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Abstract

Applying Probabilistic Models for Knowledge Diagnosis and Educational Game Design

by

Anna Noonan Rafferty

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Thomas L. Griffiths, Co-chair

Professor Dan Klein, Co-chair

Computer-based learning environments offer the potential for innovative assessments of student
knowledge and personalized instruction for learners. However, there are a number of challenges to
realizing this potential. Many psychological models are not specific enough to directly deploy in
instructional systems, and computational challenges can arise when considering the implications
of a particular theory of learning. While learners’ interactions with virtual environments encode
significant information about their understanding, existing statistical tools are insufficient for inter-
preting these interactions. This research develops computational models of teaching and learning
and combines these models with machine learning algorithms to interpret learners’ actions and
customize instruction based on these interpretations. This approach results in frameworks that can
be adapted to a variety of educational domains, with the frameworks clearly separating compo-
nents that can be shared across tasks and components that are customized based on the educational
content. Using this approach, this dissertation addresses three major questions: (1) How can one
diagnose learners’ knowledge from their behavior in games and virtual laboratories? (2) How
can one predict whether a game will be diagnostic of learners’ knowledge? and (3) How can one
customize instruction in a computer-based tutor based on a model of learning in a domain?

The first question involves automatically assessing student knowledge via observed behavior
in complex interactive environments, such as virtual laboratories and games. These environments
require students to plan their behavior and take multiple actions to achieve their goals. Unlike in
many traditional assessments, students’ actions in these environments are not independent given
their knowledge and each individual action cannot be classified as correct or incorrect. To address
this issue, I develop a Bayesian inverse planning framework for inferring learners’ knowledge from
observing their actions. The framework is a variation of inverse reinforcement learning and uses
Markov decision processes to model how people choose actions given their knowledge. Through
behavioral experiments, I show that this framework can infer learners’ stated beliefs, with accu-
racy similar to human observers, and that feedback based on the framework improves learning
efficiency. To extend this framework to educational applications outside of the laboratory, I ex-
tended the inverse planning framework to diagnose students’ algebra skills from worked solutions
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to linear equations, separating different sources of mathematical errors. I tested the framework by
developing an online algebra tutor that provides students with the opportunity to practice solving
equations and automatically diagnoses their understanding after they have solved sufficient equa-
tions. Preliminary experiments demonstrate that Bayesian inverse planning provides a good fit for
the majority of participants’ behaviors, and that its diagnoses are consistent with results of a more
conventional assessment.

The results of the previous studies showed that not all tasks result in learner behavior that can
be used to perfectly diagnose knowledge. In many cases, actions may be ambiguous, resulting
in a diagnosis that places some probability on one possible knowledge state and some probability
on another. I developed an optimal game design framework to predict how much information
will be gained by observing a player or players’ actions if they were to play a particular game:
gaining more information from a game means that the diagnosis is less ambiguous. This framework
extends optimal experiment design methods in statistics. It can limit the trial and error necessary
to create games for education and behavioral research by suggesting game design choices while
still leveraging the skills of a human designer to create the initial design. Behavioral results from
a concept learning game demonstrate that the predicted information gain is correlated with the
actual information gain and that the best designs can result in twice as much information as an
uninformed design.

The final part of this dissertation considers how to personalize instruction in a computer tutor,
relying on knowledge about the domain and an estimate of the students’ knowledge. This builds
on the idea of assessing learners’ knowledge from their actions and considers more broadly how to
sequence assessment and personalized instruction. In a computer-based tutor, there may be a cost
to time spent on assessment, as the time could alternatively have been spent allowing the learner
to work through new material; however, this time spent on assessment may also be beneficial by
providing information to allow the computer to choose material more effectively. I show that par-
tially observable Markov decision processes can be used to model the tutoring process and decide
what pedagogical action to choose based on a model of the domain and the learner. The resulting
automated instructional policies result in faster learning of numeric concepts than baseline policies.

My research demonstrates that applying a computational modeling approach to a diverse set of
problems in computer-assisted learning results in new machine learning algorithms for interpreting
and responding to complex behavioral data. The frameworks developed in this research provide a
systematic and scalable way to create personalized responses to learners. These frameworks show
the potential of interactive educational technologies to not only provide content to learners but
to infer their understanding from innovative assessments and provide personalized guidance and
instruction.
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Chapter 1

Introduction

In Neal Stephenson’s novel The Diamond Age (Stephenson, 1995), a young girl is educated about
the world around her through an illustrated primer. This primer is an interactive educational tech-
nology that customizes its lessons based on observing the girl’s actions and approaches to prob-
lems, and provides information at appropriate times based on the girl’s interactions. In addition
to providing a curriculum of information to the reader, the primer allows readers to ask questions
and provides responses based on the reader’s current level of understanding. The lessons that the
primer teaches the novel’s protagonist are not limited to particular subjects, such as reading or
math, but help her learn to make choices and solve problems; the ways in which it assesses these
skills are in turn realistic scenarios that provide opportunities to apply her skills.

While the primer is an invention of science fiction, its personalization of educational content,
interactive features, and ability to interpret and respond to learners’ behaviors provide examples
of how a truly intelligent educational technology might function. Creating responsive educational
technologies has generated immense amounts of interest and attention. There is evidence that per-
sonalized interactions and curriculum can lead to more effective learning. For example, research
on human tutoring has found that one-on-one instruction and mastery learning can result in perfor-
mance two-standard deviations beyond group instruction (Bloom, 1984). Proponents of computer-
based learning environments suggest that the same learning effectiveness can be achieved through
intelligent, automated tutors (Corbett, 2001); these tutors aim to provide material at the right level
for an individual learner and to continue providing the learner with practice until she has mastered
the material, just as the primer customizes its instruction and activities based on its user. However,
creating effective educational technologies that can respond to learners and customize instruction
requires addressing a number of challenges. Educational content must be developed that facilitates
interaction, and there must be a way to automatically evaluate students’ interactions with this con-
tent to provide guidance or make decisions about what activities a student should complete next.
For this approach to scale to a wide variety of domains and activities, resulting in a primer that
can teach learners about any topic of interest, it must be possible to systematically adapt the same
algorithms to data and behavior with very different surface properties.

Recent work on educational technologies has begun to address some of these challenges. A
number of large scale efforts have focused on creating content and distributing it to learners. Mas-
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sive open online courses (MOOCs) enroll tens or hundreds of thousands of students in a single
online class, with students watching lectures, completing homework and exams, and interacting
with course staff and one another on discussion forums (Kolowich, 2013). Analysis of students’
behavior in one MOOC showed that more total time was spent on lab questions and homework
problems than watching lectures, demonstrating that MOOCs provide opportunities for problem
solving and can allow students to construct understanding through active engagement (Breslow
et al., 2013). While there is considerable disagreement about the eventual impact of MOOCs on
traditional education, they have been successful at reaching large numbers of students, address-
ing aspects of the content delivery challenge (Martin, 2012; Meisenhelder, 2013; Pappano, 2012).
However, MOOCs differ in many ways from the vision of the illustrated primer. They typically
focus assessment on easily evaluated activities, such as multiple choice questions or questions
with numeric answers. These activities make it possible for a single teacher to evaluate the multi-
tude of students in a single course, but are not necessarily the most effective for helping learners.
More interactive activities can encourage student motivation (Duschl, Schweingruberm, & Shouse,
2007), and lead to increased student learning (Mintzes, Wandersee, & Novak, 2005). Additionally,
MOOCs typically do not personalize the course of instruction, requiring all students to complete
the same sequence of activities and providing limited personalized guidance to students.

A number of online resources besides MOOCs have focused on creation of educational content
and problem solving practice activities. For example, the Web-based Inquiry Science Environ-
ment (WISE; Linn, Lee, Tinker, Husic, & Chiu, 2006) provides online science inquiry activities
that are designed to promote student learning and have been refined through iterative investiga-
tions. WISE provides some opportunities for automatically assessing students’ responses outside
of multiple choice questions, such as through the use of natural language technologies to score
short answers (Leacock & Chodorow, 2003), but does not generally interpret and provide guid-
ance on students’ actions in freeform interactive activities. The website Khan Academy (Khan,
2006-2014) is another source of educational content, providing videos on a diverse array of topics
and problem solving practice for selected domains. Khan Academy provides some customiza-
tion of instruction by continuing to have students solve the same type of problem until the system
predicts that they have mastered the relevant skill (Thompson, 2011).

Intelligent tutoring systems also frequently support mastery learning through adaptive instruc-
tion (Polson & Richardson, 2013). These systems create models of student learning, typically
tracking mastery of several skills over the course of a student’s engagement with the system (see
(Desmarais & Baker, 2012) for an overview of modeling approaches). Groen and Atkinson (1966)
provide an early example of creating a mathematical model for sequencing instruction, focused on
learning flashcards. Later models have expanded on this work, but most modeling has continued
to focus on structured domains and activities. In these domains, modeling is simplified because
knowledge can be broken into independent skills, and structured activities permit linking a single
response to a small number of these skills. One of the most common structured models is Bayesian
knowledge tracing (Corbett & Anderson, 1995). Knowledge tracing is a Markov model of procedu-
ral skill acquisition that has been particularly successful, with applications including mathematics
and reading skills (e.g., Beck & Sison, 2006; Corbett, 2001). While intelligent tutoring systems
have been successful at improving students’ skills, they still offer a very different model of engage-
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ment and learning than the illustrated primer. Activities where students make freeform choices are
rarely modeled and used to diagnose understanding, and developing systems that do interpret these
choices typically requires significant time and domain expertise.

In this dissertation, I address some of the challenges of creating an engaging, multi-domain
resource like the primer. By using general-purpose algorithms and incorporating computational
models of learning from psychology and cognitive science, I develop new frameworks for diag-
nosing people’s understanding and balancing assessment and instruction. Computational models
of learning provide a way to formalize domain-specific knowledge, such as the organization of
topics in a domain, and to represent principles of human learning that may be less domain-specific,
such as how people tend to generalize from limited information. I focus specifically on Bayesian
probabilistic models of learning, which have been increasingly successful in cognitive science and
psychology for modeling cognition (see Chater, Tenenbaum, & Yuille, 2006; Tenenbaum, Grif-
fiths, & Kemp, 2006, for a partial overview). These models are generative and can incorporate
new information incrementally, leading to flexible models for education. I apply the models to
understanding more freeform behavior than is typically modeled in existing computer-based learn-
ing activities. I also reason about these models using decision-theoretic algorithms, providing a
domain-independent way of customizing instruction given a particular model of learning. Inter-
preting learners’ behaviors and making determinations about how and when to respond to these
behaviors are necessary steps for building adaptive educational technologies that support learners
without curtailing their activities to fit a particular structured path.

I begin by developing a generative inverse planning framework that models students’ action
planning to diagnose their understanding, drawing inferences about specific misunderstandings
that a student may have. This model can be applied to interpret behavior in virtual environments
and educational games, and unlike previous efforts, it is not limited to a specific environment and
does not need to be trained using data from each learning environment and task. The framework
relies on Markov decision processes to model the virtual environment or game; the flexibility of
Markov decision processes ensures that the model, which is a variation of inverse reinforcement
learning, can be applied to data from a wide array of different activities. I provide an overview
of Markov decision processes in Chapter 2. I then describe our Bayesian inverse planning model
for knowledge diagnosis, and present three experiments demonstrating that the model’s inferences
are about as accurate as those of a human observer and that these inferences can be used to guide
personalized feedback (Chapter 3).1

I demonstrate the flexibility of Bayesian inverse planning by extending the algorithm to model
students’ algebra abilities. While solving linear equations appears to be very different than choos-
ing actions in a game, the same structure can be applied to model both types of behavior. In
Chapter 4, I use the algorithm to diagnose specific components of algebra understanding, separat-
ing the ability to perform accurate arithmetic from applying the rules of algebra. The algorithm
is applied to data collected by an online tutor that I developed. The tutor enables people to solve

1Much of the work in this dissertation was conducted in collaboration, especially with my advisor, Thomas L.
Griffiths. To acknowledge this collaboration, I use second-person pronouns throughout this dissertation when referring
to joint intellectual contributions.
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linear equations and uses these solutions to diagnose their understanding and direct them to ap-
propriate resources to correct their misunderstandings. This tutor provides a platform for future
investigations of how best to use detailed diagnoses of understanding to personalize guidance for
learners, and helps to connect learners to the existing algebra resources that are likely to be most
helpful to them. Through an experiment, we demonstrate that the model’s diagnosis of separate
mathematical skills is consistent with a more conventional assessment. The Bayesian inverse plan-
ning model is a new way to diagnose people’s understanding based on their behaviors, and our
applications of the algorithm demonstrate that its success is not limited to only a single domain
or to activities where there are a small number of misunderstandings. The extension to algebra
provides a template for other applications of the model to complex domains, developing solutions
for coping with large environments and action spaces.

One of the strengths of using Bayesian inverse planning to model people’s action choices is
that the model is generative: it can be used to simulate what actions people would be likely to take
if they had a particular understanding. I take advantage of this feature when addressing my second
question: how can we automatically design games to be more diagnostic of people’s knowledge
or cognitive processes? Creating more diagnostic assessments is a common goal in traditional as-
sessment: computer adaptive testing, for instance, selects questions that will be most effective at
reducing uncertainty about a person’s understanding (Van Der Linden & Glas, 2000). A similar
idea is common in the design of traditional experiments, where optimal experiment design focuses
on choosing designs that are as informative as possible about a question under investigation (see
Atkinson, Donev, & Tobias, 2007, for an overview). Such issues are perhaps even more impor-
tant in games, which are often not originally envisioned as assessments and which have complex
structures that may make it difficult to intuitively select a good design for assessment. In addition
to their use in education, games are of increasing interest in the behavioral sciences. Collecting
data to address questions in psychology and cognitive science via games, rather than traditional
experiments, can lead to increased participant motivation and engagement.

In Chapter 5, I adapt ideas from optimal experiment design to identify the game design that
will be most informative, making use of Bayesian inverse planning to estimate the informative-
ness of individual game designs. To test this optimal game design method, we investigate the
difficulty of learning different types of Boolean concepts. This area has been well-studied in pre-
vious work (e.g., Feldman, 2000; Griffiths, Christian, & Kalish, 2008; Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994; Shepard, Hovland, & Jenkins, 1961), allowing us to a compare the
results of a game-based investigation to the results of typical laboratory experiments. We demon-
strate that the estimates of a game’s informativeness correlate with the true information gain when
the games are played by human participants, with the best games gaining twice as much informa-
tion as random games. Our results also point to the complexity of interpreting people’s actions
in interactive environments. People may bring their own motivations to these environments, such
as wanting to better understand the game or meet some goal that is not highly rewarded by the
incentive structure created by the game designers; while such issues could occur in traditional ex-
periments, they are less likely due to simpler tasks. This complicates the analysis of results, but we
show that inverse reinforcement learning techniques can be used to infer people’s motivations and
that taking these motivations into account results in more accurate predictions of informativeness.
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The previous contributions focused primarily on assessment, with some attention to how as-
sessment results might be used to personalize feedback. However, making use of assessments to
customize educational resources is a complex task: time spent assessing the student must be bal-
anced with time providing the student with new information. For example, it may not be necessary
for a resource like the primer to fully identify which misunderstanding characterizes a student if
it has recognized that some misunderstanding is present. Further, automated instructional systems
must consider what examples and other instructional activities are most appropriate for a given
learner at any given time, sequencing materials to optimize learning. In Chapter 6, I formalize
the problem of tutoring a student as a partially observable Markov decision process (POMDP) in
which the automated tutor must select individual items to achieve some learning objective. This
representation integrates the domain model, student model, and model of student responses, and
allows us to explore what differences in teaching practice are dictated by different assumptions
about student learning. In general, previous work has not focused on this interaction between
models of student learning, one’s model of the domain, and choices of pedagogical actions. We
test this model by using it to teach people two different types of categories. These experiments are
the first instance of using a POMDP formalization to teach human learners. By considering three
different learner models, we demonstrate the characteristic differences in policies that emerge from
different assumptions.

Overall, these investigations demonstrate the power of applying Bayesian cognitive models
to educational questions. Because the algorithms we have developed are not tailored to specific
domains, they facilitate customization and interpretation of a broad range of activities, bringing
us closer to the goal of a resource that can support learners across domains through rich analyses
of the learners’ interactions. Each model we develop relates to one of the roles of the primer:
Bayesian inverse planning could be used to interpret learners’ behaviors, optimal game design
could be used to design scenarios for the primer to provide to the learner, and POMDPs could
allow the primer to decide how to sequence new information for the learner and when to prompt
the learner to demonstrate her knowledge. My approach to developing these algorithms formalizes
the problems under investigation to make it easier to take advantage of advances in computer
science and statistics for improving computer-based educational systems. In Chapter 7, I discuss
future directions for this approach and summarize my contributions.
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Chapter 2

Markov decision processes

When people perform complex tasks or interact with games and virtual environments, they must
engage in sequential action planning, making multiple decisions over time as they attempt to
achieve their goals. These decisions reflect both the context in which they are acting and their
estimates of short and long term consequences. Sequential action planning is also engaged in by
computer-based tutors: the tutor chooses a series of pedagogical activities based on the student’s
knowledge as well as the likely long-term effects on learning. To interpret people’s action choices,
as described in Chapters 3, 4, and 5, I rely on Markov decision processes (MDPs); I use a variation
on these processes, partially observable Markov decision processes (POMDPs) in Chapter 6.

MDPs provide a natural, decision-theoretic framework for sequential planning problems where
a series of actions must be taken and these actions may have non-deterministic consequences (see
Sutton & Barto, 1998, for an overview). MDPs model an agent’s actions over time, in conjunction
with the environment in which the agent is acting. They thus allow us to make detailed inferences
about the reasons for people’s actions and also allow us to simulate how people might act in a
given situation. In this chapter, I provide a formal specification of MDPs and a brief overview of
some of the ways that MDPs have been used that are most closely related to my focus of modeling
people’s action planning.

2.1 Formal specification
MDPs are formally defined as a tuple 〈S,A,T,R,γ〉. At each time step t, the agent and environment
are in some state s; in this section, I will consider MDPs where the set S of possible states is
discrete, although MDPs can be generalized to continuous state spaces and I consider such a space
in Chapter 4. As shown in the graphical model depiction in Figure 2.1, states must be defined so
that given the state at time t, states at times prior to t are independent of states at times after t;
this property is known as the Markov property. At each time step the agent chooses some action
a ∈ A. After the action is taken, the agent and environment transition into a new state based on
the action that was chosen as well as the current state. The transition model provides conditional
probability distributions p(s′|s,a) describing the likelihood of each next state given the current
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a1 a2 a3

s1 s2 s3 ...

Figure 2.1: Graphical model depiction of an MDP. At each time step, the state is observed, and the
agent chooses an action. The state transitions stochastically based on the current state and chosen
action.

state and action. The transition model provides a flexible way of specifying how the state of the
environment is affected by the agent’s actions, allowing for the possibility that the environment or
the consequences of an agent’s actions may be probabilistic.

MDPs encode the reward or incentive structure of an environment in the reward model R: what
is the agent trying to achieve (or avoid) through its actions? For any state s, action a, and next state
s′, R(s,a,s′) gives the immediate reward (or cost) of taking action a in state s and transitioning to
state s′. The reward model only specifies immediate rewards or costs; long term consequences of
actions are not incorporated into this model. However, long term consequences are frequently of
interest to the agent when planning its actions. For instance, if an action inevitably leads to a high
cost in several time steps, it is less desirable than one that does not have this later cost, even if
both have the same immediate cost. The expected long term value of taking a particular action in
a given state is defined as the expected sum of future discounted rewards. Known as the Q-value,
it can be computed by combining the dynamics of the environment and the reward model:

Q(s,a) = ∑
s′∈S

p(s′|a,s)
(

R(s,a,s′)+ γ ∑
a′∈A

p(a′|s′)Q(s′,a′)

)
, (2.1)

where γ ∈ [0,1] is a discount factor that represents the relative value of immediate versus future
rewards.

The Q-value calculation must take into account how an agent is likely to act in future time steps.
For example, if an agent chooses actions completely randomly, she will likely achieve far smaller
total rewards than an agent who always chooses the action with the highest expected reward in
each state. The policy p(a|s) gives the probability that an agent will choose action a while in s for
all states s ∈ S and a ∈ A. For a given state, an agent who acts randomly would have a uniform
probability p(a|s) of choosing each action. An optimal policy for an MDP is defined as a policy
that maximizes the expected value of the Q-function over all possible states, meaning that for each
state s, the policy places non-zero probability only on actions a that are in the set argmaxa Q(s,a).
Given a particular MDP and policy, the Q-function can be calculated using a dynamic program
known as value iteration (Bellman, 1957). This procedure can be applied even in cases where the
policy is dependent on the Q-values, as in the case of an optimal policy.
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2.2 Modeling a game using Markov decision processes
Many environments in which agents make choices can be formalized as MDPs. For example, most
board games can be represented as MDPs: the configuration of the pieces typically represents the
state of the game, and the player has to choose an action that will affect the configuration, resulting
in a transition to a new game state. While different games may have very different characteris-
tics, the same flexible framework can be used to model them. In some games, for instance, the
transition model is deterministic: given a state and action, there is only one possible next state. In
other games, such as those where a die is rolled or a card is drawn, the transition model must be
stochastic: the outcome is not determined completely by the choice of action and the current state,
but the probability of each possibility can be calculated.

We now consider a specific example of a spaceship navigation game that can be modeled as
an MDP. Figure 2.2a shows a screenshot of the game, which is a simplified version of the game
used in Chapter 3. The player is trying to navigate the spaceship from its current position (s9) to
Earth (sG); the spaceship cannot go past the edges of the grid, nor can it enter a square with a
“hostile alien” (e.g., the upper left corner). Each labeled square in the grid represents a position
that the spaceship can occupy. The state of the game can be represented by the location of the
ship. Actions in the game correspond to presses of one of the colored buttons; at each time step,
the player chooses one of the four buttons to press, or chooses to stop pressing buttons and “land”
the ship.

The transition model describes how the state is likely to change based on individual actions. In
this game, the buttons usually move the ship one square in the direction indicated by the arrows
in Figure 2.2a, but due to small meteors, the ship sometimes moves in another direction instead.
If the player tries to move the ship off the grid or into a hostile alien square, the ship remains in
its current position. The transition model encodes this description as a collection of conditional
probability distributions p(s′|s,a). For example, if the player pressed the teal button with the ship
in its current location of s9, the distribution p(·|teal,s9) would have three next states with non-zero
probabilities: p(s4|teal,s9), p(s10|teal,s9), and p(s12|teal,s9). s10 would be the highest probability
next state since teal usually moves the ship right. Because it does not matter how the ship reached
its current state, the transition process follows the Markov property: the next state is independent
of previous states given the current state.

In the spaceship game, the player’s goal is to land the ship on Earth in as few moves as possible.
At each time step, the player chooses to either press one of the buttons or to land the ship. There is
a small cost for each button press and a large cost for landing the ship anywhere other than Earth.
After landing, the game terminates, so there are no future costs or rewards. In Figure 2.2b, part
of the Q-function for the game is shown, assuming an optimal policy. In state s9, for instance, the
Q-values for buttons that usually move right, up, or down have similar values, while the button that
usually moves the ship left has a more negative Q-value: moving left does not help the ship get
closer to Earth, and thus has higher long term costs. Figure 2.2c shows the policy that results from
the Q-function, with colored arrows representing the best direction to move from each square.
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Figure 2.2: Modeling a spaceship game using a Markov decision process. (a) States and actions in
the game. Each grid square corresponds to a state, and each colored button can be pressed to move
the spaceship. Arrows represent the direction that each button usually moves the ship, although
movement is noisy. (b) A portion of the Q-function for the game, assuming an optimal policy. (c)
The policy for the game. Arrows are colored to indicate which button has highest Q-value in each
state, with the direction of the arrow indicating the most likely place for the ship to move after that
button press.

2.3 Applications of Markov decision processes
MDPs have traditionally been used in planning and decision making. By specifying the compo-
nents of the MDP and solving for an optimal policy, one can calculate the best action to take in
any given state. This approach has a diverse array of applications, from robotics to recommender
systems (for an overview, see Feinberg, Shwartz, & Altman, 2002; Puterman, 2005). The broad
success of MDPs for action planning has also translated into uses in education and intelligent tu-
toring systems. Barnes and Stamper (2008) used MDPs to choose what hint to give students in
a logic tutor based on what solutions had been successful for other students who completed the
same problem. In this case, the state, action, and transition models were calculated empirically
based on previous solutions. This approach provided substantial coverage of new students’ solu-
tion attempts. MDP policies have also been used to make instructional decisions about what action
an automated tutor should take next given the previous interaction of the tutor and student (Chi,
Jordan, VanLehn, & Hall, 2008). This work found that dialogue decisions in a physics tutor could
be optimized based on transition and reward models learned from the data of previous participants;
the state’s represented learners’ knowledge and the context of the tutor using observed features.
The tutorial policy optimized to improve learning outcomes outperformed a policy optimized to
decrease performance. Within the domain of games, MDPs and reinforcement learning have been
used previously to predict player actions and adapt game difficulty (Erev & Roth, 1998; Andrade,
Ramalho, Santana, & Corruble, 2005; Tan & Cheng, 2009).

While MDPs are most commonly used by agents to plan their actions, other applications have
focused on inferring parts of an MDP given observations of another’s actions. For example, in-
verse reinforcement learning infers an agent’s policy or reward function, facilitating the training of
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robotic agents when it is easier to generate examples of the desired behavior than to explicitly state
the MDP (e.g., Abbeel & Ng, 2004; Ng & Russell, 2000; Russell, 1998; Ziebart, Maas, Bagnell, &
Dey, 2008). Typically, there may be multiple solutions that are consistent with observed actions,
leading to the use of regularization or Bayesian methods in which prior distributions are placed
over possible policies or reward functions (e.g., Ramachandran & Amir, 2007).

In cognitive science, MDPs have been applied to model human action planning and infer peo-
ple’s goals (C. L. Baker, Saxe, & Tenenbaum, 2009). A growing body of work relies on inverse
reinforcement learning to model the inferences that people make about other’s goals after observ-
ing their actions (C. L. Baker, Tenenbaum, & Saxe, 2006; C. L. Baker et al., 2009; C. L. Baker,
Saxe, & Tenenbaum, 2011; Tauber & Steyvers, 2011; Ullman et al., 2010). This approach can
help to explain people’s intuitions about whether an agent is helping or harming another agent,
and can incorporate changes in goals as well as asymmetry of information between the agent who
is acting and the person who is interpreting that agent’s actions. Because inverse reinforcement
learning is inherently probabilistic, this framework can account for the fact that people are not
deterministic rational agents but may act noisily. In the next three chapters, I will build on the idea
of using inverse reinforcement learning to interpret people’s actions by developing a framework
in which people’s actions may be used to draw inferences about their understanding or features of
their cognitive processes.
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Chapter 3

Knowledge diagnosis via Bayesian inverse
planning

In Chapter 1, I highlighted the ability of the fictional illustrated primer to observe someone’s ac-
tions and draw inferences about the person’s understanding and skills based on these observations.1

While such inferences are typically difficult for computers, they occur naturally for people. For in-
stance, based on observing someone take a needlessly long route to get to a particular location, one
might infer that the person does not know that road construction has been completed on a shortcut
that would take her there more quickly. This inference is an example of recognizing someone’s
misunderstanding through observation alone: the person believes that the road cannot be traversed,
but in fact, the road is passable.

Developing an algorithm to make such inferences automatically would allow computer-based
educational programs to intervene and correct misconceptions exhibited in freeform tasks; such in-
terventions have been found to improve student understanding in other types of tasks (Davis, Linn,
& Clancy, 1995; Liu, Lin, & Kinshuk, 2010). For example, imagine a student playing a biology
game. Her responses to specific situations in the game, such as what sequence of actions she takes
to adapt an organism to a new environment, can indicate her knowledge about particular elements
of cell biology. If she never makes particular adaptations or takes actions in a suboptimal order,
this can indicate gaps in her knowledge, leading to targeted remediation; conversely, the student’s
actions might indicate that she has mastered the current topic and is ready for the next activity.
Automating these assessments is beneficial because it does not require interrupting students to ex-
plicitly query their knowledge and can provide a detailed picture of students’ misconceptions. The
benefits of “stealth assessments” that occur within a student’s normal activities have been noted
by Shute (2011), and prior work has found that such embedded assessments can be useful in the
classroom (Feng, Heffernan, & Koedinger, 2009; Razzaq et al., 2005).

The ability to use complex series of actions to automatically diagnose student knowledge is
becoming more relevant with the increasing use of games and interactive virtual environments in

1This chapter is based on work conducted in collaboration with Michelle M. LaMar and Thomas L. Griffiths. Parts
of this work are included in Rafferty, LaMar, and Griffiths (in press). Thanks go to Benjamin Shapiro, HyeYoung Shin,
and Christina Vu for their assistance in conducting the behavioral experiments described in this chapter.
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education. These environments bring us closer to the way people actually use their knowledge for
real world problem solving. Within these environments, students often perform many individual
actions to complete a task, resulting in fine-grained data about the choices that students make.
These data contain much more information than simply whether the student completed the task
successfully or not, and we would like to use these data to make fine grained inferences about a
student’s knowledge, including her misconceptions, just as a teacher could infer this information
by observing the student. However, existing assessment models in education are generally not
suited to interpreting such sequential process data. These models typically assume the data are
conditionally independent given student ability, and consider only success or failure, rather than
the way that these outcomes are achieved. In this chapter, we consider an alternative to existing
models in which we focus on modeling how people choose their actions based on their beliefs or
understanding. This detailed model then allows us to gain insight into a student’s knowledge by
observing her actions.

Specifically, we formalize action planning using the Markov decision process model described
in the previous chapter. We characterize a person’s knowledge as her beliefs about how her actions
affect the state of the world and what states are most beneficial for achieving her goals. We then
propose a framework for automatically inferring these beliefs. This model could be applicable to a
variety of action understanding tasks, but our interest is centered on educational settings in which
false beliefs (misconceptions) are likely to be common. Markov decision processes allow us to
make inferences about students’ beliefs by specifying how those beliefs combine with their goals
to determine their actions. In the previous chapter, we highlighted several instances of using MDPs
to model human action-planning. This existing work focuses on inferring people’s goals, as repre-
sented by subjective reward models; in contrast, we use the transition model to represent people’s
understanding. We can then diagnose the person’s understanding by inferring a distribution over
possible transition models based on observing the person’s actions.

A variety of work focuses on understanding the actions of others, ranging from neuroscience
to cognitive science to computer science. Work in neuroscience supports the idea that people can
recognize the false beliefs of others simply through observing their actions (Grèzes, Frith, & Pass-
ingham, 2004). These researchers found that human observers show different activation patterns
when observing a person lift a box when that person has correct versus incorrect expectations of
the weight of the box. Related work has examined what other inferences about people’s mental
states can be made through observing actions, finding that relatively accurate inferences about peo-
ple’s goals and confidence can be made even when differences in actions are minute (e.g., Becchio,
Manera, Sartori, Cavallo, & Castiello, 2012; Patel, Fleming, & Kilner, 2012). Cognitive science
has also approached the question of what inferences people can make about the beliefs of others.
Most closely related to our work is that of Goodman, Baker, and Tenenbaum (2009), which ex-
amined people’s inferences about the beliefs that another individual has about the consequences of
her own actions. In both domains, research has generally focused on isolated actions, rather than
the complex sequences of actions that might occur in an educational setting.

In computer science, work on plan recognition has also examined the problem of interpreting
others’ actions. A common problem in this domain is how to automatically identify someone’s
intended plan of action based on a set of observed actions (e.g., Gal, Yamangil, Shieber, Rubin, &
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Grosz, 2008; Kautz & Allen, 1986; Lesh, Rich, & Sidner, 1999). This task has been recognized
as potentially helpful in educational environments. Amir and Gal (2011) used a plan recognition
framework to categorize sets of individual behaviors in a virtual chemistry lab, such as pouring one
beaker into another, as part of larger semantic actions, such as a titration. Our work differs from
plan recognition in that we assume that people may have misunderstandings about their actions,
rather than assuming that people have full, accurate knowledge of how their actions affect the
world.

In this chapter, I begin by introducing a Bayesian inverse planning framework to infer people’s
understanding from their actions, drawing on the background about Markov decision processes
provided in the previous chapter. The Bayesian inverse planning framework is a novel modifi-
cation of inverse reinforcement learning. I next introduce a simple environment that we use for
three experiments exploring this framework. In Experiment 1, we show that the inverse planning
model can recover learners’ beliefs within this environment, and in Experiment 2, we show that
the model’s inferences are about as accurate as those of human observers. We then examine how
to apply this framework to a common educational objective: customizing feedback based on infer-
ences about the learner’s understanding. In Experiment 3, we demonstrate that feedback informed
by the model speeds learning in the planning environment relative to uninformed feedback, and
we show that the model can easily be extended to handle a more complex space of possible beliefs
that people might have.

3.1 Inferring learners’ beliefs
By using Markov decision processes as a generative model of action planning, we can formally
define how a person’s beliefs connect to the actions that they choose. We propose a Bayesian
inverse planning framework that allows us to infer these beliefs based only on observing a person’s
actions (see Figure 3.1 for an intuitive description applied to the spaceship game described in
Chapter 2). This inverse planning framework relies on the insight that people are likely to choose
actions that they think will help them achieve their goals. Thus, their beliefs are likely to be
consistent with the chosen actions being better than other possible actions. The inverse planning
framework simply formalizes this insight.

The model we develop uses an MDP to model people’s actions. We assume that the reward
function R, which encodes the person’s goals, is known. We also assume the set S of possible
configurations of the world is known. People’s hypotheses about how their actions affect the world
then formally correspond to transition models T : their understanding of how actions affect the
current state can be encoded as probabilities p(s′|a,s).

