
SWIFT: Compiled Inference for Probabilistic Programs

Lei Li
Yi Wu
Stuart J. Russell

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-12
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-12.html

March 27, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Swift: Compiled Inference for Probabilistic Programs

Lei Li
Baidu Research

lilei22@baidu.com

Yi Wu
EECS Department

UC Berkeley
jxwuyi@cs.berkeley.edu

Stuart Russell
EECS Department

UC Berkeley
russell@cs.berkeley.edu

Abstract

One long-term goal for research on probabilis-
tic programming languages (PPLs) is efficient in-
ference using a single, generic inference engine.
Many current inference engines are, however, in-
terpreters for the given PP, leading to substan-
tial overhead and poor performance. This paper
describes a PPL compiler, Swift, that generates
model-specific and inference-algorithm-specific
target code from a given PP in the BLOG lan-
guage, in much the same way that a Prolog com-
piler generates code that performs backward-
chaining logical inference for a specific Prolog
program. This approach eliminates a great deal
of interpretation overhead. We evaluate the per-
formance of Swift and existing systems such
as BLOG, BUGS, Church, Stan, and infer.net
on several benchmark problems. In our exper-
iments, Swift’s compiled code runs 100x faster
than the original BLOG engine, and much faster
than other systems on the same models.

1 Introduction

Probabilistic programming languages (PPLs) are a very
promising approach for solving a long-standing problem
in AI, machine learning, and statistics: the provision of
an expressive, general-purpose modeling language capable
of handling uncertainty, combined with a general-purpose
inference engine able to handle any model the user might
construct. The user (and, a fortiori, the brain) should not be
required to carry out machine learning research and imple-
ment new algorithms for each problem that comes along.

PPLs include BUGS [13] (and its variant JAGS [25]),
BLOG [18], Church [6] (and its successor Venture [14]),
Figaro [24], Markov logic networks (MLNs) [26], and
Stan [29]. There have been a number of successes using
PPLs for real applications such as entity resolution [28], ci-
tation matching [22], relation extraction [31], seismic mon-
itoring [2], and decoding CAPTCHAs [15].

There are two main kinds of semantics for PPLs [16]:
1. possible-world semantics, which defines probability
measures over complete assignments to sets of random
variables; 2. random evaluation semantics, which defines
probabilities over stochastic execution traces of a proba-
bilistic program. The former kind includes BUGS, BLOG,
MLN, and Stan. The latter includes Church and Figaro.
A related property of a PPL is declarative versus imper-
ative. The first group of languages are declarative, while
the other are imperative. Not surprisingly the second group
are all embedded languages, inheriting useful capabilities
from their host languages (Lisp for Church and Scala for
Figaro). There are other probabilistic systems that pro-
vide general probabilistic inference capabilities, such as In-
fer.NET [21] and FACTORIE [17]. Both define dependen-
cies using factor graphs and perform inference over factors.
AutoBayes [5] is a program synthesize system for a param-
eterized description of statistical models. Internally it uses
Bayesian networks to describe dependencies. It can au-
tomatically generate optimized code to perform clustering
analysis (through EM-algorithm) and numerical optimiza-
tion. Our main focus in this paper is on compiling declara-
tive PPLs with possible-world semantics—specifically, the
BLOG language—although the approach is applicable to
all other PPLs.

Inference for probabilistic programs (PPs) is very challeng-
ing, and the difficulty increases as the language grows more
expressive. Real-world applications may require discrete
and continuous variables, vector-valued variables, a rich li-
brary of distributions, the ability to describe relations and
functions, and the ability to express open-universe models
that allow for uncertainty about the existence and identity
of objects. For example, the NETVISA seismic monitor-
ing model [2] involves uncertainty about the number of
seismic events that have occurred and the identity of the
seismic event responsible for any particular observation is
unknown. There are several recent algorithms proposed to
solve the inference problem for open-universe probability
models, including likelihood weighting (LW) [19], parental
Metropolis-Hastings (MH) [20], a generalized form of
Gibbs sampling algorithm (Gibbs) [1], and a form of ap-

proximate Bayesian computation (ABC) [15]. All of these
algorithms operate by generating and manipulating data
structures that correspond to possible worlds. While these
algorithms could be improved and entirely new classes of
algorithm are possible, our work in this paper is focused on
achieving orders-of-magnitude improvement in the execu-
tion efficiency of a given algorithmic process.

This improvement is possible in many cases because most
existing PPL inference engines (BUGS, BLOG, Church,
Figaro, and JAGS) are interpreters. (The same is true even
for Bayes net inference algorithms as they are commonly
described and implemented.) What this means is that the
PP—which expresses a probability model—exists within
the inference engine in the form of a data structure (of-
ten after much internal preprocessing); a generic, model-
independent inference algorithm consults this data struc-
ture to work out what calculation to do next. Because the
model is fixed during any given run of the inference engine,
the interpreter style results in a great deal of unnecessary
work at run time answering questions—such as finding de-
pendencies for a given variable, finding the procedure for
sampling a given variable’s conditional distribution, and so
on—whose answers are already known at compile time.
Consider the following simple example of a two-variable
Bayes net, where the task is to perform a Gibbs step on Y :

X Y

Here are the steps taken by a typical inference algorithm:
1. It looks up the parent dependency record for Y , find-
ing only X; 2. It looks up the child dependency record for
Y , finding no children, and looks up their parents (none);
3. It looks up values of the parents (X), children (none) and
children’s parents (none) from the current possible world;
4. It obtains the conditional distribution for Y given its par-
ents by substituting X’s value in Y ’s CPD record, as well
as the conditional distributions of the children (none); 5. It
examines the types of all these conditional distributions to
determine a procedure for sampling from their product; 6. It
calls the procedure with appropriate inputs to generate a
value for Y ; 7. It stores the value of Y into the current pos-
sible world. Little of this work is necessary when the model
is fixed. The compiler can generate model-specific infer-
ence code consisting of step 6, part of 3, and 7. Moreover,
the “current possible world” can often be in the form of
ordinary program variables with fixed machine addresses.
The great majority of the CPU time in the compiled code
should be spent inside the random number generator!

Our profiling results for the current BLOG inference engine
show a significant portion (over 90%) of inference running
time in BLOG is spent on steps other than sampling val-
ues from a conditional distribution, indicating that there is
much to be gained from compilation. Motivated by these
observations, we have developed a compiler, Swift, for PPs
expressed in the BLOG language. (Reasons for choos-

ing BLOG include its expressive power and its relatively
small syntax compared to the embedded languages such as
Church and Figaro.) For a given input PP and choice of
inference algorithm, Swift generates C++ code that imple-
ments the inference algorithm in a form that is specialized
to that particular PP. The C++ code is them compiled to
machine code. For the example above, Swift generates two
C++ subroutines, one for X and one for Y ; each knows
how to sample its own variable from precomputed, cached
Gibbs distributions, indexed by the value of the other vari-
able which is stored in a fixed, known machine address.

The contributions of the paper are as follows:

• We analyze the general software infrastructure re-
quired for compiling generative open-universe PPLs
as well as specific techniques for particular inference
algorithms.
• We describe an implemented, public-domain com-

piler, Swift, for the BLOG language; Swift handles
likelihood-weighting, parental Metropolis-Hasting al-
gorithm and Gibbs sampling for general BLOG mod-
els as well as particle filtering for temporal BLOG
models.
• We report on experiments with a set of benchmark

models as well as real applications, comparing Swift
with the original BLOG engine and (where possible)
with BUGS, Church, Stan, and Infer.NET. The re-
sults show that the code generated by Swift achieves
roughly 100x speedup over the original BLOG engine
and is significantly faster than other PPLs when exe-
cuting comparable algorithms.

