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ABSTRACT
Security-critical applications running in the cloud constantly
face threats from exploits in lower computing layers such as
the operating system, virtual machine monitors, or even at-
tacks from malicious datacenter administrators. To help pro-
tect application secrets from such attacks, there is increasing
interest in hardware implementations of primitives for trusted
computing, such as Intel’s Software Guard Extensions (SGX).
These primitives enable hardware protection of memory re-
gions containing code and data, root of trust for measurement,
remote attestation, and cryptographic sealing. However, vul-
nerabilities in the application itself (e.g. incorrect use of SGX
instructions, memory safety errors) can be exploited to di-
vulge secrets. We introduce Moat, a tool which formally veri-
fies confidentiality properties of applications running on SGX.
We create formal models of relevant aspects of SGX, develop
several adversary models, and present a verification method-
ology for proving that an application running on SGX does
not contain a vulnerability that causes it to reveal secrets to
the adversary. We evaluate Moat on several applications, in-
cluding a one time password scheme, off-the-record messaging,
notary service, and secure query processing.

1. INTRODUCTION
Building applications that do not leak secrets (i.e., satisfy-

ing confidentiality) with both client devices and cloud services
as components is non-trivial. There are at least three kinds
of attacks a developer must guard against. The first kind of
attack, which we call protocol attack, is due to vulnerabilities
in the cryptographic protocol used to establish trust between
various distributed components. Examples of protocol attacks
include man-in-the-middle or replay attacks. The second kind
of attack, which we call application attack, is due to errors or
vulnerabilities in the application code itself which can be ex-
ploited to leak confidential information from the application
(e.g. Heartbleed bug [14]). The third kind of attack, which
we call infrastructure attack, is due to exploits in the software
stack (e.g. operating system (OS), hypervisor) that the ap-
plication relies upon, where the privileged malware controls
the CPU, memory, I/O devices, etc. Infrastructure attacks
can result in an attacker gaining control of the application’s
memory and reading secrets at will.

Several mitigation strategies have been proposed for each
of these kind of attacks. In order to guard against protocol
attacks, we can use protocol verifiers (e.g., ProVerif [8], Cryp-
toVerif [9]) to check for protocol errors. In order to guard
against application attacks, the application can be developed

in a memory-safe language with information flow control, such
as Jif [22]. Infrastructure attacks are the hardest to protect
against, since the attack can happen even if the application
is error free (i.e., without application vulnerabilities or pro-
tocol vulnerabilities). While some efforts are under way to
build a fully verified software stack ground-up (e.g. [16, 19]),
this approach is unlikely to scale to real-world OS and sys-
tem software. An alternative approach to guarding against
infrastructure attack is by hardware features that enable a
user-level application to be protected from privileged mal-
ware. For instance, Intel SGX [17, 18] is an extension to the
x86 instruction set architecture, which provides any applica-
tion the ability to create protected execution contexts called
enclaves containing code and data. SGX features include 1)
hardware-assisted isolation from privileged malware for en-
clave code and data, 2) measurement and attestation prim-
itives for detecting attacks on the enclave during creation,
and 3) sealing primitives for storing secrets onto untrusted
persistent storage. If these primitives are used correctly, an
application can reduce its trusted computing base to only the
enclave code and SGX processor, thereby defending against
infrastructure attacks.

Although SGX has the potential to protect against infras-
tructure attacks, the developer must still take care to use
SGX primitives correctly, use safe cryptographic protocols,
avoid traditional bugs due to memory safety violations, etc.
For instance, the enclave may suffer from exploits like Heart-
bleed exploits by using vulnerable SSL implementations. Sim-
ilarly, by excluding some component of enclave state from the
measurement, the enclave may suffer from masquerading at-
tacks. With a compromised OS acting as the adversary, the
adversary can modify non-enclave memory, modify page ta-
bles, generate interrupts, modify network messages, etc. De-
velopers find it non-trivial to write secure enclaves because
they must account for all potential enclave behaviors in the
presence of such adversarial actions. Currently, there is no
formal adversary model or technique for reasoning about en-
clave behaviors in the presence of an active adversary. This
paper takes a first step to solving this problem. We explore
the contract between the SGX hardware and the enclave de-
veloper, formalize various adversary models, and implement
a verification methodology that helps developers find vulner-
abilities in enclave code that can be exploited via protocol,
application, and infrastructure attacks. This research makes
the following specific contributions:

• We develop the first formal model of the SGX platform
and its new instruction set, working from publicly-available



documentation [18].

• We formalize several adversary models ranging from pas-
sive to active privileged adversaries. We present a sound
method of composing the adversary and the enclave pro-
gram, where the composition encodes all potential runtime
behaviors of the enclave in the presence of an active adver-
sary. To enable efficient verification, we show how a very
general active adversary can be reduced to a much simpler
one without loss of soundness.

• We develop Moat, a system for statically verifying security
properties of an enclave program in the face of application
and infrastructure attacks. More precisely, we formalize con-
fidentiality (ignoring side channel leaks) for the instruction-
level behavior of enclave programs. Moat employs a flow- and
path-sensitive type checking algorithm (based on satisfiabil-
ity modulo theories solving [5]) for automatically verifying
whether an enclave program (composed with the adversary)
provides confidentiality guarantees.

Though we study these issues in the context of Intel SGX,
similar issues arise in other architectures based on trusted
hardware such as ARM TrustZone [2] and Sancus [23], and
our approach is potentially applicable to them as well. The
theory we develop with regard to attacker models and our
verifier is mostly independent of the specifics of SGX, and
our use of the term “enclave” is also intended in the more
general sense.

2. BACKGROUND
We demonstrate the use of SGX by an example of a one-

time password (OTP) service, although the exposition ex-
tends naturally to any secret provisioning protocol. OTP is
typically used in two factor authentication as an additional
step to traditional knowledge based authentication via user-
name and passphrase. A user demonstrates ownership of a
pre-shared secret by providing a fresh, one-time password
that is derived deterministically from that secret. For in-
stance, RSA SecurIDR© is a hardware-based OTP solution,
where possession of a tamper-resistant hardware token is re-
quired during login. In this scheme, a pre-shared secret is es-
tablished between the OTP service and the hardware token.
From then on, they compute a fresh one-time password as a
function of the pre-shared secret and time duration since the
secret was provisioned to the token. The user must provide
the one-time password on the token during authentication, in
addition to her username and passphrase. This OTP scheme
is both expensive and inconvenient because it requires dis-
tributing tamper-resistant hardware tokens physically to the
users. Although pure software implementations have been at-
tempted, they are often prone to infrastructure attacks from
malware, making them untrustworthy. Thus, it is natural to
see if we can build OTP using new hardware platforms such as
SGX, which guard against infrastructure attacks by providing
primitives for measurement, attestation, and memory protec-
tion. Hoekstra et al. [17] propose a OTP scheme on SGX,
which we implement (see Figure 1) and verify using Moat.
Consider the following protocol that a bank OTP server uses
to provision the pre-shared secret to a client, which is running
on a potentially infected machine with SGX hardware:

1. The server sends the client an attestation challenge nonce.
Consequent messages in the protocol use the nonce to
guarantee freshness.

2. The client and OTP server engage in an authenticated
Diffie-Hellman key exchange in order to establish a sym-
metric session_key. The client uses ereport instruction
to send a report containing a signature over the Diffie-
Hellman public key dh_pubkey and the enclave’s measure-
ment. The signature guarantees that the report was gener-
ated by an enclave on SGX, while the measurement guar-
antees that the reporting enclave is an untampered OTP
enclave. After verifying the signatures, both the client and
OTP server compute the symmetric session_key.

3. The OTP server sends the pre-shared OTP secret to the
client by first encrypting it with the session_key, and then
signing the encrypted content with the bank’s private TLS
key. The client verifies the signature and decrypts the
message to retrieve the pre-shared otp_secret.

4. For future use, the client requests for sealing_key (us-
ing egetkey instruction), encrypts otp_secret using seal-
ing_key, and writes the sealed_secret to disk.

The basic necessities for implementing this protocol securely
are (1) ability to perform the cryptographic operations (or any
trusted computation) without interference from the adversary,
(2) protected memory for computing and storing secrets, and
(3) root of trust for measurement and attestation. Intel SGX
processors provide these primitives.

The Intel SGX instructions allow a user-level application
to instantiate a protected execution context, called an en-
clave, containing both code and data. The enclave memory
resides within the application’s virtual address space, but is
protected from accesses by any privileged software — only the
enclave code is allowed to access enclave memory. It is for this
reason that we store secrets (session_key, sealing_key, and
otp_secret) in enclave heap and implement cryptographic op-
erations in enclave code (Figure 1). It is important to clarify
that SGX does not protect the enclave program from inadver-
tently leaking secrets, thus necessitating a verifier for enclave
programs. For instance, the enclave in Figure 1 contains a
vulnerability that we describe in § 3.1.

The untrusted host application creates an enclave using a
combination of SGX instructions: ecreate, eadd, eextend,
and einit. The host application invokes ecreate to reserve
protected memory for enclave use. To populate the enclave
with code and data, the host application uses a sequence of
eadd and eextend instructions. eadd loads code and data
pages from non-enclave memory to enclave’s reserved mem-
ory. eextend extends the current enclave measurement with
the measurement of the newly added page. Finally, einit ter-
minates the initialization phase, which prevents any further
modification to the enclave state from non-enclave code.

The reader may observe that code and data must be dis-
tributed in cleartext, opening it up to eavesdropping and tam-
pering by adversaries. For instance, an adversary may modify
a OTP enclave’s binary (on user’s machine) so that it leaks a
user’s login credentials. SGX provides measurement primitive
eextend and attestation primitive ereport to defend against
this class of attacks. The OTP server uses remote attestation
to prove that the user is running the same enclave as the one
distributed by the bank. The enclave participates in attesta-
tion by invoking ereport, which generates a hardware-signed
report of the enclave’s measurement. The enclave can also
use ereport to bind data to its measurement, thereby adding
authenticity to that data (e.g. authenticated Diffie-Hellman
exchange in Figure 1). After verifying the attestation report,



Figure 1: Running OTP Example. The enclave performs trusted cryptographic operations, and the host appli-
cation performs untrusted tasks such as UI handling and network communications with the OTP server.

the OTP server may choose to provision the otp_secret to the
enclave. For future access, the enclave may use egetkey to
attain a hardware-generated sealing key, and store the sealed
secret to untrusted storage.

A typical application (such as our OTP client) uses enclave
code to implement cryptographic operations or any other trusted
computation. However, enclave code is not allowed to in-
voke any privileged instructions or even system calls, forcing
the enclave to rely on non-enclave code to issue system calls,
perform I/O, etc. For instance, to send the Diffie-Hellman
public key to the server, enclave (1) invokes ereport with
enclave_state.dh_pubkey, (2) copies the report to non-enclave
memory app_heap, (3) invokes eexit to transfer control to the
app, and (4) waits for app to invoke the socket system calls to
send the report to the bank server. For this reason, app and
enclave perform a sequence of eenter and eexit to transfer
control back and forth. The host application transfers control
to the enclave by invoking eenter (at some point after einit),
which transfers control to the enclave’s entry point. The en-
clave executes atomically until one of the following events oc-
cur: (1) enclave code invokes eexit to transfer control to the
host application, (2) enclave code incurs a fault or exception
(e.g. page fault, divide by 0 exception, etc.), and (3) the
CPU receives a hardware interrupt and transfers control to a
privileged interrupt handler. In the case of faults, exceptions,
and interrupts, the CPU saves state (registers, etc.) in State
Save Area (SSA) pages, which is a region in enclave memory
dedicated to saving CPU state during such events. Although
this design makes an enclave vulnerable to denial of service
attacks, we show that an enclave can still guarantee safety
properties such as data confidentiality.

