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Abstract
The Online Course Tool for Adaptive Learning (OCTAL) is a tool that com-
bines an exercise system with a concept map to allow learners to explore
an underlying prerequisite structure of topics. An algorithm that estimates
a learner’s level of mastery highlights concepts in the graph to provide the
user with a metacognitive hint about their progress through the material.
Learners are guided by the prerequisite structure and knowledge inference
but may navigate freely through the graph. We intend OCTAL to be a for-
mative assessment tool that is not tied to any specific course or subject and
provide authoring tools for content designers to create material. Toward the
goal of being usable in a number of online courses, OCTAL has support to
be embedded within online learning platforms such as edX.

Students enroll in online courses with different learning goals and, as a
result, may wish to pursue their own paths through the material. OCTAL
presents the underlying prerequisite structure of the material to allow learners
the opportunity to decide whether or not deviation from the expert-defined
path would be beneficial for their understanding. This allows students to
metacognitively consider their level of mastery in a course’s advanced con-
cepts by exploring exercises without limitation and may therefore be useful
to help answer the question “will this course be useful?” Similarly, for those
students enrolled in a course, it allows them to decide how to prioritize con-
sumption of content and discover which concepts they may reasonably skip,
if necessary.

In order to study the benefits of metacognition with OCTAL, we authored
a concept map and question set for topics from UC Berkeley’s CS10: The
Beauty and Joy of Computing. We presented the tool to the students of the
course between their first and second midterm exams during the spring of
2014. In the study, we found no statistically significant changes in metacogni-
tion among participants who used the tool. However, analysis of participant
usage of the tool reveals differences in the way learners approach concepts
presented to them in a list versus in a graph. In particular, while users often
followed a list of concepts in-order, learners that navigated a graph explored
concepts in clusters.
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1 Introduction
With the proliferation and maturity of many types of online courses from
OpenCourseWare (OCW) to Massively Open Online Courses (MOOCs), sev-
eral closely related but distinct concerns are apparent. First, there is a need
for scalable tools to address the effective management of an enormous stu-
dent population. Second, there is a need to offer students an individualized
learning experience in an environment where interaction between individual
students and their instructors is all but impossible.

Specifically, given the demonstrated efficacy of one-on-one tutoring and
mastery learning [5], it is important to incorporate these elements into the
ecosystem of online courses in a manner that is constructive to student learn-
ing. Intelligent Tutoring Systems (ITS) are automated systems that aim to
provide exactly these benefits and have been used for a number of years in
other educational contexts. ITS implementations are often painstakingly de-
veloped for very specific topics, such as elementary arithmetic or physics.
We introduce the Online Course Tool for Adaptive Learning (OCTAL) as a
framework for content to leverage both mastery learning and metacognitive
prompting [18]. The framework allows course staff, instructors, or other con-
tent designers to author and deploy material to learners. We intend the tool
to augment but not necessarily inform the design of a variety of existing and
future online courses.

Computerized Adaptive Testing (CAT) and ITS have been the subject of
active research since the 1970s. Now essential for many applications, such as
the Graduate Record Examination (GRE) and Test of English as a Foreign
Language (TOEFL), the need for accurate and robust adaptive assessment
has led to a body of research that has approached the problem from a num-
ber of angles. Related work in latent knowledge estimation, fundamental
to intelligent tutoring systems designed for real-time adaptive learning, have
similarly offered a number of solutions for building and utilizing coherent
models of student knowledge [10]. Meanwhile, research in education technol-
ogy has investigated the benefits of scaffolding and metacognition in learning
[39].

OCTAL falls at the intersection of these fields. We investigate benefits to
a learner’s metacognitive awareness through estimation of latent knowledge
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traits and displaying an expert-defined structure of concept dependencies.
Although popular CAT algorithms such as Item Response Theory (IRT)
provide accurate estimation of latent knowledge traits at a given point in
time, we also intend to provide continuously updating mastery estimates that
change as the user learns. We have therefore chosen to model student knowl-
edge using a Bayesian Inference Network (BIN), a model of latent knowledge
that supports hierarchical structures and changes to latent knowledge [1, 8].

Figure 1: OCTAL user interface with concept graph and exercise.

We intend OCTAL to be used as a tool for formative self-assessment
of students participating in any course whose topics lend themselves to a
dependency structure (Figure 1). At a coarse level, OCTAL involves the
integration of a number of concepts well studied in the literature. First, we
presuppose a hierarchy of concepts comprise a given course; the construction
of this hierarchy is itself a field of study and is outside the scope of this work.
We therefore intend an instructor or expert in the field to create a concept
graph in OCTAL before using the tool as part of their instruction. Second,
we maintain a student model for each learner, including features about their
responses to assessment items offered by our tool and other metadata. Third,
we utilize a predictive algorithm incorporating this hierarchy of concepts and
these observed features into a BIN in order to make predictions about a
student’s current knowledge state. Finally, the combination of these factors
is intended to provide metacognitive hints toward the underlying structure
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of a sequence of concepts.
We built a number of features into OCTAL so that it may be used outside

the scope of a research project and embedded in real-world courses. Included
in these features are tools to create content: graphical editors allow content
creators to design concept graphs and exercises without requiring advanced
technical knowledge. In addition, OCTAL supports the IMS Global Learning
Consortium’s Learning Tools Interoperability (LTI) specification, which al-
lows it to be embedded within learning platforms, such as edX, with relative
ease. These features are described in detail in Sections 4 and 5.
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2 Related Work

2.1 Concept Maps
Novak and Cañas describe the specifics of a concept map in their 2006 tech-
nical report [20]. A concept map is a graph with nodes representing concepts
(each node is typically surrounded by a square or circular border with the
concept name within) and edges linking nodes with a relationship. In the
map, the edges typically contain a “linking word” or “linking phrase” that
describe the relationship between the nodes. In essence, a basic sentence
providing semantic meaning can be formed by reading the concept name of
a node, the linking phrase of its edge to a subsequent node, and the concept
name of that connected node. Further, the hierarchy must be structured
such that the least specific concepts are at the top with increasing specificity
towards the bottom. A sample concept map is shown in Figure 2.

There are several ways that OCTAL differs from this definition, and we
therefore use the term “concept graph” instead of “concept map” to refer
to our implementation. The most significant change is the elimination of
linking words between nodes. We justify this because, according to Novak
and Cañas, “it is best to construct concept maps with reference to some
particular question we seek to answer” [20]. Our graphs are intended to
include coarse concepts in a knowledge domain, rather than those seeking to
answer a specific question, and primitive linking words would therefore be
too restrictive for complex relationships.

The Concept Mapped Project-based Activity Scaffolding System (CoM-
PASS) displays a concept map and associated text for a selected node (Figure
2) [23]. The CoMPASS concept map is displayed on a website using a fisheye
technique to provide visual priority to the selected node and decrease the
visual impact of nodes in the graph as their degree increases from the fo-
cus. This display provides clear relationships between the selected node and
its immediate neighbors, but it can cause confusion in understanding the
placement of the node in the global context [31]. One notable differentiation
between CoMPASS and OCTAL is that a selected node in the concept map
displays further information rather than an exercise.
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Figure 2: CoMPASS screenshot displaying a concept map and related text.

Several research projects have emerged from the CoMPASS project. Pun-
tambekar, et al., divided a group of middle school science students and pro-
vided one set with CoMPASS and the other group with an outline of the
same topics. Although the two groups displayed similar fact retention, they
found the group that navigated the material with a concept map to have a
deeper understanding of the content [24]. Hübscher and Putambekar per-
formed a case study with the system, attempting to make design choices
from the context of pedagogy improvements over technical constraints [19].
Embedding the CoMPASS project into a middle school science curriculum
resulted in students having a better understanding of the relationships be-
tween concepts [25], though the benefit arose from discussion and reflection
and not simply providing a visual display that showed relationships.

