
Security Mechanisms and Security-Aware Mapping for
Real-Time Distributed Embedded Systems

Chung-Wei Lin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-183
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-183.html

August 10, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

This work was supported in part by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the Focus Center
Research Program (FCRP), a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. This work was supported in
part by the Multiscale Systems Center (MuSyC). This work was supported
in part by the Industrial Cyber-Physical Systems Center.

Security Mechanisms and Security-Aware Mapping for Real-Time Distributed
Embedded Systems

by

Chung-Wei Lin

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto L. Sangiovanni-Vincentelli, Chair
Professor Dorit S. Hochbaum

Associate Professor Sanjit A. Seshia

Summer 2015

Security Mechanisms and Security-Aware Mapping for Real-Time Distributed
Embedded Systems

Copyright 2015
by

Chung-Wei Lin

1

Abstract

Security Mechanisms and Security-Aware Mapping for Real-Time Distributed Embedded
Systems

by

Chung-Wei Lin

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

Cyber-security attacks can have a critical impact on embedded systems. They may access se-
cret information, cause system malfunction, or even endanger users in extreme circumstances.
These attacks become even more threatening as systems are becoming more connected with
the surrounding environment, infrastructures, and other systems. These connections pro-
vide breeding grounds for attackers to get access to or take control of the systems. Security
mechanisms can be designed to protect against attacks and meet security requirements, such
as integrity, authenticity, confidentiality, or availability. However, there are many challenges
of applying security mechanisms to embedded systems, such as open environments, limited
resources, strict timing requirements, and large number of devices. These challenges make
it very difficult and sometimes impossible to add security mechanisms after initial design
stages without violating other system constraints. It is therefore important to develop a
systematic approach to address security at early design stages together with all other design
constraints.

We first propose a general security-aware design methodology which considers security
together with other design constraints at design stages. The methodology is based on
Platform-Based Design [44], where a functional model and an architectural platform are
initially captured separately and then brought together through a mapping process. During
mapping, the functional model is implemented on the architectural platform, and constraints
and objectives are satisfied and optimized, respectively. Our methodology is different from
the traditional mapping process because it not only maps functional models to architectural
platforms but also explores security mechanism selection and architecture selection.

We then focus on the security issues for automotive systems as they represent many of the
common challenges in embedded systems. We study security for in-vehicle communications
and present security mechanisms for the Controller Area Network (CAN) protocol, which is
a very representative asynchronous protocol and currently the most used in-vehicle commu-
nication protocol. Based on the security mechanisms, we propose a Mixed Integer Linear
Programming (MILP) formulation and an MILP-based algorithm to explore task allocation,

2

signal packing, Message Authentication Code (MAC) sharing, and priority assignment and
meet both security and safety constraints. Besides the CAN protocol, we also consider a
TDMA-based protocol, which is a very representative synchronous protocol and an abstrac-
tion of many existing protocols. The time-delayed release of keys [2, 34, 35, 52] is applied
as the security mechanism, and an algorithm that combines a simulated annealing approach
with a set of efficient optimization heuristics is developed to solve a security-aware mapping
problem for TDMA-based systems. Lastly, we apply our methodology to Vehicle-to-Vehicle
(V2V) communications with the Dedicated Short-Range Communications (DSRC) technol-
ogy. We formulate a security-aware optimization problem and propose an efficient algorithm
to solve the security-aware optimization problem.

Experimental results show that our approaches can effectively and efficiently explore
design spaces and satisfy all design constraints at design stages. They also demonstrate that
security must be considered at initial design stages; otherwise, it is too late to add security
after initial design stages.

i

Simple But Not Easy.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Related Work . 1
1.2 Contributions . 5
1.3 Thesis Organization . 5

2 Security-Aware Design Methodology 7
2.1 Security-Aware Mapping . 7
2.2 Security Mechanism Selection . 9
2.3 Architecture Selection . 10
2.4 Discussions . 11

3 Security Mechanisms for CAN Protocol 13
3.1 System Model and Attacker Model . 14
3.2 Security Mechanisms . 17

3.2.1 Basic Authentication . 18
3.2.2 Our Security Mechanism . 20

3.3 Counter Implementation . 22
3.4 Counter Reset Mechanisms . 23

3.4.1 Self-Healing Reset Mechanism . 25
3.4.2 Network-Wide Reset Mechanism . 25

3.5 Analysis . 28
3.6 Summary . 31

4 Security-Aware Mapping for CAN-Based Systems 32
4.1 System Model and Constraints . 33

4.1.1 System Model . 33
4.1.2 Security Constraints and Key Distribution 34

iii

4.1.3 Safety Constraints . 36
4.2 Mapping Algorithm . 38

4.2.1 Constraints . 39
4.2.2 Objective Function . 44
4.2.3 MILP-Based Algorithm . 44

4.3 Extension . 45
4.3.1 Path-Based Security Constraints . 45
4.3.2 Objective Function . 46
4.3.3 Algorithm . 47

4.4 Experimental Results . 48
4.4.1 Comparison with a Greedy Heuristic 49
4.4.2 Comparison with Non-Integrated Approaches 50
4.4.3 Extension . 50

4.5 Summary . 52

5 Security-Aware Mapping for TDMA-Based Systems 53
5.1 System Model . 54
5.2 Time-Delayed Release of Keys . 56
5.3 Mapping Algorithm . 58

5.3.1 Overview . 58
5.3.2 Task Allocation and Priority Assignment 59
5.3.3 Signal Mapping . 59
5.3.4 Network Scheduling . 60
5.3.5 Worst-Case Transmission Delay Analysis 63
5.3.6 Interval Length Exploration . 67
5.3.7 Network Scheduling Refinement . 67

5.4 Experimental Results . 68
5.5 Summary . 70

6 Security-Aware Design for V2V Communications 71
6.1 Formulation . 72
6.2 Algorithm . 75
6.3 Experimental Results . 76

6.3.1 Selection Between ECDSA-224 and ECDSA-256 78
6.3.2 Changing Weight and Minimum Verification Proportion 78
6.3.3 Trade-Off Between Security and BSM Sending Rate 79

6.4 Summary . 80

7 Conclusions and Future Work 81

Bibliography 83

iv

List of Figures

2.1 The security-aware mapping. A functional model, an architectural platform, and
a security mechanism are initially captured separately as abstractions and brought
together through a mapping process so that all constraints are satisfied and the
design objective is optimized. 8

3.1 The attacker model, where N1 is a legitimate sender, N2 is a legitimate receiver,
N3 is a strong attacker, and N4 is a weak attacker. 15

3.2 The pair-wise secret key distribution for three nodes. 15
3.3 The steps performed by a receiver Nj of a message Mk sent by a sender Ni. . . . 24
3.4 The finite state machine of a node in the dynamic network-wide reset. 26
3.5 The finite state machine of a master node in the static network-wide reset. . . . 27
3.6 The finite state machine of a non-master node in the static network-wide reset. . 27

4.1 The system model of a CAN-based system. 33
4.2 Given a message sent by node N1 and received by Nj (2 ≤ j ≤ 7), (a) the pair-

wise key distribution, where 6 MACs are required to be sent with the message,
and there is no possible direct attack; (b) the one-key-for-all key distribution,
where only 1 MAC is required, but there are possible direct attacks between any
pair of receivers; (c) another key distribution, where 3 MACs are required, and
(d) there are some possible direct attacks. 36

4.3 The flow of three-step MILP-based algorithm, where “group assignment” means
“receiving group assignment.” The task allocation and the task priority are solved
in Step 1; the signal packing and the message priority are solved in Step 2; the
receiving group assignment is solved in Step 3. 44

4.4 Security should be modeled by a path-based security constraint considering possi-
ble attacks triggering an actuator. Protecting µ1,1 and µ3,1 is not enough because
an attacker can still attack µ2,1 and result in triggering τ4 on ε4. 46

4.5 (a) Given the task graph, (b) compute the connectivity with both weights being
1 and (c) allocate the tasks to the ECUs. 47

5.1 The system model of a TDMA-based system. 55

v

5.2 The time-delayed release of keys. TS, TR, and TK are the sending time, the receiv-
ing time, and the key-receiving time of the packet (D1,M1, K−1), respectively. TI

is the starting time of Interval 3. 56
5.3 The algorithm flow. 58
5.4 An approach to reduce the authentication delay. 60
5.5 A more effective approach to reduce the authentication delay. 61
5.6 Given the worst-case transmission delay DT , an approach to reduce the authen-

tication delay, where the key-using and key-releasing intervals are not aligned. . 62
5.7 An example for synchronous messages with tree rounds. The second packet (#2,

#4, or #6) of each round is an unscheduled packet after its corresponding round,
and the second time slot of the first round is an unused time slot. The second
round and the third round have the same packet processing pattern. 64

5.8 For asynchronous messages, if the worst-case transmission delay happens when
packet Pi is assigned to time slot Sj, then (a–b) one of Pi itself and the packets
arriving before Pi must just miss a time slot, and (c–f) there must be no unused
time slot between the arriving time of the packet just missing a time slot and the
starting time of Sj. 66

5.9 The converging behavior of the basic SA and the accelerated SA for the industrial
test case. The x-axis represents the number of iterations of the simulated anneal-
ing, and the y-axis represents the objective value (106 ms) where each constraint
violation contributes 106 to the objective value. 69

6.1 The system model. 72
6.2 The selection between the ECDSA-224 and the ECDSA-256. 77
6.3 The verification percentage xi under different Wi and Xi. 78
6.4 The trade-off between security and BSM sending rate. 79

vi

List of Tables

2.1 The security-aware mapping problems for CAN-based systems and TDMA-based
systems are interpreted by the proposed methodology. Note that the security
properties are different—sharing a secret key between legitimate receivers is al-
lowed for CAN-based systems, but it is not allowed for TDMA-based systems. . 11

3.1 The notations in this chapter. 17
3.2 The relative bus load and average message latency under nk = 1 and different

values of P and Q where “—” means that there is no feasible solution. Without
the security mechanism, the original bus load 376.44 kbps and average message
latency 11.535 ms are both scaled to 1. 30

3.3 The relative bus load and average message latency under nk = 3 and different
values of P and Q where “—” means that there is no feasible solution. Without
the security mechanism, the original bus load 376.44 kbps and average message
latency 11.535 ms are both scaled to 1. 30

4.1 The notations of indices, elements, sets, and quantities. 37
4.2 The notations of constant parameters. 38
4.3 The notations of binary variables (their values are 1 if the conditions are true)

and real variables. 39
4.4 The objective (the summation of latencies of selected paths), maximum latencies,

load, and runtime of each step of the MILP-based algorithm, where “Max L300”
and “Max L100” are the largest latencies among the paths with deadlines 300 ms
and 100 ms, respectively. 49

4.5 The comparison between the MILP-based approach, the greedy heuristic, and the
extended algorithm. “×” means “no feasible solution.” In the third setting, an
objective includes the risks of direct attacks and indirect attacks. 51

vii

5.1 The comparison between a non-security-aware mapping approach (its objectives
are reported, but its solutions are infeasible) and our security-aware mapping
algorithm for the industrial test case, where there are two optional optimization
techniques resulting in four combinations. The objective is the summation of the
worst-case latencies of all time-critical paths. The feasible time is the time it
takes to find the first feasible solution. 68

5.2 The results of a large random test case. 70

6.1 The V2V security-aware optimization problem interpreted by the security-aware
design methodology. 74

6.2 The parameters in the experiments. 77

viii

Acknowledgments

I wound like to express my deepest gratitude to my advisor, Professor Alberto Sangiovanni-
Vincentelli, for his visionary guidance throughout my years in Berkeley. I would like to thank
Professor Edward Lee, Professor Sanjit Seshia, and Professor Dorit Hochbaum for serving in
my qualifying exam committee and providing many inspirational suggestions. I would also
like to thank Professor Yao-Wen Chang for his support and encouragement in more than 10
years. I would like to express my heartfelt gratitude to Professor Qi Zhu, Professor Haibo
Zeng, Professor Marco Di Natale, Professor Linh Thi Xuan Phan, and Professor David Wag-
ner for their assistance in my research. I would like to thank Joseph D’Ambrosio, Paolo
Giusto, and Lei Rao for their great help from General Motors. I would also like to thank
Professor Kurt Keutzer and Professor Jaijeet Roychowdhury for establishing my Ph.D. ca-
reer. My thanks also go to Professor Ai-Chun Pang and Professor Jie-Hong Roland Jiang
for their encouragement. Special thanks to Professor Anant Sahai for introducing me to an
unexpected but memorable journey—teaching CS70.

I would also like to thank the TerraSwarm Research Center, the Multiscale Systems Cen-
ter (MuSyC), and the Industrial Cyber-Physical Systems Center (iCyPhy) for their support
to my research1.

I would like to thank Alberto Puggelli for growing up together in Berkeley. I appreciate
other group members, John Finn, Liangpeng Guo, Antonio Iannopollo, Mehdi Maasoumy,
and Pierluigi Nuzzo, for the wonderful time we share together. I would like to thank Calvin
Phung, Bowen Zheng, and Armin Wasicek for their help in my research. I would also like
to thank Li-Chiang Lin, Wei-Chang Li, Jun-Chau Chien, and Ming-Fu Lin. Special thanks
to San Antonio Spurs for accompanying me in my years as a student. I display my warmest
appreciation to my parents, my older brother, and my wife, Yen-Ling Lily Huang, for their
endless love and support.

1This work was supported in part by the TerraSwarm Research Center, one of six centers supported by
the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. This work was supported in part by the Multiscale Systems
Center (MuSyC). This work was supported in part by the Industrial Cyber-Physical Systems Center.

1

Chapter 1

Introduction

Cyber-security attacks can have a critical impact on embedded systems. They may
access secret information, cause system malfunction, or even endanger users in extreme
circumstances. Different types of attacks have been identified in automotive systems [5, 12,
24, 25, 26, 36], aircraft systems [6, 43], global positioning systems [8, 55], medical devices [10,
28], and smart grids [23, 29]. These attacks become even more threatening as systems are
becoming more connected with the surrounding environment, infrastructures, and other
systems. These connections provide breeding grounds for attackers to get access to or take
control of the systems.

Security mechanisms can be designed to protect against attacks and meet security re-
quirements, such as integrity, authenticity, confidentiality, or availability. However, there
are many challenges of applying security mechanisms to embedded systems, such as open
environments (e.g., wireless communication), limited resources (e.g., network bandwidth,
computational ability, and power), strict timing requirements, and large number of de-
vices [10, 22, 23, 26, 43]. These challenges make it very difficult and sometimes impossible
to add security mechanisms after initial design stages without violating other system con-
straints. It is therefore important to develop a systematic approach to address security at
early design stages together with all other design constraints.

1.1 Related Work

Security has become a pressing issue for automotive electronic systems, as modern vehicles
can be attacked from a variety of interfaces, including direct or indirect physical access,
short-range wireless access, and long-range wireless channels [5, 36]. One critical threat is
compromising one automotive Electronic Control Unit (ECU) through those interfaces [25].
An attacker may then conduct various attacks by getting access to other ECUs and safety-
critical components such as brakes and engines through in-vehicle communications. Another
critical threat is directly generating a message on a network through diagnostics ports, empty

CHAPTER 1. INTRODUCTION 2

ports, or wireless networks [52]. ECUs and safety-critical components may thus behave
aberrantly.

An overview of in-vehicle security threats and protections was provided by Kleberger et al. [24].
For in-vehicle communication, the Controller Area Network (CAN) protocol has been the
most attractive protocol for attackers since it is the most widely used one, and there is no
direct support for security protection. Hoppe et al. [12] showed the weakness of the CAN
protocol that may affect the operations of electric window lift, warning lights, and airbag
control system of a vehicle. Koscher et al. [25] demonstrated that an attacker is able to
take over an ECU and executes many functions such as those of body control modules, en-
gine control modules, and electronic brake control modules. Furthermore, denial-of-service
attacks are also possible so that inputs from the driver are ignored. Besides the CAN pro-
tocol, Rouf et al. [36] studied wireless tire pressure monitoring systems and demonstrate
that eavesdropping and spoofing are possible for messages sent from a tire pressure sensor.
Checkoway et al. [5] conducted comprehensive analysis and experiments on the attack sur-
face of an automotive system. Seifert and Obermaisser [45] developed anomalies and failures
detection on the gateway, which can secure in-vehicle network from both external and in-
ternal attacks. Wolf and Gendrullis [53] presented a vehicular hardware security module
that enables a holistic protection to in-vehicle ECUs and their communications. However,
with these potential gateway and hardware protections, protections over communication are
still desired. This is because the gateway protections may not be able to protect against
all threats (especially those within the same network), while an existing ECU may also be
compromised.

Based on the security analysis and study above, the traditional security terminology is
adapted to the automotive systems, and there are several possible attack scenarios:

• Modification: an unauthorized node changes existing data.

• Fabrication: an unauthorized node generates additional data.

• Interception: an unauthorized node reads data.

• Interruption: data becomes unavailable.

The modification and the fabrication can be generalized as an unauthorized write of data
by an ECU, the interception is generalized as an unauthorized read of data by an ECU, and
the interruption is generalized as a Denial-of-Service (DoS) attack. Corresponding to these
scenarios, there are several important security properties:

• Integrity: data is not changed (written) or generated by an unauthorized ECU.

• Authenticity: a receiver or a sender is who it claims to be.

• Confidentiality: data is not read by an unauthorized ECU.

CHAPTER 1. INTRODUCTION 3

• Availability: data is available.

Integrity and authenticity are believed to be more important than confidentiality for au-
tomotive communications. This is because automotive systems taken control by an attacker
may behave aberrantly and thus have immediate danger, while, regarding confidentiality,
the moving behavior of automotive systems is mostly observable by an attacker. As as re-
sult, most existing security mechanisms [9, 32, 50] focused on authenticating messages with
Message Authentication Codes (MACs) for the CAN protocol. Since a frame of the CAN
protocol has only 64 bits for the data payload and the automotive CAN bus speed is typically
at only 500 kbps, these mechanisms try to reduce the communication overhead of the MACs
through various approaches.

The security threats to automotive systems are becoming broader and more challenging
with the emerging of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nications. For instance, Wasicek et al. [51] demonstrated potential security threats through
V2V communications by modeling a platoon of vehicles accelerating or braking simultane-
ously under adaptive cruise controls. The major standard for V2V and V2I applications is
the Dedicated Short-Range Communications (DSRC). At the message sublayer (above the
transport layer) in DSRC, SAE J2735 [40] defines standard message types including a Ba-
sic Safety Message (BSM) which contains time, position, velocity, direction, size, and other
important information of a vehicle. It enables the development of many safety applications
such as forward collision avoidance, lane change warning (blind spot warning), and left turn
assist [11]. IEEE 1609.2 [20] provides security services at the DSRC middle layers (network
layer, transport layer and message sublayer). Message authentication is supported by using
the Elliptic Curve Digital Signature Algorithm (ECDSA), which is an asymmetric crypto-
graphic algorithm. When a vehicle intends to send a message, it signs the message with
its private key and sends the message with its signature and certificate digest. A vehicle
receiving the message then uses the public key corresponding to the private key to verify
the message. The generation time of a message and the location of a vehicle are optionally
included in a signed message to protect against replay attacks. Message encryption is also
supported in DSRC. More details of DSRC were introduced in some previous works [20, 22].

Besides automotive systems, security is also a rising concern for other embedded sys-
tems. Aircraft communicates with ground stations, other aircraft, and satellites through
global positioning systems, Automatic Dependent Surveillance Broadcast (ADS-B) [37], and
Internet-Protocol-Based Aeronautical Telecommunication Network (IP ATN) [13]. These
protocols fulfill the modernization of air transportation systems which become safer, more
time and fuel efficient, and more convenient, but there are some potential security risks in
global positioning systems and these protocols. Sampigethaya et al. [43] introduced cur-
rent and next-generation aircraft communication protocols and provided an overview of the
standardization progress. Especially, security was highlighted due to the risk of attacks
from “brought-in” devices of passengers and the higher dependence of flight on data com-
munications. However, most aviation standards have not included security considerations.
Zeng et al. [55] and Gong et al. [8] showed spoofing attacks for global positioning systems.

CHAPTER 1. INTRODUCTION 4

These attacks may lead global positioning systems to be out of synchronization and affect
other systems using global positioning systems, such as aircraft systems and smart grids [8].
By observing the dynamic ranges of successful detection rates, a detection mechanism was
proposed to protect against these attacks [55]. Among different types of security properties,
integrity, authenticity, and availability are more important than confidentiality for control
systems of aircraft [6].

Since many of medical devices utilize wireless communications, possible attacks are also
pointed out recently. Halperin et al. [10] targeted on an implantable cardioverter defibrillator.
By reverse-engineering the implantable cardioverter defibrillator, they successfully performed
security attacks, including eavesdropping and spoofing, by replaying signals. They proposed
three low-power security mechanisms based on RF power harvesting to protect against these
attacks. Furthermore, Li et al. [28] demonstrated security attacks on a glucose monitoring
and insulin delivery system. They successfully performed passive attacks (eavesdropping of
the wireless communication) and active attacks (impersonation and control of the system),
which can compromise safety and privacy of patients. They also proposed security mech-
anisms with cryptographic protocols and body-coupled communication to protect against
these attacks.

Security issues in smart grids have also been identified, and some protection guidelines
have also been provided. Khurana et al. [23] gave an overview of security issues of smart
grids. They emphasized the communication and device security as well as privacy and in-
troduced the challenges of security management, such as the complexity and scalability of
smart grids. McDaniel and McLaughlin [29] also provided an overview of security issues of
smart grids. The privacy concern and vulnerability of devices and systems are emphasized
again. Khurana et al. [23] worked from authentication principles in Internet protocols and
discussed potential constraints of smart grids. They presented several design principles and
engineering practices that help ensure the correctness and effectiveness of authentication
mechanisms. Metke and Ekl [30] presented several security technologies including public
key infrastructures and trusted computing for smart grids. Lastly, due to global position-
ing systems out of synchronization, fault detection, voltage stability monitoring, and event
positioning of smart grids may also be affected [8].

Although many security threats and some security mechanisms were introduced in previ-
ous work, embedded systems may still suffer from either lack of appropriate security mech-
anisms or high overhead resulting from security mechanisms. The limited resources and
strict constraints of embedded systems make these challenges more difficult as adding secu-
rity mechanisms after initial design stages may result in infeasible systems. Therefore, we
must propose or apply appropriate security mechanisms and address security at early design
stages together with all other design constraints.

CHAPTER 1. INTRODUCTION 5

1.2 Contributions

In this thesis, we propose a general security-aware design methodology to address se-
curity together with other design constraints at the design stages for embedded systems.
The methodology is based on Platform-Based Design [44], where a functional model and an
architectural platform are initially captured separately and then brought together through
a mapping process. During mapping, the functional model is implemented on the archi-
tectural platform, and constraints and objectives are satisfied and optimized, respectively.
Our methodology is different from the traditional mapping process because it not only maps
functional models to architectural platforms but also explores security mechanism selection
and architecture selection.

We then focus on the security issues for automotive systems as they represent many of the
common challenges in embedded systems, such as resource constraints and timing require-
ments. We study security for in-vehicle communications and propose security mechanisms
for the CAN protocol, which is a very representative asynchronous protocol and currently the
most used in-vehicle communication protocol. Based on the security mechanisms, we address
security during the mapping from functional models to architectural platforms, and secu-
rity and safety constraints are considered in an integrated formulation. With a flexible key
distribution scheme, the security-aware mapping problem is formulated as a Mixed Integer
Linear Programming (MILP) problem. Besides the CAN protocol, a Time Division Multiple
Access (TDMA) based protocol for in-vehicle communication is also considered, which is a
very representative synchronous protocol and an abstraction of many existing protocols such
as the FlexRay [7], the Time-Triggered Protocol [42], and the Time-Triggered Ethernet [41].
This kind of protocols is increasingly adopted in various safety-critical systems for more
predictable timing behavior. The time-delayed release of keys [2, 34, 35, 52] is applied as the
security mechanism, and an algorithm that combines a simulated annealing approach with
a set of efficient optimization heuristics is developed to solve the security-aware mapping
problem.

