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Abstract

Predictable Processors for Mixed-Criticality Systems and Precision-Timed I/O

by

Michael Patrick Zimmer

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

In cyber-physical systems, where embedded computation interacts with physical processes,
correctness depends on timing behavior, not just functionality. For high confidence in the
timing behavior of real-time embedded software, the underlying hardware must support pre-
dictable and isolated task execution. These properties are sacrificed in many conventional
processors that use frequent interrupts and hardware prediction mechanisms to improve
average-case performance. Mixed-criticality systems—where tasks with different levels of
safety criticality are integrated on a single hardware platform to share resources and re-
duce costs—facilitate complex functionality but further complicate design and verification.
The challenge is designing processor architectures that provide high confidence in software
functionality and timing behavior without sacrificing processor throughput.

This dissertation presents architectural techniques for task-level trade-offs between pre-
dictability, hardware-based isolation, and overall instruction throughput—facilitating the
verification of safety-critical tasks and allowing software to meet precise timing constraints.
Our processor design, named FlexPRET, uses fine-grained multithreading with flexible hard-
ware thread scheduling and integrated timers to evaluate these techniques. With no restric-
tions on thread interleaving, the hardware thread scheduler executes hard real-time threads
(HRTTs) at specific cycles for isolated and predictable behavior and allows soft real-time
threads (SRTTs) to use both specific and spare cycles for efficient operation.

A configurable version of FlexPRET is implemented in simulation and on FPGA using
Chisel, a hardware construction language that generates both C++ and Verilog code. For a
given program path at a constant thread scheduling frequency, the latency of every instruc-
tion is constant and known, and the precision of input/output (I/O) instruction timing is
bounded. The comparison of FlexPRET with two baseline processors provides the FPGA
resource costs of FlexPRET’s microarchitectural features. Using two example applications,
we demonstrate a mixed-criticality deployment methodology that provides hardware-based
isolation to critical tasks and improves overall instruction throughput by using spare cycles
and software scheduling for less critical tasks. FlexPRET can also use software to perform
multiple independent I/O operations instead of requiring hardware peripherals.
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Chapter 1

Introduction

1.1 Motivation
In cyber-physical systems (CPS), computation interacts with physical processes [1]. Em-
bedded computers, often connected through networks, both monitor and control physical
processes using sensing and actuation. Application areas such as automotive, avionics, in-
dustrial automation, and medical devices contain these systems with diverse requirements.
The variety of applications poses challenges for flexible design techniques but presents po-
tential for high-impact solutions.

Unlike the more traditional field of real-time embedded systems [2], cyber-physical sys-
tems focus on and leverage the feedback interaction between computation and physical pro-
cesses. In both types of systems, computation is not instantaneous, and its timing behavior
affects the physical world. As a result, software timing behavior is part of correctness [3]. In
contrast, correctness in general-purpose software only depends on input-output values, and
software timing behavior is just a measure of performance. Many hardware and software
techniques used in general-purpose computing—which abstract away timing information to
simplify programming and improve average-case performance—cause unpredictable timing
behavior and are not directly applicable to real-time systems [4]. However, system developers
still use these techniques, because utilizing existing hardware, compilers, operating systems,
programming languages, and experience reduces costs and effort, at least initially.

In general, engineers, regulatory agencies, and consumers demand higher confidence in
software timing and functionality for cyber-physical than general-purpose systems. Many ap-
plication areas, such as automotive and avionics, contain safety-critical functionality where
failure has potentially catastrophic consequences. Regardless of whether bodily injuries oc-
cur, software bugs or low correctness confidence causes expensive damage, recalls, litigation,
and diminished functionality. High-profile examples are court cases for unintended acceler-
ation in vehicles involving Toyota [5] and problems caused by priority inversion on the Mars
Pathfinder [6].
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Platform 1

τcritical

Platform 2

τevent

Platform 3

τefficient

Platform

τcritical τevent τefficient

Figure 1.1: Transition from a federated to integrated architecture for task execution.

Achieving higher confidence in software timing and functionality is a difficult problem.
Testing alone cannot provide enough guarantees because the state space is too large to ex-
haustively test for any application of reasonable complexity. Formal verification and analysis
techniques provide further guarantees but operate on abstractions of the implementation [7],
[8]. These abstractions and other assumptions do not always hold. In most systems, software
timing behavior is not directly specified and is instead a consequence of implementation on
a particular hardware platform—producing brittle designs where hardware selection is fixed.
Even with timing behavior precisely known, the physical world is unpredictable, and software
functionality must be robust to changes in the environment.

Despite these challenges, complex cyber-physical systems are built today and (usually)
function correctly and safely. With increasing system complexity, however, the design, test-
ing, and verification of future systems will be a major challenge. In the automotive do-
main, a high-end car produced in 2009 executes around 100 million lines of code on 70-100
microprocessor-based electronic control units (ECUs), with software and electronics con-
tributing to 35 to 40% of the car’s cost [9]. With massive investments in autonomous
driving by leading technology and automotive companies worldwide, complexity will only
further increase. Fundamental changes in the software and hardware design practices are
needed to handle further increases in the complexity of cyber-physical systems.

Consolidating many increasingly complex software tasks onto fewer hardware platforms
is one approach for reducing the cost, size, weight, and power (SWaP) of hardware (Fig-
ure 1.1). A single processor must then execute multiple tasks with differing importance,
safety, or certification requirements—creating a mixed-criticality system [10] [11]. These re-
quirements are often specified using criticality levels, such as up to five levels used in the
ISO 26262 automotive standard [12] or the DO-178C avionics standard [13]. Unfortunately,
resource sharing increases interference between tasks regardless of criticality level; testing
and verification must then also account for timing behavior interference when determining
correctness.

Timing requirements on the order of milliseconds is not precise enough for some ap-
plications, even though it is sufficient for many. Applications that use software to replace
functionality typically provided by hardware or interact with other hardware devices re-
quire precision-timed input/output (I/O) with timing accuracy and precision on the order
of nanoseconds, which is at the granularity of clock cycles for processors.



CHAPTER 1. INTRODUCTION 3

1.2 Objective
This dissertation investigates what new processor architecture could provide higher confi-
dence in software functionality and timing behavior without sacrificing efficiency. A processor
architecture consists of both the instruction-set architecture (ISA), which is the contract be-
tween software and hardware, and the microarchitecture, which determines how the instruc-
tions of the ISA are implemented [14]. Although not directly addressed in this dissertation,
there are also challenges at the software level: programming languages or models and the
associated toolchains need to include timing semantics and handle the concurrency of the
physical world [15]. However, any software approach relies on assumptions about the timing
behavior of lower abstraction layers. Therefore, the underlying hardware, of which the pro-
cessor is a key component, must either expose timing semantics or at least have analyzable
timing behavior.

Current software approaches already make assumptions about the timing behavior of
underlying hardware. For example, over 30 years of research in real-time scheduling theory
assumes the computation time of every task is known or bounded [2], [7]. In practice, these
bounds are important but can only be guaranteed for a restricted subset of programming
techniques and processor architectures [16].

A current trend in both real-time software and hardware is the effort and cost of testing
and verification surpassing that of design. Without higher confidence in correctness—by
either exposing more information in the abstraction layers or improving analysis—testing
and verification difficulties will limit system complexity. Additionally, new processor archi-
tectures must be efficient with respect to area, power, or performance; otherwise, it would
be unsuitable for most industry application areas.

We evaluate different approaches by defining properties of isolation, timing predictability,
timing control, and efficiency. We also assume an application is composed of tasks: each
task performs computation, potentially using input data from sensors or other tasks and
providing output data to actuators or other tasks. A task can execute multiple times with
state saved between invocations, and it can be dependent on other tasks. For systems with
differing requirements, such as mixed-criticality systems, each task will prioritize different
properties.

Spatial and temporal isolation prevent independent tasks from being adversely affected
by each other: spatial isolation protects a task’s state (stored in registers and memory), and
temporal isolation protects a task’s timing behavior. With complete isolation, a task can be
tested and verified for correctness by itself, then have identical behavior when deployed in
a system with other tasks. The composability provided by isolation allows modular design
practices that scale [17]. The timing predictability of an isolated task can assist worst-case
execution time (WCET) analysis techniques in providing safe and tight bounds (above and
close to actual) on WCET. Without tight bounds, system resources are over provisioned to
maintain guarantees. Timing control refers to timing behavior being directly specified by
software instead of a consequence of implementation on a particular processor.
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We define efficiency as meeting requirements with minimal resources, often measured
by resource area or time costs. With this definition, average-case performance could influ-
ence efficiency for a general-purpose system, whereas the bound on WCET could influence
efficiency for a safety-critical system. The efficiency of an overall system may be different
from the efficiency of a single task. The properties desired or required by each task vary,
and the choice of underlying processor architecture affects feasibility of meeting these task
requirements.

1.3 Problem
There are fundamental trade-offs between these properties. The main trade-off is between
isolation and efficiency. On a platform where resources, such as processor execution cycles,
are shared between tasks, a task invocation could use less than its allocated resources. If
no other task uses this spare resource, overall system efficiency is not maximized; however,
if another task uses this spare resource, isolation is reduced because a dependency is intro-
duced into task behavior (on amount of spare resources). Although more nuanced, there
are relationships between predictability and efficiency, depending on the underlying hard-
ware. Many techniques that improve average task efficiency reduce predictability [16], and
designing predictable yet efficient processor architectures is an active research area.

Existing approaches support trade-offs more at the processor level than task level—a
problem for mixed-criticality systems where requirements vary by task. For example, a
safety-critical task values isolation and predictability more than a low-priority logging task.
Consider an example application that consists of three tasks, each initially executing on
separate processors. Figure 1.2 shows a possible run-time trace over a segment of time,
where shaded boxes indicate a task is executing. An up arrow indicates the release time
when a task can start executing, and a down arrow indicates the deadline time when it
must complete; an up and down arrow indicates the deadline of the task instance is also the
release time of the next task instance. All tasks start at the release time because each is on
a separate processor with no resource conflicts.

τcritical

τevent

τefficient

time0 50 100 150

Figure 1.2: Possible run-time behavior for an example application with three tasks, each on
a separate processor.
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The first task τcritical performs safety-critical feedback control of a physical process using
sensors and actuators. For stability of the physical process, the task must execute periodically
and finish before the next period (indicated by arrows). For high confidence in functionality
and timing behavior, the task should be isolated and predictable. The second task τevent uses
an interrupt-driven approach to detect an external event (demonstrated by the up arrow at
time 90). Each infrequent event must be handled rapidly without wasting resources, so
interrupts are used instead of polling. This task could change the mode of operation for the
critical task, so it should also be isolated and predictable. The third task τefficient has less
stringent requirements than the other two tasks. If resources are shared between these three
tasks, this task can use spare resources to improve overall efficiency, unlike the other two
tasks with isolation requirements. This task could perform high-level planning or logging.

An example of this type of application in the automotive domain is a yaw moment
controller, which prevents a vehicle from spinning or drifting out. The τcritical task could be
the control algorithm, the τevent task a mode change for emergency braking, and the τefficient
task for approximating vehicle and environmental variables used by the controller. Tasks
τcritical and τevent are hard real-time since a deadline miss must never occur, and task τefficient is
soft real-time since a deadline miss is acceptable but can degrade functionality. In feedback
control systems, meeting deadlines may not be the only timing constraint; variations in
the latency between sensing and actuation called jitter can also affect the performance of a
controller with respect to responsiveness and stability [18], [19].

Worst-Case Execution Time (WCET) Analysis

Some challenges and limitations of existing approaches are exposed using this example appli-
cation. The difficulty of worst-case execution time (WCET) analysis [8] on task computation
depends on properties of the program and the processor architecture. Analysis techniques can
statically compute possible paths through a program, but determining the longest path re-
quires assigning latency costs to different program segments. For certain microarchitectures,
the latency of certain instructions in a program segment depends on program and proces-
sor state. Consequently, timing behavior depends on execution history and can be difficult
to tightly bound; most hardware prediction mechanisms for improving average case perfor-
mance, such as dynamic branch prediction and caching, exhibit this property [20]. For a
single uninterrupted task, WCET analysis techniques are still able to handle some complex
processors that use hardware prediction mechanisms [21], [22], and several tools are used in
academia and industry [23].

The underlying assumption that task execution is uninterrupted is restrictive and often
violated, however, due to the prevalence of interrupts for event handling and task preemp-
tion [20], [24]. The number and duration of interrupts affect the timing behavior [25], and
more problematic is that an interrupt can affect processor state, particularly the caches [26].
The effects on processor state must be bounded [27], isolated [28], or prevented by restoring
original state [29]. As a consequence, interrupts are prohibited in many safety-critical appli-
cations. Not only does this exclude many approaches from real-time scheduling theory but
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also eliminates a common I/O mechanism in systems whose primary function is to interact
with the physical environment.

Architectures that remove the mechanisms with instruction latency dependence on ex-
ecution history are more predictable but potentially also sacrifice the performance gains of
decades of research in computer architecture. Researchers have proposed predictable pro-
cessor pipelines [30]–[33], but the predictability of the memory hierarchy is also important
because memory accesses are usually the main source of execution time variations. Instead
of a cache, processors can use scratchpad memories, which are local memories with contents
controlled explicitly by software [34], [35]. There is active research on scratchpad memory
management techniques to reduce WCET, but providing performance similar to a cache is
challenging [36]. Caches can also be used in a more predictable way, such as locking cache
lines [28], caching entire functions [37], or using separate caches for the stack and heap [37].

Real-Time Software Scheduling

For the example application with three tasks, the selected processor’s predictability and ef-
ficiency must support a WCET bound that meets the deadlines of tasks τcritical and τevent.
These tasks also have an isolation requirement. The standard industry approach—without
using an entire processor or core for each task and suffering the associated efficiency loss—is
software scheduling on a single-threaded processor. A scheduling algorithm selects which
task executes for different segments of time, as there can only be one executing. A soft-
ware real-time operating system (RTOS) implements a scheduling algorithm, and it can also
provide mechanisms for communication and synchronization between tasks and I/O function-
ality. The RTOS must be carefully designed and verified because it enforces software-based
isolation and affects the timing behavior of all tasks.

Software scheduling is typically either reservation-based or priority-based, and both ap-
proaches are used in mixed-criticality systems [38]. A context switch, where software saves
the state of one task and restores the state of another, occurs when a preemptive scheduler
switches between uncompleted tasks using interrupts. In the reservation-based approach [39],
[40], the scheduler allocates segments of time to particular tasks. Figure 1.3a shows a
reservation-based scheduling of the three tasks in the example application. Tasks τcritical
and τevent are both isolated by only executing during their own reserved time segment, and
task τefficient, depending on scheduler implementation, can use the reserved time segments of
other tasks if they finish early (as demonstrated from time 25 to 50). The disadvantage of
this approach is the responsiveness of τevent could be insufficient to meet requirements. To
maintain isolation, τevent only executes during its allocated time segment, even if an event
occurs outside of it, as seen by τevent barely meeting the deadline (at time 140). The granu-
larity of reservations for time segments affects the responsiveness of τevent, and the overhead
of context switches prevents shorter time segments.

In the priority-based approach [10], [11], every task has a priority level, and the scheduler
always executes the highest priority task. Only the task with the highest priority is fully
isolated, as the scheduling of all lower priority tasks depends on the execution behavior of
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(a) Reservation-based scheduling, where reserva-
tions are shown by grayed boxes.
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(b) Priority-based scheduling, where τcritical has
highest priority and τefficient the lowest.

Figure 1.3: Possible run-time behavior for the example application using software scheduling
on a single-threaded processor.

the highest priority task. Figure 1.3b shows a priority-based scheduling of the three tasks
in the example application. Task τcritical is isolated, task τevent starts reacting immediately
but is preempted before it completes (at time 100), and task τefficient uses resources when the
other tasks do not need to execute. As with reservation-based scheduling, the responsiveness
of task τevent could not meet requirements because it depends on the execution time of task
τcritical to preserve isolation. These scheduling examples demonstrate a limitation of software-
based scheduling on single-threaded processors: one task must always have priority, so the
timing behavior of other tasks is either dependent or restricted. The RTOS implementation
and any preemption effects on processor state, albeit limited in this simple example, must
be considered during worst-case execution time analysis.

Multithreaded Processors

An alternative approach is fine-grained multithreading (interleaved multithreading, barrel
processor), where instructions from different hardware threads are interleaved in the proces-
sor pipeline every cycle [14], [41], [42]. A hardware thread is logically a separate processor
with its own program counter and registers, but it shares the pipeline with other hardware
threads. For example, 4 hardware threads appear to each execute at 25 MHz if interleaved
on a 100 MHz pipeline (each hardware thread enters the pipeline once every 4 cycles). Each
hardware thread either executes a single task or uses software scheduling for multiple tasks.
By executing multiple tasks in parallel but each at a slower rate, the processor has higher
overall efficiency because instruction latencies are hidden, reducing the burden on branch
prediction and the memory hierarchy. Most fine-grained multithreaded processors require a
minimum number of hardware threads in the round-robin rotation, such as four, to reduce
hardware costs.

Fine-grained multithreading enables hardware-based isolation between tasks that are de-
ployed to separate hardware threads, but isolation still depends on hardware thread schedul-
ing, which is inflexible in many processors, such as PTARM [43] and XMOS [44]. One
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(a) Fixed round-robin hardware thread schedul-
ing.
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(b) Active round-robin hardware thread schedul-
ing.

Figure 1.4: Possible run-time behavior for the example application using different hardware
thread scheduling techniques on a fine-grained multithreaded processor.

technique, used by the PTARM processor, is fixed round-robin scheduling, which alternates
between all hardware threads regardless of status. Figure 1.4a shows fixed round-robin
scheduling for the three tasks in the example application, each deployed on separate hard-
ware threads. The lower timelines of Figure 1.4 show which hardware thread is scheduled
each cycle for a few time segments. All tasks are isolated, and task τevent can start executing
within several cycles of an event occurring, albeit at a slower execution rate. The disadvan-
tage of this approach is that when tasks τcritical and τevent are not executing, task τefficient is
still only using one out of every three clock cycles, and the other two are not used.

Another technique, used by the XMOS processor, is active round-robin scheduling, which
alternates between all hardware threads that are ready to execute. Figure 1.4b shows active
round-robin scheduling, assuming the pipeline supports any number of interleaved hardware
threads, including just one (XMOS requires four). No cycles are left unused whenever any
task needs to execute. For example, at different points task τefficient is scheduled every cycle,
every second cycle, and every third cycle. The disadvantage is none of the tasks are fully
isolated because the execution frequency of each hardware thread depends on the number
of active threads. The properties of fixed round-robin scheduling are more suitable for tasks
τcritical and τevent, and the properties of active round-robin scheduling are more suitable for
task τefficient, but only one scheduler can be selected for the whole system.

In summary, software scheduling must handle the effects of interrupts and cannot provide
hardware-based isolation or responsiveness for multiple tasks, and inflexible hardware thread
scheduling in a fine-grained multithreaded processor forces a decision between isolation and
efficiency.
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1.4 Contributions
This dissertation presents FlexPRET, a processor designed to provide thread-level trade-
offs between predictability, hardware-based isolation, and efficiency in order to simplify the
verification of safety-critical tasks, allow software to meet precise timing constraints, and
reduce hardware costs. The main architectural features are flexible thread scheduling for fine-
grained multithreading, tightly coupled timers exposed in the ISA, and instruction latencies
that are independent of execution history.

Similar to virtual machines in general-purpose computing, the hardware threads in Flex-
PRET can be considered virtual real-time machines; they provide either precise or minimum
guarantees on execution resources at the cycle level and hardware support for mechanisms
typically provided by a real-time operating system. Each hardware thread can be pro-
grammed using different languages or techniques and isolated from interrupts occurring on
other hardware threads. Instead of trying to minimize interference between mostly indepen-
dent tasks, a programmer can use isolated virtual real-time machines for composability and
predictability.

Hardware threads are classified as either hard real-time threads (HRTTs) or soft real-
time threads (SRTTs), and each executes either one task or multiple tasks with software
scheduling. Unlike other fine-grained multithreaded processors [43], [44], FlexPRET supports
an arbitrary interleaving of threads in the pipeline and uses a novel thread scheduler. HRTTs
are only scheduled at a constant rate, and SRTTs can be scheduled at a minimum rate. If
no thread is scheduled for a cycle or a scheduled thread has completed its task, that cycle is
used by some SRTT in a round-robin fashion—efficiently utilizing the processor. For control
over timing, a variation of timing instructions [43], [45], [46] allows software to stall until or
interrupt execution at a point in time, again allowing SRTTs to use spare cycles for efficiency.
For predictability, the processor uses predict not-taken branching for all hardware threads
and scratchpad memories instead of caches for at least HRTTs.

The main techniques are demonstrated by the example application when tasks τcritical and
τevent are each deployed on a HRTT, and τefficient is deployed on a SRTT. Figure 1.5 shows a
possible execution of this example application, with the scheduler prioritizing each hardware
thread once every third cycle. Both tasks τcritical and τevent are isolated with predictable
behavior (execute once every three cycles), and task τevent will react within a few cycles to
an event. Furthermore, task τefficient uses all available cycles when either task τcritical or τevent
is not executing because it is a SRTT (e.g. at time 20). When task τevent starts executing
(at time 90), its only scheduled every third cycle to preserve isolation.

Other scheduling configurations are possible depending on task requirements. This trade-
off between task properties is not achievable using existing processor architectures or software
techniques. For this processor, mixed-criticality timing requirements are a benefit instead
of hindrance: less critical tasks use spare cycles that isolated critical tasks cannot use to
improve overall efficiency.

We define a set of tasks with low individual task throughput (compute and memory)
requirements and strict isolation requirements as an isolation-bound task set, and FlexPRET
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Figure 1.5: Possible run-time behavior for the example application using FlexPRET’s hard-
ware thread scheduling.

is designed for these task sets. While this is an unreasonable assumption for many general-
purpose applications, it is not for many cyber-physical applications. The field of real-time
scheduling assumes task sets consist of dozens or hundreds of tasks, so most of these tasks
must have low throughput requirements with a sufficient amount of parallelism. FlexPRET
does not require any parallelism, however, because it can operate as a simple single-threaded
processor by scheduling only one thread.

Some applications have tasks that are not well suited for FlexPRET; for example, a
task with a throughput requirement not achievable using a single execution pipeline. We
envision a system where one or multiple FlexPRET cores execute the isolation-bound tasks
as coprocessors, and the other tasks execute on either a predictable processor with higher
single-threaded throughput, such as Patmos [47], or a conventional embedded processor,
such as an ARM Cortex M-7 or R-4.

Work in real-time software scheduling, worst-case execution time analysis, and real-time
programming languages influence the design decisions (Chapter 2). For a concrete imple-
mentation, a 32-bit, 5-stage pipeline for the RISC-V ISA is augmented with the proposed
techniques (Chapter 3). To accurately evaluate performance and area costs, the processor
design is specified in Chisel, which generates Verilog for both FlexPRET and comparison
processors, and deployed as a soft-core on FPGA (Chapter 4). FlexPRET is also evaluated
using some example applications from the mixed-criticality and precision-timed I/O domains
(Chapter 5). This work provides the underlying processor to support higher confidence in
future techniques at the hardware and software levels (Chapter 6).

In summary, the contributions presented in this dissertation are:

• A processor design that uses microarchitectural techniques for thread-level trade-offs
between predictability, hardware-based isolation, and efficiency (Chapter 3).

– Flexible hardware thread scheduling with pipeline support that differentiates be-
tween hard and soft real-time execution requirements.
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– Timing instructions that enable software specification of timing behavior and
reallocation of spare resources.

• A programming methodology that conceptually uses hardware threads as virtual real-
time machines, potentially underneath an RTOS (Chapter 5).

– Precise or minimum allocation of processor cycles for each virtual entity.
– Ability to isolate a hardware thread from interrupts on other hardware threads.
– Hardware support for features typically provided by an RTOS.

• An evaluation and demonstration of the FlexPRET processor design and programming
methodology (Chapters 4 and 5).

