
Span Programs, Electrical Flows, and Beyond: New

Approaches to Quantum Algorithms

Guoming Wang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-64

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-64.html

May 13, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Span Programs, Electrical Flows, and Beyond: New Approaches to Quantum Algorithms

by

Guoming Wang

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Umesh Vazirani, Chair
Professor Satish Rao

Assistant Professor Hartmut Haeffner

Spring 2014

The dissertation of Guoming Wang, titled Span Programs, Electrical Flows, and Beyond: New
Approaches to Quantum Algorithms, is approved:

Chair Date

Date

Date

University of California, Berkeley

Span Programs, Electrical Flows, and Beyond: New Approaches to Quantum Algorithms

Copyright 2014
by

Guoming Wang

1

Abstract

Span Programs, Electrical Flows, and Beyond: New Approaches to Quantum Algorithms

by

Guoming Wang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

Over the last decade, a large number of quantum algorithms have been discovered that out-
perform their classical counterparts. However, depending on the main techniques used, most of
them fall into only three categories. The first category uses quantum Fourier transform to achieve
super-polynomial speedup in group-theoretical problems. The second category uses amplitude
amplification to achieve polynomial speedup in search problems. The third category simulates
quantum many-body systems. Finding a new class of quantum algorithms has proven a challeng-
ing task.

This dissertation explores several new approaches to developing quantum algorithms. These
approaches include span programs, electrical flows and nonsparse Hamiltonian simulation. We
demonstrate their power by successfully applying them to some useful problems, including tree de-
tection, effective resistance estimation and curve fitting. All of these algorithms are time-efficient,
and some of them are proven to be (nearly) optimal.

Span program is a linear-algebraic computation model originally proposed to prove circuit
lower bounds. Recently, it is found to be closely related to quantum query complexity. We de-
velop a span-program-based quantum algorithm for the following variant of the tree containment
problem. Let T be a fixed tree. Given the n×n adjacency matrix of a graph G, we need to decide
whether G contains T as a subgraph, or G does not contain T as a minor, under the promise that
one of these cases holds. We call this problem is the subgraph/not-a-minor problem for T . We
show that this problem can be solved by a quantum algorithm with O(n) query complexity and
Õ(n) time complexity. This query complexity is optimal, and this time complexity is tight up to
poly-logarithmic factors.

Electrical network theory has many applications to the design and analysis of classical algo-
rithms. Its connection to quantum computation, however, remains mostly unclear. We give two
quantum algorithms for approximating the effective resistance between two given vertices in an
electrical network. Both of them have time complexity polynomial in logn, d, c, 1/φ and 1/ε,

2

where n is the number of vertices, d is the maximum degree of the vertices, c is the ratio of the
largest to the smallest edge resistance, φ is the conductance of the network, and ε is the relative
error. Our algorithms have exponentially better dependence on n than classical algorithms. Fur-
thermore, we prove that the polynomial dependence on the inverse conductance is necessary. As
a consequence, our algorithms cannot be greatly improved. Finally, as a by-product, our second
algorithm also produces a quantum state encoding the electrical flow between two given vertices
in a network, which might be of independent interest.

Our algorithms are developed by using quantum tools to analyze the algebraic properties of
graph-related matrices. While the first one relies on inverting the Laplacian matrix, the second
one relies on projecting onto the kernel of the weighted incidence matrix. It is hopeful that more
quantum algorithms could be designed in similar way.

Curve fitting is the process of constructing a (simple continuous) curve that has the best fit to a
series of data points. It is a common practice in many fields of science and engineering, because it
can help us to understand the relationships among two or more variables, and to infer the values of
a function where no data are available. We propose efficient quantum algorithms for estimating the
best-fit parameters and the quality of least-square curve fitting. The running times of our algorithms
are polynomial in logn, d, κ, ν, χ, 1/Φ and 1/ε, where n is the number of data points to be fitted,
d is the dimension of the feature vectors, κ is the condition number of the design matrix, ν and
χ are some parameters reflecting the variances of the design matrix and response vector, Φ is the
fit quality, and ε is the tolerable error. Our algorithms have exponentially better dependence on n
than classical algorithms. They are designed by combining the techniques of phase estimation and
density matrix exponentiation for nonsparse Hamiltonian simulation.

i

To my family

ii

Contents

Contents ii

1 Introduction 1
1.1 Background . 1
1.2 Summary of Results . 7

2 Preliminaries 10
2.1 Notation . 10
2.2 Quantum Information . 11
2.3 Quantum Computation . 16

3 Quantum Algorithm for Tree Detection 25
3.1 Introduction . 25
3.2 Span Program and Quantum Query Complexity 26
3.3 Span Program for Tree Detection . 29
3.4 Time-Efficient Implementation . 42
3.5 Open Problems . 48

4 Electrical Flows and Quantum Algorithms 50
4.1 Overview . 50
4.2 Spectral Graph Theory . 52
4.3 Electrical Flows and Effective Resistances . 53
4.4 Our Model . 54
4.5 A Simple Quantum Algorithm for Estimating Effective Resistances 55
4.6 A Faster Quantum Algorithm for Estimating Effective Resistances 59
4.7 Generating Electrical Flows as Quantum States 69
4.8 Lower Bound on the Complexity of Effective Resistance Estimation 72
4.9 Discussion . 73

5 Quantum Algorithms for Curve Fitting 75
5.1 Introduction . 75
5.2 Least-Square Curve Fitting . 77

iii

5.3 Our Model . 78
5.4 Density Matrix Exponentiation . 79
5.5 Quantum Algorithms for Estimating the Best-Fit Parameters θ̂ 84
5.6 Quantum Algorithm for Estimating the Fit Quality Φ 96
5.7 Open Problems . 97

Bibliography 98

iv

Acknowledgments

First and foremost, I am deeply indebted to my advisor, Umesh Vazirani, for his guidance,
support, and encouragement throughout these years. From steering me in the right direction, to
providing useful technical advice, to improving my writing and presenting, he has given me in-
valuable help without which this thesis cannot be finished. He has also taught me innumerable
lessons on the workings of academic research in general. His taste of problems, his commitment
to research, and his scientific curiosity and creativity were a great source of inspiration. All of
these will benefit me a lot in my future. Besides research, Umesh has kindly helped me on various
non-technical matters, and I am immensely grateful for that.

I would also like to thank my master’s advisor, Mingsheng Ying, for his support and advice at
the beginning of my scientific career, and for his constant encouragement all the time.

Berkeley has offered me an excellent environment to carry out my research. I would like to
thank the theory faculty for the many courses and seminars that I was fortunate to attend. I am also
grateful to Satish Rao, Hartmut Haeffner and John Kubiatowicz for serving on my quals and thesis
committees and for providing helpful advice.

I am grateful to several people who have directly or indirectly assisted me in writing this thesis.
Thanks to Ben Reichardt for inspiring discussions on span programs and quantum query complex-
ity, and for giving useful feedback on my algorithm for tree detection. Thanks to Zeph Laundau for
suggesting the geometric proof of Lemma 40. Thanks to Robin Kothari for suggesting the proof
of Theorem 48.

During my thesis research, I enjoyed extended visits to NEC Labs in Princeton and Institute for
Quantum Computing (IQC) in Waterloo. I would like to thank many individuals at those institutes
for their hospitality: at NEC, Martin Röetteler, Dmitry Gavinsky, and Tsuyoshi Ito; and at IQC,
Andrew Childs, Richard Cleve, David Gossett, Robin Kothari, Rajat Mittal, Ashwin Nayak, and
John Watrous. Special thanks for Martin for his kind invitation and considerate arrangement. Also,
special thanks to Dima and Tsuyoshi for the great collaboration on communication complexity. I
enjoyed working with them, and I have learned a lot from them.

Many thanks to Umesh, Martin and Kubi for writing letters of recommendation for my appli-
cation of postdoctoral position. Also, many thanks to Thomas Vidick for providing helpful career
advice.

I would like to thank many members of quantum information community, in addition to those
mentioned above, for having useful discussions. These include Scott Aaronson, Andris Ambainis,
André Chailloux, Paul Christiano, Andrew Drucker, Runyao Duan, Yuan Feng, Sevag Gharibian,
Zhengfeng Ji, Stephen Jordan, Yi-Kai Liu, Urmila Mahadev, Anupam Prakash, Seung Woo Shin,

v

Mario Szegedy, Falk Unger, and Shengyu Zhang.

Soda Hall has been a pleasant place to stay. For creating an environment of general cama-
raderie, I would like to thank my fellow theory students: Anand Bhaskar, Antonio Blanca, Siu
Man Chan, Siu On Chan, James Cook, Anindya De, Rafael Frongillo, Henry Lin, Lorenzo Orec-
chia, Jonah Sherman, Isabelle Stanton, Piyush Srivastava, Madhur Tulsiani, Thomas Watson, and
all the others.

It would not be possible for me to embark on this journey without the unwavering support and
encouragement of my family. I especially want to thank my mother for working so hard to make
my brother and I have a good life, and for being understanding and supportive all the time. I am
also grateful to my wife Wenhua for her love and patience. To them, I dedicate this thesis.

1

Chapter 1

Introduction

1.1 Background
Quantum computation is the study of using quantum-mechanical phenomenon, such as superposi-
tion and entanglement, to perform data processing tasks. This area was first introduced by Manin
[101] and Feynman [67] in the early 1980s, who noticed that simulating quantum many-body sys-
tems is inherently difficult for classical computers (due to the exponential number of parameters
to describe these systems) and suggested that quantum computers would be better suited for this
task. In 1985, Deutsch [59] took this idea further and described a universal quantum computer
— an abstract machine that captures all of the power of quantum computation. He also gave the
first example of a problem that could be solved faster by a quantum computer than by a classical
computer. His work was followed by a steady sequence of advances [28, 60, 118], culminating
in 1994 with Shor’s discovery of efficient quantum algorithms for factoring integers and calcu-
lating discrete logarithms [117]. Shor’s algorithm, like its predecessors, is based on the idea of
using a quantum Fourier transform to find periodicity. It has been generalized to solve a variety
of algebraic problems, such as hidden subgroup [14, 15, 63, 69, 72, 77, 91, 103], hidden shift
[45, 54, 57, 76, 102], Pell’s equation [74], unit group [75], and so on [42, 52, 58, 131]. All of these
algorithms achieve super-polynomial speedup over the best known classical algorithms, and have
close connections to representation theory [68].

Meanwhile, in 1996, Grover [71] made an equally striking discovery — a quantum algorithm
that achieves quadratic speedup for the unstructured search problem. Namely, given oracle access
to a database of N items, one of which being marked, Grover’s algorithm can find the marked item
using only O

(√
N
)

queries. This algorithm was subsequently generalized to the framework of
amplitude amplification [35]. Since the unstructured search problem is extremely basic, Grover’s
search has been applied to many problems, such as collision finding [36], graph connectivity [62],
and so on [12].

Quantum walk [66, 130], the quantum analogue of of classical random walk, is a further gen-
eralization of amplitude amplification. Following previous work on spatial search [1, 11, 47, 48],
Ambainis [8] gave an optimal quantum-walk-based algorithm for the element distinctness prob-

CHAPTER 1. INTRODUCTION 2

lem. His approach was subsequently generalized [46, 99, 125] and applied to other problems, such
as triangle finding [100], matrix product verification [38] and group commutativity [98]. Like am-
plitude amplification, all of these algorithms achieve polynomial speedup for the search problems.

Returning to the original motivation for quantum computation, Lloyd [95] demonstrated that
quantum computers can be programmed to simulate any local quantum system efficiently. His
result was subsequently extended to much large classes of quantum systems [2, 4, 30, 39, 73,
84, 85, 107, 108, 133, 134]. In addition, several quantum algorithms have also been proposed to
approximate the ground and thermal states for some classes of Hamiltonians [109, 126](although
the problem of finding the ground state energies of local Hamiltonians is QMA-complete [3, 89] 1

and hence probably requires exponential time on a quantum computer in the worst case).
The above three categories of quantum algorithms will surely be useful if large-scale quantum

computers can be built. But they also raise the question of how broadly useful quantum computers
could be. Indeed, although we have a large number of quantum algorithms today, most of them are
developed by only few techniques (such as quantum Fourier transform and amplitude amplifica-
tion), and they solve problems with similar flavours. It has proven challenging to find a new class
of quantum algorithms that (greatly) outperform their classical counterparts.

This dissertation investigates several new approaches to developing quantum algorithms. These
approaches include span programs, electrical flows and nonsparse Hamiltonian simulation. We
demonstrate their power by successfully applying them to some useful problems, including tree
detection, effective resistance estimation and curve fitting. All of these algorithms are time-efficient
2, and some of them are proven to be (nearly) optimal.

Our work is inspired by many recent developments in quantum algorithms. So, before describ-
ing our results in more detail, it is helpful to briefly review these developments.

1.1.1 Recent Developments in Quantum Algorithms
Formula Evaluation, Span Programs, Learning Graphs and Electrical Flows

An AND-OR formula is a rooted tree in which the internal nodes correspond to AND and OR
gates, and the leaves are numbered. To a formula φ of size n and a numbering of the leaves from 1
to n corresponds a function fφ : {0,1}n→{0,1}. This function is defined on input x = x1x2 . . .xn ∈
{0,1}n by placing bit x j on the j-th leaf, for j ∈ [n] 3, and evaluating the gates toward the root.
Evaluating AND-OR formulas is an important problem with many applications. For example, it
allows us to solve the decision version of a two-player game tree. Classically, a full binary AND-
OR tree of size N can be evaluated with Θ

(
N0.754...) queries and this is optimal [116, 119].

In 2007, Farhi, Goldstone and Gutman [64] showed that a full binary AND-OR tree of size
N can be evaluated with O

(√
N
)

quantum queries, but in an nonconventional continuous-query
1QMA is the set of decision problems satisfying the following conditions: (1) if the answer is YES, there is a

polynomial-size quantum proof which convinces a polynomial-time quantum verifier of the fact with high probability;
(2) if the answer is NO, every polynomial-size quantum state is rejected by the verifier with high probability. It can be
viewed as the quantum analogue of NP.

2In contrast, many previous quantum algorithms are only query-efficient.
3Throughout this dissertation, we use [n] to denote the set {1,2, . . . ,n}, for any positive integer n.

CHAPTER 1. INTRODUCTION 3

model. Several improvements followed soon. Ambainis et al. [10] translated this algorithm to the
conventional discrete-query model and extended it to evaluating arbitrary Boolean formulas with
O(N1/2+o(1)) quantum queries.

Later, Reichardt and Špalek [115] discovered a far-reaching generalization of this result. Namely,
the quantum algorithm was generalized to evaluating span programs [86]. Span program is an
algebraic model of computation originally proposed to prove circuit lower bounds. Informally
speaking, a span program consists of a target vector τ and a finite set of input vectors v1,v2, . . . ,vm
from some inner-product space. Each v j is associated with a condition xi = 0 or xi = 1 for some
i ∈ [n]. On input x = x1x2 . . .xn ∈ {0,1}n, the span program evaluates to 1 if τ can be written as the
linear combination of the v j’s whose the associated conditions are true on x. Otherwise, the span
program evaluates to 0.

Here is a simple example of span program. Consider the following vectors from C2:

τ =

(
1
0

)
, v1 =

(
1
1

)
, v2 =

(
1

ei2π/3

)
, v3 =

(
1

e−i2π/3

)
. (1.1)

Vectors v1, v2 and v3 are associated with conditions x1 = 1, x2 = 1 and x3 = 1, respectively. Then,
this span program evaluates to 1 on input x = x1x2x3 ∈ {0,1}3 if and only if at least two of x1, x2
and x3 are 1. In other words, this span program computes the majority function Maj(x1,x2,x3).

Reichardt and Špalek invented a complexity measure called witness size for span programs.
This measure generalizes the formula size: a Boolean formula of size S can be transformed into
a span program with witness size S. They showed that a span program with witness size S can
be evaluated by a quantum algorithm with O(S) query complexity. More remarkably, Reichardt
[111, 113] also discovered that for any Boolean function f , the smallest witness size of any span
program for f is actually within a constant factor of the (bounded-error) quantum query complexity
of f ! More precisely, the general adversary bound [82] is a semidefinite program (SDP) that lower-
bounds the quantum query complexity of a function. Reichardt considered the dual of this SDP
and found that the dual SDP gives the span program with smallest witness size 4. Thus, the span
program approach is optimal (in terms of query complexity) for any Boolean function.

Reichardt’s discovery leads to a novel approach to designing quantum algorithms. Namely, in
order to devise a query-efficient quantum algorithm for a problem, we only need to build a span pro-
gram with small witness size for this problem. To date, span-program-based quantum algorithms
have been developed for formula evaluation [112, 114, 115], matrix rank [19], st-connectivity [24],
subgraph detection [24] and graph collision [70] 5. These algorithms have optimal or improved
query complexity over previous algorithms. Span programs have a rich mathematical structure,
and their potential has not been fully explored.

For many problems, however, finding the optimal span program is very hard. In fact, it is
equivalent to solving a SDP of exponential size [111]. To surmount this problem, Belovs [20]
introduced the framework of learning graph to systematically construct span programs for Boolean

4This also implies that the general adversary bound is tight for any Boolean function.
5The span programs for these problems are mostly designed in an ad hoc fashion.

CHAPTER 1. INTRODUCTION 4

functions with small 1-certificates 6. A learning graph is a directed acyclic graph with vertices
being the subsets of [n], as shown by Fig. 1.1. One may think of it as simulating the development
of our knowledge on the input. Initially, we know nothing about the input, and it is represented by
vertex ∅. When in vertex S ⊆ [n] 7, the values of the variables in S have been learned. For any
j ∈ [n]\S, vertex S is connected to vertex S∪{ j} by an arc. This can be interpreted as querying the
value of variable x j. In other words, this arc loads element j, and S is the set of loaded elements.
For any x ∈ f−1(1), there exists a 1-certificate for x contained in some vertex of the learning

Figure 1.1: A learning graph.

graph. We call such vertices accepting. To check that f (x) = 1, we need a loading procedure that
starts at vertex ∅ and ends at some accepting vertex S. This loading procedure can be randomized
(i.e. at each step, it chooses the variable of load with some probability distribution). Thus, a
loading procedure can be viewed as a flow from vertex ∅ (i.e. the only source) to the accepting
vertices (i.e. the sinks) on the learning graph. There can be many such flows. Belovs’s idea was
to use the minimum energy of such flows to characterize the difficulty of computing f (x). Here
the energy of a flow p : E → R is defined as ∑e∈E p2(e)/w(e), where E is the set of arcs in the
learning graph, and w(e)> 0 is the weight of arc e ∈ E. Intuitively, if there are many (qualitatively
different) 1-certificates for x and they spread widely in the learning graph, then the optimal flow
for x has small energy; otherwise, it has large energy. Alternatively speaking, the learning graph
is associated with a span program, and this minimum energy is related to the witness size of that
span program. Learning graphs have been used to develop query-efficient quantum algorithms for
subgraph detection [92, 93, 136], associativity testing [93] and k-element distinctness [21, 23].

6Let f : {0,1}n→ {0,1} be a Boolean function. An assignment is a function σ : S→ {0,1}, where S ⊆ [n]. An
assignment σ is called a b-certificate for f if any x consistent with σ (i.e. x j = σ(j) for any j ∈ S) is mapped to b by
f , for b ∈ {0,1}.

7There can be multiple vertices corresponding to the same subset S⊆ [n].

CHAPTER 1. INTRODUCTION 5

One can regard the learning graph as an electrical network with edge resistance 1/w(e). Then,
the optimal flow for x ∈ f−1(1) is exactly the unit electrical flow from vertex ∅ to the accepting
vertices for x (pretending that they are glued together), and the optimal energy is just the effective
resistance between these vertices. From this point of view, Belovs’s work builds a connection
between electrical network theory and quantum query complexity. Electrical network theory has
found many applications in the design and analysis of classical algorithms (e.g. [55, 122]). But
its connection to quantum computation remains mostly unclear (although there are a few results
[20, 22, 25] in this direction). We will investigate this topic in Chapter 4.

We remark that most of the aforementioned span-program-based (or learning-graph-based)
quantum algorithms are query-efficient, but not time-efficient. Although Reichardt [111, 113] has
proposed a quantum-walk-based algorithm for evaluating any span program, the quantum walk in
his algorithm might be difficult to implement using local gates. The time-efficient evaluation of
span programs (or learning graphs) can be challenging.

Hamiltonian Simulation and Linear Equations

Solving large systems of linear equations is an important problem in virtually all fields of science
and engineering. In this problem, we are given an N×N matrix A and an N-dimensional vector
b, and need to find the vector x such that Ax = b. Many efficient classical algorithms have been
developed for this problem, but all of them require poly(N) time. Anyway, it takes Ω(N) time to
just write down the N-dimensional solution x = A−1b.

In 2008, Harrow, Hassidim and Lloyd (HHL) [78] discovered a surprising quantum algorithm
that allows to solve systems of linear equations in Õ

(
polylog(N) ·κ2/ε

)
time 8, where κ is the

condition number of A, and ε is the tolerable error — but in an unconventional sense. Specifically,
suppose that A is sparse and efficiently row computable, i.e. A has polylog(N) nonzero entries
per row and given a row index these entries can be computed in polylog(N) time. Also, suppose
a quantum state proportional to |b〉 can be prepared in polylog(N) time. Then HHL’s algorithm
produces a quantum state |x̃〉 such that ‖|x̃〉− |x̄〉‖ ≤ ε in Õ

(
polylog(N) ·κ2/ε

)
time, where |x̄〉 is a

normalized state proportional to |x〉= A−1 |b〉 9. This state is useful, because we can perform quan-
tum measurements on it and learn certain properties of the solution |x〉 = A−1 |b〉. This algorithm
was subsequently applied to solve linear differential equations [29] and least-squares curve-fitting
[132] (but only in the sparse case).

Recently, Ambainis [9] introduced a technique called variable-time amplitude amplification
and used it to improve the complexity of HHL’s algorithm to Õ(polylog(N) ·κ/ε3). Further im-
provement nevertheless seems unlikely, as [78] showed that no quantum algorithm could solve
matrix inversion 10 in κ1−δ ·poly(logN,1/ε) time for some constant δ > 0, unless BQP=PSPACE

8Throughout this dissertation, we use the symbol Õ to suppress poly-logarithmic factors. Namely, Õ(f (n)) =
O(f (n)(log f (n))b) for some constant b.

9In fact, HHL’s algorithm can produce a quantum state approximately proportional to f (A) |b〉 for any easy-to-
compute function f .

10Here we say that an algorithm solves matrix inversion if its input is a sparse matrix A specified by an oracle,
and its output is the value of 〈z|M |z〉, where M = |0〉〈0| ⊗ IN/2 corresponds to measuring the first qubit and |z〉 is a

CHAPTER 1. INTRODUCTION 6

11 Even so, matrix inversion appears much harder for classical computers, as [78] proved that no
classical algorithm could solve matrix inversion in poly(κ, logN,1/ε) time, unless BPP=BQP 12.

The basic idea of HHL’s algorithm is as follows. Suppose A has the spectral decomposition
A = ∑ j λ j

∣∣v j〉〈v j
∣∣. We can expand |b〉 in the eigenbasis of A. Namely, suppose |b〉= ∑ j b j

∣∣v j
〉

for
some coefficients b j. Then the solution to A |x〉= |b〉 is given by

|x〉= ∑
j

b jλ
−1
j

∣∣v j
〉
. (1.2)

HHL’s idea is to use the techniques for sparse Hamiltonian simulation to apply eiAt to |b〉 for a
superposition of different times t. This exponentiation of A, combined with phase estimation [87],
allows us to decompose

∣∣b j
〉

in the eigenbasis of A and to find the corresponding eigenvalues λ j.
Informally, the state after this stage is close to ∑ j b j

∣∣v j
〉∣∣λ j

〉
. Then, we only need to perform the

linear map
∣∣λ j
〉
→ Cλ

−1
j

∣∣λ j
〉
, where C is a normalizing constant. Although this is not a unitary

operation, it can be approximately achieved by using a controlled-rotation and amplitude amplifi-
cation. After it succeeds, we uncompute the

∣∣λ j
〉

register and are left with a state approximately
proportional to |x〉= ∑ j b jλ

−1
j

∣∣v j
〉
.

As mentioned above, sparse Hamiltonian simulation plays a crucial role in HHL’s algorithm.
A Hamiltonian H is called d-sparse if each row of H contains at most d nonzero entries. Suppose
such an H is given by an oracle for the positions and values of its nonzero entries. We want
to simulate the unitary operation eiHt by querying this oracle and using additional gates, for any
given t. The first efficient algorithm for this problem was due to Aharonov and Ta-Shma [4]. Their
idea is to use edge coloring to decompose H into a sum of Hamiltonians ∑

r
j=1 H j , where each H j

is easy to simulate. These terms are then recombined using the Lie-Trotter product formula [128],
which states that

eiHt ≈ (eiH1t/neiH2t/n · · ·eiHrt/n)n (1.3)

for large n. This method was later improved using high-order product formulas and more efficient
decompositions of the Hamiltonian [30, 50]. Recently, Berry et al. [32] gave a dramatically im-
proved algorithm with O(τ log(τ/ε)) query complexity and O(logN · τ log(τ/ε)) time complexity,
where τ = d2‖H‖maxt, and N is the dimension of H. Remarkably, this algorithm has only poly-
logarithmic dependence on 1/ε. It is based on an efficient simulation of the continuous-query
model by discrete quantum queries.

Nevertheless, the aforementioned methods only work for sparse Hamiltonian simulation. In
contrast, efficient simulation of nonsparse Hamiltonians seems much harder, and there are fewer
results [43, 49] in that direction. But in a recent paper, Lloyd, Mohseni and Rebentrost [96]
introduced a novel technique called density matrix exponentiation, which allows to simulate the

normalized state proportional to A−1 |0〉.
11BQP is the class of decision problems that can be solved by a quantum computer in polynomial time with high

probability. PSPACE is the class of decision problems that can be solved by a classical deterministic computer in
polynomial space.

12BPP is the class of decision problems that can be solved by a classical probabilistic computer in polynomial time
with high probability.

CHAPTER 1. INTRODUCTION 7

time evolution of any positive semidefinite (but not necessarily sparse) Hamiltonian. It is based on
the observation that ∥∥tr1

(
eiS∆t (ρ⊗σ)e−iS∆t)− eiρ∆tσe−iρ∆t

∥∥
tr = O

(
(∆t)2) , (1.4)

where S is the swap operator, and ρ, σ are arbitrary density matrices. Namely, for any small ∆t,
we can approximate the unitary operation eiρ∆t by the following procedure: (1) append a state ρ;
(2) perform the unitary operation eiS∆t on the joint system; (3) trace out the appended system. This
observation, combined with the Lie-Trotter product formula, allows us to simulate the unitary op-
eration eiρt by consuming multiple copies of the state ρ. Furthermore, by running phase estimation
on the operator eiρt starting with the state ρ, we can analyze the eigenvalues and eigenvectors of ρ.
They call this phenomenon quantum self-analysis 13. We will utilize their results to design efficient
quantum algorithms in Chapter 5.

1.2 Summary of Results
This dissertation presents time-efficient quantum algorithms for several problems, including tree
detection, effective resistance estimation and curve fitting. In developing them, we not only give
fast solution to some practical problems, but also gain new insights to the power of quantum
computation. Although our algorithms are not related to representation theory, most of them are
significantly faster than their classical counterparts, and some of them are proven to be (nearly)
optimal. Furthermore, some of them might be used as a subroutine to help solving other problems
as well.

In the remainder of the introduction, we will give a brief overview of the three main chapters
in this dissertation.

In Chapter 3, we describe a span-program-based quantum algorithm for tree detection. Sub-
graph detection is an important problem with numerous applications to biochemistry, circuit de-
sign and software engineering. Our algorithm solves the following variant of the tree containment
problem. Let T be a fixed tree. Given the n×n adjacency matrix of a graph G, we need to decide
whether G contains T as a subgraph, or G does not contain T as a minor 14, under the promise
that one of these cases holds. We call this problem the subgraph/not-a-minor problem for T . We
show that this problem can be solved by a quantum algorithm with O(n) query complexity and
Õ(n) time complexity. This query complexity is optimal, and this time complexity is tight up to
poly-logarithmic factors. To develop this algorithm, we first build an optimal span program for tree
detection, and then give a time-efficient implementation of this span program using quantum walks.

13Of course, we can perform quantum state tomography to determine ρ completely. But quantum self-analysis
turns out to be more efficient than this naive method.

14We say that a graph H is a minor of a graph G if H can be obtained from G by deleting and contracting edges
of G, and removing isolated vertices. Here, contracting an edge (u,v) involves replacing u and v by a new vertex and
connecting this vertex to the original neighbours of u and v.

CHAPTER 1. INTRODUCTION 8

In Chapter 4, we study quantum algorithms for electrical flows and effective resistances. Elec-
trical network theory has many applications to the design and analysis of classical algorithms.
Examples include the relation between effective resistances and commute times of random walks
[40], the usage of effective resistances for graph sparsification [122], and the usage of electrical
flows for approximating maximum flows [55, 94, 97]. Classically, to compute electrical flows and
effective resistances, one need to solve a Laplacian linear system, and the currently best algorithms
take Õ(m) time, where m is the number of edges in the network.

We give two quantum algorithms for approximating the effective resistance between two given
vertices in an electrical network. Both of them have time complexity polynomial in logn, d, c,
1/φ and 1/ε, where n is the number of vertices, d is the maximum degree of the vertices, c is the
ratio of the largest to the smallest edge resistance, φ is the conductance of the network, and ε is the
relative error. Our algorithms run very fast when d and c are small and φ is large. In contrast, it
is unknown whether classical algorithms can solve this case very fast. Furthermore, we prove that
the polynomial dependence on the inverse conductance (i.e. 1/φ) is necessary. As a consequence,
our algorithms cannot be greatly improved. Finally, as a by-product, our second algorithm also
produces a quantum state encoding the electrical flow between two given vertices in a network,
which might be of independent interest.

Our algorithms are based on using quantum tools to analyze the algebraic properties of graph-
related matrices. While one of them relies on inverting the Laplacian matrix, the other relies on
projecting onto the kernel of the weighted incidence matrix. It is hopeful that more quantum algo-
rithms could be devised in similar way.

In Chapter 5, we study quantum algorithms for curve fitting. Curve fitting, also known as
regression analysis in statistics, is the process of constructing a (simple continuous) curve that
has the best fit to a series of data points. It is a common practice in many fields of science and
engineering, because it can help us to understand the relationships among two or more variables,
and to infer the values of a function where no data are available. Classically, in order to find the
best-fit curve in the standard least-square approach, one needs to solve a linear system and it takes
poly(n,d) time, where n is the number of points to be fitted, and d is the dimension of feature
vectors (or equivalently, the number of parameters to be determined).

We propose efficient quantum algorithms for estimating the best-fit parameters and the quality
of least-square curve fitting. The running times of our algorithms are polynomial in logn, d, κ, ν,
χ, 1/Φ and 1/ε, where n and d are defined as above, κ is the condition number of the design matrix,
ν and χ are some parameters reflecting the variances of the design matrix and response vector, Φ

is the fit quality 15, and ε is the tolerable error. Our algorithms run very fast when the given data
are normal, in the sense that the design matrix is far from being singular, and the rows of design
matrix and response vector do not vary too much in their norms. In contrast, it is unknown whether
classical algorithms can solve this case very fast. Furthermore, different from previous quantum
algorithms for this task, our algorithms work no matter the design matrix is sparse or not, and

15The time complexity of the algorithm for estimating Φ does not depend on 1/Φ.

CHAPTER 1. INTRODUCTION 9

they determine the best-fit curve completely 16. They are designed by combining the techniques of
phase estimation and density matrix exponentiation for nonsparse Hamiltonian simulation.

16Previous quantum algorithms [132] only work in the sparse case, and only produce a quantum state encoding this
curve.

10

Chapter 2

Preliminaries

This chapter describes the notation that is used throughout this dissertation, and collects some
important definitions and results in quantum information and computation. For more detailed
background, the reader is encouraged to consult [89, 105, 110, 129].

2.1 Notation
Let R and C be the field of real and complex numbers, respectively. For any z ∈R, let sgn(z) := 1
if z≥ 0, and −1 otherwise. In addition, let bzc be the largest integer that is not greater than z, and
let dze be the smallest integer that is not less than z. Let N be the set of positive integers. For any
n ∈ N, let [n] := {1,2, . . . ,n}.

For any vector ψ, let ‖ψ‖ be the Euclidean norm of ψ. In addition, let ψ̄ be the normalized
version of ψ, i.e. ψ̄ := ψ/‖ψ‖. Furthermore, let |ψ〉 := ψ. Namely, |ψ〉 and ψ are essentially the
same thing, but we use |ψ〉 to denote the (unnormalized) quantum state corresponding to ψ, not its
classical description.

For any matrix A, we say that A is s-sparse if each row of A contains at most s nonzero entries.
Furthermore, let C (A) be the column space of A, and let Ker(A) be the kernel of A. Then, let ΠA
be the projection onto C (A), and let RefA := 2ΠA− I be the reflection about C (A).

The spectral norm of a matrix A, denoted by ‖A‖, is the largest singular value of A. The trace
norm of A, denoted by ‖A‖tr, is the sum of the singular values of A. The condition number of a
matrix A, denoted by κ(A), is the ratio of A’s largest singular value to its smallest singular value.
For a matrix A with full column rank, the Moore-Penrose pseudoinverse of A, denoted by A+, is
defined as (A†A)−1A†.

For an N ×N Hermitian matrix A, we use λi(A) to denote the i-th smallest eigenvalue of A
(counted with multiplicity), for i ∈ [N]. For any two Hermitian matrices A and B, we use A < B to
denote that A−B is positive semidefinite.

A Hilbert space is a complex vector space with inner product. A linear operator A on a Hilbert
space is unitary if A†A = AA† = I, where I is the identity operator. A linear operator A on a Hilbert
space is a projection if A2 = A.

CHAPTER 2. PRELIMINARIES 11

Finally, as stated before, we use the symbol Õ to suppress poly-logarithmic factors. Namely,
Õ(f (n)) = O(f (n)(log f (n))b) for some constant b.

