The RISC-V Instruction Set Manual, Volume |: User-
Level ISA, Version 2.0

Andrew Waterman
Yunsup Lee

David A. Patterson
Krste Asanovic

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-54
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

May 6, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The RISC-V Instruction Set Manual
Volume I: User-Level ISA
Version 2.0

Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovié¢
CS Division, EECS Department, University of California, Berkeley
{waterman|yunsup|pattrsn|krste}@eecs.berkeley.edu
May 6, 2014

Preface

This is the second release of the user ISA specification, and we intend the specification of the
base user ISA plus general extensions (i.e., IMAFD) to remain fixed for future development. The
following changes have been made since Version 1.0 [25] of this ISA specification.

e The ISA has been divided into an integer base with several standard extensions.

e The instruction formats have been rearranged to make immediate encoding more efficient.

e The base ISA has been defined to have a little-endian memory system, with big-endian or
bi-endian as non-standard variants.

e Load-Reserved/Store-Conditional (LR/SC) instructions have been added in the atomic in-
struction extension.

e AMOs and LR/SC can support the release consistency model.

e The FENCE instruction provides finer-grain memory and 1/O orderings.

e An AMO for fetch-and-XOR (AMOXOR) has been added, and the encoding for AMOSWAP
has been changed to make room.

e The AUIPC instruction, which adds a 20-bit upper immediate to the PC, replaces the RDNPC
instruction, which only read the current PC value. This results in significant savings for
position-independent code.

e The JAL instruction has now moved to the U-Type format with an explicit destination
register, and the J instruction has been dropped being replaced by JAL with rd=x0. This
removes the only instruction with an implicit destination register and removes the J-Type
instruction format from the base ISA. There is an accompanying reduction in JAL reach, but
a significant reduction in base ISA complexity.

e The static hints on the JALR instruction have been dropped. The hints are redundant with
the rd and rs1 register specifiers for code compliant with the standard calling convention.

e The JALR instruction now clears the lowest bit of the calculated target address, to simplify
hardware and to allow auxiliary information to be stored in function pointers.

e The MFTX.S and MFTX.D instructions have been renamed to FMV.X.S and FMV.X.D,
respectively. Similarly, MXTF.S and MXTF.D instructions have been renamed to FMV.S.X
and FMV.D.X, respectively.

e The MFFSR and MTFSR instructions have been renamed to FRCSR and FSCSR, respec-
tively. FRRM, FSRM, FRFLAGS, and FSFLAGS instructions have been added to individu-
ally access the rounding mode and exception flags subfields of the fcsr.

e The FMV.X.S and FMV.X.D instructions now source their operands from rs1, instead of rs2.
This change simplifies datapath design.

e FCLASS.S and FCLASS.D floating-point classify instructions have been added.

ii

Volume I: RISC-V User-Level ISA V2.0

A simpler NaN generation and propagation scheme has been adopted.

For RV 321, the system performance counters have been extended to 64-bits wide, with separate
read access to the upper and lower 32 bits.

Canonical NOP and MV encodings have been defined.

Standard instruction-length encodings have been defined for 48-bit, 64-bit, and >64-bit in-
structions.

Description of a 128-bit address space variant, RV128, has been added.

Major opcodes in the 32-bit base instruction format have been allocated for user-defined
custom extensions.

A typographical error that suggested that stores source their data from rd has been corrected
to refer to rs2.

Contents

[Prefacel

(1 __Introduction|

L1 RISC-VISA Overviewl« o o 0 oo e e e e e

[1.2 Imstruction Length Encodingl

1.3 Exceptions, Traps, and Interrupts|. oo

RV 321 Base Integer Instruction Set|

2.1 Programmers’ Model for Base Integer Subset|
2.2 Base Instruction Formats oo o
2.3 Immediate Encoding Variants|o
[2.4 Integer Computational Instructions|.
2.5 Control Transfer Instructionsl
2.6 Load and Store Instructionsl
2.7 Memory Model| e
2.8 System Instructions|

