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Abstract—We propose a lateral inhibition system and analyze

contrasting patterns of gene expression. The system consists

of a set of compartments interconnected by channels. Each

compartment contains a colony of cells that produce diffusible

molecules to be detected by the neighboring colonies. Each cell

is equipped with an inhibitory circuit that reduces its production

when the detected signal is sufficiently strong. We characterize

the parameter range in which steady-state patterns emerge.

I. INTRODUCTION

Lateral inhibition is a mechanism where cell-to-cell signal-
ing induces neighboring cells to diverge into sharply contrast-
ing fates, enabling developmental processes such as segmen-
tation and boundary formation [1]. The best-known example
is the Notch pathway in Metazoans where membrane-bound
Delta ligands bind to Notch receptors on the neighboring cells.
This binding releases the Notch intracellular domain in the
neighbors, which then inhibits their Delta production [2], [3],
[4]. Lateral inhibition is not limited to complex organisms: a
contact-dependent inhibition (CDI) system has been identified
in E. coli where delivery via membrane-bound proteins causes
downregulation of metabolism [5]. Despite the research on
these natural pathways, a synthetic lateral inhibition system
for pattern formation has not been developed.

We propose a compartmental lateral inhibition setup to
generate contrasting patterns. This system consists of a set
of compartments interconnected by channels as in Figure 1.
Each compartment holds a colony of cells that produce dif-
fusible molecules to be detected by the neighboring colonies.
Furthermore, each cell has an inhibitory circuit that reacts to
the detected signal. To prevent auto-inhibition, the system uses
orthogonal diffusible quorum sensing pairs [6], and two types
of inhibitory circuits that are able to detect only one type
of molecule and produce the other type. In the examples of
Figure 1, cells of type A produce a diffusible molecule X only
detectable by cells of type B, and cells of type B produce a
diffusible molecule Y only detectable by cells of type A.

A1 B3

A2B4
A1

B4

A2

B5

A3

Figure 1. Compartmental lateral inhibition system with cells of type A and
B, where contrasting patterns between neighboring compartments emerge.
In each compartment Ai (Bi) we place a colony with cells of type A (B)
that communicate through channels. Each cell type can only detect signaling
molecules produced by the other type, preventing auto-inhibition.

This research was supported by the NIH National Institute of General
Medical Sciences, grant 1R01GM109460-01.

To derive conditions under which this system will exhibit
contrasting patterns, we define a graph where each compart-
ment corresponds to a vertex. The diffusion of molecules
between two compartments occurs through the channels and
is represented by the graph edges. We model the diffusion
with a compartmental model, and represent the compartment-
to-compartment communication by the Laplacian matrix. The
edge weights depend on the distance between the compart-
ments and the diffusivity of the quorum sensing molecules.
We then use the graph-theoretic notion of equitable partition

to ascertain the existence of contrasting steady-state patterns.
Equitable partitions reduce the steady-state analysis to finding
the fixed points of a scalar map. We also show that the slope of
the scalar map at each fixed point provides a stability condition
for the respective steady-states. Finally, we apply our analysis
to an example and study parameter ranges for patterning.

Graph theoretical results have been used to analytically
determine patterning by contact inhibition, in networks of
identical cells [4]. The present paper employs diffusion for
communication between compartments and allows two cell
types to avoid auto-inhibition.

Most reaction-diffusion mechanisms rely on one-way com-
munication. A two-way communication mechanism using
orthogonal quorum sensing systems has been employed to
demonstrate a predator-prey system, [7]. Unlike these results,
we implement lateral inhibition between cell colonies within
connected compartments, and achieve spatial patterning.

Due to space constraints, all the proofs are provided as
supplemental material.

II. AN ANALYTICAL TEST FOR PATTERNING

A. Composing a Compartmental Lateral Inhibition Model

Consider a network of N
A

compartments of type A and
N

B

compartments of type B. Each cell of type A produces
diffusible species X , and only cells of type B are equipped
with a receiver species that binds to X and forms a receiver
complex. Similarly, the diffusible species Y is produced by
cells of type B and detected by cells of type A. We represent
the dynamics in each cell type with three modules: the
transmitter module where species X (or Y ) is produced and
released; the receiver module where Y (or X) is detected; and
an inhibitory module which inhibits the transmitter activity in
the presence of the receiver complex.

To facilitate the analysis, we separate the transmitter module
of A and receiver module of B and merge them into a
“transceiver” module for the diffusible species X , which also
includes the diffusion process (similarly for the transceiver of
Y ). The network is represented in Figure 2. Each compartment
is represented with a block labeled H

A

or H
B

, corresponding
to the inhibitory circuit of types A and B, respectively. The



2

concentration of the autoinducer synthase for the production
of X (respectively, Y ) is denoted by y

A

(y
B

), and R
A

(R
B

)
is the concentration of the receiver complex, the result of Y
(X) binding to the receiver protein.

