
Communication-Avoiding Krylov Subspace Methods in
Theory and Practice

Erin Carson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-179
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-179.html

August 5, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

I acknowledge under the Dept. of Defense, Air Force Office of Scientific
Research, NDSEG Fellowship, 32 CFR 168a, as well as support from the
U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics program under
Award Numbers DE-SC0004938, DE-SC0003959, and DE-SC0010200;
from the U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, X-Stack program under Award Numbers
DE-SC0005136, DE-SC0008699, DE-SC0008700, and AC02-05CH11231;
from DARPA Award Number HR0011-12-2-0016, as well as contributions
from Microsoft (award 024263), Intel (award 024894), UC Discovery
(award DIG07-10227), and from affiliates National Instruments, Nokia,
NVIDIA, Oracle, Samsung, and MathWorks.

Communication-Avoiding Krylov Subspace Methods in Theory and Practice

by

Erin Claire Carson

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Computational and Data Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James W. Demmel, Chair
Professor Armando Fox

Professor Ming Gu

Summer 2015

Communication-Avoiding Krylov Subspace Methods in Theory and Practice

Copyright 2015
by

Erin Claire Carson

1

Abstract

Communication-Avoiding Krylov Subspace Methods in Theory and Practice

by

Erin Claire Carson

Doctor of Philosophy in Computer Science

with a Designated Emphasis in Computational and Data Science and Engineering

University of California, Berkeley

Professor James W. Demmel, Chair

Advancements in the field of high-performance scientific computing are necessary to address
the most important challenges we face in the 21st century. From physical modeling to large-
scale data analysis, engineering efficient code at the extreme scale requires a critical focus
on reducing communication – the movement of data between levels of memory hierarchy or
between processors over a network – which is the most expensive operation in terms of both
time and energy at all scales of computing. Achieving scalable performance thus requires
a dramatic shift in the field of algorithm design, with a key area of innovation being the
development of communication-avoiding algorithms.

Solvers for sparse linear algebra problems, ubiquitous throughout scientific and mathe-
matical applications, often limit application performance due to a low computation/comm-
unication ratio. Among iterative methods, Krylov subspace methods are the most general
and widely-used. To alleviate performance bottlenecks, much prior work has focused on the
development of communication-avoiding Krylov subspace methods, which can offer asymp-
totic performance improvements over a set number of iterations.

In finite precision, the convergence and stability properties of classical Krylov methods are
not necessarily maintained by communication-avoiding Krylov methods. Depending on the
parameters used and the numerical properties of the problem, these communication-avoiding
variants can exhibit slower convergence and decreased accuracy compared to their classical
counterparts, making it unclear when communication-avoiding Krylov subspace methods are
suitable for use in practice.

Until now, the literature on communication-avoiding Krylov methods lacked a detailed
numerical stability analysis, as well as both theoretical and practical comparisons with the
stability and convergence properties of standard implementations. In this thesis, we address
this major challenge to the practical use of communication-avoiding Krylov subspace meth-
ods. We extend a number of theoretical results and algorithmic techniques developed for
classical Krylov subspace methods to communication-avoiding Krylov subspace methods and
identify constraints under which these methods are competitive in terms of both achieving
asymptotic speedups and meeting application-specific numerical requirements.

i

To my fellow Drs. Carson, Bernard and Scott.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 The Importance of Computational Science 1
1.2 The Need for Communication-Avoiding Algorithms 2
1.3 Iterative Linear Algebra at Scale . 2
1.4 Thesis Contributions . 4

2 Preliminaries 8
2.1 Notation and Definitions . 8
2.2 Theoretical Performance Model . 9
2.3 Classical Krylov Subspace Methods . 10
2.4 Avoiding Communication in Krylov Subspace Methods 12
2.5 Numerical Properties of Krylov Subspace Methods 14
2.6 Algorithm Notation and Terminology . 16

3 Communication-Avoiding Kernels 18
3.1 Block Inner Products . 19
3.2 The Matrix Powers Kernel . 20

4 New Communication-Avoiding Krylov Subspace Methods 32
4.1 Nonsymmetric Lanczos . 33
4.2 Biconjugate Gradient . 39
4.3 Conjugate Gradient Squared . 46
4.4 Biconjugate Gradient Stabilized . 50
4.5 Lanczos Bidiagonalization . 56
4.6 Least-Squares QR . 72
4.7 Conclusions and Future Work . 75

iii

5 Communication-Avoiding Krylov Subspace Methods in Finite Precision 80
5.1 Analysis of the CA-Lanczos Method . 81
5.2 Convergence of CA-KSMs for Solving Linear Systems 145
5.3 Maximum Attainable Accuracy of CA-KSMs 159
5.4 Conclusions and Future Work . 168

6 Methods for Improving Stability and Convergence 170
6.1 Residual Replacement . 171
6.2 Deflation-Based Preconditioning . 187
6.3 Selective Reorthogonalization . 201
6.4 Look-Ahead . 204
6.5 Extended Precision . 206
6.6 Dynamically Updated Basis Parameters . 207
6.7 Variable Basis Size . 208
6.8 Preconditioning: A Discussion . 209
6.9 Conclusions and Future Work . 211

7 Optimizations for Matrices with Special Structure 212
7.1 Data-Sparse Matrix Powers Kernel . 213
7.2 Streaming Matrix Powers Kernel . 221
7.3 Partitioning for Matrix Powers Computations 223
7.4 Conclusions and Future Work . 228

8 Performance and Applications 229
8.1 Experimental Platform . 229
8.2 Model Problem Performance . 230
8.3 CA-KSMs as Coarse Grid Solve Routines . 233

9 Conclusions 250
9.1 Challenges to the Practical Use of CA-KSMs 251
9.2 Are CA-KSMs Practical? . 253

Bibliography 255

iv

List of Figures

4.1 Basis properties for the cdde test matrix . 44
4.2 Convergence for cdde matrix for (CA-)BICG with various s values 44
4.3 Basis properties for the xenon1 test matrix . 45
4.4 Convergence for xenon1 matrix for (CA-)BICG with various s values 46
4.5 Convergence for cdde matrix for (CA-)BICGTAB with various s values 55
4.6 Convergence for xenon1 matrix for (CA-)BICGSTAB with various s values . . . 56

5.1 Error bounds for classical Lanczos for a model problem 97
5.2 Error bounds for CA-Lanczos with the monomial basis and s = 4 for a model

problem . 98
5.3 Error bounds for CA-Lanczos with the Newton basis and s = 4 for a model problem 99
5.4 Error bounds for CA-Lanczos with the Chebyshev basis and s = 4 for a model

problem . 100
5.5 Error bounds for CA-Lanczos with the monomial basis and s = 8 for a model

problem . 101
5.6 Error bounds for CA-Lanczos with the Newton basis and s = 8 for a model problem102
5.7 Error bounds for CA-Lanczos with the Chebyshev basis and s = 8 for a model

problem . 103
5.8 Error bounds for CA-Lanczos with the monomial basis and s = 12 for a model

problem . 104
5.9 Error bounds for CA-Lanczos with the Newton basis and s = 12 for a model

problem . 105
5.10 Error bounds for CA-Lanczos with the Chebyshev basis and s = 12 for a model

problem . 106
5.11 Tighter error bounds for CA-Lanczos with the monomial basis and s = 4 for a

model problem . 108
5.12 Tighter error bounds for CA-Lanczos with the Newton basis and s = 4 on a

model problem . 109
5.13 Tighter error bounds for CA-Lanczos with the Chebyshev basis and s = 4 on a

model problem . 110
5.14 Tighter error bounds for CA-Lanczos with the monomial basis and s = 8 for a

model problem . 111

v

5.15 Tighter error bounds for CA-Lanczos with the Newton basis and s = 8 for a
model problem . 112

5.16 Tighter error bounds for CA-Lanczos with the Chebyshev basis and s = 8 for a
model problem . 113

5.17 Tighter error bounds for CA-Lanczos with the monomial basis and s = 12 for a
model problem . 114

5.18 Tighter error bounds for CA-Lanczos with the Newton basis and s = 12 for a
model problem . 115

5.19 Tighter error bounds for CA-Lanczos with the Chebyshev basis and s = 12 for a
model problem . 116

5.20 Ritz values after 100 iterations of classical Lanczos for the ‘Strakoš’ problem . . 132
5.21 Ritz values after 100 iterations of CA-Lanczos with s = 2 for the ‘Strakoš’ problem133
5.22 Ritz values after 100 iterations of CA-Lanczos with s = 4 for the ‘Strakoš’ problem134
5.23 Ritz values after 100 iterations of CA-Lanczos with s = 12 for the ‘Strakoš’ problem135
5.24 Ritz value convergence and convergence bounds for classical Lanczos for the

‘Strakoš’ problem . 136
5.25 Ritz value convergence and convergence bounds for CA-Lanczos with s = 2 for

the ‘Strakoš’ problem . 137
5.26 Ritz value convergence and convergence bounds for CA-Lanczos with s = 4 for

the ‘Strakoš’ problem . 138
5.27 Ritz value convergence and convergence bounds for CA-Lanczos with s = 12 for

the ‘Strakoš’ problem . 139
5.28 Number of converged Ritz values and lower bounds for the ‘Strakoš’ problem . . 140
5.29 Loss of orthogonality and convergence of Ritz values for classical Lanczos for the

‘Strakoš’ problem . 142
5.30 Loss of orthogonality and convergence of Ritz values for CA-Lanczos with a mono-

mial basis for the ‘Strakoš’ problem . 143
5.31 Loss of orthogonality and convergence of Ritz values for CA-Lanczos with a

Chebyshev basis for the ‘Strakoš’ problem . 144

6.1 Convergence of cdde test matrix for CA-BICG with and without residual replace-
ment. 182

6.2 Convergence of consph test matrix for CA-CG with and without residual replace-
ment . 183

6.3 Convergence of thermal1 test matrix for CA-CG with and without residual re-
placement . 184

6.4 Convergence of xenon1 test matrix for CA-BICG with and without residual re-
placement . 185

6.5 Convergence of G2circuit test matrix for CA-CG with and without residual re-
placement . 186

6.6 Monomial basis tests for deflated (CA-)CG . 194
6.7 Newton basis tests for deflated (CA-)CG . 195

vi

6.8 Chebyshev basis tests for deflated (CA-)CG . 196
6.9 Modeled weak scaling for deflated (CA-)CG . 199
6.10 Modeled strong scaling for deflated (CA-)CG 200
6.11 Modeled speedup per iteration for deflated (CA-)CG 200

7.1 Predicted speedups for PA1-HSS . 220
7.2 Size of hypergraph for various partitioning methods 226
7.3 Normalized communication volume for various partitioning methods 227

8.1 Strong scaling time and speedups . 232
8.2 Weak scaling time . 234
8.3 Depiction of multigrid V-cycle . 235
8.4 Breakdown of miniGMG benchmark time . 237
8.5 Breakdown of bottom solve time . 238
8.6 Weak scaling plot of time spent in Allreduce and number of iterations 238
8.7 Design space for CA-KSM optimizations . 239
8.8 Comparison of timing breakdown for BICGSTAB solve for various numbers of

processes . 240
8.9 Weak scaling of solver with CA-BICGSTAB vs. BICGSTAB 242
8.10 Speedup of solver with CA-BICGSTAB vs. BICGSTAB 243
8.11 Performance in degrees of freedom solved per second for multigrid with CA-

BICGSTAB vs. BICGSTAB . 244
8.12 Breakdown of the net time spent across all bottom solves 245
8.13 Max norm of the residual on the finest grid after each V-cycle 246
8.14 Speedup of mac project solver in 3D LMC . 247
8.15 Speedup of mac project solver in 2D LMC . 248
8.16 Speedup of gravity solve in Nyx application . 248

vii

List of Tables

3.1 Upper bounds on costs of Gram matrix construction 19
3.2 Upper bounds on costs of PA0 and PA1 for each processor m for general matrices 24
3.3 Upper bounds on costs of PA0 and PA1 for each processor for a (2b + 1)d-point

stencil on a N×· · ·×N d-dimensional mesh with n = Nd, partitioned into p = ρd

subcubes with integer edge length w = N/ρ . 25
3.4 Upper bounds on costs of SA0 and SA1 for general matrices 27
3.5 Upper bounds on costs of SA0 and SA1 for a (2b+1)d-point stencil on a N×· · ·×N

d-dimensional mesh with n = Nd, partitioned into p = ρd subcubes with integer
edge length w = N/ρ . 28

6.1 Matrices used in residual replacement tests . 179
6.2 Improvement in true residual 2-norm with residual replacement 180
6.3 Percentage of residual replacement steps . 180
6.4 Iterations where residual replacement steps occur 181

7.1 Asymptotic complexity of PA0-HSS and PA1-HSS 219
7.2 Test matrices for partitioning tests . 225

viii

Acknowledgments

Thank you to my advisors James Demmel and Armando Fox, my committee member Ming
Gu, and my collaborators, colleagues, and fellow beboppers, including Grey Ballard, Ay-
din Buluc, Jong-Ho Byun, Razvan Carbunescu, Orianna DeMasi, Aditya Devarakonda,
Michael Driscoll, Marquita Ellis, Andrew Gearhart, Evangelos Georganas, Pieter Ghysels,
Laura Grigori, Mark Hoemmen, Nick Knight, Penporn Koanantakool, Marghoob Mohiyud-
din, Hong Diep Nguyen, Rebecca Roelofs, Cindy Rubio Gonzalez, Oded Schwartz, Harsha
Simhadri, Edgar Solomonik, Brian Van Straalen, Sam Williams, and Kathy Yelick. I would
also like to thank my family, my friends, and my dog Blue for their continuous love and
support during my graduate career.

I acknowledge Government support under and awarded by the Department of Defense,
Air Force Office of Scientific Research, National Defense Science and Engineering Graduate
(NDSEG) Fellowship, 32 CFR 168a, as well as support from the U.S. Department of Energy
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics
program under Award Numbers DE-SC0004938, DE-SC0003959, and DE-SC0010200; from
the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing
Research, X-Stack program under Award Numbers DE-SC0005136, DE-SC0008699, DE-
SC0008700, and AC02-05CH11231; from DARPA Award Number HR0011-12-2-0016, as well
as contributions from Microsoft (award 024263), Intel (award 024894), UC Discovery (award
DIG07-10227), and from affiliates National Instruments, Nokia, NVIDIA, Oracle, Samsung,
and MathWorks.

1

Chapter 1

Introduction

1.1 The Importance of Computational Science

The field of computational science has revolutionized the way science and engineering are
done in the world today. Alongside theoretical and experimental science, computational
science is now widely regarded as an essential ‘third pillar’ of scientific exploration, which
will become increasingly important in driving scientific and technological progress. Com-
putational science has enabled the construction and validation of new theoretical models of
phenomena that are impossible to study in an experimental setting, for example, studying
dark energy and the origin of the universe. Using computational models and simulations
can also reduce the cost and time required to design and test products and procedures, from
airplanes to medical treatments to renewable energy sources.

The field of computational science is a multidisciplinary area, combining research in
computer science, applied mathematics, and domains in the natural, physical, and social
sciences. Research in this field focuses on how to build models efficiently under constraints
of limited computational power and computer memory as well as how to determine if the
model and simulation are accurate enough to be reliable.

As computational models and simulations are increasingly being used for decision-making
purposes, and have become an indispensable tool in design and manufacturing processes and
for scientific research as well as policy-making, it is increasingly important to obtain reli-
able and accurate results for realistic physical systems at scale. Running the extreme-scale
simulations needed to address the most important challenges we face in the 21st century, in-
cluding climate modeling, combustion/efficient fuel design, computer-aided design of vehicles
and airplanes, design of medical devices and diagnostic procedures, and genomic sequencing,
will require major advances in both computer hardware and software [8, 65].

2

1.2 The Need for Communication-Avoiding

Algorithms

On modern computers, the time to complete a floating point operation can be orders of
magnitude less than the time to perform communication, i.e., move data between levels of
the memory hierarchy or between parallel processors over a network. This gap is expected
to grow in future systems [8, 65]. Traditionally, algorithm performance has been gauged in
terms of computational complexity; conventional wisdom tells us that the fewer arithmetic
or logical operations an algorithm performs, the faster it will be. On today’s computer
architectures, this notion is far from accurate. Instead, communication complexity is a much
better indication of both runtime and energy cost.

To be effective in enabling scientific discovery and analysis, many scientific computing
applications require simulations at increasingly large scales. This necessitates performing
computations that do not fit in cache and/or require running on large parallel machines
with multiple processors, which in turn necessitates costly communication. As the size of
the problem and the number of processors is increased, these algorithms suffer a rapid degra-
dation of performance. Some computations, including those to study climate change and the
origin of the universe, are so large they must be run on peta- or exascale supercomputers.
In these cases, time spent communicating data is not just a hindrance to performance, but
is prohibitive in terms of both time and energy cost.

Engineering efficient code at the extreme scale thus requires a paradigm shift in the
design of high-performance algorithms: to achieve efficiency, one must focus on strategies
which minimize data movement rather than minimize arithmetic operations to fully exploit
the computational power of large-scale systems. We call this a communication-avoiding
approach to algorithm design.

1.3 Iterative Linear Algebra at Scale

Algorithms for solving linear systems Ax = b and eigenvalue problems Ax = λx can be
classified as either direct methods, which perform a fixed number of steps to obtain a solution,
or iterative methods, which repeatedly refine a candidate solution until the given stopping
criteria are met. Iterative methods are commonly used when the matrix is too large and
sparse to be solved using direct methods, when only a partial answer is required, or when
accuracy less than machine precision is acceptable. In this thesis, we focus on iterative
methods for solving sparse linear systems and eigenvalue problems, which constitute the core
computational kernels in a wide variety of application areas, including materials science [150],
biology [203], structural engineering [6], and combustion and energy modeling [25], as well
as areas such as computational statistics [75, 76], Markov modeling [20], unconstrained
optimization [169], image recognition [40], and computational finance [15].

The most general and flexible class of iterative methods is Krylov subspace methods
(KSMs) [153, 154, 87, 123, 124, 180, 119, 17]. These methods are based on vector projection

3

onto expanding subspaces, where, in each iteration k, the solution update is chosen from the
expanding Krylov subspace

Kk(A, v) = span{v, Av, A2v, ..., Ak−1v}, (1.1)

where v is a starting vector chosen by the algorithm or input by the user. Many variants
of Krylov subspace methods exist, each with different minimization properties and varying
storage requirements (see, e.g., [153]).

Classical implementations of KSMs require one or more sparse matrix-vector multipli-
cations (SpMVs) and one or more inner product operations in each iteration. These com-
putational kernels are both communication-bound on modern computer architectures. To
perform an SpMV, each processor must communicate some entries of the source vector it
owns to other processors in the parallel algorithm, and in the sequential algorithm the matrix
A must be read from slow memory in the common case when A is too large to fit in fast
memory. Inner products involve a global reduction in the parallel algorithm, and a number
of reads and writes to slow memory in the sequential algorithm (depending on the size of
the vectors and the size of the fast memory).

Researchers have thus sought to remove the communication bottleneck in KSMs by re-
organizing the algorithms to minimize data movement. These variants are referred to as
communication-avoiding KSMs (CA-KSMs), or s-step KSMs; we will use these terms inter-
changeably. We summarize the relevant literature in Section 2.4. The motivating insight is
that temporal locality can be improved by unrolling the iteration loop a factor of O(s) times
and breaking the dependencies between the SpMVs and vector operations in each iteration.
For a fixed number of iterations, this theoretically allows for an O(s) reduction in commu-
nication cost. It has been shown that such communication-avoiding formulations can result
in significant speedups per iteration for many problems [127, 190].

Improving the speed per iteration, however, is not sufficient to guarantee speedups in a
practical setting. When we consider the overall performance of iterative methods in practice,
we must consider both

1. the time per iteration, which depends on the required kernels and the particular ma-
chine parameters, as well as the matrix structure and partition, and,

2. the number of iterations required for convergence, i.e., until the stopping criteria are
met.

This second quantity depends on the conditioning and eigenvalue distribution of the system
as well as round-off error in finite precision. In practice, round-off errors resulting from
finite precision computation can heavily influence the rate of convergence; for example, in
the Lanczos method for solving the symmetric eigenproblem, large round-off errors can lead
to the loss of orthogonality between the computed vectors, which causes a delay in the
convergence of some eigenvalue estimates.

4

With these two quantities in mind, we can describe the total time required for an iterative
method as

Total time = (time per iteration)× (number of iterations). (1.2)

It has long been recognized (see, e.g., [49, 118]) that in finite precision, the convergence and
stability properties of classical Krylov methods are not necessarily maintained by commun-
ication-avoiding Krylov methods. As the parameter s is increased to reduce communication
costs and so time per iteration, the rate of convergence can slow, and the attainable accuracy
can decrease. Lost accuracy can be a significant problem depending on the needs of the
application, and as is clear from (1.2), slow convergence can negate potential benefits from
the communication-avoiding approach.

Thus despite any potential per-iteration performance gain, this decrease in convergence
rate and attainable accuracy can limit the practical applicability of CA-KSMs. To achieve
O(s) speedups using CA-KSMs, we must not only reduce the time per iteration by O(s),
but we must also ensure a convergence rate close to that of the classical method in finite
precision arithmetic. Further, depending on application requirements, we must ensure that
any decrease in attainable accuracy does not result in an unacceptably inaccurate solution.
Another challenge is the extension of techniques for improving numerical properties often
used in conjunction with classical KSMs, including reorthogonalization, residual replacement,
and preconditioning, to CA-KSMs in a way that still admits an O(s) reduction in data
movement. Overcoming these challenges to the practical use of communication-avoiding
Krylov subspace methods is the goal of this thesis.

1.4 Thesis Contributions

Despite nearly 30 years of study, the literature on communication-avoiding Krylov methods
still lacks a detailed numerical stability analysis, as well as both theoretical and practical
comparisons with the stability and convergence properties of classical implementations. In
this thesis, we address the stability, performance, and implementation challenges described
above, with the goal of increasing the practicality and accessibility of CA-KSMs for the
general scientific computing community. We extend a number of theoretical results and
algorithmic techniques developed for classical KSMs to CA-KSMs, and identify constraints
under which CA-KSMs are competitive in solving practical problems.

After reviewing preliminaries and detailing the communication and computation costs of
the kernels used in this thesis, we demonstrate in Chapter 4 that classical Lanczos-based
Krylov methods can be transformed into variants which perform asymptotically less commu-
nication. However, when finite arithmetic is used, the communication-avoiding methods are
no longer mathematically equivalent to their classical counterparts; Chapter 5 is dedicated
to explaining where and how these differences arise from a theoretical perspective. Our re-
sults show that the conditioning of the s-step bases plays an important role in influencing
finite-precision behavior. Working from this observation, in Chapter 6 we develop a num-
ber of techniques that can improve finite-precision stability and convergence in CA-KSMs.

5

Chapter 7 details interesting performance optimizations for certain specific cases of matrix
structure and in Chapter 8, we show that CA-KSMs can achieve significant speedups (up to
6×) over classical KSMs for large-scale problems in various scientific domains. Some work
presented in this thesis is adapted from published work, as indicated in bullet points below.

The primary contributions of this thesis include:

• The development of new communication-avoiding Krylov methods, including a non-
symmetric Lanczos variant, biconjugate gradient (BICG), conjugate gradient squared
(CGS), biconjugate gradient stabilized (BICGSTAB), upper and lower Lanczos bidi-
agonalization for solving singular value problems, and the least-squares QR (LSQR)
method for solving least squares problems (Chapter 4; adapted from [35], [16], [27],
and [34]);

• Completion of the first complete rounding error analysis of the CA-Lanczos method,
including derivation of upper bounds on the loss of normality of and orthogonality
between the computed Lanczos vectors as well as a recurrence for the loss of orthogo-
nality, which identifies conditions under which CA-KSMs are as stable as their classical
counterparts (Section 5.1; adapted from [32]);

• Proof that the bounds on eigenvalue and eigenvector convergence rates in finite preci-
sion Lanczos given by Paige [141] can be extended to CA-Lanczos assuming a bound on
the maximum condition number of the precomputed s-step Krylov bases, which shows
that if one can maintain modest condition numbers of the precomputed s-step Krylov
bases throughout the iterations, then the finite precision behavior of the CA-Lanczos
method will be similar to that of classical Lanczos (Section 5.1; adapted from [32]);

• Numerical experiments confirming the validity of our bounds on convergence of Ritz
values in CA-Lanczos for two different bases and various values of s, which illustrate
the impact of the basis condition number on our error bounds and suggest methods for
improving convergence and accuracy through the inexpensive monitoring of quantities
generated during the iterations (Section 5.1.6);

• The derivation of Lanczos-type matrix recurrences governing CA-CG and CA-BICG in
finite precision arithmetic, which demonstrate the algorithm’s relationship to classical
(BI)CG and allows us to give upper bounds on the norm of the updated residual in
finite precision CA-(BI)CG in terms of the residual norm of exact GMRES applied to
a perturbed matrix, multiplied by an amplification factor (Section 5.2; adapted from
the Technical Report [29]);

• The derivation of a computable bound on the deviation of the true and updated resid-
uals in the CA-CG and CA-BICG methods in finite precision, which can be iteratively
updated within the method without asymptotically increasing communication or com-
putation (Section 5.3; adapted from [31]);

6

• The development and implementation of an implicit residual replacement strategy,
based on the derived computable maximum attainable accuracy bounds in Section 5.3,
which can maintain agreement between the true and updated residuals to within the
order of machine precision in CA-CG and CA-BICG, yielding improvements of up to
7 orders of magnitude improvement in accuracy for little additional cost (Section 6.1;
adapted from [31]);

• The development and analysis of communication-avoiding deflated CG, and the demon-
stration that deflation-based preconditioning can be applied in communication-avoiding
formulations of Lanczos-based Krylov methods such as CA-CG while maintaining an
O(s) reduction in communication cost (Section 6.2; adapted from [36]);

• The identification of a number of techniques that can be used to improve stability and
convergence properties in CA-KSMs while still admitting a communication-avoiding
approach, including selective reorthogonalization, look-ahead, extended/variable pre-
cision, dynamic basis parameter updates, and variable basis dimensions (Sections 6.3-
6.7).

• The derivation of a parallel ‘blocking covers’ approach for increasing temporal locality
in matrix powers computations, which allows for communication-avoidance with matri-
ces that can be split into the sum of dense and low-rank components, and application
of this approach to hierarchical semiseparable matrices (see [19]) (Section 7.1; adapted
from [112]);

• The development of the streaming matrix powers optimization, which, by interleaving
SpMV and orthogonalization operations, can further reduce communication in sequen-
tial methods with implicitly-represented matrices (e.g., stencils with constant coeffi-
cients) and also enables write-avoiding Krylov methods which further reduce writes to
the lowest level of the memory hierarchy, which may be much more expensive than
reads in some technologies (Section 7.2);

• The development of a method to improve the partitioning of nonsymmetric matrices
using hypergraphs (see [37]) to avoid communication in matrix powers computations,
which uses a randomized algorithm to estimate the approximate hyperedge size and
selectively drop hyperedges once they become too large, reducing both hypergraph
construction and partitioning time (Section 7.3);

• Weak and strong scaling experiments for distributed-memory CA-CG, which show
potential speedups of up to 6× over classical CG for large-scale PDE solves on a model
problem run on a supercomputer with up to 4096 MPI processes, and identification of
the space in which the communication-avoiding approach is most beneficial in terms
of performance (Section 8.2); and

• The implementation and optimization of CA-BICGSTAB as a high performance, dist-
ributed-memory bottom solver for geometric multigrid, which enabled speedups of

7

over 4× on synthetic benchmarks and over 2.5× in real combustion and cosmology
applications on a supercomputer with up to 4096 MPI processes (Section 8.3; adapted
from [190]).

8

Chapter 2

Preliminaries

2.1 Notation and Definitions

We begin with a discussion of the notation and definitions used throughout this thesis. We
generally use n to denote the dimension of a square matrix, p (without a subscript) to
denote the number of parallel processors, and ε to denote the unit round-off of the machine.
All logarithms are taken to be base 2. Unless otherwise specified, all norms can be taken
to be 2-norms. We use a superscript ‘+’ to denote the Moore-Penrose pseudoinverse, i.e.,
Y + = (Y TY)−1Y T .

We use standard asymptotic notation in discussing computation and communication
complexity of algorithms. Specifically, f(n) = O(g(n)) means that for sufficiently large n,
there exists a constant c > 0 such that |f(n)| ≤ c|g(n)|; f(n) = Ω(g(n)) means that for
sufficiently large n there exists a constant c > 0 such that |f(n)| ≥ c|g(n)|; and f(n) =
Θ(g(n)) means that both f(n) = O(g(n)) and f(n) = Ω(g(n)).

We also use f(n) � g(n) to mean that for every c > 0, |f(n)| ≤ c|g(n)| for sufficiently
large n. This notation will be used somewhat informally to hide constants which are small
relative to g(n); i.e., f(n) � g(n) informally implies that f(n) is insignificant compared
to g(n). We also emphasize that our asymptotic notation does not imply that the results
require n to approach infinity to be correct. While the asymptotic analyses provide better
estimates for larger parameter values, they have proved meaningful and useful in algorithm
design for even modestly sized problems.

In this work, all asymptotic expressions should be interpreted as univariate, despite
appearances. For example, f = O(sn) asserts that for every infinite sequence ((si, ni) : i ∈
{1, 2, . . .}) of parameter pairs satisfying certain constraints, there exist constants c > 0 and
N ∈ {1, 2, . . .} such that f ≤ csini for all i ≥ N . The given constraints will restrict the set
of sequences of parameter tuples, e.g., s� n, which should be interpreted as the univariate
expression si � ni.

9

2.2 Theoretical Performance Model

In this work, we base our algorithms on a theoretical model of performance. We model a
parallel machine as a homogeneous, fully-connected network of p processors, each with a local
main memory of size M̂ and a cache of size M . We assume that processors communicate via
point-to-point (P2P) messages and collective synchronizations.

In addition to the number of processors p, our machine model has four main parameters:
α represents a latency cost incurred by every message, β represents a bandwidth cost linear
in the message size, γ represents the time to perform a floating point operation on local
data, and ν represents the time to transfer a word of data between main memory and cache.
Each processor executes asynchronously and can send or receive at most one message at a
time; passing an n-word message takes α + βn seconds on both the sending and receiving
processors. We assume that processors can only operate on local data and can execute each
flop at the peak rate 1/γ.

In our model the bandwidth and latency costs of an MPI Allreduce global collective of
size w are w log p and log p, respectively. There is no notion of distance on the network, and
we assume the network has unbounded buffer capacity.

While this simple model’s assumptions are not all realistic, similar models are widely used
to analyze communication costs on distributed-memory machines (see, e.g., [42]). One could
refine this model to obtain, e.g., the LogP model [55], which distinguishes between network
latency, software overhead, and network injection bandwidth (blurred between our α and
β terms), allows overlap of communication and computation, and introduces constraints on
message size and network congestion.

We model the cost of an algorithm in terms of four costs: F represents the number of
floating-point operations performed locally, W represents the number of words moved from
one parallel processor to another, S represents the number of messages sent/received by a
processor, and Ŵ represents the number of words moved between slow and fast memory. In
terms of these parameters, the time T for an algorithm to execute is bounded by

max(γF, βW, αS, νŴ) ≤ T ≤ γF + βW + αS + νŴ .

For some purposes in this work, we will relax this model and consider only parallel costs;
i.e., we assume that each processor has unbounded local memory and ignore the cost of data
movement from main memory to cache. These assumptions may be unrealistic when the
neglected sequential costs are nontrivial. However, when considering large p and small local
problems, when performance is dominated by interprocessor communication, we expect the
sequential costs would not significantly increase our models’ estimated costs. If a processor
performs F flops, and sends/receives S messages containing a total of W words, we then
model its worst-case runtime as

T = γF + βW + αS. (2.1)

This is a poor cost model for certain programs, like one where the p processors relay
a value from processor 1 to processor 2 to processor 3 . . . to processor p: each processor

10

sends/receives at most 2 words, but the actual runtime grows linearly in p. To count correctly
in such situations, one can consider the runtime along critical paths; e.g., in a program
activity graph [198]. For our algorithms here, we will only consider certain parallelizations
where one processor is always the slowest, so we can simply count F, S,W for that processor
to bound the total runtime.

Throughout the thesis, we informally use this performance model to reason about algo-
rithm tradeoffs and justify our communication-avoiding approach. This performance model
is applied more concretely in Section 6.2.4, where we use this model to predict runtimes
and show tradeoffs in our communication-avoiding deflated CG method for a model problem
with various parameters, and in Section 7.1.4, where we use this model to predict runtimes
and show tradeoffs in our communication-avoiding matrix powers kernel for hierarchical
semiseparable matrices (see, e.g., [19]).

2.3 Classical Krylov Subspace Methods

Krylov subspace methods (KSMs) are some of the most commonly used algorithms for solving
large, sparse linear systems and for computing a few dominant eigenvalues/vectors of large,
sparse matrices. Because of their success and ubiquity in numerous application domains,
KSMs have been named one of the ‘Top 10 Algorithms’ of the 21st century [53]. There is
no shortage of introductory texts which describe Krylov Subspace Methods, including those
of Saad [153, 154], Greenbaum [87], Meurant [123, 124], van der Vorst [180], Liesen and
Strakoš [119], as well as the ‘Templates’ book [17]. The study of Krylov methods began with
the work of Lanczos [115, 116] and Hestenes and Stiefel [100] in the 1950’s and began to
gain traction as a field in the 1970’s. For a history of KSMs and related topics, we direct
the curious reader to the book of Liesen and Strakoš [119], which contains an overview in
Chapter 1 and ‘Historical Notes’ throughout.

Krylov subspace methods work by iteratively constructing one or more bases for Krylov
subspaces, which are defined in terms of a matrix A and vector v by

Ki+1(A, v) = span(v,Av, . . . , Aiv).

We focus our discussion here on Lanczos and Lanczos-based Krylov methods, which are our
main concern in this thesis. Given a symmetric matrix A ∈ Rn×n and a starting vector
v1 ∈ Rn with unit 2-norm, i steps of the Lanczos method [115] theoretically produce the
orthonormal matrix Vi = [v1, . . . , vi] and the symmetric tridiagonal matrix Ti ∈ Ri×i such
that

AVi = ViTi + βi+1vi+1e
T
i .

When i = n, if Tn exists (i.e., no breakdown occurs), then the eigenvalues of Tn are the
eigenvalues of A. In practice, some of the eigenvalues of Ti are good approximations to
the eigenvalues of A when i � n, which makes the Lanczos method attractive as an iter-
ative procedure. Many KSMs, including those for solving linear systems and least squares

11

problems, are based on the Lanczos method. In this work, we specifically consider sym-
metric and nonsymmetric Lanczos, conjugate gradient (CG), biconjugate gradient (BICG),
conjugate gradient squared (CGS), biconjugate gradient stabilized (BICGSTAB), Lanczos
bidiagonalization, and least-squares QR (LSQR).

For the solution of linear systems, Krylov subspaces are used as expanding search spaces,
from which the approximate solution xi or the approximate eigenvalue and eigenvectors are
computed via projection. A general projection method for solving the linear system Ax = b
extracts an approximate solution xi from an affine subspace x1 + Ki(A, r1) of dimension i,
where r1 = b− Ax1 denotes the initial residual, by imposing the Petrov-Galerkin condition
b− Axi ⊥ Li, where Li is another subspace (the ‘constraint space’) of dimension i. We can
also write this in terms of the correction to the approximate solution in each iteration. Let
δi = xi − x1. Then given subspaces Ki and Li, each projection step can be described by

Find δi ∈ Ki such that r1 − Aδi ⊥ Li.

The choice of Li distinguishes various iterative techniques; most notably, we have an
orthogonal projection method if Li = Ki, and an oblique projection method otherwise.
For example, given a basis Vi = [v1, . . . , vi] for Ki(A, r1) such that AVi = ViTi + wie

T
i

with V T
i Vi = I and Ti tridiagonal, the approximate solution obtained from an orthogonal

projection method onto Ki is given by

xi = x1 + Viyi where yi = T−1
i (‖r1‖2e1),

and thus the method proceeds to refine the approximate solution xi by progressively solving
Tiyi = ‖r1‖2e1. This example describes the conjugate gradient (CG) method, which is based
on the symmetric Lanczos process. In the case of non-Hermitian matrices A, one approach is
to relax the orthogonality constraint and instead generate two sets of mutually biorthogonal
basis vectors, i.e., Vi = [v1, . . . , vi] and Ṽi = [ṽ1, . . . , ṽi] where vT` ṽj 6= 0 if ` = j and vT` ṽj = 0
if ` 6= j. This is the approach taken in the non-symmetric Lanczos method, which was
described by Lanczos [115, 116]. The corresponding biconjugate gradient (BICG) solver of
Fletcher [69] implements the projection process

xi ∈ x1 +Ki(A, r1) and ri ⊥ Ki(AH , r̃1),

where r̃1 is an arbitrary nonzero vector. In Section 2.5, we review the stability and conver-
gence properties of classical KSMs and discuss how finite precision affects these properties,
which is of utmost importance when considering use of these methods in practice. We first
turn to a discussion of the cost per iteration in classical KSMs in terms of our communication
model in Section 2.2.

Speaking in terms of projection processes, in each iteration, classical Krylov methods
increase the Krylov subspace Ki by one dimension by computing a new basis vector and
subsequently orthogonalize this new basis vector against the subspace Li. In the case of linear
equation solvers, the approximate solution is then updated imposing the Petrov-Galerkin

12

condition b−Axi ⊥ Li. In terms of linear algebra operations, computing the new basis vector
to expand the Krylov subspace requires one or more sparse matrix-vector multiplications
(SpMVs), and performing the orthogonalization against Li (and for linear solvers, updating
the approximate solution) requires one or more inner products and vector operations.

These computational kernels, SpMVs and inner products, are both communication-bound
computations on modern computer architectures. To perform an SpMV, each processor
must communicate entries of the source vector it owns to other processors in the parallel
algorithm, and in the sequential algorithm, the matrix A must be read from slow memory
(when it is too large to fit in cache, the most interesting case). Inner products involve a
global reduction (see [153, §11.4]) in the parallel algorithm, and a number of reads and writes
to slow memory in the sequential algorithm (depending on the size of the vectors and the
size of the fast memory). We discuss the costs of SpMVs and inner products in more detail
in Chapter 3. We first turn to a discussion of how CA-KSMs can reduce the communication
cost of classical KSMs.

2.4 Avoiding Communication in Krylov Subspace

Methods

The communication cost of classical KSMs can be reduced by computing iterations in blocks
of s at a time, splitting the iteration loop into an outer loop which iterates over blocks and
an inner loop that iterates within each block. Methods that use this block restructuring
of classical KSMs are termed s-step Krylov subspace methods or communication-avoiding
Krylov subspace methods (CA-KSMs). Again speaking in terms of projection processes, in
each outer loop, CA-KSMs increase the dimension of K by a factor of Θ(s) by computing
Θ(s) new basis vectors and then, in case of Lanczos-based CA-KSMs, compute a Gram
matrix to encode inner products between these vectors. Within the corresponding inner
loop iterations, vector updates are performed implicitly by updating the coordinates of the
usual length-n vectors in the basis represented by the new Θ(s) basis vectors, with the scalars
required for orthogonalization against L computed using the encoded inner products.

In terms of linear algebra operations, the Θ(s) basis vectors required to expand the
Krylov subspace by s dimensions can be computed by a communication-avoiding matrix
powers computation, which we discuss below in Section 3.2. Under certain constraints, these
Θ(s) basis vectors can be computed for the same communication cost as computing a single
basis vector. The Gram matrix can be computed for the same latency cost as a single inner
product, with the caveat that we now increase the number of inner products computed in s
iterations from Θ(s) to Θ(s2). Thus CA-KSMs allow for the computation of s iterations for
the same asymptotic communication cost as one classical KSM iteration. Depending on the
input matrix, algorithm, and computing platform, the communication bottleneck could be
the sparse linear algebra, dense linear algebra, or both. When it is just one, say the dense
linear algebra (orthogonalization), this can simplify the implementation (see Chapter 8).

13

There is a wealth of literature related to s-step KSMs and the idea of avoiding communica-
tion. Early related work discussed below has been nicely summarized by Hoemmen in Table
1.1 in [102]. The first known related approach in the literature is Forsythe’s s-dimensional
optimum gradient method, which is a steepest descent method. This same technique was
first used in Krylov methods with the conjugate gradient method of Van Rosendale [182].
Van Rosendale gives a variant of the parallel conjugate gradient method which minimizes
inner product data dependencies with the goal of exposing more parallelism.

The term “s-step” Krylov methods was first used by Chronopoulos and Gear, who de-
veloped the s-step CG method [48, 49]. Over the next decade or so, Chronopoulos and
others developed s-step variants of Orthomin and GMRES [50], Arnoldi and Symmetric
Lanczos [108, 109], MINRES, GCR, and Orthomin [47, 52], Nonsymmetric Lanczos [110],
and Orthodir [51]. Walker used s-step bases as a method for improving stability in GMRES
by replacing the modified Gram-Schmidt orthogonalization process with Householder QR
[184]. We emphasize that the use of the overloaded term ‘s-step methods’ here differs from
other works, e.g., [56, 106] and [84, §9.2.7], in which the term ‘s-step methods’ is used to
refer to a type of restarted Lanczos procedure.

Early on, much work in s-step Krylov methods was limited to using monomial bases
(i.e., [v, Av,A2v, . . .]) for the precomputed Θ(s)-dimensional Krylov subspaces, and it was
found that convergence often could not be guaranteed for s > 5. This motivated research
into the use of other more well-conditioned bases for the Krylov subspaces. Hindmarsh and
Walker used a scaled (normalized) monomial basis to improve convergence [101], but only
saw minimal improvement. Joubert and Carey implemented a scaled and shifted Chebyshev
basis which provided more accurate results [104]. Chebyshev bases have also been used by de
Sturler and van der Vorst [59, 61] in an s-step GMRES variant. Bai et al.[14] and Erhel [68]
have also used the Newton basis with improved convergence in s-step GMRES. In [52],
Chronopoulos and Swanson use Gram Schmidt to orthonormalize the direction vectors in
each s-step block, which allowed for use of up to s = 16 with a monomial basis. Their goal
was to be able to increase s as this exposes more potential parallelism.

Most of these early works did not exploit the potential communication avoidance in
computing the s Krylov basis vectors, which can reduce communication cost by a factor of
O(s) for well-partitioned sparse matrices. (We point out that under certain conditions, the
blocking of vector operations alone can still provide significant speedups.) The methods of
Joubert and Carey [104] and Toledo [175] both include a communication-avoiding matrix
powers optimization for stencil matrices, but Hoemmen et al. (see, e.g., [63, 102, 127]) were
the first to describe and implement the communication-avoiding matrix powers kernel for
general sparse matrices. Our derivations most closely follow their work. The growing cost
of communication in large-scale sparse methods has created a recent resurgence of interest
in the implementation, optimization, and development of CA-KSMs and preconditioners for
CA-KSMs; see, e.g., [197, 89, 122, 194, 195].

There are many alternative approaches to reducing communication in KSMs which dif-
fer from this approach, including reducing synchronizations, allowing asynchronous itera-
tions [18], using block Krylov methods to exploit locality, inexact Krylov methods [24, 178,

14

158], and using alternative methods such as Chebyshev Iteration. For a good overview,
see [102, §1.6].

A large number of approaches involve enabling overlap between communication and com-
putation and/or reducing the number of synchronization points per iteration. In [90], Gropp
presents an asynchronous variant of the conjugate gradient method (CG) with two global
synchronization points per iteration that can be overlapped with the matrix-vector multipli-
cation and application of the preconditioner, respectively. Overlapping techniques for solving
least squares problems with Krylov subspace methods on massively parallel distributed mem-
ory machines are presented in [200]. The Arnoldi method with delayed reorthogonalization
(ADR) described in [98] mixes work from the current, previous, and subsequent iterations
to avoid extra synchronization points due to reorthogonalization. This approach is currently
implemented in the SLEPc library[99]. Some approaches to overlapping communication and
computation to reduce synchronization combine or rearrange a fixed number of synchroniza-
tions into a single synchronization; see, e.g., [199, 91]. We stress that this differs from our
approach; most notably, speedups are limited to a constant factor (depending on the number
of synchronizations combined into a single synchronization) whereas speedups for CA-KSMs
are theoretically asymptotic in s.

There has also been recent success in the development of pipelined Krylov methods,
which alleviate the performance bottleneck of KSMs by overlapping communication and
computation. In [77], a pipelined version of GMRES is presented, where the authors overlap
nonblocking reductions (to compute dot products needed in later iterations) with matrix-
vector multiplications. This resulted in speedups and improved scalability on distributed-
memory machines. An analogous pipelined version of CG is presented in [79], and the
pipelining approach is discussed further in [9]. We consider it an open problem to determine
if the pipelined and s-step approaches are compatible.

2.5 Numerical Properties of Krylov Subspace

Methods

As discussed in Section 2.3, in exact arithmetic, the Lanczos method generates a sequence of
orthonormal basis vectors (in the case of nonsymmetric Lanczos, two sequences of biorthonor-
mal basis vectors). This is what, in the case of symmetric Lanczos at least, guarantees
similarity of A and Ti after at most n steps. In finite precision, (bi)orthogonality no longer
necessarily holds. This can result in multiple approximations in Ti to the original eigenvalues
of A, which delays convergence to other eigenvalues.

The orthogonality properties for CG are equivalent to the optimality property

‖x− xi‖A = min
z∈x1+Ki(A,r1)

‖x− z‖A,

where ‖v‖A = (vTAv)1/2 and A is symmetric positive definite (SPD). In other words, the
CG method selects at each iteration the approximate solution that minimizes the error in

15

the A-norm. It is well-known (see, e.g., [84]) that in exact arithmetic, after i iterations of
CG, the error is (loosely) bounded by

‖x− xi‖A ≤ 2‖x− x1‖A

(√
κ(A)− 1√
κ(A) + 1

)i

,

where κ(A) = λn/λ1 where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A. More accurate
bounds based on Gauss quadrature connections can be obtained which show that the con-
vergence rate of CG depends in a complicated way on how well the eigenvalues of A are
approximated by Ti. Thus if multiple approximations to some eigenvalues of A appear in Ti
due to finite precision error, this can cause convergence to be delayed.

Lanczos and others recognized early on that rounding errors could cause Krylov methods
to deviate from ideal theoretical behavior. Since then, various efforts have been devoted
to analyzing, explaining, and improving finite precision KSMs. A thorough overview of the
literature can be found in Meurant and Strakoš [125]. Widely considered to be the most
significant development is the series of papers by Paige [138, 139, 140, 141]. Paige’s analysis
succinctly describes how rounding errors propagate through the algorithm to impede orthog-
onality. These results were developed to give theorems which link the loss of orthogonality
to convergence of the computed eigenvalues [141]. A number of strategies for maintaining
orthogonality among the Lanczos vectors were inspired by the analysis of Paige, including
selective reorthogonalization [147] and partial reorthogonalization [157].

Another important result is due to Greenbaum, who performed a backward-like error
analysis which showed that finite precision Lanczos and CG behave very similarly to the
exact algorithms applied to any of a certain class of larger matrices [85]. Further explanation
and examples are due to Greenbaum and Strakoš [88]. Paige has shown a similar type of
augmented stability for the Lanczos process [142], and these results have recently been
extended to the nonsymmetric case [143]. There are many other analyses, including some
more recent results due to Wülling [192] and Zemke [202]. The concept that the delay
of convergence in finite precision CG is determined by numerical rank-deficiencies of the
constructed Krylov subspaces was born from the work of Greenbaum [85], Greenbaum and
Strakoš [88], and Notay [135]. The reader is directed to the work of Golub and Strakoš [82],
Strakoš and Tichỳ [171], and Meurant [124] for analysis and discussion of the connections of
CG to Gauss quadrature in finite precision. Results on convergence in the finite precision
classical BICG method are given by Tong and Ye [176].

In addition to convergence delay, another ill effect of finite precision error in KSMs
for solving linear systems is the loss of attainable accuracy. Finite precision roundoff in
updates to the approximate solution xi and the residual ri in each iteration can cause the
‘updated residual’ ri and the ‘true residual’ b − Axi to grow further and further apart. If
this deviation grows large, it can limit the maximum attainable accuracy, i.e., the accuracy
with which we can solve Ax = b on a computer with unit round-off ε. Analyses of maximum
attainable accuracy in CG and other classical KSMs are given by Greenbaum [86], van der
Vorst and Ye [181], Sleijpen, van der Vorst, and Fokkema [162], Sleijpen, van der Vorst, and

16

Modersitzki [163], Björck, Elfving, and Strakoš [22], and Gutknecht and Strakoš [96]. One
important result of these analyses is the insight that loss of accuracy can be caused at a very
early stage of the computation, which can not be corrected in later iterations.

The works mentioned here have served to greatly improve our understanding of the
behavior of KSMs in practice. A primary goal of this thesis is the extension of a subset of
these results to CA-KSMs.

2.6 Algorithm Notation and Terminology

As avoiding communication is our primary motivation, we generally use the terminology ‘CA-
KSM’ to refer to the methods described here, although the rounding error results presented in
Chapter 5 hold for s-step formulations in general, regardless of whether we implement them in
a communication-avoiding way (i.e., whether we compute the Krylov bases using sequential
SpMVs or a communication-avoiding matrix powers kernel). We use the term ‘classical
Krylov method’ or ‘classical KSM’ to refer to the usual formulation and implementation of
Krylov subspace methods, which consist of a single iteration loop interleaving SpMV and
orthogonalization operations.

We use the parameter s to denote the factor by which the iterations are blocked in the
CA-KSMs; i.e., for each outer loop iteration, we compute a Krylov subspace of dimension
O(s), and then perform s inner loop iterations, updating the coefficients of the iteration
vectors in the computed O(s)-dimensional Krylov basis. In CA-KSMs, we generally index
iterations by sk + j, where k is the outer loop iteration and j is the inner loop iteration.
Corresponding iterations in the classical Krylov methods are indexed by i.

We also overload the variable k, and use it to denote the number of vectors we compute
in a matrix powers kernel computation to be discussed in Chapter 3: given a matrix A and
a starting vector y, the matrix powers kernel computes, e.g., [y, Ay,A2y, . . . , Aky], which is
a (k + 1)-dimensional basis for a Krylov subspace. (In general, we allow for computation
of any polynomial basis, not just the monomial basis). We do not reuse the variable s
here, since, depending on the method and the specific starting vector, taking s iterations
at a time may not require a basis of dimension exactly s + 1. We may need to execute a
matrix powers computation to compute a basis of dimension, e.g., s, s − 1, 2s + 1, 2s − 1,
or 2s+ 2. Furthermore, the value of k that gives the best performance in the matrix powers
computation (which depends on the tradeoff between bandwidth/latency and flops/latency)
might be different than the best choice of s for computing the Gram matrix, which may
also be different than the largest s that still allows for numerical stability. There is nothing
preventing us from running multiple calls to the matrix powers kernel to compute the required
O(s)-dimension basis.

Within the context of a CA-KSM, we refer to the output of the matrix powers com-
putation as an ‘s-step basis’ or ‘s-step bases’. This is to distinguish them from, e.g., the
Lanczos basis, which is composed of the length-n vectors produced in each iteration (which
are recoverable in each outer loop by a change-of-basis operation using the s-step bases). We

17

refer to the matrix whose columns consist of the computed s-step bases in each outer loop
as the ‘s-step basis matrix’, although all columns are not necessarily linearly independent.

18

Chapter 3

Communication-Avoiding Kernels

Depending on the specific solver, machine architecture, and problem size and nonzero struc-
ture, the communication bottleneck in KSMs may either be computing a basis for the
Krylov subspace, or the subsequent (dense) vector operations, like inner products. In this
chapter, we discuss in depth the communication and computation costs of both näıve and
communication-avoiding variants of these kernels in terms of our performance model in Sec-
tion 2.2. Section 3.1 focuses on these costs for orthogonalization operations, which in the
case of Lanczos-based KSMs and CA-KSMs, involves one or more (blocked) inner products.
On large-scale parallel machines, such computations are performed using an MPI Allreduce,
which is often the dominant cost in Krylov solvers.

In Section 3.2, we present both naive and communication-avoiding algorithms for com-
puting matrix powers and give their complexity in terms of latency, bandwidth, and com-
putation costs, which are determined by the adjacency graph describing the nonzeros in the
input matrix A. We write these costs for general sparse matrices and give an example for
stencil matrices, which are common in the physical sciences, and explain the implication of
these costs for potential performance gains.

Our great level of detail in Section 3.2 serves many purposes throughout this thesis. The
algorithms presented in this section, namely the parallel ‘PA0’ and ‘PA1’ and the sequential
‘SA0’ and ‘SA1’, are referred to throughout Chapter 4 in comparing communication costs of
classical KSMs and CA-KSMs. The presentation of these algorithms also serves to formally
define constraints on sparsity (i.e., that the input matrix A is well-partitioned) and to estab-
lish the notation that we use to describe our data-sparse matrix powers kernel for hierarchical
semiseparable (HSS) matrices in Section 7.1 and our streaming matrix powers algorithms
which are presented in Section 7.2. Our detailed complexity counts for the algorithms ‘PA0’
and ‘PA1’ enable a quantitative comparison of classical and communication avoiding algo-
rithms in subsequent sections. In Section 6.2, We use these results to model performance
tradeoffs in deflated versions of CG and CA-CG in Section 6.2 and in our data-sparse matrix
powers kernel applied to HSS matrices in Section 7.1.

Perhaps most importantly from a numerical standpoint, in Section 3.2.5 we discuss the
numerical challenges in computing bases for Krylov subspaces in finite precision. The choice

19

Table 3.1: Upper bounds on costs of Gram matrix construction

Parallel (per processor)
F w2n/p
W w2 log2 p
S log2 p
Sequential
F w2n
W wn
S dwn/Me

of polynomials used in basis construction greatly affects the conditioning of the computed
bases. As we demonstrate through numerical experiments in Chapter 4 and through theo-
retical results in Chapter 5, the conditioning of the s-step bases has profound implications
for convergence and accuracy in CA-KSMs.

3.1 Block Inner Products

Both classical KSMs and CA-KSMs incur communication costs due to orthogonalization
performed in each iteration, usually involving a series of inner products. In this section, we
describe, for both parallel and sequential implementations, the asymptotic costs of computing
inner products between w dense vectors, i.e., given a matrix Y with n rows and w columns,
we discuss the cost of computing the w-by-w matrix YTY . We will refer to YTY as a Gram
matrix, although in the case w = 1, this is simply a scalar quantity.

In the parallel case, we assume that Y is distributed rowwise across p processors. Comput-
ing the Gram matrix in this case requires a costly global synchronization (an MPI Allreduce).
In the sequential case, computation of the Gram matrix involves one or more reads from slow
memory, the number of which depends on the relative size of Y and the fast memory size
M . The asymptotic computation, bandwidth, and latency costs for both the parallel (per
processor) and sequential case are summarized in Table 3.1.

The strategy in CA-KSMs is to block together multiple inner products into one Gram
matrix computation to reduce communication costs. As an example, let us consider the
parallel case. For classical Lanczos-based KSMs, s iterations require Θ(s) inner products of
size w = Θ(1). In parallel, this incurs Θ(s log2 p) in both bandwidth and latency costs. For
the communication-avoiding versions, s iterations requires Θ(1) block inner product of size
w = Θ(s), so the bandwidth and latency costs are Θ(s2 log2 p) and Θ(log2 p), respectively.
The CA-KSM strategy of blocking together inner products thus leads to an s-fold decrease
in latency at the cost of increasing the bandwidth and computation costs by a factor of O(s).

In the case of Arnoldi-based KSMs (like GMRES), the communication-avoiding versions
perform block orthogonalization by computing a (thin) QR factorization of a tall, skinny

20

matrix. Using the Tall-Skinny QR (TSQR) algorithm in [62], this leads to an s-fold decrease
in latency in the parallel case as well as an s-fold decrease in latency and bandwidth in the
sequential case [102].

3.2 The Matrix Powers Kernel

The computational complexity of classical sparse matrix-vector multiplication (SpMV) is
O(1). Thus any algorithm that uses classical SpMV, such as classical Krylov subspace
methods, will necessarily be communication-bound. This means we need a different kernel
with higher computational intensity to have a hope of reducing communication. We call this
the communication-avoiding matrix powers kernel.

More concretely, our goal is to compute, given a matrix A, vector y, and desired dimension
k + 1, a basis for the Krylov subspace

Kk+1(A, y) = span(y, Ay, . . . , Aky),

which we store in columns of the matrix Y = [y0, . . . , yk] = [ρ0(A)y, . . . , ρk(A)y], where ρj(z)
is a polynomial of degree j, satisfying a three-term recurrence

ρ0(z) = 1, ρ1(z) = (z − α̂0)ρ0(z)/γ̂0, and

ρj(z) = ((z − α̂j−1)ρj−1(z)− β̂j−2ρj−2(z))/γ̂j−1 for j > 1.
(3.1)

We note that this gives the recurrence

A[y0, . . . , yk−1, 0n,1] = [y0, . . . , yk]


α̂0 β̂0 0

γ̂0 α̂1
. . .

...

γ̂1
. . . β̂k−2 0
. . . α̂k−1 0

γ̂k−1 0

 ,

which we will exploit to derive communication-avoiding Krylov methods in Section 4; we
discuss the choice of the polynomials ρj(z) in Section 3.2.5.

In a näıve approach, the matrix Y could be computed by a sequence of k SpMV operations
and O(k2) vector operations, depending on the polynomial recurrence. In the sequential
algorithm, this requires reading the matrix A from slow memory to fast memory Θ(k) times,
assuming A is stored explicitly and exceeds the fast memory size. In parallel, this requires
k rounds of messages in order to distribute vector entries (“ghost zones”).

Hoemmen et al. (see, e.g., [63, 102, 127]) were the first to make use of a communication-
avoiding matrix powers kernel optimization for general sparse matrices, which reduces com-
munication cost by a factor of O(k) for well-partitioned matrices by fusing together a se-
quence of k SpMV operations into one kernel invocation. This kernel is used in the CA-KSM

21

to compute an O(k)-dimensional Krylov basis in each outer loop iteration. Depending on the
nonzero structure of A (more precisely, of {Aj}kj=1 for some k), this enables communication-
avoidance in both serial and parallel implementations as described in the sections below. In
this section, we review classical and communication-avoiding versions of both parallel and
sequential algorithms for matrix powers computations.

In this section, we review the communication-avoiding matrix powers kernel algorithms
and compare them with the classical approach (repeated SpMVs) for both the sequential
and parallel case. These algorithms for general graphs were first presented in [63] and also
appear in [16, 102, 126]. We note that matrix powers computations constitute a core kernel
not only in Krylov subspaces methods, but in a variety of applications including steepest
descent and PageRank.

We distinguish sparse matrix representations based on whether the nonzero values Aij
and positions of those nonzeros (i, j) of the matrix A are stored explicitly or implicitly. In
the explicit case, storage of the matrix requires a memory footprint of Ω(nnz(A)); implicit
storage means that the representation exploits additional assumptions about the matrix
which may eliminate much of all of the memory needed to store it. A common example of
the implicit case are stencil matrices, e.g., the discrete Laplacian on a regular grid.

We briefly mention known lower bounds on data movement and synchronization for
matrix powers computations. If A is a stencil on an N × · · · × N d-dimensional mesh, the
results of Hong and Kung [103] can be used to show that Ω(kNd/M1/d) words must be moved
between fast memory (of size M) and slow memory in the sequential algorithm. The results
of Christ et al. [46] extend this lower bound to a class of directed acyclic graphs (DAGs)
that admit a more general type of geometric embedding. Parallel extensions of this result
have been discovered more recently by, e.g., Scquizzato and Silvestri [156] and Solomonik et
al. [164].

We now review the notation that will be used to describe the matrix powers algorithms
presented by Demmel et al. [63].

3.2.1 The Layered Graph

To give algorithms that hold for general sparse matrices, we will describe the problem in
terms of graph notation. Let nnz(A) = {(i, j) : Aij 6= 0}. Let G = (V,E) denote the
layered graph of A, which represents the dependencies in computing y(j) = ρj(A)y for every

j ∈ {1, . . . , k}. We denote element i of y(j) by y
(j)
i . We have

V = {y(j)
i : 1 ≤ i ≤ n, 0 ≤ j ≤ k}.

We denote vertices belonging to the same level by V (j) = {y(j)
i : 1 ≤ i ≤ n}. The edges in

G representing dependencies are due to both the non-zero structure of A and the number of

22

terms in the polynomial recurrence for generating basis vectors. We have

E =
{

(y
(j+1)
i1 , y

(j)
i2) : 0 ≤ j ≤ k, (i1, i2) ∈ nnz(A)

}
∪
{

(y
(j+u′)
i , y

(j)
i) : 1 ≤ d′ ≤ u, 0 ≤ j ≤ k − u′, 1 ≤ i ≤ n

}
,

where the value of u depends on family of polynomials used in constructing the basis vectors;
assuming a three-term recurrence, u will be at most 2 (for the monomial basis, e.g., u = 0),
although we could in general allow for up to u = k.

3.2.2 Parallel Matrix Powers Algorithms

Parallel variants of matrix powers, for both structured and general sparse matrices, are
described in [126], which summarizes most of [63] and elaborates on the implementation in
[127]. We review two of the parallel matrix powers algorithms from [63, 102, 126], referred
to by the authors as PA0, the näıve algorithm for computing k SpMV operations, and PA1,
a communication-avoiding variant. To simplify the discussion, we ignore cancellation, i.e.,
we assume nnz(ρj(A)) ⊆ nnz(ρj+1(A)) and every entry of y(j) is treated as nonzero for all
j ≥ 0.

Let R(X) denote the reachability of set X, i.e., the set of vertices reachable from X ⊆ V
including X. Let Π = {I1, . . . , Ip} be a p-way partition of {1, . . . , n}. For m ∈ {1, . . . , p},
let Vm = {y(j)

i : i ∈ Im ∧ 1 ≤ j ≤ k}. Similarly, let V
(j)
m = {y(j)

i : i ∈ Im}. We also

denote R(j)(X) = R(X) ∩ V (j), Rm(X) = R(X) ∩ Vm, and R
(j)
m (X) = R(X) ∩ V (j)

m . Finally,
we RT (X) denote the reachable set of the transpose graph GT , i.e., G with all the edges
reversed.

For both algorithms, we initially distribute A and y row-wise so that processor m owns
rows indexed by Im, and we let Ai denote the ith row of A. We assume that each processor
has local copies of the coefficients describing the recurrence (3.1).

The classical approach to computing matrix powers is shown in Algorithm 1. In this
method, for each SpMV, processor m synchronizes with other processors and exchanges
neighboring ghost zones before computing the entries of the current vector for which they
are responsible. This results in k rounds of messages.

A communication-avoiding variant is shown in Algorithm 2. Here, processor m fetches
the non-empty sets R

(0)
` (Vm) for ` 6= m, all remote y(0) vertices reachable from the vector

entries for which they are responsible, in a single round of messages. We note that in PA1,
processors may need to communicate entries of A when k > 1; in PA0 matrix entries never
need to be communicated/replicated.

Upper bounds on the costs of PA0 and PA1 for processor m are shown in Table 3.2.
These costs are precise but opaque; as an example, in Table 3.3 we show these costs for a
(2b+1)d-point stencil on an N×· · ·×N d-dimensional mesh (n = Nd) partitioned into p = ρd

subcubes, where we assume that w = N/ρ is an integer so that each of the p processors owns
a subcube and that k = O(w/b). For examples of these costs for other variations of stencil

23

Algorithm 1 PA0: code for processor m

1: for j = 1 to k do
2: for each processor ` 6= m do
3: Send vector entries R

(j−1)
m (V

(j)
`) to processor `

4: Receive vector entries R
(j−1)
` (V

(j)
m) from processor `

5: end for
6: Compute vector entries V

(j)
m \RT (y(j−1)\Vm)

7: Wait for receives to finish
8: Compute vector entries V

(j)
m ∩RT (y(j−1)\Vm)

9: end for

Algorithm 2 PA1: code for processor m

1: for each processor ` 6= m do
2: Send vector entries R

(0)
m (V`) to processor `

3: Send matrix rows {Ai : y
(j)
i ∈ Rm(P`)\y(0)} to processor `

4: Receive vector entries R
(0)
` (Vm) from processor `

5: Receive matrix rows {Ai : y
(j)
i ∈ R`(Pm)\y(0)} from processor `

6: end for
7: Compute vector entries (R(Vm)\y(0))\RT (y(0)\Vm)
8: Wait for receives to finish
9: Compute vector entries (R(Vm)\y(0)) ∩RT (y(0)\Vm)

computations see the tables given in [63]. Note that in both tables, the variable c denotes the
storage cost of a nonzero in words. In the case that the entries of A are not stored explicitly,
which is often the case for stencil matrices, we can model costs by taking c = 0. For any
processor m ∈ {1, . . . , p}, we bound the number of arithmetic operations F , the number of
words sent and received W , and the number of messages sent and received S. For PA1, we
split W into two terms, W and WA. The quantity WA is a cost that can be amortized over
many successive calls to PA1 with the same matrix A.

The computational cost of each vector element varies depending on the polynomial re-
currence used (we have assumed a three-term recurrence here). The SpMV cost does not
vary with j and depends only on the sparsity of the rows Ai, i.e., computing Aiy

(j) requires
2 · nnz(Ai)− 1 flops. We also bound the memory capacity MY needed for storing vector en-
tries and MA needed for rows of A (in the case that A is implicit, c = 0 implies MA = O(1)
for both algorithms).

Comparing PA0 and PA1 in Table 3.2, we see that the advantage of PA1 over PA0 is that
it may send fewer messages between processors: whereas PA0 requires k rounds of messages,
PA1 requires only one, assuming that |{` 6= m : R

(0)
` (V

(1)
m) 6= ∅}| = |{` 6= m : R`(Vm) 6= ∅}|

and |{` 6= m : R
(0)
m (V

(1)
`) 6= ∅}| = |{` 6= m : Rm(V`) 6= ∅}| (i.e., the number of other

processors each processor must communicate with is the same in PA0 and PA1). Thus if the

24

Table 3.2: Upper bounds on costs of PA0 and PA1 for each processor m for general matrices

PA0
F 2 ·

∑
y
(j)
i ∈Vm\y(0)

nnz(Ai) + min {u, j}

W k
(∑

` 6=m |R
(0)
` (V

(1)
m)|+ |R(0)

m (V
(1)
`)|

)
S k

(
|{` 6= m : R

(0)
` (V

(1)
m) 6= ∅}|+ |{` 6= m : R

(0)
m (V

(1)
`) 6= ∅}|

)
MY |R(V

(1)
m)\Vm|+ (k + 1)|Im|

MA c ·
∑

i∈Im nnz(Ai)

PA1
F 2 ·

∑
y
(j)
i ∈R(Vm)\y(0) nnz(Ai) + min {u, j}

W
∑
6̀=m |R

(0)
` (Vm)|+ |R(0)

m (V`)|+WA

WA c ·
∑
6̀=m

(∑
i:y

(j)
i ∈R`(Vm)\y(0) nnz(Ai) +

∑
i:y

(j)
i ∈Rm(V`)\y(0)

nnz(Ai)
)

S (|{` 6= m : R`(Vm) 6= ∅}|+ |{` 6= m : Rm(V`) 6= ∅}|)
MY |R(Vm)|
MA c ·maxp`=1

∑
i:y

(j)
i ∈R(Vm)\y(0) nnz(Ai)

number of other processors that processor m must communicate with is the same for both
algorithms, PA1 obtains a k-fold latency savings.

This savings comes at the cost of extra flops (the number of which depends on the relative
sizes of Vm\y(0) andR(Vm)\y(0)) and a potentially greater number of words moved (depending

on the relative sizes of R
(0)
` (V

(1)
m) and R

(0)
` (Vm) and the extra cost WA), as processors may

perform redundant computations to avoid communication.
Comparing the example costs of PA0 and PA1 for stencil computations in Table 3.3, we

see that under the assumption k = O(w/b) PA1 gives a factor Θ(k) decrease in S at the cost
of increasing the other four costs by a factor of O(1) (except possibly W in the explicit case,
which increases by a factor of O(1 + cbd) due to WA, the cost of distributing additional rows
of A when k > 1.

For both algorithms, the data layout optimization problem of minimizing the costs in
Table 3.2 is often treated as a graph or hypergraph partitioning problem. In Section 7.3, we
extend existing hypergraph models for parallel SpMV to PA1.

3.2.3 Sequential Matrix Powers Algorithms

Let G = (V,E) with these terms defined as in the parallel case. We still use p to denote
the number of partitions of G, although we can now think of these as being cache blocks
rather than subdomains local to a certain processor. Let N(X) denote the neighbors of a
vertex subset X, i.e., the vertices reachable from some x ∈ X by paths of length 1 in G.
We distinguish between the case where A has implicit nonzero values and positions and the

25

Table 3.3: Upper bounds on costs of PA0 and PA1 for each processor for a (2b+ 1)d-point
stencil on a N × · · ·×N d-dimensional mesh with n = Nd, partitioned into p = ρd subcubes
with integer edge length w = N/ρ

PA0

F 2wd ·
∑k

j=1(2b+ 1)d + min{u, j}
W 2k(min{N,w + 2b}d − wd)
S 2k(min{ρ, 1 + 2db/we}d − 1)
MY kwd + min{N,w + 2b}d
MA c(2b+ 1)dwd

PA1

F 2 ·
∑k

j=1

(
(2b+ 1)d + min{u, j}

)
·min{N,w + 2b(j − 1)}d

W 2(min{N,w + 2bk}d − wd) +WA

WA 2c(2b+ 1)d(min{N,w + 2b(k − 1)}d − wd)
S 2(min{ρ, 1 + 2dbk/we}d − 1)

MY

∑k
j=0 min{N,w + 2bj}d

MA c(2b+ 1)d ·min{N,w + 2b(k − 1)}d

three cases where A has explicit values and/or positions. We note that the algorithm SA1
may not yield an asymptotic communication savings in the implicit case, which we discuss
further below. In the algorithms below, ‘read A’ means ‘read the explicit values and/or
positions of A from slow memory to fast memory’. It is assumed that A does not fit in fast
memory (of size M).

The classical approach to sequential matrix powers computation, called ‘SA0’, is shown
in Algorithm 3. As in the parallel case, we assume a row-wise computation of the SpMVs,
although the given algorithm could be adapted to work with any SpMV routine. We can
see in Algorithm 3 that some elements of A must be read multiple times, resulting in an
O(k · nnz) bandwidth cost. Further, poor temporal locality in vector accesses can increase
the cost of reading the vectors from O(kn) to O(k · nnz).

Algorithm 3 SA0

1: for j = 1 to k do
2: for ` ∈ {1, . . . , p} do

3: Load vector entries N(V
(j)
`)

4: Load matrix rows {Ai : i ∈ I`}
5: Compute vector entries V

(j)
`

6: Store vector entries V
(j)
`

7: end for
8: end for

26

A communication-avoiding version, ‘SA1’, is shown in Algorithm 4. The variant we show
here is essentially a sequential execution of PA1. This method computes the Krylov basis
vectors in a block row-wise fashion, attempting to reduce the cost of reading A at the price
of redundant computation and additional bandwidth cost. We note that there exist other
variants of a communication-avoiding sequential matrix powers computation which avoid all
redundant computation; see [63, 102, 126].

Algorithm 4 SA1

1: for ` ∈ {1, . . . , p} do
2: Load vector entries R(V`) ∩ y(0)

3: Load matrix rows {Ai : y
(j)
i ∈ R(V`)\y(0)}

4: Compute vector entries R(V`)\y(0)

5: Store vector entries V`\y(0)

6: end for

Table 3.4 compares the complexity of SA0 and SA1. Again, these costs are precise but
opaque; as an example, in Table 3.5 we show these costs for a (2b + 1)d-point stencil on
an N × · · · × N d-dimensional mesh (n = Nd) partitioned into p = ρd subcubes, where
we assume that w = N/ρ is an integer so that each of the p cache blocks corresponds to a
subcube and that k = O(w/b). For examples of these costs for other stencil computations see
the tables given in [63]. As before, F denotes the number of arithmetic operations performed,
W denotes the number of words read from and written to slow memory, and S denotes the
number of messages in which these words were moved. The quantities MY,slow and MA,slow

denote the total memory needed to store the vectors Y and the matrix A in slow memory
(main memory), respectively, and MY,fast and MA,fast denote the same but for fast memory
(cache). In the implicit case, for both algorithms, we would have MA = O(1) and neglect
A’s contribution to W and, for SA1, to S.

The potential savings of SA1 over SA0 are similar to the parallel case. Again, we would
like to compare costs componentwise for the same rowwise partition, but this is now compli-
cated by different fast memory requirements. Looking at example costs for stencil compu-
tations, shown in Table 3.5, we see that MY,fast is greater for SA1 than for SA0 by a factor
of O(k/u), so when u = Θ(1), it is possible to pick the number of blocks p to be smaller for
SA0 by a factor of O(k). In this case, the latency costs of SA0 and SA1 are comparable. In
the explicit case with u = Θ(1), SA1 achieves a Θ(k)-fold decrease in the component of the
bandwidth cost due to reading A, which is the main benefit, but no savings due to reading
and writing vectors. In the implicit case with u = Θ(1), the bandwidth costs of the two
approaches are comparable. For longer recurrences, i.e., u = Θ(k), the number of blocks can
not be reduced in SA0 and in this case SA1 exhibits a Θ(k)-fold decrease in latency cost in
addition to a Θ(k)-fold savings in bandwidth.

27

Table 3.4: Upper bounds on costs of SA0 and SA1 for general matrices

SA0
F 2 ·

∑p
`=1

∑
y
(j)
i ∈V`\y(0)

nnz(Ai) + min {u, j}
W

∑k
j=1

∑p
q=1 |N(V

(j)
`)|+ |I`|+ c ·

∑
i∈I` nnz(Ai)

S k ·
∑p

`=1 2 + |r : Vr ∩N(V`) 6= ∅|
MY,slow (k + 1)n

MY,fast maxp`=1 |N(V
(k)
`)|+ |I`|

MA,slow c · nnz(A)
MA,fast c ·maxp`=1

∑
i∈I` nnz(Ai)

SA1
F 2 ·

∑p
`=1

∑
y
(j)
i ∈R(V`)\y(0)

nnz(Ai) + min {u, j}
W

∑k
j=1

∑p
q=1 |R(V`)\y(0)|+ |V`\y(0)|+ c ·

∑
i:y

(j)
i ∈R(V`)\y(0)

nnz(Ai)

S
∑p

`=1 2 + |r : Vr ∩R(V`) 6= ∅|
MY,slow (k + 1)n
MY,fast maxp`=1 |R(V`)|
MA,slow c · nnz(A)
MA,fast c ·maxp`=1

∑
i:y

(j)
i ∈R(V`)\y(0)

nnz(Ai)

3.2.4 Tradeoffs in Computation, Data Movement, and
Synchronization in Parallel Matrix Powers Computations

In Solomonik et al. [165], tradeoffs are derived between three basic costs of a parallel algo-
rithm: the network latency cost S, the number of words moved W , and the number of local
floating point operations F . These tradeoffs give lower bounds on the execution time which
are dependent on the problem size but independent of the number of processors. That is,
lower bounds on the parallel execution time can be determined for any algorithm computed
by a system composed of any number of homogeneous components, each with associated
computational, communication, and synchronization costs. By considering the maximum
work and data moved over any execution path during the parallel computation (rather than
the total communication volume), one can obtain new insights into the characteristics of
parallel schedules for algorithms with non-trivial dependency structures.

