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Abstract

Chlorophyll: Synthesis-Aided Compiler for Low-Power Spatial Architectures

by

Phitchaya Mangpo Phothilimthana

Master of Science in Computer Science

University of California, Berkeley

Professor Rastislav Bodik, Co-chair

Professor Katherine Yelick, Co-chair

We developed Chlorophyll, a synthesis-aided programming model and compiler for the
GreenArrays GA144, an extremely minimalist low-power spatial architecture that requires
partitioning a program into fragments of no more than 256 instructions and 64 words of data.
This processor is approximately 100-times more energy efficient than other commercially
available processors, but currently it can only be programmed using a low-level stack-based
language.

The Chlorophyll programming model allows programmers to provide their insight on pro-
gram partitioning by specifying partial partitioning of data and computation. The Chloro-
phyll compiler relies on synthesis, sidestepping the need to develop classical optimizations,
which may be challenging given the unusual architecture. To scale synthesis to real problems,
we decompose the compilation into smaller synthesis subproblems: partitioning, layout, and
code generation. We show that the synthesized programs are no more than 19% slower
than highly optimized expert-written programs on the MD5 benchmark and are faster than
programs produced by a heuristic, non-synthesizing version of our compiler.
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Chapter 1

Introduction

1.1 Motivation
Energy requirements have been dictating simpler processor implementations with more en-
ergy dedicated to computation and less to processor control. Simplicity is already the norm
in low-power systems, where 32-bit ARM dominates the phone computer class [40]; the 16-
bit TI 430MSP is a typical example of a low-power embedded controller; the even simpler
8-bit Atmel AVR controller powers Arduino [2].

The GreenArrays GA144 is a recent example of a low-power minimalistic spatial proces-
sor1, composed of many small, simple, identical cores [17]. Likely the most energy-efficient
commercially available processor, it consumes 9-times less energy and runs 11-times faster
than the TI MSP430 low-power microcontroller on a finite impulse response benchmark [3].
Naturally, energy efficiency comes at the cost of low programmability; among the many chal-
lenges of programming the GA144, programs must be meticulously partitioned and laid out
onto the physical cores.

We imagine that future low-power processors will likely be similar to the GA144. First,
they will likely be spatial with simple interconnects between resources or cores. Second,
they will likely have radically different Instruction Set Architectures (ISAs) from what we
commonly use today. Third, they will likely be minimalistic, providing little programmability
support and therefore placing a greater burden on programmers and compilers.

In this thesis, we introduce a new programming model and a synthesis-based compiler
for such spatial processors. Our primary hardware target is the GA144 which takes these
design features—spatiality, idiosyncrasy of ISA, and minimalism—to extremes, maximizing
the demands on our programming tool chain; if we can build a synthesizer for this processor,
we should be able to build ones for other low-power processors as well.

1A spatial architecture is an architecture for which the user or the compiler must assign data, computa-
tions, and communication primitives explicitly to its specific hardware resources such as computing units,
storage, and an interconnect network.
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GreenArrays Low-Power Spatial Processor

The GA144 is a stack-based 18-bit processor consisting of 144 cores with no clock or shared
memory [17, 18]. It consumes less energy per instruction than any other commercially
available architectures [28]. A small number of GA144 applications have been developed
directly in arrayForth, a low-level stack-based language, but using this low-level language
presents many difficulties.

Each core can communicate only with its neighbors, using blocking reads and writes.
There are no message buffers. To communicate with distant cores, the programmer must
intersperse communication code with the computation code of a core, carefully avoiding
deadlocks and race conditions.

Each core contains only a tiny amount of memory and 2 small circular stacks (one for data
and one for return addresses), which together offer fewer than 100 18-bit words of storage
per core. This forces programs and data structures to be partitioned over multiple cores. For
instance, even a heavily optimized MD5 hash implementation has to be partitioned across
10 cores on the GA144 [19].

Since the GA144 is an 18-bit architecture, wider words must be implemented in software.
Additionally, the machine code is stack-based, so it is relatively foreign to most programmers
who have only ever used register-based systems.

Our system tries to help the programmer overcome these difficulties, presenting a more
familiar, higher-level abstraction and automatically handling some of the challenges described
above.

Challenges and Solutions

Our new programming model and compiler are an important step towards overcoming the
following implementation challenges.

First, classical compilers that transform code using heuristic-guided tree rewrites may
not be able to bridge the abstraction gap of low-power programming. When optimizing the
architecture for energy efficiency sacrifices programmability features in the hardware (such
as hardware-controlled caches) the abstraction gap grows larger. This growing gap cannot
be easily addressed by classical compilation for two reasons: (i) it may take a decade to
build a mature compiler with optimizations for the target hardware[33]; and (ii) low-power
architectures will be actively investigated for a while, presenting a moving target and delaying
compiler development.

Our solution uses syntax-guided synthesis [39, 1]—we sketch the desired program and let
the synthesizer search for an implementation that meets the specification. Program synthesis
is a form of automatic programming using formal verification. Rather than writing a pro-
gram directly, the user provides a goal (the specification) and the synthesizer automatically
generates the program.

Second, programmers prefer to control hardware at a higher level of abstraction. For
example, to optimize their programs, programmers prefer to manually partition data struc-
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tures and code but not to deal with the low-level details of the resulting communication
code. Our programming model allows programmers to selectively partition key data struc-
tures and code, leaving the remaining partitioning and communication code generation to
the synthesizer.

Third, applying program synthesis to large problems may not scale. Algorithms devel-
oped for program synthesis operate on whole programs, but not on decompositions of larger
programs [39, 20, 35]. In order to scale synthesis to large programs, we decompose a large
problem into smaller ones. Our approach has three synthesis subproblems: program parti-
tioning, layout and routing, and optimized program generation (as well as code separation, a
classical compilation problem). The resulting synthesis-aided compiler uses a suitable solver
for each subproblem.

In summary, we make the following contributions:

• We developed a programming model that allows the programmer to optionally partition
data structures and code. Our model facilitates fine-grained partitioning over the
spatial architecture.

• We designed and evaluated a compiler that solves three consecutive synthesis sub-
problems. Our design shows how to decompose synthesis to scale to large, practical
problems.

• We introduced a low-effort approach to building compilers for unusual architectures
without sacrificing much performance.

• We wrote the first high-level compiler for the minimalistic GA144 architecture. Its
generated code performs within a factor of 1.65 of hand-written code. The only alter-
native for running high-level programs is an interpreter that runs orders of magnitudes
slower, negating the architecture’s energy benefits.

1.2 Overview
Chlorophyll decomposes the problem of compiling a high-level program to spatial machine
code into four main subproblems: partitioning, layout and routing, code separation, and
code generation. These subproblems are difficult for traditional compilers. In this paper, we
show how these problems can be solved naturally using synthesis techniques.

Step 1 (partition) The input to this step is a source program with partition annotations
which specify the logical core (partition) where code and data reside. The annotations
allow the programmer to provide insight about the partitioning or experiment with different
partitioning just by changing the annotations. An input program does not have to be fully
annotated. For example, in this program

int@0 mult(int x, int y) { return x * y; }



CHAPTER 1. INTRODUCTION 5

we specify that the result will be delivered at partition 0 but do not specify the partitions
of variable x, y, and operation +.

