
Towards High Assurance HTML5 Applications

Devdatta Akhawe

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-56

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-56.html

May 7, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards High Assurance HTML5 Applications

by

Devdatta Madhav Akhawe

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair
Professor David Wagner
Professor Brian Carver

Spring 2014

Towards High Assurance HTML5 Applications

Copyright 2014
by

Devdatta Madhav Akhawe

1

Abstract

Towards High Assurance HTML5 Applications

by

Devdatta Madhav Akhawe

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

Rich client-side applications written in HTML5 proliferate diverse platforms such as mobile
devices, commodity PCs, and the web platform. These client-side HTML5 applications are
increasingly accessing sensitive data, including users’ personal and social data, sensor data,
and capability-bearing tokens. Instead of the classic client/server model of web applications,
modern HTML5 applications are complex client-side applications that may call some web
services, and run with ambient privileges to access sensitive data or sensors. The goal of
this work is to enable the creation of higher-assurance HTML5 applications. We propose
two major directions: first, we present the use of formal methods to analyze web protocols
for errors. Second, we use existing primitives to enable practical privilege separation for
HTML5 applications. We also propose a new primitive for complete mediation of HTML5
applications. Our proposed designs considerably ease analysis and improve auditability.

i

To my parents.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Towards a Formal Foundation for Web Protocols 1
1.2 Privilege Separation for HTML5 Applications 2
1.3 Data Confined HTML5 Applications . 3

2 Towards A Formal Foundation for Web Protocols 4
2.1 Introduction . 4
2.2 General Model . 7
2.3 Implementation in Alloy . 13
2.4 Case Studies . 19
2.5 Measurement . 28
2.6 Summary of Results . 28

3 Privilege Separation for HTML5 Applications 31
3.1 Introduction . 31
3.2 Problem and Approach Overview . 33
3.3 Design . 36
3.4 Implementation . 41
3.5 Case Studies . 47
3.6 Performance Benchmarks . 54
3.7 Summary of Results . 54

4 Data-Confined HTML5 Applications 56
4.1 Introduction . 56
4.2 Data Confinement in HTML5 applications 57
4.3 Problem Formulation . 60
4.4 The Data Confined Sandbox . 63

iii

4.5 Implementation . 68
4.6 Case Studies . 68
4.7 Summary of Results . 77

5 Related Work 79
5.1 Formal Verification of Security Protocols 79
5.2 Privilege Separation for Web Applications 80
5.3 Data-confined HTML5 Applications . 82

6 Conclusion 83

Bibliography 84

iv

List of Figures

2.1 The metamodel of our formalization of web security. Red unmarked edges
represent the ‘extends’ relationship. 16

2.2 Vulnerability in Referer Validation. This figure is adapted from [85], with the
attack (dashed line) added. 23

2.3 Counterexample generated by Alloy for the HTML5 form vulnerability. 24
2.4 The WebAuth protocol . 25
2.5 Log-scale graph of analysis time for increasing scopes. The SAT solver ran out

of memory for scopes greater than eight after the fix. 29

3.1 CDF of percentage of functions in an extension that make privileged calls (X
axis) vs. the fraction of extensions studied (in percentage) (Y axis). The lines
for 50% and 20% of extensions as well as for 5% and 20% of functions are marked. 35

3.2 High-level design of our proposed architecture. 37
3.3 Sequence of events to run application in sandbox. Note that only the bootstrap

code is sent to the browser to execute. Application code is sent directly to the
parent, which then creates a child with it. 42

3.4 Typical events for proxying a privileged API call. The numbered boxes outline
the events. The event boxes span the components involved. For example, event
4 involves the parent shim calling the policy code. 44

3.5 Frequency distribution of event listeners and API calls used by the top 42
extensions requiring the tabs permission. 53

4.1 High-level design of an application running in a DCS. The only component
that runs privileged is the parent. The children run in data-confined sandboxes,
with no ambient privileges and all communication channels monitored by the
parent. 64

v

List of Tables

2.1 Statistics for each case study . 28

3.1 Overview of case studies. The TCB sizes are in KB. The lines changed column
only counts changes to application code, and not application independent shims
and parent code. 48

4.1 Comparison of current solutions for data confinement 61
4.2 List of our case studies, as well as the individual components and policies in

our redesign. 70
4.3 Confidentiality Invariants in the Top 20 Google Chrome Extensions 78

vi

Acknowledgments

First, I want to thank my advisor Dawn for being such a fantastic advisor and guide
through my graduate career. Also, thanks to David Wagner whose advice and guidance I
have always sought and received during my graduate career. Thanks also to my committee
members Brian Carver and George Necula for their help and guidance.

The research presented in this thesis is a joint effort. A special thanks goes to all my
co-authors: Adam Barth, Warren He, Eric Lam, Frank Li, John Mitchell, Prateek Saxena,
Dawn Song. Over the course of my graduate life I have co-authored papers with nearly
30 different co-authors. These collaborators, all my friends in the Security group, and all
my teachers at Berkeley have directly impacted my research, my work, and my evolution
as a researcher and I remain thankful to them all. I am extremely lucky to have been
surrounded by and worked with such a tremendously talented group of people over the
past five years.

Pursuing graduate studies was in a large part due to all the great mentors and teachers
I have had over the years. I would like to particularly thank my undergraduate advisor,
Sundar Balasubramaniam, as well as Helen Wang and Xiaofeng Fan for their fantastic
mentoring and advice. Without their help and support, it is unlikely I would have even
applied to graduate school.

Thanks also to all my friends, from Pilani to Berkeley, who made the stress of graduate
life easy to manage. You know who you are and I feel blessed to call such an amazing
group of people my friends.

Finally, and most importantly, I want to thank my extended family: my brother, my
cousins, my uncles and aunts, and their respective families for their amazing love, care,
and guidance over the years. I would like to particularly thank all my four aunts: they
ensured I got an education and never lost focus.

1

Chapter 1

Introduction

Rich client-side HTML5 applications—including packaged browser applications (Chrome
Apps) [57], browser extensions [56], Windows 8 Metro applications [98], and applications in
new browser operating systems (B2G [105], Tizen [134])—are fast proliferating on diverse
computing platforms. These applications run with access to sensitive data such as the user’s
browsing history, personal and social data, financial documents, and capability-bearing
tokens that grant access to these data. A recent study reveals that 58% of the 5,943
Google Chrome browser extensions studied require access to the user’s browsing history,
and 35% request permissions to the user’s data on all websites [34]. In addition, the study
found that 67% of 34,370 third-party Facebook applications analyzed have access to the
user’s personal data [34].1 HTML5 applications also form a significant chunk of mobile
applications; Chin et al. recently found that 70% of smartphone applications they surveyed
on Google Play rely on HTML5 code in some form [35]. These HTML5 applications often
execute with access to the same sensors available to native mobile applications, including
private data from GPS receivers, accelerometers, and cameras.

These trends indicate the evolution of the client-side web from a front-end for servers
to a complex application platform running privileged applications. Despite immense prior
research on detection and mitigation techniques [7, 45, 66, 82, 122], web vulnerabilities are
still pervasive in HTML5 applications on emerging platforms such as browser extensions [30].
As the HTML5 platform achieves wider adoption, enabling higher-assurance in the HMTL5
applications is critical to its success. In this thesis, we address this need.

1.1 Towards a Formal Foundation for Web Protocols

First, we present initial work on formal modeling and verification of web protocols. As
we discussed above, HTML5 applications on emerging platforms are moving away from
the client/server paradigm to a new paradigm of standalone HTML5 applications that

1 The study measured install-time permissions, which are a lower bound for Facebook applications,
since they can request further permissions at runtime.

CHAPTER 1. INTRODUCTION 2

call diverse web services. The security of protocols used by HTML5 applications to
communicate with diverse cloud-based services is just as critical to the security of the
platform as the security of the HTML5 application itself. We propose a formal model of
web security mechanisms based on an abstraction of the web platform and use this model
to analyze the security of five sample web mechanisms and applications.

Web protocols are distinct from network protocols due to the nature of the web:
attacker code often runs as part of the user’s browser and the attacker can initiate cookie
bearing requests. Our work is the first to bring out these issues in a formal setting. We
identify three distinct threat models to analyze web applications, ranging from a web
attacker who controls malicious web sites and clients, to stronger attackers who can control
the network and leverage sites designed to display user-supplied content.

We propose two broadly applicable security goals and study five security mechanisms.
In our case studies, which include HTML5 forms, Referer validation, and a single sign-on
solution, we use Alloy, a SAT-based model-checking tool, to find two previously known
vulnerabilities and three new vulnerabilities. Our case study of a Kerberos-based single
sign-on system illustrates the differences between a secure network protocol using custom
client software and a similar but vulnerable web protocol that uses cookies, redirects, and
embedded links instead.

1.2 Privilege Separation for HTML5 Applications

Next, we present work on improving assurance in HTML5 applications using privilege
separation with standardized browser primitives. Current web applications suffer from
pervasive over-privileging, which impacts security analysis and audits. One reason for such
pervasive over-privileging is the absence of easy to use privilege separation primitives. The
standard approach for privilege separation in web applications is to execute application
components in different web origins. This limits the practicality of privilege separation
since each web origin has financial and administrative cost.

We propose a new design for achieving effective privilege separation in HTML5 applica-
tions that shows how applications can cheaply create arbitrary number of components. Our
approach utilizes standardized abstractions already implemented in modern browsers. We
do not advocate any changes to the underlying browser or require learning new high-level
languages, which contrasts prior approaches. We empirically show that we can retrofit
our design to real-world HTML5 applications (browser extensions and rich client-side
applications) and achieve reduction of 6x to 10000x in TCB for our case studies. Our
mechanism requires less than 13 lines of application-specific code changes and considerably
improves auditability.

CHAPTER 1. INTRODUCTION 3

1.3 Data Confined HTML5 Applications

Privilege separation only provides isolation of code, it does not, however, provide any
control over data flows. HTML5 applications that handle sensitive user data (e.g., password
managers, medical record managers) need to securely confine data to a whitelist of
principals. This is challenging since HTML5 as a platform is designed for sharing and
communication, not for restricting the flow of data. An HTML5 application with an
injection vulnerability can leak sensitive data, even in the absence of XSS flaws. As
HTML5 applications pervade more and more platforms, the absence of high-performance
primitives for controlling data-flow severely restrict the ability to reason about data-flow
in HTML5 applications.

In Chapter 4, we identify such data-confinement invariants in modern, rich client-side
applications. As we discussed above, such HTML5 applications proliferate on diverse
platforms, accessing sensitive data. It is critical that the application confine the data to
specific principals in a high assurance manner. Unfortunately, applications currently enforce
these invariants using implicit, ad-hoc mechanisms. We propose a new primitive called a
data-confined sandbox or DCS. A DCS enables complete mediation of communication
channels with a small TCB. Our primitive extends currently standardized primitives and
has negligible performance over- head and a modest compatibility cost. We retrofit our
design on four real-world HTML5 applications and demonstrate that a small amount of
effort enables strong data-confinement guarantees.

Outline We organize the rest of this thesis as follows: Chapter 2 presents our work on
formally modeling web protocols. Chapter 3 discusses our work on privilege separation
of HTML5 applications. In Chapter 4, we first present more details of why the HTML5
platform and previous research does not sufficiently address the need for data confinement
and present a new primitive for data confinement on the HTML5 platform. Finally, we
discuss related work in Chapter 5 before concluding in Chapter 6.

4

Chapter 2

Towards A Formal Foundation for
Web Protocols

The research discussed in this chapter was presented at the 23rd Computer Security
Foundations Symposium, 2010 at Edinburgh, Scotland. This is joint work with Adam
Barth, Eric Lam, John Mitchell, and Dawn Song.

2.1 Introduction

The web, indispensable in modern commerce, entertainment, and social interaction, is
a complex delivery platform for sophisticated distributed applications with multifaceted
security requirements. Unfortunately, most web browsers, servers, network protocols,
browser extensions, and their security mechanisms were designed without analytical
foundations. Further complicating matters, the web continues to evolve with new browser
features, protocols, and standards added at a rapid pace [72, 74, 77, 87, 107, 127]. The
specifications of new features are often complex, lack clear threat models, and involve
unstated and unverified assumptions about other components of the web. As a result, new
features can introduce new vulnerabilities and break security invariants assumed by web
applications [68, 89, 106].

The ad hoc nature and the lack of formalism in the current web protocol design
reminds us of the early stage of network security protocol design when subtle flaws were
commonplace in widely deployed network security protocols, such as the earlier versions of
Kerberos, SSL [90, 100]. To address this problem, researchers have successfully applied
formal methods to prove security properties of classes of security protocols such as network
authentication and key distribution protocols [101, 126]. This effort has been a fruitful
and invaluable research direction—a great volume of research in this area has resulted in
a much deeper understanding of how to design network security protocols with security
guarantees.

Just as formal models and tools have proven useful in evaluating the security of

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 5

network protocols, we believe that abstract yet informed models of the web platform,
web applications, and web security mechanisms will be amenable to automation, reveal
practical attacks, and support useful evaluation of alternate designs.

In this chapter, we propose a formal model for the web platform, which includes a
number of key web concepts, and demonstrate that our model is useful for finding bugs
in real-world web security mechanisms. Our model is sufficiently abstract and amenable
to formal analysis, yet appears sufficiently detailed to express subtle attacks missed by
expert human analysts in several cases. We provide an executable implementation of a
subset of our model in Alloy [39] and demonstrate the utility of this subset (and, more
generally, our model) via five case studies. Although we imagine our model being used for
more than vulnerability discovery, we focus in this work on analyzing existing protocols
for design errors. We show that our model can capture two previously known and three
previously unknown vulnerabilities.

Our web security model consists of a selection of web concepts, precise threat models,
and two broadly applicable security goals. These design choices are informed by previous
experience designing and (informally) evaluating web security mechanisms, such as prevent-
ing cross-site request forgery [17], securing browser frame communication [17], preventing
DNS rebinding [78], and protecting high-security web sites from network attacks [77]. Our
experience with these and other suggest that a few central modeling concepts will prove
useful for evaluating a wide range of mechanisms.

The central web concepts we formalize in our model include browsers, servers, scripts,
HTTP, and DNS, as well as ways they interact. For example, each script context,
representing execution of JavaScript within a browser execution environment, is associated
with a given “origin” and located in a browser. By making use of browser APIs, such as
XMLHttpRequest, these script contexts can direct (restricted forms of) HTTP requests
to various DNS names, which resolve to servers. These servers, in turn, respond to these
requests and influence the browser’s behavior. Although the web security model we
describe in Section 2.2 also contains other concepts such as frames, the location bar, and
the lock icon, our executable implementation described in Section 2.3 focuses on browsers,
servers, scripts, HTTP, and DNS, which form the “backbone” of the model.

We propose three distinct and important threat models: a web attacker, an active
network attacker, and a gadget attacker. The most important threat model, at least for
mechanisms and studies we are familiar with, is the web attacker. The web attacker
operates a malicious web site and may use a browser, but has no visibility into the network
beyond requests or responses directed towards the hosts it operates. Many core web
security mechanisms are designed to resist the threats we formalize as the web attacker
but fail to provide protection against more powerful attackers. An active network attacker
has all the abilities of a web attacker plus the ability to eavesdrop, block, and forge
network messages. The active network attacker we define is slightly more powerful than
the eponymous threat considered when analyzing a traditional network protocol because
our active network attacker can make use of browser APIs. Finally, we also consider a web
attacker with the ability to inject (limited kinds of) content into otherwise honest web

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 6

sites, corresponding to the gadget attacker considered in [17]. This threat lets us consider
the robustness of web security mechanisms in the presence of third-party content ranging
from comments on a blog to gadgets in a mashup.

The third part of our model formulates two widely applicable security goals that can
be evaluated for various mechanisms: (i) new mechanisms should not violate any of the
invariants that web sites commonly rely upon for security and (ii) a “session integrity”
condition, which states that the attacker is unable to cause honest servers to undertake
potentially sensitive actions. There is a wide spectrum of security goals we could investigate,
but we focus on these goals because they are generally applicable to many web security
mechanism, including those in our case studies.

Concretely, we implement the core components of our model in Alloy [39, 80], an
automated tool that translates a declarative object-modeling syntax into propositional
input to a SAT solver. Using Alloy’s declarative input language, we axiomatize the key
concepts, threat models, and security goals of our model. Our axiomatization is incomplete
(both because we do not implement all the concepts in our model and because browser
implementations might contain bugs) but useful nonetheless. After modeling a specific
web security mechanism, the Alloy satisfiability (SAT) solver attempts to find browser
and site interactions that violate specified security goals. Typically, we ask not whether
a particular web security mechanism is secure, but how powerful an attacker is required
to defeat the security mechanism. In this way, we aim to quantify the security of the
mechanism.

To demonstrate the utility of our model, we conduct five case studies. We use our
model to analyze a proposed cross-site request forgery defense based on the Origin
header, Cross-Origin Resource Sharing [87] (the security component of the new cross-
origin XMLHttpRequest API in the latest browsers), a proposal [85] to use Referer
validation to prevent cross-site scripting, new functionality in the HTML5 form element,
and WebAuth, a Kerberos-based single sign-on system used at a number of universities. In
each case, our model finds a vulnerability in the mechanism, two of which were previously
known and three of which were previously unknown. The Referer validation example, in
particular, demonstrates that our model is more sophisticated than previous approaches
because [85] analyzed the mechanism with Alloy and concluded that the mechanism was
secure. The WebAuth example shows that subtle security issues arise when embedding
a well-understood network protocol (Kerberos) in a web security mechanism because of
interactions between the assumptions made by the protocol and the behavior of the web
platform.

Our study is an initial step that demonstrates that a formal approach to web security
is fruitful. Our model is modular and extensible—we can add new web concepts and more
detailed models incrementally, letting the model grow over time to encompass a more
complete picture of the web platform. As the model grows, the utility of the models grows
via a network effect—an extensive model will let us analyze subtle interactions between
different components of the web platform and the security mechanism, leading to a deeper
and broader understanding of the potential security consequences of any newly introduced

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 7

web security mechanisms.

Organization The remainder of this chapter is organized as follows. Section 2.2 presents
our formal model. Section 2.3 explains how we implement our model in Alloy. Section 2.4
analyzes five example web security mechanisms using our model. Section 2.5 contains
some operational statistics and advice about the model.

2.2 General Model

There are many threats associated with web browsing and web applications, including
phishing, drive-by downloads, blog spam, account takeover, and click fraud. Although some
of these threats revolve around exploiting implementation vulnerabilities (such as memory
safety errors in browsers or tricking the user), we focus on ways in which an attacker can
abuse web functionality that exists by design, or flaws in the web protocol. For example,
an HTML form element lets a malicious web site generate GET and POST requests to
arbitrary web sites, leading to security risks like cross-site request forgery (CSRF). Web
sites use a number of different strategies to defend themselves against CSRF [17], but we
lack a scientifically rigorous methodology for studying these defenses. By formulating an
accurate model of the web, we can evaluate the security of these defenses and determine
how they interact with extensions to the web platform.

A core idea in our model is to describe what could occur if a user navigates the web
and visits sites in the ways that the web is designed to be used. For example, the user
could choose to type any web address into the address bar and visit any site, or click on a
link provided by one site to visit another. Because browsers support the “back” button,
returning the user to a previously visited page, many sites in effect allow a user to click on
all of the links presented on a page, not just one. When the user visits a site, the site could
serve a page with any number of characteristics, possibly setting a cookie, or redirecting
the user to another site. The set of events that could occur, therefore, includes browser
requests, responses, cookies, redirects, and so on, transmitted over HTTP or HTTPS.

We believe that examining the set of possible events accurately captures the way that
web security mechanisms are designed. For example, the web is designed to allow a user
to visit a good site in one window and a potentially malicious site in another. Because
the back button is so popular, web security mechanisms are usually designed to be secure
even if the user returns to a previously visited page and progresses differently the second
(or third or fourth) time.

The model we propose has three main parts: web concepts, threat models, and security
goals. The web concepts represent the conceptual universe defined by web standards. Our
formalization of these concepts includes a set of browsers, operated by potential victims,
each with its user and a browsing history, interacting with an arbitrary number of web
servers that receive and send HTTP requests and responses, possibly encrypted using
SSL/TLS. Our model considers a spectrum of threats, ranging from a web attacker to a

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 8

network attacker to a gadget attacker. For example, a web attacker controls one or more
web sites that the user visits, and may operate a browser to visit sites, but does not control
the network used to visit other sites. Finally, we regard security goals as predicates that
distinguish felicitous outcomes from attacks.

Web Concepts

The central concepts of the web are common to virtually every web security mechanism
we wish to analyze. For example, web mechanisms involve a web browser that interacts
with one or more web servers via a series of HTTP requests and responses. The browser,
server, and network behavior form the “backbone” of the model, much in the same way
that cryptographic primitives provide the backbone of network protocols. Many of the
surprising behaviors of the web platform, which lead to attacks against security mechanisms,
arise from the complex interaction between these concepts. By modeling these concepts
precisely, we can check their interactions automatically.

Non-Linear Time We use a branching notion of time because of the browser’s “back”
button. In other words, we are not concerned with the actual temporal order between
unrelated actions. Instead, if a user could click on either of two links, then use the back
button to click on the other, we represent this as two actions that are unordered in time. In
effect, our temporal order represent necessary “happens before” relations between events
(e.g., an HTTP request must happen before the browser can receive the corresponding
HTTP response). Instead of regarding these branches as possible futures, we regard them
as all having occurred, for example letting an attacker transport knowledge from one
branch to another. In addition to conceptual economy, abstracting from the accidental
linear order can reduce the number of possible states in need of exploration.

This notion of time leads to a model that is largely monotonic. If an attacker can
undertake an action at one point in time, we assume that action is thereafter always
available to the attacker (because the user can usually return to that state via the back
button). In contrast, traditional models of network protocol security are non-monotonic:
once the protocol state machine advances to step 3, the attacker can no longer cause the
state machine to accept a message expected in step 2. Although we do not exploit this
monotonicity directly, we believe this property bears further investigation.

Browser The user’s web browser, of course, plays a central role in our model of web
security. However, the key question is what level of abstraction to use for the browser. If
we model the browser at too low a level (say bytes received over the network being parsed
by an HTML parser and rendered via the CSS box model into pixels on the screen), our
model will quickly become unwieldy. The HTML5 specification alone is some 45,000 lines
of text. Instead, we abstract the browser into three key pieces:

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 9

• Script Context. A script context represents all the scripts running in the browser
on behalf of a single web origin. The browser does not provide any isolation
guarantees between content within an origin: all same-origin scripts “share fate.”
Correspondingly, we group the various scripts running in different web pages within
an origin into a single script context and imagine them acting in unison.

• Security UI. Some parts of the browser’s user interface have security properties. For
example, the browser guarantees that the location bar accurately displays the URL
of the top-level frame. We include these elements (notably, the location bar, the
lock icon, and the extended validation indicator) in our model and imbue them with
their security properties. In addition, we model a forest of frames, in which each
frame is associated with a script context and each tree of frames is associated with
a constellation of security indicators. We assume that each frame can overwrite
or display (but not read) the pixels drawn by the frame below it in the hierarchy,
modeling (at a high level) how web pages are drawn.

• State Storage. Finally, the browser contains some amount of persistent storage, such
as a cookie store and a password database. We assume that confidential information
contained in these state stores is associated with an origin and can be read by a script
context running on behalf of that origin. To keep the model monotonic, we model
these state stores as “append-only,” which is not entirely accurate but simplifies the
model considerably.

Servers We model web servers as existing at network locations (which are an abstraction
of IP addresses). Each web server is owned by a single principal, who controls how the
server responds to network messages. Servers controlled by “honest” principals follow the
specification but a server controlled by a malicious principal might not. Servers have a
many-to-many relation to DNS names (e.g., www.example.com), which themselves existing
in a delegation hierarchy (e.g., www delegates to example, which delegates to com). Holding
servers in a many-to-many relation with DNS names is essential for modeling various
tricky situations, such as DNS rebinding [78], where the attacker points a malicious DNS
name at an honest server.

