
Communication-Optimal Loop Nests

Nick Knight

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-185
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-185.html

August 12, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Communication-Optimal Loop Nests

by

Nicholas Sullender Knight

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Computational and Data Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Demmel, Chair
Professor Michael Christ

Professor Katherine Yelick

Summer 2015

Abstract

Communication-Optimal Loop Nests

by

Nicholas Sullender Knight

Doctor of Philosophy in Computer Science

Designated Emphasis in Computational and Data Science and Engineering

University of California, Berkeley

Professor James Demmel, Chair

Communication (data movement) often dominates a computation’s runtime and energy
costs, motivating organizing an algorithm’s operations to minimize communication. We
study communication costs of a class of algorithms including many-body and matrix/tensor
computations and, more generally, loop nests operating on array variables subscripted by
linear functions of the loop iteration vector. We use this algebraic relationship between
variables and operations to derive communication lower bounds for these algorithms. We
also discuss communication-optimal implementations that attain these bounds.

1

Contents

Acknowledgements i

1 Introduction 1

2 Modeling Computation and Communication 5

3 Modeling Loop Nests 19

4 Hölder-Brascamp-Lieb-type Inequalities 27

5 Communication Bounds for Loop Nests 67

6 Conclusion 83

References 85

Acknowledgements

My doctoral studies (August 15, 2009 through August 14, 2015) were supported finan-
cially by the Par Lab, funded by Microsoft (024263), Intel (024894), UC Discovery (DIG07-
10227), National Instruments, Nokia, NVIDIA, Oracle, and Samsung; by ASPIRE, funded
by DARPA (HR0011-12-2-0016), C-FAR (a STARnet member, funded by the Semiconductor
Research Corporation and DARPA), Intel, Google, Huawei, LG, Nokia, NVIDIA, Oracle, and
Samsung; by the MathWorks; by the DOE (DE-SC0003959, DE-SC0004938, DE-SC0005136,
DE-SC0008700, DE-AC02-05CH11231, DE-SC0010200); and by the NSF (ACI-1339676).

This dissertation focuses on an ongoing research project with collaborators Michael
Christ, James Demmel, Thomas Scanlon, and Katherine Yelick, who I joined in January
2012. This project has benefitted from helpful technical discussions with Grey Ballard, Erin
Carson, Benjamin Lipshitz, Oded Schwartz, Harsha Vardhan Simhadri, and Bernd Sturmfels.

i

Chapter 1

Introduction

Computers take time and energy to execute programs. The costs of moving data (communi-
cation) frequently dominate the costs of performing operations on that data (computation).
This work studies organizing computations to minimize communication.

1.1 Avoiding Communication
Computers are ubiquitous in our lives, and have had a profound impact on the scientific
method. Computer-based simulation enables scientists to study phenomena that are infea-
sible for lab experimentation, as well as collect and process data beyond human capabilities.
However, computers have physical limitations too, and their users will only wait so long
(or pay for so much electricity) before they expect a result. Thus it is important to ask
how much computational problems cost and to develop algorithms and implementations to
minimize costs.

In practice, communication costs more than computation (in terms of both time and en-
ergy) for technological reasons: improvements in processing speed and efficiency consistently
exceed improvements in accessing memory, leading to an exponentially growing performance
gap. So, even if the costs of a computer program are not dominated by communication on
current hardware, they will likely be in the future. Additionally, as a program’s working
set grows, it must move data further, incurring a greater communication cost. Reducing
communication costs will continue to be an important part of improving algorithmic perfor-
mance.

1.2 Communication Lower Bounds
In this work, we derive communication lower bounds for algorithms that apply to all imple-
mentations, i.e., “any implementation of the given algorithm must move at least this much
data”. This means that if an implementation attains a communication lower bound, then
to further reduce communication, we must seek a new algorithm. On the other hand, if
there is a gap between the best known implementation and the lower bound, then it may be
worth trying to find a better implementation. Communication lower bounds have practical
applications in program optimization and can give useful insights into algorithm design.

1

The seminal work of Hong-Kung [21] provided a framework for reasoning about the
communication within a sequential machine, in particular, the data movement between a
fast memory with bounded capacity and a slow memory with unbounded capacity. Hong-
Kung modeled an algorithm by the directed acyclic graph (DAG) of dependences between the
operations performed in any execution of that algorithm, and modeled an implementation by
playing a pebble game on the DAG’s vertices, wherein placing/removing a pebble represented
writing/erasing a memory cell. Hong-Kung’s key result [21, Theorem 3.1] takes an algorithm
and returns a lower bound on the communication in any implementation of that algorithm.
Of practical importance, this lower bound is computable by solving a graph-partitioning
problem, despite the fact that there are infinitely many possible implementations.

Hong-Kung’s work inspired a large literature, including the present work. Our main
connection with Hong-Kung’s work is through the papers of Irony-Toledo-Tiskin [22] and
Ballard-Demmel-Holtz-Schwartz [5], who specialized Hong-Kung’s algorithm model to target
a class of matrix computations whose associated DAGs have a three-dimensional geometric
structure.

For example, consider the following program to multiply N -by-N matrices, C = A · B,
assuming C is zero-initialized:

for i = 1 : N, for j = 1 : N, for k = 1 : N,
C(i, j) = C(i, j) + A(i, k) ∗B(k, j).

The inner-loop statement is performed N3 times with different i, j, k, each time accessing
array variables A(i, k), B(k, j), and C(i, j). The associated DAG can be embedded in three-
dimensional Euclidean space, identifying each inner-loop statement as a point (i, j, k) and
identifying its operands (entries of A,B,C) by its projections (i, k), (k, j), (i, j) onto the three
coordinate planes.

Irony-Toledo-Tiskin used this geometric interpretation of matrix multiplication to apply
an inequality of Loomis-Whitney [24] to bound above the number of inner-loop statements
doable with a fixed number of operands, enabling a simplification of Hong-Kung’s graph-
partitioning problem. Ballard-Demmel-Holtz-Schwartz extended these lower bounds to a
more general class of matrix computations like LU-factorization that can be reduced to
matrix multiplication. Of practical importance, these communication lower bounds indicated
that a number of algorithms in numerical linear algebra had suboptimal communication costs,
motivating a number of efforts to develop new algorithms and implementations (see [3] for
a survey).

Our main contribution is to model a more general class of nested-loop programs than
the ones considered by Ballard-Demmel-Holtz-Schwartz. In particular, we will allow any
number of nested loops (instead of three) and any number of arrays (instead of three) each
of any dimension (instead of two), and we will allow the arrays to be indexed by arbitrary
linear combinations of the loop indices (instead of projections onto coordinate hyperplanes).
The key to this extension is replacing Loomis-Whitney’s inequality with a generalization
proposed by Brascamp-Lieb [12] and analyzed by Bennett-Carbery-Christ-Tao [9].

2

1.3 Contributions
The main contributions of this work are as follows:

• New shared-memory parallel variant of Hong-Kung’s sequential communication lower
bound approach [21] — see Section 2.3;

• New communication lower bounds for a class of algorithms whose dependence struc-
tures model nested-loop programs with linear array index expressions, generalizing
the ‘matrix-multiplication-like’ class studied by Irony-Toledo-Tiskin [22] and Ballard-
Demmel-Holtz-Schwartz [5] — see Section 3.2;

• Sharper constants in Hölder-Brascamp-Lieb-type inequalities, extending work by Bennett-
Carbery-Christ-Tao [9] and enabling our new communication lower bounds — see Sec-
tion 4.2;

• New algorithm to compute constraints for Hölder-Brascamp-Lieb-type inequalities, ex-
tending work by Valdimarsson [34] and showing that communication lower bounds are
computable — see Section 4.2; and

• New communication-optimal implementations, which attain communication lower bounds
by tiling, in many cases of practical interest — see Section 5.2.

1.4 Outline
A chapter-by-chapter outline of this work is as follows.

In the remainder of Chapter 1 we review the mathematical notation used subsequently.
In Chapter 2 we model the execution of an idealized shared-memory parallel computer,

where each processor has a private local memory and all processors share a global memory,
and we define communication as data movement between local and global memory. We use
input- and output-paths, structural properties of algorithms, to derive lower bounds on the
amount of communication in any implementation of a given algorithm.

In Chapter 3 we define Hölder-Brascamp-Lieb (HBL) interpretations of algorithms which
provide an intuitive way to model a class of nested-loop programs with certain input-/output-
path properties. Recall the earlier example of multiplying N -by-N matrices, C = A ·B,

for i = 1 : N, for j = 1 : N, for k = 1 : N,
C(i, j) = C(i, j) + A(i, k) ∗B(k, j);

modeling this program as a DAG, we will see that any inner-loop statement (i, j, k) has
incoming paths from input array variables A(i, j) and B(k, j) and an outgoing path to
output array variable C(i, j). These input-/output-paths model data dependences, which
we use to derive lower bounds on data movement (communication).

In Chapter 4, we study HBL-type inequalities, for later use analyzing algorithms with
HBL interpretations. We extend previous work [9] on HBL-type inequalities by demonstrat-
ing sharper constants, as well as extend previous work [34] on computability issues related
to these inequalities.

3

Finally, in Chapter 5, we apply the HBL theory to complete our communication lower
bound analysis of algorithms with HBL interpretations. We also show, in some important
special cases, that these communication lower bounds are asymptotically attainable via tiling.

Conclusions are drawn and future work is reviewed in Chapter 6.

1.5 Notation
We employ standard mathematical notations with a few non-standard extensions.

The set of natural numbers is denoted by N = {0, 1, 2, . . .}; for any n ∈ N, we let
N≥n = {n, n+ 1, . . . , }, so N≥0 = N, and we let [n] = {1, . . . , n}, so [0] = ∅.

For any set X, its cardinality |X| ∈ N ∪ {∞}. For any n ∈ N, Xn denotes the n-th
Cartesian power of X; more generally, if Y is another set, then XY denotes the set of all
functions from Y to X.

An Abelian group is a set G that is closed under addition +, an associative and commu-
tative binary operation, with identity element 0 and an inverse element −x for each x ∈ G.
A group homomorphism is a function between Abelian groups that is compatible with the
group structure. The rank of an Abelian group is the maximum cardinality of any linearly
independent subset of G.

4

Chapter 2

Modeling Computation and
Communication

In this chapter we formalize our computation model in order to reason mathematically
about the communication costs of algorithms. A section-by-section outline is as follows.

• In Section 2.1, we model a computation as an execution of an idealized parallel machine
with a two-level memory hierarchy, where each processor has a private local memory
and all processors share a global memory. Communication is data movement between
the local memories and the global memory.

• In Section 2.2, we introduce our notion of algorithms, which correspond to sets of
machine executions called implementations.

• Then in Section 2.3, we use input- and output-paths, structural properties of algorithms,
to derive lower bounds on the amount of communication in any implementation of a
given algorithm.

• We discuss related work in Section 2.4: our model and communication lower bounds
approach was inspired by Hong-Kung’s seminal work [21].

2.1 Model Preliminaries
Machine Model A machine has a nonempty finite set of processors, each connected to
a local memory and all connected to a global memory (see Figure 2.1). A memory contains
storage elements called cells, each of which stores a single value; local memories have finitely
many cells, while global memory can have infinitely many. Local memory is private, i.e.,
each processor can access its own, and only its own. On the other hand, any processor can
access global memory, i.e., global memory is shared. Processors can only perform (arith-
metic/logical) operations on local data, and it is often necessary to communicate (move
data) between local and global memory. For example, communication is necessary when a
processor’s working set becomes sufficiently large relative to its (bounded) local memory size
— our main results concern this particular computation/communication relationship.

5

global

local

Processor

local

Processor

local

Processor

local

Processor

global/shared

capacity= ∞

Operations
(computation) Loads/Stores

(communication)

Processor

local/private

capacity< ∞

Figure 2.1: Model machine.

While values and operations will remain tangential to our analysis, it helps to have
concrete definitions of these terms: a value is an element of some given nonempty set D and
an operation is a function f : Dm → Dn for some m,n ∈ N≥1, an element of some given
nonempty set B of such functions. Our machine model is thus implicitly parameterized by
D and B.

Execution Model An execution comprises a finite ordered set of instructions and an
assignment of (a function from) instructions to processors. Each processor can be instructed
to load a value from global to local memory (Load), to store a value from local to global
memory (Store), and to perform an operation on values in local memory (Operation). (An
execution gives an a posteriori perspective, so there is no need to model branches, only
operations and data movement.)

The execution order, a partial order, defines a temporal precedence relation: if two in-
structions are comparable then they were not issued concurrently. In particular, the execu-
tion order enforces two model assumptions regarding parallel execution:

1. “Sequential processors”: each processor performs one instruction at a time in a given
total order. That is, each processor’s instructions compose a chain (totally ordered
subset) in the execution order — see Figure 2.2 (left).

2. “Concurrent reads, exclusive writes, and no data races”: each memory cell is associated
with a total order that contains all pairs of reads and writes in which at least one
element in the pair is a write. That is, each global cell’s associated Stores compose
a chain in the execution order which remains a chain when including any one of that
cell’s associated Loads — see Figure 2.2 (right).

Note that assumption 2 neglects local memory accesses because assumption 1 implies the
stronger constraint that local reads (in addition to local writes) are exclusive.

A schedule of an execution defines start and end times (real numbers) for each instruction
such that each instruction’s start time follows its predecessors’ end times. Thus, an execution

6

Op

Load

Store

Op

Op

Load

Store

EXECUTION …

write

EXECUTION

4 reads

write

0 reads

write

3 reads

Figure 2.2: Execution assumptions. Left: some processor’s instructions (“sequential pro-
cessors”); right: some cell’s reads/writes (“concurrent reads, exclusive writes, and no data
races”).

order enforces the two preceding model assumptions by constraining the set of permissible
schedules (notably, an execution itself has no notion of time).

Cost Model Suppose each instruction in an execution is assigned a nonnegative cost.
We then define the cost of a chain in the execution as the sum of its instructions’ costs;
as a special case, we define the cost of a processor as the cost of that processor’s chain.
We also define the critical-path cost as the maximum cost over all chains (not necessarily a
single processor’s) in the execution order. Lastly, we define the total cost as the sum of all
instructions’ costs.

In this work we consider simple 0/1-cost assignments to count different types of instruc-
tions: for each chain in the execution order, we define its computation cost to be its number
of Operations and its communication cost to be its number of Loads and Stores. The compu-
tation/communication tradeoffs mentioned above will be quantified in Section 2.3 in terms
of these two costs.

We detour to show how three physical costs — time, energy, and power — can also
modeled in this framework.

First, suppose that the instructions’ costs are their time-costs (durations): we can model
runtime with the critical-path time-cost. To see this connection, consider the greedy schedule,
constructed by recursively assigning each instruction a start time equal to the maximum of
its predecessors’ end times (zero if none exist) and an end time equal to its start time plus
its time-cost. This approach may introduce idle time — e.g., if processor p stores a value
and processor q subsequently loads it, then q may be kept idle while the Store completes —
but there always exists a critical path with no idle time. For any time-cost assignment of an
execution, according to its greedy schedule, the length of the interval between zero and the
maximum end time equals the critical-path time-cost.

Second, suppose that the instructions’ costs are their energy-costs (amounts of energy
consumed): we can model total energy consumption (or some processor p’s energy consump-

7

tion) by the total energy-cost (or p’s energy-cost).
Third, if we are given both time- and energy-cost assignments, then we can model average

power of the machine (or processor p) by dividing the total energy-cost (or p’s energy-cost)
by the critical-path time-cost.

The point of this digression was to demonstrate that our simple cost model, counting
instructions by type, can in some cases yield quantitative insights into physical costs: e.g., if
Operations have a fixed time-cost and Loads/Stores have a fixed time-cost, then (modeled)
runtime is bounded above/below by the sum/maximum of the critical-path computation
and communication costs (this lower bound assumes complete overlap of computation and
communication).

2.2 Analyzing Executions
We now introduce some notation and bookkeeping tools that will aid our subsequent analyses.
Our analytical approach is independent of the particular values arising during execution, as
well as the particular operations performed on them. Rather, our analysis depends on the
particular cells each instruction accesses (reads from and writes to), and the order in which
they do so.

