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Abstract 

Variability Modeling and Statistical Parameter Extraction for CMOS Devices 

by 

Kun Qian 

Doctor of Philosophy in Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Costas J. Spanos, Chair 

 

Semiconductor technology has been scaling down at an exponential rate for many 

decades, yielding dramatic improvements in power, performance and cost, year after year. 

Today’s advanced CMOS transistors have critical dimensions well below 24nm. This 

means that controlling the manufacturing process is increasingly difficult. Process and 

material fluctuations cause device and circuit characteristics to deviate from design goals, 

and introduce significant device-to-device variability due to spatial variations across 

silicon wafers. Accurate modeling of these spatial process variations has become critical 

to both foundries and circuit designers that seek optimal power/speed/area balance.  

To understand the nature of spatial process variations, we first carried out a 

comprehensive variability analysis of data measured from thousands of variability-

sensitized test structures, including ring oscillators, SRAM bit cells and their internal 

transistors. We manufactured these test chips using early stage 90nm and 45nm commercial 

semiconductor processes. We proposed a hierarchical variability model to capture the 

systematic and random components of device parameter variations across silicon wafers, 

and across chips. The detailed decomposition of the process variation profile reveals 

significant across-wafer systematic component for the delay and leakage of ring oscillators, 

and across-chip systematic component for the read/write margins of SRAM bit cells, as 

well as their internal transistors. The proper modeling of each hierarchical component 

proved to be crucial for the accurate estimation of the statistics of device performance 

distribution and its parametric yield. 

The knowledge gained about process variation from carefully designed test structures 

was leveraged into estimating the variation and parametric yield of new devices and circuits. 

This was accomplished by improved the statistical compact model parameter extraction 
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methodology, and by proposing a stepwise parameter selection method. We used a 

normalized notional confidence interval and, and the sum of squares of fitting residuals as 

extraction and fitting quality criteria. This allowed us to determine the essential model 

parameters for accurate fitting over a large number of transistors. We applied this 

methodology to EKV and PSP with both simulated and experimental data, demonstrating 

its effectiveness. Finally, we combined the results from statistical parameter extraction with 

the hierarchical spatial variability model. This, compared to traditional methods, produced 

much-improved estimates of device performance and manufacturing yield. 
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Introduction 
 

1.1 Motivation: Process Variations 

For almost five decades, the semiconductor industry has, phenomenally, kept pace 

with Moore’s Law [1]: Every 18 months, transistor density has doubled, as a result of 

reducing key device dimensions such as channel length and oxide thickness. However, 

decreasing dimensions further is increasingly difficult as CMOS technology scaling 

continues into sub-100nm feature size. Among the many emerging challenges, the 

increased importance and complexity of process variations is one of the most prominent. 

Many variations during manufacturing process impact physical properties of devices 

and circuits. Lithographic variations [2], line-edge roughness [3][4], random dopant 

fluctuations [5], layout-dependent stress variations, rapid thermal annealing (RTA) 

temperature induced variations [6][7], well-proximity effects (WPE) [8], deposition and 

growth processes, and chemical mechanical polishing (CMP), all cause variations in device 

parameters such as dimensions, oxide thickness, doping concentrations, diffusion depth, 

and mobility. 

The non-uniformity of transistor characteristics produces timing variations of circuit 

critical paths [9], smaller read/write noise margins for SRAM memory cells [10], and 

higher off-state leakage currents, which culminate in yield losses. In general, circuits need 

to be designed conservatively to cope with performance losses introduced by process 

variations, which requires devices to have larger area and higher power consumption.  

It is critical to understand and quantify process-induced variability to avoid 

unnecessarily pessimistic designs. Improving the characterization and modeling of 

variability can help designers optimize performance, power, area, and yield. 

 

1.2 Variability Models 

Currently, foundries track on-wafer monitoring structures, including all sorts of active 

and passive devices, to estimate the performance distribution of devices and circuits. I-V 

data collected from test structures are later used to calibrate compact device models, such 

as BSIM [11] or PSP [12], and statistical models of device characteristics, which are used 

in circuit simulations. 
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Two types of statistical device models are conventionally used by modelers and 

designers to account for device parameter variations resulting from manufacturing process 

fluctuations: corner models and Monte Carlo models. 

Corner models, often referred to as “worst-case design,” seek to characterize worst-

case and best-case device parameters. There are typically five worst-case corners, each 

identified by a two-letter acronym that indicates the relative performance of the n-channel 

and p-channel devices. Each letter summarizes the device performance of one channel type 

as typical (T), fast (F), or slow (S). The first letter indicates the performance of the n-

channel device and the second letter indicates the p-channel device. Combinations of the 

performance levels for the n-channel and p-channel devices form the following list of 

corner cases: 

 TT (typical n-channel, typical p-channel): the nominal or typical device performance 

the manufacturing process targets. 

 FF (fast n-channel, fast p-channel): model parameters that reflect a process shift that 

yields fast operation for both the n- and p-channel devices. 

 SS (slow n-channel, slow p-channel): model parameters that yield slow operation for 

both the n- and p-channel devices. 

 FS (fast n-channel, slow p-channel): the n-channel device is fast, and the p-channel 

device is slow, which could represent the asymmetry of the rising and falling edge of 

signals in a critical path. 

 SF (slow n-channel, fast p-channel): the n-channel device is slow and the p-channel 

device is fast. 

Monte Carlo device models, on the other hand, attempt to represent the unpredictable 

characteristics of devices, rather than extreme behavior. Monte Carlo methods model 

device parameters as stochastic, typically assuming that each parameter is a realization of 

a Normal or uniform distribution. Monte Carlo inputs to SPICE simulations generally also 

assume that device model parameters are independent across instances of each transistor. 

Device and circuit performance distributions are derived from the assumed stochastic 

distributions of model parameters using Monte Carlo simulation. Often, Monte Carlo 

simulations are used to calibrate worst-case corner models for device performance 

parameters, such as Ion and Ioff. 

Figure 1.1 depicts the typical relationship between CMOS transistor device parameter 

space, performance space, and the corresponding worst-case corners. Parameters include 

device characteristics such as the threshold voltage parameter Vt for NMOS and PMOS. 

Performance space refers to the distribution of device performance metrics, such as Ion of 

NMOS and PMOS. For any assumed distribution of device parameters, Monte Carlo device 

models can be created to simulate the performance of any circuit of interest; on the other 
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hand, device parameters are usually extracted from the device performance space, using 

techniques such as corner lots, statistical process control (SPC) [13], or process and device 

simulations. Worst-case corner models are commonly defined as the most “probable” 

combination of device parameters (in the parameter space) that would produce 3σ 

departures of combination of the performance parameters of the n-channel and p-channel 

devices (in the performance space) from their nominal values. For example, the FF corner 

is the combination of NMOS and PMOS when both Ion,n and Ion,p are at their high 3σ 

point, and the SS corner is when both are at their lower 3σ point. At the FS corner, the 

difference between Ion,n and Ion,p reaches its higher 3σ point, while at the SF corner it 

reaches its lower 3σ point. Modelers can then search the parameter space for the most 

probable (under the assumed model) combination of Vth,n and Vth,p that attains the worst-

case corner values. In more complicated cases, the performance parameter can be a critical 

characteristic of a specific circuit, such as the delay of a ring oscillator, which is useful to 

characterize the worst-case operation of large-scale circuits. 

 

 

Figure 1.1: Typical CMOS transistor device parameter space and performance space with corresponding 

worst-case corners. 

 

 

Parameter space 
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1.3 Research Goal 

The goal of this research is to develop a method that can accurately model the 

stochastic transistor behavior induced by process variations, so that circuit designers can 

accurately estimate the parametric yield for a given design.  

This goal can be achieved through the following steps: 

 Characterize and analyze the composition and structure of process-induced 

variation in CMOS devices and circuits. 

A key factor in calibrating statistical device models is to have an accurate 

representation of both the systematic (deterministic) and random (stochastic) 

variations. In the context of chip fabrication, the concept of systematic and random 

variations is inevitably entangled with the spatial hierarchy. Traditionally, lot-to-

lot, wafer-to-wafer, and chip-to-chip variations are treated as a single pseudo-

random component “global variation” from the perspective of individual chips. 

Global variation is supposed to be similar for all transistors on the same chip. 

Within-chip variations, on the other hand, are further decomposed into across-chip 

systematic and local random variations. These variations are modeled by 

independent Gaussian distributions. A number of previous studies have analyzed 

process-induced variability and its impact on circuit power performance. Asenov’s 

team built an atomic-level simulation framework for predicting and modeling the 

intrinsic random variations of transistor parameter variations [14]–[19]. Boning 

and his students designed ring oscillator arrays for fast delay characterization and 

a within-chip spatial variability study [20], [21]. Wafer-level and die-level spatial 

variability of for inter layer dielectric (ILD) thickness variations were studied and 

modeled with ANOVA [22], [23]. 

 In this thesis, electrical measurements are collected using arrays of standard-

variability monitoring structures, such as transistors, ring oscillators, and SRAM 

bit cells. Several tens of chips are measured for each of the three test wafers 

fabricated in early commercial 90nm and 45nm low-power CMOS processes, 

providing full wafer-scale spatial coverage. A hierarchical model of variability is 

used to analyze the measured device characteristics, decomposing the total 

variability into random and systematic components at the wafer level and die level.  

 Develop a methodology that accurately and robustly translates the variability 

characteristics from the electrical measurements to the industry standard 

statistical device models. 
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Circuit designers rely on statistical compact-device models to estimate 

performance variations of devices and circuits. The two most commonly used 

statistical models are the worst-case corner models and Monte Carlo models. 

Corner models use a finite set of compact model parameters to represent the typical 

and worst-case conditions of transistors, while the Monte Carlo model involves 

inventing a joint probability distribution for compact model parameters, then 

simulating realizations of those distributions. The key task of variability modeling 

in both cases is to accurately translate the measured I-V characteristics into the 

distribution of compact model parameters. 

Traditionally, a few key compact model parameters with clear physical 

meanings are used to capture the variability in the I-V characteristics [24]–[26]. 

The extracted populations of these parameters are correlated, due to their physical 

relationship and due to the numerical procedure for estimating them. For this 

reason, some studies use principal component analysis (PCA) to extract 

statistically independent components of device variability, which are later used to 

simulate the compact model parameter variations [27], [28].  

This dissertation shows that existing methodologies can be improved in two 

ways. First, the selection of the model parameters for direct extraction can be 

tailored more precisely to the silicon data. Only parameters found to be statistically 

significant will be retained in the fitted stochastic model of device variation; the 

remaining parameters will be fixed to their nominal values from the typical corner 

extraction. This is expected to reduce covariance among parameter estimates 

without relying on combinations of parameters (such as those PCA produces) that 

are incompatible with SPICE simulations. Second, we show that a full hierarchical 

model of spatial variability for the extracted compact model parameters allow a 

more faithful reproduction of device performance variations in Monte Carlo 

simulations. 

 Study the impact of spatial-process variations on the performance and 

parametric yield of real silicon devices using the improved statistical 

transistor modeling methodology.  

We use an improved statistical parameter-extraction procedure to identify 

parameters that can be extracted reliably, and analyze their spatial variability in 

detail. A statistical device model is extracted from the transistor I-V measurements 

of the SRAM bit cells from the 45nm test chips using this improved methodology. 

It illustrates good accuracy in predicting the read/write margins collected from the 

same set of SRAM cells. The accuracy of the spatially hierarchical statistical 
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transistor model is compared to the conventional method; and its advantage in 

yield estimation accuracy is evaluated. 

 

 

1.4 Dissertation Outline 

Chapter 2 reviews the sources of variability in the modern semiconductor fabrication 

process. Based on the stochastic or deterministic nature of the variations and their 

respective spatial scope of effect, a hierarchical model is proposed to describe the 

combined effect of the process variations.  

Chapter 3 presents the measurement results from two sets of variability 

characterization test chips, the first from a commercial, general purpose 90nm CMOS 

process and the other from a commercial 45nm strained-Si CMOS process. Ring oscillator 

(RO) frequency and leakage data from both sets of test chips are evaluated. The hierarchical 

model of variability is proved to be very effective in fitting to the RO data. The same 

hierarchical variability analysis is applied to the read/write margin and the transistors I-V 

measurements collected from the SRAM bit cells from the 45nm test chips.  

Chapter 4 details our improved method for modeling the spatial variability of 

transistors with compact models. A parameter extraction procedure is developed and tested 

with simulated data for two popular compact models: EKV [29] and PSP [12]. 

 Chapter 5 applies the statistical compact-model extraction methodology to the actual 

silicon data collected from the SRAM bit cells from the 45nm test chip. For each of the 

EKV and PSP models, a set of model cards is extracted, to which the hierarchical model 

of variability is then applied to create a custom statistical compact model. These statistical 

compact models illustrate better accuracy in predicting device performance variations than 

conventional method. 

 Chapter 6 summarizes the highlights of this dissertation and discusses future research 

directions.  

 

1.5 Statistical Notes 

This dissertation uses a variety of statistical methods and concepts, including linear 

and nonlinear regression, hierarchical models, expectations, variances, hypothesis tests 

including t-tests, significance levels, p-values, and confidence intervals. However, the 

generative stochastic model for the data that would be required for those methods to apply 
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as statistical methods does not hold; moreover, if such a model did hold, in general, there 

would be more efficient methods than those employed here. Rather, all uses of statistical 

concepts and methods in this dissertation are to be considered algorithmic, rather than 

statistical. The justification for using the methods is not any underlying statistical theory, 

but instead the empirical performance of the resulting model for the task at hand: 

understanding process variability and predicting device performance and yield. 
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Hierarchical Model for Spatial 

Variations 
 

2.1 Classification of Process Variations 

2.1.1 Environmental, Temporal, and Spatial Variations 

Process variability can be environmental, temporal, or spatial [30]. Environmental 

variations consist of variability in the surrounding temperature, power supply voltage, and 

even cosmic radiation. Temporal variations, as the name suggests, refer to device-

performance change over periods of time ranging from nanoseconds, for the SOI history 

effects [14] and self-heating effect, to seconds or hours, for the negative bias temperature 

instability (NBTI) [31], to years, for dielectric material deterioration after repeated 

programming and erasing operations in flash memories. Spatial variations,are performance 

differences among devices that depend on the distances between the devices or the 

locations of the devices on a chip. Typical spatial variations, such as line width or film 

thickness non-uniformity, universally exist across lots, across wafers, across chips and dies, 

and between circuit blocks and devices (Figure 2.1). As a result, the circuit performance of 

chips from wafers produced with the same design and process over a period of 

manufacturing time will never be the same. 

Of the three types, environmental and temporal variability are often accounted for 

using reliability models, while spatial variability is commonly part of statistical device 

models. This dissertation studies the spatial variations. 
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Figure 2.1: Illustration of the spatial process-variation hierarchy: (a) lot-to-lot, (b) wafer-to-wafer (c) chip-

to-chip, and (d) within-die variations 

 

2.1.2 Systematic and Random Variations 

Systematic variations, also called deterministic variations, are repeatable deviations 

from nominal device characteristics depending on the device’s spatial position on the die 

and on the wafer and/or the layout context surrounding the device being tested. Common 

sources of systematic variability include the non-ideality of the lithographic system, such 

as defocus, misalignment, and line-width roughness [32]; chamber effects that contribute 

to across-wafer patterns [33]; and various layout-dependent effects, such as WPE [34], 

optical proximity effects [2], strained silicon effects [35], and CMP [22].  

Random variations, or stochastic variations, are unpredictable components of device 

variability, such as non-uniformities resulting from random fluctuations in the fabrication 

process, microscopic fluctuations of the number and location of dopant atoms in the 

transistor channel [17], [36], LER due to photoresist granularity [4], and atomic-scale 

oxide-thickness variation [16]. 

Systematic and random variations differ in how they impact device and circuit 

performance. Systematic spatial variation can cause large differences in performance 

among devices that are far apart on the die. From a modeling point of view, such an effect 

in the chips may directly contribute to the spatial correlation among transistors [37]. 

Random variations, however, are usually treated as independent fluctuations at their 

corresponding spatial hierarchy level (lot level, wafer level, chip level, etc.).  
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The classification of systematic and random variations is not absolute. In practice, the 

running status of equipment or the exact location of the device and circuit on the wafer and 

chip are often unavailable to circuit designers, rendering it impossible to predict the exact 

amount of systematic variation. In such cases, systematic variations are often treated as 

random. Such an approximation is an important source of error in estimating the actual 

devices’ variability and yield. 

2.1.3 Global and Local Variations 

Another commonly used classification divides device variability into global variation 

and local variations [38], [39]. As illustrated in Figure 2.1, there are multiple hierarchies 

above the actual chips in the manufacturing process. From the point of view of an 

individual chip, variability from the higher hierarchies, such as lot-to-lot, wafer-to-wafer, 

and chip-to-chip, will be almost equally applied to every transistor on the chip. These 

variations, whether systematic or random, are lumped together and called “global 

variations”. Correspondingly, the remaining within-chip variations are referred to as “local 

variations.” In SPICE Monte Carlo simulations, the same global-variation component is 

generated for all devices of the same model, while each device will have its own unique 

local-variation component. The accurate modeling of the global and local variations plays 

an important role in estimating the power and performance scaling with circuit complexity, 

as the local variations will get averaged out among large number of transistors or long 

critical paths, while the global variations will add up and shift the average 

power/performance of the entire chip. 

 

2.2 Common Sources of Process Variations 

 Lithographic variations 

The uniformity of the printed feature sizes depends heavily on the control of the 

lithographic imaging system. It affects the two key requirements in integrated circuit 

manufacturing: the critical dimension (CD) and the overlay control. In a typical step-

and-scan lithography stepper (Figure 2.6), the mask reticle and the wafer are 

simultaneously moving in opposite directions while a slit of light scans the whole mask 

and projects the image onto the wafer [40]. Even tiny vibrations in the scanner system 

and variations of the movement speed of the wafer and reticle stage may lead to 

significant non-uniformities in the depth of focus (DOF) and the light-exposure dose. 

This can lead to non-uniformity of the critical dimension (CD) of printed lines and may 

vastly change the speed and leakage of CMOS transistors. Meanwhile, errors in 

aligning the reticle to the features on the wafer will create variations in misalignment 
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[41], which can be a crucial problem in achieving the intended line width and good 

electrical contact between the existing patterns and the new layers of the circuit.  

 

 

Figure 2.2: A typical lithography imaging system [41] 

 

Another key source of variation in the lithographic patterning process is the post-

exposure bake (PEB). The PEB step involves rapidly heating up and cooling down the 

entire wafer to activate additional chemical reactions and the diffusion of the chemicals 

within the photoresist. All these phenomena are very sensitive to the PEB temperature 

trajectory; thus, the uneven temperature in the plate may cause significant CD 

variations afterward. 

 

Figure 2.3: Plate temperature non-uniformity near the end of the PEB step [42] 
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 Line-edge roughness 

As the gate critical dimension shrink continues into the sub-100nm scale, the 

tolerance of gate line-width control becomes comparable to the size of a resist polymer 

unit [4], [43]. The granularity of the photoresist creates a non-uniform channel length 

along the poly gate. This leads to an increased overall leakage current as the off-state 

current increases exponentially with the reduction in effective channel length. This 

phenomenon is called line-edge roughness (LER). It contributes to additional threshold 

voltage variations and degrades the short channel characteristics of transistors. LER is 

generally considered an intrinsic, random variation. 