Romero and Ventura describe additional educational concept graph tech-
nologies in their review paper of modern technology in educational data
mining [30], though the automatic creation of concept graphs is outside the
scope of this report. From an education design perspective, concept maps
are widely applied in science education [6] and are consistent with several
learning theories including Anderson’s knowledge representation [2], Duffy
et al.’s constructive learning [11], and Novak’s meaningful learning [20].
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Navigation and display of hierarchical graphs is also well-studied [12].
OCTAL itself, however, relies on kmap, a graph display library developed by
Colorado Reed at UC Berkeley and used in the open-source project Meta-
cademy [29]. We provide additional detail on this technical dependency in
Section 5.1.

2.2 Knowledge Estimation
One oft-employed model of student knowledge estimation is Item Response
Theory [33]. Employing the Item Response Function (IRF), and a prior dis-
tribution of latent knowledge over a population, IRT serves as a means to
summatively assess a student’s latent knowledge relative to that population.
Typically, the algorithm iteratively selects maximally informative assessment
items until a latent trait has been estimated within some small bound of er-
ror. The IRF is a 3-parameter sigmoid function unique to each assessment
item and includes an assignation of item difficulty, discriminability, and the
probability of an uninformed but correct guess. Other less popular variants
include 2- and 1-parameter models which are derived by omitting the prob-
ability of guessing and item discriminability, respectively [17]. Additionally,
multidimensional IRT has been shown to perform well in the simultaneous
measurement multiple latent traits [26].

One limitation to Item Response Theory, however, is that it models a
student’s knowledge at a particular point in time; there is not, generally,
an allowance made for learning that occurs during an assessment. While
IRT has been shown to be well-suited for measuring multiple dimensions
of student ability, such as vocabulary skill and reading comprehension, it
is not easily adapted to measuring a hierarchy of traits. The Assessment
and Learning in Knowledge Spaces (ALEKS) system is an example of an
IRT implementation that also employs a hierarchical knowledge structure,
adapts the IRF to search through a space of all possible student positions in
the hierarchy and iteratively attempts to select the most probable knowledge
state for a student [13].

Another frequently used model of student learning employed in intelli-
gent tutoring systems is Bayesian Knowledge Tracing (BKT), first described
by Corbett and Anderson [10]. BKT relies on the strong assumption that
knowledge of a topic is binary—either known or unknown. It calculates the
posterior probability that a student knows a concept based on observed data
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and a four-parameter model that strongly impacts its predictions. The four
parameters are defined as follows:

• P (L0): The prior probability that a student understands a concept
before being assessed.

• P (G): The probability of guessing, or responding correctly to a ques-
tion given no knowledge of a concept.

• P (S): The probability of slipping, or responding incorrectly given that
a student does know a concept.

• P (T ): The probability that a student will acquire knowledge of a con-
cept after each assessment.

These parameters are usually generalized over the entire model, though ef-
forts have been made to analyze the efficacy of their contextual assignment
[4]. The probability that a student has attained mastery of a concept is
recalculated after each question is answered, using Bayesian inference. This
process is repeated until some condition is fulfilled, typically until a threshold
probability of mastery is achieved.

BKT is intended to be a formative assessment tool to approximate mas-
tery learning. Although it is based on a simple model, it has been shown
to perform consistently well even when compared to more complex models
such as Performance Factors Analysis [14]. However, BKT is traditionally
implemented to measure only a single trait and must be adapted in order to
model a knowledge over a hierarchy of concepts. To this end, we have drawn
upon features of BKT, but with an approach tailored to the use of a concept
graph, as detailed in Section 5.6.
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3 Design

3.1 Principles
OCTAL’s design has been guided and informed by several principles, de-
scribed below.

3.1.1 Scale and Reach

The issue of scale is often fairly well-defined in the context of large online
courses, including MOOCs. Frequently, issues of scale center on the vast
number of students participating in the course. Coburn, however, proposes
a broader definition of scale that contains four dimensions: depth, sustain-
ability, spread, and shift in reform ownership [7].

In this definition, spread (or the overall impact in numbers of students
or institutions) remains an integral part. However, she argues that to be “at
scale”, an innovation must also effect deep change in practice (depth), be
easily implemented and reproduced in other curricula (sustainability), and
become naturally embedded in a curriculum (shift in reform ownership).

These ideas have similar meaning in Computer Science under the term
“reach,” and our design has been informed by these concepts. Several design
principles and implementation details, as shown below, attempt to broach
this subject: we intend that the tool be used by courses and implemented in
future MOOCs.

3.1.2 Openness and Integration

OCTAL is open-source and built upon open-source tools (Section 5.1). It
is our hope that others may contribute to the tool and modify it for their
own purposes. In addition, we intend usage to be as unrestricted as possible.
The system does not enforce a specific order that students proceed through
concepts or exercises.
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Any user may also contribute by authoring content. A single OCTAL
unit represents a concept graph and the set of all exercises that correspond
to that graph. Units are accessible by anyone with a URL, and by default
every unit is shown on a list of all available units. Content authors may elect
to hide the unit from public listing, however. Further, no user credentials
are required to use the tool or to contribute content to the system.

By default, OCTAL can be used as a stand-alone tool. However as OC-
TAL supports IMS Global Learning Consortium’s Learning Tools Interop-
erability (LTI) protocol as a provider, it can be integrated into Learning
Management Systems (LMS) that are LTI consumers, such as edX.

3.1.3 Unique Learning Paths

A main guiding principle behind the concept graph is that each learner may
wish to pursue their own path through the material. Students may or may
not learn the material best in the linear order that an instructor presents it,
as learners bring unique understandings and misconceptions [3]. Presenting
the underlying prerequisite structure of the material allows learners the op-
portunity to decide whether or not deviation from the expert-defined path
would be beneficial for their understanding.

A side-effect of this principle is that OCTAL may be useful for learners
asking the question “will this course be useful?” Students may gauge their
level of mastery in a course’s advanced topics by exploring the exercises in
those concepts without limitation and in the order they wish. Similarly,
it allows students to decide how to prioritize consumption of content and
discover which concepts they may reasonably skip, if necessary.

3.1.4 Scaffolding

Although OCTAL provides learners the opportunity to navigate the material
in any manner they wish, the tool also provides metacognitive hints through
knowledge estimation. By displaying an estimated level of mastery for con-
cepts, an alternative learning path is suggested and helps scaffold a learner’s
understanding as they work through the material. OCTAL aims to show
learners the expected path that targets their Zone of Proximal Development

13



(ZPD). Placing learners in their ZPD allows them to engage in more advanced
thinking and activities [37].

Although Vygotsky never coined the term “scaffolding”, the idea of the
ZPD provided the framework for the term. Early scaffolding was defined as
an adult guiding a learner through tasks just beyond that learner’s capacity
[39]. Its definition has evolved to mean a specific set of requirements: a
scaffolding technology must continuously assess a learner, the scaffolding
must fade away over time, and the learner must be an active participant in
the learning process [19, 21, 35]. However, given logistical and conceptual
difficulties in emulating a human tutor, it is useful to split scaffolding into
“hard” and “soft” types; the former being technology-mediated and the latter
provided by experts [34]. More specifically, scaffolds can be either explicit
(more constrained) or tacit (less constrained) [16].