In [165], these bounds have been applied to describe the strong scaling limit of a number of
algorithms in terms of these three quantities, including computation of an O(s)-dimensional
Krylov basis for (2b+ 1)d-point stencils on a d-dimensional mesh. In particular, it is shown
that for any parallel execution of this computation, for some k ∈ {1, . . . , s},

F = Ω(bd · kd · s), W = Ω(bdkd−1 · s), and S = Ω(s/k),

28

Table 3.5: Upper bounds on costs of SA0 and SA1 for a (2b+1)d-point stencil on a N×· · ·×N
d-dimensional mesh with n = Nd, partitioned into p = ρd subcubes with integer edge length
w = N/ρ

SA0

F 2n ·
∑k

j=1(2b+ 1)d + min{u, j}
W p ·

∑k
j=1

(
min{N,w + 2b}d + (1 + max{0,min{u, j} − 1})wd + c(2b+ 1)dwd

)
S kp(1 + min{ρ, 1 + 2db/we}d)
MY,slow (k + 1)n
MY,fast min{N,w + 2b}d + (1 + max{0, u− 1})wd
MA,slow c · nnz(A)
MA,fast c(2b+ 1)dwd

SA1

F 2p ·
∑k

j=1

(
(2b+ 1)d + min{u, j}

)
min{N,w + 2b(j − 1)}d

W p(min{N,w + 2bk}d + kwd + c(2b+ 1)d min{N,w + 2b(k − 1)}d)
S p(1 + min{ρ, 1 + 2dbk/we}d)
MY,slow (k + 1)n

MY,fast

∑k
j=0 min{N,w + 2bj}d

MA,slow c · nnz(A)
MA,fast c(2b+ 1)d min{N,w + 2b(k − 1)}d

and furthermore,

F · Sd = Ω(bd · sd+1) and W · Sd−1 = Ω(bd · sd).

An s-dimensional Krylov basis can be computed by s/k invocations of PA1 (Algorithm 2).
Under the assumption of well-partitioning, i.e., k = O((n/p)1/d/b), for PA1 we have

F = O(bd · kd · s) W = O(bdkd−1 · s), and S = O(s/k),

and thus PA1 attains the lower bounds and lower bound tradeoffs.
Again, there is no obstacle to running multiple calls to the matrix powers kernel to

compute the O(s)-dimension basis required by the CA-KSM. The optimal choice of k to
use in matrix powers computations may differ from the optimal choice of s, depending on
the relative bandwidth/latency and flops/latency costs. In fact, for a number of test cases,
Yamazaki et al. [196] found that best k parameter for the matrix powers kernel was always
less than the optimal s parameter.

3.2.5 Numerical Aspects of Computing Krylov Bases

Achieving numerical stability for CA-KSMs is more challenging than for classical KSMs.
Avoiding communication necessitates that we compute the s-step bases using the matrix

29

powers kernel upfront in each outer loop, without performing orthogonalization operations in
between successive SpMVs. This can cause the s-step bases to quickly become ill-conditioned,
which as we will see in Chapter 5, has profound implications for convergence and accuracy.

The most straightforward reorganizations of KSMs to CA-KSMs give identical results
in exact arithmetic, but (depending on the input matrix) may completely fail to con-
verge because of numerical instability. This is not surprising, since the monomial basis
[y, Ay, . . . , Aky] converges to the eigenvector of the dominant eigenvalue of A as k grows,
and so form an increasingly ill-conditioned basis of the Krylov subspace. This loss of linear
independence can cause the underlying Krylov methods to break down or stagnate, and
thus fail to converge. This was observed by early researchers in these methods (this related
work is described in Section 2.4), who proposed using different, better conditioned polyno-
mial bases [y, ρ1(A)y, . . . , ρk(A)y], whose computation was discussed in Section 3.2. Newton
and Chebyshev polynomials, discussed further below, are two commonly-used choices for
constructing the s-step bases.

As previous authors have demonstrated (e.g., [102, 14, 149]), we have found that chang-
ing the polynomial basis improves stability and convergence properties; see numerical ex-
periments in Section 4. We note that this is not enough to guarantee numerical stability
comparable to the classical algorithm in all cases. In Section 6.1, we develop a generalization
of the residual replacement approach of [181] to improve the correlation between indepen-
dent recurrences for updating the solution vector and its residual. Our results show that
in many cases, the approach of combining well-conditioned polynomial bases and residual
replacement strategies can make CA-KSMs reliable.

We now review strategies for using Newton and the Chebyshev polynomials to improve
conditioning in computing Krylov subspace bases, as well as a matrix equilibration technique.

3.2.5.1 Newton

This approach follows that of [14, 102, 149]. The (scaled) Newton polynomials are defined
by the recurrence coefficients

α̂j = θj, β̂j = 0, γ̂j = σj (3.2)

where the σj are scaling factors and the shifts θj are chosen to be eigenvalue estimates.
After choosing s shifts, we permute them according to a Leja ordering (see, e.g., [151]).
Informally, the Leja ordering recursively selects each θj to maximize a certain measure on
the set {θi}i≤j ⊂ C; this helps avoid repeated or nearly-repeated shifts. Real matrices may
have complex eigenvalues, so the Newton basis may introduce complex arithmetic; to avoid
this, we use the modified Leja ordering [102], which exploits the fact that complex eigenvalues
of real matrices occur in complex conjugate pairs. The modified Leja ordering means that
for every complex shift θj /∈ R in the sequence, its complex conjugate θj is adjacent, and
the complex conjugate pairs (θj, θj+1) are permuted so that =(θj) > 0. This leads to the

30

recurrence coefficients

α̂j = <(θj), β̂j =

{
−=(θj)

2 θj = θj+1 ∧ =(θj) > 0

0 otherwise
, γ̂j = σj (3.3)

Both Leja orderings can be computed efficiently. For CA-KSMs, choosing σj is challenging;
we cannot simply scale each basis vector by its Euclidean norm as it is generated since this
eliminates our communication savings. In our experiments, we pick all scaling factors σj = 1
(i.e., no scaling), instead relying entirely on matrix equilibration (described in a paragraph
later in this section), to keep the spectral radius ρ(A) close to 1.

3.2.5.2 Chebyshev

The Chebyshev basis requires two parameters, complex numbers d and c, where d±c are the
foci of a bounding ellipse for the spectrum of A. The scaled, shifted, and rotated Chebyshev
polynomials {τ̃j}j≥0 can then be written as

τ̃j(z) := τj((d− z)/c)/τj(d/c) =: τj((d− z)/c)/σj (3.4)

where the Chebyshev polynomials (of the first kind) {τj}j≥0 are

τ0(z) := 1, τ1(z) := z, and

τj(z) := 2zτj−1(z)− τj−2(z) for j > 1
(3.5)

substituting (3.4) into (3.5), we obtain

τ̃0(z) = 1, τ̃1(z) = σ0(d− z)/(cσ1), and

τ̃j(z) = 2σj−1(d− z)τ̃j−1(z)/(cσj)− σj−2τ̃j−2(z)/σj for j > 1
(3.6)

Extracting coefficients, we obtain

α̂j = d, β̂j = −cσj/(2σj+1), γ̂j =

{
−cσ1/σ0 j = 0

−cσj+1/(2σj) j > 0
(3.7)

Note that the transformation z → (d − z)/c maps ellipses with foci f1,2 = d ± c to ellipses
with foci at ∓1, especially the line segment (f1, f2) to (−1, 1). If A is real, then the ellipse
is centered on the real axis; thus d ∈ R, so c is either real or imaginary. In the former case,
arithmetic will be real. In the latter case (c ∈ iR), we avoid complex arithmetic by replacing
c := c/i. This is equivalent to rotating the ellipses 90◦.

For real matrices, [104] also gives a three-term recurrence, where

α̂j = d, β̂j = c2/(4g), γ̂j =

{
2g j = 0

g j > 0
(3.8)

It is assumed that the spectrum is bounded by the rectangle {z : |<(z)− d| ≤ a, |=(z)| ≤ b}
in the complex plane, where a ≥ 0, b ≥ 0, and d are real. Here we choose c =

√
a2 − b2,

g = max{a, b}. Note that for real-valued matrices, recurrence (3.8) is usually sufficient for
capturing the necessary spectral information.

31

3.2.5.3 Matrix Equilibration

Successively scaling (i.e., normalizing) the Krylov vectors as they are generated increases the
numerical stability of the basis generation step. As discussed in [102], successively scaling
the basis vectors (e.g., by their Euclidean norms) is not possible in the CA variants, as it
reintroduces the global communication requirement between SpMV operations. For CA-
KSMs for solving linear systems Ax = b, an alternative is to perform matrix equilibration.
For nonsymmetric matrices, this involves applying diagonal row and column scalings, Dr

and Dc, such that each row and column of the equilibrated matrix DrADc has norm one.
This is performed once offline before running the CA-KSM. Results in [102] indicate that
this technique is an effective alternative to the successively scaled versions of the bases.

32

Chapter 4

New Communication-Avoiding Krylov
Subspace Methods

In this chapter, we present the derivation of a number of new communication-avoiding Krylov
subspace methods. In Section 4.1, we derive a communication-avoiding variant of a general
nonsymmetric Lanczos method, based on the “BIOC” variant of nonsymmetric Lanczos of
Gutknecht (see [94]), which also appears in [16]. We then derive nonsymmetric Lanczos-
based CA-KSMs for solving linear systems including biconjugate gradient (CA-BICG) in
Section 4.2, conjugate gradient squared (CA-CGS) in Section 4.3, and biconjugate gradient
stabilized (CA-BICGSTAB) in Section 4.4, which have been adapted from the article [35]
and technical report [34]. We also present a number of new communication avoiding variants
of the upper and lower Lanczos bidiagonalization procedures, which can be used for singular
value problems and form the basis for the least-squares QR method (LSQR) for solving
least-squares problems, adapted from the technical report [27].

All communication-avoiding variants are mathematically, but not numerically, equivalent
to the standard implementations, in the sense that after every s steps, they produce a solution
identical to that of the conventional algorithm in exact arithmetic. We focus here on two-
term recurrence versions of each method. As the sections in this chapter are notation-heavy,
we first begin by establishing the notation that will be used throughout the derivations.

Notation The idea behind all communication-avoiding Krylov methods is to generate
upfront bases for the Krylov subspaces containing the vector iterates for the next s steps.
After a block orthogonalization step, which involves either computing a Gram matrix to
store inner products of all generated basis vectors or computing a TSQR factorization of the
generated basis vectors, s iterations are carried out by updating the coordinates of the length-
n iterates in the generated bases, rather than updating the length-n iterates themselves.

All generated bases for the Krylov subspaces are denoted with calligraphic letters and
have a subscript denoting the outer loop iteration, or the block of s steps they are used for.

33

We assume that these bases are computed by a three-term recurrence satisfying

ρ0(z) = 1, ρ1(z) = (z − α̂0)ρ0(z)/γ̂0, and

ρj(z) = ((z − α̂j−1)ρj−1(z)− β̂j−2ρj−2(z))/γ̂j−1 for j > 1.
(4.1)

where ρj(z) is a polynomial of degree j. We note that our derivations could be generalized to
use polynomials satisfying longer (up to s-term) recurrences, although three-term recurrences
are most commonly used. Thus the matrix recurrence for generation of the basis vectors can
be written

AY
k

= YkBk
where Bk is of the form 

α̂0 β̂0 0

γ̂0 α̂1
. . .

...

γ̂1
. . . β̂i−2 0
. . . α̂i−1 0

γ̂i−1 0

 ∈ C(i+1)×(i+1). (4.2)

As shown above, an underlined calligraphic letter indicates that all entries in the last column
of the matrix are set to 0. When needed, a superscript is added to Bk to indicate which
basis vectors the entries in Bk were used to generate (e.g., the above would become B(Y)

k).

The dimension of B(Y)
k will depend on the number of columns in Yk, i.e., i in (4.2) is one less

than the number of columns in Yk.
Prime symbols are used to denote the length-O(s) coordinate vectors. For example, if

some length-n vector v ∈ Yk, then v′ is the length-O(s) vector such that v = Ykv′. In all
derivations, we use the convention that iterations are 1-indexed.

4.1 Nonsymmetric Lanczos

Given an n × n matrix A and starting vectors y1 and ỹ1 such that ‖y1‖2 = ‖ỹ1‖2 = 1 and
(ỹ1, y1) 6= 0, i steps of the Lanczos process produce the decompositions

AYi = YiTi + γiyi+1e
T
i and AH Ỹi = ỸiT̃i + γ̃iỹi+1e

T
i (4.3)

where Yi = [y1, . . . , yi] and Ti is an i × i tridiagonal matrix (similarly for Ỹi and T̃i). The
biorthogonal matrices Yi+1 and Ỹi+1 are bases for the Krylov subspaces Ki+1(A, y1) and
Ki+1(AH , ỹ1), resp. The eigenvalues of Ti are called Petrov values (or Ritz values for SPD
A), and are useful as approximations for the eigenvalues of A.

In this section, we present a communication-avoiding version of the Lanczos biorthogonal-
ization method which uses a pair of coupled two-term recurrences, referred to by Gutknecht

34

as the “BIOC” variant of nonsymmetric Lanczos (see, e.g., [94]). Keeping with this nam-
ing convention, we call our method CA-BIOC. This first appeared in Section 8.2.2 of the
Acta Numerica paper [16]. We note that in the case that A is SPD, elimination of cer-
tain computations from BIOC and CA-BIOC gives algorithms for symmetric Lanczos and
communication-avoiding symmetric Lanczos, resp. The BIOC algorithm, shown in Algo-
rithm 5, is governed by two coupled two-term recurrences (rather than the single three-term
recurrence (4.3)) which can be written

Yi = ViUi Ỹi = ṼiŨi

AVi = YiLi + γiyi+1e
T
i AH Ṽi = ỸiL̃i + γ̃iỹi+1e

T
i (4.4)

where Vi and Ṽi are biconjugate with respect to A, i.e., (ṽ`, Avj) 6= 0 if ` = j and (ṽ`, Avj) = 0
if ` 6= j, and as before, Yi and Ỹi are biorthogonal. The matrices

Li =


φ1

γ1 φ2

.

γi−1 φi

 and Ui =


ψ1

1 ψ2

.

1 ψi

 (4.5)

are the LU factors of Ti in (4.3). Although BIOC breakdown can occur if the (pivot-free)
LU factorization of Ti does not exist, the four bidiagonal matrices in (4.4) are preferable
to the two tridiagonal matrices in (4.3) for a number of reasons [146]. Derivations for a
communication-avoiding three-term recurrence variant of symmetric Lanczos can be found
in [102].

Algorithm 5 Classical BIOC

Input: n × n matrix A and length-n starting vectors y1, ỹ1 such that ‖y1‖2 = ‖ỹ1‖2 = 1,
and δ1 = (ỹ1, y1) 6= 0.

Output: Matrices Yi, Ỹi, Ti, T̃i, and vectors yi+1, ỹi+1 satisfying (4.3)
1: v1 = ṽ1 = y1

2: for i = 1, 2, . . ., until convergence do
3: δ̂i = (ṽi, Avi)
4: φi = δ̂i/δi, φ̃i = φi
5: Choose γi, γ̃i 6= 0
6: yi+1 = (Avi − φiyi)/γi
7: ỹi+1 = (AH ṽi − φ̃iỹi)/γ̃i
8: δi+1 = (ỹi+1, yi+1)

9: ψi = γ̃iδi+1/δ̂i, ψ̃i = γiδi+1/δ̂i
10: vi+1 = yi+1 − ψivi
11: ṽi+1 = ỹi+1 − ψ̃iṽi
12: end for

35

Now, suppose we want to perform blocks of s ≥ 1 iterations at once. That is, we wish to
calculate [vsk+2, . . . , vsk+s+1], [ṽsk+2, . . . , ṽsk+s+1], [ysk+2, . . . , ysk+s+1], and [ỹsk+2, . . . , ỹsk+s+1],
given {vsk+1, ṽsk+1, ysk+1, ỹsk+1}, for k ≥ 0.

By induction on lines {6, 7, 10, 11} of classical BIOC (Algorithm 5), it can be shown
that, for iterations sk + j, j ∈ {1, . . . , s+ 1}, the vector iterates satisfy

vsk+j, ysk+j ∈ Ks+1(A, vsk+1) +Ks(A, ysk+1),

ṽsk+j, ỹsk+j ∈ Ks+1(AH , ṽsk+1) +Ks(AH , ỹsk+1),
(4.6)

where we exploit the nesting of the Krylov bases, i.e., Kj(A, vsk+1) ⊆ Kj+1(A, vsk+1) (and
similarly for other starting vectors). Then to compute iterates sk+ 2 through sk+ s+ 1, we
will use the Krylov basis matrices

Vk = [ρ0(A)vsk+1, ρ1(A)vsk+1, . . . , ρs(A)vsk+1], span(Vk) = Ks+1(A, vsk+1),

Ṽk = [ρ0(AH)ṽsk+1, ρ1(AH)ṽsk+1, . . . , ρs(A
H)ṽsk+1], span(Ṽk) = Ks+1(AH , ṽsk+1),

Yk = [ρ0(A)ysk+1, ρ1(A)ysk+1, . . . , ρs−1(A)ysk+1], span(Yk) = Ks(A, ysk+1),

Ỹk = [ρ0(AH)ỹsk+1, ρ1(AH)ỹsk+1, . . . , ρs−1(AH)ỹsk+1], span(Ỹk) = Ks(AH , ỹsk+1),

(4.7)

where ρj(z) is a polynomial of degree j satisfying (4.1). Assuming A is well partitioned,
these matrices can be computed in a communication-avoiding way using the ‘PA1’ or ‘SA1’
algorithms described in Section 3.2.

Using the defined Krylov matrices (4.7) and the relations (4.6), we can represent compo-
nents of the BIOC iterates in Cn by their coordinates in the Krylov bases, that is, subspaces of
Cn of dimension at most 2s+ 1. We introduce coefficient vectors {v′k,j, ṽ′k,j, y′k,j, ỹ′k,j}, each of
length 2s+1, to represent the length n vectors {vsk+j, ṽsk+j, ysk+j, ỹsk+j} for j ∈ {1, . . . , s+1}.
That is,

vsk+j = [Vk,Yk]v′k,j,
ṽsk+j = [Ṽk, Ỹk]ṽ′k,j,

ysk+j = [Vk,Yk]y′k,j,
ỹsk+j = [Ṽk, Ỹk]ỹ′k,j,

(4.8)

where the base cases for these recurrences are given by

v′k,1 = ṽ′k,1 = [1, 01,2s]
T , and y′k,1 = ỹ′k,1 = [01,s+1, 1, 01,s−1]T . (4.9)

Then, the iterate updates (lines {6, 7, 10, 11}) in the Krylov basis become

[Vk,Yk]y′k,j+1 = (A[Vk,Yk]v′k,j − φsk+j[Vk,Yk]y′k,j)/γsk+j, (4.10)

[Ṽk, Ỹk]ỹ′k,j+1 = (AH [Ṽk, Ỹk]ṽ′k,j − φ̃sk+j[Ṽk, Ỹk]ỹ′k,j)/γ̃sk+j, (4.11)

[Vk,Yk]v′k,j+1 = [Vk,Yk]y′k,j+1 + ψsk+j[Vk,Yk]v′k,j, and (4.12)

[Ṽk, Ỹk]ṽ′k,j+1 = [Ṽk, Ỹk]ỹ′k,j+1 + ψ̃sk+j[Ṽk, Ỹk]ṽ′k,j. (4.13)

for j ∈ {1, . . . , s}.

36

Next, we represent the multiplications by A and AH (lines 6 and 7) in the new coordinates,
in order to manipulate (4.10) and (4.11). We first note that the recurrence (4.1) for generating
the matrices Vk, Ṽk, Yk, and Ỹk can be written in matrix form as

AVk = VkB(V)
k , AY

k
= YkB(Y)

k ,

AH Ṽk = ṼkB(Ṽ)
k , AHỸ

k
= ỸkB(Ỹ)

k ,
(4.14)

where Vk, Ṽk, Yk, and Ỹ
k

are the same as Vk, Ṽk, Yk, and Ỹk, respectively, but with the last

column set to 0, and the Bk’s are of the form (4.2) with i = s for B(V)
k and B(Ṽ)

k and i = s− 1

for B(Y)
k and B(Ỹ)

k .
To simplify notation, we let Zk = [Vk,Yk], Z̃k = [Ṽk, Ỹk], Zk = [Vk,Yk], Z̃k = [Ṽk, Ỹk],

B(Z)
k =

[
B(V)
k 0

0 B(Y)
k

]
, and B(Z̃)

k =

[
B(Ṽ)
k 0

0 B(Ỹ)
k

]
. (4.15)

This allows us to write

AZk = ZkB(Z)
k and AZ̃k = Z̃kB(Z̃)

k . (4.16)

We need to perform multiplication of A with each vsk+j (likewise for AH and ṽsk+j) for
j ∈ {1, . . . , s}. By (4.6) and (4.8),

Avsk+j = AZkv′k,j = AZkv′k,j = ZkB(Z)
k v′k,j,

AH ṽsk+j = AHZ̃kṽ′k,j = AHZ̃kṽ′k,j = Z̃kB(Z̃)
k ṽ′k,j.

(4.17)

We now substitute (4.8) and (4.17) into classical BIOC. The vector updates in each of lines
6, 7, 10, and 11 are now expressed as a linear combination of the columns of the Krylov
basis matrices. We can match coefficients on the right- and left-hand sides to obtain the
governing recurrences

y′k,j+1 = (B(Z)
k v′k,j − φsk+jy

′
k,j)/γsk+j, (4.18)

ỹ′k,j+1 = (B(Z̃)
k ṽ′k,j − φ̃sk+j ỹ

′
k,j)/γ̃sk+j, (4.19)

v′k,j+1 = y′k,j+1 + ψsk+jv
′
k,j, (4.20)

ṽ′k,j+1 = ỹ′k,j+1 + ψ̃sk+j ṽ
′
k,j, (4.21)

for j ∈ {1, . . . , s}.
We also need scalar quantities δ̂sk+j and δsk+j which are computed from dot products

involving the vector iterates. We represent these dot products (lines 3 and 8) in the new
basis, using the Gram(-like) matrix

Gk = Z̃Hk Zk (4.22)

37

of size (2s + 1) × (2s + 1), which can be computed with one Allreduce operation (see Sec-
tion 3.1). We can then write the required inner products as

(ỹsk+j+1, ysk+j+1) = (ỹ′k,j+1, Gky
′
k,j+1) (4.23)

(ṽsk+j, Avsk+j) = (ṽ′k,j, GkB(Z)
k v′k,j) (4.24)

In our BIOC formulation, we have allowed freedom in choosing the values γsk+j. It is
common to choose starting vectors ‖y1‖2 = ‖ỹ1‖2 and choose γsk+j and γ̃sk+j such that
‖ysk+j+1‖2 = ‖ỹsk+j+1‖2 = 1, i.e.,

γsk+j =
√

(Avsk+j − φsk+jysk+j, Avsk+j − φsk+jysk+j)

γ̃sk+j =

√
(AH ṽsk+j − φ̃sk+j ỹsk+j, AH ṽsk+j − φ̃sk+j ỹsk+j)

In this case, CA-BIOC also requires computing the matrices

G
(Z)
k = ZHk Zk and G

(Z̃)
k = Z̃Hk Z̃k (4.25)

in each outer loop. Note these matrices could be computed simultaneously with Gk. Then
we can compute γsk+j and γ̃sk+j by

‖Avsk+j − φsk+jysk+j‖2 =

√
(B(Z)

k v′k,j − φsk+jy′k,j, G
(Z)
k (B(Z)

k v′k,j − φsk+jy′k,j)), (4.26)∥∥∥AH ṽsk+j − φ̃sk+j ỹsk+j

∥∥∥
2

=

√
(B(Z̃)

k ṽ′k,j − φ̃sk+j ỹ′k,j, G
(Z̃)
k (B(Z̃)

k ṽ′k,j − φ̃sk+j ỹ′k,j)) (4.27)

in each inner loop iteration with no communication.
We now assemble the CA-BIOC method in Algorithm 6.
In parallel, the only communication in CA-BIOC occurs in the outer loop, in lines 3 and

4; the inner loop lines operate on operands of size O(ns/p+ s2), which we assume fit locally
on each of the p processors. Therefore, communication does not occur in the inner loop, and
CA-BIOC can take s steps per O(1) rounds of messages. In contrast, classical BIOC can
only take 1 step per O(1) rounds of messages; this is an Θ(s)-fold decrease in latency for
well-partitioned A.

In order to compute s > 1 vectors at one time, we can use the ‘PA1’ algorithm described
in Section 3.2.2. Using PA1, each processor requires additional source vector entries (the
ghost zones) and must perform redundant computation. If A is well partitioned, then the
ghost zones grow slowly with respect to s; thus the additional bandwidth and computation
are both lower order terms. We also note that in CA-BIOC, each processor must send
Θ(s2 log2 p) words to perform the matrix multiplication in line 5, while the equivalent dot
products in s steps of classical BIOC only require Θ(s log2 p) words moved per processor
(see Section 3.1). Construction of Gk brings the computational cost of the dense operations
to O(s2n/p), a factor of O(s) larger than the classical algorithm. Under the reasonable

38

Algorithm 6 Communication-Avoiding BIOC

Input: n × n matrix A and length-n starting vectors y1, ỹ1 such that ‖y1‖2 = ‖ỹ1‖2 = 1,
and δ1 = (ỹ1, y1) 6= 0.

Output: Matrices Ysk+s, Ỹsk+s, Tsk+s, T̃sk+s and vectors ysk+s+1, ỹsk+s+1 satisfying (4.3)
1: v1 = ṽ1 = y1

2: for k = 0, 1, . . ., until convergence do
3: Compute Zk = [Vk,Yk] and Z̃k = [Ṽk, Ỹk] according to (4.7)
4: Compute Gk according to (4.22)

5: Assemble B(Z)
k and B(Z̃)

k such that (4.16) holds
6: Initialize {v′k,1, ṽ′k,1, y′k,1, ỹ′k,1} according to (4.9)
7: for j = 1 to s do
8: δ̂sk+j = (ṽ′k,j, GkB(Z)

k v′k,j)

9: φsk+j = δ̂sk+j/δsk+j, φ̃sk+j = φsk+j

10: Choose γsk+j, γ̃sk+j 6= 0

11: y′k,j+1 = (B(Z)
k v′k,j − φsk+jy

′
k,j)/γsk+j

12:

13: ỹ′k,j+1 = (B(Z̃)
k ṽ′k,j − φ̃sk+j ỹ

′
k,j)/γ̃sk+j

14:

15: δsk+j+1 = (ỹ′k,j+1, Gky
′
k,j+1)

16: ψsk+j = γ̃sk+jδsk+j+1/δ̂sk+j ψ̃sk+j = γsk+jδsk+j+1/δ̂sk+j

17: v′k,j+1 = y′k,j+1 + ψsk+jv
′
k,j

18:

19: ṽ′k,j+1 = ỹ′k,j+1 + ψ̃sk+j ṽ
′
k,j

20:

21: end for
22: Recover {vsk+j+1, ṽsk+j+1, ysk+j+1, ỹsk+j+1} for j ∈ {1, . . . , s} according to (4.8)
23: end for

assumption that the number of nonzeros of A per processor is greater than O(sn/p), the
SpMV computations dominate dense operations in the classical algorithm, so the additional
cost of computing Gk is not a limiting factor.

In serial, CA-BIOC moves data on lines 3, 4, and 22. We are most concerned with the
data movement in reading A (line 3), since it is common that A requires far more storage
than the vectors on which it operates. If A is well partitioned, then using the algorithm SA1
described in Section 3.2.3, line 3 reads A 2 + o(1) times, whereas s iterations of classical
BIOC read A 2s times. This is an s-fold savings in latency and bandwidth for reading A.
All three lines (3, 4, and 22) involve reading the vector iterates of length n, asymptotically
the same communication cost as the classical algorithm. Similar to the parallel case, we
perform a factor of O(s) more computation in the dense operations, which is a lower-order
term if the number of nonzeros in A is greater than O(sn).

39

4.2 Biconjugate Gradient

We now derive a communication-avoiding version of the biconjugate gradient method (BICG)
for solving nonsymmetric linear systems Ax = b, which we will call CA-BICG. We first review
BICG (Algorithm 7) and demonstrate its relation to BIOC. Here and in other sections in
this Chapter we assume here that no breakdown occurs in the two-sided nonsymmetric
Lanczos process; we discuss the extension of the look-ahead technique for avoiding breakdown
situations to CA-KSMs in Section 6.4. The BICG method starts with an initial solution guess
x1 and corresponding residuals r1 = r̃1 = b − Ax1. In each iteration i, the solution xi+1 is
updated by a vector selected from Ki(A, r1) such that (b − Ax1) ∗ Ki(AH , r̃1), the so-called
Petrov-Galerkin condition.

The solution can then be written as xi+1 = x1 + Yici, where Yi and Ỹi are the matrices
of biorthogonal basis vectors of Ki(A, r1) and Ki(AH , r̃1), respectively, produced by BIOC
with starting guess y1 = ỹ1 = r1.

Enforcing the Petrov-Galerkin condition gives ci = T−1
i e1. Then, using 4.4 and 4.5,

xi+1 = x1 + YiT
−1
i e1

= x1 + YiU
−1
i L−1

i e1

= x1 + ViL
−1
i e1

= −φi
γi
xi −

1

γi
vi (4.28)

The updates to ri+1 then become

ri+1 = r1 − AViL−1
i e1 = −φi

γi
ri +

1

γi
Avi

and similarly for r̃i+1.
To meet the BICG consistency condition that χ(0) = 1 for the BICG residual vectors, we

must set the scalars γi = −φi = −(ṽi, Avi)/(r̃i, ri). Similar relations hold for the left residual
vectors, i.e., γ̃i = −φ̃i. One can therefore obtain BICG by running BIOC with y1 = r1,
γi = −φi, γ̃i = −φ̃i, and with the additional computation of xi+1 as in (4.28).

Then, given our CA-BIOC algorithm, it is possible to derive a CA-BICG algorithm in
a way analogous to the classical method outlined above. A derivation that goes directly
from CA-BIOC to CA-BICG can be found in Section 8.3.2 of the Acta Numerica paper [16].
In this section, we will derive the CA-BICG method from scratch using the classical BICG
method as a starting point. This derivation has been adapted from our work in [35].

By induction on lines {5, 6, 7, 10, 11} of classical BICG, it can be shown that, given
k ≥ 0, s > 0, the five vector iterates of classical BICG satisfy

psk+j, rsk+j ∈ Ks+1(A, psk+1) +Ks(A, rsk+1),

p̃sk+j, r̃sk+j ∈ Ks+1(AH , p̃sk+1) +Ks(AH , r̃sk+1), and

xsk+j − xsk+1 ∈ Ks(A, psk+1) +Ks−1(A, rsk+1),

(4.29)

40

Algorithm 7 Classical Biconjugate Gradient (BICG)

Input: n× n matrix A, length-n vector b, and initial approximation x1 to Ax = b
Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: p1 = r1 = b− Ax1

2: Choose r̃1 arbitrarily such that δ1 = (r̃1, r1) 6= 0, and let p̃1 = r̃1

3: for i = 1, 2, . . ., until convergence do
4: αi = δi/(p̃i, Api)
5: xi+1 = xi + αipi
6: ri+1 = ri − αiApi
7: r̃i+1 = r̃i − αiAH p̃i
8: δi+1 = (r̃i+1, ri+1)
9: βi = δi+1/δi

10: pi+1 = ri+1 + βipi
11: p̃i+1 = r̃i+1 + βip̃i
12: end for

for j ∈ {1, . . . , s+ 1}.
Then to perform iterations sk + 1 to sk + s + 1, we define the matrices whose columns

span these Krylov subspaces,

Pk = [ρ0(A)psk+1, ρ1(A)psk+1, . . . , ρs(A)psk+1], span(Pk) = Ks+1(A, psk+1),

P̃k = [ρ0(AH)p̃sk+1, ρ1(AH)p̃sk+1, . . . , ρs(A
H)p̃sk+1], span(P̃k) = Ks+1(AH , p̃sk+1),

Rk = [ρ0(A)rsk+1, ρ1(A)rsk+1, . . . , ρs−1(A)rsk+1], span(Rk) = Ks(A, rsk+1),

R̃k = [ρ0(AH)r̃sk+1, ρ1(AH)r̃sk+1, . . . , ρs−1(AH)r̃sk+1], span(R̃k) = Ks(AH , r̃sk+1),
(4.30)

where ρj(z) is a polynomial of degree j satisfying the three-term recurrence (4.1). These
matrices can be computed in a communication-avoiding way using the ‘PA1’ or ‘SA1’ algo-
rithms described in Section 3.2. Note that the s-step bases in (4.30) span the same subspaces
as the s-step bases for CA-BIOC in (4.7) given the appropriate choice of starting vector and
scalars described at the beginning of this section.

We can then write the recurrence for generation of columns of the basis matrices in matrix
form as

A[Pk,Rk] = [Pk,Rk]

[
B(P)
k 0

0 B(R)
k

]

A[P̃k, R̃k] = [P̃k, R̃k]

[
B(P̃)
k 0

0 B(R̃)
k

]
,

where Pk, Rk, P̃k and R̃k are the same as Pk, Rk, P̃k and R̃k, respectively, but with the

last columns set to 0, and the Bk’s are of the form given in (4.2) with i = s for B(P)
k and

B(P̃)
k and i = s− 1 for B(R)

k and B(R̃)
k .

41

To simplify notation, we let Yk = [Pk,Rk], Ỹk = [P̃k, R̃k], Yk = [Pk,Rk], Ỹk = [P̃k, R̃k],

B(Y)
k =

[
B(P)
k 0

0 B(R)
k

]
, and B(Ỹ)

k =

[
B(P̃)
k 0

0 B(R̃)
k

]
.

This allows us to write

AY
k

= YkB(Y)
k and AỸ

k
= ỸkB(Ỹ)

k . (4.31)

Using the Krylov matrices (4.30) and equations in (4.29), we represent components of
the BICG iterates in Cn by their coordinates in the Krylov bases, that is, subspaces of Cn

of dimension at most 2s + 1. We introduce vectors {p′k,j, p̃′k,j, r′k,j, r̃′k,j, x′k,j} each of length
2s+ 1 to represent the coordinates of {psk+j, p̃sk+j, rsk+j, r̃sk+j, xsk+j -xsk+1}, respectively, in
the generated bases, i.e.,

[psk+j, rsk+j, xsk+j − xsk+1] = Yk[p′k,j, r′k,j, x′k,j] and [p̃sk+j, r̃sk+j] = Ỹk[p̃′k,j, r̃′k,j], (4.32)

for j ∈ {1, . . . , s+ 1}, where the base cases for these recurrences are given by

p′k,1 = p̃′k,1 = [1, 01,2s]
T , r′k,1 = r̃′k,1 = [01,s+1, 1, 01,s−1]T , and x′k,1 = 02s+1,1. (4.33)

Next, we represent the multiplications by A and AH (lines 6 and 7) in the new basis.
Note that since we will update for j ∈ {1, . . . , s}, we only perform multiplication of A with
psk+j for these values of j (likewise for AH and p̃sk+j). Therefore we can write

Apsk+j = AYkp′k,j = AY
k
p′k,j = YkB(Y)

k p′k,j and (4.34)

AH p̃sk+j = AHỸkp̃′k,j = AHỸ
k
p̃′k,j = ỸkB(Ỹ)

k p̃′k,j,

for j ∈ {1, . . . , s}. We substitute (4.32) and (4.34) into classical BICG. Each of lines 5, 6, 7,
10, and 11 is now expressed as a linear combination of the columns of the Krylov matrices,
and we can match coordinates on the right- and left-hand sides to obtain the recurrences,
for j ∈ {1, . . . , s},

x′k,j+1 = x′k,j + αsk+jp
′
k,j (4.35)

r′k,j+1 = r′k,j − αsk+jB(Y)
k p′k,j (4.36)

r̃′k,j+1 = r̃′k,j − αsk+jB(Ỹ)
k p̃′k,j (4.37)

p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j (4.38)

p̃′k,j+1 = r̃′k,j+1 + βsk+j p̃
′
k,j. (4.39)

We also need scalar quantities αsk+j, βsk+j, and δsk+j+1, which are computed from dot
products involving the BICG iterates. We define the Gram-like matrix

Gk = ỸHk Yk, (4.40)

42

Algorithm 8 Communication-Avoiding BICG (CA-BICG)

Input: n× n matrix A, length-n vector b, and initial approximation x1 to Ax = b
Output: Approximate solution xsk+s+1 to Ax = b with updated residual rsk+s+1

1: p1 = r1 = b− Ax1

2: Choose r̃1 arbitrarily such that δ1 = (r̃1, r1) 6= 0, and let p̃1 = r̃1

3: for k = 0, 1, . . ., until convergence do
4: Compute Yk = [Pk,Rk] and Ỹk = [P̃k, R̃k] according to (4.30)
5: Compute Gk according to (4.40)

6: Assemble B(Y)
k and B(Ỹ)

k such that (4.31) holds
7: Initialize {p′k,1, p̃′k,1, r′k,1, r̃′k,1, x′k,1} according to (4.33)
8: for j = 1 to s do
9: αsk+j = δsk+j/(p̃

′
k,j, GkB(Y)

k p′k,j)
10: x′k,j+1 = x′k,j + αsk+jp

′
k,j

11: r′k,j+1 = r′k,j − αsk+jB(Y)
k p′k,j

12: r̃′k,j+1 = r̃′k,j − αsk+jB(Ỹ)
k p̃′k,j

13: δsk+j+1 = (r̃′k,j+1, Gkr
′
k,j+1)

14: βsk+j = δsk+j+1/δsk+j

15: p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j

16: p̃′k,j+1 = r̃′k,j+1 + βsk+j p̃
′
k,j

17: end for
18: Recover iterates {psk+s+1, p̃sk+s+1, rsk+s+1, r̃sk+s+1, xsk+s+1} according to (4.32)
19: end for

which can be computed with one Allreduce operation as described in Section 3.1. The above
equation, along with (4.34), allows us to write inner products in lines 4 and 8 as

(r̃sk+j+1, rsk+j+1) = (Ỹkr̃′k,j+1,Ykr′k,j+1) = (r̃′k,j+1, Gkr
′
k,j+1) and (4.41)

(p̃sk+j, Apsk+j) = (Ỹkp̃′k,j,YkB
(Y)
k p′k,j) = (p̃′k,j, GkB(Y)

k p′k,j), (4.42)

for j ∈ {1, . . . , s}.
Now we assemble the CA-BICG method from (4.35)-(4.39) and (4.40)-(4.42), shown in

Algorithm 8.
The communication costs of CA-BICG versus classical BICG are the same as discussed

for the CA-BIOC versus classical BIOC algorithms in the previous section. In parallel, the
only communication in CA-BICG occurs in the outer loop, in lines 4 and 5; the inner loop
lines operate on operands of size O(ns/p + s2), which we assume fit locally on each of the
p processors. Therefore, CA-BICG can take s steps per O(1) rounds of messages whereas
classical BICG can only take 1 step per O(1) rounds of messages; this is an Θ(s)-fold decrease
in latency for well-partitioned A.

We can use the ‘PA1’ algorithm described in Section 3.2.2 to compute the bases in line 4.
Using PA1, each processor requires additional source vector entries (the ghost zones) and

43

must perform redundant computation. If A is well partitioned, the additional bandwidth and
computation are both lower order terms. We also note that in CA-BICG, each processor must
send Θ(s2 log2 p) words to perform the matrix multiplication in line 5, while the equivalent
dot products in s steps of classical BICG only require Θ(s log2 p) words moved per processor
(see Section 3.1). Construction of Gk brings the computational cost of the dense operations
to O(s2n/p), a factor of O(s) larger than the classical algorithm. Under the reasonable
assumption that the number of nonzeros of A per processor is greater than O(sn/p), the
SpMV computations dominate dense operations in the classical algorithm, so the additional
cost of computing Gk is not a limiting factor.

In serial, CA-BICG moves data on lines 4, 5, and 18. As in CA-BIOC, we are most
concerned with the data movement in reading A (line 4), since it is common that A requires
far more storage than the vectors on which it operates. If A is well partitioned, then using the
algorithm SA1 described in Section 3.2.3, line 4 reads A 2 + o(1) times, whereas s iterations
of classical BICG read A 2s times. This is an s-fold savings in latency and bandwidth
for reading A. All three lines (4, 5, and 18) involve reading the vector iterates of length
n, asymptotically the same communication cost as the classical algorithm. Similar to the
parallel case, we perform a factor of O(s) more computation in the dense operations, which
is a lower-order term if the number of nonzeros in A is greater than O(sn).

4.2.1 Numerical Experiments

We present convergence results for two matrices which exemplify the dependence of typical
numerical behavior on the chosen basis and s value. In all tests, the right-hand side b was
constructed such that the true solution x is the n-vector with components xi = 1/

√
n.

cdde Our first test problem comes from the constant-coefficient convection diffusion equa-
tion

−∆u+ 2p1ux + 2p2uy − p3uy =f in [0, 1]2

u =g on ∂[0, 1]2

This problem is widely used for testing and analyzing numerical solvers [13]. We discretized
the PDE using centered finite difference operators on a 512 × 512 grid with (p1, p2, p3) =
(25, 600, 250), resulting in a nonsymmetric matrix with n = 262K, nnz(A) = 1.3M , and
condition number ∼ 5.5. To select the Leja points, we used the convex hull of the known
spectrum, given in [13]. Fig. 4.1 shows the selected Leja points and resulting basis condition
number cond(Yk) = ‖Y+

k ‖2 · ‖Yk‖2 for the monomial, Newton, and Chebyshev bases, for
basis lengths up to s = 32. Fig. 4.2 shows convergence results for CA-BICG for the different
bases, for s ∈ {4, 8, 16}.

xenon1 The xenon1 matrix is an nonsymmetric matrix from the University of Florida
Sparse Matrix Collection [57]. This matrix is used in analyzing elastic properties of crystalline

44

0 10 20 30
10

0

10
10

10
20

10
30

Basis Length

C
on

di
tio

n
N

um
be

r

0 2 4 6 8
−4

−2

0

2

4

Figure 4.1: Basis properties for cdde. Left: computed Leja points (×) of cdde, plotted in
the complex plane. Right: basis condition number growth rate. The x-axis denotes basis
length s and the y-axis denotes the basis condition number for monomial (4), Newton (◦),
and Chebyshev (+) bases. Leja points on the left were used to generate the bases shown in
the right plot.

0 10 20 30 40 50

10
−10

10
−6

10
−2

10
2

0 10 20 30 40 50

10
−10

10
−6

10
−2

10
2

0 10 20 30 40 50

10
−10

10
−6

10
−2

10
2

Figure 4.2: Convergence for cdde matrix for (CA-)BICG with various s values: s = 4 (top
left), s = 8 (top right), s = 16 (bottom). The x-axis denotes iteration number, and the
y-axis denotes the 2-norm of the (normalized) true residual (i.e., ‖b− Axm‖2 / ‖b‖2). Each
plot shows convergence for the classical algorithm (−), as well as for CA-BICG using the
monomial (4), Newton (◦), and Chebyshev (+) bases.

45

0 10 20 30
10

0

10
10

10
20

10
30

Basis Length

C
on

di
tio

n
N

um
be

r

0 1 2 3
−2

−1

0

1

2

Figure 4.3: Basis properties for xenon1. Left: computed Leja points (×) of xenon1, plotted
in the complex plane. Right: basis condition number growth rate. The x-axis denotes basis
length s and the y-axis denotes the basis condition number for monomial (4), Newton (◦),
and Chebyshev (+) bases. Leja points on left were used to generate the bases shown in the
right plot.

compounds [57]. Here, n = 48.6K and nnz(A) = 1.2M . This test case is less well-conditioned
than the first, with condition number ∼ 1.1 · 105 after performing matrix equilibration as a
preprocessing step as described in Section 3.2.5.3 and [102]. The xenon1 matrix has all real
eigenvalues. Therefore, Leja points (and thus basis parameters) were selected based only on
estimates of the maximum and minimum eigenvalues obtained from ARPACK (MATLAB
eigs). Fig. 4.3 shows the generated Leja points and resulting basis condition numbers for
the monomial, Newton, and Chebyshev bases, for basis lengths up to s = 32. Fig. 4.4 shows
convergence results for CA-BICG for the different bases, for s ∈ {4, 8, 16}.

For CA-BICG with the monomial basis, we generally see the convergence rate decrease
(relative to the classical method) as s grows larger. This is due to roundoff error in compu-
tation of the basis vectors in the matrix powers kernel, which results in a larger perturbation
to the finite precision Lanczos recurrence that determines the rate of convergence (see, e.g.,
[176]). At some point, when s becomes large, CA-BICG with the monomial basis will fail
to converge due to (near) numerical rank deficiencies in the generated Krylov bases. For
both of our test matrices, CA-BICG with the monomial basis fails to converge to the desired
tolerance when s = 16.

CA-BICG with the Newton and Chebyshev bases, however, are able to maintain conver-
gence closer to that of the classical method, even for s as large as 16. This is especially evident
if we have a well-conditioned matrix, as in Figure 4.2 (cdde). For this matrix, CA-BICG
with both the Newton and Chebyshev bases converges in the same number of iterations as
the classical method, for all tested s values.

46

0 500 1000 1500 2000

10
−10

10
−6

10
−2

10
2

0 500 1000 1500 2000

10
−10

10
−6

10
−2

10
2

0 500 1000 1500 2000

10
−10

10
−6

10
−2

10
2

Figure 4.4: Convergence for xenon1 matrix for (CA-)BICG with various s values: s = 4
(top left), s = 8 (top right), s = 16 (bottom). The x-axis denotes iteration number, and the
y-axis denotes the 2-norm of the (normalized) true residual (i.e., ‖b− Axm‖2 / ‖b‖2). Each
plot shows convergence for the classical algorithm (−), as well as for CA-BICG using the
monomial (4), Newton (◦), and Chebyshev (+) bases.

4.3 Conjugate Gradient Squared

The multiplication by AH and corresponding left Krylov vectors (residuals r̃) only contribute
to the BICG solution of Ax = b through the scalar coefficients αi and βi. BICG does not
exploit the reduction in magnitude of the left residuals unless we solve a dual system. In
an effort to get faster convergence, or when AH might not be available, for instance when
the linear system A is the Jacobian in a (matrix-free) Newton-Krylov method, one might
demand a transpose-free method such as conjugate gradient squared (CGS) [166], a quasi-
orthogonal residual (QOR) method derived from BICG (another QOR method), that avoids
the multiplication by AH .

CGS respects the mutual biorthogonality of the two Krylov spaces (and so the Lanczos
coefficients are the same as BICG, in exact arithmetic), however, the polynomials represent-
ing the CGS residuals are the squares of those in BICG. In BICG, the residual computed in
iteration i can be expressed as

ri+1 = χi(A)r1,

47

where χi is a polynomial of degree i with χi(0) = 1. Similarly, the direction vector pi+1 can
be written

pi+1 = πi(A)r1,

where πi is a polynomial of degree i. Since r̃i+1 and p̃i+1 are computed by the same recur-
rences,

r̃i+1 = χi(A
T)r̃ and p̃i+1 = πi(A

T)r̃,

and then the scalars can be computed, e.g.,

αi =
(χi(A

T)r̃, χ(A)r1)

(πi(AT)r̃, Aπ(A)r1)
=

(r̃, χ2
i (A)r1)

(r̃, π2
i (A)r1)

.

These squared polynomials can then be used to avoid keeping track of the left Lanczos
vectors. However, CGS actually interprets the squared BICG residuals as the true resid-
uals, and updates the solution accordingly. This heuristic decision was motivated by the
observation that the BICG polynomials typically reduce the norm of the residual, and so
one would hope that applying the BICG polynomial again (to an already-reduced residual)
might reduce it further. But, because it squares the polynomials, CGS might have more
irregular convergence than BICG. As a side effect, larger intermediate quantities in CGS
could worsen local roundoff, leading to a (faster) deviation between the updated residual
and the true residual.

We will use the variant of classical CGS given in the textbook [153], which we reproduce
in Algorithm 9. Like classical BICG, classical CGS has two communication-bound kernels:
SpMV and inner products. Again, we replace SpMV with the matrix powers kernel, and
inner products with a Gram-like matrix and vector. In the case of CGS we need 6s total
Krylov basis vectors to complete s iterations. First, we convert classical CGS (Algorithm 9)
to an s-step method. Similarly to CGS, we can determine the dependencies for steps sk+ 1
through sk + s+ 1 by considering dependencies in Algorithm 9. By induction, we can show
that, given k ≥ 0, s > 0, the vector iterates of classical CGS satisfy

psk+j, usk+j, rsk+j, xsk+j − xsk+1 ∈ K2s+1(A, psk+1) +K2s(A, usk+1) +K2s−1(A, rsk+1), (4.43)

for j ∈ {1, . . . , s+ 1}.
Then to find iterates sk + 2 to sk + s + 1, we use the Krylov matrices Pk, Uk, and Rk,

where

Pk = [ρ0(A)psk+1, ρ1(A)psk+1, . . . , ρ2s(A)psk+1], span(Pk) = K2s+1(A, psk+1),

Uk = [ρ0(A)usk+1, ρ1(A)usk+1, . . . , ρ2s−1(A)usk+1], span(Uk) = K2s(A, usk+1),

Rk = [ρ0(A)rsk+1, ρ1(A)rsk+1, . . . , ρ2s−2(A)rsk+1], span(Rk) = K2s−1(A, rsk+1),

(4.44)

where ρj(z) is a polynomial of degree j satisfying the three-term recurrence (4.1). Assuming
A is well partitioned, these matrices can be computed in a communication-avoiding way
using the ‘PA1’ or ‘SA1’ algorithms described in Section 3.2.

48

Algorithm 9 Classical Conjugate Gradient Squared (CGS)

Input: n× n matrix A, length-n vector b, and initial approximation x1 to Ax = b
Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: p1 = u1 = r1 = b− Ax1

2: Choose r̃ arbitrarily such that δ1 = (r̃, r1) 6= 0
3: for i = 1, 2, . . ., until convergence do
4: αi = δi/(r̃, Api)
5: qi = ui − αiApi
6: xi+1 = xi + αi(ui + qi)
7: ri+1 = ri − αiA(ui + qi)
8: δi+1 = (r̃, ri+1)
9: βi = δi+1/δi

10: ui+1 = ri+1 + βiqi
11: pi+1 = ui+1 + βi(qi + βipi)
12: end for

We can then write the recurrence for generation of columns of the basis matrices in matrix
form as

A[Pk,Uk,Rk] = [Pk,Uk,Rk]

 B(P)
k 02s+1,2s 02s+1,2s−1

02s,2s+1 B(U)
k 02s,2s−1

02s−1,2s+1 02s−1,2s B(R)
k

 ,
where Pk, Uk, and Rk are the same as Pk, Uk, and Rk, respectively, but with the last

columns set to 0, and the Bk’s are of the form given in (4.2) with i = 2s for B(P)
k , i = 2s− 1

for B(U)
k , and i = 2s− 2 for B(R)

k .
To simplify notation, we let Yk = [Pk,Uk,Rk], Yk = [Pk,Uk,Rk], and

Bk =

 B(P)
k 02s+1,2s 02s+1,2s−1

02s,2s+1 B(U)
k 02s,2s−1

02s−1,2s+1 02s−1,2s B(R)
k

 .
This allows us to write

AY
k

= YkBk. (4.45)

Using the Krylov matrices (4.44) and equations in (4.43), we can then represent the
n components of the CGS iterates by their 6s coordinates in the Krylov bases stored in
Yk. We introduce coordinate vectors {p′k,j, u′k,j, r′k,j, x′k,j} to represent the length-n vectors
{psk+j, usk+j, rsk+j, xsk+j -xsk+1}, such that

[psk+j, usk+j, rsk+j, xsk+j − xsk+1] = Yk[p′k,j, u′k,j, r′k,j, x′k,j], (4.46)

49

for j ∈ {1, . . . , s+ 1}, where the base cases for these recurrences are given by

p′k,1 = [1, 01,6s−1]T ,

u′k,1 = [01,2s+1, 1, 01,4s−2]T ,

r′k,1 = [01,4s+1, 1, 01,2s−2]T , and

x′k,1 = 06s,1. (4.47)

Next, we represent the multiplications of psk+j, usk+j, and auxiliary vector qsk+j by
A in the new basis. Note that since we will update for j ∈ {1, . . . , s}, we only perform
multiplication of A with psk+j and usk+j for these values of j. Note also that qsk+j ∈ Yk for
j ∈ {1, . . . , s}. We can therefore write

Apsk+j = AYkp′k,j = AY
k
p′k,j = YkBkp′k,j, (4.48)

Ausk+j = AYku′k,j = AY
k
u′k,j = YkBku′k,j and, (4.49)

Adsk+j = AYkd′k,j = AY
k
d′k,j = YkBkd′k,j,

for j ∈ {1, . . . , s}.
We substitute (4.46) and (4.48) into classical CGS. Each vector update is now expressed

as a linear combination of the columns of the Krylov matrices, and we can match coordinates
on the right and left hand sides to obtain the recurrences, for j ∈ {1, . . . , s},

q′k,j = u′k,j − αsk+jBkp′k,j (4.50)

x′k,j+1 = x′k,j + αsk+j(u
′
k,j + q′k,j) (4.51)

r′k,j+1 = r′k,j − αsk+jBk(u′k,j + q′k,j) (4.52)

u′k,j+1 = r′k,j+1 + βsk+jq
′
k,j (4.53)

p′k,j+1 = u′k,j+1 + βsk+j(q
′
k,j + βsk+jp

′
k,j) (4.54)

We also need scalar quantities αsk+j, δsk+j+1, and βsk+j, which are computed from dot
products involving the CGS iterates. We represent these dot products in the new basis,
using the Gram matrix Gk and vector g as

[Gk, g] = YHk [Yk, r̃], (4.55)

which can be computed with one Allreduce as described in Section 3.1. The formulas for the
required inner products are then easily derived by using (4.45)and (4.48). We have

(r̃, Apsk+j) = (r̃,YkBkp′k,j) = (g,Bkp′k,j) and

(r̃, rsk+j+1 = (r̃,Ykr′k,j+1) = (g, r′k,j+1).

We now assemble the CA-CGS method shown in Algorithm 10.
Analogous to CA-BICG, the only communication in parallel CA-CGS occurs in lines 4

and 5. Using PA1 and block computation of inner products (see Chapter 3), CA-CGS can

50

Algorithm 10 Communication-Avoiding CGS (CA-CGS)

Input: n× n matrix A, length-n vector b, and initial approximation x1 to Ax = b
Output: Approximate solution xsk+s+1 to Ax = b with updated residual rsk+s+1

1: p1 = u1 = r1 = b− Ax1

2: Choose r̃ arbitrarily such that δ1 = (r̃, r1) 6= 0
3: for k = 0, 1, . . ., until convergence do
4: Compute Pk, Uk, and Rk according to (4.44)
5: Compute Gk and g according to (4.55)
6: Assemble Bk such that (4.45) holds
7: Initialize {p′k,1, u′k,1, r′k,1, x′k,1} according to (4.47)
8: for j = 1 to s do
9: αsk+j = δsk+j/(g,Bkp′k,j)

10: q′k,j = u′k,j − αsk+jBkp′k,j
11: x′k,j+1 = x′k,j + αsk+j(u

′
k,j + q′k,j)

12: r′k,j+1 = r′k,j − αsk+jBk(u′k,j + q′k,j)
13: δsk+j+1 = (g, r′k,j+1)
14: βsk+j = δsk+j+1/δsk+j

15: u′k,j+1 = r′k,j+1 + βsk+jq
′
k,j

16: p′k,j+1 = u′k,j+1 + βsk+j(q
′
k,j + βsk+jp

′
k,j)

17: end for
18: Recover iterates {psk+s+1, usk+s+1, rsk+s+1, xsk+s+1} according to (4.46)
19: end for

reduce parallel latency by a factor of Θ(s), albeit at the cost of increasing bandwidth by a
small factor. We refer to the above discussion for CA-BICG, except noting that CA-CGS
does not require multiplication by AH , and instead requires 2s multiplications by A for each
of three vectors per s iterations; this could be accomplished by calling PA1 (see Section 3.2.2)
with three right-hand sides.

In serial, CA-CGS moves data on lines 4, 5, and 18. Again, this is analogous to CA-
BICG; this formulation enables use of SA1 (see Section 3.2.3), which reduces serial latency
and bandwidth by a factor of Θ(s).

Although there are instances where CGS outperforms other nonsymmetric solvers (see
the experiments in [131]), it is often the case that its convergence behavior is much more
erratic than methods like BICGSTAB, and is thus less commonly used in practice.

4.4 Biconjugate Gradient Stabilized

As mentioned, the CGS method uses the squares of the BICG residual polynomials. This
can lead to irregular convergence, which causes accumulation of roundoff error. Lanczos-type
product methods (LTPMs) (see [94]) attempt to improve on the convergence behavior of CGS

51

by using a different polynomial recurrence for the left basis; that is, instead of computing
residuals of the form ri+1 = χ2

i (A)r1, we allow for residuals of the form

ri+1 = ψi(A)χi(A)r1,

where ψi is a polynomial of degree i. Many LTPMs, including the biconjugate gradient sta-
bilized method (BICGSTAB) of van der Vorst [179] and its variants, choose the polynomials
ψi recursively at each step with the goal of smoothing or stabilizing convergence. recurrence
is preferable for performance reasons.

In the case of BICGSTAB, the polynomials ψi are constructed via a two-term recurrence,
which amounts to extending the Krylov space by one dimension (a new basis vector), and
taking a steepest descent step in that direction. This is a local one-dimensional minimization,
which should result in a smoother convergence curve and avoid possible overflow conditions
in CGS. However, an issue with BICGSTAB is that if the input data is all real, the stabilizing
polynomial will have only real zeros. Such a polynomial will not reduce error components in
the direction of eigenvectors corresponding to eigenvalues with large imaginary components
(relative to their real components). Matrices with such a spectrum are also more susceptible
to a minimization breakdown in BICGSTAB, a new breakdown condition.

These two drawbacks to BICGSTAB are addressed in the literature by many newer
LTPMs like BICGSTAB2 [93], which uses two-dimensional residual smoothing, and the
BICGSTAB(L) [160] method, which extends the ideas of BICGSTAB2 to use L-dimensional
smoothing. We note that BICGSTAB(L) is a promising direction for future work, especially
once combined with the communication-avoiding tall-skinny QR kernel (TSQR), as described
in [102]. We conjecture that our communication-avoiding approach generalizes, and that the
flexibility to choose a polynomial basis in computing the s-step bases could accelerate the
computation of the ψi polynomials, when the recurrence coefficients are known in advance.

We present the version of BICGSTAB from [153] in Algorithm 11, from which we will
derive CA-BICGSTAB. The derivation presented here has been adapted from the work
in [35]. Like classical BICG, classical BICGSTAB has two communication-bound kernels:
SpMV and inner products. Again, we replace SpMV with the matrix powers kernel, and
inner products with a Gram-like matrix and vector; see Chapter 3. Because BICGSTAB
expands the underlying Krylov space by two dimensions each iteration, we need twice as
many Krylov basis vectors to complete s iterations. First, we convert classical BICGSTAB
(Algorithm 11) to an s-step method. Similarly to BICG, we can determine the dependencies
for steps sk+ 1 through sk+ s+ 1 by inspection of Algorithm 11. By induction on lines {8,
9, and 12} of classical BICGSTAB, we can show that, given k ≥ 0, s > 0, the vector iterates
of classical BICGSTAB satisfy

psk+j, rsk+j, xsk+j − xsk+1 ∈ K2s+1(A, psk+1) +K2s(A, rsk+1), (4.56)

for j ∈ {1, . . . , s+ 1}.
Then to find iterates sk+ 2 to sk+ s+ 1, we use the Krylov matrices Pk and Rk, where

Pk = [ρ0(A)psk+1, ρ1(A)psk+1, . . . , ρ2s(A)psk+1], span(Pk) = K2s+1(A, psk+1),

Rk = [ρ0(A)rsk+1, ρ1(A)rsk+1, . . . , ρ2s−1(A)rsk+1], span(Rk) = K2s(A, rsk+1),
(4.57)

52

Algorithm 11 Classical Biconjugate Gradient Stabilized (BICGSTAB)

Input: n× n matrix A, length-n vector b, and initial approximation x1 to Ax = b
Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: p1 = r1 = b− Ax1

2: Choose r̃ arbitrarily such that δ1 = (r̃, r1) 6= 0
3: for i = 1, 2, . . ., until convergence do
4: αi = δi/(r̃, Api)
5: xi+1 = xi + αipi
6: di = ri − αiApi
7: ωi = (di,Adi)

(Adi,Adi)

8: xi+1 = xi+1 + ωidi
9: ri+1 = di − ωiAdi

10: δi+1 = (r̃, ri+1)
11: βi = (δi+1/δi) · (αi/ωi)
12: pi+1 = ri+1 + βipi − βiωiApi
13: end for

where ρj(z) is a polynomial of degree j satisfying the three-term recurrence (4.1). Assuming
A is well partitioned, these matrices can be computed in a communication-avoiding way
using the ‘PA1’ or ‘SA1’ algorithms described in Section 3.2 with two right-hand sides.

We can then write the recurrence for generation of columns of the basis matrices in matrix
form as

A[Pk,Rk] = [Pk,Rk]

[
B(P)
k 0

0 B(R)
k

]
,

where Pk and Rk are the same as Pk and Rk, respectively, but with the last columns set to

0, and the Bk’s are of the form given in (4.2) with i = 2s for B(P)
k and i = 2s− 1 for B(R)

k .
To simplify notation, we let Yk = [Pk,Rk], Yk = [Pk,Rk], and

Bk =

[
B(P)
k 0

0 B(R)
k

]
.

This allows us to write
AY

k
= YkBk. (4.58)

Using the Krylov matrices (4.57) and equations in (4.56), we can then represent the
n components of the BICGSTAB iterates by their 4s + 1 coordinates in the Krylov bases
defined by Pk and Rk. We introduce coordinate vectors {p′k,j, r′k,j, x′k,j} to represent vectors
{psk+j, rsk+j, xsk+j -xsk+1}, such that

[psk+j, rsk+j, xsk+j − xsk] = Yk[p′k,j, r′k,j, x′k,j], (4.59)

53

for j ∈ {1, . . . , s+ 1}, where the base cases for these recurrences are given by

p′k,1 = [1, 01,4s]
T , r′k,1 = [01,2s+1, 1, 01,2s−1]T , and x′k,1 = 04s+1,1. (4.60)

Next, we represent the multiplications of psk+j and auxiliary vector dsk+j by A in the
new basis. Note that since we will update for j ∈ {1, . . . , s}, we only perform multiplication
of A with psk+j and dsk+j for these values of j. Note also that dsk+j ∈ Yk for j ∈ {1, . . . , s}.
We can therefore write

Apsk+j = AYkp′k,j = AY
k
p′k,j = YkBkp′k,j and (4.61)

Adsk+j = AYkd′k,j = AY
k
d′k,j = YkBkd′k,j,

for j ∈ {1, . . . , s}.
We substitute (4.59) and (4.61) into classical BICGSTAB. Each of lines 5, 6, 8, 9, and

12 is now expressed as a linear combination of the columns of the Krylov matrices, and
we can match coordinates on the right and left hand sides to obtain the recurrences, for
j ∈ {1, . . . , s},

x′k,j+1 = x′k,j + αsk+jp
′
k,j, (4.62)

d′k,j = r′k,j − αsk+jBkp′k,j, (4.63)

x′k,j+1 = x′k,j+1 + ωsk+jd
′
k,j, (4.64)

r′k,j+1 = d′k,j − ωsk+jBkd′k,j, (4.65)

p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j − βsk+jωsk+jBkp′k,j. (4.66)

(4.67)

We also need scalar quantities αsk+j, ωsk+j, βsk+j, and δsk+j+1, which are computed from
dot products involving the BICGSTAB iterates. We represent these dot products in the new
basis, using the Gram matrix Gk and vector g as

[Gk, g] = YHk [Yk, r̃], (4.68)

which can be computed with one Allreduce operation; see Section 3.1. The formulas for
the scalar quantities can be easily derived by using (4.58) and (4.61), similar to the deriva-
tions for CA-BICG and CA-CGS. Now we assemble the CA-BICGSTAB method shown in
Algorithm 12.

Analogous to the other methods in this chapter, the only communication in parallel
CA-BICGSTAB occurs in lines 4 and 5. Using PA1 in Section 3.2.2, CA-BICGSTAB can
thus reduce parallel latency by a factor of Θ(s), albeit at the cost of increasing bandwidth
by a small factor. We refer to the above discussion for CA-BICG, except noting that CA-
BICGSTAB does not require multiplication by AH , and instead requires 2s multiplications
by A for each of the two vectors per s iterations; this could be accomplished by calling PA1
(see Section 3.2.2) with two right-hand sides.

In serial, CA-BICGSTAB moves data on lines 4, 5, and 19. Again, this is analogous to
CA-BICG; use of SA1 in Section 3.1 reduces the serial latency and bandwidth by a factor of
Θ(s).

54

Algorithm 12 Communication-Avoiding BICGSTAB (CA-BICGSTAB)

Input: n× n matrix A, length-n vector b, and initial approximation x1 to Ax = b
Output: Approximate solution xsk+s+1 to Ax = b with updated residual rsk+s+1

1: p1 = r1 = b− Ax1

2: Choose r̃ arbitrarily such that δ1 = (r̃, r1) 6= 0
3: for k = 0, 1, . . ., until convergence do
4: Compute Pk and Rk according to (4.57)
5: Compute Gk and g according to (4.68)
6: Assemble Bk such that (4.58) holds
7: Initialize {p′k,1, r′k,1, x′k,1} according to (4.60)
8: for j = 1 to s do
9: αsk+j = δsk+j/(g,Bkp′k,j)

10: x′k,j+1 = x′k,j + αsk+jp
′
k,j

11: d′k,j = r′k,j − αsk+jBkp′k,j
12: ωsk+j =

(d′k,j ,GkBkd′k,j)

(Bkd′k,j ,GkBkd′k,j)

13: x′k,j+1 = x′k,j+1 + ωsk+jd
′
k,j

14: r′k,j+1 = d′k,j − ωsk+jBkd′k,j
15: δsk+j+1 = (g, r′k,j+1)
16: βsk+j = (δsk+j+1/δsk+j) · (αsk+j/ωsk+j)
17: p′k,j+1 = r′k,j+1 + βsk+jp

′
k,j − βsk+jωsk+jBkp′k,j

18: end for
19: Recover iterates {psk+s+1, rsk+s+1, xsk+s+1} according to (4.59)
20: end for

4.4.1 Numerical Experiments

We present convergence results for two matrices, the same used to test CA-BICG in Sec-
tion 4.2.1, which exemplify the dependence of typical numerical behavior on the chosen basis
and s value. Note that the Krylov bases computed in each outer loop are of length 2s. In
all tests, the right-hand side b was constructed such that the true solution x is the n-vector
with components xi = 1/

√
n.

cdde Figure 4.5 shows convergence results for CA-BICGTAB for the different bases, for
s ∈ {4, 8, 16}.

xenon1 Figure 4.6 shows convergence results for CA-BICGTAB for the different bases, for
s ∈ {4, 8, 16}.

As in the CABICG tests in Section 4.2.1, using the monomial basis we generally see the
convergence rate decrease (relative to the classical method) as s grows larger due to roundoff
error in computation of the basis vectors in the matrix powers kernel. For example, in Fig. 6.1
for CA-BICGSTAB, we see a decrease in convergence rate of the monomial basis from s = 4

55

0 10 20 30 40 50

10
−10

10
−6

10
−2

10
2

0 10 20 30 40 50

10
−10

10
−6

10
−2

10
2

0 10 20 30 40 50

10
−10

10
−6

10
−2

10
2

Figure 4.5: Convergence for cdde matrix for (CA-)BICGTAB with various s values: s = 4
(top left), s = 8 (top right), s = 16 (bottom). The x-axis denotes iteration number, and the
y-axis denotes the 2-norm of the (normalized) true residual (i.e., ‖b− Axm‖2 / ‖b‖2). Each
plot shows convergence for the classical algorithm (−), as well as for CA-BICGTAB using
the monomial (4), Newton (◦), and Chebyshev (+) bases.

to s = 8. Again, for both of our test matrices, CA-BICGSTAB with the monomial basis
fails to converge to the desired tolerance when s = 16.

As with CA-BICG, CA-BICGSTAB with the Newton and Chebyshev bases maintains
convergence closer to that of the classical method, even for s as large as 16 (again, note
that for CA-BICGSTAB, s = 16 requires basis lengths of 32). As observed in Fig. 6.4
(xenon1), for CA-BICGSTAB, the dependence of convergence rate on s is less predictable
for the Newton and Chebyshev bases, although we still observe eventual convergence of the
true residual to the desired tolerance. This is likely due to the large condition number of
xenon1.

We tested for convergence of the true residual to a level of 10−10 (i.e., ‖b− Axm‖2 / ‖b‖2 ≤
10−10). For both test matrices, for CA-BICGSTAB with the monomial basis and s = 8, we
observe that the norm of the true residual stagnates and never reaches the desired level
despite convergence of the computed residual. This effect is due to floating point roundoff
error, which causes discrepancy between the true and computed residuals. As the computed
residual converges to zero, the updates to the true residual rapidly become negligible—thus

56

0 500 1000 1500 2000

10
−10

10
−6

10
−2

10
2

0 500 1000 1500 2000

10
−10

10
−6

10
−2

10
2

0 500 1000 1500 2000

10
−10

10
−6

10
−2

10
2

Figure 4.6: Convergence for xenon1 matrix for (CA-)BICGSTAB with various s values: s = 4
(top left), s = 8 (top right), s = 16 (bottom). The x-axis denotes iteration number, and the
y-axis denotes the 2-norm of the (normalized) true residual (i.e., ‖b− Axm‖2 / ‖b‖2). Each
plot shows convergence for the classical algorithm (−), as well as for CA-BICGSTAB using
the monomial (4), Newton (◦), and Chebyshev (+) bases.

the method may fail to converge to the desired tolerance. The level where stagnation occurs
is the maximum attainable accuracy.

This phenomenon has been observed before for the classical implementations, and is
known to especially plague two-sided KSMs, which can have arbitrarily large iterates [96].
We have observed that this problem is also present in the CA-KSM variants, and is in
fact exacerbated the larger the s value. Residual replacement methods have been used
effectively to combat this problem in the BICG method [181]. Later in Section 5.3, we
perform an equivalent analysis of floating point roundoff error in CA-KSMs and derive an
analogous residual replacement strategy which can significantly improve accuracy without
asymptotically affecting the communication or computation cost of CA-KSMs.

4.5 Lanczos Bidiagonalization

In this section, we present three approaches to developing communication-avoiding variants of
the Lanczos bidiagonalization procedure. Each of the three approaches are used to give both

57

communication-avoiding upper and lower bidiagonalization routines. The least squares QR
solver (LSQR) of Paige and Saunders [144] is based on the Lanczos lower bidiagonalization
method, and we use this to derive two potential CA-LSQR methods based on two of our
approaches to communication-avoiding lower bidiagonalization.

4.5.1 The Bidiagonalization Algorithm

We first review classical algorithms for reduction of a matrix to both upper bidiagonal and
lower bidiagonal form. The original procedure given by Golub and Kahan gives the procedure
as a reduction to upper bidiagonal form [81]. With some slight modifications, Paige and
Saunders [144] showed that a similar procedure could be used to produce a reduction to
lower bidiagonal form, and that this formulation was more amenable to solving the full-
rank least squares problem min ‖Ax − b‖2. This observation forms the basis for the LSQR
algorithm. Both methods are connected in that they both produce the same sequence of
vectors Vi that would be produced by the symmetric Lanczos method applied to ATA.

Let A be an m-by-n matrix and b be a length-m vector. After i iterations, the Lanczos
upper bidiagonalization procedure produces the m-by-i matrix Pi = [p1, p2, . . . , pi] and the
n-by-i matrix Vi = [v1, v2, . . . , vi] such that

Vi(θ1e1) = AT b

AVi = PiRi

ATPi = ViR
T
i + θi+1vi+1e

T
i , (4.69)

where

Ri =


ρ1 θ2

ρ2 θ3

.

ρi−1 θi
ρi

 , (4.70)

and in exact arithmetic, P T
i Pi = I and V T

i Vi = I. The algorithm of Golub and Kahan for
reduction to upper bidiagonal form is shown in Algorithm 13. Note that here and in the
remainder of this paper bars over variables denote intermediate quantities which are yet to
be normalized. We note that one can formulate the upper bidiagonalization algorithm as
the Lanczos reduction to tridiagonal form. Letting

Z = [z1, z2, . . . , z2i] ≡
[

0 p1 0 p2 . . . 0 pi
v1 0 v2 0 . . . vi 0

]
,

58

Ã ≡
[

0 A
AT 0

]
, and T̃ ≡



0 ρ1

ρ1 0 θ2

θ2 0 ρ2

ρ2 0
. . .

. θi
θi 0 ρi

ρi 0


,

the procedure in Algorithm 13 is mathematically equivalent to

ÃZ = ZT̃ + θi+1z2i+1e
T
2i,

with ZHZ = I2i and ZHz2i+1 = 0. This means that, in exact arithmetic, i steps of the
upper bidiagonalization procedure applied to A with starting vector v1 produces the same
information as 2i steps of symmetric Lanczos applied to cyclic matrix Ã with starting vector
z1 as defined above.

Algorithm 13 Lanczos Reduction to Upper Bidiagonal Form

Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vi, Pi and vector vi+1 satisfying (4.69) and matrix Ri satisfying (4.70)

1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1

2: for i = 1, 2, . . . until convergence do
3: v̄i+1 = ATpi − ρivi
4: θi+1 = ‖v̄i+1‖2

5: vi+1 = v̄i+1/θi+1

6: p̄i+1 = Avi+1 − θi+1pi
7: ρi+1 = ‖p̄i+1‖2

8: pi+1 = p̄i+1/ρi+1

9: end for

We will also consider reduction to lower bidiagonal form for the purpose of easy connec-
tion to the LSQR method of Paige and Saunders [144]. Again, A is an m-by-n matrix and b is
a length-m vector. After i iterations, the Lanczos lower bidiagonalization procedure produces
the m-by-(i + 1) matrix Ui+1 ≡ [u1, u2, . . . , ui+1] and the n-by-i matrix Vi ≡ [v1, v2, . . . , vi]
such that

Ui+1(β1e1) = b

AVi = Ui+1Bi

ATUi+1 = ViB
T
i + αi+1vi+1e

T
i+1, (4.71)

59

where

Bi =


α1

β2 α2

β3
. . .
. . . αi

βi+1

 , (4.72)

and in exact arithmetic, UT
i+1Ui+1 = I and V T

i Vi = I.
Again in this case, we can formulate the lower bidiagonalization algorithm as the Lanczos

reduction to tridiagonal form. Here we define

Z = [z1, z2, . . . , z2i] ≡
[

0 v1 0 v2 . . . 0 vi
u1 0 u2 0 . . . ui 0

]
,

Ã ≡
[

0 AT

A 0

]
, and T̃ ≡



0 α1

α1 0 β2

β2 0 α2

α2 0
. . .

. βi
βi 0 αi

αi 0


,

and then Algorithm 14 is mathematically equivalent to

ÃZ = ZT̃ + βi+1z2i+1e
T
2i,

with ZHZ = I2i and ZHz2i+1 = 0. Then in exact arithmetic, i steps of the lower bidiago-
nalization procedure applied to A with starting vector u1 produces the same information as
2i steps of symmetric Lanczos applied to cyclic matrix Ã with starting vector z1 as defined
above.

4.5.2 Communication-Avoiding Lanczos Bidiagonalization

There are at least three ways to derive communication-avoiding variants of Algorithms 13
and 14, each with associated pros and cons. The correct method to choose will depend on
the structure and conditioning of the matrix, the requirements of the particular application,
and machine-specific parameters such as cache size and relative latency/bandwidth cost. We
describe the three potential communication-avoiding variants in subsections below.