 

 

Figure 2.4: Typical LER in a photoresist (Sandia Labs) [44] 

 

 Random dopant fluctuation 

Random dopant fluctuation (RDF) refers to the random microscopic fluctuation of 

the number and location of dopant atoms in the MOSFET channel region. It causes 

fluctuations of the transistor electric parameters, such as the threshold voltage (Vt), 

short channel effect, and drain-induced barrier lowering (DIBL). With the gate CD 

scaling down to sub-100nm, the total number of dopant atoms under the gate is reduced 

to thousands or even hundreds (Figure 2.5), leading to significant variations in the 

threshold voltage and drive current [45]. RDF is the single most important source of 

random variations in the modern CMOS process. 
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Figure 2.5: Electron distribution in a 30nm “atomistic” MOSFET at threshold [44] 

 

 Well-proximity effect 

The well-proximity effect is an important layout-dependent effect in the deep 

submicron manufacturing process. It originates from the lateral scattering of 

implantation ions during the well-implantation step. The incoming high-energy ions 

collide with the edge of the photoresist on top of the shallow trench isolation (STI), and 

they get reflected into the channel area before the poly-silicon gate is actually formed. 

The closer the transistor gate is to the edge of the well, the higher the dopant 

concentration inside the channel. As a result, transistors with a smaller gate-to-STI 

distance will have higher threshold voltages.  
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Figure 2.6: Origin of well-proximity effect. High-energy dopant ions scatter at the well photoresist edge 

during well ion implantation and are reflected into the channel before the gate is formed [34] 

 

 Strained-silicon effects 

The strained-silicon effect is another important source of layout-dependent 

variation. Currently, advanced CMOS processes intentionally introduce mechanical 

stress over the channel to enhance the carrier mobility of transistors [46]–[48]. 

Experiments have shown an electron mobility increase of more than 20% for NMOS 

with a tensile silicon nitride capping layer and a hole mobility enhancement of more 

than 50% for PMOS [46] using selective epitaxial Si1-xGex in source and drain. STI 

stress can also be modulated with gap-fill material to increase the transistor 

performance by up to 12% with proper layout design and wafer/channel orientation 

[48]. Studies have shown that the stress profile in the channel can be very sensitive to 

the length of diffusion (LOD) [49]. Consequently, transistors with the same gate size 

but a different LOD may have very different speeds. 
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Figure 2.7: An example of the uniaxial strained-silicon process [46] 

 

 Other variability sources 

Other sources of spatial process variation include the pattern density dependency 

of the CMP process [22], oxide thickness non-uniformity [17], non-uniformity in 

reactive ion etching (RIE), traps and defects in material, etc. These variations will have 

their own unique impact on transistor characteristics and require extra margin in the 

design.  

 

2.3 Variation Modeling with Hierarchical Model 

2.3.1 Variability Decomposition 

From the modeling perspective, process variations can be decomposed in several 

different ways. Circuit designers commonly treat process variation as a combination of 

global variation and local variation. This method lumps all the chip-to-chip and wafer-to-

wafer variations into one global variation component, and the remaining variations as one 

local variation component. These are also referred to as “inter-chip” and “intra-chip” 

variations. With the assumption that variations at different hierarchy levels have very little 

cross-interaction, the variation in a given device parameter P can be simply decomposed 

as: 

 Δ𝑃 =Δ𝑃𝐺𝑙𝑜𝑏𝑎𝑙 + Δ𝑃𝐿𝑜𝑐𝑎𝑙 

= Δ𝑃𝑖𝑛𝑡𝑒𝑟−𝑐ℎ𝑖𝑝 + Δ𝑃𝑖𝑛𝑡𝑟𝑎−𝑐ℎ𝑖𝑝 
 ( 2.1 ) 

Here the inter-chip variation component is the lumped sum of the lot-to-lot, wafer-to-

wafer, and chip-to-chip components: 
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 Δ𝑃𝑖𝑛𝑡𝑒𝑟−𝑐ℎ𝑖𝑝 =Δ𝑃𝑙𝑜𝑡−𝑡𝑜−𝑙𝑜𝑡 + Δ𝑃𝑤𝑎𝑓𝑒𝑟−𝑡𝑜−𝑤𝑎𝑓𝑒𝑟 + Δ𝑃𝑐ℎ𝑖𝑝−𝑡𝑜−𝑐ℎ𝑖𝑝  ( 2.2 ) 

Conventionally, the global and local variations are modeled as two independent, 

normally distributed random variables. 

 
Δ𝑃𝑖𝑛𝑡𝑒𝑟−𝑐ℎ𝑖𝑝~𝑁(𝜇𝑖𝑛𝑡𝑒𝑟−𝑐ℎ𝑖𝑝, 𝜎𝑖𝑛𝑡𝑒𝑟−𝑐ℎ𝑖𝑝

2 )  ( 2.3 ) 

 
Δ𝑃𝑖𝑛𝑡𝑟𝑎−𝑐ℎ𝑖𝑝~𝑁(𝜇𝑖𝑛𝑡𝑟𝑎−𝑐ℎ𝑖𝑝, 𝜎𝑖𝑛𝑡𝑟𝑎−𝑐ℎ𝑖𝑝

2 )  ( 2.4 ) 

With the increasingly significant systematic variability, such as layout-dependent 

effects in the process, some variability models added an additional across-chip systematic 

component of parameter P to the equation, which is modeled as a normally distributed 

random variable independent of the other components: 

 Δ𝑃 =Δ𝑃𝑖𝑛𝑡𝑒𝑟−𝑐ℎ𝑖𝑝 + Δ𝑃𝑖𝑛𝑡𝑟𝑎−𝑐ℎ𝑖𝑝 𝑟𝑎𝑛𝑑𝑜𝑚 + Δ𝑃𝑎𝑐𝑟𝑜𝑠𝑠−𝑐ℎ𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐  ( 2.5 ) 

 
Δ𝑃𝑎𝑐𝑟𝑜𝑠𝑠−𝑐ℎ𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐~𝑁(𝜇𝑎𝑐𝑟𝑜𝑠𝑠−𝑐ℎ𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 , 𝜎𝑎𝑐𝑟𝑜𝑠𝑠−𝑐ℎ𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

2 )  ( 2.6 ) 

A prior variability study, however, shows that the systematic variations, particularly at 

the wafer and chip level, will cause the device parameter distribution to deviate from 

normal distributions at extreme quantiles [50]. To improve the accuracy of the variability 

model, the systematic and random components should be individually characterized for 

each level of the fabrication hierarchy, mainly at the wafer level (chip-to-chip) and chip 

level (device-to-device). 

 Variation at lot level and above 

State-of-the-art semiconductor manufacturing involves various batch processes that 

apply to multiple wafers at the same time for a high wafer throughput. For example, the 

chemical vapor deposition (CVD) heats up multiple wafers in the furnace, where the 

reactive gas forms a thin film on the surface of the wafers [13]. The batches are usually 

referred to as lots, which conventionally contain 25 wafers each. As a result, some process 

conditions are applied to all the wafers in the same lot but there are changes from lot to lot, 

leading to lot-to-lot variation. Meanwhile, wafers within the same lot are also subject to 

non-uniformity in the chamber environment, such as the temperature and the speed of the 

gas flow, which results in within-lot variations.  

During single-workpiece processes, such as lithographic imaging and reactive ion 

etching (RIE), each wafer is processed individually. Naturally, this will lead to variability 

between different wafers, which is called wafer-to-wafer variation. 
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In theory, one can model the lot-to-lot and wafer-to-wafer variations using time-series 

models [13] and fit the systematic signatures of within-lot variations. In practice, however, 

such a practice requires long-term monitoring over a significant number of lots and wafers. 

It is often more convenient to lump them together as a single variation component that 

varies from wafer to wafer, denoted as Δ𝑃𝑊2𝑊. 

In this thesis, without loss of generality, we assume that the wafer-to-wafer variation 

Δ𝑃𝑊2𝑊 can be sufficiently modeled as a normally distributed variable independent to the 

other variation components. This assumption typically holds well in a reasonably mature 

semiconductor process without process splits. Thus, the random wafer-to-wafer variation 

is described by 

 Δ𝑃𝑊2𝑊~𝑁(0, 𝜎𝑊2𝑊
2 )  ( 2.7 ) 

 

 Variation at the wafer level  

Wafer level non-uniformity can come from deposition, photoresist spinning effects, 

temperature non-uniformity in post-exposure baking or plasma etching, and other 

equipment non-uniformities that result in a smooth, low-frequency across-wafer variation 

pattern. In particular, wafer-level variation often exhibits symmetric radial (“dome” or 

“bull’s eye”) patterns [51]. We call such repeatable wafer-level variability systematic 

across-wafer variation. Since the chip size is usually much smaller than the wafer diameter, 

we can assume that the across-wafer pattern is approximately constant within a chip’s scale. 

Therefore, for a device from chip location (𝑥𝑊, 𝑦𝑊) on the wafer, the systematic across-

wafer variability component can usually be sufficiently represented by an elliptic 

paraboloid function, denoted as Δ𝑃𝐴𝑊(𝑥𝑊, 𝑦𝑊): 

 Δ𝑃𝐴𝑊(𝑥𝑊, 𝑦𝑊) = 𝑎𝑊 ⋅ 𝑥𝑊
2 + 𝑏𝑊 ⋅ 𝑥𝑊 + 𝑐𝑊 ⋅ 𝑦𝑊

2 + 𝑑𝑊 ⋅ 𝑦𝑊 

+𝑒𝑊 ⋅ 𝑥𝑊𝑦𝑊 + 𝑓𝑊 
 ( 2.8 ) 

In addition, process variations, such as the focus and exposure fluctuation in 

lithographic imaging, may introduce additional variability from chip to chip. Lumped 

together with the fitting residual of the systematic across-wafer variation, we call it the 

random chip-to-chip variation (or across-wafer random variation), denoted as Δ𝑃𝐴𝑊𝑅. It 

may be modeled by a Gaussian variable, as described in Equation 2.9. 

 Δ𝑃𝐴𝑊𝑅~𝑁(0, 𝜎𝐴𝑊𝑅
2 )  ( 2.9 ) 
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 Variation at the die/chip level  

Intra-die variation or within-die variation refers to the fluctuation of device properties 

on the same chip/die. Similar to wafer-level variations, chip-level variations also consist of 

systematic and random components. Typical sources of systematic spatial variations 

include stepper-induced variations (illumination, lens aberrations) [52], reticle 

imperfections, and CMP [50], [53]. The systematic across-chip variation of a device with 

location (𝑥𝐶 , 𝑦𝐶) on the die/chip can often be approximated by an elliptic paraboloid as 

well, as described by Equation 2.10 [50], [52], [53]: 

 Δ𝑃𝐴𝐶(𝑥𝐶 , 𝑦𝐶) = 𝑎𝐶 ⋅ 𝑥𝐶
2 + 𝑏𝐶 ⋅ 𝑥𝐶 + 𝑐𝐶 ⋅ 𝑦𝐶

2 + 𝑑𝐶 ⋅ 𝑦𝐶  

+𝑒𝐶 ⋅ 𝑥𝐶𝑦𝐶 + 𝑓𝐶  
 ( 2.10 ) 

The random across-chip variations (device-to-device or local mismatches), on the 

other hand, include intrinsic variability, such as RDF, interface-trapped charge 

fluctuations, atomic oxide-thickness fluctuations, and LER. These intrinsic random 

variations are dominant at the deep-submicron device scale. They are modeled as a 

normally distributed random variable independent to the other variation components, 

which is denoted as Δ𝑃𝐴𝐶𝑅: 

 Δ𝑃𝐴𝐶𝑅~𝑁(0, 𝜎𝐴𝐶𝑅
2 )  ( 2.11 ) 

Last, the layout-dependent variations, such as those due to optical-proximity effects, 

strained-silicon effects, and plasma micro loading, will cause devices with similar design 

parameters but different layout designs and/or sounding layout contexts to differ 

significantly in device characteristics, such as gate CD and mobility. In this work, we adopt 

the assumption that the layout-dependent effects do not interact with the rest of the spatial 

variations in the system; thus, the layout-dependent variation is a simple additive term 

described by Equation 2.12. 

 Δ𝑃𝑙𝑎𝑦𝑜𝑢𝑡 = 𝐹(𝑙𝑎𝑦𝑜𝑢𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛)  ( 2.12 ) 
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2.3.2 Hierarchical Variability Model 

 

Figure 2.8: One-dimensional illustration of the hierarchical variability components of parameter P: a) lot-

to-lot and wafer-to-wafer random, b) across-wafer systematic, c) chip-to-chip random, d) across-chip 

systematic, e) layout-dependent, and f) device-to-device random. 

 

Figure 2.8 is an illustration of the hierarchical variability model we proposed for 

capturing the systematic and random components in the integrated circuit manufacturing 

process. Assume device parameter P is a process-related physical quantity and that its 

variations from different sources or hierarchy levels have relatively small interactions. In 

this case, the total variation of parameter P can be simply modeled as the sum of the 

different variability components: Δ𝑃 = Δ𝑃𝑠𝑜𝑢𝑟𝑐𝑒−1 + Δ𝑃𝑠𝑜𝑢𝑟𝑐𝑒−2 + ⋯ Δ𝑃𝑠𝑜𝑢𝑟𝑐𝑒−𝑁.  

Given the variability decomposition scheme previously described, the total spatial 

variation of parameter 𝑃 can be decomposed as the sum of the wafer-to-wafer random 

variations, across-wafer systematic variations, chip-to-chip (across-wafer) random 

variations, across-chip systematic variations, device-to-device (across-chip) random 

variations, and layout-dependent variations. 

 Δ𝑃 = Δ𝑃𝑊2𝑊 + Δ𝑃𝐴𝑊 + Δ𝑃𝐴𝑊𝑅 + Δ𝑃𝐴𝐶 + Δ𝑃𝐴𝐶𝑅 + Δ𝑃𝐿𝑎𝑦𝑜𝑢𝑡  ( 2.13 ) 

Such an additive hierarchical model can also be applied to the estimates of those device 

or circuit parameters that are linearly proportional to additive physical quantities. For 

example, the effective gate length (Leff) of transistors is often such a physical parameter 

that satisfies the additive requirement. Consequently, the ring oscillator stage delay, which 

is proportional to Leff to the first order, can also be modeled in this additive fashion 
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(Equation 2.14). The additive model cannot be applied to the ring oscillator frequency, 

however, as it follows 1/Leff (Equation 2.15).  

 
Δ𝐷𝑒𝑙𝑎𝑦 = 𝑘Δ𝐿𝑒𝑓𝑓 = 𝑘(Δ𝐿𝑒𝑓𝑓,𝑠𝑜𝑢𝑟𝑐𝑒−1 + Δ𝐿𝑒𝑓𝑓,𝑠𝑜𝑢𝑟𝑐𝑒−2) 

= Δ𝐷𝑒𝑙𝑎𝑦𝑠𝑜𝑢𝑟𝑐𝑒−1 + Δ𝐷𝑒𝑙𝑎𝑦𝑠𝑜𝑢𝑟𝑐𝑒−2 

 ( 2.14 ) 

 
Δ𝑓𝑟𝑒𝑞 =

1

𝑘Δ𝐿𝑒𝑓𝑓
=

1

𝑘(Δ𝐿𝑒𝑓𝑓,𝑠𝑜𝑢𝑟𝑐𝑒−1 + Δ𝐿𝑒𝑓𝑓,𝑠𝑜𝑢𝑟𝑐𝑒−2)
 

= (Δ𝑓𝑟𝑒𝑞𝑠𝑜𝑢𝑟𝑐𝑒−1
−1 + Δ𝑓𝑟𝑒𝑞𝑠𝑜𝑢𝑟𝑐𝑒−2

−1 )−1 

≠ Δ𝑓𝑟𝑒𝑞𝑠𝑜𝑢𝑟𝑐𝑒−1 + Δ𝑓𝑟𝑒𝑞𝑠𝑜𝑢𝑟𝑐𝑒−2 

 ( 2.15 ) 

2.4 Summary 

In this chapter, we first reviewed the various classifications of process variability. By 

nature, process variations can be environmental, temporal, or spatial. With regard to 

repeatability, process variations can be systematic or random, and with regard to their scope 

of impact, process variations are divided into global variations and local variations.  

The common sources of the systematic and random components of spatial process 

variation are then discussed in detail. The most prominent effects include variations in 

lithographical imaging and post-exposure baking (PEB), random dopant fluctuations 

(RDF), line-edge roughness (LER), well-proximity effects (WPE), strained silicon effects, 

chemical mechanical polishing (CMP), thin film-thickness fluctuation, etc. 

Lastly, an additive hierarchical variability model was proposed to capture the various 

components of spatial process variations. The total variability of device parameter P was 

modeled as the sum of the random wafer-to-wafer, chip-to-chip, and device-to-device 

variations; the systematic across-wafer and across-chip variations; and the layout-

dependent variations. This simple but effective spatial variability model will be used in 

characterizing the variability profile in the near-mature commercial-quality silicon data in 

Chapter 3 and Chapter 5.  
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Test Chip Design, Characterization, 

and Variability Analysis 
 

3.1 Introduction 

We experimented with multiple test wafers with custom test structures to investigate 

the influence of process variability in modern semiconductor manufacturing and to 

understand the underlying mechanism. The test circuits were designed by BWRC students 

and faculty [54]–[57], and fabricated by our foundries partners using the 90nm and 45nm 

bulk process. We characterized key variability test structures, including ring oscillator 

(RO) arrays for delay and leakage current measurement, SRAM arrays, and individually 

measurable padded-out transistors of the SRAM cells. 

 

3.2 The 90nm Ring Oscillator Test Chip 

3.2.1 Chip Design Overview 

A test chip is designed and implemented in a general-purpose 90nm CMOS technology 

process from STMicroelectronics to characterize the process-induced circuit variations 

[54]. The approach we use is to measure the oscillating delay and transistor source-drain 

leakage currents of an array of ring-oscillator test structures. 

The test chip is made up of 10 rows × 16 columns of tiles of test structures. Each tile 

contains twelve 13-stage RO and 12 off-state NMOS transistors, one for each of the 12 

different layout styles (Figure 3.2). The tiles are separated by 62.5um horizontally and 

100um vertically. The total array area is 1mm × 1mm, and the overall die size, including 

the peripherals, is about 1.8mm × 1.4mm. Layout pattern styles include gate stacks that 

consist of 1 to 3 Poly-Si fingers with varied length of diffusion (LOD). The Poly-Si pitch 

of neighboring dummy features is varied, and one layout has a Poly-Si orientation rotated 

by 90 degrees. Asymmetric masks are used to test the coma effect. The first metal layer 

coverage over gates is varied as well. The test chip also includes a leakage current 

measurement circuit, which sits right beside the ROs with the same layout. 
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Figure 3.1: Die photo of 90nm test chip [54] 

 

 

Figure 3.2: Layout configuration in the 90nm test chip [54] 

 

3.2.2 Sampling and Measurement Scheme 

There are two requirements on the sampling scheme based on our variability model. 

First, there must be enough measuring points inside each chip to capture the systematic and 

random components at chip level. Second, these points should be spread out across the 

wafer to capture the wafer level variations.  

For this 90nm test wafer, we examined the delay and static leakage (IDDQ) data 

collected from 36 chips distributed mostly across the right half of the wafer. Each chip was 

measured exhaustively to get a complete and statistically significant spatial coverage over 

the 1mm × 1mm RO array. The ring oscillator delays were measured off-chip with a 
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20GSPS oscilloscope and averaged over about 100 periods. The transistor off-state currents 

were measured using an on-chip single-slope analog-to-digital converter (ADC) [58]. The 

wafer-level measurement plan and the collected RO data are shown in Figure 3.4. 