OCTAL falls in the categories of “hard” and “tacit” scaffolds since it
allows the learner to navigate the concept graph freely despite the metacog-
nitive hints. The scaffolding is present but optional for learners; we therefore
implement the first and third requirements from the strict definition above,
but not the second.

3.1.5 Formative Assessment

OCTAL is not intended to assess students as part of their grade. Learners
are encouraged to honestly respond to exercises, irrespective to the number
of times they get it wrong.

This principle has several implications. For instance, an early technical
decision resulted in exercises marked for correctness on the front end, where
savvy users could manipulate the code and send falsely correct attempt events
to the server. Although this would allow a learner to “cheat” the system, the
result would have no bearing on a grade and would therefore only impact the
knowledge estimates provided to the user.

There is no facility for instructors or course staff to view a learner’s
progress through a graph and unit. However, this may be a possible future
enhancement to the system.
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3.2 Limitations
Although we strive to abide by these principles in as many ways as possible,
there are several limitations to the system.

For every exercise attempt, the knowledge inference algorithm requires a
tuple of the selected concept and a correctness value. In principle this allows
for a wide variety of question types, but the current implementation allows
only for multiple choice and true/false.

In addition, a third party exercise system as part of a LMS would, in
theory, be able to supply the knowledge inference algorithm with the needed
data by performing a request to the OCTAL server with a concept and cor-
rectness value. However, this facility is not implemented and exercises are
therefore required to be input into OCTAL’s content editor.

Students’ optimal learning paths may differ greatly from the expert-
defined graph. There is currently no way of specifying multiple prerequisite
structure for material without defining separate units for each alternative.

Finally, OCTAL is also designed to be used by individual learners and
therefore has no built-in capability for collaborative efforts.

3.3 Cultural Considerations
The population of students taking online courses varies wildly. However, in
order to maintain focus while implementing OCTAL, we have made several
assumptions regarding its use.

First, the tool’s premise depends on the visual display of a concept graph.
This may not be reasonable for users that require the use of a screen reader,
such as those with visual impairments. For this reason, we consider accessi-
bility support to be poor.

We have attempted to make considerations for users with differences in
color perception. Concepts that the knowledge inference algorithm considers
mastered, for instance, are not only highlighted in green but also given a
thicker border.

There is no support to filter, flag, or revoke offensive content. This initial
version trusts content authors to be respectful.

The website and instructions assume an understanding of English. Con-
tent authors may submit graphs and content in other languages, but the site
itself, including usage instructions, has no support for localization.
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4 User Interface
OCTAL is an HTML- and JavaScript-based application hosted on its own
independent server. The user interface is informed by the needs for four
different types of users: visitors, learners, participants in research studies,
and content authors. A single OCTAL unit represents a concept graph and
the set of all exercises that correspond to that graph. The interfaces for each
of these types of users is described further below.

4.1 Visitor

Figure 3: User interface listing all public units.

Users that visit the website without having been provided a direct link
to an OCTAL unit are presented with a list of publicly-listed units (Figure
3). Clicking on any name allows a visitor to transition to a learner (Section
4.2) for that unit.

16



4.2 Learner
The primary interaction a user will have with OCTAL is as a learner 1. These
users have been given a direct link to the unit (for example, through a course
or online tutorial) or have selected a unit from the unit list (Section 4.1).
Upon loading the page, learners are presented with welcome text and a two-
dimensional directed acyclic graph that represents the concept graph.

Figure 4: OCTAL interface with concept graph, welcome text, and inferred
knowledge calculated from this user’s prior exercise attempts.

A node represents a single concept and directed edges indicate the hi-
erarchy of prerequisites. Prerequisite root nodes are placed at the top and
post-requisite leaves placed at the bottom with edges pointing from a pre-
requisite to its post-requisite. Post-requisites are always placed below their
prerequisite nodes. Outside of these restrictions, the placement of nodes in
the graph is a result of kmap attempting to maximize visual clarity of the
graph. The library arranges the nodes to minimize edge intersections but
maintain reasonable viewable dimensions that can be displayed in a browser
viewport. A consequence of this priority on visual clarity is that node place-
ment in horizontal and vertical axes are not intended to convey structure

1We use the term learners instead of students since the types of exercise graphs created in
OCTAL may include those outside of the scope of a class or course.
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Figure 5: Exercise interface for a selected concept showing a subgraph of nodes
with degree 1 from that concept.

or context. In other words, nodes found on the same vertical placement are
not necessarily intended to provide contextual clues as to their relative diffi-
culty or importance to others in the same row. Likewise, placement on the
horizontal axis has no intended meaning.

Learners are allowed unrestricted access to any concept in the graph.
Clicking on a concept results in a zooming animation to a subgraph of the
selected node and all nodes with degree one from it (the set of immediate
pre- and post-requisites). The introductory text is replaced by an exercise
from the bank of exercises defined for that concept. In addition, learners are
presented with text indicating the number of remaining incomplete questions
and an option to skip the current exercise, if more than one incomplete
exercise remains in the set (Figure 5).

We define “incomplete” exercises as those that have not yet been correctly
answered. When a learner completes an exercise, it is not shown again to
the user until they have completed all remaining questions in that concept.
If a learner selects “Go To Next Question” another exercise will be randomly
displayed from the remaining set of incomplete exercises.

Learners check their work by selecting a response and clicking the “Check
My Answer” button. Text will appear directly above the button that indi-
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cates whether or not the answer was correct. Learners may then choose to
proceed to the next question by selecting “Go To Next Question” or attempt
the current exercise again. Currently, the learner receives no feedback other
than correctness. OCTAL does not support answer hints to ensure that the
knowledge estimation algorithm (Section 5.6) receives an accurate stream of
attempts that is not influenced by other factors.

Every question attempt causes a request to the server that records the
attempt’s correctness and performs an updated knowledge inference compu-
tation, based on that described in Section 5.6. The result of the computation
contains a list of concepts considered mastered and is passed from the server
back to the client. Those nodes contained within the list are subsequently
highlighted in a green color and the border given a thicker stroke to indicate
to the learner that the concept is mastered.

Learners may proceed to subsequent exercises at any time during this
process. Alternatively, the learner may navigate the graph by clicking on the
current concept to zoom the graph out and select another. The knowledge
inference provides a visual clue as to where learners may want to pursue
further exercise in the current concept, advance to post-requisites, or retreat
to prerequisites. Users are not limited, however, and may continue with
exercises in the selected concept or select another concept at any time.

4.3 Participant
OCTAL units may be defined by content authors to be part of a research
study. In this case, users that interact with the unit become participants.

When a user first visits the unit they are forced to either identify them-
selves as not a participant or log in with a participant identifier (generally
supplied offline after a consent form has been signed) in order to access the
tool (Figure 6). Non-participants are immediately forwarded to the unit and
interact with it in an identical manner as learners (Section 4.2). If a user
instead identifies as a participant and enters a valid participant ID, they are
forwarded to a URL hosting a pre-survey, if the unit author has defined one.
Upon completion of the survey, or if none was defined in the unit, a link
returns them to the OCTAL unit where they may begin to interact with the
tool. Half of these participants see the UI in the same manner as defined in
Learners (Section 4.2), the other half are provided a linear view.

The linear view behaves in a similar manner as the interface presented in

19



Figure 6: Participant login form.

Section 4.2, except the two-dimensional graph is collapsed into a linear list
of concepts and is found on the left side of the screen (Figure 7). Knowledge
inference continues to highlight the concepts predicted to be mastered, but
the underlying structure of the graph is hidden from these participants.