Network Finally, browsers and servers communicate by way of a network. In contrast
to traditional models of network security, our model of the network has significant internal
structure. Browsers issue HTTP requests to URLs, which are mapped to servers via DNS.
The requests contain a method (e.g., GET, POST, DELETE, or PUT) and a set of HTTP
headers. Individual headers carry semantics. For example, the Cookie header contains
information retrieved from the browser’s cookie store and the Referer header identifies the
script context that initiated the request. It is an important part of security mechanisms
such as CSRF defenses [17] that the Referer header, for example, is set by the browser
and not controlled by content rendered in the browser.

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 10

Network requests can be generated by a number of web APIs, including HTML forms,
XMLHttpRequest, and HTTP redirects, each of which imposes different security constraints
on the network messages. For example, requests generated by XMLHttpRequest can be
sent only to the same origin (in the absence of CORS [87]), whereas requests generated by
HTML forms can be sent to any origin but can contain only certain methods and headers.
These restrictions are essential for understanding the security of the web platform. For
example, the Google Web Toolkit relies on the restrictions on custom HTTP headers
imposed by the HTML form element to protect against CSRF [131].

Threat Models

When evaluating the security of web applications, we are concerned with a spectrum of
threats. The weakest threat is that of a web attacker : a malicious principal who operates
a web site visited by the user. Starting with the web attacker as a base, we can consider
more advanced threats, such as an active network attacker and a gadget attacker.

Web attacker Although the informal notion of a web attacker has appeared in previous
work [14, 17, 76, 77], we articulate the web attacker’s abilities precisely.

• Web Server. The web attacker controls at least one web server and can respond to
HTTP requests with arbitrary content. Intuitively, we imagine the web attacker as
having “root access” to these web servers. The web attacker controls some number
of DNS names, which the attacker can point to any server. Canonically, we imagine
the DNS name attacker.com referring to the attacker’s main web server. The web
attacker can obtain an HTTPS certificate for domains owned by the attacker from
certificate authorities trusted by the user’s browser. Using these certificates, the
attacker can host malicious content at URLs like https://attacker.com/.

• Network. The web attacker has no special network privileges. The web attacker can
respond only to HTTP requests directed at his or her own servers. However, the
attacker can send HTTP requests to honest servers from attacker-controlled network
endpoints. These HTTP requests need not comply with the HTTP specification, nor
must the attacker process the responses in the usual way (although the attacker can
simulate a browser locally if desired). For example, attacker can send an arbitrary
value in the Referer header and need not follow HTTP redirects. Notice that the web
attacker’s abilities are decidedly weaker than the usual network attacker considered
in studies of network security because the web attacker can neither eavesdrop on
messages to other recipients nor forge messages from other senders.

• Browser. When the user visits the attacker’s web site, the attacker is “introduced”
to the user’s browser. Once introduced, the attacker has access to the browser’s web
APIs. For example, the attacker can create new browser windows by calling the
window.open() API. We assume the attacker’s use of these APIs is constrained by

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 11

the browser’s security policy (colloquially known as the “same-origin policy” [143]),
that is, the attacker uses only the privileges afforded to every web site. One of the
most useful browser APIs, from the attacker’s point of view, is the ability to generate
cross-origin HTTPS requests via hyperlinks or the HTML form element. Attacks
often use these APIs in preference to directly sending HTTP requests because (1)
the requests contain the user’s cookies and (2) the responses are interpreted by the
user’s browser.

A subtle consequence of these assumptions is that (once introduced) the attacker can
maintain a persistent thread of control in the user’s browser. This thread of control, easily
achieved in practice using a widely known web application programming technique [5], can
communicate freely with (and receive instructions from) the attacker’s servers. We do not
model this thread of control directly. Instead, we abstract these details by imagining a
single coherent attacker operating at servers and able to generate specific kinds of events
in the user’s browser (accurately associated with the attacker’s origin).

Network Attacker An active network attacker has all the abilities of a web attacker as
well as the ability to read, control, and block the contents of all unencrypted network traffic.
In particular, the active network attacker need not be present at a network endpoint to
send or receive messages at that endpoint. We assume the attacker cannot corrupt HTTPS
traffic between honest principals because trusted certificate authorities are unwilling to
issue the attacker certificates for honest DNS names, although these certificate authorities
are willing to issue the attacker HTTPS certificates for malicious DNS names and the
attacker can, of course, always self-sign a certificate for an honest DNS name. Without
the appropriate certificates, we assume the attacker cannot read or modify the contents of
HTTPS requests or responses.

Gadget Attacker The gadget attacker [18] has all the abilities of a web attacker as
well as the ability to inject some limited kinds of content into honest web sites. The exact
kind of content the gadget attacker can inject depends on the web application. In many
web applications, the attacker can inject a hyperlink (e.g., in email or in blog comments).
In some applications, such as forums, the attacker can inject images. In more advanced
applications, such as Facebook or iGoogle, the attacker can inject full-blown gadgets
with extensive opportunity for misdeeds. We include the gadget attacker to analyze the
robustness of security mechanisms to web sites hosting (sanitized) third-party content.

User Behavior The most delicate part of our threat model is how to constrain user
behavior. If we do not constrain user behavior at all, the user could simply send his or her
password to the attacker, defeating most web security mechanisms. On the other hand, if
we constrain the user too much, we risk missing practical attacks.

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 12

• Introduction. We assume the user might visit any web site, including the attacker’s
web site. We make this assumption because we believe that an honest user’s
interaction with an honest site should be secure even if the user separately visits
a malicious site in a different browser window. A concerted attacker can always
acquire traffic by placing advertisements. For example, in a previous study [78], we
mounted a web attack by purchasing over 50,000 impressions for $30. In other words,
we believe that this threat model is an accurate abstraction of normal web behavior,
not an assumption that web users promiscuously visit all possible bad sites in order
to tempt fate.

• Not Confused. Even though the user visits the attacker’s web site, we assume the
user does not confuse the attacker’s web site with an honest web site. In particular,
we assume the user correctly interprets the browser’s security indicators, such as
the location bar, and enters confidential information into a browser window only
if the location bar displays the URL of the intended site. This assumption rules
out phishing attacks [44, 51], in which the attacker attempts to fool the user by
choosing a confusing domain name (e.g., bankofthevvest.com) or using other social
engineering. In particular, we do not assume a user treats attacker.com as if it
were another site. However, these assumptions could be relaxed or varied in order
to study the effectiveness of specific mechanisms when users are presented with
deceptive content.

Feasiblity Because our model of a web attacker is relatively weak, attacks that can be
mounted by a web attacker can be carried out in practice without any complex or unusual
control of the network. In addition, web attacks can also be carried out by a standard
man-in-the-middle network attacker because a man-in-the-middle can intercept arbitrary
HTTP requests and inject content that will be rendered by the victim’s browser.

Anyone can easily achieve the network capabilities of a web attacker. There are several
techniques an attacker can use to drive traffic to attacker.com. For example, the attacker
may place advertisements through advertising networks, display popular content indexed
by search engines, and send bulk e-mail attracting users. Moreover, the act of viewing an
attacker’s advertisement is generally sufficient to mount a web-based attack [78], and a user
generally has no control over which advertisements are placed on well-viewed commercial
sites.

We believe that a normal but careful web user who reads news and conducts normal
banking, investment, and retail transactions, cannot effectively monitor and restrict the
source of all content rendered in his or her browser.

Security Goals

Although different web security mechanisms have different security goals, there are two
security goals that seem to be fairly common:

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 13

• Security Invariants. The web contains a large number of existing web applications
that make assumptions about web security. For example, some applications assume
that a user’s browser will never generate a cross-origin HTTP request with DELETE
method because that property is ensured by today’s browsers (even though cross-
origin GET and POST requests are possible). When analyzing the security of new
elements of the web platform, it is essential to check that these elements respect these
(implicit) security invariants and “don’t break the web” (i.e., introduce vulnerabilities
into existing applications). We formalize this goal as a set of invariants servers expect
to remain true of the web platform. Although we focus at present on invariants
relevant to the mechanisms at hand, we believe that future work on web security
can fruitfully aim to identify more invariants.

• Session Integrity. When a server takes action based on receiving an HTTP request
(e.g., transfers money from one bank account to another), the server often wishes to
ensure that the request was generated by a trusted principal and not an attacker.
For example, a traditional cross-site request forgery vulnerability results from failing
to meet this goal. We formalize this goal by recording the “cause” of each HTTP
request (be it an API invoked by a script or an HTTP redirect) and checking whether
the attacker is in this casual chain.

We are unaware of previous work that recognizes the value of identifying clear web security
invariants. However, because many web security mechanisms depend on complementary
properties of the browser, web protocols, and user behavior, we believe that these invariants
form the core of a comprehensive scientific understanding of web security.

2.3 Implementation in Alloy

We implement a subset of our formal model in the Alloy modeling language. Although
incomplete, our implementation [4] contains the bulk of the networking and scripting
concepts and is sufficiently powerful to find new and previously known vulnerabilities in
our case studies. In this section, we summarize how we implement the key concepts from
the model in this language. We first express the base model, containing the web concepts
and threats, and then add details of the proposed web mechanism. Finally, we add a
constraint that negates the security goal of the mechanism and ask Alloy for a satisfying
instance. If Alloy can produce such an instance, that instance represents an attack because
the security goal has failed.

Expressing our model in Alloy has several benefits. First, expressing our model in
an executable form ensures that our model has precise, testable semantics. In creating
the model, we found a number of errors by running simple “sanity checks.” Second,
Alloy lets us express a model of unbounded size and then later specify a size bound when
checking properties. We plan to use this distinction in future work to prove a “small model”
theorem bounding the necessary search size (similar to [103]). Finally, Alloy translates our

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 14

high-level, declarative, relational expression of the model into a SAT instance that can be
solved by state-of-the-art SAT solvers (e.g. [104]), letting us leverage recent advances in
the SAT solving community.

An Introduction to Alloy

Alloy [39, 80, 125] is a declarative language based on first order relational logic. All
data types are represented as relations and are defined by their type signatures; each
type signature plays the role of a type or subtype in the type system. A type signature
declaration consists of the type name, the declarations of fields, and an optional signature
fact constraining elements of the signature. A subsignature is a type signature that extends
another, and is represented as a subset of the base signature. The immediate subsignatures
of a signature are disjoint. A top-level signature is a signature that does not extend any
other signature. An abstract signature, marked abstract, represents a classification of
elements that is intended to be refined further by more “concrete” subsignatures.

In Alloy, a fact is a constraint that must always hold. A function is a named expression
with declaration parameters and a declaration expression as a result. A predicate is a
named logical formula with declaration parameters. An assertion is a constraint that is
intended to follow from the facts of a model.

The union (+), difference (−) and intersection (&) operators are the standard set
operators. The join (.) of two relations is the relation obtained by taking concatenations
of a tuple from the first relation and another tuple from the second relation, with the
constraint that the last element of the first tuple matches the first element of the second
tuple, and omitting the matching elements. For example, the join of {(a, b), (b, d)} and
{(b, c), (a, d), (d, a)} is {(a, c), (b, a)}. The transitive closure (ˆ) of a relation is the smallest
enclosing relation that is transitive. The reflexive-transitive closure (∗) of a relation is the
smallest enclosing relation that is both transitive and reflexive.

Alloy Analyzer is a software tool that can be used to analyze models written in Alloy.
The Alloy code is first translated into a satisfiability problem. SAT solvers are then invoked
to exhaustively search for satisfying models or counterexamples to assertions within a
bounded scope. The scope is determined jointly by the user and the Alloy Analyzer. More
specifically, the user can specify a numeric bound for each type signature, and any type
signature not bounded by the user is given a bound computed by the Alloy Analyzer. The
bounds limit the number of elements in each set represented by a type signature, hence
making the search finite.

Realization of Web Concepts

Many of the concepts in our general model have direct realizations in our implementa-
tion. For example, we define types representing Principals, NetworkEndpoints, and
NetworkEvents. A NetworkEvent represents a type of network message that has a sender
(i.e., it is from a NetworkEndpoint) and a recipient (i.e., it is to a NetworkEndpoint).

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 15

It is a subsignature of Event, hence it also inherits all fields of Event. A NetworkEvent

can be either an HTTPRequest or an HTTPResponse, which include HTTP-specific infor-
mation such as a Method and a set of HTTPRequestHeaders or HTTPResponseHeaders,
respectively:

abstract sig NetworkEvent extends Event {

from: NetworkEndpoint,

to: NetworkEndpoint

}

abstract sig HTTPEvent extends NetworkEvent {

host: Origin

}

sig HTTPRequest extends HTTPEvent {

method: Method,

path: Path,

headers: set HTTPRequestHeader

}

sig HTTPResponse extends HTTPEvent {

statusCode: Status,

headers: set HTTPResponseHeader

}

Figure 2.1 depicts some of the types used in our expression together with the relations
between these types. For example, HTTPRequest is a subtype of HTTPEvent, and contains
path and headers as some of its fields. This metamodel provides a conceptual map of
our model. In the remainder of this section, we highlight parts of the model that lend
intuition into its construction.

Principals A Principal is an entity that controls a set of NetworkEndpoints and owns
a set of DNSLabels, which represent fully qualified host names:

abstract sig Principal {

servers: set NetworkEndpoint,

dnslabels: set DNS

}

The model contains a hierarchy of subtypes of Principal. Each level of the hierarchy
imposes more constraints on how the principal can interact with the other objects in the
model by adding declarative invariants. For example, the servers owned by principals

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 16

se
rv

er
s

th
ec

oo
ki

e

h
os

t

h
os

t

p
ar

en
t

m
ad

eB
y

cn

ce
rt

p
at

h

d
n

sl
ab

el

n
am

e
va

lu
e

st
at

u
sC

od
e

ca
u

se

tr
an

sa
ct

io
n

s

lo
ca

ti
on

h
ea

d
er

s

d
om

ai
n

p
at

h

re
q

re
sp

qu
er

yS
tr

in
g

ta
rg

et
P

at
h

ta
rg

et
O

ri
gi

n
th

ec
oo

ki
e

ow
n

er

d
n

sl
ab

el
s

n
am

e
va

lu
e

h
ea

d
er

s

p
ar

en
t

fr
om

to

p
at

h

ca
u

se

b
od

y

th
eo

ri
gi

n

n
e

re
so

lv
es

T
o

h
ea

d
er

s

O
ri

gi
n

D
N

S
R

oo
t

X
M

L
H

T
T

P
R

eq
u

es
t

H
T

T
P

E
ve

nt

W
W

W
A

u
th

n
H

ea
d

er

H
T

T
P

R
es

p
on

se

H
T

T
P

C
lie

nt

P
U

B
L

IC

P
ri

n
ci

p
al

S
ec

re
t

U
se

rT
ok

en

H
T

T
P

H
ea

d
er

H
T

T
P

R
es

p
on

se
H

ea
d

er
c2

00
R

ed
ir

ec
ti

on
S

ta
tu

s

S
ta

tu
s

U
se

rP
as

sw
or

d
A

C
T

IV
E

A
T

T
A

C
K

E
R

H
T

T
P

T
ra

n
sa

ct
io

n

B
ro

w
se

r

F
ir

ef
ox

S
E

N
S

IT
IV

E

S
et

C
oo

ki
eH

ea
d

er

N
or

m
al

P
ri

n
ci

p
al

G
O

O
D

P
at

h

H
O

M
E

F
ir

ef
ox

3

F
or

m
E

le
m

en
t

P
as

si
ve

P
ri

n
ci

p
al

W
eb

P
ri

n
ci

p
al

H
T

T
P

R
eq

u
es

t

C
er

ti
fic

at
e

IN
D

E
X

T
ok

en

P
A

T
H

T
O

C
O

M
P

R
O

M
IS

E

L
O

G
IN

S
cr

ip
tC

on
te

xt

at
tr

ib
u

te
N

am
eV

al
u

eP
ai

r

S
tr

in
g1

In
te

rn
et

E
xp

lo
re

r7

W
E

B
A

T
T

A
C

K
E

R

S
ec

u
re

C
oo

ki
e

S
E

C
U

R
E

S
af

ar
i

R
E

D
IR

E
C

T

E
ve

nt

R
eq

u
es

tA
P

I

L
O

G
O

U
T

P
A

S
S

IV
E

A
T

T
A

C
K

E
R

O
R

IG
IN

A
W

A
R

E

N
et

w
or

kE
ve

nt

In
te

rn
et

E
xp

lo
re

r

lo
ca

ti
on

In
te

rn
et

E
xp

lo
re

r8

O
ri

gi
n

H
ea

d
er

H
T

T
P

R
eq

u
es

tH
ea

d
er

C
oo

ki
eH

ea
d

er

H
T

T
P

S
er

ve
r

D
N

S

C
oo

ki
e

H
T

T
P

C
on

fo
rm

is
t

N
et

w
or

kE
n

d
p

oi
nt

c3
02

c3
01

U
R

L

c4
01

c3
07

c3
06

c3
05

c3
04

c3
03

Figure 2.1: The metamodel of our formalization of web security. Red unmarked edges
represent the ‘extends’ relationship.

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 17

who obey the network geometry (i.e., every kind of principal other than active network
attackers) must conform to the routing rules of HTTP:

abstract sig PassivePrincipal

extends Principal{} {

servers in HTTPConformist

}

Browsers A Browser is an HTTPClient together with trusted CertificateAuthorites

and a set of ScriptContexts. (For technical convenience, we store the Browser as a
property of a ScriptContext, but the effect is the same.)

abstract sig Browser

extends HTTPClient {

trustedCA: set CertificateAuthority

}

sig ScriptContext {

owner: Origin,

location: Browser,

transactions: set HTTPTransaction

}

The browser uses the trustedCAs to validate HTTPS certificates that NetworkEndpoints
send during the SSL handshake.

In addition to being located in a particular Browser, a ScriptContext also has an
Origin and a set of HTTPTransactions. The Origin is used by various browser APIs to
implement the so-called “same-origin” policy. For example, the XMLHTTPRequest object
(a subtype of RequestAPI) prevents the ScriptContext from initiating HTTPRequests to a
foreign origin. The transactions property of ScriptContext is the set of HTTPTransactions
(HTTPRequest, HTTPResponse pairs) generated by the ScriptContext.

Facts and Assertions

We find it convenient to model the browser’s cookie store using fact statements about
cookies, rather than declare a new type signature for it. We require that HTTPRequests from
Browsers contain only appropriate cookies from previous SetCookieHeaders. Selecting
the appropriate cookies uses a rule that has a number of cases reflecting the complexity
of cookie policies in practice, part of which is shown below. More explicitly, a browser

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 18

attaches a cookie to an HTTPRequest only if the cookie was set in a previous HTTPResponse
and the servers of the HTTPRequest and HTTPResponse have the same DNS label.

fact {

all areq:HTTPRequest | {

areq.from in Browser

hasCookie[areq]

} implies all acookie: reqCookies[areq]|

some aresp: getBrowserTrans[areq].resp | {

aresp.host.dnslabel = areq.host.dnslabel

acookie in respCookies[aresp]

happensBeforeOrdering[aresp,areq]

}

}

Causality Every HTTPTransaction has a cause, which is either another HTTPTransaction
(e.g., due to a redirect) or a RequestAPI, such as XMLHttpRequest or FormElement. Each
RequestAPI imposes constraints on the kinds of HTTPRequests the API can generate. For
example, this constraint limits the FormElement to producing GET and POST requests:

fact {

all t:ScriptContext.transactions |

t.cause in FormElement implies

t.req.method in GET + POST

}

Session Integrity Using the cause relation, we can construct the set of principals
involved in generating a given HTTPTransaction. The predicate below is especially useful
in checking assertions of session integrity properties because we can ask whether there
exists an instantiation of our model in which the attacker caused a network request that
induced an honest server to undertake some specific action.

fun involvedServers[

t:HTTPTransaction

]:set NetworkEndpoint{

(t.*cause & HTTPTransaction).resp.from

+ getTransactionOwner[t].servers

}

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 19

pred webAttackerInCausalChain[

t:HTTPTransaction]{

some (WEBATTACKER.servers

& involvedServers[t])

}

2.4 Case Studies

In this section, we present a series of case studies of using our model to analyze web
security mechanisms. We study five web security mechanisms. For the first two, the
Origin header and Cross-Origin Resource Sharing, we show that our model is sufficiently
expressive to rediscover known vulnerabilities in the mechanism. For the other three,
Referer Validation, HTML5 forms, and WebAuth, we use our model to discover previously
unknown vulnerabilities.

Origin Header

Barth et al. proposed that browsers identify the origin of HTTP requests by including an
Origin header and that web sites use that header to defend themselves against Cross-Site
Request Forgery (CSRF) [17].

Modeling To model the Origin header, we added an OriginHeader subtype of HTTP-
RequestHeader to the base model and required that browsers identify the origin in the
header:

fun getOrigin[r:HTTPRequest] {

(r.headers & OriginHeader).theorigin

}

fact BrowsersSendOrigin{

all t:HTTPTransaction,sc:ScriptContext | {

t in sc.transactions

} implies {

getOrigin[t.req] = sc.owner

}

}

To model the CSRF defense, we added a new type of honest web server that follows the
recommendations in the paper (namely rejects “unsafe” methods that have an untrusted
Origin header):

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 20

pred checkTrust[r:HTTPRequest,p:Principal]{

getOrigin[r].dnslabel in p.dnslabels

}

fact {

all aResp: HTTPResponse | {

aResp.from in ORIGINAWARE.servers

and aResp.statusCode = c200

} implies {

let theTrans = getTransaction[aResp] |

theTrans.req.method in safeMethods or

checkTrust[theTrans.req,ORIGINAWARE]

}

}

Vulnerability We then checked whether this mechanism satisfies session integrity. Alloy
produces a counter example: if the honest server sends a POST request to the attacker’s
server, the attacker can redirect the request back to the honest server. Because the Origin
header comes from the original ScriptContext, the honest server will accept the redirected
request, violating session integrity. Although this vulnerability was known previously, the
bug eluded both the authors and the reviewers of the original paper.

Solution One potential solution is to update the Origin header after each redirect, but
this approach fails to protect web sites that contain open redirectors (which are remarkably
common). Instead, we recommend naming all the origins involved in the redirect chain in
the Origin header. The current Internet-Draft describing the Origin header [16] includes
this fix. We have verified that the fixed mechanism enjoys session integrity in our model
(for the finite sizes used in our analysis runs).

Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) lets web sites opt-out of some of the browser’s
security protections. In particular, by returning various HTTP headers, the site can
instruct the browser to share the contents of an HTTP response with specific origins, or
to let specific origins issue otherwise forbidden requests. CORS is somewhat complex
because it distinguishes between two kinds of requests: simple requests and complex
requests. Simple requests are supposedly safe to send cross-origin, whereas complex
requests require a pre-flight request that asks the server for permission before sending the
potentially dangerous request. CORS is a good case study for our model for two reasons:
(1) maintaining the web security invariants is a key requirement in the design, driving the
distinction between simple and complex requests; (2) complex requests can disrupt session
integrity if the pre-flight request is not handled properly.

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 21

Modeling We model the PreflightRequest as a subtype of HTTPRequest imbued
with special semantics by the browser. Even though the implementations of CORS
in browsers reuse the XMLHttpRequest JavaScript API, we model CORS using a new
RequestAPI, which we call XMLHttpRequest2, making it easier to compare the new and
old behavior. CORS involves a number of HTTP headers, which we model as subtypes of
CORSResponseHeader. Finally, we model servers as NetworkEndpoints that never include
any CORS headers in HTTP responses.

fact {

all p:PreFlightRequest | {

p.method = OPTIONS and

some p.headers & AccessControlRequestMethod

and some p.headers & OriginHeader and

some p.headers & AccessControlRequestHeaders

}

fact {

all t:HTTPTransaction,sc:ScriptContext |{

t in sc.transactions and

t.^cause in

(XMLHTTPRequest2+HTTPTransaction)

} implies {

isPreFlightRequestTransaction[t]

or isSimpleCORSTransaction[t]

or isComplexCORSTransaction[t]

or (not isCrossOriginRequest[t.req])

}

}

Vulnerability Alloy produced a (previously known) counter-example that breaks a key
web security invariant because a legacy server might redirect the pre-flight request to the
attacker’s server. According to the current W3C Working Draft [87], browsers follow these
redirects transparently, letting the attacker’s server return a CORS header that opts the
legacy server into receiving new kinds of requests (such as DELETE requests). This attack
is fairly practical because many web sites contain open redirectors. Notice that we did not
need to model open redirectors explicitly. Instead, a legacy server might redirect requests
to arbitrary locations because the model does not forbid these responses.