Confidentiality requires protecting secrets, which requires
understanding of the contract between the enclave developer
and the SGX hardware. First, the enclave developer must fol-
low the enclave creation guidelines (see § 3.2) so that the hard-
ware protects the enclave from an attacker that has gained
privileged access to the system. Even then, the enclave devel-
opers needs to ensure that their code does not leak secrets via
application attacks and protocol attacks. For instance, they

should encrypt secrets before writing them to non-enclave
memory. They should account for adversary modifying non-
enclave memory at any time, which could result in time-of-
check-to-time-of-use attacks. Writing secure enclaves is non-
trivial and is a topic that we explore formally in this paper.
To our knowledge, there does not exist any formal method for
reasoning about attacks or vulnerabilities in enclaves, or for
formally proving security properties such as confidentiality.

3. OVERVIEW OF MOAT
We are interested in building secure distributed applica-

tions, which have components running in trusted and un-
trusted environments, where all communication channels are
untrusted. For the application to be secure, we need (1) secure
cryptographic protocols between the components (to protect
from protocol attack), and (2) secure implementation in each
component to protect from application attack and infrastruc-
ture attack. Moat focuses on application and infrastructure
attacks. The adversary model used in Moat allows privileged
malware to arbitrarily update non-enclave memory, generate
interrupts, modify page tables, or launch other enclaves. Our
goal is to prove that, even in the presence of such an adver-
sary, the enclave does not leak its secrets to the adversary.

3.1 Protecting from Application Code Attack
We give an overview of our verifier, Moat, for proving con-

fidentiality of a single enclave’s implementation (detailed ex-
position in § 4 through § 7). Moat accepts an enclave pro-
gram in x86 Assembly, containing SGX instructions ereport,
egetkey, and eexit. Moat is also given a set of annotations,
called Secrets, indicating which component of state holds se-
cret values. In the OTP example, the Secrets are otp_secret,
session_key, and sealing_key. Moat proves that a privileged
software adversary running on the same machine does not ob-
serve a value that depends on Secrets, regardless of any oper-
ations performed by that adversary. We demonstrate Moat on
a snippet of OTP enclave code containing lines 22-26 from Fig-
ure 1, which are first compiled to x86+SGX Assembly (Fig-
ure 2). Here, the enclave invokes egetkey to retrieve a 128-



bit sealing key, which is stored in the byte array sealing_key.
Next, the enclave encrypts otp_secret (using AES-GCM-128
encryption library function called encrypt) to compute the
sealed_secret. Finally, the enclave copies sealed_secret to un-
trusted memory app_heap (to be written to disk). Observe
that the size argument to memcpy (line 26 in Figure 1) is a
variable size_field which resides in non-enclave memory. This
makes the enclave vulnerable to application attacks because
the adversary can cause the enclave to leak secrets from the
stack.

egetkey
movl $0x8080AC,0x8(%esp)
lea -0x6e0(%ebp),%eax
mov %eax,0x4(%esp)
lea -0x720(%ebp),%eax
mov %eax,(%esp)
call <AES_GCM_encrypt>
mov 0x700048,%eax
movl %eax,0x8(%esp)
lea -0x720(%ebp),%eax
mov %eax,0x4(%esp)
movl $0x701000,(%esp)
call 802080 <memcpy>

mem := egetkey(mem, rbx, rcx);
mem := store(mem,add(esp,0x8),0x8080AC);
eax := sub(ebp, 0x6e0);
mem := store(mem,add(esp,0x4),eax);
eax := sub(ebp, 0x720);
mem := store(mem,esp,eax);
mem := AES_GCM_encrypt(mem, esp);
eax := load(mem,0x700048);
mem := store(mem,add(esp,0x8),eax);
eax := sub(ebp, 0x720);
mem := store(mem,add(esp,0x4),eax);
mem := store(mem,esp,0x701000);
mem := memcpy(mem, esp);

Figure 2: OTP enclave snippet (left) and penc (right)

To reason about enclave code and find such vulnerabilities,
Moat first extracts a model in an intermediate verification lan-
guage, as shown in Figure 2. We refer to the model as penc.
penc models x86 (e.g. load, store) and SGX (e.g. egetkey)
instructions as uninterpreted functions constrained with ax-
ioms. The axioms (presented in § 4.2) are part of our ma-
chine model, and they encode the ISA-level semantics of each
instruction. penc models x86 semantics precisely, including
updates to CPU flags. For brevity, Figure 2 omits all updates
to flags as they are irrelevant to this code snippet.

Since penc executes in the presence of an active adversary,
we must model the effects of adversarial operations on penc’s
execution. Section 5 defines an active adversary H, which can
perform the operation “havoc mem¬epc” once between consecu-
tive instructions along any execution of penc. Here, memepc de-
notes memory reserved by the SGX processor for enclave use,
and mem¬epc is all other memory; havoc mem¬epc updates each
address in mem¬epc with a non-deterministically chosen value.
We define H this way because a privileged software adversary
can interrupt penc at any point, perform havoc mem¬epc, and
then resume penc. We model the effect ofH on penc’s behavior
by instrumenting penc to obtain penc−H (see Figure 3).

The OTP enclave implementation is vulnerable. The size
argument to memcpy (line 26 in Figure 1) is a field within
a data structure in non-enclave memory. This vulnerabilitiy
manifests as a load (line 8 of Figure 3), which reads a value
from non-enclave memory and passes that value as the size
argument to memcpy. To perform the exploit, H uses havoc
mem¬epc (in line 8) to choose the number of bytes that penc−H
writes to non-enclave memory, starting at the base address
of sealed_secret. By setting this value to be greater than
the size of sealed_secret, H causes penc−H to leak the stack
contents, which includes the sealing_key. We can assume for
now that writing sealed_secret to the unprotected app_heap
is safe because it is encrypted. We formalize a confidentiality
property in § 6 that prevents such vulnerabilities, and build
a static type system in § 7 which only admits programs that
satisfy confidentiality. Confidentiality enforces that for any

1 havoc mem¬epc; mem := egetkey(mem, rbx, rcx);

2 havoc mem¬epc; mem := store(mem,add(esp,0x8),0x8080AC);

3 havoc mem¬epc; eax := sub(ebp, 0x6e0);

4 havoc mem¬epc; mem := store(mem,add(esp,0x4),eax);

5 havoc mem¬epc; eax := sub(ebp, 0x720);

6 havoc mem¬epc; mem := store(mem,esp,eax);

7 havoc mem¬epc; mem := AES_GCM_encrypt(mem, esp);

8 havoc mem¬epc; eax := load(mem,0x700048);

9 havoc mem¬epc; mem := store(mem,add(esp,0x8),eax);

10 havoc mem¬epc; eax := sub(ebp, 0x720);

11 havoc mem¬epc; mem := store(mem,add(esp,0x4),eax);

12 havoc mem¬epc; mem := store(mem,esp,0x701000);

13 havoc mem¬epc; mem := memcpy(mem, esp);

Figure 3: penc−H constructed using OTP penc

pair of traces of penc−H that differ in the values of Secrets, if
H’s operations along the two traces are equivalent, then H’s
observations along the two traces must also be equivalent.

Our type system checks confidentiality by instrumenting
penc−H with ghost variables that track the flow of Secrets
within registers and memory, akin to taint tracking but per-
formed using static analysis. Figure 4 demonstrates how Moat
type-checks penc−H. For each state variable x, the type sys-
tem instruments a ghost variable Cx. Cx is updated on each
assignment that updates x, and is assigned to false only if x’s
value is independant of Secrets (details in § 7). For instance,
Cmem[esp] in line 13 is assigned to Ceax∨Cesp because either se-
cret value or secret address should cause the stored value to be
a secret. Furthermore, for each secret in Secrets, we set the
corresponding locations in Cmem to true. For instance, lines 1-
3 assign true to those 16 bytes in Cmem where egetkey places
the secret sealing_key. Information leaks can only happen
via store to mem¬enc, where memenc is a subset of memepc that
is reserved for use by penc, and mem¬enc is either non-enclave
memory or memory used by other enclaves. enc(i) is true if i
is an address in memenc. For each store instruction, the type
system instruments an assert checking that a secret value
is not written to mem¬enc. For a program to be well-typed,
all assertions in the instrumented penc−H must be valid along
any feasible execution. Moat feeds the instrumented program
(Figure 4) to a static program verifier [3], which explores all
feasible executions (i.e. all reachable states) of the enclave
and checks that the assertions are valid along such executions.
In Figure 4, the assertion in line 29 is invalid because Cmem

is true for memory locations that hold the sealing_key. Our
type system rejects this enclave program. Although memory
safety vulnerabilities can be found using simpler approaches,
Moat can identify many classes of vulnerabilities using these
typing assertions. A fix to the OTP implementation is to
replace size_field with the correct size, which is 64 bytes.

Declassification.
In the previous section, we make the claim that writing

sealed_secret to app_heap is safe because it is encrypted using
a secret key. We now explain how Moat evaluates whether a
particular enclave output is safe. As a pragmatic choice, Moat
does not reason about cryptographic operations for there is
significant body of research on cryptographic protocol verifi-
cation. For instance, if encryption uses a key established by
Diffie-Hellman, Moat needs to reason about the authentication



1 Cold
mem := Cmem; havoc Cmem;

2 assume ∀i. (ecx ≤ i < ecx + 16)→ Cmem[i];

3 assume ∀i. ¬(ecx ≤ i < ecx + 16)→ Cmem[i]↔ Cold
mem[i];

4 havoc mem¬epc; mem := egetkey(mem, ebx, ecx);

5 Cmem[add(esp, 0x8)] := Cesp;

6 havoc mem¬epc; mem := store(mem,add(esp,0x8),0x8080AC);

7 Ceax := Cebp;

8 havoc mem¬epc; eax := sub(ebp, 0x6e0);

9 assert ¬enc(add(esp, 0x4))→ ¬Ceax;Cmem[add(esp, 0x4)] := Ceax ∨ Cesp;

10 havoc mem¬epc; mem := store(mem,add(esp,0x4),eax);

11 Ceax := Cebp;

12 havoc mem¬epc; eax := sub(ebp, 0x720);

13 assert ¬enc(esp)→ ¬Ceax;Cmem[esp] := Ceax ∨ Cesp;

14 havoc mem¬epc; mem := store(mem,esp,eax);

15 Cmem := C_AES_GCM_encrypt(Cmem, esp);

16 havoc mem¬epc; mem := AES_GCM_encrypt(mem, esp);

17 Ceax := Cmem[0x700048];

18 havoc mem¬epc; eax := load(mem,0x700048);

19 assert ¬enc(add(esp, 0x8))→ ¬Ceax;Cmem[add(esp, 0x8)] := Ceax ∨ Cesp;

20 havoc mem¬epc; mem := store(mem,add(esp,0x8),eax);

21 Ceax := Cebp;

22 havoc mem¬epc; eax := sub(ebp, 0x720);

23 assert ¬enc(add(esp, 0x4))→ ¬Ceax;Cmem[add(esp, 0x4)] := Ceax ∨ Cesp;

24 havoc mem¬epc; mem := store(mem,add(esp,0x4),eax);

25 Cmem[esp] := Cesp;

26 havoc mem¬epc; mem := store(mem,esp,0x7001000);

27 Cmem := C_memcpy(Cmem, esp);

28 arg1 := load(mem, esp); arg3 := load(mem, add(esp, 8));

29 assert ∀i. ((arg1 ≤ i < add(arg1, arg3)) ∧ ¬enc(i))→ ¬Cmem[i];

30 havoc mem¬epc; mem := memcpy(mem, esp);

Figure 4: penc−H instrumented with typing assertions

and attestation scheme used in that Diffie-Hellman exchange
in order to derive that the key can be safely used for encryp-
tion. When Moat encounters a cryptographic library call, it
abstracts it as an uninterpreted function with the conservative
axiom that secret inputs produce secret output. For instance
in Figure 4, aes_gcm_encrypt on line 16 is an uninterpreted
function, and C_aes_gcm_encrypt on line 15 marks the cipher-
text as secret if any byte of the plaintext or encryption key
is secret. Clearly, such conservative axiomatization is unnec-
essary because a secret encrypted with a key unknown to the
adversary can be safely output. To reduce this imprecision in
Moat, we introduce declassification to our type system. A de-
classified output is a safe, intentional information leak of the
program, which may be manually annotated or proven safe
using other means. In our experiments, we safely eliminate
declassified outputs from information leakage checking if the
protocol verifier has already proven them to be safe outputs.
The choice of protocol verifier is orthogonal to our work.

