
The RISC-V Compressed Instruction Set Manual, Version
1.7

Andrew Waterman
Yunsup Lee
David A. Patterson
Krste Asanović

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-157
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-157.html

May 28, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

The RISC-V Compressed Instruction Set Manual
Version 1.7

Warning! This draft specification will change before being
accepted as standard, so implementations made to this draft
specification will likely not conform to the future standard.

Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanović
CS Division, EECS Department, University of California, Berkeley
{waterman|yunsup|pattrsn|krste}@eecs.berkeley.edu

May 28, 2015

2 RISC-V Compressed ISA V1.7

1.1 Introduction

This excerpt from the RISC-V User-Level ISA Specification describes the current draft proposal for
the RISC-V standard compressed instruction set extension, named “C”, which reduces static and
dynamic code size by adding short 16-bit instruction encodings for common integer operations. The
C extension can be added to any of the base ISAs (RV32I, RV64I, RV128I), and we use the generic
term “RVC” to cover any of these. Typically, over half of the RISC-V instructions in a program can
be replaced with RVC instructions, resulting in greater than a 25% code-size reduction. Section 1.7
describes a possible extended set of instructions for RVC, for which we would like your opinion.

Please send your comments to the isa-dev mailing list at isa-dev@lists.riscv.org.

1.2 Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

• the immediate or address offset is small, or

• one of the registers is the zero register (x0) or the ABI stack pointer (x2), or

• the destination register and the first source register are identical, or

• the registers used are the 8 most popular ones.

The compressed instruction encodings are mostly common across RV32I, RV64I, and RV128I, with a
few differences caused by the different register widths. The C extension is compatible with all other
standard instruction extensions. The C extension allows 16-bit instructions to be freely intermixed
with the 32-bit base instructions, with the latter now able to start on any 16-bit boundary.

Removing the 32-bit alignment constraint on the original 32-bit instructions allows significantly
greater code density.

RVC was designed under the constraint that each RVC instruction expands into one of the base
RISC-V instructions: RV32I, RV64I, or RV128I. Adopting this constraint has two main benefits:

• Hardware designs can simply expand RVC instructions during decode, simplifying verification
and minimizing modifications to existing microarchitectures.

• Compilers can be unaware of the RVC extension and leave code compression to the assembler
and linker, although a compression-aware compiler will generally be able to produce better
results.

We felt the multiple complexity reductions of a simple one-one mapping between C and I in-
structions far outweighed the potential gains of a slightly denser encoding that added additional
instructions only supported in the C extension or that allowed encoding of multiple I instructions
into one C instruction.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 3

One example that we carefully considered before rejecting was load-multiple and store-multiple
instructions, which have been used in some other ISAs to reduce register save/restore code size at
function entry and exit. These instructions complicate microarchitecture design and verification,
and can complicate compiler instruction scheduling around register saves and restores. For a
longer discussion, see the rationale at the end of Section 1.7.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant
to function with a base ISA.

Variable-length instruction sets have long been used to improve code density. For example, the
IBM Stretch, developed in the late 1950s, had an ISA with 32-bit and 64-bit instructions, where
some of the 32-bit instructions were compressed versions of the full 64-bit instructions. Stretch
also employed the concept of limiting the set of registers that were addressable in some of the
shorter instruction format. The later IBM 360 architecture supported a simple variable-length
instruction encoding with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600, a precursor to RISC architectures
that introduced a register-rich load-store architecture with instructions of two lengths, 15-bits
and 30-bits. The later Cray-1 design used a very similar instruction format, with 16-bit and
32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which was
reasonable for a workstation environment, but not for embedded designs. Hence, both ARM and
MIPS subsequently made versions of the ISAs that offered smaller code size by offering an alter-
native 16-bit wide instruction set instead of the standard 32-bit wide instructions. ARM Thumb
and MIPS16 have only 16-bit instructions, while later Thumb2 and MIPS16e/microMIPS vari-
ants offer both 16-bit and 32-bit instructions.

Compressed ISAs reduced code size relative to their starting points by about 25–30%, yielding
code that was significantly smaller than 80x86. This result surprised some, as their intuition
was that the variable-length CISC ISA should be smaller than RISC ISAs that offered only 16-bit
and 32-bit formats.

Since there was not enough opcode space left in the original ISAs to include these unplanned
compressed instructions, they instead became new full ISAs. One downside is that to make
enough opcode space for the 16-bit instructions, they discarded many 32-bit instructions from
their predecessor ISAs. Thus, the dynamic instruction count increases for these ISAs, even
though their static code size is smaller. This split meant compilers needed different code genera-
tors for the compressed ISAs, and that there was a performance penalty to get smaller programs.