Instruction Encoding As mentioned, for each instruction i in a given execution, we
need only observe the cells it accesses. Each instruction i reads values from its input cells
a1, . . . , am (not necessarily distinct) and writes values to its output cells b1, . . . , bn (necessarily
distinct). We define In(i) = {a1, . . . , am} and Out(i) = {b1, . . . , bn}. If i is a Load (resp.,
Store), then m = n = 1, and a1 is a global (resp., local) cell and b1 is a local (resp., global)
cell. If i is an Operation, then m,n ∈ N≥1 and all cells are local.

Data Dependence An execution implies the manner in which individual values propa-
gate: instructions depend on values created/copied by their predecessors in the execution
order. Since new values can only be introduced by Operations — Loads and Stores only
make copies of existing values — a value’s lifetime either begins with the Operation that
created it, or otherwise the value resided in memory since the start of execution.

We now formalize the notion of a lifetime as a chain in the execution order; keep in mind
that this definition will depend only on the cells associated with the instructions and not the
particular values they store: for example, the same lifetimes are constructed even if only one
distinct value arises in the execution. In this sense, data dependence is a data-independent
notion.

Consider any instruction i: we first define the lifetimes of i’s output values and second
the lifetimes of i’s input values.

• The lifetime of the value written to some (local or global) cell c ∈ Out(i) by some
instruction i is a chain in the execution order that ends with i. If i is an Operation,
then we return the singleton chain (i). Otherwise, i was a Load or Store, thus has a
unique b ∈ In(i); we recursively compute the lifetime (i1, . . . , in) of the value read from

8

b ∈ In(i) by i according to the procedure in the following bullet, and then return the
chain (i1, . . . , in, i).

• The lifetime of the value read from some (local or global) cell c ∈ In(i) by some instruc-
tion i is a chain in the execution order, possibly empty. There are two possibilities:
either some ancestor j of i wrote this value to c (i.e., c ∈ Out(j)), or no such ancestor
j of i exists. In the latter case, the value initially stored in c was never altered prior
to being read by i, which we indicate by returning the empty chain (). In the former
case, due to the “concurrent reads, exclusive writes, and no data races” assumption
defined in Section 2.1, we can identify the unique maximal (most recent) ancestor j
of i such that c ∈ Out(j). If j is an Operation, then we return the singleton chain
(j). Otherwise, j was a Load or Store, thus has a unique b ∈ In(j); we recursively
compute the lifetime (j1, . . . , jn) of the value read from b ∈ In(j) by j according to the
procedure in the preceding bullet, and then return the chain (j1, . . . , jn, j).

Since there are finitely many instructions in the execution, this (downwards) recursion ter-
minates with a finite chain, possibly empty, consisting entirely of Loads and Stores except
possibly for its initial element. In this manner, we can trace the lifetime of every value that
is read or written by an instruction.

When additionally given a schedule of the execution, we can extend this procedure to
define the lifetime of the value stored in any cell c at any particular point t in time, provided
that c is not being (over-) written at time t. That is, since our model implies that c stores a
consistent value between the (totally ordered) instructions that write to c, we can apply the
procedure to the most recent (before t) instruction i with c ∈ Out(i), or returning () if none
exists. This observation also emphasizes that lifetimes are independent of the schedule.

Algorithms Each execution on a given machine implements an algorithm, an abstrac-
tion that ignores mechanical details to focus on the dependences between values. In Section
2.3, we will derive lower bounds on communication cost in terms of algorithms: these lower
bounds apply to all executions which implement that algorithm. We will first define al-
gorithms without reference to executions and then demonstrate how executions implement
algorithms. Note that the following (non-standard) definition of ‘algorithm’ is more abstract
than the standard definition (a computable function, Turing machine, etc.). We use the
standard definition in Chapter 4 in the context of decision problems (see Theorems 4.3 and
4.4), but use the non-standard definition exclusively in all other chapters.

An algorithm is a finite set of (function) evaluations, symbolic expressions of the form

(y1, . . . , yn) = f(x1, . . . , xm)

for various m,n ∈ N≥1. The symbol f represents an operation with input arity m and output
arity n; we suppose that f is distinct in each function evaluation and let F be the set of
these symbols. The tuples (x1, . . . , xm) and (y1, . . . , yn) contain symbols called variables; we
let V be the set of these symbols and suppose that V ∩ F = ∅. Additionally, a variable
can only appear once as some output yj (“single assignment form”), but can appear more
than once as an input xi1 , xi2 , To formalize this constraint, we introduce f -subscripts to

9

disambiguate between evaluations, xf,1, . . . , xf,mf and yf,1, . . . , yf,nf , i.e., we define the two
functions

x : {(f, i) | f ∈ F ∧ i ∈ [mf]} → V

y : {(f, j) | f ∈ F ∧ j ∈ [nf]} → V.

With this notation, the ‘single assignment form’ assumption means that y is an injection
while x need not be. The elements of dom(x) and dom(y) are called input and output
arguments, resp., and the elements of im(x) and im(y) are called input and output argument
variables, resp. (by definition, V = im(x) ∪ im(y)). By injectivity of y (and not of x), each
v ∈ V is an output argument variable yf,j for at most one output argument (f, j), but can be
an input argument variable xf1,i1 , xf2,i2 , . . . for multiple input arguments (f1, i1), (f2, i2),

Besides V, F, x, y, an algorithm has designated input and output variables I, O ⊆ V ,
where I = im(x) \ im(y) and im(y) \ im(x) ⊆ O ⊆ im(y). Here we observe an asymmetry in
our model concerning inputs and outputs, i.e., that I is completely specified by x, y but O
is not necessarily; by convention, we assume O = im(y) \ im(x) when O is unspecified.

The functions x and y imply a partial order on the set of evaluations. The algorithm
DAG (V,E) has the variables as vertices and has edge set E = ⋃

f∈F{xf,1, . . . , xf,mf} ×
{yf,1, . . . , yf,nf}; the input variables I are the indegree-0 vertices and the output variables O
include the outdegree-0 vertices.

Implementations Next we show how to construct an algorithm from an execution that
implements it. Before doing so, we explain how this approach deviates from Hong-Kung’s
[21].

Hong-Kung start with algorithms modeled by DAGs (Hong-Kung’s DAGs are equivalent
to our algorithm DAGs in the special case nf = 1 for all f ∈ F , except for the definition of
input variables I) and then define an algorithm’s implementations as the different gameplays
of the ‘red/blue pebble game’ on that DAG. (In the red/blue pebble game, defined in [21,
Section 1], red and blue pebbles, which model local and global memory cells, resp., are
placed on the vertices of the DAG, modeling storing the associated values in the associated
cells.) Our approach starts with executions and then defines the mapping from executions
to the algorithms they implement: in Hong-Kung’s framework, this is like starting with a
gameplay and reconstructing the DAG by studying the gameplay’s moves. Our approach
was motivated by complications we encountered while extending Hong-Kung’s approach to
the parallel setting (Hong-Kung modeled sequential machines). We note that our approach
is more general than Hong-Kung’s by allowing certain ‘wasteful’ implementations, e.g., those
including Operations whose outputs are subsequently overwritten — however, we have not
seen any theoretical benefit from this generality.

Roughly speaking, we construct an algorithm from an execution by identifying Operations
and values in the execution with function evaluations and variables in the algorithm.

We consider each cell c (local and global) in turn. Compute the lifetime of the value
stored in c at the end of execution: that is, identify the last instruction i in the execution
order with c ∈ Out(i) and compute the lifetime of the value i wrote to c, or otherwise if
no instructions wrote to c, return the empty chain () as the lifetime. Now examine the
lifetime (i1, . . . , it) just computed and consider two cases; we encapsulate our processing of

10

these cases in a subprocedure which will be reentered recursively with additional parameters
denoted g and h.

• If the lifetime is the empty chain or if i1 is a Load or Store, then we do nothing unless
this is a recursive call. If this is a recursive call, we augment V with the variable c
(identified with the cell c) and define xg,h = c.

• Otherwise, i1 is an Operation. If i1 has been encountered already, let f ∈ F denote its
index; otherwise, augment F with a new symbol f ∈ F that indexes i1. Let mf and nf
denote the number of i1’s input and output cells. We can identify exactly one k ∈ [nf]
such that the lifetime began when i1 wrote to its k-th output cell bk ∈ Out(i1). If the
variable (f, k) does not yet exist in V , augment V with the variable (f, k) and define
yf,k = (f, k). Additionally, if this is a recursive call, define xg,h = (f, k); otherwise, if
it is not, designate (f, k) as an output variable, (f, k) ∈ O.
Now, for each i ∈ [mf], trace the lifetime (j1, . . . , jq) of the value that i1 read from its
i-th input cell ai ∈ In(i1) and recursively evaluate this subprocedure substituting ai
for c and (j1, . . . , jq) for (i1, . . . , it), and setting the parameters g = f and h = k. Each
of these recursive calls must terminate because the execution is finite.

We then proceed with the next cell c.
After all (potentially infinitely many) cells have been processed in this manner, we have

constructed the objects V, F, x, y, O, where V, F are finite; recall that the input variables are
completely defined by x, y: I = im(x) \ im(y). The constructed objects V, F, x, y, I, O may
fail to define an algorithm for a subtle reason: some function evaluations may not have had
variables defined for each of their output arguments. Suppose, for example, that function
evaluation f ∈ F has an undefined variable yf,k for its k-th output argument (f, k): this
means that the associated Operation’s k-th output cell bk was subsequently overwritten by
another instruction without any intervening reads. Due to the top-down recursive approach
taken, the fact that f ∈ F implies that at least one of f ’s output argument variables must be
defined — Operations whose outputs are all overwritten are never added to the algorithm —
so nf ≥ 2. Thus we can simply delete f ’s k-th output argument, reindex the output argument
(f, j + 1) 7→ (f, j) and output argument variables yf,j+1 7→ yf,j for each j ∈ {k, . . . , nf − 1},
and redefine nf 7→ nf − 1 ≥ 1 (this alters F, y but not V, x, I, O).

After performing the above postprocessing step, we obtain an algorithm which we say
is the one implemented by the given execution; every execution implements an algorithm,
while an algorithm has many implementations. This construction also emphasizes an earlier
remark that our model does not capture branching: if a conditional branch caused a different
control path to be taken, then the corresponding executions would be mapped to different
(branch-free) algorithms.

2.3 Communication Lower Bounds
We now explore a connection between an algorithm’s DAG and its implementations’ commu-
nication costs. (Communication costs were defined in Section 2.1 and algorithms/implementations
were defined in Section 2.2.) A similar connection was observed by Hong-Kung [21] — we

11

review related work in Section 2.4. In this section, we assume a fixed algorithm, specified
by the parameters V, F, x, y, I, O and inducing the algorithm DAG G = (V,E), as defined in
Section 2.2.

We first define two graph-theoretic properties called input- and output-path cutsize. For
any K ⊆ F , let Πin(K) denote the set of all paths in G from I to {xf,1, . . . , xf,mf | f ∈ K},
called input-paths, and let Πout(K) denote the set of all paths in G from {yf,1, . . . , yf,nf |
f ∈ K} to O, called output-paths. (An input or output path can be a single element of
I or O.) Let Qin(K) and Qout(K) denote the maximum cardinalities of subsets of Πin(K)
and Πout(K) comprising only disjoint paths: we call Qin(K) and Qout(K) the input- and
output-path cutsizes of K.

We observe two immediate properties of Πin,Πout, Qin, Qout. First, if K = ∅, then
Qin(K) = Qout(K) = 0; otherwise, if ∅ 6= K ⊆ F , 1 ≤ Qin(K) ≤ ∑

f∈Kmf and 1 ≤
Qout(K) ≤ ∑

f∈K nf . Second, for any E1, E2 ⊆ F , E1 ⊆ E2 implies that Πin(E1) ⊆ Πin(E2)
and Πout(E1) ⊆ Πout(E2), therefore Qin(E1) ≤ Qin(E2) and Qout(E1) ≤ Qout(E2).

Now consider any implementation of the algorithm fixed above. Let P denote the set of
processors; for each processor p ∈ P , let Mp ∈ N≥1 be processor p’s (finite) local memory
size. (These machine parameters are implied by the implementation.) For each p ∈ P , let
Fp ⊆ F denote the set of evaluations (in the algorithm) whose corresponding Operations
(in the execution) are assigned to processor p. Continuing notation, we have the following
connection between input-/output-path cutsize and communication.

Lemma 2.1. For each p ∈ P and each nonempty K ⊆ Fp, processor p performs at least
Qin(K)−Mp Loads and at least Qout(K)−Mp Stores between the first and last Operations
corresponding to K.

Proof. See Section 2.3.1.

The conclusion of Lemma 2.1 is a set of lower bounds on Wp, processor p’s communication
cost — the total number of Loads and Stores it performs — for each p ∈ P . Any of these per-
processor communication costs implies a lower bound on W , the critical-path communication
cost; in particular,

W ≥ max
p∈P

Wp.

When applying Lemma 2.1 to derive lower bounds on Wp for any p ∈ P , by monotonicity
of Qin, Qout, there is no loss of generality to consider only the case K = Fp, i.e.,

Wp ≥ max
K⊆Fp

(
max(0, Qin(K)−Mp) + max(0, Qout(K)−Mp)

)
= max(0, Qin(Fp)−Mp) + max(0, Qout(Fp)−Mp).

Additionally, we can tighten this lower bound given more information about the contents
of the processor p’s local memory: for example, following [21] and requiring that all in-
put/output values reside in global memory before/after execution, we can show that Wp ≥
Qin(Fp) + Qout(Fp) for all p ∈ P . Lower bounds of this form have been called memory-
independent (see, e.g., [4]). Our goal is to derive lower bounds on each Wp that are memory-
dependent, i.e., parameterized by Mp.

12

The following result, the main result of Section 2.3, applies Lemma 2.1 over a sequence of
subsets of Fp to obtain a lower bound on Wp. We also adopt a stronger hypothesis regarding
the input- and output-path cutsizes of these subsets.

Theorem 2.1. For any p ∈ P , if there exists K ⊆ Fp such that N = |K| > 0 and a
nondecreasing q : [N] → R such that q(|J |) ≤ Qin(J) + Qout(J) for all nonempty J ⊆ K,
then processor p performs

Wp ≥ max
l∈N≥1

l ·




N

max
{
i ∈ [N]

∣∣∣∣ dq(i)e ≤ 2Mp + l
}
− 1

 (2.1)

Loads and Stores between the first and last Operations corresponding to K.

Proof. See Section 2.3.1.

In particular, the two maxima in (2.1) are well-defined. We show after proving Theorem
2.1 how its proof can be adjusted to exploit individual lower bounds on Qin, Qout to derive
similar conclusions for Loads and Stores independently (as in Lemma 2.1).

In this work, we will use the following specialization and simplification of Theorem 2.1.

Corollary 2.1. If the hypotheses of Theorem 2.1 are satisfied by q(i) = i1/σ for some σ ∈
[1,∞), then the conclusion of Theorem 2.1 can be simplified: processor p performs at least

Wp ≥ max
l∈N≥1

l

⌈ N

b(2Mp + l)σc

⌉
− 1

 ≥


1
2·3σ

N
Mσ−1
p

if N ≥ (4Mp)σ

0 otherwise
(2.2)

Loads and Stores between the first and last Operations corresponding to K.

Proof. See Section 2.3.1.

Corollary 2.1 addresses implementations of algorithms where, if processor p performs suf-
ficiently many Operations N with respect to their local memory size Mp, then they must
communicate as indicated by (2.2). Moreover, in this regime, there exists a lower-bound
tradeoff between communication and memory, which we express in asymptotic notation,

Wp = Ω
 N

Mσ−1
p

 ⇒ Wp ·Mσ−1
p = Ω(N).

