
The Berkeley Out-of-Order Machine (BOOM): An Industry-
Competitive, Synthesizable, Parameterized RISC-V

Processor

Christopher Celio
David A. Patterson
Krste Asanović

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-167
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html

June 13, 2015



Copyright © 2015, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.



The Berkeley Out-of-Order Machine (BOOM):
An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor

Christopher Celio, David Patterson, and Krste Asanović
University of California, Berkeley, California 94720–1770

celio@eecs.berkeley.edu

BOOM is a work-in-progress. Results shown are prelimi-
nary and subject to change as of 2015 June.

1. The Berkeley Out-of-Order Machine

BOOM is a synthesizable, parameterized, superscalar out-
of-order RISC-V core designed to serve as the prototypical
baseline processor for future micro-architectural studies of
out-of-order processors. Our goal is to provide a readable,
open-source implementation for use in education, research,
and industry.

BOOM is written in roughly 9,000 lines of the hardware
construction language Chisel. We leveraged Berkeley’s open-
source Rocket-chip SoC generator, allowing us to quickly bring
up an entire multi-core processor system (including caches
and uncore) by replacing the in-order Rocket core with an
out-of-order BOOM core. BOOM supports atomics, IEEE
754-2008 floating-point, and page-based virtual memory. We
have demonstrated BOOM running Linux, SPEC CINT2006,
and CoreMark.

BOOM, configured similarly to an ARM Cortex-A9,
achieves 3.91 CoreMarks/MHz with a core size of 0.47 mm2

in TSMC 45 nm excluding caches (and 1.1 mm2 with 32 kB
L1 caches). The in-order Rocket core has been successfully
demonstrated to reach over 1.5 GHz in IBM 45 nm SOI, with
the SRAM access being the critical path. As BOOM instan-
tiates the same caches as Rocket, BOOM should be similarly
constrained to 1.5 GHz. So far we have not found it necessary
to deeply pipeline BOOM to keep the logic faster than the
SRAM access. With modest resource sizes matching the syn-
thesizable MIPS32 74K, the the worst case path for BOOM’s
logic is ∼2.2 GHz in TSMC 45 nm (∼30 FO4).

2. Leveraging New Infrastructure

The feasibility of BOOM is in large part due to the available
infrastructure that has been developed in parallel at Berkeley.

BOOM implements the open-source RISC-V ISA, which
was designed from the ground-up to enable VLSI-driven com-
puter architecture research. It is clean, realistic, and highly
extensible. Available software includes the GCC and LLVM
compilers and a port of the Linux operating system.[6]

BOOM is written in Chisel, an open-source hardware con-
struction language developed to enable advanced hardware
design using highly parameterized generators. Chisel allows
designers to utilize concepts such as object orientation, func-
tional programming, parameterized types, and type inference.
From a single Chisel source, Chisel can generate a cycle-
accurate C++ simulator, Verilog targeting FPGA designs, and

regfile

rename
L2 data (256k)

L2 dataL1 D$ (32k)

L1 I$ (16k)

I$

ROB

issue

exe

exe
uncore

uncore

bp

Figure 1: 2-wide BOOM, 1.7 mm2 total in TSMC 45 nm

Verilog targeting ASIC tool-flows.[2]
UC Berkeley also provides the open-source Rocket-chip

SoC generator, which has been successfully taped out seven
times in two different, modern technologies.[6, 10] BOOM
makes significant use of Rocket-chip as a library – the caches,
the uncore, and functional units all derive from Rocket. In
total, over 11,500 lines of code is instantiated by BOOM.

3. Methodology: What We Plan to Do

The typical methodology for single-core studies, as gathered
from an informal sampling of ISCA 2014 papers, is to use
CPU2006 coupled with a SimPoints[12]-inspired methodology
to choose the most representative section of the reference input
set. Each sampling point is typically run for around 10-100
million instructions of detailed software-based simulation.

The average CPU2006 benchmark is roughly 2.2 trillion
instructions, with many of the benchmarks exhibiting multiple
phases of execution.[9] While completely untenable for soft-
ware simulators, FPGA-based simulators can bring runtimes
to within reason – a 50 MHz FPGA simulation can take over
12 hours for a single benchmark. Moreover, we hope to utilize
an FPGA cluster to run all the SPEC workloads in parallel.

