
Learning Semantic Image Representations at a Large

Scale

Yangqing Jia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-93

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html

May 16, 2014



Copyright © 2014, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Learning Semantic Image Representations at a Large Scale

by

Yangqing Jia

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Alexei Efros

Professor Thomas Griffiths

Spring 2014



Learning Semantic Image Representations at a Large Scale

Copyright 2014
by

Yangqing Jia



1

Abstract

Learning Semantic Image Representations at a Large Scale

by

Yangqing Jia

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

I present my work towards learning a better computer vision system that learns and
generalizes object categories better, and behaves in ways closer to what human behave.
Specifically, I focus on two key components of such a system: learning better features, and
revisiting existing problem statements. For the first component, I propose and analyze
novel receptive field learning and dictionary learning methods, mathematically justified by
the Nyström sampling theory, that learn more compact and effective features for object
recognition tasks. For the second component, I propose to combine otherwise independently
developed computer vision and cognitive science studies, and present the first large-scale
system that allows computers to learn and generalize closer to what a human learner will do.
I also provide a large-scale human behavior database, which will hopefully enable further
research along this research direction.

Following the recent success of convolutional neural networks, I present and release a well-
engineered framework for general deep learning research, and provide an extensive analysis on
the generality of deep features learned from the state-of-the-art CNN pipeline: whether they
serve as a general-purpose visual descriptor that could be adopted in various applications,
and future research directions made possible by such general features.



i

To Sizhu, and my parents.



ii

Contents

Contents ii

1 Introduction 1

2 Receptive Field Learning for Image Features 4
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Classification Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Receptive Field Learning for Pooled Image Features . . . . . . . . . . . . . . 8
2.4 Fast Approximate Learning with Feature Grafting . . . . . . . . . . . . . . . 11
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Theoretical Analysis for Feature Learning 20
3.1 The Nyström Sampling Explanation . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Evaluating Bounds for Learned Features . . . . . . . . . . . . . . . . . . . . 23
3.3 PADL: Pooling Aware Dictionary Learning . . . . . . . . . . . . . . . . . . . 25
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Visual Concept Learning 33
4.1 The Visual Concept Learning Problem . . . . . . . . . . . . . . . . . . . . . 33
4.2 Constructing A Large-scale Test Dataset . . . . . . . . . . . . . . . . . . . . 36
4.3 Visually-Grounded Bayesian Generalization . . . . . . . . . . . . . . . . . . 41
4.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Terabyte-scale Classifier Training . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Latent Task Adaptation with Concept Hierarchies 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Linear Time MAP Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



iii

5.4 Analyzing the Necessity of Task Adaptation . . . . . . . . . . . . . . . . . . 62
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Emergence of Concept-level Information in Deep Networks 69
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Caffe: A Convolutional Architecture for Fast Feature Embedding . . . . . . 71
6.3 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 On the Effectiveness of Feature Transfer . . . . . . . . . . . . . . . . . . . . 77
6.5 Emergence of Conceptual Embeddings . . . . . . . . . . . . . . . . . . . . . 83
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion 88

Bibliography 89



iv

Acknowledgments

It is a significant stage of life to spend five years working on a PhD degree, and I am
very grateful to have worked with wonderful people during this period. First and foremost,
I would like to thank my advisor Trevor Darrell, for being a great mentor to introduce me
into the wonderful field of academic research and to encourage me to explore new fields
and research directions. I would also like to thank Tom Griffiths, Jitendra Malik, Alyosha
Efros, and Bruno Olshausen, for high-level and interdisciplinary guidances allowing me to
see beyond my otherwise limited research field.

I had never imagined a more enjoyable graduate school life before I joined Berkeley, and it
is an honor to meet and work with fellow postdocs and graduate students: Oriol Vinyals, Jon
Barron, Sergey Karayev, Trevor Owens, Hyun Oh Song, Ning Zhang, Judy Hoffman, Allie
Janoch, Jon Long, Jeff Donahue, Evan Shelhamer, Joshua Abbott, Joseph Austerweil, Dave
Golland, Matthieu Salzmann, Brian Kulis, Mario Fritz, Mario Christoudias, Ross Girshick,
Sergio Guadarrama, and many others. Grad school has been unimaginably colorful with
your company.

I appreciate my internship days at the NEC Labs America and Google Research. My
thanks go to Chang Huang, Kai Yu, Mei Han, Thomas Leung, Alexander Toshev, and Sergey
Ioffe, for offering the great opportunity for me to enlarge my vision, and to boldly go into
the era of large-scale deep learning.

Last but not least, I am deeply indebted to the love, tolerance and support from my wife
Sizhu and my parents. This thesis is dedicated to them with my sincere gratitude.



1

Chapter 1

Introduction

A fundamental problem in computer vision is object recognition: given an image composed of
a grid of raw pixel values, one needs to design a computer system that identifies the objects
present in this image. It is known that humans are particularly good at such problems, being
able to learn quickly from very few examples (with the help of life-long visual experiences),
and to adapt to various visual input conditions like illumination, rotation and deformation.
By its nature, computer vision has been a vague problem, requiring one to design computer
vision algorithms as well as evaluation criteria to achieve human-like vision systems.

Two key trends have driven the vision field forward during the recent years. With the
highly structured visual input, it is always a challenge to find visual features that preserve
useful information and provide satisfying invariance against variations. Breakthroughs in
vision applications often comes with more powerful features, such as SIFT [78], HOG [25],
and the recent rediscovery of convolutional neural network (CNN) features [64, 65]. At
the same time, defining more precise problem statements as well as benchmarks almost
always provides new perspectives and directions to the research field. This both helps better
understanding of existing systems, and enables more powerful systems to be learned from
ever-growing data.

In this thesis I present work that aligns with such trends: to learn a better computer
vision system that learns and generalizes object categories better, and behaves in ways
closer to what human learners do. As any attempt towards such a system would involve a
number of key problems and challenges, I will introduce and discuss my contribution towards
two problems in such vision systems: to learn better image features with solid theoretical
justifications, and to re-visit the existing object recognition problem statement, proposing a
novel, cognitive science inspired system that learns and generalizes object categories similar
to human learners.

It is noteworthy that vision algorithms often call for efforts from the computer systems
side, which enables one to learn from large-scale data and to learn complicated models.
Such need is highlighted in the recent comeback of “deep learning”, which employs the con-
ventional wisdom of multi-layer, convolutional neural networks, but is usually trained with
terabytes of data and millions of parameters. It is arguable that this could not be achieved



CHAPTER 1. INTRODUCTION 2

by novel computer architectures - distributed systems employing thousands of machines, and
heterogeneous computing platforms such as Graphical Processing Units (GPUs). However,
little systematic efforts have been made to provide a state-of-the-art codebase for the recent
advances in vision and deep learning. In this thesis, I will also propose and provide an
open-source library called “Caffe” for such needs, highlighting key design choices that make
it efficient. By the time of this thesis, Caffe has gained much interest both in academia
and industry, and has been supporting multiple research projects both inside and outside
Berkeley.

Due to the scale of topics involved in this thesis, I will leave the background and literature
reviews to each individual chapter, which will be a self-containing part with discussion on
how it fits in the overall theme of this thesis. Here I briefly summarize the main contribution
of this thesis:

• To better understand the nature of image feature learning by presenting both theoreti-
cal and empirical analysis towards more compact and effective image features, showing
improvement on state-of-the-art image classification tasks (Chapter 2 and 3).

• To connect the gap between “laboratory style” object categorization and concept learn-
ing problems that are closer to human cognitive behavior, pushing the frontier on both
machine vision and cognitive science (Chapter 4 and 5).

• To present a well-engineered, most-efficient open-source framework that fosters future
computer vision and machine learning research, with systematic analyses of state-of-
the-art deep learning approaches (Chapter 6).

Earlier versions of this work have been presented in smaller parts over the course of
several research papers [56, 57, 58, 55, 31]. This dissertation goes through, and shows how
individual components contribute to the overall contribution as follows:

Chapter 2 focuses on finding better image feature representations, which is the funda-
mental part of all recognition tasks. Specifically, we focus on the building block of state-
of-the-art feature learning pipelines: a two-stage pipeline containing a local encoding stage
and a spatial pooling stage. We show that an over-complete pooling receptive field design,
combined with a discriminative feature selection scheme, is able to capture richer between-
class variance and achieve state-of-the-art performance on benchmark datasets. While this
chapter only focuses on networks with only a single coding and pooling stage, the algorithm
may be extended to deeper, multi-stage networks, where one may construct a criterion for
feature selection by examining the gradients of upstream networks.

Chapter 3 then gives a theoretical justification of over-complete features and greedy
feature selection. One could view the feature selection as a sampling problem from a po-
tentially infinite-dimensional feature space, whose behavior could be well understood by the
covariance matrix between features. While the Nyström sampling theory has been well stud-
ied from a purely machine learning perspective, not much use has been proposed beyond
simple methods such as K-means and SVMs. This chapter will show a natural connection



CHAPTER 1. INTRODUCTION 3

between feature selection and Nyström sampling, justifying the use of simple, greedy feature
selection schemes discussed earlier in the chapter.

Having discussed the feature learning algorithms, Chapter 4 moves on to a higher
level and analyzes the question of visual concept learning, originating from psychology and
cognitive science. Specifically, we address the gap between the behavior of human and that
of machines on learning a novel category by combining knowledge from two distinctive fields
- machine vision and cognitive science - that have developed separately in the previous
decades. As the scale of our problem has never been tried in either fields, I propose and
collect a systematic testing scheme, and present the first system that is capable of learning
novel concepts directly from perceptual inputs, in a much larger scale than existing cognitive
science approaches usually address.

Chapter 5 employs the visual concept learning framework, and presents the solution
to a more conventional machine vision problem: to enable an agent that is able to learn
from a large number of object categories, but is also capable of adapting to different task
scenarios, and only predicting object categories that are semantically related to the current
task context. The chapter benefits from the cognitive science model presented in Chapter
3, and to the best of my knowledge is the first machine vision system that addresses the
semantic difference during training and testing time.

Last but not least, I present Chapter 6 in a more exploratory fashion than previous
chapters, by evidencing and analyzing the emergence of object-level information along the
multiple stages of a very deep convolutional neural network, as well as the applicability of
deep features as a general-purpose feature that effectively replaces SIFT and HOG in state-of-
the-art vision tasks, based on the Caffe framework that I developed and released. Chapter
6 also discusses key design choices of Caffe that plays as the backbone of all algorithms
presented in the chapter.



4

Chapter 2

Receptive Field Learning for Image
Features

A key component in the object recognition pipeline is extracting robust yet representative
features from perceptual inputs, usually in the format of raw pixels. Such features should be
able to further support high-level interpretations such as categorization and detection, and
the vision community has converged to specific architectures for feature extraction in the
recent decade. Most notably, such architectures use a convolutional approach that encodes
local image patches and spatially pools the output, and then stacks such convolutional
components in a multi-layer fashion to build mid and high level features. Despite various
ways in which such networks could be constructed (e.g. with handcrafted features or fully
trained), such structures have remained effective in various applications, including digit
recognition [74], object detection [24], object classification [117], and the recent success of
convolutional neural networks in large-scale classification tasks [65].

This chapter focuses on the building block of such approaches - a single-layer network
that contain one local coding stage and one spatial pooling stage. Specifically, we proposes
a novel approach to perform pooling to obtain more selective features for object recognition,
achieving higher performance on benchmark datasets than conventional pooling approaches
do. We then explain the theoretical justification of a common phenomenon found in the
single-layer network analysis: higher dimensional features almost always lead to better clas-
sification performance. This chapter focuses on the single-layer network for clarity, but the
results we found would apply to multi-layer networks as well.

2.1 Background

Over-completely encoded features have been shown to provide state-of-the-art performance
on various applications, see e.g., [85, 77, 120, 19]. In computer vision, locally encoded and
spatially pooled feature extraction pipelines work particularly well for image classification.
Such pipelines usually start from densely extracted local image patches (either normalized



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 5

raw pixel values or hand-crafted descriptors such as SIFT or HOG), and perform dictionary
learning to obtain a dictionary of codes (also called filters). The patches are then encoded
into an over-complete representation using various algorithms such as sparse coding [85, 112]
or simple inner product with a non-linear post-processing [20, 65]. After encoding, spatial
pooling with average or max operations are carried out to form a global image representation
[117, 13]. The encoding and pooling pipeline may be stacked in a deep structure to produce
a final feature vector, which is then used to predict the labels for the images usually via a
linear classifier or a densely connected multilayer neural network.

During the last decade, much emphasis has been directed at the coding step. Dictionary
learning algorithms have been discussed to find a set of basis that reconstructs local image
patches or descriptors well [80, 20], and several encoding methods have been proposed to
map the original data to a high-dimensional space that emphasizes certain properties, such
as sparsity [85, 117, 118] or locality [112]. Recent papers [19, 93, 20] have explored the
relationship between dictionary learning and encoding, and have proposed simple yet effective
approaches that achieve competitive results. The neuroscience justification of coding comes
from simple neurons in the human visual cortex V1, which have been believed to produce
sparse and over-complete activations [85].

Similarly, the idea of spatial pooling dates back to Hubel’s seminal paper about complex
cells in the mammalian visual cortex [51], which identifies mid-level image features that are
invariant to small spatial shifting. The spatial invariance property also reflects the concept
of locally orderless images [63], which suggests that low-level features are grouped spatially
to provide information about the overall semantics. Most recent research on spatial pooling
aims to find a good pooling operator, which could be seen as a function that produces infor-
mative statistics based on local features in a specific spatial area. For example, average and
max pooling strategies have been found in various algorithms respectively, and systematic
comparisons between such pooling strategies have been presented and discussed in [13, 11].
Recently, Coates et al. proposed to pool over multiple features in the context of deep learning
[21].

However, relatively little effort has been put into better designs or learning of better
spatial regions for pooling, although it has been discussed in the context of learning local
descriptors [114]. A predominant approach to define the spatial regions for pooling, which we
will also call the receptive fields (borrowing the terminology from neuroscience) for the pooled
features, comes from the idea of spatial pyramids [70, 117], where regular grids of increasing
granularity are used to pool local features. The spatial pyramids provide a reasonable cover
over the image space with scale information, and most existing classification methods either
use them directly, or use slightly modified/simplified versions.

In addition, recent research has revealed a particularly interesting finding [19, 93, 20, 98]
that very simple patch-based algorithms like K-means or even random selection, combined
with feed-forward encoding methods with a naive nonlinearity, produces state-of-the-art
performance on various datasets. Explanation of such phenomena often focuses on the local
image patch statistics, such as the frequency selectivity of random samples [98], but does
not offer an asymptotic theory on the dictionary learning behavior. We will show later in



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 6

:

coding

pooling

x

A1

A2

AK

(c1,R1)

(c2,R2)
:

(cM ,RM )

f(x)
“BEAR”

I

Figure 2.1: The image classification pipeline. See Section 2.2 for details.

the chapter that a Nyström sampling based interpretation explains such phenomenon well
by providing asymptotic bounds to the observed accuracy, and that such interpretation will
lead to an efficient, unsupervised feature selection paradigm.

2.2 The Classification Pipeline

Before the introduction of the proposed methods, we briefly review the image classification
pipeline we adopted, which leads to the problem of learning the receptive fields for spatial
pooling. Specifically, we will focus on two-layer classification approaches.

We illustrate the pipeline from raw images to the prediction of class labels in Figure 2.1.
Specifically, starting with an input image I, two stages are usually adopted to generate the
global feature, as we formally define below.

(1) Coding. In the coding step, we extract local image patches, and encode each patch
to K activation values based on a codebook of size K (learned via a separate dictionary
learning step). These activations are typically binary (in the case of vector quantization) or
continuous (in the case of e.g. sparse coding). It is generally believed that having an over-
complete (K � the dimension of patches) codebook while keeping the activations sparse
helps classification, especially when linear classifiers are used in the later steps.

Recently, Coates et al. [20] have shown that relatively simple dictionary learning and
encoding approaches lead to surprisingly good performances. To learn a dictionary D =
[d1,d2, · · · ,dK ] of size K from randomly sampled patches {p1,p2, · · · ,pN} each reshaped
as a vector of pixel values, two simple yet effective approaches are advocated:

1. K-means, which minimizes the squared distance between each patch and its nearest
code: minD

∑N
i=1 minj ‖pi − dj‖2

2.

2. OMP-M, which learns a dictionary that minimizes the reconstruction error, with the
constraint that each patch is modeled by a linear combination of at most M codes:
minD,αi

∑N
i=1 ‖pi −Dαi‖2

2, where the length of each dictionary entry dj is 1, and the
cardinality of each reconstruction coefficient αi is at most M .



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 7

For encoding, Coates et al. also propose to substitute sparse coding by the following efficient
approaches:

1. Triangle coding [19], which computes the activation of code k for a patch p as fk(x) =
max{0, µ(z)− zk}, where zk is the distance from p to the k-th code dk, and µ(z) is the
mean of distances from p to all codes.

2. Soft thresholding, which computes the inner product between p and each code, with a
fixed threshold parameter α: fk(x) = max{0,d>k p− α}

We refer to [20] for a systematic discussion about different dictionary learning and en-
coding algorithms. In our experiment, we will adopt these standard approaches in order
to isolate the contribution of spatial pooling from the choice of different coding methods.
Since local patches are usually extracted densely in a grid-based fashion, we will organize
the activations of image I as a set of matrices denoted by {A1(I)A2(I), · · · ,AK(I)}, one for
each code in the codebook, whose element Akij(I) contains the activation of code dk for the
local image patch at spatial location (i, j).

(2) Pooling. Since the coding result are highly over-complete and highly redundant, the
pooling layer aggregates the activations over certain spatial regions of the image to obtain
an M dimensional vector x as the global representation of the image. Each dimension of
the pooled feature xi is obtained by taking the activations of one code in a specific spatial
region (shown as the red rectangular in Figure 2.1), and performing a predefined operator
(usually average or max) on the set of activations.

We follow a similar approach to that in [12] to formally define pooled features. Specifi-
cally, given an operator op that maps a set of real values to a single real value (e.g. by taking
their average), a pooled feature xi can be defined based on the selection of a code indexed
by ci and a spatial region denoted by Ri:

xi = op(Aci
Ri

) (2.1)

Borrowing the definition from neuroscience, we call Ri the receptive field for the pooled
feature, which could be seen as a binary mask over the image. Aci

Ri
is then the set of

activations of code ci in the receptive field Ri.
This definition provides a general definition that embraces existing pooling algorithms.

For example, commonly used operators involve computing the statistics of the activations
under the p-norm:

xi =
1

|Ri|
(
∑

αi∈A
ci
Ri

αpi )
1
p (2.2)

when p = 1 this corresponds to the average pooling, and when p → ∞ this corresponds to
the max pooling.

We focus on the definition of receptive fields for pooling. The simplest form of pooling
takes the whole image as the receptive field, thus assuming a bag-of-words model where



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 8

spatial information is ignored. The more commonly adopted spatial pooling approach [70,
117] pools features from multiple levels of regular grids, thus defining a pyramid of pooled
features. Given a set of K codes and a set of N receptive fields, the pooled features are
then defined by taking the Cartesian product of the codes and the receptive fields, yielding
a KN -dimensional global feature.

Finally, a classifier, usually linear SVM or logistic regression, is trained using the global
feature vector to predict the final label of the image as y = f(x;θ).

2.3 Receptive Field Learning for Pooled Image

Features

While significant efforts have been placed on the coding part of the classification pipeline,
the pooling step has received relatively little attention. Existing research on pooling mainly
focuses on the analysis of the pooling operator, such as in [11]. Specifically, spatial regions
are almost always defined on regular grids [117], which may not guarantee to be optimal.
As a simple example, to distinguish most indoor and outdoor scenes, a human may look for
the existence of the horizon, which could be captured by thin horizontal pooling regions over
the image. Spatial grids, even with a pyramid structure, fail to provide such information.
Such receptive fields may be dataset-dependent, leading us to ask the question “are spatial
pyramids optimal for image classification?”, the answer to which is often neglected by existing
algorithms.

Instead of arbitrarily defining heuristic receptive fields, we aim to explicitly learn the
receptive fields for classification tasks. Specifically, we propose to adaptively learn such re-
gions by considering the receptive fields additional parameters, and jointly learning these
parameters with the subsequent classifiers. The resulting benefit is two-fold: receptive fields
tailored to classification tasks increase the overall accuracy of classification; in addition, with
the help of such mid-level features, we are able to use a much lower-dimensional feature to
achieve the state-of-the-art performance. We experiment with our algorithm on the bench-
mark CIFAR-10 dataset and other datasets, and report a significant improvement in both
accuracy and efficiency.

Inspired by the selectivity of complex cells in the visual cortex, we propose to learn the
pooled features adaptively. Specifically, learning a set of M pooled features is equivalent to
learning the parameters C = {c1, c2, · · · , cM} and R = {R1,R2, · · · ,RM} 1. To this end,
we note that the pooled features are directly fed into the final classifier, and propose to
jointly learn the classifier parameters θ together with the pooling parameters. Thus, given
a set of training data X = {(In,yn)}Nn=1, the joint learning leads to solving the following

1For simplicity, we will use the max operator, but note that any operator could also be incorporated in
our framework.



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 9

(a) (b) (c)

Figure 2.2: An example of over-complete rectangular bins based on a 4 × 4 super-pixel
setting: (a) super-pixels; (b) spatial pyramid bins; (c) over-complete rectangular bins.

optimization problem:

min
C,R,θ

1

N

N∑
n=1

L(f(xn;θ),yn) + λReg(θ) (2.3)

where xni = op(Aci
n,Ri

)

where we assume that the coding from In to {Aci
n }Ki=1 is done in an unsupervised fashion,

as has been suggested by several papers such as [19]. We call this method receptive field
learning, as the receptive fields are learned in such a way that information most relevant to
the classification task will be extracted.

One practical issue is that solving the optimization problem (2.3) may be impractical,
as there is an exponential number of receptive field candidates, leading to a combinatorial
problem. Numerical solutions are also difficult, as the gradient with respect to the pooling
parameters is not well-defined. Thus, instead of searching in the space of all possible receptive
fields, we adopt the idea of over-completeness in the sparse coding community. Specifically,
we start from a set of reasonably over-complete set of potential receptive fields, and then
find a sparse subset of such pooled features. The over-completeness enables us to maintain
performance, while the sparsity allows us to still carry out classification efficiently during
testing time.

2.3.1 Over-complete Receptive Fields

The exponential number of possible receptive fields arises when we consider the inclusion and
exclusion of single pixels individually. In practice this is often unnecessary, as we expect the
active pixels in a receptive field to be spatially contiguous. In this work, we use receptive fields
consisting of rectangular regions2: this provides us a reasonable level of over-completeness,

2As a side note, we also experimented with receptive fields that are sampled from an Ising model on
the fly during training, but rectangular regions worked empirically better, possibly because the additional



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 10

as there are O(n4) different rectangular receptive fields for an image containing n×n pixels.
In addition, since the motivation of spatial pooling is to provide tolerance to small spatial
displacements, we build the rectangular regions upon super-pixels, which are defined as dense
regular grids on the image. Figure 2.2 shows an example of such rectangular receptive fields
compared with regions defined by the spatial pyramid on a 4× 4 grid.

Given the set of P over-complete regions, which we denote by R = {R1,R2, · · · ,RP},
and the dictionary D = {d1,d2, · · · ,dK} of size K, we can define a set of PK potential
pooled features based the Cartesian product R × D. Specifically, the i-th receptive field
and the j-th code jointly defines the (K × i + j)-th pooled feature as xK×i+j = op(Aj

Ri
).

Note that when the coding and pooling are both carried out in an over-complete fashion,
the resulting pooled feature is usually very high-dimensional.

