
SoftNIC: A Software NIC to Augment Hardware

Sangjin Han
Keon Jang
Aurojit Panda
Shoumik Palkar
Dongsu Han
Sylvia Ratnasamy

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-155
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html

May 27, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

SoftNIC: A Software NIC to Augment Hardware
Sangjin Han, Keon Jang∗, Aurojit Panda, Shoumik Palkar, Dongsu Han†, Sylvia Ratnasamy

University of California, Berkeley ∗Intel Labs †KAIST

Abstract
As the main gateway for network traffic to a server, the net-
work interface card (NIC) is an ideal place to incorporate
diverse network functionality, such as traffic control, protocol
offloading, and virtualization. However, the slow evolution
and inherent inflexibility of NIC hardware have failed to sup-
port evolving protocols, emerging applications, and rapidly
changing system/network architectures. The traditional soft-
ware approach to this problem—implementing NIC features
in the host network stack—is unable to meet increasingly
challenging performance requirements.

In this paper we present SoftNIC, a hybrid software-
hardware architecture to bridge the gap between limited hard-
ware capabilities and ever changing user demands. SoftNIC
provides a programmable platform that allows applications
to leverage NIC features implemented in software and hard-
ware, without sacrificing performance. Our evaluation results
show that SoftNIC achieves multi-10G performance even
on a single core and scales further with multiple cores. We
also present a variety of use cases to show the potential of
software NIC augmentation.

1. Introduction
Modern Network Interface Cards (NICs) are constantly evolv-
ing to support new features. Over the last decade, the role
of NICs in modern server systems has grown beyond sim-
ply relaying traffic between a server’s CPUs and its network
link—they now host advanced NIC features, such as protocol
offloading, packet classification, rate limiting, and virtual-
ization. Three factors have contributed to this trend: (1) new
applications whose performance requirements cannot be met
by legacy networking stacks, necessitating hardware augmen-
tation; (2) the increasing popularity of virtualization, where it
is desirable for NICs to support switching functionality; and
(3) the rise of multi-tenant datacenters and cloud computing
for which NICs must provide isolation mechanisms.

However, the rise of smart NICs has been no free lunch. As
we discuss in §2, NICs are increasingly complex: they support
an ever-increasing number of features that are difficult to
configure, compose, or evolve. Despite this, NICs often fail
to meet application needs and their lack of flexibility impedes
innovation. At the heart of the problem is that applications
(software) evolve faster than the timescales at which new NIC
support (hardware) emerges.

The common belief is that the pitfalls of feature-rich NICs
must be tolerated because they are necessary to achieve the
performance we want; i.e., implementing NIC features in
software is not a practical alternative. What should give us

pause, however, is the mounting evidence that the perfor-
mance gap between hardware and software network pro-
cessing is significantly getting smaller than previously be-
lieved [14, 21, 26, 59].

We argue that a hybrid hardware-software approach can
effectively augment or extend NIC features, while providing
flexibility and high performance. This software-augmented
NIC—which we term SoftNIC—serves as a fallback or even
an alternative to the hardware NIC. SoftNIC is flexible and
programmable; it serves as an incubator for next-generation
hardware features, as well as a permanent home for features
that are too complex for hardware implementation, too spe-
cialized to merit scarce NIC resources, or whose performance
needs are easily met with software.

Building a system such as SoftNIC is challenging. To
support applications’ needs, SoftNIC must provide rich pro-
grammability. However it must do so without compromising
on performance. Modern NICs offer high throughput (10–
40 Gbps) and low end-to-end latency (< 10 µs) [4]. At the
same time, they also provide guarantees on performance and
isolation among virtual machines (VMs) or applications. Soft-
NIC must offer similar performance capabilities, but meeting
these requirements with a software implementation can be
very challenging. For example, legacy kernels and hypervi-
sors are notoriously slow and inefficient at network process-
ing. And while specialized packet processing frameworks do
offer high performance, they lack the rich programmability
we seek [26, 59] or do not address the problem of perfor-
mance guarantees [35].

Hence, our paper make three contributions:

1. First, we propose a new architecture for extending NIC
features. Developers can use SoftNIC to develop features
in software while incurring minimal performance over-
head and leveraging features from the hardware NIC. Ap-
plication developers can use SoftNIC as a hardware ab-
straction layer (HAL) to build software that uses NIC
features without worrying about cases where they are un-
available or incomplete.

2. Second, we present a scheduling framework that can
support a wide range of operator-specified performance
isolation policies and provide fine-grained performance
guarantees for applications (§3.4).

3. Third, we present several use cases of SoftNIC, showing
how SoftNIC can improve the flexibility and/or perfor-
mance of both existing and forward-looking applications.
Our evaluation in §6 demonstrates that SoftNIC is a con-
venient and versatile platform for implementing advanced
NIC features that benefit a variety of applications.

1 2015/5/27

2. Motivation
The list of features that need to be supported by NICs has
grown rapidly: new applications appear with new require-
ments; new protocols emerge and evolve; and there is no
shortage of new ideas on system/network architectures that
require new NIC features (e.g., [6, 29, 47, 51, 54, 57]). Unfor-
tunately, NIC hardware is not a silver bullet, as many issues
arise due to the inherent inflexibility of hardware.

1. NICs may not support all desired features. Due to the
slow development cycle (typically years), there often
exists a demand-availability gap—a disparity between
user demands for NIC features and their actual availability
in products. For example, even minor updates (e.g., do not
duplicate the TCP CWR flag across all segments when
using TSO, to avoid interference with congestion control
algorithms [12, 58]) that can be implemented by changing
a few lines of code when implemented in software, often
requires a full hardware revision.

2. Once a feature is hardwired in the NIC, it is almost impos-
sible to control its fine-grained behavior, often rendering
the feature useless. For example, in the case of protocol
offloading (e.g., checksum offload and TSO/LRO), tun-
neled packets (e.g., VXLAN) cannot take advantage of
unless the NIC understands the encapsulation format [36],
even though hardware essentially has the logic for pro-
tocol offloading built-in. Lack of fine-grain control also
makes it difficult to combine features to acheive the end
goal. For example, although SR-IOV provides better per-
formance and isolation with hypervisor bypass, it cannot
be used by cloud providers unless it supports additional
features to enforce traffic policies such as security/QoS
rules, advanced switching, and VM mobility support [54].

3. NIC hardware has resource restrictions, e.g., the number
of rate limiters, flow table size, and packet buffers, limiting
its applicability. As a result, several systems [22, 32, 38,
50] have resorted to software work around the resource
issue.

We argue that these issues will persist or even worsen
in the future. Figure 1 presents the number of lines of code
for NIC device drivers as an indirect index of NIC hardware
complexity. The trends over the NIC generations show that
the complexity has grown tremendously; e.g., the driver for
a high-end NIC (> 10GbE) on average contains 6.8× more
code than that of a 1 GbE NIC driver. This ever increasing
hardware complexity has led to an increase in the time and
cost for designing and verifying new NIC hardware.

SoftNIC presents a new approach to extending NIC func-
tionality; its adds a software shim layer between the NIC hard-
ware and the network stack, so it can augment NIC features
with software. It enables high-performance packet processing
in software, while taking advantage of hardware features. By
design, it supports high performance, extensibility, modular
design, and backwards compatibility with existing software.

1,000

10,000

100,000

10M 100M 1G 10G >10G

L
oC

 o
f N

IC
 d

ev
ic

e
dr

iv
er

s

Figure 1: Growing complexity of NIC hardware, indirectly measured
with the lines of device driver code in Linux 3.19.

3. SoftNIC Design
SoftNIC is a programmable platform that allows applications
to leverage software and hardware implementations of NIC
features. SoftNIC is implemented as a shim layer between
applications and NIC hardware, in order to achieve the best of
both worlds: the flexibility of software and the performance
of hardware.

SoftNIC provides a software augmentation layer for NICs,
which imposes a few issues to be addressed. We set three
main design goals (§3.1) and then provide details on the
overall architecture (§3.2), the packet processing pipeline
(§3.3), and the scheduler used for resource allocation (§3.4).
In this section we only describe the design aspects of SoftNIC,
deferring implementation details on performance to §4.

3.1 Design Goals

G1: Programmability and Extensibility
SoftNIC must allow users to configure functionality to sup-
port a diverse set of uses. In particular, users should be able
to compose and configure NIC features as required, and Soft-
NIC should make it easy to add support for new protocols
and NIC functions. Also a clean separation between con-
trol and data plane is desired, so that an external controller
can dynamically reconfigure the data path to implement user
policies.

G2: Application Performance Isolation
Hardware NICs support mechanisms that can be used to
implement policies regarding per-link bandwidth resource
used by an application, e.g., “limit the bandwidth usage for
this application to 3 Gbps” or “enforce max-min fairness
across all applications.” SoftNIC should provide flexible
mechanisms to support a variety of policies on application-
level performance. However, implementing these policies
imposes a unique challenge for SoftNIC—the processor1

itself is a limited resource and must be properly scheduled to
process traffic spanning multiple links and applications.

1 We only manage processor time used within the SoftNIC dataplane; the
processor time used by applications themselves is out of SoftNIC’s control.