RV641 Base Integer Instruction Set|

iii

11

11

13

15

17

19

21

23

iv Volume I: RISC-V User-Level ISA V2.0

4 “M” Standard Extension for Integer Multiplication and Division| 27
4.1 Multiplication Operations|o o 27
4.2 Division Operations| e 28
“A” 1 1 1 29
[5.1 Specitying Ordering of Atomic Instructions| 29
[5.2 Load-Reserved/Store-Conditional Instructions|{. 30
b.3 Atomic Memory Operations| Lo 32

[6 “F” Standard Extension for Single-Precision Floating-Point| 35
6.1 F Register State| 35
6.2 Floating-Point Control and Status Register| 37
6.3 NaN Generation and Propagation|. 39
6.4 Single-Precision Load and Store Instructions|. 40
6.5 Single-Precision Floating-Point Computational Instructions| 40
6.6 Single-Precision Floating-Point Conversion and Move Instructions] 41
6.7 Single-Precision Floating-Point Compare Instructions|. 42
6.8 Single-Precision Floating-Point Classity Instruction| 42

[7 “D” Standard Extension for Double-Precision Floating-Point| 45
[7.1 D Register State] 45
(2.2 _Double-Precision Load and Store Instructionsl 45
[7.3 Double-Precision Floating-Point Computational Instructions|. 46
[7.4 Double-Precision Floating-Point Conversion and Move Instructions| 46
[7.5 Double-Precision Floating-Point Compare Instructions| 47
[7.6 Double-Precision Floating-Point Classity Instruction| 48

[8 RV32/64G Instruction Set Listings| 49

9 xtending - 55

Copyright (C) 2010-2014, The Regents of the University of California. All rights reserved.

9.1 Extension Terminology|.

9.2 RISC-V Extension Design Philosophy|

9.4 Adding aligned 64-bit instruction extensions|.,

9.5 Supporting VLIW encodings| Lo

(10 ISA Subset Naming Conventions|

[10.8 Supervisor-level Instruction Subsets| L.

[10.9 Supervisor-level Extensions| L

[10.10Subset Naming Convention| e

11 “Q” Standard Extension for Quad-Precision Floating-Point|

[11.1 Quad-Precision Load and Store Instructions|

[11.2 Quad-Precision Computational Instructions|

[11.3 Quad-Precision Convert and Move Instructions|

[11.4 Quad-Precision Floating-Point Compare Instructions|

[11.5 Quad-Precision Floating-Point Classify Instruction|

(12 “L” Standard Extension for Decimal Floating-Point|

[12.1 Decimal Floating-Point Registers|

13 “C” Standard Extension for Compressed Instructions|

vi Volume I: RISC-V User-Level ISA V2.0

(14 “B” Standard Extension for Bit Manipulation| 75
[15 “T” Standard Extension for Transactional Memory| s
16 “P” Standard Extension for Packed-SIMD Instructions 79
(17 RV1281 Base Integer Instruction Set| 81
(18 Calling Convention| 83
[18.1 C Datatypes and Alignment|. 83
[18.2 RVG Calling Convention|. 84
[18.3 Soft-Float Calling Convention|. 85
(19 History and Acknowledgments| 87
119.1 History trom Revision 1.0 of ISA manuall. 87
119.2 Developments since Revision 1.0 of ISA manuall 88
[19.3 Acknowledgments|. 90

9.4 ding| 90

Chapter 1

Introduction

RISC-V (pronounced “risk-five”) is a new instruction set architecture (ISA) that was originally
designed to support computer architecture research and education, but which we now hope will
become a standard open architecture for industry implementations. Our goals in defining RISC-V
include:

A completely open ISA that is freely available to academia and industry.

A real ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

An ISA that avoids “over-architecting” for a particular microarchitecture style (e.g., mi-
crocoded, in-order, decoupled, out-of-order) or implementation technology (e.g., full-custom,
ASIC, FPGA), but which allows efficient implementation in any of these.

An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support general-
purpose software development.

Support for the revised 2008 IEEE-754 floating-point standard [g].

