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Abstract

ACES: Automated Coding Evaluation of Style

by

Stephanie Rogers

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Senior Lecturer SOE Dan Garcia, Chair

Coding style is important to teach to beginning programmers, so that bad habits don’t

become permanent. This is often done manually at the University level because automated

static analyzers cannot accurately grade based on a given rubric. However, even manual

analysis of coding style encounters problems, as we have seen quite a bit of inconsistency

among our graders. We introduce ACES–Automated Coding Evaluation of Style–a module

that automates grading for the composition of Python programs. ACES, given certain

constraints, assesses the composition of a program through static analysis, conversion from

code to an Abstract Syntax Tree, and clustering (unsupervised learning), helping streamline

the subjective process of grading based on style and identifying common mistakes. Further,

we create visual representations of the clusters to allow readers and students understand

where a submission falls, and what are the overall trends. We have applied this tool to

CS61A–a CS1 level course at UC, Berkeley experiencing rapid growth in student enrollment–

in an attempt to help expedite the involved process of grading code based off of composition,

as well as reduce human grader inconsistencies.

1



Contents

Contents i

List of Figures iii

Acknowledgements iv

1 Introduction 1

2 Related Work 3

2.1 Coding Composition Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Autograder Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Supervised Learning Approach 8

3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 Inter-rater Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Clustering Approach 14

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Multiple Semesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.2 Manual Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 18

i



4.3.3 Clustered by Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.4 Common Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Automation 23

5.1 Visualization Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Web Application Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Application Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.2 Priority Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.3 Usability Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.2 Post-Study Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Future Work 34

7 Conclusion 35

7.1 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Appendix A 37

Bibliography 39

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



List of Figures

2.1 Lint Software Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Boxplots: Function Length and Duplicate Lines per Composition Grade . . 12

4.1 Clusters with Annotations: Fall 2013 data, Threshold = 5% . . . . . . . . . 16

4.2 Clusters: Fall 2012 and Fall 2013 data, Threshold = 5% . . . . . . . . . . . 17

4.3 Clusters: All 4 semesters, Threshold = 2% . . . . . . . . . . . . . . . . . . . 18

4.4 Manual Classification of Clusters . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Clusters Colored by Original Composition Score . . . . . . . . . . . . . . . 20

4.6 Common Solutions for find centroid . . . . . . . . . . . . . . . . . . . . . 21

5.1 Output of Visualization Tool with Highlighted Node in Black . . . . . . . . 24

5.2 Mockup of Web Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Screenshot of Live Application . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Accuracy, average percentage of mistakes identified out of total mistakes, of
each group of graders, control and experimental . . . . . . . . . . . . . . . . 32

iii



Acknowledgements

I would like to thank my advisors, John Canny and Dan Garcia, for their help through out

my entire research project and encouragement in applying to various conferences. Special

thanks go out to Steven Tang and Daniel Kang, for their invaluable help and contributions

to this project.

I would also like to thank Siebel Scholars Foundation, Google, and ACSA for funding

my Master’s year at Berkeley. And finally, thank you to all of my friends who helped me

through the process in various ways, especially James Huang who helped me when possible

and supported me always.

iv



v



Chapter 1

Introduction

Code is read much more often than it is written. Computer programs should be written

not only to satisfy the compiler or personal programming “style”, but also for “readability”

by humans. Coding with good style helps programmers identify and avoid many errors,

and results in code that is more readable, secure, extensible, and modular.

Thus, programming style has started to become more formalized, with a set of rules

and guidelines. Coding conventions have become the norm: most often designed for a

specific programming language. PEP8 is the style standard for the programming language

of Python, which comes from Python Enhancement Proposals (PEP). Static code analysis

tools (e.g., lint checkers) attempt to enforce these strict Python style standards on source

code. In practice, most style enforcement actually comes in the form of code reviews:

manual analysis by experienced human readers. Furthermore, style analysis is often done

manually in classes that teach Python because automated Python static analyzers cannot

accurately grade based on a given rubric. However, even manual code style evaluation has

problems, as we have seen quite a bit of inconsistency from our CS1 graders due to the

subjective nature of grading code based on composition.

We want students at the University level to practice good techniques while coding, to

prepare them for industry or life beyond academia. Nontrivial machine grading of student

assessments is an emerging problem, as Massive Open Online Courses (MOOC) become
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more popular. Aimed at unlimited participation, these classes–as well as high enrollment

university classes–face the problem of scalability with respect to grading. Automating the

manual processes of grading becomes a highly-relevant and arguably necessary approach

to expanding the ability of these classes to evaluate both the learning outcomes and the

quality of the assessment.

We introduce the Automated Coding Evaluation of Style (ACES), a system that at-

tempts to help automate the process of code reviews by predicting a score for the compo-

sition of computer programs. ACES assesses the composition of a program through static

analysis, feature extraction, supervised learning, and clustering, all of which help to semi-

automate the subjective process of grading based on style. It also helps identify common

mistakes. The purpose of the tool is two-fold: to provide highly detailed and targeted

feedback based off of the features that mattered while grading the code, and to act as a ver-

ification tool, to enforce consistency between graders and for any particular grader. While

completely automated systems are ideal, our attempts to fully automate the process proves

to be a challenge. Out of a desire to keep the human element while grading code based off

of style in order to ensure correctness, we apply our findings as features in a code review

tool which helps streamline the process. Moreover, we are able to extrapolate grading re-

sults from our tools, including what common mistakes students make and what features are

considered more important.
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Chapter 2

Related Work

2.1 Coding Composition Evaluation

A few ways in which code is currently automatically graded include unit tests, static

analysis checkers, and code coverage analyzers. The most widely used approach to au-

tomating the grading of student code is through test-cases. In Fully Automatic Assessment

of Programming Exercises, Saikkonen et al. checked student exercises by allowing the in-

structor to specify test cases. While this tool primarily focused on the correctness of the

student’s code, it also allowed for analysis on the program’s structure and other related

factors, which correspond to the coding style [20].