Participants that visit the unit after a content author specifies the study
as “completed” are forced to another third-party URL that hosts a post-
survey, if the unit author has defined one. Upon completion of the survey, or
if none was defined, learners are forwarded back to the OCTAL site where
a completion page thanks them for their participation. They may continue
with the unit as learners once they have completed the post-survey and view
the study completion page.

4.4 Content Author
Any user may elect to be a content author to create an OCTAL unit. De-
signing a unit involves first specifying metadata and designing its concept
graph (Appendix D.1) and then specifying a set of exercises (Appendix D.2).

The user interface is a standard HTML form with fields for the graph
name, a description, an option to hide the unit from the units list (which
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Figure 7: Linear concept view.

will hide the unit from visitors, as in Section 4.1), and an option to allow the
unit to be a part of a research study (making users of the unit participants,
Section 4.3). Finally, the graph editor, provided by kmap, allows content
authors to visually create the concept graph for the unit (Figure 8). Shift-
clicking creates nodes and shift-click-and-drag creates directed edges between
them. Authors may change concept names and delete concepts from the
graph. An option is provided to optimize the graph placement so that the
content author can get a preview of how the concepts will be arranged to a
learner. Advanced content authors may instead elect to input the graph as
valid JavaScript Object Notation (JSON) through a checkbox on the page.
The expected JSON structure is defined in Section 5.4.

Content authors may also specify the unit as being part of a research
study. In this case, an additional form appears that allows them to include
(optional) pre-survey and post-survey URLs and a list of comma-separated
identifiers for participants. The action of the surveys is described in Partici-
pants, Section 4.3. The last identifier in the list of participant IDs is used as
a special-case representing a non-participant.

OCTAL generates a secret key for every new unit and displays this key
at the bottom of the form. Content authors must use this secret key in order
to edit the unit and its exercises in the future. Content authors may share
that key with other users (say, other course staff) to delegate responsibility
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Figure 8: OCTAL unit creation and editing form.

for the content.
Upon submission, the form reminds the author to record the key. A

second click submits the form, and the author is forwarded to the unit on
success or, if a validation error occurred, is returned to the creation page
with a request to correct the errors.

Editing the unit shows a similar user interface as the creation form with
some small differences. First, the content author must enter the unit’s secret
key before being shown the editing form. Second, if the unit is part of
a research study, the participant list field is disabled by default. The page
warns users that changing the list will cause all participant IDs to be removed
from the server before being recreated, but content authors may click through

22



Figure 9: Exercise authoring and editing.

the warning to modify the list. Third, the option to add a graph via JSON
is removed and all edits must be done using the graphical editor. Finally,
the unit’s key is not displayed to the author.

Adding and modifying exercises uses a separate form that can only be
accessed once a graph has been created and requires the content author to
enter the graph’s secret key. In this interface, content authors may use a
rich text editor interface to design the exercises (Figure 9). The rich text is
supported by HTML, and advanced editors may elect to edit this markup
directly. Each exercise is specified a type (multiple choice or short answer,
though the OCTAL front-end currently only supports multiple choice). Cor-
rect answers are input by a text field, which also supports HTML. Distractors
must also be specified for multiple choice questions.

Each exercise must be associated with at least one concept. A text field
supports listing concepts in a system similar to tags: it auto-completes con-
cept names and allows the author to delete or add multiple concepts at a
time.
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5 Implementation
OCTAL is written in Python using the Django framework on the back end
and HTML5 and JavaScript with the Backbone framework on the front end.
The knowledge estimation algorithm is implemented with support from the
PyMC library.

5.1 Metacademy and kmap
Metacademy is an open-source project created by Colorado Reed from UC
Berkeley and Roger Grosse from MIT [28]. It is a community-driven tool
meant to create and display hierarchical concept maps for all domains of
knowledge [29]. OCTAL is a natural extension to this, being an exercise
system that itself leverages a dependency graph.

Metacademy is a Python project built with the Django framework on the
back end with JavaScript and the Backbone framework on the front end. The
graph visualization in Metacademy is provided by Colorado Reed’s excellent
and open source [27] kmap library, written in JavaScript and utilizing the
Data-Driven Documents (D3) library.

Early versions of OCTAL heavily relied upon Metacademy and were im-
plemented as a Django app and a single additional Backbone view to provide
an exercise system built on top of Metacademy’s infrastructure. The latest
version of OCTAL continues to rely on several important aspects of the
Metacademy codebase:

• kmap: the graph visualization library.

• Metacademy’s graph creator: a single Backbone view that extends
kmap to provide node and edge creation and manipulation.

• Metacademy’s code structure and design serve as an influence.

Other than the above items, OCTAL uses original code for its back and front
ends.
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Figure 10: Data flow and system architecture. A learner loads a graph and the
system will dynamically load exercises through AJAX requests while the user
navigates. The results of an exercise attempt are sent via AJAX POST to the
server. A second query requests an updated knowledge estimation computation
from the server and nodes are highlighted based on the result.

5.2 Data Flow
As learners complete exercises, the front-end evaluates the answers for cor-
rectness, and submits an exercise ID, a correctness value, and a concept ID
to be stored on the server. We elected to perform correctness evaluation
on the front-end for simplicity since OCTAL is not intended for summative
assessment. This would also allow OCTAL to be enhanced in the future to
enable more advanced types of exercises whose answers can be evaluated in
JavaScript.

The back-end stores the submitted values along with timestamp infor-
mation and a user ID in a database. With Django’s lazysignup package,
we can maintain IDs even for users that have not registered for the site. If
the unit is part of a research study, we instead record the participant ID.
After recording the values, the back end passes a user’s full set of responses
over all concepts in a graph to the knowledge estimation algorithm (Section
5.6) for processing. We record only the first attempt per requested exercise
to eliminate accidental or intentional duplicate submissions. In other words,
OCTAL will only accept at most one attempt for every viewed exercise, and
will recycle IDs for unused attempts. This ensures an accurate stream of
exercise attempts and ensures the validity of the knowledge estimation.
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5.3 Access Control
We elected to use a randomly generated key system over a login scheme
with access control lists because it lowers the barrier to entry for new users
to participate (no login necessary) and would allow a teaching staff to share
editing duties without dealing with a complicated privileges system. Since we
expect the primary means of discovery to be a content author sharing a unit’s
direct link to a learner, we do not expect spam to have a large impact on the
learners experience. However, it may be necessary in the future to rate-limit
graph creation or use human verification techniques (such as CAPTCHAs)
to prevent denial-of-service attacks on the system.

Secrets are randomly generated 16-character strings made up of symbols
and unambiguous alphanumeric characters and stored as part of a unit’s
metadata.

5.4 Graph
The graph is stored as an adjacency list in a Django model. A concept is
defined by its graph ID, title, a tag, and its dependencies. Each
concept is assigned to a specific graph through the graph ID. A graph’s
set of concepts are therefore queried by finding all matching concepts for a
given graph ID.

Since OCTAL URLs frequently contain tags to refer to specific con-
cepts, they are title strings converted to be compatible with HTTP GET
queries. The title string is lowercased with symbols removed and whites-
pace replaced with underscores. A dependencies field recursively refers
to one or more other unique concepts.

The kmap library accepts an adjacency list with additional metadata for
each concept. This structure is documented in Figure 11, and can be used
to input a graph as JSON when creating an OCTAL unit (Section 4.4).

The data in id and tag fields are required for the server to perform
consistency checks for orphaned nodes, cycles, missing or bad concept ID
references, or invalid strings. However, once the graph is validated the server
overwrites these values: the id becomes associated with the primary key of
the model and the tag is generated from the name, as described above.
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1 [
2 {
3 "id": "<id>"
4 "name": "<Concept Name>",
5 "tag": "concept_name",
6 "dependencies":
7 [
8 { "source": "<id of other concept>"},
9 ...