– FPGA implementation with area usage compared with two baseline processors.
– Mixed-criticality application from the avionics domain that is mapped to different

hardware threads that use software scheduling to support more tasks than threads.
– Software that uses precision-timed I/O operations for bit banging to replace hard-

ware peripherals.
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Chapter 2

Background and Related Work

This chapter presents a summary of some existing approaches used to design and verify
cyber-physical and real-time embedded systems. The shortcomings of these approaches mo-
tivate and support the processor architecture and programming methodology presented in
this dissertation. These systems are implementable with commercial-off-the-shelf (COTS)
processors, real-time operating systems (RTOSs), and ad-hoc programming and testing.
Most RTOSs schedule different tasks according to assigned priorities and support interrupts
for timely responses. By tweaking priorities, coding fast interrupt handlers, disabling in-
terrupts during critical code segments, and using timer peripherals, engineers can develop
usable systems. The resulting system design, however, is often difficult to understand, main-
tain, and verify. Consequently, researchers have investigated more rigorous approaches at
both the software and hardware levels for design and verification of these systems.

On the software side, research in real-time software scheduling has produced theoretical
guarantees and improved performance in several metrics when assumptions regarding the
application are met (Section 2.1). One of the key assumptions is known bounds on worst-
case execution time (WCET) for tasks, which in general is undecidable. The field of WCET
analysis uses static analysis of program code with either hardware models or measurement
techniques to bound the WCET of program fragments for verification and optimization
purposes (Section 2.2).

Instead of conforming an application to a model required by traditional real-time software
scheduling and checking the assumptions through analysis and testing, new programming
languages and models can more directly specify the timing and functionality of real-time
systems (Section 2.3). Also, instead of modeling or attempting to control unpredictable
hardware mechanisms, predictable hardware designed specifically for real-time systems can
simplify programming and analysis and improve worst-case performance (Section 2.4), which
is the focus of this dissertation.
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2.1 Real-Time Software Scheduling
If an application consists of multiple tasks, implicit or explicit scheduling decisions determine
when each task executes on a processor, and on which processor in a multiprocessor system.
In real-time systems, scheduling must satisfy each task’s timing requirements—part of execu-
tion correctness—in addition to any ordering requirements from dependencies between tasks.
Even with extensive testing, a scheduling algorithm without theoretical guarantees can fail
to meet timing requirements in certain situations, sometimes with catastrophic results.

The field of real-time scheduling theory uses task models to describe an application,
including its timing requirements, and investigates the properties of different scheduling
algorithms. For task sets that meet the required criteria, a scheduling algorithm guarantees
correct timing behavior in all possible circumstances. The most suitable scheduling algorithm
depends on the requirements and properties of the application and the scheduling overhead on
the target platform. This section only gives a high-level overview, and more in-depth surveys
exist for both uniprocessor [2], [7] and multiprocessor [48] systems. Software scheduling
for mixed-criticality systems is covered later in Section 5.1, and FlexPRET uses software
scheduling algorithms for executing multiple tasks on a single hardware thread.

2.1.1 Task Model
Many real-time applications have cyclic components, such as feedback control, with repeating
tasks. In a common task model [2], an application consists of a set of n tasks (τ1, τ2,..., τn).
A task is a potentially infinite sequence of jobs, and each job is ready for execution at some
arrival time, or release time. If the time separation between successive jobs of a task is
constant, the task is periodic. If the time separation, or interarrival time, is not constant
but has a minimum value, the task is sporadic. Without any limitations on interarrival time,
timing guarantees are not possible because many jobs could arrive simultaneously in the
worst-case scenario and overload the processor.

Each task τi is characterized by a period or minimum interarrival time Ti, relative deadline
Di, and worst-case execution time Ci. The relative deadline is often equal to the period, but
this is not required for all scheduling algorithms. Although essential for timing guarantees,
the worst-case execution time cannot always be tightly bounded (Section 2.2).

The parameters and time values for a task invocation are shown in Figure 2.1. At arrival
time ai, the task is ready for execution. Depending on scheduling decisions, the start time si

of execution can be later than the arrival time. If preemption is allowed, the task may not
execute continuously until completion, at finish time fi. The time duration between arrival
and completion is referred to as the response time Ri. A deadline miss occurs if the finish
time is after the absolute deadline di (response time is greater than the relative deadline).

A task can also be categorized by the consequence of missing a deadline, with each task
either hard, firm, and soft real-time. For a hard real-time task, a deadline miss can be
catastrophic; for a firm real-time task, a deadline miss is harmless but the result is useless;
and for a soft real-time task, a deadline miss can cause degraded functionality. Consequently,
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Figure 2.1: Parameters and time values for a task.

a scheduling algorithm should guarantee no deadline misses for hard real-time tasks, but it
may accept deadline misses for firm or soft real-time tasks to improve overall performance
or meet hard real-time deadlines.

A scheduling algorithm can also be categorized. Priority-based schedulers assign each
job a priority and always select the highest priority to execute. A scheduling algorithm is
fixed-priority if every job of a task has the same priority; otherwise it is dynamic prior-
ity. Fixed-priority scheduling can be simpler to implement and analyze but less capable of
meeting all deadlines. Another distinction is whether a scheduling decision can occur during
the execution of a task: a non-preemptive scheduler waits until a task completes, while a
preemptive scheduler can interrupt and execute a different task. Preemption complicates
implementation and analysis, but allows the scheduler to prevent blocking of a high-priority
task.

A feasible schedule meets all timing requirements for a given task set. A task set is
schedulable by a scheduling algorithm if the resulting schedule is feasible. The most practical
scheduling algorithms provide schedulability for many different task sets, not just one. A use-
ful property within a class of scheduling algorithms is optimality with respect to feasibility—if
any other scheduling algorithm produces a feasible schedule for a task set, so does it.

Schedulability tests are important metrics in real-time scheduling theory, for both task set
guarantees and algorithm comparisons, and exist for both individual and classes of scheduling
algorithms. A test is necessary if all task sets that fail are unschedulable, and a test is
sufficient if all task sets that pass are schedulable. The utilization ui of a task is the worst-
case fraction of time the processor must spend executing it (ui = Ci/Ti). For n periodic
tasks, the processor utilization is:

U =
n∑

i=1

Ci

Ti

A common sufficiency test for a scheduling algorithm A determines some processor utilization
bound UA. Any task set with utilization less than the bound (U < UA) is schedulable—and
guaranteed to meet timing requirements—otherwise schedulability must be tested another
way.

Most schedulability tests assume zero overhead for scheduling decisions and switching
between tasks, but RTOS overheads exist and vary between implementations [49]. In ad-
dition to execution time overhead, changes in processor state at preemption points should
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be considered by WCET analysis. As a consequence, an inferior scheduling algorithm with
respect to feasibility could be preferable if it provides fewer and more predictable preemption
points.

2.1.2 Uniprocessor Scheduling
The foundational task model for real-time scheduling theory is periodic, independent tasks
executing on a uniprocessor with relative deadlines equal to respective task periods. The first
common scheduling approach was reservation-based and called cyclic executive, or timelime,
scheduling [50]. In this approach, time is divided into slots of set length, and tasks are
assigned to slots. The schedule is constructed and optimized offline and stored in a table.
During run-time, a periodic interrupt routine, triggered by a timer, performs scheduling
decisions using the table in memory. Some advantages are a simple run-time implementation
and deterministic and isolated task timing behavior. Some disadvantages are a feasible
schedule can be non-trivial to construct and fragile to task set or run-time variations. As
with all static allocations, unused time fragments are wasted if not explicitly handled.

Dynamic, priority-based schedulers better handle task set or run-time variations. In their
seminal work, Liu and Layland [51] showed that rate monotonic (RM) scheduling—where
tasks with smaller periods have higher priorities—is optimal with respect to feasibility for
fixed-priority scheduling on this foundational task model. The key insight was the critical
instant theorem, where the worst-case response time of a task occurs when it arrives simul-
taneously with all higher priority tasks (again, for this task model). This reduces feasibility
checking to only considering one combination of arrival times. Also, a sufficient schedulability
test for n tasks is:

U ≤ n(21/n − 1) ≈ ln(2) = 0.69 as n→∞

Later work relaxes some constraints on the task model, improves the sufficient schedulability
test, and investigates special conditions. For example, if the task periods are harmonic,
schedulability is guaranteed for up to 100% utilization.

Dynamic-priority scheduling algorithms are also analyzable for this foundational task
model. One scheduling algorithm is earliest deadline first (EDF), where the task with the
earliest absolute deadline has the highest priority. EDF is optimal with respect to feasibility
for all preemptive schedulers, with a sufficient schedulability test for n tasks as U ≤ 1 [51].
As with rate monotonic scheduling, later work relaxes some constraints on the task model
while preserving optimality.

Although the sufficient utilization bound is higher for EDF than RM scheduling, im-
plementation complexities still result in extensive use of RM scheduling—particularly in
commercial real-time kernels. Buttazzo [52] evaluated the differences between EDF and RM
scheduling and discussed some common misconceptions. In practice, EDF requires less pre-
emption than RM scheduling, particularly with high processor utilization. Consequently,
overall overhead can be lower even though the overhead of each EDF scheduler invocation
is higher.
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By guaranteeing deadlines are met for all period tasks, the discussed priority-based sched-
ulers are well suited for hard real-time tasks. For periodic or sporadic soft real-time tasks,
however, average response time and high utilization are often more important than worst-case
guarantees. Scheduling soft real-time tasks using worst-case execution time and interarrival
time (Ci and Ti) over provisions the system when the average times are much lower than the
worst-case times and does not reduce response times. Also, aperiodic soft-real time tasks
cannot be allowed since interarrival time is unbounded.

A simple way to handle aperiodic tasks is to execute them in the background when
periodic tasks are not executing, but the response time of aperiodic tasks is then the lowest
priority. An alternative is using a pseudo hard real-time task, called a server, that can
be scheduled with a higher priority to service aperiodic tasks. Capacity levels prevent the
aperiodic server task from causing deadline misses of periodic tasks. Dynamically elevating
priority to improve response time without causing a deadline miss would require online
schedulability analysis, so most methods instead use approximation and precomputation
techniques.

Tasks are not all independent in many real-time applications and share resources such
as data structures, buffers, and hardware peripherals. The section of code that accesses a
shared resource is called the critical section, and mutual exclusion prevents simultaneous
access to a shared resource by only allowing one task to be in its critical section at any time.
Blocking a task to preserve mutual exclusion changes run-time behavior, so schedulability
analysis must bound the worst-case blocking time. In fixed-priority scheduling, blocking
is called priority inversion because when a low-priority task blocks a high-priority task it
is effectively executing at a higher priority. If an intermediate priority task preempts this
low-priority task, the high-priority task can be blocked forever. Solutions to this priority
inversion problem, such as the Priority Inheritance Protocols [53], modify priority levels to
bound blocking time.

2.1.3 Multiprocessor Scheduling
Multiprocessor scheduling is a more difficult problem than uniprocessor scheduling, with
many uniprocessor scheduler properties not generalizing to multiprocessor equivalents. A
source of difficulty is scheduling anomolies, where unexpected behavior results from certain
changes. For example, increasing the number of processors or reducing execution times can
actually increase response time [54]. In addition to assigning either fixed or dynamic priorities
to tasks, multiprocessor scheduling algorithms must allocate tasks to specific processors.
Options include restricting a task’s jobs to a single processor (paritioned), allowing each job
to execute on different processors (global), or even allowing a job to move between processors
when preempted.

In the partitioned approach, task allocation is difficult—analogous to the NP-Hard bin
packing problem [55]—but analysis and implementation are easier. Once allocated, each
processor uses local uniprocessor scheduling. For global scheduling, Dhall and Liu [56] showed
that the utilization bound for EDF is only 1 + ε for m processors. This temporarily reduced
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interest in global scheduling, even though it only occurs with high utilization tasks. Although
scheduling information and tasks must be shared between processors, global scheduling better
uses spare capacity and often has fewer preemptions [57]. As with uniprocessor scheduling,
aperiodic tasks and resource sharing are handled by extending scheduling algorithms. Even
with schedulability guaranteed for a task set on a uniprocessor or multiprocessor system, the
WCET assumptions for each task must also be verified.

2.2 Worst-Case Execution Time (WCET) Analysis
There are different types of timing requirements for software execution. Some tasks require
operations at particular points in time within accuracy and precision bounds; an example is
precision-timed I/O operations that use software to communicate with hardware components
(Section 5.2). Other tasks only need to execute with a bounded latency before the deadline—
determined by worst-case execution time (WCET) analysis techniques [8], [20].

Each task has a distribution of execution times resulting from different inputs and initial
states, with an example shown in Figure 2.2. The distribution has actual best, worst, and
average-case execution times (BCET, WCET, and ACET). Testing all possible combinations
of input and initial state is infeasible, and the measured execution times from some test cases
are likely above the BCET and below the WCET. The ad-hoc approach is trying to select
test cases that exercise the critical path then adding a safety margin to produce the upper
bound (WCET Bound); this bound is not safe if still below the actual WCET.

Properties of the program, compiler optimizations, and the processor architecture all
affect both a task’s WCET and WCET bound. The difference between the WCET and
its bound depends on the employed analysis techniques and causes an over provisioning of
resources. Tightly bounding the execution time of the longest path out of an exponential
number of possible paths is not trivial but timing-predictable hardware (Section 2.4) can
simplify the effort.

Execution Time

D
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ut
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n

Actual BCET Actual WCET WCET BoundMeasured ACET
Measured BCET Measured WCET

Figure 2.2: Fictitious distribution of execution times for a task resulting from different inputs
and initial states.
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In general, the worst-case input and initial state are not known and analysis must consider
all possible input cases. Therefore, to provide a bound on WCET, analysis has to consider
both the possible paths through a program and the execution time bounds for this set of
paths. Consider this simple code segment in C.
1 for (i = 0; i < n; i++) // loop bounds ?
2 if (a[i] > b[i]) // conditional branch
3 c[i] = a[i]; // memory accesses
4 else
5 c[i] = b[i];

For even this simple code segment, a compiler can produce many different correct sequences
of instructions, depending on flags and optimizations. For example, loop unrolling increases
code size but executes fewer branch instructions by performing multiple iterations per loop.
Consequently, analysis often operates on the binary executable instead of the higher-level
program code.

2.2.1 Static Methods
Analysis methods can be classified as predominantly either static or measurement-based,
even though most tools use both methods. Static methods analyze code without executing
it on the target hardware by using abstractions and often provide safe bounds on WCET,
provided assumptions hold. Static WCET analysis can be loosely categorized into three
steps: (1) obtain information about control and data flow through the program, (2) assign
timing costs by modeling hardware behavior, and (3) find the longest path through the
program using the prior results.

1. A control flow graph represents the superset of all execution paths and is often recon-
structed from the binary executable. Each graph node is a basic block, which is a sequence
of instructions without any jumping or branching, and the graph edges represent possible
jumps or branches in control flow. Dynamic calls and jumps, where the destination is com-
puted during run-time, are difficult to represent: without any knowledge of possible values,
the instruction could branch to any other instruction in memory. Restricting values of loop
variables, such as n in line 1 of the code example, is also important for low WCET bounds.

To handle these situations, value analysis techniques determine exact or intervals for
values in registers and memory at different program points. This information is then used
by control flow analysis, which bounds loop iterations and determines paths that cannot
execute (infeasible), and later for determining data-specific instruction latencies, as found
in data caches and certain arithmetic instructions. Abstract interpretation [58], [59] is one
methodology to perform these analyses.

2. Once possible paths are determined, the execution time bound for a path depends on
hardware architecture. Furthermore, the execution time for a code segment could depend on
processor state when this code segment is reached. This is common in conventional archi-
tectures with hardware prediction mechanisms used to improve average-case performance.
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Dynamic branch prediction uses execution history to predict whether a branch will be
taken or not taken, such as for the if statement on line 2 in the code example. For a program
path, the number of cycles required to complete the branch instruction depends on whether
the prediction is correct or not, which depends on execution history. The execution time to
complete a memory instruction, such as the array accesses on line 2 in the code example,
depends on the current content of the caches, which also depends on execution history.

Pipeline and cache analysis techniques use program analysis and hardware models to
predict processor state at different program points and then bound execution time of basic
blocks [60]. Predictable architectures without instruction latency dependence on execution
history do not require these additional analyses, but do not always meet performance re-
quirements.

3. Once execution times are known for basic blocks, finding the longest path provides the
WCET bound. One method for finding the longest path uses integer linear programming
(ILP), where constraints represent control flow and the objective function that sums up
execution time is maximized [61].

There are many challenges in WCET analysis, particularly regarding analysis of the mi-
croarchitecture. Timing anomalies can occur where local worst case behavior is not global
worst case behavior [62]. An example is a cache hit causing longer execution time than
a cache miss because of speculative operations affecting later instructions. Also, preemp-
tive scheduling affects task execution times and must be bounded [27] or restricted [29].
Timing-predictable hardware that prevents timing anomalies and simplifies microarchitec-
tural analysis is discussed in Section 2.4.

2.2.2 Measurement-based Methods
Measurement-based approaches measure the execution time of segments of code and combine
that with analysis of the program to computes estimates of WCET. The tool collects execu-
tion time values either using a simulator or adding code that runs on the target hardware,
which should have a minimal effect on execution for accurate results. The main disadvan-
tage is potentially unsafe bounds resulting from not considering all paths or not considering
execution time variations caused by the microarchitecture. The main advantage is not need-
ing a processor model, as incorporating complex processor models into static analysis limits
scalability. The models are not accurate without access to the hardware design itself and
also time-consuming to produce for complex processors.

RapiTime [63] is a commercial measurement-based tool that provides execution time
measurements and identifies potential worst-case paths for optimization. Seshia et al. [64]–
[66] have also developed a measurement-based toolkit called GameTime for execution time
analysis that uses game-theoretic online learning and systematic testing. The approach
extracts a representative subset of feasible program paths called basis paths and uses an
SMT solver to generate corresponding test cases that cause execution to follow these paths.
By measuring execution times for these different tests cases, a learning algorithm generates
a platform model that is used to accurately predict timing behavior.
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2.3 Programming with Time
An instruction set architecture (ISA) is a contract between software and hardware that
defines a set of instructions the processor must execute properly. By not over-constraining
the details of instruction implementation, processors can have different microarchitectures for
different design goals but still share a software toolchain. The problem for real-time systems
is that commonly used ISAs do not specify the program’s temporal behavior—which is highly
dependent on the internal processor design and toolchain optimizations. An accurate model
of the hardware, which is not always available or easy to produce, is required to analyze the
timing behavior.

Programs can still specify timing, just not directly. Most processors have external timers,
accessible with memory-mapped registers, that can return tick counts and interrupt the pro-
cessor at specified tick counts. Even still, the timing behavior depends on many factors:
external timer design and configuration, interrupt priority and handler routine, and current
processor state. RTOS libraries can hide some complexity but must be ported for each plat-
form. For cycle-accurate timing, the programmer or compiler can selectively insert NOP (no
operation) instructions, but the timing behavior of the hardware must be well understood.

Some programming languages and models include timing constructs, such as Ada [67],
Real-time Euclid [68], synchronous languages [69], and LabVIEW [70]. The specification of
timing behavior in a program for a language does not guarantee execution has this timing
behavior—it depends on the implementation of the software toolchain and target hardware.
Most languages with timing constructs would benefit from more directly controllable timing
to reduce the burden on compilers or timing analysis tools.

An example of a programming model that would benefit by more control over timing
is PTIDES [71], which specifies functionality and timing of an event-triggered distributed
system. Variations in network latencies between distributed platforms and computation
times within each platform can result in non-deterministic distributed behavior—a trace of
input values at specific times to sensors results in different possible traces of output values at
actuators—but PTIDES provides deterministic behavior. To accomplish this, each platform
has access to a real-time clock that is synchronized to all other platforms, potentially on the
order of nanoseconds with IEEE 1588 [72]. Each event has a timestamp that is only related
to real-time at sensors and actuators: the timestamp of an event from a sensor is when it
occurred, and the timestamp of an event to an actuator is when it should occur, so timestamp
modification specifies end-to-end latency. The passage of time provides information to a
platform, such as absence of events, and timestamps preserve ordering even with latency
variations. Although PTIDES can be implemented on traditional processors with timer
peripherals and interrupts [73], more direct control and access to a real-time clock would
reduce overhead and improve accuracy and precision.
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2.3.1 Timing Instructions
One possible solution is to add temporal properties to some instructions in the ISA. The
challenge is expressing timing behavior without over-constraining the microarchitecture; for
example, assigning constant latencies to every instruction would prevent any design from
improving performance. Ip and Edwards [45] first proposed an instruction to specify a
minimum time for the execution of a section of code, enabling simple software to imple-
ment functionality traditionally done by hardware, demonstrated by a small video display
controller. Their deadline instruction would stall execution until the associated timer, decre-
mented by one every clock cycle, reached zero, then set the timer to a new value. A faster
processor can execute software with the same timing behavior, provided the cycle counts
are scaled. Lickly et al. [74] implemented the same deadline instruction on a fine-grained
multithreaded processor.

Timing instructions can control temporal behavior more than just a minimum execution
time for a section of code. Bui et al. [46] identified four cases that timing instructions should
handle:

1. A minimum execution time for a block of code
2. If a block of code exceeds an execution time, branch after it completes
3. If a block of code exceeds an execution time, branch immediately
4. A maximum execute time for a block of code

The first three cases can be expressed with the following four pseudo-instructions, generalized
from instructions proposed in previous work [43], [46], [75]:
• get time: load current time from a clock into a register
• delay until: stall program until current time exceeds the value in provided register
• interrupt on expire: interrupt program when current time exceeds the value in pro-

vided register
• deactivate interrupt: deactivate interrupt on expire
The following pseudo assembly code demonstrates how a control flow change can imme-

diately occur if a code block’s execution time exceeds a value (case 3) and also enforces a
minimum time once the code block completes (case 1).
1 get_time r1 # get current clock time
2 addi r1 , r1 , 1000000 # compute time 1 ms in future
3 interrupt_on_expire r1 # interrupt will trigger in 1 ms
4 ... code ... # interrupted if exceeds 1 ms (#3)
5 deactivate_interrupt # otherwise deactivate
6 delay_until r1 # stall until 1 ms since get_time (#1)

A branch can also occur by comparing against the clock time after completion (case 2).
1 get_time r1 # get current clock time
2 addi r1 , r1 , 1000000 # compute time 1 ms in future
3 ... code ... # execute block of code
4 get_time r2 # get updated clock time
5 bgt r2 , r1 , miss # if more than 1 ms passed , branch to miss
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Hardware implementation of these timing pseudo-instructions is relatively straightfor-
ward. Many possible variations exist, but the general idea is using the result of a timer
comparison to either stall, branch, or interrupt. A timer does not need to count clock cycles;
counting at an adjustable rate expressed in nanoseconds enables a timer to be synchronized
in a distributed system. Software support is less straightforward. A timer has finite width,
so overflow must be considered. If a block continues execution after a timer interrupt, the
interrupt handling routine must save and restore state. If a block is interrupted and not al-
lowed to finish execution, however, the program must prevent inconsistent state and memory
leaks.

Timing instructions add temporal semantics to programs but do not fully specify behav-
ior. The accuracy and precision of timing behavior still depends on the underlying hardware
design—clock cycle granularity and pipelines prevent immediate reaction and execution.
Also, the fourth case of specifying maximum execution time is not just a run-time operation.
It requires modification of the traditional toolchain flow to use static analysis on code blocks
so that the compiler can reject programs with segments that exceed the specified maximum
execution times.

2.4 Timing-Predictable Hardware
Background

For a sequence of instructions in a program path, not every instruction is dependent on the
result of the previous instruction. Therefore, a processor can improve throughput by execut-
ing instructions in parallel, exploiting instruction-level parallelism (ILP). Pipelining, where
the processor executes each instruction in a series of stages and starts the next instruction
before the current instruction completes, is a common technique to improve throughput. In-
structions partially overlap, often forwarding or bypassing results from later pipeline stages,
and dependencies require a reduction in overlap by stalling the pipeline.

The main limitations for achieving high ILP are branching instructions, memory latencies,
and a limited number of functional units. On a branch instruction, both the decision to
branch and the next instruction’s memory location are not known until several cycles into
the pipeline. Branch prediction speculatively executes instructions to avoid stalling the
pipeline for every branch. The simplest form is predict not-taken, where execution assumes
the branch is not taken and flushes the pipeline if it is. For deeper pipelines, the cycle
cost of flushing the pipeline is high enough to motivate better prediction accuracy. In static
branch prediction, the compiler predicts the direction of each branch instruction. In dynamic
branch prediction, the processor uses past history of different branches to predict each branch
decision.