There are already existing efforts in compiling model
descriptions into specialized execution code. Auto-
Bayes [5], Infer.NET [21] and Stan [29] generate model-
specific inference code (EM for AutoBayes, Message-
Passing/Gibbs/Expectation-Propagation for Infer.NET, and
Hamiltonian Monte Carlo for Stan) that doesn’t use the
model as a consulting data structure. The work of Huang
et al [9] shares a similar compilation for MAP inference
though their target is arithmetic circuits. All these PPLs are
restricted to Bayesian networks, while our proposed Swift
aims at compiling inference algorithms for open-universe
probability models – its targeted BLOG is a fully expres-
sive PPL with functions, relations, recursions and contin-
gency.

2 Background

This sections describes basic elements of BLOG. We
choose this language since it is based on possible-world se-
mantics and is most expressive among existing languages
of this kind.

2.1 BLOG: syntax and semantics

A BLOG program consists of a list of declaring statements
for type, constant symbols(i.e. objects), fixed function, ran-
dom function, observation (i.e. data), and query. Random
function declarations state the probabilistic dependencies
among the random variables. In addition, the number of
objects that belong to a type in a possible world is defined
through number statements. The syntax is originally de-
scribed in [18] and slightly evolved over years. An example
of defining a Urn-Ball model in BLOG is:

1 type Ball; type Draw; type Color;
2 distinct Color Blue, Green; distinct Draw Draw[2];
3 #Ball ~ UniformInt(1,20);
4 random Color TrueColor(Ball b)
5 ~ Categorical({Blue -> 0.9, Green -> 0.1});
6 random Ball BallDrawn(Draw d)~UniformChoice({b for Ball b});
7 random Color ObsColor(Draw d) ~
8 case TrueColor(BallDrawn(d)) in {
9 Blue -> Categorical({Blue->0.9,Green->0.1}),

10 Green -> Categorical({Blue->0.1,Green->0.9}) };
11 obs ObsColor(Draw[0]) = Green;
12 obs ObsColor(Draw[1]) = Green;
13 query size({b for Ball b});

In this program, three types are declared: Ball, Draw
and Color. There are two colors, Green and Blue,
and two draws (i.e. two trials), which are defined in line
2. The number statement in line 3 declares that the to-
tal number (\#Ball) of ball is randomly distributed w.r.t.
a uniform distribution over 1 to 20. The random func-
tion declaration on line 4 and 5 defines that, for each
ball b, a random variable TrueColor(b) obeying a cat-
egorical distribution with 90% probability being Blue.
Stated in line 6, Balls are drawn with replacement from the
urn, the two draws being BallDrawn(Draw[0]) and
BallDrawn(Draw[1]).

The dependency defined in line 7 to 10 is called context-
specific, since it uses case-in to specify noisy observa-
tions of ObsColor(d) based on the true color of the ball
being drawn. In line 8, TrueColor(BallDrawn(d))
is a contingent variable or a switching variable. Likewise,
BallDrawn(Draw[0]) and BallDrawn(Draw[1])
are contingent on #Ball. A direct function appli-
cation symbol such as ObsColor(d) for a concrete
Draw d corresponds to a basic random variable. In
contrast, a more complex symbol with multiple function
compositions such as TrueColor(BallDrawn(d))
corresponds derived variable. Since the value of
BallDrawn(d) varies among possible worlds, the ref-
erence of TrueColor(BallDrawn(d)) also varies.

Evidence is stated in line 11 and 12 with the obs keyword.
Line 13 issues an query about the total number of balls in
the urn.

Finally, note that this example models uncertainties not
only in values of random variables, but also in the exis-
tence and identity of objects (due to number statement).
We also call this kind of model, an open-universe probabil-
ity model.

To sum up, BLOG is a possible-world-semantics based
PPL that leverages the full expressive power of general con-
tingent open-universe probabilistic models (OUPMs).

2.2 Generic Inference Algorithms

An expected answer to a query in OUPMs is the pos-
terior distribution of the query expression given the ev-
idence. One generic approach to answer such queries
is through Monte Carlo sampling. Existing methods
including rejection sampling, likelihood weighing algo-
rithm(LW) [19], and Markov chain Monte Carlo algorithms
such as parental Metropolis-Hasting algorithm (MH) [20]
and Gibbs sampling [1]. For temporal models (i.e. models
with Timestep), there are sequential Monte Carlo algo-
rithm (SMC) such as particle filtering [7, 3] and Liu-West
filter [12]. Both work for general models with arbitrary de-
pendencies. Liu-West filter works better for models with
both dynamics variables and continuous static parameters.

Before running into the generic inference algorithms, we
introduction the notion of supporting: a variable x (in gen-
eral can be any expression) is said to be supported in partial
possible world PW if x’s parents are instantiated and sup-
ported in PW . Essentially it means all ancestor variables
of x are supported. Note that a variable x’s ancestors can
be different across possibles due to contingent dependen-
cies. We also refer parental distribution of a variable to
its defined conditional probability distribution in its BLOG
program. We summarize these algorithms in Alg. (1,2,3,4).
We use the following convention for these algorithms: M
denotes an input BLOG program (or model), E its evidence,
Q a query, andN denotes the number samples. For particle
filtering, N is the number of particles and T time duration.

Existing systems execute these algorithms in a interpreted
way. Take the LW algorithm (Alg. 1) for an example, the
engine consults the input modelM to obtain a parent vari-
able with respect a possible world (line 5), to sample from
its conditional probability distribution (line 6), and to cal-
culate likelihood (line 8). These motivate our compila-
tion techniques. After compiling into model-specific and
inference-algorithm specific code, the inference code does
not have to take the extra route to consult a modelM.

3 Compiled Inference

We are about to show snippets of machine-written code, be-
cause that is the easier way to both understand and author
machine-writing code: abstract backwards from desired
output (rather than simulate forwards from input). So, what
optimizations are powerful and easy to automate? What op-
timizations are special to probabilistic programming? We
will examine three model-specific optimizations, and six
inference-specific optimizations.

Algorithm 1: Likelihood-Weighting (LW)
Input:M, E , Q, N
Output: H: N samples and their associated weights

1 for i← 1 to N do
2 create empty possible world PWi ← ∅, wi ← 1;
3 foreach evidence ej in E do
4 while ej is not supported in PWi do
5 pick a supported variable x from ancestor set

of ej in PWi;
6 generate a value v from x’s pdf in PWi;
7 PWi ← PWi ∪ {x : v} ;

8 wi ← wi · pdf(ej | PWi);

9 ensure Q is instantiated with a value v in PWi;
10 if Q not instantiated then generate a value v for Q

from Q’s parental distribution in PWi;
11 ;
12 H ← H ∪ {q : (v, wi)};

BLOG
program

Parse Translate Compose Target	
inference	
code	

Absyn IR

Infer.Alg.

Figure 1: Absyn, a BLOG-specific abstract syntax tree, is the
parsed model. IR decorates that with its meaning (resolve key-
words, builtins, . . .). Compose brings in the desired inference
algorithm, producing the last intermediate representation. Final
codegen targets C++.

3.1 Overview

Swift currently has three stages (Figure 1):

1. BLOG-models are parsed into abstract syntax.
2. Model-specific infrastructure choices (datastructures)

are made and recorded, resulting in a new intermediate
representation. See Section 3.2.