We also apply our methodology to V2V communications with the DSRC technology. We
formulate a security-aware optimization problem with consideration of both security and
safety requirements, and consider the overhead of different settings of the ECDSA. The
key decision variables are the sending rates and the authentication rates of BSMs which
carry important information for safety applications and thus need security protections, and
their sending rates and authentication rates play dominant roles in system performance and
security, respectively [1, 22, 27]. We propose an efficient algorithm to solve the security-aware
optimization problem without violating design constraints.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the security-aware
design methodology. Chapter 3 presents the security mechanisms for the CAN protocol.

CHAPTER 1. INTRODUCTION 6

The security-aware mapping problems and algorithms for CAN-based and TDMA-based
systems are in Chapter 4 and Chapter 5, respectively. Chapter 6 presents the security-aware
optimization problem and algorithm for V2V communications. Lastly, Chapter 7 concludes
the thesis and points out some future directions.

7

Chapter 2

Security-Aware Design Methodology

To provide insights and guidelines for security-aware design problems with limited re-
sources and strict constraints, we propose a general security-aware design methodology,
which includes three major components: security-aware mapping, security mechanism se-
lection, and architecture selection, to address security at early design stages together with
all other design constraints.

2.1 Security-Aware Mapping

Given a functional model, its security requirements include two sets. The first one is a
set of security properties to be fulfilled, such as integrity, authenticity, confidentiality, and
availability. The other one is a set of security constraints which are usually quantitative
constraints. For example, “authenticity” is the security property to be fulfilled, and “the
probability that an attacker successfully guesses a Message Authentication Code (MAC)
must be smaller than 10−10” is a security constraint. On the other hand, a security service
of an architecture platform is a security mechanism directly supported by the architecture or
a service which can support other security mechanisms. For example, Physical Unclonable
Functions (PUFs) [38, 46, 54] are hardware security services fulfilling integrity and authen-
ticity, while a global time is a security service used to protect against replay attacks and
control key-releasing time of the time-delayed release of keys [2, 34, 35, 52].

The security-aware mapping is based on Platform-Based Design [44] paradigm. As shown
in Figure 2.1, a functional model and an architectural platform are initially captured sep-
arately as abstractions of the application space and the architecture space, respectively.
Typically, the abstracted functional model includes its models of computation, functional
constraints, security properties to be fulfilled, security constraints, etc. The abstracted ar-
chitectural platform includes its computational resource, communication resource, storage
resource, security services, etc. After the abstractions, the functional model and the archi-
tectural platform are brought together through a mapping process so that the functional

CHAPTER 2. SECURITY-AWARE DESIGN METHODOLOGY 8

Models of

Computation

P
la

tf
o

rm

M
ap

p
in

g

P
la

tf
o

rm

D
es

ig
n

 S
p

ac
e

E
x

p
o

rt

Application

Space

Architectural

Space

Functional

Constraints

Security

Requirements

Computational

Resource

Communication

Resource

Security

Services

Security

Mechanism

Selection

Abstraction

Abstraction A
b

st
ra

ct
io

n

Figure 2.1: The security-aware mapping. A functional model, an architectural platform, and
a security mechanism are initially captured separately as abstractions and brought together
through a mapping process so that all constraints are satisfied and the design objective is
optimized.

model is implemented on the architectural platform while all constraints are satisfied and
the design objective is optimized.

Different from the traditional mapping process, the proposed security-aware mapping in-
volves a security mechanism. The security mechanism is also defined through abstractions,
including the security properties it supports, the computational, communication and storage
overhead, the security constraints, the required security services, etc. During the mapping
process, a security property of the functional model must be fulfilled by the security mecha-
nism or the security services of the architectural platform. If the security property is fulfilled
by the security mechanism, the required security services of the security mechanism must be
fulfilled by the security services of the architectural platform. In addition, there are some
security constraints induced by the security mechanism. Security constraints of a security
mechanism, along with functional constraints and security constraints of a functional model,
must be satisfied through the mapping process.

The mathematical definition of this security-aware mapping problem is defined as follows:

Definition 2.1. A functional model is defined by F = (MF , QF , RF , CF , PF , OF), where
MF is the models of computation, QF = {q1, q2, . . . , qnq} is the set of security properties,
RF = {r1, r2, . . . , rnr} is the set of security constraints, CF = {c1, c2, . . . , cnc} is the set of
other functional constraints, PF is the set of constant parameters, and OF is the objective
function.

CHAPTER 2. SECURITY-AWARE DESIGN METHODOLOGY 9

Definition 2.2. An architectural platform is defined by A = (AA, VA, PA), where AA is
the types of architecture, VA is the set of security services, and PA is the set of constant
parameters.

Definition 2.3. A security mechanism is defined by S = (SS, RS, VS, PS), where SS is the
types of protection, RS is the set of security constraints, VS is the set of required security
services, and PS is the set of constant parameters.

Definition 2.4. XF,A is the set of decision variables of mapping F on A, and XS is the set
of decision variables of S.

Definition 2.5. The notation |= denotes implementing models of computationMF , fulfilling
a security property qi ∈ QF , satisfying a security constraint ri ∈ RF ∪ RS or a functional
constraint ci ∈ CF .

Definition 2.6. The security-aware mapping problem: given F , A, and S, decide XF,A and
XS such that

AA |= MF , (2.1)

∀qi ∈ QF , (SS |= qi and VA ⊇ VS) or VA |= qi, (2.2)

∀ri ∈ RF ∪RS, (XF,A, XS, PF , PA, PS) |= ri, (2.3)

∀ci ∈ CF , (XF,A, XS, PF , PA, PS) |= ci, (2.4)

and OF (XF,A, XS, PF , PA, PS) is optimized.

Equation (2.2) means that a security property qi must be fulfilled by the types of protec-
tion SS or the security services VA. If qi is fulfilled by SS, the required security services VS

must be fulfilled by VA, i.e., VA supports every required security service to S. Equations (2.3)
and (2.4) are usually in a form of f(XF,A, XS, PF , PA, PS) ≥ 0, where f is a function.

To solve a security-aware mapping problem, the selection of algorithms depends on the
models and the sizes of the problem. In Chapter 4, we use a Mixed Integer Linear Program-
ming (MILP) based algorithm to solve a security-aware mapping problem for Controller Area
Network (CAN) based systems. In Chapter 5, we use a simulated annealing based algorithm
to solve a security-aware mapping problem for Time Division Multiple Access (TDMA) based
systems because the complexity of an MILP-based algorithm is too high for TDMA-based
systems. If there is a systematic approach to select algorithms, it can further improve design
flows and provide fair comparisons.

2.2 Security Mechanism Selection

A security-aware design problem may not designate a specific security mechanism to
be used, and a security mechanism can be selected by system designers to optimize their
design objectives, such as system performance, security level, power consumption, or cost.

CHAPTER 2. SECURITY-AWARE DESIGN METHODOLOGY 10

In this case, given a functional model and an architecture, the goal is to select an appropriate
security mechanism from a set of candidates, satisfy all constraints, and optimize the design
objective. The security-aware mapping problem with security mechanism selection is defined
as follows:

Definition 2.7. The security-aware mapping problem with security mechanism selection:
given F , A, and a set of security mechanisms S1,S2, . . . ,Sns , decide k (1 ≤ k ≤ ns), XF,A,
and XSk

such that

AA |= MF , (2.5)

∀qi ∈ QF , (SSk
|= qi and VA ⊇ VSk

) or VA |= qi, (2.6)

∀ri ∈ RF ∪RSk
, (XF,A, XSk

, PF , PA, PSk
) |= ri, (2.7)

∀ci ∈ CF , (XF,A, XSk
, PF , PA, PSk

) |= ci, (2.8)

and OF (XF,A, XSk
, PF , PA, PSk

) is optimized.

For security mechanism selection, we can solve each corresponding security-aware map-
ping problem and select the best one. If we can abstract security mechanisms into the same
set of variables and parameters, then it is possible to efficiently select a security mechanism
in one single security-aware mapping problem.

2.3 Architecture Selection

A security-aware design problem may not designate a specific architecture, either. In this
case, given a functional model, the goal is to select an appropriate security mechanism and an
appropriate architecture from corresponding sets of candidates, satisfy all constraints, and
optimize the design objective. The security-aware mapping problem with security mechanism
and architecture selections is defined as follows:

Definition 2.8. The security-aware mapping problem with security mechanism and archi-
tecture selections : given F , a set of architectures A1,A2, . . . ,Ana , and a set of security
mechanisms S1,S2, . . . ,Sns , decide j (1 ≤ j ≤ na), k (1 ≤ k ≤ ns), XF,Aj

, and XSk
such that

AAj
|= MF , (2.9)

∀qi ∈ QF , (SSk
|= qi and VAj

⊇ VSk
) or VAj

|= qi, (2.10)

∀ri ∈ RF ∪RSk
, (XF,Aj

, XSk
, PF , PAj

, PSk
) |= ri, (2.11)

∀ci ∈ CF , (XF,Aj
, XSk

, PF , PAj
, PSk

) |= ci, (2.12)

and OF (XF,Aj
, XSk

, PF , PAj
, PSk

) is optimized.

Similar to security mechanism selection, we can solve each corresponding security-aware
mapping problem for architecture selection. If we can abstract architectures into the same
set of variables and parameters, then it is possible to consider those architectures in one
single security-aware mapping problem.

CHAPTER 2. SECURITY-AWARE DESIGN METHODOLOGY 11

Table 2.1: The security-aware mapping problems for CAN-based systems and TDMA-based
systems are interpreted by the proposed methodology. Note that the security properties
are different—sharing a secret key between legitimate receivers is allowed for CAN-based
systems, but it is not allowed for TDMA-based systems.

CAN-Based Systems TDMA-Based Systems

F MF task graph task graph
QF authenticity∗ authenticity∗

(message authentication) (message authentication)
RF security risk, MAC length MAC length
CF path deadline path deadline
OF latency minimization latency minimization

A AA distributed nodes, CAN protocol distributed nodes, TDMA protocol
VA — global time

S SS shared secret keys (symmetric) time-delayed release of keys (symmetric)
RS — key-releasing time
VS — global time

XF,A task allocation task allocation
task priority assignment task priority assignment

signal packing signal packing
message priority assignment network scheduling

XS receiving group assignment key-releasing time

2.4 Discussions

In this section, the security-aware mapping problems for CAN-based systems and TDMA-
based systems are interpreted by the proposed methodology. We only use them as examples
to explain the proposed methodology in this section, and the details of them will be intro-
duced in Chapters 4 and 5, respectively. The two problems are summarized in Table 2.1,
where constant parameters PF , PA, and PS are ignored. Note that the security properties are
different in the two examples—sharing a secret key between legitimate receivers are allowed
for CAN-based systems, but it is not allowed for TDMA-based systems.

The security properties of the two examples are fulfilled by the security mechanisms.
As mentioned before, we use an MILP-based algorithm to solve the security-aware mapping
problem for CAN-based systems, while we use an SA-based algorithm to solve the security-
aware mapping problem for TDMA-based systems.

Authentication mechanisms are used as examples for security mechanism selection. Au-
thentication mechanisms are categorized into four types [52]:

• One-key-for-all key distribution (S1): the sender and all receivers of a message share
and use a symmetric secret key to compute MACs.

CHAPTER 2. SECURITY-AWARE DESIGN METHODOLOGY 12

• Pair-wise key distribution (S2): each pair of a sender and a receiver of a message share
and use a symmetric secret key to compute MACs.

• Time-delayed release of keys (S3): the sender of a message uses a symmetric secret key
to compute MACs and release the key later.

• Asymmetric cryptography (S4): the sender of a message uses a private key to sign a
message, and a receiver of the message uses the corresponding public key to verify the
message.

S1 and S2 are two special cases of a flexible key distribution (S5) for CAN-based systems,
when all receivers are in the same receiving group, and all receivers are in their own receiving
groups. The examples of security mechanism selection are described as follows:

• For CAN-based systems, S5 is selected because (1) the security-aware mapping cannot
find feasible solutions for S1 (security risks are too high) and S2 (MAC lengths are too
short), (2) S3 needs a global time which is not supported by the CAN protocol (A),
i.e., (VA is not a subset of VS3), and (3) the computational overhead of S4 is too high.

• For TDMA-based systems, S3 is selected because the communication or computational
overhead of S2 and S4 is too high, and two receivers are not allowed to share a secret
key, which is possible for S1 and S5.

Protections against replay attacks (attackers send messages that they have received from
CAN buses or TDMA switches without any modification) are used as examples for architec-
ture selection. A global time can be used to protect against replay attacks. If there is no
global time, counters with some synchronization mechanisms can be used. Given an asyn-
chronous protocol (A1) and a synchronous protocol (A2), the security-aware mapping can
choose to use counters for A1 or just use the global time supported by A2. After solving the
corresponding mapping problems with security mechanism selection, a better architecture
can be selected. The uses of counters and a global time are considered for CAN-based sys-
tems and TDMA-based systems, respectively. Note that it is not fair to directly compare the
results of CAN-based systems and TDMA-based systems because their security properties
are not exactly the same, as mentioned above. If their security properties are the same, we
can select the CAN protocol or the TDMA protocol as follows:

• If some legitimate receivers are allowed to share a secret key, both of the results of
the CAN protocol (with S5) and the TDMA protocol (with S3) are feasible. If the
objective is the latency minimization, the CAN protocol has a better objective value;
if the objective is the MAC length maximization, the TDMA protocol has a better
objective value.

• If two receivers are not allowed to share a secret key, only the result of the TDMA
protocol (with S3) is feasible, so the TDMA protocol should be selected.

13

Chapter 3

Security Mechanisms for CAN
Protocol

As mentioned in Chapter 1, security has become a pressing issue for automotive electronic
systems. This is because modern automotive electronics systems are distributed as they
are implemented with software running over networked Electronic Control Units (ECU)
communicating via serial buses and gateways, but most systems have not been designed with
security in mind. This is because the current processes, methods, and tools used for designing
current automotive electronics systems focus on safety, reliability, and cost optimization.
Although verification for safety and reliability of automotive electronics systems against
random failures are commercially available, no security aspect is included as part of the
hardware and software architecture development processes, and no standard communication
protocol has any built-in provision to prevent or mitigate attacks.

In this chapter, we propose security mechanisms that retrofit the Controller Area Network
(CAN) protocol to protect it against masquerade and replay attacks, and the mechanisms
can work with the security-aware design methodology in Chapter 2 as candidate security
mechanisms for CAN-based systems. We focus on the CAN protocol because it is the most
used serial data protocol in current in-vehicle networked architectures and a very represen-
tative asynchronous protocol. We address low overhead, high degree of tolerance to faults,
and low cost requirements by providing a software-only solution with no additional hardware
required.

The security mechanisms are based on message authentication and symmetric secret keys,
and counters are also introduced to implement time-stamping of Message Authentication
Codes (MACs) in order to overcome the lack of global time in the CAN protocol. We do not
focus on the initial security critical key assignment and distribution as this aspect, although
very important, is already being studied [47]. Instead, we focus on run-time authentication
both in the system steady state (after security secret keys have been distributed to the ECUs)
and during running resets experienced by some of the ECUs in systems (when counters are
potentially out of synchronization). We also propose two counter reset mechanisms which
involve either an ECU that heals itself or a more drastic network-wide counter reset (or re-

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 14

synchronization). We provide an analysis of the trade-offs and the benefits versus drawbacks
of both approaches. As security has a cost in terms of performance (because of the additional
bits needed for MACs and counters) and in terms of potential hazards that may occur due to
poor performance, we also work on exploring trade-offs between degree of security and other
metrics such as resource utilization. Experimental results show that our security mechanism
can achieve sufficient security level without introducing high communication overhead in
terms of bus load and message latency.

The chapter is organized as follows. Section 3.1 defines the system model and the attacker
model. Section 3.2 presents the security mechanisms. Section 3.3 and Section 3.4 introduce
the counter implementation and its corresponding reset mechanisms, respectively. Section 3.5
demonstrates a case study of performance analysis. Section 3.6 provides a summary of this
chapter.

3.1 System Model and Attacker Model

For automotive systems and the CAN protocol, integrity and authenticity are very rel-
evant properties which are suitable to our software-only security mechanism solution. To
prevent an interruption attack, hardware protections are required as a malicious ECU can
freely read data from and write data to a connected CAN bus because of the very same
nature of the CAN protocol (broadcast and multi-master with arbitration). Therefore, in-
terruption attacks are outside of the scope of this chapter. We first state our assumptions
and provide definitions about the system model as follows:

Assumption 3.1. The network architecture has only one CAN bus, and all ECUs are
connected to the bus.

Definition 3.1. A node is an ECU.

Definition 3.2. The sender of a message is the node sending the message.

Definition 3.3. A receiver of a message is a node receiving the message and accepting it
by comparing the message ID to the list of its acceptable message ID’s.

A sender sends a message by broadcasting it on the CAN bus. Since the CAN protocol
is a broadcast protocol, every node “receives” the message, but only receivers (as we have
defined them) accept the message.

Assumption 3.2. A node can use volatile (RAM) and/or non-volatile (FLASH) memory
to store data. Data stored in RAM is no longer available after a node reset; data in FLASH
is available after a node reset.

To describe our attacker model, we use a networked architecture topology as in Figure 3.1.
Although in the CAN protocol, any node can play the role of sender and receiver in different
bus transactions, for illustration purposes, we assume N1 is a legitimate sender and N2 is

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 15

sender

software

N1

RAM

FLASH

receiver

software

N2

RAM

FLASH

strong

attacker

software

N3

RAM

FLASH

N4

RAM

FLASH

weak

attacker

software

Figure 3.1: The attacker model, where N1 is a legitimate sender, N2 is a legitimate receiver,
N3 is a strong attacker, and N4 is a weak attacker.

K1,2

N1

K1,3 K1,2

N2

K2,3 K1,3

N3

K2,3

Figure 3.2: The pair-wise secret key distribution for three nodes.

a legitimate receiver. In Figure 3.1, if malicious software takes control of an existing node
N3, it can access any data stored in RAM and FLASH, including data used to implement
a security mechanism (e.g., shared secret keys). It is also possible that an attacker uses a
node N4 and connects it to the network (e.g., to perform diagnostics on the network, this
node can be a laptop running diagnostic software and connected to the network using the
CAN adapter interface); in this case, the malicious software also has access to the RAM and
FLASH memory. However, no critical data (e.g., shared secret keys) is stored in RAM and
FLASH in the first place.

Definition 3.4. A strong attacker is an existing node where malicious software is able to
gain control with full access to any critical data.

Definition 3.5. A weak attacker is a node where malicious software is able to gain control
but no critical data is available (mainly because it was never stored in memory).

Definition 3.6. A legitimate node is a node which is neither a strong attacker nor a weak
attacker.

For example, in Figure 3.1, N3 and N4 are strong and weak attackers, respectively, and
N1 and N2 are legitimate nodes. The possible attack scenarios that N3 and N4 can carry
out and that we are addressing with our solution are:

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 16

Attack Types Strong Attacker N3 Weak Attacker N4

Modification or Fabrication Scenario 1 Scenario 2
Replay Scenario 3 Scenario 4

In the table, we describe the scenario in which a message is supposed to be send by a
legitimate sender N1. However, N3 and N4 try to alter this situation. Again, we are not
addressing attacks such as a Denial-of-Service (DoS) attack since they will require additional
hardware—our proposed solution is software-only. We now explain the scenarios as follows:

• Scenario 1: this is possible if important/secret data between N1 and N2 has been stored
in RAM or FLASH of N3. For example, if important/secret data is shared and used
by every node in the network1, then N3 can use the data stored in RAM or FLASH
and pretend to be N1 to send a new message to N2 (fabrication).

• Scenario 2: there is no threat because no important/secret data is stored in RAM or
FLASH of N4.

• Scenario 3: this is possible if N3 reads a message from the CAN bus and then writes
the same message to the CAN bus without any modification. Note that, in this case,
N3 does not need to get important/secret data between N1 and N2, e.g., a pair-wise
secret key as in Figure 3.2, because N2 will just accept the message by thinking it is
sent by N1.

• Scenario 4: same as Scenario 3.

We now define a masquerade attack and a replay attack as follows [48]:

Definition 3.7. A masquerade attack is the scenario that an attacker sends a message in
which it claims to be a node other than itself.

Note that a masquerade attack can lead to a fabrication attack, a modification attack,
or as a special case, a replay attack:

Definition 3.8. A replay attack is the scenario that an attacker sends a message that it has
received without any modification.

In the CAN protocol, an attacker performs a reply attack by sending (replaying) the copy
of a message that the attacker receives from the CAN bus. The message is not modified or
altered, and it is merely sent to other nodes by a node that is not entitled to send it. The
other nodes have tables that match the message ID to the sender and thus determine the
identity of the sender but have no provision to authenticate it.

Since the CAN protocol is a broadcast protocol, both a strong and weak attacker can
successfully carry out a masquerade or replay attack if no security mechanism is put in place.

1For example, if the nodes in the network share the same secret key. This is a different scenario from
the scenario in Figure 3.2 where nodes share secret keys in a pair-wise fashion.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 17

Table 3.1: The notations in this chapter.

Notation Explanation

i the ID of a node.
j the ID of a node.
k the ID of a message.
Ni the node with ID i.
Mk the message with ID k.
n the number of nodes.
nk the number of receivers of Mk.
rk,s the ID of the s-th receiver of Mk.
f the function to compute a MAC.
T the time.
Ki,j the shared secret key of Ni and Nj.
Ak,s the MAC computed by a sender for the s-th receiver of Mk.
A the MAC computed by a receiver.
Ci,k the counter stored in Ni for Mk .
CM

i,k the most significant bits of Ci,k.
CL

i,k the least significant bits of Ci,k.

Even if pair-wise keys are used, a replay attack can still be successful. Before introducing
some security mechanisms, we also provide the definition of a false acceptance and a false
rejection as follows:

Definition 3.9. A false acceptance is the scenario that a node accepts messages which it
should reject.

Definition 3.10. A false rejection is the scenario that a node rejects messages which it
should accept.

By the definition, a successful attack implies a false acceptance.