Perhaps more importantly, some compressed ISAs were orphaned as their parent ISAs
evolved, as new instructions could not be added to the compact ISAs. For example, when ARM
increased address size to 64 bits in ARM v8, Thumb and Thumb2 were left as 32-bit-address-only
ISAs.

Leveraging 25 years of hindsight, RISC-V was designed to support compressed instructions
from the start, leaving enough opcode space for RVC and many other extensions. As all com-
pressed instructions are variations of RVI instructions—which must be included in every RISC-
V implementation—the optional compressed instructions are compatible with all current and
future RISC-V extensions. Thus, RV32C, RV64C, and RV128C are all valid, as would be
RV32GQLCBTP.

The philosophy of RVC is to reduce code size for embedded applications and to improve per-
formance and energy-efficiency for all applications due to fewer misses in the instruction cache.
Waterman shows that RVC fetches 25%-30% fewer instruction bits, which reduces instruction
cache misses by 20%-25%, or roughly the same performance impact as doubling the instruction
cache size.[1]

4 RISC-V Compressed ISA V1.7

1.3 Compressed Instruction Formats

Table 1.1 shows the compressed instruction formats. CR, CI, and CSS can use any of the 32 RVI
registers, but CIW, CL, CS, and CB are limited to just 8 of them. Table 1.2 lists these popular
registers, which correspond to registers x8 to x15. Note that there is a separate version of load
and store instructions that use the stack pointer as the base address register, since saving to and
restoring from the stack are so prevalent, and that they use the CI and CSS formats to allow access
to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

The formats were designed to keep bits for the two register source specifiers in the same place in all
instructions, while the destination register field can move. When the full 5-bit destination register
specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates
are sign-extended, the sign-extension is always from bit 12. Immediate fields have been scrambled,
as in the base specification, to reduce the number of immediate muxes required.

For many RVC instructions, x0 is not a valid register specifier and zero-valued immediates are
disallowed. These restrictions increase the encoding space available to instructions that require
fewer operand bits.

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd′ op
CL Load funct3 imm rs1′ imm rd′ op
CS Store funct3 imm rs1′ imm rs2′ op
CB Branch funct3 offset rs1′ offset op
CJ Jump funct3 jump target op

Table 1.1: Compressed 16-bit RVC instruction formats.

RVC Register Number 000 001 010 011 100 101 110 111
RISC-V Register Name x8 x9 x10 x11 x12 x13 x14 x15

ABI Register Name s0 s1 a0 a1 a2 a3 a4 a5

Table 1.2: Registers specified by the three-bit rs1’, rs2’, and rd’ fields of the CIW, CL, CS, and CB
formats.

1.4 Load and Store Instructions

To increase the opportunity for 16-bit instructions, data transfer instructions use zero-extended
immediates that are scaled by the size of the data in bytes: 4 for words, 8 for double words, and
16 for quad words.

RVC provides two variants of loads and stores. One uses the ABI stack pointer, x2, as the base
address and can target any data register. The other can reference one of 8 base address registers

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 5

and one of 8 data registers.

Stack-Pointer-Based Loads and Stores

15 13 12 11 7 6 2 1 0

funct3 imm rd imm op

3 1 5 5 2
C.LWSP offset[5] dest6=0 offset[4:2|7:6] C1
C.LDSP offset[5] dest 6=0 offset[4:3|8:6] C1
C.LQSP offset[5] dest 6=0 offset[4|9:6] C1

These instructions use the CI format.

C.LWSP loads a 32-bit value from memory into register rd. It computes an effective address
by adding the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to lw rd,

offset[7:2](x2).

C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register
rd. It computes its effective address by adding the zero-extended offset, scaled by 8, to the stack
pointer, x2. It expands to ld rd, offset[8:3](x2).

C.LQSP is an RV128C-only instruction that loads a 128-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to lq rd, offset[9:4](x2).

15 13 12 7 6 2 1 0

funct3 imm rs2 op

3 6 5 2
C.SWSP offset[5:2|7:6] src C1
C.SDSP offset[5:3|8:6] src C1
C.SQSP offset[5:4|9:6] src C1

These instructions use the CSS format.

C.SWSP stores a 32-bit value in register rs2 to memory. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to sw rs2,

offset[7:2](x2).

C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 to memory.
It computes an effective address by adding the zero-extended offset, scaled by 8, to the stack pointer,
x2. It expands to sd rs2, offset[8:3](x2).

C.SQSP is an RV128C-only instruction that stores a 128-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to sq rs2, offset[9:4](x2).

6 RISC-V Compressed ISA V1.7

Register-Based Loads and Stores

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ imm rd′ op

3 3 3 2 3 2
C.LW offset[5:3] base offset[2|6] dest C0
C.LD offset[5:3] base offset[7:6] dest C0
C.LQ offset[5|4|8] base offset[7:6] dest C0

These instructions use the CL format.

