
Model-based Embedded Software

Naren Vasanad
Kevin Albers
Robert Bui
Jose Oyola Cabello

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-124
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-124.html

May 15, 2015



Copyright © 2015, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

 
Acknowledgement

 
Professor Edward Lee, Professor Sanjit Seshia



 

 

 

 

Model-Based Embedded Software 
Final Capstone Report  

 
 

Naren Vasanad 
May 15, 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Model-Based Embedded Software         Final Capstone Report 
 

University of California, Berkeley College of Engineering 

MASTER OF ENGINEERING - SPRING 2015 

  

Electrical Engineering & Computer Sciences 

Robotics & Embedded Software 

Model-Based Embedded Software 

Naren Shivashankar Vasanad 

  

This Masters Project Paper fulfills the Master of Engineering degree 
requirement.  

Approved by: 

1.  Capstone Project Advisor: 

Signature: __________________________ Date ____________ 

Print Name/Department: Edward A. Lee / EECS 

  
  
2. Faculty Committee Member #2: 

Signature: __________________________ Date ____________ 

Print Name/Department: Sanjit Seshia / EECS  

 
 
 
 

1 



Model-Based Embedded Software         Final Capstone Report 
 

Abstract 

Model-Based Embedded Software 

by 

Naren Shivashankar Vasanad 

Master of Engineering in Electrical Engineering and Computer Sciences 

Professor Edward A. Lee and Professor Sanjit Seshia 

Embedded software is typically developed using traditional programming languages like C           

and C++. However, these traditional types of programming languages are not well suited             

for embedded systems development. The model-based embedded software project extends          

the code-generating capabilities of Ptolemy II to help users develop software using            

model-based design techniques for ARM mbed devices. In particular, this project primarily            

focuses on automatically generating C/C++ code in Ptolemy II for Synchronous Data Flow             

(SDF) and Finite State Machine (FSM) models. This makes it easier to design and debug,               

leading to faster and more robust software development. 

  

2 



Model-Based Embedded Software         Final Capstone Report 
 

Table of Contents  

I. Problem Statement 
II. Industry/Market/Trends 

A. Introduction 
B. Market Trends 
C. Competitors 
D. Customers 
E. Suppliers 
F. New Entrants 
G. Substitutes 
H. Critique and conclusion to Five forces 
I. Marketing and Productization 
J. Conclusion 

III. IP Strategy 
A. Introduction 
B. Open Source Licenses 
C. Advantages of Open Source Licenses 
D. Concluding Remarks on IP 

IV. Technical Contributions 
V. Concluding Reflections 
References 

 
 

 

 

 

 

 

 

 

 

 

 

3 



Model-Based Embedded Software         Final Capstone Report 
 

I. Problem Statement 

The Internet of Things (IoT) encompasses all small scale embedded systems which are             

interconnected wirelessly through the internet and are continuously transmitting data. Currently,           

programming embedded systems requires knowledge of intricate details of the platform being            

used and the software is typically written using traditional programming languages such as C and               

C++. In addition, embedded software for complex systems becomes very long and difficult to              

understand as it grows. Our project involves the creation of an environment to make designing               

applications for IoT easier through the use of model-based embedded software techniques. The             

product abstracts all the finer details of implementation and exposes the features that the              

designer is concerned with. Today, designers widely use embedded computing devices such as             

Arduino and mbed™ , from ARM®, for prototyping embedded applications, because they are            1 2

open-source and low power. They are also inexpensive and have a large community of              

developers. The design environment we are developing will specifically target these types of             

embedded platforms. 

Hardware and software of a cyber-physical system can be complex and difficult to             

implement. “Cyber-physical systems” refers to embedded computer systems that interact and are            

affected by physical elements (Mueller et al. 2012:219). A technique for designing a             

cyber-physical system is model-based design, which applies mathematical modeling for designing           

and verifying systems (Jensen et al. 2011:1666). Our project focuses on the creation of a               

model-based design environment for programming embedded platforms. In particular, our          

project targets applications aligned with the Internet of Things.  

1 “Arduino is an open-source electronics platform based on easy-to-use hardware and software. It's intended for 
anyone making interactive projects.” <arduino.cc> 
2 mbed is an ARM based microcontroller that can be used to develop applications for the internet of things. 
<https://mbed.org/> 

4 



Model-Based Embedded Software         Final Capstone Report 
 

Over the course of the project, we created a model-based design environment and             

demonstrated its use with an embedded platform application. In order to test and determine the               

effectiveness of the application, the project included designing an example system. The            

application used to demonstrate the model-based design environment’s capabilities was an           

interactive LED cube that could be controlled with hand gestures. The application was initially              

developed using regular coding techniques by writing C and C++, and later developed using the               

model-based design environment for comparison. The models for the components of this            

application were included in the final application. 

Code generation is one of the primary aspects of the model-based design approach. As              

described by Jensen et al. (2011:1666), the model-based design methodology involves the use of              

a code synthesizer to produce code that executes the desired models of computation. Typically,              

designers will write C code that can be programmed on an embedded platform to perform some                

task. However, model-based design techniques allows a developer to build graphical models that             

represent their application. This project involves the creation of an environment using Ptolemy II             

to allow designers to represent their application as graphical models. Based on the model               3

created in the design environment, code can be automatically generated for an embedded             

platform.  

Due to the nature of model-based design and specifically code generation, designers can             

spend less time writing and debugging code. Rather, designers can focus on the design of their                

application and verify its expected behavior. The use of a model-based design environment             

allows designers to represent how they expect their application to perform and allow the              

software environment to produce reliable code. The modularity of graphical models allows            

designers to easily reuse models in different applications and change aspects of their design, and               

3 “Ptolemy II is an open-source software framework supporting experimentation with actor-oriented design.” 
<http://ptolemy.eecs.berkeley.edu/ptolemyII/> 

5 



Model-Based Embedded Software         Final Capstone Report 
 

the graphical interface allows a user to easily view concurrent processes and how distinct units of                

a program interact with each other.  

II. Industry/Market/Trends 

A. Introduction 

Open source embedded platforms have become popular for rapid prototyping. The           

market for embedded platforms has been growing as the number of connected devices continues              

to increase. Our capstone project aims to contribute to the community of embedded developers              

by solving the challenges of efficient code generation using the approach of model-based design. 

The motivation for this project was twofold. First, a model-based design environment            

specifically for mbed devices does not currently exist. There are a few competitors, as described               

further in this section, that provide a graphical interface, but they do not offer a design                

environment focused on model-based design. Secondly, our project targets an emerging market            

and offers an opportunity for us to differentiate from our competitors. Embedded platforms have              

become very popular with hobbyists and the maker community, but there are not many tools               

such as ours that directly contribute to helping design for applications involved with the IoT. The                

stakeholders for this project include three segments: end users, sponsors, and customers. End             

users include hobbyists who work on IoT projects. Since these users will be working on fast                

prototyping of solutions and also have basic knowledge about building products, this would be              

the ideal market to target. These users could potentially give feedback of our product to improve                

and focus it towards being viable to a larger audience. Once the software gains traction amongst                

hobbyists it will be easier to reach a broader market like students, major companies, and               

universities. Our sponsors include the EECS Department, Embedded Systems Lab, TerraSwarm           

Research Center, Professor Edward Lee, Professor Sanjit Seshia, and the project team members             

6 



Model-Based Embedded Software         Final Capstone Report 
 

(Kevin Albers, Robert Bui, José Oyola, Naren Vasanad). Our customers will be discussed in detail               

in the Customers sub-section.  

In this section, we use Porter’s five forces model to analyze the five major forces in our                 

embedded software market in order to create a go-to-market strategy: competitors, customers,            

suppliers, new entrants, and substitutes (Porter, 2008). In his article “How Competitive Forces             

Shape Strategy”, Michael Porter (1979) discussed how the “strength of these forces determines             

the ultimate profit potential of an industry”. We describe each of the forces and its effect on                 

our strategy in the sections ahead and provide a strong or weak label. A force that is labeled as                   

strong means that it could have a strong effect on our competitive strategy, whereas a weak force                 

is an area that our strategy could take advantage of. Porter’s five forces was important to use                 

because it offers a unique analysis to determine the strength of our product’s position, potential               

to make a profit, and create a strategy to move the balance of power to our favor.  