2 2015/5/27

 Driver

Net. stack

Legacy apps

Controller

Native app

Legacy apps Native app

Host kernel

VM kernel

HW NIC

 Driver

Net. stack

HW NIC

“vports”

“pports”

Figure 2: SoftNIC architecture

G3: Backward Compatibility
Finally, using SoftNIC should require no modifications to
existing software or hardware. At the same time SoftNIC
should be an enabler for a gradual transition to new hardware
and software designs, e.g., allowing applications to use new
network APIs to improve performance.

3.2 Overall Architecture

Figure 2 shows the overall system architecture of SoftNIC.
The packet processing pipeline is represented as a dataflow
(multi)graph that consists of modules, each of which im-
plements a NIC feature. Ports act as sources and sinks for
this pipeline. Packets received at a port flow through the
pipeline to another port. Each module in the pipeline per-
forms module-specific operations on packets. Our dataflow
approach is heavily inspired by Click [35], although we both
simplify and extend Click’s design choices for SoftNIC (§7).

SoftNIC’s dataflow graph supports two kinds of ports. (i)
Virtual ports (vports) are the interface between SoftNIC and
upper-layer software. A vport connects SoftNIC to a peer;
a peer can either be the SoftNIC device driver (which is
used to support legacy applications relying on the kernel’s
TCP/IP stack) or a SoftNIC-aware application that bypasses
the kernel. A peer can reside either in the host2, or in a
VM. (ii) Physical ports (pports) are the interface between
SoftNIC and the NIC hardware (and are hence not exposed to
peers). Each pport exposes a set of primitives that are natively
implemented in its NIC hardware (e.g., checksum offloading
for specific protocols).

A vport pretends to be an ideal NIC port that supports
all features required by its peer. The modules in the packet
processing pipeline are responsible for actually implementing
the features, either in software, by offloading to hardware,
or with combination of both. SoftNIC thus abstracts away
the limitations of the underlying NIC hardware from peers,
effectively providing a hardware abstraction layer (HAL)
for NICs. SoftNIC both allows for rapid prototyping of new
NIC functionality in software, and is also useful in cases
where hardware provides incomplete functionality (e.g., by
2 Throughout this paper, we use the loosely defined term “host” to refer to
a hypervisor, a Dom0, a root container, or a bare-metal system, to embrace
various virtualization scenarios.

providing software implementation that allow a feature to be
used with a new protocol) or insufficient capacity (e.g., by
using both software and hardware flow tables).

SoftNIC provides a control channel that allows for a clean
separation between the control and data plane. An explicit
control channel allows an external controller to dictate data
path policy, while SoftNIC itself focuses on providing data-
plane mechanisms for this policy. The control channel sup-
ports three types of operations: (1) updating the data path
(e.g., adding/removing modules or ports), (2) configuring re-
source allocations (e.g., limiting CPU/bandwidth usages for
applications), (3) managing individual modules (e.g., updat-
ing flow tables or collecting statistics). In this paper we solely
focus on the design and implementation of SoftNIC, rather
than the external controller.

3.3 Modular Packet Processing Pipeline

The SoftNIC pipeline is composed of modules, each of which
implements a NIC feature. An implementation of a module
defines several handlers, including ones for processing pack-
ets and timer events. Each module instance may contain some
internal state, and these instances are the nodes in SoftNIC’s
data flow graph that specifies the order in which modules
process packets (Figure 3). When a node has multiple outgo-
ing edges (e.g., classification modules), the module decides
which of the edges a packet is sent out.

Often in-band communication between modules is desir-
able for performance and modularity. For example, a parser
module performs header parsing and annotates the packet
with the result as metadata, so that downstream modules can
reuse this information. Along the pipeline, each packet car-
ries its metadata fields abstracted as a list of key-value pairs.
Modules specify which metadata fields they require as input
and the fields they produce. Explicitly declaring metadata
fields is useful in two ways. First, if a module in the pipeline
requires a field that is not provided by any upstream modules,
SoftNIC can easily raise a configuration error. Second, any
unused metadata field need not be preserved, and SoftNIC
can reduce the total amount of space required per-packet.
Note that this optimization can be performed at configuration
time and does not incur any runtime overhead.

Pipeline Example: We walk through a simple example
to illustrate how packets are processed with metadata. In
Figure 3, the tables on the edges show packet metadata at the
point when a packet traverses the edge. The dotted arrows
represent the input/output metadata fields for each module.
The user configures the SoftNIC pipeline so that transmitted
packets are processed by (i) a switching service, (ii) TCP
segmentation offload (TSO), and (iii) checksum offloading.
The NIC in this example has no TSO functionality, and
only supports checksum offloading for TCP/IPv4 packets.
Nevertheless, the vport appears as a fully featured NIC
to the peer, and provides both TSO and protocol-agnostic
checksumming.

3 2015/5/27

vport_inc parser switch TSO checksum pport_out

inc_port
csum_sw

Peer

inc_port
csum_sw
hdr_info

csum_sw
hdr_info
out_port

csum_sw
hdr_info
out_port

csum_hw

HW NIC

Per-packet
metadata

vport pport

Figure 3: A pipeline example with parser, switch, TSO, and checksum offloading modules. Metadata evolves as a packet traverses the pipeline.

When the peer sends packets to the vport, each packet is
annotated with its desired offloading behavior. For example,
an annotation indicating that a packet requires checksum
offloading is of the form “calculate checksum over byte range
X using algorithm Y, and update the field at offset Z.” The
packet data and its annotations are packaged as a packet
descriptor and pushed into the vport queue. In contrast to
hardware NICs, the size and format of the descriptor are
flexible and can change depending on the features exposed
by the vport. Packet processing proceeds as follows.

1. vport_inc pulls a packet descriptor, creates a SoftNIC
packet buffer with the packet data, and adds metadata
fields for the input port ID (inc_port) and checksum
offloading description (csum_sw).

2. parser inspects the packet’s L2–L4 header and records
the results in hdr_info.

3. switch updates the MAC table using inc_port and
hdr_info. Then it uses the destination address to de-
termine the output edge along which the packet is sent. In
this example the chosen edge goes to the TSO module.

4. TSO begins by checking whether the packet is a TCP
packet larger than the MTU of out_port3. If so, the
module segments the packet into multiple MTU-sized
packets (and all metadata fields are copied), and updates
csum_sw appropriately for each.

5. checksum uses csum_sw and hdr_info to determine if
checksum calculation is required, and further if this needs
to be done in software. When checksum computation
can be carried out by the NIC containing out_port,
the module simply sets csum_hw to “on”, otherwise the
module computes the checksum in software.

6. pport_out sends the packet to the NIC, with a flag indicat-
ing whether the hardware should compute the checksum,
in the hardware-specific packet descriptor format.

This example highlights how SoftNIC modules can flex-
ibly implement NIC features and opportunistically offload
computation to hardware. For ease of exposition we have only
described the transmission path, the receive path is imple-
mented similarly. Also, note a packet does not always need to

3 While in this dataflow graph the output port can be “inferred”, explicit
use of out_port allows greater flexibility: e.g., allowing us to separate
classification (which determines the out_port) from splitting (which diverts
the packet flow in the pipeline).

vport vport

VM1

C1 C2 C3 C4

…

…

C1

VM1 VM2

C2 C3 C4

VM2

C1, C3: high priority, 1 Gbps
C2, C4: low priority, no limit
Per VM: 5 Gbps limit

(a) Example policy (b) Class tree

root

Figure 4: An example of high-level performance policy with four
traffic classes C1–C4, and its corresponding class tree representation.
Each circle is either a class (leaf) or a class group (non-leaf). VM1
and VM2 have the same priority (within the same box).

flow between a vport and a pport: e.g., virtual switching (be-
tween vports) [52] or multi-hop routing (between pports) [5].

3.4 Resource Scheduling for Performance Guarantees

In contrast to NIC hardware, which is inherently parallel at
the gate level, SoftNIC needs a scheduler to decide what
packet and module get to use the processor. For example, a
simple form of scheduling4 would involve using weighted
round-robin scheduling to pick an input port, fetching a
packet from this port and then processing it until it is sent out
another port. This scheme is used by many software packet
processing systems [21, 34, 35, 52, 60] for its simplicity.
However, its crude form of fairness—the same number of
packets across input ports—may not achieve the operator’s
desired policy for applications-level performance.

The ultimate goal of the SoftNIC scheduler is to allow
the operator to specify and enforce policies for applications.
Instead of mandating a single policy (e.g., priority scheduling)
that must be used in all deployment scenarios, SoftNIC
provides a set of flexible mechanisms that can be easily
composed to implement a broad set of high-level policies. The
scheduler makes policy-compliant allocations of processor
and bandwidth resources using the mechanisms.

4 Software packet processing frameworks require two complementary
types of scheduling: (i) packet scheduling, where a functional module (e.g.,
PrioSched element in Click [35]) selects the next packet to process; and (ii)
CPU scheduling, where the framework determines when and how often each
module is executed (i.e., gets processor time). For the former, we discuss
how our approach differs from Click’s in §7. In this section, we focus on the
latter, as it has received less attention from the research community.

