:di:1}. (2.23)

Note that %7 C X1 Also, there are exactly as many corners, denoted e; for i € Q, of the

q-simplex as there are distinct vector fields. Thus, X7 = {ej, ..., ¢4}
Using this notation, we define the pure discrete input space, D,, as:
D, = L*([0,1], £9) N BV([0,1], %2). (2.24)

Next, we define the relaxed discrete input space, D,.:

Notice that the discrete input at each instance in time can be written as the linear combina-
tion of the corners of the simplex. Given this observation, we employ these corners to index
the vector fields (i.e. for each i € Q we write f(-,-, -, ¢;) for f(-,-,-,7)). Finally, we define
the continuous input space, U:

U= L*[0,1,0)n BV([0,1],U), (2.26)

where U C R™ is a bounded, convex set.
Let X = L>([0,1],R™) x L*>([0, 1], R?) be endowed with the following norm for each
&= (u,d) € X:
€]l = [lullz2 + [l 22, (2.27)

where the L*norm is as defined in Equation (2.1). We combine ¢ and D,, to define our pure
optimization space, X, = U x D,, and we endow it with the same norm as X. Similarly, we
combine U and D, to define our relaxed optimization space, X, = U x D,, and endow it with
the A-norm too. Note that &, C X, C &
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Trajectories, Cost, Constraint, and the Optimal Control Problem

Given ¢ = (u,d) € &, for convenience throughout the paper we let:
q
F(t o), ult), d(t)) =Y dit) f(t x(t), u(t), e), (2.28)
i=1

where d(t) = Y7 d;(t)e;. We employ the same convention when we consider the partial
derivatives of f. Given xy € R", we say that a trajectory of the system corresponding to
¢ € X, is the solution to:

#(t) = f(t,2(t),u(t),d(t)), Vte0,1], x(0) =z, (2.29)

and denote it by ¢ : [0,1] — R”, where we suppress the dependence on z, in z(® since
it is assumed given. To ensure the clarity of the ensuing analysis, it is useful to sometimes
emphasize the dependence of 2€)(t) on &. Therefore, we define the flow of the system,
¢ X, — R" for each t € [0, 1] as:

Pr(€) = 2O (t). (2.30)

To define the cost function, we assume that we are given a terminal cost, hg : R® — R.
The cost function, J : X, — R, for the optimal control problem is then defined as:

J(€) = ho(2©(1)). (2.31)
Notice that if the problem formulation includes a running cost, L : R x R® x R™ — R, then
one can extend the existing state vector by introducing a new state, and modifying the cost
function to evaluate this new state at the final time, as shown in Section 4.1.2 in [64]. By
performing this type of modification, observe that each mode of the switched system can
have a different running cost associated with it (i.e. the running cost can be defined as
L(t,xz(t),u(t),d(t))).
Next, we define a family of functions, h; : R* — R for j € J = {1,..., N.}. Given
a & € X,, the state 29 is said to satisfy the constraint if h;(z()(t)) < 0 for each ¢ € [0, 1]
and for each 7 € J. We compactly describe all the constraints by defining the constraint
function ¥ : X, — R, by:

V() = max hy(@©0), (2.32)

since h; (:v(g) (t)) < 0 for each ¢ and j if and only if ¥(§) < 0. To ensure the clarity of the
ensuing analysis, it is useful to sometimes emphasize the dependence of h; (x(g)(t)) on £.
Therefore, we define component constraint functions, 1;; : X, — R for each ¢t € [0, 1] and
J € J as:
$;a(§) = hy (9:(€)) - (2.33)
With these definitions, we can state the Switched System Optimal Control Problem:

Switched System Optimal Control Problem.
mi v(¢) <0}. 2.34
561‘2 {J(&) | ¥ (&) <0} (2.34)
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Identification via Switched System Optimal Control

Notice in particular that if we are given a set of tracking data corresponding to human
locomotion, an unconstrained Lagrangian, and constraints corresponding to the physical
configurations of the biped, then the determination of the hybrid system on a cycle model
for the gait in question can be computed as a solution to the Switched System Optimal
Control Problem.

That is, suppose we are given an unconstrained Lagrangian and a set of contact points
of interest, C. Given this information, we can construct the vector field, f : RxR"xR™x Q —
R™ where Q = {1,..., 2/} and |C| denotes the cardinality of C by applying the construction
presented in Section 2.2. Recall again, that these vector fields depend only on the holonomic
constraints which are described entirely by the set of contact points of interest. Moreover,
they do not depend on the specific location at which the holonomic constraint must be
maintained (i.e. the vector field for the [lf] mode is constructed by requiring that the left
toe remain fixed rather than requiring that it be fixed on the ground). Suppose we are also
given observed data of the continuous state, zs : [0, 1] — R", of a hybrid system on a cycle,
‘H, that we are attempting to identify.

The determination of the domain specification, B as in Definition 2, can then be thought
of as finding the solution to the Switched System Optimal Control Problem as in Equation
(2.34), when we choose a running cost equal to:

L(t, 2(t), ult), d(t)) = ||zons(t) — 2(1)]]; - (2.35)

If some unilateral constraints on physical configurations of the biped are known a priori
(e.g. the knee of a biped is not allowed to bend beyond the thigh), these can be added as
constraints to the Switched System Optimal Control Problem. In addition, it may make sense
to penalize certain inputs within certain modes of the switched system and not penalize them
within other modes of the switched system during the Switched System Optimal Control
(e.g. penalizing an actuation at a joint while it is constrained to the ground may not make
sense). This decision can be reflected in the choice of running cost with a straightforward
modification of Equation (2.35). Also observe that if some function of the state is observed,
the 2-norm of the difference between this observation and the same function applied to the
state of the switched system generated during the optimization can be minimized in order to
determine a domain specification. These variants of Equation (2.35) are described in more
detail in Chapter 8.

Importantly, if the domain specification is determined by solving the Switched Sys-
tem Optimal Control Problem by employing Equation (2.35) or any of the aforementioned
variants, then the hybrid system on a cycle immediately follows since the unconstrained
Lagrangian was assumed given.
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Assumptions and Uniqueness

In order to devise an algorithm to solve Switched System Optimal Control Problem, we make
the following assumptions about the dynamics, cost, and constraints:

Assumption 1. For each i € Q, f(-,-,-,¢;) is differentiable in both x and u. Also, each
f(, -, -, €) and its partial derivatives are Lipschitz continuous with constant L > 0, i.e. given
t1,t2 € 10,1], 1,29 € R™, and uy,us € U:

(1) NfGryzr,un, ) = fta, 2o, ua, )|l < L[t —tof + |l — z2fl2 + [Jur — uall2),

(2) H%(tlaxlaulu e;) — g—i(tmx%umei)"ig < L[ty = to| + [|21 — a2 + [Jur — ual2),

(3) H%(thxhuh e;) — g—i(tm@,umei)“w < L(|t1 — ta] + ||x1 — a2l]2 + ||ur — uall2).

Assumption 2. The functions hy and h; are Lipschitz continuous and differentiable in x for
all 3 € J. In addition, the derivatives of these functions with respect to x are also Lipschitz
continuous with constant L > 0, i.e. given x1,x9 € R™, for each j € J:

(1) Tho(z1) — ho(w2)| < L ||z — 225,
(2) |52 (21) — Z2(22)]|, < L @1 — 225,
(3) [hj(z1) — hj(x2)| < L||or — 22,

(@) 5@ - 5@ || < Lllay =l

If a running cost is included in the problem statement (i.e. if the cost also depends
on the integral of a function), then this function must also satisfy Assumption 1. Note that
the equations of motion as defined in Equations (2.17) and (2.18) satisfy this assumption.
Assumption 2 is a standard assumption on the objectives and constraints and is used to prove
the convergence properties of the algorithm defined in the next section. These assumptions
lead to the following result:

Lemma 2. There exists a constant C' > 0 such that, for each & € X, and t € [0, 1],
|z @), < C, (2.36)

where 29 is a solution of Differential Equation (2.29).

Proof. Given £ = (u,d) € X, and noticing that |d;(t)] < 1 for all ¢ € Q and t € [0, 1], we
have:

12O, < llwoll2 + Z/O £ (5.2 (s), u(s), &) | ,ds. (2.37)
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Next, observe that || f(0,zo,0,e;)||2 is bounded for all i € Q and wu(s) is bounded for
each s € [0,1] since U is bounded. Then by Assumption 1, we know there exists a K > 0
such that for each s € [0,1], 7 € Q, and £ € A,

Hf(s,m(g)(s), u(s), &), < K(||$(£)(S)H2 +1). (2.38)

Applying the Bellman-Gronwall Inequality (Lemma 5.6.4 in [64]) to Equation (2.37), we
have [|z©(t)||, < e (1 + ||zo||2) for each t € [0,1]. Since zy is assumed given and bounded,
we have our result. O

In fact, this implies that the dynamics, cost, constraints, and their derivatives are all
bounded:

Corollary 1. There exists a constant C' > 0 such that for each & = (u,d) € X, t € [0,1],
and j € J:

(1) a) [[f(t,2©O0) ut) d(t))Hz <C,
b) ||ﬁ Lz
c) ||8f (t, 2 (
2) a) |h0( )(t) )\ <C,

8h0 H <C

3) a) Ih 5>t>)!§0

where 29 is a solution of Differential Equation (2.29).

Proof. The result follows immediately from the continuity of f, %7 gi ; hoy 5 % hj, and =~ 6h
for each j € J, as stated in Assumptions 1 and 2, and the fact that each of the arguments
to these functions can be constrained to a compact domain, which follows from Lemma 2

and the compactness of U and . O
An application of this corollary leads to a fundamental result:
Theorem 3. For each £ € X, Differential Equation (2.29) has a unique solution.

Proof. First let us note that f, as defined in Equation (2.28), is also Lipschitz with respect
to its fourth argument. Indeed, given ¢t € [0,1], z € R", u € U, and dy, ds € X4,

q

Z(dl,i - d2,i)f<t7 z,u, ei)
2

i=1

< Cql|dy — dal|2,

1 f(t,z,u,dy) — f(ta,udo)||, =

(2.39)
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where C' > 0 is as in Corollary 1.

Given that f is Lipschitz with respect to all its arguments, the result follows as a
direct extension of the classical existence and uniqueness theorem for nonlinear differential
equations (see Section 2.4.1 in [89] for a standard version of this theorem). O

Therefore, since z(¢) is unique, it is not an abuse of notation to denote the solution of
Differential Equation (2.29) by 2¢). Next, we develop an algorithm to solve the Switched
System Optimal Control Problem.
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Chapter 3

A Conceptual Algorithm for Switched
System Optimal Control

In this chapter, we describe our optimization algorithm. Our approach proceeds as follows:
first, we treat a given pure discrete input as a relaxed discrete input by allowing it to belong
D,; second, we perform optimal control over the relaxed optimization space; and finally, we
project the computed relaxed input into a pure input. Before describing our algorithm in
detail, we begin with a brief digression to motivate why such a roundabout construction is
required in order to devise a first order numerical optimal control scheme for the Switched
System Optimal Control Problem defined in Equation (2.34).

3.1 Directional Derivatives

To appreciate why the construction of a numerical scheme to find the local minima of the
Switched System Optimal Control Problem defined in Equation (2.34) is difficult, suppose
that the optimization in the problem took place over the relaxed optimization space rather
than the pure optimization space. The Relaxed Switched System Optimal Control Problem
is then defined as:

Relaxed Switched System Optimal Control Problem.
in{.J U(¢) <0}. 3.1
min {.J(§) [ ¥(¢) < 0} (3.1)
The local minimizers of this problem are then defined as follows:
Definition 3. Let us denote an €-ball in the X -norm centered at & by:

Nelee) = {Ee | e—&, <<} (32)

We say that a point £ € X, is a local minimizer of the Relaxed Switched System Optimal
Control Problem defined in Equation (3.1) if W(§) < 0 and there exists ¢ > 0 such that
J(&) = J (&) for each & € Nx(§,e)N{E € X, | ¥(¢) <0}.
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Given this definition, a first order numerical optimal control scheme can exploit the vec-
tor space structure of the relaxed optimization space in order to define directional derivatives
that find local minimizers for this Relaxed Switched System Optimal Control Problem.

To concretize how such an algorithm would work, we introduce some additional nota-
tion. Given ¢ € X, ) a Euclidean space, and any function G : X, — ), the directional
derivative of G at &, denoted DG(&;-) : X — ), is computed as:

§+A) - G©E)
= :

G(

DG(&:€) = 1i 3.3

(§:¢') = lim (3.3)

To understand the connection between directional derivatives and local minimizers,

suppose the Relaxed Switched System Optimal Control Problem is unconstrained and con-

sider the first order approximation of the cost J at a point £ € X, in the £ € X’ direction
by employing the directional derivative DJ(&;¢'):

J(E+ M) = J(§) + ADJ(&:€), (3.4)

where 0 < XA <« 1. It follows that if DJ(§;&’), whose existence is proven in Lemma 11, is
negative, then it is possible to decrease the cost by moving in the £ direction. That is if
the directional derivative of the cost at a point £ is negative along a certain direction, then
for each ¢ > 0 there exists a £ € Ny (€,¢) such that J(€) < J(€). Therefore if DJ(&;¢)
is negative, then £ is not a local minimizer of the unconstrained Relaxed Switched System
Optimal Control Problem.

Similarly, for the general Relaxed Switched System Optimal Control Problem, consider
the first order approximation of each of the component constraint functions, 1, for each
j € J and t € [0,1] at a point £ € X, in the £ € X direction by employing the directional
derivative Dy, 4(&;¢'):

i€+ ALY & () + AU (€: €), (3.5)

where 0 < A < 1. It follows that if Dt);,(£;€'), whose existence is proven in Lemma 12, is
negative, then it is possible to decrease the infeasibility of ¢;(£) with respect to h; by moving
in the ¢ direction. That is if the directional derivatives of the cost and all of the component
constraints for all ¢ € [0,1] at a point £ are negative along a certain direction and ¥(§) = 0,
then for each & > 0 there exists a £ € {€ € X, | U(€) < 0} NN (&, €) such that J(€) < J(€).
Therefore, if ¥(§) =0 and DJ(&;¢’) and Dip;,(€;¢’) are negative for all j € J and ¢ € [0, 1],
then £ is not a local minimizer of the Relaxed Hybrid Optimal Control Problem. Similarly,
if ¥(£) < 0and DJ(&;¢') is negative, then & is not a local minimizer of the Relaxed Hybrid
Optimal Control Problem, even if D, ;(&; ') is greater than zero for all j € J and ¢ € [0, 1].

Returning to the Switched System Optimal Control Problem, it is unclear how to
define a directional derivative for the pure discrete input space since it is not a vector space.
Therefore, in contrast to the relaxed discrete and continuous input spaces, the construction
of a first order numerical scheme for the optimization of the pure discrete input is non-trivial.
One could imagine trying to exploit the directional derivatives in the relaxed optimization
space in order to construct a first order numerical optimal control algorithm for the Switched
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System Optimal Control Problem, but this would require devising some type of connection
between points belonging to the pure and relaxed optimization spaces.

3.2 The Weak Topology on the Optimization Space
and Local Minimizers

To motivate the type of relationship required between the pure and relaxed optimization
space in order to construct a first order numerical optimal control scheme, we begin by
describing the Chattering Lemma:

Theorem 4 (Theorem 1 in [7]). For each &, € X, and e > 0 there exists a &, € X, such that
for each t € [0,1]:
[¢:(&r) — De(Ep)ll, <, (3.6)

where ¢1(&,) and ¢+(§,) are solutions to Differential Equation (2.29) corresponding to &, and
&p, respectively.

The theorem as is proven in [9] is not immediately applicable to switched systems, but a
straightforward extension as is proven in Theorem 1 in [7] makes that feasible. Note that the
theorem as stated in [7], considers only two vector fields (i.e. ¢ = 2), but as the author’s of
the theorem remark, their proof can be generalized to an arbitrary number of vector fields.
A particular version of this existence theorem can also be found in Lemma 1 [77].

Theorem 4 says that the behavior of any element of the relaxed optimization space with
respect to the trajectory of switched system can be approximated arbitrarily well by a point
in the pure optimization space. Unfortunately, the relaxed and pure point as in Theorem 4
need not be near one another in the metric induced by the X-norm. Therefore, though there
exists a relationship between the pure and relaxed optimization spaces, this connection is
not reflected in the topology induced by the X'-norm; however, in a particular topology over
the relaxed optimization space, a relaxed point and the pure point that approximates it as
in Theorem 4 can be made arbitrarily close:

Definition 4. We say that the weak topology on &, induced by Differential Equation (2.29)
is the smallest topology on X, such that the map & — 29 is continuous. Moreover, an e-ball
in the weak topology centered at & is denoted by:

No(,2) = {€€ &, |||z - 2@, <} (3.7)

A longer introduction to weak topology can be found in Section 3.8 in [70] or Section
2.3 in [46], but before continuing we make an important observation that aids in motivating
the ensuing analysis. In order to understand the relationship between the topology generated
by the X-norm on A&, and the weak topology on X, observe that ¢; is Lipschitz continuous
for all t € [0,1] (this is proven in Corollary 3). Therefore, for any € > 0 there exists a § > 0
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such that if a pair of points of the relaxed optimization space belong to the same é—ball in
the X-norm, then the pair of points belong to the same £-ball in the weak topology on &.

Notice, however, that it is not possible to show that for every ¢ > 0 that there exists
a 0 > 0 such that if a pair of points of the relaxed optimization space belong to the same
0—ball in the weak topology on &), then the pair of points belong to the same e-ball in
the X-norm. More informally, a pair of points may generate trajectories that are near one
another in the L?>-norm while not being near one another in the X-norm. Since the weak
topology, in contrast to the X-norm induced topology, naturally places points that generate
nearby trajectories next to one another, we extend Definition 4 in order to define a weak
topology on A}, which we then use to define a notion of local minimizer for the Switched
System Optimal Control Problem:

Definition 5. We say that a point § € X, is a local minimizers of the Switched System
Optimal Control Problem defined in Equation (2.34) if ¥(§) < 0 and there exists € > 0 such

that J(§) > J(€) for each & € N(€,e) N{E€ X, | U(E) <0}, where N, is as defined in
FEquation (3.7).

With this definition of local minimizer, we can exploit Theorem 4, even just as an
existence result, along with the notion of directional derivative over the relaxed optimization
space to construct a necessary condition for optimality for the Switched System Optimal
Control Problem.

3.3 An Optimality Condition

Motivated by the approach undertaken in [64], we define an optimality function, 6 : X, —
(—o0, 0] that determines whether a given point is a local minimizer of the Switched System
Optimal Control Problem and a corresponding descent direction, g : X, — &

(&) = Juin €&¢), 9§ = arggggné(i,f’), (3.8)
where )
mmtég%MDwAae—@+ww@x
e DI(EE — &)} + 1€ €l fvoso
’ max{jeér’l?go’” D 4(&; € =€), |

DJ(EE =€) = WO} + 1§ — ¢l if () >0,

\
where v > 0 is a design parameters. For notational convenience in the previous equation
we have left out the natural inclusion of £ from X, to &,. Before proceeding, we make
two observations. First, note that () < 0 for each £ € X, since we can always choose
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¢ = £ which leaves the trajectory unmodified. Second, note that at a point £ € A, the
directional derivatives in the optimality function consider directions £ — & with & € X,
in order to ensure that first order approximations constructed as in Equations (3.4) and
(3.5) belong to the relaxed optimization space X, which is convex (e.g. for 0 < A\ < 1,
J(&) +ADJ(&E — &) ~ J((1 — N+ A') where (1 —N)E+ A € A,).

To understand how the optimality function behaves, consider several cases. First, if
6(¢) < 0 and ¥(¢) = 0, then there exists a & € A&, such that both DJ(&;¢" — &) and
D) (&;€ — &) are negative for all j € J and ¢ € [0,1]. By employing the aforementioned
first order approximation, we can show that for each £ > 0 there exists an e-ball in the
X-norm centered at & such that J(£) < J(€) for some & € {€ € X, | U(E) < 0} N N(£,e).
As a result and because the cost and each of the component constraint functions are assumed
Lipschitz continuous and ¢, for all ¢ € [0, 1] is Lipschitz continuous as is proven in Corollary
3, an application of Theorem 4 allows us to show that for each € > 0 there exists an e-ball
in the weak topology on X, centered at ¢ such that J(&,) < J(&) for some &, € {€ € A, |
U(E) < 0} NN,(& €). Therefore, it follows that if #(¢) < 0 and ¥(¢) = 0, then ¢ is not a
local minimizer of the Switched System Optimal Control Problem.

Second, if #(§) < 0 and V() < 0, then there exists a £’ € A, such that DJ(&; & — &) is
negative. Though D;(&; &' — &) maybe positive for some j € J and t € [0, 1], by employing
the aforementioned first order approximation, we can show that for each € > 0 there exists
an e-ball in the X-norm centered at & such that J(£) < J(&) for some & € {€ € X, | ¥(£) <
0} N Ny(&e). As a result and because the cost and each of the constraint functions are
assumed Lipschitz continuous and ¢; for all ¢t € [0, 1] is Lipschitz continuous as is proven
in Corollary 3, an application of Theorem 4 allows us to show that for each ¢ > 0 there
exists an e-ball in the weak topology on X, centered at & such that J(¢,) < J(&) for some
& e{E€ X, | U(E) < 0NN, ). Therefore, it follows that if #(¢) < 0 and ¥(€) < 0,
then £ is not a local minimizer of the Switched System Optimal Control Problem. In this
case, the addition of the ¥ term in ( ensures that a direction that reduces the cost does not
simultaneously require a decrease in the infeasibility in order to be considered as a potential
descent direction.

Third, if 6(§) < 0 and ¥(£) > 0, then there exists a £’ € A&, such that Di;,(&; ¢ —
€) is negative for all j € J and ¢t € [0,1]. By employing the aforementioned first order
approximation, we can show for each € > 0 there exists an e—ball in the A-norm centered
at & such that U(€) < W(€) for some & € Nx(€,€). As a result and because each of the
constraint functions are assumed Lipschitz continuous and ¢, for all ¢t € [0, 1] is Lipschitz
continuous as is proven in Corollary 3, an application of Theorem 4 allows us to show that
for each € > 0 there exists an e-ball in the weak topology on &), centered at £ such that
V(&) < V() for some &, € Ny(€, e). Therefore, though it is clear that £ is not a local
minimizer of the Switched System Optimal Control Problem since ¥ (&) > 0, it follows that
if (&) < 0 and W(£) > 0, then it is possible to locally reduce the infeasibility of £&. In this
case, the addition of the DJ term in { serves as a heuristic to ensure that the reduction in
infeasibility does not come at the price of an undue increase in the cost.

These observations are formalized in Theorem 17 where we prove that if £ is a local
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minimizer of the Switched System Optimal Control Problem, then §(£) = 0, or that 6(£) =0
is a necessary condition for the optimality of £. To illustrate the importance of 6 satistying
this property, recall how the directional derivative of a cost function is employed during
unconstrained finite dimensional optimization. Since the directional derivative of the cost
function at a point being equal to zero in all directions is a necessary condition for optimal-
ity for an unconstrained finite dimensional optimization problem, it is used as a stopping
criterion by first order numerical algorithms (Corollary 1.1.3 and Algorithm Model 1.2.23
in [64]). Similarly, by satisfying Theorem 17, 6 is a necessary condition for optimality for
the Switched System Optimal Control Problem and can therefore be used as a stopping
criterion for a first order numerical optimal control algorithm trying to solve the Switched
System Optimal Control Problem. Given 6’s importance, we say a point, § € X, satisfies
the optimality condition if 0(&) = 0.