3.2 Security Mechanisms

In this section, we will first introduce some basic authentication mechanisms and describe
our security mechanisms. In the following sections, we will show the challenges in implement-
ing a security mechanism for the CAN protocol and how we can overcome these difficulties.
Some notations that will be used throughout this chapter are defined in Table 3.1.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 18

3.2.1 Basic Authentication

Basic authentication is based on sharing a secret key between a sender N1 and a receiver
N2 and computing a MAC which is essentially a signature of a message [47]. A key K1,2 is
the shared secret key stored in N1 and N2 and only known by N1 and N2. For the sake of
the discussion and without loss of generality, we assume a pair-wise secret key assignment as
shown in Figure 3.2. N1 and N2 perform the following steps to send and receive a message
Mk:

Sender (N1)
1 Ak,1 = f(Mk, K1,2);
2 Send Mk and Ak,1;

Receiver (N2)
1 Receive Mk and Ak,1;
2 A = f(Mk, K1,2);
3 Accept Mk if and only if A = Ak,1;

Note that the “1” of Ak,1 means that N2 is the first and the only receiver of Mk. Even if
N3 is a strong attacker, since the keys are assigned in a pair-wise fashion, N3 is not able to
compute the MAC (as it is missing K1,2) that is needed to attack N2 with a message that
is supposed to be sent by N1. However, in a broadcast protocol, a message is read by any
node in the network, and Mk and Ak,1 are sent in the clear, so N3 can read the message and
resend it verbatim (essentially replay the same message). Then, N2 will accept it because
the MAC is a match. A possible solution to this problem is to use the concept of global
time that allows time-stamping messages. If a global time is adopted then N2 can prevent a
replay attack. An authentication mechanism with global time-stamping is as follows:

Sender (N1)
1 Get time T ;
2 Ak,1 = f(Mk, T,K1,2);
3 Send Mk and Ak,1;

Receiver (N2)
1 Receive Mk and Ak,1;
2 Get sending time T ;
3 A = f(Mk, T,K1,2);
4 Accept Mk if and only if A = Ak,1;

As in the scenario explained earlier, if N3 wants to send Mk to N2, as it cannot retrieve
K1,2 because it does not have it, it cannot compute the correct MAC. In addition, in case
of a replay attack, if N3 replays the message, it will do so using a MAC with an earlier time
stamp that N2 has used it before. Therefore, the MACs cannot match, and N2 will reject

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 19

the message. As we will show later in this chapter, a global time is not available in the CAN
protocol, and thus we introduce monotonic counters to address replay attacks.

The basic authentication mechanisms have been summarized, but there are still other
alternatives and variations for authentication. A lot of existing work focus on digital sig-
natures. However, digital signatures have very high communication overhead, making them
inapplicable or very difficult to use for the CAN protocol. Szilagyi et al. [47, 48, 49] em-
phasize the constraints in an embedded network and consider a time-triggered (i.e., a global
time is available) broadcast protocol. Since every node is a receiver2, a sent message includes
MACs for all receivers. Therefore, N1 and N2 perform the following steps to send and receive
a message Mk:

Sender (Ni)
1 Get time T ;
2 ∀j, 1 ≤ j ≤ n,Ak,j = f(Mk, T,Ki,j);
3 Send Mk, Ak,1, Ak,2, . . . , Ak,n;

Receiver (Nj)
1 Receive Mk, Ak,1, Ak,2, . . . , Ak,n;
2 Get sending time T ;
3 Get i where Ni is the sender of Mk;
4 A = f(Mk, T,Ki,j);
5 Accept Mk if and only if A = Ak,j;

The authentication operation sends n MACs since the authors use a comprehensive def-
inition of receiver. This means that there are as many receivers as nodes in the network.
Each receiver authenticates the message by first identifying the correct MAC that the re-
ceiver needs to compare to, based on the information that maps each received message to
the unique sender of the message itself. Besides the authentication aspect, the authors have
also introduced other interesting features to their authentication mechanism to cope with
the potentially limited communication bus data rate and provide fault tolerance. First, only
a subset of the MAC bits are sent and used for authentication purposes, i.e., A and Ak,j in
the above operations are respectively replaced by [A]l and [Ak,j]l where []l is the truncation
operation to l bits. Secondly, the analysis assumes that an unsafe state is reached only when
some of most recently received messages are successfully attacked. Lastly, in one extension
work [49], the authentication is performed by different voting nodes.

Even with the features proposed for reducing the number of transmitted bits and achiev-
ing fault tolerance, two major challenges exist in applying the work just described to the
CAN protocol. First, the bandwidth available in the CAN protocol is extremely limited.
In fact, the maximum and nominal data rate of a CAN bus is only 500 kbps, while each
standard frame has a maximum total of 134 bits which include 64 bits for payload, 46 bits

2The authors use the more comprehensive version of a receiver where a receiver can accept or reject a
message.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 20

for overhead (including CRC bits), and 24 bits for bit-stuffing in the worst case [3]. If a
security mechanism needs to add MACs to the original frame, as the original frame might
have a 64-bit payload, the frame may have to be split into more frames. This may result in
increasing bus utilization, a degraded communication performance, or even a unschedulable
system. Secondly, as stated earlier, there is no global time in the CAN protocol (a global
time is required in those works [47, 48, 49]). To remedy these problems, we propose our
security mechanism in the next section.

3.2.2 Our Security Mechanism

The key elements of our proposed security mechanism are stored in each node (in the
volatile and non-volatile memory). The elements are: the ID table, the pair-wise symmetric
secret keys, and message counters (receiving and sending). In the following, we use our
definition of receivers (Definition 3.3).

• ID table: our security mechanism does not use MACs for all nodes [47, 48, 49]. On the
contrary, a sender only computes as many MACs as the corresponding receivers of the
sent message. This is done by maintaining a ID table in each node where each entry is
indexed by a message ID—each entry contains the node ID of the sender and the list
of the node ID’s of the receivers. We define the ID table with the following function:

(i, nk, rk,1, rk,2, . . . , rk,nk
) = ID-Table(k),

where k is the ID of Mk, i is the ID of the sender of Mk, nk is the number of receivers
of Mk, and rk,s is the ID of the s-th receiver of Mk. A sender can check its ID table
to determine how many MACs it must compute, what keys it should use, and what
ordering of MACs it should attach with the message. A receiver can check the ID table
to determine what key it should use and which MAC included in the received frame
it should select. Again, the advantage of relying on ID tables is that our mechanism
reduces the number of MACs because it considers only the receivers that are accepting
the frame after CAN filtering, rather than considering the whole set of receivers that
the frame is broadcast to. This can reduce the communication overhead considerably.

• Pair-wise secret key: a pair-wise key Ki,j is the “shared secret” between Ni and Nj

for authentication. Every pair of nodes has a shared secret key which is not known
by any other node. Therefore, any other node cannot modify or fabricate a message,
but a replay attack is possible as explained earlier. Note that using pair-wise keys is
only a basic key distribution method. If we want to further reduce the communica-
tion overhead, we could assign nodes to several groups where each node in a group
shares a secret key. Of course, there is a trade-off between security and performance
(minimizing communication overhead) in that the security level is diminished but the
communication performance is improved.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 21

• Message-based counter: a counter is used to replace the global time and prevent a
replay attack. Each node maintains a set of counters, and each counter corresponds
to a message, i.e., Ci,k is the counter stored in Ni for Mk. If the node is the sender of
Mk, its counter value records the number of times that Mk is sent; if the node is the
receiver ofMk, its counter value records the number of timesMk has been received (and
accepted after being authenticated). Therefore, if a malicious node replays a message,
a receiver can check the corresponding receiving counter to see if a message is fresh or
not. Because of a network fault, a receiving counter may not have the same value as
that of its sending counter. In other words, it is possible that a node sends a frame
and updates its sending counter. Then, a network fault occurs, e.g., the electrical bus
has a transient fault, and thus the frame never reaches its destination. Therefore, the
receiver does not receive the frame and thus does not increase its receiving counter.
This means that two counters are out of synchronization. However, our mechanism
can deal with this scenario without any loss of security. We will explain this aspect
later in this chapter. We now provide the following additional definitions:

Definition 3.11. A sending counter for a message is the counter stored in its sender.

Definition 3.12. A receiving counter for a message is the counter stored in one of its
receiver.

In our security mechanism, every node maintains its ID table, pair-wise keys, and coun-
ters. Ni and Nj perform the following steps to send and receive a message Mk:

Sender (Ni)
1 (i, nk, rk,1, rk,2, . . . , rk,nk

) = ID-Table(k);
2 Ci,k = Ci,k + 1;
3 ∀s, 1 ≤ s ≤ nk, Ak,s = f(Mk, Ci,k, Ki,rk,s);
4 Send Mk, Ci,k, Ak,1, Ak,2, . . . , Ak,nk

;

Receiver (Nj)
1 Receive Mk, Ci,k, Ak,1, Ak,2, . . . , Ak,nk

;
2 (i, nk, rk,1, rk,2, . . . , rk,nk

) = ID-Table(k);
3 Continue if and only if find s, 1 ≤ s ≤ nk, j = rk,s;
4 Continue if and only if Ci,k > Cj,k;
5 A = f(Mk, Ci,k, Ki,j);
6 Accept Mk and Cj,k = Ci,k if and only if A = Ak,s;

Based on this mechanism, our security mechanism can protect any masquerade attack
and replay attack. We claim that by considering the following three scenarios:

• If an attacker sends a message which is not supposed to be received by the receiver,
then the receiver will reject the message in Line 3 by checking its ID table.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 22

• If an attacker sends a message which is not supposed to be sent by the attacker, and
it is a replay attack, then the receiver will reject the message in Line 4 by checking the
counters.

• If an attacker sends a message which is not supposed to be sent by the attacker, and it
is not a replay attack, then the receiver will reject the message in Line 6 by comparing
the MACs.

3.3 Counter Implementation

The operations in the previous section can meet the requirements stated by our attacker
model. However, the number of bits used for the counter must be explored. If the number
of bits is not sufficient during the lifetime of a vehicle, then the counter may overflow. For
example, if the counter stored at the receiving side overflows and resets to zero, then the
replay attack may succeed as the attacker just needs to wait for this event to happen. If the
number of bits used for the counter is too large, then the bus will be overloaded.

To remedy these problems, we propose a solution where the counter Ci,k is divided into
two parts: the most significant bits CM

i,k and the least significant bits CL
i,k—only CL

i,k is sent
with the message. The steps performed by Ni and Nj are similar, but only CL

i,k is sent. They
are listed in Algorithm 1 and Algorithm 2, and the steps performed by a receiver Nj of a
message Mk sent by a sender Ni is also shown in Figure 3.3. The two cases are:

• If CL
i,k > CL

j,k, then the receiver will use CM
j,k to compute the MAC, which is the same

scenario as that of the original mechanism.

• If CL
i,k ≤ CL

j,k, then the receiver will use CM
j,k + 1 to compute the MAC.

If there is a replay attack, the receiver will test CL
i,k = CL

j,k to be true and use CM
j,k + 1 to

compute the MAC which will be different from the one sent in the replayed message. The
receiver will fail the test and reject the message.

The advantage of using this mechanism is that we can reduce the communication overhead
without any loss of security. If the receiver consecutively misses several messages due to a
network fault, it may reject a message although there is no attack in place because its

Algorithm 1 Algorithm to send Mk.

1: (i, nk, rk,1, rk,2, . . . , rk,nk
) = ID-Table(k);

2: Ci,k = Ci,k + 1;
3: for each s, 1 ≤ s ≤ nk do
4: Ak,s = f(Mk, Ci,k, Ki,rk,s);
5: end for
6: Send Mk, C

L
i,k, Ak,1, Ak,2, . . . , Ak,nk

;

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 23

Algorithm 2 Algorithm to receive and authenticate (Mk, C
L
i,k, Ak,1, . . . , Ak,nk

).

1: (i, nk, rk,1, rk,2, . . . , rk,nk
) = ID-Table(k);

2: Find s such that 1 ≤ s ≤ nk and j = rk,s;
3: if s is not found then
4: Return “Reject”;
5: end if
6: if CL

i,k > CL
j,k then

7: A = f(Mk, C
M
j,k|CL

i,k, Ki,j);
8: if A = Ak,s then
9: CL

j,k = CL
i,k;

10: Return “Accept”;
11: else
12: Return “Reject”;
13: end if
14: else
15: A = f(Mk, (C

M
j,k + 1)|CL

i,k, Ki,j);
16: if A = Ak,s then
17: CM

j,k = CM
j,k + 1;

18: CL
j,k = CL

i,k;
19: Return “Accept”;
20: else
21: Return “Reject”;
22: end if
23: end if

receiving counter may not be up-to-date (out of synchronization). However, the probability
that a counter is out of synchronization is very low. If a counter C is divided into CM

and CL and the probability of a network fault is q, the probability that a counter is out

of synchronization is q2
|CL|

. For example, if |CL| = 3 and q = 0.1, the probability that a
counter is out of synchronization is only 0.18. Even if this scenario occurs, the MACs will
not match, and the receiver will continue rejecting messages (false rejection). Although this
scenario is not optimal, a counter out of synchronization is a better option than a successful
attack (false acceptance). In addition, we address this potential issue by providing counter
reset mechanisms. This is the focus of the next section.

3.4 Counter Reset Mechanisms

A counter reset mechanism is required to deal with an ECU hardware reset or with
counters that are out of synchronization because of a network fault. There are two types
of hardware resets. The first type is that an ECU may reset as expected, e.g., as it goes

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 24

Ci,kMk

(…, rk,1, rk,2,…) = ID-Table(k)

Ci,k > Cj,k ?

A = f (Mk, (Cj,k+1) | Ci,k, Ki,j)

A = Ak,s ? Reject

Y

A = f (Mk, Cj,k | Ci,k, Ki,j)

A = Ak,s ?

N

N N

Y Y

k
Ak,1 Ak,2 … Ak,n

M

Find s such that j = rk,s Reject

found

not

found

M

LL

L

LL

Cj,k = Ci,k Accept Cj,k = Cj,k +1; Cj,k = Ci,k

Y Y

LM M LLL

Figure 3.3: The steps performed by a receiver Nj of a message Mk sent by a sender Ni.

into a low power mode as a result of a specific driving mode in which some ECUs are shut
off to reduce the energy usage. The other type is that an ECU experiences an unexpected
hardware reset due to a power failure. Regardless of the reason why an ECU resets, the
rate at which the resets occur or the minimum time interval between them may be too short
to allow storing critical data into FLASH which could be restored at a later time. This
is because storing data in the FLASH too frequently (at a rate that is higher than of the
expected maximum rate of resets) may lead to burning the FLASH itself. Therefore, we
devise mechanisms to deal with scenarios where critical data such as updated counter values
may not be up-to-date due to hardware resets.

Before an expected shutdown or a change of power state, the ECU copies the relevant
data from RAM and stores it into FLASH. At wake-up, the ECU restores the data from
FLASH into RAM. However, unexpected shutdowns can occur when hardware failures occur
or there is a lack of power, etc. In this case, it is not safe to assume that critical data stored
in FLASH can be restored. Therefore, provisions have to be put in place to bring back the
ECU, and therefore the system, to a secure state (e.g., with counter values that prevent
attacks). Our mechanisms that deal with unexpected hardware resets include “self-healing”
and “network-wide” counter resets. The mechanisms provide trade-offs between security
levels and communication overhead.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 25

3.4.1 Self-Healing Reset Mechanism

We describe the self-healing reset mechanism performed by a node that has experienced
a hardware reset as follows:

• The node sets a FLAG variable to 0.

• The node stores its counters into FLASH every P seconds. The time interval P is a
function of the FLASH technology.

• If a node is experiencing an expected hardware reset, then the node tries to store the
latest counters value from RAM into FLASH before shutting down. If the operation
is successful (it may not be if the FLASH controller refuses to allow it because of
potential burning), then FLAG should be set to 1. If not, the remaining steps are the
same with those taken for an unexpected hardware reset below.

• If a node reset unexpectedly, nothing can be guaranteed including storing data into
FLASH, therefore the FLAG stays at 0.

• When a node wakes up, if FLAG = 1, it restores all counters from FLASH and set
FLAG = 0; if FLAG = 0, it restores all counters from FLASH (last counters saved)
and increase them by Q, and stores them into FLASH.

P is a parameter that depends on the FLASH technology. There is a trade-off between data
freshness and expected life of the FLASH memory. Q is an upper bound of the number of
messages that can be sent within the time interval P to prevent a replay attack—different
counters can be associated with different values of Q for different messages.

Since the value of Q is an upper bound of the number of messages sent during P , it is
possible that this value is not the correct number of messages sent during P . A larger Q
value than the real one may lead to false rejections, meaning to a situation where a receiver
has a receiving counter that is higher than the sending counter although it should not be.
In this case, the receiver will reject a message (even if it should not reject) until the sending
counter reaches the value of the receiving counter. Conversely, if Q is smaller than what it
should be, then the receiver will accept messages it should not accept (false acceptances). In
both cases, the value Q is expected to be tuned off-line. The advantage of this mechanism is
that, at wake-up following a node reset, a node resets its counters by itself without the need
of additional messages to reset the counters of other nodes. Therefore, the communication
overhead is minimized as no network-wide counter synchronization is necessary. However, as
the parameter Q is an estimate, potential false rejections or, even worse, false acceptances
may occur.

3.4.2 Network-Wide Reset Mechanism

Besides the self-healing reset mechanism, we also propose a network-wide reset mecha-
nism. The key concepts are:

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 26

reset fault

receive RESET → action 2

receive REQ

→ (if FLAG = 1,

send RESET with X)

reset → Ø

Ø → action 1
out of syn →

send REQ

receive RESET

→ action 2

reset → Ø

working

out of syn →

send REQ

action 1

all counters = 0

FLAG = 1

generate X

K
s
= F(K

r
, X)

send RESET with X

action 2

all counters = 0

FLAG = 0

K
s
= F(K

r
, X)

K
s
: session key

K
r
: root key

X: random number

“reset”: running reset

“RESET”: reset message

“REQ”: request message

Figure 3.4: The finite state machine of a node in the dynamic network-wide reset.

• A RESET message to set all counters of all nodes to 0.

• A REQ message to achieve fault tolerance.

• New session keys to prevent replay attacks.

In this mechanism, because every counter is reset to 0, new session keys are required; other-
wise, an attacker could successfully perform a replay attack. Therefore, a random generated
number needs to be included in a RESET message, as it is used to generate the new session
key for each node. We can further divide this into two possible approaches. The first one is
a “dynamic” network-wide reset where any node experiencing a reset can generate a random
number and send a RESET message to all other nodes. The second approach is a “static”
network-wide reset where only one special master node can generate a random number and
send a RESET message to all other nodes.

The finite state machine of a node in the dynamic network-wide reset is shown in Fig-
ure 3.4. This approach has the following features:

• Every node needs to maintain a variable FLAG to indicate if it is the last node gener-
ating the random number X and sending the RESET message.

• If a node experiences a reset (goes to the reset state), then it will set all counters to
0, set FLAG to 1, generate a random number X and its new session keys, and send a
RESET message with X.

• If a node receives a RESET message, then it will set all counters to 0, set FLAG to 1,
and generate its session keys.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 27

reset fault

receive REQ0

or reset → Ø

Ø → action 1 receive REQ

receive REQ0 or reset → Ø

working

Ø → send

RESET with X

action 1

all counters = 0

generate X

K
s
= F(K

r
, X)

send RESET with X

Figure 3.5: The finite state machine of a master node in the static network-wide reset.

wait fault

receive RESET → action 2

reset → Ø

Ø → action 1
out of syn →

send REQ

receive RESET

→ action 2

reset → Ø

working
out of syn →

send REQ

action 1

all counters = 0

send REQ0

action 2

all counters = 0

K
s

= F(K
r
, X)receive RESET

→ action 2

reset reset → Ø

Figure 3.6: The finite state machine of a non-master node in the static network-wide reset.

• If a node finds itself out of synchronization (missing a RESET message due to network
fault), then it will send a REQ message to ask for going back to synchronization.

• If a node receives a REQ message, then it will check if FLAG is 1. If yes, it is the
last node generating X and sending the RESET message, so it will resend a RESET
message.

The finite state machine of a master node in the static network-wide reset is shown in
Figure 3.5; the finite state machine of a non-master node in the static network-wide reset is
shown in Figure 3.6. The differences between static and dynamic resets are as follows:

• A node does not need to maintain a variable FLAG because only the master node can
generate a random number and send a RESET message.

• A REQ0 message is used by a non-master node to ask the master node to reset the
network.

• If a non-master node experiences a reset, then it will send a REQ0 message and wait
for a RESET message.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 28

• If a master node receives a REQ0 message, it will set all counters to 0, generate a
random number X and its session keys, and send a RESET message with X.

Although the network-wide reset mechanism can guarantee that there is no false rejection or
successful replay attack, it may determine high transient bus peak loads due to the increasing
traffic created by the messages used to reset the counters in every node.

To this point, we have proposed a self-healing and a network-wide (static or dynamic
master) reset mechanisms. Both mechanisms provide advantages and disadvantages in terms
of security level and bus utilization. In a real case, maybe a mix of them could be applied,
depending on the requirements on the communication resource, its available capacity in
terms of its data rates, and the secure criticality level of each message.

3.5 Analysis

Our security mechanism has an impact on the system bus load and message latency.
To demonstrate them, we formulate the problem as a feasibility analysis problem. The
formulation includes the following parameters:

• n: the number of messages.

• q: the probability that a message is missing due to a network fault.

• R: the bus data rate.

The parameters for a message Mk are defined:

• nk: the number of receivers.

• Rk: the message rate (frequency, as the inverse of its period).

• Sk: the message original size.

• Lk: the upper bound of the total length of the MACs and the least significant bits of
the counter.

• Ck: the lower bound of the length of the least significant bits of the counter.

• Pk: the upper bound of the probability of a successful attack.

• Qk: the upper bound of the probability that a counter is out of synchronization.

If Mk is not a security-critical message, then Ck = 0 and Pk = Qk = 1. The following
decision variables for Mk are defined:

• xk: the length of the MAC.

• yk: the length of the least significant bits of the counter.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 29

The following constraints for Mk are defined:

• The total length of MACs and least significant bits of the counter should be smaller
than or equal to Lk.

• The length of least significant bits of the counter should be larger than or equal to Ck.

• The probability of a successful attack should be smaller than or equal to Pk.

• The probability that a node is out of synchronization should be smaller than or equal
to Qk.

The constraints in mathematical forms are defined as follows:

xk + yk ≤ Lk, (3.1)

yk ≥ Ck, (3.2)

2−xk ≤ Pk, (3.3)

q2
yk ≤ Qk. (3.4)

The last two constraints also define the probability of a false acceptance (a node accepts
messages which it should reject) and a false rejection (a node rejects messages which it
should accept). We can easily derive the minimal values of xk and yk and then compute the
message latency using the equation [31]:

lk = B +
∑

i∈hp(k)

(
⌈lkRi⌉

Si + nixi + yi
R

)
, (3.5)

where lk is the latency of Mk, B = maxi
Si+nixi+yi

R
, and hp(k) is the index set of messages

with higher priorities than Mk. By using a traditional fix-point calculation, the latency is
computed through an iterative method until convergence (if a solution exists).

We use a test case with 17 security-critical messages among 138 messages, and q = 0.1,
R = 500 kbps, Lk = 32 bits, Ck = 1 bit for all security-critical messages. Table 3.2 and
Table 3.3 show the relative bus loads and average latencies with different values of P and
Q, where Pk = P and Qk = Q for all k, under the assumptions that the nk’s are 1 and 3,
respectively. The number of receivers was not known, so we have used a simple assumption.
If this information is provided, more general experiments can be done by assigning different
values for Pk and Qk for different k. Again, the main purpose of this experiment is to show
how the security mechanism impacts on the system bus load and message latency. If there
exist tight constraints on the bus load, the average message latency, or the message latency
(deadline) for each message, then we can check if the security mechanism can be applied or
not.

As shown in Table 3.2, when nk = 1, if we want to make sure that the probability of a
successful attack and the probability that a node is out of synchronization are both bound

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 30

Table 3.2: The relative bus load and average message latency under nk = 1 and different
values of P and Q where “—” means that there is no feasible solution. Without the security
mechanism, the original bus load 376.44 kbps and average message latency 11.535 ms are
both scaled to 1.

Q
P 10−1 10−4 10−7 10−10 10−13

Load Avg L. Load Avg L. Load Avg L. Load Avg L. Load Avg L.