The compiler then infers (i.e. synthesizes) the rest of the partition annotations such
that each program fragment (per-core program) fits into a core, minimizing a static over-
approximation of the amount of messages between partitions. Here is one possible mapping
(for a very tiny core):

int@0 mult(int@2 x, int@1 y) { return (x!1 *@1 y)!0; }

The inferred annotations indicate that when function mult is called, x is passed as an
argument at partition 2 and y is passed as another argument at partition 1. ! is the send
operation. The program body’s annotations specify that the value of x at partition 2 is sent
to partition 1, and is multiplied with the value of y. Finally, the result of the addition is
sent to partition 0 as the function’s return value.

Step 2 (layout) The layout synthesizer maps program fragments onto physical cores, min-
imizing a refined approximation of communication costs. It also determines a communication
path (routing) between each pair of cores. We map this synthesis problem to an instance of
the well-known Quadratic Assignment Problem (QAP) which can be solved exactly or ap-
proximately [25, 11, 14, 37]. We chose to use the Simulated Annealing algorithm as it is one
of the fastest techniques and produces a nearly optimal solution [11]. Given the partitioned
mult function from the previous step, the figure below shows the result of this step.

x * y return 
(1,1) (1,2) (1,3) 

Step 3 (code separation) The separator splits the fully partitioned program into per-
core program fragments, inserting sends and receives for communication. This step uses a
classical program transformation. We guarantee that the resulting separated programs are
deadlock-free by disallowing instruction reordering within each core. Our running example
results in these program fragments:

// core(1,1) core ID is (x,y) position on the chip
void mult(int x) { send(EAST, x); }
// core(1,2)
void mult(int y) { send(EAST, read(WEST) * y); }
// core(1,3)
int mult() { return read(WEST); }

Step 4 (code generation) The code generator first naïvely compiles each program frag-
ment into machine code. The code is then optimized with a superoptimizing synthesizer,
which searches the space of possible instruction sequences to find ones that are correct and
fastest [29]. Although the superoptimizer is allowed to reorder evaluations, it preserves the
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order of sends and receives which is sufficient to prevent deadlock. We apply a sliding win-
dow technique to the synthesizer to adaptively merge small code sequences into bigger ones
and input it back into the synthesizer. The synthesizer persistently caches synthesized code
to avoided unnecessary recomputation.

The rest of this thesis is organized as follows. The next chapter describes the program-
ming model and the compiler—which decomposes the compilation problem into these four
steps—that we have developed. Chapter 3 presents evaluation of the compiler. Chapter 4
describes related work. Chapter 5 states our conclusion.
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Chapter 2

Programming Model and Compiler

In this chaper, we introduce our programming model for partitioning and describe how we
built our compiler in fours steps—partition, layout, code separation, and code generation—
using program synthesis.

2.1 Programming Model for Partitioning
The Chlorophyll language is designed to simplify reasoning about partitioning and to obviate
the need for explicit communication code. We achieve these goals by extending a simple
type system with a partition type and optimally inferring unspecified partitions with our
partitioning synthesizer. In this section, we introduce the Chlorophyll language, its type
system, and the partitioning process.

Language Overview

Chlorophyll syntax is a subset of C with partition annotation specifying the partitions of
data and operations. In order to make fine-grained partitioning possible, we track the par-
tition of every piece of data and operation. Figure 2.1(a) shows the LeftRotate program
implemented in Chlorophyll. On line 18, we set the partition of variable r to be 6 by an-
notating its declaration. On line 12, we assign the partitions of distributed array x such
that for 0 ≤ i < 32, x[i] lives in partition 0, and the rest in partition 1. On line 21, oper-
ation + is assigned to partition 6. On line 20, operation − is assigned to place(z[i]); when
0 ≤ i < 32, operation − at partition 4 is executed, and when 32 ≤ i < 64, operation − at
partition 5 is executed. Note that most of the data and operations in the program are left
unannotated—their partitions will be automatically inferred by the partitioning synthesizer.

Programming Constructs and Space

Constants, variables, arrays, operators, and statements all occupy space in memory. Most
programming constructs, such as variable declarations, variable accesses, variable assign-
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1 int leftrotate(int x, int y, int r) {
2 if(r > 16) {
3 int swap = x;
4 x = y;
5 y = swap;
6 r = r - 16;
7 }
8 return ((y >> (16 - r)) | (x << r)) & 65535;
9 }

10
11 void main() {
12 int@{[0:32]=0,[32:64]=1} x[64];
13 int@{[0:32]=2,[32:64]=3} y[64];
14 int@{[0:32]=4,[32:64]=5} z[64];
15 // x[0] to x[31] live at partition 0,
16 // x[32] to x[63] live at partition 1, and so on.
17
18 int@6 r = 0;
19 for (i from 0 to 64) {
20 z[i] = leftrotate(x[i],y[i],r) -@place(z[i]) 1;
21 r = r +@6 1; // + happens at partition 6.
22 if (r > 32) r = 0;
23 }
24 }

int @7 leftrotate(int@8 x, int@8 y, int@9 r) {
if(r >@9 16) {
int@8 swap = x;
x = y;
y = swap;
r = r -@9 16;

}
return ((y!7 >>@7 (16 -@7 r!7)) |@7 (x!7 <<@7 r!7)) &@7 65535;

}

void main() {
int@{[0:32]=0,[32:64]=1} x[64];
int@{[0:32]=2,[32:64]=3} y[64];
int@{[0:32]=4,[32:64]=5} z[64];
int@6 r = 0;
for (i from 0 to 32) {
z[i] = leftrotate(x[i]!8,y[i]!8,r!9)!4 -@4 1; //!8 is send to partition 8
r = r +@6 1;
if (r >@6 32) r = 0;

}
for (i from 32 to 64) {
z[i] = leftrotate(x[i]!8,y[i]!8,r!9)!5 -@5 1;
r = r +@6 1;
if (r >@6 32) r = 0;

}
}

(a) Input source code written in Chlorophyll (b) Output from partitioner when memory
is 64 words

x[0:16] z[0:16] r 

x[16:32] LeftRotate 
x, y, swap y[16:32] LeftRotate 

>>, <<, &, | 
LeftRotate 

r > 16, r - 16 

y[0:16] z[16:32] 

(2,5) 

(1,5) (1,6) (1,7) (1,8) (1,9) 

(2,6) (2,7) (2,8) (2,9) 

(3,5) (3,6) (3,7) (3,8) (3,9) 0 

1 

2 

3 

4 

5 

6 

7 8 9 

void leftrotate(int x,int y) {
if(read(E)) {
int swap = x;
x = y;
y = swap;

}
write(E,y);
write(E,x);

}

void main() {
for(i from 0 to 32) {
leftrotate(read(N), read(S));

}

for(i from 32 to 64) {
leftrotate(read(W), read(E));

}
}

(c) Output from layout synthesizer. The
numbers at the top-left corner of the boxes
represent partition IDs corresponding to the
partition annotations in the source code.

(d) Program at core (2,6) after
code separation

Figure 2.1: Example program written in Chlorophyll, and intermediate results from parti-
tioning, layout, and code separation steps
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ments and binary operations, occupy a constant amount of memory, so we can estimate
the space occupied by the program with a simple lookup table. However, we have to han-
dle control flow constructs and arrays with more care as they may require more complex
communication between the involved partitions.