4 2015/5/27

Let us consider a typical policy example, as presented in
Figure 4(a). In this example, each VM gets a fair share of
bandwidth up to 5 Gbps. Each VM has two types of traffic:
interactive traffic (C1 and C3) and background traffic (C2 and
C4). The interactive traffic has higher priority but is limited
to 1 Gbps per VM. Note that the policy includes: (i) fair
sharing between VMs, (ii) rate limiting for each VM and
its interactive traffic, (iii) fixed priorities between the traffic
types, and (iv) hierarchical composition of the above. The
design of SoftNIC scheduler is centered around these four
primitives to capture common policy patterns.

The scheduling unit of SoftNIC data path execution is
a traffic class, each of whose definition is flexible and not
dictated by SoftNIC. Possible class definitions include: in-
put/output port, VM, tenant, protocol, L7 application, VLAN
tag, IP prefix, and so on. The operator determines the schedul-
ing discipline for traffic classes: e.g., “C1 has higher priority
than C2” by setting appropriate scheduling parameters.

In SoftNIC, every packet is mapped to one (and only one)
of the traffic classes at any given time. The initial mapping of
a packet to a class is “given” to SoftNIC. A port consists of a
set of input queues, each of which is mapped to a traffic class.
Effectively, the peer (for a vport) or the hardware NIC (for
a pport) declares the initial class of each packet by pushing
the packet into its corresponding queue. The class of a packet
may change on the fly; in the dataflow graph, the operator
can specify transformer edges, which can associate a new
class to packets that flow along the edge. Each transformer
edge has a map classold→classnew. Class transformation is
useful in cases where packet classes cannot be predetermined
externally: e.g., (i) a hardware NIC has limited classification
capability for incoming packets, or (ii) traffic classes are
defined as output ports or input/output port pairs, so the class
of a packet is logically unknown (thus a “unspecified” class)
until its output port has been determined by a switch/classifier
module.

Scheduling parameters are specified as a class tree, which
is a hierarchical structure of traffic classes. For example,
Figure 4(b) shows the class tree for the previous policy.
The scheduler starts by examining the children of root
and proceeds recursively until it finds an eligible leaf. First,
assuming neither has exceeded its 5 Gbps limit, the scheduler
chooses between VM1 and VM2 (they both have the same
priority), using a weighted fair queuing mechanism. Without
loss of generality, let us assume that VM1 is chosen. Since
C1 has higher priority than C2, the scheduler will pick C1,
unless it has exceeded its 1 Gbps limit or no packet is
pending. Packet processing for C1 begins by dequeuing a
packet from one of its input queues. SoftNIC measures
processor time and bandwidth usage during packet processing.
Usage accounting is again recursively done for C1, VM1, and
root. We generalize this scheduling scheme and provide
implementation details in §4.4.

The operator specify policies by providing a class tree, as
shown in Figure 4(b). It is straightforward to translate the
example policy into the corresponding class tree. For more
complex policies, manual translation might be harder. For
this case, we plan to develop a controller that compiles a
policy specified in a high-level language to SoftNIC con-
figuration (a dataflow graph and its class tree). Designing
and implementing such a language and a compiler are left
to future work. The controller is also responsible for per-
forming admission control, which ensures that the number
of applications using SoftNIC does not exceed the available
resources. Admission control can also be used in conjunction
with priority scheduling to guarantee minimum bandwidth
and processor allocations for applications.

4. Implementation Details
10/40 G Ethernet has become the norm for datacenter servers
and NFV applications. In order to keep up with such high-
speed links, SoftNIC needs to process (tens of) millions of
packets per second with minimal packet processing overheads.
Latency is also critical; recent advances in network hardware
(e.g., [17]) and protocol design (e.g., [7]) have allowed
microsecond-scale in-network latency, effectively shifting
the bottleneck to end-host software [62]. SoftNIC should
therefore incur minimal processing delay and jitter.

Meeting both these performance requirements and our
design goals is challenging. In this section, we describe the
implementation details of SoftNIC, with emphasis on its
performance-related aspects.

4.1 Overview

The SoftNIC prototype is implemented in 14k lines of C
code, running with unmodified Linux and QEMU/KVM. We
expect supporting other operating systems or virtualization
platforms would be straightforward. To simplify development
for us and module developers, SoftNIC runs as a user-mode
program on the host. This has performance implications;
in our system, the minimum cost of a user-user (between
an application process and SoftNIC) context switch is 3 µs,
while it is only 0.1 µs for a user-kernel mode switch. SoftNIC
uses one or more dedicated cores to eliminate the costs of
context switching, as explained below.

SoftNIC runs a separate control thread alongside worker
threads. The control thread communicates with an external
controller via UNIX or TCP sockets. The control channel sup-
ports various message formats, namely binary, type-length-
value, and JSON [13], to satisfy the performance and pro-
grammability requirements of operators.

4.2 Core Dedication

SoftNIC runs on a small number of dedicated cores—as will
be shown later, one core is enough for typical workloads—
for predictable, high performance. The alternative, running
SoftNIC threads on the same cores as applications (thus on
every core) is not viable for us. Since SoftNIC is a user-mode

5 2015/5/27

program, OS process scheduling can unexpectedly introduce
up to several milliseconds of delay under high load. This level
of jitter would not allow us to provide (sub)microsecond-scale
latency overhead.

We dedicate cores by setting core affinity for SoftNIC
worker threads and prevent the host kernel from scheduling
other system tasks on SoftNIC cores with the isolcpus
Linux kernel parameter. In addition to reducing jitter, core
dedication has three additional benefits for SoftNIC: (i)
context switching costs are eliminated; (ii) processor cache
is better utilized; (iii) inter-core synchronization among
SoftNIC threads is cheap as it involves only a few cores.

Core dedication allows us to make another optimization:
we can utilize busy-wait polling instead of interrupts, to
reduce latency further. A recent study reports 5–75 µs latency
overheads per interrupt, depending on the processor power
management states at the moment [17]. In contrast, with
busy-wait polling, the current SoftNIC implementation takes
less than 0.02 µs for a vport and 0.03 µs for a pport to react
to a new packet. Polling leads to a small increase in power
consumption when the system is idle: our system roughly
consumes an additional 3–5 watts per idle-looping core.

We do not dedicate a core to the control thread, since
control-plane operations are relatively latency-insensitive.
The control thread performs blocking operations on sockets,
thus consuming no CPU cycles when idle.

4.3 Pipeline Components

Physical Ports (pports): We build on the Intel Data Plane
Development Kit (DPDK) 1.8.0 [26] library for high-
performance packet I/O. We chose DPDK over other alter-
natives [18, 21, 59] for two reasons: (i) it exposes hardware
NIC features besides raw packet I/O; and (ii) it allows direct
access to the NIC hardware without any kernel intervention
on the critical path.

Each pport is associated with two module instances.
pport_out sends packets to the hardware NIC after trans-
lating packet metadata into hardware-specific offloading
primitives. SoftNIC provides an interface for feature modules
to discover the capabilities of each pport, so that modules
can make decision about whether a feature can be partially
or fully offloaded to hardware. pport_in receives incoming
packets and translates their hardware-offload results into
metadata that can be used by other modules.

Virtual Ports (vports): A vport has a set of RX and TX
queues. Each queue contains two one-way ring buffers; one
for transmitting packet buffers and the other for receiving
completion notification (so that the sender can reclaim the
packet buffers). The ring buffers provide lock-free operations
for multiple consumer/producer cores [44], to minimize inter-
core communication overheads. A vport’s ring buffers are
allocated in a single contiguous memory region that is shared
between SoftNIC and the peer. Memory sharing is done using
mmap() for host peers and IVSHMEM [40] for VM guest

peers. When no interrupts are involved, communication via
shared memory allows SoftNIC to provide VM peers and
host peers similar performance for packet exchange.

For conventional TCP/IP applications, we implement a
device driver as a Linux kernel module that can be used by
either hosts or guests. We expect that porting this device
driver to other operating systems will be straightforward.
The driver exposes a vport as a regular Ethernet adapter
to the kernel. No modifications are required in the kernel
network stack and applications. Our implementation is similar
to virtio [63], but we support not only guest VMs but also the
host network stack.

For kernel-bypass applications that implement their own
specialized/streamlined network stack (e.g., [9, 28, 42, 51]),
we provide a user-level library that allows applications to
directly access vport queues, supporting zero copy if desired.
In contrast, vport peering with the kernel device driver
requires copying the packet data; providing zero-copy support
for the kernel would require non-trivial kernel modifications,
which are beyond the scope of this work.

When packets are transmitted from SoftNIC to a peer,
SoftNIC notifies the peer via inter-core interrupts. This
notification is not necessary when a peer sends packet because
SoftNIC performs polling. The peer can disable interrupts
temporarily (to avoid receive livelock [48]) or permanently
(for pure polling [14]).