3.4 Choosing a Step Size and Projecting the Relaxed
Discrete Input

Impressively, Theorem 4 just as an existence result is sufficient to allow for the construction
of an optimality function that encapsulates a necessary condition for optimality for the
Switched System Optimal Control Problem. Unfortunately, Theorem 4 is unable to describe
how to exploit the descent direction, g(§), since its proof provides no means to construct a
pure input that approximates the behavior of a relaxed input while controlling the quality of
the approximation. In this paper, we extend Theorem 4 by devising a scheme that remedies
this shortcoming. This allows for the development of a numerical optimal control algorithm
for the Switched System Optimal Control Problem that first, performs optimal control over
the relaxed optimization space and then projects the computed relaxed control into a pure
control.

Before describing the construction of this projection, we describe how the descent
direction, g(§), can be exploited to construct a point in the relaxed optimization space
that either reduces the cost (if the £ is feasible) or the infeasibility (if £ is infeasibile).
Comparing our approach to finite dimensional optimization, the argument that minimizes ¢
is a “direction” along which to move the inputs in order to reduce the cost in the relaxed
optimization space, but we require an algorithm to choose a step size. We employ a line
search algorithm similar to the traditional Armijo algorithm used during finite dimensional
optimization in order to choose a step size (Algorithm Model 1.2.23 in [64]). Fixing a € (0, 1)
and 8 € (0,1), a step size for a point £ € &), is chosen by solving the following optimization
problem:

min{k € N| J (¢ + B4(g(€) - §)) - J(€) < aB*0(e),
u(e) = W+ B(9(6) - ©) < aB() ] i W(E) <0, (3.10)
min{k € N | W(¢+ B4(g(&) — €)) — W(E) < ap*o(&) } HW(E) >0,
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In Lemma 24, we prove that for £ € &), if 6(§) < 0, then () < co. Therefore, if (£) < 0
for some £ € X),, then we can construct a descent direction, g(§), and a step size, p(§), and
a new point (f + BHE (g(€) — 5)) € A, that produces a reduction in the cost (if ¢ is feasible)
or a reduction in the infeasibility (if ¢ is infeasible).

We define the projection that takes this constructed point to a point belonging the
pure optimization space while controlling the quality of approximation in two steps. First,
we approximate the relaxed input by its N—th partial sum approximation via the Haar
wavelet basis. To define this operation, Fy : L*([0,1],R) N BV ([0,1],R) — L*([0,1],R) N
BV([0,1],R), we employ the Haar wavelet (Section 7.2.2 in [54]):

1 ifte0,1),
At) =19 -1 ifte[i 1), (3.11)
0  otherwise.
Letting 1 : R — R be the constant function equal to one and by; : [0,1] — R for £ € N

and j € {0,...,2" — 1}, be defined as by;(t) = A(th — j), the projection Fy for some
c € L*([0,1],R) n BV ([0,1],R) — L2([0,1],R) N BV ([0, 1], R) is defined as:

N 2F-1
b
Fn(0)]() = (e 1)+ ) ) e, biy) () (3.12)
== ||bk:]||

Note that the inner product here is the traditional Hilbert space inner product.

This projection is then applied to each of the coordinates of an element in the relaxed
optimization space. To avoid introducing additional notation, we let the coordinate-wise
application of Fy to some relaxed discrete input d € D, be denoted as Fy(d) and similarly
for some continuous input u € Y. Lemma 18 proves that for each N € N, each ¢ € [0, 1], and
each i € {1,...,q}, [Fn(d)], (t) € [0,1] and > ! | [Fn(d)]; (t) = 1 for the projection Fy(d).
Therefore it follows that for each d € D,., Fy(d) € D,.

Second, we use pulse width modulation as illustrated for a specific example in Figure
3.1. That is, we project the output of Fy(d) to a pure discrete input by employing the
function Py : D, — D,, which computes a multi-dimensional pulse width modulation of its
argument with frequency 27:

Loifte |27V (k+ X dy () )
[P (d))i(t) = 2N (ki di () ), ke {01, 28 =1}, (313)
0 otherwise.

Lemma 18 proves that for each N € N, each t € [0,1], and each i € {1,...,q},
[Py (Fn(d))],(t) € {0,1} and Y7 | [Pn(Fn(d))],(t) = 1. This proves that Py (Fn(d)) €
D, for each d € D,.
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(a) pulse width modulation with a frequency % (b) pulse width modulation with a frequency %

Figure 3.1: An illustration of the application of pulse width modulation (drawn in black) to a
one dimensional signal (drawn in black) at two different frequencies. A sawtooth
signal at the appropriate frequency is constructed (drawn in a black dotted line)
and the value of the signal at the sampling times is projected onto the sawtooth.
The pulse width modulation is set equal to zero for the amount of time equal
to the projection onto the sawtooth and equal to one for the remainder of the
sampling time.

Fixing N € N, we compose the two projections and define py : X, — &), as:

pn(u, d) = (fN(u), Pu (]—"N(d))). (3.14)

Critically, as shown in Theorem 21, this projection allows us to extend Theorem 4 by con-
structing an upper bound that goes to zero as N goes infinity between the error of employing
the relaxed control rather than its projection in the solution of Differential Equation (2.29).
Therefore in a fashion similar to applying the Armijo algorithm, we choose an N € N at
which to perform pulse width modulation by performing a line search. Fixing a € (0, 00),

B e (\%, 1), and w € (0,1), a frequency at which to perform pulse width modulation for a
point § € &, is computed by solving the following optimization problem:

(min{k € N| & = ¢+ (g(¢) - ©),

J(pr()) = J(&) < (aB"O — aB*)o(©),

W (py(€)) <0,
v(€) = aft < (1-w)ap©} U <0, (3.15)
min{k € N| ¢ = £+ 59 (g(¢) - ©)

U(p(€)) —W(E) < (ap® —ap*)o(e),

apk < (1- w)aﬁ#(f)} if W(€) > 0.

\

In Lemma 25, we prove that for £ € &, if 6(¢) < 0, then v(§) < oo. Therefore, if #(¢) < 0 for
some £ € X)), then we can construct a descent direction, g(§), a step size, p(€), a frequency at
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which to perform pulse width modulation, v (£), and a new point p, ) (& + 84 (g(£) — €)) €
A&, that produces a reduction in the cost (if £ is feasible) or a reduction in the infeasibility
(if ¢ is infeasible).

3.5 Switched System Optimal Control Algorithm

Consolidating our definitions, Algorithm 1 describes our numerical method to solve the
Switched System Optimal Control Problem. For analysis purposes, we define I' : X, — &),
by

L) = puie) (€ + 8" (9(6) = €))- (3.16)

We say {;}jen is a sequence generated by Algorithm 1if ;.1 = I'(¢;) for each j € N. We
can prove several important properties about the sequence generated by Algorithm 1. First,
in Lemma 26, we prove that if there exists iy € N such that W(¢;,) < 0, then ¥U(§) < 0
for each © > i9. That is, if the Algorithm constructs a feasible point, then the sequence of
points generated after this feasible point are always feasible. Second, in Theorem 27, we
prove lim;_,, 6(§;) = 0 or that Algorithm 1 converges to a point that satisfies the optimality
condition.
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Algorithm 1 Optimization Algorithm for the Switched System Optimal Control Problem

Require: & € X,, a € (0,1), a € (0,00), B € (0,1), f € (% 1), v e (0,00), w e (0,1).

1: Set j = 0.

2: Compute 0(&;) as defined in Equation (3.8).

3. if 6(§;) = 0 then

4:  return ¢;.

5. end if

6: Compute ¢(¢;) as defined in Equation (3.8).

7. Compute p(§;) as defined in Equation (3.10).

8: Compute v(;) as defined in Equation (3.15).

9: Set {41 = py(gj)(gj + B (g(&5) — gj)), as defined in Equation (3.14).
10: Replace j by 7 + 1 and go to Line 2.
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Chapter 4

Proving the Convergence of the
Conceptual Algorithm

In this chapter, we derive the various components of Algorithm 1 and prove that Algorithm
1 converges to a point that satisfies our optimality condition. Our argument proceeds as
follows: first, we prove the continuity of the state, cost, and constraint, which we employ
in latter arguments; second, we construct the components of the optimality function and
prove that these components satisfy various properties that ensure that the well-posedness
of the optimality function; third, we prove that we can control the quality of approximation
between the trajectories generated by a relaxed discrete input and its projection by py as a
function of N; finally, we prove the convergence of our algorithm.

4.1 Continuity

In this section, we prove the continuity of the state, cost, and constraint. We begin by
proving the continuity of the solution to Differential Equation (2.29) with respect to £ by
proving that this mapping is sequentially continuous:

Lemma 5. Let {¢; 21 C X be a convergent sequence with limit § € X,.. Then the cor-
responding sequence of trajectories {x(gﬂ')}]@’il, as defined in Equation (2.29), converges uni-
formly to z©.

Proof. For notational convenience, let {; = (u;,d;), £ = (u,d), and ¢; as defined in Equation
(2.30). We begin by proving the convergence of {¢:(§)}52, to ¢:(§) for each t € [0,1].
Consider

9:(&5) — ¢t(f)||2 =

| S (0. 15(0). ) = i) (6. ) i) e

(1.1)
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Therefore,

19:(&5) = ¢:(E)ll, =

'/ d‘(T))f(Ta ¢T(Ej)>uj(7—)vei)+
(f(T 6:(&),ui(7),€5) — (1, 0:(€),uy(7), &) )+

+di(7) (f (7, 6-(), us(7), €5) = f(7, 07(€), ulr), &) )dr|| . (4.2)

2

Applying the Triangle Inequality, Assumption 1, Condition 1 in Corollary 1, and the bound-
edness of d, we have that there exists a C' > 0 such that

196(&5) = @e(E)l, < /ZC\ = di(7)| + L1167 (&) — dr ()l + L lluy(7) — u(7)l, dr

(4.3)
Applying the Bellman-Gronwall Inequality (Lemma 5.6.4 in [64]), we have that

16:(65) — Bu(E)]], < ( [ €l —dl, + (o) - u(r)HQdT) S

Note that [|ulls < |Jul|; for each u € R™. Then applying Holder’s inequality (Proposition 6.2
in [26]) to the vector valued function, we have:

/Ild Ty dr < lldj —d|., and /IIU; w(r)llydr < flu; —ull.. (4.5)

Since the sequence §; converges to &, for every € > 0 we know there exists some jy such that
for all j greater than jo, ||£; — §||X < e. Therefore ||¢:(&;) — ¢(€)|2 < eX(L + C)e, which
proves the convergence of {¢:(§;)}52, to ¢.(§) for each t € [0, 1] as j — co. Since this bound
does not depend on ¢, we in fact have the uniform convergence of {z(& )};?';1 to 2 as j — oo,
hence obtaining our desired result. O

Notice that since X, is a metric space, the previous result proves that the function ¢,
which assigns £ € X, to ¢4(&) as the solution of Differential Equation (2.29) employing the
notation defined in Equation (2.30) is continuous.

Corollary 2. The function ¢; that maps & € X, to ¢4(&) as the solution of Differential
FEquation (2.29) where we employ the notation defined in Equation (2.30) is continuous for
all t €0, 1].

In fact, our arguments have shown that this mapping is Lipschitz continuous:
Corollary 3. There exists a constant L > 0 such that for each &,& € X, and t € [0, 1]:

16:(61) — d(&2)ll2 < Ll[&1 — &l (4.6)
where ¢:(&) is as defined in Equation (2.30).
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As a result of this corollary, we immediately have the following results:

Corollary 4. There exists a constant L > 0 such that for each & = (uy,dy) € X, & =
(ug,dy) € X, and t € [0, 1]:

(1) £ (t, (&), ua(t), di(t)—f (£, de(&2), ua(t), da(t)) Hz <
< L(ll& = &l + Nlua(t) — ua(B)lly + [1da(t) = da()]],),

) %@,@(a),ul(w,dﬂt))—%(t,¢t<€z>vw<t>vd2<t>> LS
< L6 = &l + s (t) = wal®)llp + (1) = da(B)]).
(3) %(t, Qst(gl)aul(t)adl(t))_%(t’¢t<€2)’u2(t)’d2(t)) 9 =

< L(lI&r = Sally + llur() — ua(®)ll, + ldi(t) — da(t)]l,),
where ¢4(§) is as defined in Equation (2.30).

Proof. The proof of Condition 1 follows by the fact that the vector field f is Lipschitz in all
its arguments, as shown in the proof of Theorem 3, and applying Corollary 3. The remaining
conditions follow in a similar fashion. O]

Corollary 5. There exists a constant L > 0 such that for each &,& € X, j € J, and
te0,1):

(1) |ho(é1(61)) = ho(1(&2)[ < L& — &l
@) |22 (e(6) - 22 (&) |, < L& - &l
(3) [hy(9e(€r) = hy(0u(&2)| < Ll&r = &l
(@) |32 (0u(60) = G (0u&)]|, < Ll — &l

where ¢:(€) is as defined in Equation (2.30).

Proof. This result follows by Assumption 2 and Corollary 3. O

Even though it is a straightforward consequence of Condition 1 in Corollary 5, we write
the following result to stress its importance.

Corollary 6. There exists a constant L > 0 such that, for each &,& € X,.:

[J(6) = J(&)| < Ll&r — &allx (4.7)
where J is as defined in Equation (2.31).



CHAPTER 4. THE CONVERGENCE OF THE CONCEPTUAL ALGORITHM 38

In fact, the W is also Lipschitz continuous:

Lemma 6. There exists a constant L > 0 such that, for each &,& € X,

(W(&1) — W(&) < L6 — &l (4.8)
where W is as defined in Equation (2.32).

Proof. Since the maximum in ¥ is taken over J x [0, 1], which is compact, and the maps
(4,t) = 1;+(&) are continuous for each £ € X', we know from Condition 3 in Corollary 5 that
there exists L > 0 such that,

U(&) —W(&) = max %’,t(él)— max ¢j,t(52)

() eT x[0,1] () €T x[0,1]
< ; — ), 4.9
S o Vi(&1) — ¥54(&2) (4.9)
< L& — &y -
By reversing &; and &, and applying the same argument we get the desired result. O]

4.2 Derivation of Algorithm Terms

Next, we formally derive the components of the optimality function and prove the well-
posedness of the optimality function. We begin by deriving the formal expression for the
directional derivative of the trajectory of the switched system.

Lemma 7. Let £ = (u,d) € &, { = (v,d) € X, and let ¢, : X, — R™ be as defined in
Equation (2.30). Then the directional derivative of ¢y, as defined in Equation (3.3), is given
by

Den(&:€') = /0 (1, 7) <8f (7,6 (&), u(r), d(m))u'(7) + 3_ f(r, ¢T<£>,u<7>,ei)dé<r>) dr,

ou
(4.10)
where ®©(t,7) is the unique solution of the following matriz differential equation:
0P 0
261 = L 600 ule), d) B 7), 101, B(rr)=1 (1)

Proof. For notational convenience, let ) = &) N = o + A/, and dV = d + \d.
Then, if we define Az = () — 2(©)

Az®) (t) = /Otf(T, W (T),U(A)(T>,d()\)(7')) — f(T,l‘(é)(t),u(T),d(T))dT, (4.12)
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thus,

—i—/o f(T 2N (1), uM (1), d(T)) —f(T,$(§)(t),u()‘)(7'),d(7'))d7'+
+/0 f(T,ZE(E)(T),U()‘)(T),CZ(T)) —f(T, x(f)(t),u(T),d(T))dT, (4.13)

and applying the Mean Value Theorem,

/)\Zd’ F(r e (1), uM (1), e;)+

+ /0 %(T, (1) + v, (1) Az (1), uM (1), d(7)) Az (1) +

+ / gi(f 2 O(7), u(r) + v (1) (1), d(7))ud (7)dt,  (4.14)

where v, v, : [0,t] — [0, 1].
Let z(t) be the unique solution of the following differential equation:

2(r) = gi (7’ x(ﬁ)( ), u(T), d(T))z(T) + g—i(T, Z'(g)(T),u(T), d(T))u'(T)—i-

+ Zd;(T)f(T,ZE(g)(T),u(T),Bi), T€0,t], =2(0)=0. (4.15)

Az
. ®) _ (

We want to show that limy g ” t)H = 0. To prove this, consider the following
2

inequalities that follow from Condition 2 in Assumption 1:

oL (a9 alr).d(r) )+
WM (1
— g—i(T,x(o(T) +uw(T)A:L'(’\)(T),u(’\)(T),d(T))A /\( )dT ) <
tlof AzM (1)
< B _ — 3 dr+
R 2 (4.16)

+/O L (|Jra(r)AzN (n) ||, + M (7)1ly) 12()]], d7

i [ s 2220 .

+ L / Az )], + Al (P)l1) 12(E) ] dr.
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also from Condition 3 in Assumption 1:

and from Condition 1 in Assumption 1:

Now, using the Bellman-Gronwall Inequality (Lemma 5.6.4 in [64]) and the inequalities
above,

/0 (%(T, #®(7), u(r), d(r)) - %(m“) (7), u(r) + v (T) Ml (7), d(T))) (1)

<
2

<r / M (r )l (), 1 ()l dr < L / A ()2 dr, (4.17)

<
2

/O Z d;(T) (f (7_7 1'(5)(7'), U(T), ei) — f(T, LE(A)(T), uo\) (7'); 61)) dr

: L/o > di(m) (A @), + At ()],) dr. - (4.18)

< L( / ([AcD @], + Ml @ll) =@l + Al (]2 +

+ Z di(7) ([[AzN ()], + M/ (7)]],) dT) , (419)

but note that every term in the integral above is bounded, and Az™ (1) — 0 for each 7 € [0, ¢]
since ™ — 2© uniformly as shown in Lemma 5, thus by the Dominated Convergence
Theorem (Theorem 2.24 in [26]) and by noting that D¢, (&; '), as defined in Equation (4.10),
is exactly the solution of Differential Equation (4.15) we get:

N
lim A1)
A0

1 e o
— 20 =t {100 - 290 - Do A, =0, (4

The result of the Lemma then follows.

O
Next, we prove that D¢, is bounded by proving that ®© is bounded:
Corollary 7. There exists a constant C > 0 such that for each t,7 € [0,1] and & € X,
[2©t,7)|,, < C, (4.21)

where ® ) (t, 7) is the solution to Differential Equation (4.11).
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Proof. Notice that, since the induced matrix norm is submultiplicative,

HCID(E)(t, T)Hi’2 = H(ID(g)(t,T) —|—/ (% (S,.’L'(Q(S),U(S),d(S))(I)(O(S,T)) ds . (4.22)
<1 +/T g—i(s,x(g)(s),u(s), d(s)) . H@w(t, S)Hi’2 ds (4.23)
< et (4.24)

where in the last step we employed Condition 1 from Corollary 1 with a constant C' > 0 and
the Bellman-Gronwall Inequality. O

Corollary 8. There exists a constant C > 0 such that for all§ € X,., ' € X, and t € [0, 1]:

1De(&: 62 < ClIE N x (4.25)
where Doy is as defined in Equation (4.10).

Proof. This result follows by employing the Cauchy-Schwarz Inequality, Corollary 1 and
Corollary 7. O

In fact, we can actually prove the Lipschitz continuity of ®(©:
Lemma 8. There exists a constant L > 0 such that for each &1,& € X, and each t, T € [0,1]:

@€ (t,7) — &€ (1, T)||z',2 < L& —&lly, (4.26)

where ®©) is the solution to Differential Equation (4.11).

Proof. Letting & = (u1,dy) € X, and & = (uz,ds) € X, and by applying the Triangle
Inequality and noticing the induced matrix norm is compatible, observe:

2

Lo
Jo0,7) =000, < (|57 0000 st

_@(52)(577_)”@'72)6[5_'_/%( of

'_ (5, 2)(s), ua(s), da(s)) +

||q>(£1)(87 )+
2

ox

5 (S, x(£2)(s), us(s), d2($))

2y

9 s (427

By applying Condition 1 in Corollary 1, Condition 2 in Corollary 4, Corollary 7, the same
argument as in Equation (4.5), and the Bellman-Gronwall Inequality (Lemma 5.6.4 in [64]),
our desired result follows. O

A simple extension of our previous argument shows that for all ¢ € [0,1], D¢y (&; ) is
Lipschitz continuous with respect to its point of evaluation, &.
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Lemma 9. There exists a constant L > 0 such that for each &1,&% € X,., £ € X, and
te0,1):

1De(&1;€") — Ddu(€2: €Iy < LlI&r — &oll [1€7]] (4.28)
where D¢y is as defined in Equation (4.10).

Proof. Let & = (u1,d1), & = (us,ds), and & = (v',d’). Then, by applying the Triangle
Inequality, and noticing that the induced matrix norm is compatible, observe:

HDébt(fl;f/)—D¢t(§2;§/)\|2S/O (H‘I)(&)(t,s) H&2) (t,5) H o

+ ||(I)(€2)(t78) .

H s, 28 (s ), ui(s), di(s)) . %(8,x(ﬁl)(s),ul(s),dl(s))—k
of

— %(s,x(éz)(s),uQ(s),dQ(s)) | ) |\u’(3)y|2ds+/0 Z (H@(él)(t, 5)— o@(t,5)].,

G520, un (), el + | E )] 1 £ (5219 (5), wa(9), )+

—f(s,x(@)( ), ua(s), e H2) Ild'(s)| ds. (4.29)

By applying Corollary 7, Condition 1 in Corollary 1, Lemma 8, Conditions 1 and 3 in
Corollary 4, together with the boundedness of u/(s) and d'(s), and an argument identical to
the one used in Equation (4.5), our desired result follows. O

Next, we prove that D¢, is simultaneously continuous with respect to both of its argu-
ments.

Lemma 10. For eacht € [0,1], £ € X, and & € X, the map (§,&) — Doy(&;E'), as defined
in Equation (4.10), is continuous.

Proof. To prove this result, we can employ an argument identical to the one used in the
proof of Lemma 5. First, note that u(¢) € U for each t € [0, 1]. Second, note that ®©)| f, %,
and £ are bounded, as shown in Corollary 7 and Condition 1 in Corollary 1. Third, recall
that ®©, f, and f are Lipschitz continuous, as proven in Lemma 8 and Conditions 1 and 3
in Corollary 4, respectlvely Finally, the result follows after using an argument identical to

the one used in Equation (4.5). O

We can now construct the directional derivative of the cost J and prove it is Lipschitz
continuous.

Lemma 11. Let§ € X, ¢ € X, and J be as defined in Equation (2.31). Then the directional
derivative of the cost J in the £ direction is:

DI(EE) = T2 (61(6) DonE:E), (4.30)
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Proof. The result follows directly by the Chain Rule and Lemma 7. [
Corollary 9. There exists a constant L > 0 such that for each &1,& € X, and £’ € X :

[DJ(&1;€") = DI (&2; )| < L 1§y = Sallx €] » (4.31)
where DJ is as defined in Equation (4.30).

