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Abstract

Synthesis and Verification of Networked Systems with Applications to Transportation
Networks

by

Samuel Donald Coogan

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

Engineering advances have enabled systems that are increasingly complex while, simul-
taneously, expectations for the closed-loop behavior of these systems have become more
demanding. The resulting combination of complexity and desired behavior requires correct-
by-design approaches to system analysis and control. In this dissertation, we develop a class
of scalable and automated verification and control synthesis techniques for networked sys-
tems. To motivate our study and to demonstrate the applicability of our results, we focus
on transportation networks.

The formal analysis and synthesis approaches which are the emphasis of much of this
dissertation require a discrete representation of the system in the form of a finite abstraction
for the system’s behavior. A finite abstraction models the states and dynamics of the system
with a finite set of properties and transitions which capture all the phenomena of interest. We
first present a broad class of systems which are mixed monotone, that is, systems for which the
state evolution can be decomposed into an increasing and decreasing component. For such
systems, we develop an e�cient abstraction algorithm to enable correct-by-design control
synthesis. We then use this approach to synthesize control strategies for transportation flow
networks.

We next turn our attention to qualitative analysis of the dynamics present in tra�c flow
networks. We propose a macroscopic network flow model in continuous time suitable for
analysis as a dynamical system, and we analyze equilibrium flows as well as convergence.
We show that the same mixed monotone property that enables e�cient abstraction allows
us to prove global asymptotic stability by embedding the flow network in a larger system.

These contributions provide the theoretical foundation for correct-by-design control of a
large class of networked physical systems. By focusing on transportation networks, we show
concretely how these results apply to a domain that is of considerable practical importance.
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Chapter 1

Introduction

Engineered systems increasingly incorporate subsystems that couple physical processes with
digital computation. This coupling induces global behavior in the networked system not
immediately apparent from the isolated behavior of the constituent components. Control
theory has long been the standard-bearer for unraveling this coupling and has provided an
astounding body of theoretical and practical tools for designing engineered systems and for
understanding natural systems.

In this tradition, we study the verification and synthesis of networked, dynamical systems.
This dissertation contributes formal techniques for analyzing the behavior of a large class of
physically-motivated systems as well as algorithms for e�cient and provably correct control
of such systems. While these fundamental contributions are general, this dissertation focuses
especially on applications to transportation flow networks. In addition to inspiring much of
the theoretical contributions of the dissertation, transportation networks are of independent
practical and theoretical interest.

1.1 Control of Networked Systems

For well over half a century, feedback control theory, rooted in rigorous mathematics, has
provided steady progress towards mastering evermore complex systems which has enabled
technologies such as the electricity grid, process control, telephony, and automatic flight
control [AK14]. Furthermore, the field of feedback control has quickly incorporated advances
in other domains. For example, the advent of digital communication and computing led to
a wealth of advances in control theory and had a multiplicative e↵ect on the field’s impact.
Many formidable problems that once seemed daunting, including optimal, stochastic, and
robust control, gradually (or in some cases, abruptly) yielded to continued research and
provided results that were elegant, general, and practical.

Despite these advances, a number of important problems have remained stubbornly dif-
ficult to solve. For example, in networked systems composed of interconnected subsystems,
it is a natural objective to seek control strategies that are similarly decentralized to improve
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scalability and implementability. Yet the intractability and nonconvexity of many problems
in decentralized control have stymied progress. As another example, many control problems
incorporate restrictions on the regime of operation or on the available set of control inputs,
and furthermore possess dynamics with significant nonlinearities. Model predictive control
provides an appealing general approach to solving such control problems and has seen signif-
icant practical use. However, theoretical results remain elusive, the conditions which can be
accommodated are relatively limited, and factors such as the curse of dimensionality present
significant hurdles.

As a final example, classic feedback control theory is not well-suited for studying systems
that experience discrete changes in dynamics or allow discrete choices of control inputs. This
particular deficiency has received considerable attention, giving rise first to the field of hybrid
systems with the ambitious objective of marrying the discrete world of computer science with
the continuous world of control theory. Despite more than a decade of research, a plethora
of rigorous definitions, and a number of notable advances, challenges and questions abound.
It remains remarkably di�cult to predict or control the behavior of systems for which the
dynamics may experience discrete mode changes, are subject to discrete inputs and outputs,
or interact with discrete entities such as software programs. Indeed, it has become apparent
that a primary source of di�culty for such systems is the tight integration of discrete digital
components such as software with the continuous physical world, and thus these systems are
often now called cyber-physical systems.

At the same time that these systems have become more complex, the expectation for
their behavior has become more demanding. The costs of incorrect configuration, as well
as safety and security concerns, require automated and provably correct techniques for ver-
ification and synthesis. Furthermore, the expected behavior of such systems often extends
well beyond standard objectives such as stability or invariance. For example, an autonomous
robotic system may be required to perform a complex choreography of tasks in a provably
correct manner. This requirement has further driven the need for bringing ideas from the-
oretical computer science to control systems. In particular, formal methods that have been
developed for understanding and designing software and hardware systems have recently
found considerable application to hybrid and cyber-physical systems.

Specifications for the behavior of networked systems often include requiring that the
system eventually reach a certain condition (liveness), avoid certain unsafe conditions (in-
variance), infinitely often exhibit certain behavior (fairness), or exhibit certain behavior only
after achieving a prior condition (sequentiality). Such specifications are easily expressed in
various temporal logics, and formal methods exist for the verification and synthesis of control
strategies that satisfy these temporal logic specifications. While temporal logic allows rich
control specifications, the formal analysis and synthesis techniques require a discrete repre-
sentation of the system in the form of a finite abstraction for the system’s behavior. A finite
abstraction models the states and dynamics of the system with a finite set of properties and
transitions which capture all the phenomena of interest, but di�culties in computing finite
abstractions often prevent scalability to new applications.

Much of this thesis focuses on exploiting structural properties in the dynamics and inter-
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connection of networked systems to alleviate the computationally daunting task of creating
symbolic models. Such structural properties result from physical limitations of the systems
of interest and enable scalable control synthesis techniques. To demonstrate the practicabil-
ity of these techniques, and as a motivation for much of the developed theory, we focus on
applying the tools developed in this thesis to transportation networks.

1.2 Transportation Networks

Transportation is a quintessential cyber-physical system, coupling the physical movement of
vehicles along physical infrastructure with digital communication and control among vehicles
and the infrastructure. Furthermore, ine�cient tra�c management leads to congestion, the
costs of which have increased five-fold in the past three decades to $120 billion annually
and include 5.5 billion hours of additional travel time and 2.9 billion gallons of wasted
fuel [LSE12]. Tomorrow’s smarter cities will require intelligent transportation systems that
mitigate these problems, and the next generation of transportation systems will include
connected vehicles, connected infrastructure, and increased automation. In addition, these
advances must coexist with legacy technology into the foreseeable future. This complexity
makes the goal of improved mobility and safety ever more daunting.

Of particular relevance to the results of this thesis, control of networks of signalized
intersections has received considerable attention in recent decades [Pap+03]. Many of the
existing strategies are fixed-time and thus cannot accomodate changes in network demand, do
not consider coordination of adjacent intersections, or are only applicable when the network
demand is low. Similarly, for freeway networks, ramp metering strategies that control the
rate of flow of vehicles from onramps onto the freeway are used to achieve objectives such
as decreased travel time or decreased congestion. Use of ramp metering is now ubiquitous
in many US cities, but, despite such prevalence, many existing control strategies do not
consider coordination of multiple onramps, are designed for basic objectives such as set-
point tracking, or fail to prevent onramp spillback which can cause significant congestion on
adjacent arterial networks.

The theoretical results of this thesis are primarily applied to control of tra�c networks
to enable correct-by-design control synthesis, for which temporal logic is well-suited. For
example, the objective may be to develop a ramp metering and signal coordination strategy
that avoids congestion on the freeway but prevents onramp queues from blocking adjacent
arterial tra�c.

1.3 Preview of the Thesis

The objective of this dissertation is to develop scalable and automated verification and
synthesis techniques for networked systems with particular emphasis on applying these tech-
niques to transportation networks. In Chapter 2, we introduce the notion of mixed mono-
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tonicity for dynamical systems and study how this property leads to e�cient finite state
abstraction. In Chapter 3, we leverage this result and propose a methodology for automati-
cally synthesizing tra�c control strategies such that the resulting tra�c dynamics satisfy a
control objective expressed in linear temporal logic which allows rich control specifications.
In Chapter 4, we qualitatively study the dynamical properties of tra�c flow networks, and
in Chapter 5 we specifically focus on the mixed monotone properties of tra�c flow.

E�cient Finite Abstraction of Mixed Monotone Systems

In Chapter 2, we present an e�cient computational procedure for finite abstraction of
discrete-time mixed monotone systems. The discrete-time dynamical system

x+ = F (x) (1.1)

with state x is monotone if x
1

 x
2

implies F (x
1

)  F (x
2

) where  is the standard order
in Euclidean space, that is, F is nondecreasing with respect to its argument. Such systems
have received extensive attention in the controls community [Hir85; Smi95; AS03]. In this
chapter, we extend this notion and consider mixed monotone systems characterized by the
decomposition of the update map F into an increasing and decreasing component. Specif-
ically, (1.1) is mixed monotone if there exists a decomposition function f(x, y) such that
f(x, x) = F (x) and f is nondecreasing in its first argument and nonincreasing in its second
argument. Many physical systems are found to be mixed monotone, including tra�c flow
networks, which is fully explored in Chapters 3 and 5.

For mixed monotone systems, we tightly overapproximate the one-step reachable set
from a box of initial conditions by evaluating the decomposition function at only two points,
regardless of the dimension of the state space. The approach is illustrated in Fig. 1.1.
Consider two points x

1

and x
2

and the rectangular set {x | x
1

 x  x
2

} as shown in Fig.
1.1(a) for which we wish to overapproximate the one-step reachable set {F (x) | x

1

 x  x
2

}.
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Figure 1.2: Schematic representation of a finite state abstraction for a mixed monotone
system. (a) A rectangular partition of the state space maps a set of states in the continuous
domain to a single state in the abstraction. (b) E�cient overapproximation of reachables
sets enables e�cient computation of the transitions in the abstraction.

The mixed monotone properties of F implies

{F (x) | x
1

 x  x
2

} ✓ {x0 | f(x
1

, x
2

)  x0  f(x
2

, x
1

)}. (1.2)

This result recovers the known special case for monotone systems, for which {F (x) | x
1


x  x

2

} ✓ {x0 | F (x
1

)  x0  F (x
2

)}. These two cases are illustrated in Fig. 1.1(b) and Fig.
1.1(c).

E�cient one-step reachable set computation enables e�cient finite state abstraction of
mixed monotone systems. A finite state abstraction, or simply abstraction, is a finite repre-
sentation of the system’s behavior. An abstraction is obtained by partitioning the state-space
into a finite number of regions, and then possible transitions between regions are obtained
via reachability analysis to obtain a finite state transition system. For mixed monotone
systems, the reachability approximations described above suggest a rectangular partition of
the state space as schematically depicted in Fig. 1.2(a).

From the finite state abstraction, the behavior of the original system can be verified
to satisfy desired specifications such as avoidance of unsafe operating conditions using au-
tomated techniques. Furthermore, these ideas are naturally generalized to systems with
multiple operating modes for which a particular mode may be chosen at each time-step as
a controlled input. From the finite state abstraction, a control strategy can then be auto-
matically synthesized to ensure that the closed-loop system satisfies a specification on its
behavior. We apply these results to verify the dynamical behavior of a model for insect
population dynamics and to synthesize a signaling strategy for a tra�c network. The results
of Chapter 2 appear in [CA15b].

Control of Tra�c Networks from Linear Temporal Logic
Specifications

In Chapter 3, we propose a framework for generating a signal control policy for a tra�c
network of signalized intersections to accomplish complex control objectives expressible using
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Nonlinear Dynamics

Finite State Abstraction Formal Synthesis

Reach Avoid

Correct-by-Design Control

Figure 1.3: Scalable, correct-by-design control of networked transportation systems. A for-
mal methods approach is capable of, e.g., addressing the complexity of coordinating ramp
metering with tra�c signals to increase mobility and safety on the freeway without causing
gridlock on adjacent arterials. The inherent mixed monotonicity of tra�c flow dynamics
enables e�cient computation.

linear temporal logic, an extension of Boolean logic that incorporates temporal modalities.
We first model a tra�c network as a set of links L interconnected via a set of signalized
intersections or nodes V . The state of link ` 2 L at discrete time t is denoted by

x
`

[t] 2 [0, xcap

`

] 8` 2 L (1.3)

and represents the number of vehicles occupying link ` where xcap

`

is the maximum number
of vehicles accommodated by link `. Tra�c flow from link to link is restricted by the demand
of vehicles to flow along a link as well as the supply of road capacity downstream. Each link
` 2 L possesses a demand function �out

`

(·) and a supply function �in

`

(·) given by:

�out

`

(x
`

[t]) = min{x
`

[t], qmax

`

} �in

`

(x
`

[t]) = (xcap

`

� x
`

[t]) (1.4)

for constants qmax

`

> 0.
To accomodate junctions with multiple outputs, we introduce fixed turn ratios which

dictate how the flow out of an incoming link is divided among the outgoing links. Similarly,
to accomodate junctions with multiple inputs, fixed supply ratios determine the fraction of
supply of an outgoing link available to each incoming link. Specifically,

• �
`k

is the fraction of the total flow exiting link ` that is routed to link k, and
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• ↵
`k

is the fraction of supply of link k available to link `.

Then, the flow of vehicles exiting a link is the minimum of demand and available supply:

f out

`

(x[t]) , s
`

[t] · min

8

<

:

�out

`

(x
`

[t]), min
k s.t.

�`k 6=0

⇢

↵
`k

�
`k

�in

k

(x
k

[t])

�

9

=

;

8` 2 L (1.5)

where s
`

[t] 2 {0, 1} is a binary variable indicating whether or not link ` is actuated, that
is, whether flow from link ` is allowed. For signalized networks, s

`

[t] is the control input
determined by tra�c light signals. Mass conservation completes the model:

x
`

[t + 1] = x
`

[t] + d
`

[t] � f out

`

(x[t]) +
X

j2L
�
j`

f out

j

(x[t]) (1.6)

where d
`

[t] is the exogenous flow of vehicles onto link ` and the summation term is the flow
of vehicles onto link ` from upstream links.

Using this model, we develop a control synthesis approach for determining the tra�c
signaling scheme such that the resulting closed loop network satisfies rich control objec-
tives expressed using linear temporal logic (LTL) [Pnu77; CGP99; BK08]. LTL formulae
are defined inductively over a set of observations or propositions and the standard logical
connectives ^ (and), _ (or), ¬ (not), =) (implication), and temporal operators such as
# (next), U (until), ⇤ (always), ⌃ (eventually). LTL formulae are interpreted over infinite
sequences of propositions.

For example, consider the specification “Eventually, link ` will have less than C vehicles
and this will remain true for all time thereafter.” This objective is written in LTL syntax as
follows:

'
1

= ⌃⇤(x
`

 C). (1.7)

By applying techniques from model checking and formal methods, we obtain a correct-
by-design controller from the finite state abstraction. We then refine this controller to the
original tra�c network so that the tra�c dynamics are guaranteed to satisfy the given LTL
specification. The results of this chapter appear in [Coo+15b].

A Compartmental Model for Tra�c Flow Networks

In Chapter 4, we propose a macroscopic tra�c network flow model in continuous time suitable
for analysis as a dynamical system. This model builds on the queueing model presented in
Chapter 3 and is rooted in the Cell Transmission Model (CTM) for freeway tra�c flow.
Few works have investigated the qualitative properties of the CTM as a dynamical system,
despite the prevalence of the CTM as a simulation and modeling tool. The results of this
chapter address this deficiency, and we qualitatively analyze equilibrium flows as well as
convergence of our general network flow model.
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As in Chapter 3, flows at a junction are determined by downstream supply of capacity,
now only assumed to be a decreasing function of density, as well as upstream demand of
tra�c wishing to flow through the junction, an increasing function of density. Furthermore,
we pose the proportional priority, first-in-first-out (PP/FIFO) rule for resolving the flows
through multi-input and multi-output junctions. This rule is a modification of the rule
proposed in Chapter 3 and is well suited for freeway tra�c. According to the PP/FIFO
rule, the incoming flow to any downstream link at a junction is the largest possible such that
downstream capacity is not exceeded, upstream demand is not exceeded, and the collection
of outgoing flows of upstream links is proportional to the collection of demands for these
links.

The PP/FIFO rule imbues the tra�c dynamics with certain structural properties that
allow us to analyze stability and convergence. A particularly important property is that the
PP/FIFO rules precludes the network from being monotone in general; this is in contrast to
many other types of dynamic flow networks which often do exhibit monotone structure such
as water flowing through pipes. We show that the lack of monotonicity is in fact a useful
feature that allows tra�c control methods, such as ramp metering, to be e↵ective, and we
develop a linear program for optimal ramp metering.

Using contraction theory [LS98; Son10], we further show that, for certain network topolo-
gies, a norm-based Lyapunov function exists. In particular, we show that the weighted one-
norm of the vector field serves as a Lyapunov function for the tra�c network. The one-norm
plays an important role in the analysis of mass conserving systems such as tra�c networks.
Inspired by these results, in Section 4.B, we present an independent result on the use of
norm-based Lyapunov functions via contraction analysis. The results of Chapter 3 appear
in [CA15a].

Mixed Monotonicity in Tra�c Flow Dynamics

Chapter 5 continues analysis of the macroscopic tra�c network flow model proposed in
Chapter 4, focusing on the mixed monotone properties of the dynamics. The continuous-
time analogue of mixed monotonicity as defined in Chapter 2 is presented, and it is shown
that, under a mild restriction, the tra�c flow model studied in Chapter 4 is mixed monotone.

A continuous-time system ẋ = G(x) with G di↵erentiable is mixed monotone if there
exists a decomposition function g(x, y) such that g(x, x) = G(x), @g

i

/@x
j

� 0 for all i 6= j,
and @g

i

/@y
j

 0 for all i, j. Given a mixed monotone system, we then study the symmetric
system

ẋ = g(x, y) (1.8)

ẏ = g(y, x), (1.9)

which is seen to be monotone with respect to the southeast orthant order. Furthermore, the
dynamical behavior of the original system ẋ = G(x) is preserved along the invariant subspace
{(x, y) | x = y} for which we have ẋ = ẏ = g(x, x) = g(y, y) = G(x) = G(y). Monotonicity
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of this symmetric system allows us to apply results from monotone system theory which,
coupled with the structure induced by the symmetry in (1.8)–(1.9), are su�cient for proving
global asymptotic stability.

The primary connecting thread through these chapters is the notion that networked,
physical systems such as tra�c networks possess an abundance of intrinsic structure which
this thesis uncovers and uses for e�cient analysis and design. Finding and exploiting such
structure in systems of physical relevance is key for obtaining scalable and tractable solutions
to many of the challenges in control of networked systems.
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Chapter 2

E�cient Finite Abstraction of Mixed
Monotone Systems

Networked systems often possess intrinsic structure that significantly simplifies analysis and
control. An important class of systems exhibiting such structure is monotone systems for
which trajectories maintain a partial ordering on states [Hir85; Smi95]. The notion of mono-
tonicity is applicable to both continuous-time systems [Smi95] and discrete-time systems
[HS05b], and has been extended to control systems with inputs in [AS03].

References [GH94; Smi06; Smi08; ESS06] have observed that dynamics which are not
monotone may nonetheless be decomposable into increasing and decreasing components.
Such systems are called mixed monotone and significantly generalize the class of monotone
systems. Unlike the references above which exploit mixed monotonicity for stability analysis,
here we demonstrate that mixed monotonicity enables e�cient finite state abstraction.

Increased interest in verification and synthesis of cyber-physical systems has motivated
symbolic models that abstract the underlying system into a finite set of symbols and transi-
tions between symbols which reflect the dynamics [Alu+00; TK02; Tab09; LS11]. The main
reason for obtaining finite state abstractions is to allow formal verification and synthesis for
specifications given in, e.g., temporal logic [WTM12; Liu+13; CGP99; BK08].

In rare cases, exact symbolic models exactly capture the underlying dynamics [Hen+98;
TP06]. In other cases, exact symbolic models are either impossible to obtain or computa-
tionally prohibitive, however it is still useful to obtain an abstraction which approximately
captures the underlying dynamics [Liu+13; GP07; GPT10; Rei11]. For example, in [Yor+12;
ADA13], the authors consider piecewise a�ne (PWA) systems and construct a finite state
abstraction using polyhedral computations.

In this work, we compute finite state abstractions of mixed monotone, discrete-time
systems by considering a rectangular partition of the state space. In particular, we show that
the reachable set from a box of initial conditions is e�ciently overapproximated by evaluating
a decomposition function, obtained from the mixed monotone system, at only two points. We
accommodate disturbance inputs in the dynamics by suitably generalizing the definition of
a mixed monotone system in [Smi06]. Furthermore, we characterize a special class of mixed
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monotone systems in which the dynamics are componentwise monotone and show that our
overapproximation is tight in a particular sense to be made precise. Additionally, we suggest
an e�cient algorithm for identifying a class of spurious trajectories from the abstraction.

The importance of monotonicity for reachability computation and abstraction has been
noted in [MR02; GR06; RMC10]. In particular, the authors of [MR02] study discrete-time
systems that are monotone with respect to the positive orthant in Euclidean space and show
that the reachable set from a box of initial conditions is overapproximated by propagating
only the least and greatest points within this box. This chapter studies the much broader
class of mixed monotone systems and recovers [MR02] as a special case.

In Section 2.1, we introduce the notation. In Section 2.2, we pose the general problem
statement and introduce mixed monotone systems. In Section 2.3, we present an algorithm
for e�ciently constructing finite state abstractions of mixed monotone systems. In the case
studies of Section 2.4, we analyze a model for insect population dynamics and synthesize a
signal controller for a tra�c network.

2.1 Preliminaries

For x 2 Rn, we use superscripts to index the elements of x, i.e., xi is the ith component of
x and x = (x1, . . . , xn), except in the case studies of Section 2.4 where we use subscripts for
clarity. Let R�0

= {x | x � 0} and Rn

�0

= (R�0

)n. For a set Z ⇢ Rn, int(Z) denotes the
interior of Z.

Consider a set X ⇢ Rn along with a positive cone Y
+

⇢ Rn satisfying ↵Y
+

⇢ Y
+

for
all ↵ 2 R�0

, Y
+

+ Y
+

⇢ Y
+

, and Y
+

\ (�Y
+

) = 0. The positive cone Y
+

induces an order
relation  on X defined by: x  y if and only if y � x 2 Y

+

for x, y 2 X . Given x, y 2 X
with x  y, we define the interval

[x, y] , {z 2 X | x  z  y}. (2.1)

For Y
+

= Rn

�0

,  denotes coordinate-wise inequality; we distinguish this partial order by


+

and generalize it to arbitrary orthants in the following way: Let ⌫ = (⌫
1

, . . . , ⌫
n

) with
⌫
i

2 {0, 1} for all i, and define K
⌫

= {x 2 Rn | (�1)⌫ixi � 0 8i}. K
⌫

is a cone corresponding
to an orthant of Rn, and we denote the induced orthant order by 

K⌫ .
For a matrix M 2 Rn⇥p, we additionally interpet 0 

+

M to mean M is elementwise
nonnegative.

A set Z ⇢ Rn is said to be a box if it is the Cartesian product of closed intervals of R,
that is, if there exists a

i

, b
i

2 R for i = 1, . . . n such that a
i

 b
i

and Z =
Q

n

i=1

[a
i

, b
i

]R�0

where [·, ·]R�0

denotes the usual interval on R.
We let x+ = F (x, d) describe a discrete-time dynamical system where the state x+ at

the next time step is a function of the current state x and a disturbance input d. We
denote the ith coordinate mapping of F by F i, that is, (xi)+ = F i(x, d) and F (x, d) =
(F 1(x, d), . . . , F n(x, d)).
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2.2 Mixed Monotone Systems

2.2.1 Problem Statement

We first consider discrete-time dynamical systems of the form

x+ = F (x, d) (2.2)

with state x 2 X ⇢ Rn, disturbance input d 2 D ⇢ Rp, and a continuous map F : X ⇥ D !
X . We present a technique for e�ciently computing a finite state abstraction of (2.2) when F
is mixed monotone as defined below. The resulting symbolic model is amenable to standard
formal methods techniques to verify desirable properties, as demonstrated in the case study
in Section 2.4.1.

Next, we consider the problem of controlling the switched discrete-time dynamical system

x+ = F
m

(x, d) (2.3)

for m 2 M where M is a finite set of modes and each F
m

: X ⇥ D ! X is continuous.
For switched systems of the form (2.3), the control input is the mode m at each time step.
When each F

m

satisfies a mixed monotonicity property, we propose an e�cient algorithm
for obtaining a finite state abstraction. As demonstrated in the case study of Section 2.4.2,
this abstraction is amenable to synthesis algorithms to meet complex control objectives
expressible in, e.g., Linear Temporal Logic (LTL).

2.2.2 Basic Definitions and Results

For systems of the form (2.2), we let X and D denote order relations on X ⇢ Rn and
D ⇢ Rp, respectively, induced by positive cones. The notation [·, ·]X (resp. [·, ·]D) denotes
an interval with respect to X (resp. D). For systems of the form (2.3), we wish to
allow potentially di↵erent order relations on X , and thus consider a set {

m

}
m2M of order

relations on X and D, a fixed order relation on D. The notation [·, ·]
m

denotes an interval
with respect to 

m

. For notational convenience, we assume that the same partial order on
D holds for all modes, however di↵erent partial orders on D for each mode are possible with
suitable alterations to the development below.

We begin with the well-known class of monotone dynamical systems:

Definition 2.2.1 (Monotonicity). The system (2.2) is monotone with respect to X and
D, or simply monotone, if

x
1

X x
2

and d
1

D d
2

=) F (x
1

, d
1

) X F (x
2

, d
2

). (2.4)

We say that the switched system (2.3) is monotone with respect to {
m

}
m2M and D, or

simply monotone, if each mode m is monotone with respect to 
m

and D.

We next provide a significant generalization of Definition 2.2.1:
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Definition 2.2.2 (Mixed monotonicity). The system (2.2) is said to be mixed monotone
with respect to X and D, or simply mixed monotone [Smi06], if there exists a function
f : X ⇥ D ⇥ X ⇥ D ! X satisfying:

C1) 8x 2 X , 8d 2 D: F (x, d) = f(x, d, x, d)

C2) 8x
1

, x
2

, y 2 X , 8d
1

, d
2

, e 2 D: x
1

X x
2

and d
1

D d
2

implies f(x
1

, d
1

, y, e) X
f(x

2

, d
2

, y, e)

C3) 8x, y
1

, y
2

2 X , 8d, e
1

, e
2

2 D: y
1

X y
2

and e
1

D e
2

implies f(x, d, y
2

, e
2

) X
f(x, d, y

1

, e
1

).

We say that the switched system (2.3) is mixed monotone with respect to {
m

}
m2M and

D, or simply mixed monotone, if each mode x+ = F
m

(x, d) is mixed monotone with respect
to 

m

.

The function f is nondecreasing in the first pair of variables and nonincreasing in the
second pair of variables, and is henceforth called a decomposition function:

Definition 2.2.3 (Decomposition function). A function f satisfying C1)–C3) above is a
decomposition function for F (x, d).

Clearly every monotone system is mixed monotone with f(x, d, y, e) , F (x, d). In the
case of a switched system (2.3), we denote by f

m

a corresponding decomposition function
for each mode m 2 M.