We now want to make inferences about how likely it is that someone has a particular hypothesis
given that we have observed a series of actions a = (a1, . . . ,an) that the person took to try to
complete a goal. Given a fixed hypothesis space T of possible transition models and a given
starting state s1, we want to calculate the posterior distribution over possible hypotheses T ∈ T :

p(T |a,s1,R,γ) ∝ p(a|s1,T,R,γ)p(T ). (3.1)
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By calculating a posterior distribution, we can determine both what hypothesis is most probable
given the person’s actions as well as how strongly the evidence supports this hypothesis over alter-
natives. Calculating this distribution requires knowing the prior distribution p(T ) and computing
the likelihood for a particular series of actions given a hypothesis T . The prior distribution over hy-
potheses accounts for the fact that some beliefs about the effects of different actions may be more
likely than others. This prior will vary based on the specific task, and provides a way for known
information about likely misconceptions to be incorporated. For instance, educational research
may indicate that certain misunderstandings are common in a particular domain or for a particular
population, whereas others are less common. The prior can then be constructed to place higher
probability on the common misunderstandings. In cases where no such information is available, a
uniform prior can be used.

To compute the posterior, we must also calculate the likelihood, p(a|s1,T,R,γ). This quantity
corresponds to how likely it is that the person would choose the observed sequence actions given
that they believe transitions occur as in model T . Note that having high likelihood does not imply
that a sequence of actions is likely to result in the goal state, but only that this sequence is more
likely than other sequences to be chosen. In the likelihood, we have conditioned the sequence
of actions only on the first state, s1; this corresponds to situations where the person knows the
initial state but does not know later states with certainty, as occurs in the experiments we present.
The Markov property states that st+1 and st−1 are conditionally independent given st , so we can
calculate the likelihood using the following recursion:

p(a|s1,T,R,γ) = p(a1|s1,T,R,γ) ∑
s′∈S

p(s′|a1,s1,T )p(a2, . . . ,an|s′,T,R,γ), (3.2)

where p(a1|s1,T,R,γ) is defined by the person’s policy for choosing actions given the current
state. Knowing this policy, or an approximation of it, is necessary to make any inferences about
why a person chose a particular set of actions, and it is vital that this policy be dependent on the
person’s beliefs about T in order for the observations to give information about those beliefs. As
in C. L. Baker et al. (2009), we assume that people can be modeled as following a noisily optimal
policy. This policy, known as a Boltzmann policy, states that actions are chosen as follows:

p(a|s,T,R,γ) ∝ exp(βQ(s,a|T,R,γ)) , (3.3)

where Q(s,a|T,R,γ) is the Q-function defined in the previous section and β is a parameter deter-
mining how close the policy is to an optimal policy. Intuitively, this policy corresponds to choosing
actions that one believes have higher values than other possible actions, but retaining some proba-
bility on choosing suboptimal actions and being less sensitive to small differences in Q-values. As
β becomes large, the Boltzmann policy converges to the optimal policy, while as β goes to 0, the
policy converges to choosing actions uniformly at random.

We can now calculate the posterior distribution over the hypothesis space T by combining the
prior and the likelihood. If this space is discrete, the posterior distribution can be calculated ex-
actly by first calculating the |T | different Q-functions for the MDPs associated with each possible
transition model, and then evaluating Equation 3.2 for each MDP. This is the approach we take for
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Figure 3.1: Players’ beliefs about the buttons lead to different action sequences in the spaceship
game. Both players use their understanding and their desire to move the ship from the start state
to the goal state to choose their actions. In the model, people’s beliefs correspond to different
possible transition models Ti.

Experiments 1 and 2. In other cases, the hypothesis space may be continuous or discrete but very
large, making it infeasible to calculate the posterior exactly. An approximate posterior distribu-
tion can then be calculated using Markov chain Monte Carlo techniques; we use this approach in
Experiment 3.

In Chapter 2, we used a spaceship game as an example of an MDP. In the spaceship game,
buttons control the spaceship’s movement, and players are trying to move the ship from its current
location back to Earth. We can use Bayesian inverse planning to model the situation where players
may have incorrect beliefs about how the buttons work, and we wish to infer those beliefs based
on the sequence of buttons that they press to move the ship to Earth. As shown in Figure 3.1,
players’ beliefs lead them to choose systematically different sequences of actions. Both players
choose actions that they think are valuable, and thus their choices can be used to make inferences
about their understanding.

Using Bayesian inverse planning to infer people’s understanding has several potential advan-
tages. First, it is extremely flexible and can be applied in a variety of situations. Given an appro-
priate definition of the state space, many tasks can be specified as MDPs, and the same general
framework can be applied to make inferences about people’s beliefs based on their actions. For
instance, as described in the previous chapter, many board and video games can be formalized as
MDPs, and stochastic factors can naturally be incorporated into MDPs. Additionally, inferences
can be made after only a few actions, and multiple sets of observed actions can be used to refine
inferences as further evidence accumulates. In an educational environment, this opens the possi-
bility for the computer to intervene about a specific belief in a timely manner, and to accumulate
evidence of misunderstanding over a series of different exercises. The model also provides a fine-
grained way of evaluating student responses, rather than only focusing on whether the student was
successful in the complete task. Thus, the model can diagnose specific gaps in understanding rather
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than merely labeling all unsuccessful students as “wrong.”

3.2 Validating the method in the laboratory
We have now defined a general model for inferring people’s beliefs about how their actions affect
a particular environment. This model makes several assumptions about how people choose actions
based on their knowledge, so we first validate the model by testing its accuracy in several lab ex-
periments. For these experiments, participants played a more complicated version of the spaceship
game described in the previous chapter. Participants used a computerized interface to pilot the
spaceship to Earth using as short a path as possible (see Figure 3.2a). This version of the game
had eight buttons, each of which either usually moved the ship in one direction or moved the ship
in a direction at random. Participants were not told exactly how each button affected the ship’s
movement; instead, they learned this information by observing the effects of the buttons. Using
the inverse planning framework, we attempt to infer participants’ beliefs about how the buttons
work. While this environment is relatively simple compared to many educational applications, it
has the advantage of having many possible misconceptions that are easily articulated. We conduct
three experiments in this environment. In Experiment 1, we validate the model by directly com-
paring its inferences to participants’ stated beliefs, as collected at various points within the game.
To determine how well the model performs compared to human observers, we ask new participants
in Experiment 2 to infer the original participants’ beliefs using the same information as the model;
this allows us to see whether the model makes similar inferences to humans. Experiment 3 uses
the model’s inferences to guide feedback to participants, and investigates whether this informed
feedback increases the speed of learning.

3.3 Experiment 1: Comparing the model’s inferences to
participants’ beliefs

Methods
Participants

A total of 25 undergraduates at the University of California, Berkeley received course credit for
their participation.

Stimuli

Participants interacted with the computerized interface shown in Figure 3.2a. The top portion of
the interface was a 7×11 grid. The spaceship moved around this grid based on the button presses;
all other objects remained stationary throughout the experiment. The bottom portion of interface
contained the buttons to control the ship’s movement, and a display field with information about
the buttons that were pressed.
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Figure 3.2: Diagnosing beliefs about spaceship controls from flight plans. (a) A screen shot from
a participant entering a flight plan. The top portion shows the spaceship, Earth, and hostile aliens.
The middle shows the entered flight plan, and the bottom portion shows the buttons as well as
menus for participants to indicate how they think each button works. (b) The top hypotheses for
the three buttons in the flight plan. The three letter codes indicate, in order, how purple, teal, and
red work in the hypothesis: R means usually moves the ship right, D moves it down, U moves it
up, and X moves it randomly.

Procedure

Participants were told that they would be learning how different buttons affected a spaceship’s
movements and using that knowledge to pilot the spaceship back to Earth. They were informed
that each of the buttons either moved the ship one square in a single direction or in a random
direction (due to being broken). Participants were also told that occasionally small meteors caused
a button that should move the ship in one direction to move it in another direction, although they
could not be sure when a movement was caused by meteors. Meteors caused the spaceship to move
in an unexpected direction 15% of the time. Participants were informed that the ship would remain
in the same place only if moving would cause it to go off the edge of the grid or to move into a
square with a “hostile alien.” Hostile aliens were placed on several squares in the grid to make the
game more maze-like.

Participants alternated between exploration phases and planning phases. In exploration phases,
participants pressed buttons and saw the result of each button press on the spaceship’s location;
eight button presses were allowed in each exploration phase. During these phases, the display field
informed participants of their last action and its result (e.g., “You pressed the red button, and the
spaceship moved up.”). In planning phases, the spaceship was relocated to a random square, at least
two squares away from Earth, and participants were told to enter a flight plan, consisting of a series
of button presses, that would take the spaceship from its current square to Earth. The participants
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could not see the effect of each button immediately, but had to enter a complete sequence of buttons
to guide the ship to Earth. This was to separate learning how the buttons worked from using that
knowledge to complete a task. Participants indicated when they were finished, and then were
told whether the flight plan had caused the spaceship to reach Earth. The result of the plan was
determined by simulating the sequence of button presses using the true transition model for each
button, which included the effects of meteors. Each participant completed six exploration and
planning phases; the way that each button affected the ship’s movement remained the same over
these phases.

During all phases, there was a menu below each button containing the possible ways the button
could make the ship move (“usually moves left,” “usually moves right,” “usually moves up,” “usu-
ally moves down,” “moves randomly,” or “don’t know”). All menus were originally set to “don’t
know,” and participants were told to use the menus to record how they thought the buttons worked.
After submitting a flight plan but before they were told the outcome of the flight plan, participants
were asked to check that the menus reflected their current beliefs about how each button worked.

Modeling flight plans
To infer participants’ beliefs about the buttons based on their actions in the flight planning phases,
we model the flight planning task as an MDP. As in the simplified version of the game, the location
of the ship corresponds to the state of the game, and each button is a possible action. There is
also a landing action, corresponding to the participant submitting her flight plan: this action has
zero reward if chosen when the spaceship is at Earth and a highly negative reward otherwise. All
other actions have small negative reward, so shorter sequences of actions are favored over longer
sequences. Assuming the magnitude of the negative reward for not reaching Earth is large enough
that it is less costly to move to Earth than to stop immediately, the model is insensitive to the exact
values used in the reward function, including whether the reward for reaching Earth is zero or a
positive value.

For the inverse planning model, we define the hypothesis space T to match the instructions
given to participants: each button either primarily moves the ship in one direction (left, right, up,
or down) or it moves the ship in one of these four directions uniformly at random. In the former
case, the button moves the ship in the primary direction 85% of the time and in another direction
uniformly at random the other 15% of the time. Each hypothesis consists of the transition models
for all eight buttons. We limit hypotheses to those which include buttons that move the ship in
each of the four directions, resulting in 166,824 hypotheses. We assume a uniform prior over the
hypotheses as there is no reason to believe people will be biased towards particular hypotheses. If
such data were available, the uniform prior could be replaced with a prior that incorporates this
information.

Because we do not know a priori how optimal people’s plans will be, we allow for uncertainty
in the value of the noise parameter β. We marginalize over a discretized set of possible values for
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β to infer the posterior over T for each plan, with:

p(T |a,s1,R) = ∑
β

p(T,β|a,s1,R), (3.4)

where p(T,β|a,s1,R) ∝ p(a|T,β,s1,R)p(T )p(β). We consider values of β from 0.5− 5 in incre-
ments of 0.5, and place a uniform prior p(β) over these values. This procedure allows inference
about participants’ beliefs to be made without fixing β to any particular value.

Baseline model
In addition to using the inverse planning model, we evaluated plans using a simple baseline model.
In this model, the horizontal and vertical displacements from the spaceship to Earth are calculated
and compared to the number of button presses of each color. A button is then matched to a direction
if it had the same number of presses as the displacement in that direction. For example, if the
flight plan (blue, blue, red, red, red) was entered and the spaceship began two squares to the
right and three squares down from Earth, the model would predict that the blue button moved the
spaceship left and the red button moved it up. This model does not account for obstacles between
the spaceship and Earth, and cannot make predictions about buttons that were not pressed.

Results and discussion
We ran the model on each flight plan that a participant entered to guide the ship to Earth. Our goal
was to infer participant’s beliefs at a given phase using data from the flight plan they created at
that phase. Multiple phases were completed by each participant, but since we want to determine
how well the model can infer beliefs from limited data, we do not seek to model learning or to use
information from other flight plans created by the same participant. Initial inspection of the flight
plans suggested that some participants may not have understood that each button press could move
the ship only one square. For example, a plan with only one button press might be entered when
the ship needed to travel a minimum of five squares to reach Earth. We eliminated these plans
by having uninformed evaluators examine each of the original flight plans and determine whether
there was any way the flight plan could bring the ship to Earth; more detail about the task that these
evaluators were completing will be given in Experiment 2. To make clear when we are referring to
participants in this experiment and when we are referring to the new evaluators (the participants in
Experiment 2), we will refer to participants in this experiment as “planners.”

We evaluated the model on the 101 flight plans that at least three of the four evaluators thought
were valid plans. Within the model, each hypothesis specifies a full transition model with beliefs
about all buttons. However, flight plans included an average of only 2.4 unique buttons, which is
insufficient to fully specify the transition model. For example, if the ship started one square up
and to the left of Earth, one might infer that buttons not used in the flight plan are less likely to
move the ship down or to the right, but there is no information to distinguish among other possible
transition models for these buttons. The inverse planning model places the same probability on all
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such hypotheses. We thus primarily evaluate the model based only on predictions about buttons
that were used in the flight plan.

We first examine the maximum a posteriori (MAP) estimates of the inverse planning model
for each flight plan. This is the mode of the probability distribution: the hypothesis on which the
model placed the greatest posterior probability. For example, if a particular hypothesis T1 had a
posterior probability of 0.4 and all other hypotheses had smaller probabilities, the MAP hypothesis
would be T1. For 73% flight plans, the MAP hypothesis matched the planner’s stated beliefs about
all buttons pressed, and for 93% of plans, the MAP hypothesis matched the stated beliefs for at
least some of the buttons in the plan.2 As shown in Figure 3.3a, these results are significantly better
than those of the baseline model, which gave a hypothesis that matched the planner’s beliefs for
only 60% of flight plans (exact McNemar’s test, χ2(1) = 8.89, p < .01). These rates are also much
higher than a chance baseline, which chooses one of the five options randomly for each button in
the plan. This baseline would result in a complete match an average of 5.8% of the time (averaged
across plans), with at least one button correct 36% of the time.

The MAP estimates provide one way of evaluating model performance, but the full posterior
distribution can give more information about the strength of the model’s estimates. Because this
distribution gives the probability of each individual hypothesis, we can use it to explore whether
the MAP estimate is strongly favored or whether several hypotheses have similar probabilities.
This is especially important since some flight plans are inherently ambiguous. Consider the plan
(purple, teal, teal, teal, teal, red) shown in Figure 3.2a, which was entered by a planner during
one flight planning phase. Based on the ship’s position, this is relatively unambiguous evidence
that teal usually moves the ship right, but seems equally supportive of purple moving the ship up
and red moving it down as of red moving the ship up and purple moving it down. Figure 3.2b
demonstrates that inverse planning model is sensitive to this distinction by showing the probability
mass on the four most probable hypotheses hypotheses, denoted as beliefs about purple, teal, and
red moving the ship right (R), down (D), up (U), or randomly (X). Almost all of the posterior mass
is on hypotheses in which teal moves the ship right, which is the belief for all four of the most
probable hypotheses, but about half of the mass is on each of intuitively plausible possibilities for
red and purple.

To assess how well the posterior distribution matches the planner’s self-reported beliefs, we
calculate the total posterior mass on hypotheses that are consistent with those beliefs. As shown
in Figure 3.3b, the model places most of this mass on the correct hypothesis for the majority of
the flight plans. The flight plans where the model places about half of the posterior mass on the
correct hypothesis tend to be those that were ambiguous. Overall, the model placed an average of
0.74 of the posterior mass on transition models that matched the participant’s description of how
the buttons worked.

The shape of the posterior distribution can also provide indicators of participant misconcep-
tions. If little posterior mass is placed on the transition model that governed the actual effects of
the buttons, this suggests the participant likely has some misunderstanding. This is shown in the

2We could only compare model results to the participant’s beliefs in 88 of the 101 plans because in 13 of the plans,
the planner marked all buttons used in the plan as “don’t know”.
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Figure 3.3: Model performance on matching the original planner’s hypothesis in Experiment 1. (a)
Comparison between the baseline model and the inverse planning model. In 60% of flight plans, at
least one of the hypotheses given by the baseline model matched the planner’s beliefs. In 73% of
flight plans, the MAP estimate of the inverse planning model matched the planner’s beliefs. Each
flight plan is one instance of a participant entering a sequence of buttons to guide the ship to Earth.
Error bars are equal to one standard error. (b) Posterior mass by flight plan on hypotheses that
matched the planner’s hypothesis. Flight plans are ordered by the model’s performance.

data: in cases where the participant’s stated beliefs reflect an incorrect understanding, an average
of only 0.039 of the posterior mass is placed on hypotheses that correspond to the actual transition
model for the buttons. In contrast, 0.82 of the posterior mass is on these hypotheses in cases where
the participant is correct.

We can combine the model’s diagnosis of correctness with its predictions about participants’
beliefs in order to detect misunderstandings. For example, one participant began with the ship
in the upper right corner, and entered a flight plan with two teal buttons, followed by five red
buttons, and finally a green button. The participant correctly understood that teal usually moved
the ship down, and the model placed 0.97 of the posterior mass on such hypotheses. The participant
had misconceptions about the other two buttons, believing that red moved the ship left and green
moved it down. In fact, both buttons moved the ship up. The model’s predictions show this
misconception: It places 0.99 of the posterior mass on red moving the ship left, and 0.95 of the
mass on green moving it down. In contrast, less than 0.01 of the posterior mass is placed on either
button moving the ship up. This information could be used to provide customized feedback to the
learner, a possibility we explore in Experiment 3.

Overall, the results of Experiment 1 suggest that the inverse planning model is reasonably
accurate at inferring planners’ beliefs. It outperforms a simple baseline model, and because it
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outputs a posterior distribution, it provides information about how strongly the evidence supports
its inferences and pinpoints participant misunderstandings.

3.4 Experiment 2: Comparing the model to human inferences
Experiment 1 demonstrated the accuracy of the inverse planning model. However, it is challenging
to evaluate how good this accuracy is without a measure of the difficulty of matching planners’
beliefs. In general, we would not expect the model to outperform human abilities to infer the
beliefs of others, and we know that humans are not always able to make completely accurate
inferences from observing someone else’s actions. This is clearly the case in the flight planning
task: as observed in the plan shown in Figure 3.2, there are cases in which multiple hypotheses are
equally plausible given the observed actions, and because of the limited number of observations,
accurately inferring a full transition model for all buttons is likely to be impossible for either human
observers or any given model. In Experiment 2, we asked new participants to evaluate the plans
made by the original planners. These observers provide a gold standard for how accurately it is
possible to match the planners’ beliefs. This experiment also allowed us to identify those plans
that could not take the ship to Earth regardless of how the buttons worked.

Methods
Participants

A total of 24 undergraduates at the University of California, Berkeley received course credit for
their participation.

Procedure

Each participant evaluated 25 flight plans, one from each of the planners in the original experiment;
all flight plans were thus evaluated by four different participants. The initial instructions about the
possible ways the buttons could work were the same as in Experiment 1. Rather than being told
that they would be piloting the spaceship, however, participants were told that they would watch
the aliens try to fly different spaceships to Earth. For each plan, participants were shown the same
display of the spaceship and Earth as in Experiment 1, as well as the series of buttons that was
pushed for the plan. Participants were told that this plan had been generated by aliens. Participants
were asked to choose one of five options for how they thought that the alien who made the plan
had believed the button worked: usually moves left, usually moves right, usually moves up, usually
moves down, or moves randomly. Participants were only asked to evaluate the buttons that were
actually used in each plan, and they were told that the way each button worked could change from
one plan to another, due to being generated by different aliens in different ships. Three additional
questions were asked about each plan. First, whether the plan is likely to take the spaceship back
to Earth assuming the buttons work as the participant indicated. Second, whether the plan contains
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Figure 3.4: Model performance on matching evaluators’ hypotheses in Experiment 2. (a) The
proportion of flight plans for which the baseline model gave a hypothesis matching any of the
evaluators’ hypotheses versus the proportion of flight plans for which the hypothesis with highest
posterior under the inverse planning model matched any of the evaluators’ hypotheses. Error bars
are equal to one standard error. (b) Posterior mass by flight plan on a hypothesis that matched any
evaluator’s hypothesis.

enough button presses to get the spaceship back to Earth. Finally, whether the plan was longer than
the shortest plan that could plausibly take the spaceship back to Earth.

Results and discussion
As in Experiment 1, plans that fewer than three of the four evaluators (participants in Experiment
2) thought were likely to successfully bring the ship to Earth were eliminated. We first examined
how well the human evaluators’ responses matched the original planners’ stated beliefs compared
to how well the model matched the planners’ beliefs. For each plan, we computed an evaluation
accuracy by calculating the proportion of evaluators who gave the same hypothesis as the original
planner. The mean evaluation accuracy over all plans was 0.75. The model’s accuracy was thus
comparable to human performance: it placed an average of 0.74 of the posterior mass on the
hypothesis of the planner.

We next evaluated the inverse planning model’s ability to capture the evaluators’ inferences.
For each flight plan, we computed the total posterior mass assigned to all hypotheses that matched
at least one hypothesis produced by an evaluator. As shown in Figure 3.4a, the model placed an
average of 0.87 of the posterior mass on such hypotheses, significantly outperforming the baseline
model which gave the same hypothesis as one of the evaluators for 0.71 of the plans (exact McNe-
mar’s test, χ2(1) = 20, p< .001). Figure 3.4b shows that in most cases, the inverse planning model
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put almost all of the posterior mass on the evaluators’ hypotheses, demonstrating that the model’s
inferences were similar to those of human evaluators. The inverse planning model was more suc-
cessful at matching evaluators’ hypotheses than the hypotheses of the original planners primarily
due to the fact that many plans are ambiguous. For example, given that the spaceship is one square
up and to the left of Earth, the plan (red, yellow) is equally good evidence that red usually moves
the ship down and yellow usually moves it right as vice versa. With multiple evaluators, each of
these hypotheses is likely to be given, but the original planner could only have a single hypothesis.
Neither human observers nor the inverse planning model have sufficient information to infer which
of the possible hypotheses was actually believed by the original planner.

One discrepancy between the inverse planning model’s inferences and human inferences was
in the strength of the model’s predictions about the buttons that were not used in the plan. People
often use one button repeatedly for multiple moves in the same direction, even if there is another
button that they believe also moves the ship in the same direction. The model takes each press of
the same button as evidence that no other button works the same way, since if there is another such
button, it is likely that the person would choose that button at some point. People might instead be
using a model that is Markov based on the current state of the ship and their last action: choosing
to push the same button again is less effort and thus lower cost. While the current inverse planning
model does not use such a reward model, it could easily be modified to have a larger state space
and more complex reward function to better match the task demands. This flexibility is one of the
advantages of the inverse planning model.

3.5 Experiment 3: Using the model to guide feedback
The previous experiments demonstrate that in the flight planning task, the inverse planning model
can diagnose people’s beliefs with about the same accuracy as human observers. Given this evi-
dence about the validity of the model’s inferences, we now consider how this model might be used
in an educational setting. One area where it might be helpful is in guiding automated feedback.
Based on the detailed diagnostic information that the model provides, the feedback that is most
relevant to a learner can be selected. Previous work has found that more specific feedback can
be more helpful than general feedback (Shute, 2008), and that feedback which directly supports
learning can have large positive effects (Kluger & DeNisi, 1996).

To test whether feedback provided via the inverse planning model was an improvement over
generic feedback, we conducted a new experiment using a modified version of the flight planning
environment. After each flight planning phase, participants were provided with information about
how one of the buttons worked. The button about which feedback was given was either selected
randomly or via the inverse planning model. If model-based feedback results in participants being
able to correctly label how more buttons work after fewer phases of learning, it suggests that
the inferences made by the model are sufficiently accurate to guide feedback and that at least in
some circumstances, specific diagnostic information can enable practical measures for improving
learning.

We also used this experiment to test whether the model could be applied to more complex
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hypothesis spaces. In the previous experiments, we assumed that for each button, the participant
was certain about her belief that it functioned in a particular way. However, this may not always
be the case. For example, a participant might believe that the blue button either moves the ship
randomly or to the left, but be uncertain about which of these two movement patterns is correct.
Such hypotheses may be likely to occur when a person has only limited information, and showing
that the inverse planning can still diagnose uncertain beliefs is important for real world applica-
tions. In this experiment, we extend the hypothesis space to include such uncertain beliefs and
modified the flight planning phases to include multiple flight plans, which provide the opportunity
for a participant to show evidence of such uncertainty.

Methods
Participants

A total of 60 participants were recruited from the University of California, Berkeley and received
course credit for their participation.

Stimuli

Participants used a modified version of the interactive flight planning environment described in
Experiment 1. Each participant was randomly assigned to receive feedback based on the inverse
planning model or feedback chosen randomly. Thirty participants received each type of feedback.

Procedure

Participants were told that they would be learning how to fly a particular type of alien spaceship.
They were informed that they were part of the human resistance movement, and that as a pilot
in this movement, they had two tasks: (1) learn how each button affected the movement of the
spaceship, and (2) use this knowledge to create flight plans that would take ships back to Earth.
The interface gave participants instructions about exploration phases and flight planning phases,
just as in Experiment 1, and participants completed each type of phase six times. Exploration
phases were identical to Experiment 1, except that participants were allowed six button presses
rather than eight. The number of button presses per exploration phase was reduced in order to
increase the number of phases required for participants to learn the meaning of all buttons. By
increasing the number of phases over which learning is likely to occur, the potential impact of
feedback is increased for both conditions.

The flight planning phases were changed somewhat from Experiment 1. The first change was
that there were four flight plans per phase, rather than only one. This was to allow participants
the opportunity to show uncertainty about how a particular button worked, consistent with the
extension of the model to a more complex hypothesis space.

The second change to the experiment was that some flight plans were for ships that had buttons
that could not be used. This modification was to encourage participants to use a variety of different
buttons and to learn how all of the eight buttons worked. Since one of our outcome measures was
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what proportion of buttons a participant had correct beliefs about, we wanted to lessen the prob-
ability that participants would learn about only four buttons, one for each direction, and then use
only those buttons. The existence of ships with buttons that could not be used by participants was
explained within the context of the cover story: Each ship in the flight planning phase contained
human refugees who had managed to steal the ship from the aliens; in some cases, the aliens sab-
otaged some of the buttons as they were leaving. Participants entered one flight plan for each of
the four ships in each flight planning phase. The starting locations of the ships were chosen as
follows. The grid was broken into four quadrants (upper-left, upper-right, lower-left, and lower-
right). Within each quadrant, one location was chosen uniformly at random from those squares
that were at least two steps from Earth. These four starting locations were then placed in random
order, and flight plans were entered sequentially. For each flight plan, participants were told that
they were piloting a different ship, which worked the same way as the other ships. To implement
the sabotaged buttons, 0–3 buttons were chosen uniformly at random for each ship; these buttons
were marked as broken.

After each flight planning phase, participants were asked to check that the drop-down menu
below each button showed their current beliefs. Then, they were told how many total points they
had earned with their flight plans. In order to motivate participants, we modified the point structure
from Experiment 1 such that participants received more points for getting closer to Earth, even if
they did not actually reach Earth. Each plan was worth a maximum of 300 points. If the spaceship
ended at Earth, the participant received all 300 points, while if the spaceship ended at a location
that was further from Earth than it started, the participant received zero points. Otherwise, the
participant received a fraction of the maximum points equal to the proportion of the final distance
from Earth compared to the starting distance. More specifically, if the ship ended m squares from
Earth (measured as the sum of the displacements in the x- and y-directions) and started out n
squares from Earth, the participant received 300× n−m

n points. Participants were informed about
how points were calculated, and were told the total number of points that they earned from all four
flight plans in the phase. This point structure encourages participants to attempt a flight plan even
if they are missing crucial knowledge to complete the plan or if all buttons that would give the plan
high probability of success are broken. For example, the ship might be up and to the right of Earth.
If a participant believes that red moves the ship left but that the only button which moves the ship
down is broken, this point structure rewards her for at least beginning the plan by trying to move
the ship left.

Once participants had been told how many points they had earned, they were given feedback
about one of the buttons. Since the inverse planning model required some time for computation,
we computed the model’s choice of feedback for participants in both conditions in order to have
similar timing of feedback across conditions (see below for details on the algorithm to compute
feedback). This computation took 10–15 seconds, and computation began after all flight plans
for the phase were entered. Thus, participants generally had very little waiting time, since feed-
back computations mainly occurred while they were checking the drop-down menus and learning
how many points they had earned. If additional computation time was required, participants were
told that they were waiting for intelligence via an on-screen message. Once the button had been
chosen, a message was displayed informing the participant that another member of the resistance
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had learned that the 〈color〉 button moved the ship 〈direction〉; the information that was given to
participants was always accurate, regardless of feedback condition. The only difference was that
participants in the random condition received feedback about a randomly chosen button and par-
ticipants in the model-based feedback condition received feedback about a button chosen by the
inverse planning model. Participants were asked to change the drop-down menu for that button to
reflect the new information and could not continue until they had done so.

Inferring beliefs in a continuous hypothesis space
After each flight planning phase, we inferred the participant’s beliefs about all eight of the buttons.
As previously noted, we extended the hypothesis space in this experiment to a broader set of
possible beliefs. The new hypothesis space included cases where a participant has uncertainty
about exactly how a button works, but places greater confidence on some possibilities than others.
This hypothesis space was realized by assuming that participants might act as if they had a belief
distribution over possible movement patterns for a button. The hypothesis T is now collection of
distributions {θ(1), . . . ,θ(8)}. Each θ(i) is a probability distribution over possible patterns: usually
moves the ship left, usually moves the ship right, usually moves the ship up, usually moves the
ship down, or moves the ship randomly. For instance, θ(i) = [0.5,0,0,0,0.5] would correspond to
uncertainty about whether the ith button usually moves the ship left or moves the ship randomly.

Since participants know that each button does operate consistently, although they may not
be certain which consistent pattern it follows, we use the following generative model of action
planning: At the start of a flight plan f , participants choose one pattern for each button; let b(i)f
be the participant’s belief about how button i is working in plan f . The probability of choosing
pattern j for button i is θ

(i)
j . The participant then chooses the sequence of buttons to guide the ship

from its current location to Earth; planning occurs in the same manner as in Experiment 1. This
process is repeated for each of the four flight plans in the phase.

Due to the discrete nature of the hypothesis space, the posterior distribution over hypotheses
could be calculated exactly for Experiment 1. For Experiment 3, we instead calculate an approxi-
mate posterior distribution over the continuous hypothesis space using Gibbs sampling (Geman &
Geman, 1984). We sample the variables b(i)f corresponding to how each button works in each flight

plan; at each iteration, we choose an i and f randomly, and sample a new value for b(i)f given the
current values of each other latent variable. To sample this value, we compute:

p(b( f )
i |b

(1:F)
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−i ), (3.5)
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where a( f ) are the observed actions for flight plan n, b( f )
−i is the assignment of patterns to buttons

other than i for plan f , and b(− f )
i ) is the assignment of patterns for button i in plans other than f .

We now consider how to sample each of the two terms in the final equation.
To calculate p

(
b( f )

i |b
(− f )
i

)
, we place a Dirichlet prior on each θi. This then corresponds to a

Dirichlet-multinomial model:

p(b( f )
i = k|b(− f )

i ) =
∫

θ

p(b( f )
i |θ)p(θ|b(− f )

i )dθ

=
count(b(− f )

i = k)+αk

F−1+∑ j α j
(3.6)

where α are the parameters of the prior on θi and F is the number of flight plans.
The second term required to sample b( f )

i is the probability p
(

a( f )|b( f )
i ,b( f )

−i

)
. To compute the

probability, we follow a similar recursive pattern to that in Experiment 1. However, sometimes
ships in Experiment 3 had broken buttons. In those cases, we restricted the space of possible
actions to those that were available, and calculated the policy given that restricted space.

The above Gibbs sampling procedure allows us to compute a series of samples for how the
buttons work in each flight plan. For the feedback, we choose the button b∗ that the participant is
least likely to know the right pattern for:

b∗ = argmin
i

θ̄
(i)
h∗i

(3.7)

where h∗i is the true movement pattern of button i and θ̄ is our empirical estimate of θ. Buttons
about which feedback has already been given are excluded. We calculate the empirical estimate θ̄

from the samples:

θ̄k =
∑

F
f=1 count(b( f )

i = k)+αk

num flight plans+∑ j α j
, (3.8)

again relying on the fact that this is a Dirichlet-multinomial model. To compute this estimate in
the experiment, we set all α j = 1, corresponding to a uniform prior. We generated 10,100 samples,
removing the first 100 samples for burn-in. This produced similar results to using more samples or
a longer burn-in period.

Computing feedback
Feedback was provided six times during the experiment, once after each flight planning phase.
Feedback was constrained to be chosen without replacement so that in each phase, participants
received feedback for a button about which they had not previously been given feedback. For par-
ticipants in the random condition, the button was chosen uniformly at random from the remaining
buttons.
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For participants in the model-based condition, we used the posterior distribution computed by
the inverse planning algorithm to select the feedback. Based on the model’s inferences, we chose
to give feedback about button b∗, the button with lowest probability that the participant had the
correct understanding:

b∗ = argmin
i

θ
(i)
h∗i

(3.9)

where h∗i is the index of the true pattern for button i and θ
(i)
j is the jth element of the vector θ(i).

The minimum is constrained to be over only those buttons that have not previously been chosen,
and if multiple buttons have the same minimal θ

(i)
h∗i

, one of these buttons is chosen uniformly at
random. Thus, this computation corresponds to choosing the button about which we believe the
participant is most likely to have incorrect beliefs.

Results and discussion
As shown in Figure 3.5, participants who received feedback based on the model were able to
correctly identify more buttons at earlier phases than participants who received random feedback.
The data were analyzed using a two-way repeated measures analysis of variance in which the
percentage of correctly identified buttons was predicted by feedback condition (between subjects)
and phase number (within subjects), including an interaction term. There was a main effect of
condition on the percentage of buttons correct (F(1,290) = 5.53, MSE = 0.516, p < .025). There
was also a significant main effect of phase (F(5,290) = 184.5, MSE = 2.32, p < .001), and the
interaction between these two effects was significant (F(5,290) = 3.31, MSE = 0.0416, p < .01).
Note that as expected, the effect is largest in the beginning and middle phases; if the number of
phases was increased to eight, all participants in both groups would necessarily have all buttons
correct as they receive information about one new button at each phase.

