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Abstract
Variability Modeling and Statistical Parameter Extraction for CMOS Devices
by
Kun Qian
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Costas J. Spanos, Chair

Semiconductor technology has been scaling down at an exponential rate for many
decades, yielding dramatic improvements in power, performance and cost, year after year.
Today’s advanced CMOS transistors have critical dimensions well below 24nm. This
means that controlling the manufacturing process is increasingly difficult. Process and
material fluctuations cause device and circuit characteristics to deviate from design goals,
and introduce significant device-to-device variability due to spatial variations across
silicon wafers. Accurate modeling of these spatial process variations has become critical
to both foundries and circuit designers that seek optimal power/speed/area balance.

To understand the nature of spatial process variations, we first carried out a
comprehensive variability analysis of data measured from thousands of variability-
sensitized test structures, including ring oscillators, SRAM bit cells and their internal
transistors. We manufactured these test chips using early stage 90nm and 45nm commercial
semiconductor processes. We proposed a hierarchical variability model to capture the
systematic and random components of device parameter variations across silicon wafers,
and across chips. The detailed decomposition of the process variation profile reveals
significant across-wafer systematic component for the delay and leakage of ring oscillators,
and across-chip systematic component for the read/write margins of SRAM bit cells, as
well as their internal transistors. The proper modeling of each hierarchical component
proved to be crucial for the accurate estimation of the statistics of device performance
distribution and its parametric yield.

The knowledge gained about process variation from carefully designed test structures
was leveraged into estimating the variation and parametric yield of new devices and circuits.
This was accomplished by improved the statistical compact model parameter extraction
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methodology, and by proposing a stepwise parameter selection method. We used a
normalized notional confidence interval and, and the sum of squares of fitting residuals as
extraction and fitting quality criteria. This allowed us to determine the essential model
parameters for accurate fitting over a large number of transistors. We applied this
methodology to EKV and PSP with both simulated and experimental data, demonstrating
its effectiveness. Finally, we combined the results from statistical parameter extraction with
the hierarchical spatial variability model. This, compared to traditional methods, produced
much-improved estimates of device performance and manufacturing yield.
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Chapter 1

Introduction

1.1 Motivation: Process Variations

For almost five decades, the semiconductor industry has, phenomenally, kept pace
with Moore’s Law [1]: Every 18 months, transistor density has doubled, as a result of
reducing key device dimensions such as channel length and oxide thickness. However,
decreasing dimensions further is increasingly difficult as CMOS technology scaling
continues into sub-100nm feature size. Among the many emerging challenges, the
increased importance and complexity of process variations is one of the most prominent.

Many variations during manufacturing process impact physical properties of devices
and circuits. Lithographic variations [2], line-edge roughness [3][4], random dopant
fluctuations [5], layout-dependent stress variations, rapid thermal annealing (RTA)
temperature induced variations [6][7], well-proximity effects (WPE) [8], deposition and
growth processes, and chemical mechanical polishing (CMP), all cause variations in device
parameters such as dimensions, oxide thickness, doping concentrations, diffusion depth,
and mobility.

The non-uniformity of transistor characteristics produces timing variations of circuit
critical paths [9], smaller read/write noise margins for SRAM memory cells [10], and
higher off-state leakage currents, which culminate in yield losses. In general, circuits need
to be designed conservatively to cope with performance losses introduced by process
variations, which requires devices to have larger area and higher power consumption.

It is critical to understand and quantify process-induced variability to avoid
unnecessarily pessimistic designs. Improving the characterization and modeling of
variability can help designers optimize performance, power, area, and yield.

1.2 Variability Models

Currently, foundries track on-wafer monitoring structures, including all sorts of active
and passive devices, to estimate the performance distribution of devices and circuits. 1-V
data collected from test structures are later used to calibrate compact device models, such
as BSIM [11] or PSP [12], and statistical models of device characteristics, which are used
in circuit simulations.



Two types of statistical device models are conventionally used by modelers and
designers to account for device parameter variations resulting from manufacturing process
fluctuations: corner models and Monte Carlo models.

Corner models, often referred to as “worst-case design,” seek to characterize worst-
case and best-case device parameters. There are typically five worst-case corners, each
identified by a two-letter acronym that indicates the relative performance of the n-channel
and p-channel devices. Each letter summarizes the device performance of one channel type
as typical (T), fast (F), or slow (S). The first letter indicates the performance of the n-
channel device and the second letter indicates the p-channel device. Combinations of the
performance levels for the n-channel and p-channel devices form the following list of
corner cases:

e TT (typical n-channel, typical p-channel): the nominal or typical device performance
the manufacturing process targets.

e FF (fast n-channel, fast p-channel): model parameters that reflect a process shift that
yields fast operation for both the n- and p-channel devices.

e SS (slow n-channel, slow p-channel): model parameters that yield slow operation for
both the n- and p-channel devices.

e FS (fast n-channel, slow p-channel): the n-channel device is fast, and the p-channel
device is slow, which could represent the asymmetry of the rising and falling edge of
signals in a critical path.

e SF (slow n-channel, fast p-channel): the n-channel device is slow and the p-channel
device is fast.

Monte Carlo device models, on the other hand, attempt to represent the unpredictable
characteristics of devices, rather than extreme behavior. Monte Carlo methods model
device parameters as stochastic, typically assuming that each parameter is a realization of
a Normal or uniform distribution. Monte Carlo inputs to SPICE simulations generally also
assume that device model parameters are independent across instances of each transistor.
Device and circuit performance distributions are derived from the assumed stochastic
distributions of model parameters using Monte Carlo simulation. Often, Monte Carlo
simulations are used to calibrate worst-case corner models for device performance
parameters, such as lon and loff.

Figure 1.1 depicts the typical relationship between CMOS transistor device parameter
space, performance space, and the corresponding worst-case corners. Parameters include
device characteristics such as the threshold voltage parameter Vt for NMOS and PMOS.
Performance space refers to the distribution of device performance metrics, such as lon of
NMOS and PMOS. For any assumed distribution of device parameters, Monte Carlo device

models can be created to simulate the performance of any circuit of interest; on the other
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hand, device parameters are usually extracted from the device performance space, using
techniques such as corner lots, statistical process control (SPC) [13], or process and device
simulations. Worst-case corner models are commonly defined as the most “probable”
combination of device parameters (in the parameter space) that would produce 3c
departures of combination of the performance parameters of the n-channel and p-channel
devices (in the performance space) from their nominal values. For example, the FF corner
is the combination of NMOS and PMOS when both lon,n and lon,p are at their high 3¢
point, and the SS corner is when both are at their lower 3c point. At the FS corner, the
difference between lon,n and lon,p reaches its higher 3¢ point, while at the SF corner it
reaches its lower 3o point. Modelers can then search the parameter space for the most
probable (under the assumed model) combination of Vth,n and Vth,p that attains the worst-
case corner values. In more complicated cases, the performance parameter can be a critical
characteristic of a specific circuit, such as the delay of a ring oscillator, which is useful to
characterize the worst-case operation of large-scale circuits.

Vth P Parameter space Perf.P (lon P)

FF

FF :
' Target VthN

Vth N Perf.N (lon N)

Figure 1.1: Typical CMOS transistor device parameter space and performance space with corresponding
worst-case corners.



1.3 Research Goal

The goal of this research is to develop a method that can accurately model the
stochastic transistor behavior induced by process variations, so that circuit designers can
accurately estimate the parametric yield for a given design.

This goal can be achieved through the following steps:

X/
L X4

Characterize and analyze the composition and structure of process-induced
variation in CMOS devices and circuits.

A key factor in calibrating statistical device models is to have an accurate
representation of both the systematic (deterministic) and random (stochastic)
variations. In the context of chip fabrication, the concept of systematic and random
variations is inevitably entangled with the spatial hierarchy. Traditionally, lot-to-
lot, wafer-to-wafer, and chip-to-chip variations are treated as a single pseudo-
random component “global variation” from the perspective of individual chips.
Global variation is supposed to be similar for all transistors on the same chip.
Within-chip variations, on the other hand, are further decomposed into across-chip
systematic and local random variations. These variations are modeled by
independent Gaussian distributions. A number of previous studies have analyzed
process-induced variability and its impact on circuit power performance. Asenov’s
team built an atomic-level simulation framework for predicting and modeling the
intrinsic random variations of transistor parameter variations [14]-[19]. Boning
and his students designed ring oscillator arrays for fast delay characterization and
a within-chip spatial variability study [20], [21]. Wafer-level and die-level spatial
variability of for inter layer dielectric (ILD) thickness variations were studied and
modeled with ANOVA [22], [23].

In this thesis, electrical measurements are collected using arrays of standard-
variability monitoring structures, such as transistors, ring oscillators, and SRAM
bit cells. Several tens of chips are measured for each of the three test wafers
fabricated in early commercial 90nm and 45nm low-power CMOS processes,
providing full wafer-scale spatial coverage. A hierarchical model of variability is
used to analyze the measured device characteristics, decomposing the total
variability into random and systematic components at the wafer level and die level.

Develop a methodology that accurately and robustly translates the variability
characteristics from the electrical measurements to the industry standard
statistical device models.



Circuit designers rely on statistical compact-device models to estimate
performance variations of devices and circuits. The two most commonly used
statistical models are the worst-case corner models and Monte Carlo models.
Corner models use a finite set of compact model parameters to represent the typical
and worst-case conditions of transistors, while the Monte Carlo model involves
inventing a joint probability distribution for compact model parameters, then
simulating realizations of those distributions. The key task of variability modeling
in both cases is to accurately translate the measured 1-V characteristics into the
distribution of compact model parameters.

Traditionally, a few key compact model parameters with clear physical
meanings are used to capture the variability in the 1-V characteristics [24]-[26].
The extracted populations of these parameters are correlated, due to their physical
relationship and due to the numerical procedure for estimating them. For this
reason, some studies use principal component analysis (PCA) to extract
statistically independent components of device variability, which are later used to
simulate the compact model parameter variations [27], [28].

This dissertation shows that existing methodologies can be improved in two
ways. First, the selection of the model parameters for direct extraction can be
tailored more precisely to the silicon data. Only parameters found to be statistically
significant will be retained in the fitted stochastic model of device variation; the
remaining parameters will be fixed to their nominal values from the typical corner
extraction. This is expected to reduce covariance among parameter estimates
without relying on combinations of parameters (such as those PCA produces) that
are incompatible with SPICE simulations. Second, we show that a full hierarchical
model of spatial variability for the extracted compact model parameters allow a
more faithful reproduction of device performance variations in Monte Carlo
simulations.

Study the impact of spatial-process variations on the performance and
parametric yield of real silicon devices using the improved statistical
transistor modeling methodology.

We use an improved statistical parameter-extraction procedure to identify
parameters that can be extracted reliably, and analyze their spatial variability in
detail. A statistical device model is extracted from the transistor I-V measurements
of the SRAM bit cells from the 45nm test chips using this improved methodology.
It illustrates good accuracy in predicting the read/write margins collected from the
same set of SRAM cells. The accuracy of the spatially hierarchical statistical



transistor model is compared to the conventional method; and its advantage in
yield estimation accuracy is evaluated.

1.4 Dissertation Outline

Chapter 2 reviews the sources of variability in the modern semiconductor fabrication
process. Based on the stochastic or deterministic nature of the variations and their
respective spatial scope of effect, a hierarchical model is proposed to describe the
combined effect of the process variations.

Chapter 3 presents the measurement results from two sets of variability
characterization test chips, the first from a commercial, general purpose 90nm CMOS
process and the other from a commercial 45nm strained-Si CMOS process. Ring oscillator
(RO) frequency and leakage data from both sets of test chips are evaluated. The hierarchical
model of variability is proved to be very effective in fitting to the RO data. The same
hierarchical variability analysis is applied to the read/write margin and the transistors I-V
measurements collected from the SRAM bit cells from the 45nm test chips.

Chapter 4 details our improved method for modeling the spatial variability of
transistors with compact models. A parameter extraction procedure is developed and tested
with simulated data for two popular compact models: EKV [29] and PSP [12].

Chapter 5 applies the statistical compact-model extraction methodology to the actual
silicon data collected from the SRAM bit cells from the 45nm test chip. For each of the
EKV and PSP models, a set of model cards is extracted, to which the hierarchical model
of variability is then applied to create a custom statistical compact model. These statistical
compact models illustrate better accuracy in predicting device performance variations than
conventional method.

Chapter 6 summarizes the highlights of this dissertation and discusses future research
directions.

1.5 Statistical Notes

This dissertation uses a variety of statistical methods and concepts, including linear
and nonlinear regression, hierarchical models, expectations, variances, hypothesis tests
including t-tests, significance levels, p-values, and confidence intervals. However, the
generative stochastic model for the data that would be required for those methods to apply
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as statistical methods does not hold; moreover, if such a model did hold, in general, there
would be more efficient methods than those employed here. Rather, all uses of statistical
concepts and methods in this dissertation are to be considered algorithmic, rather than
statistical. The justification for using the methods is not any underlying statistical theory,
but instead the empirical performance of the resulting model for the task at hand:
understanding process variability and predicting device performance and yield.



Chapter 2

Hierarchical Model for Spatial
Variations

2.1 Classification of Process Variations

2.1.1 Environmental, Temporal, and Spatial Variations

Process variability can be environmental, temporal, or spatial [30]. Environmental
variations consist of variability in the surrounding temperature, power supply voltage, and
even cosmic radiation. Temporal variations, as the name suggests, refer to device-
performance change over periods of time ranging from nanoseconds, for the SOI history
effects [14] and self-heating effect, to seconds or hours, for the negative bias temperature
instability (NBTI) [31], to years, for dielectric material deterioration after repeated
programming and erasing operations in flash memories. Spatial variations,are performance
differences among devices that depend on the distances between the devices or the
locations of the devices on a chip. Typical spatial variations, such as line width or film
thickness non-uniformity, universally exist across lots, across wafers, across chips and dies,
and between circuit blocks and devices (Figure 2.1). As a result, the circuit performance of
chips from wafers produced with the same design and process over a period of
manufacturing time will never be the same.

Of the three types, environmental and temporal variability are often accounted for
using reliability models, while spatial variability is commonly part of statistical device
models. This dissertation studies the spatial variations.



) Lot-to-lot variation
) Wafer-to-wafer variation

) Chip-to-chip or across-wafer variation
) Within-chip variation

a

b

c

d

Figure 2.1: Illustration of the spatial process-variation hierarchy: (a) lot-to-lot, (b) wafer-to-wafer (c) chip-
to-chip, and (d) within-die variations

2.1.2 Systematic and Random Variations

Systematic variations, also called deterministic variations, are repeatable deviations
from nominal device characteristics depending on the device’s spatial position on the die
and on the wafer and/or the layout context surrounding the device being tested. Common
sources of systematic variability include the non-ideality of the lithographic system, such
as defocus, misalignment, and line-width roughness [32]; chamber effects that contribute
to across-wafer patterns [33]; and various layout-dependent effects, such as WPE [34],
optical proximity effects [2], strained silicon effects [35], and CMP [22].

Random variations, or stochastic variations, are unpredictable components of device
variability, such as non-uniformities resulting from random fluctuations in the fabrication
process, microscopic fluctuations of the number and location of dopant atoms in the
transistor channel [17], [36], LER due to photoresist granularity [4], and atomic-scale
oxide-thickness variation [16].

Systematic and random variations differ in how they impact device and circuit
performance. Systematic spatial variation can cause large differences in performance
among devices that are far apart on the die. From a modeling point of view, such an effect
in the chips may directly contribute to the spatial correlation among transistors [37].
Random variations, however, are usually treated as independent fluctuations at their
corresponding spatial hierarchy level (lot level, wafer level, chip level, etc.).



The classification of systematic and random variations is not absolute. In practice, the
running status of equipment or the exact location of the device and circuit on the wafer and
chip are often unavailable to circuit designers, rendering it impossible to predict the exact
amount of systematic variation. In such cases, systematic variations are often treated as
random. Such an approximation is an important source of error in estimating the actual
devices’ variability and yield.

2.1.3 Global and Local Variations

Another commonly used classification divides device variability into global variation
and local variations [38], [39]. As illustrated in Figure 2.1, there are multiple hierarchies
above the actual chips in the manufacturing process. From the point of view of an
individual chip, variability from the higher hierarchies, such as lot-to-lot, wafer-to-wafer,
and chip-to-chip, will be almost equally applied to every transistor on the chip. These
variations, whether systematic or random, are lumped together and called “global
variations”. Correspondingly, the remaining within-chip variations are referred to as “local
variations.” In SPICE Monte Carlo simulations, the same global-variation component is
generated for all devices of the same model, while each device will have its own unique
local-variation component. The accurate modeling of the global and local variations plays
an important role in estimating the power and performance scaling with circuit complexity,
as the local variations will get averaged out among large number of transistors or long
critical paths, while the global variations will add up and shift the average
power/performance of the entire chip.

2.2 Common Sources of Process Variations
% Lithographic variations

The uniformity of the printed feature sizes depends heavily on the control of the
lithographic imaging system. It affects the two key requirements in integrated circuit
manufacturing: the critical dimension (CD) and the overlay control. In a typical step-
and-scan lithography stepper (Figure 2.6), the mask reticle and the wafer are
simultaneously moving in opposite directions while a slit of light scans the whole mask
and projects the image onto the wafer [40]. Even tiny vibrations in the scanner system
and variations of the movement speed of the wafer and reticle stage may lead to
significant non-uniformities in the depth of focus (DOF) and the light-exposure dose.
This can lead to non-uniformity of the critical dimension (CD) of printed lines and may
vastly change the speed and leakage of CMOS transistors. Meanwhile, errors in
aligning the reticle to the features on the wafer will create variations in misalignment
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[41], which can be a crucial problem in achieving the intended line width and good
electrical contact between the existing patterns and the new layers of the circuit.