Example 2.2.1. Consider the system

x+ = G(x, d) � H(x, d) (2.5)

for x 2 X ⇢ Rn, d 2 D ⇢ Rp, and G, H : X ⇥ D ! X such that x+ = G(x, d) and x+ =
H(x, d) are monotone systems for X=

+

and D=
+

. Then (2.5) is mixed monotone for
X=

+

and D=
+

and f(x, d, y, e) , G(x, d) � H(y, e) is a decomposition function.

Example 2.2.2. Consider the system

x+ = A(x, d)x + B(x, d)d =: F (x, d) (2.6)

for x 2 X ⇢ Rn

�0

, d 2 D ⇢ Rp

�0

, such that:

• 0 
+

A(x, d) and 0 
+

B(x, d) for all x 2 X for all d 2 D,

• x
1


+

x
2

and d
1


+

d
2

=) A(x
2

, d
2

) 
+

A(x
1

, d
1

) and B(x
2

, d
2

) 
+

B(x
1

, d
1

).

Equations of the form (2.6) arise in the study of population dynamics, [Cus98]. Taking
f(x, d, y, e) = A(y, e)x+B(y, e)d, system (2.6) is mixed monotone for X=

+

and D=
+

.
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We now characterize a special class of mixed monotone systems in terms of the sign of
the entries in @F/@x and @F/@d, the Jacobians of F with respect to x and d.

Proposition 2.2.1. Consider the system (2.2) where x 2 X ⇢ Rn, d 2 D ⇢ Rp, X and D
are boxes, and F is continuously di↵erentiable. If for all i 2 {1, . . . , n},

8j 2 {1, . . . , n} 9s
j

2 {0, 1} : (�1)sj
@F i

@xj

(x, d) � 0 8x, d (2.7)

and

8j 2 {1, . . . , p} 9�
j

2 {0, 1} : (�1)�j
@F i

@dj

(x, d) � 0 8x, d (2.8)

then (2.2) is mixed monotone with respect to any orthant order on X and D.

Proof. Let ⌫ 2 {0, 1}n and µ 2 {0, 1}p characterize arbitrary orthant orders 
K⌫ and 

Kµ

on X and D, respectively. Define

f i(x, d, y, e) , F i(zi, wi) (2.9)

where zi = (zi,1, . . . , zi,n), wi = (wi,1, . . . , wi,p), and

zi,j ,
(

xj if (�1)⌫i+⌫j@F i/@xj � 0 8x 2 X , d 2 D
yj if (�1)⌫i+⌫j@F i/@xj  0 8x 2 X , d 2 D (2.10)

wi,j ,
(

dj if (�1)⌫i+µj@F i/@dj � 0 8x 2 X , d 2 D
ej if (�1)⌫i+µj@F i/@dj  0 8x 2 X , d 2 D.

(2.11)

If @F i/@xj = 0 8x, d for some i, j, then the assignment to zi,j is arbitrary, likewise for wi,j if
@F i/@dj = 0 8x, d for some i, j. Let f(x, d, y, e) = (f 1(x, d, y, e), . . . , fn(x, d, y, e)). Clearly
f(x, d, x, d) = F (x, d), and a modification of the Kamke conditions for monotonicity [Smi95,
Section 3.1] proves that f satisfies the remaining conditions of Definition 2.2.2. In particular,
it follows that:

@f i

@xj

(x, d, y, e) =

(

@F

i

@x

j (zi, wi) if zi,j = xj

0 else
8i, j (2.12)

@f i

@yj

(x, d, y, e) =

(

@F

i

@x

j (zi, wi) if zi,j = yj

0 else
8i, j (2.13)

@f i

@dj

(x, d, y, e) =

(

@F

i

@d

j (zi, wi) if wi,j = dj

0 else
8i, j (2.14)

@f i

@ej
(x, d, y, e) =

(

@F

i

@d

j (zi, wi) if wi,j = ej

0 else.
8i, j (2.15)
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Let f(x, d, y, e) =
⇥

f 1(x, d, y, e) . . . fn(x, d, y, e)
⇤

T

. Trivially, f(x, d, x, d) = F (x, d).
Consider x

1


K⌫ x

2

and d
1


Kµ d

2

. We first must show

(�1)⌫i
�

f i(x
2

, d
2

, y, e) � f i(x
1

, d
1

, y, e)
� � 0 (2.16)

for all y, e. By the Fundamental Theorem of Calculus, we have

(�1)⌫i
�

f i(x
2

, d
1

, y, e) � f i(x
1

, d
1

, y, e)
�

(2.17)

= (�1)⌫i · (2.18)
 

Z

1

0

n

X

j=1

@f i

@xj

(x
1

+ r(x
2

� x
1

), d
1

, y, e)(xj

2

� xj

1

)dr

!

(2.19)

= (�1)⌫i
✓

Z

1

0

n

X

j=1

(�1)⌫j
@f i

@xj

(x
1

+ r(x
2

� x
1

), d
1

, y, e)·

(�1)⌫j(xj

2

� xj

1

)dr

◆

(2.20)

� 0 (2.21)

where (2.21) follows because (�1)⌫j(xj

2

� xj

1

) � 0 and

(�1)⌫i+⌫j@f i/@xj � 0 (2.22)

by (2.10) and (2.12). Similarly,

(�1)⌫i
�

f i(x
2

, d
2

, y, e) � f i(x
2

, d
1

, y, e)
�

(2.23)

= (�1)⌫i · (2.24)
 

Z

1

0

p

X

j=1

@f i

@dj

(x
2

, d
1

+ r(d
2

� d
1

), y, e)(dj

2

� dj

1

)dr

!

(2.25)

� 0, (2.26)

thus (2.23) holds. A symmetric analysis shows for all i,

(�1)⌫i
�

f i(x, d, y
2

, e
2

) � f i(x, d, y
1

, e
1

)
�  0 (2.27)

for y
1


K⌫ y

2

, e
1


Kµ e

2

for all x, d. As ⌫ and µ were arbitrary binary vectors, the proof is
concluded.

Proposition 2.2.1 states that if the partial derivatives of F are sign stable over X ⇥D, then
(2.2) is mixed monotone with respect to any orthant order on X and D. The special class
characterized in Proposition 2.2.1 plays an important role in the case study of Section 2.4.2;
see [KM06] for a similar characterization that excludes disturbance inputs.
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Example 2.2.3. Let X = R2

�0

, D = R2

�0

, and consider the system

x+ = F (x, d) = (F 1(x, d), F 2(x, d)) (2.28)

= (5x
1

� x3

2

+ 5d2

1

, x2

1

+ 3x
2

x
1

� 6d
1

d
2

) (2.29)

where x = (x
1

, x
2

) 2 R2

�0

and d = (d
1

, d
2

) 2 R2

�0

(we momentarily abandon our superscript
convention for notational convenience). For all x 2 X , d 2 D,

@F 1/@x
1

= 5 � 0 @F 1/@x
2

= �3x2

2

 0 (2.30)

@F 2/@x
1

= 2x
1

+ 3x
2

� 0 @F 2/@x
2

= 3x
1

� 0 (2.31)

@F 1/@d
1

= 10d
1

� 0 @F 1/@d
2

= 0 (2.32)

@F 2/@d
1

= �6d
2

 0 @F 2/@d
2

= �6d
1

 0. (2.33)

Thus, the system is mixed monotone by Proposition 2.2.1. Taking X=
+

and D=
+

, we
have that

f(x, d, y, e) = (5x
1

� y3

2

+ 5d2

1

, x2

1

+ 3x
2

x
1

� 6e
1

e
2

) (2.34)

is a decomposition function where y = (y
1

, y
2

), e = (e
1

, e
2

).

Remark 1. We remark that, while Proposition 2.2.1 assumed that F is continuously dif-
ferentiable, the results in fact hold if F is continuous and piecewise di↵erentiable, and thus
nondi↵erentiable on a set of measure zero as in the case study of Section 2.4.2.

2.2.3 Reachable Set Computation

In this section, we show that an overapproximation of the reachable set from a box of initial
states is e�ciently computed by evaluating the decomposition function at only two points,
regardless of the state space dimension. In the next section, we use this result to obtain
finite state abstractions of mixed monotone systems.

We begin with the following key theorem:

Theorem 2.2.1. Let (2.2) be a mixed monotone system with decomposition function f(x, d, y, e).
Given x

1

, x
2

2 X and d
1

, d
2

2 D with x
1

X x
2

and d
1

D d
2

,

f(x
1

, d
1

, x
2

, d
2

) X F (x, d) X f(x
2

, d
2

, x
1

, d
1

)

8 x 2 [x
1

, x
2

]X 8 d 2 [d
1

, d
2

]D. (2.35)

Proof. Consider x, d, y, e satisfying

x
1

X x and d
1

X d, and (2.36)

y X x
2

and e X d
2

. (2.37)
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It follows that

f(x
1

, d
1

, x
2

, d
2

) X f(x, d, y, e), and (2.38)

f(y, e, x, d) X f(x
2

, d
2

, x
1

, d
1

). (2.39)

Restricting to the set {(x, d, y, e) | x = y and d = e}, we obtain

f(x
1

, d
1

, x
2

, d
2

) X f(x, d, x, d) = F (x, d)

X f(x
2

, d
2

, x
1

, d
1

). (2.40)

The analogous result for monotone systems is:

Corollary 2.2.1. Given x
1

, x
2

2 X and d
1

, d
2

2 D with x
1

X x
2

and d
1

D d
2

. If system
(2.2) is monotone, then

F (x
1

, d
1

) X F (x, d) X F (x
2

, d
2

)

8 x 2 [x
1

, x
2

]X 8 d 2 [d
1

, d
2

]D. (2.41)

The result in [MR02] is a special case of Corollary 2.2.1 restricted to systems with no
disturbance input and X=

+

.
For X 0 ✓ X and D0 ✓ D, we define the shorthand notation

F (X 0, D0) , {F (x, d) | x 2 X 0 and d 2 D0}. (2.42)

Then we respectively write (2.35) and (2.41) as

F ([x
1

, x
2

]X , [d
1

, d
2

]D) ✓ [f(x
1

, d
1

, x
2

, d
2

), f(x
2

, d
2

, x
1

, d
1

)]X (2.43)

and

F ([x
1

, x
2

]X , [d
1

, d
2

]D) ✓ [F (x
1

, d
1

), F (x
2

, d
2

)]X . (2.44)

Definition 2.2.4. The set F (X 0, D0) given in (2.42) is the one-step reachable set from X 0

and D0.

Example 2.2.4. Consider again Example 2.2.3 and let x = (0.6, 0.3), x̄ = (1, 1), d = (0, 0),
d̄ = (0.3, 0.3). From Theorem 2.2.1, it follows that

F ([x, x̄]X , [d, d̄]D) ⇢ [f(x, d, x̄, d̄), f(x̄, d̄, x, d)]X
= [(2, 0.36), (5.423, 4)]X . (2.45)

Figure 2.1 shows the set {F (x, d) | x 2 [x, x̄]X , d 2 [d, d̄]D} as a shaded region, and plots
f(x, d, x̄, d̄) f(x̄, d̄, x, d) as two corners of a box that bounds this set.
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0 1 2 3 4 5 6
x1

0

1

2

3

4

5

6

x
2

{F (x, d) : x 2 [x, x̄]X , d 2 [d, d̄]D}
f (x, d, x̄, d̄)

f (x̄, d̄, x, d)

Figure 2.1: The mixed monotone system in Examples 2.2.3 and 2.2.4. This system satisfies
the conditions of Theorem 2.2.1, thus we bound F (x, d) when x and d are confined to lie
within a given rectangle by evaluating the decomposition function at two points, and the
bounding is tight. This example readily generalizes to higher dimensions.

For monotone systems, Corollary 2.2.1 provides tight bounds since the upper and lower
bounds are achieved. For mixed monotone systems satisfying (2.7)–(2.8) of Proposition 2.2.1,
the bounds given in Theorem 2.2.1 are also tight as suggested in Figure 2.1 for Example 4. We
make this precise in the following proposition, which follows immediately from the definition
in (2.9):

Proposition 2.2.2. Suppose X=
K⌫ and D=

Kµ for some orthants K
⌫

and K
µ

. If
(2.2) is mixed monotone by (2.7)–(2.8) of Proposition 2.2.1, and f is the decomposition
function as defined in (2.9)–(2.11), then for all i 2 {1, . . . , n} there exists zi, z̄i 2 [x

1

, x
2

]X
and wi, w̄i 2 [d

1

, d
2

]D such that

f i(x
1

, d
1

, x
2

, d
2

) = F i(zi, wi), and (2.46)

f i(x
2

, d
2

, x
1

, d
1

) = F i(z̄i, w̄i). (2.47)

In particular, zi as in (2.10) with x = x
1

and y = x
2

, and wi as in (2.11) with d = d
1

and
e = d

2

satisfies (2.46). A symmetric results holds for (2.47) after interchanging x
1

, x
2

and
d

1

, d
2

.

2.3 Abstraction of Mixed Monotone Systems

We have seen that for mixed monotone systems, an overapproximation of the one-step reach-
able set from the set [x

1

, x
2

]X under a disturbance input from the set [d
1

, d
2

]D can be com-
puted by evaluating the decomposition function f at only two particular points. We now
exploit Theorem 2.2.1 and Corollary 2.2.1 and present an e�cient algorithm for computing a
finite state abstraction of a mixed monotone system. For systems of the form (2.2), we wish
to verify that a certain property, usually given in a temporal logic, holds under all possible
disturbance inputs. For switched systems of the form (2.3), we wish to synthesize a feedback
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controller that, at each time step, selects a mode m 2 M such that the resulting system
satisfies a given property.

2.3.1 Finite State Abstraction

Now we introduce a partition of the domain X by intervals and construct a finite state
abstraction from the partition. We discuss systems of the form (2.3), since (2.2) is a special
case.

Assume system (2.3) is mixed monotone with respect to {
m

}
m2M and D. Furthermore,

assume D is representable as the union of intervals:

D =
L

[

`=1

D` (2.48)

where D` , [d`

1

, d`

2

]D for d`

1

D d`

2

.

Definition 2.3.1 (Interval Partition). The collection {I
q

}
q2Q for finite set Q with I

q

✓ X
for all q 2 Q is an interval partition of X if:

1. For all m 2 M and for all q 2 Q, there exists xq,m

1

, xq,m

2

2 X satisfying xq,m

1


m

xq,m

2

and I
q

= [xq,m

1

, xq,m

2

]
m

,

2.
S

q2Q I
q

= X ,

3. int(I
q

) \ int(I
q

0) = ; for all q, q0 2 Q, q 6= q0.

In other words, {I
q

}
q2Q is an interval partition of X if the sets I

q

, q 2 Q partition
X and each I

q

is representable as an interval of X with respect to each order 
m

. In
defining a partition, we ignore the set of measure zero where intervals overlap for notational
convenience, as is done in, e.g., [Yor+12]. However, as noted in [Yor+12] and [ADA13], if
the dynamics are such that trajectories remain within the boundaries after a certain time,
one should account for such sets.

For example, if each 
m

is an orthant order, then a partition {I
q

}
q2Q with each I

q

a box constitutes an interval partition of X ⇢ Rn. For this special case, we further
call the partition a gridded partition if for each i 2 {1, . . . , n} there exists N

i

> 0 and
{⇠

i,1

, . . . , ⇠
i,Ni+1

} such that Q =
Q

n

i=1

{1, . . . , N
i

} and for each q = (◆
1

, . . . , ◆
n

) 2 Q, we have
I
q

=
Q

n

i=1

[⇠
i,◆i , ⇠i,◆i+1

]R�0

. Figure 2.2 shows schematic depictions of two interval partitions,
one of which is a gridded partition.

When clear from context, we refer to the index set Q itself as an interval partition with
the associated notation as above. From such a partition, we readily construct a finite state
abstraction of the resulting dynamics.

Consider a map � : Q ⇥ M ! 2Q that satisfies the following property:

If 9x 2 I
q

, 9d 2 D such that F
m

(x, d) 2 I
q

0

Then q0 2 �(q, m). (2.49)



CHAPTER 2. EFFICIENT FINITE ABSTRACTION OF MIXED MONOTONE
SYSTEMS 20

x
1

x
2

x
1

x
2

⇠
2,0

⇠
2,1

⇠
2,2

⇠
2,3

⇠
1,0

⇠
1,1

⇠
1,2

⇠
1,3

⇠
1,4

(a) (b)

Figure 2.2: Stylized depiction of (a) an interval partition, and (b) a gridded partition.

The map � includes a transition from q to q0 whenever it is possible for the state x to
transition from the interval I

q

to I
q

0 (although � may also include additional transitions).

Definition 2.3.2 (Interval finite state abstraction). An interval finite state abstraction or
simply abstraction of system (2.3) is a tuple T = (Q, M, �) where Q is an interval partition
of X and � satisfies (2.49). We call � a transition function and say q0 2 Q is a successor of
q in mode m if q0 2 �(q, m).

T is a nondeterministic transition system, i.e., �(q, m) is, in general, not a singleton
set. The nondeterminism arises because T abstracts an entire set of states into one state
or symbol, and the transitions account for all possible states in the symbol as well as the
disturbance. Nonetheless, T is a transition system that overapproximates the dynamics (2.3),
that is, for every trajectory x[t] satisfying x[t + 1] = F

m[t]

(x[t], d[t]) such that m[t] 2 M and
d[t] 2 D for all t, there exists q[t] such that x[t] 2 I

q[t]

and q[t + 1] 2 �(q[t], m[t]) for all t.
Computing a transition function � that is useful in practice is a serious di�culty for

standard abstraction approaches. Many existing results apply only to linear or piecewise
linear systems, and even in this case, scale poorly with the state space. For example, the
polytope-based computations suggested in [Yor+12] require computing F

m

at a number of
points that scales exponentially with the dimension of the state space and disturbance space.
By exploiting the mixed monotonicity properties of system (2.3), we propose an e�cient
method for computing an abstraction that requires evaluating f

m

at only two points for each
q 2 Q and m 2 M.

Theorem 2.3.1. Consider the mixed monotone system (2.3) with interval partition Q. Let
� : Q ⇥ M ! 2Q be given by q0 2 �(q, m) if and only if

9` : [f
m

(xq,m

1

, d`

1

, xq,m

2

, d`

2

), f
m

(xq,m

2

, d`

2

, xq,m

1

, d`

1

)]X

\ [xq

0
,m

1

, xq

0
,m

2

]X 6= ;. (2.50)

Then T = (Q, M, �) is a finite state abstraction of (2.3).
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1: function FiniteStateAbtraction(system, D, Q) returns T
2: inputs: system, a mixed monotone system (2.3) with

domain X , modes M and decomposition
functions {f

m

}
m2M

3: D, the disturbance set D = [L

`=1

D` with
D` , [d`

1

, d`

2

]D for d`

1

D d`

2

4: Q, an interval partition X
5: for each m 2 M do
6: for each q 2 Q do
7: �(q, m) := ;
8: for ` := 1 to L do
9: y

1

:= f
m

(xq,m

1

, d`

1

, xq,m

2

, d`

2

)
10: y

2

:= f
m

(xq,m

2

, d`

2

, xq,m

1

, d`

1

)
11: Q0 := ComputeSuccessors(y

1

, y
2

, Q)
12: �(q, m) := �(q, m) [ Q0

13: end for
14: end for
15: end for
16: return T := (Q, M, �) . abstraction of (2.3)
17: end function

Algorithm 2.3.1: Algorithm for computing an interval finite state abstraction of (2.3).

Proof. Consider x 2 I
q

and d 2 D such that x0 = F
m

(x, d) 2 I
q

0 = [xq

0
,m

1

, xq

0
,m

2

]
m

. Let
` 2 {1, . . . , L} be such that d 2 D`. From Theorem 2.2.1, it holds that also

x0 2 [f
m

(xq,m

1

, d`

1

, xq,m

2

, d`

2

), f
m

(xq,m

2

, d`

2

, xq,m

1

, d`

1

)]
m

,

which implies q0 2 �(q, m), thus � satisfies (2.49).

Corollary 2.3.1. Consider monotone system (2.3) with interval partition Q. Let � : Q ⇥
M ! 2Q be given by q0 2 �(q, m) if and only if

9` : [F
m

(xq,m

1

, d`

1

), F
m

(xq,m

2

, d`

2

)] \ [xq

0
,m

1

, xq

0
,m

2

] 6= ;. (2.51)

Then T = (Q, M, �) is a finite state abstraction of (2.3).

We summarize the algorithm implied by Theorem 2.3.1 in Algorithm 2.3.1. For systems
of the form (2.2), we interpret M as a singleton and proceed as above. We then notationally
omit M and instead write T = (Q, �), and �(q) ⇢ Q.

2.3.2 Computing Successor States

Theorem 2.3.1 and Corollary 2.3.1 provided a method for overapproximating the one-step
reachable set of an interval. How do we identify the successor states from this overapprox-
imation? Lemma 2.3.1 below provides an e�cient method for determining if two intervals
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1: function ComputeSuccessors(y
1

, y
2

, Q) returns Q0

2: inputs: y
1

and y
2

, points in domain X ⇢ Rn

3: Q, an interval partition of X
4: initialize: Q0 = ;
5: for each q0 2 Q do
6: if (y

1


m

xq

0
,m

2

)^(xq

0
,m

1


m

y
2

) then
7: Q0 := Q0 [ {q0}
8: end if
9: end for

10: return Q0 . successor states from [y
1

, y
2

]
m

11: end function

Algorithm 2.3.2: A universal algorithm for overapproximating successor states.

overlap. With this lemma, we establish a universal algorithm for computing the set of
one-step reachable intervals in Figure 2.3.2.

Lemma 2.3.1. Consider [↵
1

, �
1

]X and [↵
2

, �
2

]X for ↵
1

, �
1

2 X and ↵
2

, �
2

2 X . Then
[↵

1

, �
1

]X \ [↵
2

, �
2

]X 6= ; implies ↵
1

X �
2

and ↵
2

X �
1

.

Proof. Choosing x 2 [↵
1

, �
1

]X \ [↵
2

, �
2

]X , the lemma follows from transitivity of X .

For special types of partitions, however, more e�cient methods exist for computing the
successor states. In particular, when each 

m

is an orthant order and Q is a gridded partition,
computing successor states is accomplished by considering each coordinate separately, as in
Algorithm 2.3.3. This algorithm scales linearly with

P

n

i=1

N
i

. When all N
i

are approximately
the same, the algorithm scales approximately linearly with n, the dimension of X .

2.3.3 Spurious Self-Loops

An abstraction may produce spurious trajectories that do not correspond to any trajectories
of (2.3). While such spurious trajectories are often unavoidable, we can identify and amelio-
rate the e↵ect of a particular type of spurious trajectory that are generated from “self-loops”
of the finite state abstraction. T contains a self-loop at state q⇤ 2 Q for modes M0 ✓ M
if q⇤ 2 �(q⇤, m) for all m 2 M0. A self-loop implies that under any control action satisfying
�[t] 2 M0 for all t, the trajectory q[t] = q⇤ for all t is possible in T . If there is no corre-
sponding trajectory in the original system (2.3) for any such choice of �[t], the state and
input set pair (q⇤, M0) is said to be stuttering. A similar definition of stuttering inputs is
given [Yor+12]. For systems of the form (2.2), we instead say q⇤ is stuttering if the above
holds with M0 interpreted to be the singleton set corresponding to F .

In verification problems where the dynamics have the form (2.2), it is sometimes possible
to simply remove stuttering transitions. In particular, this is possible if the condition to be
verified belongs to the fragment of LTL without the “next” operator [PW97]. In other cases,
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1: function ComputeSuccessors(y
1

, y
2

, Q) returns Q0

2: inputs: y
1

and y
2

, points in domain X ⇢ Rn

where y
j

= (y1

j

, . . . , yn

j

) for j = 1, 2
3: Q, a grid interval partition of X , i.e.,

Q =
Q

n

i=1

{1, . . . , N
i

} and
I
q

=
Q

n

i=1

[⇠
i,◆i , ⇠i,◆i+1

]R�0

for each
q = (◆

1

, . . . , ◆
n

) 2 Q
4: for i := 1 to n do
5: if min{yi

1

, yi

2

}  ⇠
i,1

then ◆
i

:= 1 else
6: ◆

i

:= arg max
◆2{1,...,Ni} s.t. ⇠

i,◆

 min{yi

1

, yi

2

}
7: if ⇠

i,Ni+1

 max{yi

1

, yi

2

} then ◆̄
i

:= N
i

else
8: ◆̄

i

:= arg min
◆2{1,...,Ni} s.t. ⇠

i,◆+1

� max{yi

1

, yi

2

}
9: end for

10: return Q0 := {(◆
1

, . . . , ◆
n

) | ◆
i

2 {◆
i

, . . . , ◆̄
i

} 8i}
11: end function

Algorithm 2.3.3: An algorithm to identify successor states when Q is a gridded partition of
Rn.

knowledge of stuttering inputs leads to less conservative control strategies; see [Yor+12] for
a detailed discussion.

A su�cient condition for determining if (q, M0) is stuttering is to compute a sequence of
one-step reachable sets that eventually do not intersect I

q

. As an illustration, consider system
(2.2) with the standard order 

+

on X ⇢ R2. Figure 2.3 shows that the overapproximation
of F (I

q

, D) intersects I
q

, and thus q 2 �(q). We then overapproximate the one-step reachable
set from I

q

\F (I
q

, D), which no longer intersects I
q

, and thus we conclude that q is stuttering
because no trajectory of (2.2) can remain within I

q

for all time.
We generalize this idea and provide Algorithm 2.3.4 for determining if (q, M0) is stutter-

ing. The algorithm requires a function getNewInt which returns a set of points {⇣m

1

, ⇣m

2

}
m2M0

such that for each m 2 M0,

[⇣m

1

, ⇣m

2

]
m

◆ [ym

0
,`

1

, ym

0
,`

2

]
m

0 \ I
q

8m0 2 M0 8` 2 {1, . . . , L}. (2.52)

These points are used in the next iteration when computing the one-step reachable set. In
Figure 2.3, these points correspond to the points defining the darkly shaded interval. As
suggested by this example, implementing getNewInt for Euclidean spaces with orthant
orders can be done coordinate-wise.

2.3.4 Computational Requirements

We now address the computational requirements of the proposed algorithms. Determin-
ing �(q, m) requires first evaluating the decomposition function f

m

at 2L points where L is
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x
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q
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Figure 2.3: Finding stuttering inputs. The solid outline denotes I
q

, and the dashed outline
denotes the overapproximation of the one-step reachable set from I

q

. By overapproximating
the one-step reachable set (lightly shaded region) of the intersection (darkly shaded region),
we determine that q is stuttering because this region no longer intersects I

q

.

the number of boxes constituting the disturbance set D. For each ` = 1, . . . L, the corre-
sponding pair of evaluations of f

m

is then used to determine successor states representing
an overapproximation of the reachable set from q. In Algorithm 2.3.2, this requires 2|Q|
order comparisons of vectors in Rn, and each comparison scales linearly with n. For gridded
partitions, determining successor states requires

P

n

i=1

N
i

scalar order comparisons as seen
in Algorithm 2.3.3.

Thus, computing � scales linearly with |M| and linearly with L. Using Algorithm 2.3.2,
the computation further scales quadratically with |Q| and linearly with n, and using Algo-
rithm 2.3.3, it scales linearly with |Q| and linearly with

P

n

i=1

N
i

. In contrast, computing
successor states from a polyhedral region as in, e.g., [Yor+12] requires polyhedral compu-
tations that scale exponentially in both n and p [KV10b]. Above, we have assumed that
f
m

requires constant computation time. This is reasonable in some cases, such as the case
study in Section 2.4.2 where intrinsic sparsity of tra�c networks implies that the required
computation time of f

m

does not scale with n or p. However, in other cases, the complexity
of evaluating f

m

must be taken into account.
We further remark that |Q| typically increases exponentially with n. However, this de-

pendence can be mitigated via various techniques such as interval partitions that incorporate
domain specific knowledge. For example, the authors of [MR02] consider monotone systems
that converge to a low-dimensional manifold, and suggest a methodology for abstracting the
low dimensional manifold while retaining the intrinsic high dimensional dynamics. Future
research will investigate related techniques for mixed monotone systems.