2.3.2 Structured Sparsity for Receptive Field Learning

While it is possible to train a linear classifier using the high-dimensional pooled feature x
above, in practice it is usually beneficial to build a classifier using relatively low-dimensional
features. In addition, for multiple-label classification, we want the classifiers of different
labels to share features. This brings two potential advantages: feature computation could
be minimized, and sharing features among different classifiers is known to provide robustness
to the learned classifiers. To this end, we adopt the idea of structured sparsity [88, 99], and
train a multiple-class linear classifier y = f(x) = Wx + b via the following optimization
problem:

min
W,b

1

N

N∑
n=1

l(W>xn + b,yn) +
λ1

1
‖W‖2

Fro + λ2‖W‖1,∞ (2.4)

where yi is the L-dimensional label vector coded in a 1− of − L fashion, with values taken
from {−1,+1} given L classes. xi is an M -dimensional feature vector defined by over-
complete pooling in the previous subsection, and W = [w1,w2, · · · ,wL] is a M × L weight
matrix containing the weight vector for the L classifiers.

Two regularization terms are adopted in the optimization. The squared Frobenius norm
‖W‖2

Fro aims to minimize the structured loss in the classical SVM fashion, and the second
regularizer is the L1,∞ norm of the matrix W:

‖W‖1,∞ =
M∑
i=1

‖Wi,·‖∞ =
M∑
i=1

max
j∈{1,··· ,L}

|Wij| (2.5)

where Wi,· denotes the i-th row of the matrix W . This regularizer introduces structured
sparsity by encouraging the weight matrix W to be row-wise sparse, so that the classifiers
for different classes tend to agree on whether to use a specific feature, and when combined
together, only jointly use a subset of the over-complete pooled features. The addition of

flexibility of Ising models leads to over-fitting the training data, and the spatial inconsistency may render
randomly sampled receptive fields not as useful in classification tasks.



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 11

0 1000 2000 3000 4000 5000 6000
Number of Features

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

Performance vs. Number of Features

Training
Testing

Figure 2.3: Performance vs. number of selected features, with the experiment setting in
Table 2.1 of Section 2.5.

the L1,∞ norm also provides a elastic-net like regularization, which is known to perform well
when the dimension of data is much higher than the number of data points [126].

For optimization considerations, we use the multi-class extension of the binomial negative
log likelihood (BNLL) loss function [87]:

l(W>x + b,y) =
L∑
i=1

ln(1 + e−yi(W
>
·,ix+bi)) (2.6)

The choice of the BNLL loss function over the hinge loss is mainly for computational sim-
plicity, as the gradient is easier to compute for any input. In practice, the performance does
not change much if we use the hinge loss instead.

2.4 Fast Approximate Learning with Feature Grafting

Jointly optimizing (2.4) is still a computationally challenging task despite its convexity, due
to the over-completeness in both coding and pooling. While it is possible to carry out the
computation on smaller-scale problems like Caltech-101, we adopt a greedy approach to
train the model for larger-scale problems. Inspired by the matching pursuit algorithm in
dictionary training and the grafting algorithm [87] in machine learning, we start with an
empty set of selected features, incrementally add features to the set, and retrain the model
when new features are added.

Mathematically, we maintain a set S recording the set of currently selected features.
At each iteration, for each feature index j that has not been not selected, we compute the
score of the feature as the 2-norm of the gradient of the objective function (2.4), denoted by



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 12

L(W,b), with respect to the corresponding weight vectors:

score(j) =

∥∥∥∥∂L(W,b)

∂Wj,·

∥∥∥∥2

Fro

(2.7)

We then select the feature with the largest score, and add it to the selected set S. The
model is retrained using the previously learned optimum solution as the starting point. From
a boosting perspective, this can be considered as incrementally learning weak classifiers, but
our method differs from boosting in the sense that the weights for already selected features
are also updated when new features are selected.

As the speed of retraining drops when more features are added, we adopt an approximate
retraining strategy: for each iteration t, we select an active subset SA of S based on the score
above. We then retrain the model with respect to the active set and the bias term only:

W
(t+1)
SA,· ,b = arg minWSA,·,b

L(W,b) (2.8)

with the constraint that WS̄A,· keep unchanged. The intuition is that with an already trained
classifier from the previous iteration, adding one dimension will only introduce small changes
to the existing weights.

In practice, we found the performance of this approximate algorithm with the active set
size less than 100 to be very close to the full retraining algorithm with a significant increase in
computation speed. Figure 2.3 shows typical curves of the training and testing accuracy with
respect to the number of iterations. The performance usually stabilizes with a significantly
smaller number of features, showing the effectiveness of introducing structured sparsity into
classifier learning.

2.5 Experiments

We will mainly report the performance of our algorithm on the CIFAR-10 dataset3, which
contains 50,000 32 × 32 images from 10 categories as training data, and 10,000 images as
testing data.

We fix the dictionary learning algorithms to k-means clustering and the coding algorithms
to triangular coding as proposed in [19] for CFAR-10. Such a coding strategy has been shown
to be particularly effective in spite of its simplicity. We also tested alternative dictionary
learning and coding algorithms, which led to similar conclusions. As our main focus is on
learning receptive fields for pooled features, the results of different coding algorithms are
omitted, and we refer to [20] for a detailed discussion about dictionary learning and coding
algorithms.

For classification, when we use pre-defined receptive fields such as spatial pyramids, the
SVM regularization term is chosen via 5-fold cross validation on the training data. When we

3http://www.cs.toronto.edu/ kriz/cifar.html



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 13

74.0

75.0

76.0

77.0

76.59

75.41
74.83

SPM
Rand
Ours

Figure 2.4: Performance comparison among spatial pyramid pooling, random feature selec-
tion and our method, all using the same number of features for the final classification. It
can be observed that a few selected features could already achieve a comparatively high
performance.

perform feature selection, we fix λ1 = 0.01 (which is the best value when performing 5-fold
cross validation for max pooling on a 2×2 regular grid) and drop λ2, since the incremental
feature selection already serves as a greedy approximation of the sparse constraint. Although
the parameters are not tuned specifically for each configuration, we found it to perform well
empirically under various scenarios.

2.5.1 Spatial Pyramid Revisited

It is interesting to empirically evaluate the performance of spatial pyramid regions against
other choices of receptive fields. To this end, we trained a dictionary of size 200 (for speed
considerations), and tested the performance of 3-layer spatial pyramid pooling against two
algorithms based on over-complete receptive fields: (1) random selection from the over-
complete pooled features, and (2) our method, both selecting the same number of features
that spatial pyramid pooling uses. Results are shown in Figure 2.4. Our method outperforms
SPM, but a more interesting finding is that the predefined spatial pyramid regions perform
consistently worse than random selection, indicating that arbitrarily defined pooled features
may not capture the statistics of real-world data well. With explicit learning of the pooling
parameters, we achieved the highest performance among the three algorithms, showing the
effectiveness and necessity of learning adaptive receptive fields.

2.5.2 The Effect of Spatial Over-completeness

One may ask if the performance increase could be obtained without over-completeness by
simply using a denser grid. To answer this question, we examined the performance of our
algorithm against the 2×2 pooling grid (which is used in [20] to obtain very high performance)
and a denser 4 × 4 grid, associated with either average or max pooling. We also compared
our method against random feature selection from the same pooling candidates. Table 2.1
summarizes the testing accuracy under various experimental settings, using a codebook size
of 200.



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 14

Pooling Area Method Features Accuracy
2×2 Ave 800 70.24
4×4 Ave 3,200 72.24
2×2 Max 800 66.31
4×4 Max 3,200 73.03

3-layer SPM Max 4,200 74.83
OC + feat select Max 800 73.42

3,200 76.28
4,200 76.59
6,400 76.72

OC, all features Max 20,000 76.44
OC + rand select Max 800 69.48
OC + rand select Max 3,200 74.42
OC + rand select Max 4,200 75.41

Table 2.1: Comparison of different pre-defined pooling strategies and our method (over-
complete (OC) + feature selection). Random selection from the same over-complete pooled
features is also listed, showing the necessity of better receptive field learning.

Results from Table 2.1 demonstrates that denser pooling does help performance. The
4×4 grid increases the performance by about 3 percent compared to 2×2 pooling. How-
ever, with over-complete receptive fields we can almost always increase performance further.
We achieved an 76.72% accuracy with only 200 codes, already close with state-of-the-art
algorithms using much larger codebook sizes (Table 2.2). It is also worth pointing out that
even random feature selection gives us comparable or better performance when compared
to pre-defined pooling grids under the same number of feature dimension (e.g. compare the
performance between 4 × 4 max pooling and randomly selecting 3, 200 features from an
over-complete set of pooled features).

Further, the importance of feature selection lies in two aspects: first, simply using all the
features is not practical during testing time, as the dimension can easily go to hundreds of
thousands when we increase the codebook size. Feature selection is able to get very close
performance compared to using all the features, but with a significantly lower dimensionality,
which is essential in many practical scenarios. Usually, feature selection enables us to achieve
a high performance with only a few features (Figure 2.3). Adding remaining features will
only contribute negligibly to the overall performance. Second, performing feature selection
has the potential benefit of removing redundancy, thus increasing the generalization ability
of the learned classifiers [87, 108]. In our experiment in Table 2.1, the best performance is
achieved with a few thousands features. Similarly, we found that with larger codebook sizes,
using all the over-complete pooled features actually decreases performance, arguably due to
the decrease of the generalization ability.



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 15

200 400 800 1600 4000
Codebook Size

68

70

72

74

76

78

80

82

84

A
cc

ur
ac

y

Performance on CIFAR-10

Baseline
Ours, equal-dim
Ours, optimum-dim

Figure 2.5: Testing accuracies on CIFAR-10 with and without over-complete pooling. In the
figure, “equal-dim” selects the same number of features as the baseline (Coates et al.[19]),
and “optimum-dim” selects the optimum number of features determined by cross-validation.
(X-axis in log scale)

2.5.3 Larger Codebook vs. Better Spatial Pooling

Under the two-stage pipeline adopted in this work, there are effectively two possible directions
to increase the performance: to increase the codebook size and to increase the pooling over-
completeness. We argue that these two directions are complementary: the performance gain
from our effort on pooling could not simply be replaced by increasing the codebook size,
at least not easily. More importantly, as the codebook size grows larger, it becomes more
difficult to obtain further performance gain, while it is still relatively easy to obtain gains
from better pooling.

To empirically justify this argument, we trained multiple codebooks of different sizes,
and compared the resulting accuracies with and without over-complete pooling in Figure
2.5. As can be observed, it becomes harder to obtain further performance gain by increasing
the codebook size when we already have a large codebook, while using a better pooling
strategy always brings additional accuracy gains. In fact, with our method, we are able to
use a codebook of half the size (and half the number of pooled features) while maintaining
performance (compare the green and blue curves). It is particularly interesting that, by
selecting more features from the over-complete spatial regions, we are able to achieve state-
of-the-art performance with a much smaller number of codes (the red curve), which has the
potential in time-sensitive or memory-bounded scenarios.



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 16

Method Pooled Features Accuracy
ours, d=1600 6,400 80.17
ours, d=4000 16,000 82.04
ours, d=6000 24,000 83.11

Coates et al. [19], d=1600 6,400 77.9
Coates et al. [19], d=4000 16,000 79.6
Coates et al. [20], d=6000 48,000 81.5

Conv. DBN [64] N/A 78.9
Improved LCC [121] N/A 74.5
8-layer Deep NN [17] N/A 80.49
3-layer Deep NN [21] N/A 82.0

Table 2.2: Performance on the CIFAR-10 dataset. The first and second blocks compare per-
formance between our method and Coates et al. [19, 20] under similar codebook sizes, where
the only difference is the spatial pooling strategy. The third block reports the performance
of several state-of-the-art methods in the literature.

2.5.4 Best Performance

Our best performance on the CIFAR-10 dataset was achieved by training a codebook size of
6,000, performing max pooling on over-complete rectangular bins based on a 4× 4 grid, and
selecting features up to 24,000 dimensions. We also note that the accuracy has not saturated
at this number of features, but we would like to test the performance when the number of mid-
level features is limited to a reasonable scale. With these settings, we achieved an accuracy
of 83.11% on the testing data. To the best of our knowledge, this is the best published result
on CIFAR-10 without increasing the training set size by morphing the images.

Table 2.2 lists the performance of several state-of-the-art methods. It is also worth
pointing out that, to achieve the same performance, our algorithm usually uses a much
lower number of features compared with other well-performing algorithms.

2.5.5 Results on MNIST

We can view the set of learned receptive fields for pooling as a saliency map for classification
[52]. To visually show the saliency map and verify its empirical correctness, we applied our
method to handwritten digit recognition on the MNIST dataset, on which convolutional deep
learning models are particularly effective. To this end, we adopted a similar pipeline as we
did for CIFAR-10: dense 6x6 local patches with ZCA whitening are used; a dictionary of size
800 is trained with OMP-1, and thresholding coding with α = 0.25 (untuned) is adopted.
The features are then max-pooled on over-complete rectangular areas based on a 6×6 regular
grid. Note that we used a different coding method from the CIFAR-10 experiment to show
that the over-complete spatial pooling method is agnostic of the choice of low-level coding



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 17

Method err%
Baseline [20]a 1.02
Our Method 0.64

Lauer et al. [69] 0.83
Labusch et al. [68] 0.59
Ranzato et al. [91] 0.62
Jarrett et al. [53] 0.53

aOur implementation.

Figure 2.6: Left: Performance comparison (error rate in percentage) on MNIST. Top box:
comparison between algorithms using similar pipelines. Bottom box: performance of other
related algorithms in the literature. Right: 1-vs-1 saliency maps learned on MNIST. The left-
bottom corner plots the mean of digit 8 and 9 multiplied by the corresponding saliency map,
showing that the classifier focuses on the bottom part which intuitively also distinguishes
the two digits best.

algorithms. Any parameter involved in the pipeline such as SVM regularization weights is
tuned on a random 50k/10k split of the training data.

Figure 2.6 shows the 1-vs-1 saliency maps between digits. It can be seen that by learning
receptive fields, the classifier focuses on regions where the digits have maximal dissimilarity,
e.g., the bottom part for 8 and 9, and the top part for 3 and 5, which matches our intuition
about their appearances. For 10-digit classification, we achieved an error rate of 0.64%, on
par with several state-of-the-art algorithms (Figure 2.6 left). A gap still exists between our
method and the best deep-learning algorithm, and combining receptive learning with deeper
structures is future work.

2.5.6 Results on Caltech-101

Lastly, we report the performance of our algorithm compared with SPM on the Caltech-
101 dataset in Table 2.3. State-of-the-art performance following similar pipelines are also
included in the table. Specifically, we used the same two-step pipeline as proposed by Yang
et al. [117]: SIFT features are extracted from 16×16 patches with a stride of 8, and are
coded using sparse coding with a codebook of size 1024. For SPM, the coded features are
pooled over a pyramid of 1× 1, 2× 2, 4× 4 regular grids; for a fair comparison we also use
the 4 × 4 regular grid as our base regions, and select the same number of features as SPM
uses.



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 18

Method Codebook Pooling Performance
ScSPM [117] 1024 (SC) SPM 73.2±0.54

LCC+SPM [112] 1024 SPM 73.44
Our Method 1024 (SC) OC 75.3±0.70

Boureau et al. [12] 64K SPM 77.1±0.7

SPM [70] 64.6±0.7
NBNN [9] 72.8±0.39 (15 training)

Jarret et al. [53] 65.6±1.0
RLDA [60] 73.7±0.8

Adaptive Deconv. Net [122] 71.0±1.0
Feng et al. [40] 82.6

Table 2.3: Performance comparison (accuracy in percentage) on Caltech-101. Top: com-
parison between algorithms using similar pipelines. Bottom: performance of other related
algorithms in the literature.

As can be observed in the table, our pooling algorithm outperforms spatial pooling,
although a gap still exists between our result and state-of-the-art methods, which uses more
complex coding schemes than that we used. The results suggest that coding is a more
dominant factor for the performance of Caltech-101. Existing research, especially the Naive
Bayes nearest neighbor method [9], has also shown a consistent increase of accuracy with
higher-dimensional coding output [12, 118]. However, we still obtain a consistent gain by
adopting more flexible receptive fields for pooling, which justifies the effectiveness of the
proposed algorithm. Note that the best performance reported by Feng et al. [40] was
obtained by jointly learning the pooling operator (p in p-norm pooling) and a per-code
spatial saliency map in addition to a larger dictionary, which also follows the idea of learning
better spatial information beyond SPM.

2.5.7 Transferring Class-Independent Pooling Knowledge

Beyond classifying existing labels during training, we are also interested in examining whether
the learned receptive fields work equally well on unseen classes. While several papers have
suggested that simplex cells in V1 performs sparse encoding independent from class labels,
and that unsupervised feature learning performs well for the coding step, little is known
about the pooling strategy. Learning class-independent pooling knowledge is closely con-
nected to the visual attention model [52], which answers the question “what does an object
look like in general”.

To examine the performance of our method against new classes, we utilize the CIFAR-100
dataset, which contains 100 categories with 500 training examples per class. We extract fea-
tures in the same fashion, and train the SVM classifier with learned codes and receptive fields
from CIFAR-10. The classification result is compared against the accuracy rate obtained



CHAPTER 2. RECEPTIVE FIELD LEARNING FOR IMAGE FEATURES 19

Classification on Feature Selection on Accuracy
CIFAR-10 54.88
CIFAR-100 54.83

CIFAR-100 Random Selection 54.48±0.25
CIFAR-100 78.88
CIFAR-10 80.17

CIFAR-10 Random Selection 78.95±0.20

Table 2.4: The performance of transferring pooled feature between CIFAR-10 and CIFAR-
100 compared against natively learned features and random selection.

from directly learning the receptive fields on CIFAR-100, and a baseline that does random
feature selection from the same set of over-complete features. For a fair comparison, all
methods use a codebook size of 1,600 and select 6,400 dimensional features. We also tested
learning pooled features on CIFAR-100 and testing on CIFAR-10, and the performances are
reported in Table 2.4.

The result we obtained showed a mixed message. While the features are leaned from
CIFAR-10, they perform well on the CIFAR-100 dataset, and the performance is even better
than natively learned features. For the other direction, transferring learned features does
not show a statistically significant difference compared with random selection. A possible
explanation of such scenario may be that with less training data per class on CIFAR-100,
the feature selection algorithm may suffer more from overfitting than it does on CIFAR-10,
reducing the generalization ability of the learned features.

In general, our experiment does show the hope for a better and class-independent pool-
ing strategy. Possible future work may involve utilizing larger-scale image databases, and
exploring pooled feature learning in an unsupervised approach, which may further reveal
valuable pooling strategies.

2.6 Summary

This chapter focused on analyzing the basic coding and pooling component of the state-of-
the-art image feature extraction pipelines. Specifically, we show that smarter algorithms that
explicitly take into consideration the pooling stage, whether to find better spatial receptive
fields or to find pooling-aware lower level dictionaries, provide significant performance boosts
in the final classification accuracies.



20

Chapter 3

Theoretical Analysis for Feature
Learning

One important phenomenon observed in the previous chapter (see e.g., Table 2.2 and Figure
2.5), as well as in related publications [19, 20], is that feature dimension almost always plays
a key role in the final classification performance. With higher dimensional features and a
simple linear classifier, performance usually appear to be monotonically increasing, although
higher dimensionality comes with higher computational costs. It is also noteworthy that
with a rather simple coding scheme and dictionary learning, results were in most cases
comparable to the widely used but more computationally expensive sparse coding technique
[20]. Furthermore, even selecting random dictionaries yielded close to state-of-the-art results.
Further work on this domain [30] suggests that the encoding technique used is a proxy to
solving sparse coding (but in a simple and faster fashion).

The fact that random dictionaries perform well when operating with large codebook sizes
poses interesting questions such as how feature size affects performance. In addition, even
though the size of the dictionary (or codebook) is important, the accuracy seems to saturate,
which is a phenomenon that was empirically verified in many tasks, and for which we now
give a theoretical interpretation by linking random dictionaries with Nyström sampling. In
this section, we explain in detail how the feature learning approach could be viewed as a
Nyström sampling scheme from a high-dimensional (potentially infinite dimensional) feature
space, and then derive proper bounds to model the behavior we observe in the classification
experiments. We will use slightly different notations from the previous section, as we will
focus on mathematics that is not necessarily tied to specific coding or pooling operations.

3.1 The Nyström Sampling Explanation

Nyström sampling has been proposed as an efficient way to approximate large PSD matrices
(such as kernel matrices) by sampling columns of the matrix. Specifically, let K be an N×N
matrix, the Nyström method defines an approximation as K′ = EW+E>, where E is a N×c



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 21

matrix with the c columns randomly sampled from those of K, and W is the square c × c
matrix formed by picking the same c columns and rows from K. Such a sampling perspective
have been shown to be very effective in kernel machines [123, 23, 67].

We consider forming a dictionary by sampling our training set (although, as discussed
below, better techniques exist that lead to further gains in performance). To encode a new
data point x ∈ Rd, we apply a (generally non-linear) coding function c so that c(x) ∈ Rc.
The standard classification pipeline considers c(x) as the new feature space, and typically
uses a linear classifier on this space. In this section, we consider the threshold encoding
function as in [20], c(x) = max(0,x>D−α), but the derivations are valid for other different
coding schemes.

In the ideal case (infinite computation and memory), we encode each sample x using the
whole training set X ∈ Rd×N , which can be seen as the best local coding of the training set
X, to the extent that overfitting is handled by the classification algorithm. In fact, larger
dictionary sizes yield better performance assuming the linear classifier is well regularized,
as it can be seen as a way to do manifold learning [112]. We define the new features in
this high-dimensional coded space as C = max(0,X>X − α), where the i-th row of C
corresponds to coding the i-th sample c(xi). The linear kernel function between samples i
and j is K(xi,xj) = c(xi)

>c(xj). Thus, performing linear classification on the coded features
effectively uses the kernel matrix K = CC>.

In the conventional context of Nyström sampling for kernels, one randomly samples a
subset of the columns of K and then replaces the original matrix K with a low-rank approx-
imation K̂. However, in our problem, naively applying Nyström sampling to the matrix K
does not save any computation, as every column of K requires to encode the corresponding
feature with the large dictionary of all N samples. However, if we approximate the matrix
C with Nyström sampling to obtain C′ ≈ C, we would get an efficient approximation of the
kernel matrix as K′ ≈ K:

C′ = EW−1E>, and (3.1)

K′ = C′C′> = EW−1E>EW−1E> = EΛE>, (3.2)

where the first equation comes from applying Nyström sampling to C, E is a random sub-
sample of the columns of C, and W the corresponding square matrix with the same random
subsample of both columns and rows of C.

We note that in the traditional coding scheme proposed in [20], if the dictionary is taken
randomly then Kcoding = EE>, and by applying Nyström sampling to C we obtain almost
the same kernel, where the matrix Λ acts as an additional Mahalanobis metric on the coded
space. Adding the term Λ seemed to help in some cases, when the dictionary size is small
(for example, in the CIFAR10 dataset, classification performance was improved by about
0.5% when c < 500.). We refer to the supplementary material to discuss the effect of Λ and
how to efficiently find it without explicitly computing the original N ×N matrix.



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 22

3.1.1 Error Bounds on the Approximation

Many existing analyses have computed bounds on the error made in estimating C by C′ by
sampling c columns, such as [103, 67], but not between K = CC> and K′ = C′C′>, which
we aim to analyze in this section. The bound we start with is [67]:

||C−C′||F ≤ ||C−Ck||F + εmax(nCii), (3.3)

valid if c ≥ 64k/ε4 (c is the number of columns that we sample from C to form E, i.e. the
codebook size), where k is the sufficient rank to estimate the structure of C, and Ck is the
optimal rank k approximation (given by Singular Value Decomposition (SVD), which we
cannot compute in practice).