Proof. Notice by the Triangle Inequality and the Cauchy-Schwartz Inequality:

DJ(E: ) — DI € |<H— (@nt) | 1D0n(65:€) ~ Dl €l +

%”0 (41(6)) ~ S (6n(62)

D1 (&2; )l - (4.32)
2

The result then follows by applying Condition 2 in Corollary 1, Condition 2 in Corollary 5,
Corollary 8, and Lemma 9. [

Next, we prove that D.J is simultaneously continuous with respect to both of its argu-
ments, which is a direct consequence of Lemma 10.

Corollary 10. For each & € X, and & € X, the map (§,&') — DJ(&:E), as defined in
FEquation (4.30), is continuous.

Next, we construct the directional derivative of each of the component constraint func-
tions v, and prove that each of the component constraints is Lipschitz continuous.

Lemma 12. Let £ € X,, & € X, and v, defined as in Equation (2.33). Then for each
Jj€J andt €0,1], the directional derivative of 1;¢, denoted Dip;,, is given by:
Oh;
ij,t<£;£,) = a_;(¢t(5))D¢t(féf/)' (4-33)
Proof. The result follows using the Chain Rule and Lemma 7. m

Corollary 11. There exists a constant L > 0 such that for each &,& € X, & € X, and
t e [0,1]:

| Dipse(€1:€") — Db (§2: €N < L 161 — &l x 1€]]x (4.34)
where Dipj, is as defined in Equation (4.33).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

Du(€05€) — Dy (65 € |<H— o) Do) — Daviess ), +
2

(€2:€)l - (4.35)

S (oe) - G2 (o) |

The result then follows by applying Condition 3 in Corollary 1, Condition 4 in Corollary 5,
Corollary 8, and Lemma 9. [
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Next, we prove that Dw);; is simultaneously continuous with respect to both of its
arguments, which follows directly from Lemma 10:

Corollary 12. For each € € X, ' € X, and t € [0,1], the map (£, &) — Dy, (&), as
defined in Equation (4.33), is continuous.

Given these results, we can begin describing the properties satisfied by the optimality
function:

Lemma 13. Let ¢ be defined as in Equation (3.9). Then there exists a constant L > 0 such
that, for each &1,&,& € X,

1€(61,8") = C(62, )| < L |1 — Eall - (4.36)
Proof. To prove the result, first notice that for {z;}ier, {yi}ier C R:
il < il s d i — i < i —Yig- 4.37
mageed] < mgxlad,andwgen - mg Smax{—wg. - (4480)
Therefore,
T 7 < 7 7] 438
WAX 7 — WAXy;| < max |z — i (4.38)

Letting U*(£) = max{0,¥(£)} and ¥~ (§) = max{0, —V(&)}, observe:

C(6) = max {DIGE O~ WO, _max, (&€~ ) =707 (©) | + ¢~ €l
(4.39)
Employing Equation (4.38):

€(&1,€) = ¢(&. &) < maX{\DJ(&;&/ — &) = DJ(&3 € — &)| + [ (&) — ¥ (&),

JE}H?G??O”’D%t&,ﬁ —&1)— D%}t(fz;5/—52)|+7|‘1’_(§2)—‘1’_(§1)‘}+|||§'—§1||X—||§'—§2||X|‘
(4.40)

We show three results that taken together with the Triangle Inequality prove the desired
result. First, by applying the Reverse Triangle Inequality:

Mf/ —&llx— I - 52||X| <& — &l v (4.41)

Second,

IDJ(&;€ — &) —DJ(&;€ — &)| = [DJ(&;€ — &) —DJ (&€ — &) + DI (€360 — &)
< IDJ(&;€) — DJ(&:8)| + |DJ(&1;6) — DJ (€056 [+

P (61(€)) Do (Exsa — &)

SLII&—&HX, )
4.42
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where I > 0 and we employed the linearity of DJ, Corollary 9, the fact that £ and &
are bounded since ¢, & € X, the Cauchy-Schwartz Inequality, Condition 2 in Corollary 1,
and Corollary 8. Notice that by employing an argument identical to Equation (4.42) and
Corollary 11, we can assume without loss of generality that |ij7t(£1; & —&)—Du;(&; & —
&)| < L& —&lly. Finally, notice that by applying Lemma 6, ¥F(£) and ¥~ (€) are
Lipschitz continuous. O

In fact, ¢ satisfies an even more important property:

Lemma 14. For each € X, the map & — ((£,&'), as defined in Equation (3.9), is strictly
convex.

Proof. The proof follows after noting that the maps &' +— DJ(§;&" — &) and

& % (gbt(f))ngt({; &' —¢) are affine, hence any maximum among these function is convex,
and the map & — ||¢' — &||x is strictly convex since we chose the 2-norm as our finite
dimensional norm. O

The following theorem, which follows as a result of the previous lemma, is fundamental
to our result since it shows that g, as defined in Equation (3.8), is a well-defined function.
We omit the proof since it is a particular case of a well known result regarding the exis-
tence of unique minimizers of strictly convex functions over bounded sets in Hilbert spaces
(Proposition 11.1.2 in [24]).

Theorem 15. For each § € X, the map £ — ((£,&'), as defined in Equation (3.9), has a
unique minimaizer.

Employing these results we can prove the continuity of the optimality function. This
result is not strictly required in order to prove the convergence of Algorithm 1 or in order to
prove that the optimality function encodes local minimizers of the Switched System Optimal
Control Problem, but is useful when we describe the implementation of our algorithm.

Lemma 16. The function 0, as defined in Equation (3.8), is continuous.

Proof. First, we show that @ is upper semi-continuous. Consider a sequence {;}3°, C &,
converging to &, and & € X, such that 0(§) = ((£,¢'), i.e. & = g(§), where g is defined as in
Equation (3.8). Since 6(&;) < ((&;,¢') for all 1 € N,

limsup 6(&;) < limsup ¢(&;,¢') = ¢(&,€') = 6(8), (4.43)

1—00 17— 00

which proves the upper semi-continuity of 6.

Second, we show that 6 is lower semi-continuous. Let {{!};en such that 0(&;) = ((&;, &),
ie. & = g(&). From Lemma 13, we know there exists a Lipschitz constant L > 0 such that
for cach i € N, [C(€,€)) — C(6 )| < L€ — &l Consequently,

0(¢) < (C(&,&) — €& &) + (&, &) < LIE—&llx +6(S)- (4.44)
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Taking limits we conclude that

0(&) < liminf 6(&;), (4.45)
1—00
which proves the lower semi-continuity of 8, and our desired result. O

Finally, we can prove that 6 encodes a necessary condition for optimality:
Theorem 17. Let 0 be as defined in Equation (3.8), then:
(1) 6 is non-positive valued, and

(2) If £ € X, is a local minimizer of the Switched System Optimal Control Problem as in
Definition 5, then 0(§) =

Proof. Notice that ((&,€) = 0, therefore 0(¢) = mingex, ((£,€) < ((£,£) = 0. This proves
Condition 1.

To prove Condition 2, we begin by making several observations. Given & € X, and
A € [0, 1], using the Mean Value Theorem and Corollary 9 we have that there exists s € (0, 1)
and L > 0 such that

J(E+ME =€) = J(€) =DJ(§+ s\ = &) \E —¢€))
<ADJ(&E =€) + LN|E = ¢l

Letting A(&) = {(j,t) € T x [0,1] | ¥(§) = h;(29)(t)) }, similar to the equation above, there
exists a pair (j,t) € A(£+ A& —€)) and s € (0,1) such that, using Corollary 11,

W(E+ME =€) —W(E) <hja(E+ME—9)) — (9
< %(&LA =9 ) V(&)
=D (E+ sAE =€ ME =€)
< ADYy (&€ — &) + LAIE — €13

Finally, letting L denote the Lipschitz constant as in Condition 1 in Assumption 2, notice:

V(E+ANE—€) — ()= max P (E+ANE—€) —  max 1h(€)

(4.46)

(4.47)

(.)eTx[0,1] () ET X [0,1]
< . t)ferl?X[o . (I (f + A - f)) —1;4(§) (4.48)
< megﬁ”@(f"’)\(f £) — (], -

We prove Condition 2 by contradiction. That is, using Definition 5, we assume that
0(€) < 0 and show that for each ¢ > 0 there exists £ € N,,(&,¢) N {€ex, |V <0}
such that J(£) < J(€), where N, (€,¢) is as defined in Equation (3.7), hence arriving at a
contradiction.

Before arriving at this contradiction, we make three initial observations. First, notice
that since { € A}, is a local minimizer of the Switched System Optimal Control Problem,
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U(&) < 0. Second, consider g as defined in Equation (3.8), which exists by Theorem 15, and
notice that since 6(§) < 0, g(§) # £. Third, notice that, as a result of Theorem 4, for each
€+ Mg(§) —€)) € X, and €' > 0 there exists a &, € &), such that

260 — zEM@- D) < (4.49)

where z(¢) is the solution to Differential Equation (2.29).

_ 20

5 > 0 and using Corollary 3:

Now, letting &’ =

[2€) — 2©|| , < [|2©) — &GOy ||zEH6©-0) _ 1O

4.50
< (—% + Llg(§) - f”x) A (450

Next, observe that:

9(6) = max {DIEO) - O, x| D6 9(6) ) + WO b+ a(€) — L <.
e (4.51)

Also, by Equations (4.46), (4.49), and (4.51), together with Condition 1 in Assumption 2
and Corollary 3:

J(6x) = J(€) < (&) = J(§+ Ag(§) =€) + T (€ + Mg(&) =€) — J(&)
< L|¢1(6) — d1(§ + Mg(&) = E)lly + 0(E)A + 447 LA
< Le' + 0(E)N + 442 LN (4.52)
< @ +4A2LN?,
where A = max {[jul2 + 1 | v € U} and we used the fact that || — ¢'||3 < 442 and
DJ(&; & — &) < 0(&). Hence for each A € (O, gj&?),

J(&n) = J() <0. (4.53)

Similarly, using Condition 1 in Assumption 2, together with Equations (4.47), (4.48),
and (4.51), we have:

W) < W) — (E+ Mg(§) =€) +T(§+ A9(§) — )
< L max [|¢¢(6x) — de(€ + Ag(§) — )l + V(&) + (0(8) — 7P(E))A +4A7LN

te(0,1]
< Le + 0(EN+4A2LA? + (1 —y\)P(€)

< @ +AAPLN + (1 — M)W (E),
(4.54)
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where A = max {||u||>+1 | u € U} and we used the fact that ||{—&'||3 < 4A% and Dy ,(&; & —
€) <0(&) —yY(&) for each (j,t) € J x [0,1]. Hence for each A € (O,min{fe(g) l}):

8AZ2L v

U(6) < (1—N)T(E) < 0. (4.55)

Summarizing, suppose £ € &, is a local minimizer of the Switched System Optimal
Control Problem and 6(§) < 0. For each € > 0, by choosing any

A e (0’ i { S TT® &P }> ’ (456)

we can construct a &, € X, such that &, € N, (&, ¢), by Equation (4.50), such that J(§,) <
J(§), by Equation (4.53), and ¥(&,) < 0, by Equation (4.55). Therefore, ¢ is not a local
minimizer of the Switched System Optimal Control Problem, which is a contradiction and
proves Condition 2. O

4.3 Approximating Relaxed Inputs

In this section, we prove that the projection operation, py, allows us to control the quality
of approximation between the trajectories generated by a relaxed discrete input and its
projection. First, we prove for d € D,., Fy(d) € D, and Py (.FN(d)) € D,

Lemma 18. Let d € D,, Fy be as defined in Equation (3.12), and Py be as defined in
Equation (3.13). Then for each N € N and t € [0,1]:

(1) [Fn(d)]i(t) € [0,1],

(2) YL [ Fa(d)hi(t) =1,

(3) [P (Fn(d))].(t) € {0,1},
(4) YL, [Py (Fn(d)],(t) = 1.

Proof. Condition 1 follows due to the result in Section 3.3 in [35]. Condition 2 follows since
the wavelet approximation is linear, thus,

q q N 2F—1
b

D IFN@E =D | 1)+ DY (di by (4.57)
i=1 i=1 k=0 j=0 ||bk]”L2

N 2k—1 b

i
= (1,1)+ > Z<]l,bkj>Hb = (4.58)
k=0 j=0 killr2

where the last equality holds since (1,by;) = 0 for each £, j.
Conditions 3 and 4 are direct consequences of the definition of Py, since Py can only
take the values 0 or 1, and only one coordinate is equal to 1 at any given time ¢t € [0,1]. O
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Recall that in order to avoid the introduction of additional notation, we let the coor-
dinate wise application of Fy to some relaxed discrete input d € D, be denoted as Fy(d)
and similarly for some continuous input v € U, but in fact Fx as originally defined took
L3([0,1],R) n BV ([0, 1],R) to L?([0,1],R) N BV ([0,1],R). Next, we prove that the wavelet
approximation allows us to control the quality of approximation:

Lemma 19. Let f € L*([0,1],R) N BV ([0,1],R), then

1/ 1\"
I =l < (5) 1l (1.59

where Fy is as defined in Equation (3.12).

Proof. Since L? is a Hilbert space and the collection {by;}r ; is a basis, then

oo 2k—1
b
F= 0420 D b e (4.60)
k=0 j=0 kj
Note that [|bg;||2. = 27" and that
, t— g2k ifte[j27% (j+3)27),
vk (t) :/ bej(s)ds = —t+ (j+1)27F ifte [(j+1)27F (i +1)27F), (4.61)
0 0 otherwise,

thus |Jvg;llL = 2771 Now, using integration by parts, and since f € BV ([0,1],R),

(G+1)27F
/ F(tyos (1)t
jat

Finally, Parseval’s Identity for Hilbert spaces (Theorem 5.27 in [26]) implies that

Al = 3 Y e

k=N+1 j5=0

|<f>bk]>‘ =

(5+1)2 )
<27k 1/2 ) | f(t)|dt (4.62)
P

[e) 2k_1 (j+1)2—k . 2 (463)
<3 2key </ ‘f(t)|dt>
k=N+1 =0 \/i27*

< 27V £l %y,
as desired. O

The following lemma is fundamental to find a rate of convergence for the approximation
of the solution of differential equations using relaxed inputs:
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Lemma 20. There exists K > 0 such that for each d € D, and f € L?*([0,1],R%) N
BV([0,1],R7),

\<d—PN(fN<d>>,f><SK<(%) Izl + (5) ||f||3v), (164

where Fy is as defined Equation (3.12) and Py is as defined in Equation (3.13).

Proof. To simplify our notation, let ¢, = 2%, pir = [Fn(d)]i(tr), S = Z;lejk, and

1
A = |:tk + oS-k, Tk + ZNS ) : (4.65)

Also let us denote the indicator function of the set A;; by 14, . Consider

2N 1 tk+1
(Fald) = Pu(Fn@), ) = 33 / (b — La, ) Ot (4.66)
k=0 =1
Let wy : [0,1] — R be defined by
(pin(t — 1) if ¢ € [t tx + v -1
¢ swPikSi-1k + (Pint
wik(t) / Pik — ]lA (S)dS = — 1) (t — 1 — 2%5(1'_1);6) ift e Aik,
i s Dk (Sie — 1)+
|t Dik (t — te — 37 Six) if t € [ty + 57 Sk, ths1)

(4.67)
when ¢ € [tg,tp41], and wi(t) = O otherwise. Note that ||wi|lz~ < 5&%. Thus, using
integration by parts,

/:H (pir - 1Aik<t>)fi(t)dt‘ _

/t:kﬂw@fi(f)d ' < on / flar,  (468)
and

1 21 g 4 '
|(Fw(d) — P (Fn( )),f>\§2—NZ/t > pu| i) |dt
k=0 k i=1

1
< 55 lflsv-

(4.69)

where the last inequality follows by Hoélder’s Inequality.
Also, by Lemma 19 we have that

1/ 1\"
o~ 1F @< 5 (5) Bt (1)
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Hence, using Cauchy-Schwartz’s Inequality,

|(d = Pn(Fn(d)), )| < lld = Fuv(d)z2[I fllz2 + [(Fwv(d) — Pw (Fn(d)), (4.71)
and the desired result follows from Equations (4.63), (4.69). O

Note that Lemma 20 does not prove convergence of Py (]-"N(d)) to d in the weak
topology on D,. Such a result is indeed true, i.e. Py (]—"N(d)) does converge in the weak
topology to d, and it can be shown using an argument similar to the one used in Lemma 1 in
[77]. The reason we chose to prove a weaker result is because in this case we get an explicit
rate of convergence, which is fundamental to the construction of our optimization algorithm
because it allows us to bound the quality of approximation of the state trajectory.

Theorem 21. Let py be defined as in Equation (3.14) and ¢, be defined as in Equation
(2.30). Then there exists K > 0 such that for each § = (u,d) € X, and for each t € [0,1],

l60(on(©) — 6u(&)], < K (;5) (lellv +1). (472)

Proof. To simplify our notation, let us denote uy = Fy(u) and dy = Py (.FN(d)), thus
pn (&) = (un,dy). Consider

Hx(uNdN)(t) — pwd) (t)HZ < ||x(UN7dN)<t) _ Ji(u’dN)(t)H2 + Hx(%dz\l)(t) _ x(u,d)@) (4'73)

1>

The main result of the theorem will follow from upper bounds from each of these two parts.
Note that

Hx(“N’dN)(t) — 3:(“7dN)(t)||2 < /0 Hf(s,x(“N’dN)(s),uN(s),dN(S))—|—
— f(s,a:(“’dN)(s),u(s),dN(s))Hst (4.74)
< a0 = o), + () - o), (475

thus, using Bellman-Gronwall’s Inequality (Lemma 5.6.4 in [64]) together with the result in
Lemma 19 we get

Lel/2 [ 1 N
un,d u,d
Hx( N N)(t) — N)(t)”Q < 5 (E) ||U||BV (4.76)

On the other hand,

2N (1) — gD (f) = / Z([dN]i(s)_di(s))f(3>x(U7d)(S)vu(3)>€i)ds+
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thus,

o) = 2P0, < +

2

1
+ L/ ||x(“’dN)(s) - x("’d)(s)Hst. (4.78)
0

/0 > ([dnli(s) = di(s)) f (s, 2D (s), u(s), e;) ds

i=1

Using Bellman-Gronwall’s inequality we get

Hx(“’dN)(t) —_ p(wd) (t)H2 < el (4.79)

[ 3 (05 = AN, a0 )

2

Recall that f maps to R™, so let us denote the k—th coordinate of f by fi. Let vg(t) =
fr (t,x(“’d)(t),u(t),ei) and vy, = (U1, ..., Uke), then vy is of bounded variation. Indeed, by
Theorem 1 and Condition 1 in Corollary 1, we have that Hx(g) H gy < C. Thus, by Condition
1 in Assumption 1 and again using Theorem 1, we get that, for each i € Q,

[vkill gy < L(1+C + [Jul|pv). (4.80)

Moreover, Condition 1 in Corollary 1 directly imply that ||vg||z2z < C. Hence, Lemma 20
implies that there exists K > 0 such that

[{d —dn,ve)| < K ((%) Clldllsv +q (%) (1+C+ IIUHBv)> : (4.81)

Since Equation (4.81) is satisfied for each k € {1,...,n}, then after ordering the constants
and noting that 2V > 2% for each N € N, together with Equation (4.76) we get the desired
result. ]

4.4 Convergence of the Algorithm

To prove the convergence of our algorithm, we employ a technique similar to the one pre-
scribed in Section 1.2 in [64]. Summarizing the technique, one can think of an algorithm
as discrete-time dynamical system, whose desired stable equilibria are characterized by the
stationary points of its optimality function, i.e. points & € X, where 6(§) = 0, since we
know from Theorem 17 that all local minimizers are stationary. Before applying this line of
reasoning to our algorithm, we present a simplified version of this argument for a general
unconstrained optimization problem. This is done in the interest of clarity. Inspired by
the stability analysis of dynamical systems, a sufficient condition for the convergence of our
algorithm can be formulated by requiring that the cost function satisfy a notion of sufficient
descent with respect to an optimality function:
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Definition 6. Let S be a metric space, and consider the problem of minimizing the cost
function J : § — R. We say that a function I' : § — S has the sufficient descent property
with respect to an optimality function 6 : S — (—o0, 0] if for each x € S with 6(x) < 0, there
exists a 6, > 0 and O, C S, a neighborhood of x, such that:

J(D(2')) — J(2') < =6, V2’ € O,. (4.82)

Importantly, a function satisfying the sufficient property can be proven to approach
the zeros of the optimality function:

Theorem 22 (Theorem 1.2.8 in Polak [64]). Consider the problem of minimizing a cost
function J : & — R. Suppose that S is a metric space and a function I' : § — S has
the sufficient descent property with respect to an optimality function 6 : S — (—00,0], as
described in Definition 6. Let {x;};en be a sequence such that, for each j € N:

_ () if 0(x;) <0,
Tjp1 = {xj if 0(z;) — 0. (4.83)

Then every accumulation point of {x;}jen belongs to the set of zeros of the optimality function

6.

Theorem 22, as originally stated in [64], requires S to be a Euclidean space, but the re-
sult as presented here can be proven without requiring this property using the same original
argument. Though Theorem 22 proves that the accumulation point of a sequence generated
by I' converges to a stationary point of the optimality function, it does not prove the ex-
istence of the accumulation point. This is in general not a problem for finite-dimensional
optimization problems since the level sets of the cost function are usually compact, thus
every sequence produced by a descent method has at least one accumulation point. On the
other hand, infinite-dimensional problems, such as optimal control problems, do not have this
property, since bounded sets may not be compact in infinite-dimensional vector spaces. Thus,
even though Theorem 22 can be applied to both finite-dimensional and infinite-dimensional
optimization problems, the result is much weaker in the latter case.

The issue mentioned above has been addressed several times in the literature [5, 65,
92, 93], by formulating a stronger version of sufficient descent:

Definition 7 (Definition 2.1 in [5]). Let S be a metric space, and consider the problem of
minimizing the cost function J : S — R. A function I' ©: § — S has the uniform sufficient
descent property with respect to an optimality function 0 : S — (—o0,0] if for each C > 0
there ezists a ¢ > 0 such that, for every x € S with 6(z) <0,

J(D(z)) — J(z) < —dc. (4.84)

A sequence of points generated by an algorithm satisfying this property, under mild
assumptions, can be shown to approach the zeros of the optimality function:
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Theorem 23 (Proposition 2.1 in [5]). Consider the problem of minimizing a lower bounded
cost function J : § — [a, 00). Suppose that S is a metric space and I' : S — S satisfies the
uniform sufficient descent property with respect to an optimality function 6 : S — (—o0,0],
as stated in Definition 7. Let {z;};en be a sequence such that, for each j € N:

_ F(Q?]) Zf@(l'g) < 07
Tjp1 = {xj if 0(z3) — 0. (4.85)

Then,
lim 6(z;) = 0. (4.86)
Jj—o0

Proof. Suppose that liminf; . 6(z;) = —2¢ < 0. Then there exists a subsequence {z, }ren

such that 6(z;,) < —¢ for each k € N. Definition 7 implies that there exists ¢, such that
J(@j41) — J(x,) < =6, VEeN. (4.87)

But this is a contradiction, since J(x;11) < J(x;) for each j € N, thus J(z;) — —oo as
7 — o0, contrary to the assumption that J is lower bounded. O

Note that Theorem 23 does not assume the existence of accumulation points of the
sequence {z;}jen. Thus, this Theorem remains valid even when the sequence generated by I
does not have accumulation points. This becomes tremendously useful in infinite-dimensional
problems where the level sets of the cost function may not be compact. Though we include
these results for the sake of completeness of presentation, our proof of convergence of the
sequence of points generated by Algorithm 1 does not make explicit use of Theorem 23.
The line of argument is similar, but our approach, as described in Theorem 27, requires
special treatment due to the projection operation, py, as defined in Equation (3.14) and the
existence of constraints.