Thus, we summarize by emphasizing that the computational complexity of the proposed
approach e↵ectively does not depend directly on the state-space dimension n; this contrasts
with many existing abstraction approaches for which n is a significant bottleneck. However,
the complexity still depends crucially on |Q|, the number of partitions in the abstraction.
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1: function Stuttering(system, D, T , (q, M0)) returns isStuttering

2: inputs: system, a mixed monotone system (2.3)
3: D, the disturbance set D = [L

`=1

D`

4: T = (Q, M, �), abstraction
5: (q, M0), a stuttering pair candidate

6: initialize: isStuttering := Null

7: iter := 1
8: ⇣m

1

:= xq,m

1

, ⇣m

2

:= xq,m

2

for all m 2 M0

9: while iter  N
max

do
10: for ` := 1 to L do
11: for each m 2 M0 do
12: ym,`

1

:= f
m

(⇣m

1

, d`

1

, ⇣m

2

, d`

2

)
13: ym,`

2

:= f
m

(⇣m

2

, d`

2

, ⇣m

1

, d`

1

)
14: end for
15: end for
16: if 9` 2 {0, . . . , L} 9m 2 M0 s.t.

(ym,`

1


m

xq,m

2

)^(xq,m

1


m

ym,`

2

) then
17: {⇣m

1

, ⇣m

2

}
m2M0 :=

getNewInt({ym,`

1

, ym,`

2

}
m2M0 , I

q

)
18: iter := iter + 1
19: else
20: isStuttering := True

21: break
22: end if
23: end while
24: return isStuttering

25: end function

Algorithm 2.3.4: An algorithm to determine if (q, M0) is stuttering. The parameter N
max

determines how many time steps should be considered. The function getNewInt returns
a set of points {⇣m

1

, ⇣m

2

}
m2M such that for each m 2 M0, [⇣m

1

, ⇣m

2

]
m

◆ [ym

0
,`

1

, ym

0
,`

2

]
m

0 \ I
q

for
all m0 2 M0 and ` = 1, . . . , L.

2.4 Case Studies

2.4.1 Verifying Oscillations in Insect Population Dynamics

We consider the following model from [Cos+95] for the population dynamics of the flour
beetle Tribolium castaneum:

x+ = A(x)x, x = (x
1

, x
2

, x
3

) 2 R3, (2.53)
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A(x) =

0

@

0 0 b exp(�c
e`

x
1

� c
ea

x
3

)
p 0 0
0 exp(�c

pa

x
3

) q

1

A , (2.54)

where x
1

, x
2

, and x
3

represent populations of the insect at various stages of life (larvae, pupae,
and adults, respectively), and p, q 2 (0, 1] are probabilities of survival. The exponential
nonlinearities are the result of cannibalism of eggs and pupae. The dynamics are mixed
monotone with f(x, d, y, e) = A(y)x where X=

+

.
Using parameters from [Cos+95], we let b = 7.88, c

ea

= 0.011, c
e`

= 0.014, p = 0.839,
q = 0.5, and c

pa

= 0.0047, with a time step of 2 weeks. We first note that the domain

X = [0, (265, 225, 450)]
+

(2.55)

is invariant. This follows because bx
3

exp(�c
ea

x
3

)  265 for all x
3

� 0 and, thus, x
1

 265
is invariant, from which x

2

 p · 265  225. Since x+

3

 x
2

+ qx
3

, we conclude that
x

3

 225/(1 � q) = 450 is invariant.
For certain sets of parameters, the dynamics (2.53)–(2.54) induce oscillations in the num-

ber of larvae—a phenomenon documented in controlled laboratory experiments [Cos+95].
We wish to verify the following LTL formula which is a consequence of this oscillatory be-
havior:

⇤
⇣

�

(x
1

 10) ^ (x
3

� 40)
�! ⌃(x

1

� 150)
⌘

. (2.56)

In words, “if the larvae population (x
1

) reduces to a small number or zero and the adult
population (x

3

) is not too small, then the larvae population will eventually reach a large
population size in the future.”

We partition the state space into 2,376 intervals using a gridded partition. Computing
the finite state abstraction takes less than one second on a standard personal computer. By
applying Algorithm 2.3.4, we remove 14 self transitions that are stuttering. Checking the
model with SPIN [Hol97] took 103 seconds, and we verify that (2.56) is satisfied. Figure 2.4
shows a sample trajectory of the population dynamics initialized at (x

1

, x
2

, x
3

) = (0, 0, 300).
We see that the larvae population does not reach the desired population 150 immediately,
but it does so eventually around week 26.

2.4.2 Synthesizing Control Laws for Tra�c Networks

We next synthesize a tra�c signal control policy for a network of signalized intersections,
providing a preview of the results developed in Chapter 3. We consider a discrete-time model
of tra�c flow where each road link contains a queue of vehicles waiting to proceed through
an intersection. Each intersection signal actuates a subset of its queues at a given time
step, and the vehicles in actuated queues are allowed to flow to downstream links if there is
available space.

We consider a network of L links and a set V of signalized intersections. We assume each
link ` 2 L has a queue of size x

`

2 [0, xcrit

`

] representing the number of vehicles on the link
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Figure 2.4: Sample trajectory of the insect population model (2.53)–(2.54), plotting x
1

over
time when the system is initialized at (x

1

, x
2

, x
3

) = (0, 0, 300). The trajectory satisfies (2.56).

where xcrit

`

> 0 is the capacity of link ` 2 L. By allowing x
`

to be continuous, we adopt a
fluid model of tra�c flow.

For ` 2 L, let ⌘(`) 2 V denote the head node of link ` and let ⌧(`) 2 V [ ; denote the
tail node. A link ` with ⌧(`) = ; serves as an entry-point into the network, and we assume
⌘(`) 6= ⌧(`) for all ` 2 L (i.e., no self-loops). Link k 6= ` is upstream of link ` if ⌘(k) = ⌧(`),
downstream of link ` if ⌧(k) = ⌘(`), and adjacent to link ` if ⌧(k) = ⌧(`). Roads exiting the
tra�c network are not modeled explicitly. For each v 2 V , define

Lin

v

= {` | ⌘(`) = v}, Lout

v

= {` | ⌧(`) = v}. (2.57)

For simplicity of notation, we assume each intersection v 2 V has two possible states
actuating either “East-West” (EW) incoming links or “North-South” (NS) incoming links.
Thus, we have the partition L = LEW [ LNS, LEW \ LNS = ;. At each junction v 2 V , we
define the signal variable m

v

2 {0, 1} as follows:

m
v

=

(

1 if links Lin

v

\ LEW are actuated

0 if links Lin

v

\ LNS are actuated.
(2.58)

Let m = {m
v

}
v2V so that M = {0, 1}V . When a link ` is actuated, the turn ratio �

`k

denotes
the fraction of vehicles exiting link ` that is routed to link k. It follows that �

`k

6= 0 only if
⌘(`) = ⌧(k) and

X

k2Lout

⌘(`)

�
`k

 1. (2.59)
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Strict inequality in (2.59) implies that a fraction of vehicles on link ` are routed o↵ the
network via unmodeled roads.

Each link ` 2 L possesses a demand function �out

`

: [0, xcrit

`

] ! R that gives the number of
vehicles wishing to flow downstream in one time step and a supply function �in

`

: [0, xcrit

`

] ! R
that gives the available road space for incoming upstream vehicles in one time step. Thus,
�out

`

is an increasing function and �in

`

is a decreasing function of queue length. In this
example, we let

�out

`

(x
`

) = c
`

(1 � exp(�x
`

/c
`

)) (2.60)

�in

`

(x
`

) = w
`

(xcrit

`

� x
`

) (2.61)

where c
`

> 0 is a saturation rate and 0 < w
`

< 1 scales the available queue capacity to
account for, e.g., vehicles still traveling on the link and not enqueue. This demand-supply
approach to vehicular tra�c flow is rooted in the Cell Transmission Model [Dag95].

Movement of vehicles among link queues is governed by mass-conservation laws and the
state of the signalized intersections. When a link is actuated, a maximum of �out

`

(x
`

) vehicles
are allowed to flow from link ` to links Lout

⌘(`)

per time step. We let ↵
`k

denote the fraction of
link k’s supply available to link `. Since only incoming EW or NS links are actuated in each
time step, we have

X

`2Lin

⌧(k)\LEW

↵
`k

=
X

`2Lin

⌧(k)\LNS

↵
`k

= 1 (2.62)

for all k 2 L. It then follows that the dynamics on link ` are given by

x+

`

= F `

m

(x, d) (2.63)

, x
`

� f out

`

(x, m) +
X

j2Lin

⌧(`)

�
j`

f out

j

(x, m) + d
`

(2.64)

where

f out

`

(x, m) = s
`

(m) · min

(

�out

`

(x
`

), min
k s.t.

�`k 6=0

↵
`k

�
`k

�in

k

(x
k

)

)

(2.65)

s
`

(m) =

(

m
⌘(`)

if ` 2 LEW

1 � m
⌘(`)

if ` 2 LNS.
(2.66)

Assumption 2.4.1. For all ` 2 L and all k upstream of `,

exp

✓�1

c
`

✓

xcrit

`

� �
k`

w
`

↵
k`

c
k

◆◆

 1 � w
`

. (2.67)
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Assumption 2.4.1 ensures that an increase in x
i

does not lead to a decrease in x+

i

. This
assumption is mild because (2.67) is satisfied for small enough c

`

and c
k

, and these parameters
decrease for shorter time steps; indeed, violation of the assumption would indicate that the
chosen time step is to large to accurately capture the queue dynamics.

Lemma 2.4.1. Assumption 2.4.1 ensures that @F

`
m

@x`
(x, d) � 0 for all m whenever the partial

derivative exists.

Proof. We have

@F `

m

@x
`

(x, d) = 1 � @f out

`

@x
`

(x
`

, m) +
X

j2Lin

⌧(`)

�
j`

@f out

j

@x
`

(x, m). (2.68)

Note that
@f

out

`
@x`

(x
`

, m)  1. Furthermore,
@f

out

j

@x`
(x, m) 6= 0 only if s

j

(m) = 1 and ↵j`

�j`
�in

`

(x
`

) is

the minimizer in (2.65). As �out

j

(x
j

)  c
j

, the latter condition can only occur if

c
j

� ↵
j`

�
j`

w
`

(xcrit

`

� x
`

) () x
`

� xcrit

`

� �
j`

w
`

↵
j`

c
j

. (2.69)

It then follows that
P

j2Lin

⌧(`)
�
j`

@f

out

j

@x`
(x, m) < 0 only if there exists j 2 Lin

⌧(`)

such that the

inequalities in (2.69) hold. But this implies
@f

out

`
@x`

(x
`

, m)  1 � w
`

by Assumption 2.4.1 and

the fact that exp(� 1

c`
x
`

) decreases in x
`

. Furthermore,
P

j2Lin

⌧(`)
�
j`

@f

out

j

@x`
(x, m) � �w

`

, and

we thus conclude that @F

`
m

@x`
(x, d) � 0.

Proposition 2.4.1. The tra�c dynamics (2.63)–(2.64) are mixed monotone.

In Chapter 3, we provide a proof of 2.4.1 for a modified case where the supply and demand
functions are piecewise linear in Theorem 3.4.1. The proof of mixed monotonicity for the
present model is nearly the same, except Assumption 2.4.1 replaces Assumption 3.4.1.

Consider the tra�c network show in Figure 2.5 consisting of two signalized intersections
and eight links. We have LEW = {1, 2, 3, 4} and LNS = {5, 6, 7, 8}. The leftmost signal
actuates the EW links 1 and 3 simultaneously, or the NS links 5 and 6 simultaneously, and
similarly for the rightmost signal. We take the time step to be 15 seconds and assume
c
1

= c
2

= c
3

= c
4

= 20, c
5

= c
6

= c
7

= c
8

= 5, xcrit

1

= xcrit

4

= 50, xcrit

2

= xcrit

3

= 60,
xcrit

5

= xcrit

6

= xcrit

7

= xcrit

8

= 40, w
`

= 0.75 for all `, �
12

= �
43

= �
52

= �
62

= �
73

= �
83

= 0.5,
↵

52

= ↵
62

= ↵
73

= ↵
83

= 0.5, ↵
12

= 1, and ↵
43

= 1. For the disturbance input, we assume
that at each time step, up to 7 vehicles join each of the queues on links 1 and 3, or up to 8
vehicles join each of the queues on links 5 and 6, or up to 8 vehicles join each of the queues
on links 7 and 8.

We partition the domain of the tra�c network, representing the state of all queues,
into 3,600 boxes using a gridded partition. Using the mixed monotonicity properties of the
dynamics, we obtain a finite state abstraction of the dynamics in 43.8 seconds.

Next, we wish to find a controller that satisfies the specification:
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6
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43

Figure 2.5: A tra�c network with two signalized intersections and 8 links. The blue links
represent queues of vehicles. The leftmost signal actuates links 1 and 3 simultaneously, or
links 5 and 6 simultaneously. Likewise, the rightmost signal actuates links 2 and 4 or 7 and
8 simultaneously.
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Figure 2.6: An example trajectory of the tra�c network for links 1, 2, 3, and 4. Signal 1
(resp. 2) is the leftmost (resp. rightmost) signal in Figure 2.5. The trajectory satisfies the
given specification. In the lower plot, green (resp. red) indicates that EW (resp. NS) links
are actuated.

“Infinitely often, the cross streets on links 5 and 6 are actuated, AND infinitely often, the
cross streets on links 7 and 8 are actuated, AND eventually, the queue lengths on links 2
and 3 are each less than 40 vehicles and remain so for all future time, AND whenever the
queue on link 1 exceeds 40 vehicles, it eventually is less than 30 vehicles, AND whenever
the queue on link 4 exceeds 40 vehicles, it eventually is less than 30 vehicles.”

The above specification can be expressed in linear temporal logic and encoded in a deter-
ministic Rabin automaton [BK08] with 46 states. We then construct a controller that is
guaranteed to satisfy the specification by considering a game in a which an adversary seeks
to violate the specification and the control inputs seek to prevent this violation. The game
is formulated using the finite state abstraction and the Rabin automaton that encodes the
specification and may be solved using algorithms as in [Hor05; PP06]. In Figure 2.6, we plot
an example trajectory of the system where we assume the maximum number of allowed ve-
hicles enters the network in each time step. We see in the figure that the trajectory satisfies
the above specification.
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2.5 Discussion

We have e�ciently computed finite state abstractions for mixed monotone discrete-time
systems. Mixed monotonicity is a general property encompassing many practical systems
and provides a powerful tool for analysis and control. The primary feature that permits
e�cient abstraction is overapproximation of reachable sets by evaluating a decomposition
function at two points.
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Chapter 3

Control of Tra�c Networks from
Linear Temporal Logic Specifications

State-of-the-art approaches to coordinated control of signalized intersections often focus
on limited objectives such as maximizing throughput [Won+12] or maintaining stability of
network queues [Var13b; Var13a]; see [Pap+03] for a review of the literature. However,
tra�c networks are a natural domain for a much richer class of control objectives that are
expressible using linear temporal logic (LTL) [CGP99; BK08]. LTL formulae allow control
objectives such as “actuate tra�c flows such that throughput is always greater than C

1

”
where C

1

is a threshold throughput, or such that “tra�c link queues are always less than
C

2

” where C
2

is a threshold queue length. LTL formulae also allow more complex objectives
such as “infinitely often, the queue length on road ` should reach 0,” “anytime link ` becomes
congested, it eventually becomes uncongested,” or any combination of these conditions. As
these examples suggest, many objectives that are di�cult or impossible to address using
standard control theoretic techniques are easily expressed in LTL.

In this chapter, we leverage the results of Chapter 2 and propose a technique for syn-
thesizing a signal control policy for a tra�c network such that the network satisfies a given
control objective expressed using LTL. The synthesized policy is a finite-memory, state feed-
back controller that is provably correct, that is, guaranteed to result in a closed loop system
that satisfies the control objective.

Recent approaches to control synthesis from LTL specifications such as [TP06; Tab08;
Fai+09; KFP09; KB10; ADD11; WTM12; Yor+12; GLB14; JW12; Top+12; Liu+13;
ALB13; PKV13; CA14] allow automatic development of correct-by-construction control laws;
however, despite these promising developments, scalability concerns prevent direct applica-
tion of existing results to large tra�c networks.

To overcome these scalability limitations, we identify and exploit the mixed monotonicity
property introduced in Chapter 2. As alluded to in the previous chapter, mixed mono-
tonicity is inherent in flow networks such as tra�c networks. Mixed monotonicity allows
e�cient computation of bounds on the one-step reachable set from a rectangular box of
initial conditions, which in turn allows e�cient computation of a finite state abstraction of
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the dynamics, thereby mitigating a crucial bottleneck in the control synthesis process. A
related approach to abstractions of monotone systems is suggested in [MR02], however the
componentwise monotonicity properties exploited in this work are much more general and
encompass monotone systems as a special case.

This chapter is organized as follows: Section 3.1 gives necessary preliminaries. Section 3.2
presents the model for signalized networks, and Section 3.3 establishes the problem formu-
lation. Section 3.4 identifies componentwise monotonicity properties of the tra�c networks,
and Section 3.5 presents scalable algorithms that rely on these properties to construct a fi-
nite state representation of the tra�c network. Section 3.6 describes the controller synthesis
approach, and discusses the computation requirements of our method. We present a case
study in Section 3.7 and conclude our work in Section 3.8.

3.1 Preliminaries

The set I ✓ Rn is a box if it is the cartesian product of intervals, or equivalently, I is a box
if there exists x, y 2 Rn such that I =

Q

n

i=1

{z 2 R | x
i

�1

i

z �2

i

y
i

} where �1

i

, �2

i

2 {<, }
and x

i

, y
i

denote the ith coordinate of x and y, respectively. Defining �1, {�1

i

}n

i=1

and
�2, {�2

i

}n

i=1

, we may write I = {z 2 Rn | x �1 z �2 y}. The vector x is the lower corner
of I, and likewise y is the upper corner.

When applied to vectors, <, , >, and � are interpreted elementwise. The notation 0
denotes the all-zeros vector where the dimension is clear from context. We denote closure of
a set Y by cl(Y ). Given an index set L and a set of values x

`

2 R for ` 2 L, {x
`

}
`2L denotes

the collection of x
`

, ` 2 L, but we also interpret x = {x
`

}
`2L as an element of R|L|.

A transition system is a tuple T = (Q, S, !) where Q is a finite set of states, S is a
finite set of actions, and !⇢ Q ⇥ S ⇥ Q is a transition relation. We write q

s! q0 instead
of (q, s, q0) 2!. Note that all transition systems in this chapter are finite [BK08]. The
evolution of a transition system is described by !. That is, a transition system is initialized
in some state q

0

2 Q, and, given an action s 2 S, the next state of the transition system is
chosen nondeterministically from {q0 | q

s! q0}.

3.2 Signalized Network Tra�c Model

A signalized tra�c network consists of a set L of links and a set V of signalized intersections.
For ` 2 L, let ⌘(`) 2 V denote the downstream intersection of link ` and let ⌧(`) 2 V [ ;
denote the upstream intersection of link `. A link ` with ⌧(`) = ; serves as an entry-point
into the network, and we assume ⌘(`) 6= ⌧(`) for all ` 2 L (i.e., no self-loops). Link k 6= ` is
upstream of link ` if ⌘(k) = ⌧(`), downstream of link ` if ⌧(k) = ⌘(`), and adjacent to link `
if ⌧(k) = ⌧(`). Roads exiting the tra�c network are not modeled explicitly. For each v 2 V ,
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1 ` 1032 76

54 98

Figure 3.1: A typical tra�c network with 11 links and 7 signalized intersections. In the
figure, Ldown

`

= {`, 7, 8, 10}, Lup

`

= {1, 2, 5}, and Ladj

`

= {3, 4}. At each time step, a signal
actuates a subset of upstream links.

define Lin

v

= {` | ⌘(`) = v}, Lout

v

= {` | ⌧(`) = v} and for each ` 2 L, define

Lup

`

= {k 2 L | ⌘(k) = ⌧(`)} (3.1)

Ldown

`

= {k 2 L | ⌧(k) = ⌘(`)} [ {`} (3.2)

Ladj

`

= {k 2 L | ⌧(k) = ⌧(`)}\{`} (3.3)

so that Ldown

`

includes link ` and the links downstream of link `, and Lup

`

and Ladj

`

are the
links upstream and adjacent to `, respectively, see Fig. 3.1. We have Ldown

`

\ Ladj

`

= ; and
Lup

`

\ Ladj

`

= ;, but note that it is possible for Ldown

`

\ Lup

`

6= ;, in particular, if there is a
cycle of length two in the network. Let Lloc

`

= Ldown

`

[ Lup

`

[ Ladj

`

be links “local” to link `.
Each link ` 2 L possesses a queue x

`

[t] 2 [0, xcap

`

] representing the number of vehicles on
link ` at time step t 2 N , {0, 1, 2, . . .} where xcap

`

is the capacity of link `. We allow x
`

to
be a continuous quantity, thus adopting a fluid-like model of tra�c flow evolving in slotted
time as in [Won+12; Var13a; Var13b].

Movement of vehicles among link queues is governed by mass-conservation laws and the
state of the signalized intersections. A link is said to be actuated if outgoing flow from link
` is allowed as determined by the state of the tra�c signal at intersection ⌘(`). At each
intersection v,

S
v

✓ 2L
in

v (3.4)

denotes the set of available signal phases, that is, each s
v

2 S
v

, s
v

✓ Lin

v

denotes a set of
incoming links at intersection v that may be actuated simultaneously. We define

S = {[
v2Vs

v

| s
v

2 S
v

8v 2 V} ✓ 2L (3.5)

so that each s 2 S, s ✓ L denotes a set of links in the network that may be actuated
simultaneously. We identify s 2 S with its constituent phases so that s = {s

v

}
v2V , and we

interpret S as the set of allowed inputs to the tra�c network.
When a link is actuated, a maximum of c

`

vehicles are allowed to flow from link ` to links
Lout

⌘(`)

per time step where c
`

is the known saturation flow for link `, [Pap+03]. The turn
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ratio �
`k

denotes the fraction of vehicles exiting link ` that are routed to link k, [Var13b].
Then �

`k

6= 0 only if ⌘(`) = ⌧(k), and

X

k2Lout

⌘(`)

�
`k

 1. (3.6)

Strict inequality in (3.6) implies that a fraction of vehicles on link ` are routed o↵ the
network via unmodeled roads that exit the network. Tra�c flow can occur only if there is
available capacity downstream. To this end, the supply ratio ↵sv

`k

denotes the fraction of
link k’s capacity available to link ` during phase s

v

2 S
⌧(k)

. That is, link ` may only send
↵sv
`k

(xcap

k

� x
k

[t]) vehicles to link k in time period t under input s
v

. As the supply is only
divided among actuated incoming links, it follows that for each k 2 L

X

`2sv
↵sv
`k

= 1 8s
v

2 S
⌧(k)

, s
v

6= ;. (3.7)

Constant turn and supply ratios are a common modeling assumption justified by empirical
observations; see [Leb05] for further discussion.

We are now in a position to define the dynamics of the link queues. As we will see
subsequently, the flow of vehicles out of link ` is only a function of the state of links in Ldown

`

,
and the update of link `’s state is only a function of links in Lloc

`

.
Let x[t] = {x

`

[t]}
`2L, xdown

`

[t] = {x
k

[t]}
k2Ldown

`
, and x

loc

`

[t] = {x
k

[t]}
k2Lloc

`
. The outflow

of link ` 2 L is as follows:

f out

`

(xdown

`

, s
⌘(`)

) =

8

>

>

>

<

>

>

>

:

min

⇢

x
`

[t], c
`

, min
k s.t.

�`k 6=0

n

↵

s⌘(`)
`k
�`k

(xcap

k

� x
k

[t])
o

�

if ` 2 s
⌘(`)

0 else.

(3.8)

The interpretation of (3.8) is that the flow of vehicles exiting a link ` when actuated is
the minimum of the link’s queue length, its saturation flow, and the downstream supply
of capacity, weighted appropriately by turn and supply ratios. This modeling approach is
based on the cell transmission model of tra�c flow [Dag94] which restricts flow if there is
inadequate capacity downstream. A consequence of (3.8) is that inadequate capacity on
one downstream link at an intersection causes congestion that blocks incoming flow to other
downstream links. This phenomenon, sometimes called the first-in-first-out property, has
been widely studied in the transportation literature and occurs even in multilane settings
[MD02]1. The number of vehicles in each link’s queue then evolves according to the mass

1

Even if a turn pocket exists at an intersection, it is often too short to fully mitigate this blocking

property. Nonetheless, if the road geometry is such that a su�cient number of dedicated lanes exist for a

turning movement, these lanes may be modeled with a separate link.
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conservation equation

x
`

[t + 1] =F
`

(xloc

`

[t], sloc

`

[t], d
`

[t]) (3.9)

,min
n

xcap

`

, x
`

[t] � f out

`

(xdown

`

[t], s
⌘(`)

) +
X

j2Lup

`

�
j`

f out

j

(xdown

j

[t], s
⌘(j)

) + d
`

[t]
o

(3.10)

where d
`

[t] is the number of vehicles that exogenously enters the queue on link ` in time step
t, d̄ = {d

`

[t]}
`2L, and s

loc

`

= {s
⌘(`)

, s
⌧(`)

} if ⌧(`) 6= ;, sloc

`

= {s
⌘(`)

} otherwise; that is, sloc

`

is
the state of the signals that are “local” to link `. The minimization in (3.10) is only needed
in case the exogenous input d

`

[t] would cause the state of link ` to exceed xcap

`

and ensures
that the network dynamics maps

X =
Y

`2L
[0, xcap

`

] (3.11)

to itself. We interpet this as refusal of vehicles attempting to exogenously enter the network
when the link is full. Note in particular that the supply/demand formulation prevents
upstream inflow from exceeding supply and thus for links with no exogenous input, xcap

`

is
never the unique minimizer in (3.10).

Remark 2. An alternative to the above approach is to define an auxiliary sink state Out in
the transition systems T defined in Section 3.5 which captures any trajectories that exit the
domain X . The temporal logic specification can then incorporate the requirement that the
system never enters this Out state.

Assumption 3.2.1. We assume there exists D ⇢ RL such that

d̄[t] 2 D 8t (3.12)

and D satisfies D ⇢ [nD
i=1

D
i

where each D
i

is given by

D
i

= {d̄ | d̄
i  d̄  d̄

i} (3.13)

for some d̄
i

= {di

`

}
`2L, d̄

i

= {d
i

`

}
`2L.

In other words, we assume the disturbance is contained within a union of boxes given by
(3.13). This assumption is not particularly restrictive, as any compact subset of RL can be
approximated with boxes to arbitrary precision [KJW02], however the number of boxes nD
a↵ects the computation time as detailed in Section 3.6.2.

We let F (x, s, d̄) = {F
`

(xloc

`

, sloc

`

, d
`

)}
`2L : X ⇥ S ⇥ D ! X so that

x[t + 1] = F (x[t], s[t], d̄[t]). (3.14)
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The set of states of system (3.14) that are reachable from a set Y ⇢ X under the control
signal s 2 S in one timestep is denoted by the Post operator and given by

Post(Y, s) = {x0 = F (x, s, d̄) | x 2 Y, d̄ 2 D}. (3.15)

We call Post(Y, s) the one step reachable set from Y under s. The main features of the
queue-based modeling approach proposed above such as finite saturation rates, finite queue
capacity, a set of available signaling phases, and fixed turn ratios are standard in many
modeling and simulation approaches such as [Var13a; Var13b], see also [Pap95; Pap+03]
and references therein for discussions of queue-based modeling of tra�c networks.