2.2 Quantum Information

2.2.1 Basics of Quantum Mechanics
Quantum mechanics postulates that any isolated physical system is associated with a Hilbert space
known as the state space, and the system is completely described by a state vector, which is a
unit vector in its state space. The dimension of a system is defined as the dimension of its state
space. The simplest quantum system is a qubit, which has a two-dimensional state space. Its state
is described by

|ϕ〉= a |0〉+b |1〉 , (2.1)

where a and b are complex numbers satisfying |a|2 + |b|2 = 1, and {|0〉 , |1〉} is an orthonormal
basis for the state space.

The evolution of a closed quantum system is described by a unitary transformation. Namely,
the state |ϕ1〉 of the system at time t1 is related to the state |ϕ2〉 of the system at time t2 by a unitary
operator U which depends only on the time t1 and t2,

|ϕ2〉=U |ϕ1〉 . (2.2)

A quantum measurement with k possible outcomes is described by a collection {E1,E2, . . . ,Ek}
of k measurement operators. These operators act on the state space of the system being measured,
and each one of them corresponds to one possible outcome. If the state of the quantum system if
|ϕ〉 before the measurement, then the probability that outcome i occurs is

pi = 〈ϕ|E†
i Ei |ϕ〉 , (2.3)

and the corresponding post-measurement state is

|ϕi〉=
Ei |ϕ〉√
〈ϕ|E†

i Ei |ϕ〉
. (2.4)

The measurement operator satisfy the completeness equation:

k

∑
i=1

E†
i Ei = I. (2.5)

This ensures that the probabilities of all possible outcomes sum to one:

1 =
k

∑
i=1

pi = 〈ϕ|E†
i Ei |ϕ〉 . (2.6)

CHAPTER 2. PRELIMINARIES 12

A projective measurement with k possible outcomes is described by a collection {Π1,Π2, . . . ,Πk}
of k projections. Namely, these operators satisfy Π2

i = Πi for i ∈ [k], and ∑
k
i=1 Πi = I.

The state space of a composite system is the tensor product of the state spaces of the component
systems. Namely, for a joint system AB, its state space is H = HA⊗HB, where HA, HB are the
state spaces of system A and B, respectively. The state of AB can be any unit vector in H . In the
simple case, the state of AB is just the tensor product of the state of A and the state of B. That is, the
state of AB is |φA〉 |φB〉, where |φA〉 is the state of A and |φB〉 is the state of B. But there are many
other states of AB that cannot be written in this form. For example, consider a two-qubit system in
the state

|Φ〉= |00〉+ |11〉√
2

. (2.7)

This state cannot be written as |φ1〉 |φ2〉 for any two-dimensional states |φ1〉 and |φ2〉. So we say
that |Φ〉 is an entangled state. Entanglement is one of the most mysterious aspects of quantum
mechanics, and plays a crucial role in quantum information processing. Hence, it has been exten-
sively studied during the past decade (although it is not the focus of this dissertation). For more
background on entanglement, we refer the read to [81].

The density matrix language provides a convenient means for describing quantum systems
whose states are not completely known. Specifically, suppose a quantum system is in state |ψi〉
with probability pi, for i ∈ [k]. We shall call {pi, |ψi〉}i∈[k] an ensemble of pure states. The density
matrix for the system is defined as

ρ :=
k

∑
i=1

pi |ψi〉〈ψi| . (2.8)

Note that ρ is positive definite (i.e. ρ < 0) and has trace 1 (i.e. tr(ρ) = 1). We shall say that the
system is in the mixed state ρ.

Suppose we perform a unitary operation U on a system in the state ρ. Then its state after this
operation is UρU†. Meanwhile, suppose we perform a measurement {E1,E2, . . . ,Em} on a system
in the state ρ. Then, the probability of obtaining outcome i is given by

pi = tr
(

EiρE†
i

)
(2.9)

and the corresponding post-measurement state is

ρi =
EiρE†

i

tr
(

EiρE†
i

) . (2.10)

Moreover, suppose a joint system AB is in the state ρAB. Then the reduced density matrix (or
reduced state) of system A is

ρA := trB (ρAB) , (2.11)

where trB () is the partial trace over system B defined as

trB (|a1〉〈a2|⊗ |b1〉〈b2|) := |a1〉〈a2| tr(|b1〉〈b2|) . (2.12)

CHAPTER 2. PRELIMINARIES 13

We have mentioned that the evolution of a closed quantum system is described by a unitary
operation. But in the real world, many physical systems suffer from unwanted interactions with the
environment. To characterize the dynamics of such open quantum systems, we use the formalism
of quantum operations [105], which has the form

E(ρ) := ∑
i

EiρE†
i , (2.13)

where the Ei’s are called the Kraus operators of the operation E 1 and satisfy the completeness
equation

∑
i

E†
i Ei = I. (2.14)

In particular, unitary operations and quantum measurements are just special classes of quantum
operations. Specifically, for a unitary operation U , it can be viewed as the operation

U(ρ) :=UρU†. (2.15)

For a quantum measurement {F1,F2, . . . ,Fk}, it can be viewed as the operation

F (ρ) :=
k

∑
i=1
|i〉〈i|⊗FiρF†

i (2.16)

(followed by a projective measurement on the first register). Namely, the output is a classical-
quantum (c-q) state. While the first register stores the measurement outcome, the second register
stores the corresponding post-measurement state.

2.2.2 Distance Measures for Quantum States and Operations
Many quantum states are difficult to prepare exactly. Similarly, many quantum operations are too
expensive to implement perfectly. Usually we are content with an approximation of these states
or operations. To evaluate the quality of the approximations, we need some distance measures for
quantum states and operations.

The trace distance between quantum states ρ1 and ρ2 is defined as

D(ρ,σ) :=
1
2
‖ρ−σ‖tr . (2.17)

This is a popular distance measure for quantum states. It has many nice properties, such as:

Lemma 1 (Triangle inequality). For any quantum states ρ, σ and τ, we have

D(ρ,σ)≤ D(ρ,τ)+D(τ,σ). (2.18)

1The Ei’s can be rectangular matrices. In this case, the output has a different dimension from the input.

CHAPTER 2. PRELIMINARIES 14

Lemma 2 (Contractivity under quantum operations [105]). For any quantum operation E and
states ρ, σ, we have

D(E(ρ1),E(ρ2))≤ D(ρ1,ρ2). (2.19)

In particular, if E =U is unitary, then we have

D(UρU†,UσU†) = D(ρ,σ). (2.20)

Since the partial trace is a special kind of quantum operation, Lemma 2 implies:

Corollary 3. For any quantum states ρAB and σAB on the joint system AB, we have

D(ρA,σA)≤ D(ρAB,σAB), (2.21)

where ρA, σA are the reduced states of ρAB, σAB on the system A, respectively.

Corollary 3 makes sense, since objects should become less distinguishable when only partial
information is available.

Finally, if two pure states are close with respect to the Euclidean distance, then they are also
close with respect to the trace distance:

Lemma 4. For any pure states |ϕ1〉 and |ϕ2〉, we have

D(|ϕ1〉〈ϕ1| , |ϕ2〉〈ϕ2|)≤ ‖|ϕ1〉− |ϕ2〉‖. (2.22)

Proof. Suppose 〈ϕ1|ϕ2〉 = eiγ · cosθ for some γ ∈ [0,2π] and θ ∈ [0,π/2]. Let |ϕ′2〉 = e−iγ |ϕ2〉.
Then we have 〈ϕ1|ϕ′2〉= cosθ≥ 0 and∥∥|ϕ1〉−

∣∣ϕ′2〉∥∥≤ ‖|ϕ1〉− |ϕ2〉‖ . (2.23)

So it is sufficient to prove that

D(|ϕ1〉〈ϕ1| , |ϕ2〉〈ϕ2|) = D(|ϕ1〉〈ϕ1| ,
∣∣ϕ′2〉〈ϕ′2∣∣)≤ ∥∥|ϕ1〉−

∣∣ϕ′2〉∥∥. (2.24)

Now let |ϕ±〉 be the normalized state proportional to |ϕ1〉± |ϕ′2〉 respectively. Then, we can
write |ϕ1〉 and |ϕ′2〉 as

|ϕ1〉= cos(θ/2) |ϕ+〉+ sin(θ/2) |ϕ−〉 ,
|ϕ′2〉= cos(θ/2) |ϕ+〉− sin(θ/2) |ϕ−〉 ,

(2.25)

where |ϕ+〉 and |ϕ−〉 are orthonormal. Then, by a direct calculation, one obtains

D(|ϕ1〉〈ϕ1| ,
∣∣ϕ′2〉〈ϕ′2∣∣) = sinθ≤ 2sin(θ/2) =

∥∥|ϕ1〉−
∣∣ϕ′2〉∥∥ , (2.26)

as desired.

CHAPTER 2. PRELIMINARIES 15

Now let us turn to the distance measure for quantum operations. For any quantum operations
E and F , let

D(E ,F) := max
ρ

D((E ⊗ I)(ρ) ,(F ⊗ I)(ρ)), (2.27)

where I is the identity operation on an ancilla system (of arbitrary dimension), and ρ can be any
state on the joint system. This is a well-defined function (if the original system has dimension d,
then the maximum can be achieved with an ancilla system of dimension d4 and some state ρ on
the joint system). It satisfies many nice properties, such as:

Lemma 5 (Robustness under system extension). For any quantum operations E and F , we have

D(E ⊗ I,F ⊗ I) = D(E ,F). (2.28)

Lemma 6 (Triangle inequality). For any quantum operations E1, E2 and E3, we have

D(E1,E3)≤ D(E1,E2)+D(E2,E3). (2.29)

Lemma 7 (Composability). For any quantum operations E , E ′, F and F ′, we have

D(E ◦F ,E ′ ◦F ′)≤ D(E ,E ′)+D(F ,F ′) (2.30)

Finally, if two unitary operations are close with respect to the metric induced by the spectral
norm, then they are also close with respect to the distance measure D:

Lemma 8. For any unitary operations U1 and U2, we have

D(U1,U2)≤ ‖U1−U2‖. (2.31)

Proof. By the convexity of trace norm (i.e. ‖pA+(1− p)B‖tr ≤ p‖A‖tr +(1− p)‖B‖tr), we can
see that the optimal ρ in Eq.(2.27) can be a pure state. Namely, there exists a pure state |ψ〉 on
some extended system such that

D(U1,U2) = D((U1⊗ I)(|ψ〉〈ψ|),(U2⊗ I)(|ψ〉〈ψ|)). (2.32)

Then, by Lemma 4, we have

D((U1⊗ I)(|ψ〉〈ψ|),(U2⊗ I)(|ψ〉〈ψ|)) ≤ ‖(U1⊗ I) |ψ〉− (U2⊗ I) |ψ〉‖
= ‖((U1−U2)⊗ I) |ψ〉‖ . (2.33)

Let W =U1−U2. Then we have

‖(W ⊗ I) |ψ〉‖2 = tr
(
WσW †)≤ ‖W‖2 , (2.34)

where σ is the reduced state of |ψ〉 on the first system. Combining Eq.(2.33) and Eq.(2.34) yields
the desired result.

CHAPTER 2. PRELIMINARIES 16

For any quantum operation E and integer k, let Ek be the k-repetition of E , i.e. Ek := E ◦E ◦
· · · ◦E , where the number of E’s on the right-hand side is k. Then Lemma 7 implies that

D(Ek,F k)≤ k ·D(E ,F). (2.35)

From now on, when we say that “a state ρ is prepared to accuracy ε”, it means that we ac-
tually prepare a state ρ′ satisfying D(ρ,ρ′) ≤ ε. Similarly, when we say that “an operation E
is implemented to accuracy ε”, it means that we actually implement an operation E ′ satisfying
D(E ,E ′)≤ ε. Lemma 7 implies that in order to implement the operation E = E1 ◦E2 ◦ · · · ◦Ek to
accuracy ε (where E1, E2, . . . , Ek are arbitrary quantum operations), it is sufficient to implement
each Ei to accuracy ε/k.

2.3 Quantum Computation

2.3.1 Quantum Circuits
Quantum algorithms are usually described by a quantum circuit that acts on some input qubits
and terminates with a measurement. A quantum circuit is a sequence of quantum gates (usually
chosen from a finite set) composed together. Each gate is a unitary operation that acts on a constant
number of qubits. For example, the Hadamard gate H, defined as

H =
1√
2

(
1 1
1 −1

)
. (2.36)

is an extremely useful one-qubit gate in quantum computation. Other important one-qubit gates
include the Pauli gates X , Y , Z and the π/8 gate T , which are given by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2.37)

and

T =

(
1 0
0 ei π

4

)
. (2.38)

Furthermore, the CNOT gate, defined as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.39)

is arguably the most important two-qubit gate in quantum computation. The size of a circuit is
defined as the number of gates in this circuit, and the time complexity of a quantum algorithm is
defined as the size of the circuit describing it.

CHAPTER 2. PRELIMINARIES 17

We say that a set of gates is (exactly) universal if any unitary operation (on any number of
qubits) can be implemented perfectly by a sequence of gates from this set. It is known that the
set of all one- and two-qubit gates is universal in this sense [61]. However, as far as the efficiency
is concerned, most unitary operations on n qubits can only be realized by an exponentially large
circuit [90]. In general, we are content with circuits that give good approximations of our desired
unitary operations. Therefore, we say that a set of gates is universal if any unitary operation on a
fixed number of qubits can be approximated to accuracy ε > 0 using a sequence of polylog(1/ε)
gates from this set. It turns out that there are finite sets of gates that are universal. For instance, the
gate set {H,T,CNOT} is universal in this sense.

One may wonder whether some universal gate sets are better than others. It turns out that the
answer is essentially no: for any two universal gate sets S1 and S2, any circuit of T gates from S1
can be implemented to accuracy ε > 0 by a circuit of T ·polylog(T/ε) gates from S2, and there is
an efficient classical algorithm for finding this circuit. This is a consequence of the Solovay-Kitaev
theorem [79, 88, 120].

Many quantum algorithms, such as Grover’s search [71] and Simon’s algorithm [118], are
described in the quantum query model, as shown in Figure 2.1. In this model, the input x is given
by an oracle Ox which is a unitary operation. Beginning in a fixed state (usually |00 . . .0〉), a
quantum algorithm alternates input-independent unitary operations and oracle queries. Finally,
it measures the first few qubits to obtain the output. The query complexity of this algorithm is
defined as the number of oracle queries it has made, and the time complexity of this algorithm
is defined as its query complexity plus the number of elementary gates needed to implement the
input-independent unitary operations 2.

Figure 2.1: The quantum query model. Beginning in a fixed state, a quantum algorithm alternates
input-independent unitary operations and oracle queries. For computing a Boolean function f :
{0,1}n→{0,1} on input x = x1x2 . . .xn, the oracle Ox is the unitary operation that maps | j,a,z〉 to∣∣ j,a⊕ x j,z

〉
, where j ∈ [n], a ∈ {0,1} and |z〉 describes the state of the working space.

Given any function f , there could be many quantum algorithms that compute it. The bounded-
error quantum query complexity of f , denoted by Q(f), is the minimum query complexity of any
quantum algorithm that calculates f with error probability at most 1/3. Quantum query complexity

2In other words, we assume that each oracle query takes a unit time. This is a common convention used in many
literatures.

CHAPTER 2. PRELIMINARIES 18

has been extensively studied during the past years, not only because it is easier to study than time
complexity, but also because it provides some insights to the power of quantum computation.
For example, the quantum component of Shor’s algorithm, period finding, is a quantum query
algorithm. Many tools, such as the polynomial method [18], adversary methods [6, 7, 17, 82, 121,
135], quantum walks [99, 125] and learning graphs [20], have been developed to prove lower and
upper bounds on quantum query complexity.

This dissertation presents several quantum algorithms that are both query-efficient and time-
efficient. Namely, these algorithms only make a few calls to the oracle, and they can efficiently
process the information obtained from the oracle (i.e. the unitary operations Vj’s in Fig. 2.1 can be
implemented using a polynomial number of local gates).

2.3.2 Useful Techniques
In the remainder of this chapter, we present some important algorithmic tools for quantum com-
putation, including phase estimation, amplitude amplification, amplitude estimation and quantum
walk. They will become the basic building blocks of our algorithms.

Phase Estimation

Phase estimation was introduced by Kitaev [87], who used it to give an alternative derivation of
Shor’s factoring algorithm. To date, it has found numerous applications in quantum computation
and information. This algorithm solves the following problem. Suppose a unitary operator U
has an eigenvector |v〉 3 with eigenvalue eiθ, where the value of θ is unknown. Phase estimation
allows us to estimate θ, given access to a copy of the state |v〉 and a procedure to implement the
controlled-U2 j

for suitable non-negative integers j.
Phase estimation uses two registers. The first register contains n qubits initially in the state

|00 . . .0〉. Here t is a parameter depending on the accuracy we want to achieve. The second
register begins with the state |v〉. This algorithm consists of two stages. The first stage begins by
applying the Hadamard transform on the first register, followed by application of controlled-U on
the second register, with U raised to successive power of two. The second stage is to apply the
inverse quantum Fourier transform on the first register. Fig. 2.2 demonstrates the quantum circuit
for phase estimation.

Let T = 2n. By a direct calculation, one can see that the final state of this procedure is given by

∣∣Ψpe
〉

:=
1
T

T−1

∑
j=0

eiT θ−1
ei(θ−2π j/T)−1

| j〉 |v〉 . (2.40)

If θ= 2πk/T for some k∈ {0,1, . . . ,T−1}, then the quantum Fourier transform will single out that
phase in binary expansion. Namely, the final state is |k〉 |v〉. Otherwise, there will be a probability
distribution clustered around the correct phase. For any ε > 0, by setting T = Θ(1/ε) (i.e. n =

3Without loss of generality, we assume thta |v〉 is normalized.

CHAPTER 2. PRELIMINARIES 19

Figure 2.2: Quantum circuit for phase estimation.

Θ(log(1/ε))), we can make sure that〈
Ψpe

∣∣Π(θ− ε,θ+ ε)
∣∣Ψpe

〉
≥ 2/3, (2.41)

where

Π(α,β) := (
bβT/(2π)c

∑
j=dαT/(2π)e

| j〉〈 j|)⊗ I. (2.42)

In other words, if we measure the first register of the final state in the standard basis, obtain the
outcome k′, and set θ′ = 2πk′/T , then we have

|θ−θ
′| ≤ ε (2.43)

with probability at least 2/3.
The above procedure has constant success probability. As pointed out by [104], we can concate-

nate r phase estimation circuits, and take the median of the r results. Then the failure probability
will drop exponentially in r. Thus, to raise the success probability to 1− δ for some small δ > 0,
we need to set r = O(log(1/δ)). To summarize, we obtain:

Lemma 9 (Phase Estimation [87, 104]). Suppose U is a unitary operation and |φ〉 is an eigenstate
of U with eigenvalue eiθ for some θ ∈ [0,2π). Let ε, δ > 0. Then there exists a quantum algorithm
A that uses a copy of |φ〉, O(log(1/δ)/ε) controlled applications of U and polylog(1/(εδ)) addi-
tional elementary gates, and produces an estimate θ′ of θ such that |θ−θ′| ≤ ε with probability at
least 1−δ.

To avoid confusion between ε and δ, we will call ε the precision (or accuracy) of phase estima-
tion, and call δ the error rate of phase estimation. Since the complexity of phase estimation is only
logarithmic in 1/δ, we will assume that phase estimation never fails throughout this dissertation.

CHAPTER 2. PRELIMINARIES 20

That is, we assume that phase estimation always outputs a θ′ satisfying |θ− θ′| ≤ ε. Although
this is not really true, taking the error rate δ into account only increases the complexities of our
algorithms by some poly-logarithmic factors (which will be ignored).

Amplitude Amplification

Amplitude amplification [35] was a generalization of Grover’s search. It solves the following
problem. Consider a Boolean function f : X → {0,1} that partitions the set X between its good
and bad elements, where x∈ X is good if f (x) = 1 and bad otherwise. Suppose we have a quantum
procedure A such that

A |0〉=√p |ψ1〉+
√

1− p |ψ2〉 , (2.44)

where |ψ1〉 = ∑x∈ f−1(1)αx |x〉 and |ψ2〉 = ∑x∈ f−1(0)βx |x〉 are normalized, and p > 0. Then, if we
measure A |0〉 in the basis {|x〉 : x∈X}, then with probability p we find a good element x∈ f−1(1).
Classically, in order to raise this probability to Ω(1), we need O(1/p) repetitions of this procedure.
Surprisingly, amplitude amplification allows us to achieve this goal by repeating A and A−1 only
O
(
1/
√

p
)

times. In fact, it even preserves the two vectors |ψ1〉 and |ψ2〉 and only changes their
amplitudes. Thus, it enables us to obtain the state |ψ1〉 with constant probability.

The amplification process is realized by repeatedly applying the following unitary operation on
the state A |0〉:

Q =−AU0A−1U f , (2.45)

where U f : |x〉 → (−1) f (x) |x〉, and U0 = I − 2 |0〉〈0|. Geometrically, Q can be viewed as the
composition of two reflections, one about span

(
|x〉 : x ∈ f−1(0)

)
, and another about A |0〉. Let

θ ∈ (0,π/2] be such that
sinθ =

√
p. (2.46)

Then Q can be viewed as a rotation of angle 2θ in the two-dimensional space spanned by {|ψ1〉 , |ψ0〉},
as shown in Fig. 2.3.

Therefore, we have

QkA |0〉= sin((2k+1)θ) |ψ1〉+ cos((2k+1)θ) |ψ0〉 . (2.47)

By setting k ≈ π

4
√

p , we can make the amplitude of |ψ1〉 close to 1. Then, measuring this state in

the basis {|x〉 : x ∈ X} would yield a good element x ∈ f−1(1) with high probability.
Note that the above procedure assumes that we know on the value of p ahead of time. In

fact, even if the value of p is unknown, we can use the technique of exponential searching [35] to
amplify the amplitude of |ψ1〉 to close to 1 by repeating A and A−1 only O

(
1/
√

p
)

times. The cost
is that we need to append some “junk” state (which stores the random numbers and other auxiliary
information). Namely, the final state would be

√
q |ψ1〉 |φ1〉+

√
1−q |ψ0〉 |φ0〉 , (2.48)

where q≥ 2/3, and |φ1〉, |φ0〉 are normalized states. To summarize, we have:

CHAPTER 2. PRELIMINARIES 21

Figure 2.3: Geometrical illustration of amplitude amplification. The effect of Q is to rotate the
original vector by an angle 2θ.

Lemma 10 (Amplitude Amplification [35]). Suppose A is a quantum algorithm such that A |0〉=√
p |1〉 |ψ1〉+

√
1− p |0〉 |ψ0〉 where p > 0 and |ψ1〉, |ψ0〉 are some normalized states. Then there

exists a quantum algorithm A ′ such that A ′ uses O
(
1/
√

p
)

applications of A and A−1, and
A ′ |0〉=√q |1〉 |ψ1〉 |φ1〉+

√
1−q |0〉 |ψ0〉 |φ0〉 where q≥ 2/3 and |φ1〉, |φ0〉 are some normalized

states.

Lemma 10 implies that:

Corollary 11. Suppose A is a quantum algorithm such that A |0〉=√p |1〉 |ψ1〉+
√

1− p |0〉 |ψ0〉
where p > 0 and |ψ1〉, |ψ0〉 are some normalized states. Let δ > 0. Then there exists a quantum al-
gorithm A ′ that uses O

(
log(1/δ)/

√
p
)

applications of A and A−1, and A ′ |0〉=√q |1〉 |ψ1〉 |ϕ1〉+√
1−q |0〉 |ψ0〉 |ϕ0〉 where q≥ 1−δ and |ϕ1〉, |ϕ0〉 are some normalized states.

Proof. We run k = O(log(1/δ)) instances of the algorithm in Lemma 10 in parallel. Then by
Lemma 10, we obtain the state(√

r |1〉 |ψ1〉 |φ1〉+
√

1− r |0〉 |ψ0〉 |φ0〉
)⊗k

= ∑
i∈{0,1}k

√
r|i|(1− r)k−|i| |i1〉 |ψi1〉 |φi1〉 . . . |ik〉 |ψik〉 |φik〉 ,

(2.49)
where r ≥ 2/3, i = (i1, . . . , ik), and |i| = ∑

k
j=1 i j is the Hamming weight of i. Note that on the

right-hand side of this equation, there exists only one term that does not contain |ψ1〉 (in any
position), which is the one corresponding to i = (0, . . . ,0), and its amplitude is

√
(1− r)k ≤

√
δ

by our choice of k. Now we perform on the state the following unitary operation: On the state
|i1〉 |ψi1〉 |φi1〉 . . . |ik〉 |ψik〉 |φik〉, it finds the smallest j such that i j = 1, and then, unless such j does
not exist, it swaps |i1〉 with

∣∣i j
〉
, and swaps |ψi1〉 with

∣∣ψi j

〉
. Then, for each term except the one

corresponding to i=(0, . . . ,0), the first two registers after this operation will be in the state |1〉 |ψ1〉.

CHAPTER 2. PRELIMINARIES 22

Thus, the whole state after this operation can be written as
√

q |1〉 |ψ1〉 |ϕ1〉+
√

1−q |0〉 |ψ0〉 |ϕ0〉
for some q ≥ 1− δ and normalized states |ϕ1〉, |ϕ0〉 (which are the states of the third to the last
registers, conditioned on the first register being 1, 0 respectively).

Amplitude Estimation

Amplitude estimation [35] is closely related to amplitude amplification. It solves the following
problem. Recall the quantum procedure A satisfying Eq.(2.44). Amplitude estimation allows us to
approximate p quadratically faster than classical methods. It is based on the observation that

A |0〉= −i√
2

(
eiθ |Ψ+〉− e−iθ |Ψ−〉

)
, (2.50)

where θ= arcsin
√

p, and |Ψ±〉 are the (normalized) eigenvectors of Q=−AU0A−1U f with eigen-
values e±i2θ. This suggests that we can estimate θ by running phase estimation on the unitary oper-
ator Q starting with the state A |0〉, and then infer p from θ. Indeed, this is exactly how amplitude
estimation works. By a direct calculation, one can obtain:

Lemma 12 (Amplitude Estimation [35], original version). Suppose A is a quantum algorithm such
that A |0〉 =√p |1〉 |ψ1〉+

√
1− p |0〉 |ψ0〉 where p ∈ (0,1) is unknown, and |ψ1〉, |ψ0〉 are some

normalized states. Let M be any power of 2. Then there exists a quantum algorithm A ′ that uses
O(M) applications of A and A−1, and outputs p′ (0≤ p′ ≤ 1) such that

|p′− p| ≤ 2π

√
p(1− p)

M
+

π2

M2 (2.51)

with probability at least 8/π2.

It follows immediately from Lemma 12 that:

Corollary 13 (Amplitude Estimation, multiplicative version). Suppose A is a quantum algo-
rithm such that A |0〉 = √p |1〉 |ψ1〉+

√
1− p |0〉 |ψ0〉 where p ∈ (0,1) is unknown, and |ψ1〉,

|ψ0〉 are some normalized states. Let ε > 0. Then there exists a quantum algorithm A ′ that uses
O
(
1/(ε
√

p)
)

applications of A and A−1, and A ′ produces p′ ∈ (0,1) such that |p− p′| ≤ εp with
probability at least 2/3.

Corollary 14 (Amplitude Estimation, additive version). Suppose A is a quantum algorithm such
that A |0〉 =√p |1〉 |ψ1〉+

√
1− p |0〉 |ψ0〉 where p ∈ (0,1) is unknown, and |ψ1〉, |ψ0〉 are some

normalized states. Let ε > 0. Then there exists a quantum algorithm A ′ that uses O(1/ε) appli-
cations of A and A−1, and A ′ produces p′ ∈ (0,1) such that |p− p′| ≤ ε with probability at least
2/3.

CHAPTER 2. PRELIMINARIES 23

Quantum Walks

Quantum walk [66, 130] is the quantum analogue of classical random walk. Based on the work
of Ambainis [8] and Szegedy [125], Magniez, Nayak, Roland and Santha [99] proposed a general
approach to quantize classical Markov chains and developed a formalism of quantum-walk-based
search algorithms. Here we briefly review their results.

Let P = (px,y) be the transition matrix of any irreducible Markov chain on a finite space X .
Let P∗ = (p∗x,y) be the time-reversed Markov chain of P. That is, we have πx px,y = πy p∗y,x, where
π = (πx) is the (unique) stationary distribution of P.

Let A = span(|x〉 |px〉 : x ∈ X) and B = span
(∣∣p∗y〉 |y〉 : y ∈ X

)
be subspaces of H = CX×X ,

where
|px〉= ∑y∈X

√px,y |y〉 ,∣∣p∗y〉= ∑x∈X
√

p∗y,x |x〉 .
(2.52)

Definition 15 (Quantum walk). Let Ref(A) and Ref(B) be the reflections about A and B , respec-
tively. The unitary operation W (P) defined on H by

W (P) = Ref(B) ·Ref(A) (2.53)

is called the quantum walk based on the classical chain P.

Magniez et al.’s search algorithm is similar to amplitude amplification, in the sense that it also
works by alternating two reflections. But it approximately implements one of the reflections by
running phase estimation on the quantum walk operator W (P). Formally, they proved that:

Lemma 16 ([99]). Let δ > 0 be the eigenvalue gap of a reversible, ergodic Markov chain P on a
finite space X. Let M ⊆ X be the set of marked elements, and let ε > 0 be a lower bound on the
probability that an element chosen from the stationary distribution of P is marked whenever M is
non-empty. Then, there is a quantum algorithm that with high probability, determines if M is empty

or finds an element of M, with cost of order S+
1√
ε

(
1√
δ

U +C
)

, where

• S is the cost of constructing ∑x∈X
√

πx |x〉 |0〉 from |0〉 |0〉,

• U is the cost of realizing any of the unitary operations

|x〉 |0〉 → |x〉 |px〉 ,
|0〉 |y〉 →

∣∣p∗y〉 |y〉 (2.54)

and their inverses, where |px〉 and
∣∣p∗y〉 are defined as in Eq.(2.52).

• C is the cost of realizing the conditional phase flip

|x〉 |y〉 →

{
−|x〉 |y〉 , if x ∈M;
|x〉 |y〉 , otherwise.

. (2.55)

CHAPTER 2. PRELIMINARIES 24

The cost in Lemma 16 can be queries, time or space. Note that if we use classical random
walks to search an element of M, the cost would be S′+ 1

ε
(1

δ
U ′+C′), where S′, U ′ and C′ are the

classical counterpart of S, U and C. Therefore, quantum walks could provide a nearly quadratic
speedup over Markov-chain-based algorithms (provided that the update cost dominates the total
cost).

In this dissertation, however, we will not use quantum walks to do searching. Instead, we are
mainly interested in the eigenvalues and eigenvectors of the quantum walk operator W (P), and will
run phase estimation on this operator to achieve certain goals (e.g. estimating effective resistances).
For our work, Szegedy’s spectral lemma is very important:

Lemma 17 (Spectral lemma [125]). Let A and B be complex matrices such that they have the
same number of rows and each of them has orthonormal columns. Let D(A,B) = A†B, and let
U(A,B) = RefB ·RefA. Then all the singular values of D(A,B) are at most 1. Let cosθ1, cosθ2, . . . ,
cosθl be the singular values of D(A,B) that lie in the open interval (0,1) counted with multiplicity.
Then the following is a complete list of the eigenvalues of U(A,B):

1. The +1 eigenspace of U(A,B) is (C (A)∩C (B))⊕
(

C (A)⊥∩C (B)⊥
)

;

2. The −1 eigenspace of U(A,B) is
(

C (A)∩C (B)⊥
)
⊕
(

C (A)⊥∩C (B)
)

;

3. The other eigenvalues of U(A,B) are e2iθ1 ,e−2iθ1,e2iθ2 ,e−2iθ2 , . . . ,e2iθl ,e−2iθl counted with
multiplicity.

This lemma builds a connection between the singular values of D(A,B) and the eigenvalues
of U(A,B) (which is actually more general than W (P)). It is significant, because it allows us to
map a (possibly rectangular) non-unitary matrix D(A,B) to a unitary matrix U(A,B), and hence we
can study the properties of D(A,B) by studying the properties of U(A,B) (which can be achieved
by using many quantum tools such as phase estimation)! This fact is crucial for the algorithm in
Chapter 3 for detecting trees, and the algorithm in Section 4.6 for estimating effective resistances.

25

Chapter 3

Quantum Algorithm for Tree Detection

3.1 Introduction
Given two graphs G and H, where G has more vertices than H, it is natural to ask whether G con-
tains H as a subgraph. This problem, known as the subgraph isomorphism problem, has numerous
applications in cheminformatics [16], circuit design [106] and software engineering [80]. If G and
H are both given as input, then this problem is NP-complete. So it is unlikely to be solvable in
polynomial time. However, if H is fixed and only G is given as input, then this problem, usually
called the H-containment problem, can be solved efficiently. Specifically, if H contains k vertices,
then the H-containment problem can be solved in O

(
nk) classical time, where n is the number of

vertices in G. In fact, by exploiting H’s structure cleverly, we can usually do much better. For
example, if H is a tree, then the H-containment problem can be solved in O(n2) classical time [5]
(assuming G is given by the n×n adjacency matrix).

Recently, there has been rising interest in developing fast quantum algorithms for the subgraph
containment problem. In particular, the problem of triangle finding has received the most attention,
perhaps due to its simplicity and its application to boolean matrix multiplication. Magniez, Santha
and Szegedy [100] first gave two quantum algorithms for this problem, one based on Grover’s
search and the other based on quantum walk. They achieved Õ

(
n13/10

)
quantum query complexity

for this problem. Later, Belovs [20] used learning graphs to improve the quantum query complexity
of triangle finding to O

(
n35/27

)
. His result was subsequently improved to O

(
n9/7

)
by Lee,

Magniez and Santha [93]. This result was later recovered by Jeffery, Kothari and Magniez using
nested quantum walks [83].