Now, we begin the convergence proof of Algorithm 1 by showing that the Armijo
algorithm, as defined in Equation (3.10), terminates after a finite number of steps and its
value is bounded.

Lemma 24. Let o € (0,1) and g € (0,1). For every § > 0 there exists an My < oo such
that if (&) < —0 for & € X, then p(§) < My, where 0 is as defined in Equation (3.8) and
W is as defined in Equation (3.10).

Proof. Given &' € X and \ € [0, 1], using the Mean Value Theorem and Corollary 9 we have
that there exists s € (0,1) such that

J(E+AME =€) = J(€) =DJ(§ + sAE — ;A€ = 9))

< )\Dj(f,fl . f) + L)\QHfl . §H§( (488)
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Letting A(¢) = {(j,t) € T x [0,1] | U(&) = h;(z®(t)) }, then there exists a pair (j,t) €
A(E+ (¢ - 5)) and s € (0,1) such that, using Corollary 11,

T(E+AE =€) —P(E) < (E+AME =€) —P(¢)
<P (E+ME =€) — v5(6)
= Dipjs (€ + sANE = s M€ =)
< DY (66" =€) + LAIIE" — €]l
Now let us assume that ¥(£) < 0, and consider g as defined in Equation (3.8). Then

(4.89)

0(¢) = maX{DJ(S;g(f) —¢),  max D& 9(§) =€) +7\P(§)} < =9, (4.90)

(7:t)eT x[0,1]
and using Equation (4.88),
J(E+5%(9(&) =€) = J(€) —apO(E) < —(1 — a)op" +4A° L%, (4.91)

where A = max {||ull> + 1 | u € U}. Hence, for each k € N such that ¥ < (}mg“g‘s we have
that

J(&+ B5(g(&) — &) — I (&) < ap™o(g). (4.92)
Similarly, using Equations (4.89) and (4 90),
T(§+B%(g(8) =€) — V() + B*(YP(E) — ab(§)) < —6B" + 4A’ LB, (4.93)
hence for each k € N such that 8% < min { (123 %6, %} we have that
W+ B (g(6) — ) — aBO(E) < (1— F) W(E) < 0. (4.94)
If U(£) > 0 then
poax | DU&9(8) = &) < 0(§) < =, (4.95)

thus, from Equation (4.89),
W&+ B5(g(6) =€) = (&) — affO(¢) < —(1 — a)dp" + 44 L™ (4.96)
Hence, for each k € N such that 8% < (1-2)9 we have that

4A2L

U (& +B5(g(6) — &) — (&) < aB™0(€). (4.97)

i (1—a)d 1
M6 =14 max {lOgB (m ,logﬂ ; s (498)
then from Equations (4.92), (4.94), and (4.97), we get that pu(§) < My as desired. O

Finally, let
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Next, we show that the determination of the frequency at which to perform pulse width
modulation as defined in Equation (3.15) terminates after a finite number of steps.

Lemma 25. Let a € (0,1), a € (0,00), 8 € (0,1), § € < 5, ) and € € X,. If0(€) < 0
then v(§) < oo, where 0 is as defined in Equation (3.8) and v is as defined in Equation
(3.15).

Proof. Throughout the proof, we leave out the natural inclusion taking & € &, to £ € &
To simplify our notation let us denote M = p(€) and & = & + M (g(€) — €). Theorem 21
implies that there exists K > 0 such that

x
V2
where L is the constant defined in Assumption 2.

Let A(&) = {(j,t) € {1,..., Ne} x [0,1] | U(¢) = h;(2®(¢)) }, then for each pair
(4,t) € A(pn(€')) we have that

Hox(€) = 56) < KL (=) (1l + 1), (199

U (pn(€)) —W(E) =tj(pn(E)) — V(L)
< ia(pn(€)) — hja(€) (4.100)
1\" '
<KL (25 ) (1€lav +1).

Recall that & € (0,00), B € (\/ig, 1), and w € (0,1), hence there exists Ny € N such
that, for each N > Ny,

N
K () (€l +1) < -a5"0(6) (1.101)
Also, there exists N; > Ny such that, for each N > Ny,
afy < (1—w)ap™. (4.102)
Now suppose that U(£) < 0, then, for each N > Ny,

J(pn(€)) = J(€) = J(pn(8) = J(€) + J(€) = J(€)

< (™ — aB™) 8(6), (4105)

and

U(pn(€)) =¥ (pn(€)) — U(E) +T(E)
(aB™ —aB™) 0(€) (4.104)
0.

<
<
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Similarly, if U(£) > 0 then, using the same argument as above, we have that

U(pn(€)) = W(E) < (aB™ —aB™) o(c). (4.105)
Therefore, from Equations (4.103), (4.104), and (4.105), it follows that v(£) < N; as desired.
[

The following lemma proves that, once Algorithm 1 finds a feasible point, every point
generated afterwards is also feasible. We omit the proof since it follows directly from the
definition of v in Equation (3.15).

Lemma 26. Let I' be defined as in Equation (3.16) and let U be as defined in Equation
(2.32). Let {&}ien be a sequence generated by Algorithm 1. If there exists ig € N such that
U(&,) <0, then ¥(&) <0 for each i > iy.

Employing these preceding results, we can prove the convergence of Algorithm 1 to a
point that satisfies our optimality condition by employing an argument similar to the one
used in the proof of Theorem 23:

Theorem 27. Let 6 be defined as in Equation (3.8). If {&}ien is a sequence generated by
Algorithm 1, then lim;_,, 0(&;) = 0.

Proof. 1f the sequence produced by Algorithm 1 is finite, then the theorem is trivially satis-
fied, so we assume that the sequence is infinite.

Suppose the theorem is not true, then liminf; .., (&) = —25 < 0 and therefore there
exists kg € N and a subsequence {¢;, }ren such that 0(&;, ) < —¢ for each k > ky. Also, recall
that v(£) was chosen such that, given u(§),

o O — g3 > B, (4.106)

where w € (0, 1) is a parameter.

From Lemma 24 we know that there exists M}, which depends on 4, such that g#(&) >
BM5 . Suppose that the subsequence {&;, }ren is eventually feasible, then, by Lemma 26,
without loss of generality we can assume that the sequence is always feasible. Thus, given I
as defined in Equation (3.16),

J(F(§1k>) - J(flk) < (aﬁu(f) - 556”(6))6(5%)
< —waBMOs (4.107)
< —wapMs .
This inequality, together with the fact that J(&1) < J(&) for each ¢ € N, implies that
liminfy o J(&;,) = —o0, but this is a contradiction since J is lower bounded, which follows

from Condition 1 in Corollary 5.
The case when the sequence is never feasible is analogous after noting that, since the
subsequence is infeasible, then W(¢;, ) > 0 for each k € N, establishing a similar contradiction.
m
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Chapter 5

An Implementable Algorithm

In this chapter, we describe how to implement Algorithm 1 given the various algorithmic
components derived in the Chapter 4. Numerically computing a solution to the Switched Sys-
tem Optimal Control Problem defined as in Equation (2.34) demands employing some form
of discretization. When numerical integration is introduced, the original infinite-dimensional
optimization problem defined over function spaces is replaced by a finite-dimensional discrete-
time optimal control problem. Changing the discretization precision results in an infinite
sequence of such approximating problems.

Our goal is the construction of an implementable algorithm that generates a sequence
of points by recursive application that converge to a point that satisfies the optimality
condition defined in Equation (3.8). Given a particular choice of discretization precision, at
a high level, our algorithm solves a finite dimensional optimization problem and terminates
its operation when a discretization improvement test is satisfied. At this point, a finer
discretization precision is chosen, and the whole process is repeated, using the last iterate,
obtained with the coarser discretization precision as a “warm start.”

In this chapter, we begin by describing our discretization strategy, which allows us to
define our discretized optimization spaces. Next, we describe how to construct discretized
trajectories, cost, constraints, and optimal control problems. This allows us to define a
discretized optimality function, and a notion of consistent approximation between the opti-
mality function and its discretized counterpart. We conclude by constructing our numerically
implementable optimal control algorithm for constrained switched systems.

5.1 Discretized Optimization Space

To define our discretization strategy, for any positive integer N we first define the N—th
switching time space as:

L.
TN:{(7—07"'7TI€)C[O’1]|O:7—0§7—1§"'§7—k:1) |Ti_7—i—1|SQ_NVZE{la"‘ak}}7
(5.1)
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i.e. Ty is the collection of finite partitions of [0, 1] whose samples have a maximum distance
of 5. For notational convenience, given 7 € Ty, we define |7| as the cardinality of .
Importantly, notice that the sets Ty are nested, i.e. for each N € N, Ty,1 C Ty.

We utilize the switching time spaces to define a sequence of finite dimensional subspaces
of X, and X,. Given N € N, 7 € Ty, and k € {0,...,|7| — 1}, we define 7, : [0,1] = R
that scales the discretization:

1 ifte [Tk,Tk+1),
7TT t = 52
(1) {O otherwise. (5:2)
Using this definition, we define D, ,, a subspace of the discrete input space, as:
T-1 B
Drp=d€D,|d=> dpmy, dy € NIV ;. (5.3)
k=0
Similarly, we define D, ,, a subspace of the relaxed discrete input space, as:
-1~ B
Drp=deD, |d=Y dimrp, dp €5V 5. (5.4)
k=0
Finally, we define U, a subspace of the continuous input space, as:
|7|-1
U.=<ueld ‘ u = Z UpTr g, Uk € UVEk ;. (55)
k=0

Now, we can define the N —th discretized pure optimization space induced by switching vector T
as X;, = U; XD, ,, and the N-th discretized relazed optimization space induced by switching
vector T as X, = U; X D,,. Similarly, we define a subspace of X

I7|—1 |7|-1
X =S (u,d) €X |u= Y tmy, U €R™VE, andd= Y dpmrp, dp € R?VE
k=0 k=0

(5.6)

In order for these discretized optimization spaces to be useful, we need to know to show

that we can use a sequence of functions belonging to these finite-dimensional subspaces to

approximate any infinite dimensional function. The following lemma proves this result and
validates our choice of discretized spaces:

Lemma 28. Let {7 }ren with 1, € Tg.

(1) For each & € X, there exists a sequence {& }ren, with § € Xy, ,, such that & — € as
k — oo.
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(2) For each & € X, there exists a sequence {&k tren, with & € Xy, ., such that & — £ as
k — oo.

Proof. We only present an outline of the proof, since the argument is outside the scope of
this paper. First, every Lebesgue measurable set in [0, 1] can be arbitrarily approximated
by intervals (Theorem 2.40 in [26]). Second, the sequence of partitions {7x}ren can clearly
approximate any interval. Finally, the result follows since every measurable function can
be approximated in the L?-norm by integrable simple functions, which are the finite linear
combination of indicator functions defined on Borel sets (Theorem 2.10 in [26]). O

5.2 Discretized Trajectories, Cost, Constraint, and
Optimal Control Problem

For a positive integer N, given a switching vector, 7 € Ty, a relaxed control £ = (u, d) € &,

and an initial condition zy € R™, the discrete dynamics, denoted by {zg) (k) lkio C R™, are
computed via the Forward Euler Integration Formula:
2 (11) = 29(7) + (Thsr — ) f (70, 29 (), w(m), d(72)), 5.7)

VE € {0,...,|7| =1}, 29(0) = x,.

Employing these discrete dynamics we can define the discretized trajectory, 29 0,1] = R™,

by performing linear interpolation over the discrete dynamics:

O =Y (z£f> () + T (O ) — 2O m))) (D) (5.5)

=0 Tek+1 — Tk
where 7, are as defined in Equation (5.2). Note that the definition in Equation (5.8) is valid
even if 7, = 741 for some k € {0,...,|7|}, which becomes clear after replacing Equation
(5.7) in Equation (5.8). For notational convenience, we suppress the dependence on 7 in 29
when it is clear in context.
Employing the trajectory computed via Euler integration, we define the discretized cost
function, J. : X, — R:

J(€) = ho(2©(1)). (5.9)
Similarly, we define the discretized constraint function, ¥, : X;, — R:
U (&) = max h; (Z(g) (Tk))- (5.10)

JjE€T, ke{0,...,|T|}

Note that these definitions extend easily to points belonging to X ,,.

As we did in Section 2.3, we now introduce some additional notation to ensure the
clarity of the ensuing analysis. First, for any positive integer N and 7 € Ty, we define the
discretized flow of the system, ¢, : X, — R™ for each t € [0, 1] as:

bre(€) = 29(1). (5.11)
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Second, for any positive integer N and 7 € Ty, we define component constraint functions,
-1 X — R for each t € [0,1] and each j € J as:

@/Jm',t(f) = hj <¢rt(§)) (5-12)
Notice that the discretized cost function and the discretized constraint function become
JT(S) = hO (¢T,1(€))’ and \Il,’_(f) = max Q/)'I',j,’rk (g)a (513)

jeT, ke{o,...,|7I}

respectively. This notation change is made to emphasize the dependence on .

5.3 Local Minimizers and a Discretized Optimality
Condition

Before proceeding further, we make an observation that dictates the construction of our
implementable algorithm. Recall how we employ directional derivatives and Theorem 4 in
order to construct a necessary condition for optimality for the Switched System Optimal
Control Problem. In particular, if at a particular point belonging to the pure optimization
space the appropriate directional derivatives are negative, then the point is not a local
minimizer of the Relaxed Switched System Optimal Control Problem. An application of
Theorem 4 to this point proves that it is not a local minimizer of the Switched System
Optimal Control Problem.

Proceeding in a similar fashion, for any positive integer N € N and 7 € Ty, we can
define a Discretized Relaxed Switched System Optimal Control Problem:

Discretized Relaxed Switched System Optimal Control Problem Induced by
Switching Vector 7.
min {J-(¢) | W,(€) < 0}. (5.14)

56 T,r

The local minimizers of this problem are then defined as follows:

Definition 8. Fix N € N, and 7 € Ty. Let us denote an e-ball in the X -norm centered at
& induced by switching vector T by:

Nex(e)={fecXx, |||¢-¢|, <e} (5.15)

We say that a point £ € X, is a local minimizer of the Relaxed Switched System Optimal
Control Problem Induced by Swjtchlng Vector 7 defined in Equation (5.14) if ¥ (5) <0 and
there exists € > 0 such that J.(€) > J.(€) for each £ € Nox(&e)n{€e Xx,, |V, () <0}.

Given this definition, a first order numerical optimal control scheme can exploit the vec-
tor space structure of the discretized relaxed optimization space in order to define discretized
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directional derivatives that find local minimizers for this Discretized Relaxed Switched Sys-
tem Optimal Control Problem. Just as in Chapter 3.1, we can employ a first order approxi-
mation argument and the existence of the directional derivative of the cost, D.J. (proven in
Lemma 40), and of each of the component constraints, D1, ; -, (proven in Lemma 42), for
each j € J and k € {0,...,|7|} in order to elucidate this fact.

Employing these directional derivatives, we can define a discretized optimality function.
Fixing a positive integer N and 7 € Ty, we define a discretized optimality function, 0, :
X;p, — (—00,0] and a corresponding discretized descent direction, g, : X;, — Xr

0-(6) = min G(€.€),  9:(6) = arg min (&€, (5.16)
where
o, B, PP 660+ 00
oo DI (&€ — &)} +1Ig — €l iU, (6) <0, -
CT 576, - < ) 5.17
max{ max | Din (66 - ).
DIAGE — )~ WO} + € —€lx i W) >0,

\

where v > 0 is a design parameter as in the original optimality function 6, defined in
Equation (3.8). Before proceeding, we make two observations. First, note that 6.(¢) < 0
for each £ € X, since we can always choose {’ = £ which leaves the trajectory unmodified.
Second, note that at a point £ € X, the directional derivatives in the optimality function
consider directions & — ¢ with £’ € X, in order to ensure that first order approximations
belong to the discretized relaxed optimization space X, which is convex (e.g. for 0 < A < 1,
J(€) + ADJL(E: € — €) ~ J((1 = A€ + ) where (1— M€ + X' € Xy,

Just as we argued in the infinite dimensional case, we can prove, as we do in Theorem
49, that if 0,(£) < 0 for some € A, then £ is not a local minimizer of the Discretized
Relaxed Switched System Optimal Control Problem. Proceeding as we did in Chapter 3,
we can attempt to apply Theorem 4 to prove that § encodes local minimizers by employing
the weak topology over the discretized pure optimization space. Unfortunately, Theorem 4
does not prove that the element in the pure optimization space, §, € X, that approximates
a particular relaxed control §, € &,, C &, at a particular quality of approximation ¢ > 0
with respect to the trajectory of the switched system, belongs to X ,. Though the point in
the pure optimization space that approximates a particular discretized relaxed control at a
particular quality of approximation exists, it may exist at a different discretization precision.

This deficiency of Theorem 4 which is shared by our extension to it, Theorem 21,
means that our computationally tractable algorithm, in contrast to our conceptual algo-
rithm, requires an additional step where the discretization precision is allowed to improve.
Nevertheless, if we prove that the Discretized Switched System Optimal Control Problem



CHAPTER 5. AN IMPLEMENTABLE ALGORITHM 64

consistently approximates the Switched System Optimal Control Problem in a manner that
is formalized next, then an algorithm that generates a sequence of points by recursive appli-
cation that converge to a point that is a zero of the discretized optimality function is also
converging to a point that is a zero of the original optimality function.

Formally, motivated by the approach taken in [64], we define consistent approximation
as:

Definition 9 (Definition 3.3.6 [64]). The Discretized Relazed Switched System Optimal Con-
trol Problem as defined in Equation (5.14) is a consistent approximation of the Switched

System Optimal Control Problem as defined in Equation (2.34) if for any infinite sequence
{7itien and {&;}ien such that 7, € T; and & € X, , for each i € N, then

lim [0, (€) — 0(6:)| = 0. (518)
where 0 is as defined in Equation (3.8) and 0, is as defined in Equation (5.16).

Importantly, if this notion of consistent approximation is satisfied, then a critical result
follows:

Theorem 29. Suppose the Discretized Relaxed Switched System Optimal Control Problem,
as defined in Equation (5.14), is a consistent approximation, as in Definition 9, of the
Switched System Optimal Control Problem, as defined in Equation (2.34). Let {7;}ien and
{&}ien be such that 7, € T; and & € X, , for each i € N. In this case, if lim; . 6,,(&) = 0,
then lim;_,, 6(&;) = 0.

Proof. Arguing by contradiction, suppose there exists a § > 0 such that liminf; . 6(&) <
—0. Then by the super-additivity of the lim inf,
liminf 0., (&) — liminf 0(¢;) < liminf 0., (&) — 0(&;). (5.19)
1—00 1—00

1—00

Rearranging terms and applying Definition 9, we have that:
liminf 0., (&) < liminf (6,,(&) — 0(&;)) + liminf 6(&;) < —9, (5.20)
1—r 00 1— 00 1—00

which contradicts the fact that lim; ., 6,,(&) = 0. Since by Condition 1 in Theorem 17,
liminf; , 0(&) < limsup,_,. 0(&) < 0, we have our result. O

To appreciate the importance of this result, observe that if we prove that the Discretized
Relaxed Switched System Optimal Control Problem is a consistent approximation of the
Switched System Optimal Control Problem, as we do in Theorem 50, and devise an algorithm
for the Discretized Relaxed Switched System Optimal Control Problem that generates a
sequence of discretized points that converge to a point that is a zero of the discretized
optimality function, then the sequence of points generated actually converges to a point that
also satisfies the necessary condition for optimality for the Switched System Optimal Control
Problem.
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5.4 Choosing a Discretized Step Size and Projecting
the Discretized Relaxed Discrete Input

Before describing the step in our algorithm where the discretization precision is allowed
to increase, we describe how the descent direction can be exploited in order to construct a
point in the discretized relaxed optimization space that either reduces the cost (if the original
point is feasible) or the infeasibility (if the original point is infeasible). Just as we did in
Section 3.4, we employ a line search algorithm similar to the traditional Armijo algorithm
used during finite dimensional optimization in order to choose a step size (Algorithm Model
1.2.23 in [64]). Given N € N, 7 € Ty, a € (0,1), and 8 € (0,1), a step size for a point
§ € X, is chosen by solving the following optimization problem:

min{k € N | JT(E +B4(9-(§) = €)) — J-(§) < aBr0.(€),
p-(§) = U, (& + 85(9-(6) =€) < aph-(§)} if U-(§) <0, (5.21)
min{k € N[ ¥, (£ + 8(g,(€) =€) — V(&) < ap*0- (&)} if ¥, (¢) > 0.
Continuing as we did in Section 3.4, given N € N we can apply Fx defined in Equation
(3.12) and Py defined in Equation (3.13) to the constructed discretized relaxed discrete
input. The pulse width modulation at a particular frequency induces a partition in Ty

according to the times at which the constructed pure discrete input switched. That is, let
~ : X, — Ty be defined by

1 o k
_{0bu {_ - DNNON } S 62
=1 ie{l
ke{o,....2N —1}
Employing this induced partition, we can be more explicit about the range of py by stating
that py (&) € Ay (e),p for each £ € A,
Now, given given N € N, 7 € Ty, @ € (0,00), B € (\%, 1), w € (0,1), and kpax € N, a

frequency at which to perform pulse width modulation for a point £ € &, is computed by
solving the following optimization problem::

(min{k < kmax | € = €+ ﬁ‘”(g)( -(€) = £),
7' = (apr® —aph),
Jowe (pr(€)) — J2(€) < 4'0,(8),
W, e (pr(€1) <0:(€),
Vr (€, bmax) = aptF < (1—w aﬂ“f 3 if U.(6) <0, (5.23)
min{/{: < Fmax | fl =¢+ BMT(@( (§) — f)
= (apr® 045‘“)
‘Ifok(w(ﬂk( ) — W (€) < A0-(€),
©}

apt < (1 —w)asr if (&) > 0.
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In the discrete case, as opposed to the original infinite dimensional algorithm, due to the
aforementioned shortcomings of Theorem 4 and 21, there is no guarantee that the optimiza-
tion problem solved in order to determine v, is feasible. Without loss of generality, we say
that v, (§) = oo for each £ € &, when there is no feasible solution.

Importantly letting Ny € N, 75 € Ty,, and £ € &, we prove, in Lemma 53, that if
0(¢) < 0 then for each n € N there exists a finite N > Ny such that v, )(§, N +n) is
finite. That is, if 6(¢) < 0, then v, is always finite after a certain discretization quality is
reached. Observe also that the condition on ¥, when ¥, < 0 in the computation of v, is
slightly different than corresponding condition on ¥ when ¥ < 0 in the computation of v
in Equation (3.15). This more demanding condition is required in the discretized situation
in order to ensure that the discretized algorithm is able to remain feasible after becoming
feasible as the discretization quality is increased.