Fixing k to the value that retains enough energy from C, we get a bound that gives a
minimum ε to plug in Eqn. 3.3 for every c (sample dictionary size). This gives us a useful

bound of the form ε ≥ M̂
(

1
c

) 1
4 for some constant M̂ (that depends on k). Hence:

||C−C′||F ≤ O +M

(
1

c

) 1
4

, (3.4)

where O and M constants that are dataset specific.
However, having bounded the error C is not yet sufficient to establish how the code

size will affect the classifier performance. In particular, it is not clear how the error on C
affect the error on the kernel matrix K. Similarly, having a kernel matrix of different quality
will affect classification performance. Recent work [23] proves a linear relationship between
kernel matrix degradation and classification accuracy. Furthermore, in the supplementary
material, we provide a proof that shows the degradation of K is also proportional to the
degradation of C. Hence, the error bound on K′ is of the same form as the one we obtained
for C:

||K−K′||F ≤ O′ +M ′
(

1

c

) 1
4

. (3.5)

We briefly prove the bound here. Recall that K = CC> and K′ = C′C′>, and since
C and C′ are symmetric, K = C2 and K′ = C′2. Note that the Frobenius norm satisfies
subadditivity and submultiplicativity properties [83], i.e.,

||A+B||F ≤ ||A||F + ||B||F , and (3.6)

||AB||F ≤ ||A||F ||B||F . (3.7)



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 23

Thus, we have

||K−K′|| = ||C2 −C′2|| (3.8)

= ||(C−C′)C + C′(C−C′)||
≤ ||(C−C′)C||+ ||C′(C−C′)||
≤ ||(C−C′)||||C||+ ||C′||||(C−C′)||
≤ ||(C−C′)||||C||+ ||C′ −C||2+

+ ||C||||(C−C′)||
= ||(C−C′)|| (||(C−C′)||+ 2||C||)
= O(||(C−C′)||)

where all the ||.|| are the Frobenius norms, and where in the last line we assumed that
||(C − C′)|| is sufficiently small and ||C|| is constant w.r.t. c. Thus, we can expect that
the approximation quality of K′ will be similar than C′, and we will further assume that
the quality of the kernel approximation K′ will determine the accuracy of the final classifier,
which we will also empirically show in the experiments.

We note that the bound above also applies to the case when further steps, such as pooling,
is carried out after coding, provided that such steps produce output feature dimensions that
have a one-to-one correspondence with the dictionary entries. Pooling over multiple spatial
regions does not change the analysis as it could be deemed as concatenating multiple kernel
matrices for the data.

3.2 Evaluating Bounds for Learned Features

We empirically evaluate the bound on the kernel matrix, used as a proxy to model classifi-
cation accuracy, which is the measure of interest. To estimate the constants in the bounds,
we do interpolation of the observed accuracy using the first three samples of accuracy versus
codebook size, which is of practical interest: one may want to quickly run a new dataset
through the pipeline with small dictionary sizes, and then quickly estimate what the accu-
racy would be when running a full experiment with a much larger dictionary (which would
take much longer to run) with our formulation. We always performed Nyström sampling
schemes by doing K-means instead of random selection (although the accuracy between both
methods does not change too much when c is sufficiently large).

In Figure 3.1 we plot the accuracy (on both train and test sets) on four datasets: CIFAR-
10 and STL from vision, and WSJ and TIMIT from speech. For each dataset we used the
first three samples to determine the constants given in the bound. One may practically favor
this approach to evaluate performance, as small dictionary sizes are fast to try while large
dictionary sizes are of interest. The bound is designed to predict training accuracy [23], but
we also do regression on testing accuracy for completeness. We note that testing accuracy
will in general also be affected by the generalization gap, which is not captured by the bound
analysis.



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 24

0 1000 2000 3000 4000 5000 6000
65

70

75

80

85

90

95

100
A

cc
ur

ac
y

CIFAR

tr
tr_predict
te
te_predict

0 500 1000 1500 2000 2500 3000 3500
50

55

60

65

70

75

80

85

90

95

A
cc

ur
ac

y

STL

0 1000 2000 3000 4000 5000 6000
45

50

55

60

65

70

75

A
cc

ur
ac

y

WSJ

0 1000 2000 3000 4000 5000 6000
35

40

45

50

55

60

65

A
cc

ur
ac

y

TIMIT

Figure 3.1: The actual training and testing accuracy (solid) and the predicted accuracy using
our bound (dashed), on four datasets: CIFAR, STL, WSJ and TIMIT from left to right and
top to bottom.

The results show that in all cases, the red dashed line is a lower bound of the training
actual accuracy, and follows the shape of the empirical accuracy, predicting its saturation.
In the testing case, our model is slightly optimistic when overfitting exists (e.g. STL and
TIMIT), but correctly predicts the trend with respect to the number of dictionary entries.

The implication of linking Nyström sampling theory to current learning pipelines has
several immediate consequences: first, it clarifies why random sampling or K-means produce
very reasonable dictionaries that are able to perform well in terms of classification accu-
racy [123, 19, 67]; more importantly, due to known bounds such as the one derived in this
section, we can model how the codebook size will affect performance by running a few exper-
iments with smaller codebook sizes, and extrapolating to larger (and more computationally
expensive to compute) codebook sizes by means of Eq. 3.5, thus predicting accuracies before
running potentially long jobs.

We further note that, although our experiment is carried out only by varying the number
of codes in the dictionary (to better align speech and vision benchmarks), the pooling op-
eration also falls under the same category: essentially, the whole coding + pooling pipeline
could be viewed as a Nyström sampling approach that samples features from the cartesian
space of individual codes and individual pooling regions. Also, while we used the term “sam-
pling”, the actual feature selection does not necessarily have to be random: research in the



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 25

Nyström sampling methods suggests that more data-dependent feature selection approaches,
notably K-means, works better than completely randomly sampling features [123, 67], while
the theoretical bound still applies to these scenarios. Our work on selecting receptive fields
aligns with such work, providing a more informed approach to find better pooled features
for classification.

3.3 PADL: Pooling Aware Dictionary Learning

The Nyström sampling view suggests that one could find a better subset of a large (poten-
tially infinite) dictionary to obtain more informative features. In addition, existing work
suggests that this could be often done in an efficient way with methods such as clustering.
However, current clustering algorithms for dictionary learning [19, 20] only apply to the local
coding step, and do not consider the pooling effect. The Nyström sampling insight suggests
that simple feature selection approaches may exist that embraces more complex pipelines.
As a concise example, we show that by explicitly taking into account the whole pipeline
shown in Figure 2.1 to include both local coding and pooling when learning the dictionary,
one gets a much more compact feature representation.

Figure 3.2 shows two examples why pooling-aware dictionary learning may be necessary,
as local patch-based dictionary learning algorithms often yield similar filters with small trans-
lations. Such filters, even when uncorrelated on the patch level, produce highly correlated
responses when pooled over a certain spatial region, leading to redundancy in the feature
representation.

Observing the effectiveness of clustering methods in patch-based dictionary learning, we
propose to learn a final dictionary of size K in two stages: first, we adopt the K-means
algorithm to learn a more over-complete starting dictionary of size M (M >> c) on patches,
effectively “overshooting” the dictionary we aim to obtain. We then perform encoding and
pooling using the dictionary, and learn the final smaller dictionary of size c from the statistics
of the M -dimensional pooled features.

3.3.1 Post-Pooling Feature Selection

The first step of our algorithm is identical to the patch-based K-means algorithm with a
dictionary size M . After this, we can sample a set of image super-patches of the same size as
the pooling regions, and obtain the M dimensional pooled features from them. Randomly
sampling a large number of pooled features in this way allows us to analyze the pairwise
similarities between the codes in the starting dictionary in a post-pooling fashion. We would
then like to find a c-dimensional, lower dimensional subspace that best represents the M
pooled features.

If we simply would like to find a low-dimensional representation from the M -dimensional
pooled features, one would naturally choose SVD to find the K most significant projections
of the covariance matrix. With a little abuse of terminology and denoting the matrix of



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 26

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Before pooling, ⇢ = 0.394

0 1 2 3 4 5 6
0

1

2

3

4

5

6
After pooling, ⇢ = 0.887

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Before pooling, ⇢ = 0.150

0 1 2 3 4 5 6
0

1

2

3

4

5

6
After pooling, ⇢ = 0.576

Figure 3.2: Two codes learned from a patch-based K-means algorithm that produce lowly
correlated patch-based responses (left), but highly correlated responses after pooling (right).
Such phenomenon may root from various causes, such as codes with translational difference
(above) and color difference (below).

randomly selected pooled feature as X where each column is a feature vector, the SVD is
carried out as

X ≈ UcΛcV
>
c , (3.9)

where R is the covariance matrix computed using the random sample of pooled features,
the M × c matrix Uc contains the left singular vectors, and the c × c diagonal matrix Λc

contains the corresponding singular values. The low-dimensional features are then computed
as xc = U>c x.

While the “oracle” low-dimensional representation by SVD guarantees the best c-dimensional
approximation, it does not meet our goal since the dictionary size is not reduced, as SVD
almost always yields non-zero coefficients for all the dimensions. Linearly combining the
dictionary entries does not work either due to the nonlinear nature of the encoding algo-
rithm. In our case, we would need the coefficients of only a subset of the features to be



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 27

non-zero, so that a minimum number of filters need to be applied during testing time. Var-
ious machine learning algorithms aim to solve this, most notably structured sparse PCA
[54]. However, these methods often requires a structured sparsity term to be applied during
learning, making the training time-consuming and difficult to scale up.

Based on the analysis of the last section, the problem above could again be viewed as
a Nyström sampling problem by subsampling the rows of the matrix X (corresponding to
selecting codes from the large dictionary). Empirical results from the Nyström sampling
then suggests the use of clustering algorithms to solve this. Thus, we resort to a simpler
K-centroids method.

Specifically, we use affinity propagation [42], which is a version of the K-centroids al-
gorithm, to select exemplars from the existing dictionary. Intuitively, codes that produce
redundant pooled output (such as translated versions of the same code) would have high sim-
ilarity between them, and only one exemplar would be chosen by the algorithm. We briefly
explain the affinity propagation procedure here: it finds exemplars from a set of candidates
where pairwise similarity s(i, j) (1 ≤ i, j ≤M) can be computed. It iteratively updates two
terms, the “responsibility” r(i, j) and the “availability” a(i, j) via a message passing method
following such rules [42]:

r(i, k)← s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)} (3.10)

a(i, k)← min{0, r(k, k) +
∑

i′ /∈{i,k}
max{0, r(i′, k)}}

(if i 6= k) (3.11)

a(k, k)←
∑

i′ 6=k
max{0, r(i′, k)} (3.12)

Upon convergence, the centroid that represents any candidate i is given by arg maxk(a(i, k)+
r(i, k)), and the set of centroids S is obtained by

S = {k|∃i, k s.t. k = arg max
k′

(a(i, k′) + r(i, k′))} (3.13)

And we refer to [42] for details about the nature of such message passing algorithms. The
similarity between two pooled dimensions (which correspond to two codes in the starting
dictionary) i and code j, as in Eqn. (3.10)-(3.12), is computed as

s(i, j) =
2Rij√
RiiRjj

− 2. (3.14)

Note that this is equivalent to the negative Euclidean distance between the coded output i
and the coded output j when the outputs are normalized to have zero mean and standard
deviation 1. We note that related work such as [18] adopt a similar approach by max-pooling
the outputs of similar codes to generate next-layer features in a deep fashion. Our method
shares the same merit while focusing on model compression by bounding the computation
time in a single layer.



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 28

Figure 3.3: Visualization of the learned codes. Left: the selected subset of 256 centroids
from an original set of 3200 codes. Right: The similarity between each centroid and the
other codes in its cluster. For each column, the first code is the selected centroid, and the
remaining codes are in the same cluster represented by it. Notice that while translational
invariance is the most dominant factor, our algorithm does find invariances beyond that
(e.g., notice the different colors on the last column). Best viewed in color.

Clustering algorithms has shown to be very effective in the context of Nyström sampling
[67], and are often highly parallelizeable, easily being scaled up by simply distributing the
data over multiple machines. This allows us to maintain the efficiency of dictionary learning.
Using a large, overshooting starting dictionary allows us to preserve most information from
the patch-level, and the second step prunes away the redundancy due to pooling. Note that
the large dictionary is only used during the feature learning time - after this, for each input
image, we only need to encode local patches with the selected, relatively smaller dictionary
of size c, not any more expensive than existing feature extraction methods.

3.4 Experiments

In this section we empirically evaluate two sets of experiments: using the bound to approxi-
mate the classification accuracy, and using the two-staged clustering algorithm to find better
pooling invariant dictionaries.

3.4.1 Analysis of Selected Filters

To visually show what codes are selected by affinity propagation, we applied our approach to
the CIFAR-10 dataset by first training an over-complete dictionary of 3200 codes following
[20], and then performing affinity propagation on the 3200-dimensional pooled features to
obtain 256 centroids, which we visualize in Figure 3.3. Translational invariance appears to
be the most dominant factor, as many clusters contain translated versions of the same Gabor
like code, especially for gray scale codes. On the other hand, clusters capture more than
translation: clusters such as column 5 focus on finding the contrasting colors more than



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 29

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ρ = 0.282

0 1 2 3 4 5 6
0

1

2

3

4

5

6
ρ = 0.756

0 1 2 3 4 5 6
0

1

2

3

4

5

6
ρ = 0.165

(a) (b) (c)

0 100 200 300 400 500 600

−2

0

2

4

6

Eigenvalues and Approximation

eigval
eigval pca
eigval ap

(d)

Figure 3.4: (a)-(c): The filter responses before and after pooling: (a) before pooling, between
codes in the same cluster (correlation ρ = 0.282), (b) after pooling, between codes in the
same cluster (ρ = 0.756), and (c) after pooling, between the selected centroids (ρ = 0.165),
(d): the eigenvalues of the approximated matrix (in log scale).

finding edges of exactly the same angle, and clusters such as the last column finds invariant
edges of varied color. We note that the selected codes are not necessarily centered, as the
centroids are selected solely from the pooled response covariance statistics, which does not
explicitly favor centered patches.

We could also verify whether the second clustering stage captures the pooling invariance
by checking the statistics of three types of filter responses: (a) pairwise filter responses before
pooling between codes in the same cluster, (b) pairwise filter responses after pooling between
codes in the same cluster, and (c) pairwise filter responses after pooling between the selected
centroids. The distribution of such responses shown in Figure 3.4 verifies our argument: first,
codes that produce uncorrelated responses before pooling may become correlated after the
pooling stage (Figure 3.4(a,b)); second, by explicitly considering the pooled feature statistics,
we are able to select a subset of the dictionary whose responses are lowly correlated (Figure
3.4(b,c)), preserving more information with a fixed number of codes. In addition, Figure
3.4(d) shows the eigenvalues of the original covariance matrix and those of the approximated
matrix, showing that the approximation captures the largest eigenvalues of the original



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 30

Task Learning Method Accuracy
K-means 69.02

CIFAR-10 2x PADL 70.54 (+1.52)
200 codes 4x PADL 71.18 (+2.16)

8x PADL 71.49 (+2.47)
CIFAR-10 K-means 77.97
1600 codes 2x PADL 78.71 (+0.74)

Table 3.1: Classification Accuracy on the CIFAR-10 and STL datasets under different bud-
gets.

200 400 800 1600 3200
Starting dictionary size

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

72.5

73.0

Te
st

in
g

ac
cu

ra
cy

Oracle
PADL
Coates et al. 2011

Figure 3.5: Performance improvement on CIFAR when using different starting dictionary
sizes and a final dictionary of size 200. Shaded areas denote the standard deviation over
different runs. Note that the x-axis is in log scale.

covariance matrix well.

3.4.2 Pooling Invariant Dictionary Learning

To evaluate the improvement introduced by learning a pooling invariant dictionary as in
Section 3.3, we show in Figure 3.5 the relative improvement obtained on CIFAR-10 when
we use a fixed dictionary size 200, but perform feature selection from a larger overshooting
dictionary as indicated by the X axis. The SVD performance is also included in the figure as
an “oracle” for the feature selection performance. Learning the dictionary with our feature
selection method consistently increases the performance as the size of the original dictionary
increases, and is able to get about two thirds the performance gain as obtained by the oracle
performance. We note again that SVD still requires the large dictionary to be used and does
not save any testing time.

The detailed performance gain of our algorithm on the two datasets, using different



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 31

100 200 400 800 1600 3200
Final Dictionary Size

66

68

70

72

74

76

78

80
A

cc
ur

ac
y

K-means
2x PADL
4x PADL
8x PADL

100 200 400 800 1600 3200
Final Dictionary Size

50

51

52

53

54

55

56

57

58

59

A
cc

ur
ac

y

K-means
2x PADL
4x PADL
8x PADL

66 68 70 72 74 76 78 80
Accuracy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
C

om
pu

ta
tio

n 
T

im
e

Baseline
2x PADL
4x PADL
8x PADL

52 53 54 55 56 57 58 59
Accuracy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e 
co

m
pu

ta
tio

n 
tim

e

Baseline
2x PADL
4x PADL
8x PADL

Figure 3.6: Above: accuracy values on the CIFAR-10 (left) and STL (right) datasets under
different dictionary size budgets. “nx PADL” means learning the dictionary from a starting
dictionary that is n times larger. Below: Relative computation time to achieve the same
accuracy using dictionary obtained from PADL.

overshooting and final dictionary sizes, is visualized in Figure 3.6. Table 3.1 summarizes the
accuracy values of two particular cases - final dictionary sizes of 200 and 1600 respectively,
on CIFAR. Note that our goal is not to get the best overall performance - as performance
always goes up when we use more codes. Rather, we focus on two evaluations: (1) how much
gain we get given a fixed dictionary size as the budget, and (2) how much computation time
we save to achieve the same accuracy.

Overall, considering the pooled feature statistics always help us to find better dictionaries,
especially when relatively small dictionaries are used. During testing time, it costs only about
60% computation time with PADL to achieve the same accuracy as K-means does. For the
STL dataset, an overly large starting dictionary may lessen the performance gain (Figure
3.6(b)) possibly due to feature selection being more prone to local optimum and the small
number of training data (thus more overfitting). However, in general the codebook learned by
PADL is consistently better than its patch-based counterpart, suggesting the applicability of
the Nyström sampling view in feature learning with a multi-layer structure including spatial
pooling.

Finally, we note that due to the heavy-tailed nature of the encoded and pooled features
(see the eigendecomposition of Figure 3.4), one can infer that the representations obtained



CHAPTER 3. THEORETICAL ANALYSIS FOR FEATURE LEARNING 32

with a budget would have a correspondingly bounded performance when combined with
linear SVMs. We have focused on analyzing unsupervised approaches, but incorporating
weakly supervised information to guide feature learning / selection or learning multiple
layers of feature extraction would be particularly interesting, and would be a possible future
direction.

3.5 Summary

This chapter complements Chapter 2 by revealing the underlying theoretical connection
between common dictionary learning algorithms and Nyström sampling. This gives the
possibility to transfer knowledge between these two otherwise independent research direc-
tions. As a concise example, we proposed an purely unsupervised, pooling-invariant learning
algorithm that learns compact codes for better classification.



33

Chapter 4

Visual Concept Learning

Having analyzed the feature generation pipeline for image classification, in this chapter we
move on to a higher-level question: how to learn a visual system that infers latent concepts
from exemplar images from that concept, a behavior human are known to perform well? To
this end, we introduce the cognitive science aspect of the question, and introduce a novel,
practical problem that we call visual concept learning. We will then bring together findings in
cognitive science and computer vision, using machine vision systems to assign novel images
locations within a conceptual hierarchy and a Bayesian generalization model to determine
how to generalize from these examples.

The result of such effort is a system that comes closer to human performance than state-
of-the-art machine vision techniques. Since no existing dataset adequately tests human-like
visual concept learning, we have also collected and made available to the community the
first large-scale dataset for evaluating whether machine vision algorithms can learn concepts
that agree with human perception and label new unseen images, with ground-truth labeling
directly obtained from human annotators. We believe that this new task provides challenges
beyond the conventional object classification paradigms.

4.1 The Visual Concept Learning Problem

We will first formally define visual concept learning, with the protocol developed in earlier
cognitive science work such as [116]. In our problem, an agent (either a computer system
or a human participant) aims to learn a novel visual concept from a few example images
presented to the agent. Such images are randomly sampled from this unknown concept,
and no negative examples are provided, similar to how human learn novel words from a
few examples1. The agent then has to indicate whether new “query” image are or are not
instances of the target concept.

1While one may argue that human receive negative feedbacks as well, such information are often only
sought for in an active learning fashion, after the initial concept learning behavior with a few positive
examples.



CHAPTER 4. VISUAL CONCEPT LEARNING 34

(a)

(b)

(c)

(d) (e)

Figure 4.1: Visual concept learning. (a-c): positive examples of three visual concepts. Even
without negative data, people are able to learn these concepts: (a) Dalmatians, (b) dogs and
(c) animals. Note that although (a) contains valid examples of dogs and both (a) and (b)
contain valid examples of animals, people restrict the scope of generalization to more specific
concepts, and find it easy to make judgments about whether novel images such as (d) and
(e) are instances of the same concepts – the problem we refer to as visual concept learning.

A key aspect of this problem is determining the degree to which the concept should be
generalized [116] when multiple concepts are logically consistent with the given examples:
for example, consider the concepts represented by examples in Figure 4.1 (a-c) respectively,
and the problem of predicting whether new images (d-e) belong to them or not. The ground
truth from human annotators reveals that the level of generalization varies according to
the conceptual diversity, with greater diversity leading to broader generalization. In the
examples shown in Figure 4.1, people might identify the concepts as (a) Dalmatians, (b) all
dogs, and (c) all animals, but not generalize beyond these levels although no negative images
forbids so.

Bayesian models of generalization [1, 104, 116] account for these phenomena, determining
the scope of a novel concept (e.g., does the concept refer to Dalmatians, all dogs, or all
animals?) in a similar manner to people. However, these models were developed by cognitive
scientists interested in analyzing human cognition, and require examples to be manually



CHAPTER 4. VISUAL CONCEPT LEARNING 35

labeled as belonging to a particular leaf node in a conceptual hierarchy. This is reasonable if
one is asking whether proposed psychological models explain human behavior, but prevents
the models from being used to automatically solve visual concept learning problems for a
robot or intelligent agent. Machine vision algorithms, on the other hand, still lacks the
ability to choose the right level of generalization from the set of valid labels, despite recent
successes in large-scale category-level object recognition. We will show in the experiments
that state-of-the-art machine vision systems fail to exhibit such patterns of generalization,
and have great difficulty learning without negative examples.

4.1.1 Background

Machine vision methods have achieved considerable success in recent years, as evidenced
by performance on major challenge problems [29, 33], where strong performance has been
obtained for assigning one of a large number of labels to each of a large number of images.
However, this research has largely focused on a fairly narrow problem: assigning a label (or
sometimes multiple labels) to a single image at a time. This problem is quite different from
that faced by a human child trying to learn a new word, where the child is provided with
multiple positive examples and has to generalize appropriately. Even young children are
able to learn novel visual concepts from very few positive examples [14], something that still
poses a challenge for machine vision systems.

Scant attention has been given to the problem of learning a visual concept from a few
positive examples as we have defined it. When the problem has been addressed, it has largely
been considered from a hierarchical regularization [96] or transfer learning [88] perspective,
assuming that a fixed set of labels are given and exploiting transfer or regularization within a
hierarchy. Mid-level representations based on attributes [34, 86] focus on extracting common
attributes such as “fluffy” and “aquatic” that could be used to semantically describe object
categories better than low-level features. Transfer learning approaches have been proposed
to jointly learn classifiers with structured regularization [88]. Of all these previous efforts,
work that uses object hierarchies to support classification is particularly interesting to our
problem scenario. Salakhutdinov et al. [96] proposed learning a set of object classifiers with
regularization using hierarchical knowledge, which improves the classification of objects at
the leaves of the hierarchy. However, this work did not address the problem of determining
the level of abstraction within the hierarchy at which to make generalizations, which is a key
aspect of the visual concept learning problem. Deng et al. [28] proposed predicting object
labels only to a granularity that the classifier is confident with, but their goal was minimizing
structured loss rather than mimicking human generalization.