3.3 Problem Formulation and Approach

We now define and motivate the need for control objectives expressible in LTL for tra�c
networks, and we outline a control synthesis approach which relies on a finite state repre-
sentation of the tra�c dynamics to meet these objectives.

LTL formulae are generated inductively using the Boolean operators _ (disjunction),
^ (conjunction), ¬ (negation), and the temporal operators # (next) and U (until). From
these, we obtain a suite of derived logical and temporal operators such as ! (implication), ⇤
(always), ⌃ (eventually), ⇤⌃ (infinitely often), finite deadlines with repeated #, and many
others, see [BK08; CGP99].

Formally, such formulae are expressed over a set of atomic propositions, which we restrict
to be indicator expressions over subsets of X or predicates over the signaling state. For
example, the atomic proposition x

`

 10 is true for all x 2 X that satisfies the condition
x
`

 10 (which constitutes a box subset of X ), and the atomic proposition ` 2 s is true for
all signals that actuate link `. We will see in Section 3.4 and Section 3.5 that restricting
to atomic propositions corresponding to box subsets of X o↵ers significant computational
advantages.

Semantically, LTL formulae are interpreted over a trajectory x[t] and the corresponding
input sequence s[t] for t = 0, 1, . . .. For example, the state/input sequence (x[t], s[t]) satisfies
the LTL formula ' = ⇤(x

`

 10) ^ ⇤⌃(` 2 s) if and only if x
`

[t]  10 for all t and ` 2 s[t]
infinitely often (i.e., for infinitely many t). Thus a trajectory satisfies a LTL formula if and
only if the formula holds for the corresponding trace of atomic propositions that are valid at
each time step. A formal definition of the semantics of LTL over traces is readily available
in the literature, e.g., [BK08; CGP99], and is a natural interpretation of the above Boolean
and temporal operators. For example, a trace satisfies ⌃' if and only if there exists a su�x
of the trace satisfying '.

Examples of LTL formulae representing desired control objectives relevant to tra�c net-
works include those from the Introduction, as well as:

• '
1

= ⌃⇤(x
`

 C) for some C
“Eventually, link ` will have less than C vehicles and this will remain true for all time”
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• '
2

= ⇤⌃(` 2 s)
“Infinitely often, link ` is actuated”

• '
3

= ⇤((` 2 s
v

1

) ! #(k 2 s
v

2

))
“Whenever signal v

1

actuates link `, signal v
2

must actuate link k in the next time step”

• '
4

= ⇤(x
`

� C
1

! ⌃(x
`

 C
2

))
“Whenever the number of vehicles on link ` exceeds C

1

, it is eventually the case that the
number of vehicles on link ` decreases below C

2

.”

The main problem considered in this chapter is as follows:

Control Synthesis Problem. Given a tra�c network and an LTL formula ' over a set
of atomic propositions as described above, find a control strategy that, at each time step,
chooses a signaling input such that all trajectories of the tra�c network satisfy ' from any
initial condition.

To solve the control synthesis problem, we propose computing a finite state abstraction
that simulates (in a manner to be formalized below) the tra�c network dynamics. As we
discuss in Section 3.6.1, the result is a full-state feedback controller which requires finite
memory. We rely on dynamical properties of the tra�c network to compute the abstraction,
and then apply tools from automata theory and formal methods to synthesize a finite-
memory, state feedback control strategy solving the control synthesis problem.

3.4 Mixed Monotonicity of Tra�c Networks

To generate control strategies for the tra�c network that guarantee satisfaction of a LTL
formula, we first construct a finite state representation, or abstraction, of the model defined
in Section 3.2. As suggested in Section 2.4.2, tra�c networks are mixed monotone, which
simplifies the abstraction process.

To prove that the tra�c network dynamics developed in Section 3.2 are mixed monotone,
we first require a technical assumption:

Assumption 3.4.1. For all ` 2 L,

c
`

 xcap

`

� �
k`

↵
k`

c
k

8k 2 Lup

`

. (3.16)

Assumption 3.4.1 is a su�cient condition for ensuring that if a link has inadequate
capacity and blocks upstream flow, then this link’s queue will not empty in one time step.
This e↵ectively is an assumption that the time step is su�ciently small to appropriately
capture the queuing phenomenon. Specifically, the saturation flow rate c

`

of link ` is in
units of vehicles per time step and, thus, is implicitly a function of the chosen time step.
Physically, c

`

is required to decrease with decreased time step and thus Assumption 3.4.1 is
satisfied when a su�ciently small time step is used for the model.
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Theorem 3.4.1. The tra�c network model is mixed monotone for any signaling input s 2 S.
In particular, F

`

is increasing in x
k

for k downstream or upstream of link ` or equal to `,
and decreasing in x

k

for k adjacent to link `.

Proof. For fixed s 2 S, we show that F (x, s, d̄) satisfies conditions (2.7) and (2.8) of Propo-
sition 2.2.1 with x, d̄ replacing x, d. Observe that F is continuous and piecewise di↵erentiable
by (3.8)–(3.10) and (3.14), thus it is Lipschitz continuous [Sch12]. The minimum function
in (3.8) implies that F is di↵erentiable almost everywhere. We first have @F`

@d`
2 {0, 1} a.e. by

(3.10), satisfying (2.7). Now consider @F
`

/@x
k

. For (2.8), we consider four exhaustive cases:

• Case 1, k 2 (Ldown

`

[ Lup

`

)\{`}. From (3.8)–(3.10), link k may block the outflow of link `
when k 2 Ldown

`

, or link k may contribute to the inflow to link ` if k 2 Lup

`

, thus we have
@F`
@xk

2 {0, �@f

out

`
@xk

, �
k`

@f

out

k
@xk

, �@f

out

`
@xk

+ �
k`

@f

out

k
@xk

} a.e. where the fourth possibility occurs only

if k 2 Ldown

`

\ Lup

`

. But
@f

out

`
@xk

2 {0, �↵
s⌘(`)

`k

/�
`k

} a.e. and
@f

out

k
@xk

2 {0, 1} a.e., thus @F`
@xk

� 0
a.e., satisfying (2.8).

• Case 2, k = `. We have
@f

out

`
@x`

2 {0, 1} a.e. and, for j 2 Lup

`

,
@f

out

j

@x`
2 {0, ↵

s⌘(j)

j`

/�
j`

}
a.e., however, Assumption 3.4.1 ensures that, a.e., either

@f

out

`
@x`

= 0 or
@f

in

`
@x`

= 0, i.e.,
@f

out

j

@x`
= 0 for all j 2 Lup

`

. Thus @F`
@x`

2 {0, 1, 1 +
P

j2Lup

`
�
j`

@f

out

j

@x`
} a.e. But

P

j2Lup

`
�
j`

@f

out

j

@x`
�

�P
j2Lup

`
↵
s⌘(j)

j`

= �1 by (3.7) (recall that ⌘(j) = ⌧(`) for all j 2 Lup

`

), that is, @f in

`

/@x
`

�
�1, thus @F`

@x`
� 0 a.e., satisfying (2.8).

• Case 3, k 2 Ladj

`

. In this case, inadequate capacity of link k may block flow to link `, as

discussed above. We have @F`
@xk

=
P

j2Lup

`
�
j`

@f

out

j

@xk
. Since

@f

out

j

@xk
2 {0, �↵

s⌘(j)

jk

/�
jk

} a.e., we

have @F`
@xk

 0 a.e., satisfying (2.8).

• Case 4, k 62 Lloc

`

. Then @F`
@xk

= 0, trivially satisfying (2.8).

The following corollary implies that the one-step reachable set of the tra�c dynamics
from a (closed) box I for any given signaling input s is over-approximated by the union of
boxes, one box for each i = 1, . . . nD, where each of these boxes is e�ciently computed by
evaluating F

`

at two particular points for each ` 2 L. The obtained over-approximation is
denoted with the Post operator. This critical result allows e�cient computation of a finite
state representation of the tra�c dynamics, as detailed in Section 3.5.
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Figure 3.2: Approximating the one-step reachable set using mixed monotonicity properties.
(a) A simple network with three links. (b) We are able to bound the one-step reachable set
from the box I

q

under control input s = {1, 2, 3} by evaluating the network dynamics of
each link at two particular extreme points which depend on the topology of the network.
The actual reach set is shaded in blue, the approximation is outlined with a dashed line, and
the results are projected in the x

2

vs. x
3

plane.

Corollary 3.4.1. Consider the set I = {x | x  x  x̄} for x,x 2 X , and for each ` 2 L,
define ⇠

`(x,x) = {⇠`
k

(x
k

, x
k

)}
k2Lloc

`
, ⇠

`

(x,x) = {⇠
`

k

(x
k

, x
k

)}
k2Lloc

`
where

⇠`
k

(x
k

, x
k

) =

(

x
k

if k 2 Ldown

`

[ Lup

`

x
k

if k 2 Ladj

`

(3.17)

⇠
`

k

(x
k

, x
k

) =

(

x
k

if k 2 Ldown

`

[ Lup

`

x
k

if k 2 Ladj

`

.
(3.18)

Then for all s 2 S, Post(I, s) ✓ Post(I, s) where

Post(I, s) :=
nD
[

i=1

{x0 | F
`

(⇠`, sloc
`

, di

`

)  x0
`

 F
`

(⇠
`

, sloc
`

, d
i

`

) 8` 2 L}. (3.19)

Proof. By substituting x,x for x
1

, x
2

and di

`

, d
i

`

for d
1

, d
2

in Theorem 2.2.1 and defining
f(x, d̄) , F (x, s, d̄), we obtain {x0 = F (x, s, d̄) | x 2 I, d̄ 2 D

i

} ✓ {x0 | F
`

(⇠`, sloc

`

, di

`

) 
x0
`

 F
`

(⇠
`

, sloc

`

, d
i

`

) 8` 2 L} for all i = 1, . . . , nD. The corollary follows from the trivial fact
that Post(I, s) = [nD

i=1

{x0 = F (x, s, d̄) | x 2 I, d 2 D
i

}.

Example 3.4.1. Consider the network shown in Fig 3.2(a) with L = {1, 2, 3}, with the

parameters xcap

`

= 50 for all `, (c
1

, c
2

, c
3

) = (20, 5, 30), �
12

= �
13

= 1/2, S = 2L, ↵{1}
12

=

↵{1}
13

= 1, and D = {d̄ | d̄  d̄  d̄} where d̄ = [0 5 0]T and d̄ = [0 8 5]T . Let I
q

= {x | x 
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x  x} where x = [40 15 30]T and x = [40 30 45]T . Applying Corollary 3.4.1, we have

Post(I
q

, {1, 2, 3}) ✓ {x0 | [20 20 10]T  x

0  [30 43 25]T}
= Post(I

q

, {1, 2, 3}). (3.20)

Fig. 3.2(b) plots I
q

and Post(I
q

, {1, 2, 3}) projected in the x
2

vs. x
3

plane. It is interesting
to note that the network dynamics do not constitute a monotone system; this is apparent
from the fact that {F

`

(⇠`, {1, 2, 3}, d
`

)}
`2L 62 Post(I, {1

q

, 2, 3}) and is attributable to a filled
queue on link 3 blocking flow to link 2 from link 1.

3.5 Finite State Representation

To apply the powerful tools of LTL synthesis, we require a finite state representation of the
tra�c network model. In general, obtaining finite state abstractions is a di�cult problem
and existing techniques do not scale well. In this section, we exploit the mixed monotonicity
properties developed above and propose an e�cient method for determining a finite state
representation of the tra�c network dynamics.

3.5.1 Finite State Abstraction

Definition 3.5.1 (Box partition). For finite index set Q, the set {I
q

}
q2Q is a box partition

of X (or simply a box partition), if each I
q

✓ X is a box, [
q2QI

q

= X , and I
q

\ I
q

0 = ;
for all q, q0 2 Q. For q 2 Q, let x

q

= {x
q,`

}
`2L, x

q

= {x
q,`

}
`2L denote the lower and

upper corners, respectively, of I
q

, that is, I
q

= {x | x
q

�1

q

x �2

q

x

q

} where �1

q

= {�1

q,`

}
`2L,

�2

q

= {�2

q,`

}
`2L, and �1

q,`

, �2

q,`

2 {<, }.
For a box partition {I

q

}
q2Q of X , let ⇡ : X ! Q be uniquely defined by the condition

x 2 I
⇡(x)

, that is, ⇡(·) is the natural projection from the domain X to the (index set of)
boxes. A special case of a box partition of a rectangular domain is the following:

Definition 3.5.2 (Gridded box partition). For X = {x = {x
`

}
`2L | x

`

 x
`

 x̄
`

}, a box
partition {I

q

}
q2Q of X is a gridded box partition if for each ` 2 L, there exists N

`

2 {1, 2, . . .}
and a set of intervals {I`

1

, . . . , I`

N`
} such that [N`

i=1

I`

i

= [x
`

, x̄
`

] and for each q 2 Q, there exists
indices q

`

2 {1, . . . , N
`

} such that I
q

=
Q

`2L I`

q`
. For gridded box partitions, we make the

identification Q ⇠= Q
`2L{1, . . . , N

`

} for all ` 2 L.
When a box partition is not a gridded box partition, we say it is nongridded. Fig.

3.3 shows two examples of box partitions, one of which is a gridded box partition. From
a box partition of the tra�c network domain X , we obtain a finite state representation,
or abstraction, of the tra�c network model as follows. Each element of the box partition
corresponds to a single state in the resulting finite state transition system, and to obtain a
computationally tractable approach, we propose a method for e�ciently obtaining a finite
state abstraction using the mixed monotonicity properties developed above:
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Figure 3.3: Stylized depictions of two box partitions. (a) A gridded box partition with
regularly sized intervals. (b) A nongridded box partition.

Definition 3.5.3 (MM-induced finite state abstraction). Given a box partition {I
q

}
q2Q of X ,

the nondeterministic mixed monotonicity-induced (MM-induced) finite state abstraction, or
simply the finite state abstraction, of the tra�c model is the transition system T = (Q, S, !)
where Q is the index set of the box partition, S is the available signaling inputs, and ! is
defined by:

(q, s, q0) 2! if and only if I
q

0 \ Post(cl(I
q

), s) 6= ;. (3.21)

Remark 3. We must take the closure of I
q

in (3.21) as the Post operator and relevant
properties ( e.g., (3.19)) assume a closed box. This allows e�cient algorithms for constructing
! via (3.21) as detailed below.

Note that the MM-induced finite state abstraction is nondeterministic. Nondeterminism
arises from the disturbance input d̄ and from the fact that a collection of continuous states
is abstracted to one discrete state.

By the definition of the finite state abstraction above, for any trajectory x[t], t 2 N
generated by the tra�c model under input sequence s[t], t 2 N, there exists a unique sequence

q[t], t 2 N with each q[t] 2 Q such that x[t] 2 I
q[t]

and q[t]
s[t]! q[t + 1]. A transition system

satisfying this property is said to be a discrete abstraction of the dynamical system (3.14). A
controller synthesized from the abstraction to satisfy an LTL formula as described in Section
3.4 can be applied to the original tra�c network with the same guarantees because the
abstraction simulates the original tra�c network [BK08]. However, abstractions generally
result in unavoidable conservatism, that is, nonexistence of an appropriate control strategy
from the abstraction does not imply nonexistence of a control strategy for the original tra�c
network.

The following corollary to Proposition 2.2.2 implies that the finite state abstraction sug-
gested in Definition 3.5.3 does not introduce excessive conservatism; specifically, Corollary
3.5.1 tells us that if (q, s, q0) 2!, then for each link `, it is possible for the state of link ` to
transition from a state in box I

q

to a state in I
q

0 .
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Corollary 3.5.1. For the MM-induced finite state abstraction defined above, (q, s, q0) 2!
if and only if

9d̄ = {d
`

}
`2L 2 D, 9x0 = {x0

`

}
`2L 2 I

q

0 such that (3.22)

8` 2 L, 9x 2 cl(I
q

) s.t. x0
`

= F
`

(xloc

`

[t], sloc[t], d
`

[t]). (3.23)

Proof. (if). Suppose (3.22)–(3.23) holds for some q, q0 2 Q and s 2 S, and let d̄ 2 D
and x

0 2 I
q

0 be a particular solution such that (3.23) holds for all `. We will show that

x

0 2 Post(cl(I
q

), s). Let i⇤ be such that d̄ 2 D
i

⇤ , and let ⇠`, ⇠
`

be as in Corollary 3.4.1. We
must have

F
`

(⇠`, sloc

`

, di

⇤
`

)  x0
`

 F
`

(⇠
`

, sloc

`

, d
i

⇤

`

) (3.24)

by Theorem 2.2.1. By (3.19), it follows that x

0 2 Post(cl(I
q

), s), and thus (q, s, q0) 2!.
(only if). Suppose (q, s, q0) 2!, it follows that I

q

0 \ Post(cl(I
q

), s) 6= ;, let x

0 2 I
q

0 \
Post(cl(I

q

), s) and let i⇤ 2 {1, . . . , nD} be such that F
`

(⇠`, sloc

`

, di

⇤
`

)  x0
`

 F
`

(⇠
`

, sloc

`

, d
i

⇤

`

) for

all ` 2 L. Proposition 2.2.2 implies that for each `, there exists x 2 cl(I
q

) and d†
`

2 [di

⇤
`

, d
i

⇤

`

]
such that x0

`

= F
`

(xloc

`

, sloc

`

, d†
`

). Indeed, suppose not, then

x̃
`

, sup
x2cl(Iq),d`2[d

i⇤
` ,d

i⇤
` ]

F
`

(xloc

`

, sloc

`

, d
`

) < x0
`

, or (3.25)

x
˜
`

, inf
x2cl(Iq),d`2[d

i⇤
` ,d

i⇤
` ]

F
`

(xloc

`

, sloc

`

, d
`

) > x0
`

. (3.26)

If (3.25) holds, then F
`

(x, s, d̄)  x̃
`

< x0
`

 F
`

(⇠
`

, sloc

`

, d
i

⇤

`

) for all x
q

 x  x

q

and all

d̄
i

⇤  d̄  d̄
i

⇤
, which implies the upper bound in (2.47) is not achieved, contradicting the

first statement of Proposition 2.2.2. A symmetric argument shows that if (3.26) holds, then
Proposition 2.2.2 is again contradicted. Defining d̄ = {d†

`

}
`2L for the particular collection

{d†
`

}
`2L above implies that (3.22)–(3.23) holds, completing the proof.

We remark that, in (3.23), the same choice of x 2 cl(I
q

) will generally not work for
all ` 2 L due to the over-approximation of the reachable set; see [Coo+15a] for further
discussion.

3.5.2 Constructing the Transition System T
We begin with the primary algorithm for calculating T shown in Fig. 3.4, which relies on
Corollary 3.4.1 to compute Post and to construct the finite state abstraction as defined
in Definition 3.5.3. This algorithm requires a function called Successors that takes the
lower and upper corners of a box Y as input, as well as a box partition of X , and returns
the indices of the box partitions which intersects Y . We first present a generic algorithm
for Successors applicable to any box partition. To this end, consider the nonempty box
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1: function Abstraction(network model, D, {I
q

}
q2Q) returns T

2: inputs: network model, a tra�c network model with
update functions {F

`

}
`2L with domain X

and signal input set S
3: D, the disturbance set D = [nD

i=1

Di

4: {I
q

}
q2Q, a box partition X

5: !:= ;
6: for each s 2 S do
7: for each q 2 Q do
8: for i := 1 to nD do
9: ⇠

` := as in (3.17)

10: ⇠

`

:= as in (3.18)
11: y := F

`

(⇠`, sloc

`

, di

`

)

12: y := F
`

(⇠
`

, sloc

`

, d
i

`

)
13: Q0 := Successors(y,y, {I

q

}
q2Q)

14: !:=! [(q ⇥ s ⇥ Q0)
15: end for
16: end for
17: end for
18: return T := (Q, S, !)
19: end function

Figure 3.4: Algorithm for computing a finite state abstraction of the tra�c dynamics. The
algorithm requires function Successors, which can be implemented using di↵erent algorithms,
depending on the structure of the box partition.

I
q

= {x | x �1

q

x �2

q

x} and let Y , {x | y  x  y}. It is straightforward to show that
I
q

\ Y 6= ; if and only if x �1

q

y and y �2

q

x.
The algorithm in Fig. 3.5 utilizes this fact to compute Q0, the indices of the partitions

that intersect a box defined by the corners y and y. The algorithm is convenient because
it works for any box partition of X , however it requires comparing the corners y, y to the
corners of each box I

q

, q 2 Q. Thus, computing T scales quadratically with |Q| since we
must determine if Post(s, I

q

) intersects each box I
q

0 , q0 2 Q for each q 2 Q.
However, the general algorithm in Fig. 3.5 fails to take into account any structure in the

partition itself. For example, for gridded box partitions, we can identify Q0 by comparing
the corners y, y mixed to the partition’s constituent coordinate intervals. For simplicity of
presentation, we consider gridded box partitions {I

q

}
q2Q where, for each ` 2 L, there exists

a set of intervals {I`

1

, . . . , I`

N`
} of the form

I`

1

= [⌘`

0

, ⌘`

1

], I`

j

= (⌘`

j�1

, ⌘`

j

], j = 2, . . . , N
`

(3.27)



CHAPTER 3. CONTROL OF TRAFFIC NETWORKS FROM LINEAR TEMPORAL
LOGIC SPECIFICATIONS 45

1: function Successors(y, y, {I
q

}
q2Q) returns Q0

2: inputs: y and y, points in domain X
3: {I

q

}
q2Q, an interval partition of X

4: initialize: Q0 = ;
5: for each q0 2 Q do
6: if (x

q

�1

q

y)^(y �2

q

x

q

) then
7: Q0 := Q0 [ {q0}
8: end if
9: end for

10: return Q0

11: end function

Figure 3.5: A generic algorithm for overapproximating successor states applicable to any
box partition.

for 0 = ⌘`

0

 ⌘`

1

< ⌘`

2

< . . . < ⌘`

N`�1

< ⌘`

N`
= xcap

`

such that I
q

=
Q

`2L I`

q`
for q = {q

`

}
`2L 2

Q ⇠= Q
`2L{1, . . . , N

`

}. Define

j
`

=

8

<

:

1 if y
`

= 0

max
j2{1,...,N`}

j s.t. ⌘`

j�1

< y
`

else (3.28)

j
`

= min
j2{1,...,N`}

j s.t. y
`

 ⌘`

j

(3.29)

and let Q0 = {{q
`

}
`2L | q

`

2 {j
`

, j
`

+ 1, . . . , j
`

}}. Then I
q

\ Y 6= ; if and only if q0 2 Q0.
Thus, to determine the partitions Q0 that intersect a given box Y , we simply identify the
indices of the intervals that intersects Y along each dimension. Finding j

`

and j
`

can be
done in O(N

`

) time for each `, thus solving for Q0 requires O(|L| max
`2L{N

`

}) time. Thus,
for gridded box partitions, we can instead use the implementation of Successors found in
Fig. 3.6.

The algorithm in Fig. 3.6 may be applied to nongridded box partitions with some mod-
ification. In particular, a nongridded box partition {I

q

}
q2Q can be refined to obtain the

coarsest possible gridded box partition with the property that each box I
q

is the union of
boxes from the refinement. This refinement is used as an index set; to compute the possible
transitions from I

q

for q 2 Q under signaling s 2 S, we compute y and y as in lines 11
and 12 of the algorithm in Fig. 3.4, and then use the refinement along with the algorithm
in Fig. 3.6 to determine Q0, the set of intersected boxes. The refinement does not introduce
additional states in the transition system or require addition reach computations; it is only
used to e�ciently determine Q0. For example, the coarsest refinement of Fig. 3.3(b) parti-
tions the box labeled q

5

into four boxes, which are all labeled q
5

. This method will be faster
if the total number of intervals in the refinement is less than |Q|.
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1: function Successors(y, y, {I
q

}
q2Q) returns Q0

2: inputs: y = {y
`

}
`2L and y = {y

`

}
`2L,

points in domain X
3: Q, a grid interval partition of X
4: for each ` 2 L do
5: j

`

:= as in (3.28)
6: j

`

:= as in (3.29)
7: end for
8: return Q0 := {(j

`

)
`2L | j

`

2 {j
`

, . . . , j̄
`

} 8` 2 L}
9: end function

Figure 3.6: An algorithm for identifying successor states when Q is a gridded box partition.

3.5.3 Augmenting the State Space with Signaling

To capture control objectives that include the state of the signals themselves (which are
modeled as inputs in the finite state abstraction T ), we augment the discrete state space.
Examples of specifications that require this augmention include '

2

and '
3

above or the
specifications “the state of an intersection cannot change more than once per nmin time
steps” or “an input signal cannot remain unchanged for nmax time steps.” In particular, we
propose augmenting the finite state abstraction to encompass both the current state of the
finite state abstraction and the current state of the tra�c signals.

Definition 3.5.4 (Augmented finite state abstraction). The augmented finite state abstrac-
tion of the tra�c network is the transition system T

aug

= (Q, S, !
aug

) where

• Q = Q ⇥ S is the set of discrete states consisting of the box partition index set and the set
of allowed input signals,

• S is the set of allowed input signals,

• !
aug

✓ Q⇥S⇥Q is the set of transitions given by ((q,�), s, (q0,�0)) 2!
aug

for (q,�), (q0,�0) 2
Q if and only if (q, s, q0) 2! and �

0 = s.

3.6 Synthesizing Controllers from LTL Specifications

3.6.1 Synthesis Summary

We omit the details of how a control strategy is synthesized from the nondeterministic
transition system T

aug

for a given LTL control objective, as this is well-documented in the
literature, see e.g. [Yor+12; Hor05]. Instead, we summarize the main steps of this synthesis
as follows: from the LTL control objective, we obtain a deterministic Rabin automaton
that accepts all and only trajectories that satisfy the LTL specification using o↵-the-shelf
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software. We then construct the synchronous product of the Rabin automaton and T
aug

in Definition 3.5.4, resulting in a nondeterministic product Rabin automaton from which a
control strategy is found by solving a Rabin game [Hor05]. The result is a control strategy
for which trajectories of the tra�c network are guaranteed to satisfy the LTL specification.

As the discrete state space is finite, the signaling control strategy takes the form of a
collection of “lookup” tables over the discrete states of the system, Q, and there is one
such table for each state in the Rabin automaton. Thus, implementing the control strategy
requires implementing the underlying deterministic transition system of the specification
Rabin automaton, which is interpreted as a finite memory controller that “tracks” progress
of the LTL specification and updates at each time step. Given the current state of the Rabin
transition system, the controller chooses the signaling input dictated by the current state of
the augmented system Q. Thus, we obtain a state feedback, finite memory controller. Ad-
ditionally, the controller update only requires knowledge of the currently occupied partition
of Q, and thus does not require precise knowledge of the state x.