NIC Feature Modules: To test and evaluate the effective-
ness of our framework, we implemented a number of NIC
features that are commonly used in datacenter servers: check-
sum offloading, TCP segmentation/reassembly and VXLAN
tunneling (§6.1), rate limiter (§6.2), flow steering (§6.3), state-
less/stateful load balancer (§6.4), time stamping, IP forward-
ing, link aggregation, and switching. Our switch module
implements a simplified OpenFlow [43] switch on top of
MAC-learning Ethernet bridging.

4.4 SoftNIC Scheduler

The basic unit of scheduling in SoftNIC is a traffic class
(§3.4). Each class is associated with a set of queues (§4.6) and
a per-core timer. Packets belonging to the class are enqueued
on one of these queues before processing. The per-core timer
is used to schedule deferred processing that can be used for a
variety of purposes, e.g., flushing reassembled TCP packets
(LRO), interrupt coalescing, periodically querying hardware
performance counter, scheduling packet transmission, etc.
The scheduler is responsible for selecting the next class and
initiating processing for this class.

SoftNIC scheduling parameters are provided to the sched-
uler as a class tree (§3.4). A class tree is a hierarchical tree,
whose leaves map to individual traffic classes while non-leaf
nodes represent class groups. Each class group is a recursive
combination of classes or other class groups. The scheduling
discipline for each node in the class tree is specified in terms

6 2015/5/27

Algorithm 1: Recursively traverse class tree to pick the
next traffic class to service.

1 Node Pick(n)
2 if n is leaf then
3 return n ; // We found a traffic class.

4 else
5 maxp← max(n.children.priority);
6 group← n.children.filter(

7 priority = maxp);
8 next← StrideScheduler (group);
9 return Pick (next);

of a 5-tuple 〈priority, limitbw, limitcpu, share, share_type〉,
where each element specifies:

priority: strict priority among its all siblings
limitbw: limit on the throughput (bits/s)
limitcpu: limit on processor time (cycles/s)
share: share relative to its siblings with the same priority
share_type: the type of proportional share: bits or cycles

The SoftNIC scheduling loop proceeds in three steps:

Step 1: Pick next class. The scheduler chooses the next class
to service by recursively traversing the class tree starting at
the root by calling the pick function (Algorithm 1) on the
tree root. Given a node n, the pick function first checks (line
2) whether n is a leaf node (i.e., a traffic class) in which case
pick returns n. If n is not a leaf (and is thus a class group),
pick find the highest priority level among n’s children (maxp,
line 5) and then finds the subset of its children assigned this
priority (group, line 6). Finally, it uses stride scheduling [73]
to select a child (next) from this subset (line 8) and returns
the result of calling itself recursively on next (line 9).

Step 2: Servicing the class. Once pick has returned a class
c to the scheduler, the scheduler checks if c has any pending
timer events. If so, the scheduler runs the deferred processing
associated with the timer. If no timer events are pending, the
scheduler dequeues a batch of packets (§4.5) from one of
the classes queues (we use round-robin scheduling between
queues belonging to the same class) and calls the receive
handler for the first module—a port module or a module
next to a transformer edge—in the packet processing pipeline
(§3.3) for c. Packet processing continues until all packets in
the batch have been either enqueued or dropped. Note that
within a class, we handle all pending timer events before
processing any packets, i.e., timer events are processed at a
higher priority, so that we can get high-accuracy for packet
transmission scheduling, as shown in §6.2.

Step 3: Account for resource usage. Once control returns to
the scheduler, it updates the class tree to account for resources
(both processor and bandwidth) used in processing class
c. This accounting is done with the class c and all of its
parents up to the root of the class tree. During this update,

the scheduler also temporarily prunes the tree of any nodes
that have exceeded their resource limits. This pruning (and
grafting) is done with the token bucket algorithm.

As stated in §3.4, sometimes assigning a packet to the
correct class might require SoftNIC to execute one or more
classification modules before sending a packet out a trans-
former edge. For accurate resource accounting in this case,
SoftNIC associates an implicit queue with each transformer
edge so that packets whose class has been changed are en-
queued and wait for the new class to be scheduled before
further processing.

4.5 Packet Buffers and Batched Packet Processing

Packet Buffer: SoftNIC extends the DPDK’s packet buffer
structure (rte_mbuf) [26] by reserving an area in each buffer
to store metadata. We rely heavily on scattered packet buffers
(i.e., non-contiguous packet data) to avoid packet copy, for
operations such as segmentation/reassmembly offloading and
switch broadcasting.

Packet Metadata: A naive implementation of metadata
(§3.3), e.g., using a hashmap of string→value, can have
significant performance penalty, as in SoftNIC tens of mod-
ules may process tens of millions of packets per second. To
avoid the performance penalty, previous software packet pro-
cessing systems use either a static set of metadata fields as
struct fields (e.g., BSD mbuf [45]) or per-packet scratchpad
where all modules have to agree on how each byte should
be partitioned and reused (e.g., Click [35]). Both approaches
are not only inefficient in space (thus increasing CPU cache
pressure) and inextensible, but also are error-prone.

SoftNIC achieves extensibility (modules can introduce
new fields without compile-time agreements) and space
efficiency (unused bytes can be safely reclaimed)—both with
minimal performance overheads—by taking advantage of
the explicit declaration of metadata fields by each module
(§3.3). Since all fields are known ahead of time, offsets
for metadata fields in a pipeline can be precomputed, and
SoftNIC provides the offsets to every module during the
pipeline (re)configuration phase. Subsequently, modules can
access a metadata field by reading from its corresponding
offset from the packet buffer.

Pervasive Batching: Packets in SoftNIC are processed in
batches, i.e., packet I/O from/to ports is done in batches, and
packet processing modules operate on batches of packets,
rather than individual packets. Batching is a well-known
technique for improving code/data locality and amortizing
overheads in software packet processing [9, 14, 21, 33, 59].
Specifically, batching amortizes the cost of (i) remote cache
access for vports, (ii) hardware access over the PCIe bus for
pports, and (iii) virtual function calls for module execution.
SoftNIC uses a dynamic batch size that is adaptively varied
to minimize the impact on latency as in IX [9]: the batch size
grows (to a cap) only when SoftNIC is overloaded and there
is queue buildup for incoming packets.

7 2015/5/27

HW NIC

P

A B
A B

V

(a) Pipeline scaling (duplication and chaining)

(c) vport scaling (b) pport scaling

module

V vport

pport P
core
queue

Upper-layer software
P

A B

V

Figure 5: SoftNIC multi-core scaling strategies. The example as-
sumes two SoftNIC cores and four cores for the peer.

When combined with the modular pipeline of SoftNIC,
batch processing provides additional performance benefits.
Since the processing of a packet batch is naturally “staged”
across modules, cache miss or register dependency stalls
during processing one packet can be likely hidden by process-
ing another packet in the batch on an out-of-order execution
processor [31].

A packet batch is simply represented as an array of packet
buffer pointers. When packets in a batch need to take different
paths in the pipeline (e.g., classifier or switch), the module
can simply split the batch by moving pointers from one array
to another without incurring significant overheads.

4.6 Multi-Core Scaling

While SoftNIC running on a single core provides enough
horse power to drive the common network workload of a dat-
acenter server (a 40 G link or higher with a typical packet size
distribution, see §5.2), SoftNIC can scale on multiple cores to
support more challenging workloads. Figure 5 illustrates how
it is done. SoftNIC provides two means to scale the packet
processing pipeline. The default scheme is duplication, each
core runs the identical pipeline of modules in parallel. The
other scheme is chaining, where the pipeline is partitioned
with in-memory queue connection. One scheme is not always
better than the other, as the resulting performance is highly
dependent on: cache usage of modules, synchronization over-
head, number of SoftNIC cores, etc. SoftNIC currently needs
manual configuration for the chaining scheme.

When a pport is duplicated across cores, SoftNIC lever-
ages the multi-queue functionality of the hardware NIC as
shown in Figure 5(b). Each SoftNIC core runs its own RX/TX
queue pair, without incurring any cache coherence traffic
among SoftNIC cores. Similarly, SoftNIC creates multiple
queue pairs for a vport so that the peer itself can linearly
scale. By partitioning the incoming (from the viewpoint of
SoftNIC) queues of vports and pports, SoftNIC preserves in-
order packet processing on a flow basis, provided that peers
and hardware NICs do not interleave a flow across multiple
queues.

D
PD

K
 ix

gb
e

vs
w

itc
h

vs
w

itc
h

SR
-I

O
V

SR
-I

O
V

So
ftN

IC

So
ftN

IC

So
ftN

IC

So
ftN

IC

0
10
20
30
40
50
60
70
80
90

100

T1: Hosts
(raw packet)

T2: Hosts
(kernel UDP)

T3: VM-to-VM
(inter-machine)

T4: VM-to-VM
(intra-machine)

R
ou

nd
tr

ip
 la

te
nc

y
(u

s)

Figure 6: Round-trip latency between two application processes.

5. Performance Evaluation
The main promise of SoftNIC is to provide a flexible frame-
work for implementing various NIC features, without sacrific-
ing performance. In this section, we focus on the overheads
of SoftNIC framework itself, without considering the per-
formance of individual feature modules. We quantify the
overheads by measuring how fast SoftNIC performs as a
NIC, in terms of end-to-end latency (§5.1), throughput and
multi-core scalability (§5.2).