HA

HA

HB

HB

tx/rx
B!A

tx/rx
B�A

RA yA

RB
yB

Figure 2. Block diagram for two types of compartments A and B commu-
nicating through diffusion. For each type of diffusible species, the transceiver
includes the dynamics of the senders’ transmitter modules, the receivers’
detection modules, and the diffusion process.

The transceiver blocks incorporate diffusion in an ordinary
differential equation model that describes the concentrations
of the diffusible species in each compartment. We define an
undirected graph G = G(V, E) where each element of the set
of vertices V represents one compartment, and each edge
(i, j) 2 E represents a channel between compartments i and
j. For each edge (i, j) 2 E we define a weight d

ij

= d
ji

. The
constant d

ij

is proportional to the diffusivity of the species and
inversely proportional to the square of the distance between
compartments. We define the weighted Laplacian:

{L}ij =

(
�
PN

j=1 dij if i = j

dij if i 6= j.
(1)

The dynamical model of the transceiver tx/rx for X is then:

tx/rxA!B :

8
><

>:


ẊA

ẊB

�
=


�X(XA, yA)
�X(XB , RB)

�
+ L


XA

XB

�

ṘB =  X(XB , RB),

(2)

where X
A

2RN

A

�0 is the concentration of species X in com-
partments A due to production, X

B

2RN

B

�0 the concentra-
tion of species X in compartment B due to diffusion, and
R

B

2RN

B

�0 the concentration of complexes in compartment B
formed by the binding of X with a receiver protein. The func-
tions �

X

(·, ·) 2RN

A

�0 , �
X

(·, ·) 2RN

B

�0 , and  
X

(·, ·) 2RN

B

�0 are
concatenations of the decoupled elements �i

X

(Xi

A

, ui) 2R�0,
i = 1, ..., N

A

, �j

X

(Xj

B

, Rj

B

) 2R�0 and  j

X

(Xj

B

, Rj

B

) 2R�0,
j =1, ..., N

B

, and assumed to be continuously differentiable.
The function �i

X

(·, ·) models the production and the degrada-
tion of X in compartment i of type A, the function �j

X

(·, ·)
models the degradation of X and the binding of X with the
receiver protein in compartment j of type B, and  j

X

(·, ·)
models the binding of the receiver complex in compartment j
of type B. The transceiver tx/rx

B!A

for Y is defined similarly.
Assumption 2.1: For each constant input y⇤

A

2 RN

A

�0 (and
y⇤

B

2 RN

B

�0 ), the subsystem (2) has a globally asymptotically
stable steady-state (X⇤

A

, X⇤
B

, R⇤
B

), which is a hyperbolic equi-
librium, i.e., the Jacobian has no eigenvalues on the imaginary
axis. Furthermore, there exist positive and increasing functions
T tx/rx

AB

: RN

A

�0 ! RN

B

�0 and T tx/rx
BA

: RN

B

�0 ! RN

A

�0 s.t.

R⇤
B

, T tx/rx
AB

(y⇤
A

), and R⇤
A

, T tx/rx
BA

(y⇤
B

). (3)
⌅

The increasing property of these maps means that a higher
autoinducer synthase input leads to more production and, thus
more detection on the receiver side.

Next, we represent the blocks Hi

k

, i = 1, ..., N of type
k 2 {A, B} with models of the form:

Hi

k

:

⇢
ẋ

i

= f
k

(x
i

, u
i

)

y
i

= h
k

(x
i

),
(4)

where x
i

2Rn

�0 describes the vector of reactant concentra-
tions in compartment i, u

i

2R�0 the input of i (concen-
tration of the receiver complex), and y

i

2R�0 the output
of i (concentration of an autoinducer synthase). We denote
x

k

= [xT

1 , ..., xT

N

k

]T 2RnN

k

�0 , u
k

= [u1, ..., uN

k

]T 2RN

k

�0 , and
y

k

= [y1, ..., yN

k

]T 2RN

k

�0 , for k 2 {A, B}.
We assume that f

k

(·, ·) and h
k

(·) are continuously differ-
entiable and further satisfy the following properties:

Assumption 2.2: For k 2 {A, B} and each constant in-
put u⇤ 2R�0, the subsystem (4) has a globally asymptot-
ically stable steady-state x⇤ ,S

k

(u⇤), which is a hyper-
bolic equilibrium. Furthermore, the maps S

k

:R�0 !Rn

�0 and
T

k

:Rn

�0 !R�0, defined as:
T

k

(·) , h
k

(S
k

(·)), (5)
are continuously differentiable, and T

k

(·) is a positive,
bounded and decreasing function. ⌅
The decreasing property of T

k

(·) is consistent with lateral
inhibition, since higher input in one cell leads to lower output.