4.5.2.1 Equivalent Form of CA-Lanczos

As discussed in Section 4.5, i steps of either bidiagonalization procedure in Algorithm 13
or 14 will produce the same information as 2i steps of symmetric Lanczos applied to the

60

Algorithm 14 Lanczos Reduction to Lower Bidiagonal Form

Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vi, Ui+1 and vector vi+1 satisfying (4.71) and matrix Bi satisfying (4.72)

1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: for i = 1, 2, . . . until convergence do
3: ūi+1 = Avi − αiui
4: βi+1 = ‖ūi+1‖2

5: ui+1 = ūi+1/βi+1

6: v̄i+1 = ATui+1 − βi+1vi
7: αi+1 = ‖v̄i+1‖2

8: vi+1 = v̄i+1/αi+1

9: end for

appropriately defined cyclic matrix Ã and appropriately chosen starting vector z1. Therefore
one can simply use an existing version of CA-Lanczos (available in, e.g., [102, 16, 28]) run on
input Ã and z1, and recover the bidiagonalization matrices, either Pi, Vi, and Ri for upper
bidiagonalization, or Ui+1, Vi, and Bi for lower bidiagonalization, from Z and T̃ .

This method is simple and allows us to use an existing communication-avoiding method.
The drawback is that the system is now twice the size, and extra work and storage will be
required unless the Lanczos method is modified to optimize for the block non-zero structure
of the matrix/vectors. We would also need a communication-avoiding matrix powers kernel
(see Section 3.2) capable of alternating factors of A and AT .

4.5.2.2 Forming Krylov Bases

By introducing auxiliary quantities, another variant can be derived that works by building
s-step Krylov bases with AAT and ATA. The benefit here is that other polynomial bases
can be used in order to improve numerical properties (e.g., Newton or Chebyshev). The
drawbacks are that this requires computing bases with powers of AAT and ATA, which
squares the condition number of A. Also, in order to satisfy the recurrences, we need 4s+ 1
basis vectors in each iteration, which doubles the number of SpMVs per s iterations versus
the classical method (this is assuming we form and store ATA and AAT offline; otherwise the
number of SpMVs required is 8s + 2 and we again need a communication-avoiding matrix
powers kernel which alternates factors of A and AT). We note that this is equivalent (in
exact arithmetic) to the method described in the previous subsection, but takes nonzero
blocks into account and uses auxiliary quantities.

We derive this method below for both upper and lower bidiagonalization procedures. As
before, in the communication-avoiding algorithms, we will switch from indexing iterations
by i to indexing iterations by sk + j, where s is the iteration blocking parameter, k is the
outer iteration index, and j in the inner iteration index.

61

Reduction to Upper Bidiagonal Form Assume we are beginning iteration sk + 1 of
Algorithm 13, where k ∈ N and 0 < s ∈ N, so that vsk+1 and psk+1 have just been computed.
Recall that

psk+j ∈ Ks+1(AAT , psk+1) +Ks(AAT , Avsk+1) and

vsk+j ∈ Ks(ATA, vsk+1) +Ks(ATA,ATpsk+1),

for j ∈ {1, . . . , s+ 1}.
We define basis matrices whose columns span these subspaces as follows. Let Vk be a basis

for Ks(ATA, vsk+1), Ṽk a basis for Ks(AAT , Avsk+1), Pk a basis for Ks+1(AAT , psk+1) and P̃k
a basis for Ks(ATA,ATpsk+1). These could be computed by the PA1 or SA1 algorithms
described in Section 3.2. Assuming these polynomial bases are generated using a three-term
recurrence, we can write the recurrence relations

(AAT)[Pk, Ṽk] = [Pk, Ṽk]

[
B(P)
k 0

0 B(Ṽ)
k

]
and

(ATA)[Vk, P̃k] = [Vk, P̃k]

[
B(V)
k 0

0 B(P̃)
k

]
,

where Pk, Ṽk, Vk, and P̃k are the same as Pk, Ṽk, Vk, and P̃k, resp., but with the last column

set to 0, and the Bk matrices are tridiagonal matrices of the form (4.2) with i = s for B(P)
k

and i = s − 1 for B(V)
k , B(Ṽ)

k , and B(P̃)
k . Note that the entries α̂j, γ̂j, and β̂j of the Bk’s can

be set differently depending on whether we are constructing polynomials in AAT or ATA.
Also note that these recurrence coefficients could be refined with each new outer loop, as we
discuss further in Section 6.6. See Section 3.2.5 for guidelines on setting these entries such
that the basis condition number is improved.

To simplify notation, we will define Yk = [Pk, Ṽk], Yk = [Pk, Ṽk], Zk = [Vk, P̃k], Zk =

[Vk, P̃k], and

B(Y)
k =

[
B(P)
k 0

0 B(Ṽ)
k

]
, B(Z)

k =

[
B(V)
k 0

0 B(P̃)
k

]
.

This lets us rewrite the recurrences as

(AAT)Y
k

= YkB(Y)
k and (ATA)Zk = ZkB(Z)

k .

The recurrences do not give us a way to represent multiplication by A and AT in these new
bases, which are necessary to perform updates to the coordinate vectors v′k,j+1 and p′k,j+1.
The recurrences do however give ways to multiply by AAT and ATA, and we introduce

62

auxiliary quantities to make use of this. Let

p̃sk+j+1 ≡ ATpsk+j+1 = AT (Avsk+j+1 − θsk+j+1psk+j)/ρsk+j+1

=
(
(ATA)vsk+j+1 − θsk+j+1p̃sk+j

)
/ρsk+j+1, and

ṽsk+j+1 ≡ Avsk+j+1 = A(ATpsk+j − ρsk+jvsk+j)/θsk+j+1

=
(
(AAT)psk+j − ρsk+j ṽsk+j

)
/θsk+j+1.

Then vector updates can then be written

v̄sk+j+1 = p̃sk+j − ρsk+jvsk+j,

ṽsk+j+1 =
(
(AAT)psk+j − ρsk+j ṽsk+j

)
/θsk+j+1, and

p̄sk+j+1 = ṽsk+j+1 − θsk+j+1psk+j

for j ∈ {1, . . . , s}, and

p̃sk+j+1 =
(
(ATA)vsk+j+1 − θsk+j+1p̃sk+j

)
/ρsk+j+1

for j ∈ {1, . . . , s − 1} (p̃sk+s+1 is not needed). As before, vsk+j+1 = v̄sk+j+1/θsk+j+1 and
psk+j+1 = p̄sk+j+1/ρsk+j+1. Note that ṽsk+j+1 ∈ Yk for j ∈ {1, . . . , s} and p̃sk+j+1 ∈ Zk for
j ∈ {1, . . . , s− 1}, so no additional basis vectors are required to represent updates to these
auxiliary quantities. The classical version of this modified upper bidiagonalization algorithm
is given in Alg. 15.

Algorithm 15 Lanczos Upper Bidiagonalization with Auxiliary Quantities

Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vi, Pi and vector vi+1 satisfying (4.69) and matrix Ri satisfying (4.70)

1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1

2: ṽ1 = Av1, p̃1 = ATp1

3: for i = 1, 2, . . . until convergence do
4: v̄i+1 = p̃i − ρivi
5: θi+1 = ‖v̄i+1‖2

6: vi+1 = v̄i+1/θi+1

7: ṽi+1 = (AATpi − ρiṽi)/θi+1

8: p̄i+1 = ṽi+1 − θi+1pi
9: ρi+1 = ‖p̄i+1‖2

10: pi+1 = p̄i+1/ρi+1

11: p̃i+1 = (ATAvi+1 − θi+1p̃i)/ρi+1

12: end for

63

We can then represent vsk+j+1, ṽsk+j+1, psk+j+1, and p̃sk+j+1 by their coordinates v′k,j+1,
ṽ′k,j+1, p′k,j+1, and p̃′k,j+1, resp., in Yk and Zk, i.e.,

vsk+j+1 = Zkv′k,j+1,

ṽsk+j+1 = Ykṽ′k,j+1, and

psk+j+1 = Ykp′k,j+1, for j ∈ {1, . . . , s}, and

p̃sk+j+1 = Zkp̃′k,j+1 for j ∈ {1, . . . , s− 1}. (4.73)

Note that using (4.73), in each new outer loop we initialize the coordinate vectors to p′k,1 = e1,
v′k,1 = e1, p̃′k,1 = es+1, and ṽ′k,1 = es+2, and update them in each iteration by the formulas

v̄′k,j+1 = p̃′k,j − ρsk+jv
′
k,j,

v′k,j+1 = v̄′k,j+1/θsk+j+1,

ṽ′k,j+1 =
(
B(Y)
k p′k,j − ρsk+j ṽ

′
k,j

)
/θsk+j+1,

p̄′k,j+1 = ṽ′k,j+1 − θsk+j+1p
′
k,j, and

p′k,j+1 = p̄′k,j+1/ρsk+j+1,

for j ∈ {1, . . . , s}, and

p̃′k,j+1 =
(
B(Z)
k v′k,j+1 − θsk+j+1p̃

′
k,j

)
/ρsk+j+1,

for j ∈ {1, . . . , s− 1}.
Now, it remains to determine how to compute the inner products θsk+j+1 and ρsk+j+1.

We can write

θsk+j+1 = (v̄Tsk+j+1v̄sk+j+1)1/2

= ((Zkv̄′k,j+1)T (Zkv̄′k,j+1))1/2

= (v̄′Tk,j+1ZTk Zkv̄′k,j+1)1/2 (4.74)

and

ρsk+j+1 = (p̄Tsk+j+1p̄sk+j+1)1/2

= ((Ykp̄′k,j+1)T (Ykp̄′k,j+1))1/2

= (p̄′Tk,j+1YTk Ykp̄′k,j+1)1/2. (4.75)

Defining the Gram matrices

G
(Y)
k = YTk Yk and G

(Z)
k = ZTk Zk,

which can be computed with one Allreduce operation (see Section 3.1), we can compute (4.74)
and (4.75) by the formulas

θsk+j+1 = (v̄′Tk,j+1G
(Z)
k v̄′k,j+1)1/2 and ρsk+j+1 = (p̄′Tk,j+1G

(Y)
k p̄′k,j+1)1/2.

The resulting communication-avoiding version of Algorithm 15 is shown in Algorithm 16.

64

Algorithm 16 Communication-Avoiding Lanczos Upper Bidiagonalization with Auxiliary
Quantities

Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vsk+s, Psk+s and vector vsk+s+1 satisfying (4.69) and matrix Rsk+s satis-

fying (4.70)
1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1

2: ṽ1 = Av1, p̃1 = ATp1

3: for k = 0, 1, . . . until convergence do
4: Compute Vk, a basis for Ks(ATA, vsk+1), Ṽk, a basis for Ks(AAT , Avsk+1), Pk, a

basis for Ks+1(AAT , psk+1), and P̃k, a basis for Ks(ATA,ATpsk+1). Let Yk = [Pk, Ṽk],
Zk = [Vk, P̃k].

5: G
(Y)
k = YTk Yk G

(Z)
k = ZTk Zk

6: v′k,1 = e1, p′k,1 = e1, ṽ′k,1 = es+2, p̃′k,1 = es+1.
7: for j = 1, . . . , s do
8: v̄′k,j+1 = p̃′k,j − ρsk+jv

′
k,j

9: θsk+j+1 =
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

10: v′k,j+1 = v̄′k,j+1/θsk+j+1

11: ṽ′k,j+1 = (B(Y)
k p′k,j − ρsk+j ṽ

′
k,j)/θsk+j+1

12: p̄′k,j+1 = ṽ′k,j+1 − θsk+j+1p
′
k,j

13: ρsk+j+1 =
(
p̄′Tk,j+1G

(Y)
k p̄′k,j+1

)1/2

14: p′k,j+1 = p̄′k,j+1/ρsk+j+1

15: if j < s then
16: p̃′k,j+1 = (B(Z)

k v′k,j+1 − θsk+j+1p̃
′
k,j)/ρsk+j+1

17: end if
18: end for
19: Recover {vsk+j+1, psk+j+1} for j ∈ {1, . . . , s} according to (4.73)
20: end for

Reduction to Lower Bidiagonal Form Now assume we are beginning iteration sk+1 of
Algorithm 14, where k ∈ N and 0 < s ∈ N, so that usk+1 and vsk+1 have just been computed.
Recall that

usk+j ∈ Ks(AAT , Avsk+1) +Ks(AAT , usk+1) and

vsk+j ∈ Ks+1(ATA, vsk+1) +Ks(ATA,ATusk+1),

for j ∈ {1, . . . , s+ 1}.
We then define basis matrices whose columns span the desired subspaces as follows.

Let Uk be a basis for Ks(AAT , usk+1), Ṽk a basis for Ks(AAT , Avsk+1), Vk a basis for
Ks+1(ATA, vsk+1) and Ũk a basis for Ks(ATA,ATusk+1). As for the upper bidiagonaliza-
tion case, these could be computed by the PA1 or SA1 algorithms described in Section 3.2.

65

Assuming these polynomial bases are generated using a three-term recurrence, we can write
the recurrence relations

(AAT)[Uk, Ṽk] = [Uk, Ṽk]

[
B(U)
k 0

0 B(Ṽ)
k

]
and

(ATA)[Vk, Ũk] = [Vk, Ũk]

[
B(V)
k 0

0 B(Ũ)
k

]
,

where Uk, Ṽk, Vk, and Ũk are the same as Uk, Ṽk, Vk, and Ũk, resp., but with the last column
set to 0, and the Bk matrices are tridiagonal matrices of the form given in (4.2) with i = s

for B(V)
k and i = s − 1 for B(U)

k , B(Ṽ)
k , and B(Ũ)

k . As before the entries α̂j, γ̂j, and β̂j can be
different depending on whether we are constructing polynomials in AAT or ATA and could
be refined with each new outer loop.

To simplify notation, we will define Yk = [Uk, Ṽk], Yk = [Uk, Ṽk], Zk = [Vk, ŨZ], Zk =

[Vk, Ũk], and

B(Y)
k ≡

[
B(U)
k 0

0 B(Ṽ)
k

]
, B(Z)

k ≡

[
B(V)
k 0

0 B(Ũ)
k

]
.

This lets us rewrite the recurrences as

(AAT)Y
k

= YkB(Y)
k and

(ATA)Zk = ZkB(Z)
k .

Note that these are the same recurrences used in the communication-avoiding upper bidiag-
onalization method of the previous subsection, but with different definitions of Yk, Zk, Ỹk,
and Z̃k. Again, we introduce auxiliary quantities. Let

ũsk+j+1 ≡ ATusk+j+1 = AT (Avsk+j − αsk+jusk+j)/βsk+j+1

=
(
(ATA)vsk+j − αsk+jũsk+j

)
/βsk+j+1, and

ṽsk+j+1 ≡ Avsk+j+1 = A(ATusk+j+1 − βsk+j+1vsk+j)/αsk+j+1

=
(
(AAT)usk+j+1 − βsk+j+1ṽsk+j

)
/αsk+j+1.

Then the vector updates become

ūsk+j+1 = (ṽsk+j − αsk+jusk+j),

ũsk+j+1 =
(
(ATA)vsk+j − αsk+jũsk+j

)
/βsk+j+1, and

v̄sk+j+1 = (ũsk+j − βsk+j+1vsk+j),

for j ∈ {1, . . . , s}, and

ṽsk+j+1 =
(
(AAT)usk+j+1 − βsk+j+1ṽsk+j

)
/αsk+j+1,

66

Algorithm 17 Lanczos Lower Bidiagonalization with Auxiliary Quantities

Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vi, Ui+1 and vector vi+1 satisfying (4.71) and matrix Bi satisfying (4.72)

1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1

3: for i = 1, 2, . . . until convergence do
4: ūi+1 = ṽi − αiui
5: βi+1 = ‖ūi+1‖2

6: ui+1 = ūi+1/βi+1

7: ũi+1 = (ATAvi − αiũi)/βi+1

8: v̄i+1 = ũi+1 − βi+1vi
9: αi+1 = ‖v̄i+1‖2

10: vi+1 = v̄i+1/αi+1

11: ṽi+1 = (AATui+1 − βi+1ṽi)/αi+1

12: end for

for j ∈ {1, . . . , s− 1}. As before, usk+j+1 = ūsk+j+1/βsk+j+1 and vsk+j+1 = v̄sk+j+1/αsk+j+1.
The classical version of this modified lower bidiagonalization algorithm is given in Algo-
rithm 17.

Note that in Algorithm 17, ũsk+j+1 ∈ Zk for j ∈ {0, . . . , s}, and ṽsk+j+1 ∈ Yk for
j ∈ {0, . . . , s − 1}. Then we can represent usk+j+1, ũsk+j+1, vsk+j+1, and ṽsk+j+1 by their
coordinates u′k,j+1, ũ′k,j+1, v′k,j+1, and ṽ′k,j+1, resp., in Yk and Zk, i.e.,

usk+j+1 = Yku′k,j+1,

ũsk+j+1 = Zkũ′k,j+1, and

vsk+j+1 = Zkv′k,j+1 for j ∈ {1, . . . , s}, and

ṽsk+j+1 = Ykũ′k,j+1 for j ∈ {1, . . . , s− 1}. (4.76)

Note that using (4.76), in each new outer loop we initialize the coordinate vectors to u′k,1 = e1,
v′k,1 = e1, ũ′k,1 = es+2, and ṽ′k,1 = es+1, and update them in each iteration by the formulas

ū′k,j+1 = ṽ′k,j − αsk+ju
′
k,j,

u′k,j+1 = ū′k,j+1/βsk+j+1,

ũ′k,j+1 =
(
B(Z)
k v′k,j − αsk+jũ

′
k,j

)
/βsk+j+1,

v̄′k,j+1 = ũ′k,j+1 − βsk+j+1v
′
k,j, and

v′k,j+1 = v̄′k,j+1/αsk+j+1,

for j ∈ {1, . . . , s}, and

ṽ′k,j+1 =
(
B(Y)
k u′k,j+1 − βsk+j+1ṽ

′
k,j

)
/αsk+j+1,

67

for j ∈ {1, . . . , s− 1}.
Now, it only remains to determine how to compute the inner products βsk+j+1 and

αsk+j+1. We can write

βsk+j+1 = (ūTsk+j+1ūsk+j+1)1/2

= ((Ykū′k,j+1)T (Ykū′k,j+1))1/2

= (ū′Tk,j+1YTk Ykū′k,j+1)1/2 (4.77)

and

αsk+j+1 = (v̄Tsk+j+1v̄sk+j+1)1/2

= ((Zkv̄′k,j+1)T (Zkv̄′k,j+1))1/2

= (v̄′Tk,j+1ZTk Zkv̄′k,j+1)1/2. (4.78)

Defining the Gram matrices

G
(Y)
k = YTk Yk and G

(Z)
k = ZTk Zk,

which can be computed with one Allreduce operation (see Section 3.1), equations (4.77)
and (4.78) become

βsk+j+1 = (ū′Tk,j+1G
(Y)
k ū′k,j+1)1/2 and αsk+j+1 = (v̄′Tk,j+1G

(Z)
k v̄′k,j+1)1/2.

The resulting communication-avoiding version of Algorithm 17 is shown in Algorithm 18.

4.5.2.3 Alternating Matrix Powers

Another communication-avoiding variant can be derived which builds two coupled Krylov
bases, where basis vectors are computed by alternating between multiplication by A and by
AT . We still need to obtain 4s + 1 basis vectors in order to take s steps of the algorithm,
but in this case we do not need to construct or multiply by ATA and AAT . We do, however,
need a communication-avoiding matrix powers kernel capable of alternating factors of A and
AT . It is less clear how to choose polynomial basis parameters (entries of Bk) for computing
matrix powers in this case. Numerical and performance comparisons between these versions
and the communication-avoiding versions discussed in Section 4.5.2.2 remains future work.
Note, as before, in both algorithms derived below we show recovery of all iteration vectors
after each inner loop, although only the last vectors are needed to begin the next outer loop.

Reduction to Upper Bidiagonal Form We use coupled recurrences to generate bases
for vsk+j+1 and psk+j+1. Recall that for j ∈ {1, . . . , s+ 1},

psk+j ∈ Ks+1(AAT , psk+1) +Ks(AAT , Avsk+1) and

vsk+j ∈ Ks(ATA, vsk+1) +Ks(ATA,ATpsk+1).

68

Algorithm 18 Communication-Avoiding Lanczos Lower Bidiagonalization with Auxiliary
Quantities

Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vsk+s, Usk+s+1 and vector vsk+s+1 satisfying (4.71) and matrix Bsk+s sat-

isfying (4.72)
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1

3: for k = 0, 1, . . . until convergence do
4: Compute Uk, a basis for Ks(AAT , usk+1), Ṽk, a basis for Ks(AAT , Avsk+1), Vk, a

basis for Ks+1(ATA, vsk+1), and Ũk, a basis for Ks(ATA,ATusk+1). Let Yk = [Uk, Ṽk],
Zk = [Vk, Ũk].

5: G
(Y)
k = YTk Yk G

(Z)
k = ZTk Zk

6: u′k,1 = e1, v′k,1 = e1, ũ′k,1 = es+2, ṽ′k,1 = es+1.
7: for j = 1, . . . , s do
8: ū′k,j+1 = ṽ′k,j − αsk+ju

′
k,j

9: βsk+j+1 =
(
ū′Tk,j+1G

(Y)
k ū′k,j+1

)1/2

10: u′k,j+1 = ū′k,j+1/βsk+j+1

11: ũ′k,j+1 = (B(Z)
k v′k,j − αsk+jũ

′
k,j)/βsk+j+1

12: v̄′k,j+1 = ũ′k,j+1 − βsk+j+1v
′
k,j

13: αsk+j+1 =
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

14: v′k,j+1 = v̄′k,j+1/αsk+j+1

15: if j < s then
16: ṽ′k,j+1 = (B(Y)

k u′k,j+1 − βsk+j+1ṽ
′
k,j)/αsk+j+1

17: end if
18: end for
19: Recover {usk+j+1, vsk+j+1} for j ∈ {1, . . . , s} according to (4.76)
20: end for

Then assume that we have dimension n × (2s + 1) matrix Zk whose first 2s columns are
a basis for Ks(ATA, vsk+1) + Ks(ATA,ATpsk+1) and whose last column is 0 and dimension
m× (2s+1) matrix Yk whose columns form a basis for Ks+1(AAT , psk+1)+Ks(AAT , Avsk+1).
Then there exist vectors v′k,j and p′k,j such that

vsk+j = Zkv′k,j and psk+j = Ykp′k,j,

for j ∈ {1, . . . , s+ 1}.
Assume that Zk and Yk satisfy the recurrences

AZk = YkBk and ATY
k

= ZkB̃k,

69

where Y
k

is the same as Yk, but with the last two columns set to 0, and the matrices Bk and

B̃k are dimension (2s+ 1)× (2s+ 1) and are of the forms

Bk =


α̂1 β̂1 0

γ̂1 α̂2
. . .

...

γ̂2
. . . β̂2s−1 0
. . . α̂2s 0

γ̂2s 0

 and B̃k =



α̂1 β̂1 0 0

γ̂1 α̂2
. . .

...
...

γ̂2
. . . β̂2s−2 0 0
. . . α̂2s−1 0 0

γ̂2s−1 0 0
0 0 0 . . . 0 0


. (4.79)

Given z1 = vsk+1 and y1 = psk+1, by the above recurrences the columns of Zk and Yk are
generated by computing

y2 = (Az1 − α̂1y1)/γ̂1,

z2 = (ATy1 − α̂1z1)/γ̂1, and

y`+1 = (Az` − α̂`y` − β̂`−1y`−1)/γ̂` for ` ∈ {2, . . . , 2s},
z`+1 = (ATy` − α̂`z` − β̂`−1z`−1)/γ̂` for ` ∈ {2, . . . , 2s− 1},

where z` and v` denote the `th columns of Zk and Yk, respectively. Note that above, the
coefficients α̂`, β̂`, and γ̂` could be different for computation of y`+1 and z`+1.

We can then write

v̄sk+j+1 = Zkv̄′k,j+1 = ATpsk+j − ρsk+jvsk+j

= ATY
k
p′k,j − ρsk+jZkv′k,j

= ZkB̃kp′k,j − ρsk+jZkv′k,j

and

p̄sk+j+1 = Ykp̄′k,j+1 = Avsk+j+1 − θsk+j+1psk+j

= AZkv′k,j+1 − θsk+j+1Ykp′k,j
= YkBkv′k,j+1 − θsk+j+1Ykp′k,j.

Therefore in the inner loop we can update

v̄′k,j+1 = B̃kp′k,j − ρsk+jv
′
k,j and

p̄′k,j+1 = Bkv′k,j+1 − θsk+j+1p
′
k,j,

and recover the iteration vectors by

vsk+j+1 = Zkv′k,j+1 and psk+j+1 = Ykp′k,j+1, (4.80)

70

for j ∈ {1, . . . , s}.
The scalars required for normalization can be computed by

θsk+j+1 = ‖v̄sk+j+1‖2 =
(
v̄′Tk,j+1(ZTk Zk)v̄′k,j+1

)1/2
=
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

and

ρsk+j+1 = ‖p̄sk+j+1‖2 =
(
p̄′Tk,j+1(YTk Yk)p̄′k,j+1

)1/2
=
(
p̄′Tk,j+1G

(Y)
k p̄′k,j+1

)1/2

,

with G
(Z)
k = ZTk Zk and G

(Y)
k = YTk Yk. We can then update

v′k,j+1 = v̄′k,j+1/θsk+j+1 and

p′k,j+1 = p̄′k,j+1/ρsk+j+1.

The resulting communication-avoiding upper bidiagonalization algorithm is shown in
Algorithm 19.

Algorithm 19 Communication-Avoiding Upper Bidiagonalization with Alternating Matrix
Powers
Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vsk+s, Psk+s and vector vsk+s+1 satisfying (4.69) and matrix Rsk+s satis-

fying (4.70)
1: θ1 = ‖AT b‖2, v1 = AT b/θ1, p̄1 = Av1, ρ1 = ‖p̄1‖2, p1 = p̄1/ρ1

2: for k = 0, 1, . . . until convergence do
3: Compute Zk and Yk such that AZk = YkBk and ATY

k
= ZkB̃k.

4: G
(Z)
k = ZTk Zk, G

(Y)
k = YTk Yk

5: v′k,1 = e1, p′k,1 = e1

6: for j = 1, . . . , s do
7: v̄′k,j+1 = B̃kp′k,j − ρsk+jv

′
k,j

8: θsk+j+1 =
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

9: v′k,j+1 = v̄′k,j+1/θsk+j+1

10: p̄′j+1 = Bkv′j+1 − θsk+j+1p
′
j

11: ρsk+j+1 =
(
p̄′Tk,j+1G

(Y)
k p̄′k,j+1

)1/2

12: p′k,j+1 = p̄′k,j+1/ρsk+j+1

13: end for
14: Recover {vsk+j+1, psk+j+1} for j ∈ {1, . . . , s} according to (4.80)
15: end for

Reduction to Lower Bidiagonal Form Now we derive a version of lower bidiagonal-
ization using coupled recurrences to generate bases for usk+j+1 and vsk+j+1. Recall that for

71

j ∈ {1, . . . , s+ 1},

usk+j ∈ Ks(AAT , Avsk+1) +Ks(AAT , usk+1) and

vsk+j ∈ Ks+1(ATA, vsk+1) +Ks(ATA,ATusk+1).

Then assume that we have dimension m×(2s+1) matrix Yk whose first 2s columns are a basis
for Ks(AAT , Avsk+1)+Ks(AAT , usk+1) and whose last column is 0 and dimension n×(2s+1)
matrix Zk whose columns form a basis for Ks+1(ATA, vsk+1)+Ks(ATA,ATusk+1). Then there
exist vectors u′k,j and v′k,j such that

usk+j = Yku′k,j and vsk+j = Zkv′k,j,

for j ∈ {1, . . . , s+ 1}.
Assume that Yk and Zk satisfy the recurrences

AZ
k

= YkBk and ATYk = ZkB̃k,

where Z
k

is the same as Zk, but with the last two columns set to 0, and the matrices Bk
and B̃k are dimension (2s+ 1)× (2s+ 1) and are of the forms

B̃k =


α̂1 β̂1 0

γ̂1 α̂2
. . .

...

γ̂2
. . . β̂2s−1 0
. . . α̂2s 0

γ̂2s 0

 and Bk =



α̂1 β̂1 0 0

γ̂1 α̂2
. . .

...
...

γ̂2
. . . β̂2s−2 0 0
. . . α̂2s−1 0 0

γ̂2s−1 0 0
0 0 0 . . . 0 0


. (4.81)

Given usk+1 and vsk+1, by the recurrence, the columns of Yk and Zk are generated by
computing

y2 = (Az1 − α̂1y1)/γ̂1,

z2 = (ATy1 − α̂1z1)/γ̂1, and

y`+1 = (Az` − α̂`y` − β̂`−1y`−1)/γ̂` for ` ∈ {2, . . . , 2s− 1},
z`+1 = (ATy` − α̂`z` − β̂`−1z`−1)/γ̂` for ` ∈ {2, . . . , 2s},

where z` and v` denote the `th columns of Zk and Yk, respectively. Note that above, as in the
upper bidiagonalization case, the coefficients α̂`, β̂`, and γ̂` can be different for computation
of y`+1 and z`+1.

Then

ūsk+j+1 = Ykū′k,j+1 = Avsk+j − αsk+jusk+j

= AZ
k
v′k,j − αsk+jYku′k,j

= YkBkv′k,j − αsk+jYku′k,j

72

and

v̄sk+j+1 = Zkv̄′k,j+1 = ATusk+j+1 − βsk+j+1vsk+j

= ATYku′k,j+1 − βsk+j+1Zkv′k,j
= ZkB̃ku′k,j+1 − βsk+j+1Zkv′k,j.

Therefore in the inner loop we can update

ū′k,j+1 = Bkv′k,j − αsk+ju
′
k,j and

v̄′k,j+1 = B̃ku′k,j+1 − βsk+j+1v
′
k,j,

and recover the iteration vectors by

usk+j+1 = Yku′k,j+1 and vsk+j+1 = Zkv′k,j+1, (4.82)

for j ∈ {1, . . . , s}.
The scalars required for normalization can be computed by

βsk+j+1 = ‖ūsk+j+1‖2 =
(
ū′Tk,j+1(YTk Yk)ū′k,j+1

)1/2
=
(
ū′Tk,j+1G

(Y)
k ū′k,j+1

)1/2

and

αsk+j+1 = ‖v̄sk+j+1‖2 =
(
v̄′Tk,j+1(ZTk Zk)v̄′k,j+1

)1/2
=
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

,

where G
(Y)
k = YTk Yk and G

(Z)
k = ZTk Zk. We then update

u′k,j+1 = ū′k,j+1/βsk+j+1 and

v′k,j+1 = v̄′k,j+1/αsk+j+1.

The resulting communication-avoiding lower bidiagonalization algorithm is shown in Al-
gorithm 20.

4.6 Least-Squares QR

Paige and Saunders [144] showed that the quantities generated by the lower bidiagonalization
procedure in Algorithm 14 can be used to solve the least-squares problem min ‖b−Ax‖2. We
briefly review the rationale behind the least squares QR (LSQR) algorithm given by Paige
and Saunders. For some vector yi, define the quantities

xi = Viyi,

ri = b− Axi, and

ti+1 = β1e1 −Biyi.

73

Algorithm 20 Communication-Avoiding Lower Bidiagonalization with Alternating Matrix
Powers
Input: m-by-n matrix A and length-n starting vector b
Output: Matrices Vsk+s, Usk+s+1 and vector vsk+s+1 satisfying (4.71) and matrix Bsk+s sat-

isfying (4.72)
1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: for k = 0, 1, . . . until convergence do
3: Compute Zk and Yk such that AZ

k
= YkBk and ATYk = ZkB̃k.

4: G
(Z)
k = ZTk Zk, G

(Y)
k = YTk Yk

5: v′k,1 = e1, u′k,1 = e1

6: for j = 1, . . . , s do
7: ū′k,j+1 = Bkv′k,j − αsk+ju

′
k,j

8: βsk+j+1 =
(
ū′Tk,j+1G

(Y)
k ū′k,j+1

)1/2

9: u′k,j+1 = ū′k,j+1/βsk+j+1

10: v̄′k,j+1 = B̃ku′k,j+1 − βsk+j+1v
′
k,j

11: αsk+j+1 =
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

12: v′k,j+1 = v̄′k,j+1/αsk+j+1

13: end for
14: Recover {usk+j+1, vsk+j+1} for j ∈ {1, . . . , s} according to (4.82)
15: end for

Since for the lower bidiagonalization procedure we have Ui+1(β1e1) = b and AVi = Ui+1Bi,
it follows that ri = Ui+1ti+1, and since Ui+1 is orthonormal, this suggests choosing yi such
that ‖ti+1‖2 is minimized, which gives the least-squares problem min ‖β1e1 −Biyi‖2.

This problem is solved by updating the QR factorization of Bi in each iteration, given by

Qi[Bi β1e1] =

[
Ri fi

φ̃i+1

]
,

where Ri is the upper bidiagonal matrix produced by Algorithm 13. (Coincidentally, this
factorization provides a link between the two bidiagonalization procedures; see [144]). Above,
Qi is the product of a series of plane rotations, i.e., Qi = Qi,i+1 · · ·Q2,3Q1,2. We then have

xi = ViR
−1
i fi = Difi,

where the columns of Di can be found successively by forward substitution on the system
RT
i D

T
i = V T

i . This gives

di = (1/ρi)(vi − θidi−1) and

xi = xi−1 + φidi,

74

where d0 = x0 = 0.
The QR factorization is determined by constructing the ith plane rotation Qi,i+1 to

operate on rows i and i+1 of the transformed [Bi β1e1] and eliminate βi+1. This recurrence
relation can be written[

ci si
si −ci

] [
ρ̄i 0 φ̄i
βi+1 αi+1 0

]
=

[
ρi θi+1 φi
0 ρ̄i+1 φ̄i+1

]
,

where ρ̄1 = α1, φ̄1 = β1, and ci and si are the elements of Qi,i+1. Note that s without a
subscript still denotes the iteration blocking factor. In the algorithm, vectors wi = ρidi are
computed instead of di. As in the previous section, quantities with bars denote intermediate
variables.

Thus, the LSQR algorithm proceeds as follows. One begins by setting

φ̄1 = β1, ρ̄1 = α1, w1 = v1, and x1 = 0n,1,

and proceeds with the Lanczos lower bidiagonalization process (Algorithm 14). In each
iteration, after βi+1, αi+1, and vi+1 have been computed via the bidiagonalization process,
one updates

ρi = (ρ̄2
i + β2

i+1)1/2,

ci = ρ̄i/ρi,

si = βi+1/ρi,

θi+1 = siαi+1,

ρ̄i+1 = −ciαi+1,

φi = ciφ̄i,

φ̄i+1 = siφ̄i,

xi+1 = xi +
φi
ρi
wi, and

wi+1 = vi+1 −
θi+1

ρi
wi.

The resulting algorithm is shown in Algorithm 21. Any of the communication-avoiding
variants of the lower bidiagonalization algorithm given in Section 4.5.2 can be adapted to give
a communication-avoiding version of LSQR. In Algorithm 23 we show a CA-LSQR method
based on the implementation in Algorithm 18. For reference, we give the intermediate step
in obtaining this new method, a classical LSQR algorithm which uses auxiliary quantities,
in Algorithm 22. In Algorithm 24, we give a CA-LSQR method using the alternating matrix
powers approach of the bidiagonalization in Algorithm 20. Note that the LSQR method,
and thus our CA-LSQR methods, do not involve a vector representing the residual. The
norm of the residual, however, is available for free: ‖ri‖ = φ̄i+1 = β1sisi−1 · · · s1.

75

Algorithm 21 Least-Squares QR (LSQR)

Input: m-by-n matrix A and length-n starting vector b
Output: Approximate solution xi+1 to min ‖b− Ax‖2

1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ū1 = ATu1, v̄1 = Av1

3: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
4: for i = 1, 2, . . . until convergence do
5: ūi+1 = Avi − αiui
6: βi+1 =

(
ūTi+1ūi+1

)1/2

7: ui+1 = ūi+1/βi+1

8: v̄i+1 = ATui+1 − βi+1vi
9: αi+1 =

(
v̄Ti+1v̄i+1

)1/2

10: vi+1 = v̄i+1/αi+1

11: ρi = (ρ̄2
i + β2

i+1)1/2

12: ci = ρ̄i/ρi, si = βi+1/ρi
13: θi+1 = siαi+1, ρ̄i+1 = −ciαi+1

14: φi = ciφ̄i, φ̄i+1 = siφ̄i
15: xi+1 = xi + (φi/ρi)wi
16: wi+1 = vi+1 − (θi+1/ρi)wi
17: end for

4.7 Conclusions and Future Work

In this Chapter, we derived a number of new CA-KSMs, including a general nonsymmet-
ric Lanczos method, based on the ‘BIOC’ variant of nonsymmetric Lanczos of Gutknecht
(see [94]), nonsymmetric Lanczos-based CA-KSMs for solving linear systems including CA-
BICG, CA-CGS, and CA-BICGSTAB, and a number of new communication avoiding vari-
ants of the upper and lower Lanczos bidiagonalization procedures, which form the basis for
the CA-LSQR method. The communication-avoiding versions enable Θ(s)-fold savings in
serial and parallel latency and serial bandwidth.

The CA-KSMs that we derived in this Chapter are based on coupled two-term recur-
rences. For these methods, communication can be further reduced by using a variant of the
communication-avoiding matrix powers kernel (Section 3.2) that does k sparse matrix-matrix
multiplications (SpMMs) instead of k SpMVs in order to simultaneously compute more than
one Krylov subspace as required in each outer loop. Such an optimized kernel could also be
used to create CA-Block KSM versions of our methods, to allow for solving multiple systems
simultaneously.

There are a number of Krylov methods for non-Hermitian systems for which a commun-
ication-avoiding variant does not yet exist. The BICGSTAB(L) method [160] is a promising
direction for future work, especially once combined with the communication-avoiding tall-
skinny QR kernel, as described in [102]. Also of interest are the ‘Multiple Lanczos’ (ML)

76

Algorithm 22 LSQR with Auxiliary Quantities

Input: m-by-n matrix A and length-n starting vector b
Output: Approximate solution xi+1 to min ‖b− Ax‖2

1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1

3: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
4: for i = 1, 2, . . . until convergence do
5: ūi+1 = ṽi − αiui
6: βi+1 =

(
ūTi+1ūi+1

)1/2

7: ui+1 = ūi+1/βi+1

8: ũi+1 = (ATAvi − αiũi)/βi+1

9: v̄i+1 = ũi+1 − βi+1vi
10: αi+1 =

(
v̄Ti+1v̄i+1

)1/2

11: vi+1 = v̄i+1/αi+1

12: ṽi+1 = (AATui+1 − βi+1ṽi)/αi+1

13: ρi = (ρ̄2
i + β2

i+1)1/2

14: ci = ρ̄i/ρi, si = βi+1/ρi
15: θi+1 = siαi+1, ρ̄i+1 = −ciαi+1

16: φi = ciφ̄i, φ̄i+1 = siφ̄i
17: xi+1 = xi + (φi/ρi)wi
18: wi+1 = vi+1 − (θi+1/ρi)wi
19: end for

variants of BICG and BICGSTAB, which use multiple left shadow residuals [201], induced di-
mension reduction (IDR) methods and IDR(s) variants [167, 187], and quasi-minimal residual
(QMR) methods [71, 72]. Of course, it is also of interest to develop efficient preconditioners
for these methods; we discuss progress and ongoing efforts in Section 6.8.

While we have focused on algorithms rather than implementation details in this Chapter,
many non-trivial implementation decisions are required for the kernels used in CA-KSMs.
The savings in practice depend on the size and nonzero structure of the linear system A,
the machine parameters for each level of the memory/network hierarchy, and the value of s.
Optimizations required for performance are thus both are machine and matrix dependent,
which makes auto-tuning and code generation an attractive approach. There are many
ongoing efforts with this goal; see, e.g., [26, 114]. By analytical and empirical study of
the convergence and performance properties of CA-KSMs, we can identify problems and
machines for which CA-KSMs are competitive in solving practical problems, allowing the
design of effective auto-tuners and integration of CA-KSM codes into existing frameworks.

The numerical experiments for CA-BICG and CA-BICGSTAB presented in this chapter
demonstrate how the convergence rate and attainable accuracy of CA-KSMs can differ from
their classical counterparts. It is further evident that the extent to which they differ depends
heavily on the choice of polynomials used in constructing the s-step bases and the blocking

77

Algorithm 23 Communication-Avoiding LSQR (CA-LSQR)

Input: m-by-n matrix A and length-n starting vector b
Output: Approximate solution xsk+s+1 to min ‖b− Ax‖2

1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: ũ1 = ATu1, ṽ1 = Av1

3: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
4: for k = 0, 1, . . . until convergence do
5: Compute Uk, a basis for Ks(AAT , usk+1), Ũk, a basis for Ks(ATA,ATusk+1), Vk, a

basis for Ks+1(ATA, vsk+1), and Ṽk, a basis for Ks(AAT , Avsk+1). Let Yk = [Uk, Ṽk],
Zk = [Vk, Ũk].

6: G
(Y)
k = YTk Yk, G

(Z)
k = ZTk Zk

7: u′k,1 = e1, v′k,1 = e1, ũ′k,1 = es+2, ṽ′k,1 = es+1.
8: w′k,1 = [01,2s+1, 1]T , x′k,1 = 02s+2,1

9: for j = 1, . . . , s do
10: ū′k,j+1 = ṽ′k,j − αsk+ju

′
k,j

11: βsk+j+1 =
(
ū′Tk,j+1G

(Y)
k ū′k,j+1

)1/2

12: u′k,j+1 = ū′k,j+1/βsk+j+1

13: ũ′k,j+1 = (B(Z)
k v′k,j − αsk+jũ

′
k,j)/βsk+j+1

14: v̄′k,j+1 = ũ′k,j+1 − βsk+j+1v
′
k,j

15: αsk+j+1 =
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

16: v′k,j+1 = v̄′k,j+1/αsk+j+1

17: ṽ′k,j+1 = (B(Y)
k u′k,j+1 − βsk+j+1ṽ

′
k,j)/αsk+j+1

18: ρsk+j = (ρ̄2
sk+j + β2

sk+j+1)1/2

19: csk+j = ρ̄sk+j/ρsk+j, ssk+j = βsk+j+1/ρsk+j

20: θsk+j+1 = ssk+jαsk+j+1, ρ̄sk+j+1 = −csk+jαsk+j+1

21: φsk+j = csk+jφ̄sk+j, φ̄sk+j+1 = ssk+jφ̄sk+j

22: x′k,j+1 = x′k,j + (φsk+j/ρsk+j)w
′
k,j

23: w′k,j+1 = [v′Tj+1, 0]T − (θsk+j+1/ρsk+j)w
′
k,j

24: end for
25: Recover {usk+j+1, vsk+j+1} for j ∈ {1, . . . , s} according to (4.76)
26: xsk+s+1 = [Zk, wsk+1]x′k,s+1 + xsk+1

27: wsk+s+1 = [Zk, wsk+1]w′k,s+1

28: [usk+2, . . . , usk+s+1] = Yk[u′k,2, . . . , u′k,s+1]
29: end for

78

Algorithm 24 CA-LSQR with Alternating Matrix Powers

Input: m-by-n matrix A and length-n starting vector b
Output: Approximate solution xsk+s+1 to min ‖b− Ax‖2

1: β1 = ‖b‖2, u1 = b/β1, v̄1 = ATu1, α1 = ‖v̄1‖2, v1 = v̄1/α1

2: φ̄1 = β1, ρ̄1 = α1, w1 = v1, x1 = 0n,1
3: for k = 0, 1, . . . until convergence do
4: Compute Zk and Yk such that AZ

k
= YkBk and ATYk = ZkB̃k.

5: G
(Z)
k = ZTk Zk, G

(Y)
k = YTk Yk

6: v′k,1 = e1, u′k,1 = e1

7: w′k,1 = [01,2s+1, 1]T , x′k,1 = 02s+2,1

8: for j = 1, . . . , s do
9: ū′k,j+1 = Bkv′k,j − αsk+ju

′
k,j

10: βsk+j+1 =
(
ū′Tk,j+1G

(Y)
k ū′k,j+1

)1/2

11: u′k,j+1 = ū′k,j+1/βsk+j+1

12: v̄′k,j+1 = B̃ku′k,j+1 − βsk+j+1v
′
k,j

13: αsk+j+1 =
(
v̄′Tk,j+1G

(Z)
k v̄′k,j+1

)1/2

14: v′k,j+1 = v̄′k,j+1/αsk+j+1

15: ρsk+j = (ρ̄2
sk+j + β2

sk+j+1)1/2

16: csk+j = ρ̄sk+j/ρsk+j, ssk+j = βsk+j+1/ρsk+j

17: θsk+j+1 = ssk+jαsk+j+1, ρ̄sk+j+1 = −csk+jαsk+j+1

18: φsk+j = csk+jφ̄sk+j, φ̄sk+j+1 = ssk+jφ̄sk+j

19: x′k,j+1 = x′k,j + (φsk+j/ρsk+j)w
′
k,j

20: w′k,j+1 = [v′Tk,j+1, 0]T − (θsk+j+1/ρsk+j)w
′
k,j

21: end for
22: Recover {usk+j+1, vsk+j+1} for j ∈ {1, . . . , s} according to (4.82)
23: xsk+s+1 = [Zk, wsk+1]x′k,s+1 + xsk+1

24: wsk+s+1 = [Zk, wsk+1]w′k,s+1

25: end for

79

parameter s. In the next chapter, we extend a number of bounds on the stability and
convergence properties of finite precision KSMs to finite precision CA-KSMs. Our theoretical
results explain the role of basis conditioning on the finite precision behavior of CA-KSMs.

80

Chapter 5

Communication-Avoiding Krylov
Subspace Methods in Finite Precision

Recall from the discussion in Section 2.3 that roundoff error has two discernible effects in
KSMs - loss of accuracy and delay of convergence. Although CA-KSMs are mathematically
equivalent to their classical counterparts in exact arithmetic, their finite precision behavior
may differ significantly. It has been observed that the behavior of CA-KSMs deviates further
from that of the classical method as s increases and the severity of this deviation is heavily
influenced by the polynomials used for the s-step Krylov bases (see, e.g., [14, 35, 102, 104]).

As this can hinder usability of these methods in practice, a better understanding of the
numerical properties of CA-KSMs is necessary. In this Chapter, we extend many results
on convergence and accuracy for finite precision KSMs to finite precision CA-KSMs. We
give bounds on the accuracy and convergence of eigenvalues in the finite precision CA-
Lanczos method, a bound for the residual norm computed by the finite precision CA-(BI)CG
algorithm, and a computable bound for the maximum attainable accuracy in finite precision
CA-(BI)CG.

By sacrificing some tightness, we show that these bounds can all be written in the same
form as the corresponding bounds for the classical method multiplied by an amplification
factor that depends on the condition number of the s-step bases generated at the beginning
of each outer loop. The bounds in this form are valuable for giving insight into the behavior
of finite precision CA-KSMs. These bounds theoretically confirm the importance of basis
conditioning on CA-KSM behavior and explain why the use of Newton and Chebyshev bases
enable CA-KSMs to behave numerically very closely to the corresponding classical KSMs. In
fact, if one can maintain a modest upper bound on the condition number of the s-step bases
throughout the iteration, then one can with certainty expect close to the same convergence
rate and attainable accuracy as the classical method.

The remainder of this chapter is outlined as follows. In Section 5.1, which has been
adapted from [32], we present the first complete rounding error analysis of the CA-Lanczos
method. We provide upper bounds on the normality of and orthogonality between the com-
puted Lanczos vectors as well as a recurrence for the loss of orthogonality. We use this

81

analysis to extend the results of Paige for classical Lanczos to the CA-Lanczos method. Our
analysis here of CA-Lanczos very closely follows Paige’s rounding error analysis for classi-
cal Lanczos [140], and the theorems on accuracy and convergence of eigenvalues presented
here follow from [141]. In Section 5.1.6 we show numerical experiments for a diagonal test
problem which confirm the validity of our bounds and demonstrate the impact of the basis
condition number on our error bounds. Our results suggest potential methods for improving
convergence and accuracy through the inexpensive monitoring of quantities generated during
the iterations.

In Section 5.2, we extend the analysis of Tong and Ye [176], to the CA-(BI)CG algorithm
(see Section 4.2), which gives a bound for the residual norm computed by the finite precision
CA-(BI)CG algorithm in terms of the residual norm of exact GMRES applied to a perturbed
matrix, multiplied by an amplification factor. In the process, we construct the equivalent
matrix form of the finite precision CA-(BI)CG recurrence, obtained by translating results
from the s-step blocks to columns in the recurrence. This works also appears in the technical
report [29].

Finally, in Section 5.3, we prove a computable bound for the maximum attainable accu-
racy (i.e., the deviation of the true and updated residual) in finite precision CA-(BI)CG, and
show that this bound can be iteratively updated without asymptotically increasing compu-
tation or communication costs. In the subsequent chapter, we use this maximum attainable
accuracy bound in a communication-avoiding residual replacement strategy for improving
agreement between residuals. This work has been adapted from [31].

5.1 Analysis of the CA-Lanczos Method

Given a symmetric matrix A ∈ Rn×n and a starting vector v1 ∈ Rn with unit 2-norm, i steps
of the Lanczos method [115] theoretically produce the orthonormal matrix Vi = [v1, . . . , vi]
and the symmetric tridiagonal matrix Ti ∈ Ri×i such that

AVi = ViTi + βi+1vi+1e
T
i . (5.1)

When i = n, if Tn exists (i.e., no breakdown occurs), then the eigenvalues of Tn are the
eigenvalues of A. In practice, some of the eigenvalues of Ti are good approximations to the
eigenvalues of A when i � n, which makes the Lanczos method attractive as an iterative
procedure. Many Krylov subspace methods (KSMs), including those for solving linear sys-
tems and least squares problems, are based on the Lanczos method. Such Lanczos-based
methods are the core components in many applications.

Although theoretically the Lanczos process described by (5.1) produces an orthogonal
basis and a tridiagonal matrix similar to A after n steps, these properties need not hold in
finite precision. The most important work in the finite precision analysis of classical Lanczos
is a series of papers published by Paige [138, 139, 140, 141]. Paige’s analysis succinctly de-
scribes how rounding errors propagate through the algorithm to impede orthogonality. These

82

results were developed to give theorems which link the loss of orthogonality to convergence
of the computed eigenvalues [141].

In this Section, we present the first complete rounding error analysis of the CA-Lanczos
method. We provide upper bounds on the normality of and orthogonality between the
computed Lanczos vectors as well as a recurrence for the loss of orthogonality. We use this
analysis to extend the results of Paige for classical Lanczos to the CA-Lanczos method. Our
analysis here of CA-Lanczos very closely follows Paige’s rounding error analysis for classical
Lanczos [140], and the theorems on accuracy and convergence of eigenvalues presented here
follow from [141]. The derived bounds are very similar to those of Paige for classical Lanczos,
but with the addition of an amplification term which depends on the maximum condition
number of the Krylov bases computed at the start of each block of s steps. We show here
that, based on restrictions on the size of this condition number, the same theorems of Paige
apply to the s-step case.

Our results confirm that the conditioning of the Krylov bases plays a large role in de-
termining finite precision behavior. Our analysis shows that if one can maintain modest
condition numbers of the computed s-step Krylov bases throughout the iterations, the ac-
curacy and convergence of eigenvalues in the CA-Lanczos method will be similar to those
produced by classical Lanczos. This indicates that under certain restrictions, the CA-Lanczos
method may be suitable for many practical problems.

The remainder of this section is outlined as follows. In Section 5.1.1, we present related
work in the analysis of finite precision Lanczos. In Section 5.1.2, we review a variant of the
Lanczos method and derive the corresponding CA-Lanczos method. In Section 5.1.3, we
first state our main result in Theorem 1 and comment on its interpretation; the rest of the
section is devoted to its proof. Sections 5.1.4 and 5.1.5 use the results of Paige [141] to give
results on the accuracy and rate of convergence of the computed eigenvalues, respectively.
We demonstrate these bounds through a number of numerical experiments in Section 5.1.6.
Section 5.1.7 concludes with a discussion of future work. We note that this section has been
adapted from work published in [32].

5.1.1 Related Work

Lanczos and others recognized early on that rounding errors could cause the Lanczos method
to deviate from its ideal theoretical behavior. Since then, various efforts have been devoted
to analyzing, explaining, and improving the finite precision Lanczos method.

Widely considered to be the most significant development is the series of papers by
Paige discussed above. Another important result is due to Greenbaum, who performed a
backward-like error analysis which showed that finite precision Lanczos and CG behave very
similarly to the exact algorithms applied to any of a certain class of larger matrices [85].
Further explanation and examples are due to Greenbaum and Strakoš [88]. Paige has shown
a similar type of augmented stability for the Lanczos process [142], and these results have
recently been extended to the nonsymmetric case [143]. There are many other analyses of

83

Algorithm 25 Classical Lanczos

Input: n-by-n real symmetric matrix A and length-n starting vector v1 such that ‖v1‖2 = 1
Output: Matrices Vi and Ti and vector vi+1 satisfying (5.1)

1: u1 = Av1

2: for i = 1, 2, . . . until convergence do
3: αi = vTi ui
4: wi = ui − αivi
5: βi+1 = ‖wi‖2

6: vi+1 = wi/βi+1

7: ui+1 = Avi+1 − βi+1vi
8: end for

the behavior of various KSMs in finite precision, including some more recent results due to
Wülling [192] and Zemke [202]; for a thorough overview of the literature see [124, 125].

A number of strategies for maintaining orthogonality among the Lanczos vectors were
inspired by the analysis of Paige, including selective reorthogonalization [147] and partial re-
orthogonalization [157]. Recently, Gustafsson et al. have extended such reorthogonalization
strategies for classical Lanczos to the s-step case [92].

Section 5.1.2 of the present work includes the derivation of a new version of the CA-
Lanczos method, equivalent in exact arithmetic to the variant used by Paige [140]. It uses
a two-term recurrence like BIOC (see Section 4.1), but is restricted to the symmetric case
and uses a different starting vector.

5.1.2 The CA-Lanczos Method

In our analysis we use the same variant of Lanczos used by Paige in [140] to allow easy
comparison of results. Note that for simplicity, we assume no breakdown occurs, i.e., βi+1 6= 0
for i < n, and thus breakdown conditions are not discussed here. We now give a derivation
of CA-Lanczos, obtained from classical Lanczos in Algorithm 25. We note that, while in
previous chapters, we indexed the length-O(s) coordinate vectors by their inner loop iteration
(e.g., v′j), we now index these same vectors by both their outer and inner loop iterations (e.g.,
v′k,j), as we need to distinguish them in the analysis.

After k blocks of s steps, consider iteration i = sk+1 where k ∈ N and 0 < s ∈ N. Using

vsk+1 ∈ K1(A, vsk+1) and usk+1 ∈ K1(A, usk+1),

it follows by induction on lines 6 and 7 of Algorithm 25 that for j ∈ {1, . . . , s+ 1},

vsk+j ∈ Ks(A, vsk+1) +Ks(A, usk+1) and

usk+j ∈ Ks+1(A, vsk+1) +Ks+1(A, usk+1), (5.2)

84

where K`(A, x) = span{x,Ax, . . . , A`−1x} denotes the Krylov subspace of dimension ` of
matrix A with respect to vector x. Since Kj(A, x) ⊆ K`(A, x) for j ≤ `,

vsk+j, usk+j ∈ Ks+1(A, vsk+1) +Ks+1(A, usk+1) for j ∈ {1, . . . , s+ 1}.

Note that since u1 = Av1, if k = 0 we have

vj, uj ∈ Ks+2(A, v1) for j ∈ {1, . . . , s+ 1}.

For k > 0, we then define the ‘basis matrix’ Yk = [Vk,Uk], where Vk and Uk are size
n-by-(s + 1) matrices whose first j columns form bases for Kj(A, vsk+1) and Kj(A, usk+1)
respectively, for j ∈ {1, . . . , s+ 1}. For k = 0, we define Y0 to be a size n-by-(s+ 2) matrix
whose (ordered) columns form a basis for Ks+2(A, v1). Then by (5.2), we can represent vsk+j

and usk+j, for j ∈ {1, . . . , s+ 1}, by their coordinates (denoted with primes) in Yk, i.e.,

vsk+j = Ykv′k,j and usk+j = Yku′k,j. (5.3)

Note that for k = 0 the coordinate vectors v′k,j and u′k,j have length s+ 2 with zero elements
beyond the j-th and j + 1-st, respectively, and for k > 0, the coordinate vectors have length
(2s+2) with appropriate zero elements. We can write a similar equation for auxiliary vector
wsk+j, i.e., wsk+j = Ykw′k,j for j ∈ {1, . . . , s}. We also define the Gram matrix Gk = YTk Yk,
which is size (s+2)-by-(s+2) for k = 0 and (2s+2)-by-(2s+2) for k > 0. Using this matrix
the inner products in lines 3 and 5 can be written

αsk+j = vTsk+jusk+j = v′Tk,jYTk Yku′k,j = v′Tk,jGku
′
k,j and (5.4)

βsk+j+1 = (wTsk+jwsk+j)
1/2 = (w′Tk,jYTk Ykw′k,j)1/2 = (w′Tk,jGkw

′
k,j)

1/2. (5.5)

We assume that the bases are generated via polynomial recurrences represented by matrix
Bk, which is in general upper Hessenberg but often tridiagonal in practice. The recurrence
can thus be written in matrix form as

AY
k

= YkBk. (5.6)

For k = 0, Bk is size (s + 2)-by-(s + 2) and Y
0

is obtained by replacing the last column of
Y0 by a zero column, i.e., Y

0
=
[
Y0[Is+1, 0s+1,1]T , 0n,1

]
. For k > 0, Bk is size (2s + 2)-by-

(2s + 2) and Y
k

is obtained by replacing columns s + 1 and 2s + 2 of Yk by zero columns,
i.e., Y

k
=
[
Vk[Is, 0s,1]T , 0n,1,Uk[Is, 0s,1]T , 0n,1

]
. Note that Bk has zeros in column s+ 2 when

k = 0 and zeros in columns s+ 1 and 2s+ 2 for k > 0. Therefore, using (5.3) and (5.6),

Avsk+j+1 = YkBkv′k,j+1 for j ∈ {1, . . . , s}. (5.7)

Thus, to compute iterations sk + 2 through sk + s+ 1 in CA-Lanczos, we first generate
a basis matrix Yk such that (5.6) holds and compute Gk from Yk. These operations can be
performed for the communication cost of one iteration of the classical method (see Chapter 3).

85

Algorithm 26 CA-Lanczos

Input: n-by-n real symmetric matrix A and length-n starting vector v1 such that ‖v1‖2 = 1
Output: Matrices Vsk+s and Tsk+s and vector vsk+s+1 satisfying (5.1)

1: u1 = Av1

2: for k = 0, 1, . . . until convergence do
3: Compute Yk with change of basis matrix Bk according to (5.7)
4: Compute Gk = YTk Yk
5: v′k,1 = e1

6: if k = 0 then
7: u′0,1 = B0e1

8: else
9: u′k,1 = es+2

10: end if
11: for j = 1, 2, . . . , s do
12: αsk+j = v′Tk,jGku

′
k,j

13: w′k,j = u′k,j − αsk+jv
′
k,j

14: βsk+j+1 = (w′Tk,jGkw
′
k,j)

1/2

15: v′k,j+1 = w′k,j/βsk+j+1

16: vsk+j+1 = Ykv′k,j+1

17: u′k,j+1 = Bkv′k,j+1 − βsk+j+1v
′
k,j

18: usk+j+1 = Yku′k,j+1

19: end for
20: end for

Then updates to the length-n vectors can be performed by updating instead the length-
(2s + 2) coordinates for those vectors in Yk. Inner products and multiplications with A
become smaller operations which can be performed locally, as in (5.4), (5.5), and (5.7). The
complete CA-Lanczos algorithm is presented in Algorithm 26. Note that in Algorithm 26
we show the computation of the length-n vectors by the change of basis operation (5.3) in
each inner iteration (lines 16 and 18) for clarity, although these vectors play no part in the
inner loop iteration updates. In practice, the basis change operation (5.3) can be performed
on a block of coordinate vectors at the end of each outer loop to recover vsk+j and usk+j if
needed, for j ∈ {2, . . . , s+ 1}.

5.1.3 The CA-Lanczos Method in Finite Precision

Throughout our analysis, we use a standard model of floating point arithmetic where we
assume the computations are carried out on a machine with relative precision ε (see [83]).
The analysis is first-order in ε, ignoring higher-order terms, which have negligible effect
on our results. We also ignore underflow and overflow. Following Paige [140], we use the ε
symbol to represent the relative precision as well as terms whose absolute values are bounded

86

by the relative precision.
We will model floating point computation using the following standard conventions (see,

e.g., [83, §2.4]): for vectors u, v ∈ Rn, matrices A ∈ Rn×m and G ∈ Rn×n, and scalar α,

fl(u− αv) =u− αv − δw, |δw| ≤ (|u|+ 2|αv|)ε,
f l(vTu) =(v + δv)Tu, |δv| ≤ nε|v|,
f l(Au) =(A+ δA)u, |δA| ≤ mε|A|,

f l(ATA) =ATA+ δE, |δE| ≤ nε|AT ||A|, and

fl(uT (Gv)) =(u+ δu)T (G+ δG)v, |δu| ≤ nε|u|, |δG| ≤ nε|G|,

where fl() represents the evaluation of the given expression in floating point arithmetic
and terms with δ denote error terms. We decorate quantities computed in finite precision
arithmetic with hats, e.g., if we are to compute the expression α = vTu in finite precision
we get α̂ = fl(vTu).

We first prove the following lemma which will be useful in our analysis.

Lemma 1. Assume we have a full rank matrix Y ∈ Rn×r, where n ≥ r. Let Y + denote the
pseudoinverse of Y , i.e., Y + = (Y TY)−1Y T . Then for any vector x ∈ Rr,

‖|Y ||x|‖2 ≤ ‖|Y |‖2‖x‖2 ≤ Γ‖Y x‖2,

where Γ =
∥∥Y +

∥∥
2

∥∥|Y |∥∥
2
≤
√
r
∥∥Y +

∥∥
2

∥∥Y ∥∥
2
.

Proof. We have

‖|Y ||x|‖2 ≤ ‖|Y |‖2‖x‖2 ≤ ‖|Y |‖2‖Y +Y x‖2 ≤ ‖|Y |‖2‖Y +‖2‖Y x‖2 = Γ‖Y x‖2.

We note that the term Γ can be thought of as a type of condition number for the matrix
Y . In the analysis, we will apply the above lemma to the computed ‘basis matrix’ Ŷk. We
assume throughout that the generated bases Ûk and V̂k are numerically full rank. That is,
all singular values of Ûk and V̂k are greater than εn · 2blog2 θ1c where θ1 is the largest singular
value of A. The results of this section are summarized in the following theorem:

Theorem 1. Assume that Algorithm 26 is implemented in floating point with relative pre-
cision ε and applied for m steps to the n-by-n real symmetric matrix A with at most N
nonzeros per row, starting with vector v1 with ‖v1‖2 = 1. Let σ ≡ ‖A‖2, θσ = ‖|A|‖2 and
τkσ = ‖|Bk|‖2, where Bk is defined in (5.6). Let Γk = ‖Ŷ+

k ‖2‖|Ŷk|‖2, where the superscript

‘+’ denotes the Moore-Penrose pseudoinverse, i.e., Ŷ+
k = (ŶTk Ŷk)−1ŶTk , and let

Γ̄k = max
`∈{0,...,k}

Γ` ≥ 1 and τ̄k = max
`∈{0,...,k}

τ`. (5.8)

87

Then for all i ∈ {1, . . . ,m}, α̂i, β̂i+1, and v̂i+1 will be computed such that

AV̂m = V̂mT̂m + β̂m+1v̂m+1e
T
m − δV̂m, (5.9)

where

V̂m = [v̂1, v̂2, . . . , v̂m] (5.10)

δV̂m = [δv̂1, δv̂2, . . . , δv̂m] (5.11)

T̂m =


α̂1 β̂2

β̂2
.
. β̂m

β̂m α̂m

 (5.12)

with

‖δv̂i‖2 ≤ ε1σ, (5.13)

β̂i+1|v̂Ti v̂i+1| ≤ ε0σ, (5.14)

|v̂Ti+1v̂i+1 − 1| ≤ ε0/2, and (5.15)∣∣∣β̂2
i+1 + α̂2

i + β̂2
i − ‖Av̂i‖2

2

∣∣∣ ≤2i(3ε0 + 2ε1)σ2, (5.16)

where

ε0 ≡ 2ε(n+ 11s+ 15)Γ̄2
k and ε1 ≡ ε

(
(N + 2s+ 5)θ + (4s+ 9)τ̄k + (10s+ 16)

)
Γ̄k. (5.17)

Furthermore, if Rm is the strictly upper triangular matrix such that

V̂ T
m V̂m = RT

m + diag(V̂ T
m V̂m) +Rm, (5.18)

then
T̂mRm −RmT̂m = β̂m+1V̂

T
m v̂m+1e

T
m + δRm, (5.19)

where δRm is upper triangular with elements η such that

|η1,1| ≤ε0σ, and for ` ∈ {2, . . . ,m},
|η`,`| ≤2ε0σ,

|η`−1,`| ≤(ε0 + 2ε1)σ, and

|ηt,`| ≤2ε1σ, for t ∈ {1, . . . , `−2}.

(5.20)

88

Comments This generalizes Paige [140] as follows. The bounds in Theorem 1 give insight
into how orthogonality is lost in the finite precision CA-Lanczos algorithm. Equation (5.13)
bounds the error in the columns of the resulting perturbed Lanczos recurrence. How far the
Lanczos vectors can deviate from unit 2-norm is given in (5.15), and (5.14) bounds how far
adjacent vectors are from being orthogonal. The bound in (5.16) describes how close the
columns of AV̂m and T̂m are in size. Finally, (5.19) can be thought of as a recurrence for the
loss of orthogonality between Lanczos vectors, and shows how errors propagate through the
iterations.

One thing to notice about the bounds in Theorem 1 is that they depend heavily on
the term Γ̄k, which is a measure of the conditioning of the computed s-step Krylov bases.
This indicates that if Γ̄k is controlled in some way to be near constant, i.e., Γ̄k = O(1), the
bounds in Theorem 1 will be on the same order as Paige’s analogous bounds for classical
Lanczos [140], and thus we can expect orthogonality to be lost at a similar rate. The
bounds also suggest that for the s-step variant to have any use, we must have Γ̄k = o(ε−1/2).
Otherwise there can be no expectation of orthogonality.

We have sacrificed some tightness in the bounds in Theorem 1 in favor of simplified
notation. Particularly, the use of Γ̄k as defined in (5.8) in our bounds is likely to result in a
large overestimate of the error (see Section 5.1.3.2 for numerical experiments). This causes
our bounds for the s = 1 case to be larger than those of Paige for classical Lanczos. To
obtain tighter bounds, one could instead use an alternative definition for Γ̄k; we discuss this
and show numerical experiments in Section 5.1.3.2.

5.1.3.1 Proof of Theorem 1

The remainder of this section is dedicated to the proof of Theorem 1. To simplify the
exposition, we have omitted some intermediate steps in the algebra; for the curious reader,
a much longer analysis including the intermediate steps can be found in [29]. Also, in the
interest of reducing overbearing subscripts, we use the indexing i ≡ sk + j for quantities
produced by both classical and CA-Lanczos (namely, the elements of the tridiagonal T̂m and
the length-n iteration vectors). We first proceed toward proving (5.15).

In finite precision, the Gram matrix construction in line 4 of Algorithm 26 becomes

Ĝk = fl(ŶTk Ŷk) = ŶTk Ŷk + δGk, where |δGk| ≤ εn|ŶTk ||Ŷk|, (5.21)

and line 14 of Algorithm 26 becomes β̂i+1 = fl
(
fl(ŵ′Tk,jĜkŵ

′
k,j)

1/2
)
. Let

d = fl(ŵ′Tk,jĜkŵ
′
k,j) = (ŵ′Tk,j + δŵ′Tk,j)(Ĝk + δĜk,wj

)ŵ′k,j,

where
|δŵ′k,j| ≤ ε(2s+ 2)|ŵ′k,j| and |δĜk,wj

| ≤ ε(2s+ 2)|Ĝk|. (5.22)

Remember that in the above equation we have ignored all terms of second order in ε. Now,
we let c = ŵ′Tk,jδGkŵ

′
k,j + ŵ′Tk,jδĜk,wj

ŵ′k,j + δŵ′Tk,jĜkŵ
′
k,j, where

|c| ≤ ε(n+ 4s+ 4)Γ2
k‖Ŷkŵ′k,j‖2

2. (5.23)

89

We can then write d =
∥∥Ŷkŵ′k,j∥∥2

2
(1 + c/

∥∥Ŷkŵ′k,j∥∥2

2
) and

β̂i+1 = fl(
√
d) =
√
d+ δβi+1 = ‖Ŷkŵ′k,j‖2

(
1 +

c

2‖Ŷkŵ′k,j‖2
2

)
+ δβi+1, (5.24)

where
|δβi+1| ≤ ε

√
d = ε‖Ŷkŵ′k,j‖2. (5.25)

The coordinate vector v̂′k,j+1 is computed as

v̂′k,j+1 = fl(ŵ′k,j/β̂i+1) = (ŵ′k,j + δw̃′k,j)/β̂i+1, (5.26)

where
|δw̃′k,j| ≤ ε|ŵ′k,j|. (5.27)

The corresponding Lanczos vector v̂i+1 (as well as ûi+1) are recovered by a change of
basis: in finite precision, we have

v̂i+1 = fl(Ŷkv̂′k,j+1) =
(
Ŷk + δŶk,vj+1

)
v̂′k,j+1, |δŶk,vj+1

| ≤ ε(2s+ 2)|Ŷk|, (5.28)

and

ûi+1 = fl(Ŷkû′k,j+1) =
(
Ŷk + δŶk,uj+1

)
û′k,j+1, |δŶk,uj+1

| ≤ ε(2s+ 2)|Ŷk|. (5.29)

We can now prove (5.15) in Theorem 1. Using (5.24)-(5.26) and (5.28), as well as the
bounds in (5.21)-(5.23), (5.28), (5.29), and Lemma 1, we obtain∣∣v̂Ti+1v̂i+1 − 1

∣∣ ≤ε(n+ 8s+ 12)Γ2
k ≤ ε0/2, (5.30)

where ε0 is defined in (5.17). This thus satisfies the bound (5.15).
We now proceed toward proving (5.14). Line 12 in Algorithm 26 is computed as

α̂i = fl(v̂′Tk,jĜkû
′
k,j) = (v̂′Tk,j + δv̂′Tk,j)(Ĝk + δĜk,uj)û

′
k,j,

where |δv̂′k,j| ≤ ε(2s+ 2)|v̂′k,j| and |δĜk,uj | ≤ ε(2s + 2)|Ĝk|. Expanding the above equation
using (5.21), we obtain

α̂i = v̂′Tk,jŶTk Ŷkû′k,j + v̂′Tk,jδGkû
′
k,j + v̂′Tk,jδĜk,uj û

′
k,j + δv̂′Tk,jĜkû

′
k,j,

and since by (5.28) and (5.29), v̂Ti ûi = v̂′Tk,jŶTk Ŷkû′k,j + ŶTk δŶk,uj û′k,j + δŶTk,vj Ŷkû
′
k,j, we can

write
α̂i = v̂Ti ûi + δα̂i, (5.31)

where δα̂i = δv̂′Tk,jĜkû
′
k,j + v̂′Tk,j(δGk+δĜk,uj−ŶTk δŶk,uj−δŶTk,vj Ŷk)û

′
k,j. Using Lemma 1 along

with the bounds in (5.21)-(5.22) and (5.28)-(5.30),

|δα̂i| ≤ ε(n+ 8s+ 8)Γ2
k

∥∥ûi∥∥2
, (5.32)

90

and then using (5.31) and the bounds in (5.30) and (5.32), we obtain

|α̂i| ≤
(

1 + ε
(
(3/2)n+ 12s+ 14

)
Γ2
k

)
‖ûi‖2. (5.33)

In finite precision, line 13 of Algorithm 26 is computed as

ŵ′k,j = û′k,j − α̂iv̂′k,j − δw′k,j, where |δw′k,j| ≤ ε(|û′k,j|+ 2|α̂iv̂′k,j|). (5.34)

Multiplying both sides of (5.34) by Ŷk gives Ŷkŵ′k,j = Ŷkû′k,j − α̂iŶkv̂′k,j − Ŷkδw′k,j, and
multiplying each side by its own transpose and using (5.28) and (5.29),

‖Ŷkŵ′k,j‖2
2 = ‖ûi‖2

2 − 2α̂iû
T
i v̂i + α̂2

i ‖v̂i‖2
2

− 2(δŶk,uj û′k,j − α̂iδŶk,vj v̂′k,j + Ŷkδw′k,j)T (ûi − α̂iv̂i),

where we have used Ŷkû′k,j − α̂iŶkv̂′k,j = ûi− α̂iv̂i +O(ε). Now, using (5.31) and rearranging
the above we obtain

‖Ŷkŵ′k,j‖2
2 + α̂2

i − ‖ûi‖2
2 = α̂2

i (‖v̂i‖2
2 − 1) + 2α̂iδα̂i

− 2(δŶk,uj û′k,j − α̂iδŶk,vj v̂′k,j + Ŷkδw′k,j)T (ûi − α̂iv̂i).

Using Lemma 1 and the bounds in (5.28), (5.29), (5.30), (5.32), (5.33), and (5.34), we can
then write the bound

‖Ŷkŵ′k,j‖2
2 + α̂2

i − ‖ûi‖2
2 ≤ ε(3n+ 40s+ 56)Γ2

k‖ûi‖2
2. (5.35)

Given the above, we can also write

‖Ŷkŵ′k,j‖2
2 ≤ ‖Ŷkŵ′k,j‖2

2 + α̂2
i ≤

(
1 + ε(3n+ 40s+ 56)Γ2

k

)
‖ûi‖2

2, (5.36)

and using this with (5.23), (5.24), and (5.25),

|β̂i+1| ≤
(
1 + ε(2n+ 22s+ 31)Γ2

k

)∥∥ûi∥∥2
. (5.37)

Now, rearranging (5.26) and using (5.28), we can write

β̂i+1v̂i+1 ≡ Ŷkŵ′k,j + δwi, (5.38)

where δwi = Ŷkδw̃′k,j + δŶk,vj+1
ŵ′k,j, and using Lemma 1 and the bounds in (5.27), (5.28),

and (5.36),
‖δwi‖2 ≤ ε(2s+ 3)Γk‖ûi‖2. (5.39)

We premultiply (5.38) by v̂Ti and use (5.28), (5.29), (5.31), and (5.34) to obtain

β̂i+1v̂
T
i v̂i+1 = −δα̂i − α̂i(‖v̂i‖2

2 − 1)− v̂Ti (δŶk,uj û′k,j− α̂iδŶk,vj v̂′k,j + Ŷkδw′k,j− δwi),

91

and using Lemma 1 and the bounds in (5.30), (5.26), (5.28), (5.29), (5.32), (5.33), (5.34),
and (5.39), we can write the bound∣∣∣β̂i+1v̂

T
i v̂i+1

∣∣∣ ≤ 2ε(n+ 11s+ 15)Γ2
k‖ûi‖2. (5.40)

This is a start toward proving (5.14). We will return to the above bound once we
later prove a bound on ‖ûi‖2. Our next step is to analyze the error in each column of the
finite precision CA-Lanczos recurrence. First, we note that we can write the finite precision
recurrence for computing the s-step bases (line 3 in Algorithm 26) as

AŶ
k

= ŶkBk + δEk. (5.41)

If the basis is computed by repeated matrix-vector products,

|δEk| ≤ ε
(
(3 +N)|A||Ŷ

k
|+ 4|Ŷk||Bk|

)
, (5.42)

where N is the maximum number of nonzeros per row over all rows of A (see, e.g., [31]).
In finite precision, line 17 in Algorithm 26 is computed as

û′k,j =Bkv̂′k,j− β̂iv̂′k,j−1 + δu′k,j, |δu′k,j| ≤ ε
(
(2s+ 3)|Bk||v̂′k,j|+ 2|β̂iv̂′k,j−1|

)
. (5.43)

Then with Lemma 1, (5.28), (5.29), (5.41), and (5.43), we can write

ûi = Av̂i − β̂iv̂i−1 + δui, (5.44)

where

δui = Ŷkδu′k,j − (AδŶk,vj − δŶk,ujBk + δEk)v̂
′
k,j + β̂i(δŶk,vj−1

− δŶk,uj)v̂′k,j−1,

and with the bounds in (5.28), (5.29), (5.37), (5.42), and (5.43),

‖δui‖2 ≤ ε(N + 2s+ 5)‖ |A| ‖2 Γk + ε(4s+ 9)‖ |Bk| ‖2 Γk + ε(4s+ 6)‖ûi−1‖2 Γk.