We also examined whether participants in the two conditions varied in how likely they were to
correctly identify all buttons in a phase. To analyze this, we used GEEQBox, a Matlab toolbox, to
perform a logistic regression analysis using generalized estimating equations to correct for repeated
measures of the same participants (Ratcliffe & Shults, 2008). We regressed whether all buttons
were correct on condition and phase, with no interaction term, and included a constant predictor in
the model. The predictor for condition had value zero for participants in the model-based feedback
condition and one for participants in the random feedback condition. An unstructured correlation
matrix was assumed for the repeated measures correction. Both coefficients for condition (β1) and
phase (β2) were significant (β1 = −0.98, p < 0.01; β2 = 0.64, p < .001); these values show that
participants in the model-based feedback condition were more likely to have all buttons correct,
and participants were more likely to have all buttons correct in later phases.

We hypothesized that the main reason that model-based feedback is more effective is that it is
more likely to select buttons about which the participant has an incorrect belief. To test this, we
compared how often each method selected such a button. We performed a similar logistic regres-
sion analysis as above, but with an outcome variable corresponding to whether the button selected
for feedback had already been correctly identified by the participant. We measured participants’
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Figure 3.5: Average proportion of buttons correct, by phase and condition. Participants who receive
model-based feedback have more buttons correct at earlier phases. Error bars are equal to one
standard error.

choices immediately before giving feedback. For this analysis, we exclude cases where the partic-
ipant had all buttons correct, as there is no chance of any feedback method choosing a button about
which the participant is incorrect. Both coefficients were again significant (condition: β1 =−1.17,
p < 0.001; phase: β2 =−0.52, p < 0.001): buttons about which the participant was incorrect were
more likely to be selected for feedback in the model-based condition, and less likely to be selected
in later phases. This supports our hypothesis that the reason model-based feedback results in faster
learning is that it more frequently chooses buttons about which the participant has a misconception.

Overall, these results suggest that model-based feedback can speed learning. The model’s
inferences are accurate enough at recovering participants’ beliefs to be informative, even though
we know from the first two experiments that these inferences are not always correct. While the
technique does require computational resources, the time to choose feedback was not prohibitive
and generally took no more than 15 seconds, with participants rarely waiting for more than a few
seconds. In this task, we gave relatively simple feedback. However, in more complex tasks where
simply telling the learner about her misunderstanding may be less effective, the model could be
used to personalize the examples and exercises that are presented to the learner, focusing on items
that highlight the learner’s misunderstanding, or to trigger remedial instruction on a particular
concept. As Kluger and DeNisi (1996) discuss, there are many factors influencing whether a
particular feedback intervention will be helpful to learners; our model provides an additional source
of information that can be incorporated to construct effective feedback.

3.6 General discussion
People can make inferences about other’s beliefs by observing their actions, and this ability has
the potential to be very helpful in educational contexts. We have developed an inverse planning
model for automatically making these inferences and shown that it can draw similar conclusions
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to people when given the same data. Our model relies on formulating action planning as a Markov
decision process, in which people may have misconceptions about what transition model is oper-
ating in the environment. We then use a variation of inverse reinforcement learning to infer these
misconceptions. This model can be used to infer either continuous or discrete hypotheses, making
it applicable in a wide variety of situations. We showed that this model can be applied to customize
guidance to learners in our final experiment, a common task in educational contexts. Additionally,
the model we developed has been applied in other work to diagnose students’ understanding in a
cell biology game (Rafferty et al., in press).

In the remainder of the chapter, I discuss two additional issues. First, I consider the possibility
of applying the model to a student who is learning or whose knowledge is unstable. Second, I
consider the problem of defining an appropriate hypothesis space for a new application.

Unstable knowledge states
This chapter focuses on situations in which student knowledge is fixed. While we could have used
data from previous phases to infer people’s knowledge in later flight planning phases, we used only
data from a single flight plan in order to assess how well the model could make inferences from
limited data. However, there are many situations where someone might learn while completing
a task or where we might observe the same student over a long period of time, during which her
knowledge is presumably changing. One way of handling this issue is to incorporate a probabilistic
model of learning; we discuss this approach and demonstrate its effectiveness in Chapter 5. The
probabilistic model of learning must specify how particular experiences (such as a particular state-
action-next state tuple) are likely to affect the student’s knowledge. Defining such models for a
generic domain can be challenging, but student modeling has had many successes and is an active
area of research in intelligent tutoring systems (e.g., Chang, Beck, Mostow, & Corbett, 2006;
Conati & Muldner, 2007; Corbett & Anderson, 1995).

There has also been work modeling people’s action choices in information seeking tasks, in
which a person needs to learn some information in order to be successful. For example, Fu and
Pirolli (2007) examined how people navigate the internet when trying to find some information
or learn about some topic. The inverse planning framework can be used to calculate the value of
information seeking actions, although further experiments are needed to determine whether the
noisily optimal policy is a good model of these actions or if an explicitly approximate method as
in Fu and Gray (2006) is a better fit to human behavior; we also consider an approach to including
reasoning about the value of information in Chapter 5. Overall, exploring the use of the inverse
planning model to interpret data from an interactive environment where a student model has been
defined is an importance extension of the current project. If a detailed model of learning in a
domain is not available, a second option would be to include a more generic model of learning
such that with some probability the person’s knowledge is the same as in the past and with some
probability the knowledge has changed. Thus, while we have only considered using the model to
assess static knowledge, it is possible to extend its application to cases where learning occurs over
the course of the behaviors.
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Even in the absence of learning, the knowledge states may appear to change from one task to
another. Research into misconceptions in education has shown that some misconceptions are un-
stable: a student may exhibit the misconception at some times but not at others (Hatano, Amaiwa,
& Inagaki, 1996; Hennessy, 1994; Taber, 2000). One reason might be that the situations in which
the student exhibits the misconception are sufficiently different from those in which she does not
as to make different predictions about what action the student will choose, even given the miscon-
ception. This would be represented in our model by having a representation of the state space that
differentiated the two situations. However, it may also be that the student’s knowledge appears to
be truly probabilistic. This can be represented in our model by defining a hypothesis space over
probabilistic beliefs, which will often be continuous. For example, in Experiment 3, we repre-
sented participants’ knowledge using a distribution over possibilities for each button. Thus, half
of the time someone might behave as if she believed the button moved the ship up, and half of
the time the person might behave as if she believed the button moved the ship randomly. The
potential for a continuous hypothesis space allows probabilistic or unstable knowledge states to
be easily represented. We further develop a case in which there is clear evidence for probabilistic
application of misconceptions in the following chapter, focusing on algebra understanding.

Defining the hypothesis space
The flight planning environment was relatively easy to represent as a Markov decision process, and
due to the instructions, the possible hypotheses were also reasonably well-defined. However, there
are many applications where this is not the case, and even within these experiments, we considered
two different ways of defining the hypothesis space. There is not a generic way to take a task
and output the possible transition structures that correspond to relevant misconceptions. Instead,
one must consider what types of misconceptions are of interest and along what axes people are
likely to vary in their knowledge in order to construct an appropriate space. Investigating whether
this process can be simplified for applying the model to new domains is an important area for
future research, and a theme that will recur throughout this dissertation. One way of simplifying
the process could be to try to induce the space of possible hypotheses automatically. This would
require access to a large collection of existing data for the domain of interest, with actions from
many different people. Such data would provide evidence for what types of knowledge variations
occur in the domain.

For some specific domains, existing research has categorized either the space of dimensions on
which people’s knowledge varies or the specific misconceptions that people exhibit. For example,
cognitive tutors cover topics in mathematics and use learner models in which knowledge is divided
into a set of possible skills (Corbett & Anderson, 1995; Koedinger, Anderson, Hadley, & Mark,
1997). Such models often require significant time to construct, but recent work has addressed how
to discover underlying skills automatically from students’ interactions with a tutor or performance
on a test (González-Brenes & Mostow, 2013; Waters, Lan, Studer, & Baraniuk, 2012). While these
models do not generally identify non-normative rules that a student may believe, hypothesis spaces
for our model could posit varying levels of competence in applying each skill. This would make
our model applicable to a wide variety of domains where domain models of this form exist.
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There have also been previous efforts to characterize specific misconceptions that students
may have in particular domains, such as subtraction or algebra (e.g., Brown & VanLehn, 1980;
Hatano et al., 1996; Payne & Squibb, 1990; Sleeman, 1984; Stacey & Steinle, 1999). This research
identifies the space of misconceptions in these domains, and thus could be used to create hypothesis
spaces for applying the inverse planning framework to games or problem solving tasks involving
these domains. We use this research in the following chapter to apply Bayesian inverse planning
to algebra. One of the strengths of the inverse planning framework is that it can leverage previous
research exploring both what misconceptions occur as well as how common these misconceptions
are.

Conclusion
We have developed a model for making inferences about people’s knowledge based on observing
their actions. We take a generative approach in which Markov decisions processes are used to
model human action planning, and we use a variation of inverse reinforcement learning to infer
people’s beliefs about the effects of their actions on the environment. Our model assumes that
people are approximately rational actors who choose actions that they believe will help them to ac-
complish their goals; the model allows us to infer what beliefs would be necessary for the observed
actions to be (approximately) rational. We validated this model through behavioral experiments
and applied it to providing feedback within a virtual environment. The model has the advantage of
being flexible enough to be applied to a data from a variety of domains and to accumulate evidence
over multiple observations. This model also has a number of practical applications in education,
where it has the potential to be used to interpret data from the growing number of interactive edu-
cational technologies. Having established the accuracy of the model in the laboratory, I turn in the
next chapter to a more realistic education domain: understanding students’ algebra understanding
by interpreting their freeform solutions to algebra equations.
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Chapter 4

Diagnosing algebra understanding

In the previous chapter, we developed the Bayesian inverse planning algorithm for knowledge di-
agnosis, and demonstrated its success in the spaceship game. An important test of the framework
is whether it can be used to diagnose understanding from tasks in more educationally-relevant do-
mains. Data from these tasks may be more complex than the action sequences in the spaceship
game, and it may be less straight forward to define the possible space of understandings. We thus
turn to an investigation of diagnosing algebra understanding from students’ worked solutions.1

These solutions provide a very different type of data than that investigated in the previous chapter,
providing an opportunity to examine the model’s flexibility, and algebra itself is a topic of increas-
ing importance for students. The Common Core State Standards (Common Core State Standards
Initiative, 2010) mandate algebra as a core skill for high schoolers, and algebraic reasoning is vital
for higher level science and mathematics. However, many students struggle with algebra, leading
to the need for remedial courses and preventing these students from succeeding in higher educa-
tion. Developing a Bayesian inverse planning algorithm for algebra offers opportunities for further
research and technical improvement as well as practical impacts on student learners.

There currently exist a number of computer-based systems for helping students learn algebra,
from intelligent tutors to websites like Khan Academy (Khan, 2006-2014). These systems typically
take one of two approaches to assessing and modeling students’ algebra understanding. They
may structure the problems such that students enter their work in discrete parts, with each part
corresponding to a different algebra skill; students generally must enter the current part correctly
prior to moving on. Alternatively, these systems may use only students’ final answers to infer
their understanding, with many systems solely using information about whether an answer was
correct or incorrect. Intuitively, while it may be pedagogically useful in some cases to structure
students’ behavior or interrupt their work to point out errors, it should not be necessary to do these
things to infer students’ understanding from their worked solutions. Just as a classroom teacher
might instruct a student to “show [her] work” on an exercise to gain insight into the student’s
difficulties, the computer should be capable of drawing the same interpretations by making sense
of the student’s problem solving process.

1This chapter is based on work conducted in collaboration with Thomas L. Griffiths. Thanks go to Christina Vu
for her assistance with annotating participants’ solutions.
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Bayesian inverse planning provides a framework for making these types of inferences without
structuring students’ solutions. We focus on diagnosing a student’s understanding from observing
how she solves linear equations. The model represents understanding as the tendency to make par-
ticular types of mathematical errors. This representation allows one to determine what concepts
should be retaught or practiced; for example, it can differentiate between students who frequently
make arithmetic errors but follow the rules of algebra from those who violate these rules but use
accurate arithmetic. This is consistent with our broader goal of facilitating personalized interven-
tions based on fine-grained inferences about students’ understanding. Because Bayesian inverse
planning is a generative, probabilistic model, it easily allows data from multiple problems to be in-
corporated into the diagnosis, just as multiple flight plans could be used to diagnose understanding
in the previous chapter.

In this chapter, I begin by providing an overview of existing work modeling students’ alge-
bra skills. I next describe how to extend the Bayesian inverse planning model to interpret linear
equation solving. I first test the model via simulations, and then detail the interactive website
we developed to collect people’s algebra problem solving data. I show that people’s solutions
as entered on the website can be used to diagnose their understanding, and that these diagnoses
are consistent with a more conventional assessment. I end by discussing challenges and future
directions for Bayesian inverse planning.

4.1 Existing research on algebra understanding
There has been a great deal of interest in modeling students’ algebra knowledge and categoriz-
ing student errors, both in education and in cognitive science. Cognitive Tutor Algebra improves
students’ algebra skills and standardized test scores (Koedinger et al., 1997). This system uses
knowledge tracing to track discrete student skills, and typically structures problem solving into in-
dividual steps which students must complete correctly before continuing. Another tutor, Aplusix,
allows students to solve equations in a more freeform manner, but does not naturally maintain a
model of knowledge across problems (Nicaud, Chaachoua, & Bittar, 2006). ALEKS (Falmagne,
Cosyn, Doignon, & Thiéry, 2006) is commonly used for remedial mathematics practice in college
settings, and relies on Knowledge Space Theory (Falmagne & Doignon, 2011) for modeling what
types of problems students will be able to solve. While relying on sophisticated testing methods
to assess understanding, this system uses only students’ final answers to infer their understand-
ing. ASSISTments provides students with algebra practice and guidance, and employs a detailed
cognitive model for tracking skills (Razzaq, Heffernan, Feng, & Pardos, 2007). Bayesian inverse
planning provides a way to add to these existing models by using free-form problem solving behav-
ior to diagnose what a student understands and in what ways she misunderstands without requiring
that individual steps be correct before the student continues.

There has also been considerable cognitive science work describing students’ algebra skills
and modeling their problem solutions. Koedinger and MacLaren (2002) created a detailed pro-
cess model for how students solve algebra problems that were defined either symbolically or as
word problems, including “buggy” rules that produce particular errors. The model both provided
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significant coverage of actual student data and buggy rules with plausible methods of acquisition.
For example, students might learn a buggy rule through overgeneralizing an example. Brown and
VanLehn (1980) also propose a theory of how errors in problem solving might occur. One of the
components of the theory is that students only know how to do part of a procedure, and they patch
the procedure with an erroneous action. Thus, an error might occur because a student is attempting
to perform the correct operation but is unable to execute that operation. Research has also focused
on categorizing patterns of algebra errors and specifying the types of buggy rules that occur (e.g.,
Matz, 1982; Payne & Squibb, 1990; Sleeman, 1984, 1985). Some work identified a limited set
of “mal-rules” that could explain most students’ solutions, although these rules were not always
applied consistently (Payne & Squibb, 1990; Sleeman, 1984). While later work suggested that
explicitly countering the mal-rules was no better than simply reteaching material (Sleeman, Kelly,
Martinak, Ward, & Moore, 1989), detection of mal-rules and separation of different types of errors
might still be helpful for guiding what material to reteach. Existing work categorizing algebra un-
derstanding provides a starting point for constructing the hypothesis space of misconceptions for
Bayesian inverse planning.

4.2 Modeling algebra skills using Bayesian inverse planning
To diagnose algebra understanding from observations of students’ solutions to linear equations,
we develop a variation of the Bayesian inverse planning model described in the previous chapter.
We define the space of possible hypotheses to represent the misconceptions that people might have
about solving linear equations. By detecting patterns in a person’s action choices and equation
transformations, the inverse planning model can determine which of these hypotheses most likely
represents the person’s knowledge. A new technical challenge arises when developing a version of
inverse planning to use for algebra: the state and action spaces are infinite. We first describe how
we define the states, actions, and hypothesis space, and then turn to solutions for addressing the
infinite state and action spaces.

The states and actions correspond to equations and the way a student changes the equation
during her solution. The state can be represented as the list of terms on each side of the equation,
ignoring the ordering of these terms (e.g., 2+3 is equivalent to 3+2). The actions are the possible
transformations that a student might apply to an equation. We consider six types of actions in this
initial system:

1. Move term: Move a term from one side of the equation to another.

2. Divide by a coefficient: Divide both sides by the coefficient of a term.

3. Multiply by constant: Multiply both sides by a constant.

4. Combine terms: Combine two terms on the same side of the equation.
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5. Distribute over a parenthesized term: Multiply out a complex term like 3(x + 6) to get
3x+18. This action may also include distributing only part of the coefficient, such as trans-
forming −3(x+6) to −(3x+18).

6. Stop solving: Stop solving the current problem.

The first five actions correspond to typical algebra problem solving behavior, with the action of
multiplying by a constant being a more general form of dividing by a coefficient; below, we de-
scribe how errors in executing these actions are modeled. The final action is taken by a student
who believes she has finished solving the problem or is giving up.

The reward model represents the goals in solving linear equations. We include a positive reward
for choosing stop when the equation is of the form x = c or c = x, where x is the variable and c
is a constant, and a negative reward for choosing stop in any other state. A small negative reward
is also incurred for each action, reflecting the fact that solving an equation using fewer steps is
generally preferable to solving an equation using more steps.

Defining the hypothesis space
Recall that in Bayesian inverse planning, the hypothesis space represents all possible knowledge
states, including possible misconceptions. In this case, the space thus includes misunderstandings
about specific parts of linear equation solving. Each knowledge state is represented as a vector θ

of six parameter values. Four of these parameters relate to error tendencies in applying specific
actions, while the other two affect equation solving more broadly.

The four parameters related to specific actions are based on mal-rules discovered in prior
work (Payne & Squibb, 1990; Sleeman, 1984). The first parameter, sign error, refers to moving
a term from one side of the equation to the other without changing the sign: 2x+ 3 = 6 becomes
2x = 6+ 3. The second parameter, reciprocal error, refers to multiplying by a coefficient rather
than dividing by it: 5x = 1 becomes x = 5 rather than x = 1

5 . The third parameter, distributive er-
ror, refers to multiplying only the first term in parentheses by the coefficient, rather than all terms:
4(x+ 3) becomes 4x+ 3. Each of these parameters is a value between zero and one that reflects
the probability the student will produce that error when applying the relevant action. For example,
if θsign-error = 0.2, then the probability of not changing the sign of the moved term during a move
term action is equal to 0.2. These dimensions of θ thus govern the transition model operating in
the MDP. Representing the erroneous rule applications as probabilities allows us to account for
prior data showing that students do not always consistently apply mal-rules. The final action error
parameter relates to combining terms. This parameter is equal to one if only like terms may be
combined (only constants or only variables), and zero otherwise. This is implemented in the MDP
by including versions of the combine terms action applied to non-like terms only if the hypothesis
has this parameter equal to zero. This hypothesis state does not mean that only non-like terms will
be considered, but that there is a wider space of available actions. This space must be considered
when modeling how a student plans her actions, as it may have consequences for the sequence of
actions that the student chooses.
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In addition to the four action error parameters, there are two additional parameters that affect
each action choice and transformation. The arithmetic error parameter is the probability that a
student will make an arithmetic error in each operation in a transformation. For instance, when
distributing the coefficient in 3(x + 2 + 3), there are three opportunities to make an arithmetic
error. Like the first three dimensions of θ, the arithmetic error parameter affects the transition
probabilities. Including an arithmetic error parameter that is relevant to all actions allows us to
distinguish between students who get problems wrong due to misunderstandings about the rules
of algebra from students who have difficulties with arithmetic. The final parameter is the inferred
noise parameter β in the Boltzmann policy (Equation 3.3), which represents how efficiently the
student plans her actions. Unlike the other parameters, this parameter does not affect the transition
model or the set of actions considered but relates to the student’s choices of actions. Very low
inferred values of β might also be an indication that the student’s behavior is not well-modeled by
inverse planning; we return to this issue when modeling real algebra solutions.

Computing the diagnosis
Just as in the previous chapter, the diagnosis of understanding is a posterior distribution over
possible understandings (hypotheses). In this case, that corresponds to a posterior distribution
p(θ|d1, . . . ,dN) over the possible student parameters given N observed problem solutions. As be-
fore, we calculate the posterior using Bayes’ rule:

p(θ|d1, . . . ,dN) ∝ p(d1, . . . ,dN |θ)p(θ)

= p(θ)
N

∏
i=1

p(di|θ) (4.1)

where each term is the likelihood of the observed data for a given problem. Each term p(di|θ) can
then be calculated using the transition model and policy, letting each problem solution d correspond
to the sequence of observed states s1:M = {s1, . . . ,sM} (derived from the equations). These terms
differ somewhat from the likelihood in the previous chapter because while all states are observed,
no actions are directly observed; instead, we sum over possible actions:

p(s1:M|θ) = p(s1|θ)
M−1

∏
i=1

p(si+1|θ,si)

∝

M−1

∏
i=1

∑
ai∈A

p(si+1,ai|θ,si)

=
M−1

∏
i=1

∑
a∈A

p(si+1|θ,si,a)p(a|θ,si) (4.2)

where the final state sM is always a null state, reached by taking the stop action. As in the previous
chapter, we assume the student chooses actions noisily optimally: p(a|θ,si) ∝ exp(θβQ(si,a)),
where θβ is the planning parameter dimension of θ. The set of transition models and action policies
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we consider is defined by the range of the parameters that compose the θ vector. Since five of these
six parameters are continuous, we compute an approximate posterior distribution using Metropolis
Hastings, an MCMC method; this mirrors our approach in the case of modeling people as having
uncertainty about how the buttons worked in the final flight planning experiment. We place a
Beta(1,3) prior on the four continuous probability parameters in θ, favoring parameter values
closer to normative algebra solving. The parameters for this prior distribution were not tuned.

To calculate the student’s policy, we must solve the Q-function for the MDP defined by a par-
ticular θ. We compute an approximate solution because the state and action spaces are infinite.
First, we discretize the space of actions, a common strategy in MDPs with large or continuous ac-
tion spaces (e.g., Busoniu, Babuska, De Schutter, & Ernst, 2010). We create generic parameterized
versions of each action that incorporate information about what types of terms (constant, variable,
or complex) are being acted on but ignore the specific coefficients of those terms. Q-values are
then learned for each generic action. To discretize the state space, we aggregate states into a finite
set of possibilities, and then solve Q(s,a) using the aggregated states and discretized actions, such
that all equations which map to the same aggregated state will have the Q-values (Sutton & Barto,
1998). While this approximation may not be as accurate as some newer algorithms, it allows the
Q-function to be calculated relatively quickly. Speed is important as a new Q-function must be
computed for each MCMC sample.

4.3 Diagnosis using simulated data
We have described how to use Bayesian inverse planning to infer a posterior distribution repre-
senting tendencies towards particular algebra errors. We first use simulated data to investigate how
accurately the error parameters can be recovered, as several sources of noise could lead to inaccu-
racies. First, the algorithm cannot observe what actions were used to transform equations from one
state to another. While we sum over all possible actions, there still is ambiguity in which action
caused a particular transformation. Second, the number of problem solutions provided limits the
confidence of our estimates. If only a few solutions are available, the posterior distribution may
be close to uniform, reflecting insufficient evidence to estimate the parameters. This mirrors the
issues in Experiment 1 in the spaceship game, where flight plans were consistent with multiple
possible beliefs. Finally, both the inferred posterior and the solutions to the MDP for each sample
of the posterior are approximate. Simulations thus provide a test of how well our model could
perform if it perfectly represented people’s equation solving.

Methods
For each simulation, we randomly sampled a vector of parameters from the prior to represent
the true hypothesis of the learner. For the planning parameter, we restricted the range to [0.5,5],
reflecting reasonable values we would expect for learners. We then had the simulated student
solve N = 20 or N = 50 randomly generated problems. Using Bayesian inverse planning, we
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Figure 4.1: Simulation results showing the (a) mean absolute difference and (b) median absolute
difference between the mean of the samples from the posterior distribution and the true parameter
values. Error bars reflect one standard error.

approximated the posterior distributions given the generated data. We used 10,000 samples with
an additional 1,000 samples for burn in. Fifty simulations were conducted for each value of N.

Results
As shown in Figure 4.1, the algorithm recovers the true parameters of the simulated learners rela-
tively accurately. The highest error occurs for the planning parameter, which is expected given that
this parameter has a larger range than the other parameters. Inspection of the simulation results
reveals that large differences between the inferred and true parameters occur most often when the
learner’s error parameters are high, making it more difficult to distinguish the cause of incorrect
transformations. For example, the simulated student might misapply an algebra rule by multiplying
both sides of 3x = 6 by the coefficient of x rather than its reciprocal, but also make an arithmetic
error when multiplying 6 and 3. The end result of x = 17 would be consistent with either one er-
ror or two errors. When the error parameters are large, such multi-error transformations are more
common. While the overall accuracy of the inferences as measured by the mean values of the
posteriors is similar when N = 20 or 50 equations, the inferred posterior distributions are more
concentrated with greater numbers of solutions (Figure 4.2).

4.4 Evaluation with human data
The results of the simulations suggest that we can recover the original parameters of the learner
with reasonable accuracy. However, interpreting human equation solving is likely to be more
difficult. People may exhibit more variety in their actions than our algorithm models, and they may
not naturally provide problem solutions at the level of granularity that we expect. We thus turn to an
experiment in which we designed an interface to collect equation solving data and use the algorithm
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Figure 4.2: Posterior distributions from representative simulations given data from (a) twenty solu-
tions and (b) fifty solutions. The true parameter values are shown via red lines. In both simulations,
the red lines are close to the sampled values, but with fifty solutions, the posterior distributions are
more concentrated, especially for the planning and arithmetic error parameters.

to interpret that data. The interface, the Berkeley Algebra Tutor (see Figure 4.3), encourages
participants to enter each step of their equation solving, allowing us to collect detailed problem
solving data. We evaluate what proportion of those steps can be interpreted by the Bayesian inverse
planning model, and explore whether the model’s inferences are consistent with other measures of
their arithmetic and algebra understanding.

Methods
Participants

Seventy participants were recruited via Amazon Mechanical Turk. Participants were asked to only
sign up for the experiment if they were at least eighteen and had taken some form of algebra but
had not completed college math courses beyond algebra. They thus represent our target population
of people who have had some algebra training, but may have misunderstandings or gaps in their
knowledge.

Stimuli

Participants completed several activities: an online worksheet, a questionnaire, and problem solv-
ing on the algebra tutor website. The worksheet consisted of three sections: (1) ten arithmetic
problems, (2) five simplification problems involving combining terms and the distributive prop-
erty, and (3) twelve algebra equations. The arithmetic problems covered addition, subtraction,
division, and multiplication of both positive and negative numbers. Four problems include frac-
tions. The next section focused on combining like terms and distribution. It included items such as
simplifying 2+3a+5a+9 and simplifying x+y−3(z+w); items were based on the algebra skills
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Points: 15 points (3 problems)Solve problems About the Berkeley Algebra Tutor Contact Info Interface Reference 

Berkeley Algebra Tutor

Solve for x in the equation below. You can leave your answer as a fraction if you want. Please add a new line for each step 
you perform - don't combine multiple steps on one line. When you think you've solved the problem correctly or you can't 
figure out what to do next, click "Done solving!".

Show interface help.

Step Equation Add/Remove Typeset Equation

3x-5x = -5

-5-2x

x 5/2

=

=

1

2

3

Add step Done solving!

Figure 4.3: User interface for the problem solving website. The first line in the interface shows the
problem the user must solve, and the user adds lines to show her problem solving steps.

tests in Gough (2004) and Sleeman (1984). The final section of the test had linear equations to be
solved; the types of these equations were based on those listed in Birenbaum, Kelly, and Tatsuoka
(1993) and Sleeman (1984).

The questionnaire consisted of six questions. Four asked about math background and comple-
tion of post-secondary education, and two asked about age and gender.

The online tutor interface is shown in Figure 4.3. Participants are shown the equation that they
must solve, and with each problem step, they add an additional line to show their work. The last
column in the interface updates with the rendered version of the user’s input in real time, with the
intent of lowering barriers to interpreting typed mathematics.

Procedure

There were two parts to the experiment, which could be completed at different times: an online
worksheet followed by a questionnaire with demographic questions (denoted worksheet), and use
of the interactive equation solving interface (denoted website). Half of participants completed
the worksheet activity first, and half completed the website section first. The instructions for the
first activity informed participants of the second activity and instructed them to only complete
the first part if they intended to also complete the second part. Participants were paid one dollar
after completing the first activity, and three dollars after completing the second activity. Together,
the two activities required about one hour. Access to the second activity was granted after the
participant completed the first activity; most participants chose to provide their email addresses,
and were emailed once access to the second activity had been granted. Participants had up to one
week following their initial participation to complete the second activity.

In the worksheet activity, participants completed the online worksheet followed by the ques-
tionnaire. They were instructed that they could use scratch paper, but that they should not use a
calculator.
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In the website activity, participants solved twenty problems using the Berkeley Algebra Tutor
website. Just as for the worksheet, participants were informed that they could use scratch paper if
they wished but that they should not use a calculator or online resources. Prior to solving problems,
they completed a short tutorial, which instructed them how to use the interface and included several
interactive activities to show participants how to separate their problem solving into individual
steps. The tutorial was intended to discourage participants from only giving final answers, rather
than showing their work. After the tutorial, participants began solving problems. The numbers
used in the problems were generated randomly, but each problem matched one of the types of
problems used in the worksheet (e.g., constant+ variable = constant). Two of each of ten types
of problems were included. When the participant indicated she was done solving a problem, she
was told whether her solution was correct. To encourage motivation, participants received points
for each problem: ten points for completing a problem correctly, and one point for attempting a
problem but answering incorrectly.

Computing diagnoses

We used the MCMC sampling procedure described previously to compute a posterior distribution
over the parameters for each participant. Each line in the website data was treated as one step in
the participant’s solution and was automatically parsed into an equation representation. Identical
consecutive lines and blank lines were omitted. Each diagnosis was based on 10,000 samples, with
an additional 1,000 samples for burn in.

Initial inspection of results showed that some participants performed multiple actions within
one line in the online interface. For instance, one participant entered the step−5x =−5− (2x−8)
followed by−5x =−2x+3. This transformation cannot be realized with a single action, but seems
likely to be the result of first multiplying out the complex term to get −5x =−5−2x+8 and then
combining the terms−5 and 8. To address this issue, we augmented the sampling procedure to sum
over sequences of actions. For computational simplicity, we approximate the probabilities by only
considering a sequence of length n actions if no sequence a of n−1 actions has any p(s j|si,a)> 0.
For a sequence of two actions, the transition probability between states si and s j can be computed
as follows:

p(s j|si) = ∑
a∈A

p(s j,a|si)

= ∑
a∈A

p(a|si)∑
sk

p(s j,sk|a,si)

= ∑
a∈A

p(a|si)∑
sk

p(sk|a,si) ∑
a′∈A

p(s j|a′,sk)p(a′|sk),

where we make use of independence relations guaranteed by the Markov property. The same
recursion can be repeated for multiple skipped steps, although tractability issues arise; we thus
consider sequences with a maximum of two skipped steps (three total actions).
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Results and discussion
Of the 70 participants who completed the first activity, 90% completed the second activity. We
analyze only data from those 63 participants who completed both activities. All participants who
chose to respond to our demographic questions indicated that they had taken algebra. The average
score on the worksheet was 68.7%, with an average of 65.7% correct on the equation solving por-
tion. On the website, participants correctly answered an average of 66.0% of equations correctly
(13.2 equations, range: [0,20]), demonstrating that overall success rate was very similar for the
website and the worksheet. Total problems correct on the algebra portion of the worksheet and the
website were correlated (r(61) = 0.628, p < .001).

Coverage of participant input

We first explored the model’s coverage of the transformations when different numbers of skipped
steps were allowed. There were a total of 5,539 transformations, each consisting of a pair of
consecutive lines that were entered into the website. Without any skipped steps, 865 of these trans-
formations (15.6%) could not be interpreted as corresponding to any of the actions. Inspecting
these transformations shows that many of them correspond to a skipped step, with some partici-
pants especially prone to combining multiple actions in a single step. When the model is permitted
to consider skipped steps, its coverage improves. When one skipped step is considered, only 98
transformations cannot be interpreted (1.77%), and when two skipped steps are considered, 34
transformations cannot be interpreted (0.61%). While not all interpretations may truly reflect the
intentions of the participant, these results demonstrate that allowing only two skipped steps results
in over 99% coverage of the observed transformations using variations on a small set of actions.

Both accurate and inaccurate transformations were interpreted by the model, although inaccu-
rate transformations had lower coverage. To test whether a transformation was accurate, we used
a symbolic mathematics library to determine if the same value for the unknown was valid for both
steps in the transformation (Kramer, 2010-2014). 87.5% of the proposed transformations were
mathematically valid. When skipped actions were not allowed, the model interpreted 88% of the
correct transformations and 52.5% of the incorrect transformations. Thus, the majority of erro-
neous transformations could be attributed to a single erroneously executed action, although some
transformations likely reflected errors that were not in our model.