B. When do Contrasting Patterns Emerge?

We now present a method to find steady-state patterns for
the system in (2)-(4). Given Assumptions 2.1 and 2.2, the
existence of variables z

A

2RN

A

�0 and z
B

2RN

B

�0 such that:
(

zA = TA(T
tx/rx
BA (TB(T

tx/rx
AB (zA))))

zB = TB(T
tx/rx
AB (TA(T

tx/rx
BA (zB))))

(6)

with T
A

(u
A

) = [T
A

(u1
A

), ..., T
A

(uN

A

A

)]T:RN

A

�0 !RN

A

�0 (similar
for T

B

(u
B

):RN

B

�0 !RN

B

�0 ), is sufficient to conclude the exis-
tence of a steady-state for the full system (2)-(4). Our goal is
to determine when z

A

and z
B

exhibit contrasting values.
We use the notion of equitable partition [8] to reduce the

dimension of the maps in (6). For a weighted and undirected
graph G(V, E), with Laplacian matrix L, a partition of the
vertex set V into classes O1, ..., Or

is said to be equitable if
there exists d

ij

for i, j = 1, ..., r, such that
X

v2O
j

duv = dij 8u 2 Oi, i 6= j. (7)

This means that the sum of the edge weights from a vertex
in a class O

i

into all the vertices in a class O
j

(i 6= j) is
invariant of the choice of the vertex in class O

i

. We let the
quotient Laplacian L 2 Rr⇥r be formed by the off-diagonal
entries d

ij

, and
�
L
 

ii

= {L}
ii

= �
P

r

j=1,j 6=i

d
ij

.

Assumption 2.3: The partition of the compartments V into
the classes O

A

of type A and O
B

of type B is equitable. ⌅
This implies that the total incoming edge weight of the species
X (and Y ) is the same for all the compartments of type B
(A). For example, the network in Figure 1(left) is equitable
with respect to the classes O

A

and O
B

if d13 + d14 = d23 +



3

d24 and d13 + d23 = d14 + d24. Since the edge weights d
ij

are inversely proportional to the square of the distance, this
means that opposite channels must have the same length, thus
exhibiting a parallelogram geometry.

Assumption 2.3 allows us to search for solutions to (6)
where the compartments of the same type have the same
steady-state, i.e.,

z = [zA, ..., zA, zB , ..., zB ]
T = [zA1

T
N

A

, zB1
T
N

B

]T (8)

where z
A

2 R�0 and z
B

2 R�0. This means that
the transceiver input-output maps become decoupled and
T tx/rx

AB

(z
A

1
N

A

) = T
AB

(z
A

)1
N

B

, with T
AB

:R�0!R�0. The
same holds for T tx/rx

BA

(·) with T
BA

:R�0!R�0. Furthermore,
z

A

and z
B

satisfy the following reduced system of equations:
(

zA = TA(TBA(TB(TAB(zA)))) , TA(zA)

zB = TB(TAB(TA(TBA(zB)))) , TB(zB)
, (9)

where T
A

:R�0!R�0 and T
B

:R�0!R�0 are a composition
of scalar maps. Let z̃

A

be a solution to the top equation in (9),
then z̃

B

,T
B

(T
AB

(z̃
A

)) must be a solution to the bottom one.

T
A

(z)

T
B

(z)

y
=

z

z(a)

T
A

(z)y
=

z

z(b)

Figure 3. Typical shapes of input-output maps TA(·) and TB(·): (a) The
unique pair of fixed points (orange circles) is near-homogenous and no
contrasting patterns emerge; (b) There exist three pairs of fixed points (orange
circle, green square, and blue triangle), and the two additional solutions
represent contrasting steady-state patterns.

From Assumptions 2.1 and 2.2, T
A

(·) and T
B

(·) in (9) are
positive, increasing and bounded functions. Figure 3 illustrates
typical shapes of the input-output maps T

A

(·) and T
B

(·). In
Fig. 3(a) there exists only one solution (orange circles). This
is a near-homogeneous steady-state, where the discrepancy
between z̃

A

and z̃
B

is due only to nonidentical T
A

(·) and
T

B

(·). The map T
A

(·) in Fig. 3(b) has three fixed points: a
middle solution (near-homogenous steady-state), a large fixed
point (blue triangle), and a small fixed point (green square).
The latter two have a corresponding opposite fixed point
in T

B

(·), specifically z̃
B

, T
B

(T
AB

(z̃
A

)), and therefore
represent a contrasting steady-state pattern.