10−1 1.0094 1.0241 1.0113 1.0267 1.0131 1.0288 1.0150 1.0322 1.0150 1.0488
10−2 1.0150 1.0322 1.0169 1.0394 1.0188 1.0425 1.0206 1.0445 1.0206 1.0612
10−3 1.0206 1.0445 1.0225 1.0481 1.0244 1.0506 1.0263 1.0571 1.0263 1.0741
10−4 1.0282 1.0591 1.0300 1.0625 1.0319 1.0646 1.0338 1.0668 1.0338 1.0839
10−5 1.0338 1.0668 1.0357 1.0733 1.0375 1.0767 1.0394 1.0789 1.0394 1.0962
10−6 1.0394 1.0789 1.0413 1.0832 1.0432 1.0883 1.0451 1.0968 1.0451 1.1144
10−7 1.0469 1.0987 1.0488 1.1007 1.0507 1.1040 1.0526 1.1061 1.0526 1.1238
10−8 1.0526 1.1061 1.0544 1.1129 1.0563 1.1181 1.0582 1.1213 1.0582 1.1393
10−9 1.0582 1.1213 1.0601 1.1232 — — — — — —
10−10 — — — — — — — — — —

Table 3.3: The relative bus load and average message latency under nk = 3 and different
values of P and Q where “—” means that there is no feasible solution. Without the security
mechanism, the original bus load 376.44 kbps and average message latency 11.535 ms are
both scaled to 1.

Q
P 10−1 10−4 10−7 10−10 10−13

Load Avg L. Load Avg L. Load Avg L. Load Avg L. Load Avg L.

10−1 1.0244 1.0506 1.0263 1.0571 1.0282 1.0591 1.0300 1.0625 1.0300 1.0795
10−2 1.0413 1.0832 1.0432 1.0883 1.0451 1.0968 1.0469 1.0987 1.0469 1.1164
10−3 1.0582 1.1213 1.0601 1.1232 — — — — — —
10−4 — — — — — — — — — —

by 10−4, then there are 3% increase on the bus load and 6.25% increase on the average
message latency. Note that, in some cases where the values of P and Q are both large, there
is no feasible solution. For our experiments, we show that we can achieve a high security
level (e.g., the probability of a successful attack is smaller than 10−8), with a bus load or
average message latency increasing less than 6% and 14%, respectively. However, as shown
in Table 3.3, when nk = 3, we can see that the feasible region is reduced. This is because it
needs 3 MACs, but there are only at most Lk − Ck bits available for them.

CHAPTER 3. SECURITY MECHANISMS FOR CAN PROTOCOL 31

3.6 Summary

In this chapter, we describe security mechanisms that retrofit the CAN protocol and
protect it against masquerade and replay attacks. Our mechanism is suitable for the CAN
protocol because it has a low communication overhead and does not need to maintain a
global time. By using counters and only sending the least significant bits of counters, we
also propose two counter reset mechanisms in case counters are out of synchronization. Anal-
ysis results show that our security mechanism can achieve sufficient security level without
introducing high communication overhead in terms of bus load and message latency.

32

Chapter 4

Security-Aware Mapping for
CAN-Based Systems

The mechanisms in Chapter 3 can protect against masquerade and replay attacks for
the Controller Area Network (CAN) protocol. However, adding Message Authentication
Code (MAC) and counter bits to an existing design may not lead to optimal or even feasible
systems because there may not be enough space in messages for the required MAC and
counter bits because of the message length limitation (only 64 bits for payload in the CAN
protocol [3]). Besides, adding MAC and counter bits increases the message transmission time
(in particular if MACs are truncated and transmitted over multiple messages), which may
cause the violation of timing constraints and affect system safety. Some extensions of the
CAN protocol provide longer message lengths [4, 57]. For instance, the CAN with Flexible
Data-Rate (CAN-FD) protocol [4] can allow messages with 64-byte payload. However, the
problems above still exist if the MAC and counter bits are added in an ad-hoc fashion or
after the other parts of the design are fixed. Therefore, to achieve a secure and safe design,
it is crucial to address security together with other objectives such as latency and utilization
during the design space exploration of the system.

In this chapter, we propose an integrated Mixed Integer Linear Programming (MILP)
formulation to address both the security and the safety requirements during the exploration
of the mapping from a functional model to a CAN-based architecture platform. The map-
ping design space we explore includes the allocation of tasks onto Electronic Control Units
(ECUs), the packing of signals into messages, the sharing of MACs among multiple receiving
ECUs, and priority assignment of tasks and messages. The security constraints are set to
bound security risks. We extend the security mechanism in Chapter 3 by allowing multiple
receiving ECUs to share one MAC in a message. This provides more design flexibility under
limited resources, while also requires quantitative measurement of the security cost in our
formulation. The safety constraints are defined as the end-to-end deadlines for safety-critical
functional paths.

To the best of our knowledge, this is the first work to address security and safety in an
integrated formulation in the design automation of automotive electronic systems. Based

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 33

ECU CAN bus
fu

n
ct

io
n

al

m
o

d
el

τ3

σ1

µ1,1

µ1,2

τ2

τ1

τ6

τ5

τ4

τ8

τ7

σ2

σ3

σ4

σ5

σ6

ε2ε1
µ2,1

µ2,2

ε3

ar
ch

it
ec

tu
re

p
la

tf
o

rm

task allocation signal packing

broadcast

task signal

message

Figure 4.1: The system model of a CAN-based system.

on the optimal MILP formulation, we further propose a three-step algorithm that gradually
solves the mapping problem in three simplified MILPs. This approach balances optimality
and efficiency and enables solving complex industrial-size problems. We further present
an extended formulation which models the path-based security constraints and minimizes
security risk directly. Based on the extended formulation, the risk that a functional path
being compromised can be bounded and minimized. Along with the extended formulation,
we also propose a heuristic algorithm to solve the problem more efficiently. Experimental
results of an industrial case study show that our approaches can effectively and efficiently
explore the design space to meet the system security and safety requirements.

The chapter is organized as follows. Section 4.1 defines the system model and constraints.
Section 4.2 presents the MILP formulation and the three-step MILP-based algorithm. Sec-
tion 4.3 introduces the extended formulation and algorithm. Section 4.4 demonstrates the
experimental results with a case study. Section 4.5 provides a summary of this chapter.

4.1 System Model and Constraints

In this section, we introduce the system model and system constraints involving security
and safety.

4.1.1 System Model

The mapping problem addressed in this section is based on Platform-Based Design
paradigm [44] and the methodology in Chapter 2, where the functional model and the ar-
chitecture platform are initially captured separately and then brought together through a

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 34

mapping process. As shown in Figure 4.1, the architecture model is a distributed CAN-
based platform that consists of nE ECUs, denoted by E = {ε1, ε2, . . . , εnE}, and a CAN
bus that connects all the ECUs. Each ECU εk can send nM

k messages, denoted by Mk =
{µk,1, µk,2, . . . , µk,nM

k
}. ECUs are assumed to run AUTOSAR/OSEK-compliant operation

systems that support preemptive priority-based task scheduling [33]. The bus uses the
standard CAN bus arbitration model that features non-preemptive priority-based message
scheduling [3]. The functional model is a task graph that consists of nT tasks, denoted by
T = {τ1, τ2, . . . , τnT }, and nS signals, denoted by S = {σ1, σ2, . . . , σnS}. Each signal σi is
between a source task srcσi

and a destination task dstσi
. Tasks are activated periodically

and communicate with each other through signals.
A path π is an ordered interleaving sequence of tasks and signals, defined as π =

(τr1 , σr1 , τr2 , σr2 , . . . , σrk−1
, τrk). src(π) = τr1 is the path’s source and snk(π) = τrk is its

sink. Sources are activated by external events, while sinks activate actuators. Multiple
paths may exist between each source-sink pair. We assume all tasks in a path perform com-
putations that contribute to a distributed function, from the collection of sensor data to
the remote actuations. The worst-case end-to-end latency incurred when traveling a path
π is denoted as lπ, which represents the largest possible time interval that is required for
the change of the input (or sensed) value at the source to be propagated and cause a value
change (or an actuation response) at the sink.

During mapping, the functional model is mapped onto the architecture platform, as
shown in Figure 4.1. Specifically, the tasks are allocated onto ECUs, and the signals are
packed into messages and transmitted on the CAN bus in a broadcast fashion. Note that
messages are triggered periodically and each message contains the latest values of the signals
that mapped to it. Static priorities are assigned to tasks and messages for priority-based
scheduling at run-time. In addition, the sharing of MACs among receiving ECUs is decided—
this is specific to security-aware mapping and will be explained in Section 4.1.2. The design
space of task allocation, signal packing, priority assignment, and key sharing is explored with
respect to a set of design objectives and constraints. For instance, a path deadline dπ may be
set for path π as an application requirement, and we use P to denote the set of time-sensitive
paths with such deadline requirements. There are also utilization constraints on ECUs and
the CAN bus, payload size constraints on messages, and constraints on security costs. The
details of the security and end-to-end latency constraints are introduced in Section 4.1.2 and
Section 4.1.3, respectively, and all constraints are formulated in the MILP formulation in
Section 4.2.

4.1.2 Security Constraints and Key Distribution

MACs provide authentication to protect against masquerade and replay attacks, and
security constraints should be set at the design time to assure there are enough MAC bits
to prevent indirect attacks on the MAC bits.

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 35

Definition 4.1. An indirect attack is the scenario that an attacker does not have the shared
secret key between a sender and a receiver so that it can only guess a MAC and attempt to
make a message accepted by the receiver.

If there is no prior information and the guess of MAC is purely random, the successful
probability of an indirect attack is 2−L, where L is the number of bits of the MAC. In
our design formulation, a minimal number of bits is required for each MAC, based on the
importance of the signals in the message and the importance of the receivers.

The security mechanism in Chapter 3 uses a dedicated shared key for any pair of nodes,
in which case only indirect attacks need to be addressed. However, using such pair-wise
key distribution may require a significant number of MAC bits when there are multiple
receivers for a message, and may not be feasible. In this chapter, we extend the mechanism
in Chapter 3 by defining the notion of receiving group to allow multiple receivers to share
one MAC in a message, i.e., using the same secret key. This provides more design flexibility
but has the risk from direct attacks.

Definition 4.2. A receiving group of a message is a set of receivers sharing one secret key
with the sender of the message.

Definition 4.3. A direct attack is the scenario that an attacker gets the shared secret key
between a sender and a receiver so that it can pretend as the sender and send a message to
the receiver successfully.

In pair-wise key sharing as in Chapter 3, each receiving group contains only one receiver.
The example in Figure 4.2(a) shows that one MAC is used for each receiver in the message
(6 receivers in total). There is no possibility for direct attack in this case. However, some
MACs will not have enough bits available for preventing indirect attack (assuming 32 bits
in the message payload are reserved for all MAC bits, then some MACs will have fewer than
6 bits, which means the successful probability of an indirect attack is higher than 3%).

The problem of limited MAC length can be relieved by allowing multiple receivers to
share one MAC. A straightforward solution is to use one-key-for-all key distribution, where
all receivers are in the same receiving group and use the same key (therefore the same MAC),
as illustrated in Figure 4.2(b). This will provide more bits for preventing indirect attack,
but it may induce direct attacks—once one ECU in a receiving group is compromised, it can
conduct direct attacks on all other ECUs in the same receiving group through masquerade
attacks on the message.

In our design formulation, we explore the grouping of receivers into different receiving
groups to trade off between direct attack risk and indirect attack risk, based on the total
available MAC bits in a message, how critical a message is falsely accepted by a receiver, and
how likely an existing node may be compromised. For instance, as illustrated in Figure 4.2(c)
and Figure 4.2(d), if N5 is extremely critical, then no other receiver will be assigned in its
receiving group, and there will be no possible direct attack toward it. On the other hand,
if N6 and N7 are trusted that they are very difficult to be compromised, then they can

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 36

(a)

N1 N2 N3 N4

N5 N6 N7

N1 N2 N3 N4

N5 N6 N7

N1 N2 N3 N4

N N N

N1 N2 N3 N4

N N N

(b)

sender receiverCAN bus receiving group

possible direct attacks

N8 N8

N NN5 N6 N7 N5 N6 N7

(c) (d)

N8 N8

Figure 4.2: Given a message sent by node N1 and received by Nj (2 ≤ j ≤ 7), (a) the
pair-wise key distribution, where 6 MACs are required to be sent with the message, and
there is no possible direct attack; (b) the one-key-for-all key distribution, where only 1 MAC
is required, but there are possible direct attacks between any pair of receivers; (c) another
key distribution, where 3 MACs are required, and (d) there are some possible direct attacks.

be assigned in the same receiving group because the probability of a direct attack between
them is very low. We assume the factors that affect direct and indirect attack risks are
quantitatively measured and given as parameters in the design inputs, and we set constraints
in our formulation to restrict these risks.

4.1.3 Safety Constraints

An important aspect in our approach is to make sure the design with security mechanism
still meets the end-to-end latency constraints along functional paths, which directly affect
the safety of the system. Assuming an asynchronous sampling communication scheme, the
worst-case end-to-end latency of a path π can be computed by adding the worst-case response
times of all tasks and global signals on the path, as well as the periods of all global signals
and their destination tasks on the path [56]:

lπ =
∑
τi∈π

rτi +
∑

σi∈π∧σi∈SG

(rσi
+ Tσi

+ Tdstσi
), (4.1)

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 37

Table 4.1: The notations of indices, elements, sets, and quantities.

Notation Explanation

i, i′, j, j′ the index of a task.
k, k′, k′′ the index of an ECU.
l, l′, l′′ the index of a message sent from an ECU.
m the index of a multicast signal from a task.
g the index of a receiving group of a message.
h the index of a path.
τi the i-th task.
σi,j a signal between τi and τj.
εk the k-th ECU.
µk,l the l-th message of εk.
Γk,l,g the g-th receiving group of µk,l.
πh the h-th path.
T the set of tasks.
S the set of signals.
E the set of ECUs.
M the set of messages.
Gk,l the set of receiving groups of µk,l.
P the set of paths.
T <
i,m the set of receiving tasks of the m-th multicast signal of τi.

nT the number of tasks.
nS the number of signals.
nE the number of ECUs.
nM
k the number of messages of εk.

nG
k,l the number of receiving groups of µk,l.

nP the number of paths.

where rτi and rσi
are the response times of task τi and signal σi, respectively, Tτi and Tσi

are the periods of τi and σi, respectively, and SG is the set of all global signals. The key
for calculating end-to-end latency and resource scheduling is to compute the response times
of tasks and messages (the response time of a signal is equal to the response time of the
message to which the signal is packed into). The task response time of τi can be calculated
as

rτi = Cτi +
∑

j∈TH(i)

⌈
rτi
Tτj

⌉
Cτj , (4.2)

where Cτi is the worst-case execution time of τi and TH(i) is the set of higher priority tasks on
the same ECU of τi. The message response time of a message µi can be calculated similarly

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 38

Table 4.2: The notations of constant parameters.

Notation Explanation

T τ
i the period of τi.

T σ
i,j the period of σi,j.

T µ
k,l the period of µk,l.

A the transmission rate of the CAN bus.
Bk,l the blocking time of µk,l.
Ci,k the computation time of τi on εk.
Dh the deadline of πh.
Ri,j the maximum allowed security risk of σi,j.

Ri,j,k′,k′′ the security risk if εk′ and εk′′ share the corresponding secret key of σi,j.
Li,j the data length of σi,j.
Lk,l,g the reserved MAC length of Γk,l,g.
L′
i,j,k the required MAC length of σi,j if σi,j is received by εk.

M a large constant for linearization.
H total length of non-payload part of a message
P maximum length of payload part of a message

as

rµi
= Cµi

+Bµi
+

∑
j∈MH(i)

⌈
rµi

− Cµi

Tµj

⌉
Cµj

, (4.3)

where Cµi
is the message execution time of µi, Bµi

is the blocking time of µi, MH(i) is the
set of higher priority messages of the i-th message, and Tµj

is the period of µj. Given a
deadline dπ for a path π, the worst-case end-to-end latency lπ of π must be smaller than or
equal to dπ.

4.2 Mapping Algorithm

The notations of the indices, elements, sets, and quantities are listed in Table 4.1. We
use σi,j to denote a signal from task τi to task τj (there might be multiple signals between
two tasks; we make assure that all of them are considered in our formulation by enumerating
σi,j ∈ S, where S is the entire set of signals). The notations of the constant parameters
are listed in Table 4.2, and we assume these parameters are given as design inputs. Ri,j is
decided by how critical σi,j is. Ri,j,k′,k′′ depends on how likely εk′ may be taken control by a
malicious attacker and how much the computation of εk′′ depends on σi,j. Li,j includes the
payload data length and also the length of its corresponding counter, which is decided in
advance by checking the given bound of the probability of a false rejection induced by the
mechanism in Chapter 3. L′

i,j,k is decided by checking the given bound of the probability of

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 39

Table 4.3: The notations of binary variables (their values are 1 if the conditions are true)
and real variables.

Notation Explanation

ai,k τi is mapped to εk.
si,j τi and τj are mapped to the same ECU.
ti,j,k,l σi,j is mapped to µk,l.
ui,j,k,l σi,j adds its length to µk,l.
vk,l µi,j is non-empty.

wk′,k,l εk′ is a receiver of µk,l.
xk′,k,l,g εk′ ∈ Γk,l,g.
yk,l,g Γk,l,g is non-empty.

zk′,k′′,k,l εk′ and εk′′ are in the same receiving group of µk,l.
pi,j τi has a higher priority than τj.

pk,l,k′,l′ µk,l has a higher priority than µk′,l′ .
rτi the response time of τi.
rµk,l the response time of µk,l.

rσi,j the response time of σi,j.
bk,l the total length of µk,l.
ck,l the computation time of µk,l.
lh the worst-case end-to-end latency of πh.

a false acceptance induced by the mechanism in Chapter 3. Ri,j and Ri,j,k′,k′′ address the
security risk of a direct attack, and L′

i,j,k addresses the security risk of an indirect attack.
The current maximum allowed security risk is defined at signal-level, but it can also be
defined at receiver-level or at system-level with minor modifications. Finally, the notations
of the decision variables are also listed in Table 4.3.

4.2.1 Constraints

In this section, we introduce the various constraints on allocation, security cost, and
end-to-end latency. If there is no specific mention, the ranges of variables are 1 ≤ i, j ≤ nT ,
1 ≤ k ≤ nE , 1 ≤ l ≤ nM

k , 1 ≤ g ≤ nG
k,l, and 1 ≤ h ≤ nP . If a constraint is trivial for all

tasks, signals, ECUs, messages, receiving group, or paths, then its “∀” may be omitted.

4.2.1.1 Allocation and Packing Constraints

∀i,
∑
k

ai,k = 1; (4.4)

∀i, j, k, ai,k + aj,k + si,j ̸= 2. (4.5)

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 40

Equation (4.4) guarantees that τi is allocated to exactly one ECU1. Equation (4.5) guarantees
that si,j = 1 if and only if there exists k such that ai,k = aj,k = 1, satisfying the definition of
si,j.

∀σi,j ∈ S, k,
∑
l

ti,j,k,l = ai,k(1− aj,k); (4.6)

∀σi,j ∈ S, k, l, ti,j,k,l ≤ vk,l; (4.7)

∀σi,j ∈ S, k, l, ti,j,k,lT
µ
k,l ≤ T σ

i,j; (4.8)

∀σi,j ∈ S, k, l, ti,j,k,lT
σ
i,j ≤ T µ

k,l. (4.9)

Equation (4.6) guarantees that σi,j is packed into exactly one message from εk, if its source
ECU is εk and its target ECU is not εk. Equation (4.7) guarantees that vk,l = 1 if there
exists a signal packed into µk,l. Equations (4.8) and (4.9) guarantee that the period of a
signal is equal to the period of the message in which the signal is packed into (T σ

i,j = T µ
k,l if

ti,j,k,l = 1).

∀i, k, l,m, ∀τj, τj′ ∈ T <
i,m, ti,j,k,l = ti,j′,k,l; (4.10)

∀i, k, l,m, ∀τj ∈ T <
i,m, ti,j,k,l =

∑
τj′∈T

<
i,m

ui,j′,k,l. (4.11)

Equation (4.10) guarantees that each branch of a multicast signal is mapped to the same
message. Equation (4.11) guarantees that exactly one branch of a multicast signal adds its
length to the message.

4.2.1.2 Security Constraints

∀σi,j ∈ S, k′, k, l, aj,k′ + ti,j,k,l − 1 ≤ wk′,k,l; (4.12)

∀k′, k, l,
∑
g

xk′,k,l,g = wk′,k,l; (4.13)

∀k′, k, l, g, xk′,k,l,g ≤ yk,l,g. (4.14)

Equation (4.12) guarantees that εk′ is a receiver of µk,l if there exists a signal σi,j such that
τj is mapped to εk′ and σi,j is mapped to µk,l. Equation (4.13) guarantees that each receiver
is in exactly one receiving group. Equation (4.14) guarantees that yk,l,g = 1 if there exists a
signal mapped to µk,l and the signal is in the receiving group Γk,l,g.

∀k′, k′′, k, l, g, xk′,k,l,g + xk′′,k,l,g + zk′,k′′,k,l ̸= 2. (4.15)

1In some cases, a task τi can only be allocated to a specific ECU εk. Then, ai,k should be assigned to 1
directly, and ai,k′ is assigned to 0 if k′ ̸= k.

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 41

Equation (4.15) guarantees that zk′,k′′,k,l = 1 if and only if there exists g such that xk′,k,l,g =
xk′′,k,l,g = 1, satisfying the definition of zk′,k′′,k,l.

∀σi,j ∈ S, k, l,
∑
k′,k′′

ti,j,k,l × wk′,k,l × wk′′,k,l × zk′,k′′,k,l ×Ri,j,k′,k′′ ≤ Ri,j; (4.16)

∀σi,j ∈ S, k′, k, l, g, aj,k′ × ti,j,k,l × xk′,k,l,g × L′
i,j,k′ ≤ Lk,l,g. (4.17)

Equation (4.16) guarantees that the security risk (cost) is not larger than the maximum
allowed security risk (cost). Equation (4.17) guarantees that the required MAC length is not
larger than the reserved MAC length.

Note that the impact of ECUs being compromised is considered in risk parameters
Ri,j,k′,k′′ . As mentioned before, Ri,j,k′,k′′ depends on how likely εk′ may be taken control
by a malicious attacker and how much the computation of εk′′ depends on σi,j. Such relation
can also be modeled explicitly by first introducing parameters Rk as the possibility of εk be-
ing compromised and then modeling Ri,j,k′,k′′ as a linear function of Rk and other factors. In
this chapter, we focus on addressing the masquerade and replay attacks on security-critical
messages and assume Ri,j,k′,k′′ are given.

4.2.1.3 End-to-End Latency Constraints

For end-to-end latency constraints, we first model the priority assignment, and then
compute the task and message response times, and finally set up the latency constraints on
paths.

pi,j + pj,i = 1; (4.18)

pi,j + pj,j′ − 1 ≤ pi,j′ ; (4.19)

pk,l,k′,l′ + pk′,l′,k,l = 1; (4.20)

pk,l,k′,l′ + pk′,l′,k′′,l′′ − 1 ≤ pk,l,k′′,l′′ . (4.21)

Equations (4.18), (4.19), (4.20), and (4.21) guarantee that the priority assignment is feasible.

∀i, rτi =
∑
k

ai,k × Ci,k +
∑
j

∑
k

ai,k × aj,k × pj,i ×
⌈
rτi
T τ
j

⌉
× Cj,k. (4.22)

Equation (4.22) computes the task response time of τi.

∀k, l, bk,l = H +
∑
σi,j∈S

ui,j,k,lLi,j +
∑
g

yk,l,gLk,l,g; (4.23)

∀k, l, bk,l ≤ H + P ; (4.24)

∀k, l, ck,l =
bk,l
A

. (4.25)

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 42

Equation (4.23) computes the total length of µk,l, taking into account of the data payload,
the counter, and the MAC length. Equation (4.24) guarantees that the total message length
does not exceed the limit. Equation (4.25) computes the computation time of µk,l.