Light Source
-ArF Laser (A= 193nm)
&«— | luminator/Condenser Lens

- Provides Uniform-illumination

¥
— €—— Reticle
7\ w Reticle Stage
/ \ -Glass Slide that holds and moves the reticle

\ Lens
-High NA

-Low Aberrations

'_—AWafer
N Wafer Stage
-Holds and moves the wafer beneath the lens

Figure 2.2: A typical lithography imaging system [41]

Another key source of variation in the lithographic patterning process is the post-
exposure bake (PEB). The PEB step involves rapidly heating up and cooling down the
entire wafer to activate additional chemical reactions and the diffusion of the chemicals
within the photoresist. All these phenomena are very sensitive to the PEB temperature
trajectory; thus, the uneven temperature in the plate may cause significant CD
variations afterward.

A at 45 sec : D at 45 sec

-131.0 -131.0
-130.3 =130,3
-129.7 -129.7
-129.0 -129.0

Figure 2.3: Plate temperature non-uniformity near the end of the PEB step [42]
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% Line-edge roughness

As the gate critical dimension shrink continues into the sub-100nm scale, the
tolerance of gate line-width control becomes comparable to the size of a resist polymer
unit [4], [43]. The granularity of the photoresist creates a non-uniform channel length
along the poly gate. This leads to an increased overall leakage current as the off-state
current increases exponentially with the reduction in effective channel length. This
phenomenon is called line-edge roughness (LER). It contributes to additional threshold
voltage variations and degrades the short channel characteristics of transistors. LER is
generally considered an intrinsic, random variation.

SANDIA 2.8 kV X188K 3808nm

Figure 2.4: Typical LER in a photoresist (Sandia Labs) [44]

% Random dopant fluctuation

Random dopant fluctuation (RDF) refers to the random microscopic fluctuation of
the number and location of dopant atoms in the MOSFET channel region. It causes
fluctuations of the transistor electric parameters, such as the threshold voltage (Vt),
short channel effect, and drain-induced barrier lowering (DIBL). With the gate CD
scaling down to sub-100nm, the total number of dopant atoms under the gate is reduced
to thousands or even hundreds (Figure 2.5), leading to significant variations in the
threshold voltage and drive current [45]. RDF is the single most important source of
random variations in the modern CMOS process.
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Figure 2.5: Electron distribution in a 30nm “atomistic” MOSFET at threshold [44]

s Well-proximity effect

The well-proximity effect is an important layout-dependent effect in the deep
submicron manufacturing process. It originates from the lateral scattering of
implantation ions during the well-implantation step. The incoming high-energy ions
collide with the edge of the photoresist on top of the shallow trench isolation (STI), and
they get reflected into the channel area before the poly-silicon gate is actually formed.
The closer the transistor gate is to the edge of the well, the higher the dopant
concentration inside the channel. As a result, transistors with a smaller gate-to-STI

distance will have higher threshold voltages.
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High-energy ions

Figure 2.6: Origin of well-proximity effect. High-energy dopant ions scatter at the well photoresist edge
during well ion implantation and are reflected into the channel before the gate is formed [34]

«+ Strained-silicon effects

The strained-silicon effect is another important source of layout-dependent
variation. Currently, advanced CMOS processes intentionally introduce mechanical
stress over the channel to enhance the carrier mobility of transistors [46]-[48].
Experiments have shown an electron mobility increase of more than 20% for NMOS
with a tensile silicon nitride capping layer and a hole mobility enhancement of more
than 50% for PMOS [46] using selective epitaxial Sii1.xGex in source and drain. STI
stress can also be modulated with gap-fill material to increase the transistor
performance by up to 12% with proper layout design and wafer/channel orientation
[48]. Studies have shown that the stress profile in the channel can be very sensitive to
the length of diffusion (LOD) [49]. Consequently, transistors with the same gate size
but a different LOD may have very different speeds.
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Tensile Capping Layer
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Figure 2.7: An example of the uniaxial strained-silicon process [46]

®,

% Other variability sources

Other sources of spatial process variation include the pattern density dependency
of the CMP process [22], oxide thickness non-uniformity [17], non-uniformity in
reactive ion etching (RIE), traps and defects in material, etc. These variations will have
their own unique impact on transistor characteristics and require extra margin in the
design.

2.3 Variation Modeling with Hierarchical Model

2.3.1 Variability Decomposition

From the modeling perspective, process variations can be decomposed in several
different ways. Circuit designers commonly treat process variation as a combination of
global variation and local variation. This method lumps all the chip-to-chip and wafer-to-
wafer variations into one global variation component, and the remaining variations as one
local variation component. These are also referred to as “inter-chip” and “intra-chip”
variations. With the assumption that variations at different hierarchy levels have very little
cross-interaction, the variation in a given device parameter P can be simply decomposed
as:

AP = APgopar + APpocar
2.1)

= APinter—chip + APintra—chip

Here the inter-chip variation component is the lumped sum of the lot-to-lot, wafer-to-
wafer, and chip-to-chip components:
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A Pinter—chip = A Plot—to—lot + APwafer—to—wafer + APchip—l:o—chip (2-2)

Conventionally, the global and local variations are modeled as two independent,
normally distributed random variables.

2
inter—chip inter—chipr Yinter—chi :
AP nip~N (U hip» O, ) (2.3)

2
A Pintra—chip"'N(ﬂintra—chip' Ointra—chi ) (2-4)
14

With the increasingly significant systematic variability, such as layout-dependent
effects in the process, some variability models added an additional across-chip systematic
component of parameter P to the equation, which is modeled as a normally distributed
random variable independent of the other components:

AP=A Pinter—chip + APintra—chip random + APacross—chip systematic (2-5)

2
A Pacross—chip systematic~N(."‘across—chip systematic» O-across—chip systematic) (26)

A prior variability study, however, shows that the systematic variations, particularly at
the wafer and chip level, will cause the device parameter distribution to deviate from
normal distributions at extreme quantiles [50]. To improve the accuracy of the variability
model, the systematic and random components should be individually characterized for
each level of the fabrication hierarchy, mainly at the wafer level (chip-to-chip) and chip
level (device-to-device).

« Variation at lot level and above

State-of-the-art semiconductor manufacturing involves various batch processes that
apply to multiple wafers at the same time for a high wafer throughput. For example, the
chemical vapor deposition (CVD) heats up multiple wafers in the furnace, where the
reactive gas forms a thin film on the surface of the wafers [13]. The batches are usually
referred to as lots, which conventionally contain 25 wafers each. As a result, some process
conditions are applied to all the wafers in the same lot but there are changes from lot to lot,
leading to lot-to-lot variation. Meanwhile, wafers within the same lot are also subject to
non-uniformity in the chamber environment, such as the temperature and the speed of the
gas flow, which results in within-lot variations.

During single-workpiece processes, such as lithographic imaging and reactive ion
etching (RIE), each wafer is processed individually. Naturally, this will lead to variability
between different wafers, which is called wafer-to-wafer variation.
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In theory, one can model the lot-to-lot and wafer-to-wafer variations using time-series
models [13] and fit the systematic signatures of within-lot variations. In practice, however,
such a practice requires long-term monitoring over a significant number of lots and wafers.
It is often more convenient to lump them together as a single variation component that
varies from wafer to wafer, denoted as APy, .

In this thesis, without loss of generality, we assume that the wafer-to-wafer variation
APy, can be sufficiently modeled as a normally distributed variable independent to the
other variation components. This assumption typically holds well in a reasonably mature
semiconductor process without process splits. Thus, the random wafer-to-wafer variation
is described by

A Pyow~N (0, O-I%/ZW) (2.7)

«» Variation at the wafer level

Wafer level non-uniformity can come from deposition, photoresist spinning effects,
temperature non-uniformity in post-exposure baking or plasma etching, and other
equipment non-uniformities that result in a smooth, low-frequency across-wafer variation
pattern. In particular, wafer-level variation often exhibits symmetric radial (“dome” or
“bull’s eye”) patterns [51]. We call such repeatable wafer-level variability systematic
across-wafer variation. Since the chip size is usually much smaller than the wafer diameter,
we can assume that the across-wafer pattern is approximately constant within a chip’s scale.
Therefore, for a device from chip location (xy, yy,) on the wafer, the systematic across-
wafer variability component can usually be sufficiently represented by an elliptic
paraboloid function, denoted as AP,y (X, Yw):

APy (Xw, Yw) = aw - Xfy + by - Xy + cw - yiy + dw - yw 28)

+ew - Xwyw + fw

In addition, process variations, such as the focus and exposure fluctuation in
lithographic imaging, may introduce additional variability from chip to chip. Lumped
together with the fitting residual of the systematic across-wafer variation, we call it the
random chip-to-chip variation (or across-wafer random variation), denoted as AP,y z. It
may be modeled by a Gaussian variable, as described in Equation 2.9.

A Pywr~N(0, O_/%WR) (2.9)
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% Variation at the die/chip level

Intra-die variation or within-die variation refers to the fluctuation of device properties
on the same chip/die. Similar to wafer-level variations, chip-level variations also consist of
systematic and random components. Typical sources of systematic spatial variations
include stepper-induced variations (illumination, lens aberrations) [52], reticle
imperfections, and CMP [50], [53]. The systematic across-chip variation of a device with
location (x.,y.) on the die/chip can often be approximated by an elliptic paraboloid as
well, as described by Equation 2.10 [50], [52], [53]:

APyc(xc,ye) = ac-xé +be-xc+cc-y¢ +dc-ye
(2.10)
+ec - xcyc + fc

The random across-chip variations (device-to-device or local mismatches), on the
other hand, include intrinsic variability, such as RDF, interface-trapped charge
fluctuations, atomic oxide-thickness fluctuations, and LER. These intrinsic random
variations are dominant at the deep-submicron device scale. They are modeled as a
normally distributed random variable independent to the other variation components,
which is denoted as APycg:

A Pycr~N(O0, O-/%CR) (2.11)

Last, the layout-dependent variations, such as those due to optical-proximity effects,
strained-silicon effects, and plasma micro loading, will cause devices with similar design
parameters but different layout designs and/or sounding layout contexts to differ
significantly in device characteristics, such as gate CD and mobility. In this work, we adopt
the assumption that the layout-dependent effects do not interact with the rest of the spatial
variations in the system; thus, the layout-dependent variation is a simple additive term
described by Equation 2.12.

A Pigyour = F(layout pattern) (2.12)
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2.3.2 Hierarchical Variability Model
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Figure 2.8: One-dimensional illustration of the hierarchical variability components of parameter P: a) lot-
to-lot and wafer-to-wafer random, b) across-wafer systematic, c) chip-to-chip random, d) across-chip
systematic, e) layout-dependent, and f) device-to-device random.

Figure 2.8 is an illustration of the hierarchical variability model we proposed for
capturing the systematic and random components in the integrated circuit manufacturing
process. Assume device parameter P is a process-related physical quantity and that its
variations from different sources or hierarchy levels have relatively small interactions. In
this case, the total variation of parameter P can be simply modeled as the sum of the
different variability components: AP = APsyyrce—1 + APsource—2 + " APsource—n-

Given the variability decomposition scheme previously described, the total spatial
variation of parameter P can be decomposed as the sum of the wafer-to-wafer random
variations, across-wafer systematic variations, chip-to-chip (across-wafer) random
variations, across-chip systematic variations, device-to-device (across-chip) random
variations, and layout-dependent variations.

AP = APy + APy + APyyr + APy + APgcr + APpgyout (2.13)

Such an additive hierarchical model can also be applied to the estimates of those device
or circuit parameters that are linearly proportional to additive physical quantities. For
example, the effective gate length (Leff) of transistors is often such a physical parameter
that satisfies the additive requirement. Consequently, the ring oscillator stage delay, which
is proportional to Leff to the first order, can also be modeled in this additive fashion
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(Equation 2.14). The additive model cannot be applied to the ring oscillator frequency,
however, as it follows 1/Leff (Equation 2.15).

A Delay = kA Leff = k(ALeff,source—l + ALeff,source—z)

(2.14)
= ADelaysoyrce-1 + ADelaysource-2
N req—— L 1
kALeps  k(ALerssource-1 + ALeffsource—2)
(2.15)

= (Afreq_s_olurce—l + Afreqs_olurce—z)_1

* AfreQSource—l + Afreqsource—z

2.4 Summary

In this chapter, we first reviewed the various classifications of process variability. By
nature, process variations can be environmental, temporal, or spatial. With regard to
repeatability, process variations can be systematic or random, and with regard to their scope
of impact, process variations are divided into global variations and local variations.

The common sources of the systematic and random components of spatial process
variation are then discussed in detail. The most prominent effects include variations in
lithographical imaging and post-exposure baking (PEB), random dopant fluctuations
(RDF), line-edge roughness (LER), well-proximity effects (WPE), strained silicon effects,
chemical mechanical polishing (CMP), thin film-thickness fluctuation, etc.

Lastly, an additive hierarchical variability model was proposed to capture the various
components of spatial process variations. The total variability of device parameter P was
modeled as the sum of the random wafer-to-wafer, chip-to-chip, and device-to-device
variations; the systematic across-wafer and across-chip variations; and the layout-
dependent variations. This simple but effective spatial variability model will be used in
characterizing the variability profile in the near-mature commercial-quality silicon data in
Chapter 3 and Chapter 5.
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Chapter 3

Test Chip Design, Characterization,
and Variability Analysis

3.1 Introduction

We experimented with multiple test wafers with custom test structures to investigate
the influence of process variability in modern semiconductor manufacturing and to
understand the underlying mechanism. The test circuits were designed by BWRC students
and faculty [54]-[57], and fabricated by our foundries partners using the 90nm and 45nm
bulk process. We characterized key variability test structures, including ring oscillator
(RO) arrays for delay and leakage current measurement, SRAM arrays, and individually
measurable padded-out transistors of the SRAM cells.

3.2 The 90nm Ring Oscillator Test Chip
3.2.1 Chip Design Overview

A test chip is designed and implemented in a general-purpose 90nm CMOS technology
process from STMicroelectronics to characterize the process-induced circuit variations
[54]. The approach we use is to measure the oscillating delay and transistor source-drain
leakage currents of an array of ring-oscillator test structures.

The test chip is made up of 10 rows =16 columns of tiles of test structures. Each tile
contains twelve 13-stage RO and 12 off-state NMOS transistors, one for each of the 12
different layout styles (Figure 3.2). The tiles are separated by 62.5um horizontally and
100um vertically. The total array area is Imm > 1mm, and the overall die size, including
the peripherals, is about 1.8mm > 1.4mm. Layout pattern styles include gate stacks that
consist of 1 to 3 Poly-Si fingers with varied length of diffusion (LOD). The Poly-Si pitch
of neighboring dummy features is varied, and one layout has a Poly-Si orientation rotated
by 90 degrees. Asymmetric masks are used to test the coma effect. The first metal layer
coverage over gates is varied as well. The test chip also includes a leakage current
measurement circuit, which sits right beside the ROs with the same layout.
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Figure 3.1: Die photo of 90nm test chip [54]

Dummy poly

Figure 3.2: Layout configuration in the 90nm test chip [54]

3.2.2 Sampling and Measurement Scheme

There are two requirements on the sampling scheme based on our variability model.
First, there must be enough measuring points inside each chip to capture the systematic and
random components at chip level. Second, these points should be spread out across the
wafer to capture the wafer level variations.

For this 90nm test wafer, we examined the delay and static leakage (IDDQ) data
collected from 36 chips distributed mostly across the right half of the wafer. Each chip was
measured exhaustively to get a complete and statistically significant spatial coverage over
the Imm > 1mm RO array. The ring oscillator delays were measured off-chip with a
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20GSPS oscilloscope and averaged over about 100 periods. The transistor off-state currents
were measured using an on-chip single-slope analog-to-digital converter (ADC) [58]. The
wafer-level measurement plan and the collected RO data are shown in Figure 3.4.

RO [— out
|
enable
enable
n - 1 stages L

Figure 3.3: Ring oscillator with n stages [58]
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Figure 3.4: Wafer maps of mean RO frequency and mean Log(l.eax) for layout 3A [54]

3.2.3 Variability Observation

Devices of three representative layouts—3A, 4A, and 5A—are selected for studying
the wafer-level, chip-level, and layout-to-layout variations. Wafer-level RO delay and
leakage (IDDQ) variation of these layouts are shown in Figure 3.5 and Figure 3.6. Each
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data block stands for the average value over all the 160 tiles, which is noted by symbol
D(—DWP) and I{(—DWP). Similarly, chip-level RO delay and leakage variations are
shown in Figure 3.7 and Figure 3.8. Each data block stands for the average value of all 36
dies, which is noted by symbol D(T — WP) and I{T — WP).

If we assume that the majority of systematic variations are from the effective gate
length (L.sf) variability, then the following simple model describes the RO delay and
leakage (SPICE simulations confirm that this is a good approximation when the gate length
variation is small):

L
delay: D = D, ( eff)
Lo

3.1)

L
leakage:logIDDQ = logIDDQ, <L 2 >
eff

As a simple function of the physical quantity L.fr, RO delay is a good candidate for
the application of the additive hierarchical variability model. According to the hierarchical
model, the total variation of devices of a given layout pattern on a single wafer can be
decomposed into across-wafer systematic (AW), across-wafer random (AWR), across-chip
systematic (AC), and across-chip random (ACR). Statistical analysis shows that the across-
wafer gate RO delay variation can be approximated adequately by a second-order
polynomial, of the form in Equation 3.2. Note that due to the lack of the left half of the
wafer, the quadratic term in the X-direction is statistically insignificant; we set that
coefficient to zero. Meanwhile, the across-chip variation can also be fitted by a chip-level
second-order polynomial. Statistics show the variation along different columns does not
have a significant systematic component, while variation along the different rows displays
a significant (half-) parabolic pattern. The simplified approximation is shown in Equation
3.3.

