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ABSTRACT
Online communities for sharing instructional content have
grown from a renewed interest in DIY culture. However, it
is difficult to convey the tacit knowledge implicit in certain
skills. We identify the need for Digital Apprenticeship, where
workshop activities are sensed and analyzed for both quanti-
tative and qualitative measures. We evaluated this concept
with an activity recognition system for carpentry tools. Using
a single ring-worn inertial measurement unit (IMU), we col-
lected data from 15 participants using 5 hand and power tools.
Our window-based multi-class SVM achieves 82% accuracy
with realistic training scenario and outputs user-friendly event
activity. We investigate how these results contextualize to ap-
plications in digital apprenticeship, namely tutorial authoring,
content following and technique feedback.
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INTRODUCTION
The Maker Movement has revived interest in manual fabri-
cation domains like carpentry and welding. In lieu of formal
training, amateur craftsmen often turn to online tutorial sites
like Instructables1 and Make2 for instructional content and
craft knowledge [15]. Though well-written tutorials may be
an effective way for online communities to share some skills,
static content is not well suited for teaching physical skills
that involve tacit knowledge.

Often taught under supervision of an expert, tacit knowledge
is the subtle, nuanced skill that appears in almost every phys-
ical craft yet goes unrecorded in documentation. We aim to
1http://www.instructables.com
2http://www.makezine.com/projects/
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reproduce a master-apprentice relationship through dynamic
tutorials that provide real-time feedback to the user. A wear-
able sensor could be used to record workshop activity and
generate step-by-step instructions; similarly, users could fol-
low and gain feedback from an existing tutorial. We term this
vision Digital Apprenticeship - where amateur users are in-
structed with specific corrections on not only what tool they
use, but also on how they use that tool.

This note explores how dynamic tutorials can support dis-
tributed learning. We show that an activity recognition system
can supply tutorial applications with usable, human-readable
events. Training data were collected in a controlled workshop
experiment using a only a ring-worn wireless sensor. Fif-
teen participants performed carpentry tasks with 5 common
hand and power tools. Our inertial sensor streams 9 degree-
of-freedom (DOF) data: accelerometer, gyroscope, and mag-
netometer. We built a window-based classifier using a multi-
class SVM to identify discrete time periods of tool use (e.g.
“hammering for 10 seconds”). The system was evaluated
using a leave-one-user-out validation scheme, meaning new
users can achieve the reported accuracy without providing
any training data. We report 82% accuracy.

This work builds on previous studies by Ward [16, 17] and
Lukowicz [11] by developing a separate approach to classify-
ing workshop activity. Our system generates human-readable
output events, which we apply to three target applications: tu-
torial authoring, tutorial following, and technique feedback.
Using characteristic results, we show how two common er-
rors affect the tutorial authoring and tutorial following ap-
plications. Finally, we demonstrate qualitative feedback by
classifying three distinct types of sanding where an interface
could guide the user towards a specific technique.

RELATED WORK
Craft communities have turned to online sharing platforms to
share projects and skills. In response, HCI research has begun
to consider the effectiveness of sharing physical craft making
online [2]. Lindtner et. al. further argues that makerspaces
are blending both amateur and professional development, es-
pecially in areas of HCI innovation [10]. Using sensing and
activity recognition, we see an opportunity to build sharing
tools for physical skills.

Human activity can often be reconstructed from a few inertial
sensors [8]. Placing IMUs near the activity source enables
more accurate activity recognition. Foxlin et. al. showed
pedestrian tracking on the shoe [5] and the RecoFit system
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identifies exercises from an arm-worn IMU [12]. Sensing
physical fabrication skills requires that our sensing device be
unobtrusive; our device enables 9 degree-of-freedom (DOF)
inertial sensing on the finger [6].