Another common practice, especially in industry, is through a static analysis checker.

Lint (software) refers to syntactic discrepancies in general, and modern lint checkers are

often used to find code that doesn’t correspond to certain style guidelines. Specifically,

there are several static analysis style checkers in Python that enforce Python code style

and standards. PyLint is a static code analysis tool for enforcing Python style on source

code [18]. It can highlight when the code contains an undefined variable, when code is im-

ported but not used, as well as highlighting other bad techniques. It can be a bit verbose,

complaining about things like lines being over 80 characters long, variables not matching

a specific regex, classes having too few public methods, and methods missing docstrings.

3



PyLint also generates a “code report”, including how many lines of code, comments, doc-

strings, and whitespace the file has, the number of messages per-category, and gives code

a “score” from 0 (syntax error) to 10 (no messages). Other linters like PyFlakes [17], and

PEP8 [14] do very similar things without the scoring.

Figure 2.1. Lint Software Correlation

Some of the features extracted by these lint tools can be used in our own analysis.

However, we noticed two important things. The scores or numbers of suggestions produced

by all three of the above lint tools (including subsets) were not correlated with the assigned

composition scores for our CS61A project, as shown in Figure 2.1. Additionally, we have

noticed that several important features were not taken into consideration. Our tool differs

from these lint checkers, and is unlike most of these lint tools, in that we actually attempt to

learn from past submissions in order to understand what factors of the coding style matter.

Grading style through static analyzers can be quite limiting, and is not always helpful in

actual grading. For this reason, there are several tools which use a more feature-based or

dynamic approach to grading code based on style.

A common goal of the related work cited below is simply to allow teachers to oversee

their classes or provide solution based feedback to students. In terms of the more open-
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ended grading of code based on structure or composition, nothing has dominated the field.

Aggarwal et al. extracted features from code by converting it to a data dependency graph

and annotating that graph with control structures [1]. They then used common super-

vised learning algorithms to automate the scoring process. Several problems arise from this

approach, as the features seem arbitrarily constructed and encounter a powerset problem.

Taherkhani et al. identified which sorting algorithm a student implemented using super-

vised machine learning methods [23]. Each solution was represented by statistics about

language constructs, measures of complexity, and detected roles of variables. Luxton-Reilly

et al. labeled types of variations as structural, syntactic, or presentation-related [11] . The

structural similarity was captured by the control flow graph of the student solutions. Singh

et al. took a slightly different approach by allowing the instructors to supply an extremely

formal model of possible errors, in essence creating a program based on constraint satisfac-

tion [22]. They found the smallest set of modifications that would fill in the program holes

to determine correctness. While this solution is unique, in that it can point out complete

sets of errors (i.e. more than one), it is highly constrained to those problems which only

have a small set of common errors. In other words, the specification must be complete and

a black box in order for this solution to succeed.

Although not specifically related to code grading or composition, there is quite a bit of

research that attempts to grade open-ended questions or short answer responses including

peer or self-grading [15], [19], [24], feedback [13], [15], and clustering [2], [4]. Brooks et

al. used clustering to grade open-ended short answer questions quickly and at scale [4].

They proposed a cluster-based interface that allowed teachers to read, grade, and provide

feedback on large groups of answers at once, similar to what we prototyped for ACES.

Additionally, they compared this interface against an unclustered baseline, and found that

the clustered interface allowed teachers to grade substantially faster, to give more feedback

to students, and to develop a high-level view of students’ understanding and misconceptions.

We performed a similar, but smaller, user study with our prototype to show that not only

does it make grading more efficient, but it also has the potential to make the process more

consistent and accurate.
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Glassmen et al. [8] also used a clustering approach, but with a focus on feature-

engineering and specifically for the grading of code based off of composition. They per-

formed a two-level hierarchical clustering of student solutions: first they partitioned them

based on the choice of algorithm, and then partitioned solutions implementing the same

algorithm based on low-level implementation details. They found that in order to cluster

submissions effectively, both abstract and concrete features needed to be extracted and

clustered.

In previous studies, researchers have used program similarity metrics to identify plagia-

rism (such as MOSS and SIM) [7], [21] and modeling student solutions [16]. Our work is

primarily based off of Huang et al., who examined the syntactic and functional variability

of a huge code base worth of submissions for a MOOC class using structural similarity

scores [10]. Their strategy was to convert the C++ code submissions to Abstract Syntax

Trees, in the form of a language-neutral Javascript Object Notation (JSON) data structure,

and then clustered and visualized the submissions that contained similar structure. We

applied this technique to our own set of data, analyzed the results to confirm their original

hypotheses, and built a tool to automate the entire process based off of their assumption of

clustering as a viable technique to grading.

2.2 Autograder Tool

Web-based feedback mechanisms have become the ideal way to provide feedback to

students at mass scale. Our tool incorporates many successful features of prior systems,

including inline comments [9], summary comments [12] and comment memory [5]. DeNero

et al. created an online tool that allowed instructors to perform code reviews and provided

feedback efficiently at scale [5]. It adapted Google’s open source code review system, but

mainly provided the extra functionality of comment memory, an idea very similar to the

one explored in our research.