5.5 An Implementable Switched System Optimal
Control Algorithm

Consolidating our definitions, Algorithm 2, describes our numerical method to solve Switched
System Optimal Control Problem. Notice that note that at each step of Algorithm 2, §; €
X, p- Also, observe the two principal differences between Algorithm 1 and Algorithm 2.

First, as discussed earlier, v, maybe infinite as is checked in Line 10 of Algorithm 2, at
which point the discretization precision is increased since we know that if #(£) < 0, then v, is
always finite after a certain discretization quality is reached. Second, notice that if 8, comes
close to zero as is checked in Line 3 of Algorithm 2, the discretization precision is increased.
To understand why this additional check is required, remember that our goal in this paper
is the construction of an implementable algorithm that constructs a sequence of points by
recursive application that converges to a point that satisfies the optimality condition. In
particular, #, may come arbitrarily close to zero due to a particular discretization precision
that limits the potential descent directions to search amongst, rather than because it is
actually close to a local minimizer of the Switched System Optimal Control Problem. This
additional step that improves the discretization precision is included in Algorithm 2 to guard
against this possibility.

With regards to actual numerical implementation, we make two additional comments.
First, a stopping criterion is chosen that terminates the operation of the algorithm if 6.
is too large. We describe our selection of this parameter in Chapter 7. Second, due to the
definitions of D.J; and D), ,, for each j € J and k € {0, ...,|7|}, the optimization required
to solve 6, is a quadratic program.

For analysis purposes, we define I'; : {€ € X, | 17(€, kmax) < 00} — A&, by:

Lr(6) = Pur(ehman) (€ + 87 (g:(€) = ©)). (5.24)

We say {{;}jen is a sequence generated by Algorithm 2 if {1 = I'-,(§;) for each j € N. We
can prove several important properties about the sequence generated by Algorithm 2. First,
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letting {N; }ien, {7i}ien, and {& }ien be the sequences produced by Algorithm 2, then, as
we prove in Lemma 55, there exists 49 € N such that, if ¥, (£,) < 0, then ¥(§;) < 0 and
V.. (&) < 0 for each i > ig. That is, once Algorithm 2 finds a feasible point, every point
generated after it remains feasible. Second, as we prove in Theorem 57, lim; ., 6(;) = 0
for a sequence {{;};jen generated by Algorithm 2, or Algorithm 2 converges to a point that
satisfies the optimality condition.
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Algorithm 2 Numerically Tractable Algorithm for the Switched System Optimal Control
Problem

Require: Ny € N, 7y € Ty, &0 € Xy, @ € (0,1), @ € (0,00), B € (0,1), B € (A 1>’

e e e
Ll v

[t
ot

V2
v € (0,00),n €N, A€ (0,00), x € (0,3), we (0,1).

Set 7 = 0.
Compute 0, (&;) as defined in Equation (5.16).
if 0. (&) > —A27"i then
Set &1 =&, Njs1 = Nj+ 1, 7541 = on,, (&)
Replace j by j + 1 and go to Line 2.
end if
Compute g, (&;) as defined in Equation (5.16).
Compute i, (&;) as defined in Equation (5.21).
Compute v, (&5, N; +n) as defined in Equation (5.23).
if v (&, Nj +n) = oo then
Set &j41 =, Njs1 = N; + 1, i1 = o, (§11)-
Replace j by j + 1 and go to Line 2.
: end if
2 Set a1 = P8y (& + 87 995,(&) = &)y Njpa = max {Nj, vy, (&, N; + 1)},

Ti+1 = ONj 14 (§j+1)'

: Replace j by j + 1 and go to Line 2.
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Chapter 6

Proving the Convergence of the
Implementable Algorithm

In this chapter, we derive the various components of Algorithm 2 and prove that Algorithm
2 converges to a point that satisfies our optimality condition. Our argument proceeds as
follows: first, we prove the continuity and convergence of the discretized state, cost, and
constraints to their infinite dimensional analogues; second, we construct the components of
the optimality function and prove the convergence of these discretized components to their
infinite dimensional analogues; finally, we prove the convergence of our algorithm.

6.1 Continuity and Convergence of the Discretized
Components

In this subsection, we prove the continuity and convergence of the discretized state, cost,
and constraint. We begin by proving the boundedness of the linear interpolation of the Euler
Integration scheme:

Lemma 30. There exists a constant C' > 0 such that for each N € N, 7 € Ty, £ € &,
and t € [0, 1],
19@ll, <c (6.1)

Proof. We begin by showing the result for each ¢ € 7. By Condition 1 in Assumption 1,
together with the boundedness of || f(0,z0,0,¢;)||2 for each i € Q, there exists a constant
K > 0 such that, foreach N e N, 7€ Ty, { € A, i€ Q,and k € {0,..., |7},

17 (2O utr), €, < K (120l + 1) 6:2)
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Employing Equation (5.7) and the Discrete Bellman-Gronwall Inequality (Exercise 5.6.14 in
[64]), we have:

k
|=© @, < ol + %ZZHf 7 29(m) u(m). @)

=1

2N (6.3)
qK
< (lrolla + 1) 1+—2N)

< e (Jzoll2 + 1),

thus obtaining the desired result for each ¢ € 7.
The result for each t € [0, 1] follows after observing that, in Equation (5.8), <ﬂ> <

Tk+1—Tk

1 for each t € [1g, Tk41) and k € {0,...,|7|}. O

In fact, this implies that the dynamics, cost, constraints, and their derivatives are all
bounded:

Corollary 13. There exists a constant C' > 0 such that for each N € N, 7 € Ty, 7 € J,
and £ = (u,d) € X, ,.:

(1) @) [[£(t290), ut),db)]l, < C,
b) |55 (8 29 (), u(
c) ||6f t, 2(t), u(t),
®)] <

(2) a) |h0(

b) || G2 (z9m)| <C,

(3) a) [h(z00)] <
b) |5 (29t)

Proof. The result follows immediately from the continuity of f, g—f;, gi ; hoy 5 8h0 , hj, and =2 ah
for each j € J, as stated in Assumptions 1 and 2, and the fact that the arguments of these
functions can be constrained to a compact domain, which follows from Lemma 30 and the

compactness of U and X{. ]

Q

C.

IN

2

Next, we prove that the mapping from the discretized relaxed optimization space to
the discretized trajectory is Lipschitz:

Lemma 31. There exists a constant L > 0 such that, for each N € N, 7 € Ty, &1,& € X,
and t € [0,1]:

[076(§1) — Pre(&2)ll2 < Ll&1 — &l (6.4)
where ¢1(§) is as defined in Equation (5.11).
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Proof. We first prove this result for each ¢ € 7. For notational convenience we will define
AT; = Tj41 — 7. Letting & = (u1,dy) and & = (ug, dy), notice that for j € {0,..., || — 1},
by Equation (5.7) and rearranging the terms, there exists L' > 0 such that:

||¢777j+1(§1) - ¢777j+1(€2)”2 - H¢TvTj <€1) - ¢T77j(€2)”2 <
< AT f (755 Grry (1), ua (1), da (7)) = F (755 rry (2), ua(75), da(75)) ||,

L/
< 2—NH¢T@- (&1) = &rry ()], + L'AT; (lua (1) — ua(7) 2 + lda (1) — da(75)]l2),
(6.5)
where the last inequality holds since the vector field f is Lipschitz in all of its arguments, as
shown in the proof of Theorem 3, and A7; < 2LN by definition of Ty.
Summing the inequality in Equation (6.5) for j € {0,...,k — 1} and noting that
¢T,TO (51) = ¢T,7'0 (62):

I/ k—1 k—1
|67 (60) = brn €], < 37 D 6y (€0) = by )], + L' D AT llua (75) = (), +
j=0 j=0
k—1
+ L'y AT di(ry) = da(7;)], - (6.6)
j=0

Using the Discrete Bellman-Gronwall Inequality (Exercise 5.6.14 in [64]) and the fact that

(1+ &) <ot

|7|—1 |7]—1
Irr (€1) = Drr (&), < L'eX [ D ATy lua(my) = wa(my)lly + Y A7y ldi(75) = da(7)l,
j=0 =0
I7|-1
< L'e* > A7 [lur (1) — ua(7) 5+
§=0

|7|-1

| D A () — da(7)l3
j=0

= LH& - £2HXv
(6.7)
where L = L'e”, and we employed Jensen’s Inequality (Equation A.2 in [54]) together the
fact that the Xnorm of £ € &, can be written as a finite sum.
The result for any t € [0, 1] follows by noting that ¢, () is a convex combination of

brm (&) and @7, (§) for some k € {0,..., || —1}. O

As a consequence, we immediately have the following results:
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Corollary 14. There exists a constant L > 0 such that for each N € N, 7 € Ty, & =
(Ul,dl) S Xﬁr, fg = (UQ,dQ) € XTW and t € [O, 1]

D) [f(t dra(r), ua(t), da(t) = f(E, Pra(62),u 2(1)) ||, <
< L(||& — §2||X + ||U1( ) = ua(t)lly + [|du(t) — da(t)]l),
2) (|32 (0l w0, () = S (060 w0, (1), <
< L(||51 Eoll + Hul( > —us()]ly + [lda(t) — da(®)],),
) 12 (1 6 1) (1) — L (1, 600(60), wale) o), <

< L(H& = &lly + llua(t) — ua()ll, + [ldi (t) — da(t)]1,).
where ¢1(§) is as defined in Equation (5.11).

Proof. The proof of Condition 1 follows by the fact that the vector field f is Lipschitz in all
its arguments, as shown in the proof of Theorem 3, and applying Lemma 31. The remaining
conditions follow in a similar fashion. O]

Corollary 15. There exists a constant L > 0 such that for each N € N, 7 € Ty, & =
(Ul,dl) € Xr,r; fg = (u2,d2) S Xr,r; j € ._7, andt € [O, 1]

) 1o (¢r1(€1)) = ho(r1(£))]| < L1161 — &l

@) || %2 (6:a(6) — 22 (0ra(@)]|, < LIl — &l
) |h(6re(61)) = i (6r4(&2))| < L& = &l

(@) |52 (6nele0)) = 52 (9ra@)|, < Lll&2 — &l

where ¢1(§) is as defined in Equation (5.11).

Proof. This result follows by Assumption 2 and Lemma 31. O

Even though it is a straightforward consequence of Condition 1 in Corollary 15, we
write the following result to stress its importance.

Corollary 16. Let N € N and 7 € Ty, then there exists a constant L > 0 such that, for
each fla 52 € XT,T :

| Jr(&1) = J-(&)| < L& — &l (6.8)
where J; is as defined in Equation (5.9).

In fact, W, is also Lipschitz continuous:
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Lemma 32. Let N € N and 7 € Ty, then there exists a constant L > 0 such that, for each
§1,8 € &,
W (6) — W (&)] < L&) — Eall (6.9)

where U, is as defined in Equation (5.10).

Proof. Since the maximum in ¥, is taken over J x k € {0, ...,|7|}, which is compact, and
the maps (j,k) — ¢, (§) are continuous for each £ € &, we know from Condition 3 in
Corollary 15 that there exists L > 0 such that,

Vo (61) — U, (&) = max Vrjim, (§1) — max Vrjim (§2)

(4,k)eT x{0,....,|7|} (4,k)eT x{0,...,|T|}
< o — 6.10
— (],k)eg:(a{)o( ..... |7_|}/¢} 5Jy k(gl) w 5J k(£2) ( )
< L& — &llx -
By reversing &; and &, and applying the same argument we get the desired result. O

We can now show the rate of convergence of the Fuler Integration scheme:

Lemma 33. There exists a constant B > 0 such that for each N € N, 7 € Ty, £ € &,
and t € [0, 1]:
B
|29 - 29(0)], < 5 (6.11)
where ) is the solution to Differential Equation (2.29) and 29 s as defined in Difference
Equation (5.8).

Proof. Let £ = (u,d), and recall that the vector field f is Lipschitz continuous in all its
arguments, as shown in the proof of Theorem 3. By applying Picard’s Lemma (Lemma 5.6.3
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in [64]), we have:

|90 - 2O, < e [ |

dz(©
ds

ds

2

(5) = f(s5.29(s), u(s). d(s))

f (Tk, 28 (7%), u(T8), d(Tk)) +

oy ( 2O () + T (2O () +

Te+1 — Tk

ds

2

— Z(é) (Tk)) s U(Tk), d(Tk))

|7|-1 Tht1
<163 (1 1o 2wt ) ) (s =)

|7|-1

1 B
< oy Lef1+0) Y (e — ™) = o
k=0
(6.12)
where C' > 0 is as defined in Condition 1 in Corollary 13 and, B = (1 + C)Le’, and we used
the fact that 7,1 — 7 < 2LN by definition of Ty in Equation (5.1). O

Importantly we can show that we can bound the rate of convergence of this discretized
cost function. We omit the proof since it follows easily using Assumption 2 and Lemma 33.

Lemma 34. There exists a constant B > 0 such that for each N e N, 7 € Ty, and § € X,

17(6) = )] < o (6.13)

where J is as defined in Equation (2.31) and J; is as defined in Equation (5.9).
Similarly, we can bound the rate of convergence of this discretized constraint function.

Lemma 35. There exists a constant B > 0 such that for each N € N, 7 € Ty, and £ € X,

0, (€) ~ W(E)] < o (6.14)

where V is as defined in Equation (2.32) and ¥, is as defined in Equation (5.10).

Proof. Let C' > 0 be as defined in Condition 1 in Corollary 1, and let L > 0 be the Lipschitz
constant as specified in Assumption 2. Then, using the definition of 7y in Equation (5.1),
for each k € {0,...,|7| — 1} and t € [7%, Thy1),

|h; (x(@(t)) — h; ((L’('E)(Tk»‘ < L/ Hf(s,x(f)(s),u(s),d(s))H2dS < g—g (6.15)
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Moreover, Condition 3 in Assumption 2 together Lemma 33 imply the existence of a constant

K > 0 such that: %

Employing the Triangle Inequality on the two previous inequalities, we know there exists a
constant B > 0 such that, for each t € |7y, Tp11],

|h; (29 (2)) — h; (29 (1)) ] < o (6.17)

Let ' € argmax,cp h;(¢©(t)), and let x(') € {0,...,|7] — 1} such that ¢ €
[Tn(t’); Tn(t’)+1:| . Then,

B
g{?)f] h; (x(é) () — ke%(r)l,.a.t.:j(\ﬂ} h; (z(f) (16)) < hy (x(g) ) — hy(z© (o)) < oN (6.18)
Similarly if ' € argmaxycro -3 P (2®(7x)), then
B
pehax hi (29 (1) — mmax hi(29(t)) < hy(z9(m)) — by (29 (m)) < o (6.19)
This implies that:
U(€) — U, (¢) < max | max h; (z9(t)) — max h;(29(n)) | < b (6.20)
= jeg \tepy) ke{o,.. |7} * — N’
B
N < O ) () < B ,
()~ 0(©) < e (1, (20(m)) — max i (490) ) € 7 (620)
which proves the desired result. O]

6.2 Derivation of the Implementable Algorithm
Terms

Next, we formally derive the components of the discretized optimality function, prove the
well-posedness of the discretized optimality function, and prove the convergence of the dis-
cretized optimality function to the optimality function. We begin by deriving the equivalent
of Lemma 7 for our discretized formulation.

Lemma 36. Let N e N, 7 € Ty, £ = (u,d) € X,,., & = (W, d') € X, and ¢, be as defined
in Equation (5.11). Then, for each k € {0,...,|T|}, the directional derivative of ¢r,, as
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defined in Equation (3.3), is given by
k—1 of
D¢T Tk f 5 Z Tj+1 - T] (Tk’a 7_j-ﬁ-l) (% (Tja ¢T,Tj (5)7 U(Tj)v d(Tj))ul(Tj)+
7=0
q
#3700 Ol ) ) ) (622
i=1
where @@(Tk, 7;) s the unique solution of the following matriz difference equation:

OO (111, 75) = O (70, 7)) + (Ths — Th —(Tk, Grom () u(T), d(7i)) @) (73, 7)),
o (6.23)
=1,

s )(TJ7TJ)
for each k € {0,...,|7| —1}.

Proof. For notational convenience, let 2 = 2D 4N = ¢ 4 i/, and dV = d + \d.
Also, let us define AzN = 2N — 2 thus, for each k € {0,...,|7|},

A=V () = (51 = 1) (F (73 200, w2 (7), a0 (7)) = (75,2 (73), u(ry), d(7) )

k?
= O

= (Tj41 — ()\Zd ;) f T], (j),u(A)(Tj),el-)—i—

0

<.
I

0
+ 3—£(Tj> 29(1)) + vy A2V (75), uM (1), d(75)) A2V (7)) +
of

(

AL
+ ou

7, 29 (13), u(1y) + vl (75), d(%’))“'(%’)) :
(6.24)
where {VM}‘Tlo C [0 1] and {Vu]}mo C [0, 1].
Let {y(Tk) k::O be recursively defined as follows:

Y(Trr1) = y(1x) + (Tha1 — %) (% (Tk, 2O (1), ul(m), d(Tk))y(Tk)+

—l—%(m, 2O () (), d(m) ) (70) + Z & () f (7, 29 (1), u(m), 61')) 7

=1

y(m0) =0.
(6.25)
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We want to show that % — y(7) as A L 0. Consider:

’ gi (ks 2 (), ulmy), d(m) )y (i) — %(Tk>z(£)(7k>+
™
RN E s T
<L Hy(Tk) _ A2 (m) +
)\ 2

+ L ([|AN @l + Ml (7)) Tyl

which follows by Assumption 1 and the Triangle Inequality. Also,

H( ”’OW“WMMM—%hmemmH

< LA/ ()5, (6:27)

2

+ vy A (T8, d(Tk))) u'(71)

and

Zd/ Tk ( Tk, 2 )( k),u(m),ei)—l—
— f (7 2V (1), uM (1), H < LAz (@), + LA W ()]l - (6.28)

Hence, using the Discrete Bellman-Gronwall Inequality (Lemma 5.6.14 in [64]) and the in-
equalities above,

AZ(A) (Tk)
A

< LF Y (ry -7 @mzem+wmemmm+

H?J(Tkz) -
+ A (75) ||2 + HAZ A (7 H2 + A ||u'(7j)||2) (6.29)

L
where we used the fact that (1 + QLN) 2V < ek, But, by Lemma 31, the right-hand side of
Equation (6.29) goes to zero as A | 0, thus obtaining that

= y(7%). (6.30)
The result of the first part of the Lemma is obtained after noting that D¢, ., (£;¢') is equal

to y(r) for each k € {0,...,|7|}.
[l
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Next, we prove that D¢, ., is bounded by proving that ®¢ is bounded:

Corollary 17. There exists a constant C' > 0 such that for each N € N, 7 € Ty, £ € &,
and k,1 € {0,...,|7|}:
|29 (7, )|, , < C, (6.31)

where (I)S—g)(Tk, 7)) is the solution to the Difference Equation (6.23).
Proof. This follows directly from Equation (6.23) and Condition 1 in Corollary 13. ]

Corollary 18. There exists a constant C' > 0 such that for each N € N, 7 € Ty, € € X,,,
g eX, and k€ {0,...,|7|}:

1 D677, (& €Ny < ClIE (6.32)
where Do, -, (§;€') is as defined in Equation (6.22).

Proof. This follows by the Cauchy-Schwartz Inequality together with Corollary 13 and Corol-
lary 17. O

We now show that CI>(T£) is in fact Lipschitz continuous.

Lemma 37. There exists a constant L > 0 such that for each N € N, 7 € Ty, &,& € X7y,
and k,1 € {0,...,|7|}:

|8 (rx, 1) — ) (e, )|, < L l1r = &l (6.33)

where ® is the solution to Difference Equation (6.23).

Proof. Let & = (uy,d;y) and & = (ug,dy). Then, using the Triangle Inequality:

|2 m) -2 ()| | <
2,2
k—1
0
<Y (rin —7) (Ha—f< 2O (5) ua(r) do(r)| @07 )+
=0 0,2
of (6.34)
— <I>§2)(Ti, Tj) ||i,2 + H % (TZ', Z(gl)(ﬁ)7 Ul(Tz'), dl(TZ>)+
0
- a_i (Ti> Z(&)(Ti)? u2(7—i)7 dQ(TZ)) ||(I)'(r£1)(7—i7 Tj) Hi,Z) :
7,2

The result follows by applying Condition 1 in Corollary 13, Condition 2 in Corollary 14,
the same argument used in Equation (4.5), and the Discrete Bellman-Gronwall Inequality
(Exercise 5.6.14 in [64]). O
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A simple extension of our previous argument shows that D¢, ,, (€, ) is Lipschitz con-
tinuous with respect to its point of evaluation, &.

Lemma 38. There exists a constant L > 0 such that for each N € N, 7 € Ty, &1,& € X;,
¢ eX, and k€ {0,...,|7|}:

1D67.7(61;6) = Dz (§2: )M, < L 16 = &l 1€ 2 (6.35)
where Do, . is as defined in Equation (6.22).

Proof. Let & = (uy,dy), & = (ug,ds), and ¢ = (u/,d’). Then, applying the Triangle
Inequality:

||D¢T,Tk (517 5/) - ngT,Tk (§27 €/> HQ < (Tj-‘rl - Tj) (llq)ggl)(ﬁﬂ? Tj+1)+

N
—_

j=0
(&) Of (e /
— @7 (Tk,Tj+1)HZ~,2 %(Tj,z (Tj)aul(Tj)adl(Tj)) ||U(Tj)||2+
7,2
of

+ ||(I)§2)(Tk77—j+1)||z’,2

0
_ 8_£ (15, 2(75), ua (7). do(75))

5 (T3 A0(15), w1 (1), i (75)) +

q
' ()l + D (| @8 (7 1)+
2,2

=1
— @ (g, 1) ||, ([ (73 21 (73)s wn () ) | el ()|

[0 (7, i) (| (730 250 (1), wa (1) €5) = f (75, 252 (1), wa (1) €) | | (7))

(6.36)
The result follows by applying Lemma 37, Corollary 17, Condition 1 in Corollary 1, Condi-
tions 1 and 3 in Corollary 14, and the same argument used in Equation (4.5). O

Employing these results, we can prove that D¢, , (£;¢’) converges to Dg,, (§; ') as the
discretization is increased:

Lemma 39. There exists B > 0 such that for each N € N, 7 € Ty, £ € &, £ € X, and
ke{o,...,|7|}:

106, (6:€) ~ Db (GE, < (6.37)

where D¢, and Do, ,, are as defined in Equations (4.10) and (6.22), respectively.
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Proof. Let £ = (u,d), & = (v,d’). First, by applying the Triangle Inequality and noticing
that the induced matrix norm is compatible, we have:

D6, (& €) = Dérr ()|, <
Lo

<> / (H@@(m 5) = 89 (1, 7540)| 10
j=0"YTi

% (3’ x(g)(s), u(7;), d(Tj))+

of

%(Tj7z(£)(7—j)>u(7—j)7d(Tj)) +

02

+ (129 9],

of
- %(TﬁZ(S)(Tj)au(Tj)ad(Tj))

) [ ()l dis+
1,2

+ ; /:Hl z_; <Hq)(£)(7'k, | |o 1 (5,29 (s), ulry), e0) = [ (75,219 (1), ulry), ) ||, +

+ |29 (11, 8) = @ (7, 40 ||, || (75 Z(g)(Tj%U(Tj),ez‘)HQ) |d; ()| ds.