We will now introduce and make use of the quantities σ ≡ ‖A‖2, θ ≡ ‖ |A| ‖2/σ, and
τk ≡ ‖ |Bk| ‖2/σ. Note that the quantity ‖ |Bk| ‖2 depends on the choice of polynomials used
in constructing the Krylov bases. For the monomial basis, ‖ |Bk| ‖2 = 1. For bases based on
the spectrum of A, including Newton and Chebyshev bases, we expect that ‖ |Bk| ‖2 . ‖ |A| ‖2

as long as the bases are constructed using sufficiently accurate spectral estimates. Using this
notation the bound above can be written∥∥δui∥∥2

≤ ε
((

(N + 2s+ 5)θ + (4s+ 9)τk
)
σ + (4s+ 6)‖ûi−1‖2

)
Γk. (5.45)

Now, manipulating (5.38) with (5.28), (5.29), and (5.34), we have

β̂i+1v̂i+1 = ûi− α̂iv̂i− δŶk,uj û′k,j + α̂iδŶk,vj v̂′k,j−Ŷkδw′k,j + δwi,

92

and substituting in the expression for ûi in (5.44),

β̂i+1v̂i+1 = Av̂i − α̂iv̂i − β̂iv̂i−1 + δv̂i, (5.46)

where δv̂i = δui − δŶk,uj û′k,j + α̂iδŶk,vj v̂′k,j − Ŷkδw′k,j + δwi. Using Lemma 1, along with
(5.27), (5.28), (5.29), (5.33), (5.34), and (5.39),

‖δv̂i‖2 ≤ ‖δui‖2 + ε(6s+ 10)Γk‖ûi‖2,

and using (5.45), this bound becomes

‖δv̂i‖2 ≤ ε
((

(N + 2s+ 5)θ + (4s+ 9)τk
)
σ + (6s+ 10)‖ûi‖2 + (4s+ 6)‖ûi−1‖2

)
Γk. (5.47)

We now have everything we need to write the finite-precision CA-Lanczos recurrence in
its familiar matrix form. Let V̂i, δV̂i, and T̂i be defined as in (5.10), (5.11), and (5.12),
respectively. Then (5.46) in matrix form gives

AV̂i = V̂iT̂i + β̂i+1v̂i+1e
T
i − δV̂i. (5.48)

Thus (5.47) gives a bound on the error in the columns of the finite precision CA-Lanczos
recurrence. We will return to (5.47) to prove (5.13) once we bound ‖ûi‖2.

Now, we examine the possible loss of orthogonality in the vectors v̂1, . . . , v̂i+1. We define
the strictly upper triangular matrix Ri of dimension i-by-i ((sk+j)-by-(sk+j)) with elements
ρ`,t, for `, t ∈ {1, . . . , i}, such that V̂ T

i V̂i = RT
i + diag(V̂ T

i V̂i) + Ri. For notational purposes,

we also define ρi,i+1 ≡ v̂Ti v̂i+1. Multiplying (5.48) on the left by V̂ T
i and equating the right

hand side by its own transpose, we obtain

T̂i(R
T
i +Ri)− (RT

i +Ri)T̂i = β̂i+1(V̂ T
i v̂i+1e

T
i − eiv̂Ti+1V̂i) + V̂ T

i δV̂i − δV̂ T
i V̂i

+ diag(V̂ T
i V̂i) · T̂i − T̂i · diag(V̂ T

i V̂i).

Now, let Mi ≡ T̂iRi − RiT̂i, which is upper triangular and has dimension i-by-i. By
definition,

m1,1 =− β̂2ρ1,2, mi,i = β̂iρi−1,i, and

m`,` =β̂`ρ`−1,` − β̂`+1ρ`,`+1, for ` ∈ {2, . . . , i− 1}.

Therefore Mi = β̂i+1V̂
T
i v̂i+1e

T
i + δRi, where δRi has elements satisfying

η1,1 =− β̂2ρ1,2, and for ` ∈ {2, . . . , i},
η`,` =β̂`ρ`−1,` − β̂`+1ρ`,`+1,

η`−1,` =v̂T`−1δv̂` − δv̂T`−1v̂` + β̂`(v̂
T
`−1v̂`−1 − v̂T` v̂`), and

ηt,` =v̂Tt δv̂` − δv̂Tt v̂`, where t ∈ {1, . . . , `− 2}.

(5.49)

93

To simplify notation, we introduce the quantities

ūi = max
`∈{1,...,i}

‖û`‖2, Γ̄k = max
`∈{0,...,k}

Γ`, and τ̄k = max
`∈{0,...,k}

τ`.

Using this notation and (5.30), (5.37), (5.40), and (5.47), the quantities in (5.49) can be
bounded by

|η1,1| ≤ 2ε(n+ 11s+ 15)Γ̄2
k ūi, and for ` ∈ {2, . . . , i},

|η`,`| ≤ 4ε(n+ 11s+ 15)Γ̄2
k ūi,

|η`−1,`| ≤ 2ε

(((
(N + 2s+ 5)θ+ (4s+ 9)τ̄k

)
σ+ (10s+ 16)ūi

)
Γ̄k +

(
n+ 8s+ 12

)
Γ̄2
kūi

)
,

|ηt,`| ≤ 2ε
((

(N + 2s+ 5)θ+ (4s+ 9)τ̄k
)
σ+ (10s+ 16)ūi

)
Γ̄k, where t ∈ {1, . . . , `−2}.

(5.50)

The above is a start toward proving (5.20). We return to this bound later, and now shift
our focus towards proving a bound on ‖ûi‖2. To proceed, we must first find a bound for
|ρi−2,i|. We know the (1, 2) element of Mi is

η1,2 = α̂1ρ1,2 − α̂2ρ1,2 − β̂3ρ1,3,

and for ` > 2, the (`−1, `) element is

η`−1,` = β̂`−1ρ`−2,` + (α̂`−1 − α̂`)ρ`−1,` − β̂`+1ρ`−1,`+1.

Then, defining ξ` ≡ (α̂`−1 − α̂`)β̂`ρ`−1,` − β̂`η`−1,` for ` ∈ {2, . . . , i}, we have

β̂`β̂`+1ρ`−1,`+1 = β̂`−1β̂`ρ`−2,` + ξ` = ξ` + ξ`−1 + . . .+ ξ2.

This, along with (5.33), (5.37), (5.40), and (5.50) gives

β̂iβ̂i+1|ρi−1,i+1| ≤
i∑

`=2

|ξ`| ≤
i∑

`=2

(|α̂`−1|+ |α̂`|)|β̂`ρ`−1,`|+ |β̂`||η`−1,`|

≤ 2ε(i− 1)
((

(N + 2s+ 5)θ + (4s+ 9)τ̄k
)
σ + (10s+ 16)ūi

)
Γ̄kūi

+ 2ε(i− 1) · 3
(
n+ 10s+ 14

)
Γ̄2
kū

2
i . (5.51)

Rearranging (5.44) gives ûi − δui = Av̂i − β̂iv̂i−1, and multiplying each side by its own
transpose (and ignoring all terms of second order in ε), we obtain

ûTi ûi − 2ûTi δui = ‖Av̂i‖2
2 + β̂2

i ‖v̂i−1‖2
2−2β̂iv̂

T
i Av̂i−1. (5.52)

Rearranging (5.46) gives Av̂i−1 = β̂iv̂i + α̂i−1v̂i−1 + β̂i−1v̂i−2 − δv̂i−1, and premultiplying this
expression by β̂iv̂

T
i , we get

β̂iv̂
T
i Av̂i−1 = β̂2

i + δβ̂i, (5.53)

94

where, using the bounds in (5.30), (5.33), (5.37), (5.40), (5.47), and (5.51),

|δβ̂i| ≤ ε
(
2i− 1

)((
(N + 2s+ 5)θ + (4s+ 9)τ̄k

)
σ + (10s+ 16)ūi

)
Γ̄kūi

+ ε
(
2i− 1

)
· 3
(
n+ 10s+ 14

)
Γ̄2
kū

2
i . (5.54)

Adding 2ûTi δui to both sides of (5.52) and using (5.53), we obtain

‖ûi‖2
2 = ‖Av̂i‖2

2 + β̂2
i

(
‖v̂i−1‖2

2 − 2
)

+ δβ̃i, (5.55)

where δβ̃i = −2δβ̂i + 2ûTi δui, and, using the bounds in (5.45) and (5.54),

|δβ̃i| ≤ 4iε
(
(N + 2s+ 5)θ + (4s+ 9)τ̄k

)
σΓ̄kūi (5.56)

+ 2ε
((

2i− 1
)(

3(n+ 10s+ 14)Γ̄2
k + (10s+ 16)Γ̄k

)
+ (4s+ 6)Γ̄k

)
ū2
i .

Now, using (5.55), and since β̂2
i ≥ 0, we can write

‖ûi‖2
2 ≤ ‖ûi‖2

2 + β̂2
i ≤ σ2‖v̂i‖2

2 + β̂2
i

(
‖v̂i−1‖2

2 − 1
)

+ |δβ̃i|. (5.57)

Let µ ≡ max
{
ūi, σ

}
. We can now put the bounds in terms of ε0 and ε1, which are defined

in (5.17). Then, using (5.57), along with the bounds in (5.30), (5.37), and (5.56),

‖ûi‖2
2 ≤ σ2 + 2i(3ε0 + 2ε1)µ2. (5.58)

We consider the two possible cases for µ. First, if µ = σ, then

‖ûi‖2
2 ≤ σ2 (1 + 2i(3ε0 + 2ε1)) .

Otherwise, we have the case µ = ūi. Since the bound in (5.58) holds for all ‖ûi‖2
2, it also

holds for ū2
i = µ2, and thus, ignoring terms of second order in ε,

µ2 ≤ σ2 + 2i(3ε0 + 2ε1)µ2 ≤ σ2 + 2i(3ε0 + 2ε1)σ2 ≤ σ2 (1 + 2i(3ε0 + 2ε1)) ,

and, plugging this in to (5.58), we get

‖ûi‖2
2 ≤ σ2 (1 + 2i(3ε0 + 2ε1)) . (5.59)

In either case we obtain the same bound on ‖ûi‖2
2, so (5.59) holds.

Taking the square root of (5.59), we have

‖ûi‖2 ≤ σ (1 + i(3ε0 + 2ε1)) , (5.60)

and substituting (5.60) into (5.40), (5.47), and (5.50), we prove the bounds (5.14), (5.13),
and (5.20) in Theorem 1, respectively, assuming that i(3ε0 + 2ε1)� 1.

95

The only remaining inequality to prove is (5.16). We first multiply both sides of (5.38)
by their own transposes and then add α̂2

i − ‖ûi‖2
2 to both sides to obtain

β̂2
i+1‖v̂i+1‖2

2 + α̂2
i − ‖ûi‖2

2 = ‖Ŷkŵ′k,j‖2
2 + α̂2

i − ‖ûi‖2
2 + 2δwTi Ŷkŵ′k,j.

We then substitute in (5.55) on the left hand side, subtract β̂2
i+1 from both sides, and

rearrange to obtain

β̂2
i+1 + α̂2

i + β̂2
i − ‖Av̂i‖2

2 = ‖Ŷkŵ′k,j‖2
2 + α̂2

i − ‖ûi‖2
2 + 2δwTi Ŷkŵ′k,j + β̂2

i (‖v̂i−1‖2
2 − 1)

− β̂2
i+1(‖v̂i+1‖2

2 − 1) + δβ̃i.

Finally, using (5.30), (5.35), (5.37), (5.39), and (5.56), we arrive at the bound∣∣∣β̂2
i+1 + α̂2

i + β̂2
i − ‖Av̂i‖2

2

∣∣∣ ≤ 2i(3ε0 + 2ε1)σ2,

which proves (5.16) and thus completes the proof of Theorem 1.

5.1.3.2 Numerical Experiments

We give a brief example to illustrate the bounds in (5.13), (5.14), (5.15), and (5.16). We run
CA-Lanczos (Algorithm 26) in double precision with s = 4, 8, and 12 on a 2D Poisson matrix
with n = 256, ‖A‖2 = 7.93, using a random starting vector (the same random starting vector
was used for all tests).

For comparison, Figure 5.1 shows the results for classical Lanczos using the bounds
derived by Paige [140]. In Figure 5.1, in the top left plot, the blue curve gives the measured
value of orthogonality, |β̂i+1v̂

T
i v̂i+1|, and the black curve plots the upper bound, 2(n+4)‖A‖2ε.

In the top right plot, the blue curve gives the measured value of normality, |v̂Ti+1v̂i+1−1|, and
the black curve plots the upper bound, (n+ 4)ε. In the bottom left plot (labeled ‘Colbound’
in the plot title), the blue curve gives the measured value of the bound analogous to (5.13)
for ‖δv̂i‖2, and the black curve plots the upper bound, ε(7 + 5‖|A|‖2). In the bottom right
plot (labeled ‘Diffbound’ in the plot title), the blue curve gives the measured value of the
bound analogous to (5.16), and the black curve plots the upper bound, 4iε(3(n + 4)‖A‖2 +
(7 + 5‖|A|‖2))‖A‖2. All ‘measured’ values were computed in quad precision.

The results for CA-Lanczos are shown in Figures 5.2−5.10. The same tests were run for
three different s values for three different basis choices (see Section 3.2.5): monomial (Fig-
ures 5.2, 5.5, and 5.8), Newton (Figures 5.3, 5.6, and 5.9), and Chebyshev (Figures 5.4, 5.7,
and 5.10). For each of the four plots in each Figure, the blue curves give the measured (in
quad precision) values of the quantities on the left hand sides of (5.14) (top left), (5.15) (top
right), (5.13) (bottom left), and (5.16) (bottom right). The cyan curves give the maximum
of the measured values so far. The red curves give the value of Γ̄2

k as defined in Theorem 1,
and the blacks curves give the upper bounds on the right hand sides of (5.14), (5.15), (5.13),
and (5.16), respectively.

96

We see from Figures 5.2−5.10 that the upper bounds given in Theorem 1 are valid. In
particular, we can also see that the shape of the red curve plotting Γ̄2

k gives a good indication
of the shape of the cyan curves which show the maximum measured values up to the current
iteration. However, from, e.g., Figure 5.5 for the monomial basis, we see that if the basis has
a high condition number, as does the monomial basis here, the upper bound can be a very
large overestimate quantitatively, leading to bounds that are not particularly indicative of
the magnitude of the measured values. We will now show how we can use a better definition
of Γ̄k to obtain tighter, more descriptive bounds.

Tighter Bounds There is an easy way to improve the bounds by using a different definition
of Γ̄k to upper bound quantities in the proof of Theorem 1. Note that all quantities which we
have bounded by Γ̄k in Section 5.1.3 are of the form ‖|Ŷk||x|‖2/‖Ŷkx‖2. While the use of Γ̄k
as defined in Theorem 1 shows how the bounds depend on the conditioning of the computed
Krylov bases, we can obtain tighter and more descriptive bounds for (5.15) and (5.14) by
instead using the definition

Γ̄k,j ≡ max
x∈{ŵ′k,j ,û

′
k,j ,v̂

′
k,j ,v̂

′
k,j−1}

‖|Ŷk||x|‖2

‖Ŷkx‖2

. (5.61)

For the bound in (5.13), we can use the definition

Γ̄k,j ≡ max
{ ‖|Ŷk||Bk||v̂′k,j|‖2

‖|Bk|‖2‖Ŷkv̂′k,j‖2

, max
x∈{ŵ′k,j ,û

′
k,j ,v̂

′
k,j ,v̂

′
k,j−1}

,
‖|Ŷk||x|‖2

‖Ŷkx‖2

}
, (5.62)

and for the bound in (5.16), we can use the definition

Γ̄k,j ≡ max
{

Γ̄k,j−1,
‖|Ŷk||Bk||v̂′k,j|‖2

‖|Bk|‖2‖Ŷkv̂′k,j‖2

, max
x∈{ŵ′k,j ,û

′
k,j ,v̂

′
k,j ,v̂

′
k,j+1}

,
‖|Ŷk||x|‖2

‖Ŷkx‖2

}
. (5.63)

The value in (5.63) is monotonically increasing since the bound in (5.51) is a sum of bounds
from previous iterations.

In Figures 5.11−5.19 we plot bounds for the same problem, bases, and s values as Fig-
ures 5.2−5.10, but using the new definitions of Γ̄k,j. Comparing Figures 5.11−5.19 to Fig-
ures 5.2−5.10, we see that these bounds are better both quantitatively, in that they are
tighter, and qualitatively, in that they better replicate the shape of the curves for the mea-
sured normality and orthogonality values. The exception is for the plots of bounds in (5.16)
(bottom right plots), for which there is not much difference qualitatively. It is also clear that
the new definitions of Γ̄k correlate well with the size of the measured values (i.e., the shape
of the blue curve closely follows the shape of the red curve). Note that, unlike the definition
of Γ̄k in Theorem 1, using the definitions in (5.61)−(5.63) do not require the assumption of
linear independence of the basis vectors.

Although these new bounds can not be computed a priori, the right hand sides of (5.61),
(5.62), and (5.63) can be computed within each inner loop iteration for the cost of at most one

97

0 50 100 150 200

10
−10

10
0

10
10

10
20

Iteration

Orthogonality, Classic Lanczos

0 50 100 150 200

10
−10

10
0

10
10

10
20

Iteration

Normality, Classic Lanczos

0 50 100 150 200

10
−10

10
0

10
10

10
20

Iteration

ColBound, Classic Lanczos

0 50 100 150 200

10
−10

10
0

10
10

10
20

Iteration

Diffbound, Classic Lanczos

Figure 5.1: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for classical Lanczos on a 2D Poisson problem with
n = 256 with a random starting vector. Blue lines show the actual values (computed in quad precision) and
black lines show the upper bounds, taken from [140].

98

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=4,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=4,monomial basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=4,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=4,monomial basis

Iteration

Figure 5.2: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the monomial basis and s = 4
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

99

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=4,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=4,Newton basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=4,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=4,Newton basis

Iteration

Figure 5.3: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Newton basis and s = 4 on
a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

100

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=4,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=4,Chebyshev basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=4,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=4,Chebyshev basis

Iteration

Figure 5.4: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Chebyshev basis and s = 4
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

101

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Orthogonality, s=8,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Normality, s=8,monomial basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Colbound, s=8,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Diffbound, s=8,monomial basis

Iteration

Figure 5.5: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the monomial basis and s = 8
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

102

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Orthogonality, s=8,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Normality, s=8,Newton basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Colbound, s=8,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Diffbound, s=8,Newton basis

Iteration

Figure 5.6: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Newton basis and s = 8 on
a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

103

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Orthogonality, s=8,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Normality, s=8,Chebyshev basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Colbound, s=8,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Diffbound, s=8,Chebyshev basis

Iteration

Figure 5.7: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Chebyshev basis and s = 8
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

104

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Orthogonality, s=12,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Normality, s=12,monomial basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Colbound, s=12,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Diffbound, s=12,monomial basis

Iteration

Figure 5.8: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the monomial basis and s = 12
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

105

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Orthogonality, s=12,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Normality, s=12,Newton basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Colbound, s=12,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Diffbound, s=12,Newton basis

Iteration

Figure 5.9: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Newton basis and s = 12
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

106

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Orthogonality, s=12,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Normality, s=12,Chebyshev basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Colbound, s=12,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

10
30

Diffbound, s=12,Chebyshev basis

Iteration

Figure 5.10: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Chebyshev basis and s = 12
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), cyan lines show the maximum of the actual values obtained over all previous
iterations, black lines show the upper bounds from Theorem 1, and red lines show the value of Γ̄2

k as defined
in Theorem 1.

107

extra reduction per outer loop. This extra cost comes from the need to compute |Ŷk|T |Ŷk|,
although this could potentially be performed simultaneously with the computation of Ĝk

(line 4 in Algorithm 26). This means that meaningful bounds could be cheaply estimated
during the iterations. Implementing a scheme to improve numerical properties using this
information remains future work; some potential ideas are discussed further in Sections 6.7
and 6.5.

5.1.4 Accuracy of Eigenvalues

Theorem 1 is in the same form as Paige’s equivalent theorem for classical Lanczos [141],
except our definitions of ε0 and ε1 are about a factor Γ̄2

k larger (assuming s � n). This
amplification term, which can be bounded in terms of the maximum condition number of
the computed s-step Krylov bases, has significant consequences for the algorithm as we will
see in the next two sections. The equivalent forms of our theorem and Paige’s theorem allow
us to immediately apply his results from [141] to the s-step case; the only thing that changes
in the s-step case are the values of ε0 and ε1.

In this and the subsequent section, we reproduce the theorems of Paige and discuss their
application to the CA-Lanczos method. Note that we claim no contribution to the analysis
techniques used here. In fact, much of the text in the following sections is taken verbatim
from Paige [141], with only the notation changed to match the algorithms in Section 5.1.2.

Our contribution is showing that the theorems of Paige also apply to the CA-Lanczos
method under the assumption that (5.64) (and thus also (5.65)) holds. Also note that the
text in the paragraphs labeled ‘Comments’, which discusses the meaning of the results for
the s-step case, is our own.

We note that many of the bounds stated slightly differ from those given by Paige in [141].
We suspect that the bounds in [141] were obtained using ε0 < 1/100 rather than the specified
ε0 < 1/12, the former being the value used by Paige in his earlier work [138]. Such changes are
indicated by footnotes and carried through the remainder of the analysis, resulting in different
constants than those in [141]; the fundamental results and conclusions remain unchanged.

Assumptions In order to make use of Paige’s analysis [141], we must make the similar
assumptions that

β̂i+1 6= 0 for i ∈ {1, . . . ,m}, m(3ε0 + 2ε1) ≤ 1, and ε0 <
1

12
. (5.64)

These assumptions are used throughout the analysis. Note that (5.64) means that in order
to guarantee the applicability of Paige’s results for classical Lanczos to the CA-Lanczos case,
we must have

Γ̄2
k <

(
24ε(n+ 11s+ 15)

)−1

= O
(
1/(nε)

)
. (5.65)

Since the bounds that will be presented, as well as the bounds in Theorem 1, are not tight,
this condition on Γ̄2

k may be overly restrictive in practice. In paragraphs labeled ‘Comments’,

108

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=4,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=4,monomial basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=4,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=4,monomial basis

Iteration

Figure 5.11: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the monomial basis and s = 4
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

109

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=4,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=4,Newton basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=4,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=4,Newton basis

Iteration

Figure 5.12: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Newton basis and s = 4 on a 2D
Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values (computed
in quad precision), black lines show the upper bounds from Theorem 1 computed using the appropriate
definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined in (5.61)-(5.63).

110

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=4,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=4,Chebyshev basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=4,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=4,Chebyshev basis

Iteration

Figure 5.13: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Chebyshev basis and s = 4
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

111

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=8,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=8,monomial basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=8,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=8,monomial basis

Iteration

Figure 5.14: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the monomial basis and s = 8
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

112

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=8,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=8,Newton basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=8,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=8,Newton basis

Iteration

Figure 5.15: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Newton basis and s = 8 on a 2D
Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values (computed
in quad precision), black lines show the upper bounds from Theorem 1 computed using the appropriate
definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined in (5.61)-(5.63).

113

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=8,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=8,Chebyshev basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=8,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=8,Chebyshev basis

Iteration

Figure 5.16: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Chebyshev basis and s = 8
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

114

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=12,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=12,monomial basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=12,monomial basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=12,monomial basis

Iteration

Figure 5.17: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the monomial basis and s = 12
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

115

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=12,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=12,Newton basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=12,Newton basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=12,Newton basis

Iteration

Figure 5.18: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Newton basis and s = 12
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

116

0 50 100 150 200

10
−10

10
0

10
10

10
20

Orthogonality, s=12,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Normality, s=12,Chebyshev basis

Iteration

0 50 100 150 200

10
−10

10
0

10
10

10
20

Colbound, s=12,Chebyshev basis

Iteration
0 50 100 150 200

10
−10

10
0

10
10

10
20

Diffbound, s=12,Chebyshev basis

Iteration

Figure 5.19: Orthogonality (top left), Normality (top right), recurrence column error (bottom left), and
difference in recurrence column size (bottom right) for CA-Lanczos using the Chebyshev basis and s = 12
on a 2D Poisson problem with n = 256 with a random starting vector. Blue lines show the actual values
(computed in quad precision), black lines show the upper bounds from Theorem 1 computed using the
appropriate definition of Γ̄k in (5.61)-(5.63), and red lines show the appropriate value of Γ̄2

k as defined
in (5.61)-(5.63).

117

we comment on what happens to the bounds and analysis in the case that Γ̄2
k exceeds this

value, i.e., at least one computed s-step basis is ill-conditioned. As stated previously, we also
assume that no underflow or overflow occurs, and that all s-step Krylov bases are numerically
full rank.

Using (5.20), it can be shown that

‖δRm‖2
F ≤ σ2

((
5m− 4

)
ε20 + 4(m−1)ε0ε1 + 2m(m−1)ε21

)
(5.66)

where subscript F denotes the Frobenius norm. If we define

ε2 ≡
√

2 max (6ε0, ε1), (5.67)

then (5.66) gives
‖δRm‖F ≤ mσε2. (5.68)

Let the eigendecomposition of T̂m be

T̂mQ
(m) = Q(m) diag

(
µ

(m)
i

)
, (5.69)

for i ∈ {1, . . . ,m}, where the orthonormal matrix Q(m) has ith column q
(m)
i and (`, i) element

η
(m)
`,i , and the eigenvalues are ordered

µ
(m)
1 > µ

(m)
2 > · · · > µ(m)

m .

Note that it is assumed that the decomposition (5.69) is computed exactly. If µ
(m)
i is an

approximation to an eigenvalue λi of A, then the corresponding approximate eigenvector is
z

(m)
i , the ith column of

Z(m) ≡ V̂mQ
(m). (5.70)

We now review some properties of T̂m. Let ν
(m)
i , for i ∈ {1, . . . ,m−1}, be the eigenvalues

of the matrix obtained by removing the (t+ 1)st row and column of T̂m, ordered so that

µ
(m)
1 ≥ ν

(m)
1 ≥ µ

(m)
2 ≥ · · · ≥ ν

(m)
m−1 ≥ µ(m)

m .

It was shown in [174] that (
η

(m)
t+1,i

)2

=
m∏

`=1,` 6=i

δ`(t+ 1, i,m) (5.71)

δ`(t+ 1, i,m) ≡


µ
(m)
i −ν(m)

`

µ
(m)
i −µ(m)

`

` = 1, 2, . . . , i−1

µ
(m)
i −ν(m)

`−1

µ
(m)
i −µ(m)

`

` = i+ 1, . . . ,m

0 ≤ δ`(t+ 1, i,m) ≤1, ` = 1, . . . , i−1, i+ 1, . . . ,m. (5.72)

118

If we apply T̂m to the rth eigenvector of T̂t, where 1 ≤ r ≤ t < m,

T̂m

[
q

(t)
r

0m−t,1

]
=

[
µ

(t)
r q

(t)
r

β̂t+1η
(t)
t,re1

]
(5.73)

and from [188],

δt,r ≡ β̂t+1|η(t)
t,r | ≥ min

i
|µ(m)
i − µ(t)

r |. (5.74)

Definition 1. [141, Definition 1] We say that an eigenvalue µ
(t)
r of T̂t has stabilized to

within δt,r if, for every m > t, we know there is an eigenvalue of T̂m within δt,r of µ
(t)
r . We

will say µ
(t)
r has stabilized when we know it has stabilized to within γ(m + 1)ωσε2 where γ

and ω are small positive constants.

From (5.74), we can see that after t steps, µ
(t)
r has necessarily stabilized to within δt,r.

Multiplying (5.73) by q
(m)T
i , i ∈ {1, . . . ,m}, gives

(
µ

(m)
i − µ(t)

r

)
q

(m)T
i

[
q

(t)
r

0m−t,1

]
= β̂t+1η

(m)
t+1,iη

(t)
t,r . (5.75)

Another result is obtained by applying eigenvectors of T̂m to each side of (5.19). Multi-

plying (5.19) on the left by q
(m)T
` and on the right by q

(m)
i for some i, ` ∈ {1, . . . ,m}, and

using (5.69) and (5.70), we obtain(
µ

(m)
` − µ(m)

i

)
q

(m)T
` Rmq

(m)
i = β̂m+1z

(m)T
` v̂m+1η

(m)
m,i + ε

(m)
`,i , (5.76)

where ε
(m)
`,i ≡ q

(m)T
` δRmq

(m)
i , and

|ε(m)
`,i | ≤ mσε2, (5.77)

which follows from (5.68). Taking i = `, the left hand side of (5.76) is zero, and we get

z
(m)T
i v̂m+1 = −

ε
(m)
i,i

β̂m+1η
(m)
m,i

, (5.78)

and thus by (5.74), z
(m)
i is almost orthogonal to v̂m+1 if we have not yet obtained a small

eigenvalue interval about µ
(m)
i , the eigenvector approximation z

(m)
i does not have a small

norm, and Γ̄k, and thus ε0 and ε2, are small.

Definition 2. [141, Definition 2] We will say that an eigenpair (µ, z) represents an eigenpair
of A to within δ if we know that ‖Az − µz‖/‖z‖ ≤ δ.

119

Thus if (µ, z) represents an eigenpair of A to within δ, then (µ, z) is an exact eigenpair
of A perturbed by a matrix whose 2-norm is no greater than δ, and if µ is the Rayleigh
quotient of A with z, then the perturbation will be taken symmetric.

Multiplying (5.9) on the right by q
(m)
i , we get

AV̂mq
(m)
i = V̂mT̂mq

(m)
i + β̂m+1v̂m+1e

T
mq

(m)
i + δV̂mq

(m)
i .

Using (5.69) and (5.70), this can be written

Az
(m)
i − µ(m)

i z
(m)
i = β̂m+1η

(m)
m,i v̂m+1 + δV̂mq

(m)
i . (5.79)

Now, using the above and (5.13), (5.15), and (5.74), if λ` are the eigenvalues of A, then

min
`
|λ` − µ(m)

i | ≤
‖Az(m)

i − µ(m)
i z

(m)
i ‖

‖z(m)
i ‖

≤ δm,i(1 + ε0) +m1/2σε1

‖z(m)
i ‖

, (5.80)

and if
‖z(m)

i ‖ ≈ 1, (5.81)

then (µ
(m)
i , z

(m)
i) represents an eigenpair of A to within about δm,i. Unfortunately, one can

not expect (5.81) to hold in finite precision.
From (5.70) and (5.18), we see that

‖z(m)
i ‖2 − 1 = 2q

(m)T
i Rmq

(m)
i + q

(m)T
i diag(V̂ T

m V̂m − Im)q
(m)
i , (5.82)

where by (5.15), the last term on the right has magnitude bounded by ε0/2.
Using (5.70), we can write V̂ T

t = Q(t)Z(t)T , and multiplying on the right by v̂t+1,

V̂ T
t v̂t+1 = Q(t)bt, where bt = Z(t)T v̂t+1. (5.83)

Using (5.78), we have eTr bt = −ε(t)r,r/(β̂t+1η
(t)
t,r), and by (5.71) and (5.75), this gives

q
(m)T
i Rmq

(m)
i = −

m−1∑
t=1

η
(m)
t+1,i

t∑
r=1

ε
(t)
r,r

β̂t+1η
(t)
t,r

q
(m)T
i

[
q

(t)
r

0m−t,1

]
(5.84)

= −
m−1∑
t=1

(
η

(m)
t+1,i

)2
t∑

r=1

ε
(t)
r,r

µ
(m)
i − µ(t)

r

(5.85)

= −
m−1∑
t=1

t∑
r=1

 ε
(t)
r,r

µ
(m)
i − µ(m)

c(r)

·
m∏
`=1
`6=i

`6=c(r)

δ`(t+ 1, i,m)

 . (5.86)

120

From (5.82), under the assumptions in (5.64), ‖z(m)
i ‖ will be significantly different from

unity only if the right hand sides of these last three numbered equations are large. In this
case (5.84) shows there must be a small δt,r = β̂t+1|η(t)

t,r |, and some µ
(t)
r has therefore stabilized.

Equation (5.85) shows that some µ
(t)
r must be close to µ

(m)
i , and combining this with (5.84)

we will show that at least one such µ
(t)
r has stabilized. Finally from (5.86), we see that there

is at least one µ
(m)
c(r) close to µ

(m)
i , so that µ

(m)
i cannot be a well-separated eigenvalue of T̂m.

Conversely, if µ
(m)
i is a well-separated eigenvalue of T̂m, then (5.81) holds, and if µ

(m)
i has

stabilized, then it and z
(m)
i are a satisfactory approximation to an eigenpair of A.

Note that if the assumptions in (5.64) do not hold, ‖z(m)
i ‖ can be significantly differ from

unity if |q(m)T
i Rmq

(m)
i | is large and/or if ε0/2 is large (e.g., due to a large Γ̄2

k; see (5.17)).

If ‖z(m)
i ‖ is significantly different from unity and ε0/2 is large, we can not necessarily draw

meaningful conclusions about the eigenvalues of T̂m via (5.84), (5.85), and (5.86) based on

the size of ‖z(m)
i ‖.

We will now quantify these claims. We first seek an upper bound on |q(m)T
i Rmq

(m)
i |.

From (5.68) and (5.77),

t∑
r=1

(
ε(t)r,r
)2 ≤

t∑
r=1

t∑
c=1

(
ε(t)r,c
)2

= ‖δRt‖2
F ≤ t2σ2ε22, (5.87)

and using the Cauchy-Schwarz inequality,(t∑
r=1

|ε(t)r,r|
)2

≤
t∑

r=1

(
ε(t)r,r
)2

t∑
r=1

1 ≤ t3σ2ε22. (5.88)

Similarly, using (5.86) and the bound in (5.72),

|q(m)T
i Rmq

(m)
i | ≤

m5/2σε2

(5/2) min
` 6=i
|µ(m)
i − µ(m)

` |
. (5.89)

This bound is weak, but it shows that if

min
6̀=i
|µ(m)
i − µ(m)

` | ≥ m5/2σε2, (5.90)

then from (5.89), |q(m)T
i Rmq

(m)
i | ≤ 2/5, and substituting this into (5.82),∣∣‖z(m)

i ‖2 − 1
∣∣ ≤ 2

∣∣q(m)T
i Rmq

(m)
i

∣∣+
ε0
2
≤ 4

5
+
ε0
2
. (5.91)

Thus with the condition that ε0 = 2ε(n+ 11s+ 15)Γ̄2
k < 1/12 (see (5.64)), we can then

guarantee that
0.39 < ‖z(m)

i ‖ < 1.4, 1 (5.92)

1Note that these bounds differ from those given by Paige in [141], which are 0.42 < ‖z(m)
i ‖ < 1.4; we

suspect that the bounds in [141] were obtained using ε0 < 1/100 rather than the specified ε0 < 1/12, the
former being the value used by Paige in his earlier work [138].

121

which has implications for (5.80).

Comments Note that we could slightly loosen the bound (5.64) on ε0 and still carry
through much of the preceding analysis, although in (5.91) we have assumed that ε0/2 < 1/5.

If we instead have ε0/2 ≥ 1/5, we get the trivial bound 0 ≤ ‖z(m)
i ‖2. This bound is not

useful because in the worst case, z
(m)
i is the 0-vector, which indicates either breakdown of

the method or rank-deficiency of some Ŷk.
Note that from (5.70) and (5.15),∣∣∣∣∣

m∑
i=1

‖z(m)
i ‖2

2 −m

∣∣∣∣∣ ≤ mε0
2
.

It was also proven in [138] that if µ
(m)
i , . . . , µ

(m)
i+c are c + 1 eigenvalues of T̂m which are close

to each other but separate from the rest, then

i+c∑
`=i

‖z(m)
` ‖

2 ≈ c+ 1. (5.93)

This means that it is possible to have several close eigenvalues of T̂m corresponding to one
simple eigenvalue of A. In this case, the columns of Zc ≡ [z

(m)
i , . . . , z

(m)
i+c] will all correspond

to one eigenvector z of A having zT z = 1. We now state another result.

Lemma 2. Let T̂m and V̂m be the result of m steps of the CA-Lanczos method with (5.17)
and (5.67), and let Rm be the strictly upper triangular matrix defined in (5.18). Then for

each eigenpair (µ
(m)
i , q

(m)
i) of T̂m, there exists a pair of integers (r, t) with 0 ≤ r ≤ t < m

such that
δt,r ≡ β̂t+1|η(t)

t,r | ≤ ψi,m and |µ(m)
i − µ(t)

r | ≤ ψi,m,

where

ψi,m ≡
m2σε2∣∣√3 q
(m)T
i Rmq

(m)
i

∣∣ .
Proof. For r ≤ t < m we define, using (5.75),

γr,t ≡ (β̂t+1η
(t)
t,r)
−1q

(m)T
i

[
q

(t)
r

0m−t,1

]
=

η
(m)
t+1,i

µ
(m)
i − µ(t)

r

. (5.94)

Using this notation and (5.84), we can write

q
(m)T
i Rmq

(m)
i = −

m−1∑
t=1

η
(m)
t+1,i

t∑
r=1

γr,tε
(t)
r,r ≡ −eTCq̄,

122

where above, e is the vector with every element unity, C is an (m − 1)-by-(m − 1) upper

triangular matrix with (r, t) element γr,tε
(t)
r,r, and q̄ contains the last m− 1 elements of q

(m)
i .

Letting E be the (m−1)-square matrix with (r, t) element ε
(t)
r,r and combining this with (5.87)

gives

|q(m)T
i Rmq

(m)
i | ≤ ‖eTC‖2‖q̄‖2 ≤ ‖C‖2‖e‖2 ≤ m1/2‖C‖F ≤ m1/2 max

r≤t<m
|γr,t| · ‖E‖F . (5.95)

Using (5.87), we can write

‖E‖2
F =

m−1∑
t=1

t∑
r=1

(
ε(t)r,r
)2 ≤ σ2ε22

m−1∑
t=1

t2 ≤ σ2ε22m
3

3
,

and thus we can take the square root above and substitute into (5.95) to get

|q(m)T
i Rmq

(m)
i | ≤

m2σε2|γr,t|√
3

,

where we take the r and t giving the maximum value of |γr,t|. For this r and t, substituting

in the expression for γr,t from (5.94) into the bound above, rearranging, and using η
(m)
t+1,i ≤ 1

then gives the desired results

δt,r = β̂t+1|η(t)
t,r | ≤

m2σε2∣∣√3 q
(m)T
i Rmq

(m)
i

∣∣ and (5.96)

|µ(m)
i − µ(t)

r | ≤
m2σε2∣∣√3 q
(m)T
i Rmq

(m)
i

∣∣ . (5.97)

Comments For classical Lanczos, these bounds show that if ‖z(m)
i ‖2 is significantly dif-

ferent from unity, then for some t < m there is an eigenvalue of T̂t which has stabilized
and is close to µ

(m)
i [141]. For the CA-Lanczos case, the same holds with the assumptions

in (5.64). These assumptions are necessary because otherwise, for CA-Lanczos, ‖z(m)
i ‖ can

significantly differ from unity if |q(m)T
i Rmq

(m)
i | is large and/or if ε0/2 is large (due to a large

Γ̄2
k, see (5.17)). If ‖z(m)

i ‖ is much different from unity and ε0/2 is large, we can not necessarily
say that there is an eigenvalue of T̂t which has stabilized to within a meaningful bound even
if |q(m)T

i Rmq
(m)
i | is small.

Theorem 2. If, with the conditions of Lemma 2, an eigenvalue µ
(m)
i of T̂m produced by

CA-Lanczos is stabilized so that

δm,i ≡ β̂m+1|η(m)
m,i | ≤

√
3m2σε2, (5.98)

123

and ε0 < 1/12, then for some eigenvalue λc of A,

|λc − µ(m)
i | ≤ (m+ 1)3σε2. (5.99)

Proof. Suppose (5.98) holds.
(i) If

|q(m)T
i Rmq

(m)
i | ≤

3

8
− ε0

2
, (5.100)

then by (5.15) and (5.82) we have

‖z(m)
i ‖ ≥

√
1−

(
2
∣∣q(m)T
i Rmq

(m)
i

∣∣+
ε0
2

)
≥
√

1

4
+
ε0
2
≥ 1

2
. (5.101)

Substituting (5.17) and (5.67) into (5.80), we obtain

min
`
|λ` − µ(m)

i | ≤
δm,i(1 + ε0) +

√
mσε1

‖z(m)
i ‖

≤ σε2

(
13
√

3

6
·m2 +

√
2m

)
.

Since m ≥ 1, m3 ≥ m2 and m ≥
√
m, and it follows that

(m+ 1)3 = m3 + 3m2 + 3m+ 1 > 4m2 + 3
√
m ≥ 13

√
3

6
m2 +

√
2m.

From this it follows that (5.99) holds.
In the other case that (5.100) is false, take ` = 1 and write

t1 = m, r1 = i. (5.102)

(ii) In this case we know from (5.96) and (5.97) that there exist positive integers r`+1 and
t`+1 with

r`+1 ≤ t`+1 < t` (5.103)

such that

max
(
δt`+1,r`+1

, |µt`r` − µ
t`+1
r`+1
|
)
≤ t2`σε2√

3
(

3
8
− ε0

2

) ≤ t2`σε2√
3
(

1
3

) ≤ √3t2`σε2. (5.104)

If the equivalent of (5.100), and thus (5.101), holds for (r`+1, t`+1), i.e.,

|q(t`+1)T
r`+1

Rt`+1
q(t`+1)
r`+1
| ≤ 3/8− ε0/2,

then using (5.80), for some eigenvalue λc of A,

|λc − µ(t`+1)
r`+1
| ≤ 2

(√
3t2`σε2(1 + ε0) +

√
t`+1σε1

)
≤

(
13
√

3t2`
6

+
√

2t`+1

)
σε2,

124

which gives

|λc − µ(m)
i | ≤ |λc − µ(t`+1)

r`+1
|+
∑̀
p=1

|µ(tp)
rp − µ

(tp+1)
rp+1
|

≤

(
13
√

3t2`
6

+
√

2t`+1 +
√

3
∑̀
p=1

t2p

)
σε2

≤

(
13
√

3m2

6
+
√

2m+

√
3m(m+ 1)(2m+ 1)

6

)
σε2

≤ (m+ 1)3σε2,

as required by (5.99), where the penultimate inequality follows from (5.102) and (5.103). If
the equivalent of (5.100) does not hold, then replace ` by `+ 1 and return to (ii).

We see that T̂1 = α̂1, q
(1)
1 = 1, so that z

(1)
1 = v1 satisfies (5.101), proving that we must

encounter an (r`+1, t`+1) pair satisfying (5.101), which completes the proof.

Comments As in [141], the bound (5.99) is not tight, and thus should in no way be
considered an indication of the maximum attainable accuracy. In practice we can still observe
convergence of the eigenvalues of Tm to eigenvalues of A with larger Γ̄2

k than allowed by
ε0 < 1/12. The constraint ε0 ≤ 1/12 comes from the proof of the theorem above, which
requires that 3/8 − ε0/2 ≥ 1/3. We believe that the restriction on the size of ε0 could be
loosened by a constant factor by changing the form of the right hand side of [141, Equation
3.37] such that meaningful bounds are still obtained. This remains future work.

The following shows that if (5.98) holds we have an eigenvalue with a superior error
bound to (5.99) and that we also have a good eigenvector approximation.

Corollary 1. If (5.98) holds, then for the final (r, t) pair in Theorem 2, (µ
(t)
r , V̂tq

(t)
r) is an

exact eigenpair for a matrix within 6t2σε2 of A.

Proof. From Theorem 2, if there is an i, 1 ≤ i ≤ m such that (5.98) holds, then there exist
r and t, 1 ≤ r ≤ t ≤ m such that

δt,r ≤
√

3t2σε2 and ‖z(t)
r ‖ ≥

1

2
,

125

and both µ
(t)
r and µ

(m)
i are close to the same eigenvalue of A. It follows from (5.79) that

(A+ δA(t)
r)z(t)

r = µ(t)
r z

(t)
r , with (5.105)

δA(t)
r ≡ −(β̂t+1η

(t)
t,r v̂t+1 + δVtq

(t)
r)

z
(t)T
r

‖z(t)
r ‖2

, and

‖δA(t)
r ‖ ≤

(
|δt,r| · ‖v̂t+1‖+ ‖δV̂t‖ · ‖q(t)

r ‖
) 1

‖z(t)
r ‖

≤ 2
(√

3t2σε2(1 + ε0) +
√
tσε1

)
(5.106)

≤ 6t2σε2,
2 (5.107)

where we have used (5.13), (5.15), and (5.67). So, z
(t)
r , which lies in the range of V̂r, is an

exact eigenvector of a matrix close to A, and µ
(t)
r is the corresponding exact eigenvalue.

As in the classical Lanczos case, the above is also the result we obtain for an eigenvalue
of T̂m produced by CA-Lanczos that is stabilized and well-separated.

Paige showed that one can also consider the accuracy of the µ
(m)
i as Rayleigh quo-

tients [141]. With no rounding errors, µ
(m)
i is the Rayleigh quotient of A with z

(m)
i and this

gives the best bound from (5.79) and (5.80) with ε = 0, i.e., in exact arithmetic. Here (5.78)
and (5.79) can be combined to give

z
(m)T
i Az

(m)
i − µ(m)

i z
(m)T
i z

(m)
i = −ε(m)

i,i + z
(m)T
i δV̂mq

(m)
i , (5.108)

so if ‖z(m)
i ‖ ≈ 1, then µ

(m)
i is close to the Rayleigh quotient

%
(m)
i = z

(m)T
i Az

(m)
i /z

(m)T
i z

(m)
i .

If (5.90) holds, then ‖z(m)
i ‖> 0.39, and thus using (5.108) and the bounds in (5.13), (5.67),

and (5.77),

|%(m)
i − µ(m)

i | ≤ 9mσε2.

If ‖z(m)
i ‖ is small, then it is unlikely that µ

(m)
i will be very close to %

(m)
i , since a small

z
(m)
i will probably be inaccurate due to rounding errors. The equation (5.93) suggests that

at least one of a group of close eigenvalues will have corresponding ‖z(m)
i ‖ & 1. In fact,

using (5.85), (5.88), and an argument similar to that used in Theorem 2, it can be shown

that every µ
(m)
i lies within m5/2σε2 of a Rayleigh quotient of A, and so with (5.17) and (5.67),

all the µ
(m)
i lie in the interval

λmin −m5/2σε2 ≤ µ
(m)
i ≤ λmax +m5/2σε2. (5.109)

This differs from the bound on the distance of µ
(m)
i from an eigenvalue of A in (5.99), which

requires that µ
(m)
i has stabilized.

126

We emphasize that whatever the size of δm,i, the eigenvalue µ
(m)
i of T̂m with eigenvector

q
(m)
i has necessarily stabilized to within δm,i ≡ β̂m+1|eTmq

(m)
i |. If µ

(m)
i is a separated eigenvalue

of T̂m so that (5.90) holds, then it follows from (5.79), (5.80), and (5.92) that the eigenpair

(µ
(m)
i , V̂mq

(m)
i) represents an eigenpair of A to within

3
(
δm,i +

√
mσε1

)
. (5.110)

On the other hand, if µ
(m)
i is one of a close group of eigenvalues of T̂m, so that (5.90) does

not hold, then we have found a good approximation to an eigenvalue of A. In this case
either (µ

(m)
i , V̂mq

(m)
i) represents an eigenpair of A to within (5.110) (see [141]), or there

exists 1 ≤ r ≤ t < m such that

max
(
δt,r, |µ(m)

i − µ(t)
r |
)
≤
√

3m2σε2, (5.111)

as from Lemma 2. Then, it follows from Theorem 2 that µ
(m)
i is within

(
(m+1)3 +

√
3m2

)
σε2

of an eigenvalue of A. The δm,i and µ
(m)
i can be computed from T̂m efficiently, and these

results show how we can obtain intervals from them which are known to contain eigenvalues
of A, whether δm,i is large or small.

5.1.5 Convergence of Eigenvalues

Theorem 2 showed that, assuming (5.64) holds, if an eigenvalue of T̂m has stabilized to within√
3m2σε2, then it is within (m+ 1)3σε2 of an eigenvalue of A, regardless of how many other

eigenvalues of T̂m are close, and Corollary 1 showed we had an eigenpair of a matrix within
6m2σε2 of A. It is now shown that, assuming (5.64), eigenvalues do stabilize to this accuracy
using the CA-Lanczos method, and we can specify how quickly this occurs.

In [138], it was shown that at least one eigenvalue of T̂m must have stabilized by iteration
m = n. This is based on (5.78), which indicates that significant loss of orthogonality implies
stabilization of at least one eigenvalue. Using (5.77) and (5.83), if at step m ≤ n

δ`,i ≡ β̂`+1|η(`)
`,i | ≥

√
3m2σε2, where 1 ≤ i ≤ ` < m, (5.112)

then we have

‖Rm‖2
F ≤

1

3m4

m−1∑
t=1

t3 ≤ 1

12
.

Let σ1 ≥ · · · ≥ σm be the singular values of V̂m. A result of Rump [152, Lemma 2.2]
states that given a matrix X ∈ Rn×m, if ‖I − XTX‖2 ≤ α < 1, then

√
1− α ≤ σi(X) ≤√

1 + α, for i ∈ {1, . . . ,m}. Using the above bound with (5.15), (5.18), and (5.64), we have
‖I − V̂ T

m V̂m‖2 < 1, and then with α = 2/
√

12 + 1/24, we apply Lemma 2.2 from [152] to

127

obtain the bounds
0.61 < σi(V̂m) < 1.3, 3 for i ∈ {1, . . . ,m}. (5.113)

Note that if (5.112) does not hold, then we already have an eigenpair of a matrix close

to A. If we now consider the q
(m)
i that minimizes δm,i for T̂m, we see from (5.77), (5.78),

and (5.83) that

‖β̂m+1η
(m)
m,i V̂

T
m v̂m+1‖ ≤ m3/2σε2. (5.114)

Theorem 3. For the CA-Lanczos method, if n(3ε0 + ε1) ≤ 1 and ε0 < 1/12, then at least
one eigenvalue of T̂n must be within (n+ 1)3σε2 of an eigenvalue of the n×n matrix A, and

there exist r ≤ t ≤ n such that (µ
(t)
r , z

(t)
r) is an exact eigenpair of a matrix within 6t2σε2 of

A.

Proof. If (5.112) does not hold for m = n, then an eigenvalue has stabilized to that accuracy
before m = n. Otherwise, (5.112) holds for m = n, so from (5.113), V̂n is nonsingular, and
then (5.114) shows that for the smallest δn,i of T̂n,

δn,i ≤
n3/2σε2

0.6
≤
√

3n2σε2

since ‖V̂ T
m v̂m+1‖ ≥ σm‖v̂m+1‖ > 0.6 from (5.113) and (5.15). So at least one eigenvalue must

have stabilized to within
√

3m2σε2 by iteration m = n, and from Theorem 2 this eigenvalue
must be within (n+ 1)3σε2 of an eigenvalue of A. Furthermore, Corollary 1 shows that there

is an exact eigenpair (µ
(t)
r , z

(t)
r), r ≤ t ≤ n, of a matrix within 6t2σε2 of A.

This shows that the CA-Lanczos algorithm gives at least one eigenvalue of A to high
accuracy by iteration m = n, assuming restrictions on the sizes of ε0 and ε1.

We now extend Paige’s results to specify how quickly we can expect to find eigenvalues
and eigenvectors of A using the CA-Lanczos method in practice. We first consider the
Krylov sequence on which the Lanczos algorithm and several other methods are based. For
symmetric A, one way of using m steps of the Krylov sequence is to form an n×m matrix
V whose columns span the range of

[v1, Av1, . . . , A
m−1v1] (5.115)

and use the eigenvalues of
V TAV q = µV TV q (5.116)

as approximations to some of the eigenvalues of A. The Lanczos algorithm with full re-
orthogonalization forms Krylov subspaces for a matrix very close to A with the eigenvalues
of T being very close to those of (5.116) [141]. We now show how CA-Lanczos without full
reorthogonalization parallels these results.

3Again, these bounds differ from those given in [141], which are 0.41 < σi(V̂m) < 1.6; we suspect that
the bounds in [141] were obtained by squaring both sides of the bound and using ε0 < 1/100 rather than
ε0 < 1/12, the former being the value used in [138].

128

Theorem 4. For m iterations of the CA-Lanczos method, with (5.17), (5.67), and m such
that (5.112) holds, the m Lanczos vectors (columns of V̂m) span a Krylov subspace of a matrix
within (3m)1/2σε2 of A.

Proof. From (5.9),

AV̂m = V̂mT̂m + β̂m+1v̂m+1e
T
m + δV̂m = V̂m+1T̂m+1,m + δV̂m,

where T̂m+1,m is the matrix of the first m columns of T̂m+1. Then with (5.13), (5.67),
and (5.113),

(A+ δAm)V̂m = V̂m+1T̂m+1,m, with

δAm ≡ −δV̂m(V̂ T
m V̂m)−1V̂ T

m , and

‖δAm‖F = trace(δAmδA
T
m)1/2

=

(
m∑
i=1

|(δV̂m(V̂ T
m V̂m)−1δV̂ T

m)i,i|

)1/2

≤ (3m)1/2σε2.

Comments This is analogous to the result of Paige for classical Lanczos: until an eigen-
value of T̂m−1 has stabilized, i.e., while (5.112) holds, the vectors v̂1, . . . , v̂m+1 computed
correspond to an exact Krylov sequence for the matrix A + δAm. As a result of this, and
since it follows from (5.79) that (A+ δA

(t)
r)z

(t)
r = µ

(t)
r z

(t)
r , if we assume that the s-step bases

generated in each outer loop are conditioned such that (5.64) holds, then the CA-Lanczos
algorithm can be thought of as a numerically stable way of computing a Krylov sequence,
at least until the corresponding Krylov subspace contains an exact eigenvector of a matrix
within 6m2σε2 of A.

When T̂m and V̂m are used to solve the eigenproblem of A, if we follow (5.115) and (5.116),
we want the eigenvalues and eigenvectors of T̂m to be close to those of

V̂ T
mAV̂mq = µV̂ T

m V̂mq, where qT q = 1, (5.117)

as would be the case with classical Lanczos with full reorthogonalization. If (5.112) holds,
then the range of V̂m is close to what we expect from the Lanczos method with full reorthog-
onalization, and thus the eigenvalues of (5.117) would be close (how close depends on the
value of ε2) to those obtained using full reorthogonalization.

Theorem 5. If V̂m comes from the s-step Lanczos method with (5.17) and (5.67), and (5.112)
holds, then for any µ and q which satisfy (5.117), (µ, V̂mq) is an exact eigenpair for a matrix
within

(
2δ + 2m1/2σε2

)
of A, where

η ≡ eTmq, δ ≡ β̂m+1|η|.

129

Proof. Define
r ≡ AV̂mq − µV̂mq. (5.118)

Then
r = V̂m(T̂m − µI)q + β̂m+1ηv̂m+1 + δV̂mq,

where we have used (5.9). Since from (5.117), V̂ T
m r = 0,

(T̂m − µI)q = −(V̂ T
m V̂m)−1V̂ T

m (β̂m+1ηv̂m+1 + δV̂mq), and (5.119)

r = Pm(β̂m+1ηv̂m+1 + δV̂mq), (5.120)

where Pm = I−V̂m(V̂ T
m V̂m)−1V̂ T

m is the projector orthogonal to the range of V̂m. Using (5.112)
and (5.114), we can bound

‖V̂ T
m v̂m+1‖ ≤

m3/2σε2√
3m2σε2

≤ (3m)−1/2. (5.121)

We can also write

‖Pmv̂m+1‖2 = v̂Tm+1Pmv̂m+1 = v̂Tm+1v̂m+1 − v̂Tm+1V̂m(V̂ T
m V̂m)−1V̂ T

m v̂m+1,

and then using (5.15), (5.113), and (5.121),

1− ε0
2
− 1

m
≤ 1− ε0

2
−
(

1√
3m
· 1

0.62
· 1√

3m

)
≤ ‖Pmv̂m+1‖2 ≤ 1 +

ε0
2
. (5.122)

Using (5.13), (5.67), (5.120), and (5.122), we can write the bound

‖r‖ ≤ ‖Pmv̂m+1‖ · |β̂m+1η|+ ‖Pm‖‖δV̂mq‖ ≤ (1 + ε0) δ +

√
mσε2√

2
.

Then by (5.118),

(A− δA)V̂mq = µV̂mq, where δA ≡ rqT V̂ T
m

‖V̂mq‖2
,

with

‖δA‖F =
‖r‖
‖V̂mq‖

≤ 1

0.6

(
(1 + ε0) δ +

m1/2σε2√
2

)
≤ 2δ + 2m1/2σε2, (5.123)

where we have used (5.113).

130

Since from (5.117), V̂ T
m r = 0,

(T̂m − µI)q = −(V̂ T
m V̂m)−1V̂ T

m (β̂m+1ηv̂m+1 + δV̂mq). (5.124)

Then ordering the eigenvalues of T̂m such that δm,1 ≥ δm,2 ≥ · · · ≥ δm,m, and assuming
(5.112) holds for ` = m, then for any eigenpair of (5.117), (5.124) gives, using (5.13), (5.67),
(5.113), and (5.114),

‖T̂mq − µq‖ ≤
(

2 +
3mδ

δm,m

)
m1/2σε2. (5.125)

From this we can write(
2 +

3mδ

δm,m

)
m1/2σε2 ≥ ‖T̂mq − µq‖2 ≥ min

i
|µ(m)
i − µ|.

Then, from (5.112), δm,m ≥
√

3m2σε2, and thus

|µ(m)
x − µ| ≡ min

i
|µ(m)
i − µ| ≤ 2m1/2σε2 +

√
3δ√
m
. (5.126)

Then, for any t > m,

T̂t

[
q

0t−m,1

]
=

[
T̂mq

β̂m+1ηe1

]
,

and together with (5.125),

min
i
|µ(t)
i − µ| ≤ 2m1/2σε2 + δ

(
1 +

3

m

)1/2

. (5.127)

Equations (5.126) and (5.127) can then be combined to give

min
i
|µ(t)
i − µ(m)

x | ≤ 4m1/2σε2 + 4δ.

Thus, assuming ε2 is small enough, an eigenvalue of T̂m close to µ has stabilized to about
4δ, where µ is within 2δ of an eigenvalue of A (see [141, Theorem 4.3]).

It can also be shown that for each µ
(m)
i of T̂m,

min
µ in (5.117)

|µ− µ(m)
i | ≤ 2m1/2σε2 +

√
3δm,i√
m

.

This means that when (µ
(m)
i , V̂mq

(m)
i) represents an eigenpair of A to within about δm,i, there

is a µ of (5.117) within about δm,i of µ
(m)
i , assuming m ≥ 3.

Thus, assuming no breakdown occurs and the size of Γ̄k satisfies (5.64), these results say
the same thing for the CA-Lanczos case as in the classical Lanczos case: until an eigen-
value has stabilized, the CA-Lanczos algorithm behaves very much like the error-free Lanczos
process, or the Lanczos algorithm with reorthogonalization.

131

5.1.6 Numerical Experiments

In this section, we perform a variety of numerical experiments to demonstrate the proven
bounds for CA-Lanczos. We first illustrate our two definitions for Γ̄k and the implications
these values have for the convergence of Ritz values. The test problem we will use for all
tests is a diagonal matrix with n = 100 with eigenvalues evenly spaced between λmin = 0.1
and λmax = 100 (note that this is the ‘Strakoš’ matrix test problem originally from [170]
with parameters n = 100, λ1 = 0.1, λn = 100, and ρ = 1.0). We use a random starting
vector with entries uniformly distributed between [0, 1]; the same starting vector is used in
all tests.

In each test, the method was run for 100 iterations. At iteration m = 100, we compute
the Ritz values (eigenvalues of T̂m) and plot these along with the true eigenvalues of A.
We also plot the bounds on the interval containing the Ritz values given by (5.109), i.e.,

λmin −m5/2σε2 ≤ µ
(m)
i ≤ λmax +m5/2σε2. For reference, in Figure 5.20, we show the results

for the classical Lanczos method. The Ritz values are plotted as blue dots, the eigenvalues of
A are plotted as red tick marks, and the dashed vertical lines mark the bounds λmin−m5/2σε2
and λmax +m5/2σε2. We see here that Paige’s analysis leads to tight bounds on the possible
range of Ritz values for this test problem. It is also worth noting that from the scatter plot,
we can see that many of the extremal eigenvalues are well approximated by the Ritz values
produced by classical Lanczos, although some eigenvalues in the interior of the spectrum are
not well approximated by any Ritz value.

In Figures 5.21, 5.22, and 5.23, we show the same data for CA-Lanczos tests for both the
monomial and Chebyshev bases, with s = 2, s = 4, and s = 12, respectively. In the top row
of each plot, we show data illustrating the impact of the basis condition number on our error
bounds in this section; for CA-Lanczos with the monomial basis (left) and the Chebyshev
basis (right), the blue lines show the value of Γ̄2

k as defined in Theorem 1 and the red lines
show the value of Γ̄2

k,j as defined in (5.61) which allow for tighter bounds (note that the
results of Sections 5.1.4 and 5.1.5 only depend on assumptions about value of ε0 in (5.15),
so we need not consider the other definitions of Γ̄k in (5.62) and (5.63)). The black dotted
lines in these plots show the maximum allowable value of Γ̄2

k such that Paige’s results hold
for the CA-Lanczos case, as defined in (5.65), i.e., Γ̄2

k < (24ε(n + 11s + 15))−1. Of the two
scatter plots shown in each figure, the topmost corresponds to the monomial basis and the
other corresponds to the Chebyshev basis. Again, the dashed vertical lines mark the bounds
λmin −m5/2σε2 and λmax + m5/2σε2, where ε2 is computed using the corresponding value of
Γ̄2
k,j (the red lines) in iteration m = 100.

In Figure 5.21 for CA-Lanczos with s = 2, we see that Γ̄2
k,j remains well below the black

dotted line for both the monomial and Chebyshev bases, and the bounds on the range of
Ritz values are tight. As s is increased to s = 4 we see from Figure 5.22 that the value of
Γ̄2
k,j becomes larger for the monomial basis, and this results in looser, but still valid bounds

as indicated by the dashed vertical lines in the corresponding scatter plot. For s = 12 with
the monomial basis (Figure 5.23) however, we see from the top left plot that Γ̄2

k,j exceeds
the black dotted line, and thus the assumptions in (5.65) no longer hold, which indicates

132

that the bounds on the range of Ritz values are no longer reliable. Indeed we can see from
the corresponding scatter plot that Ritz values appear outside of these bounds. The Γ̄2

k,j

values for the Chebyshev basis for s = 4 and s = 12 remain relatively smaller, indicating
that the Chebyshev basis remains well-conditioned in these cases, and thus the bounds on
the possible range of Ritz values shown in the scatter plots remain relatively tight.

0 10 20 30 40 50 60 70 80 90 100

Figure 5.20: Ritz values and bounds for classical Lanczos after 100 iterations for the ‘Strakoš’ problem.
Blue dots shows Ritz value computed after 100 iterations of classical Lanczos, red tick marks denote the true
eigenvalues of A, and dashed vertical lines show the bounds on the range of computed Ritz values given by
Paige [141].

For the same test problem, we show the convergence of Ritz values to eigenvalues of A
in Figures 5.24-5.27. For each test, we show three plots. On the left, for each iteration
m we plot values |β̂m+1η

(m)
m,i | for each i ∈ {1, . . . ,m}, which are the error bounds in exact

arithmetic, i.e., minc |λc − µ(m)
i | ≤ |β̂m+1η

(m)
m,i | (this can be seen by taking ε = 0 in (5.80)).

The middle plots show the error bounds on minc |λc − µ(m)
i | in finite precision: from (5.110)

and (5.111), we have that

min
c
|λc − µ(m)

i | ≤ max
(

3(|β̂m+1η
(m)
m,i |+

√
mσε1), ((m+ 1)3 +

√
3m2)σε2

)
, (5.128)

where for classical Lanczos plots the values of ε1 and ε2 used are those given by Paige [141]
and for the CA-Lanczos plots the values of ε1 and ε2 are computed using the tighter definition
of Γ̄2

k,j given in (5.61). On the right, we show the actual values of minc |λc − µ(m)
i | for each

Ritz value in each iteration. Values reported as zeroes by Matlab were flushed to the value
10−19 in the plots in order to be visible on the log scale.

Figure 5.24 shows these plots for the classical Lanczos method, using the bounds of
Paige [141]. In Figures 5.25, 5.26, and 5.27, we show the same plots for the CA-Lanczos
method with s = 2, s = 4, and s = 12, respectively. In each figure for CA-Lanzos, we show
results for both the monomial basis (top row) and the Chebyshev basis (bottom row).

The first thing to notice in Figure 5.24 is that, as mentioned by Paige, even for the classical
Lanczos method the finite precision bounds should not be interpreted as an indication of
attainable accuracy. In fact the convergence of the Ritz values to eigenvalues of A more
closely follows the exact arithmetic error bounds. Looking at Figures 5.25- 5.27, we can
see that this is also the case for CA-Lanczos, and in fact, as Γ̄2

k,j becomes larger, the finite
precision bounds are even worse indicators of actual accuracy. As long as Γ̄2

k,j remains below

133

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=2,monomial basis

Iteration
0 20 40 60 80 100

10
0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=2,Chebyshev basis

Iteration

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Figure 5.21: Ritz values and bounds for CA-Lanczos with s = 2 after 100 iterations for the ‘Strakoš’
problem. Plots in the top row show the values of Γ̄2

k as defined in Theorem 1 (blue line) and the values of
Γ̄2
k,j as defined in (5.61) (red line) throughout the iterations for the monomial basis (left) and the Chebyshev

basis (right). The black dotted lines plot the bound in (5.65). Scatter plots below these plots show the cor-
responding Ritz values computed at iteration m = 100 for the monomial basis (topmost) and the Chebyshev
basis (bottommost). Blue dots shows Ritz value computed after 100 iterations, red tick marks denote the
true eigenvalues of A, and dashed vertical lines show the bounds on the range of computed Ritz values given
by (5.109).

134

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=4,monomial basis

Iteration
0 20 40 60 80 100

10
0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=4,Chebyshev basis

Iteration

0 20 40 60 80 100

0 10 20 30 40 50 60 70 80 90 100

Figure 5.22: Ritz values and bounds for CA-Lanczos with s = 4 after 100 iterations for the ‘Strakoš’
problem. Plots in the top row show the values of Γ̄2

k as defined in Theorem 1 (blue line) and the values of
Γ̄2
k,j as defined in (5.61) (red line) throughout the iterations for the monomial basis (left) and the Chebyshev

basis (right). The black dotted lines plot the bound in (5.65). Scatter plots below these plots show the cor-
responding Ritz values computed at iteration m = 100 for the monomial basis (topmost) and the Chebyshev
basis (bottommost). Blue dots shows Ritz value computed after 100 iterations, red tick marks denote the
true eigenvalues of A, and dashed vertical lines show the bounds on the range of computed Ritz values given
by (5.109).

135

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=12,monomial basis

Iteration
0 20 40 60 80 100

10
0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=12,Chebyshev basis

Iteration

0 20 40 60 80 100

0 10 20 30 40 50 60 70 80 90 100

Figure 5.23: Ritz values and bounds for CA-Lanczos with s = 12 after 100 iterations for the ‘Strakoš’
problem. Plots in the top row show the values of Γ̄2

k as defined in Theorem 1 (blue line) and the values of
Γ̄2
k,j as defined in (5.61) (red line) throughout the iterations for the monomial basis (left) and the Chebyshev

basis (right). The black dotted lines plot the bound in (5.65). Scatter plots below these plots show the cor-
responding Ritz values computed at iteration m = 100 for the monomial basis (topmost) and the Chebyshev
basis (bottommost). Blue dots shows Ritz value computed after 100 iterations, red tick marks denote the
true eigenvalues of A, and dashed vertical lines show the bounds on the range of computed Ritz values given
by (5.109).

136

the level indicated by (5.65), which is the case for all CA-Lanczos tests except the monomial
basis with s = 12 in Figure 5.27, the exact arithmetic error bounds generally give a better
estimate of accuracy of the computed Ritz values.

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Exact arithmetic error bounds, Classical Lanczos

Iteration

D
is

ta
nc

e
to

 n
ea

re
st

 e
ig

en
va

lu
e

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Finite precision error bounds, Classical Lanczos

Iteration

D
is

ta
nc

e
to

 n
ea

re
st

 e
ig

en
va

lu
e

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Computed Ritz values, Classical Lanczos

Iteration

D
is

ta
nc

e
to

 n
ea

re
st

 e
ig

en
va

lu
e

Figure 5.24: Ritz value convergence and convergence bounds for classical Lanczos for the ‘Strakoš’ problem.

The left plot shows the exact error bounds |β̂m+1η
(m)
m,i | for each i ∈ {1, . . . ,m}, the middle plot shows the

finite precision error bounds as given by Paige [141], and the right plot shows the the actual values of

minc |λc−µ(m)
i | for each Ritz value in each iteration, where values measured as 0 have been flushed to 10−19.

This same data is visualized in another way in Figure 5.28. In this figure, plots on
the left show lower bounds on the number of Ritz values that have converged to within a
given tolerance according to the exact arithmetic error bounds. That is, for each iteration,
we plot |{|β̂m+1η

(m)
m,i | ≤ tol : 1 ≤ i ≤ m}|. Plots on the right show the actual number of

Ritz values that have converged to within a given tolerance, i.e., for each iteration we plot
|{minc |λc − µ(m)

i | ≤ tol : 1 ≤ i ≤ m}|. Note that this may count multiple copies of a single
eigenvalue.

We plot results for two different tolerance values, tol = 10−12 (solid lines) and tol = 10−8

(dashed lines), for the classical Lanczos method (‘CL’, black) and the CA-Lanczos method
with the monomial basis (‘CA-M’, blue) and the Chebyshev basis (‘CA-C’, red). We have
generated these same plots for s = 2 (top row), s = 4 (middle row), and s = 12 (bottom row)
(note that the plotted black lines for classical Lanczos are the same in each row). For s = 2,
we can see from plots on the right that CA-Lanczos with both the monomial and Chebyshev
bases finds about the same number of eigenvalues to high accuracy after 100 iterations. For
s = 4, the CA-Lanczos method with both the monomial and Chebyshev basis find about
the same number of eigenvalues to the accuracy of 10−8 as the classical method. However,
use of the monomial basis prohibits the computation of any eigenvalues to high accuracy
in this case, whereas the CA-Lanczos method with the Chebyshev basis still finds about as
many eigenvalues to high accuracy as the classical method. For the higher value s = 12, the
Chebyshev basis finds almost as many eigenvalues to the accuracy of 10−8 as the classical
Lanczos method, and finds about a third of those found by the classical Lanczos method to
high accuracy. Use of the monomial basis with s = 12 results in no eigenvalues found to
either tolerance level.

137

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

E
xa

ct
 a

rit
hm

et
ic

 e
rr

or
 b

ou
nd

s,
 s

=
2,

m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

F
in

ite
 p

re
ci

si
on

 e
rr

or
 b

ou
nd

s,
 s

=
2,

m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

C
om

pu
te

d
R

itz
 v

al
ue

s,
 s

=
2,

m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

E
xa

ct
 a

rit
hm

et
ic

 e
rr

or
 b

ou
nd

s,
 s

=
2,

C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

F
in

ite
 p

re
ci

si
on

 e
rr

or
 b

ou
nd

s,
 s

=
2,

C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

C
om

pu
te

d
R

itz
 v

al
ue

s,
 s

=
2,

C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

F
ig

u
re

5.
25

:
R

it
z

va
lu

e
co

n
v
er

ge
n

ce
an

d
co

n
ve

rg
en

ce
b

o
u

n
d

s
fo

r
C

A
-L

a
n

cz
o
s

w
it

h
s

=
2

fo
r

th
e

‘S
tr

a
ko

š’
p

ro
b

le
m

,
fo

r
th

e
m

o
n

o
m

ia
l

b
as

is
(t

op
ro

w
)

an
d

th
e

C
h
eb

y
sh

ev
b

as
is

(b
ot

to
m

ro
w

).
T

h
e

le
ft

p
lo

ts
sh

ow
th

e
ex

a
ct

er
ro

r
b

o
u

n
d

s
|β̂

m
+
1
η
(m

)
m

,i
|f

o
r

ea
ch
i
∈
{1
,.
..
,m
},

th
e

m
id

d
le

p
lo

ts
sh

ow
th

e
fi

n
it

e
p

re
ci

si
on

er
ro

r
b

ou
n

d
s

a
s

g
iv

en
in

(5
.1

2
8
),

a
n

d
th

e
ri

g
h
t

p
lo

t
sh

ow
s

th
e

th
e

a
ct

u
a
l

va
lu

es
o
f

m
in

c
|λ

c
−
µ
(m

)
i
|f

o
r

ea
ch

R
it

z
va

lu
e

in
ea

ch
it

er
at

io
n

,
w

h
er

e
va

lu
es

m
ea

su
re

d
a
s

0
h

av
e

b
ee

n
fl

u
sh

ed
to

1
0−

1
9
.

138

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

10
5

E
xa

ct
 a

rit
hm

et
ic

 e
rr

or
 b

ou
nd

s,
 s

=
4,

m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

10
5

F
in

ite
 p

re
ci

si
on

 e
rr

or
 b

ou
nd

s,
 s

=
4,

m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

10
5

C
om

pu
te

d
R

itz
 v

al
ue

s,
 s

=
4,

m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

10
5

E
xa

ct
 a

rit
hm

et
ic

 e
rr

or
 b

ou
nd

s,
 s

=
4,

C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

10
5

F
in

ite
 p

re
ci

si
on

 e
rr

or
 b

ou
nd

s,
 s

=
4,

C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

15

10
−

10

10
−

5

10
0

10
5

C
om

pu
te

d
R

itz
 v

al
ue

s,
 s

=
4,

C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

F
ig

u
re

5.
26

:
R

it
z

va
lu

e
co

n
v
er

ge
n

ce
an

d
co

n
ve

rg
en

ce
b

o
u

n
d

s
fo

r
C

A
-L

a
n

cz
o
s

w
it

h
s

=
4

fo
r

th
e

‘S
tr

a
ko

š’
p

ro
b

le
m

,
fo

r
th

e
m

o
n

o
m

ia
l

b
as

is
(t

op
ro

w
)

an
d

th
e

C
h
eb

y
sh

ev
b

as
is

(b
ot

to
m

ro
w

).
T

h
e

le
ft

p
lo

ts
sh

ow
th

e
ex

a
ct

er
ro

r
b

o
u

n
d

s
|β̂

m
+
1
η
(m

)
m

,i
|f

o
r

ea
ch
i
∈
{1
,.
..
,m
},

th
e

m
id

d
le

p
lo

ts
sh

ow
th

e
fi

n
it

e
p

re
ci

si
on

er
ro

r
b

ou
n

d
s

a
s

g
iv

en
in

(5
.1

2
8
),

a
n

d
th

e
ri

g
h
t

p
lo

t
sh

ow
s

th
e

th
e

a
ct

u
a
l

va
lu

es
o
f

m
in

c
|λ

c
−
µ
(m

)
i
|f

o
r

ea
ch

R
it

z
va

lu
e

in
ea

ch
it

er
at

io
n

,
w

h
er

e
va

lu
es

m
ea

su
re

d
a
s

0
h

av
e

b
ee

n
fl

u
sh

ed
to

1
0−

1
9
.