B. Market Trends 

Our target industry includes anything which encompasses IoT. Gartner (2014) published           

a study indicating that the IoT is on the peak of the hype cycle. It is expected that IoT will reach                     

the plateau of productivity, the point where the technology is stabilized, in the next five to ten                 

years. Furthermore, Clarice Technologies (2014) talks about how there will be close to 50 billion               

devices connected to the internet by 2020. Based on these studies, the IoT industry has the                

potential to grow immensely in the near future.  

Most of these IoT devices will be small scale devices which sense the environment and               

connect over the internet to communicate with other more complex devices. A Markets and              

Markets (2014) report expects that by 2019, the IoT market will be close to $500 Billion. IoT has                  

the potential to create waves in many industries worldwide, spanning from medical and wearable              

7 



Model-Based Embedded Software         Final Capstone Report 
 

devices to transportation and automation, as well as improve social connectivity between people             

everywhere (Hulkower 2014; Ma et al. 2011).  

C. Competitors 

There are three main competitors that offer model-based programming with a graphical            

interface. These include MATLAB's Simulink® , National Instrument's LabVIEW , and an open           4 5

source project named PyLab_Works . 6

Mathworks' product, MATLAB, is one of the world’s best super calculators that runs on a               

computer. It uses a scripting language to solve complex computations, often by using calculus.              

Simulink is an environment within MATLAB that allows programs to be built using graphical              

blocks. Mathworks has provided an interface, called Simulink Coder, a Simulink extension that             

allows user to generate and execute code from stateflow models.. This allows people to use               

Simulink to build model-based programs, then use the interface to and from the Arduino to               

provide Simulink with the inputs and outputs. However, Simulink must be installed on a              

computer to run, so the embedded device must be connected to a computer in order to work.  

National Instruments improves upon Simulink's flaws with LabVIEW. LabVIEW is similar           

to Simulink, but it switches the focus from computations with calculus to data analysis and               

program logic. The best advantage that LabVIEW has over Simulink is the downloadable model. It               

allows code generated by the model to be downloaded to the embedded platform and run               

without the help of a computer. While LabVIEW offers substantial advantages for embedded             

devices compared to Simulink, our solution offers further improvements with the use of             

model-based approaches. 

4 “Simulink® is a block diagram environment for multidomain simulation and Model-Based Design.” 
<http://www.mathworks.com/products/simulink/> 
5 “LabVIEW is a graphical programming platform that helps engineers scale from design to test and from small to large 
systems.” <http://www.ni.com/labview/> 
6 “PyLab_Works is a free and open source replacement for LabView + MatLab, written in pure Python.” 
<https://code.google.com/p/pylab-works/> 

8 

http://www.mathworks.com/model-based-design/


Model-Based Embedded Software         Final Capstone Report 
 

In the open source community, PyLab_Works offers an open source solution that attempts             

to accomplish model-based embedded programming. It offers a block graphical interface similar            

to LabVIEW, but it does not have much support. Each block must have written code in Python,                 

meaning it is not completely model-based software. 

Our solution differs from our competitors since it’s open source and open platform,             

whereas MATLAB and LabVIEW require a license to use them. A MATLAB license for personal use                

costs $149 for non-students, and the basic LabVIEW license costs $999 (MathWorks n.d.; National              

Instruments n.d.). This license cost is prohibitively expensive to many potential users of these              

systems. In contrast, our solution is open source and freely available. In addition, our solution is                

open platform. MATLAB and LabVIEW are closed to specific platforms that the developers have              

chosen to support. If a user wishes to use one of these software tools with a different platform                  

that is not supported, then there is little he or she can do. By making our solution available to the                    

open source community, it is able to expand and grow the amount of supported platforms.               

Overall, the threat of rivals is weak, though with a change in strategy, it is possible that these                  

competitors could enter the hobbyist space. 

Open source software has been known to disrupt markets dominated by proprietary            

software in the past. According to IBISWorld, “open-source software (OSS) has been growing as a               

share of the global software market” (Kahn 2014:31). OSS (such as the Linux operating system) is                

a threat to some proprietary software, but will also promote interoperability and new software              

developments (Kahn 2014:31). Since our software is associated with open source software, we             

anticipate that we can leverage on the OSS structure and increase traction on our product.  

The success of our application can be measured with market adoption. A study has shown               

that the number of updates to open source software created by members of open source               

communities has increased exponentially in the recent past (Deshpande et al, 2008:205). This             

9 



Model-Based Embedded Software         Final Capstone Report 
 

further supports our claim that acquiring more users would lead to more development of our               

project. Handling a community is not a straight-forward task. Øyvind et al. says that it may be                 

beneficial to release the product as executables in the beginning to increase usage and              

decentralize the control of power with specific tasks having ownerships also that as the product               

grows (Øyvind et al. 2009:71-72). 

Another factor that affects market adoption is the availability of modules. Our application             

will have a library of modules that are specific to IoT. These modules include sensors, actuator                

and communication. Making these modules specific to IoT will help differentiate ourselves from             

competitors who may not have such libraries. These standard libraries will help to create trust in                

the open source community and hence will help in building traction amongst hobbyists (Øyvind              

et al. 2010:114). 

D. Customers 

Our project would make it easier to communicate with development platforms and also to              

integrate sensors and actuators into a system. Since the technology is still nascent, it gives the                

project the right opportunity to grow with an emerging market and adapt to changes from               

customer needs.  

Our main target customers are hobbyists and do it yourself (DIY) enthusiasts. These             

customers have a large variety of products to build their projects with, as well as a competitive                 

market with low prices for embedded platforms. In addition, there are various tools that they can                

use to develop on their chosen platform as described in the competitors subsection. The most               

important factor is our reliance on market adoption to promote our product. We need to create a                 

community that develops libraries and examples that are easily accessible to new users.             

However, open source software adds additional barriers for customer adoption. It can be harder              

for customers to trust open source software as much as the paid closed source alternatives               

10 



Model-Based Embedded Software         Final Capstone Report 
 

created by established companies (Bianco et al. 2009). For these reasons, the customer market              

force is strong. 

E. Suppliers 

Since our project is built using the Ptolemy II, the affiliated Ptolemy II research group at                

UC Berkeley is our main supplier. Ptolemy II group relies on donations from research grants and                

businesses that use the software. Our success will help extend the successful functionality of the               

Ptolemy II project, making it beneficial for us to succeed. This makes our supplier a collaborator                

rather than a potential threat to our success. 

Furthermore, the fact that this is a research project under one of the most reputed               

universities in its field helps us differentiate from other competitors. Even if there are              

competitors in the open source community, the backing of the Ptolemy II project will help gain                

trust from potential users and hence increase the conversion rate of adoption in our favor. 

F. New Entrants 

According to Hoover’s industry analysis of Computer Aided Design (CAD) software, the            

DIY movement “has sparked interest in CAD/CAM software among hobbyists and tinkerers”            

(2015). Our software falls into this category as a form of CAD. This industry opportunity shows                

that not only will this space be attractive to existing players, who can easily enter the market to                  

compete with their products, but also startups that could use our open source code to build their                 

own similar products to compete with our own. This shows that the threat of new entrants is                 

strong. 

G. Substitutes 

Hobbyists have the option to continue using tools that they know, which makes             

programming in languages such as C a substitute to our product. Since it might be too time                 

11 



Model-Based Embedded Software         Final Capstone Report 
 

consuming to learn a new programming method such as using a graphical design environment,              

many hobbyists might decide it is not worth their time to switch from their current programming                

methods. We designed our tool to reduce development time when the user has learned how to                

use it, but over a short period of time this is less obvious to the user and they may become                    

frustrated and return to a familiar tool. In addition, the current communities, such as the Arduino                

community, have large libraries of tools and project guides, which pose a strong threat to our                

product adoption. This makes the threat of substitution a strong threat.  

H. Critique and conclusion to Five forces 

Given the fact that our project is open source and the current trends in the open source                 

community, we are in an interesting position when it comes to our strategy. After evaluating the                

five forces, it seems that some of these forces may actually end up working in our favor. First, our                   

main supplier, the Ptolemy II project, is actually more of a collaborator. The project participants               

frequently and on a daily basis increase the capabilities of Ptolemy II and add to the already large                  

codebase. As will be discussed in the section on Intellectual Property, our success is linked with                

the Ptolemy II project, which was mentioned in the suppliers sub-section. This further             

incentivizes the Ptolemy II project stakeholders to continue to pursue the project and ensure its               

success. 