On the other hand, existing models from cognitive science mainly focus on understanding
human generalization judgments within fairly restricted domains. Tenenbaum and colleagues
[104, 105] proposed mathematical abstractions for the concept learning problem, building
on previous work on models of generalization by Shepard [101]. Xu and Tenenbaum [116]
and Abbott et al. [1] conducted experiments with human participants that provided support
for this Bayesian generalization framework. Xu and Tenenbaum [116] showed participants



CHAPTER 4. VISUAL CONCEPT LEARNING 36

one or more positive examples of a novel word (e.g., “these three objects are Feps”), while
manipulating the taxonomic relationship between the examples. For instance, participants
could see three toy Dalmatians, three toy dogs, or three toy animals. Participants were
then asked to identify the other “Feps” among a variety of both taxonomically related and
unrelated objects presented as queries. If the positive examples were three Dalmatians,
people might be asked whether other Dalmatians, dogs, and animals are Feps, along with
other objects such as vegetables and vehicles. Subsequent work has used the same basic
methodology in experiments using a manually collated set of images as stimuli [1]. All of
these models assume that objects are already mapped onto locations in a perceptual space
or conceptual hierarchy. Thus, they are not able to make predictions about genuinely novel
stimuli. Linking such generalization models to direct perceptual input is necessary in order
to be able to use this approach to learn visual concepts directly from images.

4.2 Constructing A Large-scale Test Dataset

Existing datasets (PASCAL [33], ILSVRC [5], etc.) test supervised learning performance
with relatively large amounts of positive and negative examples available, with ground truth
as a set of mutually-exclusive labels. To our knowledge, no existing dataset accurately
captures the problem we refer to as visual concept learning: to learn a novel word from a
small set of positive examples like humans do. In this section, we describe in detail our effort
to make available a dataset for such research.

4.2.1 Test Procedure

In our test procedure, an agent is shown n example images (n = 5 in our dataset) sampled
from a node (may be leaf nodes or intermediate nodes) from the ImageNet synset tree, and
is then asked whether other new images sampled from ImageNet belong to the concept or
not. The scores that the agent gives are then compared against human ground truth that
we collect, and we use precision-recall curves to evaluate the performance.

We used the ImageNet ILSVRC 2010 synset tree as the beginning point of our data
generation procedure for several reasons. First, the ImageNet synset tree is derived from
WordNet, which well models the semantics between synsets in a nicely hierarchical structure.
Second, ImageNet comes with a large number of image collections manually verified by
human whether they belong to the correct synset or not, providing us a large-scale pool
for test images. Third, the large number of images allows one to train visual classifiers2

that identifies images into one of the basic concepts (leaf nodes in the tree), serving as a
perceptual basis for concept learning.

From a machine vision perspective, one may ask whether this visual concept learning
problem differs from the conventional ImageNet-defined classification problem – identifying

2This is analogy to the development of the visual system from a vast number of perceptual input during
infant years.



CHAPTER 4. VISUAL CONCEPT LEARNING 37

the node from which the examples are drawn, and then answering yes for images in the
subtree corresponding to the node, and no for images not from the node. We note that,
although we use the nodes in the ImageNet tree to generate examples and queries, the tree
itself may not be an accurate hierarchy that matches human perception, and should only be
treated as a proxy instead of ground truth. Thus, actual human behavior may differ from
what the tree structure implies,In fact, we will show in Section 5.2 that using this approach
fails to explain how people learn visual concepts. Human performance in the above task
exhibits much more sophisticated concept learning behaviors than simply identifying the
node itself, and the latter differs significantly from what we observe from human participants.
In addition, with no negative images, a conventional classification model fails to distinguish
between nodes that are both valid candidates (e.g., “dogs” and “animals” when shown a
bunch of dog images). These make our visual concept learning essentially different and richer
than a conventional classification problem.

4.2.2 Automatic Generation of Examples and Queries

Large-scale experimentation requires an efficient scheme to generate test data across varying
levels of a concept hierarchy. To this end, we developed a fully-automated procedure for
constructing a large-scale dataset suitable for a challenge problem focused on visual concept
learning. We used the ImageNet LSVRC [5] 2010 data as the basis for automatically con-
structing a hierarchically-organized set of concepts at four different levels of abstraction. We
had two goals in constructing the dataset: to cover concepts at various levels of abstraction
(from subordinate concepts to superordinate concepts, such as from Dalmatian to living
things), and to find query images that comprehensively test human generalization behavior.
We address these two goals in turn.

To generate concepts at various levels of abstraction, we use all the nodes in the ImageNet
hierarchy as concept candidates, starting from the leaf node classes as the most specific level
concept. We then generate three more levels of increasingly broad concepts along the path
from the leaf to the root for each leaf node in the hierarchy. Examples from such concepts
are then shown to human participants to obtain human generalization judgements, which
will serve as the ground truth. Specifically, we use the leaf node class itself as the most basic
trial type L0, and select three levels of nested concepts L1, L2, L3 which correspond to three
intermediate nodes along the path from the leaf node to the root. We choose the three nodes
that maximize the combined information gain across these levels:

C(L1···3) =
∑3

i=0
log(|Li+1| − |Li|)− log |Li+1|, (4.1)

where |Li| is the number of leaf nodes under the subtree rooted at Li, and L4 is the whole
taxonomy tree. As a result, we obtain levels that are “evenly” distributed over the tax-
onomy tree. Such levels coarsely correspond to the sub-category, basic, super-basic, and
super-category levels in the taxonomy: for example, the four levels used in Figure 4.1 are
dalmatian, domestic dog, animal, organism for the leaf node dalmatian, and in Figure 4.2(a)



CHAPTER 4. VISUAL CONCEPT LEARNING 38

are blueberry, berry, edible fruit, and natural object for the leaf node blueberry. Figure
4.2(b) shows a histogram of the subtree sizes for L1 to L3 respectively. For each concept, the
five images shown to participants as examples of that concept were randomly sampled from
five different leaf node categories3 from the corresponding subtree in the ILSVRC 2010 test
images. Figure 4.1 and 4.2 show such examples. Again, we note that the ImageNet nodes
are used as a proxy to generate examples, and may be different from the ground truth for
concept learning, which we will collect from human experiments.

To obtain the ground truth (the concepts people perceive when given the set of examples),
we then randomly sample twenty query images, and ask human participants whether each
of these query images belong to the concept given by the example images. A total of 20
images are randomly sampled as follows: three each from the L0, L1, L2 and L3 subtrees,
and eight images outside L3. This ensures a complete coverage over in-concept and out-
of-concept queries. We explicitly made sure that the leaf node classes of the query images
were different from those of the examples if possible, and no duplicates exist among the 20
queries. Note that we always sampled the example and query images from the ILSVRC 2010
test images, allowing us to subsequently train our machine vision models with the training
and validation images from the ILSVRC dataset while keeping those in the visual concept
learning dataset as novel test images.

4.2.3 Collecting Human Judgements

We created 4,000 identical concepts (four for each leaf node) using the protocol above, and
recruited participants online through Amazon Mechanical Turk (AMT, http://www.mturk.
com) to obtain the human ground truth data. For each concept, an AMT HIT (a single task
presented to the human participants) is formed with five example images and twenty query
images. The participants were presented with a display where they could easily click what
query images belong to the given category or not. Following previous work, participants were
told that “Mr. Frog” had picked out some examples of a word in a different language (using
a randomly generated word that bears no actual meaning in order to minimize influence
from languages), and that “Mr. Frog” needed help picking out the other objects that could
be called that word (see Figure 1 for the precise wording). Figure 4.3 shows an example
display that a participant could have seen, and possible response from a participant for this
trial (all buttons were initialized grey before the participant clicks).

Each HIT was completed by five unique participants, with a compensation of $0.05 USD
per HIT. Participants were allowed to complete as many unique trials as they wished. Thus,
a total of 20,000 AMT HITs were collected, and a total of 100,000 images were shown to
the participants. On average, each participant took approximately one minute to finish each
HIT, spending about 3 seconds per query image.

3If there are < 5 leaves, each leaf is selected once first, and the remaining counts sampled with replace-
ment.

http://www.mturk.com
http://www.mturk.com


CHAPTER 4. VISUAL CONCEPT LEARNING 39

blueberry

berry

edible fruit

natural object

100 101 102 103

Subtree size (log scale)

0
50

100
150
200
250
300
350
400
450

C
ou

nt

L1
L2
L3

Figure 4.2: Concepts drawn from ImageNet.Top: example images sampled from the four
levels for blueberry. Bottom: the histogram for the subtree sizes of different levels of concepts
(x axis in log scale).



CHAPTER 4. VISUAL CONCEPT LEARNING 40

Figure 4.3: An example display that we used for the Mechanical Turk interface, together
with the response from the participant.



CHAPTER 4. VISUAL CONCEPT LEARNING 41

4.3 Visually-Grounded Bayesian Generalization

In this section, we describe an end-to-end framework which combines Bayesian word learning
models and visual classifiers, and is able to perform concept learning with perceptual inputs.

4.3.1 The Bayesian Generalization Model

Prior work on concept learning [116] addressed the problem of generalization from exam-
ples using a Bayesian framework: given a set of N examples (images in our case) X =
{x1,x2, . . . ,xN} that are members of an unknown concept C, the probability that a query
instance xquery also belongs to the same concept is given by

Pquery(xquery ∈ C|X ) =
∑

h∈H
Pquery(xquery|h)P (h|X ), (4.2)

where H is called the “hypothesis space” – a set of possible hypotheses for what the con-
cept might be. Each hypothesis corresponds to a (often semantically related) subset of all
the objects in the world, such as “dogs” or “animals”. Given a specific hypothesis h, the
probability Pquery(xquery|h) that a new instance belongs to it is 1 if xquery is in the set, and 0
otherwise, and P (h|X ) is the posterior probability of a hypothesis h given the examples X .
Following previous work, we assume the hypotheses to form a taxonomic hierarchy, where
the smallest components (known as basic concepts) correspond to the leaf node in the hier-
archy. In other words, each node in the ImageNet hierarchy serves as a possible hypothesis.
Note that possible concepts are richer than just the collection of hypothesis: for example,
one could form a concept like “dogs and cats” by combining the dog and cat subtrees, since
Equation (4.2) sums over all hypotheses’ posterior probabilities.

Specifically, the posterior distribution over hypotheses is computed using the Bayes’ rule:
it is proportional to the product of the likelihood, Pexample(X|h), which is the probability of
drawing these examples from the hypothesis h uniformly at random times the prior proba-
bility P (h) of the hypothesis:

P (h|X ) ∝ P (h)
∏N

i=1
Pexample(xi|h). (4.3)

To model the conditional probability of an example given a specific hypothesis, we also make
the strong sampling assumption that each xi is drawn uniformly at random from the set of
instances picked out by h. Importantly, this ensures that the model acts in accordance with
the “size principle” [104, 105], meaning that the conditional probability of an example given
a hypothesis is inversely proportional to the size of the hypothesis, i.e., the number of
possible instances that could be drawn from the hypothesis:

Pexample(xi|h) = |h|−1I(xi ∈ h), (4.4)

where |h| is the size of the hypothesis and I(·) is an indicator function that has value 1
when the statement is true. We note that the probability of an example and that of a query



CHAPTER 4. VISUAL CONCEPT LEARNING 42

given a hypothesis are different: the former depends on the size of the underlying hypothesis,
representing the nature of training with strong sampling. For example, as the number of
examples that are all Dalmatians increases, it becomes increasingly likely that the concept is
just Dalmatians and not dogs in general even though both are logically possible, because it
would have been incredibly unlikely to only sample Dalmatians given that the truth concept
was dogs. When asking whether a Dalmatian IS a dog or not, the size principal is then not
present: a Dalmatian is no less a dog than a Shih-Tzu, or any other individual dogs.

In addition, the prior distribution P (h) captures biases due to prior knowledge, which
favor particular kinds of hypotheses over others (which we will discuss in the next subsection).
For example, it is known that people favor basic level object categories such as dogs over
subcategories (such as Dalmatians) or super-categories (such as animals). We will describe in
detail how the prior distributions and the sizes of hypotheses are formed in our experiments
in the next section.

4.3.2 Concept Learning with Perceptual Uncertainty

Existing Bayesian word learning models assume that objects are perfectly recognized, thus
representing them as discrete indices into a set of finite tokens. Hypotheses are then subsets
of the complete set of tokens and are often hierarchically nested. Although perceptual spaces
were adopted in [104], only very simple hypotheses (rectangles over the position of dots) were
used. Performing Bayesian inference with a complex perceptual input such as images is thus
still a challenge. To this end, we utilize the state-of-the-art image classifiers and classify each
image into the set of leaf node classes given in the ImageNet hierarchy, and then build a
hypothesis space on top of the classifier outputs. In other words, the classifier outputs could
be seen as sufficient statistics of the images.

Such an assumption is of course a simplification of the most general concept learning
problem, since it is debatable whether the perception process works by mapping images to
a set of discrete leaf node labels and then performing Bayesian generalization on top of it.
However, such a process allows us to more directly link the state-of-the-art cognitive science
results and computer vision results, verifying the possibility of visual concept learning. In
the chapters that follow, we will explore the possibility to perform concept learning directly
from a high-dimensional, real-valued perceptual space, in which distances naturally present
the semantic relationships between images.

With a little abuse of terminology, in the text that follows, we will denote the image as
well as the feature vectors we obtain from them by xi, and the leaf node label of the image by
yi. Under the assumption above, the conditional probability Pexample(xi|h) then decomposes
to the conditional of the leaf node class P (yi|h) and the conditional of a specific image under
that class P (xi|yi): from a generative perspective, we will first sample a specific leaf node class
from the hypothesis, and then sample an image that belongs to that class as an example.
Specifically, we construct the hypothesis space over the image labels using the ImageNet
hierarchy, with each subtree rooted at a node serving as a possible hypothesis. The hypothesis
sizes are then computed as the number of leaf node classes under the corresponding node,



CHAPTER 4. VISUAL CONCEPT LEARNING 43

e.g., the node “animal” would have a larger size than the node “dogs”. The large number
of images collected by ImageNet allows us to train classifiers from images to the leaf node
labels and to estimate the conditional probability P (xi|yi), which we will describe shortly in
the next section.

4.4 Parameter Estimation

In this section we detail how the various probability scores are defined and estimated, based
on both psychological study and machine learning techniques.

4.4.1 Hypothesis Priors

Determining the priors for the various hypotheses is a high-level problem that essentially
asks “what object categories do people refer to most often in real life”. To this end, we take
advantage of the existing research in cognitive science to construct the latent concept space
and the prior distribution.

It has been shown that the ImageNet/WordNet hierarchy [38] well models the semantic
relations in a psychologically justified tree structure [81], and previous cognitive science has
shown promising results in identifying latent concepts (semantically related sets from the
universe of objects) for human concept learning [1, 106] at least in a limited scope of testing
data. Prior research on psychology and Bayesian generalization [101, 105] have shown that
people favor basic-level concepts, which could be well modeled by an Erlang prior with
respect to the size |h| of each latent concept, defined as the number of leaf nodes in the
subtree rooted at the concept:

P (h) = αh ∝ (|h|/σ2) exp(−|h|/σ), (4.5)

which favors medium-sized hypotheses corresponding to basic level concepts. Abbotts et
al. have shown that a hyperparameter of σ = 200 matches human behavior best, which we
adopt in our work for the prior.

Figure 4.4 shows two such examples along the paths to the ImageNet leaf-node synsets
can opener and oriental poppy. It could be observed that basic level hypotheses, such as
“flower” and “tool”, have higher probability than overly general hypotheses such as “entity”
or overly specific ones such as “oriental poppy”, a plausible statistics since we would tend to
mention too broad or too specific concepts in the real life.

4.4.2 Image Conditionals

Given a hypothesis, the conditional probability P (yi|h) follows from assuming strong sam-
pling [105] and the size principle, thus the conditional probability is defined as follows:

P (yi|h) = βhyi =

{
1/|h|, if hypothesis h contains leaf node label yi
0, otherwise,

(4.6)



CHAPTER 4. VISUAL CONCEPT LEARNING 44

plant

flower

physical entity

organism

vascular plant

angiosperm

object

entity

living thing

poppy

spermatophyte

whole

oriental poppy

Figure 4.4: The prior probabilities of the hypotheses computed according to existing research,
along the path leading to the synsets oriental poppy and can opener respectively, with darker
color indicating higher probability.

where |h| is the size of the hypothesis - the number of leaf node classes under the subtree
rooted at the hypothesis4.

To generate an actual image xi from a given class label yi, it is relatively difficult to fully
generative model the conditional probability P (xi|yi) to the pixel level of the images. Thus,
we use a mixed generative-discriminative approach by having a classifier trained on all the
leaf node objects, and obtain the classifier prediction

f(xi) = argmax j θ>j xi, (4.7)

where we assuming that a classifier with parameter {θj}Kj=1 for K classes is used. The
conditional probability is then defined as

P (xi|yi) = Cyif(xi), (4.8)

where C is the confusion matrix of the classifier, and Cij is the probability that an image
from object class i is predicted class j by the classifier.

4.5 Terabyte-scale Classifier Training

Recent image classification tasks often involve large amounts of images, making the training
of classifiers increasingly difficult. To address this issue, we have developed a distributed,

4A keen reader may notice that this further assumes that each leaf node contains the same number of
images - which may not be true in the real world. However, the lack of a truly large-scale analysis of object
frequencies in the real world renders an accurate estimation of hypothesis sizes unavailable. Thus, we will
make a simplified assumption in this thesis.



CHAPTER 4. VISUAL CONCEPT LEARNING 45

stochastic optimization toolbox to train large-scale image classifiers. In particular, we used
the minibatch approach to perform stochastic gradient descent updates, and utilized the
Adagrad [32] algorithm to achieve quasi-Newton performance by accumulating the statistics
of the per-iteration gradient estimations, a mechanism shown to work particularly well with
vision tasks [27].

Specifically, we focus on training large-scale linear multinomial logistic regressors, which
optimizes the following objective function:

L(θ) = λ‖θ‖2
2 −

∑M

i=1
ti log ui, (4.9)

where ti is a 0-1 indicator vector where only the yi-th element is 1, and ui is the softmax of
the linear outputs

uij = exp(θ>j xi)/
∑K

j′=1
exp(θ>j′xi), (4.10)

where xi is the feature for the i-th training image.
To perform training, for each iteration t we randomly sample a minibatch from the data to

estimate the gradient gt, and perform stochastic gradient descent updates. To achieve quasi-
Newton performances we adopted the Adagrad [32] algorithm to obtain an approximation
of the diagonal of the Hessian as

H = σI +
∑t−1

n=1
diag(gng

>
n ), (4.11)

where σ is a small initialization term for numerical stability, and perform parameter upgrade
as

θt = θt−1 − ρH+gt, (4.12)

where ρ is a predefined learning rate.
We took advantage of parallel computing by distributing the data over multiple machines

and performing gradient computation in parallel, as it only involves summing up the per-
datum gradient. As the data is too large to fit into the memory of even a medium-sized
cluster, we only keep the minibatch in memory at each iteration, with a background process
that pre-fetches the next minibatch from disk during the computation of the current mini-
batch. This enables us to perform efficient optimization with an arbitrarily large dataset.
The overall architecture is visualized in Figure 4.5.

For the image features, we followed the pipeline in [77] to obtain over-complete features for
the images. Specifically, we extracted dense local SIFT features, and used Local Coordinate
Coding (LCC) to perform encoding with a dictionary of size 16K. The encoded features were
then max pooled over 10 spatial bins: the whole image and the 3 × 3 regular grid. This
yielded 160K feature dimensions per image, and a total of about 1.5TB for the training data
in double precision format. The overall performance is 41.33% top-1 accuracy and a 61.91%
top-5 accuracy on the validation data, and 41.28% and 61.69% respectively on the testing
data. For the computation time, training with our toolbox took only about 24 hours with
10 commodity computers connected on a LAN.



CHAPTER 4. VISUAL CONCEPT LEARNING 46

f,g
Prefetch next batch 
when working on 
the current one 

Minibatches  
on each node 

Collective calls to 
compute func & grad 

Figure 4.5: The overall architecture of our system.

4.5.1 Confusion Matrix Estimation with One-step Unlearning

Given a classifier, evaluating its behavior (including accuracy and confusion matrix) is often
tackled with two approaches: using cross-validation or using a held-out validation dataset. In
our case, we note that both methods have significant shortcomings. Cross-validation requires
retraining the classifiers multiple rounds, which may lead to high re-training costs. A held-
out validation dataset usually estimates the accuracy well, but not for the confusion matrix C
due to insufficient number of validation images. For example, the ILSVRC challenge has only
50K validation images versus 1 million confusion matrix entries, leading to a large number
of incorrect zero entries in the estimated confusion matrix (see supplementary material).

Instead of these methods, we propose to approximate its leave-one-out (LOO) error on
the training data with a simple gradient descent step to “unlearn” each image to estimate
its LOO prediction, similar to the early unlearning ideas [46] proposed for neural networks.
We will focus on the use of multinomial logistic regression, which minimizes L(θ) = λ‖θ‖2

2−∑M
i=1 ti log ui, where ti is a 0-1 indicator vector where only the yi-th element is 1, and ui

is the softmax of the linear outputs uij = exp(θ>j xi)/
∑K

j′=1 exp(θ>j′xi), with xi being the
feature for the i-th training image.

Specifically, given the trained classifier parameters θ, it is safe to assume that the gradient
g(θ) = 0. Thus, the gradient for the logistic regression loss when removing a training image
xi could be computed simply as g\xi

(θ) = (ui − ti)x
>
i . Given the Hessian matrix H at θ,

one can perform one-step quasi-Newton least-square update as5

θ\xi
= θ − ρ′H+g\xi

. (4.13)

5In practice we used the accumulated matrix H obtained from Adagrad [32] as a good approximation
of the Hessian matrix. See supplementary material for details. We tested the Adagrad H matrix and the
exact Hessian computed at Θ, and found the former to actually perform better, possibly due to its overall
robustness.



CHAPTER 4. VISUAL CONCEPT LEARNING 47

Note that we put an additional step size ρ′ instead of ρ′ = 1 as would be the case for exact
least squares. We set ρ′ to the value that yields the same LOO approximation accuracy as
the validation accuracy. We use the new parameter θ\xi

to perform prediction on xi as if xi
has been left out during training, and accumulate the approximated LOO results to obtain
the confusion matrix. We then applied Kneser-Ney [59] smoothing on the confusion matrix
for a smoothed estimation.

4.6 Experiments

In this section, we first give a detailed analysis of how well our parameter estimation scheme
works, and then describe the experimental protocol adopted to compare our system with
human performance, as well as against various baseline algorithms.

4.6.1 Goodness of Estimated Parameters

First, to show that the Adagrad algorithm gives us a reasonable approximation of the Hessian
matrix, we computed the ground-truth Hessian matrix at the final parameter, and plot
the comparison between the two in Figure 4.6. It could be observed that the Adagrad
approximation often gives slightly larger Hessian estimates than the exact Hessian (possibly
due to the Large Hessian values before convergence). Empirically, we found that using
the Hessian estimation from Adagrad gives better unlearned confusion matrix although the
difference is not large (about 0.5 measured by perplexity). We believe that this may be due
to the robustness of Adagrad in modeling the general Hessian matrix when the parameter
value changes in the parameter space.