Solution A simple solution is to ignore redirects for preflight requests. The most recent
Editor’s Draft [86] (which is more up-to-date) has precisely this behavior. We verify the
security of the updated protocol (up to a finite size) in our model by adding the following
requirement:

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 22

fact {

all first:HTTPTransaction | {

first.req in PreFlightRequest and

first.resp.statusCode in RedirectionStatus

} implies no second:HTTPTransaction |

second.cause = first

}

Referer Validation

A recent paper [85] proposes that web sites should defend against CSRF and Cross-Site
Scripting (XSS) by validating the Referer header. The authors claim that these attacks
occur “when a user requests a page from a target website s by following a link from another
website s′ with some input.” To defend against these attacks, the web site should reject
HTTP requests unless (1) the Referer header is from the site’s origin or (2) the request is
directed at a “gateway” page, that is carefully vetted for CSRF and XSS vulnerabilities;
see Figure 2.2. What makes this security mechanism a particularly interesting case study
is that the authors model-check their mechanism using Alloy. However, their model omits
essential details like HTTP Redirects and cross-origin hyperlinks. As a result, it is unable
to uncover a vulnerability in their mechanism.

Modeling Because the Referer header is already part of the model, we only needed to
add a new class of principal: RefererProtected that exhibits the required behavior. We
then added a constraint that HTTP requests with external Referers are allowed only on
the “LOGIN” page:

fact {

all aReq:HTTPRequest | {

(getTransaction[aReq].resp.from

in RefererProtected.servers)

and isCrossOrigin[aReq]

} implies aReq.path = LOGIN

}

Vulnerability Alloy produces a counterexample for the session integrity condition
because the attacker can mount a CSRF attack against a RefererProtected server if the
server sends a request to the attacker’s server first (see the dashed lines in Figure 2.2). For
example, if the attacker can inject a hyperlink into the honest site, the user might follow
that hyperlink, generating an HTTP request to the attacker’s server with the honest site’s
URL in the Referer header. The attacker can then redirect that request back to the honest

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 23

server. This previously unknown vulnerability in Referer validation is remarkably similar
to the vulnerability in the Origin header CSRF defense described above.

Figure 2.2: Vulnerability in Referer Validation. This figure is adapted from [85], with the
attack (dashed line) added.

Solution This vulnerability is difficult to correct on the current web because the Referer
header is already widely deployed (and therefore, for all practical purposes, immutable).
One possible solution is for the web site to suppress all outgoing Referer headers using, for
example, the noreferrer relation attribute on hyperlinks.

HTML5 Forms

HTML5, the next iteration of the HyperText Markup Language, adds functionality to
the FormElement API to generate HTTP requests with PUT and DELETE methods. To
avoid introducing security vulnerabilities into existing web sites, the specification restricts
these new methods to requests that are sent to a server in the same origin as the document
containing the form.

Modeling Modeling this extension to the web platform was trivial: we added PUT and
DELETE to the whitelist of methods for FormElement and added a requirement that
these requests be sent to the same origin:

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 24

Figure 2.3: Counterexample generated by Alloy for the HTML5 form vulnerability.

t.req.method in PUT+DELETE implies

not isCrossOriginRequest[t.req]

Vulnerability Alloy produces a counterexample that breaks a web security invariant.
An attacker can generate a PUT request to attacker.com and then redirect that request
to an honest server, causing the server to receive an unexpected PUT request. Figure 2.3
depicts part of the counterexample produced by Alloy. Although apparently simple, this
vulnerability had not been previously detected in HTML5 despite extensive review by
hundreds of experts. (To be fair, HTML5 is enormous and difficult to review in its entirety.)

Solution The easiest solution is to refuse to follow redirects of PUT or DELETE requests
generated from HTML forms. We have verified this fix (up to a finite size) using our
model. We have contributed our findings and recommendation to the working group [11]
and the working group has adopted our solution.

WebAuth

In our most extensive case study, we analyze WebAuth [123], a web-based authentication
protocol based on Kerberos. WebAuth is deployed at a number of universities, including
Stanford University. WebAuth is similar to Central Authentication Service (CAS) [96],
which was originally developed at Yale University and has been deployed at over eighty
universities [81], including UC Berkeley. Although we analyze WebAuth specifically, we
have verified that the same vulnerability exists in CAS.

Protocol Of all our case studies, WebAuth most resembles a traditional network protocol.
However, new security issues arise when embedding the protocol in web primitives because

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 25

1. request webkdc-service token

WebKDC

2. return webkdc-service token and session key

UA WAS

3. request resource

4. redirect to WebKDC w/ request token

5. redirect to WebKDC w/ request token

6. return login form w/ request token in a hidden form field

7. post login form w/ user credentials

8. set cookie w/ webkdc-proxy token; return a URL w/ id token pointing to WAS

9. access the URL link w/ id token

10. set cookie w/ app token; return requested resource

Figure 2.4: The WebAuth protocol

the web attacker can interact with the protocol in different ways than a traditional network
protocol attacker can interact with, say, Kerberos. The WebAuth protocol involves three
roles:

1. User-Agent (UA), the user’s browser,

2. WebAuth-enabled Application Server (WAS), a web server that is integrated with
WebAuth, and

3. WebKDC, the web login server.

Although WebAuth supports multiple authentication schemes, its use of tokens and
keys closely resembles Kerberos. The WebKDC shares a private key with each WAS,
authenticates the user, and passes the user’s identity to the WAS via an encrypted token
(i.e., ticket). WebAuth uses so-called “Secure” cookies to store its state and HTTPS to
transmit its messages, ostensibly protecting the protocol from network attackers.

The main steps of the protocol are depicted in Figure 2.4. We describe the steps below:

• WAS Initialization (Steps 1–2). At startup, the WAS authenticates itself to the
WebKDC using its private Kerberos key, and receives a webkdc-service token and a
session key.

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 26

• Login (Steps 3–10). When the user wishes to authenticate to the WAS, the WAS
creates a request token and redirects the UA to the WebKDC, passing the token in
the URL. The WebKDC authenticates the user (e.g., via a user name and password),
stores a cookie in the UA (to authenticate the user during subsequent interactions
without requiring the user to type his or her password again), and redirects the
user back to the WAS, passing an id token identifying the user in the URL. The
WAS then verifies various cryptographic properties of the token to authenticate the
user. Finally, the WAS stores a cookie in the UA to authenticate the user for the
remainder of the session.

Modeling To model WebAuth, we added a number of type signatures for the WebAuth
tokens, and predicates for HTTP message validation. For example, the WAPossessToken-

ViaLogin predicate tests whether the WAS has received a proper id token:

pred WAPossessTokenViaLogin[httpClient:

HTTPClient, token:WAIdToken, usageEvent:Event]

{ some t1:HTTPTransaction|{

happensBeforeOrdering[t1.req, usageEvent]

and t1.req.path = LOGIN and

t1.req.to in WAWebKDC and

t1.req.from in httpClient and

t1.resp.statusCode in RedirectionStatus and

WAContainsIdToken[t1.resp, token] and

token.creationTime = t1.resp.post and

token.username in httpClient.owner

}

}

The confidentiality of tokens is key to modeling the security properties of the WebAuth
protocol. As with cookies, we require an HTTPClient to have received a token in a previous
HTTP request before including the token in another HTTP request:

fact {

all httpClient:HTTPClient,req:HTTPRequest,

token:WAIdToken | {

req.from in httpClient and

WAContainsIdToken [req, token]

} implies

WAPossessToken[httpClient, token, req]

}

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 27

Notice that we permit the attacker to be registered as a user at the WebKDC and to send
and receive HTTP requests and responses to the WAS and the WebKDC both directly
and via the browser.

Vulnerability Alloy produces a counterexample showing that the WebAuth protocol
does not enjoy session integrity because the attacker can force the user’s browser to
complete the login procedure. Worse, the attacker can actually force the user’s browser to
complete the login procedure with the attacker’s credentials. This previously unknown
vulnerability is a variation of login CSRF [17], a vulnerability in which the attacker can
confuse a web site into authenticating the honest user as the attacker. We confirmed this
attack on the Stanford WebAuth implementation by embedding a link containing an id
token of the attacker in an email, and verifying that a user who clicks on the link is logged in
as the attacker to the system. The same attack works against the CAS deployment at U.C.
Berkeley. Login CSRF vulnerabilities have a number of subtle security consequences [17].
One reason that Stanford or Berkeley might be concerned about these vulnerabilities is
that if some information (such as a download) is available only to registered students, a
registered student could log in and then export a link that allows others to access protected
information, without revealing the password they used to authenticate.

The vulnerability arises because the WAS lacks sufficient context when deciding
whether to send message 10. In particular, the WAS does not determine whether it receives
message 3 and message 9 from the same UA. An attacker can run the first eight steps of
the protocol with the WAS and WebKDC directly, but splice in the UA by forwarding
the URL from message 8 to the user’s browser. In a traditional network protocol, this
attack might not succeed because the UA would not accept message 10 without previously
sending message 3, but the attack succeeds in the web setting because (1) the UA is largely
stateless, and (2) the attacker can induce the UA to send message 9 by showing the user a
hyperlink on attacker.com.

Solution We suggest repairing this vulnerability by binding messages 3 and 9 to the
same UA via a cookie. Essentially, the WAS should store a nonce in a cookie at the UA
with message 4 and should include this nonce in the request token. In message 8, the
WebKDC includes this nonce in the id token, which the UA forwards to the WAS. The
WAS, then, should complete the protocol only if the cookie received along with message 9
matches the nonce in the id token. We have verified that the fixed mechanism enjoys
session integrity in our model (up to a finite size).

The security of this scheme is somewhat subtle and relies on a number of security
properties of cookies. In particular, this solution is not able to protect against active
network attackers because cookies do not provide integrity: an active network attacker can
overwrite the WAS cookie with his or her own nonce (even if the cookie is marked “Secure”).
However, active network attackers can mount these sorts of attacks against virtually all
web applications because an active network attacker can just overwrite the final session

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 28

Case Lines of No. of CNF gen. CNF solve
Study new code clauses time (sec) time (sec)

Origin Header 25 977,829 26.45 19.47
CORS 80 584,158 24.07 82.76

Referer Validation 35 974,924 30.75 9.06
HTML5 Forms 20 976,174 27.67 73.54

WebAuth 214 355,093 602.4 35.44

Table 2.1: Statistics for each case study

cookie used by the application, regardless of the WebAuth protocol. Nonetheless, our
proposed solution improves the security of the protocol against web attackers.

2.5 Measurement

We implemented the model in the Alloy Analyzer 4.1.10. We wrote our security invariants
as assertions and asked Alloy to search for a counterexample that violates these assertions,
bounding the search to a finite size for each top-level signature. This bound is also called
the scope of the search, and for our experiments was set at 8. Alloy also allows us to specify
finer-grained bounds on each type, but we do not use this feature in our experiments.

For each case study, we counted the number of lines of new Alloy code we had to
add to the base model (some 2,000 lines of Alloy code) to discover a vulnerability and
measured the time taken by the analyzer to generate the conjunctive normal form (CNF)
as well as the time taken by the SAT solver (minisat) to find a solution (see Table 2.1).
All tests were performed on an Intel Core 2 Duo CPU 3.16Ghz with 3.2GB of memory.
As is common in other SAT solving applications, we observe no clear correlation between
the number of lines of new code, the number of clauses generated, and the CNF generation
and solving times.

The SAT solver is able to find a counterexample (if one exists) in a few minutes. In the
absence of a counterexample, the time taken by the SAT solver increases exponentially as
the scope is increased. To quantify this behavior, we measured the time taken to analyze
the HTML5 form vulnerability before and after we implemented the fix in the model (see
Figure 2.5). Recall that, after the fix, Alloy is not able to find a counterexample.

2.6 Summary of Results

We presented several steps toward a formal foundation for web security. The model
described comprises key web security concepts, such as browsers, HTTP, cookies, and
script contexts, as well as the security properties of these concepts. We have a clearly
defined threat model, together with a spectrum of threats ranging from web attackers to

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 29

Figure 2.5: Log-scale graph of analysis time for increasing scopes. The SAT solver ran out
of memory for scopes greater than eight after the fix.

network attackers to gadget attackers. In this model, we have also included two high-level
security properties that appear to be commonly required of web security mechanisms.

We have implemented core portions of our model in Alloy, which lets us execute the
model and check whether various web security mechanisms actually have the security
properties their designers desire. We have used this implementation to study five examples,
ranging in complexity from a small tweak to the behavior of the HTML form element
in HTML5 to a full-blown web single sign-on protocol based on Kerberos. In each
case, we found vulnerabilities, two previously known, three previously unknown. These
vulnerabilities arise because of the complex interaction between different components of
the web platform.

As the web platform continues to grow, automated tools for reasoning about the
security of the platform will increase in importance. Already web security is sufficiently
complex that a working group of experts miss “simple” vulnerabilities in web platform
features. These vulnerabilities appear simple in retrospect because only a tiny subset of
the platform is required to demonstrate the insecurity of a mechanism, whereas knowledge
of the entire platform is required to demonstrate its security. Of course, our model (and

CHAPTER 2. TOWARDS A FORMAL FOUNDATION FOR WEB PROTOCOLS 30

our implementation) does not capture the entire web platform. However, we believe our
model is an important first step towards creating a formal foundation for web security.

31

Chapter 3

Privilege Separation for HTML5
Applications

In the previous chapter, we examined how to secure the protocols complex HTML5
applications rely on to securely communicate with the cloud. Next, we present techniques
to secure the HTML5 application itself. This work was presented at the 21st Usenix
Security Symposium, 2012 at Bellevue, Washington. This is joint work with Prateek
Saxena and Dawn Song.

3.1 Introduction

Privilege separation is an established security primitive for providing an important second
line of defense [121]. Commodity OSes enable privilege separated applications via isolation
mechanisms such as LXC [93], seccomp [58], SysTrace [113]. Traditional applications have
utilized these for increased assurance and security. Some well-known examples include
OpenSSH [114], QMail [20] and Google Chrome [10]. In contrast, privilege separation
in web applications is harder and comes at a cost. If an HTML5 application wishes to
separate its functionality into multiple isolated components, the same-origin policy (SOP)
mandates that each component execute in a separate web origin.1 Owning and maintaining
multiple web origins has significant practical administrative overheads. 2 As a result,
in practice, the number of origins available to a single web application is limited. Web
applications cannot use the same-origin policy to isolate every new component they add
into the application. At best, web applications can only utilize sub-domains for isolating

1Browsers isolate applications based on their origins. An origin is defined as the tuple <scheme, host,
port>. In recent browser extension platforms, such as in Google Chrome, each extension is assigned a
unique public key as its web origin. These origins are assigned and fixed at the registration time.

2To create new origins, the application needs to either create new DNS domains or run services at
ports different from port 80 and 443. New domains cost money, need to be registered with DNS servers
and are long-lived. Creating new ports for web services does not work: first, network firewalls block
atypical ports and Internet Explorer doesn’t include the port in determining an application’s origin

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 32

components, which does not provide proper isolation, due to special powers granted to
sub-domains in the cookie and document.domain behaviors.

Recent research [32, 82] and modern HTML5 platforms, such as the Google Chrome
extension platform (also used for “packaged web applications”), have recognized the
need for better privilege separation in HTML5 applications. These systems advocate
re-architecting the underlying browser or OS platform to force HTML5 applications to be
divided into a fixed number of components. For instance, the Google Chrome extension
framework requires that extensions have three components, each of which executes with
different privileges [10]. Similarly, recent research proposes to partition HTML5 applications
in “N privilege rings”, similar to the isolation primitives supported by x86 processors [82].
We observe two problems with these approaches. First, the fixed limit on the number
of partitions or components creates an artificial and unnecessary limitation. Different
applications require differing number of components, and a “one-size-fits-all” approach
does not work. We show that, as a result, HTML5 applications in such platforms have
large amounts of code running with unnecessary privileges, which increases the impact
from attacks like cross-site scripting. Second, browser re-design has a built-in deployment
and adoption cost and it takes significant time before applications can enjoy the benefits
of privilege separation.

In this chapter, we rethink how to achieve privilege separation in HTML5 applications.
In particular, we present a solution that does not require any platform changes and
is orthogonal to privilege separation architectures enforced by the underlying browsers.
Our proposal utilizes standardized primitives available in today’s web browsers, requires
no additional web domains and improves the auditability of HTML5 applications. In
our proposal, HTML5 applications can create an arbitrary number of “unprivileged
components.” Each component executes in its own temporary origin isolated from the rest
of the components by the same-origin policy. For any privileged call, the unprivileged
components communicate with a “privileged” (parent) component, which executes in the
main (permanent) origin of the web application. The privileged code is small and we
ensure its integrity by enforcing key security invariants, which we define in Section 3.3.
The privileged code mediates all access to the critical resources granted to the web
application by the underlying browser platform, and it enforces a fine-grained policy on
all accesses that can be easily audited. Our proposal achieves the same security benefits
in ensuring application integrity as enjoyed by desktop applications with process isolation
and sandboxing primitives available in commodity OSes [58, 93, 113].

We show that our approach is practical for existing HTML5 applications. We retrofit
two widely used Google Chrome extensions and a popular HTML5 application for SQL
database administration to use our design. In our case studies, we show that the amount of
trusted code running with full privileges reduces by a factor of 6 to 10000. Our architecture
does not sacrifice any performance as compared to alternative approaches that redesign the
underlying web browser. Finally, our migration of existing applications requires minimal
changes to code. For example, in porting our case studies to this new design we changed
no more than 13 lines of code in any application. Developers do not need to learn new

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 33

languages or type safety primitives to migrate code to our architecture, in contrast to
recent proposals [67]. We also demonstrate strong data confinement policies. To encourage
adoption, we have released our core infrastructure code as well as the case studies (where
permitted) and made it all freely available online [116]. We are currently collaborating
with the Google Chrome team to apply this approach to secure Chrome applications, and
our design has influenced the security architecture of upcoming Chrome applications.

In our architecture, HTML5 applications can define more expressive policies than
supported by existing HTML5 platforms, namely the Chrome extension platform [10] and
the Windows 8 Metro platform [98]. Google Chrome and Windows 8 rely on applications
declaring install-time permissions that end users can check [15]. Multiple studies have
found permission systems to be inadequate: the bulk of popular applications run with
powerful permissions [6, 48] and users rarely check install-time permissions [49]. In our
architecture, policy code is explicit and clearly separated, can take into account runtime
ordering of privileged accesses, and can be more fine-grained. This design enables expert
auditors, such as maintainers of software application galleries or security teams, to reason
about the security of applications. In our case studies, these policies are typically a small
amount of static JavaScript code, which is easily auditable.

3.2 Problem and Approach Overview

Traditional HTML applications execute with the authority of their “web origin” (protocol,
port, and domain). The browser’s same origin policy (SOP) isolates different web origins
from one another and from the file system. However, applications rarely rely on domains
for isolation, due to the costs associated with creating new domains or origins.

In more recent application platforms, such as the Google Chrome extension platform [15],
Chrome packaged web application store [63] and Windows 8 Metro applications [98],
applications can execute with enhanced privileges. These privileges, such as access to the
geo-location, are provided by the underlying platform through privileged APIs. Applications
utilizing these privileged API explicitly declare their permissions to use privileged APIs at
install time via manifest files. These applications are authored using the standard HTML5
features and web languages (like JavaScript) that web applications use; we use the term
HTML5 applications to collectively refer to web applications and the aforementioned class
of emerging applications.

Install-time manifests are a step towards better security. However, these platforms still
limit the number of application components to a finite few and rely on separate origins to
isolate them. For example, each Google Chrome extension has three components. One
component executes in the origin of web sites that the extension interacts with. A second
component executes with the extension’s permanent origin (a unique public key assigned
to it at creation time). The third component executes in an all-powerful origin having
the authority of the web browser. In this section, we show how this limits the degree of
privilege separation for HTML5 applications in practice.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 34

Issues with the Current Architecture

In this section, we point out two artifacts of today’s HTML5 applications: bundling of
privileges and TCB inflation. We observe that these issues are rooted in the fact that,
in these designs, the ability to create new web origins (or security principals) is severely
restricted.

Common vulnerabilities (like XSS and mixed content) today actually translate to
powerful gains for attackers in current architectures. Recent findings corroborate the need
for better privilege separation—for instance, 27 out of 100 Google Chrome extensions
(including the top 50) recently studied have been shown to have exploitable vulnerabil-
ities [30]. These attacks grant powerful privileges like code execution in all HTTP and
HTTPS web sites and access to the user’s browsing history.

As a running example, we introduce a hypothetical extension for Google Chrome called
ScreenCap. ScreenCap is an extension for capturing screenshots that also includes a
rudimentary image editor to annotate and modify the image before sending to the cloud
or saving to a disk.

Bundling. The ScreenCap extension consists of two functionally disjoint components: a
screenshot capturing component and an image editor. In the current architecture, both
the components run in the same principal (origin), despite requiring disjoint privileges. We
call this phenomenon bundling. The screenshot component requires the tabs and <all -

urls> permission, while the image editor only requires the (hypothetical) pictureLibrary
permission to save captured images to the user’s picture library on the cloud.

Bundling causes over-privileged components. For example, the image editor component
runs with the powerful tabs and <all urls> permission. In general, if an application’s
components require privilege sets α1, α2..., all components of the application run with the

privileges
⋃

αi, leading to over-privileging. As we show in Section 3.5, 19 out of the Top

20 extensions for the Google Chrome platform exhibit bundling. As discussed earlier, this
problem manifests on the web too.

TCB inflation. Privileges in HTML5 are ambient—all code in a principal runs with
full privileges of the principal. In reality, only a small application core needs access to
these privileges and rest of the application does not need to be in the trusted computing
base (TCB). For example, the image editor in ScreenCap consists of a number of complex
and large UI and image manipulation libraries. All this JavaScript code runs with the
ambient privilege to write to the user’s picture library. Note that this is in addition to it
running bundled with the privileges of the screenshot component.

We measured the TCB inflation for the top 50 Chrome extensions. Figure 3.1 shows
the percentage of total functions in an extension requiring privileges as a fraction of the
total number of static functions. In half the extensions studied, less than 5% of the
functions actually need any privileges. In 80% of the extensions studied, less than 20% of
the functions require any privileges.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 35

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

E
x
te

n
s
io

n
s
 (

P
e

rc
e

n
ta

g
e

)

Percentage of Functions requiring privileges

Figure 3.1: CDF of percentage of functions in an extension that make privileged calls (X
axis) vs. the fraction of extensions studied (in percentage) (Y axis). The lines for 50% and
20% of extensions as well as for 5% and 20% of functions are marked.

Summary. It is clear from our data that HTML5 applications, like Chrome extensions,
do not sufficiently isolate their sub-components. The same-origin policy equates web
origins and security principals, and web origins are fixed at creation time or tied to the web
domain of the application. All code from a given provider runs under a single principal,
which forces privileges to be ambient. Allowing applications to cheaply create as many
security principals as necessary and to confine them with fine-grained, flexible policies can
make privilege separation more practical.

Ideally, we would like to isolate the image editor component from the screenshot
component, and give each component exactly the privileges it needs. Moving the complex
UI and image manipulation code to an unprivileged component can tremendously aid
audit and analysis. Our first case study (Section 3.5) discusses unbundling and TCB
reduction on a real world screenshot application. We achieved a 58x TCB reduction.

Problem Statement

Our goal is to design a new architecture for privilege separation that side steps the problem
of scarce web origins and enables the following properties:

Reduced TCB. Given the pervasive nature of code injection vulnerabilities, we are
interested, instead, in reducing the TCB. Reducing the TCB also helps our second
goal of easier audits.

Ease of Audit. Dynamic code inclusion and use of complex JS constructs is pervasive.
An architecture that eases audits, in spite of these issues, is necessary.

Flexible policies. Current manifest mechanisms provide insufficient contextual data for
meaningful security policies. A separate flexible policy mechanism can ease audits

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 36

and analysis.

Reduce Over-privileging. Bundling of disjoint applications in the same origin results
in over-privileging. We want an architecture that can isolate applications agnostic of
origin.