To collect the Declassifed annotations, we manually model
the cryptographic protocol to verify using an off-the-shelf pro-
tocol verifier (e.g. ProVerif [8], CryptoVerif [9]). A protocol
verifier accepts as input an abstract model of the protocol
(in a formalism such as pi calculus), and proves properties
such as confidentiality. We briefly describe how we use Moat
in tandem with a protocol verifier. If Moat establishes that
a particular value generated by penc is secret, this can be
added to the set of secrecy assumptions made in the protocol

verifier. Similarly, if the protocol verifier establishes confiden-
tiality even while assuming that a penc’s output is observable
by the adversary, then we can declassify that output while
verifying penc with Moat. This assume-guarantee reasoning is
sound because the adversary model used by Moat can simulate
a network adversary — a network adversary reorders, inserts,
and deletes messages, and the observable effect of these oper-
ations can be simulated by a havoc mem¬epc.

We demonstrate this assume-guarantee reasoning on lines
22-26 of the OTP enclave in Figure 1, where line 26 no longer
has the memory safety vulnerability i.e. it uses the constant
64 instead of size_field. Despite the fix, Moat is unable to
prove that memcpy in line 26 is safe because its axiomatization
of aes_gcm_encrypt prevents the derivation that the cipher-
text is non-secret. We proceed by first proving in Moat that
the sealing_key is not leaked to the adversary. Next, we anno-
tate the ProVerif model with the assumption that sealing_key
is secret, which allows ProVerif to prove that the outbound
message (via memcpy) is safe. Based on this ProVerif proof,
we annotate the sealed_secret as Declassified, hence telling
Moat that the assert on line 29 of Figure 4 is valid.

The combination of Secrets and Declassafied annotations
is refered to as the policy, and is an additional input to Moat.

3.2 Protecting from Infrastructure Attack
We mandate that the enclave be created with the following

sequence that measures all pages in memenc.

ecreate(size(memenc));

foreach page ∈ memenc : {eadd(page); eextend(page)};
einit (1)

If some component of enclave state is not measured, then the
adversary may havoc that component of state during initial-
ization without being detected. We assume that any enclave
with the right measurement is equivalent to penc (by collision
resistance assumption). The proof of Theorem 1 in § 5 guar-
antees that an enclave initialized using the sequence in (1)
is protected from privileged adversarial actions such as inter-
rupts, modification of page tables, havoc mem¬epc, and invo-
cation of any x86+SGX instruction — we model each SGX
instruction and the adversary as part of this proof (see § 4.2
and § 4.3). The proof guarantees that penc’s execution (i.e. its
set of reachable states) is not affected by the adversary with
a caveat that the penc may read mem¬epc for inputs. However,
we do not consider this to be an infrastructure attack because
inputs should be treated as untrusted. Therefore, initializing
using the above instruction sequence is sufficient for protect-
ing the enclave from infrastructure attacks.

4. FORMAL MODEL OF THE ENCLAVE
PROGRAM AND THE ADVERSARY

The remainder of this paper describes our verification ap-
proach for defending against application attacks, which is the
focus of this paper. Moat takes a binary enclave program and
proves confidentiality i.e. it does not leak secrets to a priv-
ileged adversary. In order to construct proofs about enclave
behavior, we first model the enclave’s semantics in a formal
language that is amenable to verification, and also model the
effect of adversarial operations on enclave behavior. This sec-
tion describes (1) formal modeling of enclave programs, (2)
formal model of the x86+SGX instruction set, and (3) formal
modeling of active and passive adversaries.



4.1 Syntax and Semantics of Enclave Programs
Our model of a x86+SGX machine consists of an unbounded

number of Intel SGX CPUs operating with shared memory.
Although SGX allows an enclave to have multiple CPU threads,
we restrict our focus to single-threaded enclaves for simplic-
ity, and model all other CPU threads as running privileged
adversarial code. A CPU thread is a sequence of x86+SGX
instructions. In order to reason about enclave execution, Moat
models the semantics of all x86+SGX instructions executed
by that enclave. This section describes Moat’s translation of
x86+SGX Assembly program to a formal model, called penc,
as seen in Figure 2.

Moat first uses BAP [11] to lift x86 instructions into a simple
microarchitectural instruction set: load from mem, store to
mem, bitwise (e.g. xor) and arithmetic (e.g. add) operations on
regs, conditional jumps cjmp, unconditional jumps jmp, and
usermode SGX instructions (ereport, egetkey, and eexit).
We choose BAP for its precise modeling of x86 instructions,
which includes updating of CPU flags. We have added a min-
imal extension to BAP in order to decode SGX instructions.
Each microarchitectural instruction from above is modeled in
penc as a sequential composition of BoogiePL [3] statements
(syntax described in Figure 5). BoogiePL is an intermediate
verification language supporting assertions that can be stat-
ically checked for validity using automated theorem provers.
Within penc, Moat uses uninterpreted Functions constrained
with axioms (described in § 4.2) to model the semantics of
each microarchitectural instruction. These axioms describe
the effect of microarchitectural instructions on machine state
variables Vars: main memory mem, ISA-visible CPU registers
regs, etc., basically the state components that we choose to
include in our x86+SGX machine model. We define the state
σ ∈ Σ of penc at a given program location to be a valuation of
all variables in Vars. The semantics of a BoogiePL statement
s ∈ Stmt is given by a relation R(s) ⊆ 2Σ×Σ over pairs of
pre and post states, where (σ, σ′) ∈ R(s) if and only if there
is an execution of s starting at σ and ending in σ′. We use
standard axiomatic semantics for each Stmt in Figure 5 [4].

Enclaves have an entrypoint which is configured at compile
time and enforced at runtime by a callgate-like mechanism.
Therefore, Moat makes BAP perform a walk over the control
flow graph, starting from the enclave entrypoint, while trans-
lating x86+SGX instructions to microarchitectural instruc-
tions. Procedure calls are either inlined or abstracted away
as uninterpreted functions. Specifically, trusted library calls
(e.g. AES-GCM authenticated encryption) are abstracted as
uninterpreted functions with standard axioms — the crypto-
graphic library is in our trusted computing base. Further-
more, Moat soundly unrolls loops to a bounded depth by
adding an assertion that any iteration beyond the unrolling
depth is unreachable. Our penc model is sound under the
following assumptions: (1) control flow integrity, (2) code
regions are not modified (enforced using page permissions),
(3) the trusted cryptographic library calls return to the in-
struction following the call, and (4) the trusted cryptographic
library implementation is memory safe.

By bounding the number of loop iterations and recursion
depth, the resulting verification problem becomes decidable,
and one that can be checked using a theorem prover. Several
efficient techniques [4] transform this loop-free and call-free
procedure containing assertions into a compact logical formula
in the Satisfiability Modulo Theories (SMT) format by a pro-
cess called verification-condition generation. This formula is

valid if and only if penc does not fail any assertion in any exe-
cution — validity checking is done by an automated theorem
prover based on SMT solving [13]. In the case of assertion
failures, the SMT solver also constructs a counter-example
execution of penc demonstrating the assertion failure. In § 7,
we show how Moat uses assertions and verification-condition
generation to prove confidentiality properties of penc.

x,X ∈ Vars
q ∈ Relations
f, g, h ∈ Functions
e ∈ Expr ::= x | X | X[e] | f(e, . . . , e)
φ ∈ Formula ::= true | false | e == e |

q(e, . . . , e) | φ ∧ φ | ¬φ
s ∈ Stmt ::= skip | assert φ | assume φ |

X := e | x := e | X[e] := e |
if (e) {s} else {s} | s; s

Figure 5: Syntax of programs.

4.2 Formal Model of x86 and SGX instructions
While formal models of x86 instructions using BoogiePL

has been done before (see for instance [27]), we are the first
to model SGX instructions. In section 4.1, we lifted x86 to
a microarchitectural instruction sequence, and modeled each
microarchitectural instruction as an uninterpreted function
(e.g. xor, load, ereport). In this section, we add axioms to
these uninterpreted functions in order to model the effect of
instructions on machine state.

A state σ is a valuation of all Vars, which consists of mem,
regs, and epcm. As their names suggest, physical memory
σ.mem is modeled as an unbounded array, with index type of
32 bits and element type of 8 bits. mem is partitioned by the
platform into two disjoint regions: protected memory for en-
clave use (memepc), and unprotected memory (mem¬epc). For
any physical address a, epc(a) is true iff a is an address in
memepc. Furthermore, memenc is a subset of memepc that is re-
served for use by penc — memenc is virtually addressed and it
belongs to the host application’s virtual address space. For
any virtual address a, enc(a) is true iff a resides in memenc.
The epcm is a finite sized array of hardware-managed struc-
tures, where each structure stores security critical metadata
about a page in memepc. epcmenc is a subset of epcm that stores
metadata about each page in memenc — other epcm structures
are either free or in use by other enclaves. regs is the set of
ISA-visible CPU registers such as rax, rbp, etc.

Each microarchitectural instruction in penc has side-effects
on σ, which we model using axioms on the corresponding un-
interpreted functions. In Figure 6, we present our model of
a sample bitvector operation xor, sample memory instruction
load, and sample SGX instruction eexit. We use the theorem
prover’s built-in bitvector theories (⊕ operator in line 1) for
modeling microarchitectural instructions that perform bitvec-
tor operations. For load, we model both traditional checks
(e.g. permission bits, valid page table mapping, etc.) and
SGX-specific security checks. First, load reads the page ta-
ble to translate the virtual address va to physical address pa
(line 7) using a traditional page walk, which we model as an
array lookup. Operations on arrays consist of reads x := X[y]
and writes X[y] := x, which are interpreted by the Theory
of Arrays [5]. The boolean ea denotes whether this access
is made by enclave code to memenc. If ea is true, then load

asserts (line 14) that the following security checks succeed:



• the translated physical address pa resides in memepc (line 9)

• epcm contains a valid entry for address pa (lines 10 and 11)

• enclave’s epcm entry and the CPU’s control register both
agree that the enclave owns the page (line 12)

• the page’s mapping in pagetable is same as when enclave
was initialized (line 13)

If non-enclave code is accessing memepc, or if penc is accessing
some other enclave’s memory (i.e. within memepc but outside
memenc), then load returns a dummy value 0xff (line 16).
We refer the reader to [20] for details on SGX memory access
semantics. Figure 6 also contains a model of eexit, which
causes the control flow to transfer to the host application.
Models of other SGX instructions are available at [1].