 

Figure 3.3: Ring oscillator with n stages [58] 

 

 

Figure 3.4: Wafer maps of mean RO frequency and mean Log(ILEAK) for layout 3A [54] 

 

3.2.3 Variability Observation 

Devices of three representative layouts—3A, 4A, and 5A—are selected for studying 

the wafer-level, chip-level, and layout-to-layout variations. Wafer-level RO delay and 

leakage (IDDQ) variation of these layouts are shown in Figure 3.5 and Figure 3.6. Each 
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data block stands for the average value over all the 160 tiles, which is noted by symbol 

𝐷〈−𝐷𝑊𝑃〉 and 𝐼〈−𝐷𝑊𝑃〉. Similarly, chip-level RO delay and leakage variations are 

shown in Figure 3.7 and Figure 3.8. Each data block stands for the average value of all 36 

dies, which is noted by symbol 𝐷〈𝑇 − 𝑊𝑃〉 and 𝐼〈𝑇 − 𝑊𝑃〉. 

If we assume that the majority of systematic variations are from the effective gate 

length (𝐿𝑒𝑓𝑓) variability, then the following simple model describes the RO delay and 

leakage (SPICE simulations confirm that this is a good approximation when the gate length 

variation is small): 

 
𝑑𝑒𝑙𝑎𝑦: 𝐷 = 𝐷0 (

𝐿𝑒𝑓𝑓

𝐿0
) 

𝑙𝑒𝑎𝑘𝑎𝑔𝑒: log 𝐼𝐷𝐷𝑄 = log 𝐼𝐷𝐷𝑄0 (
𝐿0

𝐿𝑒𝑓𝑓
) 

 ( 3.1 ) 

As a simple function of the physical quantity 𝐿𝑒𝑓𝑓, RO delay is a good candidate for 

the application of the additive hierarchical variability model. According to the hierarchical 

model, the total variation of devices of a given layout pattern on a single wafer can be 

decomposed into across-wafer systematic (AW), across-wafer random (AWR), across-chip 

systematic (AC), and across-chip random (ACR). Statistical analysis shows that the across-

wafer gate RO delay variation can be approximated adequately by a second-order 

polynomial, of the form in Equation 3.2. Note that due to the lack of the left half of the 

wafer, the quadratic term in the X-direction is statistically insignificant; we set that 

coefficient to zero. Meanwhile, the across-chip variation can also be fitted by a chip-level 

second-order polynomial. Statistics show the variation along different columns does not 

have a significant systematic component, while variation along the different rows displays 

a significant (half-) parabolic pattern. The simplified approximation is shown in Equation 

3.3.  

 𝐷〈−𝐷𝑊𝑃〉 = 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 

𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 = 𝑎𝑊𝑋𝑊
2 + 𝑏𝑊𝑋𝑊 + 0 × 𝑌𝑊

2 + 𝑑𝑊𝑌𝑊 + 𝑒𝑊 
 ( 3.2 ) 

 

 𝐷〈𝑇 − 𝑊𝑃〉 = 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 

𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶 = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 𝑐𝐶𝑌𝐶

2 + 𝑑𝐶𝑌𝐶 + 𝑒𝐶 
 ( 3.3 ) 
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Using RO delay as an example, the fitted coefficients and their 95% confidence 

intervals are shown in Figure 3.9: and Figure 3.10.  

Below, I apply statistical tests algorithmically rather than statistically: the underlying 

statistical models do not hold: there is no basis for the assumed probability distribution of 

the data, and all the null hypotheses are false. The tests do not have their nominal 

significance levels in this problem; indeed, it is not clear what “significance level” would 

even mean. Nonetheless, applying statistical tests may provide insight into which 

components of variation are worth modeling, and may lead to models that make more 

reliable and useful predictions. 

To examine the layout dependence effects on the variation pattern, we used t-statistic 

to compare the estimates of fitted coefficients from the three layout designs. Use 𝑎𝑊 as 

example, and under the assumption null-hypothesis 𝐻0: 𝑎𝑊3𝐴
= 𝑎𝑊4𝐴

 is rejected if:  

 
𝑡𝑎𝑊3𝐴

,𝑎𝑊4𝐴
=

|𝑎̂𝑊3𝐴
− 𝑎̂𝑊4𝐴

|

√𝑆𝐸𝑎𝑊3𝐴

2 + 𝑆𝐸𝑎𝑊4𝐴

2

> 𝑡𝛼
2
,𝑁−1

 
 ( 3.4 ) 

The estimates of mean and standard error (SE) in the linear regression model (Table 

3.1), give 

 
𝑡𝑎𝑊3𝐴

,𝑎𝑊4𝐴
=

|−0.1454 + 0.1423|

√1.903 × 10−6 + 1.867 × 10−6
= 1.612 

< 𝑡0.05
2

,5757
= 1.96 

 ( 3.5 ) 

Similarly, 

 
𝑡𝑎𝑊3𝐴,𝑎𝑊5𝐴

=
|−0.1454 + 0.145|

√1.903 × 10−6 + 1.902 × 10−6
= 0.224 

< 𝑡0.05
2

,5757
= 1.96 

 ( 3.6 ) 

 
𝑡𝑎𝑊4𝐴

,𝑎𝑊5𝐴
=

|−0.1423 + 0.145|

√1.867 × 10−6 + 1.902 × 10−6
= 1.385 

< 𝑡0.05
2

,5757
= 1.96 

 ( 3.7 ) 

None of the three pair-wise null hypotheses is rejected. This suggests it may be 

adequate to take the coefficient 𝑎𝑊  to be equal for all three layout designs. Similar 
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analysis leads us to model the rest of “shape” coefficents 𝑏𝑊 and 𝑑𝑊 as equal for the 

three layout designs. On the other hand, the same tests for the intercept coefficient 𝑒𝑊 

give: 

 
𝑡𝑒𝑊3𝐴

,𝑒𝑊4𝐴
= 19.1 > 1.96  ( 3.8 ) 

 
𝑡𝑒𝑊3𝐴

,𝑒𝑊5𝐴
= 22.4 > 1.96  ( 3.9 ) 

 
𝑡𝑒𝑊4𝐴

,𝑒𝑊5𝐴
= 3.47 > 1.96  ( 3.10 ) 

 

Because these differences are (nominally) statistically significant, we retain 

differences among the intercept terms 𝑒𝑊  for layouts 3A, 4A and 5A. It is also worth 

noting that the t-statistics between layout 4A and 5A are much smaller than that between 

either of those layouts and layout 3A. 

 

  3A 4A 5A 

𝑎𝑊 Estimate -0.145 -0.142 -0.145 

SE2 1.9E-06 1.87E-06 1.9E-06 

𝑏𝑊 Estimate 0.0174 0.0164 0.0171 

SE2 5.27E-08 5.17E-08 5.27E-08 

𝑑𝑊 Estimate 0.0111 0.0108 0.0110 

SE2 1.26E-08 1.23E-08 1.26E-08 

𝑒𝑊 Estimate 1.40 1.31 1.29 

SE2 1.31E-05 1.29E-05 1.31E-05 

Table 3.1: Estimates and standard errors of fitting coefficient 𝑎𝑊, 𝑏𝑊, 𝑑𝑊 and 𝑒𝑊 for the across-wafer 

spatial variation patterns of layout 3A, 4A and 5A 

The number of pairwise statistical tests of coefficient equality required can grow 

quickly as more layout designs are in comparison. As an alternative, we simply observe 
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the trend of confidence intervals (CI) of the fitting coefficients across different layouts. 

While not a statistically valid test for a difference, we treat these shape coefficients as equal 

if their CIs have large overlaps.  

With this alternative method, we found that most of the layout-dependent effects are 

accounted for by differences in the intercept terms 𝑒𝑊 and 𝑒𝐶 . We model the layout-

dependent component in this process as an additive component on top of the systematic 

across-wafer and across-chip component. The large overlap of the confidence intervals of 

the layout component 𝑒𝑤 and 𝑒𝐶 between layouts 4A and 5A while layout 3A is far apart 

is consistent with the fact that layouts 4A and 5A are mirror images while 3A has a different 

pattern density. Therefore, the layout-dependence differences between them are minimal, 

while layout 3A with dummy polys on both sides of the gate actually behaves as a slower 

device in general. This observation is contradictory to the common knowledge that a more 

regular poly-grating structure will result in a narrower printed poly gate critical dimension 

(poly CD). Unfortunately, it requires more detailed electrical tests as well as physical 

examination of the device cross-section to reveal the root cause. Last, a similar conclusion 

can be drawn if we perform the same experiment on the RO leakage data.  

 

 

Figure 3.5: Wafer maps of mean RO delay of layouts 3A, 4A, and 5A [54]: 𝐷〈−𝐷𝑊𝑃〉 
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Figure 3.6: Wafer maps of the mean RO log(IDDQ) of layouts 3A, 4A, and 5A [54]: 𝐼〈−𝐷𝑊𝑃〉 

 

 

Figure 3.7: Chip maps of the mean RO delay of layouts 3A, 4A, and 5A [54]: 𝐷〈𝑇 − 𝑊𝑃〉 

 

Figure 3.8: Chip maps of the mean RO log(IDDQ) of layouts 3A, 4A, and 5A [54]: 𝐼〈𝑇 − 𝑊𝑃〉 

 

 

Figure 3.9: Estimate and confidence interval of across-wafer fitting coefficients: layouts 3A, 4A, and 5A 
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Figure 3.10 Estimate and confidence interval of across-chip fitting coefficients: layouts 3A, 4A, and 5A 

 

Figure 3.11 and Figure 3.12 illustrate the decomposition of across-wafer and across-

chip RO delay variations of layout 3A. The fitting residuals after the removal of the 

systematic across-wafer and across-chip components become much closer to a standard 

Gaussian distribution, as shown in Figure 3.14.  

To test how much the hierarchical variability model improves on the conventional 

“Global+Local” variability model, Monte Carlo experiments are performed to simulate the 

distribution of the RO delay of 10,000 chips with 160 test devices per chip. Assume each 

chip has the exact equal chance to be chosen from the 36 chip locations on the wafer, and 

each test device has the exact equal chance to be chosen from the 160 tile locations on the 

chip. Under the simple “Global+Local” model, the delay of each RO device is the sum of 

two Gaussian random variables. One carries the same variance as the total chip-to-chip 

variation from the raw measurement, while the other carries the same variance as the total 

within-chip variance of the raw measurement data. Under the hierarchical variability model, 

the RO delay is still modeled as the sum of the chip-level component and the within-chip 

component. However, each component is now composed of a systematic across-

wafer/across-chip component in addition to the residual Gaussian random variation. The 

formula for simulating the distribution is shown in equation 3.11 to 3.13.  

RO delay of the kth layout from the jth tile on the ith chip: 

 𝐷𝑖,𝑗,𝑘 = 𝐿𝑎𝑦𝑜𝑢𝑡𝑘 + 𝐶ℎ𝑖𝑝𝑖 + 𝑇𝑖𝑙𝑒𝑗  ( 3.11 ) 

“Global+Local” variation model: 

 𝐶ℎ𝑖𝑝𝑖~𝑁(0, 𝜎𝐺𝑙𝑜𝑏𝑎𝑙) 

𝑇𝑖𝑙𝑒𝑗~𝑁(0, 𝜎𝐿𝑜𝑐𝑎𝑙) 
 ( 3.12 ) 

Hierarchical model: 
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𝐶ℎ𝑖𝑝𝑖~𝑓𝐴𝑊(𝑋𝑊𝑖

, 𝑌𝑊𝑖
) + 𝑁(0, 𝜎𝐴𝑊𝑅) 

𝑇𝑖𝑙𝑒𝑗~𝑓𝐴𝐶 (𝑋𝐶𝑗
, 𝑌𝐶𝑗

) + 𝑁(0, 𝜎𝐴𝐶𝑅) 

 ( 3.13 ) 

The normal quantile plots (Figure 3.15) provide direct comparisons of the two models’ 

Monte Carlo experiment results. Both model predictions are fairly close to the raw 

measurement for the most part within ±2𝜎. At ±3𝜎, the hierarchical model starts to show 

less deviation from the raw measurement than the “Global+Local” model, especially on 

the fast side. The numerical comparisons of ± 3σ and the median delay of layouts 3A, 

4A, and 5A are shown in Table 3.2. The two models are within 0.5% of each other at +3𝜎 

for all three layouts, while at −3𝜎, the hierarchical model consistently shows 2% better 

accuracy than the simple “Global+Local” model.  

 

Figure 3.11: Decomposition of wafer-level variation of layout 3A: 

𝐷〈−𝐷𝑊𝑃〉 = 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 
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Figure 3.12: Decomposition of wafer-level variation of layout 3A: 

𝐷〈𝑇 − 𝑊𝑃〉 = 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 

 

 

Figure 3.13: Correlation between RO leakage and delay: 

 (a) 𝐼〈𝑇𝐷𝑊𝑃〉 𝑣𝑠. 𝐷〈𝑇𝐷𝑊𝑃〉; (b) 𝐼〈𝑇 − 𝑊𝑃〉𝐴𝑊 𝑣𝑠. 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝑊; (c) 𝐼〈−𝐷𝑊𝑃〉𝐴𝐶  𝑣𝑠. 𝐷〈−𝐷𝑊𝑃〉𝐴𝐶   
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Figure 3.14: Histogram of the RO delay distribution as well as the systematic across-wafer, layout-to-

layout, random chip-to-chip, systematic across-chip, and random tile-to-tile variability 

 

Figure 3.15: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical 

model for the RO delay distributions of layout 3A 

 

 Measurement “Global+Local” Model Hierarchical Model 

Layout 3A +3𝜎 1.317 1.327 (+0.8%) 1.324 (+0.5%) 

Median 1.168 1.165 (-0.2%) 1.162 (-0.5%) 

−3𝜎 1.036 1.004 (-3.1%) 1.024 (-1.1%) 

Layout 4A +3𝜎 1.212 1.225 (+1.1%) 1.226 (+1.2%) 
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Median 1.066 1.062 (-0.4%) 1.059 (-0.7%) 

−3𝜎 0.935 0.904 (-3.3%) 0.926 (-1.0%) 

Layout 5A +3𝜎 1.198 1.214 (+1.3%) 1.218 (+1.7%) 

Median 1.051 1.048 (-0.4%) 1.045 (-0.6%) 

−3𝜎 0.919 0.890 (-3.2%) 0.909 (-1.2%) 

Table 3.2: Median and +/- 3s of simple “Global+Local” model and the hierarchical variability model in 

comparison with the measurements (difference to measurement shown in percentages) 

 

3.3 The 45nm Ring Oscillator and SRAM Test Chips 

3.3.1 Chip Overview 

To further investigate the process dependency of the device and circuit variability, a 

newer set of 45nm test chip circuitries was designed by Liang-teck Pang et al. [57] and 

Zheng Guo [59]. The test chips were fabricated using a 45nm low-power strained-Si 

CMOS process [47], [48], [60], with an array of ROs and corresponding off-state leakage 

current measurement circuitry, as well as 18 SRAM macros that allow the characterization 

of SRAM padded-out transistors and the SRAM read/write margins. The die photo is 

shown in Figure 3.16. 

To keep up with the aggressive technology scaling, new fabrication practices and 

stricter design rules have been introduced to the 45nm technology. Poly spacing can no 

longer be freely adjusted; instead, only a small continuous range followed by a discrete 

jump in Poly-Si spacing is allowed. All transistor channels are oriented in the <100> 

direction, which enhances PMOS mobility and makes it insensitive to stress [61]. Two 

major sources of stress are introduced both by design and unintentionally in this process: 

strain caused by the contact-etch stop layer (CESL) and the shallow trench isolation (STI) 

stress. Subatmospheric chemical vapor deposition oxide (SACVD) largely reduces usually 

strong compressive STI stress and turns it into a weak tensile one. CESL is formed by 

intentionally depositing a nitride layer on top of NMOS transistors, which introduces a 

strong horizontal tensile strain that greatly enhances the electron mobility. Another 

important feature of the new 45nm test chip fabrication is the different gate-trimming 

treatment for the two wafers we have, aiming at a nominal 4nm reduction in gate CD from 

the slower wafer (#1) to the faster wafer (#2). The major features of the 45nm process are 

summarized in Table 3.3. 
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Figure 3.16: Die photo of the 45nm test chip 

 

Process Feature 45nm Process Effect 

Si substrate [100]-oriented channel Higher PMOS mobility 

Shallow trench isolation (STI) 
Sub-atmospheric deposited 

oxide 
Lower STI stress 

Contact etch stop layer (CESL) 
Nitride layer creating high 

tensile strain 
Higher NMOS mobility 

Immersion lithography NA > 1 Improved resolution 

Backend dielectric Low k ~2.5 Low RC delay 

Table 3.3: Summary of the 45nm process 

The RO array contains 18 × 16 identical tiles. Each tile consists of 17 thirteen-stage 

ROs and 17 pairs of off-state NMOS and PMOS transistors for leakage measurements, 

each with the same transistor sizing embedded in a different layout pattern. A total of 17 

different RO transistor layouts are designed based on the new process and design rules to 
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capture possible layout-dependent effects, including various Poly-Si gate-dummy pitches, 

different source/drain areas with and without STI, and orientation of transistor placement. 

The layouts are presented in Figure 3.17 and Figure 3.18. Note that the pre-OPC patterns 

depicted in Figure 3.17 are subject to OPC treatment prior to fabrication, the specifics of 

which remain unknown to us. Measurement circuitry was adopted from the design of the 

90nm test chip. The RO delay and corresponding off-state NMOS/PMOS transistor leakage 

currents were measured in our laboratory after the wafers were diced and the chips were 

packaged. 

 

 

Figure 3.17: Sixteen pre-OPC RO layout configurations in the 45nm test chip, all arranged horizontally (An 

additional configuration using the same design of layout P1 but arranged vertically is shown separately in 

Figure 3.18) 
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Figure 3.18: Two different RO implementations of the layout pattern P1: (a) horizontal arrangement, (b) 

vertical arrangement 

 

SRAM is known to be sensitive to process variation, especially threshold voltage 

variations caused by random dopant fluctuation, line-edge roughness, work function 

fluctuations and etc. To characterize the variability of SRAM in a modern semiconductor 

process, SRAM test structures were also incorporated in these 45nm test chips. Each test 

chip contains 18 SRAM macros, and each macro contains 20 rows × 40 columns of SRAM 

cells, as shown in Figure 3.22. Along the diagonal of each macro, 20 bit-cells have all their 

internal nodes accessible through a switch network (Figure 3.20), thus allowing the 

automated measurement of SRAM functional metrics as well as the electrical 

characteristics of each of the 6 individual transistors in a bit cell.  

Typical SRAM functional metrics consist of read stability and write stability, which 

stand for the amount of disturbance bit cells can withstand without accidental change of 

the data stored during a read cycle or a write cycle, respectively. The read stability is 

usually characterized by the Read Static Noise Margins (RSNM), which is extracted by 

measuring a pair of voltage transfer characteristics (VTC), more commonly known as the 

“butterfly curves” [62]. The RSNM is quantified as the largest square that can fit into the 

pair of read VTC from the same bit cell. Meanwhile, SRAM write stability can often be 

represented by the writeability current (IW), which is extracted from the N-curve for 

writeability [63]. IW is defined as the minimum current past the inverter trip point (the 

sudden drop in current in the N-curve). Figure 3.13 illustrates both setups for characterizing 

SRAM cell-design margins. 