An ISA supporting extensive user-level ISA extensions and specialized variants.

Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

An ISA with support for highly-parallel multicore or manycore implementations, including
heterogeneous multiprocessors.

Optional variable-length instructions to both expand available instruction encoding space and
to support an optional dense instruction encoding for improved performance, static code size,
and energy efficiency.

A fully virtualizable ISA to ease hypervisor development.

An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA de-
signs.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

The name RISC-V was chosen to represent the fifth major RISC ISA design from UC Berkeley
(RISC-I [16], RISC-II [9], SOAR [23], and SPUR [1Z] were the first four). We also pun on the

Volume I: RISC-V User-Level ISA V2.0

use of the Roman numeral “V” to signify “variations” and “vectors”, as support for a range of
architecture research, including various data-parallel accelerators, is an explicit goal of the ISA
design.

We developed RISC-V to support our own needs in research and education, where our group is
particularly interested in actual hardware implementations of research ideas (we have completed
eight different silicon fabrications of RISC-V since the first edition of this specification), and in
providing real implementations for students to explore in classes (RISC-V processor RTL de-
signs have been used in multiple undergraduate and graduate classes at Berkeley). In our current
research, we are especially interested in the move towards specialized and heterogeneous accel-
erators, driven by the power constraints imposed by the end of conventional transistor scaling.
We wanted a highly flexible and extensible base ISA around which to build our research effort.

A question we have been repeatedly asked is “Why develop a new ISA?” The biggest obvious
benefit of using an existing commercial ISA is the large and widely supported software ecosystem,
both development tools and ported applications, which can be leveraged in research and teaching.
Other benefits include the existence of large amounts of documentation and tutorial examples.
However, our experience of using commercial instruction sets for research and teaching is that
these benefits are smaller in practice, and do not outweigh the disadvantages:

e Commercial ISAs are proprietary. Fxcept for SPARC V8, which is an open IEEE
standard [1], most owners of commercial ISAs carefully guard their intellectual property
and do not welcome freely available competitive implementations. This is much less of an
issue for academic research and teaching using only software simulators, but has been a
magjor concern for groups wishing to share actual RTL implementations. It is also a major
concern for entities who do not want to trust the few sources of commercial ISA imple-
mentations, but who are prohibited from creating their own clean room implementations.
We cannot guarantee that all RISC-V implementations will be free of third-party patent
infringements, but we can guarantee we will not attempt to sue a RISC-V implementor.

e Commercial ISAs are only popular in certain market domains. The most obvious
examples at time of writing are that the ARM architecture is not well supported in the server
space, and the Intel £86 architecture (or for that matter, almost every other architecture)
is not well supported in the mobile space, though both Intel and ARM are attempting to
enter each other’s market segments. Another example is ARC and Tensilica, which provide
extensible cores but are focused on the embedded space. This market segmentation dilutes
the benefit of supporting a particular commercial ISA as in practice the software ecosystem
only exists for certain domains, and has to be built for others.

¢ Commercial ISAs come and go. Previous research infrastructures have been built
around commercial ISAs that are no longer popular (SPARC, MIPS) or even no longer
in production (Alpha). These lose the benefit of an active software ecosystem, and the
lingering intellectual property issues around the ISA and supporting tools interfere with the
ability of interested third parties to continue supporting the ISA. An open ISA might also
lose popularity, but any interested party can continue using and developing the ecosystem.

e Popular commercial ISAs are complex. The dominant commercial ISAs (z86 and
ARM) are both very complex to implement in hardware to the level of supporting common
software stacks and operating systems. Worse, nearly all the complexity is due to bad, or
at least outdated, ISA design decisions rather than features that truly improve efficiency.

¢ Commercial ISAs alone are not enough to bring up applications. Fven if we
expend the effort to implement a commercial ISA, this is not enough to run existing appli-
cations for that ISA. Most applications need a complete ABI (application binary interface)
to run, not just the user-level ISA. Most ABIs rely on libraries, which in turn rely on
operating system support. To run an existing operating system requires implementing the
supervisor-level ISA and device interfaces expected by the OS. These are usually much less
well-specified and considerably more complex to implement than the user-level ISA.