10 ]
11 },
12 ...
13 ]

Figure 11: JSON graph adjacency list definition, including metadata for each
concept.

5.5 Exercises and Attempts
Exercises, exercise answers, and exercise attempts are stored in separate
Django models.

A single exercise attempt refers to a specific user attempting one exercise
within a unit. An exercise attempt is generated when a learner requests an
exercise (by clicking on a concept or completing an exercise and requesting a
subsequent), with a flag (initially false) indicating the attempt’s submission
status. When a learner submits an attempt, the correctness value is stored
and the flag is changed. Exercise attempt IDs may be recycled if a user
requests the same exercise without having submitted a prior attempt. This
scheme ensures that learners cannot submit an attempt multiple times or
without first seeing the exercise.

5.6 Knowledge Estimation Algorithm
We employ a Bayesian Inference Network (BIN) graphical model of student
knowledge to incorporate the concept graph into our predictive model. One
notable strength of such a model when compared to BKT or IRT is its abil-
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Figure 12: Dependency graph of concepts in which b, c, and d are prerequisites
to a, with each edge weight W . Concept b is not learned.

ity to incorporate the dependency structures we require. Conceptually, our
model for hierarchical knowledge tracing borrows the parameters for prob-
ability of guess, P (G), and slip, P (S), from Bayesian Knowledge Tracing,
but eschews P (T ), the probability of knowledge acquisition, and replaces the
initial learned probability P (L0) for a concept a with Equation 1.

P (La0) = (Pmax − Pmin)

∑
i∈C

Wiaϕ(i)∑
i∈C

Wia

+ Pmin (1)

Where Pmax and Pmin are globally defined as the maximal and minimal
prior probability of learning, respectively, with initial untrained values set
at Pmax = 0.5 and Pmin = 0.05. Further, each edge between concepts i and
a have weight Wia. However, this equation is simplified in practice because
OCTAL currently has no capability to specify edge weights; this is discussed
further below. The activation function ϕ(i) is defined in Equation 2.

ϕ(i) =

{
1, if P (Li) > TL

0, if P (Li) < TL

(2)

Where TL = 0.75 as an untrained global threshold indicating the proba-
bility that a concept is learned. Equation 1 ensures Pmin ≤ P (La0) ≤ Pmax

while each node in the set of prerequisite concepts C contributes a variable
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amount to the estimate that a student understands concept a prior to any ob-
servations. The activation function reveals our assumption that a knowledge
state for a concept is binary: either learned or not.

Although the algorithm supports edge weights, there is no capability
within OCTAL for a content author to define the relative weights. As a
result, in practice, all edge weights remain the same and the estimation is
reduced to Equation 3.

P (La0) = (Pmax − Pmin)

∑
i∈C

ϕ(i)

n
+ Pmin (3)

Where n is the number of prerequisites to concept a. As an example,
given the graph in Figure 12, P (La0) = 0.35, as shown in Equation 4.

P (La0) = (Pmax − Pmin)
2

3
+ Pmin = 0.35 (4)

These probabilities propagate throughout the entire graph with each ob-
servation. We estimate learning over the graph using a Markov Chain Monte
Carlo (MCMC) model, an algorithm for iteratively sampling a distribution
of interdependent random variables [38]. The results of this sampling yield
an approximate distribution for the latent knowledge associated with each
of the concepts in the graph. The concepts whose estimated probabilities of
learning exceed TL are then presented explicitly to the student on the dec-
orated knowledge graph as described in Learners (Section 4.2) and shown
in Figure 4. The group of learned concepts grows or shrinks accordingly as
information propagates through the graph with additional student responses.

5.7 Learning Tools Interoperability
IMS Global Learning Consortium’s Learning Tools Interoperability (LTI)
support allows third party tools (such as OCTAL) to more easily integrate
with other learning applications, such as the edX platform [9]. OCTAL
implements the LTI 1.0 Producer specification so that it might be embedded
within an edX course.

There are several limitations, however:

• The edX implementation as an LTI Consumer may not be complete.
According to a Piazza LTI document, edX’s LTI implementation only
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functions properly on published courses and not on Studio [22].

• LTI integration requires OCTAL to be opened in its own tab rather
than fully integrated as an iframe in a page. OCTAL (specifically, the
Django framework) relies on cookies to maintain session state. Mod-
ern web browsers block cookies on third-party websites in an iframe,
so OCTAL’s exercise view, exercise attempt, and knowledge inference
requests do not function. Additionally, the current OCTAL server does
not support HTTPS, so users will receive security errors if OCTAL is
embedded in this manner.

30



6 Metacognition Study
We believe OCTAL provides learning benefits by improving a learner’s metacog-
nitive awareness of their progression through a course’s topics. In other
words, does seeing an expert-defined concept dependency graph improve a
learner’s ability to understand which topics they do and do not yet under-
stand? We ran a study2 on the metacognitive benefits of OCTAL in the
spring of 2014 to answer this question.

The study involves pre- and post-surveys on metacognition and partici-
pants were divided into two groups: those who saw the concept dependency
graph and its full structure, and those for whom the underlying structure
was hidden and shown only a list of concepts.

Although OCTAL is intended to be a platform for any content that lends
itself to a prerequisite structure, we designed a concept graph and set of
exercises geared for UC Berkeley’s CS10: The Beauty and Joy of Comput-
ing. Specifically, we targeted concepts and ran our protocol for three weeks
between the first and second exams, the Quest and Midterm.

The state-of-the-art in evaluating metacognition involves think-aloud stud-
ies in which participants vocalize their thought process as they interact with
a tool [36]. This was infeasible, however, since we intended our study to be
available to the entire class of 238 enrolled students. As a result, we elected to
implement pre- and post-surveys that evaluate a participant’s metacognitive
state before and after using the tool. Although less ideal than think-aloud
studies, this form of evaluation is still considered reliable and intercorrelated
[32].

We adapted the metacognitive survey from Shaw, et al. to limit the size
of the survey and restrict the questions to those most relevant: metacognition
regarding learning [32]. The contents of the pre- and post-surveys is available
in Appendix A. The questions on the pre-survey and post-survey are identi-
cal, except for some limited biographical information questions included on
the post-survey.

We visited each section in CS10 to inform students of the study and dis-
tribute consent forms. Consenting students received a card with a randomly-
generated participant identification number and a URL to access the OCTAL

2UC Berkeley Committee for Protection of Human Subjects approval #2014-01-5967.
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study. No correlation between the consent form and participant ID number
exists.

Upon visiting the OCTAL URL, participants were asked to enter their
participant ID and were immediately forwarded to the metacognitive pre-
survey. Upon its completion participants were allowed access to the tool.
In order to study the metacognitive benefits of displaying the underlying
concept structure, half of the students were shown the concept graph in the
expected two-dimensional display. This group is referred to as the “graph”
group. The other half of the participant IDs, the “linear” group, were not
provided the underlying structure and therefore presented only a list of the
concepts.

In each case, participants were allowed to select any concept to receive
exercises in it. The knowledge inference algorithm determined their level of
mastery and highlighted concepts that it estimated participants had mas-
tered.