(3.2)

(3.3)
D{T —WP)yc =0X X2 +0XXc+cYZ+dcYe + ec
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Using RO delay as an example, the fitted coefficients and their 95% confidence
intervals are shown in Figure 3.9: and Figure 3.10.

Below, | apply statistical tests algorithmically rather than statistically: the underlying
statistical models do not hold: there is no basis for the assumed probability distribution of
the data, and all the null hypotheses are false. The tests do not have their nominal
significance levels in this problem; indeed, it is not clear what “significance level” would
even mean. Nonetheless, applying statistical tests may provide insight into which
components of variation are worth modeling, and may lead to models that make more
reliable and useful predictions.

To examine the layout dependence effects on the variation pattern, we used t-statistic
to compare the estimates of fitted coefficients from the three layout designs. Use ay, as
example, and under the assumption null-hypothesis Hy: ay,,, = aw,, is rejected if:

|aW3A B aW4,A|
taW3A’aW4A - > t%.N—l (34)
JSEZ +SE2,

aws 4

The estimates of mean and standard error (SE) in the linear regression model (Table
3.1), give

t - |—0.1454 + 0.1423|
WaaWaa  \[1.903 X 106 + 1.867 x 106

=1.612

(3.5)

< to.05 1.96

T’5757
Similarly,

t ~ |—0.1454 + 0.145]
WaaWsa 1903 x 106 + 1.902 X 10-6

= 0.224

(3.6)

< to.os = 1.96

7,5757

|—0.1423 + 0.145]

¢ - = 1.385
WaaWsa  \[1.867 x 10-6 + 1.902 x 10-6

(3.7)

< t%,5757 = 1.96

2
None of the three pair-wise null hypotheses is rejected. This suggests it may be
adequate to take the coefficient ay, to be equal for all three layout designs. Similar
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analysis leads us to model the rest of “shape” coefficents by, and d,, as equal for the
three layout designs. On the other hand, the same tests for the intercept coefficient ey,
give:

teWBA’eW4A =19.1 > 1.96 ( 3.8)
tew, pew,, — 22.4 > 1.96 ( 3.9)
tEWM'eWSA = 3.47 > 1.96 (3.10)

Because these differences are (nominally) statistically significant, we retain
differences among the intercept terms e, for layouts 3A, 4A and 5A. It is also worth
noting that the t-statistics between layout 4A and 5A are much smaller than that between

either of those layouts and layout 3A.

3A 4A 5A

ay, | Estimate | -0.145 -0.142 -0.145
SE2 1.9E-06 1.87E-06 1.9E-06
by, | Estimate | 0.0174 0.0164 0.0171
SE2 5.27E-08 5.17E-08 5.27E-08
dy, | Estimate | 0.0111 0.0108 0.0110
SE? 1.26E-08 1.23E-08 1.26E-08

ey | Estimate | 1.40 1.31 1.29
SE2 1.31E-05 1.29E-05 1.31E-05

Table 3.1: Estimates and standard errors of fitting coefficient ay,, by, dy and ey for the across-wafer
spatial variation patterns of layout 3A, 4A and 5A

The number of pairwise statistical tests of coefficient equality required can grow
quickly as more layout designs are in comparison. As an alternative, we simply observe
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the trend of confidence intervals (CI) of the fitting coefficients across different layouts.
While not a statistically valid test for a difference, we treat these shape coefficients as equal
if their Cls have large overlaps.

With this alternative method, we found that most of the layout-dependent effects are
accounted for by differences in the intercept terms e, and e.. We model the layout-
dependent component in this process as an additive component on top of the systematic
across-wafer and across-chip component. The large overlap of the confidence intervals of
the layout component e,, and e, between layouts 4A and 5A while layout 3A is far apart
is consistent with the fact that layouts 4A and 5A are mirror images while 3A has a different
pattern density. Therefore, the layout-dependence differences between them are minimal,
while layout 3A with dummy polys on both sides of the gate actually behaves as a slower
device in general. This observation is contradictory to the common knowledge that a more
regular poly-grating structure will result in a narrower printed poly gate critical dimension
(poly CD). Unfortunately, it requires more detailed electrical tests as well as physical
examination of the device cross-section to reveal the root cause. Last, a similar conclusion
can be drawn if we perform the same experiment on the RO leakage data.
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Figure 3.6: Wafer maps of the mean RO log(IDDQ) of layouts 3A, 4A, and 5A [54]: I{(—DWP)
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Figure 3.7: Chip maps of the mean RO delay of layouts 3A, 4A, and 5A [54]: D(T — WP)
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Figure 3.8: Chip maps of the mean RO log(IDDQ) of layouts 3A, 4A, and 5A [54]: I(T — WP)
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Figure 3.10 Estimate and confidence interval of across-chip fitting coefficients: layouts 3A, 4A, and 5A

Figure 3.11 and Figure 3.12 illustrate the decomposition of across-wafer and across-
chip RO delay variations of layout 3A. The fitting residuals after the removal of the
systematic across-wafer and across-chip components become much closer to a standard
Gaussian distribution, as shown in Figure 3.14.

To test how much the hierarchical variability model improves on the conventional
“Global+Local” variability model, Monte Carlo experiments are performed to simulate the
distribution of the RO delay of 10,000 chips with 160 test devices per chip. Assume each
chip has the exact equal chance to be chosen from the 36 chip locations on the wafer, and
each test device has the exact equal chance to be chosen from the 160 tile locations on the
chip. Under the simple “Global+Local” model, the delay of each RO device is the sum of
two Gaussian random variables. One carries the same variance as the total chip-to-chip
variation from the raw measurement, while the other carries the same variance as the total
within-chip variance of the raw measurement data. Under the hierarchical variability model,
the RO delay is still modeled as the sum of the chip-level component and the within-chip
component. However, each component is now composed of a systematic across-
wafer/across-chip component in addition to the residual Gaussian random variation. The
formula for simulating the distribution is shown in equation 3.11 to 3.13.

RO delay of the kth layout from the jth tile on the ith chip:
D; jx = Layouty + Chip; + Tile; (3.11)
“Global+Local” variation model:
Chip;~N(0, 0gi0par)
(3.12)
Tilej~N (0, 00ca1)

Hierarchical model:
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Chipi~fAW(XWif Ywi) + N(0, oawr)
(3.13)

Tl:lej"’fAC (ch, ch) + N(O, O-ACR)

The normal quantile plots (Figure 3.15) provide direct comparisons of the two models’
Monte Carlo experiment results. Both model predictions are fairly close to the raw
measurement for the most part within +20. At +30, the hierarchical model starts to show
less deviation from the raw measurement than the “Global+Local” model, especially on
the fast side. The numerical comparisons of + 3o and the median delay of layouts 3A,
4A, and 5A are shown in Table 3.2. The two models are within 0.5% of each other at +3¢
for all three layouts, while at —3o, the hierarchical model consistently shows 2% better
accuracy than the simple “Global+Local” model.

Mean Delay, Layout 3A Across-Wafer Systematic Delay, Layout 3A Across-wafer Residual Delay, Layout 3A

Figure 3.11: Decomposition of wafer-level variation of layout 3A:
D{(—DWP) = D(~DWP) 4y + D(~DWP) sr
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Figure 3.15: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical

model for the RO delay distributions of layout 3A

Measurement | “Global+Local” Model | Hierarchical Model
Layout3A | +30 |1.317 1.327 (+0.8%) 1.324 (+0.5%)
Median | 1.168 1.165 (-0.2%) 1.162 (-0.5%)
—30 | 1.036 1.004 (-3.1%) 1.024 (-1.1%)
Layout4A | +30 | 1.212 1.225 (+1.1%) 1.226 (+1.2%)
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Median | 1.066 1.062 (-0.4%) 1.059 (-0.7%)

—30 | 0.935 0.904 (-3.3%) 0.926 (-1.0%)

Layout5A | +30 | 1.198 1.214 (+1.3%) 1.218 (+1.7%)
Median | 1.051 1.048 (-0.4%) 1.045 (-0.6%)

—30 |0.919 0.890 (-3.2%) 0.909 (-1.2%)

Table 3.2: Median and +/- 3s of simple “Global+Local” model and the hierarchical variability model in
comparison with the measurements (difference to measurement shown in percentages)

3.3 The 45nm Ring Oscillator and SRAM Test Chips
3.3.1 Chip Overview

To further investigate the process dependency of the device and circuit variability, a
newer set of 45nm test chip circuitries was designed by Liang-teck Pang et al. [57] and
Zheng Guo [59]. The test chips were fabricated using a 45nm low-power strained-Si
CMOS process [47], [48], [60], with an array of ROs and corresponding off-state leakage
current measurement circuitry, as well as 18 SRAM macros that allow the characterization
of SRAM padded-out transistors and the SRAM read/write margins. The die photo is
shown in Figure 3.16.

To keep up with the aggressive technology scaling, new fabrication practices and
stricter design rules have been introduced to the 45nm technology. Poly spacing can no
longer be freely adjusted; instead, only a small continuous range followed by a discrete
jump in Poly-Si spacing is allowed. All transistor channels are oriented in the <100>
direction, which enhances PMOS mobility and makes it insensitive to stress [61]. Two
major sources of stress are introduced both by design and unintentionally in this process:
strain caused by the contact-etch stop layer (CESL) and the shallow trench isolation (STI)
stress. Subatmospheric chemical vapor deposition oxide (SACVD) largely reduces usually
strong compressive STI stress and turns it into a weak tensile one. CESL is formed by
intentionally depositing a nitride layer on top of NMOS transistors, which introduces a
strong horizontal tensile strain that greatly enhances the electron mobility. Another
important feature of the new 45nm test chip fabrication is the different gate-trimming
treatment for the two wafers we have, aiming at a nominal 4nm reduction in gate CD from
the slower wafer (#1) to the faster wafer (#2). The major features of the 45nm process are
summarized in Table 3.3.
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Figure 3.16: Die photo of the 45nm test chip

Process Feature 45nm Process Effect
Si substrate [100]-oriented channel Higher PMOS mobility
. . Sub-atmospheric deposited
Shallow trench isolation (STI) i Lower STI stress
oxide

Nitride layer creating high . .
Contact etch stop layer (CESL) i . Higher NMOS mobility
tensile strain

Immersion lithography NA>1 Improved resolution

Backend dielectric Low k ~2.5 Low RC delay

Table 3.3: Summary of the 45nm process

The RO array contains 18 < 16 identical tiles. Each tile consists of 17 thirteen-stage
ROs and 17 pairs of off-state NMOS and PMOS transistors for leakage measurements,
each with the same transistor sizing embedded in a different layout pattern. A total of 17

different RO transistor layouts are designed based on the new process and design rules to
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capture possible layout-dependent effects, including various Poly-Si gate-dummy pitches,
different source/drain areas with and without STI, and orientation of transistor placement.
The layouts are presented in Figure 3.17 and Figure 3.18. Note that the pre-OPC patterns
depicted in Figure 3.17 are subject to OPC treatment prior to fabrication, the specifics of
which remain unknown to us. Measurement circuitry was adopted from the design of the
90nm test chip. The RO delay and corresponding off-state NMOS/PMOS transistor leakage
currents were measured in our laboratory after the wafers were diced and the chips were
packaged.
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Figure 3.17: Sixteen pre-OPC RO layout configurations in the 45nm test chip, all arranged horizontally (An
additional configuration using the same design of layout P1 but arranged vertically is shown separately in
Figure 3.18)
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Figure 3.18: Two different RO implementations of the layout pattern P1: (a) horizontal arrangement, (b)
vertical arrangement

SRAM is known to be sensitive to process variation, especially threshold voltage
variations caused by random dopant fluctuation, line-edge roughness, work function
fluctuations and etc. To characterize the variability of SRAM in a modern semiconductor
process, SRAM test structures were also incorporated in these 45nm test chips. Each test
chip contains 18 SRAM macros, and each macro contains 20 rows <40 columns of SRAM
cells, as shown in Figure 3.22. Along the diagonal of each macro, 20 bit-cells have all their
internal nodes accessible through a switch network (Figure 3.20), thus allowing the
automated measurement of SRAM functional metrics as well as the electrical
characteristics of each of the 6 individual transistors in a bit cell.

Typical SRAM functional metrics consist of read stability and write stability, which
stand for the amount of disturbance bit cells can withstand without accidental change of
the data stored during a read cycle or a write cycle, respectively. The read stability is
usually characterized by the Read Static Noise Margins (RSNM), which is extracted by
measuring a pair of voltage transfer characteristics (VTC), more commonly known as the
“butterfly curves” [62]. The RSNM is quantified as the largest square that can fit into the
pair of read VTC from the same bit cell. Meanwhile, SRAM write stability can often be
represented by the writeability current (lw), which is extracted from the N-curve for
writeability [63]. lw is defined as the minimum current past the inverter trip point (the
sudden drop in current in the N-curve). Figure 3.13 illustrates both setups for characterizing
SRAM cell-design margins.
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Figure 3.20: All-internal-node access scheme in SRAM macros [56]

Figure 3.21: Layout cartoon for a 0.374 pm? bit cell with all 10 internal nodes wired out (Courtesy: Zheng



Figure 3.22: Layout view of a 20 x40 SRAM macro, with poly in the vertical direction, using all internal
node access surrounded by a large STI [56]

3.3.2 Ring Oscillator Variability Observation

A total of 76 dies from the 2 wafers are packaged for characterization. Bearing the
systematic across-wafer variation profile in mind, more emphasis is put on the dies near
the periphery and the center of the wafer for better coverage of the leading and trailing
edge of the performance distribution. At least 8 tiles of the 18 %16 RO array are measured
at each die site, while full-array characterization had been done for 15 selected dies, as
shown in Figure 3.23.

The within-chip RO variability averaged over 15 fully characterized dies is shown in
Figure 3.25. The figure shows that there is no strong systematic across-chip variation. Thus,
it is reasonable to estimate full within-chip statistics from a random sample of locations
within a die. A simple decomposition of the variability (see Figure 3.31) shows that within-
chip variation (~2%) is relatively small compare to wafer-level variations (20~30%).
Hence, even a small sample of devices from the die should suffice to estimate the chip
median and the across-wafer variability accurately. We chose to measure only 8 sites per
chip for the majority of chips, which saves a significant amount of characterization time
without noticeably compromising the accuracy of estimates of across-chip variability.

Wafer-level RO delay and leakage (NMOS and PMOS) variation of layout P2 are
shown in Figure 3.24. Each data block stands for the mean delay/leakage over the measured
tiles, which is noted by symbol D(—DWP), I gaxn{—DWP), and I, gsxp{—DWP).
Similarly, chip-level RO delay and leakage variation are shown in Figure 3.25. Each data
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block stands for the average value of the 15 fully characterized dies, which is noted by
Symb0| D(T - WP), ILEAKN<T - WP), and ILEAKP<T - WP)

The basic assumptions about the composition of variations are very similar to those
described in Section 3.2, used to analyze the 90nm technology. The across-wafer RO delay
variation can be approximated adequately by a second-order polynomial, as shown in
Equation 3.14. The across-chip variation can be approximated adequately by a linear
surface, as shown in Equation 3.15. In modern processes, two major sources contribute to
the across-wafer systematic variation. First, during post-exposure-bake (PEB), the wafer
temperature is non-uniform during the rapid heating step [65]. Second, during plasma
etching, higher temperatures near the center of the wafer typically cause over-etch, leading
to faster devices [66]. Both may cause the gate critical dimension (gate CD) to have a
bull’s-eye pattern across the wafer.

D{(—DWP) = D{(—DWP) 4y + D{(—=DWP) siyr
(3.14)
D(—DWP) s = ayw (Xyy — Xo)? + cyp X (Y — Yo)? + ey

(3.15)

Still using RO delay as an example, the fitted coefficients and their 95% confidence
intervals of all 17 layouts are shown in Figure 3.26 and Figure 3.27. As was the case for
the 90nm test chip results, the confidence intervals for the “shape parameters” of both
wafer-level (ay,, cy,) and chip-level systematic variations (d.) overlap across all layouts.
Again we treat these parameters as equal even without rigorous statistical proof. Most
layout-dependent effects are thus captured by the intercept terms e, and e., and we
model the layout-dependent component in the 45nm process as an additive term in addition
to the systematic across-wafer and across-chip components. For RO delay variability, the
devices showing the strongest layout-dependent effects were layout #10 (D1), which
features the largest diffusion width, and layout #17, which has the vertical RO placement.

To better understand the underlying mechanisms, we compare the layout effect
components from the RO delay analysis as well as from the NMOS and PMOS leakage
data. We focus on the intercept term from the within-chip fitting of RO delay and leakages
for all 17 layouts, as in Figure 3.28. We can see that the layout dependence of the RO delay
and log NMOS leakage are both significant and strongly correlated, while PMOS leakage
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shows little layout dependence and does not correlate to the RO delay or NMOS leakage.
This suggests that the layout-to-layout gate length variation might not be the actual source
of variability since NMOS and PMOS are both subject to gate length related effects. A
more plausible explanation is that the threshold voltage depends on the layout pattern. One
such mechanism is the ST1 stress, which causes NMOS Vt to decrease and the mobility to
increase with a larger length of diffusion (LOD) and smaller ST1 width [67], [68]. PMOS,
however, is not as sensitive to stress effects due to the <100> channel orientation of this
specific 45nm process. This can explain the higher speed and higher NMOS leakage for
layout #10 (D1). Further investigation would require access to the internal transistors,
which is not possible with this chip.