Control Flow Constructs (for, while, and if-else) When the body of a control flow
construct is spread across many partitions, called body partitions, the actual control flow
logic needs to be placed in each of these partitions as well. For example, the result of the
condition expression x +@2 y, is at partition 2. This evaluated value is sent to all the body
partitions, each of which in turn uses the received value as its condition.

Chlorophyll only supports for loops of the form for (i from e1 to e2) {...}, where e1
and e2 are constants. The iterator i starts from e1 and is incremented by 1. The condition
of the loop is i < e2. These restrictions allow Chlorophyll to produce more efficient code.
Specifically, each of the body partitions uses its own copy of i. This reduces the amount
of communication between partitions. Other sorts of iteration are supported by while loops
which have no restrictions on conditions.

Arrays There are two kinds of arrays in Chlorophyll :

• Non-distributed arrays only live in one partition. An index into this type of array
has to live at the same partition as the array itself.

• Distributed arrays live in multiple partitions. Arrays x, y and z from LeftRotate
are examples. This type of array can only be indexed by affine expressions of sur-
rounding loop variables and constants. Accessing this type of array requires no com-
munication because the indexes are comprised of loop variables, which live in every
body partition. Chlorophyll currently does not support other kinds of indexing into
distributed arrays.

Partition Annotations Programmers specify partitions of data and operators using par-
tition annotations. Partition annotations (A) can be expressed as follows:

A := N | place(var) | place(array)

N := natural number var := variable array := array access

place(x) refers to the partition where variable x lives, and place(y[i]) refers to the parti-
tion where the ith entry of array y lives. place(y[i]) can only be used inside the body of a
for loop with iterator i.
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Current Limitations

Chlorophyll does not handle recursive calls, multidimensional arrays, or array accesses with
index expressions that use non-loop variables. Unbounded loops can be implemented using
while; however, the for loop is currently restricted to the form described earlier.

Partition Type and Typing Rules

Partition types can be specified by the programmer using partition annotations or inferred
by the partitioning synthesizer. We present a simplified version of our complete type system
to convey the core idea. Types in Chlorophyll can be expressed as follows:

τ := τ@ρ τ := val | int | void
ρ := N | any | ρdist ρdist := {(N, )+}
N := natural number

Our types consist of data types τ and partition types ρ. For simplicity, the data types only
include int, val, and void. ρdist is a type of distributed array.

The typing rules shown in Figure 2.2 (omitting some trivial rules) enforce that operands
and operators are in the same partition. Constants and loop variables have partition type any
indicating that they can be at any partition. The partition subtype rule allows an expression
with partition type any to be used everywhere. In the access dist-array rule, the type checker
needs to evaluate e at compile time. This is possible because our type system ensures that
the index to a distributed array is only comprised of loop variables and constants, and the
language enforces finite loop bounds. Thus, the compiler can break a loop that iterates over
a distributed array into multiple loops, each of which accesses a chunk of the array that lives
on a particular partition. For example, the loop in LeftRotate is broken into two loops:
one iterating from 0 to 31, and another from 32 to 63.

! is an operation for sending data from one partition to another. It will be translated
to both a write operation at the sending partition and a read operation at the receiving
partition. It is the only operation that accepts an operand whose partition type may not be
a subtype of the output’s partition type. The compiler automatically generates this operator
during type checking and inferring, so programmers are not required to insert any ! in the
source code.

Partitioning Process

Partitioning a program can be thought of as a type inference on partition types. The
partitioning synthesizer is constructed from 1) the communication interpreter, which counts
the number of communications needed and 2) the partition space check, which ensures code
and data fit in the memory of the appropriate core.
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[basic subtype]
val < int

[partition subtype]
any < N

τ1 < τ2 ρ1 < ρ2 [subtype]
τ1@ρ1 < τ2@ρ2

[const]
Γ ` n : val@any

x : τ@ρ ∈ Γ
[variable]

Γ ` x : τ@ρ

i : val@any ∈ Γ
[iterator]

Γ ` i : val@any

Γx : τ@{ρ} ∈ Γ
[array]

Γ ` x : τ@{ρ}
Γx : τ@{ρ1, ρ2, ..., ρn} ∈ Γ

[dist array]
Γ ` x : τ@{ρ1, ρ2, ..., ρn}

Γ ` e1 : τ1@ρ1 Γ ` e2 : τ2@ρ2 τ1@ρ1 < τ@ρ τ2@ρ2 < τ@ρ
[op]

Γ ` e1 op@ρ e2 : τ@ρ

Γ ` f : τ1@ρ1 → τ2@ρ2 Γ ` e : τ3@ρ3 τ3@ρ3 < τ1@ρ1 [function call]
Γ ` f e : τ2@ρ2

Γ ` x : τ@{ρ} Γ ` e : τe@ρe τe@ρe < int@ρ
[access array]

Γ ` x[e] : τ@ρ

Γ ` x : τ@{ρ1, ..., ρn} Γ ` e : val@any e ↓ v
[access dist-array]

Γ ` x[e] : τ@ρv

Γ ` e : τ@ρ1 [send]
Γ ` e!ρ2 : τ@ρ2

Figure 2.2: Typing rules

Communications Interpreter

Let Comm(P, σ, x) be a function that counts the number of communications in a given
program P with complete annotated partitions σ and a concrete input x. The communication
count is calculated withMaxComm(P, σ) = maxx∈InputComm(P, σ, x), where Input is a set
of all valid inputs to the program, assuming while loops are executed a certain number of
times (currently 100). MaxComm computes the maximum number of communications by
considering all possible program paths. For most constructs, the communication count is
equal to sum of its components’ counts. ! increments the communication count by 1. Loops
multiply the count. Conditional statments add the communication count by the number of
the body partitions (subtracted by 1 if one of the body partitions is the same as the partition
of the result of the condition expression).
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Partition Space Check

Operations, statements, and communication operations (i.e. read and write) occupy the
memory of the partitions they belong to. Constants occupy memory of the partitions in
which they are inferred to be (usually the partitions of their operators or the left-hand-side
variables they are assigned to). If-elses, loops, and loop variables occupy memory in all of
their body partitions. Given a program with complete partition annotations, the partition
space checker computes how much space is used in each partition. The compiler only accepts
the program if the occupied space in every partition is not more than the amount of memory
available in a core.

Partitioning Synthesizer

We implemented the communication count interpreter and the partition space checker using
Rosette, a language for building light-weight synthesizers [41, 42]. We represented a spec-
ified partition annotation as a concrete value and an unspecified partition annotation as a
symbolic variable. Given a fully annotated program (one with all concrete partitions), the
communication count interpreter compute a concrete number of communications, and the
partition space checker simply verifies that the memory constraint holds. Given a partially
annotated or unannotated program (a program with some or all symbolic partitions), the
result from the communication count interpretation is a formula in terms of the symbolic
variables, and the partition space check becomes a constraint on the symbolic variables.

Once we obtain a formula from the communication count and the partition space con-
straint, we query Rosette’s back-end solver to find an assignment to the symbolic partitions
such that the space constraint holds. If the solver returns a solution, we attempt to reduce
the communication count further by asking the solver the same query with an additional
constraint setting an upper bound on the count. We lower the upper bound until no solution
can be found.