∀k, l, rµk,l = Bk,l + ck,l +
∑
k′,l′

vk′,l′ × pk′,l′,k,l ×
⌈
rµk,l − ck,l

T µ
k′l′

⌉
× ck′,l′ . (4.26)

Equation (4.26) computes the message response time of µk,l.

∀σi,j ∈ S, k, l, rµk,l −M(1− ti,j,k,l) ≤ rσi,j; (4.27)

∀σi,j ∈ S, k, l, rσi,j ≤ rµk,l +M(1− ti,j,k,l); (4.28)

∀σi,j ∈ S, rσi,j ≤ M(1− si,j). (4.29)

Equations (4.27), (4.28), and (4.29) compute the signal response time of σi,j. If σi,j is mapped
to µk,l, then rσi,j = rµk,l; otherwise, if it is not mapped to any message (its source ECU and
target ECU are the same), rσi,j = 0.

∀h,
∑
τi∈πh

rτi +
∑

σi,j∈πh

(rσi,j + (1− si,j)(T
σ
i,j + T τ

j)) ≤ Dh. (4.30)

Equation (4.30) computes the worst-case end-to-end latency of πh and guarantees that its
deadline is satisfied.

4.2.1.4 Conversion to Linear Constraints

In above formulation of the constraints, there are four cases where the formulation is
not linear. They are inequalities of summations of three binary variables (Equations (4.5)
and (4.15)), ceiling functions (Equations (4.22) and (4.26)), multiplications of two binary
variables (Equations (4.6), (4.16), (4.17), (4.22), and (4.26)), and multiplications of one bi-
nary variable and one non-integer variable (Equations (4.22) and (4.26)). The first three cases
can be converted into equivalent linear formulations based on their specific representations.
The fourth case is more general and can be converted into equivalent linear formulations
by introducing a large constant M . The details of the conversions to linear constraints are
explained as follows:

• Inequalities of summations of three binary variables in Equations (4.5) and (4.15): if
α, β, and γ are binary variables, then we replace the constraint α+β+ γ ̸= 2 by three
constraints:

α + β − γ ≤ 1; (4.31)

α− β + γ ≤ 1; (4.32)

−α + β + γ ≤ 1. (4.33)

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 43

• Ceiling functions in Equations (4.22) and (4.26): if α is a function and ⌈α⌉ exists in a
constraint, then we replace ⌈α⌉ by an integer variable β and add one constraint:

0 ≤ β − α ≤ 1, (4.34)

which is a linear constraint if α is a linear function.

• Multiplications of two binary variables in Equations (4.6), (4.16), (4.17), (4.22), and (4.26):
if α and β are binary variables and α× β exists in a constraint, then we replace α× β
by a binary variable γ in the constraint and add one constraint:

α× β = γ. (4.35)

Next, α× β = γ can be replaced by equivalent constraints:

α + β − 1 ≤ γ; (4.36)

γ ≤ α; (4.37)

γ ≤ β. (4.38)

In fact, if 1 ≤ i ≤ n, αi is a binary variable, and
∏

1≤i≤n αi exists in a constraint,
then we can replace

∏
1≤i≤n αi by a binary variable γ in the constraint and add one

constraint: ∏
1≤i≤n

αi = γ. (4.39)

Next,
∏

1≤i≤n αi = γ can be replaced by equivalent constraints:∑
1≤i≤n αi − (n− 1) ≤ γ; (4.40)

∀i, γ ≤ αi. (4.41)

• Multiplications of one binary variable and one non-integer variable in Equations (4.22)
and (4.26): if α is a binary variable, β is a non-integer variable, and α × β exists in
a constraint, then we replace α × β by a non-integer variable γ in the constraint and
add one constraint:

α× β = γ. (4.42)

Next, α× β = γ can be replaced by equivalent constraints:

0 ≤ γ ≤ β; (4.43)

β −M(1− α) ≤ γ ≤ Mα. (4.44)

By applying these rules, the formulation can be transformed to an MILP formulation.

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 44

Step 1

Step 2

Step 3

solution

design

specifications

and constrains

task allocation

task priority

task allocation

task priority

signal packing

message priority

signal packing

message priority

group assignment

group assignment

task allocation

task priority

signal packing

message priority

group assignment

Defined by

Assumptions

Decision

Variables

Given by

Previous Steps

solution

Figure 4.3: The flow of three-step MILP-based algorithm, where “group assignment” means
“receiving group assignment.” The task allocation and the task priority are solved in Step
1; the signal packing and the message priority are solved in Step 2; the receiving group
assignment is solved in Step 3.

4.2.2 Objective Function

The objective function can be defined to minimize the summation of the end-to-end
latencies of selected paths:

∀πh, lh =
∑
τi∈πh

rτi +
∑

σi,j∈πh

(rσi,j + (1− si,j)(T
σ
i,j + T τ

j)); (4.45)

min
∑
πh∈P

lπh
, (4.46)

where lh is the worst-case end-to-end latency of πh and P is the set of selected paths.
The objective function can also be defined to minimize the total security risk with minor
modifications.

4.2.3 MILP-Based Algorithm

The MILP formulation introduced above provides an optimal solution but has high com-
plexity. To address complex industrial-size problems, we propose a three-step algorithm,
where each step solves part of the mapping problem in a simplified MILP formulation (de-
rived from the original optimal MILP). The flow of the algorithm is shown in Figure 4.3.

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 45

• In Step 1, we assume that (1) each message is only reserved for one signal, (2) a MAC
with maximum required length for the signal is included in each message, and (3) the
priorities of the messages are assigned by the Rate Monotonic policy, i.e., messages
with smaller periods have higher priorities. Based on these assumptions, we simplify
the MILP formulation introduced above and optimize the task allocation and the task
priority.

• In Step 2, having the task allocation and the task priority from Step 1, we optimize
the signal packing and the message priority in a simplified MILP formulation, with the
assumption that a MAC with maximum required length for the signal is included in
each message.

• In Step 3, having the task allocation, the signal packing, and the task and message
priorities from previous two steps, we optimize the receiving group assignment. For
each message, its length is minimized, and its receiving group assignment satisfies the
constraints of security risks (from the perspective of protecting against a direct attack)
and required MAC lengths (from the perspective of protecting against an indirect
attack).

The formulation of Step 1 is motivated by the observation that task allocation and priority
typically have the most significant impact on path latencies and resolving them significantly
simplifies the problem for the following steps. The division of Step 2 and Step 3 further
reduces the complexity. In addition, if designers are given an existing mapped system and
wants to improve the security level by exploring different key sharing strategies, the MILP
formulation in Step 3 can be directly applied.

4.3 Extension

In this section, we extend the problem to a new formulation, focusing on new path-based
security constraints and a new objective function. Besides them, the rest of the formulation
is similar to that in the previous section. We also propose a new efficient mapping algorithm
so solve the problem.

4.3.1 Path-Based Security Constraints

There are two types of security constraints in Section 4.2. The first one guarantees that
the security risk of direct attacks to a signal is not larger than its maximum allowed security
risk, as listed in Equation (4.16). The second type of security constraints bounds the security
risk of indirect attacks by assigning enough MAC lengths, as listed in Equation (4.17). The
above individual signal-based security constraints do not fully reflect real security require-
ments. As stated before, security requirements should be defined based on sensor-to-actuator
paths. An example is shown in Figure 4.4. Protecting µ1,1 and µ3,1 is not enough because an

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 46

τ1 τ2

ε1

τ3 τ4s1 s2 s3

ε2 ε3 ε4µ1,1 µ2,1 µ3,1

no

protection

MAC

protection

MAC

protection

Figure 4.4: Security should be modeled by a path-based security constraint considering
possible attacks triggering an actuator. Protecting µ1,1 and µ3,1 is not enough because an
attacker can still attack µ2,1 and result in triggering τ4 on ε4.

attacker can still attack µ2,1 and result in triggering τ4 on ε4. Therefore, in this section, we
propose to apply the following constraints. The first one guarantees that the security risk of
direct attacks to a path is not larger than its maximum allowed security risk:

∀πh,
∑
σj∈πh

∑
µk,l

∑
εk′ ,εk′′

xj,k,l,k′,k′′ ×Rj,k′,k′′ ≤ Rh, (4.47)

where Rh is the maximum allowed security risk of πh. Similarly, Rh is decided by system
designers, and it should depend on how critical πh is. The second type of security constraints
guarantees that the MAC lengths of all signals in a path are long enough:

∀πh, σj ∈ πh, εk′ , µk,l,Γk,l,g, yj,k′,k,l,g × Lh ≤ Lk,l,g, (4.48)

where Lh is the required MAC length of any signal in πh.
Note that Equation (4.48) can be transformed to Equation (4.17) by assigning appropri-

ate MAC lengths. However, Equation (4.47) cannot be transformed to Equation (4.16) by
distributing the maximum allowed security risk of a path into its signals. This is because
there may exist forks in a task graph, and a signal may be involved in many paths. As a
result, it is very difficult to just reduce the new formulation to the original formulation, and
it is necessary to propose the new formulation.

4.3.2 Objective Function

To minimize the security risk of direct attacks, the primary objective function for direct
attacks can be defined as:

min
∑
πh

 ∑
σj∈πh

∑
µk,l

∑
εk′ ,εk′′

xj,k,l,k′,k′′ ×Rj,k′,k′′

 . (4.49)

If the security risk of direct attacks is minimized, we can also try to increase MAC lengths,
which minimizes the security risk of indirect attacks. However, since direct attacks are more

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 47

τ1 τ2
s1

(b)

security-critical path

τ3 τ4
s2

τ 1 2 3 4

1 – 1 0 1

2 1 – 0 0

3 0 0 – 2

4 1 0 2 –

τ2
s1

τ3 τ4
s2

ε2

τ1

ε1connectivity

(c)(a)

ECUtask allocationtask signal

Figure 4.5: (a) Given the task graph, (b) compute the connectivity with both weights being
1 and (c) allocate the tasks to the ECUs.

threatening, we will focus on minimizing the security risk of direct attacks, as shown in
Equation (4.49).

4.3.3 Algorithm

We propose an efficient and effective heuristic optimization algorithm. It has been ob-
served that task allocation and priority typically have the most impact on objectives, and
solving them significantly simplifies the following steps, so they are the first two steps in the
proposed approach.

• Step 1: task allocation. First, the connectivity of each pair of tasks is computed. The
connectivity between two tasks is defined as a weighted summation of the number of
times that a signal between the two tasks is in a path and the number of times that
a signal between the two tasks is in a security-critical path. This definition makes
sure that the higher connectivity between two tasks, the more beneficial (in terms
of minimizing worst-case end-to-end latency and minimizing security risk) if they are
allocated to the same ECU. After computing the connectivity of each pair of tasks,
for each ECU, the most connected pair of tasks (among tasks not allocated yet) is
selected, and both of them are allocated to the ECU. Then, the most connected task
(among tasks not allocated yet) to all tasks allocated to the ECU is selected and
allocated to the ECU. We repeat selecting one task and allocating it to the ECU until
allocating the task to the ECU makes the utilization of the ECU exceeding a threshold.
If allocating a task to the ECU makes the utilization of the ECU exceeding a threshold,
we will consider the next ECU. An example is illustrated in Figure 4.5. Given the task
graph in Figure 4.5(a), we compute the connectivity of each pair of tasks, as shown
in Figure 4.5(b). After that, τ3 and τ4 are selected and allocated to ε2. Then, τ1 is
selected, but we assume that allocating τ1 to ε2 makes the utilization of ε2 exceeding a

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 48

threshold. As a result, τ1 and τ2 are allocated to ε1, and the final allocation is shown
in Figure 4.5(c).

• Step 2: task priority assignment. The task priority is assigned according to the Rate-
Monotonic Policy, i.e., tasks with smaller periods have higher priorities. However, if
the computation time of a task is larger than a threshold, its priority will become lower.
This is because a task with a large computation time may block other tasks for a long
time.

• Step 3: signal packing. The signal packing is done in a greedy fashion. For each signal,
we try to find a message satisfying the following conditions: the signal and the message
have the same period, the source task of the signal is allocated to the source ECU of
the message, and there is enough payload space for the signal and its MAC (we assume
that each receiving ECU has its own receiving group). If we find a message satisfying
the conditions, the signal is packed into the message; otherwise, the signal is packed
into an empty message.

• Step 4: message priority assignment. The message priority is also assigned according to
the Rate-Monotonic Policy, i.e., messages with smaller periods have higher priorities.

• Step 5: receiving group assignment. The receiving group assignment is done in a
greedy fashion. For each receiving ECU of a message, we try to find a receiving group
of the message such that adding the ECU into the receiving group does not violate the
security constraint for direct attacks, as formulated in Equation (4.47). If we find a
receiving group satisfying the condition, the ECU is assigned to the receiving group,
and the MAC length of the receiving group may need to be increased to satisfy the
security constraint for indirect attacks, as formulated in Equation (4.48); otherwise,
the ECU is assigned to an empty receiving group. Note that we assume that each
receiving ECU has its own receiving group in Step 3, so assigning two receiving ECUs
to the same receiving group never increases the length of the message.

4.4 Experimental Results

We obtained an industrial test case [56]. The test case supports advanced distributed
functions with end-to-end computations collecting data from 360-degree sensors to the ac-
tuators, consisting of the throttle, brake and steering subsystems and of advanced Human-
Machine Interface devices. The architecture platform consists of 9 ECUs connected through
a single CAN [3] or CAN-FD [4] bus with the speed 500 kbps. The functional model consists
of 41 tasks and 83 signals. For the safety requirements, 171 paths are selected with dead-
lines 300 ms or 100 ms. For the security requirements, 50 signals are selected with required
MAC lengths ranging from 10 to 30 bits for CAN and from 64 to 128 bits for CAN-FD (with
longer message length, CAN-FD is able to provide more MAC bits and therefore more secure
communications). The maximum allowed security risk of each signal is simplified so that no

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 49

Table 4.4: The objective (the summation of latencies of selected paths), maximum laten-
cies, load, and runtime of each step of the MILP-based algorithm, where “Max L300” and
“Max L100” are the largest latencies among the paths with deadlines 300 ms and 100 ms,
respectively.

Step Results after Step X
(X) Objective (ms) Max L300 (ms) Max L100 (ms) Bus Load (kbps) Runtime (s)

1 11,070.61 127.92 90.72 76.92 3, 600
CAN 2 11,069.88 127.82 90.62 45.57 < 600

3 11,069.62 127.79 90.59 31.52 < 10
1 11,075.08 128.56 91.22 211.74 3, 600

CAN-FD 2 11,073.67 128.39 91.05 176.47 < 600
3 11,071.69 128.14 90.80 98.33 < 10

more than 2 ECUs can be assigned to the same receiving group, i.e., 2 ≤ Ri,j

Ri,j,k′,k′′
< 3 in

Equation (4.16). The program is implemented in C/C++. CPLEX 12.5 is used as the MILP
solver. The experiments are run on a 2.5-GHz processor with 4GB RAM. We compare our
MILP-based algorithm with a greedy heuristic and non-integrated approaches applying the
pair-wise key distribution and the one-key-for-all key distribution.

4.4.1 Comparison with a Greedy Heuristic

For comparison with the MILP-based algorithm, we also implement a greedy heuristic.
First, we calculate a weight between each task pair that represents an estimation of how
much benefit we can gain by making the signals between the two tasks become local signals
(i.e., mapping the two tasks onto the same ECU). This estimation depends on the potential
gain from reducing the path latency and the potential gain on security (local signals are not
at risk of masquerade and replay attacks). Then, we try to cluster the tasks and assign them
onto the same ECU. We check whether we can assign two tasks onto the same ECU without
violating utilization constraints (if the two tasks are already assigned to different ECUs, we
check whether we can assign all the tasks from these two ECUs onto one ECU). Once task
allocation is decided, we pack the signals into messages in a greedy fashion, i.e., we merge
two messages as long as the combined message satisfies size constraints and we merge MACs
as long as the security constraints permit. Finally, we assign priorities based on the Rate
Monotonic policy.

The results are listed in Table 4.4. For the CAN protocol, our MILP-based algorithm
can find a solution satisfying all the design constraints. In Step 1, within 3,600 seconds,
the objective of the best solution found by the solver is 11,070.61 ms. The largest latencies
among the paths with deadlines 300 ms and 100 ms are 127.92 ms and 90.72 ms, respectively.
In Step 2, the program ends in 600 seconds, and the objective is 11,069.88 ms. The largest
latencies among the paths with deadlines 300 ms and 100 ms are 127.82 ms and 90.62 ms,

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 50

respectively. In Step 3, the program ends in few seconds, and the objective is 11,069.62 ms.
The largest latencies among the paths with deadlines 300 ms and 100 ms are 127.79 ms and
90.59 ms, respectively. There is little improvement on the latency objective in Steps 2 and
3 because the message response times are much smaller compared to the task and message
periods that contribute to the path latencies in our model. However, Steps 2 and 3 can
significantly reduce the bus load from 76.92 kbps to 45.57 kbps and 31.52 kbps, respectively.

In comparison, the objective of the greedy heuristic is 23,114.50 ms, while satisfying all
the design constraints. Its runtime is 1.4 seconds, but the value of the objective is much
worse than the one obtained with the MILP-based algorithm. This is because the exploration
is stuck at a local minimum, which is a common problem for heuristic algorithms.

For the CAN-FD protocol, the MILP-based algorithm can also find a solution satisfying
all the design constraints. The objectives, the largest latencies, and the bus loads are in-
creased because the required MAC lengths are much longer (128 bits to 64 bits). Similarly,
Steps 2 and 3 reduce the bus load from 211.74 kbps to 176.47 kbps and 98.33 kbps, respec-
tively, showing the effectiveness of signal packing and our flexible key distribution scheme.
On the other hand, the greedy heuristic cannot find a feasible solution in this case (with bus
speed at 500 kbps) due to the much longer required MAC lengths. In fact, we find that the
heuristic can only find a feasible solution when we increase the bus speed to 4,000 kbps.

4.4.2 Comparison with Non-Integrated Approaches

We also tried two experiments in which we do not consider security constraints explicitly
in Steps 1 and 2 (i.e., solving a traditional mapping problem with only timing constraints),
and then explore the addition of MAC bits and the key distribution in Step 3. In the first
experiment, in Steps 1 and 2, we constrain that all messages should have at most 32 bits used
for data while packing signals, i.e., leaving 32 bits available for MAC bits. Then, in Step
3, we find that there is no feasible solution for either the pair-wise key distribution or the
one-key-for-all key distribution. The reason is that the pair-wise key distribution requires
more than 32 MAC bits for certain messages, while the one-key-for-all key distribution leads
to too high security risks for some messages. In the second experiment, in Steps 1 and 2,
we do not set any constraint on the number of bits for data, i.e., they may use as many
as all 64 bits in the payload. Then, in Step 3, we find that there is no feasible solution
for the pair-wise key distribution, the one-key-for-all key distribution, or our flexible key
distribution scheme. This is because some messages use almost all 64 bits, so no MAC can
be added to those message. The results from these two experiments demonstrate that it
is necessary to consider security together with other metrics during mapping; otherwise, it
may be difficult or even impossible to add security measurement later.

4.4.3 Extension

There are three settings for both of CAN and CAN-FD. The first one is the same as that
above. For the security requirements, 50 signals are selected with required MAC lengths

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 51

Table 4.5: The comparison between the MILP-based approach, the greedy heuristic, and the
extended algorithm. “×” means “no feasible solution.” In the third setting, an objective
includes the risks of direct attacks and indirect attacks.

Security Constraints & Objective Function
Signal-Based & Path-Based & Path-Based &
Latency Min. Latency Min. Security Risk Min.

CAN MILP-Based Objective (ms) 11,069.62 13,420.64 0 & 7.05× 10−3

Approach Runtime (s) > 3,600 > 3,600 > 3,600
Greedy Objective (ms) 23,114.50 — —
Heuristic Runtime (s) < 1.5 — —
Extended Objective (ms) 13,789.64 13,789.47 0 & 6.05× 10−3

Algorithm Runtime (s) < 0.5 < 0.5 < 0.5
CAN-FD MILP-Based Objective (ms) 11,071.69 13,422.59 0 & 3.79× 10−19

Approach Runtime (s) > 3,600 > 3,600 > 3,600
Greedy Objective(ms) × — —
Heuristic Runtime (s) × — —
Extended Objective (ms) 13,863.31 13,683.14 0 & 3.25× 10−19

Algorithm Runtime (s) < 0.5 < 0.5 < 0.5

ranging from 10 to 30 bits for CAN and from 64 to 128 bits for CAN-FD. The maximum
allowed security risk of a signal is that no more than 2 ECUs can be assigned to the same
receiving group. The second setting replaces the signal-based security constraints by the
path-based security constraints, where 30 paths are selected, and their required MAC lengths
ranging from 10 to 30 bits for CAN and from 64 to 128 bits for CAN-FD. The maximum
allowed security risk of a path is that, considering all signals in the path, no more than 2 to 5
ECUs can be assigned to the same receiving group. The third setting replaces the objective
function in the second setting by minimizing security risk as Equation (4.49).

Table 4.5 shows the comparison between the MILP-based approach, the greedy heuristic
(it cannot deal with path-based security constraints), and the extended algorithm. In the
first setting, the extended algorithm gets the objective 13,789.64 ms, which is larger than
that of the MILP-based approach. However, the runtime is less than 0.5 second, while the
MILP-based approach (which cannot find a feasible solution in such a short time) takes
more than 1 hour. Note that the MILP-based approach terminates by timeouts, so it needs
more time for a complete run. On the other hand, the extended algorithm significantly
outperforms the greedy heuristic.

In the second setting, the extended algorithm gets the comparable objectives as the
MILP-based approach and takes much less runtime. The solution quality is almost the same
because the extended algorithm with the connectivity concept finds a good task allocation
efficiently. On the other hand, although the MILP formulation is optimal for the sub-
problem of task allocation and task priority, its runtime is too long. Therefore, when it
is interrupted by timeouts, its solution quality is not significantly better than that of the
extended algorithm. This indicates that task allocation and task priority assignment are

CHAPTER 4. SECURITY-AWARE MAPPING FOR CAN-BASED SYSTEMS 52

very crucial for the objective minimization, and adding a good searching algorithm to the
extended algorithm may lead to even better results (part of our future work).

In the third setting, an objective includes the risks of direct attacks and indirect attacks.
The risk of direct attacks is defined in Equation (4.49), and the risk of indirect attacks is
the summation of the probability that an attacker guesses a MAC correctly. The risks of
direct attacks are minimized to 0 because each receiving ECU has its own secret keys and
MACs, and the higher overheads do not violate any constraint. The extended algorithm has
lower risks of indirect attacks because its task allocation tends to allocate the source and
destination tasks of a signal in a security-critical path to the same ECU. Given that there is
no direct attack, we can increase the MAC lengths to reduce the risk of indirect attacks. In
this case, we can further reduce the risks of indirect attacks from 6.05×10−3 and 3.25×10−19

to 1.53 × 10−5 and 1.09 × 10−37 (almost every MAC can be up to 128 bits with CAN-FD),
respectively.

4.5 Summary

In this chapter, we propose an approach to address both the security and the safety
in the design space exploration of CAN-based systems. We present an MILP formulation
that explores task allocation, signal packing, MAC sharing, and priority assignment while
meeting both security and safety constraints. We further present an extended formulation
that defines path-based security constraints and minimizes security risk directly and develop
a new heuristic algorithm to solve the problem more efficiently. Experimental results of an
industrial case study show that our approaches can effectively and efficiently explore the
design space to meet the system security and safety requirements.