Ease of Use. For ease of adoption, we also aim for minimal compatibility costs for
developers. Mechanisms that would involve writing applications for a new platform
are outside scope.

Scope. We focus on the threat of vulnerabilities in benign HTML5 application. We aim
to enable a privilege separation architecture that benign applications can use to provide a
strong second line of defense. We consider malicious applications as out of scope, but our
design improves auditability and may be applicable to HTML5 malware in the future.

This work focuses on mechanisms for achieving privilege separation and on mechanisms
for expressive policy-based confinement. Facilitating policy development and checking if
policies are reasonable is an important issue, but beyond the scope of this work.

3.3 Design

We describe our privilege separation architecture in this section. We describe the key
security invariants we maintain in Section 3.3 and the mechanisms we use for enforcing
them in Section 3.3.

Approach Overview

We advocate a design that is independent of any privilege separation scheme enforced
by the underlying browser. In our design, HTML5 applications have one privileged
parent component, and can have an arbitrary number of unprivileged children. Each
child component is spawned by the parent and it executes in its own temporary origin.
These temporary origins are created on the fly for each execution and are destroyed after
the child exits; we detail how temporary origins can be implemented using modern web
browsers primitives in Section 3.3. The privileged parent executes in the main (permanent)
origin assigned to the HTML5 application, typically the web origin for traditional web
application. The same origin policy isolates unprivileged children from one another and
from the privileged parent. Figure 3.2 shows our proposed HTML5 application architecture.
In our design, applications can continue to be authored in existing web languages like
JavaScript, HTML and CSS. As a result, our design maintains compatibility and facilitates
adoption.

Parent. Our design ensures the integrity of the privileged parent by maintaining a set
of key security invariants that we define in Section 3.3. The parent guards access to a

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 37

Browser Page

ParentChild Iframe

Child Iframe Bootstrap Code

S
H
I

M

Application
 Code

S
H
I

M

Policy Code

Application
 Code

S
H
I

M

Figure 3.2: High-level design of our proposed architecture.

powerful API provided by the underlying platform, such as the Google Chrome extension
API. For making any privileged call or maintaining persistent data, the unprivileged
children communicate with the parent over a thin, well-defined messaging interface. The
parent component has three components:

• Bootstrap Code. When a user first navigates to the HTML5 application, a portion of
the parent code called the bootstrap code executes. Bootstrap code is the unique
entry point for the application. The bootstrap code downloads the application
source, spawns the unprivileged children in separate temporary origins, and controls
the lifetime of their execution. It also includes boilerplate code to initialize the
messaging interface in each child before child code starts executing. Privileges in
HTML5 applications are tied to origins; thus, a temporary origin runs with no
privileges. We explain temporary origins further in Section 3.3.

• Parent Shim. During their execution, unprivileged children can make privileged calls
to the parent. The parent shim marshals and unmarshals these requests to and from
the children. The parent shim also presents a usable interface to the policy code
component of the parent.

• Policy Code. The policy code enforces an application-specific policy on all messages
received from children. Policy code decides whether to allow or disallow access to
privileged APIs, such as access to the user’s browsing history. This mechanism
provides complete mediation on access to privileged APIs and supports fine-grained
policies, similar to system call monitors in commodity OSes like SysTrace [113]. In
addition, as part of the policy code, applications can define additional restrictions

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 38

on the privileges of the children, such as disabling import of additional code from
the web.

Only the policy code is application-specific; the bootstrap and parent shim are the
same across all applications. To ease adoption, we have made the application-independent
components available online [116]. The application independent components need to be
verified once for correctness and can be reused for all application in the future. For new
applications using our design, only the application’s policy code needs to be audited. In
our experimental evaluation, we find that the parent code is typically only a small fraction
of the rest of the application and our design invariants make it statically auditable.

Children. Our design moves all functional components of the application to the children.
Each child consists of two key components:

• Application Code. Application code starts executing in the child after the bootstrap
code initializes the messaging interface. All the application logic, including code
to handle visual layout of the application, executes in the unprivileged child; the
parent controls no visible area on the screen. This implies that all dynamic HTML
(and code) rendering operations execute in the child. Children are allowed to include
libraries and code from the web and execute them. Vulnerabilities like XSS or mixed
content bugs (inclusion of HTTP scripts in HTTPS domains) can arise in child
code. In our threat model, we assume that children may be compromised during the
application’s execution.

• Child Shim. The parent includes application independent shim code into the child
to seamlessly allow privileged calls to the parent. This is done to keep compatibility
with existing code and facilitate porting applications to our design. Shim code in
the child defines wrapper functions for privileged APIs (e.g., the Google Chrome
extension API [62]). The wrapper functions forward any privileged API calls as
messages to the parent. The parent shim unmarshals these messages, checks the
integrity of the message and executes the privileged call if allowed by the policy. The
return value of the privileged API call is marshaled into messages by the parent shim
and returned to the child shim. The child shim unmarshals the result and returns it
to the original caller function in the child. Certain privileged API functions take
callbacks or structured data objects; in Section 3.4 we outline how our mechanism
proxies these transparently. Together, the parent and child shim hide the existence
of the privilege boundary from the application code.

Security Invariants

Our security invariants ensure the integrity and correctness of code running in the parent
with full privileges. We do not restrict code running in the child; our threat model assumes

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 39

that unprivileged children can be compromised any time during their execution. We
enforce four security invariants on the parent code:

1. The parent cannot convert any string to code.

2. The parent cannot include external code from the web.

3. The parent code is the only entry point into the privileged origin.

4. Only primitive types (specifically, strings) cross the privilege boundary.

The first two invariants help increase assurance in the parent code. Together, they
disable dynamic code execution and import of code from the web, which eliminates the
possibility of XSS and mixed content vulnerabilities in parent code. Furthermore, it makes
parent code statically auditable and verifiable. Several analysis techniques can verify
JavaScript when dynamic code execution constructs like eval and setTimeout have been
syntactically eliminated [7, 45, 55, 66, 94].

Invariant 3 ensures that only the trusted parent code executes in the privileged origin;
no other application code should execute in the permanent origin. The naive approach of
storing the unprivileged (child) code as a HTML file on the server suffers from a subtle but
serious vulnerability. An attacker can directly navigate to the unprivileged code. Since it is
served from the same origin as the parent, it will execute with full privileges of the parent
without going through the parent’s bootstrap mechanism. To prevent such escalation,
invariant 3 ensures that all entry points into the application are directed only through the
bootstrap code in the parent. Similarly, no callbacks to unprivileged code are passed to
the privileged API—they are proxied by parent functions to maintain Invariant 3. We
detail how we enforce this invariant in Section 3.3.

Privilege separation, in and of itself, is insufficient to improve security. For example,
a problem in privilege-separated applications written in C is the exchange of pointers
across the privilege boundary, leading to possible errors [53, 130]. While JavaScript does
not have C-style pointers, it has first-class functions. Exchanging functions and objects
across the privilege boundary can introduce security vulnerabilities. Invariant 4 eliminates
such attacks by requiring that only primitive strings are exchanged across the privilege
boundary.

Mechanisms

We detail how we implement the design and enforce the above invariants in this section.
Whenever possible, we rely on browser’s mechanisms to declaratively enforce the outlined
invariants, thereby minimizing the need for code audits.

Temporary Origins. To isolate components, we execute unprivileged children in sep-
arate iframes sourced from temporary origins. A temporary origin can be created by

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 40

assigning a fresh, globally unique identifier that the browser guarantees will never be used
again [12]. A temporary origin does not have any privileges, or in other words, it executes
with null authority. The globally unique nature means that the browser isolates every
temporary origin from another temporary origin, as well as the parent. The temporary
origin only lasts as long as the lifetime of the associated iframe.

Several mechanisms for implementing temporary origins are available in today’s
browsers, but these are rarely found in use on the web. In the HTML5 standard, iframes
with the sandbox directive run in a temporary origin. This primitive is standardized and
already supported in current (as of writing) versions of all browsers [43].

Modern browsers also support setting the sandbox attribute on a page via HTTP
headers, as part of the Content Security Policy (CSP) header. We do not focus on this
primitive in this chapter but it is easy to adapt our code to use the CSP sandbox instead.
We caution the reader that the CSP sandbox is not widely supported. For example, Mozilla
Firefox currently does not support this mechanism (although, developers are working on
it [26]). Unlike our design, older browsers that do not support the sandbox via the CSP
header would run child code with full privileges, defeating our security invariants. Instead,
relying on bootstrap code (as we do) means that the parent code can check for sandbox
support before executing child code.

Enforcement of Security Invariants. To enforce security invariants 1 and 2 in the
parent, our implementation utilizes the Content Security Policy (CSP) [127]. CSP is a
new specification, already supported in Google Chrome and Firefox, that defines browser-
enforced restrictions on the resources and execution of application code. In our case studies,
it suffices to use the CSP policy directive default-src ’none’; script-src ’self’—
this disables all constructs to convert strings into code (Invariant 1) and restricts the
source of all scripts included in the page to the origin of the application (Invariant 2).
We find that application-specific code is typically small (5 KB) and easily auditable in our
case studies. On platforms on which CSP is not supported, we point out that disabling
code evaluation constructs and external code import is possible by syntactically restricting
the application language to a subset of JavaScript [55, 66, 94].

We require that all non-parent code, when requested, is sent back as a text file. Browsers
do not execute text files—the code in the text files can only execute if downloaded and
executed by the parent, via the bootstrap mechanism. This ensures Invariant 3. In
case of pure client-side platforms like Chrome, this involves a simple file renaming from
.html to .txt. In case of classic client-server web applications, this involves return-
ing a Content-Type header of text/plain. To disable mime-sniffing, we also set the
X-Content-Type-Options HTTP header to nosniff.

Messaging Interface. We rely on standard primitives like XMLHttpRequest and the
DOM API for downloading the application code and executing it in an iframe. We rely
on the postMessage API for communication across the privilege boundary. postMessage

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 41

is an asynchronous, cross-domain, purely client-side messaging mechanism. By design,
postMessage only accepts primitive strings. This ensures Invariant 4.

Policy. Privilege separation isolates the policy and the application logic. Policies, in
our design, are written in JavaScript devoid of any dynamic evaluation constructs and
are separated from the rest of the complex application logic. Permissions on existing
browser platforms are granted at install-time. In contrast, our design allows for more
expressive and fine-grained policies like granting and revoking privileges at run-time. For
example, in the case of ScreenCap, a child can get the ability to capture a screenshot only
once and only after the user clicks the ‘capture’ button. Such fine-grained policies require
the policy engine to maintain state, reason about event ordering and have the ability to
grant/revoke fine-grained privileges. Our attempt at expressive policies is along the line of
active research in this space [67], but in contrast to existing proposals, it does not require
developers to specify policies in new high-level languages. Our focus is on mechanisms to
support expressive policies; determining what these policies should be for applications is
beyond the scope of this work.

Additional Confinement of Child Code. By default, no restrictions are placed on the
children beyond those implied by use of temporary origins. Specifically, the child does not
inherit the parent’s CSP policy restrictions. In certain scenarios, the application developer
may choose to enforce additional restrictions on the child code, via an appropriate CSP
policy on the child iframe at the time of its creation by the parent code. For example,
in the case of ScreenCap, the screenshot component can be run under the script-src

’self’. This increases assurance by disabling inline scripts and code included from the
web, making XSS and mixed content attacks impossible. The policy code can then grant
the powerful privilege of capturing a screenshot of a user’s webpage to a high assurance
screenshot component.

3.4 Implementation

As outlined in Section 3.3, the parent code executes when the user navigates to the
application. The bootstrap code is in charge of creating an unprivileged sandbox and
executing the unprivileged application code in it. The shim code and policy also run in the
parent, but we focus on the bootstrap and shim code implementation in this section. The
unprivileged child code and the security policy vary for each application, and we discuss
these in our case studies (Section 3.5).

Figure 3.3 outlines the steps involved in creating one unprivileged child. First, the
user navigates to the application and the parent’s bootstrap code starts executing (Step
1 in Figure 3.3). In Step 2, the parent’s bootstrap code retrieves the application HTML
code (as plain text files) as well as the security policy of the application. For client-side
platforms like Chrome and Windows 8, this is a local file retrieval.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 42

Browser Page

Parent

Child Iframe

Bootstrap Code

Policy Code

Application
 Code

S
H
I

M

1. Bootstrap
Code

2. Application
Code and

Policy
4. Source

Policy
Code

3. Create
Child

S
H
I

M

Figure 3.3: Sequence of events to run application in sandbox. Note that only the bootstrap
code is sent to the browser to execute. Application code is sent directly to the parent,
which then creates a child with it.� �
var sb content="<html><head>" ;
sb content+="<meta http-equiv=’X-WebKit-CSP’" ;
//csp_policy is defined in downloaded policy

sb content+="content=’"+c s p p o l i c y+"’>" ;
sb content+="<script src=’"+chi ldShimSrc+"’>" ;
//the baseurl is current window uri

//so that relative URIs work

sb content+="<base href=’"+baseur l+"’>" ;
//contents of app.txt

sb content+=a p p l i c a t i o n c o d e ;
// attribute values are URI-decoded

// by HTML parser

sb content=encodeURIComponent (sb content) ;
var f r = document . createElement ("iframe") ;
f r . s r c="data:text/html;charset=utf-8,"+sb content ;
//sandboxed frames run in fresh origin

f r . s e t A t t r i b u t e (’sandbox’ ,’allow-scripts’) ;
document . body . appendChild (f r) ;� �

Listing 3.1: Bootstrap Code (JavaScript)

The parent proceeds to create a temporary origin, unprivileged iframe using the
downloaded code as the source (Step 3, Figure 3.3). Listing 3.1 outlines the code to
create the unprivileged temporary origin. The parent builds up the child’s HTML in
the sb content variable. The parent can optionally include content restrictions on the
child via a CSP policy, as explained in Section 3.3. Creating multiple children is a simple
repetition of the step 3.

The parent also sources the child shim into the child iframe. The parent concatenates
the child’s code (HTML) and URI-encodes it all into a variable called sb content. The

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 43

parent creates an iframe with sb content as the data: URI source, sets the sandbox
attribute and appends the iframe to the document. The parent code also inserts a base

HTML tag that enables relative URIs to work seamlessly.
data: is a URI scheme that enables references to inline data as if it were an external

reference. For example, an iframe with src attribute set to data:text/html;Hi is similar to
an iframe pointing to an HTML page containing only the text ‘Hi’. Recall our enforcement
mechanism for Invariant 3: the application code is a text file. The use of data: is necessary
to convert text to code that the iframe src can point to, without storing unprivileged
application code as HTML or JavaScript files.

API Shims

Recall that the child executes in a temporary origin, without the privileges needed for
making privileged calls like chrome.tabs.captureVisibleTab. Privileged API calls in
the original child code would fail when it executes in a temporary origin; our transforma-
tion should, therefore, take additional steps to preserve the original functionality of the
application. In our design, we rely on API shims to proxy calls to privileged API in the
child to the parent code safely and transparently.

The child shim defines wrapper objects in the child that proxy a privileged call to the
parent. The aim of the parent and child shim is to make the privilege separation boundary
transparent. We have implemented shims for all the privileged API functions needed for
our case studies. This implementation of the parent shim is 5.46 KB and that of the child
shim is 9.1 KB. Note that only the parent shim is in the TCB.

Figure 3.4 outlines the typical events involved in proxying a privileged call. First, the
child shim defines a stub implementation of the privileged APIs (for example, chrome.-
tabs.captureVisibleTab) that, when called, forwards the call to the parent. On receiving
the message, the parent shim checks with the policy and if the policy allows, the parent
shim makes the call on behalf of the child. On completion of the call, the parent shim
forwards the callback arguments (given by the runtime) to the child shim, and the child
shim executes the original callback.

Continuing with our running example, we give concrete code examples of the shims for
the chrome.tabs.captureVisibleTab function, used to capture a screenshot. chrome.-
tabs.captureVisibleTab takes three arguments: a windowID, an options object, and
a callback parameter. On successfully capturing a screenshot of the given window, the
chrome runtime executes the callback with the encoded image data as the only argument.
Note that the callback parameter is a first-class function; our invariants do not allow
exchange of a function across the privilege boundary.

Child Shim. The child shim creates a stub implementation of the privileged API. In
the unprivileged child, a privileged call would fail since the child does not have privileges
to execute it. Instead, the stub function defined by the child function is called. This stub

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 44

Browser Page

ParentChild Iframe

Bootstrap
Code

S
H
I

M

Policy
Code

Application
 Code

S
H
I

M

1. Privileged
Call

2. Save
Callback 3. Parent

Request 4. Check
Policy

5. Make
Privileged

Call
6. Forward

Callback
Arguments

7. Execute
Saved

Callback

Figure 3.4: Typical events for proxying a privileged API call. The numbered boxes outline
the events. The event boxes span the components involved. For example, event 4 involves
the parent shim calling the policy code.

� �
tabs.captureVisibleTab =

function(windowid ,options ,callback){

var id =callbackctr ++;

cached_callbacks[id] = callback;

sendToParent ({

"type":"tabs.captureVisibleTab",

"windowid":windowid ,

"options":options ,

"callbackid":id

});

};� �
Listing 3.2: Child shim for captureVisibleTab

function marshals all the arguments and sends it to the parent. Listing 3.2 is the child
shim implementation for the captureVisibleTab function.

No code is passed across the privilege boundary. Instead, the child saves the callback
(Step 2 in Fig. 3.4) and forwards the rest of the argument list to the parent (Step 3). The
callback is stored in a cache and a unique identifier is sent to the parent. The parent uses
this identifier later.

We stress that this process is transparent to the application: the parent code ensures
that the child shim is loaded before any application code starts executing. The application
can continue calling the privileged API as before.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 45

� �
//m is the argument given to

// sendToParent in the child shim

if(m.type ===’tabs.captureVisibleTab ’)

{//fail if policy does not allow

if(! policy.allowCall(m){ return ;}

tabs.captureVisibleTab(

m.windowid ,

m.options ,

function(imgData){

sendToChild ({

type:"cb_tabs.captureVisibleTab",

id:m.callbackid ,

imgData: imgData

});

});

}� �
Listing 3.3: Parent shim for captureVisibleTab

Parent Shim. On receiving the message, the parent’s shim first checks with the policy
(Step 4 in Fig. 3.4 and line 5 in Listing 3.3) and if the policy allows it, the parent shim
makes the requested privileged call.

In case of ScreenCap, a simple policy could disallow captureVisibleTab call if the
request came from the image editor, and allow the call if the request came from the
screenshot component. Such a policy unbundles the two components. If a network attacker
compromises one of the two components in ScreenCap, then it only gains the ability to
make request already granted to that component. As another example, the application can
enforce a policy to only allow one captureVisibleTab call after a user clicks the ‘capture’
button. All future requests during that execution of the application are denied until the
user clicks the ‘capture’ button again.

Note that the privileged call is syntactically the same as what the child would have
made, except for the callback. The modified callback (lines 9-14 in Listing 3.3) forwards
the returned image data to the child (Step 6), the original callback still executes in the
child.

Child Callback The message handler on the child receives the forwarded arguments
from the parent and executes the saved callback with the arguments provided by the
parent. (Step 7 in Figure 3.4 and line 6 in Listing 3.4). The saved callback is then deleted
from the cache (Line 7).

Persistent State. We take a different approach to data persistence APIs like local-

Storage and document.cookie. It is necessary that the data stored using these APIs
is also stored in the parent since the next time a child is created, it will run in a fresh

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 46

� �
if(

m.type ===’cb_tabs.captureVisibleTab ’

){

var cb_id = m.callbackid;

var savedCb = cached_callbacks[cb_id];

savedCb.call(window ,m.imgData);

delete cached_callbacks[cb_id];

}� �
Listing 3.4: Child shim for captureVisibleTab: Part 2

� �
setItem: function (key , value) {

data[key] = value+’’;

saveToMainCache(data);

},

saveToMainCache: function(data){

sendToParent ({

"type":"localStorage_save",

"value":data

});

},� �
Listing 3.5: localStorage Shim in the Child Frame

origin and the previous data will be lost. We point out that enabling persistent storage
while maintaining compatibility requires some changes to code. Persistent storage APIs
(like window.localStorage) in today’s platforms are synchronous; our proxy mechanism
uses postMessage to pass persistent data, but postMessage is asynchronous. To facilitate
compatibility, we implement a wrapper for these synchronous API calls in the child shim
code and asynchronously update the parent via postMessage underneath. For example, a
part of the localStorage child shim is presented in Listing 3.5. The shim creates a wrapper
for the localStorage API using an associative array (viz., data). On every update, the
new associative array is sent to the parent. On receiving the localStorage save message,
the parent can save the data or discard it per policy.

We observe that in our transformation, calls to API that access persistent state become
asynchronous which contrasts the synchronous API calls in the original code. To preserve
the application’s intended behavior, in principle, it may be necessary to re-design parts
of the code that depend on the synchronous semantics of persistent storage APIs—for
example, when more than one unprivileged children are sharing data via persistent state
simultaneously. In our case studies so far, however, we find that the application behavior
does not depend on such semantics.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 47

3.5 Case Studies

We retrofit our design onto three HTML5 applications to demonstrate that our architecture
can be adopted by applications today:

• As an example of browser extensions, we retrofit our design to Awesome Screenshot,
a widely used chrome extension (802,526 users) similar to ScreenCap.

• As an example of emerging packaged HTML5 web applications, we retrofit our
design to SourceKit, a full-fledged text editor available as a Chrome packaged web
application. SourceKit’s design is similar to editors often bundled with online word
processors and web email clients. These editors typically run with the full privileges
of the larger application they accompany.

• As an example of traditional HTML5 web applications, we retrofit our design to
SQL Buddy, a PHP web application for database administration. Web interfaces for
database administration (notably, PHPMyAdmin) are pervasive and run with the
full privileges of the web application they administer.

Our goal in this evaluation is to measure (a) the reduction in TCB our architecture
achieves, (b) the amount of code changes necessary to retrofit our design, and (c) perfor-
mance overheads (user latency, CPU overheads and memory footprint impact) compared
to platform redesign approaches. Table 3.1 lists our case studies and summarizes our
results. First, we find that the TCB reduction achieved by our redesign ranges from 6x to
10000x. Due to the prevalence of minification, we believe LOC is not a useful metric for
JavaScript code and, instead, we report the size of the code in KB. Second, we find that
we require minimal changes, ranging from 0 to 13 lines, to port the case studies to our
design. This is in addition to the application independent shim and bootstrap code that
we added.

We also demonstrate examples of expressive policies that these applications can utilize.
The focus of this workr is on mechanisms, not policies, and we do not discuss alternative
policies in this work.

Finally, we also quantify the reduction in privileges we would achieve in the 50 most
popular Chrome extensions with our architecture. We also find that in half the extensions
studied, we can move 80% of the functions out of the TCB. This quantifies the large
gap between the privileges granted by Chrome extensions today and what is necessary.
In addition, we also analyze the top 20 Chrome extensions to determine the number of
components bundled in each. We find that 19 out of the top 20 extension exhibit bundling,
and estimate that we can separate these between 2 to 4 components, in addition to the
three components that Chrome enforces.

To facilitate further research and adoption of our techniques, we make all the application
independent components of the architecture and the SQL Buddy case study available

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 48

online [116]. Due to licensing restrictions, we are unable to release the other case studies
publicly.

Table 3.1: Overview of case studies. The TCB sizes are in KB. The lines changed column
only counts changes to application code, and not application independent shims and parent
code.

Application Number Initial New Lines
of users TCB TCB Changed

(KB) (KB)

Awesome
802,526 580 16.4 0

Screenshot

SourceKit 14,344 15,000 5.38 13

SQL Buddy 45,419 100 2.67 11

Awesome Screenshot

The Awesome Screenshot extension allows a user to capture a screenshot of a webpage
similar to our running example [46]. A rudimentary image editor, included in the extension,
allows the user to annotate and modify the captured image as he sees fit. Awesome
Screenshot has over 800,000 users.3

The Awesome Screenshot extension consists of three components: background.html,
popup.html, and editor.html. A typical interaction involves the user clicking the
Awesome Screenshot button, which opens popup.html. The user selects her desired
action; popup.html forwards the choice to background.html, which captures a screenshot
and sends it to the image editor (editor.html) for post-processing. All components
communicate with each other using the sendRequest API call.