As stated in Section 5.3, an good estimation of the confusion matrix C is crucial for the
probabilistic inference. We evaluate the quality of different estimations using the test data:
for each testing pair (y, ŷ), where ŷ is the classifier output, its probability is given by the
confusion matrix entry Cyŷ. The perplexity measure [59] then evaluates how “surprising”
the confusion matrix sees the testing data results (a smaller value indicates a better fit):

perp = Power
(

2,
(∑Nte

i=1
log2Cyiŷi

)
/Nte

)
,

where Nte is the number of testing images. Overall, we obtained a perplexity of 46.27 using
our unlearning algorithm, while the validation data gave a value of 68.36 and the training
data (without unlearning) gave 94.69, both worse than our unlearning algorithm. We refer
to the supplementary material for a more complete analysis of the performance of different
methods.

Table 4.1 gives the perplexity values of the various sources to obtain the confusion matrix
from: the training data (without unlearning), the validation data, and our approach (named
as “unlearned”). Two different smoothing approaches are also adopted to test the perfor-
mance: Laplace smoothing and Kneser-Ney smoothing, with the former smoothes the matrix



CHAPTER 4. VISUAL CONCEPT LEARNING 48

Figure 4.6: The exact hessian and the estimated hessian by Adagrad. Both axes in log scale.

by simply adding a constant term to each entry, and the latter taking a more sophisticated
approach and utilizing the bigram information (see [59] for exact math). In general, our
approach obtains the best perplexity over all choices.

Figure 4.7 visualizes the confusion matrix entries that are non-zero for the testing data,
but missed (i.e., incorrectly predicted as zero) by the methods. Specifically, the dark
regions in the figure shows incorrect zero estimates, so the darker the matrix is, the worse
the estimation is. We also compute the proportion of zero estimates, defined as the number
of non-zero testing entries that are estimated as zero, divided by the total number of non-zero
testing entries. The matrix is averaged over 4 × 4 blocks for better visualization. Overall,
matrices estimated from the training and validation data both yield a large proportion
(>70%) of incorrect zero entries due to overfitting and lack of validation images respectively,
while our method gives a much better estimation with incorrect zero entries <25%. Note
that the problem of the remaining sparsity is further alleviated by the smoothing algorithms.

4.6.2 Modeling Human Behavior

To analyze how our visual concept learning model matches human behavior, we use the
precision-recall curve, the average precision (AP) and the F1 score at the point where preci-
sion = recall6 to evaluate the performance and to compare against the human performance,

6Empirically (as shown in Figure 4.8), the human participants exhibit approximately the same precision
and recall values, so we choose the point on the PR curve where p = r, and compute the corresponding F1

score.



CHAPTER 4. VISUAL CONCEPT LEARNING 49

Smoothing Source Perplexity
training 94.69

Laplace validation 80.52
unlearned 46.95
training 214.30

Kneser-Ney validation 68.36
unlearned 46.27

Table 4.1: The perplexity (lower values preferred) of the confusion matrix estimation meth-
ods on the testing data.

(a) Training (b) Validation

train val unlearn
0

0.5

1

train
val
unlearn

(c) Unlearned (d) Proportion of zero estimations

Figure 4.7: Confusion Matrix estimation results. (a)-(c): Visualization of missing estimations
(averaged over 4 × 4 blocks for better readability) for non-zero testing entries obtained
from multiple sources. A darker matrix means the estimation misses more entries (a worse
estimation) (d): the proportion of missing estimations.



CHAPTER 4. VISUAL CONCEPT LEARNING 50

which is calculated by randomly sampling one human participant per distinctive HIT, and
comparing his/her prediction against the four others.

To the best of our knowledge, there are no existing vision models that explicitly handles
our concept learning problem. Thus, we compare our vision based Bayes generalization
algorithm (denoted by VG) described in the previous section against the following baselines,
which are reasonable extensions of existing vision or cognitive science models:

1. Naive vision approach (NV): this uses a nearest neighbor approach by computing
the score of a query as its distance to the closest example image, using GIST features
[84].

2. Prototype model (PM): an extension of the image classifiers. We use the L1 normal-
ized classifier output from the multinomial logistic regressors as a vector for the query
image, and compute the score as its χ2 distance to the closest example image.

3. Histogram of classifier outputs (HC): similar to the prototype model, but instead
of computing the distance between the query and each example, we compute the score
as the χ2 distance to the histogram of classifier outputs, aggregated over the examples.

4. Hedging the bets extension (HB): we extend the hedging idea [28] to handle sets
of query images. Specifically, we find the subtree in the hierarchy that maximizes the
information gain while maintaining an overall accuracy above a threshold ε over the
set of example images. The score of a query image is then computed as the probability
that it belongs to this subtree. The threshold ε is tuned on a randomly selected subset
of the data.

5. Non-perceptual word learning (NP): the classical Bayesian word learning model
in [116] assuming a perfect classifier, i.e., by taking the ground-truth leaf labels for
the test images. This is not practical in actual applications, but evaluating NP helps
understand how a perceptual component contributes to modeling human behavior.

4.6.3 Main Results

Figure 4.8 shows the precision-recall curves for our method and the baseline methods, and
summarizes the average precision and F1 scores. Conventional vision approaches that build
upon image classifiers work better than simple image features (such as GIST), which is
sensible given that object categories provide relatively more semantics than simple features.
However, all the baselines still have performances far from human’s, because they miss the
key mechanism for inferring the “width” of the latent concept represented by a set of images
(instead of a single image as conventional approaches assume). In contrast, adopting the
size principle and the Bayesian generalization framework allows us to perform much better,
obtaining an increase of about 10% in average precision and F1 scores, closer to the human
performance than other visual baselines.

The non-perceptual (NP) model exhibits better overall average precision than our method,
which suggests that image classifiers can still be improved. This is indeed the case, as state-
of-the-art recognition algorithms may still significantly underperform human. However, note



CHAPTER 4. VISUAL CONCEPT LEARNING 51

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

NV
PM
HB

HC
VG

NP
human

Method AP F1 Score
NV 36.37 35.64
PM 61.74 56.07
HC 60.58 56.82
HB 57.50 52.72
NP 76.24 72.70

VG (ours) 72.82 66.97
Human Performance n.a. 75.47

Figure 4.8: The precision-recall curves of our method and the baseline algorithms. The
human results are shown as the red crosses, and the non-perceptual Bayesian word learning
model (NB) is shown as magenta dashed lines. The table summarizes the average precision
(AP) and F1 scores of the methods.

that for a system to work in a real-world scenario such as aid-giving robots, it is crucial that
the agent be able to take direct perceptual inputs. It is also interesting to note that all visual
models yield higher precision values in the low-recall region (top left of Figure 4.8) than the
NP model, which does not use perceptual input and has a lower starting precision. This sug-
gests that perceptual signals do play an important role in human generalization behaviors,
and should not be left out of the pipeline as previous Bayesian word learning methods do.

4.6.4 Analysis of Per-level Responses

In addition to the quantitative precision-recall curves, we perform a qualitative per-level
analysis similar to previous word learning work [1]. To this end, we binarize the predictions at
the threshold that yields the same precision and recall, and then plot the per-level responses,
i.e., the proportion of query images from level Li that are predicted positive, given examples
from level Lj.



CHAPTER 4. VISUAL CONCEPT LEARNING 52

L0 L1 L2 L3
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

P
ro

ba
bi

lit
y

human oracle
L0
L1
L2
L3
L4

Figure 4.9: Per-level generalization from human participants.

We show in Figures 4.9 and 4.10 the per-level generalization results from human, the
NP model, our method, and the PM baseline which best represents state-of-the-art vision
baselines. People show a monotonic decrease in generalization as the query level moves
conceptually further from the examples. In addition, for queries of the same level, its gen-
eralization score peaks when examples from the same level are presented, and drops when
lower or higher level examples are presented. The NP model tends to give more extreme
predictions (either very low or very high), possibly due to the fact that it assumes perfect
recognition, while visual inputs are actually difficult to precisely classify even for a human
being. The conventional vision baseline does not utilize the size principle to model human
concept learning, and as a result shows very similar behavior with different level of examples.
Our method exhibits a good correlation with the human results, although it has a smaller
generalization probability for L0 queries, possibly because current visual models are still not
completely accurate in identifying leaf node classes [28].

Last but not least, we examine how well a conventional image classification approach
could explain our experimental results. To do so, Figure 4.10(d) plots the results of an image
classification (IC) oracle that predicts yes for an image within the ground-truth ImageNet
node that the current examples were sampled from and no otherwise. Note that the IC oracle
never generalizes beyond the level from which the examples are drawn, and thus, exhibits
very different generalization results compared to the human participants in our experiment.
Thus, visual concept learning poses more realistic and challenging problems for computer
vision studies.



CHAPTER 4. VISUAL CONCEPT LEARNING 53

(a) NP Model L0 L1 L2 L3
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

P
ro

ba
bi

lit
y

NP oracle
L0
L1
L2
L3
L4

0.0 0.5 1.0

NP oracle

0.0

0.5

1.0

hu
m

an
gr

ou
nd

tr
ut

h

(b) Our Method L0 L1 L2 L3
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

P
ro

ba
bi

lit
y

our method
L0
L1
L2
L3
L4

0.0 0.5 1.0

Our method

0.0

0.5

1.0

hu
m

an
gr

ou
nd

tr
ut

h

(c) PM Baseline L0 L1 L2 L3
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

P
ro

ba
bi

lit
y

PM baseline
L0
L1
L2
L3
L4

0.0 0.5 1.0

PM baseline

0.0

0.5

1.0

hu
m

an
gr

ou
nd

tr
ut

h

(d) IC Oracle L0 L1 L2 L3
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

P
ro

ba
bi

lit
y

IC oracle
L0
L1
L2
L3
L4

0.0 0.5 1.0

IC oracle

0.0

0.5

1.0

hu
m

an
gr

ou
nd

tr
ut

h

Figure 4.10: Per-level generalization predictions from various methods, where the horizontal
axis shows four levels at which examples were provided (L0 to L3). At each level, five bars
show the proportion of queries form levels L0 to L4 that are labeled as instances of the
concept by each method. These results are summarized in a scatter plot showing model
predictions (horizontal axis) vs. human judgments (vertical axis), with the red line showing
a linear regression fit.



CHAPTER 4. VISUAL CONCEPT LEARNING 54

4.7 Summary

This chapter proposed a new problem for machine vision – visual concept learning – and
presented the first system capable of approaching human performance on this problem. By
linking research on object classification in machine vision and Bayesian generalization in
cognitive science, we were able to define a system that could infer the appropriate scope of
generalization for a novel concept directly from a set of images. This system outperforms
baselines that draw on previous approaches in both machine vision and cognitive science,
coming closer to human performance than any of these approaches. However, there is still
significant room to improve performance on this problem, and we present our visual concept
learning dataset as the basis for a new challenge problem for machine vision, going beyond
assigning labels to individual objects.



55

Chapter 5

Latent Task Adaptation with Concept
Hierarchies

While the concept learning model proposed above has shown promising performance in
modeling human performance, one may ask the question “how this would benefit real-world
applications?”. This section is devoted to present a real world application - learning multiple
specific classification tasks - and demonstrates how a concept learning framework would allow
much more flexible classifiers to be deployed.

5.1 Introduction

Recent years have witnessed a growing interest in object classification tasks involving specific
sets of object categories, such as fine-grained object classification [35, 62] and home object
recognition in visual robotics. Existing methods in the literature generally describe algo-
rithms that are trained and tested on exactly the same task, i.e., we assume the training
data and testing data share the same set of object labels. A dog breed classifier is trained
and tested on dogs and a cat breed classifier done on cats, without the use of out-of-task
images.

However, two observations may render this “one (multi-class) classifier per task” approach
suboptimal. First, it’s known that using images of related tasks is often beneficial to build a
better model for the general visual world [90], which serves as a better regularization for the
specific task as well. Second, object categories in the real world are often organized in, or at
least well modeled by, a nested taxonomical hierarchy (e.g., Figure 5.1), with classification
tasks corresponding to intermediate subtrees in this hierarchy, and recent efforts on the
ImageNet challenge [5, 77, 97, 65] have leveraged the use of large-scale data to learn such
information. While it is reasonable to train separate classifiers for specific tasks, this quickly
becomes infeasible as there are a huge number of possible tasks - any subtree in the hierarchy
may be a latent task requiring one to distinguish object categories under the subtree.

Thus, it would be beneficial to have a system which learns a large number of object



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 56

feline

dog

vehicle
Figure 5.1: Visualization of the ImageNet hierarchy as a tree structure, with three subtrees
corresponding to dogs, feline and vehicles highlighted in color. Exemplar images from these
three subtrees are presented on the right. Such specific subtrees usually correspond to
classification tasks of interest (“which breed of dog is this?”).

golden retriever tabby cat garbage truck
(ice bear) (dungeness crab) (boathouse)

Figure 5.2: Adapting the ImageNet classifier allows us to perform accurate prediction (bold),
while the original classifier prediction (in parentheses) suffers from a higher confusion. Note
that the classification is carried out together with a set of other images as the task context.



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 57

categories in the world, and which is able to quickly adapt to specific incoming classification
tasks (subsets of all the object categories) once deployed. We are particularly interested in
the scenario where tasks are not explicitly given, but implicitly specified with a set of query
images, or a stream of query images in an online fashion. This has practical importance: for
example, one may want to have a single mobile app that adapts to plant recognition on a
field trip after a few image queries, and that shifts to grocery recognitions when one stops
by the grocery store. This is a new challenge beyond simple classification - one needs to
discover the latent task using the context given by the queries, a problem that has not been
tackled in previous classification problems.

It turns out that this problem is inherently similar to the concept learning problem that
we focused on in the previous chapter: while classifying a set of images, one could consider
this image set as examples of a latent “task”, or “concept”, that corresponds to the current
application scenario. Thus, in addition to identifying the latent concept itself, which is of
interest to visual concept learning, the additional problem is to perform classification under
this concept to reveal more fine-grained category labels (such as different species of dogs and
birds). This is perfectly applicable under the visual concept learning framework. In this
chapter, we will demonstrate one system that achieves this “learn big, predict specific” goal.

Regarding related works along the task adaptation idea, the problem of task adaptation
is analogous to, but essentially distinctive from domain adaptation [95, 66]. While domain
adaptation aims to model the perceptual difference of the training and testing images from
the same labels, task adaptation focuses on modeling the conceptual difference: different
label spaces during training and testing. Additionally, as one is often able to use large
amounts of data during training, we assume that the testing tasks involve subsets of labels
encountered during training time.

There are several algorithms in image classification that use label hierarchy or structured
regularizations to learn better classifiers [96, 47, 43], or to leverage the accuracy and infor-
mation gain from classifiers [28]. These methods still assume an identical label space for
training and testing. The ultimate goal thus remains to be better accuracy on classifying
individual images, not to adapt to different tasks during testing time by utilizing contextual
information. Better classifiers presented in these papers could, of course, be incorporated in
our model to improve the end-to-end performance of task adaptation.

Finally, it is known that contextual information, such as scene context and co-occurring
context within a image, could be adopted for better detection [109] or scene understanding
[76]. In this work we utilize a novel type of context - task context - that is implied by a
semantically related group of images.

5.2 Problem Statement

For the sake of clarity, we will first state the task adaptation problem using notations from the
previous chapter, and then highlight the connection between the concept learning problem
and the latent task adaptation problem.



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 58

Formally, we define a classification task to be a subset of all the possible object labels that
are semantically related (such as all breeds of dogs in ImageNet). During training time, the
computer is given all the training images from all these classes, and it will learn one single
multi-class classifier. During testing time, a number of query images are randomly sampled
from the labels belonging to a task, and the learning algorithm needs to give predictions on
these images.

This scenario is much different from the conventional image classification problem setting,
as being used in various benchmarks such as Caltech-101 [37] and ILSVRC [5]. Convention-
ally, we assume a set of mutually exclusive class labels to be presented during both training
and testing time. From a probabilistic perspective, it means that the test images are assumed
to be drawn i.i.d. from the same label distribution as the training images are. In our problem
setting, testing images are mutually related since they together define the task. This makes
more practical sense, since one may expect a computer agent to utilize its environment to
preform better classification. For example, one could switch to classifying grocery items in a
grocery store, and to classifying different animals during a zoo visit. It would be extremely
unlikely (and not preferred) for an item in a grocery store to be a giraffe, given the context
information.

As stated in the previous section, we are interested in the scenario when the task is latent,
i.e., only implicitly specified by a set of test images. We introduce two key components
for modeling the generative process of test images: a latent task space that defines possible
tasks and their probability, and a procedure to sample images given a specific latent task.
Specifically, we propose the graphical model in Figure 5.3 which generates a set of N test
images when given T possible tasks and K object categories:

1. Sample a latent task h from the task priors P (h) with hyperparameter α;

2. For the N images:

a) Sample an object category yi from the conditional probability P (yi|h;βh);

b) Sample an image from category yi with P (xi|yi;θyi).

where the parameters α,β,θ are defined as in the previous chapter.
A keen reader may have found the equivalence between a latent task described here and

a latent concept described in the previous chapter. Indeed, they share much in common in
the sense that both represent semantically related groups of objects in the real world. Thus,
it is natural that one may consider classification in a gradual coarse-to-fine way, with each
semantic group forming as a possible task, such as pet breeds of different brands of cars.
This is the reason we do not distinguish these two terms, and consider latent concepts as
latent tasks as well.

Admittedly, the definition of “task context” is much broader than merely groups of
objects derived from a hierarchy. For example, another choice of defining tasks is to relate
it to scenes - all objects in an office, or all objects that one may encounter in a street view.
In these cases, a task may contain a set of objects that do not belong to, or at least are not



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 59

↵

h

yi

xi

N K

✓k

T

�t

Figure 5.3: The generative model for the latent task and corresponding query images.

well modeled by a taxonomical hierarchy. However, one may reasonably come up with such
sets of tasks by looking into meta training data, most notably as co-occurrence of objects
in an annotated database such as LabelMe [94]. Thus, we will consider the formation of a
latent task space an orthogonal problem, and leave it to future work.

The previous chapter gives the definition of the priors and conditionals, and for the sake
of clarity, we will briefly review it here. The prior distribution P (h) is modeled by an Erlang
distribution with respect to the size |h| of each latent task, defined as the number of leaf
nodes in the subtree rooted at the task:

P (h) = αh ∝ (|h|/σ2) exp(−|h|/σ). (5.1)

We also choose the hyperparameter σ so that it favors medium-sized tasks, as the last chapter
did. The justification is that classification under medium-sized tasks usually correspond to
fine-grained recognition problems, which is of particular interest in the literature: an agent
that recognizes multiple species of dogs or multiple types of cars may be much more useful
than an agent that coarsely classifies dogs vs cars.

Thee conditional probability P (yi|h) is defined using the strong sampling assumption and
the size principle [105]:

P (yi|h) = βhyi =

{
1/|h|, if task h contains leaf node label yi
0, otherwise,

(5.2)

where |h| is the size of the task. The conditional probability of a specific image given a label
is again defined in a mixture of generative and discriminative fashions, using the confusion
matrix of the classifier as:

P (xi|yi) ∝ Cyif(xi), (5.3)

where C is the confusion matrix of the classifier, Cij is the probability that an image from
object class i is predicted class j by the classifier, and f(xi) is the classifier prediction

f(xi) = argmax
j

θ>j xi. (5.4)



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 60

We note again that the probability P (xi|yi) defined above is a little abuse of terminology,
as the partition function is not explicitly given. However, during inference this will only
account for a constant bias in the overall likelihood, and will not change the final prediction.

5.3 Linear Time MAP Inference

With the probabilistic model given in Figure 5.3, and given a set of query images to classify
as X = {x1,x2, · · · ,xN}, we formally define the latent task adaptation problem as to jointly
identify the hidden task h and the hidden labels Y = {y1, y2, · · · , yN} that maximizes the
posterior probability

(ĥ, Ŷ) = argmax
h,Y

P (h,Y|X ). (5.5)

We note that the task adaptation problem focuses on assigning actual labels to both the latent
task and the latent labels, while the visual concept learning problem in the last chapter
focuses more on generalization, and only provides probability that models the semantic
closeness of new query images to the set of example images. This lead to the difference in
the inference phase, while the generative model stays the same for both problems.

As most of the parameter estimation are similar to the previous chapter, we will focus on
discussing the difference during the inference phase. Specifically, we will propose an efficient
inference algorithm that allows one to perform both offline and online adaptation to the task
context.

A conventional way to do probabilistic inference with nested latent variables is to use
variational inference or Gibbs sampling, both of which find lower bounds of the posterior
probability. This, however, may involve multiple iterations over the hidden variables and
may be slow. We show that when the latent task space is organized in a directed acyclic
graph (DAG) structure (as is the case in the ImageNet data), the exact maximum a poste-
riori (MAP) estimation (Eqn. (5.5)) could be found with an efficient dynamic programming
algorithm that has complexity linear to the number of possible tasks.

We first note that the logarithm of posterior probability in Eqn. 5.5 could be expanded
as

logP (h,Y|X ) ∝ logαh +
∑N

i=1
log(βhyiCyif(xi)). (5.6)

Notice that the size constraint defining the latent task space gives us

βhyi =
1

|h|
I(yi ∈ h), (5.7)

Eqn. 5.5 could further be written as

logαh −N log |h|+
∑n

i=1
(logCyif(xi) + log I(yi∈h)),

where one can observe that h and Y decouples except for the I(yi ∈ h) term, which eliminates
hypotheses that do not have yi by setting the log probability to negative infinity. As the



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 61

latent tasks are organized as a tree-based hierarchy, we can define auxiliary functions

qi(h) = max
Y

[
logCyif(xi) + log I(yi ∈ h)

]
, (5.8)

which could be computed recursively as

qi(h) = max{h′∈child(h)} qi(h
′), (5.9)

where child(h) is the set of children of h in the tree. Finally, the latent task could be
estimated as

ĥ = argmax
h

[
log(αh)−N log |h|+ γ

∑N

i=1
qi(h)

]
, (5.10)

and the corresponding ŷis could be identified by taking the argmax of the corresponding
qi(h).

We note that we added a hyperparameter γ in the equation above. In practice, simply
finding the MAP solution (using γ = 1) often involves a task that is smaller than the ground
truth, as there are two ways to explain the predicted labels: assuming correct prediction and
a task of larger size, or assuming wrong prediction and a task of smaller size. The latter
is preferred by the size principle, especially for classes with low classification accuracy. We
found it beneficial to explicitly add a weight term that favors the classifier outputs using
γ > 1 learned on validation data.

In general, our dynamic programming method runs in O(TNb) time where T is the
number of tasks, N is the number of query images, and b is the branching factor of the
tree (usually a small constant factor). This complexity is linear to the number of testing
images and to the number of latent tasks, and is usually negligible compared to the basic
classification algorithm, which runs O(KND) time where K is the number of classes and D
is the feature dimension (usually very large).

Finally, one may prefer an online algorithm that could take new images as a stream,
performing classification sequentially while discovering the latent task on the fly. We note
that our method could be easily adapted to this end. Specifically, qi(h) serves as the sufficient
statistics for the task discovery, and we only need to keep record of the accumulated auxiliary
function values seen so far as

q:n(h) =
∑n−1

i=1
qi(h) (5.11)

for the n-th image for each task candidate h. This allows us to perform online classification
with O(M) memory without storing the full history of images: when a new image xn arrives,
one simply needs to compute qn(h) for all hypotheses, and compute its prediction by taking
the argmax of qn(ĥn) using the updated estimate of the task as

ĥn = argmax
h

[
log(αh)−N log |h|+ γ(q:n(h) + qn(h))]. (5.12)



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 62

Task Naive Retraining FC Ours
building 55.48 78.67 81.48 82.19
dog 35.37 39.94 42.95 43.76
feline 47.13 61.07 62.67 63.54

home app 50.78 67.30 69.26 70.52
vehicle 55.62 61.43 63.41 63.28

Table 5.1: Classification accuracy on given tasks (subtrees) of the whole ILSVRC data. See
subsection 5.4 for details.