C.LW loads a 32-bit value from memory into register rd′. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rs1′. It expands to lw rd′,
offset[6:2](rs1′).

C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register
rd′. It computes an effective address by adding the zero-extended offset, scaled by 8, to the base
address in register rs1′. It expands to ld rd′, offset[7:3](rs1′).

C.LQ is an RV128C-only instruction that loads a 128-bit value from memory into register rd′. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1′. It expands to lq rd′, offset[8:4](rs1′).

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ imm rs2′ op

3 3 3 2 3 2
C.SW offset[5:3] base offset[2|6] src C0
C.SD offset[5:3] base offset[7:6] src C0
C.SQ offset[5|4|8] base offset[7:6] src C0

These instructions use the CS format.

C.SW stores a 32-bit value in register rs2′ to memory. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rs1′. It expands to sw rs2′,
offset[6:2](rs1′).

C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2′ to memory.
It computes an effective address by adding the zero-extended offset, scaled by 8, to the base address
in register rs1′. It expands to sd rs2′, offset[7:3](rs1′).

C.SQ is an RV128C-only instruction that stores a 128-bit value in register rs2′ to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1′. It expands to sq rs2′, offset[8:4](rs1′).

We compared the RVC immediates to more conventional schemes for SPEC2006 programs. The

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 7

current scheme is able to use RVC instructions in place of about 50% of static RISC-V instruc-
tions. time (see Section 1.8 for more details). Not scaling the load/store immediates by the word
size in bytes would reduce that fraction to 43%. If we used two’s complement for the load/store
immediates instead of zero-extending them, it would further fall to 39%.

1.5 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions. To accommo-
date 16-bit instructions, the offsets of all RVC control transfer instruction are multiples of 2 bytes,
which is also true for RVI instructions.

15 13 12 2 1 0

funct3 imm op

3 11 2
C.J offset[11:6|4:1|5] C2

C.JAL offset[11:6|4:1|5] C2

These instructions use the CJ format.

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to
form the jump target address. C.J can therefore target a ±2 KiB range. C.J expands to jal x0,

offset[11:1].

C.JAL performs the same operation as C.J, but additionally writes the address of the instruction
following the jump (pc+2) to the link register, x1. C.JAL expands to jal x1, offset[11:1].

15 12 11 7 6 2 1 0

funct4 rs1 rs2 op

4 5 5 2
C.JR src6=0 0 C2

C.JALR src 6=0 0 C2

These instructions use the CR format.

C.JR (jump register) performs an unconditional control transfer to the address in register rs1. C.JR
expands to jalr x0, rs1, 0.

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, x1. C.JALR expands to
jalr x1, rs1, 0.

8 RISC-V Compressed ISA V1.7

15 13 12 10 9 7 6 2 1 0

funct3 imm rs1′ imm op

3 3 3 5 2
C.BEQZ offset[8:6] src offset[4:1|5] C2
C.BNEZ offset[8:6] src offset[4:1|5] C2

These instructions use the CB format.

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to
form the branch target address. It can therefore target a ±256 B range. C.BEQZ takes the branch
if the value in register rs1′ is zero. It expands to beq rs1′, x0, offset[8:1].

C.BNEZ is defined analogously, but it takes the branch if rs1′ contains a nonzero value. It expands
to bne rs1′, x0, offset[8:1].

The immediate fields are scrambled in the instruction formats instead of in sequential order so
that as many bits as possible are in the same position in every instruction, thereby simplifying
implementation. For example, immediate bits 17—10 always come from the same bit positions.
Four other immediate bits (4, 3, 1, and 0) have just two choices, while three (9, 8 and 5) have
three choices and three (7, 6, and 2) have four choices.

1.6 Integer Computational Instructions

RVC provides several instructions for integer arithmetic and constant generation.

Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target any
integer register.

15 13 12 11 7 6 2 1 0

funct3 imm[5] rd imm[4:0] op

3 1 5 5 2
C.LI nzimm[5] dest6=0 nzimm[4:0] C2

C.LUI nzimm[17] dest6=0 nzimm[16:12] C2

C.LI loads the non-zero sign-extended 6-bit immediate, nzimm, into register rd. C.LI is only valid
when rd6=x0, and when the immediate is not equal to zero. C.LI expands into addi rd, x0,

nzimm[5:0].

C.LUI loads the non-zero 6-bit immediate field into bits 17–12 of the destination register, clears
the bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination. C.LUI is only
valid when rd6=x0, and when the immediate is not equal to zero. C.LUI expands into lui rd,

nzimm[17:12].

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 9

Integer Register-Immediate Operations

These integer register-immediate operations are encoded in the CI format and perform operations
on any non-x0 integer register and a 6-bit immediate. The immediate cannot be zero.