Experiment setting: We use two directly connected servers,
each equipped with two Intel Xeon 2.6 GHz E5-2650v2
processors (16 cores in total), 128 GB of memory, and four
Intel 82599 10 GbE ports with an aggregate bandwidth of
40 Gbps. We disable the CPU’s power management features
(C/P-states) for reproducible latency measurement [17]. We
use unmodified Linux 3.14.16 (for both host and guest),
QEMU/KVM 1.7.0 for virtualization, and ixgbe 3.19.1-k
NIC device driver in the test cases where SoftNIC is not used.

5.1 End-to-End Latency

Figure 6 shows the end-to-end, round-trip latency measured
with UDP packets (TCP results are similar). In T1, the
application performs direct packet I/O using a dedicated
hardware NIC with DPDK (8.22 µs) or a vport (8.82 µs),
thus bypassing the kernel protocol stack. SoftNIC adds a
small latency overhead of 0.6 µs per round trip, or 0.15 µs
per direction per server (one round trip involves SoftNIC
four times). We posit that the advantage of using SoftNIC—
allowing multiple kernel-bypass and conventional TCP/IP
applications to coexist without requiring exclusive hardware
access—outweighs the costs.

T2–4 shows the latency for conventional applications
when using the kernel TCP/IP support, measured with the net-
perf UDP_RR [1] test. Surprisingly, for the non-virtualization
case (T2), the baseline (ixgbe) latency of 28.3 µs was higher
than SoftNIC’s 21.4 µs. This is due to a limitation of 82599;
when LRO is enabled, the NIC buffers incoming packets
(thus inflating latency), even if they do not require reassem-
bly. When LRO is disabled, latency decreases to 21.1 µs,
which comes very close to that of SoftNIC.

8 2015/5/27

0

5

10

15

20

25

30

35

40

60 76 92 108 124 140 156 172 188

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (B)

3 cores

2 cores

1 core

Figure 7: SoftNIC throughput and multi-core scalability.

With server virtualization, T35, we compare SoftNIC with
virtual switching in the host network stack (vswitch) and
hardware NIC virtualization (SR-IOV). As expected, using a
vswitch incurs significant latency overhead because packets
go through the slow host network stack four times (vs. two
times in T4) in a single round trip. For SR-IOV and SoftNIC,
packets bypass the host network stack. When compared with
the bare-metal case (T2), both exhibit higher latency, because
packet I/O interrupts to the VMs have to go through the
host kernel. We expect that the latency for VMs using SR-
IOV and SoftNIC will be close to bare-metal with recent
progresses in direct VM interrupt injection [19, 23], and the
latency of SoftNIC will remain comparable to hardware NIC
virtualization.

In summary, the results confirm that SoftNIC does not add
significant overhead to end-to-end latency for both bare-metal
and virtual machines. We conclude that SoftNIC is viable
even for latency-sensitive applications.

5.2 Throughput

We demonstrate that SoftNIC sustains enough throughput on
a single core to support high-speed links and scales well on
multiple cores. For the experiment, we could not use con-
ventional TCP/IP applications due to the low performance
(roughly 700 kpps per core) of Linux TCP/IP stack, which
is not enough to saturate SoftNIC. Instead, we write a sim-
ple application that performs minimal forwarding (packets
received from a port are forwarded to another port) with the
SoftNIC vport raw packet interface. The application runs on
a single core and is never the bottleneck since effectively the
heavy-weight packet I/O is offloaded to SoftNIC.

Figure 7 depicts the bidirectional throughput with varying
packet sizes as we increase the number of SoftNIC cores.
In the worst case with 60 B minimum-sized Ethernet pack-
ets, SoftNIC on a single core can sustain about 27.2 Mpps
(18.3 Gbps) for both RX and TX directions simultaneously,
fully saturating our 40 G link capacity with 168 B packets or
larger. With multiple SoftNIC cores, the throughput almost
scales linearly. Considering the average packet size of 850 B
in datacenters [10], we conclude that SoftNIC on a single core

5 For completeness, we also show T4 where two VMs reside on the same
physical machine.

provides enough performance to drive a 40 G link in realistic
scenarios. For higher speed links (e.g., 100 Gbps for end hosts
in the future) or applications with emphasis on small-packet
performance (e.g., VoIP gateway), SoftNIC needs to run on
multiple cores.

Given that the number of cores in a typical datacenter
server is large (16-32 as of today) and keeps pace with
the link speed increase, we expect the required number
of SoftNIC cores for future high-speed links will remain
relatively small. We also note that this small investment
can bring huge net gain—-as we will see in the following
macrobenchmarks—because SoftNIC effectively takes over
the burden of implementing NIC features from the host
network stack, running them with much higher efficiency.

6. Case Studies
SoftNIC provides an effective platform to implement a wide
variety of NIC features that are either not readily available
or cannot be fully implemented in hardware, while providing
higher performance than achievable by a software implemen-
tation in host network stacks. This section highlights the
programmability and performance of SoftNIC with various
NIC feature examples.

6.1 Segmentation Offloading for Tunneled Packets

Many NIC features perform protocol-dependent operations.
However, the slow update cycle of NIC hardware cannot
keep up with the emergence of new protocols and their
extensions. This unfortunate gap further burdens already slow
host network stacks [54], or restricts the protocol design space
(e.g., MPTCP [24, 56] and STT [36]). SoftNIC is a viable
alternative to the problem as it can be easily reprogrammed to
support new protocols and their extensions while minimizing
performance overheads.

As an example, we discuss TCP segmentation offloading
(TSO for sender-side segmentation and LRO for receiver-side
reassembly) over tunneling protocols, such as VXLAN [41],
NVGRE [70], and Geneve [20]. These tunneling protocols are
used to provide virtual networks for tenants over the shared
physical network [36]. Most current 10 G NICs do not support
segmentation offloading for inner TCP frames, since they do
not understand the encapsulation format. While 40 G NICs
have begun supporting segmentation for tunneled packets,
VM traffic still has to go through the slow host network stack
since NICs lack support for encapsulating packets itself and
IP forwarding (for MAC-over-IP tunneling protocols, e.g.,
VXLAN and Geneve).

We compare TCP performance over VXLAN on two
platforms: the host network stack (Linux) and SoftNIC.
Adding VXLAN support to the regular (non-tunneled) TCP
TSO/LRO modules in SoftNIC was trivial, requiring only
70 lines of code modification. The results shown in Table 1
clearly demonstrate that segmentation onloading on SoftNIC
achieves much higher throughput at lower CPU overhead.

9 2015/5/27

Throughput
Sender CPU usage (%) Receiver CPU usage (%)

SoftNIC QEMU Host Guest Total SoftNIC QEMU Host Guest Total

Linux 14.4 Gbps - - 475.2 242.6 717.8 - - 771.7 387.2 1158.9
SoftNIC 40.0 Gbps 200.0 66.6 9.8 186.1 462.4 200.0 80.5 21.9 179.0 481.4

Table 1: TCP throughput and CPU usage breakdown over the VXLAN tunneling protocol. 32 TCP connections are generated with the netperf
TCP_STREAM test, between two VMs on separate physical servers. The current implementation of SoftNIC injects packet I/O interrupts
through QEMU; we expect that the QEMU overheads be eliminated by injecting interrupts directly into KVM. Overall, SoftNIC outperforms
the host network stack, by a factor of 4.3 for TX and 6.7 for RX in terms of throughput per CPU cycle.

Per-flow rate Number of SENIC SoftNIC
(Mbps) flows (µs) (µs)

1 500 7.1 1.4
1 4096 N/A 2.0

10 1 0.23 1.4
10 10 0.24 1.4
10 100 1.3 1.6

100 1 0.087 1.1
100 10 0.173 1.4

1000 1 0.161 1.1
1000 3 0.191 1.1

Table 2: Accuracy comparison between SoftNIC and SENIC rate
limiters, with the standard deviation of IPGs. The SENIC numbers
are excerpted from their NetFPGA implementation [55, Table 3].

SoftNIC running on two cores6 was able to saturate 40 Gbps,
while Linux’s throughput maxed out at 14.4 Gbps even when
consuming more CPU cycles. In terms of CPU efficiency, i.e.,
bits per cyle, SoftNIC is 4.3× and 6.7× more efficient than
Linux for TX and RX respectively.7

We note that there is a widely held view that hardware
segmentation offloading is indispensable for supporting high-
speed links [36, 54–56]. Interestingly, our results show that
software approaches to TSO/LRO can also support high-
speed links, as long as the software is carefully designed
and implemented.