The wide gap between processor speed and main memory access time causes a widespread
use of caching. Caches store copies of data to handle some requests faster but cannot store
all data due to limited size. Replacement policies in hardware dictate the contents of a cache
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and attempt to exploit both temporal locality, if requested data was recently requested, and
spatial locality, if requested data is near a previous request. Cache associativity determines
how many possible locations in the cache can contain a location in main memory; higher
associativity reduces multiple main memory locations conflicting at the same cache location
but requires more hardware. On a memory request from the processor, a cache hit occurs
when the data is in the cache, otherwise a cache miss. Although a cache hit returns the
requested data within a few cycles, a cache miss requires retrieving data from higher-level
caches or main memory, potentially taking hundreds of cycles and stalling processor execu-
tion. A scratchpad memory (SPM) is similar to a cache memory, but contents are managed
explicitly by software and not by hardware.

Instructions do not always need to execute in order for correct behavior. A compiler
can re-order instructions by using known dependencies and latencies. Instructions with
variable dependencies and latencies, such as memory operations on dynamically resolved
addresses, are difficult to optimize statically with a compiler. On a cache miss or other high
latency instruction, dynamic execution (out-of-order execution) processors hide some latency
by finding later independent instructions to execute, improving ILP.

In a single-issue processor, at most one instruction completes every cycle, even if more
parallelism exists. In multi-issue processors, the pipeline fetches multiple instructions every
cycle and has multiple execution pipelines, also called ways. Although still restricted by de-
pendencies between instructions and the number of execution pipelines, multiple instructions
can complete every cycle. A Very Long Instruction Word (VLIW) processor fetches a long
instruction that performs multiple operations every cycle and relies on static scheduling by
the compiler to resolve dependencies between operations by inserting NOPs. In a dynamic
superscalar processor, dependencies are resolved by hardware logic instead of the compiler
to improve throughput for variable dependencies and latencies. Dependencies between in-
structions and execution latencies limit available ILP, and at some point the hardware costs
of further improving ILP are prohibitive.

An application often has multiple mostly independent processes, which are each an in-
stance of a program. Thread level parallelism is the technique of executing multiple processes
in parallel to improve throughput, such as on different processors in a multiprocessor system
or different cores in a multicore. A multithreaded processor supports multiple processes us-
ing hardware threads, each with its own program counter and set of registers, and shares the
pipeline to execute multiple processes in parallel. In a single-threaded processor, stalls waste
processor cycles, but a multithreaded processor can fill cycles with independent instructions
from another hardware thread.

A hardware thread scheduler decides which hardware thread to issue into the pipeline
each cycle. In fine-grained multithreading, the fetched hardware thread changes every cycle,
whereas in coarse-grained multithreading, the fetched hardware thread only changes during
long latency instructions or periodically. Multi-issue processors can use simultaneous mul-
tithreading (SMT) to issue multiple instructions from either a single or multiple hardware
threads each cycle.
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Design for WCET

After investigating and implementing WCET analysis techniques on different processor
microarchitectures, researchers have identified processor properties that aid WCET analysis.
The general consensus is timing behavior dependence on execution history and interference
between microarchitectural components should be minimized when possible. Heckmann et
al. [21] implemented WCET analysis techniques for multiple processors of varying complexity
and proposed some guidelines for future processors used in hard real-time systems: (1) sepa-
rate data and instruction caches to remove any dependencies between instruction prefetching
and memory instructions; (2) use cache replacement strategies, such as LRU, that allow state
information recovery over time after unknown starting state; (3) use static branch prediction
to remove prediction dependence on execution history; (4) limit out-of-order execution to
reduce possible instruction interleaving; and (5) do not use hardware to improve special cases
if it is difficult to model.

Berg et al. [24] also proposed some design principles—emphasizing microarchitectural
techniques that support recoverability of state information from an unknown starting state—
demonstrated by a 32-bit, 5-stage single-issue pipeline design with forwarding paths, static
branch prediction, and physically addressed LRU caches if needed. In addition to simi-
lar hardware suggestions, Thiele and Wilhelm [76] proposed approaches for increasing pre-
dictability in the software development process on both shared and distributed resources.

With the increasing use of multicore processors in embedded systems, both Wilhelm et
al. [77] and Cullmann et al. [78] identified interference caused by shared resources as a major
challenge for WCET analysis that must be avoided when possible. Time and space parti-
tioning (reserved time segments and private regions) of a shared resource reduce interference,
but sometimes bounds on interference must be sacrificed for performance.

2.4.1 Timing-Predictable Processors
The diversity of real-time embedded applications and associated requirements has resulted
in a variety of timing predictable processor architectures, often using different definitions
of predictability [16]. One of the main concepts for many predictable processors is using
the worst-case execution time bound as the metric for performance, not the actual worst-
case execution time (often unobtainable) or average-case execution time, because the bound
dictates resource provisioning. For example, schedulabilty analysis for real-time task sets, as
described in Section 2.1, relies on WCET bounds. Unfortunately, the WCET bound is not
an inherent property of the processor and depends on the current state-of-the-art in WCET
analysis and its implementation. For applications that use the WCET bound metric, such
as safety-critical hard real-time systems, a higher average-case execution time is acceptable
for a lower WCET bound.

Some applications, such as mixed-criticality systems, require low WCET bounds for
some tasks but also high average-case performance for others. Processors designed solely for
WCET bounds or high average-case performance do not provide this flexibility. This sec-
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tion will discuss the applicability of existing timing predictable processors to isolated-bound
task sets—where hardware isolation ability and high overall throughput is more important
than single-threaded throughput—even though most were not designed particularity for this
application area. Most proposed processors were only evaluated using simulation models
with metrics of bounded or measured worst case execution cycles; the additional area or
clock period costs could not be evaluated without a hardware implementation. Timing pre-
dictable processors can be categorized as single or multithreaded, and furthermore as single
or multi-issue.

Single-threaded, Single-issue

Single-threaded, single-issue predictable processors are the simplest in hardware complexity
but do not always provide adequate single-threaded performance. Lower-end commercial
processors—with 3-5 pipeline stages, no branch prediction, in-order execution, pipeline for-
warding, and scratchpad memories or simple caches—are often sufficient for some real-time
embedded applications and well supported by WCET analysis tools. Additional support for
single-path programming and fast interrupt responses, as provided by the SPEAR proces-
sor [30], can provide faster response times with low jitter.

Single-threaded, Multi-issue

Single-threaded, multi-issue predictable processors improve single-threaded throughput by
executing multiple operations in parallel every cycle, but they also increase hardware com-
plexity, sometimes substantially. Dynamically scheduled superscalar processors execute in-
structions out-of-order to prevent blocking from a single dependency, but many possible
instruction interleavings complicates WCET analysis [60]. To reduce dependence on ex-
ecution history, Rochange and Sainrat [79] proposed regulating instruction issue to force
independent execution timing of basic blocks, using a modified version of an instruction
prescheduling buffer. Only allowing ILP gains within a basic block reduces performance but
still provides a higher single-threaded throughput than a scalar in-order pipeline. Whatham
and Audsley [80] extended this approach to obtain ILP gains outside of each basic block.
The main idea is enforcing independence only between virtual traces, which are sequences of
basic blocks on a selected program path; the preferred path is selected to minimize WCET,
similar to an algorithm used by Bodin and Puaut [81] for minimizing WCET with static
branch prediction. Both evaluations ignored cache effects, which WCET analysis would
need to model if used.

VLIW processors rely on a customized compiler to schedule code instead of hardware
logic, improving ILP with less hardware complexity. Static decisions are visible to WCET
analysis but cannot handle dynamic instruction latencies, such as branching or stalling on a
cache miss. Yan and Zhang [82] analyzed and proposed improvements for VLIW architecture
predictability, assuming a perfect data cache and either a perfect or direct-mapped instruc-
tion cache. To reduce branching and optimize across basic blocks, if conversion converts
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control dependencies to data dependencies by replacing branches with predicated instruc-
tions. They use compiler techniques to mitigate some performance degradation of single-
path programming—which requires executing instructions from both branch paths instead
of just the taken path.

The PATMOS processor by Schoeberl et al. [47], [83] is also similar to VLIW, and is one
of the few predictable processors that includes caches for both instructions and data. For
predictability, the method cache stores entire functions, so a cache misses only occurs on
function call or return, and data is separated into a stack cache and data cache. Any load or
store instruction that does not have a statically predictable address bypasses the caches. To
support single-path programming and reduce branching, all instructions are fully predicated.

Multithreaded, Single-issue

Multithreaded processors, unlike single-threaded processors, can isolate tasks without us-
ing software scheduling by deploying them on separate hardware threads, as discussed in
Chapter 1. Additional hardware stores state, such as the program counter and general-
purpose registers, for each hardware thread. Existing approaches isolate either all or none of
these hardware threads, depending on hardware thread scheduling decisions. If all hardware
threads are isolated, the overall throughput of the processor is lower whenever a hardware
thread is not active, which occurs when program execution is waiting for something before
proceeding.

Multithreading was initially used for improving overall throughput—interleaving instruc-
tions from independent programs increases pipeline spacing between dependencies and hides
latency. The CDC 6600 peripheral processors statically interleaved 10 hardware threads and
used them as virtual processors for I/O tasks [41]. Sun Microsystems’ Niagara processor was
designed to exploit thread level parallelism in server applications to hide memory latencies
by interleaving only active hardware threads [42].

More recently, multithreading has been applied to real-time systems. Previous PRET
machines [4], such as the SPARC-based processor by Lickly et al. [74] and the ARM-based
PTARM processor by Liu et al. [33], [43], use fine-grained multithreading with fixed round-
robin scheduling over exactly four hardware threads, even with non-active threads. The
hardware-based isolation is beneficial for hard real-time systems but inflexible for achieving
high overall efficiency: cycles are wasted if any hardware thread is not active and a single
hardware thread only executes once every four cycles, regardless of throughput requirements.

XMOS is a commercial fine-grained multithreaded processor. It uses active round-robin
scheduling for up to 8 hardware threads, but can also be configured to use fixed-round robin
scheduling. XMOS cannot interleave fewer than 4 hardware threads, so it will efficiently
use every cycle when between 4 and 8 hardware threads are active, with non-active threads
ignored. This scheduling approach reduces isolation because the logical execution frequency
of a hardware thread depends on the number of active hardware threads, which likely varies
over time.
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Multithreaded, Multi-issue

In SMT processors, high overall throughput is obtained by using multiple execution pipelines
to complete multiple operations every cycle and multiple hardware threads to effectively
provide more instructions with fewer dependencies. This type of processor has high over-
all throughput, but WCET analysis must handle the high hardware complexity, dynamic
behavior, and susceptibility to timing anomalies [62].

El-Haj-Mahmoud et al. [84] proposed modifying an in-order issue, 4-way superscalar
processor to support isolated scheduling in both time and space of multiple hardware threads;
the scheduler allocates each hardware thread combinations of ways during certain segments
of time using an offline bin-packing algorithm. For predictability, each hardware thread uses
predict not-taken branching and instruction and data SPMs. To prevent the high hardware
cost of an instruction SPM port per hardware thread, a static schedule selects one hardware
thread to fetch from the instruction SPM port to its instruction buffer every cycle.

Each execution pipeline does not support all operations—it would be prohibitively ex-
pensive to have 4 floating-points units, 4 read-write ports to data memory, and 4 integer
multiplier and dividers—so the scheduler also interleaves priority to each execution pipeline
between hardware threads. The WCET bound for a task is increased by instructions waiting
for interleaved priority on the instruction SPM port on a branch or jump or any of the exe-
cution pipelines. Execution pipelines are also idle when a scheduled hardware thread finishes
early or is waiting for priority on another execution pipeline, another example of reduced
efficiency when all hardware threads are isolated.

Another scheduling approach is prioritizing only one hardware thread for isolated be-
havior and sharing the unused cycles between the remaining hardware threads. Hardware
isolation for multiple tasks requires multiple processors, but non-isolated tasks efficiently
share the multiple execution units. The CarCore SMT processor by Mische et al. [32] in
the MERASA project uses this approach. They also use in-order issue to reduce hardware
complexity and improve predictability. There are two execution pipelines: one for arith-
metic operations and the other for address calculation and memory access to an off-chip or
scratchpad memory. Fetching instructions to buffers for each hardware thread and in-order
instruction issue to the two pipelines occurs in priority order of the hardware threads. To
prevent a memory operation of a lower priority hardware thread from blocking the highest
priority thread, a load instruction is split into a request microinstruction to an address buffer
and a writeback microinstruction to store the result.

Comparison to FlexPRET

The processor presented in this dissertation, FlexPRET, is multithreaded and single-issue.
For an isolation-bound task set—where hardware isolation ability and high overall through-
put is more important than single-threaded throughput—a multithreaded and multi-issue
processor is more difficult to model and analyze for WCET bounds and not as efficient with
hardware area. The additional hardware area required to implement more complex control
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logic, additional bypass paths, and multiple functional units could instead be used for a
second processor, as the ILP gains are unlikely to scale linearly with hardware cost and are
not needed to meet any task throughput requirements. For this type of task set, a single-
threaded processor cannot provide any hardware-based isolation. As discussed in Chapter 1,
software-based isolation requires high confidence in RTOS implementation correctness, both
functionality and timing, and consideration of preemption effects.

Other Approaches

A single processor executing assembly code generated by a C language compiler is not the
only way to deploy real-time applications. The Java language has some advantages over
C: well-defined syntax and semantics simply writing portable code that includes concur-
rency, preventing many common programming errors. Some disadvantages are additional
memory overhead and performing predictable garbage collection. The JOP (Java Optimized
Processor) by Schoeberl [31] is a predictable processor designed to execute Java bytecode
for embedded real-time systems. It uses a method cache for instructions that caches entire
methods, so misses can only occur on method calls and returns. The fetched Java bytecode
is converted to microcode that executes on a 3 stage, stack-based pipeline. Operations are
performed on a stack cache with the top two elements in registers and the rest in on-chip
memory, with push and pop moving data between them. The execution of Java bytecode is
exactly predictable without dependencies because of these caches and the short, predictable
pipeline.

2.4.2 Timing-Predictable Memory Hierarchy
A common memory hierarchy is several levels of caches on chip connected to a DRAM main
memory, with each level cache progressively larger but slower. For small, embedded proces-
sors at lower clock speeds, there may only be one level of cache with code and some data
stored in flash or EEPROMs. In a Harvard memory architecture, there are separate stor-
age components and associated connections for instruction and data. Separate instruction
and data caches support both fetching an instruction and performing a memory operation
in the same cycle, instead of stalling fetch during a memory operation, and reduce inter-
ference. Caches affect the timing behavior of memory instructions because cache contents,
which depend on execution history, determine whether an access is a hit or miss. Instead
of analyzing cache behavior during WCET analysis, the memory hierarchy can use scratch-
pad memories; all accesses always succeed, but the programmer or compiler must explicitly
manage SPM contents. FlexPRET uses scratchpad memories but could be adapted to use
other predictable memory hierarchies.
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Cache Memory

Even though contents depend on execution history, caches are still analyzable for WCET.
Many techniques focus on instruction caches, perhaps because WCET analysis is often easier
for instructions than data: the program counter is the memory address for the instruction
cache, but the address for the data cache can be data-dependent and dynamic. A basic
analysis concept used by Ferdinand and Wilhelm [85] is finding must and may cache in-
formation, where the cache is guaranteed to contain must-cache blocks and could contain
may-cache blocks, at different program locations. This information is conservatively merged
at locations where control flows meet. For predictability, fast recovery of cache information
is important, as merging often reduces known information. The associativity, replacement
policy and write policy all influence the predictability of a cache, as observed by Heckmann et
al. [21]. Reineke et al. [22] quantitatively investigated the Least Recently Used (LRU), First-
In First-Out (FIFO), Most Recently Used (MRU), and Pseudo-LRU (PLRU) replacement
policies and demonstrated the LRU is most predictable for the selected metric.

More control over cache usage and operation can also improve predictability. Cache
partitioning reduces or removes preemption-related interference between tasks by privatizing
sections of the cache; each task has an effectively smaller cache but its private contents will
not change during preemptions. Cache locking uses hardware support to freeze the contents
of certain lines, with cache misses retrieving data from main memory instead of replacing the
cache line. Puaut [28] proposed several algorithms to improve WCET by selecting instruction
cache contents in different regions of operation, then load and lock the correct lines during
run-time. Whitham and Audsley [29] also proposed a technique to remove preemption-
related interference between tasks, but the technique allows a task to use the entire contents
of the local memory instead of just a private section. These techniques can reduce average
case-performance, but they can also simplify WCET analysis or improve WCET bounds.
Schoeberl [37] proposed using separate caches to remove interference between different types
of memory operations, with caches for instruction methods, the stack, static data, heap data,
and constants.

Scratchpad Memory

Scratchpad memories were originally proposed to reduce latencies [34] or energy usage [35]
by statically placing frequently used instruction and data blocks in the scratchpad memory
with other accesses going to main memory. Most techniques optimize for average-case exe-
cution time or energy consumption and not for WCET. Scratchpad allocation can also be
static or dynamic, depending on if SPM contents change during run-time. For large applica-
tions, which could consist of many small tasks, static approaches are limited by the size of
the scratchpad memory and suffer many slow main memory accesses. Dynamic approaches
change the contents during run-time, but the algorithm must consider SPM modification
delays. As scratchpad memory management has many similarities to cache locking, with
memory addressing the primary difference, Puaut and Pais [86] proposed a dynamic algo-
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rithm to manage code for both types of memory and observed similar WCET estimates.
Kim et al. [36] presented two WCET-aware dynamic SPM code management techniques
that reduce WCET estimates, one optimal and the other a heuristic for better scalability.

DRAM Memory

Unless a program fits entirely in the local memory, WCET analysis for both caches and
SPMs needs bounds on main memory latency, as this determines the delay of moving data
into the cache or SPM. Load and store operations to a DRAM array require a series of
DRAM commands over the command, address, and data interface buses, with minimum
delays between different commands. To hide the delay of accessing a DRAM array, there
are multiple parallel banks of DRAM arrays that can each perform operations in parallel
but contend for bus access. The DRAM controller converts the high-level load and store
requests for blocks of data to sequences of commands to the banks of DRAM arrays.

For each memory request, the DRAM controller has a policy for mapping an address
and data length to bit locations in DRAM arrays, generates the sequence of commands to
perform the operation, and manages scheduling between multiple memory requests. If a
contiguous segment of data is interleaved across banks, the parallelism provides low latency
for a single request, but interference from other requests can increase the latency. For less
interference and more predictability, each requester could have private banks, as proposed
by Reineke et al. [87]. The latency and throughput for each requester is isolated and fixed,
but it cannot be shared.

Without discussing details of DRAM operation, an open-page policy exploits temporal
locality by decreasing latency to nearby memory locations but increasing latency to other
locations. The increase in worst-case latency motivates many predictable DRAM controllers
to use a close-page policy for more consistent latencies. Commercial DRAM controllers
often re-order requests to improve throughput, but this can increase the worst-case latency
bound [88]. Several DRAM controllers have been designed for mixed-criticality systems.
Paolieri et al. [89] propose a memory controller that prioritizes critical requests and shares
remaining resources between non-critical requests, but bank interleaving causes interference,
and the close-page policy limits throughput. Any DRAM controller used for FlexPRET
should provide tightly bounded worst-case latency for HRTT requests but could have looser
bounds for average-case latency for SRTT requests. The DRAM controller proposed by
Kim et al. [90] meets these requirements by prioritizing critical requests to private banks
while using interleaved banks with an open-page policy for high throughput to non-critical
requesters.
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Chapter 3

FlexPRET Processor Design

Designing and verifying cyber-physical or real-time embedded systems with safety or precise
timing constraints is challenging, particularly while maintaining efficient resource usage and
confidence in correctness. Programmers and software abstractions use assumptions about
the timing behavior of the underlying processor that are difficult to guarantee. Instead of
restricting programming methods or performing complex execution time analyses that cannot
scale, the underlying processor could better support the requirements of these systems. This
chapter discusses microarchitectural techniques for such a processor and describes a specific
processor design, called FlexPRET, deployable as a soft-core on a field-programmable gate
array (FPGA). The processor design has some improvements from the original version [91].
Some techniques are inspired by previous work, such as PRET machines [33], [74] and XMOS
processors [44], while others are unique to this processor design.

Different microarchitectures are most suitable for different classes of applications. Our
design decisions target isolation-bound task sets, which consist of many concurrent tasks
that prioritize timing correctness guarantees through isolated and predictable behavior over
single task latency and throughput. For isolated timing behavior, known and coordinated
dependencies should be the only source of interference between tasks. Task sets in real-
time systems often possess these properties; if not, a high-performance processor that uses
additional hardware to exploit instruction-level parallelism may be more suitable, such as
predictable superscalar [32] or VLIW [47] processors.

The highest-level design decision is the general complexity of the processor, as an 8-
bit non-pipelined processor is simpler and cheaper than a 64-bit superscalar processor with
over a dozen pipeline stages but has lower performance. In the real-time embedded space,
a common trade-off between cost and performance is a 32-bit single-threaded processor
operating at a few hundred MHz with 3-6 pipeline stages, such as an ARM Cortex-M3 or
Cortex-M4. At this design point, instruction and data caches are optional, and flash memory
is fast enough for code storage with minimal prediction and buffering. FlexPRET is at this
level of complexity, although its architectural techniques are adaptable to more complex
processor designs.
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FlexPRET is a 32-bit, 5-stage, fine-grained multithreaded processor implementing the
base RISC-V ISA [92]. RISC-V is a completely open (not proprietary) ISA, originally de-
signed to support computer architecture research but gaining industry attention. The base
ISA is small but usable, enabling an efficient minimal hardware implementation. Optional
extensions add target-specific functionality, such as floating-point operations. For smaller
code and hardware size, FlexPRET uses the 32-bit version without any extensions (RV32I),
and a future implementation could support a more compact version of RISC-V with variable-
length instructions [93].

The standard approach of executing a task set using a real-time operating system (RTOS)
on a single-threaded processor presents challenges for worst-case execution time (WCET)
analysis: hardware prediction mechanisms, such as branch prediction and caching, introduce
variable latencies that are difficult to predict; and interrupts, which perform preemptive task
scheduling and often I/O, interfere with these latencies. Removal of hardware prediction
mechanisms and interrupts in a single-threaded processor reduces performance and restricts
the programming model but has less effect on a fine-grained multithreaded processor. Instead
of the pipeline stalling (waiting) during a branch or jump instruction, the pipeline executes
instructions from other hardware threads. Particular hardware threads handle each interrupt
and isolate their effects. An additional benefit with multithreading is a context switch
between tasks on different hardware threads occurs every clock cycle, enabling low-latency
responses to multiple events; a single-threaded processor requires multiple clock cycles to
context switch with software saving and restoring program state.

By using fine-grained multithreading, FlexPRET removes dynamic branch prediction and
hides branch latency with hardware thread concurrency, and it isolates interrupts to partic-
ular hardware threads (Section 3.1). Temporal isolation of each hardware thread depends on
how it is scheduled. The most novel and compelling technique used in FlexPRET is its flex-
ible, software-controlled hardware thread scheduler (Section 3.2). By classifying hardware
threads as either hard real-time threads (HRTTs) or soft real-time threads (SRTTs), the pro-
cessor can trade-off predictability, isolation, and throughput for each thread. Extensions to
the ISA, called timing instructions [43], [45], [46], allow programs to express real-time seman-
tics and are also leveraged by the hardware thread scheduler to improve overall throughput
(Section 3.3).

The most contentious design decisions involve the memory hierarchy (Section 3.4). HRTTs
use scratchpad memories (SPMs) instead of caches to provide constant latency memory op-
erations, but the burden is on software to explicitly manage SPM contents. We assume
programs fit entirely within the SPMs or use SPM management [36]; applications with more
demanding memory requirements should use caches and accept the variable latency. Flex-
PRET’s hardware thread scheduling does not require SPMs, so a future variation could use
caching if supported by WCET analysis.