139

0
20

40
60

80
10

0
10

−
20

10
−

10

10
0

10
10

E
xa

ct
 a

rit
hm

et
ic

 e
rr

or
 b

ou
nd

s,
 s

=
12

,m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

10

10
0

10
10

F
in

ite
 p

re
ci

si
on

 e
rr

or
 b

ou
nd

s,
 s

=
12

,m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

10

10
0

10
10

C
om

pu
te

d
R

itz
 v

al
ue

s,
 s

=
12

,m
on

om
ia

l b
as

is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

10

10
0

10
10

E
xa

ct
 a

rit
hm

et
ic

 e
rr

or
 b

ou
nd

s,
 s

=
12

,C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

10

10
0

10
10

F
in

ite
 p

re
ci

si
on

 e
rr

or
 b

ou
nd

s,
 s

=
12

,C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

0
20

40
60

80
10

0
10

−
20

10
−

10

10
0

10
10

C
om

pu
te

d
R

itz
 v

al
ue

s,
 s

=
12

,C
he

by
sh

ev
 b

as
is

Ite
ra

tio
n

Distance to nearest eigenvalue

F
ig

u
re

5.
27

:
R

it
z

va
lu

e
co

n
ve

rg
en

ce
an

d
co

n
ve

rg
en

ce
b

o
u

n
d

s
fo

r
C

A
-L

a
n

cz
o
s

w
it

h
s

=
1
2

fo
r

th
e

‘S
tr

a
k
o
š’

p
ro

b
le

m
,

fo
r

th
e

m
o
n

o
m

ia
l

b
as

is
(t

op
ro

w
)

an
d

th
e

C
h
eb

y
sh

ev
b

as
is

(b
ot

to
m

ro
w

).
T

h
e

le
ft

p
lo

ts
sh

ow
th

e
ex

a
ct

er
ro

r
b

o
u

n
d

s
|β̂

m
+
1
η
(m

)
m

,i
|f

o
r

ea
ch
i
∈
{1
,.
..
,m
},

th
e

m
id

d
le

p
lo

ts
sh

ow
th

e
fi

n
it

e
p

re
ci

si
on

er
ro

r
b

ou
n

d
s

a
s

g
iv

en
in

(5
.1

2
8
),

a
n

d
th

e
ri

g
h
t

p
lo

t
sh

ow
s

th
e

th
e

a
ct

u
a
l

va
lu

es
o
f

m
in

c
|λ

c
−
µ
(m

)
i
|f

o
r

ea
ch

R
it

z
va

lu
e

in
ea

ch
it

er
at

io
n

,
w

h
er

e
va

lu
es

m
ea

su
re

d
a
s

0
h

av
e

b
ee

n
fl

u
sh

ed
to

1
0−

1
9
.

140

0 20 40 60 80 100
0

10

20

30

40

50
Exact arithmetic error bounds, s=2

Iteration

N
um

be
r

w
ith

in
 to

le
ra

nc
e

CL, tol=1e−12
CL, tol=1e−8
CA−M, tol=1e−12
CA−M, tol=1e−8
CA−C, tol=1e−12
CA−C, tol=1e−8

0 20 40 60 80 100
0

10

20

30

40

50
Converged Ritz values, s=2

Iteration

N
um

be
r

w
ith

in
 to

le
ra

nc
e

CL, tol=1e−12
CL, tol=1e−8
CA−M, tol=1e−12
CA−M, tol=1e−8
CA−C, tol=1e−12
CA−C, tol=1e−8

0 20 40 60 80 100
0

10

20

30

40

50
Exact arithmetic error bounds, s=4

Iteration

N
um

be
r

w
ith

in
 to

le
ra

nc
e

CL, tol=1e−12
CL, tol=1e−8
CA−M, tol=1e−12
CA−M, tol=1e−8
CA−C, tol=1e−12
CA−C, tol=1e−8

0 20 40 60 80 100
0

10

20

30

40

50
Converged Ritz values, s=4

Iteration

N
um

be
r

w
ith

in
 to

le
ra

nc
e

CL, tol=1e−12
CL, tol=1e−8
CA−M, tol=1e−12
CA−M, tol=1e−8
CA−C, tol=1e−12
CA−C, tol=1e−8

0 20 40 60 80 100
0

10

20

30

40

50
Exact arithmetic error bounds, s=12

Iteration

N
um

be
r

w
ith

in
 to

le
ra

nc
e

CL, tol=1e−12
CL, tol=1e−8
CA−M, tol=1e−12
CA−M, tol=1e−8
CA−C, tol=1e−12
CA−C, tol=1e−8

0 20 40 60 80 100
0

10

20

30

40

50
Converged Ritz values, s=12

Iteration

N
um

be
r

w
ith

in
 to

le
ra

nc
e

CL, tol=1e−12
CL, tol=1e−8
CA−M, tol=1e−12
CA−M, tol=1e−8
CA−C, tol=1e−12
CA−C, tol=1e−8

Figure 5.28: Number of converged Ritz values and lower bounds for the ‘Strakoš’ problem. Plots on the left
show lower bounds on the number of Ritz values that have converged to within a given tolerance according to

the exact arithmetic error bounds, i.e., |{|β̂m+1η
(m)
m,i | ≤ tol : 1 ≤ i ≤ m}|. Plots on the right show the actual

number of Ritz values that have converged to within a given tolerance, i.e., |{minc |λc−µ(m)
i | ≤ tol : 1 ≤ i ≤

m}|. Results are shown for two different tolerance values, tol = 10−12 (solid lines) and tol = 10−8 (dashed
lines), for the classical Lanczos method (‘CL’, black) and the CA-Lanczos method with the monomial basis
(‘CA-M’, blue) and the Chebyshev basis (‘CA-C’, red). For CA-Lanczos we show tests for s = 2 (top row),
s = 4 (middle row), and s = 12 (bottom row).

141

We show one more experiment, again using the same matrix and starting vector, in
order to demonstrate the connection between the loss of orthogonality among the Lanc-
zos vectors and the convergence of Ritz values in the CA-Lanczos method. Recall that
by (5.78), the loss of orthogonality of the (m + 1)-st Lanczos vector can be expressed as

z
(m)T
i v̂m+1 = −ε(m)

i,i /β̂m+1η
(m)
m,i , where ε

(m)
i,i ≤ mσε2. Figure 5.29 shows results for the classical

Lanczos method. For each iteration m, the red line shows the maximum loss of orthog-
onality, maxi |z(m)T

i v̂m+1|, and the blue line shows mini |β̂m+1η
(m)
m,i |. The black solid line

shows maxi |β̂m+1η
(m)
m,i z

(m)T
i v̂m+1| = maxi |ε(m)

i,i |, and the dashed black line plots mσε2, which
by (5.78) and (5.77) is a bound for the solid black line. For classical Lanczos we use the
value of ε2 given by Paige [141]. Paige’s fundamental result [141] that loss of orthogonality
corresponds to convergence of a Ritz value is clearly seen in Figure 5.29.

We plot the same data for CA-Lanczos with s = 2, s = 4, s = 8, and s = 12 using
both the monomial basis (Figure 5.30) and the Chebyshev basis (Figure 5.31). For the CA-
Lanczos plots we use the value of ε2 computed using the tighter definition of Γ̄2

k,j given in
(5.61). For reference, plots on the left show the corresponding values of the two definitions
of Γ̄2

k throughout the iterations; these are the same plots that appeared in Figures 5.21-5.23
(except for the case s = 8). As a reminder, in plots on the left, the blue lines show the value
of Γ̄2

k as defined in Theorem 1 and the red lines show the value of Γ̄2
k,j as defined in (5.61),

and the black dotted lines show the maximum allowable value of Γ̄2
k as defined in (5.65), i.e.,

Γ̄2
k < (24ε(n+ 11s+ 15))−1.

In Figure 5.30, we can see that the larger the value of Γ̄2
k,j grows, the sooner orthogo-

nality is lost, and that this corresponds to convergence of a Ritz value to a larger tolerance
level. From the plots for s = 12, it is clear that as soon as Γ̄2

k,j grows above the level in-
dicated in (5.65), the result that loss of orthogonality implies convergence of a Ritz value
no longer holds; around the same iteration where Γ̄2

k,j exceeds the bound indicated by the
black dotted line, orthogonality is immediately lost although no Ritz values have converged.
In Figure 5.31, we see that Γ̄2

k,j remains small indicating that the Chebyshev basis remains
well conditioned, and thus despite the larger value of the bound mσε2, loss of orthogonality
corresponds to convergence of a Ritz value to around the same accuracy as in the classical
case and this occurs around the same iteration as for classical Lanczos.

These results give us hope towards the development of methods for ensuring good nu-
merical properties in CA-Lanczos and other CA-KSMs by maintaining a small Γ̄k,j value,
which as these tests show, is usually a good indication of whether or not the results of Paige
apply. As mentioned, the definition leading to tighter bounds in (5.61) can be computed
within each inner loop iteration for the cost of (at most) one extra reduction per outer
loop by computing |Ŷk|T |Ŷk|, which can potentially be performed simultaneously with the
computation of Ĝk (line 4 in Algorithm 26). Thus the value of Γ̄2

k,j (the red lines) could
be cheaply monitored during the iterations. Some potential ideas on how to enforce the
restriction (5.65) are discussed further in Sections 6.7 and 6.5.

142

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., classical Lanczos

Iteration

Figure 5.29: Loss of orthogonality and convergence of Ritz values for classical Lanczos for the ‘Strakoš’

problem. The red line shows the maximum loss of orthogonality, maxi |z(m)T
i v̂m+1|, the blue line shows

mini |β̂m+1η
(m)
m,i |, the black solid line shows maxi |β̂m+1η

(m)
m,i z

(m)T
i v̂m+1|, and the dashed black line plots

mσε2.

5.1.7 Conclusions

In this section, we have presented a complete rounding error analysis of the CA-Lanczos
method. The derived bounds are analogous to those of Paige for classical Lanczos [140], but
also depend on a amplification factor Γ̄2

k, which depends on the condition number of the
computed s-step Krylov bases.

We have further shown that the results of Paige for classical Lanczos [141] also apply
to the CA-Lanczos method as long as the computed s-step bases remain well-conditioned.
As in the classical Lanczos case, the upper bounds in this paper and in [30] are likely large
overestimates. We stress, as did Paige, that the value of these bounds is in the insight they
give rather than their tightness. In practice, we have observed that accurate eigenvalue
estimates of A can be found with much looser restrictions than indicated by (5.64), and in
some cases even in spite of a numerically rank-deficient basis.

Our analysis and extension of Paige’s results confirms the observation that the condi-
tioning of the Krylov bases plays a large role in determining finite precision behavior, and
also indicates that the s-step method can be made suitable for practical use in many cases,
offering both speed and accuracy. The next step is to extend the subsequent analyses of
Paige, in which a type of augmented backward stability for the classical Lanczos method is
proved [142]. In [12], Bai proves a result for nonsymmetric Lanczos analogous to the results
of Paige, namely, that if a Ritz value is well-conditioned, convergence implies loss of orthog-
onality. We conjecture that our results for CA-Lanczos could be extended in the same way
to the nonsymmetric CA-Lanczos method.

This analysis also inspires the development of practical techniques for improving CA-
Lanczos based on our results. In Chapter 6, we discuss potential ways of controlling the

143

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=2,monomial basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=2,monomial basis

Iteration

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=4,monomial basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=4,monomial basis

Iteration

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=8,monomial basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=8,monomial basis

Iteration

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=12,monomial basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=12,monomial basis

Iteration

Figure 5.30: Loss of orthogonality and convergence of Ritz values for CA-Lanczos with the monomial basis
for the ‘Strakoš’ problem, for s = 2 (top row), s = 4 (second row from the top), s = 8 (second row from
the bottom), and s = 12 (bottom row). For plots on the left, blue lines show the values of Γ̄2

k as defined
in Theorem 1, red lines show the values of Γ̄2

k,j as defined in (5.61), and black dotted lines plot the bound

in (5.65). For plots on the right, the red line shows the maximum loss of orthogonality, maxi |z(m)T
i v̂m+1|,

the blue line shows mini |β̂m+1η
(m)
m,i |, the black solid line shows maxi |β̂m+1η

(m)
m,i z

(m)T
i v̂m+1|, and the dashed

black line plots mσε2.

144

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=2,Chebyshev basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=2,Chebyshev basis

Iteration

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=4,Chebyshev basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=4,Chebyshev basis

Iteration

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=8,Chebyshev basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=8,Chebyshev basis

Iteration

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Gamma values, s=12,Chebyshev basis

Iteration
0 20 40 60 80 100

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Orth. vs. Ritz conv., s=12,Chebyshev basis

Iteration

Figure 5.31: Loss of orthogonality and convergence of Ritz values for CA-Lanczos with the Chebyshev
basis for the ‘Strakoš’ problem, for s = 2 (top row), s = 4 (second row from the top), s = 8 (second row from
the bottom), and s = 12 (bottom row). For plots on the left, blue lines show the values of Γ̄2

k as defined
in Theorem 1, red lines show the values of Γ̄2

k,j as defined in (5.61), and black dotted lines plot the bound

in (5.65). For plots on the right, the red line shows the maximum loss of orthogonality, maxi |z(m)T
i v̂m+1|,

the blue line shows mini |β̂m+1η
(m)
m,i |, the black solid line shows maxi |β̂m+1η

(m)
m,i z

(m)T
i v̂m+1|, and the dashed

black line plots mσε2.

145

basis conditioning such that (5.64) holds. We also discuss how our bounds could guide the
use of extended or mixed precision in s-step Krylov methods; that is, rather than control
the conditioning of the computed s-step base (5.64) could be satisfied by decreasing the unit
roundoff ε using techniques either in hardware or software.

5.2 Convergence of CA-KSMs for Solving Linear

Systems

In this section, we derive Lanczos-type matrix recurrences governing the CA-BICG and
CA-CG methods in finite precision arithmetic, which demonstrate the relationship of these
algorithms to their classical counterparts. We will use the term ‘CA-(BI)CG’ to indicate
application to both CA-BICG and CA-CG. A derivation of the CA-BICG method appears
in Algorithm 8 in Section 4.2; a derivation of the CA-CG method is deferred to Section 5.3,
although CA-CG could also be obtained by taking A = AT and simplifying CA-BICG in
Algorithm 8.

Using the recurrence, we extend the results of Tong and Ye for classical BICG [176] to
derive an upper bound on the norm of the updated residual in finite precision CA-(BI)CG
in terms of the residual norm of exact GMRES applied to a perturbed matrix, multiplied by
an amplification factor. Our bound enables comparison of the finite precision CA-(BI)CG
and classical BICG in terms of amplification factors. For CA-(BI)CG, the amplification
factor depends heavily on the quality of s-step polynomial bases generated in each outer
loop. As a side effect, by ignoring perturbation terms, we obtain an equivalent bound for
the exact arithmetic case. Our bound also provides an analytical explanation for commonly-
observed convergence behavior of CA-(BI)CG, namely, that convergence may occur despite
(near) linear dependence among the Krylov vectors, which can occur as a result of the
finite precision Lanczos process, as in the classical method, as well as from numerical rank
deficiencies in the generated s-step polynomial bases. We note that this Section is adapted
from the technical report [29].

5.2.1 The CA-(BI)CG Recurrence

We refer the reader to the derivation of CA-(BI)CG in Section 4.2 and to the CA-(BI)CG
algorithm given in Algorithm 8. Recall that, within the inner loop of Algorithm 8, in step
j of outer loop k, we update the length-(2s + 1) coefficients for the (BI)CG vectors as
linear combinations of the columns in Yk and Ỹk rather than explicitly update the length-n
(BI)CG vectors, as in classical (BI)CG. As before, the coefficient vectors are denoted with
prime symbols (e.g., rsk+j = Ykr′k,j for j ∈ {1, . . . , s+ 1}). The inner iteration updates then
become

r′k,j+1 = r′k,j − αsk+jB(Y)
k p′k,j and (5.129)

p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j, (5.130)

146

for j ∈ {1, . . . , s}.
We can rearrange (5.129) and (5.130) as

B(Y)
k p′k,j =

1

αsk+j

(
r′k,j − r′k,j+1

)
for j ∈ {1, . . . , s}, and (5.131)

r′k,j = p′k,j − βsk+j−1p
′
k,j−1 for j ∈ {2, . . . , s+ 1}. (5.132)

Premultiplying (5.132) by Yk, and using Yk[r′k,j, p′k,j] = Y
k
[r′k,j, p

′
k,j] for j ∈ {1, . . . , s}, we

obtain
Y
k
r′k,j = Y

k
p′k,j − βsk+j−1Ykp

′
k,j−1 (5.133)

for j ∈ {2, . . . , s}. When j = 1, we have

Y
k
r′k,1 = Yk−1r

′
k−1,s+1

= Yk−1p
′
k−1,s+1 − βskYk−1

p′k−1,s

= Y
k
p′k,1 − βskYk−1

p′k−1,s,

which gives a valid expression for the j = 1 case.
Now, we define (2s+ 1)-by-j matrices

R′k,j =
[
r′k,1, r

′
k,2, . . . , r

′
k,j

]
and P ′k,j =

[
p′k,1, p

′
k,2, . . . , p

′
k,j

]
.

We can then write (5.133) in block form as

Y
k
R′k,j = Y

k
P ′k,jUk,j − βskYk−1

p′k−1,se
T
1 , (5.134)

where

Uk,j =


1 −βsk+1

1
. . .
. . . −βsk+j−1

1

 .
Premultiplying (5.134) by A, we obtain

AY
k
R′k,j = AY

k
P ′k,jUk,j − βskAYk−1

p′k−1,se
T
1 . (5.135)

We can also write (5.131) in block form as

B(Y)
k P ′k,j = R′k,jLk,jΛ

−1
k,j −

1

αsk+j

r′k,j+1e
T
j , (5.136)

where Λk,j = diag (αsk+1, . . . , αsk+j) and

Lk,j =


1
−1 1

.

−1 1

 .

147

If we premultiply (5.136) by Yk and postmultiply by Uk,j, we obtain

YkB(Y)
k P ′k,jUk,j = YkR′k,jLk,jΛ−1

k,jUk,j −
1

αsk+j

Ykr′k,j+1e
T
j ,

which can be written

AY
k
P ′k,jUk,j = Y

k
R′k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j

Ykr′k,j+1e
T
j (5.137)

since AY
k

= YkB(Y)
k and YkR′k,j = Y

k
R′k,j for j < s+ 1. We can then combine (5.135)

and (5.137) to obtain

AY
k
R′k,j = Y

k
R′k,jTk,j −

βsk
αsk
Y
k−1

r′k−1,se
T
1 −

1

αsk+j

Ykr′k,j+1e
T
j , (5.138)

for j ∈ {1, . . . , s}, where Tk,j = Lk,jΛ
−1
k,jUk,j + e1

βsk
αsk
eT1 . Note when k = 0, βsk

αsk
is defined to

be 0.
We can now combine outer loop iterations in block form to write the CA-(BI)CG recur-

rence for iterations 1 through sk + j. Let Y
k

= [Y
0
, . . . ,Y

k
]. Let

R′k,j =


R′0,s

R′1,s
. . .

R′k,j


and

Tsk+j =


1
α1

− β1
α1

− 1
α1

1
α2

+ β1
α1

. . .
. βsk+j−1

αsk+j−1

− 1
αsk+j−1

1
αsk+j

+
βsk+j−1

αsk+j−1

 .
Then by (5.138), we can write

AY
k
R′k,j = Y

k
R′k,jTsk+j −

1

αsk+j

Ykr′k,j+1e
T
sk+j.

Since we can write the (BI)CG residual vectors as Rsk+j = [r1, . . . , rsk+j] = Y
k
R′k,j, and

rsk+j+1 = Ykr′k,j+1, we can write the above as

ARsk+j = Rsk+jTsk+j −
1

αsk+j

rsk+j+1e
T
sk+j,

which gives us the same governing equation for iterations 1 through sk + j as the classical
(BI)CG algorithm in exact arithmetic [176]. Note that a similar relation holds for the dual
Krylov vectors r̃sk+j and p̃sk+j.

148

5.2.2 CA-(BI)CG in Finite Precision

The goal of this section is to derive a Lanczos-type recurrence for finite precision CA-(BI)CG
of the form

AY
k
R′k,j = Y

k
R′k,jTsk+j −

1

αsk+j

Ykr′k,j+1e
T
sk+j + ε�k,j

and upper bound the size of the error term ε�k,j. Recall that we assume a standard model
of floating point arithmetic, where

fl (αx+ y) = αx+ y + δ1, where |δ1| ≤ ε2 |αx|+ |y|+O(ε2), and

fl (Ax) = Ax+ δ2, where |δ2| ≤ εN |A| |x|+O(ε2),

where ε is the machine precision unit, x, y ∈ Rn, α ∈ R, and N is the maximum number of
nonzeros per row in A. In the remaining analysis we drop higher powers of ε for simplicity.
For simplicity of notation, in this section we let r′k,j, p

′
k,j, x

′
k,j, αsk+j, rsk+s+1, psk+s+1, βsk+j,

Yk, and B(Y)
k be the computed quantities in finite precision CA-(BI)CG.

At the (sk + j)-th iteration, to compute r′k,j+1 we first compute B(Y)
k p′k,j and have

fl
(
B(Y)
k p′k,j

)
= B(Y)

k p′k,j + g, where |g| ≤ ε(2s+ 1)
∣∣∣B(Y)

k

∣∣∣ ∣∣p′k,j∣∣ .
Then

r′k,j+1 = fl
(
r′k,j − αsk+j · fl

(
B(Y)
k p′k,j

))
= r′k,j − αsk+jB(Y)

k p′k,j − αsk+jg + g′, (5.139)

where
∣∣g′∣∣ ≤ ε

(∣∣r′k,j∣∣ + 2
∣∣αsk+j

∣∣∣∣B(Y)
k p′k,j

∣∣). Let δr′k,j = (αsk+jg + g′)/ (ε |αsk+j|). Then us-

ing (5.139) we obtain

1

αsk+j

(
r′k,j+1 − r′k,j

)
= −B(Y)

k p′k,j + εδr′k,j ,

where ∣∣δr′k,j ∣∣ ≤ (2s+ 1)
∣∣B(Y)

k

∣∣∣∣p′k,j∣∣+

∣∣r′k,j∣∣∣∣αsk+j

∣∣ + 2
∣∣B(Y)

k p′k,j
∣∣. (5.140)

Similarly,

p′k,j+1 = fl
(
r′k,j+1 + βsk+jp

′
k,j

)
= r′k,j+1 + βsk+jp

′
k,j + f,

where |f | ≤ ε
(∣∣r′k,j+1

∣∣+ 2 |βsk+j|
∣∣p′k,j∣∣). Letting δp′k,j+1

= f/ε, we have

p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j + εδp′k,j+1

,

149

where ∣∣δp′k,j+1

∣∣ ≤ ∣∣r′k,j+1

∣∣+ 2
∣∣βsk+j

∣∣∣∣p′k,j∣∣. (5.141)

Rearranging (5.140) and (5.141), we can write

B(Y)
k p′k,j =

1

αsk+j

(
r′k,j − r′k,j+1

)
+ εδr′k,j for j ∈ {1, . . . , s}, and (5.142)

r′k,j = p′k,j − βsk+j−1p
′
k,j−1 + εδp′k,j for j ∈ {2, . . . , s+ 1}, (5.143)

and premultiplying (5.143) by Y
k

gives

Y
k
r′k,j = Y

k
p′k,j − βsk+j−1Ykp

′
k,j−1 + εY

k
δp′k,j ,

for j ∈ {2, . . . , s}. When j = 1, we have

Y
k
r′k,1 = fl(Yk−1r

′
k−1,s+1)

= Yk−1r
′
k−1,s+1 + εφrk−1 and (5.144)

Y
k
p′k,1 = fl(Yk−1p

′
k−1,s+1)

= Yk−1p
′
k−1,s+1 + εφpk−1,

where
∣∣φrk−1

∣∣ ≤ (2s+1)
∣∣Yk−1

∣∣∣∣r′k−1,s+1

∣∣ and
∣∣φpk−1

∣∣ ≤ (2s+1)
∣∣Yk−1

∣∣∣∣p′k−1,s+1

∣∣. Then for j = 1,
we can write

Y
k
r′k,1 = Yk−1r

′
k−1,s+1 + εφrk−1

= Yk−1p
′
k−1,s+1 − βskYk−1p

′
k−1,s + εYk−1δp′k−1,s+1

+ εφrk−1

= Y
k
p′k,1 − εφ

p
k−1 − βskYk−1

p′k−1,s + εYk−1δp′k−1,s+1
+ εφrk−1

= Y
k
p′k,1 − βskYk−1

p′k−1,s + ε
(
Yk−1δp′k−1,s+1

+ φrk−1 − φ
p
k−1

)
.

Now, let ∆R′k,j
=
[
δr′k,1 , . . . , δr′k,j

]
and ∆P ′k,j

=
[
02s+1, δp′k,2 , . . . , δp′k,j

]
. We can then write

Y
k
R′k,j =Y

k
P ′k,jUk,j − βskYk−1

p′k−1,se
T
1 + εY

k
∆P ′k,j

+ ε
(
Yk−1δp′k−1,s+1

+ φrk−1 − φ
p
k−1

)
eT1 and (5.145)

B
(Y)
k P ′k,j =R′k,jLk,jΛ

−1
k,j −

1

αsk+j

r′k,j+1e
T
j + ε∆R′k,j

. (5.146)

Premultiplying (5.145) by A gives

AY
k
R′k,j =AY

k
P ′k,jUk,j − βskAYk−1

p′k−1,se
T
1 + εAY

k
∆P ′k,j

+ εA
(
Yk−1δp′k−1,s+1

+ φrk−1 − φ
p
k−1

)
eT1 , (5.147)

150

and premultiplying (5.146) by Yk gives

YkB(Y)
k P ′k,j =YkR′k,jLk,jΛ−1

k,j −
1

αsk+j

Ykr′k,j+1e
T
j + εYk∆R′k,j

(5.148)

for j ∈ {1, . . . , s}.
Now, to write the error in CA-(BI)CG in the context of classical (BI)CG, we must

account for error in computation of the s-step bases. We will write the finite precision basis
computation as

AY
k

= YkB(Y)
k + ε∆Yk , (5.149)

where |∆Yk | ≤ (3 +N)|A||Y
k
|+ 4|Yk||B(Y)

k | (see (5.42)).
Using (5.149), we can write (5.148) as

(AY
k
− ε∆Yk)P ′k,j = Y

k
R′k,jLk,jΛ

−1
k,j −

1

αsk+j

Ykr′k,j+1e
T
j + εYk∆R′k,j

,

which can be rearranged to obtain

AY
k
P ′k,j = Y

k
R′k,jLk,jΛ

−1
k,j −

1

αsk+j

Ykr′k,j+1e
T
j + εYk∆R′k,j

+ ε∆YkP
′
k,j. (5.150)

Postmultiplying (5.150) by Uk,j gives

AY
k
P ′k,jUk,j =Y

k
R′k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j

Ykr′k,j+1e
T
j

+ ε
(
Yk∆R′k,j

Uk,j + ∆YkP
′
k,jUk,j

)
, (5.151)

and combining (5.151) and (5.147), we obtain

AY
k
R′k,j =Y

k
R′k,jLk,jΛ

−1
k,jUk,j −

1

αsk+j

Ykr′k,j+1e
T
j − βskAYk−1

p′k−1,se
T
1 (5.152)

+ ε
(
AY

k
∆P ′k,j

+ Yk∆R′k,j
Uk,j + ∆YkP

′
k,jUk,j

)
(5.153)

+ εA
(
Yk−1δp′k−1,s+1

+ φrk−1 − φ
p
k−1

)
eT1 . (5.154)

Since, using (5.149), (5.142), and (5.144), we have

βskAYk−1
p′k−1,se

T
1 =

βsk
αsk
Y
k−1

r′k−1,se
T
1 −

βsk
αsk

(Y
k
r′k,1 − εφrk−1)eT1

+ εβskYk−1δr′k−1,s
eT1 + βsk∆Yk−1

p′k−1,se
T
1 ,

we can write (5.154) as

AY
k
R′k,j = YkR′k,jTk,j −

βsk
αsk
Y
k−1

r′k−1,se
T
1 −

1

αsk+j

Ykr′k,j+1e
T
j + ε∆k,j,

151

where

∆k,j =
(
AY

k
∆P ′k,j

+ AYk−1δp′k−1,s+1
eT1

)
+
(
Yk∆R′k,j

Uk,j − βskYk−1δr′k−1,s
eT1

)
(5.155)

+
(
∆YkP

′
k,jUk,j − βsk∆Yk−1

p′k−1,se
T
1

)
+

(
A(φrk−1 − φ

p
k−1)− βsk

αsk
φrk−1

)
eT1 .

(5.156)

Writing ∆k,j = [δsk+1, . . . , δsk+j], we have that the ith column of ∆k,j, for i ∈ {1, . . . , sk+
j}, is

δsk+i = AY
k
δp′k,i + Ykδr′k,i − βsk+i−1Ykδr′k,i−1

+ ∆Ykr
′
k,i, (5.157)

when i > 1, and

δsk+1 =AYk−1δp′k−1,s+1
+ Ykδr′k,1 − βskYk−1δr′k−1,s

+ ∆Ykp
′
k,1 − βsk∆Yk−1

p′k−1,s

+ A(φrk−1 − φ
p
k−1)− βsk

αsk
φrk−1 (5.158)

for i = 1.
Using the inequalities

∣∣βsk+j−1p
′
k,j−1

∣∣ ≤ ∣∣p′k,j∣∣ +
∣∣r′k,j∣∣ + O(ε) and

∣∣r′k,j−1

∣∣ ≤ ∣∣r′k,j∣∣ +∣∣αsk+j−1

∣∣∣∣B(Y)
k p′k,j−1

∣∣+O(ε), we can bound the norm of the columns as

∣∣δsk+i

∣∣ ≤ ((N + 6)
∣∣A∣∣∣∣Yk∣∣+ (2s+ 8)

∣∣Yk∣∣∣∣B(Y)
k

∣∣+

(
1∣∣αsk+i

∣∣ +

∣∣βsk+i−1

∣∣∣∣αsk+i−1

∣∣
)∣∣Yk∣∣)∣∣r′k,j∣∣

+

(
2
∣∣A∣∣∣∣Yk∣∣+ (4s+ 7)

∣∣Yk∣∣∣∣B(Y)
k

∣∣)∣∣p′k,j∣∣, (5.159)

if i > 1. For the i = 1 case, we have

∣∣δsk+1

∣∣ ≤ ((N + 2s+ 7)
∣∣A∣∣∣∣Yk−1

∣∣+ (2s+ 8)
∣∣Yk−1

∣∣∣∣B(Y)
k−1

∣∣)∣∣r′k−1,s+1

∣∣ (5.160)

+

(
1∣∣αsk+1

∣∣ +
(2s+ 2)

∣∣βsk∣∣∣∣αsk∣∣
)∣∣Yk−1

∣∣∣∣r′k−1,s+1

∣∣
+

(
(2N + 4s+ 16)

∣∣A∣∣∣∣Yk−1

∣∣+ (6s+ 22)
∣∣Yk−1

∣∣∣∣B(Y)
k−1

∣∣)∣∣p′k−1,s+1

∣∣ (5.161)

We can thus write the finite precision CA-(BI)CG recurrence for iterations 1 through
sk + j as

AYkR
′
k,j = YkR

′
k,jTsk+j −

1

αsk+j

Ykr′k,j+1e
T
sk+j + ε�k,j, (5.162)

where �k,j = [∆0,s−1,∆1,s−1, . . . ,∆k,j].

152

5.2.2.1 Relation to Classical (BI)CG

Note that from (5.155), we can see that the two terms on the right-hand side correspond
to the two terms in Tong and Ye’s analysis for classical BICG, and the remaining two
terms correspond to the error in computing the s-step Krylov bases and the change of basis
operation. We can also see that a bound on the size of the error in each column of the finite
precision recurrence depends on both the magnitude of the error in computing the s-step
Krylov bases, i.e., ‖∆Yk‖, as well as the size and conditioning of the bases Yk. We elaborate
on this below; we will see in Section 6.1 that this has implications for performing residual
replacement.

It is also possible to follow the technique of Section 5.1 and write the bounds in (5.159)
and (5.161) in the form of the equivalent bounds for classical (BI)CG, multiplied by an
amplification term that depends on the conditioning of the s-step bases. As in Theorem 1,
we let σ ≡ ‖A‖2, θσ = ‖|A|‖2 and τkσ = ‖|B(Y)

k |‖2, and define Γk = ‖Ŷ+
k ‖2‖|Ŷk|‖2, where

the superscript ‘+’ denotes the Moore-Penrose pseudoinverse, i.e., Ŷ+
k = (ŶTk Ŷk)−1ŶTk .

Using rsk+j = Ykr′k,j + O(ε) and similarly for psk+j, and again ignoring higher than first
order terms in ε, we can use the defined quantities to bound the norm of (5.159) and (5.161)
as

‖δsk+i‖ ≤ Γk

((
(N + 6)θ + (2s+ 8)τk

)
‖A‖+

1

|αsk+i|
+
|βsk+i−1|
|αsk+i−1|

)
‖rsk+i‖

+ Γk

((
2θ + (4s+ 7)τk

)
‖A‖

)
‖psk+i‖ (5.163)

if i ∈ {2, . . . , s} and

‖δsk+1‖ ≤ Γk−1

((
(N + 2s+ 7)θ + (2s+ 8)τk−1

)
‖A‖+

1

|αsk+1|
+ (2s+ 2)

|βsk|
|αsk|

)
‖rsk+1‖

+ Γk−1

((
(2N + 4s+ 16)θ + (6s+ 22)τk−1

)
‖A‖

)
‖psk+1‖ (5.164)

when i = 1. For the classical (BI)CG method, the equivalent bound of Tong and Ye [176] is

‖δi‖ ≤
(

(N + 6)θ‖A‖+
1

|αi|
+
|βi−1|
|αi−1|

)
‖ri‖+ (2N + 7)θ‖A‖‖pi‖ (5.165)

for all i ∈ {1, . . . , sk + j}.
Comparing (5.163) and (5.164) to (5.165), we can see that if all Γk’s are not too large,

then the sizes of columns of the error term in the finite precision CA-(BI)CG recurrence
will be close to those of the classical (BI)CG recurrence (recall from Section 5.1.3.1 that we

expect ‖|B(Y)
k |‖2 . ‖ |A| ‖2). If however, at least one Γk is large, this will result in a large

perturbation to the Lanczos recurrence and we can expect the convergence behavior of CA-
(BI)CG and (BI)CG to deviate. Later in this section, we will elaborate on the importance
of the basis conditioning and see the roll it plays in convergence behavior.

153

5.2.2.2 Diagonal Scaling

As in [176], it will be more convenient to work with a scaled version of (5.162) in subsequent
sections. Let Zsk+j = [z1, . . . , zsk+j] = YkR

′
k,jD

−1
sk+j where

Dsk+j = diag
(∥∥Y0r

′
0,1

∥∥ , . . . ,∥∥Y0r
′
0,s

∥∥ ,∥∥Y1r
′
1,1

∥∥ , . . . ,∥∥Ykr′k,j∥∥) .
We can then write the scaled version of (5.162) as

AZsk+j = Zsk+jT̄sk+j −
1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j + ε�̄k,j, (5.166)

where T̄sk+j = Dsk+jTsk+jD
−1
sk+j,

ᾱsk+j = αsk+j

∥∥Ykr′k,j∥∥
‖r1‖

= αsk+j

∥∥Ykr′k,j∥∥∥∥Y0r′0,1
∥∥ = eTsk+jT̄

−1
sk+je1,

and

�̄k,j = �k,jD
−1
sk+j.

5.2.3 Bounds on ‖rsk+j+1‖ for Finite Precision CA-(BI)CG

In this subsection, we upper bound the norm of the updated residual computed in iteration
sk+ j of CA-(BI)CG. First, we will review a series of Lemmas proved by Tong and Ye [176].
The proofs shown below are nearly identical to those given by Tong and Ye [176], although
we have changed the notation and indexing for consistency with our s-step formulation4.

Lemma 3. Assume

AZsk+j = Zsk+jT̄sk+j −
1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j

with r1 = ‖r1‖ z1. Then for any polynomial ρ(x) =
∑sk+j

i=0 ψix
i of degree ≤ sk + j,

ρ(A)z1 = Zsk+jρ(T̄sk+j)e1 + csk+jYkr′k,j+1,

where csk+j = (−1)sk+jψsk+j/(α1 · · ·αsk+j ‖r1‖).

4One lemma presented is slightly different than what appears in [176] due to a minor mathematical error
that we correct.

154

Proof. First, we will prove by induction that for 1 ≤ i ≤ sk + j − 1

AiZsk+je1 = Zsk+jT̄
i
sk+je1. (5.167)

For i = 1, we have

AZsk+je1 =

(
Zsk+jT̄sk+j −

1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j

)
e1 = Zsk+jT̄sk+je1.

Now, assume (5.167) holds for some i ≤ sk + j − 2. Then

Ai+1Zsk+je1 = A(AiZsk+je1)

= A(Zsk+jT̄sk+je1)

=

(
Zsk+jT̄sk+j −

1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j

)
T̄ isk+je1

= Zsk+jT̄sk+jT̄
i
sk+je1 = Zsk+jT̄

i+1
sk+je1,

where we have used the fact that eTsk+jT̄
i
sk+je1 = 0 when i ≤ sk + j − 2. Therefore the

inductive hypothesis holds. Now consider the case i = sk + j − 1. We then have

Ask+jZsk+je1 = A(Zsk+jT̄
sk+j−1
sk+j e1)

=

(
Zsk+jT̄sk+j −

1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j

)(
T̄ sk+j−1
sk+j e1

)
.

Since it can be shown that eTsk+jT̄
sk+j−1
sk+j e1 = (−1)sk+j−1

∥∥Ykr′k,j∥∥ (α1 · · ·αsk+j−1 ‖r1‖)−1 and

ᾱsk+j =
∥∥Ykr′k,j∥∥αsk+j/ ‖r1‖, we have

Ask+jZsk+je1 = Zsk+jT̄sk+jT̄
sk+j−1
sk+j e1

= Zsk+jT̄
sk+j
sk+j e1 +

(−1)sk+j

α1 · · ·αsk+j ‖r1‖
Ykr′k,j+1.

The lemma follows.

We now use this result in proving the following identity.

Lemma 4. Assume

AZsk+j = Zsk+jT̄sk+j −
1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j

with r1 = ‖r1‖ z1 and ᾱsk+j = eTsk+jT̄
−1
sk+je1. Assume that W T ∈ R(sk+j)×n is a matrix such

that W TZsk+j = I and W TYkr′k,j+1 = 0sk+j,1. Then for any polynomial ρ(x) of degree not
exceeding sk + j with ρ(0) = 1, we have

Ykr′k,j+1 =
(
I − AZsk+jT̄

−1
sk+jW

T
)
ρ(A)r1.

155

Proof. First, we multiply by T̄−1
sk+je1 to get

AZsk+jT̄
−1
sk+je1 =

(
Zsk+jT̄sk+j −

1

ᾱsk+j

V kr
′
k,j+1

‖r1‖
eTsk+j

)
T̄−1
sk+je1,

which allows us to write
Ykr′k,j+1

‖r1‖
= z1 − AZsk+jT̄

−1
sk+je1.

Now, let ρ(x) = 1+xφ(x), with φ(x) =
∑sk+j−1

i=0 ψi+1x
i a polynomial of degree not exceeding

sk + j − 1. Then

Ykr′k,j+1

‖r1‖
= z1 − AZsk+jT̄

−1
sk+je1 + (ρ(A)z1 − ρ(A)z1)

= −Aφ(A)z1 − AZsk+jT̄
−1
sk+je1 + ρ(A)z1

= −AZsk+jφ(T̄sk+j)e1 − AZsk+jT̄
−1
sk+je1 + ρ(A)z1

= −AZsk+j(φ(T̄sk+j) + T̄−1
sk+j)e1 + ρ(A)z1

= −AZsk+jT̄
−1
sk+jρ(T̄sk+j)e1 + ρ(A)z1. (5.168)

By Lemma 3, recall that

ρ(A)z1 = Zsk+jρ(T̄sk+j)e1 + csk+jYkr′k,j+1,

and, multiplying by W T , we have

W Tρ(A)z1 = W T
(
Zsk+jρ(T̄sk+j)e1 + csk+jYkr′k,j+1

)
= ρ(T̄sk+j)e1,

since W TZsk+j = I and W TYkr′k,j+1 = 01,sk+j. Now, we can write

Ykr′k,j+1

‖r1‖
= −AZsk+jT̄

−1
sk+jW

Tρ(A)z1 + ρ(A)z1

=
(
I − AZsk+jT̄

−1
sk+jW

T
)
ρ(A)z1,

and substituting z1 = r1/ ‖r1‖, we obtain

Ykr′k,j+1 =
(
I − AZsk+jT̄

−1
sk+jW

T
)
ρ(A)r1,

which gives the desired result.

The following lemma describes the construction of the basis W .

156

Lemma 5. Assume that z1, . . . , zsk+j+1 ∈ Rn are linearly independent and write Zsk+j =
[z1, . . . , zsk+j]. Then W T

0 = [Isk+j, 01,sk+j]Z
+
sk+j+1 has the property W T

0 Zsk+j = I and

W T
0 zsk+j+1 = 01,sk+j. Furthermore, its spectral norm is minimal among all matrices having

this property.

Proof. By the definition of W0, Z+
sk+j+1 = [W0, w]T for some w. Since we assume that

z1, . . . , zsk+j+1 are linearly independent,

[W0, w]T [Zsk+j, zsk+j+1] = Z+
sk+jZsk+j = I.

Then W T
0 Zsk+j = Isk+j and W T

0 zsk+j+1 = 01,sk+j.
Now, assume W is some other matrix such that W TZsk+j = I and W T zsk+j+1 = 01,sk+j

hold. Then W T [Zsk+j, zsk+j+1] = [Isk+j, 01,sk+j]. Thus,

W TZsk+j+1Z
+
sk+j+1 = [Isk+j, 01,sk+j]Z

+
k,j = W T

0

, and hence ‖W0‖ ≤ ‖W‖ ·
∥∥Zsk+j+1Z

+
sk+j+1

∥∥ ≤ ‖W‖.
We can now present the main result.

Theorem 6. Assume (5.166) holds and let W T
0 = [Isk+j, 01,sk+j]Z

+
sk+j+1 ∈ R(sk+j)×n. If

z1, . . . , zsk+j+1 are linearly independent, then∥∥Ykr′k,j+1

∥∥ ≤ (1 +Kk,j) min
ρ∈Psk+j ,ρ(0)=1

‖ρ(A+ δAk,j)r1‖ , (5.169)

where Kk,j =
∥∥(AZsk+j − ε�̄k,j)T̄−1

sk+jW
T
0

∥∥ and δAk,j = −ε�k,jZ+
sk+j.

Proof. Since z1, . . . , zsk+j+1 are linearly independent, Z+
sk+jZsk+j = I. Then

δAk,j = −ε�̄k,jZ+
sk+j ∈ Rn×n

satisfies δAk,jZsk+j = −ε�̄k,j. Thus (5.166) can be written as

(A+ δAk,j)Zsk+j = Zsk+jT̄sk+j −
1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j. (5.170)

Then, by Lemma 4, for any ρ ∈ Psk+j with ρ(0) = 1, we obtain

Ykr′k,j+1 = (I − (A+ δAk,j)Zsk+jT̄
−1
sk+jW

T
0) · ρ(A+ δAk,j)r1

= (I − (AZsk+j − ε�̄k,j)T̄−1
sk+jW

T
0) · ρ(A+ δAk,j)r1.

Thus, we can bound the norm of the left hand side by∥∥Ykr′k,j+1

∥∥ ≤ (1 +
∥∥(AZsk+j − ε�̄k,j)T̄−1

sk+jW
T
0

∥∥) · ∥∥ρ(A+ δAk,j)r1

∥∥.
Since this holds for any ρ(x) with ρ(0) = 1, the inequality is true for the minimizing poly-
nomial, which leads to the bound.

157

Note that ζk,j = minρ∈Psk+j ,ρ(0)=1 ‖ρ(A+ δAk,j)r1‖ is the (sk + j)th residual norm of
exact GMRES applied to the perturbed matrix A + δAk,j, which decreases monotonically
with increasing (sk + j) [176].

Since we have Kk,j =
∥∥(AZsk+j − ε�̄k,j)T̄−1

sk+jW
T
0

∥∥, we can bound Kk,j as

Kk,j ≤
(√

sk + j
∥∥A∥∥+ ε

∥∥�̄k,j∥∥)∥∥T̄−1
sk+j

∥∥ · ∥∥W0

∥∥.
Then, assuming

∥∥T̄−1
sk+j

∥∥ and
∥∥W0

∥∥ ≤ ‖Z+
sk+j+1‖ ≤ ‖Y

+
k ‖‖R

′+
k,j‖ are bounded,

∥∥Ykr′k,j+1

∥∥
is on the order O(ζk,j). We therefore expect convergence of the CA-(BI)CG residual when
Kk,j increases at a slower rate than ζk,j decreases, for all values of k. Unfortunately, as in
the BICG case, we can not determine Kk,j a priori, although we can make some meaningful
observations based on the bound in (5.169).

Note that in the case of CG (SPD A), we have
∥∥Ykr′k,j+1

∥∥
2

=
∥∥rsk+j+1

∥∥
2

=
∥∥e∗sk+j+1

∥∥
A

,
where e∗sk+j denotes the solution error e∗sk+j = x∗ − xsk+j for true solution x∗. Thus in this
case Theorem 6 gives a bound on the error of finite precision s-step CG. It remains future
work to determine under what conditions

∥∥e∗sk+j+1

∥∥
A
<
∥∥e∗sk+j

∥∥
A

for CA-CG.

5.2.4 The Linearly Dependent Case

In the analysis above, we assumed linear independence among the residual vectors (which are
scalar multiples of the Lanczos vectors). For many linear systems, however, convergence of
classical (BI)CG in finite precision is still observed despite numerical rank deficiency of the
basis. In [176] it is shown how the residual norm can be bounded absent the assumption of
linear independence, which gives insight into why convergence still occurs in such cases. We
will now prove similar bounds, relaxing the constraint that z1, . . . , zsk+j+1 ∈ Rn be linearly
independent. Again, our analysis extends that of Tong and Ye [176] for classical BICG.

We note that in the s-step case, there are two potential causes of a rank-deficient basis.
Since we have Rsk+j = Yk,jR

′
k,j, linear dependence can occur as a result of the finite precision

Lanczos process, as in the classical method, as well as from numerical rank deficiencies in
the generated s-step polynomial bases Yk.

Given A ∈ Rn×n and C ∈ Rn′×n′ , AE − EC = Z corresponds to the linear system
with coefficient matrix A ⊗ In′ − In ⊗ C. This system has a unique solution if and only
if λ(A) ∩ λ(C) = ∅, or, equivalently, if sep(A,C) := ‖(A⊗ In′ − In ⊗ C)−1‖−1

> 0, which
depends on the spectral gap of A and C (see [84]).

Theorem 7. Assume (5.166) holds, and let µ be a complex number such that
sep(A− µI, T̄sk+j)� 0. Then∥∥Ykr′k,j+1

∥∥ ≤ Kk,j min
ρ∈Psk+j ,ρ(0)=1

(∥∥ρ(T̄sk+j)
∥∥+ ‖ρ(A− µI)‖

)
‖r1‖,

158

where

Kk,j =

√
sk + j(sep(A− µI, T̄sk+j) + |µ|) + ε‖�̄k,j‖F

sep(A− µI, T̄sk+j)
·max

(
1, ‖ρ(A− µI)‖ ·

∥∥ρ(T̄sk+j)
∥∥) .

Proof. By (5.166),

(A− µI)Zsk+j = Zsk+jT̄sk+j −
1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j + ε�̄k,j − µZsk+j. (5.171)

Then since sep(A− µI, T̄sk+j) > 0, the equation

(A− µI)Esk+j = Esk+jT̄sk+j − ε�̄k,j + µZsk+j (5.172)

has a unique solution Esk+j with

‖Esk+j‖F ≤
‖−ε�̄k,j + µZsk+j‖F
sep(A− µI, T̄sk+j)

≤
ε‖�̄k,j‖F + |µ|

√
sk + j

sep(A− µI, T̄sk+j)
.

Combining (5.171) and (5.172), we can write

(A− µI)(Zsk+j + Esk+j) = (Zsk+j + Esk+j)T̄sk+j −
1

ᾱsk+j

Ykr′k,j+1

‖r1‖
eTsk+j.

Thus, for any ρ ∈ Psk+j, ρ(0) = 1, we have, by (5.168),

Ykr′k,j+1

‖r1‖
= ρ(A− µI)(Zsk+j + Esk+j)e1 − (A− µI)(Zsk+j + Esk+j)T̄

−1
sk+jρ(T̄sk+j)e1,

and thus ∥∥Ykr′k,j+1

∥∥
‖r1‖

≤ (‖Zsk+j‖+ ‖Esk+j‖) ‖ρ(A− µI)‖

+ ‖A− µI‖ (‖Zsk+j‖+ ‖Esk+j‖)
∥∥T̄−1

sk+j

∥∥∥∥ρ(T̄sk+j)
∥∥ .

Since

‖Zsk+j‖+ ‖Esk+j‖ ≤
√
sk + j +

ε‖�̄k,j‖F + |µ|
√
sk + j

sep(A− µI, T̄sk+j)
,

we obtain the desired result.
Note that in this case, if µ is such that sep(A− µI, T̄sk+j) is large, the quantity Kk,j

depends heavily on
∥∥T̄−1

sk+j

∥∥. The minimizing polynomial part of the bound now depends on

both ρ(T̄sk+j) and ρ(A− µI).

159

5.2.5 Extensions: Perturbation Theory

We can think of (5.170) as an exact subspace relation for a perturbed A, i.e., the quanti-
ties Yk, R

′
k,j, and Tsk+j produced by the finite precision CA-(BI)CG algorithm satisfy an

exact subspace recurrence (5.170) for the perturbed system A+ δAk,j. This means that the
eigenvalues of the computed matrix Tsk+j generated by the s-step algorithm are among the
eigenvalues of the perturbed matrix A − ε�k,jR

+
k,jY

+
k . This means that the Lanczos vec-

tors computed by the CA-(BI)CG algorithm, YkR
′
k,j, span Krylov spaces of a matrix within

ε
∥∥�k,jR+

k,jY
+
k

∥∥ of A. Similar observations have been made for classical finite precision Krylov
methods [141, 202].

In his doctoral thesis [202], Zemke proved a number of useful properties for any perturbed
Krylov decomposition of the form

AQi = QiCi + qi+1ci+1 − Fi.

Since (5.166) has this form, many of Zemke’s results are applicable to the s-step variants.
We also believe that using (5.170), the ‘augmented’ backward stability analysis of Paige [142]
could be extended to the s-step case.

5.3 Maximum Attainable Accuracy of CA-KSMs

In each iteration i of classical Krylov methods for solving linear systems, the solution xi+1

and residual ri+1 are updated as

xi+1 = xi + αipi ri+1 = ri − αiApi (5.173)

or something similar. The above applies specifically to conjugate gradient (CG) and bi-
conjugate gradient (BICG); similar formulas describe steepest descent, conjugate gradient
squared (CGS), stabilized biconjugate gradient (BICGSTAB), and other recursively updated
residual methods; for a thorough introduction to classical KSMs, see [153]. For simplicity,
we restrict our discussion here to linear systems where A is real, square with dimension n,
and full rank.

The accuracy of classical KSMs in finite precision is studied extensively in the literature
(see, e.g., [86, 96, 125, 124, 161, 181]). Such analyses stem from the observation that xi+1 and
ri+1 in (5.173) have different round-off patterns in finite precision. That is, the expression
for xi+1 does not depend on ri+1, nor does the expression for ri+1 depend on xi+1. Therefore,
computational errors made in xi+1 are not self-correcting. These errors can accumulate over
many iterations and cause deviation of the true residual, b−Axi+1, and the updated residual,
ri+1. Writing the true residual as b − Axi+1 = ri+1 + (b − Axi+1 − ri+1), we can bound its
norm by

‖b− Axi+1‖ ≤ ‖ri+1‖+ ‖b− Axi+1 − ri+1‖ .
When the updated residual ri+1 is much larger than b−Axi+1−ri+1, the true residual and the
updated residual will be of similar magnitude. However, as the updated residual converges,

160

Algorithm 27 Conjugate Gradient (CG)

Input: n × n symmetric positive definite matrix A, length-n vector b, and initial approxi-
mation x1 to Ax = b

Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: r1 = b− Ax1, p1 = r1

2: for i = 1, 2, . . . , until convergence do
3: αi = rTi ri/p

T
i Api

4: qi = αipi
5: xi+1 = xi + qi
6: ri+1 = ri − Aqi
7: βi = rTi+1ri+1/r

T
i ri

8: pi+1 = ri+1 + βipi
9: end for

i.e., ‖ri+1‖ → 0, the size of the true residual depends on ‖b− Axi+1 − ri+1‖. This term
denotes the size of the deviation between the true and updated residuals. If this deviation
grows large, it can limit the maximum attainable accuracy, i.e., the accuracy with which we
can solve Ax = b on a computer with unit round-off ε.

Following similar analyses for standard KSMs (e.g., [86, 125, 161, 181]), we prove bounds
for the maximum attainable accuracy (i.e., the deviation of the true and computed residual)
in CA-CG and CA-BICG in finite precision. We provide the first quantitative analysis of
round-off error in CA-KSMs which limits the maximum attainable accuracy. We begin with
a brief review of the CA-CG method. A derivation of CA-BICG appears in Section 4.2. We
note that this section has been adapted from work that first appeared in [31].

5.3.1 Communication-Avoiding Conjugate Gradient

We briefly review CA-CG, shown in Algorithm 28. We chose CA-CG for simplicity, although
the same general techniques used here can be applied to other CA-KSMs. For reference, CG
is given in Algorithm 27. The following brief derivation is meant as a review for the familiar
reader and to establish notation; we refer the unfamiliar reader to numerous other works
such as [63, 102, 117, 175]. The CA-CG method can also be obtained from Algorithm 8 in
Section 4.2 by setting A = AT and simplifying.

CA-CG consists of an outer loop, indexed by k, and an inner loop, which iterates over
j ∈ {1, . . . , s}, where we assume s� n. For clarity, we globally index iterations by i ≡ sk+j.
Our goal is to determine the information required to compute the CG vectors psk+j, rsk+j,
and xsk+j for j ∈ {2, . . . , s+ 1} and s > 0, given psk+1, rsk+1, and xsk+1. It follows from the
properties of CG that

psk+j, rsk+j ∈ Ks+1(A, psk+1) +Ks(A, rsk+1) and

xsk+j − xsk+1 ∈ Ks(A, psk+1) +Ks−1(A, rsk+1). (5.174)

161

for j ∈ {1, . . . , s + 1}. Then we can update the CG vectors for the next s iterations using
the matrices

Pk = [ρ0(A)psk+1, . . . , ρs(A)psk+1], such that span(Pk) = Ks+1(A, psk+1) and

Rk = [ρ0(A)rsk+1, . . . , ρs−1(A)rsk+1], such that span(Rk) = Ks(A, rsk+1), (5.175)

where ρj(z) is a polynomial of degree j satisfying the three-term recurrence

ρ0(z) = 1, ρ1(z) = (z − θ0)ρ0(z)/γ0, and

ρj(z) = ((z − θj−1)ρj−1(z)− σj−2ρj−2(z)) /γj−1. (5.176)

Note that this is the same as the polynomial recurrence in (4.1); we use different variables
in the recurrence to avoid the use of variables decorated with hats in (4.1), as we will use
hats exclusively for distinguishing quantities computed in finite-precision in this section.

Let Yk = [Pk,Rk] and let Y
k

be the same as Yk except with all zeros in columns s + 1
and 2s+ 1. Under certain assumptions on the nonzero structure of A, Yk can be computed
in each outer loop for the same asymptotic latency cost as a single SpMV (see Section 3.2
for details). Since the columns of Yk satisfy (5.176), we can write

AY
k

= YkBk. (5.177)

Note that Bk is a (2s+1)×(2s+1) tridiagonal matrix with diagonal blocks of the form (4.2);
again, we use this notation to avoid confusion with the tridiagonal matrix of Lanczos coeffi-
cients generated by CG.

By (5.174), there exist vectors p′k,j, r
′
k,j, and x′k,j that represent the coordinates for the

CG iterates psk+j, rsk+j, and xsk+j − xsk+1, respectively, in Yk for j ∈ {1, . . . , s + 1}. That
is,

psk+j = Ykp′k,j, rsk+j = Ykr′k,j, and xsk+j − xsk+1 = Ykx′k,j. (5.178)

The CG iterate updates, for j ∈ {1, . . . , s}, can then be written

Ykx′k,j+1 = Ykx′k,j + αsk+jYkp′k,j,
Ykr′k,j+1 = Ykr′k,j − αsk+jAYkp′k,j, and

Ykp′k,j+1 = Ykr′k,j+1 + βsk+jYkp′k,j.

By (5.174), Ykp′k,j = Y
k
p′k,s for j ∈ {1, . . . , s}. We then use (5.177) to obtain

Ykr′k,j+1 = Ykr′k,j − αsk+jYkBkp′k,j.

Therefore, in the inner loop of CA-CG, rather than update the CG vectors explicitly, we
instead update their coordinates in Yk, i.e.,

x′k,j+1 = x′k,j + αsk+jp
′
k,j, r′k,j+1 = r′k,j − αsk+jBkp′k,j,

and p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j.

162

Algorithm 28 Communication-Avoiding CG (CA-CG)

Input: n × n symmetric positive definite matrix A, length-n vector b, and initial approxi-
mation x1 to Ax = b

Output: Approximate solution xsk+s+1 to Ax = b with updated residual rsk+s+1

1: r1 = b− Ax1, p1 = r1

2: for k = 0, 1, . . . , until convergence do
3: Compute Yk = [Pk, Rk] according to (5.175)
4: Compute Gk = YTk Yk
5: Assemble Bk such that (5.177) holds
6: p′k,1 = [1, 01,2s]

T , r′k,1 = [01,s+1, 1, 01,s−1]T , x′k,1 = [01,2s+1]T

7: for j = 1 to s do
8: αsk+j =

(
r′Tk,jGkr

′
k,j

)
/
(
p′Tk,jGkBkp′k,j

)
9: q′k,j = αsk+jp

′
k,j

10: x′k,j+1 = x′k,j + q′k,j
11: r′k,j+1 = r′k,j − Bkq′k,j)
12: βsk+j =

(
r′Tk,j+1Gkr

′
k,j+1

)
/
(
r′Tk,jGkr

′
k,j

)
13: p′k,j+1 = r′k,j+1 + βsk+jp

′
k,j

14: end for
15: Recover iterates {psk+s+1, rsk+s+1, xsk+s+1} according to (5.178)
16: end for

Thus we can eliminate the communication cost of the SpMV with A in each iteration, and
the length-(2s+ 1) vector updates can be performed locally (parallel)/in cache (sequential)
in each inner loop iteration.

We can also avoid communication in computing inner products. Letting Gk = YTk Yk,
and using (5.178) and (5.177), αsk+j and βsk+j can be computed by

αsk+j =
(
r′Tk,jGkr

′
k,j

)
/
(
p′Tk,jGkBkp′k,j

)
and

βsk+j =
(
r′Tk,j+1Gkr

′
k,j+1

)
/
(
r′Tk,jGkr

′
k,j

)
.

The matrix Gk can be computed by one reduction per outer loop, the same asymptotic
parallel latency cost as a single inner product (see Section 3.1). As Bk and Gk are dimension
(2s+ 1)× (2s+ 1), αsk+j and βsk+j can be computed locally/in cache within the inner loop.
The matrix Gk can be computed by one reduction per outer loop, the same asymptotic
parallel latency cost as a single inner product (see Section 3.1). As Bk and Gk are dimension
(2s+ 1)× (2s+ 1), αsk+j and βsk+j can be computed locally/in cache within the inner loop.

5.3.2 Finite Precision CA-CG

As in previous sections, we use a standard model of floating point arithmetic. Recall that

fl(x+ y) = x+ y + δ with |δ| ≤ ε(|x+ y|), and

163

fl(Ax) = Ax+ δ with |δ| ≤ εNA |A| |x| ,

where ε is the unit round-off of the machine, x, y ∈ Rn, and NA is a constant associated
with the matrix-vector multiplication (e.g., the maximal number of nonzero entries in a row
of A). All absolute values and inequalities are componentwise. Using this model, we can
also write

f l(y + Ax) = y + Ax+ δ with |δ| ≤ ε(|y + Ax|+NA |A| |x|)
where, as in the remainder this analysis, we ignore higher powers of ε. We now perform
an analysis of round-off error in the CA-CG method. Our goal is to bound the norm of
the difference between the true and updated residual in terms of quantities which can be
computed inexpensively in each iteration. We note that our bound also holds for CA-
BICG (see Section 4.2), which has identical formulas for computing psk+j+1, rsk+j+1, and
xsk+j+1 − xsk+1.

5.3.3 Basis Computation in Finite Precision

We begin by bounding the error in finite precision computation of Ŷk, where, here and in
the remaining analysis, we use hats to denote quantities computed in finite precision. In
exact arithmetic, (5.177) holds, but in finite precision, we have AŶ

k
= ŶkBk − Ek, where

Ek represents the error due to round-off. We seek a componentwise bound on Ek. The
analysis below is similar to that for the finite precision Lanczos process (see, e.g., Theorem
3.1 in [12]).

In finite precision, we can write

Ŷk =
[
P̂k, R̂k

]
=
[
ρ̂0(A)p̂sk+1, . . . , ρ̂s(A)p̂sk+1, ρ̂0(A)r̂sk+1, . . . , ρ̂s−1(A)r̂sk+1

]
, (5.179)

where ρ̂i is a polynomial of degree i, as defined in (5.176). In terms of starting vector y and
parameters γi, θi, and σi (entries of Bk), in finite precision (5.176) becomes

ρ̂i+1(A)y =
1

γi

(
(A− θiI)ρ̂i(A)y − σi−1ρ̂i−1(A)y

)
+ νy,i+1, (5.180)

where

|νy,i+1| ≤ ε
(

(2 +NA) |A| |ρ̂i(A)y|+ 3 |θi| |ρ̂i(A)y|+ 2 |σi−1| |ρ̂i−1(A)y|
)
/ |γi| . (5.181)

We can rearrange (5.180) to obtain

Aρ̂i(A)y = γiρ̂i+1(A)y + θiρ̂i(A)y + σi−1ρ̂i−1(A)y − γiνy,i+1. (5.182)

Premultiplying (5.179) by A and combining (5.182) with (5.181) gives the desired expression,
AŶ

k
= ŶkBk − Ek, with ∣∣Ek∣∣ ≤ ε

(
(3 +NA)

∣∣A∣∣∣∣Ŷ
k

∣∣+ 4
∣∣Ŷk∣∣∣∣Bk∣∣). (5.183)

164

5.3.4 Iterate Updates in Finite Precision

We now consider the finite precision error in updating x̂′k,j+1 and r̂′k,j+1 in each inner loop
iteration and performing the basis change to obtain x̂sk+j+1 and r̂sk+j+1, which occurs when
j = s or when sk + j is the terminal iteration. In the inner loop, the formulas for updating
the coordinates are

x′k,j+1 = x′k,j + q′k,j, and (5.184)

r′k,j+1 = r′k,j − Bkq′k,j, (5.185)

where q′k,j = αsk+jp
′
k,j. When (5.184) and (5.185) are implemented in finite precision, they

become

x̂′k,j+1 = fl
(
x̂′k,j + q̂′k,j

)
= x̂′k,j + q̂′k,j + ξk,j+1, (5.186)

where
∣∣ξk,j+1

∣∣ ≤ ε
∣∣x̂′k,j+1

∣∣, and (5.187)

r̂′k,j+1 = fl
(
r̂′k,j − Bkq̂′k,j

)
= r̂′k,j − Bkq̂′k,j + ηk,j+1 (5.188)

where
∣∣ηk,j+1

∣∣ ≤ ε
(∣∣r̂′k,j+1

∣∣+NB
∣∣Bk∣∣∣∣q̂′k,j∣∣), (5.189)

and under the assumptions that we use three-term polynomials for the s-step basis compu-
tation, NB = 3. If j < s and sk + j is not the terminal iteration, we denote (but do not
compute) the solution and updated residual by

xsk+j+1 = Ŷkx̂′k,j+1 + x̂sk+1, and (5.190)

rsk+j+1 = Ŷkr̂′k,j+1. (5.191)

At the end of each outer loop iteration (when j = s) and at the terminal iteration, the solution
and residual are computed in finite precision, denoted x̂sk+j+1 and r̂sk+j+1, respectively. The
error in computing these terms can be bounded as follows:

x̂sk+j+1 = fl
(
Ŷkx̂′k,j+1+x̂sk+1

)
= Ŷkx̂′k,j+1+x̂sk+1 +φsk+j+1 = xsk+j+1 +φsk+j+1,(5.192)

where
∣∣φsk+j+1

∣∣ ≤ ε
(∣∣x̂sk+j+1

∣∣+NY
∣∣Ŷk∣∣∣∣x̂′k,j+1

∣∣), and (5.193)

r̂sk+j+1 = fl
(
Ŷkr̂′k,j+1

)
= Ŷkr̂′k,j+1 + ψsk+j+1 = rsk+j+1 + ψsk+j+1, (5.194)

where
∣∣ψsk+j+1

∣∣ ≤ εNY
∣∣Ŷk∣∣∣∣r̂′k,j+1

∣∣, (5.195)

and NY = 2s+ 1.

5.3.5 Deviation of the True and Updated Residuals

Using the results in previous subsections, we obtain an upper bound on the norm of the
difference between the true and updated residuals at step sk+j. We first prove the following
lemma.

165

Lemma 6. Consider step sk+ j of the finite precision CA-CG algorithm. Let δsk+j+1 = b−
Axsk+j+1−rsk+j+1, where xsk+j+1 and rsk+j+1 are defined in (5.190) and (5.191), respectively.
Then∥∥δsk+j+1

∥∥ ≤∥∥b−Ax1− r1

∥∥+ ε

k−1∑
`=0

(∥∥A∥∥∥∥x̂s`+s+1

∥∥+NY

(∥∥A∥∥∥∥∥∣∣Ŷ`∣∣∣∣x̂′`,s+1

∣∣∥∥∥+∥∥∥∣∣Ŷ`∣∣∣∣r̂′`,s+1

∣∣∥∥∥))

+ ε

k−1∑
`=0

s∑
i=1

(
C1

∥∥A∥∥∥∥∥∣∣Ŷ`∣∣∣∣x̂′`,i+1

∣∣∥∥∥+ C2

∥∥∥∣∣Ŷ`∣∣∣∣B`∣∣∣∣x̂′`,i+1

∣∣∥∥∥+
∥∥∥∣∣Ŷ`∣∣∣∣r̂′`,i+1

∣∣∥∥∥)

+ ε

j∑
i=1

(
C1

∥∥A∥∥∥∥∥∣∣Ŷk∣∣∣∣x̂′k,i+1

∣∣∥∥∥+ C2

∥∥∥∣∣Ŷk∣∣∣∣Bk∣∣∣∣x̂′k,i+1

∣∣∥∥∥+
∥∥∥∣∣Ŷk∣∣∣∣r̂′k,i+1

∣∣∥∥∥).
where C1 = 7 + 2NA and C2 = 8 + 2NB.

Proof. We can write δsk+j+1 as

δsk+j+1 = b− Axsk+j+1 − rsk+j+1

= b− A(x̂sk+1 + Ŷkx̂′k,j+1)− Ŷkr̂′k,j+1

= b− Ax̂sk+1 − AŶk(x̂
′
k,j + q̂′k,j + ξk,j+1)− Ŷk(r̂′k,j − Bkq̂′k,j + ηk,j+1)

= b− A(x̂sk+1 + Ŷ
k
x̂′k,j)− Ŷkr̂′k,j − AŶkξk,j+1 − Ŷkηk,j+1 + Ekq̂

′
k,j

= δsk+j − AŶkξk,j+1 − Ŷkηk,j+1 + Ekq̂
′
k,j

= (b− Ax̂sk+1 − r̂sk+1)−
j∑
i=1

(
AŶ

k
ξk,i+1 + Ŷkηk,i+1 − Ekq̂′k,i

)
= δ1 −

k−1∑
`=0

(
Aφs`+s+1 + ψs`+s+1 +

s∑
i=1

(
AŶ

`
ξ`,i+1 + Ŷ`η`,i+1 − E`q̂′`,i

))

−
j∑
i=1

(
AŶ

k
ξk,i+1 + Ŷkηk,i+1 − Ekq̂′k,i

)
. (5.196)

Using the componentwise error bounds in (5.183), (5.187), (5.189), (5.193), and (5.195),

∣∣δsk+j+1

∣∣ ≤∣∣b− Ax1 − r1

∣∣+ ε

k−1∑
`=0

(∣∣A∣∣∣∣x̂s`+s+1

∣∣+NY

(∣∣A∣∣∣∣Ŷ`∣∣∣∣x̂′`,s+1

∣∣+
∣∣Ŷ`∣∣∣∣r̂′`,s+1

∣∣))

+ ε

k−1∑
`=0

s∑
i=1

(
(7 + 2NA)

∣∣A∣∣∣∣Ŷ
`

∣∣∣∣x̂′`,i+1

∣∣+ (8 + 2NB)
∣∣Ŷ`∣∣∣∣B`∣∣∣∣x̂′`,i+1

∣∣+
∣∣Ŷ`∣∣∣∣r̂′`,i+1

∣∣)

+ ε

j∑
i=1

(
(7 + 2NA)

∣∣A∣∣∣∣Ŷ
k

∣∣∣∣x̂′k,i+1

∣∣+ (8 + 2NB)
∣∣Ŷk∣∣∣∣Bk∣∣∣∣x̂′k,i+1

∣∣+
∣∣Ŷk∣∣∣∣r̂′k,i+1

∣∣),
(5.197)

166

where we have used
∑j

i=1

∣∣q̂′k,i∣∣ ≤ (2 + ε)
∑j

i=1

∣∣x̂′k,i+1

∣∣. From this follows the desired bound
for δsk+j+1 in terms of norms.

Assume the algorithm terminates at step sk+ j, so x̂sk+j+1 and r̂sk+j+1 are returned. We
bound the deviation of the true residual, b−Ax̂sk+j+1, and the updated residual, r̂sk+j+1, in
the following theorem.

Theorem 8. Consider step sk + j of finite precision CA-CG. If the algorithm terminates
at step sk + j and returns solution x̂sk+j+1 and updated residual r̂sk+j+1, the norm of the

deviation of the true residual and the updated residual, denoted δ̂sk+j+1 = b − Ax̂sk+j+1 −
r̂sk+j+1, can be bounded by∥∥δ̂sk+j+1

∥∥ ≤∥∥δsk+j+1

∥∥+ ε
(∥∥A∥∥∥∥x̂sk+1

∥∥+ (1 +NY)
∥∥A∥∥∥∥∥∣∣Ŷk∣∣∣∣x̂′k,j+1

∣∣∥∥∥+NY

∥∥∥∣∣Ŷk∣∣∣∣r̂′k,j+1

∣∣∥∥∥).
Proof. Using (5.192) and (5.194), we obtain

b− Ax̂sk+j+1 − r̂sk+j+1 = b− A(xsk+j+1 + φsk+j+1)− (rsk+j+1 + ψsk+j+1)

= δsk+j+1 − Aφsk+j+1 − ψsk+j+1,

and by (5.193), we can write ‖Aφsk+j+1‖≤ ε ‖A‖
(∥∥x̂sk+1

∥∥+ (1 +NY)
∥∥∥∣∣Ŷk∣∣∣∣x̂′k,j+1

∣∣∥∥∥). Com-

bining this bound with (5.195) and Lemma 6 gives the desired result.

To obtain a tighter bound, it is beneficial to use the quantities∥∥∥∣∣Ŷ`∣∣∣∣B`∣∣∣∣x̂′`,i+1

∣∣∥∥∥, ∥∥∥∣∣Ŷ`∣∣∣∣x̂′`,i+1

∣∣∥∥∥, and
∥∥∥∣∣Ŷ`∣∣∣∣r̂′`,i+1

∣∣∥∥∥
above, as

∥∥Ŷ`∥∥∥∥B`∥∥∥∥x̂′`,i+1

∥∥,
∥∥Ŷ`∥∥∥∥x̂′`,i+1

∥∥, and
∥∥Ŷ`∥∥∥∥r̂′`,i+1

∥∥, respectively, can be overesti-
mates due to sparsity in x̂′`,i+1 and r̂′`,i+1, respectively, for i < s. In Section 6.1, we use
the form of the bound given in Theorem 8 to derive a residual replacement strategy, which
improves the accuracy of the method.

It is also of use to derive an upper bound that is less tight, but enables easy comparison
of CA-CG to the classical CG method. Comparing the bound in Theorem 8 with the bound
in [181], we expect the size of the deviation of the true and updated residual at iteration

sk + j in CA-CG to be on the same order as that in CG when
∥∥∥∣∣Ŷ`∣∣∣∣x̂′`,i+1

∣∣∥∥∥ ≈ ∥∥Ŷ`x′`,i+1

∥∥,∥∥∥∣∣Ŷ`∣∣∣∣r̂′`,i+1

∣∣∥∥∥ ≈ ∥∥Ŷ`r′`,i+1

∥∥, and
∥∥∥∣∣Ŷ`∣∣∣∣B`∣∣∣∣x̂′`,i+1

∣∣∥∥∥ ≈ ∥∥∥∣∣A∣∣∣∣Ŷ`∣∣∣∣x̂′`,i+1

∣∣∥∥∥. This indicates that

the choice of basis Ŷk plays a significant role in determining the accuracy of CA-CG relative
to CG, as we now show.

We now take a similar approach as in Section 5.1 and show that the deviation of the true
and updated residuals in CA-CG can be written in the same form as the deviation of the
true and updated residuals in CG, multiplied by an amplification factor. We prove this in
the following theorem.

167

Theorem 9. Assume that Algorithm 27 is implemented in floating point with relative preci-
sion ε and applied for sk+j steps to solve Ax = b where A is an n-by-n real symmetric matrix
with at most NA nonzeros per row. Let τk = ‖|Bk|‖2/‖A‖2. Let Γk = ‖Ŷ+

k ‖2‖|Ŷk|‖2, where

the superscript ‘+’ denotes the Moore-Penrose pseudoinverse, i.e., Ŷ+
k = (ŶTk Ŷk)−1ŶTk , and

let
Γ̄k = max

`∈{0,...,k}
Γ` ≥ 1 and τ̄k = max

`∈{0,...,k}
τ`. (5.198)

Then the norm of the deviation of the true residual and the updated residual after iteration
sk + j can be bounded above by

‖δ̂sk+j+1‖ ≤ ‖b− Ax1 − r1‖+ εΓ̄kN
∗
sk+j∑
i=1

(1 + 2NA)‖A‖‖x̂i+1‖+ ‖r̂i+1‖,

where N∗ = 6 + 2s(11 + 14τ̄k).