Copyright (C) 2010-2014, The Regents of the University of California. All rights reserved. 3

e Popular commercial ISAs were not designed for extensibility. The dominant
commercial ISAs were not particularly designed for extensibility, and as a consequence have
added considerable instruction encoding complexity as their instruction sets have grown.
Companies such as Tensilica (acquired by Cadence) and ARC' (acquired by Synopsys) have
built ISAs and toolchains around extensibility, but have focused on embedded applications
rather than general-purpose computing systems.

¢ A modified commercial ISA is a new ISA. One of our main goals is to support ar-
chitecture research, including magjor ISA extensions. FEven small extensions diminish the
benefit of using a standard ISA, as compilers have to be modified and applications rebuilt
from source code to use the extension. Larger extensions that introduce new architectural
state also require modifications to the operating system. Ultimately, the modified commer-
cial ISA becomes a new ISA, but carries along all the legacy baggage of the base ISA.

Our philosophy is that the ISA is perhaps the most important interface in a computing
system, and there is no reason that such an important interface should be proprietary. The
dominant commercial ISAs are based on instruction set concepts that were already well known
over 30 years ago. Software developers should be able to target an open standard hardware target,
and commercial processor designers should compete on implementation quality.

We are far from the first to contemplate an open ISA design suitable for hardware imple-
mentation. We also considered other existing open ISA designs, of which the closest to our
goals was the OpenRISC architecture [15]. We decided against adopting the OpenRISC ISA for
several technical reasons:

e OpenRISC has condition codes and branch delay slots, which complicate higher performance
implementations.

o OpenRISC uses a fixed 32-bit encoding and 16-bit immediates, which precludes a denser
instruction encoding and limits space for later expansion of the ISA.

o OpenRISC does not support the 2008 revision to the IEEE 754 floating-point standard.
e The OpenRISC 64-bit design had not been completed when we began.

By starting from a clean slate, we could design an ISA that met all of our goals, though of
course, this took far more effort than we had planned at the outset. We have now invested con-
siderable effort in building up the RISC-V ISA infrastructure, including documentation, compiler
tool chains, operating system ports, reference ISA simulators, FPGA implementations, efficient
ASIC implementations, architecture test suites, and teaching materials. We will continue to
work on building out the support software and will share our results under open licenses (either
modified BSD or GPL/LGPL as appropriate) at the www.riscv.org website in the hope that we
can build a larger open-source community around this ISA.

The RISC-V manual is structured in two volumes. This volume covers the user-level ISA design,
including optional ISA extensions. The second volume provides examples of supervisor-level ISA
design.

In this user-level manual, we aim to remove any dependence on particular microarchitectural
features or on supervisor-level details. This is both for clarity and to allow mazimum flexibility
for alternative implementations.

1.1 RISC-V ISA Overview

The RISC-V ISA is defined as a base integer ISA, which must be present in any implementation,
plus optional extensions to the base ISA. The base integer ISA is very similar to that of the early

4 Volume I: RISC-V User-Level ISA V2.0

RISC processors except with no branch delay slots and with support for optional variable-length
instruction encodings. The base is carefully restricted to a minimal set of instructions sufficient
to provide a reasonable target for compilers, assemblers, linkers, and operating systems (with
additional supervisor-level operations), and so provides a convenient ISA and software toolchain
“skeleton” around which more customized processor ISAs can be built.

Each base integer instruction set is characterized by the width of the integer registers and the
corresponding size of the user address space. There are two base integer variants, RV32I and
RV64I, described in Chapters [2] and [3] which provide 32-bit or 64-bit user-level address spaces
respectively. Hardware implementations and operating systems might provide only one or both of
RV32I and RV64I for user programs. Chapter describes a future RV128I variant of the base
integer instruction set supporting a flat 128-bit user address space.