Unless it interacts externally, an application is useless. The pipeline communicates with
external hardware peripherals using a simple peripheral bus that does not affect the isolation
or predictability of hardware threads (Section 3.5). A gateway component can interface with
more complex bus protocols. The combination of predictable instruction latencies and timing
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instructions supports controlling the time of an instruction’s execution within several clock
cycles, so FlexPRET supports some simple mechanisms for digital I/O operations on pins
(Section 3.6). More precise mechanisms with less software overhead are possible with external
hardware peripherals.

High-level comparisons with other processors only require the cycle-level design details in
this chapter, but a more rigorous area, timing, and power evaluation requires implementation
in hardware. The relative cost in program performance and resource utilization of these
microarchitectural techniques is evaluated in Chapter 4 by comparing against other similar
implementations through parameterization.

3.1 Datapath and Control Unit
The hardware thread scheduler decides which hardware thread to fetch each cycle. The
pipeline supports an arbitrary interleaving of hardware threads and enforces the scheduling
decisions; once an instruction is fetched, its execution through the pipeline is isolated from
the behavior of other hardware threads. This section briefly summarizes each stage and
the control logic used to execute different types of instructions. The design targets a soft-
core implementation on FPGA, with many decisions influenced by exploratory synthesis and
place-and-route results. For deployment as an application-specific integrated circuit (ASIC),
some modifications to the design could improve area, critical path, and energy usage.

An overview of the datapath is shown in Figure 3.1. The tall rectangles with small
triangles represent pipeline registers that store signals between pipeline stages, and the signal
names at start and end points are used instead of long lines for unregistered connections
between pipeline stages (e.g. Addr for ALU result connection to next PC multiplexer).
Control signals are also not shown.
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Figure 3.1: A high-level diagram of FlexPRET’s datapath.
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The design assumes all memories are sequential with the processor clock: the inputs
are provided in one clock cycle and the outputs are available in the next clock cycle. In
the selected FPGA, inputs only need to arrive just before the rising clock edge, and most
of the access latency occurs in the next clock cycle. Consequently, as seen in Figure 3.1,
the datapath provides inputs to the scratchpad memories and register file at the end of the
previous stage.

For isolation between hardware threads, every fetched instruction goes directly through
the pipeline, but for correct program execution, not every instruction will complete. An
instruction does not modify processor state until the end of the execute stage, which is the
commit point. Before this point, the control unit can kill any instruction, but after this
point, all instructions must complete. The control unit kills instructions to handle data
dependencies, control flow, interrupts, and exceptions and will only modify the necessary
control signals.

3.1.1 Pipeline Stages
The fetch stage retrieves the instruction stored in the instruction scratchpad memory (I-
SPM) at the program counter (a memory address) of the scheduled hardware thread and
produces a copy of the program counter incremented by 4 (the address of the next sequential
instruction in memory). The source operand register addresses are at fixed bit locations in
the instruction, so the datapath directly provides requests to the two read ports of the register
file without any decoding required. In contrast to a single-threaded processor, the control
unit may need to update the program counter of multiple hardware threads each cycle, with
new values coming from the execute stage with a branch or jump, the memory stage with an
exception handler address, or the fetch stage itself with the incremented program counter.
The possibly updated program counter of the next scheduled hardware thread is connected
to the read port of the I-SPM for instruction output in the next fetch cycle.

In the decode stage, the control unit determines the control signals required for the
datapath to properly execute the instruction. Registers store control signals needed for later
pipeline stages and may be modified in later cycles depending on program behavior, such as
preventing a write operation from a killed instruction. The stage also prepares operands for
components in the next stage: source register values from the register file, forwarded values,
immediate values, the program counter, or constants. Logic decodes the immediate value, if
present, from the instruction.

Because of pipelining, the correct source register value can exist in a later stage but not
yet be written into the register file. The control unit must preserve data dependencies by
using the correct value; using the incorrect value is known as a data hazard. Bypassing
(operand forwarding) adds paths to enable using available data without always stalling a
hardware thread’s execution until the value is written into the register file. The control
unit uses information about instructions in the pipeline to select data from the execute,
memory, or writeback stage instead of the register file as the source register value. We
decided the throughput improvement for frequently scheduled hardware threads is worth
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the added complexity of bypassing; otherwise at least four hardware threads need to be
constantly executing to fully utilize the pipeline.

The execute stage is the most complex in this pipeline. The arithmetic logic unit (ALU)
computes the specified operation on the operands, either producing the destination register
data, input to the control status register (CSR) unit, or an address used as a program counter
or memory location. The ALU can only perform one operation, but the branch instruction
must both compare source register values to evaluate the condition and compute an address
for the destination, so a dedicated unit is required for one of these operations. We decided
to use a dedicated branch condition checker because the result is used by one of the longer
paths in the processor and ALU complexity does not increase.

The load-store unit handles memory operations to the I-SPM read-write port, the data
scratchpad memory (D-SPM) read-write port, or the peripheral bus, depending on the ad-
dress provided. Data manipulation enables subword memory operations for the D-SPM but
not the I-SPM or peripheral bus. As with other memories, the request occurs in the execute
stage, and the response occurs in the next stage.

The execute stage also contains the control and status register (CSR) unit that handles
interrupt handling (Section 3.1.5), thread scheduling configuration (Section 3.2), and timing
instructions (Section 3.3). A multiplexer selects destination register data from either the
ALU, a CSR, or program counter. The commit point of the processor, where instructions
must always complete, is at the end of the execute stage because an instruction could modify
either a CSR or memory location, which cannot easily be undone. The control unit can
kill instructions in the fetch, decode, or execute stage if required, preventing any of these
modifications.

In the memory stage, the load-store unit returns data for any load instruction, including
subword operations from the D-SPM. The destination register data, either from the load-
store unit or the execute stage, is connected to the write port of the register file. The
writeback stage registers provide an accessible copy of data that is in the process of being
stored in the register file as a bypass path.

3.1.2 Computational Instructions
Many instructions perform a computation on one source register value and either a second
source register value or a decoded immediate value, and then store the result in a destination
register. Computations include arithmetic, shifting, bitwise logic, and comparisons. These
instructions increment the program counter by four and produce a destination register value
in the execute stage. If the subsequent instruction is scheduled within three or fewer cycles
and uses the preceding instruction’s destination register value, the control unit will enable
the correct bypass path. The only difference from bypassing in a single-threaded processor
is the thread IDs are also compared to prevent data usage from the wrong hardware thread.

The following table lists RISC-V instructions of this type and their latencies under dif-
ferent operating conditions. The instruction format column shows the required operands: rd
for a destination register, rs1 for a first source register, rs2 for a second source register, and
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imm for an immediate value. The number of thread cycles is how many cycles a hardware
thread must be scheduled before the next instruction executes without any dependencies
with the current instruction. If the scheduling frequency f of a hardware thread is 1/X, it is
scheduled exactly once every X cycles. For example, f = 1/3 when the scheduler interleaves
three hardware threads in round-robin order. The RISC-V specification [92] provides more
detail on instruction syntax and semantics than is provided by this chapter.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST rd, imm LUI, AUIPC 1 1 1 1
INST rd, rs1, imm ADDI, SLTI, SLTIU,

XORI, ORI, ANDI
1 1 1 1

INST rd, rs1, imm SLLI, SRLI, SRAI 1 1 1 1
INST rd, rs1, rs2 ADD, SUB, SLL, SLT,

SLTU, XOR, SRL, SRA,
OR, AND

1 1 1 1

Table 3.1: Thread cycle count for computational instructions at different hardware thread
scheduling frequencies.

3.1.3 Control Instructions
Jump and link instructions unconditionally change control flow by modifying the program
counter to a computed address, which is not available until calculated by the ALU in the
execute stage. Branch instructions conditionally do the same, based on a comparison that
also occurs in the execute stage. During the execute stage, the hardware thread’s program
counter is modified to the computed address, which can then be fetched in the next cycle.

The default operation for a hardware thread is to speculatively fetch the next contiguous
instruction in memory whenever scheduled, which is correct behavior unless there is a branch
taken, jump, or exception. When the new program counter is available in the execute stage,
depending on hardware thread scheduling, incorrect instructions from the same hardware
thread can be in the fetch or decode stage. The control unit then kills these instructions
by modifying control signals to prevent modification of any processor state (such as I-SPM,
D-SPM, register file, PC, and CSRs).

Consequently, a branch taken or jump instruction takes 1-3 thread cycles to complete,
depending on if the hardware thread was scheduled for the fetch or decode stage. A not-
taken branch takes 1 thread cycle because any instructions in the pipeline from the same
thread are correct. Ignoring system and timing instructions, branch instructions are the
only instructions without a constant cycle latency. However, latency is only dependent on
program flow, which is already part of program analysis. Conditional branches could always
wait, but there is a performance benefit of predicting branches will not be taken.
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Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST rd, imm JAL 3 2 1 1
INST rd, rs1, imm JALR 3 2 1 1
INST rs1, rs2, imm BEQ, BNE, BLT, BGE,

BLTU, BGEU
3 or 1 2 or 1 1 1

Table 3.2: Thread cycle count for control instructions at different hardware thread scheduling
frequencies.

3.1.4 Data Transfer Instructions
Store instructions are similar to computational instructions but use the ALU for address
calculation and store data into the D-SPM, I-SPM, or peripheral bus instead of the register
file. All stores start at the end of the execute stage and complete in the memory stage. Both
the D-SPM and I-SPM have a second port for scratchpad memory management without
stalling the pipeline, and this second port on the I-SPM is shared with the load-store unit.
For subword stores to non-word-aligned addresses in the D-SPM, the load-store unit uses
data manipulation and byte write masks. Unaligned memory accesses, such as a word store
to a non-word-aligned address, are either disallowed or cause a trap.

Load instructions use the ALU for address calculation and use the memory stage to load
data from the D-SPM, I-SPM, or peripheral bus. For subword loads from the D-SPM, the
load-store unit shifts and zero or sign extends the data. Because the destination register data
is not available until the memory stage instead of the execute stage, a load-use data hazard
can occur that is not preventable using bypass paths. This situation only occurs when the
same thread is scheduled for multiple consecutive cycles, such as in single-threaded mode,
and the processor is purposely not optimized for this operating mode. Therefore, all load
instructions are forced to take two thread cycles in single-threaded mode instead of adding
additional control logic.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST rs1, rs2, imm SB, SH, SW 1 1 1 1
INST rd, rs1, imm LB, LH, LW, LBU, LHU 2 1 1 1

Table 3.3: Thread cycle count for data transfer instructions at different hardware thread
scheduling frequencies.
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3.1.5 System Instructions
There are two main types of system instructions: CSR modification instructions and instruc-
tions for changing between the two privilege levels, user mode and privileged mode. System
instructions control thread scheduling, timing instructions, I/O mechanisms, and handling
of exceptions, interrupts, and traps. To reduce hardware overhead and complexity, only a
minimal subset of RISC-V privileged specification [94] is supported.

The CSR unit contains registers with various properties: private or shared between hard-
ware threads; read-write, read-only, or unaccessible from user mode; and read-write or read-
only from privileged mode. All CSRs use an atomic read-modify-write operation because
certain CSRs are modified by other hardware threads or external events. To obey the com-
mit point at the end of the execute stage, the read and modify occurs during the execute
stage and the write at the clock edge.

CSR instructions support reading or writing all bits and setting or clearing specific bits,
although each CSR may not allow all these operations (e.g. read-only). The CSRRW and
CSRRWI instructions atomically read the current value and write a new value, specified by
either a register or immediate, respectively. The CSRRS and CSRRSI instructions also atom-
ically read the current value, but the register or immediate value specifies which bits are
atomically set high, with other bits unaffected. The CSRRC and CSRRCI instructions are
similar, but atomically clear low instead of setting high.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST rd, csr, rs1 CSRRW, CSRRS, CSRRC 1 1 1 1
INST rd, csr, imm CSRRWI, CSRRSI,

CSRRCI
1 1 1 1

Table 3.4: Thread cycle count for CSR modification instructions at different hardware thread
scheduling frequencies.

Handling traps, exceptions, and interrupts complicate the design of the control unit and
datapath. We use RISC-V terminology, where an exception is an unusual condition at run-
time, a trap is a synchronous transfer of control, and an interrupt is an asynchronous transfer
of control. In FlexPRET, both exceptions and interrupts are handled by the trap mechanism.
When an instruction causes an exception, all previous but no following instructions will
complete, and the faulting instruction can be restarted after exception handling, referred to
as precise exceptions. Without precise exceptions, software must try (if even possible) to
recover state and restart execution at the correct point.

The trap mechanism is triggered by the SYSCALL instruction, an exception, or an in-
terrupt. To transfer control to the trap handler routine that runs in privileged mode, the
program counter is set to the routine’s address, stored in the evec CSR for that hardware
thread. By storing the address of the first uncompleted instruction in the hardware thread’s
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epc CSR, software can handle an interrupt or diagnose an exception and correctly restart
execution. For further information, the cause of the trap is also classified and stored in the
hardware thread’s cause CSR. Some of the optionally enabled causes are illegal or system
instructions, misaligned memory accesses, and external or timing interrupts.

To support precise exceptions, the trap mechanism must be carefully designed. Excep-
tions cannot always be handled immediately, as previous instructions may not have com-
pleted and could also cause an exception. Out-of-order exception handling is prevented to
avoid implementation-specific program behavior. In FlexPRET, all exceptions do not cause
a trap until the execute stage, when the corresponding instruction is the next to complete,
and must be stored until that stage. When a trap occurs, relevant CSRs store data and the
control unit is notified to update the program counter in the next cycle. This cycle delay
removes a long path in the design because an exception decision does not affect any program
counter update or I-SPM fetch in the same cycle. The SRET instruction returns privilege
level to user mode.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST SCALL 4 2 2 1
INST SRET 1 1 1 1

Table 3.5: Thread cycle count for system instructions at different hardware thread scheduling
frequencies.

3.2 Hardware Thread Scheduling
The purpose of FlexPRET’s hardware thread scheduler is to provide predictable and isolated
execution to hard real-time threads (HRTTs) while allowing soft real-time threads (SRTTs)
to efficiently utilize spare cycles. The datapath and control unit support an arbitrary inter-
leaving of hardware threads, unlike other predictable fine-grained multithreaded processors,
so the scheduler must only meet the HRTT and SRTT property requirements. There are
multiple scheduler implementations that meet these requirements, and our implementation
is designed for flexibility with minimal complexity. Scheduling must be implemented in hard-
ware to make decisions at the cycle granularity, but it is configurable by software for more
flexibility.

3.2.1 Constraints on Scheduling
Careful processor design only facilitates isolated and predictable HRTTs. For isolation, the
specific cycles each HRTT is scheduled must be independent of the execution of the other
hardware threads. In other words, no information from other hardware threads is used to
schedule an HRTT. In theory, each HRTT could request its own scheduling sequence based on
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program flow. Unfortunately, this would require complex hardware to construct a schedule
that fulfills all requests—which may not be feasible.

Example 3.1. If T1 requests scheduling every 2nd cycle (scheduling frequency 1/2) and T2
every 3rd cycle (scheduling frequency 1/3), no feasible schedule exists even though utilization
is under one. The diagram below shows an attempt at scheduling, where T1 and T2 represent
requests or granted requests and ? for conflicts.

T1 requests T1 T1 T1 T1 T1 T1

T2 requests T2 T2 T2 T2

schedule T1 T2 T1 ? T1 T2 T1 ?

Alternatively, the hardware scheduler can use a predefined schedule where each cycle is
reserved for some hardware thread. To limit the amount of memory needed to store this
schedule, a short scheduling sequence is periodically repeated. For example, T1 T2 T1 T3
could be periodically repeated to have T1 execute every 2nd cycle, T2 every 4th cycle, and
T3 every 4th cycle (scheduling frequencies of 1/2, 1/4, and 1/4). Depending on program
flow, a hardware thread may not use its reserved cycle, but provided an HRTT only uses its
reserved cycles, its execution is isolated by the hardware thread scheduler.

The thread cycle latency of each instruction along a program path depends on pipeline
spacing between instructions from the same hardware thread, which is determined by schedul-
ing. For periodic scheduling, the latency of each instruction along a program path is known
and constant—determining execution time is trivial for any program segment. A non-
periodic scheduling with a large minimum spacing, such as over four cycles, also provides
this property.

When scheduling produces short, non-periodic spacing between instructions from the
same hardware thread, the thread cycle latency of each instruction varies. Determining the
latency of each instruction would require knowing the phase relation between the schedule
and instruction sequence, unlikely for programs that have more than a single path.

Example 3.2. Consider the following non-periodic scheduling of hardware thread T0 over a
period of 6 cycles, which demonstrates variable latency for a branch taken instruction.

Cycle 0 1 2 3 4 5
Schedule T0 T0 T0

If a branch instruction starts executing in cycle 0 and is taken, the address and condition
are not known by cycle 2, so the next instruction starts executing in cycle 5. If the same
instruction starts executing in cycle 2, the address and condition are known by cycle 5. The
same instruction takes 2 thread cycles in the first case and 1 thread cycle in the second case.

For efficiency, if it is known a priori that a scheduled thread will not fetch or complete its
next instruction, that cycle should be allocated to a different hardware thread. Examples of
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this include waiting for a timer to expire or an external interrupt. Which cycles are available
depends on the execution of each thread, so HRTTs cannot use them without sacrificing
isolation. SRTTs use these available cycles to increase both thread and overall processor
throughput, at the cost of isolation and predictability. The general idea is each HRTT has
a constant scheduling frequency, and SRTTs share unused cycles.

Each hardware thread, either a HRTT or SRTT, is always in one of two states: sleeping
if it does not need to be scheduled until some later cycle, active otherwise. The hardware
thread scheduler will only schedule active threads. By allowing both software and hardware
to change the status of a hardware thread, the processor can efficiently implement common
mechanisms. For example, a program running on a HRTT can put itself to sleep, allowing
its reserved cycles to be used by any SRTT until a timer or I/O peripheral activates the
HRTT again—a rapid, event-driven response without wasting cycles polling.

Thus far, to satisfy the requirements of HRTTs and SRTTs, we have proposed several
constraints on hardware thread scheduling but have not described a concrete implementation.
Before the selected implementation is described, consider some examples of valid schedules
that meet different contrived requirements.

Example 3.3. Consider a system with active HRTT T0, sleeping HRTT T1, active SRTTs
T2 and T3, and sleeping SRTT T4. If the desired scheduling frequency of T0 is 1/4, and T1 is
1/2, then a resulting schedule could be as follows:

T0 T2 T3 T2 T0 T3 T2 T3 T0 T2 T3 T2 . . .

T0 is the only active HRTT and is scheduled every forth cycle to satisfy its scheduling
frequency. In this example, the rest of the cycles are shared round-robin between active
SRTTs T2 and T3. For T2, as well as T3, the spacing between subsequent instructions varies.

Example 3.4. Consider the same system as Example 3.3, but HRTT T1 and SRTT T4 are
now active. Here are two possible schedules:

T0 T1 T2 T1 T0 T1 T3 T1 T0 T1 T4 T1 . . .

T0 T1 T2 T1 T0 T1 T2 T1 T0 T1 T2 T1 . . .

Now only one out of every four cycles is used for SRTTs. In the first schedule, a round-
robin policy is used, and in the second, T2 has priority; the choice has performance implica-
tions for SRTTs but doesn’t affect HRTTs. An SRTT could also be scheduled like an HRTT
to guarantee a minimum scheduling frequency. The overall throughput of a fine-grained mul-
tithreaded processor is higher when more hardware threads are interleaved in the pipeline, so
a round-robin schedule will provide higher overall throughput than a priority-based schedule.

This scheduling technique is not possible in other fine-grained multithreaded processors.
PTARM [43] supports a restricted version of only HRTTs by a round-robin rotation through
a fixed number of hardware threads, but cycles are unused if any thread is sleeping. In
addition to scheduling similarly to PTARM, XMOS [44] can support a restricted version of
only SRTTs by a round-robin rotation through all active hardware threads, efficiently using
cycles but with reduced isolation.
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3.2.2 Scheduler Implementation
We designed a hardware thread scheduler to provide flexible scheduling options for both
HRTTs and SRTTs while minimizing complexity. The design is intended to keep scheduling
out of the critical timing path, leaving the maximum processor frequency unaffected, with a
small area footprint. Certain cycles in a repeating sequence are reserved for specific hardware
threads, set by a configuration register. If a cycle would be unused, such as when the specified
hardware thread is not active, an active SRTT is selected in round-robin order.

By using configuration registers that are modifiable by software, many different schedules
are possible, although limited by the length of the repeating sequence. In many cases a
single configuration at startup would be sufficient, but runtime changes are also supported.
To protect the processor against accidental or malicious schedule modifications, a hardware
thread requires privileged mode to modify the scheduling CSRs.

The thread mode CSR maintains the scheduling status of each hardware thread. A thread
can be in one of four modes: active HRTT (HA), sleeping HRTT (HZ), active SRTT (SA),
or sleeping SRTT (SZ). This requires two bits to encode the mode per hardware thread,
which is 16 bits for an 8 hardware thread processor, as shown in Figure 3.2a.

The slots CSR has slots that specify cycle reservations within the repeating sequence.
Each slot can have one of the following values: Tx where x is a hardware thread ID, S to
indicate any active SRTT, or D to disable. Provided the processor contains less than 14
hardware threads, each slot can be encoded in 4 bits. For single cycle operation to a 32-bit
register, 8 slots are used, as shown in Figure 3.2b. Both of these configuration registers are
not modified until the execute stage, so the schedule change is not immediate.

The scheduling logic can be conceptually viewed as a combination of two schedulers.
The higher priority scheduler round-robins through each non-disabled slot in the slots CSR,
observing the value of the current slot. If the value corresponds to a hardware thread that is
active, that hardware thread is scheduled the next cycle; otherwise the scheduling decision is
delegated to the lower priority scheduler. Only upon delegation, the lower priority scheduler
round-robins through active SRTTs. Pseudocode for scheduling is shown in Algorithm 3.1,
even though the implementation is in hardware and not software.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T7 T6 T5 T4 T3 T2 T1 T0

(a) The thread mode CSR where Ti ∈ {HA,HZ, SA, SZ}.
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

S7 S6 S5 S4 S3 S2 S1 S0

(b) The slots CSR where Si ∈ {T0, T1, ..., T7, S,D}.

Figure 3.2: Thread scheduling is configured with two CSRs.
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Algorithm 3.1 Pseudocode for FlexPRET’s hardware thread scheduler.
1: procedure next tid(slots, slots last, tmodes, tmodes last)
2: tid← 0
3: valid, s← next enabled slot(slots, slots last) . round-robin
4: if valid then
5: slot← slots(s)
6: if slot 6= S and (tmodes(slot) == HA or tmodes(slot) == SA) then
7: tid← slot
8: else
9: valid, t← next active srtt(tmodes, tmodes last) . round-robin

10: if valid then
11: tid← t
12: tmodes last← t
13: end if
14: end if
15: slots last← s
16: end if
17: return tid, valid, slots last, tmodes last
18: end procedure

Scheduling using periodic slots enables HRTTs to have a constant scheduling frequency,
but it is still the responsibility of the programmer or compiler to assign the slots accordingly.
SRTTs are also allowed to have reserved slots to guarantee minimum scheduling require-
ments. The D value enables repeating sequences with lengths fewer than 8. For example, a
scheduling frequency of 1/7 is not achievable unless one of the eight slots is disabled.

A possible assignment of the slots CSRs that implements the first schedule in both
Example 3.3 and 3.4 is shown in Figure 3.3; the actual schedules are only different because
of different thread modes. If S3(T0) and S2(T1) were to be swapped, T1 would no longer
have a constant scheduling frequency because the spacing between instructions from that
thread would no longer be constant (T1 T0 S T1 T1 T0 S T1 . . . ). The second schedule
in Example 3.4 could also be implemented by a software scheduler that sleeps all SRTTs
without the highest priority.

The hardware implementation uses round-robin arbiters and other logic. The round-
robin arbiter uses a mask-based approach, but other implementations are possible. In the
mask-based approach, the requesters are in a fixed order, and both masked and unmasked
requests are provided to priority arbiters. All the requesters before and including the last one
granted are masked out, and the highest priority remaining request is granted; if the masked
request is empty, then the unmasked request is used instead, restarting at the beginning.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T7(D) T6(D) T5(D) T4(SZ) T3(SA) T2(SA) T1(HZ) T0(HA)

(a) The thread mode CSR for Example 3.3.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T7(D) T6(D) T5(D) T4(SA) T3(SA) T2(SA) T1(HA) T0(HA)

(b) The thread mode CSR for Example 3.4.
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

S7(D) S6(D) S5(D) S4(D) S3(T0) S2(T1) S1(S) S0(T1)

(c) The slots CSR for Examples 3.3 and 3.4.