In Chapter 3, we will define and give examples of a class of algorithms to which Corollary
2.1 applies (the proof of this follows later, in Section 5.1). Then, in Chapter 5, we determine
the parameter σ for the example algorithms in Chapter 3 as well as study the attainability
of the communication lower bounds.

13

2.3.1 Proofs
Before proving Lemma 2.1, we give an informal alternative argument which ultimately
fails for reasons related to an obstacle called ‘R2/D2 arguments’ by Ballard-Demmel-Holtz-
Schwartz [5], also called ‘paired Allocate/Frees statements of array variables’ in our earlier
work [15]. A contribution of the present work is a graph-theoretic reinterpretation of tech-
niques both prior works employed to overcome this obstacle.

We continue the notation introduced earlier in Section 2.3: in particular, we consider
some evaluations K assigned to some processor p. Let XK = {xf,1, . . . , xf,mf | f ∈ K} and
YK = {yf,1, . . . , yf,nf | f ∈ K} denote the associated input and output argument variables.
Before the first and after the last element of its subchain K of assigned instructions, processor
p can have at most Mp values in local memory. Since an implementation of an algorithm,
by definition, treats variables as if their values were distinct, |XK | −Mp and |YK | −Mp are
perhaps intuitive candidates for lower bounds on the numbers of Loads and Stores processor
p must perform. This intuition fails: some values associated with both XK and YK could
be temporary, meaning that processor p computes and discards (overwrites) them without
incurring Loads and Stores, thus beating the ‘lower bounds’. In addition to being quite
common, this scenario is also desirable from the standpoint of minimizing communication
(the practical motivation of our work).

To derive a lower bound on Loads and Stores in terms of numbers of input and output
argument variables, we need to account for temporaries. Our accounting technique, codified
in the definitions of Qin, Qout, is closely related to Ballard-Demmel-Holtz-Schwartz’s usage of
‘accumulators’ [5, Section 2] and to ‘surrogates’, a generalization we introduced later in [15,
Section 4.2]. These ideas, like many in the present work, have their roots in Hong-Kung’s
seminal paper [21], which we discuss in Section 2.4. Lastly, we point out a complementary
accounting technique, a reduction approach called imposing reads and writes [5, Section
3.4] (see also [5, Corollary 5.1], [2, Section 4.2], and [15, Section 4.4]); developing a graph-
theoretic analogue of this tool for use in the present model remains future work.

Proof of Lemma 2.1. Recall the notation defined in the paragraphs preceding the statement
of Lemma 2.1. We consider any processor p ∈ P with Fp 6= ∅ and any nonempty K ⊆ Fp.
We let s and t denote the first and last instructions (both Operations) corresponding to K.
Let XK = {xf,1, . . . , xf,mf | f ∈ K} and YK = {yf,1, . . . , yf,nf | f ∈ K}.

We first show that any path in the algorithm DAG from some u ∈ I to some w ∈ XK

contains at least one vertex v whose associated value either resided in processor p’s local
memory immediately before s or was loaded by processor p between s and t. By definition,
w = xf,i for some some evaluation (and Operation) f ∈ Fp and i ∈ [mf]. There are three
possibilities for the value that f read from its input cell ai ∈ In(f), not necessarily mutually
exclusive: it resided in processor p’s local memory immediately before s, it was Loaded by
processor p after s and before f , or it was written by processor p during some Operation
g ∈ Fp such that s ≤ g < f . In the first two cases, we conclude with v = w. Otherwise,
w’s predecessor along the given path equals xg,k for some k ∈ [mg], and we repeat the same
reasoning, replacing xf,i by xg,k. We have made progress along the given path, and since
the algorithm is finite, this recursion must terminate, and it does so having determined the
desired vertex v.

14

We second show that any path in the algorithm DAG from some u ∈ YK to some w ∈ O
contains at least one vertex v whose associated value either resided in processor p’s local
memory immediately after t or was stored by processor p between s and t. By definition,
u = yf,j for some evaluation (and Operation) f ∈ Fp and j ∈ [1, . . . , nf]. There are three
possibilities for the value that f wrote to its output cell bj ∈ Out(f), not necessarily mutually
exclusive: it resided in processor p’s local memory immediately after t, it was Stored by
processor p after f and before t, or it was read by processor p during some Operation g ∈ Fp
such that f < g ≤ t. (It is impossible that this value was simply overwritten without
intervening reads due to the definition of an implementation.) In the first two cases, we
conclude with v = u. Otherwise, u’s successor along the given path equals yg,k for some
k ∈ [ng], and we repeat the same reasoning, replacing yf,j by yg,k. We have made progress
along the given path, and since the algorithm is finite, this recursion must terminate, and it
does so having determined the desired vertex v.

Consider any Π′in ⊆ Πin(K): each element of Π′in contributes a variable w whose value
either resides in processor p’s local memory immediately before s or is Loaded by processor p
between s and t, and at mostMp variables can satisfy the former case. If Π′in is a set of disjoint
paths, then these variables are distinct, so the number of processor p’s Loads between s and
t must be at least max(0, |Π′in|−Mp}. Similarly, consider any Π′out ⊆ Πout(K): each element
of Π′out contributes a variable w whose value either resides in processor p’s local memory
immediately after t or is Stored by processor p between s and t, and at most Mp variables
can satisfy the former case. If Π′out is a set of disjoint paths, then these variables are distinct,
so the number of processor p’s Stores between s and t must be at least max(0, |Π′out| −Mp}.
The desired conclusion follows from the fact that there exists a Π′in ⊆ Πin(K) comprising
Qin(K) disjoint paths and a Π′out ⊆ Πout(K) comprising Qout(K) disjoint paths.

Now it is time to prove our main lower bound result, Theorem 2.1. We use a simple
counting argument which we call segmentation, in which we apply Lemma 2.1 to subchains
of the chain K. A similar argument was introduced by Hong-Kung in their the proof of [21,
Lemma 3.1] and can be seen in many works building on Hong-Kung’s. A distinction between
our segmentation argument and many prior ones is that we allow the segment size to vary,
rather than fixing it equal to the local memory size (however, we later make a similar choice
to obtain the simpler result in Corollary 2.1). This generalized segmentation argument can
improve the constant factors in the lower bound: for example, recent work of Langou-Lowery
[25] exploited this flexibility to improve the constants in the communication lower bounds
for matrix multiplication derived previously in [22, 5].

Proof of Theorem 2.1. Consider the hypothesized p ∈ P and K ⊆ Fp. Let’s introduce some
additional notation. For any subchain J of processor p’s chain of instructions, let WJ denote
the number of (processor p’s) Loads and Stores in J , and let J denote all of processor p’s
assigned instructions between the first and last instruction of J , inclusive; with this notation,
let L = K. We will prove a stronger result, that the right-hand side of (2.1) is a lower bound
on WL, which in turn is the desired lower bound on Wp, processor p’s communication cost.

For each l ∈ N≥1, there exists a unique kl ∈ N≥1 such that L is the concatenation
L = L1 · · ·Lkl of kl subchains Lj such that

l = WL1 = WL2 = · · · = WLkl−1 ≥ WLkl
> 0.

15

Since WL = ∑kl
j=1WLj , we have that l(kl − 1) ≤ WL ≤ lkl, attaining equality in the upper

bound when l divides WL. Also note that l(kl − 1) = 0 if and only if kl = 1 if and only if
l ≥ WL; since the execution is finite, WL < ∞, and thus l(kl − 1) is positive for at most
finitely many l ∈ N≥1. Therefore, considering all l ∈ N≥1,

WL ≥ max
l∈N≥1

l(kl − 1). (2.3)

We will now derive a lower bound on kl. Fix any l ∈ N≥1 and consider the concatenation
L = L1 · · ·Lkl as defined above; this defines the concatenation K = K1 · · ·Kkl , where each
Kj = K ∩ Lj. Since 0 < N = |K| = ∑kl

j=1 |Kj| ≤ kl maxklj=1 |Kj|, and since kl ∈ Z,

kl ≥

 N

maxklj=1 |Kj|

 . (2.4)

We now weaken this inequality by bounding maxklj=1 |Kj| in terms of the function q.
Consider any j ∈ [kl] such that |Kj| > 0 (there is at least one since N > 0): applying

Lemma 2.1, we have that

WKj
≥ max(0, Qin(Kj)−Mp) + max(0, Qout(Kj)−Mp) ≥ Qin(Kj) +Qout(Kj)− 2Mp;

since Kj ⊆ Lj, WKj
≤ WLj ≤ l, and it follows that Qin(Kj) + Qout(Kj) ≤ 2Mp + l. By

hypothesis, for any nonempty J ⊆ K, dq(|J |)e ≤ Qin(J) + Qout(J) (the ceiling function is
implied in the hypothesis); therefore, setting J = Kj, dq(|Kj|)e ≤ 2Mp + l, and

klmax
j=1
|Kj| ≤ max

{
i ∈ [N]}

∣∣∣ dq(i)e ≤ 2Mp + l
}
, (2.5)

where the maximum on the right-hand side is well defined since |Kj| ≤ N and since q is
nondecreasing.

We obtain the lower bound (2.1) by substituting (2.5) into (2.4) into (2.3) and noting
that Wp ≥ WL.

Now consider for the moment the two weaker hypotheses: q(|J |) ≤ Qin(J) for all ∅ 6=
J ⊆ K, or q(|J |) ≤ Qout(J) for all ∅ 6= J ⊆ K. In either case, we can repeat the preceding
argument (with a few adjustments), redefining WJ to count only Loads or Stores, and obtain
the same lower bound as (2.1) except with Mp + l appearing in place of 2Mp + l. These
individual bounds on Loads and Stores may be useful for the analysis of machines with
asymmetric Load/Store costs: for example, Stores are more expensive on some memory
devices, and some algorithms can account for this [13]. However, we will not distinguish
Load/Store costs further in the present work.

Proof of Corollary 2.1. Continue the notation introduced at the beginning of the proof of
Theorem 2.1. We first simplify the maximum in the denominator of the fractional term in
the right-hand side of (2.1). For any l ∈ N≥1 and any i ∈ [N],

di1/σe ≤ 2Mp + l ⇔ i1/σ ≤ 2Mp + l ⇔ i ≤ (2Mp + l)σ ⇔ i ≤ b(2Mp + l)σc,

16

where the three forward implications are immediate from properties of the floor function, of
exponentiation, and the fact that i ∈ Z; to see that the fourth inequality implies the first,
substitute i = b(2Mp+l)σc into the first inequality: db(2Mp+l)σc1/σe ≤ d2Mp+le = 2Mp+l.
Therefore,

max
{
i ∈ [N]}

∣∣∣ dq(i)e ≤ 2Mp + l
}

= min(|K|, b(2Mp + l)σc),

and substituting into the right-hand side of (2.1),

max
l∈N≥1

l




N

max
{
i ∈ [N]

∣∣∣∣ dq(i)e ≤ 2Mp + l
}
− 1


= max

l∈N≥1
l

⌈ N

min(|K|, b(2Mp + l)σc)

⌉
− 1

 = max
l∈N≥1

l

⌈ N

b(2Mp + l)σc

⌉
− 1

 ;

this is the first (tighter) lower bound in (2.2).
To simplify further, we will weaken this lower bound by fixing l = Mp ≥ 1:

max
l∈N≥1

l

⌈ N

b(2Mp + l)σc

⌉
− 1

 ≥Mp

⌈ N

b(3Mp)σc

⌉
− 1

 ;

supposing that N > b(3Mp)σc,

Mp

⌈ N

b(3Mp)σc

⌉
− 1

 ≥Mp ·
N

2b(3Mp)σc
≥ 1

2 · 3σ ·
N

Mσ−1
p

.

Note that the second (looser) lower bound in (2.2) assumes the simpler, stronger condition
N ≥ (4Mp)σ > b(3Mp)σc.

It is possible to strengthen the second conclusion of Corollary 2.1 by assuming stronger hy-
potheses regarding N and Mp, or by taking more care approximating the maximum argument
l, rather than simply setting l = Mp.

2.4 Related Work
As mentioned previously, our work was influenced in several ways by Hong-Kung’s paper
[21]. (Note that the following observations about our model and Hong-Kung’s are meant
to be informal.) Hong-Kung’s machine model is like a special case of ours with only one
processor: roughly speaking, Hong-Kung’s ‘red/blue pebble game’ model can be extended
to ours by introducing pebbles in different shades of red, modeling different processors’ local
memories. However, to model a parallel computation, we must address contention for shared
resources, like data races when accessing shared memory, and these issues did not arise in
Hong-Kung’s (sequential) model. Even in the sequential (one processor) case, there are a
few technical distinctions between the models that complicate comparisons.

17

For example, in our model, Operations’ output values can overwrite input values (some-
times called ‘sliding pebbles’), and we allow values to reside in local memory before and after
execution. Both of these extensions to Hong-Kung’s model were considered by Savage [31],
who also developed a stronger lower bound argument that synthesized the theories of space
and communication costs.

Another substantial distinction between our model and Hong-Kung’s is that ours dis-
allows recomputation — each evaluation is associated with exactly one Operation in any
implementation. Generally speaking, implementations with recomputation can potentially
reduce communication cost, and it is future work to address recomputation within our model.
We note that several practical applications of this work, like matrix multiplication, have the
special property that each evaluation has a single successor in the algorithm DAG, and since
there is no reason to recompute a value more times than it is read by its successors (in particu-
lar, there is no reason to recompute a vertex with outdegree-0), recomputation is unhelpful for
reducing communication in these algorithms. Disallowing recomputation has become a pop-
ular assumption in the related literature; Elango-Rastello-Pouchet-Ramanujam-Sadayappan
[18] recently showed that Hong-Kung’s lower bound framework can be tightened to exploit
this assumption.

Another improvement to Hong-Kung’s approach, proposed in earlier conference talks by
us [16] and by Langou-Lowery [25], is changing the segment size, the parameter l in Theorem
2.1, which we already noted can improve the lower bounds versus the typical choice of setting
l to equal the local memory size. In the case of matrix multiplication, Langou-Lowery showed
that this can sharpen the lower bound by a factor of 2.

18

Chapter 3

Modeling Loop Nests

In this chapter we use algorithms (defined in Section 2.2) to model loop nests that access
arrays by linear functions of the loop iteration vector. A section-by-section outline is as
follows.

• In Section 3.1, we give motivating examples of algorithms to develop intuition for how
loop nests can be modeled by algorithms.

• In Section 3.2, we define Hölder-Brascamp-Lieb (HBL) interpretations of algorithms,
which model the linear mapping between operations and variables in many loop nests;
this is the main contribution of this chapter.

• Then in Section 3.3, we review related work, in particular the papers of Irony-Toledo-
Tiskin [22] and of Ballard-Demmel-Holtz-Schwartz [5], which studied a special class of
algorithms with HBL interpretations (matrix multiplication and related algorithms).

3.1 Motivating Examples
A practical motivation of this work is transforming computer programs, especially nested-
loop programs. For example, multiplying N -by-N matrices, C = A ·B, can be programmed
with triply nested loops (assuming C is zero-initialized),

for i = 1 : N, for j = 1 : N, for k = 1 : N,
C(i, j) = C(i, j) + A(i, k) ∗B(k, j).

This program executes the inner-loop statement “C(i, j) = C(i, j)+A(i, k)∗B(k, j)” exactly
N3 times, with different indices i, j, k — however, there is freedom to execute these state-
ments in a different order besides the prescribed (lexicographical) order on (i, j, k) ∈ [N]3 —
and we would like to reorder the N3 statements to expose data reuse. Our communication
lower bounds apply to all reorderings, so if our implementation attains the lower bound, then
there is no hope in trying other reorderings to further reduce communication — instead, we
must seek a new algorithm.

To be clear, the preceding pseudocode programming language is meant to be informal,
and we will not define a conversion between pseudocode and algorithms (as defined in Sec-
tion 2.2); moreover, terms like “program”, “loop”, “statement”, etc., are undefined in our

19

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

{
bi = fi(ai)

∣∣∣∣ i ∈ [N]
}

Figure 3.1: Example 1 (see Section 3.1.1). The DAG depicts the case N = 3.