3.6.2 Computational Requirements

For each q 2 Q and each s 2 S, determining the set {q0 | q
s! q0} requires first computing

Post(I
q

, s), which requires computing F
`

(·) at 2nD points for each ` 2 L. Since F
`

(·, s, ·)
is only a function of the links in Lloc, each computation of this function requires time O(1)
assuming the average number of links at an intersection does not change with network size.
Thus Post(I

q

, s) is computed in time O(|L|nD). Then, we identify the set Q0 of boxes
that intersect Post(I

q

, s). As described in Section 3.5.2, this requires 2|Q| comparisons
of vectors of length |L| and thus is done in time O(|Q||L|) via the algorithm in Fig. 3.5.
However, for gridded box partitions, Q0 is computed in time O(|L| max

`2L{N
`

}) by the
algorithm in Fig. 3.6. Even for nongridded box partitions, Q0 can be computed in time
O(|L| max

`2L{N
`

}) where N
`

is interpreted as the number of intervals of link ` resulting
from the coarsest refinement of the box partition that results in a gridded box partition.
For a gridded partition, |Q| =

Q

`2L N
`

and thus the number of boxes grows exponentially
with the number of links in the network. For a nongridded box partition, the number of
partitions can be substantially lower. Since {q0 | q

s! q0} must be computed for each q and
s, constructing T requires time O(|Q|2|S||L|2nD) when using the algorithm in Fig. 3.5 or
time O(|Q||S| max

`2L{N
`

}|L|2nD) for the algorithm in Fig. 3.6.
We briefly compare these computational requirements to that of polyhedral methods such

as those in [Yor+12]. As the dynamics in (3.8)–(3.10) are piecewise a�ne, such methods
can in principle be applied here. Computing Post(I

q

, s) requires polyhedral a�ne transfor-
mations and polyhedral geometric sums, operations that scale exponentially in |L| [KV10b;
Her+13]. To determine if Post(I

q

, s) intersects another polytope, geometric di↵erences are
required, which again scales exponentially with |L|.
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Figure 3.7: Signalized network consisting of a major corridor road (links 1, 2, 3, and 4) which
intersects minor cross streets (links 5, 6, 7, 8, 9, and 10).

3.7 Case Study

We consider the example network in Fig. 3.7 which consists of a main corridor (links 1, 2, 3,
and 4) with intersecting cross streets (links 5, 6, 7, 8, 9, and 10) and four intersections, a com-
monly encountered network configuration. The gray links exit the network and are not explic-
itly modeled. The network parameters are (xcap

1

, . . . , xcap

10

) = (40, 50, 50, 50, 40, 40, 40, 40, 40, 40),
(c

1

, . . . , c
10

) = (20, 20, 20, 20, 10, 10, 10, 10, 10, 10), �
12

= �
23

= �
34

= �
62

= �
52

= 0.5,

�
73

= �
84

= 0.9, ↵{1}
62

= ↵{1}
52

= 0.5, and all other supply ratios are one, where the time step
is 15 seconds. We assume

D ={d̄ | 0  d̄  [10 0 0 0 10 10 0 0 10 10]}
[ {d̄ | 0  d̄  [10 0 0 0 10 10 10 10 0 0]}. (3.30)

We further assume the available signals are S
v

1

= {{1}, {5, 6}}, S
v

2

= {{2}, {7}}, S
v

3

=
{{3}, {8}}, and S

v

4

= {{4}, {9, 10}}. We wish to find a control policy for the four signalized
intersections that satisfies the LTL property ' = '

1

^ '
2

^ '
3

^ '
4

where

'
1

=⇤⌃(s
v

1

= {5, 6}) ^ ⇤⌃(s
v

2

= {7})

^ ⇤⌃(s
v

3

= {8}) ^ ⇤⌃(s
v

4

= {9, 10}) (3.31)

“Each signal actuates cross street tra�c infinitely often”

'
2

=⌃⇤
�

(x
1

 30) ^ (x
2

 30) ^ (x
3

 30) ^ (x
4

 30)
�

(3.32)

“Eventually, links 1, 2, 3, and 4 have fewer than 30
vehicles on each link and this remains true for all time”

'
3

=⇤
�¬(s

v

4

= {4}) ^ #(s
v

4

= {4}) ! ##(s
v

4

= {4})
�

(3.33)

'
4

=⇤
�¬(s

v

4

= {9, 10}) ^ #(s
v

4

= {9, 10})

! ##(s
v

4

= {9, 10})
�

(3.34)

For '
3

(resp. '
4

), “The signal at intersection v
4

must
actuate corridor tra�c (resp. cross street tra�c) for at
least two sequential time-steps.”

Thus, '
2

reflects our preference for actuating corridor tra�c and ensures that eventually,
links 2, 3, and 4 have “adequate supply” because if the number of vehicles on these links is
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Figure 3.8: (a) A sample trajectory of a näıve strategy that actuates corridor tra�c in a
fixed “green wave” pattern. This policy does not satisfy the desired control objective, in
particular, (3.32) is not satisfied. (b) A sample trajectory resulting from the synthesized
control policy that is guaranteed to satisfy the LTL policy (3.31)–(3.34). In the lower plots
of (a) and (b), green (resp., red) for the signal trace indicates corridor tra�c (resp., cross
street tra�c) is actuated.
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less than 30, then these links can always accept upstream demand, thus avoiding congestion
(congestion occurs when demand is greater than supply). Condition '

1

ensures that, despite
the preference for facilitating tra�c along the corridor, we must infinitely often actuate
tra�c at the cross streets. Conditions '

3

and '
4

are needed if, e.g. there exists crosswalks
at intersection v

4

and a minimum amount of time is required to allow pedestrians to cross.
Note that repeated application of the # (“next”) operator allows us to consider finite time
horizons as in (3.33) and (3.34).

We partition the state space into 408 boxes that favors larger boxes when there are fewer
total vehicles in the network. There are 16 signaling inputs, and thus, the number of states in
the transition system T

aug

is |Q| = 6528. The Rabin automaton generated from ' contains 62
states and one acceptance pair. Computing the finite state abstraction T took 22.4 seconds.
In contrast, the computation would be intractable using polyhedral methods. Computing
the product automaton took 30.9 minutes and computing the control strategy took 15.5
minutes on a Macbook Pro with a 2.3 GHz processor where we use the Rabin game solver
in conPAS2 [Yor+12], however conPAS2 is written in MATLAB and the synthesis process is
likely to be much more e�cient if implemented in C or C++ and optimized. Furthermore,
all computations can be performed o✏ine and some are parallelizable, such as computing
the product automaton. Finally, we note that the computed control strategy is implemented
with minimal online costs.

Fig. 3.8(a) shows a sample trajectory of the network using a näıve coordinated signaling
strategy whereby each intersection actuates corridor tra�c for three time steps and then
cross tra�c for three time steps, and the actuation times are o↵set to facilitate a “green
wave”, a commonly employed strategy for coordinating signaling along a corridor. The
exogenous disturbance is generated uniformly randomly from D. The trajectories are not
guaranteed to satisfy the control objective, in particular, '

2

is violated. Fig. 3.8(b) shows
a sample trajectory of the system with a control strategy synthesized using the finite state
abstraction augmented with signal history and the LTL requirement above. The control
strategy is correct-by-construction and thus guaranteed to satisfy ' from any initial state.

We see that the synthesized controller reacts to increased vehicles on the corridor by
actuating the corridor links, thereby preventing congestion (inadequate supply) along the
corridor. At the same time, the controller actuates cross streets when doing so does not
adversely a↵ect conditions on the corridor (i.e., cause congestion). In contrast, the fixed
time controller in Fig 3.8(a) is not able to react to the current conditions of the network and
fails to prevent congestion along the corridor; in fact, links 2, 3, and 4 periodically reach full
capacity.

3.8 Discussion

We have proposed a framework for synthesizing a control strategy for a tra�c network that
ensures the resulting tra�c dynamics satisfy a control objective expressed in linear temporal
logic (LTL).
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This large collection of possible control objectives is well-suited for modern transporta-
tion infrastructure where there are many, sometimes competing, objectives. For example, the
desire for maintaining large throughput of a main arterial road corridor must be balanced
with the need to actuate minor cross streets. Modern transportation infrastructure also
requires consideration of pedestrian movements and other transportation such as bicycles,
which leads to additional constraints, e.g. “minimimum green times” that allow adequate
time for pedestrians to cross a street. In addition, as population densities increase, control
approaches that actively mitigate congestion are increasingly necessary and di�cult to de-
sign. Finally, increased demand also means that tra�c infrastructure is often operated near
capacity, and thus it is critical that control methods are robust to unpredictable conditions
such as tra�c accidents, inclement weather, or “one-o↵” events such as concerts or sports
events.

In addition to o↵ering a novel domain for applying formal methods tools in a control
theory setting, we have identified and exploited key properties of tra�c networks to allow
e�cient computation of a finite state abstraction. Future research will investigate systematic
methods for determining an appropriate box partition to further reduce the number of states
in the computed abstraction. Additionally, tra�c networks are often composed of tightly
coupled neighborhoods and towns connected by sparse longer roads, and such networks
may be amenable to a compositional formal methods approach using an assume-guarantee
framework [CGP99].
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Chapter 4

A Compartmental Model for Tra�c
Flow Networks

Despite the large number of tra�c modeling approaches considered in the literature (see
[Hel01; HB01] for reviews), little attention has been paid to the qualitative dynamical prop-
erties of tra�c flow models for general network topologies. For example, models such as
[PBH90; MP90; Leb96] and the celebrated Cell Transmission Model (CTM) of Daganzo
[Dag94; Dag95] were primarily developed for simulation with few analytical results avail-
able. The primary exception is [Gom+08] which provides a thorough investigation of the
CTM when modeling a stretch of highway. The authors characterize equilibria and stability
properties for this specific network class, but the results are not extended to more general
networks, the authors assume a specific class of linear supply and demand functions, and
the dynamics resulting from infeasible onramp demands are not fully analyzed.

In Chapter 3, we focused on control synthesis for a discrete-time model of tra�c flow
along an arterial network. We identified properties of the flow model that enabled e�cient
abstraction and control synthesis. In this chapter, we propose a general model that encom-
passes the CTM as defined in [Dag94; Dag95; Gom+08] and extends the model to general
nonlinear supply and demand functions and to more general network topologies. Using this
model, we significantly extend the few existing results on equilibria and convergence such
as [Gom+08] and we present a simple linear program for obtaining a ramp metering control
strategy that achieves the maximum possible steady-state network throughput.

Our work is related to the dynamical flow networks recently proposed in [Com+13a;
Com+13b] and further studied in [CLS15]. In [Com+13a; Com+13b], downstream supply is
not considered and thus downstream congestion does not a↵ect upstream flow, an unrealistic
assumption for tra�c modeling. In [CLS15], the authors allow flow to depend on the density
of downstream links, but the paper focuses on throughput optimality of a particular class of
routing policies that ensure the resulting dynamics are monotone [Hir85; AS03]. In contrast,
the model proposed here is generally not monotone. Furthermore, the adaptation to the CTM
described briefly in [CLS15, Section II.C] di↵ers from our model in the following important
respects: the model as discussed in [CLS15, Section II.C] assumes a path graph network
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topology, requires identical links (i.e., identical supply and demand functions), and only
considers trajectories in the region in which supply does not restrict flow (that is, ↵v(x) = 1
for all v 2 V in our model), which is shown to be positively invariant given their assumptions.
In this work, we generalize each of these restrictions.

In a separate direction of research, many network models attempt to apply single road
PDE models such as [LW55; Ric56] directly to networks, see [GP06] for a thorough treatment.
Recent results such as [CC12] and [Han+12] provide analytical tools for tra�c network
estimation and modeling using PDE models. The CTM and related models, including our
proposed model, can be considered to be a discretization of an appropriate PDE model
[Leb96]. Alternatively, these models and the model we propose in this work fit into the broad
class of compartmental systems that model the flow of a substance among interconnected
“compartments” [San78; MKO78; JS93].

In Section 4.1, we propose the tra�c network model. In Section 4.2, we discuss conditions
under which our model is and is not monotone. In Section 4.3, we characterize existence and
uniqueness of equilibrium flows. We demonstrate how the preceding analysis can be used for
ramp metering in Section 4.4. Some of the proofs are collected at the end in an appendix.

4.1 Dynamic Model of Tra�c

4.1.1 Network Structure

A tra�c network consists of a directed graph G = (V , O) with junctions V and ordinary
links O along with a set of onramps R which serve as entry points into the network. For
` 2 O, let ⌘(`) denote the head vertex of link ` and let ⌧(`) denote the tail vertex of link
`, and tra�c flows from ⌧(`) to ⌘(`). Each onramp ` 2 R directs an exogenous input flow
onto G via a junction, and ⌘(`) 2 V for ` 2 R denotes the entry junction for onramp `. By
convention, ⌧(`) = ; for all ` 2 R. Ordinary links (resp., onramps) are denoted with a solid
(resp., dashed) arrow in figures.

Assumption 4.1.1. The tra�c network graph is acyclic.

Acyclicity is a reasonable assumption when modeling a portion of the road network of
particular interest. For example, the road network leading out of a metropolitan area during
the evening commute may be modeled as an acyclic graph where road links leading towards
the metropolitan area are not modeled due to low utilization by commuters.

Let L , O[R. For each v 2 V , we denote by Lin

v

⇢ L the set of incoming links to node v
and by Lout

v

⇢ L the set of outgoing links, i.e., Lin

v

= {` : ⌘(`) = v} and Lout

v

= {` : ⌧(`) = v}.
We assume Lin

v

6= ; for all v 2 V , thus the network flows start at onramps. Furthermore,
we assume Lout

⌘(`)

6= ; for all ` 2 R, i.e., onramps always flow into at least one ordinary link
downstream.
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We define Rstart , {` 2 R : Lin

⌘(`)

\ O = ;} to be the set of links that lead to junctions

that have only onramps as incoming links, and Vsink , {v 2 V : Lout

v

= ;} to be the set of
junctions that have no outgoing links.

4.1.2 Link supply and demand

For each link ` 2 O, we associate the time-varying density x
`

(t) 2 [0, xjam

`

] where xjam

`

2
(0, 1) is the jam density of link `. For ` 2 R, we associate the time-varying density
x
`

(t) 2 [0, 1), thus onramps have no maximum density, that is, they act as “queues”. We
define x , {x

`

}
`2L.

Furthermore, we assume each ` 2 L possesses a demand function �out

`

(x
`

) that quantifies
the amount of tra�c wishing to flow downstream, and we assume each ` 2 O possesses
a supply function �in

`

(x
`

). We make the following assumption on the supply and demand
functions:

Assumption 4.1.2. For each ` 2 O:

A1. The demand function �out

`

(x
`

) : [0, xjam

`

] ! R�0

is strictly increasing and continuously
di↵erentiable1 on (0, xjam

`

) with �out

`

(0) = 0, and d

dx`
�out

`

(x
`

) is bounded above.

A2. The supply function �in

`

(x
`

) : [0, xjam

`

] ! R�0

is strictly decreasing and continuously
di↵erentiable on (0, xjam

`

) with �in

`

(xjam

`

) = 0, and d

dx`
�in

`

(x
`

) is bounded below.

For each ` 2 R:

A3. In addition to A1, �out

`

(x
`

) is bounded above with supremum �
out

`

, sup �out

`

(x
`

) and
there exists M

`

> 0 such that2 d

dx`
�out

`

(x
`

)  M
`

(1 + x
`

)�2 for all x
`

.

Assumption 4.1.2 implies that for each ` 2 O, there exists unique xcrit

`

such that �out

`

(xcrit

`

) =
�in

`

(xcrit

`

) =: �crit

`

. Fig. 4.1 depicts examples of supply and demand functions.

4.1.3 Dynamic Model

We now describe the time evolution of the densities on each link. The domain of interest is

X , {x : x
`

2 [0, 1) 8` 2 R and x
`

2 [0, xjam

`

] 8` 2 O}. (4.1)

Let X � denote the interior of X .

1

These assumptions are made to simplify the exposition but can be relaxed to Lipschitz continuity and

nonstrict monotonicty beyond the critical density; such functions are considered in the examples.

2

The bound on the derivative of �

out

` (x`) is a very mild technical condition used in the proofs of some

propositions. For example, the condition is satisfied when �

out

` (x`) attains its maximum.
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(a) Ordinary link, ` 2 O (b) Onramp link, ` 2 R
Figure 4.1: Plot of prototypical supply and demand functions �in(x) and �out(x) for (a) an
ordinary road link, and prototypical demand function �out(x) for (b) an onramp link.

For each onramp ` 2 R, we assume there exists exogenous input flow d
`

(t). Furthermore,
for each ` 2 L we subsequently define an output flow function f out

`

(x), and for each ` 2 O
we define an input flow function f in

`

(x), such that

ẋ
`

= F
`

(x, t) ,
(

d
`

(t) � f out

`

(x) if ` 2 R
f in

`

(x) � f out

`

(x) if ` 2 O (4.2)

where the functions f in

`

(x) and f out

`

(x) are defined below. When d
`

(t) ⌘ d
`

for constant
d
`

for all ` 2 R, the dynamics are autonomous and we write F
`

(x) instead. We define
F (x, t) ,

⇥

F
1

(x, t) · · · F|L|(x, t)
⇤0

for some enumeration of |L| where 0 denotes transpose,
and we similarly define F (x) when the dynamics are autonomous.

For each `, k 2 L,

�
`k

2 [0, 1] (4.3)

is the split ratio describing the fraction of vehicles flowing out of link ` that are routed to
link k. It follows that �

`k

> 0 only if ⌘(`) = ⌧(k). We require that
P

k2Lout

v
�
`k

 1 for all

` 2 Lin

v

and 1 �P
k2Lout

⌘(`)
�
`k

is interpreted to be the fraction of the outflow on link ` that is

routed o↵ the network via, e.g., an infinite capacity o↵ramp. To ensure continuity of f out

`

(·),
we make the following assumption:

Assumption 4.1.3. If v 62 Vsink, then �
`k

> 0 for all ` 2 Lin

v

and all k 2 Lout

v

.

A large variety of phenomenological rules for determining the outflows of road links have
been proposed in the literature; see [Leb05; LK04] for several examples. We employ the
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proportional priority, first-in-first-out (PP/FIFO) rule for junctions adapted from [KV10a]:

PP/FIFO Rule. For v 2 Vsink, fout

`

(x) , �out

`

(x
`

) for all ` 2 Lin

v

. For each v 2 V\Vsink,
we must ensure that the inflow of each outgoing link does not exceed the link supply. Define

↵v(x) ,max
↵2[0,1]

↵ (4.4)

s.t. ↵
X

j2Lin

v

�
jk

�out

j

(x
j

)  �in

k

(x
k

) 8k 2 Lout

v

. (4.5)

By scaling the demand of each link by ↵v(x), we ensure that the supply of each downstream
link is not violated:

fout

`

(x) , ↵v(x)�out

`

(x
`

) 8` 2 Lin

v

. (4.6)

To complete the model, we determine f in

`

(x) from conservation of flow:

f in

`

(x) =
X

k2Lin

⌧(`)

�
k`

fout

k

(x) 8` 2 O. (4.7)

The format of (4.4) emphasizes the fact that the outflow of a link is the largest possible
flow such that neither link demand nor downstream supply is exceeded and such that the
outflow of all incoming links at a junction is proportional to the demand of these links. This
proportionality constraint gives rise to the proportional priority terminology. The fixed turn
ratios along with the supply and demand restrictions implies that a lack of supply of an out-
going link restricts flow to other outgoing links, a phenomenon known in the transportation
literature as a first-in-first-out (FIFO) property [KV10a; Dag95].

4.1.4 Basic Properties of the PP/FIFO rule

We first note two properties captured by the proposed network flow model.

Lemma 4.1.1. A simple consequence of the PP/FIFO rule is for all x 2 X ,

f in

`

(x)  �in

`

(x
`

) 8` 2 O (4.8)

fout

`

(x)  �out

`

(x
`

) 8` 2 L. (4.9)

We note that the domain X in (4.1) is easily seen to be positively invariant. Furthermore,
it is not di�cult to establish Lipschitz continuity of (4.2) which ensures global existence
and uniqueness of solutions for piecewise continuous input flows {d

`

(t)}
`2R [Hal80, Chapter

I]. Now suppose d
`

(t) ⌘ d
`

for some constant d
`

for all ` 2 R so that the dynamics
are autonomous. From the PP/FIFO rule, we conclude that f out

`

(x), and thus F
`

(x), is a
continuous selection of di↵erentiable functions determined by the constraints (4.5), that is,
F (x) is piecewise di↵erentiable [Sch12, Section 4.1].
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4.2 Lack of Monotonicity and Its Advantages

The tra�c network with constant input flows is monotone [Hir85] if, for all links ` 2 L and
x 2 X �, we have

@F
`

(x)

@x
k

� 0 8k 6= ` (4.10)

where, when F
`

(x) is not di↵erentiable (which occurs on a set of measure zero), we interpret
the partial derivative in an appropriate directional sense, see [Sch12, Scetion 4.1.2] for details.
Cooperative systems are order preserving systems with respect to the standard order defined
by the positive orthant and are a special class of monotone systems [Hir85; AS03]. We show
that tra�c networks are, in general, not cooperative. In the following example, increased
demand of an incoming link at a junction causes a decrease in the inflow entering an outgoing
link.

Example 4.2.1. Consider a road network with two onramps labeled {1, 2} and two ordinary
links labeled {3, 4} as shown in Fig. 4.2(b). Suppose that �

13

= �
14

= 1

2

, �
23

= 2

3

, and
�

24

= 1

3

and {v
2

, v
3

} = Vsink. Furthermore, suppose �out

i

(⇢
i

) = max{⇢
i

, c}, for i = 1, 2 and
c 2 R

>0

. Now consider x = (x
1

, x
2

, x
3

, x
4

) such that x
1

= x
2

< 2

9

c and suppose the supply
of link 3 is the limiting factor for the flow through junction v

1

so that f in

3

(x) = �in

3

(x) =
↵v

1(x)
�

1

2

x
1

+ 2

3

x
2

�

= 7

6

↵v

1(x)x
1

and f in

4

(x) = 5

6

↵v

1(x)x
1

. Now consider x̄ = (x̄
1

, x̄
2

, x̄
3

, x̄
4

) ,
(x

1

, 9

2

x
2

, x
3

, x
4

). The supply of link 3 is unchanged, but the total demand from links 1 and 2
for link 3 has tripled so that ↵v

1(x̄) = 1

3

↵v

1(x). Then

f in

4

(x̄) = ↵v

1(x̄)
�

1

2

x̄
1

+ 1

3

x̄
2

�

= 2

3

↵v

1(x)x
1

< f in

4

(x) (4.11)

Since fout

4

(x) = fout

4

(x̄) = �out

4

(x
4

), we have ˙̄x
4

(0) < ẋ
4

(0) and thus there exists ✏ > 0
such that x

4

(✏) > x̄
4

(✏), showing the system is not cooperative.

Far from being a negative property of the model, lack of cooperativity is the main reason
why ramp metering can increase network throughput or decrease average travel time. By
metering the outflow of onramp 2 in Example 4.2.1, it would be possible to increase the
inflow to link 4, thereby increasing throughput.

4.3 Equilibria and Stability With Constant Input

Flows

We now characterize the equilibria possible from the above model with constant input flow
{d

`

}
`2R. We will investigate the case where lim

t!1 F
`

(x(t)) = 0 for all ` 2 L, and, when
input flow exceeds network capacity, the case where lim

t!1 F
`

(x(t)) = 0 for all ` 2 O and
lim

t!1 f out

`

(x(t)) = c
`

 d
`

for some constant c
`

for all ` 2 R. In the latter case, the density
of some onramps (specifically, those with c

`

< d
`

) will diverge to infinity, but we will see that
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3
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Figure 4.2: (a) A network that models a stretch of highway with onramps. Each junction
is such that |Lout

v

|  1, i.e., each junction is a merge. “O↵ramps” are only modeled through
the split ratios at junctions. This system is cooperative. (b) A network with two onramps
{1, 2} and two ordinary links {3, 4}. This example system is not cooperative due to the
proportional priority assumption at junction v

1

. In particular, increased density on link 2
can decrease the flow entering link 4.

a meaningful definition of equilibrium nonetheless exists. From a practical point of view,
such a characterization is useful, e.g., during “rush hour” when the input flow of a tra�c
network may exceed network capacity for a limited but extended period of time.

Define f out

R (x) ,
⇥

f out

1

(x) . . . f out

|R| (x)
⇤0
, and likewise for f in

O (x) and f out

R (x) for some
enumeration of O and R. The dynamics (4.7) have the form

f in

O (x) = Af out

O (x) + Bf out

R (x). (4.12)

where A
`k

= �
k`

for `, k 2 O and B
`k

= �
k`

for ` 2 O, k 2 R. Acyclicity ensures (I � A)
is invertible: this can be seen by noting that the only solution to the equation f = Af is
f = 0, which follows by a cascading argument since f

`

= 0 for ` 2 L
1

, {` 2 O | Lin

⌧(`)

⇢ R}
since A

`k

= 0 for all k for ` 2 L
1

, then f
`

= 0 for ` 2 L
2

, {` 2 O | Lin

⌧(`)

⇢ L
1

[ R} since
A

`k

= 0 for k 62 L
1

for ` 2 L
2

, etc. That is, a nonzero solution implies vehicles remain in the
network indefinitely, implying existence of a cycle in the network.

4.3.1 Feasible input flows

Definition 4.3.1. The constant input flow {d
`

}
`2R is feasible if there exists density xe ,

{xe

`

}
`2L 2 X such that

fout

`

(xe) = d
`

8` 2 R (4.13)

fout

`

(xe) = f in

`

(xe) 8` 2 O. (4.14)

We define f e

`

, fout

`

(xe) for all ` 2 L, and the set {f e

`

}
`2L is called an equilibrium flow.
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If the input flow is not feasible, it is said to be infeasible. It is clear that for a feasible
input flow {d

`

}
`2R, we must have for all ` 2 R:

d
`

 �
out

`

if there exists x

⇤
`

< 1 such that

�

out

`

(x

`

) = �

out

`

for all x

`

� x

⇤
`

(4.15)

or d
`

< �
out

`

if �out

`

(x
`

) < �
out

`

for all x
`

2 [0, 1). (4.16)

Proposition 4.3.1. An equilibrium flow {f e

`

}
`2L with corresponding equilibrium densities

{xe

`

}
`2L satisfies

f e

`

 �crit

`

8` 2 O. (4.17)

Proof. Suppose there exists ` 2 O such that f e

`

> �crit

`

. By the definition of equilibrium
flow, we have f out

`

(xe) = f in

`

(xe) = f e

`

. Since f out

`

(x)  �out

`

(x
`

) for all x by (4.8), we have
�out

`

(xe

`

) > �crit

`

. But by Assumption 4.1.2, for all x
`

such that �out

`

(x
`

) > �crit

`

, it must be
�in

`

(x
`

)  �crit

`

and thus f in

`

(xe) = f e

`

> �in

`

(x
`

), which contradicts (4.9).

Proposition 4.3.2. Assume (4.15)–(4.16). An input flow {d
`

}
`2R is feasible if and only if

(I � A)�1Bd  �crit (4.18)

where d ,
⇥

d
1

. . . d|R|
⇤0
, �crit ,

⇥

�crit

1

· · · �crit

|O|
⇤0
, and  denotes elementwise inequality.

Furthermore, for feasible input flows, the equilibrium flow {f e

`

}
`2O is unique.

Proof. (uniqueness) By (4.12), an equilibrium flow of a feasible input flow satisfies

f e

O = Af e

O + Bd (4.19)

where f e

O is the vector of equilibrium flows for O. Thus f e

O = (I � A)�1Bd is the unique
solution to (4.19).