5.4 Analyzing the Necessity of Task Adaptation

An important question to ask is whether we still want to do retraining instead of task
adaptation, if one can afford retraining each task. In practice this is certainly impossible with
potentially thousands of tasks, but it serves as a proof of concept whether task adaptation
benefits overall classification.

To this end, we first analyze the benefits of retraining versus our adaptation method.
Specifically, we sampled 5 subtrees from the ILSVRC hierarchy: building, dogs, feline (the
superset of cats), home appliance, and vehicle, the subcategories of which are often of inter-
est. Figure 5.2 visualizes the corresponding subtrees for dog, feline and vehicles respectively.
Then, we explicitly trained classifiers on these three subtrees only, and compared the re-
trained accuracy against our adapted classifier with the given task. Since the task is known
beforehand, during inference we will simply choose the prediction under the given task. We
also tested two baselines: (1) the naive baseline that uses the raw 1000 class predictions,
and (2) a forced choice baseline (FC), which simply selects the class under the task that has
the largest output from the original classifiers. Table 5.1 summarizes the performance of the
algorithms.

It is worth pointing out that retraining the classifiers for the specific tasks does not
help improve the classification accuracy, although retraining requires additional nontrivial
computation cost. In fact, it is always helpful to use out-of-task data to train a larger classifier
and then take the subset with forced choice. One possible explanation is that this gives us
more information about the general image statistics (similar to a better regularization term),
as out-of-task images provide additional negative data during training. Our method further
benefits from the statistics from all the classifiers (for in-task and out-of-task classes) in the
proposed probabilistic framework. For example, when classifying different dogs, knowing the
predicted score of e.g. fox and bears may still benefit the dog classification task under our
framework, while the baseline algorithms fail to capture such information. As a result, the
proposed algorithm achieves the best adapted accuracy in most cases (only slightly worse
than the FC baseline on vehicle).

It is worth noting that such observation will be echoed when we move to the next chapter
and analyze the transferability of deep features from state-of-the-art CNN models. This



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 63

1 2 5 10 20 50 100 200 500
set size (log scale)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

a
cc

u
ra

cy

1 2 5 10 20 50 100 200 500
set size (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

o
v
e
rl

a
p
_s

co
re

naive
proto
hist
hedge
adapt

Figure 5.4: Classification accuracy (left) and the task overlap score (right) with different
query set sizes for our method and the baselines.

also hints the possibility to learn a general purpose image feature that adapts to multiple
application purposes, which is one of the goal (and hope) of deep convolutional models.

5.5 Experiments

We conduct our experiment on the ILSVRC 2010 dataset [5], where both validation and test
data are available. To make sure we do not peek into the test images, all hyperparameters
and classifiers are learned and validated on the training and validation data.

Also, we note that more comprehensive features and better classification pipelines may
lead to better 1-vs-all accuracy on ImageNet, but it is not the main goal of the paper, as
we focus on the adaptation on top of the base classifiers. Recent efforts on learning better
classifiers, such as the ones presented in [97, 65] could be seamlessly incorporated into our
learning framework for general performance increases, and the next chapter will talk about
a specific framework that enables on to do so in future research.

5.5.1 Joint Task Discovery and Classification

We analyze the performance when we have the classifier trained on the whole ILSVRC data,
and adapt it to an unknown task that is defined by a set of query images. The forced choice
option is not available in this case as we do not know the latent task beforehand, and one
has to use the semantic relationships between the query images to infer the latent task.

To sample the latent tasks, we used the Erlang prior defined in Section 5.2 from the
ImageNet Tree excluding leaf nodes (as leaf nodes would contain only 1 label). We then
randomly sampled N query images from the subtree of the sampled task. All query images
were randomly selected from the test images of ILSVRC and had not been seen by the
classifier training. We varied the value N to assess the quality of task discovery under



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 64
T

a
sk

:
k
it

ch
e
n

a
p

p

en
ti

ty
ar

ti
fa

ct
ar

ti
fa

ct
go

o
d

s
k
it

ch
en

ap
p

L
ab

el
ic

e
m

ak
er

es
p

re
ss

o
m

ak
er

p
ri

m
u

s
st

ov
e

D
u

tc
h

ov
en

ic
e

m
ak

er
O

u
rs

el
ec

tr
ic

ra
n

g
e

es
p

re
ss

o
m

ak
er

p
ri

m
u

s
st

ov
e

D
u

tc
h

ov
en

ic
e

m
a
k
er

B
as

el
in

e
b

o
ok

ca
se

w
eb

si
te

ca
rp

en
te

r’
s

k
it

sn
ai

l
sc

an
n

er

T
a
sk

:
to

il
e
tr

y
en

ti
ty

en
ti

ty
en

ti
ty

in
st

ru
m

en
ta

li
ty

to
il

et
ry

L
ab

el
li

p
st

ic
k

fa
ce

p
ow

d
er

n
ai

l
p

ol
is

h
lo

ti
on

h
a
ir

sp
ra

y
O

u
rs

li
p

st
ic

k
fa

ce
p

ow
d

er
n

ai
l

p
ol

is
h

lo
ti

on
h

a
ir

sp
ra

y
B

as
el

in
e

to
o
th

b
ru

sh
d

u
n

e
b

at
h

to
w

el
ve

n
d

in
g

m
ac

h
in

e
m

il
it

ar
y

u
n

if
o
rm

T
a
sk

:
w

o
o
d

-
w

in
d

en
ti

ty
ar

ti
fa

ct
ar

ti
fa

ct
d

ev
ic

e
re

ed

L
ab

el
b

a
ss

o
o
n

fl
u

te
sa

x
ob

o
e

sa
x

O
u

rs
b

a
ss

o
o
n

b
a
ss

o
on

sa
x

ob
o
e

sa
x

B
as

el
in

e
h

ar
p

p
ri

so
n

sa
x

fo
u

n
ta

in
p

en
tu

rb
an

T
a
sk

:
g
a
m

e
en

ti
ty

li
v
in

g
th

in
g

en
ti

ty
ch

or
d

at
e

ga
m

e

L
ab

el
p

ta
rm

ig
a
n

p
ar

tr
id

ge
p

h
ea

sa
n
t

b
la

ck
gr

ou
se

q
u

a
il

O
u

rs
p

ta
rm

ig
a
n

p
ar

tr
id

ge
p

h
ea

sa
n
t

b
la

ck
gr

ou
se

b
la

ck
g
ro

u
se

B
as

el
in

e
gi

an
t

p
a
n

d
a

o
rc

h
id

K
om

o
d

o
d
ra

go
n

B
or

d
er

co
ll

ie
N

ew
fo

u
n

d
la

n
d

F
ig

u
re

5.
5:

E
x
em

p
la

r
cl

as
si

fi
ca

ti
on

re
su

lt
s

w
h
er

e
in

co
rr

ec
t

la
b

el
s

ar
e

p
re

d
ic

te
d

b
y

th
e

b
as

e
cl

as
si

fi
er

s,
b
u
t

ar
e

co
rr

ec
te

d
b
y

ou
r

m
et

h
o
d

th
at

b
en

efi
ts

fr
om

id
en

ti
fy

in
g

th
e

la
te

n
t

ta
sk

.
E

ac
h

ro
w

sh
ow

s
5

im
ag

es
fr

om
a

la
te

n
t

ta
sk

,
an

d
on

th
e

ri
gh

t
w

e
gi

ve
th

e
p
re

d
ic

te
d

ta
sk

b
y

d
iff

er
en

t
al

go
ri

th
m

s,
or

d
er

ed
an

d
co

lo
re

d
as

n
ai

ve
,

p
ro

to
,

h
is

t,
h
ed

ge
,

an
d

ad
ap

t.
T

h
e

gr
ou

n
d

tr
u
th

la
b

el
,

ou
r

p
re

d
ic

ti
on

an
d

th
e

or
ig

in
al

cl
as

si
fi
er

’s
ou

tp
u
t

ar
e

p
ro

v
id

ed
fo

r
ea

ch
im

ag
e.



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 65

different set sizes. For each query image size N , we created 10,000 independent tasks and
reported the average performance here.

To evaluate the goodness of the inferred latent task and the accuracy, we compute the
overlap between the ground truth task h and the predicted task ĥ as

s(h, ĥ) = |h ∩ ĥ|/|h ∪ ĥ| × 100%, (5.13)

where ∩ and ∪ are the intersection and union operations on sets, and | · | denotes the size
of a set. For each task, we then compute the accuracy with the predicted labels Ŷ in
the standard classification evaluation way. We then report the averaged overlap score and
averaged per-task prediction accuracy.

To the best of our knowledge there is no published classification algorithm that is able
to identify the latent task, i.e., the intermediate node in the taxonomy hierarchy, given a
set of query images. Thus, similar to the visual concept learning task in the above chapter,
we compare our algorithm against the following baselines that are natural extensions from
conventional classification methods:

• Naive approach: simply taking the class with the highest prediction score from all
the ILSVRC classes.

Prototype approach: we use the conditional probability p(y|h) as a vector for each
task h, and use the task that yields the smallest average distance to each query im-
age (using the classifier outputs) as the predicted latent task. Classification is then
performed under this predicted task.

•• Histogram approach: similar to the prototype approach, but instead of computing
pairwise distances to individual query images, we select the task h that yields the
smallest χ2 distance between p(y|h) and the histogram of predictions averaged over all
queries.

• Hedging approach: we extend the hedging idea [28] to handle sets of query images.
Specifically, we find the intermediate node that maximizes the information gain while
maintaining an overall accuracy above a threshold ε over the set of query images. The
corresponding task is then chosen as the predicted latent task. We tune the threshold
ε on the validation data so that the averaged per-task accuracy is maximized.

We also test an oracle model, in which we explicitly tell the classifier the latent task and
perform classification on the subset of labels with the task ground truth. This serves as an
upper bound of all methods above, and helps us understand how well different algorithms
perform. Regarding the classifier outputs, we used the soft output from the logistic regression
for our method, and choose between the soft output and 0-1 hard output for the baseline
methods, reporting the better performance of the two here 1.

1As a minor note, the hedging method works well with soft outputs, while the prototype and histogram
methods prefer soft outputs when the query size is small, and hard outputs when large.



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 66

Method
query size=5 query size=100

s(h, ĥ) Accuracy s(h, ĥ) Accuracy
Naive 1.54 42.75 1.50 42.68
Proto 8.14 43.16 60.39 50.28
Hist 22.21 44.84 96.61 59.87

Hedging 39.12 44.81 50.34 51.83
Ours 84.43 65.89 99.37 70.70

Oracle 100.0 70.36 100.0 70.88

Table 5.2: The average task overlap score and the average accuracy for the algorithms, under
query sizes 5 and 100 respectively. All numbers are in percentage. The last row provides the
oracle performance in which the ground truth task is given.

As the latent task is inferred with a set of images, which directly influences the inference
of the latent task, we vary the number of query image sizes and analyze the performance
changes. Figure 5.4 shows the performance when we vary the size from 1 to 500, and
Table 5.2 summarizes the performance of the methods above with two typical cases: a small
query set size (5 images) and a relatively large size (100 image). It could be observed that
when we have a reasonable amount of testing queries, identifying the latent task leads to
a significant performance gain than the baseline method that does classification against all
possible labels, with an increase of near 30% percent. Even with a small query size (such as
5), the performance gain is already noticeably high, indicating the ability of the algorithm
to perform task adaptation with very few images from the latent task.

In addition, Figure 5.6 gives more qualitative results showing the benefit of discovering the
task context to help classification, where we show multiple tasks under which an incorrectly
classified image could be corrected. It could be observed that the base classifier makes some
“noble mistakes”: a garage that looks like a table and a teapot that looks like a pumpkin.
By utilizing the semantic relationship between images presented for the same latent task,
the classifier could correct these errors and give more accurate predictions.

5.5.2 Robustness Against Prior Fluctuations

As we use the psychologically derived prior in our model, one possible question is how an
inaccurate prior that deviates from human behavior would affect the overall performance.
To this end, we change the prior in our model to an uniformed flat prior (i.e., all tasks are
equally likely to appear), and examine the change in the classification performance.

Figure 5.7 shows the classification and task prediction performances when the prior mis-
match is present. It could be observed that the prior has only minor affect in the performance,
mostly when very few query images are used. When the query set size is larger than 10, our
algorithm is able to utilize the classifier outputs to correctly overcome the possible bias in



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 67

golden retriever garbage truck green mamba ptarmigan
(ice bear) (boathouse) (custard apple) (warplane)

canine vehicle reptile gallinaceous bird

garage teapot basketball mashed potato
(pool table) (pumpkin) (military uniform) (brussel sprouts)

building cooking utensil game equipment foodstuff

Figure 5.6: More results with our algorithm for different tasks, where the first row are the
images, the second row are our predictions, the third row are the predictions made by the
base ILSVRC classifier, and the last row is the task name. The task is given implicitly by
showing 5 random images (4 not shown here) under the task to the algorithm.

1 2 5 10 20 50100200 500
set size (log scale)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

a
cc

u
ra

cy

erlang
flat

1 2 5 10 20 50100200 500
set size (log scale)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

o
v
e
rl

a
p
_s

co
re

erlang
flat

Figure 5.7: Performance comparison between using the ground-truth prior (erlang) and using
the uninformed prior (flat). The top figure shows accuracy and the bottom figure shows the
overlap score.

the prior probability and achieve almost the same performance as the one using the ground
truth task prior.

5.5.3 Online Evaluation

Our final evaluation tests the performance of the proposed method in an online fashion -
when images of an unknown task come as a streaming sequence. Intuitively, our algorithm



CHAPTER 5. LATENT TASK ADAPTATION WITH CONCEPT HIERARCHIES 68

1 2 3 4 5 6 7 8 9 10
Query Index

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

a
cc

u
ra

cy

1 2 3 4 5 6 7 8 9 10
Query Index

0.0

0.2

0.4

0.6

0.8

1.0

o
v
e
rl

a
p
_s

co
re

naive
proto
hist
hedge
adapt

Figure 5.8: Classification accuracy (left) and task overlap score (right) of our online algorithm
against baselines. See subsection 5.5.3 for details.

obtains better information about the unknown task as new images arrive, which would in
turn increase the classification accuracy. We test such conjecture by evaluating the aver-
aged accuracy of the n-th image, over multiple independent test query sequences that are
generated in the same way as described in the previous subsection.

Figure 5.8 shows the average accuracy of the n-th query image, as well as the overlap
between the identified task so far and the ground truth task. With the joint probabilistic
inference, we obtain a significant performance increase after only a few images. This has
particular practical interest, as one may want the computer to quickly adapt to a new task /
environment with only a small number of queries. It is worth pointing out that with heuristic
task estimation methods (see the baselines in Figure 5.8 left), one may incorrectly assert the
latent task, which then hurts classification performance for the first few query images.

5.6 Summary

This chapter provides a concise example on how interdisciplinary research combining vision
and cognitive science would allow smarter vision systems to be learned. We focused on a
problem - latent task adaptation - that commonly appears in real-world applications but have
little existing research on, and showed that an efficient, concept learning inspired framework
is able to both discover the latent task context and better predict the categories under the
specific task.



69

Chapter 6

Emergence of Concept-level
Information in Deep Networks

With the previous chapters showing the effectiveness of feature learning and concept learning
in a more “conventional” pipeline that employs separately designed components, in this
chapter we focus on the recently rediscovered deep convolutional neural networks, and show
the emergence of object-level representation from a simple, end-to-end trained network.

To this end, I present Caffe, an open-source deep learning library developed by me and
now maintained by the Berkeley vision group, that allows one to train, test, and deploy
state-of-the-art neural networks. Based on this, I will then present empirical validation
that a generic visual feature based on a convolutional network weights trained on ImageNet
outperforms a host of conventional visual representations on standard benchmark object
recognition tasks, including Caltech-101 [36], the Office domain adaptation dataset [95], the
Caltech-UCSD Birds fine-grained recognition dataset [113], and the SUN-397 scene recogni-
tion database [115].

Further, I will analyze the semantic salience of deep convolutional representations, com-
paring visual features defined from such networks to conventional representations. Visu-
alization of the semantic clustering properties of deep convolutional features compared to
baseline representations reveal that convolutional features appear to cluster semantic topics
more readily than conventional features. Also, by tracing back the pixels that contribute
to the final predictions, one get an object-centric saliency almost for free, which I will also
analyze in this chapter.

As the vision community has only recently rediscovered the power of deep convolutional
neural networks, much remains to be analyzed and understood. Thus, compared to previous
ones, this chapter is presented in a more exploratory and empirical way, in the hope that it
will shed lights guidance for future research on this groundbreaking direction.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 70

6.1 Background

Discovery of effective representations that capture salient semantics for a given task is a key
goal of perceptual learning. Performance with conventional visual representations, based on
flat feature representations involving quantized gradient filters, has been impressive but has
likely plateaued in recent years.

It has long been argued that deep or layered compositional architectures should be able
to capture salient aspects of a given domain through discovery of salient clusters, parts,
mid-level features, and/or hidden units [48, 41, 125, 102, 65]. Such models have been able
to perform better than traditional hand-engineered representations in many domains, espe-
cially those where good features have not already been engineered [72]. Recent results have
shown that moderately deep unsupervised models outperform the state-of-the art gradient
histogram features in part-based detection models [92]. However, unsupervised deep models
with more than a few layers have proven difficult to train on large-scale visual category
recognition tasks.

Deep models have recently been applied to large-scale visual recognition tasks, trained
via back-propagation through layers of convolutional filters [73]. These models perform
extremely well in domains with large amounts of training data, and had early success in digit
classification tasks [74]. With the advent of large scale sources of category-level training data
and efficient implementation with on-line approximate model averaging (“dropout”) [65],
they have recently outperformed all known methods on a large scale recognition challenge
[6].

With limited training data, however, fully-supervised deep architectures with the rep-
resentational capacity of [65] will generally dramatically overfit the training data. In fact,
many conventional visual recognition challenges have tasks with few training examples; e.g.,
when a user is defining a category “on-the-fly” using specific examples, or for fine-grained
recognition challenges [113], attributes [10], and/or domain adaptation [95].

Learning from related tasks also has a long history in machine learning beginning with [15]
and [107]. Later works such as [3] developed efficient frameworks for optimizing represen-
tations from related tasks, and [2] explored how to transfer parameter manifolds to new
tasks. In computer vision, forming a representation based on sets of trained classifiers on
related tasks has recently been shown to be effective in a variety of retrieval and classifi-
cation settings, specifically using classifiers based on visual category detectors [111, 75]. A
key question for such learning problems is to find a feature representation that captures
the object category related information while discarding noise irrelevant to object category
information such as illumination.

Transfer learning across tasks using deep representations has been extensively studied,
especially in an unsupervised setting [90, 82]. However, reported successes with such models
in convolutional networks have been limited to relatively small datasets such as CIFAR and
MNIST, and efforts on larger datasets have had only modest success [71]. We investigate
the “supervised pre-training” approach proven successful in computer vision and multimedia
settings using a concept-bank paradigm [61, 75, 111] by learning the features on large-scale



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 71

data in a supervised setting, then transferring them to different tasks with different labels.
To evaluate the generality of a representation formed from a deep convolutional feature

trained on generic recognition tasks, we consider training and testing on datasets known to
have a degree of dataset bias with respect to ImageNet, such as SUN-397 scene recognition
dataset, and the Office dataset used to evaluate domain adaptation performance [16, 66].
This evaluates whether the learned features could undo the domain bias by capturing the
real semantic information instead of overfitting to domain-specific appearances.

6.2 Caffe: A Convolutional Architecture for Fast

Feature Embedding

While deep convolutional features have gained much interest in the literature, there exists
little, if any, toolboxes that provides a truly off-the-shelf deployment of state-of-the-art
models, and it is often nontrivial to replicate experimental results reported in the recent
papers without involving substantial graduate student time. To facilitate the wide-spread
need for deep convolutional features and analysis, I developed a C++ framework that allows
one to efficiently experiment with such architectures. I will elaborate a few key system
design choices below, and the reader is encouraged to read more technical details on the
Caffe website at http://caffe.berkeleyvision.org/.

6.2.1 Key Design Choices

GPUs: Necessary for Training With the large computation needs like the convolutional
neural networks have, it is virtually impossible to train networks with CPU only. While
systems such as the Google Brain [71] are able to address this by leveraging thousands of
machines, the budget for such systems may be overly prohibitive. Thus, I depend highly
on GPUs to perform computation, with specific care to hide implementation details from
researchers who use them.

I used the Nvidia K20 GPU to perform all experiments mentioned in this work, but
note that in terms of vision applications, strict scientific computing features such as ECC
do not appear to be significant, and commodity GPUs, such as GTX780, work as well with
no noticeable performance difference.

Data Storage With the high throughput of GPUs, it is important that one selects a highly
efficient data storage to load data from. For example, laying images on disk and randomly
reading them leads to a disk throughput of about 6M/s, while the GPU usually requires
about 30M/s data throughput1. Thus, I chose to store data in the LevelDB database 2 with

1Measured when using the SuperVision model by Krizhevsky et al.
2https://code.google.com/p/leveldb/

http://caffe.berkeleyvision.org/


CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 72

the Google ProtoBuffer format 3. When combined together, they provide about 150M/s
throughput with commodity hard disks (not solid state drives), allowing one to efficiently
utilize the full computation capability of GPUs.

Segregation of Interface and Implementation While GPUs provide an efficient way
to carry out computation, managing GPU code is known to be difficult especially for highly
customized code. Thus, we designed the system with a clear segregation of the interface
from specific implementations. Specifically, we proposed a general wrapper that manages
synchronized CPU and GPU memories, and all operations are defined on the wrapper. As a
result, one is able to define the network without having to specify which architecture it uses.
During runtime, depending on whether the user runs with a GPU or not, the code would
seamlessly switch between CPU and GPU code, without the need of user intervention or any
reimplementation. The synchronized wrapper also provided possibility to extend to further
platforms, such as mobile, as the network is explicitly defined in a device-independent way.

CPUs: Still Hope It is worth noting that while training may be difficult with CPUs,
inference is still very affordable with them. In practice, the Caffe CPU implementation is able
to run the ImageNet SuperVision model at a speed of 20 milliseconds per frame on a state-
of-the-art CPU (with 8 cores) when images are provided in minibatches. This actually allows
almost real-time computation, and is valuable since most existing computation architectures
may not have GPUs yet.

Implementation of Convolution To perform convolution in an efficient way, we chose a
path that is memory heavy: each local patch is expanded to a separate vector, and the whole
image is converted to a matrix whose rows correspond to the multiple locations where filters
will be applied. This effectively converts the convolution to a matrix-matrix multiplication
(gemm) call, making it possible to utilize the commonly available, highly optimized BLAS
(CUBLAS on Nvidia GPUs) libraries for dense computation.

While one may question the speed of such operations, we note that the most time-
consuming part of convolution is the dense gemm. Assuming we have an image of size
N × N , a filter size of K × K and a total number of F filters, then the matrix expansion
mentioned above will only account for O(N2K2) complexity while the matrix multiplication
complexity is O(N2K2F ). In the case of deep networks, F is usually very large (e.g. 256),
effectively amortizing the expansion overhead. In practice, we observed a speedup of about
1.3 times on K20 compared to cuda-convnet4, which is optimized for GTX580.