6.2 Scalable Rate Limiter

Many recent research proposals [8, 30, 53, 61, 67] rely
on endhost-based rate enforcement for fair and guaranteed
bandwidth allocation in a multi-tenant datacenter. These
systems require a large number (< 1,000s) of rate limiters, far
beyond the capacity of commodity NICs (e.g., Intel’s 82599
10 G NIC supports up to 128 rate limiters, and XL710 40 G
NIC supports 384). Software rate limiters in host network
stacks (e.g., Linux tc [25]) can scale, but their high CPU
overheads hinder support for high-speed links and precise
rate enforcement [55]. We show that rate enforcement with

6 Unlike the regular TCP TSO/LRO with which SoftNIC can saturate
40 Gbps on a single core, we needed two SoftNIC cores for VXLAN. This
is because SoftNIC has to calculate checksum for the inner TCP frame in
software; Intel 82599 NICs do not support checksum offloading over an
arbitrary payload range.
7 The asymmetry between TX and RX is due to the fact that the host
network stack implements TCP over VXLAN segmentation for the sender
side [74], but reassembly at the receiver side is currently not supported, thus
overloading the host and VM network stacks with small packets.

SoftNIC achieves both scalability and accuracy for high-
speed links.

We conduct an experiment with 1,000 concurrent UDP
flows, whose target rate ranges between 1–11 Mbps with
10 kbps steps. The measured accuracy for each flow—the
ratio of the measured rate to the target—is higher than 0.9999.

Another important metric is microscopic accuracy, i.e.,
how evenly flows are paced at the packet level, since precise
packet burstiness control on short timescales is essential for
achieving low latency in a datacenter [27, 49]. Table 2 shows
the standard deviation of inter-packet gaps (IPG) measured
at the receiver side. Since we collect IPG measurements on a
server, instead of using specialized measurement hardware,
our IPG numbers are overestimated due to the receiver’s
measurement error. Nevertheless, SoftNIC achieves about
1-2 µs standard deviation across a wide range of scenarios.

As a point of comparison8, we also show the results from
SENIC [55] as a state-of-the-art hardware NIC. The hardware-
based real-time behavior allows SENIC to achieve a very low
standard deviation of 100 ns with 10 or less flows, but its
IPG variation increases as the number of flows grows. At
the largest data point presented in [55, Table 3], 500 flows
at 1 Mbps, the standard deviation of SENIC is 7.1 µs, which
is higher than SoftNIC’s 1.4 µs. This is because the packet
scheduler in SENIC performs a linear scan through the token
bucket table on SRAM, requiring 5 clock cycles per active
flow. While we are unaware of whether this linear scanning
is due to hardware design limitations or implementation
difficulties, SoftNIC can achieve near-constant time with a
time-sorted data structure whose software implementation is
trivial. We conclude that SoftNIC scales well to thousands of
rate limiters, yet is fast and accurate enough for most practical
purposes.

6.3 Packet Steering for Flow Affinity

Ensuring flow affinity—collocating TCP processing and ap-
plication processing on the same core is known to be crucial
for the performance TCP-based server applications. Existing
software solutions to flow affinity [22, 50] restrict the applica-
tion programming model, incurring multiple limitations: each
application thread needs to be pinned to a core, connections
should not be handed over among cores, and applications
may require non-trivial code modifications.
8 We omit the Linux tc and Intel 82599 NIC results, as they fail to sustain the
aggregate throughput or do not support enough rate limiters, respectively.

10 2015/5/27

0

200

400

600

800

1000

1200

1400

1600

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

C
PU

 u
sa

ge
 (%

)

of concurrent TCP connections

Flow Director

SoftNIC

Figure 8: System-wide CPU usage to sustain 1M dummy transac-
tions per second. The bump between 32k and 64k is due to additional
TCP packets caused by delayed ACK. With SoftNIC, the system
scales better with high concurrency.

As a more general solution without these limitations, Intel
82559 NICs support a feature called Flow Director, which
maintains a flow-core mapping table so that the NIC can
deliver incoming packets to the “right core” for each flow [3].
However, the table size is limited to 8k flow entries to fit in
the scarce on-chip memory. Applications that require higher
concurrency (e.g., front-end web servers and middleboxes
often handle millions of concurrent flows) cannot benefit from
this limited flow table. In SoftNIC, we implement a module
SoftNIC that provides the same functionality but supports
virtually unlimited flow entries by leveraging system memory.

Figure 8 shows the effectiveness of Flow Director and its
SoftNIC counterpart. We use a simple benchmark program
that exchanges 512 B dummy requests and responses with
a fixed rate of 1M transactions per second. We vary the
number of concurrent TCP connections and measure the total
CPU usage of the system. When there are a small number
of concurrent connections, SoftNIC’s overhead is slightly
higher due to the cost of the dedicated SoftNIC core9. Once
the number of connections exceeds 8k and the hardware
flow table begins to overflow, Flow Director exhibits higher
CPU overheads due to increased cache bouncing and lock
contention among cores. In contrast, SoftNIC shows a much
more gradual increase (due to CPU cache capacity misses) in
CPU usage with high concurrency. With 1M connections, for
instance, SoftNIC effectively saves 4.8 CPU cores, which is
significant given that SoftNIC is a drop-in solution.

6.4 Scaling Legacy Applications

Many legacy applications are still single-threaded, as paral-
lelization may require non-trivial redesign of software. Soft-
NIC can be utilized to scale single-threaded network appli-
cations, given that they do not need state to be shared across
cores. We use Snort [2] 2.9.6.1, an intrusion prevention sys-
tem as an example legacy application to show this scaling.
There are two requirements for scaling Snort: (i) the NIC

9 For a fair comparison, we always account 100% for the SoftNIC case to
reflect its busy-wait polling. Throughout the experiment, however, the actual
utilization of the SoftNIC core was well below 100%.

10

100

1000

10000

100000

0 500 1000 1500 2000

99
%

-il
e l

at
en

cy
 (u

s,
lo

g
sc

al
e)

Offered load (Mbps)

SINGLE
HASH
ADAPTIVE

Figure 9: Snort 99%-ile tail latency with a single instance without
SoftNIC (SINGLE), four instances with static (HASH) and dynamic
(ADAPTIVE) load balancing with SoftNIC. Note that the absolute
low throughput is due to the application bottleneck, not SoftNIC.

must distribute incoming packets across multiple Snort in-
stances; (ii) moreover, such demultiplexing has to be done on
a flow basis, so that each instance correctly performs deep-
packet inspection on every flow. While we can meet these
requirements with receive-side scaling (RSS), an existing
NIC feature in commodity hardware NICs, it is often infeasi-
ble; RSS requires that any physical ports used by Snort not
be shared with other applications.

The flexible SoftNIC pipeline provides a straightforward
mechanism for scaling Snort. SoftNIC provides a backwards-
compatible mechanism to distribute traffic from a physical
link between multiple instances. To do this, we create a vport
for each Snort instance and connect all vports and a pport with
a load balancer module. The load balancer distributes flows
across vports using the hash of the flow’s 5-tuple. With this
setup, each Snort instance can transparently receive and send
packets through its vport. Figure 9 shows the 99th percentile
end-to-end (from a packet generator to a sink) latency, using
packet traces captured at a campus network gateway. We find
that even at 500 Mbps a single instance of Snort (SINGLE)
has a tail latency of approximately 366 ms, while using four
Snort instances with our hash-based loadbalancer (HASH)
limits latency to 57 µs (a 6, 000× improvement).

Furthermore, SoftNIC allows us for rapid prototyping of
more advanced load balancing schemes. We implemented
an adaptive load balancer, ADAPTIVE, which tracks load
at each instance and assigns new flows to the least loaded
vport. As compared to HASH, this scheme mitigates transient
imbalance among instances, prevents hash-collision based
attacks [71], and retains flow stickiness upon dynamic change
in number of instances. Our current heuristic estimates the
load of each port using “load points”; we assign a vport
10,000 load points for its new flow, 1,000 points per packet,
and 1 point per byte. When a new flow arrives, we assign it
to the vport which accumulated the fewest load points in the
last 1 ms time window. The adaptive load balancer maintains
a flow table for flow stickiness of subsequent packets. ADAP-
TIVE performs significantly better than HASH, improving
tail latency by 5× at 1.8 Gbps. We expect that implementing

11 2015/5/27

such a load balancing scheme in hardware would not be as
straightforward; this example demonstrates the programma-
bility of SoftNIC.

7. Related Work

Click: The modular packet processing pipeline of SoftNIC
is inspired by the Click modular router [35]. We briefly
discuss how we adapt Click’s design for SoftNIC. In general,
Click’s elements are defined in a much more fine-grained
manner, e.g., the Strip element removes a specified number
of bytes from the packet, while SoftNIC modules embody
entire NIC functions (e.g., switching is a single module). We
chose to go with relatively coarse-grained modules because
frequent transitions among modules has a significant impact
on performance—small, dynamic modules provide compilers
with limited optimization opportunities.

Furthermore, in SoftNIC we assume that each module
internally implements its own queues as necessary, whereas
Click’s scheduling is centered around providing explicit
queues in the pipeline. This design choice simplifies our
scheduling. The absence of explicit queues greatly stream-
lines packet processing in SoftNIC; it can simply pick a traffic
class and process packets using run to completion, without
having to deal with “push” and “poll” calls as in Click. An-
other advantage of forgoing explicit queues is scalability. For
example, in Click, supporting 1,000 rate limiters requires
there be 1,000 explicit queues and token bucket elements in
the dataflow graph, requiring the scheduler to consider all of
these elements individually. In contrast, with the rate limiter
of SoftNIC (§6.2), the scheduler only needs to pick a traffic
class to serve, simplifying the decision making.