Upon completion of the study, participants were asked to visit the OCTAL
URL where they were then forwarded to the post-survey. The study was
terminated once a participant had completed the post-survey. More details
on the participant experience is found in Section 4.3.
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7 Results

7.1 Metacognition Study
Of 238 enrolled students in CS10: The Beauty and Joy of Computing, 99
agreed to participate in the study and signed the consent form (42%). Of
those, 33 visited the site and began the pre-survey. 31 completed the pre-
survey and were subsequently returned to OCTAL. Participants were then
presented with usage instructions and the set of concepts in either list form
or graph form, depending on which group their participant ID was assigned
(Section 4.3).

Twenty-six participants went beyond the instructions to click on a concept
and view at least one exercise. We consider this group of participants (10.9%
of the full body of CS10 students, 26.2% of all participants) to be our user
group and show an analysis of their use of the tool below. Only 8 participants
completed the post-survey (3.4% of all of CS10, 8.1% of all participants).
Precisely half (4) of these participants were in the linear group with the
remaining in the graph group. We discuss potential reasons for the drastic
reduction in participation below.

For every participant, we compare the responses for each question on
the pre- and post-surveys (Appendix A) for any differences in metacognition
after using OCTAL. To identify any changes in metacognition between the
linear and graphical groups we average the differences among participants in
each group and compare those averages (Table 1).

There were no statistically significant changes in metacognition by any
comparison (p ≥ 0.09 for all differences).

Although disappointing, this is perhaps not unexpected with n = 8.
There are a number of reasons that may have contributed to a decline in
participation. The following are several, with some suggestions for improve-
ments to the protocol:

• We were unable to keep track of participant email addresses due to
Institutional Review Board (IRB) restrictions on the protocol. Sup-
porting this in the future would allow us to send periodic reminders to
use the tool and participate in the study.
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Question ∆ p-value Group ∆ p-value
1 0.125 0.69 −0.5 0.21
2 0 1.00 −0.25 0.36
3 0 1.00 0.25 0.36
4 −0.25 0.65 −0.75 0.52
5 0 1.00 0 1.00
6 0.25 0.62 0 1.00
7 −0.25 0.51 0 1.00
8 −0.125 0.66 0 1.00
9 −0.125 0.75 0.25 0.62

10 0.5 0.23 0 1.00
11 0.625 0.09 −0.25 0.67
12 0.125 0.77 0 1.00
13 0.125 0.69 0 1.00
14 0.25 0.44 0 1.00
15 −0.125 0.55 0 1.00
16 0.125 0.62 0 1.00
17 0.125 0.71 −0.25 0.36
18 0.375 0.12 −0.25 0.54
19 −0.125 0.59 −0.25 0.36
20 0.125 0.74 0 1.00
21 0.25 0.41 −0.25 0.36
22 0.375 0.45 −0.5 0.13
23 0.625 0.20 −0.25 0.54

Table 1: Metacognition pre- and post-survey response data. Average change in
responses is shown in ∆. Differences in average responses between linear and
graphical groups are shown in Group ∆.

• Require participants to complete the post-survey before the midterm
exam. Students used the tool as a study aid and, once the exam was
over, never returned.

• Embed OCTAL within a curriculum directly. This would provide IRB
exemption and is therefore more permissive to reminder emails.

In addition, the use of a think-aloud protocol instead of pre- and post-
surveys may yield more conclusive results [36].
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7.2 Exercise completion
As part of the data collection process, the OCTAL system stores exercise
views and attempts. Participants were required to complete the pre-survey
before they could access the tool. Although 31 participants completed this
prerequisite, 5 did not use OCTAL beyond viewing the welcome page with
instructions. Twenty-six participants clicked on a concept and viewed at
least one exercise, and this group serves as our user base for the following
analysis.

At the onset of the study, participants were handed a randomly-selected
card with a pre-generated ID. Each set of IDs had been evenly assigned to
either the linear or graphical group prior to random distribution. Since group
was assigned prior to distribution, and not at the system’s first interaction
with the user, the set of users is not split evenly between the two groups.
Fifteen (57.7%) of the users were in the linear group while 11 (42.3%) were
in the graph group.

Of the user base, 23 interacted with the tool to complete one exercise
(88.4%). All 15 participants in the linear group completed at least one ex-
ercise while only 8 of the graphical group did the same. Three participants
(all from the linear group) completed all exercises. Thirteen participants
(11 linear, 2 graphical) completed at least half of the exercises. Table 4 in
Appendix B provides more detailed usage data for all users.

The linear group’s increased participation is marginally statistically sig-
nificant over the graph group (p = 0.01, Mann-Whitney U). Our protocol
prevented us from interviewing participants, so understanding the factors
behind this result are based on speculation. For instance, participants may
have found the graph view confusing or unfamiliar, but this would require
additional usability studies to resolve.

7.3 Sessions
We also wanted to determine if these users returned to the tool by looking at
participant’s sessions. The data only contains timestamps for user actions,
so it is not possible to know if a user has left the page and returned. Average
differences between timestamps do not provide any useful data to determine
reasonable session lengths since timestamp differences follow a power law
distribution: median time between activity for a user is 18 seconds but an
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Figure 13: Histogram of sessions per user by group.

average of 10,019 seconds (2 hours, 46 minutes, 59 seconds). We therefore
apply an arbitrary, but conservative, definition of 60 minutes to define a
session. By choosing this length, we estimate that a reasonable user will not
spend longer than an hour to solve and attempt an exercise without first
leaving and returning.

With this definition of a session, we find the 26 users had a total of
50 sessions; approximately 1.9 per user. Figure 13 shows a histogram of
the number of sessions participants initiated in each group. Participants in
the linear group visited in 30 total sessions; 2 sessions per user on average.
Meanwhile, the graph group participants visited 20 times for a ratio of 1.8
sessions per user. This is not a statistically significant difference (p = 0.99,
Mann-Whitney U) to determine which group was more likely to return.

To investigate any potential differences in user activity, we divide each
session into one of two types: “view” sessions, in which a participant viewed
(but did not attempt) one or more exercises, or “attempt” sessions, in which
a participant viewed and attempted one or more exercises. By this metric,

28 Feb 04 Mar 08 Mar 12 Mar 16 Mar 20 Mar

Attempts Views

Figure 14: Time line of session initiations differentiated by session type.
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Group User Path Score Residual

Linear

1 −0.234 1.195
2 0.533 0.571
3 −1 0
5 1 0
6 −0.136 1.080
7 1 0
8 0.68 0.535
9 0.944 0.334

10 0.857 0.023
11 0.933 0.272
12 0.4 0
13 0.4 0

Graph

16 −0.755 0.310
17 −0.5 0
20 −0.369 1.099
21 0.057 0.131

Table 2: Path scores for users with attempts in more than one concept. Bolded
rows represent participants that completed the post-survey. User numbers match
with that in Appendix B, Table 4, but not all had sufficient data to be represented
here.

37 sessions (74% of all) contained at least one attempt with the linear group
representing 24 of those (80%) and the graphical group 13 (65%).

This indicates that users did not attempt any questions in 26% of their
sessions. These users, however, sometimes did return to attempt exercises or
view others: of the 9 participants with view sessions, 5 returned for another
session of any type.

A time line of the sessions for the duration of the study is shown in Figure
14. Interestingly, but perhaps unsurprisingly, most sessions are centered
around the release of the tool and the time just before CS10’s midterm exam.

7.4 Path Scoring
We created a score to describe every user’s path through concepts in order to
investigate the differences between the group’s navigation. Our hypothesis
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Figure 15: Best linear fit for normalized paths for all participants in the linear
(left) and graphical (right) groups. Concept index matches that shown in Table 3.

is that users presented with a linear view are more likely to navigate it in
a top-down or bottom-up fashion, while those in the graph group are more
likely to choose concepts based on learning need.