Although 64-bit address spaces are a requirement for larger systems, we believe 32-bit address
spaces will remain adequate for many embedded and client devices for decades to come and will
be desirable to lower memory traffic and energy consumption. In addition, 32-bit address spaces
are sufficient for educational purposes. A larger flat 128-bit address space might eventually be
required, so we ensured this could be accommodated within the RISC-V ISA framework.

The base integer ISA may be subset by a hardware implementation, but opcode traps and software
emulation by a supervisor layer must then be used to implement functionality not provided by
hardware.

Subsets of the base integer ISA might be useful for pedagogical purposes, but the base has been
defined such that there should be little incentive to subset a real hardware implementation beyond
omitting support for misaligned memory accesses and treating all SYSTEM instructions as a
single trap.

RISC-V has been designed to support extensive customization and specialization. The base integer
ISA can be extended with one or more optional instruction-set extensions, but the base integer
instructions cannot be redefined. We divide RISC-V instruction-set extensions into standard and
non-standard extensions. Standard extensions should be generally useful and should not conflict
with other standard extensions. Non-standard extensions may be highly specialized, or may conflict
with other standard or non-standard extensions. Instruction-set extensions may provide slightly
different functionality depending on the width of the base integer instruction set. Chapter [9] de-
scribes various ways of extending the RISC-V ISA. We have also developed a naming convention
for RISC-V base instructions and instruction-set extensions, described in detail in Chapter

To support more general software development, a set of standard extensions are defined to provide
integer multiply/divide, atomic operations, and single and double-precision floating-point arith-
metic. The base integer ISA is named “I” (prefixed by RV32 or RV64 depending on integer reg-
ister width), and contains integer computational instructions, integer loads, integer stores, and
control-flow instructions, and is mandatory for all RISC-V implementations. The standard integer
multiplication and division extension is named “M”, and adds instructions to multiply and divide
values held in the integer registers. The standard atomic instruction extension, denoted by “A”,
adds instructions that atomically read, modify, and write memory for inter-processor synchroniza-
tion. The standard single-precision floating-point extension, denoted by “F”, adds floating-point
registers, single-precision computational instructions, and single-precision loads and stores. The
standard double-precision floating-point extension, denoted by “D”, expands the floating-point
registers, and adds double-precision computational instructions, loads, and stores. An integer base

Copyright (C) 2010-2014, The Regents of the University of California. All rights reserved. 5

plus these four standard extensions (“IMAFD”) is given the abbreviation “G” and provides a
general-purpose scalar instruction set. RV32G and RV64G are currently the default target of our
compiler toolchains. Later chapters describe these and other planned standard RISC-V extensions.

Beyond the base integer ISA and the standard extensions, it is rare that a new instruction will
provide a significant benefit for all applications, although it may be very beneficial for a certain
domain. As energy efficiency concerns are forcing greater specialization, we believe it is important to
simplify the required portion of an ISA specification. Whereas other architectures usually treat their
ISA as a single entity, which changes to a new version as instructions are added over time, RISC-V
will endeavor to keep the base and each standard extension constant over time, and instead layer
new instructions as further optional extensions. For example, the base integer ISAs will continue
as fully supported standalone ISAs, regardless of any subsequent extensions.

With this 2.0 release of the user ISA specification, we intend the “IMAFD” base and standard
extensions (aka. “G”) to remain constant for future development.

1.2 Instruction Length Encoding

The base RISC-V ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit
boundaries. However, the standard RISC-V encoding scheme is designed to support ISA extensions
with variable-length instructions, where each instruction can be any number of 16-bit instruction
parcels in length and parcels are naturally aligned on 16-bit boundaries. The standard compressed
ISA extension described in Chapter|13|reduces code size by providing compressed 16-bit instructions
and relaxes the alignment constraints to allow all instructions (16 bit and 32 bit) to be aligned on
any 16-bit boundary to improve code density.