Proof. By Lemma 1, we can write, ignoring higher than first order terms in ε,

ε‖|Ŷ`||x̂′`,i+1|‖2 ≤ εΓ` (‖x̂s`+i+1‖2 + ‖x̂s`+1‖2) ,

ε‖|Ŷ`||r̂′`,i+1|‖2 ≤ εΓ`‖r̂s`+i+1‖2, and

ε‖|Ŷ`||B`||x̂′`,i+1|‖2 ≤ εΓ`τ` (‖x̂s`+i+1‖2 + ‖x̂s`+1‖2) , (5.199)

for ` ∈ {0, . . . , k} and i ∈ {1, . . . , s}.
Using Theorem 8 and the bound in Lemma 6, we can write

‖δ̂sk+j+1‖ ≤‖b− Ax1 − r1‖
+ ε ((1 + (1 +NY)Γk)‖A‖‖x̂sk+1‖+ (1 +NY)Γk‖A‖‖x̂sk+j+1‖+NYΓk‖r̂sk+j+1‖)

+ ε

k−1∑
`=0

(1 +NYΓ`)‖A‖‖x̂s(`+1)+1‖+NYΓ`‖A‖‖x̂s`+1‖+NYΓ`‖r̂s(`+1)+1‖

+ ε

k−1∑
`=0

s∑
i

(C1 + C2τ`)Γ`‖A‖ (‖x̂s`+i+1‖+ ‖x̂s`+1‖) + C2Γ`‖r̂s`+i+1‖

+ ε

j∑
i=1

(C1 + C2τk)Γk‖A‖ (‖x̂sk+i+1‖+ ‖x̂sk+1‖) + C2Γ`‖r̂sk+i+1‖

≤‖b− Ax1 − r1‖

+ ε

k∑
`=0

(1 + 2(1 +NY))Γ`‖A‖‖x̂s`+1‖+NYΓ`‖r̂s`+1‖

+ ε

k∑
`=0

s(C1 + C2τ`)Γ`‖A‖‖x̂s`+1‖

168

+ ε
k−1∑
`=0

s∑
i=1

(C1 + C2τ`)Γ`‖A‖‖x̂s`+i+1‖+ C2Γ`‖r̂s`+i+1‖

+ ε

j∑
i=1

(C1 + C2τk + 1 +NY)Γk‖A‖‖x̂sk+i+1‖+ (C2 +NY)Γk‖r̂sk+i+1‖.

We can further bound this by

‖δ̂sk+j+1‖ ≤‖b− Ax1 − r1‖

+ εΓ̄k

sk+j∑
i=1

(
1+3(1+NY) + (s+1)(C1+C2τ̄k)

)
‖A‖‖x̂i+1‖+ (C2+2NY)‖r̂i+1‖

≤‖b− Ax1 − r1‖+ εΓ̄kN
∗
sk+j∑
i=1

(1 + 2NA)‖A‖‖x̂i+1‖+ ‖r̂i+1‖,

with N∗ = 6 + 2s(11 + 14τ̄k), where we have used NB = 3, NY = 2s+ 1, and C2 = 8 + 2NB =
14.

We reiterate that the value of the bound in Theorem 9 is not in its tightness, but in
what it tells us about the behavior of the CA-CG method compared to the CG method.
The bound in Theorem 9 is the same as the bound for the CG method (see [181]) except
for the amplification factor Γ̄kN

∗. This indicates the important role that the conditioning
of the computed s-step Krylov bases plays in increasing roundoff error which leads to loss
of accuracy. Numerical results demonstrating this can be found in Section 6.1, in which we
use the bounds of this section in a technique for improving maximum attainable accuracy in
CA-(BI)CG at little additional cost.

5.4 Conclusions and Future Work

Understanding the finite precision behavior of CA-KSMs is crucial to making such methods
usable in practical applications. In this Chapter, we have extended many results on conver-
gence and accuracy for finite precision KSMs to finite precision CA-KSMs, including bounds
on the accuracy and convergence of eigenvalues in the finite precision CA-Lanczos method,
a bound for the residual norm computed by the finite precision CA-(BI)CG algorithm, and
a computable bound for the maximum attainable accuracy in finite precision CA-(BI)CG.

By sacrificing some tightness, we show that these bounds can all be written in the same
form as the corresponding bounds for the classical method multiplied by an amplification
factor that depends on the condition number of the s-step bases generated at the beginning
of each outer loop. We stress that the value of these bounds is in the insight they give
rather than their tightness. Our analyses confirm the observation that the conditioning
of the Krylov bases plays a large role in determining finite precision behavior, and also

169

indicates that the s-step method can be made suitable for practical use in many cases,
offering both speed and accuracy. This inspires the development of practical techniques for
improving s-step Lanczos based on our results. In Chapter 6, we discuss potential ways
of controlling the basis conditioning such that, e.g., (5.64) holds. We also discuss how our
bounds could guide the use of extended or variable precision in s-step Krylov methods;
that is, rather than controlling the conditioning of the computed s-step base (5.64) could be
satisfied by decreasing the unit roundoff ε using techniques either in hardware or software. We
also in Chapter 6 develop an implicit residual replacement strategy based on the maximum
attainable accuracy analysis of Section 5.3. Further investigation of these techniques as
well as the development of other techniques for controlling numerical behavior based on our
analyses is a fruitful direction for future work.

The next step is to extend the subsequent analyses of Paige, in which a type of augmented
backward stability for the classical Lanczos method is proved [142]. In [12], Bai proves a
result for nonsymmetric Lanczos analogous to the results of Paige, namely, that if a Ritz
value is well-conditioned, convergence implies loss of orthogonality. We conjecture that our
results for CA-Lanczos could be extended in the same way to the nonsymmetric CA-BIOC
method (see Section 4.1).

Our results in this chapter explain how the finite precision behavior of CA-KSMs is
determined by the conditioning of the s-step bases. This raises the question of how this
information can be used to design methods for improving stability and convergence properties
of these methods. In the next chapter, we use the intuition and theoretical bounds developed
in this chapter to develop a number of techniques for CA-KSMs that can improve numerical
properties while still allowing for an asymptotic reduction in communication.

170

Chapter 6

Methods for Improving Stability and
Convergence

In this chapter we present a number of techniques for improving stability and convergence
in finite precision CA-KSMs while maintaining asymptotic communication savings. In many
cases, these techniques have been developed based on the finite precision analyses of Chap-
ter 5. Some of these techniques, including residual replacement (Section 6.1, adapted
from [31]), deflation-based preconditioning (Section 6.2, adapted from [36]), selective re-
orthogonalization (Section 6.3), and look-ahead (Section 6.4), are techniques that have been
developed for classical Krylov methods. We extend these techniques to communication-
avoiding Krylov methods, and show that they can be implemented to improve numerical
properties while still maintaining asymptotic communication savings. For example, our nu-
merical experiments in Section 6.1 show that our residual replacement scheme can improve
the accuracy of CA-KSMs by up to 7 orders of magnitude for little additional cost (at most
a 2% increase in the number of outer loop iterations).

To highlight the potential benefits and tradeoffs of these techniques and of the comm-
unication-avoiding kernels presented in Chapter 3, Section 6.2.4 is devoted to modeling the
performance of our communication-avoiding deflated CG method for various values of s and
various numbers of deflation vectors.

In Section 6.5, we discuss the use of extended/variable precision for improving CA-
KSMs. Although using extended or variable precision can also have benefits for classical
Krylov methods, our discussion in Section 6.5 specifically focuses on how this might be
done in CA-KSMs based on the finite precision analysis in Section 5.1. Other techniques
presented, including the dynamic refinement of basis parameters (Section 6.6) and variable
basis size (Section 6.7) are specifically applicable to CA-KSMs and do not have a classical
KSM analog. As preconditioning is integral to many uses of KSMs for solving linear systems
in practice, we finish in Section 6.8 with a discussion of ongoing work in the development of
communication-avoiding preconditioners for CA-KSMs.

171

6.1 Residual Replacement

We extend our maximum attainable accuracy analysis (discussed in Section 5.3) to devise an
algorithm which tracks an upper bound on the deviation of the true and computed residual
in each iteration. We demonstrate that the necessary bookkeeping can be performed in
a communication-avoiding way, such that the asymptotic communication and computation
costs are not increased. Following the analysis of van der Vorst and Ye [181], this leads to
an implicit residual replacement scheme which improves the maximum attainable accuracy
of the solution produced by CA-KSMs. This analysis extends to CA-CG- and CA-BICG-
like methods, and is generally applicable to any three-term recurrence polynomial basis and
any linear system. We implement and test our residual replacement scheme on a variety
of matrices, demonstrating its effectiveness at maintaining agreement between the true and
computed residual. We note that this section has been adapted from work that first appeared
in [31].

We first discuss the residual replacement strategy of van der Vorst and Ye [181], on
which our residual replacement strategy is based. In [181], at replacement steps m =
m1,m2, . . . ,my, the updated residual rm is replaced with the true residual and a group
update is performed, i.e., the approximate solution is updated in blocks as

xi+1 = x1 +
i∑

`=1

q` = x1 + (q1 + · · ·+ qm1) + · · ·+
(
qmy−1+1 + · · ·+ qmy

)
.

This strategy has previously been suggested for use in KSMs by Neumaier [133] and was
also used by Sleijpen and van der Vorst; see [161, 181] for justification of this technique. To
summarize, a group update strategy ensures that the deviation of residuals remains bounded
by O(ε)‖A‖‖x‖ from the last replacement step my to the final iteration by reducing error
in the local recurrence.

We use the same strategy as [181], i.e., when a residual replacement occurs, a group
update is also performed. In iteration sk+ j+m, where m was the last residual replacement
step, we denote (but do not compute) the group solution zsk+j+1+m as the sum of the group
solution computed in step m, zm, and the current partial solution, xsk+j+1 = xsk+1+Ykx′k,j+1,
i.e., zsk+j+1+m = zm + xsk+1 + Ykx′k,j+1 (see Alg. 29).

If sk+j+m is a residual replacement step, we compute ẑsk+j+1+m and set the true residual

to fl(b−Aẑsk+j+1+m). As subsequent iterates cannot be represented in Ŷk, a replacement step
requires starting a new outer loop iteration, potentially before completing s iterations of the
inner loop. Thus when replacement occurs we reset k = 0 and xsk+j = x1 = 0n,1. Although
additional outer loop iterations require additional communication, our results show that the
number of replacements required is small with respect to the total number of iterations, and
thus extra cost is negligible.

As described in [181], we seek to determine iterations where replacing the updated residual
with the true residual does not alter the rate of convergence, based on a bound on potential

172

perturbation to the finite precision Lanczos recurrence. We briefly review the discussion
in [181], which motivates the condition for residual replacement.

6.1.1 Selecting Residual Replacement Steps

Consider finite precision classical CG, where, in iteration i, the updated residuals r̂i+1 and
search directions p̂i+1 satisfy

r̂i+1 = r̂i − αiAp̂i + ηi+1 and p̂i+1 = r̂i+1 + βip̂i + τi+1. (6.1)

Let ei denote the ith identity column of appropriate size. We can then write the above
equations in matrix form as

AZi = ZiT̄i −
1

ᾱi

r̂i+1

‖r̂1‖
eTi + Fi, with Zi =

[
r̂1

‖r̂1‖
, . . . ,

r̂i
‖r̂i‖

]
,

where T̄i is invertible and tridiagonal, ᾱi = eTi T̄
−1
i e1 and Fi = [f1, . . . , fi], with

f` =
Aτ`
‖r̂`‖

+
1

α`

η`+1

‖r̂`‖
− β`−1

α`−1

η`
‖r̂`‖

. (6.2)

As discussed in Section 5.2, it has been shown by Tong and Ye [176]) that if r̂i+1 satisfies (6.1)
and Zi+1 is full rank,

‖r̂i+1‖ ≤ (1 +Ki) min
ρ∈Pi,ρ(0)=1

‖ρ(A+ ∆Ai)r̂1‖ , (6.3)

where Pi is the set of polynomials of degree i, Ki =
∥∥(AZi − Fi)T̄−1

i

∥∥∥∥Z+
i+1

∥∥ and ∆Ai =
−FiZ+

i . Therefore, regardless of how r̂i+1 is generated, if it satisfies (6.1), we can bound its
norm by (6.3). Then by (6.2), we know we can replace the updated residual with the true
residual without affecting the convergence rate when ηi+1 is not too large relative to ‖r̂i+1‖
and ‖r̂i‖.

We will use ηRR
sk+j+1+m to denote the perturbation term in CA-CG with residual replace-

ment and group update strategies, i.e.,

r̂sk+j+1+m ≡ rsk+j+m − Aqsk+j+m + ηRR
sk+j+1+m,

where ηRR
sk+j+1+m is analogous to the ηi+1 term in (6.1). Our goal will be to bound the

norm of ηRR
sk+j+1+m. Comparing this bound with the norms ‖rsk+j+1+m‖ and ‖rsk+j+m‖ of

the updated residuals in CA-CG with residual replacement will then allow us to select safe
residual replacement steps using the following criteria:∥∥ηRR

sk+j+m

∥∥ ≤ ε̂
∥∥rsk+j+m

∥∥ and
∥∥ηRR

sk+j+1+m

∥∥ > ε̂
∥∥rsk+j+1+m

∥∥. (6.4)

Above, ε̂ is a tolerance parameter. Because ε̂ controls perturbations to the Lanczos re-
currence, it should be chosen as small as possible. However, if it is too small, residual

173

replacement will terminate early in the iteration and the accumulated error after the last
replacement can become significant [181]. The value ε̂ =

√
ε has been found to balance these

two constraints for standard KSMs [181].
We stress that here we have only experimented with using the same residual replacement

condition used for classical CG, which is based on the finite precision Lanczos recurrence
given above. Our analysis in Section 5.2 gives a finite precision CA-Lanczos recurrence
analogous to that of classical Lanczos above. Equations for the columns of Fn and bounds
on their size for CA-(BI)CG given in (5.157), (5.158), (5.163), and (5.164) suggest that if
the condition number of the s-step basis matrix for the current outer loop, e.g., Yk, is very
large, then this will cause large perturbations to the finite precision recurrence. This implies
that one could replace the updated residual with the true residual often without affecting
convergence, but only because the updated residual is likely failing to converge due to an
ill-conditioned basis. In this case, when the updated residual is not converging, it is not
worth our time to perform residual replacement; improving agreement between the true and
updated residuals buys us nothing in terms of an accurate solution. The best we can do then,
is to hope that the s-step bases are well-conditioned (i.e., that Γk as defined in Section 5
is small) and in this case, the replacement condition for the classical methods should be
sufficient for the communication-avoiding methods.

6.1.2 Bounding the Error Term

We will now describe and analyze the error in CA-CG with residual replacement and group
update strategies (see Alg. 29). Note that in this analysis, we index iterations as sk+ j +m
where m is the last residual replacement iteration and sk + j is defined as before, where we
reset k = 0 immediately after a replacement step. The goal of this section is a bound on
the perturbation term ηRR

sk+j+1+m in the recurrence for the updated residual in CA-CG with
residual replacement and group update,

r̂sk+j+1+m = rsk+j+m − Aqsk+j+m + ηRR
sk+j+1+m.

This will enable us to determine when we can replace the updated residual with the true
residual without affecting convergence. Our bounds here are based on the bounds obtained
in Section 5.3. In the present section, we use the quantities Ek, φsk+j+1, ψsk+j+1, ξk,j+1 and
ηk,j+1 as defined in (5.183), (5.192), (5.194), (5.186), and (5.188) in Section 5.3, respectively.
We denote the current group solution

zsk+j+1+m =


ẑsk+j+1+m = fl

(
ẑm + x̂sk+j+1

)
= ẑm + x̂sk+j+1 + ζsk+j+1+m, RR step,

ẑm + x̂sk+j+1 = ẑm + xsk+j+1 + φsk+j+1, j = s,

ẑm + xsk+j+1 = ẑm + x̂sk+1 + Ŷkx̂′k,j+1, 1 ≤ j < s

(6.5)

174

where ẑm is the approximate solution computed in the last group update in step m, xsk+j+1 =

x̂sk+1 + Ŷkx̂′k,j+1, x̂sk+j+1 = xsk+j+1 + φsk+j+1, and∣∣ζsk+j+1+m

∣∣ ≤ ε
∣∣ẑsk+j+1+m

∣∣ ≤ ε
(∣∣ẑm∣∣+

∣∣x̂sk+1

∣∣+
∣∣Ŷkx̂′k,j+1

∣∣). (6.6)

We use rsk+j+1+m to denote the residual in CA-CG with residual replacement and group
update, defined as

rsk+j+1+m =


r̂sk+j+1+m = fl

(
b− Aẑsk+j+1+m

)
= b− Aẑsk+j+1+m + µsk+j+1+m, RR step,

r̂sk+j+1+m = fl(Ŷkr̂′k,j+1) = Ŷkr̂′k,j+1 + ψsk+j+1, j = s,

rsk+j+1+m = Ŷkr̂′k,j+1, 1 ≤ j < s,

(6.7)
where ∣∣µsk+j+1+m

∣∣ ≤ ε
(∣∣r̂sk+j+1+m

∣∣+NA

∣∣A∣∣∣∣ẑsk+j+1+m

∣∣). (6.8)

After the last replacement step m, but before the next replacement step, we denote

δsk+j+1+m = b− Azsk+j+1+m − rsk+j+1+m.

If r̂m+1 is to be computed by replacement, we compute r̂m+1 = fl
(
b − Aẑm+1

)
= b −

Aẑm+1 + µm+1. Since rm+1 = Ŷ0r̂
′
0,1 = r̂m+1 and zm+1 = ẑm+1 + x̂1 + V̂ 0x̂

′
0,1 = ẑm+1,

δm+1 = b − Azm+1 − rm+1 = b − Aẑm+1 − r̂m+1 = −µm+1. We now state the main result of
this section.

Theorem 10. Consider finite precision CA-CG with residual replacement and group update
(shown in Algorithm 29), where iteration sk + j + m is a replacement step and m was the
last replacement step. Let the quantities Ek, φsk+j+1, ψsk+j+1, ξk,j+1 and ηk,j+1 be defined as
in (5.183), (5.192), (5.194), (5.186), and (5.188) in Section 5.3, respectively. The recurrence
for the updated residual satisfies

r̂sk+j+1+m = rsk+j+m − Aqsk+j+m + ηRR
sk+j+1+m

where

ηRR
sk+j+1+m = −Ekq̂′k,j + Ŷkηk,j+1 + δsk+j+1+m − Aφsk+j+1 − Aζsk+j+1+m + µsk+j+1+m

175

and∥∥ηRR
sk+j+1+m

∥∥ ≤ε(∥∥r̂m+1

∥∥+
(
1 + 2N ′

)∥∥A∥∥∥∥ẑm+1

∥∥) (6.9)

+ ε

k−1∑
`=0

(∥∥A∥∥∥∥x̂s`+s+1

∥∥+C1

∥∥A∥∥∥∥∥∣∣Ŷ`∣∣∣∣x̂′`,s+1

∣∣∥∥∥+N ′
∥∥∥∣∣Ŷ`∣∣∣∣r̂′`,s+1

∣∣∥∥∥)

+ ε

k−1∑
`=0

s∑
i=1

(
C2

∥∥A∥∥∥∥∥∣∣Ŷ`∣∣∣∣x̂′`,i+1

∣∣∥∥∥+ C3

∥∥∥∣∣Ŷ`∣∣∣∣B`∣∣∣∣x̂′`,i+1

∣∣∥∥∥+
∥∥∥∣∣Ŷ`∣∣∣∣r̂′`,i+1

∣∣∥∥∥)

+ ε

j∑
i=1

(
C2

∥∥A∥∥∥∥∥∣∣Ŷk∣∣∣∣x̂′k,i+1

∣∣∥∥∥+ C3

∥∥∥∣∣Ŷk∣∣∣∣Bk∣∣∣∣x̂′k,i+1

∣∣∥∥∥+
∥∥∥∣∣Ŷk∣∣∣∣r̂′k,i+1

∣∣∥∥∥),
with C1 = 2 + 2N ′, C2 = 7 + 2N ′, and C3 = 8 + 2N ′, where N ′ = max(NA, 2s+ 1).

Proof. If iteration sk + j +m is a replacement step, we compute

ẑsk+j+1+m = fl(ẑm+1 + x̂sk+j+1) = zsk+j+1+m + φsk+j+1 + ζsk+j+1+m

r̂sk+j+1+m = fl(b− Aẑsk+j+1+m) = b− Aẑsk+j+1+m + µsk+j+1+m

= b− Azsk+j+1+m − Aφsk+j+1 − Aζsk+j+1+m + µsk+j+1+m

= rsk+j+1+m + δsk+j+1+m − Aφsk+j+1 − Aζsk+j+1+m + µsk+j+1+m

= Ŷkr̂′k,j−ŶkBkq̂′k,j+Ŷkηk,j+1+δsk+j+1+m−Aφsk+j+1−Aζsk+j+1+m+µsk+j+1+m

= rsk+j+m − Aqsk+j+m + ηRR
sk+j+1+m

with

ηRR
sk+j+1+m = −Ekq̂′k,j + Ŷkηk,j+1 + δsk+j+1+m −Aφsk+j+1 −Aζsk+j+1+m + µsk+j+1+m. (6.10)

Following the derivation of (5.196), we can write δsk+j+1+m as

δsk+j+1+m = −µm+1 −
k−1∑
`=0

(
Aφs`+s+1 + ψs`+s+1 +

s∑
i=1

(
AŶ`ξ`,i+1 + Ŷ`η`,i+1 − E`q̂′`,i

))
−

j∑
i=1

(
AŶkξk,i+1 + Ŷkηk,i+1 − Ekq̂′k,i

)
, (6.11)

and then

δsk+j+1+m − Ekq̂′k,j + Ŷkηk,j+1

= −µm+1 −
k−1∑
`=0

(
Aφs`+s+1 + ψs`+s+1 +

s∑
i=1

(
AŶ`ξ`,i+1 + Ŷ`η`,i+1 − E`q̂′`,i

))
−

j∑
i=1

AŶkξk,i+1 −
j−1∑
i=1

(
Ŷkηk,i+1 − Ekq̂′k,i

)
. (6.12)

176

Substituting (6.12) into (6.10), and using bounds in (5.183), (5.187), (5.189), (5.193), (5.195),
and (6.8), as well as

∣∣x̂sk+1

∣∣ ≤∑k−1
`=0

∣∣Ŷ`∣∣∣∣x̂′`,s+1

∣∣+O(ε), we obtain the following component-
wise bound:∣∣ηRR
sk+j+1+m

∣∣ ≤ε(|r̂m+1|+ (1 + 2N ′) |A| |ẑm+1|
)

+ ε
k−1∑
`=0

(∣∣A∣∣∣∣x̂s`+s+1

∣∣+ (2 + 2N ′)
∣∣A∣∣∣∣Ŷ`∣∣∣∣x̂′`,s+1

∣∣+N ′
∣∣Ŷ`∣∣∣∣r̂′`,s+1

∣∣)

+ ε

k−1∑
`=0

s∑
i=1

(
(7 + 2N ′)

∣∣A∣∣∣∣Ŷ`∣∣∣∣x̂′`,i+1

∣∣+
∣∣Ŷ`∣∣((8 + 2N ′)

∣∣B`∣∣∣∣x̂′`,i+1

∣∣+
∣∣r̂′`,i+1

∣∣))

+ ε

j∑
i=1

(
(7 + 2N ′)

∣∣A∣∣∣∣Ŷk∣∣∣∣x̂′k,i+1

∣∣+
∣∣Ŷk∣∣((8 + 2N ′)

∣∣Bk∣∣∣∣x̂′k,i+1

∣∣+
∣∣r̂′k,i+1

∣∣))
with N ′ = max(NA, 2s+ 1). The desired bound on the norm of ηRR

sk+j+1+m follows.

We can compute (6.9) in each iteration, and thus this bound can be used in the residual
replacement condition (6.4). The following section discusses computation and communica-
tion costs associated with computing an estimate for (6.9).

6.1.3 Residual Replacement Algorithm for CA-CG

In each iteration, we will update an estimate for
∥∥ηRR

sk+j+m

∥∥, which we denote dsk+j+m. Based
on (6.9), we will iteratively update the estimate dsk+j+1+m by

dsk+j+1+m= dsk+j+m

+ε
(

(4 +N ′)
(∥∥A∥∥∥∥∥∣∣Ŷk∣∣∣∣x̂′k,j+1

∣∣∥∥∥+
∥∥∥∣∣Ŷk∣∣∣∣Bk∣∣∣∣x̂′k,j+1

∣∣∥∥∥)+
∥∥∥∣∣V̂k∣∣∣∣r̂′k,j+1

∣∣∥∥∥) (6.13)

+ε

{∥∥A∥∥(∥∥x̂sk+s+1

∥∥+(2 + 2N ′)
∥∥∥∣∣Ŷk∣∣∣∣x̂′k,s+1

∣∣∥∥∥)+N ′
∥∥∥∣∣Ŷk∣∣∣∣r̂′k,s+1

∣∣∥∥∥, j=s (6.14)

0, o.w.

where we omit the factors of two due to the bound
∑j

i=1

∣∣q̂′k,i∣∣ ≤ (2 + ε)
∑j

i=1

∣∣x̂′k,i+1

∣∣,
which is pessimistic. At each replacement step m, the value of dm+1 is reset to dm+1 =
ε (‖r̂m+1‖+ (1 + 2N ′) ‖A‖ ‖ẑm+1‖).

Based on (6.4), and using (6.7), we perform a residual replacement and group update
step when

dsk+j+m ≤ ε̂
∥∥Ŷkr̂′k,j∥∥2

and dsk+j+1+m > ε̂
∥∥Ŷkr̂′k,j+1

∥∥
2

and dsk+j+1+m > 1.1dinit, (6.15)

where the third condition is recommended in [181] to ensure that the error has nontrivially
increased since the last replacement step in an effort to avoid unnecessary replacements.
If this statement is true, we set zsk+j+1+m = ẑsk+j+1+m = fl(ẑm+1 + x̂sk+j+1), and we set
rsk+j+1+m = r̂sk+j+1+m = fl(b− Aẑsk+j+1+m), as in (6.5) and (6.7).

177

Note that we use
∥∥Ŷkr̂′k,j∥∥2

= (r̂′Tk,jGkr̂
′
k,j)

1/2 + O(ε) to estimate the other side of the

inequalities in (6.15). Since these terms are multiplied by ε̂ = ε1/2 in (6.15), the O(ε) error
due to use of Gk is ignored.

A residual replacement step does incur additional costs in CA-CG. When a residual
replacement occurs, we must break from the inner loop (perhaps before completing s steps)
and compute ẑsk+j+m and r̂sk+j+m = fl(b− Aẑsk+j+m) (the communication cost depends on
the data layout/structure of A). The algorithm must then begin a new outer loop, generating
new s-step bases with respect to the replaced residual.

If the number of replacements is large (i.e., we compute the true residual every iteration),
this can result in a significant slowdown due to increased communication costs. Fortunately,
our experimental results in Section 6.1.5 demonstrate that the number of replacements per-
formed can be low compared to the total number of iterations; for all of our test cases, at
most 2% of the total number of iterations were replacement steps. The CA-CG algorithm
with residual replacement is shown in Alg. 29.

6.1.4 Avoiding Communication in Residual Replacement

To iteratively update (6.13) and (6.14) we must be able to inexpensively estimate the quan-
tities

∥∥|Ŷk||Bk||x̂′k,j+1|
∥∥,
∥∥|Ŷk||x̂′k,j+1|

∥∥,
∥∥|Ŷk||r̂′k,j+1|

∥∥, ‖A‖, ‖r̂m+1‖, ‖ẑm+1‖, and ‖x̂sk+s+1‖
in each inner iteration of CA-CG. We assume we have an estimate for ‖A‖, which need only
be computed once. We discuss how to obtain the remaining quantities without increasing
the asymptotic computation or communication cost of CA-CG.

Let G̃k be the (2s+ 1)× (2s+ 1) matrix
∣∣Ŷk∣∣T ∣∣Ŷk∣∣. Given G̃k, we can compute∥∥∥∣∣Ŷk∣∣∣∣x̂′k,j+1

∣∣∥∥∥
2

=

√∣∣x̂′k,j+1

∣∣T G̃k

∣∣x̂′k,j+1

∣∣+O(ε),∥∥∥∣∣Ŷk∣∣∣∣r̂′k,j+1

∣∣∥∥∥
2

=

√∣∣r̂′k,j+1

∣∣T G̃k

∣∣r̂′k,j+1

∣∣+O(ε), and∥∥∥∣∣Ŷk∣∣∣∣Bk∣∣∣∣x̂′k,j+1

∣∣∥∥∥
2

=

√∣∣x̂′k,j+1

∣∣T ∣∣Bk∣∣T G̃k

∣∣Bk∣∣∣∣x̂′k,j+1

∣∣+O(ε). (6.16)

In each outer loop, the computation of G̃k requires a single synchronization (summing a
list of O(s)×O(s) matrices). As we perform an equivalent reduction to compute Gk in each
outer loop of CA-CG, computing G̃k increases the communication and computation costs
by no worse than a factor of two. If the reduction to obtain G̃k can be done simultaneously
with that to obtain Gk, no additional latency is incurred.

The computation of quantities in (6.16) require O(s3) operations per s steps and no
communication. Again, we perform equivalent operations to compute αsk+j and βsk+j in
each inner loop of CA-CG, so the computation cost is increased by a constant factor. Note
that, until now, we have not assumed a specific norm. The 2-norm allows us to compute
inner products locally using G̃k, and thus maintains the communication-avoiding properties
of CA-CG.

178

Algorithm 29 CA-CG with residual replacement (CA-CG-RR)

Input: n × n symmetric positive definite matrix A, length-n vector b, and initial approxi-
mation x1 to Ax = b

Output: Approximate solution xsk+s+1 to Ax = b with updated residual rsk+s+1

1: z1 = x1, x1 = 0n,1, r1 = p1 = b−Az1, d1 = dinit = ε(‖r1‖2+N
′ ‖A‖2 ‖z1‖2), m = 0, RR = 0

2: for k = 0, 1, . . . , until convergence do
3: Calculate Yk = [Pk,Rk] with starting vectors psk+1+m and rsk+1+m, Gk = YTk Yk
4: p′k,1 = [1, 01,2s]

T , r′k,1 = [01,s+1, 1, 01,s−1]T , x′k,1 = [01,2s+1]T

5: for j ∈ {1, . . . , s} do
6: αsk+j =

(
r′Tk,jGkr

′
k,j

)
/
(
p′Tk,jGkBkp′k,j

)
7: q′k,j = αsk+jp

′
k,j

8: x′k,j+1 = x′k,j + q′k,j
9: r′k,j+1 = r′k,j − Bkq′k,j

10: βsk+j =
(
r′Tk,j+1Gkr

′
k,j+1

)
/
(
r′Tk,jGkr

′
k,j

)
11: p′k,j+1 = r′k,j+1 + βsk+jp

′
k,j

12: Update dsk+j+1+m by (6.13).
13: if condition (6.15) holds then
14: zsk+j+1+m = zm+1 + xsk+1 + Ykx′k,j+1, rsk+j+1+m = b− Azsk+j+1+m, x1 = 0n,1
15: dinit = dsk+j+1+m = ε

(
‖rsk+j+1+m‖2 + (1 + 2N ′) ‖A‖2 ‖zsk+j+1+m‖2

)
16: RR = 1, m = m+ sk + j, k = 0, break
17: end if
18: end for
19: if RR = 0 then
20: xsk+s+1 = Ykx′k,s+1 + xsk+1, rsk+s+1+m = Ykr′k,s+1

21: Update dsk+s+1+m by (6.14).
22: end if
23: psk+j+1+m = Ykp′k,s+1, RR = 0
24: end for
25: return zsk+j+1+m = zm + xsk+1 + Ykx′k,j+1, rsk+j+1+m = Ykr′k,j+1

179

Matrix Domain n nnz cond 2-norm SPD?

cdde [13, 35] comp. fluid dynamics 2.6 · 105 1.3 · 106 5.5 6.0 N
consph [57] FEM/Spheres 8.3 · 104 6.0 · 106 9.7 · 103 9.7 Y

thermal1 [57] thermal 8.3 · 104 5.7 · 105 3.0 · 105 1.9 Y
xenon1 [57] materials 4.9 · 104 1.2 · 106 3.3 · 104 3.2 N

G2circuit [57] circuit simulation 1.5 · 105 7.3 · 105 2.3 · 105 2.0 Y

Table 6.1: Matrices used in residual replacement tests. Norm and condition numbers reflect
the equilibrated system. Note that cdde and xenon1 are nonsymmetric.

We must also compute ‖ẑm+1‖2 and ‖r̂m+1‖2 at every residual replacement step m. The
quantity ‖r̂m+1‖2 can be computed in the next outer loop after replacement in the same
way as the computation of αsk+j in CA-CG, i.e., ‖r̂m+1‖2 = (r̂′T0,1G0r̂

′
0,1)1/2 + O(ε). The

computation of ‖ẑm+1‖2 can be accomplished similarly by fusing the reduction with that of
G0 in the outer loop immediately following a residual replacement step. Again, this increases
the bandwidth by a constant factor and does not increase the latency cost. Since

‖x̂sk+s+1‖2 ≤
k∑
`=0

∥∥V̂`x̂′`,s+1

∥∥
2

+O(ε) =
k∑
`=0

√
x̂′T`,s+1G`x̂′`,s+1 +O(ε),

an estimate for this quantity can be iteratively updated in each outer loop iteration using
only local quantities.

6.1.5 Numerical Experiments

We evaluated our residual replacement strategy using many matrices from the University of
Florida Sparse Matrix Collection [57] and the NEP Collection [13], including the 28 matrices
tested by van der Vorst and Ye [181]. We present a subset of our results, from various
problem domains, which are representative of the general behavior observed. We chose to
show results for matrices with large dimension n as this is where we expect CA-KSMs to be
beneficial in terms of performance. The selected matrices along with relevant properties are
listed in Table 6.1. We tested both symmetric positive definite (SPD) and nonsymmetric
matrices, using CA-CG and CA-BICG, respectively. All matrices except cdde have real
eigenvalues.

In our experiments, we compare classical (BI)CG with CA-(BI)CG, both with and with-
out residual replacement. For CA-(BI)CG, tests were run for s = [4, 8, 12], with the mono-
mial, Newton, and Chebyshev bases (see Section 3.2.5). Coefficients for the Newton and
Chebyshev bases were computed using Leja-ordered points obtained from O(s) Ritz value
estimates, as described in Section 3.2.5 (see also [35, 102, 149]). We used row and col-
umn scaling to equilibrate the input matrix A, preserving symmetry for the SPD case, as
described in [102]. For each matrix, we selected a right hand side b such that ‖x‖2 = 1,
xi = 1/

√
n, and used the zero vector as the initial guess. All experiments were per-

formed in double precision, i.e., ε ≈ 10−16. In each test, the convergence criterion used was

180

cdde consph thermal1 xenon1 G2circuit
no RR RR no RR RR no RR RR no RR RR no RR RR

Classical 8e-15 6e-17 1e-14 1e-16 9e-14 1e-16 3e-14 9e-17 4e-14 1e-16
4 1e-14 6e-17 1e-14 1e-16 5e-14 1e-16 2e-14 8e-17 3e-14 1e-16

Monomial 8 3e-13 7e-17 4e-12 1e-16 5e-12 1e-16 4e-12 1e-16 4e-12 1e-16
12 9e-13 8e-17 − − − − 2e-10 1e-16 3e-9 1e-16
4 2e-14 6e-17 1e-14 1e-16 5e-14 1e-16 1e-14 1e-16 2e-14 1e-16

Newton 8 3e-14 6e-17 4e-14 1e-16 5e-14 1e-16 1e-14 1e-16 2e-14 1e-16
12 3e-14 6e-17 6e-13 1e-16 9e-14 1e-16 4e-14 1e-16 2e-14 1e-16
4 5e-15 1e-16 6e-15 1e-16 5e-14 1e-16 1e-14 1e-16 2e-14 1e-16

Chebyshev 8 1e-14 6e-17 3e-14 1e-16 4e-14 1e-16 1e-14 1e-16 2e-14 1e-16
12 6e-15 6e-17 1e-13 1e-16 4e-14 1e-16 2e-14 1e-16 1e-14 1e-16

Table 6.2: Improvement in true residual 2-norm. For each test, the left column gives the
2-norm of the true residual without replacement (no RR) and the right gives the 2-norm
of the true residual with replacement (RR). Dashes (-) indicate tests where the updated
residual did not converge.

cdde consph thermal1 xenon1 G2circuit
Classical 1.9 (1/54) .09 (2/2164) .09 (2/2111) .09 (2/2226) .07 (2/2707)

4 1.9 (1/54) .09 (2/2173) .05 (1/2206) .05 (1/2202) .09 (2/2930)
Monomial 8 1.7 (1/58) .52 (12/2319) .17 (5/2929) .20 (5/2446) .12 (6/3779)

12 .32 (1/310) − − .03 (2/5859) .02 (3/15901)
4 1.9 (1/54) .09 (2/2176) .04 (1/2226) .05 (1/2194) .07 (2/2930)

Newton 8 1.9 (1/54) .09 (2/2192) .09 (2/2345) .09 (2/2196) .07 (2/2928)
12 1.9 (1/54) .17 (4/2296) .08 (2/2477) .09 (2/2299) .07 (2/2930)
4 1.9 (1/54) .09 (2/2169) .05 (1/2206) .05 (1/2194) .03 (1/2937)

Chebyshev 8 1.9 (1/54) .09 (2/2179) .05 (1/2215) .05 (1/2194) .07 (2/2928)
12 1.9 (1/54) .13 (3/2294) .08 (2/2401) .09 (2/2195) .07 (2/2930)

Table 6.3: Percentage of residual replacement steps. For each test, the first number is
the percentage of total iterations that were replacement steps, calculated by the fraction
in parentheses, in which the numerator gives the number of replacement steps and the
denominator gives total iterations. Dashes (-) indicate tests where the updated residual did
not converge.

‖rsk+j+1+m‖ / ‖r1‖ ≤ 10−16. Since r1 = b and ‖b‖ ≤ ‖A‖ ‖x‖, ‖rsk+j+1+m‖ / ‖r1‖ ≤ 10−16

implies ‖rsk+j+1+m‖ = O(ε) ‖A‖ ‖x‖.
Van der Vorst and Ye [181] use ε̂ = 10−8 ≈

√
ε and NA = 1 in their experiments (with the

assumption that A is very sparse). We use ε̂ = 10−8 for most experiments; for tests using the
monomial basis with s = 12, we observed that using ε̂ = 10−8 caused restarts to occur earlier
and more frequently than was desired, as the bound ηRR

sk+j+1+m can be quite pessimistic due

to the growth of
∣∣Ŷk∣∣ for large s values. To account for this potential overestimate, we used

the value ε̂ = O(10−7) for all tests with the monomial basis and s = 12. Similarly to [181], we
set N ′ = 1. While this choice of parameters produces desirable results here, these heuristics

181

cdde consph thermal1 xenon1 G2circuit
Classical 15 375, 748 621, 1156 635, 1125 592, 998

4 13 366, 720 642 651 591, 956
Monomial 8 10 41, 96, 170, 245,

322, 394, 482, 554,
633, 689, 722, 740

272, 494, 665, 998,
1100

215, 456, 688, 872,
1003

100, 543, 737, 970,
1279, 1477

12 12 − − 13, 1668 17, 33, 4298
4 13 374, 716 641 673 600, 957

Newton 8 13 261, 602 582, 1098 590, 999 584, 949
12 11 140, 375, 574, 717 548, 1088 520, 939 555, 919
4 15 397, 727 657 701 614

Chebyshev 8 13 311, 651 637 658 602, 959
12 13 193, 426, 653 576, 1098 568, 976 582, 954

Table 6.4: Iterations where residual replacement steps occur. Dashes (-) indicate tests where
the updated residual did not converge.

deserve a rigorous theoretical analysis; we leave this as future work.
Although our bounds hold regardless of the bases used in constructing Ŷk, the quality of

the computed basis does affect the convergence rate of the CA-KSM; see Chapter 5. In the
extreme case of a degenerate basis, the Lanczos process can break down, causing divergence
of the updated residual. In such cases, any effort to maintain agreement between the true
and updated residual is futile. We therefore only test the residual replacement strategy on
cases where the updated residual converges.

Figs. 6.1, 6.2, 6.3, 6.4, and 6.5 show convergence of the true and updated residuals for
CA-(BI)CG with and without residual replacement, for each polynomial basis. Plots in the
left column show CA-(BI)CG, and plots on the right show CA-(BI)CG with the residual
replacement scheme. Plots in the top, middle, and bottom rows show tests where CA-
(BI)CG was run with s = 4, 8, and 12, resp. For comparison, we plot classical (BI)CG and
classical BI(CG) with the replacement scheme in [181].

For all plots, the x-axis is iteration number and the y-axis is the 2-norm of the quantities
listed in the legend, where ‘true’ is the true residual, ‘upd’ is the updated residual, and ‘d’
is dsk+j+1+m/ε̂, ‘M’,‘N’, and ‘C’ denote tests with monomial, Newton, and Chebyshev bases,
resp., and ‘CA-(BI)CG-RR’ denotes CA-(BI)CG with residual replacement.

For all tests with residual replacement (right columns), we plot the computed value of
dsk+j+1+m/ε̂, denoted with dash-dotted lines, where dsk+j+1+m is given by (6.13) and (6.14).
We can see that residual replacements occur immediately after this quantity grows larger
than the residual norm, as per the replacement criterion in (6.15).

Plots without residual replacement (left column) show that, as our bounds indicate,
the attainable accuracy in CA-(BI)CG generally grows worse with increasing s, especially
using bases where

∣∣Ŷk∣∣ grows quickly with s. It is worth mentioning that without residual
replacement, a well-conditioned polynomial basis can allow the CA-KSM to achieve slightly
better accuracy than the classical method in some cases (see, e.g., the Newton and Chebyshev

182

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

CA−BICG true,M
CA−BICG upd,M
CA−BICG true,N
CA−BICG upd,N
CA−BICG true,C
CA−BICG upd,C
BICG true
BICG upd

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

CA−BICG−RR true,M
CA−BICG−RR upd,M
CA−BICG−RR d,M
CA−BICG−RR true,N
CA−BICG−RR upd,N
CA−BICG−RR d,N
CA−BICG−RR true,C
CA−BICG−RR upd,C
CA−BICG−RR d,C
BICG−RR true
BICG−RR upd
BICG−RR d

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

Figure 6.1: Convergence of cdde test matrix for CA-BICG without residual replacement
(left) and with residual replacement (right), for s = 4 (top), s = 8 (middle), and s = 12
(bottom).

183

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

CA−CG true,M
CA−CG upd,M
CA−CG true,N
CA−CG upd,N
CA−CG true,C
CA−CG upd,C
CG true
CG upd

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

CA−CG−RR true,M
CA−CG−RR upd,M
CA−CG−RR d,M
CA−CG−RR true,N
CA−CG−RR upd,N
CA−CG−RR d,N
CA−CG−RR true,C
CA−CG−RR upd,C
CA−CG−RR d,C
CG−RR true
CG−RR upd
CG−RR d

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

Figure 6.2: Convergence of consph test matrix for CA-CG without residual replacement
(left) and with residual replacement (right), for s = 4 (top), s = 8 (middle), and s = 12
(bottom).

184

0 500 1000 1500 2000 2500 3000 3500

10
−15

10
−10

10
−5

10
0

CA−CG true,M
CA−CG upd,M
CA−CG true,N
CA−CG upd,N
CA−CG true,C
CA−CG upd,C
CG true
CG upd

0 500 1000 1500 2000 2500 3000 3500

10
−15

10
−10

10
−5

10
0

CA−CG−RR true,M
CA−CG−RR upd,M
CA−CG−RR d,M
CA−CG−RR true,N
CA−CG−RR upd,N
CA−CG−RR d,N
CA−CG−RR true,C
CA−CG−RR upd,C
CA−CG−RR d,C
CG−RR true
CG−RR upd
CG−RR d

0 500 1000 1500 2000 2500 3000 3500

10
−15

10
−10

10
−5

10
0

0 500 1000 1500 2000 2500 3000 3500

10
−15

10
−10

10
−5

10
0

0 500 1000 1500 2000 2500 3000 3500

10
−15

10
−10

10
−5

10
0

0 500 1000 1500 2000 2500 3000 3500

10
−15

10
−10

10
−5

10
0

Figure 6.3: Convergence of thermal1 test matrix for CA-CG without residual replacement
(left) and with residual replacement (right), for s = 4 (top), s = 8 (middle), and s = 12
(bottom).

185

0 1000 2000 3000 4000 5000 6000

10
−15

10
−10

10
−5

10
0

CA−BICG true,M
CA−BICG upd,M
CA−BICG true,N
CA−BICG upd,N
CA−BICG true,C
CA−BICG upd,C
BICG true
BICG upd

0 1000 2000 3000 4000 5000 6000

10
−15

10
−10

10
−5

10
0

CA−BICG−RR true,M
CA−BICG−RR upd,M
CA−BICG−RR d,M
CA−BICG−RR true,N
CA−BICG−RR upd,N
CA−BICG−RR d,N
CA−BICG−RR true,C
CA−BICG−RR upd,C
CA−BICG−RR d,C
BICG−RR true
BICG−RR upd
BICG−RR d

0 1000 2000 3000 4000 5000 6000

10
−15

10
−10

10
−5

10
0

0 1000 2000 3000 4000 5000 6000

10
−15

10
−10

10
−5

10
0

0 1000 2000 3000 4000 5000 6000

10
−15

10
−10

10
−5

10
0

0 1000 2000 3000 4000 5000 6000

10
−15

10
−10

10
−5

10
0

Figure 6.4: Convergence of xenon1 test matrix for CA-BICG without residual replacement
(left) and with residual replacement (right), for s = 4 (top), s = 8 (middle), and s = 12
(bottom).

186

0 1000 2000 3000 4000 5000

10
−15

10
−10

10
−5

10
0

CA−CG true,M
CA−CG upd,M
CA−CG true,N
CA−CG upd,N
CA−CG true,C
CA−CG upd,C
CG true
CG upd

0 1000 2000 3000 4000 5000

10
−15

10
−10

10
−5

10
0

CA−CG−RR true,M
CA−CG−RR upd,M
CA−CG−RR d,M
CA−CG−RR true,N
CA−CG−RR upd,N
CA−CG−RR d,N
CA−CG−RR true,C
CA−CG−RR upd,C
CA−CG−RR d,C
CG−RR true
CG−RR upd
CG−RR d

0 1000 2000 3000 4000 5000

10
−15

10
−10

10
−5

10
0

0 1000 2000 3000 4000 5000

10
−15

10
−10

10
−5

10
0

0 0.5 1 1.5 2

x 10
4

10
−15

10
−10

10
−5

10
0

0 0.5 1 1.5 2

x 10
4

10
−15

10
−10

10
−5

10
0

Figure 6.5: Convergence of G2circuit test matrix for CA-CG without residual replacement
(left) and with residual replacement (right), for s = 4 (top), s = 8 (middle), and s = 12
(bottom). Note the x-axis scale differs for s = 12 (bottom row).

187

bases in Figs. 6.3 and 6.5).
The improvement in maximum attainable accuracy due to the replacement scheme for

each test is summarized in Table 6.2, which gives the 2-norm of the true residual (normal-
ized by ‖r1‖ as described above) for CA-(BI)CG without and with residual replacement.
Our results show that, for cases where the updated residual converges to O(ε) ‖A‖ ‖x‖, the
residual replacement scheme for CA-(BI)CG improves convergence of the true residual to
within O(ε) ‖A‖ ‖x‖. As shown in Table 6.2, this improvement can be as large as 7 orders
of magnitude.

In all cases, the updated residuals in the algorithms with replacement converge at ap-
proximately the same rate in the algorithms without replacement. We note that for tests
with the monomial basis and s = 12, this behavior is sensitive to the chosen ε̂ value. Choos-
ing ε̂ too low can result in replacing too frequently, as described above, which can cause
slower convergence or divergence. In Fig. 6.4, we can see that, although the overall rate of
convergence is unaffected, residual replacement does result in more irregular convergence for
both CA-BICG and classical BICG.

The percentage of total iterations that were residual replacement iterations for each test,
shown in Table 6.3 did not exceed 2% in any of our experiments. The highest number of
replacements in any test was 12 (for monomial with s = 8 in Fig. 6.2). For reference, in
Table 6.4 we give the iteration number(s) where replacements occurred in each test. Since the
number of residual replacement steps is very small relative to the total number of iterations,
the communication cost of performing residual replacements (adding an additional outer
loop iteration) is negligible in the context of CA-(BI)CG.

6.2 Deflation-Based Preconditioning

As we’ve stressed, in addition to speed per iteration, the performance of iterative methods
also depends on the total number of iterations required for convergence. For conjugate gra-
dient (CG), the KSM of choice for solving symmetric positive definite (SPD) systems, it is
well-known that the rate of convergence in exact arithmetic can be bounded in terms of the
eigenvalue distribution. These bounds are not always tight, and additional complications
arise in finite precision computations (see, e.g., [125]). Nonetheless, preconditioning tech-
niques, wherein the system’s eigenvalue distribution is altered to improve the convergence
bounds, have been employed successfully in practice; for a survey of approaches, see [153].

In general, the ability to exploit temporal locality across KSM iterations is diminished by
preconditioning, and the relative performance benefits of using a CA-KSM over its classical
counterpart decline; see, e.g., [102]. Avoiding communication in a general preconditioned
method seems to necessitate significant modifications to the algorithm. There are, however,
many types of preconditioners which have been shown to be amenable to our communication-
avoiding techniques, including diagonal, polynomial, incomplete factorization, and sparse
approximate inverse preconditioners. This has stimulated an active area of research in de-
signing practical preconditioners for CA-KSMs, with much recent progress. We detail the

188

current state of the art and future work in designing and implementing preconditioners for
CA-KSMs in Section 6.8.

To add to the set of available communication-avoiding preconditioners, we propose de-
flation, which can be viewed as a type of preconditioning with a singular preconditioner,
as a feasible technique for improving convergence in CA-KSMs. We derive communication-
avoiding deflated CG (CA-D-CG), based on the deflated CG formulation (which we refer to
as ‘D-CG’) in [155]. Our analysis shows that the additional costs of CA-D-CG over CA-CG
are lower-order, which means, as in (non-deflated) CA-CG, we still expect a possible O(s)
speedup per s steps over the classical implementation. This motivates deflation as a promis-
ing method for improving convergence rate in CA-KSMs in practice. In this section, we give
a numerical example and performance modeling results which demonstrate that choosing
the number of deflation vectors, as well as the blocking factor s, result in complex, machine-
dependent tradeoffs between convergence rate and time per iteration. We note that this
section has been adapted from work that first appeared in [36].

6.2.1 Related Work

A review of related work related to approaches for reducing communication costs in Krylov
subspace methods including CA-KSMs can be found in Section 2.4. In this section, we
focus on deflation in a CA-CG variant that uses coupled two-term recurrences rather than
a single three-term recurrence. Other works that consider CA-CG in particular include [48,
49, 102, 175, 182]; a brief derivation can be found in Section 5.3, with the CA-CG algorithm
appearing in Algorithm 28. In the following section we derive our new CA-D-CG algorithm.
Our approach here will closely follow those in Chapter 4.

Deflation and augmentation techniques have been applied to improve convergence in
many KSMs since the mid 1980s; for a survey, see [159, Chapter 9]. Many approaches in
the literature can be viewed as instances of more general deflation/augmentation frameworks
[73, 95]. Connections have also been drawn between deflation and multilevel preconditioners;
see, e.g., [173], and references therein.

In this work, we consider the case of CG, the first KSM that was modified to perform
deflation [66, 134]; we note that the potential for eigenvalue deflation was also known to
Rutishauser before such methods gained popularity in the literature [67]. In this work,
we study the D-CG formulation as given in [155]. CG is convenient since it allows us to
concretely demonstrate our algorithmic reorganization while sidestepping technical issues
involving breakdown, i.e., where KSM iterates may not exist in exact arithmetic; however,
we see no obstacles beyond breakdown to extending our approach to other KSMs that deflate
in a similar manner.

As mentioned, there has been much recent work in the development of practical precon-
ditioners for CA-KSMs; we defer this discussion to Section 6.8. We also note that there has
been recent work in developing a high-performance deflated “pipelined” conjugate gradient
method [80].

189

Previous work has developed efficient deflation for a CA-KSM in order to recover informa-
tion lost after restarting the Arnoldi process. Wakam and Erhel [137] extended a special case
of CA-GMRES [102, 127] with an adaptive augmentation approach. Both their algorithm
and ours aim to reduce the frequency of global collectives incurred by deflation/augmentation
compared to previous approaches. However, our applications differ: in our case we apply de-
flation as a more general preconditioning technique for Lanczos-based methods. We note that
the algorithm presented in [137] restricts the constructed Krylov bases to Newton polynomi-
als. It may be beneficial to extend their approach to the more general family of polynomials,
which we consider here.

6.2.1.1 Deflated Conjugate Gradient

The classical CG method and CA-CG method can be found in Section 5.3 in Algorithms 27
and 28, respectively. Our CA-D-CG is based on D-CG by Saad et al. [155], shown in
Algorithm 30 for reference. (As mentioned above, this was not the first appearance of
deflated CG in the literature.)

We now summarize the motivation for the use of eigenvalue deflation in the CG method,
as presented in [155]. It is well-known (see, e.g., [84]) that in exact arithmetic, after i
iterations of CG, the error is (loosely) bounded by

‖x− xi‖A ≤ 2‖x− x1‖A

(√
κ(A)− 1√
κ(A) + 1

)i

,

with κ(A) = λn/λ1 where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the SPD matrix A. The
authors of [155] prove that for some set of linearly independent vectors W = [w1, w2, . . . , wc],
D-CG applied to Ax = b is mathematically equivalent to CG applied to the positive semidef-
inite system HTAHx̃ = HT b where H = I −W (W TAW)−1(AW)T is the A-orthogonal pro-
jection onto W⊥A and x = Hx̃. When the columns of W are exact eigenvectors associated
with λ1, . . . , λc, the effective condition number (see [70]) is κeff(HTAH) = λn/λc+1. When
the columns of W are approximate eigenvectors associated with λ1, . . . , λc, one can expect
κeff(HTAH) ≈ λn/λc+1. Thus if λc+1 > λ1, deflation decreases the effective condition num-
ber of the system, thus theoretically improving the bounds on (exact arithmetic) convergence
rate.

We note that it is well-known that in reality, the convergence of the conjugate gradient
method in exact arithmetic is much more accurately described by considering the spacing
between eigenvalues of the matrix A. However, neither the bounds based on κ(A) nor these
more descriptive bounds based on eigenvalue spacing hold in finite precision [119]. However,
the reduction of the effective condition number described above nonetheless remains the
motivation behind deflation, and in practice can lead to an improved convergence rate in
many cases. We also note that there has been recent work in developing tighter bounds on
the rate of convergence in the deflated conjugate gradient method (see, e.g., [105]).

For consistency, we assume we have an initial guess x1 such that r1 = b− Ax1 ⊥ W . To
satisfy this initial requirement, one can choose x1 = x0 + W (W TAW)−1W T r0 where x0 is

190

Algorithm 30 Deflated Conjugate Gradient (D-CG)

Input: n×n symmetric positive definite matrix A, length-n vector b, initial approximation
x0 to Ax = b, and n-by-c matrix W of rank c

Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: Compute and factorize W TAW
2: r0 = b− Ax0, x1 = x0 +W (W TAW)−1W T r0, r1 = b− Ax1

3: µ = (W TAW)−1W TAr1, p1 = r1 −Wµ
4: for i = 1, 2, . . . until convergence do
5: αi = (rTi ri)/(p

T
i Api)

6: xi+1 = xi + αipi
7: ri+1 = ri − αiApi
8: βi = (rTi+1ri+1)/(rTi ri)
9: Solve W TAWµi+1 = W TAri+1 for µi+1

10: pi+1 = ri+1 + βipi −Wµi+1

11: end for

arbitrary and r0 = b−Ax0. Note that selection of the subspace W is out of the scope of this
paper. This topic is covered extensively in the literature; see, e.g., [5, 11, 45, 60, 128, 129,
168, 186].

6.2.2 Deflated Communication-Avoiding Conjugate Gradient

We now derive CA-D-CG based on D-CG (Algorithm 30). As before, we denote iteration i
in Algorithm 30 with i = sk+ j to distinguish inner and outer loop iterations. By induction
on lines 6, 7, and 10 of Algorithm 30, we can write

psk+j, rsk+j ∈ Ks+1(A, psk+1) +Ks(A, rsk+1) +Ks−1(A,W), (6.17)

xsk+j − xsk+1 ∈ Ks(A, psk+1) +Ks−1(A, rsk+1) +Ks−2(A,W). (6.18)

for j ∈ {1 . . . , s + 1}. Deflation also requires the product Arsk+j+1 in the computation of
µsk+j+1 in line 9. Again, by induction, we can write

Arsk+j+1 ∈ Ks+2(A, psk+1) +Ks+1(A, rsk+1) +Ks(A,W) (6.19)

for j ∈ {1, . . . , s}.
As before, we define matrices Pk and Rk, whose columns span the Krylov subspaces

Ks+2(A, psk+1) and Ks+1(A, rsk+1), resp. For deflation, we now also require a basis W for
Ks(A,W). Note that, assuming W does not change throughout the iteration, W need only
be computed once. For the deflated method, we now define the n-by-(2s+ 3 + cs) matrix

Yk = [Pk, Rk,W]

= [ρ0(A)psk+1, . . . , ρs+1(A)psk+1, ρ0(A)rsk+1, . . . , ρs(A)rsk+1, ρ0(A)W, . . . , ρs−1(A)W].

191

By (6.18), (6.17), and (6.19), we can then write, for j ∈ {1, . . . , s + 1}, psk+j = Ykp′k,j,
rsk+j = Ykr′k,j, and xsk+j −xsk+1 = Ykx′k,j, i.e., the length-(2s+ 3 + cs) vectors p′k,j, r

′
k,j, and

x′k,j are coordinates for psk+j, rsk+j, and xsk+j − xsk+1, resp., in terms of the columns of Yk.
As in CA-CG, we can write a recurrence for computing multiplication with A; that is,

for j ∈ {1, . . . , s},

Apsk+j = AYkp′k,j= YkBkp′k,j and Arsk+j+1 = AYkr′k,j+1= YkBkr′k,j+1,

where, for the deflated method, we now define block diagonal matrix

Bk =

 B
(P)
k

B(R)
k

B(W)
k ⊗ Ic

 ,
where B(P)

k , B(R)
k , and B(W)

k are of the form (4.2) with i = s + 1, i = s, and i = s − 1,
respectively. Thus multiplication by Bk in basis Yk is equivalent to multiplication by A in
the standard basis.

Assuming the same W is used throughout the iterations, W TAW can be precomputed
and factorized offline. The small c-by-c factors of W TAW are assumed to fit in local/fast
memory. If we compute the (2s + 3 + cs)-by-(2s + 3 + cs) matrix Gk = YTk Yk, and extract
the c-by-(2s + 3 + cs) submatrix Zk = W TYk, then we can form the right-hand side in the
solve for µsk+j+1 in line 9 of Algorithm 30 by W TArsk+j+1 = ZkBkr′k,j+1, replacing a global
reduction with a small, local operation. Note that the formulas for computing αsk+j and
βsk+j in Algorithm 30 remain the same as in Algorithm 27. Thus, using Gk, we can compute
these inner products in CA-D-CG using the same formulas as in CA-CG (lines 8 and 12 of
Algorithm 28).

Similarly, the formulas for updates xsk+j+1 and rsk+j+1 are the same for D-CG and CG, so
the formulas for x′k,j+1 and r′k,j+1 in CA-D-CG remain the same as those in CA-CG (lines 10
and 11). The formula for psk+j+1 in D-CG can be written

Ykp′k,j+1 = Ykr′k,j+1 + βsk+jYkp′k,j − Yk[01,2s+3, µ
T
sk+j+1, 01,c(s−1)]

T ,

for j ∈ {1 . . . , s}. Thus in CA-D-CG, p′k,j+1 is updated by

p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j − [01,2s+3, µ

T
sk+j+1, 01,c(s−1)]

T .

The resulting CA-D-CG method is shown in Algorithm 31.

6.2.2.1 Algorithmic Extensions

We assume in our derivation that the matrix of deflation vectors W is constant through
the iterations. We could, however, extend CA-D-CG to allow for updating of Wk in (some
or all) outer loop iterations k; see, e.g., [5, 11, 120, 145, 168] for example applications.

192

Algorithm 31 Deflated Communication-Avoiding Conjugate Gradient (CA-D-CG)

Input: n×n symmetric positive definite matrix A, length-n vector b, initial approximation
x0 to Ax = b, and n-by-c matrix W of rank c

Output: Approximate solution xi+1 to Ax = b with updated residual ri+1

1: Compute and factorize W TAW
2: Compute W
3: r0 = b− Ax0, x1 = x0 +W (W TAW)−1W T r0, r1 = b− Ax1

4: µ = (W TAW)−1W TAr1, p1 = r1 −Wµ
5: for k = 0, 1, . . . until convergence do
6: Compute Pk, Rk, let Yk = [Pk,Rk,W]; assemble Bk.
7: Gk = YTk Yk; extract Zk = W TYk
8: p′k,1 = [1, 01,2s+2+cs]

T , r′k,1 = [01,s+2, 1, 01,s+cs]
T , x′k,1 = 02s+3+cs,1

9: for j = 1, . . . , s do
10: αsk+j = (r′Tk,jGkr

′
k,j)/(p

′T
k,jGkBkp′k,j)

11: x′k,j+1 = x′k,j + αsk+jp
′
k,j

12: r′k,j+1 = r′k,j − αsk+jBkp′k,j
13: βsk+j = (r′Tk,j+1Gkr

′
k,j+1)/(r′Tk,jGkr

′
k,j)

14: Solve W TAWµsk+j+1 = ZkBkr′k,j+1 for µsk+j+1

15: p′k,j+1 = r′k,j+1 + βsk+jp
′
k,j − [01,2s+3, µ

T
sk+j+1, 01,c(s−1)]

T

16: end for
17: xsk+s+1 = Ykx′k,s+1 + xsk+1, rsk+s+1 = Ykr′k,s+1, psk+s+1 = Ykp′k,s+1

18: end for

(Additional considerations arise when changing the operator during the iterations due to the
loss of orthogonality properties [10, Chapter 12]; see also [136].) Updating Wk in outer loop k
requires recomputingWk, a basis for Ks(A,Wk); this computation could potentially be fused
with computation of Pk and Rk such that no extra latency cost is incurred. The quantity
W T
k AWk can be recovered from the computation of Gk, so no additional communication is

required. Factorization of the c-by-c matrix W T
k AWk can also be performed locally; note

the number of deflation vectors c could be allowed to vary over outer loop iterations as well.
This extension is considered future work.

6.2.3 Numerical Experiments

For numerical experiments, our goal is to show that CA-D-CG is competitive with D-CG
in terms of convergence rate and that it also beats CA-CG without deflation. While the
approaches are equivalent in exact arithmetic, there is no reason to expect that CA-D-CG
iterates will exactly equal D-CG iterates in finite precision, given the different sets of floating-
point operations performed. There are many open questions about CA-KSMs’ finite precision
behavior, some of which we hope to address in future work. But in lieu of theoretical results,
we will rely on our practical experience that CA-KSMs’ iterates deviate from their classical

193

counterparts as the s-step Krylov bases become ill-conditioned (increasingly, with s), and
this effect can be diminished by picking different polynomial bases [35, 102, 149]. To focus
on this potential instability that grows with s, we chose a test problem for which the classical
methods are relatively insensitive to rounding errors. Thus, our experiments do not address
the possibility that the deviation between D-CG and CA-D-CG iterates is much larger when
the classical methods’ convergence is highly perturbed by rounding errors.

We test the stability of our reformulation on a similar model problem to the one con-
sidered in [155], using codes written in a combination of MATLAB and C, with linear al-
gebra routines from Intel’s Math Kernel Library. We generate a discrete 2D Laplacian by
gallery(’poisson’,512) in MATLAB, so A is an SPD matrix of order n = 5122. We
pick the right-hand side b equal to A times the vector with entries all n−1/2. Our deflation
vectors are the eigenvectors corresponding to the smallest magnitude eigenvalues, computed
using MATLAB’s eigs. Note that the study in [155] used (known) exact eigenvalues; this
difference does not significantly affect the results for this test.

In Figures 6.6-6.8, we compare convergence for the model problem using D-CG and CA-
D-CG with the monomial, Newton, and Chebyshev polynomial basis, resp., each for a few
representative s values. We report the 2-norm of the true residual computed by b − Axi,
rather than the recursively updated residual ri, and normalize by the 2-norm of the starting
residual r1 = b (i.e., the starting guess x1 is the vector of zeros). We declare convergence after
a factor of 108 reduction in the normalized residual 2-norm. The solid curves correspond to
D-CG, and circles correspond to CA-D-CG. We deflate with c ∈ {0, 4, 8} eigenvectors, plotted
in black, red, and blue, respectively (when c = 0, D-CG is just CG and CA-D-CG is just
CA-CG). Based on the formulas above, this suggests the condition number κ(A) ≈ 1.07 · 105

in the undeflated case (c = 0) should improve to ≈ 2.13 · 104 in the case c = 4, and to
≈ 1.25 · 104 when c = 8.

We implemented the Newton basis by choosing parameters in (4.2) as β̂i = 0, γ̂i = 1,
and α̂i is the i-th element in a set of Leja-ordered points on the real line segment [λc+1, λn];
see, e.g., [149]. We implemented the Chebyshev basis by setting basis parameters in (4.2)
as γ̂i = |λn − λc+1| /2 (except γ̂0, which is not divided by 2), α̂i = λc+1 + |λn − λc+1| /2,
and β̂i = |λn − λc+1| /8. These recurrence coefficients are based on the bounding ellipse of
the spectrum of A, which is, in the present case of symmetric A, an interval on the real
line; see, e.g., [104]. In practice, only a few Ritz values (estimates for eigenvalues of A)
need to be computed up front to sufficiently determine parameters for Newton or Chebyshev
polynomials. One can also incorporate information about new Ritz values obtained as a
byproduct of the iterations to improve the basis conditioning; see [149] for practical details
and experiments.

Note that λc+1 is used as the smallest eigenvalue in selecting Newton and Chebyshev
parameters above. This is because if columns of W are exact eigenvectors of A corresponding
to eigenvalues λ1, . . . , λc, using λ1 as a basis parameter in computation of basisW can cause
cancellation and can thus produce a rank-deficient basis. Although this cancellation does
not occur in computation of bases Pk and Rk, we used the same basis parameters chosen for
W (i.e., using λc+1) to compute Pk and Rk for simplicity, with no ill effects.

194

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−5

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

Figure 6.6: Monomial basis tests. Top: s = 4 (left), s = 8 (right), Bottom: s = 16. Plots
show the 2-norm of the true residual, b− Axi, for tests with c = 0 (black), c = 4 (red), and
c = 8 (blue), for both D-CG (−) and CA-D-CG (◦) using monomial bases of size s. Note
that the y-axis in the bottom plot differs.

For the monomial basis (Figure 6.6), convergence is nearly identical for s = 4, but we
begin to see a delay in CA-D-CG convergence for s = 8 (top-left), and a failure to converge
by s = 16. For the Newton basis (Figure 6.7), the two methods have similar convergence
past s = 16; only around s = 100 (bottom-right) do we begin to notice a significant delay in
convergence for CA-D-CG. The situation is similar for the Chebyshev basis (Figure 6.8), only
the bottom-right subfigure now depicts the case s = 220. These results clearly demonstrate
that basis choice plays an important role for CA-D-CG convergence, at least on this well-
behaved model problem

In the next section, we will introduce a coarse performance model to ask about the
practical benefits of values as large as s = 220.

195

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

Figure 6.7: Newton basis tests. Top: s = 4 (left), s = 8 (right), Bottom: s = 16 (left),
s = 100 (right). Plots show the 2-norm of the true residual, b − Axi, for tests with c = 0
(black), c = 4 (red), and c = 8 (blue), for both D-CG (−) and CA-D-CG (◦) using Newton
bases of size s.

6.2.4 Performance Modeling

In this section, we give a qualitative description of the performance tradeoffs between the
four KSMs mentioned above — CG, CA-CG, and their deflated counterparts — on massively
parallel machines. We use the theoretical machine model discussed in Section 2.2; recall that
for an algorithm where a processor (on the critical path) performs F flops and sends/receives
S messages containing a total of W words, we model the worst-case runtime using the
equation

T = γF + βW + αS,

where α represents a latency cost incurred by every message, β represents a bandwidth cost
linear in the message size, and γ represents the time to perform a floating point operation
on local data. For CA-CG and CA-D-CG, we estimate the time for s inner loop iterations

196

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

R
es

id
ua

l 2
−

no
rm

Figure 6.8: Chebyshev basis tests. Top: s = 4 (left), s = 8 (right), Bottom: s = 16 (left),
s = 220 (right). Plots show the 2-norm of the true residual, b − Axi, for tests with c = 0
(black), c = 4 (red), and c = 8 (blue), for both D-CG (−) and CA-D-CG (◦) using Chebyshev
bases of size s.

and then divide by s to estimate time per iteration. Note that this ignores relative rates of
convergence, treated in Section 6.2.3.

We were motivated to develop CA-D-CG based on the high relative cost of interprocessor
communication on large-scale parallel computers. In addition to parallel implementations,
CA-KSMs can avoid communication on sequential machines, namely data movement within
the memory hierarchy. Indeed, the parallel and sequential approaches naturally compose
hierarchically, as has been exploited in previous high-performance CA-KSM implementa-
tions [127], and we suggest the same for a future CA-D-CG implementation. However, in
this section, we will restrict ourselves to a parallel model which ignores sequential communi-
cation costs to illustrate the changes in parallel communication costs. We do not claim that
this model’s predicted speedups are always attainable on real hardware; however, we believe
that such models can help to determine feasibility of a communication-avoiding approach rel-
ative to a classical approach, as well as to efficiently explore and prune the (machine-specific)

197

parameter tuning space for an optimized implementation.
We consider two parallel machine models, which we call ‘Exa’ and ‘Grid.’ We use γ =

1 ·10−13 seconds per (double precision) flop in both cases, based on predictions for a ‘node’ of
an exascale machine [41, 177]. This flop rate corresponds to a node with a 1024-core processor
and its own memory hierarchy with 256 GB of capacity at the last level; however, as discussed
above, we ignore this intranode structure. For Exa, the interconnect has parameters α =
4 · 10−7 seconds per message and β = 3.7 · 10−11 seconds per word (4-byte double precision
value). For the second machine, Grid, we replace this interconnect by the Internet (via
Ethernet), using the parameters α = 10−1 and β = 2.5 · 10−8 given in [126]. In contrast to
their predecessors, our models allow an arbitrary number of processors, in order to illustrate
asymptotic scaling behavior — we do not claim that every machine configuration modeled
is physically realizable.

We will study the same model problem (a 5-point 2D stencil with constant coefficients)
and numbers of deflation vectors as in the numerical experiments. Because the model prob-
lem is a stencil with constant coefficients, we assume it can be represented in O(1) words.
We assume the

√
n-by-

√
n mesh is partitioned across a

√
p-by-

√
p grid of processors, so that

each processor owns a contiguous
√
n/p-by-

√
n/p subsquare, and we assume these fractions

are integers; this layout minimizes communication within a factor of
√

2 (for this particular
stencil, a diamond layout would be asymptotically optimal [21, Chapter 4.8]).

To simplify the analysis, we restrict s ∈ {1, . . . ,
√
n/p} for the CA-KSMs, which means

that the sparse computations only require communication with (logical) nearest neighbors;
the communication-avoiding approach is correct for any s, but the latency cost rises sharply
when each processor needs information from a larger neighborhood. We also simplify by
using the same blocking parameter s for the sparse and dense computations; in general,
one can compute the s-step Krylov bases in smaller blocks, and then compute a (larger)
Gram matrix, or vice versa, i.e., constructing the Gram matrix blockwise as the s-step bases
are computed. In practice, we have observed significant speedups from the Gram matrix
construction alone (with no blocking of the SpMV operations) [190], and we suggest tuning
the block sizes independently. Also to simplify the analysis, we will ignore the preprocessing
costs of computing the deflation matrix W (not the algorithmic cost W) and computing and
factorizing W TAW , assuming that they can be amortized over many iterations; in practice,
these costs may not be negligible, especially if the number of iterations is small.

We note that in the case of variable coefficients, i.e., the nonzeros of A are stored explicitly,
we would partition A in a overlapping block rowwise fashion, as explained in [126]. For
variable coefficients, we would then incur the additional, but amortizable, cost of distributing
rows of A to neighboring processors as described in Section 3.2.

Under these assumptions, the number of flops, words moved, and messages required for
s steps of CG, CA-CG, D-CG, and CA-D-CG are as follows:

FlopsCG = s(19n/p+ 2 log2 p)

WordsCG = s(4
√
n/p+ 4 log2 p)

198

MessCG = s(4 log2 p+ 4)

FlopsCA-CG = 18(n/p)s+ s(20s+ 3(2s+ 1)(4s+ 1) + 10) + 12s3

+ 2(n/p)(4s+ 1) + (n/p)(4s+ 3) + 36
√
n/ps2

+ ((2s+ 1)(2s+ 2)(2(n/p) + log2 p− 1))/2

WordsCA-CG = 8
√
n/ps+ 4s2 + log2 p(2s+ 1)(2s+ 2)

MessCA-CG = 2 log2 p+ 8

FlopsD-CG = s(30(n/p) + 2 log2 p+ c(2(n/p) + log2 p− 1) + 2c2 + (n/p)(2c− 1))

WordsD-CG = s((4 + 2c) log2 p+ 8
√
n/p)

MessD-CG = s(6 log2 p+ 8)

FlopsCA-D-CG = 12(s+ 1)3 + 2(n/p)(4s+ 2cs+ 5) + (n/p)(4s+ 2cs+ 7)

+ 36
√
n/p(s+ 1)2 + 18(n/p)(s+ 1) + s(24s+ c(4s+ 2cs+ 5)

+ 4(2s+ cs+ 3)(4s+ 2cs+ 5) + 12cs+ 2c2 + 36)

+ (2s+ 3)(s+ cs+ 2)(2(n/p) + log2 p− 1)

WordsCA-D-CG = 4(s+ 1)2 + 8
√
n/p(s+ 1) + 2 log2 p(2s+ 3)(s+ cs+ 2)

MessCA-D-CG = 2 log2 p+ 8

For the CA-KSMs, we do not exploit the nonzero structure of Gk and Bk for local matrix-
vector multiplications, nor the nonzero structure of the length-O(s) coefficient vectors.

For D-CG, we note that one can compute AW offline (in line 1), and avoid the SpMV
Ari+1 in line 9; while this may improve some constant factors by up to 2, it does not avoid the
global reduction in the subsequent application of (AW)T , which our performance modeling
suggests is often the dominant cost.

We note that the log2 p terms in computation and bandwidth costs can often be reduced
by exploiting efficient collectives based on recursive halving/doubling approaches; see [42]
for a survey. These approaches require that the number of words in the collective is at
least p, which was not always true in our experiments, hence our use of simpler tree-based
collectives.