𝑎1,1 𝑎1,2 𝑎1,3

𝑏1,1 𝑏1,2

𝑎2,1 𝑎2,2 𝑎2,3

𝑏2,1 𝑏2,2

𝑎3,1 𝑎3,2 𝑎3,3

𝑏3,1 𝑏3,2

{
(bi,1, . . . , bi,n) = fi(ai,1, . . . , ai,m)

∣∣∣∣ i ∈ [N]
}

Figure 3.2: Example 2 (see Section 3.1.2). The DAG depicts the case N = 3, m = 3, n = 2.

model. Ultimately, to apply this work to program transformations, we will need to formalize
the conversion between some given program representation and an algorithm in our model.
Elango-Rastello-Pouchet-Ramanujam-Sadayappan recently demonstrated such a conversion
[18], paving the way for future applications of communication lower bounds to program
transformations. We discuss program transformations abstractly (in terms of algorithms) in
Chapter 5.

We begin with some motivating examples of algorithms with particular input- and output-
path properties that we will characterize in a more general fashion in Section 3.2. In this
examples, we will denote variables by subscripted expressions ai, bi,j, etc.; variables denoted
in this manner are assumed to be distinct unless specified otherwise. We will also assume a
given parameter N ∈ N≥1.

3.1.1 Example 1
Our first example is N independent unary operations — see Figure 3.1. The input- and
output-paths in this algorithm’s DAG are the singletons {ai} and {bi} for each i ∈ [N],
which are always disjoint. Thus, for any K ⊆ F , its input-path cutsize Qin(K) and output-
path cutsize Qout(K) (defined in Section 2.3) both equal |K|.

3.1.2 Example 2
For the second example, a variant on the first, we suppose each operation has input arity
m ∈ N≥1 and output arity n ∈ N≥1 — see Figure 3.2. The input- and output-paths in

20

𝑎0 𝑎1 𝑎2 𝑎3

{
ai = fi(ai−1)

∣∣∣∣ i ∈ [N]
}

Figure 3.3: Example 3 (see Section 3.1.3). The DAG depicts the case N = 3.

𝑎0,1

𝑎1,1

𝑎2,1

𝑎3,1

𝑎0,2

𝑎1,2

𝑎2,2

𝑎3,2

𝑎0,3

𝑎1,3

𝑎2,3

𝑎3,3

{
ai,j = fi,j(ai−1,j)

∣∣∣∣ (i, j) ∈ [N]2
}

Figure 3.4: Example 4 (see Section 3.1.4). The DAG depicts the case N = 3.

this algorithm’s DAG are still (disjoint) singletons, except that there are now more: for any
K ⊆ F , Qin(K) = m|K| and Qout(K) = n|K|.

3.1.3 Example 3
The third example is N completely dependent unary operations, whose induced (algorithm)
DAG is a directed path — see Figure 3.3. Since there is only one input a0 and one output aN ,
there can be at most one disjoint input-path and output-path. Therefore, for any nonempty
K ⊆ F , Qin(K) = Qout(K) = 1.

3.1.4 Example 4
The fourth example synthesizes the first and third examples, with N independent sets of N
completely dependent unary operations — see Figure 3.4. In this case, each of the N paths
cut (intersected) by K contributes exactly one to both the input- and output-path cutsize.
That is, for any nonempty K ⊆ F , Qin(K) = Qout(K) = |{j | fi,j ∈ K}|. For example, this
number is one when K = {f1,1, f2,1, f3,1}, but three when K = {f1,1, f1,2, f1,3}.

3.1.5 Example 5
The fifth example is a essentially a product of the third example with itself, defining a
“diamond” DAG structure — see Figure 3.5. There is only one output variable: O was
unspecified, so by convention O = im(y) \ im(x) = {aN,N}. Thus there can be at most one
disjoint output-path. On the other hand, the 2N input variables I = {a0,k, ak,0 | k ∈ [N]}

21

𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3

𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3

𝑎0,1 𝑎0,2 𝑎0,3

{
ai,j = fi,j(ai−1,j, ai,j−1)

∣∣∣∣ (i, j) ∈ [N]2
}

Figure 3.5: Example 5 (see Section 3.1.5). The DAG depicts the case N = 3.

𝑎3,1 𝑎3,2 𝑎3,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎1,1 𝑎1,2 𝑎1,3

Variant 1

𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3

𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3

𝑎0,1 𝑎0,2 𝑎0,3

Variant 2

𝑎3,1 𝑎3,2 𝑎3,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎1,1 𝑎1,2 𝑎1,3

Variant 3
Figure 3.6: Example 5 variants, DAGs for the case N = 3 (see Section 3.1.5).

are a great source of disjoint input-paths. Indeed, for any nonempty K ⊆ F ,

Qin(K) = |{i | fi,j ∈ K}|+ |{j | fi,j ∈ K}|, Qout(K) = 1.

The diamond DAG is a good example to demonstrate the dependence of our approach
on input- and and output-paths. Consider the three variants of this example in Figure 3.6.
Variant 1 flips the original (variant 0), with one input variable I = {a1,1} but 2N − 1 output
variables O = {aN,k, ak,N | k ∈ [N]}: for any nonempty K ⊆ F ,

Qin(K) = 1, Qout(K) = |{i | fi,j ∈ K}|+ |{j | fi,j ∈ K}| − |{k | fk,k ∈ K}|.

Variant 2 combines variants 0 and 1, with I = {a0,k, ak,0 | k ∈ [N]} and O = {aN,k, ak,N |
k ∈ [N]}, so

Qin(K) = |{i | fi,j ∈ K}|+ |{j | fi,j ∈ K}|,
Qout(K) = |{i | fi,j ∈ K}|+ |{j | fi,j ∈ K}| − |{k | fk,k ∈ K}|.

Variant 3 has I = {a1,1} and O = {aN,N}, so

Qin(K) = Qout(K) = 1.

22

We will see in Chapter 5 that our communication lower bounds are asymptotically at-
tainable for variants 0, 1, and 2, but not for variant 3. For variant 3, our communication
lower bound is zero, but it is possible to show that a nonzero lower bound exists when N is
sufficiently large (see, e.g., [11]). Our approach inherits this weakness from Hong-Kung’s ap-
proach: their lower bound [21, Theorem 3.1] is also trivial for this example (note that variant
0 is treated in [21, Section 7]). Savage [31] strengthened this aspect of Hong-Kung’s approach
by showing that Hong-Kung’s hypothesis regarding dominator set size (analogous to Qin)
can be relaxed. While Savage’s approach generally yields tighter lower bounds than Hong-
Kung’s for examples like variant 3 with few inputs and outputs, due to technical distinctions
between Hong-Kung’s and Savage’s models — Savage allows an instruction’s output value to
overwrite one of its input values (“sliding pebbles”; see also [19]) and allows inputs/outputs
to reside in local memory before/after execution — Savage’s lower bounds can also be smaller
than Hong-Kung’s. Hong-Kung’s and Savage’s approaches were compared and extended by
Bilardi-Pietracaprina-D’Alberto [11]; it is future work to incorporate these refinements in
our approach.

These diamond DAGs generalize from two dimensions to r ∈ N≥2 dimensions: e.g., the
original (variant 0) becomes{

ai1,...,ir = fi1,...,ir(ai1,...,ij−1,ij−1,ij+1,...,ir | j ∈ [r])
∣∣∣∣ (i1, . . . , ir) ∈ [N]r

}
.

There is still only one output variable, O = {aN,...,N}, but there are now rN r−1 input variables
I = {ai1,...,ir | (∃k ∈ [r]) ik = 0}. For any nonempty K ⊆ F , Qout(K) = 1 but

Qin(K) =
r∑
j=1

∣∣∣∣∣
{

(i1, . . . , ij−1, ij+1, . . . , ir)
∣∣∣∣ fi1,...,ir ∈ K}

∣∣∣∣∣ .
Each summand (indexed by j) is the cardinality of a subset of Zr−1 obtained from a subset
of Zr by ‘forgetting’ the latter’s elements’ j-th components. These r projections, functions
from Zr to Zr−1, are special examples of group homomorphisms from the Abelian group Zr
to the Abelian group Zr−1. We will revisit this example in Section 5.5.5.

3.1.6 Example 6
The next example, called a reduction, means any algorithm whose DAG has a single output
— see Figure 3.7. For any nonempty K ⊆ F , 1 ≤ Qin(K) ≤ N and Qout(K) = 1. In
Figure 3.7, we also show two special reductions which attain the lower and upper bounds,
respectively, on Qin(K), for any nonempty K ⊆ F .

Similarly to reductions we have expansions — see Figure 3.8 For any nonempty K ⊆ F ,
Qin(K) = 1 and 1 ≤ Qout(K) ≤ N . In Figure 3.8, we show two special expansions which
attain the lower and upper bounds, respectively, on Qout(K), for any nonempty K ⊆ F .

3.2 HBL Interpretations
In this section we define a group-theoretic interpretation for an algorithm called an HBL
(Hölder-Brascamp-Lieb) interpretation, which will describe a broad range of algorithms, and

23

𝑠1 𝑠2 𝑠3

𝑡

𝑠1

𝑠2

𝑠3

𝑡

V ⊇ {si, t | i ∈ [N]}
I = {si | i ∈ [N]}, O = {t}

𝑠1

𝑡

𝑠1 𝑠2 𝑠3

𝑡

Figure 3.7: Example 6, reduction (see Section 3.1.6). The top row gives two cartoon char-
acterizations of the corresponding class of DAGs (when N = 3) which are meant to be
equivalent: the ‘pencil’ version is convenient in later examples (see Sections 5.5.2 and 5.5.3)
with multiple reductions intersecting at different angles. The bottom row gives two concrete
special cases (when N = 3) mentioned in Section 3.1.6.

let us systematically derive communication lower bounds and (sometimes) optimal imple-
mentations using techniques in Chapters 4 and 5.

Computational data is commonly structured as arrays (scalars, vectors, matrices, etc.).
Given some r ∈ N and Z ⊆ Zr, an array (of variables) is an injective function A : Z → V .
This is an informal analogy for array data structures commonly found in programming lan-
guages, as well as more general data structures with indirection like “B(pointer(i))”, provided
that pointer(·) is injective; due to our abstract model, our arrays have no assumptions on
rectangularity, type homogeneity, data-layout regularity, etc. When we consider multiple
arrays, e.g., A1, A2, A3, their elements may alias, e.g., A1(i) = A2(i, j) = A3(i, j, k) may all
denote the same variable. We can disallow this possibility by assuming no aliasing, meaning
that the images of all arrays are disjoint. However, as we will explain in Chapter 5, our
communication lower bound analysis assumes maximal aliasing, meaning that the constants
in our lower bounds could be sharpened in the absence of aliasing.

Consider any algorithm with parameters V, F, x, y, I, O and its DAG (V,E). Consider
any

• K, nonempty subset of F ,

• m, r ∈ {1, 2, . . .}, r1, . . . , rm ∈ {0, 1, . . .},

• Z, injection from K to Zr,

24

𝑡1 𝑡2 𝑡3

𝑠 𝑠

𝑡3

𝑡2

𝑡1

V ⊇ {si, t | i ∈ [N]}
I = {s}, O = {ti | i ∈ [N]}

𝑠

𝑡1

𝑡1 𝑡2 𝑡3

𝑠

Figure 3.8: Example 6, expansion (Section 3.1.6). The top row gives two cartoon characteri-
zations of the corresponding class of DAGs (when N = 3) which are meant to be equivalent:
the ‘pencil’ version is convenient in later examples (see Sections 5.5.2 and 5.5.3) with mul-
tiple expansions intersecting at different angles. The bottom row gives two concrete special
cases (when N = 3) mentioned in Section 3.1.6.

• φ1, . . . , φm, group homomorphisms from Zr to Zr1 , . . . ,Zrm , and

• A1, . . . , Am, injections from φ1(im(Z)), . . . , φm(im(Z)) to I ∪O.

For each ∅ 6= J ⊆ K, letting A(J) = ⋃m
j=1Aj(φj(Z(J))), suppose there are disjoint paths in

(V,E)

• from each u ∈ A(J) ∩ I to distinct v ∈ ⋃f∈J{xf,1, . . . , xf,mf} and

• to each v ∈ A(J) ∩O from distinct u ∈ ⋃f∈J{yf,1, . . . , yf,nf}.
We say that the given algorithm admits an HBL interpretation (with respect to these pa-
rameters).

For example, we see that the diamond DAG in Section 3.1.5, in particular, the variant
in Figure 3.5, admits an HBL interpretation with

K = {fi,j | (i, j) ∈ [N]2}, m = r = 2, r1 = r2 = 1 , Z(fi,j) = (i, j),
φ1(i, j) = i, φ2(i, j) = j, A1(i) = ai,0, A2(j) = a0,j.

For any ∅ 6= J ⊆ K, we can identify the desired set of disjoint paths by tracing each of the
2N inputs (positioned along the one of the coordinate axes in the plane) in a straight line
until intersecting J (or ignore those inputs if J isn’t intersected).

25

Having identified a set of disjoint input- and output-paths for each ∅ 6= J ⊆ K, with each
element of A(J) included in a distinct path, we conclude that Qin(J) + Qout(J) ≥ |A(J)|,
the key property for proving the following result.

Theorem 3.1. If ⋂mj=1 ker(φj) = {0}, then there exists σ ∈ [1,m] such that

|J |1/σ ≤ Qin(J) +Qout(J) for all ∅ 6= J ⊆ K. (3.1)

Proof. See Section 5.1.

Theorem 3.1 yields communication lower bounds via Corollary 2.1. That is, given an al-
gorithm and HBL interpretation (continuing notation from earlier in Section 3.2), consider
any implementation of that algorithm where some processor p, with Mp local memory cells,
is assigned the N = |K| Operations corresponding to the evaluations K ⊆ F . By Corollary
2.1, if N ≥ (4Mp)σ, then processor p performs at least

1
2 · 3σ ·

N

Mσ−1
p

= Ω
 N

Mσ−1
p


Loads and Stores between their first and last Operation corresponding to K.

As we will see in Section 5.1, σ can be computed by solving the linear program,

σ = min


m∑
j=1

sj

∣∣∣∣∣∣ s ∈ [0,∞)m ∧ (∀H ≤ Zr) rank(H) ≤
m∑
j=1

sj rank(φj(H))

 . (3.2)

3.3 Related Work
The class of algorithms studied in this chapter builds on earlier works by Irony-Toledo-Tiskin
[22] and Ballard-Demmel-Holtz-Schwartz [5], which studied a special class of HBL interpre-
tations, based on the Loomis-Whitney inequality — a special case of Hölder-Brascamp-Lieb-
type inequalities, which we define next in Chapter 4 — in order to target matrix multipli-
cation and related algorithms. While there are many similarities in the class of algorithms
we consider, our models of computation have some key distinctions. In particular, our
algorithm model is in some ways more constrained, avoiding the complication of ‘R2/D2
operands’ (mentioned in Section 2.3) at the cost of having to develop the input- and output-
path-based analysis. We also address the “no interleaving” constraint in our earlier work
[15] by allowing operations with multiple outputs (we are not aware of an earlier model that
did this), thus enforcing atomicity of inner-loop statements.

26

Chapter 4

Hölder-Brascamp-Lieb-type
Inequalities

Our communication lower bound analysis in Section 2.3 formalized the intuitive argument
that a bounded number of operands implies a bounded number of operations can be per-
formed. The key property of our target class of computations which enables this intuitive
argument is that their operations and operands can be identified by tuples of integers, and
the mapping from an operation to its operands can be modeled by linear functions between
integer tuples. We exploit this algebraic relationship via the following result.

Theorem 4.1 ([15, Theorem 3.2]). Suppose we are given a positive integer m, nonnegative
integers r, r1, . . . , rm, and Abelian group homomorphisms φ1, . . . , φm from Zr to Zr1 , . . . ,Zrm,
respectively. Let s1, . . . , sm be nonnegative real numbers.

If rank(H) ≤
∑
j

sj rank(φj(H)) for all subgroups H of Zr, (4.1)

then |E| ≤
∏
j

|φj(E)|sj for all nonempty finite subsets E of Zr. (4.2)

Proof. See Section 4.6.