In addition, the customers for our project are hobbyists and the open source community.              

The open source community is known for expanding projects and making the projects suit their               

needs (Deshpande et al. 2008:198). Therefore, our open source customers can actually become             

collaborators and help expand the codebase of Ptolemy, adding support for other platforms, and              

creating sample applications for others to use and learn from. 

The open source nature of the project also has the effect that new entrants can end up                 

helping us succeed. Any new open source alternatives to our Ptolemy project will have to               

12 



Model-Based Embedded Software         Final Capstone Report 
 

compete with Ptolemy’s 20-year-long history and codebase, which spans over 3 million lines of              

code. However, open source projects have another option: to join our community and enhance its               

reach and capabilities. For instance, a new entrant seeking to create an open source model-based               

environment for the Raspberry Pi can take advantage of Ptolemy’s already existing infrastructure             

and simply add support for their platform instead of building everything from scratch. 

Overall, the five forces in our market are moderate, with the strongest force being the               

customers. This means that without addressing these forces appropriately, the profit in this             

industry will not be huge, even if successful. The open source business model adds an additional                

challenge to profitability. We can mitigate the strong forces with the right positioning.  

To bring our product to market, our marketing strategy will be focused on the 4 ‘P’s:                

product, place, price, and promotion. As mentioned in the subsection on Customers, our target              

customers and users are hobbyists and makers. By making our product initially open-source, it              

will be very appealing to this customer segment as they are very willing to try new products                 

especially those that are at no cost to them. We plan to market it differently as well since we are                    

targeting the open source community instead of industry professionals like our competitors.            

From our marketing study conducted early in the project, we learned that many of these types of                 

users learn about the latest technology through websites and complementary technologies to our             

product such as embedded platforms like Arduino. Therefore, our strategy will be to ensure our               

product is easily accessible online by hobbyists.  

I. Marketing and Productization 

Based on the success of providing our product as an open source solution, there are four                

ways in which we could begin to monetize our project. The first way would be to to offer                  

technical support for those that are interested in advanced applications. Users could pay to              

receive help from our technical support staff in using and extending our product for their own                

13 



Model-Based Embedded Software         Final Capstone Report 
 

needs. This option would be the first one that we would try since it has been successful for other                   

products in the past. In his article, Fitzgerald calls this a value-added service-enabling model              

which has been very successful for Red Hat, an open source Linux provider (Fitzgerald 2006). 

Another alternative would be the use of advertisements. Similar to how desktop and             

mobile applications are designed, we could incorporate advertisements in our design           

environment and users would pay a fee in order to use a version without advertisements.  

Furthermore, we could offer a professional version of our open source project that would              

be targeted to advanced users and industry professionals. This version would use a subscription              

model where customers pay a monthly or annual fee. The professional version would include              

application specific content and strong technical support and documentation for the most            

cutting-edge advancements in embedded systems. Fitzgerald also mentions in his article that this             

would be considered a loss-leader/market-creating model since our first product would be open             

sourced but a product with more features would be used for monetization (Fitzgerald 2006).  

A final option for monetizing our product would be to partner with an embedded              

platform company and offer our product as part of a bundle. The company would provide the                

target embedded platform hardware and our software product would complement their device            

with a custom design environment. An example of this approach would be the mbed              

collaboration between ARM and several semiconductor companies. In this industry with           

established competitors, this would be an appealing approach to obtaining market share and             

brand recognition.  

J. Conclusion 

Based on our project’s unique features and target market, our project has potential to              

make an impact in the embedded software industry. The IoT era has brought a need for better                 

software design tools and our product helps solves the challenges that designers face. By              

14 



Model-Based Embedded Software         Final Capstone Report 
 

targeting hobbyists and the maker community, our product enters a space where it can receive               

market adoption and not directly compete with well-known embedded software competitors.           

“Open source style software development has the capacity to compete successfully, and perhaps             

in many cases displace, traditional commercial development methods” (Mockus et al. 2002).            

Based on our evaluation of Porter’s five forces in this industry, our business strategy should allow                

our product to make a strong impression in an industry with primarily commercial development              

methods (Porter 2008).  

III. IP Strategy 

A. Introduction 

Since the Model-Based Embedded Software project is built upon Ptolemy II, it is             

important to understand the intellectual property surrounding the project before deciding how it             

should be advanced for commercialization. The concepts and ideas that form the basis of this               

capstone project are not novel, nor is the particular application that this project seeks to build. In                 

particular, the project is an open source implementation, rather than invention, of the previously              

existing branch of computer programming known as model-based code generation. Several           

software solutions already exist that produce code using similar techniques, and they are             

mentioned later in this section. This makes it highly unlikely that any aspect of the project is                 

patentable. However, this does not mean that the concepts of intellectual property do not apply               

to this project. This section discusses the intellectual property aspects of the Model-based             

Embedded Software project and the strategy that can be used to ensure proper use and               

attribution of our work, as well as the risks associated with infringement of previously existing               

IP.  

15 



Model-Based Embedded Software         Final Capstone Report 
 

B. Open Source Licenses 

There are many different open source licenses that are available to protect the work of               

the open source community. The most widely used open source license, the GNU General Public               

License (GPL), is an example of what is known as a “copyleft” license, which requires that any                 

work built upon GPL-licensed software must also be distributed under the same license             

(Lindman et al. 2010:239). This ensures that any GPL-licensed work will forever be freely              

available for all to use. However, other open source licenses such as the Berkeley Software               

Distribution (BSD) and MIT open source license are different. These open source licenses, both of               

which come from academic institutions, allow software covered under the license to be used in               

any way, including in commercialized software for profit, with no restrictions (Lindman et al.              

2010:239). The idea behind this method of licensing is that successful projects coming from these               

institutions, if available freely for use in successful software, can benefit the institution from              

where it came by enticing others to provide funding to the institution for further development of                

the software. An example of successful commercial software built upon BSD-licensed software is             

Apple’s Mac OS X and iOS, both of which are built upon BSD Unix (Engelfriet 2010:49). These                 

open source licenses provide many benefits to those wishing to build upon them, such as               

software startups, since it does not require the resulting software to have the same license. This                

means that any other protection can be used for the software, including copyright protection, or               

even a different open-source license, which would ensure that the software would continue to be               

available as open source, if that is the goal of the software developer, as is often the case for the                    

open source community (Engelfriet 2010:49). 

Since our work is part of a large software collaboration, Ptolemy II, it will be bounded by                 

the same rights of use, the BSD license (“Ptolemy II F.A.Q” 2014). “Ptolemy II is an open-source                 

software framework supporting experimentation with actor-oriented design” and is a part of the             

16 



Model-Based Embedded Software         Final Capstone Report 
 

Ptolemy project at UC Berkeley, which is an initiative dedicated to studying models and              

simulations of embedded systems (“Ptolemy II” n.d.) . The Ptolemy project is well-funded and               

has many industrial sponsors involved (“Sponsors of the Ptolemy Project” n.d.). The BSD license              

allows software designed with Ptolemy II to be used for free commercially. Thus, if we decided to                 

extend the software in the future as a separate entity, we would not have any issues                

commercializing it.  

C. Advantages of Open Source Licenses 

Furthermore, there are many other advantages for distributing our software through           

open-source channels. As mentioned in the Industry/Market/Trends section, many large          

competitors already exist in the embedded software industry. Open-source software offers a way             

to create market adoption by allowing customers to try a new product for free in order to build a                   

community supporting the software. This is one way that open source software can penetrate a               

market with large competitors. According to Hoover (2015), “open-source software, which poses            

a competitive threat to the industry's traditional license-based business model, has grown in             

popularity in the last decade.” There are many examples of immensely popular open source              

successes in the past, such as Linux and Apache, and PostgreSQL, which have formulated a threat                

to proprietary software (Kahn 2014:31; Deshpande et al, 2008:197).  

Although open source software can pose a threat to proprietary software, its open nature              

can also be a disadvantage. Since many of the existing large players have a research and                

development unit, the entrance of a new player could mean that existing players can simply use                

the new open source software to improve their solution directly (Engelfriet 2010:49). This is not               

an issue for copyleft licenses, since they require that any software built on it must also use the                  

same license, but this requirement doesn’t exist for permissive licenses such as BSD (Engelfriet              

17 



Model-Based Embedded Software         Final Capstone Report 
 

2010:49). Because permissive open source licenses allow for this to happen, it is very difficult for                

open source developers to protect themselves.  