Studies of similar web-based feedback systems have shown obvious improvements in

staff and student user experience. MacWilliam et al. [12] and Bridge et al. [3] both found

6



that the total time taken to provide feedback was substantially reduced using a web-based

system versus a PDF-based process. From the student perspective, Bridge and Appleyard

reported that students prefered to submit assignments online and Heaney [9] found that

online feedback also correlated with higher exam scores [3].

7



Chapter 3

Supervised Learning Approach

When we began our project, we were attempting to automatically predict the score of

a given submission by using past submissions and their relative composition scores through

supervised learning. Our attempts were applied to UC Berkeley’s introductory course in

computer science, CS61A, for one particular project on Twitter Trends in the Python

programming language. This project has heavy skeleton code and has stayed consistent for

4 semesters, offering us the unique opportunity to analyze 1500 student code submissions.

All 1500 submissions had been manually scored and commented on by human graders for

the course based on coding composition. Students’ coding submissions were given a score

of {0, 1, 2, or 3}, with 3 given to code with no style errors, and subsequently decreasing

with more composition mistakes.

These labeled submissions scream for a supervised learning approach. Using meaningful

features of coding style, we can learn from these past submissions and their relative grades

to predict scores for those coding submissions in the future which have not been graded

by human graders. To maintain consistency, our output would also be one of {1, 2, or 3},

excluding 0 as those were given to no submission or no code. Accuracy would be measured

by comparing our predicted scores to the actual labels, or past grades. As we used several

approaches that predicted a fractional number rather than a categorical class, we defined

this to be within 1 integer score from the actual received grade.
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All Features Extracted

Repeated Code Repeated Function Calls

Length of variable name Length of function names

Average, Max, Min Length of line Line too long

Average Length of code (per function) Length of entire code

Meaning of variable name Contains capital O or lowercase l

Commented out code Docstring only at beginning of function

Code coverage Unreachable Code

Number of key words Redundant if statements

Unnecessary semicolons is and is not instead of == and !=

Pylint score More than one statement on a single line

Unused variables Assigning to function call with no or None return

Redefining built-in Too many returns

Code Complexity Number of Exceptions

Table 3.1. List of Features

3.1 Feature Extraction

A Python script, which extracts features of the code through dynamic and static analy-

sis, and produces a feature vector per submission, was run across all submissions. In order to

determine what features were important while grading composition in the past, 15 veteran

graders filled out a questionnaire about important stylistic features, the head grader for this

semester was interviewed, and the rubric for composition scoring for this particular project

was carefully examined. From this research, over 35 significant features were extracted. We

filtered down to 26 features based on what we could implement and what we believed to be

important. All 26 features are listed in Table 3.1. Appendix A shows examples of buggy

code for 10 of these features.

3.2 Learning

At this point, several different learning algorithms were incorporated to train our classi-

fier, mostly using the Sci-kit Learn Python library, which has built-in implementations for

several machine learning techniques. The main approaches taken were multinomial logistic

regression and linear regression. From there, 10-fold cross-validation–training on 9/10 of

the dataset and testing on the remaining 1/10 for all 10 folds–was run on approximately

9



600 submissions. However, even after optimizing and twiddling with the amount of regular-

ization, we were only able to reach an accuracy of prediction of 53%. As there were three

classes to predict, accurately predicting only 53% of the scores is better than random, but

not nearly as high as expected. We found that in most cases, the accuracy was a result of

choosing the class with the highest frequency.

3.2.1 Improvements

Our first thought was to apply different learning methods. However, even after trying

different learning methods such as Random Forests and SVM, there was no obvious im-

provement. With random forests we were able to look at which features were being chosen

for the decision trees. This allowed us to determine which features mattered more, or were

more discriminable. At each level in the decision trees, the feature that reduced entropy

the most through a binary split was chosen, making it the most discriminable feature at

each level in the tree.

As we found that most of the misclassification came from scores of 3 being misclassified

as a 2, we decided to delve deeper into the boundaries. We trained binary classifiers at each

boundary. The code and it’s relative feature vector would be classified as a 1 or a 2, and if

it was a 2 from this classifier, we would subsequently classify it as either a 2 or a 3 using

the second binary classifier. The 1-2 classifier had an accuracy of 80%. However, this was

due to the titled distribution towards 2s. The 2-3 classifier had an accuracy of 60%, making

this boundary harder to distinguish. Even human graders admitted in our questionnaires

that the distinction between a 2 and a 3 seemed subjective and, at times, arbitrary.

Our learning showed extremely high bias: we found both that the training error and

cross-validation error were high. We were significantly under fitting our training data,

performing equally bad on the training, cross-validation, and testing error. In this case,

the model does not fit the training data very well, and it doesn’t generalize either. Usually

high bias means that there were not enough features, but for this project, there simply were

not enough features that were meaningful. As feature selection was a potential problem,
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we attempted to reduce our feature dimensionality using Principal Component Analysis

and Linear Discriminant Analysis, to convert our features before attempting to learn. This

was done on the original set of 26 features. We also iterated through various dimensions,

attempting to see which was best. LDA increased our accuracy all the way to 58%, as it

used the labels to find the most discriminatory features between classes.

We then redid feature selection altogether, and attempted to use more specific features

of this particular project for CS61A, trimming our number of features all the way down to

the 10 listed in Appendix A. This reached 60% accuracy, as these were features of higher

discriminability, which were manually found using exploratory data analysis, decision tree

feature information, and even the LDA results. If given more time, feature selection would

have been done even more carefully, as it had the most potential in improving our results.