53

Chapter 5

Security-Aware Mapping for
TDMA-Based Systems

In this chapter, we focus on security-aware design for Time Division Multiple Access
(TDMA) based real-time distributed systems. The TDMA-based protocol is a very repre-
sentative synchronous protocol and an abstraction of many existing protocols, such as the
FlexRay [7], the Time-Triggered Protocol [42], and the Time-Triggered Ethernet [41]. It is
critically important to address these protocols, as they are being increasingly adopted in var-
ious safety-critical systems such as automotive and avionics electronic systems for their more
predictable timing behavior. Compared with priority-based networks such as the Controller
Area Network (CAN) protocol, TDMA-based systems have fundamental differences on sys-
tem modeling (in particular for latency modeling), on security mechanism selection (a global
time is available for security reasons), on design space (network scheduling is the focus of
this work but not a factor for CAN-based systems), and on algorithm design. Therefore, the
approaches for CAN-based systems in the previous chapter do not apply to TDMA-based
systems. We need to rethink appropriate security mechanisms and develop a new set of
formulations and algorithms to explore the design space.

There are many security mechanisms that can be applied to the TDMA-based proto-
col. For message authentication, legitimate senders and receivers usually share keys so that
they can use the keys to compute Message Authentication Codes (MACs) and protect against
masquerade attacks. As mentioned in Chapter 2, key management strategies are divided into
several categories [52]: one-key-for-all key distribution, pair-wise key distribution, asymmet-
ric cryptography, and time-delayed release of keys [2]. The one-key-for-all key distribution
is simple but not suitable for distributed systems because it does not protect against mas-
querade attacks from a node in the group. The pair-wise key distribution protects against
such masquerade attacks, but it has limited scalability because the message size increases
quickly with the number of nodes in the network. The approach of asymmetric cryptography
(private and public keys) provides higher security level, but its computational overhead is
much higher with the usage of asymmetric ciphers, which makes it difficult to be used in
resource-limited real-time distributed systems. Compared with these three approaches, the

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 54

approach of time-delayed release of keys is the most suitable for real-time distributed em-
bedded systems because it provides a good balance between security level and computation
and communication overhead [52]. As an example, the Timed Efficient Stream Loss-Tolerant
Authentication (TESLA) [34, 35] security mechanism, is based on the time-delayed release
of keys.

Despite being a more economical choice, using the time-delayed release of keys for TDMA-
based systems still puts significant timing overheads on communication and computation in
real-time embedded systems. In particular, the message latencies may significantly increase
due to the waiting for key releases, and the end-to-end latencies may violate deadline re-
quirements. For system safety and performance, it is critical to ensure that the usage of such
security mechanism will not violate any timing constraint.

We apply message authentication with the time-delayed release of keys to protect against
attacks on a TDMA-based protocol, and develop formulations and an algorithm to explore
the design space while meeting both the security and the timing requirements. Specifically
for the exploration, we optimize the task allocation, priority assignment, network scheduling,
and key-release interval length during the mapping process from the functional model to the
architectural model, while considering the overhead of the security mechanism and end-to-
end deadline constraints. To the best of our knowledge, this is the first work to address
both the security and safety constraints during the system level mapping process for the
time-delayed release of keys for TDMA-based real-time distributed systems.

We develop an algorithm that combines simulated annealing with a set of efficient opti-
mization heuristics for security-aware mapping. In particular, we propose a network sched-
uler and a transmission delay analyzer (which outputs exact solutions in a single-switch
network) to optimize the network scheduling and analyze the worst-case transmission de-
lay. Our network scheduler and latency analyzer can address synchronous and asynchronous
message arrivals, both of which are common scenarios in real-time distributed systems, e.g.,
they match the Time-Triggered (TT) messages and the Rate-Constrained (RC) messages in
the Time-Triggered Ethernet protocol. Experimental results of an industrial case study and
a synthetic example show the effectiveness and efficiency of our algorithm, and demonstrate
that security must be considered with other metrics at the design stage.

The chapter is organized as follows. Section 5.1 defines the system model. Section 5.3
presents the mapping algorithm. Section 5.4 demonstrates the experimental results. Sec-
tion 5.5 provides a summary of this chapter.

5.1 System Model

The mapping problem addressed in this chapter is also based on Platform-Based Design
paradigm [44] and the methodology in Chapter 2, where the functional model and the ar-
chitecture platform are initially captured separately and then brought together through a
mapping process, meaning that the functional model is implemented on the architecture plat-

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 55

node switch
fu

n
ct

io
n
al

m
o
d
el

τ3

σ1

µ1

µ2

τ2

τ1

τ6

τ5

τ4

τ8

τ7

σ2

σ3

σ4

σ5

σ6

ε2ε1
µ4

µ5

ε3

ar
ch

it
ec

tu
re

p
la

tf
o
rm

task allocation signal mapping

transmission

task signal

message

µ3 µ6

µ µ µ µ µ µ µ µ µ µ µ µµ µschedule µ3 µ6 µ5 µ1 µ4 µ2 µ3 µ6 µ5 µ1 µ4 µ2

cycle cycle

µ5 µ5

Figure 5.1: The system model of a TDMA-based system.

form. Besides, there are objectives and constraints in the mapping process to be optimized
and satisfied.

As shown in Figure 5.1, similar to the system model in Chapter 4, the functional model
is a task graph that consists of a set of tasks, denoted by T = {τ1, τ2, . . . , τ|T |}, and a set
of signals, denoted by S = {σ1, σ2, . . . , σ|S|}. Each signal is between a source task and a
destination task. Tasks are activated periodically and communicate with each other through
signals. The architecture model is a distributed platform that consists of a set of computation
nodes, denoted by E = {ε1, ε2, . . . , ε|E|}, and nodes are assumed to support preemptive
priority-based task scheduling. The nodes are connected through a TDMA-based switch
(we focus on the single-switch case in this chapter, and our formulation can be extended to
multi-switches cases). A set of messages is communicated among nodes through the switch,
denoted by M = {µ1, µ2, . . . , µ|M|}. The switch uses a TDMA-based model for scheduling,
in which each time slot in the schedule can be assigned to one message. Several time slots
form a cycle, and the network switch repeats the same scheduling sequence after each cycle.
It is possible that a time slot is empty (not assigned to any message) in a schedule, and it
is also possible that there are more than one time slots assigned to the same message in a
cycle.

During mapping, the functional model is mapped onto the architecture platform, as
shown in Figure 5.1. Specifically, the tasks are allocated onto nodes with their priorities,

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 56

D1

M1

K-1

D1

M1

K-1

D2

M2

K-1

D2

M2

K-1

D3

M3

K-1

D3

M3

K-1

D4

M4

K0

D5

M5

K0

D4

M4

K0

D5

M5

K0

D6

M6

K1

D7

M7

K1

D6

M6

K1

D7

M7

K1

K-1 K0 K1

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

authentication delay

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

T
S

T
R

T
K

T
I

Figure 5.2: The time-delayed release of keys. TS, TR, and TK are the sending time, the
receiving time, and the key-receiving time of the packet (D1,M1, K−1), respectively. TI is
the starting time of Interval 3.

and the signals are mapped onto messages and transmitted on the network. Messages are
triggered periodically and each message contains the latest values of the signals that are
mapped to the message.

We consider three possible types of attacks [52], including tapping the port of an existing
node, replacing an existing node, and connecting to an empty port of the switch. The time-
delayed release of keys [2, 34, 35, 52] as introduced in the next section is used to prevent
these attacks.

5.2 Time-Delayed Release of Keys

Definition 5.1. A packet is an instance of a message.

The time-delayed release of keys is a popular approach for message authentication. In
this security mechanism, each sender maintains a key chain where the keys in the key chain
are computed in a reversed order to provide fault tolerance. Usually, keys in the key chain
are not used for computing MACs. Instead, they are used for computing other keys, and
those keys are used for computing MACs [34, 35]. A sender maintains intervals, and it uses
the same key to compute MACs in one interval. When the sender intends to send a packet
in an interval, it uses the corresponding key in the interval to compute a MAC and sends the
packet including the data, the MAC, and the key used in several intervals before. When a
receiver receives the packet, it stores the data and the MAC first. Once the receiver receives

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 57

the corresponding key (which will be released by the sender after several intervals), it can
authenticate the packet.

An example of the time-delayed release of keys is shown in Figure 5.2, where we show
the keys used for computing MACs and the released keys. When the sender intends to send
data D1 in Interval 1, it uses key K1 to compute MAC M1 and sends (D1,M1, K−1), where
K−1 is the key used in two intervals before. The receiver receives it and stores D1 and M1

first. In Interval 3, the sender sends (D6,M6, K1). When the receiver receives the packet, it
uses K1 to authenticate (D1,M1, K−1).

Definition 5.2. Given a packet P , the sending time TS of the packet is the time that its
sender sends it. The receiving time TR of the packet is the time that its receiver receives it.
The key-receiving time TK of the packet is the time that its receiver receives its corresponding
key (for the first time).

The security requirement of the time-delayed release of keys [34, 35]: a packet is safe if
its receiving time is before the moment its corresponding key may be released (otherwise
masquerade attacks can be conducted), i.e., for each packet,

TR < TI , (5.1)

where TI is the starting time of the interval in which the corresponding key for the packet
is released1.

In the example in Figure 5.2, since the sender uses K1 to compute M3 for the packet
(D3,M3, K−1) and the packet arrives at the receiver in Interval 2, the sender has to wait
until Interval 3 to release K1.

Definition 5.3. Given a packet P , the transmission delay DT of the packet is its receiving
time minus its sending time, i.e., DT = TR −TS. The authentication delay DA of the packet
is its key-receiving time minus its receiving time, i.e., DA = TK − TR. The latency L of the
packet is its key-receiving time minus its sending time, i.e., L = TK − TS = DT +DA.

Compared with traditional symmetric ciphers, the time-delayed release of keys has a
lower computational overhead because a sender only needs to compute one MAC for each
packet. This is because, if there are n receivers, a symmetric cipher needs n MACs, while
the time-delayed release of keys only needs 1 MAC. Compared with asymmetric ciphers
which have more complex calculation, the time-delayed release of keys also has a much lower
computational overhead [52]2. However, as shown in Figure 5.2, it increases the latency of
a packet due to the authentication delay. In Section 5.3.4, we will show how the network
scheduling plays an important role in reducing the latency of a packet, which is extremely
critical for real-time distributed systems.

1If the synchronization precision is considered, we can add a small positive constant (the precision of
time) to the left-hand side.

2The most common comparison is between a Keyed-Hash Message Authentication Code (HMAC) and
the RSA algorithm, and HMAC (based on XOR and hash function) is usually much faster than RSA (based
on exponentiation and modular arithmetic).

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 58

Mapping Result, Feasibility, and Objective Value

Task Allocation

and

Priority Assignment

Simulated Annealing

Input

Output

Ask for Optimization and Evaluation

Network Scheduling Refinement

Interval Length Exploration

Worst-Case Transmission

Delay Analysis

Network Scheduling

Signal Mapping

Inner Loop Optimization

Scheduler

Analyzer

Figure 5.3: The algorithm flow.

5.3 Mapping Algorithm

Given a system, we explore the design space of task allocation, priority assignment, signal
mapping, network scheduling, and interval length. The end-to-end deadline requirements
are set on a set of time-critical functional paths. The worst-case latency of a time-critical
path should not be larger than its deadline. The optimization objective is to minimize the
summation of the worst-case latencies of all time-critical paths.

5.3.1 Overview

Figure 5.3 shows the flow of our algorithm. It combines simulated annealing with a set of
optimization heuristics. In the simulated annealing, the task allocation and the task priority
are randomly changed. Every time the task allocation and the task priority are changed,
the algorithm calls the inner loop optimization to perform a set of optimization heuristics
and evaluate the feasibility and the objective value. The inner loop optimization consists
of five steps: signal mapping, network scheduling, worst-case transmission delay analysis,
interval length exploration, and network scheduling refinement. After these five steps, the
inner loop optimization returns the mapping result (signal mapping, network schedule, and
interval length). It also returns the feasibility and the objective value, which are used by the
simulated annealing to decide whether to keep the changed task allocation and task priority
or not. We decide the task allocation and the task priority first in the simulated annealing

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 59

because they have significant impact on the design constraints and objectives, and also on
the possible values for other design variables. The inner loop optimization is called every
time the task allocation and the task priority are changed, so it must be very efficient and
effective. The details are introduced in the following sections.

Note that we mostly target on design-time security-aware mapping optimization for a
given task set and a given hardware platform. The inner loop optimization in the algorithm
is very efficient, and can be applied at runtime if there are dynamic changes on task set or
hardware platform. The simulated annealing part is not suitable for runtime optimization
because of its long running time. Exploring priority assignment at runtime will need efficient
heuristics, and task (re)-allocation at runtime may be infeasible in practice because of its
overhead.

5.3.2 Task Allocation and Priority Assignment

The initial allocation of a task is assigned based on the task index modulo the number of
nodes, i.e., tasks are distributed as evenly as possible. The initial priority of a task is assigned
in a greedy fashion—the tasks that appear in more time-critical paths are assigned with
higher priorities. During simulated annealing, two random operations may be performed.
The first one is to allocate a task to another node, and the second one is to switch the
priorities of two tasks. We use a parameter P to control the probability that the first
operation is selected in each iteration, while the probability that the second operation is
selected is 1− P .

To explore the design space more efficiently, we also propose an accelerating method for
the simulated annealing. With this accelerating method, tasks are divided into two groups,
depending on whether tasks are in time-critical paths or not. Tasks in the first group are in at
least one time-critical path, and tasks in the second group are not in any time-critical path.
If the first operation is selected, there is another parameter Q to control the probability that
a task in the first group is selected. This method can effectively accelerate the simulated
annealing because those tasks in the first group play more important roles in the constraint
satisfaction and the objective minimization.

5.3.3 Signal Mapping

Each signal needs to be mapped onto a message, and we assume each signal is packed
into its own message in this chapter. Without loss of generality, we assume that signal σj is
mapped to message µj, so the period, the length, the source node, and the destination node
of a message can be directly decided. What we need to explore is whether a message should
be synchronous or asynchronous.

Definition 5.4. For a synchronous message, the network knows the time that each packet
of the message is sent.

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 60

D1

M1

K-1

D1

M1

K-1

D2

M2

K-1

D2

M2

K-1

D3

M3

K-1

D3

M3

K-1

D4

M4

K0

D5

M5

K0

D4

M4

K0

D5

M5

K0

D6

M6

K1

D7

M7

K1

D6

M6

K1

D7

M7

K1

K-1 K0 K1

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

authentication delay

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

D6

M6

K1

Figure 5.4: An approach to reduce the authentication delay.

Definition 5.5. For an asynchronous message, the network does not know the time that
each packet of the message is sent but knows the period (or pattern) of the message.

In our algorithm, if a signal is time-critical (the signal is on at least one time-critical
path), then its message is assigned as a synchronous message; otherwise, its message is
assigned as an asynchronous message. If a message is synchronous, we also need to decide
the time that the first packet of the message is sent. For message µj, we assign the time
that the first packet of the message is sent as j × L modulo T σ

j , where L is the time length
of a time slot and T σ

j is the period of σj. This assignment can lower the probability that the
packets of two different messages are sent at the same time. If this happens, one packet will
be delayed, and the transmission delay of its message may increase. It should be mentioned
that, in Time-Triggered Ethernet [41], a synchronous message matches the Time-Triggered
(TT) traffic, while an asynchronous message matches the Rate-Constrained (RC) traffic. If
a network only supports synchronous messages or asynchronous messages, then all messages
are assigned as synchronous messages or asynchronous messages.

5.3.4 Network Scheduling

To satisfy design constraints, the increased latency due to the authentication delays must
be considered and reduced at the design stage. We observe that there are three approaches
for the network scheduling that can reduce packet latency.

The first approach is that a scheduler may schedule each sender’s first packet within
an interval so that it can be received earlier. The key-receiving time of a packet P is the

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 61

K2

D1

M1

D1

M1

D2

M2

D2

M2

D3

M3

D3

M3

D4

M4

K0

D5

M5

K0

D4

M4

D5

M5

D6

M6

K1

D7

M7

K1

D6

M6

K1

D7

M7

K1

K0 K1

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

K0

K0 K0 K0

K2 K2

K2 K2

authentication delay

D3

M3

K0

Figure 5.5: A more effective approach to reduce the authentication delay.

receiving time of the first packet P ′ carrying the corresponding key, so the latency of P is

L = TK − TS = T ′
R − TS = T ′

S +D′
T − TS, (5.2)

where T ′
S, T

′
R, and D′

T are the sending time, the receiving time, and the transmission delay
of packet P ′. The first approach minimizes L by minimizing D′

T . As shown in Figure 5.4,
M1, M2, and M3 are computed by K1. Because the receiver receives the packet (D6,M6, K1)
earlier, it can authenticate the packets (D1,M1, K−1), (D2,M2, K−1), and (D3,M3, K−1)
earlier, and their authentication delays and latencies become smaller, compared with the
timing illustrated in Figure 5.2.

The second approach is that a scheduler may try to schedule a packet earlier to ensure
that it is received before the end of the interval. As a result, the sender can release keys one
interval earlier without violating the security requirement, and the authentication delays and
latencies become smaller. The first packet P ′ carrying the corresponding key is sent after
the starting time of the corresponding interval, so

TI < T ′
S. (5.3)

Note that TI is the starting time of the interval in which the corresponding key for the packet
is released. The second approach minimizes TI first so that T ′

S can also be minimized (the
corresponding key can be released earlier). From Equation (5.2), the latency of P becomes
smaller. As shown in Figure 5.5, because the receiver receivers the packet (D3,M3, K0) before
the end of Interval 1, the sender can release keys just one interval earlier without violating the
security requirement. As a result, the authentication delays and latencies become smaller,
compared with the timing illustrated in Figure 5.2.

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 62

K1

D1

M1

K-1

D1

M1

K-1

D2

M2

D2

M2

D3

M3

D3

M3

D4

M4

K0

D5

M5

D4

M4

K0

D5

M5

D6

M6

K1

D7

M7

D6

M6

K1

D7

M7

K-1 K0

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

authentication delay

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

K2

K0

K0

K1 K2

K2K1

K-1

K-1

D
T

Figure 5.6: Given the worst-case transmission delay DT , an approach to reduce the authen-
tication delay, where the key-using and key-releasing intervals are not aligned.

The third approach is that a scheduler may minimize the worst-case transmission delay of
packets. In some cases, if a scheduler cannot schedule a packet so that it is sent and received
in the same interval (for example, a packet is sent just before the end of an interval), the
second approach cannot work. However, it provides an insight that, if a scheduler can
minimize the worst-case transmission delay of packets, keys can be released earlier. In the
third approach, different from the traditional design of the time-delayed release of keys, the
intervals of used keys and released keys are not aligned. As shown in Figure 5.6, given the
worst-case transmission delay DT , the key-using and key-releasing intervals are not aligned,
and a key is released DT time units after the end of the interval in which the key is used for
computing MACs. As a result, the authentication delay and the latency are also reduced,
compared with the timing illustrated in Figure 5.2. Combining Definition 5.2 and Equations
(5.1) and (5.3), we get

TR = TS +DT < TI < T ′
S. (5.4)

The third approach minimizes DT first so that TI and then T ′
S can also be minimized. From

Equation (5.2), the latency of P becomes smaller.
We will reduce the latency of a packet through the above three approaches. In this

step, we minimize the worst-case transmission delay of packets so that keys can be released
earlier (the second and the third approaches3). We will then try to release keys earlier in
the network scheduling refinement step in Section 5.3.7 (the first approach).

3Note that the second approach can be regarded as a special case of the third approach. Both of them
try to minimize transmission delays of packets.

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 63

Specifically, in this step, we first assign priorities to messages. A message whose cor-
responding signal appears more times in the time-critical paths is given a higher priority.
We then schedule messages one-by-one according to their priorities. If message µj is syn-
chronous, we schedule time slots to it “as early as possible”. In other words, we schedule the
first time slot after the arrival of a packet to the message. If message µj is asynchronous, we
first compute the number of time slots that we plan to allocate to the message in a cycle.

For asynchronous message µj, the number of time slots in a cycle is
⌈
R× N×L

Tσ
j

⌉
, where R is

a parameter larger than or equal to 1, N is the number of time slots in a cycle, L is the time
length of a time slot, and T σ

j is the period of σj. After computing the number of time slots,
we schedule time slots to the asynchronous message “as evenly as possible”. It is possible
that a time slot has been used (occupied) by a higher-priority message. In this case, we
schedule the next empty time slot to the message. It is very important that we schedule
synchronous messages as early as possible and asynchronous messages as evenly as possible,
as they are the optimal strategies for each of them (which will be further demonstrated in
the next section).

One thing that should be emphasized is the choice of R value. A large R means that
denser time slots are scheduled to an asynchronous message, and the worst-case transmission
delay of the message may decrease. If we do not consider the time-delayed release of keys,
the decreasing of the worst-case transmission delay of an asynchronous message has no effect
on the objective value because only non-time-critical signals are mapped to an asynchronous
message. This is also a reason that a traditional scheduler may not be suitable for this
problem. On the contrary, when we consider the time-delayed release of keys in this case,
the decreasing of the worst-case transmission delay of an asynchronous message enables its
sender to release keys earlier, so the worst-case latencies of synchronous messages and the
objective value can become smaller. Therefore, we increase the parameter R in our case.
Specifically, if R = 1 and the network utilization rate (the ratio of the number of scheduled
time slots to the number of total time slots) is smaller than a pre-assigned value U , we
increase R so that the network utilization rate reaches U .

5.3.5 Worst-Case Transmission Delay Analysis

Besides network scheduling, an accurate analyzer for computing the worst-case trans-
mission delay is also very important. Given the worst-case transmission delay DT , a key
can be released DT time units after the end of the interval in which the key is used for
computing MACs. If the analyzer underestimates the worst-case transmission delay, the
security requirement may be violated because keys may be released too early. If the analyzer
overestimates the worst-case transmission delay (i.e., being too pessimistic), minimizing the
worst-case transmission delay may not be effective. To compute the worst-case transmission
delay, we first define the packet arrival pattern and the schedule pattern of a message as
follows:

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 64

packet arrival: A 1 2

schedule: S

packet processing 1

1 2

1

schedule

packet arrival 3 4 5 6

2 3 4 5

unused

round 2 3
m = 2, p = 4,

(a1,a2) = (0,3)

n = 2, q = 4,

(s1,s2) = (1,2)

Figure 5.7: An example for synchronous messages with tree rounds. The second packet (#2,
#4, or #6) of each round is an unscheduled packet after its corresponding round, and the
second time slot of the first round is an unused time slot. The second round and the third
round have the same packet processing pattern.

Definition 5.6. A packet arrival pattern A is defined by m, p and a1, a2, . . . , am, where
the arriving times of packets are a1, a2, a3, . . . , am, and the pattern repeats with a period p
(ai < p for all i, 1 ≤ i ≤ m).

Definition 5.7. A schedule pattern S is defined by n, q and s1, s2, . . . , sn, where the starting
times of time slots are s1, s2, s3, . . . , sn, and the pattern repeats with a period q (si < q for
all i, 1 ≤ i ≤ n).

Assumption 5.1. One time slot serves one packet.

The problem here is: “given the packet arrival pattern A and the schedule pattern S of
a message, what is the worst-case transmission delay of the packet arrival pattern?” We will
discuss synchronous messages and asynchronous messages in the following sections.

5.3.5.1 Synchronous Message

Definition 5.8. A round is a time period whose length is the least common multiple of
p and q. A packet is unscheduled after a round if it is not assigned to any time slot after
the round; otherwise, it is scheduled. A time slot is unused if no packet is assigned to it;
otherwise, it is used.