(6.38)
Second, let x(t) € {0,...,|7|} such that ¢t € [7.), Tw@)+1) for each t € [0,1]. Then,
there exists K > 0 such that
129(s) = 2 (7o) || < (|9 (5) = 29 (5)| + [|219(5) = 2 (7o)
< [|29(s) = 29| + (5 = 7)) C (6.39)
K
S 2_]\7’

where C' > 0 is as in Condition 1 in Corollary 13, and we applied Lemma 33 and the definition
of Ty in Equation (5.1).

Third, in a fashion similar to how we defined our discretized trajectory in Equation
(5.8), we can define a discretized state transition matrix, % for each k € {0,...,|7|} via
linear interpolation on the second argument:

Ir|-1

~ t— T

OO (7, 1) = ) (‘I’@(Tkﬁj) + % (@8 (ks 1) — ‘I’g)(TkaTj))) mrg(t).  (6.40)
= 1T

where 7, ; is as defined in Equation (5.2). Then there exists a constant K’ > 0 such that for
each ¢t € [0, 1]:

[ (71, 8) = @O (7o), < @O, 6) = 8O ()| +
N ’ O (70, 8) — 39 (i, 7)) H 2 (6.41)
K |

§2_N’
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where the last inequality follows by an argument identical to the one used in the proof of
Lemma 33, together with an argument identical to the one used in Equation (6.39).
Finally, the result follows from Equation (6.38) after applying Condition 1 in Corollary
13, Corollary 7, Conditions 1 and 3 in Corollary 14, Equations (6.39) and (6.41), and the
same argument as in Equation (4.5). O

Next, we construct the expression for the directional derivative of the discretized cost
function and prove that it is Lipschitz continuous.

Lemma 40. Let N e N, 7 € Ty, £ € X, £ € X, and J, be defined as in Equation (5.9).
Then the directional derivative of the discretized cost J, in the £ direction is:

8h0

DJT<€;£/> (¢T 1(6))D¢T,1(£;€/)' (642>

Proof. The result follows using the Chain Rule and Lemma 36. ]

Corollary 19. There exists a constant L > 0 such that for each N € N, 7 € Ty, &1,& € &7,
and £ € X, :
|DJ;(§1;€") — DI (€36 < L& — Sl Inll 4 (6.43)

where DJ; is as defined in Equation (6.42).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

: (51; 77) - D¢T,1(52§ 77)”2 +
8h0

DJ(61:€) — DU, (6 \<H— (6r1(1))
2
qEs

(Cbﬂ(fl)) - (¢71(§2)) , : (§2§77)||2- (6.44)

The result then follows by applying Condition 2 in Corollary 13, Condition 2 in Corollary
15, Corollary 18, and Lemma 38. O

In fact, the discretized cost function converges to the original cost function as the
discretization is increased:

Lemma 41. There exists a constant B > 0 such that for each N € N, 7 € Ty, € € X, ,,
and ' € X, :
B
DI (&) = DIEE)] < o

where DJ is as defined in Equation (4.30) and DJ, is as defined in Equation (6.42).

(6.45)
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Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

DJ,(6:€') - DI(E: ) |<]% ()| 1Dor(e:e) = Do, +

oh oh
H—O P1(§ ——0(@1( £))
2

(&), (6.46)

Then the result follows by applying Condition 2 in Assumption 2, Condition 2 in Corollary
1, Lemma 33, Lemma 39, and Corollary 18. O

Next, we construct the expression for the directional derivative of the discretized com-
ponent functions and prove that they are Lipschitz continuous.

Lemma 42. Let N € N, 7 € Ty, § € &X,,, & € X, j € T, and Y., be defined as
in Equation (5.12). Then the directional derivative of each of the discretized component

constraints 1y ; -, for each k € {0,...,|7|} in the & direction is:
Oh;
Diprjin(&€) = 52 (972 (€)) Db (6:€): (6.47)
Proof. The result is a direct consequence of the Chain Rule and Lemma 36. ]

Corollary 20. There exists a constant L > 0 such that for each N € N, 7 € Ty, &1,& € Xr .,
g eX, and k€ {0,...,|7|}:

| D (€15 €7) = Dibrjir (€23 €N < L 161 — Sall o €] » (6.48)
where D, ; 5. is as defined in Equation (6.47).

Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

a .
DY, jr (€1, €) — Dby i (€0;€)] < H% (Grme (€| IDrr, (61;€)) — Doy (€0, €N, +
2

||D¢T,Tk (527 6/) ||2 . (649)

2

Oh.: Oh,;
+ Ha_xj(qb'r,rk (51)) - a—mj<¢7—7m (52)>

The result then follows by applying Condition 3 in Corollary 13, Condition 4 in Corollary
15, Corollary 18, and Lemma 38. O

In fact, the discretized component constraint functions converge to the original com-
ponent constraint function as the discretization is increased:

Lemma 43. There exists a constant B > 0 such that for each N € N, 7 € Ty, £ € &,
geX,jed,andkeA{0,... |7|}:

Dy (6:€) — Dy (EE)] < o (6.50)

where Di); -, is as defined in Equation (4.33) and Dy, j ., is as defined in Equation (6.47).
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Proof. Notice by the Triangle Inequality and the Cauchy Schwartz Inequality:

DY, 7 (&) — Dy, (6] < H— (0, ( )) (& €)= Drry (6, +

H——@k %%@w@»

D77, (&5 €l - (6.51)
2

The result follows by applying Condition 4 in Assumption 2, Condition 3 in Corollary 1,
Lemma 33, Lemma 39, and Corollary 18. O

Given these results, we can begin describing the properties satisfied by the discretized
optimality function:

Lemma 44. Let N € N, 7 € Ty, and (, be defined as in Equation (5.16). Then there exists
a constant L > 0 such that, for each &,£,€ € X,

‘CT<£17€/) _CT(€27£/)‘ < LHgl _£2HX- (652)
Proof. Letting U1 (¢) = max{0, ¥, (£)} and ¥_ (&) = max{0, —¥.(£)}, observe:

CT(£7€,) = maX{DJT(f; 5/ - 5) - \Ilj(f),
max D (§E€ — &) =€)} + 1€ — €l (6.53)

JeT, ke{0,...,|7]}

Employing Equation (4.38):

G- (61,€) = (&, €)] < maX{{DJr(&;f/ — &) = DJ (&€ — &)| + |V (&) — Ui (&),

|Dw7']7'k 51’5 61) D¢T7j77k(€2;§,_€2)} +7‘\P;(£2) _\Ij;(gl)}}+
+ 1€ = &lle — 1€ — &llx]-

jeT, ke{o ,,,,, I}

(6.54)
We show three results that taken together with the Triangle Inequality prove the desired
result. First, by applying the Reverse Triangle Inequality:

1€ = &llx — 1€ = &llx] < 16 — &« (6.55)

Second,

IDJ-(&15¢ — &) = DJ(E:€" — &)| = [DJ(&1;€ — &) — DI (&€ — &) + DJ (&6 — &)
< |DJ-(&1;€) — DJ-(6;€) |+
+ |DJ (&1;61) = DJ (& 6) |+

0
ho (¢71(§2))D¢T71(§2; & — &)

<L|& - 52||X, (6.56)
.
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where I > 0 and we employed the linearity of D.J,, Corollary 19, the fact that ¢ and
& are bounded since &', & € A, the Cauchy-Schwartz Inequality, Condition 2 in Corol-
lary 13, and Corollary 18. Notice that by employing an argument identical to Equation
(6.56) and Corollary 20, we can assume without loss of generality that |Dz/1m-,7,c (&;8 = &) —
Dty 7 (E2; € — §Q)| < L||& — &||5- Finally, notice that by applying Lemma 32, ¥ (&) and
U () are Lipschitz continuous. O

Employing these results, we can prove that (;(&;¢&') converges to ((&;€') as the dis-
cretization is increased:

Lemma 45. There exists a constant B > 0 such that for each N € N, 7 € Ty, and
£, e X,

B
where ( is as defined in Equation (3.9) and (. is as defined in Equation (5.17).

Proof. Let ¥t (§) = max{0,¥(£)}, U () = max{0,V.(§)}, T (§) = max{0,—¥(£)}, and
V- (€) = max{0,—¥,(£)}. Notice that we can then write:

((6.€) = max {DJ(@ € )~ W), max Dun(&:E —€) - vwé)} .

JET, te[0,1]

(6.58)
and similarly for (,(¢,¢'). Employing this redefinition, notice first that by employing an
argument identical to the one used in the proof of Lemma 35 we can show that there exists
a K > 0 such that for any positive integer N, 7 € Ty and £ € &,

K K
WHE - W O] < o and |UE() - (O] < o (659
Let s(t) € {0,...,|7|} such that t € [T.q), Tw@)+1) for each ¢ € [0,1]. Then there exists
K’ > 0 such that,
Oh;
DU = &) = Dy (656 ) < | FEO) - G2 (0000 (©) | ID0EE — O+
2

|G| Do - o0+

- ngm(t) (& =9l

< '([Jou®) = ¢r, ()| +
+||Poue € - &)~ Dos, , (66 - 9)||)
e
< oN

(6.60)
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where C” > 0 is a constant obtained after applying Corollary 8, Condition 4 in Assumption 2,

and Condition 3 in Corollary 1, and the last inequality follows after noting that both terms

can be written as the integral of uniformly bounded functions over an interval of length

smaller than 27~. Thus, by the Triangle Inequality, Lemma 43, and Equation (6.60), we
know there exists B > 0 such that for each ¢ € [0, 1]:

B

Dy i (&€ — &) — Dorjir, (66 = )| < o (6.61)

Moreover, if t' € arg max,co 1 D;+(&; " — ), then

B
max Dy (6 €' —6) = max Dy (66 —6) < Dy (666 =Dibny (6. -8) < 5.

te[0,1] ke{0,...,|7}
(6.62)

.....

Similarly if " € argmaxyc( |-y D¥rjr (6 =€), then

B
¢T] Tk (5 5 5) tgl[gd}f} ij,t (57 5, - 5) S DwT,j,Tk/ (ga gl - f) D¢] Tyt (5 5 f) = 2N

ke{o .....
(6.63)
Therefore, by Equation (6.62),
D - - D T5J,T, ) - <
jed tep.] ia& & =) JET, e o]} Yrim (&8 =8 <
B
< mox (max DUs(G€ ~ ) = max Dby (€ - ) < oy (06
and similarly, by Equation (6.63),
Dib, . (66 —€) — Di, (€6 — €) <
jea By D G828 7 g PYalBiE O <
B
< < — .
< (s DU (66— 6) - max Du(6€ — 9) < gy, (669

Employing these results and Equation (4.38), observe that:

16-(€,€") = ¢(&, &) < maX{IDJT(&é’ —&) = DJ(&E = I+ |TH(E) — (g,

max Do (66— &) — max D6 — S‘Jrﬂ‘lf \IJT<5>|}. (6.66)

JET, k€{0,..,|7|} JjeT, t€(0,1]
Finaly, applying Lemma 41 and the inequatlities above, we get our desired result. O]

(; is in fact strictly convex just like its infinite dimensional analogue, and its proof is
similar to the proof of Lemma 14, hence we omit its details.
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Lemma 46. Let N € N, 7 € Ty, and £ € X.,,. Then the map £ — ((&,¢'), as defined in
FEquation (5.17), is strictly convex.

Theorem 47 is very important since it proves that g,, as defined in Equation (5.16), is a
well-defined function. Its proof is a consequence of the well-known result that strictly-convex
functions in finite-dimensional spaces have unique minimizers.

Theorem 47. Let N € N, 7 € Ty, and § € X, ,. Then the map £ — ((€,¢'), as defined in
Equation (5.17), has a unique minimizer.

Employing these results we can prove the continuity of the discretized optimality func-
tion. This result is not strictly required in order to prove the convergence of Algorithm 2
or in order to prove that the discretized optimality function encodes local minimizers of the
Discretized Relaxed Switched System Optimal Control Problem. However, this is a fun-
damental result from an implementation point of view, since in practice, a computer only
produces approximate results, and continuity gives a guarantee that these approximations
are at least valid in a neighborhood of the evaluation point.

Lemma 48. Let N € N and 7 € Ty, then the function 0., as defined in Equation (5.16), is
continuous.

Proof. First, we show that 6, is upper semi-continuous. Consider a sequence {; };eny C Xy,
converging to £ € X, and & € X, ,, such that 0.(¢) = (- (&£, ¢), ie. £ = g,(&), where g is
defined as in Equation (5.16). Since 6.(&;) < (- (&,¢) for all i € N,

limsup 6, (€;) < limsup ¢,(€,€) = G(€,€) = 6,(6), (6.67)

1—00 1—00

which proves the upper semi-continuity of 6.

Second, we show that 6, is lower semi-continuous. Let {{}ien C X, such that 6,.(&;) =
(&, 8D, 1.e. & = g-(&). From Lemma 44, we know there exists a Lipschitz constant L > 0
such that for each i € N, (- (£, &) — (+(&, &) < L||§ — &l 5. Consequently,

Taking limits we conclude that

1—00
which proves the lower semi-continuity of 6., and our desired result. n

Next, we prove that the local minimizers of the Discretized Relaxed Switched System
Optimal Control Problem are in fact zeros of the discretized optimality function.

Theorem 49. Let N € N, 7 € Ty, and 0, be defined as in Equation (5.16), then:

(1) 0, is non-positive valued, and
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(2) If € € X, is a local minimizer of the Discretized Relaxed Switched System Optimal
Control Problem as in Definition 8, then 0,.(§) = 0.

Proof. Notice (-(&,&) = 0, therefore 0,(£) = mingcx,, (+(£,&) < (-(£,€) = 0. This proves
Condition 1.
To prove Condition 2, we begin by making several observations. Given ¢ € A,
and A € [0, 1], using the Mean Value Theorem and Corollary 19 we have that there exists
€ (0,1) and L > 0 such that

Tr(E+ME =€) = Jr(6) = DI (€ + sA(E = € M€ —€)) (6.70)
< ADJ (&€ =€) + LN|¢' = €3
Letting A-(¢) = {(j, k) € T x{0,.... |7} | ¥+ (&) = h;(2©(74)) }, similar to the equation
above, there exists a pair (j,k) € A(f R (S 5)) and s € (0,1) such that, using Corollary
20,
< wﬂ',j,‘rk (5 + /\<€/ - f)) - wﬂjﬂ'k (5)
= Dtprjm, (€ + SAE =€) ME =€)
< ADYr i (€€ =€) + LA — ][5
We prove Condition 2 by contradiction. That is we assume £ € X, ), is a local minimizer
of the Discretized Relaxed Switched System Optimal Control Problem and 0,(§) < 0 and
show that for each € > 0 there exists £ € {{ € A, | U, (€) < 0}NN; (&, ) such that J,(§) <
J-(§), where N; x(&,¢) is as defined in Equation (5.15), hence arriving at a contradiction.
Before arriving at this contradiction, we make two more observations. First, notice
that since { € &, is a local minimizer of the Discretized Relaxed Switched System Optimal
Control Problem, ¥, (£) < 0. Second, consider g, as defined in Equation (5.16), which exists
by Theorem 47 and notice that since 6,(£) < 0, g,(&) # &.
Next, observe that:

(6.71)

97'(5) = ma‘X{DJT(g;gT<€) - 6)7

(j,k)egf% ..... |T|}DwT’jka(53gf(f) —&) + ’Y‘I’T(f)} +1lg-(€) = €lly < 0. (6.72)

For each A > 0 by using Equations (6.70) and (6.72) we have:
To(E+Mgr(8) =€) = J-(€) < O(E)A +4A°LN?, (6.73)

where A = max {||ull + 1 | u € U} and we used the fact that D.J,(&;g(&) — &) < 6-().

Hence for each \ € (O, ;i(;?):

J- (€ + Ag-(§) =€) — J-(§) <0. (6.74)
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Similarly, for each A > 0 by using Equations (6.71) and (6.72) we have:

U (6 + Agr(€) =€) < Tr(€) + (07(6) — 7P-(€)) A+ 4ALN?, (6.75)
where, as in Equation (6.73), A = max{|lulls + 1 | v € U} and we used the fact that
D, (€ 9(6) = €) < 6:(6). Hence for each A € (0, min { 5§, 1 1):

V(€4 Myr(§) =€) < (1 =yA)¥-(§) < 0. (6.76)

Summarizing, suppose { € X, is a local minimizer of the Discretized Relaxed Switched
System Optimal Control Problem and 6,(§) < 0. For each £ > 0, by choosing any

ve (omn{ 52 S e ) 070

we can construct a new point & = €+ A(g-(§) — €)) € X, such that £ e N, x(£¢) by our

A ~

choice of A\, J,(§) < J,(£) by Equation (6.74), and ¥, (£) < 0 by Equation (6.76). Therefore,
¢ is not a local minimizer of the Discretized Relaxed Switched System Optimal Control
Problem, which is a contradiction and proves Condition 2. O

Finally, we prove that the Discretized Relaxed Switched System Optimal Control Prob-
lem consistently approximates the Switched System Optimal Control Problem:

Theorem 50. Let {7;}ien and {& }ien such that 7, € T; and & € X, ,, for each i € N. Then
lim [0, (€) — 0(6,)| = 0. (679

where 0 is as defined in Equation (3.8) and 0. is as defined in Equation (5.16). That is, the
Discretized Relazed Switched System Optimal Control Problem as defined in Equation (5.14)
s a consistent approximation of the Switched System Optimal Control Problem as defined
in Equation (2.34), where consistent approximation is defined as in Definition 9.

Proof. First, by Lemma 45,

: : , B
limsup 0(§;) — 0-,(&) < lim sup ¢ (&, 9(&)) — ¢ (&, 97(&)) < lim sup 5 = 0, (6.79)
1— 00 1— 00 1— 00
where g is as defined in Equation (3.8) and g, is as defined in Equation (5.16).
Now, by Condition 2 in Lemma 28, we know there exists a sequence {};cn, with
¢ e X, for each i € N, such that lim; , & = ¢g(§). Then, by Lemma 45,

lim sup 0, (&) — 0(&) < limsup ¢, (&, &) — (&, 9(€))

i—00 i—00

< lim SuP(Cn(fia 52) - C(f@yg)) + (C(fza f;) - C(fzag(é))) (6.80)

i—00

< limsupg + (&, &) — C(fmg(@)'

1—00
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Employing Equation (4.38):

(6 €) — (6 9()| < max{ DJ(E: € — &) — DI 9(6) — &),

max Dby (&: € — &) — Dy(&is 9(6) — &) \}+H|€ —&llx = ll9(€) — &llx|- (6.81)

jeT, te[01]
Notice, that by applying the Reverse Triangle Inequality:
1€ — €llx — ll9(6) — &ill] < 1€ — (&)l (6.52)
Next, notice:
IDJ(&: & — &) —DJ(&:.9(8) — &)| = [DJ(&: & — 9(9))]
= 1% (41(6)) Do (6 €~ 9(6)) (6.83)

< LHSZ —9(§ )||X>

where L > 0 and we employed the linearity of D.J, Condition 2 in Corollary 1, and Corollary
8. Notice that by employing an argument identical to Equation (6.83), we can assume with-
out loss of generality that |Du;,(&; & — &) — ij,t(@-; 9(&) = &)| < L|I€ — g(&) | - Therefore:

lim sup|¢ (&, &) — ¢ (&, 9(€))] < 0. (6.84)
1—00
From Equation (6.80), we have limsup,_, . (6, (&) — 0(&)) < 0. Notice that
limsup 6, (6) — 6(6)| > liminf [6,,(&,) — (&) > 0. (6.85)
1—>00
Therefore combining our results, we have lim;_,, |0, (&) — 0(&)| = 0. O

6.3 Convergence of the Implementable Algorithm

In this subsection, we prove that the sequence of points generated by Algorithm 2 converges
to a point that satisfies the optimality condition. We begin by proving that the Armijo
algorithm as defined in Equation (5.21) terminates after a finite number of steps.

Lemma 51. Let o € (0,1) and 8 € (0,1). For every 6 > 0, there exists an My < oo such
that if 0.(§) < =6 for N e N, 7 € Ty, and § € X, then p.(§) < My, where 0, is as defined
in Equation (5.16) and p, is as defined in Equation (5.21).

Proof. Given ¢ € X and A € [0,1], using the Mean Value Theorem and Corollary 19 we
have that there exists s € (0, 1) such that

T(E+ME =€) = J-(€) = DI (§ + sAE = ) ME' = 9))

< ADJ (&€ =€) + LN||€ = &3 (6.86)
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Letting A, (&) = {(j,71) € T x {0,...,|7|} | Y+(§) = ¢rj~(£)}, then there exists a pair
(7,i) € A (E+ A€ —€)) and s € (0,1) such that, using Corollary 11,

U(E+AE =€) =V (6) S trjir (EHAE =€) — V()
< i (€ ME =€) = ¥rjin, ()
= Dby jir, (§ 4+ sAE = €); M€ =€)
< ADYrin (6 €' =€) + LN = €]l3
Now let us assume that ¥, (£) < 0, and consider g, as defined in Equation (5.16). Then

(6.87)

0, (¢) = max {DJT@; 9:(©) =0, | max Db (60,6 —6) + 7%(5)} < -3,
(6.88)

and using Equation (6.86),
J’T (5 + ﬁk(g’r(g) - 5)) - JT(§) - OéﬂkQT(f) < _(1 - a)(sﬁk + 4A2L52ku (689)

where A = max {||ull> + 1 | u € U}. Hence, for each k € N such that g < (;325 we have
that

T (€+ 85(9(6) =€) = J-(€) < ap*0,(¢). (6.90)
Similarly, using Equations (6.87) and (6.88),

U (E+B%(9(6) =€) — Ur (&) + " (70 () — abr(€)) < —06" + AL, (6.91)

hence for each k € N such that ¥ < min { ﬁ;? %‘S, %} we have that

U, (&4 B5(g(&) =€) — aBk0-(€) < (1—BM) ¥.(¢) <. (6.92)
If W, (&) > 0 then

goetnax | DUnin(§9-(6) =) < 0:(6) < 0, (6.93)

thus, from Equation (6.87),

Vo (€4 BM(9:(8) =€) = W, (€) — af*0,(€) < —(1 — )dp" +4A2LB>", (6.94)
Hence, for each k € N such that 8% < (}1;‘5‘ 25 we have that
U, (&4 85(g:(6) =€) — U () < aB0,(6). (6.95)

Finally, let

1-— 1
M5 =1+ max {logﬁ (%) ,logg <§) } , (6.96)

then from Equations (6.90), (6.92), and (6.95), we get that u,(§) < M; as desired. O



CHAPTER 6. THE CONVERGENCE OF THE IMPLEMENTABLE ALGORITHM 91

The proof of the following corollary follows directly from the estimates of My in the
proof of Lemma 51.

Corollary 21. Let o € (0,1) and B € (0,1). There exists a 6o > 0 and C > 0 such that if
6 € (0,00) and 0-(§) < —0 for N € N, 7 € Ty, and § € X, then pu,(§) < 1+ logg(C9),
where 0, is as defined in Equation (5.16) and u, is as defined in Equation (5.21).

Next, we prove a bound between the discretized trajectory for a point in the discretized
relaxed optimization space and the discretized trajectory for the same point after projection
by px that we use in a later argument.