Pre-Partitioning Process

Before the partition process takes place, loop splitting is performed. Since the traditional
approach to loop splitting is difficult to implement, we used Rosette to implement a loop
splitting synthesizer similar to the way we implemented the partitioning synthesizer. Con-
sider this prefixsum program:

int@{[0:5]=0,[5:10]=1} x[10];
for (i from 1 to 10)
x[i] = x[i] + x[i-1];

We first duplicate the loop into k loops and replace the loop bounds with symbolic values.
Let k be 3 in this particular example. The first loop iterates over i from a0 to b0, the second
loop from a1 to b1, and so on. We then check that a0 = 1 and b2 = 10. For every iteration l
such that 0 ≤ l < k − 1, we check that al+1 = bl. For every iteration l such that 0 ≤ l < k,
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where al ≤ i < bl, we check that x[i] belongs to only one partition, as well as x[i − 1]. We
implemented the checker as if the bounds are concrete. When the bounds are unknown, they
become symbolic values, and the checking conditions are used as constraints. Finally, the
solver outputs one feasible solution for loop bounds. In this particular example, the output
is:

for (i from 1 to 5)
x[i] = x[i] + x[i-1]; // x[i] at 0, x[i-1] at 0

for (i from 5 to 6)
x[i] = x[i] + x[i-1]; // x[i] at 0, x[i-1] at 1

for (i from 6 to 10)
x[i] = x[i] + x[i-1]; // x[i] at 1, x[i-1] at 1

The final output is the solution with the smallest possible k.

Example and Rationale

Figure 2.1(b) shows the result after partitioning the program in Figure 2.1(a) with 64 words
of memory per core. Notice that ! operations are automatically inserted into the program.
If the programmer writes partition annotations such that it is impossible to partition the
program into program fragments that fit on cores, this will result in a compile-time error.

We support manual annotations based on the philosophy that the programmer and com-
piler generally have different strengths and that we should let the programmer provide high-
level insights to help the compiler. This makes our synthesizer more scalable.

2.2 Layout
In this step, we assign program fragments to physical cores by solving an instance of QAP,
stated as follows:

Given a set of facilities F , a set of locations L, a flow function t : F × F → R, and a
distance function d : L×L→ R, find the assignment a : F → L that minimizes the following
cost function:

∑
f1∈F,f2∈F

t(f1, f2) · d(a(f1), a(f2))

The facilities represent code partitions, the flow is the number of messages between any two
partitions, and the distance matrix stores the Manhattan distances between each pair. The
solution is a layout that minimizes communication.

This QAP instance can be solved with techniques ranging from Branch and Bound search
with pruning [25], to Simulated Annealing (SA) [11], to Ant System [14], to Tabu Search [37].
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According to our preliminary experiments, SA takes the least amount of time and generates
the best (often optimal) solutions.1

We used an existing SA implementation for the layout synthesizer in our compiler. The
compiler generates a flow graph f by adding flow units for every ! operator and conditional
statement, and the graph is given to the SA program. The result maps program fragments
to physical cores. We use this result to generate a communication path, which is the shortest
path between every two program fragments. The layout and routing of the program in Figure
2.1(b) is shown in Figure 2.1(c).

2.3 Code Separation
The program is separated into multiple program fragments communicating through read
and write operations. We chose this particular scheme because GA does not support shared
memory; cores can only communicate with neighbors using synchronous channels. We pre-
serve the order of operations within each program fragment with respect to their order in
the original program to prevent deadlock. The rest of this section describes this process for
each language construct.

Basic Statements A program without control flow, functions, or arrays is simple to sep-
arate. We traverse the program AST in post-order fashion, assign sub-expressions to the
appropriate program fragments according to their partition types, and add communication
code preserving the original order. For example, consider

int@3 x = (1 +@2 2)!3 *@3 (3 +@1 4)!3;

Assume partitions 1, 2, and 3 map to cores (0,1), (0,2), and (0,3) arranged from west to east.
The result after separation is

partition 1: write(E, 3 + 4);
partition 2: write(E, 1 + 2); write(E, read(W));
partition 3: int x = read(W) * read(W);

E and W are the east and west ports. Note the implicit parallelism in this program: 1 + 2
and 3 + 4 are executed in parallel.

Functions A function call in the original program corresponds to one or more function
calls, each of which is at one of the cores where the function resides. For instance, in this
program

int@3 f(int@1 x, int@2 y) { return (x!2 +@2 y)!3; }
int@3 x = f(1,2);

1On 8 × 18 grid locations and a random flow graph of 144 facilities, SA took 52 seconds, Ant took 157
seconds, Tabu took 1163 seconds, and Branch and Bound timeout. SA returned the best solution compared
to Ant and Tabu.
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f is split across partitions 1, 2, and 3 with the same layout as the previous example. Invoking
f requires the invocations at all three partitions:

partition 1: void f(int x) { send(E, x); }
f(1);

partition 2: void f(int y) { send(E, read(W) + y); }
f(2);

partition 3: int f() { return read(W); }
int x = f();

Arrays Distributed arrays are stored in multiple cores and are the main sources of paral-
lelism in our programming model. For example,

int @{[0:16]=0, [16:32]=1} x[32];
for (i from 0 to 32)
x[i] = x[i] +@place(x[i]) 1;

is separated to
partition 0:
int x[16];
for (i from 0 to 16)
x[i] = x[i] + 1;

partition 1:
int x[16];
for (i from 16 to 32)
x[i-16] = x[i-16] + 1;

Consequently, the program updates the distinct parts of the array in parallel.

Figure 2.1(d) shows the LeftRotate program at core (2,6) given the layout and routing
shown in Figure 2.1(c).

2.4 Code Generation Using Modular Superoptimization
This section explains our machine code generation process given single-core programs as
inputs, and describes our optimization via a modular superoptimization algorithm.

Typically, generation of optimized machine code is carried out using an algorithm that
selects instruction sequences and performs local optimization along the way [15]. This type
of algorithm is well-suited for applications in which the optimizations are known, and we
can determine all of the valid ways to generate code. However, this rewrite-based approach
is not easily adapted to our target machine. For example, it is unclear how to design rules
sufficient to take advantage of common non-local optimizations using hardware features like
the bounded, circular stacks.

We sidestep the problem of rule creation by searching for an optimized program in the
space of candidate programs. One such approach is called superoptimization [29, 23, 20, 35].
A superoptimizer searches the space of all instruction sequences and verifies these candidate
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programs behaviorally against a reference implementation. If an optimized program exists
in the candidate space, this approach will find it.

Thus, superoptimization leads to an attractive procedure for generating optimal code for
unusual hardware: (1) generate naïve code to use as a specification and then (2) synthe-
size optimal code that matches the specification. Unfortunately, superoptimizers scale to
sequences of only about 25 instructions [23, 20, 35], which can be smaller than basic blocks
in programs, which may contain up to 100 instructions.

We find that it is non-trivial to apply superoptimization in our problem domain for two
reasons:

• An obvious way to scale superoptimization is to break down large code sequences
(specifications) into smaller ones, superoptimize the small segments, and then compose
the optimal segments. However, choosing segment boundaries arbitrarily can cause this
approach to miss possible optimizations.