In Figure 5.7, there are three rounds. The second packet of each round is an unscheduled
packet after its corresponding round. The second time slot of the first round is an unused
time slot. Given a synchronous packet arrival pattern A and its schedule pattern S, we
only need to consider two rounds for the worst-case transmission delay of the packet arrival
pattern. In the analysis, we start from the first packet and assign each packet to the first
unused time slot after the arrival of the packet.

Theorem 5.1. We only need to consider two rounds for the worst-case transmission delay
of the packet arrival pattern.

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 65

Proof. We claim that the numbers of unscheduled packets after the first round and the
second round are the same. Therefore, the pattern of the second round is the same as that
of any following round. We will prove that the number of unscheduled packets does not
decrease or increase after the second round. For the non-decreasing part, it is because the
second round is more difficult (with some unscheduled packets after the first round) than
the first round. For the non-increasing part, we first assume that m

p
≤ n

q
, i.e., the number of

packets in a round is never larger than the number of time slots in a round; otherwise, the
algorithm returns infinity directly. Given this assumption, after the first round, the number
of unscheduled packets is never larger than the number of unused time slots. Accordingly,
in the second round, the repeated time slots of those unused time slots in the first round are
sufficient for those unscheduled packets in the first round. Besides, the repeated time slots
of those used time slots in the first round are still sufficient for the repeated packets of those
scheduled packets in the first round. Therefore, the number of unscheduled packets does not
increase. Combining the two parts, the numbers of unscheduled packets after the first round
and the second round are the same, so we only need to consider the first two rounds.

The theorem also implies that an unscheduled packet after the second round does not
affect the result. An example is shown in Figure 5.7, where the second round and the third
round have the same packet processing pattern. It also shows that we need to consider at
least two rounds for the worst-case transmission delay of the packet arrival pattern.

5.3.5.2 Asynchronous Message

Definition 5.9. A packet just misses a time slot if the starting time of the time slot is ϵ
time unit earlier than the arriving time of the packet where ϵ → 0.

Theorem 5.2. If the worst-case transmission delay happens when packet Pi is assigned to
time slot Sj, then (1) one of Pi itself and the packets arriving before Pi must have just missed
a time slot, and (2) there must be no unused time slot between the arriving time of the packet
just missing a time slot and the starting time of Sj.

Proof. For the first part, if all of Pi and the packets arriving before Pi do not just miss a time
slot, then we can shift all packets so that they arrive earlier but are assigned to the same time
slots. As a result, the transmission delays of them become larger, which is a contradiction.
For the second part, there are two cases. The first case is that Pi itself just misses a time
slot. If there is an unused time slot between the arriving time of Pi and the starting time
of the Sj, then Pi should be assigned to the unused time slot, which is a contradiction. The
second case is that one of the packets arriving before Pi just misses a time slot. If there is
an unused time slot between the arriving time of the packet just missing a time slot and the
starting time of Sj, then we can define the packet which is assigned to the first used time
slot after the unused time slot as Pk. Next, we can shift all packets so that they arrive earlier
but all packets arriving between Pk and Pi are assigned to the same time slots. As a result,
the transmission delays of them become larger, which is a contradiction.

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 66

packet processing 1

1 2

schedule

packet arrival 3

2 3

(a)

packet processing 1

1 2

schedule

packet arrival 3

2 3

(b)

1

1

(c)

(d)

1

1

(e)

1

1 2 3

2 3

(f)

1 2 3

2 3

just missjust missjust miss

just miss just miss

unused

Pi Pi PiPk

Sj Sj Sj

1

(b) (d) (f)

Figure 5.8: For asynchronous messages, if the worst-case transmission delay happens when
packet Pi is assigned to time slot Sj, then (a–b) one of Pi itself and the packets arriving
before Pi must just miss a time slot, and (c–f) there must be no unused time slot between
the arriving time of the packet just missing a time slot and the starting time of Sj.

Figure 5.8(a) is an example (the first part in the proof), where all of the three packets
do not just miss a time slot. We can shift all packets so that they arrive earlier as shown
in Figure 5.8(b), and the transmission delays of them become larger (from 2, 2, and 3 to
3, 3, and 4, respectively), indicating that the worst-case transmission delay never happens
as Figure 5.8(a). Figure 5.8(c) is another example (the first case of the second part in the
proof), where Pi just misses a time slot. If there is an unused time slot between the arriving
time of Pi and the starting time of Sj, then Pi should be assigned to the unused time slot
as shown in Figure 5.8(d). Figure 5.8(e) is another example (the second case of the second
part in the proof), where one of the packets arriving before Pi just misses a time slot, and
there is an unused time slot between the arriving time of the packet just missing a time slot
and the starting time of Sj. We can shift all packets so that they arrive earlier as shown in
Figure 5.8(f), and the transmission delays of the packets arriving between Pk and Pi become
larger (from 2 and 3 to 3 and 4, respectively), indicating that the worst-case transmission
delay never happens as Figure 5.8(e).

Given Theorem 5.2, we only need to consider a finite number of different alignments
of the packet arrival pattern and the schedule pattern—they are the cases that at least
one packet just misses a time slot. Here, we assume that the patterns have been repeated
(duplicated) enough to A′ and S ′ with lengths equal to the least common multiple of p and
q. The worst-case transmission delay of the packet arrival pattern is

max
1≤i≤m,1≤j≤n,1≤k≤m

(
(s′j+k − s′j)− (a′i+k−1 − a′i)

)
, (5.5)

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 67

where a′1, a
′
2, . . . , a

′
m are arriving times of packets and s′1, s

′
2, . . . , s

′
n are the starting times of

time slots. For each (i, j, k), the equation computes the transmission delay of the (i+k−1)-
th packet under the case that the i-th packet just misses the j-th time slot4. The equation
can be written as

max
1≤k≤m

(
max
1≤j≤n

(
s′j+k − s′j

)
− min

1≤i≤m

(
a′i+k−1 − a′i

))
. (5.6)

As a result, we can reduce the complexity of the computation from O(m2n) to O(mn+m2).

5.3.6 Interval Length Exploration

The latency of a packet highly depends on the length of an interval. A shorter interval
results in a smaller latency of a packet, but, if the number of keys in a key chain is a
constant (the memory size for storing keys), a shorter interval means that a sender needs to
recompute a key chain more frequently, which increases the computational overhead. After
we decide the network scheduling and compute the worst-case transmission delay, we explore
the interval length of each node. For each node, there is a list of possible interval lengths,
we start from the shortest one and check if the task computing a new key chain can meet
its deadline which is the number of keys times the length of an interval. If it cannot meet
its deadline, we will check the next possible interval length.

5.3.7 Network Scheduling Refinement

To further minimize the latency of a packet, we want keys to be released as early as
possible without violating security requirement. After the interval length of each node is
decided, a key can be released with the first packet in an interval. Therefore, for each
sender, we check if there is any empty time slot between the starting time of a releasing
interval of a sender and the first time slot assigned to a message sent by the sender. If there
is such a time slot, we assign the time slot to the sender so that the sender can use the
time slot to release a key. It is after the starting time of a releasing interval of a sender to
satisfy the security requirement; and it is before the first time slot assigned to a message
sent by the sender, so the key is released earlier, and the latency of a packet can be reduced.
Furthermore, because the time slot is originally empty, it will not increase the latencies of
other packets.

After this step, we can compute the worst-case latencies of time-critical paths and the
objective value and check the feasibility. The mapping result, the feasibility and the objective
value are returned to the simulated annealing in the outer loop.

4The concept here is that the densest part of the packet arrival pattern is served by the least dense part
of the schedule pattern.

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 68

Table 5.1: The comparison between a non-security-aware mapping approach (its objectives
are reported, but its solutions are infeasible) and our security-aware mapping algorithm for
the industrial test case, where there are two optional optimization techniques resulting in four
combinations. The objective is the summation of the worst-case latencies of all time-critical
paths. The feasible time is the time it takes to find the first feasible solution.

Non-Security- Security-Aware Mapping
Aware Mapping No OPT1/OPT2 OPT1 Only OPT2 Only OPT1+OPT2

Basic Objective (ms) 25,006.665 22,256.048 21,414.690 21,329.322 20,853.017
SA Runtime (s) 56.435 47.046 50.725 47.767 47.862

Feasible Time (s) — 3.576 3.652 3.439 4.818
Accelerated Objective (ms) 23,475.727 21,156.529 20,581.321 21,010.984 20,236.140

SA Runtime (s) 55.695 50.441 47.963 44.070 48.065
Feasible Time (s) — 2.959 2.910 1.733 1.826

5.4 Experimental Results

We used the same industrial test case in Chapter 4. The architecture platform consists of 9
nodes (ECUs) which are assumed to be connected through a TDMA network (an abstraction
of the Time-Triggered Ethernet or the FlexRay). The network parameters are set according
to [41], while the computation time for a MAC or a key chain is scaled from [52]. The
functional model consists of 41 tasks and 83 signals, and 171 paths are selected with deadlines
300 ms or 100 ms. The algorithm is implemented in C/C++. The experiments on the
mapping problem are run on a 2.5-GHz processor with 4GB RAM.

We compare the results of a non-security-aware mapping approach and our security-
aware algorithm. The non-security-aware mapping approach is based on the same simulated
annealing core, but it does not consider any effect from the time-delayed release of keys
during the mapping, i.e., the latency of a packet is exactly its transmission delay because it
does not need to wait a key. After the mapping is decided, we then apply the time-delayed
release of keys on the design (in this step, we explore the interval of each node). On the
contrary, our security-aware algorithm considers the overheads of the time-delayed release
of keys from the beginning and solve the security-aware mapping problem as mentioned in
Section 5.3. There are two optional optimization techniques which result in four possible
combinations of the two. The first optimization technique (OPT1) is to increase R (R > 1) in
the network scheduling, as mentioned in Section 5.3.4. The second optimization technique
(OPT2) is to use empty time slots and release keys earlier in the network refinement, as
mentioned in Section 5.3.7. For the simulated annealing (SA), the parameters P and Q are
both set to 0.9, where Q is for the accelerated method (Accelerated SA) as mentioned in
Section 5.3.2.

The results are listed in Table 5.1 where all of them are the averages of 10 runs. To
have a fair comparison, we let all settings run with the same number (15,000) of iterations
in the simulated annealing. The objective is the summation of the worst-case latencies
of all time-critical paths. The non-security-aware mapping approach cannot find a feasible

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 69

0

6

12

18
Basic SA

Accelerated SA

O
b

je
ct

iv
e

(1
0

6

m

s
)

0

0 1,000 2,000 3,000

Number of Iterations

Figure 5.9: The converging behavior of the basic SA and the accelerated SA for the industrial
test case. The x-axis represents the number of iterations of the simulated annealing, and the
y-axis represents the objective value (106 ms) where each constraint violation contributes
106 to the objective value.

solution because applying the time-delayed release of keys after the mapping is decided makes
some time-critical paths miss their deadlines. On the contrary, our security-aware mapping
algorithm can find a feasible solution with the objective value 22,256 ms. If we consider the
objective value of the non-security-aware mapping approach (although it is not feasible), it
is 25,007 ms, larger than that of our security-aware mapping algorithm. This is because our
security-aware mapping algorithm tends to minimize the transmission delays of asynchronous
messages, which enable their senders to release keys earlier and lead to a smaller objective
value. Besides, our security-aware mapping algorithm has smaller runtimes because it has a
stronger force to allocate the source and target tasks of a signal to the same node and leave
fewer messages on the network, which makes the runtime of network scheduling smaller.

With the two optimization techniques, the objective values are reduced to 21,415 ms and
21,329 ms, respectively. This is because, the OPT1 tries to further minimize the transmis-
sion delay of an asynchronous message, and the OPT2 tries to use empty time slots and
release keys earlier. These two techniques are exactly the third and the first approaches in
Section 5.3.4. By combining both of them, the objective value is further reduced to 20,853
ms. If the accelerated SA is applied, the design space can be explored more effectively. With
the same number of iterations, the accelerated SA can find smaller objective values, com-
pared with the basic SA. Especially, it can find a feasible solution earlier, which is because
it focuses more on those tasks which play more important roles in the constraint satisfaction
and the objective minimization. The converging behavior of the basic SA and the acceler-
ated SA are illustrated in Figure 5.9. The accelerated SA converges faster than the basic
SA. From the experimental results, it is difficult to tell whether OPT1 or OPT2 is more
effective, but having both of them outperforms each individual. Besides, all experiments
with our algorithm (using different combinations) are done within one minute. Even only

CHAPTER 5. SECURITY-AWARE MAPPING FOR TDMA-BASED SYSTEMS 70

Table 5.2: The results of a large random test case.

Security-Aware Mapping
(Accelerated SA + OPT1 + OPT2)

Signal Period Setting 1X 0.75X 0.5X

Network Utilization 0.464 0.597 0.859

Objective (ms) 20,403.161 24,714.822 45,513.222

Runtime (s) 280.823 334.415 440.395

Feasible Time (s) 21.384 29.395 60.946

considering task allocation and task priority assignment, an MILP-based approach similar
to that in Chapter 4 cannot find a feasible solution in one hour. This shows the efficiency of
our algorithm.

We also generate a large random test case including 500 tasks, 1,000 signals, 50 nodes, and
100 time-critical paths. We apply our security-aware mapping algorithm with the accelerated
SA and the two optimization techniques (OPT1 and OPT2). In addition to algorithm scal-
ability, we are also interested in the impact of resource availability (specifically the network
utilization5) on the system performance and feasibility. Table 5.2 lists the objectives and
runtimes under different signal periods and therefore different network utilizations (all set-
tings are run with the same number of iterations). First of all, we can see that the algorithm
scales well with the problem size because of the efficient inner loop optimization heuristics.
Furthermore, as the utilization increases, the objectives and the runtimes increases dramat-
ically. This shows the significant impact of resource availability on the system performance
and feasibility when security is taken into consideration, and therefore further demonstrates
the need to address security together with other metrics in an integrated formulation.

5.5 Summary

In this chapter, we present a formulation and an algorithm to consider the time-delayed
release of keys and address security together with other design objectives at the design
stage for TDMA-based real-time distributed systems. The algorithm optimizes the task
allocation, priority assignment, network scheduling, and key-release interval length, with the
consideration of the overhead and constraints from a time-delayed release of keys security
mechanism. An industrial case study and a synthetic example demonstrate that our approach
can effectively and efficiently explore the design space to meet all design requirements, and
demonstrate the importance of considering security together with other metrics at the design
stage.

5Here, utilization is defined as the ratio of the number of used (not scheduled) time slots to the number
of total time slots.

71

Chapter 6

Security-Aware Design for V2V
Communications

In this chapter, we further utilize our methodology to Vehicle-to-Vehicle (V2V) communi-
cations with the Dedicated Short-Range Communication (DSRC) technology. DSRC enables
the development of many safety applications such as forward collision avoidance, lane change
warning (blind spot warning), and left turn assist [11]. It utilizes IEEE 802.11p Wireless
Access for Vehicular Environments (WAVE) [14], IEEE 802.2 [19], IEEE 1609 family (archi-
tecture [21], security services [20], network services [15], channel switching [16], electronic
payment data exchange [17], identifier allocations [18]), SAE J2735 [40], SAE J2945.1 [39],
and TCP/UDP/IPv6 in the United States [22]. DSRC has two options at the network and
transport layers. Safety applications use the IEEE 1609.3 WAVE Short Message Protocol
(WSMP) [15] which defines a WAVE Short Message and a WAVE Service Advertisement,
while non-safety applications may use either the WSMP or TCP/UDP/IPv6. At the message
sublayer (above the transport layer), SAE J2735 defines standard message types including
a Basic Safety Message (BSM) which contains time, position, velocity, direction, size, and
other important information of a vehicle.

IEEE 1609.2 [20] provides security services at the DSRC middle layers (network layer,
transport layer and message sublayer). Message authentication is supported by using the
Elliptic Curve Digital Signature Algorithm (ECDSA), which is an asymmetric cryptographic
algorithm. When a vehicle intends to send a message, it signs the message with its private
key and sends the message with its signature and certificate digest. A vehicle receiving the
message then uses the public key corresponding to the private key to verify the message.
The generation time of a message and the location of a vehicle are optionally included in a
signed message to protect against replay attacks.

We formulate a security-aware optimization problem with consideration of both security
and safety requirements, and consider the overhead of different settings of the ECDSA. The
key decision variables are the sending rates and the authentication rates of BSMs which carry
important information for safety applications and thus need security protections, and their
sending rates and authentication rates play dominant roles in system performance [1, 22, 27].

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 72

R2 , L2 R1 , L1

R3 , L3

r0 , b0+Bs

x1x2

x3

∆i: vehicle i

Ri : rate of BSMs from ∆i

Li : length of BSMs from ∆i

Bs : length of BSMs from ∆0 without security bits

b0 : number of security bits

r0 : sending rate of BSMs from ∆0

xi : authentication ratio of BSMs from ∆i

∆0∆2

∆3

∆1

Bs : length of BSMs from ∆0 without security bits

Figure 6.1: The system model.

We propose an efficient algorithm to solve the security-aware optimization problem without
violating design constraints.

The chapter is organized as follows. Section 6.1 defines the formulation. Section 6.2
presents the optimization algorithm. Section 6.3 demonstrates the experimental results.
Section 6.4 provides a summary of this chapter.

6.1 Formulation

The system model of the V2V communications in the security-aware optimization prob-
lem is shown in Figure 6.1. Vehicles share the DSRC channel based on the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) in the media access control layer,
and each vehicle has a Wireless Safety Unit (WSU) to process BSMs. Since there is no cen-
tralized controller or vehicle, the optimization problem is solved for each vehicle separately.
A vehicle ∆0 broadcasts BSMs with its information and receives BSMs from other N vehi-
cles {∆1,∆2, . . . ,∆N} with rates

−→
R = (R1, R2, . . . , RN) and lengths

−→
L = (L1, L2, . . . , LN).

Since these vehicles are moving and some of them may leave the communication range of
∆0, these values are updated at real time. The other settings are listed as follows:

• Security property: authenticity by digital signature.

• Security mechanism: ∆0 sends BSMs with the authentication mechanism directly sup-
ported by DSRC. The authentication mechanism is abstracted to the number of addi-
tional bits to be sent with BSMs from ∆0. On the other hand, authenticating (verifying)

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 73

all messages from other vehicles is too demanding, so a verify-on-demand authentica-
tion mechanism [1, 27] is applied to ∆0, i.e., ∆0 only authenticates (verifies) some
BSMs from other vehicles.

• Decision variables:

1. b0 ∈ N: the number of additional security bits to be sent with BSMs from ∆0.

2. r0 ∈ R: the sending rate of BSMs from ∆0.

3. xi ∈ R ∩ [0, 1]: ∆0 authenticates (verifies) the proportion xi of the number of
BSMs from ∆i.

• Security constraints:

1. The number of additional security bits to be sent with BSMs from ∆0 must be at
least B0.

2. ∆0 must authenticate (verify) at least the proportion Xi of the number of BSMs
from ∆i.

• Safety constraints:

1. The sending rate of BSMs from ∆0 must be at least R0, which makes sure that
other vehicles receive enough information.

2. The load of the WSU of ∆0 must not exceed a constant U0, which controls the
latency of a task on the WSU.

3. The load of the DSRC channel must not exceed a constant U , which controls the
latency of a BSM.

The problem can be interpreted by the methodology in Chapter 2, as summarized in
Table 6.1, and the mathematical formulation is defined as follows:

Definition 6.1. The function u0 to compute the load of the WSU of ∆0 is defined as

u0(r0, b0,
−→x ,N,

−→
R,

−→
L) = r0T0,s +

N∑
i=1

(Ri(Ti,r + xiTi,v)), (6.1)

where T0,s is the processing time for ∆0 to send and sign a BSM, Ti,r is the processing time
for ∆0 to receive a BSM from ∆i, and Ti,v is the processing time for ∆0 to verify a BSM

from ∆i. These values may depend on b0 and
−→
L .

Definition 6.2. The function u to compute the load of the DSRC channel is defined as

u(r0, b0, N,
−→
R,

−→
L) = r0(Bs + b0) +

N∑
i=1

(RiLi), (6.2)

where Bs is the length of a BSM without additional security bits.

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 74

Table 6.1: The V2V security-aware optimization problem interpreted by the security-aware
design methodology.

V2V Security-Aware Optimization Problem

F MF tasks sending, receiving, signing, and verifying BSMs
QF authenticity by digital signature
RF security constraints (1) and (2)
CF safety constraints (1)–(3)
OF Weighted numbers of verified BSMs

A AA WSU and DSRC
VA —

S SS digital signature supported by DSRC
RS —
VS —

XF,A r0
XS b0, xi

Definition 6.3. Given N ,
−→
R ,

−→
L , decide r ∈ R, b ∈ N, and −→x ∈ {R ∩ [0, 1]}N such that

b0 ≥ B0, (6.3)

∀i, xi ≥ Xi, (6.4)

r0 ≥ R0, (6.5)

u0(r0, b0,
−→x ,N,

−→
R,

−→
L) ≤ U0, (6.6)

u(r0, b0, N,
−→
R,

−→
L) ≤ U, (6.7)

and maximize the weighted summation of the numbers of verified BSMs from other vehicles
(per time unit), i.e.,

maximize
N∑
i=1

Wi(Rixi), (6.8)

where Wi is the weight, depending on the criticality of BSMs from ∆i.

Wi is a function of the velocity of ∆i and the distance between ∆0 and ∆i. It also
depends on the application. For example, if the application is forward collision avoidance,
then the BSMs from the vehicle in front of ∆0 are extremely critical, so a larger Wi should
be assigned to it. Note that, if Wi = 1 for all i, then the objective becomes to maximize
the number of BSMs from other vehicles (per time unit). The latency of a task or a BSM
can also be considered in the formulation. However, it highly depends on the load of the
WSU or the DSRC channel, so we focus on the load constraints here. If the latency is

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 75

Algorithm 3 Algorithm for security-aware optimization.

1: δ = U0 −R0T0,s −
∑N

i=1(Ri(Ti,r + Ti,vXi));

2: if R0(Bs +B0) +
∑N

i=1(RiLi) > U or δ < 0 then
3: Return “infeasible”;
4: end if
5: b0 = B0; r0 = R0; ∀i, xi = Xi;
6: Sort Wi

Ti,v
in descending order;

7: for each index set {i1, i2, . . . , iM} where
Wij

Tij ,v
=

Wik

Tik,v
for all 1 ≤ j, k ≤ M do

8: if
∑M

j=1RijTij ,v(1−Xij) < δ then
9: for each k, 1 ≤ k ≤ M do
10: xik = 1;
11: end for
12: δ = δ −

∑M
j=1RijTij ,v(1−Xij);

13: else
14: for each k, 1 ≤ k ≤ M do

15: xik = xik +
δ(1−Xik

)∑M
j=1 Rij

Tij ,v
(1−Xij

)
;

16: end for
17: δ = 0;
18: Return (r0, b0,

−→x);
19: end if
20: end for
21: Return (r0, b0,

−→x);

considered, due to the hidden node problem in wireless communications and the real-time

changes ofN ,
−→
R ,

−→
L , it can only be estimated. Any model for the latency computation can be

applied, depending on the complexity and accuracy of the model. Lastly, in this formulation,
architecture selection is not considered since DSRC is designated for V2V communications,
while security mechanism selection is implied by the abstraction of the number of additional
bits sent with BSMs and the processing times of signing and verifying BSMs. Note that the
optimization problem can be solved at real time or at the design stage with different input
parameters. If it is solved at the design stage, designers can construct a lookup table to save
the solutions, and a vehicle can check the lookup table for solutions at real time without
solving the problem again.