Currently, two of the largest competitors in the embedded software industry are            

Mathworks and National Instruments. Their respective products that are similar to our software             

tool are Simulink and LabVIEW. Each of these products offers a graphical design environment              

that can generate code for embedded system. Both of these companies have many patents              

registered involving the design environment, model types, and methods for code generation. In             

particular, National Instruments has a patent titled “Statechart development environment with           

embedded graphical data flow code editor”, US patent number 8387002 (Dellas et. al. 2008:1).              

The patent describes a graphical design environment that uses a model that LabVIEW called              

statecharts, “a diagram that visually indicates a plurality of states and transitions between the              

states”, to represent an application (Dellas et. al. 2008:35). Furthermore, in the patent, LabVIEW              

claims the rights to the invention of code generation for statecharts and specifically the              

transitions linking the states of a model (Dellas et. al. 2008:35). Although this patent seems               

similar to our product, it is quite different since it involves statechart models which are not used                 

in Ptolemy II. Rather, our software generated code based on the specific model of computation               

selected instead of solely transitions and states as done in LabVIEW. Based on the limits of the                 

patent to statechart models, the patent should not overlap with our idea.  

D. Concluding Remarks on IP 

Ptolemy II has existed for almost 20 years as an open source project and many               

commercial products have been created from Ptolemy such as Agilent’s Advanced Development            

Systems (“Links” 2014). Our capstone project extends the functionality of Ptolemy II by offering              

code generation for models currently supported in Ptolemy II. Since there are currently no novel               

18 



Model-Based Embedded Software         Final Capstone Report 
 

aspects of our projects that could be patented, open source would be the best alternative               

approach for the current state of our project.  

IV. Technical Contributions 

Project Overview and Context 

The Internet of Things (IoT) encompasses all small scale embedded systems that are             

interconnected wirelessly through the Internet. Currently, programming embedded systems that          

cater to IoT requires knowledge of the platform being used. Our project focuses on the creation of                 

a model-based design environment for programming embedded platforms. In particular, our           

project targets applications aligned with the IoT. This project involves design of an environment              

to make creating application for a device for IoT easier through the use of model-based               

embedded software. For our project we chose to work with the Ptolemy II project being               

undertaken in the EECS department at UC Berkeley. Ptolemy II is a graphical environment that               

focuses on models of computation in order to depict embedded systems . The focus of our project                7

is to use the code generation aspect of Ptolemy II and focus it for designing IoT based applications                  

for the mbed  platform. 8

The tasks for our project were split according to skill sets and preferences. The project               

tasks were divided between the two semesters. Such a split allowed me to venture into areas                

that I had less expertise and also into areas that I had prior knowledge. The first task of the                   

project was to concentrate our project’s focus. Narrowing down the project scope was a team               

effort that involved multiple brainstorming sessions in order to understand our target market,             

specific details of the underlying structure and tasks to be performed over the course of the                

7 “Ptolemy II is an open-source software framework supporting experimentation with actor-oriented design.” 
<http://ptolemy.eecs.berkeley.edu/ptolemyII/> 
8 mbed is an ARM based microcontroller that can be used to develop applications for the internet of things. 
<https://mbed.org/> 

19 



Model-Based Embedded Software         Final Capstone Report 
 

project. This will be discussed in detail in the section on methods and materials. After the project                 

context was decided, an example application needed to be built to portray model-based design.              

The example included an LED cube that was controlled by a data glove. The LED cube example                 

included most aspects of IoT applications like processors (mbed), sensors (accelerometers and            

gyroscopes), actuators (LEDs) and communication modules (Wi-Fi). Communication was using          

Wi-Fi and specifically using the CC3000 module from Texas Instruments. My initial task was to               

understand the CC3000 module and provide a base on which the rest of the communication for                

the project was built upon. Kevin Albers, in his paper, describes the communication between the               

data glove and the LED cube and the different challenges faced. 

Sensor information from the data glove was received by the LED cube and transformed              

into useful information. Once the filtered information was available it needed to be converted              

into gestures that could be understood by the LED cube algorithm that will be covered in José                 

Oyola’s paper. My task was to create an algorithm that corrects and filters data using a finite state                  

machine (FSM) model followed by a gesture recognition algorithm to interpret the filtered data              

in order to control the LED cube. In his paper, Robert Bui will discuss about the use of                  

model-based techniques such as FSMs and synchronous dataflow (SDF) models. The gesture            

recognition needed to understand sensor data and convert them into distinct actions. Gesture             

recognition is an important aspect for control of devices and is an essential concept for IoT since                 

a lot of devices are being controlled by gestures. This will be discussed in detail in the section on                   

methods and materials. 

During the Spring semester, the focus of the project was on Ptolemy II and how our                

example application from the fall semester could be created using a model-based approach. The              

code generation code of Ptolemy II needed to be understood initially and changes needed to be                

made in order to repurpose Ptolemy II for code generation for the mbed. These concepts and                

20 



Model-Based Embedded Software         Final Capstone Report 
 

procedures will be discussed by Kevin Albers in his paper. Also, there is a need to understand the                  

creation of models using FSMs and SDFs. These model-based approaches will be explained by              

José Oyola and Robert Bui in their papers. The mbed platform that was used for development of                 

the LED cube application was an online compiler. However, to make it work on a stand alone                 

software such as Ptolemy II is not straightforward. An offline toolchain is vital for seamless               

generation of binary files that could be loaded onto the mbed without having to use the online                 

compiler. My task was with regard to understanding and creating the offline tool chain that               

integrated with Ptolemy II. This task included research about the GNU for ARM tool chain for C                 

and C++. The next step was to understand makefiles and how they could be used in order to                  

automate the process of code generation and binary file creation. Finally, code generation on              

Ptolemy II was not straight-forward. As we began our implementation we found that even small               

applications failed to work. The problem was narrowed down to an issue of memory leaks, a                

situation where variables in the code are allocated memory but never freed and hence consuming               

the entire memory of the processor resulting in no other operations from executing. The              

problems and solutions for memory leaks will be discussed in the methods and materials section. 

Over the rest of the duration of the project, the goal is to complete the implementation of                 

the LED cube application using Ptolemy II and demonstrate that the application works the same               

as the handwritten approach in the previous semester. This demonstration will show how a              

model-based approach to solving IoT-based applications makes design and implementation          

faster. In finer detail, the tasks to be performed include the creation of actors, modules for                

specific tasks in Ptolemy II, for specific tasks like gesture recognition and filtering that were               

developed in the previous semester. 

 

Literature Review 

21 



Model-Based Embedded Software         Final Capstone Report 
 

IoT is a large and growing space and there is scope for improvement in applications.               

Kortuem et al. mention how there is a difference between regular “things” and “smart things”.               

They also mention how IoT in the industrial sector is being developed. They focus on three main                 

aspects of embedded systems and explain how they relate to each other: activity-aware objects,              

policy aware objects and process-aware objects and how each of them influence the other (2010). 

As mentioned previously, the first part of the project involved creation of an application              

that uses the mbed platform. The mbed platform has a large community that generates a vast                

variety of projects. These projects in turn use various libraries that are open to anyone to use.                 

The open source nature of the mbed community allows exchange of ideas and prevention of               

duplication of efforts in creating the same libraries again. The online compiler provides an              

interface using which applications can be developed anywhere in the world. Toulson et al.              

provide a good explanation of how the mbed online compiler can be used to create applications                

(2012). 

Once the connections were made, the next part was to make use of the CC3000 library for                 

mbed that was developed by Martin Kojtal . In order to communicate with the internet, protocols               9

such as HTTP are useful. This library has the bare bones implementation for the CC3000 IC from                 

Texas Instruments. My work in the project builds on this library and repurposes it to create a                 

TCP/IP connection between the data glove and the mbed controlling the LED cube. 

With the advent of IoT, there is a need for hand based gestures to control electronics.                

Stravoskoufos et al. mention how fields such as e-health and bioinformatics could potentially gain              

a lot from gesture based control. They also talk about how connectivity to the internet and sensor                 

data collection are important aspects in IoT. There is also a discussion on how a motion control                 

based system for IoT can be designed (2014). 