1 function xor(x: bv32, y: bv32) { return x ⊕ y; }
2 function load(mem:[bv32]bv8, va:bv32)
3 {
4 var check : bool; //EPCM security checks succeed?
5 var pa : bv32; //translated physical address
6 var ea : bool; //enclave access to enclave memory?
7 pa := pagetable[va];
8 ea := CR_ENCLAVE_MODE && enc(va);
9 check := epc(pa) &&

10 EPCM_VALID(epcm[pa]) &&
11 EPCM_PT(epcm[pa]) == PT_REG &&
12 EPCM_ENCLAVESECS(epcm[pa]) == CR_ACTIVE_SECS &&
13 EPCM_ENCLAVEADDRESS(epcm[pa]) == va;
14 assert (ea => check); //EPCM security checks
15 assert ...; //read bit set and pagetable has valid mapping
16 if (!ea && epc(pa)) {return 0xff;} else {return mem[pa];}
17 }
18 function eexit(mem:[bv32]bv8, rbx:bv32)
19 {
20 var mem’ := mem; var regs’ := regs;
21 regs’[rip] := rbx; regs’[CR_ENCLAVE_MODE] := false;
22 mem’[CR_TCS_PA] := 0x00;
23 return (mem’,regs’);
24 }

Figure 6: Axioms for xor, load, and eexit instructions

4.3 Adversary Model
In this section, we formalize a passive and active adver-

sary, which is general enough to model an adversarial host
application and also privileged malware running in OS/VMM
layer. penc’s execution is interleaved with the host applica-
tion — host application transfers control to penc via eenter

or eresume, and penc returns control back to the host ap-
plication via eexit. Control may also transfer from penc to
the OS (i.e. privileged malware) in the event of an interrupt,
exception, or fault. For example, the adversary may gener-
ate interrupts or control the page tables so that any enclave
memory access results in a page fault, which is handled by
the OS/VMM. The adversary may also force a hardware in-
terrupt at any time. Once control transfers to adversary, it
may execute any number of arbitrary x86+SGX instructions
before transferring control back to the enclave. Therefore, our
model of an active adversary performs an unbounded number
of following adversarial transitions between any consecutive
microarchitectural instructions executed by penc:

1. Havoc all non-enclave memory (denoted by havoc mem¬epc):
While the CPU protects the epc region, a privileged soft-
ware adversary can write to any memory location in mem¬epc
region. havoc mem¬epc is encoded in BoogiePL as:

assume ∀a. epc(a) → memnew[a] == mem[a];

mem := memnew;

where memnew is an unconstrained symbolic value that is
type-equivalent to mem. Observe that the adversary mod-
ifies an unbounded number of memory locations.

2. Havoc page tables: A privileged adversary can modify
the page tables to any value. Since page tables reside
in mem¬epc, havoc mem¬epc models havoc on page tables.

3. Havoc CPU registers (denoted by havoc regs). regs are
modified only during adversary execution, and retrieve
their original values once the enclave resumes. havoc regs
is encoded in BoogiePL as:

regs := regsnew;

where each register (e.g. rax ∈ regs) is set to an uncon-
strained symbolic value.

4. Generate interrupt (denoted by interrupt): The adver-
sary can generate interrupts at any point, causing the
CPU jump to the adversarial interrupt handler.

5. Invoke any SGX instruction with any operands (denoted
by call sgx): The attacker may invoke ecreate, eadd,
eextend, einit, eenter to launch any number of new en-
claves with code and data of attacker’s choosing.

Any x86+SGX instruction that an active adversary invokes
can be approximated by some finite-sized combination of the
above 5 transitions. Our adversary model is sound because it
allows the active adversary to invoke an unbounded number of
these transitions. We define an active and passive adversary:

Definition 1. General Active Adversary G. Between
any consecutive statements along an execution of penc, G may
execute an unbounded number of transitions of type
havoc mem¬epc, havoc regs, interrupt, or call sgx, thereby
modifying a component σ|G of machine state σ. Following
each penc microarchitectural instruction, G observes a projec-
tion σ|obs of machine state σ. Here, σ|obs

.
= (σ.mem¬epc), and

σ|G
.
= (σ.mem¬enc, σ.regs, σ.epcm¬enc).

Definition 2. Passive Adversary P. The passive ad-
versary P observes a projection σ|obs of machine state σ af-
ter each microarchitectural instruction in penc. Here, σ|obs

.
=

(σ.mem¬epc) includes the non-enclave memory. P does not
modify any state.

Enclave execution may result in exceptions (such as divide
by 0 and page fault) or faults (such as general protection
fault), in which case the exception codes are conveyed to the
adversarial OS. We omit exception codes from σ|obs for both
P and G. This is not a major concern as we implement an
analysis within Moat to prove an absence of exception-causing
errors in penc such as divide by 0 errors. Although G can
cause page fault exceptions, they only reveal memory access
patterns (at the page granularity), which we consider to be a
side-channel observation. Side-channels are out of our scope,
hence we ignore page fault exceptions from σ|obs.

5. COMPOSING ENCLAVE WITH THE AD-
VERSARY

Moat reasons about penc’s execution in the presence of an
adversary (P or G) by composing their state transition sys-
tems. An execution of penc is a sequence of statements [l1 : s1,
l2 : s2, . . . , ln : sn], where each si is a load, store, register



assignment x := e, conditional cjmp, unconditional jmp, or
a usermode SGX instruction (ereport, egetkey, or eexit).
Since penc is loop-free, each statement si has a distinct la-
bel li that corresponds to the program counter. We assume
that each microarchitectural instruction executes atomically,
although the atomicity assumption is architecture dependent.

Composing enclave penc with passive adversary P.
In the presence of P, penc undergoes a deterministic se-

quence of state transitions starting from initial state σ0. P
cannot update V ars, therefore P affects penc’s execution only
via the initial state σ0. We denote this sequence of states as
trace t = [σ0, σ1, . . . , σn], where (σi, σi+1) ∈ R(si) for each
i ∈ 0, . . . , n− 1. We also write this as 〈penc, σ0〉 ⇓ t.

Composing enclave penc with active adversary G.
G can affect penc at any step of execution by executing an

unbounded number of adversarial transitions. Therefore, to
model penc’s behaviour in the presence of G, we consider the
following composition of penc and G. For each penc statement
l : s, we transform it to:

adv1; . . . ; advk; l : s (2)

This instrumentation guarantees that between any consecu-
tive statements along an execution of penc, G can execute an
unbounded sequence of adversarial transitions adv1; . . . ; advk,
where each statement advi is an adversarial transition of type
havoc mem¬epc, havoc regs, interrupt, or call sgx. This com-
posed model, hereby called penc−G , encodes all possible be-
haviours of penc in the presence of G. An execution of penc−G
is described by a sequence of states i.e. trace t = [α0, σ0, α1,
σ1, . . . , αn, σn], where each αi ∈ t denotes the state after
the last adversary transition advk (right before execution re-
sumes in the enclave). We coalesce the effect of all adversary
transitions into a single state αi for cleaner notation. Fol-
lowing advk, the composed model penc−G executes an enclave
statement l : s, taking the system from a state αi to state σi.

Given a trace t = [α0, σ0, α1, σ1, . . . , αn, σn], we define

t|obs
.
= [σ0|obs, σ1|obs, . . . , σn|obs]

denoting the adversary-observable projection of trace t, ig-
noring the adversary controlled α states. Correspondingly, we
define

t|G
.
= [α0|G , α1|G , . . . , αn|G ]

capturing the adversary’s effects within a trace t. We define
the enclave projection of σ to be

σ|enc
.
= (σ.memenc, σ.regs, σ.epcmenc)

This is the component of machine state σ that is accessible
only by penc. Correspondingly, we define

t|enc
.
= [σ0|enc, σ1|enc, . . . , σn|enc]

The transformation in (2) allows the adversary to perform
an unbounded number of operations adv1, . . . , advk, where k
is any natural number. Since we cannot verify unbounded
length programs using verification-condition generation, we
consider the following alternatives:

• Bound the number of operations (k) that the adversary is
allowed to perform. Although this approach bounds the
length of penc−G , it unsoundly limits the G’s capabilities.

• Use alternative adversary models in lieu of G with the hope
of making the composed model both bounded and sound.

We explore the latter option in Moat. Our initial idea was
to try substituting P for G. This would be the equivalent of
making k equal 0, and thus penc−G bounded in length. How-
ever, for this to be sound, we must prove that G’s operations
can be removed without affecting penc’s execution, as required
by the following property.

∀σ ∈ Σ. ∀ti, tj ∈ Σ∗. 〈penc−G , σ〉 ⇓ ti ∧ 〈penc, σ〉 ⇓ tj ⇒
∀i. ti|enc[i] = tj |enc[i] (3)

If property (3) holds, then we can substitute P for G while
proving any safety (or k-safety [12]) property of penc. While
attempting to prove this property in the Boogie verifier [3], we
quite expectedly discovered counter-examples that illustrate
the different ways in which G affects penc’s execution:

1. Enclave instruction load(mem, a), where a is an address
in mem¬epc. G havocs mem¬epc and penc reads mem¬epc for
inputs, so this counter-example is not surprising.

2. load(mem, a), where a is an address within SSA pages. G
can force an interrupt, causing the CPU to save enclave
state in SSA pages. If the enclave resumes and reads from
SSA pages, then the value read depends on the enclave
state at the time of last interrupt.

If we prevent penc from reading mem¬epc or the SSA pages,
we successfully prove property (3). From hereon, we constrain
penc to not read from SSA pages; we do not find this to be a
restriction in our case studies. However, the former constraint
(not reading mem¬epc) is too restrictive in practice because
penc must read mem¬epc to receive inputs. Therefore, we must
explore alternative adversary models. Instead of replacing G
with P, we attempt replacing G with H defined below.

Definition 3. Havocing Active Adversary H.
Between any consecutive statements along an execution of
penc, H may execute a single havoc mem¬epc operation, thereby
modifying a component σ|H of machine state σ. Following
each penc microarchitectural instruction, H observes a projec-
tion σ|obs of machine state σ. Here, σ|obs

.
= (σ.mem¬epc), and

σ|H
.
= (σ.mem¬enc).

Composing enclave penc with active adversary H.
To construct penc−H, we transform each penc statement l :

s to:

havoc mem¬epc; l : s (4)

Figure 3 shows a sample transformation from penc to penc−H.
Similar to our prior attempt with P, we prove that it is sound
to replace G with H while reasoning about enclave execution.

Theorem 1. Given an enclave program penc, let penc−G be
the composition of penc and G via the transformation in (2)
and penc−H be the composition of penc and H via the trans-
formation in (4). Then,

∀σ ∈ Σ. ∀t1 ∈ Σ∗. 〈penc−G , σ〉 ⇓ t1 ⇒
∃t2 ∈ Σ∗. 〈penc−H, σ〉 ⇓ t2 ∧ ∀i. t1|enc[i] = t2|enc[i]

Validity of this theorem implies that we can replace G with
H while proving any safety property or k-safety hyperproperty
of enclave behaviour [12]. We prove theorem 1 with the use
of lemma 1 and lemma 2 stated below.