Note that a contrasting pattern emerges when the near-
homogenous steady-state has a slope greater than 1, that is:

dTA

dzA

����
z̃
A

= T 0
AB(z̃A)T

0
B (TAB(z̃A))T

0
BA(z̃B)T

0
A (TBA(z̃B)) > 1.

(10)
Indeed, due to the boundedness and strictly increasing proper-
ties of the map T

A

(·), there must exist two other fixed point
pairs of (9), (z⇤

A

, z⇤
B

,T
B

(T
AB

(z⇤
A

))) and (z⇤⇤
A

, z⇤⇤
B

) for which

(z⇤
A

>z̃
A

and z⇤
B

<z̃
B

) (z⇤⇤
A

<z̃
A

and z⇤⇤
B

>z̃
B

). (11)

We show that (10) implies that the near-homogenous steady-
state is unstable, setting the stage for contrasting patterns and
providing a parameter tuning principle for patterning.

C. Convergence to Contrasting Patterns

To analyze convergence to the steady-state patterns in (9),
we employ monotonicity assumptions. A monotone system is
one that preserves a partial ordering of the initial conditions
as the solutions evolve in time. A partial ordering is defined
with respect to a positivity cone in the Euclidean space that is
closed, convex, pointed (K\(�K) = {0}), and has nonempty
interior. In such a cone, x � x̂ means x̂ � x 2 K. Given
the positivity cones KU , KY , KX for the input, output, and
state space, the system ẋ = f(x, u), y = h(x) is said to be
monotone if x(0) � x̂(0) and u(t) � û(t) for all t � 0 imply
that the resulting solutions satisfy x(t) � x̂(t) 8t � 0, and the
output map is such that x � x̂ implies h(x) � h(x̂) [9].

Assumption 2.4: The system tx/rx
A!B

in (2) is monotone
with respect to KU=RN

A

�0 , KY =RN

B

�0 , and KX=RN+N

B

�0 .
Similarly tx/rx

B!A

is monotone with respect to KU=RN

B

�0 ,
KY =RN

A

�0 , and KX=RN+N

A

�0 . ⌅
Assumption 2.5: The systems H

A

and H
B

in (4) are
monotone with respect to KU=�KY =R�0, and KX=K,
where K is some positivity cone in R. ⌅
These monotonicity assumptions are consistent with Assump-
tions 2.1-2.2, as they imply the increasing property of T tx/rx

BA

(·),
T tx/rx

AB

(·), and the decreasing behavior of T
A

(·), T
B

(·).

Theorem 2.6: Consider the network (2)-(4) and suppose
Assumptions 2.1, 2.2, 2.4 and 2.5 hold. Let the partition of
the compartments into the classes O

A

and O
B

be equitable.
The steady-state described by (9) is asymptotically stable if

T 0
AB

(z̃
A

)T 0
B

(T
AB

(z̃
A

)) T 0
BA

(z̃
B

)T 0
A

(T
BA

(z̃
B

)) < 1, (12)

and unstable if (10) holds. ⌅

III. EXAMPLE

In this section we study an example in which each block
Hi

k

, i=1, . . . , N of type k2{A, B} is represented as

Hi
A/B :

8
<

:
ẋi = vT

✓
1

1+(Ri

A/B/K
T

)nT

+ `

◆
� �I

X/Y xi

piI
X/Y = cxi

(13)

where n
T

represents the cooperativity, �
I

X/Y is the degradation
rate, ` the leakage rate, K

T

the dissociation constant, v
T

the velocity rate, and c is a scaling factor. The variable
xi2R�0, represents the concentration of a signaling protein
(e.g., RFP) in compartment i, as well as the output concentra-
tion pi

I

X/Y

2R�0 of autoinducer synthase.
For the dynamics of the transceiver, we choose two quorum

sensing pairs where the binding of the autoinducer synthase to
the receptor is orthogonal with respect to autoinducer/receptor
pairs. We denote by X and Y the concentration of diffusible
molecules and by R

B

and R
A

the concentration of com-
plexes at colonies of type B and A, respectively. For the
transceiver of X , we consider Xi

A

, i = 1, ..., N
A

to be the
concentration of species X in compartment i of type A,
and Xj

B

, j = 1, ..., N
B

the concentration of species X in
compartment j of type B. Let [XT , RT

B

]T be the transceiver
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state, with X = [XT

A

, XT

B

]T = [X1
A

, ..., XN

A

A

, X1
B

, ..., XN

B

B

]T

and R
B

= [R1
B

, ..., RN

B

B

]T . The transceiver dynamics are:

tx/rxA!B:

8
>><

>>:

d
dt
Xi

A = ⌫piI
X

� �XXi
A + LiX

d
dt
Xj

B = �konX
j
B(pRX

�Rj
B) + koffR

j
B+

� �XXj
B + Lj+N

A

X
d
dt
Rj

B = konX
j
B(pRX

�Rj
B)� koffR

j
B ,

(14)
where L

i

corresponds to the row i of the Laplacian matrix,
p

R

k

is the constitutive concentration of the receiver protein
(bound and unbound), k

on

/k
off

are the binding rates, and ⌫
is the generation rate of the diffusible molecule. The dynamics
for the inhibitory circuit of cell type B and for the transceiver
tx/rx

B!A

are obtained similarly.
For the analysis, note that H

A

, H
B

and tx/rx
A!B

,
tx/rx

B!A

, meet the assumptions in the previous section.
Lemma 3.1: The transceiver dynamics in (14) meet Assump-

tions 2.1 and 2.4. ⌅
Under Assumption 2.3, we analyze the range of parameters
where patterning occurs by looking for steady-states that are
fixed points of the scalar maps T

A

(·) as in (9)1. We use
reaction parameters that correspond to the values suggested
in [10, Parameter Set 1]. The slope of these maps at the
fixed points depends on the edge weights d

ij

and constitutive
concentration of total LuxR p

R

i

, which are tunable parameters.
We can tune d

ij

by changing the channel lengths, and p
R

i

by
changing the strength of the constitutive promoter. We consider
two compartments connected by one channel, one of type A
and the other of type B. This is equivalent to considering any
equitable network topology with the same d

AB

and d
BA

.

Constitutive PLuxR - pRi (M)
5.0e-11                          3.9e-10                          3.0e-09                          2.4e-08                          1.8e-07                          1.4e-06                          1.1e-05                          8.6e-05  

Le
ng

th
 - 

l 12
 (m

m
)

0.0    
      
      
      
    0.9    
      
      
      
    3.5    
      
      
      
    13.4    
      
      
      
    50.6    
      
      
      
    191.1    
      
      
      
    722.0    
      
      
      
    2728.2  

Figure 4. Patterning (yellow) vs. non-patterning (red) region, for vary-
ing pR

i

and dAB = dBA, and where: nT = 2; c = 1; ⌫ = 1.34e-2s-1;
�X = 7.7e-4s-1; kon = 1e9s-1M -1; koff = 50s-1; vT = 1.03e-11s-1M ;
KT = 2.68e19M ; ` = 1.98e-4; �I

X

= 1.16e-3s-1.

Figure 4 maps the regions over the tunable pairs (p
R

i

, d
ij

)
where contrasting patterns emerge. At the extreme values, if
the concentration of p

R

i

is too low, the detection ability of
each cell is affected, which leads to a low concentration of
the receiver complex. Thus, no cell is being inhibited and no
contrasting patterning emerges. When p

R

i

is too high, both
compartments are inhibited since both cells are too sensitive
to the receiver signal due to leakage.

Further analysis using condition (10) reveals that the circuit,
for this set of parameters, is fairly robust to parameter uncer-
tainty. We introduced a variation of 10% in each parameter and

1with the decoupled transceiver input-output scalar map TAB(z̃A) =⇣
1 +

k
off

k
on

�
X

(�
X

+d
AB

+d
BA

)

d
BA

⌫
1
z̃
A

⌘�1
, where dAB and dBA as in (7)

the patterning range didn’t suffer significant change. Patterning
occurs when n

T

� 2, greater n
T

implies stronger inhibition
and shifts the patterning region slightly to the left.

For validation, we implemented a partial differential equa-
tions (PDEs) compartment network, using the finite element
solver COMSOL. For shorter channels ( 4mm), we compute
a correction factor for the ODE model, that compensates for
the extra degradation of the diffusible molecule along the
channels. In these regimes, we obtain an accurate steady-state
and dynamical match between the ODE and the PDE model.

When the equitability condition is satisfied approximately
rather than exactly, we treat the system as a perturbation of
an equitable one and appeal to continuous dependence of
solutions on the parameters d

ij

.
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[7] F. K. Balagaddé, H. Song, J. Ozaki, C. H. Collins, M. Barnet, F. H.
Arnold, S. R. Quake, and L. You, “A synthetic Escherichia coli predator–
prey ecosystem,” Molecular Systems Biology, vol. 4, no. 1, p. 187, 2008.

[8] C. Godsil and G. Royle, Algebraic Graph Theory. Springer, Apr. 2001.
[9] D. Angeli and E. Sontag, “Monotone control systems,” IEEE Trans.

Automat. Control, vol. 48, pp. 1684 – 1698, oct. 2003.
[10] J. Hsia, W. J. Holtz, D. C. Huang, M. Arcak, and M. M. Maharbiz,

“A feedback quenched oscillator produces Turing patterning with one
diffuser,” PLoS Comput Biol, vol. 8, p. e1002331, 01 2012.