Activity Recognition for Assembly Tasks
Researchers have developed techniques for tracking assembly
tasks for toys, furniture, and manufacturing. DuploTrack [7]
uses the Microsoft Kinect to automatically generate assem-
bly instructions for Duplo blocks, yet it is unknown whether
video scales to complex assembly tasks. Other work has ap-
plied activity recognition to furniture assembly [1] or auto-
motive manufacturing tasks [14]. However, these systems are
designed to track construction against a predefined set of in-
structions.

Activity Recognition in Manual Fabrication
Previous work used a combination of microphones and ac-
celerometers in both wearable and distributed formats with
experiments performed in a wood workshop [11, 17]. Ward
et. al. used a subset of collected data to classify similar
workshop actions with a wrist-worn accelerometer and mi-
crophone [16]. The authors achieved 70.1% classification on
9 tools using a within-subjects training scheme.3 In group
settings such as hackerspaces with high ambient noise, mi-
crophones may be unsuitable. Our approach focused on a
single IMU that leverages the unique physical and magnetic
properties of tools in these settings.

SYSTEM DESIGN & IMPLEMENTATION
Our system classifies workshop activity from time-series data
and then outputs whole-event activities. The data stream is
buffered into windows and classified as independent events.
Final events are gathered from the single window classifica-
tions using a smoothing convolution, which produces a set of
labeled time windows. To train the classifier we conducted a
data collection experiment with 5 workshop tools.

Hardware
We employ a finger-worn sensing platform built atop the
GINA Mote [6]. The device is configured as a wireless in-
ertial measurement unit (IMU) with a 3-axis accelerometer,
gyroscope, and magnetometer for a total of 9 degrees-of-
freedom. The accelerometer sensitivity is set to +/- 6 G. The
gyroscope senses rotational velocity at a maximum rate of
2000 Degrees per second. Finally, the magnetometer mea-
sures orientation and also detects fluctuating magnetic fields
with a +/- 4 Gauss range. Processing on the ring is based on
the Texas Instruments MSP430 chipset, which is a 16-bit, 16
MHz microprocessor.

Data are streamed directly from the ring to the computer via
an Atmel 2.4 GHz transceiver at 150 packets per second,
though this limits battery life to approximately 20 minutes.
The circuit board has a footprint of 12 x 15 mm and the entire
device fits within a 3D printed ring.

3For comparison, we achieved 86% accuracy across 5 tools when
our classifier trained within-subjects. Throughout this paper we train
on leave-one-user-out scenario and report 82% accuracy.

Methods
We collected data through scripted use of 5 tools (hammer,
cordless drill, hand driver, saw, and power saw) with multi-
ple repetitions. Each participant was asked to complete the
a series of unrelated tasks (e.g. drill 10 holes) with their
most comfortable technique. Participants wore the ring on
their dominant hand as shown in Figure 1, and each partic-
ipant confirmed that the ring did not impede their activity.
Data collection for each participant took 30 minutes, which
we recorded in a series of trials. Also, we recorded video and
audio of each trial for annotation purposes. A total of 15 par-
ticipants (10 males, 5 females) completed the data collection.

Annotation
Since our classifer requires labeled training data, we built
an annotation interface to manually translate the video with
respect to sensor data. We annotated whole activities (e.g.
“hammering”) to establish a ground truth comparable to the
desired output and the interface outputs a set of labeled time
windows. Table 1 shows the annotated events for each tool.
We balanced the protocol to contain approximately equal rep-
etitions of each tool, shown in the Window Count row.

Data Analysis
We base our method for classifying workshop activity on
electromyography research by Saponas et. al. [13]. The
researchers divided a time-series signal into windows, clas-
sified the windows independently and then took a majority
vote to determine whole event classification. Windowing the
data gives the classifier a time-independent signal.

Signal Processing
We first divide the data into windows by discrete time inter-
vals of 400 ms. We set the window size empirically based
on the results of cross-validation. To remove variation in
the received packet rate, the data are resampled to 150 Hz.
Each window contains 9 vectors of IMU data from the 3 sen-
sors (accelerometer, gyroscope, and magnetometer). Once
the data has been windowed, labels are attached to each win-
dow only if the window falls entirely within the time range
of the annotation. Otherwise, the window is labeled as noise.
Table 1 shows the computed number of windows for each
tool. Notice that short actions like drill have proportionally
fewer windows than other tools.