Each x ∈ Zr identifies an operation whose operands are identified by φ1(x), . . . , φm(x); thus,
Theorem 4.1 gives an upper bound on the number |E| of operations that can be performed
when certain numbers |φ1(E)|, . . . , |φm(E)| of operands are available.

We will actually prove a more general version of Theorem 4.1, stated as Theorem 4.2
in Section 4.2. While Theorem 4.1 suffices to analyze our target class of computations,
we believe there are applications for the more general result in Theorem 4.2, in particular
regarding groups with torsion.

This chapter is largely based on material that appeared in our earlier report [15, Sections
3 and 5]. A section-by-section outline of this chapter is as follows.

• In Section 4.1, we define Hölder-Brascamp-Lieb-type (HBL-type) inequalities, which
generalize the inequalities (4.2) in the conclusion of Theorem 4.1 that we use to bound
the number of doable operations given a bounded number of operands.

27

• In Section 4.2, we state our main results: Theorem 4.2 is a generalization of Theorem
4.1, and Theorems 4.3 and 4.4 concern the decidability of the hypotheses (4.1) of
Theorem 4.1.

• In Section 4.3, we review related work on HBL-type inequalities, in particular, the
paper by Bennett-Carbery-Christ-Tao [9] that inspired this line of inquiry, as well as
our previous report [15].

• In Section 4.4, we study the hypothesis of Theorem 4.2, a generalization of (4.1).

• In Section 4.5, we study the conclusion of Theorem 4.2, a generalization of (4.2).

• In Section 4.6, we synthesize the results developed in Sections 4.4 and 4.5 to conclude
the proof of Theorem 4.2, and then finally of Theorem 4.1, as a special case.

• Lastly, in Section 4.7, we study the decidability of the hypothesis of Theorem 4.2,
proving Theorems 4.3 and 4.4.

4.1 Definitions and Notation
We define Hölder-Brascamp-Lieb-type inequalities using some measure-theoretic notation
(definitions can be found in standard textbooks, e.g., [30]). Let (X,Σ, µ) be a measure space
and let f : X → C ∪ {∞} be a Σ-measurable function. For each p ∈ (0,∞], we define

‖f‖Lp(X,Σ,µ) =



 ∫
(X,Σ)

|f |p dµ
1/p

p <∞

ess sup
(X,Σ,µ)

|f | p =∞.

Our work considers the special case of discrete measure spaces, where Σ = 2X is the discrete
σ-algebra and µ = | · | is counting measure; we specialize the preceding notation for this
discrete setting, defining

‖f‖`p(X) = ‖f‖Lp(X,2X ,|·|) =


(∑
x∈X
|f(x)|p

)1/p

p <∞

sup
x∈X
|f(x)| p =∞.

Additionally, it will be more convenient for us to work with the reciprocals s = 1/p ∈ [0,∞)
of the exponents p ∈ (0,∞]; in case p =∞, we define L1/0 = L∞ and `1/0 = `∞.

A Hölder-Brascamp-Lieb-type inequality is defined by the following parameters:

• a positive integer m ∈ {1, 2, . . .}, and dedicating j to range over {1, . . . ,m},

• m+ 1 measure spaces (G,Σ, µ), (Gj,Σj, µj) where G,Gj are Abelian groups,

• m Abelian group homomorphisms φj : G→ Gj,

28

• m Σj-measurable functions fj : Gj → [0,∞],

• m nonnegative real numbers sj ∈ [0,∞), and

• an extended-real number C ∈ R ∪ {±∞}.

Together these parameters define an inequality,∫
(G,Σ)

∏
j

fj ◦ φj dµ ≤ C
∏
j

‖fj‖L1/sj (Gj ,Σj ,µj)
, (4.3)

where we adopt the convention that 0 · ±∞ = 0.
We will study families of Hölder-Brascamp-Lieb-type inequalities, where some parameters

are fixed, while others are treated as variables. In particular, we will frequently fix the number
m, the measure spaces (G,Σ, µ), (Gj,Σj, µj), and the homomorphisms φj, while varying the
functions fj, numbers sj, and number C.

Since this work targets discrete measure spaces, our notation suppresses the discrete σ-
algebras Σ,Σj and counting measures µ, µj to simplify in three ways: (1) we collect the fixed
parameters as the triple G = (G, (Gj)j, (φj)j) called an HBL datum, where m is implicit,
(2) we use the shorthand notation ‖ · ‖`p(X) = ‖ · ‖Lp(X,2X ,|·|) defined above, and (3) we
avoid mentioning the (trivial) Σj-measurability of the functions fj. We also collect the
variable parameters fj, sj as m-tuples called m-functions f = (fj)j ∈×j

(Gj → [0,∞]) and
m-exponents s = (sj)j ∈ [0,∞)m.

4.2 Main Results
Consider an HBL datum G = (G, (Gj)j, (φj)j). Let P(G) denote the (convex) set of all
m-exponents s ∈ [0,∞)m, such that

rank(H) ≤
∑
j

sj rank(φj(H)) for all finite rank subgroups H of G; (4.4)

additionally, for each s ∈ [0,∞)m, let A(G, s), B(G, s), C(G, s) ∈ R∪{±∞} denote the infima
of A,B,C ∈ R ∪ {±∞} such that

|H| ≤ A
∏
j

|φj(H)|sj for all finite subgroups H of G, (4.5)

|E| ≤ B
∏
j

|φj(E)|sj for all nonempty finite subsets E of G, (4.6)

∑
x∈G

∏
j

fj(φj(x)) ≤ C
∏
j

‖fj‖`1/sj (Gj)
for all m-functions

f ∈×j
(Gj → [0,∞]); (4.7)

We will prove Theorem 4.1 as a special case of the following more general result, which
relates the four objects P(G), A(G, ·), B(G, ·), C(G, ·) defined by G.

Theorem 4.2 ([14, Theorem 1.2]). Consider any s ∈ [0,∞)m and let r = (min(1, sj))j. If
s ∈ P(G), then B(G, s) = C(G, s) = A(G, r). Conversely, if B(G, s) <∞, then s ∈ P(G).

29

Proof. See Section 4.6.

A supplemental argument (see Lemmas 4.27 and 4.39) shows that there is no loss of generality
to apply Theorem 4.2 only to m-exponents s ∈ [0, 1]m, enabling a simpler formulation (see
[14, Theorem 1.2]). While we ignore this simplification here, we will exploit it at many points
in our analysis.

A practical question is whether the hypothesis s ∈ P(G) of Theorem 4.2 can be verified
computationally for any m-exponent s. While the general case is open, we found an affir-
mative answer in a special case, when G has finite rank: in this case, since ranks are natural
numbers, and since G’s rank is an upper bound on all its subgroups’ ranks, only finitely
many distinct inequalities can appear in (4.4). Our algorithm that proves the following
result depends crucially on this fact.

Theorem 4.3 ([15, Theorem 5.1]). If rank(G) < ∞, then there exists an algorithm that
computes a finite subset of the inequalities in (4.4) which define the same set P(G).

Proof. See Section 4.7; there are additional assumptions on how G is represented.

While this result suffices to verify whether a given m-exponent s ∈ P(G), it does not address
the computability of the set of inequalities in (4.4). That is, one can in principle query the
existence of a particular inequality in (4.4) by asking whether a subgroup H of G exists with
certain values of rank(H), rank(φj(H)).

Theorem 4.4 ([15, Theorem 5.9]). If rank(G) < ∞, then there exists an algorithm to
compute the set of all inequalities in (4.4) if and only if there exists an algorithm to determine
whether an arbitrary system of polynomial equations over Q is solvable over Q.

Proof. See Section 4.7.1; there are additional assumptions on how G is represented.

The question of whether the latter algorithm exists is known as Hilbert’s Tenth Problem
over Q, and this question remains open (see, e.g., [28]).

4.3 Background and Related Work
Hölder-Brascamp-Lieb-type inequalities include those studied by Rogers-Hölder [29, 20] (see
also [26]), Young [36] (see also [7, 12]), Loomis-Whitney [24], and Brascamp-Lieb [12]. Typi-
cally, studies of Hölder-Brascamp-Lieb-type inequalities have considered the continuum set-
ting, where the measure spaces (G,Σ, µ), (Gj,Σj, µj) are finite-dimensional R-vector spaces
with Lebesgue measure and the homomorphisms φj are R-linear maps (see [6] for references).
A pair of papers [10, 9] by Bennett-Carbery-Christ-Tao derived necessary and sufficient con-
ditions for Hölder-Brascamp-Lieb-type inequalities to hold with C <∞, both in the contin-
uum setting and, in [9], in the case of discrete Abelian groups. In particular, [9, Theorem
2.4] is the starting point for Theorem 4.2; we now restate this result in the present notation,
assuming a given HBL datum G.

Proposition 4.1 ([9, Theorem 2.4]). Suppose G,Gj are finitely generated and consider any
s ∈ [0,∞). If s ∈ P(G), then B(G, s) ≤ C(G, s) < ∞. Conversely, if B(G, s) < ∞, then
s ∈ P(G).

30

In their proof, Bennett-Carbery-Christ-Tao observed a link between the values B(G, s) and
C(G, s) and the structure of the torsion subgroup T (G) of G. We pursued this link in a
paper [15], strengthening Proposition 4.1 with sharper bounds on these constants.

Proposition 4.2 ([15, Theorem 3.12]). Suppose G,Gj are finitely generated and consider
any s ∈ [0,∞). If s ∈ P(G), then B(G, s) ≤ C(G, s) ≤ |T (G)|. Conversely, if B(G, s) <∞,
then s ∈ P(G).

The inequality in (4.6) for E = T (G) ∩ ⋂j ker(φj) shows that B(G, s) ≥ |E| ≥ 1 for all m-
exponents s. Therefore, B(G, s) = C(G, s) = |T (G)| whenever T (G) ≤ ⋂j ker(φj), e.g., when
G is torsion-free, or when all Gj are torsion-free. In the general case, however, Proposition 4.2
leaves a gap of up to a factor of |T (G)| between B(G, s), C(G, s) and their upper bounds. This
gap was closed by Christ [14], who precisely determined B(G, s), C(G, s) in the more general
setting where G,Gj are not necessarily finitely generated. Christ’s main result [14, Theorem
1.2], stated above as Theorem 4.2, thus completed the study of the optimal constants for
discrete Abelian groups.

In [15], we also studied the computability of the hypothesis s ∈ P(G); we already summa-
rized our findings in Theorems 4.3 and 4.4. We mention here that our algorithm for Theorem
4.3 is similar to an algorithm of Valdimarsson [35, Theorem 1.8], in the continuum setting,
for computing the hypothesis of [9, Theorem 2.1].

4.4 Analysis of P
Now we study the set P(G), defined by an HBL datum G via (4.4), in more depth. We
let H∗(G),H∗N(G),H∗fg(G),H∗0(G),H∗f (G) denote the sets of all, all finite-rank, all finitely
generated, all rank-zero, and all finite subgroups of G, respectively (definitions can be found
in standard texts, e.g., [23]); these sets are partially ordered by containment,

H∗(G) ⊇ H∗N(G) ⊇ H∗fg(G) ∪H∗0(G) ⊇ H∗fg(G) ∩H∗0(G) = H∗f (G).

Most results in this section are stated assuming a general HBL datum G, although most will
only be applied in the case where G is finitely generated, i.e., where

H∗(G) = H∗N(G) = H∗fg(G) ⊇ H∗0(G) = H∗f (G).

Given G and any H ⊆ H∗N(G), we define

P(G,H) =
{
s ∈ [0,∞)m

∣∣∣∣ (∀H ∈ H) rank(H) ≤
∑
j

sj rank(φj(H))
}
. (4.8)

That is, P(G,H) is defined by a nonempty, countable set of Z-linear inequalities constraining
s ∈ Rm: there are m inequalities of the form sj ≥ 0 and countably many of the form
rank(H) ≤ ∑

j sj rank(φj(H)), even if H is uncountable, since finite ranks are integers.
Since P(G,H) equals the intersection of closed half-spaces, it is closed and convex.

31

4.4.1 Group-Theoretic Tools
For the following three elementary results, let G be any Abelian group with finite rank, not
necessarily associated with an HBL datum.

Lemma 4.1. For any H ≤ G, there exists K ≤ G such that H ≤ K, rank(H) = rank(K),
and G/K is torsion-free.

Proof. Define K = {x | (∃a ∈ Z)ax ∈ H}; it follows that H ≤ K ≤ G. If x + K ∈ G/K
such that a(x+K) = 0 +K for some a ∈ Z, then y = ax ∈ K; however, by definition of K,
there exists b ∈ Z such that by ∈ H, i.e., bax ∈ H, thus x ∈ K, so x+K = 0 +K, i.e., G/K
is torsion-free. Since each element of K/H is a torsion element, K/H is a torsion group, so
rank(K/H) = 0, i.e., rank(H) = rank(K).

Lemma 4.2. For any H ≤ G, there exists K ≤ G such that rank(G) = rank(H) + rank(K)
and H ∩K = {0}.

Proof. By Lemma 4.1, we can find H ≤ F ≤ G such that G/F is torsion-free and rank(H) =
rank(F). Since G/F has finite rank, let U be the subgroup of G/F generated by any
rank(G/F) independent elements ofG/F : U is finitely generated with rank(U) = rank(G/F),
and we can write U = L/F for some F ≤ L ≤ G such that rank(L) = rank(G). Since L/F
is a torsion-free finitely generated Abelian group, it is projective (moreover, free) as a Z-
module, meaning that for any surjective Abelian group homomorphism ψ with domain V
and codomain L/F , there exists W ≤ V such that W and ker(ψ) are complementary sub-
groups of V . Letting V = L, we have that ker(ψ) = F , and so taking K = W ≤ L, we
have that L = F + K, so rank(G) = rank(L) = rank(F) + rank(K) = rank(H) + rank(K);
moreover, H ∩K ≤ F ∩K = {0}, i.e., H ∩K = {0}.

Lemma 4.3. If φ is an Abelian group homomorphism with domain G and if there exist
H,K ≤ G such that H ≤ K ≤ G and rank(H) = rank(K), then rank(φ(H)) = rank(φ(K)).

Proof. 0 = rank(K/H) ≥ rank(φ(K)/φ(H)) ≥ 0, so 0 = rank(φ(K))− rank(φ(H)).

4.4.2 Embedding Z in Q
We digress briefly to mention an arguably simpler approach to studying P(G, ·) which we
will exploit later to prove Theorem 4.4.

Consider any HBL datum G = (G, (Gj)j, (φj)j), but treat G,Gj as Z-modules (defining
multiplication in terms of addition) and φj as Z-module homomorphisms. Let f be a ring
homomorphism from Z to an integral domain D. Define GD, GD

j , φ
D
j via extension of scalars:

that is, regarding D as a Z-module via f , GD = G⊗ZD and GD
j = Gj⊗ZD are D-modules and

φD
j = φj ⊗Z idD are D-module homomorphisms (⊗Z denotes the tensor product of Z-modules

or Z-module homomorphisms). We also introduce the notation U ≤D V , asserting that U is
a sub(-D-)module of a D-module V , and rankD(V), denoting the rank (over D) of a D-module
V , but often omit the subscript-Ds in the case D = Z since ambiguity in this case causes no
harm.

32

Lemma 4.4. Consider any h, hj ∈ N. If there exists H ≤ G such that rank(H) = h
and each rank(φj(H)) = hj, then there exists V ≤D GD such that rankD(V) = h and each
rankD(φD

j (V)) = hj. The converse also holds if D = Q.

Proof. Letting V = HD = H ⊗Z D ≤D GD, the rank properties follow as consequences
of the Z-linearity of ⊗Z, i.e., if elements ei ∈ G are Z-linearly independent then elements
ei ⊗ 1 ∈ GD are D-linearly independent. To show the converse, note that Q is the fraction
field of Z. Therefore, for any V ≤Q GQ, any Q-basis of V (at least one exists) can be
converted to a (same cardinality) Z-basis of some VZ ≤ G such that V = (VZ)Q.