Privilege Separation. We redesigned Awesome Screenshot following the model laid
out in Section 3.3 (Figure 3.2). Each component runs in an unprivileged temporary origin.
The parent mediates access to privileged APIs, and the policy keeps this access to the
minimum required by the component in question.

Code Changes. Apart from the application independent code, we required no changes
to the code. The parent and child shims make the redesign seamless. We manually tested
the application functionality thoroughly and did not observe any incompatibilities.

3Due to a bug in Chrome, the current Awesome Screenshot extension uses a NPAPI binary to save big
(> 2MB) images. We used the HTML5 version (which doesn’t allow saving large files) for the purposes of
this work. This is just a temporary limitation.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 49

Unbundling. In the original version of Awesome Screenshot, editor.html, the image
editor accepts the image from background.html and allows the user to edit it, but
runs with the full privileges of the extension—an example of bundling. Similarly, the
popup.html only needs to forward the user’s choice to background.html but runs with
all of the extension’s privileges.

In our privilege-separated implementation of Awesome Screenshot, the editor code,
stored in editor.txt now, runs within a temporary origin. The policy only gives it access
to the sendRequest API to send the exit and ready messages as well as receive the image
data message from the background page.

TCB Reduction. The image editor in the original Awesome Screenshot extension uses
UI and image manipulation libraries (more than 500KB of complex code), which run
within the same origin as the extension. As a result, these libraries run with the ambient
privileges to take screenshots of any page, log the user’s browsing history, and access the
user’s data on any website. While some functions in the extension do need these privileges,
the complete codebase does not need to run with these privileges.

In our privilege-separated implementation of Awesome Screenshot, the amount of code
running with full privileges (TCB) decreased by a factor of 58. We found the UI and image
manipulation libraries, specifically jQuery UI, used dynamic constructs like innerHTML

and eval. Our design moves these potentially vulnerable constructs to an unprivileged
child.

The code in the child can still request privileged function calls via the interface provided
by the parent. However, this interface is thin, well defined and easily auditable. In contrast,
in the non-privilege separated design, the UI and image libraries run with ambient privileges.
In contrast, in the original extension all the code needs to be audited.

Example Policy. In addition to unbundling the image editor from the screenshot
component, the parent can enforce stronger, temporal policies on the application. In
particular, the parent can require that the captureVisibleTab function is only called
once after the user clicks the capture button. Any subsequent calls have to be preceded
by another button click. Such temporal policies are impossible to express and enforce in
current permission-based systems.

SourceKit Text Editor

The SourceKit text editor is an HTML5 text editor for a user’s documents stored on
the Dropbox cloud service [47]. It uses open source components like the Ajax.org cloud
editor [2] and Dojo toolkit [133], in conjunction with the Dropbox REST APIs [47].

SourceKit is a powerful text editor. It includes a file-browser pane and can open
multiple files at the same time. The text editor component supports themes and syntax

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 50

highlighting. The application consists of 15MB of JavaScript code, all of which runs with
full privileges.

Privilege Separation. In our least privilege design, the whole application runs in a
single child. Redesigning SourceKit to move code to an unprivileged temporary origin
was seamless because of the library shims (Section 3.4). One key change was replacing
the included Dojo toolkit with its asynchronous version. The included Dojo toolkit uses
synchronous XMLHttpRequest calls, which the asynchronous postMessage cannot proxy.
The asynchronous version of Dojo is freely available on the Dojo website. We do not
include this change in the number of lines modified in Table 3.1.

Unbundling. Functionally, SourceKit is a single Chrome application, and no bundling
has occurred in its design. Popular Web sites (like GitHub [73]), use the text editor module
as an online text editor [2]. In such cases, the text editor runs bundled with the main
application, inheriting the application’s privileges and increasing its attack surface. While
we focus only on SourceKit for this case study, our redesign directly applies to these online
text editors.

TCB Reduction. In our privilege separated SourceKit, the amount of code running
with full privileges reduced from 15MB to 5KB. A large part of this reduction is due
to moving the Dojo Toolkit, the syntax highlighting code and other UI libraries to an
unprivileged principal. Again, we found the included libraries, specifically the Dojo Toolkit,
relying on dangerous, dynamic constructs like eval, string arguments to setInterval,
and innerHTML. In our redesign, this code executes unprivileged.

Code Change. In addition to the switch to asynchronous APIs, we also had to modify
one internal function in SourceKit to use asynchronous APIs. In particular, SourceKit
relied on synchronous requests to load files from the dropbox.com server. We modified
SourceKit to use an asynchronous mechanism instead. The change was minor; only 13
lines of code were changed.

Example Policy. In the original application, all code runs with the tabs permission,
which allows access to the user’s browsing history, and permission to access dropbox.com.
In our privilege-separated design, the policy only allows the child access to the tabs.open

and tabs.close Chrome APIs for accessing dropbox.com. Similarly, it only forwards tab
events for dropbox.com URIs. Thus, after the redesign, the child has access to the user’s
browsing history only for dropbox.com, and not for all websites. Implementing this policy
requires only two lines of code—an if condition that forwards events only for dropbox.com
domains suffices.

SourceKit accesses Dropbox using the Dropbox OAuth APIs [47]. At first run, SourceKit
opens Dropbox in a new tab, where the user can grant SourceKit the requisite OAuth

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 51

access token [107]. The parent can only allow access to the tabs privileges at first run,
and disable it once the child receives the OAuth token. Such temporal policies cannot be
expressed by install-time permissions implemented in existing platforms.

We can also enforce stronger policies to provide a form of data separation [25]. By
default, the Dropbox JS API [83] stores the OAuth access token in localStorage, accessible
by all the code in the application. Instead, the policy code can store the OAuth token in
the parent and append it to all dropbox.com requests. This mitigates data exfiltration
attacks where the attacker can steal the OAuth token to bypass the parent’s policy.4 Such
application-specific data-separation policies cannot be expressed in present permission
systems.

SQL Buddy

SQL Buddy is an open source tool to administer the MySQL database using a Web browser.
Written in PHP, SQL Buddy is functionally similar to phpMyAdmin and supports creating,
modifying, or deleting databases, tables, fields, or rows; SQL queries; and user management.

SQL Buddy uses the MooTools JS library to create an AJAX front-end for MySQL
administration. It uses the MySQL user table for authentication and logged-in users
maintain authentication via PHP session cookies.

Privilege Separation. We modified SQL Buddy to execute all its code in an unprivi-
leged child. To ensure that no code is interpreted by the browser, we required all PHP
files to return a Content-Type header of text/plain, as discussed in Section 3.3. Only
two new files: buddy.html and login.html execute in the browser; these are initialized
by the bootstrap code.

Unbundling. A typical SQL Buddy installation runs at www.example.net/sqlbuddy,
and helps ease database management for the application at www.example.net. Classic
operating system mechanisms can isolate SQL Buddy and the main application on the
server side. But SQL Buddy runs with the full privileges of the application on the client-side.
In particular, an XSS vulnerability in SQL Buddy is equivalent to an XSS vulnerability
on the main application: it is not isolated from the application at the client-side. SQL
Buddy inherits all the privileges of the application, including special client-side privileges
such as access to camera, geolocation, and ambient privileges granted to the web origin
such as the ability to do cross-origin XMLHttpRequests [87].

In our privilege-separated redesign, a restrictive policy on the child mitigates SQL
Buddy bundling. The parent allows the child XMLHttpRequest access only to URIs of the
form /sqlbuddy/<filename>.php. No other privilege is available to SQL Buddy code,
including document.cookie, localStorage, or XMLHttpRequest to the main application’s

4For example, to prevent malware, the parent can require that all files accessed using SourceKit have
non-binary file extensions.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 52

pages. This policy isolates SQL Buddy from any other application executing on the same
domain, a hitherto unavailable option.

Code Change. The key change we made to the SQL Buddy client side code was to
convert the login script at the server. The original SQL Buddy system returned a new
login page on a failed login. Instead, we changed it to only return an error code over
XMLHttpRequest. The client-side code utilized this response to show the user the new
login page, thereby preserving the application behavior. This change required modification
of only 11 lines of code.

TCB Reduction. SQL Buddy utilizes the MooTools JavaScript library, which runs
with the full privileges of the application site (e.g., www.example.net). Over 100KB of
JavaScript code runs with full privileges of the www.example.net origin. This code uses
dangerous, dynamic constructs such as innerHTML and eval. In our design, the total
amount of code running in the www.example.net origin is 2.5KB, with the JavaScript
code utilizing dynamic constructs running in an unprivileged temporary origin

Example Policy. Privilege separation reduces the ambient authority from these libraries.
For example, the session cookie for www.example.net, is never sent to the child: all HTTP
traffic requiring the cookie needs to go through the parent. Note that the cookie for the
www.example.net principal includes both, the SQL Buddy session cookie as well as the
cookie for the main www.example.net application. In case of successful code injection,
the attacker cannot exfiltrate this cookie. Furthermore, the policy strictly limits privileged
API access to those calls required by SQL Buddy. The SQL Buddy code does not have
ambient authority to make privileged calls in the www.example.net principal. Again,
implementing this policy requires two lines of JavaScript code in our architecture.

Top 50 Google Chrome extensions

Finally, we measure the opportunity available to our technique by quantifying the extent of
TCB inflation and bundling in Chrome extensions. To perform this analysis, we developed
a syntactic static analysis engine for JavaScript using an existing JavaScript engine called
Pynarcissus [115] and performed a manual review for additional confidence. We report our
results on 46 out of the top 50 extensions we study.5 In our analysis, we (conservatively)
identify all calls to privileged APIs (i.e., calls to the chrome object) and list them in
Figure 3.1. We believe that our analysis is overly conservative, being syntactic, so these
numbers represent only an undercount of the over-privileging in these applications.

5Due to limitations of Pynarcissus, it was unable to completely parse code in 4 out of the top 50
extensions.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 53

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

e
x
te

n
s
io

n
s

Percentage of API used (cumulative)

Figure 3.5: Frequency distribution of event listeners and API calls used by the top 42
extensions requiring the tabs permission.

TCB Reduction. We show the distribution of the number of functions requiring any
privileges as a percentage of the total number of functions. TCB inflation is pervasive
in the extensions studied. In half the extensions, less than 5% of the total functions
require any ambient privileges. In the current architecture the remaining 95% run with
full privileges, inflating the TCB.

Bundling. We manually analyzed the 20 most popular Google Chrome extensions, and
found 19 of them exhibited bundling. The most common form of bundling occurred when
the options page or popup window of an extension runs with full privileges, in spite of
not requiring any privileges at all. While the Google Chrome architecture does enable
privilege separation between content scripts and extension code, running all code in an
extension with the same privileges is unnecessary.

Another form of over-privileging occurs due to the bundling of privileges in Chrome’s
permission system. Google Chrome’s extension system bundles multiple privileges into
one coarse-grained install-time permission. For example, the tabs permission in Chrome
extension API, required by 42 of the 46 extensions analyzed, bundles together a number
of related, powerful privileges. This install-time permission includes the ability to listen to
eight events related to tabs and windows, access users’ browsing history, and call 20 other
miscellaneous functions. Figure 3.5 measures the percentage of the tabs API actually
used by extensions as a percentage of the total API granted by tabs for the 42 extensions
analyzed. As can be seen, no extension requires the full privileges granted by the tabs

permission, with one extension requiring 44.83% of the permitted API being the highest.
More than half of the extensions require only 6.9% of the API available, which indicates
over-privileging. In our design, the policy acts on fine-grained function calls and replaces
coarse-grained permissions.

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 54

3.6 Performance Benchmarks

Our approach has two possible overheads: run-time overhead caused by the parent’s
mediation on privileged APIs and the memory consumption of the new DOM and JavaScript
heap created for each iframe. We measure the impact of each below.

Performance Overhead. First, as a micro-benchmark, we measured the run-time
overhead caused by the parent’s mediation on privileged APIs. We created a function that
measures the total time taken to open a tab and then close it. This involves four crossings
of the privilege boundary.

We performed the experiment 100 times with and without privilege separation. The
median time with and without privilege-separation was 140ms and 80ms respectively. This
implies an overhead of 15ms on each call crossing the sandbox.

As a macro-benchmark, we measured the amount of time required to load an image in
the Awesome Screenshot image editor. Recall that the image editor receives the image
data from the background page. We took a screenshot of www.google.com and measured
the time taken for the image to load in the image editor, once the background sends it. We
repeated the experiment 20 times each for the privilege separated and the original versions.
The average (median) amount of time taken for the image load was 72.5ms (77.3ms) for
the image load in the original Awesome Screenshot extension, and 78.5ms (80.1ms) for the
image load in the privilege separated version—an overhead of 8.2% (3.6%). In our testing,
we have not noticed any user-perceivable increase in latency after our redesign.

Memory Consumption. We measured the increase in memory consumption caused
by creating a new temporary origin iframe, and found no noticeable increase in memory
consumption.

On the Google Chrome platform, an alternate mechanism to get additional principals
is creating a new extension. For example, Awesome Screenshot could be broken up into
two extensions: a screenshot extension and an image editor extension. In addition to
requiring two install decisions from the user, each additional extension runs in its own
process on the Chrome platform. We measured the memory consumption of creating two
extensions over a single extension and found an increase in memory consumption of 20MB.
This demonstrates that our approach has no memory overhead as opposed to the 20MB
overhead of creating a new extension.

3.7 Summary of Results

Privilege separation is an important second line of defense. However, achieving privilege
separation in web applications has been harder than on the commodity OS platform. We
observe that the central reason for this stems in the same origin policy (SOP), which
mandates use of separate origins to isolate multiple components, but creating new origins

CHAPTER 3. PRIVILEGE SEPARATION FOR HTML5 APPLICATIONS 55

on the fly comes at a cost. As a result, web applications in practice bundle disjoint
components and run them in one monolithic authority.

We use a new design that uses standardized primitives already available in modern
browsers and enables partitioning web applications into an arbitrary number of temporary
origins. This design contrasts with previous approaches that advocate re-designing the
browser or require adoption of new languages. We empirically show that we can apply
our new architecture to widely used HTML5 applications right away; achieving drastic
reduction in TCB with no more than thirteen lines of change for the applications we
studied. In the next chapter, we propose extending this primitive to enforce stronger data
confinement properties.

56

Chapter 4

Data-Confined HTML5 Applications

This work was presented at the 18th European Symposium on Research in Computer
Security, 2013 at Egham, United Kingdom. This is joint work with Frank Li, Warren He,
Prateek Saxena, and Dawn Song.

4.1 Introduction

In the previous chapter, we discussed how privilege separation allows us to reduce the
trusted computing base (TCB) of HTML5 applications by breaking them up into an
arbitrary number of unprivileged components. While privilege separation enables TCB
reduction, it does not give any guarantees on the flow of data available to an unprivileged
child. On modern and upcoming platforms, applications handling sensitive data need
the ability to verifiably confine data to specific principals and to prevent it from leaking
to malicious actors. On one hand, the developers want an easy, high-assurance way to
confine sensitive data; on the other, platform vendors and security auditors want to verify
sensitive data confinement.

For example, consider LastPass, a real-world HTML5-based password manager with
close to a million users1. By design, LastPass only stores an encrypted version of the user’s
data in the cloud and decrypts it at the client side with the user’s master password. It is
critical that the decrypted user data (i.e., the clear-text password database) never leave
the client. We term this requirement a data-confinement invariant. Data-confinement
invariants are fundamental security specifications that limit the flow of sensitive data to
a trusted set of security principals. These data-confinement invariants are not explicitly
stated in today’s HTML5 applications but are implicitly necessary to preserve their privacy
and security guarantees.

We observe two hurdles that hinder practical, high-assurance data confinement in
existing client-side HTML5 applications. First, mechanisms to specify and enforce data-
confinement invariants are absent in HTML5 platforms as a result, they remain hidden

1https://www.lastpass.com

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 57

in application designs; raising the TCB. Second, client-side HTML5 applications have
numerous channels to communicate with distrusting principals, and no unified monitoring
interface like the OS system call interface exists. Due to the number of channels available
to HTML5 applications, attackers can violate data confinement invariants even in the
absence of code injection vulnerabilities [71, 142]. As we explain in Section 4.3, previous
research proposals do not offer complete mediation, or have an unacceptably large TCB
and compatibility cost.

We introduce the data-confined sandbox (or DCS), a novel security primitive for
client-side HTML5 applications. A data-confined sandbox is a unit of execution, such as
code executing in an iframe, the creator of which explicitly controls all the data imported
and exported by the DCS. Our design provides the creator of a DCS a secure reference
monitor to interpose on all communications, privileged API accesses, and input/output
data exchanges originating from the DCS.

Data-confined sandboxes are a fundamental primitive to enable a data-centric security
architecture for emerging HTML5 applications. By moving much of the application code
handling sensitive data to data-confined sandboxes, we can enable applications that have
better resilience to privacy violating attacks and that are easy to audit by security analysts.

Contributions We make the following main contributions:

• We introduce the concept of data confinement for client-side HTML5 applications
that handle sensitive data (Section 4.2).

• We identify the limitations of current security primitives in the HTML5 platform that
make them insufficient for implementing data-confinement invariants (Section 4.3).

• We design and implement a data-confined sandbox, a novel mechanism in web
browsers that provides complete mediation on all explicit data communication
channels (Section 4.4) and discuss how to implement such a new primitive without
affecting the security invariants maintained by the HTML5 platform (Section 4.4).

• We demonstrate the practicality of our approach by modifying four applications that
handle sensitive data to provide strong data confinement guarantees (Section 4.6).
All our code and case studies are publicly available online [117].

4.2 Data Confinement in HTML5 applications

Data confinement is a data-centric property, which limits the flow of sensitive data to
an explicitly allowed set of security principals. In this section, we present example data-
confinement invariants from real-world applications. Our focus is on modern HTML5
applications that handle sensitive data or tokens with complex client-side logic leading to
a large client-side TCB.

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 58

Password Managers

Password managers organize a user’s credentials across the web in a centralized store.
Consider LastPass, a popular password manager that stores encrypted credential data in
the cloud. LastPass decrypts the password database only at the client side (in a ‘vault’)
with a user provided master password. A number of data-confinement invariants are
implicit in the design of LastPass.

• First, the user’s master password should never be sent to any web server (including
LastPass servers).

• Second, the password database should only be sent back to the LastPass servers
after encryption.

• Third, the decrypted password database on the client-side should not leak to any
web site.

• Finally, only individual decrypted passwords should be sent only to their corre-
sponding websites: e.g., the credentials for facebook.com should only be used on
facebook.com.

Client-side SSO Implementations

Single sign-on (SSO) mechanisms have emerged on the web to manage users’ online
identities. These mechanisms rely on confining secret tokens to an allowed set of principals.
Consider Mozilla’s recent SSO mechanism called BrowserID. It has the following data-
confinement invariants implicit in its design:

• It aims to share authorization tokens only with specific participants in one run of
the protocol.

• Similar to the ‘vault’ in LastPass, BrowserID provides an interface for managing
credentials in a user ‘home page.’ This home page data should not leak to external
websites.

• The user’s BrowserID credentials (master password) should never be leaked to a
third party: only the authorization credentials should be shared with the intended
web principals involved in the particular instance of the protocol flow.

Other SSO mechanisms, like Facebook Connect, often process capability-bearing tokens
(such as OAuth tokens). Implementation weaknesses and logic flaws can violate these
invariants, as researchers demonstrated in 2010 [69], 2011 [137], and 2012 [129].

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 59

Electronic Medical Record Applications

Electronic medical record (EMR) applications provide a central interface for patient data,
scheduling, clinical decisions, and billing. Strict compliance regulations, such as HIPAA,
require data confinement for these applications, with financial and reputational penalties
for violations. OpenEMR is the most popular open-source EMR application [120] and has
a strict confinement requirement: an instance of OpenEMR should not leak user data to
any principal other than hospital servers.

Note the dual requirements in this application: first, OpenEMR’s developers want
to ensure data confinement to their application; second, hospitals need to verify that
OpenEMR is not leaking patient data to any external servers. In the current design, it is
difficult for hospitals to verify this: any vulnerability in the client-side software can allow
data disclosure.

Web Interfaces for Sensitive Databases

Web-based database administration interfaces are popular today, because they are easy
to use. PhpMyAdmin is one such popular interface with thousands of downloads each
week [110]. The following data-confinement invariants are implicit in its design:

• Data received from the database server is not sent to any website.

• User inputs (new values to store) are only sent to the database server’s data insertion
endpoint.

Currently, a code injection vulnerability in the client-side interface can enable attackers
to steal the entire database, as the interface executes with the database user’s privileges.
Moreover, the application is large and not easily auditable to ensure data-confinement
invariants.

Prevalence of Data Confinement

The discussion above only provides exemplars: any application handling sensitive data
typically has a confinement invariant. As we present in Section 4.6, we studied the
top twenty most popular extension on the Google Chrome platform and found that all
applications handling sensitive data (sixteen applications in total) maintained an invariant
implicitly.2 The trusted code base for these extensions varied from 7.5KB to 1.24MB.
Sensitive data available to the extensions vary from access to the user’s browsing history
to the user’s social media login credentials.

2The remaining four extensions dealt mainly with the website style and appearance and did not access
sensitive data.

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 60

4.3 Problem Formulation

Given the prevalence of data confinement in HTML5 applications, we aim to support
secure data confinement in HTML5 applications. Due to the increasingly sensitive nature
of data handled by modern HTML5 applications, a key requirement is high assurance:
small TCB, complete mediation. Further, for ease of adoption, we aim for a mechanism
with minimal compatibility costs.

The idea of such high assurance mechanisms is not new, with Saltzer and Schroeder
laying it down as a fundamental requirement for secure systems [121]. Our focus is on
developing a high assurance mechanism for HTML5 applications. We first discuss the
challenges in achieving high assurance data confinement in HTML5 applications, followed
by a discussion on why current and proposed primitives do not satisfy all our goals. We
discuss our design in Section 4.4.

HTML5 and Data Confinement: Challenges

A number of idiosyncrasies of the HTML5 platform make practical data confinement
with a small TCB difficult. First, the HTML5 platform lacks mechanisms to explicitly
state data-confinement invariants—current ad-hoc mechanisms do not separate policy
and enforcement mechanism. Due to the coarse-grained nature of the same origin policy,
enforcing these invariants on current HTML5 platforms increases the TCB to the whole
application.

Achieving a small TCB is particularly important on the HTML5 platform. The
JavaScript language and the DOM interface make modular reasoning about individual
components difficult. All code runs with ambient access to the DOM, cookies, localStorage,
and the network. Further, techniques like prototype hijacking can violate encapsulation
assumptions and allow attackers to leak private variables in other modules. The DOM API
makes confinement difficult to ensure even in the absence of code injection vulnerabilities [71,
142].

Achieving complete mediation on the HTML5 platform is also difficult. The HTML5
platform has a large number of data disclosure channels, as by design it aims to ease
cross-origin resource loading and communication. We categorize these channels as:

• Network channels. HTML5 applications can make network requests via HTML
elements like img, form, script, and video, as well as JavaScript and DOM APIs
like XMLHttpRequest and window.open. Furthermore, CSS stylesheets can issue
network requests by referencing images, fonts, and other stylesheets.

• Client-side cross-origin channels. Web browsers support a number of channels
for client-side cross-origin communication. This includes exceptions to the same-
origin policy in JavaScript such as the window.location object. Initially, mashups
used these cross-origin communication mechanisms for fragment ID messaging (via

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 61

Table 4.1: Comparison of current solutions for data confinement

System Name Complete Mediation Compatibility Cost Small TCB

HSTS No: HTTPS pages only Low Yes
CSP No: anchors and window.open High: disables eval Yes
JS Static Analysis No: no CSS & DOM High: disables eval No
JS IRMs (Cajole, Conscript) No: no CSS & DOM High: disables eval Yes
JSand No: no CSS High: SES No
Treehouse Yes High: code change No
sandbox with Temp. Origins No: all network channels Low Yes
Data-confined sandboxes Yes Low Yes

the location.hash property) between cross-origin windows. Current mashups rely
on newer channels like postMessage, which are also a mechanism for data leaks.