Classification of participant errors

To understand what types of errors participants made and how well the model’s inferences about
transformations matched human inferences, we annotated a subset of the problem solutions. One
hundred of the 392 problems that had at least one inaccurate transformation (as annotated by the
symbolic mathematics library) were randomly selected; these problems included 524 total trans-
formations. Two annotators examined each transformation and recorded several features. First,
each annotator recorded whether the transformation was mathematically accurate. This duplicates
the inferences of the mathematics library, but provides a check in case the participant’s work could
not be interpreted accurately by the library and helps to orient annotators for the other tasks. Next,
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each annotator examined the actions that were given non-zero probability in one of the samples
by Bayesian inverse planning. If one of these actions was judged to match the participant’s inten-
tion, the transformation inference was recorded as “accurate”; otherwise, the inference was “in-
accurate.” This provides a measure of whether the high coverage numbers provided above reflect
correct inferences about intentions, at least as compared to human inferences. If the transformation
was mathematically incorrect, the annotator also recorded the type of error. Prior to annotation,
ten specific error types were identified based on examination of participant solutions. An eleventh
error type was added to account for “unclassified” errors not covered by the other types; see Table
4.4 for error types and descriptions. The two annotators met prior to the start of annotation to
discuss the coding scheme and agree upon the procedure.

Overall, the annotators exhibited good inter-rater reliability. For the annotation of whether
a transformation was an error, Cohen’s κ = 0.86, with disagreement on 6% of transformations.
Since neither annotator found examples where the mathematics library would have been unable
to interpret a participant’s input, disagreements were reconciled via comparison to the library’s
output and manually checked by one of the annotators. In the reconciled annotations, 34% of
transformations were classified as mathematically incorrect. Forty-six of the one hundred problems
had two or more incorrect transformations; the average number of incorrect transformations per
problem was 1.71. Some of the problems with multiple errors appeared to be cases of participants
using non-standard notation or misusing the interface to enter their work. For example, consider
the following transformations entered by a participant:

−2−2y =−10
−2−2y =−10+2
−2y =−8

In the second step, it seems likely that the participant is moving the −2 to the right hand side, as
a 2 is added to that side. However, the participant retains the −2 on the left hand side. In the
third step, this extra −2 is deleted and −10+ 2 is correctly combined. This sequence of steps
cannot be interpreted by our algorithm; in fact, it seems to be non-Markovian as the deletion in
the third step is due to the state of the first step. Some participants seem particularly prone to
such behavior, suggesting there may be a reason other than carelessness for these patterns; for
instance, participants may misunderstand what is being represented by equality and the series of
transformations or have been taught to show their work in non-standard ways during previous
instruction. This issue highlights the fact that inferring why someone acts in a particular way can
be a difficult task even for people and that customizing Bayesian inverse planning for a particular
domain may require iterative improvements to include all relevant misunderstandings. Despite the
existence of some steps that could not be interpreted by the algorithm, the inferred actions were
generally consistent with human inference. The algorithm was judged to have correctly inferred
the action for 87% of transformations by the annotators; inter-annotator agreement for this feature
was substantial, with Cohen’s κ = 0.75, and disagreements were resolved via discussion.

Some types of errors were more common than others. As with the other annotations, inter-
annotator agreement was high for this feature and disputes were addressed via discussion (Cohen’s
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Error number Error name Description

1 Arithmetic error Makes an error multiplying, dividing, adding, or sub-
tracting that does not fall into another error category.

2 Sign error Moves a term from one side to another but does not
change sign. For example, 2x+3 = 6→ 2x = 6+3.

3 Move and change value error Moves a term from one side to another and changes its
value. For example, 2x+3 = 6→ 2x = 6+5.

4 Multiply only first error Multiplies a coefficient into a complex term, but only
multiplies the first term in parentheses. For example,
2(3+ x)→ 6+ x.

5 Partial multiply error Multiplies a coefficient into a complex term, but only
fully multiplies part of the coefficient, leaving off the
sign or using only the sign in some cases. For example,
−2(x+3)→−2x+6.

6 Reciprocal error Multiplies rather than divides by a coefficient. For ex-
ample, 2x = 3→ x = 6 or 1

2 x = 4→ x = 2.

7 Add/delete term Adds or deletes a term while making no other changes.
For example, 2x+3 = 6→ 2x = 6.

8 Add/delete sign Adds or deletes a sign from a term while making no other
changes. For example, 2x−3 = 6→ 2x+3 = 6.

9 Modify term Modifies the value of a single term while making no
other changes. For example, 2x = 18→ 2x = 47.

10 Combine unlike terms Combines a variable and a constant term. For example
2x+3→ 5x.

11 Unclassified Error does not fit any of the above classifications.

Figure 4.4: Descriptions of each error included in the annotation of participants’ transformations.
Errors with bolded numbers are directly captured by the θ inferred via Bayesian inverse planning,
although other errors may be specific versions of mistakes captured by the algorithm (e.g., move
and change value error is treated as an arithmetic error).
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Figure 4.5: Errors by type, as classified by annotators. Arithmetic errors are the most common,
followed by add/delete term.

κ = 0.78). As shown in Figure 4.5, arithmetic errors were the most common type of error. Errors
that did not fit into the classification scheme made up 9% of annotated transformations, although
some of these transformations were the result of two errors (e.g., arithmetic error and combine
unlike terms) and would be interpreted correctly by the algorithm. While many of the error types
are covered by Bayesian inverse planning, the large number of add/delete term errors suggests that
an error of this type should be included in future versions of the model. One way to incorporate this
error would be to add an add/delete action that has a high cost. Alternatively, one might consider
adding a dimension to θ to reflect the propensity of individual participants to use this action. Given
that this action could indicate carelessness or a much deeper misunderstanding of either algebra or
the interface, recognizing that someone frequently adds and deletes terms could be a useful trigger
for an intervention.

Diagnosis of mathematical skills

The inferred posterior distributions demonstrate the skills of individual participants. Figure 4.6
shows the posterior distributions for a single participant, with green lines showing the mean of
each distribution. The arithmetic error parameter is relatively large (mean value 0.235), which
is consistent with the participant’s worksheet score of 5 of 10 arithmetic question correct. The
distributive error parameter is relatively low (mean value 0.089), matching the fact that none of the
participant’s answers for the worksheet simplification questions were consistent with multiplying
only the first item. The sign error parameter is somewhat higher (mean value 0.133). While none of
the worksheet questions directly test this skill, inspection of the tutor results does show examples
of this error. For instance, the participant transforms −11x = 3x+68 into −8x = 68. This is likely
due to a skipped step of −11x+ 3x = 68, reflecting a sign error. The somewhat low planning
parameter, indicating non-optimal planning, is likely due to the fact that the participant submitted
two of the twenty problems on the website prior to giving answers of the form x = c or c = x;
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Figure 4.6: Inferred posterior distributions for a single participant, with green lines indicating mean
values. The distributions provide a profile of this participant’s skills.

on the worksheet, the participant was also unable to provide an answer for three of the equation
solving questions.

To identify whether each participant’s data was well fit by the model, we examined the inferred
planning parameters. When this value is very small, the person is modeled as choosing actions
nearly uniformly at random, generally indicating poor fit. 71% of participants had mean inferred
planning parameters greater than 0.3 when the number of skipped steps permitted was set to zero,
with 78% meeting this threshold when skipped steps were permitted. The cutoff for the planning
parameter was chosen based on the distribution of the data: most excluded participants had inferred
parameters below 0.2, and relatively few participants had inferred parameters between 0.2 and 0.4.
Examining the data of those who were poorly fit by the model, we noticed that some participants
truly did seem to be planning poorly while others made errors not covered by the model. In the
first group are participants who frequently submitted problems without reaching a solution. In
these cases, the low planning parameter may not actually reveal a poor fit, but is a reflection of
the fact that this action is high cost: participants either do not in fact know how to sequence
actions to reach a solution, or they are unwilling to make the effort to complete these actions.
In many cases, however, the low planning parameter was due to errors that were not covered by
our proposed actions. Some of these errors were systematic, suggesting that adding additional
actions to the model would result in better fit. In other cases, we noticed the same pattern as
when annotating individual problems: some participants repeatedly use the interface in ways that
suggest misunderstandings not accounted for by the model. For example, one of the participants
whose solutions frequently contained errors categorized as add/delete term had a mean inferred
planning parameter of 0.012. Expanding the space of possible understandings would allow us to
account for these participants.

While ideally the model would provide a good fit to all participants’ data, it is encouraging
that the planning parameter can be used to identify participants whose actions may be misinter-
preted. Identifying participants with poorly fit data can mitigate problems due to incorrect action
interpretations. Sometimes, transformations that are not part of our model will be interpreted as
actions with errors, leading the algorithm to overestimate error parameters. For instance, one par-
ticipant was given the problem 3x + 7x + x = −7− 3− 9, and added only one additional step,
3x+ 7x+ x = −7

3 − 1
7 − 9. Bayesian inverse planning can account for this transformation as mul-

tiplying by a constant, with several arithmetic errors. However, intuitively, the participant seems
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instead to have been trying to manipulate −7−3 in some way. I consider this issue further in the
Section 4.5.

To assess the relation between the inferred posterior distributions and participants’ responses
to the worksheet, we focused on participants’ arithmetic skills, which were measured in isolation
by ten problems on the worksheet. Using only data from those participants well fit by the model,
we looked at the correlation between the mean inferred value for the arithmetic error parameter
and the number of correct responses on the arithmetic section of the worksheet. First using the
inferences with two skipped steps, which provides the greatest coverage of the data, we found
that there was a significant correlation between the mean inferred arithmetic error parameter and
the scores on this section of the worksheet (r(47) = −0.39, p < .01): higher worksheet scores
were associated with lower inferred arithmetic error rates on the website. This association was
maintained even when fewer skipped steps were allowed: one skipped step permitted: r(47) =
−0.43, p < .01; no skipped steps permitted: r(43) = −0.49, p < .001). Thus, despite the fact
that some actions may be misinterpreted, the model’s inferences are still generally consistent with
an isolated assessment of students’ arithmetic skills. This correlation is also not simply due to
participants’ overall competence being tied to their arithmetic skills. There was no significant
correlation between the inferred arithmetic error parameter and the total score on the worksheet
with the arithmetic section excluded (no skipped steps: r(43) = −.24, p > .1; one skipped step:
r(47) = .22, p > .1; two skipped steps: r(47) =−.18, p > .2).

While we examined the relation between the inferred values for the other parameters and par-
ticipants’ scores on other sections of the worksheet, the connection between these variables was
less clear. The worksheet section on simplification was relatively short (5 problems), and each
problem may have involved arithmetic, combining terms, and the distributive property. The error
associated with multiplying by a constant (reciprocal error) was tested only in the context of solv-
ing equations, where we would expect all parameters to have an effect on accuracy. Exploratory
analyses using PCA and CCA to uncover more complex associations between the parameter values
and worksheet performance were consistent with there being some signal present in the inferred
parameter values to make inferences about performance on the worksheet, but were not readily
interpretable for making strong connections between the diagnoses and the worksheet.

To better understand whether the diagnoses were consistent with problem-solving behavior in
the tutor, we used data from our annotation of errors in individual problems. The 100 problems that
were annotated were solved by 49 of the 63 total participants. Fourteen participants exhibited a sign
error in the annotated data. These participants had a larger inferred move sign parameter than the
other 35 participants whose annotated problem solutions did not have this error, regardless of the
number of skipped steps allowed (no skipped steps: 0.24 versus 0.22; one skipped step: 0.26 versus
0.20; two skipped steps: 0.24 versus 0.19). Given the relatively small magnitude of the difference,
further annotation efforts might be useful to better differentiate those who never exhibited this
error in their problem solving from those who did make this error. Another error identified in the
annotated data was combine unlike terms, which can be mapped to the combine only like terms
parameter in the diagnosis. Only two participants exhibited this error in the annotated data. One
of these participants frequently combined multiple actions in one step, resulting in little data for
diagnosis when skipped steps were not allowed; this participant had a mid-range value for the
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combine only like terms parameter with no skipped steps, and a very low value when one or two
skipped steps were permitted. The other participant always had a very low inferred value for this
parameter, corresponding to a diagnosis of combining unlike terms. In our annotated data, we had
few instances of participants making a distributive property error or of the reciprocal error; across
all participants, the two corresponding parameters had smaller inferred values than the move sign
error parameter. The consistency between some of our inferred parameters and our annotations
provides suggestive evidence of the validity of the diagnoses; supplementing this evidence with
a broader set of annotations, covering all data from a subset of participants, as well as with data
from participants who exhibit evidence of the less common errors will be a next step for better
understanding individual diagnoses.

4.5 General discussion
In this chapter, we have demonstrated how to extend the Bayesian inverse planning framework
developed in the previous chapter to a real educational domain, algebraic equation solving. The
framework separates distinct causes of errors, inferring a diagnosis representing the person’s skills
in several dimensions of mathematical ability. In simulations, we have shown that the algorithm
can recover the true parameters of a simulated learner relatively accurately, especially when the
true error parameters are not too large. The algorithm successfully interpreted data from human
problem solvers, and inferences about people’s arithmetic skills were consistent with their perfor-
mance on arithmetic problems in isolation. I now consider future directions and challenges for this
technique, building on the themes in the previous chapter.

The Bayesian approach that we have taken infers posterior distributions over the inferred pa-
rameters, and the parameters we consider are primarily real-valued. The advantage of this approach
is that it clearly indicates how much the evidence supports particular parameter values, but it can
require significant data to acquire confident estimates; this issue came up in the previous chapter,
but represents an even larger issue for algebra solving given the amount of evidence gathered in
each equation solution and the many continuous parameters in the hypothesis space. In simulation,
we saw that even with fifty equation solutions, some of the posterior distributions placed signifi-
cant weight on a range of different values. This indicates that caution must be used when making
comparisons between students or between the relative value of different parameters when only
means of the posterior distribution are used. However, while small differences in parameter values
may not be detectable given the number of problems likely to be solved by real students, these
differences are also unlikely to be significant for informing interventions. Another tactic would be
to assign students particular problems to complete based on which parts of the diagnosis are least
certain. In the next chapter, we develop a general framework for choosing assessments that are
likely to result in less uncertain diagnoses.

Unlike approaches that rely only on students’ final answers, Bayesian inverse planning closely
models students’ action planning. This allows the algorithm to make detailed inferences based on
problem solving data, but also requires assumptions about the types of transformations students
execute and the errors that they make. In some cases, these assumptions make it impossible to
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interpret particular transformations, as they do not correspond to any of our actions or errors,
and in other cases, they may lead to incorrect inferences, as a transformation may be interpreted
as having many errors rather than correctly recognized as not corresponding to any interpretable
action. At the root of these issues is how to define the Markov decision process corresponding to
linear equation solving such that all possible student actions are represented and systematic errors
are reflected in differences in the underlying knowledge state. One way to address this issue is to
consider how to expand the space of actions and erroneous versions of actions. Transformations
that could not be interpreted provide a potential source for additional actions. In principle, this
process could be automated by searching through a simple grammar of possible operations defined
on individual terms (e.g., dividing a term by a coefficient) to identify what could account for each
transformation; for instance, this could uncover errors like dividing only the first term on a side
by a coefficient, rather than all terms. Common sequences of operations could then be added as
actions or error types to the inverse planning algorithm. This procedure would require minimal
human intervention to label errors for the purpose of identifying customized guidance to correct
those errors.

Addressing the issue of erroneous interpretations of transformations based on existing actions
is more difficult. There will always be ambiguity in terms of whether a student truly intended to
take a particular action and made an error, or whether a different, perhaps unknown to the algo-
rithm, action was intended. One sign of poor fit that we used in our analyses was an extremely
low planning parameter; while this could accurately reflect a student’s abilities, it is likely to occur
more frequently for students who take actions that the algorithm does not model. There are several
additional ways of identifying poor fit that we intend to explore. We currently allow transforma-
tions that are mathematically correct (in that the same value for the unknown is valid for both
steps) to be attributed to actions with arithmetic or other errors. While in principle this is possible,
as two arithmetic errors might cancel each other out, it may be more likely that this is an erro-
neous action interpretation. Not allowing the algorithm to consider erroneous versions of actions
in cases of mathematically correct transformations might lead to poorer coverage but more accu-
rate inferences. Poor fit might also be identified by the clustering of a student’s arithmetic errors
across transformations. If a student typically has few arithmetic errors but a few transformations
with many of these errors, this could indicate that the transformations with many errors are in fact
actions that the algorithm cannot interpret.

In general, the issue of interpreting student actions points to the tension inherent in seeking to
draw precise inferences without overly strong assumptions. This theme is intrinsic to the problem
of combining computational modeling and machine learning to improve and model learning in
interpretable ways. In each of our investigations, we will see a version of this tension and in many
cases, we will explore variations on our assumptions to determine the effect on learning outcomes.
For example, in the previous chapter, we explored two different ways of defining the space of
possible misunderstandings. In Chapter 7, I provide a more general overview of this theme.

In the previous chapter, we explored customized guidance to participants based on the model’s
diagnosis of their understanding. One key next step for this research is testing whether customized
interventions of this kind are helpful to algebra learners. The algebra website that we developed to
collect student data provides a platform for this future testing. We have implemented customized
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interventions for errors related to combining unlike terms, moving terms, multiplying by the re-
ciprocal of a coefficient, the distributive property, and difficulty with arithmetic. Each of these
errors is based on one parameter of the diagnosis of the participant’s understanding, and most in-
terventions include both an embedded video created by an existing educational website as well as
scaffolded problem solving practice. These interventions thus have the potential to help learners
find the resources that are most relevant to them based on continuing assessment of their skills.
The interventions also provide a practical test of whether the diagnoses can improve learning.

Over the past two chapters, we have developed the Bayesian inverse planning framework and
shown that it can be adapted to interpret behavior in several different domains, from navigation in a
spaceship game to transformations of algebraic equations. Modeling students’ action planning is a
promising way to interpret freeform actions in a variety of interactive educational activities, and in
this chapter, we have provided a template for how to address common issues that may arise, such
as large or infinite state and action spaces. Our analysis of people’s equation solving highlighted
the fact that the majority of action sequences can be interpreted using only a small set of actions
and suggested ways that the space of understandings and possible actions might be expanded to
improve the model’s inferences. While future work will include additional experiments aimed at
demonstrating a tighter connection between the algorithm’s inferences and people’s performance
outside of the website as well as testing with school-age students, this chapter provides a proof of
concept for using Bayesian inverse planning in a complex, educationally-relevant domain.
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Chapter 5

Designing more diagnostic interactive
activities

The previous two chapters developed a Bayesian inverse planning framework to diagnose people’s
understanding based on observing their actions, and demonstrated that this framework is consistent
with other assessments and can be applied to a variety of tasks and domains. However, our data also
demonstrated that in some cases, there was insufficient information to confidently identify a single
misunderstanding as corresponding to a learner’s knowledge. Instead, several misunderstandings
or a range of parameter values might have similar probabilities. This situation can make guiding
interventions more difficult: more information must be collected to determine which intervention is
appropriate, or the chosen intervention must be low cost or able to help learners regardless of their
particular misunderstanding. If the diagnosis is meant to be used as an assessment, a diagnosis with
multiple hypotheses with high probability makes the results difficult to interpret. To remedy this
issue, I turn to the problem of designing more diagnostic interactive activities, including games,
online assessments like our algebra website, and virtual laboratory tasks.1

Designing assessments is a challenging task. Ideally, assessments should provide as much
information as possible in a limited amount of time, with the results of the assessment differenti-
ating between learners who have unequal knowledge or skills. In assessment design, frameworks
like evidence-centered design aim to ensure that assessments provide opportunities for learners to
demonstrate differing levels of understanding and make explicit the connection between behavior
and inferences about knowledge (Mislevy, Steinberg, & Almond, 2003). However, while these
frameworks are applicable to technology-enhanced assessments, they can be difficult to use ef-
fectively to design interactive assessments. Designing these assessments often involves making
choices about a large number of parameters, such as the points for each action or accomplishment
in a game or the locations of items within an activity. These choices can have significant effects on
the eventual diagnosis of the learner’s understanding, but the human designer may not have strong
intuitions about what settings will be best. Additionally, when versions of a task are generated au-

1This chapter is based on work conducted in collaboration with Matei Zaharia and Thomas L. Griffiths. Parts of
this work were included in Rafferty, Zaharia, and Griffiths (2012).
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tomatically, such as the random placement of the spaceship for the flight planning experiments in
Chapter 3, different versions may be more or less diagnostic, with no input from a human designer.
We would like to be able to present different, automatically-generated variations of an interactive
task while restricting the variations to those that are likely to result in unambiguous inferences
about a learner’s understanding.

In this chapter, I focus on how to predict how much information can be gained from a particular
interactive activity design and modify the design to result in gaining more information about the
learner’s knowledge or cognitive processes. The approach we take draws on ideas from optimal
experiment design. Like designing interactive activities, designing traditional experiments also
requires significant time and effort. While the number of parameters to adjust may be smaller, the
experimenter must still set quantities such as what time delays to include in a memory task or what
treatment dosages to compare in a medical experiment. The statistical theory of optimal experiment
design aims to ease this problem by identifying the design that will give the most information about
the dependent variable (Atkinson et al., 2007; Pukelsheim, 2006). In chemistry, this technique has
been used to discover the value of various parameters relevant to a reaction, making laboratory
syntheses more successful (e.g., Dantas, Orlande, & Cotta, 2002; Emery, Nenarokomov, & Fadale,
2000; Fujiwara, Nagy, Chew, & Braatz, 2005), and the approach was used to develop and validate
a new method for synthesizing a compound that has now been used in industry (Shin et al., 2007).
Optimal experiment design has also been used in pharmacology and clinical applications (e.g.,
Bruno et al., 1998; Derlinden, Bernaerts, & Impe, 2010; Haines, Perevozskaya, & Rosenberger,
2003; Simon, 1989), resulting in greater certainty about the effectiveness of new drug therapies
while reducing trial costs. Across fields, the idea of setting experiment parameters to optimize the
information gained about the phenomena under investigation has made it easier to obtain precise
answers while minimizing resource use (e.g., Ajo-Franklin, 2009; Elvind, Asmund, & Rolf, 1992).

To address the challenge of designing interactive activities that will be informative about peo-
ple’s understanding, we introduce optimal game design, a new formal framework that extends
optimal experiment design to identify designs for games or other activities that will diagnose peo-
ple’s knowledge more efficiently. While we call the framework “optimal game design” and the
experiments in this chapter focus specifically on games, this framework can optimize any activity
for which Bayesian inverse planning is applicable. The framework identifies the interactive ac-
tivity design with maximal utility, where utility is defined as the expected information gain about
a person’s understanding or cognitive processes. Like optimal experiment design, our procedure
takes an existing design and considers how to modify it to be most informative. For traditional
experiments, these modifications might include parameters such as at what time intervals to test
recall; for interactive activities, these modifications include parameters like the amount of points
for different types of accomplishments or the location and frequency of particular objects in a
game. Optimal game design makes use of Bayesian inverse planning to interpret people’s actions,
and to simulate how people might behave if they had a particular understanding. The framework
leverages the skills of human designers for creating the initial design. By automating the process
of refining that design, the framework limits the trial and error necessary to create an interactive
activity that will provide useful data. This facilitates more efficient and interpretable assessments.

With this chapter, I also broaden our scope to consider the use of games in the social sciences
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as well as interactive activities in education. Games are increasingly popular behavioral research
tools (e.g., Von Ahn, 2006; Siorpaes & Hepp, 2008; Puglisi, Baronchelli, & Loreto, 2008). They
provide a way of recruiting large numbers of engaged participants, and offer a powerful method for
increasing participant satisfaction and diminishing participant disinterest. They may also facilitate
longer, more involved behavioral experiments. Yet, designing these games such that confident
inferences about cognitive processes can be drawn from players’ observed behaviors raises many
of the same challenges as designing diagnostic interactive activities for education.

In this chapter, I first provide background on optimal experiment design. I then combine this
idea with Bayesian inverse planning to create the framework for optimal game design. The re-
mainder of the chapter applies this general framework to the specific case of learning Boolean
concepts. I introduce a novel concept learning game and use our approach to optimize the game
parameters. Through behavioral experiments, we show that optimized game designs can result in
more efficient estimation of the difficulty of learning different kinds of Boolean concepts. These
results demonstrate that this estimation can be complicated by people’s own goals, which may
not match incentives within the game, but can be accommodated within our framework. I end by
summarizing the benefits of optimal game design as well as the limitations of this framework.

5.1 Bayesian experiment design
Bayesian experiment design, a subfield of optimal experiment design, seeks to choose the ex-
periment that will maximize the expected information gain about a parameter θ (Atkinson et
al., 2007; Chaloner & Verdinelli, 1995). In psychology, this procedure and its variations have
been used to design experiments that allow for clearer discrimination between alternative models,
where θ corresponds to an indicator function about which of the models under consideration is
correct (Cavagnaro, Myung, Pitt, & Kujala, 2010; Myung & Pitt, 2009). Throughout this chapter,
let ξ be an experiment (or game) design and y be the data collected in the experiment. The expected
utility (EU) of a game is the expected information gain about the parameter θ:

EU(ξ) =
∫

p(y|ξ)U(y,ξ)dy

where p(y|ξ) =
∫

p(y|ξ,θ)p(θ)dθ

and U(y,ξ) =
∫

(H(p(θ|y,ξ))−H(p(θ)))dθ, (5.1)

where the function H(p) is the Shannon entropy of a probability distribution p, defined as H(p) =∫
p(x) log(p(x))dx. The Bayesian experimental design procedure seeks to find the experiment ξ

that has maximal EU. Intuitively, designs that are likely to result in more certainty about θ will
have higher utility.



CHAPTER 5. DESIGNING MORE DIAGNOSTIC INTERACTIVE ACTIVITIES 56

5.2 Optimal game design
We can now define a procedure for optimal game design, identifying the game or other interactive
assessment with maximum expected information gain about some theoretical quantity of interest θ

by using optimal experiment design and Bayesian inverse planning. Since the experiments in this
chapter involve games specifically, we will use “game” to refer to any interactive assessment or
game to which we can apply Bayesian inverse planning in order to simplify our presentation. The
procedure we describe can be applied to diagnosing the understanding of an individual person, as
is common in the educational assessments we discussed in previous chapters, or to drawing infer-
ences about a cognitive model based on the actions of multiple individuals, as is common when
using games for behavioral experiments. We focus on the case of using the actions of multiple
people, while noting how to modify this procedure to optimize an assessment for an individual.

The optimal game design framework improves an existing game by adjusting its parameters to
be more diagnostic; these parameters may correspond to point values, locations of items, or any
other factor that can be varied. To apply Bayesian experiment design to the problem of choosing
a game design, we define the expected utility of a game ξ as the expectation of information gain
over the true value of θ and the actions chosen by the players:

EU(ξ) = Ep(θ,a)[H(p(θ))−H(p(θ|a,ξ))], (5.2)

where a is the set of action vectors and associated state vectors for all players. The expectation
is approximated by sampling θ from the prior p(θ), and then simulating players’ actions given θ.
Intuitively, players’ actions in the game must be connected to parameter θ that we intend to infer;
otherwise, we cannot hope to gain information about this parameter from the observed actions.
We use MDPs to formalize the link between θ and actions by assuming that each θ implicitly
corresponds to believing that a particular MDP governs the game; this is the same type of link
we assume for Bayesian inverse planning. We can then simulate players’ actions by calculating
the Q-values for the MDP associated with a particular θ, and sampling from the noisily optimal
Boltzmann policy used in previous chapters (Equation 3.3).

To compute EU(ξ) once the players’ actions have been simulated, the distribution p(θ|a,ξ)
must be calculated. Using the assumption that each θ corresponds to a particular MDP, we can
calculate a distribution over values of θ based on the observed sequences of actions a of all players
in the game ξ:

p(θ|a,ξ) ∝ p(θ)p(a|θ,ξ)
= p(θ)p(a|MDPθ,ξ)

= p(θ)∏
i

p(ai|MDPθ,ξ), (5.3)

where ai is the vector of actions taken by player i and MDPθ is the MDP derived for the game
based on the parameter θ. This corresponds to using Bayesian inverse planning to interpret the set
of all players’ actions rather only an individual players’ actions. Using the actions of all players
to infer θ generally makes sense in behavioral experiments as we assume that θ corresponds to the
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parameters of a cognitive process that is shared, rather than to an individual’s knowledge; the same
type of procedure can be used to calculate the expected utility of a game design for an individual by
using only a single vector of actions. In such cases, the prior distribution could also be adjusted to
include previous information collected about the given individual. As we saw in our development
of the Bayesian inverse planning model, the posterior distribution can be calculated exactly if there
is a fixed set of possible θ or by using MCMC methods if the set of θ is large or infinite (see Gilks,
Richardson, & Spiegelhalter, 1996).

Now that we have defined p(θ|a,ξ), we can use this to find the expected utility of a game.
Equation 5.2 shows that this calculation follows simply if we can calculate the entropy of the
inferred distribution. In the case of a fixed set of possible θ, H(p(θ|a,ξ)) can be calculated directly.
If MCMC is used, one must first infer a known distribution from the samples and then take the
entropy of that distribution. For example, if θ is a multinomial and p(θ) is a Dirichlet distribution,
one might infer the most likely Dirichlet distribution from the samples and find the entropy of that
distribution.

The above procedure describes how to (approximately) calculate the expected utility of a par-
ticular game design ξ. To complete the procedure for optimal game design, any optimization al-
gorithm that can search through the space of games is sufficient. Maximizing over possible games
is unlikely to have a closed form solution, but stochastic search methods can be used to find an
approximate solution to the game with maximum expected utility. For example, one might use
simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983). This method allows optimization of
discrete and continuous parameters, where neighboring states of the current game are formed by
perturbations of the parameters to be optimized.

5.3 Optimal games for Boolean concept learning
We have described a general framework for automatically finding game designs that are likely
to be highly informative about model parameters. This framework can be applied to optimizing
games designed to infer parameters that are shared across individuals, as in many behavioral ex-
periments, or to diagnose individual knowledge, as in the types of applications discussed in the
previous chapters. To test how well this framework identifies informative designs, we applied it to
investigating a particular psychological question: what is the relative difficulty of learning various
Boolean concept structures? This question has been studied extensively in past work (e.g., Feld-
man, 2000; Griffiths et al., 2008; Nosofsky et al., 1994; Shepard et al., 1961), so we can compare
our results to those produced using more traditional methods. We first describe Boolean concept
learning, and then turn to the initial game we created and the application of optimal game design.

Boolean concepts
In Boolean concept learning, one must learn how to categorize objects that differ along several
binary dimensions. We focus on the Boolean concepts explored in Shepard et al. (1961). In these
concepts, there are three feature dimensions, resulting in 23 possible objects, and each concept
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Figure 5.1: Boolean concept structures. In each structure, eight objects differing in three binary
dimensions are grouped into two categories of four elements. Each object is represented as a
corner of a cube based on its combination of features, and the objects chosen for one category in
each problem type are represented by dots.

contains four objects. This results in a total of 70 concepts with six distinct structures, as shown in
Figure 5.1. Shepard et al. (1961) found that the six concept structures differed in learning difficulty,
with a partial ordering from easiest to most difficult of I > II > {III, IV,V} > VI. Similar results
were observed in later work (Feldman, 2000; Nosofsky et al., 1994) although the position of Type
VI in the ordering can vary based on how the stimuli are presented (Griffiths et al., 2008).

To model learning of Boolean concepts, we assume learners’ beliefs about the correct concept
h can be captured by Bayes’ rule (Griffiths et al., 2008):

p(h|d) ∝ p(h)p(d|h)
= p(h)∏

d∈d
p(d|h), (5.4)

where each d ∈ d is an observed stimulus and its classification, and observations are independent
given the category. The likelihood p(d|h) is then a simple indicator function. If the stimulus
classification represented by d matches the classification of that stimulus in hypothesis h, denoted
h ` d, then p(d|h) ∝ 1; otherwise, p(d|h) = 0. We seek to infer the prior p(h), which represents
the difficulty of learning different concepts and thus gives an implicit ordering on structure dif-
ficulty. In our earlier terminology, θ is a prior distribution on concepts p(h). For simplicity, we
assume all concepts with the same structure have the same prior probability, so θ is a 6-dimensional
multinomial.

Corridor Challenge
To teach people Boolean concepts we created the game Corridor Challenge, which requires learn-
ing Boolean concepts to achieve a high score. Corridor Challenge places the player in a corridor of
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Energy: 27 Level: 1 Score: -2

Symbols Seen

Good Symbols Bad Symbols

Figure 5.2: User interface for the Corridor Challenge game (Level 1 of the random game in Ex-
periment 1). In this screenshot, the player has opened the first chest and moved to the second
island.

islands, some of which contain a treasure chest, joined by bridges (Figure 5.2).2 The islands form
a linear chain and the bridges can be crossed only once, so players cannot return to previous chests.
Some chests contain treasure, while others contain traps; opening a chest with treasure increases
the player’s score and energy, while opening a chest with a trap decreases these values. Each chest
has a symbol indicating whether it is a trap; symbols differ along three binary dimensions and are
categorized as a trap based on one of the Boolean concepts. Players are shown a record of the
symbols from opened chests and their meanings (see the right hand side of Figure 5.2). Players are
told to earn the highest score possible without running out of energy, which is depleted by moving
to a new island or opening a trapped chest. When a player runs out of energy, the level is lost and
she cannot explore the rest of the level; surviving a level earns the player 250 points. Corridor
Challenge games may consist of several levels. Each level is a new corridor with different chests,
but the same symbols are used and they retain the same meaning as on the previous level. At the
start of each level, the player’s energy is restored, but points are retained from level to level.

Optimizing Corridor Challenge
Applying optimal game design to Corridor Challenge requires specifying the parameters to op-
timize in the search for the optimal game, formulating the game as an MDP, and specifying the
model for how the player’s prior distribution over concept structures (θ) relates to the MDP param-
eters. The structure of Corridor Challenge allows for many variants that may differ in the expected
information gain. To maximize expected information gain while keeping playing time relatively
constant we limited the game to two levels, with five islands per level. We then used optimal game
design to select the number of points gained for opening a treasure chest, points lost for opening a

2Corridor Challenge uses freely available graphics from http://www.lostgarden.com/2007/05/dancs
-miraculously-flexible-game.html.
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trap chest, the energy lost when moving, the symbols that appeared on the chests, and the Boolean
concept used to categorize the chests. For simplicity, we assumed that the number of points gained
(or lost) for a particular action is equal to the amount of energy gained (or lost) for that particular
action.