Figure 3.3: Thread scheduling CSRs for Examples 3.3 and 3.4.

The examples presented only set the slots CSR once. By changing either the slots or
thread mode CSR during run-time, more flexible scheduling sequences are possible—useful
for applications with varying concurrency and deadlines. For example, an HRTT’s scheduling
frequency could be increased to meet a deadline it would otherwise miss, or a processor could
switch modes of operation.

3.3 Timing Instructions
We extend the RISC-V ISA with timing instructions, introduced in Section 2.3, to express
real-time semantics. The supported pseudo-instructions are get time to access the current
time, delay until to stall the program until some time, interrupt on expire to interrupt
the program at some time, and deactivate exception to disable the interrupt mechanism.
Compared to previous PRET architectures supporting timing instructions [43], [46], the
flexibility of FlexPRET complicates implementation but improves performance: a hardware
thread will sleep instead of stalling execution to let active SRTTs use spare cycles. In addition
to specifying the timing behavior of a single hardware thread, time can also synchronize
operations between hardware threads.

In FlexPRET, time is represented by a nanosecond value instead of counting clock ticks,
starting at zero when powered on. At 100 MHz, ten nanoseconds per clock tick means any
time interval requires approximately three extra bits. We accept this overhead for a few
reasons. First, a time value in software is independent of the processor’s clock frequency,
improving binary code portability and supporting dynamic frequency scaling of the processor
clock. Second, time could be synchronized in a distributed system by adjusting the timer
increment value and maintaining sub nanosecond counts. By restricting the increment to
a narrow range of values and not allowing any other modification, relative timing specified
by timing instructions cannot experience much variation. For clock synchronization pro-
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tocols such as IEEE 1588 [72], software converts relative to absolute real-time by adding
an offset, which provides a mechanism for discrete clock jumps, sometimes required when
synchronization is far off.

The width of the clock is set to 32 bits but configurable to less bits as well to reduce area.
The timer overflows every 232 ≈ 4.29 seconds, which means longer relative timing behavior
must be supported with software. In the first version of FlexPRET [91] we supported up to
64 bits, which only overflows every 584 years, but decided the added complexity is too much.
With a 32-bit datapath and one register write port, retrieving the clock value or calculating
a compare value would require multiple instructions and atomicity concerns for 64-bit time
values. Also, additional hardware is required to store and compare more bits of time, and it
scales with the number of hardware threads.

Software accesses the current clock value with the get time pseudo-instruction. Flex-
PRET defines this instruction as GT, storing the current clock value in a destination register.
The value returned is the time of instruction commit relative to processor power on or re-
set. Time could be defined as another point (e.g. instruction fetch); the important part is
consistency. The commit point is when the instruction irreversibly modifies either processor
state or external I/O, a natural choice.

Each hardware thread has a register that is compared against the current time every
clock cycle, set using the CMP instruction. The comparison result is used to implement the
delay until and exception on expire pseudo-instructions, triggering a wake, interrupt,
or exception for the hardware thread. Setting this register will also disable any triggers (e.g.
CMP x0) to implement the deactivate exception pseudo-instruction. To reduce processor
area, this register is shared between all timing instructions on its hardware thread, but the
processor could be extended in the future to support multiple comparisons per hardware
thread. Also, using a separate CMP instruction makes the sharing explicit and visible to the
programmer.

The comparison operation must carefully handle the periodic overflows resulting from
the finite bit lengths of both the time and compare registers. An equality comparison is not
used because the delay until and interrupt on expire pseudo-instructions do not always
provide a future time. Correct operation would require setting the compare time before the
clock time reaches it (else wait another 232 ns), and the compare time would need to be equal
to one of the incremented values of the clock time.

A direct 32-bit unsigned comparison would also be problematic whenever a computed
compare time overflows. A simple example using a 4-bit time value (0-15) can demonstrate
this problem using expiration defined as (time ≥ compare). To expire 3 ticks in the future
for current time of 1, the compare time is set to 4, and expiration occurs at time 4. If the
current time is instead 14, the compare time is set to 1 because of overflow, and expiration
incorrectly occurs immediately. Although the overflow information could be used to wait on
comparison until the time value overflows as well, this would require additional software or
hardware support.

Instead, the comparison operation used for expiration of the value set by CMP is (time−
compare ≥ 0) with unsigned subtraction and considering the result as signed, which is a
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technique used in some existing hardware timers. The comparison is correct whenever the
intended comparison time is within 231 nanoseconds of the current time, either before or after.
By using unsigned subtraction instead of unsigned comparison, software and hardware can
ignore addition overflow and functionality is still correct.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST rd GT 1 1 1 1
INST rs1 CMP 1 1 1 1

Table 3.6: Thread cycle count for clock interaction instructions at different hardware thread
scheduling frequencies.

3.3.1 Timed Delay
A delay until pseudo-instruction stalls program execution until time has passed the spec-
ified value, supported by FlexPRET with DU and WU instructions. A simple implementation
would operate as a conditional branch back to itself unless the specified time value has
passed, but this wastes cycles that in FlexPRET could be used by another thread. An al-
ternative approach is to always increment the program counter to the next instruction but
sleep the hardware thread if time has not passed the specified value. The pipeline is used
by other threads so an external comparison unit needs to wake the hardware thread once
time has passed the specified value, which is set using the CMP instruction, and then the next
instruction executes.

This approach is problematic if interrupts are enabled. If a hardware thread is sleeping, an
interrupt will wake the hardware thread, execute the interrupt handler routine, and return to
the program counter that was interrupted. If the expiration time has not occurred, execution
is incorrect because program execution will immediately continue after the delay until
pseudo-instruction, unless software is forced to prevent this problem by modifying the return
point. The solution we use is not to update the program counter but still sleep the hardware
thread; the instruction is replayed on wake and will either proceed or put the hardware
thread back to sleep depending on the current time.

For the delay until operation, FlexPRET uses a CMP instruction followed by a DU in-
struction. At the commit point, CMP will disable any existing timer triggers and set the
provided value to be compared against the clock. When the DU instruction reaches the
execute stage, a conditional branch occurs. If time has expired, using the result of the com-
parison, execution proceeds as normal. If time has not expired, the hardware thread sets
the program counter to that of the DU instruction and flushes the pipeline, just like a branch
instruction.

This is enough to correctly execute delay until semantics, but to share cycles the hard-
ware thread must sleep. If time has not expired, the hardware thread is put to sleep and
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the timer is set to trigger a wake upon expiration. When the hardware thread wakes, the DU
instruction executes again, which prevents an interrupt from causing execution to proceed
prematurely. The WU instruction is identical to DU but does increment the program counter,
providing a mechanism for the processor to wait until an interrupt occurs with a timeout
value. If the comparison time set by CMP has expired when the DU or WU instruction reaches
the commit point, the instruction uses one thread cycle; otherwise the pipeline flush and
thread mode change uses multiple thread cycles.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST DU 5 or 1 3 or 1 2 or 1 2 or 1
INST WU 5 or 1 3 or 1 2 or 1 2 or 1

Table 3.7: Thread cycle count for timed delay instructions at different hardware thread
scheduling frequencies.

3.3.2 Timed Interrupt
An interrupt on expire pseudo-instruction will interrupt program execution once a clock
time is reached unless disabled by a later instruction, supported by FlexPRET with IE and
EE instructions. All exceptions, interrupts, and software traps are handled during the execute
stage. For interrupt on expire, a timer can use the existing trap mechanism and trigger
an interrupt by the execute stage. As previously mentioned, the trap mechanism will store
the current program counter and cause, flush the pipeline, and set the program counter to
the trap handling routine.

FlexPRET again uses a combination of two instructions: CMP followed by IE. As with
delay until, CMP disables any existing triggers and sets the comparison value. When IE
commits at the end of the execute stage, the timer is set to trigger an interrupt upon
expiration. The EE instruction is identical to IE but uses a different cause identifier as an
exception instead of an interrupt. The programmer should use IE for interrupts that should
occur for correct program behavior, and EE for run-time detection of unexpected timing
violations.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST IE 1 1 1 1
INST EE 1 1 1 1

Table 3.8: Thread cycle count for timed interrupt instructions at different hardware thread
scheduling frequencies.
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3.3.3 Alternative Implementations
We used this implementation of timing instructions to provide flexible functionality without
adding too much complexity, but other implementations are possible. The CMP instruction
could become part of the DU and IE instructions, reducing code size, but a deactivate interrupt
instruction would need to be added. Memory or a general-purpose register would need to
store the future time value until used by the DU or IE instruction. Also, the branch condition
checker would need to be used for the DU instruction because the result is needed during the
execute stage but the compare register cannot be modified until the commit point at the
end of the execute stage.

The current implementation only allows one timing instruction in operation at any one
point. For example, if an IE instructions is monitoring a block of code for a deadline miss,
this block of code cannot use the DU instruction (although could use the GT instruction and
a conditional branch). Multiple timers per hardware thread could be added, but hardware
complexity would increase. In addition to comparison storage and evaluation, an interrupt
could occur while a hardware thread is in the sleep state, adding more control logic and paths
both setting and reading the program counters. For further flexibility, each timer could be
a shared resource available to any hardware thread, but resource availability would need to
be guaranteed for correct program execution.

3.4 Memory Hierarchy
Memory hierarchy design affects functionality, predictability, and performance, and different
trade-offs are made depending on the application area. FlexPRET has separate memories
for instruction and data, uses software-managed scratchpad memories instead of caches, and
only allows access to permissible regions of the scratchpad memories. As a consequence, all
valid memory accesses always succeed and are single cycle.

Without separate instruction and data memories, only one memory operation could occur
every cycle; during a load or store operation, a new instruction would not be fetched, reducing
overall throughput of the processor. Although typically implemented with instruction and
data caches instead of scratchpads, this is a standard design decision for processors with
similar or higher complexity. For further justification, if only one scratchpad is shared
between code and data, a hardware thread’s memory operation can only occur during a
scheduled cycle that may not align with the memory stage, requiring more control logic and
data storage. For example, each hardware thread would need to store address and data for
a memory operation until the next scheduled cycle, then prevent the fetch.

FlexPRET optionally allows memory operations to the instruction memory instead of
data memory, improving the allowed functionality. A potential use case is a bootloader,
where a small program initialized in instruction memory can retrieve instructions over the
peripheral bus, then store them into instruction memory. These stores are not guaranteed to
be visible to instruction fetching until the program executes a synchronization instruction,
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called FENCE.I. In FlexPRET, this instruction just stalls the pipeline until all preceding
instructions have committed. Other potential uses include just-in-time compilation and
self-modifying code.

The removal of caches in favor of scratchpad memories is a contentious but important
decision. The main justification is predictability: with a cache, the execution time of a
memory instruction depends on cache state, whereas with a scratchpad memory, a memory
instruction always succeeds. If the tasks are small and fit entirely within scratchpad, as
occurs in many simple embedded applications, there are no complications. If the tasks do
not fit entirely within scratchpad, there are several options.

One option is separating the safety- or time-critical sections of an application from the
rest. FlexPRET can execute these sections as a coprocessor while the rest of the program runs
on a high performance main processor with caching. Another option is scratchpad memory
management, where the scratchpad contents are dynamically and explicitly controlled by
software, written by the programmer or compiler, through direct memory access (DMA)
operations.

If the unpredictability of caching is acceptable, FlexPRET could be modified to use
caches, even if just for SRTTs. To maintain temporal isolation, caches would need to be
private for each hardware thread. Also, each hardware thread would need to handle cache
misses without disturbing thread scheduling.

Memory instructions can only access the scratchpad memories and have no direct con-
nections to main memory. Because of the relatively large latencies of external memories,
any direct connection would result in memory instruction latency depending on the address
accessed, an additional burden on timing analysis. DRAM memories are suited for burst
accesses, such as 64 bytes; a direct DRAM operation for a single 32-bit value would be
quite slow and wasteful of throughput resources. Instead, all memories operations must be
achieved using DMA operations on the scratchpad and main memory.

Virtual addressing is not supported to reduce datapath and control unit complexity and
to maintain single cycle memories accesses, which only occurs on translation hits for virtual
addressing. For isolation between threads, FlexPRET has a simple memory management
unit. Each hardware thread can read anywhere in memory, but only write to certain regions.
These regions can either be written by all hardware threads (shared) or only one hardware
thread (private).

If a program dynamically manages the scratchpad contents with DMA operations, timing
analysis requires the latency bound of each transfer. Flash memory is often used for instruc-
tion storage because data is persistent. DRAM memories are often used as main memory for
both instructions and data, but are slower than SRAMs and have variable access times. If
the latency of DRAM requests using a certain DRAM controller cannot be bounded or the
bound is too large, a more predictable DRAM controller can be used. Much like the design
of a predictable processor, predictable DRAM controllers can prioritize isolation [87], overall
throughput [89], or a combination [90].
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3.4.1 Implementation
The size of each scratchpad memory is configurable, set to 16 kB by default. The I-SPM
has two ports: one read port for instruction fetch, and one read/write port both externally
exposed and connected to the load-store unit. The load-store unit has priority for memory
access, and the external connection can be to a bus for DMA operations. The D-SPM also has
two ports: one read/write port connected to the load-store unit, and another read/write port
externally exposed. This external connection also allows DMA transfer to the scratchpad
memory over a bus. The load-store unit uses the address to determine which memory to
access: I-SPM, D-SPM, or peripheral bus.

The I-SPM and D-SPM are divided into 8 equally sized regions for write protection using
the upper 3 address bits. Each region is set as private to a specific thread ID or shared.
The register format for the I-SPM protection CSR and D-SPM protection CSR is as follows,
with Ri ∈ {T0, T1, ...T7, shared}.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

R7 R6 R5 R4 R3 R2 R1 R0

Figure 3.4: A CSR configures scratchpad memory regions as shared or private for a hardware
thread.

Although not implemented, with multiple CSRs for each scratchpad, more than 8 regions
could be supported. If a hardware thread attempts a store to a region without permission,
an exception is thrown.

To order data and I/O memory accesses between multiple concurrent threads of execution,
the RISC-V ISA requires a FENCE instruction. In FlexPRET, the FENCE instruction does not
do anything—instructions commit in order and all memory operations to D-SPM or the
peripheral bus are guaranteed to succeed in a single cycle. The FENCE.I instruction, which
ensures previous stores to instruction memory complete before a fetch occurs from the same
memory location, does require processor support. The FENCE.I instruction prevents a fetch
from the same hardware thread until it commits at the end of the execute stage, killing
instructions if needed, to ensure any preceding store instruction has written to memory.

Instruction Format Instruction Thread cycles at f =
1/1 1/2 1/3 1/4

INST FENCE 1 1 1 1
INST FENCE.I 4 2 2 1

Table 3.9: Thread cycle count for ordering constraint instructions at different hardware
thread scheduling frequencies.
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3.5 Peripheral Bus
The processor uses memory-mapped registers accessible through load and store memory
operations to communicate with external hardware peripherals over the peripheral bus. Ex-
ternal hardware could include a direct memory access (DMA) engine for scratchpad memory
management, a network-on-chip in a multicore system, and common communication periph-
erals such as Ethernet or USB. Single cycle load and store operations to the bus maintain
isolation and predictability for hardware threads.

The bus protocol defines how components communicate over the bus. Multiple compo-
nents conceptually share the control and data lines of the bus to prevent point to point
connections for every pairing of components. A master component starts all transactions,
and slave components respond. With a single master, such as a processor, there is no con-
tention for bus access, but the master must control every transaction. Multiple masters
remove this requirement and allow flexible communication, but preventing conflicts requires
an arbitration scheme. For higher throughput over long distances on or off chip, some bus
protocols support pipelining bursts of data.

The challenge for FlexPRET is maintaining predictable communication while meeting
bus throughput requirements. The processor cannot directly move data from the DRAM to
either the I-SPM or D-SPM because the resulting throughput would be too low: it would
require three instructions (address calculation, load, store) to move one new instruction into
the I-SPM. Instead, a DMA engine on a high-throughput bus, such as AXI4, could manage
data transfer with only high-level commands from the processor to move blocks of data.

One option is directly connecting FlexPRET to this bus that supports multi-cycle data
transfers and multiple masters. A bus access only requires a single instruction, but this in-
struction has variable latency because of bus contention and arbitration, which use handshak-
ing mechanisms. Consequently, timing analysis would need to both determine the address
used in a memory operation and be provided with a timing bound for this address.

Another option, and the option used by FlexPRET, is to only connect the datapath to a
simple synchronous bus with guaranteed single-cycle accesses, maintaining constant latency
for all memory operations. This moves control mechanisms, such as waiting for valid data,
to software. For example, if a peripheral does not always have valid data, a control register
at a different address stores a valid bit. Instead of stalling on a single variable latency load
instruction, software polls this control register until data is valid, then performs a single-cycle
load instruction. Although this mechanism requires more code, all memory instructions have
constant latency. By using a timeout on polling, timing bounds are part of the program itself
and visible during timing analysis.

By moving handshaking to software and adding a gateway, the processor can still com-
municate on more complex bus protocols, such as AXI4. A gateway uses hardware logic
and buffers to provide a bridge between different bus protocols. A possible configuration
is shown in Figure 3.5. A DMA engine on a high-throughput bus moves data between the
DRAM and the SPMs, and it also serves as a gateway from the processor’s peripheral bus,
which provides high-level commands for data movement.
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DRAM (Main Memory)

Memory
Bus

FlexPRET
Processor

Peripheral
Bus

DMA
Engine I-SPM D-SPM

Figure 3.5: A possible configuration with a peripheral bus and memory bus.

The interface for FlexPRET’s single-cycle access peripheral bus is defined as follows:
1 output [9:0] address ,
2 output enable ,
3 output write ,
4 output data_to_bus ,
5 input data_from_bus

For a peripheral bus read, the datapath sets the outputs towards the end of the execute
stage, just as with a D-SPM read. The lower bits of address are determined by software
and the upper bits contain the thread ID, enable is set high, and write is set low. After
the positive clock edge, the processor data input data from bus must be set by the bus
before the next positive clock edge, as it is registered at the end of the memory stage. To
not increase the critical path of the processor, the bus latency should be less than D-SPM
latency. For a peripheral bus write, the datapath also sets the outputs towards the end of
the execute stage, but with write set high and data to bus set with write data. At the
positive clock edge, the bus must store this data, as outputs can change in the next clock
cycle.

Multiple bus implementations support this custom interface. In one possible implemen-
tation, the bus provides address and data to bus to all peripherals, but only provides the
enable and write signals to the peripheral in the correct address range. The data from bus
is set using a multiplexer connected to all peripherals, with selection depending on the ad-
dress range of the previous clock cycle.

3.6 I/O
With predictable and controllable timing behavior, FlexPRET is well suited for interacting
with digital I/O pins. Fine-grained multithreading with flexible hardware thread scheduling
supports multiple independent I/O operations, whereas a single-threaded processor requires
a context switch for multiple I/O operations, and only one operation has priority. Possible
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applications include using software to replace hardware peripherals and performing low-
level I/O processing to offload a main processor, both discussed further in Section 5.2.
We designed FlexPRET’s I/O mechanisms to support these applications, either directly or
through additional hardware peripherals.

I/O interaction can be implemented almost entirely in hardware, software, or a hybrid
of both. To keep the base implementation small and simple, but at the cost of accuracy and
precision, FlexPRET uses minimal hardware support for I/O mechanisms. Every processor
clock cycle, general-purpose input registers read the value on the corresponding input pins,
and general-purpose output registers write the value on the corresponding output pins. These
input and output registers are implemented as CSRs instead of memory-mapped registers
for faster access: setting and clearing bits is a single instruction atomic operation instead of
a three-instruction read-modify-write operation. Further hardware support for I/O can be
added as a hardware peripheral, controlled using the peripheral bus.

For flexibility and isolation, there must be a mechanism to assign pins to a specific
hardware thread; otherwise, pin allocation is fixed or a hardware thread can disrupt another’s
I/O operations. There is overhead for storing assignments, so pins are grouped into either
input or output ports that share an assignment, with a configurable number of pins in each
port (up to 32). A CSR stores the hardware thread assignments for each port. Each port
has one CSR for access to the pins, which is read-only for an input port or writable for an
output port. The combination of pins and ports is configurable in the design, and a CSR
that controls permission to up to 8 output ports is as follows, with Pi ∈ {T0, T1, ...T7, shared}.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

P7 P6 P5 P4 P3 P2 P1 P0

Figure 3.6: A CSR configures output ports, which consist of one or more output pins, as
shared or private for a hardware thread.

With timing instructions, I/O can be read or written at specific times. For example,
a DU instruction followed by an I/O instruction would sleep the hardware thread until a
specific time, then wake and perform the I/O operation. The main limitation of the selected
implementation is precision and accuracy—the I/O operation does not immediately occur
at the specified time. Hardware thread scheduling determines how many clock cycles after
time expiration that the I/O instruction is fetched, and this instruction does not affect the
I/O pin until after the execute stage. The accuracy and precision are further discussed in
Section 4.1. Even if I/O operations are cycle accurate, the update rate of I/O is limited
by software execution time to compute the next values. For a 100 MHz processor, I/O
operations can occur on the order of every thousand nanoseconds with a precision under one
hundred nanoseconds, which is further described in Section 4.1.



CHAPTER 3. FLEXPRET PROCESSOR DESIGN 54

3.6.1 Alternative Implementations
Clock cycle accurate I/O is possible with additional hardware support, controlled either by
custom instructions or as a memory-mapped peripheral. For example, a port could read
or write directly at a specified time instead of when an instruction executes. To support
this, each port would need additional registers to store the specified time and write value,
as well as logic to compare against the current time. The bit width of the comparison would
determine how long in advance the port operation could be set, which may need to be checked
during timing analysis.

As demonstrated by the I/O functionality of XMOS [44], there are many options for
hardware-supported software-controlled I/O. In addition to reading or writing at a specific
clock cycle, ports on XMOS processors can use different clocks, wait for specific input values
then timestamp, and perform serialization and deserialization. We envision this level of hard-
ware support being implemented as a peripheral for specific precision-timed I/O applications
but decided not to add this complexity to the base version of FlexPRET.
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Chapter 4

Implementation and Evaluation

We implement and evaluate the RISC-V FlexPRET processor using both cycle-accurate
simulation and FPGA deployment. The cycle-accurate simulator is useful for prototyping,
debugging, and benchmarking, and the FPGA deployment demonstrates feasibility and pro-
vides quantitative hardware resource costs of the proposed architectural techniques. The
design is coded in Chisel [95], a hardware construction language that generates both Verilog
code and a cycle-accurate C++ based simulator. This chapter evaluates the application-
independent properties of FlexPRET: the isolation and predictability of hardware threads
(Section 4.1), average-case performance for different thread scheduling frequencies (Sec-
tion 4.2), FPGA resource utilization (Section 4.3), and power implications (Section 4.4).
Chapter 5 evaluates application-specific properties of FlexPRET.

Chisel allows us to parameterize the code to produce different processor variations, in-
cluding two baseline processors that remove functionality for comparison purposes. We
implement baseline processors instead of comparing to existing processors to negate dis-
crepancies caused by instruction set architecture (ISA) selection, microarchitecture design
decisions, hardware device properties, and optimization techniques. The intent is to evaluate
the incremental cost of FlexPRET’s hardware thread scheduler, isolation mechanisms, and
timing instructions, as these techniques are applicable to other microarchitectures.

The first baseline processor, called Base-1T, is a variation without multithreading. Base-
1T is a classical 5-stage processor with predict not-taken branching, scratchpad memories
(SPMs), and forwarding paths. It has the lowest hardware complexity of all processor
variations. When FlexPRET schedules the same hardware thread every cycle, its run-time
behavior is identical to this baseline processor.