Notes on Multi-GPU computation The current Caffe implementation does not utilize
multiple GPUs, but as a general note, it is possible that multiple GPUs on the same machine
could be used for faster computation - effectively, one may distribute the minibatches during

3https://code.google.com/p/protobuf/
4https://code.google.com/p/cuda-convnet/

https://code.google.com/p/cuda-convnet/


CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 73

training to different GPUs in a synchronous fashion, with MPI-like reduce and broadcast calls
after each minibatch. This would be possible with a high-speed inter-GPU memory access,
which is made possible in the most recent GPUs. Combining different GPUs on different
machines may be more complex, as there are multiple latency issues (such as the network
speed) that needs to be accounted for. Related work such as [22] have shown promising
results with custom, fast networks, and may be a valuable engineering direction to pursuit
in the future.

6.2.2 Training Details

As the underlying architecture for higher-level analysis, I adopted the deep convolutional
neural network architecture proposed by Krizhevsky et al. [65], which won the ImageNet
Large Scale Visual Recognition Challenge 2012 with a top-1 validation error rate of 40.7%5.
This model is chosen due to its performance on a difficult 1000-way classification task,
hypothesizing that the activations of the neurons in its late hidden layers may serve as very
strong features for a variety of object recognition tasks. Its inputs are the mean-centered raw
RGB pixel intensity values. These values are forward propagated through five convolutional
layers (with pooling and ReLU non-linearities applied after certain convolutional layers) and
three fully-connected layers to determine its final neuron activities: a distribution over the
task’s 1000 object categories.

I refer to the original paper for a detailed discussion of the architecture and training
protocol, which we closely followed with the exception of a few small differences in the input
data: (1) I ignored the images’ original aspect ratio and warp them to 256×256, rather than
resizing and cropping to preserve the proportions; (2) Images are cropped to 227×227 rather
than 224 × 224 as in the original paper, due to the difference in the convolutional layers’
implementations; (3) I did not perform data augmentation by adding random multiples of
the principle components of the RGB pixel values throughout the dataset, which was used as
a way of capturing invariance to changes in illumination and color. For training, 90 epochs
through the data are carried out, with an initial learning rate of 0.01 and dropped by a factor
of 10 after epochs 25, 50, and 75.

The model, when trained with Caffe, took about 6 days to converge on a single K20
GPU. The final model achieved a top-1 error of 41.7%, which is 1% shy of the performance
reported in [65]. According to the authors, the data augmentation accounts for about 1%
performance difference, which explains most of the networks’ performance discrepancy.

5The model entered into the competition actually achieved a top-1 validation error rate of 36.7% by
averaging the predictions of 7 structurally identical models that were initialized and trained independently.
We trained only a single instance of the model; hence we refer to the single model error rate of 40.7%.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 74

Architecture Forward Pass Backward Pass
GPU 2.38 4.42
CPU 28.76 54.99

Table 6.1: The computation time of both the forward and backward pass, on both GPUs
and CPUs, using a batch size of 256. The computation time reported is on each image in
milliseconds, averaged over 10 independent batches.

GPU Forward Time Distribution

16.9%

21.9%

17.7%

17.8%

17.8%

conv1
16.9%
relu1
0.7%
pool1
1%

conv2
21.9%
pool2
0.7%
norm2
0.5%

conv3
17.8%

relu3
0.2%

conv4
17.8%

conv5
17.7%

fc6
1.8%

fc7
0.8%

CPU Forward Time Distribution

19.6%

4%

23.7%

9.4%

14.7%

18.7%

conv1
19.6%
relu1
1%

pool1
4%

norm1
1.2%
conv2
23.7%
relu2
0.4%

pool2
1.6%

norm2
0.6%

conv3
18.7%

conv4
14.7%

conv5
9.4%

fc6
2.6%

Figure 6.1: Computation time distribution of individual layers, on both GPUs and CPUs
for the forward pass.

6.3 Time Analysis

It is of particular interest to analyze the time distribution over different layers, and over dif-
ferent computation architectures. In our earlier publication [31], we presented a preliminary
analysis of per-layer speed distributions6. In this section, I will provide a more complete
analysis, which hopefully provides more insights into further optimization of the learned
networks.

I first compare the computation time of both the forward and backward pass, on both
GPUs and CPUs, using a batch size of 256 which is typical during training time. Table
6.1 summarizes the computation time of each component. In general, using a GPU speeds
computation by about 10 times, both in the forward and the backward pass. Considering
the fact that training the ImageNet takes about a week as also independently reported
by multiple research papers, GPUs do serve as a more cost-effective solution, especially
considering the fact that computation could be further speeded up with multiple GPUs on
the same computer.

Further, Figure 6.1 shows the computation time distribution of individual layers on both
GPUs and CPUs for the forward pass. The backward pass distribution is similar so they

6In all experiments below, I will omit the data layer, whose speed is largely dependent on hardware such
as hard disk read speed, and is of less interest.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 75

are omitted here. It could be observed that both platforms spend most computation time
on dense convolution and fully connected layers, but the GPU is better capable of handling
layers that are memory-bounded, such as pooling and normalization, possibly due to the
high memory bandwidth inside the GPU.

It is usually the case that computation is carried out in minibatches. This comes due
to 2 reasons: (a) the stochastic gradient descent itself has been shown to work well with
minibatches, and (b) minibatches usually amortizes certain computation such as convert-
ing matrix-vector multiplication to matrix-matrix multiplication, making computation more
efficient than single inputs.

To analyze how the batch size affects the overall computation time, I will use the forward
pass only with the GPU computation, and vary the batch size from 1 to 256, which is the
range one usually chooses batch sizes from. The absolute time spent by each layer per image
is shown in Figure 6.2. Note that we only visualize the eight most time-consuming layers,
and omit computationally inexpensive layers such as pooling and ReLU. In total, the rest of
the layers takes less than 5% of the total computation time (see Figure 6.2)

Similar to what have been shown in [31], when single images are fed into the network,
the fully-connected layers takes most computation time, almost three times as expensive
as the convolution layers. However, with minibatches, the computation time of the fully
connected layers are quickly amortized, eventually only accounting for less than 5% of the
total computation time.

Based on the results in the two subsections above, I make the following notes:

1. In a deployed system such as an online API or a video processing application, one may
group requests in batches (such as aggregating multiple frames) to more efficiently use
the computation resource.

2. When single-image processing is a must, optimization on the fully connected layers are
necessary, especially to reduce the number of hidden units. It is worth pointing out that
the Nyström sampling perspective I discussed in earlier chapters may be particularly
helpful in this case.

3. Convolutional layers, even when carried out with single images, is already efficient
enough. At some level, this contradicts with common belief that minibatches have to
be used for efficient computation. As a result, it is possible to use convolutional layers
on a very large image with little loss of efficiency.

4. While most existing detection approaches attack the detection problem in a separately
designed paradigm, which first finds bounding box proposals with low-level cues and
then perform classification on each bounding box, the efficiency of convolutional layers
makes it applicable to perform detection in a sliding window fashion. Note that in
detection, the fully-connected layers could be trivially converted to convolutional layers,
making the whole pipeline highly efficient.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 76

Absolute time / image

conv1
conv2
conv3
conv4
conv5
fc6
fc7
fc8

0 2.5 5 7.5 10

1

2

4

8

16

32

64

128

256

Time (in milliseconds)

B
at
ch
 s
iz
e

Computation Time Distribution

conv1
conv2
conv3
conv4
conv5
fc6
fc7
fc8

0 0.25 0.5 0.75 1

1

2

4

8

16

32

64

128

256

Percentage of time

B
at
ch
 S
iz
e

Figure 6.2: Top: absolute computation time spent on each layer per image, when the batch
size varies from 1 to 256. Bottom: an alternative view of the top chart, showing the relative
percentage of computation time by each layer. Note that in both figures, low-cost layers
such as pooling and ReLU are not shown, which accounts for the 5% unoccupied percentage
in the bottom figure.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 77

6.4 On the Effectiveness of Feature Transfer

Since the network is trained with a large number of images and a large number of classes, a
reasonable conjecture is that intermediate representations in this network will be useful as a
general-purpose feature that performs well on related tasks, in a feature transfer fashion. In
this section, a systematic examination is carried out to verify to what extent such conjecture
holds.

Specifically, we present experimental results on multiple standard computer vision bench-
marks, comparing many possible featurization and classification approaches. In each of the
experiments, we take the activations of the nth hidden layer of the deep convolutional neural
network described in the previous section as a feature. The following layers are used for
evaluation: (1) FC7, which denotes features taken from the final hidden layer – i.e., just
before propagating through the final fully connected layer to produce the class predictions;
(2) FC6, which is the activations of the layer before FC7, and (3) POOL5, which is the
last set of activations that has been fully propagated through the convolutional layers of
the network. We chose not to evaluate features from any earlier in the network, as the
earlier convolutional layers are unlikely to contain a richer semantic representation than the
later features which form higher-level hypotheses from the low to mid-level local information
in the activations of the convolutional layers. Because we are investigating the use of the
network’s hidden layer activations as features, all of its weights are frozen to those learned
on the ILSVRC2012 dataset.7 All images are preprocessed using the same procedure as in
ILSVRC: taking features on the center 227× 227 crop of the 256× 256 resized image.

We present results on multiple datasets to evaluate the strength of Caffe for basic object
recognition, domain adaptation, fine-grained recognition, and scene recognition. These tasks
each differ somewhat from that for which the architecture was trained, together representing
much of the contemporary visual recognition spectrum.

6.4.1 General Object Recognition

To analyze the ability of the deep features to transfer to basic-level object category recog-
nition, we evaluate them on the Caltech-101 dataset [36]. In addition to directly evaluating
linear classifier performance on FC6 and FC7, we also report results using the dropout regu-
larization technique proposed by [49], which is also present in the Imagenet training phase.
At training time, this technique works by randomly setting half of the activations (here, our
features) in a given layer to 0. At test time, all activations are multiplied by 0.5. Dropout
was used successfully by [65] in layers 6 and 7 of their network; hence we study the effect of
the technique when applied to the features derived from these layers.

In each evaluation, the classifier, a logistic regression (LogReg) or support vector machine
(SVM), is trained on a random set of 30 samples per class (including the background class),
and tested on the rest of the data, with parameters cross-validated for each split on a 25

7We also experimented with the equivalent feature using randomized weights and found it to have
performance comparable to traditional hand-designed features.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 78

POOL5 FC6 FC7

LogReg 63.29± 6.6 84.30± 1.6 84.87± 0.6
LogReg with Dropout - 86.08± 0.8 85.68± 0.6
SVM 77.12± 1.1 84.77± 1.2 83.24± 1.2
SVM with Dropout - 86.91± 0.7 85.51± 0.9
Yang et al. [119] 84.3
Jarrett et al. [53] 65.5

Table 6.2: Average accuracy per class on Caltech-101 with 30 training samples per class
across three hidden layers of the network and two classifiers. Our result from the training
protocol/classifier combination with the best validation accuracy – SVM with Layer 6 (+
dropout) features – is shown in bold.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Num Train per Category

M
e
a
n
 A

c
c
u
ra

c
y
 p

e
r 

C
a
te

g
o
ry

 

 

LogReg DeCAF6 w/ Dropout

SVM DeCAF6 w/ Dropout

Yang et al. (2009)

Figure 6.3: Average accuracy per class on Caltech-101 at varying training set sizes.

train/5 validation sub-split of the training data. The results in Table 6.2 are reported in
terms of mean accuracy per category averaged over five data splits.

Our top-performing method (based on validation accuracy) trains a linear SVM on FC6

with dropout, with test set accuracy of 86.9%. The POOL5 features perform substantially
worse than either the FC6 or FC7 features, and hence we do not evaluate them further in this
work. The FC7 features generally have accuracy about 1-2% lower than the FC6 features on
this task. The dropout regularization technique uniformly improved results by 0-2% for each
classifier/feature combination. When trained on the deep features, the SVM and logistic
regression classifiers perform roughly equally well on this task.

We compare our performance against the current state-of-the-art on this benchmark
from [119], a method employing a combination of 5 traditional hand-engineered image fea-
tures followed by a multi-kernel based classifier. Our top-performing method outperforms
this method by 2.6%. Note that it is likely that our features could be added to the set of
hand-engineered features inside of the method of [119] to achieve even higher performance,



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 79

but we focus here only on very simple, fast methods to demonstrate the representational
strength of the features alone. Our method also outperforms by over 20% the two-layer con-
volutional network of [53], demonstrating the importance of the depth of the network used
for our feature. Note that unlike our method, these approaches from the literature do not im-
plicitly leverage an outside large-scale image database like ImageNet. The performance edge
of our method over these approaches demonstrates the importance of multi-task learning
when performing object recognition with sparse data like that available in the Caltech-101
benchmark.

To further explore the impact of sparse training data on our method’s performance, we
also show how performance of the two Layer 6 + dropout methods above vary with the
number of training cases per category, plotted in Figure 6.3. Results are again given in
terms of mean accuracy per class averaged across five random data splits, and parameters
in this case were kept fixed. The ithtraining set split at size M is a subset of the ith split at
size N for any N > M to ensure consistency between results. Surprisingly, with just a single
labeled instance per category (one-shot learning) we are able to learn a reasonably useful
classifier on the 102-category classification task, achieving accuracy of 33.0% compared to
chance accuracy of < 1%. This suggest that with sufficiently strong representations like the
ones in this thesis, useful models of visual categories can often be learned from just a single
positive example.

6.4.2 Domain Adaptation

We next evaluate the deep features for use on the task of domain adaptation. For our
experiments we use the benchmark Office dataset [95].The dataset contains three domains:
Amazon, which consists of product images taken from amazon.com; and Webcam and Dslr,
which consist of images taken in an office environment using a webcam or digital SLR camera,
respectively.

In the domain adaptation setting, we are given a training (source) domain with labeled
training data and a distinct test (target) domain with either a small amount of labeled data
or no labeled data. We will experiment within the supervised domain adaptation setting,
where there is a small amount of labeled data available from the target domain.

Most prior work for this dataset uses SURF [4] interest point features (available for down-
load with the dataset). To illustrate the ability of deep features to be robust to resolution
changes, we use the t-SNE [79] algorithm to project both SURF and FC6, computed for
Webcam and Dslr, into a 2D visualizable space (See Figure 6.4). We visualize an image on
the point in space corresponding to its low dimension projected feature vector. We find that
the deep features not only provides better within category clustering, but also clusters same
category instances across domains, effectively undoing the domain bias, or the “dataset bias”
as described by Torralba and Efros [110].

We validate this conclusion with a quantitative experiment on the Office dataset. Table
6.3 presents multi-class accuracy averaged across 5 train/test splits for the domain shifts
Amazon→Webcam and Dslr → Webcam. We use the standard experimental setup first pre-

amazon.com


CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 80

Figure 6.4: Visualization of the webcam (green) and dslr (blue) domains using the original
released SURF features (left) and FC6 (right). The figure is best viewed by zooming in to see
the images in local regions. All images from the scissor class are shown enlarged. They are
well clustered and overlapping in both domains with our representation, while SURF only
clusters a subset and places the others in disjoint parts of the space, closest to distinctly
different categories such as chairs and mugs.

Amazon → Webcam Dslr → Webcam

SURF FC6 FC7 SURF FC6 FC7

LogReg(S) 9.63± 1.4 48.58± 1.3 53.56± 1.5 24.22± 1.8 88.77± 1.2 87.38± 2.2

SVM(S) 11.05± 2.3 52.22± 1.7 53.90± 2.2 38.80± 0.7 91.48± 1.5 89.15± 1.7

LogReg(T) 24.33± 2.1 72.56± 2.1 74.19± 2.8 24.33± 2.1 72.56± 2.1 74.19± 2.8

SVM(T) 51.05± 2.0 78.26± 2.6 78.72± 2.3 51.05± 2.0 78.26± 2.6 78.72± 2.3

LogReg(ST) 19.89± 1.7 75.30± 2.0 76.32± 2.0 36.55± 2.2 92.88± 0.6 91.91± 2.0

SVM(ST) 23.19± 3.5 80.66± 2.3 79.12± 2.1 46.32± 1.1 m94.79± 1.2 92.96± 2.0

[26] 40.26± 1.1 m82.14± 1.9 81.65± 2.4 55.07± 3.0 91.25± 1.1 89.52± 2.2

[50] 37.66± 2.2 80.06± 2.7 80.37± 2.0 53.65± 3.3 93.25± 1.5 91.45± 1.5

[45] 39.80± 2.3 75.21± 1.2 77.55± 1.9 39.12± 1.3 88.40± 1.0 88.66± 1.9

[16] 58.85 78.21

Table 6.3: Deep features dramatically outperforms the baseline SURF feature available with
the Office dataset as well as the deep adaptive method of [16]. We report average multi-class
accuracy using both standard and adaptive classifiers, changing only the input feature from
SURF to deep features. Surprisingly, in the case of Dslr→Webcam the domain shift is largely
non-existent with the new features.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 81

8

7

6

5

4

3

2

10

DPM Detections Parts DPD

Figure 6.5: The pipeline of the deformable part descriptor (DPD) on a sample test images.
It uses DPM for part localization and then uses learned pooling weights for the final pose-
normalized representation.

Method Accuracy

FC6 58.75
DPD + FC6 64.96

DPD [124] 50.98
POOF [7] 56.78

Table 6.4: Accuracy on the Caltech-UCSD bird dataset.

sented in [95]. To compare SURF with the FC6 and FC7 features, we report the multi-class
accuracy for each, using an SVM and Logistic Regression both trained in 3 ways: with only
source data (S), only target data (T), and source and target data (ST). We also report results
for three adaptive methods run with each deep feature we consider as input. Finally, for
completeness we report a recent and competing deep domain adaptation result from [16].
It is observed that by adopting deep features alone, one could dramatically outperform the
baseline SURF feature available with the Office dataset as well as the deep adaptive method
of [16].

6.4.3 Fine-Grained Recognition

We tested the performance of deep features on the task of subcategory recognition. To this
end, we adopted one of its most popular tasks - the Caltech-UCSD birds dataset [113], and
compare the performance against several state-of-the-art baselines.

Following common practice in the literature, we adopted two approaches to perform
classification. Our first approach adopts an ImageNet-like pipeline, in which we followed



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 82

the existing protocol by cropping the images regions 1.5× the size of the provided bounding
boxes, resizing them 256×256 and then feeding them into the convolutional pipeline to get
the features for classification. For simplicity, we computed FC6 and trained a multi-class
logistic regression on top of the features.

Our second approach, we tested the deep features in a pose-normalized setting using
the deformable part descriptors (DPD) method [124]. Inspired by the deformable parts
model [39], DPD explicitly utilizes the part localization to do semantic pooling. Specifically,
after training a weakly-supervised DPM on bird images, the pool weight for each part of
each component is calculated by using the key-point annotations to get cross-component
semantic part correspondence. The final pose-normalized representation is computed by
pooling the image features of predicted part boxes using the pooling weights. Based on
the DPD implementation provided by the authors, we applied deep feature extraction in
the same pre-trained DPM model and part predictions and used the same pooling weights.
Figure 6.5 shows the DPM detections and visualization of pooled DPD features on a sample
test image. As our first approach, we resized each predicted part box to 256 × 256 and
computed FC6 to replace the KDES image features [8] used in the original DPD paper [124].

Our performance as well as those from the literature are listed in Table 6.4. Deep features
together with a simple logistic regression already obtains a significant performance increase
over existing approaches, indicating that such features, although not specifically designed to
model subcategory-level differences, captures such information well. In addition, explicitly
taking more structured information such as part locations still helps, and provides another
significant performance increase, obtaining an accuracy of 64.96%, compared to the 50.98%
accuracy reported in [124]. It also outperforms POOF [7], to our knowledge the best accuracy
reported in the literature prior to this work.

We note again that in all the experiments above, no fine-tuning is carried out on the lower-
level layers, since our main interest is to analyze how well a feature extraction pipeline trained
with a different objective generalizes to different tasks. To obtain the best possible result
one may want to perform a full back-propagation, as have been shown effective in specific
applications like detection [44]. However, the fact that we see a significant performance
increase without fine-tuning suggests that a pre-trained deep network may already serve as
a good off-the-shelf visual representation without heavy computation.

6.4.4 Scene Recognition

Finally, we evaluate the deep features on the scene recognition benchmarks, namely the
SUN-397 large-scale scene recognition database [115]. Unlike object recognition, wherein
the goal is to identify and classify an object which is usually the primary focus of the image,
the goal of a scene recognition task is to classify the scene of the entire image. In the SUN-
397 database, there are 397 semantic scene categories including abbey, diner, mosque, and
stadium. Because the Caffe features are learned on ILSVRC, an object recognition database,
we are applying it to a task for which it was not designed. Hence we might expect this task



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 83

FC6 FC7

LogReg m40.94± 0.3 40.84± 0.3
SVM 39.36± 0.3 40.66± 0.3
Xiao et al. [115] 38.0

Table 6.5: Average accuracy per class on SUN-397 with 50 training samples and 50 test
samples per class, across two hidden layers of the network and two classifiers. Note that the
result from the training protocol/classifier combination with the best validation accuracy is
FC7, while FC6 has the best testing accuracy. However the difference between them is not
statistically significant.

to be very challenging for these features, unless they are highly generic representations of
the visual world.

Based on the success of using dropout with FC6 and FC7 for the object recognition task
detailed in Section 6.4.1, we train and evaluate linear classifiers on these dropped-out features
on the SUN-397 database. Table 6.5 gives the classification accuracy results averaged across
5 splits of 50 training images and 50 test images. Parameters are fixed for all methods, but
we select the top-performing method by cross-validation, training on 42 images and testing
on the remaining 8 in each split.

Our top-performing method in terms of cross-validation accuracy was to use FC7 with the
SVM classifier, resulting in 40.94% test performance. Comparing against the method of [115],
the current state-of-the-art method, we see a performance improvement of 2.9% using the
feature off-the-shelf and without any ensembles with additional features. Note that, like the
state-of-the-art method used as a baseline in Section 6.4.1, this method uses a large set of
traditional vision features and combines them with a multi-kernel learning method. The
fact that a simple linear classifier on top of our single image feature outperforms the multi-
kernel learning baseline built on top of many traditional features demonstrates the ability
of deep features to generalize to other tasks and its representational power as compared to
traditional hand-engineered features.

6.5 Emergence of Conceptual Embeddings

In addition to quantitatively analyze the learned features by stacking a classifier on top of
them, an alternate way to qualitatively show the effectiveness of various features is to look
at their distribution in the feature space with respect to high-level semantics, such as object
labels. To this end, we will visualized the model features to gain insight into the semantic
capacity of the various features that have been typically employed in computer vision. In
particular, we compare the learned deep features with GIST features [89] and LLC features
[112].

The features in the following way: we run the t-SNE algorithm [79] to find a 2-dimensional
embedding of the high-dimensional feature space, and plot them as points colored depending



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 84

(a) LLC (b) GIST

(c) POOL1 (d) FC6

Figure 6.6: This figure shows several t-SNE feature visualizations on the ILSVRC-2012
validation set. (a) LLC , (b) GIST, and features derived from our CNN: (c) POOL1, the
first pooling layer, and (d) FC6, the second to last hidden layer. The figure is best viewed
in color.

on their semantic category in a particular hierarchy. We did this on the validation set of
ILSVRC-2012 to avoid overfitting effects (as the deep CNN used in this work was trained
only on the training set), and also use an independent dataset, SUN-397 [115], to evaluate
how dataset bias affects our results (see e.g. [110] for a deeper discussion of this topic). For
high-dimensional features such as LLC, we first generate a random orthonormal matrix and
perform dimensionality reduction to obtain a 512-dimensional feature space. It is known from
the JohnsonLindenstrauss lemma that such random projection preserves Euclidean distance
to a satisfying granularity, thus not hurting the final embedding result.