3.3 Discussion

3.3.1 Features

After plotting each function’s distributions using box plots, we manually analyzed the

visualizations. While the average of each feature tended to be correlated with the corre-

sponding composition score, the variance for each feature was simply producing way too

much noise for us to overcome. In most cases, the overlap between features was so high,

that even regularizing to account for the noise didn’t help. Two example feature box plots

are shown in Figure 3.1. The average function length decreases as the composition score

increases, showing that more highly graded code is more concise. Similarly, the average

number of duplicate lines, which was computed using Pylint’s “repeated code” feature, de-

creases with better composition scores. However, in both box plots we see extremely high

overlap in the distributions. Once features with higher discriminability were chosen, we

were able to increase the accuracy. Flattening the features through the use of square root

and log of each feature value produced no noticeable difference in the accuracy of our model,

despite being one way to overcome the distribution issue.
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Figure 3.1. Boxplots: Function Length and Duplicate Lines per Composition Grade

3.3.2 Inter-rater Reliability

The main explanation for these results, comes from the fact that humans can not con-

sistently grade based off of composition. During our research, we performed two separate

experiments to test inter-grader reliability, i.e. how consistent were graders at grading code

based off of composition. In the first experiment, we had graders from the CS61A Fall

2013 semester grade random coding submissions from Fall 2012 (which already had been

assigned a particular grade). We found that only 55% of the submissions were given the

same grade. As the grade was only a score from 1-3, this result was a bit worrisome. We

noticed that graders for Fall 2013 tended to grade a bit harsher, so we decided to pursue the

same experiment within the same semester: having current graders grade other submissions

for Fall 2013. Here, we found that only 47.5% of the submissions were given the same grade!

We conclude that human graders are extremely inconsistent while grading code based off

of composition. As our implementation of supervised learning attempted to learn from hu-

man grades, it seemed that its success was limited to the consistency of that of a human.

These results make us wonder what exactly it means to have humans grade assignments as

opposed to computers. Perhaps this shows that computers should be doing all of the work,

as they can be more consistent.
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3.4 Future Work

As we only tested inter-grader reliability, it would be interesting to test intra-grader

reliability as well. This would tell us how consistent graders are themselves. Does the

grader get tougher as they see more code and more errors, or easier as they get tired of

grading? Or are they extremely consistent in the grades they are giving? If shown to

be consistent, then it would make sense to normalize the scores–or labels–by the grader’s

average score. Since each grader has a different distribution, adjusting scores per grader

should improve annotator agreement and thus accuracy. Our proposed normalization of

scores would be the following:

overall mean
grader mean ∗ given score = normalized score

As we could not learn from an inconsistent source, it made sense to progress to a more

unsupervised approach where we did not depend on the inconsistencies of humans. Thus,

our next approach was to use clustering to find common mistakes and potentially identify

code samples that are similar enough to receive similar scores.
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Chapter 4

Clustering Approach

This section discusses our second approach to auto-grading style by identifying com-

mon approaches that students took when defining their functions in the class project. The

motivation behind this second approach is that there might only exist a limited number

of common approaches that students take when solving a function, and if it’s possible to

identify which common approach a student used, then feedback or grades can potentially be

automatically generated. To identify different approaches, we computed the edit-distance

between one project submission and all other project submissions (using the abstract syntax

tree of the submission), and repeated this computation for each submission. Then, submis-

sions with low edit-distances were clustered together, and these clusters were then manually

inspected to identify the style approach that was taken within that cluster. The first section

describes how we implemented this clustering process, and the following sections describe

results and analyses from this process.

4.1 Implementation

First, the decision was made to look for common structural approaches for individual

functions, rather than for entire project submissions. This was motivated by the fact that

most functions in the project could be structured completely independently from one an-
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other, so it made sense to look for common stylistic approaches per function rather than

per project. Each function submission was converted into its abstract syntax tree (AST)

represented as a language-neutral JavaScript Object Notation (JSON) object–a lightweight

data-interchange format–with a very specific format. This JSON object anonymizes most

variables and function names, unless otherwise specified by the user, as names are typi-

cally unimportant when considering structure. However, variable and function names that

occurred as part of the project skeleton code were not anonymized, as it is structurally sig-

nificant when students use variables or functions whose values and effects were consistent

between projects. Naming is obviously an important part of coding composition, so this

represents one major flaw with our approach.

In order to determine how structurally similar two submissions were, we used the tool

from J. Huang et. al. [10], which when given two JSONs, could calculate the AST Edit

Distance between two ASTs. This pairwise computation used a dynamic programming

algorithm, which considered the trees unordered. Thus, pairs of submissions with low edit

distances could conceivably be similarly structured, as it would not take many edits to reach

an equivalent AST. This pairwise process is quartic in time with respect to the AST size,

but only needs to be run once on a particular set of submissions, acting as a one-time cost

for preprocessing. The process could likely benefit from optimizations.

Lower edit distances meant that submissions were more similar. Thus, the inverse of this

edit distance was used as our similarity score between submissions. With similarity scores

calculated pairwise for all submissions, visualizations of common structural approaches to

functions could be created. The program Gephi is used, which is an interactive visualization

and exploration platform for networks, complex systems, and graphs [6].

4.2 Results

In Figure 4.1, we can see the final visualization produced by Gephi. Each node in

the graph corresponds to an AST of an original function submission. Edges where the

similarity score between two functions was below a certain threshold were not included in
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Figure 4.1. Clusters with Annotations: Fall 2013 data, Threshold = 5%

the graph, since low similarity scores means the two submissions should not be considered

similar. Thus, an edge can be thought of as connecting two nodes that have a high enough

similarity score to warrant analysis. For example, with a threshold of 5%, only the highest

5% of edges are kept, thus indicating that edges are likely to have meaning. By examining

the network of solutions only in the top 5%, we observe a smaller, more manageable number

of common solutions or mistakes–only 6 main clusters appear. By organizing the space of

solutions via this network, clustered nodes are syntactically similar.