(only if) Applying Proposition 4.3.1 to the unique f e

O above gives necessity.
(if) Let f e

O = (I � A)�1Bd be a candidate equilibrium flow. From (4.18), there exists
unique {xe

`

}
`2O such that f e

`

= �out

`

(xe

`

) for which f e

`

 �in

`

(xe

`

) for all ` 2 O. Furthermore,
there exists {xe

`

}
`2R such that �out

`

(xe

`

) = d
`

for all ` 2 R by (4.15)–(4.16). We now show
that these flows satisfy the PP/FIFO rule. We first show that ↵v(xe) = 1. Considering
(4.4)–(4.5), for all v 2 L\Vsink:

X

`2Lin

v

�v

`k

�out

`

(xe

`

) =
X

`2(Lin

v \O)

�v

`k

f e

`

+
X

`2(Lin

v \R)

�v

`k

d
`

8k 2 Lout

v

(4.20)

= f e

k

8k 2 Lout

v

(4.21)

 �in

k

(xe

k

) 8k 2 Lout

v

(4.22)

where (4.21) follows from (4.19), and thus (4.4)–(4.6) is satisfied when ↵v(xe) = 1 for all
v 2 V . Also, f out

`

(x) = �out

`

(x
`

) for all ` 2 Lin

v

for all v 2 Vsink and (4.7) follows from (4.19),
thus proving su�ciency.
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While the equilibrium flow for a feasible input flow is unique by Proposition 4.3.2, in
general, multiple equilibria densities may support this equilibrium flow. However there does
exists a unique equilibrium for which each link is in freeflow :

Definition 4.3.2. An ordinary link ` 2 O is said to be in freeflow if fout

`

(x) = �out

`

(x
`

).
Otherwise, link ` is congested.

Note that at equilibrium, if link ` 2 O is in freeflow, then necessarily x
`

 xcrit

`

.

Corollary 4.3.1. For a feasible input flow, there exists a unique equilibrium density {xe

`

}
`2L

such that each link ` 2 O is in freeflow.

Proof. Such an equilibrium density is constructed in the proof of the “if” direction in the
proof of Proposition 4.3.2.

Furthermore, if the input flow is strictly feasible, then the equilibrium density is unique,
and, moreover, it is asymptotically stable:

Definition 4.3.3. A feasible input flow {d
`

}
`2R is said to be strictly feasible if the corre-

sponding (unique) equilibrium flow satisfies f e

`

< �crit

`

for all ` 2 O.

Proposition 4.3.3. If the input flow {d
`

}
`2R is strictly feasible, then the equilibrium density

is unique and it is locally asymptotically stable.

Proof. (uniqueness) We claim if f e

`

< �out

`

(xe

`

) for any ` 2 L, then there exists k 2 O
such that f e

k

= �crit

k

. For now we take this claim to be true and note that it contradicts
the hypothesis of strictly feasible flows. Thus we conclude f e

`

= �out

`

(xe

`

) for all ` 2 L.
Furthermore, since �out

`

(·) is strictly increasing, xe

`

is unique.
To prove the claim, suppose f e

`

< �out

`

(xe

`

) for some ` 2 L and f e

k

< �crit

k

for all k 2 O.
There must exist `0 2 Lout

⌘(`)

such that f e

`

0 = �in

`

0 (xe

`

0), i.e. there exists a lack of supply on link

`0 since the flow on link ` is less than demand. Since f e

`

0 < �crit

`

0 by assumption, we then
have f e

`

0 < �out

`

0 (xe

`

0) and we find another `00 2 Lout

⌘(`

0
)

such that f e

`

00 = �in

`

00(xe

`

00), but this cannot
continue indefinitely since the tra�c network is acyclic and finite, thus there exists k 2 O
such that f e

k

= �crit

k

.
(stability) Because the tra�c network is directed and acyclic, it is a standard graph

theoretic result that there exists a topological ordering on the junctions. From this topo-
logical ordering on the junctions, we enumerate the links with the numbering function
e(·) : L ! {0, . . . , |L|} where e(`) is the enumeration of link ` such that for each v and
` 2 Lin

v

, k 2 Lout

v

, we have e(`) < e(k) (Such an enumeration can be accomplished by, e.g.,
first enumerating Lin

v

1

, then Lin

v

2

, etc. where v
1

, . . . , v|V| are the junctions in topological order).
Furthermore, f out

`

(xe) = �out

`

(xe

`

) for all `, and it is straightforward to show

@F
`

@x
`

(xe) < 0 8` 2 L (4.23)
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and

@F
`

@x
k

(xe) = 0 if k 62 Lin

⌧(`)

, (4.24)

thus the Jacobian matrix of the tra�c network flow evaluated at the equilibrium, @F

@x

(xe),
is lower triangular with strictly negative entries along the diagonal and therefore Hurwitz.
Asymptotic stability within a neighborhood of the equilibrium follows from, e.g., [Kha02,
Theorem 4.7].

Note that Corollary 4.3.1 implies each link ` 2 O is in freeflow for the unique equilibrium
in Proposition 4.3.3. Stability in Proposition 4.3.3 can also proved using the Lyapunov
function ||F (x)||

1

. We remark that the dynamics are cooperative when all links are in free-
flow. This fact allows us to conclude convergence to the equilibrium from the invariant box
{x : 0  x

`

 xe

`

8` 2 L}, and the argument can be extended to (not necessarily strictly)
feasible input flows as in the following:

Proposition 4.3.4. For a feasible input flow, all trajectories x(t) such that 0  x
`

(0) 
xe

`

for all ` 2 L converge to {xe

`

}
`2L where {xe

`

}
`2L is the unique equilibrium density in

Corollary 4.3.1 for which all links ` 2 O are in freeflow. That is,

lim
t!1

x
`

(t) = xe

`

if 0  x
`

(0)  xe

`

8` 2 L. (4.25)

Proof. Let A , {x : 0  x
`

 xe

`

8` 2 L} and note that ↵v(x) = 1 for all x 2 A, v 2 V since
A is contained within the freeflow region. In particular, f out

`

(x) = �out

`

(x
`

) for all ` 2 L for
x 2 A.

We now consider the general scalar system ẋ = s(t) � g(x), x(t) 2 R with s(·), g(·)
di↵erentiable and monotone increasing in t and x, respectively. We claim that if ẋ(0) � 0,
then ẋ(t) � 0 for all t. Indeed, suppose ẋ(⌧) = 0 for some ⌧ � 0. Then d

dt

ẋ
�

�

t=⌧

=
�

ṡ(t) + g0(x)ẋ
�

�

�

t=⌧

= ṡ(⌧) � 0.
Now consider ` 2 Rstart. It follows that if x

`

(0) = 0, then ẋ
`

= d
`

��out

`

(x
`

) and ẋ
`

(0) � 0.
From the above analysis, we have ẋ

`

� 0 for all t � 0. Furthermore, f out

`

(x(t)) = �out

`

(x
`

(t))
is monotonically increasing as a function of t. Since ẋ

`

= f in

`

(x) � �out

`

(x
`

) where f in

`

(x) =
P

k2Lin

⌧(`)
�⌧(`)

k`

�out

k

(x
k

), we proceed inductively to conclude that f in

`

(x(t)) is monotonically

increasing in time and ẋ
`

� 0 for all ` 2 L.
Finally, observe that @F`

@xk
(x) � 0 for all k 6= ` and x 2 A. Therefore, ẋ = F (x) is

cooperative [Hir85] within A. For such systems, if x̃(0)  x(0)  x̄(0) then x̃(t)  x(t)  x̄(t)
for all t � 0 where x̃(t), x(t), and x̄(t) are trajectories of ẋ = F (x). Taking x̃(0) = 0 and
x̄(t) ⌘ xe, we have that x̃(t) is monotonically increasing in time and bounded above by xe and
therefore converges to an equilibrium. Corollary 4.3.1 implies xe is the unique equilibrium
in A, thus lim

t!1 x̃(t) = xe, concluding the proof.
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4.3.2 Infeasible input flows

We now wish to extend a notion of equilibrium to the case when the input flow is infeasible.
We have already seen that the density of an ordinary link ` 2 O will not exceed the jam
density xjam

`

for any input flow. Thus any density accumulation due to the infeasible input
flow must occur on the onramps R. It is therefore reasonable to consider an equilibrium
condition in which the densities, input flows, and output flows on the ordinary links, and
the output flows on onramp links, approach a steady state while onramp densities may grow
without bound.

Definition 4.3.4. For any input flow {d
`

}
`2R, the collection {f e

`

}
`2L is called an equilibrium

flow of the tra�c network system if there exists a set {xe

`

}
`2L with

0  xe

`

 xjam

`

8` 2 O, and 0 xe

`

 1 8` 2 R (4.26)

such that

f e

`

= fout

`

(xe) = f in

`

(xe) 8` 2 O and f e

`

= fout

`

(xe) 8` 2 R (4.27)

and, for all ` 2 R, either f e

`

= d
`

, or f e

`

< d
`

and xe

`

= 1 where {fout

`

(xe)}
`2O, {f in

`

(xe)}
`2O,

and {fout

`

(xe)}
`2R are determined by the PP/FIFO rule and we interpret �out

`

(1) , �
out

`

for
all ` 2 R. By a slight abuse of nomenclature, we call {xe

`

}
`2L an equilibrium density.

Definition 4.3.4 naturally extends the definition for equilibrium flow given in Defini-
tion 4.3.1 to the case when the input flow is infeasible.

Proposition 4.3.5. For constant input flows {d
`

}
`2R, an equilibrium flow exists.

The proof is provided in the appendix.
We now consider the uniqueness of equilibrium flows. We first consider the case when

the tra�c network graph is a polytree:

Definition 4.3.5. A polytree is a directed acyclic graph with exactly one undirected path
between any two vertices.

Equivalently, a polytree is a weakly connected directed acyclic graph for which the under-
lying undirected graph contains no cycles. Figs. 4.4(a), 4.2(a), and 4.2(b) depict polytrees.

Proposition 4.3.6. Given constant infeasible input flow {d
`

}
`2R. If the tra�c network

graph G is a polytree, then the equilibrium flow {f e

`

}
`2L is unique.

Proof of Proposition 4.3.6. Suppose there exists two equilibrium flows, {f e

`

}
`2L and {f̃ e

`

}
`2L

with corresponding equilibrium densities {xe

`

}
`2L and {⇢̃e

`

}
`2L, and without loss of generality,

assume f̃ e

`

< f e

`

for a particular link `. If ` 2 O, by conservation of flow and fixed turn ratios
(4.7), there must exist k 2 Lin

⌧(`)

such that f̃ e

k

< f e

k

. Continuing by induction, we conclude
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that there must exist j 2 R such that f̃ e

j

< f e

j

, thus we assume, without loss of generality,
` 2 R.

Observe that, since ` is an onramp and therefore f e

`

 d
`

, we must have f̃ e

`

< d
`

and thus
�out

`

(⇢̃e

`

) > f̃ e

`

. Furthermore, �out

`

(⇢̃e

`

) � �out

`

(xe

`

).
Let `

1

, `. It is the case that for any link `
i

2 L for which �out

`i
(⇢̃e

`i
) > f̃ e

`i
, there must

exist `
i+1

2 Lout

⌘(`i)
such that f̃ e

`i+1

= �in

`i+1

(⇢̃e

`i+1

), i.e. there must exist an outgoing link with
insu�cient supply to meet the demand.

Suppose, in this case, that f̃ e

`i+1

< f e

`i+1

. Since f e

`i+1

 �in

`i+1

(xe

`i+1

) by (4.8), we conclude
�in

`i+1

(⇢̃e

`i+1

) < �in

`i+1

(xe

`i+1

) and since �in

`i+1

(·) is decreasing, we must have ⇢̃e

`i+1

> xe

`i+1

. There-

fore �out(⇢̃e

`i+1

) > �out(xe

`i+1

). Furthermore it must be �out

`i+1

(⇢̃e

`i+1

) > f̃ e

`i+1

, and we conclude

there exists `
i+2

2 Lout

⌘(`i+1

)

such that f̃ e

`i+2

= �in

`i+2

(⇢̃e

`i+2

). Continuing by induction, we create

a sequence `
1

, `
2

, . . . , `
i

0

until we reach link `
i

0

with f̃ e

`i
0

< f e

`i
0

and �out

`i
0

(⇢̃e

`i
0

) � �out

`i
0

(xe

`i
0

) for

which there exists `
i

0

+1

2 Lout

⌘(`i
0

)

such that f̃ e

`i
0

+1

= �in

`i
0

+1

(⇢̃e

`i
0

+1

) but f̃ e

`i
0

+1

� f e

`i
0

+1

(Such a

i
0

must exist since the tra�c network contains no directed cycles).
Now, due to fixed turn ratios, there must exist `0 2 Lin

⌘(`i
0

)

such that f̃ e

`

0 > f e

`

0 and, by the

PP/FIFO rule,

�out

`

0 (⇢̃e

`

0) > �out

`

0 (xe

`

0). (4.28)

Arguing as before, we thus conclude there exists k
1

2 R such that f̃ e

k

1

> f e

k

1

for which
�out

k

1

(xe

k

1

) � �out

k

1

(⇢̃e

k

1

). By a symmetric argument as above, we establish a sequence k
1

, . . . , k
j

0

until we reach link k
j

0

with f̃ e

kj
0

> f e

kj
0

and �out

kj
0

(xe

kj
0

) � �out

kj
0

(⇢̃e

kj
0

) for which there exists

k
j

0

+1

2 Lout

⌘(kj
0

)

such that f e

kj
0

+1

= �in

kj
0

+1

(xe

kj
0

+1

) but f e

kj
0

+1

� f̃ e

kj
0

+1

, leading to the existence

of k0 2 Lin

⌘(kj
0

)

such that f e

k

0 > f̃ e

k

0 and �out

k

0 (xe

k

0) > f out

k

0 (⇢̃e

k

0). Observe that we must have

k
j

0

6= `0 by (4.28).
By another parallel argument, this then implies the existence of a link m for which f̃ e

m

<
f e

m

and �out

m

(⇢̃e

m

) � �out

m

(xe

m

) for which there exists m
1

2 Lout

⌘(m)

such that f̃ e

m

1

= �in

m

1

(⇢̃e

m

1

)

and f̃ e

m

1

� f e

m

1

, and likewise we have m 6= k0. Furthermore, m
1

6= `
i

0

, as this would imply a
cycle in the underlying undirected graph. However, this process cannot continue indefinitely
since the tra�c network is finite.

If the undirected tra�c network does contain cycles, then equilibrium flows may not be
unique when the input flow is infeasible. Such examples with nonunique equilibrium flows
are not di�cult to construct, as the following example shows.

Example 4.3.1. Consider the tra�c network shown at the top of Fig. 4.3 with supply and
demand curves given below in Fig. 4.3, and assume d

1

= d
1

0 = 125. The table at the bottom
of Fig. 4.3 gives values for an equilibrium flow for this infeasible demand. But, by symmetry,
we could switch f e

`

and f e

`

0 for ` 2 {1, 2, 3, 4} and thus the equilibrium flow is not unique.
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Figure 4.3: An example demonstrating nonuniqueness of flows. In the setup, for each ` 2
{1, 2, 3, 4}, the supply and demand curves are equal for ` and `0, however we identify an
equilibrium flow in which f e

`

6= f e

`

0 . By symmetry, we could switch f e

`

and f e

`

0 and obtain an
alternative equilibrium.
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We now consider convergence properties for infeasible flows. For a specific class of net-
works, we conclude global convergence to the equilibrium flow:

Proposition 4.3.7. Given constant input flow {d
`

}
`2R. If

(1) |Lout

v

|  1, for all v 2 V,
(2) For all v 2 V, there exists �

v

s.t. �
`

= �
v

8` 2 Lin

v

then there exists a unique equilibrium flow {f e

`

}
`2L and

lim
t!1

f in

`

(x(t)) = f e

`

8` 2 O (4.29)

lim
t!1

fout

`

(x(t)) = f e

`

8` 2 L (4.30)

for any initial condition x(0) 2 X .

The condition |Lout

v

|  1, for all v 2 V implies that each junction is a merging junction
and consists of only one outgoing link or no outgoing links. The constraint �

`

= �
v

8` 2 Lin

v

for some �
v

implies that the fraction of flow exiting a link that is routed o↵ the network is
the same for each incoming link at a particular junction.

4.4 Ramp Metering

Ramp metering is an active and rich area of research; see [PK00] for a review of approaches
to ramp metering. In this section, we leverage the results on equilibria and convergence
established above to design ramp metering strategies that achieve the maximum possible
network throughput.

Definition 4.4.1. A ramp metering strategy is a collection of functions {m
`

(t)}
`2R, m

`

(·) :
R�0

! R�0

that modifies the demand function of onramps. In particular, we introduce the
metered demand function

�out,m

`

(x
`

(t)) , min{�out

`

(x
`

(t)), m
`

(t)} 8` 2 R. (4.31)

The tra�c network dynamics are exactly as above with the metered demand function �out,m

`

(x
`

)
replacing the demand function �out

`

(x
`

) for all ` 2 R.

In the following, we assume constant metering strategies, i.e., m
`

(t) , m
`

, and thus the
network flow model remains autonomous for constant input flows. We then have �̄out,m

`

,
min{�

out

`

, m
`

} is the maximum outflow of link ` 2 R. The metering objective we consider is
network throughput at equilibrium where network throughput of an equilibrium flow {f e

`

}
`2L

is defined to be
P

`2R f e

`

.
The main result of this section is Theorem 4.4.1 which states that there exists a ramp

metering strategy, obtained via a linear program, that induces an equilibrium with optimal
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network throughput. This result follows from the following proposition, which states that
the resulting equilibrium flow from any ramp metering strategy is induced by a suitable
choice of a (potentially di↵erent) ramp metering strategy and the assumption that each link
is in freeflow.

Proposition 4.4.1. Consider a constant ramp metering strategy {m
`

}
`2R that induces an

equilibrium flow {f e

`

}
`2L with a corresponding equilibrium density {xe

`

}
`2L. Then there exists

another constant ramp metering strategy {m̃
`

}
`2R with the same equilibrium flow {f e

`

}
`2L

and new equilibrium density {⇢̃e

`

}
`2L such that ⇢̃e

`

 xcrit

`

for all ` 2 O.

Proof. We construct such an alternative metering strategy explicitly. For each ` 2 R, define
m̃

`

, f e

`

(if f e

`

= d
`

, then we can in fact choose any m̃
`

� d
`

). If d
`

< �
out

`

and f e

`

= d
`

, let
⇢̃e

`

be such that �out

`

(⇢̃e

`

) = f e

`

. Otherwise, let ⇢̃e

`

= 1.
For ` 2 O, let ⇢̃e

`

2 [0, xcrit

`

] be such that �out

`

(⇢̃e

`

) = f e

`

(such ⇢̃e

`

always exists since
f e

`

 �crit

`

by Proposition 4.3.1). Observe that ⇢̃e

`

 xe

`

, and thus �in

`

(⇢̃e

`

) � �in

`

(xe

`

). It is
easy to verify that {f e

`

}
`2L satisfies the definition of an equilibrium flow for the metered

networked flow system where ↵v(⇢̃e) = 1 for all v 2 V .

Given infeasible demand {d
`

}
`2R, consider the following linear program:

max
{s`}`2R,{fe

` }`2O

X

`2R
s
`

(4.32)

subject to f e

O = Af e

O + Bs (4.33)

0  s
`

 min{d
`

, �
out

`

} 8` 2 R (4.34)

0  f e

`

 �crit

`

8` 2 O (4.35)

where s =
⇥

s
1

. . . s|R|
⇤0
. The feasible set (4.33)–(4.35) is compact and thus the convex

program attains its maximum. From a solution to (4.32)–(4.35) we construct an optimal
metering strategy:

Theorem 4.4.1. Let {s?
`

}
`2R, {f e

`

?}
`2O be a maximizer of (4.32)–(4.35). Then any metering

strategy {m
`

}
`2R satisfying m

`

= s?
`

if s?
`

< d
`

and m
`

� s?
`

if s⇤
`

= d
`

induces the equilibrium
flow {f e

`

}
`2L given by f e

`

= f e

`

? for all ` 2 O and f e

`

= s?
`

for all ` 2 R. Furthermore,
{f e

`

}
`2L achieves the maximum possible network throughput.

Proof. Proposition 4.4.1 demonstrates the su�ciency of only considering ramp metering
strategies that induce an equilibrium for which each ordinary link ` 2 O is in freeflow. The
program (4.32)–(4.35) maximizes throughput subject to this free flow.

We remark that, as in Proposition 4.3.4, lim
t!1 x

`

(t) = ⇢̃e

`

for all trajectories such
that x

`

(0)  ⇢̃e

`

for all ` 2 L where {⇢̃e}
`2L is the equilibrium density construction in

Proposition 4.4.1.
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Figure 4.4: A network with two onramps {1, 4} and three ordinary links {2, 3, 5}. The dark
links and nodes are enough to demonstrate that the system is not cooperative due to the
FIFO junction assumption: increased density on link 2 could restrict the outflow from link 1,
and due to fixed split ratios, the inflow to link 3 also decreases. The additional shaded links
and node illustrate how ramp metering increases network throughput: by restricting outflow
from onramp 4, the density on link 2 may be reduced, leading ultimately to increased flow
on link 3. (b) The supply and demand functions for links {2, 3, 5}.

Example 4.4.1. Consider a road network with two onramp links labeled {1, 4} and three
ordinary links labeled {2, 3, 5} as shown in Fig. 4.4(a). This network is not cooperative; in
particular, @F

3

(x)/@x
2

< 0 when link 2 does not have adequate supply, see [KV12, pp. 14–15]
for a similar example. We assume links {2, 3, 5} each have the supply and demand functions

as shown in Fig. 4.4(b) and that �
out

1

= 3000 and �
out

4

= 6000 (units are vehicles per hour),
and we assume �

12

= �
13

= 1

2

and �
25

= �
45

= 1. With input flows d
1

= d
4

= 2500, it can
be verified that the equilibrium with no ramp metering is

{f e

1

, f e

2

, f e

3

, f e

4

, f e

5

} = {2000, 1000, 1000, 2000, 3000} (4.36)

{xe

1

, xe

2

, xe

3

, xe

4

, xe

5

} = {1, 270, 30, 1, 90} (4.37)

and therefore the total network throughput is f e

1

+ f e

4

= 4000.
Solving (4.32)–(4.35) and applying Theorem 4.4.1, we choose m

1

� 2500, m
4

= 1750,
and then

{f e

1

, f e

2

, f e

3

, f e

4

, f e

5

} = {2500, 1250, 1250, 1750, 3000} (4.38)

{xe

1

, xe

2

, xe

3

, xe

4

, xe

5

} = {1, 37.5, 37.5, 1, 90} (4.39)

with network throughput f e

1

+ f e

4

= 4250.
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4.A Proofs

4.A.1 Proof of Proposition 4.3.5

Proof of Proposition 4.3.5. We introduce a change of coordinates which allows us to capture
“equilibrium” conditions in which onramps have infinite density.

Let

t(x) , x

1 + x
, t�1(x̂) =

x̂

1 � x̂
(4.40)

and define the change of coordinates

T (x) ,
⇥

t(x
1

) . . . t(x|R|) x0
O
⇤0

T�1(x̂) =
⇥

t�1(x̂
1

) . . . t�1(x̂|R|) x̂0
O
⇤0

(4.41)

where we assume onramps R are enumerated 1, . . . , |R| and xO is the vector of densities for
links O for some enumeration of O. Let x̂ =

⇥

x̂0
R x̂0

O
⇤0 , T (x) and observe

˙̂x
`

= (1 � x̂
`

)2 F
`

(x)

= (1 � x̂
`

)2 F
`

�

T�1(x̂)
�

(4.42)

=: F̂
`

(x̂) 8` 2 R. (4.43)

Note that only onramps undergo a coordinate change, that is, xO = x̂O.
Similarly define

F̂
`

(x̂) , F
`

(T�1(x̂)) 8` 2 O (4.44)

so that ẋ
`

= ˙̂x
`

= F̂
`

(x̂) for all ` 2 O. Let F̂ (x̂) ,
⇥

F̂
1

(x̂) . . . F̂|L|(x̂)
⇤0
, then ˙̂x = F̂ (x̂).

We introduce the change of coordinates so that x̂
`

remains bounded even as x
`

! 1
for ` 2 R. Furthermore, the definition of F̂ (x̂) can be suitably extended to the case where
x̂
`

= 1 for all ` 2 R0 for some subset R0 ✓ R, even though T�1(x̂) is not defined for such x̂.
In particular, let

X̂ 0 , {x̂ : x̂
`

2 [0, 1) 8` 2 R and x̂
`

2 [0, xjam

`

] 8` 2 O} (4.45)

and X̂ , cl(X̂ 0), S , X̂ \X̂ 0 where cl(·) denotes closure. Observe that (4.43) and (4.44)
define F̂ (·) on X̂ 0. Furthermore, Assumption 1 ensures that F̂ (·) is Lipschitz continuous on
X̂ 0. Lipschitz continuity implies uniform continuity, and thus there exists a unique extension
of F̂ (·) to X̂ given by [Rud76, Chapter 4]

F̂ (x̂) , lim
ŷ!x̂

ŷ2 ˆX 0

F̂ (x̂) 8x̂ 2 S. (4.46)

This definition is equivalent to interpreting �out

`

(t�1(1)) , �
out

`

for ` 2 R in the PP/FIFO
rule. Existence and uniqueness of solutions to ˙̂x = F̂ (x̂) initialized in X̂ follows readily. We
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now define F̄ (·) : X̂ ! R|L| as follows:

F̄ (x̂) ,

8

<

:

F (T�1(x̂)) if x̂ 2 X̂ 0

lim
ŷ!x̂,ŷ2 ˆX 0

F̄ (ŷ) if x̂ 2 S (4.47)

where again the limit is guaranteed to exist because F̄ (·) is Lipschitz continuous on X̂ 0.
We have X̂ is compact, convex, and positively invariant. It follows that there exists

a stationary point x̂e such that F̄ (x̂e) = 0 [BM08, Theorem 4.20]. This stationary point
corresponds to an equilibrium density xe in the original coordinates via the map T�1(·) in
(4.41) and thus gives an equilibrium flow as defined in Definition 4.3.4. In particular, x̂e

`

= 1
for ` 2 R implies xe

`

= 1.

4.A.2 Piecewise Di↵erentiability

Assume d
`

(t) ⌘ d
`

for some constant d
`

for all ` 2 R so that the dynamics are autonomous.
Note that the solution of (4.4)–(4.5) is

↵v(x) =

8

>

>

>

<

>

>

>

:

min

⇢

1, min
k2Lout

v

⇢

⇣

P

j2Lin

v
�v

jk

�out

j

(x
j

)
⌘�1

�in

k

(x
k

)

��

if 9` 2 Lin

v

s.t. x
`

> 0

1 otherwise,

(4.48)

thus {f out

`

(x)}
`2Lin

v
is uniquely defined in (4.6). Furthermore, by considering the finite set of

functions possible for ↵v(x) determined by the minimizing k 2 Lout

v

in (4.48), we conclude
that f out

`

(x) and thus F
`

(x) is a continuous selection of di↵erentiable functions. Indeed, at
each junction, either every outgoing link has adequate supply to accomodate the demand of
incoming links, or there exists at least one link that does not have adequate supply. If more
than one link does not have adequate supply, the most restrictive link determines the flow
through the junction. Thus, for each v 2 V , there are |Lout

v

| + 1 functions possible for ↵v(x)
in (4.48). We then consider F (x) to be selected from

Q

v2V(|Lout

v

|+1) modes of the network.
Let I denote an index set of these possible modes, and let F (i)(x) for i 2 I denote the

particular mode defined implicitly by the corresponding minimizers of (4.48) for each v 2 V .
The function F (x) is then piecewise di↵erentiable. Let J (i)(x) denote the Jacobian of F (i)(x),
which is well defined on {x 2 X � | F (x) = F (i)(x)}. Consider the directional derivative

F 0(x
0

; y) , lim
h!0

h>0

F (x
0

+ hy) � F (x
0

)

h
. (4.49)

A key property of piecewise di↵erentiable functions is that the derivative (4.49) exists for all
x

0

2 X � and y 2 R|L|, and F 0(x
0

; y) 2 {J (i)(x
0

)y | i 2 I}. It follows [Sch12] that

Ḟ (x) , d

dt
F (x(t)) 2 {J (i)(x)F (x) | i 2 I}. (4.50)

We use (4.50) below when we consider stability of the tra�c network.
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4.A.3 Cooperativity and Convergence in Networks with only
Merging Junctions

To prove Proposition 4.3.7, we introduce the following definition from [JS93]:

Definition 4.A.1. A matrix A 2 Rn⇥n is a compartmental matrix if [A]
ij

� 0 for all i 6= j
and

P

n

i=1

[A]
ij

 0 for all j where [A]
ij

is the ij-th entry of A.