The second baseline processor, called Base-4T-RR, is a variation without flexible hard-
ware thread scheduling. Base-4T-RR schedules 4 hardware threads in a fixed round-robin
order, similar to both PTARM [33] and a configuration of XMOS [44]. It does not use
forwarding paths or flush logic because hardware threads have a fixed minimum spacing in
the pipeline. When FlexPRET schedules four hard real-time threads (HRTTs) in a fixed
round-robin order, its run-time behavior is identical to this baseline processor.
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From the perspective of cycle-accurate functionality, FlexPRET is a superset of both
baseline processors: run-time software configuration of the hardware thread scheduler allows
identical scheduling to either baseline processor. Both FlexPRET and the baseline processors
implement RV32I [92], which does not include ISA extensions for floating point arithmetic,
atomic memory operations, or integer multiplication and division instructions. Future vari-
ations of FlexPRET could support these application-specific RISC-V extensions, but these
extensions are not needed to demonstrate the proposed microarchitectural techniques.

To verify implementation correctness for these processors, both the cycle-accurate sim-
ulator and FPGA deployment execute an assembly test suite and C benchmark programs,
with results examined and compared. The simulator is useful for debugging, as generated
traces contain the logical values of each wire every cycle. To execute different programs,
the simulator initializes the instruction and data memory accordingly. Programs execute
faster on FPGA, but debugging is more difficult because only data at the processor interface
is visible (without adding additional debug hardware). On FPGA, different programs are
executed by modifying the memory initialization data in the binary FPGA image.

4.1 Isolation and Predictability
As described in the previous chapter, with isolated pipeline operation, the timing behavior
of each hardware thread only depends on its scheduling and program flow. Dependencies
between hardware threads, such as shared data or communication, only affect program flow.
This section summarizes the timing behavior of each instruction type and further analyses
the timing behavior of timing and I/O instructions with respect to real-time.

Table 4.1 lists the latencies of each instruction under different hardware thread scheduling
conditions, merging multiple tables from Chapter 3. For each constant scheduling frequency,
a hardware thread must be scheduled a number of thread cycles to complete and enable
execution of the next instruction. These scheduled cycles are unusable by other hardware
threads. The number of thread cycles remains constant or decreases for slower scheduling
frequencies because other hardware threads are hiding the latency of operations performed
by the instruction. Except for branches and timing instructions, which conditionally stall,
all instructions have constant thread cycle latencies at each scheduling frequency.

For a conditional branch, the latency depends on whether the branch is taken (3 thread
cycles at f = 1) or not taken (always 1 cycle). The latency is known for a program path,
however, as branch decisions differentiate one path from another. Timing instructions relate
program execution to real-time at specific points, which is a goal of WCET analysis, but
through direct control instead of analysis. The higher latencies for DU and WU instructions
(5, 3, 2, and 2 thread cycles) occur when the instruction delays execution until a later time;
execution time elapses but thread cycles are constant because the hardware thread sleeps
and is ignored by the scheduler. If the scheduling frequency is not constant, often the case
for soft real-time threads (SRTTs), instruction latencies are variable but bounded by the
latencies for single-threaded scheduling (f = 1).
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Instruction
Thread cycles at f =

1/1 1/2 1/3 1/4
LUI, AUIPC 1 1 1 1
ADDI, SLTI, SLTIU, XORI, ORI,
ANDI, SLLI, SRLI, SRAI

1 1 1 1

ADD, SUB, SLL, SLT, SLTU, XOR,
SRL, SRA, OR, AND

1 1 1 1

JAL, JALR 3 2 1 1
BEQ, BNE, BLT, BGE, BLTU, BGEU 3 or 1 2 or 1 1 1

SB, SH, SW 1 1 1 1
LB, LH, LW, LBU, LHU 2 1 1 1

CSRRW, CSRRS, CSRRC 1 1 1 1
CSRRWI, CSRRSI, CSRRCI 1 1 1 1
SYSCALL, FENCE.I 4 2 2 1
SRET, FENCE 1 1 1 1

GT 1 1 1 1
CMP 1 1 1 1
DU, WU 5 or 1 3 or 1 2 or 1 2 or 1
EE, IE 1 1 1 1

Table 4.1: Summary of thread cycle counts for instructions at different hardware thread
scheduling frequencies.

Constant instruction latencies—independent of execution history—provide predictable
behavior. For a program path of any length, such as a basic block, adding the latencies
for each instruction on the path determines the exact number of thread cycles used to exe-
cute the path. Dividing thread cycles by a constant scheduling frequency then determines
processor clock cycles. This greatly simplifies the hardware analysis and longest path por-
tions of WCET analysis because assigning timing costs to path segments is trivial. Without
constant latencies, the latencies depend on processor and program state when arriving at a
path segment, which must be modeled for tight and safe bounds. Furthermore, if allowed,
interrupts can also affect processor state and consequently instruction latency.

The processor clock speed relates execution time in processor cycles to execution time
in seconds. Timing instructions enforce relationships between real-time in seconds and pro-
gram locations, and execution time analysis infers timing information at other program
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points. One application of timing instructions is precision-timed I/O operations. Because
the simple I/O mechanism uses a separate instruction that modifies I/O pins only at the
end of the execute stage, the accuracy and precision depends on thread scheduling. Most
precise operation occurs if a hardware thread is fetched during a specific cycle, but its next
scheduled cycle may be multiple cycles later; this undesirable phase offset is referred to as
scheduling delay.

The following analysis of I/O timing behavior for a hardware thread assumes:

• constant scheduling frequency f = 1/p
• scheduling delay d ∈ {0, ..., p− 1}
• processor clock period c
• register rt containing time value t

Example 4.1. Consider the following code segment where the IO instruction performs an
I/O operation.

time at commit point instruction
CMP rt

tDU , (tDU2) DU
tIO IO

Two possible situations exist depending on whether the comparison time expires before
the DU instruction reaches the commit point: wait (tDU < t) or proceed (tDU ≥ t). In the
proceed situation, the DU instruction executes as a NOP, and the next instruction executed
for the thread is the IO instruction, which is spaced in the pipeline by p. The I/O operation
occurs at:

tDU ≥ t

tIO = tDU + c× p (4.1)
In the wait situation, the hardware thread transitions to sleep mode, and the control

unit flushes the pipeline and sets the program counter to the DU instruction. When the
comparison expires (within a clock cycle after time t), it takes at least 6 clock cycles for
the hardware thread to transition to active mode, be scheduled, and have the replayed DU
instruction in the execute stage, at time tDU2. In the worst-case, there is also a scheduling
delay, and the expiration time is at the beginning of a clock cycle. Figure 4.1 illustrates
both the minimum and maximum delay from time expiration until the DU instruction is in
the execute stage. The IO instruction executes p cycles after the DU instruction, and the I/O
operation occurs at:

t+ c× 6 ≤ tDU2 < t+ c× (6 + (p− 1) + 1)
t+ c× 6 ≤ tDU2 < t+ c× (6 + p)

tIO = tDU2 + c× p (4.2)
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Figure 4.1: Pipeline behavior for the delay from time expiration (at t) to replay of DU
instruction (at tDU2) at scheduling frequency of 1/4, with lighter green indicating instructions
from other hardware threads.

The DU instruction only provides a lower bound on timing behavior because the DU in-
struction executes when the program reaches it, with time tDU possibly well past the set
comparison time t. If tDU is bounded, by timing analysis for example, the range of tIO is
bounded as well. If the relative comparison time is greater than the longest program path
from a point, the wait situation always occurs, and Equation 4.2 can be rearranged using a
new variable tadj:

t+ c× (6 + p) ≤ tIO < t+ c× (6 + p+ p)
tadj = t+ c× (6 + p)

tadj ≤ tIO < tadj + c× p (4.3)

Except for variation caused by the scheduling delay d and the clock cycle granularity
of expiration (d + 1 = p), all the other terms are known. Therefore, the programmer or
compiler can adjust t, which is used by the CMP instruction, to compensate for the delay of
waking the thread and executing the IO instruction. For example, if f = 1/p = 1/4 and
c = 10 ns, t is calculated from the desired tadj by subtracting 100 ns, and the variation of
tIO is 40 ns (c × p). For tIO in a SRTT, p is not always constant and is replaced by the
maximum spacing between scheduled cycles.

I/O applications with periodic and relative timing constraints are concerned with relative
time duration between I/O mechanisms and not the absolute time.
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Example 4.2. Consider the following code segment where the DU instruction executes before
the comparison expires, and the I/O operations occur at periodically at tIOi, where i is the
loop iteration count.

time at commit point instruction
loop: CMP rt

tDUi, tDU2i DU
tIOi IO

ADDI rt, rt, period
JAL loop

The minimum and maximum relative time differences between I/O operations can be
computed using the results from Equation 4.3.

t2 = t1 + period
t1 ≤ tIO1 < t1 + c× p
t2 ≤ tIO2 < t2 + c× p

min(tIO2 − tIO1) = period− c× p (4.4)
max(tIO2 − tIO1) = period + c× p (4.5)

For f = 1/p = 1/4 and c = 10 ns, the relative timing between two consecutive I/O operations
is within 40 nanoseconds of the specified period. The error does not accumulate because rt

is incremented and not tIOi. Also, if p× c is a multiple of the period value, then there is no
phase shift in thread scheduling and consequently no variation in the relative timing of tIO.

The other timing instruction usable for I/O operations is the IE instruction, which in-
terrupts program execution when the current clock time reaches the comparison value set
by the CMP instruction. Unless there are no other interrupts or exceptions allowed, the han-
dler routine must first check that the cause of the interrupt was the IE mechanism before
performing any I/O operations.

Example 4.3. Consider the following code segment where IO performs an I/O operation,
and the handler must first execute code that requires h thread cycles.

time at commit point instruction
CMP rt

IE
...

tIE handler: ...
tIO IO
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Figure 4.2: Pipeline behavior for the delay caused by an earlier IE instruction from time
expiration (at t) to the first instruction of handler code (at tIE) at scheduling frequency of
1/4, with lighter green indicating instructions from other hardware threads.

The timing behavior of this code segment is similar to the DU instruction used in Ex-
ample 4.1. Since the hardware thread is already active, an instruction from the thread is
interrupted in the execute stage (and not earlier for precise exceptions). Multiple interrupt
handler instructions then execute instead of a single replayed DU instruction, increasing the
latency until the I/O operation. The scheduling delay affects when an instruction is inter-
rupted. Figure 4.2 illustrates both the minimum and maximum delay from time expiration
until the first handler code instruction is in the execute stage. The pm term is the minimum
delay caused by interrupt, pipeline flush, and next fetch for each scheduling frequency.

pm =

 5 f = 1, 1/2, 1/4
7 f = 1/3

t+ c× pm ≤ tIE < t+ c× (pm + (p− 1) + 1)
t+ c× pm ≤ tIE < t+ c× (pm + p)

tIO = tIE + c× (p× h) (4.6)

As with the delay until mechanism, variation only occurs from the scheduling delay and the
clock cycle granularity, and t can be adjusted to compensate for the other terms.

t+ c× (pm + p× h) ≤ tIO < t+ c× (pm + p+ p× h)
tadj = t+ c× (pm + p× h)

tadj ≤ tIO < tadj + c× p (4.7)
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Interrupt on expire can also be used in a periodic loop, as done with the DU instruction in
Example 4.2. The result is the same as Equations 4.4 and 4.5 provided the handler routine
takes a constant number of thread cycles.

Because the I/O mechanism only modifies I/O pins when an instruction executes, the
precision is limited by hardware thread scheduling. Between any two timing instructions, the
variation is bounded by c×2p. For a HRTT on a 100 MHz processor, this is 80 nanoseconds at
scheduling frequency 1/4. This level of timing accuracy and precision is much higher than on
a single-threaded processor running an RTOS unless there is only one task running. Higher
precision requires decoupling I/O from instructions using external hardware, as described
previously in Section 3.6.

4.2 Performance
Average throughputs of the overall processor and of each hardware thread are common
performance metrics for processors. High throughput provides fast and efficient execution
for a program since each clock cycle performs useful work. Cycles per instruction (CPI)
and its multiplicative inverse instructions per cycle (IPC) are average numbers for execution
over a period of time. By measuring with respect to clock cycles instead of time, these
metrics support comparisons that are independent of processor clock frequency but also
ignore differences in achievable processor clock frequencies.

We define and use three types of throughput metrics: processor, thread, and scheduled
thread CPI. Processor CPI, which provides a measure of overall processor throughput, is the
average number of instructions completed from all hardware threads per clock cycle. Thread
CPI is the average number of instructions completed from a specific hardware thread per
clock cycle and is a measure of hardware thread throughput. Scheduled thread CPI is the
average number of instructions completed from a specific hardware thread per scheduled
clock cycle; this measures the efficiency of a hardware thread at completing instructions
with provided cycle resources.

When a hardware thread’s scheduling frequency is constant and some program execution
properties are known, these metrics can be directly calculated. To evaluate the performance
of just the pipeline, we assume programs fit entirely within the scratchpad memories, no
peripheral bus or I/O operations, and no dynamic thread scheduling changes. This sec-
tion provides an equation to calculate these metrics and measures scheduled thread CPI
for benchmark programs executing in different hardware thread scheduling configurations.
These results provide insights into the relationships between scheduling and hardware thread
throughput, and concurrency and overall throughput.

Ignoring system and timing instructions, the only instructions that take more than a
single thread cycle are jump, taken branch, and memory load. The scheduled thread CPI for
different scheduling frequencies can be calculated if average percentages of these instruction
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types are known:

thread cycles
inst. (1 thread)

=


3× (% jump or branch taken) + 2× (% load) + (% rest) f = 1
2× (% jump or branch taken) + (% rest) f = 1/2
1 f = 1/3+

(4.8)

For example, if a program path consists of 10% jump or branch taken and 25% load instruc-
tions, the scheduled thread CPI for scheduling frequencies 1, 1/2, and 1/3 is 1.45, 1.1, and
1. When multiplied by the corresponding scheduling frequencies, the thread CPI can also
be calculated:

clock cycles
inst. (1 thread)

=


3× (% jump or branch taken) + 2× (% load) + (% rest) f = 1
4× (% jump or branch taken) + 2(% rest) f = 1/2
3 f = 1/3
4 f = 1/4

(4.9)

Using the same example, the thread CPI for scheduling frequencies 1, 1/2, and 1/3 is 1.45,
2.2, and 3. The processor CPI depends on the scheduled CPI of each hardware thread.

clock cycles
inst. (all threads) =

n−1∑
i=0

fTi × scheduled Ti CPI (4.10)

Extending the example to multiple hardware threads all the same instruction type percent-
ages, the overall processor CPI for 1, 2, or 3 concurrent, interleaved hardware threads is
1.45, 1.1, and 1. As expected for a fine-grained multithreaded processor, more interleaved
hardware threads decreases the throughput of each hardware thread (high thread CPI) but
increases the overall throughput of the processor (low processor CPI).

The percentages of each instruction type vary between programs, often with more branch-
ing in control-intensive programs and more memory accesses in data-intensive programs. To
investigate this variation and verify functionality and timing behavior, we executed and
measured throughput for C programs from the Mälardalen [96] benchmark suite, which was
created to compare WCET analysis tools and techniques. All programs from the benchmark
suite that are executable with RV-32I, fit within the scratchpad memories, and require over
1000 cycles to execute were used.

The selected programs perform different types of tasks: bsort100 and insertsort are sort
algorithms, cover has a large number of possible paths, crc checks data for errors, duff copies
data, and statemate is generated code for an automotive controller. The RISC-V port of
gcc compiled the C programs with the “−02” optimization flag. The results are shown in
Figure 4.3 and demonstrate the overall throughput advantage of fine-grained multithreading:
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Figure 4.3: Thread throughput for different scheduling frequencies.

a scheduling frequency change from 1 to 1/2 decreases average thread CPI by 19%, and a
scheduling frequency change from 1 to 1/3 decreases average thread CPI by 28%.

The overall processor throughput differences between FlexPRET and the baseline proces-
sors depend on the concurrency of the application. With only one task, the overall processor
CPI of Base-1T is equal to FlexPRET with one hardware thread at scheduling frequency of
1 (every cycle). With four concurrent tasks deployable on separate hardware threads, the
overall processor CPI of Base-4T-RR is equal to FlexPRET with 4 hardware threads each
at scheduling frequency of 1/4.

One example relationship between concurrency and overall throughput is visualized in
Figure 4.4 for both FlexPRET and the baseline processors. When concurrency of x exists,
the Base-1T executes x identical tasks sequentially (one after another), FlexPRET executes
x identical tasks on separate hardware threads that are interleaved round-robin, and Base-
4T-RR also executes x identical tasks on separate hardware threads but always interleaves
4 hardware threads. This example assumes each task has a thread CPI equal to the aver-
age (mean) thread CPI from Figure 4.3, and the results are directly calculated instead of
simulated.

When there is no concurrency, FlexPRET and Base-1T have an identical overall processor
CPI, which is 1.39 in this example, while Base-4T-RR has an overall processor CPI of 4.
The high processor CPI at low concurrency is the main disadvantage of Base-4T-RR’s fixed
thread interleaving, which FlexPRET avoids by allowing arbitrary thread interleaving. As
concurrency increases, Base-1T’s CPI remains constant, but FlexPRET’s and Base-4T-RR’s
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Figure 4.4: Overall processor throughput on FlexPRET and the two baseline processors for
an example consisting of different numbers of independent concurrent tasks.

overall CPI improves. Base-4T-RR needs to execute at least 3 concurrent tasks for a lower
CPI than Base-1T.

As a result, in addition to its predictability and isolation properties, FlexPRET provides
higher overall throughput for varying concurrency than the baseline processors. A higher
overall throughput does not imply a high overall efficiency, however, unless all processors
operate at the same clock frequency and have the same cost. The hardware resource costs
for the techniques used in FlexPRET will be evaluated in the next section.

4.3 FPGA Resources Usage
An FPGA contains configurable components, which include logic and memory, with con-
figurable interconnect. The basic logic element in an FPGA is a lookup table (LUT) with
some number of inputs and an output. For every possible input combination, the output
is programmable, implementing combinational logic. Sequential logic requires memory, and
the basic memory element in an FPGA is a flip-flop (FF), which stores the input on the
clock edge. Block RAMs (BRAMs) provide higher-density storage in an FPGA. All these
elements are connected using different routing resources. Routing delays often constrain the
maximum operating frequency of a design more than logic delays.

In the Xilinx Spartan-6 FPGA, 6-input LUTs and FFs are grouped into slices, which can
also contain additional elements to improve area or speed, such as multiplexers, carry logic,
and shift-registers. Composition of FPGA elements varies between manufacturer and part
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family, so LUT and FF numbers are useful for general comparisons. For comparison between
designs on the same hardware, such as between FlexPRET and the baseline processors, the
number of slices is a useful measure of area that combines both LUTs and FFs.

Base-1T and Base-4T-RR would function correctly if FlexPRET’s design is only modified
with different schedulers but would have unnecessary logic and paths. For an objective
comparison, we improve the design of both baseline processors to reduce area and increase
maximum clock frequency. Figure 4.5 shows a high-level pipeline diagram for the three
configurations.

For Base-1T, the same paths and control logic execute instructions but for only a single
thread. As opposed to a multithreaded pipeline that updates and selects between multiple
program counters for instruction fetch every cycle, only one program counter is required.
There is also only one set of CSRs, which reduces routing and multiplexing. The hardware
thread scheduler does not exist, but the thread mode mechanism is used to indicate if each
fetch cycle is valid. The modified pipeline is shown in Figure 4.5b.

In Base-4T-RR, fixed hardware thread scheduling simplifies datapath and control logic.
Hardware thread scheduling only requires a 2-bit counter with validity based on thread
mode instead of slot and thread mode CSRs generating requests for arbitration logic. When
a hardware thread’s current instruction is in the fetch stage, the hardware thread’s previous
instruction can only be in the writeback stage—with all processor state changes committed.
Consequently, no bypass paths for source register values are needed from the execute, mem-
ory, or writeback stages. Also, the program counter address calculation in the execute stage
can be registered to reduce timing path length.

Figure 4.6a shows resource usage on a Xilinx Spartan-6 XCSLX45-3CSG324 for Flex-
PRET, Base-1T, and Base-4T under several configurations at a 90 MHz clock speed with a
16 KB I-SPM and 16 KB D-SPM. The suffix on the processor names indicates different con-
figurations: MIN is a minimal implementation without trapping or timing instructions, EX
has trapping added, and TI has both trapping and timing instructions added. The numbers
were obtained by running synthesis, map, and place and route with high optimization effort
for area but no manual floor planning. All versions require 16 Block RAMs for SPMs and 1
Block RAM for the register files, where each Block RAM in this device is 18 kilobits.

The resource differences between the Base-1T and Base-4T-RR configurations show the
cost of fine-grained multithreading. Compared to Base-1T, Base-4T-RR does not need for-
warding paths and control logic for flushing, which decreases required LUTs, but needs
multiplexing for program counters and several CSRs, which increases required LUTs. The
increase in LUTs is 1% for MIN, 31% for EX, and 39% for TI. Most CSRs and the program
counters scale with the number of hardware threads, which causes the increase in FFs: 35%
for MIN, 92% for EX, and 99% for TI. For this FPGA, the increase in FFs is less relevant
than the increase in LUTs because FFs are underutilized in slices—the increase in slices is
22% for MIN, 39% for EX, and 57% for TI.

The relative cost of fine-grained multithreading is higher with trapping and timing in-
structions because of mechanisms that scale with number of hardware threads. For each
hardware thread, trapping stores the cause, program counter, and address of handler rou-
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Figure 4.5: High-level datapath diagrams for FlexPRET and the baseline processors.



CHAPTER 4. IMPLEMENTATION AND EVALUATION 68

Base-1
T-MIN

Base-4
T-RR-MIN

FlexPRET-4T-MIN

Base-1
T-EX

Base-4
T-RR-EX

FlexPRET-4T-EX

Base-1
T-TI

Base-4
T-RR-TI

FlexPRET-4T-TI
0

250

500

750

1,000

1,250

1,500

1,750

2,000

46
0 62

2

65
1

59
8

1,
15

0

1,
17

8

66
9

1,
32

9

1,
35

9

92
0

93
3 1,

13
6

1,
04

6 1,
36

8 1,
63

6

1,
16

9

1,
62

6 1,
91

7

26
3 32
1

32
2 41

1 57
1 69

9

43
0

67
4 73
3

FP
G

A
C

om
po

ne
nt

s

Flip-flops (FF) Lookup-tables (LUT6)
Slices

(a) Base ISA (RV32I)

Base-1
T-MIN

Base-4
T-RR-MIN

FlexPRET-4T-MIN

Base-1
T-EX

Base-4
T-RR-EX

FlexPRET-4T-EX

Base-1
T-TI

Base-4
T-RR-TI

FlexPRET-4T-TI
0

250
500
750

1,000
1,250
1,500
1,750
2,000
2,250
2,500
2,750
3,000
3,250
3,500

49
4 65

7

68
7

63
3

1,
18

6

1,
21

3

70
3

1,
35

7

1,
38

7

2,
21

9

2,
25

0 2,
63

8

2,
24

3 2,
75

3

2,
86

7

2,
33

4 2,
93

8 3,
24

4

66
5

68
1 82
5

71
7 93

1

98
8

78
3 1,

02
0

1,
19

6

FP
G

A
C

om
po

ne
nt

s

Flip-flops (FF) Lookup-tables (LUT6)
Slices

(b) Base ISA (RV32I) extended with 2-cycle hardware multiplier implemented with lookup-tables

Figure 4.6: FPGA resource usage by FlexPRET and two baseline processors for three con-
figurations: without trapping or timing instructions (MIN), with trapping but no timing
instructions (EX), and with trapping and timing instructions (TI).
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tine. For each hardware thread, timing instructions require a comparator between the shared
clock and the thread’s compare value in a CSR. Although these mechanisms increase resource
usage, the Base-1T cannot independently and concurrently handle 4 external interrupts or
timing operations—similar functionality requires 4 Base-1T processors.

The resource differences between the Base-4T-RR and FlexPRET configurations show the
cost of flexible thread scheduling. The scheduling logic, forwarding paths, and control logic
for flushing increase LUTs, and additional CSRs for the scheduler increase FFs. Compared
to Base-4T-RR, the increase in LUTs for FlexPRET is 22% for MIN, 20% for EX, and 18%
for TI; the increase in FFs is under 5%; and the increase in slices is under 1% for MIN, 22%
for EX, 9% and TI. The overhead of less than 10% for the TI configuration justifies adding
FlexPRET’s thread scheduler, or a variation, to any fine-grained multithreaded processor;
if necessary, the hardware thread scheduler can emulate existing scheduling approaches. In
addition to the isolation of HRTTs and cycle sharing of SRTTs, overall processor throughput
is higher whenever less than 4 hardware threads are active.