1

Supplemental Material

S1. PROOF OF MAIN THEOREM

To prove Theorem 2.6, we first show that the compartmental network (2)-(4) is monotone.
Lemma S1.1: If monotonicity Assumptions 2.4 and 2.5 hold, then the network (2)-(4) is monotone. ⌅

The main idea of the proof follows similarly to [1, Theorem 3], we can represent the network as a
unitary positive feedback interconnection of a monotone system where the inputs and outputs are ordered
with respect to the same positivity cone. Note the network is a cascade of an “anti-monotone” system
(H

A

composed with tx/rx
A!B

) with another “anti-monotone” system (H
B

composed with tx/rx
B!A

), thus
the composite system is monotone with the same input and output ordering, KU = KY = RN

A

�0 and
KX = KN

A⇥RN+N

B

0 ⇥{�K}NB⇥RN+N

A

�0 .

Since the network is monotone, we know from [2, Lemma 6.4] that the linearized system around the
steady-state is also monotone with respect to the same positivity cones. Furthermore, [3, Theorem 2]
shows that for a linear system ẋ = Ax + Bu and y = Cx that is monotone with respect to the cones
KU=KY , KX , and Hurwitz matrix A, the following equivalence holds: A+BC is Hurwitz if and only if
�(I + CA�1B) is Hurwitz. Therefore, we can prove stability of the positive feedback monotone system
from the “dc-gain” of the open loop system.

Proof of Theorem 2.6: The linearization of the full network (2)-(4) about the steady state is given by:
2

666664

A
A

⌦I
N

A

0 0 (B
A

⌦I
N

A

)C
BA

B
AB

(C
A

⌦I
N

A

) A
AB

0 0

0 (B
B

⌦I
N

B

)C
AB

A
B

⌦I
N

B

0

0 0 B
BA

(C
B

⌦I
N

B

) A
BA

3

777775
, (S1)

where matrices A
A

2 Rn⇥n, B
A

2 Rn⇥1, C
A

2 R1⇥n are associated with the linearization of H
A

; and
matrices A

AB

2 R(N
A

+2N
B

)⇥(N
A

+2N
B

), B
AB

2 R(N
A

+2N
B

)⇥N

A , C
AB

2 RN

B

⇥(N
A

+2N
B

) are the linearization
matrices of the transceiver tx/rx

A!B

. For the transceiver, the linearization matrices are of the form:

A
AB

=

2

4 L
AB

0
0

0 0 0

3

5+

2

4
@�

x

0 0
0 @�

x

@�
R

0 @ 
x

@ 
R

3

5 ,

and with
B

AB

=
⇥
@�

u

0
N

B

⇥N

A

0
N

B

⇥N

A

⇤
T

,

C
AB

=
⇥
0
N

B

⇥N

A

0
N

B

⇥N

B

I
N

B

⇤
,

where due to the structure of the steady state, @�
x

= @�
X

I
N

A

with @�
X

, @�

i

X

@X

i

A

|
x̃

A

, and similarly the
matrices @�

x

, @�
R

, @ 
x

, @ 
R

, and @�
u

, are diagonal with constants @�
x

, @�
R

, @ 
x

, @ 
R

and @�
u

,
respectively. The matrix L

AB

is the Laplacian matrix of the network when labeling first the nodes of type
A.

Due to the monotonicity property of the network proved in Lemma S1.1, the proof follows as discussed
above, and in a similar way to [1, Proof of Theorem 2]. We write (S1) as a unitary positive feedback
system: A + BC where C= [0 0 0 C

AB

], B=
⇥
B

A

⌦IT
N

A

0 0 0
⇤
T , and A is the block triangular matrix
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defined in (S1) except for the block (B
A

⌦I
N

A

)C
BA

, which is replaced by 0 2 RnN

A

⇥(N
B

+2N
A

). Then,
since the network is monotone with respect to the same input and output cones, we conclude stability
from �(I + CA�1B). First note that:

CA�1B = �C
BA

A�1
BA

B
BA

(C
B

A�1
B

B
B

⌦I
N

B

)C
AB

A�1
AB

B
AB

(C
A

A�1
A

B
A

⌦I
N

A

)

= �T 0
A

(T
BA

(z̃
B

))T 0
B

(T
AB

(z̃
A

))(C
BA

A�1
BA

B
BA

)(C
AB

A�1
AB

B
AB

),

where the second equality follows from a derivation similar to [1] where T 0
k

(z̃) = �C z̃

k

(Az̃

k

)�1B z̃

k

is the
static input-output map for each block at steady-state z̃, and C

j

, A
j

, B
j

are the linearization matrices of
each block at z̃, we drop the superscripts z̃ to simplify the notation. Assumptions 2.1 and 2.2 guarantee
that A�1

j

exists and that A is nonsingular.
For the final step, we use the equitability assumption on the partition defined by the classes O

A

and O
B

to derive the largest eigenvalue of the matrix (C
BA

A�1
BA

B
BA

C
AB

A�1
AB

B
AB

) 2 RN

B

⇥N

B , and therefore the
stability of the matrix �(I + CA�1B).