The transformation in (2) composed penc with G by in-
strumenting an unbounded number of adversary operations
adv1; . . . ; advk before each statement in penc. Now, let us fur-
ther instrument havoc mem¬epc after each advi ∈ {adv1; . . . ; advk}
— this is sound because a havoc on mem¬epc does not restrict
the allowed values of mem¬epc. The resulting instrumentation
for each statement l : s is:

adv1; havoc mem¬epc; . . . ; advk; havoc mem¬epc; l : s (5)

Lemma 1 proves that the effect of advi ∈ {adv1; . . . ; advk}
on penc can be simulated by a sequence of havocs to mem¬epc.
In order to define lemma 1, we introduce the following trans-
formation on each statement l : s of penc:

havoc mem¬epc; . . . ; havoc mem¬epc; l : s (6)

Lemma 1. Given an enclave program penc, let penc−G∗ be
the composition of penc and adversary via the transformation
in (5) and penc−H∗ be the composition of penc and adversary
via the transformation in (6). Then,

∀σ ∈ Σ. ∀t1 ∈ Σ∗. 〈penc−G∗, σ〉 ⇓ t1 ⇒
∃t2 ∈ Σ∗. 〈penc−H∗, σ〉 ⇓ t2 ∧ ∀i. t1|enc[i] = t2|enc[i]

Proof : The intuition behind this proof is that the other ad-
versarial transitions do not affect penc in any way that is not
simulated by havoc mem¬epc. We prove this lemma by induc-
tion in the Boogie verifier [3]. This property is a predicate
over a pair of traces, making it a 2-safety hyperproperty [12].
A counter-example to this property is a pair of traces ti, tj
where G has caused ti to diverge from tj . We rewrite this as
a 2-safety property and prove it via 1-step induction over the
length of the trace, as follows. For any pair of states (σi,σj)
that is indistinguishable to the enclave, we prove that after
one transition, the new pair of states (σ′i,σ

′
j) is also indistin-

guishable. Here, (σi, σ
′
i) ∈ R(si) and (σj , σ

′
j) ∈ R(sj), where

si is executed by penc−G∗ and sj is executed by penc−H∗. The
state predicate Init represents an enclave state after invoking
einit in the prescribed initialization sequence in (1).

∀σi, σj .Init(σi) ∧ Init(σj) ⇒ σi|enc = σj |enc (7)

∀σi, σj , σ′i, σ′j , si, sj .

σi|enc = σj |enc ∧ (σi, σ
′
i) ∈ R(si) ∧ (σj , σ

′
j) ∈ R(sj) ∧ p(si, sj)

⇒ σ′i|enc = σ′j |enc (8)

where

p(si, sj)
.
=


si ∈ {egetkey, ereport, eexit, load, store} ∧ sj = si
si = s; havoc mem¬epc ∧ sj = havoc mem¬epc

where s ∈ {havoc mem¬epc, . . . , interrupt, call sgx}

Lemma 2. A sequential composition of unbounded num-
ber of havoc mem¬epc statements can be simulated by a single
havoc mem¬epc statement.

Combining lemma 1 and lemma 2, we prove that the ef-
fect of adv1; havoc mem¬epc; . . . ; advk; havoc mem¬epc (or adv1;
adv2;. . . ; advn) on enclave’s execution can be simulated by
havoc mem¬epc. By theorem 1, it is sound to prove any safety
(or k-safety) property on penc−H because penc−H allows all
traces allowed by penc−G . The benefits of composing with
H are (1) penc−H is bounded in size, which allows using any
off-the-shelf sequential program verifier to prove safety (or k-
safety) properties of enclave executions, and (2) H gives a
convenient mental model of adversary’s effects on enclave ex-
ecution. In this paper, we focus on proving confidentiality.

6. FORMALIZING CONFIDENTIALITY
Moat’s definition of confidentiality is inspired by standard

non-interference definition [21], but adapted to the instruction-
level modeling of the enclave programs. Confidentiality can
be trivially achieved with the definition that H cannot dis-
tinguish between penc and an enclave that executes skip in
each step. However, such definition prevents penc from writ-
ing to mem¬epc, which it must in order to return outputs or
send messages to remote parties. To that end, we weaken this
definition to allow for writes to mem¬epc, but constraining the
values to be independent of the secrets. An input to Moat is a
policy that defines Secrets = {(l, v) | l ∈ L, v ∈ Vars}, where
a tuple (l, v) denotes that variable v holds a secret value at
program location l. In practice, since secrets typically oc-
cupy several bytes in memory, v is a range of addresses in the
enclave heap. We define the following transformation from
penc−H to penc−H−sec for formalizing confidentiality. For each
(l, v) ∈ Secrets, we transform the statement l : s to:

l : s; havoc v; (9)

havoc v assigns an unconstrained symbolic value to variable v.
With this transformation, we define confidentiality as follows:

Definition 4. Confidentiality For any pair of traces of
penc−H−sec that potentially differ in the values of the Secret
variables, if H’s operations along the two traces are equiva-
lent, then H’s observations along the two traces must also be
equivalent.

∀σ ∈ Σ, t1, t2 ∈ Σ∗.(〈penc−H−sec, σ〉 ⇓ t1 ∧ 〈penc−H−sec, σ〉 ⇓ t2 ∧
∀i.t1|H[i] = t2|H[i]) ⇒ (∀i.t1|obs[i] = t2|obs[i])

(10)

The havoc on Secrets cause the secret variables to take
potentially differing symbolic values in t1 and t2. However,
property (10) requires t1|obs and t2|obs to be equivalent, which
is achieved only if secrets do not leak to H-observable state.

While closer to the desired definition, it still prevents penc

from communicating declassified outputs that depend on se-
crets. For instance, recall that the OTP enclave outputs the
encrypted secret to be stored to disk. In this case, since differ-
ent values of secret produce different values of ciphertext, penc

violates property (10). The policy defines Declassified =
{(l, v) | l ∈ L, v ∈ Vars}, where a tuple (l, v) denotes that
variable v at location l contains a declassified value. We can
safely eliminate declassified outputs from information leakage
checking as the protocol verifier has already proven them to
be safe outputs. In practice, since outputs typically occupy
several bytes in memory, v is a range of addresses in the en-
clave heap. When declassification is necessary, we use the
following property for checking confidentiality.

Definition 5. Confidentiality with Declassification
For any pair of traces of penc−H−sec that potentially differ
in the values of the Secret variables, if H’s operations along
the two traces are equivalent, then H’s observations (ignoring
Declassified outputs) along the two traces must also be equiv-
alent.

∀σ ∈ Σ, t1, t2 ∈ Σ∗.(〈penc−H−sec, σ〉 ⇓ t1 ∧ 〈penc−H−sec, σ〉 ⇓ t2 ∧
∀i.t1|H[i] = t2|H[i]) ⇒
∀i, j. ¬epc(j) ⇒ ((i, mem[j]) ∈ Declassified

∨ t1|obs[i].mem[j] = t2|obs[i].mem[j]) (11)

7. PROVING CONFIDENTIALITY



Our goal is to automatically check if penc−H satisfies con-
fidentiality (property 11), which would ensure safety against
application attacks. Since confidentiality is a 2-safety hyper-
property (property over pairs of traces), we cannot use black
box program verification techniques, which are tailored to-
wards safety properties. We cannot use dynamic techniques
such as reference monitors for that reason. To that end,
we create a security type system in which type safety im-
plies that penc−H satisfies confidentiality. We avoid a self-
composition approach because of complications in encoding
equivalence assumptions over adversary operations in the two
traces of penc−H−sec (property 11). As is standard in many
type-based approaches [26, 22] for checking confidentiality,
the typing rules prevent programs with explicit and implicit
information leaks. Explicit leaks occur via assignments of se-
cret values to H-observable state i.e. σ|obs. For instance, the
program mem := store(mem, y, x) is ill-typed if x’s value de-
pends on a secret and enc(y) is false i.e. it writes a secret to
non-enclave memory. An implicit leak occurs when a condi-
tional statement has a secret-dependent guard, but updates
H-visible state in either branch. For instance, the program
if (x == 42) {mem := store(mem, y, 1)} else {skip} is ill-
typed if x’s value depends on a secret and enc(y) is false. In
both examples above, H learns the secret value x by read-
ing mem at address y. In addition to the store instruction,
explicit and implicit leaks may also be caused by unsafe use
of SGX instructions. For instance, egetkey returns a secret
sealing key, which must not be leaked from the enclave. Sim-
ilarly, ereport generates a signed report containing public
values (e.g. measurement) and potentially secret values (en-
clave code may include 64 bytes of data, which may be secret).
Our type system models these details of SGX accurately, and
accepts penc−H only if it has no implicit or explicit leaks.

A security type is either > (secret) or ⊥ (public). At
each program label, each memory location and CPU regis-
ter has a security type based on the x86+SGX instructions
executed until that label. The security types are needed at
each label because variables (especially regs) may alternate
between holding secret and public values. As explained later
in this section, Moat needs the security types in order to decide
whether a store instruction causes implicit or explicit leaks.
penc−H accompanies a policy containing Secrets = {(l, v)}
and Declassified = {(l, v)}, where a tuple (l, v) denotes that
variable v at program location l contains a secret and declas-
sified value, respectively. However, there are no other type
declarations; therefore, Moat implements a type inference al-
gorithm based on computing refinement type constraints and
checking their validity using a theorem prover. In contrast,
type checking without inference would require the program-
mer to painstakingly provide security types for each memory
location and CPU register.

Moat’s type inference algorithm computes logical constraints
under which an expression or statement takes a security type.
A typing judgment ` e : τ ⇒ ψ means that the expression e
has security type τ whenever the constraint ψ is satisfied. An
expression of the form op(v1, . . . , vn) (where op is a relation
or function) has type τ if all variables {v1, . . . , vn} have type
τ or lower. For instance, an expression may have type ⊥ iff
its value is independent of Secrets.

For a statement s to have type τ , every assignment in s must
update a state variable whose security class is τ or higher. We
write this typing judgment as [τ ] ` s ⇒ 〈ψ,F〉, where ψ is a
SMT formula and F is a set of SMT formulae. Each satisfiable

interpretation of ψ corresponds to a feasible execution of s. F
contains a SMT formula for each store instruction in s, such
that the formula is valid iff the store does not leak secrets.
We present our typing rules in Figure 7, which assume that
penc−H is first converted to single static assignment form. s
has type τ if we derive [τ ] ` s ⇒ 〈ψ,F〉 using the typing
rules, and prove that all formulae in F are valid. If s has
type >, then s does not update H-visible state, and thus
cannot contain information leaks. Having type > also allows
s to execute in a context where a secret value is implicitly
known through the guard of a conditional statement. On the
other hand, type ⊥ implies that s either does not update H-
observable state or the update is independent of Secrets.

By Theorem 1, penc−H models all potential runtime be-
haviours of penc in the presence of an active adversary (G or
H). For that reason, Moat feeds penc−H to the type checking
algorithm. We now explain some of our typing rules from Fig-
ure 7. For each variable v ∈ Vars within penc−H, our typing
rules introduce a ghost variable Cv that is true iff v has se-
curity type >. For a register variable v (e.g. Crax), Cv is a
boolean; for an array variable v, Cv (e.g. Cmem) is an array
and Cv[i] denotes the security type for each index i. exp1 rule
allows inferring the type of any expression e as >. exp2 rule
allows inferring an expression type e as ⊥ if we derive Cv to be
false for all variables v in the expression e. storeL rule marks
the stored value as secret if either the input value or address is
secret. ereportL rule classifies the memory locations updated
by ereport according to the semantics of Intel SGX. ereport
takes 64 bytes of data at address in rcx, and copies them
to memory starting at rdx + 320, and the rest of the report
consists of public data such as the MAC, measurement, etc.
Hence, Cmem retains the secrecy level for the 64 bytes of data,
and assumes the secrecy level of Crdx (rdx determines report’s
location) for the public data. egetkey stores 16 bytes of the
sealing key at address rcx, hence the egetkey rule marks those
16 bytes in Cmem as secret. eexit jumps back to H code with-
out clearing any of the general purpose regs. Hence, the eexit
rule asserts that those regs hold public values. We prove the
following type soundness theorem in a companion report [1].

Theorem 2. For any penc−H such that [τ ] ` penc−H ⇒
(ψ,F) is derivable (where τ is either > or ⊥) and all formulae
in F are valid, penc−H satisfies property 11.