Given particular specifications for these variants of the game, we can define an MDP. Note that
we define the MDP based on a player’s beliefs, since these govern the player’s actions, and these
beliefs do not include knowledge of the true concept that governs the classification of the symbols:
States: The state is represented by the player’s energy, her current level and position in the level,
and the symbols on all chests in the current level.
Actions: The player can open the current chest (if there is one) or move to the next island.
Transition model: The player transitions to a new state based on opening a chest or moving to
a new island. In both cases, the symbols on the chests stay the same, with the current symbol
removed if the player opens the chest. If a player chooses to move, she knows what state will
result: her position will move forward one space and her energy will be depleted by a known
constant. If the result is negative energy, then the game transitions to a loss state. However, if
a player opens a chest, her beliefs about what state will occur next is dependent on p(h|d), her
beliefs about the true concept given the data d she has observed so far. The player will gain energy
if the symbol x on the current chest is in the concept. Taking an expectation over possible concepts
h, this probability is p(x in concept) = ∑h I(h ` x)p(h|d), where I(h ` x) = 1 if x is in the concept
h and 0 otherwise. The probability of decreased energy is (1− p(x in concept)). Based on the
Bayesian model above, the player’s current beliefs p(h|d) are dependent on the prior probability
distribution over concepts. Thus, the transition model assumed by the player is dependent on the
parameter θ that we would like to estimate, which is this prior distribution.
Reward model: When the player moves from one island to another, the reward model speci-
fies R(s,a,s′) = 0, and when the player opens a chest, R(s,a,s′) is a fixed positive number of
points with probability p(x in concept) and a fixed negative number of points with probability
(1− p(x in concept)).

By using the MDP framework and assuming that the player updates her beliefs after seeing
information, we ignore the value of information in understanding people’s decisions; that is, we
assume people make decisions based on their current information and do not consider the effect that
information gained now will have on their future decisions. We consider how we might tractably
model this factor in Experiment 3.

5.4 Experiment 1: Inferring difficulty
To test our framework, we first used optimal game design to find a version of Corridor Challenge
with high expected information gain, and then ran an experiment in which players played either
the optimized game or a randomly chosen game with lower expected information gain.
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Optimization of Corridor Challenge
We used simulated annealing (Kirkpatrick et al., 1983) to stochastically search over possible de-
signs of Corridor Challenge. The expected information gain of a game was approximated by
sampling 35 possible θ vectors uniformly at random (reflecting a uniform prior on θ), simulating
the actions of n = 25 players in the game, and using the simulated data to infer p(θ|ξ,a). We
approximated p(θ|ξ,a) using the Metropolis-Hastings MCMC algorithm (Gilks et al., 1996), with
a Dirichlet proposal distribution centered at the current state. The noise parameter β controlling
the degree of optimality of the Boltzmann policy was set to 1.

To execute the search, we parallelized simulated annealing by using several independent search
threads. Every five iterations, the search threads pooled their current states, and each thread se-
lected one of these states to continue searching from, with new starting states chosen probabilisti-
cally such that states with high information gain were more likely to be chosen. Each search state
is a game, and the next state was found by selecting a parameter of the current game to perturb. If
the selected parameter was real-valued, a new value was chosen by sampling from a Gaussian with
small variance and mean equal to the current value; if the selected parameter was discrete, a new
value was selected uniformly at random.

The stochastic search found games with significantly higher information gain than the initial
games, regardless of starting point. This demonstrates that the evaluation and search procedure
may be able to eliminate some trial and error in designing games for experiments. Qualitatively,
games with high information gain tended to have a low risk of running out of energy, at least
within the first few moves, and a diverse set of stimuli on the chests. These games also generally
had positive rewards with larger magnitudes than the negative rewards. The game with the highest
information gain used a true concept of Type II, although several games with similarly high in-
formation gain had true concepts with different structures. While the information gain found for
any given game is approximate, since we estimated the expectation over only a sample of possi-
ble priors, this was sufficient to separate poor games from relatively good games; we explore this
relationship further in Experiment 2.

Methods
After optimizing Corridor Challenge, we conducted a behavioral experiment to assess whether an
optimized game resulted in greater information gain than a random game.

Participants

Fifty participants were recruited online and received a small amount of money for their time.

Stimuli

Participants played Corridor Challenge with parameters set based either on an optimized game
(expected information gain of 3.4 bits) or on a random game (expected information gain of 0.6
bits). The symbols differed along the dimensions of shape, color, and pattern.
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Procedure

Half of the participants were randomly assigned to each game design, and played the game in a
web browser. Regardless of condition, the participants were shown text describing the structure
of Corridor Challenge, and then played several practice games to familiarize them with interface.
The first practice game simply had chests labeled “Good” and “Bad”; the next three games used
Boolean concepts of increasing difficulty based on previous work. All practice games used differ-
ent symbols from one another and from the final game. Practice games used the point and energy
values from the game chosen for their condition (i.e., the random game or the game found by the
search) in order to make players aware of these values, but the symbols in the practice games were
identical across conditions. The fifth and final game was chosen based condition: either the opti-
mized game or the random game. After completing the final game, participants were asked to rate
how fun and how difficult the game was, both on 7-point Likert scales. Additionally, they were
shown the stimuli and categorization information that they observed during the final game, and
asked to classify the remaining stimuli from the game that were not observed.

Results
To assess the information gained from each game, we calculated posterior distributions over the
prior probability of each Boolean concept based on the players’ actions. These distributions were
calculated using a Metropolis-Hastings algorithm on both the prior and the noise parameter β.
Samples were generated from five chains with 100,000 samples each; the first 10% of samples
from each chain were removed for burn-in. To infer the actual information gained for each game,
we infer the maximum likelihood Dirichlet distribution based on these samples from the posterior.
We then calculate the entropy of the inferred Dirichlet. The difference between this entropy and
the entropy of the (uniform) prior distribution is the actual information gain of the game.

Figure 5.3 shows the inferred distribution over the prior probability of each concept (θi) based
on participants’ actions for the optimized game and the random game; if a concept has higher prior
probability, it will be easier to learn. Qualitatively, the distributions inferred from the optimized
game appear more tightly concentrated than those from the random game; this is confirmed by the
actual information gain, which was 3.30 bits for the optimized game and 1.62 bits for the random
game. This implies that we could halve the number of participants by running the optimized game
rather than the random game, while achieving the same level of specificity.

For both games, the ordering of the mean prior probabilities of each type, shown by red lines
in Figure 5.3, is the same as that found in previous work, except for Type VI. Our inferred distri-
butions for Type VI placed significant probability on a broad range of values, suggesting that we
simply did not gain much information about its actual difficulty. We do infer that Type VI is easier
than Types III, IV, or V, consistent with some previous findings (Griffiths et al., 2008).
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Figure 5.3: Results of Experiment 1, in the form of posterior distributions on concept difficulty
from participants’ responses in (a) the optimized game and (b) the random game; red lines indicate
the mean of each distribution. Each panel shows the distribution over the inferred difficulty of a
concept with the given structure (Types I-VI), as reflected by its prior probability in the Bayesian
model. Concepts with higher prior probability are easier to learn. Note the logarithmic scale on
the prior probability of each θi.

5.5 Experiment 2: Estimating information gain
To verify the relationship between actual and expected information gain, we conducted a second
experiment in which players played games with a range of information gains. To isolate the impact
of the symbols on the chests and the true concept we fixed the point structures to those found for
the optimized game in Experiment 1 and conducted new searches over the remaining variables. We
then selected games that had varying expected information gains, demonstrating that even without
changing the incentive structure a range of information gains was possible.

Methods
Participants

A total of 475 participants were recruited online and received the same payment as in Experiment
1.

Stimuli

Participants played one of nineteen new games. The nineteen new game designs were selected by
recording the game design and expected information gain for each iteration of simulated annealing.
For this experiment, the points were fixed to be the same as in the optimized game in Experiment
1, so the search only varied the object on each chest and the true category. We then ran nineteen
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Figure 5.4: Results of Experiment 2. (a) Expected versus actual information gains (r(18) = 0.51,
p < 0.025). Each circle represents a game, and the least-squares regression line is shown. (b)
Actual information gain for the ten games with lowest expected information gain versus highest
expected information gain.

independent search processes, each with a different initial game. From the resulting games, we
hand-selected one game from each search thread such that the new collection of games had roughly
evenly spaced information gains.

Procedure

Procedure matched Experiment 1.

Results
We compared the actual and expected information gains for the nineteen new games and the opti-
mized game from Experiment 1, all of which used the same point structure. As shown in Figure
5.4a, expected and actual information gain were positively correlated (r(18) = 0.51, p < 0.025).
This demonstrates that the design of the game does influence how much information we can infer
from human players’ actions, and that this gain is predicted by our estimates. While this correla-
tion might seem modest, it has significant consequences for efficiency: on average, the ten games
with highest expected utility resulted in a gain of 67% more bits of information than the ten games
with lowest expected utility (Figure 5.4b).

One potential objection to the optimal game design framework, and computational modeling
in general, is that the method is somewhat complex and considerable power is necessary to pre-
dict expected utility. We thus explored whether heuristics based on features of the game might be
sufficient to predict information gain. As shown in Figure 5.5a, the expected utility of the games
showed the highest correlation with actual information gain, although the total number of unique
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Figure 5.5: Correlations between proposed heuristics for predicting information gain and the ac-
tual information gain. (a) Correlations for Experiment 2. Expected utility (as calculated using
optimal game design) has the highest correlation, and number of unique chests is the only heuristic
with a significant correlation to actual information gain. (b) Correlations for Experiment 3. The
correlations to information gain for the value of the trap chest and for expected utility are of similar
magnitude, but only expected utility is consistently predictive across the two experiments.

symbols was also positively correlated with information gain (r(18) = 0.46, p < 0.05). While
optimal game design and this heuristic have relatively similar correlations with information gain,
we believe there is still an advantage in using the optimal game design framework, as this ap-
proach does not require generating appropriate heuristics for different games and it may not be
intuitively obvious which heuristics will be good predictors of information gain. For example,
the total number of treasure chests was negatively correlated with information gain, although this
correlation was not significant. Additionally, as the number of features to optimize increases, the
number of possible heuristics will also increase, making it difficult to choose a heuristic to rely on
via intuition; we return to this issue in Experiment 3.

5.6 Experiment 3: Sensitivity to rewards
In Experiment 2, we showed that expected and actual information gain were correlated for a range
of game designs. All of these game designs had the same incentive structure; the only differences
were the categories being learned and the placement of items within the games. It is also possible
to vary the rewards in the game designs, as was done in Experiment 1. This raises the question
of how much people will internalize the reward structure and behave rationally with respect to it.
People may incorporate their own goals into the game, such as wanting to learn about the true
concept rather than maximize points, and thus exhibit unexpected behavioral changes based on
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Figure 5.6: Results of Experiment 3. (a) Expected versus actual information gains with point-based
reward (r(18) = 0.38, p = .1). Each circle represents a game, and the least-squares regression line
is shown. (b) Expected versus actual information gains with inferred custom rewards (r(18)= 0.74,
p < .001).

different reward structures. To investigate this possibility, we generated eighteen additional games
with a range of expected information gains, allowing the incentive structure as well as the other
parameters of the game design to change.

Methods
Participants

A total of 450 participants were recruited online and received the same payment as in Experiments
1 and 2.

Stimuli

Participants played one of eighteen new games. The search method for this experiment was the
same as for Experiment 2 except that the point values for opening a treasure or trap chest and
the energy lost for movement were allowed to vary. All games came from search threads with
independent starting points, and games were hand-selected to span a range of expected information
gains.

Procedure

Procedure matched Experiment 1.
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Results
We analyzed the data from these new games combined with the data from the two games in Ex-
periment 1. We first calculated the actual information gain about the prior distribution over con-
cept types, assuming the participants’ reward functions reflected the point structure. As shown
in Figure 5.6a, the correlation between expected and actual information gain was not significant
(r(18) = 0.38, p = .1). Inspection of participants’ actions showed some choices that seemed un-
likely to be rational with respect to the model. For instance, a participant might choose to open a
chest even when she had low energy and little information about the concept, despite the fact that
she could reach the end of the level without this action and earn the large level completion bonus.
From the perspective of the model, this action is only predicted if the participant places very high
probability on this being a treasure chest.

To test whether participants might be acting based on a different reward function than that
given by the incentive structure, we modified the inference procedure to infer a reward function
for each game based on the participants’ actions. Previously, the inference procedure inferred a
posterior distribution over the hypothesis space of six-dimensional multinomials; now, we changed
the hypothesis space to be possible reward functions. These functions were specified by the value
of opening a treasure chest, the value of opening a trap chest, and the value of completing the level.
We constrained these values such that the value of opening a treasure chest and of completing the
level were non-negative and the value of opening a trap chest was non-positive. We fixed the
prior distribution to be equal to the mean of the posterior distribution from the optimized game
in Experiment 1.3 MCMC sampling then proceeded as in Experiment 1, resulting in a posterior
distribution over the values for the parameters of the reward function.

The results showed that participants do seem to be acting based on a different reward function
than that given by the point structure. While the reward function varies across games, as expected
given that the point structure is likely to have some influence on behavior, it consistently places
relatively low value on completing the level. This could reflect the fact that completing a level is
not inherently rewarding to participants. Participant comments are consistent with people being
more motivated by understanding the game than achieving maximal points. For instance, one of
the most frequent comments by those who did not enjoy the game was that they were “confused”
by the rule or that they did not understand the pattern. Thus, opening chests might be expected to
have higher intrinsic reward than completing the level, despite the point structure.

One of the goals of inferring the participants’ reward functions was to determine whether using
the inferred functions would lead to a correlation between expected and actual information gain. If
the confounding factor in the original analysis was the incorrect reward functions, then using these
functions to re-calculate both the expected and actual information gains should lead to similar
results as in Experiment 2. Thus, we fixed the reward function for each game to match the mean of

3In principle, one could jointly infer both an arbitrary reward function and the prior distribution, but in practice,
this leads to identifiability issues wherein very different parameter configurations all have similar posterior probability.
Since our interest here is whether there exists a custom reward configuration that would explain the participants’
actions and we have a good estimate of the prior distribution from the previous game, fixing the prior distribution
gives the best estimate of the reward functions.
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the posterior distribution over reward functions for that game, and then used the original inference
algorithm to infer a posterior distribution over the difficulty of learning the six different concept
types. As shown in Figure 5.6b, expected and actual information gain are in fact correlated when
the inferred reward functions are used (r(18) = 0.74, p < .001). This demonstrates the importance
of knowing participants’ goals when interpreting their actions. A participant’s actions are only
meaningful within the context of her goals and her understanding of how her actions affect her
progress towards those goals. While participant actions can be used to make inferences about
these factors, this may lead to incorrect conclusions if our assumptions about the relevant factors
are wrong.

Returning to the issue raised in Experiment 2 of whether heuristics are as effective as expected
utility, we calculated seven heuristics based on the characteristics of the games. Four were the same
heuristics as in Experiment 2, while three were based on the reward functions, which were the same
across all games in Experiment 2. We used the inferred custom rewards for these heuristics since
the original rewards were inconsistent with participant behavior. As shown in Figure 5.5b, some
of these heuristics are quite good at predicting expected utility. The value of a trap chest even
has a slightly higher magnitude correlation with information gain than expected utility (r(18) =
−0.78, p < .001). Heuristics thus can be effective at predicting information gain. However, their
effectiveness seems to be less consistent than expected utility: the best heuristic for Experiment
2, the total number of unique symbols, has only a small correlation with information gain for the
game in Experiment 3 (r(18) = .066, p > .7), and the best heuristic for Experiment 3 is based on
the reward function, which would have no correlation at all with information gain for the games in
Experiment 2. This suggests that the computational cost of optimal game design is balanced by its
greater consistency.

5.7 Incorporating information gain into the reward function
The results of Experiment 3 showed that the reward functions provided in the games did not always
match people’s subjective reward functions. One possible reason for this was people’s desire to
learn more about the concept, making opening chests more valuable and finishing the level less
valuable. However, these changes to the reward function do not directly address the fact that
people may be sensitive to whether opening a particular chest is likely to give them more or less
information about the concept. We can explore this issue by considering reward functions that
directly incorporate information gain: how much is the person likely to learn by opening a given
chest? We now infer new reward functions that include such a term for the games in Experiment
3, and compare whether this results in a better model fit than the original analysis.

Methods
To include information gain in the reward function, we set RIG(s,a,s′) = R(s,a,s′)+w ·∆H, where
R(s,a,s′) is the reward without including information gain and ∆H is the change in entropy in
the player’s estimated posterior distribution over concepts based on observing the results of taking
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Figure 5.7: Results of Experiment 3 when an inferred reward function that includes information
gain is used to estimate the prior distribution over Boolean concepts (r(18) = 0.82, p < .001).
Each circle represents a game, and the least-squares regression line is shown.

action a in state s. The parameter w controls the weighting of information gain within the reward
function. We then used the players’ actions to infer a posterior distribution over the parameter w
as well as the parameters in the original reward function, fixing the transition function to the mean
of the inferred transition function from the optimized game in Experiment 1. The only difference
between this procedure and that in Experiment 3 is that w can have non-zero weight.

Results
Using this procedure, we found the weight of information gain in each of the reward functions for
the twenty games in Experiment 3. Information gain was always inferred to have a positive weight,
except in one game where inspection of the samples showed that this parameter was covarying with
the point value of opening a treasure chest. This indicates that people’s actions are consistent with
wanting to learn more about the concept.

To explore how the new reward functions affected the relationship between expected and ac-
tual information gain, we then fixed the reward functions and inferred the prior distribution over
Boolean concepts, again as in Experiment 3. As shown in Figure 5.7, expected and actual informa-
tion gain were correlated (r(18) = 0.82, p < .001). This correlation value is similar to that found
in Experiment 3 (r(18) = 0.74). Using the Deviance Information Criterion (DIC; Spiegelhalter,
Best, Carlin, & Van Der Linde, 2002), we compared the fit of the model with information gain
and the model without information gain for each game. DIC is related to other information crite-
rion measures and controls for differences between models in the effective number of parameters.
This measure is easily computed from MCMC samples; lower DIC reflects a better model fit. The
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average DIC over the 20 games was 203 for the models with information gain (median: 204),
compared to 212 for the models without information gain (median: 220). This difference suggests
that the model which includes information gain is a somewhat better fit to the data than the model
without this parameter. Thus, participants’ behavior likely reflects a combination of incentives,
some extrinsic and provided by the game and some intrinsic and reflecting a desire to learn and
understand.

5.8 General Discussion
Refining a game or interactive activity to be diagnostic of psychologically or educationally relevant
parameters can be a time-consuming process filled with trial and error. While the exact incentive
structure or placement of objects in a game may have little impact on how enjoyable or engaging
the game is, these factors can significantly impact how useful the activity is for diagnosing players’
knowledge. I have presented a general framework for deciding how to set these factors by predict-
ing which game designs will have the highest expected information gain. This framework adapts
ideas from optimal experiment design and relies on Bayesian inverse planning to link players’ ac-
tions to cognitively relevant model parameters. I now consider several possible challenges as well
as future directions for this framework.

Our framework relies upon the idea that people behave in noisily optimal ways based on their
current knowledge and goals. The previous two chapters provide evidence in support of this as-
sumption in several domains. However, there may be inconsistencies between people’s actual
knowledge and goals and the model’s assumptions about these factors. We saw evidence for this
in Experiment 3, which demonstrated that invalid inferences can be drawn when these inconsis-
tencies are present. Thus, care must be taken to monitor whether the MDP model is a good fit
to people’s behavior, perhaps using a similar strategy as in the previous chapter of examining the
noisiness of participants’ planning. It may also be necessary to modify the task, instructions, or
model to more closely align the model’s assumptions and the participant’s beliefs. For instance,
to more closely align model and participant reward functions in Experiment 3, one might give
points for opening a chest with a previously unopened symbol, making the game’s incentive struc-
ture closer to that which participants bring to the task. Alternatively, one might give monetary
rewards based on the points the participant earned, making it more likely that participants will
respond based on the game’s reward structure. Results in behavioral economics suggest that align-
ing monetary incentives with participants’ performance results in choices that are more consistent
with behavior outside of an experimental setting, as choices in the experiment have real conse-
quences (e.g., Oxoby, 2006); for games, this is likely to result in behavior that is more consistent
with the game’s incentive structure, since this structure will have an effect on participants’ mone-
tary rewards. While monetary incentives are likely to be appropriate in the context of behavioral
experiments, an interesting area for future exploration is how to align incentives within educational
contexts. This is particularly pertinent for the low-stakes, formative assessment contexts in which
educational games might be most likely to appear. Within these contexts, it may be more useful to
focus on the option of changing the game’s incentives rather than students’ motivations, as charac-
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teristics like a desire to learn should be fostered rather than discouraged. Care will still be needed,
though, to determine what motivations are important to individual students.

I noted previously that for computational reasons, we ignore the value of information in un-
derstanding players’ actions. This allows us to model the game as a static MDP given the player’s
current knowledge, rather than including a latent variable denoting the true category. However,
our results suggest that people may consider the value of information when choosing actions. We
showed that the player’s expected information gain at a single step can be incorporated into the
reward function in Section 5.7, resulting in a better fit to the observed data. The information gain
at a single step is an approximation of the true value of information, but has the advantage of not
significantly decreasing computational tractability. Modeling people’s reasoning about the value
of information may be especially important for games involving inquiry skills, where part of the
challenge is in determining what information to gather to solve a problem. In some cases, the
approximation of including the information gain at only a single step may be too limited, espe-
cially if players must use several actions to uncover information in the game. One way to address
this limitation is by modeling the game as a partially observable MDP, where the state has certain
unobserved variables. This significantly increases computational costs, but is in principle possible.

Over the previous three chapters, we have developed tools for designing games and other inter-
active activities and interpreting behavior in these environments. Interactive activities are increas-
ingly popular tools in both behavioral research and education. They can address some of the issues
in traditional experiments, such as flagging motivation or difficulty introducing participants to a
complex task, and in education, they can engage learners and provide authentic opportunities for
these learners to apply their understanding. The Bayesian inverse planning framework provides a
way to interpret players’ behaviors, and in this chapter, we have provided additional evidence that
its inferences are consistent with other analyses. The optimal game design framework we have
developed here provides a way for designers to make principled decisions and offers benefits for
researchers and educators. More diagnostic games allow fewer participants to be used to gain the
same information about a research question, providing the potential for drawing conclusions more
quickly or for asking more complex questions that would otherwise require a prohibitive number
of participants. This framework also offers opportunities for the types of educational games and
activities we have considered in the previous chapters. By diagnosing knowledge more accurately
or over a shorter period of time, instruction can be better targeted to individual learners and more
time can be spent on learning rather than assessing. For example, adapting the algebra problems
provided to users of our website could result in more concentrated posterior distributions, helping
to alleviate low confidence due to too few problems solved. Optimal game design also provides
an example of how our approach of combining computational modeling with machine learning
leads to flexible approaches to educational problems: by using a probabilistic, generative model
for interpreting actions, we were able to use the same model to interpret and simulate behavior.
There are a number of areas for future exploration in this area, including developing methods to
induce a possible space of misunderstandings from past data and creating models to infer both
motivation and understanding during gameplay. While this chapter concludes my discussion of
diagnosing people’s understanding by observing their free-form actions and choices, the work I
have presented provides a foundation for addressing these future questions.
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Chapter 6

Faster teaching by POMDP planning

In the previous chapters, I have focused primarily on questions of assessment: how can we deter-
mine what people understand and misunderstand on their actions? However, using this information
to customize the course of instruction is not necessarily trivial. Imagine an interactive technology
like the illustrated primer that is attempting to teach a student and achieve particular learning objec-
tives, with a diverse set of possible instructional materials and activities available. The technology
must decide when to assess the learner and when to provide instruction that may change the stu-
dent’s understanding; while some activities may include both of these facets, many are likely to
focus more on one or the other. There may be a variety of instructional activities that the technology
can choose from, and these activities may be more effective in a particular sequence; for instance,
some activities may build on information taught in a previous activity, and thus will only be useful
if the student has mastered the prior material. The diagnosis of the student’s understanding should
clearly play a part in these decisions, but qualities of the materials and how they affect learning
are also important. In this chapter, we develop and test a formal account of how a computer-based
tutor should select pedagogical activities.1

To formalize the problem of how an automated tutor should select activities for a student, we
consider what information the tutor should consider in making its selections. The tutor should take
into account both immediate and potential long-term learning benefits of an action. For example,
some activities may lead to learning that is more likely to transfer to other tasks, but that has less
of an immediate performance benefit for the current task. The automated tutor should also be able
to reason about the student’s unknown knowledge, and to gain information about that knowledge
based on observed student behavior; while human teachers may only be guided by coarse infor-
mation about their students’ knowledge (see VanLehn, 2011, for a literature review), finer-grained
information could prove helpful to an automated tutor. Models like Bayesian inverse planning
could be used to make inferences about a student’s understanding based on her actions, although
for simpler activities like multiple questions, less complex models will suffice. Finally, the auto-

1This chapter is based on work conducted in collaboration with Emma Brunskill, Thomas L. Griffiths, and Patrick
Shafto. Parts of this work were included in Rafferty, Brunskill, Griffiths, and Shafto (2011). My thanks go to un-
dergraduate research assistants Benjamin Shapiro, HyeYoung Shin, Christina Vu, and Julia Ying for their help in
conducting the behavioral experiments described in this chapter.
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mated teacher should incorporate a model of learning. This model should specify how a student’s
knowledge is likely to change based on her current knowledge and the pedagogical activity she is
completing. These components of the tutor should be modular, such that we can consider different
assumptions about learning without changing the entire architecture of the tutor and that we can
easily adapt the tutor to different domains. This modularity echoes the goals described in Chapter
1: developing educational technologies that are systematic and scalable through the use of com-
putational modeling. In this case, the modularity enables us to develop systems that can adapt to
particular characteristics of a domain without relying on heuristics or requiring experts to define
pedagogical strategies for individual domains.

Parts of the components for making such an adaptive tutor have been approached in previous
work. For instance, there has been substantial interest in the cognitive science, education, and
intelligent tutoring systems communities in modeling and tracking student learning. A number of
results have demonstrated the benefit of taking a Bayesian probabilistic approach (see, e.g., Chang
et al., 2006; Corbett & Anderson, 1995; Conati & Muldner, 2007; Villano, 1992). There has also
been some previous work, such as the KLI framework (Koedinger, Corbett, & Perfetti, 2012), that
has considered how to make pedagogical choices based on the types of student skills that are being
targeted. This framework synthesizes a variety of work finding that the effects of different teaching
strategies on learning are heavily modulated by the domain and task. However, there has in general
been limited work on how to automatically compute teaching policy that leverages a probabilistic
learner model in order to achieve a long-term teaching objective.

In this chapter, I propose using partially-observable Markov decision processes (POMDPs)
for automatic tutoring, focused on cases where the automated tutor teaches a student individually.
POMDPs allow one to compute a contingent policy for selecting sequential actions in situations
where important information may be unobserved (Sondik, 1971). By using this model, we take
a decision-theoretic approach that allows us to incorporate the sequential nature of the task, cus-
tomizing choices based on the learner’s observed behaviors as well as the previous pedagogical
actions that have occurred; this model naturally allows consideration of both immediate and long-
term gains. The specification of the POMDP also makes it relatively easy to consider different
models of student learning and different domain models, meeting our goal of modularity. Here, we
assume that the model of learning is known, and demonstrate how to select teaching actions given
a student model. However, For automatic tutoring to be widely applicable in new domains, such
models must eventually be learned from data; the POMDP framework is one way of conceptual-
izing what quantities must be learned and how these quantities relate to one another. Within the
POMDP model, the automated teacher’s beliefs about the learner’s unknown knowledge is repre-
sented as a distribution, preserving the teacher’s uncertainty about the student’s true knowledge.
Given a learning objective and a set of models describing the learning process, POMDPs provide
a framework for computing a teaching policy that optimizes the objective. The objective func-
tion to be optimized can encompass multiple goals, such as attaining specific skills quickly and
maintaining motivation, but these functions can be challenging to optimize; we address simpler
learning objectives focused on the student’s knowledge state and do not consider motivation or
other affective issues.

Though POMDPs are related to other decision-theoretic approaches used in previous education
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research, they are more powerful in two key respects. First, POMDPs can use sophisticated models
of learning, rather than assuming learners’ understanding can be directly observed or approximated
by a large number of features (as in Barnes & Stamper, 2008; Chi et al., 2008), and these models
are likely to be more interpretable than feature-based approximations. As opposed to Chi et al.
(2008), we focus our investigation on how POMDPs can be used to reason about the consequences
for teaching of particular cognitive models; in their work, they focused on empirical investigation
of using reinforcement learning to optimize a policy for a model based on observed features. Both
approaches make valuable contributions, but differ somewhat in their aims. The POMDP approach
is likely to be helpful when considering many existing cognitive models from psychology, as these
typically include information about the learner’s mental state. Second, in contrast to approaches
that only maximize the immediate benefit of the next action (Conati & Muldner, 2007; Kujala,
Richardson, & Lyytinen, 2008; Murray, VanLehn, & Mostow, 2004; Tang, Young, Myung, Pitt, &
Opfer, 2010), POMDPs reason about both the immediate learning gain and the long-term benefit to
the learner after a particular activity. While there are cases where considering only the immediate
learning gain is optimal (e.g., Karush & Dear, 1967), this strategy is suboptimal in the general case.
For instance, reasoning about long-term effects on learning provides a way to naturally incorporate
diagnostic actions. Diagnostic actions, such as giving a quiz, may result in less immediate learning,
but allow more effective pedagogical activities to be selected later. Incorporation of information
about the effect of particular actions on learning is automatic in the POMDP framework, allowing
one to avoid manually specifying heuristics about which teaching actions will be most effective.

POMDPs offer an appealing framework for selecting teaching actions, but there are often sig-
nificant obstacles to practical implementation. Specifically, planning teaching requires modeling
learning, and richer, more realistic models of learning lead to computational challenges for plan-
ning. We instead compute approximate POMDP policies, which make it feasible to use these
more complex, realistic models of human learning. As a demonstration of the modular nature of
POMDPs, we examine three different models of concept learning, and illustrate how, given the
same learning objective, these lead to qualitatively different teaching policies. The use of sev-
eral learner models allows us to examine whether effective policies can be computed even when
the assumed model and true human learning differ. Additionally, these models vary in complexity,
providing a test of how well the POMDP framework can scale to more complicated learner models.
We explore the impact of these varying models in two simple concept-learning tasks, both through
simulations and by teaching human learners. In order to focus primarily on the problem of peda-
gogical action selection, these tasks involve simpler assessments than those in previous chapters.
While there exist a few recent papers exploring the use of POMDPs to compute teaching poli-
cies (Brunskill, Garg, Tseng, Pal, & Findlater, 2010; Brunskill & Russell, 2010; Folsom-Kovarik,
Sukthankar, Schatz, & Nicholson, 2010; Theocharous, Beckwith, Butko, & Philipose, 2009), to
our knowledge our work is the first to demonstrate with human learners that POMDP planning
results in more efficient learning than baseline performance and the first to explore the impact of
different models of learning on the computed policies.

In this chapter, I begin by providing an overview of POMDPs, demonstrating how they dif-
fer from the MDPs used in previous chapters. I then show how teaching can be formulated as a
POMDP. I next explain specifically how to express concept-learning problems as a POMDP and
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describe three possible models of concept learning. Given the now fully specified model, I pro-
vide an algorithm for computing a policy for choosing pedagogical actions from the POMDP. To
empirically evaluate the effectiveness of POMDP policies for increasing learning efficiency, we
conduct several concept-learning experiments. In the first concept-learning task we consider, al-
phabet arithmetic, we use simulations and a behavioral experiment to evaluate this question. After
finding that the policies are successful for this simple task, we use a second behavioral experiment
to investigate this technique’s success for teaching a more complex concept-learning task involv-
ing learning numerical concepts. I conclude by discussing the implications, limitations, and future
directions of this work.

6.1 Partially observable Markov decision processes
POMDP planning is used to compute an optimal conditional policy for selecting actions to achieve
a goal (Kaelbling, Littman, & Cassandra, 1998; Monahan, 1982). POMDPs differ from MDPs
based on the agent’s information about the state of the world: in a POMDP, the state at each
time step is unobserved. For example, imagine a robot that needs to find a charging station and
knows that it is somewhere in a maze but does not know where. By exploring the environment
and making observations of the walls and intersections in the maze, the robot can better localize
its location to find the charging station more quickly. However, the robot should only explore
to the extent that this will help it achieve its goal: if it knows that it is in one of two possible
locations in the maze and that in both locations a charging station can be reached by turning
left and moving ten meters, it should simply proceed in that direction without further diagnosing
its location. POMDP planning provides a way to choose actions that takes into account how
uncovering unknown information (e.g., further diagnosing the robot’s location) is likely to impact
the agent’s ability to achieve its goals. This planning model has been used for a wide variety
of control tasks, including robotics (e.g., Kurniawati, Hsu, & Lee, 2008; Pineau, Montemerlo,
Pollack, Roy, & Thrun, 2003), healthcare (e.g., Hoey, Poupart, Boutilier, & Mihailidis, 2005;
Hu, Lovejoy, & Shafer, 1996), and dialogue systems (e.g., Atrash & Pineau, 2006; Roy, Pineau,
& Thrun, 2000; Young et al., 2010). POMDP control policies indicate which actions to take,
conditioned on the actions taken so far and observations of the environment, such that the expected
cost is minimized (or the expected reward is maximized). These policies are thus updated as an
agent gains more information about the environment, allowing it to choose more effective actions
with less uncertainty about the current state.

Formally, a POMDP consists of a tuple 〈S,A,Z, p(s′|s,a), p(z|s,a),R(s,a),γ〉, where S is a set
of states s, A is a set of actions a, and Z is a set of observations z (Sondik, 1971). As shown in
Figure 6.1, the structure of the POMDP is similar to an MDP. An action a is taken at each time step,
which together with the current state s results in a transition to the next state s′. These transitions
are specified by the transition model p(s′|s,a). The state s at any point is unobserved. Instead,
information about the state is indirectly available via the observations. Given that action a is taken
in state s, the observation model p(z|s,a) indicates the probability of observing z. For example, in
the case of the robot moving from an unknown starting location, the state s is its true location in
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Figure 6.1: POMDP model. At each time step t, there is an unobserved state st and the planner
chooses an action at . Based on the current state and chosen action, zt is generated and observed by
the planner, and the state transitions to st+1.

the maze, and it chooses whether to move or to turn in a particular direction. The next state s′ is the
robot’s location after that action, which may still be unknown to the robot. However, the robot does
know something about its location based on the walls and intersections it sees; this information is
encoded by the observation model p(z|s,a). Note that if all observation distributions p(·|s,a) place
a probability of one on some z and a probability of zero on all other possible z, then the POMDP
is equivalent to an MDP: the state is effectively observed at each time point.