3. The selected inference algorithm (likelihood weight-
ing, MCMC, . . .) is combined with, and specialized
for, the model. See Section 3.3).

The final intermediate representation is just an abstract syn-
tax for (a subset of) C++: final codegen is trivial.1 The
key optimizations are in the two internal transformations,
as well as in the optimizations we get for free by targeting
another optimizing compiler.

3.2 Datastructure Optimizations

In BLOG, the basic random variables are types and func-
tions. Consider a snippet of UrnBall:

1Our experiments use Microsoft C++ as the backend; in prin-
ciple any other C++ compiler could be used. It would be inter-
esting to experiment with Clang in particular, in order to leverage
the advantages of LLVM.

Algorithm 2: Metropolis-Hasting sampling (MH)
Input:M, E , Q, N
Output: H: a list of samples for Q

1 PW0 ←LW(M, E , Q, N);
2 for i← 1 to N do
3 PWi ← PWi−1;
4 randomly pick a variable x from PWi ;
5 propose a value v from x’s pdf in PWi;
6 update PWi with {x : v};
7 using LW Alg. 1 to ensure E andQ supported in PWi;
8 S ← the set of variables who differ in PWi and

PWi−1;

9 α←
∏

x∈PWi∧Par(x) differ in PWi,PWi−1
pdf(x|PWi,M)∏

y∈PWi−1∧Par(y) differ in PWi,PWi−1
pdf(xj |PWi)

;

10 r ← Uniform(0, 1) ;
11 if r ≥ α then PWi ← PWi−1;
12 ;
13 H ← H ∪ {Q : PWi(Q)};

Algorithm 3: Gibbs sampling (Gibbs)
Input:M, E , Q, N
Output: H: a list of samples for Q

1 PW0 ←LW(M, E , Q, N);
2 for i← 1 to N do
3 PWi ← PWi−1;
4 randomly pick a variable x from PWi ;
5 if x is Gibbs-doable then
6 p← pdf(x|PWi,M);
7 foreach child y of x inM w.r.t. PWi do
8 p← p · pdf(y|PWi,M) ;

9 generate v from the distribution p;
10 update PWi with {x : v};
11 else
12 use MH to propose and sample x;

13 H ← H ∪ {Q : PWi(Q)};

type Ball; type Draw; distinct Draw d[2];
#Ball ~ UniformInt(1,20);
random Ball ball(Draw d) ~ UniformChoice({b for Ball b});

There are four basic random variables in this snip-
pet: the set of balls, the set of draws, the first
ball drawn (ball(d[0])), and the second ball drawn
(ball(d[1])). One way to write one of the possible
worlds is: 〈Ball → {0},Draw → {d[0],d[1]},
ball(d[0]) → 0,ball(d[1]) → 0〉. Since effi-
ciency is our top concern, we describe below optimized
machine representation of these variables.

3.2.1 Tables Over Maps

Generic maps are slow. Even hashmaps are slow; it can
easily take hundreds of machine instructions to retrieve the

Algorithm 4: Particle-Filtering (PF)
Input:M, E , Q, T , N
Output: H1..T : generated samples for query at every time

step
1 for i ∈ 1..N do initialize particle PW 0

i ;
2 for t← 1 to T do
3 for i← 1 to N do
4 PW t

i ← using LW to sample variables at
Timestep t inM given the evidence Et ;

5 wi ← pdf(Et|PW t
i ,M) ;

6 PW t
1..N ← Multinomial({PW t

1..N , w1..N}) ;
7 Ht ← {PW t

1..N (Qt)};

value of simple BLOG-terms such as ball(d[0]). A
simple array, in contrast, permits retrieval in just a handful
of instructions. Arrays are not always the best representa-
tion, of course. When we expect that answering the query
will need just a few values from some function, then likely
it is best to represent that function using some sparse rep-
resentation (hashing, red-black trees, . . .), despite the large
constant overhead in access time. But if otherwise, then
arrays/vectors/tables are simply too fast to be ignored.

Note that, for a compiler, it is straightforward to output
different implementations for different parts of the model.
For this example though, only dense representation makes
sense. So, ideally, compiler-generated code for the exam-
ple would resemble the handcrafted:

class World { public: int nBall; int ball[2];
static World sample() { World ths;
ths.nBall = Uniform::sample(1,20);
ths.ball[0] = Uniform::sample(1,ths.nBall);
ths.ball[1] = Uniform::sample(1,ths.nBall);
return ths; }

double probability() {
assert(nBall >= 1 && nBall <= 20 &&

ball[0] >= 1 && ball[0] <= nBall &&
ball[1] >= 1 && ball[1] <= nBall);

return 1. / (20. * nBall * nBall); } };

Swift does not output code that quite looks like that, but
the performance is comparable. One complicating issue is
that it is neither necessary nor desirable to fully construct
worlds in order to answer queries. Rather, inference algo-
rithms work with partial worlds. For that matter, inference
algorithms typically need to associate various other kinds
of meta-information to every variable of a model. So the
template Swift actually follows is:

class ballT {
int* value = new int[2]; int* mark = new int[2];
/* children, evidence, prior, ... */ } ball;

Here mark is one way to implement a partial
world; the value, when valid, of ball(d[1]) is
stored in ball.value[1], and validity is whether
ball.mark[1] is equal to the current mark. Additional
meta-information, such as dependent variables, is simply
added on as additional fields.

3.2.2 Lazy (Re-)Initialization

The marks are half of a standard technique for turning an
eager computation into a lazy computation. The other piece
of the puzzle is to force all access through procedures, so
that the variable can be, as intended, initialized on demand.
For example, the default getter initializes by sampling from
the prior:

int ballT::get(int d) { if (mark[d] != currentMark) {
value[d] = Uniform::sample(1,nBall.get());
mark[d] = currentMark; }

return value[d]; }

The marks only have to be reset whenever the current mark
wraps around. There is an unexplored (by us) tradeoff here
between the number of bits used to store the marks, and the
frequency of having to reset all of them. (The minimum
would be one bit per variable, and that would force reset-
ting the marks every sample.) Presumably an int is too
many bits; a mere byte-ful of mark would already put the
frequency of resets at less than a half-percent.

Swift also generates a setter procedure in order to support
directly observing the value of the variable (rather than just
sampling from its prior). Many inference algorithms also
need to calculate the prior probability of particular values;
Swift likewise generates model-specific procedures for cal-
culating likelihoods. Both of these follow the same tem-
plate of checking the marks.

3.2.3 Open-Universe Types

The set of draws in this example is fixed (“closed”), so the
representation of the ball function can just use simple
arrays. The set of balls, however, is not. So, for the color of
each ball (color), Swift uses a dynamic table (vector)
rather than arrays:

class colorT{vector<int> value, mark; /* ... */} color;

For single-argument functions, vector gets the job done
perfectly well.

With two or more arguments the design space becomes
much larger, which we could investigate deeper in the fu-
ture.2 For now, Swift just uses nested dynamic tables, for
example, vector<vector<int>> for a two argument
function. That is not an ideal approach to multiple argu-
ments, but it is easy to implement, and anyways is already
an enormous improvement on typical implementations of
general-purpose mapping datatypes.

2Morton-order indexing (. . . x2x1x0, . . . y2y1yo) →
. . . y2x2y1x1y0x0 has the nice property that growing a di-
mension does not alter the index: the Morton index of (2,3) is
always 14. In other words, growing a dimension does not force
reshuffling the entire table, which — adding an object to an open
type — is not an uncommon operation in open universes.