Therefore, it is possible to analyze P(G, ·) via PQ(GQ, ·), where GQ = (GQ, (GQ
j)j, (φQ

j)j) and
PQ is obtained from P by replacing Abelian group ranks with Q-module ranks in (4.8). The
primary advantage of this approach is that Q-modules are free, so some arguments simplify:
in particular, submodules always have complements, avoiding the need for Lemmas 4.1 and
4.2, and proper submodules always have strictly smaller rank, avoiding the need for Lemma
4.3.

4.4.3 Properties of P(G,H)
We now derive some basic results regarding P(G,H) for any fixed G and H ⊆ H∗N(G).

Lemma 4.5. If s ∈ P(G,H), then t ∈ P(G,H) for all s ≤ t ∈ [0,∞)m.

Proof. If the inequality induced by any H ∈ H is satisfied by s then it is by t as well.

Lemma 4.6. If H′ ⊆ H then P(G,H′) ⊇ P(G,H).

Proof. P(G,H′) is defined by a subset of the inequalities that define P(G,H).

There is no loss of generality to suppose each φj is surjective, i.e., Gj = φj(G).

Lemma 4.7. P(G,H) = P((G, (φj(G))j, (χj)j),H), where χj : G→ φj(G) : x 7→ φj(x).

Proof. For each H ∈ H∗N(G) and each j, rank(χj(H)) = rank(ψj(H)).

Additionally, there is no loss of generality to ignore the rank-0 subgroups of G.

Lemma 4.8. P(G,H) = P(G,H \H∗0(G)).

Proof. Each H ∈ H∗0(G) induces the inequality 0 ≤ ∑j sj · 0, satisfied by all s ∈ Rm.

Note that if H ⊆ H∗0(G), e.g., H = ∅ or G ∈ H∗0(G), then P(G,H) = [0,∞)m.

Lemma 4.9. If r = supH∈H rank(H) < ∞, then P(G,H′) = P(G,H) for some finite H′ ⊆
H.

Proof. The ranks of H and its homomorphic images φj(H) are integers between 0 and r ∈ N;
therefore, the set H, possibly infinite, generates at most (r+1)m+1 <∞ distinct inequalities.
The conclusion follows by choosing any subset H′ of H that induces these inequalities.

Lemma 4.10. If rank(H ∩ ⋂j ker(φj)) = 0 for all H ∈ H, then [1,∞)m ⊆ P(G,H).

33

Proof. If rank(G) = 0, then P(G,H) = [0,∞)m by Lemma 4.8, so the conclusion is imme-
diate. If rank(G) > 0, then consider any H ∈ H and the corresponding homomorphism
Φ: H → ⊕

j φj(H) : x 7→ (φj(x))j; let K = ker(Φ) = H ∩ ⋂j ker(φj) ∈ H∗0(G), so by the
first isomorphism theorem (Φ(H) ∼= H/K), the fact that rank(Φ(H)) ≤ rank(⊕j φj(H)) =∑
j rank(φj(H)), and the hypothesis,

0 = rank(K) = rank(H)− rank(Φ(H)) ≥ rank(H)−
∑
j

rank(φj(H)),

so for all H ∈ H, rank(H) ≤ ∑
j sj rank(φj(H)) holds with sj = 1 for each j. Thus by

Lemma 4.5, t ∈ P(G,H) for all t ≥ (1, . . . , 1).

Lemma 4.11. If rank(H ∩ ⋂j ker(φj)) > 0 for some H ∈ H, then P(G,H) = ∅.

Proof. Observe that ∑j sj rank(φj(H)) = 0 < rank(H) for all s ∈ Rm.

Lemma 4.12. If H ∈ H \ H∗0(G), then ∑
j sj ≥ 1 for all s ∈ P(G,H).

Proof. Rearranging H’s induced inequality, 1 ≤ ∑j sj rank(φj(H))/ rank(H) ≤ ∑j sj.

Lemma 4.13. Suppose m ≥ 2 and consider any s ∈ [0,∞)m with some component sk = 0.
Then, s ∈ P(G,H) if and only if (sj)j 6=k ∈ P((G, (Gj)j 6=k(φj)j 6=k),H).

Proof. For any H ∈ H∗N(G), ∑j sj rank(φj(H)) = ∑
j 6=k sj rank(φj(H)).

Lemma 4.14. Suppose that there exist k, l ∈ {1, . . . ,m} such that k < l and rank(ker(φk)∩
ker(φl)) = rank(ker(φk)) = rank(ker(φl)) < ∞. Let G ′ = (G, (Gj)j 6=l, (φj)j 6=l). If s ∈
P(G,H), then t ∈ P(G ′,H) where

t = (s1, . . . , sk−1, sk + sl, sk+1, . . . , sl−1, sl+1, . . . , sm);

conversely, if t ∈ P(G ′), then for all ε ∈ [0, tk], s(ε) ∈ P(G) where

s(ε) = (t1, . . . , tk−1, ε, tk+1, . . . , tl−1, tk − ε, tl, . . . , tm−1).

Proof. The inequality induced by any H ≤ G can be rewritten,

rank(H) ≤
∑
j

sj rank(φj(H)) = (sk + sl) rank(φk(H)) +
∑
j 6=k,l

sj rank(φj(H)).

Lemma 4.15. Suppose that there exists k ∈ {1, . . . ,m} such that rank(φk(G)) = 0. Let
G ′ = (G, (Gj)j 6=k, (φj)j 6=k). If s ∈ P(G,H), then t = (sj)j 6=k ∈ P(G ′,H); conversely, if
t ∈ P(G ′,H), then for all ε ∈ [0,∞), s(ε) ∈ P(G,H) where

s(ε) = (t1, . . . , tk−1, ε, tk, . . . , tm−1).

Proof. The inequality induced by any H ≤ G can be rewritten,

rank(H) ≤
∑
j

sj rank(φj(H)) =
∑
j 6=k

sj rank(φj(H)).

34

Lemma 4.16. If there exists a k ∈ {1, . . . ,m} such that rank(φk(G)) = rank(G) < ∞ and
if there exists an H ∈ H such that rank(H) > 0, then ek ∈ P(G,H).

Proof. For any K ≤ G, rank(φk(K)) = rank(K), so the the inequality induced by K can be
rewritten,

rank(K) ≤
∑
j

sj rank(φj(K)) = sk rank(K) +
∑
j 6=k

sj rank(φj(K)).

If sk ≥ 1, the preceding inequality holds for any (sj)j 6=k ∈ [0,∞)m−1.

4.4.4 Extreme Points of P(G,H) ∩ [0, 1]m

We continue studying arbitrary G and H ⊆ H∗N(G), which remain fixed across the following
results. As mentioned earlier, P(G,H) is a closed convex subset of Rm. The following results
consider intersecting P(G,H) with the unit m-cube [0, 1]m. We will motivate the choice
[0, 1]m later in Lemma 4.27; for now, we only exploit the fact that this intersection results in
a bounded set. Therefore, as a bounded and closed convex subset of Rm, P(G,H) ∩ [0, 1]m
equals the convex hull of its extreme points (in particular, such points exist).

Lemma 4.17. Suppose m ≥ 2 and consider any extreme point s of P(G,H)∩ [0, 1]m. Either
some component sk ∈ {0, 1} or there exists H ∈ H such that 0 < rank(H) < rank(G) and
rank(H) = ∑

j sj rank(φj(H)).

Proof. If rank(G) = 0 then by Lemma 4.8, P(G,H) = [0,∞)m, so the first case applies.
Otherwise, suppose rank(G) > 0 and s ∈ (0, 1)m. As an extreme point of P(G,H) ∩
[0, 1]m, s must lie at the intersection of m Z-linearly independent hyperplanes that support
P(G,H) ∩ [0, 1]m, and since s ∈ (0, 1)m, these hyperplanes support P(G,H) but not [0, 1]m.
In other words, we can find H1, H2 ∈ H such that 0 < rank(Hi) = ∑

j sj rank(φj(Hi)) for
both i ∈ {1, 2}. Moreover, the Z-linear independence of the corresponding hyperplanes
means that for some j, rank(φj(H1)) 6= rank(φj(H2)). Therefore, the ranks of H1 and
H2 cannot both equal rank(G): if rank(G) < ∞, this follows from Lemma 4.3, and if
rank(G) = ∞, this follows since H1, H2 ∈ H∗N(G). Therefore there exists Hi ∈ H such that
0 < rank(Hi) = ∑

j sj rank(φj(Hi)) < rank(G).

Lemma 4.18. If ∑j ker(φj) ∈ H∗0(G) and s is an extreme point of P(G,H) ∩ [0, 1]m, then
s ∈ {0, 1}m.

Proof. By the first hypothesis, rank(H) = rank(φj(H)) for all H ∈ H, and every positive
rank subgroup induces the same inequality 1 ≤ ∑

j sj. This inequality corresponds to a
hyperplane in Rm with normal (1, . . . , 1), which intersects [0, 1]m at e1, . . . , em (the standard
basis vectors in Rm), thus all extreme points in P(G,H) ∩ [0, 1]m are in {0, 1}m.

Lemma 4.19. If s is an extreme point of P(G,H)∩ [0, 1]m with some component sk ∈ (0, 1),
then rank(φk(H)) > 0 for all H ∈ H with rank(H) = rank(G).

Proof. Suppose towards obtaining a contradiction that the hypotheses hold but rank(φk(H)) =
0 for some H ∈ H with rank(H) = rank(G). By Lemma 4.3 and the definition of rank,

35

rank(φk(K)) = 0 for all K ∈ H; therefore, ∑j tj rank(φj(K)) = tk · 0 +∑
j 6=k tj rank(φj(K))

for all K ∈ H and all t ∈ P(G,H). Thus, both

t− = (s1, . . . , sk−1, 0, sk+1, . . . , sm), t+ = (s1, . . . , sk−1, 1, sk+1, . . . , sm)

are in P(G,H) ∩ [0, 1]m and s 6= t± by hypothesis. Since s lies on an open line segment
between t± ∈ P(G,H) ∩ [0, 1]m, it cannot be an extreme point, a contradiction.

Lemma 4.20. If s is an extreme point of P(G,H) ∩ [0, 1]m, supH∈H rank(H) < ∞, and
rank(H) < ∑

j sj rank(φj(H)) for all H ∈ H \ H∗0(G), then s ∈ {0, 1}m.

Proof. Suppose towards obtaining a contradiction that the hypotheses hold but some com-
ponent sk ∈ (0, 1). First, observe that

t+ = (s1, . . . , sk−1, 1, sk+1, . . . , sm) ∈ P(G,H) ∩ [0, 1]m,

via Lemma 4.5, and that s 6= t+. Second, under the present hypotheses that sk > 0 and
the inequality generated by each H ∈ H with rank(H) > 0 is strict, it follows that for each
such H we can find a positive ε such that rank(H) ≤ ∑j(sj − ε) rank(φj(H)). From Lemma
4.9, it suffices to restrict our attention to the inequalities induced by some finite H′ ⊆ H, in
which case only finitely many ε arise and their minimum ε∗ is well-defined, and, in particular,
positive. Thus we can define

t− = (s1, . . . , sk−1, sk − ε∗, sk+1, . . . , sm) ∈ P(G,H) ∩ [0, 1]m,

and s 6= t−. Since s lies on an open line segment between t± ∈ P(G,H) ∩ [0, 1]m, it cannot
be an extreme point, a contradiction.

Lemma 4.21. If s is an extreme point of P(G,H) ∩ [0, 1]m, supH∈H rank(H) < ∞, and
rank(H) < ∑

j sj rank(φj(H)) for all H ∈ H \H∗0(G) such that rank(H) < rank(G), then at
most one component sk 6∈ {0, 1}.

Proof. Suppose towards obtaining a contradiction that the hypotheses hold but sk, sl ∈ (0, 1)
for two distinct indices k, l. By Lemma 4.19, rank(φk(G)), rank(φl(G)) > 0; in particular,
rank(G) > 0. Define t(ε) ∈ Rm componentwise by

tj(ε) =


sk + ε rank(φl(G)) j = k

sl − ε rank(φk(G)) j = l

sj j 6∈ {k, l}.

We now determine constraints on ε so that t(ε) ∈ P(G,H)∩ [0, 1]m. For any H ∈ H, we will
require that

rank(H) ≤
∑
j

tj(ε) rank(φj(H))

= ε(rank(φl(G)) rank(φk(H))− rank(φk(G)) rank(φl(H))) +
∑
j

sj rank(φj(H));

36

defining

d(H) =
∑
j

sj rank(φj(H))− rank(H) ∈ [0,∞),

r(H) = rank(φl(G)) rank(φk(H))− rank(φk(G)) rank(φl(H)) ∈ {− rank(G)2, . . . , rank(G)2},

the constraint on ε that each H ∈ H induces is −εr(H) ≤ d(H), or more strictly, |ε||r(H)| ≤
d(H). Actually, there is no constraint on ε in the case r(H) = 0, e.g., when rank(H) =
rank(G) or rank(H) = 0. Thus it suffices to consider only the subset H′ ⊆ H comprising
the H ∈ H such that 0 < rank(H) < rank(G). By the same argument used to prove
Lemma 4.9, d(H) takes on only finitely many distinct values as H varies over H′, thus we
can define d∗ = minH∈H′ d(H). It remains to enforce that t ∈ [0,∞)m, and, in particular,
that t ∈ [0, 1]m: 0 ≤ sk + ε rank(φl(G)) ≤ 1 and 0 ≤ sl − ε rank(φk(G)) ≤ 1. Combining
these constraints on ε, replacing d(H) by its minimum d∗, replacing |r(H)|, rank(φk(G)),
and rank(φl(G)) by a common upper bound rank(G)2 > 0, and symmetrizing (tightening at
most one of) the upper and lower bounds,

|ε| ≤ min{d∗, sk, 1− sk, sl, 1− sl}
rank(G)2 ;

by hypothesis, d∗ > 0 and sk, sl ∈ (0, 1), so the right-hand side is positive. Thus, there exists
ε± ∈ R such that ε− < 0 < ε+, t(ε±) ∈ P(G,H) ∩ [0, 1]m, and s 6= t(ε±). Since s lies on
an open line segment between t(ε±) ∈ P(G,H) ∩ [0, 1]m, it cannot be an extreme point, a
contradiction.

4.4.5 Properties of P(G) = P(G,H∗N(G))
For any HBL datum G, the set P(G,H∗N(G)) is of principal interest, so we introduce the
notation P(G) = P(G,H∗N(G)).

Before studying P(G), we mention that we could also define P(G) in terms of H∗fg(G).

Lemma 4.22. P(G,H∗N(G)) = P(G,H∗fg(G)).

Proof. We have right-to-left inclusion from the fact that H∗fg(G) ⊆ H∗N(G). To observe
left-to-right inclusion, for each H ∈ H∗N(G), pick any rank(G) independent elements of
G to generate K ∈ H∗fg(G) such that rank(H) = rank(K); by Lemma 4.3, for each j,
rank(φj(H)) = rank(φj(K)).

Lemma 4.23. If G ∈ H∗N(G), H ∈ H∗fg(G), and rank(H) = rank(G), then P(G) =
P(G,H∗fg(H)).

Proof. We have right-to-left inclusion from the fact that H∗fg(H) ⊆ H∗N(G). (Note that all
subgroups of H are finitely generated.) To observe left-to-right inclusion, consider each
K ∈ H∗N(G): letting F = K ∩H ∈ H∗fg(H), it follows from the argument in Lemma 4.3 that
rank(K) = rank(F) and for each j, rank(φj(K)) = rank(φj(F)).

37

A key property of P(G) is that it factors in the following sense. Given the HBL datum
G = (G, (Gj), (φj)) and any H ≤ G, we define two associated HBL data called the factor
data: the restricted datum G|H and the quotient datum G|H :

G|H = (H, (φj(H))j, (χj)j), χj : H → φj(H) : x 7→ φj(x),
G|H = (G/H, (Gj/φj(H))j, (ψj)j), ψj : G/H → Gj/φj(H) : x+H 7→ φj(x) + φj(H).