9 CC3000 Wi-Fi Library for mbed by Martin Kojtal 
<http://developer.mbed.org/users/Kojto/code/cc3000_hostdriver_mbedsocket/> 

22 



Model-Based Embedded Software         Final Capstone Report 
 

Code generation in Ptolemy II consists of code generation for finite state machines,             

synchronous data flow diagrams and other models of computation. It also has a very well               

structured and documented template file that is used in order to write C code for specific actors.                 

It also has a number of macros that can be used to define different information. It is hence                  

beneficial to our project since the mbed works on C++ and Ptolemy offers code generation for C                 

and C++ (Brooks et al. 2008). 

There are however different methodologies used for code generation. For example, Doi et             

al. mention how they implement an XML based parsing system for devices that do not have                

enough computing capabilities. The reason for their use of XML is that it is the standard method                 

of communicating information over the internet and hence most ideal for a field such as IoT                

(2012). There is a lot of work being done on model-based design practices like in Ptolemy II.                 

Riedel et al. talk about how model-based approaches can be used for sensors as small as RFID                 

tags and also mention how web services and gateways on embedded systems can make use of                

this structure (2010). 

One specific model of computation is the synchronous dataflow model that consists of             

actors that fire tokens when executed. Such a system is useful for applications in IoT since it is                  

dependent on sensor data being available before they are consumed by other processing blocks.              

Tripakis et al. mention how code generation for synchronous data flow models works and also               

how it is integrated into the Ptolemy II platform. This paper also gives an introduction to how                 

these models of computation work (2008). 

Makefiles are useful to create applications that involve a large number of files. Wojtczyk et               

al. explain how CMake can be used to create applications easily. It also talks about the cross                 

platform nature of these kinds of tools making it easy to create portable applications (2008). 

 

23 



Model-Based Embedded Software         Final Capstone Report 
 

Methods and Materials 

The initial goal of the project was to define its focus. The target market needed to be really                  

narrow since it is difficult to cater to a large set of users. Through our user studies we came to the                     

conclusion that the best target market would be the hobbyists who work on new and upcoming                

technology to create interesting applications. Hobbyists are generally more adventurous and are            

willing to try new techniques and are readily accepting to change. Also, IoT in it’s current stage is                  

being developed mainly by hobbyists and there is no complete platform that supports their              

needs. As discussed in the market strategy section, our competitors aim at institutions and larger               

companies. The key differentiating factor is hence our target user group. 

After the target group was narrowed down, the major task was to create an application               

that demonstrated IoT. Different aspects of IoT include sensors that collect data, like             

accelerometers and gyroscopes, actuators that act on data, like LEDs and motors, communication             

modules, like Wi-Fi and BLE, and most importantly the processor that links all these aspects. Each                

of these aspects needed to be chosen in a way that the application would be portray IoT. 

The first aspect that was studied was the processor that would be used. There were               

multiple options that included the Arduino, Raspberry Pi and mbed. Robert Bui mentions in his               

paper about the comparison between these platforms and how they affected mbed as our choice               

for development. 

The sensors that are used for the purpose of gesture recognition for our application are               

accelerometers and gyroscopes. While discovering different ways these sensors could we used,            

we came across data gloves that have accelerometers, gyroscopes and flex sensors that indicate              

how much a finger has been bent. The data glove from VirtualRealities was used for this purpose                

. 10

10 The DG5 Data Glove from Virtual Realities uses Wi-Fi for communication and has accelerometers, gyroscopes 
and bend sensors <http://www.vrealities.com/products/data-gloves/dg5-glove-3-0> 

24 



Model-Based Embedded Software         Final Capstone Report 
 

As the name suggests, IoT applications are mainly controlled over the internet. This             

includes talking over networks in order to read from or write to appliances. Hence, we chose to                 

use Wi-Fi as the communication module and in specific the TCP/IP communication protocol. The              

module chosen for this purpose was TI’s CC3000 module. The module communicates with the              

mbed over SPI, a protocol that allows serial communication between ICs. Finally, the actuators              

that were used were LEDs. José Oyola talks in detail in his paper about the choice for LEDs and                   

the different libraries used for this purpose. 

The application was used to light up the cube according to gestures performed on the data                

glove. The data glove would communicate with a server and the server would communicate to               

the LED cube of the different sensor values. The LED cube would then decipher these messages                

and hence light the cube in various forms. The algorithm for the LED cube will be discussed in                  

José Oyola’s paper. 

A modular approach is needed in order to portray how good design concepts can be used                

in order to develop robust applications. SDFs were used in tandem with FSMs. These design               

concepts will be discussed in detail in Robert Bui’s paper. 

During the Fall Semester, my focus was on the communication aspect of the project. The               

communication protocol used for the project was Wi-Fi and specially TCP/IP. The CC3000 Wi-Fi              

module from Texas Instruments was used. The data glove used a vendor specific Wi-Fi module               

and hence was not of concern to us. The first step to implementing CC3000 with mbed was to                  

understand how to connect the module to the mbed. Pin mappings of both the CC3000 and mbed                 

needed to be studied. Data sheets for these devices provided a good start. However, the best help                 

25 



Model-Based Embedded Software         Final Capstone Report 
 

I got was from an existing project . Since the project had already experimented with pin               11

connections, all that needed to be done was making the right connections. 

The first test for the Wi-Fi module was to be able to access the internet and ping a site like                    

www.google.com. This feat was achieved with relative ease and spurred the rest of the project.               

The part of the project that dealt with Wi-Fi communication between the data glove and the LED                 

cube will be discussed in detail in Kevin Albers’ paper. 

As mentioned previously, one of my concentrations was on creating the correction and             

filtering algorithms that help making sense of sensor data. Correction consists of a finite state               

machine that consists of two states: train and filter. The sensor data is normalized before it can be                  

interpreted by the gesture recognition volume. Since the initial state of the sensors may not be                

the same on every reset of the data glove, a reference zero is required in order to have consistent                   

models for gesture recognition. After the data is trained, it can be smoothed using filters such as                 

alpha filters or Kalman filters to eliminate jitters in sensor data. The implementation of the train                

and filter FSM is shown in Figure 1. 

 

Figure 1: Train and Filter FSM 

11 CC3000 with mbed that includes hardware and software aspects 
<http://dev.inventit.io/blog/sparkfun/arduino/mbed/embedded_cxx/arm/cortex_m0/frdm_kl25z/2014/08/0
4/Sparkfun-CC3000-on-mbed.html> 

26 



Model-Based Embedded Software         Final Capstone Report 
 

Once the data has been filtered, the data can be characterized into gestures. For every ten                

packets produced by the correction state machine, the gesture recognition actor fires once. This              

procedure is used to down sample data obtained from the data glove. This allows for gestures to                 

be interpreted more accurately. The project currently supports the use of ten gestures based on               

thresholds shown in Table 1. Everyone in the team contributed to the tables and figures shown in                 

this paper. The tilt detection actor, that will be explained by José Oyola, uses angular data to                 

determine if the LED square should move in the x, y or z axis depending on roll, yaw and pitch,                    

respectively. The LED square moves if the roll, pitch, or yaw becomes greater than +/- 10 degrees                 

from the calibrated initial position, for a total of six gestures. Figure 2 shows how data glove                 

movements correspond to movements on the LED cube. The gesture recognition actor reads the              

bend sensor data to determine if the size or hue of the cube should be changed based on which                   

fingers are bent. The thumb is considered to be bent if the value obtained from the data glove                  

exceeds 200 ADC units. Whereas, the other four fingers are considered to be bent if the value                 

from the data glove exceeds 350 ADC units. Figure 3 shows the four gestures based on the bend                  

sensors. By keeping fingers 2 and 3 unbent and the others bent, the size of the LED square can be                    

increased, while keeping only finger 3 unbent will decrease the size of the cube. The color of the                  

LED square is based on how bent finger 3 was when the finger 4 is unbent and the other fingers                    

are bent. Figure 4 shows how gestures are recognized in the gesture recognition actor. 