3.3 Inference Optimizations

Now we turn to six algorithm-specific optimizations. The
first four are perhaps the most interesting, because they are
rather specific to the nature of (first-order) probabilistic in-
ference. The last two are normal instances of manually
controlling memory for profit, which is theoretically quite
mundane, but also quite practically significant.

3.3.1 Cyclic Dependencies

In BLOG, and many other languages, dependencies be-
tween functions may be stated cyclically, as long as each
such recursion is ‘well-behaved’. “Well-behaved” means
that the induced dependencies on terms form an acyclic
graph (in other words, every recursion has a base case, and
every recursive case makes progress). For the most part,
Swift does little to optimize for lack, or presence, of cy-
cles, with some exceptions (deterministic and block depen-
dencies). Rather than performance, actually, the most sig-
nificant thing about cycles is implementation complexity.
It is easy to fall into the habit of applying approaches that
presuppose lack of cycles.

For example, the code above for lazily initializing a vari-
able is not defensive. A user who gives a misbehaving
model to the compiler will end up with inference code
that also misbehaves (gets caught in an infinite loop). The
BLOG-interpreter, in contrast, goes out of its way to check
for ‘obvious’ infinite loops. Relative to that (friendly) in-
terpreter, then, Swift optimizes by removing the runtime
cycle checking.

3.3.2 Deterministic Dependencies

Sometimes there are deterministic dependencies among
‘random’ variables. For example, consider the following
slightly modified snippet of UrnBall:
random Color obsColor(Draw d) = color(ball(d));

So we have made the observer perfect (the color of the draw
is the color of the ball). In this case, if we naïvely apply
likelihood weighting, the behavior will actually be that of
rejection sampling (because the likelihood will either be
1, when we sample the matching color, or 0 otherwise).
Note that, with a dependency this strong, setting evidence
on obsColor(d[0]) is equivalent to setting evidence
on color(ball(d[0])).

Generating code to propagate evidence is straightforward;
Swift produces:
int obsColorT::set(int d, int v) { if (d==-1) return -1;
mark[d] = currentMark;
return (value[d] = color.set(ball.get(d),v));}

int colorT::set(int b, int v) { if (b==-1) return -1;
mark[b] = currentMark;
return (value[b] = v);}

A challenge for the future concerns nearly-deterministic
dependencies. There, propagating evidence is not justified.

3.3.3 Block Proposals

Under various circumstances, particularly for MCMC, we
need to generate one sample very much like another. If we
are just changing one variable at a time, efficient imple-
mentation is straightforward. However, there are plenty of
models where one cannot make any progress by just chang-
ing one variable. Particularly in open universes, adding and
removing objects (birth and death moves) needs special
treatment, because the likelihood of the proposed sample
will be 0 unless all of the related variables are changed en
masse.

For example, to change the number of balls (#Ball), al-
most every other variable in UrnBall needs to change.
That is, which balls were drawn (tracked by ball) in the
prior world cannot just be carried over, because the set of
balls available to be drawn from has changed. (At a mini-
mum there would be a bias that probably is not accounted
for correctly.) Moreso the true colors of the balls (color)
cannot just be carried over (because that will fail to delete
the colors of any deleted balls, and will also fail to ini-
tialize the colors of any new balls). The only variables of
UrnBall that do survive changing the set of balls are the
observed colors of the draws, and the set of draws itself
(which is constant).

Proposing to change many variables at once, efficiently, is
a bit tricky. A ‘correct’ implementation would (a) copy
the entire (partial) world, (b) make the changes, and (c)
evaluate accept/reject. On reject, one would discard the
copy, otherwise, the original. Performance-wise, the ap-
proach is incorrect, because copying an entire partial world
in the inner loop is too expensive. To avoid copying during
sampling, Swift preallocates enough storage for two partial
worlds side by side (with some sharing of meta-information
like children):
class colorT {
vector<int> value, mark;
vector<int> proposed, proposedMark;
// ...

} color;

The getters and friends check proposedMark; if it
matches the currentMark then proposed is taken in-
stead of value. So the technique adds a little bit of cost
on every access in order to avoid repeatedly copying a large
structure only to change a small portion of it.

3.3.4 Markov Blankets

For inference in standard probabilistic graphical models,
the Markov blankets can be easily precomputed. (A
Markov blanket consists of the variable’s parents, children,
and children’s parents.) However, in probabilistic program-
ming languages, including BLOG, the dependencies be-
tween variables do not have a fixed structure across all pos-
sible worlds. So the Markov blankets are not, necessarily,
constant.

For example, recall the form of obsColor’s depen-
dency:
random Color obsColor(Draw d) ~

case color(ball(d)) in { Blue -> ..., Green -> ... };

Suppose ball(d) changes from ball x to ball y. Then
obsColor(d) becomes a child of color(y) rather
than color(x). In particular, the Markov blanket of
color is not constant.

So we cannot, necessarily, precompute all the Markov blan-
kets. Naturally, we could compute them all on the fly.
While correct, doing so is dreadfully slow, because it com-
pletely fails to exploit the common case: the typical vari-
able’s blanket does not change from sample to sample. In-
stead, we have Swift generate code to incrementally prop-
agate changes to Markov blankets. That is, we arrange the
generated code so that it pays a cost proportional to the
amount of change in the blankets from sample to sample.
For the common case, this is a big win. In particular, if the
BLOG-model happens to consist of nothing more than a
Bayes Network, then all the blankets will be precomputed,
and no computation will be spent updating them.

3.3.5 Pooling Particles (Custom Allocators)

There are two very important patterns of memory use:
LIFO (stack), and FIFO (queue). These, among other pat-
terns, are very important because they are extremely effi-
cient ways to manage memory: one or two pointers and a
pinch of arithmetic. Stack-allocation, especially, receives a
lot of attention and special support.

Queues are also extremely natural, especially in strongly
temporal settings. For our purposes, in implementing Se-
quential Monte Carlo inference algorithms, that is, particle
filtering, we found it quite helpful to build in special sup-
port for queue-allocated data. For K particles in a d-order
temporal model (meaning present transitions can depend
on at most the d most recent states, which is a quantity
Swift can and does precompute by analyzing the model),
the Swift-generated code looks like:
Particle P[d+1][K];
Particle getParticle(int t,int i){return P[t%(d+1)][i];}
// ...

This is a queue implemented as a circular buffer. Of course,
a bit of modular arithmetic is many hundreds of instructions
faster than malloc and free.

3.3.6 (Avoiding) Duplication

When particle filtering, the resample step is a glaring op-
portunity to avoid unnecessary movement in memory. The
resample step asks to create a set of uniformly weighted
particles sampled according to the (nonuniform) weights
they had previously. So, one expects to end up with dupli-
cates of those particles that had the largest weights. How-
ever, rather than duplicate entire particles, we have Swift

duplicate just pointers to the originals. So, for the benefit
of the resample step, there is a parallel representation of
particles using pointers instead:

Particle* ResampleP[d+1][K];
Particle* getResample(int t, int i)

{ return ResampleP[t%(d+1)][i]; }
// ...

4 Experimental results

In this section, we evaluate the performance of the Swift
compiler for all the four algorithms mentioned above:
Likelihood-Weighting (LW), parental Metropolis-Hasting,
Gibbs Sampling and particle filtering (PF). For temporal
modelsïijŇ we adopt Liu-West filter [12] to estimate both
dynamic variables and continuous static parameters. Swift
uses C++ standard <random> library for random number
generation and armadillo[27] package for matrix compu-
tation. The implementation details can be found in Ap-
pendix B.