15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.ADDI nzimm[5] dest 6=0 nzimm[4:0] C2

C.ADDIW imm[5] dest6=0 imm[4:0] C2
C.ADDI16SP nzimm[9] 0 nzimm[4|5|8:6] C2

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes
the result to rd. C.ADDI expands into addi rd, rd, nzimm[5:0].

C.ADDIW is an RV64C/RV128C-only instruction that performs the same computation but pro-
duces a 32-bit result, then sign-extends result to 64 bits. C.ADDIW expands into addiw rd, rd,

imm[5:0]. The immediate can be zero for C.ADDIW, where this corresponds to sext.w rd.

C.ADDI16SP shares the opcode with C.ADDI, but has a destination field of zero. C.ADDI16SP
adds the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). C.ADDI16SP is used to
move the stack pointer in function call/return code, and expands into addi x2, x2, nzimm[9:4].

In the standard calling convention, the stack pointer sp is always 16-byte aligned.

15 13 12 5 4 2 1 0

funct3 imm rd′ op

3 8 3 2
C.ADDI4SPN zimm[5:4|9:6|2|3] dest C1

C.ADDI4SPN is a CIW-format RV32C/RV64C-only instruction that adds a zero-extended imme-
diate, scaled by 4, to the stack pointer, x2, and writes the result to rd′. This instruction is used to
generate pointers to stack-allocated variables, and expands to addi rd′, x2, zimm[9:2].

15 13 12 11 7 6 2 1 0

funct3 shamt[5] rd/rs1 shamt[4:0] op

3 1 5 5 2
C.SLLI shamt[5] dest6=0 shamt[4:0] C1

C.SLLI is a CI-format instruction that performs a logical left shift of the value in register rd then
writes the result to rd. The shift amount is encoded in the shamt field, where shamt[5] must be
zero for RV32C. For RV32C and RV64C, the shift amount must be non-zero. For RV128C, a shift
amount of zero is used to encode a shift of 64. C.SLLI expands into slli rd, rd, shamt[5:0],
except for RV128C with shamt=0, which expands to slli rd, rd, 64.

Left shifts are considerably more common than right shifts due to their use in address calcu-
lations, hence the better support for left shifts versus right shifts in the (standard) compressed
extension.

10 RISC-V Compressed ISA V1.7

Integer Register-Register Operations
15 12 11 7 6 2 1 0

funct4 rd/rs1 rs2 op

4 5 5 2
C.MV dest 6=0 src C0

C.ADD dest6=0 src 6=0 C0
C.ADDW dest6=0 src 6=0 C0

C.SUB dest6=0 src 6=0 C0

These instructions use the CR format.

C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x0, rs2. C.MV
may be used to initialize a register to 0 by setting rs2 to x0.

C.ADD adds the values in registers rd and rs2 and writes the result to register rd. C.ADD expands
into add rd, rd, rs2. C.ADDW is an RV64C/RV128C-only instruction that performs the same
computation, but produces a 32-bit result then sign-extends it to 64 bits. C.ADDW expands into
addw rd, rd, rs2.

C.SUB subtracts the value in register rs2 from the value in register rd and writes the result to
register rd. It expands to sub rd, rd, rs2.

NOP Instruction
15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.NOP 0 0 0 C2

C.NOP is a CI-format instruction that does not change any user-visible state, except for advancing
the pc. NOP expands to addi x0, x0, 0.

Since C.NOP shares most of its encoding with C.ADDI16SP, low-end implementations may ex-
pand C.NOP into addi sp, sp, 0, rather than addi x0, x0, 0, to slightly simplify the control
logic. This optimization may not be desirable for superscalar implementations, for which the ad-
ditional RAW hazards might induce pipeline breaks.

Breakpoint Instruction
15 12 11 2 1 0

funct4 0 op

4 10 2
C.EBREAK 0 C0

Debuggers use the C.EBREAK instruction, which expands to ebreak, to cause control to be trans-
ferred back to the debugging environment. C.EBREAK shares the opcode with the C.ADD in-
struction, but with rd and rs2 both zero, thus can also use the CR format.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 11

1.7 Extended RVC Instructions

The 31 RVC instructions described thus far provide virtually all of the compression savings possible
for C programs compiled with the current GCC compiler, which is not aware of the compression
scheme. In this section, we describe 24 potential RVC instructions that can be used by assembly-
language programmers or possibly generated by other compilers for C and compilers for other
languages. Using current GCC code generation, these 24 instructions and 4 new instruction formats
only reduce code size by about another 1%. Several of these instructions are only available in RV32,
or only RV32 and RV64, as they make use of encoding space occupied by other opcodes for wider
base integer registers.

Section 1.8 lists the pros and cons of the extended RVC instructions, and we welcome your advice
on whether to include them. Please send your comments to the isa-dev@lists.riscv.org mailing list.