 

(a) (b) V1
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Figure 3.19: (a) Bit cell measurement setup for the “butterfly curve” to extract the Read Static Noise 

Margin [63] (RSNM), (b) measurement setup for the “N-curve” to extract the writeability current (IW) [64], 

(c) butterfly curve with its corresponding measurement highlighted, (d) N-curve with corresponding 

measurement highlighted 
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Figure 3.20: All-internal-node access scheme in SRAM macros [56] 

 

 

Figure 3.21: Layout cartoon for a 0.374 µm2 bit cell with all 10 internal nodes wired out (Courtesy: Zheng 

Guo, UC Berkeley) 
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Figure 3.22: Layout view of a 20 × 40 SRAM macro, with poly in the vertical direction, using all internal 

node access surrounded by a large STI [56] 

 

3.3.2 Ring Oscillator Variability Observation 

A total of 76 dies from the 2 wafers are packaged for characterization. Bearing the 

systematic across-wafer variation profile in mind, more emphasis is put on the dies near 

the periphery and the center of the wafer for better coverage of the leading and trailing 

edge of the performance distribution. At least 8 tiles of the 18 × 16 RO array are measured 

at each die site, while full-array characterization had been done for 15 selected dies, as 

shown in Figure 3.23. 

The within-chip RO variability averaged over 15 fully characterized dies is shown in 

Figure 3.25. The figure shows that there is no strong systematic across-chip variation. Thus, 

it is reasonable to estimate full within-chip statistics from a random sample of locations 

within a die. A simple decomposition of the variability (see Figure 3.31) shows that within-

chip variation (~2%) is relatively small compare to wafer-level variations (20~30%). 

Hence, even a small sample of devices from the die should suffice to estimate the chip 

median and the across-wafer variability accurately. We chose to measure only 8 sites per 

chip for the majority of chips, which saves a significant amount of characterization time 

without noticeably compromising the accuracy of estimates of across-chip variability.  

Wafer-level RO delay and leakage (NMOS and PMOS) variation of layout P2 are 

shown in Figure 3.24. Each data block stands for the mean delay/leakage over the measured 

tiles, which is noted by symbol 𝐷〈−𝐷𝑊𝑃〉 , 𝐼𝐿𝐸𝐴𝐾𝑁〈−𝐷𝑊𝑃〉 , and 𝐼𝐿𝐸𝐴𝐾𝑃〈−𝐷𝑊𝑃〉 . 

Similarly, chip-level RO delay and leakage variation are shown in Figure 3.25. Each data 
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block stands for the average value of the 15 fully characterized dies, which is noted by 

symbol 𝐷〈𝑇 − 𝑊𝑃〉, 𝐼𝐿𝐸𝐴𝐾𝑁〈𝑇 − 𝑊𝑃〉, and 𝐼𝐿𝐸𝐴𝐾𝑃〈𝑇 − 𝑊𝑃〉. 

The basic assumptions about the composition of variations are very similar to those 

described in Section 3.2, used to analyze the 90nm technology. The across-wafer RO delay 

variation can be approximated adequately by a second-order polynomial, as shown in 

Equation 3.14. The across-chip variation can be approximated adequately by a linear 

surface, as shown in Equation 3.15. In modern processes, two major sources contribute to 

the across-wafer systematic variation. First, during post-exposure-bake (PEB), the wafer 

temperature is non-uniform during the rapid heating step [65]. Second, during plasma 

etching, higher temperatures near the center of the wafer typically cause over-etch, leading 

to faster devices [66]. Both may cause the gate critical dimension (gate CD) to have a 

bull’s-eye pattern across the wafer. 

 𝐷〈−𝐷𝑊𝑃〉 = 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 

𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 = 𝑎𝑊(𝑋𝑊 − 𝑋0)
2 + 𝑐𝑊 × (𝑌𝑊 − 𝑌0)

2 + 𝑒𝑊 
 ( 3.14 ) 

 

 𝐷〈𝑇 − 𝑊𝑃〉 = 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 

𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶 = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 0 × 𝑌𝐶

2 + 𝑑𝐶𝑌𝐶 + 𝑒𝐶 
 ( 3.15 ) 

 

Still using RO delay as an example, the fitted coefficients and their 95% confidence 

intervals of all 17 layouts are shown in Figure 3.26 and Figure 3.27. As was the case for 

the 90nm test chip results, the confidence intervals for the “shape parameters” of both 

wafer-level (𝑎𝑊, 𝑐𝑊) and chip-level systematic variations (𝑑𝐶) overlap across all layouts. 

Again we treat these parameters as equal even without rigorous statistical proof. Most 

layout-dependent effects are thus captured by the intercept terms 𝑒𝑤  and 𝑒𝐶 , and we 

model the layout-dependent component in the 45nm process as an additive term in addition 

to the systematic across-wafer and across-chip components. For RO delay variability, the 

devices showing the strongest layout-dependent effects were layout #10 (D1), which 

features the largest diffusion width, and layout #17, which has the vertical RO placement.  

To better understand the underlying mechanisms, we compare the layout effect 

components from the RO delay analysis as well as from the NMOS and PMOS leakage 

data. We focus on the intercept term from the within-chip fitting of RO delay and leakages 

for all 17 layouts, as in Figure 3.28. We can see that the layout dependence of the RO delay 

and log NMOS leakage are both significant and strongly correlated, while PMOS leakage 
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shows little layout dependence and does not correlate to the RO delay or NMOS leakage. 

This suggests that the layout-to-layout gate length variation might not be the actual source 

of variability since NMOS and PMOS are both subject to gate length related effects. A 

more plausible explanation is that the threshold voltage depends on the layout pattern. One 

such mechanism is the STI stress, which causes NMOS Vt to decrease and the mobility to 

increase with a larger length of diffusion (LOD) and smaller STI width [67], [68]. PMOS, 

however, is not as sensitive to stress effects due to the <100> channel orientation of this 

specific 45nm process. This can explain the higher speed and higher NMOS leakage for 

layout #10 (D1). Further investigation would require access to the internal transistors, 

which is not possible with this chip.  

Overall, the variability of 45nm RO delay (or leakage) can be well summarized as the 

sum of a strong layout-to-layout-dependent component, a strong across-wafer paraboloid 

“bowl” (or “dome”), a smaller chip-to-chip Gaussian random noise, and a within-chip site-

to-site Gaussian random noise of similar magnitude as the chip-to-chip random noise. The 

across-chip systematic component is negligible. 

The same methodology as described in Section 3.2.3 is applied to compare the simple 

“Global+Local” model against the hierarchical variability model in this 45nm process. 

Distributions of delay and leakage from 10,000 chips with 8 tiles each are simulated in 

accordance with the actual measurement scheme with emphasis on the across-wafer 

variability and less so on the within-chip variations. Results of the Monte Carlo experiment 

are shown in Figure 3.32. Due to the strong systematic across-wafer variability, the delay 

distribution has a long tail on the slower end. The “Global+Local” model does not capture 

this behavior nearly as well as our hierarchical model: at −3𝜎, the estimate based on the 

simple model is as much as 18% lower than the measured delay, while the hierarchical 

model is consistently within 5% of the measurement at all key quantiles (Table 3.4). This 

is shows how ignoring systematic variability will bias estimates of the total variation in the 

process, possibly leading to pessimistic designs. 
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Figure 3.23: Wafer maps of RO delay/leakage measurements: dark tile = full characterization with 288 sites 

per die per layout; light tile = sparse characterization with 8 sites per die per layout 
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Figure 3.24: Wafer maps of mean RO delay, mean Log(ILEAK,N), and mean Log(ILEAK,P) for layout pattern 

P2: 𝐷〈−𝐷𝑊𝑃〉 = 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 

 

 

 

Figure 3.25: Chip maps of mean RO delay, mean Log(ILEAK,N), and mean Log(ILEAK,P) for layout pattern P2: 

𝑓〈−𝐷𝑊𝑃〉 = 𝑓〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝑓〈−𝐷𝑊𝑃〉𝐴𝑊𝑅  

 

Figure 3.26: Estimate and confidence interval of across-wafer fitting coefficients for all 17 layouts on 

wafer#2 
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Figure 3.27: Estimate and confidence interval of across-chip fitting coefficients for all 17 layouts on 

wafer#2 

 

 

Figure 3.28: Comparison of layout dependence of RO delay, log(ILEAKN), and Log(IlEAKP) on wafer#2 

  

 

Figure 3.29: Wafer-level RO delay variation decomposition of layout pattern P2 on wafer #2: 

𝐷〈−𝐷𝑊𝑃〉 = 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 
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Figure 3.30: Chip-level RO delay variation decomposition of layout pattern P2 on wafer #2: 𝐷〈−𝐷𝑊𝑃〉 =

𝐷〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐷〈−𝐷𝑊𝑃〉𝐴𝑊𝑅  
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Figure 3.31: Histogram of the RO delay distribution as well as the systematic across-wafer, layout-to-

layout, random chip-to-chip, systematic across-chip, and random tile-to-tile variability 
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Figure 3.32: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical 

model for wafer #1 RO delay distribution 

 

 Measurement “Global+Local” Model Hierarchical Model 

Wafer #1 +3𝜎 1.206 1.217 (+0.9%) 1.194 (-1.0%) 

Median 1.017 1.023 (+0.7%) 1.017 (0%) 

−3𝜎 0.880 0.824 (-6.4%) 0.889 (+1.0%) 

Wafer #2 +3𝜎 1.210 1.215 (+0.4%) 1.158 (-4.3%) 

Median 0.902 0.917 (+1.7%) 0.915 (+1.4%) 

−3𝜎 0.753 0.618 (-18.0%) 0.723 (-4.0%) 

Table 3.4: Median and +/- 3s of simple “Global+Local” model and the hierarchical variability model in 

comparison with the raw measurements 

3.3.3 SRAM Variability Observation 

In addition to the RO variability, this 45nm test chip also provided variability 

measurements from the SRAM bit cell arrays and the individual padded-out transistors. 

Full Id-Vg and Id-Vd curves are collected for each of the 6 transistors as shown earlier in 
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Figure 3.19. The read static noise margin (SNM) and writeability current (IW) are measured 

for each bit cell. Quality data were collected from 50 chips from the 2 wafers available. 

Due to the within-chip stripe pattern (explanations following) and the limited resources, 

only 20 cells on the top half of the 2 central columns are measured except for 3 chips, 

where all 18 × 20 = 360 SRAM cells are characterized.  

Figure 3.33 through Figure 3.38 illustrate the average wafer and chip map of the 

measured transistor on-current Idsat, read static noise margin RSNM, and writeability 

current IW. Unlike the RO variability, the SRAM transistors and cells do not show strong 

across-wafer systematic variations. However, the on-current of the four NMOS transistors 

consistently show a significant within-chip stripe pattern that is higher in the top and 

bottom rows but lower in the middle. Similar behavior can be observed in the RSNM and 

IW chip map as well (the high/low is flipped for the RSNM). This can be explained by the 

fact that both the RSNM and IW are functions of the transistor threshold voltages and the 

relative strength of the pull-down (PD), pull-up (PU), and pass gates/access transistors 

(PG). Larger RSNM requires strong pull-down transistors and weak access gates, while to 

achieve high write stability, one needs strong pull-up PMOS transistors and weak pass gate 

transistors. Notice the conflicting demand on the driving strength of the access transistors 

(PG): the within-chip pattern exactly predicts its positive correlation with the writeability 

current IW and negative correlation with the RSNM. 

In the hierarchical model, the same paraboloid across-wafer systematic variation is 

included even though it is estimated to be insignificant, while a half-tube shaped variation 

that changes along the rows is included to model across-chip variation (equations 3.16 and 

3.17). The decomposition of the Idsat variability shows that the vast majority of the 

variation comes from the within-chip random component, while the across-chip systematic 

variability is greater than the across-wafer component (Figure 3.43, Figure 3.44). The fact 

that the Gaussian random noise dominates the variability of transistor metrics such as on-

current as well as bit cell read/write noise margins naturally leads to the result that the 

overall statistical distribution of these measured characteristics is very close to Gaussian 

distribution. As shown in Figure 3.45 and Figure 3.46, both the conventional 

“Global+Local” model and the hierarchical model are equally good in predicting the 

statistics of the measurement data.  

Even though the hierarchical model is no more accurate than a simple model when 

random variability dominates, decomposing the variability into components still helps 

reveal some of the underlying mechanisms in the process. The systematic across-chip on-

current variation only shows up for NMOS devices (pull-down and pass gates), which is 

similar to the RO case where the layout-dependence effect is only significant for NMOS 

leakage. This can be explained by the large STI surrounding the SRAM test block, as 
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depicted earlier in Figure 3.22. As mentioned in Section 3.3.2, the NMOS transistors are 

sensitive to stress, in this case exerted by the surrounding STI, while PMOS is insensitive 

due to the <100> channel direction. This lines up well with the observation that the closer 

to the edge of the array, the greater the NMOS drive current. The Vtlin chip map shown in 

Figure 3.36 suggests that this drive-current enhancement is not due to the threshold voltage 

shift, leading to the conclusion that the STI stress effect is playing its role via the mobility 

enhancement.  

 𝐼〈−𝐷𝑊𝑃〉 = 𝐼〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐼〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 

𝐼〈−𝐷𝑊𝑃〉𝐴𝑊 = 𝑎𝑊(𝑋𝑊 − 𝑋0)
2 + 𝑐𝑊 × (𝑌𝑊 − 𝑌0)

2 + 𝑒𝑊 
 ( 3.16 ) 

 

 𝐼〈𝑇 − 𝑊𝑃〉 = 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐷〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 

𝐼〈𝑇 − 𝑊𝑃〉𝐴𝐶 = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 𝑐𝐶 × 𝑌𝐶

2 + 𝑑𝐶𝑌𝐶 + 𝑒𝐶 
 ( 3.17 ) 

     

 

Figure 3.33: Wafer maps of mean on-current for SRAM padded-out transistors: 

𝐼𝑑𝑠𝑎𝑡〈−𝐷𝑊𝑃〉  
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Figure 3.34: Interpolated wafer maps of mean on-current Idsat for SRAM padded-out transistors: 

𝐼𝑑𝑠𝑎𝑡〈−𝐷𝑊𝑃〉 

 

Figure 3.35: Chip maps of mean SRAM padded-out transistor 𝐼𝑑𝑠𝑎𝑡〈𝑇 − 𝑊𝑃〉 
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Figure 3.36: Chip maps of mean SRAM padded-out transistor 𝑉𝑡𝑙𝑖𝑛〈𝑇 − 𝑊𝑃〉 

 

Figure 3.37: Wafer maps of mean SRAM read static noise margin 𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉 and writeability 

current 𝐼𝑊〈−𝐷𝑊𝑃〉 

 

Figure 3.38: Chip maps of mean SRAM read static noise margin 𝑅𝑆𝑁𝑀〈𝑇 − 𝑊𝑃〉 and writeability current 

𝐼𝑊〈𝑇 − 𝑊𝑃〉 
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Figure 3.39: Wafer-level Idsat variation decomposition for left pull-down transistor on wafer #2: 

𝐼〈−𝐷𝑊𝑃〉 = 𝐼〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐼〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 

 

 

Figure 3.40: Chip-level Idsat variation decomposition for left pull-down transistor on wafer #2: 

𝐼〈−𝐷𝑊𝑃〉 = 𝐼〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝐼〈−𝐷𝑊𝑃〉𝐴𝑊𝑅 
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Figure 3.41: Wafer-level Idsat variation decomposition for left pull-down transistor on wafer #2: 

𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉 = 𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉𝐴𝑊𝑅  

 

 

Figure 3.42: Chip-level RSNM variation decomposition for left pull-down transistor on wafer #2: 

𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉 = 𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉𝐴𝑊 + 𝑅𝑆𝑁𝑀〈−𝐷𝑊𝑃〉𝐴𝑊𝑅  
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Figure 3.43: Histogram of the SRAM pull-down transistor Idsat distribution as well as the systematic 

across-wafer, layout-to-layout, random chip-to-chip, systematic across-chip, and random tile-to-tile 

variability 
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Figure 3.44: Histogram of the SRAM bit cell RSNM distribution as well as the systematic across-wafer, 

layout-to-layout, random chip-to-chip, systematic across-chip, and random tile-to-tile variability 

 

 

Figure 3.45: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical 

model for Wafer #2 pull-down transistor Idsat distribution 
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Figure 3.46: Comparing the prediction accuracy of the “Global+Local” model versus the hierarchical 

model for Wafer #2 pull-down transistor Idsat distribution 

 

3.4 Summary 

This chapter presents the design and measurement results of 90nm and 45nm 

technology test chips with variability-sensitized test structures, including ROs, off-state 

current measurement circuits, SRAM bit cell arrays, and wired-out individual transistors. 

Sampling and measurement plans are designed based on our hierarchical variability model 

so that the measurement cost in both time and packaging are minimized, while maintaining 

the statistical significance of the results. 

Ring oscillator delay and leakage analysis on the 90nm and 45nm test chips 

demonstrate significant systematic across-wafer variations in a dome/bowl-like pattern. 

Rings with differently designed layout patterns have very similar patterns in their shapes 

of across-wafer and across-chip variations, with a parallel shift as a result of the layout 

effects. This allows us to capture the variability of the process accurately using an additive 

hierarchical model. Compared to the conventional methodology that decomposes total 

variation into global (chip mean) variation and local (within-chip) variation, the 

hierarchical model is clearly superior in predicting the extreme quantiles of the distribution 

of device and circuit performance metrics with the presence of strong systematic variability.  

Analysis of the 45nm SRAM bit cell array and its internal transistors shows that the 

within-chip local variation dominates the variation profile. In this case, a Gaussian 
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distribution is sufficient to describe the variability, and the conventional “Global+Local” 

model is just as good as the hierarchical model in predicting the statistical distributions of 

transistor and SRAM metrics. Nevertheless, the across-chip variation demonstrates a 

systematic pattern as the distance to the top/bottom rail of the STI changes. 

While physical inspection was not possible, a variability analysis of the electrical data 

still provides some insight into the mechanisms of the randomness. The strong across-wafer 

systematic variation is most likely related to the gate critical dimension variation across the 

wafer due to process variation during post-exposure bake or plasma etching. Starting with 

the 45nm technology, strained silicon plays a significant role in the layout-dependent 

component, which may be in the form of both threshold shift and mobility enhancement. 
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Statistical Compact Model 

Parameter Extraction  
 

4.1 Introduction 

The uncertainty in the manufacturing process introduces statistical variations of 

MOSFET characteristics, which is a major challenge to process engineers and circuit 

designers. While many methods are used to reduce process variations, variation will never 

be completely eliminated. The ability to accurately predict the statistical characteristics of 

manufactured transistors is the key to optimizing circuit design for performance and 

parametric yield. Because MOSFET transistor characteristics are always abstracted by 

compact SPICE models, transistor variability will naturally be translated into compact 

model parameter variations. A variety of studies have been done to explore the possibility 

of accurately modeling statistical transistor behavior with compact model parameters [19]. 

In this chapter, we will leverage the statistical compact model parameter extraction 

procedure with automated parameter selection and the flexibility of measurement data 

availability. 

The basics of compact model extraction will be introduced first. Then, we will explain 

the stepwise parameter selection methodology. The effectiveness of this methodology will 

be examined by applying it to the EKV model as an example of simple one-step extraction 

and to the industrial standard PSP model as an example of sequential extraction.  

 

4.2 Statistical Compact Model Parameter Extraction 

4.2.1 Compact Model Parameter Extraction 

Once the required transistor I-V data or C-V data are acquired, one can perform either 

analytical regression or numerical optimization to estimate the compact model parameters. 