Equivalently, A is a compartmental matrix if and only if A is Metzler [BP94] and µ
1

(A) 
0 where µ

1

(A) , lim
h!0

+

1

h

(||I + hA||
1

� 1) is the logarithmic norm of A and ||A||
1

is the
matrix norm induced by the vector one-norm [DH72]. This observation provides a connection
to contraction theory for non-Euclidean norms [Son10]. In particular, Lemma 4.A.1 below
shows that F (x) is nonexpansive in a region of the state-space relative to a weighted one-
norm.

Lemma 4.A.1. Given ⌦ ✓ X and diagonal matrix W with positive entries on the diagonal
such that WJ (i)(x) is a compartmental matrix for all i 2 I and all x 2 ⌦� such that
F (i)(x) = F (x) where J (i)(x) denotes the Jacobian of F (i)(x) and ⌦� denotes the interior of
⌦. Then V (x) , ||WF (x)||

1

is decreasing along trajectories x(t) of the tra�c network when
x(t) 2 ⌦. Moreover, if ⌦ is positively invariant, then the flows of the network converge to
an equilibrium flow as defined in Definition 4.3.4.

Proof. The following proof is adapted from the proof of [MKO78, Theorem 2]. Consider the
change of coordinates constructed in the proof of Proposition 4.3.5 in Section 4.A.1, and
define V̄ (·) : X̂ ! R by

V̄ (x̂) , ||WF̄ (x̂))||
1

(4.51)

where F̄ (·) is given in (4.47) so that V̄ (x̂) = V (x) when x̂ = T (x). Let {F (i)(·) | i 2 I} be
the collection of modes as described in Section 4.A.2. It follows that

˙̄F (x̂) 2 {J̄ (i)(x̂)F̄ (x̂) | i 2 I} (4.52)

where, defining X̂ � to be the interior of X̂ ,

J̄ (i)(x̂) ,
(

J (i)(T�1(x̂)) if x̂ 2 X̂ �

lim
ŷ!x̂,ŷ2 ˆX � J̄ (i)(ŷ) if x̂ 2 X̂ \X̂ �.

(4.53)

By assumption and the above analysis, WJ̄ (i)(x̂) is a compartmental matrix for all x̂ 2 ⌦̂
where ⌦̂ , {T (x) : x 2 ⌦} and all i such that F̄ (x̂) = J̄ (i)(x̂)F̄ (x̂), i.e., the selected index in
(4.52).

There exists a vector ⌫(x̂) 2 {�1, 0, 1}|L| such that V (x̂) = ⌫(x̂)0WF̄ (x̂) and V̇ (x̂(t)) =

⌫(x̂)0W ˙̄F (x̂) with the property F̄
`

> 0 implies ⌫
`

= 1 and F̄
`

< 0 implies ⌫
`

= �1.
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We drop the supscript (i) and time dependence (t) notation for clarity. Let

I = {` | F̄
`

> 0, or F̄
`

= 0, ˙̄F
`

> 0} (4.54)

J = {` | F̄
`

< 0, or F̄
`

= 0, ˙̄F
`

< 0} (4.55)

K = {` | F̄
`

= 0 and ˙̄F
`

= 0}. (4.56)

We partition Q̄ , WJ̄ into blocks such that
2

6

4

W
I

˙̄F
I

W
J

˙̄F
J

W
K

˙̄F
K

3

7

5

=

2

4

Q̄
II

Q̄
IJ

Q̄
IK

Q̄
JI

Q̄
JJ

Q̄
JK

Q̄
KI

Q̄
KJ

Q̄
KK

3

5

2

4

F̄
I

F̄
J

F̄
K

3

5 (4.57)

where Q̄
IJ

= [q
ij

]
i2I,j2J , F̄

I

= {F̄
`

}
`2I , etc. and W

I

, W
J

, W
K

are the diagonal blocks of W .
Then

˙̄V =1TW
I

˙̄F
I

� 1TW
J

˙̄F
J

(4.58)

=1T Q̄
II

F̄
I

+ 1T Q̄
IJ

F̄
J

� 1T Q̄
JI

F̄
I

� 1T Q̄
JJ

F̄
J

(4.59)

= � (21T Q̄
JI

+ 1T Q̄
KI

+ ↵
I

)F̄
I

+ (21T Q̄
IJ

+ 1T Q̄
KJ

+ ↵
J

)F̄
J

(4.60)

where

↵
I

= �(1T Q̄
II

+ 1T Q̄
JI

+ 1T Q̄
KI

) (4.61)

↵
J

= �(1T Q̄
IJ

+ 1T Q̄
JJ

+ 1T Q̄
KJ

) (4.62)

and �↵
I

 0 and �↵
J

 0 (where  is interpreted elementwise) because the column sums
of Q̄ are less than or equal to zero since Q̄ is assumed to be a compartmental matrix. Note
that, additionally, the entries of Q̄

IJ

, Q̄
JI

, Q̄
IK

, Q̄
KI

, Q̄
JK

, and Q̄
KJ

are nonnegative since
Q̄ is nonnegative for entries not on the diagonal. It then follows that (4.60) is nonpositive,

i.e., ˙̄V  0.
Supposing ⌦ is positively invariant, we show convergence to an equilibrium flow via

LaSalle’s invariance principle. To that end, define E , {x̂ : ˙̄V (x̂) = 0}. Let ẑ(t) be a
trajectory completely contained in E and consider L

+

(t) = {` | F̄
`

(ẑ(t)) > 0} and L�(t) =
{` | F̄

`

(ẑ(t)) < 0}. We have V̄ (ẑ) ⌘ V1 for some V1, and thus

10W
L

+

F̄
L

+

� 10W
L�F̄

L� ⌘ V1. (4.63)

We now claim the sets L
+

(t) and L�(t) are monotonically increasing with respect to set

inclusion. To prove the claim, observe that since ˙̄V ⌘ 0 and considering (4.59), we have
1T Q̄

JI

F̄
I

⌘ 0 and 1T Q̄
IJ

F̄
J

⌘ 0. This implies
X

k2I
q
`k

F̄
k

⌘ 0 for all ` 2 J (4.64)

X

k2J
q
`k

F̄
k

⌘ 0 for all ` 2 I (4.65)
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since the entries of Q̄
JI

, Q̄
IJ

, F̄
I

are nonnegative and the entries of F̄
J

are nonpositive and
thus each entry of Q̄

JI

F̄
I

and Q̄
IJ

F̄
J

must be zero. Since L
+

⇢ I and L� ⇢ J , and F̄
`

= 0
for all ` 2 I\L

+

and for all ` 2 J\L�, we have

X

k2L
+

q
`k

F̄
k

⌘ 0 for all ` 2 L� (4.66)

X

k2L�

q
`k

F̄
k

⌘ 0 for all ` 2 L
+

. (4.67)

Consider ` 2 L
+

(⌧) at some time ⌧ , and from (4.57), we have

W
`

˙̄F
`

= q
``

F̄
`

+
X

k2L
+

\{`}
q
`k

F̄
k

+
X

k2L�

q
`k

F̄
k

(4.68)

= q
``

F̄
`

+
X

k2L
+

\{`}
q
`k

F̄
k

(4.69)

� q
``

F̄
`

(4.70)

where q
``

 0. It follows that since F̄
`

(ẑ(⌧)) > 0, then

F̄
`

(ẑ(t)) � F̄
`

(ẑ(⌧))e(t�⌧)q``/W` > 0 (4.71)

for all t � ⌧ , and thus F̄
`

(ẑ(t)) > 0 for all t � ⌧ , implying that L
+

is monotonically
increasing. A similar analysis holds for L�(t), proving the claim.

Furthermore, because ˙̄V (ẑ) ⌘ 0, we must have ↵
I

F̄
I

⌘ 0 and ↵
J

F̄
J

⌘ 0 since, in (4.60),
each term Q̄

JI

, Q̄
KI

, ↵
I

, Q̄
IJ

, Q̄
KJ

, and ↵
J

are nonnegative. Since 1T Q̄F̄ = �(↵
I

F̄
I

+↵
J

F̄
J

),

we have that 1T Q̄F̄ = 10WJ̄F̄
`

⌘ 0 and thus 10 ˙̄F ⌘ 0. Therefore

10W
L

+

F̄
L

+

+ 10W
L�F̄

L� ⌘ C (4.72)

for C some constant.
Combining (4.63) and (4.72), we have that 210W

L�F̄
L� ⌘ C � V1. If C � V1 6= 0, then

R1
0

10W
L�F̄

L� dt = �1, but this is a contradiction since ż = F̄ (ẑ) where z(t) , T�1(ẑ) and
z is bounded below. Thus L�(t) ⌘ ;.

Let R1 , {` 2 R | 9c > 0 s.t. F̄
`

(ẑ) ⌘ c}, and let M
+

, L
+

\R1. Since 210W
L

+

F̄
L

+

=
V1 + C, it follows that 10W

M

+

F̄
M

+

(x̂) ⌘ C
2

for some constant C
2

� 0. If C
2

> 0, then
R �1

0

10W
M

+

F̄
M

+

dt = 1, which is also a contradiction since with y(t) , z(�t) and ŷ(t) ,
ẑ(�t), we have ẏ

`

= �F̄
`

(ŷ) for all ` 2 M
+

and y
`

(t) is bounded below. Therefore C
2

= 0,
and we have shown F̄

`

(ẑ) ⌘ 0 for all ` 2 L\R1. Combined with the definition of R1, this
implies that ẑ(t) ⌘ ẑe 2 X̂ . Furthermore, these are exactly the conditions required such that
ze , T�1(ẑe) is an equilibrium density as defined in Definition 4.3.4.
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We now turn our attention to the class of networks considered in Proposition 4.3.7. For
networks satisfying condition 1 of Proposition 4.3.7, Vsink is a singleton, suppose Vsink =
{v

sink

}. Furthermore, for each ` 2 L there exists a unique path {`
1

, . . . , `
n`

} ⇢ L with `
1

= `
such that ⌘(`

n`
) = v

sink

. Supposing 1) and 2) of Proposition 4.3.7, let

w
`

,
(

1 � �
⌘(`)

if �
⌘(`)

< 1

1 if �
⌘(`)

= 1
8` 2 L (4.73)

W
`

, w
`

1

· . . . · w
`n`

. (4.74)

Lemma 4.A.2. Given a tra�c network with constant input flows {d
`

}
`2R satisfying the

1) and 2) of Proposition 4.3.7. Define w
`

and W
`

as in (4.73)–(4.74), and let W ,
diag(W

1

, . . . , W|L|). Then W
⇣

@F

(i)

@x

(x)
⌘

is a compartmental matrix for all i 2 I such that

F (x) = F (i)(x) and x 2 X �.

Proof. Consider a particular link ` and the corresponding `th column of @F (i)/@x for some
i 2 I. In the following, we omit the superscript (i) and all partial derivatives are assumed
to correspond to the mode i. We have

P

k2L W
k

@Fk
@x`

= @

@x`

⇣

�P
k2Lin

⌧(`)
W

k

f out

k

+ W
`

f in

`

�P
k2Lin

⌘(`)
W

k

f out

k

+
P

k2Lout

⌘(`)
W

k

f in

k

⌘

. (4.75)

It can be shown that, for networks such that |Lout

v

|  1 for all v 2 V , we have @Fk
@x`

� 0

for all ` 6= k, i.e., the system is cooperative [Hir85]. Observe that �⌧(`)

k`

= (1 � �
⌧(`)

) and
W

k

= (1 � �
⌧(`)

)W
`

for all k 2 Lin

⌧(`)

for all ` 2 O. We subsequently show

@

@x`

⇣

�P
k2Lin

⌧(`)
W

k

f out

k

(x) + W
`

f in

`

(x)
⌘

(x) = 0 (4.76)

@

@x`

⇣

�P
k2Lin

⌘(`)
W

k

f out

k

(x) +
P

k2Lout

⌘(`)
W

k

f in

k

(x)
⌘

(x)  0 (4.77)

for all x 2 X �. Combining (4.76)–(4.77) with (4.75) gives
P

k2L W
k

@Fk
@x`

 0 for all `, thus
proving the claim. To prove (4.76)–(4.77), consider a particular x 2 X �:
(Flows at ⌧(`)) If upstream demand exceeds the supply of link `, that is, ` 2 O and

�in

`

(x
`

) <
P

k2Lin

⌧(`)
�⌧(`)

k`

�out

k

(x
k

), then the PP/FIFO rule stipulates

f out

k

(y) = �in

`

(y
`

)
�out

k

(y
k

)
P

j2Lin

⌧(`)
�⌧(`)

j`

�out

j

(y
j

)
8k 2 Lin

⌧(`)

(4.78)

f in

`

(y) = �in

`

(y
`

) (4.79)
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for all y 2 B
✏

(x) for some ✏ > 0 where B
✏

(x) is the ball of radius ✏ centered at x. Then
P

k2Lin

⌧(`)
f out

k

(y) =
�

1 � �
⌧(`)

��1

�in

`

(y
`

) and

�P
k2Lin

⌧(`)
W

k

f out

k

(y) + W
`

f in

`

(y) = 0 8y 2 B
✏

(x) (4.80)

which implies (4.76).
If link ` has adequate supply, we have f out

k

(x) = �out

k

(x
k

) for k 2 Lin

⌧(`)

and f in

`

(x) =
P

k2Lin

⌧(`)
�⌧(`)

k`

�out(x
k

), neither of which is a function of x
`

, and thus also (4.76) holds.

(Flows at ⌘(`)) By hypothesis, Lout

⌘(`)

is either empty or a singleton. If it is empty, then

f out

k

(x) = �out

k

(x
k

) for all k 2 Lin

⌘(`)

and the lefthand side of (4.77) is

�P
k2Lin

⌘(`)
W

k

@

@x`
f out

k

(x) = �W
`

�
0
out

`

(x
`

) < 0 (4.81)

and (4.77) holds. If Lout

⌘(`)

is nonempty, let Lout

⌘(`)

= {m} and observe that W
k

= (1��
⌘(`)

)W
m

and �⌘(`)

km

= 1 � �
⌘(`)

for all k 2 Lin

⌘(`)

. Suppose link m has adequate supply for upstream

demand so that f out

k

(x) = �out

k

(x
k

) for all k 2 Lin

⌘(`)

and f in

m

(x) =
P

k2Lin

⌘(`)
�⌘(`)

km

�out

k

(x
k

).

Then the lefthand side of (4.77) is �W
`

�
0
out

`

(x
`

)+W
m

�⌘(`)

`m

�
0
out

`

(x
`

) = 0 and therefore (4.77)
holds. If link m has inadequate supply, there exists ✏ > 0 such that

P

k2Lin

⌘(`)
f out

k

(y) =
�

1 � �
⌘(`)

��1

�in

m

(y
m

) (4.82)

8y 2 B
✏

(x) (4.83)

f in

m

(y) = �in

m

(y
m

) 8y 2 B
✏

(x). (4.84)

Then �P
k2Lin

⌘(`)
W

k

f out

k

(y) + W
m

f in

m

(y) = 0 for all y 2 B
✏

(x) and (4.77) follows.

Proof of Proposition 4.3.7. A network satisfying the 1) and 2) of the proposition consists of
only merging junctions and is necessarily a polytree, thus Proposition 4.3.6 ensures unique-
ness of the equilibrium flow.

By Lemma 4.A.2 above, WJ (i)(x) is a compartmental matrix for all i 2 I such that
F (x) = F (i)(x) and all x 2 X �. Applying Lemma 4.A.1 with ⌦ , X completes the proof.
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4.B An Auxiliary Result on Norm-Based Lyapunov

Functions via Contraction Analysis

In this appendix, we present an auxiliary result on contraction inspired by the results of this
chapter. It is well know that for contractive systems with an equilibrium, the distance to
the equilibrium evaluated along any trajectory decreases exponentially with time. We prove
that, additionally, the magnitude of the velocity evaluated along any trajectory decreases
exponentially with time, thus giving an alternative choice of Lyapunov function.

Consider the nonlinear system

ẋ = f(x) (4.85)

for x 2 Rn and continuously di↵erentiable f(·). Denote the Jacobian as

J(x) , @f

@x
(x). (4.86)

We assume there exists a unique equilibrium of (4.85), and without loss of generality, we
assume x = 0 is the equilibrium point. Then f(0) = 0 and f(x) 6= 0 for all x 6= 0.

Let | · | be a vector norm on Rn, k ·k its induced matrix norm, and µ(A) , lim
h!0

+

1

h

(kI +
hAk � 1) the associated matrix measure.

Theorem 4.B.1. If there exists c > 0 such that µ(J(x))  �c for all x 2 Rn then x = 0 is
globally asymptotically stable and

|f(x(t))|  |f(x(0))|e�ct. (4.87)

Proof. Let V (x) , |f(x)|. V (x(t)) is then absolutely continuous as a function of t and
therefore

V̇ (x(t)) , lim
h!0+

V (x(t + h)) � V (x(t))

h
(4.88)

for almost all t. Furthermore,

lim
h!0

+

�

�

�

�

|f(x(t + h)))| � |f(x) + hḟ(x)|
h

�

�

�

�

 lim
h!0

+

�

�

�

�

f(x(t + h)) � f(x)

h
� ḟ(x)

�

�

�

�

(4.89)

= 0 (4.90)
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where we use the definition of ḟ(x) and the fact
�

�|x| � |y|��  |x � y|. Since also ḟ(x) =
J(x)f(x), we combine (4.88)–(4.90) and obtain

V̇ (x(t)) = lim
h!0+

|f(x) + hJ(x)f(x)| � |f(x)|
h

(4.91)

 lim
h!0+

kI + hJ(x)k · |f(x)| � |f(x)|
h

(4.92)

= lim
h!0+

kI + hJ(x)k � 1

h
|f(x)| (4.93)

= µ(J(x))V (x). (4.94)

By hypothesis, we then have V̇ (x)  �cV (x), and (4.87) follows by integration. Furthermore,
f(x) is a di↵eomorphism from Rn to itself [DV08, pp. 34–35], thus V (x) is positive definite
and radially unbounded. By standard Lyapunov theory, e.g. [Kha02], global asymptotic
stability follows.

It is well known that for contractive systems with µ(J(x))  �c for all x, |x(t) � ⇠(t)| 
|x(0) � ⇠(0)|e�ct for any pair of trajectories x(·) and ⇠(·) [Son10]. Thus, taking ⇠(t) ⌘
0, we see that for such systems, V (x) = |x| is a Lyapunov function guaranteeing global
asymptotic stability. Theorem 4.B.1 demonstrates that V (x) = |f(x)| is an alternative
choice of Lyapunov function. Additionally, it is straightfoward that for any continuously
di↵erentiable class-K function ⇢(·),

x 7! ⇢(|f(x)|) (4.95)

is also a Lyapunov function.
Furthermore, Theorem 4.B.1 is a generalization of Krasovskii’s well known su�cient

condition for asymptotic stability [Kra63]. Indeed, Krasovskii’s theorem is a special case of
Theorem 4.B.1 when | · | is taken to be a weighted Euclidean norm, i.e. |x| = (xTPx)1/2 for
some positive definite matrix P and therefore [DV08]

µ(A) = �̄
i

✓

B + BT

2

◆

, B , P 1/2AP�1/2 (4.96)

where �̄
i

(M) denotes the largest eigenvalue of M , from which it follows

µ(A) < �c () PA + ATP < �2cP. (4.97)

Using Theorem 4.B.1 with (4.97) and taking ⇢(y) , y2 in (4.95) gives a standard version of
Krasovskii’s theorem.
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Chapter 5

Mixed Monotonicity in Tra�c Flow
Dynamics

We continue the study of the dynamical behavior of a compartmental system model of
tra�c flow initiated in Chapter 4. Recall that the flow of mass from a compartment, or
link, to downstream links is governed by a local flow demand as well as downstream supply
of capacity available to accomodate incoming flow. In this chapter, we focus on the mixed
monotonicity property for tra�c networks. In this chapter, we define mixed monotonicity
for continuous-time systems, where as the mixed monotone property defined in Chapter 2
and applied to tra�c networks in Chapter 5 was defined in discrete-time.

This chapter builds on recent results [GH06; Gom+08; CLS15; LCS14] which have uti-
lized a compartmental systems approach [JS93] to analyze the dynamical behavior of trans-
portation networks. In these prior works, the strongest results rely on the system dynamics
being monotone whereby trajectories of the system preserve a partial ordering [Hir85; Smi95].
Yet, as detailed in Section 4.2 and elaborated on in Section 5.2.1, vehicular tra�c networks
with diverging junctions and fixed routing policies are not monotone, as noted in [KV12],
since downstream congestion on one outgoing link blocks incoming flow to neighboring out-
going links [MD02]. Thus, a significant gap exists in the literature for understanding the
dynamics of tra�c flow networks. This chapter works towards filling this gap.

We first show that tra�c dynamics possess a mixed monotonicity property, which is
much weaker than monotonicity. Despite the lack of monotonicity in the standard form of
the dynamics, such systems can be embedded into a higher dimensional monotone system,
[GH94; KM06; ESS06; Smi08]. With this key observation, we bring the powerful tools of
monotone system theory to this more general problem.

Next, we identify a certain class of polytree networks for which, using this embedding, we
prove global asymptotic convergence to a unique equilibrium. In exchange for the generality
o↵ered by mixed monotonicity, we obtain only a su�cient condition that requires equilibria
of the embedding system to be unique. We show that this condition is satisfied for polytree
networks. We show through an example that the polytree restriction is necessary for the
embedding system to have a unique equilibrium.
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The remainder of the chapter is organized as follows: In Section 5.1, we define the network
model. In Section 5.2, we show that the dynamics are not monotone but are mixed monotone,
which allows the system to be embedded in a larger dimensional monotone system. In Section
5.3, we apply these results to establish global stability for a class of networks, and we consider
two examples. In Section 5.4, we provide a discussion of the approach and comparisons to
other techniques for stability analysis of flow networks, and we give concluding remarks.

5.1 A Compartmental Model of Tra�c Flow

In this section, we recall the basic compartmental model presented in Chapter 4, with minor
alterations. In particular, as noted below, split ratios are determined only by the outgoing
link at a junction, and not by the incoming-outgoing link pair.

5.1.1 Notation

All inequalities are interpreted elementwise, e.g., for x, y 2 Rn, x  y if and only if x
i

 y
i

for i = 1, . . . n where x
i

, y
i

denote the ith element of x, y. We denote the vector of all
zeros by 0 when its dimension is clear from context. We denote the set of nonnegative real
numbers by R�0

= {x 2 R | x � 0}.

5.1.2 Network Topology

A tra�c network consists of a directed graph G = (V , O) with junctions V and ordinary links
O along with a set of entry links R which are entry points into the network. Physically,
a link represents a segment of roadway, and we assume G is a connected graph. Let ⌘(`)
and ⌧(`) denote the head and tail junction of link ` 2 L, respectively, where we assume
⌘(`) 6= ⌧(`), i.e., no self-loops. Tra�c flows from ⌧(`) to ⌘(`). By convention, ⌧(`) = ; for
all ` 2 R.

Let L , O [ R. For each v 2 V , we denote by Lin

v

⇢ L the set of input links to node v
and by Lout

v

⇢ L the set of output links, i.e. Lin

v

= {` : ⌘(`) = v} and Lout

v

= {` : ⌧(`) = v}.
We assume Lin

v

6= ; for all v 2 V , thus the network flow starts at entry links. Furthermore,
we assume Lout

⌘(`)

6= ; for all ` 2 R, i.e. entry links always flow into at least one ordinary

link downstream. If |Lin

v

| > 1, then v is a merging junction, and if |Lout

v

| > 1, then v is a
diverging junction.

Define Vsink , {v 2 V | Lout

v

= ;} to be the set of junctions that have no outgoing links
and

Lsink , {` 2 L | ⌘(`) 2 Vsink} (5.1)

the corresponding set of input links to these junctions.
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Figure 5.1: Plot of prototypical supply and demand functions �in

`

(x
`

) and �out

`

(x
`

).

5.1.3 Link supply and demand

Each link ` 2 L has state x
`

(t) 2 [0, xjam

`

] where xjam

`

2 (0, 1) is the jam density of link
`. Furthermore, each link possesses a state-dependent demand function �out

`

(x
`

) and supply
function �in

`

(x
`

) satisfying:

Assumption 5.1.1. For each ` 2 L:
• The demand function �out

`

(x
`

) : [0, xjam

`

] ! R�0

is strictly increasing and Lipschitz
continuous with �out

`

(0) = 0.

• The supply function �in

`

(x
`

) : [0, xjam

`

] ! R�0

is strictly decreasing and Lipschitz con-
tinuous with �in

`

(xjam

`

) = 0.

Assumption 5.1.1 implies that for each ` 2 L, there exists unique xcrit

`

such that

�out

`

(xcrit

`

) = �in

`

(xcrit

`

) =: �crit

`

. (5.2)

Figure 5.1 depicts examples of supply and demand functions satisfying Assumption 5.1.1.

5.1.4 Dynamic Model

At each junction v 2 V , there exists a collection of fixed split ratios {��`

}
`2Lout

v
with each

��`

> 0 describing how incoming flow is split among outgoing links. Conservation of flow
implies

X

`2Lout

v

��`

 1 8v 2 V , (5.3)

where strict inequality in (5.3) implies that a fraction of the flow is routed o↵ the network
via, e.g., an unmodeled o↵-ramp.

Note that we associate a single split ratio with each output link rather than with each
input/output link pair as was the case in the previous chapter. This implies that split ratios
cannot di↵er for di↵erent incoming links and, as we will see in Section 5.2, leads to a mixed
monotonicity property. If we assume each junction is either single-input or single-output as
in [Dag95; LCS14], then there is no distinction between the two models.
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The flow dynamics of the network are as follows:

ẋ
`

= f in

`

(x) � f out

`

(x) 8 ` 2 L (5.4)

=: F
`

(x) (5.5)

↵v(x) ,

min

⇢

1, min
`2Lout

v

⇢

�in

`

(x
`

)

��`

P

k2Lin

v
�out

k

(x
k

)

��

8v 2 V (5.6)

f out

`

(x) = ↵⌘(`)(x)�out

`

(x
`

) (5.7)

f in

`

(x) =

(

min{d
`

, �in

`

(x
`

)} if ` 2 R
��`

P

k2Lin

⌧(`)
f out

k

(x
k

) if ` 2 O.
(5.8)

Above, ↵v(x) 2 [0, 1] defined in (5.6) is a factor that scales the outgoing flow of each
input link at the junction v such that the incoming flow to each output link is less than its
supply. Thus, the model (5.4)–(5.8) maximizes the flow through links while ensuring that
the outgoing flow at each link does not exceed the link’s demand and the incoming flow
does not exceed the link’s supply. For entry link ` 2 R, the incoming flow is additionally
restricted to not exceed the exogenous demand d

`

. The model further requires that, at each
junction, the collection of outgoing flows for the input links is proportional to the collection
of flow demand from the input links. This condition is referred to as proportional-priority,
[KV10a; KV12], and di↵ers from the constant priority model employed in Chapter 3. From
(5.4)–(5.8), we have forward invariance of the domain

X ,
Y

`2L
[0, xjam

`

]. (5.9)

The model (5.4)–(5.8) is modified from the model proposed in Chapter 4 so that entry links
have finite capacity. This is reasonable for tra�c networks where entry links correspond to
onramps with finite storage capacity.