For CPU scheduling, Click executes elements with
weighted round-robin, enforcing fairness in terms of the
number of executions. This is not a meaningful measure
for either bandwidth (packet sizes differ) or processor time
(packets may consume vastly different CPU cycles). We
extend this scheduling model with explicit traffic class sup-
port, fixed priority, hierarchical composition, and accurate
resource usage accounting. These extensions enable SoftNIC
to provide high-level performance isolation and guarantees
across applications.

Potential applications of SoftNIC: SoftNIC can be an ef-
fective platform for supporting and enhancing emerging
networked systems. We list a few interesting examples:
application-aware packet steering [32, 38], software-based
RDMA operations with richer semantics [15], packet pac-
ing [27], NFV deployment for public clouds [16], high-
performance user-level TCP/IP stack [28, 66], per-packet
priority support [7, 46], and TDMA over Ethernet [72]. Soft-
NIC can also be used as a platform for operating systems that
aim to separate network policy enforcement from the data
plane, e.g., IX [9] and Arrakis [51]. Complimentary to our
work, SoNIC [37] proposes a NIC architecture to provide
access to the PHY and MAC layer. One may combine it with

SoftNIC for complete software control over the entire stack
of NIC functionality.

Ideal hardware NIC model: Although SoftNIC co-exists
with existing hardware NICs, an important benefit of our
shim-layer approach is that SoftNIC could act as an enabler
for improved NIC designs in the long term. While there is
growing consensus on exploiting NIC resources [68, 69],
the black-box (e.g., “do checksum for this SCTP packet”)
feature interface and implementation of current NIC hardware
presents difficulties. We believe that NICs should instead
offer components (e.g., “calculate checksum for this payload
range with CRC32 and update the result here”), so that
software can compound such building blocks into complete
features. In this way, NICs can provide fine-grained behavior
control, better state visibility, future proofness. We expect
that the P4 [11] work can be a good starting point for this
ideal NIC model.

Alternative approaches: SoftNIC has several benefits over
other approaches. Implementing NIC features in legacy net-
work stacks is slow, which is why hardware approaches
gained popularity in the first place. Another alternative is to
make the NIC hardware more programmable (e.g., FPGA [39,
64] and network processors [65]). However, the degree of
programmability is still limited as compared to software on
CPUs, and hardware resource limitations still apply. Having
a general-purpose processor on the NIC card, as a bump-in-
the-wire, would be another option that is similar in spirit to
SoftNIC. We argue that SoftNIC’s approach (reusing existing
server resources) is superior, in terms of efficiency/elasticity
of resources and maintaining a global view of system.

8. Conclusion and Future Work
SoftNIC is a programmable platform to augment hardware
NICs with software. Built upon many new and existing ideas,
SoftNIC provides the performance comparable to hardware
and the flexibility of software for implementing sophisticated
NIC features, while simultaneously being backwards compat-
ible with existing software and hardware.

In this work, our main focus was on the data plane,
assuming an external controller interacts via the control
channel that SoftNIC provides. Our next step is to design
and implement a sophisticated controller that translates high-
level user policies into the SoftNIC mechanisms (the packet
processing pipeline and scheduling parameters).

We expect that SoftNIC can be a useful tool for researchers
and systems developers. There are multiple ongoing projects
that leverage SoftNIC for diverse use cases, including: a new
congestion control algorithm relying on accurate timestamps,
packet burstiness control for end-to-end latency bound in a
multi-tenant datacenter, and a prototype platform for network
function virtualization (NFV). We plan on releasing SoftNIC
to the wider community as an open source project under a
BSD license.

12 2015/5/27

References
[1] Netperf network benchmark software. http://netperf.org.

[2] Snort Intrusion Detection System. https://snort.org.

[3] Intel 8259x 10G Ethernet Controller. Intel 82599 10 GbE
Controller Datasheet, 2009.

[4] Product Brief: Intel Ethernet Controller XL710 10/40 GbE.
http://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/xl710-10-40-gbe-
controller-brief.pdf, 2014.

[5] ABU-LIBDEH, H., COSTA, P., ROWSTRON, A., O’SHEA,
G., AND DONNELLY, A. Symbiotic Routing in Future Data
Centers. In ACM SIGCOMM (2010).

[6] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR,
B., VAHDAT, A., AND YASUDA, M. Less is more: Trading
a little bandwidth for ultra-low latency in the data center. In
USENIX NSDI (2012).

[7] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCK-
EOWN, N., PRABHAKAR, B., AND SHENKER, S. pFabric:
Minimal Near-Optimal Datacenter Transport. In ACM SIG-
COMM (2013).

[8] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROW-
STRON, A. Towards Predictable Datacenter Networks. In
ACM SIGCOMM (2011).

[9] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A Protected Data-
plane Operating System for High Throughput and Low Latency.
In USENIX OSDI (2014).

[10] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M.
Understanding data center traffic characteristics. ACM SIG-
COMM Computer Communication Review 40, 1 (2010), 92–99.

[11] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCK-
EOWN, N., REXFORD, J., SCHLESINGER, C., TALAYCO,
D., VAHDAT, A., VARGHESE, G., AND WALKER, D. P4:
Programming Protocol-Independent Packet Processors. ACM
SIGCOMM CCR 44, 3 (2014), 87–95.

[12] BRISCOE, B. Tunnelling of Explicit Congestion Notification.
RFC 6040, November 2010.

[13] CROCKFORD, D. The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627, July 2006.

[14] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND

RATNASAMY, S. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In ACM SOSP (2009).

[15] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND

CASTRO, M. FaRM: Fast Remote Memory. In USENIX NSDI
(2014).

[16] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTI-
TUTE. Network Functions Virtualisation (NFV). http:
//goo.gl/x1ueJL.

[17] FLAJSLIK, M., AND ROSENBLUM, M. Network Interface
Design for Low Latency Request-Response Protocols. In
USENIX ATC (2013).

[18] FUSCO, F., AND DERI, L. High Speed Network Traffic
Analysis with Commodity Multi-Core Systems. In ACM IMC

(2010).

[19] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: Bare-
Metal Performance for I/O Virtualization. In ACM ASPLOS
(2012).

[20] GROSS, J., SRIDHAR, T., GARG, P., WRIGHT, C., AND

GANGA, I. Geneve: Generic Network Virtualization Encapsu-
lation. IETF draft, http://tools.ietf.org/html/draft-
gross-geneve-00.

[21] HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader:
a GPU-Accelerated Software Router. In ACM SIGCOMM
(2010).

[22] HAN, S., MARSHALL, S., CHUN, B.-G., AND RATNASAMY,
S. MegaPipe: A New Programming Interface for Scalable
Network I/O. In USENIX OSDI (2012).

[23] HAR’EL, N., GORDON, A., LANDAU, A., BEN-YEHUDA,
M., TRAEGER, A., AND LADELSKY, R. Efficient and Scalable
Paravirtual I/O System. In USENIX ATC (2013).

[24] HONDA, M., NISHIDA, Y., RAICIU, C., GREENHALGH, A.,
HANDLEY, M., AND TOKUDA, H. Is It Still Possible to Extend
TCP? In ACM IMC (2011).

[25] HUBERT, B. Linux Advanced Routing and Traffic Control.
http://www.lartc.org.

[26] INTEL. Data Plane Development Kit (DPDK). http://dpdk.
org.

[27] JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T.
Silo: Predictable message completion time in the cloud. Tech.
Rep. MSR-TR-2013-95, September 2013.

[28] JEONG, E., WOO, S., JAMSHED, M., JEONG, H., IHM, S.,
HAN, D., AND PARK, K. mTCP: A Highly Scalable User-level
TCP Stack for Multicore Systems.

[29] JEYAKUMAR, V., ALIZADEH, M., GENG, Y., KIM, C., AND

MAZIÈRES, D. Millions of little minions: Using packets for
low latency network programming and visibility. In ACM
SIGCOMM (2014).

[30] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D., PRAB-
HAKAR, B., KIM, C., AND GREENBERG, A. EyeQ: Practical
network performance isolation at the edge. In USENIX NSDI
(2013).

[31] KALIA, A., ZHOU, D., KAMINSKY, M., AND ANDERSEN,
D. G. Raising the Bar for Using GPUs in Software Packet
Processing. In USENIX NSDI (2015).

[32] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M.,
AND VAHDAT, A. Chronos: Predictable Low Latency for Data
Center Applications. In ACM SoCC (2012).

[33] KIM, J., HUH, S., JANG, K., PARK, K., AND MOON, S. The
Power of Batching in the Click Modular Router. In ACM
APSys (2012).

[34] KIM, J., JANG, K., LEE, K., MA, S., SHIM, J., AND MOON,
S. NBA (Network Balancing Act): A High-performance Packet
Processing Framework for Heterogeneous Processors. In ACM
EuroSys (2015).

[35] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND

KAASHOEK, M. F. The Click modular router. ACM Trans.
Comput. Syst. 18, 3 (Aug. 2000), 263–297.