This procedure and the full set of compact model parameters are commonly referred to as 

compact model parameter extraction [73] and the “model card” respectively. For each 

device, one corresponding model card will be extracted from its I-V data. 

The analytical method uses linear approximations of model equations to represent 

device characteristics in the limited operation space of devices [73]–[75]. Linear least 
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squares regression is applied to the linearized equations to estimate the parameters. 

Parameters estimated via this method usually have a clear physical meaning, as well as 

strong sensitivity in the specific operation space. As a result, only a few key model 

parameters can be extracted using the analytical method. 

The numerical optimization method, on the other hand, estimates compact model 

parameters using non-linear least-square optimizations rather than linearization. Given a 

reasonable set of initial guesses, a set of model parameter values can be estimated by 

minimizing the error between the model and the measured data. However, the problem is 

underdetermined: in general, innumerable combinations of parameter values fit the data 

equally well, and many of those combinations are physically unrealistic. Imposing 

constraints on the optimization problem can ensure that the results are physically realistic 

and can reduce, but not eliminate, the indeterminacy. 

In practice, a full-fledged compact model is usually generated using a combination of 

pre-known technological process data, the analytic method, and the numerical optimization 

method. Model parameters that are directly related to process conditions, such as Cox (gate 

capacitance) and Xj (junction depth), will be acquired from the process condition of the 

technology and remembered for the remainder of model generation. The analytic extraction 

method, while it is only applied directly to the initial analysis of the most dominant 

parameters, provides a guideline for a “divide and conquer” approach. Virtually every 

compact model has a different set of parameters specifically designed to model device 

behavior in various subsets of device operation space, such as the sub-threshold region, the 

linear operation region, or the saturated operation region, in the case of MOSFET 

transistors. Dividing the overall optimization problem into smaller problems and solving 

each numerically in its smaller parameter space, reduces the computational burden: each 

subproblem has fewer model parameters and smaller datasets relevant for these parameters. 

This is especially important for extracting model parameter distributions for a large number 

of devices, and it tends to produce estimates of the model parameters that are physically 

more reasonable. 

 We focus here on improving the automated numerical optimization procedure so that 

we not only achieve a good fitting quality, but also a sound extraction quality. Defining the 

fitting quality is simple: the goodness of fit can be quantified by in a standard way, such as 

sum of the squares of the residuals. The extraction quality, on the other hand, is trickier to 

define: we want the extracted compact model parameters to have statistical distributions 

centered at physically realistic values; the distributions should not be so dispersed that the 

extreme quantiles are physically unrealistic; the correlation structure among model 

parameters shall be as simple as possible; and we want the fewest possible model 
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parameters to be fitted for each device, as long as both fitting quality and extraction quality 

are guaranteed. 

 

4.2.2 Basics of Optimization 

Compact model extraction can essentially be established as the following non-linear 

optimization problem. For the total of n compact model parameters (𝑝1, 𝑝2, . . , 𝑝𝑛) that need 

to be extracted, we can define a model parameter vector 𝑝 as: 

 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑛]𝑇  ( 4.1 ) 

The possible combinations of values for n model parameters is called an n-dimensional 

parameter space. The compact model equations relate functions defined on the parameter 

space. Assume 𝑓(𝑝) is such a function whose value (either a scalar or a vector) can be 

physically measured from actual devices. We also have a constant vector,  𝑦 , which 

represents such measured characteristics (I-V or C-V data). Select a nonnegative, real-

valued, continuously differentiable objective function 𝐹(𝑝) to measure the discrepancy 

between the model function and the data. Then, the optimization problem can be defined 

as finding an optimal value, 𝑝∗, so that 𝐹(𝑝) reaches its minimum value, 𝐹(𝑝∗). 

 𝐹(𝑝∗) = min
𝑝

𝐹(𝑝)  ( 4.2 ) 

The most popular choice of objective function for model parameter extraction is the 

sum of squared residuals, which leads to least squares estimation. Suppose the model 

equation 𝑓(𝑝) is an m-dimensional function of the n model parameters. The least-squares 

objective function, 𝐹(𝑝), is then defined as follows: 

 

𝐹(𝑝) =
1

2
∑𝑤𝑖[𝑟𝑖(𝑝)]2
𝑚

𝑖=1

 

=
1

2
∑𝑤𝑖[𝑓𝑖(𝑝) − 𝑦𝑖]

2

𝑚

𝑖=1

 

 ( 4.3 ) 

Here, 𝑓𝑖 and 𝑦𝑖 are the ith component of the model equation and the measurement 

data, respectively; 𝑟𝑖 = [𝑓𝑖(𝑝) − 𝑦𝑖] is the fitting residual or error function; and 𝑤𝑖 is the 

weighting factor for the ith data point. Weighting factors can be increased for specific 

operation regions in which accurate fitting is especially important. 
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Assume that first and second partial derivatives exist for all the m components of the 

n-dimensional objective function 𝐹(𝑝). Its first three terms of the Taylor series expansion 

are: 

 

𝐹(𝑝 + Δ𝑝) = 𝐹(𝑝) + ∑
𝜕𝐹

𝜕𝑝𝑗

𝑛

𝑗=1

Δ𝑝𝑗 +
1

2
∑∑

𝜕2𝐹

𝜕𝑝𝑗𝜕𝑝𝑙
Δ𝑝𝑗Δ𝑝𝑙

𝑛

𝑙=1

𝑛

𝑗=1

+ 𝑂(‖Δ𝑝‖2) 

= 𝐹(𝑝) + ∇𝐹(𝑝)TΔ𝑝 +
1

2
Δ𝑝𝑇∇2𝐹(𝑝)Δ𝑝 + 𝑂(‖Δ𝑝‖2) 

 ( 4.4 ) 

Here, ∇𝐹(𝑝) is the gradient of 𝐹(𝑝): 

 
∇𝐹(𝑝) = [

𝜕𝐹

𝜕𝑝1
,
𝜕𝐹

𝜕𝑝2
, … ,

𝜕𝐹

𝜕𝑝𝑛
]
𝑇

  ( 4.5 ) 

And ∇2𝐹(𝑝) is the second derivative of 𝐹(𝑝), also called the Hessian matrix: 

 

𝐻(𝑝) ≡ ∇2𝐹(𝑝) =

[
 
 
 
 
 

𝜕2𝐹

𝜕𝑝1𝜕𝑝2
⋯

𝜕2𝐹

𝜕𝑝1𝜕𝑝𝑛

⋮ ⋱ ⋮
𝜕2𝐹

𝜕𝑝𝑛𝜕𝑝1
⋯

𝜕2𝐹

𝜕𝑝𝑛𝜕𝑝𝑛]
 
 
 
 
 

  ( 4.6 ) 

For the simple case, in which 𝑤𝑖 = 1 for all 𝑖 = 1,…𝑛: 

 

𝐹(𝑝) =
1

2
∑[𝑟𝑖(𝑝)]2
𝑚

𝑖=1

  ( 4.7 ) 

Thus, by the chain rule, 

 
∂𝐹

𝜕𝑝𝑗
=

1

2
∑

2𝑟𝑖𝜕𝑟𝑖
𝜕𝑝𝑗

𝑚

𝑖=1

  ( 4.8 ) 

 

∇𝐹(𝑝) =

[
 
 
 
 
𝜕𝑟1
𝜕𝑝1

⋯
𝜕𝑟1
𝜕𝑝𝑛

⋮ ⋱ ⋮
𝜕𝑟𝑚
𝜕𝑝1

⋯
𝜕𝑟𝑚
𝜕𝑝𝑛]

 
 
 
 
𝑇

𝑟(𝑝)  ( 4.9 ) 
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𝜕2𝐹

𝜕𝑝𝑗𝜕𝑝𝑙
= ∑

𝜕𝑟𝑖
𝜕𝑝𝑗

𝜕𝑟𝑖
𝜕𝑝𝑙

𝑚

𝑖=1

+ ∑
𝑟𝑖𝜕

2𝑟𝑖
𝜕𝑝𝑗𝜕𝑝𝑙

𝑚

𝑖=1

  ( 4.10 ) 

The Jacobian matrix of 𝑟(𝑝) is defined as follows: 

 

𝐽(𝑝) =

[
 
 
 
 
𝜕𝑟1
𝜕𝑝1

⋯
𝜕𝑟1
𝜕𝑝𝑛

⋮ ⋱ ⋮
𝜕𝑟𝑚
𝜕𝑝1

⋯
𝜕𝑟𝑚
𝜕𝑝𝑛]

 
 
 
 

  ( 4.11 ) 

Then, in the vector form, we have the following: 

 ∇𝐹(𝑝) = 𝐽(𝑝)𝑇𝑟(𝑝)  ( 4.12 ) 

 

𝐻(𝑝) = 𝐽(𝑝)𝑇𝐽(𝑝) + ∑𝑟𝑖(𝑝)∇2𝑟𝑖(𝑝)

𝑚

𝑖=1

  ( 4.13 ) 

If the residual function 𝑟(𝑝) is negligible, we can obtain an approximation of the 

Hessian matrix virtually for free because its leading term can be calculated simply from 

the Jacobian matrix: 

 𝐻(𝑝) ≈ 𝐽(𝑝)𝑇𝐽(𝑝)  ( 4.14 ) 

When the model extraction problem is posed as a non-linear least-squares problem, 

the most widely used optimization method is the gradient-based method [73], [76]. This 

method searches for a local minimum along the gradient of 𝐹(𝑝) using a finite step size. 

We will use Newton’s method as an example. Assume the Hessian matrix is positive 

definite with the second term negligible. The local model around 𝑝 is then as follows: 

 
𝐹(𝑝 + Δ𝑝) = 𝐹(𝑝) + ∇𝐹(𝑝)TΔ𝑝 +

1

2
Δ𝑝𝑇∇2𝐹(𝑝)Δ𝑝  ( 4.15 ) 

Taking the derivative over step size Δ𝑝 for both sides of this equation, we obtain the 

following: 

 ∇𝐹(𝑝)T + ∇2𝐹(𝑝)Δ𝑝 = 0  ( 4.16 ) 

This is the necessary condition for the local minimum with all possible Δ𝑝. The local 

optimal step size Δ𝑝 can then be calculated as follows:  
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 Δ𝑝 = −[∇2𝐹(𝑝)]−1∇𝐹(𝑝)  ( 4.17 ) 

Or  

 Δ𝑝 = −𝐻(𝑝)−1∇𝐹(𝑝)  ( 4.18 ) 

With the new parameter vector 𝑝 + Δ𝑝 , we will have a new decreased objective 

function, 𝐹(𝑝 + Δ𝑝). Remember the assumption that 𝐻(𝑝) is positive definite: 

 
𝐹(𝑝 + Δ𝑝) = 𝐹(𝑝) −

1

2
Δ𝑝𝑇∇2𝐹(𝑝)Δ𝑝 ≤ 𝐹(𝑝)  ( 4.19 ) 

Repeat this procedure until the changes in objective function are smaller than the 

predetermined tolerance value 𝜖. The entire flow can be summarized as follows: 

1. Start from an initial parameter, vector 𝑝0.  

2. At the 𝑘th iteration, calculate the search step, Δ𝑝𝑘 = −𝐻(𝑝𝑘)−1∇𝐹(𝑝𝑘). 

3. Calculate the next step, 𝑝𝑘+1 as 𝑝𝑘 + Δ𝑝𝑘. 

4. If  |𝐹(𝑝𝑘) − 𝐹(𝑝𝑘+1)| > 𝜖 , go to Step 2. Here, 𝜖  is the predetermined 

tolerance. 

5. Terminate the calculation when |𝐹(𝑝𝑘) − 𝐹(𝑝𝑘+1)| < 𝜖. 

To calculate the step size of Newton’s method, −𝐻(𝑝𝑘)−1∇𝐹(𝑝𝑘), one would need 

to calculate the inverse of the Hessian matrix, which requires the invertibility of 

𝐽(𝑝)𝑇𝐽(𝑝). There are various modified optimization methods, including the Levenberg-

Marquardt method [77], [78]. This method regularizes the 𝐽(𝑝)𝑇𝐽(𝑝) matrix by adding a 

diagonal matrix, to avoid numerical instability. Trust region reflective methods [79], [80], 

place bounds on step sizes to ensure that the quadratic approximation is accurate at each 

iteration. We will use non-linear least-squares as described in this section for the rest of the 

thesis. 

 

4.2.3 Backward Stepwise Parameter Selection 

Industrial standard MOSFET compact models such as BSIM [11] and PSP [12] have 

hundreds of parameters. However, not every parameter is fitted for each device, due to the 

high computational cost involved in optimization problems with large numbers of variables. 

Furthermore, the redundancy of model parameters causes numerical instabilities for 

(unregularized) non-linear least-squares. Therefore, it is helpful to reduce the number of 

model parameters to be extracted so that only essential parameters are fitted, without 

sacrificing the goodness of fit. 
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We adopted a backward stepwise selection procedure. Starting with the 𝑛 parameters 

of the compact device model, we fit the measurement data curves by non-linear least-

squares. Suppose we have a criterion function that represents the “goodness” of each of the 

extracted parameters, or the so-called extraction quality. As long as the current round of 

extraction provides decent fitting quality, the “worst” parameter will be removed from the 

extraction and be set to a proper constant value. With the reduced parameter set containing 

𝑛 − 1 parameters, we repeat the same procedure until the fitting error begins to increase 

significantly. This procedure is illustrated in Figure 4.1. 

 

 

Figure 4.1: Stepwise parameter selection procedure for single-step optimization. 

 

 The key to backward parameter selection is the definition of the extraction quality 

criterion. While the fitting quality can be defined simply as the sum of squares of the fitting 

error, it is not as straightforward to define the proper extraction quality. Ideally, it should 

represent how accurate the extracted parameter is. However, in practice, there is no “true 

value” of model parameters from real devices that can be used for comparison. Instead, we 

Extract all eligible parameters in the 
current step.

Check extraction quality. Find the 
worst parameter.

Check fitting quality. Continue if 
there is no significant deterioration.

Remove the worst parameter from 
extraction and set its value to default 
or the median of its extracted value.
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must define the fitting quality criterion with metrics that can be calculated or observed from 

the extraction result itself.  

From the perspective of statistical simulation, here are a few characteristics of the 

extraction results to consider: We would like the statistical distribution as well as the 

correlation structure assigned for each of the model parameters to be as simple as possible. 

For example, a normally distributed Vth with a reasonable median value is preferred over 

a multimodal distribution. The range of variation should not be too wide either, because it 

may carry non-realistic values at the extreme quantiles of the distribution. These examples 

are illustrated in Figure 4.2. A multimodal distribution often indicates that there are two or 

more distinct device behaviors in the dataset. A wide distribution, on the other hand, 

indicates that either the sensitivity of the data to this parameter in the operation region is 

weak; or that the parametrization is deficient. For instance, if key parameters are missing, 

this particular parameter must carry all the variations that should be accounted for by 

another parameter. Lastly, we prefer model parameter correlations that can be reasonably 

captured by a single correlation coefficient rather than strong systematic dependence, as 

shown in Figure 4.3. The latter indicates strong parameter interactions in the model. 

. 

 

Figure 4.2: “Good” vs. “Bad” parameter distribution. 

 

Good Multimodal Too wide 
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Figure 4.3: “Good” vs. “Bad” parameter correlation. 

 

To automate parameter selection, we need quantitative rather than qualitative measures. 

By experimenting with parameter extraction using simulated transistor I-V data (to be 

presented in Sections 4.3 and 4.4), we found the normalized confidence interval (CI) of the 

extracted compact model parameters to be a good proxy for the extraction quality of the 

parameters. More specifically, for every model parameter, an estimate 𝜇 and its half-

width CI can be obtained via non-linear optimization for each device under test. We define 

the normalized confidence interval as 𝐶𝐼/𝜇. If the 95% CI for a parameter does not contain 

zero, in other words, |CI/𝜇| <100%, then we can reject the hypothesis that the corresponding 

model parameter is equal to zero at 5% significance (on the assumption that the underlying 

stochastic model holds). To use normalized CI as the extraction quality criterion for our 

parameter selection problem, we compare the distribution of the normalized CI of each 

model parameter at a given quantile, often the median, and remove the parameter with the 

largest normalized CI from future parameter extraction.  

More insight can be obtained by looking at the math. Let us assume that we have the 

same parameter extraction/optimization setup as described in Section 4.2.2 and that the 

extracted parameter is 𝑝∗ = [𝑝1
∗, 𝑝2

∗, … , 𝑝𝑛
∗ ] . Subject to typical assumptions about the 

normality and independence of the underlying random variables, the half-width of the 

(notional, not actual) confidence interval of the 𝑖th parameter, 𝑝𝑖, can be estimated [81], 

[82] by the following: 

 𝐶𝐼𝑖 = 𝑡
1−

𝛼
2
,𝑁−𝑛

 𝜎𝑖  ( 4.20 ) 

Good Systematic dependence 
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where 𝑡1−
𝛼

2
,𝑁−𝑛 is the critical value of Student’s 𝑡 distribution and 𝜎𝑖 is the estimated 

standard deviation of the extracted parameter. Thus, for a given level of significance (i.e., 

0.05) and degrees of freedom, the length of confidence interval is proportional to the 

parameter standard deviation, which we treat as an alternative extraction quality criterion 

in the following discussions. 

In vector form, we have the following [83]: 

 𝜎2(𝑝∗) = 𝜎2(𝑟∗) ⋅ 𝑑𝑖𝑎𝑔[𝐽(𝑝∗)𝑇𝐽(𝑝∗)]−1  ( 4.21 ) 

 Here, 𝑟∗ is the fitting error and 𝐽(𝑝∗) is the Jacobian matrix by the end of the non-

linear least-square optimization. If the Jacobian matrix is singular or close to singular, then 

one or more variances of the extracted parameters will be infinite or unrealistically large, 

thereby indicating poor extraction quality. 

 The confidence interval also provides a measure of the residual after the stepwise 

parameter deletion. To illustrate this, we examine the local Taylor expansion in the final 

optimization step. Assume that Δ𝑝 is the optimal step calculated at 𝑝, and that 𝐽𝑖 is the 

𝑖th column of the Jacobian matrix, 𝐽(𝑝). Then, we have the following linear approximation: 

 𝑦 − 𝑓(𝑝) = 𝐽1𝛥𝑝1 + 𝐽2Δ𝑝2 + ⋯+ 𝐽𝑛𝛥𝑝𝑛 + 𝑟  ( 4.22 ) 

Suppose the 𝑛th parameter, 𝑝𝑛 , is to be excluded from the extraction. Then, the 

contribution of the term 𝐽𝑛Δ𝑝𝑛 must be compensated for by the other 𝑛 − 1 parameters. 

As long as the Jacobian matrix is non-singular, one can always solve the linear regression 

problem. 