Index Concept name
0 Variables
1 Variable Mutation
2 Conditionals
3 Loops
4 Lists
5 Functions
6 Tree Recursion
7 Tail Recursion
8 Algorithmic Complexity
9 Fractals

10 Concurrency

Table 3: Concept names by index.

38



0

2

4

6

8

10

12

Vari
ab

les

Vari
ab

le
M

uta
tio

n

Con
dit

ion
als

Loo
ps

List
s

Fun
cti

on
s

Tail
Rec

urs
ion

Tree
Rec

urs
ion

Algo
rit

hm
ic

Com
ple

xit
y

Frac
tal

s

Con
cu

rre
nc

y

Fr
eq

ue
nc

y
Linear Group
Graph Group

Figure 16: Histogram of starting concepts by group.

Path scoring requires that users attempted at least one exercise in at least
two different concepts. This restricts the user base further to 16 total users;
12 from the linear group and 4 from the graphical. The statistically signifi-
cant drop in users in the graph group may impact the following results; these
participants may have been more motivated to use the tool for its intended
learning purpose. However, it is still interesting to note the differences in
navigation among the groups.

First, we create a reference list of concepts sorted in increasing order of
distance from the root (Table 3). This is the same order as the list presented
to linear users. Each concept is assigned an evenly-spaced value in the range
[0, 1] based on its index in this list. This creates, in essence, a reference path
that we use to compare participants’ paths.

To generate a score for each participant, we first remove “view” events
from a participant’s activity stream. We therefore only consider exercise
attempts since this is a more reliable indicator that a participant is giving
thought to the concept and not haphazardly clicking. For a user u, the stream
of events Eu is sorted by time and reduced such that a concept visited at
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Figure 17: The path of user 16 from the graph group through the concept graph.
The path begins from the red-highlighted Functions node.

attempt Eua is unique against adjacent attempts: Eu(a−1) 6= Eua 6= Eu(a+1).
Finally, the stream of events Eu is normalized over time such that all values
of a are evenly spaced within the range [0, 1].

This results in a normalized path for participants across time and con-
cepts. Each path ignores duration of activity and quantity of attempts and
represents movement through concepts. Graphically, the paths are normal-
ized to fit within the unit square bounded by (0, 0) to (1, 1). Figures 18 and
19 in Appendix C show normalized paths before scoring for each group.

We apply a least-squares linear fit for every user u in the event stream E
and obtain a slope that represents the path score for that participant (Figure
15). The least-squares residual value indicates the difference in actual values
compared to predicted, and is used to determine the score’s error (Table 2).
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The error for participants that moved in extreme hops to distant concepts
can be significant. User 1, for instance (Table 2), began at a middle concept,
continued to all post-requisites, and finally “wrapped around” the list of
concepts to finish the complete set of exercises from the beginning.

A score of 1 indicates that user’s path through the concepts was identical
to the reference. In other words, users 5 and 7 attempted exercises precisely
in the order presented to them with no deviation. User 3 with score −1
attempted exercises in precisely the opposite order: working up from the
bottom of the list. Interestingly, this same user attempted exercises in all
concepts, but simply did them in reverse order.

Predictably, users in the graph group did not follow an order analogous
to the majority of the linear group. In fact, whereas all but one of the linear
group began at the first concept (Variables), all participants in the graph
group began at a middle concept and trended towards prerequisite nodes
(Figure 16). Through a qualitative look at their paths, those users appear
to navigate by clusters of nodes. By way of example, the path for user 16, a
participant in the graph group who completed the post-survey, is shown in
Figure 17.

The paths of two other graph participants were similarly clustered through
concepts. The fourth graph participant attempted a question in Functions
followed by an exercise in Variables and never returned. Although a sta-
tistically significant number of graph participants withdrew from the tool
after completing the pre-survey, it is interesting and encouraging to see that
those that did remain followed unique paths around the graph (Figure 19 in
Appendix C).
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8 Future Work
The implementation may benefit from further integration into LMS and
MOOC platforms. To reduce effort for content authors, for instance, OCTAL
could evolve into a tool that relies mostly on graph display and knowledge
estimation while relying on third party platforms to supply exercises.

Additional work must be done in order to identify the reasons for the
marginally statistically significant drop in participation by users presented
with the graph view. This future work could also identify which UI principles,
if any exist, might be best for tools based on concept maps. Participants in
the graph group that persisted to use the tool also showed that they might
apply more thought to where to begin their interaction with the exercises, a
result that requires more study to reduce confounding issues of self-selection.

Modifying future experiments to include usability studies and think-aloud
metacognition studies would provide additional insight into student’s behav-
ior with the tool.

The knowledge estimation algorithm contains ample opportunity for fu-
ture work. Most prominently, it allows for edge weights to define the relative
importance of prerequisites for a concept (Section 5.6). The graph’s imple-
mentation in OCTAL, however, does not currently support edge weights and
so all prerequisites are given equal weighting. Additionally, the initial param-
eters have been defined based on best-effort estimate and are not properly
trained. A study to collect this data and train the parameters may offer
significant improvements in knowledge estimation performance.

There are also several assumptions which underlie the current algorithm,
any one of which offers an opportunity for future research. First, we assume
that knowledge structure we provided in the study (Section 6), is a sane and
useful representation of basic computer science concepts. Second, we make
the strong assumption, shared with BKT, that a student’s knowledge of a
given concept is binary, as well as generalizations about partial knowledge.
Third, the algorithm ignores any impact that time might have on the mod-
eling of student knowledge, either in the sense of providing an additional
source of information about knowledge acquisition, or even in imposing a
meaningful ordering on observed responses to assessment items.

Traditionally, Bayesian Knowledge Tracing and the algorithms which
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derive from it model student knowledge as a binary indicator of mastery.
Though difficult to capture in the computation of a posterior probability
of total mastery, it may be more realistic to model partial knowledge of a
subject.
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9 Conclusions
OCTAL was built as a tool to allow learners the opportunity to explore a
course’s underlying prerequisite structure of topics. Learners are presented
with a concept graph and may attempt exercises in any topic they select. A
knowledge estimation algorithm infers their level of mastery of concepts based
on their performance on the exercises. Although the knowledge estimation
and graph structure provide metacognitive hints to the user about how they
might choose to engage with the material, they are allowed free navigation
throughout the tool.

OCTAL resides at the intersection of a number of fields; education tech-
nology and research, concept maps, and latent knowledge estimation. Each
field contains a large body of existing work that has informed OCTAL’s de-
sign. It is our hope that by building a tool that combines these fields we
can provide learners with new means of studying and interacting with course
material.

A study to gauge improvements in metacognition revealed no statisti-
cally significant results. One reason might be due to very low participation
with n = 8. We suggest future protocols consider think-aloud studies and
more frequent reminders to participants to strive for meaningful results and
increased participation.

OCTAL may remain a viable technology to provide users with additional
learning opportunities, although additional work must be done to understand
the drop in participation by users presented with a concept graph versus those
presented with a list. We observed fascinating and encouraging trends in the
navigation of the concept graph from those participants that did continue to
use the tool. Predictably, learners presented with a list of concepts mostly
proceeded through the list in order. The participants that viewed the concept
graph, however, tended to start at a concept near the middle and navigated
by clusters of concepts.

We have worked to create a tool that is also usable outside of the context
of research. With authoring tools and the capability to embed into popular
online learning platforms, we hope that OCTAL will continue to be refined
and used by researchers and instructors alike.
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Appendices



A Metacognition Experiment Surveys
The following survey was given to participants in the metacognition experi-
ment (Section 6). Each question asked participants to respond on a Likert
scale: Strongly Disagree, Disagree, Neutral, Agree, or Strongly Agree.