There has been also study on the quantum complexity of detecting other subgraphs. Childs and
Kothari [51] studied the quantum query complexity of detecting paths, claws, cycles and bipartite
subgraphs, etc. Later, Belovs and Reichardt [24] showed that detecting paths and subdivided
stars can be done in O(n) quantum queries and Õ(n) quantum time. Meanwhile, Lee, Magniez,
Santha [92] and Zhu [136] gave some upper bounds on the quantum query complexity of detecting
arbitrary subgraphs. Their results were subsequently recovered by Jeffery, Kothari and Magniez
using nested quantum walks [83]. It is worth mentioning that most of the aforementioned quantum

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 26

algorithms for subgraph detection are only query-efficient but not time-efficient.
In this chapter, we present a time-efficient span-program-based quantum algorithm for the fol-

lowing variant of tree containment problem:

Definition 18 (Subgraph/not-a-minor Problem). Let T = (VT ,ET) be a fixed tree. Given the n×n
adjacency matrix of a graph G = (VG,EG), we need to decide whether G contains T as a subgraph,
or G does not contain T as a minor, under the promise that one of these cases holds. This problem
is called the subgraph/not-a-minor problem for T .

We show that this problem can be solved by a bounded-error quantum algorithm with O(n)
query complexity and Õ(n) time complexity. Meanwhile, by a reduction from the unstructured
search, one can show that this problem has Ω(n) quantum query complexity (see Proposition 4 of
[24]). Therefore, our algorithm has optimal query complexity and nearly-optimal time complexity
(tight up to poly-logarithmic factors).

Our work is closely related to the span program for undirected st-connectivity [24]. That span
program works as follows. In order to test whether s and t are connected in an undirected graph
G = (V,E), we build a span program with target vector |s〉− |t〉 and input vectors |u〉− |v〉 for any
u,v ∈V . The input vector |u〉− |v〉 is available if and only if (u,v) ∈ E. Then the target vector lies
in the span of the available input vectors if and only if there is a path connecting s and t in G. In
other words, the basic idea of this span program is to run a flow from s to t in G.

We utilize the span program for undirected st-connectivity as follows. Suppose a tree T has
root r and leaves f1, f2, . . . , fk. Then, in order to test whether G contains T as a subgraph, we
check whether G contains k paths such that: (1) the j-th path resembles the path from r to f j in T ;
(2) these k paths overlap in certain way so that their union looks like T . To accomplish this goal,
we introduce a technique named “parallel flows”. Namely, we run k flows in parallel such that
the j-th flow corresponds to the path from r to f j, and let these flows interfere somehow to ensure
that they meet the overlapping constraints. From an algebraic point of view, our span program is
the “direct sum” of k span programs for undirected st-connectivity, but these k span-programs are
also correlated somehow so that their solutions (i.e. the st-paths) overlap in desired way. This
parallel-flow technique might be useful somewhere else (see Section 3.5).

For analyzing the witness size of our span program, we also prove a theorem (i.e. Claim
26) about the structure of graphs that do not contain certain tree as a minor, which might be of
independent interest.

3.2 Span Program and Quantum Query Complexity
Span program is a linear-algebraic model of computation defined as follows:

Definition 19 (Span program [86]). A span program P is a 6-tuple (n,d, |τ〉 ,{
∣∣v j
〉

: j ∈ [m]}, I f ree,

{Ii,b : i ∈ [n],b ∈ {0,1}}), where |τ〉 ∈ Rd ,
∣∣v j
〉
∈ Rd for any j ∈ [m], and I f ree∪

(
∪n

i=1Ii,xi

)
= I ,

[m]. |τ〉 is called is the target vector, and each
∣∣v j
〉

is called an input vector. For any j ∈ I f ree, we

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 27

say that
∣∣v j
〉

is a free input vector; for any j ∈ Ii,b for some i ∈ [n] and b ∈ {0,1}, we say that
∣∣v j
〉

is labelled by (i,b).
To P corresponds a boolean function fP : {0,1}n→{0,1} defined as follows:

for x = x1,x2, . . .xn ∈ {0,1}n,

fP (x) =

{
1, if τ ∈ span

(∣∣v j
〉

: j ∈ I f ree∪
(
∪n

i=1Ii,xi

))
,

0, otherwise.
(3.1)

Namely, on input x, only the
∣∣v j
〉
’s with j ∈ I f ree∪

(
∪n

i=1Ii,xi

)
are available, and fP(x) = 1 if and

only if the target vector lies in the span of the available input vectors.

For convenience, we say that P accepts x if fP (x) = 1, or rejects x if fP (x) = 0.
The complexity of a span program is measured by its witness size defined as follows:

Definition 20 (Witness size [111]). Let P = (n,d, |τ〉 ,{
∣∣v j
〉

: j ∈ [m]}, I f ree,{Ii,b : i ∈ [n],b ∈
{0,1}}) be a span program. Let I = I f ree ∪

(
∪n

i=1∪b∈{0,1} Ii,b
)

and let A = ∑ j∈I
∣∣v j〉〈 j

∣∣. Then,

for any x ∈ {0,1}n, let I(x) = I f ree∪
(
∪n

j=1I j,x j

)
, Ī(x) = ∪n

j=1I j,x j . Then, let Π(x) = ∑ j∈I(x) | j〉〈 j|,
Π̄(x) = ∑ j∈Ī(x) | j〉〈 j|. The witness size of P on x, denoted by wsize(P ,x), is defined as follows:

• If fP(x) = 1, then |τ〉 ∈ C (A(Π(x))), so there exists |w〉 ∈Rm satisfying AΠ(x) |w〉= |τ〉. Any
such |w〉 is a (positive) witness for x, and its size is defined as ‖Π̄(x) |w〉‖2. Then wsize(P,x)
is defined as the minimal size among all such witnesses.

• If fP(x) = 0, then |τ〉 6∈ C (A(Π(x))), so there exists |w′〉 ∈ Rd satisfying 〈τ|w′〉 = 1 and
Π(x)A† |w′〉 = 0. Any such |w′〉 is a (negative) witness for x, and its size is defined as
‖A† |w′〉‖2. Then wsize(P,x) is defined as the minimal size among all such witnesses.

For any D ⊆ {0,1}n and b ∈ {0,1}, let

wsizeb(P ,D) = max
x∈D: fP(x)=b

wsize(P,x). (3.2)

Then the witness size of P over domain D is defined as

wsize(P ,D) =
√

wsize0(P,D)wsize1(P,D). (3.3)

Surprisingly, for any (partial) boolean function, its least span program witness size is within a
constant factor of its bounded-error quantum query complexity:

Theorem 21 ([111, 113]). For any function f : D → {0,1} where D ⊆ {0,1}n, let Q(f) be the
bounded-error quantum query complexity of f . Then

Q(f) = Θ

(
inf

P : fP |D= f
wsize(P ,D)

)
, (3.4)

where the infimum is over span programs P that compute a function agreeing with f on D . More-
over, this infimum is achieved.

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 28

In particular, a span program with small witness size can be converted into a quantum algorithm
with small query complexity:

Corollary 22. For any function f : D → {0,1} where D ⊆ {0,1}n, if P is a span program com-
puting a function agreeing with f on D , then there exists a bounded-error quantum algorithm that
evaluates f with O(wsize(P ,D)) queries.

An Example. Consider the undirected st-connectivity problem. Given a graph G = (V,E) and two
vertices s, t ∈V , we need to decide whether there is a path connecting s and t. We build a span pro-
gram P for this problem as follows. The vectors of P are from the space H := span({|v〉 : v ∈V}).
The target vector is |(s, t)〉 := |s〉− |t〉. The input vectors are of the form |(u,v)〉 := |u〉− |v〉, for
any u,v ∈V . The input vector |(u,v)〉 is available on G if and only if (u,v) ∈ E. One can easily see
that the target vector lies in the span of available input vectors if and only if s and t are connected
in G.

Now let us analyze the witness size of this span program. We need to consider its positive and
negative cases separately:

• If s and t are connected by a path of length d, say, v0 := s→ v1→ v2→···→ vd−1→ vd := t,
then we can write the target vector |(s, t)〉 as

|(s, t)〉=
d−1

∑
j=0

(∣∣(v j,v j+1)
〉)

, (3.5)

where each
∣∣(v j,v j+1)

〉
is an available input vector. This implies that the positive witness

size of P is at most d = O(n).

• Otherwise, s and t are in different connected components of G. Let S ⊂ V be the vertex set
of the connected component containing s. Consider the vector∣∣w′〉 := ∑

v∈S
|v〉 . (3.6)

We claim that |w′〉 is a negative witness. To see this, note that 〈(s, t)|w′〉 = 1, since s ∈ S
and t 6∈ S. Moreover, for any available input vector |(u,v)〉, u and v must be in the same
connected component of G. This means that either u,v ∈ S or u,v 6∈ S. In both cases, we
have 〈(u,v)|w′〉= 0.

To analyze the negative witness size, we note that if an input vector |(u,v)〉 is not orthogonal
to |w′〉, then we must have u ∈ S, v 6∈ S, or vice versa. This implies that |〈(u,v)|w′〉| = 1.
Since there are at most O

(
n2) such input vectors, the negative witness size of P is at most

O
(
n2).

Combining the positive and negative cases, we know that the witness size of P is O
(

n3/2
)

. So

by Corollary 22, the undirected st-connectivity problem has quantum query complexity O
(

n3/2
)

(in fact, this problem has quantum time complexity Õ
(

n3/2
)

, as shown in [24]).

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 29

3.3 Span Program for Tree Detection
In this section, we build a span program for the subgraph/not-a-minor problem for any tree, and
prove that this span program has O(n) witness size. Then it follows from Corollary 22 that this
problem has O(n) quantum query complexity.

The following notation will be useful. For any tree T = (VT ,ET), let VT,i and VT,l be the
set of internal nodes and leaves of T respectively. Also, let r be denote the root of T . For any
x ∈ VT , let C(x) be the set of x’s children, and let T x be the subtree of T rooted at x, and let V x

T
be the set of nodes in T x, and let V x

T,i, V x
T,l be the set of internal and leaf nodes in T x respectively.

Furthermore, let s and t be two special nodes not present in T . Let V s
T,l = V t

T,l = VT,l . Then, for
any x,y ∈ VT ∪{s, t}, let Sx,y = V x

T,l ∩V y
T,l . We say that x,y ∈ VT ∪{s, t} are adjacent (denoted by

x ∼ y) if (x,y) ∈ ET or {x,y}= {s, t} or {x,y}= {s,r} or {x,y}= {t, f} for some f ∈VT,l . Then
for any x ∈ VT ∪{s, t} and f ∈ V x

T,l , let M(x, f) = {y ∈ VT : x ∼ y, f ∈ Sx,y}. It is easy to check
that |M(x, f)|= 2.

For any graph G = (VG,EG) and U ⊆VG, let G|U , (U,EG|U) be the induced subgraph of G on
the vertex set U . Namely, for any u,v ∈U , (u,v) ∈ EG|U if and only if (u,v) ∈ EG. Furthermore,
for any subset E of EG, we use E(G) to denote the graph obtained by contracting the edges in
E . Note that E(G) is well-defined, because the final graph is independent of the order of the edge
contractions. In addition, if the vertices v1,v2, . . . ,vk ∈VG are combined together in E(G) (and no
other vertex is combined with them), then we denote this new vertex as w , {v1, . . . ,vk} and we
say that w contains v1, . . . , vk. Finally, for any u ∈VG we say that u is involved in E if there exists
v ∈VG such that (u,v) ∈ E .

The main result in this section is:

Theorem 23. Let T = (VT ,ET) be an arbitrary tree. Then there exists a bounded-error quantum
algorithm for the subgraph/not-a-minor problem for T with O(n) query complexity.

Proof. Let G = (VG,EG) be a graph with n vertices. We need to decide whether G contains T as a
subgraph or G does not contain T as a minor, under the promise that one of the cases holds.

Color coding. We use the color coding technique from [5]. Namely, we map each vertex u∈VG to
a uniformly random node c(u)∈VT , and the vertices of G are colored independently. Then, we dis-
card all the “badly” colored edges, i.e. we remove any edge (u,v)∈ EG such that (c(u),c(v)) 6∈ ET .
Let c : VG→VT be a random coloring, and let Gc = (VG,EGc) be the colored graph corresponding
to c 1.

We say that Gc contains a correctly colored T -subgraph if if there is an injection ι : VT → VG
such that: (1) c◦ ι is the identity, i.e. c(ι(a)) = a for any a∈VT ; (2) for any x,y∈VT , if (x,y)∈ ET ,
then (ι(x), ι(y)) ∈ EGc .

We will construct a span program that accepts if Gc contains a correctly colored T -subgraph,
and rejects if Gc does not contain T as a minor. Note that if G contains T as a subgraph, then this

1We can determine whether an edge is present in Gc or not by querying the presence of this edge in G and using
the information about c.

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 30

subgraph is colored correctly with probability at least |VT |−|VT | = Ω(1). So Gc contains T as a
subgraph with constant probability. On the other hand, if G does not contain T as a minor, then Gc
does not contain T as a minor either. Thus, evaluating our span program for a constant number of
independent colorings would suffice to detect T with probability at least 2/3.

Span program. Our span program P is defined over the |VT,l|(n+2)-dimensional space spanned
by the vectors

{|u〉⊗ | f 〉 : u ∈ {s, t}∪VG, f ∈VT,l}, (3.7)

where 〈u|v〉= δu,v, for any u,v ∈ {s, t}∪VG, and 〈 f |g〉= δ f ,g, for any f ,g ∈VT,l .
The target vector of P is

|τ〉, (|s〉− |t〉)⊗

(
∑

f∈VT,l

| f 〉

)
. (3.8)

The input vectors of P include the following ones:

• For any u ∈ c−1(r), there is a free input vector

|(s,u)〉, (|s〉− |u〉)⊗

(
∑

f∈VT,l

| f 〉

)
. (3.9)

• For any f ∈VT,l and u ∈ c−1(f), there is a free input vector

|(u, t)〉, (|u〉− |t〉)⊗| f 〉). (3.10)

• For any x ∈VT,i, y ∈C(x), u ∈ c−1(x) and v ∈ c−1(y), there is an input vector

|(u,v)〉, (|u〉− |v〉)⊗

 ∑
f∈V y

T,l

| f 〉

 , (3.11)

and this input vector is available if and only if (u,v) ∈ EGc .

Here is a more compact way to describe these input vectors. We add two special vertices s and
t to Gc, and color s, t as themselves, i.e. c(s) = s and c(t) = t. Furthermore, we connect s to the
vertices in c−1(r), and connect t to the vertices in c−1(f) for any f ∈VT,l . Let G′c be this modified
graph. For any x ∈ VT ∪ {s, t}, we call c−1(x) a block. Then G′c contains only edges between
adjacent blocks. Namely, c−1(x) and c−1(y) are adjacent if and only if x and y are adjacent, i.e.
x∼ y. Then, for any u,v in adjacent blocks, we have an input vector

|(u,v)〉= (|u〉− |v〉)⊗

(
∑

f∈S(c(u),c(v))
| f 〉

)
, (3.12)

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 31

and this input vector is available if and only if the edge (u,v) is present in G′c.

An example. Let T be the complete 2-level binary tree, and let G be a 12-vertex graph shown in
Fig.3.3. Let c : VG→ VT be a coloring defined as c(u1) = c(u2) = r, c(u3) = c(u4) = d1, c(u5) =
c(u6) = d2, c(u7) = f1, c(u8) = c(u9) = f2, c(u10) = c(u11) = f3, c(u12) = f4. Then, after removing
the badly colored edges (such as (u2,u8)), the colored graph Gc is shown in Fig.3.3.

Figure 3.1: An example of coloring coding.

Then the span program P is defined as follows:

• Target vector: (|s〉− |t〉)⊗ (∑ j∈[4]
∣∣ f j
〉
);

• Free input vectors:

– (|s〉− |ui〉)⊗ (∑ j∈[4]
∣∣ f j
〉
), for i ∈ [2];

– (
∣∣u j
〉
−|t〉)⊗

∣∣ fχ(j)
〉
, for j ∈ {7,8, . . . ,12}, where χ(7) = 1, χ(8) = χ(9) = 2, χ(10) =

χ(11) = 3, χ(12) = 4;

• Other input vectors:

– (|ui〉−
∣∣u j
〉
)⊗ (| f1〉+ | f2〉) for i ∈ {1,2} and j ∈ {3,4};

– (|ui〉−
∣∣u j
〉
)⊗ (| f3〉+ | f4〉) for i ∈ {1,2} and j ∈ {5,6};

– (|ui〉− |u7〉)⊗| f1〉 for i ∈ {3,4};
– (|ui〉−

∣∣u j
〉
)⊗| f2〉 for i ∈ {3,4} and j ∈ {8,9};

– (|ui〉−
∣∣u j
〉
)⊗| f3〉 for i ∈ {5,6} and j ∈ {10,11};

– (|ui〉− |u12〉)⊗| f4〉 for i ∈ {5,6}.

Witness size. Next, we will show that our span program P indeed solves the subgraph/not-a-minor
problem for T , and along the way we also obtain upper bounds on the positive and negative witness

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 32

sizes of P . We will consider the positive and negative cases separately.

Positive case. Let us first consider the positive case, i.e. Gc contains T as a subgraph.

Lemma 24. Suppose Gc contains T as a subgraph. Then P accepts Gc. Moreover, the witness size
of P on Gc is O(1).

Proof. Suppose Gc contains T as a subgraph. Then there exists an injection ι : VT → VG such
that, for any a ∈ VT,i and b ∈ C(a), (ι(a), ι(b)) ∈ EGc and hence the input vector |(ι(a), ι(b))〉 is
available. Thus, the target vector |τ〉 can be written as

|τ〉= |(s, ι(r))〉+ ∑
a∈VT,i

∑
b∈C(a)

|(ι(a), ι(b))〉+ ∑
f∈VT,l

|(ι(f), t)〉. (3.13)

So P accepts Gc. Furthermore, the witness size of P on Gc is |ET | = O(1), since T has constant
size.

For example, consider the T and Gc in Fig.3.3. Gc contains T as a subgraph, and P accepts Gc.
The solution is

|τ〉 = |(s,u1)〉+ |(u1,u3)〉+ |(u1,u6)〉+ |(u3,u7)〉+ |(u3,u9)〉+ |(u6,u11)〉+ |(u6,u12)〉
+ |(u7, t)〉+ |(u9, t)〉+ |(u11, t)〉+ |(u12, t)〉 .

(3.14)
This solution can be graphically represented by four “parallel” flows from s to t shown in Fig.3.2.

Figure 3.2: A graphical representation of the solution to the span program P in the positive case.
For each edge used by the flows, the coefficient for the corresponding input vector is +1. The
coefficient for any other input vectors is 0.

Negative case. Now let us consider the negative case, i.e. Gc does not contain T as a minor.
But first, let us explain why we do not just consider the case Gc does not contain T as a

subgraph. The problem is that the span program P fails to solve this problem in general. Namely,

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 33

Claim 25. There exists some Gc which does not contain T as a subgraph but P accepts it.

Proof. For example, consider the T and Gc in Fig.3.3. Here T is the complete 2-level binary tree,
and Gc is a 12-vertex graph shown in Fig.3.3. Gc does not contain T as a subgraph, but P accepts
Gc. The solution is

|τ〉 = |(s,u1)〉− |(s,u2)〉+ |(s,u3)〉+ |(u1,u5)〉+ |(u1,u6)〉− |(u2,u6)〉− |(u2,u6)〉+ |(u3,u7)〉
+ |(u3,u8)〉+ |(u5,u9)〉+ |(u5,u10)〉+ |(u8,u11)〉+ |(u8,u12)〉+ |(u9, t)〉+ |(u10, t)〉
+ |(u11, t)〉+ |(u12, t)〉 .

(3.15)
This solution can be graphically represented as four flows from s to t shown in Fig.3.3. Notice
that these flows move back and forth between adjacent “layers”, where each layer is colored by the
nodes at the same depth of T . Also, note that if we contract the edges (u1,u6), (u2,u6), (u2,u7)
and (u3,u7) of Gc, we would get a new graph isomorphic to T . In other words, Gc contains T as a
minor.

Figure 3.3: An example showing that the span program P does not solve the tree containment prob-
lem in general. Here Gc does not contain T as a subgraph, but P accepts it. The solution is graph-
ically illustrated by Fig.3.3. For each edge used by the flows, the coefficient for the corresponding
input vector is +1 or −1, depending on whether the flow moves towards t or s, respectively. The
coefficient for any other input vector is 0.

We can directly prove that if P accepts Gc, then Gc must contain T as a minor. But here we
prefer to use a different approach. We will assume that Gc does not contain T as a minor. Then,
we will show that P must reject Gc by explicitly giving a negative witness for Gc. The advantage
of this approach is that we not only get to know that P accepts only certain graphs that contain T
as a minor, but also obtain an upper bound on the negative witness size of P .

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 34

Now let us return to the negative case, i.e. Gc does not contain T as a minor. For convenience,
we introduce the following notation. For any (a,b) ∈ ET and u ∈ c−1(a), let Na→b(u) = {v ∈
c−1(b) : (u,v) ∈ EGc}. For any U ⊆ c−1(a), let Na→b(U) = ∪u∈U Na→b(u). For any a ∈ VT , let
Y a

c = c−1(V a
T) = ∪b∈V a

T
c−1(b) and let Ga

c = Gc|Y a
c .

We claim that Gc must satisfy the following property:

Claim 26. For any graph G = (VG,EG) and coloring c : VG → VT , if Gc = (VG,EGc) does not
contain T as a minor, then there exist {Va ⊆ c−1(a) : a ∈ VT,i} and {Va,b ⊆ c−1(a) : a ∈ VT,i,b ∈
C(a)} such that

1. ∀a ∈VT,i, Va is the disjoint union of Va,b’s for b ∈C(a);

2. Vr = c−1(r);

3. ∀a ∈VT,i, ∀b ∈C(a)∩VT,i, Na→b(Va,b)⊆Vb and Nb→a(Vb)⊆Va,b;

4. ∀a ∈VT,i, ∀b ∈C(a)∩VT,l , Na→b(Va,b) =∅.

Intuitively, the Va’s contain the “bad” vertices that are responsible for the fact that Gc does not
contain T as a minor. For any vertex u ∈Va, there is no subgraph of Ga

c that can be contracted into
a tree rooted at u and isomorphic to T a. In particular, since Gc does not contain T as a minor, for
any vertex u ∈ c−1(r), there is no subgraph of Gc that can be contracted into a tree rooted at u and
isomorphic to T , and hence Vr = c−1(r). Furthermore, if u ∈Va,b ⊆Va for some b ∈C(a), then u is
“bad” because its “children” in c−1(b) are “bad”. Namely, if we attempt to use u as the root of T a,
then we will fail because we will not be able to get a complete T b (which is a subtree of T a). In
the degenerate case, b is a leaf, and u ∈Va,b if and only if it has no neighbor in c−1(b). Condition
3 tells us that these “bad” vertices form a “connected component” in some sense, and it is crucial
for bounding the witness size. Fig.3.4 demonstrates an example of such Va’s and Va,b’s.

We defer the proof of Claim 26 to Section 3.3.1. Now let us consider its consequence:

Lemma 27. Suppose Gc does not contain T as a minor. Then P rejects it. Moreover, the witness
size of P on Gc is O

(
n2).

Proof. Using Claim 26, we build a negative witness for Gc as follows. Let

|w〉= |ws〉+ ∑
a∈VT,i

|wa〉 , (3.16)

where

|ws〉= |s〉⊗

(
1
|VT,l|

∑
f∈VT,l

| f 〉

)
,

|wa〉= ∑
b∈C(a)

∣∣wa,b
〉 (3.17)

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 35

Figure 3.4: An illustration of the partition in Claim 26. In this example, T is the full 3-level binary
tree, and Gc does not contain T as a minor. We have Vr = {u1,u2,u3}, Vr,d1 = {u3}, Vr,d2 = {u1,u2},
Vd1 =Vd1,b1 = {u5}, Vd2 = {u6,u7}, Vd2,b3 = {u7}, Vd2,b4 = {u6}, and any other Va or Va,b is ∅. Note
that, Nr→d2(Vr,d2) = {u6,u7}=Vd2 , Nd2→b3(Vd2,b3) =∅=Vb3 and Nd2→b4(Vd2,b4) =∅=Vb4 , etc.

where ∣∣wa,b
〉
=

(
∑

u∈Va,b

|u〉

)
⊗

 1
|V b

T,l|
∑

f∈V b
T,l

| f 〉

 . (3.18)

Now we prove that |w〉 is a valid negative witness. First,

〈w|τ〉= 〈ws|τ〉+ ∑
a∈VT,i

∑
b∈C(a)

〈
wa,b|τ

〉
= 1+0 = 1. (3.19)

Next, we show that |w〉 is orthogonal to all available input vectors on Gc. We deal with four kinds
of available input vectors separately:

1. For any free input vector |(s,u)〉=(|s〉−|u〉)⊗(∑ f∈VT,l
| f 〉) where u∈ c−1(r): By conditions

1 and 2 of Claim 26, c−1(r) = Vr = ∪b∈C(r)Vr,b, so we can find b ∈C(r) such that u ∈ Vr,b.
Then we have 〈w|(s,u)〉= 0, since 〈ws|(s,u)〉= 1,

〈
wr,b|(s,u)

〉
=−1, and

〈
wa′,b′|(s,u)

〉
= 0

for any other (a′,b′).

2. For any free input vector |(v, t)〉= (|v〉− |t〉)⊗| f 〉 where v ∈ c−1(f) for some f ∈VT,l: We
have 〈w|(v, t)〉= 0, since 〈ws|(v, t)〉=

〈
wa,b|(v, t)

〉
= 0 for any (a,b).

3. For any available input vector |(u,v)〉 = (|u〉 − |v〉)⊗ (∑ f∈V b
T,l
| f 〉) where u ∈ c−1(a), v ∈

c−1(b) for some a ∈ VT,i and b ∈ C(a)∩VT,i: The availability of this input vector implies
(u,v) ∈ EGc . Then, by condition 3 of Claim 26, there are two possible cases:

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 36

• u ∈ Va,b, v ∈ Vb: In this case,
〈
wa,b|(u,v)

〉
= 1. Also, by condition 1 of Claim 26,

there exists d ∈ C(b) such that v ∈ Vb,d . Then
〈
wb,d|(u,v)

〉
= −1, and 〈ws|(u,v)〉 =〈

wa′,b′|(u,v)
〉
= 0 for any other (a′,b′). Thus, 〈w|(u,v)〉= 0.

• u 6∈ Va,b, v 6∈ Vb: In this case, we simply have 〈ws|(u,v)〉 =
〈
wa′,b′|(u,v)

〉
= 0 for any

(a′,b′). Hence, 〈w|(u,v)〉= 0.

4. For any available input vector |(u,v)〉 = (|u〉− |v〉)⊗| f 〉 where u ∈ c−1(a), v ∈ c−1(f) for
some a ∈ VT,i and f ∈ C(a)∩VT,l: The availability of this input vector implies (u,v) ∈
EGc . Then, by condition 4 of Claim 1, we must have u 6∈ Va, f . It follows that 〈ws|(u,v)〉 =〈
wa′,b′|(u,v)

〉
= 0 for any (a′,b′), and hence 〈w|(u,v)〉= 0.

Now, note that |w〉 can be written as

|w〉= ∑
u∈{s}∪VG

∑
f∈VT,l

µu, f |u〉⊗ | f 〉 (3.20)

where |µu, f | ≤ 1 for any (u, f). Meanwhile, every input vector of P is the sum of a constant number
of some ±|u〉⊗ | f 〉’s. Thus, the inner product between |w〉 and any input vector has norm O(1).
Since there are O(n2) input vectors in P , the negative witness size of P on Gc is at most O(n2).

Combining Lemma 24 and Lemma 27 together, we know that P solves the subgraph/not-a-
minor problem for T , and it has witness size O(n). Then, by Corollary 22, this problem can be
solved by a bounded-error quantum algorithm with O(n) query complexity.

3.3.1 Proof of Claim 26
Proof of Claim 26. For convenience, we introduce the following notation. Let H = (VH ,EH) be
an arbitrary graph. For any u ∈ VH , we say that (H,u) is good with respect to T if there exists a
subgraph H ′ = (VH ′,EH ′) of H and E ⊆ EH ′ such that E(H ′) is isomorphic to T and the root of
E(H ′) contains u (and thus u must be involved in E).

We will prove the following claim (which is stronger than Claim 26):

Claim 28. For any graph G = (VG,EG) and coloring c : VG→VT , there exist L ∈ N, W ⊆ c−1(r),
{Va,l ⊆ c−1(a) : a ∈VT,i, l ∈ [L]} and {Va,b,l ⊆ c−1(a) : a ∈VT,i,b ∈C(a), l ∈ [L]}, such that:

1. ∀a ∈VT,i, ∀l ∈ [L], Va,l is the disjoint union of Va,b,l’s for b ∈C(a);

2. c−1(r) is the disjoint union of W and Vr,l’s for l ∈ [L];

3. ∀a ∈VT,i, ∀b ∈C(a)∩VT,i, ∀l ∈ [L], Na→b(Va,b,l)⊆Vb,l and Nb→a(Vb,l)⊆Va,b,l;

4. ∀a ∈VT,i, ∀b ∈C(a)∩VT,l , ∀l ∈ [L], Na→b(Va,b,l) =∅;

5. Let Ul = ∪a∈VT,iVa,l , ∀l ∈ [L], and let U = ∪l∈[L]Ul . Then U1,U2, . . . ,UL are the vertex sets of
the connected components of Gc|U ;

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 37

6. Let Z =VG \U. Then ∀w ∈W, (Gc|Z,w) is good with respect to T .

Let us first show that Claim 28 indeed implies Claim 26. Suppose Gc does not contain T as a
minor. By applying Claim 28, we obtain the W , Va,l’s and Va,b,l’s satisfying the above conditions.
Now define Va = ∪l∈[L]Va,l and Va,b = ∪l∈[L]Va,b,l , for any a ∈ VT,i and b ∈ C(a). We claim that
these Va’s and Va,b’s satisfy all the conditions of Claim 26. This is because:

• Since the Va,l’s and Va,b,l’s satisfy conditions 1, 3 and 4 of Claim 28, and the Va’s or Va,b’s
are simply the union of the Va,l’s or Va,b,l’s respectively, it is obvious that the Va’s and Va,b’s
satisfy conditions 1, 3 and 4 of Claim 26;

• Since Gc does not contain T as a minor, by condition 4 of Claim 28, we must have W =∅.
Then, by condition 2 of Claim 28 and Vr = ∪l∈[L]Vr,l , we have Vr = c−1(r). So condition 2
of Claim 26 is also fulfilled.

Now it remains to prove Claim 28.

Proof of Claim 28. Proof by induction on the depth of T .

1. Basis: Suppose T has depth 0. Namely, T contains only a root node r. Then we simply let
W = c−1(r) = VG and L = 0 (or let Vr,l = ∅ for any l). Then all the conditions of Claim 28
are trivially satisfied.

Suppose T has depth 1. Namely, T contains a root node r and its children f1, f2, . . . , fk
(which are the leaves of T). We build the desired W , Va,l’s and Va,b,l’s as follows:

• Initially, set W ←∅ and L← 0.

• For each vertex u ∈ c−1(r), do:

a) If Nr→ f j(u) 6=∅ for every j ∈ [k], then set W ←W ∪{u};
b) Otherwise, there exists some j ∈ [k] such that Nr→ f j(u) =∅. Then:

– Set L← L+1;
– Set Vr,L←{u} and Vr, f j,L←{u};
– Set Vr, f j′ ,L←∅ for any j′ 6= j.

Now we show that the W , Va,l’s and Va,b,l’s obtained by this algorithm satisfy all the condi-
tions of Claim 28:

• By the construction, it is obvious that Vr,l is the disjoint union of Vr, f j,l’s for j ∈ [k], for
any l. So condition 1 is fulfilled;

• Since each vertex in c−1(r) is put into either W or some Vr,l , we know that c−1(r) is the
disjoint union of W and the Vr,l’s. So condition 2 is also fulfilled;

• Since there is only one internal node r and all of its children are leaves, the situation
described by condition 3 does not exist and hence condition 3 is automatically satisfied;

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 38

• By the definition of Vr,l’s and Vr, f j,l’s, we have Nr→ f j(Vr, f j,l) = ∅. So condition 4 is
also satisfied;

• Since each Ul contains only one vertex, Gc|U is simply a collection of isolated vertices,
and hence U1,U2, . . . ,UL are the vertex sets of the connected components of Gc|U .
Therefore, condition 5 is fulfilled;

• For any w ∈W , it has a neighbor in each of c−1(f1),c−1(f2), . . . ,c−1(fk), and hence
Gc|Z contains a tree that is isomorphic to T and its root is w. So (Gc|Z,w) is good with
respect to T . Thus, condition 6 is fulfilled.

2. Inductive step: Suppose that Claim 28 holds for any graph G′ and coloring c′ with respect
to any tree T ′ of depth at most d.

Let T be a tree of depth d + 1. Suppose its root r has k children d1,d2, . . . ,dk. For each
j ∈ [k], since T d j has depth at most d, we can apply Claim 28 to Gd j

c with respect to T d j ,
and obtain the W j, V j

a,β’s and V j
a,b,β’s (where a ∈ V d j

T,i, b ∈ C(a) and β ∈ [L j] for some L j)

satisfying the conditions of Claim 28. In particular, let U j
β
= ∪

a∈V
d j
T,i

V j
a,β for β ∈ [L j], and

let U j = ∪β∈[L j]U
j

β
, for j ∈ [k]. Then U j

1 ,U
j

2 , . . . ,U
j

L j
are the vertex sets of the connected

components of Gc|U j (which is a subgraph of Gd j
c), for any j ∈ [k]. Let Q j = c−1(r)∪U j for

j ∈ [k], and let Q = ∪ j∈[k]Q j. Then let H j = Gc|Q j , and let H = Gc|Q. Note that each H j is
a subgraph of H.