Moat implements this type system by replacing each state-
ment s in penc−H by I(s) using the instrumentation rules
in Figure 8. Observe that we introduce Cpc to track whether
confidential information is implicitly known through the pro-
gram counter. If a conditional statement’s guard depends on
a secret value, then we set Cpc to true within the then and else
branches. Moat invokes I(penc−H) and applies the instrumen-
tation rules in Figure 8 recursively. Figure 4 demonstrates
an example of instrumenting penc−H. Moat then feeds the
instrumented program I(penc−H) to an off-the-shelf program
verifier, which proves validity all assertions or finds a counter-
example. Our implementation uses the Boogie [3] program
verifier, which receives I(penc−H) and generates verification
conditions (using Weakest Precondition calculus [4]) in the
SMT format. Boogie uses the Z3 [13] theorem prover (SMT
solver) to prove the verification conditions. An advantage
of using SMT solving is that a typing error is explained us-
ing counter-example execution, demonstrating the informa-
tion leak and exploit. We find this helpful during debugging.

In summary, Moat’s type system is inspired by the type-
based approach for information flow checking by Volpano et



(exp1 )
` e : > ⇒ true

[>] ` s⇒ 〈ψ,A〉
(coercion)

[⊥] ` s⇒ 〈ψ,A〉

(assume)
[τ ] ` assume φ⇒ 〈φ, {∅}〉

(exp2 )
` e : ⊥ ⇒

∧
v∈V ars(e)

¬Cv

(skip)
[>] ` skip⇒ 〈true, {∅}〉

(assert)
[τ ] ` assert φ⇒ 〈φ, {φ}〉

(scalar)
[τ ] ` x′ := e⇒ 〈(x′ = e) ∧ (Cx′ ↔

∨
v∈V ars(e)

Cv), {∅}〉

(load)
[τ ] ` x′ := load(mem, e)⇒
〈(x′ = load(mem, e)) ∧ (Cx′ ↔ Cmem[e] ∨

∨
v∈V ars(e)

Cv), {∅}〉

(storeH )
[>] ` mem′ := store(mem, y, e)⇒
〈mem′ = store(mem, y, e) ∧ Cmem′ = Cmem[y := true],
{enc(y)}〉

` e : ⊥ ⇒ ψ1 ` y : ⊥ ⇒ ψ2
(storeL)

[⊥] ` mem′ := store(mem, y, e)⇒
〈mem′ = store(mem, y, e) ∧ Cmem′ = Cmem[y := ψ1 ∧ ψ2)],
{¬enc(y)→ (ψ1 ∧ ψ2)}〉

(ereportL)
[⊥] ` mem′ := ereport(mem, rbx, rcx, rdx)⇒
〈mem′ = ereport(mem, rbx, rcx, rdx) ∧
∀i. (rdx ≤ i < rdx + 320)→ Cmem′ [i]↔ Crdx

∧ (rdx + 320 ≤ i < rdx + 384)→
Cmem′ [i]↔ (Crcx ∨ Crdx ∨ Cmem[rcx + i− rdx− 320])

∧ (rdx + 384 ≤ i < rdx + 432)→ Cmem′ [i]↔ Crdx

∧ ¬(rdx ≤ i < rdx + 432)→ Cmem′ [i]↔ Cmem[i],
{∅}〉

(ereportH )
[>] ` mem′ := ereport(mem, rbx, rcx, rdx)⇒
〈mem′ = ereport(mem, rbx, rcx, rdx) ∧
∀i. (rdx ≤ i < rdx + 320)→ Cmem′ [i]
∧ (rdx + 320 ≤ i < rdx + 384)→ Cmem′ [i]
∧ (rdx + 384 ≤ i < rdx + 432)→ Cmem′ [i]
∧ ¬(rdx ≤ i < rdx + 432)→ Cmem′ [i]↔ Cmem[i],
{∅}〉

(egetkey)
[τ ] ` mem′ := egetkey(mem, rbx, rcx)⇒
〈mem′ = egetkey(mem, rbx, rcx) ∧
∀i. (rcx ≤ i < rcx + 16)→ Cmem′ [i]
∧ ¬(rcx ≤ i < rcx + 16)→ Cmem′ [i]↔ Cmem[i],
{∅}〉

(eexit)
[τ ] ` mem′, regs′ := eexit(mem)⇒
〈(mem′, regs′) = eexit(mem), {∀r ∈ regs. ¬Cr}〉

[τ ] ` s1 ⇒ 〈ψ1,F1〉 [τ ] ` s2 ⇒ 〈ψ2,F2〉
(seq)

[τ ] ` s1; s2 ⇒ 〈ψ1 ∧ ψ2,F1 ∪ {ψ1 → f2 | f2 ∈ F2}〉

` e : τ ⇒ ψ [τ ] ` s1 ⇒ 〈ψ1,F1〉 [τ ] ` s2 ⇒ 〈ψ2,F2〉
(ite)

[τ ] ` if (e) {s1} else {s2} ⇒
〈(e→ ψ1) ∧ (¬e→ ψ2),
{ψ} ∪ {e→ f1 | f1 ∈ F1} ∪ {¬e→ f2 | f2 ∈ F2}〉

Figure 7: Typing Rules for penc−H

Statement s Instrumented Statement I(s)

assert φ assert φ
assume φ assume φ
skip skip
x := e Cx := Cpc ∨

∨
v∈V ars(e) Cv; x := e

x := load(mem, e) Cx := Cpc ∨ Cmem[e] ∨
∨

v∈V ars(e) Cv; x := load(mem, e)

mem := assert Cpc → enc(y);
store(mem, y, e) assert (¬Cpc ∧ ¬enc(y))→ (

∧
v∈V ars(e)∪V ars(y) ¬Cv));

Cmem[y] := Cpc ∨
∨

v∈V ars(e)∪V ars(y) Cv;

mem := store(mem, y, e)

mem := Cold
mem := Cmem; havoc Cmem;

ereport assume ∀i. (rdx ≤ i < rdx + 320)→ Cmem[i] = Cpc ∨ Crdx;
(mem, rbx, rcx, rdx) assume ∀i. (rdx + 320 ≤ i < rdx + 384)→

Cmem[i] = (Cpc ∨ Crcx ∨ Crdx ∨ Cold
mem[rcx + i− rdx− 320]);

assume ∀i. (rdx + 384 ≤ i < rdx + 432)→
Cmem[i] = Cpc ∨ Crdx;

assume ∀i. ¬(rdx ≤ i < rdx + 432)→ Cmem[i] = Cold
mem[i];

mem := ereport(mem, rbx, rcx, rdx)

mem := Cold
mem := Cmem; havoc Cmem;

egetkey assume ∀i. (rcx ≤ i < rcx + 16)→ Cmem[i];

(mem, rbx, rcx) assume ∀i. ¬(rcx ≤ i < rcx + 16)→ Cmem[i] = Cold
mem[i];

mem := egetkey(mem, rbx, rcx)
mem, regs := assert ∀r ∈ regs. ¬Cr;
eexit(mem, rbx) mem, regs := eexit(mem)
s1; s2 I(s1); I(s2)

if(e){s1}else{s2} Cin
pc := Cpc;

Cpc := Cpc ∨
∨

v∈V ars(e) Cv;

if (e) {I(s1)} else {I(s2)};
Cpc := Cin

pc

Figure 8: Instrumentation rules for penc−H

al. [26]. The core modifications to their system are as follows:

• Our type system includes rules for SGX instructions ereport,
egetkey, and eexit. The rules precisely model the mem-
ory locations written by these these instructions, and whether
the produced data is public or confidential.

• Our type system is flow-sensitive, path-sensitive, and avoids
alias analysis because we instrument typing assertions within
the program. A program is well-typed if the typing as-
sertions are valid in all feasible executions. We ensure
soundness by using a sound program verifier for exploring
all executions of the instrumented penc−H.

• Our type system includes rules updating unbounded array
variables (e.g. mem), without requiring that all indices in
the array take the same security type.

8. EVALUATION AND EXPERIENCE
Moat’s implementation comprises (1) translation from x86

+ SGX program to penc using BAP, (2) transformation to
penc−H using instrumentation in (4), (3) transformation to
I(penc−H) using Figure 8, and (4) invoking Boogie/Z3 The-
orem Prover to prove validity of all assertions in I(penc−H)
(modulo declassifications from the protocol verification step).
Although the enclave code contains calls to the cryptographic
library (we use cryptopp), penc abstracts them away as unin-
terpreted functions i.e. we do not verify the cryptographic im-
plementation. Having said that, this was merely a pragmatic
choice, and not a fundamental weakness of our approach. We
now describe some case studies which we verified using Moat
and ProVerif in tandem. We upload these case studies at [1],
and summarize the results in Figure 9.

We use the following standard crytpographic notation and
assumptions. m1| . . . |mn denotes tagged concatenation of n



messages. We use a keyed-hash message authentication func-
tion MACk(text) and hash function H(text), both of which are
assumed to be collision-resistant. For asymmetric cryptogra-
phy, K−1

e andKe are principal e’s private and public signature
keys, where we assume that Ke is long-lived and distributed
within certificates signed by a root of trust authority. Digital
signature using a key k is written as Sigk(text); we assume
unforgeability under chosen message attacks. Intel provisions
each SGX processor with a unique private key K−1

SGX that is
available to a special quoting enclave. In combination with
this quoting enclave, an enclave can invoke ereport to pro-
duce quotes, which is essentially a signature (using the SGX
private key) of the data produced by the enclave and its mea-
surement. We write a quote produced on behalf of enclave e
as Quotee(text), which is equivalent to Sig

K−1
SGX

(H(text) |Me)

— measurement of enclave e is written as Me. N is used to
denote nonce. Finally, we write Enck(text) for the encryption
of text, for which we assume indistinguishability under chosen
plaintext attack. We also use AEnck(text) for authenticated
encryption, for which we assume indistinguishability under
chosen plaintext attack and integrity of ciphertext.

One-time Password Generator.
The abstract model of the OTP secret provisiong protocol

(from § 2), where client runs in a SGX enclave, bank is an
uncompromised service, and disk is under adversary control:

bank → client : N

client→ bank : N | gc | Quoteclient(N | g
c
)

bank → client : N | gb | Sig
K
−1
bank

(N | gb) | AEnc
H(gbc)

(secret)

client→ disk : AEncKseal
(secret)

First, we use Moat to prove that gbc and Kseal are not leaked
to H. Next, ProVerif uses secrecy assumption on gbc and
Kseal to prove that secret is not leaked to the network (or
disk) adversary. This proof allows Moat to declassify client’s
output to disk while proving property 11. Moat successfully
proves that the client enclave satisfies confidentiality.

Query Processing over Encrypted Database.
In this case study, we evaluate Moat on a stand-alone ap-

plication, removing the possibility of protocol attacks and
therefore the need for any protocol verification. We build
a database table containing two columns: name which is de-
terministically encrypted, and amount which is nondetermin-
istically encrypted. Alice wishes to select all rows with name
“Alice” and sum all the amounts. We partition this compu-
tation into two parts: unprivileged computation (which se-
lects the rows) and enclave computation (which computes the
sum).

Notary Service.
We implement a notary service introduced by [16] but adapted

to run on SGX. The notary enclave assigns logical timestamps
to documents, giving them a total ordering. The notary en-
clave responds to (1) a connect message for obtaining the at-
testation report, and (2) a notarize message for obtaining a
signature over the document hash and the current counter.

user → notary : connect | N
notary → user : Quotenotary(N)

user → notary : notarize | H(text)

notary → user : counter | H(text) | Sig
K
−1
notary

(counter | H(text))

The only secret here is the private signature key K−1
notary.

First, we use Moat to prove that K−1
notary is not leaked to H.

This proof fails because the output of Sig (in the response to
notarize message) depends on the secret signature key — Moat
is unaware of cryptographic properties of Sig. ProVerif proves
that this message does not leak K−1

notary to a network adver-
sary, which allows Moat to declassify this message and prove
that the notary enclave satisfies the confidentiality property.