Figure illustrates the standard RISC-V instruction-length encoding convention. All the 32-bit
instructions in the base ISA have their lowest two bits set to 11. The optional compressed 16-bit
instruction-set extensions have their lowest two bits equal to 00, 01, or 10. Standard instruction-
set extensions encoded with more than 32 bits have additional low-order bits set to 1, with the
conventions for 48-bit and 64-bit lengths shown in Figure Instruction lengths between 80 bits
and 304 bits are encoded using a 4-bit field giving the number of 16-bit words in addition to the
first 5x16-bit words. Encodings with 11 or more low-order opcode bits set to 1 are reserved for
future longer instruction encodings.

Given the code size and energy savings of a compressed format, we wanted to build in support
for a compressed format to the ISA encoding scheme rather than adding this as an afterthought,
but to allow simpler implementations we didn’t want to make the compressed format mandatory.
We also wanted to optionally allow longer instructions to support experimentation and larger
instruction-set extensions. Although our encoding convention required a tighter encoding of the
core RISC-V ISA, this has several beneficial effects.

An implementation of the standard G ISA need only hold the most-significant 30 bits in
instruction caches (a 6.25% saving). On instruction cache refills, any instructions encountered
with either low bit clear should be recoded into illegal 30-bit instructions before storing in the
cache to preserve illegal instruction trap behavior.

Perhaps more importantly, by condensing our base ISA into a subset of the 32-bit instruction
word, we leave more space available for custom extensions. In particular, the base RV32I ISA
uses less than 1/8 of the encoding space in the 32-bit instruction word. As described in Chap-
ter[d, an implementation that does not require support for the standard compressed instruction

6 Volume I: RISC-V User-Level ISA V2.0

extension can map 3 additional 30-bit instruction spaces into the 32-bit fivred-width format, while
preserving support for standard >=32-bit instruction-set extensions. Further, if the implemen-
tation also does not need instructions >32-bits in length, it can recover a further four major
opcodes.

We consider it a feature that any length of instruction containing all zero bits is not legal, as
this quickly traps erroneous jumps into zeroed memory regions.

The base RISC-V ISA has a little-endian memory system, but non-standard variants can provide
a big-endian or bi-endian memory system. Instructions are stored in memory with each 16-bit
parcel stored in a memory halfword according to the implementation’s natural endianness. Parcels
comprising one instruction are stored at increasing halfword addresses, with the lowest addressed
parcel holding the lowest numbered bits in the instruction specification, i.e., instructions are always
stored in a little-endian sequence of parcels regardless of the memory system endianness. The code
sequence in Figure will store a 32-bit instruction to memory correctly regardless of memory
system endianness.

We chose little-endian byte ordering for the RISC-V memory system because little-endian sys-
tems are currently dominant commercially (all 86 systems; i0S, Android, and Windows for
ARM). A minor point is that we have also found little-endian memory systems to be more nat-
ural for hardware designers. However, certain application areas, such as IP networking, operate
on big-endian data structures, and so we leave open the possibility of non-standard big-endian
or bi-endian systems.

We have to fiz the order in which instruction parcels are stored in memory, independent
of memory system endianness, to ensure that the length-encoding bits always appear first in
halfword address order. This allows the length of a wvariable-length instruction to be quickly
determined by an instruction fetch unit by examining only the first few bits of the first 16-bit
instruction parcel. Once we had decided to fix on a little-endian memory system and instruction
parcel ordering, this naturally led to placing the length-encoding bits in the LSB positions of the
instruction format to avoid breaking up opcode fields.

1.3 Exceptions, Traps, and Interrupts

We use the term exception to refer to an unusual condition occurring at run time. We use the term
trap to refer to the synchronous transfer of control to a supervisor environment when caused by
an exceptional condition occurring within a RISC-V thread. We use the term interrupt to refer to
the asynchronous transfer of control to a supervisor environment caused by an event outside of the
current RISC-V thread.

The instruction descriptions in following chapters describe conditions that raise an exception dur-
ing execution. Whether and how these are converted into traps is dependent on the execution
environment, though the expectation is that most environments will take a precise trap when an
exception is signaled (except for floating-point exceptions, which, in the standard floating-point
extensions, do not cause traps).

Our use of “exception” and “trap” matches that in the IEEE-754 floating-point standard.