Now consider the connected components of H and H j’s. Suppose the vertex sets of the con-
nected components of H are A1,A2, . . . ,Am, and the vertex sets of the connected components
of H j are B j

1,B
j
2, . . . ,B

j
m j for some m j, for j ∈ [k]. Note that each Ai is the union of some

B j
t ’s (for different (j, t)’s), while each B j

t is the union of several U j
β
’s (for different β’s) and

some subset of c−1(r). Let Ei, j = {t ∈ [m j] : B j
t ⊆ Ai}, and let Fj,t = {β ∈ [L j] : U j

β
⊆ B j

t },

for i ∈ [m], j ∈ [k] and t ∈ [m j]. Note that Ai∩ c−1(r) =
⋃

t∈Ei, j

(
B j

t ∩ c−1(r)
)

for any i, j.

We build the desired W , Va,l’s and Va,b,l’s as follows:

• Initially, set W ←∅ and L← 0.

• For i := 1 to m do:

a) If Nr→d j(Ai∩c−1(r))∩W j 6=∅ for every j ∈ [k], then set W ←W ∪ (Ai∩c−1(r));

b) Otherwise, there exists some j ∈ [k] such that Nr→d j(Ai∩c−1(r))∩W j =∅. Then:
For each t ∈ Ei, j do:
– Set L← L+1;
– Set Vr,L← B j

t ∩ c−1(r) and Vr,d j,L← B j
t ∩ c−1(r);

– Set Va,L ← ∪β∈Fj,tV
j

a,β and Va,b,L ← ∪β∈Fj,tV
j

a,b,β, for any a ∈ V d j
T,i and b ∈

C(a);

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 39

– Set any other Va,L or Va,b,L to be ∅.

Now we show that the W , Va,l’s and Va,b,l’s obtained by the above algorithm satisfy all the
conditions of Claim 28.

• To prove that the Va,l’s and Va,b,l’s satisfy conditions 1, 3 and 4, we consider two pos-
sible cases separately:

– a 6= r : Since the V j
a,β’s and V j

a,b,β’s satisfy the conditions 1, 3 and 4 for each j ∈ [k]
(by the inductive hypothesis), and the Va,l’s or Va,b,l’s are simply the union of
several V j

a,β’s or V j
a,b,β’s (for consistent choice of j’s and β’s) respectively, it is

easy to see that the Va,l’s and Va,b,l’s also satisfy conditions 1, 3 and 4.
– a = r :

a) By construction, for any l, exactly one of the Vr,d j,l’s (for j ∈ [k]) equals Vr,l ,
and the other Vr,d j,l’s are all empty. So Vr,l is indeed the disjoint union of the
Vr,d j,l’s (for j ∈ [k]). Hence, condition 1 is satisfied.

b) For any internal node d j, for any l, we have three possible cases:
∗ Vr,d j,l =Vd j,l =∅;

∗ Vr,d j,l = B j
t ∩ c−1(r) and Vd j,l = ∪β∈Fj,tV

j
d j,β

for some t ∈ [m j];

For the first case, we have Nr→d j(Vr,d j,l)=Vd j,l =∅ and Nd j→r(Vd j,l)=Vr,d j,l =

∅. For the second case, since B j
t is a connected components of H j, we also

have Nr→d j(Vr,d j,l)⊆Vd j,l and Nd j→r(Vd j,l)⊆Vr,d j,l . Therefore, condition 3 is
fulfilled.

c) For any leaf d j, we have W j = c−1(d j). So if Nr→d j(Ai∩ c−1(r))∩W j = ∅,
then Nr→d j(Ai∩ c−1(r)) = ∅. This implies that Nr→d j(Vr,d j,l) = ∅ for any l.
Hence, condition 4 is also satisfied.

• Since c−1(r) =
⋃

i∈[m](Ai∩c−1(r)) and Ai∩c−1(r) =
⋃

t∈Ei, j

(
B j

t ∩ c−1(r)
)

for any i, j,

by the construction of W and the Vr,l’s, we know that they form a partition of c−1(r).
Thus, condition 2 is also fulfilled.

• Let Ul = ∪a∈VT,iVa,l for l ∈ [L], and let U = ∪l∈[L]Ul . Recall that U j
1 ,U

j
2 ,U

j
L j

are
the vertex sets of the connected components of Gc|U j for any j ∈ [k] (by the inductive
hypothesis). But viewing from the bigger graph H j, different U j

β
and U j

β′ might become

connected via some vertex in c−1(r). Now each B j
t is the vertex set of a connected com-

ponent of H j, so it is the union of some subset of c−1(r) and some U j
β
’s (for different

β’s). Then, by construction, we have:

– For any l, Ul = B j
t for some j and t. So the vertices in Ul are connected in Gc|U ;

– For any l 6= l′, Ul and Ul′ are disjoint;
– For any l 6= l′, Ul and Ul′ do not share any vertex in c−1(r). This is because:

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 40

∗ For any i 6= i′, Ai and Ai′ do not share any vertex in c−1(r), because Ai and A j
are the vertex sets of different connected components of H. It follows that, for
any i 6= i′, t ∈ Ei, j and t ′ ∈ Ei′, j′ , B j

t and B j′

t ′ do not share any vertex in c−1(r),

since B j
t ⊆ Ai and B j′

t ′ ⊆ Ai′;

∗ Also, for any t 6= t ′, B j
t and B j

t ′ do not share any vertex in c−1(r), since B j
t and

B j
t ′ are the vertex sets of different connected components of H j;

∗ Now, for l 6= l′, we have Ul ∩ c−1(r) = B j
t ∩ c−1(r) for some j and t, and

Ul′ ∩ c−1(r) = B j′

t ′ ∩ c−1(r) for some j′ and t ′. There are two possible cases:
(1) either t ∈ Ei, j and t ′ ∈ Ei′, j′ where i 6= i′; (2) or t, t ′ ∈ Ei, j and t 6= t ′. Either
way, the above facts imply that Ul and Ul′ do not share any vertex in c−1(r).

– For any (j,β) 6= (j′,β′), there is no edge between U j
β

and U j′

β′ in Gc|U ;

– The above facts imply that Ul and Ul′ are disconnected in Gc|U for any l 6= l′.

Combining these facts, we know that U1,U2, . . . ,UL are the vertex sets of the connected
components of Gc|U . So condition 5 is fulfilled.

• Let Z j =Y d j
c \U j, for j ∈ [k]. Note that Z j∩U =∅. Then, by the inductive hypothesis,

for any w ∈W j, (Gc|Z j ,w) is good with respect to T d j .
Now consider any w ∈W . Since c−1(r) =

⋃
i∈[m](Ai ∩ c−1(r)), there exists i ∈ [m]

such that w ∈ Ai. Then by construction, we must have (Ai ∩ c−1(r)) ⊆W , and hence
Ai∩Vr,l =∅ for any l, and hence Ai∩U =∅.
Pick any w j ∈ Nr→d j(Ai ∩ c−1(r))∩W j, for j ∈ [k]. Since (Gc|Z j ,w j) is good with
respect to T d j , Gc|Z j contains a subgraph Ḡ j such that Ḡ j can be contracted into a tree
T̄ j which is isomorphic to T d j and the root of T̄ j contains w j. Importantly, the vertices
in c−1(r) and U j are not involved in such contractions (because they are not in Z j). Do
such contractions for each j ∈ [k].
Meanwhile, since Ai is a connected component of H, we can contract it into a single
vertex. This contraction can be performed simultaneously with the above contractions.
The reason is that Ai contains only some vertices in c−1(r) and U j’s, which are not
involved in any of the above contractions. Thus, even after the above contractions, we
can still contract Ai into a single vertex vi , Ai which contains w. Also, vi will be
connected to w1,w2, . . . ,wk, which are the roots of T̄ 1, . . . , T̄ k which are isomorphic to
T d1,T d2, . . . ,T dk respectively. Thus, the resulting graph contains a tree isomorphic to
T . Fig.3.5 illustrates an example of such transformations.
Now since Ai∩U =∅ and Z j∩U =∅ for any j∈ [k], the above transformation involves
only some vertices in Z = VG \U . Hence, (Gc|Z,w) is good with respect to T . So
condition 6 is also fulfilled.

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 41

Figure 3.5: An illustration of the transformation described in the proof of Claim 28. In this ex-
ample, T ’s root r has 3 children d1,d2,d3. For the given Gc, we have W 1 = {u4,u5}, U1 = {u6},
W 2 = {u7}, U2 = {u8}, W 3 = {u11}, U3 = {u9,u10,u19}, A1 = {u1,u2,u3,u6,u9,u10,u19} and
A2 = {u8}. Note that Nr→d1(A1 ∩ c−1(r))∩W 1 = {u4}, Nr→d2(A1 ∩ c−1(r))∩W 2 = {u7} and
Nr→d3(A1∩ c−1(r))∩W 3 = {u11}. By contracting the edges (u1,u6), (u2,u6), (u2,u9), (u9,u19),
(u10,u19), (u3,u10), all the vertices in A1 are combined together. We also contract the edges
(u4,u13) and (u5,u13) to obtain a tree isomorphic to T d1 in the subgraph Gc|Z1 . Let E be the
set of the aforementioned edges. Then, the resulting graph E(Gc) contains a tree isomorphic to T .
Hence, W = {u1,u2,u3}.

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 42

3.4 Time-Efficient Implementation
Theorem 23 implies the existence of a query-efficient quantum algorithm for tree detection. How-
ever, this algorithm is not necessarily time-efficient. Although there is a quantum-walk-based al-
gorithm for evaluating any span program [111, 113], the quantum walk in that algorithm might be
difficult to implement using local gates. Nevertheless, by using some ideas from [24], we manage
to overcome this problem (for our span program P) and hence give a time-efficient implementation
of the algorithm in Theorem 23.

Theorem 29. The algorithm in Theorem 23 can be implemented in Õ(n) quantum time.

Proof. We use the general approach of [113] for evaluating span programs. This approach relies on
an “effective” spectral gap of a quantum walk operator associated with the span program. Specifi-
cally, suppose Q is an arbitrary span program with input vectors |v1〉 , . . . , |vk〉 ∈Rd and target vec-
tor |τ〉 ∈Rd . Let D ⊆ {0,1}n, and let W1 = wsize1(Q ,D), W0 = wsize0(Q ,D), W = wsize(Q ,D)
be the positive, negative and overall witness size of Q over domain D , respectively. We assume
that W1,W0,W,k = poly(n). Pick a constant C > max{10,1/W}. Let α =C

√
W1 and |τ̃〉= |τ〉/α.

Then define
V , |τ̃〉〈0|+ ∑

j∈[k]

∣∣v j〉〈 j
∣∣ . (3.21)

Let RΛ = 2Λ− I, where Λ is the projection onto Ker(V). Moreover, for any x ∈ D , let Rx =
2Π(x)− I, where Π(x) , ∑ j∈{0}∪I(x) | j〉〈 j|, where I(x) is the index set of available input vectors
on input x. The algorithm for evaluating Q work in the Hilbert space H , span(|0〉 , |1〉 , . . . , |k〉).
On input x, it starts in |0〉 and runs phase estimation on U , RΛRx with precision 1/(10CW) and
error rate 1/10, and it accepts if and only if the measured phase is 0. This algorithm uses O(W)
controlled applications of U , and it correctly evaluates Q on x with probability at least 2/3. The key
component of this algorithm is the implementation of RΛ and Rx. Usually Rx can be implemented
with few input queries and polylog(n) local gates. But RΛ can be much harder to implement. Let
T0 and T1 be the time required to implement Rx and RΛ respectively. Then the time complexity of
this algorithm is Õ(W (T0 +T1)).

Now we apply this general approach to our span program P for tree detection. To efficiently im-
plement the reflection RΛ, we invoke the spectral lemma. Specifically, we will find two matrices A
and B such that: (1) they have the same number of rows; (2) each of them has orthonormal columns;
(3) V ′ , A†B = 1√

4n
V . Then, Lemma 17 implies that the −1 eigenspace of U(A,B) = RefB ·RefA

is
(

C (A)∩C (B)⊥
)
⊕
(

C (A)⊥∩C (B)
)

. Note that C (A)⊥ ∩C (B) = B(Ker(V ′)) = B(Ker(V)),

and C (A)∩C (B)⊥ is orthogonal to C (B). Thus, to “effectively” implement RΛ, we embed H into
B(H) and treat the −1 eigenspace of U(A,B) as Ker(V). That is, we simulate the behavior of RΛ

on any |φ〉 ∈ H by the behavior of R−1 on B(|φ〉) ∈ B(H), where R−1 is the reflection about the
−1 eigenspace of U(A,B). This simulation is valid because B is an isometry. Now, R−1 can be (ap-
proximately) implemented by running phase estimation on U(A,B) and multiplying the phase by
−1 if the measured eigenvalue is very close to −1. The precision of this phase estimation depends

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 43

on the eigenvalue gap around −1 of U(A,B). Let TA and TB be the time required to implement
RA and RB respectively, and let δA,B is the eigenvalue gap around −1 of U(A,B). Then RΛ can be
implemented in time Õ((TA +TB)/δA,B).

Before describing A and B, let us first modify the span program P to make it possess a more
uniform structure. Specifically, we modify it as follows:

1. We add dummy vertices to each block of G′c, so that each block contains exactly n vertices.
Then we fill in the graph with never-available edges between adjacent blocks, so that there
is a complete bipartite graph between any two adjacent blocks.

2. We normalize each input vector to unit length. Specifically, for an input vector |(u,v)〉, we
scale it by a factor of 1/

√
2|S(c(u),c(v))|.

3. We scale the target vector |τ〉 by a factor of 1/
√
|VT,l| so that it has length

√
2.

4. We pick a constant C > max
{

10,1/W,1/
√

W1
}

. Let α =C
√

W1 > 1 and

|τ̃〉= 1
α
(|s〉− |t〉)⊗

(
1√
|VT,l|

∑
f∈VT,l

| f 〉

)
. (3.22)

We add a never-available input vector

|γ〉,
√

1− 1
α2 (|t〉− |s〉)⊗

(
1√
|VT,l|

∑
f∈VT,l

| f 〉

)
. (3.23)

It is easy to check that this modified span program still computes the same function, and its
positive and negative witness size remain O(1) and O

(
n2) respectively.

Now, since each block of G′c contains n vertices, we represent the vertices and edges of G′c
as follows. We denote the k-th vertex in the block c−1(x) as (x,k). In particular, we denote the
original s as (s,1) and denote the original t as (t,1). Then, for the edge between the vertices
(x1,k1) and (x2,k2), we denote it as (x1,k1,x2,k2). But this leads to a problem. Namely, this edge
also has another representation – (x2,k2,x1,k1). This could make the implementation of RefA and
RefB a little harder. We solve this problem by making two copies of each input vector (except
|γ〉), so that one copy corresponds to the representation (x1,k1,x2,k2) and the other corresponds to
the respresentation (x2,k2,x1,k1). Furthermore, we make |τ̃〉 and |γ〉 correspond to (s,1, t,1) and
(t,1,s,1) respectively.

Now define
I , {(x,k, f) : x ∈VT ∪{s, t},k ∈ [n], f ∈V x

T,l} (3.24)

and
J , {(x1,k1,x2,k2) : x1,x2 ∈VT ∪{s, t},x1 ∼ x2, k1,k2 ∈ [n]}. (3.25)

Then for our span program P , we have

V = ∑
j∈J

∣∣v j〉〈 j
∣∣ (3.26)

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 44

where

∣∣v j
〉
=



1√
2
(|x,k〉− |y,k′〉)⊗

(
1√
|Sx,y|

∑
f∈Sx,y

| f 〉

)
, if j = (x,k,y,k′) 6∈ {(s,1, t,1),

(t,1,s,1)},
1
α
(|s,1〉− |t,1〉)⊗

(
1√
|VT,l|

∑
f∈VT,l

| f 〉

)
, if j = (s,1, t,1),√

1− 1
α2 (|t,1〉− |s,1〉)⊗

(
1√
|VT,l|

∑
f∈VT,l

| f 〉

)
, if j = (t,1,s,1).

(3.27)

Now, we will find unit vectors {|ai〉 : i ∈ I} and {
∣∣b j
〉

: j ∈ J} such that

〈ai| j〉
〈
i|b j
〉
=

1√
4n
〈i|V | j〉 , ∀i, j. (3.28)

Then we define
A = ∑

i∈I
(|i〉⊗ |ai〉)〈i| ,

B = ∑
j∈J

(
∣∣b j
〉
⊗| j〉)〈 j| . (3.29)

It immediately follows that

V ′ , A†B =
V√
4n

, (3.30)

as desired.
The |ai〉’s are defined as follows:

• For i = (x,k, f), where x 6∈ {s, t} or k 6= 1, let

|ai〉 =
1√
4n

∑
y∈M(x, f)

∑
k′∈[n]

(|x,k,y,k′〉+ |y,k′,x,k〉) . (3.31)

Note that since |M(x, f)|= 2, |ai〉 is indeed a unit vector.

• For i = (s,1, f), let

|ai〉 =
1√
4n

(
∑

k∈[n]
(|s,1,r,k〉+ |r,k,s,1〉)+

n
∑

k=2
(|s,1, t,k〉+ |t,k,s,1〉)

)

+
1√
2n

(
1
α
|s,1, t,1〉+

√
1− 1

α2 |t,1,s,1〉

)
.

(3.32)

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 45

• For i = (t,1, f), let

|ai〉 =
1√
4n

(
∑

k∈[n]
(|t,1, f ,k〉+ | f ,k, t,1〉)+

n
∑

k=2
(|t,1,s,k〉+ |s,k, t,1〉)

)

+
1√
2n

(
1
α
|s,1, t,1〉+

√
1− 1

α2 |t,1,s,1〉

)
.

(3.33)

The
∣∣b j
〉
’s are defined as follows:

• For j = (x1,k1,x2,k2), let∣∣b j
〉
=

1√
2|Sx1,x2|

∑
f∈Sx1,x2

(|x1,k1, f 〉− |x2,k2, f 〉) . (3.34)

It is easy to check that these |ai〉’s and
∣∣b j
〉
’s are indeed unit vectors and they satisfy Eq.(3.28), as

promised.
Now we describe the implementation of Rx and RΛ. We embed the space H = span(| j〉 : j ∈ J)

into B(H) = span
(∣∣b j

〉
| j〉 : j ∈ J

)
. To implement Rx, we detect j in the second register and mul-

tiply the phase by −1 if
∣∣v j
〉

is an unavailable input vector on x (this can be tested by querying
the edge labelled by j). To implement RΛ, we run phase estimation on the quantum walk operator
U(A,B) = RefB ·RefA with precision δA,B/3 and multiply the phase by −1 if the measured eigen-
value is (δA,B/3)-close to −1. It remains to analyze the spectral gap δA,B around −1 of U(A,B)
and give explicit implementation of RefA and RefB.

Lemma 30. The eigenvalue gap δA,B around −1 of U(A,B) = RefB ·RefA is Ω(1).

Proof. By Lemma 17, it is sufficient to show that the singular value gap around 0 of V ′ = A†B is
Ω(1). To prove this, it is sufficient to show that the smallest non-zero eigenvalue of

∆ ,V ′V ′† =
1

4n ∑
j∈J

∣∣v j〉〈v j
∣∣ (3.35)

is Ω(1). Let F = {(x,y) : x,y ∈ VT ∪{s, t}, x ∼ y}, and let F(x,y) = {(x,k,y,k′) : k,k ∈ [n]} for
any (x,y) ∈ F . Then we can write ∆ as

∆ = ∑
(x,y)∈F

∆x,y (3.36)

where
∆x,y ,

1
4n ∑

j∈F(x,y)

∣∣v j〉〈v j
∣∣ (3.37)

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 46

Now, for any j = (x,k,y,k′), where (x,y) 6∈ {(s, t),(t,s)}, we have∣∣v j〉〈v j
∣∣ =

1
2|Sx,y|

∑
f , f ′∈Sx,y

(|x,k, f 〉〈x,k, f ′|+ |y,k, f 〉〈y,k, f ′|)

− 1
2|Sx,y|

∑
f , f ′∈Sx,y

(|x,k, f 〉〈y,k′, f ′|+ |y,k′, f ′〉〈x,k, f |) .
(3.38)

Taking the sum of Eq.(3.38) over k,k′ ∈ [n] yields

∆x,y = Ax,y⊗ In +
1
n

Bx,y⊗En, (3.39)

where In = ∑k∈[n] |k〉〈k| and En = ∑k,k′∈[n] |k〉〈k′|, and Ax,y and Bx,y are some matrices independent
of n (here we have switched the order of k-register and f -register). This holds for any (x,y) 6∈
{(s, t),(t,s)}.

On the other hand, we also have

∆s,t +∆t,s = Ā⊗ In +
1
n

B̄⊗En, (3.40)

where Ā and B̄ are some matrices independent of n. This can be derived from the fact that for any
j = (s,k, t,k′) or (t,k′,s,k), where (k,k′) 6= (1,1),∣∣v j〉〈v j

∣∣ =
1

2|VT,l|
∑

f , f ′∈VT,l

(|s,k, f 〉〈s,k, f ′|+ |t,k, f 〉〈t,k, f ′|)

− 1
2|VT,l|

∑
f , f ′∈VT,l

(|s,k, f 〉〈t,k′, f ′|+ |t,k′, f ′〉〈s,k, f |)
(3.41)

and the fact that∣∣v(s,1,t,1)〉〈v(s,1,t,1)∣∣+ ∣∣v(t,1,s,1)〉〈v(t,1,s,1)∣∣ =
1
|VT,l|

∑
f , f ′∈VT,l

(|s,1, f 〉〈s,1, f ′|+ |t,1, f 〉〈t,1, f ′|)

− 1
|VT,l|

∑
f , f ′∈VT,l

(|s,1, f 〉〈t,1, f ′|+ |t,1, f ′〉〈s,1, f |) .

(3.42)
Now by Eqs.(3.39) and (3.40) we obtain

∆ = A⊗ In +
1
n

B⊗En, (3.43)

where A and B are some matrices independent of n. Then, some simple linear algebra shows that
the spectrum of ∆ (i.e. the set of eigenvalues sans multiplicity) does not depend on n. In particular,
the smallest non-zero eigenvalue of ∆ is Ω(1), as desired.

Lemma 31. RefA can be implemented in polylog(n) time.

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 47

Proof. Since RefA is the reflection about the span of |i〉⊗ |ai〉’s, we can implement it as UAOAU†
A ,

where UA is any unitary operation that transforms |i〉⊗
∣∣0̄〉 to |i〉⊗ |ai〉, and OA is the reflection

about
∣∣0̄〉 on the second subsystem. Obviously, OA can be implemented in polylog(n) time. So it

remains to show that UA can be implemented in polylog(n) time.
Observe that |ai〉 can be written as:∣∣a(x,k, f)〉= 1√

4n ∑
y∈M(x, f)

∑
k′∈[n]

Q
(∣∣x,k,y,k′〉+ ∣∣y,k′,x,k〉) , (3.44)

where Q is a unitary operation acting on the span of |x,k,y,k′〉’s such that

Q |x,k,y,k′〉= |x,k,y,k′〉 , ∀ (x,k,y,k) 6∈ {(s,1, t,1),(t,1,s,1)};

Q
(

1√
2
|s,1, t,1〉+ 1√

2
|t,1,s,1〉

)
=

1
α
|s,1, t,1〉+

√
1− 1

α2 |t,1,s,1〉 .
(3.45)

So we can generate |i〉⊗ |ai〉 from |i〉⊗
∣∣0̄〉 as follows:

|x,k, f 〉⊗ |0,0,0,0〉 → |x,k, f 〉⊗ |x,k,0,0〉

→ |x,k, f 〉⊗ 1√
n

∑
k′∈[n]
|x,k,0,k′〉

→ |x,k, f 〉⊗ 1√
2n

∑
y∈M(x, f)

∑
k′∈[n]
|x,k,y,k′〉

→ |x,k, f 〉⊗ 1√
4n

∑
y∈M(x, f)

∑
k′∈[n]

(|x,k,y,k′〉+ |y,k′,x,k〉)

→ |x,k, f 〉⊗ 1√
4n

∑
y∈M(x, f)

∑
k′∈[n]

Q(|x,k,y,k′〉+ |y,k′,x,k〉)

= |x,k, f 〉⊗
∣∣a(x,k, f)〉 ,

(3.46)

where

• The first step is accomplished by performing a unitary operation UA,1 that transforms |x,k,0,0〉
to |x,k,x,k〉 on the first, second, fourth and fifth registers;

• The second step is accomplished by performing a unitary operation UA,2 that transforms |0〉
to 1√

n ∑k′∈[n] |k′〉 on the last register;

• The third step is accomplished by performing a unitary operation UA,3 that transforms |x, f 〉⊗
|0〉 to |x, f 〉⊗ 1√

2 ∑y∈M(x, f) |y〉 on the first, third and sixth registers;

• The fourth step is accomplished by performing a unitary operation UA,4 that transforms
|x,k〉⊗ |x,k,y,k′〉 to |x,k〉⊗ 1√

2
(|x,k,y,k′〉+ |y,k′,x,k〉) on all but the third registers,

• The last step is accomplished by performing Q on the last four registers.

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 48

Formally, let UA = QUA,4UA,3UA,2UA,1. Clearly, all of UA,1, UA,2, UA,3, UA,4 and Q can be imple-
mented in polylog(n) time, and hence so is UA.

Lemma 32. RefB can be implemented in polylog(n) time.

Proof. Since RefB is the reflection about the span of
∣∣b j
〉
⊗
∣∣a j
〉
’s, we can implement it as UBOBU†

B ,
where UB is any unitary operation that transforms

∣∣0̄〉⊗| j〉 to
∣∣b j
〉
⊗| j〉, and OB is the reflection

about
∣∣0̄〉 on the first subsystem. Obviously, OB can be implemented in polylog(n) time. So it

remains to show that UB can be implemented in polylog(n) time.
We generate

∣∣b j
〉
⊗| j〉 from

∣∣0̄〉⊗| j〉 as follows:

|0,0,0〉⊗ |x1,k1,x2,k2〉 → |0,0〉⊗

(
1√
|Sx1,x2|

∑
f∈Sx1,x2

| f 〉

)
⊗|x1,k1,x2,k2〉

→ 1√
2
(|x1,k1〉− |x2,k2〉)⊗

(
1√
|Sx1,x2|

∑
f∈Sx1,x2

| f 〉

)
⊗|x1,k1,x2,k2〉

=
∣∣b(x1,k1,x2,k2)

〉
⊗|x1,k1,x2,k2〉 .

(3.47)
where

• The first step is accomplished by performing a unitary operation UB,1 that transforms |0〉⊗

|x1,x2〉 to
(

1√
|Sx1,x2 |

∑ f∈Sx1,x2
| f 〉
)
⊗|x1,x2〉 on the third, fourth and sixth registers.

• The second step is accomplished by performing a unitary operation UB,2 that transforms
|0,0〉⊗ |x1,k1,x2,k2〉 to 1√

2
(|x1,k1〉− |x2,k2〉)⊗ |x1,k1,x2,k2〉 on the first two and last four

registers.

Formally, let UB =UB,2UB,1. Clearly, both UB,1 and UB,2 can be implemented in polylog(n) time,
and hence so is UB.

Combining Lemma 30, Lemma 43 and Lemma 44, we know that RΛ can be implemented
in polylog(n) time. Since Rx can be also implemented in polylog(n) time, U = RΛRx can be
implemented in polylog(n) time. Then, since P has witness size O(n), the time complexity of our
algorithm is Õ(n), as claimed.

3.5 Open Problems
Our work raises many interesting questions:

As mentioned in Section 3.3, our span program P accepts some graphs that contain T as a
minor but not as a subgraph. So it fails to solve the T -containment problem. However, it is not
true that P accepts every graph containing T as a minor. One can see that a graph must possess

CHAPTER 3. QUANTUM ALGORITHM FOR TREE DETECTION 49

certain structure to be accepted by P . Nevertheless, this structure is not easy to characterize. It
would be interesting to know exactly what kind of graphs are accepted by P . If we have a better
understanding of this matter, we might be able to modify P to make it solve the T -containment
problem.

In this chapter, we have focused on the detection of trees. It is also worth studying the detection
of other subgraphs, such as cycles and cliques. Can we design time-efficient span-program-based
quantum algorithms for these problems as well?

Perhaps the most interesting direction is to investigate the potential of our “parallel-flow” tech-
nique for designing span programs. In particular, can we use this technique to improve learning
graphs [20]? The basic idea of learning graph is to run a single flow from a vertex (i.e. the empty
set) to some vertices (i.e. those contain a 1-certificate) on an exponentially large graph, and its
efficiency is determined by the energy of this flow. We observe that many decision problems can
be decomposed into several correlated subproblems, so that an input is a positive instance of the
original problem if and only if it is a positive instance of all the subproblems. Perhaps we can
improve learning graphs by dividing the original flow into several parallel flows, so that: (1) each
flow corresponds to one subproblem; (2) these flows are correlated in a way similar to the subprob-
lems. It is possible that the total energy of these flows is smaller than that of the original flow. Can
we formalize this idea and use it to improve previous learning-graph-based quantum algorithms?

50

Chapter 4

Electrical Flows and Quantum Algorithms

4.1 Overview
Electrical network theory has many implications on classical computation. The beautiful idea of
viewing a (weighted) graph as an electrical network has yielded fruitful results in algorithm design
and analysis. Examples include the relation between effective resistances and commute times of
random walks [40], the usage of effective resistances for graph sparsification [122], and the usage
of electrical flows for approximating maximum flows [55, 94, 97]. How to quickly compute the
basic quantities about electrical networks, such as electrical flows and effective resistances, has
become not only important for electronic design, but also crucial for the fast solution of many
computational problems.

To compute the electrical flow between two given vertices in an electrical network, one need
to solve a Laplacian linear system. This can be accomplished in Õ(m) time by using Spielman
and Teng’s linear-system solver [123], where m is the number of edges. Since every flow in such
a network needs an m-dimensional vector to represent, this method is essentially optimal. On
the other hand, it is unclear whether Õ(m) time is necessary for the computation of effective
resistances. To our knowledge, the best known classical algorithm [122] for this task also relies on
inverting the Laplacian and takes Õ(m) time (Specifically, the algorithm of [122] builds in Õ(m)
time a O(logn)×n matrix Z from which the effective resistance between any two vertices can be
computed in O(logn) time, where n is the number of vertices).

In this chapter, we develop two quantum algorithms for approximating the effective resistance
between two given vertices in an electrical network. Both of them have time complexity polyno-
mial in logn, d, c, 1/φ and 1/ε, where n is the number of vertices, d is the maximum degree of
the vertices, c is the ratio of the largest to the smallest edge resistance, φ is the conductance of
the network, and ε is the relative error. In particular, when d and c are small and φ is large, our
algorithms run very fast. In contrast, it is unknown whether classical algorithms can solve this case
fast. Furthermore, we prove that the polynomial dependence on the inverse conductance (i.e. 1/φ)
is necessary. As a consequence, our algorithms cannot be significantly improved.

Our algorithms are based on using quantum tools to analyze the algebraic properties of graph-

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 51

related matrices. While one of them relies on inverting the Laplacian matrix, the other relies on
projecting onto the kernel of the weighted incidence matrix.

Specifically, let G = (V,E,w) be a connected weighted graph with n vertices and edge weights
we > 0. Let s, t ∈V be different, and let Rs,t be the effective resistance between s and t (with respect
to edge resistance re = 1/we). Our first algorithm is based on the equation

Rs,t = χ
T
s,tL

+
χs,t , (4.1)

where L is the Laplacian of G 1, and χs,t = |s〉− |t〉 is an n-dimensional vector. Our strategy is to
first produce L+χs,t as a quantum state, and then to estimate its inner product with χs,t by quantum
measurements. The first step is achieved by invoking (an improved version of) Harrow, Hassidim
and Lloyd’s quantum algorithm for solving linear systems of equations [78]. Since their algorithm
depends polynomially on the (pseudo) condition number of the coefficient matrix in the linear
system, our algorithm depends polynomially on the (pseudo) condition number of L, which in turn
is related to the conductance φ of G. Thus, our algorithm has a polynomial dependence on 1/φ.

Our second algorithm is faster than the first one. It is based on the following observation. Let
us modify G by adding an edge (labelled by 0) between s and t with unit resistance. Let G′ be
this modified graph, and let M′ be the “weighted” incidence matrix of G′. Then we show that the
vectors in the kernel of M′ correspond to the s-t flows (of arbitrary values) in G. Let Π be the
projection onto the kernel of M′. Then we prove that Π |0〉 corresponds exactly to the electrical
s-t flow (of some value) in G. Moreover, we can infer Rs,t from the value of ‖Π |0〉‖. Thus, to
estimate Rs,t , it is sufficient to perform the projective measurement {Π, I−Π} on the state |0〉,
and to estimate the probability of seeing the outcome corresponding to Π. Furthermore, as a by-
product, this algorithm also obtains the state Π |0〉, which can be easily transformed into a state
(approximately) proportional to the electrical s-t flow in G. This fact might be useful somewhere.

Figure 4.1: An electrical network G and the corresponding G′.

1Here L+ is the Moore-Penrose Pseudoinverse of L

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 52

The key component of our second algorithm is the implementation of the measurement {Π, I−
Π}. To achieve this, we generalize the previous method for evaluating the span program for st-
connectivity [24]. Specifically, we use the spectral lemma to map the kernel of M′ to the −1
eigenspace of a quantum walk operator U . Then, we detect this subspace by running phase esti-
mation [87, 104] on U and checking whether the measured eigenvalue is close to −1 or not. The
efficiency of this method depends on the eigenvalue gap around −1 or U , which turns out to be
related to the conductance of G. Therefore, our second algorithm also has polynomial dependence
on 1/φ.

We prove the necessity of the polynomial dependence on 1/Φ by building a reduction from
PARITY to effective resistance estimation. PARITY is the problem in which we are given an n-bit
string x = x1x2 . . .xn and are required to answer the value of PARITY(x) =⊕n

i=1xi. We construct a
graph G(x) from x such that if PARITY(x) = 0, then the effective resistance between two special
vertices is low; otherwise, the effective resistance between them is high. Thus, by approximating
this quantity (to a reasonable accuracy), we can distinguish these two cases and solve PARITY.
Since PARITY has quantum query complexity Ω(n) [18, 65], this implies that estimating effective
resistances in G(x) also requires Ω(n) queries, which is polynomial (but not poly-logarithmic) in
the inverse conductance of G(x).