 [𝐽1, 𝐽2, … , 𝐽𝑛−1]̇ 𝑘 = 𝐽𝑛  ( 4.23 ) 

Here, 𝑘 = [𝑘1, 𝑘2, … , 𝑘𝑛−1]
𝑇  is the fitting coefficient. Assuming that 𝛾𝑛  is the 

fitting residual, we can re-write Equation 4.22 as follows: 

 

𝑦 − 𝑓(𝑝) = 𝐽1𝛥𝑝1 + 𝐽2𝛥𝑝2 + ⋯+ 𝐽𝑛−1𝛥𝑝𝑛−1 + (∑ 𝑘𝑖𝐽𝑖

𝑛−1

𝑖=1

+ 𝛾𝑛)𝛥𝑝𝑛 + 𝑟 

= 𝐽1(𝛥𝑝1 + 𝑘1𝛥𝑝𝑛) + 𝐽2(𝛥𝑝2 + 𝑘2𝛥𝑝𝑛) + ⋯+ 𝐽𝑛−1(𝛥𝑃𝑛−1 + 𝑘𝑛−1𝛥𝑃𝑛)

+ (𝑟 + 𝛾𝑛𝛥𝑃𝑛) 

 ( 4.24 ) 

 

The smaller Δ𝑝𝑛 is, the less of an impact from the removal of 𝑝𝑛 on the rest of the 

model parameters; the parameter 𝑝𝑙, whose corresponding 𝐽𝑙 is most parallel to 𝐽𝑛 (𝑘𝑙 
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being the largest of 𝑘1, 𝑘2, … , 𝑘𝑛−1), will be affected the most. If 𝐽𝑛 can be very well 

approximated by the linear combination of 𝐽1, 𝐽2, … , 𝐽𝑛−1, then the removal of 𝑝𝑛 will 

only increase the fitting error by a small amount due to the small 𝛾𝑛. Furthermore, the 

variance of the extracted parameter, 𝑝𝑖, can be written as follows [14]: 

 
𝜎2(𝑝𝑖) = 𝜎2(𝑟) ×

1

𝑆𝑆(𝛾𝑖)
 (4.1) 

where 𝑆𝑆(𝛾𝑖) is the sum of squares of the Jacobian fitting residual, 𝛾𝑖. This tells us that 

the parameter with the largest variance also happens to be the one that can be best replaced 

by the other parameters. This suggests that the elimination of the parameter with the largest 

variance is likely to introduce the smallest increase in fitting error. On the other hand, 

deleting some model parameters may introduce biases to the estimated values of the 

remaining parameters.  

 

4.2.4 Sequential Extraction  

As stated in section 4.2.1, there are numerous benefits to divide the full model 

parameter extraction into smaller optimization problems. These range from a better 

representation of physical meanings to less computational cost. Thus, most model 

extractions are performed sequentially. During sequential extraction, parameters are 

estimated in a pre-defined series of localized optimization steps, and each step only fits a 

subset of parameters to a subset of measurement data. The parameter extraction completes 

as soon as the last optimization step is done. 

There are several strategies for combining stepwise parameter selection with 

sequential extraction. In the conventional setup, the parameters to be extracted at each step 

are predetermined by a guideline. In the stepwise parameter selection scheme, the 

parameters to be extracted are to be determined on the fly for each step. Thus, for the model 

parameters involved in different steps, one has several different options for conducting the 

extraction. A simple approach, the greedy algorithm, only estimates a parameter once, then 

holds it constant while other parameters are estimated. Greedy algorithms may diverge in 

some problems unless they are regularized. Instead, we start the parameter selection 

algorithm by re-fitting all the parameters included in the model at each step. The members 

of “extractable” parameters and their estimates tend to vary by step. During a given 

extraction step, whenever a parameter is discarded by the parameter selection algorithm, 

its estimates will be reset to either previous estimates from the last extraction step where 

the parameter is selected, or the median estimate from the current parameter selection step. 

This way, we can keep refreshing the estimates of relevant parameters when new datasets 
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become available in subsequent extraction steps without destroying the best estimates 

found previously for the other parameters. 

Another inherent issue of sequential extraction is that the fitting quality may 

deteriorate after a large number of steps. To address this issue, after we go through all the 

pre-defined extraction steps for the localized optimization problem, we revisit the full, 

undivided optimization problem. Every parameter that has been selected at least once 

during the sequential extraction will be re-fitted using the combined datasets from all the 

smaller extraction steps, using their latest estimates from the sequential extraction as initial 

guesses. Because each parameter is already optimized for its most relevant operation region, 

this final optimization tends to be much faster than the same extraction with an un-

optimized initial model card. Parameter estimates from this global optimization become 

the final model cards. This procedure is illustrated in Figure 4.4. 

 

Figure 4.4: Sequential parameter extraction. 

 

Step-i: Run stepwise 
paramter selection.

Has the parameter to 
be excluded been 
extracted before?

No – Set the removed 
parameter to the 

median of its extracted 
distribution.

Yes – Set the removed 
parameter to its 

previously extracted 
value.

Repeat for next step in 
the sequence.

After all steps are 
completed, run global 
opitmization with all 

extractable parameters.
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4.3 Simulated Experiment with the EKV Model  

4.3.1 EKV Model Introduction 

The EPFL-EKV MOSFET model is a compact SPICE simulation model built on the 

fundamental physical properties of MOS transistors [29]. It is relatively lightweight 

compared to models such as BSIM or PSP, with only a few tens of key parameters to cover 

the full operation space of MOSFET transistors. We chose to use the EKV V2.6 model as 

the subject of our single-step parameter selection and extraction study. 

The parameters of the EKV model can be divided into several categories: process-

related parameters, which are the physical dimensions directly defined by the fabrication 

process; intrinsic model parameters, which are the electrical properties of the transistors; 

and parameters that describe specific device physics effects, such as channel length 

modulation, charge sharing, reverse short-channel effects, impact ionization, temperature 

dependence, matching, and flicker noise [29]. In our experimental setup, ten parameters 

were chosen for the purpose of curve fitting. The parameter names, physical meanings, and 

default values are listed in Table 4.1. 

 

Name Description Units Default 

DW Channel width correction m 0 

DL Channel length correction m 0 

VTO Long-channel threshold voltage V 0.5 

GAMMA Body effect factor √V 1.0 

PHI Bulk Fermi potential (2×) V 0.7 

KP Transconductance parameter A/V2 50.0E-6 

E0 Mobility reduction coefficient V/m 1.0E12 

UCRIT Longitudinal critical field V/m 2.0E6 

LAMBDA Depletion length coefficient – 0.5 

LETA Short channel effect coefficient – 0.1 

Table 4.1 Candidate EKV model parameters for extraction [29]. 
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4.3.2 Experiment Setup  

We test the effectiveness of our parameter extraction methodology with the following 

simulation experiment. Assuming we have an ideal EKV model that perfectly captures the 

behavior of the real world CMOS transistor, the variations of transistor characteristics can 

then be entirely explained by the variability of the compact model parameters. The goal of 

capturing the transistor variability with the statistics of the compact model parameter then 

becomes equivalent to extracting the true values of the compact model parameters that 

generate the transistor’s electrical I-V variations. 

The first step is to generate random I-V data with the EKV model. We selected 10 

parameters (as listed in 4.1) to carry all the variation of the transistor. All the other EKV 

model parameters were set to nominal values appropriate for the technology node this 

experiment represents. Absent information regarding the correlation among the model 

parameters, we chose to draw the ten model parameters from a multivariate normal 

distribution with independent components. The standard deviation of each parameter was 

taken to be 3% of the parameter's nominal value. A total of 100 model cards (whose 

parameter distribution/correlation is shown in Figure 4.5) were generated. They will be 

referred to as the “original model cards.” For each EKV model card, a set of I-V curves 

were simulated for NMOS W/L = 0.5/0.15 µm using the HSPICE built-in level-55 EKV 

model. The transistor terminal bias space was chosen so that the gate and drain bias 

voltages are equally spaced from 0 to Vdd with zero body bias (Figure 4.6). This provides 

good coverage of the main transistor operating regions, which will suffice for our study of 

a single-step optimization with the EKV model. The on/off current distributions are shown 

in Figure 4.8. The 3𝜎 variation of the on current is about 13%, which is a reasonable 

approximation of the variation profile in a well-controlled modern silicon process.  
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Figure 4.5: Randomized EKV model parameters as the base of the transistor I-V. 

 

 

Figure 4.6: Transistor I-V characteristics generated from one EKV model card. 
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Figure 4.7: Histogram of normalized on/off current of simulated random I-V characteristics. 

 

 

Figure 4.8: Variation in the on/off current space. Transistors in the lower right corner are considered 

superior to the ones to the top left corner due to their higher on currents and lower leakage. 
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4.3.3 Stepwise Parameter Selection 

The stepwise parameter selection procedure illustrated in Figure 4.1 was applied to the 

simulated data. Starting with all N = 10 model parameters under consideration, a non-linear 

least-square optimizer with a trust region reflective algorithm [79], [80], [84] is used to fit 

the I-V curve sets simulated for this experiment. After the first round of extractions, we 

rank the normalized confidence intervals of the parameter estimates as indicator of the 

extraction quality of the model parameters. The parameter with largest normalized CI is 

set to the median estimate from the current fitting step and removed from the next round 

of curve fitting. By repeating this process, at the ith round of extraction, only 𝑁 − 𝑖 + 1 

parameters are fitted to the simulated I-V curves. At the end of each round of extraction, 

the fitting quality is examined, comparing the fitted I-V curves to the original simulated 

data, as shown in Figure 4.12. The stepwise parameter removal process stops when the 

fitting quality begins to degrade significantly.  

Using the simulated I-V curves, the described methodology demonstrates very good 

agreement with visual inspections of the extraction and fitting quality. Table 4.2 lists the 

90th percentile of the normalized notional confidence interval after each round of parameter 

selection and extraction. The removed parameter after each round is labeled with a “-” for 

all the following steps. As Figure 4.10 shows, with all ten model parameters included, 

several pairs of model parameter estimates are correlated, notably gamma vs. phi, phi vs. 

leta and dl, and vto vs. leta and dl, even though the parameters for the model cards were 

generated independently. When the stepwise parameter selection procedure continues, 

these artificial correlations go away once 𝑝ℎ𝑖 , 𝑙𝑒𝑡𝑎 , and 𝑑𝑙  are excluded from the 

extraction. Comparison between extracted compact model parameters and the original data 

set (Figure 4.10) also confirms the improvement of the accuracy of the extraction. The 

removal of the first three parameters improves the fit between the remaining model 

parameters with their values in the original model card, as measured by correlation (without 

regard for scale). For example, correlation of gamma improves from a correlation 

coefficient of 0.62 to 0.83 after the third round of parameter removal, and dl improves from 

0.44 to 0.78. By now, the remaining seven parameters all have decent correlations with 

their true values assigned by the experiment. However, since we also want the number of 

model parameters used in extraction to be as small as possible, we continue the stepwise 

parameter removal until only one parameter remains. The removal of dl and gamma now 

begins to decrease the accuracy of theta, whose correlation coefficient with the original 

model card drops from 0.995 after round 3 parameter removal to 0.98 after round 4, and 

0.915 after round 5. The confidence intervals for all the remaining parameters, however, 

only begin to increase after the fifth round of parameter removal (gamma), as shown in 
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Figure 4.9. The sum of squares of the fitting error only starts to rise after the elimination 

of gamma (Figure 4.13), which is consistent with visual inspection of the model to I-V data 

comparison, as shown in Figure 4.12. The further removal of model parameters only 

inflates the confidence intervals of the remaining parameters and reduces their correlation 

with the original model card, while exponentially increasing the sum of squares of error 

(SSE). 

The simulations suggest that stepwise parameter selection using confidence intervals 

as measures of extraction quality provides a reasonable approach to determining a small 

set of parameters that is satisfactory in terms of both extraction quality and fitting quality. 

In this specific experiment, the optimal parameter group will include vto, gamma, kp, theta, 

ucrit, and lambda. Further reduction of model parameters hurts the fitting quality and the 

extraction quality.  

 

Round vto gamma phi kp theta ucrit lambda leta dw dl 

1 0.49% 7.07% 12.0% 0.43% 0.56% 0.31% 0.33% 8.05% 34.7% 5.14% 

2 0.43% 6.31% 10.7% 0.39% 0.52% 0.28% 0.32% 7.29% - 4.61% 

3 0.22% 0.74% - 0.30% 0.47% 0.18% 0.21% 6.88% - 2.61% 

4 0.02% 0.59% - 0.24% 0.37% 0.13% 0.14% - - 1.96% 

5 0.01% 0.22% - 0.03% 0.18% 0.05% 0.03% - - - 

6 0.09% - - 0.27% 1.58% 0.42% 0.25% - - - 

7 0.11% - - 0.22% - 0.65% 0.42% - - - 

8 0.15% - - 0.20% - - 0.48% - - - 

9 0.56% - - 0.77% - - - - - - 

Table 4.2: 90th percentile of normalized confidence intervals after each round [29]. 
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Figure 4.9: Changes of normalized confidence interval for all model parameters after each round of 

stepwise parameter selection and extraction. 
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Figure 4.10: Statistical distribution of the parameter estimates and their correlation structure after excluding 

0 to 5 parameters from the extraction. 
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Figure 4.11: Parameter estimates vs. original randomized model card after excluding 0 to 5 parameters 

from the extraction. 

  

 

Figure 4.12: Fitted I-V vs. simulated targets of a single device with 0, 4, 5 and 9 parameters excluded from 

the extraction. 



83 

 

 

Figure 4.13: Fitting error increases significantly when more than four parameters are excluded from the 

optimization. 

 

4.4 Simulated Experiment with PSP model 

4.4.1 PSP Model Introduction 

The PSP model is an advanced surface potential based compact SPICE model [85], 

[86] and one of the two industrial standard models of today (the other is the long-standing 

BSIM model [11]). It includes all relevant physical effects, including mobility reduction, 

velocity saturation, DIBL, gate current, and STI stress to model today’s deep sub-micron 

CMOS technologies [87].  

The PSP model has two sets of model parameters: the global-level parameter set, 

which describes entire space of device geometries, and the local-level parameter set, which 

models transistors with specific device dimensions. Since we are only extracting 

parameters of transistors of a single size, we focus on local-level parameters. According to 

the recommended local parameter extraction procedure in the PSP manual [87] and the I-

V data available in the experiment, 16 parameters are chosen as candidates for our 

experiment in parameter extraction. The parameter names and their physical meanings are 

listed in Table 4.3. 
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Param. Description Param. Description 

vfbo Geometry-independent flat-band 

voltage 

cso Geometry-independent Coulomb 

scattering 

nsubo Geometry-independent substrate doping xcoro Geometry-independent non-

universality 

dphibo Geometry-independent offset of 𝜙𝐵 rsw1 Source/drain series resistance 

cto Geometry-independent part of  

interface states factor CT 

thesato Geometry-independent velocity 

saturation 

cfl Length dependence of CT alpl Length dependence of CLM pre-factor 

ALP 

uo Zero-field mobility at TR alp1l1 Length dependence of CLM 

enhancement factor above threshold 

xmueo Geometry-independent mobility 

reduction coefficient 

alp2l1 Second-order length dependence of 

ALP1 

themuo Mobility reduction exponent vpo CLM logarithmic dependence 

Table 4.3: Candidates of EKV model parameters for extraction [87]. 

 

4.4.2 Experiment Setup  

In addition to re-validating our findings with EKV model extraction, we want to test 

our sequential parameter extraction procedure. Thus, instead of using all the generated I-V 

data points in one run with all parameter candidates, we instead divide the data into three 

I-V curves: Id-Vg linear (Vds = 0.1V, Vgs = 0,…,1V), Id-Vd (Vgs = 1V, Vds = 0,…,1V), 

and Id-Vg saturation (Vds = 1V, Vgs = 0,…,1V). As illustrated in Figure 4.4, a full 

parameter extraction will be performed for each of the three curves in the exact sequence 

in which they were introduced. The parameter values extracted in the earlier steps are used 

as the initial values for the next step or are set to a constant if the parameter is excluded 

later. 

As in the EKV simulation experiment, we drew the 16 parameters from a multivariate 

normal distribution with independent components, taking the standard deviation of each 

parameter to be 3% of the parameter's nominal value. A total of 50 original model cards 

were generated, and their parameter distributions/correlations are shown in Figure 4.14. 
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For each of these randomized model cards, three I-V curves, as described above, are 

simulated (Figure 4.15) for a NMOS transistor with W/L = 0.2/0.055 µm. The electrical 

simulation is performed using HSPICE with a built-in level-69 PSP model.  

 

Figure 4.14: Randomized PSP model parameters as the base of the transistor I-V. 
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Figure 4.15: Target I-V data for the three extraction steps 

 

4.4.3 Stepwise Parameter Selection in Sequential Extraction 

For Step #1, the same backwards deletion scheme using the normalized length of 

confidence intervals as the selection criterion is applied to the simulated Id-Vg (linear) 

data. Without listing all the details, we show the results from the stepwise parameter 

selection in Figure 4.16 and Figure 4.21. The stepwise parameter selection procedure 

located six good parameters for the data fitting in Step #1. Notice that with all 16 

parameters in the extraction, one of the final “good” parameters, cto, actually correlates 

poorly with the original model card. However, when the algorithm stops after excluding 

ten parameters, its correlation is greatly improved. This, again, demonstrates the 

effectiveness of our parameter selection methodology. 

 The 50 extracted model cards from Step #1 are then used as the initial values to begin 

the extraction of Step #2. The same stepwise parameter selection is carried out, except that 

the removed parameters are now set to their previously extracted values (if they are 

available). The algorithm stops after removing ten parameters (Figure 4.16). Three of the 

remaining six parameters have already been extracted from Step #1, namely vfbo, uo, and 

rsw1. We then propagate the newly extracted model cards to the Step #3 extraction. Again, 

the stepwise parameter selection algorithm will provide us with a set of seven parameters 

to be optimized (Figure 4.17). This time, five out of the seven remaining parameters—

including vfbo, cto, uo, themuo, and rsw1—have already been extracted at least once in the 

earlier steps. The inclusion of previously optimized parameters is important to obtain an 

accurate estimation of the newly extracted parameters. Otherwise, the fitting and extraction 

quality suffer. 
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 Finally, combining the simulated I-V data from all three steps, we ran a global 

optimization with all 11 model parameters that were extracted at least once during the three 

sequential steps. Because each of these parameters was already well-calibrated during the 

sequential step, the global optimization converged very quickly. Thus, we guaranteed that 

optimizations occurring later in the sequence do not decrease the fitting quality of earlier 

steps. The comparison between the final model cards and the cards after the Step 3 

extraction is shown in Figure 4.20. 

  

  

Figure 4.16: Parameter estimates vs. original randomized model card after excluding 0, 7, 10, and 11 

parameters from Step #1 extraction. 
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Figure 4.17: Parameter estimates vs. original randomized model card after excluding 10 parameters from 

Step #2 extraction. Three of the six remaining parameters were extracted in Step#1. 
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Figure 4.18: Parameter estimates vs. original randomized model card after excluding nine parameters from 

Step #3 extraction. Five of the remaining seven parameters were extracted (at least once) in Step #1 and 

Step #2. 
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Figure 4.19: Parameter estimates vs. original randomized model card after global optimization with all 

previously extracted parameters and I-V data from all three steps. 

 

Figure 4.20: Model cards after global optimization vs. model cards after Step #3. 
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Figure 4.21: Fitting error increases when more than 10 parameters are excluded from Step #1 optimization. 

 

 

Figure 4.22: Fitting error increases significantly when more than 10 parameters are excluded from Step #2 

optimization. 
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Figure 4.23: Fitting error increases when more than nine parameters are excluded from Step #3 

optimization. 

 

4.5 Summary 

In this chapter we used non-linear least-squares to estimate compact model parameters. 