Overall, the variability of 45nm RO delay (or leakage) can be well summarized as the
sum of a strong layout-to-layout-dependent component, a strong across-wafer paraboloid
“bowl” (or “dome”), a smaller chip-to-chip Gaussian random noise, and a within-chip site-
to-site Gaussian random noise of similar magnitude as the chip-to-chip random noise. The
across-chip systematic component is negligible.

The same methodology as described in Section 3.2.3 is applied to compare the simple
“Global+Local” model against the hierarchical variability model in this 45nm process.
Distributions of delay and leakage from 10,000 chips with 8 tiles each are simulated in
accordance with the actual measurement scheme with emphasis on the across-wafer
variability and less so on the within-chip variations. Results of the Monte Carlo experiment
are shown in Figure 3.32. Due to the strong systematic across-wafer variability, the delay
distribution has a long tail on the slower end. The “Global+Local”” model does not capture
this behavior nearly as well as our hierarchical model: at —3a, the estimate based on the
simple model is as much as 18% lower than the measured delay, while the hierarchical
model is consistently within 5% of the measurement at all key quantiles (Table 3.4). This
is shows how ignoring systematic variability will bias estimates of the total variation in the
process, possibly leading to pessimistic designs.
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Figure 3.24: Wafer maps of mean RO delay, mean Log(lLeakn), and mean Log(l eaxp) for layout pattern

Wafer #1 Mean Delay, Layout P2

‘EmEpEscCoooDEERCDD
BomE gE-Cm- CrEC
s -D-=DED-=DDDGE=
oo T e
COEEEEECOROImECE0]
‘BoECECECECEmECnE
F R0 ][] o] o |
o OoODOEEoEEOD000
jozaz =ooooteek
b o o | |
L) o o o I_IHEIEII
LoooEm DOOoOmED
[C ] ] DoCmO0
2\]‘ 23458678 910“12131!151‘5
Col
Wafer #2 Mean Delay, Layout P2
=[] TouT el = i
] o
P = o[ o] o o o o
{5 [ [ ][ = o [
‘EEEEac=Ecm=a=
3 S o o | o OEE
g o o | o o | | |}
DO EEOCImO | ]|
[ CEEOOOCOME BO0O
JBERES-CRREE-S0-C
Y e i oo
] | o o o | o o [
16 EI_ _:LI)HEDE:IEN:I:EICIEI
SESESEEEmC-ERECE

12 3 4567 8 9101121314151
Col

Wafer #1 Mean RO log(ILEAKN), LaryorqtrPZ

12 3 45 6 7 8 9 10 111213 14 15 16
Col

Wafer #2 Mean RO log(ILEAKN), Layout P2

il

12 3 456867 9 10 11 12 13 14 15 16
Col

Wflfer #1 Mean RO Iog(ILEAISP), Layoqter

Row

I}
m
0
0
u
m

- ENERCOOCORCOOR00
I

‘DDHIMH%%
~OER00CORCERC00E00

B aasseasaunt A

S e N

L

i

Cm

L
OC000000

& oar e

it
5 |
Sl e

12 3 45 67

8 9 10 11 1213 14 15 16
Col

L]
o
]
I3
0]

Col
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Figure 3.31: Histogram of the RO delay distribution as well as the systematic across-wafer, layout-to-
layout, random chip-to-chip, systematic across-chip, and random tile-to-tile variability
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Figure 3.32: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical
model for wafer #1 RO delay distribution

Measurement | “Global+Local” Model | Hierarchical Model
Wafer #1 +30 | 1.206 1.217 (+0.9%) 1.194 (-1.0%)
Median | 1.017 1.023 (+0.7%) 1.017 (0%)
—30 | 0.880 0.824 (-6.4%) 0.889 (+1.0%)
Wafer #2 +30 | 1.210 1.215 (+0.4%) 1.158 (-4.3%)
Median | 0.902 0.917 (+1.7%) 0.915 (+1.4%)
—30 |0.753 0.618 (-18.0%) 0.723 (-4.0%)

Table 3.4: Median and +/- 3s of simple “Global+Local” model and the hierarchical variability model in

comparison with the raw measurements

3.3.3 SRAM Variability Observation

In addition to the RO variability, this 45nm test chip also provided variability
measurements from the SRAM bit cell arrays and the individual padded-out transistors.
Full 1d-Vg and Id-Vd curves are collected for each of the 6 transistors as shown earlier in
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Figure 3.19. The read static noise margin (SNM) and writeability current (Iw) are measured
for each bit cell. Quality data were collected from 50 chips from the 2 wafers available.
Due to the within-chip stripe pattern (explanations following) and the limited resources,
only 20 cells on the top half of the 2 central columns are measured except for 3 chips,
where all 18 %20 = 360 SRAM cells are characterized.

Figure 3.33 through Figure 3.38 illustrate the average wafer and chip map of the
measured transistor on-current ldsat, read static noise margin RSNM, and writeability
current Iw. Unlike the RO variability, the SRAM transistors and cells do not show strong
across-wafer systematic variations. However, the on-current of the four NMOS transistors
consistently show a significant within-chip stripe pattern that is higher in the top and
bottom rows but lower in the middle. Similar behavior can be observed in the RSNM and
Iw chip map as well (the high/low is flipped for the RSNM). This can be explained by the
fact that both the RSNM and Iw are functions of the transistor threshold voltages and the
relative strength of the pull-down (PD), pull-up (PU), and pass gates/access transistors
(PG). Larger RSNM requires strong pull-down transistors and weak access gates, while to
achieve high write stability, one needs strong pull-up PMOS transistors and weak pass gate
transistors. Notice the conflicting demand on the driving strength of the access transistors
(PG): the within-chip pattern exactly predicts its positive correlation with the writeability
current lw and negative correlation with the RSNM.

In the hierarchical model, the same paraboloid across-wafer systematic variation is
included even though it is estimated to be insignificant, while a half-tube shaped variation
that changes along the rows is included to model across-chip variation (equations 3.16 and
3.17). The decomposition of the Idsat variability shows that the vast majority of the
variation comes from the within-chip random component, while the across-chip systematic
variability is greater than the across-wafer component (Figure 3.43, Figure 3.44). The fact
that the Gaussian random noise dominates the variability of transistor metrics such as on-
current as well as bit cell read/write noise margins naturally leads to the result that the
overall statistical distribution of these measured characteristics is very close to Gaussian
distribution. As shown in Figure 3.45 and Figure 3.46, both the conventional
“Global+Local” model and the hierarchical model are equally good in predicting the
statistics of the measurement data.

Even though the hierarchical model is no more accurate than a simple model when
random variability dominates, decomposing the variability into components still helps
reveal some of the underlying mechanisms in the process. The systematic across-chip on-
current variation only shows up for NMOS devices (pull-down and pass gates), which is
similar to the RO case where the layout-dependence effect is only significant for NMOS
leakage. This can be explained by the large STI surrounding the SRAM test block, as
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depicted earlier in Figure 3.22. As mentioned in Section 3.3.2, the NMOS transistors are
sensitive to stress, in this case exerted by the surrounding STI, while PMOS is insensitive
due to the <100> channel direction. This lines up well with the observation that the closer

to the edge of the array, the greater the NMOS drive current. The Vtlin chip map shown in
shift, leading to the conclusion that the STI stress effect is playing its role via the mobility

Figure 3.36 suggests that this drive-current enhancement is not due to the threshold voltage
enhancement.
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Figure 3.33: Wafer maps of mean on-current for SRAM padded-out transistors:
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Figure 3.34: Interpolated wafer maps of mean on-current Idsat for SRAM padded-out transistors:
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Figure 3.35: Chip maps of mean SRAM padded-out transistor Idsat(T — WP)
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Figure 3.39: Wafer-level Idsat variation decomposition for left pull-down transistor on wafer #2:
I{(—~DWP) = [{(=DWP) 4y + I(=DWP) sz

Wafer #2 Mean |dsat PD1 Across-Chip Systematic |dsat PD1 Across-chip Residual ldsat PD1

B 8 5 8 o =2 5 3

Figure 3.40: Chip-level Idsat variation decomposition for left pull-down transistor on wafer #2:

53



Wafer #2 Interpolated RSNM Wafer #2 Across-wafer Systematic RSNM Waer #2 Across-wafer Residual RSNM

e

10

Figure 3.41: Wafer-level Idsat variation decomposition for left pull-down transistor on wafer #2:
RSNM(—DWP) = RSNM{(—DWP) 4y + RSNM(—DWP) qiyr
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Figure 3.42: Chip-level RSNM variation decomposition for left pull-down transistor on wafer #2:
RSNM(—DWP) = RSNM{(—DWP) 4y, + RSNM{(—DWP) siyr
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Figure 3.43: Histogram of the SRAM pull-down transistor Idsat distribution as well as the systematic
across-wafer, layout-to-layout, random chip-to-chip, systematic across-chip, and random tile-to-tile
variability
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SRAM RSNM Distribution: Within-Chip Random Component
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Figure 3.44:; Histogram of the SRAM bit cell RSNM distribution as well as the systematic across-wafer,
layout-to-layout, random chip-to-chip, systematic across-chip, and random tile-to-tile variability
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Figure 3.45: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical
model for Wafer #2 pull-down transistor Idsat distribution
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Normal Quantile Plot, RSNM
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Figure 3.46: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical
model for Wafer #2 pull-down transistor Idsat distribution

3.4 Summary

This chapter presents the design and measurement results of 90nm and 45nm
technology test chips with variability-sensitized test structures, including ROs, off-state
current measurement circuits, SRAM bit cell arrays, and wired-out individual transistors.
Sampling and measurement plans are designed based on our hierarchical variability model
so that the measurement cost in both time and packaging are minimized, while maintaining
the statistical significance of the results.

Ring oscillator delay and leakage analysis on the 90nm and 45nm test chips
demonstrate significant systematic across-wafer variations in a dome/bowl-like pattern.
Rings with differently designed layout patterns have very similar patterns in their shapes
of across-wafer and across-chip variations, with a parallel shift as a result of the layout
effects. This allows us to capture the variability of the process accurately using an additive
hierarchical model. Compared to the conventional methodology that decomposes total
variation into global (chip mean) variation and local (within-chip) variation, the
hierarchical model is clearly superior in predicting the extreme quantiles of the distribution
of device and circuit performance metrics with the presence of strong systematic variability.

Analysis of the 45nm SRAM bit cell array and its internal transistors shows that the
within-chip local variation dominates the variation profile. In this case, a Gaussian
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distribution is sufficient to describe the variability, and the conventional “Global+Local”
model is just as good as the hierarchical model in predicting the statistical distributions of
transistor and SRAM metrics. Nevertheless, the across-chip variation demonstrates a
systematic pattern as the distance to the top/bottom rail of the STI changes.

While physical inspection was not possible, a variability analysis of the electrical data
still provides some insight into the mechanisms of the randomness. The strong across-wafer
systematic variation is most likely related to the gate critical dimension variation across the
wafer due to process variation during post-exposure bake or plasma etching. Starting with
the 45nm technology, strained silicon plays a significant role in the layout-dependent
component, which may be in the form of both threshold shift and mobility enhancement.
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Chapter 4

Statistical Compact Model
Parameter Extraction

4.1 Introduction

The uncertainty in the manufacturing process introduces statistical variations of
MOSFET characteristics, which is a major challenge to process engineers and circuit
designers. While many methods are used to reduce process variations, variation will never
be completely eliminated. The ability to accurately predict the statistical characteristics of
manufactured transistors is the key to optimizing circuit design for performance and
parametric yield. Because MOSFET transistor characteristics are always abstracted by
compact SPICE models, transistor variability will naturally be translated into compact
model parameter variations. A variety of studies have been done to explore the possibility
of accurately modeling statistical transistor behavior with compact model parameters [19].
In this chapter, we will leverage the statistical compact model parameter extraction
procedure with automated parameter selection and the flexibility of measurement data
availability.

The basics of compact model extraction will be introduced first. Then, we will explain
the stepwise parameter selection methodology. The effectiveness of this methodology will
be examined by applying it to the EKV model as an example of simple one-step extraction
and to the industrial standard PSP model as an example of sequential extraction.

4.2 Statistical Compact Model Parameter Extraction

4.2.1 Compact Model Parameter Extraction

Once the required transistor I-V data or C-V data are acquired, one can perform either
analytical regression or numerical optimization to estimate the compact model parameters.
This procedure and the full set of compact model parameters are commonly referred to as
compact model parameter extraction [73] and the “model card” respectively. For each
device, one corresponding model card will be extracted from its I-V data.

The analytical method uses linear approximations of model equations to represent
device characteristics in the limited operation space of devices [73]-[75]. Linear least
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squares regression is applied to the linearized equations to estimate the parameters.
Parameters estimated via this method usually have a clear physical meaning, as well as
strong sensitivity in the specific operation space. As a result, only a few key model
parameters can be extracted using the analytical method.

The numerical optimization method, on the other hand, estimates compact model
parameters using non-linear least-square optimizations rather than linearization. Given a
reasonable set of initial guesses, a set of model parameter values can be estimated by
minimizing the error between the model and the measured data. However, the problem is
underdetermined: in general, innumerable combinations of parameter values fit the data
equally well, and many of those combinations are physically unrealistic. Imposing
constraints on the optimization problem can ensure that the results are physically realistic
and can reduce, but not eliminate, the indeterminacy.

In practice, a full-fledged compact model is usually generated using a combination of
pre-known technological process data, the analytic method, and the numerical optimization
method. Model parameters that are directly related to process conditions, such as Cox (gate
capacitance) and Xj (junction depth), will be acquired from the process condition of the
technology and remembered for the remainder of model generation. The analytic extraction
method, while it is only applied directly to the initial analysis of the most dominant
parameters, provides a guideline for a “divide and conquer” approach. Virtually every
compact model has a different set of parameters specifically designed to model device
behavior in various subsets of device operation space, such as the sub-threshold region, the
linear operation region, or the saturated operation region, in the case of MOSFET
transistors. Dividing the overall optimization problem into smaller problems and solving
each numerically in its smaller parameter space, reduces the computational burden: each
subproblem has fewer model parameters and smaller datasets relevant for these parameters.
This is especially important for extracting model parameter distributions for a large number
of devices, and it tends to produce estimates of the model parameters that are physically
more reasonable.

We focus here on improving the automated numerical optimization procedure so that
we not only achieve a good fitting quality, but also a sound extraction quality. Defining the
fitting quality is simple: the goodness of fit can be quantified by in a standard way, such as
sum of the squares of the residuals. The extraction quality, on the other hand, is trickier to
define: we want the extracted compact model parameters to have statistical distributions
centered at physically realistic values; the distributions should not be so dispersed that the
extreme quantiles are physically unrealistic; the correlation structure among model
parameters shall be as simple as possible; and we want the fewest possible model
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parameters to be fitted for each device, as long as both fitting quality and extraction quality
are guaranteed.

4.2.2 Basics of Optimization

Compact model extraction can essentially be established as the following non-linear
optimization problem. For the total of n compact model parameters (p4, p,, - ., Pn) that need
to be extracted, we can define a model parameter vector p as:

p= [pliPZ' "'!pn]T (41)

The possible combinations of values for n model parameters is called an n-dimensional
parameter space. The compact model equations relate functions defined on the parameter
space. Assume f(p) is such a function whose value (either a scalar or a vector) can be
physically measured from actual devices. We also have a constant vector, y, which
represents such measured characteristics (I-V or C-V data). Select a nonnegative, real-
valued, continuously differentiable objective function F(p) to measure the discrepancy
between the model function and the data. Then, the optimization problem can be defined
as finding an optimal value, p*, so that F(p) reaches its minimum value, F(p™).

F(p) = min F () (4.2)

The most popular choice of objective function for model parameter extraction is the
sum of squared residuals, which leads to least squares estimation. Suppose the model
equation f(p) is an m-dimensional function of the n model parameters. The least-squares
objective function, F(p), is then defined as follows:

Fp) =3 Y win@)F
i (4.3)

wilfi(p) — yil?

-

=1

Here, f; and y; are the ith component of the model equation and the measurement
data, respectively; r; = [f;(p) — y;] is the fitting residual or error function; and w; isthe
weighting factor for the ith data point. Weighting factors can be increased for specific
operation regions in which accurate fitting is especially important.
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Assume that first and second partial derivatives exist for all the m components of the
n-dimensional objective function F(p). Its first three terms of the Taylor series expansion
are:

- OF 1 0%F ,
F(p+8p) = F(o) + ) =—Ap;+5 > > ———ap;ap, + 0(I14pII*)
L 0p; 24 dp;op,
j=1 j=11=1 (4.4)
1
= F(p) + VF(p)"Ap + 5 Ap"V2F (p)Ap + O (lIApI1*)
Here, VF(p) isthe gradient of F(p):
OF OF  OF\"
VF = ) AL ] (45)
®) dp, 0pz  Opy
And V2F(p) is the second derivative of F(p), also called the Hessian matrix:
[ 0%F 0%F
BN 0p10pn |
H(p) = V2F(p) = | | (4.6)
| 0%F 0%F |
[9p0p: Opndpa)
For the simple case, in which w; =1 forall i =1,..n:
1 m
Fo) =5 ) [V (47)
i=1
Thus, by the chain rule,
OF _ 1~_ 2rdr, (48)
ap] 2 = apj
[arl 6r1]T
dp1 Opn
VF(p)=|: =~ [ r({) (4.9)
07y, 01y,
dp1 Opn
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2 m m 2
0°F aT'i ari T'l'a 4]

= —+ 4.10
Opj0p; £udp;jdp, £ dp;op; (4.10)
=1 =1
The Jacobian matrix of r(p) is defined as follows:
[arl 07‘1]
apl apn
J®=|: =~ (4.11)
o, o,
lapl aan
Then, in the vector form, we have the following:
VE(p) =] (®)"r() (4.12)
m
HP) = 1@ 0) + ) 1@Vr(p) (413)
i=1

If the residual function r(p) is negligible, we can obtain an approximation of the
Hessian matrix virtually for free because its leading term can be calculated simply from
the Jacobian matrix:

H() ~ ()] () (4.14)

When the model extraction problem is posed as a non-linear least-squares problem,
the most widely used optimization method is the gradient-based method [73], [76]. This
method searches for a local minimum along the gradient of F(p) using a finite step size.