As stated before, by identifying a (weighted) graph as an electrical network and studying the
behaviors of electrical flows or effective resistances in this network, one can learn many useful
properties of the original graph. We hope that our algorithms for estimating effective resistances
and generating electrical flows (as quantum states) could be helpful for solving other problems.

4.2 Spectral Graph Theory
In this section, we briefly introduce spectral graph theory, which is the study of the relation be-
tween the combinatorial properties (e.g. connectivity, bipartiteness) of a graph and the algebraic
properties (e.g. eigenvalues, eigenvectors) of matrices associated to the graph. For more details on
this subject, we refer the reader to [56].

Let G = (V,E,w) be a weighted undirected graph with n vertices and m edges and edge weights
we > 0. Let E(v) be the set of edges incident to v, for any v ∈V . Then let deg(v) := |E(v)| be the
unweighted degree of v, and let d̃eg(v) := ∑e∈E(v)we be the weighted degree of v. Furthermore, let
deg(G) := maxv∈V deg(v) be the unweighted degree of G.

Let us orient the edges of G arbitrarily. Then, for any e ∈ E, let e+, e− be the head, tail of e
respectively. Next, for any v∈V , let E+(v) := {e∈ E(v) : e+ = v} and E−(v) := {e∈ E(v) : e−=
v}.

Now let us define a few matrices about G. Let

Dn×n := diag
(

d̃eg(v)
)

v∈V
(4.2)

be the weighted degree matrix of G. Let

Wm×m := diag(we)e∈E (4.3)

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 53

be the edge weight matrix of G. Let Bn×m be defined as

Bv,e :=


1, if v = e+,
−1, if v = e−,
0, otherwise .

(4.4)

be the (oriented) vertex-edge incidence matrix of G. Then, let

L := BWBT (4.5)

be the Laplacian of G, and let
L := D−1/2LD−1/2 (4.6)

be the normalized Laplacian of G.
Meanwhile, for any A,B⊂V , let w(A) := ∑v∈A d̃eg(v), and let w(A,B) := ∑u∈A,v∈B,(u,v)∈E wu,v.

Then, for any S⊂V , the conductance of S is defined as

φ(S) :=
w(S,V \S)

min(w(S),w(V \S))
(4.7)

Then, the conductance of G, denoted by φ(G), is defined as

φ(G) := min
S⊂V

φ(S) (4.8)

Remarkably, Chegeer [41] established a connection between the algebraic quantity λ2(L) and
the combinatorial quantity φ(G):

Theorem 33 (Chegeer’s Inequality [41]).

λ2(L)

2
≤ φ(G)≤ 2

√
λ2(L). (4.9)

4.3 Electrical Flows and Effective Resistances
Let G = (V,E,w) be a connected weighted undirected graph with n vertices and m edges and edge
weight we > 0. We identify G as an electrical network of resistors, where edge e has resistance
re := 1/we (or equivalently, conductance we). Let s, t ∈ V be distinct. An s-t flow is a function
f : E→ R that obeys the flow-conservation constraints:

∑
e∈E+(v)

f(e)− ∑
e∈E−(v)

f(e) = 0, ∀ v ∈V \{s, t}. (4.10)

The value |f| of the flow f is defined to be the net flow out of the source vertex, i.e.

|f| := ∑
e∈E−(s)

f(e)− ∑
e∈E+(s)

f(e). (4.11)

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 54

A unit s-t flow is a s-t flow of value 1. Moreover, the energy (with respect to re = 1/we) of the flow
f is defined as

E(f) := ∑
e∈E

ref2(e) = ∑
e∈E

f2(e)
we

. (4.12)

The electrical s-t flow of value F is the flow that minimizes E(f) among all s-t flows f of value F .
This flow can be shown to be unique. Furthermore, the effective s-t resistance, denoted by Rs,t , is
the energy E(i) of the unit electrical s-t flow i.

An alternative definition of effective resistance is as follows. Imagine that we inject some
currents at some vertices, and extract some currents at some other vertices, such that the total
amount of injected currents equals the total amount of extracted currents. This will induce some
electrical potentials at the vertices and some electrical currents through the edges. Let iext : V →R
be such that iext(v) is the current injected at vertex v 2. Let v : V → R be such that v(v) is the
induced potential at vertex v. Let i : E→R be such that i(e) is the induced current through edge e.
By Ohm’s law, the current through an edge is equal to the potential difference across its ends times
its conductance:

i =WBT v. (4.13)

In addition, by Kirchoff’s current law, the sum of the currents entering a vertex is equal to the
amount injected at the vertex:

Bi = iext . (4.14)

Combining these two equations, we get

iext = Bi = B(WBT v) = Lv. (4.15)

Since iext⊥Ker(L) = span(1), we have

v = L+iext . (4.16)

Now suppose we inject a unit current at s and extract the same amount of current at t. In this
case, iext = χs,t := |s〉− |t〉. Then the effective s-t resistance is defined as the potential difference
between s and t. Namely,

Rs,t = v(s)−v(t) = χ
T
s,tv = χ

T
s,tL

+
χs,t . (4.17)

4.4 Our Model
Throughout this chapter, we identify weighted graphs as electrical networks. Specifically, let G =
(V,E,w) be a weighted graph with n vertices and edge weights we > 0. We identify it as an
electrical network with edge resistance re = 1/we. We always assume that this graph is given in
the incidence list model. Namely, there are three quantum oracles O1, O2 and O3 for G:

2iext(v) can be positive or negative depending on whether we inject or extract some current at vertex v.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 55

• O1 takes a vertex v and an integer j as input, and returns the j-th incident edge of v. Formally,
for v ∈V and j ∈ [n], O1 |v〉 | j〉= |v〉

∣∣e j
〉

where e j is the j-th incident edge of v. If such edge
does not exist, i.e. deg(v)< j, then let O1 |v〉 | j〉= |v〉 |− j〉 3.

• O2 takes an edge e as input, and returns the two endpoints of e. Formally, for e = (u,v) ∈ E,
O2 |e〉 |0〉 |0〉= |e〉 |u〉 |v〉.

• O3 takes an edge e as input, and returns the weight of e. Formally, for e ∈ E, O3 |e〉 |0〉 =
|e〉 |we〉.

Our algorithms have access to O1, O2, O3 and their inverses. Given two vertices s, t ∈ V and an
accuracy parameter ε > 0, they output a number R̃s,t such that |R̃s,t −Rs,t | ≤ εRs,t with probability
at least 2/3. Namely, they estimate Rs,t to a relative error ε with high probability.

The query complexity of an algorithm in this model is defined as the number of calls to O1, O2,
O3 and their inverses. The time complexity of an algorithm in this model is defined as its query
complexity plus the number of additional one- and two-qubit gates used. The complexities of our
algorithms will be characterized in terms of n, d := deg(G), c := maxe∈E we/mine∈E we, φ := φ(G)
and ε.

4.5 A Simple Quantum Algorithm for Estimating Effective
Resistances

In this section, we describe a simple quantum algorithm for approximating the effective resistance
between two given vertices in a connected weighted graph. Similar to classical algorithms, this al-
gorithm also depends on solving the Laplacian linear system Lv = χs,t . However, it does not write
down the solution v = L+χs,t explicitly. Instead, it just produces a quantum state approximately
proportional to v. Then it estimates Rs,t by making appropriate measurement on this state. Al-
though this algorithm is slower than the (main) algorithm presented in the next section, we still put
it here not only because it is simple, but also because it is a first attempt by a quantum algorithm
person to estimate effective resistances.

Before describing this algorithm, it is useful to prove the following lemmas. Let a :=mine∈E we
and b := maxe∈E we. Then c = b/a. Furthermore, we have

Lemma 34.
λ2(L) = Ω

(
aφ

2) , λn(L) = O(bd) . (4.18)

Proof. Consider the normalized Laplacian L = D−1/2LD−1/2, where D = diag
(

d̃eg(v)
)

v∈V
. By

Chegeer’s inequality, we have λ2(L) = Ω
(
φ2). Moreover, it always holds that λn(L) = O(1).

3We assume that each edge e ∈ E is labelled by a positive number.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 56

Furthermore, since a≤ d̃eg(v) = ∑e∈E(v)we ≤ bd for any v ∈V , we have

aI 4 D 4 bdI, (4.19)

Then, by L = D1/2LD1/2, we get

λ2(L)≥ aλ2(L) = Ω
(
aφ

2) , (4.20)

and
λn(L)≤ bdλn(L) = O(bd) . (4.21)

Corollary 35.

Ω

(
1

bd

)
≤ Rs,t ≤ O

(
1

aφ2

)
. (4.22)

Proof. Since Rs,t = χT
s,tL

+χs,t , where χs,t ∈ C (L) and ‖χs,t‖2 = 2, we have

Ω

(
1

λn(L)

)
≤ Rs,t ≤ O

(
1

λ2(L)

)
. (4.23)

Then the desired result follows from Lemma 34.

Now we describe an improved version of HHL’s algorithm:

Lemma 36 (Implied by [78] and [32]). Let A be a d-sparse N×N Hermitian matrix such that all
the nonzero eigenvalues of A are between 1/κ and 1. Let z be an N-dimensional unit vector such
that z ∈ C (A). Let OA be an oracle that maps |i〉 | j〉 |0〉 to |i〉 |h(i, j)〉

∣∣Ai,h(i, j)
〉
, for any i, j ∈ [N],

where h(i, j) is the column index of the j-th nonzero entry in the i-th row of A 4. Let Oz be an oracle
that maps |0〉 to |z〉. Let x = A+z. Then |x̄〉 can be prepared to accuracy ε > 0 with Õ

(
d2κ2/ε

)
queries to OA, Oz and their inverses, and Õ

(
polylog(N) ·d2κ2/ε

)
additional one- and two-qubit

gates. Furthermore, ‖x‖ can be estimated to a relative error ε with Õ
(
d2κ2/ε2) queries to OA, Oz

and their inverses, and Õ
(
polylog(N) ·d2κ2/ε2) additional one- and two-qubit gates.

Proof. Suppose A has the spectral decomposition

A =
m

∑
j=1

λ j
∣∣v j〉〈v j

∣∣ , (4.24)

where λ j’s are the nonzero eigenvalues of A and 1/κ ≤ λ j ≤ 1, and
∣∣v j
〉
’s are the corresponding

eigenvectors of A. Since |z〉 ∈ C (A) = span(|v1〉 , |v2〉 , . . . , |vm〉), we can write it as

|z〉=
m

∑
j=1

c j
∣∣v j
〉

(4.25)

4If j is greater than the number of nonzero entries in the i-th row of A, then let h(i, j) :=− j and Ai,− j := 0.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 57

for some coefficients c j’s. Then we have

|x〉= A+ |b〉=
m

∑
j=1

c jλ
−1
j

∣∣v j
〉
. (4.26)

Now we use an improved version of HHL’s algorithm to produce the state |x̄〉 approximately.
This algorithm works as follows (for convenience, we assume that phase estimation is perfect in
the following description, and we will take the error of phase estimation into account later):

1. Starting with the state |0〉, we prepare the state |z〉 by calling Oz once.

2. We run phase estimation on the unitary operation eiA starting with the state |z〉, and get the
state

m

∑
j=1

c j
∣∣v j
〉∣∣λ j

〉
. (4.27)

3. We append a qubit in the state |0〉 and perform the controlled-rotation

|λ〉 |0〉 → |λ〉

C
λ
|1〉+

√
1−C2

λ2 |0〉

 (4.28)

on the last two registers, where C = Θ(1/κ). Then we obtain the state

m

∑
j=1

c j
∣∣v j
〉∣∣λ j

〉(C
λ j
|1〉+

√
1−C2

λ2
j
|0〉

)
. (4.29)

4. We measure the last qubit in the standard basis. Then, conditioned on seeing outcome 1, the
rest of the state is proportional to

m

∑
j=1

c jλ
−1
j

∣∣v j
〉∣∣λ j

〉
. (4.30)

Moreover, since 1/κ≤ λ j ≤ 1, this outcome occurs with probability

q :=C2
m

∑
j=1

c2
jλ
−2
j = Ω

(
1
κ2

)
. (4.31)

5. We uncompute the last register by undoing phase estimation. Then we get a state propor-
tional to

m

∑
j=1

c jλ
−1
j

∣∣v j
〉
= |x〉 . (4.32)

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 58

6. The above procedure only succeeds with probability Ω
(
1/κ2). By Corollary 11, we can

raise this probability to 1−O(ε) by repeating this procedure and its inverse O(κ log(1/ε))
times. This would ensure that we get a state ε-close to |x̄〉.

Now we take the error of phase estimation into consideration, and analyze the resource cost of
this algorithm. In step 2, we do not get λ j exactly, but instead we get some (random) λ̃ j ≈ λ j. Thus,
we only obtain the states in steps 3-5 approximately. In order to get a state ε-close to |x̄〉, we need
to make sure that |λ̃ j−λ j|= O

(
ε ·λ j

)
. Then, since 1/κ≤ λ j ≤ 1, we need to set the precision of

phase estimation to be Θ(ε/κ). This implies that we need to simulate eiAt for some t = O(κ/ε) in
phase estimation. To achieve this, the original HHL’s algorithm uses the method of [30] for sparse
Hamiltonian simulation. Here we use the most recent method of [32]. Compared to the previous
methods [4, 30, 50], this one not only scales better in the sparsity of the Hamiltonian, but also
scales only poly-logarithmically in the inverse error. So we can safely ignore the precision issue of
Hamiltonian simulation 5. Now, since A is d-sparse and ‖A‖ ≤ 1, by Theorem 1.1 of [32], we can
simulate eiAt for t = O(κ/ε) with Õ

(
d2κ/ε

)
queries to OA and its inverse, and Õ

(
logN ·d2κ/ε

)
additional one- and two-qubit gates. It follows that one iteration of steps 1-5 requires Õ

(
d2κ/ε

)
queries to OA, Oz and their inverses, and Õ

(
polylog(N) ·d2κ/ε

)
additional one- and two-qubit

gates. Since amplitude amplification requires O(κ log(1/ε)) repetitions of steps 1-5 and their
inverses, the total resource cost of this algorithm is Õ

(
d2κ2/ε

)
queries to OA, Oz and their inverses,

and Õ
(
polylog(N) ·d2κ2/ε

)
additional one- and two-qubit gates, as claimed.

The algorithm for estimating ‖x‖ is very similar to the one above. The only difference is that
now we run amplitude estimation (instead of amplitude amplification) to estimate q =C2 ‖x‖2. In
order to estimate ‖x‖ to a relative error ε, we need to esimate q to a relative error O(ε). This
means that amplitude estimation needs O(κ/ε) repetitions of steps 1-5 and their inverses, since
q = Ω(1/κ). By a similar analysis, we get that this algorithm requires Õ

(
d2κ2/ε2) queries to

OA, Oz and their inverses, and Õ
(
polylog(N) ·d2κ2/ε2) additional one- and two-qubit gates, as

claimed.

Now we are ready to state the main result of this section:

Proposition 37. Let G= (V,E,w) be a connected weighted graph given in the incidence list model.
Let s, t ∈ V be different, and let ε > 0. Then Rs,t can be estimated to a relative error ε with
probability at least 2/3 in Õ

(
polylog(n) ·d8c5/(φ10ε2)

)
quantum time, where n= |V |, d = deg(G),

c = maxe∈E we/mine∈E we and φ = φ(G).

Proof. Before describing our algorithm, let us make a few observations. First, by Lemma 34, we
can rescale the edge weights we’s to make λ2(L) ≥ 1/κ and λn(L) ≤ 1, where κ = O

(
cd/φ2).

Obviously, this rescaling does not change the difficulty of estimating Rs,t . Also, after this rescal-
ing, we have Ω(1) ≤ Rs,t ≤ O(κ). Second, let OL be an oracle for L that maps |i〉 | j〉 |0〉 to

5Taking the precision issue of Hamiltonian simulation into account only increases the complexity of our algorithm
by a poly-logarithmic factor

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 59

|i〉 | f (i, j)〉
∣∣Li, f (i, j)

〉
, for any i, j ∈ [n], where f (i, j) is the column index of the j-th nonzero en-

try in the i-th row of L 6. Then we can implement OL by calling O1, O2, O3 and their inverses
O(logn+d) times.

Now recall the equation

Rs,t = 〈χs,t |L+ |χs,t〉= 〈χs,t |v〉=
√

2‖|v〉‖ · 〈χs,t |v〉 , (4.33)

where |v〉= L+ |χs,t〉 is the electrical potential induced by the unit electrical s-t flow. So, in order
to estimate Rs,t to a relative error ε, it is sufficient to estimate both ‖v‖ and 〈χs,t |v〉 to a relative
error O(ε). Note that ‖|v〉‖= ‖L+ |χs,t〉‖= O(κ), since λ2(L)≥ 1/κ and ‖|χs,t〉‖=

√
2. Then, by

Rs,t = Ω(1), we have 〈χs,t |v〉= Ω(1/κ).
To estimate ‖|v〉‖ = ‖L+ |χs,t〉‖ =

√
2‖L+ |χs,t〉‖, we directly invoke the second algorithm in

Lemma 36. Since OL can be implemented in O(logn+d) time, all the nonzero eigenvalues of
L are between 1/κ and 1, and |χs,t〉 = (|s〉− |t〉)/

√
2 can be prepared in O(logn) time, Lemma

36 implies that we can estimate ‖|v〉‖ to a relative error O(ε) in Õ
(
polylog(n) ·d3κ2/ε2) =

Õ
(
polylog(n) ·d5c2/(φ4ε2)

)
time.

To estimate 〈χs,t |v〉, we invoke the first algorithm in Lemma 36 to prepare the state |v̄〉 approx-
imately. Then, we perform the measurement {|χs,t〉〈χs,t | , I−|χs,t〉〈χs,t |} on this state, and estimate
the probability of getting the outcome corresponding to |χs,t〉〈χs,t | by amplitude estimation. Since
〈χs,t |v〉= Ω(1/κ) and we want to estimate it to a relative error O(ε), we need to prepare the state
|v̄〉 to accuracy O

(
ε/κ2), and amplitude estimation requires O(κ/ε) repetitions of the “prepare-

and-measure” procedure and its inverse. Then, since OL can be implemented in O(logn+d) time
and all the nonzero eigenvalues of L are between 1/κ and 1, Lemma 36 implies that this takes
Õ
(
polylog(n) ·d3κ5/ε2)= Õ

(
polylog(n) ·d8c5/(φ10ε2)

)
time.

Overall, the time complexity of this algorithm is Õ
(
polylog(n) ·d8c5/(φ10ε2)

)
, as claimed.

Remark 38. Ambainis [9] has introduced a technique called variable-time amplitude amplification
and used it to improve the dependence of HHL’s algorithm on the (pseudo) condition number κ.
Using his technique, we can also slightly improve the dependence of the algorithm in Proposition
37 on the parameters d, c and φ. But even this improved version is still worse than than the (main)
algorithm described in the next section.

4.6 A Faster Quantum Algorithm for Estimating Effective
Resistances

In this section, we present a faster quantum algorithm for approximating the effective resistance
between two given vertices in a connected weighted graph. This algorithm does not need to solve
linear systems. Instead, it is based on an observation about the kernel of the weighted incidence

6If j is larger than the number of nonzero entries in the i-th row of L, then let f (i, j) :=− j and Li,− j := 0.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 60

matrix of a slightly modified graph, and it crucially relies on implementing the projection onto
this subspace. This is achieved by running phase estimation on a quantum walk operator. As
a by-product, (a slight variant of) this algorithm also produces a quantum state approximately
proportional to the electrical s-t flow, which might be of independent interest.

Theorem 39. Let G = (V,E,w) be a connected weighted graph given in the incidence list model.
Let s, t ∈ V be different, and let ε > 0. Then Rs,t can be estimated to a relative error ε with

probability at least 2/3 in Õ
(

logn ·min(d3/2c3/2,d2c)/(φ2ε)
)

quantum time, where n = |V |, d =

deg(G), c = maxe∈E we/mine∈E we and φ = φ(G).

Proof. Before describing this algorithm, let us make a few modifications to the graph G=(V,E,w).
First, by Lemma 34, we can rescale the edge weights we’s so that λ2(L) ≥ 1/κ and λn(L) ≤ 1,
where κ = Θ

(
dc/φ2). Specifically, we can achieve this by making a := 1/(dc)≤ we ≤ b := 1/d.

Obviously, this rescaling does not change the difficulty of estimating Rs,t . Also, in this case, we
get Ω(1)≤ Rs,t ≤ O(κ).

Next, we add an edge between s and t, and label it by 0, and set its weight to be 1. Let
G′ = (V,E ′,w) be this modified graph, where E ′ = E ∪{0}, we remains the same for e ∈ E and
w0 = 1 7. Now we orient each edge e ∈ E arbitrarily, and orient the edge 0 as t→ s. For any object
F (such as B, W , L, E+(v), E−(v), Oi) defined for G, let F ′ be the analog of F defined for G′.
That is, for example, L′ is the Laplacian of G′, and O′1, O′2, O′3 are the analog of O1, O2, O3 for G′,
respectively. Note that O′i can be implemented by calling Oi only O(1) times, for i ∈ [3]

Let M′ be the weighted incidence matrix of G′ defined as follows:

M′ := ∑
e∈E ′
|ψe〉〈e| , (4.34)

where
|ψe〉 :=

√
we
(∣∣e+〉− ∣∣e−〉) , ∀e ∈ E ′. (4.35)

In particular, we have
|ψ0〉 := χs,t = |s〉− |t〉 . (4.36)

Note that
M′ = B′W ′1/2. (4.37)

Now consider Ker(M′), which is a subspace of H := span(|e〉 : e ∈ E ′). One can easily see
that

Ker
(
M′
)
= span(g(f) : f is an s− t flow in G) (4.38)

where

g(f) := |f| |0〉+ ∑
e∈E

f(e)
√

we
|e〉 . (4.39)

7If G already contains an edge between s and t, then G′ will contain two edges between s and t. Although G′ is in
fact a multigraph in this case, we can still define its Laplacian, incidence matrix, etc. in the natural way.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 61

Namely, the vectors in Ker(M′) correspond to the s-t flows (of arbitrary values) in G 8

Now let Π be the projection onto Ker(M′). We claim that

Lemma 40.

Π |0〉 ∝ |Φ〉 := g(i) = |0〉+ ∑
e∈E

i(e)
√

we
|e〉 , (4.40)

where i is the unit electrical s-t flow in G.

Thus, if we prepare the state |0〉 and project it onto the subspace Ker(M′), we would obtain a
state corresponding exactly to the electrical s-t flow (of some value) in G!

We will give two proofs of Lemma 40. The first proof is analytical and more formal. The
second one is geometric and more intuitive.

Proof 1 of Lemma 40. It is sufficient to show that for any |Ψ〉 ∈Ker(M′), if |Ψ〉⊥|Φ〉, then |Ψ〉⊥|0〉.
Let |Ψ〉 ∈ Ker(M′) be such that |Ψ〉 6⊥ |0〉. After appropriate rescaling of |Ψ〉, we can assume

|Ψ〉= g(f) = |0〉+ ∑
e∈E

f(e)
√

we
|e〉 (4.41)

for some unit s-t flow f in G. Now, suppose

|Ψ〉 ⊥ |Φ〉= g(i) = |0〉+ ∑
e∈E

i(e)
√

we
|e〉 . (4.42)

It follows that

−1 = ∑
e∈E

f(e)i(e)
we

. (4.43)

We will show that this implies the existence of some unit s-t flow f′ 6= i in G such that E(f′)<
E(i). But this is contradictory to the fact that i has the minimum energy among all unit s-t flows!
So |Ψ〉 6⊥ |Φ〉.

Specifically, let f′= βf+(1−β)i, where β∈ (0,1) is a parameter to be chosen later. Obviously,
f′ is a valid unit s-t flow for any β. Now consider the energy of f′.

E(f′) = ∑
e∈E

(βf(e)+(1−β)i(e))2

we
(4.44)

= β
2
∑
e∈E

f(e)2

we
+(1−β)2

∑
e∈E

i(e)2

we
+2β(1−β) ∑

e∈E

f(e)i(e)
we

(4.45)

< β
2E(f)+(1−β)2E(i) (4.46)

8In particular, we allow s-t flows of value 0 in G. These flows are linear combinations of directed cycles in G.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 62

Let γ =
E(f)
E(i)

. Then let β =
1

1+ γ
. Then we get

E(f′)< (β2
γ+(1−β)2)E(i) =

γ

1+ γ
E(i)< E(i), (4.47)

as desired.

Proof 2 of Lemma 40. Consider the geometric picture shown in Fig.4.2.

Figure 4.2: The geometrical picture for Proof 2 of Lemma 40.

Let O be the origin of H = span(|e〉 : e ∈ E ′), and let X be the point such that
−→
OX = |0〉. Then

L1 := Ker(M′) can be viewed as a hyperplane in the space H . Moreover, let L2 = {|Ψ〉 : 〈0|Ψ〉=
1}. Namely, for any |ψ〉 ∈ L2, we have |Ψ〉 = |0〉+ |Ψ′〉 for some vector |Ψ′〉⊥|0〉. So L2 is the
hyperplane which is orthogonal to the vector

−→
OX and touches the point X .

Consider L3 := L1∩L2. One can easily see that

L3 =

{
g(f) = |0〉+ ∑

e∈E

f(e)
√

we
|e〉 : f is a unit s− t flow in G

}
. (4.48)

Namely, the points in L3 corresponds to the unit s-t flows in G. Furthermore, for any Y ′ ∈ L3, if
Y ′ corresponds to the s-t flow f, then we have ‖

−→
OY ′‖2 = 1+E(f) and ‖

−−→
XY ′‖2 = E(f), because

−→
OX = |0〉⊥

−−→
XY ′.

Now let Z be the point in L1 such that
−→
OZ = Π |0〉. Let us extend the vector

−→
OZ until it meets

L3, and let Y be the intersection point. We claim that
−→
OY = g(i) = |Φ〉. Namely, Y corresponds

exactly to the unit electrical s-t flow i.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 63

Recall that Z is the unique point in L1 such that ‖−→XZ‖ is minimized. For any Y ′ ∈ L3, let Z′ be
the unique point on the line OY ′ that is closest to X . Then Z is the optimal Z′ among all choices of
Y ′. Now, suppose Y ′ corresponds to unit s-t flow f. Then we have ‖−→OX‖= 1, ‖

−→
OY ′‖2 = 1+E(f),

‖
−−→
XY ′‖2 = E(f). Since

−−→
XZ′⊥

−→
OY ′, we can get ‖

−−→
XZ′‖ =

√
E(f)/(1+E(f)). In order to minimize

‖
−−→
XZ′‖, we need to minimize E(f). So Y must correspond to i, since it is the unit s-t flow with the

minimum energy.

Now we describe our strategy for estimating Rs,t . Let
∣∣Φ〉 = |Φ〉/‖|Φ〉‖. Lemma 40 implies

that there exists an orthonormal basis {|Φ〉 , |Ψ1〉 , . . . , |Ψl〉} for Ker(M′) such that |Ψi〉⊥|0〉 for
any i. Then, by

Π =
∣∣Φ〉〈Φ∣∣+∑

i
|Ψi〉〈Ψi| , (4.49)

we obtain
p := 〈0|Π |0〉= |

〈
0|Φ
〉
|2. (4.50)

Meanwhile, note that

‖|Φ〉‖2 = 1+ ∑
e∈E

i(e)2

we
= 1+Rs,t . (4.51)

So we have
|
〈
0|Φ
〉
|2 = 1

1+Rs,t
. (4.52)

Combining Eq.(4.50) and Eq.(4.52) yields

Rs,t =
1
p
−1. (4.53)

Thus, Rs,t can be inferred from p. To get to know p, we perform the projective measurement
{Π, I−Π} on the state |0〉, and estimate the probability of seeing the outcome corresponding to Π.
Note that by Ω(1)≤ Rs,t ≤ O(κ), we have Ω(1/κ)≤ p≤ O(1). So, in order to estimate Rs,t to a
relative error ε, we need to estimate p to a relative error O(ε).

Lemma 41. The measurement {Π, I−Π} can be implemented to accuracy δ> 0 in Õ(polylog(1/δ)·
logn ·min(dc,d3/2c1/2)/φ) time 9.

Since this algorithm depends only poly-logarithmically on the inverse accuracy 1/δ, from now
on we will assume that {Π, I−Π} is implemented perfectly (taking the accuracy issue into account
only increases the complexity of our algorithm by a poly-logarithmic factor).

Our algorithm works as follows:

1. We perform the measurement {Π, I−Π} on the state |0〉 by using the algorithm in Lemma
41.

9Recall that we identify the measurement {Π, I −Π} as the operation E(ρ) := |0〉〈0| ⊗ΠρΠ + |1〉〈1| ⊗ (I −
Π)ρ(I−Π).

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 64

2. We run amplitude estimation on step 1 to estimate p = 〈0|Π |0〉. Since p = Ω(1/κ), and
we want to estimate p to a relative error O(ε), amplitude estimation requires O

(√
κ/ε
)

repetitions of step 1 and its inverse.

3. Let p̃ be the estimate of p. Then we return R̃s,t := 1/p̃−1 as the estimate of Rs,t .

By Lemma 41, this algorithm has time complexity

Õ
(
(
√

κ/ε) · logn ·min(dc,d3/2c1/2)/φ

)
= Õ

(
logn ·min(d3/2c3/2,d2c)/(φ2

ε)
)
, (4.54)

(recall that κ = Θ
(
dc/φ2)), as claimed.

4.6.1 Proof of Lemma 41
Proof of Lemma 41. To implement the measurement {Π, I−Π}, we generalize the previous method
for evaluating the span program for st-connectivity [24]. Namely, we map Ker(M′) to the −1
eigenspace of a quantum walk operator by using the spectral lemma.

Specifically, we will find two matrices A, B such that they have the same number of rows and
each of them has orthonormal columns, and M′′ := A†B = Y M′ for some invertible matrix Y . It
is easy to see that Ker(M′′) = Ker(M′). Then, by Lemma 17, we know that the −1 eigenspace
of U(A,B) = RefB ·RefA is

(
C (A)∩C (B)⊥

)
⊕
(

C (A)⊥∩C (B)
)

. Note that C (A)⊥ ∩ C (B) =

B(Ker(M′′)) = B(Ker(M′)), and C (A)∩C (B)⊥ is orthogonal to C (B). This implies that, for any
state |ψ〉 ∈ H = span(|e〉 : e ∈ E ′), we can simulate the projection of |ψ〉 onto Ker(M′) by using
the projection of B(|ψ〉) onto the −1 eigenspace of U(A,B) (this simulation is valid since B is an
isometry). Then, to project a state (in B(H)) onto the −1 eigenspace of U(A,B), we run phase
estimation on U(A,B) and check whether the measured eigenvalue is close to −1 or not.

Now we describe A and B. Let m = |E|. We will find two set of unit vectors {|av〉 : v ∈V} ⊂
Rm+1 and {|be〉 : e ∈ E ′} ⊂ Rn such that for any v ∈V and e ∈ E ′,

〈av|e〉〈v|be〉=



√
we

2d̃eg
′
(v)

, if v = e+,

−
√

we

2d̃eg
′
(v)

, if v = e−,

0, otherwise.

(4.55)

Then we let
A := ∑

v∈V
|av〉 |v〉〈v| ,

B := ∑
e∈E ′
|e〉 |be〉〈e| .

(4.56)

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 65

This implies that

M′′ = A†B =
1√
2
(D′)−1/2M′, (4.57)

where D′ = diag
(

d̃eg
′
(v)
)

v∈V
is invertible. So Ker(M′′) = Ker(M′).

The |av〉’s and |be〉’s are defined as follows. For any v ∈V , let

|av〉 :=
1√

d̃eg
′
(v)

∑
e∈E ′(v)

√
we |e〉 , (4.58)

and for any e ∈ E ′, let

|be〉 :=
1√
2

(∣∣e+〉− ∣∣e−〉) . (4.59)

Obviously, the |av〉’s and |be〉’s are unit vectors. Also, one can check that they satisfy Eq.(4.55), as
desired.

Now, to (effectively) implement the measurement {Π, I −Π}, we run phase estimation on
U(A,B) = RefB ·RefA starting with the state B |0〉= |0〉 |b0〉, and check the measured eigenvalue is
(∆/3)-close to −1 or not, where ∆ is the eigenvalue gap around −1 of U(A,B). Hence, we need to
run phase estimation with precision O(∆). Let TA and TB be the time for implementing RefA and
RefB respectively. Then the running time of this algorithm is Õ((TA +TB)/∆).

Lemma 42. The eigenvalue gap ∆ around −1 of U(A,B) is Ω

(
φ√
dc

)
.

Lemma 43. RefA can be implemented to accuracy δ> 0 in Õ
(

logn ·min(
√

dc,d) ·polylog((1/δ))
)

time.

Lemma 44. RefB can be implemented in Õ(logn) time.

It follows immediately from Lemma 42, Lemma 43 and Lemma 44 that our algorithm for
implementing {Π, I−Π} to accuracy δ > 0 takes Õ

(
polylog(1/δ) · logn ·min(dc,d3/2c1/2)/φ

)
time, as claimed.

Proof of Lemma 42. Let ∆1 be the singular value gap around 0 of D(A,B) = A†B, and let ∆2 be the
eigenvalue gap around 0 of D(A,B)D(A,B)†. Obviously ∆1 =

√
∆2.

We claim that ∆=Θ(∆1) and ∆2 =Ω(1/κ). Then it follows that ∆=Ω
(
1/
√

κ
)
=Ω

(
φ/
√

dc
)

.

First, we prove ∆=Θ(∆1). Note that the eigenvalue closest to−1 of U(A,B) is ei(π±γ) for some
γ = Θ(∆) 10. Then, by Lemma 17, the singular value closest to 0 of D(A,B) is cos(π/2− γ/2) =
sin(γ/2) = Θ(∆).