Table 1.3 shows the 4 new compressed instruction formats. CDS, CSD, and CR3 operate on the 8
registers of RVC, with CDS having the destination first of two operands, and CSD having it second
of two operands, and CR3 having three operands. CRI adds an immediate to the two restricted
register fields.

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CDS 2 Registers, Destination then Source funct6 rd′ funct2 rs2′ op
CSD 2 Registers, Source then Destination funct6 rs1′ funct2 rd′ op
CRI 2 Registers and Imm funct3 imm rs1′ funct2 rd′ op
CR3 3 Registers funct3 rd′ rs1′ funct2 rs2′ op

Table 1.3: Compressed 16-bit instruction formats for Extended RVC.

1.7.1 Extended Control Transfer Instructions

Extended RVC adds two conditional branch instructions.

15 13 12 10 9 7 6 2 1 0

funct3 imm rs1′ imm op

3 3 3 5 2
C.BLTZ offset[8:6] src offset[4:1|5] C2
C.BGEZ offset[8:6] src offset[4:1|5] C2

These instructions use the CB format.

C.BLTZ is an RV32C-only instruction defined analogously to C.BEQZ, but it takes the branch if
rs1′ contains a value less than zero. It expands to blt rs1′, x0, offset[8:1].

C.BGEZ is an RV32C-only instruction defined analogously to C.BEQZ, but it takes the branch if
rs1′ contains a value greater than or equal to zero. It expands to bge rs1′, x0, offset[8:1].

12 RISC-V Compressed ISA V1.7

1.7.2 Extended Integer Register-Immediate Operations

Arithmetic-Logical Immediate Instructions

15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.ANDI nzimm[5] dest 6=0 nzimm[4:0] C2

C.ANDI is an RV32C-only instruction that performs a bitwise-AND of the non-zero sign-extended
6-bit immediate and the value in register rd, then writes the result to rd. C.ANDI expands to andi

rd, rd, nzimm[5:0]. This instruction uses the CI format and operates on any non-x0 integer
register and on an immediate that cannot be zero.

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ funct2 rd′ op

3 3 3 2 3 2
OPN nzimm[2:0] src1 C.ADDIN dest C0
OPN nzimm[2:0] src1 C.ANDIN dest C0
OPN nzimm[2:0] src1 C.ORIN dest C0
OPN nzimm[2:0] src1 C.XORIN dest C0

These instructions use the CRI format.

C.ADDIN is an RV32C-only instruction that adds the non-zero sign-extended 3-bit immediate to
the value in register rs1′ then writes the result to rd′. C.ADDIN expands into addi rd′, rs1′,
nzimm[2:0].

C.ANDIN, C.ORIN, and C.XORIN are RV32C-only instructions that perform bitwise AND, OR,
and XOR, respectively, on the non-zero sign-extended 3-bit immediate and the value in register
rs1′, then write the result to register rd′. They expand to andi rd′, rs1′, nzimm[2:0]; ori rd′,
rs1′, nzimm[2:0]; and xori rd′, rs1′, nzimm[2:0], respectively.

Shift-By-Immediate Instructions

15 13 12 11 7 6 2 1 0

funct3 shamt[5] rd/rs1 shamt[4:0] op

3 1 5 5 2
C.SLLIW 0 dest6=0 shamt[4:0] C1
C.SRLI shamt[5] dest 6=0 shamt[4:0] C1
C.SRAI shamt[5] dest6=0 shamt[4:0] C0

These instructions use the CI format.

C.SLLIW is an RV64C/RV128C-only instruction that performs the same computation as C.SLLI
but produces a 32-bit result, then sign-extends the result to 64 bits. The shift amount is encoded in
the shamt[4:0] field; shamt[5] must be zero. C.SLLIW expands into slliw rd, rd, shamt[4:0].

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 13

C.SRLI is an RV32C/RV64C-only instruction that performs a logical right shift of the value in
register rd then writes the result to rd. The shift amount is encoded in the shamt field, where
shamt[5] must be zero for RV32C. The shift amount must be non-zero. C.SRLI expands into srli

rd, rd, shamt[5:0].

C.SRAI is an RV32C/RV64C-only instruction that performs an arithmetic right shift of the value
in register rd then writes the result to rd. The shift amount is encoded in the shamt field, where
shamt[5] must be zero for RV32C. The shift amount must be non-zero. C.SRAI expands into srai

rd, rd, shamt[5:0].

1.7.3 Integer Register-Register Operations

Arithmetic-Logical Three-Register Instructions

15 13 12 10 9 7 6 5 4 2 1 0

funct3 rd′ rs1′ funct2 rs2′ op

3 3 3 2 3 2
OP3 dest src1 C.ADD3 src2 C0
OP3 dest src1 C.SUB3 src2 C0
OP3 dest src1 C.AND3 src2 C0
OP3 dest src1 C.OR3 src2 C0

These instructions use the CR3 format.