In order to produce the cluster visualization as shown in Figure 4.1, Gephi runs a

ForceAtlas algorithm, which uses repulsion and gravity to continuously push and pull nodes

away from each other. Nodes that have a high similarity score between one another are

attracted to each other, and nodes without a high enough similarity score repel from each

other. The distance between nodes and clusters directly correspond to the syntactic simi-

larity: nodes and clusters closer to each other share similar structure.

The clusters are colored by modularity, a measure of how well a network decomposes

into modular communities. The group of multi-colored nodes represents those submissions

that were unclustered and therefore highly dissimilar in structure to most other submissions:
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somewhere around 20-25% of the submissions remained unclustered depending on the input

submissions and threshold. These particular submissions would have to be individually,

manually analyzed and would not be a part of the automated process due to their unique

style of solution.

4.3 Analysis

Figure 4.2. Clusters: Fall 2012 and Fall 2013 data, Threshold = 5%

4.3.1 Multiple Semesters

We ran the clustering visualization with different subsets of the 4 semesters worth of

data that we had. Even with additional semesters-worth of data, we found that the clusters

did not change significantly. We show the progression of the clusters as more semesters

worth of submissions are added to the visualization in Figure 4.1, which represents just Fall

2013 submissions, Figure 4.2, which represents just Fall 2013 and Fall 2012 submissions,

and Figure 4.3, which represents all submissions from Fall 2012, Summer 2012, Spring 2013,

and Fall 2013. The number of common structural solutions, or the number of clusters in
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Figure 4.3. Clusters: All 4 semesters, Threshold = 2%

the visualization, for the find centroid problem, remained at 6 even when 1000 additional

submissions were added to the visualization, as shown in Figure 4.3. The figures show that

the same clusters remain, however, we do see the clusters expanding away from each other,

as we get additional submissions.

It is important to note, that since there were so many more nodes, we decided to set

our threshold to view only the top 2% of edges when considering all 4 semesters, thus

removing thousands of edges, but not affecting the clusters in any significant way. With

these conclusions in mind, we decided to focus on the dataset from Fall 2013 alone for

analysis, as it would be more manageable.

4.3.2 Manual Classification

We proceeded to do an in depth manual analysis on the clusters. For 3 different functions

within the project 2 submissions–find centroid, find center, and analyze sentiment–

we performed manual analysis on the visualizations produced. In Figure 4.4 we can see

one result of this manual classification. Here, from each of the 6 clusters produced, we

18



Figure 4.4. Manual Classification of Clusters

blindly and randomly selected 10-15 submissions. We sifted through the code for the

find centroid, labeling each as “Good,” “Okay,” or “Poor” style, based off of our own

understanding of Python composition and the function itself. This is similar to the 3 cat-

egories of grades that were awarded to students, again excluding 0 as these were only for

no code submissions. We were unaware of what cluster each submission belonged to at the

time of labeling; we were blindly classifying. Figure 4.4 shows what label was eventually

assigned to each cluster, by simply taking the majority for each submission analyzed in that

cluster. In each case, it was clear that the submissions contained extremely similar style

and structure. We realize that there could be strong bias in this manual classification, as

we, the researchers, were the ones to perform these manual operations.

4.3.3 Clustered by Score

In order to provide some validation to the above claims and Figure 4.4, we decided to

color the nodes by the original composition scores given to each submission, as we can gain

some insight from the visualization about composition of each cluster. In Figure 4.5, in
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Figure 4.5. Clusters Colored by Original Composition Score

the upper left cluster, we can see that the submissions tended to be in the 2-3 range of

composition scores, with clearly more 3s than any other cluster. Additionally, most scores

in the two right clusters fell in the 1-2 range. This shows a general trend of each cluster.

There are two major explanations for the lack of total confidence and variation of colors, even

when there are obvious trends. The first is that this score is given to the entire submission

as a whole, instead of per function. We are clustering on a per function basis, while the

composition score was assigned to the entire submission. This explains why some red nodes

end up in the higher 2-3 cluster. After manually analyzing those nodes that showed up

red in the upper left cluster, we could see that the composition score was assigned due to

style errors in other functions of the project submissions. As for the particular function

clustered here, the composition was nearly perfect. While the entire submission was given

a lower score of 1, this particular function had perfectly fine, 3-quality composition. We

manually confirmed this for all the red nodes in the upper left cluster for this particular

function. The second reason for this variability comes from the fact that readers simply

are not consistent, as shown in the Supervised Learning chapter. Readers may have easily

graded one submission of the same structure completely differently than another, often

erring by 1 entire score.
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A major conclusion from this analysis is that readers should potentially grade CS61A

projects by problem (function) rather than as a whole. Grading composition at the function

level can be meaningful and even partially automated. Limiting the scope of code that a

reader has to rate might additionally improve reliability in a significant way, especially if a

function is only graded by 1 or 2 readers total. Finally, the professor could formally specify

the weight that each function has in the final composition grade, while readers usually have

to determine this individually (another source of variability). Often readers will assign

importance to style errors in incorrect ways, marking a student down an entire point simply

for missing some white space, while others consider this trivial and may allow students to

make several errors before considering a point deduction.

4.3.4 Common Mistakes

Finally, we manually analyzed the “Poor” quality clusters on the right to find common

mistakes within the clusters. We found that these mistakes, including “under abstraction,”

“excessive while loops,” “line length,” and “repeated expensive function calls,” occurred

in over 80% of the submissions that we randomly sampled within those clusters. These

common mistakes were extremely specific, as they were found per function call, and could

thus be easily applied as potential feedback for the entire cluster.