Define the routing matrices RO 2 RO⇥O and RR 2 RO⇥R elementwise as follows:

[RO]
k`

=

(

�!k

if k 2 Lout

⌘(`)

0 otherwise
8`, k 2 O (5.10)

[RR]
k`

=

(

�!k

if k 2 Lout

⌘(`)

0 otherwise
8k 2 O, 8` 2 R. (5.11)

Assumption 5.1.2. The matrix (I � RO) is invertible.

Assumption 5.1.2 is equivalent to the assertion that eventually all vehicles will leave the
network and is thus a natural assumption on the split ratios [Var13b]. Let

P = (I � RO)�1RR, (5.12)



CHAPTER 5. MIXED MONOTONICITY IN TRAFFIC FLOW DYNAMICS 81

that is, P describes how the flow from entry links is routed through the network. As (I �
RO)�1 = I + RO + R2

O + . . ., we have P � 0. Let

f e

`

=

(

d
`

if ` 2 R
[Pd]

`

if ` 2 O.
(5.13)

where [Pd]
`

is the `th entry of Pd.

Assumption 5.1.3. The input flow d = {d
`

}
`2R satisfies

f e

`

< �crit

`

8` 2 L. (5.14)

Assumption 5.1.3 states that the network has adequate capacity to accomodate the input
flow d, that is, d is strictly feasible [Gom+08]. It follows from Assumption 5.1.3 that

xe

`

, (�out

`

)�1(f e

`

) < xcrit

`

(5.15)

for all ` 2 L constitutes an equilibrium of the tra�c network dynamics (5.4)–(5.8), let
xe = {xe

`

}
`2L. Indeed, for this case, ↵v(xe) = 1 for all v, that is, the outgoing flow on every

link is equal to demand. A key result of this chapter is that this equilibrium is unique and
globally asymptotically stable for a class of networks defined subsequently.

5.2 Nonmonotone Behavior of Tra�c Networks

5.2.1 Lack of monotonicity

Consider the system ẋ = G(x), x 2 X ✓ Rn where X is forward invariant and has convex
interior. Suppose G(·) is locally Lipschitz and satisfies

@G
i

@x
j

(x) � 0 8x 2 X, 8i 6= j (5.16)

whenever the derivative exists. Then the system ẋ = G(x) is order-preserving with respect
to the positive orthant Rn

�0

, that is,

x(0)  y(0) implies x(t)  y(t) 8t � 0 (5.17)

where x(t), y(t) are solutions of the system with initial conditions x(0), y(0). A dynamical
system ẋ = G(x) satisfying (5.16) is said to be monotone with respect to the positive orthant,
or simply monotone [Hir85; Smi95].

Tra�c flow networks with no diverging junctions are monotone, as has been noted and
studied in Chapter 4 and in [Gom+08]. However, networks with diverging junctions are not
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monotone. To see this, consider a diverging junction v and assume some link ` 2 Lout

v

is the
unique minimizer in (5.6) for some x so that, for all y in a neighborhood of x,

↵v(y) = �in

`

(y
`

)
⇣

��`

P

k2Lin

v
�out

k

(y
k

)
⌘�1

. (5.18)

It follows that, for all k 2 Lout

v

, k 6= ` with ⌘(k) 6= ⌘(`),

@F
k

@x
`

(x) =
@f in

k

@x
`

(x) =
@

@x
`

✓

��k

��`

�in

`

(x
`

)

◆

< 0, (5.19)

and thus the system is not monotone.

Remark 4. It is standard to generalize the condition (5.16) to partial orders with respect to
arbitrary orthants [HS05a], and one may wonder if the tra�c dynamics are monotone with
respect to some alternative orthant order. The answer is negative; indeed, the relationship
(5.19) holds for any pair of output links, and for a junction with at least three output links,
this implies that the system is not monotone with respect to any orthant via the graphical
condition in, e.g., [AS04, Proposition 2].

The interpretation of (5.19) is that, due to congestion (lack of supply) on link `, an
increase in the number of vehicles on link ` would worsen the congestion (decrease supply),
and vehicles destined for link ` would further block flow to other outgoing links, causing a
reduction in the incoming flow to these links. Thus, lack of monotonicity is indeed expected
for tra�c networks and is relevant for transportation engineering because it is a primary
explanation for why tra�c control methods such as ramp metering are able to increase
throughput.

The phenomenon of downstream tra�c blocking flow to other downstream links at a
diverging junction is referred to as the first-in-first-out (FIFO) property, [Dag95; KV10a],
and it is a feature of tra�c flow that has been observed even on wide freeways with many
lanes, [MD02; CAH02]. Some of the recent literature in dynamical flow models propose
alternative modeling choices for diverging junctions, e.g., [CLS15; LCS14], which ensures
that the resulting dynamics are monotone and therefore do not exhibit this FIFO property.

5.2.2 A weaker property: Mixed monotonicity

The main result of this chapter is that, while vehicular tra�c networks are not monotone,
they possess a weaker mixed monotonicity property. This property allows the tra�c network
dynamics to be embedded within a larger monotone system amenable to techniques for
stability analysis of such systems.

We begin with a general characterization of mixed monotone systems which is a continuous-
time analogue of the characterization in [Smi08] and is closely related to recent results for
nonmonotone interconnections of monotone systems, e.g., [AES14], as we discuss in Section
5.4.
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Definition 5.2.1 (Mixed Monotone). The system ẋ = G(x), x 2 X ✓ Rn where X has
convex interior and G is locally Lipschitz is mixed monotone if there exists a locally Lipshitz
continuous function g(x, y) satisfying:

1. g(x, x) = G(x) for all x 2 X

2.
@g

i

@x
j

(x, y) � 0 for all x, y 2 X and all i 6= j whenever the derivative exists

3.
@g

i

@y
j

(x, y)  0 for all x, y 2 X and all i, j whenever the derivative exists.

The function g(x, y) is called a decomposition function for the system.

For a mixed monotone system with decomposition function g(x, y), it follows that the
symmetric system

ẋ = g(x, y) (5.20)

ẏ = g(y, x) (5.21)

is order-preserving with respect to the orthant Rn

�0

⇥ Rn

0

. This system plays a key role in
the analysis to follow.

For all `, k 2 L, define

s
`k

=

(

1 if ⌧(k) = ⌧(`) and k 6= `

0 else
(5.22)

and for each ` 2 L and x, y 2 RL, let

⇠`
k

(x
k

, y
k

) = s
`k

y
k

+ (1 � s
`k

)x
k

8k 2 L, (5.23)

⇠`(x, y) = {⇠`
k

(x
k

, y
k

)}
k2L. (5.24)

Theorem 5.2.1. The tra�c network model (5.4)–(5.8) is mixed monotone with decomposi-
tion function

g
`

(x, y) = f in

`

(⇠`(x, y)) � fout

`

(x). (5.25)

Proof. We first note that F
`

(x) is Lipschitz continuous for each ` 2 L; in the following,
statements involving derivatives are interpreted to hold whenever the derivative exists.

For ease of notation, we interpret f in

`

(x, y) = f in

`

(⇠`(x, y)).
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It holds trivially that g
`

(x, x) = F
`

(x) for all ` 2 L. We now show that

@f out

`

@x
k

(x)  0 8x 2 X , 8` 6= k (5.26)

@f in

`

@x
k

(x, y) � 0 8x, y 2 X , 8` 6= k (5.27)

@f in

`

@y
k

(x, y)  0 8x, y 2 X , 8k (5.28)

which implies that g
`

(x, y) is indeed a valid decomposition function for the system and the
system is mixed monotone, completing the proof.

To this end, first consider k 2 Lout

⌘(`)

. We have

@f out

`

@x
k

(x) =
@↵⌘(`)

@x
k

(x)�out

`

(x
`

) 2
(

0,
�out

`

(x
`

)
P

j2Lin

⌘(`)
��k

�out

j

(x
j

)

d�in

k

dx
k

(x
k

)

)

 0. (5.29)

If k 2 Lin

⌘(`)

, then (5.29) still holds and whenever @↵⌘(`)/@x
k

6= 0, there exists m 2 Lout

⌘(`)

such
that

↵⌘(`)(x) =
⇣

P

j2Lin

⌘(`)
��m

�out

j

(x
j

)
⌘�1

�in

m

(x
m

) (5.30)

@↵⌘(`)

@x
k

(x) = �
d�

out

k
dxk

(x
k

)�in

m

(x
m

)

��m

⇣

P

j2Lin

⌘(`)
�out

j

(x
j

)
⌘

2

 0, (5.31)

and thus (5.26) holds. Next, we have

@f in

`

@x
k

(x, y) =

8

>

>

<

>

>

:

��`

P

j2Lin

⌧(`)

@f

out

j

@xk
(⇠`(x, y))

if k 2 Lin

⌧(`)

0 else

(5.32)

by (5.22)–(5.24). For k 2 Lin

⌧(`)

, we have

X

j2Lin

⌧(`)

@f out

j

@x
k

(⇠`(x, y)) =
@↵⌧(`)

@x
k

(⇠`(x, y))
X

j2Lin

⌧(`)

�out

j

(x
j

)

+ ↵⌧(`)(⇠`(x, y))
d�out

k

dx
k

(x
k

). (5.33)
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If ↵⌧(`) 6= 1 on some neighborhood of ⇠`(x, y), then there exists m 2 Lout

⌧(`)

such that

↵⌧(`)(⇠`(x, y)) =
�in

m

(y
m

)
P

j2Lin

⌧(`)
��m

�out

j

(x
j

)
, (5.34)

@↵⌧(`)

@x
k

(⇠`(x, y)) = �
d�

out

k
dxk

(x
k

)�in

m

(y
m

)

��m

⇣

P

j2Lin

⌧(`)
�out

j

(x
j

)
⌘

2

. (5.35)

It follows that (5.33) evaluates to zero for this case. Therefore,

@f in

`

@x
k

(⇠`(x, y)) 2
⇢

0, ��`

d�out

k

dx
k

(x
k

)

�

� 0, (5.36)

and thus (5.27) holds. Finally, we have

@f in

`

@y
k

(x, y) =

8

>

<

>

:

��`

@↵

⌧(`)

@xk
(⇠`(x, y))

P

j2Lin

⌧(`)
�out

j

(x
j

)

if ⌧(k) = ⌧(`) and k 6= `

0 else.

(5.37)

If @↵

⌧(`)

@xk
(⇠`(x, y)) 6= 0 for some k 6= ` with ⌧(k) = ⌧(`), then it must be that

@↵⌧(`)

@x
k

(⇠`(x, y)) =
⇣

P

j2Lin

⌧(`)
��k

�out

j

(x
j

)
⌘�1 d�in

k

dx
k

(y
k

). (5.38)

We conclude that (5.28) holds because

@f in

`

@y
k

(x, y) 2
⇢

0,
��`

��k

d�in

k

dx
k

(y
k

)

�

 0. (5.39)

5.3 Asymptotic Behavior

5.3.1 Main result

We now use Theorem 5.2.1 and the order-preserving properties of (5.20)–(5.21) to prove
global stability of a particular class of tra�c networks.

Definition 5.3.1. The connected graph G is said to be a polytree graph if the underlying
undirected graph is acyclic.



CHAPTER 5. MIXED MONOTONICITY IN TRAFFIC FLOW DYNAMICS 86

The “underlying undirected graph” is the undirected graph that results from replacing
each directed edge with an undirected edge between the same two nodes.

The class of networks that constitute polytree graphs is somewhat restrictive, as it does
not allow cycles or multiple paths between two locations. However, polytrees still encompass
a large class of relevant networks, such as a stretch of freeway with onramps and o↵ramps,
or a portion of a freeway network leading into (resp. out from) a large metropolitan area,
which is useful for modeling the morning (resp. evening) commute patterns in the area.
Furthermore, we show via a simple example in Section 5.3.2 that assuming the network is
a polytree is necessary for the results presented here; this is an important observation in
its own right as it demonstrates the limitations of the proposed approach and motivates
additional techniques to overcome this limitation as discussed in Section 5.4.

Theorem 5.3.1. The equilibrium xe identified in (5.15) is globally asymptotically stable for
polytree networks.

Proof. Let x̄ = {x̄
`

}
`2L. We have

0  g
`

(0, x̄) =

(

d
`

if ` 2 R
0 if ` 2 O (5.40)

0 � g
`

(x̄, 0) =

(

0 if ` 2 L\Lsink

��out

`

(x̄
`

) if ` 2 Lsink.
(5.41)

Let 
C

be the order relation with respect to C , Rn

�0

⇥ Rn

0

, that is, (x, y) 
C

(x̃, ỹ) if
and only if x  x̃ and ỹ  y. Trivially, (0, x̄) 

C

(x̄, 0) and (5.40)–(5.41) implies

(g(x̄, 0), g(0, x̄)) 
C

(0, 0) 
C

(g(0, x̄), g(x̄, 0)). (5.42)

Now consider the solution (x(t), y(t)) to (5.20)–(5.21) with initial condition (0, x̄). Since
(5.20)–(5.21) is order-preserving with respect to C, the second inequality of (5.42) implies
that (x(t), y(t)) is monotonically increasing with respect to 

C

[Smi95, Ch. 3, Prop. 2.1].
Symmetrically, (y(t), x(t)) is the solution to (5.20)–(5.21) with initial condition (x̄, 0) and
is monotonically decreasing by the first inequality of (5.42). It follows that (x(t), y(t)) !
(x⇤, y⇤) for some (x⇤, y⇤) an equilibrium of (5.20)–(5.21) satisfying

x⇤  xe  y⇤. (5.43)

By symmetry, (y⇤, x⇤) is also an equilibrium of (5.20)–(5.21). That is, f in

`

(⇠`(x⇤, y⇤)) =
f out

`

(y⇤) for all ` 2 L, and f in

`

(⇠`(y⇤, x⇤)) = f out

`

(x⇤) for all ` 2 L.
Consider a trajectory z(t) of (5.4)–(5.8) with initial condition z0 2 X , and let !(z0) de-

note the corresponding omega limit set. This induces the corresponding trajectory (z(t), z(t))
of the symmetric system (5.20)–(5.21) with initial condition (z0, z0). Since (0, x̄) 

C

(z0, z0) 
C

(x̄, 0), it follows that (x(t), y(t)) 
C

(z(t), z(t)) 
C

(y(t), x(t)) for all t � 0, that is,

x(t)  z(t)  y(t) 8t � 0. (5.44)
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We thus have x⇤  w  y⇤ for all w 2 !(z0). We now show that x⇤ = y⇤ = xe.
Suppose y⇤ 6= xe. Recalling that y⇤ � xe, this implies there exists ` 2 L such that

y⇤
`

> xe

`

. By acyclicity of polytree networks, we assume, without loss of generality, that there
does not exists k 2 Lout

⌘(`)

such that y⇤
k

> xe

k

(otherwise we could choose this downstream

link k instead of `). This implies that �in

k

(y⇤
k

) = �in

k

(xe

k

) for all k 2 Lout

⌘(`)

. Without loss of
generality, we further assume that f out

`

(y⇤) > f e

`

. Indeed, if this were not the case, then there
must exist some downstream link with inadequate supply since �out

`

(y⇤
`

) > �out

`

(xe

`

) = f e

`

.
That is, there exists k 2 Lout

⌘(`)

, for which y⇤
k

= xe

k

, such that

X

j2Lin

⌘(`)

f out

j

(y⇤) = (1/��k

)f in

k

(y⇤
k

) >
X

j2Lin

⌘(`)

f e

j

, (5.45)

for which there must exist some j 2 Lin

⌘(`)

, j 6= ` with f out

j

(y⇤) > f e

j

, and we could choose j
instead of `.

We thus have f in

`

(⇠`(y⇤, x⇤)) = f out

`

(y⇤) > f e

`

. Define `
0

, ` and, starting from `
0

, choose
inductively `

1

, `
2

, . . . , `
n

to satisfy `
i

2 Lin

⌧(`i�1

)

for all i (that is, link `
i

is upstream of link
`
i�1

) such that f out

`i
(y⇤) > f e

`i
, until no additional upstream link satisfying this condition

exists. Note it is possible that `
n

= `
0

= `. Thus

f in

`n
(⇠`n(y⇤, x⇤)) = f out

`n
(y⇤) > f e

`n
(5.46)

and f out

j

(y⇤)  f e

j

for all j 2 Lin

⌧(`n)

. But then there must exist k with ⌧(k) = ⌧(`
n

),

k 6= `
n

such that ��k

P

j2Lin

⌧(k)
f out

j

(y⇤) = �in

k

(y⇤
k

) for which �in

k

(y⇤
k

)  f e

k

. Define k
0

= k

and construct another sequence k
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} chosen previously, as this would imply the graph is not a polytree.
Taking ` = m, we could begin the process again, continuing indefinitely; since the graph is
finite, we arrive at a contradiction, and thus we must have y⇤ = xe.

Now suppose x⇤ 6= xe, that is, there exists ` such that x⇤
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< xe

`

. Without loss of generality,
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Figure 5.2: An example consisting of a primary junction with three incoming links and two
outgoing links.

there must exists j 2 Lout

⌧(`)

, j 6= `, such that f in

`

(⇠`(x⇤, y⇤)) = (��`

/��j

)�in

j

(y⇤
j

), for which
we must have y⇤

j

> xe

j

, a contradiction since we have shown y⇤ = xe. As x⇤ = y⇤ = xe, we
conclude that !(z0) = {xe} for all z0 2 X , that is, the equilibrium xe is globally attractive.

Finally, suppose the links are indexed 1, . . . , |L| such that the index of link ` is less than
the index of each k 2 Lout

⌘(`)

(such an indexing is always possible for polytree graphs). Then the
Jacobian evaluated at the equilibrium, (@F/@x)(xe), is upper triangular with respect to this
indexing since f out

`

(xe) = �out

`

(xe

`

) for all ` 2 L. Additionally, the Jacobian contains strictly
negative entries along the diagonal since �out

`

(·) is strictly increasing, and it is therefore
Hurwitz. Thus the equilibrium is locally asymptotically stable by, e.g., [Kha02, Thereom
4.7] and therefore globally asymptotically stable since it is also globally attractive.

5.3.2 Examples

We first consider an example consisting of a single primary junction with multiple inputs
and outputs which satisfies the polytree assumption.

Example 5.3.1. Let R = {1, 2, 3} and O = {4, 5}, and suppose the network consists of one
primary junction as in Figure 5.2. We assume each link has supply and demand functions
of the form

�in
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� m
`

x
`

(5.49)
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`

(1 � exp(��
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)) (5.50)

where ⇣
`

2 [4, 10], m
`

2 [0.75, 1.25], �
`

2 [4, 6], �
`

2 [0.25, 0.75], and each parameter is chosen
uniformly randomly from the given set for the simulation. The split ratios ��4

and ��5

are
also chosen randomly. The exogenous input satisfies d

`

2 [3, 5] and is chosen uniformly
randomly, and we ensure {d

`

}
`2R satisfies Assumption 5.1.3. Figure 5.3 shows plots of the

demand and supply functions, along with a sample trajectory x(t) of the system. We see
that the system converges to the unique equilibrium, and furthermore fout

`

(x(t)) is strictly
less than �out

`

(x
`

(t)) for ` 2 R for most of the sample trajectory, indicating that the flow is
constrained by a downstream link. In particular, link 4 restricts the flow of upstream links
and results in nonmonotone behavior. We see this in the lower plot of the figure, which
shows x

4

(t) and x
5

(t), along with y
4

(t) and y
5

(t) for another trajectory with initial condition
satisfying y

0

 x
0

. Since the trace of x
5

(t) and y
5

(t) cross, the system is not monotone.
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Figure 5.3: Demand and supply functions for Example 1, along with an example trajectory
of the system. The bottom plot shows the trace of the state of links 4 and 5 for the example
trajectory (green), along with traces corresponding to a di↵erent initial condition (blue).
These traces demonstrates that the system is not monotone since the solid lines cross.
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1 4
2

3

Figure 5.4: An example that is not a polytree network for which Theorem 5.3.1 does not
apply. In particular, the symmetric system (5.20)–(5.21) admits additional equilibria that
do not correspond to an equilibrium of the tra�c network, demonstrating the necessity of
the polytree condition and illuminating an important limitation of the proposed technique.

We next present an example network that is not a polytree, for which y⇤ 6= xe if we
attempt to apply the proof technique of Theorem 5.3.1. This example shows that the polytree
condition in Theorem 5.3.1 is tight and illuminates the limitations of applying monotonicity
results to establish convergence in nonmonotone tra�c flow networks. We discuss these
limitations in further detail below.

Example 5.3.2. Consider the tra�c network shown in Figure 5.4 and assume

�out

`

(x
`

) = x
`

, ` 2 {1, . . . , 4} (5.51)

�in

`

(x
`

) = 30 � x
`

, ` 2 {1, 2, 4} (5.52)

�in

3

(x
3

) = 100 � x
`

, (5.53)

and ��2

= ��3

= 1/2, ��4

= 1, and d
1

= 10. Then

xe = (10, 5, 5, 10), f e = (10, 5, 5, 10) (5.54)

constitutes the unique equilibrium and equilibrium flow. However, taking x⇤ = xe and y⇤ =
(20, 25, 50, 15), we have that g(x⇤, y⇤) = g(y⇤, x⇤) = 0 for g(x, y) as given in Theorem 5.2.1,
that is, (x⇤, y⇤) and (y⇤, x⇤) constitute equilibria of the symmetric system. Nonetheless,
simulations indicate that xe is indeed globally asymptotically stable.

5.4 Discussion

In this chapter, we showed that tra�c flow networks are not monotone due to multi-output
junctions. Nevertheless, we observed in Theorem 5.2.1 that increasing the number of vehicles
on one outgoing link can only decrease incoming flow to adjacent outgoing links, and thus the
dynamics are mixed monotone and amenable to an embedding into a higher order, symmetric
monotone system.

Theorem 5.3.1 used monotonicity of this embedding system and proved convergence to the
equilibrium of the original nonmonotone system. In [ESS06; AS03; ES06; AES14], a similar
technique is used to establish general small-gain theorems for nonmonotone interconnections
of monotone subsystems. Other approaches to proving stability of flow networks rely on a
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one-norm contraction property that is partially due to conservation of mass in the network
but requires monotone dynamics as in Chapter 4, see also [CLS15]. It is not clear how
techniques that rely on contraction properties can be extended to mixed monotone systems,
even after embedding such systems in a symmetric monotone system as in (5.20)–(5.21).
However, this is a natural area to explore for overcoming the polytree condition required in
Theorem 5.3.1.
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Chapter 6

Conclusions

Formal techniques for provably correct verification and design of engineered systems is a
critical challenge as these systems become more complex and our reliance on their safe and
predictable operation grows. This dissertation contributes fundamental theory for analysis
and control of a large class of dynamical systems that model networked physical processes.
In addition, we focus on transportation networks to demonstrate how these fundamental
contributions are applicable.

6.1 Key Contributions

In Chapter 2, we studied mixed monotone discrete-time systems and provided an algorithm
for e�ciently computing finite abstractions, or symbolic models, of these systems using
rectangular partitions of the state space. Mixed monotonicity is a general property applicable
to many physical systems of practical importance and naturally generalizes the familiar
notation of monotonicity in dynamical systems. We demonstrated how the resulting finite
abstractions are used for formally verifying the correct behavior of the original system or for
synthesizing a control strategy that ensures correct behavior of the closed loop system.

In Chapter 3, we leveraged the abstraction algorithm of Chapter 2 and proposed a frame-
work for synthesizing control strategies for tra�c networks. Given a control objective ex-
pressed in linear temporal logic (LTL), the proposed correct-by-design approach ensures that
the resulting control strategy satisfies the objective. Temporal logic is a formal specification
language capable of encompassing many objectives relevant to transportation. For exam-
ple, the objective may be to develop a ramp metering and signal coordination strategy that
avoids congestion on the freeway but prevents onramp queues from blocking adjacent arterial
tra�c.

In Chapter 4, we proposed and analyzed a macroscopic tra�c flow model that merges
ideas from compartmental system theory and dynamical system theory with existing, vali-
dated tra�c network models. This models extends the tra�c flow ideas presented in Chapter
3 and captures important phenomenological properties of vehicular tra�c flow such as fixed
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turn ratios and backwards propagation of congestion. In this chapter, we contributed a the-
oretical foundation and qualitative analysis of the resulting dynamical behavior. Chapter 5
continues the study of this tra�c model and specifically investigates the mixed monotone
properties that result.

6.2 Future Work

Future directions for research that emerge from this thesis may be divided into two promi-
nent categories: scalable tools for correct-by-design approaches for engineering systems, and
control theoretical approaches to analyzing and controlling next generation transportation
systems. These two directions naturally overlap at the domain of cyber-physical systems.

6.2.1 Scalable Tools for Correct-By-Design Systems

It has long been noted that computational procedures for control and analysis of dynamical
systems which work well in low dimensions often fail to scale due to the “curse of dimen-
sionality”, and this is particularly true for formal methods applied to dynamical systems.
The limitations largely stem from the finite symbolic model of the original system which
is required for computation. This symbolic model typically requires reachability computa-
tions and therefore is expensive to compute, and once constructed, the finite model may be
prohibitively large to reason about.

To address the first issue, this dissertation showed that by exploiting certain physical
properties of the system, we perform reachability computations quickly, which greatly aids
the construction of the symbolic model. The key is to identify contraints, often induced
by the physics and interconnection structure, that restrict behavior of the system. Such an
approach is required to make significant inroads in scalable approaches for these systems.
Indeed, the physical aspect of cyber-physical systems is what sets them apart and must
be exploited to the fullest. Control and dynamical systems theory o↵er numerous tools for
distilling complex physical phenomena to their essential features, and future research must
draw on these domains to develop novel approaches for formal methods in networked systems
engineering.

Additionally, future research should consider data-driven approaches that take advantage
of measured data to reduce computation. For example, rather than computing reachable sets
with a su�ciently detailed dynamical model, measured system traces may be used to estimate
the future state. This approach could further allow specifications given in probabilistic
temporal logic such as “with 95 percent probability, the freeway maintains throughput above
a given threshold until onramp queues are empty.” These systems may be modeled as,
e.g., Markov Decision Processes (MDP), which are amenable to combining the theory of
probabilistic model-checking with machine learning to obtain algorithms that learn the MDP
while determining provably correct control actions.
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6.2.2 Control of Next Generation Transportation Systems

Not only do transportation systems embody key structural properties amenable to scalable
tools for verification and design, they are a prime example of critical infrastructure requiring
sustainable solutions and novel approaches. Due to lack of space and funding, building new
infrastructure is not a viable option to meet future transportation needs. Thus, solutions
must make more e�cient use of the existing built environment. Furthermore, the next
generation of transportation systems will include connected vehicles and infrastructure as
well as automated systems that must interoperate with existing legacy systems.

Tomorrow’s intelligent transportation systems will be equipped with a heterogeneous mix
of sensors both within the infrastructure and with connected vehicles, o↵ering unprecedented
opportunities to improve safety and increase mobility. For example, it is a mundane fact
that the most expensive component of properly timing tra�c signals is obtaining accurate
measurements of tra�c movement. The impending ubiquity of wireless sensors will eliminate
this di�culty. Furthermore, future research will enable systematic responses to anomalous
scenarios such as major tra�c incidents or inclement weather conditions. Currently, such
scenarios are often addressed heuristically with control policies constructed manually. In-
creased complexity of transportation and other networked systems, as well as the dramatic
increase in available data, demands automated and formal approaches to these problems.
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