4. Comparison to Commercial Designs

Table 1 shows preliminary results of BOOM and Rocket for the
CoreMark EEMBC benchmark (we use CoreMark because
ARM does not offer SPEC results for the A9 and A15 cores).
Our aim is to be competitive in both performance and area
against low-power, embedded out-of-order cores.

1



Table 1: CoreMark results.
Processor Core Area CoreMark/ Freq CoreMark/ IPC

(core+L1s) MHz/Core (MHz) Core
Intel Xeon E5 2687W (Sandy)† ≈18 mm2@32nm 7.36 3,400 25,007 -

Intel Xeon E5 2667 (Ivy)* ≈12 mm2@22nm 5.60 3,300 18,474 1.96
ARM Cortex-A15* 2.8 mm2@28nm 4.72 2,116 9,977 1.50

RV64 BOOM four-wide* 1.4 mm2@45nm 4.70 1,500 7,050 1.50
RV64 BOOM two-wide* 1.1 mm2@45nm 3.91 1,500 5,865 1.25

ARM Cortex-A9 (Kayla Tegra 3)* ≈2.5 mm2@40nm 3.71 1,400 5,189 1.19
MIPS 74K‡ 2.5 mm2@65nm 2.50 1,600 4,000 -

RV64 Rocket* 0.5 mm2@45nm 2.32 1,500 3,480 0.76
ARM Cortex-A5‡ 0.5 mm2@40nm 2.13 1,000 2,125 -

Results collected from *the authors (using gcc51 -O3 and perf), †[3],
or ‡ [1]. The Intel core areas include the L1 and L2 caches.

Table 2: A sample of academic out-of-order processors.
IVM[13] SCOORE[7] FabScalar[8, 11] Sharing[14] BOOM

fully synthesizable √ √ √ √

FPGA √ √ √

parameterized √ √

floating point √ √

atomic support √

L1 cache √ √ √ √ √

L2 cache √ √ √

virtual memory √

boots Linux √

multi-core √ √

ISA Alpha (sub-set) SPARCv8 PISA (sub-set)† ? RISC-V
lines of code ? ? 65,000† ? 9,000 + 11,500

†Information was gathered from publicly available code at [4].

5. Related Work

There have been many academic efforts to implement out-of-
order cores. The Illinois Verilog Model (IVM) is a 4-issue, out-
of-order core designed to study transient faults.[13] The Santa
Cruz Out-of-Order RISC Engine (SCOORE) was designed to
efficiently target both ASIC and FPGA generation. However,
SCOORE lacks a synthesizable fetch unit.

FabScalar is a tool for composing synthesizable out-of-order
cores. It searches through a library of parameterized compo-
nents of varying width and depth, guided by performance
constraints given by the designer. FabScalar has been demon-
strated on an FPGA,[8] however, as FabScalar did not imple-
ment caches, all memory operations were treated as cache
hits. Later work incorporated the OpenSPARC T2 caches in a
tape-out of FabScalar.[11]

The Sharing Architecture is composed of a two-wide out-of-
order core (or “slice”) that can be combined with other slices
to form a single, larger out-of-order core. By implementing
a slice in RTL, they were able to accurately demonstrate the
area costs associated with reconfigurable, virtual cores.[14]

6. Lessons Learned

Single-board FPGAs have gotten more capable of han-
dling mobile processor designs. Chisel provides a back-end
mechanism to generate memories optimized for FPGAs, but
requires no changes to the processor’s source code. While
some coding patterns map poorly to FPGAs (e.g., large vari-
able shifters), generally techniques that map well to ASICs
also map well to FPGAs.
Re-use is critical. Some of the most difficult parts of build-
ing a processor – for example the cache coherency system,
the privileged ISA support, and the FPGA and ASIC flows –
came to BOOM “for free” via the Rocket-chip SoC generator.

And as the Rocket-chip SoC evolves, BOOM inherits the new
improvements.
Benchmarks are harder to use than they should be. Bench-
marks can be difficult to work with and exhibit poor perfor-
mance portability across different processors, address modes,
and ISAs. Many benchmarks (like CoreMark) are written to
target 32-bit addresses, which can cause poor code generation
for 64-bit processors. We built a histogram generator into the
RISC-V ISA simulator to help direct us to potential problem
areas. However, additional compiler optimizations are needed
to improve 64-bit RISC-V code generation.