C.ADD3 and C.SUB3 are RV32C/RV64C-only instructions that perform addition and subtraction,
respectively, on the values in registers rs1′ and rs2′, then write the result to register rd′. They
expand to add rd′, rs1′, rs2′ and sub rd′, rs1′, rs2′, respectively.

C.AND3 and C.OR3 are RV32C/RV64C-only instructions that perform bitwise AND and OR,
respectively, on the values in registers rs1′ and rs2′, then write the result to register rd′. They
expand to and rd′, rs1′, rs2′ and or rd′, rs1′, rs2′, respectively.

Logical, Shift, and Compare Two-Register Instructions

15 10 9 7 6 5 4 2 1 0

funct6 rd′ funct2 rs2′ op

6 3 2 3 2
C.XOR dest C.XOR src C0
C.SLL dest C.SLL src C0
C.SRL dest C.SRL src C0
C.SRA dest C.SRA src C0
C.SLT dest C.SLT src C0

C.SLTU dest C.SLTU src C0

14 RISC-V Compressed ISA V1.7

These instructions use the CDS format.

C.XOR is an RV32C-only instruction that computes the bitwise XOR of the values in registers rd′

and rs2′ and writes the result to register rd′. It expands to xor rd′, rd′, rs2′.

C.SLL, C.SRL, and C.SRA are RV32C-only instructions that perform logical left, logical right, and
arithmetic right shifts of the value in register rd′ by the shift amount held in the lower 5 bits of rs2′,
then write the result to register rd′. They expand to sll rd′, rd′, rs2′, srl rd′, rd′, rs2′, and
sra rd′, rd′, rs2′, respectively.

C.SLT is an RV32C-only instruction that writes 1 to register rd′ if the value in register rd′ is less
than the value in register rs2′, using a signed comparison, and writes 0 to rd′ otherwise. It expands
to slt rd′, rd′, rs2′. C.SLTU is an RV32C-only instruction that performs the same operation
using an unsigned comparison. It expands to sltu rd′, rd′, rs2′.

Reversed Shift and Compare Two-Register Instructions

15 10 9 7 6 5 4 2 1 0

funct6 rs1′ funct2 rd′ op

6 3 2 3 2
C.SLLR src C.SLLR dest C0
C.SRLR src C.SRLR dest C0
C.SLTR src C.SLTR dest C0

C.SLTUR src C.SLTUR dest C0

These instructions use the CSD format.

C.SLLR and C.SRLR are RV32C-only instructions that perform logical left and logical right shifts
of the value in register rs1′ by the shift amount held in the lower 5 bits of rd′, then write the result
to register rd′. They expand to sll rd′, rs1′, rd′ and srl rd′, rs1′, rd′, respectively.

C.SLTR is an RV32C-only instruction that writes 1 to register rd′ if the value in register rs1′ is less
than the value in register rd′, using a signed comparison, and writes 0 to rd′ otherwise. It expands
to slt rd′, rs1′, rd′. C.SLTUR is an RV32C-only instruction that performs the same operation
using an unsigned comparison. It expands to sltu rd′, rs1′, rd′.

There are optimizations that would further shrink code not included in either the standard or
extended RVC. As mentioned above, the biggest omission is Load Multiple and Store Multiple,
which would be useful at the entry and exit points of procedures. These two instructions, which
are found in Thumb and Thumb2, would shrink RVC static code size by perhaps another 5% at
most. However, there are drawbacks to these instructions:

• These instructions complicate processor implementations.

• For virtual memory systems, some data accesses could be resident in physical memory and
some could not, which requires a new restart mechanism for partially executed instructions.

• Unlike the rest of the RVC instructions, there is no RVI equivalent to Load Multiple and
Store Multiple.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 15

• Unlike the rest of the RVC instructions, the compiler would have to be aware of these
instructions to both generate the instructions and to allocate registers in an order to maxi-
mize the chances of the them being saved and stored, since they would be saved and restored
in sequential order.

• Simple microarchitectural implementations will constrain how other instructions can be
scheduled around the load and store multiple instructions, leading to a potential perfor-
mance loss.

• The desire for sequential register allocation might conflict with the featured registers selected
for the CR3, CL, CS, CB, CDS, CSD, and CRI formats.

While reasonable architects might come to different conclusions, we decided to omit load and
store multiple.