 

Gesture Recognition Thresholds 

  Unbent Bent Units 

Fingers 0-3 < 350 ≥ 350 ADC units 

Finger 4 (Thumb) < 200 ≥ 200 ADC units 

  

27 



Model-Based Embedded Software         Final Capstone Report 
 

  Neg. Movement Pos. Movement Units 

Roll, Pitch, Yaw < -10 > 10 degrees 

 

Table 1: Gesture Recognition Thresholds 

 

 

Figure 2: Gestures based on Quaternion Data 

 

Figure 3: Gestures based on Bend Sensors  

 

 

 

 

 

28 



Model-Based Embedded Software         Final Capstone Report 
 

 

 

 

Figure 4: Gesture Recognition Flow Diagram 

The second part of the project dealt with the Ptolemy II platform. Ptolemy II is a very vast                  

project and consists of over three and a half million lines of code . Understanding such an                12

elaborate project required a lot of study. In order to get started, we held regular meetings with                 

various contributors to Ptolemy II. These people included Christopher Brooks, who is one of the               

12 The exact number being 3,685,507 as of 11/27/2014 
<http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm> 

29 



Model-Based Embedded Software         Final Capstone Report 
 

core developers of Ptolemy II, Fabio Cremona who was working on some aspects of code               

generation and Ilge Akkayya for Machine Learning. Multiple meetings with Christopher Brooks            

allowed better understanding of the structure of code and also the build environment from which               

graphical models were converted into C code. The process of learning involved all members of               

the project group since the various parts of Ptolemy II were needed by all of us. 

The major parts of the project with Ptolemy II includes building of models based on core                

embedded systems concepts like SDFs and FSMs as will be discussed in Robert Bui’s paper. The                

second part of working with Ptolemy II included features specific to the mbed tool chain. As                

discussed earlier, mbed has an online compiler that can be used to develop applications.              

However, since the Ptolemy II project is a stand-alone software, an offline build environment was               

needed. Such an implementation would allow seamless conversion of graphical models into the             

final binary file that would be loaded into the mbed in order to run the application. 

The offline compiler involved understanding how the arm-none-eabi-gcc toolchain works          

and how it is used in the context of mbed. My starting reference was the site that gave the source                    

code and binaries to use the GNU toolchain for ARM processors . The toolchain is cross platform                13

and allows applications to be built easily for a particular operating system such as Linux or OS X. 

The GNU for ARM toolchain needed to be used to initially build the libraries for the mbed.                 

Most libraries required just a single step build process where a single “make” command needed               

to be run on the command terminal of the operating system. However, a few libraries such as the                  

CC3000 required modifications to the makefile, which is used by the make command, in order for                

it to be ready for use by the offline compiler. Paths to the mbed libraries, inclusion of the linker                   

file for the mbed libraries and change of the C++ build command to build using a newer version of                   

13 GNU tools for ARM Embedded Processors <https://launchpad.net/gcc-arm-embedded> 

30 



Model-Based Embedded Software         Final Capstone Report 
 

C++ and in particular the gnu++11 option needed to be made for the offline compiler to work.                 

These changes have been documented for future users in a wiki page . 14

The next step was to build an existing project offline. When a project is downloaded from                

the online compiler, it comes with a makefile. However, this makefile doesn’t work as is and                

needs to be modified. The results of these steps is explained in the results section of this paper.                  

Firstly, the object files needed to be removed for library creation. This step is essential since the                 

object files have already been built in the previous step. Secondly, all the object files that will be                  

used by the project needed to be declared. These object files include the various libraries and the                 

mbed specific libraries that are mandatory. Library include paths also need to be mentioned since               

they indicate where the object files should be accessed from. Finally, the gnu++11 compiler needs               

to be used due to the reasons mentioned previously. 

The results from this process was then integrated into Ptolemy II. Ptolemy II uses a               

particular build process that includes a makefile according to the target chosen. Hence, for the               

mbed, the corresponding makefile needed to be altered. Again, this task was not straightforward              

and it needed the modification of the makefile from the previous step in order for it to work.                  

Some of the challenges faced with this regard will be discussed in the results section of this paper.                  

Many changes needed to be made to the Makefile in order for it to work offline. Firstly, Ptolemy II                   

code generation related source files had to be included into the build system. This includes code                

for the backbone of different models of computation. Ptolemy II related code is built using using                

GNU for ARM compilers. I also needed to include information that declared that memory              

allocation and other memory related libraries are not available and also information that helped              

the code generator to include code that is specific to the mbed. Finally, specific C files needed to                  

be built using the C++ compiler. Ptolemy II code generates a number of C files that can be                  

14 mbed for Ptolemy II wiki page <http://chess.eecs.berkeley.edu/ptexternal/wiki/Main/Mbed> 

31 



Model-Based Embedded Software         Final Capstone Report 
 

compiled using the C++ compiler and this is necessary since a number of files include mbed                

related libraries that are supported only in C++. 

As projects grow large they tend to get messy and it is easy to lose track of working                  

versions of software and also fixes that were made. Version control is a great way to avoid these                  

errors. Version Control Systems also promote distributed software development where users           

from across the world can collaborate on projects and hence speed up development. Bug reports               

can easily be filed and conflict resolution between different developers becomes much easier             

(Costa et al. 2013:90). 

Prahov et al. mention how IC projects and software engineering projects have started             

using version control intensively. The study indicates the different features of version control             

that are used the most. It also cites a few examples of large scale projects and how version control                   

was useful in their development. It is hence useful for our project to use various version control                 

mechanisms as well (2013). 

Multiple environments were used for version control through the course of the project.             

mbed’s online compiler has version control built into it and this was used in order to create the                  

LED cube-data glove application. All the project members worked in parallel and finally merged              

their code together. Good version control practices like incremental commits and detailed            

commit descriptions were helpful in order to keep track of progress, contributions and also              

understand why certain features were implemented. 

The Ptolemy II project is version controlled with the help of SVN. SVN provides a concrete                

solution for version control across large projects and was hence used in Ptolemy II. Each change                

we made to the Ptolemy II code chain has been tracked by commits on specific files. We also                  

maintained good version control practices and have been able to share each other’s             

32 



Model-Based Embedded Software         Final Capstone Report 
 

contributions. This has allowed faster implementation time and has avoided dependencies           

between team members. 

As mentioned previously, one of the problems faced was with memory leaks. Embedded             

system processors have very limited memory and hence have to be managed carefully. It was               

seen that the code generated from Ptolemy II was not handling memory optimally. Even the               

simplest of applications resulted in failures. In order to track down and fix these problems we                

used valgrind , a tool that helps find bugs in memory management. Once the source code is built,                 15

it can be run through the valgrind tool which in turn provides insightful information about               

variables that are retained in memory even after they have been used. Using valgrind we were                

able to track down a number of memory leak issues as will be discussed in Robert Bui’s paper. 

The final task of the project was to re-create the LED cube application discussed earlier               

using model-based design approaches using Ptolemy II. The model was chosen to be an SDF               

model with each specific function being a separate actor. The various actors included the wifi               

module, filtering and correction, gesture recognition and the LED cube itself. Some of these              

models were further divided into sub-models hence forming a hierarchical structure. In order to              

have this system working on the Ptolemy II software, the offline toolchain needed to be               

completed. One of the libraries, WS2812 for the LEDs, was not working correctly in the offline                

toolchain and this was fixed by modifying the source code for the library. After the WS2812                

library was fixed, the entire offline toolchain was ready, allowing a seamless generation of code               

for the K64F mbed platform. 

 

Results and Discussion 

15 Valgrind is a memory management bug detection tool <http://valgrind.org/> 

33 



Model-Based Embedded Software         Final Capstone Report 
 

Initial successes and failures in the project helped us understand a lot about small scale               

embedded systems. It was during integration of our various modules that we faced challenges.              

The CC3000 module that I was working on needed to be integrated with the LED array and                 

algorithm that José Oyola and Robert Bui were working on. However, once the code was               

integrated the Wi-Fi module stopped working as expected and used to fail occasionally and there               

was no immediate explanation for this behavior. The usual method of viewing statuses at              

different parts of the code didn’t provide any information. It was then that I started looking                

through the libraries and tried to gain a deeper understanding of how the libraries were               

communicating with hardware. It was then that I realized that the Neopixel LEDs and the CC3000                

module had an overlap on the external pins. The Neopixel LEDs assumed two pins to be unused                 

but these pins were being used by the CC3000 for SPI communication. The solution was that the                 

mbed had another set of SPI pins through which the CC3000 could be connected. This required                

physical rewiring of the pins and also the change of pin mapping in the software. This helped us                  

realize that it is important to discover alternatives for different pins on the IC before designing an                 

application. 