Claim S1.2: The largest eigenvalue of the matrix (C
BA

A�1
BA

B
BA

C
AB

A�1
AB

B
AB

) is given by (C
BA

A
�1
BA

B
BA

C
AB

A
�1
AB

B
AB

) with eigenvector 1
N

A

, where

A
AB

=

2

4 L
AB

0
0

0 0 0

3

5+

2

4
@�

x

0 0
0 @�

x

@�
R

0 @ 
x

@ 
R

3

5 ,

and with
B

AB

=
⇥
@�

u

0 0
⇤
T

, C
AB

=
⇥
0 0 1

⇤
,

where A
AB

2 R3⇥3, L
AB

2 R2⇥2 is the quotient Laplacian, C
AB

2 R1⇥3, and B
AB

2 R3⇥1; and by
appropriate change of subscripts the same follows for the matrices A

AB

, B
AB

and C
AB

. ⌅
The theorem follows from this claim because T 0

AB

(z̃
A

) = �C
AB

A
�1
AB

B
AB

, and thus the largest eigenvalue
of CA�1B is given by T 0

A

(T
BA

(z̃
B

))T 0
B

(T
AB

(z̃
A

))T 0
AB

(z̃
A

)T 0
BA

(z̃
B

). Therefore, when inequality (12) holds
the matrix �(I + CA�1B) is Hurwitz and the steady-state is asymptotically stable. If the condition (10)
holds, �(I + CA�1B) has a positive eigenvalue and the steady-state is unstable.

Proof of Claim: First note that due to equitability of the compartmental network, we can construct
matrices Q

AB

2 R(N
A

+2N
B

)⇥3 where

Q
AB

=

2

4
1 ... 1 0 ... 0 0 ... 0
0 ... 0 1 ... 1 0 ... 0
0 ... 0 0 ... 0 1 ... 1

3

5
T

,

| {z }
⇥N

A

| {z }
⇥N

B

| {z }
⇥N

B

and similarly Q
BA

2R(N
B

+2N
A

)⇥3 with appropriate dimensions. Therefore, due to equitability L
AB

Q
AB

=
Q

AB

L
AB

and L
BA

Q
BA

=Q
BA

L
BA

. Let P , [Q R] where R is a matrix in R(N
A

+2N
B

)⇥(N
A

+2N
B

�3) (or
R 2 R(N

B

+2N
A

)⇥(N
B

+2N
A

�3)) such that its columns, together with those of Q, form a basis for RN

A

+2N
B

(or RN

B

+2N
A). We conclude that, there exist matrices N and M such that

P�1
AB

A
AB

P
AB

=


A

AB

N
0 M

�
, (S2)

and similarly for A
BA

. Therefore,

C
AB

A�1
AB

B
AB

1
N

A

= (C
AB

P
AB

)(P�1
AB

A
AB

P
AB

)�1(P�1
AB

B
AB

1
N

A

)

=
⇥
C
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1
N
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U
0 V
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for some matrices S, U , and V with appropriate dimensions. This implies that

C
BA

A�1
BA

B
BA

C
AB

A�1
AB

B
AB

1
N

A

= (C
AB

A
�1
AB

B
AB

)C
BA

A�1
BA

B
BA

1
N

B

= (C
BA

A
�1
BA

B
BA

C
AB

A
�1
AB

B
AB

)1
N

A

i.e., C
BA

A
�1
BA

B
BA

C
AB

A
�1
AB

B
AB

= T 0
AB

(z̃
A

)T 0
BA

(z̃
B

) is an eigenvalue of C
BA

A�1
BA

B
BA

C
AB

A�1
AB

B
AB

with
associated eigenvector 1

N

A

. Note that this eigenvalue is positive since the static input-output maps of
the transceivers have positive slope. Finally, we need to show that this is the largest eigenvalue. Note
that due to Assumption 2.4, the transceivers’ input-output maps T tx/rx

AB

(z̃
A

1
N

A

)=�C
AB

A�1
AB

B
AB

and
T tx/rx
BA

(z̃
B

1
N

B

)=�C
BA

A�1
BA

B
BA

are nonnegative matrices [4], and thus so is T tx/rx
AB

(z̃
A

1
N

A

)T tx/rx
BA

(z̃
B

1
N

B

),
with no zero rows. This concludes the proof of the claim since, by the Perron-Frobenius Theorem [5],
the eigenvalue with associated positive eigenvector 1