RV32C SPEC2006 RV64C SPEC2006 RV64C Linux kernel
Instruction % Running Total % Running Total % Running Total
C.MV 4.92 4.92 5.05 5.05 6.03 6.03
C.LDSP - 4.92 2.93 7.98 4.36 10.39
C.SDSP - 4.92 2.40 10.38 3.73 14.12
C.LI 1.62 6.54 1.56 11.94 1.85 15.97
C.ADD 2.21 8.75 1.93 13.87 0.73 16.70
C.J 1.29 10.04 1.23 15.10 1.67 18.37
C.LWSP 3.38 13.42 0.52 15.62 0.13 18.50
C.ADDI 1.89 15.31 1.02 16.64 1.02 19.52
C.LW 2.22 17.53 0.93 17.57 0.67 20.19
C.LD - 17.53 1.24 18.81 2.19 22.38
C.SWSP 2.80 20.33 0.37 19.18 0.18 22.56
C.BEQZ 0.65 20.98 0.63 19.81 1.35 23.91
C.JR 0.56 21.54 0.59 20.40 1.15 25.06
C.SLLI 0.62 22.16 0.80 21.20 0.52 25.58
C.ADDI16SP 0.37 22.53 0.55 21.75 0.99 26.57
C.BNEZ 0.34 22.87 0.34 22.09 0.85 27.42
C.ADDIW - 22.87 0.83 22.92 0.52 27.94
C.LUI 0.41 23.28 0.43 23.35 0.50 28.44
C.SW 0.68 23.96 0.35 23.70 0.30 28.74
C.SD - 23.96 0.31 24.01 0.88 29.62
C.JAL 0.30 24.26 0.31 24.32 0.44 30.06
C.ADDI4SPN 0.36 24.62 0.33 24.65 0.31 30.37
C.ADDW - 24.62 0.35 25.00 0.23 30.60
C.SUB 0.19 24.81 0.09 25.09 0.16 30.76
C.JALR 0.14 24.95 0.14 25.23 0.15 30.91
C.EBREAK 0 24.95 0 25.23 0.09 31.00

Table 1.4: Standard RVC instructions in order of typical frequency. The numbers in the table show
the percentage savings in static code size that each instruction generated. This list was generated
using a compacting assembler for the output of the RISC-V gcc compiler for the SPEC2006 bench-
marks with the compiler directed to produce RV32C and RV64GC code and for the Linux kernel
for RV64GC code. A dash means that instruction is not defined for this address size. The five
omitted RVC instructions are C.NOP and the four quadword loads and stores.

16 RISC-V Compressed ISA V1.7

1.8 Pros and Cons of the Extended RVC Instructions

Tables 1.4 and 1.5 list the standard and extended RVC instructions with the most frequent first,
showing the individual contributions of those instructions and then the running total for three
experiments: the SPEC benchmarks for both RV32C and RV64C for the Linux kernel. The 31
standard RVC instructions shrink programs by 24.95% to 31.00%. The 24 extended RVC instruc-
tions shrink programs by an additional 0.55% to 1.06%.

RV32C SPEC2006 RV64C SPEC2006 RV64C Linux kernel
Instruction % Running Total % Running Total % Running Total
C.SRLI 0.05 0.05 0.18 0.18 0.38 0.38
C.AND3 0.05 0.10 0.05 0.23 0.23 0.61
C.OR3 0.08 0.18 0.05 0.28 0.18 0.79
C.SUB3 0.10 0.28 0.05 0.33 0.09 0.88
C.ADD3 0.11 0.39 0.07 0.40 0.05 0.93
C.SRAI 0.12 0.51 0.05 0.45 0.04 0.97
C.SLLIW - 0.51 0.10 0.55 0.09 1.06
C.ANDI 0.11 0.62 - 0.55 - 1.06
C.ADDIN 0.09 0.71 - 0.55 - 1.06
C.BLTZ 0.07 0.78 - 0.55 - 1.06
C.BGEZ 0.03 0.81 - 0.55 - 1.06
C.SLL 0.03 0.84 - 0.55 - 1.06
C.ORIN 0.02 0.86 - 0.55 - 1.06
C.SLLR 0.02 0.88 - 0.55 - 1.06
C.XOR 0.02 0.90 - 0.55 - 1.06
C.ANDIN 0.01 0.91 - 0.55 - 1.06
C.SLTUR 0.01 0.92 - 0.55 - 1.06
C.SRL 0.01 0.93 - 0.55 - 1.06
C.SRLR 0.01 0.94 - 0.55 - 1.06
C.XORIN 0.01 0.95 - 0.55 - 1.06
C.SLT 0 0.95 - 0.55 - 1.06
C.SLTR 0 0.95 - 0.55 - 1.06
C.SLTU 0 0.95 - 0.55 - 1.06
C.SRA 0 0.95 - 0.55 - 1.06

Table 1.5: Extended RVC instructions in order of typical frequency. This list was generated using
a compacting assembler for the output of the RISC-V gcc compiler for the SPEC2006 benchmarks
with the compiler directed to produce RV32C and RV64GC code and for the Linux kernel for
RV64GC code. A dash means that instruction is not defined for this address size.