Next, we prove ∆2 = Ω(1/κ). Note that by Eq.(4.57), we have

D(A,B)D(A,B)† =
1
2
(D′)−1/2M′(M′)†(D′)−1/2 =

1
2
(D′)−1/2L′(D′)−1/2 =

1
2

L ′, (4.60)

10 Lemma 17 implies that the spectrum of U(A,B) is symmetric about the real line.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 66

where
L′ = M′(M′)† = |ψ0〉〈ψ0|+L < L. (4.61)

Meanwhile, for any v ∈V , we have a = 1/(dc)≤ d̃eg(v)≤ bd = 1. Since d̃eg
′
(v) = d̃eg(v)+1 for

v ∈ {s, t} and d̃eg
′
(v) = d̃eg(v) for other v’s, we obtain d̃eg(v) ≤ d̃eg

′
(v) ≤ O(dc) · d̃eg(v). This

implies
D 4 D′ 4 O(dc) ·D. (4.62)

Then, by Eqs.(4.61),(4.62) and Chegeer’s inequality, we get

λ2(L ′) = Ω

(
λ2(L)

dc

)
= Ω

(
φ2

dc

)
= Ω

(
1
κ

)
. (4.63)

Hence, ∆2 = Ω(1/κ), as desired.

Proof of Lemma 43. Let Q1 be the unitary operation that maps |0〉 |v〉 to |av〉 |v〉 for v ∈V , and let
R1 be the reflection about span(|0〉 |v〉 : v ∈V). Then

RefA = Q1R1Q†
1. (4.64)

Obviously, R1 can be implemented in Õ(logn) time. So it remains to show that Q1 can be imple-
mented to accuracy O(δ) in the claimed time.

We give two methods for implementing Q1:

• Method 1: Fix any v ∈V . Consider the following procedure.

1. Starting with |v〉 |0〉, we prepare the state

|v〉

(
1√

deg′(v)
∑

e∈E ′(v)
|e〉

)
(4.65)

by calling O′1 and its inverse O(logn) times (we can determine deg′(v) exactly by
calling O′1 and its inverse Õ(logn) times).

2. We append a qubit in the state |0〉 and call O′3, obtaining the state

|v〉

(
1√

deg′(v)
∑

e∈E ′(v)
|e〉 |we〉

)
. (4.66)

3. We append another qubit in the state |0〉 and perform the controlled-rotation:

|we〉 |0〉 → |we〉
(√

we |1〉+
√

1−we |0〉
)
. (4.67)

Note that since we ≤ 1 for any e ∈ E ′, this is a valid unitary operation.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 67

4. Now, if we measure the last qubit, then conditioned on the outcome being 1, the rest of
the state would be

|v〉

 1√
d̃eg
′
(v)

∑
e∈E ′(v)

√
we |e〉 |we〉

 . (4.68)

Furthermore, since we ≥ 1/(dc) for any e ∈ E ′, the probability of seeing outcome 1 is
at least 1/(dc).

5. We uncompute |we〉 by calling the inverse of O′3, obtaining the state

|v〉

 1√
d̃eg
′
(v)

∑
e∈E ′(v)

√
we |e〉

 |0〉= |v〉 |av〉 |0〉 . (4.69)

6. This procedure succeeds with probability Ω(1/(dc)). By Corollary 11, we can raise
this probability to 1−O(δ) by repeating this procedure and its inverse Õ

(√
dc log(1/δ)

)
times. This would ensure that we have implemented O1 to accuracy O(δ).

Clearly, this implementation of Q1 takes Õ
(√

dc · logn · log(1/δ)
)

time.

• Method 2: We will give a circuit that maps |v〉 |0〉 to |v〉 |ϕv〉 such that ‖|av〉− |ϕv〉‖= O(δ),
for any v ∈V . This would ensure that we have implemented Q1 to accuracy O(δ).

Pick an integer M = Θ
(
d/δ2). Fix any v ∈ V . Let r = deg′(v) and let e1,e2, . . . ,er be the

incident edges of v. Then, for any i ∈ [r], let Sv,i = ∑
i
j=1 we j . Also, let Sv,0 = 0. Note that

Sv,r = d̃eg
′
(v).

Next, for 0 ≤ i ≤ r, let Mv,i = dMSv,i/Sv,re. Then, let Zv,i = Mv,i−Mv,i−1, for i ∈ [r]. Note
that Mv,r = M = ∑

r
i=1 Zv,i.

Finally, we define

|ϕv〉=
r

∑
i=1

√
Zv,i

M
|ei〉 . (4.70)

Then, by construction, we have∣∣∣∣∣ wei

d̃eg
′
(v)
−

Zv,i

M

∣∣∣∣∣= O
(

1
M

)
, ∀i ∈ [r]. (4.71)

This implies that

‖|av〉− |ϕv〉‖= O

(√
d
M

)
= O(δ) , (4.72)

as desired.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 68

Now we describe how to map |v〉 |0〉 to |v〉 |ϕv〉. For any k ∈ [M], let hv(k) = (j, t) if Mv, j−1 <
k≤Mv, j and k = Mv, j−1+ t. Note that for any k ∈ [M], a unique (j, t) satisfies this condition.
So the function hi is well-defined. Consider the following procedure:

1. We map |v〉 |0〉 to |v〉 |r〉 by calling O′1 and its inverse Õ(logn) times.

2. We create the state

|v〉 |r〉(
r⊗

j=1

∣∣we j

〉
) (4.73)

by calling O′1, O′3 and their inverses Õ(d) times.

3. We compute the Mv, j’s for all j ∈ [r], obtaining the state

|v〉 |r〉(
r⊗

j=1

∣∣we j

〉
)(

r⊗
j=1

∣∣Mv, j
〉
) (4.74)

4. We append an ancilla register in the state 1√
M ∑

M
k=1 |k〉, obtaining the state

|v〉 |r〉(
r⊗

j=1

∣∣we j

〉
)(

r⊗
j=1

∣∣Mv, j
〉
)(

1√
M

M

∑
k=1
|k〉). (4.75)

5. We compute hv(k) for each k ∈ [M], obtaining the state

|v〉 |r〉(
r⊗

j=1

∣∣we j

〉
)(

r⊗
j=1

∣∣Mv, j
〉
)

(
1√
M

∑
M
k=1 |hv(k)〉

)
= |v〉 |r〉(

r⊗
j=1

∣∣we j

〉
)(

r⊗
j=1

∣∣Mv, j
〉
)

(
1√
M

∑
r
j=1 ∑

Zv, j
t=1 | j, t〉

)
.

(4.76)

6. We perform the unitary operation that maps | j〉

(
1√
Zv, j

Zv, j

∑
t=1
|t〉

)
to | j〉 |0〉 on the last

register, obtaining the state

|v〉 |r〉(
r⊗

j=1

∣∣we j

〉
)(

r⊗
j=1

∣∣Mv, j
〉
)

(
r

∑
j=1

√
Zv, j

M
| j,0〉

)
. (4.77)

7. We convert this state into

|v〉 |r〉(
r⊗

j=1

∣∣we j

〉
)(

r⊗
j=1

∣∣Mv, j
〉
)

(
r

∑
j=1

√
Zv, j

M

∣∣e j,0
〉)

. (4.78)

by calling O′1 once.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 69

8. We uncompute the Mv, j’s by undoing step 3, then uncompute the we j’s by undoing step
2, and finally uncompute r by undoing step 1. Eventually, we obtain the state

|ϕv〉= |v〉
√

Zv, j

M

∣∣e j
〉
. (4.79)

Overall, this circuit takes Õ(d · logn ·polylog(M)) = Õ(d · logn ·polylog(1/δ)) time.

We may choose to use method 1 or 2 to implement Q1 (depending on which of d and c is
larger). So Q1 can be implemented in the claimed time.

Proof of Lemma 44. Let Q2 be the unitary operation that maps |e〉 |0〉 to |e〉 |be〉 for e ∈ E ′, and let
R2 be the reflection about span(|e〉 |0〉 : e ∈ E ′). Then

RefB = Q2R2Q†
2. (4.80)

Obviously, R2 can be implemented in Õ(logn) time. For Q2, it can be implemented as follows: for
any e ∈ E ′, we do

|e〉 |0〉 |0〉 |0〉 → |e〉
∣∣e+〉∣∣e−〉 |0〉 (4.81)

→ |e〉
∣∣e+〉∣∣e−〉 1√

2
(
∣∣e+〉− ∣∣e−〉) (4.82)

→ |e〉 |0〉 |0〉 1√
2
(
∣∣e+〉− ∣∣e−〉) (4.83)

= |e〉 |0〉 |0〉 |be〉 . (4.84)

The first and last step can be done by calling O′2 and (O′2)
−1 respectively. The second step can be

implemented in Õ(logn) time. So Q2 can be implemented in Õ(logn) time.

4.7 Generating Electrical Flows as Quantum States
The algorithm in Theorem 39 can be slightly modified to produce a quantum state approximately
proportional to

|i〉= ∑
e∈E

i(e) |e〉 , (4.85)

i.e. the unit electrical s-t flow in G. Recall that we have shown

Π |0〉 ∝ |Φ〉= |0〉+ ∑
e∈E

i(e)
√

we
|e〉 . (4.86)

The algorithm in Theorem 39 uses amplitude estimation to estimate ‖Π |0〉‖ (from which Rs,t can
be inferred). Now, we use amplitude amplification to approximately obtain the state

∣∣Φ〉. Then,
we can transform this state into a state close to

∣∣ī〉. Formally, we have the following result:

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 70

Theorem 45. Let G = (V,E,w) be a connected weighted graph given in the incidence list model.
Let s, t ∈ V be different, let i be the unit electrical s-t flow in G, and let ε > 0. Then

∣∣ī〉 can

be prepared to accuracy ε > 0 in Õ
(

logn ·polylog(1/ε) ·min(d3/2c2,d2c3/2)/φ2
)

time, where
n = |V |, d = deg(G), c = maxe∈E we/mine∈E we and φ = φ(G).

Proof. We continue to use the notation introduced in the proof of Theorem 39. Also, we still
rescale the edge weights to make 1/(dc)≤we≤ 1/d and Ω(1)≤Rs,t ≤O(κ), where κ=Θ

(
dc/φ2).

This rescaling does not change the difficulty of preparing
∣∣i〉.

Lemma 46.
∣∣Φ〉 can be prepared to accuracy δ> 0 in Õ(logn·polylog(1/δ)·min(d3/2c3/2,d2c)/φ2)

time.

Proof. Consider the following algorithm:

1. We perform the measurement {Π, I−Π} on the state |0〉 by using the algorithm in Lemma
41.

2. The probability of seeing the outcome corresponding to Π in step 1 is Ω(1/κ). By Corollary
11 we can raise this probability to 1−O(δ) by repeating step 1 and its inverse O

(√
κ log(1/δ)

)
times. This ensures that we obtain a state O(δ)-close to

∣∣Φ〉.
By Lemma 41, this algorithm has running time

Õ
(√

κ ·polylog(1/δ) · logn ·min(dc,d2c)/φ
)
= Õ

(
logn ·polylog(1/δ) ·min(d3/2c3/2,d2c)/φ

2
)
,

(4.87)
as claimed 11.

Since the algorithm in Lemma 46 depends only poly-logarithmically on the inverse error, from
now on we assume that

∣∣Φ〉 can be prepared perfectly (taking the error issue into account only
increases the complexity of our algorithm for preparing

∣∣ī〉 by a poly-logarithmic factor).
Consider the following algorithm for preparing

∣∣ī〉:
1. We use the algorithm in Lemma 46 to prepare the state

∣∣Φ〉= 1√
1+Rs,t

(
|0〉+ ∑

e∈E

i(e)
√

we
|e〉

)
. (4.88)

11A subtle issue is that, this algorithm actually produces an approximation of B
∣∣Φ〉 instead of

∣∣Φ〉, since we are
working in the space B(H). But we can easily convert this state into an approximation of

∣∣Φ〉 by running Q−1
2 (in the

proof of Lemma 44) which maps |e〉 |be〉 to |e〉 |0〉. This extra step takes only Õ(logn) time and hence is negligible.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 71

2. We perform the measurement {|0〉〈0| , I− |0〉〈0|} on this state. Then, conditioned on the
outcome corresponding to I−|0〉〈0|, we would get the state∣∣∣Φ′〉 :=

1√
Rs,t

(
∑
e∈E

i(e)
√

we
|e〉

)
(4.89)

Moreover, this outcome occurs with probability

p1 :=
Rs,t

1+Rs,t
= Ω(1) , (4.90)

since Rs,t = Ω(1).

3. We append a qubit in the state |0〉 and calling O3 once, obtaining the state

1√
Rs,t

(
∑
e∈E

i(e)
√

we
|e〉 |we〉

)
. (4.91)

4. We append another qubit in the state |0〉 and perform the controlled-rotation:

|we〉 |0〉 → |we〉
(√

dwe |1〉+
√

1−dwe |0〉
)
. (4.92)

Note that this is a valid unitary operation since 1/c≤ dwe ≤ 1, for any e. Then we measure
the last qubit. Conditioned on seeing outcome 1, the rest of the state becomes proportional
to

∑
e∈E

i(e) |e〉 |we〉 . (4.93)

Moreover, this outcome occurs with probability

p2 =
d

Rs,t
· ‖i‖2 = Ω(1/c) , (4.94)

since dwe ≥ 1/c for any e.

5. We uncompute |we〉 by calling the inverse of O3, and obtain the state
∣∣i〉.

6. The above procedure succeeds with probability p1 p2 =Ω(1/c). By Corollary 11, we can en-
hance this probability to 1−O(ε) by repeating steps 1-5 and their inverses O(

√
c log(1/ε))

times. This ensures that we obtain a state O(ε)-close to
∣∣ī〉.

By Lemma 46, this algorithm takes Õ
(

logn ·polylog(1/ε) ·min(d3/2c2,d2c3/2)/φ2
)

time, as
claimed.

Remark 47. We can estimate ‖i‖ by combining the algorithm in Theorem 39 and a variant of
the algorithm in Theorem 45. Specifically, we can estimate p2 in the proof of Theorem 45 using
amplitude estimation (instead of amplitude amplification). We can also estimate Rs,t using the
algorithm in Theorem 39. Then ‖i‖ can be inferred from them using Eq.(4.94). The running time
of this algorithm is polynomial in logn, d, c, 1/φ and the inverse error.

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 72

4.8 Lower Bound on the Complexity of Effective Resistance
Estimation

So far, we have presented two quantum algorithms for approximating Rs,t for any connected
weighted graph G = (V,E,w) and any s, t ∈ V . Both of them have time complexity polynomial
in logn, d, c, 1/φ and 1/ε, where n = |V |, d = deg(G), c = maxe∈E we/mine∈E we, φ = φ(G) and ε

is the relative error. In particular, the polynomial dependence on the inverse conductance (i.e. 1/φ)
is interesting. One may wonder whether this dependence is necessary. In other words, is there a
quantum algorithm with poly(logn,d,c, log(1/φ),1/ε) time complexity for this task? If so, then
we could estimate effective resistances super-fast in general and it might have some immediate im-
plications to other problems. It turns out that no such algorithm exist, as implied by the following
theorem:

Theorem 48. For any n ∈ N, there exists a connected weighted graph G = (V,E,w) and two
vertices s, t ∈V such that |V |= 10n+2, deg(G) = 3, we = 1 for any e ∈ E, φ(G) = Θ(1/n), and,
assuming G is given in the incidence list model, any quantum algorithm that estimates Rs,t to a
relative error 1/10 with probability at least 2/3 must make Ω(n) queries.

Proof. We will build a reduction from PARITY to effective resistance estimation. PARITY is the
problem that, given an n-bit string x = x1x2 . . .xn, determine the value of PARITY(x) := x0⊕ x1⊕
. . .⊕ xn. We will map the string x to a graph G(x) with two distinguished vertices s, t such that

• If PARITY(x) = 0, then Rs,t ≤ n;

• If PARITY(x) = 1, then Rs,t ≥ 4n.

Hence, by estimating Rs,t to a relative error 1/10, we can distinguish these two cases and solve
PARITY. Since PARITY has Ω(n) bounded-error quantum query complexity [18, 65], any quan-
tum algorithm that estimates Rs,t to a relative error 1/10 with probability at least 2/3 must make
Ω(n) queries. We remark that similar constructions have been used to prove the lower bounds on
the query complexity of sparse Hamiltonian simulation [30, 32].

Now we describe the construction of the graph G(x). To build it, we start with 10n+2 vertices,
which are labelled by (i,a) for i∈ [n+1] and a∈ {0,1}, and [j,b] for j ∈ [4n] and b∈ {0,1}. Then
we add the following edges, and set the weight of each edge to be 1:

• For any i ∈ [n] and a ∈ {0,1}, we add an edge ((i,a),(i+ 1,a⊕ xi)). Namely, if xi = 0,
then we add the edges ((i,0),(i+ 1,0)) and ((i,1),(i+ 1,1)); otherwise, we add the edges
((i,0),(i+1,1)) and ((i,1),(i+1,0)).

• For any j ∈ [4n−1] and b ∈ {0,1}, we add an edge ([j,b], [j+1,b]). Moreover, we add the
edges ((1,0), [1,0]), ((1,0), [1,1]), ([4n,0],(n+1,0)) and ([4n,1],(n+1,1)).

Namely, to create the graph G(x), we concatenate n gadgets, each of which is of parallel-type
or crossing-type depending on the value of xi. Then, we add two “long” paths between (1,0) and

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 73

(n+ 1,0) and between (1,0) and (n+ 1,1), respectively. For example, Fig.4.3 shows the graph
G(x) for the string x = 11010. Note that by construction, G(x) is always connected.

Figure 4.3: The graph G(x) for the string x = 11010.

Now, let s = (1,0) and t = (n+ 1,0). Observe that if PARITY(x) = 0, then there is a path
of length n from s to t that involves only the first kind of edges. That is, s = (1,0)→ (2,x1)→
(3,x1⊕ x2)→ ··· → (n+ 1,⊕n

i=1xi) = (n+ 1,0) = t. On the other hand, if PARITY(x) = 1, this
path would lead to (n+1,1) instead. So if PARITY(x) = 0, there exist two disjoint paths between
s and t, one with length n and another with length 4n+1. This implies that Rs,t ≤ n. On the other
hand, if PARITY(x) = 1, then there is a unique path between s and t with length 4n+1. Thus, we
have Rs,t ≥ 4n in this case.

Clearly, we have deg(G(x)) = 3. Moreover, we have φ(G(x)) = Θ(1/n). To see this, consider
the cut that separates the vertices {(i,a) : i≤ n/2,a ∈ {0,1}}∪{[i,b] : i≤ 2n,b ∈ {0,1}} from the
rest. Obviously, this cut has conductance O(1/n). Meanwhile, since G(x) is connected and it has
Θ(n) edges, we have φ(G(x)) = Ω(1/n). Therefore, G(x) satisfies all the desired conditions. This
concludes the proof.

4.9 Discussion
As mentioned before, the theory of electrical networks has provided many valuable insights into
classical computation. Its implication to quantum computation, however, remains mostly unclear.
We do know that quantum query complexity can be upper bounded by some function of the ef-
fective resistance between certain vertices in the learning graph [20, 22]. Apart from this, not
much is known. It is an exciting direction to explore the potential of electrical flows for designing

CHAPTER 4. ELECTRICAL FLOWS AND QUANTUM ALGORITHMS 74

fast quantum algorithms. In particular, it would be interesting to know whether our algorithms for
estimating effective resistances and generating electrical flows (as quantum states) can be utilized
to achieve significant quantum speedup for other problems.

Many previous quantum algorithms for graph problems are based on searching (via quantum
walk or amplitude amplification), and hence are combinatorial in spirit. Our algorithms, on the
other hand, rely on analyzing the algebraic properties of the matrices associated with graphs, and
hence are algebraic in nature. It would be interesting to devise more quantum algorithms in similar
way. In particular, spectral graph theory [56] has been very useful for designing classical approx-
imation algorithms for NP-complete problems (e.g. [33, 127]). It is worth studying whether they
can help the development of quantum algorithms as well.

75

Chapter 5

Quantum Algorithms for Curve Fitting

5.1 Introduction
Curve fitting [13], also known as regression analysis in statistics, is the process of constructing
a (simple continuous) curve that has the best fit to a series of data points (e.g. see Fig.5.1). It
can be used to understand the relationships among two or more variables, or to infer the values of
a function where no data are available. It also provides an efficient means of data compression.
Therefore, it has found numerous applications in science, engineering and economics. How to
quickly fit a large amount of data into a simple model has become an important problem for many
tasks.

Figure 5.1: An example of curve fitting.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 76

Least squares [37] is one of the most popular methods of curve fitting. This method minimizes
the sum of squared residuals, where a residual is the difference between an observed value and the
value predicted by a model. Formally, we need to find the parameter vector θ that minimizes the
quantity ‖Fθ−y‖2, where F is the design matrix, and y is the response vector. The solution is
known to be

θ̂ = (FTF)−1FTy. (5.1)

To compute this solution, the best classical algorithm needs to take poly(n,d) time, where n is the
number of data points to be fitted, and d is the dimension of feature vectors (namely, F is an n×d
matrix).

Recently, Harrow, Hassidim and Lloyd (HHL) [78] proposed a fast quantum algorithm for
solving systems of linear equations (but in an unconventional sense). Later, building upon this
work, Wiebe, Braun and Lloyd (WBL) [132] gave quantum algorithms for curve fitting in the case
that F is sparse. Specifically, they gave a quantum algorithm for estimating the fit quality, and
also a quantum algorithm for computing the best-fit parameters θ̂, but in an unconventional sense.
Namely, under the assumption that there exists a high-quality fit 1 and the state proportional to
y can be prepared in polylog(n) time, their algorithm produces a quantum state approximately
proportional to θ̂ in poly(logn, logd,s,κ,1/ε) time, where s is the sparsity of F, κ is the condi-
tion number of F, and ε is the tolerable error. Then, by performing some measurements on this
state and collecting the outcome statistics, one can learn certain properties of θ̂. However, since
θ̂ is a d-dimensional vector, one cannot fully determine θ̂ in polylog(d) time. Thus, one cannot
completely construct the fitted curve in polylog(d) time. It is worth mentioning that WBL’s al-
gorithms, like HHL’s, rely on a combination of the techniques of phase estimation [87, 104] and
sparse Hamiltonian simulation [4, 30, 53, 32, 43, 50, 53].

In this chapter, we present efficient quantum algorithms for estimating the best-fit parameters
and the quality of least-square curve fitting in the general case. Namely, our algorithms work no
matter F is sparse or not. The running times of our algorithms are polynomial in logn, d, κ, ν,
χ, 1/Φ and 1/ε, where n is the number of data points to be fitted, d is the dimension of feature
vectors, κ is the condition number of the design matrix, ν and χ are some parameters reflecting the
variances of the design matrix and response vector, Φ is the fit quality 2, and ε is the tolerable error.
Our algorithms run very fast when the given data are normal, in the sense that F is far from being
singular, and the rows of F and y do not vary too much in their norms. Meanwhile, it is unknown
whether classical algorithms can solve this case very fast.

Our algorithms differ from WBL’s algorithms in several aspects. First, our algorithms do
produce the full classical description of θ̂ (not just a quantum state proportional to θ̂), so they
completely determine the fitted curve. But on the other hand, our algorithms have running times
poly-logarithmic in n, but not poly-logarithmic in d (as stated before, it is impossible to have
time complexity poly-logarithmic in d in this case). Second, our algorithms use recent technique
for nonsparse Hamiltonian simulation, so they can solve data fitting in the general case. Finally,

1The authors of [132] did not specify this condition explicitly. But it was implied by their assumption
∥∥FTy

∥∥= 1
in the description of their algorithms.

2The time complexity of the algorithm for estimating Φ does not depend on 1/Φ.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 77

for estimating the best-fit parameters θ̂ = (FTF)−1FTy, WBL’s algorithm consists of two stages:
stage 1 generates a state proportional to z := FTy, and stage 2 generates a state proportional to
θ̂ = (FTF)−1z. Each stage is based on utilizing (a variant of) HHL’s algorithm, which relies on
analyzing the singular value decomposition of F or the spectral decomposition of FTF, respec-
tively. We notice that these two decompositions are essentially the same. So these two stages can
be carried out simultaneously. Thus, our algorithm consists of only one stage, and it generates the
state proportional to θ̂ in one shot. This leads to a saving of running time for estimating θ̂.

Our algorithms are developed by combining phase estimation and recent technique for non-
sparse Hamiltonian simulation. Specifically, Lloyd, Mohseni and Rebentrost [96] introduced a
density matrix exponentiation technique, which allows us to simulate the unitary operation eiρt by
consuming multiple copies of the state ρ. Then, by running phase estimation on the unitary op-
eration eiρ staring with the state ρ, we can analyze the eigenvalues and eigenvectors of ρ. They
call this phenomenon quantum self-analysis. We utilize their results as follows. First, we prepare
a state σ proportional to FFT. Then σ’s eigenvalues are related to the singular values of F, and its
eigenvectors are the (left) singular vectors of F. Then, the density matrix exponentiation technique
allows us to implement eiσt for any t. Next, by running phase estimation on eiσ starting with state
|y〉, we “effectively” break |y〉 into several pieces, where each piece is either parallel to one of F’s
(left) singular vectors, or orthogonal to the column space of F. Then, we can perform different
quantum operations on each piece of |y〉. This, along with some extra work, enables us to estimate
the quality and best-fit parameters of least-square curve fitting.

5.2 Least-Square Curve Fitting
Given a set of n points {(xi,1,xi,2, . . . ,xi,k,yi)}n

i=1 in Rk+1, the goal of curve fitting is to find a simple
continuous function that has the best fit to these data points. Formally, let xi := (xi,1,xi,2, . . . ,xi,k)

T ,
for i∈ [n]. Also, let f j :Rk→R be some simple function, for j ∈ [d]. Then we want to approximate
yi with a function of xi of the form

f (x,θ) :=
d

∑
j=1

f j(x)θ j, (5.2)

where θ := (θ1,θ2, . . . ,θd)
T are some parameters 3. In the least-square approach, we find the

optimal parameters θ̂ by minimizing the sum of squared residuals, i.e.

E :=
n

∑
i=1
| f (xi,θ)− yi|2. (5.3)

Now, let F be the n× d matrix such that Fi, j = f j(xi), for i ∈ [n] and j ∈ [d]. F is called the
design matrix, and Fi := (f1(xi), f2(xi), . . . , fd(xi))

T is called the i-th feature vector, for i ∈ [n]. In
addition, let y = (y1,y2, . . . ,yn)

T . y is called the response vector. Then one can see that

E = ‖Fθ−y‖2 . (5.4)
3The most common case is that each f j is a monomial of x, and hence f is a polynomial of x.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 78

Hence, the best-fit parameters θ̂ are given by

θ̂ = F+y = (FTF)−1FTy. (5.5)

Correspondingly, the fitted values of y are

ŷ = Fθ̂ = F(FTF)−1FTy = ΠFy, (5.6)

and the residuals are
ε̂ = y− ŷ = (I−F(FTF)−1FT)y = (I−ΠF)y. (5.7)

Geometrically, ŷ is exactly the projection of y onto C (F). To measure the quality of this fit, we
introduce the quantity

Φ :=
‖ŷ‖2

‖y‖2 . (5.8)

Namely, Φ is the squared cosine of the angle between y and ŷ. The larger Φ is, the better the fit is.
Note that ŷ⊥ ε̂ and hence

Ê := ‖ε̂‖2 =
∥∥Fθ̂− y

∥∥2
= (1−Φ)‖y‖2 . (5.9)

We have assumed rank(F) = d (and hence FTF is invertible) in the above statement. This is a
reasonable assumption, because if otherwise, either the f j’s are linearly dependent (e.g. f2 = 2 f1),
or we simply do not have enough data to do the fitting. In each case, a revision of F is required.

5.3 Our Model
We will study quantum algorithms for estimating the best-fit parameters θ̂ and the fit quality Φ, in
the following model. We assume that F is given as a quantum oracle OF defined as

OF |i〉 | j〉 |0〉= |i〉 | j〉
∣∣Fi, j

〉
, ∀i ∈ [n], ∀ j ∈ [d]. (5.10)

Namely, OF takes a row index i and column index j as input, and returns the value of Fi, j. In
addition, we assume that y is given as a quantum oracle Oy defined as

Oy |i〉 |0〉= |i〉 |yi〉 , ∀i ∈ [n]. (5.11)

Namely, Oy takes a row index i as input, and returns the value of yi. An algorithm in this model
has access to OF, Oy and their inverses. Its query complexity is defined as the number of calls to
OF, Oy and their inverses. Its time complexity is defined as its query complexity plus the number
of additional one- and two-qubit gates used.

Without loss of generality, we will assume that tr
(
FTF

)
= ∑

n
i=1 ∑

d
j=1 |Fi, j|2 = 1 and ‖y‖ = 1.

This can be achieved by scaling the original F and y appropriately. Clearly, this rescaling does not
change the difficulty of estimating θ̂ or Φ.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 79

5.4 Density Matrix Exponentiation
In this section, we review the density matrix exponentiation technique of [96]. This technique
allows us to simulate the unitary operation eiρt by consuming multiple copies of the state ρ. It will
be crucial for our algorithms.

Lemma 49 (Implicit in [96]). Let ρ be a D-dimensional quantum state. Then eiρt can be simulated
to accuracy O(ε) with O

(
t2/ε

)
copies of ρ and Õ(logD ·t2/ε) additional one- and two-qubit gates.

Proof. The simulation method is based on the following observation. Let σ be any D-dimensional
state. Then we have

Ex(σ) := tr1
(
eiSx (ρ⊗σ)e−iSx)= σ+ ix[ρ,σ]+O

(
x2) , (5.12)

where S is the swap operator, i.e. S |i〉 | j〉= | j〉 |i〉 for any i, j ∈ [D]. Meanwhile, we have

Fx(σ) := eiρx σ e−iρx = σ+ ix[ρ,σ]+O
(
x2) . (5.13)

Therefore,
D(Ex(σ),Fx(σ)) = O

(
x2) . (5.14)

In fact, one can check that for any state τ (with a D-dimensional subsystem),

D((Ex⊗ I)(τ),(Fx⊗ I)(τ)) = O
(
x2) . (5.15)

This implies that
D(Ex,Fx) = O

(
x2) . (5.16)

Now we use n repeated applications of Et/n to simulate eiρt . Since

D(En
t/n,F

n
t/n) = D(En

t/n, eiρt) = O
(
t2/n

)
, (5.17)

in order to make D(En
t/n, eiρt) = O(ε), it is sufficient to set n = Θ

(
t2/ε

)
. This algorithm consumes

n = O
(
t2/ε

)
copies of ρ. Furthermore, it needs to implement eiSt/n once in each application of

Et/n. As shown in [44], eiSt/n can be implemented in Õ(logD) time. Thus, this algorithm uses
O
(
t2/ε

)
copies of ρ and Õ(n · logD) = Õ(logD · t2/ε) additional one- and two-qubit gates.

The following lemma says that we do not need to prepare ρ exactly in order to simulate eiρt

well. A good approximation of ρ would be sufficient.

Lemma 50. Let ρ and ρ′ be D-dimensional quantum states such that ‖ρ−ρ′‖= O(ε/t). Then eiρt

can be simulated to accuracy O(ε) with O
(
t2/ε

)
copies of ρ′ and Õ(logD · t2/ε) additional one-

and two-qubit gates.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 80

Proof. By Lemma 49, there exists a quantum algorithm that simulates eiρ′t to accuracy ε using
O
(
t2/ε

)
copies of ρ′ and Õ(logD · t2/ε) additional two-qubit gates. So it is sufficient to prove that

D(eiρt ,eiρ′t) = O(ε) . (5.18)

Claim 51. Let A and B be any two Hermitian matrices. Then
∥∥eiA− eiB

∥∥= O(‖A−B‖).

Proof. Let C(x) = eiAxeiB(1−x), for x ∈ [0,1]. Then

eiA− eiB =
∫ 1

0

dC(x)
dx

dx =
∫ 1

0
ieiAx(A−B)eiB(1−x)dx. (5.19)

Thus, ∥∥∥eiA− eiB
∥∥∥≤ ∫ 1

0

∥∥∥eiAx(A−B)eiB(1−x)
∥∥∥dx≤

∫ 1

0
‖A−B‖dx = ‖A−B‖ . (5.20)

Claim 51 implies that ∥∥∥eiρt− eiρ′t
∥∥∥= O

(∥∥ρ−ρ
′∥∥ t
)
= O(ε) . (5.21)

It follows that D(eiρt ,eiρ′t) = O(ε), as desired.

5.4.1 Simulating eiFFTt

Now we utilize the technique of density matrix exponentiation to simulate eiFFTt for any given t.
Let

σ = FFT. (5.22)

Then, σ < 0 and tr(σ) = tr
(
FTF

)
= 1. So we can view σ as a density matrix. With the help of

Lemma 50, we only need to consider how to (approximately) prepare the state σ.
Let

|F〉=
n

∑
i=1
|i〉 |Fi〉=

n

∑
i=1

d

∑
j=1

Fi, j |i〉 | j〉 , (5.23)

where |Fi〉=∑
d
j=1 Fi, j | j〉. Then, since ‖|F〉‖2 =∑i=1 ∑

d
j=1 |Fi, j|2 = 1, |F〉 is a normalized quantum

state. Furthermore, the reduced state of |F〉 on the first subsystem is σ = FFT. This implies that,
to (approximately) produce the state σ, it is sufficient to (approximately) produce the state |F〉.

Lemma 52. Suppose α ≤ ‖Fi‖ ≤ β for any i ∈ [n]. Let ν = β/α. Then |F〉 can be prepared to
accuracy δ > 0 in Õ(polylog(n) ·νd log(1/δ)) time.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 81

Proof. Let UF be the unitary operation defined as

UF |i〉 |0〉= |i〉 |‖Fi‖〉 , ∀i ∈ [n]. (5.24)

Clearly, UF can be implemented in O(d) time (since we can query Fi,1,Fi,2, . . . ,Fi,d and compute
‖Fi‖ from them).

Next, let VF be the unitary operation defined as

VF |i〉 |0〉= |i〉
∣∣F̄i
〉
, ∀i ∈ [n]. (5.25)

(Recall that by definition F̄i = Fi/‖Fi‖.) We have that:

Claim 53. VF can be implemented to accuracy γ > 0 in Õ(d ·polylog(1/γ)) time.