During the spring semester, the result of the makefile usage was that a user could build                

the final binary to be loaded into the mbed by clicking a single button on the Ptolemy II model.                   

This ease of use allows users to quickly build applications without worrying about setting up tool                

chains and other complicated methods for offline compilation. However, the journey was not             

smooth. With my limited knowledge on makefiles, it was difficult to understand how makefiles              

were used. Hence, I consulted an expert on the topic, Christopher Brooks, and held a meeting                

with him. It is then that I understood how to work with makefiles and how they were integrated                  

into Ptolemy II. However, even after this meeting, there were many challenges as I was               

attempting to accomplish a task that involved expertise from multiple domains, the mbed tool              

34 



Model-Based Embedded Software         Final Capstone Report 
 

chain and Ptolemy II. To solve this problem I broke it down into multiple parts as described in the                   

previous section.  

The major challenges I faced were during the creation of makefiles for compiling example              

applications we had built in the previous semester using the online tool chain. I understood what                

different parts of the makefile meant and started implementing one feature at a time. However, I                

was unable to move forward for five days while working on a single problem and was not able to                   

solve it. This is when I approached an expert I knew in the field of makefiles, an old colleague of                    

mine from Texas Instruments, Anand Gadiyar. through my discussion with him I was able to solve                

the problem of relative versus absolute addressing in makefiles. The tool chain required absolute              

paths instead of relative and also needed slight syntax modifications as the ordering of tasks was                

wrong in a particular command. Online forums provided a lot of help both through questions that                

were already asked and through questions that I asked. One example was the GNU forums where                

I got some help to understand and correct a particular part of the build system for the ARM                  

C/C++ compilers . This reinforces the benefits of an open source community of how support is               16

easily available. 

From this point, the task was to integrate the tool chain into the Ptolemy II system and be                  

able to generate a binary file at the click of a button. It also required understanding of the code                   

that was generated from a Ptolemy II model. The challenges I faced here were that all the files                  

generated were C files and not C++ files. The mbed libraries require C++ since they include a lot                  

of C++ specific code and libraries. The solution to the problem was to compile the C files to C++                   

files since C++ supports most of the features of C. However, this approach led to problems where                 

a few C-specific functionalities were not supported by C++ like automatic type casting from void               

pointers to other types. Kevin Albers mentions about these errors in detail in his paper. After                

16 Errors building the offline GNU toolchain for ARM 
<https://answers.launchpad.net/gcc-arm-embedded/+question/262850> 

35 



Model-Based Embedded Software         Final Capstone Report 
 

having another meeting with Christopher Brooks, I was able to understand the different kinds of               

files and how they could be interchanged from one type to the other. In order to correct for these                   

dependencies I had to add a section to the makefile that converted only the files that included                 

mbed specific libraries into C++. As mentioned previously, I got help from online forums in order                

to achieve this task . 17

Each of the actors in the LED cube model on Ptolemy II had it’s own C code. However, this                   

code was made modular so that any of the blocks could be replaced with another. For example,                 

the CC3000 wifi actor was developed in such a way that it had generic inputs and could be used                   

for any application. Similarly, the NeoPixel LED actor could be replaced by any other actuator like                

a motor or a screen by a simple replacement of the actor. 

As discussed earlier, the final toolchain was ready once the WS2812 library was fixed. The               

problem was that the NeoPixel LEDs required very precise timing. After a few experiments with               

an oscilloscope, used to measure timing, the right timing requirements were achieved allowing             

seamless integration of the offline compiler. 

V. Concluding Reflections 
 

Overall, my accomplishments in the project can be summarized into understanding           

CC3000 communication, correction and gesture recognition algorithms, understanding code         

generation in Ptolemy II, creation of makefiles that use the GNU for ARM compilers, setting up the                 

offline toolchain and also solving memory leaks in Ptolemy II for code generation. All these tasks                

were essential to the final result of the project as it helped other members of the team work                  

forward from. A lot of tasks were team based initially and finally the split into teams of two                  

helped faster progress in the project. 

17How file extentions can be modified using makefiles 
<http://stackoverflow.com/questions/28921330/modifying-file-extensions-using-makefiles> 

36 



Model-Based Embedded Software         Final Capstone Report 
 

Our original project description was very broad and we decided as a team to approach the                

project in a two step process. The first was to create an embedded systems application, the data                 

glove coupled with the LED cube, using model-based design concepts. The second was to be able                

to use a graphical interface, Ptolemy II, to re-create the same application. We were able to                

accomplish the first half of the project on schedule during the Fall semester. While working with                

code generation with Ptolemy II we faced a lot of hurdles but we were able to accomplish most of                   

the tasks we planned. There are a few aspects like supporting multiple processors and using               

other models of computation such as discrete event systems that could have been good              

additions. However, these tasks were planned to be completed only if the core of the project was                 

completed. These concepts will be a good addition to the entire project if someone plans on                

building on our work. 

Through the course of this project I learnt how important it is to set realistic goals and                 

how to work as a team to accomplish these goals. The initial work with Gantt charts and work                  

breakdown structures helped a lot in breaking down tasks into atomic units. Since the project               

was a set of peers it was important to understand each one’s strengths and weaknesses and                

leverage them to our advantage. An example of this was while we were working on code                

generation. Since the other three project members were taking an advanced model-based design             

course which I was not, I concentrated on building the offline tool chain and learnt aspects of                 

model-based design and Ptolemy II from them so that we could work parallely.  

Model-based embedded software practices used in this project will help in building            

scalable IoT applications. The graphical interface provided will in addition provide a fast             

prototyping environment. With both these advantages our project stands to gain great traction             

with the advent of IoT. Our project could open a large range of opportunities for people with                 

37 



Model-Based Embedded Software         Final Capstone Report 
 

limited programming knowledge to create applications faster and better than what they could             

find through any other alternatives. 

 

Future Work 

A good point for other project teams to continue would be our wiki page. It explains in                 

detail the features we added and the problems we faced in our project. There is also a step by                   

step guide that will help users set up the Ptolemy II project and start developing much faster than                  

we were able to do. Detailed descriptions of different aspects of code generation are also               

explained in the same page. 

The scope of our project still remains vast and future teams can build off our project. An                 

obvious addition to the project would be to support multiple platforms such as the Arduino and                

Raspberry Pi, not counting the multiple variants of the mbed. Our project focused mainly on               

synchronous data flow models with finite state machines. However another aspect that was not              

explored is code generation for discrete event models. This model of computation is wider and               

many more applications can be created using this model. It would also be beneficial to create a                 

set of libraries for Ptolemy II that focus on IoT. A user of the product would also benefit from                   

example applications for each of the libraries that were created. 

  

38 



Model-Based Embedded Software         Final Capstone Report 
 

References 

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. "Two case studies of open source 

software development: Apache and Mozilla." ACM Trans. Softw. Eng. Methodol. 11, 3 (July 

2002), 309-346, Web. 16 Feb. 2015. <http://dl.acm.org/citation.cfm?id=567795> 

Brooks, Christopher, Edward A Lee, Xieojun Liu, Stephen Neuendorffer, Yang Zhao, Haiyang             

Zheng, Shuvra S Bhattacharyya, Elaine Cheong, II Davis, Mudit Goel, Bart Kienhuis, Man-Kit             

Leung, Jie Liu, Lukito Muliadi, John Reekie, Neil Smyth, Jeff Tsay, Brian Vogel, Winthrop              

Williams, and Yuhong Xiong, “Heterogeneous concurrent modeling and design in java           

(volume 2: Ptolemy ii software architecture)”, Berkeley, CA, USA: California University           

Berkeley Department of Electrical Engineering and Computer Science, 4/1/2008. Print. 

"Buy LabVIEW." - National Instruments. National Instruments, n.d. Web. 25 Nov. 2014. 

<http://www.ni.com/labview/buy/> 

Clarice Technologies. "Demystifying the Internet of Things." Thinking Products: A Weblog by 

Clarice Technologies, Clarice Technologies, 6 Mar. 2014. Web. 16 Feb. 2015. 

<http://blog.claricetechnologies.com/2014/03/demystifying-the-internet-of-things/> 

Costa, Catarina, and Leonardo Murta, "Version Control in Distributed Software Development: A            

Systematic Mapping Study" 2013 IEEE 8th International Conference on Global Software           

Engineering (ICGSE), pp.90-99, 26-29 Aug. 2013. Print. 