The baseline systems are BUGS, BLOG interpreter,
Church(WebChurch), Figaro, Infer.NET, Stan (CmdStan),
all with the latest version. All experiments are run on a sin-
gle machine with Intel quad-core 2.9GHz and 16G mem-
ory. Stan runs under Ubuntu 14.04, and the rest run on Win-
dows 7. The system is configured with Java 8(jdk-1.8.25),
Scala 2.11, Chrome browser 40. The detailed setup are in
Appendix C. All PPLs are ensured to run in single-thread
mode.

4.1 Benchmark models

We collect a set of benchmark models which exhibit var-
ious capabilities of a PPL (Table 1), including Burglary
model (Burg), Hurricane model (Hurr), Tug-of-War (a sim-
plified version of TrueSkill used in XBox [8]), Urn-Ball
model with full open-universe uncertainty (Ball), 1 dimen-
sional Gaussian mixture model (GMM), a hidden Markov
model with four latent states (HMM). Experiments are run
whenever a PPL is able to express the probability depen-
dencies in the model. We measure the execution time of in-
ference code using the same algorithm, excluding the com-
pilation and data loading time. We include an additional
comparison with Stan which has a unique inference algo-
rithm (a variant of HMC).

We also include experiments for two models with real
dataset: bird migration (Bird) and hand writing (using
PPCA model). They are described separately. All the mod-
els can be found in Appendix A.

4.2 Likelihood-Weighting algorithm

LW is the most general algorithm for general contingent
Open-Universe Bayesian networks despite of slow conver-

Table 1: Models used in experiments. D: discrete variables. R:
continuous scalar or vector variables. CC: cyclic contingent de-
pendency. OU: open-universe type. T: temporal models.

model feature D R CC OU T

Burg X
Hurr X X

Tug-War X X
Ball X X

GMM X X
HMM X X
Bird X X

PPCA X

Table 2: Running time(s) for LW with 1 million samples.

model Burg Tug-War Hurr Ball

BLOG 8.42 79.6 19.8 188.2
Church 9.6 125.9 30.3 366.4
Figaro 14.6 453.5 24.7 333.0
Swift 0.079 0.439 0.215 0.724

speedup 107 181 92 260

gence. For this reason, we only test on four simpler models:
Burglary, Tug-of-War, Hurricane, and Urn-Ball.

We compare the running time of generating 106 samples for
PPLs supporting LW. The results are included in Table 2.
Notice that Swift achieves over 100x speedup on average.

4.3 MCMC algorithms

There are two MCMC algorithms supported by the com-
piler, Parental MetropolisâĂŞHastings algorithm (MH) and
Gibbs sampling. For MH, we compare against BLOG,
Church, and Figaro, since the rest (BUGS and Infer.NET)
do not provide MH. The running time for MH are shown in
Table 3.

For Gibbs, we compare against BUGS and Infer.NET. We
did not include Tug-War in this experiment since none of
these systems is able to execute Tug-War using MH or
Gibbs algorithm.

Table 3: Running time(s) for MCMC algorithms.

model Burglary Hurricane Urn-Ball

Iter 105 106 105 106 105 106

Metropolis-Hastings

BLOG 2.04 6.59 3.16 18.5 7.07 30.4
Church 1.35 12.7 2.56 25.2 28.7 379
Figaro 2.44 11.6 N/A N/A 32.0 646
Swift 0.014 0.15 0.026 0.242 0.069 0.7

Gibbs Sampling

BUGS 8.65 87.7 N/A N/A N/A N/A
Infer.NET 0.175 1.50 N/A N/A N/A N/A

Swift 0.015 0.124 0.012 0.12 0.039 0.32

Table 4: Running time(s) on GMM for Gibbs sampling.

#iter 104 105 106

BUGS 0.837 8.645 84.42
Infer.NET 0.823 7.803 77.83

Swift 0.009 0.048 0.427

Table 5: Running time (s) for PF. OOM: Out-of-memory.

Hidden Markov Model
particle 103 104 105 106

BLOG 0.599 2.76 21.546 349.624
Figaro 0.799 2.102 11.527 135.155
Swift 0.019 0.041 0.209 1.994

Bird Migration Model
particle 100 1000 5000 104

BLOG 1627.46 16902.2 OOM OOM
Figaro 674.426 6811.95 30556.9 OOM
Swift 11.6577 104.136 469.597 1038.187

The running time on Burglary, Hurricane and Urn-Ball
model are shown in Table 3.

Variables with finite support: Both Burglary and Hur-
ricane models only contain discrete variables, it is fairly
easy for PPL engine to compute the Gibbs density. Urn-
Ball model has a number statement to determine the num-
ber of relevant variables in a possible world. The particular
model has a finite support the number variable. Should it
change to infinite (e.g. Poisson prior), Swift will automat-
ically choose MH for the number of ball, and Gibbs for
other variables.

BUGS and Infer.NET do not support Gibbs sampling on
Hurricane Model and Urn-Ball model. On Burglary model,
Swift achieves 10x speedup against Infer.NET and 707x
speedup against BUGS as shown in Table 3.

Models with continuous variables: In order to apply
Gibbs sampling to models with continuous variables, Swift
require the random variables to have conjugate priors.
Swift will automatically analyze the conjugacy. We com-
pare the running time by BUGS, Infer.NET, and Swift on
the GMM. The results are shown in Table 4. Swift achieves
over 180x speedup comparing with BUGS and Infer.NET.

4.4 Particle filtering

For models with temporal dependencies, PF is a generic in-
ference algorithm. We measure the running time of BLOG,
Figaro and Swift on HMM and a real application, the bird
migration model proposed in [4], with real-world data.
Other PPLs are not evaluated since they do not support PF
algorithm natively.

We ran the PF algorithm with various number of particles.
The running time by different inference engines are shown
in Table 5. Swift achieves over 50x speedup on average.

Bird Migration Problem: The bird migration problem
is originally investigated in [4], which proposes a Hidden
Markov Model to infer bird migration paths from a large
database of observations. We apply our compiled particle
filtering framework to the bird migration model in [4] us-
ing the dataset from the authors. In the dataset, the eastern
continent of U.S.A is partitioned into 10x10 grids. There
are roughly 106 birds totally observed in the dataset. For
each grid, the total number of birds is observed over 60
days within 3 years. We aim to infer the number of birds
migrating from each pair of grids between two consecutive
days with observations.

To sum up, in the bird migration model, there are 60 states
where each state contains 100 observed variables and 104

hidden variables. In order to handle continuous static pa-
rameters in the model, we apply Liu-West filter [12] here.
We demonstrate the running time by Swift, the BLOG in-
terpreter and Figaro with different number of particles in
Table 5. When the number of particle increases, BLOG
and Figaro do not produce an answer due to running out of
the 16G memory.

In this real application, Swift achieves more than 100x
speedup comparing with BLOG interpreter and more than
60x speedup against Figaro.

4.5 Comparing with Stan

Stan uses a different algorithm (HMC) and it generates
compiled code as well. We compare both the inference
effectiveness and efficiency of Stan and Swift on PPCA
model, with real handwriting data.

Probabilistic principal component analysis (PPCA) is orig-
inally proposed in [30]. In PPCA, each observation yi ∼
N (Axi + µ, σ2I), where A is a matrix with K columns,
µ is the mean vector, and xi is a coefficient vector associ-
ated with each data. All the entries of A, µ and xi have
independent Gaussian priors.

We use a subset of MNIST data set [11] for evaluation
(corresponding to the digit “2”). The training and testing
sets include 5958 and 1032 images respectively, each with
28x28 pixels. The pixel values are rescaled to the range
[0, 1]. K is set to 10.