• Storage Channels. Another source of data exfiltration are storage channels like
localStorage, cookies, and so on. These channels do not cause network requests or
communicate with another client-side channel as above; instead, they allow code
to exfiltrate data to other code that will run in the future in the same origin (or,
in case of cookies, even other related origins). Browsers tie storage channels to the
origin of an application.

Given the wide number of channels available for inadvertent data disclosure, we observe
that no unified interface exists for ensuring confinement of fine-grained code elements
in the HTML5 platform. This is in contrast to system call interposition in commodity
operating systems that provides complete mediation. For example, mediation of data
communication channels using system call sandboxing techniques is well-studied for modern
binary applications [58, 88, 113]. Previous work also developed techniques to automate
identification and isolation of subcomponents that process sensitive data [25, 88]. Our
work shares these design principles, but targets HTML5 applications.

Insufficiency of Existing Mechanisms

None of the primitives available in today’s HTML5 platform achieve complete mediation
with a small TCB. Browser-supported primitives, such as Content Security Policy (CSP),
block some network channels but not all. Current mechanisms in web browsers aim for
integrity, not confinement. For example, even the most restrictive CSP policy cannot
block data leaks through anchor tags and window.open. Similarly, privilege separation
(Chapter 3) of HTML5 applications does not provide any confinement guarantees. An
unprivileged child can leak data by making a request for an image or including a CSS
style from a remote host.

Recent work on information flow and non-interference show promise for ensuring
fine-grained data-confinement in JavaScript; unfortunately, these techniques currently
have high overhead for modern applications [36]. IBEX proposed writing extensions in a
high-level language (FINE) amenable to deep analysis to ensure conformance with specific

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 62

policies [67]. In contrast, our work does not require significant changes to web applications.
Further, as we explain below, these approaches also have a large TCB.

Another approach to interpose on all data communication channels is to do static
analysis of the application source code [38, 55, 94]. Static analysis systems cannot reason
about dynamic constructs such as eval, which are used pervasively by existing applica-
tions [118] and modern JavaScript libraries [1]. As a result, such mechanisms have a high
compatibility cost. When combined with rewriting techniques, such as Cajoling [55], JS
analysis techniques can achieve complete mediation on client-side cross-frame channels;
but still do not provide complete mediation over DOM and CSS channels.

JSand [3] introduced a client-side method of sandboxing third-party JavaScript libraries.
It does so by encapsulating all Javscript objects in a wrapper that mediates property
accesses and assignments, via an application-defined policy. This approach does not protect
against scriptless attacks such as those using CSS. Additionally, it relies on the use of
Secure EcmaScript 5 (SES), which is not compatible for some JavaScript libraries. JSand
does provide a support layer to improve compatibility with legacy JavaScript code, but
this is a partial transformation and involves a high performance overhead.

Treehouse uses new primitives, like web workers and EcmaScript5 sealed objects, in
the HTML5 platform to ensure better interposition [75]. Treehouse proposes to execute
individual components in web workers at the client side. One concern with the Treehouse
approach is that web workers also run with some ambient privileges: e.g., workers have
access to XMLHttpRequest, synchronous file APIs, script imports, and spawning new
workers, which attackers can use to leak data. Treehouse relies on the seal/unseal features
of ES5 to prevent access to these APIs, but this mechanism requires intrusive changes to
existing applications and has a high compatibility cost.

Perhaps the most important limitation of a primitive not directly supported by browsers
is its large TCB. For example, in the case of Treehouse, application code (running in
workers) cannot have direct access to the DOM, since that would break all security
guarantees. Instead, application code executes on a virtual DOM in the worker that the
parent code copies over to the main web page. As a result, the security of these mechanisms
depends on the correctness of the monitor/browser model (e.g., the parent’s client side
monitor in Treehouse).

Since the DOM, HTML, CSS, and JS are so deeply intertwined in a modern HTML5
platform, such a client side monitor is essentially replicating the core logic of the browser,
leading to a massive increase in the TCB. Further, Treehouse implements this complex
logic in JavaScript. Corresponding issues plague static analysis systems, new language
mechanisms like IBEX, and code rewriting systems like Caja—all of them assume a model
of the HTML5 platform to implement their analysis/rewriting logic.

While implementing a model of HTML5 for analysis and monitoring is difficult, the
approaches discussed above suffer from another fundamental limitation: they work on a
model of HTML5, not the real HTML5 standard implemented in the platform (browser).
Any mismatch between the browser and the model can lead to a vulnerability, as observed
(repeatedly) for Caja [54, 59, 60, 61] and AdSafe [94, 111].

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 63

Threat Model

We focus on explicit data communication channels in the HTML5 platform core, as defined
above. Ensuring comprehensive mediation on explicit data channels is an important first
step in achieving data-confined HTML5 applications. Our proposed primitive does not
protect against covert and side channels (such as shared browser caches [79] and timing
channels [13]) or self exfiltration channels [33], which are a subject of ongoing research.
These channels are important. However, we point out that popular isolation mechanisms
on existing systems also do not protect against these [28, 140, 144]. We believe explicit
channels cover a large space of attacks, and we plan to investigate extending our techniques
to covert channels in the future.

In addition to focusing on explicit channels, our primitive only targets the core HTML5
platform; our ideas extend to add-ons/plugins, however we exclude them from our present
implementation. We defend against the standard web attacker model, which we formalized
in Chapter 2. To recap, the web attacker cannot tamper with or observe network traffic
for other web origins and cannot subvert the integrity of the HTML5 platform itself. None
the less, defending against a network attacker is easier with a data-confined sandbox—the
privileged parent script need only restrict all communication to a secure (https) channel.

4.4 The Data Confined Sandbox

To draw a parallel with binary applications, current mechanisms for confining HTML5
applications are analogous to analyzing the machine code before it executes to decide
whether it violates any guarantees. We argued above that such mechanisms cannot provide
high assurance. Instead, taking a systems view of the problem of data confinement, we
argue for an strace-like high assurance monitor for the HTML5 platform.

We call our primitive the data confined sandbox, or DCS (Section 4.4). Our key
contribution is identifying that the shrewd design of the DCS primitive provides high
assurance with minimal compatibility concerns (Section 4.4). Introducing any new primitive
on the HTML5 platform brings up security concerns. A primitive like DCS that provides
monitoring capabilities to arbitrary code is particularly fraught. We discuss how we ensure
that we do not introduce new vulnerabilities due to our primitive in Section 4.4.

Design of DCS

Figure 4.1 presents the architecture of an application using the DCS design. Our design
extends the privilege separated design from Chapter 3. Our key contribution is identifying
how to extend the ideas of privilege separation to provide complete mediation on the
HTML5 platform. We first recap privilege separated HTML5 applications and then discuss
the DCS design.

As discussed in Chapter 3, modern HTML5 platforms allow applications to run arbitrary
code (specified via a data:/blob: URI) in a temporary, unprivileged origin. Privilege

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 64

Figure 4.1: High-level design of an application running in a DCS. The only component
that runs privileged is the parent. The children run in data-confined sandboxes, with no
ambient privileges and all communication channels monitored by the parent.

separated HTML5 applications run most application code in an arbitrary number of
unprivileged iframes (children). A small privileged parent iframe, with access to full
privileges of the web origin, provides access to privileged APIs, such as cookie access and
platform APIs like camera access. Unprivileged children communicate with the parent
through a tightly controlled postMessage channel (dotted arrows in Figure 4.1).

The parent can enforce policies on the requests it receives over this postMessage

channel from its unprivileged children. The parent uses its privileged interfaces to fulfill
approved requests, such as authenticated XMLHttpRequest calls (curved dotted arrow in
Figure 4.1). To increase assurance, the parent code enforces a number of security invariants
such as disabling all dynamic code evaluation, allowing only a text interface with the
children, and setting appropriate MIME types for static code downloaded by the bootstrap
code.

Though this privilege separation architecture provides integrity, it does not provide data
confinement. Any compromised child can make arbitrary requests on the network through
the numerous data disclosure channels outlined earlier. We propose a new primitive,
the data-confined sandbox or DCS, that enforces confinement of data in the child. Our
primitive relies on the browser to ensure confinement. Similar to privilege separation,
applications only need to switch to using the DCS and write an appropriate policy.

Consider the browser kernel in Figure 4.1. Any content that a DCS child requests the
browser to display passes through the HTML/JS/CSS parser. If the browser encounters
a URI that it needs to load, it invokes the URI parser, which then invokes the content
dispatch logic in the browser. We modify this code for DCS children to call a security
monitor that the parent defines (solid arrow in Figure 4.1). The security monitor in the
parent is transparent to the child. The browser’s call to the parent also includes the unique

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 65

id identifying the child iframe and details about the request. From there, the security
monitor can decide whether to grant the request or not.

Example

Consider the ‘vault’ for the LastPass web application. In our redesign, when the user
navigates to the LastPass application, the server returns bootstrap code (the parent) that
downloads the original application code and executes it in a data-confined sandbox (the
child). The code in the DCS starts executing and makes network requests to include all
the complex UI, DOM, and encryption libraries. Finally, the LastPass child code in the
DCS makes a request for the encrypted password database and decrypts it with the user
provided password.

The parent security monitor can enforce a simple policy such as only allowing network
requests to https://lastpass.com. Alternatively, the parent can enforce stateful policies:
e.g., the monitor function could only allow resource loads (i.e., scripts, images, styles)
until the DCS child loads the encrypted password database. After loading the encrypted
database, the security monitor disallows all future network requests.

Achieving High Assurance

Recall our goals of complete mediation, small TCB, and backwards compatibility. We
discuss how our DCS design achieves all of them.

Complete Mediation

As discussed Section 4.3, HTML5 applications only have three channels for data leakage:
storage channels tied to the origin, network channels, and client-side cross-origin channels.
Since all application code runs in children of temporary origins that only exist for the
duration of the application’s execution, the application code does not have access to any
(storage) channel tied to the origin (e.g., cookies, localStorage).

In a DCS, except for a blessed postMessage channel to the parent, the browser
disables all client-side communication channels. This includes cross-origin communication
channels like postMessage and cross-origin window properties (like location.hash).
The postMessage channel is the only client-side cross-origin channel available to the
data-confined child, and the browser guarantees that the channel only connects to the
parent. The postMessage channel allows the parent to proxy privileged APIs for the child.
Further, the postMessage channel also allows the parent to provide a channel to proxy
postMessages to other client-side iframes—our design only enforces complete mediation
by the parent.

HTML5 applications can request network resources via markup like scripts, images,
links, anchors, and forms and JavaScript APIs like XMLHttpRequest. In our design, the
children can continue to make these network requests; the DCS transparently interposes

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 66

on all these network channels. The parent defines a ‘monitor’ function that the browser
executes before dispatching a network request. If the function returns false, the browser
will not make the network request.

We rely on an external monitor (i.e., one running in the parent) over an inline one.
This ensures that the monitor does not share any state with the unprivileged child, making
it easier to reason about its runtime integrity and correctness. As we discuss in Section 4.5,
the security monitor is not hard to implement—most browsers already have an internal
API for controlling network access, which they expose to internal browser code as well as
popular extensions such as AdBlock and NoScript.

Small TCB

The TCB in any data confinement mechanism includes the policy code and the enforcement
code. In our design, this includes the monitor code in the parent as well as our browser
modifications to ensure complete mediation for the parent monitor. Relying on the browser
allows us to create a data confinement design with a small enforcement code, as evidenced
by our 214 line implementation described in Section 4.5. This small enforcement TCB
allows for easier validation and auditing.

Compatibility

Our design for network request mediation is discretionary, as compared to client-side
channels that we block outright. An alternative design is to disallow all network requests
too, and only permit network access via the postMessage channel between the parent and
child. Such a design has a significantly higher compatibility cost. HTML5 applications
pervasively employ network channels. In contrast, the use of client-side channels is rare—for
example, Wang et al. report that cross-origin window.location read and writes occur in
less than 0.1% of pages [124]. Therefore, we find that it is acceptable to disable cross-origin
client-side channels and force the child to use the blessed postMessage channel to the
parent to access these. With the powerful metaprogramming capabilities of JavaScript, it
is also possible to write shim code that transparently intercepts postMessage calls and
forwards messages to the parent, which in turn can forward messages to the original target
if allowed. We have not implemented this.

Requests made by the DCS have an empty Referer and Origin header. Resource
requests that require the application’s origin in these headers will fail. This design is
intentional: the ability to make requests with the application’s URI in the Referer and
Origin headers is an authority not available to the unprivileged children.

The lack of the correct Referer and Origin headers did not affect any of our case
studies. Currently, only browsers based on WebKit send the Origin header, and web
applications do not rely on these headers, as privacy conscious users often turn them off.
To maintain compatibility with servers that rely on these features, the DCS can send a
message to the parent, requesting it to make the appropriate request. An alternate design,

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 67

which we have not investigated, would be to insert the parent’s URI in the Referer and
its origin in the Origin headers automatically.

Security Considerations

Our design of the DCS primitive is careful not to introduce new security vulnerabilities in
the browser. We do not want to allow an arbitrary website to learn information or execute
actions that it could not already learn or execute. The security policy of the current web
platform is the same-origin policy. The introduction of the DCS should not violate any of
the existing same-origin policy invariants baked into the platform. We enforce this goal
with the following two invariants:

• Invariant 1: The parent should only be able to monitor application code that it
could already monitor on the current web platform (albeit, through more fragile
mechanisms).

• Invariant 2: The parent should not be able to infer anything about a resource
requested by a DCS that is not already possible on the current web platform.

We explain how our design enforces the above invariants. First, in our design, a data-
confined sandbox can only apply to iframes with a data: URI source, not to arbitrary
URIs. Therefore, a malicious site cannot monitor arbitrary web pages. In an iframe with
a data: URI source, the creator of the iframe (the parent) specifies the source code that
executes. This code is under complete control of the parent anyways. The parent can
parse the data: URI source for static requests and redefine the DOM APIs to monitor
dynamic requests [70]. Thus, even in the absence of our primitive, the parent can already
monitor any requests a data: URI iframe makes.

To ensure Invariant 2, we only call the security monitor for the first request made for
a particular resource. As we noted above, the parent can already monitor this request.
Future requests (e.g., redirects) are not in the control of the parent, and we do not call
the security monitor for them. While this can cause security issues (particularly, if the
parent whitelists an open-redirect), allowing the parent to monitor redirects would cause
critical vulnerabilities.

For example, consider a page at http://socialnetwork.com/home that redirects to
http://socialnetwork.com/username. Consider a DCS child created by attacker.com

parent. If this child creates an iframe with source http://socialnetwork.com/home,
our modified browser calls the security monitor with this URI before dispatching the
request. However, to ensure Invariant 2, the browser does not call the security monitor
with the redirect URI (i.e., http://socialnetwork.com/username). Further, since the
iframe is now executing in the security context of http://socialnetwork.com/, Invariant
1 ensures that any image or script loads made by the socialnetwork.com iframe do not
call the security monitor.

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 68

4.5 Implementation

We implemented support for data-confined sandboxes in the Firefox browser. Our modified
browser and our case studies (Section 4.6) are all available online [117]. Our implementation
is fewer than 214 lines of code, with only 60 lines being the core functionality. The low
implementation cost substantiates our intuition that the monitoring facility is best provided
by the browser. Since major browsers already support temporary origins, we only need to
add support for mediating client-side and network channels of a DCS child.

First, we restrict cross-origin client-side channels to a blessed postMessage channel. As
a fundamental security invariant, the same-origin policy restricts cross-origin JavaScript
access to a restrictive white-list of properties. In Firefox, this whitelist is present inside
the Firefox source code at js/xpconnect/wrappers/AccessCheck.cpp. We modified the
IsPermitted function to block all cross-origin accesses, except for the blessed postMessage

channel.
The NSIContentPolicy interface is a standard Firefox API used to monitor network

requests. Popular security and privacy extensions, such as NoScript, AdBlock, and
RequestPolicy, rely on this API, as do security features such as CSP and mixed content
blocking. We register a listener to forward requests for monitored DCS children to the
parent’s security monitor function. We do not implement a new mediation infrastructure—
any bypass of our mediation infrastructure would also be a critical vulnerability in the
Firefox browser, allowing bypass of all the features and extensions discussed above.

Applications can mark an iframe as a DCS using the dcfsandbox attribute, similar to
the iframe sandbox attribute. An iframe that has this attribute only supports a data:

or blob: URIs for its src attribute. Such a DCS iframe implements all the restrictions
that a sandboxed iframe supports, but provides a complete mediation interface to the
parent as described above.

To measure the overhead of calling the parent’s monitor code, we measured the increase
in latency caused by a simple monitor that allows all requests. We measured the time
required for script loads from a web server running on the local machine and found that
the load time increased from 16.73ms to 16.74ms. This increase is statistically insignificant,
and pales in comparison to the typical latencies of 100ms observed on the web.

Due to the semantics of network requests in HTML5, the monitor function runs
synchronously: a long running monitor function could freeze the child. The ability to cause
stability problems via long running synchronous tasks is already a problem in browsers
and is not an artifact stemming from our design.

4.6 Case Studies

We retrofit our application architecture to four web applications to demonstrate the
practicality of our approach. All our case studies, like our browser modifications, are
open-source and freely available [117].

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 69

• As an example of a password manager, we retrofit the Clipperz password management
web application [37]. Similar to LastPass, sensitive user data is stored encrypted in
the cloud and decrypted based on the user password.

• As an example of an SSO service, we modified the BrowserID implementation to
use our architecture. BrowserID is Mozilla’ implementation of the verified email
protocol for single sign-on, and is used by Mozilla services like Bugzilla, MDN, and
a number of other third-party sites [24]. Users can also download and run a local
instance of BrowserID.

• We also demonstrate the practicality of our approach on the OpenEMR electronic
medical record system. OpenEMR is a popular open-source electronic medical
record management software [108]. A number of federal and state laws have strict
requirements for medical data confinement and patient privacy: we demonstrate how
our architecture can enforce useful policies in the OpenEMR client-side application.

• As an example of a database administration interface, we modify the SQL Buddy
web application to ensure data-confinement invariants for the (possibly sensitive)
database. Our redesign allows us to give strong confidentiality guarantees for the
SQL Buddy interface.

• Finally, we demonstrate the wide-spread need for data confinement by studying the
twenty most popular Chrome extensions, and identifying their data-confinement
requirements. We find that 16 of the extensions we studied maintain a data-
confinement invariant.

Table 4.2 lists our case studies and summarizes our results. We find that our redesigns
are minimally intrusive (fewer than 184 lines changed in each of our case studies) and
achieve significant TCB reduction. We evaluate our design on these case studies by
measuring (a) the TCB reduction, (b) the lines of code changed to implement our redesign,
and (c) the invariants we are able to enforce on the redesigned applications.

Clipperz

Clipperz is an open-source HTML5 password manager that allows a user to store a
variety of sensitive data, such as website logins, bank account credentials, and credit card
information [37]. Sensitive data is stored encrypted in the cloud and is decrypted at the
client side with the user provided password. Users access their data in a single ‘vault’
page. Users can also click on ‘direct login’ links that load a site’s login page, fill in the
user name/password, and submit the login form.

The application relies on open-source components including the MochiKit library [102]
and the YUI library [141]. In sum, Clipperz consists of 1.4MB of JavaScript code, all of
which runs in a single security principal, with access to all sensitive data. The Clipperz

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 70

Table 4.2: List of our case studies, as well as the individual components and policies in
our redesign.

Application Initial
TCB

New
TCB

Lines
Changed

Component Confinement Policy Other Policies

Clipperz 1.4MB 6.3KB 67
Vault UI Only to Clipperz

server & Direct
Login Child

None

Direct Login Open arbitrary web-
sites

CSP Policy dis-
abling dynamic
code

BrowserID 206.9KB 5.7KB 184
Management Only to BrowserID

server
None

Dialog Only to BrowserID
server, secure pass-
word input

API requests must
match state ma-
chine

OpenEMR 149.1KB 6.1KB 51 Patient Infor-
mation

Whitelist of neces-
sary request signa-
tures

None

SQL Buddy 100KB 2.97KB 11 Admin UI Only to MySQL
server

User confirmation
for database writes

application uses inline scripts and data: URIs extensively. We found that enforcing strong
CSP restrictions to protect against XSS breaks several subcomponents of the Clipperz
application.

Privilege Separation We modified Clipperz to execute its application code in an
unprivileged DCS. We reused existing shim code (Chapter 3) to achieve seamless privilege
separation. The one key change was to proxy handling links (such as Clipperz help page)
and ‘direct logins,’ to the parent, since our design does not grant a DCS the privilege to
open pop-up windows. Privilege separating the Clipperz application required changing
67 lines of code. Note that privilege separation in and of itself does not ensure data
confinement: if an attacker compromises the code in the child, it can send data to an
attacker website, for example, by loading an image.

Two application specific changes were necessary. The first change was in the imple-
mentation of the direct login feature. Originally, the feature relies on the MochiKit API
to manipulate the DOM of a separate window, which is disallowed from within the DCS.
In our redesign, we replace the MochiKit usage within the direct login implementation
with standard JavaScript window and DOM manipulation. These privileged calls can
be proxied to the parent through the child shim. The other change was in anchor tag
links. The application’s JavaScript code generates a number of anchor elements, typically
in association with a stored form or login information. Navigation via the link is also
disallowed within a DCS. To allow navigation, the ”onClick” anchor tag flag are set upon
element creation to a function that postMessages the parent requesting the link be open.

The changes were minor, with 20 lines of Javascript code changed and 9 hard-coded
HTML anchor tags manually modified to include the ”onClick” flag. We manually tested

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 71

the application functionality thoroughly and did not observe any incompatibilities.

Data-Confinement Invariants Our privilege-separated design executes the Clipperz
application code in a data-confined child, which allows the parent to enforce a confinement
policy. One implemented policy was simple, like the security monitor in Listing 4.1, which
allows the DCS child access only to postMessage and a whitelist of images and JavaScript
libraries. The flexibility of our primitive also allows for powerful, stateful policies. In this
case, our more expressive monitor function allows the Clipperz application to make network
requests only until it downloads the password database; once the DCS child downloads
the password database, the monitor function disallows further network access.3 Relying on
a whitelist of network resources means that we can protect against inadvertent disclosure
of the user entered master password via a developer mistake or scriptless injection attacks.
On the current HTML5 platform (without DCS) this requires an auditor or the security
engineer to trust a much larger TCB.

Although our redesign makes data theft significantly harder, a compromised instance
of Clipperz still has one (self) exfiltration channel. Clipperz’s ‘direct login’ functionality
navigates to a saved webpage and auto-fills the login credentials. A malicious script,
executing in the compromised DCS, can request the parent to ‘direct login’ to an attacker
controlled webpage, and provide the username and password for (say) facebook.com. This
would allow the attacker controlled webpage to learn the user credentials for facebook.com.

In our redesign, we mitigate the above attack by creating two children: the UI
component and the non-UI component. The UI component does not have direct access to
the ‘direct login’ feature. Instead, a direct login requires sending a message to the non-UI
component. The new component retrieves the associated credentials and completes the
direct login process. In contrast to the vault page, this component does not need complex
UI code and other supporting JavaScript libraries. In our implementation, this component
executes with a strong CSP, providing higher assurance.

The DCS approach affords us the flexibility of enforcing a different policy on each
child. The security monitor allows images and scripts to be loaded in the UI component
from a set of whitelisted URLs. The direct login component has no UI and the security
monitor disallows image loads in that component. Both components are always allowed
access to the parent via postMessage. Again, the policy is temporal in nature, where
upon database access, the security monitor blocks all communication in both components
except to the parent.

Monitor Code We use the code in Listing 4.1 for the security reference monitor.
Separate confidentiality policies can be enforced on each child component. The UI
component, identified by the iframe id mainframe, allows images to be loaded from a set of
whitelisted image URLs. The secondary component, identified by iframe id secondframe,
has no UI and needs no image loads. Both components are always allowed access to

3Except for navigation to pages like the help page.