• A straightforward method for specifying the input-output behavior of the program
segments prevents some hardware-specific optimizations. For example, the method
may reject a segment that leaves garbage values on the stack even when it is acceptable
to do so.

Therefore, we propose our code generation strategy, as summarized in Figure 2.3. The
compiler first produces code without optimizations using a naïve code generator, and em-
ploys a superoptimizer to generate optimized code. In the next subsection, we explain the
naïve code generator and the terminology used in the rest of this section. We then explain

i 
ii 
iii 
iv 
v 
vi 

superopt 
unit 

vii 

superopt 
segment sliding 

window  
(sec 6.3) 

Binary Search on  
Running Time 

CEGIS 

Superoptimizer 
(sec 6.4) 

j’ 

block A block A’ 

viii 
ix 

… 

k’ 

if 

segment k & 
live region 

(sec 6.2) 

Naïve Code Gen (sec 6.1) 

loop 

A B 
C 

D 
E A’ … 

Figure 2.3: Overview of the modular superoptimizer
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solutions to the above two problems in the following two subsections. Finally, we describe our
superoptimizer for program segments and our approach to encoding the space of candidates
as a set of constraints.

Naïve Code Generation and Terminology

The naïve code generator translates each per-core high-level program into machine code that
preserves the program’s control flow. The straight-line portions of machine code are stored
in many small units called superoptimizable units. A superoptimizable unit corresponds
to one operation in the high-level program and thus contains a few instructions. Contigu-
ous superoptimizable units can be merged into a longer sequence called a superoptimizable
segment.

We define a state of the machine as a collection of data stack, return stack, memory, and
special registers. Each superoptimizable unit contains not only a sequence of instructions
but also a live region that indicates which parts of the machine’s state store live variables
at the end of executing the sequence of instructions. The live region of a superoptimizable
segment is simply the live region of the last superoptimizable unit. Currently, a live region
always contains the entire memory and usually contains some parts of the return stack and
data stack, and some of the registers.

Sequences of instructions P and P ′ change the state of the machine from S to T and T ′

respectively. Given a live region L, we define P
L≡ P ′ if Extract(T, L) ≡ Extract(T ′, L),

where Extract extracts values that reside in the given live region. Since we do not support
recursion, it is possible to statically determine the depth of the stack at any point of the
program. Since the physical stacks are bounded, our compiler rejects programs that overflow
the data stack or return stack at any point.

Specifications for Modular Superoptimization

We specify the behavior of a segment using a sequence of instructions P and its live region
L. In this section, we will focus on the constraints on the data stack since it is used for
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Figure 2.4: Specification on data stack
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a b - a 
b b - a 

a 

Figure 2.5: Basic specification rejects an instruction sequence that leaves a at the bottom of
the stack.

performing every kind of computation and may be used for storing data.
Assume an instruction sequence P changes the data stack from α|β to α|γ as shown in

Figure 2.4(a), and α|γ is in the live region. α is a part of the stack that contains intermediate
values that will be used later. β is the part of the stack that needs to be removed, and γ is
the part of the stack that needs to be added. P ′ is equivalent to P if P ′ produces α|γ, and
the stack pointers after executing P and P ′ are pointing to the same location.

However, this specification is too strict, preventing some optimizations. For instance,
consider the example in Figure 2.5 when α is empty, and we want b− a on top of the stack.
The shortest sequence of instruction that has this behavior is eight instructions long, with
the three final instructions dedicated to removing a remaining garbage value (a in this case)
from the stack. It is, in fact, legal to leave a at the bottom of the stack, saving space
by eliminating the three instructions. However, this basic specification rejects the shorter
sequence because its output data stack is a|α|b− a, not α|b− a.

We modify the specification, as shown in Figure 2.4(b), such that P ′ is equivalent to
P if it produces δ|α|γ without any constraint on the stack pointer, where δ can be empty.
Since GA stacks are circular, leaving garbage items at the bottom of the stack is essentially
shifting the logical stack upward. Note that this specification allows not only upward but also
downward logical stack shifts. Thus, this modified specification allows the superoptimizer
to discover hardware-specific optimizations that otherwise cannot be discovered when using
the straightforward specification.

Sliding Window

Our current tool can superoptimize approximately 16 instructions in a reasonable amount
of time. Often, straight-line portions of programs contain more than 16 instructions. There-
fore, we have to decompose a long sequence of instructions into smaller ones and run the
superoptimizer on the smaller sequences in order to make superoptimization technique scal-
able. Instead of breaking the long sequence into multiple fixed-length sequences, our sliding-
window technique adaptively merges superoptimizable units, which usually contain a few
instructions, into a superoptimizable segment, which will be given as an input to the su-
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peroptimizer. The sliding-window technique makes our modular superoptimization more
effective when superoptimization instances timeout or do not find better (more optimal)
solutions. More specifically, in these scenarios, instead of entirely skipping the current fixed
sequence and working on the next one, the superoptimizer will adjust its window size and
attempt to optimize a part of the same sequence (with or without additional instructions)
again.

Given a sequence of superoptimizable units called a unit sequence, the sliding window
technique proceeds as follows.

1. Start with an empty superoptimizable segment.

2. Append the superoptimizable unit at the head of the unit sequence to the superopti-
mizable segment, until the number of instructions is greater than the upper bound.

3. Superoptimize the segment.

4. If a valid superoptimized segment is found, append the segment to the global output,
and repeat from 1. If no valid superoptimized segment is found, append only the first
unit to the global output, remove the first unit from the superoptimizable segment,
and repeat from 2. If superoptimization times out, add the last unit from the segment
back to the head of the sequence, and repeat from 3.

5. The process is done when the unit sequence is empty.

Alternatively, dynamic programming, as used in peephole superoptimization [5], can be
applied to produce an even more optimal result, but it requires more time than does the
sliding windows technique. Dynamic programming is appropriate for peephole superopti-
mization because the window size is only up to three instructions, while our window size is
up to 16 instructions.

Superoptimization and Program Encoding

Given a program segment and its specification as described in the previous section, our
superoptimizer uses counterexample-guided inductive synthesis (CEGIS) to search for an
equivalent program segment [39]. Within the CEGIS loop, we use the Z3 [12] SMT solver
to perform the search.

We model the program segment’s approximate execution time based on the cost of each
instruction as provided by GreenArrays. We use this cost model to perform a binary search
over generated programs looking for optimal performance. Each step involves looking for
a program that finishes under a certain time limit by adding that time as a constraint
to our SMT formula and synthesizing a program that meets both our performance and our
correctness criteria. We can similarly optimize for the length of the program segment instead
of its execution time.
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Encoding to SMT Formulas

At a particular point of a program, the state of the machine consists of two registers, the
data stack, the return stack, memory, and stack pointers. Since each core can communicate
with its four neighbors, we represent the data that the core receives and sends using a
communication channel, which is an ordered list of (data, neighbor port, read/write) tuples.
Hence, the machine’s state also includes a communication channel representing the data the
core expects to receive or send along with the relevant ports. We use this communication
channel to preserve the order of receives and sends to prevent deadlock.