Note that Stan requires a tuning process before it can pro-
duce samples. We ran Stan multiple times with 0, 5 and 9
tuning steps respectively. We measure the perplexity of all
the generated samples over the testing images from MNIST
dataset. The perplexity with respect to the running time for
Swift and Stan are shown in Figure 2 with the produced
principal components visualized. We also ran Stan with
50 and 100 tuning steps (not shown in the figure), which
took more than 3 days to finish 130 iterations (including
tuning iterations). However, the perplexity of samples with
50 and 100 tuning iterations are almost the same as those

0 20 40 60 80 100 120 140 160 180 200
800

850

900

950

1000

1050

1100

1150

Running Time (s)

L
o

g
 P

e
rp

le
x
it
y

Swift Gibbs

Stan tuning=0

Stan tuning=5

Stan tuning=9

Figure 2: Log-perplexity w.r.t running time(s) on the PPCA
model with visualized principal components. Swift converges
faster, to a better result.

with 9 tunning iterations. With 9 tuning steps (124s), Stan
takes a total of 75.8s to generate 20 samples (0.26 sample
per second). Swift takes 132s to generate 2 million samples
(15k samples per second).

5 Conclusion

Limitations Two of Swift’s limitations are worth briefly
noting. While able to handle a significant subset of the
BLOG language, certain gaps remain. In particular, Swift
does not yet correctly compile recursively defined number
statements. That prevents us from applying Swift to Prob-
abilistic Context Free Grammars.

Swift does not, and should not be expected to, address
any inherit limitations of the underlying inference algo-
rithms. For example, the Open-Universe Gibbs algorithm
does not support continuous-valued switching variables,
meaning such cannot be used, in the interpreter or in Swift,
in the guard of an if [1]. Noteworthiness is because veri-
fying machine-written code for correctness is a much more
daunting task than verifying either of general purpose in-
terpreters or human-written model-specific code.

100x is Large Probabilistic programming languages
(PPL) provide a general-purpose representation for mod-
eling real world uncertainty. While modeling itself is often
straightforward enough, making inference in these general
frameworks work well is quite another matter. Most imple-
mentations thus far have been interpreted, or, when ‘com-
piled’, then the generated code and/or target language (e.g.,
Matlab) is still far above the nit and grit of real hardware.
We conjectured, and demonstrated in the form of Swift, that
getting those littlest of details right could and does make
extremely large constant-factor improvements in speed. A
hundredfold improvement is not unlike the difference be-
tween crawling and driving: too large to ignore.

References

[1] N. S. Arora, R. de Salvo Braz, E. B. Sudderth, and S. J. Rus-
sell. Gibbs sampling in open-universe stochastic languages.
In P. Grï£¡nwald and P. Spirtes, editors, UAI, pages 30–39.
AUAI Press, 2010.

[2] N. S. Arora, S. J. Russell, P. Kidwell, and E. B. Sudderth.
Global seismic monitoring as probabilistic inference. In
NIPS, pages 73–81, 2010.

[3] A. Doucet, N. De Freitas, and N. Gordon. An introduction
to sequential Monte Carlo methods. Springer, 2001.

[4] M. Elmohamed, D. Kozen, and D. R. Sheldon. Collective
inference on Markov models for modeling bird migration. In
Advances in Neural Information Processing Systems, pages
1321–1328, 2007.

[5] B. Fischer and J. Schumann. AutoBayes: a system for gen-
erating data analysis programs from statistical models. Jour-
nal of Functional Programming, 13:483–508, 5 2003.

[6] N. D. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum. Church: A language
for generative models. In UAI, pages 220–229, 2008.

[7] N. Gordon, D. Salmond, and A. Smith. Novel approach
to nonlinear/non-gaussian bayesian state estimation. Radar
and Signal Processing, IEE Proceedings F, 140(2):107–
113, Apr 1993.

[8] R. Herbrich, T. Minka, and T. Graepel. Trueskill(tm): A
bayesian skill rating system. In Advances in Neural Infor-
mation Processing Systems 20, pages 569–576. MIT Press,
January 2007.

[9] J. Huang, M. Chavira, and A. Darwiche. Solving map ex-
actly by searching on compiled arithmetic circuits. In Pro-
ceedings of the 21st National Conference on Artificial Intel-
ligence (AAAI-06, pages 143–148, 2006.

[10] S. C. Johnson. Yacc: Yet another compiler-compiler, vol-
ume 32. Bell Laboratories Murray Hill, NJ, 1975.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[12] J. Liu and M. West. Combined parameter and state esti-
mation in simulation-based filtering. In Sequential Monte
Carlo methods in practice, pages 197–223. Springer, 2001.

[13] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter.
Winbugs – a bayesian modelling framework: Con-
cepts, structure, and extensibility. Statistics and Computing,
10(4):325–337, Oct. 2000.

[14] V. Mansinghka, D. Selsam, and Y. Perov. Venture: a
higher-order probabilistic programming platform with pro-
grammable inference. ArXiv e-prints, Mar. 2014.

[15] V. K. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. B.
Tenenbaum. Approximate bayesian image interpretation us-
ing generative probabilistic graphics programs. In NIPS,
pages 1520–1528, 2013.

[16] D. McAllester, B. Milch, and N. D. Goodman. Random-
world semantics and syntactic independence for expressive
languages. Technical report, 2008.

[17] A. McCallum, K. Schultz, and S. Singh. Factorie: Proba-
bilistic programming via imperatively defined factor graphs.
In Advances in Neural Information Processing Systems,
pages 1249–1257, 2009.

[18] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and
A. Kolobov. BLOG: Probabilistic models with unknown ob-
jects. In IJCAI, pages 1352–1359, 2005.

[19] B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong, and
A. Kolobov. Approximate inference for infinite contingent
bayesian networks. In Tenth International Workshop on Ar-
tificial Intelligence and Statistics, Barbados, 2005.

[20] B. Milch and S. J. Russell. General-purpose MCMC infer-
ence over relational structures. In UAI. AUAI Press, 2006.

[21] T. Minka, J. Winn, J. Guiver, S. Webster, Y. Za-
ykov, B. Yangel, A. Spengler, and J. Bronskill. In-
fer.NET 2.6, 2014. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[22] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In Advances in
neural information processing systems, pages 1401–1408,
2002.

[23] V. Paxson. Flex, version 2.5. URL http://www. gnu. org/-
software/flex, 1990.

[24] A. Pfeffer. Figaro: An object-oriented probabilistic pro-
gramming language. Charles River Analytics Technical Re-
port, page 137, 2009.

[25] M. Plummer et al. JAGS: A program for analysis of
Bayesian graphical models using Gibbs sampling. In Pro-
ceedings of the 3rd international workshop on distributed
statistical computing, volume 124, page 125. Vienna, 2003.

[26] M. Richardson and P. Domingos. Markov logic networks.
Machine learning, 62(1-2):107–136, 2006.

[27] C. Sanderson. Armadillo: An open source c++ linear alge-
bra library for fast prototyping and computationally inten-
sive experiments. 2010.

[28] P. Singla and P. Domingos. Entity resolution with Markov
logic. In ICDM, pages 572–582, Dec 2006.

[29] Stan Development Team. Stan Modeling Language Users
Guide and Reference Manual, Version 2.5.0, 2014.

[30] M. E. Tipping and C. M. Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society,
Series B, 61:611–622, 1999.