We first consider weak scaling in Figure 6.9. We fix n/p = 46 and vary p ∈ {4x :
x ∈ {2, . . . , 14}}. The black curves correspond to the runtime of a single iteration of the
classical KSMs: CG (no markers), D-CG with c = 4 (square markers), and D-CG with c = 8
(asterisk markers) — the logarithmic dependence on p, due to the collective communications,
is evident. The red curves allow us to vary the parameter s ∈ {1, . . . ,

√
n/p}, where s = 1

corresponds to the classical KSMs, and s > 1 corresponds to their deflated counterparts
(markers mean the same as for the black curves); for comparison with the classical methods,
we compute the runtime of one CA-KSM outer loop (with s inner-loop iterations) and then
divide by s. On both Exa and Grid, it was beneficial to pick s > 1 for every problem,
although the optimal s varies, as illustrated in Figure 6.11. The best speedups, i.e., the ratio
of the runtime with s = 1 to the best runtime with s ≥ 1, were about 55, 38, and 28 for

199

10
0

10
2

10
4

10
6

10
8

10
10

10
−7

10
−6

10
−5

10
−4

Number of processors

R
un

tim
e

(s
)

10
0

10
2

10
4

10
6

10
8

10
10

10
−2

10
−1

10
0

10
1

10
2

Number of processors

R
un

tim
e

(s
)

Figure 6.9: Modeled weak scaling on model problem on Exa (left) and Grid (right). Black
curves correspond to the runtime of a single iteration of the classical KSMs: CG (no markers),
D-CG with c = 4 (square markers), and D-CG with c = 8 (asterisk markers). Red curves
correspond to the runtime of a single iteration of the CA-KSMs: CA-CG (no markers), CA-
D-CG with c = 4 (square markers), and CA-D-CG with c = 8 (asterisk markers), using the
optimal value of s ∈ {1, . . . ,

√
n/p} for each point.

c = 0, 4, and 8, resp. on Exa, while the corresponding best speedups on Grid were about
116, 174, and 173.

Strong scaling plots are shown in Figure 6.10. The curves represent the same algorithms
as in the previous figure, except now we use different problems for the two machines (we
use the same range of p as before). Note that the red and black curves coincide for some
points on the left of both plots. As the local problem size decreases, so does the range of
s values over which the CA-KSMs optimize. For Exa, we fix n = 415, so for the largest p,
e.g., the processors’ subsquares are 2-by-2 and s ∈ {1, 2}; for Grid, we fix n = 422. While all
tested KSMs scale when the local problem is large, the CA-KSMs are able to exploit more
parallelism than the classical KSMs on both machines. In both cases, the CA-KSM runtime
eventually begins to increase too. The best speedups on Exa were about 49, 42, and 31 for
c = 0, 4, and 8, resp., while the corresponding best speedups on Grid were about 1152, 872,
and 673.

Lastly, in Figure 6.11, we demonstrate the benefits of increasing the parameter s for a
fixed problem and a varying number c ∈ {0, . . . , 50} of deflation vectors. The case c =
0 indicates the non-deflated KSMs, and is depicted separately. We plot the CA-KSMs’
speedups relative to the classical KSMs, i.e., the points along the line s = 1. For both
machines, we fix p = 49, but to illustrate the tradeoffs on both, we pick n = 414 for Exa, and
n = 420 for Grid. In both cases, we see decreased relative benefits of avoiding communication
as c increases, as the network bandwidth becomes saturated by the larger reductions. For
Exa, for small c it is beneficial to increase s to the maximum

√
n/p we consider; for Grid,

however, it is never beneficial to increase s to its maximum, for any c.

200

10
0

10
2

10
4

10
6

10
8

10
10

10
−7

10
−6

10
−5

10
−4

10
−3

Number of processors

R
un

tim
e

(s
)

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of processors

R
un

tim
e

(s
)

Figure 6.10: Modeled strong scaling on model problem on Exa (left) and Grid (right). Black
curves correspond to the runtime of a single iteration of the classical KSMs: CG (no markers),
D-CG with c = 4 (square markers), and D-CG with c = 8 (asterisk markers). Red curves
correspond to the runtime of a single iteration of the CA-KSMs: CA-CG (no markers), CA-
D-CG with c = 4 (square markers), and CA-D-CG with c = 8 (asterisk markers), using the
optimal value of s ∈ {1, . . . ,

√
n/p} for each point.

c=0

s

1

5

10

15

20

25

30
32

c

1 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

c=0

s

1

256

512

768

1024

1280

1536

1792

2048

c

1 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

Figure 6.11: Modeled speedup per iteration on model problem, versus s and c, on Exa (left)
and Grid (right).

201

6.2.5 Future Work and Conclusions

In this work, we have demonstrated that deflation can be performed in a communication-
avoiding way, and is thus suitable for use as a preconditioner for CA-KSMs. We derived
CA-D-CG, which is equivalent to D-CG in exact arithmetic but can be implemented such
that parallel latency is reduced by a factor of O(s) over a fixed number of iterations. Per-
formance modeling shows predicted speedups of CA-D-CG over D-CG for a number of n/p
ratios on two model architectures, for s values constrained so s ≤

√
n/p. We performed

numerical experiments for a model problem to illustrate the benefits of deflation for conver-
gence rate. Our results also demonstrate that by using better conditioned bases of Newton
and Chebyshev polynomials, s can be made very large before convergence behavior of CA-
D-CG deviates significantly from D-CG; however, for more difficult problems, to be studied
in future work, we expect the practical range of s to be more restricted.

We also point out that, as in the classical case, our CA-D-CG method is mathematically
equivalent to applying CA-CG (Algorithm 28) to the transformed system HTAHx̃ = HT b. If
we were to instead perform deflation in this way, communication-avoiding techniques related
to blocking covers for linear relaxation [112, 117] and other ideas from those works could be
applied in the Krylov basis computation.

The communication-avoiding reorganization applied here can also be applied to many
other deflated KSMs, including adaptive deflation approaches (see, e.g., [5, 11, 120, 145, 168]),
where the matrix W is allowed to change. Our future work will address these applications, as
well as a distributed-memory implementation to evaluate the performance of our approaches
on real parallel machines.

6.3 Selective Reorthogonalization

In practice, the Lanczos vectors computed by the Lanczos method lose orthogonality due to
roundoff errors. This can cause multiple copies of converged Ritz values to appear, which
delays convergence to other eigenvalues. One option to remedy this is to run the Lanczos
algorithm with full reorthogonalization; if strong linear independence is maintained between
the Lanczos vectors, redundant Ritz pairs can not be formed and the number of Lanczos
steps does not exceed n. These desirable numerical properties come at the expense of extra
computation, communication, and space requirements in order to store all previous vectors
and perform the orthogonalization.

The selective orthogonalization technique of Parlett and Scott [147] achieves a middle
ground between full reorthogonalization and no reorthogonalization, maintaining near or-
thogonality among the Lanczos vectors for a much lower cost than the full reorthogonaliza-
tion method. This technique is grounded in the theory of Paige [140, 141], which says that
the Lanczos vectors lose their orthogonality by developing large components in the direction
of converged Ritz vectors. By monitoring the computed error bounds, it can be determined
which Ritz vectors will contribute large components to the current vector v̂m+1, and v̂m+1

202

can then be orthogonalized against those Ritz vectors.
Selective orthogonalization can be justified as follows. A result of Paige [140] says that,

for the classical Lanczos algorithm at iteration m,

z
(m)T
i v̂m+1 = −

ε
(m)
i,i

β̂m+1η
(m)
m,i

,

where v̂m+1 is the current Lanczos vector, z
(m)
i is the ith Ritz vector computed in iteration

m, η
(m)
m,i is the last element of the ith eigenvector of T̂m computed in iteration m, and

ε
(m)
i,i = q

(m)T
i δRmq

(m)
i with |ε(m)

i,i | = O(ε‖A‖). We note that this notation is the same used in

Section 5.1. Thus a small β̂m+1η
(m)
m,i , which indicates convergence of Ritz pair (µ

(m)
i , z

(m)
i),

causes loss of orthogonality by introducing to v̂m+1 large components of ẑ
(m)
i . Then to prevent

this loss of orthogonality, we want to purge v̂m+1 of the threshold Ritz vectors corresponding
to indices

L(m+1) = {i : |z(m)T
i v̂m+1| ≥

√
ε}.

For most iterations in classical Lanczos, |L| = 0 but when |L(m+1)| > 0 then we orthogo-

nalize v̂m+1 against z
(m)
i for i ∈ L(m+1). This requires computing the z

(m)
i ’s, which requires

bringing in V̂m from memory. In classical Lanczos,

z
(m)T
i v̂m+1 =

O(ε‖A‖)
β̂m+1η

(m)
m,i

,

so we determine which indices L(m+1) will contain by finding the i’s such that |β̂m+1η
(m)
m,i | ≤√

ε‖A‖.
We want to determine a similar criterion for the CA-Lanczos method. We can use our

results for CA-Lanczos in Section 5.1, which are analogous to the results of Paige for clas-
sical Lanczos [140, 141], to develop a selective orthogonalization technique for CA-Lanczos.
Similar to the results of Paige, by (5.77) and (5.78), we have

z
(m)T
i v̂m+1 =

ε
(m)
i,i

β̂m+1η
(m)
m,i

.

where |ε(m)
i,i | = O(ε‖A‖Γ̄2

k), with Γ̄k = max`∈{0,...,k} ‖Y+
` ‖2‖|Y`|‖2 (see Theorem 1). In this

case, we will have |z(m)T
i v̂m+1| ≥

√
ε when

|β̂m+1η
(m)
m,i | ≤

√
ε‖A‖Γ̄2

k, (6.20)

so we will purge v̂m+1 of the threshold Ritz vectors corresponding to indices

L(m+1) = {i : |β̂m+1η
(m)
m,i | ≤

√
ε‖A‖Γ̄2

k}.

203

This indicates that in order to maintain desirable numerical properties, an implementa-
tion of CA-Lanczos with selective reorthogonalization should perform, in iteration m, the
reorthogonalization of v̂m+1 against all vectors z

(m)
i for which |β̂m+1η

(m)
m,i | ≤

√
ε‖A‖Γ̄2

k. Per-
forming reorthogonalization incurs communication in the CA-Lanczos method as it does in
the classical Lanczos method. Additionally, if reorthogonalization is triggered in the CA-
Lanczos method, we must abandon the current outer loop iteration and recompute the s-step
bases with the new reorthogonalized v̂m+1 vector. An example of a CA-Lanczos method with
selective orthogonalization in given in Algorithm 32.

As mentioned before, for the classical method, it is often the case that |L(m+1)| = 0. We
expect the number of reorthogonalizations in the CA-Lanczos method to be similar to the
classical Lanczos method when Γ̄k ≈ 1. In the case then that the number of reorthogonal-
ization steps required in CA-Lanczos is small, we can still reap the performance benefits of
avoiding communication in most outer loop iterations. However, if Γ̄k is very large (around
ε−1/2), then we could have |L(m+1)| ≈ m for all values of m. This would result in what
is essentially, in terms of communication and computation cost, classical Lanczos with full
reorthogonalization. This happens because now, we can lose orthogonality both because a
Ritz pair has converged or because of very large roundoff errors caused by ill-conditioned
s-step bases.

There are some potential solutions. One option is to use better polynomial bases in the
basis construction to reduce Γ̄k. Another idea is to allow the parameter s to vary, and in
each outer loop k terminating basis construction at some s such that Γk remains below some
chosen threshold. As the term Γ̄k tends to overestimate the actual error in many cases,
it could be less expensive and still effective to artificially reduce the right-hand side of the
condition (6.20). Determining the viability of these methods in practice remains future work.

We note that it is not safe to assume Γ̄k ≈ 1 and simply use the same reorthogonalization
condition as classical Lanczos, i.e, |β̂m+1η

(m)
m,i | ≤

√
ε‖A‖. The technical report [92] tests

various reorthogonalization strategies including selective orthogonalization for CA-Lanczos.
In this work, the same condition that triggers selective reorthogonalization as in the classical
Lanczos method is used for the CA-Lanczos method. As can be seen in Table 1 in [92], using
this criteria, which doesn’t take into account loss of orthogonality due to the conditioning
of the s-step bases, the effectiveness of selective orthogonalization decreases as s (and thus
Γ̄k) increases. Our analysis supports this result.

We note that the |β̂m+1η
(m)
m,i | values can be computed in CA-Lanczos the same way as in

the classical method. One way of doing this is to calculate all the Ritz values at each step

and use a formula from Paige [138] which states that
(
η

(m)
m,i

)2

= χm−1(µ
(m)
i)/χ′m(µ

(m)
i) where

χm(µ) is the characteristic polynomial of T̂m (see (5.71)). Another option is to compute a
few eigenvalues of T̂m at each end of the spectrum and then use inverse iteration to find the
bottom elements of the corresponding eigenvectors. Recall that in a parallel communication-
avoiding implementation, all processors redundantly compute the scalars that form the en-
tries of T̂m, which could be stored locally if m is not too large. In this case, both options
above could be implemented without increasing communication.

204

We note that it may also be possible to implement partial reorthogonalization in CA-
KSMs. This technique, due to Simon [157], would involve monitoring of the quantity
‖V̂ T

sk+j v̂sk+j+1‖ where V̂sk+j = [v̂1, . . . , v̂sk+j]. When semiorthogonality is lost, i.e., this quan-
tity grows to

√
ε, v̂sk+j and v̂sk+j+1 are explicitly orthogonalized against all preceding v̂

vectors. We leave pursuit of a communication-avoiding version of partial reorthogonaliza-
tion as future work.

6.4 Look-Ahead

Look-ahead techniques may allow nonsymmetric Lanczos and nonsymmetric Lanczos-type
solvers, including BICG and BICGSTAB, to continue past a Lanczos breakdown [148].
A Lanczos breakdown occurs when a vector in the expanding Krylov subspace for A is
nearly numerically orthogonal to a vector in the corresponding subspace for AH . Kim and
Chronopoulos [110] have noted that for their s-step nonsymmetric Lanczos algorithm, in
exact arithmetic, if breakdown occurs at iteration m in the classical algorithm, then the
same breakdown will only occur in the s-step variant if m is a multiple of s. They also com-
ment that look-ahead in the exact arithmetic s-step method amounts to ensuring that no
blocked inner products between basis matrices have determinant zero. Hoemmen, however,
has commented that the situation is more complicated in finite precision, as it is difficult to
determine which type of breakdown occurred [102].

We consider the look-ahead nonsymmetric Lanczos algorithm of Parlett, Taylor, and
Liu [148]. Using notation from our CA-BIOC nonsymmetric Lanczos method (see Sec-
tion 4.1), implementation of the criteria to determine whether the current iteration will be
a single step or a double step requires the inner products

yHi yi = y′Hk,jG
(Z)
k y′k,j,

yHi+1yi+1 = y′Hk,j+1G
(Z)
k y′k,j+1,

ỹHi ỹi = ỹ′Hk,jG
(Z̃)
k ỹ′k,j,

ỹHi+1ỹi+1 = ỹ′Hk,j+1G
(Z̃)
k ỹ′k,j+1,

ỹHi ỹi+1 = ỹ′Hk,jG
(Z̃)
k ỹ′k,j+1,

yHi yi+1 = y′Hk,jG
(Z)
k y′k,j+1 and

ỹHi+1yi = ỹ′Hk,j+1Gky
′
k,j,

where Gk = Z̃Hk Zk (see (4.22)), and G
(Z)
k = ZHk Zk and G

(Z̃)
k = Z̃Hk Z̃k (see (4.25)). Thus we

claim that performing look-ahead checks in CA-BIOC could be performed without requiring
additional communication.

The only difficulty we see is that a double look-ahead step can not be performed on the
last inner iteration, since Zk and Z̃k do not span the required subspaces to perform the
update; we would need to increase the subspace by another dimension, i.e., perform another

205

Algorithm 32 CA-Lanczos with Selective Orthogonalization

Input: n-by-n real symmetric matrix A and length-n starting vector v1 such that ‖v1‖2 = 1
Output: Matrices Vsk+s and Tsk+s and vector vsk+s+1 satisfying (5.1)

1: u1 = Av1

2: for k = 0, 1, . . . until convergence do
3: Compute Yk with change of basis matrix Bk
4: Compute Gk = YTk Yk
5: v′k,1 = e1

6: if k = 0 then
7: u′0,1 = B0e1

8: else
9: u′k,1 = es+2

10: end if
11: for j = 1, 2, . . . , s do
12: αsk+j = v′Tk,jGku

′
k,j

13: w′k,j = u′k,j − αsk+jv
′
k,j

14: βsk+j+1 = (w′Tk,jGkw
′
k,j)

1/2

15: if βsk+j+1 = 0, quit

16: Find L(sk+j+1) = {i : |β̂sk+j+1η
(sk+j)
sk+j,i | ≤

√
ε‖A‖Γ̄2

k}
17: if |L(sk+j+1)| > 0 then
18: wsk+j = Ykw′k,j
19: for ` ∈ L(m+1) do

20: wsk+j = wsk+j − (z
(sk+j)T
` wsk+j)z

(sk+j)
`

21: end for
22: βsk+j+1 = ‖wsk+j‖2

23: if βsk+j+1 = 0, quit
24: vsk+j+1 = wsk+j/βsk+j+1

25: usk+j+1 = Avsk+j+1 − βsk+j+1Ykv′k,j
26: Compute eigenvalues, eigenvectors, and error bounds of Tm
27: Break and immediately begin next outer loop iteration
28: end if
29: v′k,j+1 = w′k,j/βsk+j+1

30: u′k,j+1 = Bkv′k,j+1 − βsk+j+1v
′
k,j

31: Compute eigenvalues, eigenvectors, and error bounds of Tm
32: end for
33: [vsk+2, . . . , vsk+s+1] = Yk[v′k,2, . . . , v′k,s+1]
34: [usk+2, . . . , usk+s+1] = Yk[u′k,2, . . . , u′k,s+1]
35: end for

206

multiplication by A, which is not possible using the current bases. One solution is that, if a
double iteration is required on the last inner loop iteration, when j = s, we could abandon
the current inner loop, skipping the last iteration, begin a new outer loop, and make the
first step of the new inner iterations a double step. This may result in a small amount of
wasted effort.

The situation is more complicated when pivots larger than 2 × 2 are used, i.e., we look
ahead more than one step at a time. If the algorithm requires that we look ahead ` steps to
compute the next vectors, then we can only do this in the CA-BIOC algorithm for iterations
j ≤ s− `. In the s-step case we are then limited to using pivots of size at most s× s unless
we are willing to increase the dimension of the bases we generate in each outer loop. We
leave further inquiry as future work.

6.5 Extended Precision

We stress that in infinite precision arithmetic, the CA-KSMs will produce exactly the same
results as their classical counterparts, regardless of s value and regardless of polynomial bases
used. This means that if we had the ability to work in arbitrary precision at little extra
cost, we would be free to choose the s value based solely on matrix structure and machine
architecture without worrying about numerical stability and convergence. In many cases, it
may be that we can achieve these desirable results using less than infinite precision, e.g., quad
precision. This would result in (at least) a doubling of the bandwidth and arithmetic cost,
which might be insignificant in the latency-bound regime. We therefore seek to determine
the precision needed to ensure that CA-KSMs will behave numerically like classical KSMs.
If this precision can be estimated, then we can model the effect this extra precision has on
performance and find the best tradeoff point.

The analysis of Section 5.1 suggests that if we use precision ε such that

ε <
1

24(n+ 11s+ 15)Γ̄2
k

,

then this will guarantee that the results of Paige apply to the s-step case. Since the bounds
developed in Section 5.1 are not tight, the expression above is likely a large overestimate of
the actual precision needed to achieve the desired numerical properties. This likely extends
to other Lanczos-based CA-KSMs, since the computations are very similar. We note that
the maximum Γk could be estimated using bounds on the condition numbers for various
polynomial bases (see, e.g., [74, 149]).

The analysis in Section 5.1 also suggests that it is possible to use different precision
for different parts of the computation. In Theorem 1, we can see that the quantity ε0 is
amplified by a factor of Γ̄2

k, but ε1 is only amplified by a factor of Γ̄k. Therefore we can
achieve the same effect numerically by using precision proportional to ε/Γ̄2

k for computations
that contribute to ε0 and precision proportional to ε/Γ̄k for computations that contribute
to ε1. To this end, future work includes extension of our numerical stability analysis for

207

CA-KSMs in Section 5.1 to estimate the minimum number of bits of precision needed in
each kernel.

We mention that the use of extended (or limited) precision capabilities in software and
hardware as a means to achieve algorithm stability while minimizing energy/bandwidth
requirements is an active area of research. Specifically in the realm of CA-KSMs, Yamazaki
et al. [196] have recently used a mixed-precision CholeskyQR routine to perform the TSQR
factorization in a higher precision during select iterations of CA-GMRES.

6.6 Dynamically Updated Basis Parameters

As we have seen in Chapter 5, generating well-conditioned s-step bases is essential to main-
taining desirable numerical properties in CA-KSMs. Determining basis parameters that will
result in well-conditioned bases requires some knowledge of the spectrum of A. In practice,
we might want to avoid the upfront cost of computing good estimates for eigenvalues of A to
use for this purpose. One technique is to start the iterations by using the classical method
or the CA method with a monomial basis (or a Newton or Chebyshev basis constructed
with rough estimates) and a smaller s value, and then use information from the iterations
to compute Leja points or estimate the spectral radius.

In our numerical experiments in Section 4, we have used the approach described by
Philippe and Reichel [149] for constructing sets S from which to compute basis parame-
ters. We first run i steps of the algorithm to find the matrix tridiagonal Lanczos matrix Ti
consisting of scalars computed during the iterations, where i should be at least s (2s is a
common choice). Note that the first i steps can either be performed as classical iterations or
as communication-avoiding iterations with either the monomial basis or another polynomial
basis constructed with initial spectral estimates.

For the Chebyshev basis, after the first i steps, we set S = co(λ(Ti)), the convex hull
of λ(Ti). After each outer loop iteration, one could then determine the new set of Ritz
values of the now larger matrix Ti+sk and update S = co(S ∪ λ(Ti+sk)). After the new set
S is computed, we find the parameters of a bounding ellipse for S, and, as described in
Section 3.2.5, use these in the construction of the Chebyshev basis for the next s steps.

For construction of the Newton basis, we initialize S = sp(λ(Ti)), where sp(λ(Ti)) is the
convex set formed by the spokes from the centroid of λ(Ti) to the eigenvalues λ(Ti). Philippe
and Reichel term this a “spoke set” [149]. After each outer loop, one could again determine
the new set of Ritz values of the now larger matrix Ti+sk and update S = S ∪ sp(λ(Ti+sk)).

We note that in the case that A is symmetric, S will be a set of points on the real line
between λ1(Ti) and λn(Ti) for both the convex hull approach and the spoke set approach.
In these cases, we can simply use Leja’s approach to computing Leja points on an interval
on the real line. The convex hull and spoke set approaches become more important for
constructing well-conditioned bases in the case that A has imaginary eigenvalues.

We also stress that except in very rare cases, we do not need very accurate Ritz values to
construct well-conditioned bases. Therefore we likely only need to refine the basis parameters

208

after a few outer loop iterations. Determining analytically and experimentally when and how
often to update basis parameters is left to future work.

6.7 Variable Basis Size

We have seen throughout Chapter 5 that the condition number of the s-step bases generated
in each outer loop in CA-KSMs plays a large part in determining how their finite precision
behavior differs from that of the classical method. This motivates approaches for ensuring
that the s-step bases do not become too ill-conditioned in any outer loop. While using
more well-conditioned polynomials for basis construction generally improves the situation,
the resulting basis matrix condition number can still be too high, depending on s and the
spectrum of A.

We show the CA-Lanczos method which allows for variable sizes bases in Algorithm 33.
We note that this general approach could be used in any of the CA-KSMs, both those for
solving eigenproblems and linear systems. In Algorithm 33, the choice of the parameter tol
depends on the desired numerical behavior. Theorem 1 and (5.65) suggest that we should
use tol ≈ (nε)−1/2. Depending on the application constraints, one might choose to sacrifice
convergence rate for greater communication savings, or vice versa; in this case tol can be
adjusted accordingly.

We note that an implementation of CA-KSMs with variable basis sizes may end up
wasting work in the matrix powers kernel computation. Because vector entries required
for computing the needed basis for smax are exchanged with neighboring subdomains before
computation begins, if we end up cutting of the computation at sk < smax, we will have
moved more data and performed more flops than necessary. This could be remedied during
the iteration by lowering smax if many successive outer loops do not use the full basis.

6.7.1 Telescoping Basis Size

Even if the chosen smax is such that κ(Yk) < tol for all k, it may still be beneficial to vary the
block size s used in each outer loop for some applications. One example is in the case where
we are using a CA-KSM to solve a series of linear systems, with some being much harder to
solve than others in terms of the number of iterations they take. If the easiest solves take
fewer than s iterations to converge, then we’ve wasted effort in computing the s-step bases
and Gram matrix for iterations we don’t execute.

This inspires the use of a “telescoping” s value, where we begin using s = 1 and gradually
increase s in each outer loop up to smax (or the largest sk ≤ smax such that κ(Yk) < tol
holds). In this way, we avoid the overhead of using CA-KSMs for easier solves, and for
harder solves, the cost of basis construction and block orthogonalization are amortized over
many outer loops and asymptotic savings can be realized. This telescoping s approach has
been implemented and proven to be beneficial when CA-KSMs are used as bottom solve
routines for Geometric Multigrid methods; see Section 8.3.6.

209

Algorithm 33 CA-Lanczos with Variable Basis Size

Input: n-by-n real symmetric matrix A and length-n starting vector v1 such that ‖v1‖2 = 1,
integer smax > 0, max basis condition number tol

Output: Matrices Vsk+s and Tsk+s and vector vsk+s+1 satisfying (5.1)
1: u1 = Av1

2: ` = 0
3: for k = 0, 1, . . . until convergence do
4: Compute up to 2smax+2 columns of Yk with condition estimation; stop when κ(Yk) ≥

tol (Yk will have 2sk + 2 columns)
5: Compute Gk = YTk Yk
6: v′k,1 = e1

7: if k = 0 then
8: u′0,1 = B0e1

9: else
10: u′k,1 = esk+2

11: end if
12: for j = 1, 2, . . . , sk do
13: α`+j = v′Tk,jGku

′
k,j

14: w′k,j = u′k,j − αsk+jv
′
k,j

15: β`+j+1 = (w′Tk,jGkw
′
k,j)

1/2

16: v′k,j+1 = w′k,j/β`+j+1

17: v`+j+1 = Ykv′k,j+1

18: u′k,j+1 = Bkv′k,j+1 − β`+j+1v
′
k,j

19: u`+j+1 = Yku′k,j+1

20: end for
21: ` = `+ sk
22: end for

6.8 Preconditioning: A Discussion

Although our primary focus is on developing a practical understanding of the behavior
of communication-avoiding Krylov methods in finite precision, a thesis on Krylov sub-
space methods would be incomplete without a discussion of preconditioning. The goal of
communication-avoiding Krylov methods is to decrease the cost per iteration. Conversely,
the goal of preconditioning is to decrease the total number of iterations required until conver-
gence. These are thus two different, but potentially complementary approaches to improving
overall runtime.

The basic idea behind preconditioning is to, instead running the KSM on system Ax =
b, instead run it on a modified system that is easier to solve, such as M−1Ax = M−1b,
where M is called the preconditioner. Note that this does not require explicitly forming
M−1A, but requires instead solving, e.g., Mz = r when needed. The example given, where

210

M−1 is applied on the left, is called left preconditioning. It is also possible to use right
preconditioning, where one runs the KSM on the system AM−1u = b and then solves Mx =
u, or split preconditioning, where, given factored M = MLMR, one runs the KSM on the
system M−1

L AM−1
R u = M−1

L b and then solves MRx = u.
Selecting a good preconditioner to use, i.e., one which is inexpensive to apply and sig-

nificantly increases the convergence rate, is very often problem-dependent and is considered
somewhat of an art. There is a large space of research in designing efficient and effective
preconditioners, which we do not hope to tackle here. In a very general sense, a good
preconditioner is one where MA ≈ I and application of M−1 to a vector is inexpensive.

For CA-KSMs, the situation is even more complicated. CA-KSMs avoid communication
in the matrix powers computation by exploiting locality which is made possible by sparsity
in A. Even is A is very sparse, its inverse is in general dense. Thus selecting M ≈ A−1 will
serve to improve the convergence rate but will introduce dependencies in the matrix powers
computation which destroy locality. Thus the two goals - reducing the cost per iteration via
communication-avoiding techniques and reducing the number of iterations via precondition-
ing - are somewhat at odds and involve complicated, problem-dependent tradeoffs.

There has nevertheless been success in designing communication-avoiding preconditioners
which do not hinder asymptotic communication savings for specific cases. Preconditioned
variants of CA-KSMs and potential preconditioners that can be used with them are discussed
in the thesis of Hoemmen [102]. Grigori et al. developed a CA-ILU(0) preconditioner for
CA-GMRES [89]. For structured problems, their method exploits a novel mesh ordering
to obtain triangular factors that can be applied with less communication. There is also
recent work in developing a new “underlapping” technique (as opposed to the more com-
mon “overlapping”) in communication-avoiding domain decomposition preconditioners for
CA-KSMs [195]. For the case of preconditioners with both sparse and low-rank components
(e.g., hierarchical semiseparable matrices; see, e.g., [19]), applying the low-rank components
dominates the communication cost; techniques in [102, 112] block together several applica-
tions of the low-rank components in order to amortize communication cost over several KSM
iterations. Our communication-avoiding deflation technique in Section 6.2 can be viewed as
preconditioning, but with a singular preconditioner. We also note that there has been recent
work in developing a high-performance deflated “pipelined” conjugate gradient method [80].

We note that, although developing communication-avoiding preconditioned Krylov meth-
ods is challenging, there are many applications for which diagonal preconditioning, which
incurs no additional communication, is perfectly sufficient. Further, although precondition-
ers are often required for KSMs for solving linear systems, preconditioners are typically not
used in KSMs for solving eigenvalue problems (aside from polynomial preconditioning and
shift-and-invert strategies). Thus we do not see the lack of available communication-avoiding
preconditioners as prohibitive to the usability of CA-KSMs for solving eigenvalue problems.

211

6.8.1 Future Work

As there has been a paradigm shift towards the redesign of algorithms to avoid communi-
cation, there is also a growing trend toward the redesign of preconditioners with commun-
ication-avoidance in mind (e.g., the underlapping technique of [195]). We expect that the
development of new preconditioners that avoid communication as well as modification of
existing preconditioners to eliminate communication will be a fruitful area of research in
coming years.

The use of variable and flexible preconditioners provides great opportunity for further
optimization of communication-avoiding Krylov methods in terms of convergence rate and
speed per iteration. One possibility is that the blocking parameter s can be made variable,
which would allow for a few select expensive preconditioned iterations (when s = 1) while
the majority of the iterations remain communication- avoiding (when s > 1). This could
allow a relatively inexpensive reduction in convergence rate, leading to faster overall solves.
An alternative to developing preconditioners for CA-KSMs is to use CA-KSMs themselves as
inexpensive flexible inner-outer preconditioners inside classical KSMs. Further investigation
remains future work.

6.9 Conclusions and Future Work

In this Chapter, we have developed a number of new techniques for improving the stabil-
ity and convergence properties of CA-KSMs. Some of these techniques are extensions of
techniques that were invented for classical KSMs, whereas others are new ideas applicable
specifically to CA-KSMs. There is potential to develop techniques for improving numerical
properties in CA-KSMs other than those discussed here. These might include restarting,
other types of reorthogonalization, use of the TSQR kernel (see, e.g., [102]) for orthogonal-
ization of the s-step bases, and the development of new preconditioners that avoid commu-
nication as well as modification of existing preconditioners to eliminate communication will
be a fruitful area of research in coming years as discussed in Section 6.8.1, among others.

While the techniques discussed in this Chapter are compatible with the communication-
avoiding approach (meaning we can still achieve asymptotic communication savings), the
potential numerical improvements do not come for free. All these techniques will incur an
additional (albeit lower order) cost in terms of either computation, bandwidth, latency, or
some combination of these. Future work includes high-performance implementation of these
techniques and evaluation of tradeoffs between the convergence rate and speed per iteration
in the resulting method for specific applications.

In the next chapter, we turn our focus from numerical optimizations to performance
optimizations based on matrix structure.

212

Chapter 7

Optimizations for Matrices with
Special Structure

In this Chapter we present some performance optimizations that are applicable to matrices
with specific nonzero structures. In Section 7.1, which has been adapted from [112], we derive
a new parallel communication-avoiding matrix powers algorithm for matrices of the form
A = D+USV H , where D is sparse and USV H has low rank and is possibly dense. There are
many practical situations where such structures arise, including power-law graph analysis and
circuit simulation. Hierarchical (H-) matrices (e.g., [19]), common preconditioners for Krylov
subspace methods, also have this form. Our primary motivation is enabling preconditioned
communication-avoiding Krylov subspace methods, where the preconditioned system has
hierarchical semiseparable (HSS) structure. We demonstrate that, with respect to the cost
of computing k sparse matrix-vector multiplications, our algorithm asymptotically reduces
the parallel latency by a factor of O(k) for small additional bandwidth and computation
costs. To highlight the potential benefits and tradeoffs of this approach, in Section 7.1.4 we
model the performance of our communication-avoiding matrix powers computation for HSS
matrices. Using problems from real-world applications, our performance model predicts up
to 13× speedups on petascale machines.

In Section 7.2 we present the ‘streaming’ matrix powers optimization which can improve
sequential performance for implicitly-represented matrices (which include stencils and stencil-
like matrices). By interleaving the matrix powers computation with construction of the Gram
matrix in each outer loop iteration, the data movement cost is reduced from O(sn) to O(n)
per s steps. Write-avoiding algorithms have recently become of interest in the context of non-
volatile memory [33]; use of the streaming matrix powers optimization enables write-avoiding
Krylov methods for general sparse matrices.

In Section 7.3, we improve on the method of partitioning highly nonsymmetric matrices to
avoid communication in computing the matrix powers kernel. The hypergraph partitioning
problem has been shown to correspond exactly to minimizing the communication in SpMV
[37]. To encapsulate the communication cost of k SpMVs, however, we must look at the
s−level hyperedges, or the hyperedges corresponding to the structure of |A|k.

213

However, computing the structure of |A|k is prohibitively expensive. To reduce this
cost, we implement Cohen’s algorithm for estimating the size of s steps of the transitive
closure [54]. Using the approximated size of each hyperedge, we devise a dropping technique,
which selectively drops hyperedges once they become too large. This can significantly reduce
both the cost of building the k−level hyperedges and the partitioning time while still finding
a near-optimal (in terms of communication) partition.

7.1 Data-Sparse Matrix Powers Kernel

Recall from Section 3.2 that given a matrix A, a vector y, and desired dimension k + 1, we
can compute a basis for the Krylov subspace Kk+1(A, y),

Y = [ρ0(A)y, ρ1(A)y, . . . , ρk(A)y], (7.1)

where ρj is a polynomial of degree j, using the communication-avoiding matrix powers
algorithms of [63]. The authors in [63] show that the communication-avoiding approach
gives an O(k) reduction in parallel latency cost versus computing k repeated SpMVs for a
set number of iterations. This improvement is only possible ifA is well partitioned, i.e., we can
partition A such that for each processor, computing powers up to Ak involves communication
only between O(1) nearest neighbors. (Note that in this section, k denotes the number of
SpMVs to compute rather than an outer iteration index in a CA-KSM.)

Although such advances show promising speedups for many problems, the requirement
that A is well partitioned often excludes matrices with dense components, even if those
components have low rank (or, data sparsity). In this Section, we derive a new parallel
communication-avoiding matrix powers algorithm for matrices of the form A = D+USV H ,
where D is well partitioned and USV H may not be well partitioned but has low rank. Recall
yH = yT denotes the Hermitian transpose of y. There are many practical situations where
such structures arise, including power-law graph analysis and circuit simulation. Hierarchical
(H-) matrices (see, e.g., [19]), common preconditioners for Krylov subspace methods, also
have this form. Our primary motivation is enabling preconditioned communication-avoiding
Krylov subspace methods, where the preconditioned system has hierarchical semiseparable
(HSS) structure (see, e.g., [19, 44, 185, 193]).

With respect to the cost of computing k SpMVs, our algorithm asymptotically reduces
parallel latency by a factor of O(k) with only small additional bandwidth and computation
requirements. Using a detailed complexity analysis for an example HSS matrix, our model
predicts up to 13× speedups over the standard algorithm on petascale machines.

Our approach is based on the application of a blocking covers technique [117] to comm-
unication-avoiding matrix powers algorithms described in [126] (see Section 3.2). We briefly
review this work below. We note that this section has been adapted from work that first
appeared in [112].

214

7.1.1 The Blocking Covers Technique

Hong and Kung [103] prove a lower bound on data movement for a sequential matrix powers
computation on a regular mesh. Given directed graph G = (V,E) representing nonzeros of
A, vertex v ∈ V , and constant k ≥ 0, let the k-neighborhood of v, N (k)(v), be the set of
vertices in V such that u ∈ N (k)(v) implies there is a path of length at most k from u to
v. For example, for a tridiagonal matrix with vertices V = {v1, . . . , vn}, the k-neighborhood
cover of a vertex vi is the set N (k)(vi) = {vi−k . . . , vi, . . . , vi+k} ∩ V . A k-neighborhood-cover
of G is a sequence of subgraphs G = {Gi = (Vi, Ei)}`i=1, such that ∀v ∈ V, ∃Gi ∈ G for which
N (k)(v) ⊆ Vi [117]. If G has a k-neighborhood cover with O(|E|/M) subgraphs, each with
O(M) edges where M is the size of the primary memory, Hong and Kung’s method reduces
data movement by a factor of k over computing (7.1) column-wise. A matrix that meets
these constraints is also frequently called well partitioned [63] (we use this terminology for
the parallel case as well).

A shortcoming of Hong and Kung’s method is that certain graphs with low diameter (e.g.,
multigrid graphs) may not have k-neighborhood covers that satisfy these memory constraints.
Leiserson et al. overcome this restriction by “removing” a set B ⊆ V of blocker vertices,
chosen such that the remaining graph V −B is well partitioned [117]. Let the k-neighborhood

with respect to B be defined as N
(k)
B (v) = {u ∈ V : ∃ path u → u1 → · · · → ut → v, where

ui ∈ V − B for i ∈ {1, . . . , t < k}}. Then a (k, r,M)-blocking cover of G is a pair (G,B),
where G = {Gi = (Vi, Ei)}`i=1, and B = {Bi}`i=1 is a sequence of subsets of V such that:
(1) ∀i ∈ {1, . . . , `},M/2 ≤ |Ei| ≤ M , (2) ∀i ∈ {1, . . . , `}, |Bi| ≤ r, (3)

∑`
i=1 |Ei| = O(|E|),

and (4) ∀v ∈ V, ∃Gi ∈ G such that N
(k)
Bi

(v) ⊆ Vi [117]. Leiserson et al. present a 4 phase
sequential matrix powers algorithm that reduces the data movement by a factor of k over the
standard method if the graph of A has a (k, r,M)-blocking cover that meets certain criteria.
Our parallel algorithm is based on a similar approach. Our work generalizes the blocking
covers approach [117], both to the parallel case and to a larger class of data-sparse matrix
representations.

7.1.2 Derivation of Parallel Blocking Covers Algorithm

Recall the classical (PA0) and communication-avoiding (PA1) algorithms for computing (7.1)
in Section 3.2. We will use the same notation for the layered graph and for the parallel matrix
powers computation, which are defined in Sections 3.2.1 and 3.2.2, respectively. In the case
that A is not well partitioned, PA0 (Algorithm 1) must communicate at every step, but now
the cost of PA1 (Algorithm 2) may be much worse: when k > 1, every processor needs all
n rows of A and y(0), and so there is no parallelism in computing all but the last SpMV
operation. Note that when k = 1, PA1 degenerates to PA0.

If, however, A can be split in the form D + USV H , where D is well partitioned, and
U and V are n × r and S is r × r with r � n so USV H has low rank, we can use a
generalization of the blocking covers approach [117] to recover parallelism. In this case, D
has a good cover and US can be applied locally, but the application of V H incurs global

215

communication. Thus, the application of V H will correspond to the blocker vertices in our
algorithm, PA1-BC, which we now derive.

We assume the polynomials ρj in (7.1) satisfy the three-term recurrence (4.1), i.e.,

ρ0(z) = 1, ρ1(z) = (z − α̂0)ρ0(z)/γ̂0, and

ρj(z) = ((z − α̂j−1)ρj−1(z)− β̂j−2ρj−2(z))/γ̂j−1 for j > 1.
(7.2)

It is convenient to represent the polynomials {ρj}kj=0 by their coefficients, stored in a (k+1)-
by-(k + 1) tridiagonal matrix B of the form (4.2) with i = k.

Using our splitting A = D + USV H , we can write

y(j) = ((D − α̂k)y(j−1) − β̂j−2y
(j−2) + USV Hy(j−1))/γ̂j−1. (7.3)

We obtain the following identity.

Lemma 7. Given the additive splitting z = z1 +z2, where z1 and z2 need not commute, (7.2)
can be rewritten as

ρ0(z) = ρ0(z1), ρ1(z) = ρ1(z1) + z2ρ0(z)/γ̂0, and for j > 1,

ρj(z) = ρj(z1) +
∑j

i=1
ρj−i+1
i−1 (z1)z2ρj−i(z)/γ̂j−i.

(7.4)

where ρij(z) is polynomial of degree j related to ρj(z) by reindexing the coefficients

(α̂j, β̂j, γ̂j) ≡ (α̂i+j, β̂i+j, γ̂i+j)

in (7.2).

The conclusion is established by induction (see [111] for details).
Now substitute z = A = D + USV H = z1 + z2 in (7.4), premultiply by SV H , and

postmultiply by y, to obtain

SV Hρj(A)y = S
(
V Hρj(D)y +

j∑
i=1

(V Hρj−i+1
i−1 (D)U)(SV Hρj−i(A)y/γ̂j−i

)
. (7.5)

Let Wi = V Hρi(D)U for 0 ≤ i ≤ k− 2, xi = V Hρi(D)x for 0 ≤ i ≤ k− 1, and bj = SV Hy(j)

for 0 ≤ i ≤ k − 1. We can write ρji in terms of ρi = ρ0
i , via the following result.

Lemma 8. There exist coefficient vectors wji ∈ Ci+1 satisfying

[W0, . . . ,Wi](w
j
i ⊗ Ir,r) = V Hρji (D)U (7.6)

for 0 ≤ i ≤ k − 2, 1 ≤ j ≤ k − i− 1, and they can be computed by the recurrence

wj0 = 1, wj1 = (B2,1 − α̂i+j−1I2,1)wj0/γ̂j−1, and for i > 1,

wji = ((Bi+1,i − α̂i+j−1Ii+1,i)w
j
i−1 − β̂i+j−2Ii+1,i−1w

j
i−2)/γ̂i+j−1,

(7.7)

where Im,n denotes the leading (m,n)-submatrix of the identity and Bm,n denotes the leading
(m,n)-submatrix of B (note that this differs from the meaning of the subscript on B in
previous sections).

216

Algorithm 34 PA1-BC. Code for processor m.
1: Compute local rows of basis for Kk−1(D,U) with PA1; premultiply by local columns of V H .
2: Compute [W0, . . . ,Wk−2] by an Allreduce.

3: Compute wj
i for 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ k − i− 1, via (7.7).

4: Compute local rows of basis for Kk(D, y(0)) with PA1; premultiply by local columns of V H .
5: Compute [x0, . . . , xk−1] by an Allreduce.
6: Compute [b0, . . . , bk−1] by (7.8).

7: Compute local rows of [y(0), . . . , y(k)] with PA1, modified for (7.9).

The conclusion is established by induction (see [111] for details).
Using this result, we write (7.5) as

bj = S
(
xj +

∑j

i=1
[W0, . . . ,Wi−1] · (wj−i+1

i−1 ⊗ Ir,r)bj−i/γ̂j−i
)
. (7.8)

Ultimately we must evaluate (7.3), which we rewrite as

y(j) = ((D − α̂j−1)y(j−1) − β̂j−2y
(j−2) + Ubj−1)/γ̂j−1. (7.9)

This can be accomplished by applying PA1 to the following recurrence for polynomials
ρj(z, c), where c = {c0, . . . , cj−1, . . .} = {Ub0, . . . , Ubj−1, . . .}:

ρ0(z, c) = 1, ρ1(z, c) = ((z − α̂0)ρ0(z, c) + c0)/γ̂0, and for j > 1,

ρj(z, c) = ((z − α̂j−1)ρj−1(z, c)− β̂j−2ρj−2(z, c) + cj−1)/γ̂j−1.
(7.10)

Given the notation established, we construct PA1-BC (Algorithm 34). Let G = (N,E)
denote the layered graph for matrix D (see Sections 3.2.1 and 3.2.2). Processor m must own

D{i:y(1)i ∈R(Nm)}, U{i:y(1)i ∈R(Nm)}, V{i:y(j)i ∈Nm}
, and R(0)(Nm) = y

(0)

{i:y(0)i ∈R(Nm)}
,

in order to compute the entries y
(j)
i ∈ Nm.

In exact arithmetic, PA1-BC returns the same output as PA0 and PA1. However, by
exploiting the splitting A = D + USV H , PA1-BC may avoid communication when A is
not well partitioned. Communication occurs in calls to PA1 (Lines 1 and 4), as well as in
Allreduce collectives (Lines 2 and 5). As computations in Lines 1, 2, and 3 do not depend
on the input y(0), they need only be computed once per matrix A = D + USV H , thus we
assume their cost is incurred offline.

For the familiar reader, the sequential blocking covers algorithm [117] is a special case of
a sequential execution of Algorithm 34, using the monomial basis, where U = [ei : i ∈ I] and
SV H = AI , where ei is the i-th column of the identity and I ⊆ {1, . . . , n} are the indices
of the blocker vertices. In Algorithm 34, Lines {1, 2, 3}, {4, 5}, 6, and 7 correspond to the 4
phases of the sequential blocking covers algorithm, respectively [117].

In the next section, we demonstrate the benefit of our approach on a motivating example,
matrix powers with HSS matrix A.

217

7.1.3 Hierarchical Semiseparable Matrix Example

Hierarchical (H-) matrices (see, e.g., [19]) are amenable to the splitting A = D + UV H ,
where D is block diagonal and UV H represents the off-diagonal blocks. Naturally, U and V
are quite sparse and it is important to exploit this sparsity in practice. In the special case
of HSS matrices, many columns of U and V are linearly dependent, and we can exploit the
matrix S in the splitting USV H to write U and V as block diagonal matrices. We review the
HSS notation and the algorithm for computing v = Ay given by Chandrasekaran et al. [43,
§2-§3]. For any 0 ≤ L ≤ blog nc, where log = log2, we can write A hierarchically as a perfect
binary tree of depth L by recursively defining its diagonal blocks as A = D0;1 and

D`−1;i =
[
D`;2i−1 U`;2i−1B`;2i−1,2iV

H
`;2i

U`;2iB`;2i,2i−1V
H
`;2i−1 D`;2i

]
(7.11)

for 1 ≤ ` ≤ L, 1 ≤ i ≤ 2`−1, where U0;1, V0;1 = [], and for ` ≥ 2,

U`−1;i =
[
U`;2i−1R`;2i−1

U`;2iR`;2i

]
, V`−1;i =

[
V`;2i−1W`;2i−1

V`;2iW`;2i

]
; (7.12)

the subscript expression `; i denotes vertex i of the 2` vertices at level `.
The action of A on y, i.e., v = Ay, satisfies v0;1 = D0;1y0;1, and for 1 ≤ ` ≤ L, 1 ≤ i ≤ 2`,

satisfies v`;i = D`;iy`;i +U`;if`;i, with f1;1 = B1;1;2g1;2, f1;2 = B1;2;1g1;1, and, for 1 ≤ ` ≤ L− 1,
1 ≤ i ≤ 2`,

f`+1;2i−1 =
[

RT
`+1;2i−1

BT
`+1;2i−1,2i

]T [
f`;i

g`+1;2i

]
, f`+1;2i =

[
RT

`+1;2i

BT
`+1;2i,2i−1

]T [
f`;i

g`+1;2i−1

]
, (7.13)

where, for 1 ≤ ` ≤ L − 1, 1 ≤ i ≤ 2`, g`;i =
[
W`+1;2i−1

W`+1;2i

]H [g`+1;2i−1
g`+1;2i

]
, and gL;i = V H

L;iyL;i for

1 ≤ i ≤ 2L.
For any HSS level `, we assemble the block diagonal matrices

U` =
⊕2`

i=1
U`;i, V =

⊕2`

i=1
V`;i, D` =

⊕2`

i=1
D`;i, (7.14)

denoted here as direct sums of their diagonal blocks. We also define matrices S`, representing
the recurrences for f`;i and g`;i, satisfying

v = Ay = D`y + U`S`V
H
` y. (7.15)

We now discuss parallelizing the computation v = Ay, to generalize PA0 and PA1 to
HSS matrices. Parallelization of these recurrences is natural given the perfect binary tree
structure. Pseudocode for PA0-HSS can be found in [111].

218

7.1.3.1 PA0 for HSS Matrices

Recall from Section 3.2 that PA0 refers to the näıve algorithm for computing k SpMV
operations and PA1 refers to the communication-avoiding variant. We first discuss how to
modify PA0 when A is HSS, exploiting the v = Ay recurrences for each 1 ≤ j ≤ k; we call
the resulting algorithm PA0-HSS. PA0-HSS can be seen as an HSS specialization of known
approaches for distributed-memory H-matrix-vector multiplication [113]. We assume the
HSS representation of A has perfect binary tree structure to some level L > 2, and there
are p ≥ 4 processors with p a power of 2. For each processor m ∈ {0, 1, . . . , p − 1}, let Lm
denote the smallest level ` ≥ 1 such that p/2` divides m. We also define the intermediate
level 1 < Lp = log(p) ≤ L of the HSS tree; each Lm ≥ Lp, where equality is attained when
m is odd.

First, on the upsweep, each processor locally computes V H
Lp
y (its subtree, rooted at level

Lp = log(p)) and then performs Lp steps of parallel reduction, until there are two processors
active, and then a downsweep until level Lp, at which point each processor is active, owns
SLpV

H
Lp
y, and recurses into its local subtree to finally compute its rows of v = DLy+ULSLVLy.

More precisely, we assign processor m the computations

f`;i and g`;i for
{
`, i :

L≥`≥Lp

2`m/p+1≤i≤2`(m+1)/p

}
and for

{
`, i :

Lp−1≥`≥Lm

i=2`m/p+1

}
and DL, UL, and VL are distributed contiguously block rowwise, so processor m stores blocks
DLp;m+1, ULp;m+1, and VLp;m+1. The R`;i, W`;i, and B`;i matrices are distributed so that they
are available for the computations in the upsweep/downsweep; we omit further details for
brevity, but discuss memory requirements when we compare with PA1-HSS, below.

7.1.3.2 PA1 for HSS Matrices

The block-diagonal structure of D`, U`, and V` in (7.14) suggests an efficient parallel im-
plementation of PA1-BC, which we present as PA1-HSS (Algorithm 35). The only parallel
communication in PA1-HSS occurs in two Allgather operations, in Lines 1 and 5. This means
each processor performs the entire upsweep/downsweep between levels 1 and Lp locally. The
additional cost shows up in our complexity analysis (see Table 7.1) as a factor of p in the
flops and bandwidth costs, compared to a factor of log(p) in PA0-HSS; we also illustrate this
tradeoff in Section 7.1.4.

We assume the same data layout as PA0-HSS: each processor stores a diagonal block of
DLp , ULp , and VLp (but only stores the smaller blocks of level L). We assume each processor
is able to apply SLp . We rewrite (7.9) for the local rows, and exploit the block diagonal
structure of DLp and ULp , to write

y
(j)
Lp,m+1 =

(
(DLp,m+1 − α̂j−1)y

(j−1)
Lp,m+1 − β̂j−2y

(j−2)
Lp,m+1

+ ULp,m+1(bj−1){mr+1,...,(m+1)r}

)
/γ̂j−1.

(7.16)

219

Algorithm 35 PA1-HSS (Blocking Covers). Code for processor m.

1: Compute a basis for Kk−1(DLp;m+1, ULp;m+1); premultiply by V H
Lp;m+1.

2: Compute [W0, . . . ,Wk−2] by an Allgather.

3: Compute wj
i for 0 ≤ i ≤ k − 2, and 1 ≤ j ≤ k − i− 1, via (7.7).

4: Compute a basis for Kk(DLp;m+1, y
(0)
Lp;m+1); premultiply by V H

Lp;m+1.

5: Compute [x0, . . . , xk−1] by an Allgather.
6: Compute [b0, . . . , bk−1] by (7.8), where S = SLp is applied as described above.

7: Compute local rows of [y(0), . . . , y(k)] according to (7.16).

Table 7.1: Asymptotic complexity of PA0-HSS and PA1-HSS, ignoring constant factors. ‘Offline’
refers to Lines 1–3 and ‘Online’ refers to Lines 4–7 of PA1-HSS.

Algorithm Flops Words moved Messages Memory
PA0-HSS kqrn/p + kqr2 log p kqr log p k log p (kq + r)n/p + r2 log p

PA1-HSS
(offline) kr2n/p + k3 kr2p log p log p

(kq + r)n/p + k(q + r)rp
(online) kqrn/p + k(k + r)2qp kqrp log p log p

Each processor locally computes all rows of bj = SLpV
H
Lp
y(j) = SLp ·z, where z is the maximal

parenthesized term in (7.8), using the HSS recurrences:

V H
Lp
y(j) = z =

[
gTLp,1

· · · gTLp,p

]T 7→ [
fTLp,1

· · · fTLp,p

]T
= bj = SLpV

H
Lp
y(j).

The rest of PA1-HSS is similar to PA1-BC, except that the Allreduce operations have now
been replaced by Allgather operations, to exploit the block structures of V H .

7.1.3.3 Complexity Analysis

A detailed complexity analysis of PA0-HSS and PA1-HSS can be found in [111]; we summa-
rize the asymptotics (i.e., ignoring constant factors) in Table 7.1. We assume A is given in
HSS form, as described above, where all block matrices are dense. For generality, we also
assume y is dense and has n rows and q columns. For simplicity, we assume n and HSS-rank
r are powers of 2 and leaf level L = log(n/r). Note that one could use faster Allgather
algorithms (e.g., [42]) for PA1-HSS to eliminate the factor of log(p) in the number of words
moved. The primary benefit of PA1-HSS over PA0-HSS is that a factor of k fewer messages
are required. From the table, we can see that this comes at the cost of p times more words
moved and an increase in the computational cost (the second term has a factor of p instead
of log p and (k + r)2 instead of r2).

7.1.4 Performance Model

We model speedups of PA1-HSS over PA0-HSS on two machine models used by Mohiyud-
din [126] – ‘Peta,’ an 8100 processor petascale machine, and ‘Grid,’ 125 terascale machines
connected via the Internet. Peta has a flop rate γ = 2 · 10−11 s/flop, latency α = 10−5

s/message, and bandwidth β = 2 · 10−9 s/word, and Grid has flop rate γ = 10−12 s/flop,

220

13.4
13.6

13.7
13.5

13.1
12.4
11.3

9.7
7.4

4.3
1.0

12.1
12.8

13.4
13.7

13.7
13.3
12.2

10.5
7.9

4.5
1.0

5.2
5.7

6.2
6.6

7.0
7.2
7.2

6.7
5.7

3.7
1.0

1.7
1.9

2.0
2.2

2.4
2.5
2.7

2.7
2.6

2.1
1.0

0.4
0.4

0.5
0.5

0.6
0.6
0.6

0.7
0.7

0.7

1.0

0.1
0.1

0.1
0.1

0.1
0.1
0.1

0.2
0.2

0.2
1.0

Problem

k

1 2 3 4 5 6

45

35

25

15

5 2

4

6

8

10

12
50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

1.0

49.9

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

1.0

49.8

44.8

39.9

34.9

29.9

25.0

20.0

15.0

10.0

5.0

1.0

Problem

k

1 2 3

45

35

25

15

5
10

20

30

40

Figure 7.1: Predicted PA1-HSS speedups on Peta (left) and Grid (right). Note that p and
n increase with problem number on x-axis.

latency α = 10−1 s/message, and bandwidth β = 25 · 10−9 s/word. Complexity counts used
can be found in [111].

Timings are obtained from the performance model described in Section 2.2, which we
now review. Our model is a simplified machine model, where a parallel machine consists of
p processors, each able to perform arithmetic operations on their M words of local memory.
Processors communicate point-to-point messages of n ≤M contiguous words, taking α+βn
seconds on both sender and receiver, over a completely connected network (no contention),
and each processor can send or receive at most one message at a time. Recall that for an
algorithm where a processor (on the critical path) performs F flops and sends/receives S
messages containing a total of W words, we model the worst-case runtime using the equation

T = γF + βW + αS,

where α represents a latency cost incurred by every message, β represents a bandwidth cost
linear in the message size, and γ represents the time to perform a floating point operation on
local data. For simplicity, we do not model overlapping communication and computation.

Speedups of PA1-HSS over k invocations of PA0-HSS, for both Peta and Grid, are
shown in Figure 7.1. We used parameters from the parallel HSS performance tests of
Wang et al. [185], where p = (4, 16, 64, 256, 1024, 4096), n = (2.5, 5, 10, 20, 40, 80) · 103,
r = (5, 5, 5, 5, 6, 7); for example, ‘Problem 1’ in Figure 7.1 uses parameters (p1 = 4, n1 =
2.5, r1 = 5). Note that for Grid we only use the first 3 triples (pi, ni, ri) since pmax = 125.

On Peta, we see O(k) speedups for smaller p and k, but as these quantities increase, the
expected speedup drops. This is due to the extra multiplicative factor of p in the bandwidth
cost and the extra additive factor of k3qp in the flop cost of PA1-HSS. Since the relative
latency cost is lower on Peta, the effect of the extra terms becomes apparent for large k and
p. On Grid, PA0-HSS is extremely latency bound, so a Θ(k)-fold reduction in latency results
in a Θ(k)× faster algorithm. This is the best we can expect. Note that many details are

221

abstracted in these models, which are meant to give a rough idea of asymptotic behavior.
Realizing such speedups in practice remains future work.

7.1.5 Conclusions and Future Work

The new parallel communication-avoiding matrix powers algorithm for A = D + USV H ,
whereD is well partitioned and USV H has low rank but Amay not be well partitioned, allows
speedups for a larger class of problems than previous algorithms [63, 126] which require well-
partitioned A. This approach exploits low-rank properties of dense blocks, asymptotically
reducing parallel latency cost. We demonstrate the generality of the parallel blocking covers
technique by applying it to matrices with hierarchical structure. Performance models predict
up to 13× speedups on petascale machines and up to 3k speedups on extremely latency-
bound machines, despite tradeoffs in arithmetic and bandwidth cost (see 7.1). Future work
includes a high-performance parallel implementation of these algorithms to verify predicted
speedups, as well as integration into preconditioned communication-avoiding Krylov solvers.

In some machine learning applications, Krylov subspace methods are used on dense ma-
trices, so the matrix vector multiplication, rather than the inner products, becomes the
dominant cost in terms of communication [23]. Many efforts have thus focused on ways
to reduce the cost of the matrix vector multiplication; for example, to perform Gaussian
process regression, the authors in [23] reduce the cost of the matrix-vector multiplication in
GMRES by using an HSS representation of the operator. The runtime of this method could
potentially be further reduced by substituting a CA-GMRES method (see [102]) combined
with our HSS matrix powers kernel; we leave this as potential future work.

7.2 Streaming Matrix Powers Kernel

In our CA-KSMs, the Krylov basis computation V = [Ax, . . . , Akx], which is performed
in a block rowwise fashion (Section 3.2), can be interleaved with any reduction operation
involving those block rows of V , e.g., the TSQR algorithm, or computing a Gram matrix
VHV . Typically, this can only reduce communication costs by at most a constant factor,
but is certainly a worthwhile optimization to consider in practice. In some cases, however,
interleaving can actually lead to asymptotic (i.e., s-fold) communication savings.

Consider the case where A can be represented in o(n) words of data (e.g., a stencil with
constant coefficients), where we assume n > M , the fast (local) memory size. The Krylov
basis vectors require moving Θ(sn) words of data, so the serial communication bottleneck
has shifted from loading A s times (o(sn) data movement) to loading/storing the Krylov
basis vectors (Θ(sn) data movement). In CA-KSMs, we can reduce the serial bandwidth
and latency of moving the Krylov basis vectors by a factor of Θ(s) at the cost of doubling the
computational cost of computing matrix powers. We discuss the required kernel for two-term
CA-BICG (see Section 4.2); the generalization to other CA-KSMs is straightforward.

222

In CA-CG (Algorithm 28), the Krylov basis vectors are only accessed twice after being
computed: when computing Gk (line 4) and when recovering iterates (line 15). Also, observe
that we can execute lines 4 and 15 reading the Krylov bases one time each. We will interleave
the computations of lines 3 and 4, computing a block row of Yk, accumulating the product
intoGk, and discarding the block row, and then repeat line 3 just before line 15, and interleave
those operations analogously. In the first case, the overall memory traffic is loading the Θ(n)
input vector data for the matrix powers kernel—we assume the Θ(s2) matrix Gk fits in fast
memory and can be discarded at the end of the j = s− 1 iteration of line 13. In the second
case, we load the same amount of vector data, plus O(s2) data (the coefficient vectors (4.8)),
and store the five iterates (Θ(n)). Overall, this optimization reduces both bandwidth and
latency terms by a factor of Θ(s). This approach can be generalized to interleaving the
matrix powers kernel with other vector operations, such as the Tall-Skinny QR kernel used
in CA-GMRES [127].

We call this approach a streaming matrix powers optimization. Although this approach
requires twice as many calls to the matrix powers kernel, there still may be a practical
performance gain, especially under the assumption that A can be represented with o(n) words
of data: from a communication standpoint, A is inexpensive to apply. In Algorithm 36, we
show the first call to the streaming matrix powers kernel, i.e., for interleaving computation of
the Krylov basis with construction of Gk, written using the style and notation of Section 3.2.
The second call to the streaming matrix powers kernel which occurs at the end of every outer
loop, shown in Algorithm 37, interleaves the Krylov basis computation with the recovery of
the iteration updates (line 15 of Algorithm 28).

Algorithm 36 SA1-S-1

1: for ` ∈ {1, . . . , p} do
2: Load vector entries R(V`) ∩ y(0)

3: Load matrix rows {Ai : y
(j)
i ∈ R(V`)\y(0)}

4: Compute vector entries R(V`)\y(0)

5: Perform a rank-|I`| update to Gram matrix Gk using vector entries V`
6: Discard entries V`\y(0)

7: end for

Algorithm 37 SA1-S-2

1: for ` ∈ {1, . . . , p} do
2: Load vector entries R(V`) ∩ y(0)

3: Load matrix rows {Ai : y
(j)
i ∈ R(V`)\y(0)}

4: Compute vector entries R(V`)\y(0)

5: Recover entries {i : i ∈ I`} of appropriate iteration vectors
6: Discard entries V`\y(0)

7: end for

223

This variant should be used in the sequential algorithm for stencil-like matrices (or gener-
ally, where the cost of reading A is o(n)). Using the streaming technique, we can remove the
communication bottleneck of reading and writing the O(sn) basis vectors in each iteration,
which lowers the overall communication complexity of performing s steps to o(n).

For sequential algorithms, we also note that the streaming matrix powers optimization
enables a write-avoiding implementation, with the number of writes per s steps reduced by
a factor of Θ(s) versus the communication-avoiding version. This may be beneficial when
writes are more costly than reads in terms of both time and energy, as is the case with many
types of nonvolatile memory. We direct the reader to the technical report [33] for more
details on write avoiding algorithms.

7.3 Partitioning for Matrix Powers Computations

In this section, we discuss a potential improvement to the method of partitioning matrices
with highly nonsymmetric structure to avoid communication in computing the matrix powers
kernel. Our method is based on the hypergraph partitioning problem. A hypergraph H =
(V,N) is defined as a set of vertices V and hyperedges (‘nets’) N , where every hyperedge
nj ∈ N is a subset of vertices, i.e., nj ⊆ V . Each vertex has a weight wi and each hyperedge
has a cost cj. The size of a hyperedge is defined as the number of its vertices, i.e., |nj|. We
define a p-way partition Π = [I1, . . . , Ip], where the weight of a part W` corresponds to the
sum of the weights of vertices in that part, i.e., W` =

∑
vi∈I` wi. The ‘connectivity set’ Λj

of nj is defined as the set of parts {Ii : v ∈ nj and v ∈ Ii}, and the ‘connectivity’ of nj is
defined as Sj = |Λj|. A hyperedge is said to be ‘cut’ if Sj > 1 and ‘uncut’ otherwise. For a
given partition, the ‘cutsize’ is defined as

χ(Π) =
∑
nj∈N

cj(Sj − 1).

Given these definitions, the hypergraph partitioning problem is the problem of finding a
partition that minimizes the cutsize subject to the load-balancing constraint

W` ≤ Waverage(1 + ε) for` ∈ {1, . . . , p},

where Waverage = (
∑

vi∈V wi)/p.
The hypergraph partitioning problem has been shown to correspond exactly to minimiz-

ing the communication in SpMV [37]. Each vertex partition corresponds to a parallelization
of the classical SpMV computations, and the induced hyperedge cut corresponds to inter-
processor communication for that parallelization. By varying the metric applied to the cut,
one can exactly measure communication volume (number of words moved), or synchroniza-
tion (number of messages between processors) on a distributed memory machine. Various
heuristics are applied to find approximate solutions to these NP-hard partitioning problems
in practice (mature software packages are available; see, e.g., [64]); additional constraints
may be applied to enforce load balance requirements.

224

To find a good partition for performing a matrix powers computation, we must encap-
sulate the communication cost of k SpMVs. Recall that to reduce parallel latency in the
matrix powers kernel, we want to find a rowwise partition of A. We therefore consider the
‘column-net’ hypergraph model, the partitioning of which produces a rowwise partition of
A [37]. In the column-net model for a single SpMV, vertices correspond to matrix rows and
hyperedges correspond to matrix columns. There is one vertex vi for each row i of A and
one hyperedge nj for each column j of A, with vi ∈ nj if and only if Aij 6= 0.

In our case, we must look at the ‘k−level hyperedges’, or the hyperedges corresponding
to the structure of |A|k. It is straightforward to prove that the problem of finding a min-
imum k−level hyperedge cut reduces to finding a communication-optimal partition for the
matrix powers computation. However, just computing the hypergraph of |A|k can be a costly
operation — typically more costly than the subsequent matrix powers computation — and
so the cost would have to be amortized over many calls to PA1.

Another option to reduce the cost of hypergraph construction is to use Cohen’s reachabil-
ity estimation algorithm for estimating the size of k steps of the transitive closure [54]. This
is a randomized algorithm which estimates the size of (number of vertices in) each hyperedge
in O(n ·nnz) time. Cohen’s original motivation was in database query size estimations, opti-
mal matrix multiplication orderings, and in efficient memory allocation. We briefly describe
this algorithm.

Let G = (V,E) be a layered graph representing dependencies in the matrix powers

computation (see Section 3.2.1), where there are (k+ 1)n vertices V = {v(j)
i : 1 ≤ i ≤ n, 0 ≤

j ≤ k} and (v
(j)
i , v

(j−1)
`) ∈ E if Ai` 6= 0 for j ∈ {2, . . . , k}. We also borrow other notation

from Section 3.2.1. We let V (j) = {v(j)
i : 1 ≤ i ≤ n}, R(X) denote the reachability of set

X ⊆ V , and let R(j)(X) = R(X) ∩ V (j). The algorithm initially assigns a length-r vector
of rankings [a1, . . . , ar] selected uniformly at random from the interval [0, 1] to each vertex
v ∈ V (0). In iteration m = {1, . . . , k}, for each vertex v ∈ V (m) we set v’s ranking vector to
be the coordinate-wise minima of the ranking vectors of vertices v′ ∈ R(m−1)(v). At the end
of k iterations, each vertex in V (k) has a ranking vector, and for each v ∈ V (k) we apply the
estimator

S̄(v) =
r − 1∑r
`=1 a`

where S̄(v) estimates the number of nonzeros in the column of A corresponding to v. This
correctly estimates the number of nonzeros with probability inversely proportional to

√
r.

We discuss one way that Cohen’s algorithm can be applied in the context of hypergraph
partitioning for a matrix powers computation. We first run Cohen’s reachability estimation
algorithm to estimate the size of each hyperedge in the column-net model for |A|k. Let tol
be a user-specified tolerance parameter. After the estimator is applied, if S̄(v) > n · tol, then
this hyperedge is constructed as a 1-level column net, i.e., this hyperedge contains vertices
that correspond to nonzeros in this column in A. Otherwise, this hyperedge is constructed
as a k-level column net, i.e., this hyperedge contains vertices that correspond to nonzeros in
this column in Ak. We note that if tol is set to 0, we have a hypergraph that corresponds

225

Table 7.2: Test matrices for partitioning tests. Taken from the University of Florida Sparse
Matrix Collection [57]

Matrix Application n nnz % pattern symm.
arc130 material science 130 1037 76%

west0132 chemical eng. 132 413 2%
str 0 linear prog. 363 2454 0%

gre 343 dir. graph 343 1032 0%
mcca astrophysics 180 2659 64%
rw496 Markov model 496 1859 47%
str 200 linear prog. 363 3068 1%

to the column-net model of A, and if tol = 1, we end up with a hypergraph corresponding
to the column-net model of Ak. Selecting tol somewhere in between these two can allow us
to build a hypergraph model that is much less costly to construct and partition, but which
still captures important information about the structure of Ak. The intuition here is that
if the hyperedge i corresponding to column i in A is very dense, then not only will this
hyperedge be costly to compute and partition, but the corresponding column will end up
being distributed among many processors and will thus require communication regardless of
how it is partitioned; i.e., there is no hope to exploit locality.

We illustrate this method on a few very small matrices from the University of Florida
Sparse Matrix Collection [57], details of which are listed in Table 7.2. For each problem,
we partition into 4 parts and used k = 4. Figure 7.2 compares the size of the resulting
partitioning problem (

∑
nj∈N |nj|) and Figure 7.3 compares the total communication volume

in the resulting partition computed by the four different methods: hypergraph partitioning
using 1-level column nets (labeled ‘A’), k-level column nets (labeled ‘Ak’), and the new
“sparsified” column nets described above (labeled ‘A sparse’), and graph partitioning of A+
AT (labeled ‘A+AT ’). For the sparsified column nets, we used tol = 0.5. We used PaToH [38]
to perform hypergraph partitioning and Metis [107] to perform graph partitioning, each using
the default parameters.

We can see from these figures that the sparsified column nets can lead to partition quality
comparable to that of building the full k-level column nets at a significantly reduced cost
in terms of hypergraph size. When the matrix was close to being structurally symmetric,
for example, arc130, we can see from Figure 7.2 that the sparsification technique resulted
in the same structure as the 1-level column nets and, from Figure 7.3 that all partitioning
methods were comparable in terms of resulting partition quality. This suggests that such
complex partitioning techniques are only beneficial when the matrix is highly nonsymmetric
in structure or has a highly nonuniform distribution of nonzeros per row. With a tridiagonal
A for example, we can bound the nonzero structure of A2 (pentadiagonal) with no computa-
tion required, as we know each row gains at most two nonzeros each time we power A. For
this reason, building any k-level hyperedges isn’t likely to provide a better partition than

226

16000

14000

12000

10000

8000

6000

4000

2000

0
arc130 west0132 str_0 gre_343 mcca rw496 str_200

Test Matrix

N
u

m
b

e
r

o
f

N
o

n
ze

ro
s

𝐴𝑘

𝐴 sparse

𝐴

𝐴 + 𝐴𝑇

Figure 7.2: Number of nonzeros in the matrix corresponding to the constructed (hyper)graph
for various test matrices and partitioning methods. In the legend, ‘A’ corresponds to hyper-
graph partitioning using 1-level column nets, ‘Ak’ corresponds to hypergraph partitioning
using k-level column nets, ‘A sparse’ corresponds to hypergraph partitioning using the new
“sparsified” column nets, and ‘A+ AT ’ corresponds to graph partitioning of A+ AT .

227

𝑘-level hgraph part

𝑘-sparse hgraph part

1-level hgraph part

graph part

2

1.5

1

0.5

0
arc130 west0132 str_0 gre_343 mcca rw496 str_200

Test Matrix

N
o

rm
al

iz
ed

 C
o

m
m

u
n

ic
at

io
n

 V
o

lu
m

e

Figure 7.3: Normalized communication volume for computing matrix powers using the re-
sulting partition for various test matrices and partitioning methods. In the legend, ‘A’ corre-
sponds to hypergraph partitioning using 1-level column nets, ‘Ak’ corresponds to hypergraph
partitioning using k-level column nets, ‘A sparse’ corresponds to hypergraph partitioning
using the new “sparsified” column nets, and ‘A + AT ’ corresponds to graph partitioning of
A+ AT .

228

had we only considered the structure of A. Allowing specification of the tolerance parameter
can enable us to trade off partition quality for partitioning time. For example, if we know
the matrix is a stencil (i.e., structurally symmetric with about the same number of nonzeros
per row/column), then we can set tol = 0 and just use the 1-level column nets. Further
investigation is needed in testing larger problem sizes, gathering data on partitioning time,
and determining how to set the tolerance parameter based on matrix structure. We also
note that it is harder to precisely measure the computation cost of the matrix powers kernel
using the hypergraph model, and thus load balancing is a difficult problem: for PA0, this is
a simple function of the sparsity of A, while for PA1, it depends on the partition and nonzero
fill introduced by computing successive powers of A, rather than just the sparsity of Ak.

7.4 Conclusions and Future Work

In this Chapter we have presented potential performance optimizations for matrices with
specific nonzero structures, including a communication-avoiding matrix powers algorithm
for matrices that can be split into sparse and low-rank parts, a streaming matrix powers
optimization for implicitly-represented matrices, and a technique for reducing the cost of
building and partitioning a hypergraph that encodes the dependencies in computing k re-
peated SpMVs. There are, of course, many other matrix structures for which optimizations
and/or simplifications can be devised. The vast space of matrix structures and potential
optimizations makes auto-tuning a necessary component of any software library developed
for CA-KSMs.

In the next chapter, we perform weak and strong scaling studies for distributed-memory
implementations of some of our methods, and comment on where we expect the most benefit
of the communication-avoiding optimizations in practice. We elaborate on one particularly
beneficial use of CA-KSMs: as coarse grid solve routines in geometric multigrid methods,
which we show enables up to 2.5× speedups for combustion and cosmology applications.

229

Chapter 8

Performance and Applications

In this Chapter, we show speedups from the use of communication-avoiding Krylov methods
on large-scale distributed-memory problems from various scientific domains. All tests are
performed on the Hopper supercomputer, detailed in Section 8.1. We note that speedup
results for CA-KSMs (specifically, CA-GMRES) in a shared-memory environment were pre-
viously obtained by Mohiyuddin et al. [127].

In Section 8.2, we perform weak and strong scaling experiments for distributed-memory
CA-CG for large-scale PDE solves on Hopper. Our results provide guidance in identifying
the space in which the communication-avoiding approach is most beneficial in terms of
performance; we obtain up to 6× speedups in the best case.

We then in Section 8.3 discuss the implementation and optimization of a communication-
avoiding CA-BICGSTAB method as a high performance, distributed-memory bottom solver
for geometric multigrid. We show that the communication-avoiding approach enables speed-
ups of over 4× on synthetic benchmarks and over 2.5× in real combustion and cosmology
applications. These results were first reported in [190].

In the bottom solve application, using the classical method, the subdomain owned by
each processor is so small that parallel latency overwhelmingly dominates the runtime. Also
confirmed by experiments in Section 8.2, this is a great example of where the blocking
of inner products in communication-avoiding Krylov methods will have the most impact
on performance, that is, when the application performance is limited by expensive MPI
collective communication.

8.1 Experimental Platform

All experiments in this section were performed on Hopper, a Cray XE6 at NERSC. Hopper is
NERSC’s first petaflop system, with a peak performance of 1.28 Petaflops/s. Hopper earned
5th place on the November 2010 Top500 list.