With more independent tasks than hardware threads, a collection of Base-1T cores pro-
vides a higher overall throughput per area than FlexPRET when the area costs are higher
than the CPI benefits of fine-grained multithreading. For an isolation-bound task set, how-
ever, each FlexPRET processor can meet requirements that would traditionally require sev-
eral (i.e. up to 4) Base-1T cores—a substantial savings. Furthermore, the percentage in-
creases are based on a bare-minimum processor implementation and would decrease with
more shared functionality added to the processor, such as a floating-point unit or peripher-
als. For example, Figure 4.6b shows the FPGA resource usage with an 80 MHz processor
clock when a 2-cycle LUT-based multiplier is added to the configurations of Figure 4.6a.

4.4 Power and Energy Implications
Embedded devices require low power (energy consumed per unit time) for less heat dissi-
pation and energy efficiency for longer battery life. Power and energy efficiency depend on
both the microarchitecture and its implementation on a specific device process technology.
This section focuses on only the high-level energy efficiency implications of the FlexPRET
microarchitecture in comparison to the baseline processors, without any measurements. We
define energy efficiency the energy required to perform a sequence of instructions, which
is measured as average energy per instruction. Some of the techniques considered require
additional circuitry on ASICs and cannot be done on current FPGAs.

There are two main sources of energy usage in a circuit: dynamic from transistor switching
activity and static from transistor leakage. Dynamic energy is used every clock cycle to
change the values at logic gates by charging or discharging associated capacitance. The
energy used for a sequence of instructions can be calculated from the supply voltage Vdd,
total circuit capacitance Ctotal, and switching activity factor α.

Edynamic = αCtotal Vdd
2 ∝ Vdd

2 (4.11)
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The switching activity varies every cycle, as it depends on the logical changes at every
gate in the circuit, but an estimated factor can be used for a sequence of instructions.
At a lower supply voltage, the maximum achievable clock frequency is also lower. For a
fixed supply voltage, reducing clock frequency does not reduce energy efficiency, but it does
reduce dynamic power because of less switching per unit time. However, reducing supply
voltage quadratically reduces dynamic energy; this reduction is limited by clock frequency
requirements or faulty operation at lower supply voltages. For minimal dynamic energy
usage, the supply voltage should be as low as possible provided the corresponding clock
frequency meets the real-time requirements of the application.

Static energy is used whenever the circuit is powered because transistors in gates do
not turn completely off, allowing current to leak. To save energy, a design can power off
parts of a circuit when not needed, but power up latencies and control logic overhead limit
frequency and granularity of power toggling. At a high level, the energy usage for a sequence
of instructions that has an execution time of t at supply voltage Vdd is

Estatic = Ileakage × t× Vdd (4.12)

where Ileakage is the total leakage current for the powered transistors and scales with Vdd. The
highest clock frequency for a given supply voltage will minimize t. Maximum clock frequency
increases then saturates with higher supply voltages, and the minimal static energy point
depends on this relationship. A high clock frequency with a low supply voltage allows the
circuit to power down for longer periods of time. The supply voltage and clock frequency
that minimizes the sum of dynamic and static energy for a sequence of instructions depends
on all these parameters. To meet an application’s timing requirements, the processor may
also require a non-optimal operating point.

Low-level circuit design techniques affect the energy efficiency trade-offs for a particular
design. Clock gating disables the clock signal to certain gates, which prevents them from
switching and using dynamic energy. The threshold voltage (Vt) of a transistor affects its
behavior: higher Vt transistors switch faster but also has a higher leakage current. In a
multiple threshold voltage (Vt) process, higher leakage transistors are only used for gates that
are on long timing paths, reducing overall static energy. These techniques are independent
of the microarchitecture but affect the optimal operating point for energy efficiency. Within
reasonable bounds, dynamic energy is minimized by a low supply voltage and finishing “just
in time”, but static energy is minimized by a high clock frequency to “race to finish” and
power off. Historically, dynamic energy dominates overall energy usage until fairly low supply
voltages.

For our high-level comparison, we assume the processors have a low-power standby state
and can function at multiple discrete operating frequencies. The optimal energy efficiency
occurs at some supply voltage and associated clock frequency, and higher suboptimal sup-
ply voltages and associated clock frequencies are used to meet timing constraints. If an
application’s WCET requires an operating frequency lower than the optimal frequency, the
processor operates at the optimal frequency and goes into standby. If the required operat-
ing frequency is higher than the optimal frequency, however, there are several options. The
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simplest method is a static selection of the lowest operating frequency that meets the applica-
tion’s WCET requirements. If an application’s ACET is much less than the WCET, however,
dynamically changing the operating frequency can further improve energy efficiency.

In both cases, a tighter bound on WCET improves energy efficiency. In the static case,
a loose WCET bound requires operating at a higher, less efficient clock frequency than
is necessary to meet the deadline. In the dynamic case, dynamic voltage and frequency
scaling (DVFS) starts executing the program at the optimal operating frequency and only
increases to suboptimal frequencies at program checkpoints for longer program paths (e.g.
WCET path). For DVFS, a loose WCET bound requires frequency to increase faster than
necessary, reducing energy efficiency.

Predictability enables tighter bounds on WCET, so FlexPRET should be a good can-
didate for these high-level approaches for energy efficiency. Furthermore, with enough con-
currency, high processor throughput reduces cycles needed to complete a task. The baseline
processors are also predictable, but throughput for varying concurrency is not as high. Base-
1T requires more cycles to execute an application because latency is not hidden by other
hardware threads. To match the throughput of FlexPRET, Base-4T-RR would need 4 hard-
ware threads to always be all active or all not active.

Multithreading is both a benefit and a hindrance—it enables high throughout with pre-
dictability, but balancing hardware thread scheduling for energy efficiency is more difficult
than in software. Software and hardware thread scheduling of tasks on FlexPRET for energy
efficiency is a challenging future direction. The processor can only go into standby state if
all hardware threads are sleeping, and there is some flexibility for trading-off the logical
frequency of each hardware thread, provided full isolation is not required.
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Chapter 5

Application to Real-Time Systems

This chapter demonstrates FlexPRET programming methodologies for two types of real-time
applications: mixed-criticality systems and precision-timed input/output (I/O). FlexPRET
supports existing techniques for implementing these applications by configuring hardware
thread scheduling for single-threaded or interleaved multithreaded operation, but the exam-
ple applications in this chapter demonstrate the benefits of more flexible thread scheduling.
Also, the integration of timer functionality with the processor through timing instructions
simplifies the specification of precise timing behavior.

Mixed-criticality systems consist of tasks with different verification requirements and
timing constraints. The challenge is providing a different level of assurance for each task
while maintaining efficient resource utilization. FlexPRET addresses this challenge by using
separate hardware threads, each with allocated scheduling resources (Section 5.1).

Hardware peripherals support cycle-accurate I/O operations but perform a dedicated
operation. Additionally, the peripheral must both exist and be available on the selected
hardware platform. When using software for multiple independent I/O tasks, conflicts over
execution priority in a single-threaded processor reduce timing accuracy and precision. With
FlexPRET, hardware threads have no context switch overhead, and the precision of timing
instructions is limited by how frequently the thread is scheduled (Section 5.2).

5.1 Mixed-Criticality Systems
An increasing trend in cyber-physical and real-time embedded systems is integrating tasks
with different levels of criticality onto a single hardware platform—resulting in a mixed-
criticality system. Criticality represents the required level of assurance against failure for a
task or component. For application domains such as automotive and avionics, each criticality
level has different certification requirements, which specify or restrict design and verification
methodologies. The number and definition of criticality levels vary by standard, but the
minimum is two levels, often defined as safety-critical and non-critical.
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The trend is driven by the transition from federated to integrated architectures in both
the avionics and automotive domains to reduce costs, even with increasing system complex-
ity. Both improvements in application functionality and advances in hardware platforms
increase system complexity. As in general-purpose systems, embedded system components
are migrating from a single core processor to either a homogeneous or heterogeneous multi-
core system-on-a-chip (SoC) for higher performance and reduced power consumption. Tasks
share a hardware platform by partitioning processor time, memory, networks, and other
shared resources. There are advantages and disadvantages to a highly integrated hardware
platform: there is more flexibility at both design and run time to reallocate spare resources,
but system design and verification must account for the contention and interference caused
by this resource sharing.

In avionics, the Integrated Modular Avionics (IMA) concept is to integrate multiple
tasks with modular interfaces onto the same computing platform, reducing weight, power,
and development costs [97]. With a well-defined common interface between software and
hardware, spare resources are more usable, and functionality upgrades are possible without
a complete system redesign. The ARINC 653 software standard [39] defines how a real-time
operating system (RTOS) partitions space and time for applications with different criticality
levels. To specify these levels, the DO-178C standard [13] defines five design assurance levels
(DALs) with different definitions and requirements: (A) Catastrophic, (B) Hazardous, (C)
Major, (D) Minor, and (E) No Safety Effect.

Specifications of criticality levels focus on the consequences of failures and requirements
for assuring safe behavior. Meeting timing deadlines is just one possible requirement—tasks
function unsafely in other ways. Nevertheless, we investigate the timing-related properties
of FlexPRET for mixed-criticality systems. We assume high-criticality tasks are classified as
hard real-time (must meet deadline), and low-criticality tasks are classified as soft real-time
(reduced utility with deadline miss). This assumption does not hold for all applications, but
a task of any criticality level could use a different real-time classification.

In this section, we describe a methodology for deploying mixed-criticality applications
on FlexPRET (Section 5.1.1) and demonstrate this methodology with a simple example
and a more complex case study (Section 5.1.2). Previous work in mixed-criticality has
focused on software scheduling for single-threaded processors and relies on the assumption
that each task has a different WCET bound for each criticality level [11] (Section 5.1.3).
By supporting hardware-based isolation, FlexPRET provides higher confidence in timing
behavior for certain tasks without any assumptions about differing WCET bounds.

5.1.1 Methodology
Partitioning a hardware platform in both space and time is an essential technique used in
mixed-criticality systems. Privatizing memory segments and I/O devices are examples of
space partitioning, and allocating segments of time for processor or shared resource usage
are examples of time partitioning. Isolated partitions provide safety assurances but limit
resource sharing for efficient utilization—a fundamental trade-off for mixed criticality sys-
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tems. FlexPRET is designed to provide greater flexibility for this trade-off on an integrated
platform.

An integrated architecture on a single-threaded processor requires software-based parti-
tioning. As discussed in Chapter 1, partitioning can be either static and reservation-based or
dynamic and priority-based. For safety guarantees, the RTOS must enforce the partitioning
by monitoring execution times and protecting memory segments; if a non-critical task is re-
sponsible for not exceeding its execution-time budget and returning control to the scheduler,
verification of that task must be at the same level of assurance as the most critical task.

Hardware-based partitioning is robust because it does not rely on software for isolation
but has traditionally been provided by a federated architecture. Multicore processors support
an integrated architecture with each core providing hardware-based isolation for a single
task, although some resources such as the memory bus are shared between cores. Fine-
grained multithreading supports a finer granularity of hardware-based isolation at the level
of hardware threads. Therefore, FlexPRET supports more partitions isolated by hardware
than a single-threaded core while still allowing direct sharing of spare resources.

Our proposed methodology for deploying mixed-criticality applications onto the Flex-
PRET processor uses the combination of hardware-based and software-based partitioning.
We suggest the following:

1. Assign only tasks of the same criticality level to each hardware thread, with fewer tasks
per hardware thread at higher criticality levels.
The software testing and verification requirements vary by criticality level. With only
one criticality level present on a virtual real-time machine (hardware thread), there
are no conflicting requirements. An RTOS on each thread uses a traditional real-time
scheduling algorithm, as the mixed-criticality aspect of the application is partitioned
away. If the scheduling algorithm does not reallocate spare resources to another task on
the same hardware thread, the hardware thread scheduler reallocates them to another
hardware thread. This guideline of a single criticality level per thread can be relaxed
if required to improve schedulability or efficiency, but the RTOS would use a mixed-
criticality scheduling algorithm.

2. For hardware threads with higher-criticality tasks, use hard real-time threads (HRTTs)
and over-allocate scheduling resources.
With isolated scheduling and constant instruction latencies, HRTTs are predictable for
static worst-case execution time (WCET) analysis, resulting in safe and tight WCET
bounds. This high confidence in timing behavior is beneficial for guaranteeing safe func-
tionality of higher-criticality tasks. The allocated scheduling frequency depends on the
requirements of the other threads and has limited options (e.g. f = 1/1, 1/2, 1/3, . . . ).
HRTTs must be over-allocated scheduling resources, but SRTTs can use any spare
cycles.
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3. For hardware threads with lower-criticality tasks, use soft real-time threads (SRTTs)
and under-allocate scheduling resources.
With only a minimum scheduling frequency and bounded instruction latencies, static
WCET analysis is likely to provide looser WCET bounds for a SRTT because there is
no guarantee of spare scheduling resources. By considering the run-time behavior of
other hardware threads, as is done in mixed-criticality schedulability analysis, tighter
WCET estimates are obtainable. Higher overall efficiency is the rationale for under-
allocating scheduling resources: if all tasks meet deadlines with allocated scheduling
resources, spare cycles are not needed to meet deadlines and only improve response
times.

4. If multiple tasks are mapped to a single hardware thread, use the highest confidence
scheduling algorithm that meets all deadlines; prefer non-preemptive over preemptive
and static over dynamic for higher-criticality tasks.
Scheduling algorithm selection depends on task set properties, criticality level require-
ments, and implementation overhead. Ignoring overhead, the selected scheduling algo-
rithm affects when spare cycles occur but not the number of them. The dependence
of instruction latency on processor state is a primary motivator for disallowing pre-
emption, which modifies processor state at unpredictable program points. This is not
a problem in FlexPRET, but disallowing preemption still has other benefits, such as
reduced load on SPM management with less task switching. Static scheduling algo-
rithms are preferrable for higher-criticality tasks if software overhead and complexity
is lower and time segments of cycle sharing are more predictable. For lower-criticality
hardware threads, the scheduling algorithm should be more aggressive to efficiency use
spare cycles.

These suggestions are not requirements for deploying mixed-criticality applications on
FlexPRET but take advantage of the processor’s unique properties. Due to the limited
number of hardware threads and possible scheduling combinations, some hardware threads
may execute mixed-criticality task sets. FlexPRET can always operate in single-threaded
mode, but concurrent threads provide hardware-based isolation and improved overall pro-
cessor throughput.

5.1.2 Evaluation
We use a simple mixed-criticality task set example to demonstrate the isolation and efficient
resource utilization properties of FlexPRET. To demonstrate the task mapping and thread
scheduling methodology, we simulate a more complex task set from the avionics domain that
has more tasks than hardware threads.
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Simple Mixed-Criticality Example

The simple mixed-criticality example consists of four periodic tasks, τA, τB, τC , and τD,
simulated on a FlexPRET processor with 4 hardware threads, 32 KB I-SPM, 32 KB D-
SPM, and a hardware multiplier, a reasonable configuration for a low-cost FPGA soft-core
or ASIC. The task identifiers A, B, C, and D represent the criticality level of each task from
highest to lowest, similar to design assurance levels (DALs) in the avionics domain. Tasks
τA and τB have hard real-time requirements and are on separate HRTTs, and tasks τC and
τD have soft real-time requirements and are on separate SRTTs.

Figure 5.1a shows each task’s thread ID, initial thread mode, period (Ti), relative deadline
(Di), and worst-case thread cycles for each scheduling frequency f (Ei,1, Ei,1/2, Ei,1/3+). The
thread cycle values are converted to worst-case execution time Ci using processor clock
frequency fp, where Ci = Ei,f/(fp × f). For example at clock frequency 100 MHz, if τA

executes every processor cycle (f = 1), it would take 4 ∗ 105/(100 ∗ 106 Hz) = 4 ms to
complete, and if it instead executes every other processor cycle (f = 1

2), it would take
3.65 ∗ 105/(100 ∗ 106 Hz ∗ 1

2) = 7.3 ms to complete.
In FlexPRET, the number of thread cycles to execute a path in the task depends on

scheduling frequency, as lower scheduling frequencies hide instruction latencies, such as taken
branches. As examined in Section 4.2, the variation depends on the percentages of different
instruction types. To account for the throughput differences, each task iterates a program
from the Mälardalen benchmark suite to reach the values of Ei,1 specified in Figure 5.1a,
which are contrived to highlight properties of FlexPRET. The same number of iterations is
performed at the other scheduling frequencies to measure values for Ei,1/2 and Ei,1/3+. Tasks
τA and τB use statemate (generated automotive controller), τC uses jfdctint (discrete-cosine
transformation), and τD uses insertsort (sorting algorithm). Each iteration takes the same
(assumed) worst-case program path, and the delay until mechanism performs periodic task
release with spare cycle sharing once completed.

Figure 5.1b shows the selected scheduling configuration for this task set, but other con-
figurations have possibly lower response times. Based on worst-case thread cycles and period
requirements, task τA requires a scheduling frequency of at least 1/3 to meet its deadline,
task τB does not require many cycles, task τC requires almost half of the processor cycles to
meet its deadline, and task τD does not require many cycles. Therefore, slots are assigned
such that τA and τB are over-allocated cycles with scheduling frequencies of 1/3 and 1/6;
higher scheduling frequencies would reduce thread interleaving once these tasks complete.

Tasks τC and τD are SRTTs and use the allocated cycles of tasks τA and τB once they
complete. Even though these SRTTs have quite different execution cycles requirements,
by default the hardware thread scheduler alternates between these two threads, completing
task τD much earlier than task τC . As overall efficiency is higher when more threads are
interleaved, one of the scheduling slots is assigned to task τC , which causes it to execute at
a faster rate than task τD. Two slots are disabled and two automatically delegate to SRTTs
to achieve the desired scheduling frequencies of the HRTTs.
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Task Thread ID Thread
Mode
(Init)

Ti, Di (ms) Ei,1
(∗105)

Ei,1/2
(∗105)

Ei,1/3+
(∗105)

τA 0 HA 12 4.00 3.65 3.45
τB 1 HA 6 0.50 0.45 0.43
τC 2 SA 12 4.80 4.69 4.59
τD 3 SA 6 1.00 0.93 0.86

(a) The task set.

D D S S T0 (τA) T2 (τC) T1 (τB) T0 (τA)

(b) The slots CSR.

t(ms)0 1 2 3 4 5 6 7 8 9 10 11 12
(τA)
(τB)
(τC)
(τA)
(S)
(S)

(c) FlexPRET-4T in normal operation.

t(ms)0 1 2 3 4 5 6 7 8 9 10 11 12
(τA)
(τB)
(τC)
(τA)
(S)
(S)

(d) FlexPRET-4T with error: τD completes immediately.

t(ms)0 1 2 3 4 5 6 7 8 9 10 11 12
(τA)
(τB)
(τC)
(τA)
(S)
(S)

(e) FlexPRET-4T with error: τD executes infinitely.

τA τB τC τD τC/τD

Figure 5.1: The task set and scheduler properties for a simple mixed-criticality example
simulated on FlexPRET-4T under various conditions.
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Figures 5.1c, 5.1d, and 5.1e show the simulated execution trace over a single hyperperiod,
which is the least common multiple of the task periods, for different scenarios. The vertical
axis is one iteration through the 6 active slots and shows which hardware thread uses each
slot over time; the values in parenthesis along the axis indicate the allocated slot value. This
format better visualizes the thread scheduling than cycle-by-cycle scheduling over time.

Figure 5.1c is an execution trace for normal operation where every task executes the
worst-case program path. Tasks τA and τB complete before the respective deadlines, after
which their allocated slots are used by SRTTs, which means tasks τC and τD. Whenever
task τC completes, task τD uses all spare cycles; at time 5 ms task τD executes for 4 of every
6 cycles, and at time 10.5 ms, it executes every cycle. The timing behavior of tasks τA and
τB is isolated and predictable, and task τC efficiently uses spare cycles to meet its deadline,
even though it was under-allocated scheduling resources in the slots CSR.

This task set is not schedulable on Base-4T-RR with fixed round-robin scheduling because
tasks τA and τC each require more than 1/4 of the processor cycles to meet the respective
deadlines, which cannot occur with a fixed interleaving over 4 hardware threads. Also, even if
all tasks could meet the respective deadlines with a scheduling frequency of f = 1/4, tasks τC

and τD cannot use spare cycles. With active round-robin scheduling, all tasks meet deadlines
but the timing behavior of each task is not isolated. Base-1T would need to use software
scheduling to isolate tasks τA and τB, and it would require more execution cycles—all tasks
would complete at time 11.8 ms instead of at time 10.8 ms in this example.

To demonstrate the isolation of HRTTs, Figure 5.1d shows an error case where τD com-
pletes immediately, and Figure 5.1e shows an error case where τD executes infinitely. For
both cases, the timing behaviors of the most critical tasks τA and τB are identical. When task
τD ends immediately, task τC executes more frequently and completes earlier than normal;
when task τD never ends, τC executes less frequently and barely meets its deadline.

Mixed-Criticality Avionics Case Study

Deployment on FlexPRET of a mixed-criticality task set with more tasks than hardware
threads requires a task mapping and thread scheduling methodology. We demonstrate our
proposed methodology on an abstract task set from Vestal’s influential paper on mixed-
criticality scheduling [10]. The task set contains 21 tasks of varying criticality levels derived
from a time-partitioned avionics system at Honeywell, where A is the highest assurance level
and D is the lowest. To remove the need and effects of scratchpad memory management,
the task set was simulated on a FlexPRET processor with 8 hardware threads, a hardware
multiplier, and an unpractical 128 KB for the I-SPM and D-SPM.

As with the simple mixed-criticality example, Figure 5.2a shows each task’s thread ID,
initial thread mode, period (Ti), relative deadline (Di), and worst-case thread cycles for
each scheduling frequency f (Ei,1, Ei,1/2, Ei,1/3+). The overall processor utilization with all
threads executing in single-threaded mode is 93%. Again, A and B level tasks iterate the
statemate program, and C and D level tasks iterate either jfdctint or insertsort, to account
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Task Thread ID Thread
Mode
(Init)

Ti, Di (ms) Ei,1
(∗105)

Ei,1/2
(∗105)

Ei,1/3+
(∗105)

τA1 0 HA 25 1.10 1.00 0.95
τA2 1 HA 50 1.80 1.64 1.55
τA3 2 HA 100 2.00 1.82 1.72
τA4 3 HA 200 5.30 4.83 4.56
τB1 4 HA 25 1.40 1.27 1.20
τB2 4 HA 50 3.90 3.54 3.34
τB3 4 HA 50 2.80 2.54 2.40
τB4 5 HA 50 1.40 1.28 1.21
τB5 5 HA 50 3.70 3.37 3.19
τB6 5 HA 100 1.80 1.64 1.55
τB7 5 HA 200 8.50 7.75 7.32
τC1 6 SA 50 1.90 1.77 1.63
τD1 6 SA 50 5.40 5.03 4.65
τD2 6 SA 200 2.40 2.33 2.28
τD3 6 SA 50 1.30 1.26 1.23
τD4 6 SA 200 1.50 1.45 1.42
τD5 7 SA 25 2.30 2.14 1.98
τD6 7 SA 100 4.80 4.65 4.30
τD7 7 SA 200 13.00 12.70 12.44
τD8 7 SA 100 0.60 0.57 0.56
τD9 7 SA 50 2.40 2.33 2.28

(a) The task set.

T5 T3 T4 T2 T5 T1 T4 T0

(b) The slots CSR.

Figure 5.2: The task set and scheduler properties for a mixed-criticality avionics case study
simulated on FlexPRET-8T.
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Figure 5.3: Execution trace for a mixed-criticality avionics case study simulated on
FlexPRET-8T.
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for thread latency dependence on scheduling. The delay until mechanism shares cycles
once a task completes until the next periodic release.