Taking one action versus another in a particular state may be more or less costly. Just as in an
MDP, agents may experience costs, rewards, or both during their interactions with an environment;
because we will be mainly referring to costs in the experiments that we describe, we describe the
POMDP planning framework in terms of costs, letting a reward be simply a negative cost. The
costs experienced by an agent may vary based on its objectives as well as characteristics of the
environment. For instance, in the case of the robot trying to find the charging station, it might wish
to accomplish its task in minimal time; the cost structure would then specify that actions that are
likely to take more time (e.g., moving longer distances) will incur higher costs. Alternatively, the
robot might simply wish to find a charging station before it completely runs out of energy. In that
cases, all actions might have cost zero, but entering a state where the robot has no energy would
incur a very large cost. The cost model R(s,a) is used to encode the cost structure; for every state s
and action a, this model specifies a real-valued cost. POMDP planning seeks to choose actions that
minimize the expected sum of discounted future costs. If the state were known at each time step,
this quantity could be calculated in the same way as in an MDP: ∑

∞
t=0 γtR(st ,at), where γ is the

discount factor. This factor represents the relative harm of immediate costs versus delayed costs.
The discount factor is set by the planner.2

Given a POMDP, we want to compute a policy for how to select an action at each time step. An
optimal policy should map the prior history of actions and received observations to the action that
will minimize the expected sum of discounted future costs. For an MDP, the relevant information
about the the prior history of actions and received observations is encompassed by the observed
state. However, in a POMDP, the state is unobserved and the prior history grows at each step,
making it difficult to directly compute a policy. A common alternative is to maintain a sufficient

2See Appendix A.1 for a list of free parameters related to our use of POMDP planning and information about how
these parameters were set.
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statistic, known as a belief state b, that represents the planner’s distribution over potential states
given the past actions and observations (Åström, 1965). In the case of the robot, this would be a
distribution over where it currently is in the maze; some locations might have been ruled out by the
observations, giving them probability zero, while other locations might be equally probable given
the observations and actions that have occurred so far. Bayesian updating can be used to compute
a new belief baz after taking action a and receiving observation z from belief b:

baz(s′) =
p(z|s′,a)∫s p(s′|s,a)b(s)ds∫

s′ p(z|s′,a)
∫

s p(s′|s,a)b(s)dsds′
. (6.1)

Intuitively, this update corresponds to taking the expectation over the next state given the distribu-
tion over states at the current time step, adjusted by the probability of receiving the actual obser-
vation in that next state. Thus, at each time step, the planner chooses an action to minimize the
future cost, where information about past actions and observations is encoded by the current belief
state. This process is equivalent to planning based on maintaining the entire history of actions and
observations.

6.2 Modeling teaching as a POMDP
We now seek to formalize the problem of selecting individual teaching actions within the POMDP
framework. Using POMDPs for education was first mentioned by Cassandra (1998), as part of
a proposal for many different applications for POMDPs. This proposal was followed by several
different areas of research on applying POMDPs to education. POMDP planning has been con-
sidered as a way of sequencing units of instruction (Brunskill et al., 2010; Brunskill & Russell,
2010). Additionally, simulation-based work has considered how to approximate the student state
in order to use POMDP planning for domains where a “soft” prerequisite model is known (Folsom-
Kovarik et al., 2010); in that work, the authors constrained the order in which a tutor tried to teach
particular concepts. Finally, Theocharous et al. (2009) considered the problem of constructing the
component models of a POMDP to teach a specific concept. In our work, we consider the problem
of selecting individual pedagogical actions using a POMDP policy, where we do not have explicit
information about which actions should precede other actions and where the student’s knowledge
state does not necessarily decompose into independent components. While many common models
of student learning assume this decomposition (e.g., ACT-R, Anderson, 1993), other psychological
models of learning do not, and the POMDP framework can be applied to either type of model. Our
work provides a concrete demonstration of using POMDPs to teach human learners and considers
the effects of mismatches between human learners and the assumptions of the model of learning.
In this section, we demonstrate how teaching can be modeled within the POMDP framework by
mapping each part of the model to a particular part of the teaching process, providing a roadmap
for the applications that we consider as well as future applications of POMDPs to teaching.

Figure 6.2a shows our general formulation of the teaching process. The automated teacher must
make a sequence of pedagogical choices. These pedagogical choices map to the actions taken at
each time step in the POMDP (see Figure 6.2b). For example, the automated teacher might first
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have a student complete a short quiz (a pre-test), and then have the student complete a chemistry
lab that has concepts that it believes the student has not yet mastered. Note that unlike in previous
chapters, the actions correspond not to the learner’s choices but to those of the automated tutor.
The learner’s state at any given time step t is unobserved and corresponds to the state st of the
POMDP at time t. We consider the state to be a knowledge state, corresponding to what a learner
currently understands about what she is being taught; the state here is analogous to the diagnosis
of the inverse planning model. However, the state could in general be richer and include other
information about the learner, such as her current level of motivation or her current affect. The
learner’s state may change based on the activity that the teacher chooses to give her (i.e., at); as
shown in the graphical model in Figure 6.2b, the next knowledge state is dependent only on the
current knowledge state and the pedagogical activity. Intuitively, changes in the learner’s state
correspond to learning. Such changes may reflect mastery of a new skill, forgetting of a previously
learned skill, or some other change in understanding, such as making a new generalization that
brings the student closer to correct understanding.

Modeling learner knowledge and changes in knowledge within the POMDP framework re-
quires specifying a state space S of possible knowledge states and transition model p(s′|a,s) for
how knowledge changes. Different learner models may make different assumptions about how
knowledge is encoded. At the simplest possible level, the state might only represent whether a par-
ticular topic, such as addition, has been mastered. Alternatively, states might represent different
possible understandings a student might have about addition, one of which is normative and others
which represent incomplete or non-normative understandings. The state space is thus similar to
the space of possible hypotheses considered by the Bayesian inverse planning model developed in
previous chapters. While a particular representation must be specified to compute a POMDP pol-
icy, one of the advantages of the POMDP framework is that it can work with a variety of possible
representations, allowing one to determine what effects different assumptions would have on the
optimal policy and how quickly one would expect a particular type of learner to master a topic. We
consider several learner models in the experiments that follow.

The likelihood that a learner will give a particular response z to an item given her current
knowledge state s is also a part of the learner model. This corresponds to the observation model
p(z|s,a), and intuitively, provides noisy information about the learner’s understanding. For exam-
ple, imagine the student has been asked for the answer to 3+ 8 and responds 10. This response
is less likely than 11 if the learner has a correct understanding, but could have occurred due to
misreading or a “slip”: it is not definitive proof that the student has not mastered addition. A more
complex observation model is the likelihood in Bayesian inverse planning, where the observation
corresponds to the person’s sequence of action choices.

We assume that the automated teacher has a learner model that represents how the learner’s
knowledge changes and how the learner’s responses are affected by her knowledge. The teacher
can then use this model to update its beliefs about the student’s current knowledge state based
on new observations. This update can be done just as in Equation 6.1. The teacher begins with
a belief state equal to the prior distribution p(s) over possible knowledge states; this distribution
might be used to encode known biases in student knowledge for a particular task, just as the prior
in Bayesian inverse planning was used. After each action, the belief state is updated using the
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observation model to incorporate the learner’s responses and the transition model to incorporate
the effects of learning.

The final portion of the POMDP framework that must be adapted to the teaching domain is
the cost model. The content of this model is dependent on the teacher’s learning objectives. Since
POMDP planning is used to find a policy that minimizes expected costs (or maximizes rewards),
the cost model should specify the teacher’s desired outcome as well as particular incentives for
individual actions or states. For example, one simple learning objective would be to have the
learner reach some particular knowledge state s, reflecting mastery, in as little time as possible.
This could be encoded by having actions in state s cost zero, and other actions cost the amount of
time that it is expected the student will take to complete them. Then, for instance, if there are only
two actions and the student will almost certainly enter the desired state s after completing either
action, the planning framework will favor the action with shorter expected time.

While we will use this simple time cost model, there are many other possible learning objectives
that could be encoded in a cost model. For instance, one might have a domain where variable
amount of material could be learned, and the objective is for the student to learn as much of the
material as possible. This learning objective might more naturally be represented using rewards
(rather than costs, which are negative), with larger rewards for knowledge states where more of the
material has been learned. The resulting policies would still attempt to teach the learner all of the
material, but if only a fixed amount of time was available, these policies might attempt to ensure
that at least some material was learned rather than trying to teach all material with little probability
of success.

Another class of possible learning objectives focuses on robust learning. For example, one
might want to maximize the probability that a student will retain her knowledge for at least some
period of time or that she will be able to transfer her knowledge to new problems. Such objectives
imply that one has particular beliefs about the learner model, and in particular, the knowledge state
representation and the observation model. If it is possible for a student to have learned more or
less robustly, then there must be sets of states in which the learner will show similar responses to
certain types of items, such as items of the same type she has already been exposed to. However,
when asked about a transfer item, students whose knowledge state reflects deeper learning will
give different responses than students who knowledge state reflects more shallow learning. This
could be reflected in the cost model by having the desired knowledge state be that which reflects
deep learning, with some cost for being in other knowledge states. The cost of being in the shallow
knowledge state might be less than that of an arbitrary knowledge state but still non-zero; this
corresponds to some mastery being seen as more valuable than no mastery, but still less desirable
than robust mastery. In this case, it is clear that for the teacher to achieve the desired objectives,
there must be some actions that are likely to help the student learn the knowledge in the robust
manner and ideally, there will be actions available to allow the teacher to check the student’s
generalization abilities. In this example, one could also imagine combining the robust learning
objective with costs for increased time to mastery, leading to policies that aim to quickly achieve
robust learning. In general, the cost model provides a way to specify a diverse array of objectives,
and POMDP planning can then be used to find a policy that will minimize the cost of achieving
the objectives.
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Figure 6.2: Mapping the POMDP model to teaching. (a) The teaching process consists of the com-
puter choosing actions, which may be dependent upon its knowledge of the student. The student
knowledge evolves based on the activities that she completes. By observing the student’s behavior,
such as how the student completes an interactive assessment, the computer can gain information
about what the student understands and what misunderstandings she may have. (b) A graphi-
cal model representation showing how teaching corresponds to the components of the POMDP.
Actions are pedagogical choices, states correspond to student knowledge, and observations are
determined by student behavior. The computer teacher can make pedagogical choices to achieve
some long-term objective, such as minimizing the time for the student to reach mastery.

Formulating teaching as a POMDP has several advantages. It provides a way of deriving an
optimal policy for any teaching task and any learner model. This allows one to explicitly deter-
mine the expected consequences of making different assumptions about the learner or changing
the learning objective. This can be helpful for evaluating the learner model and for determining
whether a particular distinction actually has implications for teaching. The general framework is
naturally modular, separating the parts of the teaching task and the assumptions made in each part
of the model. This may be helpful for comparing or making improvements to automatic tutoring
systems. Specifying a general framework also allows one to consider how particular methods for
problem selection may be approximations to the optimal policy. By defining a problem selection
method with respect to how it approximates the POMDP policy, one can make use of the existing
POMDP literature and evaluate in what circumstances such an approximation is likely to perform
well.

In the remainder of the chapter, we consider how this framework can be applied in concept-
learning tasks. In such tasks, we use the time-based cost model that we described above: the cost
of each action is the expected amount of time for the learner to complete the activity, and when the
learner knows the correct concept, the action cost drops to zero. As a consequence, the computed
policies select actions to minimize the expected time for the learner to understand the concept.
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The space of tutorial actions may vary widely based on the domain being taught. We follow
the tradition of concept learning via examples that has been explored in psychology, just as in
Chapter 5, although we no longer focus on Boolean concepts. Within this type of concept learning,
it is natural to consider three types of actions: examples, quizzes, and questions with feedback.
Examples give the learner some information about the concept, but do not result in any observed
behavior from the learner. Quizzes ask the learner a specific question related to the concept, but
do not directly give the learner any new information about the concept. Questions with feedback
combine these two action types by first asking the learner a question and then responding by
telling the student the correct answer. Example and quiz actions are equivalent to the tell and
elicit pedagogical actions that have been used previously in optimizations of intelligent tutoring
systems (Chi et al., 2008). The POMDP can be used to find the optimal policy for teaching the
learner the concept, taking into account the learner’s responses to questions and balancing actions
aimed primarily at diagnosis with those that provide information to the learner.

6.3 Learner models for concept learning
We consider three learner models, inspired by the cognitive science literature, that correspond to
restrictions of Bayesian learning. Each learner model describes the state space of the POMDP
as well as the transition and observation models. While the models we describe are only rough
approximations of human concept learning, we will show that they are still sufficient to enable
us to compute better teaching policies and that they can be applied to several different concept
learning tasks. The three models we consider vary in complexity as well as in how closely they
approximate human learning; this allows us to examine how well the POMDP approach can scale
to more complex models. By using several different models, some of which we know are better
approximations of human learning than others, we can also examine how closely the learner model
must match human learning in order to lead to effective policies.

All of the models we consider share several assumptions about the concept-learning task. They
each assume a discrete hypothesis space C of possible concepts. Such an assumption is reasonable
in many contexts. For instance, the hypothesis space corresponding to possible meanings of a
word might include binary vectors assigning each potential object as part of the concept or not,
and the Boolean concepts in Chapter 5 were defined by a vector of which symbols were a part of
the concept. The models we consider assume that size of the hypothesis space is finite, although it
may be large. Since our models correspond to restrictions of Bayesian learning, they also assume
that there is a prior distribution over the hypothesis space of concepts. Intuitively, this distribution
represents learners’ biases before they are exposed to any data about the concept; the difficulty
of learning different concepts was represented by this prior distribution in Chapter 5. Finally, we
assume that the domain is such that for any question the tutor might ask, each concept implies a
single possible right answer. For instance, questions might ask whether particular objects are in
the concept, and each possible concept in the hypothesis space specifies whether each object is in
that concept. This assumption simplifies the problem somewhat, but could easily be modified to
assume that concepts specify a probability distribution over possible answers to a question.
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Memoryless model
We first consider a model in which the learner’s knowledge state is the single concept she currently
believes is correct, similar to a classic model of concept learning proposed by Restle (1962). In
this model, the learner does not explicitly store any information previously seen. If an action is a
quiz action, or if the provided evidence in an example or question with feedback action is consistent
with the learner’s current concept, then her state stays the same. If the action contradicts the current
concept, the learner transitions to a state consistent with that action, with probability proportional
to the prior probability of that concept:

p(st+1 = ci|st = c j,at) ∝

 p0(ci) if ci is consistent with at

0 otherwise
(6.2)

where p0(ci) represents the prior distribution on concepts.
The observation model is deterministic: When asked to provide an answer to a question, the

learner provides the answer zn that is consistent with her current beliefs. This model underestimates
human learning capabilities, and thus provides a useful measure of whether POMDP planning can
still accelerate learning when a pessimistic learner model is used. This model is also attractive
because it is less computationally complex than the other models we consider: The size of the
state space is equal to the number of possible concepts |C|. Given this state space, the automated
teacher’s belief state b over the hidden learner state is a probability distribution over the |C|. Belief
updating is performed using Equation 6.1, which will be an order |C|2 operation.

Discrete model with memory
The key limitation of our first model is its lack of memory of past evidence. In general, this assump-
tion is not accurate for human learning, although it is sometimes applicable to children (Levine,
1970). A more psychologically plausible state space is one in which learners maintain a finite
memory of the past M actions in addition to their current guess of the true concept. This results in
factored states that consist of sh, the past M number-observation history, which is fully observed,
and sc, the hidden guess at the true concept. Like the memoryless model, this model assumes
that the learner stores her current guess at the true concept, and this guess is updated only when
information is shown that contradicts the guess. In this case, the learner shifts to a concept that is
consistent with the current evidence and all evidence in the M-step history. The transition probabil-
ity is again proportional to the initial concept probability. The transition model for sh, representing
the history, is deterministic. The observation model is also the same as in the memoryless case:
The learner responds deterministically based on her current guess. Belief updating for the auto-
mated teacher can be updated in the same manner as for the previous model, with the size of the
state space now equal to the number of possible concepts multiplied by the number of possible
memory states.
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Continuous model
A more complex view of learning is the type of Bayesian model applied in Chapter 5, in which
a learner maintains a probability distribution over multiple concepts. Such an account allows one
to model cases where a learner is unsure exactly which concept is correct but has ruled out some
of the possibilities. In this case the state is a |C|-dimensional, continuous-valued vector that sums
to 1, where C is the set of possible concepts. The ith position corresponds to the probability mass
that the learner places on the ith concep. The state space S is an infinite set of all such vectors, the
simplex ∆|C|.

The transition function assumes that for quiz actions, each state transitions deterministically
to itself, as in the previous two models. For example and question with feedback actions, state
dimensions for concepts that are inconsistent with the provided information are set to zero. Letting
p(s(t+1)i) be the ith entry in the distribution at time t + 1, corresponding to the probability of the
ith concept, then:

p(s(t+1)i|st ,at) ∝

 p(sti) if ci is consistent with at

0 otherwise
(6.3)

The full joint transition probability is then re-normalized. This corresponds to a Bayesian gen-
eralization model with weak sampling (Tenenbaum & Griffiths, 2001). The observation model
assumes the learner gives answer zn to a question with probability equal to the amount of proba-
bility she places on concepts that have zn as the correct answer for this question. For this model,
the automated teacher must maintain a belief state over the infinite number of possible knowledge
states. This requires approximating the belief state; we discuss the details of our approach to this
issue in the next section.

Capturing deviations from the model
To improve the robustness of our policies to the coarse learner models we employ, all models
include two extra parameters, a transition noise parameter εt and a production noise parameter εp.
The transition noise parameter εt corresponds to the probability that the learner ignores a given
teaching action, resulting in the learner not transitioning to a new concept. The production noise
parameter εp corresponds to the probability that the learner produces an answer inconsistent with
her current guess; this parameter plays a similar role to the guess and slip parameters common
in some models of student knowledge (Corbett & Anderson, 1995). These parameters give the
models extra flexibility to account for learners that do not behave precisely as the model predicts.

6.4 Selecting teaching actions using POMDP planning
Our goal is to compute a policy that selects the best action given a distribution over the learner’s
current knowledge state, the belief state. Offline POMDP planners compute such policies in ad-
vance. This approach requires pre-computing policies over the continuous space of possible belief
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Figure 6.3: An example forward search tree for a two step horizon. The search considers the effect
of each type of action applied with several different items from the domain; for example, to teach
the learner the concept “odd numbers,” the search would consider several different numbers that
could be used for examples, quizzes, or questions with feedback. The number of actions sampled
at each time step in the figure is only an example; in our actual experiments we sampled varying
numbers of actions.

states.3 The space of possible belief states is a simplex, as each belief is a probability distribution
over the possible knowledge states. As the number of knowledge states grows, the dimensional-
ity of this simplex is increased. Thus, as the size of the state space increases, offline approaches
become infeasible. Since many teaching domains are likely to have large state spaces, we instead
turn to online POMDP forward search techniques, which have proven promising in other large
domains (see Ross, Pineau, Paquet, & Chaib-draa, 2008, for a survey).

We compute the future expected cost associated with taking different actions from the current
belief state by constructing a forward search tree of potential future outcomes (see Figure 6.3).
This tree is constructed by interleaving branching on actions and observations. To compute the
values of actions next to the root belief state, the values of the leaf nodes are estimated using the
evaluation function, and then their values are propagated up the tree, taking the max over actions
and expectation over observations. After the tree is used to estimate the value of each action for the
current belief, the best pedagogical action is chosen. The learner then responds to the action, and
this response, plus the action chosen, is used to update the belief representing the new distribution
over the learner’s knowledge state. We then construct a new forward search tree to select a new
action for the updated belief.

While forward search solves some of the computational issues in finding a policy, the cost of
searching the full tree is O((|A||Z|)H), where H is the task horizon (i.e., the number of sequential
actions considered), and requires an O(|S|2) operation at each node. This is particularly problem-
atic as the size of the state space may scale with complexity of the learner model: the memoryless
model has a state space of size |C|, while the discrete model with memory has state space of size
|C||A|M and the continuous model has an infinite state space. To reduce the number of nodes
we must search through, we take a similar approach to Ross, Chaib-draa, and Pineau (2008) and
restrict the tree by sampling only a few actions. While this approach resolves some of the compu-

3Most state-of-the-art offline algorithms try to compute a policy over a subset of the reachable subspace, but this
is still typically a very large region.



CHAPTER 6. FASTER TEACHING BY POMDP PLANNING 85

tational issues mentioned above, the cost of forward search is exponential in the depth of the tree,
making it infeasible to plan to the true task horizon. We thus limit H to control the depth of the
tree and use an evaluation function at the leaves. This evaluation function is based on the estimated
probability that the student knows the correct concept.

Since the belief state in the continuous model is a distribution over an infinite set of states, we
approximate the belief state for this model to make inference tractable. We represent the belief
state as a weighted set of probabilistic particles and update these particles based on the transition
and observation models (see Appendix A.2 for details). Particles inconsistent with the observations
are eliminated. If no particles are consistent with the current observation, we reinitialize the belief
state with two particles: one with a distribution induced by rationally updating the prior using all
previous evidence and one with a uniform distribution. Depending on the number of particles used,
this technique may be less computationally complex than the calculations for the other two models.

6.5 Empirical evaluation of optimal policies
We have now created a framework for approaching pedagogical action selection as a POMDP
planning problem. This framework allows one to consider the costs and benefits of particular
teaching actions with respect to their long-term effects on achieving a pedagogical objective. We
have illustrated how to apply this to concept learning tasks, including several possible models of
concept-learning that vary in terms of their assumptions about learners’ knowledge. In the previous
section, I described how to approximate an optimal policy from the POMDP, with relatively similar
strategies for each of three concept learning models. We next test whether using a POMDP policy
to choose pedagogical actions is effective at teaching human learners and feasible to use in real-
time. Just as in previous chapters, we expect that our models do not precisely match characteristics
of human learners in all ways. This means that the computed policies may not be optimal with
respect to real learners; behavioral experiments allow us to explore whether they are still effective.

In the remainder of this chapter, we test the framework on two concept-learning tasks, alphabet
arithmetic and learning numerical concepts. In alphabet arithmetic, learners infer a mapping from
letters to numbers based on exposure to equations like A+B = 1 that impose constraints on the
possible mappings. While this task is artificial, it provides a preliminary evaluation of POMDP
planning for problem selection and shares several important characteristics with real teaching do-
mains: it is rich enough that learners may have misunderstandings, such as erroneous beliefs about
which letter maps to which number, and that we expect some teaching policies to be more effective
than others. The second concept learning task, the Number Game, involves a more complex space
of numerical concepts and a larger number of possible teaching actions. For both tasks, we use
simulations and behavioral experiments to test the effectiveness of POMDP planning for pedagog-
ical action selection. These tasks differ from traditional domains covered in tutoring systems used
in the classroom, but they share important characteristics with instruction in these domains: teach-
ing occurs over a period of time, requiring sequencing information and incorporating the learners’
behavior.
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6.6 Simulation 1: Teaching simulated learners alphabet
arithmetic

We first explore the performance of POMDP planning for teaching simulated learners alphabet
arithmetic. These simulations address two questions: (1) how effective is POMDP planning when
the assumed learner and the actual learner match, and (2) is POMDP planning still effective when
the actual learner differs from that assumed by the POMDP? If POMDP policies that do not match
the learner are still able to make learning more efficient, then this provides some evidence that the
mismatch between human learners and the simple models of learning that we consider may not be
insurmountable.

As described above, alphabet arithmetic involves learning a mapping between letters and num-
bers; in this case, we teach a mapping from the letters A–F to the digits 0–6. We assume learners
have a uniform prior over mappings. For example actions, learners are shown an equation where
two distinct letters sum to a numerical answer. For instance, A could be mapped to 0 and B to
1, and one might show the learner the equation A+B = 1. Quiz actions leave out the numerical
answer and ask the learner to give the correct sum. Questions with feedback combine these two
actions. The planning goal for alphabet arithmetic is to minimize the amount of time for learners to
correctly identify the mapping. Given this space of actions, we expect that modeling and tracking
the learner’s state may speed learning since teaching actions can explicitly address or diagnose the
learner’s misunderstandings.

Methods
We conducted four simulations for each type of learner (memoryless, discrete with memory, and
continuous). One simulation used a random policy, and the other three simulations used a POMDP
policy driven by each of the learner models. This allowed us to determine how quickly, for instance,
a memoryless learner could be taught using a memoryless policy versus a continuous policy.4 Fifty
simulations were run for each of these twelve combinations of learner and policy.

To match the experiment presented in the next section, we alternated between teaching phases,
in which we selected pedagogical actions for the simulated learner, and assessment phases, in
which we checked whether the simulated learner had identified the mapping. Each teaching phase
consisted of a sequence of three pedagogical actions. After the teaching phase, there was an
assessment phase that varied slightly based on the type of simulated learner. For the memoryless
learners and the discrete representation with memory learners, the current guess of the learner was
compared to the true mapping. If they were identical, then the learner had mastered the concept and
teaching was terminated. For the continuous learner, a mapping was sampled from the learner’s
current distribution over possible mappings, and if this mapping matched the true mapping, then
teaching was terminated. If a learner failed to achieve mastery after 40 teaching phases, then

4For simplicity, we distinguish the POMDP policies based on the learner model they assume. For example, the
memoryless policy is the POMDP policy that assumes a memoryless learner model.
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teaching was also terminated; this was to match the experimental procedure in which teaching of
human learners would be terminated after 40 phases regardless of performance.

Finding the POMDP policies requires setting the parameters of the cost function as well as the
parameters of each learner model. To make the simulations as realistic as possible, we set these
parameters based on data from teaching 20 human participants using a random policy; these were
the participants in the control condition of Experiment 1, described below. The cost of each action
that was used by the POMDP planner was the median time to complete each action type from
the participants in the control condition: example actions took 7.0s, quiz actions took 6.6s, and
question with feedback actions took 12s. When computing the action values within the forward
search tree, we set the cost for a leaf node to be the probability of not passing the assessment phase
multiplied by 10 ·mina R(a), a scaling of the minimum future cost.

We set the probability εt of ignoring a teaching action and the probability εp of making a
production error when answering a question by finding the values that maximized the log likelihood
under a given model of the data from the participants taught using a random policy; details of this
procedure and the resulting values can be found in Appendix A.3.

For forward planning, we set the parameters of the algorithm to sample as many actions as
possible given the constraints of planning in real-time (see Appendix A.1 for more details about
the number of free parameters in the algorithm and how these parameters were set). In particular,
we limited all computations to three seconds. Given this constraint, we set the lookahead horizon
to two actions. Policies for the first nine actions were precomputed with ten actions sampled at
each level. Caching the first nine actions allows us to consider more actions at each horizon, while
still using a constrained number of actions to speed computations. Later actions were computed by
sampling the following number of actions at each level: seven and six actions for the memoryless
model; eight and eight actions for the discrete model with memory; and four and three actions for
the continuous model. Sixteen particles were used for the continuous model, and M = 2 for the
discrete model with memory (both for the simulated learner and the POMDP policy). The effects
of varying these parameters are not extreme: sampling more actions at each level results in less
variance, but does not tend to change the outcome across many simulations. The results are also
not very sensitive to changes in the number of particles, although using very small numbers of
particles performs poorly. The simulations for the discrete learner with memory are sensitive to
changes in the assumed memory capacity of the learner; for instance, if memory capacity is set to
zero, this learner is identical to the memoryless learner.

Results and discussion
For each type of simulated learner, we compared how the number of teaching phases required
and the expected time to mastery varied based on the teaching policy. Expected time to mastery
was computed by assuming that each action took the amount of time assumed by the POMDP
planner. For instance, if a simulated learner identified the mapping after three actions, two of
which were example actions and one of which was a quiz action, the expected time to mastery
would be 2 ·7.0+1 ·6.6 = 20.6 seconds. Initial inspection showed that the distribution of learning
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times exhibited a long right tail, so we analyzed results using medians, which are more robust than
means to outliers and non-symmetric distributions.

As shown in Figure 6.4, the simulation results demonstrate that teaching using a POMDP pol-
icy can decrease both the number of teaching actions required and the expected time to mastery
relative to the random policy, even if the learner does not match the learner model in the POMDP.
For all three learner types, there was a significant main effect of teaching policy on the number of
teaching actions (Kruskal-Wallis: memoryless learner, χ2(3) = 26.5, p< .001; discrete representa-
tion with memory, χ2(3) = 14.8, p < .001; continuous learner, χ2(3) = 20.6, p < .001) and on the
expected time to mastery (Kruskal-Wallis: memoryless learner, χ2(3) = 21.4, p < .001; discrete
representation with memory, χ2(3) = 26.7, p < .001; continuous learner, χ2(3) = 46.5, p < .001).
We performed planned, pairwise comparisons between the POMDP policies and the random pol-
icy. For the learner with the discrete representation and memory as well as the learner with a
continuous representations, all three POMDP policies significantly improved learning efficiency.5

For the memoryless learner, only the memoryless policy resulted in significantly fewer teaching ac-
tions than the random policy (Kruskal-Wallis: memoryless versus random, χ2(1) = 6.5, p < .025);
all three POMDP policies, however, resulted in lower expected time to mastery than the random
policy (Kruskal-Wallis: memoryless versus random, χ2(1) = 18.8, p < .001; discrete model with
memory versus random, χ2(1) = 11.7, p < .001; continuous versus random, χ2(1) = 7.1, p < .01).
The lack of difference in the number of actions required is probably due to the large number of
simulations in which the memoryless learner never identified the concept.

We also examined the simulations to see what types of policies emerged from different assumed
learner models. Figure 6.5 shows part of the discrete model with memory policy. Here, the model
shows an example, and then follows this with a quiz question. The question allows the model
to check whether the learner has mastered part of the concept, and is less costly than showing
another example, since quiz actions are generally completed more quickly than example actions.
After the example, the next action is dependent on the answer that is given by the student, as the
POMDP updates its belief state using the observation model. Some answers may result in more
quiz questions, either because the student answers correctly or because the model is attempting
further diagnosis, or in an example. Questions with feedback were rarely used by any of the
POMDP policies because of their high cost.

There were some differences based on which learner model was assumed, and which type of
learner was being taught. Overall, the policies based on the discrete model with memory and the
continuous model used an average of at least 90% example actions, with the remaining actions be-

5Planned pairwise comparisons using Kruskal-Wallis tests were conducted. For number of teaching phases for
the learner with the discrete representation and memory: memoryless versus random, χ2(1) = 8.7, p < .005; discrete
model with memory versus random, χ2(1) = 7.0, p < .01; continuous versus random, χ2(1) = 11.8, p < .001. For
expected time to mastery for the learner with the discrete representation and memory: memoryless versus random,
χ2(1) = 17.4, p < .001; discrete model with memory versus random, χ2(1) = 15.2, p < .001; continuous versus
random, χ2(1) = 18.1, p < .001. For number of teaching phases for the continuous learner: memoryless versus
random, χ2(1) = 12.9, p < .001; discrete model with memory versus random, χ2(1) = 5.4, p < .025; continuous
versus random, χ2 = 17.6, p < .001. For expected time to mastery for the learner with the discrete representation and
memory: memoryless versus random, χ2(1) = 31.9, p < .001; discrete model with memory versus random, χ2(1) =
18.5, p < .001; continuous versus random, χ2(1) = 35.2, p < .001.
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Figure 6.4: Results for Simulations 1 and 2: Median time (a) and phases (b) for simulated learners
to reach mastery, by policy type. Error bars correspond to bootstrapped 68% confidence intervals
(equivalent to one standard error). Results based on expected time to mastery are similar to those
based on phases, except in the case of the memoryless learner. In that case, expected time to
mastery is lower for all POMDP policies than for the random policy, although not lower than the
quiz-example only policy.

ing almost exclusively quiz questions. One exception was the case of the discrete memory model
for teaching and a continuous learner, where one simulation never reached mastery and the policy
devolved into asking primarily quiz questions. Given a longer period to teach, this policy would
presumably diagnose the learner’s misunderstanding, and then use an example to correct that mis-
understanding. The proportion of quiz versus example actions was more variable for the policy
based on the memoryless model, probably because this model assumes a much more stochastic
learner than the other two policies. This means that the model has less certainty about the learner’s
knowledge state, and thus less guidance for choosing what questions to ask the learner.

In summary, POMDP policies were in general effective at improving learning efficiency even
when the assumed policy was incorrect. While different types of simulated learners varied dramati-
cally in the time required to master a concept, these differences were generally not greatly mediated
by which type of learner was assumed by the POMDP planner. Based on the type of learner as-



CHAPTER 6. FASTER TEACHING BY POMDP PLANNING 90

Example:
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Figure 6.5: Part of a policy from the discrete model with memory. Possible student answers to the
quiz are indicated on the arrows; some are omitted. Based on the student’s response, the action after
the quiz may correct a misunderstanding, try to better diagnose the cause of an incorrect answer, or
continue quizzing to try to detect a misunderstanding. Actions after the quiz are contingent upon
the student’s response, reflecting the fact that action choices are based on the computer’s beliefs
about the student’s knowledge, which are updated given the student’s behavior.

sumed by the POMDP planner, however, the policies do have qualitatively different characteristics.

6.7 Experiment 1: Teaching human learners alphabet
arithmetic

The simulation results above show that POMDP policies for selecting teaching actions can have a
measurable effect on the rate at which the mapping is identified. They also suggest that mismatches
between the learner and the assumed learner model do not make the POMDP policy ineffective,
and that even a simple learner model can be used to derive effective POMDP policies. We next
turn to a behavioral experiment to explore whether these findings also hold when teaching human
learners, who may vary more dramatically and in different ways than the simulated learners.