We first visualize the semantic segregation of the model by plotting the embedding of
labels for higher levels of the WordNet hierarchy; for example, a strong feature for visual



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 85

Figure 6.7: In this figure we show how our features trained on ILSVRC-2012 generalized to
SUN-397 when considering semantic groupings of labels. Best viewed in color.

recognition should cluster animals and non-animals instances separately, even though there
is no explicit modeling through the supervised training of the CNN8. Figure 6.6 shows the
features extracted on the validation set using the first pooling layer, and the second to last
hidden layer FC6, showing a clear semantic clustering in the latter but not in the former. This
is compatible with common deep learning knowledge that the first layers learn “low-level”
features, whereas the latter layers learn semantic or “high-level” features.

Furthermore, baseline features such as GIST or LLC fail to capture the semantic dif-
ference in the image (although they show interesting clustering structure). For GIST, it
focuses more on holistic layouts of the objects, but does not take into account specific label
information. For LLC, the embedding is highly sparse, possibly due to the fact that LLC is
a highly over-complete feature designed to work well with linear kernels, effectively pulling
all data points far from each other.

More interestingly, we note that such semantic segregation is, at least to some extent,
transferrable to related but different datasets. In Figure 6.7 we visualize the top performing
features (FC6) on the SUN-397 dataset, also embedded with t-SNE in a two dimensional
space. Although the features are never trained to distinguish scenes and have not seen such
labels, they show very good clustering of semantic classes (e.g., indoor vs. outdoor). This
suggests that intermediate layer outputs serve as good features for general object recognition
tasks, considering the case where the object class that we are trying to detect is not in the
original object pool of ILSVRC-2012.

8We note that during training, labels are considered flat, i.e., “cat” is as negative as “car” for a dog
image. Thus, the semantic segregation of high-level clusters should be interpreted as emerging from data,
not supervised information.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 86

6.5.1 Perceptual Embedding of Visual Concepts: A Conjecture

It is worth noting that the natural emergence of concept-level grouping is closely related
to the concept learning framework I proposed in the previous chapter. Specifically, existing
concept learning frameworks requires a pre-designed hierarchy, which defines the “closeness”
between various object categories in a conceptual space, to be provided as oracle knowledge.
While this is available in specific use cases such as WordNet, it is nonetheless complete, and
determining the correct conceptual hierarchy is an open problem yet to be explored.

With the intermediate features from a deep model, here I present a conjecture that
grounds semantics directly in the perceptual space obtained from deep features, rather than
a separate label hierarchy that is manually constructed. Specifically, one could view the
distance in the embedded space as a measure of semantic closeness. For example, for an
image of dalmatian, closest to it will be other related dalmatians; further in the space
would be other breeds of dogs, other animals, and finally non-animal images. Two possible
directions would naturally follow:

Learning Nested Embeddings What has been shown in the previous section is the
natural emergence of conceptual hierarchy in the flat learning procedure. While this has
already been performing well qualitatively, a natural choice to learn a better embedding
space is to utilize the hierarchy that ImageNet/WordNet provides. Specifically, one would
be able to learn a better embedding with what could be called “nested distance metric
learning”: for a triplet of images such as a dalmatian, a corgi and a tabby cat, one can
enforce relative comparison constraints [100].

Learning Concept Prior With the learned embedded space, one could construct concept
priors and conditionals in the perceptual space following the similar ideas we use for the
conceptual space. One possible concept definition that is most likely to succeed is to define
concepts as Gaussian distributions9 in the perceptual space, with the standard deviation
of the distribution serving as the “width” of the concept: for example, “dog” would have
a larger width than “dalmatian”. The prior of such concepts could then be constructed
on top of the mean and the variance of such gaussian distributions, and a mathematically
convenient choice would be a Wishart distribution, leading to a conjugate prior-conditional
pair.

Interestingly enough, a very similar idea has been proposed by Fei-Fei et al. [37], although
it was only proposed and evaluated in a limited fashion on the Caltech-101 dataset with
conventional, hand-crafted features. A more detailed mathematical analysis as well as large-
scale behavioral experiments will be one of my research directions in the future.

9I propose Gaussian distribution to provide some level of continuity, although one could certainly binarize
the probability to obtain 0-1 predictions.



CHAPTER 6. EMERGENCE OF CONCEPT-LEVEL INFORMATION IN DEEP
NETWORKS 87

6.6 Summary

This chapter serves as the most exploratory chapter of the whole thesis: I presented Caffe,
the open-source deep learning library that allows various research and applications to be
built upon. Based on it, I have presented extensive analysis on how such deep features
behave in various tasks, and propose possible direction towards the main topic of this thesis
- to eventually learn a perceptual embedded space for concept hierarchies.

As a final note, the Caffe package was released in December 2013 and is now under the
2-clause BSD license. More information could be found at http://caffe.berkeleyvision.
org/.

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/


88

Chapter 7

Conclusion

In this thesis I have analyzed two key components in the computer vision research: to learn
better image features with solid theoretical justifications, and to re-visit the existing vision
problem statement to a more practical and human-like one. To this end, I have proposed and
analyzed novel receptive field learning and dictionary learning methods, which is justified
by the Nyström sampling theory, that learns more compact and effective features for object
recognition tasks. Having analyzed the feature generation pipeline, I then move to the more
high-level scrutiny of the current object recognition experimental setting. By combining the
otherwise independently developing computer vision and cognitive science studies, I have
presented the first large-scale system that allows computers to learn and generalize closer to
what a human learner will do. I have also collected a large-scale human behavior database,
which would hopefully enable further research along this research direction.

It is both surprising and thrilling to witness the recent success, or rediscovery as we may
argue, of convolutional neural networks in the object recognition research. I have devoted
the last part of my thesis to making a better engineering system for deep learning research,
as well as providing an extensive analysis on how features learned from the state-of-the-art
CNN pipeline would serve as a general-purpose visual descriptor that could be adopted in
various applications. Computer vision research has always been pushed by great open-source
vision libraries, and it is my sincere hope that my contribution would boost this new field in
the coming years.



89

Bibliography

[1] JT Abbott, JL Austerweil, and TL Griffiths. “Constructing a hypothesis space from
the Web for large-scale Bayesian word learning”. In: Proceedings of the 34th Annual
Conference of the Cognitive Science Society. 2012.

[2] R Ando and T Zhang. “A framework for learning predictive structures from multiple
tasks and unlabeled data”. In: JMLR 6 (2005).

[3] A Argyriou, T Evgeniou, and M Pontil. “Multi-Task Feature Learning”. In: NIPS.
2006.

[4] H Bay, T Tuytelaars, and L Van Gool. “SURF: Speeded Up Robust Features”. In:
ECCV. 2006.

[5] A Berg, J Deng, and L Fei-Fei. ILSVRC 2010. http:/ /www.image- net. org/

challenges/LSVRC/2010/.

[6] A Berg, J Deng, and L Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge
2012”. In: (2012). url: http://www.image-net.org/challenges/LSVRC/2012/.

[7] T Berg and P Belhumeur. “POOF: Part-Based One-vs-One Features for Fine-Grained
Categorization, Face Verification, and Attribute Estimation”. In: CVPR. 2013.

[8] L Bo, X Ren, and D Fox. “Kernel Descriptors for Visual Recognition”. In: NIPS.
2010.

[9] O Boiman, E Shechtman, and M Irani. “In defense of nearest-neighbor based image
classification”. In: CVPR. 2008.

[10] L Bourdev, S Maji, and J Malik. “Describing People: A Poselet-Based Approach to
Attribute Classification”. In: ICCV. 2011.

[11] Y Boureau and J Ponce. “A theoretical analysis of feature pooling in visual recogni-
tion”. In: ICML. 2010.

[12] Y Boureau et al. “Ask the locals: multi-way local pooling for image recognition”. In:
ICCV. 2011.

[13] Y Boureau et al. “Learning mid-level features for recognition”. In: CVPR. 2010.

[14] S Carey. “The child as word learner”. In: Linguistic Theory and Psychological Reality
(1978).

http://www.image-net.org/challenges/LSVRC/2010/
http://www.image-net.org/challenges/LSVRC/2010/
http://www.image-net.org/challenges/LSVRC/2012/


BIBLIOGRAPHY 90

[15] R Caruana. “Multitask Learning”. In: Machine Learning 28 (1997).

[16] S Chopra, S Balakrishnan, and R Gopalan. “DLID: Deep Learning for Domain Adap-
tation by Interpolating between Domains”. In: ICML Workshop on Challenges in
Representation Learning. 2013.

[17] DC Cireşan et al. “High-performance neural networks for visual object classification”.
In: ArXiv e-prints (2011). arXiv: 1102.0183.

[18] A Coates, A Karpathy, and AY Ng. “Emergence of Object-Selective Features in Un-
supervised Feature Learning”. In: NIPS. 2012.

[19] A Coates, H Lee, and AY Ng. “An analysis of single-layer networks in unsupervised
feature learning”. In: AISTATS. 2010.

[20] A Coates and A Ng. “The importance of encoding versus training with sparse coding
and vector quantization”. In: ICML. 2011.

[21] A Coates and AY Ng. “Selecting Receptive Fields in Deep Networks”. In: NIPS. 2011.

[22] A Coates et al. “Deep learning with COTS HPC systems”. In: Proceedings of The
30th International Conference on Machine Learning. 2013, pp. 1337–1345.

[23] C Cortes, M Mohri, and A Talwalkar. “On the Impact of Kernel Approximation on
Learning Accuracy”. In: AISTATS. 2010.

[24] N Dalal. “Histograms of oriented gradients for human detection”. In: CVPR. 2005.

[25] N Dalal and B Triggs. “Histograms of oriented gradients for human detection”. In:
CVPR. 2005.

[26] H Daume III. “Frustratingly Easy Domain Adaptation”. In: ACL. 2007.

[27] J Dean et al. “Large Scale Distributed Deep Networks”. In: NIPS. 2012.

[28] J Deng et al. “Hedging Your Bets: Optimizing Accuracy-Specificity Trade-offs in
Large Scale Visual Recognition”. In: CVPR. 2012.

[29] J Deng et al. “ImageNet: A large-scale hierarchical image database”. In: CVPR. 2009.

[30] M Denil and N de Freitas. “Recklessly Approximate Sparse Coding”. In: arXiv preprint
arXiv:1208.0959 (2012).

[31] J Donahue et al. “Decaf: A deep convolutional activation feature for generic visual
recognition”. In: arXiv preprint arXiv:1310.1531 (2013).

[32] J Duchi, E Hazan, and Y Singer. “Adaptive subgradient methods for online learning
and stochastic optimization”. In: JMLR 12 (2010), pp. 2121–2159.

[33] M Everingham et al. “The PASCAL Visual Object Classes (VOC) Challenge”. In:
IJCV 88.2 (2010), pp. 303–338.

[34] A Farhadi et al. “Describing objects by their attributes”. In: CVPR. 2009.

[35] R Farrell et al. “Birdlets: Subordinate categorization using volumetric primitives and
pose-normalized appearance”. In: CVPR. 2011.

http://arxiv.org/abs/1102.0183


BIBLIOGRAPHY 91

[36] L Fei-Fei, R Fergus, and P Perona. “Learning generative visual models from few
training examples: an incremental Bayesian approach tested on 101 object categories”.
In: CVPR. 2004.

[37] L Fei-Fei, R Fergus, and P Perona. “One-shot learning of object categories”. In: Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on 28.4 (2006), pp. 594–
611.

[38] C Fellbaum. “WordNet”. In: Theory and Applications of Ontology: Computer Appli-
cations (2010), pp. 231–243.

[39] P Felzenszwalb et al. “Object Detection with Discriminatively Trained Part-Based
Models”. In: PAMI 32 (2010).

[40] J Feng et al. “Geometric Lp-norm Feature Pooling for Image Classification”. In:
CVPR. 2011.

[41] S Fidler and A Leonardis. “Towards Scalable Representations of Object Categories:
Learning a Hierarchy of Parts”. In: CVPR. 2007.

[42] BJ Frey and D Dueck. “Clustering by passing messages between data points”. In:
Science 315.5814 (2007), pp. 972–976.

[43] T Gao and D Koller. “Discriminative learning of relaxed hierarchy for large-scale
visual recognition”. In: ICCV. 2011.

[44] R Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: arXiv preprint arXiv:1311.2524 (2013).

[45] B Gong et al. “Geodesic Flow Kernel for Unsupervised Domain Adaptation”. In:
CVPR. 2012.

[46] LK Hansen and J Larsen. “Linear unlearning for cross-validation”. In: Advances in
Computational Mathematics 5.1 (1996), pp. 269–280.

[47] Z Harchaoui et al. “Large-scale image classification with trace-norm regularization”.
In: CVPR. 2012.

[48] G Hinton and R Salakhutdinov. “Reducing the Dimensionality of Data with Neural
Networks”. In: Science (2006).

[49] G Hinton et al. “Improving Neural Networks by Preventing Co-adaptation of Feature
Detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[50] J Hoffman et al. “Efficient Learning of Domain-invariant Image Representations”. In:
ICLR. 2013.

[51] DH Hubel and TN Wiesel. “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex”. In: The Journal of Physiology 160 (1962),
pp. 106–154.

[52] L Itti and C Koch. “Computational modeling of visual attention”. In: Nature reviews
neuroscience (2001).



BIBLIOGRAPHY 92

[53] K Jarrett et al. “What is the Best Multi-Stage Architecture for Object Recognition?”
In: ICCV. 2009.

[54] R Jenatton, G Obozinski, and F Bach. “Structured sparse principal component anal-
ysis”. In: AISTATS. 2010.

[55] Y Jia and T Darrell. “Latent Task Adaptation with Large-scale Hierarchies”. In:
ICCV. 2013.

[56] Y Jia, C Huang, and T Darrell. “Beyond spatial pyramids: Receptive field learning
for pooled image features”. In: CVPR. 2012.

[57] Y Jia, O Vinyals, and T Darrell. “On compact codes for spatially pooled features”.
In: ICML. 2013.

[58] Y Jia et al. “Visual Concept Learning: Combining Machine Vision and Bayesian
Generalization on Concept Hierarchies”. In: NIPS. 2013.

[59] D Jurafsky and JH Martin. Speech & Language Processing. Pearson Prentice Hall,
2000.

[60] S Karayev et al. “A Probabilistic Model for Recursive Factorized Image Features”.
In: CVPR. 2011.

[61] L Kennedy and A Hauptmann. “LSCOM Lexicon Definitions and Annotations (Ver-
sion 1.0)”. In: (2006).

[62] A Khosla et al. “Novel dataset for fine-grained image categorization”. In: CVPR
FGVC workshop. 2011.

[63] JJ Koenderink and AJ van Doorn. “The structure of locally orderless images”. In:
IJCV 31.2/3 (1999), pp. 159–168.

[64] A Krizhevsky. “Convolutional deep belief networks on CIFAR-10”. In: Technical Re-
port (2010).

[65] A Krizhevsky, I Sutskever, and GE Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: NIPS. 2012.

[66] B Kulis, K Saenko, and T Darrell. “What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms”. In: CVPR. 2011.

[67] S Kumar, M Mohri, and A Talwalkar. “Sampling methods for the Nyström method”.
In: JMLR 13.Apr (2012), pp. 981–1006.

[68] K Labusch, E Barth, and T Martinetz. “Simple method for high-performance digit
recognition based on sparse coding”. In: IEEE TNN 19.11 (2008), pp. 1985–1989.

[69] F Lauer, CY Suen, and G Bloch. “A trainable feature extractor for handwritten digit
recognition”. In: Pattern Recognition 40.6 (2007), pp. 1816–1824.

[70] S Lazebnik, C Schmid, and J Ponce. “Beyond bags of features: Spatial pyramid match-
ing for recognizing natural scene categories”. In: CVPR. 2006.



BIBLIOGRAPHY 93

[71] Q Le et al. “Building high-level features using large scale unsupervised learning”. In:
ICML. 2012.

[72] Q Le et al. “Learning hierarchical invariant spatio-temporal features for action recog-
nition with independent subspace analysis”. In: CVPR. 2011.

[73] Y LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”.
In: Neural Computation (1989).

[74] Y LeCun et al. “Gradient-based learning applied to document recognition”. In: Proc.
of the IEEE 86.11 (1998), pp. 2278–2324.

[75] L Li et al. “Object bank: A high-level image representation for scene classification &
semantic feature sparsification”. In: NIPS. 2010.

[76] LJ Li, R Socher, and L Fei-Fei. “Towards total scene understanding: Classification,
annotation and segmentation in an automatic framework”. In: CVPR. 2009.

[77] Y Lin et al. “Large-scale image classification: fast feature extraction and svm train-
ing”. In: CVPR. 2011.

[78] D Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: IJCV 60
(2004).

[79] L van der Maaten and GE Hinton. “Visualizing Data using t-SNE”. In: JMLR 9
(2008).

[80] J Mairal et al. “Online learning for matrix factorization and sparse coding”. In: JMLR
11 (2010), pp. 19–60.

[81] EM Markman. Categorization and naming in children: Problems of induction. MIT
Press, 1991.

[82] G Mesnil et al. “Unsupervised and Transfer Learning Challenge: a Deep Learning
Approach.” In: JMLR 27 (2012).

[83] CD Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001.

[84] A Oliva and A Torralba. “Modeling the shape of the scene: A holistic representation
of the spatial envelope”. In: International journal of computer vision 42.3 (2001),
pp. 145–175.

[85] B Olshausen and DJ Field. “Sparse coding with an overcomplete basis set: a strategy
employed by V1?” In: Vision research 37.23 (1997), pp. 3311–3325.

[86] D Parikh and K Grauman. “Relative attributes”. In: ICCV. 2011.

[87] S Perkins, K Lacker, and J Theiler. “Grafting: fast, incremental feature selection by
gradient descent in function space”. In: JMLR 3 (2003), pp. 1333–1356.

[88] A Quattoni, M Collins, and T Darrell. “Transfer learning for image classification with
sparse prototype representations”. In: CVPR. 2008.

[89] A Quattoni and A Torralba. “Recognizing indoor scenes”. In: CVPR. 2009.



BIBLIOGRAPHY 94

[90] R Raina et al. “Self-taught learning: transfer learning from unlabeled data”. In: ICML.
2007.

[91] MA Ranzato et al. “Unsupervised learning of invariant feature hierarchies with ap-
plications to object recognition”. In: CVPR. 2007.

[92] X Ren and D Ramanan. “Histograms of Sparse Codes for Object Detection”. In:
CVPR. 2013.

[93] R Rigamonti, MA Brown, and V Lepetit. “Are sparse representations really relevant
for image classification?” In: CVPR. 2011.

[94] B Russell et al. “LabelMe: a database and web-based tool for image annotation”. In:
International journal of computer vision 77.1-3 (2008), pp. 157–173.

[95] K Saenko et al. “Adapting visual category models to new domains”. In: ECCV. 2010.

[96] R Salakhutdinov, A Torralba, and JB Tenenbaum. “Learning to share visual appear-
ance for multiclass object detection”. In: CVPR. 2011.

[97] J Sánchez and F Perronnin. “High-dimensional signature compression for large-scale
image classification”. In: CVPR. 2011.

[98] A Saxe et al. “On random weights and unsupervised feature learning”. In: ICML.
2011.

[99] M Schmidt et al. “Structure learning in random fields for heart motion abnormality
detection”. In: CVPR. 2008.

[100] M Schultz and T Joachims. “Learning a Distance Metric from Relative Comparisons.”
In: NIPS. 2003.

[101] RN Shepard. “Toward a universal law of generalization for psychological science”. In:
Science 237.4820 (1987), pp. 1317–1323.

[102] S Singh, A Gupta, and A Efros. “Unsupervised Discovery of Mid-Level Discriminative
Patches”. In: ECCV. 2012.

[103] Ameet Talwalkar and Afshin Rostamizadeh. “Matrix coherence and the nystrom
method”. In: arXiv preprint arXiv:1004.2008 (2010).

[104] JB Tenenbaum. “Bayesian modeling of human concept learning”. In: NIPS. 1999.

[105] JB Tenenbaum and TL Griffiths. “Generalization, similarity, and Bayesian inference”.
In: Behavioral and Brain Sciences 24.4 (2001), pp. 629–640.

[106] Joshua B Tenenbaum, Thomas L Griffiths, Charles Kemp, et al. “Theory-based
Bayesian models of inductive learning and reasoning”. In: Trends in cognitive sci-
ences 10.7 (2006), pp. 309–318.

[107] S Thrun. “Is Learning the n-th Thing any Easier Than Learning the First?” In: NIPS.
1996.



BIBLIOGRAPHY 95

[108] R Tibshirani. “Regression shrinkage and selection via the lasso”. In: JRSS Series B
(1996), pp. 267–288.

[109] A Torralba. “Contextual priming for object detection”. In: IJCV 53.2 (2003), pp. 169–
191.

[110] A Torralba and A Efros. “Unbiased Look at Dataset Bias”. In: CVPR. 2011.

[111] L Torresani, M Szummer, and A Fitzgibbon. “Efficient object category recognition
using classemes”. In: ECCV. 2010.

[112] J Wang et al. “Locality-constrained linear coding for image classification”. In: CVPR.
2010.

[113] P Welinder et al. Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-001. California
Institute of Technology, 2010.

[114] S Winder and M Brown. “Learning local image descriptors”. In: CVPR. 2007.

[115] J Xiao et al. “SUN Database: Large-scale Scene Recognition from Abbey to Zoo”. In:
CVPR. 2010.

[116] F Xu and JB Tenenbaum. “Word learning as Bayesian inference”. In: Psychological
Review 114.2 (2007), pp. 245–272.

[117] J Yang, K Yu, and Y Gong. “Linear spatial pyramid matching using sparse coding
for image classification”. In: CVPR. 2009.

[118] J Yang, K Yu, and T Huang. “Efficient highly over-complete sparse coding using a
mixture model”. In: ECCV. 2010.

[119] J Yang et al. “Group-Sensitive Multiple Kernel Learning for Object Categorization”.
In: ICCV. 2009.

[120] J Yang et al. “Linear spatial pyramid matching using sparse coding for image classi-
fication”. In: CVPR. 2009.

[121] K Yu and T Zhang. “Improved local coordinate coding using local tangents”. In:
ICML. 2010.

[122] MD Zeiler, GW Taylor, and R Fergus. “Adaptive Deconvolutional Networks for Mid
and High Level Feature Learning”. In: ICCV. 2011.

[123] K Zhang, IW Tsang, and JT Kwok. “Improved Nyström low-rank approximation and
error analysis”. In: ICML. 2008.

[124] N Zhang et al. “Deformable Part Descriptors for Fine-grained Recognition and At-
tribute Prediction”. In: ICCV. 2013.

[125] L Zhu, Y Chen, and A Yuille. “Unsupervised Learning of a Probabilistic Grammar
for Object Detection and Parsing”. In: NIPS. 2007.

[126] H Zou and T Hastie. “Regularization and variable selection via the elastic net”. In:
JRSS 67.2 (2005), pp. 301–320.


	Contents
	Introduction
	Receptive Field Learning for Image Features
	Background
	The Classification Pipeline
	Receptive Field Learning for Pooled Image Features
	Fast Approximate Learning with Feature Grafting
	Experiments
	Summary

	Theoretical Analysis for Feature Learning
	The Nyström Sampling Explanation
	Evaluating Bounds for Learned Features
	PADL: Pooling Aware Dictionary Learning
	Experiments
	Summary

	Visual Concept Learning
	The Visual Concept Learning Problem
	Constructing A Large-scale Test Dataset
	Visually-Grounded Bayesian Generalization
	Parameter Estimation
	Terabyte-scale Classifier Training
	Experiments
	Summary

	Latent Task Adaptation with Concept Hierarchies
	Introduction
	Problem Statement
	Linear Time MAP Inference
	Analyzing the Necessity of Task Adaptation
	Experiments
	Summary

	Emergence of Concept-level Information in Deep Networks
	Background
	Caffe: A Convolutional Architecture for Fast Feature Embedding
	Time Analysis
	On the Effectiveness of Feature Transfer
	Emergence of Conceptual Embeddings
	Summary

	Conclusion
	Bibliography