To follow (1), the most critical tasks τA1−τA3 each execute on separate hardware threads,
isolated from all other tasks. There are not enough hardware threads for all B level tasks to
use separate threads, so tasks τB1− τB2 share one thread, and tasks τB4− τB7 share another
thread, isolated from tasks of other criticality levels. Even though tasks τC1, τD1− τD9 could
be mapped to one thread, overall efficiency is higher when more threads are interleaved, and
the tasks are split between the remaining threads.

Figure 5.2b shows the thread scheduling configuration in the slots CSR. Each hardware
thread is similar to a partition used by reservation-based scheduling in commercial RTOSs
for mixed-criticality systems [40], but with isolation for HRTTs guaranteed by hardware. To
follow (2), scheduling resources are over-allocated for the threads containing A and B level
tasks, and these hardware threads are classified as HRTTs for predictability and isolation.
Based on worst-case execution cycles, the scheduling frequency of 1/8 is sufficient for the
four threads executing tasks τA1 − τA3, and the scheduling frequency of 1/4 is sufficient for
the two threads executing tasks τB1 − τB7. To follow (3), the threads for the C and D level
tasks are classified as SRTTs; there are no slots left to allocate, so these threads only execute
with spare cycles.

Different scheduling algorithms are used for each hardware thread, following (4). Tasks
τA1 − τA3 do not need a scheduling algorithm, and tasks τB1 − τB3 are able to use a non-
preemptive static schedule to meet their respective deadlines. Tasks τB4−τB7 use preemptive
rate-monotonic software scheduling to meet their respective deadlines because using a non-
preemptive scheduler would require splitting a task for schedulability.

The two SRTTs use an earliest-deadline-first (EDF) scheduler because it is optimal with
respect to feasibility for the task sets on each thread and straightforward to implement. The
interrupt on expire mechanism releases tasks into the priority queue sorted by deadline,
and the EDF scheduling algorithm executes whenever the queue is modified, either by task
release or completion, and may preempt another task.

Figure 5.3 shows execution traces for a single hyperperiod of the task set (t = 200 ms).
Each hardware thread (label on right) has a subplot, with darker blue rectangles indicating
the respective task (label on left) is executing and lighter green rectangles with a dotted line
indicating its preempted. The up and down arrows indicate the deadline time of a task’s job
is equal to the release time of its next job (relative deadline is equal to the period). In this
example trace, every job follows the worst-case program path.

For tasks τA1− τA4 and τB1− τB7, HRTTs are isolated so every job of each task takes the
same amount of execution time to complete—demonstrating predictability and isolation for
these critical tasks. For tasks τC1 and τD1 − τD9, however, the execution time of each task
job varies. These SRTTs rely on spare cycles from the HRTTs, so execution time depends on
the execution behavior of the HRTTs. When all the HRTTs are executing, the less critical
tasks are not executing (e.g. at time 0 ms), and when fewer HRTTs are executing, the less
critical tasks execute more frequently (e.g. at time 74 ms).
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In this execution trace, all tasks meet their deadlines. With hardware-based isolation
and simple scheduling algorithms, HRTTs support WCET analysis and high confidence in
correct and repeatable timing behavior. Analysis of SRTTs requires accounting for HRTT
execution behavior, but less critical tasks can rely more on testing. For a multithreaded pro-
cessor without FlexPRET’s thread scheduling technique, such as fixed or active round-robin
scheduling, the tasks would need to be distributed among hardware threads in a balanced
manner to meet deadlines, with less separation of criticality levels. For this task set, a single-
threaded processor could use a mixed-criticality scheduling algorithm, but would have lower
overall processor throughput and only software-based isolation enforced by preemption.

5.1.3 Related Work
Researchers have proposed approaches for designing and verifying mixed-criticality systems
at both the software and hardware level. At the software level, real-time scheduling theory
(Section 2.1) is extended by adding criticality levels, which affects the properties of existing
scheduling algorithms. At the hardware level, either software and its analysis are adapted
for mixed-criticality with COTS processors or architectures are modified.

Burns and Davis [11] performed a comprehensive survey of real-time software scheduling
techniques for mixed-criticality systems. The main assumption used by this community
is each task’s WCET is dependent on criticality level, with a higher WCET for a higher
criticality level. Extending task models with this property improves schedulability of mixed-
criticality task sets; an unschedulable task set using the highest-criticality WCET values can
be schedulable when evaluation occurs at each task’s criticality level.

Reservation-based and priority-based scheduling, introduced in Chapter 1, are two ap-
proaches for scheduling mixed-criticality task sets on a single-threaded processor [38]. An
example of reservation-based scheduling is an RTOS partitioning the processor according to
the ARINC 653 standard for integrated modular avionics (IMA) [98]. Critical tasks are guar-
anteed resources and isolated using partitions, and some RTOSs reallocate spare segments
of partitions to other tasks, such as WindRiver’s VxWorks 653 [40].

Vestal [10] first proposed using priority-based preemptive scheduling for mixed-criticality
task sets. Later work has addressed sporadic task sets [99], WCET overrun [100], and
multicore processors [101]. An application deployed on FlexPRET would only use these
scheduling algorithms if tasks of different criticality levels are on the same hardware thread.

These scheduling algorithms require run-time monitoring of execution times—an overrun
of a low-criticality WCET bound cannot cause a high-criticality task to miss its deadline.
Lemerre et al. [102] proposed some principles and mechanisms for a microkernel to correctly
execute a mixed-criticality task set with temporal isolation for CPU time, spatial isolation
for memory segments, deterministic communication, and fault recovery mechanisms.

Herman et al [103] considered RTOS overhead in scheduling mixed-criticality task sets
on a multicore processor and evaluated an experimental implementation. Their framework
supports 4 criticality levels, represented by A, B, C, and D from highest to lowest criticality,
with execution priority on each core from highest to lowest criticality. The A and B level
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tasks are each mapped to a specific core, and the jobs of the C and D level tasks can be
scheduled to any core. The A level tasks are statically scheduled with the highest priority,
the B and C level tasks execute according to earliest-deadline-first (EDF), and the D level
tasks are best effort. FlexPRET uses a similar methodology but with hardware threads
instead of cores, isolation for B level tasks, and no migration across threads for C and D
level tasks.

Hardware approaches provide isolation or reduced interference between tasks of different
criticality levels. The multicore processor used in the MERASA project supports mixed-
criticality applications with one isolated HRTT per core, whereas FlexPRET supports mul-
tiple isolated HRTTs per core. FlexPRET and other predictable processors require isola-
tion for mixed-criticality tasks that use shared resources external to the processor, such as
a network-on-chip, memory bus, or DRAM controller. Goossens et al. [17] presented an
approach for isolation that uses reservation-based temporal partitioning to create virtual
resources for all shared physical resources.

5.2 Real-Time Unit for Precision-Timed I/O
Cyber-physical and real-time embedded systems interact with the physical world using sen-
sors and actuators that perform precision-timed I/O operations because of timing constraints.
A hardware platform performs precision-timed I/O with either dedicated hardware periph-
erals, a combination of hardware and software, or almost entirely with software. Unless the
application is high-volume or high-cost, the hardware platform is not a completely customized
design and instead selected from existing commercial-off-the-shelf (COTS) options to meet
the requirements of the application. Therefore, flexibility to support different applications
can justify using less efficient I/O mechanisms.

For a well-defined, constrained I/O operation, a dedicated hardware peripheral is usu-
ally the most efficient in area and power usage. Some low-latency or high-throughput I/O
operations require custom circuitry, as the demands cannot be met with software on proces-
sors. A communication bus allows an application executing on a processor to access multiple
hardware peripherals, transferring data or controlling operation.

For greater flexibility, software can perform an I/O operation with varying degrees of
hardware support. The advantage of software is functionality can be modified offline or
during run-time—such as either fixing bugs, reconfiguring protocols, or completely changing
protocols. Requiring the least hardware support, bit banging uses software to directly con-
trol the values on I/O pins; the base FlexPRET implementation uses bit banging for I/O
operations.

With additional hardware support, I/O operations require fewer instructions and less
software interaction, reducing processor load. The XMOS processor [44] exemplifies this
technique by providing ports that perform low-level commands on I/O pins. For example,
ports can read or write I/O pins at a specific clock cycle, wait for specific input values
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then timestamp, or perform serialization and deserialization. Examples of developed XMOS
software peripherals are I2C, SPI, UART, PWM, CAN, AVB, and Ethernet MAC.

Using software to control multiple I/O operations is difficult on a single-threaded pro-
cessor, particularly if it is designed for high performance using prediction mechanisms. If an
I/O task does not have the highest priority, it could be blocked and not function correctly.
If an I/O task does have the highest priority, it could frequently interrupt the execution
of other tasks, incurring context switch overhead and complicating WCET analysis by con-
stantly modifying processor state. On a single-threaded processor, only one I/O task has
the highest priority at every point in time.

To avoid the overhead and complexity of using the main application processor for I/O op-
erations, these operations can be offloaded to a smaller, specialized co-processor or real-time
unit. This is not a new concept: the CDC 6600 uses fine-grained multithreaded peripheral
processors [41] and Texas Instruments uses multiple programmable real-time units (PRUs)
on several SoC platforms. These PRUs are single-threaded 32-bit processors with a pre-
dictable ISA, scratchpad memories, interrupt controller, and fast I/O pins. This section
demonstrates the suitability of FlexPRET as a real-time unit, primarily for the following
two techniques:

• Software-controlled peripherals using bit banging provides flexibility for uncommon I/O
protocols, varying resource requirements, or already allocated hardware peripherals.
With FlexPRET, multithreading supports multiple independent I/O operations with-
out priority conflicts, and timing instructions allow programs to specify and operate
with precise timing behavior. Interrupt-driven I/O on a hardware thread does not
affect HRTTs and uses fewer processor cycles than frequently checking for new data.

• Low-level I/O processing for high-level device interfaces offloads computation from an
application processor and reduces bus traffic. Also, a low-power RTU could monitor the
environment and only wake an application processor when required. FlexPRET can
perform low-level computation on I/O data from either hardware peripherals, software
peripherals on the same or a different hardware thread, or a combination.

5.2.1 Methodology
Hardware peripherals are more suitable or required for some precision-timed I/O operations,
but the flexibility of FlexPRET presents many options for implementing software-controlled
peripherals. The methodology we use to implement the software peripherals in the section
is:

1. Assign independent I/O operations to different hardware threads when possible.
Unless constrained by the number of hardware threads, using a separate thread for
each I/O operation decouples behavior and prevents conflicts with timing instructions.
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2. Allocate scheduling resources to meet timing requirements.
The accuracy and precision of I/O operations depend on hardware thread scheduling,
as evaluated in Section 4.1. The timing constraints dictate the minimum scheduling
resources allocated to the hardware thread, and an under-allocated hardware thread
would require the SRTT classification to receive the spare cycles necessary to function
correctly.

3. Use timing instructions and interrupts for increased timing precision and overall pro-
cessor efficiency.
The interrupt on expire mechanism allows program execution to continue without
waiting or polling until a specific time, and the delay until mechanism generates spare
cycles for SRTTs instead of wasting cycles blocking. Some safety-critical applications
require polling instead of interrupts for I/O mechanisms because interrupts affect the
behavior of other tasks on a single-threaded processor. In FlexPRET, each HRTT is
isolated by hardware from an interrupt occurring on a different thread, avoiding this
problem.

5.2.2 Evaluation
Communication Protocols

A communication protocol specifies rules for sending data between devices over a physical
medium. Serial protocols use a single wire to transmit data, and parallel protocols use
multiple wires to transmit data. Parallel protocols have potentially higher throughput but
require more pins and wire routing with interference between wires. In addition to defining
data transmission, communication protocols define addressing, data loss handling, and other
control functionality.

As an example of a software peripheral for a communication protocol on FlexPRET, we
implemented a one-wire communication protocol that uses a pulse-width-modulated (PWM)
signal with a fixed period. An example of a device that requires this type of protocol are
Adafruit NeoPixel LED strips, where the communication data is the red-blue-green (RGB)
pixel value for each LED in the strip.

In this protocol, an output pin is periodically driven high (every 1250 ns). To transmit a
logical 1 bit, the pin is held high for a specified length of time (e.g. 800 ns), and to transmit a
logical 0 bit, the pin is held high for a different specified length of time (e.g. 400 ns). Timing
imprecision is allowed within a specified margin (e.g. 150 ns) because the receiving device
only needs to differentiate between a logical 1 and 0. Figure 5.4 shows the transmission of
one byte of data.

Listing 5.1 is a C function that transmits an array of data using this protocol. The PERIOD,
HIGH1, and HIGH0 macros depend on the timing specification of the protocol. Timing instruc-
tions control when the output pins change value, and the get time(), set compare(time),
and delay until() inline functions execute the respective GT, CMP, and DU assembly in-
structions. The output-changing instruction directly follows the delay until operation for
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t (µs)
gpo 0

‘1’ ‘0’ ‘1’ ‘0’ ‘1’ ‘1’ ‘0’ ‘0’

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10

Figure 5.4: Transmission of byte value 0x35 (00110101) from least significant to most signif-
icant bit using a PWM serial communication protocol.

Listing 5.1: C function for a variable duty cycle (PWM) protocol
1 void duty_comm ( uint32_t * data , uint32_t length )
2 {
3 uint32_t i, j; // loop counters
4 uint32_t current ; // current word of data
5 uint32_t time = get_time ()+1000; // start time after init
6 for(i = 0; i < length ; i++) { // iterate through input data
7 current = data[i]; // read next word
8 for(j = 0; j < 32; j++) { // iterate through each bit
9 time = time + PERIOD ;

10 set_compare (time );
11 delay_until (); // wait until next period
12 gpo_0_high (); // output pin goes high
13 if( current & 1) { // if bit == 1...
14 set_compare (time + HIGH1 );
15 delay_until (); // stay high for .64* PERIOD
16 gpo_0_low (); // output bit goes low
17 } else { // if bit == 0...
18 set_compare (time + HIGH0 );
19 delay_until (); // stay high for .32* PERIOD
20 gpo_0_low (); // output bit goes low
21 }
22 current = current >> 1; // setup next bit
23 }
24 }
25 }
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consistent timing; multiple program paths between these instructions could introduce vari-
ability into the timing behavior. The get time operation only occurs once and the time
variable stores later time values because using get time for every delay until operation
would cause timing precision errors to accumulate.

Using the results of Section 4.1 for an I/O instruction following a DU instruction with a
100 MHz clock speed, the scheduling frequency needs to be faster than f = 1/15 for output
within a 150 ns margin (a lower frequency is possible if the output operation is programmed
to occur early). This value is based on the assumption that the DU instruction is reached
before time expires, and whether this assumption holds depends on the program path.

The worst-case program path limits the minimum scheduling frequency for this program.
The worst-case path occurs when the next word is fetched after a logical 1 bit, which requires
exiting the j loop, incrementing the i loop, loading the next word from memory, entering the
j loop, and setting a new comparison time. For example, if this path executes 12 instructions
with a timing constraint of 500 ns (50 processor cycles) before the output pin goes high, the
minimum scheduling frequency is f = 1/4. A timing analysis tool can determine worst-case
paths between timing instructions to check timing requirements.

With a slight code modification, this program can implement a simple synchronous com-
munication protocol that uses two wires; when one output pin transitions from high to low,
the other output pin is holding the logical 1 or 0 bit to be transmitted. The serial peripheral
interface (SPI) protocol uses a similar mechanism. Figure 5.5 shows the transmission of one
byte of data. Listing 5.2 is a C function that implements this protocol, with the contents of
the inner loop the only difference from the previous example.

These two protocols cannot execute independently on a single-threaded processor without
hardware support. A software context switch takes longer than the time duration between
output pin changes, so only one protocol can execute at a time. The single cycle context
switch of fine-grained multithreading supports concurrent execution of these two protocols,
and the flexible thread scheduling of FlexPRET allows SRTTs to use spare cycles during
the delay until operations and scheduling resource allocation to meet timing constraints.
Furthermore, a hardware thread can offload the main application processor by computing
data. An example for driving LED strips is the application processor sending a command
that specifies a pattern with a FlexPRET RTU computing and sending pixel values.
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Figure 5.5: Transmission of byte value 0x35 (00110101) from least significant to most signif-
icant bit using a synchronous communication protocol.

Listing 5.2: C function for a synchronous protocol
1 void sync_comm ( uint32_t * data , uint32_t length )
2 {
3 uint32_t i, j; // loop counters
4 uint32_t current ; // current word of data
5 uint32_t time = get_time ()+1000; // start time after init
6 for(i = 0; i < length ; i++) { // iterate through input data
7 current = data[i]; // read next word
8 for(j = 0; j < 32; j++) { // iterate through each bit
9 time = time + PERIOD /2;

10 set_compare (time );
11 delay_until (); // wait half period
12 gpo_1_high (); // posedge clk on pin
13 if( current & 1) { // if bit == 1...
14 gpo_0_high (); // output bit goes high
15 } else { // if bit == 0...
16 gpo_0_low (); // output bit goes low
17 }
18 current = current >> 1; // setup next bit
19 time = time + PERIOD /2;
20 set_compare (time );
21 delay_until (); // wait half period
22 gpo_1_low (); // negedge clk on pin
23 }
24 }
25 }



89

Chapter 6

Conclusions and Future Work

Cyber-physical and real-time embedded applications, particularly safety-critical applications,
require high confidence in both software functionality and timing behavior. Integrated hard-
ware platforms share resources to support the increasing functional complexity of applica-
tions, but interference and different levels of criticality complicate design and verification.
The common approach of running a real-time operating system (RTOS) on processors op-
timized for average-case performance results in unpredictable behavior—mainly caused by
interrupts and hardware prediction mechanisms—that is difficult to verify and certify. This
dissertation focuses on processor architectures that provide high confidence in software func-
tionality and timing behavior without sacrificing overall processor throughput.

Our processor architecture design, named FlexPRET, uses fine-grained multithreading
to enable trade-offs between predictability, hardware-based isolation, and efficiency at the
granularity of hardware threads. The hardware thread scheduler only executes hard real-
time threads (HRTTs) at specific cycles and allows soft real-time threads (SRTTs) to use
specific and spare cycles. The pipeline supports arbitrary thread interleaving, from one
hardware thread to all hardware threads in the processor. Timing instructions integrate
timer functionality into the processor for precise timing behavior, and these instructions also
produce spare cycles when a thread is waiting.

We implemented a configurable version of FlexPRET in simulation and on FPGA, using
the Chisel language to specify the design and generate both a cycle-accurate C++ simulator
and Verilog code. We also implemented two baseline processors to evaluate the area and
timing overhead of our techniques. FlexPRET has constant instruction latencies that depend
on the scheduling frequency of the hardware thread, and overall throughput is higher when
more hardware threads are interleaved in the pipeline.

Two application areas for this processor design are mixed-criticality systems and precision-
timed I/O operations. By mapping tasks to threads based on criticality level, the mixed-
criticality aspect is partitioned away. Critical tasks are then isolated using HRTTs for pre-
dictable WCET analysis, and less critical tasks use SRTTs and software scheduling algo-
rithms to improve overall efficiency. Software can also perform multiple independent I/O
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operations that typically require dedicated hardware by leveraging predictable instruction
latencies, timing instructions, and fine-grained multithreading.

To demonstrate techniques on a processor with a low area footprint and modest through-
put, the base FlexPRET design has a relatively low complexity: the pipeline is only five stages
without caches, I/O peripherals, or a floating-point unit. More complex microarchitectures
support applications with higher performance requirements and could be extended with sim-
ilar hardware thread scheduling and timing instruction techniques. For additional pipeline
components, such as a floating-point unit, the ease of integration depends on whether it
supports an arbitrary interleaving of requests; if a pipelined component cannot follow the
same schedule as instructions from hardware threads, it requires separate scheduling.

A processor is one component in a hardware platform for non-trivial applications. A
non-volatile memory, such as Flash, stores code and data when the device is powered-off. A
faster, high-capacity volatile memory, such as DRAM, stores code and data during run-time.
To move data between these memories and the processor scratchpad memories, memory
controllers are connected by a memory bus. If used as a co-processor or real-time unit, one
or more FlexPRET processors also have a bus connection to other processors. For safe and
tight WCET bounds, these hardware resources must also provide isolation and predictability,
perhaps using similar scheduling techniques as the FlexPRET processor.

Research progress in scratchpad memory (SPM) management, WCET-aware compilers,
and mixed-criticality support for shared resources would improve the usability and per-
formance of predictable processors. Cache memories hide memory management from the
programmer using hardware, but SPMs require explicit management by software. SPM man-
agement is necessary whenever code and data sizes are larger than SPM sizes, as FlexPRET
has no direct connections to other memories. To reduce the burden on the programmer,
a compiler can automatically insert code to manage SPM contents during run-time using
direct memory access (DMA) commands. As memory access latency is one of the main lim-
iters of processor performance, developing SPM management algorithms that achieve latency
distributions that are competitive with caching is an important research challenge.

In general-purpose systems, the compiler optimizes code for average-case performance.
In cyber-physical and real-time embedded systems, the performance criterion can be worst-
case execution time instead of average-case execution time, as worst-case behavior limits
the number of tasks that safety execute on a processor. An optimization that improves
average-case performance can degrade worst-case performance. Therefore, compilers for
real-time systems should support optimization of worst-case behavior. Rapid iterations
motivate integration of WCET analysis into the compiler. FlexPRET is predictable for
WCET analysis and would benefit from WCET-optimized programs.

The processor is not the only shared resource in mixed-criticality systems: system buses,
memory controllers, and network-on-chips (NoCs) are often shared between tasks. As with
the processor pipeline, the challenge is providing flexibility for the trade-off between iso-
lation and efficiency—if the component is privatized in space and time for isolation, spare
resources are left unused. Whereas the pipeline in FlexPRET is able to switch scheduling
each cycle with no restrictions, some components are only schedulable at a coarser granular-
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ity. For example, a DRAM command starts a multi-cycle operation with timing constraints
on subsequent DRAM commands.

The architectural techniques used in FlexPRET also create new research directions. The
flexibility of the hardware thread scheduler creates many possibilities for optimization. The
scheduling problem for FlexPRET requires decisions at three levels: mapping of tasks to
hardware threads, configuration of the slots CSR (which hardware thread has priority each
cycle), and selection of the software scheduling algorithm on each hardware thread (if mul-
tiple tasks). For the example applications in Chapter 5, the scheduling decisions are manual
and static. By capturing requirements in a model, however, algorithms can partly or fully
automate the task mapping, hardware thread scheduling, and software scheduling decisions.

The FlexPRET scheduling problem has similarities to existing real-time scheduling prob-
lems. By considering each hardware thread as a virtual real-time machine, multiprocessor
scheduling algorithms (Section 2.1.3) are applicable. The main difference is the execution
frequency of each virtual real-time machine is controllable and constrained: HRTTs have a
constant scheduling frequency, SRTTs have a minimum scheduling frequency, and schedul-
ing resources are limited. This added dimension of control provides flexibility to improve
schedulability, but also increases the complexity of the associated optimization problem.

For a static task mapping and hardware thread scheduling configuration, integer linear
programming (ILP) or another technique could provide an optimal solution, similar to the
partitioned approach in multiprocessor scheduling. If the run-time of the solver is unreason-
able, heuristics can also provide solutions. Tasks can also migrate between hardware threads,
similar to the global multiprocessor scheduling approach. Furthermore, the hardware thread
scheduling configuration can change during run-time, supporting different modes of opera-
tion or highly dynamic operation. For example, a hardware thread’s scheduling frequency
could be temporarily increased to meet the deadline of a task.

A dynamic task mapping and hardware thread scheduling configuration for all tasks im-
proves schedulability for soft-real time tasks, but reduces isolation and predictability for
hard-real time tasks. Therefore, we recommend partitioning the system and using a combi-
nation of available techniques. For example, a mixed-criticality application would use static
mapping and scheduling for critical tasks on HRTTs and dynamic mapping and scheduling
for less critical tasks on SRTTs.

We envision FlexPRET as a foundational hardware component in a precision-timed in-
frastructure [75]. By supporting the specification, repeatability, and predictability of timing
behavior, FlexPRET includes time in the abstraction level between software and hardware,
allowing compilers and analysis tools to optimize and guarantee timing behavior. The spec-
ification of timing behavior by programming languages and models is then supported by
the underlying abstraction layers—integrating timing correctness into the design flow for
cyber-physical and real-time embedded systems.
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