Machine Learning Classifier
We calculate a total of 144 features on the samples in each
window of data. Root Mean Square (RMS) gives a measure

Figure 1. The wireless GINA Mote based wireless 9 DOF inertial sensing
hardware as worn by a user. Experiment participants placed the ring on
the index or middle finger of their dominant hand.
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Figure 2. The results of two trials are shown with annotated events in gray, correct classifications are in blue and incorrect in red. (a) A screwdriver trial
with magnetometer signal achieved 81% classification yes shows how the output can “bounce” between two classes. (b) A saw trial with accelerometer
signal shown gave a similar accuracy of 78% and only missed the start and stop sections of the event.

of the energy for each of the 9 signals. We then take ratios of
RMS features with respect to the other 8 features, exclusive of
repeated ratios, for another 36 features. Finally, the Variance
of each signal adds 9 features.

Frequency Energy is computed for each sensor. Using cross-
validation we found 30 frequency bins as optimal for our do-
main. With 120 to 150 Hz sampling frequency, this limits
the Nyquist frequency to approximately 60 Hz, or 2 Hz per
bin. We compute the fast-fourier transform (FFT) of all 9
data vectors independently then sum the three axes for each
sensor into a vector of length 30. This removes orientation
effects. The final result is 90 FFT features per window.

In our initial experiments, we tried several methods for clas-
sification and found that Support Vector Machines (SVMs)
performed well for classifying independent windows. We im-
plemented our classifier in MATLAB using the liblinear [4]
package for its multi-class SVM functionality. Multi-class
SVMs operate similar to single-class SVMs except a hyper-
plane is constructed for each class against all other classes.
After classifying single windows, the system passes a uni-
form smoothing kernel over the predictions to remove erro-
neous windows from an otherwise uniform prediction. Fi-
nally the system groups the smoothed, consecutive windows
into time windows with activity labels, shown in Figure 2b.

Classification Results
Accuracy on single-window classification is measured as the
percent of windows classified correctly against our ground
truth labels. We tested the classifier using leave-one-user-out
cross-validation and achieved an average accuracy of 82.44%
across the 6 classes and 15 users. Figure 3 shows the confu-
sion matrix for our classifier. Unsurprisingly, noise is fre-
quently misclassified for other tools because it often con-

Tool Drill Driver Hammer Saw Skilsaw Noise Total

Annotated 
Events (#) 179 73 106 70 74 0 502

Window 
Count (#) 1548 1794 1870 2320 1325 6542 15399

Table 1. Tabulations for events and windows for each tool. Participants
completed over 500 workshop activities (i.e. hammering a nail).

tains features that match other tools. The drill had the lowest
true positive rate; we believe this is due to relatively short
activities. Removing the drill class increases the accuracy
to 89.07%. Figure 2 highlights two common results of our
activity recognition system: “bouncing” between states and
start/end differences. Both trials have single-window accu-
racy around our reported average, but vary in their usability.

APPLICATIONS
Our activity recognition system successfully takes continuous
time-series data and extracts meaningful events. To explore
digital apprenticeship, we apply our output to three key ar-
eas: automatic content publishing, quantitative step-by-step
feedback, and qualitative skill-based feedback. These ap-
plications provide insight into designing mixed-initiative in-
sterfaces, especially when erroneous classifications cause the
user extra effort [9].

Tutorial Authoring
We used existing tutorial editing software, DemoCut [3], that
takes user video, asks for manual tags and produces a step-
by-step tutorial. Combining our system with DemoCut, we
uploaded trial videos and our system’s output. DemoCut suc-
cessfully produced tutorial videos optimized for online shar-
ing as shown in Figure 4a. With correctly recognized activi-
ties, user intervention is only necessary to adjust the start and
end times, a common error shown in Figure 2a. However for
a trial that bounces between states, as in Figure 2b, the added
work to remove erroneous classifications may outweigh the
benefit of automatic tags in the first place.