We will use Newton’s method as an example. Assume the Hessian matrix is positive
definite with the second term negligible. The local model around p is then as follows:

Fp +8p) = F(p) + VF () Ap +3 0pV2F () p (4.15)

Taking the derivative over step size Ap for both sides of this equation, we obtain the
following:

VE(p)T + V2F(p)Ap =0 (4.16)
This is the necessary condition for the local minimum with all possible Ap. The local

optimal step size Ap can then be calculated as follows:
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Ap = —[V*F(p)]~'VF(p) (4.17)
Or

Ap = —H(p)™'VF(p) (4.18)

With the new parameter vector p + Ap, we will have a new decreased objective
function, F(p + Ap). Remember the assumption that H(p) is positive definite:

1
F(p +Ap) = F(p) — EAPTVZF (p)Ap < F(p) (4.19)

Repeat this procedure until the changes in objective function are smaller than the
predetermined tolerance value €. The entire flow can be summarized as follows:

Start from an initial parameter, vector p°.

At the kth iteration, calculate the search step, Ap* = —H(p*)~1VF(p*).
Calculate the next step, p**1 as p* + Ap*.

If |F(p*) —F(p*™)| > €, go to Step 2. Here, € is the predetermined
tolerance.

5. Terminate the calculation when |F(p*) — F(p**1)| < e.

el

To calculate the step size of Newton’s method, —H (p*)~VF (p*), one would need
to calculate the inverse of the Hessian matrix, which requires the invertibility of
J(®)T](p). There are various modified optimization methods, including the Levenberg-
Marquardt method [77], [78]. This method regularizes the J(p)TJ(p) matrix by adding a
diagonal matrix, to avoid numerical instability. Trust region reflective methods [79], [80],
place bounds on step sizes to ensure that the quadratic approximation is accurate at each
iteration. We will use non-linear least-squares as described in this section for the rest of the
thesis.

4.2.3 Backward Stepwise Parameter Selection

Industrial standard MOSFET compact models such as BSIM [11] and PSP [12] have
hundreds of parameters. However, not every parameter is fitted for each device, due to the
high computational cost involved in optimization problems with large numbers of variables.
Furthermore, the redundancy of model parameters causes numerical instabilities for
(unregularized) non-linear least-squares. Therefore, it is helpful to reduce the number of
model parameters to be extracted so that only essential parameters are fitted, without
sacrificing the goodness of fit.
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We adopted a backward stepwise selection procedure. Starting with the n parameters
of the compact device model, we fit the measurement data curves by non-linear least-
squares. Suppose we have a criterion function that represents the “goodness” of each of the
extracted parameters, or the so-called extraction quality. As long as the current round of
extraction provides decent fitting quality, the “worst” parameter will be removed from the
extraction and be set to a proper constant value. With the reduced parameter set containing
n — 1 parameters, we repeat the same procedure until the fitting error begins to increase
significantly. This procedure is illustrated in Figure 4.1.

Extract all eligible parameters in the
current step.

Check extraction quality. Find the
worst parameter.

Check fitting quality. Continue if
there is no significant deterioration.

Remove the worst parameter from
extraction and set its value to default
or the median of its extracted value.

Figure 4.1: Stepwise parameter selection procedure for single-step optimization.

The key to backward parameter selection is the definition of the extraction quality
criterion. While the fitting quality can be defined simply as the sum of squares of the fitting
error, it is not as straightforward to define the proper extraction quality. Ideally, it should
represent how accurate the extracted parameter is. However, in practice, there is no “true
value” of model parameters from real devices that can be used for comparison. Instead, we
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must define the fitting quality criterion with metrics that can be calculated or observed from
the extraction result itself.

From the perspective of statistical simulation, here are a few characteristics of the
extraction results to consider: We would like the statistical distribution as well as the
correlation structure assigned for each of the model parameters to be as simple as possible.
For example, a normally distributed Vth with a reasonable median value is preferred over
a multimodal distribution. The range of variation should not be too wide either, because it
may carry non-realistic values at the extreme quantiles of the distribution. These examples
are illustrated in Figure 4.2. A multimodal distribution often indicates that there are two or
more distinct device behaviors in the dataset. A wide distribution, on the other hand,
indicates that either the sensitivity of the data to this parameter in the operation region is
weak; or that the parametrization is deficient. For instance, if key parameters are missing,
this particular parameter must carry all the variations that should be accounted for by
another parameter. Lastly, we prefer model parameter correlations that can be reasonably
captured by a single correlation coefficient rather than strong systematic dependence, as
shown in Figure 4.3. The latter indicates strong parameter interactions in the model.

Good Multimodal Too wide

A ME-§

Figure 4.2: “Good” vs. “Bad” parameter distribution.
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Figure 4.3: “Good” vs. “Bad” parameter correlation.

To automate parameter selection, we need quantitative rather than qualitative measures.
By experimenting with parameter extraction using simulated transistor |-V data (to be
presented in Sections 4.3 and 4.4), we found the normalized confidence interval (Cl) of the
extracted compact model parameters to be a good proxy for the extraction quality of the
parameters. More specifically, for every model parameter, an estimate u and its half-
width CI can be obtained via non-linear optimization for each device under test. We define
the normalized confidence interval as CI/u. If the 95% CI for a parameter does not contain
zero, in other words, |C1/u| <100%, then we can reject the hypothesis that the corresponding
model parameter is equal to zero at 5% significance (on the assumption that the underlying
stochastic model holds). To use normalized CI as the extraction quality criterion for our
parameter selection problem, we compare the distribution of the normalized CI of each
model parameter at a given quantile, often the median, and remove the parameter with the
largest normalized CI from future parameter extraction.

More insight can be obtained by looking at the math. Let us assume that we have the
same parameter extraction/optimization setup as described in Section 4.2.2 and that the
extracted parameter is p* = [p1,p5, .-, Pn]. Subject to typical assumptions about the
normality and independence of the underlying random variables, the half-width of the
(notional, not actual) confidence interval of the ith parameter, p;, can be estimated [81],
[82] by the following:

Cl; = tl_g,N_n o (4.20)
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where t,_a

v_n IS the critical value of Student’s ¢ distribution and g; is the estimated
>

standard deviation of the extracted parameter. Thus, for a given level of significance (i.e.,
0.05) and degrees of freedom, the length of confidence interval is proportional to the
parameter standard deviation, which we treat as an alternative extraction quality criterion
in the following discussions.

In vector form, we have the following [83]:
o?(p") = o*(r") - diag/ ()] ()] (4.21)

Here, r* is the fitting error and J(p*) is the Jacobian matrix by the end of the non-
linear least-square optimization. If the Jacobian matrix is singular or close to singular, then
one or more variances of the extracted parameters will be infinite or unrealistically large,
thereby indicating poor extraction quality.

The confidence interval also provides a measure of the residual after the stepwise
parameter deletion. To illustrate this, we examine the local Taylor expansion in the final
optimization step. Assume that Ap is the optimal step calculated at p, and that J; is the
ith column of the Jacobian matrix, J(p). Then, we have the following linear approximation:

y—f(®) =14p1 + 2Ap, + -+ Jdpy + 1 (4.22)

Suppose the nth parameter, p,,, is to be excluded from the extraction. Then, the
contribution of the term J,,Ap,, must be compensated for by the other n — 1 parameters.
As long as the Jacobian matrix is non-singular, one can always solve the linear regression
problem.

[]1,]2, -:-']n—l]k =Jn (4-23)

Here, k = [k, ks, ..., k,_1]7 is the fitting coefficient. Assuming that y, is the
fitting residual, we can re-write Equation 4.22 as follows:

n—1
y—f(p) = J14p1 + J24py + -+ Ju_14pp—1 + (Z kiJ; + Vn) App + 1
i=1 (4.24)

= ]1(Ap1 + klApn) +]2(Ap2 + kZApn) + e +]n—1(APn—1 + kn—lAPn)
+ (r + v,4B,)

The smaller Ap,, is, the less of an impact from the removal of p,, on the rest of the
model parameters; the parameter p;, whose corresponding J; is most parallel to J,, (k;
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being the largest of ky, ks, ..., kn,—1), Will be affected the most. If J,, can be very well
approximated by the linear combination of J;,/,, ..., J.—1, then the removal of p, will
only increase the fitting error by a small amount due to the small y,,. Furthermore, the
variance of the extracted parameter, p;, can be written as follows [14]:

o?(p) = o?(r) x (4.1)

SS(rd)
where SS(y;) is the sum of squares of the Jacobian fitting residual, y;. This tells us that
the parameter with the largest variance also happens to be the one that can be best replaced
by the other parameters. This suggests that the elimination of the parameter with the largest
variance is likely to introduce the smallest increase in fitting error. On the other hand,
deleting some model parameters may introduce biases to the estimated values of the
remaining parameters.

4.2.4 Sequential Extraction

As stated in section 4.2.1, there are numerous benefits to divide the full model
parameter extraction into smaller optimization problems. These range from a better
representation of physical meanings to less computational cost. Thus, most model
extractions are performed sequentially. During sequential extraction, parameters are
estimated in a pre-defined series of localized optimization steps, and each step only fits a
subset of parameters to a subset of measurement data. The parameter extraction completes
as soon as the last optimization step is done.

There are several strategies for combining stepwise parameter selection with
sequential extraction. In the conventional setup, the parameters to be extracted at each step
are predetermined by a guideline. In the stepwise parameter selection scheme, the
parameters to be extracted are to be determined on the fly for each step. Thus, for the model
parameters involved in different steps, one has several different options for conducting the
extraction. A simple approach, the greedy algorithm, only estimates a parameter once, then
holds it constant while other parameters are estimated. Greedy algorithms may diverge in
some problems unless they are regularized. Instead, we start the parameter selection
algorithm by re-fitting all the parameters included in the model at each step. The members
of “extractable” parameters and their estimates tend to vary by step. During a given
extraction step, whenever a parameter is discarded by the parameter selection algorithm,
its estimates will be reset to either previous estimates from the last extraction step where
the parameter is selected, or the median estimate from the current parameter selection step.
This way, we can keep refreshing the estimates of relevant parameters when new datasets
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become available in subsequent extraction steps without destroying the best estimates
found previously for the other parameters.

Another inherent issue of sequential extraction is that the fitting quality may
deteriorate after a large number of steps. To address this issue, after we go through all the
pre-defined extraction steps for the localized optimization problem, we revisit the full,
undivided optimization problem. Every parameter that has been selected at least once
during the sequential extraction will be re-fitted using the combined datasets from all the
smaller extraction steps, using their latest estimates from the sequential extraction as initial
guesses. Because each parameter is already optimized for its most relevant operation region,
this final optimization tends to be much faster than the same extraction with an un-
optimized initial model card. Parameter estimates from this global optimization become
the final model cards. This procedure is illustrated in Figure 4.4.

Step-i: Run stepwise
paramter selection.

No — Set the removed
parameter to the
median of its extracted

Has the parameter to distribution.
be excluded been
extracted before? Yes — Set the removed

parameter to its
previously extracted
value.

Repeat for next step in
the sequence.

After all steps are
completed, run global
opitmization with all
extractable parameters.

Figure 4.4: Sequential parameter extraction.
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4.3 Simulated Experiment with the EKV Model

4.3.1 EKV Model Introduction

The EPFL-EKV MOSFET model is a compact SPICE simulation model built on the
fundamental physical properties of MOS transistors [29]. It is relatively lightweight
compared to models such as BSIM or PSP, with only a few tens of key parameters to cover
the full operation space of MOSFET transistors. We chose to use the EKV V2.6 model as
the subject of our single-step parameter selection and extraction study.

The parameters of the EKV model can be divided into several categories: process-
related parameters, which are the physical dimensions directly defined by the fabrication
process; intrinsic model parameters, which are the electrical properties of the transistors;
and parameters that describe specific device physics effects, such as channel length
modulation, charge sharing, reverse short-channel effects, impact ionization, temperature
dependence, matching, and flicker noise [29]. In our experimental setup, ten parameters
were chosen for the purpose of curve fitting. The parameter names, physical meanings, and
default values are listed in Table 4.1.

Name Description Units Default
DW Channel width correction m 0
DL Channel length correction m 0
VTO Long-channel threshold voltage \Y 0.5
GAMMA Body effect factor VvV 1.0
PHI Bulk Fermi potential (2> \Y/ 0.7
KP Transconductance parameter A/V? 50.0E-6
EO Mobility reduction coefficient Vim 1.0E12
UCRIT Longitudinal critical field Vim 2.0E6
LAMBDA Depletion length coefficient - 0.5
LETA Short channel effect coefficient - 0.1

Table 4.1 Candidate EKV model parameters for extraction [29].
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4.3.2 Experiment Setup

We test the effectiveness of our parameter extraction methodology with the following
simulation experiment. Assuming we have an ideal EKV model that perfectly captures the
behavior of the real world CMOS transistor, the variations of transistor characteristics can
then be entirely explained by the variability of the compact model parameters. The goal of
capturing the transistor variability with the statistics of the compact model parameter then
becomes equivalent to extracting the true values of the compact model parameters that
generate the transistor’s electrical 1-V variations.

The first step is to generate random I-V data with the EKV model. We selected 10
parameters (as listed in 4.1) to carry all the variation of the transistor. All the other EKV
model parameters were set to nominal values appropriate for the technology node this
experiment represents. Absent information regarding the correlation among the model
parameters, we chose to draw the ten model parameters from a multivariate normal
distribution with independent components. The standard deviation of each parameter was
taken to be 3% of the parameter's nominal value. A total of 100 model cards (whose
parameter distribution/correlation is shown in Figure 4.5) were generated. They will be
referred to as the “original model cards.” For each EKV model card, a set of I-V curves
were simulated for NMOS W/L = 0.5/0.15 pm using the HSPICE built-in level-55 EKV
model. The transistor terminal bias space was chosen so that the gate and drain bias
voltages are equally spaced from 0 to Vdd with zero body bias (Figure 4.6). This provides
good coverage of the main transistor operating regions, which will suffice for our study of
a single-step optimization with the EKV model. The on/off current distributions are shown
in Figure 4.8. The 30 variation of the on current is about 13%, which is a reasonable
approximation of the variation profile in a well-controlled modern silicon process.
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Figure 4.5: Randomized EKV model parameters as the base of the transistor I-V.
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Figure 4.6: Transistor I-V characteristics generated from one EKV model card.
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4.3.3 Stepwise Parameter Selection

The stepwise parameter selection procedure illustrated in Figure 4.1 was applied to the
simulated data. Starting with all N = 10 model parameters under consideration, a non-linear
least-square optimizer with a trust region reflective algorithm [79], [80], [84] is used to fit
the I-V curve sets simulated for this experiment. After the first round of extractions, we
rank the normalized confidence intervals of the parameter estimates as indicator of the
extraction quality of the model parameters. The parameter with largest normalized Cl is
set to the median estimate from the current fitting step and removed from the next round
of curve fitting. By repeating this process, at the ith round of extraction, only N —i + 1
parameters are fitted to the simulated 1-V curves. At the end of each round of extraction,
the fitting quality is examined, comparing the fitted I-V curves to the original simulated
data, as shown in Figure 4.12. The stepwise parameter removal process stops when the
fitting quality begins to degrade significantly.

Using the simulated I-V curves, the described methodology demonstrates very good
agreement with visual inspections of the extraction and fitting quality. Table 4.2 lists the
90" percentile of the normalized notional confidence interval after each round of parameter
selection and extraction. The removed parameter after each round is labeled with a “-” for
all the following steps. As Figure 4.10 shows, with all ten model parameters included,
several pairs of model parameter estimates are correlated, notably gamma vs. phi, phi vs.
leta and dl, and vto vs. leta and dl, even though the parameters for the model cards were
generated independently. When the stepwise parameter selection procedure continues,
these artificial correlations go away once phi, leta, and dl are excluded from the
extraction. Comparison between extracted compact model parameters and the original data
set (Figure 4.10) also confirms the improvement of the accuracy of the extraction. The
removal of the first three parameters improves the fit between the remaining model
parameters with their values in the original model card, as measured by correlation (without
regard for scale). For example, correlation of gamma improves from a correlation
coefficient of 0.62 to 0.83 after the third round of parameter removal, and dl improves from
0.44 to 0.78. By now, the remaining seven parameters all have decent correlations with
their true values assigned by the experiment. However, since we also want the number of
model parameters used in extraction to be as small as possible, we continue the stepwise
parameter removal until only one parameter remains. The removal of dl and gamma now
begins to decrease the accuracy of theta, whose correlation coefficient with the original
model card drops from 0.995 after round 3 parameter removal to 0.98 after round 4, and
0.915 after round 5. The confidence intervals for all the remaining parameters, however,
only begin to increase after the fifth round of parameter removal (gamma), as shown in
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Figure 4.9. The sum of squares of the fitting error only starts to rise after the elimination
of gamma (Figure 4.13), which is consistent with visual inspection of the model to I-V data
comparison, as shown in Figure 4.12. The further removal of model parameters only
inflates the confidence intervals of the remaining parameters and reduces their correlation
with the original model card, while exponentially increasing the sum of squares of error
(SSE).

The simulations suggest that stepwise parameter selection using confidence intervals
as measures of extraction quality provides a reasonable approach to determining a small
set of parameters that is satisfactory in terms of both extraction quality and fitting quality.
In this specific experiment, the optimal parameter group will include vto, gamma, kp, theta,
ucrit, and lambda. Further reduction of model parameters hurts the fitting quality and the
extraction quality.