Dellas, Christina M., and Hogan, Kevin M. Statechart Development Environment with Embedded 

Graphical Data Flow Code Editor. National Instruments Corporation, assignee. Patent US 

8,387,002 B2. 26 Feb. 2013. Print. 

Deshpande, A. and Riehle, D., IFIP International Federation for Information Processing, Volume 

275; Open Source Development, Communities and Quality; Barbara Russo, Ernesto Damiani, 

Scott Hissam, Björn Lundell, Giancarlo Succi; Boston: Springer, 2008. pp. 197–209. 

39 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6612561
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6612561


Model-Based Embedded Software         Final Capstone Report 
 

Doi, Yusuke, Yumiko Sato, Masahiro Ishiyama, Yoshihiro Ohba, and Keiichi Teramoto, "XML-less 

EXI with code generation for integration of embedded devices in web based systems," 3rd 

International Conference on the Internet of Things (IOT), vol., no., pp.76,83, 24-26 Oct. 

2012 

Engelfriet, A. "Choosing an Open Source License." IEEE Software 27.1 (2010): 48-49. Print. 

"Engineering, Scientific & CAD/CAM Software" Hoover’s Online. 2015. Web. 16 Feb. 2015. 

Fitzgerald, Brian. "The Transformation of Open Source Software." MIS Quarterly. Vol. 30, No. 3 

(Sep., 2006) , pp. 587-598. Web. 16 Feb 2015. <http://www.jstor.org/stable/25148740> 

"Gartner's 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business", 

Gartner, 11 Aug. 2014, Web. Nov. 2014. 

<http://www.gartner.com/newsroom/id/2819918> 

Hulkower, Billy. "Living Online - US - May 2014." In Mintel.  n.d. Web. 13 Feb. 2015. 

<http://academic.mintel.com/display/704619/?highlight> 

"Internet of Things Market & M2M Communication", Markets and Markets, Nov. 2014, Web. Nov. 

2014. 

<http://www.marketsandmarkets.com/Market-Reports/internet-of-things-market-573.ht

ml> 

Jensen, J. C., Chang, D. H. and Lee, E.A., 2011, “A model-based design methodology for 

cyber-physical systems”, Proceedings of the International Wireless Communications and 

Mobile Computing Conference . IWCMC 2011 . pp. 1666-1671. Print. 

Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman, 2011 “Model-Based Testing for 

Embedded Systems”, CRC Press. Boca Raton: Taylor and Francis Group, 2013. Web. 16 Feb. 

2015. <http://dx.doi.org/10.1201/b11321-1> 

40 



Model-Based Embedded Software         Final Capstone Report 
 

Kahn, Sarah, IBISWorld Industry Report 51121: Software Publishing in the US. Dec. 2014. Web. 

13 Feb. 2015.  

Kortuem, Gerd, Fahim Kawsar, Daniel Fitton, and Vasughi Sundramoorthy, "Smart objects as            

building blocks for the Internet of things," IEEE Internet Computing, vol.14, no.1, pp.44,51,             

Jan.-Feb. 2010 

Lindman, J.; Paajanen, A.; Rossi, M., "Choosing an Open Source Software License in Commercial              

Context: A Managerial Perspective," 2010 36th EUROMICRO Conference on Software          

Engineering and Advanced Applications (SEAA), 237-44, 1-3 Sept. 2010 

“Links.” Ptolemy Project. UC Berkeley, 26 July. 2014. Web. 

http://ptolemy.eecs.berkeley.edu/archive/links.htm, accessed February 28, 2015.  

Ma, Tao, and Chunhong Zhang. "On the Disruptive Potentials in Internet of Things." Proceedings 

17th IEEE International Conference on Parallel and Distributed Systems: ICPADS 2011: 7-9 

December 2011, Tainan, Taiwan. Los Alamitos, Calif: IEEE Computer Society Conference 

Publications, 2011. 857-59. Print. 

Mueller, W., Becker, M., Elfeky, A., DiPasquale, A., "Virtual prototyping of Cyber-Physical Systems," 

Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, 219-26, 30 Jan. 

2012-2 Feb. 2012. Print. 

Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi, Ketil Sandanger Velle, and Tron André 

Skarpenes, “Risks and Risk Mitigation in Open Source Software Adoption: Bridging the Gap 

between Literature and Practice” Proceedings of 6th International IFIP WG 2.13 Conference 

on Open Source Systems, Open Source Software: New Horizons, Notre Dame, IN, USA, May 30 

- June 2 2010. Springer. 2010. Web. 16 Feb. 2015. 

<http://link.springer.com/book/10.1007%2F978-3-642-13244-5> 

41 



Model-Based Embedded Software         Final Capstone Report 
 

Øyvind Hauge and Sven Ziemer, “Providing Commercial Open Source Software: Lessons Learned”, 

Proceedings of 5th IFIP WG 2.13 International Conference on Open Source Systems, Open 

Source Ecosystems: Diverse Communities Interacting, Skövde, Sweden, June 3-6, 2009 

Springer. 2009. Web. 16 Feb. 2015. 

<http://www.springer.com/computer/general+issues/book/978-3-642-02031-5> 

Porter, Michael. "How Competitive Forces Shape Strategy." Harvard Business Review, vol. 57, no. 

2, 137-45. Mar. 1979. Print. 

Porter, Michael. "The Five Competitive Forces That Shape Strategy." Harvard Business Review. Jan. 

2008. Print. 

Prahov, Radoslav, Holger Schmidt, and Achim Graupner , "Subversion(r): An empirical 

performance case study from a collaborative perspective on integrated circuits and 

software development," 4th IEEE International Conference on Software Engineering and 

Service Science (ICSESS), vol., no., pp.35,42, 23-25 May 2013 

"Pricing and Licensing." MATLAB and Simulink Overview. MathWorks, n.d. Web. 25 Nov. 2014. 

<http://www.mathworks.com/pricing-licensing/index.html?intendeduse=home> 

"Ptolemy II." Ptolemy Project. UC Berkeley, n.d. Web. 

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm, accessed February 16, 2015. 

“Ptolemy II Frequently Asked Questions.” Ptolemy Project. UC Berkeley, 18 Dec. 2014. Web. 

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIfaq.htm#ptolemy%20II%20copyright, 

accessed February 16, 2015.  

Riedel, Till, Nicolaie Fantana, Adrian Genaid, Dimitar Yordanov, Hedda R. Schmidtke, and Michael             

Beigl, "Using web service gateways and code generation for sustainable IoT system            

development," Internet of Things (IOT), 2010 , vol., no., pp.1,8, Nov. 29 2010-Dec. 1 2010 

42 



Model-Based Embedded Software         Final Capstone Report 
 

“Sponsors of the Ptolemy II Project.” Ptolemy Project. UC Berkeley. Web. 

http://ptolemy.eecs.berkeley.edu/sponsors.htm, accessed 14 Apr. 2015 

Stravoskoufos, Kostas, Stelios Sotiriadis, Alexandros Preventis, and Euripides G.M. Petrakis,          

"Motion sensor driven gesture recognition for future internet application development,"          

The 5th International Conference on Information, Intelligence, Systems and Applications,          

IISA 2014, , vol., no., pp.372,377, 7-9 July 2014. Print. 

Toulson, Rob, and Tim Wilmshurst, "Fast and Effective Embedded Systems Design: Applying the             

ARM mbed" Newnes Newton, MA, USA: Elsevier Ltd., 2012, Print. 

Tripakis, Stavros, Dai Bui, Marc Geilen, Bert Rodiers, and Edward A. Lee. "Compositionality in              

synchronous data flow: Modular code generation from hierarchical sdf graphs." ACM           

Transactions on Embedded Computing Systems (TECS) 12, no. 3 (2013): 83. 

Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi, “Quality of Open Source 

Software: The QualiPSo Trustworthiness Model”, Springer, 2009, Web. 16 Feb. 2015. 

Wojtczyk, Martin., and Alois Knoll, "A Cross Platform Development Workflow for C/C++            

Applications," Software Engineering Advances, 2008. ICSEA '08. The Third International          

Conference on , vol., no., pp.224,229, 26-31 Oct. 2008. Print. 

 

43 