Methods
Participants

A total of 40 participants were recruited online and received a small amount of monetary compen-
sation for their participation.

Stimuli

All participants were randomly assigned three mappings between the letters A–F and the numbers
0–5. These mappings were learned in succession.

Procedure

Participants were assigned to either the control condition, in which teaching actions for all map-
pings were chosen randomly, or to the experimental condition. Assignment to condition was based
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Figure 6.6: Median time to learn each mapping in Experiment 1, by policy type; error bars corre-
spond to bootstrapped 68% confidence intervals (equivalent to one standard error).

on the time of participation, with all participants in the control condition assigned prior to partic-
ipants in the experimental condition. This allowed us to use the results from the random control
condition to set the parameters of the POMDP models, as described above. Each participant in
the experimental condition experienced all three of the teaching policies in random order, one for
each mapping learned. The experiment consisted of a sequence of teaching and assessment phases.
In each teaching phase, a series of three teaching actions was chosen based on condition. After
each teaching phase, participants completed an assessment phase in which they were asked to give
the number to which each letter corresponded. Answers in the assessment phase were not used to
update the beliefs of the POMDP models to allow for fair comparisons across conditions. Teach-
ing of a given mapping terminated when the participant completed two consecutive assessment
phases correctly or when 40 teaching phases had been completed. Within all phases, the equations
the participant had seen were displayed on-screen, and participants could optionally record their
current guesses about which letter corresponded to which number.

Computing policies

The cost for each action type and the setting of the ε parameters was the same as that in the
simulations above. In all conditions, we also inserted a three second delay between actions in
order to allow time for planning.

Results and discussion
We compared the number of phases as well as the time participants took to learn each mapping. Just
as in the simulations, we analyzed results using medians. There was no significant within-subjects
difference in the amount of time or number of phases to learn the first, second, or third mapping
(Kruskal-Wallis p > 0.8), demonstrating that the results are not due to participants becoming more
adept at the task.
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Overall, participants taught by POMDP planning took significantly fewer phases to learn each
mapping than participants in the control condition (three phases versus four; Kruskal-Wallis:
χ2(3) = 24.9, p < 0.001) and also took significantly less time per mapping (232 seconds ver-
sus 321 seconds; Kruskal-Wallis: χ2(3) = 16.5, p < 0.001); see Figure 6.6. Planned pairwise
comparisons show that all of the POMDP policies resulted in fewer phases to completion than the
random policy (Kruskal-Wallis: memoryless versus random, χ2(1) = 8.5, p < .005; discrete model
with memory versus random, χ2(1) = 10.5, p < .005; continuous versus random, χ2(1) = 16.3,
p < .001), and all POMDP policies but the memoryless policy resulted in significantly faster learn-
ing (Kruskal-Wallis: memoryless versus random, χ2(1) = 2.9, n.s., p = .087; discrete model with
memory versus random, χ2(1) = 7.4, p < .01; continuous versus random, χ2(1) = 12.5, p < .001).

As in the simulations, differences in policies occurred based on the learner model used. Poli-
cies for both the discrete model with memory and the continuous model began with six independent
equations that fully specify the mapping. This is the policy one might have hand-crafted to teach
this task, demonstrating that despite approximations in planning, the POMDP planner finds rea-
sonable teaching policies. Each of the policies for these two models gives examples until there is
a high probability the learner is in the correct state, and then asks quiz questions, which are less
costly than examples, to detect errors in the learned mapping.

The memoryless policy repeats specific example actions more often than the other policies since
it assumes that the learner does not store previous actions in memory. This is clearly a pessimistic
assumption, especially given that previously seen equations were displayed on-screen during the
experiment. The fact that this model did not significantly decrease time to learn suggests such
an unrealistic assumption may be detrimental for problem selection. However, the actions that
are chosen do seem to be those that most limit the number of consistent hypotheses given both
the structure of the mapping and the immediate preceding action, suggesting the we are finding a
relatively good policy given the constraints of this learner model.

In the simulations, the types of actions chosen varied based on the assumed learner model.
These variations persisted in the experiment. Figure 6.7 shows number of actions of each type
at each point in time in the experiment where at least three participants remained. Overall, the
continuous policy asked the fewest quiz questions, while the memoryless policy asked the most
(39% of actions). The memoryless tended to ask quiz questions later than the continuous policy,
though, resulting in fewer participants receiving any quiz questions. The memoryless policy likely
asked questions more frequently than the other policies because the state of a memoryless learner
after an example is known with less certainty than in the other two models: in those models,
the new state is constrained to be consistent with multiple pieces of past evidence, whereas the
memoryless learner’s state is constrained only to be consistent with the current example. None of
the policies used many feedback actions due to the fact that these actions are considerably more
expensive than other actions.

While the actions did vary between the policies, one might wonder why these different policies
had little variance in their teaching efficacy. Specifically, while the two more complex learner mod-
els significantly reduced the time to learn, they did not result in significantly different outcomes
from one another or from the memoryless policy. However, the simulation predicts this result if
our learners are similar to the discrete learner with memory or the continuous learner. In both of
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Figure 6.7: Action types at each time in the experiment, by condition. Each graph shows the
number of participants for whom the nth action was an example, question with feedback, or quiz.
Data is shown only for time points where at least three participants had not mastered the concept.

these cases, all of the teaching policies were equivalent to one another. These two learners are
quite powerful, and able to master the concept within only a few trials; thus, we might expect that
there are multiple optimal or near-optimal policies, such that using a policy from one model is still
relatively effective for a different model. Since we perform only approximate POMDP planning,
we expect that the computed policies are only near-optimal even with respect to the given learner
model. Additionally, the lack of difference in outcomes from using different teaching policies may
also be due to the fact that learning takes place within a relatively small number of actions, and
we assess student knowledge only after every three actions. This is necessary to avoid continually
querying the learner, but it means we cannot detect small changes in the number of actions required
for mastery.

To summarize, the POMDP policies were effective for teaching human learners an alphabet
arithmetic mapping, with policies based on the two more complex learner models significantly
decreasing time on task as compared to a random control policy. These gains are similar to what
we predicted based on the simulation results. This suggests that while the human learners may not
exactly match any of our learner models, the differences are not so large as to prevent these models
from being effective guides for pedagogical decisions.
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6.8 Additional comparison policies for alphabet arithmetic
Experiment 1 showed that the POMDP planning framework could decrease the time to learn a
mapping relative to a random policy. However, it explored only a single comparison policy, in
which actions were chosen uniformly at random. We now consider two additional comparison
policies: a random policy with only quizzes and examples (quiz-example only), and a policy that
chooses the example that would result in the maximum information gain for the learner (maximum
information). Each of these policies could be expected to perform better than the random policy,
and understanding how they compare in simulation and behavioral results to the POMDP policies
can further illustrate when and how these policies can be effective. We first briefly describe the two
new policies and their effectiveness in simulation, and then turn to a second behavioral experiment.

New control policies
The quiz-example only policy was included since the results of Experiment 1 indicated that ques-
tions with feedback took longer than the other actions for learners to complete. Since these actions
will make up roughly one third of all actions in the random policy, we thought this might lead
to slower learning with the random policy based on the mix of actions rather than the intelligent
sequencing of actions. While part of the power of the POMDP policies is to decide what mix of
actions is appropriate, we believe that the quiz-example only policy provides a comparison that
might add value over a random policy while not including a model of the learner.

The maximum information policy is similar to the POMDP policies in that it includes a model
of the learner, but it does not plan over multiple time steps and is not as flexible in the types of
learner models that it can be paired with. The maximum information policy calculates which action
will produce the maximum information gain for the learner, where information gain is defined
as the difference between the Shannon entropy of the learner’s state before the action and the
entropy of the new state after the action has been taken. The entropy of the state is calculated
as −∑

n
i=1 p(ci) log(ci), where ci is the ith concept (Shannon & Weaver, 1948); when much of

the probability is on only a few concepts, the entropy of the state will be low, while a uniform
distribution corresponds to the highest possible entropy. This quantity has been used in other
work for selecting data for human and computer learners (e.g., MacKay, 1992; Tang et al., 2010).
This policy only considers examples, since quizzes are assumed to not change the learner’s state
and as mentioned above, questions with feedback are more time consuming for learners without
increasing the information gain. Because entropy will always be zero when the learner only has a
single hypothesis, this maximum information policy requires a learner model where the hypothesis
can be represented as a distribution over multiple concepts. Of our three learner models, only
the continuous model represents the learner’s beliefs as a distribution over concepts. Thus, the
maximum information policy assumes that this is the correct learner model. In general, we would
expect this model to perform relatively well, although it could perform poorly in cases where
learners drastically diverge from the model’s assumptions.
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Simulation 2: Performance of additional controls for alphabet arithmetic
We simulated the two new control policies and compared the results to those described in the initial
simulations. As shown in Figure 6.4, the quiz-example only policy generally performs similarly
to the random policy. Both result in slower learning than the POMDP policies. In contrast, the
simulated learners learn quite quickly from the maximum information policy. None of the POMDP
policies are significantly faster than this policy. The maximum information policy is effective be-
cause this domain allows information to be progressively incorporated, such that the amount of
information gained from a single action is a good heuristic for the overall progress in learning the
concept. However, it is promising for the POMDP model that it does not in most cases fare worse
than the maximum information policy, despite the approximations necessary to carry out planning.
The POMDP model still maintains the advantage of being able to work with a broader array of
learner models and to consider the benefits of diagnosing the learner’s knowledge in addition to
the benefits of trying to change that knowledge. Overall, these results suggest that while POMDP
planning is not the only way to effectively select pedagogical actions, this method generally per-
forms as well or better than the comparison methods.

6.9 Experiment 2: Effectiveness of new control policies for
alphabet arithmetic

We conducted a second behavioral experiment to replicate the effective performance of the three
POMDP policies and to examine the performance of the two new policies.

Methods

Participants

A total of 100 participants were recruited online and received a small amount of monetary com-
pensation for their participation.

Stimuli

All participants were randomly assigned three mappings between the letters A–F and the numbers
0–5. These mappings were learned in succession.

Procedure

Participants were assigned to be taught by one of the five policies. Unlike in Experiment 1, partic-
ipants taught by a POMDP policy were taught by the same type of policy for all three mappings,
rather than one mapping being taught by each of the policies. Each policy was used to teach twenty
participants. The remainder of the experimental procedure was the same as in Experiment 1.
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Figure 6.8: Median time to learn each mapping in Experiment 2, by policy type; error bars corre-
spond to bootstrapped 68% confidence intervals (equivalent to one standard error).

Results
As shown in Figure 6.8, the POMDP policies were more effective than the quiz-example only
policy in both time and phases to mastery and about as effective as the maximum information
policy, mirroring the simulation results. As in Experiment 1, there was a significant effect of
policy on the number of phases and the time to learn each mapping (Kruskal-Wallis: Phases:
χ2 = 91.2, p < .0001; Time: χ2 = 55.6, p < .0001). Planned-pairwise comparisons showed that
the POMDP policies and the maximum information policy were all significantly more effective
than the quiz-example only policy (Kruskal-Wallis: Time: memoryless versus quiz-example only,
χ2(1) = 23.0, p < .0001; discrete model with memory versus quiz-example only, χ2(1) = 26.2,
p < .0001; continuous versus quiz-example only, χ2(1) = 41.7, p < .0001, maximum information
versus quiz-example only, χ2(1) = 40.0, p < .0001; Phases: memoryless versus quiz-example only,
χ2(1) = 41.4, p < .0001; discrete model with memory versus quiz-example only, χ2(1) = 47.6,
p < .0001; continuous versus quiz-example only, χ2(1) = 56.7, p < .0001, maximum information
versus quiz-example only, χ2(1) = 52.7, p < .0001). With correction for multiple comparisons, the
maximum information policy and the POMDP policies were not significantly different from one
another.6

In Experiment 2, participants taught by the POMDP policies tended to learn the mappings
more quickly than when taught by the POMDP policies in Experiment 1, and all three POMDP
policies had very similar median times to mastery. One reason for this discrepancy may be because
participants in Experiment 2 were always taught by the same policy. This may result in more
familiarity with how a concept is taught, resulting in faster learning. This is reflected in the data:
unlike in Experiment 1, there was a significant effect on the time to mastery based on whether
the mapping was the first, second, or third mapping learned (Kruskal-Wallis: χ2 = 59.6, p <
.0001). A follow up multiple comparison test showed that the second two mappings were learned
significantly more quickly than the first mapping.

6Kruskal-Wallis: Time: memoryless versus maximum information, χ2(1) = 3.98, p = .0461; discrete model with
memory versus maximum information, χ2(1) = 1.11, p > .2; continuous versus quiz-example only, χ2(1) = 1,29,
p > .2. Phases: memoryless versus quiz-example only, χ2(1) = 2.62, p > .1; discrete model with memory versus
quiz-example only, χ2(1) = 1.51, p > .2; continuous versus quiz-example only, χ2(1) = 0.68, p > .4.
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Overall, Experiment 2 replicates the main results of Experiment 1, demonstrating that the
POMDP policies are more effective than a simple control policy. The trend of increasing com-
plexity in the learner model leading to faster time to mastery was not replicated in this experiment,
suggesting that simple models can be effective even if they are known to not match human leaners
exactly. This experiment was unable to determine whether the POMDP policies were more effect
than the maximum information policy, which represents a relatively sophisticated way of automati-
cally choosing pedagogical actions. Showing that POMDP policies can result in an advantage over
maximum information policies will require using a more complex concept space; we consider such
a space in the remainder of this chapter.

6.10 Evaluating effectiveness in a larger state space: The
Number Game

The first two experiments demonstrate that POMDP policies can accelerate learning relative to
baseline policies in alphabetic arithmetic, with our approximations sufficient to conduct online
planning to choose activities for learners. We now explore whether the POMDP framework can
accelerate learning in a larger and more complex concept space, the space of numerical concepts
used in the Number Game (Tenenbaum, 2000). In the Number Game a participant is trying to
infer a number concept, which consists of a subset of numbers between 1 and 100. For example,
both “even numbers” and “numbers that end in three” are possible concepts. In past Number Game
research, information about the concept is typically given as a static set of one or more examples of
numbers that are in the target concept, although other variations exist (Nelson & Movellan, 2001).
Good performance generally requires multiple examples, which suggests that a sequential teaching
strategy has the potential to accelerate this process. We modify the Number Game so that learning
occurs over a sequence of steps. Each step consists of one teacher action, just as in alphabet
arithmetic. The number game provides a larger space of possible concepts and actions in a domain
that people have more experience with than alphabet arithmetic, making it an interesting domain in
which to test the effectiveness of POMDP planning. As in our exploration of alphabet arithmetic,
we first conduct simulations of teaching in this domain, and then turn to an experimental evaluation
with human learners.

6.11 Simulation 3: Teaching simulated learners the Number
Game

We initially explore teaching the number game using POMDP policies via simulation. These
simulations can provide evidence for how differences between the simulated learner and the learner
assumed by the POMDP policy affect the speed with which concepts are learned.
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Methods
The methods for this simulation closely mirror those in Simulations 1 and 2: simulations are con-
ducted for each combination of learner (memoryless, discrete with memory, and continuous) and
teaching policy (random, quiz-example only, maximum information, and the three POMDP poli-
cies). There are many different number concepts that could be taught or that a learner could learn.
Following previous work, we use a hypothesis space consisting of the 6412 most psychologically
salient of the 2100 possible concepts, and a hierarchical prior p0 over these concepts that was de-
veloped in prior work (Tenenbaum, 2000). We taught three concepts from the hypothesis space
in both this simulation and Experiment 3: multiples of seven; multiples of four minus one; and
numbers between 64 and 83 (inclusive). Fifty simulations were run for each combination of simu-
lated learning, teaching policy, and target concept. To match the experiment described below, the
random and quiz-example only policies were modified to sample half of the numbers from within
the concept and half from outside the concept; further explanation for this change is provided in
Experiment 3.

As in Experiment 1, the simulations alternate between teaching and assessment phases. In each
teaching phase, a series of five teaching actions was chosen based on condition. Since there are
100 numbers, and three action types, there were 300 different possible teaching actions. After each
teaching phase, participants completed an assessment phase in which they were shown a sequence
of ten numbers, five randomly chosen from within the concept and five from outside of the concept,
and asked whether each number was in the concept. As in the previous experiment, answers in the
assessment phase were not used to update the POMDP models. Teaching was terminated when the
simulated learner correctly responded to all numbers within a single assessment phase, or when 40
teaching phases had been completed.

To set the parameters of the POMDP policies, we followed the same procedure in Experiment
1, conducting the random condition prior to any other conditions and using these data to set action
costs and ε parameters. The cost of each action type was the median time for participants in the
random policy condition to complete these actions: 2.4s for example actions, 2.8s for quiz actions,
and 4.8s for question with feedback actions. The two additional parameters for each learner model,
εp and εt , were again set to maximize the log-likelihood of the data in the control condition (see
Appendix A.3 for details). Actions for the first four teaching phases (20 total actions) were pre-
computed. For later actions, we again set the planning parameters such that all models would take
about three seconds to compute an action. As before, these parameters were not optimized, and
small changes in their values did not have large impacts on the approximate policies. The looka-
head horizon was set to three for the continuous model, and two for the other models. At each
level, the following number of actions were sampled: six and eight actions for the memoryless
model; six and six actions for the discrete model with memory; and six, six, and eight actions for
the continuous model. Sixteen particles were used for the continuous model, and M = 2 for the
discrete model with memory.
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Figure 6.9: Median time for simulated learners to reach mastery, by policy type; error bars corre-
spond to bootstrapped 68% confidence intervals (equivalent to one standard error).

Results and discussion
For each type of simulated learner, we compared how the number of teaching phases required
and the expected time to mastery varied based on the teaching policy. Expected time to mastery
was computed by assuming that each action took the amount of time assumed by the POMDP
planner, as in Simulation 1. Following our analysis of alphabet arithmetic, we analyze results
using medians. Ideally we would perform a nonparametric analogue of an analysis of variance to
examine if there is a main effect of the teaching policy on learning time, controlling for concept.
The nonparametric Friedman test for two-way experiments most closely resembles such a test, but
it assumes equal variance across groups. Since this assumption is violated by our data, the p-values
calculated in the Friedman test are not appropriate. Consequently, we calculated an empirical null
distribution for the Friedman statistic using a bootstrap. We constructed 100,000 alternate datasets
by sampling with replacement from our empirical distribution of learning times across policies
for the same concept and randomly assigned each sampled data point to one of the six policies.
Computing Friedman’s statistic for each alternate dataset then gives an appropriate null distribution
for comparison with the experimental results.
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Figure 6.10: Median phases for simulated learners to reach mastery, by policy type; error bars
correspond to bootstrapped 68% confidence intervals (equivalent to one standard error).

As shown in Figures 6.9 and 6.10, there is considerable variation in effectiveness for each
policy based on what type of learner is assumed as well as what type of concept is being taught.
For the simulated continuous learner, there was a significant effect of teaching condition on both
time (Friedman: χ2(5) = 111.5, p < .0001) and phases (Friedman: χ2(5) = 67.0, p < .0001) to
mastery. Both the continuous POMDP policy and the maximum information policy performed
well, with neither outperforming the other. Planned pairwise comparisons between the POMDP
policies and the control policies showed that the continuous policy outperformed the two random
policies, but that the memoryless and discrete model with memory policies performed less well,
especially when only phases to mastery was considered.7

7Planned pairwise comparisons using Friedman tests were conducted. For teaching phases to mastery: memoryless
versus random, χ2(1) = 14.5, p = .07, n.s.; discrete model with memory versus random, χ2(1) = −9.0, p > .1, n.s.;
continuous versus random, χ2(1) = 42.9, p < .0001; memoryless versus quiz-example only, χ2(1) = 27.7, p < .005;
discrete model with memory versus quiz-example only, χ2(1) = 4.2, p > .3, n.s.; continuous versus quiz-example
only, χ2(1) = 56.1, p < .0001. The maximum information policy outperformed the POMDP policies, although not
significantly in the case of the continuous policy: memoryless versus maximum information, χ2(1) =−31.8, p < .005;
discrete model with memory versus maximum information, χ2(1) = −55.5, p < .001; continuous versus maximum
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For the simulations with the memoryless and memory learners, mismatches between the learner
assumed by the POMDP policies or the maximum information policy and the actual type of the sim-
ulated learner led to differences in results. While for the memory learner, the maximum information
policy performed as well as the POMDP policies when aggregated across concepts, it performed
relatively poorly for the range concept. This poor performance also occurred with the memoryless
simulated learner, where the maximum information policy was significantly worse than the memory
and memoryless POMDP policies (Friedman, comparison of time to mastery: memoryless versus
maximum information, χ2(1) = 55.4, p < .0001; discrete model with memory versus maximum
information, χ2(1) = 65.0, p < .0001). This discrepancy is due to the fact that the maximum infor-
mation policy assumes that the learner remembers information, and narrows too quickly to only the
endpoints of the range. We discuss this issue further in the results of Experiment 3. For both the
simulated memory and memoryless learners, there was a significant effect of teaching policy on
phases and time to mastery (Friedman: phases to mastery for memoryless learner, χ2(5) = 108.6,
p < .0001; time to mastery for memoryless learner, χ2(5) = 144.8, p < .0001; phases to mastery
for memory learner, χ2(5) = 173.1, p< .0001; time to mastery for memory learner, χ2(5) = 296.9,
p < .0001). For the memory learner, the POMDP policies outperformed the two random control
policies.8 For the memoryless learner, the memory and memoryless POMDP policies outperformed
the two random control policies for phases to mastery, and all POMDP policies outperformed the
random control policies for time to mastery.9 Overall, these simulations show that there is con-
siderable variability in the best way to teach a concept depending on the characteristics of both
the learner and the particular concept being taught. In this larger and more complex domain,

information, χ2(1) = −3.3, p > .5, n.s.. For time to mastery: memoryless versus random, χ2(1) = 46.0, p < .0001;
discrete model with memory versus random, χ2(1) = 25.3, p < .01, n.s. given correction for multiple comparisons;
continuous versus random, χ2(1) = 75.7, p < .0001; memoryless versus quiz-example only, χ2(1) = 33.0, p < .0005;
discrete model with memory versus quiz-example only, χ2(1)= 12.2, p> .1, n.s.; continuous versus quiz-example only,
χ2(1) = 62.6, p< .0001. The maximum information policy also outperformed the POMDP policies when measured by
time, although again not significantly in the case of the continuous policy: memoryless versus maximum information,
χ2(1) = −35.6, p < .005; discrete model with memory versus maximum information, χ2(1) = −56.4, p < .0001;
continuous versus maximum information, χ2(1) =−6.0, p > .1, n.s..

8As for the continuous simulated learner, planned pairwise comparisons were conducted. For teaching phases to
mastery: memoryless versus random, χ2(1) = 54.9, p < .0001; discrete model with memory versus random, χ2(1) =
49.9, p < .0001; continuous versus random, χ2(1) = 82.4, p < .0001; memoryless versus quiz-example only, χ2(1) =
68.9, p < .0001; discrete model with memory versus quiz-example only, χ2(1) = 64.9, p < .0001; continuous versus
quiz-example only, χ2(1) = 96.4, p < .0001. For time to mastery: memoryless versus random, χ2(1) = 85.1, p <
.0001; discrete model with memory versus random, χ2(1) = 88.2, p < .0001; continuous versus random, χ2(1) =
118.0, p < .0001; memoryless versus quiz-example only, χ2(1) = 85.2, p < .0001; discrete model with memory versus
quiz-example only, χ2(1) = 88.3, p < .0001; continuous versus quiz-example only, χ2(1) = 118.1, p < .0001.

9For teaching phases to mastery: memoryless versus random, χ2(1) = 50.7, p < .0001; discrete model with
memory versus random, χ2(1) = 57.1, p < .0001; continuous versus random, χ2(1) = 6.8, p > .2, n.s.; memoryless
versus quiz-example only, χ2(1) = 62.5, p < .0001; discrete model with memory versus quiz-example only, χ2(1) =
68,9, p < .0001; continuous versus quiz-example only, χ2(1) = 18.6, p = .03, n.s. given correction for multiple
comparisons. For time to mastery: memoryless versus random, χ2(1) = 81.9, p < .0001; discrete model with memory
versus random, χ2(1) = 91.6, p < .0001; continuous versus random, χ2(1) = 47.6, p < .0001; memoryless versus
quiz-example only, χ2(1) = 73.8, p < .0001; memory versus quiz-example only, χ2(1) = 83.5, p < .0001; continuous
versus quiz-example only, χ2(1) = 39.6, p < .0001.
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mismatches between the computer teacher’s assumptions and the learner can lead to suboptimal
policies and slower learning.

6.12 Experiment 3: Teaching human learners the Number
Game

We now turn to experimentally investigating how well the POMDP policies can teach number
concepts to human learners.

Methods
Participants

A total of 360 participants were recruited from the University of California, Berkeley and received
course credit for their participation.

Stimuli

Each participant learned one randomly chosen number concept. The possible number concepts
were the same as in Simulation 3: multiples of seven; multiples of four minus one; and numbers
between 64 and 83 (inclusive).

Procedure

The procedure was similar to that in Experiments 1 and 2. Participants in Experiment 3 learned
only a single concept, and they were assigned to be taught teaching actions chosen based on one
of the three POMDP policies or by one of the three control policies (random, quiz-example only,
or maximum information). Pilot testing demonstrated that randomly chosen teaching actions were
extremely frustrating for participants, making disengagement likely in these conditions, so we
modified the random and quiz-example only policies to place higher probability on numbers within
the concept. These policies first sampled whether to choose a number within the concept or a
number outside of the concept, with equal probability on each of the two possibilities, and then
sampled uniformly within the chosen class of numbers.

As in Experiment 1, participants alternated between teaching and assessment phases; these
phases had the same structure as those used in Simulation 3. Within all phases, the numbers that
the participant had seen, as well as any category information that had been shown, were displayed
on-screen.

Computing policies

As described in Simulation 3, parameters to compute the POMDP policies were set based on data
from the random condition. Mirroring Experiment 1, a three second delay was inserted between
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all actions in all conditions to allow time for planning; if a model did not return an action within
three seconds, the search was interrupted and the best action found so far was returned.

Results and discussion
We analyzed the median number of phases and the median time on task for participants to learn the
number concept, following the same methods as in Simulation 3. As shown in Figure 6.11, there
was a main effect of teaching condition: Participants taught using one of the POMDP teaching
policies spent less time on task (Friedman: χ2(5) = 65.8, p < 0.001) and required fewer teaching
phases to learn the concept (Friedman: χ2(5) = 50.7, p < 0.001). Pairwise tests between each
teaching policy and the random condition showed that each individual policy was more effective
than the random policy, both in terms of time on task (Friedman: memoryless versus random,
χ2(1) = 27.5, p < 0.001; discrete model with memory versus random, χ2(1) = 18.7, p < 0.001;
continuous versus random, χ2(1) = 23.5, p < 0.001) and number of teaching phases (Friedman:
memoryless versus random, χ2(1) = 25.7, p < 0.001; discrete model with memory versus random,
χ2(1) = 18.7, p < 0.001; continuous versus random, χ2(1) = 25.1, p < 0.001). Unlike in Exper-
iment 1, the quiz-example only policy was generally more effective than the random policy, and
performed as well as the POMDP policies in some cases. However, this policy performed poorly
compared to the POMDP policies for the range concept (numbers between 64 and 83), and aggre-
gated across concepts, each POMDP policy in general performed better than the quiz-example only
policy.

While the teaching policies taught learners more quickly overall than the two random policies,
these POMDP policies were not significantly different from one another in terms of effectiveness
and there was considerable variation in which policy was most effective for each concept, similar
to the variation shown in Simulation 3. In Experiment 1, we also saw that the different models
did not result in significantly different outcomes from one another. Experiment 3 introduces the
additional difficulties of a more complex concept space in which we might expect learners to differ
more from one another and from our assumed policies. For example, some learners might have
little familiarity with modular arithmetic, and thus not consider concepts like “multiples of four
minus one.” This would make this concept more difficult to learn, and would likely cause the
learner to exhibit different probabilities of particular knowledge state transitions than we assumed.
These differences in assumptions about what concepts are possible would also lead to different
learning behavior for other concepts, since our learner models assume that the space of possible
concepts is known and fixed. Thus, the reason that a single policy is not consistently more effective
than others may be due to mismatches between the true learner model and the model assumed by
the policy.

This difference is likely also the reason that the maximum information policy performed so
poorly. The continuous model underlying this policy was likely overconfident and estimated learn-
ers as learning more quickly than they actually did. While this may have hurt performance of the
continuous POMDP policy, it was even more detrimental for the maximum information policy, an
effect that also appeared when this policy was teaching the memoryless and memory learners in
Simulation 3. The continuous POMDP policy rarely chose quiz actions, but these actions could
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never be chosen by the maximum information policy. It thus could not revise its beliefs about the
learner’s state. Additionally, once the model estimated that the participant had learned the con-
cept, it would choose examples essentially at random, since no example was expected to change
the learner’s state, or focus on only a small subset of actions that were estimated as potentially
state changing given the transition epsilons. Anecdotally, this was frustrating to participants, and
may have lead to disengagement. This frustration was exacerbated in the maximum information
condition compared to the two random conditions since those policies chose half of their numbers
from within the concept and half from outside; the maximum information policy was more likely to
choose numbers outside of the concept when sampling at random as fewer than half of the numbers
were in the concept. For the range concept of numbers between 64 and 83, the policy only showed
examples near the endpoints in later teaching phases (e.g., 63 and 64), since it estimated that learn-
ers would have ruled out all non-range concept based on the previous examples and there was still
a small amount of probability mass on range concepts near the true concept (e.g., numbers between
63 and 83). However, these examples were frequently repeated, again leading to frustration and
reflecting the overconfidence of the model.

Problems due to discrepancies between the assumed learner model and human learners are
likely to be exacerbated by the cost structure in this experiment. As in Experiment 1, we set the
costs of different action types based on the median time it took participants in the control condition
to complete each of the action types. In Experiment 1, this resulted in quizzes being less costly
than examples; conversely, in this experiment, examples were the least costly action. This resulted
in the POMDP policies having relatively few non-example actions: As mentioned above, there
were almost no quiz actions for participants taught using the continuous model, and the discrete
model with memory had the most quiz actions at 6.6%. This means that the continuous policy may
have been overly confident in its estimate of the learner’s state, and that it did not gain information
about when that estimate was inaccurate. This issue occurs because the policy assumes that the
learner model is accurate; incorporating more uncertainty into the learner models might help to
alleviate this problem. Additionally, one could modify the incentive structure to make quiz actions
less costly when significant time has elapsed between information-seeking actions.

Examination of the teaching policies can shed light on how different learner models lead to
different characteristic actions. All participants began with the same precomputed policy for the
first four teaching phases (20 teaching actions). In cases where there was a quiz question, contin-
gent policies were precomputed. A quiz question occurred only for the memoryless policy, as the
fifteenth action for the concept “multiples of seven.” For the multiples of seven concept, most of
these beginning example actions showed examples of numbers in the concept (positive examples)
for both the memoryless and the discrete model with memory policies (see Figure 6.12). The con-
tinuous policy showed half positive examples and half negative examples, with the first negative
example appearing in the fourth teaching action. One reason for this may be that multiples of
seven can be uniquely defined in the concept space using only a few positive examples; thus, for
the continuous policy and the policy for the discrete model with memory, the learner is expected to
learn the concept relatively quickly unless she does not update her state.

The concept “multiples of four minus one” was harder for participants to learn than the other
concepts. The prior in our model, which was created in previous work (Tenenbaum, 2000), pre-
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Figure 6.11: Median time (a) and phases (b) for participants to learn the concept in the Number
Game. Participants taught using one of the POMDP policies are significantly faster than partici-
pants taught using a random policy.

dicts this result: this concept has substantially lower prior probability than the other concepts we
considered. This concept may also be harder to learn due to the fact that it cannot be defined using
only positive examples; all positive examples of this concept are also positive examples of “odd
numbers.” For all models, the examples shown are mainly odd numbers: in the first twenty ex-
amples, few even numbers are shown by both policies for the continuous model and memoryless
model (three and four examples, respectively), and no even numbers are shown by the policy for
the discrete model with memory. All three policies also show relatively few negative examples
that are odd numbers: two for the memoryless model, one for the discrete model with memory,
and three for the continuous model. While either of the policies based on discrete learners assume
that the learner could learn the correct concept without negative examples of odd numbers, the
continuous learner cannot converge on the correct concept unless some negative examples of odd
numbers are shown.

Finally, for the range concept, all three policies again concentrate their actions on positive
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Figure 6.12: Number of participants where the action involved a number in or out of the concept
at each time in the experiment, by concept and condition. Time points where there is data for at
least three participants are shown. The graphs demonstrate that number choices differed both by
what learner model was assumed and the concept that was taught.

examples and qualitatively, all three policies look relatively similar. The policies do not seem to
focus as much on the endpoints of the range as one might intuitively expect. This may stem from
the fact that the actions to choose from are sampled, so in most cases, the tutor may not have the
option to show one of the endpoints (or a point just outside the endpoints). This points to the
potential advantage of using a smarter sampling strategy for choosing which actions to consider,
although the performance of the maximum information policy shows the potential downside of this
approach when the tutor is too confident about the learner model.

Overall, the results from the Number Game demonstrate that POMDP policies can be effec-
tive for teaching a variety of concepts using the same computational framework. The policies
that emerged for each model match what one might intuitively expect for teaching these number
concepts, and also highlight how some characteristics of each model manifest in what patterns of
choices are optimal. These results demonstrate that POMDPs can be more successful than even
sophisticated strategies in the existing literature, such as policies using information gain.