In our analysis, the symbols χj and ψj will always denote the homomorphisms associated
with the factor data G|H and G|H , i.e., χj and ψj are implied by the notations G|H and G|H .
Also note an asymmetry in these definitions: χj is always surjective, whereas ψj is surjective
only if φj is; this property is exploited later in Lemma 4.43; however, the homomorphisms’
codomains play no role in the analysis of P .

Lemma 4.24. If H ∈ H∗N(G), then P(G|H) ∩ P(G|H) ⊆ P(G) ⊆ P(G|H).

Proof. Consider any K ∈ H∗N(G): it follows that K ∩ H ∈ H∗N(H) and (K + H)/H ∈
H∗N(G/H), even if rank(G) = ∞. Now consider any s ∈ P(G|H) ∩ P(G|H): it follows that
rank(K∩H) ≤ ∑j sj rank(χj(K∩H)) and rank((K+H)/H) ≤ ∑j sj rank(ψj((K+H)/H)).
Combining these results,

rank(K) = rank(K ∩H) + rank((K +H)/H)
≤
∑
j

sj rank(χj(K ∩H)) +
∑
j

sj rank(ψj((K +H)/H))

=
∑
j

sj
(
rank(χj(K ∩H)) + rank(ψj((K +H)/H))

)
=
∑
j

sj
(
rank(φj(K ∩H)) + rank((φj(K) + φj(H))/φj(H))

)
=
∑
j

sj rank(φj(K)).

Repeating for all K ∈ H∗N(G), we conclude that s ∈ P(G); the first inclusion follows by
repeating this argument for every s ∈ P(G|H) ∩ P(G|H).

To show the second inclusion, consider any s ∈ P(G). By definition, H∗N(H) ⊆ H∗N(G).
Since φj(K) = χj(K) for any K ∈ H∗N(H), s ∈ P(G|H). Considering every s ∈ P(G) we
conclude P(G) ⊆ P(G|H).

Lemma 4.25. If s ∈ P(G), H ∈ H∗N(G), and rank(H) = ∑
j sj rank(φj(H)), then s ∈

P(G|H) ∩ P(G|H).

Proof. By Lemma 4.24, s ∈ P(G) ⊆ P(G|H), so it remains to show that s ∈ P(G|H). Each
element of H∗N(G/H) can be written as (K+H)/H for some K ∈ H∗N(G), even if rank(G) =
∞. Additionally, rank((K+H)/H) = rank(K+H)−rank(H) and, for each j, rank(ψj((K+
H)/H)) = rank((φj(K)+φj(H))/φj(H)) = rank(φj(K)+φj(H))−rank(φj(H)). Combining

38

these identities and the hypotheses that s ∈ P(G) and rank(H) ≤ ∑j sj rank(φj(H)),

rank((K +H)/H) = rank(K +H)− rank(H)
≤
∑
j

sj rank(φj(K +H))−
∑
j

sj rank(φj(H))

=
∑
j

sj
(
rank(φj(K +H))− rank(φj(H))

)
=
∑
j

sj rank(ψ((K +H)/H)).

Repeating for all (K +H)/H ∈ H∗N(G/H), we conclude that s ∈ P(G|H).

Lemma 4.26. Consider any s ∈ [0,∞)m with some component sk ≥ 1 and let K = ker(φk).
Then s ∈ P(G) if and only if (sj)j 6=k ∈ P((G, (Gj)j 6=k, (φj|K)j 6=k).

Proof. Sufficiency follows from the fact that, for any H ∈ H∗N(K), ∑j sj rank(φj(H)) =∑
j 6=k sj rank(φj(H)). To show necessity, consider any H ∈ H∗N(G): let F1 = H ∩ K and

apply Lemma 4.2 to define F2 ≤ H such that rank(H) = rank(F1) + rank(F2). It follows
that both F1, F2 ∈ H∗N(G), so∑

j

sj rank(φj(H))

≥ rank(φk(H)) +
∑
j 6=k

sj rank(φj(H)) ≥ rank(φk(F2)) +
∑
j 6=k

sj rank(φj(F1))

≥ rank(φk(F2)) + rank(F1) = rank(F2) + rank(F1) = rank(H).

Lemma 4.27. If s ∈ P(G), then t ∈ P(G) for all (min{1, sj})j ≤ t ∈ [0,∞)m.

Proof. First suppose some sk > 1 and define t = (s1, . . . , sk−1, 1, sk+1, . . . , sm); we now show
that t ∈ P(G). Consider any H ∈ H∗N(G) and let F = H ∩ ker(φk); since F ∈ H∗N(G),

rank(F) ≤
∑
j

sj rank(φj(F)) = sk · 0 +
∑
j 6=k

sj rank(φj(F)) =
∑
j 6=k

tj rank(φj(F)).

By Lemma 4.2, there exists K ≤ H such that rank(H) = rank(F) + rank(K) and rank(F ∩
K) = 0. Since K ∩ F = K ∩ (H ∩ ker(φk)) = K ∩ ker(φk) and K ∈ H∗N(G),

rank(K) = rank(K)− rank(K ∩ ker(φk)) = rank(φk(K));

moreover, since tk = 1,

rank(H) = rank(K) + rank(F) ≤ tk rank(φk(K)) +
∑
j 6=k

tj rank(φj(F)) ≤
∑
j

tj rank(φk(H)).

Thus we have identified t ∈ P(G) which, relative to s, has one fewer component greater than
one. We can repeat this argument for each such component to show that (min{1, sj})j ∈
P(G). The conclusion for all t ≥ (min{1, sj})j follows from Lemma 4.5.

39

That is, P(G) is completely specified by P(G) ∩ [0, 1]m. As mentioned in Section 4.4.4, we
prefer to analyze P(G) ∩ [0, 1]m because it equals the convex hull of its extreme points.

Lemma 4.28. If s ∈ [0, 1]m has exactly one component sk ∈ (0, 1) and there exists H ∈
H∗N(G) such that rank(G) = rank(H) = ∑

j sj rank(φj(H)) and rank(φk(H)) > 0, then there
exists K ∈ H∗N(G) such that rank(K) > ∑

j sj rank(φj(K)).

Proof. Note that these hypotheses imply G ∈ H∗N(G). Letting I = {j | sj = 1}, we rewrite
a hypothesis regarding H,

rank(H) =
∑
j

sj rank(φj(H)) = sk rank(φk(H)) +
∑
i∈I

si rank(φi(H)).

If I = ∅ then since rank(φk(H)) > 0, sk = rank(H)/ rank(φk(H)). If rank(φk(H)) =
rank(H) then sk = 1, a contradiction to the hypothesis that sk ∈ (0, 1). So it must be that
rank(φk(H)) < rank(H), so rank(ker(φk)) > 0; taking K = ker(φk) ∈ H∗N(G),

rank(K) > 0 = sk rank(φk(K)) =
∑
j

sj rank(φk(K)).

Otherwise, supposing I 6= ∅, by the hypotheses sk and rank(φk(H)) > 0,∑
i∈I

rank(φi(H)) =
∑
i∈I

si rank(φi(H)) = rank(H)− sk rank(φk(H)) < rank(H).

We now show that the existence of H implies rank(⋂i∈I ker(φi)) > 0. Consider the ho-
momorphism Φ: G → ⊕

i∈I φi(G) : x 7→ (φi(x))i∈I , and let K = ker(Φ) ∈ H∗N(G). Since⋂
i∈I ker(φi) = K, rank(H) = rank(G) <∞, rank(Φ(G)) ≤ rank(⊕i∈I φi(G)) = ∑

i∈I rank(φi(G)),
and Lemma 4.3,

rank(K) = rank(G)− rank(Φ(G)) ≥ rank(G)−
∑
i∈I

rank(φi(G))

= rank(H)−
∑
i∈I

rank(φi(H)) = sk rank(φk(H)) > 0.

Because φi(K) = {0} for all i ∈ I,∑
j

sj rank(φj(K)) = sk rank(φk(K)) +
∑
i∈I

rank(φi(K))

= sk rank(φk(K)) ≤ sk rank(K)

Since sk < 1 and rank(K) > 0, we have that rank(K) > ∑
j sj rank(φj(K)).

Lemma 4.29. If rank(G) <∞ and s is an extreme point of P(G)∩ [0, 1]m, then s ∈ {0, 1}m
or there exists H ∈ H∗N(G) \ H∗0(G) such that rank(H) = ∑

j sj rank(φj(H)) < rank(G).

Proof. Suppose toward a contradiction that neither case applies, i.e., that some component
sk ∈ (0, 1) and there does not exist H ∈ H∗N(G) such that 0 < rank(H) < rank(G) and
rank(H) = ∑

j sj rank(φj(H)). Under these hypotheses, by Lemma 4.21, there is exactly one
such index k. Additionally, under these hypotheses, by the contrapositive of Lemma 4.20

40

(noting that rank(G) <∞ implies supH∈H∗N(G) rank(H) <∞), there exists H ∈ H∗N(G) with
rank(H) = rank(G) and rank(H) = ∑

j sj rank(φj(H)). By Lemma 4.19, rank(φk(H)) > 0,
and finally by Lemma 4.28, we obtain K ∈ H∗N(G) such that rank(K) > ∑

j sj rank(φj(K)),
which contradicts the hypothesis that s ∈ P(G).

The product case refers to a special class of HBL data where P(G) is defined by a simpler
set of inequalities. Here we consider the product case in the context of finitely generated
torsion-free Abelian groups; a more general setting was considered in [9, Section 7]. The
following result is a special case of the more general result [9, Proposition 7.1].

Lemma 4.30. Consider any HBL datum G = (Zr, (Zrj)j, (φj)j) for some r ∈ N; suppose
there exists a Z-basis B = {e1, . . . , er} of Zr such that each ker(φj) = 〈Kj〉 for some Kj ⊆ B.
Let H = {H1 = 〈e1〉, . . . , Hr = 〈er〉}. Then for any s ∈ [0,∞)m, s ∈ P(G) if and only if
s ∈ P(G,H).

Proof. Necessity follows from Lemma 4.6, i.e., the inequalities defining P(G,H) also appear
in the definition of P(G).

To show sufficiency, rewrite the inequality for each Hi ∈ H,

1 = rank(Hi) ≤
∑
j

sj rank(φj(Hi)) =
∑
j

sjδi,j,

where δi,j = 1Kj(ei), i.e., δi,j = 1 if ei ∈ Kj, and δi,j = 0 otherwise. Now consider any
H ≤ Zr, and let h = rank(H). Let MH be an r-by-h Z-basis matrix of H (coordinates with
respect to B). Since the rank of MH is h, at least one h-by-h minor of MH is nonzero; pick
any such minor and let R ⊆ {1, . . . , r} comprise the h corresponding row indices of MH . It
follows that rank(φj(H)) ≥ ∑i∈R δi,j. Therefore,∑

j

sj rank(φj(H)) ≥
∑
j

sj
∑
i∈R

δi,j =
∑
i∈R

∑
j

sjδi,j ≥
∑
i∈R

rank(Hi) =
∑
i∈R

1 = h = rank(H).

4.5 Analysis of A, B, and C

It is useful to define A(G, s,H), B(G, s, E), and C(G, s, f) to denote the values of A, B, and
C in the individual inequalities in (4.5), (4.6), and (4.7) such that equality holds. Thus,
A(G, s), B(G, s), and C(G, s) are the suprema of A(G, s,H), B(G, s, E), and C(G, s, f) over
the corresponding sets of subgroups H, subsets E, and m-functions f .

In the case of A, recalling from Section 4.4 that H∗f (G) comprises the finite subgroups of
G, for any s ∈ [0,∞)m and any H ∈ H∗f (G), we define

A(G, s,H) = B(G, s,H) = |H|∏
j |φj(H)|sj ∈ (0,∞). (4.9)

Similarly in the case of B, letting E∗(G) denote the set of all nonempty finite subsets of
G, for any s ∈ [0,∞)m and any E ∈ E∗(G), we define

B(G, s, E) = C(G, s, (1φj(E))j) = |E|∏
j |φj(E)|sj ∈ (0,∞). (4.10)

41

In the cases of both (4.5) and (4.6), there are well-defined minimum values A and B for
each individual inequality (for each H ∈ H∗f (G) and E ∈ E∗(G), respectively). However, in
the case of (4.7), there are two degenerate classes of m-functions where a minimum value for
C is not well defined. In the first degenerate class of m-functions f , ∏j ‖fj‖`1/sj (Gj)

= 0, i.e.,
one or more functions fj = 0; in this case, equality holds in (4.7) with any C. In the second
degenerate class of m-functions f , ∏j ‖fj‖`1/sj (Gj)

= ∞; in this case, equality holds in (4.7)
with any C > 0, recalling the convention that 0 · ∞ = 0. There is no loss of generality to
ignore these classes of m-functions since they do not influence the value of C(G, s): to see
this, consider the m-function with fj = 1{φj(0)} = 1{0}: (4.7) holds with equality with C = 1,
so C(G, s) ≥ 1, and we can take C in both degenerate cases to be less than 1. Since ∏j is a
finite product, ∏j ‖fj‖`1/sj (Gj)

∈ (0,∞) is equivalent to ‖fj‖`1/sj (Gj)
∈ (0,∞) for all j. With

these observations, we collect the nondegenerate m-functions,

F∗(G, s) =
{

(fj)j ∈×
j

(Gj → [0,∞])
∣∣∣∣ ‖fj‖`1/sj (Gj)

∈ (0,∞)
}
.

With this notation, for any s ∈ [0,∞)m and any f ∈ F∗(G, s), we can now define

C(G, s, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

∈ [0,∞]; (4.11)

note that we still permit m-functions f where supp(∏j fj ◦φj) = ⋂
j supp(fj ◦φj) = ∅: these

are the only f ∈ F∗(G, s) where C(G, s, f) = 0. In conclusion, we have

A(G, s) = sup
H∈H∗f (G)

A(G, s,H), B(G, s) = sup
E∈E∗(G)

B(G, s, E), C(G, s) = sup
f∈F∗(G,s)

C(G, s, f).

4.5.1 Basic Properties of A(G, s), B(G, s), and C(G, s)
Lemma 4.31. For any s ∈ [0,∞)m, 1 ≤ A(G, s) ≤ B(G, s) ≤ C(G, s) ≤ |G|.

Proof. Considering the trivial subgroup {0} ∈ H∗f (G), we have that A(G, s) ≥ A(G, s, {0}) =
1. Then we have that A(G, s) ≤ B(G, s) ≤ C(G, s), since their defining sets are nested.
Lastly, note that for any f ∈ F∗(G, s),∑

x∈G

∏
j

fj(φj(x)) ≤ |G| sup
{∏

j

fj(φj(x))
∣∣∣x ∈ G} ≤ |G|∏

j

sup
{
fj(φj(x))

∣∣∣x ∈ G}
= |G|

∏
j

sup
{
fj(yj)

∣∣∣ yj ∈ φj(G)
}
≤ |G|

∏
j

sup
{
fj(yj)

∣∣∣ yj ∈ Gj

}
= |G|

∏
j

∥∥∥fj∥∥∥
`∞(Gj)

≤ |G|
∏
j

∥∥∥fj∥∥∥
`1/sj (Gj)

,

so C(G, s) ≤ |G|.

A function F : [0,∞)m → [0,∞] is antitone if, for each s, t ∈ [0,∞)m, s ≤ t (componen-
twise) implies F (s) ≥ F (t).

Lemma 4.32. A(G, s), B(G, s) and C(G, s) are antitone functions of s ∈ [0,∞)m.