We proposed a backward parameter selection procedure that uses the normalized length of 

notional confidence intervals as the criterion for parameter removal. Simulated 

experiments are carried out with an EKV model as an example of single-step extraction, 

and a PSP model is used as an example of sequential parameter extraction. In simulations, 

stepwise parameter selection is highly effective when the target I-V data can be fully 

captured by the compact model and it works very well with the existing sequential 

parameter extraction procedure. 
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Statistical Extraction and Modeling 

with Experimental Silicon Data 
 

5.1 Introduction 

The statistical compact model parameter extraction methodology proposed in Chapter 

4 is applied to the transistor I-V data experimentally collected from one of the 45nm SRAM 

test chips. The model parameters for extraction will be determined for the EKV model as 

well as the PSP model by running the stepwise parameter selection procedure over a subset 

of transistors available for both models. The full model parameter distributions will then 

be estimated from all the SRAM transistors. The hierarchical variability model is fitted to 

the parameter estimates to decompose device variability into systematic and random 

components. The hierarchical variability model is then compared to the conventional 

“Global+Local” variability model by examining how representative the device electrical 

metrics generated by each approach compare to the experimental measurement.  

 

5.2 Measurement for Parameter Extraction  

As observed in Chapter 3, the SRAM padded-out transistors do not have much across-

wafer systematic variation; in that situation, the hierarchical model essentially reduces to 

the conventional “Global+Local” model, in which chip-to-chip variation is represented by 

a normal distribution (or log normal, in the case of leakage). On the other hand, there is 

clear evidence of systematic across-chip variation in both the transistor electrical metrics 

(such as Idsat) and the SRAM bit-cell read/write noise margins (such as RSNM and IW). As 

a result, we decided to use the measured data from a single chip in our statistical compact 

model parameter extraction methodology and to demonstrate the hierarchical model. 

The bit-cell transistors chosen for parameter extraction come from the SRAM test 

array on a chip near the central position of wafer #2, as shown in Figure 3.23. The SRAM 

test array contains 360 bit cells arranged into 18 columns by 20 rows. For each of the six 

transistors of a bit cell, a set of I-V curves are experimentally measured with Vgs ranging 

from 0 to 1V at a step size of 0.02V and Vds ranging from 0 to 1V at a step size of 0.1V (a 

finer Vds step size of 0.02V is enforced for Vgs = 1V). Figure 5.2 shows an example of the 

I-V characteristics of one of the pull-down transistors (PD) on the test chip. Depending on 
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the extraction flow for each compact model, either the complete set of measured I-V or a 

subset of the data will be used for the model parameter extraction. The measured current 

in the subthreshold region [88] is much higher than expected because the off-state leakage 

current from the many switching network transistors also contribute to the measurement. 

This is a known weakness of our experiment, and it will significantly limit the accuracy of 

the model extraction, especially in the subthreshold operation regime. 

 

Figure 5.1: Wafer maps of SRAM I-V and read/write margin measurements: light tile – chips measured; 

dark tile – chips used for statistical parameter extraction.  
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Figure 5.2: I-V measurement data from a sample pull-down transistor on the selected die. The left plot 

shows the Id-Vd with stepped Vgs, and the right plot shows the Id-Vg with stepped Vds. 

 

 

5.3 Parameter Extraction with EKV Model 

5.3.1 Parameter Extraction 

As described in Chapter 4, we chose ten major parameters from the EKV V2.6 model 

as candidates for parameter extraction, as listed in Table 5.1. From the prior simulations, 

we learned that DL and DW are among the first to be excluded. Thus, to save computing 

time, we chose to exclude these two parameters from the extraction first. The remaining 

eight parameters will go through the stepwise parameter selection procedure as previously 

demonstrated using the relative confidence interval (confidence interval normalized by the 

corresponding extracted parameter value) as the criterion for extraction quality and 

parameter selection. The target function is a subset of the complete I-V data measured, with 

Vds ranging from 0.1V to 1V and Vgs from 0V to 1V with a step size of 0.1V (Figure 5.3).  

 The initial extraction results with eight parameters (or two excluded parameters) are 

shown in the top half of Figure 5.4, Figure 5.5 and Figure 5.6. Each figure is combining 

the left and right copies of the same type of transistor; that is, pull-down, pass-gate, or pull-

up transistors together, because they are physically very similar devices and highly 

correlated to each other due to the close physical placement. As we can see, not only do 

most parameters have a wide distribution and hitting the optimization boundaries 
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frequently, many of them are also have large correlations with each other, resulting in 

estimated values that lie in two or more clusters, in the case of UCRIT and LAMBDA, 

and/or complex correlation structure such as between GAMMA and PHI. As the stepwise 

parameter selection procedure goes on, however, the parameter estimates with strong 

correlations with others tend to be removed from the optimization, and the extraction 

quality improves without much sacrifice in fitting quality. While the fitting error does start 

to increase when more than six parameters are excluded for all six SRAM bit cell 

transistors, the extracted compact model parameters have a lot less interactions or 

dependencies when seven parameters are excluded from extraction. The normalized 

notional confidence interval lengths show that by excluding six parameters (or including 

four parameters), the parameter with the worst extraction quality will have the 90th 

percentile of its confidence interval the in the neighborhood of 100%, which suggests poor 

reliability. This improves to roughly 10% when only three parameters are included. 

Therefore, the optimal set of parameters for parameter extraction includes three parameters 

for all types of transistors, namely VTO, KP, and LAMBDA. 

 

Name Description Units Default 

DW Channel width correction m 0 

DL Channel length correction m 0 

VTO Long-channel threshold voltage V 0.5 

GAMMA Body effect factor √V 1.0 

PHI Bulk Fermi potential (2x) V 0.7 

KP Transconductance parameter A/V2 50.0E-6 

E0 Mobility reduction coefficient V/m 1.0E12 

UCRIT Longitudinal critical field V/m 2.0E6 

LAMBDA Depletion length coefficient - 0.5 

LETA Short channel effect coefficient - 0.1 

Table 5.1: Candidate of EKV model parameters for extraction [29] 
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Figure 5.3: Target I-V data for EKV model parameter extraction.  
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Figure 5.4: Stepwise parameter selection results for the pull-down transistors (PD1/PD2). Subplots showing 

the initial extracted parameters without any exclusion, the final optimal parameter set, and the change in 

normalized confidence interval length and sum of squared fitting errors (SSE) after each round of selection. 

 

 



100 

 

 

 

Figure 5.5: Stepwise parameter selection results for the pass-gate transistors (PG3/PG4). Subplots showing 

the initial extracted parameters without any exclusion, the final optimal parameter set, and the change in 

normalized confidence interval length and sum of squared fitting errors (SSE) after each round of selection. 
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Figure 5.6: Stepwise parameter selection results for the pull-up transistors (PU5/PU6). Subplots showing 

the initial extracted parameters without any exclusion, the final optimal parameter set, and the change in 

normalized confidence interval length and sum of squared fitting errors (SSE) after each round of selection. 

   

5.3.2 Parameter Variability Modeling 

The within-chip spatial pattern of the extracted parameters (VTO, KP, and LAMBDA) 

of the three types of SRAM transistors are shown in Figure 5.7, Figure 5.8 and Figure 5.9, 

respectively. The threshold parameter VTO does not show any significant across-chip 

pattern, which is in line with the fact that threshold voltage variation is mainly the result of 

random dopant fluctuation and is largely dominated by the random components. On the 

other hand, the parameters KP and LAMBDA both show a clear across-chip pattern that 

varies along the rows of the SRAM array for all the NMOS transistors (pull-down 

transistors and pass-gates), while PMOS does not show such a systematic pattern. These 

across-chip patterns relate closely to the spatial pattern we see in the measured SRAM bit-

cell and transistor electrical metrics in Chapter 3. 

In the same way we decomposed the variability in the measured electrical device 

metrics, we apply our hierarchical variability model to the extracted parameters KP and 

LAMDA for the two PD transistors and the two PG transistors (Equation 5.1). Parabolic 

surfaces along chip rows are fitted to the extracted compact model parameters, as shown 

in Figure 5.10 and Figure 5.11. Figure 5.12 and Figure 5.13 show normal quantile plots of 

the original extracted parameters, the fitted across-chip systematic component, and the 

residuals of the fitted model parameters. The original extracted values of both KP and 

LAMBDA clearly deviate from Normal distributions for both types of NMOS transistors. 

After the removal of the fitted across-chip systematic component, the distribution of 
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residuals of the parameter KP is approximately Gaussian. However, the same cannot be 

said for parameter LAMBDA, whose distribution has such long tails on the lower end that 

even after removing the systematic component, the residuals still do not appear normal. 

This is illustrated in Figure 5.15: the standard deviation of the residual of LAMBDA after 

fitting the across-chip systematic pattern also has a systematic across-chip pattern. The 

residual variance is larger at the top and bottom rows and smaller in the center. For that 

reason, we fit a systematic across-chip function to the standard deviation of the across-chip 

residual of LAMBDA (LAMBDAACR). The variance of LAMBDAACR within each row is also 

approximately quadratic in row position YC, as stated in Equation 5.2, which is incorporated 

into the hierarchical variability model. 

 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉 = 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 

𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉𝐴𝐶 = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 𝑐𝐶 × 𝑌𝐶

2 + 𝑑𝐶𝑌𝐶 + 𝑒𝐶 

 
 ( 5.1 ) 

 

 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅~𝑁(0, 𝜎2(𝑌𝐶)) 

𝜎(𝑌𝐶) = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 𝑠𝐶 × 𝑌𝐶

2 + 𝑡𝐶𝑌𝐶 + 𝑟𝐶 
 ( 5.2 ) 

 

 

Figure 5.7: Chip maps of extracted compact model parameters VTO. 

 



104 

 

 

Figure 5.8: Chip maps of extracted compact model parameters KP. 

 

 

Figure 5.9: Chip maps of extracted compact model parameters LAMBDA. 
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Figure 5.10: Chip level variation decomposition for KP extracted from the left pull-down transistor and 

pass-gate: 𝐾𝑃〈−𝐷𝑊𝑃〉 = 𝐾𝑃〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐾𝑃〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 . 

 

Figure 5.11: Chip level variation decomposition for LAMBDA extracted from the left pull-down transistor 

and pass-gate: 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉 = 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝐿𝐴𝑀𝐵𝐷𝐴〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 . 

 



106 

 

 

 

Figure 5.12: Comparison of the distributions of the extracted parameter KP and its corresponding 

systematic and random components for pull-down and pass-gate transistors. 
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Figure 5.13: Comparison of the distribution of the extracted parameter LAMBDA and its corresponding 

systematic and random components for pull-down and pass-gate transistors. 
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Figure 5.14: Across-chip systematic pattern of the within-row variance of the across-chip residual of 

parameter KP. 
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Figure 5.15: Across-chip systematic variation of the within-row variance of the across-chip residual of 

parameter LAMBDA. 

 

5.3.3  Parameter Variability Reconstruction 

 With the above decomposition of parameter variability, it becomes possible to simulate 

the distributions of the extracted parameters. As in Chapter 3, we evaluate two variability 

models: the conventional “Global+Local” model and our hierarchical variability model. 

Now instead of assuming a constant variance for the local variation (as in the 

“Global+Local” model) or the local residual variation (as in the hierarchical model), we 

consider the correlations among parameters, and the correlation among parameters of 

different devices in general. A two parameter case will be used as an example to illustrate 

the reconstruction process. Assume we have the i1th parameter of the j1th device 𝑝𝑖1,𝑗1 and 

the i2th parameter of the j2th device 𝑝𝑖2,𝑗2. The indices i1 and i2 may be equal and the indices 

j1 and j2 may be equal, but not both at the same time. Under the conventional model, 𝑝𝑖1,𝑗1 

and 𝑝𝑖2,𝑗2  are assumed to be correlated Normal variables with a correlation matrix 

estimated from the extracted distributions of the two compact model parameters, as 

described by Equation 5.3. Under the hierarchical model, each parameter is the sum of its 
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corresponding systematic component function, 𝑓𝐴𝐶 , and a random component, 𝑟. The 

random component is generated in the same way as the “Global+Local” variation model, 

but replacing the original extracted parameter values with the residuals after removal of the 

systematic component as described by Equation 5.4. 

“Global+Local” variation model: 

 (𝑝𝑖1,𝑗1 , 𝑝𝑖2,𝑗2)~𝑁(𝜇1, 𝜇2, Σ𝐿𝑜𝑐𝑎𝑙) 

Σ𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑣(𝑝𝑖1,𝑗1 , 𝑝𝑖2,𝑗2) 
 ( 5.3 ) 

Hierarchical model: 

 𝑝𝑖1,𝑗1 = 𝑓𝑖1𝑗1,𝐴𝐶(𝑋𝐶 , 𝑌𝐶) + 𝑟𝑖1,𝑗1 

𝑝𝑖2,𝑗2 = 𝑓𝑖2𝑗2,𝐴𝐶(𝑋𝐶 , 𝑌𝐶) + 𝑟𝑖2,𝑗2 

(𝑟𝑖1,𝑗1 , 𝑟𝑖2,𝑗2)~𝑁(0,0, Σ𝐿𝑜𝑐𝑎𝑙
2 ) 

Σ𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑣(𝑟𝑖1,𝑗1 , 𝑟𝑖2,𝑗2) 

 ( 5.4 ) 

 

A total of ten chips of model cards (360x10=3600) are generated with this 

methodology for both the “Global+Local” model and the hierarchical model. A comparison 

among the original estimates of extracted parameters, parameters simulated from the 

“Global+Local” model, and those simulated from the hierarchical model, is shown in 

Figure 5.16 and Figure 5.17. The hierarchical model is capturing the non-Gaussian 

behavior of the original extracted parameter distribution fairly well, especially at the lower 

end of the tails, while the conventional “Global+Local” model strictly follows the Normal 

distributions thus deviating from the original extraction. 

To quantify the difference of the distributions of the original estimates of extracted 

compact model parameters and those simulated with the “Global+Local” model as well as 

the hierarchical model, we compare quantiles across models. For example, the 1% quantile 

of KP predicted by the “Global+Local” model can be as much as 6% lower than the original 

estimates of extracted parameters, and 5% lower in the case of parameter LAMBDA. As 

comparison, the 1% quantile of parameters predicted by the hierarchical model is generally 

within 3% of that from the original distribution of parameter estimates. The accuracy of 

the hierarchical model tends to increase when examining even more extreme quantiles. A 

detailed list of the extreme quantiles of the original and reconstructed parameters can be 

found in Table 5.2. 
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Figure 5.16: Comparison of the distribution of the extracted parameter KP and the reconstructed 

distributions using the “Global+Local” model and the hierarchical model. 
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Figure 5.17: Comparison of the distribution of the extracted parameter LAMBDA and the reconstructed 

distributions using the “Global+Local” model and the hierarchical model. 

 

Parameter Device Percentile original “Global+Local” 

Model 

Hierarchical Model 

Value Value Error Value Error 

KP PD1 1% 2.82E-04 2.70E-04 -4% 2.82E-04 0% 

99% 4.28E-04 4.29E-04 0% 4.35E-04 2% 

PD2 1% 2.79E-04 2.64E-04 -5% 2.71E-04 -3% 

99% 4.17E-04 4.27E-04 2% 4.28E-04 3% 

PG3 1% 3.18E-04 3.00E-04 -6% 3.15E-04 -1% 

99% 4.66E-04 4.65E-04 0% 4.72E-04 1% 
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PG4 1% 3.17E-04 3.06E-04 -3% 3.13E-04 -1% 

99% 4.55E-04 4.54E-04 0% 4.58E-04 1% 

LAMBDA PD1 1% 2.221 2.328 5% 2.276 2% 

99% 3.114 3.185 2% 3.093 -1% 

PD2 1% 2.243 2.309 3% 2.170 -3% 

99% 3.101 3.206 3% 3.111 0% 

PG3 1% 2.202 2.294 4% 2.200 0% 

99% 3.287 3.375 3% 3.291 0% 

PG4 1% 2.285 2.305 1% 2.285 0% 

99% 3.350 3.353 0% 3.319 -1% 

Table 5.2: 99% and 1% quantiles of original and reconstructed parameter distributions. 

 

 

5.4 Parameter Extraction with PSP Model 

5.4.1 Parameter Extraction 

The PSP model extraction is carried out with the same set of SRAM bit cell transistor 

I-V data used for the EKV model. The extraction setup is inherited from the simulation in 

Chapter 4, with the same group of model parameters and the same stepwise parameter 

selection method in a three-step sequential parameter extraction flow. The difference is 

that we include the printed gate length deviation DL as an additional parameter, even 

though it is not one of the local PSP model parameters, and that one type of imagined 

NMOS transistor is replaced by six real transistors from the SRAM bit cells. The list of 

PSP model parameters as candidates for extraction is provided in Table 5.3.  

During every round of parameter selection, each pair of the mirror-imaged transistors 

of the same type, pull-down, pass-gate, and pull-up transistors, is grouped together due to 

that pair’s highly similar physical nature. The three-step sequential extraction is carried out 

in their respective operation region, as shown in Figure 5.18. The stepwise parameter 

selection results are illustrated in Figure 5.19 through Figure 5.23 using Step#1 (linear 

region Id-Vg) as an example. As shown in these plots, the fitting error increases when fewer 
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than four parameters are included in the model extraction, while the length of the 

normalized confidence interval of the extracted parameters drops below 100% when three 

parameters or fewer are included. Combined with the observations regarding the 

distribution and correlation structure of the extracted parameters, we decided that three 

parameters, VFBO, UO, and RSW1, are an adequate set of model parameters for Step#1 

curve fitting. This combination of parameters offers well-bounded, reasonable distributions 

with minimal loss of fit. The number of “extractable” parameters is significantly less than 

the simulations suggest, largely because real silicon devices do not act exactly like ideal 

model devices, and measurement data noise will make it hard to extract parameters that 

have little influence on performance. The second and third steps of the optimization go 

through the same stepwise parameter selection procedure, with the initial model card of 

each step inherited from the previous step and the excluded parameter set to its extracted 

value attained in the previous step (if it is previously extracted). In this way, we add more 

extractable parameters as we go through more optimization steps, while keeping the good 

parameter values extracted in earlier optimization steps but not in the later steps. For PD 

and PG transistors, Step#2 will extract VFBO, UO, MUEO and Step#3 will extract VFBO 

and UO; for PU transistors, Step#2 will extract VFBO, CFL, and UO, and Step#3 will 

extract VFBO and UO. 

After all three optimization steps are complete, we perform one final global 

optimization step, which uses the complete measurement data (including all the data points 

from all three steps) to fit all the optimized parameters as the initial candidates for 

parameter extraction. Again we apply the parameter selection scheme to this global 

optimization step, and we are able to reduce the extractable parameters down to three for 

each type of transistors: VFBO, UO, and RSW1 for the PD and PG transistors and VFBO, 

CFL, and UO for the PU transistors. The initial extraction results with all four extractable 

parameters from the sequential extraction and the final extraction results with three 

extractable parameters are shown in Figure 5.20, Figure 5.22 and Figure 5.24.  

 

Param. Description Param. Description 

vfbo Geometry-independent flat-band voltage cso Geometry-independent Coulomb 

scattering 

nsubo Geometry-independent substrate doping xcoro Geometry-independent non-

universality 

dphibo Geometry-independent offset of 𝜙𝐵 rsw1 Source/drain series resistance 
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cto Geometry-independent part of  

interface states factor CT 

thesato Geometry-independent velocity 

saturation 

cfl Length-dependence of CT alpl Length-dependence of CLM pre-factor 

ALP 

uo Zero-field mobility at TR alp1l1 Length-dependence of CLM 

enhancement factor above threshold 

xmueo Geometry-independent mobility 

reduction coefficient 

alp2l1 Second order length-dependence of 

ALP1 

themuo Mobility reduction exponent vpo CLM logarithmic dependence 

Table 5.3: Candidate of PSP model parameters for extraction [87]. 