Lemma 52. Consider py defined as in Equation (3.14) and oy defined as in Equation
(5.22). There exists K > 0 such that for each No, N € N, 7 € Tn,, £ = (u,d) € X, and
te0,1):

qufnv(f)i(pN(f)) - ¢rt Hz < K ((\2) (HfHBV + 1) + <%> 0) ) (6-97)

where ¢ is as defined in Equation (5.11).

Proof. We prove this argument for ¢ = 1, but the argument follows identically for all ¢ € [0, 1].
Using the triangular inequality we have that

[ @oner1(pv(8)) = dra (@), < [[Gonier1 (pn(€)) — b1 (pn (€ ||2+H¢1(0N ©l,+
+H¢1 —¢T,1 HQ (6.98)

Thus, by Theorem 21 and Lemma 33 there exists K, K5, and K3 such that

1\" Ky K
Joon01(on€) = 0@l < Ko (55 ) (lelav +1)+ 55+ 5 (699

hence the result follows after organizing the constants and noting that 2% < 2V for each
N eN. O

Using this previous lemma, we can prove that v, is eventually finite for all ¢ such that
6(¢) < 0.

Lemma 53. Let Ny € N, 79 € Ty,, and § € X.,.. If 0(§) < O then for each n € N there
exists a finite N > Ny such that Ve )(§, N +n) is finite.

Proof. Recall v,, as defined in Equation (5.23), is infinity only when the optimization
problem it solves is not feasible. To simplify our notation, let ¢ € A, (), defined by
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£ =€+ ool (gon(e)(€) — €). Then, using Lemma 52, for k € N, k € [N, N + 7],

/ / 1 ; / 1 N
me%@»—%MMQSLK((—)qmmv+m+() )
V2 2
N (6.100)
1 !
<1 () (€lav +2
Also, from Theorem 50 we know that for N large enough,
1
S0€) 2 06 (©) (6.101)

Thus, given § > %6’({), there exists N* € N such that, for each N > N* and k € [N, N + 7],

1
Towen (Pr(€) = Jonie)(€) < —aB56(¢)
< —aBN0,56)(8).

(6.102)

and at the same time
GAY < (1 —w)api < (1—w)apron®, (6.103)

where My is as in Lemma 51.

Similarly, given A-(§) = {(j,1) € T x [0,1] | W(§) = ¥r;4(E)}, let (4, 1) € Aoy(e)(£)-
Thus, for N > N* k € [N, N + 7], and using Lemma 52,
Vo, () (1)) = Wor(e)(§) = Vo). (P(€) = Yo(e)(€)
< Vo) (P(§) = Yon(e)5e(€)
1A\Y
<LK |— ! +2
<1 (55) (v +2
< =805 (6).
Therefore, for N > N*, if U, (¢)(£) < 0, then by Equations (6.102), (6.104), and the
inequalities from the computation of p, (&),
Jo(e) (P(€)) = Jon(e) (&) < (B8~ — aBN)0,,)(9), (6.105)
o e (Pr(€)) < (B — aB™) 0o, (6)(€) <0, (6.106)

which together with Equation (6.103) implies that the feasible set is not empty. Similarly, if
Uone (&) > 0, by Equation (6.104),

Vo) (r(€) = Won (&) < (BN ® — apN)0,,6(€), (6.107)

(6.104)

as desired.
Hence for all N > N* the feasible sets of the optimization problems associated with
Von(¢) are not empty, and therefore v, () (§, N 4+ 1) < oo. O
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In fact, the discretization precision constructed by Algorithm 2 increases arbitrarily.

Lemma 54. Let {N;}ien, {7itien, and {& }ien be the sequences generated by Algorithm 2.
Then N; — 0o as i — 00.

Proof. Suppose that N; < N* for all i € N. Then, by definition of Algorithm 2, there exists
iop € N such that 0(&) < —A27Fi < —A27XN" and &, = T, (&) for each i > iy, where I,
is defined in Equation (5.24).

Moreover, by definition of v, we have that if there exists i; > iy such that \Ijﬂ'l (&) <0,
then U, (&) < 0 for each i > ;. Let us assume that there exists i; > iy such that Vo (&,) <

0, then, using Lemma 51,
Troi (1) — T (&) < (aﬁuﬁ(&-) _ dgvn(&,Nﬂrn))g(&)
. (6.108)
< —wafMs

for each i > iy, where & = A27X"". But this implies that J,, (&) — —oo as i — oo, which is
a contradiction since hg, and therefore J.., is lower bounded.

The argument is completely analogous in the case where the sequence is perpetually
infeasible. Indeed, suppose that ¥ (&;) > 0 for each i > iy, then by Lemma 51,

\IjTiJrl (£i+1) - \Ilﬁ(gz) < (O‘BMU(&) - dBVTi(giVNi+n))9(€i)

. 6.109
S _wa6M6l5/7 ( )

for each i > i, where &' = A27XN". But again this implies that ¥, (&) — —oo as i — 0o,
which is a contradiction since we had assumed that ¥, (&;) > 0. O

Next, we prove that if Algorithm 2 find a feasible point, then every point generated
afterwards remains feasible.

Lemma 55. Let {N;}ien, {7itien, and {& }ien be the sequences generated by Algorithm 2.
Then there exists ig € N such that, if U, (&,) <0, then ¥(&;) <0 and V., (&) <0 for each
i > 19, where V., is as defined in Equation (5.10).

Proof. Let Z C N be a subsequence defined by
A

Note that, by definition of Algorithm 2, W (1) = V(&;) for each i ¢ Z. Now, for each i € T
such that U (&) < 0, by definition of v, in Equation (5.23) together with Corollary 21,

\Ijn‘+1 (5@'—1—1) S (aﬂﬂfi (&) - O_CBVTi (&,Nﬂrn)) 973 (gz)

< —wafBHni&)

PN, (6.111)
A 2
g —UJCYﬂc (2XN1) )
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where C' > 0. By Lemma 35 and the fact that N, ; > N;, we have that

B A2
V(&) < oN T wapBC (2X—N)

1 B 9
= 22xN; (2(1_2X)Ni —wafCA ) :
Hence, if ¥, (&§,) < 0 for 4y € N such that N;, is large enough, then W(§;) < 0 for each
1> 1.
Moreover, from Equation (6.112) we get that for each N > N; and each 7 € Ty,

(6.112)

1 B N\ B
Vo (i) < NN, (2(12X)N¢ — wafCA ) +on

1 2B ,
< 92xN; (2(12X)N¢ - WOéﬁCA ) .

Thus, if V., (§,) < 0 for iy € N such that NV, is large enough, then W, (&;,) < 0 for each
T € Ty such that N > N;. But note that this is exactly the case when iy + k ¢ Z for
k€ {1,...,n}, thus we can conclude that W, (£,+x) < 0. Also note that the case of i € 7
is trivially satisfied by the definition of v, .

Finally, by setting ig = max{i;,is} we get the desired result. O

(6.113)

Next, we prove 6, converges to zero.

Lemma 56. Let {N;}ien, {7itien, and {& }ien be the sequences generated by Algorithm 2.
Then 6.,(&) — 0 as i — oo, where 0. is as defined in Equation (5.16).

Proof. Let us suppose that lim; ,, 0., (&) # 0. Then there exists 6 > 0 such that

liminf 6, (&) < —49, (6.114)

1—00

and hence, using Theorem 50 and Lemma 54, there exists an infinite subsequence X C N
defined by
K={ieN|0,(&) < —25 and 0(&) < —5}. (6.115)

Let us define a second subsequence Z C N by

A
I= {z eN|O,(&) < o and v, (&, N; + 1) < oo} . (6.116)

Note that by the construction of the subsequence K, together with Lemma 53, we get that
K NZ is an infinite set.
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Now we analyze Algorithm 2 by considering the behavior of each step as a function of
its membership to each subsequence. First, for each i ¢ Z, &;11 = &;, thus J(&41) = J(&)
and U(& 1) = W(&). Second, let ¢ € T such that U, (&) <0, then

JT¢+1 (£i+1> - J‘n‘ (61) S (aﬂ“n(&) - @Byfi(thiJm)) (97-1. (5@)
) A
NN (6.117)

A 2
S —(.UO(BC <2XN1’) )

where C' > 0 and the last inequality follows from Corollary 21. Recall that N;,; > N;, thus
using Lemmas 34 and 54 we have that

< —wafhi (&

A 2
Heiwn) = I(6) < g — waiC ( 57

1 2B ,
= 22xN; (2(1_2X)Ni - WaﬁCA ) ,

and since x € (0, 1), we get that for N; large enough J(&41) < J(&). Similarly, if ¥, (&) > 0
then

(6.118)

1 2B
B(E) ~ ) < o (g —wadCA?). (6.119)

thus for N; large enough, W(&; 1) < W(&;). Third, let i € K NZ such that ¥, (&) <0, then,
by Lemma 51,

J’Ti-H (gi-&-l) - Jﬂ' (gz) (aﬁuTi(gi) - dﬂ_yTi(&’Ni—M)) 0%‘ (gz)

<
B * 6.120
< —2wa Mz, ( )
thus, by Lemmas 34 and 54, for N; large enough,
J(&i1) — J(&) < —wapMss6, (6.121)

Similarly, if U,.(&;) > 0, using the same argument and Lemma 35, for NN; large enough,
U(&ip1) — W(E) < —wapMes0. (6.122)

Now let us assume that there exists 7o € N such that }V;, is large enough and \If% (&) <
0. Then by Lemma 55 we get that V.. (&) < 0 for each i > ip. But as shown above, either
i ¢ KNZ and J(&11) < J(&) or i € KNZ and Equation (6.121) is satisfied, and since KXNZ
is an infinite set we get that J(§;) — —oo as i — oo, which is a contradiction as J is lower
bounded.

On the other hand, if we assume that V.. (&;) > 0 for each i € N, then either i ¢ XNZ
and V(&) < V(&) or i € KNZ and Equation (6.122) is satisfied, thus implying that
V() — —oo as i — oo. But this is a contradiction since, by Lemma 35, this would imply
that U, (&) = —o0 as i — oc.

Finally, both contradictions imply that 6,,(&;) — 0 as i — oo as desired. O
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In conclusion, we can prove that the sequence of points generated by Algorithm 2
converges to a point that is a zero of 6 or a point that satisfies our optimality condition.

Theorem 57. Let {N;}ien, {7i}ien, and {& }ien be the sequences generated by Algorithm 2,
then
lim 6(&) = 0, (6.123)

1—00

where 0 is as defined in Equation (3.8).

Proof. This result follows immediately from Lemma 56 after noticing that the Discretized
Relaxed Switched System Optimal Control Problem is a consistent approximation of the
Switched System Optimal Control Problem, as is proven in Theorem 50, and applying The-
orem 29. [
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Chapter 7

Examples

In this chapter, we apply Algorithm 2 to calculate an optimal control for 4 switched system
examples. Before describing each example, we begin by describing the numerical implemen-
tation of Algorithm 2.

First, observe that the analysis presented thus far does not require that the initial and
final times of the trajectory of switched system be fixed to 0 and 1, respectively. Instead, the
initial and final times of the trajectory of the switched system are treated as fixed parameters
to and ty, respectively. Second, we employ a MATLAB implementation of LSSOL from
TOMLAB in order to compute the optimality function at each iteration of the algorithm
since it is a quadratic program [38]. Third, for each example we employ a stopping criterion

Example Mode 1 Mode 2 Mode 3
0.9801 0.1743 0.0952
LQR () = Ax(t) + {0.1987] u(t) z(t) = Az(t) + |: 0.8601 ] u(t) | z(t) = Az(t) + !0‘4699] u(t)
0 —0.4794 0.8776
an s - | A= vn) 2—/z(1)
fak 0= o Vol 0| 2w o) A
sines®) (4(t) + Mg) gsinzs(t) gsin z3(t)
Quadrotor Z(t) COS;”[S% (u(t) + Mg) — g (t) = gcos_ng ((7;‘)) —g Z(t) = | gcos fg((fl;) —g
sin (23 (t)) uy (t) 0
— cos (25 t)) sin (wa(t))us (t) 0
Needle | #(t) = :2;(( ;)CO (( ’3)))“ 1(2) 0= N/A
rsin (g(t))us (t) 0
—rcos (4(t)) tan (25(t))us (t) us(t)

Table 7.1: The dynamics of each of the modes of the switched system examples considered
in Chapter 7. The parameters employed during the application of Algorithm 2
are defined explicitly in Chapter 7.
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Example | L(t,z(t),u(t),d(t)) ¢ (19(ty)) to | ty
zi(ty) — 17117

LQR 0.01 - (u(t))? zo(ty) — 1 0] 2
x3(tf> -1 2

Tank 2 (zo(t) — 3)° 0 010

V5 (a(ty) = 6)] ||

Quadrotor 5 (u(t))? V5 (37<2(t(f))3 1) 0|75

2 xq(ty) + 2 ?
eedle ) To(ts) —
Needl 0.01 ‘ L@(t)] 2 $3(<tt,;)) _?15 2 0| 8

99

Table 7.2: The cost function used for each of the examples during the implementation of

Algorithm 2.

that terminates Algorithm 2, if 6, gets sufficiently close to zero. Each of these stopping

criteria is described when we describe each example.

Next, for the sake of comparison we compare the performance of Algorithm 2 on each
of the examples to a traditional Mixed Integer Program (MIP). To perform this comparison,

Example Initial Continuous | Initial Discrete
P Input, vt € [to,t7] | Input, Vi € Jto, t/]
-
LQR u(t) =0 d(t) = |0
—0—
.
Tank N/A d(t) = 0
0.33
Quadrotor | wu(t) =5 x 107* d(t) = [0.34
0.33
0 0.5
Needle u(t) = {O} d(t) = {0'5}

Table 7.3: The initialization parameters used for each of the examples during the implemen-
tation of Algorithm 2 and the MIP described in [25].
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Example U y « a 15 A x| w
LQR u(t) € [-20,20] | 1 0.1 [0.87] 0.005 |0.72| 1074 }L 10-¢
Tank N/A 100 | 0.01 | 0.75 | 0.005 |0.72|10°* 4—11 107°
Quadrotor | u(t) € [0,1073] | 10 | 0.01 | 0.80 | 5x 107* | 0.72 | 10~* 411 10-¢
Needle ui(t) € ,O,r’ 57]r 100 | 0.002 | 0.72 | 0.001 0.71 | 1074 }l 0.05
uz(t) € [5 3]

Table 7.4: The algorithmic parameters used for each of the examples during the implemen-
tation of Algorithm 2.

Example Algorithm 2 Algorithm 2 MIP MIP
P Computation Time | Final Cost | Computation Time Final Cost
LQR 9.827]s] 1.23 x 1073 753.0[s] 1.89 x 1072
Tank 32.38]s] 4.829 119700]s] 4.828
Quadrotor 8.350[s] 0.128 2783]s] 0.165
Needle 62.76[s] 0.302 did not converge | did not converge

Table 7.5: The computation time and the result for each of the examples as a result of the
application of Algorithm 2 and the MIP described in [25].
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X X
2 2 0

(a) MIP Final Result (b) Algorithm 2 Final Result

Figure 7.1: Optimal trajectories for each of the considered optimization algorithms where
the point (1,1, 1) is drawn in green, and where the trajectory is drawn in blue
when in mode 1, in purple when in mode 2, and in red when in mode 3.

we employ a TOMLAB implementation of a MIP described in [25] which mixes branch and
bound steps with sequential quadratic programming steps. Finally, all of our comparisons
are performed on an Intel Xeon, 6 core, 3.47 GHz, 100 GB RAM machine.

7.1 Constrained Switched Linear Quadratic
Regulator (LQR)

Switched Linear Quadratic Regulator (LQR) examples have been used to illustrate the utility
of a variety of proposed optimal control algorithms [23, 97]. We consider an LQR system in
3 dimensions, with 3 discrete modes, and a single continuous input. The dynamics in each
mode are as described in Table 7.1 where:

1.0979  —0.0105 0.0167
A={-00105 1.0481 0.0825] . (7.1)
0.0167  0.0825 1.1540

The system matrix is purposefully chosen to have 3 unstable eigenvalues and the control
matrix in each mode is only able to control along single dimension. Hence, while the system
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and control matrix in each mode is not a stabilizable pair, the system and all the control
matrices taken together simultaneously is stabilizable and is expected to appropriately switch
between the modes to reduce the cost. The objective of the optimization is to have the
trajectory of the system at time t; be at (1,1,1) while minimizing the input required to
achieve this task. This objective is reflected in the chosen cost function which is described
in Table 7.2.

Algorithm 2 and the MIP are initialized at xy = (0,0,0) with continuous and discrete
inputs as described in Table 7.3 with 16 equally spaced samples in time. Algorithm 2
implemented with parameters as given in Table 7.4 took 11 iterations, ended with 48 time
samples, and terminated after the optimality condition was bigger than —1072. The result
of both optimization procedures is illustrated in Figure 7.1. The computation time and
final cost of both algorithms can be found in Table 7.5. Notice that Algorithm 2 is able to
compute a lower cost continuous and discrete input when compared to the MIP and is able
to do it more than 75 times faster.

7.2 Double Tank System

To illustrate the performance of Algorithm 2 when there is no continuous input present, we
consider a double-tank example. The 2 states of the system correspond to the fluid levels
of an upper and lower tank. The output of the upper tank flows into the lower tank, the
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Figure 7.2: Optimal trajectories for each of the considered optimization algorithms where
x1(t) is drawn using points and z5(t) is drawn using stars and where each state
trajectory is drawn in blue when in mode 1 and in purple when in mode 2.
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output of the lower tank exits the system, and the flow into the upper tank is restricted to
either 1 or 2. The dynamics in each mode are then derived using Toricelli’s Law and are
described in Table 7.1. The objective of the optimization is to have the fluid level in the
lower tank track 3 and this is reflected in the chosen cost function described in Table 7.2.

Algorithm 2 and the MIP are initialized at o = (2,2) with a discrete input described
in Table 7.3 with 128 equally spaced samples in time. Algorithm 2 implemented with param-
eters as given in Table 7.4 took 67 iterations, ended with 256 time samples, and terminated
after the optimality condition was bigger than —10~2. The result of both optimization pro-
cedures is illustrated in Figure 7.2. The computation time and final cost of both algorithms
can be found in Table 7.5. Notice that Algorithm 2 is able to compute a comparable cost
discrete input compared to the MIP and is able to do it nearly 3700 times faster.

7.3 Quadrotor Helicopter Control

Next, we consider the optimal control of a quadrotor helicopter in 2D using a model de-
scribed in [29]. The evolution of the quadrotor can be defined with respect to a fixed 2D
reference frame using six dimensions where the first 3 dimensions represent the position along
a horizontal axis, the position along the vertical axis and the roll angle of the helicopter,
respectively, and the last 3 dimensions represent the time derivative of the first 3 dimensions.
We model the dynamics as a 3 mode switched system (the first mode describes the dynamics
of going up, the second mode describes the dynamics of moving to the left, and the third
mode describes the dynamics of moving to the right) with a single input as described in
Table 7.1 where L = 0.3050 meters, M = 1.3000 kilograms, I = 0.0605 kilogram meters
squared, and g = 9.8000 meters per second squared. The objective of the optimization is to
have the trajectory of the system at time ¢ be at position (6, 1) with a zero roll angle while
minimizing the input required to achieve this task. This objective is reflected in the chosen
cost function which is described in Table 7.2. A state constraint is added to the optimization
to ensure that the quadrotor remains above ground.

Algorithm 2 and the MIP are initialized at position (0, 1) with a zero roll angle, with
zero velocity, with continuous and discrete inputs as described in Table 7.3, and with 64
equally spaced samples in time. Algorithm 2 implemented with parameters as given in Table
7.4 took 31 iterations, ended with 192 time samples, and terminated after the optimality
condition was bigger than —10~%. The result of both optimization procedures is illustrated
in Figure 7.3. The computation time and final cost of both algorithms can be found in Table
7.5. Notice that Algorithm 2 is able to compute a lower cost continuous and discrete input
when compared to the MIP and is able to do it more than 333 times faster.
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Figure 7.3: Optimal trajectories for each of the considered optimization algorithms where
the point (6, 1) is drawn in green, where the trajectory is drawn in blue when in
mode 1, in purple when in mode 2, and in red when in mode 3, and where the
quadrotor is drawn in black and the normal direction to the frame is drawn in

gray.

7.4 Bevel-Tip Flexible Needle

Bevel-tip flexible needles are asymmetric needles that move along curved trajectories when
a forward pushing force is applied. The 3D dynamics of such needles has been described
in [42] and the path planning in the presence of obstacles has been heuristically considered
in [19]. The evolution of the needle can be defined using six dimensions where the first 3
dimensions represent the position of the needle relative to the point of entry and the last 3
dimensions represent the yaw, pitch and roll of the needle relative to the plane, respectively.

As suggested by [19], the dynamics of the needle are naturally modeled as a 2 mode
switched system as described in Table 7.1 (the first mode describes the dynamics of going
forward while the second mode describes the dynamics of the needle turning) with 2 con-
tinuous inputs: wu; representing the insertion speed and wuy representing the rotation speed
of the needle. k is the curvature of the needle and is equal to .22 inverse centimeters. The
objective of the optimization is to have the trajectory of the system at time t; be at posi-
tion (—2,3.5,10) while minimizing the input required to achieve this task. This objective is
reflected in the chosen cost function which is described in Table 7.2. A state constraint is
added to the optimization to ensure that the needle remains outside of 3 spherical obstacles
centered at (0, 0, 5), (1,3, 7), and (-2, 0, 10) all with radius 2.

Algorithm 2 and the MIP are initialized at position (0,0,0) with continuous and dis-
crete input described in Table 7.3 with 64 equally spaced samples in time. Algorithm 2
implemented with parameters as given in Table 7.4 took 103 iterations, ended with 64 time
samples, and terminated after the optimality condition was bigger than —1073. The MIP
was unable to find any solution. The computation time and final cost of both algorithms
can be found in Table 7.5. The result of Algorithm 2 is illustrated in Figure 7.4.
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Figure 7.4: The optimal trajectory and discrete inputs drawn in cyan generated by Algorithm
2 where the point (—2,3.5,10) is drawn in green and obstacles are drawn in grey.
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Chapter 8

Identification of Bipedal Locomotion

In this chapter, we apply Algorithm 2 to identify a hybrid system on a cycle model for bipedal
locomotion from tracking data for 2 different examples. The first example is a synthetic one
for which we generate ground truth data in order to validate the utility of Algorithm 2 in
identifying a model of locomotion. The second example is a 9 subject flat ground motion
capture walking experiment for which we attempt to identify a model of locomotion for each
participant. In both instances, we illustrate that Algorithm 2 is able to successfully identify
the correct hybrid system on a cycle description of the presented locomotion.

8.1 Identification from Synthetically Generated Gait

We begin by constructing a hybrid system model on a cycle, Heq, for a classical bipedal
model that has been considered at length by the robotic walking community [32]. Next, we
generate locomotion for this biped by employing feedback linearization. Finally, we apply
Algorithm 2 to this generated locomotion and illustrate that we are able to successfully
identify Heg.