Hopper has 6,384 compute nodes. Each compute node has two 12-core MagnyCours pro-
cessors which each consist of two 6-core AMD Opteron chips. Cores within on chip share a

230

6MB L3 cache. Pairs of compute nodes (48 cores) are directly connected by HyperTransport
to a Gemini network chip. The network chips are connected in a 3D torus with high band-
width and low latency. The configuration of the torus results in some asymmetry in peak
bandwidth depending on direction, but the programmer has no control over job placement.
The internode latency is about 1.27µs (nearest nodes pair) and 3.88µs (farthest nodes pair)
on a quiet network. For two cores connected to the same Gemini chip, latency is <1µs.

8.2 Model Problem Performance

In this section we give parallel performance results on Hopper (see Section 8.1) for a model
2D Poisson problem with the right-hand side set to the vector of all 1s. We compare the per-
formance of the classical conjugate gradient method (CG) with the communication-avoiding
conjugate gradient method (CA-CG) with various s values.

In all tests, we use flat MPI on Hopper, with 4 MPI processes per node (one per chip).
For all tests with CA-CG, we use the Newton basis (see Section 3.2.5), parameters which
were computed using estimates for the largest and smallest eigenvalues precomputed offline
using a Jacobi-Davidson solver in SLEPc [99]. This resulted in similar convergence rates
similar to classical CG for all tests; the times reported were measured by the overall solve
time, i.e., including all iterations until convergence. The convergence criteria used is that
the relative residual norm (‖ri‖2/‖b‖2) is reduced to at least 10−10.

The CA-CG solver is implemented as a KSM solver within the Portable, Extensible
Toolkit for Scientific Computation (PETSc) framework [4]. Our implementation of CA-
CG does not use a communication-avoiding matrix powers optimization (see Section 3.2).
Because we do twice as many SpMVs and thus double the bandwidth cost of P2P com-
munication in the matrix powers kernel, we only expect to see speedups when the problem
is extremely latency-bound and the MPI collective communication dominates. An imple-
mentation which includes a communication-avoiding matrix powers kernel remains future
work.

8.2.1 Strong Scaling Results

In Figure 8.1, we present strong scaling tests for CG and CA-CG with s ∈ {2, 4, 6, 8, 10}.
The same test is performed for three different problem sizes: 5122 (top), 10242 (middle), and
20482 (bottom) grids. We scale from 1 to 1024 nodes, which correspond to 4 and 4096 MPI
processes, respectively. The same data in presented in two ways; on the left in Figure 8.1,
we plot the raw timing results, and on the right, we plot the speedup relative to classical
CG for each number of processors.

Looking at the plots on the left, we can see that classical CG scales well as we increase the
number of processors until some point when the time starts to increase again. The CA-CG
method also scales well, with about the same slope as the classical CG method. For CA-CG,
however, this scaling continues for higher numbers of processors. Thus although CA-CG is

231

slower than classical CG for smaller numbers of processors, at some point the lines cross and
CA-CG outperforms classical CG. The smaller the problem size, the smaller the number of
processors where this crossover occurs.

This behavior is expected due to additional costs in CA-CG, especially since we have not
used communication-avoiding matrix powers computations (see Section 3.2), which double
the amount of point-to-point communication, which can be a relatively significant cost when
running with small numbers of processors. We only expect the latency cost of the global
collectives (inner products) to dominate the runtime once a large number of processors is
used. This is where our CA-CG has the most benefit, since we have asymptotically reduced
the number of global collectives performed. We also point out that since this is a strong
scaling (fixed) problem, we would in practice like to use the method that gives the fastest
runtime, which is CA-CG for all three tested problem sizes. It is also clear from Figure 8.1
that of the s values tested, lower s values give faster runtimes up until some number of
processors at which point the lines intersect and higher s values (s = 8 or s = 10) become
the winners. This is explained by the same reasoning above; as the number of processors
is increased, global collectives become increasingly expensive, so it becomes increasingly
beneficial to avoid them.

These results are promising, and demonstrate the benefits of CA-CG on latency-bound
problems. We stress that performance of the CA-CG method can be improved even further
by the implementation and use of a communication-avoiding matrix powers kernel. This
remains future work.

8.2.2 Weak Scaling Results

In Figure 8.2, we present weak scaling tests for CG and CA-CG with s ∈ {2, 4, 6, 8, 10}. The
same test is performed for three different per-process problem sizes: 162, 322, and 642. Again,
we scale from 1 to 1024 nodes, which correspond to 4 and 4096 MPI processes, respectively.

In weak scaling tests, the runtime ideally stays constant and the number of processes and
overall problem size is increased. Looking at Figure 8.2, we can see that for the smallest two
per-process problem sizes, the slope of the lines for CA-CG are always lesser than for classical
CG, and thus indicate closer-to-ideal behavior. For the largest per-process problem size, the
classical CG method initially exhibits better scaling (lower slope), but as the number of
processes and overall problem size is increased, its slope becomes greater than those of the
CA-CG method. At the final data point, the best runtime was obtained from CA-CG with
s = 2.

From Figure 8.2, we can also see that as the per-process problem size is increased, the
best s value to use decreases; the fastest results were obtained by CA-CG with s = 10 for
size 162, by CA-CG with s = 4 for 322, and by CA-CG with s = 2 for 642. This is as
expected, since the smaller the per-process problem size, the less computation is required,
and thus communication takes up a relatively greater fraction of the overall runtime. Again,
we emphasize that while these results are promising, the weak scaling performance of the

232

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Ti
m

e
(s

)

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0

1

2

3

4

5

6

7

1 4 16 64 256 1024 4096

Sp
ee

d
u

p
Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Ti
m

e
(s

)

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0

1

2

3

4

5

6

7

1 4 16 64 256 1024 4096

Sp
ee

d
u

p

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Ti
m

e
(s

)

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0

1

2

3

4

5

6

7

1 4 16 64 256 1024 4096

Sp
ee

d
u

p

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

Figure 8.1: Strong scaling time and speedups

233

CA-CG method can be improved even further by the use of a communication-avoiding matrix
powers kernel. This remains future work.

8.3 CA-KSMs as Coarse Grid Solve Routines

Our second application of communication-avoiding Krylov subspace methods is as bottom
solve routines for geometric multigrid solvers within adaptive mesh refinement (AMR) ap-
plications. Krylov method bottom solvers are available as an option or as the default in a
number of software packages, including BoxLib [1], Chombo [2], PETSc [4], and hypre [3].

At some level of the multigrid V-cycle, individual subdomain sizes become so small that
further coarsening is impractical due to communication. At this point, there are a number
of potential approaches. One approach is to repartition the data, that is, the whole problem
is mapped to a subset of the processors at some level of the coarsening process [132]. The
data could also be replicated by combining data with neighboring processors (see [97, 191]).
Another approach is to stop coarsening at this point, solve the coarse grid problem using,
e.g., a Krylov subspace method, and then begin the interpolation phase of the V-cycle. It
is this approach that we focus on for the remainder of this section. (Note that the two
approaches could in principle be combined.) Our results show that the communication-
avoiding approach enables speedups of over 4× on synthetic benchmarks and over 2.5× in
real combustion and cosmology applications. We note that this section has been adapted
from work that first appeared in [190].

8.3.1 Geometric Multigrid

A wide variety of scientific applications require the solution of elliptic and/or parabolic
partial differential equations. Simulations that solve time-dependent systems of equations
may require multiple timesteps with many solves per timestep. These solves thus constitute
a large fraction of simulation runtime. Geometric multigrid methods are amongst the most
commonly used methods for solving such systems of equations.

As depicted in Figure 8.3, a multigrid V-cycle begins with the given computational do-
main. The first phase is restriction, where, for some number of levels, the domain is coarsened
until some criterion is met. At each level, the error is smoothed using, e.g., Chebyshev it-
eration or Gauss-Seidel with red-black ordering, and a new right-hand side for the coarser
level is constructed from the residual.

For a single uniform domain, coarsening is typically done until the domain is 2-4 points per
side, at which point the coarse grid problem is solved using either a direct or iterative method
(the ‘bottom solve’). In the case that the domain is decomposed over multiple processes,
the coarsening stops when each local subdomain reaches this size. For a large number of
subdomains, this problem size may still be large enough such that the bottom solve creates
a performance bottleneck. One method to alleviate this bottleneck is to agglomerate smaller
subdomains into larger subdomains, continue coarsening, and then solve on a smaller number

234

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000

Ti
m

e
(s

)

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1000 2000 3000 4000

Ti
m

e
(s

)

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000

Ti
m

e
(s

)

Processes

CG CA-CG s=2
CA-CG s=4 CA-CG s=6
CA-CG s=8 CA-CG s=10

Figure 8.2: Weak scaling time

235

bottom-solve

Figure 8.3: Depiction of multigrid V-cycle.

of processors. This technique is effective for uniform rectangular meshes, but may not always
be feasibly for non-rectangular domains or individual adaptive mesh refinement (AMR) levels
with irregular coarse/fine boundaries.

After the bottom solve on the coarsest mesh, the coarse solution is interpolated to update
the solution on finer levels. Again, the error is smoothed at each level. These V-cycles are
repeated until the norm of the residual on the original (finest) grid reaches some specified
tolerance.

8.3.2 Related Work

A review of related work related to approaches for reducing communication costs in Krylov
subspace methods can be found in Section 2.4. In [78], the authors present a communication-
avoiding Chebyshev iteration that uses the matrix powers kernel (see Section 3.2). They
apply this method as the smoother in a geometric multigrid solver for the Poisson equation
on a regular 2D grid. In this work we do not study communication-avoiding smoothers and
instead focus on the larger performance bottleneck of the bottom solve.

As previously mentioned, data repartitioning or replication are other approaches to alle-
viating the V-cycle communication bottleneck. These approaches also involve some amount
of data movement between processors to perform the redistribution. Since usually very few

236

iterations of the Krylov method are needed to perform the bottom solve to sufficient accu-
racy, it is unclear which approach (or combination of these approaches) will win in a practical
setting. Further study is warranted.

8.3.3 The miniGMG Benchmark

We describe the miniGMG benchmark of Williams et al. [189], a geometric multigrid perfor-
mance benchmark, which we used for performing benchmarking and comparison of classical
and communication-avoiding bottom solve routines. Experiments were first performed us-
ing the MPI+OpenMP version of miniGMG. The miniGMG benchmark is designed allow
detailed timing breakdowns for different parts of the V-cycle and is designed to mimic real
AMR multigrid combustion applications.

The code solves a finite volume discretization of the variable-coefficient Helmholtz equa-
tion Lu = aαu − b∇ · β∇u = f with α = β = 1.0 and a = b = 0.9 on a cubic domain
with periodic boundary conditions. The right hand side is a 3D triangle wave, constructed
synthetically. The V-cycles are run until the norm of the residual on the fine grid is reduced
by a factor of at least 10−10.

The global 3D domain is partitioned into subdomains of size 643 which are distributed
among the processes. Each MPI process has 6 threads (one Opteron chip). Piecewise con-
stant interpolation is used between the levels and the V-cycle is terminated when each sub-
domain is coarsened to a size of 43. At this point, miniGMG uses a matrix-free BICGSTAB
method to solve the coarse grid problem.

The vector and matrix operations needed to execute the BICGSTAB algorithm are grid
and stencil operations in miniGMG. Inner products are implemented with pair-wise mul-
tiplications between the corresponding cells of two grids, followed by a global reduction
(MPI collective communication). A matrix vector product involves a ghost zone exchange
between neighbors, implemented with point-to-point (P2P) MPI communication, and appli-
cation of a stencil to a grid. Specifically, MPI Allreduce is used for global communication
and MPI ISend and MPI Irecv are used for P2P communication.

8.3.4 Classical BICGSTAB Performance

Figure 8.4 shows a breakdown of the miniGMG solver time into time spend in the BICGSTAB
bottom solve and time spent in the rest of the V-cycle, weak scaling from 8 to 4096 MPI
processes on Hopper. Since each process consists of 6 cores and receives a 643 subdomain,
this corresponds to problem sizes ranging from 1283 over 48 cores to N = 10243 over 24,576
cores. We can see here that although the rest of the V-cycle scales very well (horizontal line
is ideal), the time spent in the BICGSTAB bottom solver grows very quickly as processes
are increased.

In Figure 8.5, we see that the growth in BICGSTAB time is due to an increase in time
in spent in calls to MPI Allreduce. The time spent in P2P communication is an order
of magnitude smaller and computation time is relatively insignificant. Figure 8.6 provides

237

0 1000 2000 3000 4000
0

0.5

1

1.5

2

Processes

T
im

e(
s)

MG solve time

Bottom solve time (BICGSTAB)

V−cycle time

Figure 8.4: Breakdown of miniGMG time into bottom solve time and V-cycle time, weak
scaling up to 4096 processes (24,576 cores) on Hopper where each process owns a 643 sub-
domain.

further explanation. This plot shows that the growth in MPI Allreduce time is attributable
to the compounding effects of higher average MPI Allreduce time per iteration as machine
scale grows and higher number of required iterations as the problem size grows. This results
in an increasing number of increasingly slower iterations.

As it is infeasible, short of changing the MPI implementation, network, or job scheduler,
to considerably reduce the time for an MPI Allreduce operation, we instead focus on the
use of communication-avoiding Krylov subspace methods to reduce the total number of
MPI Allreduce operations.

8.3.5 Design Space

For this application, our focus is on improving scalability for the case where we have a
larger number of processors and a very small number of degrees of freedom per processor. In
this case, as discussed above, the cost of the MPI collective communication dominates the
runtime. As we saw in the scaling experiments of Section 8.2, this is where we expect to see
the most benefit from minimizing collectives in CA-KSMs.

For smaller processor counts or larger number of degrees of freedom per processor, the
bottleneck shifts from the MPI collectives to the MPI P2P and to the (on-node) computation,

238

0 1000 2000 3000 4000
0

0.5

1

1.5

Processes

T
im

e(
s)

MPI reduce time in BICGSTAB

Total time in BICGSTAB

Figure 8.5: Comparison of total bottom solve time with time spent in MPI Allreduce oper-
ations (weak scaling).

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3
x 10

−3

Processes

T
im

e(
s)

0 1000 2000 3000 4000
0

100

200

300

400

500

Processes

Ite
ra

tio
ns

Figure 8.6: Weak scaling plot which shows that average time per iteration in MPI Allreduce
grows with machine scale (left) and total number of BICGSTAB iterations required for
convergence grows with problem scale (right).

239

D
eg

re
es

 o
f

Fr
ee

d
o

m
 p

er
 P

ro
ce

ss

Number of Processes

Optimize
construction of Krylov
bases to reduce MPI

messages

Optimize construction of
Gram matrix/

orthogonalization to
minimize collectives

Optimize construction of
Krylov bases to reduce
DRAM data movement

Figure 8.7: Design space for communication-avoiding optimizations in Krylov solvers

i.e., arithmetic and vertical data movement, as depicted in Figure 8.7. In these cases, other
communication-avoiding approaches, like the sequential and parallel matrix powers kernels,
should be considered to mitigate these costs. In general, which optimization is most benefi-
cial depends on the problem size, nonzero structure, communication patterns, and parallel
concurrency.

As an example, Figure 8.8 compares the timing breakdown of the BICGSTAB method
for 43 degrees of freedom per process using different numbers of processes. In the legend of
Figure 8.8, ‘res’ refers to the time to compute the initial residual r1 = b − Ax1 (line 1 in
Algorithm 11) and ‘appOp’ refers to the time to apply the linear operator (the computation
involved in application of A to pi and di in lines 4 and 7 of Algorithm 11). We see that
for a small number of processes, local computation dominates. But keeping the degrees of
freedom per processor constant and increasing the number of processors, the MPI collectives
quickly become the dominant cost.

240

1 8 64 512 4096
0

0.2

0.4

0.6

0.8

1

Number of processes

F
ra

ct
io

n
tim

e

res appOp BLAS1 BLAS3 MPI (P2P) MPI (Coll.)

Figure 8.8: Comparison of timing breakdown for BICGSTAB solve using 1, 8, 64, 512, and
4096 MPI processes for 43 degrees of freedom per process.

8.3.6 CA-BICGSTAB Implementation

In order to alleviate the bottleneck caused by MPI collective communication in the coarse
grid solve, we replace the BICGSTAB solver with a CA-BICGSTAB solver. See Section 4.4
for an overview of the BICGSTAB method and derivation of the CA-BICGSTAB method
(Algorithm 12).

Our implementation differs from Algorithm 12 in that we add in two convergence checks;
one to test the 2-norm of the intermediate residual after line 11 and one to test the 2-norm
of the residual after line 14. Since we use the 2-norm, these quantities can be computed in
a communication-avoiding way in each inner loop by computing

‖qsk+j‖2 = (d′Tj Gkd
′
j)

1/2, and

‖rsk+j+1‖2 = (r′Tj+1Gkr
′
j+1)1/2.

As discussed in Section 8.3.5, the CA-BICGSTAB method has potential performance
benefits in three areas: reducing the number of MPI collectives, reducing the number of P2P
messages, and reducing vertical (DRAM) data movement. The interprocess communication
only occurs in lines 4 and 5 in Algorithm 12. The Krylov bases computed in line 4 can
be computed either by a series of SpMV calls or by a call to the communication-avoiding
matrix powers kernel (see Section 3.2). Note that it is possible to compute both bases with
p and r at the same time, which halves the number of messages but doubles the size of
the messages. The current infrastructure of miniGMG does not permit exchanging ghost
zones or applying A to multiple vectors at a time. Therefore our implementation of CA-

241

BICGSTAB in miniGMG currently uses the approach of computing a series of SpMV calls,
with separate computation of bases with p and r. We expect this to double the time spent in
P2P communication and SpMV computation; this could be optimized in future implemen-
tations by computing bases with p and r simultaneously. While a matrix powers approach
may be beneficial in some cases, it was not shown to improve performance significantly for
miniGMG. Line 5 is implemented by having each process aggregate the partial sums into a
matrix locally and then performing one MPI Allreduce on a matrix of size (4s+1)×(4s+2).

As some multigrid solves are easy and others hard (in terms of iterations until conver-
gence), our implementation uses a “telescoping” approach in which we begin using s = 1
and increase s by 1 in each subsequent outer loop until we reach some smax. In this way,
easy solves do not incur the initial costs of computing the Krylov bases and performing a
larger Allreduce, whereas harder solves amortize these costs and see the asymptotic benefits.
Due to the local small subdomain sizes, we found that performance began to degrade using
s higher than 4, so smax = 4 was used for miniGMG. With an s this small, a monomial
basis (see Section 3.2.5) was sufficient to maintain convergence close to that of the classical
method.

8.3.7 CA-BICGSTAB Performance

Figure 8.9 shows the performance of miniGMG and CA-BICGSTAB bottom solver perfor-
mance compared to those using BICGSTAB as we weak scale to 4096 processes. Again, since
each process uses 6 cores, the final data point corresponds to using 24, 576 cores on a 10243

problem. This same data plotted in terms of speedup is shown in Figure 8.10. We can see
that using 4096 processes, the reduction in MPI Allreduce calls enabled by CA-BICGSTAB
results in a 4.2× speedup in the bottom solve and improves the overall multigrid solve time
by nearly 2.5×.

It is also useful to look at performance in terms of degrees of freedom solved per second
in the overall multigrid solve. This data is shown in Figure 8.11 for multigrid with both
CA-BICGSTAB and BICGSTAB bottom solvers as we weak scale the problem. We can see
from this plot that the aggregate performance of multigrid with CA-BICGSTAB improves
nearly linearly with respect to multigrid with BICGSTAB.

Figure 8.12 shows a breakdown of the time spent on different operations in CA-BICG-
STAB and BICGSTAB. Again, in the legend of Figure 8.12, ‘res’ refers to the time to
compute the initial residual r1 = b − Ax1 (line 1 in Algorithm 12) and ‘appOp’ refers to
the time to apply the linear operator (the computation involved in the O(s) applications
of A to vectors psk+1 and rsk+1 in computing Pk and Rk in line 4 of Algorithm 12). As
expected the sequential computation of the Krylov bases resulted in a doubling of the time
spent in P2P communication and time required to apply the linear operator, although this
was not enough to negate speedups gained from a reduced number of MPI collectives. The
classical BICGSTAB algorithm involves 6s MPI Allreduce calls per inner loop compared to
one required for CA-BICGSTAB. The reason we do not see a 24× reduction in MPI collective
time is that the size of the reductions has increased from one 8-byte double precision value

242

0 1000 2000 3000 4000
0

0.5

1

1.5

2

Processes

T
im

e(
s)

MG (w/BICGSTAB)

BICGSTAB

MG (w/CABICGSTAB)

CABICGSTAB

Figure 8.9: Weak scaling plot showing the timings for BICGSTAB, over multigrid time using
BICGSTAB, CA-BICGSTAB, and overall multigrid time using CA-BICGSTAB.

to 2448 bytes (the size of the Gram matrix for s = 4). This limits the reduction in collective
time to only 11.2×. A greater speedup would be obtained if collective performance were
always latency-limited regardless of message size.

As previous mentioned, using s = 4 meant that a monomial basis was sufficient for
maintaining convergence close to that of the classical method. This is demonstrated in
Figure 8.13, which compares the max norm of the residual on the finest grid after each
V-cycle using BICGSTAB and CA-BICGSTAB.

We finally note that our CA-BICGSTAB implementation requires 4s−2 additional grids
to store the computed Krylov bases and thus requires additional memory. This overhead
may be prohibitive for weak-scaled Krylov solves on fine grids, but is negligible in the context
of multigrid bottom solvers (around 24KB per process with s = 4).

8.3.8 Scientific Applications

Using the miniGMG implementation of CA-BICGSTAB as a reference implementation, both
C++ and Fortran versions of CA-BICGSTAB were implemented in the BoxLib AMR frame-
work [1]. As in miniGMG, the BoxLib C++ solver uses a telescoping s value, the monomial
basis, and smax = 4. As in the synthetic application, experiments on the bottom solves in

243

1000 2000 3000 4000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

ProcessesS
pe

ed
up

 (
T

im
e

B
IC

G
S

T
A

B
/T

im
e

C
A

B
IC

G
S

T
A

B
)

Bottom solve speedup
MG solve speedup

Figure 8.10: Speedups using CA-BICGSTAB with s = 4 over BICGSTAB in terms of both
bottom solve time and overall multigrid solve time, for various numbers of processes (weak
scaling problem size).

real applications showed that using s larger than 4 with the monomial basis necessitated
additional V-cycles, which negate the performance advantages of a communication-avoiding
bottom solver.

One difference is that, whereas miniGMG coarsened to a subdomain size of 43, BoxLib
applications coarsen to a subdomain size of 23. This factor of 8 reduction in problem size
can significantly reduce the number of BICGSTAB iterations. This means that we expect
to see a decrease in the relative benefit of CA-BICGSTAB, which shows the best speedups
when additional costs are amortized over many iterations.

In subsections below, we discuss the use of the CA-BICGSTAB bottom solver in two
BoxLib applications, the Low Mach Number Combustion Code (LMC) and Nyx, a 3D N-
body and gas dynamics code.

8.3.8.1 LMC

The LMC application simulates gas-phase combustion using a low Mach number model,
coupled to detailed chemical reaction networks and differential diffusion [58]. Each timestep
requires two different solves using multigrid on block-structured AMR grids. The first type
of solve requires only a couple of iterations in the bottom solve routine. We thus focus

244

0 1000 2000 3000 4000
0

5

10

15
x 10

8

Processes

D
eg

re
es

 o
f f

re
ed

om
 s

ol
ve

d
pe

r
se

co
nd

BICGSTAB
CABICGSTAB

Figure 8.11: Performance in degrees of freedom solved per second (DOF/s) using multigrid
with a BICGSTAB bottom solver and multigrid with a CA-BICGSTAB bottom solver.

on the second type of solve, the mac project solve, which involves the elliptic equation
b∇ · β∇u = f , where u represents the concentration of a chemical species, b is a constant,
and β varies spatially. The discretization of this operator is a 7-point variable-coefficient
stencil. These solves are more difficult than the first, often involving 10 or more V-cycles
and hundreds of iterations in the bottom solve, making them ideal candidates to benefit
from communication-avoiding methods.

Figures 8.14 and 8.15 show the speedup in the mac project solve in LMC resulting from re-
placing the BICGSTAB bottom solve with CA-BICGSTAB for 3D and 2D problems, respec-
tively. These are weak scaling tests run on Hopper, using both flat MPI and MPI+OpenMP
with 6 threads per process. We do not run tests using MPI+OpenMP for the 2D problem,
as OpenMP is not appropriate for BoxLib-based 2D AMR applications. We use initial per-
process subdomain sizes of 643 in the 3D case and 642 in the 2D case. The speedup numbers
are based on our measurement of the total time spent in the mac project solve across 5 time
steps.

At maximum concurrency, we see up to a 2.5× speedup in the bottom solver which
corresponds to a 1.5× speedup in the 3D mac project solve. For the 2D mac project solve,
the benefits of CA-BICGSTAB are more immediate, with a 1.5× speedup on 64 cores. We
note that speedups obtained in the overall solve are mitigated by the fact that the classical

245

BICGSTAB CABICGSTAB
0

0.5

1

1.5
T

im
e(

s)

residual
apply op
BLAS1
BLAS3
MPI (P2P)
MPI (Collective)

Figure 8.12: Breakdown of the net time spent across all bottom solves using 24, 576 cores
for the BICGSTAB method (left) and CA-BICGSTAB with s = 4 (right).

algorithm constitutes less than 43% and 54% of the 3D mac project solve time for flat MPI
and MPI+OpenMP version, respectively, and less than 35% of the solve time in the 2D
problem. In all cases, CA-BICGSTAB converged at a similar rate as BICGSTAB; the total
number of V-cycles required was unchanged.

8.3.8.2 Nyx

Nyx is a 3D N-body and as dynamics code that uses AMR for large-scale cosmological
simulations; see [7]. Nyx tracks the time evolution of a system of discrete dark matter
particles gravitationally coupled to an inviscid ideal fluid in an expanding universe. The
mass of the dark matter particles is deposited on the AMR grid hierarchy using a cloud-
in-cell scheme and converted to a density field, which is added to the gas density. This
total density defines the right-hand side of a constant-coefficient Poisson equation b∇2u = f
solving for the gravitational potential. The gradient of the gravitational potential, −∇u, is
the gravitational force vector which is used to accelerate both the dark matter particles and
the gas. The right-hand side and the gravitational potential are defined on cell centers and a
7-point discretization of the Laplacian operator is used (the stencil coefficients are modified
at coarse/fine interfaces).

246

2 4 6 8
10

−15

10
−10

10
−5

10
0

V−cycle

M
ax

. N
or

m
 o

f R
es

id
ua

l o
n

F
in

es
t G

rid

MG w/BICGSTAB
MG w/CABICGSTAB

Figure 8.13: Max norm of the residual on the finest grid after each V-cycle with either the
classical BICGSTAB or CA-BICGSTAB (s = 4) bottom solver.

Figure 8.16 shows the speedup in the gravity solve in Nyx resulting from replacing the
BICGSTAB bottom solve with CA-BICGSTAB. Again, use we two programming models,
both flat MPI and hybrid MPI+OpenMP. As in other tests, each process owns a 643 subdo-
main on the fine grid. The speedup numbers are based on our measurement of the total time
spent in the gravity solve across 6 time steps. As for LMC, here CA-BICGSTAB converged
at a similar rate as BICGSTAB; the total number of V-cycles required was unchanged.

For flat MPI, we see a 2× speedup in the bottom solver using CA-BICGSTAB at 4096
cores. However, as the bottom solver only constitutes 26% of the overall multigrid solve
time in this case, the overall speedup was limited to 1.15×. In the MPI+OpenMP case, the
bottom solver took as much as 41% of the total multigrid solve time, resulting in a 1.1×
speedup in the overall solve corresponding to a 1.6× speedup in the bottom solver.

8.3.9 Summary and Future Work

Replacing the BICGSTAB method with CA-BICGSTAB resulted in up to a 4.2× speedup in
bottom solve performance in the miniGMG benchmark and up to 2.5× in real applications.
For real BoxLib applications, these bottom solver speedups led to a 1.5× improvement in
overall multigrid solve time on 24,576 cores. Future work will include use of communication-

247

64 512 4096 32768 48 384 3072 24576
0

0.5

1

1.5

2

2.5

3

Flat MPI MPI+OpenMP

P
er

fo
rm

an
ce

 B
en

ef
it

fr
om

 C
A

−
B

IC
G

S
T

A
B

Bottom solve
MG solve

Figure 8.14: Speedup of mac project using CA-BICGSTAB in the 3D version of LMC, as a
function of the number of cores used and programming model.

avoiding bottom solvers in other applications. We expect our approach to have the most
benefit (best speedups) when the bottom solve constitutes a very large percentage of overall
multigrid runtime and the multigrid runtime constitutes a very large percentage of overall
application runtime. Applications with such characteristics will be our target in the future.

Our tests show that although communication-avoiding Krylov methods can asymptoti-
cally reduce the number of collectives, performance is still limited by nontrivial time spent in
P2P communication and a quadratic increase in size of collective communications and vector
operations. Performance can also be limited since roundoff error in finite precision limits s
to 4 using the monomial basis on solves in real applications. In the future, it would be ben-
eficial to implement more well conditioned polynomial bases such as Newton or Chebyshev
(see Section 3.2.5) as well as a communication-avoiding matrix powers kernel to evaluate
whether these improve overall runtime.

In this section, we limited ourselves to weak scaling tests, but strong scaling tests would
also be beneficial. We expect communication-avoiding Krylov methods to allow increased
performance/scalability in the strong-scaled case; as one strong scales a solver, eventually a
point will be reached where where the problem size per process is so small that communica-
tion (likely collectives) becomes the bottleneck.

Communication-avoiding Krylov methods expand the ‘co-design’ space, where the hard-
ware design space is explored in tandem with software optimizations, by allowing hardware

248

4 16 64 256 1024
0

0.5

1

1.5

2

2.5

3

Flat MPI

P
er

fo
rm

an
ce

 B
en

ef
it

fr
om

 C
A

−
B

IC
G

S
T

A
B

Bottom solve
MG solve

Figure 8.15: Speedup of mac project solver speedup using CA-BICGSTAB in the 2D version
of LMC, as a function of the number of cores used for the Flat MPI programming model.

64 512 4096 32768 48 384 3072 24576
0

0.5

1

1.5

2

2.5

3

Flat MPI MPI+OpenMP

P
er

fo
rm

an
ce

 B
en

ef
it

fr
om

 C
A

−
B

IC
G

S
T

A
B

Bottom solve
MG solve

Figure 8.16: Gravity solve speedup from using CA-BICGSTAB in the Nyx application, as a
function of the number of cores used and programming model.

249

and software designers to trade collective latency for bandwidth, i.e., we trade O(s) fine-
grained operations for one large coarse-grained operation that expresses more parallelism
and may be more appropriate given manycore trends in processor architecture. Along these
lines, future work could expand implementations to GPU and Xeon Phi processors to eval-
uate whether CA-KSMs can enable efficient use of those architectures.

We briefly comment on the usefulness of the performance model described in Section 2.2
in optimizing real applications. While this model is useful in terms of qualitatively com-
paring the communication-avoiding and classical approaches, it is not necessarily useful for
parameter selection in practical applications. For example, in this section, the decision to use
telescoping s values was not based solely on performance tradeoffs or numerical instability,
but instead by the very few number of iterations required to meet the convergence criteria
for some solves in the application. We therefore advocate taking a holistic approach, using
performance models as a general guideline while considering the requirements and properties
of particular application.

250

Chapter 9

Conclusions

Krylov subspace methods, ubiquitous throughout scientific applications, are often the most
time-consuming kernels in large-scale simulations due to communication-bound performance.
In this thesis, we have focused on the development and analysis of high-performance comm-
unication-avoiding Krylov subspace methods, which can achieve asymptotic reductions in
data movement versus classical approaches.

In Chapter 4, we have developed many new communication-avoiding variants of Lanczos-
based Krylov subspace methods, including solvers for nonsymmetric linear systems, least
squares problems, and eigenvalue/singular value problems. In both sequential and paral-
lel implementations, these variants of popular Krylov methods asymptotically reduce data
movement by a factor of Θ(s) versus the classical algorithms.

In Chapter 5, we have addressed major challenges to the practical use of communication-
avoiding Krylov subspace methods, identifying the conditions under which communication-
avoiding Krylov methods can achieve both asymptotic speedups and maintain the numerical
properties of the classical method. Our results confirm theoretically what is well-known:
the conditioning of the precomputed Krylov bases plays a large role in determining finite
precision behavior. In particular, if one can guarantee that the condition numbers of the
precomputed s-step Krylov bases are not too large in any iteration, then the finite precision
behavior of the CA-KSM will be similar to that of the classical KSM, in terms of both
convergence rate and accuracy. These results can be used to provide guidance on whether or
not a certain application might benefit from the use of the communication-avoiding approach,
and also inspire potential techniques for improvement.

Based on theoretical bounds proved in Chapter 5, Chapter 6 has been devoted to the
development of a number of efficient numerical techniques for improving the convergence and
accuracy in communication-optimal Krylov methods while still achieving performance gains.
Some of these techniques, including extended precision, dynamic parameter refinement, and
variable basis sizes, follow from the finite precision analyses of Chapter 5. Other techniques,
including residual replacement, deflation-based preconditioning, selective reorthogonaliza-
tion, and look-ahead are techniques that have been developed for classical Krylov methods.

In Chapter 7, we have presented optimizations that can be applied to CA-KSMs when

251

the input matrix A has certain nonzero structures, including data-sparse and hierarchical
matrices, stencil/implicitly represented matrices, and matrices with highly nonsymmetric
nonzero structure.

Finally in Chapter 8, we have presented performance results for high-performance distri-
buted-memory implementations of communication-avoiding Krylov methods on large-scale
problems run on the Hopper supercomputer. We performed weak and strong scaling exper-
iments for distributed-memory CA-CG on a Poisson model problem to identify the space
in which the communication-avoiding approach is most beneficial in terms of performance,
and discussed the implementation and optimization of the CA-BICGSTAB method as a
high performance, distributed-memory bottom solver for geometric multigrid, which enabled
speedups of over 4× on synthetic benchmarks and over 2.5× in real applications.

To conclude, we will summarize the contributions of this thesis in the context of the
overall landscape of current and future research in the design and implementation of high-
performance iterative solvers. To do so, we will outline three major challenges to the practical
use of CA-KSMs and discuss progress and future work toward overcoming these difficulties.
We finish with commentary on situations for which CA-KSMs are suitable for use in practice
and when they are expected to have the greatest performance benefit.

9.1 Challenges to the Practical Use of CA-KSMs

Despite potential performance gains, CA-KSMs have faced challenges to integration into
standard scientific computing libraries for a few practical reasons. In this section we address
what we believe to be the three biggest challenges to the practical use of CA-KSMs. For
each, we discuss how we have already overcome, or are in the process of overcoming, these
obstacles.

CA-KSMs Can Be Unstable and/or Convergence is Too Delayed It is well-known
that the convergence and stability properties of classical Krylov methods are not necessarily
maintained by communication-avoiding Krylov methods in finite precision. Depending on
the parameter s and the polynomials used in constructing the s-step bases, the rate of
convergence can be slower and the attainable accuracy lower than for the classical method.
Lost accuracy can be a significant problem depending on the needs of the application, and
slow convergence can negate potential benefits from the communication-avoiding approach.

In this thesis, particularly in Chapter 5, we have answered many of the open questions
concerning how the finite precision behavior of CA-KSMs differs from their classical coun-
terparts. We have shown that bounds on convergence and accuracy for CA-KSMs can be
written in the same form as the equivalent bounds for KSMs, with the addition of a mul-
tiplicative factor that depends solely on the conditioning of the s-step bases. This gives
reassurance that, as long as well-conditioned polynomials are used for basis construction
and s is chosen reasonably, the convergence and accuracy of the CA-KSM will be similar to
the classical KSM for the same problem.

252

This thesis has also explored many potential techniques for improving the stability and
convergence rate can be implemented in CA-KSMs, described in Chapter 6. Some of these
follow directly from our analyses in Chapter 5 as methods for either improving the basis con-
ditioning, e.g., variable basis sizes, or lowering the amplification factor by other means, e.g.,
using extra precision. Others are based on techniques originally developed for KSMs, includ-
ing residual replacement, deflation, and selective reorthogonalization, which we demonstrate
are compatible with our communication-avoiding approach.

Preconditioning is Incompatible with Avoiding Communication Preconditioning
is considered essential for most practical uses of KSMs. As mentioned, the goals of reduc-
ing the cost per iteration via communication-avoiding techniques and reducing the number
of iterations via preconditioning are somewhat at odds and involve complicated, problem-
dependent tradeoffs.

There have been strides toward the integration of many preconditioners into CA-KSMs.
Preconditioners which have been shown to work in the communication-avoiding setting in-
clude diagonal matrices, CA-ILU(0) for structured grids [89], sparse approximate inverse
preconditioners [121], and domain decomposition preconditioners [195]. In Section 7.1 of
this thesis, we have shown that it is possible to use HSS preconditioners in CA-KSMs when
A is a banded matrix (and more generally, if the preconditioned system can be written as
the sum of sparse and low-rank components). We have also demonstrated in Section 6.2 that
it is possible to implement communication-avoiding deflation, which is like preconditioning
but with a singular preconditioner.

Many commonly-used preconditioners were not designed specifically with the goal of
avoiding communication in mind. In cases where the dependencies in the resulting precon-
ditioned system are too dense, attempting to force these preconditioners into the CA-KSM
mold is a futile effort. This has led some to suggest that CA-KSMs are not suitable for use
in practice, as use of these preconditioners is necessary.

We advocate for an alternative view: we should instead focus on the invention of new pre-
conditioners which allow us to balance the tradeoff between improving convergence rate and
avoiding communication. Similar to the paradigm shift towards the redesign of algorithms to
avoid communication, there is already a growing trend toward the redesign of precondition-
ers with communication-avoidance in mind; see, e.g., the underlapping technique of Boman
et al. [195]. We expect that the development of new preconditioners that avoid communi-
cation, as well as modification of existing preconditioners to eliminate communication while
still providing some convergence benefit, will be a fruitful area of research in coming years.

Performance and Numerical Behavior is Too Sensitive to Parameter Selection
Many complex implementation decisions are required for both matrix powers kernel perfor-
mance and convergence of the CA-KSMs. The optimal parameters and optimizations to
apply will depend on the machine, the numerical values and structure of the system ma-

253

trix, and the particular method. This makes auto-tuning and code generation an attractive
approach.

Most auto-tuning work has focused on optimization of kernel performance; for SpMV
and matrix powers computations, this means optimizing based on matrix structure and
machine parameters. There are many ongoing projects towards the development of auto-
tuners and specializers for SpMV and matrix powers computations (see, e.g., [26, 39, 130,
172]). However, as we have tried to stress throughout this thesis, in the context of the overall
Krylov solve we need to be concerned not only with the speed of the individual kernels but
also with the rate of convergence and accuracy.

In light of our work in evaluating tradeoffs between speed per iteration and number
of iterations in sparse matrix solvers, we strongly advocate for what we call ‘numerical
auto-tuning ’. This involves the development of an auto-tuned/specialized library for sparse
iterative methods that takes numerical properties of the input matrix, right-hand side, and
accuracy requirements of the application into account in additional to the usual consider-
ations of non-zero structure/machine parameters. Such tools could automatically select an
appropriate code variant that achieves both performance and stability based on matrix struc-
ture, eigenvalue estimates, and other properties of the matrix. This would lift the burden of
expertise from the user, making CA-KSMs more accessible to a wider range of computational
scientists.

For example, for CA-KSMs, numerical auto-tuning would involve automatically selecting
the best subspace size, the best polynomial basis to use in generating the subspace, and de-
ciding which subset of numerical optimizations to apply (e.g., residual replacement, deflation,
reorthogonalization, restarting, etc.) based on the numerical properties of the problem and
application-specific requirements. Of course, we still have the usual combinatorial challenges
of auto-tuning the sparse matrix kernels and partitioning the input matrix.

This endeavor would require interdisciplinary collaboration between computer scientists,
mathematicians, and application experts. Some challenges include understanding the behav-
ior of non-normal matrices/operators and the convergence of iterative methods for nonsym-
metric systems, the algorithmic design of new communication-avoiding methods for various
preconditioners and techniques like reorthogonalization, and the study of how different op-
timizations interact with each other numerically and algorithmically (e.g., can we easily
combine residual replacement and reorthogonalization?). There is also the challenge of pre-
dicting what effect various techniques will have on performance, and determining whether
the extra flops/messages increase the convergence rate enough to be beneficial in terms of
overall performance.

9.2 Are CA-KSMs Practical?

We now return to the question of when communication-avoiding Krylov subspace methods
are suitable for use in practice. Here suitability requires that the communication-avoiding
variants can obtain speedups over the classical implementations, i.e., that any extra imple-

254

mentation effort required for their use is justified. It is clear that in order to warrant use of
CA-KSMs, we must have a situation where the Krylov solve is communication-bound and
the Krylov solve constitutes the bottleneck within the particular application. Additionally,
in our experience, CA-KSMs are good candidates for use when one or more of the following
hold:

• The problem is communication-bound (and particularly latency-bound in the parallel
case);

• The matrix is well-partitioned, or can be split into well-partitioned and low-rank com-
ponents;

• Simple preconditioning is sufficient/the required preconditioner is amenable to com-
munication avoidance (see Section 6.8);

• Extremal eigenvalues are known or easy to estimate; and/or

• The same system matrix will be reused over multiple solves.

There are many problems in a wide variety of science and engineering applications which
fall into this category and can thus be expected to benefit from the communication-avoiding
approach. Broadly speaking, these mostly involve the solution of PDEs by finite difference or
finite element methods. In addition to the combustion and cosmology applications studied
in Section 8.3, our approach can be applied to other complex fluid flow problems. For exam-
ple, deflated CG with diagonal preconditioning is used for solving time-dependent diffusion
equations in the simulation of oil and gas resevoirs [183]; we believe our deflated CA-CG
method presented in Section 6.2 could be immediately applied. Other uses of the finite
element method which have been shown to benefit from CA-KSMs include structural engi-
neering problems and electromagnetic analysis [194]. Poisson’s equation, which we have used
in both numerical and performance tests in this thesis, is an elliptic PDE with applications
in electrostatics, mechanical engineering, and theoretical physics. As shown in Section 8.2,
the use of CA-KSMs for these types of problems can result in up to 6× speedups. Another
potential application of CA-KSMs is in circuit simulation, which involves the solution of
differential-algebraic equations [194].

To conclude, it is clear that the design and implementation of iterative solvers requires a
holistic approach. In selecting the right method and parameters to use for a given problem,
we must consider the expected time per iteration, which depends on the matrix dimension,
nonzero structure, and parameters of the specific machine to be used, as well as the numerical
stability and convergence properties, which we have seen depend on numerical properties of
the system matrix and the machine precision. We must also consider the performance and
use of the Krylov method within the context of the overall scientific application. While CA-
KSMs will not be the best solver choice for all problems and platforms, there are numerous
cases in a variety of scientific domains for which the communication-avoiding approach can
offer significant savings in both performance and energy.

255

Bibliography

[1] BoxLib website. https://ccse.lbl.gov/BoxLib.

[2] Chombo website. https://seesar.lbl.gov/ANAG/software.html.

[3] hypre website. http://computation.llnl.gov/casc/hypre/software.html.

[4] PETSc website. http://www.mcs.anl.gov/petsc/.

[5] A. Abdel-Rehim, R. Morgan, D. Nicely, and W. Wilcox. Deflated and restarted sym-
metric Lanczos methods for eigenvalues and linear equations with multiple right-hand
sides. SIAM J. Sci. Comput., 32(1):129–149, 2010.

[6] H. Adeli and R. Soegiarso. High Performance Computing in Structural Engineering,
volume 3. CRC Press, 1998.

[7] A. Almgren, J. Bell, M. Lijewski, Z. Lukić, and E. Van Andel. Nyx: A massively
parallel AMR code for computational cosmology. The Astrophysical Journal, 765(1):39,
2013.

[8] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,
D. Kothe, R. Lusk, P. Messina, T. Mezzacappa, P. Moin, M. Norman, R. Rosner,
V. Sarkar, A. Siegel, F. Streitz, A. White, and M. Wright. The opportunities and
challenges of exascale computing. Technical report, U.S. Dept. of Energy Office of
Science, Advanced Scientific Computing Advisory Committee, 2010.

[9] T. Ashby, P. Ghysels, W. Heirman, and W. Vanroose. The impact of global communi-
cation latency at extreme scales on Krylov methods. In Algorithms and Architectures
for Parallel Processing, pages 428–442. Springer, 2012.

[10] O. Axelsson. Iterative solution methods. Cambridge University Press, 1996.

[11] J. Baglama, D. Calvetti, G. Golub, and L. Reichel. Adaptively preconditioned GMRES
algorithms. SIAM J. Sci. Comput., 20(1):243–269, 1998.

[12] Z. Bai. Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue
problem. Math. Comp., 62(205):209–226, 1994.

256

[13] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for non-hermitian
eigenvalue problems. Technical Report CS-97-355, Dept. of CS, University of Ten-
nessee, 1997.

[14] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA J.
Numer. Anal., 14(4):563–581, 1994.

[15] I. Bajeux-Besnainou, W. Bandara, and E. Bura. A Krylov subspace approach to large
portfolio optimization. Journal of Economic Dynamics and Control, 36(11):1688–1699,
2012.

[16] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Com-
munication lower bounds and optimal algorithms for numerical linear algebra. Acta
Numerica, 23:1–155, 5 2014.

[17] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Romine, and H. van der Vorst. Templates for the solution of linear systems: building
blocks for iterative methods. SIAM, 1993.

[18] G.M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–
244, 1978.

[19] M. Bebendorf. Hierarchical matrices. In Hierarchical Matrices, volume 63 of Lec-
ture Notes in Computational Science and Engineering, pages 49–98. Springer Berlin
Heidelberg, 2008.

[20] M. Benzi and M. Tůma. A parallel solver for large-scale Markov chains. Applied
Numerical Mathematics, 41(1):135–153, 2002.

[21] R. Bisseling. Parallel scientific computation. Oxford University Press, 2004.

[22] Å. Björck, T. Elfving, and Z. Strakoš. Stability of conjugate gradient and Lanczos
methods for linear least squares problems. SIAM J. Matrix Anal. Appl., 19(3):720–
736, 1998.

[23] S. Börm and J. Garcke. Approximating Gaussian processes with H2-matrices. In
Machine Learning: ECML 2007, pages 42–53. Springer, 2007.

[24] A. Bouras and V. Frayssé. Inexact matrix-vector products in Krylov methods for
solving linear systems: a relaxation strategy. SIAM J. Matrix Anal. Appl., 26(3):660–
678, 2005.

[25] J. Buckmaster and H. Banks. The mathematics of combustion, volume 2. SIAM, 1985.

[26] J. Byun, R. Lin, K. Yelick, and J. Demmel. Autotuning sparse matrix-vector multipli-
cation for multicore. Technical Report UCB/EECS-2012-215, CS Dept., U.C. Berkeley,
Nov 2012.

257

[27] E. Carson. Avoiding communication in the Lanczos bidiagonalization routine and
associated least squares QR solver. Technical Report UCB/EECS-2015-15, EECS
Department, University of California, Berkeley, Apr 2015.

[28] E. Carson and J. Demmel. Accuracy of the s-step Lanczos method for the symmetric
eigenproblem. Technical Report UCB/EECS-2014-165, EECS Dept., U.C. Berkeley,
Sep 2014.

[29] E. Carson and J. Demmel. Analysis of the finite precision s-step biconjugate gradient
method. Technical Report UCB/EECS-2014-18, EECS Dept., U.C. Berkeley, Mar
2014.

[30] E. Carson and J. Demmel. Error analysis of the s-step Lanczos method in finite
precision. Technical Report UCB/EECS-2014-55, EECS Dept., U.C. Berkeley, May
2014.

[31] E. Carson and J. Demmel. A residual replacement strategy for improving the maximum
attainable accuracy of s-step Krylov subspace methods. SIAM J. Matrix Anal. Appl.,
35(1):22–43, 2014.

[32] E. Carson and J. Demmel. Accuracy of the s-step Lanczos method for the symmetric
eigenproblem in finite precision. SIAM J. Matrix Anal. Appl., 36(2):793–819, 2015.

[33] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and
H. Simhadri. Write-avoiding algorithms. Technical Report UCB/EECS-2015-163,
EECS Department, University of California, Berkeley, Jun 2015.

[34] E. Carson, N. Knight, and J. Demmel. Avoiding communication in two-sided Krylov
subspace methods. Technical Report UCB/EECS-2011-93, EECS Dept., U.C. Berkeley,
Aug 2011.

[35] E. Carson, N. Knight, and J. Demmel. Avoiding communication in nonsymmetric
Lanczos-based Krylov subspace methods. SIAM J. Sci. Comp., 35(5), 2013.

[36] E. Carson, N. Knight, and J. Demmel. An efficient deflation technique for the
communication-avoiding conjugate gradient method (to appear). ETNA, 43, 2014.

[37] U. Catalyurek. Hypergraph models for sparse matrix partitioning and reordering. PhD
thesis, Bilkent University, 1999.

[38] Ü. Çatalyürek and C. Aykanat. PaToH: A multilevel hypergraph partitioning tool, ver-
sion 3.0. Technical Report BU-CE-9915, Computer Engineering Department, Bilkent
University, 1999.

258

[39] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf,
K. Yelick, and A. Fox. SEJITS: Getting productivity and performance with Selec-
tive Embedded JIT Specialization. In Proc. 18th Int. Conf. Parallel Arch. Comp.
Tech. ACM, 2009.

[40] B. Catanzaro, B. Su, N. Sundaram, Y. Lee, M. Murphy, and K. Keutzer. Efficient, high-
quality image contour detection. In IEEE 12th International Conference on Computer
Vision, pages 2381–2388. IEEE, 2009.

[41] C. Chan, D. Unat, M. Lijewski, W. Zhang, J. Bell, and J. Shalf. Software design
space exploration for exascale combustion co-design. In J. Kunkel, T. Ludwig, and
H. Meuer, editors, Supercomputing, volume 7905 of Lecture Notes in Comput. Sci.,
pages 196–212. Springer-Verlag, Berlin, Heidelberg, 2013.

[42] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn. Collective communica-
tion: theory, practice, and experience. Concurrency and Computation: Practice and
Experience, 19(13):1749–1783, 2007.

[43] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for HSS
representations via sparse matrices. SIAM J. Matrix Anal. Appl., 29(1):67–81, 2006.

[44] S. Chandrasekaran, M. Gu, and T. Pals. Fast and stable algorithms for hierarchically
semi-separable representations. Technical report, Dept. of Mathematics, U.C. Berkeley,
2004.

[45] A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Nu-
mer. Linear Algebra Appl., 4(1):43–66, 1997.

[46] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick. Communication lower
bounds and optimal algorithms for programs that reference arrays - part 1. Technical
Report UCB/EECS-2013-61, EECS Department, University of California, Berkeley,
May 2013.

[47] A. Chronopoulos. s-Step iterative methods for (non)symmetric (in)definite linear sys-
tems. SIAM J. Numer. Anal., 28(6):1776–1789, 1991.

[48] A. Chronopoulos and C. Gear. On the efficient implementation of preconditioned s-
step conjugate gradient methods on multiprocessors with memory hierarchy. Parallel
Comput., 11(1):37–53, 1989.

[49] A. Chronopoulos and C. Gear. s-step iterative methods for symmetric linear systems.
J. Comput. Appl. Math, 25(2):153–168, 1989.

[50] A. Chronopoulos and S. Kim. s-step Orthomin and GMRES implemented on parallel
computers. Technical Report 90/43R, USMI, Minneapolis, MN, 1990.

259

[51] A. Chronopoulos and D. Kincaid. On the Odir iterative method for non-symmetric
indefinite linear systems. Numer. Lin. Alg. Appl., 8(2):71–82, 2001.

[52] A. Chronopoulos and C. Swanson. Parallel iterative s-step methods for unsymmetric
linear systems. Parallel Comput., 22(5):623–641, 1996.

[53] B. Cipra. The best of the 20th century: Editors name top 10 algorithms. SIAM News,
33, 2000.

[54] E. Cohen. Size-estimation framework with applications to transitive closure and reach-
ability. J. Comput. System Sci., 55(3):441–453, 1997.

[55] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian,
and T. Von Eicken. LogP: towards a realistic model of parallel computation. In Proc.
4th Symp. Principles Pract. Parallel Program., pages 1–12. ACM, New York, USA,
1993.

[56] J. Cullum and W. Donath. A block Lanczos algorithm for computing the q algebraically
largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric
matrices. In Proc. of the 1974 IEEE Conf. on Decision and Control, pages 505–509.
IEEE, 1974.

[57] T. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans.
Math. Software, 38(1):1–25, 2011.

[58] M. Day and J. Bell. Numerical simulation of laminar reacting flows with complex
chemistry. Combustion Theory and Modelling, 4(4):535–556, 2000.

[59] E. de Sturler. A parallel variant of GMRES(m). In Proceedings of the 13th IMACS
World Congress on Computational and Applied Mathematics. IMACS, Criterion Press,
volume 9, 1991.

[60] E. De Sturler. Truncation strategies for optimal Krylov subspace methods. SIAM J.
Numer. Anal., 36(3):864–889, 1999.

[61] E. De Sturler and H. van der Vorst. Reducing the effect of global communication in
GMRES(m) and CG on parallel distributed memory computers. Appl. Numer. Math.,
18(4):441–459, 1995.

[62] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel
and sequential QR and LU factorizations. SIAM J. Sci. Comput., 34:A206–A239, 2012.

[63] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in
computing Krylov subspaces. Technical Report UCB/EECS-2007-123, EECS Dept.,
U.C. Berkeley, Oct 2007.

260

[64] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and Ü. Çatalyürek. Parallel hyper-
graph partitioning for scientific computing. In 20th IEEE International Parallel and
Distributed Processing Symposium: IPDPS 2006. IEEE, 2006.

[65] J. Dongarra, J. Hittinger, J. Bell, L. Chacón, R. Falgout, M. Heroux, P. Hovland,
E. Ng, C. Webster, and S. Wild. Applied mathematics research for exascale comput-
ing. Technical report, U.S. Dept. of Energy, Office of Science, Advanced Scientific
Computing Research Program, 2014.

[66] Z. Dostál. Conjugate gradient method with preconditioning by projector. Int. J.
Comput. Math., 23(3-4):315–323, 1988.

[67] M. Engeli, T. Ginsburg, H. Rutishauser, and E. Stiefel. Refined iterative methods for
computation of the solution and the eigenvalues of self-adjoint boundary value problems.
Springer, 1959.

[68] J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transac-
tions on Numerical Analysis, 3(12):160–176, 1995.

[69] R. Fletcher. Conjugate gradient methods for indefinite systems. Lecture Notes in
Math., 506:73–89, 1976.

[70] J. Frank and C. Vuik. On the construction of deflation-based preconditioners. SIAM
J. Sci. Comput., 23(2):442–462, 2001.

[71] R. Freund and N. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numerische Mathematik, 60(1):315–339, 1991.

[72] Roland W Freund. A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems. SIAM J. Sci. Comput., 14(2):470–482, 1993.

[73] A. Gaul, M. Gutknecht, J. Liesen, and R. Nabben. A framework for deflated and
augmented Krylov subspace methods. SIAM J. Matrix Anal. Appl., 34(2):495–518,
2013.

[74] W. Gautschi. The condition of polynomials in power form. Math. Comp, 33(145):343–
352, 1979.

[75] J. Gentle. Computational statistics, volume 308. Springer, 2009.

[76] J. Gentle, W. Härdle, and Y. Mori. Handbook of computational statistics: concepts
and methods. Springer Science and Business Media, 2012.

[77] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communica-
tion latency in the GMRES algorithm on massively parallel machines. SIAM J. Sci.
Comput., 35(1):C48–C71, 2013.

261

[78] P. Ghysels, P. K losiewicz, and W. Vanroose. Improving the arithmetic intensity of
multigrid with the help of polynomial smoothers. Numer. Lin. Alg. Appl., 19(2):253–
267, 2012.

[79] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the precondi-
tioned conjugate gradient algorithm. Parallel Computing, 40(7):224–238, 2014.

[80] P. Ghysels, W. Vanroose, and K. Meerbergen. High performance implementation of
deflated preconditioned conjugate gradients with approximate eigenvectors. In House-
holder Symposium XIX June 8-13, Spa Belgium, page 84, 2014.

[81] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a ma-
trix. Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical
Analysis, 2(2):205–224, 1965.

[82] G. Golub and Z. Strakoš. Estimates in quadratic formulas. Numerical Algorithms,
8(2):241–268, 1994.

[83] G. Golub and C. Van Loan. Matrix computations. Johns Hopkins University Press,
Baltimore, MD, 3 edition, 1996.

[84] G. Golub and C. Van Loan. Matrix computations, volume 3. Johns Hopkins University
Press, 2012.

[85] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recur-
rences. Lin. Alg. Appl., 113:7–63, 1989.

[86] A. Greenbaum. Estimating the attainable accuracy of recursively computed residual
methods. SIAM J. Matrix Anal. Appl., 18:535–551, 1997.

[87] A. Greenbaum. Iterative methods for solving linear systems, volume 17. SIAM, 1997.

[88] A. Greenbaum and Z. Strakoš. Predicting the behavior of finite precision Lanczos and
conjugate gradient computations. SIAM J. Matrix Anal. Appl., 13:121–137, 1992.

[89] L. Grigori and S. Moufawad. Communication avoiding ILU(0) preconditioner. Rapport
de recherche RR-8266, INRIA, March 2013.

[90] W. Gropp. Update on libraries for Blue Waters.
http://jointlab.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-Update-
on-Libraries.pdf, 2010. Bordeaux, France.

[91] T. Gu, X. Zuo, L. Zhang, W. Zhang, and Z. Sheng. An improved bi-conjugate resid-
ual algorithm suitable for distributed parallel computing. Appl. Math. and Comput.,
186(2):1243–1253, 2007.

262

[92] M. Gustafsson, J. Demmel, and S. Holmgren. Numerical evaluation of the
communication-avoiding Lanczos algorithm. Technical Report ISSN 1404-3203/2012-
001, Department of Information Technology, Uppsala University, Feb. 2012.

[93] M. Gutknecht. Variants of BICGSTAB for matrices with complex spectrum. SIAM J.
Sci. Comput., 14(5):1020–1033, 1993.

[94] M. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of equations.
Acta Numer., 6(1997):271–398, 1997.

[95] M. Gutknecht. Spectral deflation in Krylov solvers: a theory of coordinate space based
methods. Electron. Trans. Numer. Anal., 39:156–185, 2012.

[96] M. Gutknecht and Z. Strakoš. Accuracy of two three-term and three two-term recur-
rences for Krylov space solvers. SIAM J. Matrix Anal. Appl., 22:213–229, 2000.

[97] R. Hempel and A. Schuller. Experiments with parallel multigrid algorithms using the
suprenum communications subroutine library. Technical Report 141, GMD, Germany,
1988.

[98] V. Hernandez, J. Roman, and A. Tomas. Parallel Arnoldi eigensolvers with enhanced
scalability via global communications rearrangement. Parallel Comput., 33(7-8):521–
540, 2007.

[99] V. Hernandez, J. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

[100] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Nat. Bur. Standards, 49:409–436, 1952.

[101] A. Hindmarsh and H. Walker. Note on a Householder implementation of the GMRES
method. Technical Report UCID-20899, Lawrence Livermore National Lab., CA., 1986.

[102] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, EECS
Dept., U.C. Berkeley, 2010.

[103] J. Hong and H. Kung. I/O complexity: the red-blue pebble game. In Proc. 13th Symp.
Theory Comp., pages 326–333. ACM, 1981.

[104] W. Joubert and G. Carey. Parallelizable restarted iterative methods for nonsymmetric
linear systems. Part I: theory. Int. J. Comput. Math., 44(1-4):243–267, 1992.

[105] K. Kahl and H. Rittich. Analysis of the deflated conjugate gradient method based on
symmetric multigrid theory. arXiv preprint arXiv:1209.1963, 2012.

[106] W. Karush. An iterative method for finding characteristic vectors of a symmetric
matrix. Pacific J. Math, 1(2):233–248, 1951.

263

[107] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1999.

[108] S. Kim and A. Chronopoulos. A class of Lanczos-like algorithms implemented on
parallel computers. Parallel Comput., 17(6):763–778, 1991.

[109] S. Kim and A. Chronopoulos. An efficient Arnoldi method implemented on parallel
computers. In International Conference on Parallel Processing, vol. 3, pages 167–170,
1991.

[110] S. Kim and A. Chronopoulos. An efficient nonsymmetric Lanczos method on parallel
vector computers. J. Comput. Appl. Math., 42(3):357–374, 1992.

[111] N. Knight, E. Carson, and J. Demmel. Exploiting data sparsity in parallel matrix pow-
ers computations. Technical Report UCB/EECS-2013-47, EECS Dept., UC Berkeley,
May 2013.

[112] N. Knight, E. Carson, and J. Demmel. Exploiting data sparsity in parallel matrix pow-
ers computations. In R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waniewski,
editors, Parall. Proc. Appl. Math., Lecture Notes in Computer Science, pages 15–25.
Springer Berlin Heidelberg, 2014.

[113] Ronald Kriemann. Parallele Algorithmen für H-Matrizen. PhD thesis, Christian-
Albrechts-Universität zu Kiel, 2005. in German.

[114] A. LaMielle and M. Strout. Enabling code generation within the sparse polyhedral
framework. Technical Report CS-10-102, Colorado State University, Mar 2010.

[115] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Natn. Bur. Stand., 45(4):255–282, 1950.

[116] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Research
Nat. Bur. Standards, 49:33–53, 1952.

[117] C. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relax-
ation using blocking covers. J. Comput. Syst. Sci. Int., 54(2):332–344, 1997.

[118] R. Leland. The Effectiveness of Parallel Iterative Algorithms for Solution of Large
Sparse Linear Systems. PhD thesis, University of Oxford, 1989.

[119] J. Liesen and Z. Strakoš. Krylov subspace methods: principles and analysis. Oxford
University Press, 2012.

[120] K. Meerbergen and Z. Bai. The Lanczos method for parameterized symmetric linear
systems with multiple right-hand sides. SIAM J. Matrix Anal. Appl., 31(4):1642–1662,
2010.

264

[121] M. Mehri Dehnavi, J. Demmel, and D. Fernández. Sparse approximate inverse precon-
ditioned communication-avoiding BiCGStab solver. Technical report, Massachusetts
Institute of Technology, 2014.

[122] M. Mehri Dehnavi, Y. El-Kurdi, J. Demmel, and D. Giannacopoulos. Communication-
avoiding Krylov techniques on graphic processing units. Magnetics, IEEE Transactions
on, 49(5):1749–1752, 2013.

[123] G. Meurant. Computer solution of large linear systems, volume 59. Elsevier Amster-
dam, 1999.

[124] G. Meurant. The Lanczos and conjugate gradient algorithms: from theory to finite
precision computations. SIAM, 2006.

[125] G. Meurant and Z. Strakoš. The Lanczos and conjugate gradient algorithms in finite
precision arithmetic. Acta Numer., 15:471–542, 2006.

[126] M. Mohiyuddin. Tuning Hardware and Software for Multiprocessors. PhD thesis,
EECS Dept., U.C. Berkeley, May 2012.

[127] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication
in sparse matrix solvers. In Proc. ACM/IEEE Conference on Supercomputing, 2009.

[128] R. Morgan. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric sys-
tems of equations. SIAM J. Matrix Anal. Appl., 21(4):1112–1135, 2000.

[129] R. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comput., 24(1):20–37,
2002.

[130] J. Morlan. Auto-tuning the matrix powers kernel with SEJITS. Master’s thesis, EECS
Dept., U.C. Berkeley, May 2012.

[131] N. Nachtigal, S. Reddy, and L. Trefethen. How fast are nonsymmetric matrix itera-
tions? SIAM J. Matrix Anal. Appl., 13(3):778–795, 1992.

[132] V. Naik and S. Ta’asan. Performance studies of multigrid algorithms implemented on
hypercube multiprocessor systems. In M. Health, editor, Proceedings of the Second
Conference on Hypercube Multiprocessors, pages 720–729. SIAM, 1897.

[133] A. Neumaier. Iterative regularization for large-scale ill-conditioned linear systems. Oral
presentation. Numerical Linear Algebra Meeting, Oberwolfach, April 1994.

[134] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value
problems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

[135] Y. Notay. On the convergence rate of the conjugate gradients in presence of rounding
errors. Numerische Mathematik, 65(1):301–317, 1993.

265

[136] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22(4):1444–1460, 2000.

[137] Désiré Nuentsa Wakam and Jocelyne Erhel. Parallelism and robustness in GMRES
with the Newton basis and the deflated restarting. Rapport de recherche RR-7787,
INRIA, November 2011.

[138] C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matri-
ces. PhD thesis, London University, London, UK, 1971.

[139] C. Paige. Computational variants of the Lanczos method for the eigenproblem. IMA
J. Appl. Math., 10(3):373–381, 1972.

[140] C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric
matrix. IMA J. Appl. Math., 18(3):341–349, 1976.

[141] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric
eigenproblem. Linear Algebra Appl., 34:235–258, 1980.

[142] C. Paige. An augmented stability result for the Lanczos hermitian matrix tridiagonal-
ization process. SIAM J. Matrix Anal. Appl., 31(5):2347–2359, 2010.

[143] C. Paige, I. Panayotov, and J-P. Zemke. An augmented analysis of the perturbed
two-sided Lanczos tridiagonalization process. Lin. Alg. Appl., 447:119–132, 2014.

[144] C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43–71, 1982.

[145] M. Parks, E. De Sturler, G. Mackey, D. Johnson, and S. Maiti. Recycling Krylov
subspaces for sequences of linear systems. SIAM J. Sci. Comput., 28(5):1651–1674,
2006.

[146] B. Parlett. The new qd algorithms. Acta numerica, 4:459–491, 1995.

[147] B. Parlett and D. Scott. The Lanczos algorithm with selective orthogonalization. Math.
Comput., 33(145):217–238, 1979.

[148] B. Parlett, D. Taylor, and Z. Liu. A look-ahead Lanczos algorithm for unsymmetric
matrices. Math. Comp., 44(169):105–124, 1985.

[149] B. Philippe and L. Reichel. On the generation of Krylov subspace bases. Appl. Numer.
Math, 62(9):1171–1186, 2012.

[150] M. Rappaz, M. Bellet, and M. Deville. Numerical modeling in materials science and
engineering, volume 32. Springer Science and Business Media, 2010.

[151] L. Reichel. Newton interpolation at Leja points. BIT, 30(2):332–346, 1990.

266

[152] S. Rump. Verified bounds for singular values, in particular for the spectral norm of a
matrix and its inverse. BIT Numer. Math., 51(2):367–384, 2011.

[153] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[154] Y. Saad. Numerical methods for large eigenvalue problems, volume 158. SIAM, 2011.

[155] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. A deflated version of the conjugate
gradient algorithm. SIAM J. Sci. Comput., 21(5):1909–1926, 2000.

[156] M. Scquizzato and F. Silvestri. Communication lower bounds for distributed-memory
computations. In 31st International Symposium on Theoretical Aspects of Computer
Science, page 627, 2014.

[157] H. Simon. The Lanczos algorithm with partial reorthogonalization. Math. Comput.,
42(165):115–142, 1984.

[158] V. Simoncini and D. Szyld. Theory of inexact Krylov subspace methods and applica-
tions to scientific computing. SIAM J. Sci. Comput., 25(2):454–477, 2003.

[159] V. Simoncini and D. Szyld. Recent computational developments in Krylov subspace
methods for linear systems. Numer. Linear Algebra Appl., 14(1):1–59, 2007.

[160] G. Sleijpen and D. Fokkema. BiCGstab (l) for linear equations involving unsymmetric
matrices with complex spectrum. Electron. Trans. Numer. Anal., 1(11):2000, 1993.

[161] G. Sleijpen and H. van der Vorst. Reliable updated residuals in hybrid Bi-CG methods.
Computing, 56(2):141–163, 1996.

[162] G. Sleijpen, H. van der Vorst, and D. Fokkema. BiCGstab (l) and other hybrid Bi-CG
methods. Numer. Algorithms, 7(1):75–109, 1994.

[163] G. Sleijpen, H. van der Vorst, and J. Modersitzki. Differences in the effects of rounding
errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal.
Appl., 22(3):726–751, 2001.

[164] E. Solomonik, E. Carson, N. Knight, and J. Demmel. Tradeoffs between synchroniza-
tion, communication, and computation in parallel linear algebra computations. ACM
Trans. Parallel Comput. (invited submission), 2014.

[165] Edgar Solomonik, Erin Carson, Nicholas Knight, and James Demmel. Tradeoffs be-
tween synchronization, communication, and computation in parallel linear algebra
computations. In Proceedings of the 26th ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA ’14, pages 307–318, New York, NY, USA, 2014.
ACM.

267

[166] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. Statist.
Comput., 10:36–52, 1989.

[167] P. Sonneveld and M. van Gijzen. IDR(s): A family of simple and fast algorithms for
solving large nonsymmetric systems of linear equations. SIAM Journal on Scientific
Computing, 31(2):1035–1062, 2008.

[168] A. Stathopoulos and K. Orginos. Computing and deflating eigenvalues while solving
multiple right-hand side linear systems with an application to quantum chromodynam-
ics. SIAM J. Sci. Comput., 32(1):439–462, 2010.

[169] T. Steihaug. The conjugate gradient method and trust regions in large scale optimiza-
tion. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[170] Z. Strakoš. On the real convergence rate of the conjugate gradient method. Lin. Alg.
Appl., 154:535–549, 1991.

[171] Z. Strakoš and P. Tichỳ. On error estimation in the conjugate gradient method and
why it works in finite precision computations. Electronic Transactions on Numerical
Analysis, 13:56–80, 2002.

[172] M. Strout, A. LaMielle, L. Carter, J. Ferrante, B. Kreaseck, and C. Olschanowsky. An
approach for code generation in the sparse polyhedral framework. Technical Report
CS-13-109, Colorado State University, December 2013.

[173] J. Tang, S. MacLachlan, R. Nabben, and C. Vuik. A comparison of two-level precondi-
tioners based on multigrid and deflation. SIAM J. Matrix Anal. Appl., 31(4):1715–1739,
2010.

[174] R. Thompson and P. McEnteggert. Principal submatrices ii: The upper and lower
quadratic inequalities. Lin. Alg. Appl., 1(2):211–243, 1968.

[175] S. Toledo. Quantitative performance modeling of scientific computations and creating
locality in numerical algorithms. PhD thesis, MIT, 1995.

[176] C. Tong and Q. Ye. Analysis of the finite precision bi-conjugate gradient algorithm for
nonsymmetric linear systems. Math. Comp., 69(232):1559–1576, 2000.

[177] D. Unat. Personal communication, 2013.

[178] J. van den Eshof and G. Sleijpen. Inexact Krylov subspace methods for linear systems.
SIAM J. Matrix Anal. Appl., 26(1):125–153, 2004.

[179] H. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):631–
644, 1992.

268

[180] H. van der Vorst. Iterative Krylov methods for large linear systems, volume 13. Cam-
bridge University Press, 2003.

[181] H. Van der Vorst and Q. Ye. Residual replacement strategies for Krylov subspace iter-
ative methods for the convergence of true residuals. SIAM J. Sci. Comput., 22(3):835–
852, 1999.

[182] J. Van Rosendale. Minimizing inner product data dependencies in conjugate gradient
iteration. In Proc. IEEE Internat. Confer. Parallel Processing, pages 44–46. IEEE,
1983.

[183] C. Vuik, A. Segal, and J. Meijerink. An efficient preconditioned CG method for the
solution of a class of layered problems with extreme contrasts in the coefficients. J.
Comput. Phys., 152(1):385–403, 1999.

[184] H. Walker. Implementation of the GMRES method using Householder transformations.
SIAM J. Sci. Stat. Comput., 9:152–163, 1988.

[185] S. Wang, X.S. Li, J. Xia, Y. Situ, and M.V. de Hoop. Efficient scalable algorithms for
hierarchically semiseparable matrices. SIAM J. Sci. Comput., 2012. (under review).

[186] S. Wang, E. Sturler, and G. Paulino. Large-scale topology optimization using precon-
ditioned Krylov subspace methods with recycling. Int. J. Numer. Methods in Engrg.,
69(12):2441–2468, 2007.

[187] P. Wesseling and P. Sonneveld. Numerical experiments with a multiple grid and a
preconditioned Lanczos type method. In Approximation methods for Navier-Stokes
problems, pages 543–562. Springer, 1980.

[188] J. Wilkinson. The algebraic eigenvalue problem, volume 87. Oxford Univ. Press, 1965.

[189] S. Williams, D. Kalamkar, A. Singh, A. Deshpande, B. Van Straalen, M. Smelyanskiy,
A. Almgren, P. Dubey, J. Shalf, and L. Oliker. Optimization of geometric multigrid
for emerging multi-and manycore processors. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, page 96.
IEEE Computer Society Press, 2012.

[190] S. Williams, M. Lijewski, A. Almgren, B. Van Straalen, E. Carson, N. Knight, and
J. Demmel. s-step Krylov subspace methods as bottom solvers for geometric multigrid.
In International Symposium on Parallel and Distributed Processing. IEEE, 2014.

[191] D. Womble and B. Young. A model and implementation of multigrid for massively
parallel computers. Int. J. High Speed Computing, 2(3):239–256, 1990.

[192] W. Wülling. On stabilization and convergence of clustered Ritz values in the Lanczos
method. SIAM J. Matrix Anal. Appl., 27(3):891–908, 2005.

269

[193] J. Xia, S. Chandrasekaran, M. Gu, and X. Li. Fast algorithms for hierarchically
semiseparable matrices. Numer. Linear Algebra Appl., 17(6):953–976, 2010.

[194] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra. Improving the
performance of CA-GMRES on multicores with multiple GPUs. In Proc. IEEE 28th
Internat. Parallel and Distributed Processing Symposium, pages 382–391. IEEE, 2014.

[195] I. Yamazaki, S. Rajamanickam, E. Boman, M. Hoemmen, M. Heroux, and S. Tomov.
Domain decomposition preconditioners for communication-avoiding Krylov methods
on a hybrid CPU/GPU cluster. In Proc. ACM/IEEE Conference on Supercomputing,
pages 933–944. IEEE, 2014.

[196] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra. Mixed-precision orthogonaliza-
tion scheme and adaptive step size for improving the stability and performance of
CA-GMRES on GPUs. High Performance Computing for Computational Science–
VECPAR 2014, pages 17–30, 2015.

[197] I. Yamazaki and K. Wu. A communication-avoiding thick-restart Lanczos method on a
distributed-memory system. In Euro-Par 2011: Parallel Processing Workshops, pages
345–354. Springer, 2012.

[198] C-Q. Yang and B. Miller. Critical path analysis for the execution of parallel and
distributed programs. In Proc. 8th Int. Conf. Dist. Comput. Sys., pages 366–373.
IEEE, 1988.

[199] L. Yang and R. Brent. The improved BiCGStab method for large and sparse unsymmet-
ric linear systems on parallel distributed memory architectures. In Fifth International
Conference on Algorithms and Architectures for Parallel Processing, pages 324–328.
IEEE, 2002.

[200] T. Yang. Solving sparse least squares problems on massively distributed memory
computers. In Advances in Parallel and Distributed Computing, pages 170–177. IEEE,
1997.

[201] M-C. Yeung and T. Chan. ML(k) BiCGSTAB: A BiCGSTAB variant based on multiple
Lanczos starting vectors. SIAM J. Sci. Comput., 21(4):1263–1290, 1999.

[202] J. Zemke. Krylov subspace methods in finite precision: a unified approach. PhD thesis,
Technische Universität Hamburg-Harburg, 2003.

[203] A. Zomaya. Parallel computing for bioinformatics and computational biology: models,
enabling technologies, and case studies, volume 55. John Wiley & Sons, 2006.