We were also surprised to find that SPECINT contains sig-
nificant floating point code – an integer core may spend over
half its time executing software FP routines. As academic
SPEC results are typically reported in terms of CPI, we must
be careful to not optimize for the wrong cases. We added
hardware FP support to BOOM to address this issue.

Finally, we found SPEC difficult to work with, especially
in non-native environments. We created the Speckle wrap-
per to help facilitate cross-compiling and generating portable
directories to run on simulators and FPGAs.[5]
Diagnosing bugs that occur billions of cycles into a pro-
gram is hard. We mostly rely on a Chisel-generated C++
simulator for debugging, but at roughly 30 KIPS, 1 billion
cycles takes 8 hours. A torture-test generator (and a suite of
small test codes) is invaluable.

Acknowledgments
Research partially funded by DARPA Award Number HR0011-
12-2-0016, the Center for Future Architecture Research, a
member of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, and ASPIRE
Lab industrial sponsors and affiliates Intel, Google, Huawei,
Nokia, NVIDIA, Oracle, and Samsung. Any opinions, find-
ings, conclusions, or recommendations in this paper are solely
those of the authors and does not necessarily reflect the posi-
tion or the policy of the sponsors.

References
[1] “ARM Outmuscles Atom on Benchmark,” http://parisbocek.typepad.

com/blog/2011/04/arm-outmuscles-atom-on-benchmark-1.html/.
[2] “Chisel: Constructing Hardware in a Scala Embedded Language,”

https://chisel.eecs.berkeley.edu/.
[3] “Coremark EEMBC Benchmark,” https://www.eembc.org/coremark/.
[4] “FabScalar pre-release tools,” http://people.engr.ncsu.edu/ericro/

research/fabscalar/pre-release.htm.
[5] “Speckle: A wrapper for the SPEC CPU2006 benchmark suite.” https:

//github.com/ccelio/Speckle.
[6] “The RISC-V Instruction Set Architecture,” http://riscv.org/.
[7] W. Ashmawi et al., “Implementation of a power efficient high per-

formance fpu for scoore,” in Workshop on Architectural Research
Prototyping (WARP), held in conjunction with ISCA-35, 2008.

[8] B. H. Dwiel et al., “Fpga modeling of diverse superscalar processors,”
in Performance Analysis of Systems and Software (ISPASS), 2012 IEEE
International Symposium on. IEEE, 2012, pp. 188–199.

[9] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation,” Web Copy: http://www.
glue. umd. edu/ajaleel/workload, 2010.

2

http://parisbocek.typepad.com/blog/2011/04/arm-outmuscles-atom-on-benchmark-1.html/
http://parisbocek.typepad.com/blog/2011/04/arm-outmuscles-atom-on-benchmark-1.html/
https://chisel.eecs.berkeley.edu/
https://www.eembc.org/coremark/
http://people.engr.ncsu.edu/ericro/research/fabscalar/pre-release.htm
http://people.engr.ncsu.edu/ericro/research/fabscalar/pre-release.htm
https://github.com/ccelio/Speckle
https://github.com/ccelio/Speckle
http://riscv.org/


[10] Y. Lee et al., “A 45nm 1.3 ghz 16.7 double-precision gflops/w risc-v
processor with vector accelerators,” in European Solid State Circuits
Conference (ESSCIRC), ESSCIRC 2014-40th. IEEE, 2014, pp. 199–
202.

[11] E. Rotenberg et al., “Rationale for a 3d heterogeneous multi-core
processor,” in Computer Design (ICCD), 2013 IEEE 31st International
Conference on, Oct 2013, pp. 154–168.

[12] T. Sherwood et al., “Automatically characterizing large scale program
behavior,” ACM SIGARCH Computer Architecture News, vol. 30, no. 5,
pp. 45–57, 2002.

[13] N. J. Wang et al., “Characterizing the effects of transient faults on
a high-performance processor pipeline,” in Dependable Systems and
Networks, 2004 International Conference on. IEEE, 2004, pp. 61–70.

[14] Y. Zhou and D. Wentzlaff, “The sharing architecture: sub-core con-
figurability for iaas clouds,” in Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems. ACM, 2014, pp. 559–574.

3


	The Berkeley Out-of-Order Machine
	Leveraging New Infrastructure
	Methodology: What We Plan to Do
	Comparison to Commercial Designs
	Related Work
	Lessons Learned