Proof. We will describe a quantum circuit that maps |i〉 |0〉 to |i〉 |φi〉 such that ‖φi− F̄i‖ = O(γ),
for any i ∈ [n]. This ensures that this circuit implements VF to accuracy O(γ), as desired

Pick an integer M = Θ
(
d/γ2). Fix any i ∈ [n]. Let Si, j = ∑

j
l=1 F2

i, j, for j ∈ [d]. Note that Si,d =

‖Fi‖2. Also, let Si,0 = 0. Then, let Mi, j = dMSi, j/Si,de, for 0≤ j≤ d. Then let Zi, j = Mi, j−Mi, j−1,
for j ∈ [d]. Finally, let

|φi〉=
d
∑
j=1

φi, j | j〉=
d
∑
j=1

sgn
(
Fi, j
)√Zi, j

M
| j〉 . (5.26)

Then, by construction, we have

|φi, j− F̄i, j|= O
(

1√
M

)
= O

(
γ√
d

)
, ∀ j ∈ [d], (5.27)

where F̄i, j = Fi, j/‖Fi‖. It follows that ‖φi− F̄i‖= O(γ), as claimed.
Now we describe how to map |i〉 |0〉 to |i〉 |φi〉. For any k ∈ [M], let hi(k) = (j, t) if Mi, j−1 <

k ≤Mi, j and k = Mi, j−1 + t. Note that for any k ∈ [M], a unique (j, t) satisfies this condition. So
the function hi is well-defined. Consider the following procedure:

1. We create the state |i〉(
d⊗

j=1

∣∣Fi, j
〉
) by using O(d) queries to OF.

2. We compute the Mi, j’s for j ∈ [d], obtaining the state

|i〉(
d⊗

j=1

∣∣Fi, j
〉
)(

d⊗
j=1

∣∣Mi, j
〉
). (5.28)

3. We append a register in the state 1√
M

M
∑

k=1
|k〉, obtaining the state

|i〉(
d⊗

j=1

∣∣Fi, j
〉
)(

d⊗
j=1

∣∣Mi, j
〉
)

(
1√
M

M

∑
k=1
|k〉

)
(5.29)

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 82

4. We compute hi(k) for each k ∈ [M], obtaining the state

|i〉(
d⊗

j=1

∣∣Fi, j
〉
)(

d⊗
j=1

∣∣Mi, j
〉
)

(
1√
M

M
∑

k=1
|hi(k)〉

)
= |i〉(

d⊗
j=1

∣∣Fi, j
〉
)(

d⊗
j=1

∣∣Mi, j
〉
)

(
1√
M

d
∑
j=1

Zi, j

∑
t=1
| j, t〉

) (5.30)

5. We perform the unitary operation that maps | j〉

(
1√
Zi, j

Zi, j

∑
t=1
|t〉

)
to | j〉 |0〉 on the last register,

obtaining the state

|i〉(
d⊗

j=1

∣∣Fi, j
〉
)(

d⊗
j=1

∣∣Mi, j
〉
)

(
d

∑
j=1

√
Zi, j

M
| j,0〉

)
(5.31)

6. We multiply the phase of each term by the sign of Fi, j, obtaining the state

|i〉(
d⊗

j=1

∣∣Fi, j
〉
)(

d⊗
j=1

∣∣Mi, j
〉
)

(
d

∑
j=1

sgn
(
Fi, j
)√Zi, j

M
| j,0〉

)
(5.32)

7. We uncompute the Mi, j’s by undoing step 2, then uncompute the Fi, j’s by undoing step 1.
Eventually, we obtain the sttae

|i〉 |φi〉= |i〉

(
d

∑
j=1

sgn
(
Fi, j
)√Zi, j

M
| j〉

)
(5.33)

as desired.

Clearly, this algorithm runs in Õ(d ·polylog(M)) = Õ(d ·polylog(1/γ)) time, as claimed.

Note that the time complexity of implementing VF is only poly-logarithmic in the inverse accu-
racy. So from now on, we assume that VF is implemented perfectly (taking the accuracy issue into
account only increases the time complexities of our algorithms by a poly-logarithmic factor).

Now consider the following algorithm for preparing |F〉:

1. We prepare the state 1√
n ∑

n
i=1 |i〉 |0〉 |0〉, and convert it into the state

1√
n

n

∑
i=1
|i〉
∣∣F̄i
〉
|‖Fi‖〉 (5.34)

by calling VF and UF once.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 83

2. We append a qubit in the state |0〉, and perform the controlled-rotation

|z〉 |0〉 → |z〉
(

zβ
−1 |1〉+

√
1− z2β−2 |0〉

)
(5.35)

on the last two registers (recall that ‖Fi‖ ≤ β), obtaining the state

1√
n

n

∑
i=1
|i〉
∣∣F̄i
〉
|‖Fi‖〉

(
‖Fi‖β

−1 |1〉+
√

1−‖Fi‖2
β−2 |0〉

)
. (5.36)

3. We measure the last qubit in the standard basis. Then conditioned on seeing outcome 1, the
rest of the state becomes proportional to

n

∑
i=1
|i〉‖Fi‖

∣∣F̄i
〉
|‖Fi‖〉=

n

∑
i=1
|i〉 |Fi〉 |‖Fi‖〉 . (5.37)

Furthermore, since ‖Fi‖ ≥ α = β/ν, the probability of seeing outcome 1 is Ω
(
1/ν2).

4. We uncompute the |‖Fi‖〉 by performing the inverse of UF on the first and third registers,
obtaining the state |F〉= ∑

n
i=1 |i〉 |Fi〉.

5. The above procedure succeeds only with probability Ω
(
1/ν2). We use amplitude amplifica-

tion to raise this probability to 1−O(δ). This ensures that we have prepared |F〉 to accuracy
O(δ). By Corollary 11, this requires Õ(ν log(1/δ)) repetitions of the above procedure and
its inverse.

Clearly, this algorithm has time complexity Õ(polylog(n) ·νd log(1/δ)), as claimed.

Lemma 52 immediately implies:

Lemma 54. Suppose α ≤ ‖Fi‖ ≤ β for any i ∈ [n]. Let ν = β/α. Then σ can be prepared to
accuracy δ > 0 in Õ(polylog(n) ·νd log(1/δ)) time.

Combining Lemma 54 and Lemma 50, we obtain:

Lemma 55. Suppose α ≤ ‖Fi‖ ≤ β for any i ∈ [n]. Let ν = β/α. Then eiσt can be simulated to
accuracy δ > 0 in Õ(polylog(n) ·νdt2/δ) time.

Proof. We use the algorithm in Lemma 54 to prepare σ to accuracy O(δ/t). Then we use the
algorithm in Lemma 50 to simulate eiσt to accuracy O(δ). By Lemma 54 and Lemma 50, this
algorithm has time complexity Õ(polylog(n) ·νdt2/δ), as claimed.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 84

5.5 Quantum Algorithms for Estimating the Best-Fit
Parameters θ̂

In this section, we present two quantum algorithms for the estimation of θ̂ = (FTF)−1FTy. The
first algorithm produces an estimate of

∥∥θ̂
∥∥ (i.e. the norm of θ̂), and the second one produces an

estimate of θ̄ := θ̂/
∥∥θ̂
∥∥ (i.e. the normalized version of θ̂). Then, by multiplying them together, we

obtain an estimate of θ̂ =
∥∥θ̂
∥∥ · θ̄.

Before describing these algorithms, it is beneficial to consider the singular value decomposition
of F and write θ̂ as the linear combination of the (right) singular vectors of F. Suppose F has the
singular value decomposition

F =
d

∑
j=1

s j
∣∣u j〉〈v j

∣∣ , (5.38)

where s1 ≤ s2 ≤ ·· · ≤ sd are the singular values of F. Then we have

tr
(
FTF

)
=

d

∑
j=1

s2
j = 1, (5.39)

Let κ≥ κ(F) = sd/s1. Then

1
κ
√

d
≤ s1 ≤ s2 ≤ ·· · ≤ sd ≤

κ√
d
. (5.40)

Meanwhile, we have

σ = FFT =
d
∑
j=1

s2
j

∣∣u j〉〈u j
∣∣ . (5.41)

This implies that
C (σ) = C (F) = span({|u1〉 , |u2〉 , . . . , |ud〉}) . (5.42)

Therefore, the 1-eigenspace of eiσ is exactly Ker(F).
Now suppose |ŷ〉= ∑

d
j=1 α j

∣∣u j
〉
. Then, by ‖y‖= 1, we get

Φ = ‖ŷ‖2 =
d

∑
j=1

α
2
j . (5.43)

Furthermore, we have ∣∣θ̂〉= (FTF)−1FT |y〉=
d

∑
j=1

α js−1
j

∣∣v j
〉
, (5.44)

which implies that ∥∥θ̂
∥∥2

=
d

∑
j=1

α
2
js
−2
j . (5.45)

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 85

Then it follows from Eq.(5.40) and Eq.(5.43) that

dΦ

κ2 ≤
∥∥θ̂
∥∥2 ≤ dΦκ

2. (5.46)

The following lemma gives an upper bound on the time complexity of preparing the state |y〉,
and will be useful for our algorithms.

Lemma 56. Suppose η ≤ |yi| ≤ ζ, for any i ∈ [n]. Let χ = ζ/η. Then |y〉 can be prepared to
accuracy δ > 0 in Õ(polylog(n) ·χ log(1/δ)) time.

Proof. Consider the following algorithm:

1. We prepare the state 1√
n ∑

n
i=1 |i〉 |0〉 and call Oy once, obtaining the state

1√
n

n

∑
i=1
|i〉 |yi〉 . (5.47)

2. We append a qubit in the state |0〉, and perform the controlled-rotation

|z〉 |0〉 → |z〉
(

zζ
−1 |1〉+

√
1− z2ζ−2 |0〉

)
, (5.48)

on the last two registers (recall that |yi| ≤ ζ), obtaining the state

1√
n

n

∑
i=1
|i〉 |yi〉

(
yiζ
−1 |1〉+

√
1− y2

i ζ−2 |0〉
)
. (5.49)

3. We measure the last qubit in the standard basis. Then conditioned on seeing outcome 1, the
rest of the state is proportional to

n

∑
i=1

yi |i〉 |yi〉 (5.50)

Furthermore, since |yi| ≥ η = ζ/χ, the probability of seeing this outcome is Ω
(
1/χ2).

4. We uncompute the |yi〉 by uncalling OF, obtaining the state |y〉= ∑
n
i=1 yi |i〉.

5. The above procedure succeeds only with probability Ω
(
1/χ2). We use amplitude ampli-

fication to raise this probability to 1−O(δ). This ensures that we have prepared |y〉 to
accuracy O(δ). By Corollary 11, this requires Õ(χ log(1/δ)) repetitions of steps 1-4 and
their inverses.

Clearly, this algorithm has time complexity Õ(polylog(n) ·χ log(1/δ)), as claimed.

Note that the time complexity of preparing |y〉 is only poly-logarithmic in the inverse accuracy.
So from now on, we assume that |y〉 is prepared perfectly (taking the accuracy issue into account
only increases the time complexities of our algorithms by some poly-logarithmic factors).

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 86

5.5.1 Quantum Algorithm for Estimating
∥∥θ̂
∥∥

Theorem 57. Suppose α≤‖Fi‖≤ β, for any i∈ [n], and ‖F+‖≤ 1/a, ‖F‖≤ b. Moreover, suppose
η≤ |yi| ≤ ζ, for any i ∈ [n]. Let ν = β/α, χ = ζ/η and κ = b/a. Then

∥∥θ̂
∥∥ can be estimated to a

relative error ε > 0 with probability at least 2/3 in Õ(polylog(n) ·κ(χ+νd3κ6/(ε3Φ))/(ε
√

Φ))
quantum time.

Proof. Consider the following algorithm (for convenience, we assume that phase estimation is
perfect in the following description, and we will take the error of phase estimation into account
later):

1. We use the algorithm in Lemma 56 to prepare the state |y〉.

2. We run phase estimation on eiσ starting with |y〉, obtaining the state

d

∑
j=1

α j
∣∣u j
〉∣∣s2

j
〉
+ |ε̂〉 |0〉 . (5.51)

3. We append a qubit in the state |0〉 and perform the controlled-rotation

|z〉 |0〉 → |z〉

 a√
z
|1〉+

√
1− a2

z
|0〉

 , (5.52)

on the last two registers (note that s j ≥ a), obtaining a state proportional to

d
∑
j=1

α j
∣∣u j
〉∣∣∣s2

j

〉(a
s j
|1〉+

√
1− a2

s2
j
|0〉

)
+ |ε̂〉 |0〉 , (5.53)

4. We measure the last qubit in the standard basis. Then, conditioned on seeing outcome 1, the
rest of the state becomes proportional to

d
∑
j=1

α js−1
j

∣∣u j
〉∣∣∣s2

j

〉
. (5.54)

Furthermore, the probability of getting outcome 1 is

q := a2
d

∑
j=1

α
2
js
−2
j = a2∥∥θ̂

∥∥2
. (5.55)

Since ∑
d
j=1 α2

j = Φ, and s j ≤ b = aκ, we have q = Ω
(
Φ/κ2).

5. We use amplitude estimation to estimate q to a relative error O(ε) with probability at least
2/3. Since q = Ω

(
Φ/κ2), this requires Õ(κ/(ε

√
Φ)) repetitions of the above procedure and

its inverse.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 87

6. Let q′ be the estimate of q. Then we return
√

q′/a as the estimate of
∥∥θ̂
∥∥.

Now we take the error of phase estimation into account, and analyze the time complexity of
this algorithm. In step 2, we do not get the eigenphase s2

j exactly, but instead get some (ran-
dom) λ j ≈ s2

j (although phase estimation singles out the eigenphase 0 perfectly). This implies
that we only obtain the states in steps 2-4 approximately. Since we want to estimate q to a rela-
tive error O(ε), we need to make sure that

∣∣∣λ j− s2
j

∣∣∣ = O
(

εs2
j

)
. Then, by s2

j ≥ 1/(dκ2), we need

to set the precision of phase estimation to be O
(
ε/(dκ2)

)
. It follows that we need to simulate

eiσt to accuracy O
(
εΦ/κ2) 4 for t = O

(
dκ2/ε

)
during phase estimation. This can be done in

Õ(polylog(n) ·νd(dκ2/ε)2/(εΦ/κ2)) = Õ(polylog(n) ·νd3κ6/(ε3Φ)) time by Lemma 55. Mean-
while, |y〉 can be prepared in Õ(polylog(n) · χ) time by Lemma 56. Therefore, one iteration of
steps 1-3 takes Õ(polylog(n) · (χ + νd3κ6/(ε3Φ))) time. Since amplitude estimation requires
Õ(κ/(ε

√
Φ)) repetitions of steps 1-4 and their inverses, this algorithm takes Õ(polylog(n) ·κ(χ+

νd3κ6/(ε3Φ))/(ε
√

Φ)) time, as claimed.

Remark 58. We can reduce the failure probability of the algorithm in Theorem 57 to arbitrarily
small δ > 0 by repeating this algorithm O(log(1/δ)) times and taking the median of the estimates
obtained.

5.5.2 Quantum Algorithm for Estimating θ̄

Suppose θ̄ = (θ̄1, θ̄2, . . . , θ̄d)
T . Our algorithm for estimating θ̄ consists of two parts. The first part

estimates |θ̄1|, |θ̄2|, . . . , |θ̄d| (i.e. the norm of each entry). The second part determines sgn
(
θ̄1
)
,

sgn
(
θ̄2
)
, . . . , sgn

(
θ̄d
)

(i.e. the sign of each entry). Both parts depend on the following algorithm
for producing the state

∣∣θ̄〉.
Proposition 59. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n], and ‖F+‖ ≤ 1/a, ‖F‖ ≤ b. Moreover,
suppose η≤ |yi| ≤ ζ, for any i∈ [n]. Let ν = β/α, χ = ζ/η and κ = b/a. Then

∣∣θ̄〉 can be prepared
to accuracy ε > 0 in Õ(polylog(n) ·κ(χ+νd3κ6/(ε3Φ))/

√
Φ) time.

Before proving this proposition, let us recall the singular value decomposition of F as shown in
Eq.(5.38). Although |v1〉, |v2〉, . . . , |vd〉 are d-dimensional vectors, we from now on consider them
as n-dimensional vectors (that is, we embed Rd into Rn in the natural way). Now let

τ+ =
d
∑
j=1

s2
j

∣∣∣w+
j 〉〈w

+
j

∣∣∣ ,
τ− =

d
∑
j=1

s2
j

∣∣∣w−j 〉〈w−j ∣∣∣ , (5.56)

4We want the error caused by the imperfection of simulating eiσt to be O(εq).

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 88

where ∣∣∣w+
j

〉
=

1√
2

(
|0〉
∣∣v j
〉
+ |1〉

∣∣u j
〉)

,∣∣∣w−j 〉=
1√
2

(
|0〉
∣∣v j
〉
−|1〉

∣∣u j
〉)

.
(5.57)

Both τ+ and τ− are 2n-dimensional quantum states. The following lemma says that they can be
prepared quickly:

Lemma 60. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n]. Let ν = β/α. Then τ± can be prepared to
accuracy δ > 0 in Õ(polylog(n) ·νd log(1/δ)) time.

Proof. Consider the following algorithm:

1. We use the algorithm in Lemma 52 to prepare the state

|F〉=
n

∑
i=1

d

∑
j=1

Fi, j |i〉 | j〉=
d

∑
j=1

s j
∣∣u j
〉∣∣v j

〉
, (5.58)

where in the second step we perform the Schmidt decomposition of |F〉, which corresponds
to the singular value decomposition of F.

2. We append a qubit in the state |±〉= 1√
2
(|0〉±|1〉) and an n-dimensional register in the state

|0〉, and perform the “addressing” operation

|i1〉 |i0〉 | j〉 |0〉 → |i1〉 |i0〉 | j〉
∣∣i j
〉
, ∀i0, i1 ∈ [n], ∀ j ∈ {0,1}. (5.59)

Then we obtain the state

1√
2

d

∑
j=1

s j
∣∣u j
〉∣∣v j

〉(
|0〉
∣∣v j
〉
±|1〉

∣∣u j
〉)

=
d

∑
j=1

s j
∣∣u j
〉∣∣v j

〉∣∣∣w±j 〉 . (5.60)

Then the reduced state of this state on the last register is τ± = ∑
d
j=1 s2

j

∣∣∣w±j 〉〈w±j ∣∣∣, as desired.

By Lemma 52, this algorithm has time complexity Õ(polylog(n) ·νd log(1/δ)), as claimed.

Combining Lemma 50 and Lemma 60, we obtain:

Lemma 61. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n]. Let ν = β/α. Then eiτ±t can be simulated to
accuracy δ > 0 in Õ(polylog(n) ·νdt2/δ) time.

Proof. We use the algorithm in Lemma 60 to prepare τ± to accuracy O(δ/t). Then we use the
algorithm in Lemma 50 to simulate eiτ±t to accuracy O(δ). It follows from Lemma 60 and Lemma
50 that this algorithm has time complexity Õ(polylog(n) ·νdt2/δ), as claimed.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 89

Now, let

τ = τ
+− τ

− =
d

∑
j=1

s2
j

(∣∣∣w+
j 〉〈w

+
j

∣∣∣− ∣∣∣w−j 〉〈w−j ∣∣∣) . (5.61)

Namely, τ has eigenvalues ±s2
j’s and eigenvectors

∣∣∣w±j 〉’s. We can simulate eiτt by composing the

simulations of eiτ+t and eiτ−t :

Lemma 62. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n]. Let ν = β/α. Then eiτt can be simulated to
accuracy δ > 0 in Õ(polylog(n) ·νdt2/δ) time.

Proof. We use Suzuki’s method [124] for simulating ei(A+B)t , where A, B are arbitrary Hermi-
tian matrices satisfying ‖A‖ ,‖B‖ ≤ 1. This method works as follows. Define a function S2k(x)
recursively: let

S2(x) = eiAx/2eiBxeiAx/2, (5.62)

and let
S2k(x) = [S2k−2(pkx)]2S2k−2((1−4pk)x)[S2k−2(pkx)]2 (5.63)

where pk = (4−41/(2k−1))−1 for any k ≥ 2. Then we have:

Claim 63 ([124]). For any k ∈ N,∥∥∥ei(A+B)x−S2k(x)
∥∥∥= O

(
|x|2k+1

)
. (5.64)

This implies that for any k ∈ N,∥∥∥∥ei(A+B)t−
(

S2k

(t
n

))n
∥∥∥∥= O

(
t2k+1

n2k

)
. (5.65)

To make the right-hand side O(δ), we need to set n = Θ

(
t1+ 1

2k δ
− 1

2k

)
. Then, (S2k(t/n))n is the

product of O(n) = O
(

t1+ 1
2k δ
− 1

2k

)
terms, where each term is of the form eiAt j or eiBt j for some

t j = O(t/n) = O
(

δ
1
2k t−

1
2k

)
.

Now we simulate eiτt by setting A = τ+ and B =−τ−. We need to implement each term, which
is of the form eiτ+t j or e−iτ−t j for t j = O

(
δ

1
2k t−

1
2k

)
, to accuracy O(δ/n) = O

(
δ

1+ 1
2k t−1− 1

2k

)
. By

Lemma 62, this takes Õ(polylog(n) ·νdt1− 1
2k /δ

1− 1
2k) time. Since there are totally O

(
t1+ 1

2k δ
− 1

2k

)
terms, this algorithm has time complexity Õ(polylog(n) ·νdt2/δ), as claimed. (It is interesting that
this complexity is independent of k. But a better way to simulate eiρT using multiple copies of ρ

might change this fact.)

Now we have all the ingredients to prove Proposition 59:

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 90

Proof of Proposition 59. Suppose |ŷ〉= ∑
d
j=1 α j

∣∣u j
〉
, where ∑

d
j=1 α2

j = Φ. Then we have

|1〉 |ŷ〉=
d

∑
j=1

α j |1〉
∣∣u j
〉
=

1√
2

d

∑
j=1

α j

(∣∣∣w+
j

〉
−
∣∣∣w−j 〉) . (5.66)

Consider the following algorithm for preparing
∣∣θ̄〉 (again, we assume that phase estimation is

perfect in the following description, and we will take the error of phase estimation into account
later):

1. We prepare the state |1〉 |y〉 5 by using the algorithm in Lemma 56.

2. We run phase estimation on eiτ starting with |1〉 |y〉, obtaining the state

1√
2

d

∑
j=1

α j

(∣∣∣w+
j

〉∣∣s2
j
〉
−
∣∣∣w−j 〉∣∣−s2

j
〉)

+ |1〉 |ε̂〉 |0〉 . (5.67)

3. We perform the measurement {|0〉〈0| , I−|0〉〈0|} on the last register. Then, conditioned on
seeing the outcome corresponding to I−|0〉〈0|, the state becomes proportional to

1√
2

d

∑
j=1

α j

(∣∣∣w+
j

〉∣∣s2
j
〉
−
∣∣∣w−j 〉∣∣−s2

j
〉)

(5.68)

Furthermore, the probability of seeing this outcome is Φ = ∑
d
j=1 α2

j .

4. We append a qubit in the state |0〉, and perform the controlled-rotation

|z〉 |0〉 → |z〉

a|z|1/2

z
|1〉+

√
1− a2|z|

z2 |0〉

 , (5.69)

on the last two registers (note that s j ≥ a), obtaining a state proportional to

1√
2

d
∑
j=1

α j
[∣∣∣w+

j

〉∣∣∣s2
j

〉(
as−1

j |1〉+
√

1−a2s−2
j |0〉

)
−

∣∣∣w−j 〉∣∣∣−s2
j

〉(
−as−1

j |1〉+
√

1−a2s−2
j |0〉

)] (5.70)

5. We measure the last qubit in the standard basis. Then, conditioned on seeing outcome 1, the
rest of the state is proportional to

1√
2

d

∑
j=1

α j

(
s−1

j

∣∣∣w+
j

〉∣∣s2
j
〉
+ s−1

j

∣∣∣w−j 〉∣∣−s2
j
〉)

(5.71)

Furthermore, since s j ≤ b = κa, the probability of seeing outcome 1 is Ω
(
1/κ2).

5The dimension of the first register is 2.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 91

6. We uncompute the
∣∣∣s2

j

〉
’s and

∣∣∣−s2
j

〉
’s by undoing phase estimation, obtaining a state pro-

portional to

1√
2

d

∑
j=1

α js−1
j

(∣∣∣w+
j

〉
+
∣∣∣w−j 〉)= d

∑
j=1

α js−1
j |0〉

∣∣v j
〉
= |0〉

∣∣θ̂〉 . (5.72)

The reduced state of this state on the second register is
∣∣θ̄〉, as desired.

7. The above procedure only succeeds with probability q := Ω
(
Φ/κ2). We using amplitude

amplification to raise this probability to 1−O(ε). This ensures that we have prepared
∣∣θ̄〉

to accuracy O(ε). By Corollary 11, this requires Õ(κ log(1/ε)/
√

Φ) repetitions of steps 1-6
and their inverses.

Now we take the error of phase estimation into account, and analyze the time complexity
of this algorithm. In step 2, we do not get the eigenphase ±s2

j exactly, but instead get some
(random) λ j ≈ ±s2

j (although phase estimation singles out the eigenphase 0 perfectly). This
implies that we only obtain the states in steps 2-6 approximately. Since we want to prepare∣∣θ̄〉 to accuracy O(ε), we need to make sure that |λ j − s2

j | = O
(

εs2
j

)
. Since s2

j ≥ 1/(dκ2),

we need to set the precision of phase estimation to be O
(
ε/(dκ2)

)
. This implies that we need

to simulate eiτt to accuracy O
(
εΦ/κ2) 6 for t = O

(
dκ2/ε

)
during phase estimation. Then by

Lemma 62, this takes Õ(polylog(n) ·νd(dκ2/ε)2/(εΦ/κ2)) = Õ(polylog(n) ·νd3κ6/(ε3Φ)) time.
Meanwhile, by Lemma 56, it takes Õ(polylog(n) ·χ) time to prepare |y〉. Thus, one iteration of
steps 1-6 takes Õ(polylog(n) · (χ+ νd3κ6/(ε3Φ))) time. Since amplitude amplification requires
Õ(κ log(1/ε)/

√
Φ) repetitions of steps 1-6 and their inverses, this algorithm has time complexity

Õ(polylog(n) ·κ(χ+νd3κ6/(ε3Φ))/
√

Φ), as claimed.

Remark 64. The final state of the algorithm in Proposition 59 is of the form

|Ψ〉 :=
√

p |1〉 |0〉
∣∣∣θ̄′〉 |φ〉+√1− p(|1〉 |1〉 |ϕ̃〉+ |0〉 |0〉 |ψ̃0〉+ |0〉 |1〉 |ψ̃1〉) (5.73)

where p = 1−O(ε), θ̄
′
= (θ̄

′
1, θ̄
′
2, . . . , θ̄

′
d)

T satisfies
∥∥∥θ̄
′
∥∥∥= 1 and

∣∣∣θ̄′j− θ̄ j

∣∣∣= O(ε), and |φ〉 is some

normalized state, and |ϕ̃〉, |ϕ̃0〉, |ϕ̃1〉 are some unnormalized states 7. This fact will be useful for
the following algorithms for estimating |θ̄ j| and sgn

(
θ̄ j
)
.

Proposition 65. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n], and ‖F+‖ ≤ 1/a, ‖F‖ ≤ b. Moreover,
suppose η ≤ |yi| ≤ ζ, for any i ∈ [n]. Let ν = β/α, χ = ζ/η and κ = b/a. Then for any j ∈ [d],∣∣θ̄ j
∣∣ can be estimated up to an additive error ε > 0 with probability at least 2/3 in Õ(polylog(n) ·

κ(χ+νd3κ6/(ε3Φ))/(ε2
√

Φ)) quantum time.
6We want the error caused by the imperfection of simulating eiτt at most O(εq).
7The dimensions of |ϕ̃〉, |ϕ̃0〉 and |ϕ̃1〉 are d times of the dimension of |φ〉.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 92

Proof. Consider the following algorithm:

1. We run the algorithm in Proposition 59 to get the state |Ψ〉 in Eq.(5.73).

2. We measure the first three registers of |Ψ〉 in the standard basis. Then the probability of

seeing outcome (1,0, j) is q j := p
∣∣∣θ̄′j∣∣∣2.

3. We use amplitude estimation to estimate q j up to an additive error O
(
ε2) with probability at

least 2/3. This requires Õ(1/ε2) repetitions of the above procedure and its inverse.

4. Let q′j be the estimate of q j. Then we return
√

q′j as the estimate of
∣∣θ̄ j
∣∣.

Now we prove the correctness of this algorithm. Since p = 1−O(ε) and
∣∣∣θ̄′j− θ̄ j

∣∣∣= O(ε), we

have
∣∣√q j−

∣∣θ̄ j
∣∣∣∣ = O(ε). Meanwhile, with probability at least 2/3, we have

∣∣∣q′j−q j

∣∣∣ = O
(
ε2),

which implies that
∣∣∣√q′j−

√q j

∣∣∣ = O(ε). Then it follows that
∣∣∣√q′j−

∣∣θ̄ j
∣∣∣∣∣ ≤ ∣∣∣√q′j−

√q j

∣∣∣+∣∣√q j−|θ̄ j|
∣∣= O(ε), as desired.

Now we analyze the time complexity of this algorithm. By Proposition 59, one iteration of
steps 1-2 takes Õ(polylog(n) · κ(χ+ νd3κ6/(ε3Φ))/

√
Φ) time. Since amplitude estimation re-

quires Õ(1/ε2) repetitions of steps 1-2 and their inverses, this algorithm takes Õ(polylog(n) ·
κ(χ+νd3κ6/(ε3Φ))/(ε2

√
Φ)) time, as claimed.

Proposition 66. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n], and ‖F+‖ ≤ 1/a, ‖F‖ ≤ b. Moreover,
suppose η ≤ |yi| ≤ ζ, for any i ∈ [n]. Let ν = β/α, χ = ζ/η and κ = b/a. Then for any j ∈ [d], if∣∣θ̄ j
∣∣≥ δ, then sgn

(
θ̄ j
)

can be determined correctly with probability at least 2/3 in Õ(polylog(n) ·
κ2(χ+νd3κ5/(δ3

√
Φ))/(δΦ)) quantum time.

Proof. Determining sgn
(
θ̄ j
)

is more complicated than estimating
∣∣θ̄ j
∣∣. The problem is that the

algorithm in Proposition 59 only produces a quantum state
∣∣θ̄〉 and one cannot measure the global

phase of a quantum state 8. To overcome this problem, we modify the design matrix F and the
response vector y, such that we know the sign of θ̄ j0 for sure, for some j0. Then we only need to
determine whether sgn

(
θ̄ j
)

agrees with sgn
(
θ̄ j0
)

or not, for each j 6= j0.
Formally, let us pick an n×d matrix G = (Gi, j) such that:

• G’s columns are orthogonal and have norm 1/
√

d. Namely, ∑
n
i=1 Gi, jGi, j′ = δ j, j′/d, for any

j, j′ ∈ [d].

• |Gi,1|= 1/
√

nd, for any i ∈ [n];

• There exists constants c1 and c2 such that c1/n≤ ∑
d
j=1 |Gi, j|2 ≤ c2/n, for any i ∈ [n].

8However, we can determine, say, sgn
(
θ̄1θ̄2

)
, provided that |θ̄1| and |θ̄2| are big enough.

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 93

Such matrices exist and can be easily constructed (e.g. from the Hadamard matrix). Furthermore,
let z be an n-dimensional vector defined as

z = (z1,z2, . . . ,zn)
T =

∥∥θ̂
∥∥ · (G1,1,G2,1, . . . ,Gn,1)

T . (5.74)

Namely, z equals the first column of G times
∥∥θ̂
∥∥.

Now let

F′ =
1√
2

(
F 0
0 G

)
, y′ =

1√
1+d−1

∥∥θ̂
∥∥2

(
y
z

)
. (5.75)

Then, we have

θ̂
′ := ((F′)TF′)−1(F′)Ty′ =

√
2

1+d−1
∥∥θ̂
∥∥2



θ̂1
θ̂2
...

θ̂d∥∥θ̂
∥∥

0
...
0


. (5.76)

Namely, θ̂
′

is proportional to the concatenation of θ̂ = (θ̂1, θ̂2, . . . , θ̂d)
T and ξ := (

∥∥θ̂
∥∥ ,0, . . . ,0)T .

Note that we know that the (d + 1)-th entry of θ̂
′

is always positive. Furthermore, let θ̄
′
=

(θ̄
′
1, θ̄
′
2, . . . , θ̄

′
2d) be the normalized version of θ̂

′
. Then one can see that θ̄

′
j = θ̄ j/

√
2 for j ∈ [d],

θ̄
′
d+1 = 1/

√
2, and θ̄

′
j = 0 for j > d + 1. To determine sgn

(
θ̄ j
)
= sgn

(
θ̄
′
j

)
for any j ∈ [d], our

strategy is to decide whether θ̄
′
j + θ̄

′
d+1 is larger than θ̄

′
d+1 or not.

By construction, we have tr
(
(F′)TF′

)
= ‖y′‖= 1. Let F′i = (F′i,1,F

′
i,2, . . . ,F

′
i,d), for i∈ [n]. Then

let α′ = mini∈[n] ‖F′i‖ and β′ = maxi∈[n] ‖F′i‖. Then we have α′ = Ω(α), β′ = O(β), and hence
ν′ := β′/α′ = O(ν). Moreover, since all the singular values of G are 1/

√
d, by Eq.(5.40), we know

that all the singular values of F′ are between Ω(1/a) and O(b). It follows that κ′ := κ(F′) = O(κ).
Finally, let η′ = mini∈[n] |y′i| and ζ′ = maxi∈[n] |y′i|. Then we have

η′ ≥
min(η,

∥∥θ̂
∥∥/√nd)√

1+
∥∥θ̂
∥∥2

/d
,

ζ′ ≤
max(ζ,

∥∥θ̂
∥∥/√nd)√

1+
∥∥θ̂
∥∥2

/d
.