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 72

� �
var doneLoading_mainframe=false;

var doneLoading_secondframe = false;

function monitor(params){

var url = params.url;

if(params.id==="mainframe"){

// Policy for UI child

if(url === base_uri){

return true;

}else if(params.type=="IMAGE"){

return check_img_whitelist(url);

}else if(params.type=="SCRIPT"){

if(! doneLoading_mainframe &&

url === base_uri+"/shim1.js"){

doneLoading_mainframe=true;

return true;

}else if(! doneLoading_mainframe){

return check_script_whitelist(url);

}

}

}else if(params.id=="secondframe"){

// Policy for non -UI child

if(url === base_uri){

return true;

}else if(params.type=="SCRIPT"){

if(! doneLoading_secondframe &&

url === base_uri+"/shim2.js"){

doneLoading_secondframe=true;

return true;

}else if(! doneLoading_secondframe){

return check_script_whitelist(url);

}

}

}

return false;

}� �
Listing 4.1: Monitor code for Clipperz, where base-uri, is the installation directory

the parent pointed to by base_uri. The monitor can also enforce a temporal policy on
each component. The application initially loads several Javascript libraries from a set
of whitelisted script URLs. In our implementation, the final script loaded is the shim
code, and marks the end of the application startup. Post-startup, the monitor blocks all
communication except to the parent (and images for mainframe).

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 73

BrowserID

BrowserID is a new authentication service by Mozilla. Similar to other single sign-on
mechanisms like Facebook Connect and OpenID, BrowserID enables websites (termed
Relying Parties) to authenticate a user using the BrowserID centralized service. Users
create a single username/password to log in to the trusted BrowserID service and can
register any number of email addresses as identities. Other single sign-on mechanisms
share similar designs, and our results are more generally applicable to other single sign-on
systems.

The implementation has the following components, typically hosted on the https:

//login.persona.org origin:

• A dialog window that is opened by the Relying Party when the user chooses to login
using BrowserID. This window prompts asking the user to sign in using pre-registered
email ids. We call this the dialog page.

• Other pages that contain public information materials and account management
options for the authenticated user. We call these pages the management component.

When a user uses Persona to sign in to a website, the Relying Party’s code requests
an assertion from the navigator.id object. The Persona script on the Relying Party’s
page handles this request by opening the dialog and sending it some of the request’s
parameters via postMessage. The dialog presents an interaction flow where the user
authenticates herself to the Persona service (if not already authenticated; an authenticated
session persists with a cookie) and picks an email address to identify as. The dialog uses
XMLHttpRequest to send authentication credentials to the Persona server and to receive
the assertion therefrom. Finally, the dialog uses postMessage to return the assertion to
the Persona script in the Relying Party’s document, which returns it to the Relying Party’s
code.

The production BrowserID front end includes 101.1KB and 105.8KB of JavaScript
code in the management and dialog components respectively. The actual TCB is larger,
since BrowserID uses the EJS templating system [84]. Similar to a number of modern
JavaScript templating languages [1], EJS loads template files from the server and converts
them to code at runtime using eval. Incidentally, all modern templating languages rely
on eval (in particular, the function constructor), which limits the applicability of CSP
and static analysis techniques.

Privilege Separation We moved all the application code to an unprivileged DCS.
Minor changes were required for compatibility. In particular, we modified code that
reads the window location, and added a base tag to ensure that links navigate the parent
window. The EJS library uses synchronous XMLHttpRequests to download the templates.
Since the same-origin policy restricts XMLHttpRequests to the same origin, the shim code
proxies requests in the parent via the asynchronous postMessage channel. We modified

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 74

the EJS templating code to download the templates asynchronously. The authentication
component uses postMessage to communicate with the Relying Party: shim code enforces
parent mediation on this exchange. In total, 184 lines of code were modified.

Data-Confinement Invariants Executing in a data-confined sandbox, we are able to
provide two key guarantees as part of our implementation:

• The login and credential managers (management component) do not communicate
with any servers other than the BrowserID servers. This allows us to protect against
inadvertent disclosure of the main BrowserID username/password via developer
mistake or scriptless HTML injection attacks.

• In one instance of the BrowserID protocol, only 3 specific web principals interact.
Our design guarantees sensitive tokens are never leaked to parties outside these
three participants. In particular, the parent ensures that the child executes the
whole protocol with the same principal and same Relying Party window. In the past,
single sign-on mechanisms have had implementation bugs that allowed a MITM of
an authentication flow [129, 137]; our design prevents such bugs.

For further hardening, we modified the dialog’s login process to move the password
entry to the trusted parent. The parent prompts the user for her password and sends it to
the server. This way, a compromised dialog will never see the user’s password. We also
implemented a state machine in the security monitor policy based on the intended dialog
behavior. In particular, this state machine ensures that the dialog component performs a
series of requests consistent with transitions possible in the state machine. This prevents
a compromised dialog from making arbitrary requests in the user’s session.

OpenEMR

OpenEMR is the most popular open-source electronic medical record system [120]. With
support for a variety of records like patients, billing, prescriptions, medical reports
amongst others, OpenEMR is a comprehensive and complex web application. Patient
records, prescriptions and medical reports are highly sensitive data, with most jurisdictions
having laws regulating their access and distribution, possibly with penalties for inadvertent
disclosure.

We focus on the patient information component of the OpenEMR application. Open-
EMR accesses the patient details by setting a session variable, namely the patient id. Once
the patient id is set, all future requests, such as ‘demographic data,’ ‘notes,’ and so on,
are returned for the particular patient. If the user wants to navigate to another patient,
the user has to use the search interface to reset the patient id.

The OpenEMR design is vulnerable to a self-exfiltration attack [31]. Setting the patient
id for a particular session just requires a GET request with a set_pid parameter. An
attacker, Mallory, can do this via a simple (scriptless) HTML injection (e.g., an img or

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 75

link tag). Mallory can time this injection at the right time (e.g., right before a doctor or
nurse adds information about Alice’s personal data). As a result of this injected request,
the nurse or doctor would end up inserting all of Alice’s information to Mallory’s file, which
Mallory can later read. This is an example of a self-exfiltration attack that coarse-grained
policies such as CSP cannot prevent, since the injected request still points to the OpenEMR
domain. As we demonstrate below, the fine-grained monitor approach we adopt mitigates
this attack.

Privilege Separation We focus on demographics.php which presents patient data. It
loads with a set_pid parameter in the URL and the server sets the patient id accordingly.
Scripts on the page then use XMLHttpRequest to download patient details, such as history
and notes. We modified this page to serve its content as plain text, and a loader page
requests the code and runs it in a DCS. The loader page proxies the XMLHttpRequest and
cross-frame procedure calls through the parent using postMessage.

Data-Confinement Invariants By running the page in a DCS, we can provide a strong
confidentiality guarantee for the sensitive medical data; namely, the page can make no
network requests to origins other than the OpenEMR origin. This same restriction can
ensure that all network requests are only over HTTPS (since protocol is part of the origin).
Currently, no primitives are available in HTML5 to enable this invariant.4

First, the DCS verifiably ensures that sensitive medical data does not inadvertently
leak to untrusted principals (modulo covert channels). The DCS can also prevent the
page from making arbitrary calls to the large, feature-rich application. In our case, we
programmed the security monitor to allow only a short whitelist of (method, URL) pairs
necessary for the page to function. For example, the monitor denies any request with a
set_pid parameter. This protects against the content injection attack discussed above.
This would not be possible with an origin-based whitelist.

SQL Buddy

SQL Buddy is an open-source web-based application to handle the administration of
MySQL databases. Written in PHP, it allows browsing of possibly sensitive data stored
in a MySQL DBMS and supports standard database operations, including SQL queries
and the creation, modification, and deletion of databases, tables, fields, and rows. It also
allows for management of MySQL users.

Privilege Separation We re-architected SQL Buddy to execute all code in a DCS. We
re-used most of the privilege separation code from Chapter 3, only adding a monitor function
in the parent. The key change was in the script that logged a user into MySQL. The

4HSTS can ensure that requests to OpenEMR server are always over SSL, but it is still possible for
the page to include a cross-origin image over HTTP.

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 76

original implementation returned a new login page upon a failed login attempt, an action
disallowed within a DCS. In our redesign, we return an error code over XMLHttpRequest.
The client-side code utilizes this code to display the new login page. This modification
required changes to only 11 lines of code. The SQL Buddy code does not use any of the
client-side communication channels we blocked in a DCS: as a result, modifying it to run
in a DCS is essentially the same as privilege separating it.

Data-Confinement Invariants By executing the SQL Buddy application code in a
DCS, the parent can enforce strong confidentiality policies. The application runs in two
logical stages; the flexibility of the DCS monitor allows us to enforce a policy for each
stage.

• Initially, the monitor function restricts communication to only SQL Buddy resources.
The monitor allows the application to load a number of whitelisted JavaScript
libraries and stylesheets.

• After loading the code and stylesheets, the application no longer requires network
access except for loading SQL Buddy resource images and making XMLHttpRequests

to SQL Buddy PHP code, which are proxied at the parent via postMessage. Our
monitor code now locks down communication to these two channels.

Our monitoring function restricts all explicit communication channels: if the SQL
Buddy code gets compromised, it still cannot send data to arbitrary servers. Separating
out a small, trusted parent allows us to enforce finer grained policies. For example, our
implementation also limits writes to the database. Any writes to the database require
the user to explicitly confirm the write with a simple confirmation prompt created by the
parent. Compromised code can not modify the database in the background; the user needs
to confirm that she wants to modify the database.

Monitor Code We use the code in Listing 4.2 for the security reference monitor.

Chrome Extensions

To demonstrate the prevalence of data-confinement needs, we also studied the top twenty
most popular extensions for the Google Chrome platform and identified their data con-
finement invariants. Table 4.3 presents the results. Our analysis indicates that data
confinement is a widely prevalent requirement; with 16 of the twenty extensions we studied
maintaining an invariant implicitly. The trusted code base for the extensions varies from
7.5KB to 1.24MB. Sensitive data available to the extensions vary from access to the
user’s browsing history to the user’s social media login credentials. The remaining four
extensions without an invariant, such as custom-styling extension Stylish [128], dealt with
the UI appearance of websites, and did not access sensitive data and made no network

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 77

� �
var doneInit=false;

function monitor(params){

var url = params.url;

if(! doneInit){

switch(params.type){

case "SCRIPT":

return check_script_whitelist(url);

case "STYLESHEET":

return check_css_whitelist(url);

case "IMAGE":

doneInit=true;

return check_img_whitelist(url);

}

}else{

if(params.type ==="IMAGE"){

return check_img_whitelist(url);

}

}

return false;

}� �
Listing 4.2: Monitor code for SQL Buddy, where base-uri, is the installation directory

communications. We conservatively label these as not having data-confinement invari-
ants, although they do have the permission to access sensitive data and a compromised
application could rely on this access to steal sensitive user data.

4.7 Summary of Results

Modern HTML5 applications handle increasingly sensitive personal data, and require
strong data-confinement guarantees. However, current approaches to ensure confinement
are ad-hoc and do not provide high assurance. We presented a new design for achieving
data-confinement that guarantees complete mediation with a small TCB. Our design is
practical, has negligible performance overhead, and does not require intrusive changes
to the HTML5 platform. We empirically show that our new design can enable data-
confinement in a number of applications handling sensitive data and achieve a drastic
reduction in TCB. Future work includes investigating and mitigating covert channels.

CHAPTER 4. DATA-CONFINED HTML5 APPLICATIONS 78

Table 4.3: Confidentiality Invariants in the Top 20 Google Chrome Extensions

Extension Name Brief Description Confidentiality Invariants (if any) # Users Code Size

Adblock Blocks ads on websites None 8,125,379 335.0KB
Adblock Plus Blocks ads on websites None 4,423,859 350.1KB
Google Mail
Checker

Signals new emails and dis-
plays number of unread
emails

No personal Gmail data, such as
login credential and email content,
should be leaked

3,174,574 7.5KB

Evernote Web
Clipper

Uploads web content to
user’s Evernote account

Uploaded content should only be
sent to Evernote. User data, such
as login credentials, should remain
confidential

2,031,257 1242.2KB

Facebook Photo
Zoom

Magnifies Facebook photos
when mouse hovers over

No personal Facebook data should
leak, including pictures viewed

1,972,261 42.9KB

Turn Off the
Light

Dims page except for videos None 1,915,080 168.2KB

Google Translate Translates entire pages Page text only sent to Google 1,749,503 211.9KB
Google Chrome
to Phone

Pushes links, maps, and
phone numbers to Android
device

Content should only be transmit-
ted to Android device, and device
information should remain confi-
dential

1,504,709 104.8KB

Stylish Applies custom styles to
sites

None 1,360,817 41.6KB

Google Dictio-
nary

Provides definitions/transla-
tions of selected text and
popup with Google search

Selected text should only be sent
to Google. No party should learn
location where word was found

1,285,849 57.3KB

TweetDeck Tracks user’s Face-
book/Twitter, providing
real-time updates

Personal Faceboook/Twitter data
should not be leaked, including lo-
gin credentials and updates

1,252,169 621.8KB

Screen Capture Capture and edit screen-
shots of web pages. Allows
sharing to social media.

Images should remain local or be
sent only to designated social me-
dia sites. No personal social me-
dia data, including login creden-
tials, should be leaked.

1,109,465 197.9KB

Fastest Chrome Auto-loads next pages, pro-
vides quick search of high-
lighted text, and displays
popularity of links on social
media

Personal social media data should
not be leaked. Search queries and
highlighted text should only be
sent to designated sites.

1,043,820 328.0KB

Add to Amazon
Wish List

Add products seen on web-
sites to user’s Amazon Wish
List

Personal Amazon information, in-
cluding account credentials, should
not be leaked. Product data
should only be sent to Amazon.

1,037,475 54.3KB

Awesome Screen-
shot

Capture, edit, and share
screenshots of web pages.

Images should only be sent to Awe-
some Screenshot servers

1,007,922 492.0KB

Shopping Assis-
tant

Shows similar products from
Amazon/eBay when search-
ing retailer websites

Searched product information
should only be sent to designated
shopping sites

957,562 409.5KB

Facebook Notifi-
cations

Signals new Facebook notifi-
cations

Personal Facebook data should not
be leaked, such as login credentials
and notification details

929,612 14.5KB

Speed Dial Fills new tab page with user-
chosen bookmark icons

User bookmarks and history
should remain confidential.

816,907 219.3KB

Webpage Screen-
shot

Capture and edit screen-
shots of web pages. No im-
age uploads.

Images should remain local 789,482 209.9KB

AddThis Allows sharing of web con-
tent to social media

Shared content should only be sent
to appropriate social media site.

783,685 740.7KB

79

Chapter 5

Related Work

A large body of work shares our goal of securing the client-side HTML5 platform. In
this chapter, we discuss previous related work. We also discuss concurrent and follow-on
research and industry standards published after our research.

5.1 Formal Verification of Security Protocols

There is a large body of work on formally verifying security properties of network protocols,
including model checking using a variety of tools [100, 101, 119, 126], constraint-based
methods [99], and formal and automated proof methods [19, 27, 40, 41], but we are not
aware of any previous work formalizing web protocols. Barth et al. hint at formal analysis
by showing the existence of a frame communication bug that is apparent as soon as
the protocol is written down formally [18]. There has also been some work on formal
verification of web service security [21, 64]. A number of the notions we formalize have been
used informally in the past. For example, MashupOS [135] contemplates web attacker-like
threats and the gadget attacker makes an explicit appearance in [95]. The designers of
the OP browser [65] use formal methods to verify some security properties of their design
(whether or not the security indicators behave as expected). Formal methods have also been
used to verify code-level properties of the status bar in Internet Explorer [97]. The most
closely related work [85] uses Alloy to verify the security properties of a particular cross-site
scripting defense (which we analyze further). However, none of these works attempt to
formulate a general model of web security applicable beyond a single mechanism.

Following our work, Bohanon and Pierce formalize the core security policies of the
Firefox browser [23]. While our work focuses on web protocol formalization, Bohanon
and Pierce focus on the browser: their work has a richer model of the browser but is
less applicable for reasoning about web protocols. Bansal et al. share our goals of formal
analysis of web protocols and present WebSPI, a variant of the SPI calculus to analyze
web protocols [8]. Lerner et al. formalize a subset of the DOM and the DOM event
mechanism [91]. Fett et al. present a far more comprehensive model of the web security

CHAPTER 5. RELATED WORK 80

platform and analyze the BrowserID SSO service [52]. Their work finds a number of critical
security flaws in the BrowserID SSO system, some of which our formalism cannot express.
Unfortunately, in its current form, the model cannot be automatically analyzed.

We open-sourced our Alloy code and a number of researchers extended our model to
analyze existing or proposed protocols. Chen et al. extend our model to verify the security
of a new multiple cookie-store mechanism in Google Chrome [32]. Similarly, Ryck et al.
extend our model to verify a anti-CSRF proposal [42]. Cao et al. extend our model to
analyze a new configurable origins proposal for the web [29]. Telikicherla et al. extend our
model to analyze their proposed cross-origin request protocol [132].

5.2 Privilege Separation for Web Applications

The concept of privilege separation was first formalized by Saltzer and Schroeder [121].
Several proposed and deployed systems have used privilege separation for increased security.
Below, we discuss the most closely related works.

Privilege Separation in Commodity OS Platforms. Notable examples of user-
level applications utilizing privilege separation include QMail [20], OpenSSH [114] and
Google Chrome [10]. Brumley and Song investigated automatic privilege separation of
programmer annotated C programs and implemented data separation as well [25]. More
recently, architectures like Wedge [22] identified subtleties in privilege separating binary
applications and enforcing a default-deny model. Our work shows how to achieve privilege
separation in emerging HTML5 applications, which are fuelling a convergence between
commodity OS applications and web applications, without requiring any changes to the
browser platform.

Re-architecting Browser Platforms. Several previous works on compartmentalizing
web applications have suggested re-structuring the browser or the underlying execution
platform altogether. Some examples include the Google Chrome extension platform [15],
Escudo [82], MashupOS [135], Gazelle [136], OP [65], IPC Inspection [50], and CLAMP [109].
Our work advocates that we can achieve strong privilege separation using abstractions
provided by modern browsers. This obviates the need for further changes to underlying
platforms. We point out that temporary origins is similar to MashupOS’s “null-principal
SERVICEINSTANCE” proposal; therefore, the alternative line of research into new browser
primitives has indeed been fruitful. Our work demonstrates how we can utilize these
advancements by combining deployed primitives (like temporary origins and CSP [127])
to achieve effective privilege separation, without requiring any further changes to the
platform.

Carlini et al. [30] study the effectiveness of privilege separation in the Chrome extension
architecture and find that in 4 (19) out of 61 cases, insufficient validation of messages
exchanged over the privilege boundary allowed for full (partial) privilege escalation. In our

CHAPTER 5. RELATED WORK 81

design, we explicitly prohibit the parent from using incoming messages in a way that can
lead to code execution. Furthermore, Chrome extensions today tend to have an inflated
TCB in the privileged component as we show in Section 3.5. This is in contrast to our
proposed design.

Mashup & Advertisement Isolation. The problem of isolating code in web appli-
cations, especially in mashups [9, 135] and malicious advertisements [92], has received
much attention in research. Our work has similarities with these works in that it uses
isolation primitives like iframes. However, one key difference is that we advocate the use
of temporary origins, which are now available in most browsers, as a basis for creating
arbitrary number of components.

In concurrent work, Treehouse [75] provides similar properties, but relies on isolated
web workers with a virtual DOM implementation for backwards compatibility. A virtual
DOM allows Treehouse to interpose on all DOM events, providing stronger security and
resource isolation properties, but at a higher performance cost.

Language-based Isolation of web applications. Recent work has focused on language-
based analysis of web application code, especially JavaScript, for confinement. IBEX
proposed writing extensions in a high-level language (FINE) that can later be analyzed
to conform to specific policies [67]. In contrast, our work does not require developers to
learn new language, and thus maintains compatibility with existing code. Systems like
IBEX are orthogonal to our approach and can be supported on top of our architecture;
if necessary, the parent’s policy component can be written in a high-level language and
subject to automated analysis.

Heavyweight language-based analyses and rewriting systems have been used for isolating
untrusted code, such as advertisements [38, 55, 94]. Our approach instead relies on a
lighter weight mechanism based on built-in browser primitives like iframes and temporary
origins.

Weinberger, a Google Chrome engineer, extends our idea as the sub-origin proposal
for Content Security Policy [138, 139], including an initial implementation for Google
Chrome. A key addition in the sub-origin proposal is the ability to name unprivileged
principals and serialize these named, unprivileged principals into origin strings. In our
privilege separated design, code running unprivileged gets a fresh, unpredictable origin.
This makes it harder to communicate with the unprivileged principal via postMessage

and XMLHttpRequest (via CORS [87]). Instead, in the sub-origin proposal unprivileged
principals get predictable, server-provided labels. For example, Google security engineers
could label a F.A.Q. page in https://mail.google.com as ‘faq.’ In addition to drop-
ping privileges, the F.A.Q. page would also get a new, predictable origin (serialized as
suborigin://faq@https://mail.google.com), which can be used for communication
over postMessage and XMLHttpRequest.

CHAPTER 5. RELATED WORK 82

5.3 Data-confined HTML5 Applications

Data confinement has been investigated in native binary applications as well [88], but we
focus our discussion on web applications. A number of previous works share our goals of
improving assurance in web applications. We gave a detailed comparison to closely related
works in Section 4.3, but discuss a few other works here.

Zalewski [142] and Heidrich et al. [71] point at a number of attacks that violate
data-confinement invariants in web applications even in the absence of code injection.
Zalewski’s attacks involve subverting the application HTML logic to cause requests
(containing capability tokens) to the attacker’s website. Zalewski demonstrates multiple
techniques such as injecting base tags, rerouting form action targets, and accessing cross-
origin pointers such as window.name. Executing the application in a DCS would mitigate
these attacks since the DCS whitelist will not allow requests to an attacker website and
would block attacker access to cross-origin pointers in the DCS. Zalewski also points
out self-exfiltration attacks (see below) and attacks that rely on subverting the logic of
client-side browser extensions; the DCS design do not protect against these attacks.

Heidrich et al. demonstrate content-exfiltration attacks via side-channels, a class of
attacks that we do not protect against. The DCS design still provides some mitigation
against these attacks, since the attacks rely on loading attacker controlled fonts that
the DCS parent can block. Finally, both Zalewski and Heidrich present attacks that
rely on tricking the user to drag-and-drop secret values across origins. While we do not
protect against these attacks, the DCS design increases the difficulty of executing such
UI-based attacks. First, the parent monitor can disallow loads of untrusted fonts and other
sub-resources in the DCS. Loading attacker controlled fonts and images (via scriptless
HTML injection) in the vulnerable application is typically a key component of UI-level
attacks since these attacks require confusing the user. Second, the DCS design, with its
low TCB parent, prevent the attacker from getting a pointer to the main application frame
or even disable embedding the application by untrusted websites.

Chen et al. argue that protecting against web information flow based on destination
servers is insufficient [31]. Whitelisted servers might have a database accessible to the
attacker. For example, restricting dataflow to Facebook servers is insufficient since the
attacker could have a Facebook account. Such self-exfiltration attacks are a result of
the coarse-grained nature of previous confinement primitives. As we discussed in our
OpenEMR case study, our monitor based design is fine-grained and provides stronger
protection against self exfiltration attacks. Depending on the particular application, a self
exfiltration attack might still be possible, but we do not investigate further protections.

Popa et al. present Mylar, an extension of the Meteor JavaScript framework for building
applications that encrypt all their data sent to the server [112]. Developers need to write
their applications in Meteor (affecting backwards compatibility) and tell Mylar what
data needs encryption. Similar to our discussion on LastPass, the enforcement of this
data-confinement invariant is ad-hoc and a data-confined sandbox could ease reasoning
about Mylar’s security properties.

83

Chapter 6

Conclusion

The HTML5 application platform is by far the most popular and widely available ap-
plication platform today. Modern HTML5 applications can run privileged with access
to sensitive data in the cloud or privileged sensors (or any other data source) on novel
devices. It is critical that these complex, privileged applications are amenable to audit
and analysis. In this thesis, we presented our work on improving the current state of the
art by formalizing our understanding and analysis of the web attacker threat model and
by developing novel architectures for web application to reduce their trusted computing
base and limit data flow.

Impact In collaboration with Google security engineers, we are currently working on
standardizing the basic ideas of privilege separation into a robust “sub-origin” primitive
for HTML5 applications as part of the Content Security Policy header. We have already
had preliminary discussions towards standardization at the W3C Web Application Security
Working Group and an initial implementation in Google Chrome (by a Google Chrome
Engineer) is already available.