The stacks, the memory, and the communication channel are represented by large bitvec-
tors because Z3 can handle large bitvectors much faster than arrays of integers or arrays of
bitvectors. Each instruction in a program converts a machine’s state into a new machine’s
state. We encode each instruction in our SMT formula as a switch statement that alters a
machine’s state according to which instruction value is chosen.

Address Space Compression

Address space compression is necessary to scale superoptimization to large problems. Each
core in GA144 can store up to 64 18-bit words of data and instructions in memory. The
generated code assigns each variable a unique location in memory. An array with 32 entries
occupies 32 words of memory. When the formula generator translates programs to formulas,
it discards the free memory space and includes just enough memory to contain all variables
and arrays; the smaller the memory, the smaller the search space.

Arrays occupy substantial memory space but are usually accessed with a symbolic index
during superoptimization. The index is symbolic if it is an expression of one or more variables
as it depends on the values of those variables. In light of this observation, we compress the
memory of the input program by truncating each array to contains only two entries, and
modifying the variable and array addresses throughout the program accordingly. After we get
a valid optimal output program, we decompress the output program, and ask the verifier if the
decompressed output program is indeed the same as the original input program. Verification
is much faster than synthesis, so we can verify programs with a full address space in a
reasonable amount of time.

2.5 Interactions Between Steps
Since our compilation problem is decomposed into four subproblems, we lose some optimiza-
tion opportunities, and in some circumstances the compiler produces program fragments
that do not fit on cores. We will discuss these issues in this section.
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Program Size and Iterative Refinement Method

One goal of our compiler is to partition a high-level program into program fragments such
that each fragment can fit in a core. Although the partitioning synthesizer overapproximates
the size of each fragment, it still does not consider all communication code. For example,
assume that partition A sends some data to partition B. The partitioner increases the sizes of
both partitions A and B to reflect the effects of the necessary communication code. However,
after the layout step, it is possible that partition A and B are not next to each other. In this
case, partition A communicates to partition B via one or more intermediate partitions. Since
the partitioner does not have any knowledge about the intermediate nodes, the partitioner
does not take into account the space occupied by the communication code associated with
the intermediate nodes. As a result, it is possible that the generated program partitions will
be too large.

For most programs, our compiler generates final programs that fit in cores. Occasionally,
the estimation fails, and an iterative refinement reruns the compilation with larger estimation
for the too-large fragments, until all final fragments fit in cores.

Optimization Opportunity Loss

There are some lost optimization opportunities that result from decomposing the compilation
problem into smaller subproblems. We discuss a few examples of optimization losses in this
section.

First, partitioning before optimizing may lead to missed opportunities. For example, let
A, B, and C be program fragments that do not fit in one core. Assume the partitioner groups
A and B together because that yields the lowest communication count. However, if B and
C are grouped together, the superoptimizer may find a very large execution time reduction
such that grouping B and C together yields faster code than grouping A and B does.

Second, our schedule-oblivious routing strategy introduces another potential loss. Assume
core A can communicate with core B via either core X or Y, and X is very busy before A
sends data to B, while Y is not. The current routing strategy will route data from A to B
via either X or Y arbitrarily. However, in this particular case, we should route through Y so
that B will receive the data from A more quickly, without having to wait for X to finish its
work.

Finally, the scope of superoptimization may prevent some optimizations. We do not
optimize across superoptimizable segments, because we want the compiler to finish in a
reasonable amount of time. However, knowing the semantics of the segments that come
before the current segment could definitely allow the superoptimizer to discover additional
optimizations. Increasing the scope to include loops and branches will help even more.
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Evaluation

In this section, we present the results of running programs on the GA144 chip to test our
hypothesis that using synthesis provides advantages over traditional compilation.

Hypothesis 1 The partitioning synthesizer, layout synthesizer, superoptimizer, and sliding
windows technique help generate faster programs than alternative techniques.

We conduct experiments to measure the effectiveness of each component. First, to as-
sess the performance of the partitioning synthesizer, we implement a heuristic partitioner
that greedily merges an unknown partition into another known or unknown partition of a
sufficiently small size when there is communication between the two. This heuristic parti-
tioning strategy is similar to the merging algorithm used in the instruction partitioner in the
space-time scheduler for Raw [26]. Second, to assess the performance of the layout synthe-
sizer, we compare the default layout synthesizer that takes communication counts between
partitions into account with the modified version that assumes the communication count
between every pair of partitions that communicate is equal to one. Third, we compare the
performance of programs generated with and without superoptimization. Last, we compare
sliding-window algorithm against fixed-window algorithms, in which the superoptimization
windows are fixed.

For each benchmark, five different versions of the program are generated.

1. sliding s+p+l : sliding-window superoptimization, partitioning synthesizer, and lay-
out synthesizer

2. fixed s+p+l : with fixed-window superoptimization, partitioning synthesizer, and lay-
out synthesizer

3. ns+p+l : with no superoptimization, partitioning synthesizer, and layout synthesizer

4. ns+hp+l : with no superoptimization, heuristic partitioner, and layout synthesizer

5. ns+hp+il : with no superoptimization, heuristic partitioner, and imprecise layout
synthesizer
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We run five benchmarks in this experiment.

• Prefixsum sequentially computes the prefixsum of a distributed array spanning 10 cores.

• SSD computes the 36-bit sum of squared distance between two distributed 18-bit arrays
of size 160, each of which spans four cores. SSDs of different chunks of an array can
be computed in parallel since there is no dependency between them.

• Convolution performs 1D convolution on a 4-core distributed array with kernel’s width
equal to five in parallel. The program first fills in the ghost regions to eliminate loop
dependency before the main convolution computation starts.

• Sqrt computes the 16-bit square roots of 32-bit inputs.

• Sin-Cos computes cos(x) and sin(x).

The execution time result shown in Figure 3.1 confirms our hypothesis. First, comparing
ns+p+l (third bars) vs. ns+hp+l (fourth bars) shows that the partitioning synthesizer offers
5% on average and up to 11% speedup over the heuristic partitioner. Second, comparing
ns+hp+l (fourth bar) vs. ns+hp+il (fifth bar) shows that more precise layout is crucial,
providing 1.8x speed up on Convolution. When the layout synthesizer does not take com-
munication count into account, it fails to group the heavily communicating cores next to
each other; as a result, the communication paths of different parallel groups share some
common cores, preventing those groups from running in parallel. In Prefixsum, the impre-
cise layout generates program fragments that are too large. Third, comparing sliding s+p+l
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the complete synthesizing compiler
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(first bar) vs. ns+p+l (third bar) shows that superoptimization gives 15% on average and
up to 30% speedup over programs generated without superoptimization. Finally, comparing
sliding s+p+l (first bar) vs. fixed s+p+l (second bar) shows that programs generated with
sliding-window superoptimization are 4% on average and up to 11% faster than programs
generated with fixed-window strategy.

Hypothesis 2 The partitioning synthesizer produces smaller programs and is more robust
than the heuristic one.

The previous experiment shows that the partitioning synthesizer does not generate a
slower program for any of the five benchmarks. In this experiment, we look at the number of
cores the programs occupy, on the same set of benchmarks. In three out of five benchmarks,
the synthesizer generates programs that require significantly fewer cores (using 50-72% of
the number of cores used by the heuristic).