6.13 General discussion
Automatically choosing pedagogical actions effectively is a complex task. It can be difficult to
determine what choices will result in learning and to consider the tradeoffs of different decisions,
especially given that one cannot directly observe the learner’s knowledge. While previous chapters
focused on how to make inferences about learners’ knowledge, this chapter considers a key next
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step: what to do with information about a learners’ knowledge, and how to decide when more
information must be gathered. We have approached teaching as a decision problem in which a
sequence of individual but interdependent pedagogical choices must be made. By framing teaching
using the POMDP framework, we take into account the immediate and long term gains of each
possible choice. This framework highlights the modular nature of the different components of the
problem, such as the learner model and the pedagogical objective; the modularity of the framework
allows the same general architecture to be applied to different educational domains. The POMDP
framework allows one to determine an optimal teaching policy for a given domain and set of
teaching materials with respect to a specified learning objective.

We have fleshed out how to apply the POMDP framework to teaching concepts and demon-
strated the effectiveness of POMDP planning experimentally. This framework has not previously
been fully explored for the general problem of teaching at the level of problem selection. We have
developed this formulation such that it can be applied to a variety of teaching tasks by specifying
the appropriate parameters. One of the potential advantages of this framework is that the produced
policies automatically consider the utility of selecting instructional actions that aid learning versus
diagnostic actions that result in a better estimate of the learner’s state. Both of these types of ac-
tions occurred in the optimized policies, with their frequency varying based on the learner model
and task. This suggests that at least in some cases, it is beneficial to monitor a learner’s state and
customize teaching based on that state estimate. This is consistent with results emphasizing the
importance of adaptive, personalized guidance. When monitoring the learner’s state, it is often
useful to plan several steps into the future as monitoring actions are often not immediately use-
ful for improving the learner’s understanding; this planning is automatically incorporated with the
POMDP formulation. In principle, monitoring of the student’s current state could also be used to
terminate teaching when the model has sufficient evidence that the student knows the mapping,
rather than using assessment phases. The information necessary to decide whether to terminate
can easily be retrieved from the belief state at any given time. However, the effectiveness of this
criterion for terminating teaching can be very dependent on the accuracy of the underlying learner
model. The experimental results showed that different learner models result in systematically dif-
ferent policies. This illustrates that optimal problem selection depends not only on knowledge of
the domain but also on one’s assumptions about the learner.

In the remainder of the chapter, I discuss how to incorporate other existing learner models into
the POMDP framework. I then consider how learner models might be improved. Finally, I assess
the computational limitations of our current work.

Incorporating existing models
One of the advantages of the POMDP framework is that it can be used to explore how assumptions
about student learning affect optimal teaching policies. Many features of teaching, such as the need
to sequence actions and the problem of diagnosing a learner’s knowledge, are naturally integrated
into POMDP planning, and the modular nature of this framework means that improvements in
planning algorithms and improvements in learner models can be developed independently. While
feature-based models that assume the student state is observable can also consider the implications



CHAPTER 6. FASTER TEACHING BY POMDP PLANNING 108

of existing student models, additional work may be required to decide what features to use and it
may be less natural to specify learner models without appealing to an unobserved student state. In
future work, it would be useful to test the POMDP framework within an existing intelligent tutor-
ing system and with student models that have been developed for particular educational domains.
This would allow us to compare the differences between a POMDP policy and the current action
selection policies within those systems.

There are many types of existing student models that one could use within the POMDP frame-
work (e.g., Corbett & Anderson, 1995; Corbett & Bhatnagar, 1997; Li, Cohen, Koedinger, &
Matsuda, 2011; Pardos, Heffernan, Anderson, & Heffernan, 2010). As mentioned in Chapter 3
(Section 3.6), there has been extensive work on designing student models in the intelligent tutoring
systems community. POMDP planning is likely to work especially well with student models that
assume students may make incorrect generalizations or that assume the effect of items on learning
is contingent upon the current skill levels and with domains in which items may involve multi-
ple skills. These types of models and domains predict that particular sequences of actions may
be more beneficial than others, and that recognizing the students’ current level of understanding,
including particular misunderstandings, can lead to move effective pedagogical choices. For in-
stance, Contextual Factors Analysis (Pavlik, Yudelson, & Koedinger, 2011) learns how different
items contribute to particular skills, some of which may have transfer effects whereby practice on
one type of item is beneficial to performance on other types of items due to the underlying skills
that compose each type of item. One could learn a student model using this method, and then
optimize problem selection for the learned model.

Additionally, the application of a formal framework like POMDPs can allow designers to de-
termine the impact of changing the learner model on the optimal policy and on the expected time
to mastery. Such an examination could allow one to determine which assumptions in the learner
model are most crucial for effective instruction and which have few practical consequences. Lee
and Brunskill (2012) examine this question with respect to whether individualized parameters in
knowledge tracing would lead to substantially different numbers of practice opportunities for mas-
tery. One can imagine similarly comparing the types of models discussed in Chapters 3 and 4,
which attempt to model how students misunderstand, with learner models that model understand-
ing as a binary; this could inform one’s decision about the best type of model to use for a specific
domain.

The POMDP framework can also be used as a way of comparing existing formulations for
selecting teaching actions. Some action selection methods, such as choosing the action with the
highest immediate expected utility, are approximations of the POMDP policy. By considering
how these methods approximate the POMDP, one can use existing work to assess how close the
approximation is to optimal (or whether it is optimal) and what simplifying assumptions are being
made. This theoretical framework can thus help to unify existing methods, even in cases where
using an optimal policy is impractical.
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Improving learner models
Using POMDPs for teaching relies on having models of student learning for a given domain. These
models are often hand-created and can be time consuming to construct, although recent research
has made progress on constructing learner models from data (Barnes, 2005; Cen, Koedinger, &
Junker, 2006; González-Brenes & Mostow, 2012). Even models learned from data, however, are
often constrained to a particular structure that may not be appropriate for all types of tasks. In-
stead, we need a general approach for constructing probabilistic learner models that can be used
within the POMDP framework; this issue echoes the problem of constructing the space of misun-
derstandings for the Bayesian inverse planning framework, consisting with understandings being
equivalent to states in the learner models in this chapter.

The approach we have taken in this chapter is to build on work in cognitive science on proba-
bilistic models of cognition. These probabilistic models have been successful in a variety of areas
of cognition (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum et al., 2006),
including language (Chater & Manning, 2006; Seidenberg & MacDonald, 1999) and reasoning
tasks (Hahn & Oaksford, 2007; Oaksford & Chater, 1994). We considered three learner models
based on the literature, and fit the parameters of these models using human data. We then could use
these models within the POMDP framework to derive optimal policies. Such an approach could be
extended by further refining the models to better fit the data, reducing the number of assumptions
that one must make about how learning occurs. The more closely that the learner model approxi-
mates human performance, the fewer issues that one is likely to have due to mismatches between
the assumed model and human learners. Many of these probabilistic models have primarily been
tested in laboratory settings, so further investigation to improve their fit to human performance
should also explore how well these models generalize to more complex academic domains.

Previous work also suggests unique issues that one should consider when making learner mod-
els. For example, Walsh and Goschin (2012) prove a learning agent can learn more from less
information if it is aware that it is being taught, rather than simply receiving information from the
environment. Shafto, Goodman, and Griffiths (2014) found that human learners are similarly sen-
sitive to whether examples are being provided by a teacher or being selected randomly. This has
implications for what expectations to cultivate in the learner as well as for how one should model
the learner’s knowledge. Since Shafto et al. (2014) present a probabilistic model of learning, the
implications of this theory of teaching can be directly determined by computing the optimal pol-
icy. Other research is likely to further expand what factors we consider in the learner model and
to propose new theories about how people learn. By adopting a strategy in which the models in
these theories are used as starting points that can be parameterized and fit to data, the time to create
learner models can be reduced and we can benefit from increasing knowledge about how people
learn.

Model limitations
In our use of POMDPs, we have focused on learner models that represent only the student’s knowl-
edge state, rather than considering all relevant factors, such as motivation and affect. In principle,
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POMDPs can use student models that account for these factors, which have received increasing
attention in educational technologies (e.g., Conati & Maclaren, 2009; Robison, McQuiggan, &
Lester, 2009). However, these factors are not automatically incorporated into the POMDP frame-
work, and may necessitate a more complex objective function and cost structure. For example,
one might want to maximize an objective function that incorporates both motivation and knowl-
edge, while minimizing time; this is likely to make computation of the policy more difficult. One
way to incorporate the learners’ motivations and goals would be to assume that learners have their
own reward functions; for instance, some learners may be more inclined to see what will happen
if they try particular actions in a learning environment, while others simply want to complete the
activity in minimal time. We saw evidence for such differences when interpreting players’ actions
in games in Chapter 5, and there has been extensive work on detecting “gaming” in intelligent
tutoring systems, which occurs when a student is trying simply to get through material rather than
to learn (R. S. Baker, Corbett, & Koedinger, 2004; Walonoski & Heffernan, 2006). In the POMDP
framework, these differences could be incorporated as different observation models for relating the
observed behaviors to the learners’ knowledge; R. S. Baker et al. (2006) found that confronting stu-
dents about gaming behavior was helpful for reducing gaming and increasing retention, suggesting
that changing the pedagogical strategy in response to gaming can be effective. Again, increasing
the space of observation models would increase the complexity of computing the POMDP policy.
Regardless of how these additional factors are incorporated, they are likely to have important and
interesting consequences for pedagogical action selection and to provide opportunities to explore
more complex planning algorithms within the teaching domain.

Computational limitations
Computational challenges still exist for using POMDP planning: despite sampling only a fraction
of possible actions and using very short horizons, planning took 2− 3 seconds per action. We
suspect this challenge will apply to many other teaching tasks. In the simulations for alphabetic
arithmetic, we did not find a great deal of improvement when increasing the number of actions
sampled or the horizon beyond the limits we imposed in the experiments, but the effect of the
computational approximation is likely to vary considerably based on the structure of the domain
being taught. There are several possibilities for reducing the time to computer the POMDP policy
as well as further improving the quality of the computed policy. Following ideas presented in prior
POMDP planning algorithms (Ross, Pineau, et al., 2008), we believe that sampling actions based
on the particular belief node in the tree would improve the search quality, as would using a more
sophisticated evaluation function at the leaves. In particular, the evaluation function does not use
the fact that failure on an assessment phase necessitates a complete additional teaching phase; this
is relevant to any teaching problem in which assessments occur at fixed intervals. Finally, the
relatively long horizons of this task and other teaching domains suggest that these problems may
be better served by Monte Carlo Tree Search (MCTS) planning techniques, which have been very
successful at producing good online policies long horizon planning problems such as the game
Go (Gelly & Silver, 2007).
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There are also cases where the computational challenges may be less severe due to the structure
of the domain and the type of student model that is assumed. For example, many student models
involve sets of independent skills that have either been mastered or not mastered (or more generally,
where mastery is unidimensional; e.g., Corbett & Anderson, 1995). In models of this type where
skills are not independent, additional skills can be added that cover the overlap between skills,
resulting in a model where skills are independent. If each problem requires only a limited number
of skills, then the change in student knowledge after each problem will be relatively localized,
reducing the complexity of updating the belief state. Depending on the action and observation
structure, it may even be the case that a greedy strategy is optimal, removing the need to plan
ahead over multiple time steps (Karush & Dear, 1967). Yet, in many cases, there are a variety of
actions with different tradeoffs in terms of the diagnostic benefit of an action versus the students’
likely learning gain (and the type of learning gain; see Koedinger et al. (2012) for discussion of
the interaction between types of pedagogical strategies and learning outcomes); in these cases,
the myopic strategy of only looking one step ahead is generally suboptimal. Structured models
are thus likely to reduce the computational challenges of planning with POMDPs, and in some
cases may allow the use of offline methods to compute a policy that is close to optimal. However,
for other domains and models, it is likely that computational limitations will have a continuing
impact on the quality of POMDP policies for teaching. Even in these cases, framing pedagogical
action selection within the POMDP framework allows one to benefit from continuing research on
solving POMDPs as well as results concerning what approximations result in the best policies.
Such an approach may thus be more scalable and easier to maintain than control policies that rely
on heuristics or that are created by experts.

Conclusion
Deciding what pedagogical decisions to make involves reasoning about a number of different com-
ponents, including the types of diagnoses developed in previous chapters, and balancing conflicting
priorities. In this chapter, I addressed this issue by developing a framework for applying POMDP
planning to teaching. This provided a way of conceptualizing how pedagogical action selection
should depend on one’s model of student learning and behavior, the structure of the domain, and
one’s pedagogical objective; this project thus extends our work on diagnosing learners’ knowl-
edge from their actions by incorporating the larger context in which this diagnosis might be used.
The modularity of POMDPs is consistent with the goal introduced in Chapter 1 of developing ap-
proaches that can be applied to a variety of educational domains. We have shown that the POMDP
framework can be used to select actions in real time in domains of moderate size, and demon-
strated how despite mismatches between the assumed learner model and actual human learners,
POMDP policies can lead to accelerated learning in a concept learning task. While engineering
challenges remain, our results suggest that the formal specification of this framework can lead to
both theoretical insights and practical improvements in selecting pedagogical actions.
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Chapter 7

Discussion

In Chapter 1, I began with a discussion of the illustrated primer: a fictional educational “book”
that provided personalized guidance to a learner and responded to her questions and behaviors
intelligently. In the preceding chapters, I have described three new frameworks that seek to build
the types of technologies that would be needed to create the primer. These frameworks combine
probabilistic computational models and machine learning to address educational questions. I first
focused on drawing inferences from observations of people’s actions in games and interactive vir-
tual environments. The Bayesian inverse planning model we developed allows one to diagnose
people’s understanding from their actions, using Markov decision processes to model the specific
characteristics of the game or virtual environment in which the person is acting. Like the illus-
trated primer, the model does not need to artificially structure the educational tasks in order to
use the learners’ behavior to make fine-grained inferences. I then turned to how to design games
and environments to be more diagnostic, attempting to maximize the information that is gained
about people’s understanding and cognitive processes. Both of these frameworks were primarily
concerned with assessment. In the final chapter of this dissertation, I addressed the question of
how a computer-based educational technology should choose pedagogical activities, using both
the results of assessments and information about the typical course of learning in a domain.

In all of these investigations, I focused on developing and adapting machine learning algo-
rithms and statistical models. Because the underlying models in these frameworks are areas of
ongoing research, future work on the frameworks can take advantage of new advances in speed
and scalability, increasing their potential impact. This approach also provides a way of better
understanding existing work on educational technologies. For example, different approaches to
pedagogical action selection can be viewed as approximations or heuristics for solving a POMDP.
By formalizing the problems under investigation, the approach I have taken provides a principled
way of determining the generalizability of findings from different systems, and predicting when a
particular approach will be more or less effective.

I now turn to a broader discussion of these algorithms and the experiments we have conducted. I
first address some of the limitations that apply to our results, focusing on those issues that occurred
in multiple investigations. I then discuss future directions for continuing research.
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Limitations
The approach I have taken to making fine-grained inferences about people’s understanding relies
upon detailed models of people’s learning and behavior. This approach allows the work to be
applied across domains and to make use of the extensive modeling research in cognitive science,
psychology, and education, but also means that there can be significant consequences if people
diverge from our assumptions. In Chapter 4, we showed that some participants’ algebra skills
could not be accurately evaluated because they relied on actions that were not a part of our model,
and in Chapter 5, we saw an example of how motivations that were not accounted for by the model
could affect the accuracy of our predictions. There are several ways to address this limitation. First,
continued testing and development of computational models is needed. As more accurate models
are developed, the frameworks we have created can take advantage of these improvements. Our
frameworks could also be used to recognize when a model may make incorrect assumptions or be
inconsistent with human behavior. For example, we used the planning noise parameter to identify
participants whose algebra data may have been poorly fit by our model; analysis of these people’s
behavior suggests ways to modify the model to improve its ability to model all participants. These
applications can thus provide a feedback loop for improving cognitive models and highlighting
potentially erroneous assumptions.

I have also shown evidence that not all deviations between our assumptions and the true char-
acteristics of human learning are detrimental in practice. When using POMDPs for pedagogical
action selection, we saw that learner models with very different assumptions were still effective
at improving learning efficiency over a baseline policy. Because of these different assumptions,
we know that it is not possible for all of the learner models to accurately reflect human cognition,
meaning that some inaccuracy can be tolerated. This is encouraging since we would not expect any
model to fully capture the intricacies of human learning, and it may be beneficial for computational
reasons to create simpler models. We thus need not be strongly committed to our learner models
being completely accurate reflections of human cognition, but must be aware of the potential for
inaccuracies and recognize which objectives are particularly sensitive to these inaccuracies. In
extending these frameworks, we hope to explore how to quantify the robustness of the model to
deviations in learner behavior and further develop methods for identifying when a model is a poor
fit for some or all learners.

Computational issues were another recurring theme in our explorations. Computing exact solu-
tions to POMDPs with large state or action spaces is generally intractable. While MDPs are more
efficient to solve, approximations must be used with continuous state or action spaces, as we saw
in our application to algebra understanding. Computational tractability is likely to be a continuing
concern as we move towards more adaptive systems based on complex learner models. However,
this concern can frequently be addressed through modeling choices and balancing accuracy with ef-
ficiency of computation. POMDP planning becomes more tractable with certain types of structured
models. Since our experiments provide evidence that POMDPs can be effective even when their
assumptions about learners are not completely accurate, it may be beneficial to target exploration
towards learner models that are efficient to solve or to relax existing learner models to meet the
structured assumptions. Simulations can be conducted to determine the effect of these relaxations
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on learning outcomes if the original models were in fact more accurate. For knowledge diagnosis,
the most costly part of the computation is computing the Q-functions. Caching these solutions and
then adjusting the posterior approximation procedure to take advantage of these functions (rather
than resampling from the continuous space) would result in much faster online computation of the
diagnosis for an individual learner. The advantage of this approach is that the task may still vary
to some degree across learners; for example, the algebra problems to solve need not be constant.
The use of MCMC sampling methods also provides a natural way to balance accuracy and effi-
ciency: fewer samples will likely produce less accurate and more variable results, but these results
can be computed more quickly. In applications like the online algebra tutor, results with a small
number of samples could be used for minor adjustments to the problems provided. A more accu-
rate diagnosis could be computed after a set number of problems has been solved by a user, and
after this diagnosis has been calculated, a larger intervention could be provided, such as linking
the learner to existing materials and offering opportunities for scaffolded problem solving related
to the misunderstandings. Such an approach aims to personalize the website as quickly as possible
while only suggesting time-consuming interventions when significant evidence for their applica-
bility is available. It thus takes into account both educational objectives and learners’ individual
experiences in determining how to cope with limitations of computational power.

Future Directions
This work begins from a theoretical standpoint of how to evaluate and respond to learners’ behav-
ior given particular models of cognition, focusing on developing approaches that can be applied
across domains. While we have provided experimental evidence for the effectiveness of our frame-
works, many of our applications are not yet as sophisticated as typical classroom material. One
key next step is thus to apply these frameworks to a large, complex educational domain, pro-
viding an opportunity to investigate the frameworks’ performance when teaching and assessing a
much broader topic. The online algebra tutor provides a platform for beginning this investigation.
Through continued experiments on linear equation solving and other algebra topics, we will be
able to test whether the diagnoses from Bayesian inverse planning are consistent with conventional
assessment. Additionally, the website allows us to reach a much wider range of learners: we can
encourage students and other algebra learners to come to the website to improve their understand-
ing, and test the effectiveness of interventions that are customized based on their problem solving
performance. This platform also offers the potential to connect learners to existing resources; free
online educational content is widespread, but it can be difficult for learners to recognize what
content would be most helpful to them. Our customized interventions can bridge this gap.

Another way to test our frameworks in typical educational domains is to incorporate our models
into existing systems. As we have touched on throughout this dissertation, there has been consid-
erable work on designing learner models in the intelligent tutoring systems community, especially
for structured domains. By combining these models with the frameworks we have proposed, we
can explore both theoretical and practical questions. For instance, the probabilistic models of cog-
nition that we have focused on are generally finer-grained than models used in intelligent tutoring
systems; these models represent how learners might misunderstand rather than representing only
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whether a skill has been mastered. By comparing the optimal policies for each type of model,
we could explore when representing misunderstandings has benefits, and when simpler models are
effective. Combining existing curricula as already realized in instructional systems with our algo-
rithms would facilitate broader exploration of the impact of personalization on learning, providing
a way to make sense of the rich behaviors that learners’ exhibit in many interactive activities.

In addition to considering how to apply our frameworks to typical educational domains, an
important challenge is how to apply these frameworks to incorporate broader conceptions of un-
derstanding. We have primarily used assessments of understanding focused on accuracy. For
instance, in Chapter 6, we assessed whether participants could identify an arithmetic mapping
or accurately state whether numbers were part of the targeted concept. Incorporating more con-
structivist assessments and definitions of mastery that focus on understanding and integration of
concepts would allow us to evaluate the effectiveness of our frameworks for learning objectives
beyond accuracy. For example, rather than focusing on success in an individual task, we could
take into consideration how likely students are to be able to transfer their knowledge; we discussed
formulating such objectives in Chapter 6. Other learning objectives might be related to metacogni-
tion or integration of new ideas into a complete understanding. To consider these issues within our
frameworks will require formulating them computationally. For instance, the learner model would
need to take into account interactions between metacognitive skills and domain-specific skills and
care would be required to determine an efficient way to represent the possible learner states. De-
spite these challenges, we believe our current approaches can be adapted to diagnose these more
complex versions of understanding. Bayesian inverse planning can interpret students’ freeform
interactions with activities, which may carry rich information about their problem-solving abili-
ties. The planning parameter we estimated in our assessment of algebra understanding (Chapter
4) could be interpreted as relating to metacognitive abilities, and in future research, we will in-
vestigate whether planning abilities are consistent across domains. Extending our frameworks to
model many types of understanding is likely to lead to more engaging and effective activities and
to clarify our current representations of knowledge.

Two of our frameworks bear on the question of how to personalize guidance to learners.
Bayesian inverse planning can be used to identify misunderstandings to target with guidance (as
in Experiment 3 of Chapter 3), and POMDP planning provides a way of choosing which guidance
will be most helpful over the long term. However, designing guidance (and instructional materials
in general) is an important and complex task. Further testing is needed to establish what types of
guidance are most helpful, and to incorporate these findings into our models of learners. Design
of guidance is an active area of research, although a review of the literature reveals some practices
that tend to be more effective (see Shute, 2008, for an overview). There is considerable variation
in which learners benefit most for different types of guidance, however. For instance, learners
with lower prior knowledge tend to benefit from more specific guidance (Shute, 2008) and dif-
ferent types of scaffolding (Razzaq & Heffernan, 2009). These results suggest the potential for
pedagogical action selection methods like the POMDP to improve student learning beyond simple
heuristics that focus only on skills that have not yet been mastered.
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Conclusion
Educational technologies offer significant promise: they can decrease the burden on teachers, who
are tasked with instructing ever greater numbers of students; facilitate life-long learning; and pro-
vide access to material to diverse learners. In principle, these technologies can enable educational
experiences that are more scalable and personalized to maximize individual learning. However,
the abilities of current technologies are still limited, falling short of the flexibility and seamless-
ness of fictional inventions like the illustrated primer of Diamond Age. In the investigations in this
dissertation, I have focused on developing computational frameworks that can be used to system-
atically create activities that are more intelligent and responsive to learners’ behavior. My goal
has been to create frameworks that allow learners the freedom to make choices in authentic en-
vironments while still closely monitoring their understanding. While the models developed here
have not yet been applied in classrooms, the laboratory and online studies we have conducted pro-
vide support for their flexibility, accuracy, and effectiveness. By combining Bayesian probabilistic
models of cognition and machine learning algorithms, I address questions relevant to education,
cognitive science, and computer science. The work contributes both to creating practical frame-
works for supporting learners and to better understanding how people learn and act based on their
understanding, bringing us closer to the vision of the illustrated primer.
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Appendix A

Technical details for teaching via POMDP
planning

In this appendix, we elucidate some of the technical details in our use of POMDPs for teaching. We
first provide information about the free parameters in all experiments in Chapter 6, then provide
details of our implementation of the particle filter for the continuous concept learning model, and
finally describe how we fit the free parameters for the three concept learning models based on data
from the control condition.

A.1 Free parameters in POMDP experiments
Both experiments in Chapter 6 involve several free parameters. In this appendix, we list all free
parameters, describe their roles, and identify whether each parameter was optimized.

All learner models involve two free parameters, a production noise parameter and a transition
noise parameter. Each of these parameters was optimized based on data from the control condition,
and these parameters different across experiments and models. Small changes to the values of these
parameters have little effect on the computed policies. There are two other free parameters specific
to the learner models: a memory parameter for the discrete model with memory and the number of
particles for the continuous model. Neither of these parameters was optimized, and both were kept
constant across experiments. The memory parameter was set to two, meaning that the two previous
examples were kept in memory. Changes to this parameter affect how quickly the discrete memory
learner is able to learn; when the parameter is zero, the discrete memory learner is equivalent to
the memoryless learner. The number of particles was set to 16 for the continuous learner. This
value was chosen to be small enough to allow for relatively fast computations, and the planning
algorithm is not sensitive to small changes in the number of particles.

The cost function also has several free parameters: the discount factor γ and the cost of each
action type. The discount factor γ was set to 0.99 to reflect the fact that future costs should be
about as costly as current costs; this parameter was not optimized. The cost of actions varied
across experiments. It was set to be the median time for control participants to complete each type
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of action in order to reflect the relevant quantity (time) that we were trying to minimize.
Within planning, the lookahead horizon and the number of actions sampled at each step are

free parameters. These parameters were again not optimized, and small changes in the number
of actions sampled do not result in large changes in the policy. Adjusting the lookahead horizon
can result in changes to the policy, with longer lookahead horizons allowing one to capture longer-
term effects of actions. For each model, we experimented with how the length of computation was
affected by different settings of these parameters, and chose their values such that to maximize the
number of actions sampled with the constraint that computation generally took no more than three
seconds (the maximum time allowed).

A.2 Particle filter implementation
For the continuous learner model in Chapter 6, we use a particle filter to maintain and update the
belief state (Doucet, de Freitas, & Gordon, 2001). A particle filter approximates a distribution
using a limited number of particles, each of which represents a sample from the distribution. Each
particle has a weight, representing its mass in the distribution. In our case, the filter is approxi-
mating the teacher’s distribution over possible knowledge states. Each particle thus corresponds to
one knowledge state, which is itself a distribution over possible concepts. At the first time step, we
initialize the filter to include two particles: one that has a uniform distribution over concepts and
one that has the prior distribution over concepts. This provides some level of robustness in cases
where a learner’s prior does not match the prior assumed by the teacher. Each of these particles
is given equal weight, so the belief state is a distribution with 0.5 of the mass on each of these
possible knowledge states.

The particle filter is updated after each teacher action and student response. The update for the
response is completed first, and is relevant in the case of a quiz or question with feedback action.
For these actions, the weights on the particles are updated to account for the observed student
response. If a student gives response z to action a, then each particle s with weight ws is updated
to have weight w′s as follows:

w′s = ws

(
(1− εp)p(z|a,s)+ εp

1
|Z|

)
, (A.1)

where |Z| is the number of possible student responses and εp is the production noise parameter.
Thus, the new weight is the product of the old weight and the probability that a learner with the
knowledge state represented by particle s would have given the observed response. The probability
p(z|a,s) of giving a particular response is specified by the observation model. If all of the new
weights are very small (less than 0.005), then none of the particles would be likely to produce the
given response. This is an instance of particle depletion: The filter has no samples that seem to
be good approximations of the learner’s actual state. In that case, we re-initialize the distribution
with a particle representing the prior distribution and a particle representing the state that would
occur if the learner had begun with a uniform distribution and updated her state at each step to be
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consistent with the observed data. If particle depletion does not occur, we renormalize the weights
to sum to one, since they form a probability distribution.

After adjusting for the observed response, the particles are updated to account for the example
that the learner is shown. This update, relevant in the case of an example or question with feedback
action, creates a new set of particles that represent how the existing states would change given the
learner model. For each original particle s and weight ws, we have two new particles s′ with weight
ws′ and s′′ with weight ws′′ . Particle s′ is the result of the knowledge state in s being updated and
has entries s′i as follows:

s′i ∝

 si if ci is consistent with a

0 otherwise
(A.2)

where ci is the ith concept and a is the action taken at this time step. s′i is then renormalized to sum
to one. This corresponds to the update given in the main text for how the learner’s knowledge state
in the continuous model changes given an action. This particle has weight ws′ = (1− εt)ws, which
is the original probability of the particle weighted by the probability that the student updates her
state. The other new particle s′′ is identical to the original particle s as it is the result of the state not
being updated. This particle has weight ws′′ = εtws, where the original probability of the particle
is now weighted by the probability of the state not updating. After constructing the new particles
for the updated belief state, we check that the sum of the weights of these particles is not too small
(again, less than 0.005). If particle depletion has occurred, we follow the procedure above.

If particle depletion has not occurred, we complete the state update by limiting the number of
particles that we preserve and then renormalizing their weights. Particle filters are advantageous
because they allow us to work with continuous distributions using only a finite number of samples.
However, if the number of particles is allowed to grow without limit, they quickly become compu-
tationally infeasible. Thus, we limit the number of particles at each time step to N; the main text
gives the values of N we used for each experiment. Particles are ordered by their current weights,
and the particles with the top N weights are maintained. The particle weights are then renormalized
to sum to one.

A.3 Fitting parameters for concept learning models
For each of the three model concept learning models in Chapter 6, we set the noise parameters εp
and εt based on the data generated by participants in the control condition, who were taught using a
random policy. The procedure for setting these parameters was the same for both experiments. For
the memoryless model and the discrete model with memory, we used expectation maximization to
find the values of εp and εt that would maximize the likelihood of the produced data. To maximize
the expected likelihood L with respect to εt , we compute:

ε̂t = argmax
ε

∑
k

p(k|z,ε)L(z,k|ε), (A.3)
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where k is a vector in which ki = 0 if the learner state did not update at time i and ki = 1 otherwise,
and z is the vector of observed student responses. Let T be the number of time steps where the
state could have failed to update (the total number of example and question with feedback actions).
If k was known, Equation A.3 would be easily maximized:

ε̂t =
∑i I(ki = 0)

T
, (A.4)

where I(·) is the indicator function that is equal to 1 if its argument is true and 0 otherwise. How-
ever, since k is unknown, we use a variation of the Baum-Welch algorithm for learning the param-
eters of a hidden Markov model to calculate the probability of no update occurring at each time
step with an example or question with feedback action:

ηi =
∑m αi(si = m)εtβi+1(si+1 = m)p(zi+1|si = m)

∑m ∑n αi(si = m)p(si+1 = n|si = m)βi+1(si+1 = n)p(zi+1|si+1 = n)
, (A.5)

where the forward probability αi(si = m) is the probability p(si = m,z1:i) that the learner is in state
m at time i and observations z1:i occurred in steps 1 through i and the backward probability βi(si =
m) is the probability p(z(i+1):N |qi = m) that observations i+ 1 through N, the final observation,
occur given that the learner is in state m at time i. Intuitively, each ηi corresponds to how likely it
is that the update at time i was ineffective. Note that to calculate Equation A.5, we use the estimate
value of εt as well as the current estimate of εp. Since each ηi is an expectation over ki being equal
to 0 (i.e., an expectation over whether the update at time i was ineffective), we can replace the
numerator in Equation A.4 with the expectation:

ε̂t =
∑i(ηi)

T
. (A.6)

We alternate between calculating the ηi given the current estimate of εt , and calculating ε̂t given
the estimate of ηi.

We simultaneously estimate the probability of an error in production, εp. Let p be a vector
where pi = 0 if the observation at time i was due to a production error and pi = 1 otherwise. Then
if p was observed, the estimate would be:

ε̂p =
∑i I(pi = 0)

T
, (A.7)

where T is now the number of possible time steps in which production errors could have occurred
(the number of quiz and question with feedback actions). Since p is unobserved, we again use
a variation of the Baum-Welch algorithm to calculate the probability of a particular observation
occurring due to production error:

φi =
∑m αi(si = m)βi(si = m)εp p(zi|si = m, pi = 0)

∑m αi(si = m)βi(si = m)(εp p(zi|si = m, pi = 0)+(1− εp)p(zi|si = m, pi = 1))
. (A.8)
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This quantity is the expectation of the observation at time i occurring due to production error, so
we can substitute it for pi above:

ε̂p =
∑i(φi)

T
. (A.9)

At each expectation step, we calculate all φi and ηi given the current values of ε̂p and ε̂t ; we then
maximize these parameters given the new values of φi and ηi. This algorithm is continued until
the estimates converge. This algorithm is an expectation-maximization algorithm and is thus not
guaranteed to find the global optima. However, restarting the algorithm did not generally result in
substantially different solutions.

To calculate the estimates of the noise parameters for the continuous model, a slightly different
algorithm is required. In the continuous case, we have an infinite state space, making the calcula-
tions above infeasible. Instead, we find an approximate solution using forward filtering. We model
the learner’s state using a particle filter, and perform updating until time i. For εt , we then calculate
the probability that the observation at the next step was generated based on a failed transition:

ηi =
∑p p(particlep)εt p(zi+1|particlep)

∑p p(particlep)(εt p(zi+1|particlep)+(1− εt)p(zi+1|particleq|p))
, (A.10)

where particleq|p is the updated version of particle p. At each step i, we consider all possible
particles that could occur based on our current particles; this will be twice as many particles as are
in the current state, since we must consider each particle being updated or failing to be updated.
We maintain only a fixed number of particles when updating until the time i, though. This ηi is an
approximation of the ηi above, allowing us to estimate εt using Equation A.6. Similarly, we can
perform forward filtering to calculate an approximate version of φi:

φi =
∑p p(particlep)εp p(zi|si = m, pi = 0)

∑p p(particlep)(εp p(zi|si = m, pi = 0)+(1− εp)p(zi|si = m, pi = 1))
. (A.11)

We use this φi to calculate ε̂p using Equation A.9.
For alphabet arithmetic, we found the following values for the learner model parameters: mem-

oryless model: εt = 0.15 and εp = 0.019; discrete model with memory: εt = 0.34 and εp = 0.046;
and continuous model: εt = 0.14 and εp = 0.12. For the number game, the fitted values were
as follows: εp = 0.14 and εt = 0.25 for the memoryless model; εp = 0.10 and εt = 0.18 for the
discrete model with memory; and εp = 0.15 and εt = 0.21 for the continuous model.