N

A

, must be the largest positive eigenvalue. ⌅

S2. TRANSCEIVER DYNAMICS

Proof of Lemma 3.1: Consider the transceiver tx/rx
A!B

in (14). We see that in steady-state, for a
constant input p⇤

I

X

2 RN

A , the dynamic equations for R
B

become zero, which implies that the first terms
of the dynamical equations for X

B

are also zero. Therefore, due to the linearity of the remainder terms,
there exists a unique solution for [X⇤T

A

, X⇤T
B

]T :

X⇤

A

X⇤
B

�
= (�L+ �

X

I
N

)�1


⌫p⇤

I

X

0
N

B

�
. (S3)

The inverse of (�L + �
X

I
N

) exists since �L is a positive semidefinite matrix (property of Laplacian
matrices). The single solution for the steady-state of Ri

B

is given by

Ri⇤
B

=
p
R

X

1 + k

off

k

on

1
X

i⇤
B

, (S4)

where X i⇤
B

is as in (S3). Note that the static input-output map T tx/rx

AB

(pi⇤
I

X

) is positive and increasing,
because (�L + �

X

I
N

) is a positive definite matrix with nonpositive off-diagonal elements, and thus its
inverse is a positive matrix (i.e., all elements are positive) [5, Theorem 6.2.3]. Finally, to conclude that
these steady-states are asymptotically stable and hyperbolic, we write the Jacobian of the transceiver as:

J =

2

4 L� �
X

I
N

0
0

0 0 0

3

5+

2

4
0 0 0
0 �D

R

B

D
X

B

0 D
R

B

�D
X

B

3

5 , (S5)

where D
R

B

and D
X

B

are diagonal matrices with elements {D
R

B

}
ii

= k
on

(p
R

X

�Ri⇤
B

) and {D
X

B

}
ii

=
k
on

X i⇤
B

+ k
off

, i = 1, ..., N
B

. The matrix J has negative diagonal terms and nonnegative off-diagonal
terms, and there exists a D such that the column sum of DJD�1 are all negative for all states in the
nonnegative orthant1. Note that this implies that the matrix measure of DJD�1 with respect to the one-
norm is negative [6, Chapter 2], and µ

D

(J) = µ1(DJD�1)<0. This is a contraction property with respect
to the weighted one-norm; therefore, for each constant input, the steady-state is globally asymptotically
stable [7]. Moreover, it is an hyperbolic equilibrium since Re{�

k

(J)}µ(J)<0 [6]. The transceiver is
monotone with respect to the cones in Assumption 2.4 since the Jacobian off-diagonal terms are all
positive and the dependence on the input variable p

I

X

is positive [4]. ⌅

Remark: Under Assumption 2.3, we analyze the range of parameters where patterning occurs by looking
for steady-states that are fixed points of the scalar maps T

A

(·) as in (9), with the decoupled transceiver
input-output scalar map T

AB

(z̃
A

) =
⇣
1 + k

off

k

on

�

X

(�
X

+d

AB

+d

BA

)

d

BA

⌫

1
z̃

A

⌘�1

, where d
AB

and d
BA

as in (7).

1choose D = diag{1, ..., 1| {z }
N times

, k, ..., k| {z }
N

B

times

}, with 1 < k < 1 + �

X

k

on

p

R

X



4

REFERENCES

[1] M. Arcak, “Pattern formation by lateral inhibition in large-scale networks of cells,” IEEE Trans. Automat. Control, vol. 58, pp. 1250–1262,
May 2013.

[2] D. Angeli and E. Sontag, “Multi-stability in monotone input/output systems,” Systems Control Lett., vol. 51, pp. 185–202, Mar. 2004.
[3] G. A. Enciso and E. D. Sontag, “Monotone systems under positive feedback: multistability and a reduction theorem,” Systems Control

Lett., vol. 51, no. 2, pp. 185–202, 2005.
[4] D. Angeli and E. Sontag, “Monotone control systems,” IEEE Trans. Automat. Control, vol. 48, pp. 1684 – 1698, oct. 2003.
[5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Philadelphia, PA: Society for Industrial and

Applied Mathematics (SIAM), 1994. (revised reprint of the 1979 original).
[6] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. Society for Industrial and Applied Mathematics, 2009.
[7] E. D. Sontag, “Contractive systems with inputs,” in Perspectives in Mathematical System Theory, Control, and Signal Processing

(J. Willems, S. Hara, Y. Ohta, and H. Fujioka, eds.), vol. 398 of Lecture Notes in Control and Information Sciences, pp. 217–228,
Springer Berlin Heidelberg, 2010.


	Introduction
	An Analytical Test for Patterning
	Composing a Compartmental Lateral Inhibition Model
	When do Contrasting Patterns Emerge?
	Convergence to Contrasting Patterns

	Example
	References