Here are the arguments for including these extended instructions in RVC:

• Since the assembler can do compression, the compiler code generator does not have to be
more complex even though there are more instructions to choose from.

• It is better to put the extra instructions in RVC now, since it will be much harder to add
them later after the RVC extension is adopted.

• The RVC instruction decoder probably isn’t that much bigger for the extra instructions.

• Our experiments with current compression-oblivious C compilers see swiftly diminishing re-
turns. Perhaps different compression-aware C compilers will actually see greater benefit from

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 17

the extended RVC instructions.

• Perhaps other environments, e.g., Java JIT JVM, would give different results.

• Perhaps hand coders would actually use the extended RVC instructions frequently, even if
compilers could not.

• While there is additional complexity verification for the extended RVC instructions, it is
only in the decode stage as instructions expand to regular instructions that must already be
supported. With 16b instructions, it is very feasible to exhaustively test the translation to
32b instructions since there are only 64K test cases.

• Our preference would obviously be to not have two extensions to reduce ISA fragmentation,
but maybe the community would prefer a RVC1 and a RVC2, where the long tail is separated
out into a separate optional RVC2 extension.

32-bit only 32- or 64-bit 64- or 128-bit
C.BLTZ C.SRLI C.SLLIW
C.BGEZ C.SRAI
C.ANDI C.ADD3

C.ADDIN C.SUB3
C.ANDIN C.AND3
C.ORIN C.OR3

C.XORIN
C.XOR
C.SLL
C.SRL
C.SRA
C.SLT

C.SLTU
C.SLLR
C.SRLR
C.SLTR

C.SLTUR

Table 1.6: Extended RVC instructions categorized by which address sizes they are valid. Only one
of the 24 extended RVC instructions is valid for all addresses larger than that for which it was
originally defined.

Here are the arguments against including the Extended RVC instructions:

• Extended nearly doubles the number of RVC instructions, which in turn doubles the docu-
mentation of RVC and doubles what must be verified during implementation of RVC.

• Note that we currently can explain RISC-V as follows:

RV 32G ⊂ RV 64G ⊂ RV 128G

That is, by using wider registers, every RV32G instruction is also defined in RV64G and

18 RISC-V Compressed ISA V1.7

RV128G and similarly every RV64G instruction is defined in RV128G.1 The complete RV64G
and RV128G extensions add a few more instructions to operate on data types narrower than
64 or 128 bits. Because extended RVC is trying to fit many instructions into a limited opcode
space, it breaks the subset relationship. Table 1.6 shows that 23 of the 24 extended RVC
instructions are available in smaller address sizes but not in larger ones. The loss of this
relationship makes it more difficult to explain RISC-V, and reduces some of its elegance.

• The standard RVC was data driven by measuring the code size impact of the many alternatives
for compressed instructions, and only keeping the ones that proved to make a significant
difference using the gcc compiler and the RISC-V assembler. The extended RVC set is
intuition driven. We won’t know for years if assembly language programmers or alternative
compilers will produce extended RVC instructions in sufficient frequency to be worthwhile.
The only data we have today suggests they aren’t.

• Since we are establishing the standard extensions for RISC-V in 2015, and they are expected
to change slowly, it will probably be harder for standards committees to delete existing
instructions than it would be to add instructions based on solid numbers from convincing
experiments. Thus, we should err on the side of leaving out possibly useful instructions versus
including some that will prove to be unworthy but must be implemented by all computers
needing compact code. And it is extremely unlikely that 100% of the 24 proposed extended
RVC instructions will prove to be worthwhile.

• We are not discussing whether or not the proposed operation is supported in RISC-V; we are
debating whether there should be a 16-bit version in addition to the 32-bit version. Thus,
the downside of omitting a worthy extended RVC instruction is small.

• The main purpose of RISC-V Foundation is to have a path to evolve the RISC-V ISA once
we have evidence that it needs to change. Why not rely on the evidence-based process to
propose “RVC2” rather than guessing in 2015 what the right choice should be? As Donald
Knuth warned in his 1974 Turing Award lecture:
“...premature optimization is the root of all evil.”

We welcome your comments on the advisability of including the extended RVC instructions, so
please send them to the isa-dev@lists.riscv.org mailing list.

1The only exceptions are C.ADDI4SPN and the 3 RV32I instructions that read the upper 32 bits of a 64-bit
counter: Read Cycle Upper Half (RDCYCLEH), Read Time Upper Half (RDTIMEH), Read Instructions Retired
Upper Half(RDINSTRETH). In RV64I or RV128I, the destination register is wide enough to read the whole counter,
so read high instructions are superfluous. These three instructions are important but rarely used.

Bibliography

[1] Andrew Waterman. Improving energy efficiency and reducing code size with RISC-V com-
pressed. Master’s thesis, University of California, Berkeley, 2011.

19