Figure 4.6. Common Solutions for find centroid

Specific examples of common mistakes and common solutions were found in our analysis
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of the find center function as shown in Figure 4.6. In the upper right cluster labeled C

in Figure 4.4, we found that over 93% of solutions failed to save the results of their time-

intensive function calls, resulting in inefficiency and repeated code. In Figure 4.6, we see an

example of the bad solution that made the mistake of calling find centroid, an expensive

function, 5 times. More than 80% of solutions in that same cluster also made mistakes

such as under abstraction and failing to do multiple assignment, although the latter is not

necessarily a style error but a personal preference.
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Chapter 5

Automation

5.1 Visualization Tool

The previous analyses were done on existing submissions from past semesters. If the

project is reused in future semesters, then the work done in identifying and assigning mean-

ing to clusters can be applied to these submissions in the same way it was done in this

research. For example, if a new submission clusters with an already identified cluster, then

that submission can be given the same feedback or score that was already established.

Identifying the need to automate the process described in the previous sections, we

created an automated tool that can accept a new code submission as a Python file to

automatically produce a visualization with the existing clusters that were already generated.

As shown in Figure 5.1, the new code submission is emphasized in size and in color, so that

the user can identify where the new submission is located. In this way, a grader can

easily run the tool with a new submission and visually identify where the new submission

belongs. Additionally, textual output of which cluster id the submission belongs to is output

according to the modularity group the submission is clustered into.

The tool consists of two steps. The first is to run the Python script with this new

submission, which converts it to the AST and adds a new row and column to the pairwise

edit distance matrix. The second step is to run a Java script, which uses the Gephi toolkit to
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Figure 5.1. Output of Visualization Tool with Highlighted Node in Black

automatically run all of the above processes, and produces a .png image of the visualization

with the new submission highlighted.

This tool can easily be applied to new sets of submissions as well; it is designed to

let a grader cluster their own set of submissions, not just those from CS61A, project 2.

While this script requires a significant amount of time due to the pairwise comparison, it

is only a preprocessing step, meaning the overhead is a one time cost. Once the huge set of

submissions are pairwise compared, perhaps run overnight, the tool can be used to analyze

submissions and where they lie among others, as well as take in new submissions for future

semesters. As demonstrated in the analysis portion of this paper, the tool can be used to

identify common mistakes, different types of solutions or ways to solve the problem, and

even help us gain a better understanding of different design decisions.
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5.2 Web Application Tool

While visualizing clusters can be informative and useful, we wanted to make this process

more usable for providing feedback or grades back to students and instructors. We created

a web application that allows graders to grade submissions in a more streamlined fashion.

The tool allows for clusters to be tagged with specific feedback that will be sent back

to the students. Graders grade one submission at a time, but when they come across

a submission in a cluster that they have already seen, those same comments will come

up as suggested feedback remarks and grades. In this way, specific feedback that applies

to multiple submissions within the cluster could help expedite the code review process.

Furthermore, the tool provides submissions within the same cluster in a chronological order

to organize and simplify the process for the grader. Now the grader is able to grade similar

submissions at one time, focusing on a particular structure of code and really nailing down

the feedback for those submissions. This approach is aimed at helping the grader grade and

provide feedback, by making the process more consistent and efficient.

5.2.1 Application Design

In the simplest case, a grader would upload the submissions they were attempting

to grade to our web application. For each submission, the automated tool would run

on the backend to convert the code to JSON, calculate the edit distances between older

semesters’ submissions and the current submission, and finally retrieve the cluster id that

this particular submission belongs to. The grader would then be redirected to the grading

page, displaying a file viewer on the right, and the ability to add comments and a score on

the left, as shown in Figure 5.2. In order to choose comments from those that have been

already used, we offer a simple checkbox list, which the grader can update. Additionally,

we hope to add the functionality to let the grader specify the line numbers of where the

composition errors occurred. This part would be per individual mistake, but not be saved

for priority queue duplication purposes. A screenshot of the live application is shown in

25



Figure 5.3. Finally, when the grader clicks the submit button, “Send to Student,” the

comments as well as the chosen score, are emailed to the student’s login.

Figure 5.2. Mockup of Web Application

5.2.2 Priority Feedback

As the grader grades submissions from particular clusters, the web application saves

the comments and scores that the graders are giving to the student per cluster id. The

frequency of the comment per cluster id is kept in a priority queue, which is then accessed

to show the top N comments as “suggested comments” when grading a submission from the

same cluster. While we do not deal with semantic disparity, this is obviously a place for

improvement. The suggested score is also calculated by taking the average of all submission

scores in that cluster. While the suggested score may be a fractional quantity, the grader

is required to choose from the grading scale 1-3, as determined by the class.
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Figure 5.3. Screenshot of Live Application

5.2.3 Usability Testing

Dealing with the same data from CS61A’s project 2, we focused on one particular

function for our usability tests: find centroid. We were interested in determining how

efficient this process was with respect to the currently implemented process that graders

currently used to grade code based off of composition. Additionally, we wanted to know

how consistent graders were while using our system, as we have already determined there

is a lack of consistency with the current method.

5.3 User Study

The final implemented prototype was a web application, built in Django and Python,

that allowed a grader to grade code based off of composition through a web interface, used

clustering to group similar submissions and provide suggested feedback, and implemented

the design as described in detail above. This prototype was built with the help of an un-

dergraduate student, Daniel Kang. An image of the prototype is documented in Figure 5.3.
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Although the grading was not entirely automated, the grader was able to grade similar

code submissions (based on composition and structure), allowing them to focus on similar

mistakes at one time, as well as provide the feedback to similarly-composed code frag-

ments. The user study allowed us to better understand and measure, both qualitatively

and quantitatively, how well the prototype helped the grader grade code submissions based

off composition. While our main concern is in comparing the efficiency of our system to the

currently implemented code review process, we wanted to assess the overall quality of the

prototype and assess all aspects of potential benefits. Other than efficiency of grading, the

user study was designed to measure accuracy, and consistency of grading.