Figure 3. Confusion matrix for the single window classifications. Each
row represents ground truth labels. Overall accuracy was 82.44%
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Figure 4. Two target application interfaces. (a) A video annotation interface with plays short clips of each automatically generated tag. (b) A tutorial
following interface showing completed steps and correction on tool usage.

Tutorial Following
To demonstrate tutorial following, we prototyped a web in-
terface that tracks the completion of each step in a tutorial.
When the interface detects a tool is used out of order, it cor-
rects the user towards the current task. We built and evalu-
ated our system offline, though window-based classifiers also
work in real-time recognition. Thus, we streamed the results
of our activity recognition into the interface prototype in real-
time. In the best case, tutorial following allows craftsmen to
follow step-by-step instructions without interruption. How-
ever, when we feed in misclassified data, the interface can-
not track progress and prompts excessive corrections, even
though the user knows she has the correct tool.

Qualitative Feedback for Physical Skills
We demonstrate a form of qualitative feedback with sanding,
an essential skill in carpentry. We recorded 4 trials of sanding,
each containing 3 classes: straight, small circles, and large
circles. Without modifying our system we ran leave-one-
out training and achieved 85% accuracy on detecting sanding
skill. Thus, our system could correct suggest an improved
technique for the given task (e.g. “try sanding in a circu-
lar pattern”). Expert craftsmen could record themselves per-
forming skills along a scale of good and bad technique to con-
vey deeper tacit knowledge.

DISCUSSION
In order to support the vision of Digital Apprenticeship, we
focused on a system that required minimal instrumentation
and tailored the results to tutorial applications. We also pro-
totyped a system to capture tacit knowledge and showed ini-
tial results by partitioning the sanding technique into three
distinct classes. Here we discuss how Digital Apprenticeship
supports a wider range of interactions that focus on providing
feedback to users in the workshop.

Broader skilled labor
Activity tracking in the workshop setting also extends to the
skilled labor force [10]. The Proglove4 provides feedback
to skilled workers on the assembly line, but relies on in-
strumented tools outfitted with RFID for sensing and adher-
ence. An IMU-centric approach leverages the unique iner-
tial characteristics of tools without the need to install infras-
tructure in the environment, for more impromptu interactions.
4http://www.proglove.de/

Skilled laborers often perform tasks that automation cannot,
like completing a surface finish. These qualitative actions are
essential for future activity tracking especially as smart tools
enter the design and fabrication environment [18].

Mixed-initiative interfaces
The applications we showed can passively offer suggestions
but raise issues of mixed-initiative interfaces [9]. These in-
telligent agents provide some form of automation and could
offer feedback based on the confidence of the classification.
For instance, a feedback system could detect unsafe activity
and prevent injury, triggering the a smart tool to power down.
However, we showed how the “bouncing” output events can
also make for improper feedback. In full-featured systems,
these small misclassifications should be accounted for.

Limitations and Future Work
With a constrained dataset, this work does not explore a full
project-based workshop activity, especially using tools that
may not be suited for inertial sensing (e.g. soldering, glue-
ing). Future studies will expand data collection to a larger
suite of workshop tools. Some features are not well rec-
ognized by our system; for example, our naive windowing
approach misses the magnetic features found at the start of
drill usage. Future work will more closely consider unique
physical properties of each tool, and develop signal process-
ing routines which could attempt to first recognize motors or
repetitive motions before feeding into a classifier.

Conclusion
In this paper we detailed activity recognition for workshop
activities using a single, ring-worn IMU. We built a window-
based classifier for continuous time-series data and smoothed
the output into user-friendly events. Our leave-one-user-out
training represents a realistic user scenario and we make ac-
curacy improvements over previous work. Towards Digital
Apprenticeship, we applied the classified events to tutorial au-
thoring and following applications that captured both quanti-
tative user activity and also qualitative user technique.
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