End-to-End Encrypted Instant Messaging.
We implement the off-the-record messaging protocol [10],

which provides perfect forward secrecy and repudiability for
messages exchanged between principals A and B. We adapt
this protocol to run on SGX, thus providing an additional
guarantee that an infrastructure attack cannot compromise
the Diffie-Hellman private keys. We only present a synchronous
form of communication here for simplicity.

A→ B : g
a1 | Sig

K
−1
A

(g
a1 ) | QuoteA(Sig

K
−1
A

(g
a1 ))

B → A : g
b1 | Sig

K
−1
B

(g
b1 ) | QuoteB(Sig

K
−1
B

(g
b1 ))

A→ B : g
a2 | Enc

H(ga1b1 )
(m1) | MAC

H(H(ga1b1 ))
(g

a2 | Enc
H(ga1b1 )

(m1))

B → A : g
b2 | Enc

H(ga2b1 )
(m2) | MAC

H(H(ga2b1 ))
(g

b2 | Enc
H(ga2b1 )

(m2))

A→ B : g
a3 | Enc

H(ga2b2 )
(m3) | MAC

H(H(ga2b2 ))
(g

a3 | Enc
H(ga2b2 )

(m3))

The OTR protocol only needs a digital signature on the ini-
tial Diffie-Hellman exchange — future exchanges use MACs
to authenticate a new key using an older, known-authentic
key. For the same reason, we only append a SGX quote to
the initial key exchange. First, we use Moat to prove that the
Diffie-Hellman secrets computed by penc (i.e. ga1b1 , ga2b1 ,
ga2b2) are not leaked to H. Next, ProVerif uses this secrey
assumption to prove that messages m1, m2, and m3 are not
leaked to the network adversary. The ProVerif proofs allows
Moat to declassify all messages following the initial key ex-
change, and successfully prove confidentiality.

Benchmark x86+SGX BoogiePL Moat Policy
instructions statements proof Annotations

OTP 188 1774 5.8 sec 4
Notary 147 1222 3.2 sec 2

OTR IM 251 2191 5.6 sec 7
Query 575 4727 61 sec 9

Figure 9: Summary of experimental results. Columns
are (1) instructions analyzed by Moat not including
crypto library, (2) size of I(penc−H), (3) proof time,
(4) number of secret and declassifed annotations

9. RELATED WORK
Our work relates three somewhat distinct areas in security.
Secure Systems on Trusted Hardware. In recent years,
there has been growing interest in building secure systems on
top of trusted hardware. Sancus [23] is a security architecture
for networked embedded devices that seeks to provide secu-
rity guarantees without trusting any infrastructural software,
only relying on trusted hardware. Intel SGX [17] seeks to
provide similar guarantees via extension to the x86 instruc-
tion set. There are some recent efforts on using SGX for
trusted computation. Haven [7] is a system that exploits Intel
SGX for shielded execution of unmodified legacy applications.
VC3 [25] uses SGX to run map-reduce computations while



protecting data and code from an active adversary. However,
VC3’s confidentiality guarantee is based on the assumption
that enclave code does not leak secrets, and we can use Moat
to verify this assumption.
Verifying Information Flow on Programs. Checking
implementation code for safety is also a well studied prob-
lem. Type systems proposed by Sabelfeld et al. [24], Barthe
et al. [6], and Volpano et al. [26] enable the programmer to
annotate variables that hold secret values, and ensure that
these values do not leak. However, these works assume that
the infrastructure (OS/VMM, etc.) on which the code runs
is safe, which is unrealistic due to malware and other attacks
(e.g. Heartbleed [14]). Our approach builds upon this body
of work, showing how it can be adapted to the setting where
programs run on an adversarial OS/VMM, and instead rely
on trusted SGX hardware for information-flow security.
Cryptographic Protocol Verification. There is a vast
literature on cryptographic protocol verification (e.g. [8, 9]).
Our work builds on top of cryptographic protocol verifiers
showing how to use them to reason about protocol attacks and
to generate annotations for more precise verification of enclave
programs. In the future, it may also be possible to connect
our work to the work on correct-by-construction generation
of cryptographic protocol implementation [15].

10. CONCLUSION
This paper introduces a technique for verifying information

flow properties of SGX enclave programs. Moat is a first step
towards building an end-to-end verifier. Our current eval-
uation uses separate models for Moat and Proverif. In fu-
ture work, we plan to design a single high-level language from
which we can generate a penc, a binary, and a protocol model.
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APPENDIX
A. PROOF OF TYPE SOUNDNESS THEOREM IN MOAT

Theorem: Suppose

1. [τ ] ` penc−H ⇒ (ψ,A)

2. 〈penc−H−sec, σ〉 ⇓ t1
3. 〈penc−H−sec, σ〉 ⇓ t2
4. ∀i.t1|H[i] = t2|H[i]

Then ∀i.t1|obs[i] = t2|obs[i].
Proof :

We prove this by induction on the structure of penc. Furthermore, instead of (∀i. t1|obs[i] = t2|obs[i]), we use the following two
properties 12 and 13 which (in conjunction) imply (∀i. t1|obs[i] = t2|obs[i]). Assuming the 4 conditions in the theorem above, we
prove that each typing rule preserves both properties 12 and 13.

∀i, j. ((¬t1[i].Cmem[j] ∧ ¬t2[i].Cmem[j])⇒ (t1[i].mem[j] = t2[i].mem[j]))

∧ ∀i, r ∈ regs. ((¬t1[i].Cr ∧ ¬t2[i].Cr)⇒ (t1[i].r = t2[i].r)) (12)

∀i, j. ¬enc(j)⇒ (¬t1[i].Cmem[j] ∧ ¬t2[i].Cmem[j]) (13)

(scalar).
A scalar assignment performs one transition step, hence traces t1 and t2 contain two states each. t1 = [σ1, σ

′
1], where

(σ1, σ
′
1) ∈ R(x′ := e). Similarly, t2 = [σ2, σ

′
2], where (σ2, σ

′
2) ∈ R(x′ := e). Scalar assignments only update regs, therefore

σ1.mem = σ′1.mem and σ2.mem = σ′2.mem. For the same reason, σ1.Cmem = σ′1.Cmem and σ2.Cmem = σ′2.Cmem. By induction hypothesis,
we know ∀j. (¬σ1.Cmem[j] ∧ ¬σ2.Cmem[j]) ⇒ (σ1.mem[j] = σ2.mem[j]). Propagating these equalties, we derive ∀j. (¬σ′1.Cmem[j] ∧
¬σ′2.Cmem[j])⇒ (σ′1.mem[j] = σ′2.mem[j]). Regarding update to regs, we have two cases:

1. ` e : ⊥ in both σ1 and σ2 i.e.
∧

v∈V ars(e) ¬σ1.Cv ∧
∧

v∈V ars(e) ¬σ2.Cv.

In this case, property 12 dictates that e evaluates to the same value in states σ1 and σ2. Therefore, the updated register x′

has the same value in both states σ′1 and σ′2. We derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧ ¬t2[i].Cr)⇒ (t1[i].r = t2[i].r).

2. ` e : > in σ1 or σ2 or both i.e.
∨

v∈V ars(e) σ1.Cv ∨
∨

v∈V ars(e) σ2.Cv.

In this case, our type system sets Cx′ to true in either σ′1 and σ′2 or both. Therefore, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧
¬t2[i].Cr)⇒ (t1[i].r = t2[i].r).

In both cases, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧¬t2[i].Cr)⇒ (t1[i].r = t2[i].r). Conjuncting with our earlier derivation on mem,
we show that scalar preserves property 12.

Now we prove that scalar also preserves property 13. By induction hypothesis, we know ∀j. ¬enc(j) ⇒ (¬σ1.Cmem[j] ∧
¬σ2.Cmem[j]). Since scalar assignments do not update mem, Cmem also retains its value. Therefore, we prove ∀j. ¬enc(j) ⇒
(¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j]). Property 13 is preserved by scalar.

(load).
A load performs one transition step, hence traces t1 and t2 contain two states each. t1 = [σ1, σ

′
1], where (σ1, σ

′
1) ∈

R(x′ := load(mem, e)). Similarly, t2 = [σ2, σ
′
2], where (σ2, σ

′
2) ∈ R(x′ := load(mem, e)). Here x′ is a scalar register variable

i.e. x′ ∈ regs. Since load can only update regs, we derive σ1.mem = σ′1.mem and σ2.mem = σ′2.mem. For the same reason, σ1.Cmem =
σ′1.Cmem and σ2.Cmem = σ′2.Cmem. By induction hypothesis, we know ∀j. (¬σ1.Cmem[j] ∧ ¬σ2.Cmem[j]) ⇒ (σ1.mem[j] = σ2.mem[j]).
Propagating these equalties, we derive ∀j. (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j]) ⇒ (σ′1.mem[j] = σ′2.mem[j]). Regarding update to regs, we
have two cases:

1. ` e : ⊥ in both σ1 and σ2 i.e.
∧

v∈V ars(e) ¬σ1.Cv ∧
∧

v∈V ars(e) ¬σ2.Cv.
In this case, property 12 dictates that e evaluates to the same value in states σ1 and σ2 i.e. load happens from the same
address. We have two nested cases:

(a) Cmem[e] is false in both σ1 and σ2

Therefore, register x′ is updated to the same value in both states σ′1 and σ′2. We derive ∀r ∈ regs. ((¬σ′1.Cr∧¬σ′2.Cr)⇒
(σ′1.r = σ′2.r).

(b) Cmem[e] is true in either σ1 or σ2 or both
We appropriately set Cx′ to true, making making ∀r ∈ regs. ((¬σ′1.Cr ∧ ¬σ′2.Cr)⇒ (σ′1.r = σ′2.r) trivially true.

2. ` e : > in σ1 or σ2 or both i.e.
∨

v∈V ars(e) σ1.Cv ∨
∨

v∈V ars(e) σ2.Cv.

In this case, our type system sets Cx′ to true in either σ′1 and σ′2 or both. Therefore, we trivially derive ∀i, r ∈ regs. ((¬t1[i].Cr∧
¬t2[i].Cr)⇒ (t1[i].r = t2[i].r).

In all cases, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧ ¬t2[i].Cr) ⇒ (t1[i].r = t2[i].r). Conjuncting with our earlier derivation on mem,
we show that scalar preserves property 12.



Now we prove that load also preserves property 13. By induction hypothesis, we know ∀j. ¬enc(j)⇒ (¬σ1.Cmem[j]∧¬σ2.Cmem[j]).
Since load does not update mem, Cmem also retains its value. Therefore, we prove ∀j. ¬enc(j) ⇒ (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j]).
Property 13 is preserved by load.

(storeH).
A map assignment performs one transition step, hence traces t1 and t2 contain two states each. t1 = [σ1, σ

′
1], where (σ1, σ

′
1) ∈

R(mem′ := store(mem, y, e)). Similarly, t2 = [σ2, σ
′
2], where (σ2, σ

′
2) ∈ R(mem′ := store(mem, y, e)). The storeH rule assigns

σ′1.Cmem[σ1.y] and σ′2.Cmem[σ2.y] to true. This allows us to derive ∀j. (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j]) ⇒ (σ′1.mem[j] = σ′2.mem[j]).
Furthermore, mem′ := store(mem, y, e) doesn’t affect regs, allowing us to derive property 12.

Next, we prove that storeH also preserves property 13. Observe that storeH generates an assertion enc(y). Therefore, Cmem

retains its value for any location y for which ¬enc(y) holds, allowing us to derive property 13. In other words, if this enc(y) is
valid, then property 13 holds trivially in all executions.