To test the prototyped web application of the new code composition review system, we

ran a user study with 6 current or former graders for CS61A. Graders were recorded while

they graded a series of coding submission fragments, and the recorded data, along with the

comments, scores, and other user actions were analyzed to attempt to measure quality of

the ACES prototype. The user study is described in more detail below.

5.3.1 Study Design

The first step involved setting up the environment. We created 14 code fragments

(functions) in Python, with various composition mistakes. We then randomly duplicated

one code fragment to make 15 total, which were then pre-loaded into the web application

for grading.

The subjects were broken down into two major groups: the control and experimental

group. The control group consisted of 3 graders, who were asked to use the current system

of manual code inspection to grade these coding fragments based off of composition, while

the experimental group used the prototype described above. Each group was then asked to

perform the same steps.

After signing the consent form, the grader was presented with each of the 15 code

segments. All code segments except for the two duplicates were presented in random order

to the control group, and by cluster for the experimental group. The two duplicates were
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presented at the beginning and end of all submissions for the control group and the beginning

and end of the particular cluster group those submissions identified with for the experimental

group.

The grader proceeded to grade each code segment as if they were grading a student’s

project submission. They commented (provided feedback) on any composition errors in the

web application itself, and chose a score from 1 to 3 for each submission. We recorded

their on-screen activity using Quicktime’s screen capture tool. Each group was allowed to

switch between submissions as they saw fit, in case they were interested in amending a

previous comment/feedback remark or score. All recordings were erased immediately after

the analysis was performed.

5.3.2 Post-Study Questionnaire

In addition to the experiment detailed above, we had each subject answer a short post-

experiment questionnaire, asking them the following:

1. Rate the grading process on a scale from 1 to 5 (1 terrible, 3 average, 5 fantastic).

2. What problems if any, arose during your grading?

3. How accurate did you think your grading was on a scale from 1 to 5? (1 not at all, 3

average, 5 extremely).

Note: in order to get a more detailed response, we asked the user to rate on a scale that

included half points for both question 1 and 3.

5.3.3 Results

From there we analyzed various qualitative and quantitative metrics. While we only had

three people per group, (control and experimental), we were still able to see some differences

among each metric.
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Ease of use

As predicted, we saw many more complaints of “problems” from the prototype than

from the control group, as this prototype was not fully developed into an industry-standard

application. For the second question we received 5 different issues for the prototype com-

pared with 2 from the normal code review system. Obviously, there are a few explanations.

This was for an untested prototype: there were a few UI bugs and usability features we had

not fully implemented or tested. We received remarks such as “difficult navigation,” “lost

part of a comment because of a miss click,” and more generally “UI bug.” Another reason

for the higher number of problems was that subjects in the control group had already used

that grading system before, as it is the currently used system. There was no learning curve,

as there was for the experimental group.

Finally, we saw that the opinions among the two groups on the overall feelings of the

grading process were rather similar. The ratings we received for the grading process for

the prototype were an average of 4.334, while those in the control group responded with an

average rating of 4, with all scores for the prototype being equal or higher than the control

code review system. The small difference may be due to a bias in the added functionality:

users in the experimental group noticed that coding submissions were ordered in a particular

way (based off of similarity).

Efficiency

We measured the time it took to grade all 15 coding fragments for both groups and how

many user actions (clicks, types, etc) they performed to accomplish the grading. Despite

the various complaints about our prototype, we saw that there were significantly less user

actions (which included scrolls, clicks, character typing, and other movements on the part

of the subject), while grading any particular submission while using our prototype. There

were an average of 10 fewer user actions for the prototype than the control code review

system. The reason it was not a larger disparity came from the fact that a majority of the
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graders in the experimental group wound up returning to past assignments to regrade then,

causing more clicks.

Overall, the prototype system took graders an average of 32 minutes to grade all 15

submissions, while the control code review system took the graders 35 minutes. This is not

a huge difference, and since there were not very many subjects in this user study, this is

probably not statistically significant. It does, however, give us a glimpse of the possibilities

in increased efficiency, as we already know our system requires far fewer user actions to

accomplish the grading.

Accuracy

We carefully crafted each of the coding segments with various composition errors. How-

ever, there were a few composition errors that were identified during the experiment, which

we also included in the subset of mistakes made per problem. Using this set of correct “mis-

takes graders should identify”, we were able to vaguely gauge the accuracy of the grader,

in a way different than scoring on a scale from 1 to 3.

Figure 5.4 shows the accuracy of the control and experimental group per coding segment

(labeled 1 - 15). Coding segments where the graders identified all mistakes (segments 2, 3,

4, 12) or there were 0 mistakes total (segment 6 - 10) were ignored. That left only those

coding segments that had some mistakes missed by the grader or some other discrepancies.

(While we will get more into this in the next section, it is important to note that code

segments 1 and 15 were in fact the same coding segments).

Figure 5.4 shows that our prototype does in fact increase accuracy. Although in most

cases, the graders from both groups missed the same number of mistakes, in a few cases,

the graders from the experimental group identify more mistakes than those from the control

group. For example, in code segment 13, one grader in the control group completely missed

the only mistake in the code. The experimental group was primed for this exact mistake

by the time they saw this coding submission, as the other coding submissions they had just

graded made the exact same mistake because they were in the same cluster. Similarly, in
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Figure 5.4. Accuracy, average percentage of mistakes identified out of total mistakes, of
each group of graders, control and experimental

code segment 1, all graders from the control group missed the mistake of calling a function

more than once with the same parameter, or a repeated function call, while only one person

from the experimental group did.