 

  

Figure 5.18: Target I-V data for the three extraction steps. From left to right: Id-Vg with Vds=0.1V, Id-Vd 

with Vgs=1V, and Id-Vg with Vds=1V. 
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Figure 5.19: Stepwise parameter selection results from Step#1 for the pull-down transistors (PD1/PD2). 

Subplots showing the initial extracted parameters without any exclusion, the final optimal parameter set, 

and the change in normalized confidence interval and sum of squares of fitting error (SSE) after each round 

of selection. 

 

Figure 5.20: Initial and final extracted values after global optimization for the pull-down transistors 

(PD1/PD2). 
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Figure 5.21: Stepwise parameter selection results from Step#1 for the pass-gate transistors (PG3/PG4). 

Subplots showing the initial extracted parameters without any exclusion, the final optimal parameter set, 

and the change in normalized confidence interval and sum of squares of fitting error (SSE) after each round 

of selection. 

 

Figure 5.22: Initial and final extracted value after global optimization for the pass-gate transistors 

(PG3/PG4). 
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Figure 5.23: Stepwise parameter selection results from Step#1 for the pull-up transistors (PU5/PU6). 

Subplots showing the initial extracted parameters without any exclusion, the final optimal parameter set, 

and the change in normalized confidence interval and sum of squares of fitting error (SSE) after each round 

of selection. 

 

Figure 5.24: Initial and final extracted values after global optimization for the pull-up transistors 

(PU5/PU6). 
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The within-chip spatial pattern of all the extracted parameters for the three types of 

SRAM transistors are shown in Figure 5.25, Figure 5.26 and Figure 5.27. Again, the flat-

band voltage parameter, VFBO, whose value shift is equivalent to that of the threshold 

voltage, does not show any systematic variation, nor does the zero-field mobility parameter 

UO. The source/drain resistance parameter has a strong across-chip pattern along the rows 
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CFL, which is only extractable for PU transistors, does not illustrate any systematic 

patterns.  

Using the same practice as the EKV model, we apply the hierarchical variability model 

to the extracted parameter, RSW1, of the two PD transistors and the two PG transistors 

(Equation 5.5). A parabolic surface along the rows of the test chip is fitted to the extracted 

parameters, as shown in Figure 5.28. Figure 5.29 shows the normal quantile plots of the 

original extracted parameters, the fitted across-chip systematic component, and the fitting 

residuals of parameter RSW1. The original extracted values of RSW1 clearly deviate from 

a normal distribution at extreme quantiles for PD transistors, and at the lower tails for PG 

transistors. After the removal of the fitted across-chip systematic component, the 

distribution of residuals of the parameter RSW1 is closer to a normal distribution for the 

PD transistors, but deviates from a normal distribution in the upper tail for the PG 

transistors. This could also be explained by the systematic across-chip pattern of the 

residual variance, as illustrated in Figure 5.30. A systematic across-chip function is fitted 

to the standard deviation of the across-chip residual of RSW1 (RSW1ACR). The standard 

deviation of LAMBDAACR within each row varies quadratically with its row position YC, as 

stated in Equation 5.2.   

 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉 = 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 

𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉𝐴𝐶 = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 𝑐𝐶 × 𝑌𝐶

2 + 𝑑𝐶𝑌𝐶 + 𝑒𝐶 
 ( 5.5 ) 

 

 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅~𝑁(0, 𝜎2(𝑌𝐶)) 

𝜎(𝑌𝐶) = 0 × 𝑋𝐶
2 + 0 × 𝑋𝐶 + 𝑠𝐶 × 𝑌𝐶

2 + 𝑡𝐶𝑌𝐶 + 𝑟𝐶 
 ( 5.6 ) 
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Figure 5.25: Chip maps of extracted compact model parameters VFBO.  

 

 

Figure 5.26: Chip maps of extracted compact model parameters UO. 
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Figure 5.27: Chip maps of extracted compact model parameters RSW1 (PD/PG) and CFL (PU). 

 

 

Figure 5.28: Chip-level variation decomposition for LAMBDA extracted from the left pull-down transistor 

and pass-gate: 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉 = 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉𝐴𝐶 + 𝑅𝑆𝑊11〈𝑇 − 𝑊𝑃〉𝐴𝐶𝑅 . 
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Figure 5.29: Normal quantile plots of the extracted values RSW1, the across-chip systematic component 

RSW1AC, and the across-chip residual RSW1ACR. All components are centered at zero. 
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Figure 5.30: Across-chip systematic pattern of parameter RSW1 variance. 

 

5.4.3 Parameter Variability Reconstruction 

We now simulate the distributions of the extracted RSW1 with both the conventional 

“Global+Local” model and our hierarchical variability model. The method of modeling the 

parameter variability is exactly the same as with the EKV model. The underlying 

assumptions are captured by Equations 5.7 and 5.8. 

“Global+Local” variation model: 

 (𝑝𝑖1,𝑗1 , 𝑝𝑖2,𝑗2)~𝑁(𝜇1, 𝜇2, Σ𝐿𝑜𝑐𝑎𝑙
2 ) 

Σ𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑣(𝑝𝑖1,𝑗1 , 𝑝𝑖2,𝑗2) 
 ( 5.7 ) 

Hierarchical model: 

 𝑝𝑖1,𝑗1 = 𝑓𝑖1𝑗1,𝐴𝐶(𝑋𝐶 , 𝑌𝐶) + 𝑟𝑖1,𝑗1  ( 5.8 ) 
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𝑝𝑖2,𝑗2 = 𝑓𝑖2𝑗2,𝐴𝐶(𝑋𝐶 , 𝑌𝐶) + 𝑟𝑖2,𝑗2 

(𝑟𝑖1,𝑗1 , 𝑟𝑖2,𝑗2)~𝑁(0,0, Σ𝐿𝑜𝑐𝑎𝑙
2 ) 

Σ𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑣(𝑟𝑖1,𝑗1 , 𝑟𝑖2,𝑗2) 

 

Again, ten chips of PSP model cards (360x10=3600) are generated with the 

“Global+Local” model and the hierarchical model. A comparison between the original and 

the reconstructed parameter distributions is shown in Figure 5.31. The hierarchical model 

generally captures the non-Gaussian distribution behavior of the original extracted 

parameter distributions better than the conventional “Global+Local” model does, 

especially in the lower tail. The gap between reconstructed parameter distributions and the 

original extracted parameter distributions at the 1% and 99% quantiles can be found in 

Table 5.4. The hierarchical model can be up to 10% better than the conventional model at 

these quantiles.  
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Figure 5.31: Comparison of the distribution of the extracted parameter RSW1 and the reconstructed 

distributions using “Global+Local” model and the hierarchical model. 

  

Parameter Device Percentile original “Global+Local” 

Model 

Hierarchical Model 

Value Value Error Value Error 

RSW1 PD1 99% 324.0 336.2 4% 335.7 4% 

1% 146.6 136.7 -7% 145.6 -1% 

PD2 99% 346.5 349.2 1% 347.6 0% 

1% 140.2 133.3 -5% 143.9 3% 

PG3 99% 332.4 324.4 -2% 331.5 0% 

1% 89.9 79.8 -11% 96.3 7% 

PG4 99% 329.0 328.0 0% 328.5 0% 

1% 107.1 86.3 -19% 98.1 -8% 

Table 5.4: 99% and 1% quantiles of the original and the reconstructed parameter distributions. 

 

5.5 Hierarchical Model Application for Extracted 
Parameters 

As shown in Sections 5.3 and 5.4, across-chip hierarchical models are fitted to the 

NMOS model parameters KP and LAMBDA of the EKV model and RSW1 of the PSP model, 

respectively. After the removal of the systematic component, the residual of the compact 

model parameters of the six bit cell transistors are more nearly Gaussian. Their residual 

variance can be further normalized by fitting a systematic function of the standard deviation 

across the chip. Consequently, we are able to estimate the distributions of the random 

component of the parameters by simulating model parameters as correlated Gaussian 

variables, using the mean and covariance matrix estimated from the normalized across-

chip residual of the hierarchical model. The extracted systematic across-chip component is 

then added onto the generated random component by uniform sampling over all possible 

locations on the chip, so that we can recreate the full picture of the variability of model 

parameters. For comparison, we also generated parameter distributions with the 
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conventional “Global+Local” model. The details of the re-construction process are 

described in Sections 5.3.3 and 5.4.3 for the EKV model and the PSP model, respectively.  

Ten chips of model cards (360x10=3,600) are generated from both the hierarchical 

variability model and the conventional “Global+Local” model. The accuracy of the two 

variability models can then be evaluated by simply simulating the electrical performance 

of the device and circuits with the 3,600 model cards. Due to the fact that the variability 

model is based on the extracted-parameter distributions, the best a variability model can do 

is to faithfully regenerate the electrical performance distributions predicted by the 

originally extracted parameters. Nevertheless, we put the experimentally measured device 

and circuit metrics against those simulated with the extracted parameters and the 

reconstructed model cards using the EKV model and PSP models and the hierarchical and 

conventional “Global+Local” variability model. A selected comparison of such electrical 

metrics is shown in Figure 5.32 through Figure 5.36, including the SRAM Read Static 

Noise Margin (RSNM), the writeability current (IW), and the on-current (Idsat) of the PD1, 

PG3, and PU5 transistors. 

For the SRAM bit-cell read/write margins RSNM and IW, we found that even the 

original extracted parameters of either compact model (EKV or PSP) cannot accurately 

predict the distribution from the experimental measurement. This may be explained by the 

fact that SRAM operations are highly sensitive to transistor behavior around the threshold 

voltage, exactly where our electrical measurements were hampered by large parasitic 

leakage currents. Thus in Figure 5.32 and Figure 5.33, the simulated distributions are 

normalized so that their median matches that of the measured statistics. The rest of 

electrical metrics are compared as-is. For applications that require a high yield, we should 

look at the extreme quantiles of the statistical distributions. As a simple example, we 

evaluated the 1% and 99% quantiles of the measured, extracted, and re-constructed electric 

metrics of transistor and SRAM bit cells, as listed. The full extraction results from both the 

EKV model and PSP model at the tails are generally within 1~2% of the measurement data, 

except for the RSNM distributions where the EKV model can have up to a 4% error margin 

and the PSP model can have up to a 6% error margin on the higher end. This indicates that 

our extraction methodology is reasonably accurate in terms of capturing the silicon device 

behavior. 

On the other hand, there are gaps between the raw extraction and the conventional and 

hierarchical variability models as well. For the EKV model, the hierarchical model always 

fit the full extraction results 1 to 2% better than the “Global+Local” model, and up to 4% 

better when predicting the bottom 1% of the writeability current IW. The case of the PSP 

model is very similar. In most cases, the differences between the extreme quantiles of 

conventional and hierarchical model is within 1%, while at 99% of PD1 Idsat the 
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hierarchical model is up to 2% better than the “Global+Local” model. The differences may 

look small, but they could have a large impact on yield estimates if the parametric-yield 

threshold is high. Figure 5.37 shows an example with PD1 Idsat distributions. Assume we 

use 99% of the real silicon measurements as the upper limit of Idsat (for illustration 

purposes, not a real life criterion), and extrapolate that into the predicted normal quantile 

plot of the “Global+Local” model and hierarchical model prediction; it would correspond 

to the 99.1% of the hierarchical model and the 99.4% of the “Global+Local” model. In this 

case, the “Global+Local” model will predict a 0.6% fail rate while the hierarchical model 

will predict a 0.9% fail rate, compared to the true fail rate of 1%. In this sense, the 

conventional model is underestimating the failure rate by 40% while the hierarchical model 

is only underestimating it by 10%. At more extreme distribution quantiles, this gap can be 

even more significant and make the hierarchical model far superior for yield estimation. 

 

 

Figure 5.32: Comparing prediction accuracy of the “Global+Local” model vs. the hierarchical model for 

the distributions of SRAM read static noise margin SNM. The model parameters were extracted using the 

EKV and PSP Models. 
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Figure 5.33: Comparing prediction accuracy of the “Global+Local” model and the hierarchical model for 

the distributions of SRAM writeability current IW. The model parameters were extracted using the EKV and 

PSP Models. 

 

Figure 5.34: Comparing prediction accuracy of the “Global+Local” model and the hierarchical model for 

the distributions of PD1 Idsat. The model parameters were extracted using the EKV and PSP Models. 
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Figure 5.35: Comparing prediction accuracy of the “Global+Local” model vs. the hierarchical model for 

the distributions of PG3 Idsat. The model parameters were extracted using the EKV and PSP Models. 

 

Figure 5.36: Comparing prediction accuracy of the “Global+Local” model and the hierarchical model for 

the distributions of PU5 Idsat. The model parameters were extracted using the EKV and PSP Models. 

 

 Model PD1 Idsat (µA) PG3 Idsat (µA) RSNM (V) IW (µA) 

1% 99% 1% 99% 1% 99% 1% 99% 

Measurement – 59.1 93.6 38.9 61.2 0.135 0.234 42.8 64.7 

Full Extraction EKV 58.6 93.1 38.6 60.9 0.141 0.224 42.6 66.1 

PSP 58.9 93.5 39.2 61.3 0.138 0.219 42.8 65.7 

“Global+Local” 

Model 

EKV 57.7 91.6 37.1 60.4 0.141 0.225 40.6 65.4 

PSP 59.1 91.7 37.9 61.5 0.138 0.221 42.6 64.9 

Hierarchical 

Model 

EKV 58.1 92.9 37.8 61.6 0.142 0.225 42.0 65.3 

PSP 59 93.3 38.2 61.5 0.137 0.221 42.6 64.8 

Table 5.5: 99% and 1% quantiles of transistor and SRAM electrical metrics from: experimental 

measurement, simulation using extracted parameters, and simulation using reconstructed compact 

model cards. 
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 Model PD1 Idsat (µA) PG3 Idsat (µA) RSNM (V) IW (µA) 

  1% 99% 1% 99% 1% 99% 1% 99% 

“Global+Local

” Model 

EKV -2% -2% -4% -1% 0% 1% -5% -1% 

PSP 0% -2% -3% 0% 0% 1% 0% -1% 

Hierarchical 

Model 

EKV -1% 0% -2% 1% 1% 1% -1% -1% 

PSP 0% 0% -3% 0% -1% 1% 0% -1% 

Table 5.6: 99% and 1% quantiles of transistor and SRAM electrical metrics: error between simulated 

distributions from full extraction and re-constructed model cards with the “Global+Local” model and 

hierarchical model. 

 

 

 

Figure 5.37: Error in yield estimation with the “Global+Local” model and the hierarchical variability 

model. 

 

5.6 Summary 

The compact model parameter extraction methodology is applied to experimentally 

collected I-V data from the SRAM bit cell transistors on the 45nm test chips. The stepwise 

parameter selection procedure is carried out first to determine a good set of model 

parameters for variability extraction for both the EKV model in a one-step parameter 

optimization and the PSP model in a sequential style optimization. With the full parameter 
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distributions extracted for one full chip of data, we applied the hierarchical variability 

model to the resulting compact model parameters, and compared its accuracy with that of 

the conventional “Global+Local” variability model by re-constructing the model parameter 

distributions under their respective assumptions. In most cases the hierarchical model 

performs slightly better than the conventional method in predicting extreme quantiles, and 

up to 4% better in which the distribution strongly deviates from normal. The prediction 

errors that are small in absolute magnitude can produce large errors in yield estimation 

when the yield threshold is set high. The accuracy of the directly-extracted model is also 

limited due to the lack of accuracy in the subthreshold regime in the electrical test. Thus, 

the predicted SRAM read/write margin specs are even further off from raw measurements 

due to their high sensitivity to the threshold voltage changes. Nonetheless, our study shows 

a scalable parameter extraction framework that is capable of dealing with complex 

problems and may prove especially valuable when there are strong systematic components 

of variability. 
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Conclusion 
 

Variability characterization and analysis have been performed for two sets of 

customized test chips manufactured using an advanced CMOS process. The devices under 

test (DUT) included ring oscillators from one wafer on a 90nm process as well as ring 

oscillators, SRAM bit cells, and the individual transistors within the SRAM cells from two 

wafers on a 45nm process. Each DUT was repeated tens to hundreds of times in an on-chip 

array, while tens of chips with good spatial coverage were measured over each wafer. This 

allowed a hierarchical breakdown of the device variations into wafer-level and die-level 

systematic and random components as well as the identification of layout-dependent effects. 

With the newly proposed parameter-extraction methodology, two sets of compact model 

parameters were extracted for the padded-out transistors in the SRAM bit cells using the 

EKV and PSP models. These extracted parameters were subsequently fed into a 

hierarchical variability model, which successfully reproduced the variability profile of the 

SRAM cells and its internal transistors.   

 

6.1 Key Contributions 

This work provides two key contributions. First, the comprehensive methodology can 

capture the systematic and random variation components in the early stages of the advanced 

90nm and 45nm CMOS processes. The characterization and analysis were carried out with 

two sets of customized test chips with arrays of small test circuits, such as ring oscillators 

and SRAM bit cells. Following the careful breakdown of the wafer-level and die-level 

variability using a hierarchical variability model, we successfully identified several 

significant systematic variations, including across-wafer ring oscillator delay variability, 

across-chip SRAM read/write margin and transistor drive current variations, and layout-

dependent effects, among ring oscillators with different layout pattern densities. We 

illustrated how the systematic variation components are crucial in achieving high 

confidence for predicting the extreme quantiles of device performance distributions. 

Second, we designed a compact model parameter-extraction framework that 

intelligently selects model parameter candidates for numerical data extraction so that the 

extracted compact model parameters are physically reasonable, with minimal artificial 

correlation between the parameters, and fit the data adequately. This methodology was first 
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validated through simulations using the EKV and PSP models and then applied to real 

silicon transistor I-V data that we had previously characterized from the 45nm SRAM test 

arrays. When there are large variations, only a handful of core model parameters can be 

extracted with high credibility without hurting the fitting and extraction quality. 

Nevertheless, by applying our hierarchical variability model to the extracted compact 

model parameters, this selected set of model parameters still effectively captures the 

systematic across-chip variations that we observed in the SRAM read/write margins and 

transistor drive currents. The parametric yield estimation in the top and bottom 1% 

quantiles showed a clear advantage in accuracy compare to conventional methods. 

 

6.2 Future Work 

In the ring oscillator variation analysis, we identified significant across-wafer 

systematic variation as well as layout-dependent effects. However, the lack of companion 

transistors (individually measurable transistors with the same layout design as those in the 

ring oscillator) makes it difficult to pin down the exact reason behind such variations. A 

new test-chip design could incorporate such companion transistors, which might reveal the 

underlying physical mechanics of the systematic variations with the help of the statistical 

parameter extraction methodology we developed.  

The SRAM test circuitry can be redesigned so that the individual padded-out 

transistors are less vulnerable to the off-state leakage from the switching networks. This 

will help improve the I-V measurement accuracy, particularly in the subthreshold region. 

It is critical for the accurate prediction of the SRAM bit cell read/write noise margins, as 

they are extremely sensitive to the threshold voltages of the transistors.  

The model parameter-extraction methodology can be further expanded by 

experimenting with the ordering of the different steps when performing sequential 

parameter extraction. This may help with finding the optimal sequence of extraction steps, 

avoiding iterations, and making extraction more robust. There are also a variety of standard 

forward and backward selection algorithms from the statistical literature that could be 

explored. 

Lastly, the compact model parameter-extraction framework shall also be applied to the 

BSIM model, which is the most widely used industrial standard compact model. 

Collaboration with model developers, utilizing the newly obtained knowledge about the 

robustness of various model parameters under statistical extraction, could result in 

improved reference extraction flow and even improvement in the model equations 

themselves. 
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