Copyright (C) 2010-2014, The Regents of the University of California. All rights reserved. 7

| xxxxxxxxxxxxxxaa | 16-bit (aa # 11)

’ XXXXXXXXXXXXXXXX ‘ XXXXXXXXXXXbbb11 ‘ 32-bit (bbb # 111)

- XXXX ‘Xxxxxxxxxxxxxxxx ‘XXXXXXXXXXOlllll ‘484ﬁt

- XXXX ‘XXXXXXXXXXXXXXXX ‘XXXXXXXXXOllllll ‘64Jﬁt

. ‘XXXX | XXXXXXXXXXXXXXXX | xxxxxnnnni1111111 | (804-16*nnnn)-bit, nnnn#1111

CXXXX ‘ XXXXXXXXXXXXXXXX ‘ xxxxx11111111111 ‘ Reserved for >320-bits

Byte Address: base+4 base+2 base

Figure 1.1: RISC-V instruction length encoding.

// Store 32-bit instruction in x2 register to location pointed to by x3.
sh x2, 0(x3) // Store low bits of instruction in first parcel.

srli x2, x2, 16 // Move high bits down to low bits, overwriting x2.

sh x2, 2(x3) // Store high bits in second parcel.

Figure 1.2: Recommended code sequence to store 32-bit instruction from register to memory.
Operates correctly on both big- and little-endian memory systems and avoids misaligned accesses
when used with variable-length instruction-set extensions.

Volume I: RISC-V User-Level ISA V2.0

Chapter 2

RV 321 Base Integer Instruction Set

This chapter describes the RV32I base integer instruction set. Much of the commentary also applies
to the RV64I variant.

RV32I was designed to be sufficient to form a compiler target and to support modern operating
system environments. The ISA was also designed to reduce the hardware required in a minimal
implementation. RV32I contains 47 unique instructions, though an implementation might cover
the eight SCALL/SBREAK/RD* instructions with a single SYSTEM hardware instruction that
always traps, reducing hardware instruction count to 40 total. RV32I can emulate almost any
other ISA extension (except the A extension, which requires additional hardware support for
atomicity).

2.1 Programmers’ Model for Base Integer Subset

Figure shows the user-visible state for the base integer subset. There are 31 general-purpose
registers x1-x31, which hold integer values. Register x0 is hardwired to the constant 0. There is
no hardwired subroutine return address link register, but the standard software calling convention
uses register x1 to hold the return address on a call. For RV32, the x registers are 32 bits wide,
and for RV64, they are 64 bits wide. This document uses the term XLEN to refer to the current
width of an x register in bits (either 32 or 64).

There is one additional user-visible register: the program counter pc holds the address of the current
instruction.

The number of available architectural registers can have large impacts on code size, performance,
and energy consumption. Although 16 registers would arguably be sufficient for an integer ISA
running compiled code, it is impossible to encode a complete ISA with 16 registers in 16-bit
instructions using a 3-address format. Although a 2-address format would be possible, it would
increase instruction count and lower efficiency. We wanted to avoid intermediate instruction
sizes, such as Xtensa’s 24-bit instructions, to simplify base hardware implementations, and once
a 32-bit instruction size was adopted, it was straightforward to support 32 integer registers.
For the base ISA, we chose a conventional size of 32 integer registers for these reasons and
based on the behavior of standard compilers on existing code and on our experience generating

10

Volume I: RISC-V User-Level ISA V2.0

high-performance routines using autotuning. Dynamic register usage tends to be dominated
by a few frequently accessed registers, and regfile implementations can be optimized to reduce
access energy for the frequently accessed registers. The optional compressed 16-bit instruction
format mostly only accesses 8 registers and hence can provide a dense instruction encoding,
while additional instruction-set extensions could support a much larger register space (either flat
or hierarchical) if desired.

For resource-constrained embedded applications, it would be possible to define a non-standard
subset integer RISC-V ISA with 16 registers using the existing instruction encoding and small
modifications to the compiler and calling convention.