Round vto gamma phi kp theta ucrit lambda leta dw dl

1 0.49% 7.07% 12.0% 0.43% 0.56% 0.31% 0.33% 8.05% 34.7% 5.14%
2 0.43% 6.31% 10.7% 0.39% 0.52% 0.28% 0.32% 7.29% - 4.61%
3 0.22% 0.74% - 0.30% 0.47% 0.18% 0.21% 6.88% - 2.61%
4 0.02% 0.59% - 0.24% 0.37% 0.13% 0.14% - - 1.96%
5 0.01% 0.22% - 0.03% 0.18% 0.05% 0.03%

6 0.09% - - 0.27% 1.58% 0.42% 0.25%

7 0.11% - - 0.22% - 0.65% 0.42%

8 0.15% - - 0.20% - - 0.48%

9 0.56% - - 0.77%

Table 4.2: 90th percentile of normalized confidence intervals after each round [29].

78



40.00%

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

1.00%
0.90%
0.80%
0.70%
0.60%
0.50%
0.40%
0.30%
0.20%
0.10%
0.00%

Confidence Interval vs. Number of Excluded
Parameters

2 4 6 8 10

—@—vto —@— gamma —@®— phi —— kp —@— theta
—@—ucrit —@=lambda —@—leta —@— dw —@—dI

Confidence Interval vs. Number of Excluded
Parameters (zoomed in)

4 5 6 7 8 9 10

—&—vto —@— gamma —@®— phi —o—kp —@—theta
—@—ucrit —@=—lambda —@—leta —@— dw ——dl|

Figure 4.9: Changes of normalized confidence interval for all model parameters after each round of

stepwise parameter selection and extraction.
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Figure 4.11: Parameter estimates vs. original randomized model card after excluding 0 to 5 parameters

from the extraction.
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Fitting Error vs. Number of Excluded Parameters
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Figure 4.13: Fitting error increases significantly when more than four parameters are excluded from the
optimization.

4.4 Simulated Experiment with PSP model

4.4.1 PSP Model Introduction

The PSP model is an advanced surface potential based compact SPICE model [85],
[86] and one of the two industrial standard models of today (the other is the long-standing
BSIM model [11]). It includes all relevant physical effects, including mobility reduction,
velocity saturation, DIBL, gate current, and STI stress to model today’s deep sub-micron
CMOS technologies [87].

The PSP model has two sets of model parameters: the global-level parameter set,
which describes entire space of device geometries, and the local-level parameter set, which
models transistors with specific device dimensions. Since we are only extracting
parameters of transistors of a single size, we focus on local-level parameters. According to
the recommended local parameter extraction procedure in the PSP manual [87] and the I-
V data available in the experiment, 16 parameters are chosen as candidates for our
experiment in parameter extraction. The parameter names and their physical meanings are
listed in Table 4.3.
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Param. Description Param. Description

vfbo Geometry-independent flat-band cso Geometry-independent Coulomb
voltage scattering

nsubo Geometry-independent substrate doping | xcoro Geometry-independent non-

universality
dphibo | Geometry-independent offset of ¢p rswl Source/drain series resistance
cto Geometry-independent part of thesato | Geometry-independent velocity
interface states factor CT saturation
cfl Length dependence of CT alpl Length dependence of CLM pre-factor
ALP
uo Zero-field mobility at TR alplll Length dependence of CLM

enhancement factor above threshold

xmueo | Geometry-independent mobility alp2l1 Second-order length dependence of
reduction coefficient ALP1
themuo | Mobility reduction exponent vpo CLM logarithmic dependence

Table 4.3: Candidates of EKV model parameters for extraction [87].

4.4.2 Experiment Setup

In addition to re-validating our findings with EKV model extraction, we want to test
our sequential parameter extraction procedure. Thus, instead of using all the generated 1-V
data points in one run with all parameter candidates, we instead divide the data into three
I-V curves: Id-Vg linear (Vds = 0.1V, Vgs = 0,...,1V), Id-vd (Vgs = 1V, Vds = 0,...,1V),
and Id-Vg saturation (Vds = 1V, Vgs = 0,...,1V). As illustrated in Figure 4.4, a full
parameter extraction will be performed for each of the three curves in the exact sequence
in which they were introduced. The parameter values extracted in the earlier steps are used
as the initial values for the next step or are set to a constant if the parameter is excluded
later.

As in the EKV simulation experiment, we drew the 16 parameters from a multivariate
normal distribution with independent components, taking the standard deviation of each
parameter to be 3% of the parameter's nominal value. A total of 50 original model cards
were generated, and their parameter distributions/correlations are shown in Figure 4.14.
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For each of these randomized model cards, three I-V curves, as described above, are
simulated (Figure 4.15) for a NMOS transistor with W/L = 0.2/0.055 pm. The electrical
simulation is performed using HSPICE with a built-in level-69 PSP model.

Randomized Model Parameters

18
2 i w | & 3 @ & & | % i | % & & | owe | @
'E 12 i
0}
a
33 - £ - - - 3 . | W iy i L4 - - s kS
1]
0%s
S
= % & = % & & & 2 i £ # B il E
u i _
i
g]?ﬁ
6”‘2 e # " @ e #* & | & =%, o % #* £ e 3
015
0
g oo * o 2 5 L = | B & ¥ E % = %
g
07
T3 %
3 @ 4 G 3 & 1 -2 EAE 22 # § & & s = 34
05
o1
]
S0 £ e | & i W | & 0 = * + # | o e
0§
g
£ e W o % & o3 E 3 L4 % G £ ® o bl E
£ i
Bﬂﬂ
06
Dn: " ™ e . o i 2 e e g5 e & - - P g
pou ; . .
goe| = 4 T | % il o £ Lold e : % E: 5
% 01 - .
|
%10 s i = * & s % 5ol E i : & & i %
g
EL:
w1 - - . - 2 s P i | o P T - - . =
g i
15
S
2‘]]3 L L e - - £ - s L i £ ® £ i =
= i
il
a7
= & # . k3 W E- E E S G0 ¥ # 5 #
a -1
w
gl
el K| F | & | E | B |2 |8 | ¥ |E %R | e b | % | #
T U
o 1B
00K agi ] BT £ & =Y & EE 2 R g : ] p g, w; .
> o
12 1 082 3 4004 D05 DOMI5 02 056 8 1005 05 0705 08 1 2 26 304 06 DBLI2 013 014100 10 12005 1 15002 003 00401 00150004 045 Q5004 006 0%

vibo  nsuber” dphibo  clo cfn® w0 mueo themuo cso  xcoro  rswl  thesafo  alpl  alptt  ap2l  wpo
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Figure 4.15: Target I-V data for the three extraction steps

4.4.3 Stepwise Parameter Selection in Sequential Extraction

For Step #1, the same backwards deletion scheme using the normalized length of
confidence intervals as the selection criterion is applied to the simulated 1d-VVg (linear)
data. Without listing all the details, we show the results from the stepwise parameter
selection in Figure 4.16 and Figure 4.21. The stepwise parameter selection procedure
located six good parameters for the data fitting in Step #1. Notice that with all 16
parameters in the extraction, one of the final “good” parameters, cto, actually correlates
poorly with the original model card. However, when the algorithm stops after excluding
ten parameters, its correlation is greatly improved. This, again, demonstrates the
effectiveness of our parameter selection methodology.

The 50 extracted model cards from Step #1 are then used as the initial values to begin
the extraction of Step #2. The same stepwise parameter selection is carried out, except that
the removed parameters are now set to their previously extracted values (if they are
available). The algorithm stops after removing ten parameters (Figure 4.16). Three of the
remaining six parameters have already been extracted from Step #1, namely vfbo, uo, and
rswl. We then propagate the newly extracted model cards to the Step #3 extraction. Again,
the stepwise parameter selection algorithm will provide us with a set of seven parameters
to be optimized (Figure 4.17). This time, five out of the seven remaining parameters—
including vfbo, cto, uo, themuo, and rswl—have already been extracted at least once in the
earlier steps. The inclusion of previously optimized parameters is important to obtain an
accurate estimation of the newly extracted parameters. Otherwise, the fitting and extraction
quality suffer.
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Finally, combining the simulated 1-V data from all three steps, we ran a global
optimization with all 11 model parameters that were extracted at least once during the three
sequential steps. Because each of these parameters was already well-calibrated during the
sequential step, the global optimization converged very quickly. Thus, we guaranteed that
optimizations occurring later in the sequence do not decrease the fitting quality of earlier
steps. The comparison between the final model cards and the cards after the Step 3
extraction is shown in Figure 4.20.
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Figure 4.16: Parameter estimates vs. original randomized model card after excluding 0, 7, 10, and 11
parameters from Step #1 extraction.
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Figure 4.17: Parameter estimates vs. original randomized model card after excluding 10 parameters from
Step #2 extraction. Three of the six remaining parameters were extracted in Step#1.
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Figure 4.18: Parameter estimates vs. original randomized model card after excluding nine parameters from
Step #3 extraction. Five of the remaining seven parameters were extracted (at least once) in Step #1 and

Step #2.
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Figure 4.19: Parameter estimates vs. original randomized model card after global optimization with all

previously extracted parameters and I-V data from all three steps.
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Figure 4.20: Model cards after global optimization vs. model cards after Step #3.



Fitting Error vs. Number of Excluded Parameters
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Figure 4.21: Fitting error increases when more than 10 parameters are excluded from Step #1 optimization.
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Figure 4.22: Fitting error increases significantly when more than 10 parameters are excluded from Step #2

optimization.
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Fitting Error vs. Number of Excluded Parameters
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Figure 4.23: Fitting error increases when more than nine parameters are excluded from Step #3
optimization.

4.5 Summary

In this chapter we used non-linear least-squares to estimate compact model parameters.
We proposed a backward parameter selection procedure that uses the normalized length of
notional confidence intervals as the criterion for parameter removal. Simulated
experiments are carried out with an EKV model as an example of single-step extraction,
and a PSP model is used as an example of sequential parameter extraction. In simulations,
stepwise parameter selection is highly effective when the target 1-V data can be fully
captured by the compact model and it works very well with the existing sequential
parameter extraction procedure.
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Chapter 5

Statistical Extraction and Modeling
with Experimental Silicon Data

5.1 Introduction

The statistical compact model parameter extraction methodology proposed in Chapter
4 is applied to the transistor 1-V data experimentally collected from one of the 45nm SRAM
test chips. The model parameters for extraction will be determined for the EKV model as
well as the PSP model by running the stepwise parameter selection procedure over a subset
of transistors available for both models. The full model parameter distributions will then
be estimated from all the SRAM transistors. The hierarchical variability model is fitted to
the parameter estimates to decompose device variability into systematic and random
components. The hierarchical variability model is then compared to the conventional
“Global+Local” variability model by examining how representative the device electrical
metrics generated by each approach compare to the experimental measurement.

5.2 Measurement for Parameter Extraction

As observed in Chapter 3, the SRAM padded-out transistors do not have much across-
wafer systematic variation; in that situation, the hierarchical model essentially reduces to
the conventional “Global+Local” model, in which chip-to-chip variation is represented by
a normal distribution (or log normal, in the case of leakage). On the other hand, there is
clear evidence of systematic across-chip variation in both the transistor electrical metrics
(such as Idsat) and the SRAM bit-cell read/write noise margins (such as RSNM and Iw). As
a result, we decided to use the measured data from a single chip in our statistical compact
model parameter extraction methodology and to demonstrate the hierarchical model.

The bit-cell transistors chosen for parameter extraction come from the SRAM test
array on a chip near the central position of wafer #2, as shown in Figure 3.23. The SRAM
test array contains 360 bit cells arranged into 18 columns by 20 rows. For each of the six
transistors of a bit cell, a set of I-V curves are experimentally measured with Vgs ranging
from 0 to 1V at a step size of 0.02V and Vds ranging from 0 to 1V at a step size of 0.1V (a
finer Vds step size of 0.02V is enforced for Vgs = 1V). Figure 5.2 shows an example of the
I-V characteristics of one of the pull-down transistors (PD) on the test chip. Depending on
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the extraction flow for each compact model, either the complete set of measured I-V or a
subset of the data will be used for the model parameter extraction. The measured current
in the subthreshold region [88] is much higher than expected because the off-state leakage
current from the many switching network transistors also contribute to the measurement.
This is a known weakness of our experiment, and it will significantly limit the accuracy of
the model extraction, especially in the subthreshold operation regime.

Wafer #2
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Figure 5.1: Wafer maps of SRAM |-V and read/write margin measurements: light tile — chips measured;
dark tile — chips used for statistical parameter extraction.
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Figure 5.2: I-V measurement data from a sample pull-down transistor on the selected die. The left plot
shows the Id-Vd with stepped Vgs, and the right plot shows the 1d-Vg with stepped Vds.

5.3 Parameter Extraction with EKV Model

5.3.1 Parameter Extraction

As described in Chapter 4, we chose ten major parameters from the EKV V2.6 model
as candidates for parameter extraction, as listed in Table 5.1. From the prior simulations,
we learned that DL and DW are among the first to be excluded. Thus, to save computing
time, we chose to exclude these two parameters from the extraction first. The remaining
eight parameters will go through the stepwise parameter selection procedure as previously
demonstrated using the relative confidence interval (confidence interval normalized by the
corresponding extracted parameter value) as the criterion for extraction quality and
parameter selection. The target function is a subset of the complete |-V data measured, with
Vds ranging from 0.1V to 1V and Vgs from OV to 1V with a step size of 0.1V (Figure 5.3).

The initial extraction results with eight parameters (or two excluded parameters) are
shown in the top half of Figure 5.4, Figure 5.5 and Figure 5.6. Each figure is combining
the left and right copies of the same type of transistor; that is, pull-down, pass-gate, or pull-
up transistors together, because they are physically very similar devices and highly
correlated to each other due to the close physical placement. As we can see, not only do
most parameters have a wide distribution and hitting the optimization boundaries
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frequently, many of them are also have large correlations with each other, resulting in
estimated values that lie in two or more clusters, in the case of UCRIT and LAMBDA,
and/or complex correlation structure such as between GAMMA and PHI. As the stepwise
parameter selection procedure goes on, however, the parameter estimates with strong
correlations with others tend to be removed from the optimization, and the extraction
quality improves without much sacrifice in fitting quality. While the fitting error does start
to increase when more than six parameters are excluded for all six SRAM bit cell
transistors, the extracted compact model parameters have a lot less interactions or
dependencies when seven parameters are excluded from extraction. The normalized
notional confidence interval lengths show that by excluding six parameters (or including
four parameters), the parameter with the worst extraction quality will have the 90%
percentile of its confidence interval the in the neighborhood of 100%, which suggests poor
reliability. This improves to roughly 10% when only three parameters are included.
Therefore, the optimal set of parameters for parameter extraction includes three parameters
for all types of transistors, namely VTO, KP, and LAMBDA.

Name Description Units Default
DW Channel width correction m 0
DL Channel length correction m 0
VTO Long-channel threshold voltage \Y 0.5
GAMMA Body effect factor VV 1.0
PHI Bulk Fermi potential (2x) \Y/ 0.7
KP Transconductance parameter A/V? 50.0E-6
EO Mobility reduction coefficient V/m 1.0E12
UCRIT Longitudinal critical field Vim 2.0E6
LAMBDA Depletion length coefficient - 0.5
LETA Short channel effect coefficient - 0.1

Table 5.1: Candidate of EKV model parameters for extraction [29]
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Figure 5.3: Target I-V data for EKV model parameter extraction.
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Confidence Interval vs. Fitting Error vs. Number of Excluded Parameters
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Figure 5.4: Stepwise parameter selection results for the pull-down transistors (PD1/PD2). Subplots showing
the initial extracted parameters without any exclusion, the final optimal parameter set, and the change in
normalized confidence interval length and sum of squared fitting errors (SSE) after each round of selection.

Exclude 2 parameters

g ‘ . | S T e

1]
-‘ﬁe—‘f 1 ko aﬁ»* k‘w“—

- o

o

S P e <

B g |m 2 N
vio gamma phi Kp el ucrit lambda leta

99



Exclude 6 parameters Exclude 7 parameters

=]
< 0
BRI
o
= | g W S, | W
[o )
"
- L] * *
= | .
5 % 4 *
wlow - -
8 Py > | g L.
b
£ et @
§ s
vio kp ucrit lambda vio kp lambda
Confidence Interval vs. Eitting Error vs. Number of Excluded Parameters
Number of Excluded Parameters 10 : ‘ - - ‘ -
100000% . . . ‘ : . 6 Median Vs
4 \TO ——Th%
—&— GANMA - % /
10000%¢ o= PHI
—&—KP
e ——E0
UCRIT
1000% b, —&— LAMBDA 3 L
—&4—LETA UUJ) 10

100%

0%

Confidence interval (%)

1% 1 1 1 I I 1 1U;2 1 I 1 1 I 1
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

Number of Excluded Parameters Number of Excluded Parameters

Figure 5.5: Stepwise parameter selection results for the pass-gate transistors (PG3/PG4). Subplots showing
the initial extracted parameters without any exclusion, the final optimal parameter set, and the change in
normalized confidence interval length and sum of squared fitting errors (SSE) after each round of selection.
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Confidence Interval vs. Eitting Error vs. Number of Excluded Parameters
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Figure 5.6: Stepwise parameter selection results for the pull-up transistors (PU5/PU6). Subplots showing
the initial extracted parameters without any exclusion, the final optimal parameter set, and the change in
normalized confidence interval length and sum of squared fitting errors (SSE) after each round of selection.