While we were hoping to compare how the graders rated themselves on accuracy, post-

survey question 3, to the above accuracy measure, it seems that both groups of graders

said they graded accurately at a round 4 on the 1 through 5 scale. Thus no interesting

insight could be drawn about the self-grade or the effort on the part of the grader. It seems

that most of them missed at most one mistake per grading segment anyways, which seems

accurate to the 4/5 rating.

Consistency

In order to test how consistent any grader was while grading, we decided to put in a

duplicate code submission, in hopes that the grader would identify the duplicate or at the

very least grade both in the same way. We made sure to present the duplicate at a fair

distance from the original, in order to re-enact similar situations within a normal grading

environment (including the prototyped environment). From each group, only one grader

missed the duplicate, showing that the prototype did not necessarily help to distinguish

duplicate code for the human eye. However, in terms of the accuracy from above, we see
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that one grader from the control group actually graded these two submissions differently,

identifying one additional mistake after viewing the same code again. We propose that

because the grader was not focused on a particular error, as the clustering grouping in

the experimental group was, the grader missed the mistake completely, but was unable to

effectively find or remember the submission that had the same error.

This only measures intra-grader consistency: the consistency of one particular grader

over time. However, an additional analysis could be run to show consistency among graders,

inter-grader reliability, by taking the score they gave each of the coding segments, similar

to what we did in the initial stages of our research. While it would be interesting to look at

the effect the prototype has on this particular measure, we were unable to compare scores

due to a loss of data.

5.3.4 Discussion

As we were limited to the number of participants we listed in our IRB application and

the number of graders willing to take part in the study, we were only able to run the user

study with a total of 6 past graders. The user study did not have enough participants to

be deemed statistically significant, but can shed some light into the possibilities of such

an application. The differences in measurements are quite small, and often didn’t lead to

the conclusions we had wished to make. From our observations, the application definitely

lowers the amount of user clicks and helps with accuracy to some extent, but had no effect

on the consistency of grading, and was harder to use. Overall, we believe the idea of

priority comments suggested based off of use for particular clusters could go a long way if

implemented and tested more rigorously.
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Chapter 6

Future Work

The efficiency of both of our tools, in terms of the one-time preprocessing step, is ex-

traordinarily slow and could use improvements. The main bottleneck is in the pairwise

comparison that has to be performed to get a similarity metric between all pairs of submis-

sions for clustering. This step could be optimized in several ways, including reducing the

number of comparisons. Improving the efficiency directly leads to a more scalable solution,

as this automation or streamlined grading is meant for massive courses.

Additionally, the process can be greatly generalized and extended to work with a variety

of programming languages and classes. Right now, the visualization tool can be run with

any set of Python submissions, but are required to be smaller functions with skeleton code.

The process is easily extended to work with larger code segments, but is not currently

implemented. Both tools only work with Python code. However, for the visualization tool,

one simply needs to convert their coding submissions into AST of the exact format for our

tool. This could be automated, by using lower level implementations of languages.

Finally, while our web application code review system was implemented, it was just

to act as a prototype, specifically for the user study written in this report. Adding the

functionality of our tool to the existing code reviewing system that is used in CS61A would

be ideal, as it is one slightly adapted from Google’s own code reviewing system.
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Chapter 7

Conclusion

Automating the subjective process of grading code based off of composition is extremely

difficult. Instead, focusing on ways to help expedite the process was proven to be a much

more realistic approach. Clearly, there are common trends among submissions which can

be leveraged to make grading a more efficient process, especially when working with a

dataset of such size, as MOOC courses often do. Our tool, even now, provides interesting

insights to general trends, as well as specific ones that allow readers to stay more consistent

when grading. This is especially true if done by function rather than as a whole submission.

Applying feedback and scoring to submissions within the same cluster, from our preliminary

analysis, seems to be a reasonable way to grade coding submissions.

7.1 Potential Applications

The research done here has a variety of applications. The main purpose is that we can

use clustering to streamline or even partially automate the code review process. Grouping

together similar coding submissions means readers can focus on one type of solution at

a time, and really nail down the common mistakes. Furthermore, they can use similar

comments and scores in their feedback. One can even go so far as to claim that choosing

representative nodes from each cluster can allow a reader to grade just a few submissions

35



in a cluster and propagate all feedback and the score to all other submissions within the

same cluster.

Additionally, we can use this knowledge for peer-pairing: pairing up students with

different style habits would allow the propagation of good habits, or pairing up students

with similar style might allow them to understand each other’s code more quickly. The

clustering technique has the unique advantage of being able to show us pairwise similarity

between students and their coding style.

One interesting application of the visualization tool would be to show how submis-

sions change over time. Classes that allow multiple submissions of the same assignment

could benefit from the automated visualization of coding submissions, by watching how the

clusters change over time, hopefully showing improvement.

Finally, clustering student submissions in this way gives the instructor a better idea of

the type of solutions for a particular problem. In other words, they can identify common

mistakes among their students, and it allows them to more easily pinpoint student confusion.

Even for those solutions that don’t have any stylistic errors, we might see different ways of

solving a problem, which could lead to interesting ways of looking at and studying design

choices. In summary, the automated visualization tool can be used to identify common

mistakes, different types of solutions or ways to solve the problem, and even help enforce

consistency among graders.
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Chapter 8

Appendix A
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