6.2 Algorithm

We propose an efficient algorithm (Algorithm 3) to solve the security-aware optimization
problem. It is optimal for the problem, and the overall time complexity is O(N logN). In
Lines 1–4, the algorithm first checks the two load constraints, Equations (6.6) and (6.7),

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 76

with the minimal possible values of r0, b0, and xi, which generate the minimal loads for the
WSU or the DSRC channel. If any of them is not satisfied, the problem is infeasible. In
Line 5, the algorithm assigns initial values to r0, b0, and xi. In Line 6, the algorithm sorts
Wi

Ti,v
. In Lines 7–20, the algorithm applies a greedy approach starting from the maximal Wi

Ti,v
.

If the corresponding Wi

Ti,v
’s are the same for a set of indices, instead of just selecting one

of them, the algorithm considers all of them at the same time. For each index in the set,
without violating Equation (6.6), the algorithm assigns the maximal value to xi (Line 10) or
increases xi by a constant ratio of the difference to its maximal value (Line 15). After that,
the value of δ is updated (Lines 12 and 17) so that it is always the difference between the
two sides of Equation (6.6). If δ becomes 0, meaning that no xi can be increased any more,
or all xi’s are assigned to their maximal values, the algorithm returns the solution (Lines 18
and 21).

Theorem 6.1. Algorithm 3 is optimal for the problem in Definition 6.3.

Proof. The algorithm first assigns the minimal possible values to r0, b0, and xi, which gener-
ate the minimal but required loads for the WSU or the DSRC channel. Next, the algorithm

increases the value of xi. To prove the optimality, we can replace xi by
x′
i

RiTi,v
+ Xi, and

the problem can be transformed to maximize
∑N

i=1A
′
ix

′
i + B′, subject to

∑N
i=1 x

′
i ≤ C ′ and

0 ≤ x′
i ≤ X ′

i, where x
′
i = RiTi,v(xi−Xi), X

′
i = RiTi,v(1−Xi), A

′
i =

Wi

Ti,v
, B′ =

∑N
i=1(WiRiXi),

and C ′ = U0 −R0T0,s −
∑N

i=1(Ri(Ti,r + Ti,vXi)).
X ′

i, A′
i, B′, and C ′ are all constants, and the coefficient of each x′

i in constraints is
1, so an approach which greedily increases the value of an x′

i with the largest A′
i can be

applied. This is because, among increasing each x′
i by the same amount which has the

same effect on constraints, the selection of an x′
i with the largest A′

i is the most effective
in maximizing the objective. Similarly, if the corresponding A′

i’s are the same for several
x′
i’s, increasing the values of these x′

i’s without violating constraints is optimal, which is
exactly what Algorithm 3 does in Lines 7–21. Lastly, because of the checks in Lines 1–4
and updates of δ, the algorithm returns a feasible solution if and only if the problem has a
feasible solution.

Theorem 6.2. The overall time complexity of Algorithm 3 is O(N logN).

Proof. The time complexity of Lines 1–5 is O(N) for the summations. The sorting in Line 6
takes O(N logN). The time complexity of Lines 7–20 is O(N) since they are only executed
once for each index i. Therefore, the overall time complexity of Algorithm 3 is O(N logN).

6.3 Experimental Results

If not specified otherwise, the parameters used in the experiments are listed in Table 6.2.
Especially, we assume that a vehicle has a 400-MHz WSU, and the time that it needs to sign

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 77

Table 6.2: The parameters in the experiments.

Parameter Unit ECDSA-224 ECDSA-256

B0 bit (56 + 8 + 6)× 8 (64 + 8 + 6)× 8
R0 1/ms 0.002
Xi — 0.05
U0 1 0.8
U kbps 300

Ri 1/ms 0.002
Li bit (200 + 70)× 8 (200 + 78)× 8
Wi — 1

T0,s ms 5.9+1.0 7.6
Ti,r ms 1.0 1.0
Ti,v ms 17.8 26.5
Bs bit 200× 8

X
i

0.05 1.0

N

5

100

Both Feasible

Same Objective

1.0

Both Feasible

ECDSA-224 Costless

ECDSA-224 Feasible

ECDSA-256 Infeasible

Both Infeasible

Figure 6.2: The selection between the ECDSA-224 and the ECDSA-256.

or verify a BSM is given [1]. The values of B0 and Li can be calculated [27]. The load of the
WSU is bounded by 0.8, and the load of the DSRC channel is bounded by 300 kbps, 60% of
the full load [22]. The algorithm is implemented in the C language, and the experiments are
run on a 2.5-GHz processor. There are about 50,000 instances of the optimization problem
solved in 1 second, showing the efficiency of the algorithm and making it possible to be used
at real time, even with a slower processor, such as the WSU in a previous work [1]. There
are three settings experimented and discussed in the following sections.

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 78

W
1

1

10

X
1

0.05

W
1

= 7

X
1

1.0
x

1

0.0

1.0

Figure 6.3: The verification percentage xi under different Wi and Xi.

6.3.1 Selection Between ECDSA-224 and ECDSA-256

We compare the security mechanisms, the ECDSA-224 and the ECDSA-256, which are
directly supported by DSRC. In this setting, N (the number of vehicles except ∆0) ranges
from 5 to 100, and each Xi (the minimum verification proportion) ranges from 0.05 to 1.0.
The results are shown in Figure 6.2. When the load of the WSU is very low, both of the
ECDSA-224 and the ECDSA-256 are feasible with the same objective value because the
WSU verifies all BSMs from all vehicles with either the ECDSA-224 or the ECDSA-256.
As N and Xi increase, more BSMs are generated, and a higher proportion of the number
of BSMs needs to be verified, causing higher loads of the WSU. As a result, the WSU
cannot verify all BSMs, and the ECDSA-224 has a larger (better) objective value due to
its smaller computational overhead. As N and Xi further increase, the ECDSA-256 first
becomes infeasible, and then the ECDSA-224 becomes infeasible as well. This experiment
demonstrates that, even in some non-extreme cases, verifying all BSMs from other vehicles
is too demanding, so the verify-on-demand authentication mechanism [1, 27] is necessary.
Besides, when the computational overhead is a concern, the ECDSA-224 is a better choice,
which is also mentioned in a previous work [22].

6.3.2 Changing Weight and Minimum Verification Proportion

We consider the scenario that BSMs from a specified vehicle are especially critical. For
example, if the application is forward collision avoidance, the BSMs from the vehicle in
front of ∆0 are extremely critical. To test this scenario, the ECDSA-224 is selected, N is
set to 51, W1 ranges from 1 to 10, X1 ranges from 0.05 to 1.0, and Wi =

⌊
i−2
5

+ 1
⌋
for

2 ≤ i ≤ 51. Note that Wi is the weight in the objective function, and Xi is the minimum
verification proportion. The results are shown in Figure 6.3. With this setting, the load of
the WSU is fixed, but the WSU cannot afford to verify all BSMs from all vehicles. Recall
that, after the required proportion Xi is assigned to xi, Algorithm 3 further increases xi by
a greedy approach. When W1 is small (W1 < 7 in this case), x1 is sorted behind and not
increased because δ (the difference between the two sides of Equation (6.6)) becomes 0 before
Algorithm 3 considers xi. On the other hand, when W1 is large (W1 > 7 in this case), x1 is
sorted to front and increased to 1 because δ is still non-negative after that. When W1 is on

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 79

R00.002 0.02

0.0

0.05

N

Infeasible Region

Objective

(# of Verified BSMs)

0.05 100

(a)

R00.002 0.02

0.0

1.0

N

5

Infeasible Region

1.0
of Verified BSMs

of BSMs

100

(b)

Figure 6.4: The trade-off between security and BSM sending rate.

the boundary (W1 = 7 in this case), x1 is increased but not to 1, and the amount depends
on all Xi’s where W1 = Wi because Algorithm 3 considers all of them at the same time, not
just selects one of them. These results show that assigning appropriate values to Wi and Xi

leads Algorithm 3 to emphasize some important BSMs.

6.3.3 Trade-Off Between Security and BSM Sending Rate

We experiment on the trade-off between security and BSM sending rate. The safety
metric being considered here has a relatively narrow scope, which focuses on the amount of
information being exchanged that can be used for safety application. In a broader sense,
safety also depends on security, in which case a single metric may be defined. In this setting,
N ranges from 5 to 100, and R0 (the minimum sending rate) ranges from 0.002 to 0.02.
The results are shown in Figure 6.4, where 0.0 means that there is no feasible solution.
Figure 6.4(a) shows the objective which is exactly the number of verified BSMs (per ms)
since Wi = 1 for all i, while Figure 6.4(b) shows the ratio of the number of verified BSMs
to the total number of BSMs. The objective and the ratio are “security measurements”
because larger values of them indicate that more BSMs are verified. On the other hand, R0

is a “safety measurement” because a larger value of R0 means more information provided to
other vehicles. Note that, in this setting, the total number of BSMs is fixed if N is fixed.

In Figure 6.4(a) and (b), if N is fixed, the objective and the ratio (security measurements)
decrease as R0 (safety measurement) increases. It demonstrates the trade-off between secu-
rity and BSM sending rate. Besides, if R0 is fixed, the ratio also decreases as N increases in
Figure 6.4(b), which shows the trade-off between security and system scalablility. However,
the objective does not always decrease as N increases. This is because, when N and R0

are small, all BSMs can be verified, and thus the number of verified BSMs increases as N
increases. There is also trade-off between sending and receiving BSMs. It can be observed by
the boundary between a feasible region and an infeasible region in Figure 6.4, where, as R0

CHAPTER 6. SECURITY-AWARE DESIGN FOR V2V COMMUNICATIONS 80

increases, the maximal feasible N decreases. These results indicate that considering security
induces more design challenges, and systematic approaches and design tools are crucial to
constraint satisfaction and design optimization.

6.4 Summary

In this chapter, we apply the methodology in Chapter 2 to V2V communications through
DSRC. The key decision variables are the sending rates and the authentication rates of BSMs
which carry important information for safety applications and thus need security protections,
and their sending rates and authentication rates play dominant roles in system performance.
Experimental results demonstrate the efficiency of our algorithm which solves the security-
aware optimization problem without violating design constraints.

81

Chapter 7

Conclusions and Future Work

In this thesis, to address security with limited resources and strict constraints in em-
bedded systems, we proposed a general security-aware design methodology which considers
security together with other design constraints at design stages. The methodology is based
on Platform-Based Design [44], where a functional model and an architectural platform are
initially captured separately and then brought together through a mapping process. During
mapping, the functional model is implemented on the architectural platform, and constraints
and objectives are satisfied and optimized, respectively. Our methodology is different from
the traditional mapping process because it not only maps functional models to architectural
platforms but also explores security mechanism selection and architecture selection.

We then focused on the security issues for automotive systems as they represent many of
the common challenges in embedded systems. We studied security for in-vehicle communica-
tions and presented security mechanisms for the CAN protocol, which is a very representa-
tive asynchronous protocol and currently the most used in-vehicle communication protocol.
Based on the security mechanisms, we proposed an MILP formulation and an MILP-based
algorithm to explore task allocation, signal packing, MAC sharing, and priority assignment
and meet both security and safety constraints. Besides the CAN protocol, we also consid-
ered a TDMA-based protocol, which is a very representative synchronous protocol and an
abstraction of many existing protocols. The time-delayed release of keys [2, 34, 35, 52] was
applied as the security mechanism, and an algorithm that combines a simulated annealing
approach with a set of efficient optimization heuristics was developed to solve a security-
aware mapping problem for TDMA-based systems. Lastly, we applied our methodology to
V2V communications with the DSRC technology. We formulated a security-aware optimiza-
tion problem and proposed an efficient algorithm to solve the security-aware optimization
problem.

Experimental results showed that our approaches can effectively and efficiently explore
design spaces and satisfy all design constraints at the design stages. They also demon-
strated that security must be considered at initial design stages; otherwise, it is very difficult
and sometimes impossible to add security after initial design stages without violating other
system constraints.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 82

Based on the contributions in this thesis, potential future directions include:

• Different applications: different types of attacks have been identified in aircraft sys-
tems [6, 43], global positioning systems [8, 55], medical devices [10, 28], and smart
grids [23, 29]. Although some security mechanisms have been proposed for those ap-
plications, security and its impact on system design are not considered at their design
stages to guarantee that all design constraints are satisfied. Different applications may
have different bottlenecks for security implementation. Some challenges, such as power
consumption for medical devices and scalability for smart grids, have been pointed out,
but there is still no rigorous approach to address these challenges at the design stages.
Our security-aware design methodology can be applied to deal with the security-aware
design problems for those applications.

• Different security properties: authentication is the main focus in Chapters 3–6, while
different applications may have have different properties to be fulfilled. Availability is
a concern for most applications, and it usually needs some hardware protection. On
the other hand, confidentiality is clearly a concern for medical devices and smart grids.
To address these security properties, our security-aware design can also be applied to
deal with them.

• Design and analysis over DSRC: DSRC provides a very good platform for many applica-
tions of automotive systems. Along with security, other metrics, such as safety, energy
efficiency, and congestion avoidance, and any of their combinations are important and
intriguing topics in design and analysis problems. Especially, there is enormous in-
formation from vehicles and infrastructures, so data mining techniques are needed to
determine which message is relevant. Besides, due to the moving nature of automotive
systems, expectation maximization techniques are also needed to predict the changing
of surrounding environment. Those machine learning techniques are expected to work
closely with design and analysis algorithms.

83

Bibliography

[1] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Brovold, G. Brown,
L. Caminiti, D. Cunningham, H. Elzein, K. Hong, J. Ivan, D. Jiang, J. Kenney, H. Krish-
nan, J. Lovell, M. Maile, D. Masselink, E. McGlohon, P. Mudalige, Z. Popovic, V. Rai,
J. Stinnett, L. Tellis, K. Tirey, and S. VanSickle. Vehicle safety communications—
applications (VSC-A). Report No. DOT HS 811 492A, September 2011.

[2] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. Needham.
A new family of authentication protocols. ACM SIGOPS Operating Systems Review,
32(4):9–20, October 1998.

[3] Bosch. CAN specification (Version 2.0). 1991.

[4] Bosch. CAN with flexible data-rate white paper, (Version 1.1). 2011.

[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experimental analyses of auto-
motive attack surfaces. In USENIX Conference on Security, pages 6–6, 2011.

[6] R. De Cerchio and C. Riley. Aircraft systems cyber security. In Integrated Communi-
cations, Navigation and Surveillance Conference (ICNS), pages 1–12, April 2012.

[7] FlexRay Consortium. FlexRay communications system protocol specification (Version
3.0.1). October 2010.

[8] S. Gong, Z. Zhang, M. Trinkle, A. D. Dimitrovski, and H. Li. GPS spoofing based
time stamp attack on real time wide area monitoring in smart grid. In IEEE Third
International Conference on Smart Grid Communications (SmartGridComm), pages
300–305, November 2012.

[9] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede. LiBrA-CAN: a lightweight
broadcast authentication protocol for Controller Area Networks. In International Con-
ference on Cryptology and Network Security, pages 185–200, December 2012.

[10] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan,
K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable cardiac defibrillators:

BIBLIOGRAPHY 84

software radio attacks and zero-power defenses. In IEEE Symposium on Security and
Privacy (SP), pages 129–142, May 2008.

[11] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade, M. Lukuc, J. Simons,
and J. Wang. Vehicle-to-vehicle communications: readiness of V2V technology for
application. Report No. DOT HS 812 014, August 2014.

[12] T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive CAN networks—
practical examples and selected short-term countermeasures. In International Confer-
ence on Computer Safety, Reliability, and Security, pages 235–248, 2008.

[13] ICAO. Manual for the ATN using IPS standards and protocols (doc 9896). September
2010.

[14] IEEE. IEEE standard for information technology—local and metropolitan area
networks—specific requirements—part 11: wireless LAN medium access control (MAC)
and physical layer (PHY) specifications amendment 6: wireless access in vehicular envi-
ronments. IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended
by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std
802.11n-2009, and IEEE Std 802.11w-2009), July 2010.

[15] IEEE. IEEE standard for wireless access in vehicular environments (WAVE)—
networking services—redline. IEEE Std 1609.3-2010 (Revision of IEEE Std 1609.3-
2007)—Redline, December 2010.

[16] IEEE. IEEE standard for wireless access in vehicular environments (WAVE)—multi-
channel operation. IEEE Std 1609.4-2010 (Revision of IEEE Std 1609.4-2006), Febru-
ary 2011.

[17] IEEE. IEEE standard for wireless access in vehicular environments (WAVE)—over-the-
air electronic payment data exchange protocol for intelligent transportation systems
(ITS). IEEE Std 1609.11-2010, January 2011.

[18] IEEE. IEEE standard for wireless access in vehicular environments (WAVE)—identifier
allocations. IEEE Std 1609.12-2012, September 2012.

[19] IEEE. IEEE standard for information technology—telecommunications and infor-
mation exchange between systems—local and metropolitan area networks—specific
requirements—part 2: logical link control. ISO 8802-2 IEEE 802.2, First Edition 1989-
12-31 (Revision of IEEE Std 802.2-1985), February 2013.

[20] IEEE. IEEE standard for wireless access in vehicular environments security services for
applications and management messages. IEEE Std 1609.2-2013 (Revision of IEEE Std
1609.2-2006), April 2013.

BIBLIOGRAPHY 85

[21] IEEE. IEEE guide for wireless access in vehicular environments (WAVE)—architecture.
IEEE Std 1609.0-2013, March 2014.

[22] J. B. Kenney. Dedicated short-range communications (DSRC) standards in the United
States. Proceedings of the IEEE, 99(7):1162–1182, July 2011.

[23] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke. Smart-grid security issues. IEEE
Security & Privacy, 8(1):81–85, January 2010.

[24] P. Kleberger, T. Olovsson, and E. Jonsson. Security aspects of the in-vehicle network in
the connected car. In IEEE Intelligent Vehicles Symposium (IV), pages 528–533, June
2011.

[25] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental security analysis
of a modern automobile. In IEEE Symposium on Security and Privacy (SP), pages
447–462, May 2010.

[26] F. Koushanfar, A.-R. Sadeghi, and H. Seudie. EDA for secure and dependable cybercars:
challenges and opportunities. In ACM/IEEE Design Automation Conference (DAC),
pages 220–228, June 2012.

[27] H. Krishnan and A. Weimerskirch. “verify-on-demand”—a practical and scalable ap-
proach for broadcast authentication in vehicle-to-vehicle communication. SAE Interna-
tional Journal of Passenger Cars—Mechanical Systems, 4(1):536–546, June 2011.

[28] C. Li, A. Raghunathan, and N. K. Jha. Hijacking an insulin pump: security attacks and
defenses for a diabetes therapy system. In IEEE International Conference on e-Health
Networking Applications and Services (Healthcom), pages 150–156, June 2011.

[29] P. McDaniel and S. McLaughlin. Security and privacy challenges in the smart grid.
IEEE Security & Privacy, 7(3):75–77, May 2009.

[30] A. R. Metke and R. L. Ekl. Security technology for smart grid networks. IEEE Trans-
actions on Smart Grid, 1(1):99–107, June 2010.

[31] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal. Worst-case time analysis of can
messages. In Understanding and Using the Controller Area Network Communication
Protocol, pages 43–65. Springer, 2012.

[32] D. K. Nilsson, U. E. Larson, and E. Jonsson. Efficient in-vehicle delayed data authenti-
cation based on compound message authentication codes. In IEEE Vehicular Technology
Conference (VTC), pages 1–5, September 2008.

[33] OSEK. OSEK/VDX OS specification, (Version 2.2.3). 2006.

BIBLIOGRAPHY 86

[34] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and secure source authen-
tication for multicast. In Network and Distributed System Security Symposium, pages
35–46, 2001.

[35] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and signing
of multicast streams over lossy channels. In IEEE Symposium on Security and Privacy
(SP), pages 56–73, 2000.

[36] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe, and
I. Seskar. Security and privacy vulnerabilities of in-car wireless networks: a tire pressure
monitoring system case study. In USENIX Conference on Security, pages 21–21, 2010.

[37] RTCA. Minimum aviation system performance standards for automatic dependent
surveillance—broadcast (ADS-B). RTCA DO-242A, June 2002.

[38] U. Ruhrmair and M. van Dijk. PUFs in security protocols: attack models and security
evaluations. In IEEE Symposium on Security and Privacy (SP), pages 286–300, May
2013.

[39] SAE. Dedicated short range communication (DSRC) minimum performance require-
ments. SAE Standard J2945 WIP.

[40] SAE. Dedicated short range communications (DSRC) message set dictionary. SAE
Standard J2735, November 2009.

[41] SAE. Time-Triggered Ethernet. SAE Standard AS6802, November 2011.

[42] SAE. TTP communication protocol. SAE Standard AS6003, February 2011.

[43] K. Sampigethaya, R. Poovendran, S. Shetty, T. Davis, and C. Royalty. Future e-enabled
aircraft communications and security: the next 20 years and beyond. Proceedings of the
IEEE, 99(11):2040–2055, November 2011.

[44] A. Sangiovanni-Vincentelli. Quo vadis, SLD? reasoning about the trends and challenges
of system level design. Proceedings of the IEEE, 95(3):467–506, March 2007.

[45] S. Seifert and R. Obermaisser. Secure automotive gateway — secure communication
for future cars. In IEEE International Conference on Industrial Informatics (INDIN),
pages 213–220, July 2014.

[46] G. E. Suh and S. Devadas. Physical unclonable functions for device authentication and
secret key generation. In ACM/IEEE Design Automation Conference (DAC), pages
9–14, June 2007.

[47] C. Szilagyi and P. Koopman. A flexible approach to embedded network multicast au-
thentication. In Workshop on Embedded Systems Security, 2008.

BIBLIOGRAPHY 87

[48] C. Szilagyi and P. Koopman. Flexible multicast authentication for time-triggered em-
bedded control network applications. In IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 165–174, 2009.

[49] C. Szilagyi and P. Koopman. Low cost multicast authentication via validity voting in
time-triggered embedded control networks. InWorkshop on Embedded Systems Security,
2010.

[50] A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth—a simple, backward
compatible broadcast authentication protocol for CAN bus. In Workshop on Embedded
Security in Cars, 2011.

[51] A. Wasicek, P. Derler, and E. A. Lee. Aspect-oriented modeling of attacks in automotive
cyber-physical systems. In ACM/IEEE Design Automation Conference (DAC), pages
21:1–21:6, June 2014.

[52] A. Wasicek, C. El-Salloum, and H. Kopetz. Authentication in time-triggered sys-
tems using time-delayed release of keys. In IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), pages
31–39, March 2011.

[53] M. Wolf and T. Gendrullis. Design, implementation, and evaluation of a vehicular
hardware security module. In Proceedings of the 14th International Conference on In-
formation Security and Cryptology, pages 302–318. Springer-Verlag, 2012.

[54] M.-D. Yu and S. Devadas. Secure and robust error correction for physical unclonable
functions. IEEE Design Test of Computers, 27(1):48–65, January 2010.

[55] Q. Zeng, H. Li, and L. Qian. GPS spoofing attack on time synchronization in wire-
less networks and detection scheme design. In Military Communications Conference
(MILCOM), pages 1–5, October 2012.

[56] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-Vincentelli. Optimizing
the software architecture for extensibility in hard real-time distributed systems. IEEE
Transactions on Industrial Informatics, 6(4):621–636, November 2010.

[57] T. Ziermann, S. Wildermann, and J. Teich. CAN+: A new backward-compatible con-
troller area network (CAN) protocol with up to 16x higher data rates. In ACM/IEEE
Design, Automation Test in Europe (DATE), pages 1088–1093, April 2009.