Another experiment also shows that the heuristic algorithm requires parameter tuning
specific to each program, while synthesis does not. The heuristic partitioner does not account
for the space occupied by communication code because calculating the size of communication
code precisely is complicated in the heuristic one. Therefore, we set the space limit per core
by scaling the available space by a factor k, ranging between 0 and 1, in the heuristic
partitioner. The higher the scaling factor, the smaller the number of cores it uses. However,
the maximum feasible k—while generating code that still fits in cores—for different programs
varies (k = 0.8 on SSD and k = 0.4 on Sqrt). Hence, the synthesizer is more robust than
the heuristic.

Hypothesis 3 Programs generated with synthesis are comparable to highly-optimized expert-
written programs.

We compare the execution time and program size of highly-optimized programs written
by GA144 developers, programs generated with superoptimization, and programs generated
without superoptimization. We have access to the following single-core expert-written pro-
grams.

• FIR applies 16th-order discrete-time finite impulse response filter on a sequence of
samples.

• Cos computes cosine.

• Polynomial evaluates a polynomial using Horner’s method given the coefficients and
an input.

• Interp performs linear interpolation on input data given a sequence of reference points.

Figure 3.2 shows that our generated programs are 46% slower, 44% less energy-efficient,
and 47% longer than the experts’ on average, and the superoptimizer improves the running
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Figure 3.2: Single-core benchmarks



CHAPTER 3. EVALUATION 26

time by 7%, reduces the energy used by 8%, and shortens the program length by 14%
compared to no superoptimization on average.

The only multicore application written by experts against which we can compare is MD5
hash function. The other applications published on the GreenArrays website, including
SRAM control cluster, programmable DMA channel, and dynamic message routing, require
interaction with a GA virtual machine and specific I/O instructions for accessing external
memory that Chlorophyll does not support. The MD5 benchmark computes the hash value
of a random message with one million characters. The sequence of characters is streamed
into the computing cores while the hash value is being computed.

Given no partition annotations to the operators, the partitioning synthesizer times out,
while the heuristic partitioner fails to produce a program that fits in memory. We manually
obtain partition annotations with the assistance of the partitioning synthesizer. We first
ignore all functions except main. After we solve main, we reintroduce other functions one by
one. Finally, we refine the partitioning by examining the machine code and further breaking
or combining partitions just by changing the partition annotations. Thus, we can generate
code for different partitioning (without superoptimization) in a very short amount of time.

We generate two versions of MD5 program. First, we partition the program such that the
generated non-superoptimized code is slightly bigger than memory, but the excess is small
enough that the final superoptimized code still fits. We also generate a second version that
fits on cores without superoptimization. The generated program with superoptimization
is 7% faster and 19% more energy-efficient than the one without superoptimization, and
uses 10 fewer cores. Compared to the experts’ implementation, it is only 19% slower and
31% less energy-efficient, and it uses two-times more cores. This result confirms that our
generated programs are comparable with experts’ not only on small programs but also on a
real application.

Hypothesis 4 The superoptimizer can discover optimizations that traditional compilers
may not.

We implement a few small programs taken from the book Hacker’s Delight [?]: Bithack 1,
x − (x&y), Bithack 2, ∼ (x − y), and Bithack 3, (x ⊕ y) ⊕ (x&y). Figure 3.3 shows that
superoptimization provides 1.8x speedup and 2.6x code length reduction on average. The
superoptimizer successfully discovers bit tricks x& ∼ y, ∼ x+y and (x& ∼ y)+y as the faster
implementations for the three benchmarks respectively. Investigating generated programs in
many benchmarks, we find that the superoptimizer can discover various strength reductions
and clever ways to manipulate data and return stacks. It also automatically performs CSE
within program segments, and exploits special instructions that do not exist in common ISAs.
Hence, the superoptimizer can discover an unlimited number of optimizations specific to the
machine, while the optimizing compiler can only perform a limited number of optimizations
implemented by the compiler developers.
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Figure 3.3: Bithack benchmarks
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Figure 3.4: FIR benchmark

Hypothesis 5 Chlorophyll increases programmers’ productivity and offers the ability to
explore different implementations quickly to obtain one with satisfying performance.

A graduate student spent one summer testing the performance of the GA144 and TI
MSP430 micro-controller. He managed to learn arrayForth to program the GA144. However,
he was able to implement only two benchmarks: FIR and a simple pedometer application [3].
In contrast, with our compiler, we can implement five different FIR implementations within
an afternoon. Figure 3.4 shows the running time of three different implementations of FIR—
sequential FIR-1, parallel FIR-2 on two cores, and parallel FIR-4 on four cores—as well as the
experts’ implementation. Parallel FIR-4 is 1.8x faster than the experts’, with the cost of more
cores. Hence, programmers can use our tool to productively test different implementations
and to exploit parallelism to get the fastest implementation. Although superoptimization
makes compilation slower, we can still test implementations quickly by running the non-
superoptimized program for a rough estimate of the performance.
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Hypothesis 6 The compiler can be improved by providing more human insights to the
synthesizers.

The GA instruction set does not include division, but expert-written integer division
code is provided in ROM, so programmers can conveniently call that function. Hoewver,
an even faster division can be implemented when a divisor is known; x/k = (k1 ∗ x) >> k2
where k1 and k2 are magic numbers depending on k. We modify the superoptimizer so that
it understands division and accepts the division instruction in an input specification. Then,
we provide this template to the superoptimizer to fill in the numbers for a specific divisor,
similar to Sketch [39]. Given the template, the compiler can produce a program that is
6-time faster and 3-time shorter than the experts’ general integer division program within
three seconds. In theory, the superoptimizer can discover the entire program without the
sketch, but it could take much longer time to synthesize since this program is 33-instruction
long.

Thus, adding more templates improves performance of generated programs and scalability
of the synthesizer. Regarding the performance improvement, this is similar to implementing
optimizations for traditional compilers. However, synthesis is in general more powerful be-
cause it does not rely on a lookup table and simply discovers faster code by searching.

Figure 3.5 and 3.6 show the compile times for the single-core benchmarks and multicore
benchmarks used in our experiments respectively. Partitioning is also slow, but such algo-
rithms are generally slow; consider, for example, partitioning for FPGA [43]. We address
the issue by allowing programmers to accelerate the partitioning process by pinning data or
code to specific cores when they have relevant insights.
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Benchmarks Program Length Superopt Time (hr)
FIR 90 3.23
Cos 59 2.35

Polynomial 29 1.42
Interp 48 10.01

Bithack 1 13 0.37
Bithack 2 9 4.92
Bithack 3 16 25.08*

Figure 3.5: Superoptimization time (in hours) and program length (in words) for single-core
benchmarks. A word in program sequences contains either four instructions or a constant
literal. *Bithack-3 takes 25.08 hours when the program segment length is capped at 30
instructions. With the default length (16 instructions), it takes 2.5 hours.