5.3.2 Parameter Variability Modeling

The within-chip spatial pattern of the extracted parameters (VTO, KP, and LAMBDA)
of the three types of SRAM transistors are shown in Figure 5.7, Figure 5.8 and Figure 5.9,
respectively. The threshold parameter VTO does not show any significant across-chip
pattern, which is in line with the fact that threshold voltage variation is mainly the result of
random dopant fluctuation and is largely dominated by the random components. On the
other hand, the parameters KP and LAMBDA both show a clear across-chip pattern that
varies along the rows of the SRAM array for all the NMOS transistors (pull-down
transistors and pass-gates), while PMOS does not show such a systematic pattern. These
across-chip patterns relate closely to the spatial pattern we see in the measured SRAM bit-
cell and transistor electrical metrics in Chapter 3.

In the same way we decomposed the variability in the measured electrical device
metrics, we apply our hierarchical variability model to the extracted parameters KP and
LAMDA for the two PD transistors and the two PG transistors (Equation 5.1). Parabolic
surfaces along chip rows are fitted to the extracted compact model parameters, as shown
in Figure 5.10 and Figure 5.11. Figure 5.12 and Figure 5.13 show normal quantile plots of
the original extracted parameters, the fitted across-chip systematic component, and the
residuals of the fitted model parameters. The original extracted values of both KP and
LAMBDA clearly deviate from Normal distributions for both types of NMOS transistors.
After the removal of the fitted across-chip systematic component, the distribution of

102



(51)

( 5.2)

0X X2+ 0XXo+ceXY2+d:Y, +eg

LAMBDA(T — WP) 4cg~N(0,02(Y¢))

oY) =0XX2+0XXe+scXY2+tYe+1c

LAMBDA(T — WP) = LAMBDA(T — WP) ,c + LAMBDA(T — WP) scr
LAMBDA(T — WP) .

This is illustrated in Figure 5.15: the standard deviation of the residual of LAMBDA after
fitting the across-chip systematic pattern also has a systematic across-chip pattern. The
reason, we fit a systematic across-chip function to the standard deviation of the across-chip

residual of LAMBDA (LAMBDAAxcr). The variance of LAMBDAAcr Within each row is also
approximately quadratic in row position Yc, as stated in Equation 5.2, which is incorporated

residual variance is larger at the top and bottom rows and smaller in the center. For that
into the hierarchical variability model.

even after removing the systematic component, the residuals still do not appear normal.

residuals of the parameter KP is approximately Gaussian. However, the same cannot be
said for parameter LAMBDA, whose distribution has such long tails on the lower end that

Wafer #2, Die 49: Extracted v10: PUS

Wafer #2, Die 49; Extracted vito: PG3

Wafer #2, Die 49: Extracled vio: PD1

§ 8 5 2388 5 8 I 8 B o« 3 3 8 B
: 0000B000C000000ROON0 2 o OEOO0CORORCORO0EE00 =
ORE0O0ROC00ER0000008 W OO00ONE0OR00NEE00R0a00
00000E0O0E00ORDE0R00 ) DERCWEOO0DO0OO00ROA00 ©
DOE0e0RONOCE0NEE000e < DOROEan00Eeano0000o00n
- OROOOOOROO0Om0000000 = = H00OEEE000C OROEC =
: BURBOUBECO00EORC00ND o BUOOE0DR0UR000000BOEE
:ER00000000RE0000008 o ‘S OM0000E0ER0000A0R00N o
OeEB000E0000000NR000 £ DE0D000ER000an0ooN00
O0OOMONCEOO0000OCN0R 25 m OAONECO00C EMEGEOR00 2
DO00DRO000DE0CNONO00 O ; BO00000ECEONDERCOBOO0
O00BOROOR000BOR0DO0E = < DOO0DUOOOOBOOO0G0Ba00 ®
OORO0000RO0EECO0R0EA o  IOOROROEO0A00000000
OR0O00PER0000E000ARD = 0O DERDR0OA0000OR00R000 ©
OEEO000ONEEEROOROEOE0 o IORO0OROBO0RNO000EN
O0E0J00ONERCOEO00DAc0 - *  DEODCROE000B00a0EacE -1 =
: D00OREO0CCNRENOOEA00 S BOEORCEOOROROO0EO000
- OOADRO00CERER000DOR0 ~ M O000O0ORDROO0A0D000 o~
JNNRONmACTRERACNCOAR0 ORNTACOMONOACRCOROEE
= @ e ] ] & = w = e 8 e

Moy Moy

£ 3 ® o § € 3 B 8 & 8 » ¥ € 3 §
: I0000E0ORE0000000008 E = DE0O0OO0OER0O0000R0R ®
' B00RORDO0O0R00ROD000 © DOOmOEO0CD0R00ONOR000]
H00000OROR0000R0ROOEE © .. ID0OD0000EE000CE00 ©
DEOBJOD000EE00000000 < DO0oooo0ooo000wosa0on
OORCERCEOA0O0RE0O0NE = 5 OEORODEANO0OA0OOEE00 =
BOEBOOREREOCOOERODO0B o O000O0A0000ORAN0000
UOEECORO0O0RRCOB00R0 & S E00EE00000NE00000aE0 o
Do0oeORORC000R0OREE) m BO0000000D00O0A0RCEE
OROBRO0OROR000000OR0E 25 o D00OREOONBOEEEO0OEO00 - e
: OROROOORE0B00000800 O 4 EOEOODO0O00O0ONEE0N
‘00EOeO0ECCO0EDOEND00B = < DEE00000000000e00N00 ©
B000BONO0ODEE00ODA00 o OO00ORE0OR0ODa00R00
-DO0OmO000CORNO00ER0N0 = 0O DEE0O0CAE000OROR0OR0 ©
O0COR0R0000000Ra000N o ERO00000000000N00R0
URE0OERACO0a0CAR0a0e h ¥ OOOE000R0COOODRORD -
| I0RDO0O0CERORDOEE00 & ORONNEERO0OOEO00ORA0
- EOEEO00CANORE0CHCOED -1~ M _“I_u_ul-mim_u_m-m_--_uummz ~
NADENNERNNRNTRERONE | JANANROORNNNNNERON
o [ =] ] =] [ o w ] [ ] &

moy moy
B 8 3 & « 8§ 8 3 « B B8 & 8 » ¥ ¢ 3

:000000NNE80000B0E000 e o [JDIENE0E00NEEEE0S0R0----{=
: B000R00OEC000R000080 m BO0B00000NEEEROR0a00
A00000E00OROECRORO00 L] 00E000000m00E0A08a00 E
DOCEE0PECO0O00000AN0 m BE0O00B0E0E00R0ENaEn0
0E0OO0OORCEC0000000RE = < ' E00IBE0OR0OE0A00R000E - =
DO0DOEB0B0CON00000N0 o DEOROOROODROO00000ED
OoOms000C0E000R0R000 ~ 8 @ED0000000RORODONEO0O o
- 000DO000OADODE00DA0N £ DOOROOOECORONOOO0BE0D
- EROOROOO0CNRORAROO00 23 1w EREECECOO00ROREEOO00N 2
- B0000000000CEE0E00E0 O & DEEOEROO0OEOOBE00OEON
Om00000000080RE00000 ® < BEUB0ODORO0CE0OREO0R ©
O00OO0EO0ONOEERO0OR0 o EEROOOROOOREORO00000
B00000POCOOROORODO0D = 0O BE000ECE0ONEEREORO00 ©
O00O0RO0CEERORE0EmA00 « OEORO0O00000ERO000E0
:DO0EOR000CR0ERCACDEED A *  DO0CEEOe000C0ROROOER =
EREEO0OO00OROOROROE0 O MOMNoo0OmCOm00o00me
- A0E00E00CARR000R0A00 ~ M OEODOCRE0BC0ODORB0BL ~
NN ONANTRRORORROAR0 JTEROOMONONAOOORONON
e - € 3 ] Q = o 2 3 ] [

moy Moy

Col

103

Col
Figure 5.7: Chip maps of extracted compact model parameters VTO.
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Figure 5.8: Chip maps of extracted compact model parameters KP.
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Figure 5.9: Chip maps of extracted compact model parameters LAMBDA.
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Figure 5.10: Chip level variation decomposition for KP extracted from the left pull-down transistor and
pass-gate: KP(—DWP) = KP(T — WP),c + KP(T — WP) k.
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Figure 5.11: Chip level variation decomposition for LAMBDA extracted from the left pull-down transistor
and pass-gate: LAMBDA(T — WP) = LAMBDA(T — WP) . + LAMBDA(T — WP) ¢
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Figure 5.12: Comparison of the distributions of the extracted parameter KP and its corresponding

systematic and random components for pull-down and pass-gate transistors.
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Figure 5.13: Comparison of the distribution of the extracted parameter LAMBDA and its corresponding
systematic and random components for pull-down and pass-gate transistors.
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Figure 5.15: Across-chip systematic variation of the within-row variance of the across-chip residual of
parameter LAMBDA.

5.3.3 Parameter Variability Reconstruction

With the above decomposition of parameter variability, it becomes possible to simulate
the distributions of the extracted parameters. As in Chapter 3, we evaluate two variability
models: the conventional “Global+Local” model and our hierarchical variability model.
Now instead of assuming a constant variance for the local variation (as in the
“Global+Local” model) or the local residual variation (as in the hierarchical model), we
consider the correlations among parameters, and the correlation among parameters of
different devices in general. A two parameter case will be used as an example to illustrate
the reconstruction process. Assume we have the isth parameter of the jith device p; ; and
the i-th parameter of the j.th device p,, ;,. The indices i1 and i> may be equal and the indices
jiand j> may be equal, but not both at the same time. Under the conventional model, p;, ;,
and p;,;, are assumed to be correlated Normal variables with a correlation matrix
estimated from the extracted distributions of the two compact model parameters, as
described by Equation 5.3. Under the hierarchical model, each parameter is the sum of its
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corresponding systematic component function, f,., and a random component, r. The
random component is generated in the same way as the “Global+Local” variation model,
but replacing the original extracted parameter values with the residuals after removal of the
systematic component as described by Equation 5.4.

“Global+Local” variation model:

(pi1,f1’ piz,j2)~N(H1' Uz, ZLocal)

(5.3)
Zlocal = Cov(pil,jl’ piz,jz)
Hierarchical model:
pil,jl = ﬁljl,AC(XC’ YC) + ril,jl
Diyj, = firjsacXe, Ye) + 11,5,
(5.4)

(rilrjl’ rizjjz)~N(0'0' Z:focal)

Liocal = Cov(ril;jl’ Tiz,jz)

A total of ten chips of model cards (360x10=3600) are generated with this
methodology for both the “Global+Local” model and the hierarchical model. A comparison
among the original estimates of extracted parameters, parameters simulated from the
“Global+Local” model, and those simulated from the hierarchical model, is shown in
Figure 5.16 and Figure 5.17. The hierarchical model is capturing the non-Gaussian
behavior of the original extracted parameter distribution fairly well, especially at the lower
end of the tails, while the conventional “Global+Local” model strictly follows the Normal
distributions thus deviating from the original extraction.

To quantify the difference of the distributions of the original estimates of extracted
compact model parameters and those simulated with the “Global+Local” model as well as
the hierarchical model, we compare quantiles across models. For example, the 1% quantile
of KP predicted by the “Global+Local”” model can be as much as 6% lower than the original
estimates of extracted parameters, and 5% lower in the case of parameter LAMBDA. As
comparison, the 1% quantile of parameters predicted by the hierarchical model is generally
within 3% of that from the original distribution of parameter estimates. The accuracy of
the hierarchical model tends to increase when examining even more extreme quantiles. A
detailed list of the extreme quantiles of the original and reconstructed parameters can be
found in Table 5.2.
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Figure 5.16: Comparison of the distribution of the extracted parameter KP and the reconstructed

distributions using the “Global+Local” model and the hierarchical model.
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distributions using the “Global+Local” model and the hierarchical model.

Parameter | Device | Percentile | original “Global+Local” Hierarchical Model
Model

Value Value Error Value Error

KP PD1 1% 2.82E-04 | 2.70E-04 -4% 2.82E-04 0%

99% 4.28E-04 | 4.29E-04 0% 4.35E-04 2%

PD2 1% 2.79E-04 | 2.64E-04 -5% 2.71E-04 -3%

99% 4.17E-04 | 4.27E-04 2% 4.28E-04 3%

PG3 1% 3.18E-04 | 3.00E-04 -6% 3.15E-04 -1%

99% 4.66E-04 | 4.65E-04 0% 4.72E-04 1%

112




PG4 1% 3.17E-04 | 3.06E-04 -3% 3.13E-04 -1%

99% 4.55E-04 | 4.54E-04 0% 4.58E-04 1%

LAMBDA PD1 1% 2.221 2.328 5% 2.276 2%
99% 3.114 3.185 2% 3.093 -1%

PD2 1% 2.243 2.309 3% 2.170 -3%

99% 3.101 3.206 3% 3.111 0%

PG3 1% 2.202 2.294 4% 2.200 0%

99% 3.287 3.375 3% 3.291 0%

PG4 1% 2.285 2.305 1% 2.285 0%

99% 3.350 3.353 0% 3.319 -1%

Table 5.2: 99% and 1% quantiles of original and reconstructed parameter distributions.

5.4 Parameter Extraction with PSP Model

5.4.1 Parameter Extraction

The PSP model extraction is carried out with the same set of SRAM bit cell transistor
I-V data used for the EKV model. The extraction setup is inherited from the simulation in
Chapter 4, with the same group of model parameters and the same stepwise parameter
selection method in a three-step sequential parameter extraction flow. The difference is
that we include the printed gate length deviation DL as an additional parameter, even
though it is not one of the local PSP model parameters, and that one type of imagined
NMOS transistor is replaced by six real transistors from the SRAM bit cells. The list of
PSP model parameters as candidates for extraction is provided in Table 5.3.

During every round of parameter selection, each pair of the mirror-imaged transistors
of the same type, pull-down, pass-gate, and pull-up transistors, is grouped together due to
that pair’s highly similar physical nature. The three-step sequential extraction is carried out
in their respective operation region, as shown in Figure 5.18. The stepwise parameter
selection results are illustrated in Figure 5.19 through Figure 5.23 using Step#1 (linear
region 1d-Vg) as an example. As shown in these plots, the fitting error increases when fewer
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than four parameters are included in the model extraction, while the length of the
normalized confidence interval of the extracted parameters drops below 100% when three
parameters or fewer are included. Combined with the observations regarding the
distribution and correlation structure of the extracted parameters, we decided that three
parameters, VFBO, UO, and RSW1, are an adequate set of model parameters for Step#1
curve fitting. This combination of parameters offers well-bounded, reasonable distributions
with minimal loss of fit. The number of “extractable” parameters is significantly less than
the simulations suggest, largely because real silicon devices do not act exactly like ideal
model devices, and measurement data noise will make it hard to extract parameters that
have little influence on performance. The second and third steps of the optimization go
through the same stepwise parameter selection procedure, with the initial model card of
each step inherited from the previous step and the excluded parameter set to its extracted
value attained in the previous step (if it is previously extracted). In this way, we add more
extractable parameters as we go through more optimization steps, while keeping the good
parameter values extracted in earlier optimization steps but not in the later steps. For PD
and PG transistors, Step#2 will extract VFBO, UO, MUEO and Step#3 will extract VFBO
and UO; for PU transistors, Step#2 will extract VFBO, CFL, and UO, and Step#3 will
extract VFBO and UO.

After all three optimization steps are complete, we perform one final global
optimization step, which uses the complete measurement data (including all the data points
from all three steps) to fit all the optimized parameters as the initial candidates for
parameter extraction. Again we apply the parameter selection scheme to this global
optimization step, and we are able to reduce the extractable parameters down to three for
each type of transistors: VFBO, UO, and RSW1 for the PD and PG transistors and VFBO,
CFL, and UO for the PU transistors. The initial extraction results with all four extractable
parameters from the sequential extraction and the final extraction results with three
extractable parameters are shown in Figure 5.20, Figure 5.22 and Figure 5.24.

Param. Description Param. Description

vfbo Geometry-independent flat-band voltage | cso Geometry-independent Coulomb
scattering

nsubo | Geometry-independent substrate doping | xcoro Geometry-independent non-
universality

dphibo | Geometry-independent offset of ¢ rswl Source/drain series resistance
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Vs (V)

Vi V)

cto Geometry-independent part of thesato | Geometry-independent velocity
interface states factor CT saturation
cfl Length-dependence of CT alpl Length-dependence of CLM pre-factor
ALP
uo Zero-field mobility at TR alp1ll Length-dependence of CLM
enhancement factor above threshold
xmueo | Geometry-independent mobility alp2l1 Second order length-dependence of
reduction coefficient ALP1
themuo | Mobility reduction exponent Vpo CLM logarithmic dependence
Table 5.3: Candidate of PSP model parameters for extraction [87].
Step#t Step#2 Step#3
J
¢
5 5 5 /
0 0 0 /
N N N }
T T T f
E £ 4 f /
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q’dq{;.‘ﬁ F[ 2;3"'
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Vas V)

Figure 5.18: Target I-V data for the three extraction steps. From left to right: Id-Vg with Vds=0.1V, 1d-Vd
with Vgs=1V, and 1d-Vg with Vds=1V.
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Figure 5.19: Stepwise parameter selection results from Step#1 for the pull-down transistors (PD1/PD2).