XLEN-1 0
x0 / zero
x1
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31
XLEN

XLEN-1 0

pPcC
XLEN

Figure 2.1: RISC-V user-level base integer register state.

Copyright (C) 2010-2014, The Regents of the University of California. All rights reserved. 11

2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated if the pc is not four-byte aligned on an instruction fetch.

31 25 24 20 19 15 14 12 11 76 0
] funct7? | rs2 | sl [funct3| rd | opcode |R-type
] imm(11:0] | sl [funct3| rd | opcode |I-type
| imm[11:5] | rs2 | rsl [funct3 | imm[40] | opcode | S-type
] imm(31:12] | rd | opcode | U-type

Figure 2.2: RISC-V base instruction formats.

The RISC-V ISA keeps the source (rs! and rs2) and destination (7d) registers at the same position
in all formats to simplify decoding. Immediates are packed towards the leftmost available bits in
the instruction and have been allocated to reduce hardware complexity. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed sign-extension circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-1V
aka. SPUR [12]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in reqular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for reqular instructions. In addition,
the ISA only has sign-extended immediates. We did not observe a benefit to using zero-extension
for some immediates and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (SB/UJ) based on the handling of
immediates, as shown in Figure [2.3

In Figure each immediate subfield is labeled with the bit position (imm[z]) in the immediate
value being produced, rather than the bit position within the instruction’s immediate field as is
usually done. Figure [2.4] shows the immediates produced by each of the base instruction formats,
and is labeled to show which instruction bit (inst[y]) produces each bit of the immediate value.

The only difference between the S and SB formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the SB format. Instead of shifting all bits in the instruction-
encoded immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1])
and sign bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order
bit in SB format.

12 Volume I: RISC-V User-Level ISA V2.0

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| Fnct? | 152 [sl [funes | rd [opcode | R-type
[imm[11] [imm[10:5] [imm[&1] [imm[0] [rsT [funct3 | rd [opcode | I-type
[imm[11] [imm[10:5] | rs2 | rs1 | funct3 [imm[4:1] [imm[0] [opcode | S-type
[imm[12] [imm[10:5] | rs2 [rs1 | funct3 [imm[4:1] [imm[I1] | opcode | SB-type
[imm[31]] imm(30:20] [imm([19:15] [imm[14:12] | rd [opcode | U-type
[imm[20] [imm[10:5] |imm[4:1] [imm[11] [imm[19:15] [imm[14:12] | rd | opcode | UJ-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

31 30 20 19 12 11 10 5 4 1 0
] — inst[31] — | inst[30:25] | inst[24:21] | inst[20] | -immediate
] — inst[31] — | inst[30:25] | inst[11:8] | inst[7] | S-immediate
] — inst[31] — | inst[7] [inst[30:25] [inst[11:8] [0 | B-immediate
[inst[31] | inst[30:20] [inst[19:12] | —0 — | U-immediate
] — inst[31] — | inst[19:12] |inst[20] [inst[30:25] [inst[24:21][0 | J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Similarly, the only difference between the U and UJ formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and UJ format immediates is chosen to maximize overlap with the other formats and
with each other.

Sign-extension is one of the most critical operations on immediates (particularly in RV641), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so not benefit from keeping the location of immediate bits constant across types of
instruction, we wanted to reduce the hardware cost of the simplest implementations. By rotating
bits in the instruction encoding of B and J immediates instead of using dynamic hardware
muzes to multiply the immediate by 2, we reduce instruction signal fanout and immediate mux
costs by around a factor of 2. The scrambled immediate encoding will add negligible time to
static or ahead-of-time compilation. For dynamic JIT generation of instructions there is some
small additional overhead, but the most common short forward branches have straightforward
immediate encodings.

Copyright (C) 2010-2014, The Regents of the University of California. All rights reserved. 13

2.4 Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in the integer register
file. Integer computational instructions are either encoded as register-immediate operations using
the I-type format or as register-register operations using the R-type format. The destination is
register rd for both register-immediate and register-register instructions. No integer computational
instructions cause arithmeti