A Model for Kneed Compass Gait Biped

The example considered in this section is a 2D rigid body biped with knees and a torso
for a total of four links as illustrated in Figure 8.1b. In addition to the torso position and
orientation, (Ziorso, Ytorso, Ororso) € R x S! with respect to a fixed global coordinate system,
the coordinates for the generalized configuration space for this biped are the angle between
the upper portion of the legs, 8, € S!, the angle of the right and left knee with respect to their
corresponding upper leg, 0,4, 0 € S, respectively, and the angle of the right and left lower
leg with respect to the ground, 6,,6,; € S', respectively. These different coordinates and
their velocities can be assumed to evolve in R'®. Observe that though we employ this over
complete representation, this system only has 6 degrees of freedom. We assume full control
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(a) Parameters of the Kneed
Compass Gait Biped

Figure 8.1: The parameterized kneed compass gait biped model and the associated hybrid
system on a cycle model, H¢g, used to generate the synthetic gait illustrated
in Figure 8.2a. The specific choice of parameters used during the identification
presented in this thesis are in Table 8.1. The constraints enforced within each
mode of Hog are drawn in red and the coordinates of the configuration space of
the biped are labeled within each mode.

authority, that is the torque at each of the joints, denoted u = (uyf, g, U, U, up) € R°, is
controllable.

We define a hybrid system on a cycle, H¢g, description of locomotion by considering
a contact point that fixes the right foot to the ground and another that fixes the left foot
to the ground by utilizing the construction presented in Section 2.2. That is, consider a set
of contact points C = {lf,rf} and a directed cycle, lcg = [If] — [rf]. We define the set of
domains to be the Euclidean space with dimension equal to the size of the tangent space of
the generalized configuration space of the biped which in this case is equal to 16. Next, we
define the admissible inputs equal to a bounded subset of R®. This set is formally defined
in Table 8.2. The single guard in each mode of the hybrid system corresponds to lifting the
constrained foot off the ground. The set of reset maps are set equal to the identity.

In order to define the vector field in each mode of the system, recall that each of the
vector fields is constructed from the unconstrained Lagrangian after noting the holonomic
constraint that must be maintained in order to remain within the mode in question. This

M my me [ lt lc
500g | 500g | 50g | 1m | 0.175m | 0.375m

Table 8.1: The specific values chosen for the parameters illustrated in Figure 8.1a.
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(a) Synthetically Generated Gait Via Feedback Linearization

(b) Gait Generated by Switched System Optimal Control

Figure 8.2: The gaits generated synthetically via feedback linearization for the kneed com-
pass biped model, H¢g, in Figure 8.1b and as a result of the application of
Algorithm 2 to the data illustrated in Figure 8.3. The left leg is drawn in blue,
the right leg is drawn in red, and the ground is drawn in black.

constrained vector field does not depend on the specific location at which the holonomic
constraint must be maintained (i.e. the vector field for the [[f] mode is constructed by
requiring that the left foot remain fixed rather than requiring that it be fixed on the ground).
Recall that for a rigid body the construction of this vector field as in Equation (2.17) can
be done in an automated fashion by just specifying the lengths and masses of the various
links drawn in Figure 8.1a. Given the choice of parameters in Table 8.1, we construct the
desired vector fields by employing Mathematica [96]. The formulas for these vector fields,
as a result, are several pages long without providing any real insight; therefore, we do not
include them in this thesis.

Applying Switched System Optimal Control to Identify a Hybrid
Model

Utilizing this hybrid system on a cycle model for the kneed compass gait biped, a periodic
walk can be constructed by employing feedback linearization as in [75]. The result of this
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Figure 8.3: The tracking data for 3 of the 5 joints for the gait drawn in Figure 8.2a. The
trajectory while the left foot is fixed to the ground (i.e. the [l f] mode) is drawn
in blue, and the trajectory while the right foot is fixed to the ground (i.e. the
[rf] mode) is drawn in red.

application when the model is initialized with the left foot fixed to the ground (i.e. beginning
in the [If] mode) at time ¢, = 0 is a walking gait that begins in the [l f] mode, transitions
to the [rf] mode, and then transitions back to the [[f] mode at time ¢; = 1.05. This is
illustrated in Figure 8.2a. From this generated gait, we construct tracking data for each of
the joints as illustrated in Figure 8.3.

Our goal is the construction of the hybrid model on a cycle to describe the synthetic
locomotion given the tracking data in 2D for each of the 5 joints, denoted yops : [to, ts] = R,
the unconstrained Lagrangian, and the set of contact points of interest, C = {If,rf}. As
described in Section 2.2, the identification of this model is complete if we determine the
domain specification as in Definition 2. As we showed in Section 2.3, the computation of the
domain specification is equivalent to solving the Switched System Optimal Control Problem
defined as in Equation (2.34) for the switched system that switches between the vector fields
corresponding to the satisfaction of all possible combinations of contact point enforcements.

In order to proceed, we require this switched system vector field. Let Q@ = {1,...,4}
define the set of possible modes of the switched system. Each of the modes can be associated
with a possible combination of contact point enforcements in C by considering the 2-digit
binary expansion of the index in Q associated with the mode in question minus one. For
example, the 2-digit binary expansion of mode 1 after subtraction by 1 is 00, which can be
associated with none of the contact points being enforced. On the other hand, the 2-digit
binary expansion of mode 3 after subtraction by 1 is 10 which can be associated with the
enforcement of the rf contact point. Let B : Q — Z3 denote this operation. Observe that
we can then construct a vector field, f : R x R" x R™ x Q — R as described earlier for each
possible combination of contact point enforcements. Again the computation of this vector
field is done in Mathematica and not included in this thesis due to its size.

Proceeding as in Chapter 7, we define a cost, initial condition, and algorithmic param-
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Vie{lf,rf lk,rk, h}

10 [ 0.1 [ 0.83 | 0.001 | 0.72 | 1074
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Table 8.2: The algorithmic parameters used for the Kneed Compass Gait Switched System
Model during the implementation of Algorithm 2.

eters in order to apply Algorithm 2 to identify a domain specification. Before describing our
specific choices, recall that the initial and final times can be treated as fixed parameters t,
and ty, respectively, during the optimization and that we can employ a stopping criterion
to terminate Algorithm 2, if 0, gets sufficiently close to zero. We utilize the same imple-
mentation of LSSOL from TOMLAB as in Chapter 7 in order to compute the optimality
function.

Motivated by Equation (2.35), we choose a running cost as follows:

L(t,x(t), u(t), d(t)) = llyons(t) — g(@()l3 + 0.1 (lun(®)l3 + lluaw(®)l3 + w3 +

+> D (1 =di(t) (1 = [B(3)];) Huj(t)|!§> , (8.1)

i=1 j=1

where g : R — RS is the rigid body transformation that takes the continuous state of the
switched system to the set of observations (i.e. the rigid body transformation that takes the
joint angles of the biped as in Figure 8.1b to the absolute position of the joints), u; = wy,
and us = u,r. Observe that we include a mode dependent penalty that penalizes an input
at a particular contact point only if that contact point is not being enforced. For example,
expending input at the [ f joint while the [ f is constrained is not penalized. We let ¢ () = 0.
We also include constraints during the optimization that ensure that each of the joints are
kept above the ground.

To challenge Algorithm 2, we initialize the optimization with all of the continuous
inputs for all time equal to zero, the discrete input for all time equal to one for the mode
corresponding to fixing only the rf contact point and zero for the other modes (i.e. ds(t) =
1,Vt € [to,ts]), and the initial condition for the continuous state of the switched system
equal to the initial condition of the state of the biped that it attempts to mimic. Algorithm
2 is initialized with the parameters in Table 8.2, a stopping criterion equal to 107, and 64
equally spaced samples in time.

The gait produced as a result of the optimization is illustrated in Figure 8.2b. Impor-
tantly, the optimization produces a pure discrete input that visits the mode corresponding to
only the [ f contact point being enforced and then only the r f contact point being enforced,
which is identical to the direct cycle component of Heo that was used to generate the gait
in Figure 8.2a.
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8.2 Identification of Human Gait from Motion
Capture Data

Next, we conduct a 9 subject flat ground walking experiment where the participant’s gait is
observed via a motion capture system. We then apply Algorithm 2 on each of the observed
gaits and construct a hybrid system on a cycle model for each of the participants.

The Experiment

We begin by describing the experimental setup employed during data collection. The data
presented in this thesis is collected using the Phase Space System!, which computes the 3D
position of 19 LED sensors at 480 frames per second using 12 cameras at 1 millimeter level of
accuracy. The cameras were calibrated prior to the experiment and were placed to achieve a
1 millimeter level of accuracy for a 4 by 4 by 4 meters cubed sized space. 8 LED sensors were
placed on each leg as illustrated in Figure 8.4. 1 LED sensor was placed on the sternum, 1
LED sensor was placed on the back behind the sternum, and 1 LED sensor was placed on
the navel. Each sensor was fastened in a manner that ensured that it did not move during
the experiment.

Each trial of the experiment required the subject to walk 3 meters along a line drawn
on the floor (in Figure 8.4 this line is drawn in blue). To simplify the data analysis, each
subject was required to place the right foot at the starting point of the line at the outset
of the experiment and was told to walk in a natural manner. Each subject performed 12

'http://www.phasespace.com/hardware

Sex | Age | Weight | Height Ly Iy, le ly

30 | 90.7kg | 184cm | 14.5cm | 8.50cm | 43.0cm | 44.0cm
19 | 53.5kg | 164cm | 15.0cm | 8.00cm | 41.0cm | 44.0cm
17 | 83.9kg | 189cm | 16.5cm | 8.00cm | 45.5cm | 55.5c¢m
22 | 90.7kg | 170cm | 14.5cm | 9.00cm | 43.0cm | 39.0cm
30 | 68.9kg | 170cm | 15.0cm | 8.00cm | 43.0cm | 43.0cm
29 | 59.8kg | 161cm | 14.0cm | 8.50cm | 37.0cm | 40.0cm
26 | 58.9kg | 164cm | 14.0cm | 9.00cm | 39.0cm | 41.0cm
77 | 63.5kg | 163cm | 14.0cm | 8.00cm | 40.0cm | 42.0cm
23 | 47.6kg | 165cm | 15.0cm | 8.00cm | 45.0cm | 43.0cm

©o| ool 1| | or| x| | b =
R EEEEE

Table 8.3: Table describing each of the subjects. The subject number is in the left column
and the [y, 1, (., [, measurements correspond to the lengths illustrated in Figure
8.4. The measurement in column 4 is the the only measurement that was self-
reported.
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Figure 8.4: Tllustrations of the experimental setup (left) and sensor placement on each leg
(right). Each subject in the experiment was required to wear a suit where the
sensors (red LEDs) were fastened in place. Each sensor was placed at the joints
as illustrated with the red dots on the right lateral (middle) and anterior aspects
(right) of the right leg. Sensors are placed identically on the left leg. The same
sensors drawn from different views are connected with red arrows (right) and the
labeled black arrows are used to illustrate the diversity of subjects in Table 8.3.
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Figure 8.5: The original data is illustrated for the height (in millimeters) of the heel and
toe for each leg for all 12 trials for a single individual, and the postprocessed
data is illustrated after it has been shifted (drawn at the bottom of the plot)
and averaged (drawn at the top of the plot). In each plot the different colors
corresponds to different sensor.

such trials, which constituted a single experiment. There were 3 female and 6 male subjects
with ages ranging from 17 to 77, heights ranging from 161 to 189 centimeters, and weights
ranging from 47.6 to 90.7 kilograms. Table 8.3 describes the measurements of each of the
subjects.

Data Processing

In this subsection, we describe how the data is preprocessed in order to make the ensuing
analysis tenable. We do this by finding the effective period of the data, rotating the data so
that the walking occurs along a 2D plane, and averaging the collected data for each sensor
and for each individual over all trials.

Interpolation

Since the motion capture information drops out periodically due to self-occlusions, we begin
by finding the effective period of the walking. The data is then interpolated using cubic
spline interpolation. The result of this initial data processing is clean data over the course
of a few steps (with the number of steps depending upon the individual). From each of the
trials, at least 2 steps are isolated (one with the right leg and another with the left leg) by
ensuring that the data repeats. If there is no usable data, that trial of walking is dropped.
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Figure 8.6: A portion of the observed data that is tracked during the application of Algorithm
2 in order to determine a domain specification.

Data Rotation

Using the “clean” 2 step walking data, a series of rotations are employed to ensure that
walking only occurs in a 2D plane. This is achieved by considering the sensor on the navel
of each subject, which evolves in an approximately linear fashion. By fitting a line to this
forward evolution, the direction of the walking is determined.

Averaging

We average the 12 trials from each individual to construct a single trajectory for each of the
sensors for each individual. To do this, we begin with the raw data for each sensor (the heel
and toe sensor data for each is leg is illustrated in Figure 8.5a), and shift the data to line up
each curve since each trial may operate at a different time scale. After shifting the data, we
ensure that the sensor data for every trial includes at least 2 steps, one step for each leg, by
checking to see if the data is approximately periodic. If this requirement is not satisfied, this
trial is removed from the set of trajectories. Finally, all the usable trajectories for properly
shifted trials are averaged and used for data analysis. The result of this process is illustrated
in Figure 8.5b.

A Switched System Model for the Biped with Torso, Knees and
Feet

For each of the 9 joints of the biped drawn in Figure 8.7b, as a result of this aforementioned
data processing, we get a set of observations in 2D, ys : [0, tf] — R'® a subset of which are
illustrated in Figure 8.6 for one participant. In order to identify a hybrid system on a cycle
model for each of the observed gaits, we require an unconstrained Lagrangian and a set of
contact points of interest. We perform identification by using a 2D rigid body biped with
torso, knees, and feet as illustrated in Figure 8.7b. We focus on contact points associated
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(a) Parameters of the Biped with Torso, Knees and  (b) Degrees of Freedom and Contact Points of
Feet Interest (drawn in pink) of the Biped with
Torso Knees and Feet

Figure 8.7: An illustration of the parameters (left), degrees of freedom (right), and contact
points of interest (drawn in pink on the right) for the Biped with Torso, Knees,
and Feet that is used in order to construct a hybrid system on cycle model of gait
for the observed flat ground walking for each of the participants of the motion
capture experiment.

with the toe and heel on each foot. That is, using the notation defined in Section 2.2, we
choose C = {lt,rt,lh,rh}.

In addition to the torso position and orientation, (Ziorso, Ysorso Ororso) € R? X St with
respect to a fixed global coordinate system, the coordinates for the generalized configuration
space for this biped are the angle between the upper portion of the legs, 0, € S!, the
angle of the right and left knee with respect to their corresponding upper leg, 0,0, € S!,
respectively, and the angle of the right and left ankle with respect to the foot, 6,¢,6,; € S,
respectively. These different coordinates and their velocities can be assumed to evolve in
R6. Observe that the biped has 8 degrees of freedom. We assume full control authority, that
is the torque at each of the joints, denoted u = (wy, Ure, Wip, Urh, Wif, Ur f, Ui, Upks, Up,) € R?, is
controllable.

As described in Section 2.2, the identification of a hybrid system on a cycle model
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for each participant from the observations, y.s, requires the determination of the domain
specification as in Definition 2. As we showed in Section 2.3, the computation of the do-
main specification is equivalent to solving the Switched System Optimal Control Problem
defined as in Equation (2.34) for the switched system that switches between the vector fields
corresponding to the satisfaction of all possible combinations of contact point enforcements.

For each possible combination of contact point enforcements a vector field must then
be constructed. Let Q = {1,...,16} define the set of possible modes of the switched sys-
tem. Each of the modes can be associated with a possible combination of contact point
enforcements in C by considering the 4-digit binary expansion of the index in Q associated
with the mode in question minus one. For example, the 4-digit binary expansion of mode 1
after subtraction by 1 is 0000, which can be associated with none of the contact points being
enforced. On the other hand, the 4-digit binary expansion of mode 8 after subtraction by
1 is 0111 which can be associated with the enforcement of the ¢, rt, and [h contact points.
Let B : Q — Zj3 denote this operation.

Recall then that we can construct a vector field, f : R x R” x R™ x Q@ — R from the
unconstrained Lagrangian after noting the holonomic constraint that must be maintained in
order to remain within the mode in question. This constrained vector field does not depend
on the specific location at which the holonomic constraint must be maintained (i.e. the vector
field for the [It] mode is constructed by requiring that the left toe remain fixed rather than
requiring that it be fixed on the ground). Recall that for a rigid body the construction of
this vector field as in Equation (2.17) can be done in an automated fashion by just specifying
the lengths and masses of the various links drawn in Figure 8.7a.

We use the measurements in Table 8.3 to guide the determination of these lengths
and masses. In particular in order to determine the masses of each of the distinct links, we
employ a result from a paper on anatomy that describes the average distribution of mass in
humans [17] whose relevant results are summarized in Table 8.4. Given the results in Tables
8.3 and 8.4, we construct the desired vector field, f, which is distinct for each of the different
participants by employing Mathematica [96]. Again the formula for this vector field for each
of the participants, as a result, is several pages long without providing any insight; therefore,
we do not include it in this thesis.

M m M, my la

65.2% | 11.3% | 4.39% | 1.71% | /12 + 13 — S1l;

Table 8.4: Table describing the choice of parameters illustrated in Figure 8.7a for each of
the 9 subjects in Table 8.3 as a percentage of their total weight using the formula
described in Table 6 in [17] and as function of measured lengths.
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Table 8.5: The algorithmic parameters used for the switched system model of the Biped with
Torso, Knees, and Feet during the implementation of Algorithm 2 for each of the
9 participants in the flat ground walking experiment.

Applying Switched System Optimal Control to Identify a Hybrid
Model

Proceeding as in Chapter 7, we define a cost, initial condition, and algorithmic parameters in

order to apply Algorithm 2 to identify a domain specification. Before describing our specific

choices, recall that the initial and final times can be treated as fixed parameters ¢y and ¢y,

respectively, during the optimization and that we can employ a stopping criterion to termi-

nate Algorithm 2, if 6, gets sufficiently close to zero. We utilize the same implementation of

LSSOL from TOMLAB as in Chapter 7 in order to compute the optimality function.
Motivated by Equation (2.35), we choose a running cost as follows:

L(t,x(t), u(t), d(t)) = llyons(t) — g(@()l5 + 0.1 (lun(®)5 + a5 + w5 +

g D15 + g )15+ Y Y (1= di(®) (1 = [B(D)],) IIUj(t)II§> , (8.2)

i=1 j=1

where g : R — RY is the rigid body transformation that takes the continuous state of
the switched system to the subset of observations corresponding to the set of joints for each
participant (i.e. the rigid body transformation that takes the joint angles of the biped as in
Figure 8.7b to the absolute position of the joints), u; = uy, us = Uy, Uz = wy,, and uy = Upp.
Observe that we include a mode dependent penalty that penalizes an input at a particular
contact point only if that contact point is not being enforced. For example, expending input
at the [t joint while the [t is constrained is not penalized. We let ¢ (-) = 0. We also include
constraints during the optimization that ensure that each of the joints are kept above the
ground.

We initialize Algorithm 2 for each participant with all of the continuous inputs for all
time equal to zero, the discrete input for all time equal to one for the mode corresponding
to fixing only the [t contact point and zero for the other modes (i.e. dy(t) = 1,Vt € [to, ty]),
and the initial condition for the continuous state of the switched system equal to the initial
condition of the state of the participant whose gait we are attempting to identify. Algorithm
2 is initialized with the parameters in Table 8.5, a stopping criterion equal to 10~*, and 64
equally spaced samples in time.
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Figure 8.8: The domain specification or sequence of constraint enforcements constructed
by application of Algorithm 2 for all 9 participants in the flat ground walking
experiment. The red dots indicate the constraints enforced in each mode. Notice
that there are in fact 8 different modes visited during two steps, but these other
4 modes can be constructed by simply relabeling the left and right leg in each
mode and are not included due to space limitations.

The result of the application of Algorithm 2 to each of the observed trajectories is that
the same sequence of modes of the switched system are visited by all participants. That
is, though the percentage of time spent in each of the distinct modes is different for each
participant as illustrated in Figure 8.9, all of the 9 participants in the flat ground walking
experiment had the same the domain specification illustrated in Figure 8.8. Importantly,
this is the same domain specification that has been empirically observed for normal subjects
during flat ground walking experiments [95].
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Figure 8.9: The domain specifications in each row for the 9 subjects that participated in the
flat ground walking experiment in the order listed in Table 8.3. Comparing with
the domain specification illustrated in Figure 8.8 the first through fourth columns
correspond to [It] and [rt], [it, rh] and [rt,lh)], [lh, rh,rt] and [rh, [k, [t], and [Ih, [t]
and [rh, rt], respectively. Each illustration is a snapshot of the subject’s dynamics
in the mode and above each plot is the percentage of the total gait spent within

that mode.
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Chapter 9

Discussion and Concluding Remarks

In this thesis, we devise a technique to perform identification of human locomotion by trans-
forming the problem of identification into a switched system optimal control problem. In
particular, we devise a first order numerical optimization algorithm for the optimal control of
constrained nonlinear switched systems. The algorithm works by first relaxing the discrete-
valued input, performing traditional optimal control, and projecting the computed relaxed
discrete-valued input by employing a projection constructed by an extension to the classical
Chattering Lemma.

We prove that the sequence of points constructed by recursive application of our algo-
rithm converge to a point that satisfies a necessary condition for optimality of the Switched
System Optimal Control Problem. We then devise an implementable algorithm that operates
over finite dimensional subspaces of the optimization spaces. We prove the convergence of
the sequence of points constructed by recursive application of our computationally tractable
algorithm to a point that satisfies a necessary condition for optimality of the Switched Sys-
tem Optimal Control Problem. The utility of the technique in performing identification
is illustrated on a synthetic gait and a set of gaits observed during a flat ground walking
experiment.

Though this thesis assumes a specific unconstrained Lagrangian, by allowing for op-
timization over the initial condition, a parameterized unconstrained Lagrangian model can
be employed, and the correct lengths and masses of different links of the participant be-
ing observed can simultaneously be determined during the identification procedure. Moving
forward, in the short term we plan on applying this identification procedure to more compli-
cated locomotion patterns. In addition, we plan on applying the outcome of this identification
procedure to measuring the region of attraction of observed gait, which as discussed in the
introduction corresponds to a desirable measure of stability of the observed gait.

One challenge remains in order for the broader application of this approach. Even in
the instance of a rigid body model, the complexity of the vector fields for 8 link models
as constructed by Mathematica is high. More worryingly, the complexity of more realistic,
non rigid-body models is considerably higher. Devising modeling tools capable of managing
this complexity is critical. Port-Controlled Hamiltonians seem like a potential modeling tool
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capable of managing this ever-increasing complexity [83].

Finally, one of the broader goals of this line of investigation is the development of tech-
niques capable of rigorously guiding the design of human specific prosthetics. Although the
techniques presented in this thesis after a straightforward extension can be applied to predict
instabilities in gait, it is unclear how they can be applied in order to guide the construction
of prosthetics. In particular, though a gait with a prosthetic is representable by a hybrid
system, the optimal design of a particular prosthetic requires being able to perform opti-
mal control in the presence of autonomous switching. Devising a computationally tractable
variational technique for such systems is critical to being able to design such an algorithm.
Given such a variational principle, the development of an implementable technique should be
straightforward given our recent development of a provably convergent numerical integration
scheme [14]. The construction of such an algorithm should fundamentally shift the research
in assistive technologies going forward.
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