(storeL).
A map assignment performs one transition step, hence traces t1 and t2 contain two states each. t1 = [σ1, σ

′
1], where (σ1, σ

′
1) ∈

R(mem′ := store(mem, y, e)). Similarly, t2 = [σ2, σ
′
2], where (σ2, σ

′
2) ∈ R(mem′ := store(mem, y, e)). Furthermore, note that storeL

generates assert ¬enc(y)→ (ψ1 ∧ ψ2).
First, we prove that storeL preserves property 12. Since registers are not updated, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧
¬t2[i].Cr) ⇒ (t1[i].r = t2[i].r). By induction hypothesis, we know ∀j. (¬σ1.Cmem[j] ∧ ¬σ2.Cmem[j]) ⇒ (σ1.mem[j] = σ2.mem[j]). We
have three cases:

1. enc(y)

(a) ` y : ⊥ in both σ1 and σ2, and ` e : ⊥ in both σ1 and σ2

i.e.
∧

v∈V ars(e)∪V ars(y) ¬σ1.Cv ∧
∧

v∈V ars(e)∪V ars(y) ¬σ2.Cv.
By induction hypothesis, e and y evaluate to the same value in both σ1 and σ2; hence, the assignment updates mem and
Cmem at the same address with the same value in both σ1 and σ2. Therefore, we derive ∀j. (¬σ′1.Cmem[j]∧¬σ′2.Cmem[j])⇒
(σ′1.mem[j] = σ′2.mem[j]).

(b) ` e : > in σ1 or σ2 or both, or ` y : > in σ1 or σ2 or both
i.e.

∨
v∈V ars(e)∪V ars(y) σ1.Cv ∨

∨
v∈V ars(e)∪V ars(y) σ2.Cv.

Since this statement updates σ1.mem at σ1.y and σ2.mem at σ2.y, we update σ1.Cmem[σ1.y] or σ2.Cmem[σ2.y] or both to true.
Therefore, ∀j. (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j])⇒ (σ′1.mem[j] = σ′2.mem[j]).

2. ¬enc(y)
The storeL rule generates an assertion ¬enc(y) →

∧
v∈V ars(e)∪V ars(y) ¬Cv. Since ¬enc(y) holds in this case, this assertion

checks that both the address y and value e have type ⊥. By induction hypothesis, both y and e must evaluate to the same
value in σ1 and σ2. If this assertion is valid, then there does not exist any execution of mem′ := store(mem, y, e) that violates
∀j. (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j])⇒ (σ′1.mem[j] = σ′2.mem[j]).

Combining all the cases, we prove that storeL preserves property 12.
Next, we prove that storeL also preserves property 13. The storeL rule generates assert ¬enc(y)→

∧
v∈V ars(e)∪V ars(y) ¬Cv. If

this statement writes to mem¬enc, then the assertion checks that both the address y and value e have type ⊥. If this assertion is
valid, then there does not exist any execution of mem′ := store(mem, y, e) that violates ∀j. ¬enc(j)⇒ (¬σ′1.Cmem[j]∧¬σ′2.Cmem[j]).
This is because both (σ′1.Cmem[y] and σ′2.Cmem[y]) are set to false. Hence, we prove that storeL also preserves property 13.

(egetkey).
We first try proving property 12. Regarding the update to mem, we have 2 cases:

1. ¬σ1.Crcx and ¬σ2.Crcx:
Although rcx evaluates to the same value in σ1 and σ2 (from induction hypothesis), the egetkey rule marks 16 bytes
starting at σ1.rcx as secret. That is, it sets σ′1.Cmem[σ1.rcx . . . σ1.rcx + 16] and σ′2.Cmem[σ2.rcx . . . σ2.rcx + 16] to true, where
σ1.rcx = σ2.rcx. Therefore, we derive ∀i, j. ((¬t1[i].Cmem[j] ∧ ¬t2[i].Cmem[j])⇒ (t1[i].mem[j] = t2[i].mem[j])).

2. σ1.Crcx or σ2.Crcx:
Although rcx may evaluate to different values in σ1 and σ2, the egetkey rule marks 16 bytes starting at σ1.rcx and 16 bytes
starting at σ2.rcx as secret. That is, it sets σ′1.Cmem[σ1.rcx . . . σ1.rcx + 16] and σ′2.Cmem[σ2.rcx . . . σ2.rcx + 16] to true, where
two address ranges may not be identical. From induction hypothesis, we still derive ∀i, j. ((¬t1[i].Cmem[j] ∧ ¬t2[i].Cmem[j])⇒
(t1[i].mem[j] = t2[i].mem[j])).

Since egetkey does not modify regs, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧ ¬t2[i].Cr) ⇒ (t1[i].r = t2[i].r)). Combining with the
reasoning on mem, we prove that property 12 holds inductively.

For the proof of property 13, recall that SGX prevents the programmer from providing a rcx value that points to mem¬enc
i.e. egetkey is guaranteed to write the key to memenc. This constraint is captured in the axioms defining egetkey in mem′ =
egetkey(mem, rbx, rcx). Therefore, property 13 holds trivially — Cmem is not updated for any location j for which ¬enc(j) holds.

(ereportH).
A map assignment performs one transition step, hence traces t1 and t2 contain two states each. t1 = [σ1, σ

′
1], where

(σ1, σ
′
1) ∈ R(mem′ := ereport(mem, rbx, rcx, rdx)). Similarly, t2 = [σ2, σ

′
2], where (σ2, σ

′
2) ∈ R(mem′ := ereport(mem, rbx, rcx, rdx)).



The ereportH rule assigns σ′1.Cmem[σ1.rdx . . . σ1.rdx + 432] and σ′2.Cmem[σ2.rdx . . . σ2.rdx + 432] to true. This allows us to derive
∀j. (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j]) ⇒ (σ′1.mem[j] = σ′2.mem[j]). Furthermore, the ereport instruction doesn’t affect regs, allowing us
to derive property 12.

For the proof of property 13, recall that SGX prevents the programmer from providing a rdx value that points to mem¬enc
i.e. ereport is guaranteed to write the key to memenc. This constraint is captured in the axioms defining ereport in mem′ =
ereport(mem, rbx, rcx, rdx). Therefore, property 13 holds trivially — Cmem is not updated for any location j for which ¬enc(j)
holds.

(ereportL).
We first try proving property 12. rcx is a pointer to the 64 bytes of data that will be included in the report. rdx is the base

address of the output report. Regarding the update to mem, we have 2 cases:

1. ¬σ1.Crcx and ¬σ2.Crcx and ¬σ1.Crdx and ¬σ2.Crdx:
Since rcx and rdx have the same value in σ1 and σ2 (from induction hypothesis), the same region of memory will be updated
by the instruction. Furthermore, the secrecy level is retained from the input 64-byte region; hence property 12 holds
inductively in this case.

2. σ1.Crcx or σ2.Crcx or σ1.Crdx or σ2.Crdx:
Since rcx or rdx may evaluate to different values in σ1 and σ2, ereportL marks 432 bytes starting at σ1.rdx and 432 bytes
starting at σ2.rdx as secret. Thus, property 12 holds inductively in this case.

For the proof of property 13, recall that SGX prevents the programmer from providing a rdx value that points to mem¬enc
i.e. ereport is guaranteed to write the key to memenc. This constraint is captured in the axioms defining ereport in mem′ =
ereport(mem, rbx, rcx, rdx). Therefore, property 13 holds trivially — Cmem is not updated for any location j for which ¬enc(j)
holds.

(eexit).
eexit affects a TCS page in memenc, but this page is not accessible by enclave code — it is used by hardware to keep track of

security-critical metadata regarding an enclave thread. Furthermore, eexit does not affect regs. This constraint is captured in
the axioms defining eexit in mem′ = eexit(mem). Therefore, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧ ¬t2[i].Cr) ⇒ (t1[i].r = t2[i].r)).
The updated enclave page remains at security level ⊥ because its contents (i.e. the metadata values) are independent of enclave
data, and hence independent of enclave secrets — we prove this using our model of SGX. Type ⊥ implies that the new contents of
this page is equivalent in both σ′1 and σ′2. Therefore, we derive ∀i, j. ((¬t1[i].Cmem[j]∧¬t2[i].Cmem[j])⇒ (t1[i].mem[j] = t2[i].mem[j])).
Combining the two derivations, we derive property 12.

As we mention above, eexit only updates an enclave page in memenc — we prove using our model of SGX that this instruction
does not write to mem¬enc. Therefore, ∀i, j. ¬enc(j)⇒ (¬t1[i].Cmem[j] ∧ ¬t2[i].Cmem[j]) holds trivially, thus deriving property 13.

(ite).
An if-then-else statement is of the form if (e) {st} else {se}. We have 2 cases:

1. [⊥] ` if (e) {st} else {se}
Hence, ` e : ⊥ in σ1 and σ2 i.e.

∧
v∈V ars(e) ¬σ1.Cv ∧

∧
v∈V ars(e) ¬σ2.Cv. In this case, the inductive hypothesis implies that

e evaluates to the same value in states σ1 and σ2 — execution follows the same branch in both states. Using the structural
induction hypothesis on st and se, we prove that (ite) preserves properties 12 and 13.

2. [>] ` if (e) {st} else {se}
Hence, ` e : > in σ1 or σ2 i.e.

∨
v∈V ars(e) σ1.Cv ∨

∨
v∈V ars(e) σ2.Cv. Since e may evaluate to different values in σ1 and σ2,

execution may follow different branches in the two states. For each register r modified by evaluating if (e) {st} else {se}
in σ1 and σ2, the ite rule sets Cr to true in either σ′1 or σ′2. Therefore, we derive ∀i, r ∈ regs. ((¬t1[i].Cr ∧ ¬t2[i].Cr) ⇒
(t1[i].r = t2[i].r). Similarly, for each address j in mem modified by evaluating if (e) {st} else {se} in σ1 and σ2, ite sets
Cmem[j] to true in either σ′1 or σ′2. Therefore, we derive ∀j. ((¬σ′1.Cmem[j]∧¬σ′2.Cmem[j])⇒ (σ′1.mem[j] = σ′2.mem[j])). Combining
the derivations, we prove that property 12 is preserved by ite. Since we must typecheck both st and se in > context, ite
generates assertions checking that writes are not made to mem¬enc. Therefore, we also prove that property 13 is preserved
by ite.

(seq).
A sequential statement is of the form s; s′. t1 = [σ1, σ

′
1, σ
′′
1 ], where (σ1, σ

′
1) ∈ R(s) and (σ′1, σ

′′
1 ) ∈ R(s′). Similarly, t2 =

[σ2, σ
′
2, σ
′′
2 ], where (σ2, σ

′
2) ∈ R(s) and (σ′2, σ

′′
2 ) ∈ R(s′). From structural induction, we derive the following:

∀j. ((¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j])⇒ (σ′1.mem[j] = σ′2.mem[j]))

∧ ∀r ∈ regs. ((¬σ′1.Cr ∧ ¬σ′2.Cr)⇒ (σ′1.r = σ′2.r))

∀j. ((¬σ′′1 .Cmem[j] ∧ ¬σ′′2 .Cmem[j])⇒ (σ′′1 .mem[j] = σ′′2 .mem[j]))

∧ ∀r ∈ regs. ((¬σ′′1 .Cr ∧ ¬σ′′2 .Cr)⇒ (σ′′1 .r = σ′′2 .r))



Similarly, we leverage structural induction to prove the following:.

∀j. ¬enc(j)⇒ (¬σ′1.Cmem[j] ∧ ¬σ′2.Cmem[j]) (14)

∀j. ¬enc(j)⇒ (¬σ′′1 .Cmem[j] ∧ ¬σ′′2 .Cmem[j]) (15)

Therefore, we prove both property 12 and property 13.
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