Please select your level of agreement for each of the following statements.

1. I ask myself periodically if I understand the material.
2. I consider alternative solutions before I answer a problem.
3. I employ strategies that have worked for me in the past.
4. With respect to the material, I understand my strengths and weak-

nesses.
5. I think about what I need to know before beginning a problem.
6. I know what is important for the understanding of each problem.
7. I learn best when I already know something about the topic.
8. I am good at remembering information.
9. I ask myself if there was an easier way to do things after finishing a

task.
10. I periodically review to help me understand important relationships.
11. I ask myself questions about the material before beginning an assess-

ment.
12. I think of several ways to solve a problem and choose the best one.
13. I am aware of what strategies I use when I study.
14. I am a good judge of how well I understand something.
15. I find myself using helpful learning strategies automatically.
16. I pause frequently to check my understanding.
17. I know when each strategy I could use would be most effective.
18. When I’m having trouble, I change which strategy I employ.
19. I stop and return to information which is unclear.
20. I reevaluate my assumptions when I am confused.
21. I ask myself how well I am doing when I learn something new.
22. I ask myself how what I am learning is related to what I already know.
23. I ask myself if I learned as much as I could have once I finished the

task.
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B OCTAL Usage Data

Exercise Views Exercise Attempts
Group User All Unique Ratio All Unique Ratio Sessions

Linear

1 41 24 1.71 34 24 1.42 2
2 41 23 1.78 31 19 1.63 2
3 15 13 1.15 13 11 1.18 1
4 7 7 1.00 1 1 1.00 1
5 46 24 1.92 41 24 1.71 1
6 50 24 2.08 42 24 1.75 1
7 44 23 1.91 31 22 1.41 2
8 64 22 2.91 54 22 2.45 6
9 46 21 2.19 31 18 1.72 2

10 43 21 2.05 27 14 1.93 5
11 45 20 2.25 36 18 2.00 1
12 25 14 1.79 19 12 1.58 1
13 34 14 2.43 24 14 1.71 3
14 7 5 1.40 4 4 1.00 1
15 2 2 1.00 1 1 1.00 1

Graph

16 51 24 2.13 38 22 1.73 4
17 19 7 2.71 15 4 3.75 3
18 8 4 2.00 6 4 1.50 1
19 1 1 1.00 0 0 0.00 1
20 46 24 1.92 33 21 1.57 1
21 21 8 2.63 16 7 2.29 2
22 6 4 1.50 5 4 1.25 1
23 4 3 1.33 1 1 1.00 3
24 4 3 1.33 1 1 1.00 2
25 2 2 1.00 0 0 0.00 1
26 1 1 1.00 0 0 0.00 1

Table 4: OCTAL participant usage data, split into groups. Bolded rows are those
participants that completed the post-survey. A session contains activity that takes
place within an hour of other activity.
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C OCTAL Participant Paths

C.1 Linear Group
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Figure 18: Normalized paths for all participants in the linear group. All but one
participant in the linear group began at the first concept, and most progressed
linearly through the list. Concept index matches that shown in Table 3.
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C.2 Graphical Group
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Figure 19: Normalized paths for all participants in the graphical group. All par-
ticipants in the began at a middle concept and navigated by cluster. Concept index
matches that shown in Table 3.
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D Recommendations for Content Authors

D.1 Concept Graph

Figure 20: Concept map for concepts from the first exam (Quest) to second
(Midterm) from CS10: The Beauty and Joy of Computing.

An OCTAL unit concept graph is a directed acyclic graph of concepts
and could be designed by an instructor, teacher, member of course staff, or
some other expert in the field, or perhaps designed by a learner as part of
an exercise. There are no imposed technical limits on the graph design other
than the structural limitation that the graph must contain no orphaned nodes
and no cycles. Despite this, we intend graphs to contain a relatively coarse
granularity of concepts for the following reasons:
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• Students may be overwhelmed by a complex graph with extremely fine
granularity.

• It is non-trivial to design a navigable concept graph with variable gran-
ularity or zoom levels.

• Coarse granularity simplifies exercise assignment to concepts.

• Reduction in the complexity of hand-building the hierarchy of nodes.

As part of the research study (Section 6) we implemented a concept graph
from the first exam (the Quest) to the second (the Midterm) from CS10: The
Beauty and Joy of Computing. This content represents approximately one
third of the material in the course. We found that creating a graph for
this quantity of topics in the course allowed the graph to have a pleasing
and manageable number of nodes. However, we did not perform a study
to determine the ideal quantity of nodes in the graph and we leave this
investigation to future work or to the larger field of concept map research.

The graph in Figure 20 contains a final leaf (the node labeled “Midterm”)
that is present only because of a technical limitation in the version of OCTAL
that was used for the study. In that version, the Midterm concept was a
special case that was selected by default that provided a participant with
text that introduced the graph and explained the usage of the tool. The
current version of OCTAL does not have this limitation and will display the
introductory text without the need for such a node.

We iterated the graph after presenting it to subject matter experts and
recommend a similar course of action for content authors. However, we
suggest that designers also consider iterating the graph with feedback from
learners.
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D.2 Exercises

Figure 21: Sample exercise in the “Loops” concept category.

OCTAL leverages an expert-derived bank of exercises tagged with rela-
tionships to nodes in the concept graph. This association enables knowledge
estimation based on a value of correctness for each exercise in a concept
(Section 5.6).

Since the knowledge estimation algorithm depends on the correctness
of the exercise and not the value itself, the tool theoretically can support
questions in any arbitrary format including multiple choice, short answer, and
so on. However, the current implementation restricts exercises to multiple
choice.

We suggest at least five questions per concept in order to maximize the
tool’s utility for a learner.

Exercise text supports HTML to enable image embedding. OCTAL does
not, however, support uploading images to the system, so the images must
be inline linked (hotlinked) from another source. One freely available option
is Google Drive [15]. In this option, creating a Google Drive folder, making it
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public, and placing images inside allows those images to be hosted on Google
and referenced in OCTAL. This is how we embedded images for our study
(Figure 21).

D.3 LTI Integration
To use LTI integration, a content author must simply perform the following
steps:

1. When creating an OCTAL unit, record the LTI consumer key and
shared secret presented at the bottom of the page.

2. In edX Studio for a course, select “Advanced Settings” under the Set-
tings tab, and modify the following settings:

• advanced settings should be ["lti"]

• lti passports should be ["<id>:<key>:<secret>"], where
<id> is an LTI passport ID (octal-lti would be fine), <key>
is the consumer key, and <secret> is the shared secret (Step 1).

3. Go to the content page, and create a Section and Subsection where you
would like the integration to take place, if none exists yet.

4. Edit the subsection and add a “New Unit”.

5. Under “Add New Component”, select “Advanced”, and then click
“LTI”.

6. Add the OCTAL LTI URL under launch url. This is in the form
http://octal.danallan.net/maps/N/lti where N is the OC-
TAL unit number.

7. Add the LTI passport ID (from Step 2; in this case, “octal-lti”) to
lti id.

8. Ensure open in a new page is True.

9. Click Save.
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E Obtaining the Source Code
OCTAL is open-source and freely available to download and edit. The repos-
itory is available on GitHub, with the following link representing the final
version as described in this text:
https://github.com/danallan/octal-application/tree/v2.0-ms

The version used in the metacognition study (Section 6) is available here:
https://github.com/danallan/octal-application/tree/v1.1-pilot+
postsurvey
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