13 2015/5/27

http://netperf.org
https://snort.org
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xl710-10-40-gbe-controller-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xl710-10-40-gbe-controller-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xl710-10-40-gbe-controller-brief.pdf
http://goo.gl/x1ueJL
http://goo.gl/x1ueJL
http://tools.ietf.org/html/draft-gross-geneve-00
http://tools.ietf.org/html/draft-gross-geneve-00
http://www.lartc.org
http://dpdk.org
http://dpdk.org

[36] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M.,
CHANDA, A., FULTON, B., GANICHEV, I., GROSS, J., GUDE,
N., INGRAM, P., JACKSON, E., LAMBETH, A., LENGLET, R.,
LI, S.-H. L., PADMANABHAN, A., PETTIT, J., PFAFF, B.,
RAMANATHAN, R., SHENKER, S., SHIEH, A., STRIBLING,
J., THAKKAR, P., WENDLANDT, D., YIP, A., AND ZHANG,
R. Network virtualization in multi-tenant datacenters. In
USENIX NSDI (2014).

[37] LEE, K.-S., WANG, H., AND WEATHERSPOON, H. SoNIC:
Precise Realtime Software Access and Control of Wired Net-
works. In USENIX NSDI (2013).

[38] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
MICA: A Holistic Approach to Fast In-Memory Key-Value
Storage.

[39] LOCKWOOD, J. W., MCKEOWN, N., WATSON, G., GIBB,
G., HARTKE, P., NAOUS, J., RAGHURAMAN, R., AND LUO,
J. NetFPGA: An Open Platform for Gigabit-Rate Network
Switching and Routing. In IEEE MSE (2007).

[40] MACDONELL, C. Shared-Memory Optimizations for Virtual
Machines. PhD thesis, University of Alberta, 2011.

[41] MAHALINGAM, M., DUTT, D., DUDA, K., AGARWAL,
P., KREEGER, L., SRIDHAR, T., BURSELL, M., AND

WRIGHT, C. VXLAN: A Framework for Overlay-
ing Virtualized Layer 2 Networks over Layer 3 Net-
works. IETF draft, http://tools.ietf.org/html/draft-
mahalingam-dutt-dcops-vxlan-09.

[42] MARINOS, I., WATSON, R. N., AND HANDLEY, M. Network
Stack Specialization for Performance. In ACM SIGCOMM
(2014).

[43] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM CCR 38, 2 (2008), 69–74.

[44] MICHAEL, M. M., AND SCOTT, M. L. Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent Queue Algo-
rithms. In ACM PODC (1996).

[45] MILEKIC, B. Network Buffer Allocation in the FreeBSD
Operating System. In BSDCAN (2004).

[46] MITTAL, R., SHERRY, J., RATNASAMY, S., AND SHENKER,
S. Recursively Cautious Congestion Control. In USENIX
NSDI (2014).

[47] MOGUL, J. C., MUDIGONDA, J., SANTOS, J. R., AND

TURNER, Y. The NIC Is the Hypervisor: Bare-Metal Guests
in IaaS Clouds. In USENIX HotOS (2013).

[48] MOGUL, J. C., AND RAMAKRISHNAN, K. Eliminating
receive livelock in an interrupt-driven kernel. ACM Transac-
tions on Computer Systems 15, 3 (1997), 217–252.

[49] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH,
D., AND FUGAL, H. Fastpass: A centralized "zero-queue"
datacenter network. In ACM SIGCOMM (2014).

[50] PESTEREV, A., STRAUSS, J., ZELDOVICH, N., AND MORRIS,
R. T. Improving Network Connection Locality on Multicore
Systems. In Proc. of ACM EuroSys (2012).

[51] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D.,
KRISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T.

Arrakis: The operating system is the control plane. Tech. Rep.
UW-CSE-13-10-01, University of Washington, May 2014.

[52] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU,
A., RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J.,
SHELAR, P., AMIDON, K., AND CASADO, M. The Design and
Implementation of Open vSwitch. In USENIX NSDI (2015).

[53] POPA, L., YALAGANDULA, P., BANERJEE, S., MOGUL, J. C.,
AND SANTOS, Y. T. J. R. ElasticSwitch: Practical Work-
Conserving Bandwidth Guarantees for Cloud Computing. In
ACM SIGCOMM (2013).

[54] PORTER, R. N. M. G., AND VAHDAT, A. FasTrak: Enabling
Express Lanes in Multi-Tenant Data Centers. In ACM CoNEXT
(2013).

[55] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KAB-
BANI, A., PORTER, G., AND VAHDAT, A. SENIC: Scalable
NIC for End-Host Rate Limiting. In USENIX NSDI (2014).

[56] RAICIU, C., PAASCH, C., BARRE, S., FORD, A., HONDA,
M., DUCHENE, F., BONAVENTURE, O., HANDLEY, M.,
ET AL. How Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP. In USENIX NSDI (2012).

[57] RAM, K. K., MUDIGONDA, J., COX, A. L., RIXNER, S.,
RANGANATHAN, P., AND SANTOS, J. R. sNICh: Efficient
Last Hop Networking in the Data Center. In ACM/IEEE ANCS
(2010).

[58] RAMAKRISHNAN, K., FLOYD, S., AND BLACK, D. The
Addition of Explicit Congestion Notification (ECN) to IP. RFC
3168, September 2001.

[59] RIZZO, L. netmap: a novel framework for fast packet I/O. In
USENIX ATC (2012).

[60] RIZZO, L., AND LETTIERI, G. VALE: a Switched Ethernet
for Virtual Machines. In ACM CoNEXT (2012).

[61] RODRIGUES, H., SANTOS, J. R., TURNER, Y., SOARES,
P., AND GUEDES, D. Gatekeeper: Supporting Bandwidth
Guarantees for Multi-tenant Datacenter Networks. In USENIX
WIOV (2011).

[62] RUMBLE, S. M., ONGARO, D., STUTSMAN, R., ROSEN-
BLUM, M., AND OUSTERHOUT, J. K. It’s Time for Low
Latency. In USENIX HotOS (2011).

[63] RUSSELL, R. virtio: Towards a De-Facto Standard for Virtual
I/O Devices. ACM Operating Systems Review 42, 5 (2008),
95–103.

[64] SHAFER, J., AND RIXNER, S. RiceNIC: A Reconfigurable
Network Interface for Experimental Research and Education.
In ACM ExpCS (2007).

[65] SHAH, N. Understanding Network Processors. Master’s thesis,
University of California, Berkeley, 2001.

[66] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-YEHUDA,
M. IsoStack: Highly Efficient Network Processing on Dedi-
cated Cores. In USENIX ATC (2010).

[67] SHIEH, A., KANDULA, S., GREENBERG, A. G., KIM, C.,
AND SAHA, B. Sharing the data center network. In USENIX
NSDI (2011).

[68] SHINDE, P., KAUFMANN, A., KOURTIS, K., AND ROSCOE,
T. Modeling NICs with Unicorn. In ACM PLOS (2013).

14 2015/5/27

http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-09
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-09

[69] SHINDE, P., KAUFMANN, A., ROSCOE, T., AND KAESTLE,
S. We Need to Talk About NICs. In USENIX HotOS (2013).

[70] SRIDHARAN, M., GREENBERG, A., WANG, Y., GARD,
P., N.VENKATARAMIAH, DUDA, K., GANGA, I., LIN, G.,
PEARSON, M., THALER, P., AND TUMULURI, C. NVGRE:
Network Virtualization using Generic Routing Encapsula-
tion. IETF draft, http://tools.ietf.org/html/draft-
sridharan-virtualization-nvgre-04.

[71] TOBIN, R. J., AND MALONE, D. Hash Pile Ups: Using
Collisions to Identify Unknown Hash Functions. In IEEE

CRiSIS (2012).

[72] VATTIKONDA, B. C., PORTER, G., VAHDAT, A., AND SNO-
EREN, A. C. Practical TDMA for Datacenter Ethernet. In
ACM EuroSys (2012).

[73] WALDSPURGER, C. A., AND WEIHL, W. E. Stride Schedul-
ing: Deterministic Proportional Share Resource Management.
Massachusetts Institute of Technology. Laboratory for Com-
puter Science, 1995.

[74] XU, X. Generic Segmentation Offload. http://lwn.net/
Articles/188489/.

15 2015/5/27

http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-04
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-04
http://lwn.net/Articles/188489/
http://lwn.net/Articles/188489/

	Introduction
	Motivation
	SoftNIC Design
	Design Goals
	Overall Architecture
	Modular Packet Processing Pipeline
	Resource Scheduling for Performance Guarantees

	Implementation Details
	Overview
	Core Dedication
	Pipeline Components
	SoftNIC Scheduler
	Packet Buffers and Batched Packet Processing
	Multi-Core Scaling

	Performance Evaluation
	End-to-End Latency
	Throughput

	Case Studies
	Segmentation Offloading for Tunneled Packets
	Scalable Rate Limiter
	Packet Steering for Flow Affinity
	Scaling Legacy Applications

	Related Work
	Conclusion and Future Work