Benchmarks # of Given Core Loop Split (s) Part (s) Layout (s) Superopt (hr)
Prefixsum 64 3 36 24 10.78

SSD 64 12 225 24 4.46
Convolution 64 23 122 24 8.39

Sqrt 16 0 566 7 3.60
Sin-Cos 16 2 527 7 6.31
MD5 64 7 N/A 24 16.07

Figure 3.6: Compile time of multicore benchmarks. Time is in seconds except for superop-
timization time, which is in hours. The compiler runs on an 8-core machine, so it super-
optimizes up to eight independent instances in parallel. Layout time only depends on the
number of given GA cores. Heuristic partitioning takes less than one second to generate a
solution.
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Related Work

4.1 Programming Models
A number of programming models have been developed for spatial architectures for different
application domains. StreamIt, a programming model for streaming applications, decom-
poses the compilation problem much as we do [16]. Partitions are defined by programmers
using filters and can be merged by the compiler. GA144 also shares many characteristics
with systolic arrays. Systolic arrays are designed for massively parallel applications such as
applications with rhythmic communications [22]. Thus, the programming model for systolic
arrays is domain-specific, tailored to such applications [24, 21]. Unlike StreamIt or Systolic,
Chlorophyll targets more general-purpose programming.

The high performance computing (HPC) community has developed programming models
to support programming on distributed memory. Our code separation technique is similar
to compiling High Performance Fortran (HPF) for distributed memory computers. HPF
generates a guard for every array access, checking if a processor owns that entry of the array
with some optimizations. We generate code without these guards by splitting loops and
statically determining the partitions for every variable and operation at compile time. The
partitioning problem also appears in the HPC domain. Many Distributed Fortran compilers
simply apply an “owner computes” rule, distributing data and computation to align with the
output data’s positions [7, 30]. This partitioning technique does not suit our case since the
fixed placement of operations according to the data distribution might result in partitions
that are too large.

Our memory model is Partitioned Global Address Space (PGAS), a model used many
languages [9, 44, 31, 34]. Although these languages offer programmers control over mapping
operators to computing resources, they do not provide the programmers an easy way of
exploring different mappings.
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4.2 Type Systems
Many distributed programming languages have exploited type systems to ensure properties
of interest. Delaval et al. presented a type system for the automatic distribution of high-
order synchronous dataflow programs, allowing programmers to localize some expressions
onto processors [13]. The type system can infer the localization of non-annotated values to
ensure the consistency of the distribution. Like our compiler, the framework generates local
programs to be executed by each computing resource from a centralized typed program. X10
introduces place type and exploits type inference to eliminate dynamic references of global
pointers [10]. Titanium, similarly, uses type inference to minimize the number of global
pointers in the program [27].

4.3 Heuristic-based Compilers
There is substantial work on heuristic-based compilers for spatial architectures. The parti-
tioning and placement algorithms used in TRIPS compiler, Raw space-time scheduler, and
Occam to transputer system, may be applied with some modifications to our problem. How-
ever, these architectures are substantially different from GA144.

TRIPS compiler distributes a computation DAG of up to 128 instructions in each hy-
perblock onto 16 cores [8, 38]. Chlorophyll partitions much larger programs—MD5, for
example has, 4,600 instructions—with loops and branches onto 144 cores. TRIPS also has
hardware-supported routing, while GA144 does not. In Raw compiler, the space-time sched-
uler decomposes the partitioning problem into three subproblems: clustering, merging, and
global data partitioning [26], while Chlorophyll solves the partitioning problem as one prob-
lem. The merging algorithm is essentially the same as the heuristic partitioner with which
we compare Chlorophyll in our evaluation. The transputer compiler and StreamIt’s Raw
compiler also use SA for solving the layout problem [36, 16].

4.4 Constraint-based Compilers
Though not as common as heuristic-based compilers, constraint-based compilers have been
studied and used in practice.

Vivado Design Suite performs High-Level Synthesis that transforms a C, C++ or Sys-
temC design specification into a RTL implementation, which in turn can be synthesized onto
a FPGA [43]. The programmer can specify additional constraints using directives, such as
controlling the binding process of operations to cores, albeit in ways that are much more
limited than our programming model facilitates. For example, multiplication is implemented
by a specific hardware multiplier in the RTL design using a specific core.

Yuan et al. solve hardware/software partitioning and pipelined scheduling on runtime
reconfigurable FPGAs using an SMT solver [45]. Although the problem domains of our
compiler and of their partitioner and scheduler are different, Yuan et al. also shows that
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solutions obtained from the SMT solver are superior to the solutions obtained from a heuristic
algorithm, but that constraint solving techniques face scalability challenges.

Another constraint-based approach to solve the placement and routing problems uses ILP
to map the computation DAG to the graph representing the hardware’s structure [32]. The
constraints represent placement of computation, data routing, event timing, resource uti-
lization, and optimization for the hardware-specific objective function. However, we cannot
apply this technique directly to our partition and layout problems because our computation
graphs contain cycles, and the case-study architectures in the ILP scheduling paper include
hardware support for data routing, unlike GA144.

4.5 Superoptimization
The original superoptimizer by Massalin finds the shortest optimized version of a program
by enumerating every possible program [29]. Each candidate program is checked on manu-
ally supplied test cases. A more recent take on superoptimization is Denali [23], which uses
goal-directed search, allowing it to scale better. As in our system, the search is performed
by an automated theorem prover. Stochastic superoptimization [35] introduces a different
search technique: a Markov Chain Monte Carlo (MCMC) sampler, maximizing a function
of correctness and performance. This approach scales to longer programs over much larger
instruction sets like x86. We may speed up our superoptimization step by using this tech-
nique, but different types of mutations may be required to make this technique work well
with stack-based architectures. Superoptimization has also been used to generate peephole
optimization rules [4]. Unlike Chlorophyll, the peephole superoptimizer optimizes all pos-
sible sequences of up to 4 instructions offline (before compile time). We cannot afford this
offline technique since we wish to superoptimize much longer sequences of instructions.

Another variation on superoptimization is component-based synthesis [20]. It synthesizes
a circuit-style, loop-free composition from a limited collection of instructions. This constrains
the number of times any given instruction can be used, shrinking the search space. This
approach does not suite our use case because coming up with a set of components from the
high-level input is difficult, especially since the stack-manipulation instructions needed for
an efficient program are not easily predictable.

Program synthesis is also used to optimize domain-specific programs. An automatic
SIMD vectorization restructures a loop to expose data parallelism, extracts the equivalence
relation from the loop body, and then synthesizes a new loop body [6]. Unlike our superop-
timizer, this SIMD synthesizer searches by enumeration with heuristics to reduce synthesis
time.
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Chapter 5

Conclusion

Building efficient optimizing compilers is difficult, even for traditional architectures that are
designed for programmability. With radically stripped down and evolving target architec-
tures such as GA144, the traditional compilation approach becomes even more difficult and
less practical to implement.

We have built the first synthesis-aided compiler for extremely minimalist architectures
and introduced a new spatial programming model to provide programmability for programmer-
unfriendly hardware. Our compiler decomposes the compilation problem into smaller sub-
problems that can be solved by various synthesizers or easy-to-implement transformations.
Although program synthesis may not scale to large problems on its own, our work shows
that we can overcome these issues by decomposing problems into smaller ones and relying
on more human insight.

The contribution of this thesis is not that our algorithms for partitioning, layout, routing,
and code generation are individually superior to the existing ones, but we show that our
compiler is simpler than a classical compiler while producing comparable code. Program
synthesis techniques enable compiler developers to quickly develop a new high-performance
compiler for a radical architecture without knowing how to implement optimizations specific
to the architecture.
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