84

Bibliography

[1] Issue-107538: Comment 35. http://crbug.com/107538.

[2] ACE - Ajax.org Cloud9 Editor. http://ace.ajax.org/.

[3] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens.
“JSand: Complete Client-side Sandboxing of Third-Party Javascript without Browser
Modifications”. In: ACSAC (2012).

[4] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song.
Web Security Model Implementation. 2010. url: http://code.google.com/p/
websecmodel.

[5] Apple Inc. Remote Scripting with IFRAME. 2010. url: http://developer.apple.
com/internet/webcontent/iframe.html.

[6] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill, and David Lie.
“Short paper: a look at smartphone permission models”. In: Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices. SPSM
’11. Chicago, Illinois, USA: ACM, 2011, pp. 63–68. isbn: 978-1-4503-1000-0. doi:
http://doi.acm.org/10.1145/2046614.2046626. url: http://doi.acm.org/
10.1145/2046614.2046626.

[7] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and Marianne Winslett. VEX:
Vetting Browser Extensions For Security Vulnerabilities. 2010.

[8] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. “Discovering con-
crete attacks on website authorization by formal analysis”. In: Computer Security
Foundations Symposium (CSF), 2012 IEEE 25th. IEEE. 2012, pp. 247–262.

[9] A. Barth, C. Jackson, and W. Li. “Attacks on javascript mashup communication”.
In: Proceedings of the Web. Vol. 2. Citeseer. 2009.

[10] A. Barth, C. Jackson, C. Reis, and TGC Team. The security architecture of the
Chromium browser. 2008.

[11] Adam Barth. <form method=”DELETE”> and 307 redirects. 2009. url: http:
//www.mail-archive.com/whatwg@lists.whatwg.org/msg19379.html.

[12] Adam Barth. The Web Origin Concept. http://tools.ietf.org/html/rfc6454.

BIBLIOGRAPHY 85

[13] Adam Barth. “Timing Attacks on CSS Shaders”. http://www.schemehostport.
com/2011/12/timing-attacks-on-css-shaders.html. 2011.

[14] Adam Barth, Juan Caballero, and Dawn Song. “Secure Content Sniffing for Web
Browsers or How to Stop Papers from Reviewing Themselves”. In: Proceedings of
the 30th IEEE Symposium on Security and Privacy. Oakland, CA, May 2009.

[15] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. Protecting
Browsers from Extension Vulnerabilities. 2009.

[16] Adam Barth, Collin Jackson, and Ian Hickson. The HTTP Origin Header. 2009.
url: http://tools.ietf.org/html/draft-abarth-origin.

[17] Adam Barth, Collin Jackson, and John C. Mitchell. “Robust Defenses for Cross-Site
Request Forgery”. In: CCS. 2008.

[18] Adam Barth, Collin Jackson, and John C. Mitchell. “Securing Frame Commu-
nication in Browsers”. In: Proceedings of the 17th USENIX Security Symposium
(USENIX Security 2008). 2008.

[19] Giampaolo Bella and Lawrence C. Paulson. “Kerberos Version IV: Inductive Anal-
ysis of the Secrecy Goals”. In: Proceedings of the 5th European Symposium on
Research in Computer Security. Ed. by J.-J. Quisquater. Springer-Verlag LNCS
1485, 1998, pp. 361–375.

[20] Daniel J. Bernstein. “Some thoughts on security after ten years of qmail 1.0”.
In: Proceedings of the 2007 ACM workshop on Computer security architecture.
CSAW ’07. Fairfax, Virginia, USA: ACM, 2007, pp. 1–10. isbn: 978-1-59593-
890-9. doi: http://doi.acm.org/10.1145/1314466.1314467. url: http:

//doi.acm.org/10.1145/1314466.1314467.

[21] K. Bhargavan, C. Fournet, and A.D. Gordon. “Verified reference implementations
of WS-Security protocols”. In: Lecture Notes in Computer Science 4184 (2006),
p. 88.

[22] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. “Wedge: Splitting
Applications into Reduced-Privilege Compartments”. In: NSDI (2008).

[23] Aaron Bohannon and Benjamin C Pierce. “Featherweight Firefox: Formalizing the
core of a web browser”. In: Proceedings of the 2010 USENIX conference on Web
application development. USENIX Association. 2010, pp. 11–11.

[24] BrowserID Users. https://wiki.mozilla.org/Identity/BrowserID/InTheWild.

[25] David Brumley and Dawn Song. “Privtrans: Automatically Partitioning Programs
for Privilege Separation”. In: USENIX Security (2004).

[26] Mozilla Bugzilla. Implement CSP sandbox directive. https://bugzilla.mozilla.
org/show_bug.cgi?id=671389.

[27] M. Burrows, M. Abadi, and R. Needham. “A logic of authentication”. In: ACM
Transactions on Computer Systems 8.1 (1990), pp. 18–36.

BIBLIOGRAPHY 86

[28] Serdar Cabuk, Carla E. Brodley, and Clay Shields. “IP covert timing channels:
design and detection”. In: CCS (2004).

[29] Yinzhi Cao, Vaibhav Rastogi, Zhichun Li, Yan Chen, and Alexander Moshchuk.
“Redefining web browser principals with a configurable origin policy”. In: Depend-
able Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International
Conference on. IEEE. 2013, pp. 1–12.

[30] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. “An Evaluation of the
Google Chrome Extension Security Architecture”. In: (2012).

[31] Eric Y Chen, Sergey Gorbaty, Astha Singhal, and Collin Jackson. “Self-exfiltration:
The dangers of browser-enforced information flow control”. In: Web 2.0 Security
and Privacy Workshop.

[32] Eric Yawei Chen, Jason Bau, Charles Reis, Adam Barth, and Collin Jackson. “App
isolation: get the security of multiple browsers with just one”. In: Proceedings of
the 18th ACM conference on Computer and communications security. CCS ’11.
Chicago, Illinois, USA: ACM, 2011, pp. 227–238. isbn: 978-1-4503-0948-6. doi: 10.
1145/2046707.2046734. url: http://doi.acm.org/10.1145/2046707.2046734.

[33] E.Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson. “Self-Exfiltration: The Dangers
of Browser-Enforced Information Flow Control”. In: W2SP (2012).

[34] Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. “Is this app safe?: a large scale
study on application permissions and risk signals”. In: WWW (2012).

[35] Erika Chin and David Wagner. “Bifocals: Analyzing WebView Vulnerabilities in
Android Applications”. In: (2013).

[36] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. “Staged information
flow for JavaScript”. In: PLDI (2009).

[37] Clipperz. http://www.clipperz.com/.

[38] Douglas Crockford. AdSafe. http://www.adsafe.org/.

[39] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006. isbn: 0262101149.

[40] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. “Protocol Com-
position Logic (PCL)”. In: Electronic Notes in Theoretical Computer Science 172
(2007), pp. 311–358.

[41] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and Mathieu
Turuani. “Probabilistic polynomial-time semantics for a protocol security logic.”
In: Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming (ICALP ’05). Lecture Notes in Computer Science. Springer-Verlag,
2005, pp. 16–29.

BIBLIOGRAPHY 87

[42] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. “Automatic
and precise client-side protection against CSRF attacks”. In: Computer Security–
ESORICS 2011. Springer, 2011, pp. 100–116.

[43] Alexis Deveria. Can I use sandbox attribute for iframes. http://caniuse.com/\#
feat=iframe-sandbox. 2013.

[44] R. Dhamija, JD Tygar, and M. Hearst. “Why phishing works”. In: Proceedings
of the SIGCHI conference on Human Factors in computing systems. ACM. 2006,
p. 590.

[45] M. Dhawan and V. Ganapathy. “Analyzing information flow in JavaScript-based
browser extensions”. In: Annual Computer Security Applications Conference. IEEE.
2009, pp. 382–391.

[46] diigo.com. Awesome Screenshot. http://www.awesomescreenshot.com/.

[47] Dropbox Developer Reference. http://www.dropbox.com/developers/reference.

[48] Adrienne Porter Felt, Kate Greenwood, and David Wagner. “The effectiveness of
application permissions”. In: Proceedings of the 2nd USENIX conference on Web
application development. WebApps’11. Portland, OR: USENIX Association, 2011,
pp. 7–7. url: http://dl.acm.org/citation.cfm?id=2002168.2002175.

[49] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. “Android permissions: User attention, comprehension, and
behavior”. In: Proceedings of the Eighth Symposium on Usable Privacy and Security.
ACM. 2012, p. 3.

[50] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika
Chin. “Permission re-delegation: attacks and defenses”. In: Proceedings of the 20th
USENIX conference on Security. SEC’11. San Francisco, CA: USENIX Association,
2011, pp. 22–22. url: http://dl.acm.org/citation.cfm?id=2028067.2028089.

[51] E.W. Felten, D. Balfanz, D. Dean, and D.S. Wallach. “Web spoofing: An internet
con game”. In: Software World 28.2 (1997), pp. 6–8.

[52] Daniel Fett, Ralf Küsters, and Guido Schmitz. “An Expressive Model for the Web
Infrastructure: Definition and Application to the BrowserID SSO System”. In:
CoRR abs/1403.1866 (2014).

[53] Matthew Finifter, Joel Weinberger, and Adam Barth. “Preventing Capability Leaks
in Secure JavaScript Subsets”. In: Proc. of Network and Distributed System Security
Symposium, 2010. 2010.

[54] Garteh Hayes. Hacking caja part 2. www.thespanner.co.uk/2012/09/18/hacking-
caja-part-2/.

[55] Google. Caja. http://developers.google.com/caja/.

[56] Google. Chrome Extensions. https://chrome.google.com/webstore/category/
extensions.

BIBLIOGRAPHY 88

[57] Google. Chrome Web Store. https://chrome.google.com/webstore.

[58] Google. Seccomp Sandbox. http://code.google.com/p/seccompsandbox/.

[59] Google Caja. gel(’foo’).bar fails due to firefox 2.x hasOwnProperty bug. http:
//code.google.com/p/google-caja/issues/detail?id=51.

[60] Google Caja. Negative indices on many Firefox host objects expose static properties.
http://code.google.com/p/google-caja/issues/detail?id=1093.

[61] Google Caja. Static RegExp properties have bizarre mutability properties on Firefox.
http://code.google.com/p/google-caja/issues/detail?id=520.

[62] Google Inc. Google Chrome Extensions: chrome.* APIs. http://code.google.
com/chrome/extensions/api_index.html.

[63] Google Inc. Google Chrome Webstore. https://chrome.google.com/webstore/.

[64] A.D. Gordon and R. Pucella. “Validating a web service security abstraction by
typing”. In: Formal Aspects of Computing 17.3 (2005), pp. 277–318.

[65] Chris Grier, Shuo Tang, and Samuel T. King. “Designing and Implementing the
OP and OP2 Web Browsers”. In: ACM Trans. Web 5 (2 May 2011), 11:1–11:35.
issn: 1559-1131. doi: http://doi.acm.org/10.1145/1961659.1961665. url:
http://doi.acm.org/10.1145/1961659.1961665.

[66] Salvatore Guarnieri and Benjamin Livshits. “Gatekeeper: Mostly Static Enforcement
of Security and Reliability Policies for JavaScript Code”. In: Usenix Security. 2009.

[67] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. “Verified security for browser
extensions”. In: IEEE S&P (2011).

[68] Eran Hammer-Lahav. Acknowledgement Of The Oauth Security Issue. 2009. url:
http://blog.oauth.net/2009/04/22/acknowledgement- of- the- oauth-

security-issue/.

[69] S. Hanna, E.C.R. Shin, D. Akhawe, A. Boehm, P. Saxena, and D. Song. “The
emperor’s new APIs: On the (in) secure usage of new client-side primitives”. In:
W2SP (2010).

[70] Mario Heiderich, Tilman Frosch, and Thorsten Holz. “IceShield: detection and
mitigation of malicious websites with a frozen DOM”. In: RAID (2011).

[71] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.
“Scriptless attacks: stealing the pie without touching the sill”. In: CCS (2012).

[72] Adobe Inc. Cross-domain policy file specification. 2008. url: http://www.adobe.
com/devnet/articles/crossdomain_policy_file_spec.html.

[73] GitHub Inc. Edit like an Ace. https://github.com/blog/905-edit-like-an-
ace.

[74] Microsoft Inc. XDomainRequest Object. 2009. url: http://msdn.microsoft.com/
en-us/library/cc288060%28VS.85%29.aspx.

BIBLIOGRAPHY 89

[75] L. Ingram and M. Walfish. “Treehouse: Javascript sandboxes to help web developers
help themselves”. In: USENIX ATC (2012).

[76] Collin Jackson and Adam Barth. “Beware of Finer-Grained Origins”. In: In Web
2.0 Security and Privacy (W2SP 2008). 2008. url: http://seclab.stanford.
edu/websec/origins/fgo.pdf.

[77] Collin Jackson and Adam Barth. “Forcehttps: protecting high-security web sites
from network attacks”. In: WWW (2008).

[78] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and Dan Boneh.
“Protecting browsers from DNS rebinding attacks”. In: ACM Trans. Web 3.1 (2009),
pp. 1–26. issn: 1559-1131. doi: http://doi.acm.org/10.1145/1462148.1462150.

[79] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. “Protecting
browser state from web privacy attacks”. In: WWW (2006).

[80] D. Jackson. “Alloy: a lightweight object modelling notation”. In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 11.2 (2002), pp. 256–290.

[81] JASIG. CAS Deployment. 2010. url: http://www.jasig.org/cas/deployments.

[82] K. Jayaraman, W. Du, B. Rajagopalan, and S.J. Chapin. “Escudo: A fine-grained
protection model for web browsers”. In: Distributed Computing Systems (ICDCS),
2010 IEEE 30th International Conference on. IEEE. 2010, pp. 231–240.

[83] Peter Josling. dropbox-js: A JavaScript library for the Dropbox API. http://code.
google.com/p/dropbox-js/.

[84] Jupiter-IT. EJS JavaScript Templates. http://embeddedjs.com/.

[85] Florian Kerschbaum. “Simple Cross-Site Attack Prevention”. In: Proceedings of the
Third international workshop on Security and Privacy in Communication networks.
Nice, France, 2007.

[86] Anne van Kesteren. Cross-Origin Resource Sharing (Editors Draft). 2009. url:
http://dev.w3.org/2006/waf/access-control.

[87] Anne van Kesteren (Ed.) Cross-Origin Resource Sharing. http://www.w3.org/TR/
cors/.

[88] Tejas Khatiwala, Raj Swaminathan, and V.N. Venkatakrishnan. “Data Sandboxing:
A Technique for Enforcing Confidentiality Policies”. In: ACSAC (2006).

[89] Tyler Klose. Confused Deputy Attack on CORS. 2009. url: http://lists.w3.
org/Archives/Public/public-webapps/2009AprJun/1324.html.

[90] J.T. Kohl and B.C. Neuman. The Kerberos network authentication service (version
5). IETF RFC 1510. Sept. 1993.

BIBLIOGRAPHY 90

[91] Benjamin S Lerner, Matthew J Carroll, Dan P Kimmel, Hannah Quay-De La
Vallee, and Shriram Krishnamurthi. “Modeling and reasoning about DOM events”.
In: Proceedings of the 3rd USENIX conference on Web Application Development.
USENIX Association. 2012, pp. 1–1.

[92] Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. “AdJail:
practical enforcement of confidentiality and integrity policies on web advertisements”.
In: Proceedings of the 19th USENIX conference on Security. USENIX Security’10.
Washington, DC: USENIX Association, 2010, pp. 24–24. isbn: 888-7-6666-5555-4.
url: http://dl.acm.org/citation.cfm?id=1929820.1929852.

[93] lxc Linux Containers. http://lxc.sourceforge.net/.

[94] Sergio Maffeis, John C. Mitchell, and Ankur Taly. “Object Capabilities and Isolation
of Untrusted Web Applications”. In: IEEE S&P (2010).

[95] Jonas Magazinius, Aslan Askarov, and Andrei Sabelfeld. “A Lattice-based Approach
to Mashup Security”. In: In Proc. of the 5th ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2010). Beijing, China: ACM,
2010.

[96] Drew Mazurek. CAS Protocol. 2005. url: http://www.jasig.org/cas/protocol.

[97] Jose Meseguer, Ralf Sasse, Helen J. Wang, and Yi-Min Wang. “A Systematic
Approach to Uncover Security Flaws in GUI Logic”. In: SP ’07: Proceedings of the
2007 IEEE Symposium on Security and Privacy. IEEE Computer Society, 2007,
pp. 71–85. isbn: 0-7695-2848-1. doi: http://dx.doi.org/10.1109/SP.2007.6.

[98] Microsoft. Metro style app development. http : / / msdn . microsoft . com / en -

us/windows/apps/.

[99] Jonathan Millen and Vitaly Shmatikov. “Constraint solving for bounded-process
cryptographic protocol analysis”. In: CCS ’01: Proceedings of the 8th ACM confer-
ence on Computer and Communications Security. Philadelphia, PA, USA: ACM,
2001, pp. 166–175. isbn: 1-58113-385-5. doi: http://doi.acm.org/10.1145/
501983.502007.

[100] J. C. Mitchell, V. Shmatikov, and U. Stern. “Finite-State Analysis of SSL 3.0”. In:
Proceedings of the Seventh USENIX Security Symposium. 1998, pp. 201–216.

[101] John C. Mitchell, Mark Mitchell, and Ulrich Stern. “Automated Analysis of Cryp-
tographic Protocols Using Murphi”. In: Proceedings of the IEEE Symposium on
Security and Privacy. 1997, pp. 141–151.

[102] MochiKit. http://mochi.github.com/mochikit/.

[103] Lee Momtahan. A Simple Small Model Theorem for Alloy. Tech. rep. RR-04-11.
Oxford University Computing Laboratory, June 2004.

BIBLIOGRAPHY 91

[104] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. “Chaff: engineering an efficient SAT solver”. In: Proceedings of the 38th
annual Design Automation Conference. Las Vegas, NV, United States: ACM, 2001,
pp. 530–535. isbn: 1-58113-297-2. doi: http://doi.acm.org/10.1145/378239.
379017.

[105] Mozilla. Boot2Gecko. https://wiki.mozilla.org/B2G.

[106] E.V. Nava and D. Lindsay. “Abusing Internet Explorer 8’s XSS Filters”. In: BlackHat
Europe. 2010. url: http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf.

[107] OAuth. http://oauth.net/.

[108] OEMR. http://www.oemr.org/wiki/OEMR_Organization_Wiki_Home_Page.

[109] Bryan Parno, Jonathan M. McCune, Dan Wendlandt, David G. Andersen, and
Adrian Perrig. “CLAMP: Practical Prevention of Large-Scale Data Leaks”. In:
Proceedings of the 2009 30th IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2009, pp. 154–169. isbn: 978-0-7695-3633-0. doi: 10.1109/SP.
2009.21. url: http://dl.acm.org/citation.cfm?id=1607723.1608131.

[110] phpMyAdmin. http://www.phpmyadmin.net/.

[111] Joe G. Politz, Spiridon A. Eliopoulos, Arjun Guha, and Shriram Krishnamurthi.
“ADsafety: type-based verification of JavaScriptSandboxing”. In: USENIX Security
(2011).

[112] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas Helfer, Nickolai Zeldovich,
and Hari Balakrishnan. “Securing web applications by blindfolding the server”. In:
NDSI (2014).

[113] Niels Provos. “Improving host security with system call policies”. In: Proceedings
of the 12th conference on USENIX Security Symposium - Volume 12. Washington,
DC: USENIX Association, 2003, pp. 18–18. url: http://dl.acm.org/citation.
cfm?id=1251353.1251371.

[114] Niels Provos, Markus Friedl, and Peter Honeyman. “Preventing privilege escalation”.
In: Proceedings of the 12th conference on USENIX Security Symposium - Volume
12. Washington, DC: USENIX Association, 2003, pp. 16–16. url: http://dl.acm.
org/citation.cfm?id=1251353.1251369.

[115] pynarcissus : The Narcissus Javascript interpreter ported to Python. http://code.
google.com/p/pynarcissus/.

[116] Code Release. https://github.com/devd/html5privsep.

[117] Code Release. https://github.com/devd/data-confined-html5-applications.

[118] G. Richards, S. Lebresne, B. Burg, and J. Vitek. “An analysis of the dynamic
behavior of JavaScript programs”. In: ACM SIGPLAN Notices (2010).

BIBLIOGRAPHY 92

[119] A. W. Roscoe. “Modelling and verifying Key-exchange protocols using CSP and
FDR”. In: 8th IEEE Computer Security Foundations Workshop. IEEE Computer
Soc Press, 1995, pp. 98–107.

[120] S. Riley. 5 OpenSource EMRs worth reviewing. http://bit.ly/hUa6l1. 2011.

[121] J.H. Saltzer and M.D. Schroeder. “The protection of information in computer
systems”. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308.

[122] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. A Symbolic Execution Framework for JavaScript. Tech. rep.
UCB/EECS-2010-26. EECS Department, University of California, Berkeley, 2010.

[123] Roland Schemers and Russ Allbery. WebAuth V3 Technical Specification. 2009.
url: http://webauth.stanford.edu/protocol.html.

[124] K. Singh, A. Moshchuk, H.J. Wang, and W. Lee. “On the incoherencies in web
browser access control policies”. In: IEEE S&P (2010).

[125] Software Design Group, MIT. Alloy Analyzer 4. 2010. url: http://alloy.mit.
edu/alloy4/.

[126] Dawn Xiaodong Song. “Athena: a New Efficient Automatic Checker for Secu-
rity Protocol Analysis”. In: Proceedings of the Twelfth IEEE Computer Security
Foundations Workshop. June 1999, pp. 192–202.

[127] Brandon Sterne and Adam Barth. Content Security Policy: W3C Editor’s Draft.
http://bit.ly/foq8vf. 2012.

[128] Stylish. http://goo.gl/k1LVVT.

[129] S.T. Sun, K. Hawkey, and K. Beznosov. “Systematically breaking and fixing OpenID
security: Formal analysis, semi-automated empirical evaluation, and practical coun-
termeasures”. In: Computers & Security (2012).

[130] G. Tan and J. Croft. “An empirical security study of the native code in the JDK”.
In: Proceedings of the 17th Conference on Security. USENIX Association. 2008,
pp. 365–377.

[131] ”GWT Team”. Security for GWT Applications. 2008. url: http://groups.google.
com/group/Google-Web-Toolkit/web/security-for-gwt-applications.

[132] Krishna Chaitanya Telikicherla and Venkatesh Choppella. “Alloy model for Cross
Origin Request Policy (CORP)”. In: IIIT/TR/2013/-1 (2013).

[133] The Dojo Foundation. The Dojo Toolkit. http://dojotoolkit.org/.

[134] Tizen. https://www.tizen.org/.

[135] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. “Protection and
communication abstractions for web browsers in MashupOS”. In: SOSP. 2007.

BIBLIOGRAPHY 93

[136] H.J. Wang, C. Grier, A. Moshchuk, S.T. King, P. Choudhury, and H. Venter. “The
multi-principal OS construction of the Gazelle web browser”. In: Proceedings of
the 18th conference on USENIX security symposium. USENIX Association. 2009,
pp. 417–432.

[137] R. Wang, S. Chen, and X.F. Wang. “Signing Me onto Your Accounts through
Facebook and Google: a Traffic-Guided Security Study of Commercially Deployed
Single-Sign-On Web Services”. In: IEEE S&P (2012).

[138] Joel Weinberger. Suborigins for Privilege Separation in Web Applications. http://
blog.joelweinberger.us/2013/08/suborigins-for-privilege-separation-

in.html. Aug. 2013.

[139] Joel Weinberger and The Chromium Authors. Per-page Suborigins. http://www.
chromium.org/developers/design-documents/per-page-suborigins.

[140] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting. “An
exploration of L2 cache covert channels in virtualized environments”. In: CCSW
(2011).

[141] YUI Library. http://yuilibrary.com/.

[142] Michal Zalewski. “Postcards from the post-XSS world”. http://lcamtuf.coredump.
cx/postxss/.

[143] Michal Zawelski. Browser Security Handbook. 2009. url: http://code.google.
com/p/browsersec/wiki/Main.

[144] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. “Cross-VM
side channels and their use to extract private keys”. In: CCS (2012).