[31] K. Yoshikawa, S. Riedel, M. Asahara, and Y. Matsumoto.
Jointly identifying temporal relations with Markov logic.
In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Confer-
ence on Natural Language Processing of the AFNLP: Vol-
ume 1 - Volume 1, ACL ’09, pages 405–413, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics.

Supplemental Material for
Swift: Compiled Inference for Probabilistic Programs

A Benchmark models

In this section, we briefly describe all the benchmark mod-
els and illustrate the corresponding BLOG program.

Burglary model (Burg): It is a hierarchical context-
specific model containing 5 random boolean variables. It
can be expanded to a Bayes net.

random Boolean Burglary
~ BooleanDistrib(0.001);

random Boolean Earthquake
~ BooleanDistrib(0.002);

random Boolean Alarm ~
if Burglary then
if Earthquake then BooleanDistrib(0.95)
else BooleanDistrib(0.94)

else
if Earthquake then BooleanDistrib(0.29)
else BooleanDistrib(0.001);

random Boolean JohnCalls ~
if Alarm then BooleanDistrib(0.9)
else BooleanDistrib(0.05);

random Boolean MaryCalls ~
if Alarm then BooleanDistrib(0.7)
else BooleanDistrib(0.01);

obs JohnCalls = true;
obs MaryCalls = true;
query Burglary;

Tug-of-War (Tug-War): Two teams, each with two per-
sons, play against each other. The winner teams are ob-
served for each match. The query is to infer the power of
each person. The model is a simplified version of TrueSkill
used in XBox [8]. There is much determinism (e.g. sum-
mation) involved in the model. Only LW is tested on this
model since plain MH and Gibbs do not work.

type Person;
type Match;
distinct Person Alice, Bob, Carl, Dan;
distinct Match M[3];
random Real strength(Person p)
~ Gaussian(10, 2);

fixed Person team1player1(Match m) =
case m in
{M[0]->Alice,M[1]->Alice,M[2]->Alice};

fixed Person team1player2(Match m) =
case m in
{M[0]->Bob,M[1]->Carl,M[2]->Dan};

fixed Person team2player1(Match m) =
case m in
{M[0]->Carl,M[1]->Bob,M[2]->Bob};

fixed Person team2player2(Match m) =
case m in
{M[0]->Dan,M[1]->Dan,M[2]->Carl};

random Boolean lazy(Person p, Match m)
~ BooleanDistrib(0.1);

random Real pulling_power(Person p, Match m)
~ if lazy(p, m) then strength(p) / 2.0
else strength(p);

random Boolean team1win(Match m) ~
if (pulling_power(team1player1(m), m)

+ pulling_power(team1player2(m), m)
> pulling_power(team2player1(m), m)

+ pulling_power(team2player2(m), m))
then true
else false;

obs team1win(M[0]) = true;
obs team1win(M[1]) = false;
obs team1win(M[2]) = false;
query strength(Alice) > strength(Bob);

Hurricane model (Hurr): The hurricane might attack two
cities in a random order. The preparation level of the sec-
ondly attacked city is depending on the damage level of
the first attacked city. This model contains cyclic depen-
dency between variables which cannot be a concise Bayes
net (though a full probability table could do). However, in
any consistent possible world, the dependency among in-
stantiated variables is acyclic.

type City;
type PrepLevel;
type DamageLevel;
distinct City A, B;
distinct PrepLevel High, Low;
distinct DamageLevel Severe, Mild;
random City First

~ Categorical({A->0.5,B->0.5});
random PrepLevel Prep(City c) ~

if (First == c) then
Categorical({High->0.5,Low->0.5})

else
case Damage(First) in {
Severe ->

Categorical({High->0.9,Low->0.1}),
Mild ->

Categorical({High->0.1,Low->0.9})
};

random DamageLevel Damage(City c) ~
case Prep(c) in {
High ->

Categorical({Severe->0.2,Mild->0.8}),
Low ->

Categorical({Severe->0.8,Mild->0.2})
};

obs Damage(First) = Severe;
query Damage(A);

Urn-Ball model (Ball): The same as described in Sec-
tion 2. It is an OUPM with unknown number of objects
and their identity uncertainty.

type Ball;
type Draw;
type Color;

distinct Color Blue, Green;
distinct Draw Draw[10];

#Ball ~ UniformInt(1,20);

random Color TrueColor(Ball b) ~
Categorical({Blue -> 0.9, Green -> 0.1});

random Ball BallDrawn(Draw d) ~
UniformChoice({b for Ball b});

random Color ObsColor(Draw d) ~
case TrueColor(BallDrawn(d)) in {
Blue ->
Categorical({Blue -> 0.9, Green -> 0.1}),

Green ->
Categorical({Blue -> 0.1, Green -> 0.9})

};

obs ObsColor(Draw[0]) = Green;
obs ObsColor(Draw[1]) = Green;
obs ObsColor(Draw[2]) = Green;
obs ObsColor(Draw[3]) = Green;
obs ObsColor(Draw[4]) = Green;
obs ObsColor(Draw[5]) = Green;
obs ObsColor(Draw[6]) = Green;
obs ObsColor(Draw[7]) = Green;
obs ObsColor(Draw[8]) = Green;
obs ObsColor(Draw[9]) = Blue;

query size({b for Ball b});

1-dimensional Gaussian mixture model (GMM): the
model includes continuous variables with inverse Gamma
prior on the variance. We generate 4 clusters with different
mean and variance from the prior. We also generated 100
observations uniformly assigned to each of the clusters.

type Cluster; type Data;
distinct Cluster cluster[4];
distinct Data data[100];

random Real center(Cluster c)
~ Gaussian(0, 50);

random Real var(Cluster c)
~ InvGamma(1.0,1.0);

random Cluster Assign(Data d)
~ UniformChoice({c for Cluster c});

random Real Sample(Data d)
~ Gaussam(center(Assign(d)),

var(Assign(d)));

query center(cluster[0]);
query center(cluster[1]);
query center(cluster[2]);
query center(cluster[3]);

obs Sample(data[0]) = ...;

obs Sample(data[1]) = ...;

...

obs Sample(data[99]) = ...;

Simple HMM Model: The HMM model contains 10 latent
variables and 10 observed variables. Each latent variable
may have 4 different values. This model is temporal, and
its queries can be answered by PF.

type State;
distinct State A, C, G, T;

type Output;
distinct Output

ResultA, ResultC, ResultG, ResultT;

random State S(Timestep t) ~
if t == @0 then
Categorical(
{A -> 0.3, C -> 0.2, G -> 0.1, T -> 0.4})

else case S(prev(t)) in {
A -> Categorical(
{A -> 0.1, C -> 0.3, G -> 0.3, T -> 0.3}),
C -> Categorical(
{A -> 0.3, C -> 0.1, G -> 0.3, T -> 0.3}),
G -> Categorical(
{A -> 0.3, C -> 0.3, G -> 0.1, T -> 0.3}),
T -> Categorical(
{A -> 0.3, C -> 0.3, G -> 0.3, T -> 0.1})

};

random Output O(Timestep t) ~
case S(t) in {
A -> Categorical({

ResultA -> 0.85, ResultC -> 0.05,
ResultG -> 0.05, ResultT -> 0.05}),

C -> Categorical({
ResultA -> 0.05, ResultC -> 0.85,
ResultG -> 0.05, ResultT -> 0.05}),

G -> Categorical({
ResultA -> 0.05, ResultC -> 0.05,
ResultG -> 0.85, ResultT -> 0.05}),

T -> Categorical({
ResultA -> 0.05, ResultC -> 0.05,
ResultG -> 0.05, ResultT -> 0.85})