(5.77)

Then, using the facts that η ≥ 1/(χ
√

n), ζ ≤ χ/
√

n, and
√

dΦ/κ ≤
∥∥θ̂
∥∥ ≤ √dΦκ, we get χ′ :=

ζ′/η′ = O
(

χκ/
√

Φ

)
. Then it follows from Proposition 59 that we can prepare a state of the form

|Ψ〉 :=
√

p |1〉 |0〉
∣∣∣θ̄′′〉 |φ〉+√1− p(|1〉 |1〉 |ϕ̃〉+ |0〉 |0〉 |ψ̃0〉+ |0〉 |1〉 |ψ̃1〉) (5.78)

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 94

where p = Ω(1), θ̄
′′
= (θ̄

′′
1, θ̄
′′
2, . . . , θ̄

′′
2d)

T satisfies
∥∥∥θ̄
′′
∥∥∥ = 1 and

∣∣∣θ̄′′j − θ̄
′
j

∣∣∣ = O(δ), and |φ〉 is

some normalized state, and |ϕ̃〉, |ϕ̃0〉, |ϕ̃1〉 are some unnormalized states, in Õ(polylog(n) ·κ2(χ+
νd3κ5/(δ3

√
Φ))/Φ) time.

Now suppose we measure the first two registers of the state in Eq.(5.78) in the standard basis.
Then with probability Ω(1), we obtain the outcome (1,0). Accordingly, the rest of the state

becomes
∣∣∣θ̄′′〉 |Φ〉. Then, let

∣∣± j
〉
=

1√
2
(| j〉± |d +1〉), for any j ∈ [d]. Then, we measure the

state
∣∣∣θ̄′〉 in the basis {

∣∣+ j
〉
,
∣∣− j
〉
}∪{|i〉 : i ∈ [2d], i 6∈ { j,d+1}}, and estimate the probability of

seeing the outcome corresponding to
∣∣+ j
〉
. One can see that this probability is

q′′ :=
(θ̄
′′
j + θ̄

′′
d+1)

2

2
≈

(θ̄
′
j + θ̄

′
d+1)

2

2
= q :=

(θ̄ j +1)2

4
. (5.79)

In fact, we have |q′′− q| = O(δ). Now, if θ̄ j ≤ −δ, we would have q ≤ (1− δ)/4; if θ̄ j ≥ δ,
we would have q ≥ (1+ δ)/4. Therefore, by estimating q′′ up to an additive error O(δ), we can
distinguish these two cases and hence determine sgn

(
θ̄ j
)
. We can estimate q′′ using amplitude

estimation, and this requires O(1/δ) repetitions of the above procedure and its inverse. Therefore,
the time complexity of this algorithm is Õ(polylog(n) ·κ2(χ+νd3κ5/(δ3

√
Φ))/(δΦ)), as claimed.

In the above argument, we have assumed that we know
∥∥θ̂
∥∥ exactly. In fact, we only need

to estimate it to a relative error O(δ). This would cause at most O(δ) error to the above ar-
gument. By Theorem 57, estimating

∥∥θ̂
∥∥ to a relative error O(δ) takes Õ(polylog(n) · κ(χ +

νd3κ6/(δ3Φ))/(δ
√

Φ)) time. This running time is smaller than that of the above procedure.

Remark 67. We can reduce the failure probability of the algorithms in Proposition 65 and Propo-
sition 66 to arbitrarily small γ > 0 by repeating them O(log(1/γ)) times and taking the median or
majority of the estimates obtained.

Combining Proposition 65 and Proposition 66, we obtain:

Theorem 68. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n], and ‖F+‖ ≤ 1/a, ‖F‖ ≤ b. Moreover,
suppose η ≤ |yi| ≤ ζ, for any i ∈ [n]. Let ν = β/α, χ = ζ/η and κ = b/a. Then there exists a
quantum algorithm that produces an estimate θ̄

′ of θ̄ such that
∥∥∥θ̄
′− θ̄

∥∥∥ ≤ ε with probability at

least 2/3, in Õ(polylog(n) · (κd2χ/(ε2
√

Φ)+κ2d1.5χ/(εΦ)+κ7d6.5ν/(ε5Φ1.5)) quantum time.

Proof. Consider the following algorithm:

• For each j ∈ [d]:

1. We use the algorithm in Proposition 65 to estimate
∣∣θ̄ j
∣∣ up to an additive error ε/(8

√
d)

with probability at least 1−1/(6d).

2. Let α j be the estimate of
∣∣θ̄ j
∣∣. Then:

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 95

– If α j≥ ε/(8
√

d), then we use the algorithm in Proposition 66 (setting δ= ε/(8
√

d))
to determine sgn

(
θ̄ j
)

with probability at least 1−1/(6d). Let β j be the output of
this algorithm. Then we set θ̄

′
j = α jβ j;

– Otherwise, we set θ̄
′
j to be +α j or −α j arbitrarily.

Let S = { j ∈ [d] : α j ≥ ε/(8
√

d)}. Then, with probability at least 2/3, we have∣∣α j−
∣∣θ̄ j
∣∣∣∣≤ ε

8
√

d
, ∀ j ∈ [d], (5.80)

and
β j = sgn

(
θ̄ j
)
, ∀ j ∈ S. (5.81)

This implies that ∣∣∣θ̄′j− θ̄ j

∣∣∣≤ ε

8
√

d
, ∀ j ∈ S. (5.82)

Meanwhile, we have ∣∣θ̄ j
∣∣≤ ε

4
√

d
, ∀ j 6∈ S. (5.83)

Thus, ∣∣∣θ̄′j− θ̄ j

∣∣∣≤ ε

2
√

d
, ∀ j 6∈ S. (5.84)

It follows that ∥∥∥θ̄
′− θ̄

∥∥∥2
= ∑

j∈S

∣∣∣θ̄′j− θ̄ j

∣∣∣2 + ∑
j 6∈S

∣∣∣θ̄′j− θ̄ j

∣∣∣2 ≤ ε2

64
+

ε2

4
≤ ε

2. (5.85)

This proves the correctness of this algorithm.
Now we analyze the time complexity of this algorithm. For each j ∈ [d], step 1 takes

Õ(polylog(n) ·κd(χ+νd4.5
κ

6/(ε3
Φ))/(ε2

√
Φ)) (5.86)

time by Proposition 65, and step 2 takes

Õ(polylog(n) ·κ2
√

d(χ+νd4.5
κ

5/(ε3
√

Φ)/(εΦ)) (5.87)

time by Proposition 66. Since we need to do step 1 and 2 for every j ∈ [d], this algorithm has time
complexity

Õ(polylog(n) · (κd2
χ/(ε2

√
Φ)+κ

2d1.5
χ/(εΦ)+κ

7d6.5
ν/(ε5

Φ
1.5)), (5.88)

as claimed.

Remark 69. We can reduce the failure probability of the algorithm in Theorem 68 to arbitrarily
small δ > 0 by making the success probabilities in steps 1 and 2 to be 1−O(δ/d). The running
time of this algorithm will be increased by a factor of O(log(d/δ)).

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 96

5.6 Quantum Algorithm for Estimating the Fit Quality Φ

So far, we have presented two quantum algorithms for the estimation of the best-fit parameters θ̂.
One may notice that they both rely on some knowledge of the fit quality Φ. Now we show that this
is without loss of generality, because Φ can be estimated quickly, as indicated by the following
theorem:

Theorem 70. Suppose α ≤ ‖Fi‖ ≤ β, for any i ∈ [n]. Moreover, suppose η ≤ |yi| ≤ ζ, for any
i∈ [n]. Let ν = β/α, χ = ζ/η and κ = κ(F). Then Φ can be estimated up to an additive error ε > 0
with probability at least 2/3 in Õ(polylog(n) · (χ+νd3κ4/ε)/ε) quantum time.

Proof of Theorem 70. Our strategy for estimating Φ = ‖ŷ‖2 = ‖ΠF |y〉‖2 is as follows. We prepare
the state |y〉, and perform the projective measurement {ΠF, I−ΠF} on it, and estimate the proba-
bility of seeing the outcome corresponding to ΠF. The measurement {ΠF, I−ΠF} is implemented
by running phase estimation on eiσ and checking whether the eigenphase is close to 0 or not.

Specifically, suppose |ŷ〉= ∑
d
j=1 α j

∣∣u j
〉
. Consider the following algorithm for estimating Φ =

‖ŷ‖2 = ∑
d
j=1 α2

j (again, we assume that phase estimation is perfect in the following description,
and we will take the error of phase estimation into account later):

1. We use the algorithm in Lemma 56 to prepare the state |y〉.

2. We run phase estimation on eiσ starting with |y〉, obtaining the state

d

∑
j=1

α j
∣∣u j
〉∣∣s2

j
〉
+ |ε̂〉 |0〉 , (5.89)

3. We perform the measurement {|0〉〈0| , I−|0〉〈0|} on the second register. Then, conditioned
on seeing the outcome corresponding to I−|0〉〈0|, the state becomes proportional to

d

∑
j=1

α j
∣∣u j
〉∣∣s2

j
〉

(5.90)

Furthermore, the probability of seeing this outcome is q := ∑
d
j=1 α2

j = Φ.

4. We use amplitude estimation to estimate q up to an additive error O(ε) with probability at
least 2/3. This requires Õ(1/ε) repetitions of the above procedure and its inverse.

Now we take the error of phase estimation into account, and analyze the time complexity of
this algorithm. In step 2, we do not get the eigenphase s2

j exactly, but get some (random) λ j ≈ s2
j

(although phase estimation can single out the eigenphase 0 perfectly). This implies we only obtain
the states in steps 2-3 approximately. Since we want to estimate q to a relative error O(ε), we
need to make sure that

∣∣∣λ j− s2
j

∣∣∣ ≤ s2
j/3 (so that λ j 6= 0). Since s2

j ≥ 1/(dκ2), we need to set the

precision of phase estimation to be O
(
1/(dκ2)

)
. It follows that we need to simulate eiσt to accuracy

CHAPTER 5. QUANTUM ALGORITHMS FOR CURVE FITTING 97

O(ε) 9 for t =O
(
dκ2) during phase estimation. This can be done in Õ(polylog(n) ·νd(dκ2)2/ε) =

Õ(polylog(n) ·νd3κ4/ε) time by Lemma 55. Meanwhile, it takes Õ(polylog(n) ·χ) time to prepare
|y〉 by Lemma 56. Thus, one iteration of steps 1-3 takes Õ(polylog(n) ·(χ+νd3κ4/ε)) time. Since
amplitude estimation requires Õ(1/ε) repetitions of steps 1-3 and their inverses, this algorithm
takes Õ(polylog(n) · (χ+νd3κ4/ε)/ε) time, as claimed.

Remark 71. We can reduce the failure probability of the algorithm in Theorem 70 to arbitrarily
small δ > 0 by repeating this algorithm O(log(1/δ)) times and taking the median of the estimates
obtained.

5.7 Open Problems
We conclude by pointing out several directions for future research:

First, our work suggests that quantum algorithms might be able to solve curve fitting exponen-
tially faster than classical algorithms. But we do not actually prove it. We only show that quantum
algorithms can solve curve fitting extremely fast when d, κ, ν and χ are sufficiently small. But it is
unknown whether classical algorithms can solve this case fast. It would be interesting to know the
biggest possible gap between our algorithms and classical algorithms.

Second, in this chapter, we have focused on proving upper bounds on the quantum complexity
of curve fitting. It is also worth studying lower bounds on the quantum complexity of the same
problem. In particular, we would like to know if it is possible to generate the state

∣∣θ̄〉 to accuracy
ε > 0 in poly(logn, logd,κ,ν,χ,1/Φ,1/ε) time? Note that this complexity is poly-logorithmic in
both n and d. If so, it would have immediate implications to the simulation of quantum many-body
systems, as suggested by [132]. We suspect that such algorithm does not exist. Can this be proved
under some complexity assumption, say, BQP 6= PSPACE?

Third, Ambainis [9] has introduced a technique called variable-time amplitude amplification
and used it to improve HHL’s algorithm. Since our algorithms for estimating the best-fit parameters
have a similar structure to HHL’s algorithm, can his technique be used to improve our algorithms
as well?

Fourth, as one can see, our algorithms crucially depend on the ability to simulate the evolutions
of nonsparse Hamiltonians. Here we have used the density matrix exponentiation method of [96].
It would be interesting to know whether this method is optimal. Namely, is there a more efficient
way of simulating eiρt by consuming multiple copies of ρ? If so, it would immediately lead to an
improvement of our algorithms.

Finally, given the wide applications of curve fitting, it is promising that our algorithms could
be utilized to solve practical problems in many fields.

9We want the disturbance caused by the imperfection of simulating eiσt to be at most O(ε).

98

Bibliography

[1] S. Aaronson and A. Ambainis. Quantum search of spatial regions. Theory of Computing 1,
pages 47-79, 2005.

[2] D. S. Abrams and S. Lloyd. Simulation of many-body Fermi systems on a universal quantum
computer. Physical Review Letters 79, pages 2586-2589, 1997.

[3] D. Aharonov, T. Naveh. Quantum NP - A Survey. arXiv:quant-ph/0210077, 2002.

[4] D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical zero
knowledge. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC),
pages 20-29, 2003.

[5] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4), pages 844-856,
1995.

[6] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences 64(4), pages 750-767, 2002.

[7] A. Ambainis. Polynomial degree vs. quantum query complexity. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 230-239, 2003.

[8] A. Ambainis. Quantum walk algorithm for element distinctness. In Proceedings of the 45th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 22-31, 2004.

[9] A. Ambainis. Variable time amplitude amplification and a faster quantum algorithm for
solving systems of linear equations. In Proceedings of the 29th Symposium on Theoretical
Aspects of Computer Science (STACS), page 636-647, 2012.

[10] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek and S. Zhang. Any AND-OR
formula of size N can be evaluated in time N1/2+o(1) on a quantum computer. In Proceedings
of the 48th IEEE Symposium on Foundations of Computer Science (FOCS), pages 363-372,
2007.

[11] A. Ambainis, J. Kempe and A. Rivosh. Coins make quantum walks faster. In Proceedings of
the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1099-1108, 2005.

BIBLIOGRAPHY 99

[12] A. Ambainis and R. Špalek. Quantum algorithms for matching and network flows. In
Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 172-183, 2006.

[13] S. L. Arlinghaus. PHB Practical Handbook of Curve Fitting. CRC Press, 1994.

[14] D. Bacon, A. M. Childs and W. van Dam. From optimal measurement to efficient quantum
algorithms for the hidden subgroup problem over semidirect product groups. In Proceedings
of the 46th IEEE Symposium on Foundations of Computer Science (FOCS), pages 469-478,
2005.

[15] D. Bacon, A. M. Childs and W. van Dam. Optimal measurements for the dihedral hidden
subgroup problem. Chicago Journal of Theoretical Computer Science 2006(2).

[16] A.T. Balaban. Chemical applications of graph theory. Academic Press, 1976.

[17] H. Barnum, M. Saks and M. Szegedy. Quantum decision trees and semidefinite program-
ming. In Proceedings of 18th IEEE Conference on Computational Complexity (CCC), pages
179-193, 2003.

[18] R. Beals, H. Buhrman, R. Cleve, M. Mosca and R. de Wolf. Quantum lower bounds by
polynomials. Journal of the ACM 48(4), pages 778-797, 2001.

[19] A. Belovs. Span-program-based quantum algorithm for the rank problem. arXiv:1103.0842,
2011.

[20] A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings
of the 44th ACM Symposium on Theory of Computing (STOC), pages 77–84, 2012.

[21] A. Belovs. Learning-graph-based Quantum Algorithm for k-distinctness. In Proceedings
of the 53th IEEE Symposium on Foundations of Computer Science (FOCS), pages 207-216,
2012.

[22] A. Belovs, A. M. Childs, S. Jeffery, R. Kothari and F. Magniez. Time-Efficient Quantum
Walks for 3-Distinctness. In Proceedings of the 40th International Colloquium on Automata,
Languages and Programming (ICALP), pages 105-122, 2013.

[23] A. Belovs and T. Lee. Quantum algorithm for k-distinctness with prior knowledge on the
input. arXiv:1108.3022, 2011.

[24] A. Belovs and B. W. Reichardt. Span programs and quantum algorithms for st-connectivity
and claw detection. In Proceedings of the 20th European Symposia on Algorithm (ESA),
pages 193-204, 2012.

[25] A. Belovs and A. Rosmanis. On the Power of Non-Adaptive Learning Graphs. In Pro-
ceedings of the 28th IEEE Conference on Computational Complexity (CCC), pages 44-55,
2013.

BIBLIOGRAPHY 100

[26] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters. Teleport-
ing an Unknown Quantum State via Dual Classical and EinsteinPodolskyRosen Channels.
Physical Review Letters 70, pages 1895-1899, 1993.

[27] C. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states. Physical Review Letters 69, 2881, 1992.

[28] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing
26(5), pages 1411-1473, 1997.

[29] D. W. Berry. Quantum algorithms for solving linear differential equations. arXiv:1010.2745,
2010.

[30] D. W. Berry, G. Ahokas, R. Cleve and B. C. Sanders. Efficient quantum algorithms for
simulating sparse Hamiltonians. Communications in Mathematical Physics 270, 359, 2007.

[31] D. W. Berry and A. M. Childs. Black-box Hamiltonian simulation and unitary implementa-
tion. Quantum Information and Computation 12, 29, 2012.

[32] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari and R. D. Somma. Exponential improve-
ment in precision for simulating sparse Hamiltonians. arXiv:1312.1414, 2013.

[33] P. Biswal, J. R. Lee and S. Rao. Eigenvalue bounds, spectral partitioning, and metrical
deformations via flows. Journal of the ACM 57(3), article 13, 2010.

[34] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F. Vatan. On universal and fault-
tolerant quantum computing. Information Processing Letters 75, pages 101-107, 2000.

[35] G. Brassard, P. Høyer, M. Mosca and A. Tapp. Quantum Amplitude Amplification and Esti-
mation. Quantum Computation and Information, edited by S. J. Lomonaco and H. E. Brandt,
AMS, volume 305 of AMS Contemporary Mathematics Series, pages 5374, arXiv:quant-
ph/0005055.

[36] G. Brassard, P. Høyer and A. Tapp. Quantum Algorithm for the Collision Problem. In
Proceedings of the 3rd Latin American Theoretical Informatics Symposium (LATIN), pages
163-169, 1998.

[37] O. Bretscher. Linear Algebra With Applications, 3rd ed. Upper Saddle River NJ: Prentice
Hall.

[38] H. Buhrman and R. Špalek. Quantum verification of matrix products. In Proceedings of the
17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 880-889, 2006.

[39] T. Byrnes and Y. Yamamoto. Simulating lattice gauge theories on a quantum computer.
Physical Review A 73, 022328, 2006.

BIBLIOGRAPHY 101

[40] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky and P. Tiwari. The electrical
resistance of a graph captures its commute and cover times. Computational Complexity 6,
312 (1997).

[41] J. Cheeger. A lower bound for smallest eigenvalue of the Laplacian. In Problems in Analysis,
pages, pages 195-199, Princeton University Press, 1970.

[42] D. Cheung, D. Maslov, J. Mathew and D. Pradhan. On the design and optimization of a
quantum polynomial-time attack on elliptic curve cryptography. In Proceedings of the 3rd
Workshop on Theory of Quantum Computation, Communication, and Cryptography, pages
96-104, 2008.

[43] A. M. Childs. On the relationship between continuous- and discrete-time quantum walk.
Communications in Mathematical Physics 294, pages 581-603, 2010.

[44] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann and D. A. Spielman. Exponential
algorithmic speedup by quantum walk. In Proceedings of the 35th ACM Symposium on
Theory of Computing (STOC), pages 59-68, 2003.

[45] A. M. Childs and W. van Dam. Quantum algorithm for a generalized hidden shift problem.
In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1225-1234, 2007.

[46] A. M. Childs and J. M. Eisenberg. Quantum algorithms for subset finding. Quantum Infor-
mation and Computation 5, 593, 2005.

[47] A. M. Childs and J. Goldstone. Spatial search and the Dirac equation. Physical Review A
70, 042312, 2004.

[48] A. M. Childs and J. Goldstone. Spatial search by quantum walk. Physical Review A 70,
022314, 2004.

[49] A. M. Childs and R. Kothari. Limitations on the simulation of non-sparse Hamiltonians.
Quantum Information and Computation 10, pages 669-684, 2010.

[50] A. M. Childs and R. Kothari. Simulating sparse Hamiltonians with star decompositions.
Lecture Notes in Computer Science 6519, pages 94-103 (2011).

[51] A. M. Childs and R. Kothari. Quantum query complexity of minor-closed graph proper-
ties. In Proceedings of the 28th Symposium on Theoretical Aspects of Computer Science
(STACS), pages 661–672, 2011.

[52] A. M. Childs, L. J. Schulman and U. V. Vazirani. Quantum algorithms for hidden nonlin-
ear structures. In Proceedings of the 48th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 395-404, 2007.

BIBLIOGRAPHY 102

[53] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear combinations of unitary
operations. Quantum Information and Computation 12, pages 901-924, 2012.

[54] A. M. Childs and P. Wocjan. On the quantum hardness of solving isomorphism problems
as nonabelian hidden shift problems. Quantum Information and Computation 7(5-6), pages
504-521, 2007.

[55] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman and S.-H. Teng. Electrical Flows,
Laplacian Systems, and Faster Approximation of Maximum Flow in Undirected Graphs. In
Proceedings of the 43th ACM Symposium on Theory of Computing (STOC), pages 273-281,
2011.

[56] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[57] W. van Dam, S. Hallgren and L. Ip. Quantum algorithms for some hidden shift problems.
SIAM Journal on Computing 36(3), pages 763-778, 2006.

[58] W. van Dam and G. Seroussi. Efficient quantum algorithms for estimating Gauss sums.
arXiv:quant-ph/0207131, 2002.

[59] D. Deutsch. Quantum theory, the Church-Turing principle, and the universal quantum com-
puter. Proceedings of the Royal Society of London. Series A 400, pages 97-117, 1985.

[60] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proceedings
of the Royal Society: Mathematical and Physical Sciences 439, pages 553-558, 1992.

[61] D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical Review
A 51, pages 1015-1022, 1995.

[62] C. Dürr, M. Heiligman, P. Høyer and M. Mhalla. Quantum query complexity of some graph
problems. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP), pages 48-493, 2004.

[63] M. Ettinger and P. Høyer. On quantum algorithms for noncommutative hidden subgroups.
Advances in Applied Mathematics 25, pages 239-251, 2000.

[64] E. Farhi, J. Goldstone and S. Gutmann. A quantum algorithm for the Hamiltonian NAND
tree. arXiv:quant-ph/0702144, 2007.

[65] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser. Limit on the speed of quantum computa-
tion in determining parity. Physical Review Letters 81(24), pages 5442-5444, 1998.

[66] E. Farhi and S. Gutmann. Quantum computation and decision trees. Physical Review A 58,
pages 915-928, 1998.

[67] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics 21, pages 467-488, 1982.

BIBLIOGRAPHY 103

[68] W. Fulton and J. Harris. Representation theory. A first course. Graduate Texts in Mathemat-
ics, Readings in Mathematics 129, New York: Springer-Verlag, 1991.

[69] D. Gavinsky. Quantum solution to the hidden subgroup problem for poly-near-Hamiltonian
groups. Quantum Information and Computation 4(3), pages 229-235, 2004.

[70] D. Gavinsky and T. Ito. A quantum query algorithm for the graph collision problem.
arXiv:1204.1527, 2012.

[71] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the 28th ACM Symposium on the Theory of Computing (STOC), pages 212-219, 1996.

[72] M. Grigni, L. J. Schulman, M. Vazirani and U. Vazirani. Quantum mechanical algorithms
for the nonabelian hidden subgroup problem. Combinatorica 24(1), pages 137-154, 2004.

[73] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love and M. Head-Gordon. Simulated quantum com-
putation of molecular energies. Science 309, pages 1704-1707, 2005.

[74] S. Hallgren. Polynomial-time quantum algorithms for Pells equation and the principal ideal
problem. Journal of the ACM 54(1), article 4, 2007.

[75] S. Hallgren. Fast quantum algorithms for computing the unit group and class group of a
number field. In Proceedings of the 37th ACM Symposium on Theory of Computing (STOC),
pages 468-474, 2005.

[76] S. Hallgren, C. Moore, M. Rötteler, A. Russell and P. Sen. Limitations of quantum coset
states for graph isomorphism. In Proceedings of the 38th ACM Symposium on Theory of
Computing (STOC), pages 604-617, 2006.

[77] S. Hallgren, A. Russell and A. Ta-Shma. The hidden subgroup problem and quantum com-
putation using group representations. SIAM Journal on Computing 32(4), pages 916-934,
2003.

[78] A. W. Harrow, A. Hassidim and S. Lloyd. Quantum algorithm for linear systems of equa-
tions. Physical Review Letters 103, 150502 (2009).

[79] A. W. Harrow, B. Recht, and I. L. Chuang. Efficient discrete approximations of quantum
gates. Journal of Mathematical Physics 43(9), pages 4445-4451, 2002.

[80] R. Heckel. Graph transformation in a nutshell. Electronic Notes in Theoretical Computer
Science 148, pp. 187198, 2006.

[81] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki. Quantum entanglement.
Review of Modern Physics 81, 865, 2009.

[82] P. Høyer, T. Lee and R. Spalek. Negative weights make adversaries stronger. In Proceedings
of the 39th ACM Symposium on the Theory of Computing (STOC), pages 526-535 , 2007.

BIBLIOGRAPHY 104

[83] S. Jeffery, R. Kothari, and F. Magniez. Nested Quantum Walks with Quantum Data Struc-
tures. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1474-1485, 2013.

[84] S. Jordan, K. Lee and J. Preskill. Quantum algorithms for quantum field theories. Science
336, pages. 1130-1133, 2012.

[85] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni and A. Aspuru-Guzik. Quantum algorithms
for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences
105, pages 18681-18686, 2008.

[86] M. Karchmer, and A. Wigderson. On span programs. In Proceedings of the 8th IEEE Symp.
Structure in Complexity Theory, pages 102-111, 1993.

[87] A. Y. Kitaev. Quantum measurements and the Abelian Stabilizer Problem. arXiv:quant-
ph/9511026, 1995.

[88] A. Y. Kitaev. Quantum computations: Algorithms and error correction. Russian Mathemat-
ical Surveys 52(6), pages 1191-1249, 1997.

[89] A. Y. Kitaev, A. Shen and M. N. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, 2002.

[90] E. Knill. Approximation by quantum circuits. Technical Report LAUR-95-2225, Los
Alamos National Laboratory, arXiv:quant-ph/9508006, 1995.

[91] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. SIAM Journal on Computing 35(1), pages 170-188, 2005.

[92] T. Lee, F. Magniez, and M. Santha. A learning graph based quantum query algorithm for
finding constant-size subgraphs. Chicago Journal of Theoretical Computer Science, 2012.

[93] T. Lee, F. Magniez and M. Santha. Improved Quantum Query Algorithms for Triangle
Finding and Associativity Testing. In Proceedings of ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1486-1502, 2013.

[94] Y. T. Lee, S. Rao and N. Srivastava. A new approach to computing maximum flows using
electrical flows. In Proceedings of the 45th ACM Symposium on Theory of Computing
(STOC), pages 755-764, 2013.

[95] S. Lloyd. Universal quantum simulators. Science 273, pages 1073-1078, 1996.

[96] S. Lloyd, M. Mohseni and P. Rebentrost. Quantum principal component analysis. arXiv:
1307.0401, 2013.

BIBLIOGRAPHY 105

[97] A. Madry. Navigating Central Path with Electrical Flows: from Flows to Matchings, and
Back. In Proceedings of the 54th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 253-262, 2013.

[98] F. Magniez and A. Nayak. Quantum complexity of testing group commutativity. Algorith-
mica 48(3), pages 221-232, 2007.

[99] F. Magniez, A. Nayak, J. Roland and M. Santha. Search via quantum walk. In Proceedings
of the 39th ACM Symposium on Theory of Computing (STOC), pages 575-584, 2007.

[100] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1109-1117,
2005.

[101] Y. Manin. Computable and uncomputable. Sovetskoye Radio, 1980.

[102] C. Moore, D. N. Rockmore, A. Russell and L. J. Schulman. The power of strong Fourier
sampling: Quantum algorithms for affine groups and hidden shifts. SIAM Journal on Com-
puting 37(3), pages 938-958, 2007.

[103] M. Mosca and A. Ekert. The hidden subgroup problem and eigenvalue estimation on a
quantum computer. In Proceedings of the 1st NASA International Conference on Quantum
Computing and Quantum Communication, 1999.

[104] D. Nagaj, P. Wocjan and Y. Zhang. Fast amplification of QMA. Quantum Information and
Computation 9, 1053 (2009).

[105] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 10th Anniversary Edition, 2011.

[106] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather. SubGemini: identifying subcircuits using
a fast subgraph isomorphism algorithm. In Proceedings of the 30th International Design
Automation Conference, pages 3137, 1993.

[107] G. Ortiz, J.E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms for Fermionic
simulations. Physical Review A 64, 022319, 2001.

[108] D. Poulin, A. Quarry, R. D. Somma and F. Verstraete. Quantum simulation of time-
dependent Hamiltonians and the convenient illusion of Hilbert space. Physical Review
Letters 106, 170501, 2011.

[109] D. Poulin and P. Wocjan. Sampling from the thermal quantum Gibbs state and evaluating
partition functions with a quantum computer. Physical Review Letters 103, 220502, 2009.

[110] J. Preskill. Lecture Notes for Physics 229: Quantum Information and Computation, Caltech,
Fall 1998.

BIBLIOGRAPHY 106

[111] B. W. Reichardt. Span programs and quantum query complexity: The general adversary
bound is nearly tight for every boolean function. In Proceedings of the 50th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 544-551, 2009.

[112] B. W. Reichardt. Span-program-based quantum algorithm for evaluating unbalanced formu-
las. In 6th Conf. on Theory of Quantum Computation, Communication and Cryptography
(TQC), 2011.

[113] B. W. Reichardt. Reflections for quantum query algorithms. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 560-569, 2011.

[114] B. W. Reichardt. Faster quantum algorithm for evaluating game trees. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 546-559, 2011.

[115] B. W. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating
formulas. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC),
pages 103-112, 2008.

[116] M. Saks and A. Wigderson. Probabilistic Boolean decision trees and the complexity of
evaluating game trees. In Proceedings of the 27th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 29-38, 1986.

[117] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing 26(5), pages 1484-1509, 1997.

[118] D. R. Simon. On the power of quantum computation. SIAM Journal on Computing 26(5),
pages 1474-1483, 1997.

[119] M. Snir. Lower bounds on probabilistic linear decision trees. Theoretical Computer Science
38, pages 69-82, 1985.

[120] R. Solovay. Lie groups and quantum circuits. Mathematical Sciences Research Institute,
2000.

[121] R. Špalek and M. Szegedy. All Quantum Adversary Methods are Equivalent. In Proceedings
of the 32nd international conference on Automata, Languages and Programming (ICALP),
pages 1299-1311, 2005.

[122] D. A. Spielman and N. Srivastava. Graph Sparsification by Effective Resistances. In Pro-
ceedings of the 40th ACM Symposium on Theory of Computing (STOC), pages 563-568,
2008.

[123] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proceedings of the 36th ACM Symposium on
Theory of Computing (STOC), pages 81-90, 2004.

BIBLIOGRAPHY 107

[124] M. Suzuki. Fractal decomposition of exponential operators with applications to many-body
theories and Monte Carlo simulations. Physical Letters A 146(6), pages 319-323, 1990.

[125] M. Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of the
45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 32-41, 2004.

[126] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete. Quantum Metropo-
lis Sampling. Nature 471, pages 87-90, 2011.

[127] L. Trevisan. Max cut and the smallest eigenvalue. In Proceedings of the 41st ACM Sympo-
sium on Theory of Computing (STOC), pages 263-272, 2009.

[128] H. F. Trotter. On the product of semi-groups of operators. Proceedings of the American
Mathematical Society 10 (4), pages 545-551, 1959.

[129] U. Vazirani. Lecture Notes for CS 294: Quantum Computation, UC Berkeley, Spring 2009.

[130] J. Watrous. Quantum simulations of classical random walks and undirected graph connec-
tivity. Journal of Computer and System Sciences 62, pages 376-391, 2001.

[131] J. Watrous. Quantum algorithms for solvable groups. In Proceedings of the 33rd ACM
Symposium on Theory of Computing (STOC), pages 60-67, 2001.

[132] N. Wiebe, D. Braun and S. Lloyd. Quantum data fitting. Physical Review Letters 109,
050505 (2012).

[133] L.-A. Wu, M. S. Byrd and D. A. Lidar. Polynomial-Time Simulation of Pairing Models on
a Quantum Computer. Physical Review Letters 89, 057904, 2002.

[134] C. Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal
Society A 454, pages 313-322, 1998.

[135] S. Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science 339(2-
3), pages 241-256, 2005.

[136] Y. Zhu. Quantum query complexity of subgraph containment with constant-sized certifi-
cates. arXiv:1109.4165, 2011.

	Contents
	Introduction
	Background
	Summary of Results

	Preliminaries
	Notation
	Quantum Information
	Quantum Computation

	Quantum Algorithm for Tree Detection
	Introduction
	Span Program and Quantum Query Complexity
	Span Program for Tree Detection
	Time-Efficient Implementation
	Open Problems

	Electrical Flows and Quantum Algorithms
	Overview
	Spectral Graph Theory
	Electrical Flows and Effective Resistances
	Our Model
	A Simple Quantum Algorithm for Estimating Effective Resistances
	A Faster Quantum Algorithm for Estimating Effective Resistances
	Generating Electrical Flows as Quantum States
	Lower Bound on the Complexity of Effective Resistance Estimation
	Discussion

	Quantum Algorithms for Curve Fitting
	Introduction
	Least-Square Curve Fitting
	Our Model
	Density Matrix Exponentiation
	Quantum Algorithms for Estimating the Best-Fit Parameters
	Quantum Algorithm for Estimating the Fit Quality
	Open Problems

	Bibliography