Subplots showing the initial extracted parameters without any exclusion, the final optimal parameter set,

and the change in normalized confidence interval and sum of squares of fitting error (SSE) after each round

of selection.
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Confidence Interval vs. Fitting Error vs. Number of Excluded Parameters
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Figure 5.21: Stepwise parameter selection results from Step#1 for the pass-gate transistors (PG3/PG4).
Subplots showing the initial extracted parameters without any exclusion, the final optimal parameter set,
and the change in normalized confidence interval and sum of squares of fitting error (SSE) after each round
of selection.
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Figure 5.22: Initial and final extracted value after global optimization for the pass-gate transistors
(PG3/PG4).
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Confidence Interval vs. _Fitting Error vs. Number of Excluded Parameters
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Figure 5.23: Stepwise parameter selection results from Step#1 for the pull-up transistors (PU5/PUS).
Subplots showing the initial extracted parameters without any exclusion, the final optimal parameter set,
and the change in normalized confidence interval and sum of squares of fitting error (SSE) after each round
of selection.
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Figure 5.24: Initial and final extracted values after global optimization for the pull-up transistors
(PU5/PUG).

5.4.2 Parameter Variability Modeling

The within-chip spatial pattern of all the extracted parameters for the three types of
SRAM transistors are shown in Figure 5.25, Figure 5.26 and Figure 5.27. Again, the flat-
band voltage parameter, VFBO, whose value shift is equivalent to that of the threshold
voltage, does not show any systematic variation, nor does the zero-field mobility parameter
UO. The source/drain resistance parameter has a strong across-chip pattern along the rows
for the PD and PG transistors (it is not extractable for PU transistors). Lastly, parameter
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CFL, which is only extractable for PU transistors, does not illustrate any systematic
patterns.

Using the same practice as the EKV model, we apply the hierarchical variability model
to the extracted parameter, RSW1, of the two PD transistors and the two PG transistors
(Equation 5.5). A parabolic surface along the rows of the test chip is fitted to the extracted
parameters, as shown in Figure 5.28. Figure 5.29 shows the normal quantile plots of the
original extracted parameters, the fitted across-chip systematic component, and the fitting
residuals of parameter RSW1. The original extracted values of RSW1 clearly deviate from
a normal distribution at extreme quantiles for PD transistors, and at the lower tails for PG
transistors. After the removal of the fitted across-chip systematic component, the
distribution of residuals of the parameter RSWL1 is closer to a normal distribution for the
PD transistors, but deviates from a normal distribution in the upper tail for the PG
transistors. This could also be explained by the systematic across-chip pattern of the
residual variance, as illustrated in Figure 5.30. A systematic across-chip function is fitted
to the standard deviation of the across-chip residual of RSW1 (RSW1acr). The standard
deviation of LAMBDAAcr Within each row varies quadratically with its row position Yc, as
stated in Equation 5.2.

RSW11(T — WP) = RSW1L(T — WP) 4 + RSW11(T — WP) ,cr
( 5.5)
RSW1I(T — WP) e = 0 X X2 + 0 X X¢ + cc X Y2 +d Y, + e

RSW1(T — WP) 4cg~N(0,02(Y,))
( 5.6)
oY) =0XX2+0XX,+scXY2+tYe+1c
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Figure 5.25: Chip maps of extracted compact model parameters VFBO.
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Figure 5.26: Chip maps of extracted compact model parameters UO.
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Figure 5.27: Chip maps of extracted compact model parameters RSW1 (PD/PG) and CFL (PU).
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Figure 5.29: Normal guantile plots of the extracted values RSW1, the across-chip systematic component

RSW1ac, and the across-chip residual RSW1acr. All components are centered at zero.
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Figure 5.30: Across-chip systematic pattern of parameter RSW1 variance.

5.4.3 Parameter Variability Reconstruction

We now simulate the distributions of the extracted RSW1 with both the conventional
“Global+Local” model and our hierarchical variability model. The method of modeling the
parameter variability is exactly the same as with the EKV model. The underlying
assumptions are captured by Equations 5.7 and 5.8.

“Global+Local” variation model:

(pi1rj1’ piz:j2)~N(#1' Uz, le,ocal)
(5.7)
Elocal = Cov(pil,jl’ piz,jz)

Hierarchical model:

Di i, = fiyjoacXe Yo) + 1), (5.8)
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Piyj, = fizjz,AC(XC' Yo) + Ti,,j2
(ri1J1’ rinz)NN(O'O' 2:focal)

Zlocal = Cov(ril,jl’riz,jz)

Again, ten chips of PSP model cards (360x10=3600) are generated with the
“Global+Local” model and the hierarchical model. A comparison between the original and
the reconstructed parameter distributions is shown in Figure 5.31. The hierarchical model
generally captures the non-Gaussian distribution behavior of the original extracted
parameter distributions better than the conventional “Global+Local” model does,
especially in the lower tail. The gap between reconstructed parameter distributions and the
original extracted parameter distributions at the 1% and 99% quantiles can be found in
Table 5.4. The hierarchical model can be up to 10% better than the conventional model at
these quantiles.

450
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Standard Normal Quantiles
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Figure 5.31: Comparison of the distribution of the extracted parameter RSW1 and the reconstructed
distributions using “Global+Local” model and the hierarchical model.

Parameter [Device |Percentile |original |“Global+Local” Hierarchical Model
Model

Value |Value Error Value Error

RSW1 PD1 99% 324.0 336.2 4% 335.7 4%

1% 146.6 136.7 1% 145.6 -1%

PD2 99% 346.5 349.2 1% 347.6 0%

1% 140.2 133.3 -5% 143.9 3%

PG3 99% 3324 324.4 -2% 3315 0%

1% 89.9 79.8 -11% 96.3 7%

PG4 99% 329.0 328.0 0% 328.5 0%

1% 107.1 86.3 -19% 98.1 -8%

Table 5.4: 99% and 1% quantiles of the original and the reconstructed parameter distributions.

5.5 Hierarchical Model Application for Extracted
Parameters

As shown in Sections 5.3 and 5.4, across-chip hierarchical models are fitted to the
NMOS model parameters KP and LAMBDA of the EKV model and RSW1 of the PSP model,
respectively. After the removal of the systematic component, the residual of the compact
model parameters of the six bit cell transistors are more nearly Gaussian. Their residual
variance can be further normalized by fitting a systematic function of the standard deviation
across the chip. Consequently, we are able to estimate the distributions of the random
component of the parameters by simulating model parameters as correlated Gaussian
variables, using the mean and covariance matrix estimated from the normalized across-
chip residual of the hierarchical model. The extracted systematic across-chip component is
then added onto the generated random component by uniform sampling over all possible
locations on the chip, so that we can recreate the full picture of the variability of model
parameters. For comparison, we also generated parameter distributions with the
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conventional “Global+Local” model. The details of the re-construction process are
described in Sections 5.3.3 and 5.4.3 for the EKV model and the PSP model, respectively.

Ten chips of model cards (360x10=3,600) are generated from both the hierarchical
variability model and the conventional “Global+Local” model. The accuracy of the two
variability models can then be evaluated by simply simulating the electrical performance
of the device and circuits with the 3,600 model cards. Due to the fact that the variability
model is based on the extracted-parameter distributions, the best a variability model can do
is to faithfully regenerate the electrical performance distributions predicted by the
originally extracted parameters. Nevertheless, we put the experimentally measured device
and circuit metrics against those simulated with the extracted parameters and the
reconstructed model cards using the EKV model and PSP models and the hierarchical and
conventional “Global+Local” variability model. A selected comparison of such electrical
metrics is shown in Figure 5.32 through Figure 5.36, including the SRAM Read Static
Noise Margin (RSNM), the writeability current (lw), and the on-current (ldsat) of the PD1,
PG3, and PUS5 transistors.

For the SRAM bit-cell read/write margins RSNM and lw, we found that even the
original extracted parameters of either compact model (EKV or PSP) cannot accurately
predict the distribution from the experimental measurement. This may be explained by the
fact that SRAM operations are highly sensitive to transistor behavior around the threshold
voltage, exactly where our electrical measurements were hampered by large parasitic
leakage currents. Thus in Figure 5.32 and Figure 5.33, the simulated distributions are
normalized so that their median matches that of the measured statistics. The rest of
electrical metrics are compared as-is. For applications that require a high yield, we should
look at the extreme quantiles of the statistical distributions. As a simple example, we
evaluated the 1% and 99% quantiles of the measured, extracted, and re-constructed electric
metrics of transistor and SRAM bit cells, as listed. The full extraction results from both the
EKV model and PSP model at the tails are generally within 1~2% of the measurement data,
except for the RSNM distributions where the EKV model can have up to a 4% error margin
and the PSP model can have up to a 6% error margin on the higher end. This indicates that
our extraction methodology is reasonably accurate in terms of capturing the silicon device
behavior.

On the other hand, there are gaps between the raw extraction and the conventional and
hierarchical variability models as well. For the EKV model, the hierarchical model always
fit the full extraction results 1 to 2% better than the “Global+Local” model, and up to 4%
better when predicting the bottom 1% of the writeability current lw. The case of the PSP
model is very similar. In most cases, the differences between the extreme quantiles of
conventional and hierarchical model is within 1%, while at 99% of PD1 ldsat the
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hierarchical model is up to 2% better than the “Global+Local”” model. The differences may
look small, but they could have a large impact on yield estimates if the parametric-yield
threshold is high. Figure 5.37 shows an example with PD1 Idsat distributions. Assume we
use 99% of the real silicon measurements as the upper limit of Idsat (for illustration
purposes, not a real life criterion), and extrapolate that into the predicted normal quantile
plot of the “Global+Local” model and hierarchical model prediction; it would correspond
to the 99.1% of the hierarchical model and the 99.4% of the “Global+Local” model. In this
case, the “Global+Local” model will predict a 0.6% fail rate while the hierarchical model
will predict a 0.9% fail rate, compared to the true fail rate of 1%. In this sense, the
conventional model is underestimating the failure rate by 40% while the hierarchical model
is only underestimating it by 10%. At more extreme distribution quantiles, this gap can be
even more significant and make the hierarchical model far superior for yield estimation.

EKV: Normal Quantile Plot, SRAM SNM PSP: Normal Quantile Plot, SRAM SNM
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Figure 5.32: Comparing prediction accuracy of the “Global+Local” model vs. the hierarchical model for
the distributions of SRAM read static noise margin SNM. The model parameters were extracted using the
EKV and PSP Models.
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«1EKV: Normal Quantile Plot, SRAM Iwrite «1PSP: Normal Quantile Plot, SRAM lwrite
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Figure 5.33: Comparing prediction accuracy of the “Global+Local” model and the hierarchical model for
the distributions of SRAM writeability current lw. The model parameters were extracted using the EKV and

PSP Models.
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Figure 5.34: Comparing prediction accuracy of the “Global+Local” model and the hierarchical model for
the distributions of PD1 Idsat. The model parameters were extracted using the EKV and PSP Models.
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Figure 5.35: Comparing prediction accuracy of the “Global+Local” model vs. the hierarchical model for
the distributions of PG3 Idsat. The model parameters were extracted using the EKV and PSP Models.
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Figure 5.36: Comparing prediction accuracy of the “Global+Local” model and the hierarchical model for
the distributions of PU5 Idsat. The model parameters were extracted using the EKV and PSP Models.

Model | PD1 Idsat (LA) | PG3 Idsat (WA) | RSNM (V) lw (A)

1% 99% 1% 99% 1% 99% | 1% |99%

Measurement - 59.1 93.6 38.9 61.2 | 0.135 | 0.234| 42.8 | 64.7

Full Extraction | EKV | 58.6 93.1 38.6 60.9 | 0.141 |0.224| 42.6 | 66.1

PSP 58.9 93.5 39.2 61.3 | 0.138 |0.219| 42.8 | 65.7

“Global+Local”| EKV 57.7 91.6 37.1 60.4 0.141 | 0.225| 40.6 | 65.4
Model

PSP 59.1 91.7 37.9 615 | 0.138 |0.221| 42.6 | 64.9

Hierarchical EKV 58.1 92.9 37.8 61.6 | 0.142 | 0.225| 42.0 | 65.3
Model

PSP 59 93.3 38.2 61.5 | 0.137 | 0.221| 42.6 | 64.8

Table 5.5: 99% and 1% quantiles of transistor and SRAM electrical metrics from: experimental
measurement, simulation using extracted parameters, and simulation using reconstructed compact
model cards.
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Model | PD1 Idsat (A) | PG3 Idsat (WA) | RSNM (V) |  lw(pA)

1% 99% 1% 99% 1% | 99% | 1% |99%
“Global+Local | EKV | -2% -2% -4% -1% 0% 1% | -5% | -1%

” Model PSP 0% -2% -3% 0% 0% 1% 0% |-1%
Hierarchical EKV -1% 0% -2% 1% 1% 1% | -1% | -1%
Model PSP 0% 0% -3% 0% -1% 1% 0% |-1%

Table 5.6: 99% and 1% quantiles of transistor and SRAM electrical metrics: error between simulated
distributions from full extraction and re-constructed model cards with the “Global+Local” model and
hierarchical model.
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Figure 5.37: Error in yield estimation with the “Global+Local” model and the hierarchical variability
model.

5.6 Summary

The compact model parameter extraction methodology is applied to experimentally
collected I-V data from the SRAM bit cell transistors on the 45nm test chips. The stepwise
parameter selection procedure is carried out first to determine a good set of model
parameters for variability extraction for both the EKV model in a one-step parameter

optimization and the PSP model in a sequential style optimization. With the full parameter
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distributions extracted for one full chip of data, we applied the hierarchical variability
model to the resulting compact model parameters, and compared its accuracy with that of
the conventional “Global+Local” variability model by re-constructing the model parameter
distributions under their respective assumptions. In most cases the hierarchical model
performs slightly better than the conventional method in predicting extreme quantiles, and
up to 4% better in which the distribution strongly deviates from normal. The prediction
errors that are small in absolute magnitude can produce large errors in yield estimation
when the yield threshold is set high. The accuracy of the directly-extracted model is also
limited due to the lack of accuracy in the subthreshold regime in the electrical test. Thus,
the predicted SRAM read/write margin specs are even further off from raw measurements
due to their high sensitivity to the threshold voltage changes. Nonetheless, our study shows
a scalable parameter extraction framework that is capable of dealing with complex
problems and may prove especially valuable when there are strong systematic components
of variability.
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Chapter 6

Conclusion

Variability characterization and analysis have been performed for two sets of
customized test chips manufactured using an advanced CMOS process. The devices under
test (DUT) included ring oscillators from one wafer on a 90nm process as well as ring
oscillators, SRAM bit cells, and the individual transistors within the SRAM cells from two
wafers on a 45nm process. Each DUT was repeated tens to hundreds of times in an on-chip
array, while tens of chips with good spatial coverage were measured over each wafer. This
allowed a hierarchical breakdown of the device variations into wafer-level and die-level
systematic and random components as well as the identification of layout-dependent effects.
With the newly proposed parameter-extraction methodology, two sets of compact model
parameters were extracted for the padded-out transistors in the SRAM bit cells using the
EKV and PSP models. These extracted parameters were subsequently fed into a
hierarchical variability model, which successfully reproduced the variability profile of the
SRAM cells and its internal transistors.

6.1 Key Contributions

This work provides two key contributions. First, the comprehensive methodology can
capture the systematic and random variation components in the early stages of the advanced
90nm and 45nm CMOS processes. The characterization and analysis were carried out with
two sets of customized test chips with arrays of small test circuits, such as ring oscillators
and SRAM bit cells. Following the careful breakdown of the wafer-level and die-level
variability using a hierarchical variability model, we successfully identified several
significant systematic variations, including across-wafer ring oscillator delay variability,
across-chip SRAM read/write margin and transistor drive current variations, and layout-
dependent effects, among ring oscillators with different layout pattern densities. We
illustrated how the systematic variation components are crucial in achieving high
confidence for predicting the extreme quantiles of device performance distributions.

Second, we designed a compact model parameter-extraction framework that
intelligently selects model parameter candidates for numerical data extraction so that the
extracted compact model parameters are physically reasonable, with minimal artificial
correlation between the parameters, and fit the data adequately. This methodology was first
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validated through simulations using the EKV and PSP models and then applied to real
silicon transistor 1-V data that we had previously characterized from the 45nm SRAM test
arrays. When there are large variations, only a handful of core model parameters can be
extracted with high credibility without hurting the fitting and extraction quality.
Nevertheless, by applying our hierarchical variability model to the extracted compact
model parameters, this selected set of model parameters still effectively captures the
systematic across-chip variations that we observed in the SRAM read/write margins and
transistor drive currents. The parametric yield estimation in the top and bottom 1%
quantiles showed a clear advantage in accuracy compare to conventional methods.

6.2 Future Work

In the ring oscillator variation analysis, we identified significant across-wafer
systematic variation as well as layout-dependent effects. However, the lack of companion
transistors (individually measurable transistors with the same layout design as those in the
ring oscillator) makes it difficult to pin down the exact reason behind such variations. A
new test-chip design could incorporate such companion transistors, which might reveal the
underlying physical mechanics of the systematic variations with the help of the statistical
parameter extraction methodology we developed.

The SRAM test circuitry can be redesigned so that the individual padded-out
transistors are less vulnerable to the off-state leakage from the switching networks. This
will help improve the 1-V measurement accuracy, particularly in the subthreshold region.
It is critical for the accurate prediction of the SRAM bit cell read/write noise margins, as
they are extremely sensitive to the threshold voltages of the transistors.

The model parameter-extraction methodology can be further expanded by
experimenting with the ordering of the different steps when performing sequential
parameter extraction. This may help with finding the optimal sequence of extraction steps,
avoiding iterations, and making extraction more robust. There are also a variety of standard
forward and backward selection algorithms from the statistical literature that could be
explored.

Lastly, the compact model parameter-extraction framework shall also be applied to the
BSIM model, which is the most widely used industrial standard compact model.
Collaboration with model developers, utilizing the newly obtained knowledge about the
robustness of various model parameters under statistical extraction, could result in
improved reference extraction flow and even improvement in the model equations
themselves.
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