};

obs O(@1) = ResultA;
obs O(@2) = ResultA;
obs O(@3) = ResultA;
obs O(@4) = ResultG;
obs O(@5) = ResultG;
obs O(@6) = ResultG;
obs O(@7) = ResultG;
obs O(@8) = ResultT;
obs O(@9) = ResultC;
obs O(@10) = ResultA;

query S(@1);
query S(@2);
query S(@3);
query S(@4);
query S(@5);
query S(@6);
query S(@7);
query S(@8);

query S(@9);
query S(@10);

PPCA model: The PPCA model has been described in the
main paper. Here is the corresponding BLOG program.

type Datapoint; type Dimension;
distinct Basis B[10];
distinct Datapoint datapoint[5958];

fixed Integer dim = 784;
fixed Integer bas = 10;
fixed Real sigma1 = 1;
fixed Real sigma2 = 1;
fixed Real sigma3 = 1;
fixed Real sigma4 = 1;

random RealMatrix basis(Basis b)
~ MultivarGaussian(zeros(dim),

sigma1 * eye(dim));
random RealMatrix mu

~ MultivarGaussian(zeros(dim),
sigma2 * eye(dim));

random RealMatrix x(Datapoint d)
~ MultivarGaussian(zeros(bas),

sigma3 * eye(bas));
random RealMatrix y(Datapoint d)

~ MultivarGaussian(
hstack(EXPAND(B,0,9)) * x(d) + mu,
sigma4 * eye(dim));

obs mu = zeros(dim);

obs y(datapoint[0]) = [];
obs y(datapoint[1]) = [];
...
obs y(datapoint[5957]) = [];

query basis(B[0]);
query basis(B[1]);
query basis(B[2]);
query basis(B[3]);

Bird Migration model: Here is the BLOG program for
the bird migration problem. We do not show the query
statements and obs statements for conciseness.

// defining the locations
type Location;
distinct Location l[100];
// parameters
random Real beta1 ~ UniformReal(3, 13);
random Real beta2 ~ UniformReal(3, 13);
random Real beta3 ~ UniformReal(3, 13);
random Real beta4 ~ UniformReal(3, 13);
// features
fixed RealMatrix F1(Location src) =

loadRealMatrix("F1.txt", toInt(src));
fixed RealMatrix F2(Location src) =

loadRealMatrix("F2.txt", toInt(src));
fixed RealMatrix F3(Location src, Timestep t)

= loadRealMatrix("F3.txt",
toInt(src) + toInt(t) * 100);

fixed RealMatrix F4(Location src) =
loadRealMatrix("F4.txt", toInt(src));

// flow probabilities
random RealMatrix probs

(Location src, Timestep t)
~ exp(beta1 * F1(src) + beta2 * F2(src)

+ beta3 * F3(src,t) + beta4 * F4(src));

// initial value for the birds
fixed Integer initial_value(Location loc) =

if loc == l[0] then 1000000
else 1;

// number of birds at location loc
// and timestep t
random Integer birds

(Location loc, Timestep t) ~
if t % 20 == @0 then initial_value(loc)
else toInt(sum(
{ inflow(src, loc, prev(t))

for Location src }));

// the vector of outflow from source(src)
// to all other locations
random Integer[] outflow_vector
(Location src, Timestep t) ~
Multinomial(birds(src, t),

transpose(probs(src, t)));

// inflow from source(src) to destination(dst)
random Integer inflow

(Location src, Location dst, Timestep t) ~
outflow_vector(src,t)[toInt(dst)];

// Noisy Observations
random Integer NoisyObs

(Location loc, Timestep t) ~
if birds(loc, t) == 0 then Poisson(0.01)
else Poisson(birds(loc, t));

B Implementation

The compiler Swift is implemented in C++. We use C++
standard <random> library for random number genera-
tion. We manually write the cpd functions for all the sup-
ported random distributions using C++ standard <cmath>
library. For matrix computation, we use armadillo[27]
package.

Swift consists of 6 components: parser, model rewriter, se-
mantics checker, IR analyzer, translator and printer. Each
component is implemented as a single C++ class.

The parser uses YACC[10] and FLEX[23], which take in
the model and produce the abstract syntax tree.

The model rewriter will expand the macros in the model to
generate a full BLOG program.

The semantics checker takes in the abstract syntax tree and
produce the intermediate representation. During this pro-
cess, we will also rewrite IR in some cases for optimization
purpose. For example, when given the following BLOG
statement
random Ball draw~UniformChoice({b for Ball b});
the rewriter will rewrite it to
random Integer draw~UniformInt(0, #Ball - 1);

In the later statement, we do not need to explicitly construct
a list containing all the balls.

The IR analyzer takes in IR and analyze the required in-
formation by the user selected algorithm. For example, the
analyzer will compute the order of the Markov chain when
Particle filtering algorithm is selected; for Gibbs sampling
algorithm, the analyzer will do conjugacy analysis.

We implement a translator for each of the supported algo-
rithms. The translators have lots of functions in common.
A translator convert the IR to a simplified syntax tree tar-
geting C++, which will be later printed to a well formated
C++ program via printer.

We also implement lots of build in functions and data struc-
tures. For example, the resample step in particle filtering al-
gorithm is manually implemented as a library function for
efficiency; the multidimensional dynamic table data struc-
ture is implemented using template meta-programming and
included in the built in library.

Our implementation is compatible with both g++ 4.8.1 and
Visual Studio 2013.

C Details of experimental setup

The baseline PPLs for comparison include BUGS, BLOG
(version 0.9.1)3, Figaro (version 3.0.0), Church, Infer.NET
(version 2.6)4 and Stan. For BUGS, we use WinBUGS
1.4.35. For Church, we use the latest version of We-
bChurch6. For Stan, we use CmdStan 2.6.07.

The experimental machine is equipped with Intel Core i7-
3520 Quad-Core 2.90GHz and 16G memory. It is config-
ured with Java 8 (jdk-1.8.25, for BLOG), Scala 2.11 (for
Figaro), Visual Studio 2013 with default settings (for Swift
and Infer.NET), Chrome browser Version 40.0.2214.115
(for WebChurch). CmdStan runs under Ubuntu 14.04 on
the same machine. All other PPLs run under Windows 7.

D Additional results

D.1 Stan versus Swift on GMM

Besides the PPCA model with MNIST dataset, we also per-
formed the experiment on the same GMM model with the
same data as above. In order to measure accuracy, we gen-
erate another 100 samples from the ground truth as testing

3http://bayesianlogic.github.io
4http://research.microsoft.com/en-us/um/

cambridge/projects/infernet/
5http://www.mrc-bsu.cam.ac.uk/software/

bugs/the-bugs-project-winbugs/
6https://github.com/probmods/webchurch
7http://mc-stan.org/cmdstan.html

data. We compute the perplexity of the samples over the
testing data.

Note that Stan requires a tuning process before it can pro-
duce samples. We run Stan for multiple times with different
number of tuning steps. We ran Stan with 0, 4, 10, 40 and
100 tuning steps. The perplexity of the samples by Stan and
Swift with respect to the running time are shown in Figure
3.

10
−4

10
−3

10
−2

10
−1

10
2

10
3

Running Time (s)

L
o
g
 L

o
g
 P

e
rp

le
x
it
y

Swift Gibbs

Stan tuning=0

Stan tuning=4

Stan tuning=10

Stan tuning=40

Stan tuning=100

Figure 3: log-log-perplexity w.r.t running time(s) on the GMM.