42

Proof. For each H ∈ H∗f (G), since 1 ≤ |φj(H)| ≤ |H| < ∞ for each j, A(G, s,H) is
a nonincreasing function of each component sj ∈ [0,∞), and thus A(G, s) is an antitone
function of s ∈ [0,∞)m. Similarly, for each E ∈ E∗(G), since 1 ≤ |φj(E)| ≤ |E| < ∞
for each j, B(G, s, E) is a nonincreasing function of each component sj ∈ [0,∞), and thus
B(G, s) is an antitone function of s ∈ [0,∞)m. More generally, for any discrete measure space
(X, 2X , |·|), any g : X → C∪{∞}, and any p, q ∈ [0,∞), p ≤ q implies ‖g‖`1/p(X) ≤ ‖g‖`1/q(X).
Thus, for any m-exponents s, t and any m-function f , s ≤ t implies that ∏j ‖fj‖`1/sj (Gj)

≤∏
j ‖fj‖`1/tj (Gj)

and, if f ∈ F∗(G, t), then f ∈ F∗(G, s). We conclude that C(G, s) ≥ C(G, t)
by taking suprema over F∗(G, s) and F∗(G, t).

Lemma 4.33. If s ∈ [0,∞)m then A(G, s) ≤ |T (G)|.

Proof. If H ∈ H∗f (G) then H ≤ T (G).

Lemma 4.34. If K ≤ ⋂j ker(φj), |K| <∞, and s ∈ [0,∞)m, then A(G, s) ≥ |K|.

Proof. A(G, s) ≥ A(G, s,K) = |K|∏j |φj(K)|−sj = |K| · 1.

Lemma 4.35. If K ≤ ⋂j ker(φj), |K| =∞, and s ∈ [0,∞)m, then B(G, s) =∞.

Proof. K has a sequence E1, E2, . . . of nonempty subsets of increasing cardinality; each
Ei ∈ E∗(G), so B(G, s, Ei) = |Ei|

∏
j |φj(Ei)|−sj = |Ei|, so B(G, s) =∞.

Lemma 4.36. If I = {j | sj ≥ 1}, K = ⋂
i∈I ker(φi) ∈ H∗f (G), and s ∈ [0,∞)m, then

C(G, s) ≤ |K|.

Proof. If I = ∅, then K = G, and we have that C(G, s) ≤ |G| by Lemma 4.31, regardless
of |K|. Otherwise, for any m-tuple f = (fj)j of functions fj : Gj → C ∪ {∞}, because
G→×j

Gj : x 7→ (φi(x))i∈I is |K|-to-1,

∏
i∈I
‖fi‖`1/si (Gi) ≥

∏
i∈I
‖fi‖`1(Gi) =

∑
(yi)i∈×i∈I Gi

∏
i∈I
|fi(yi)| ≥

1
|K|

∑
x∈G

∏
i∈I
|fi(φi(x))|.

Therefore,

∑
x∈G

∏
j

|fj(φj(x))| ≤
(∏
j 6∈I
‖fj‖`∞(Gj)

) ∑
x∈G

∏
i∈I
|fi(φi(x))|

≤
(∏
j 6∈I
‖fj‖`∞(Gj)

)(
|K|

∏
i∈I
‖fi‖`1/si (Gi)

)
≤ |K|

∏
j

‖fj‖`1/sj (Gj)
,

so, specializing for m-functions f ∈ F∗(G, s), we see that C(G, s) ≤ |K|.

Lemma 4.37. If s ∈ [0,∞)m, f ∈ F∗(G, s), and ∅ 6= I ⊆ {1, . . . ,m}, then C(G, s, f) ≤
C((φi)i∈I , (si)i∈I , (fi)i∈I), with equality when sj = 0 or φj(G) = {0} for each j 6∈ I.

43

Proof. The inequality follows from the definition of C(G, s, f),

C(G, s, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

=
∑
x∈G

(∏
i∈I

fi(φi(x))
‖fi‖`1/si (Gi)

)(∏
j 6∈I

fj(φj(x))
‖fj‖`1/sj (Gj)

)

≤
∑
x∈G

(∏
i∈I

fi(φi(x))
‖fi‖`1/si (Gi)

)
· 1 = C((φi)i∈I , (si)i∈I , (fi)i∈I),

and the fact that the projection F∗(G, s)→ F∗((φi)i∈I , (si)i∈I) : f 7→ (fi)i∈I is surjective.
To show equality when sj = 0 or φj(G) = {0}, for all j 6∈ I, define the m-function g with

gi = fi for each i ∈ I and gj(y) = ‖fj‖`1/sj (Gj)
· 1φj(G)(y) for each j 6∈ I. For each j 6∈ I, we

observe in both cases sj = 0 and φj(G) = {0} that ‖gj‖`1/sj (Gj)
= ‖fj‖`1/sj (Gj)

, and, for all
x ∈ G, gj(φj(x)) = ‖fj‖`1/sj (Gj)

. Thus we confirm that g ∈ F∗(G, s), and, for all x ∈ G, that

∏
j 6∈I

gj(φj(x))
‖gj‖`1/sj (Gj)

=
∏
j 6∈I

‖fj‖`1/sj (Gj)

‖fj‖`1/sj (Gj)
= 1.

Therefore,

C(G, s, f) ≤ C(G, s, g) = C((φi)i∈I , (si)i∈I , (gi)i∈I) = C((φi)i∈I , (si)i∈I , (fi)i∈I);

since for any f ∈ F∗(G, s) we can find such a g ∈ F∗(G, s), the second part of the conclusion
(equality) follows by taking suprema over f ∈ F∗(G, s).

Lemma 4.38. For all s ∈ [0,∞)m, C(G, s) equals the supremum of C(G, s, fE) over all
E ∈ E∗(G) and fE ∈ F∗(G, s) where each supp(fEj) = φj(E).

Proof. Consider any f ∈ F∗(G, s), and for each E ∈ E∗(G), query whether∑x∈E
∏
j fj(φj(x)) >

0. If so, it follows that ‖fj|φj(E)‖`1/sj (φj(E)) > 0; thus, we can define another m-function fE

with components

fEj (y) =
‖fj‖`1/sj (Gj)

‖fj|φj(E)‖`1/sj (φj(E))
· fj(y) · 1φj(E)(y);

it follows that ‖fEj ‖`1/sj (Gj)
= ‖fj‖`1/sj (Gj)

, and so fE ∈ F∗(G, s) as well. Otherwise, if∑
x∈E

∏
j fj(φj(x)) = 0, set each fEj = 0, so fE 6∈ F∗(G, s). By the definitions of C(G, s, ·)

and the Lebesgue integral for counting measure,

C(G, s, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

= sup
E∈E∗(G)

∑
x∈E

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

= sup
E∈E∗(G)

fE∈F∗(G,s)

∑
x∈E

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

= sup
E∈E∗(G)

fE∈F∗(G,s)

∑
x∈G

∏
j

fEj (φj(x))
‖fEj ‖`1/sj (Gj)

= sup
E∈E∗(G)

fE∈F∗(G,s)

C(G, s, fE).

The conclusion follows by taking a supremum over f ∈ F∗(G, s), redefining its associated
m-functions fE appropriately.

44

4.5.2 Properties of B(G, s) and C(G, s) when s ∈ [0, 1]m

Lemma 4.39. If s ∈ [0,∞)m and r = (min(1, sj))j, then B(G, s) = B(G, r) and C(G, s) =
C(G, r).

Proof. We prove the second conclusion first, and then specialize that proof to obtain the
first conclusion.

Suppose sk > 1 for some k ∈ {1, . . . ,m} and define t ∈ [0,∞)m such that tk = 1
and tj = sj for j 6= k. Consider any E ∈ E∗(G) and any m-function f where for each j,
0 6= fj <∞ and supp(fj) = φj(E). Therefore, f ∈ F∗(G, r) for all r ∈ [0,∞)m, in particular,
for r = s and r = t. For each y ∈ φk(E), let Ey = E∩φ−1

k (y), and define another m-function
f y with components

f yj (z) =

fj(z) 6= 0 z ∈ φj(Ey)
0 z 6∈ φj(Ey).

.

It follows that fk = ∑
y∈φk(E) f

y
k , ⋂j supp(f yj ◦φj) = Ey, and supp(f yj) = φj(Ey); in particular,

supp(f yk) = {y}. Therefore, for each j, 0 < ‖f yj ‖`1/sj (Gj)
≤ ‖fj‖`1/sj (Gj)

<∞, and

C(G, s, f y) =
∑
x∈G

∏
j

f yj (φj(x))
‖f yj ‖`1/sj (Gj)

=
∑
x∈Ey

∏
j

f yj (φj(x))
‖f yj ‖`1/sj (Gj)

=

∑
x∈Ey

∏
j 6=k

f yj (φj(x))
‖f yj ‖`1/sj (Gj)

 · f yk (y)
‖f yk ‖`1/sk (Gk)

=

∑
x∈Ey

∏
j 6=k

f yj (φj(x))
‖f yj ‖`1/sj (Gj)

 · f yk (y)
f yk (y)

=
∑
x∈Ey

∏
j 6=k

f yj (φj(x))
‖f yj ‖`1/tj (Gj)

≥
∑
x∈Ey

∏
j 6=k

f yj (φj(x))
‖fj‖`1/tj (Gj)

.

We will substitute this inequality in the definition of C(G, t, f),

C(G, t, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/tj (Gj)

=
∑
x∈E

∏
j

fj(φj(x))
‖fj‖`1/tj (Gj)

=
∑

y∈φk(E)

∑
x∈Ey

∏
j

fj(φj(x))
‖fj‖`1/tj (Gj)

=
∑

y∈φk(E)

∑
x∈Ey

∏
j

f yj (φj(x))
‖fj‖`1/tj (Gj)

=
∑

y∈φk(E)

∑
x∈Ey

∏
j 6=k

f yj (φj(x))
‖fj‖`1/tj (Gj)

 · f yk (y)
‖fk‖`1(Gk)

≤
∑

y∈φk(E)
C(G, s, f y) · f yk (y)

‖fk‖`1(Gk)
≤
(

max
y∈φk(E)

C(G, s, f y)
)
·
∑

y∈φk(E)

f yk (y)
‖fk‖`1(Gk)

=
(

max
y∈φk(E)

C(G, s, f y)
)
·
‖f yk ‖`1(Gk)

‖fk‖`1(Gk)
≤
(

max
y∈φk(E)

C(G, s, f y)
)
· 1 ≤ C(G, s).

Taking a supremum over all E ∈ E∗(G) and all f ∈ F∗(G, t) such that each supp(fj) = φj(E)
and then applying Lemma 4.38, we have that C(G, t) ≤ C(G, s), thus by Lemma 4.32,
C(G, t) = C(G, s). This argument can be repeated for each index k such that sk > 1 to
obtain t = (min(1, sj))j.

We obtain the first conclusion B(G, s) = B(G, (min(1, sj))j) as a special case of the pre-
ceding argument. In more detail, for each E ∈ E∗(G), we consider just the m-function

45

f with components fj = 1φj(E), so C(G, t, f) = B(G, t, E); it follows that its associ-
ated m-functions f y have components f yj = 1φj(Ey), so C(G, s, f y) = B(G, s, Ey), therefore
maxy∈φk(E)C(G, s, f y) ≤ B(G, s). We then again take a supremum over all E ∈ E∗(G),
obtaining B(G, t, E) ≤ B(G, s) for each, so B(G, t) ≤ B(G, s), and thus by Lemma 4.32,
B(G, t) = B(G, s).

In light of this result, it suffices to study B(G, s) and C(G, s) for just s ∈ [0, 1]m, rather than
all s ∈ [0,∞)m: in particular, their values on the m faces of [0, 1]m that intersect (1, . . . , 1)
determine their values for all s ∈ [0,∞)m \ [0, 1]m.

Lemma 4.40. If S is a nonempty closed subset of [0, 1]m, c ∈ [1,∞), and C(G, s) ≤ c for
all s ∈ S, then C(G, s) ≤ c for all s in the (closed) convex hull of S.

Proof. We will use some additional measure-theoretic notation in the following proof, in
order to apply a multilinear variant of the Riesz-Thorin interpolation theorem (see, e.g., [8,
Theorem 2.7]).

Given a measure space (X,Σ, µ), a function f : X → C is Σ-simple if f = ∑n
i=1 ci1Ei for

some n ∈ {1, 2, . . .}, c1, . . . , cn ∈ C, and E1, . . . , En ∈ Σ.
Let (Xj)j be an m-tuple of sets; a function T :×j

(Xj → C) → C is a multilinear form
if, for any f ∈×j

(Xj → C) with component fk = cg + dh for c, d ∈ C and g, h : Xk → C,

T (f) = cT (f1, . . . , fk−1, g, fk+1, . . . , fm) + dT (f1, . . . , fk−1, h, fk+1, . . . , fm).

(T does not denote a torsion subgroup, as it does elsewhere.)
Now let ((Xj,Σj, µj))j be an m-tuple of measure spaces and let Sj denote the set of Σj-

simple functions fj : Xj → C. With this notation, a variant of the Riesz-Thorin interpolation
theorem states the following: given a multilinear form T and r, t ∈ [0, 1]m, if there exist
ρ, τ ∈ [0,∞) such that

|T (f)| ≤ ρ
∏
j

‖f‖
L1/rj (Xj ,Σj ,µj)

and |T (f)| ≤ τ
∏
j

‖fj‖L1/tj (Xj ,Σj ,µj)
for all f ∈×

j

Sj,

then, for any θ ∈ (0, 1), letting σ = ρθτ 1−θ and s = θr + (1− θ)t,

|T (g)| ≤ σ
∏
j

‖gj‖L1/sj (Xj ,Σj ,µj)
for all f ∈×

j

Sj.

To apply this result in the present setting of the discrete Abelian groups G,Gj, we will
consider the multilinear form T (f) = ∑

x∈G
∏
j fj(φj(x)), where f ∈×j

(Gj → C). Here we
abuse our notation to suppose, for all s ∈ [0,∞)m, F∗(G, s) ⊆×j

(Gj → C): this embedding
is possible because for each f ∈ F∗(G, s), each of its components fj <∞, so we can restrict
the codomain each fj from [0,∞] to [0,∞) and then embed [0,∞) in C.

We first show that |T (f)| ≤ c
∏
j ‖fj‖`1/sj (Gj)

for all f ∈×j
Sj and all s ∈ S. Consider any

s ∈ S and any f ∈×j
Sj. Suppose first that (|fj|)j /∈ F∗(G, s): this leads to the following

two cases. In the first case, some fj = 0, in which case |T (f)| = 0 = c
∏
j ‖fj‖`1/sj (Gj)

. In
the second case, some ‖fj‖`1/sj (Gj)

= ∞; assuming the first case does not apply, we have

46

that |T (f)| ≤ ∞ = c
∏
j ‖fj‖`1/sj (Gj)

. Otherwise, suppose that (|fj|)j ∈ F∗(G, s)∩×j
Sj and

apply the hypothesis C(G, s, (|fj|)j) ≤ C(G, s) ≤ c:

|T (f)| =
∣∣∣∣ ∑
x∈G

∏
j

fj(φj(x))
∣∣∣∣ ≤ ∑

x∈G

∏
j

|fj(φj(x))| = C(G, s, (|fj|)j)
∏
j

‖fj‖`1/sj (Gj)

≤ C(G, s)
∏
j

‖fj‖`1/sj (Gj)
≤ c

∏
j

‖fj‖`1/sj (Gj)
.

Thus, we confirm that |T (f)| ≤ c
∏
j ‖fj‖`1/sj (Gj)

for all f ∈×j
Sj and all s ∈ S.

Now let P denote the convex hull of S, the smallest convex set in Rm containing S: since
S ⊆ [0, 1]m is closed and bounded by hypothesis, it folows that P ⊆ [0, 1]m is also closed and
bounded, and moreover each of P ’s extreme points is an element of S. By Carathéodory’s
theorem, any point in P is a convex combination of at most m+ 1 extreme points. Since the
version of the Riesz-Thorin theorem above is stated in terms of pairwise convex combinations
rather than general convex combinations, we will apply it iteratively, in a sequence of at most
m+ 1 rounds, to obtain the conclusion for all s ∈ P .

The zeroth round was already established: |T (f)| ≤ c
∏
j ‖fj‖`1/sj (Gj)

for all f ∈×j
Sj at

each point s in P0 = S. For each round k ∈ {1, 2, . . .}, assume the induction hypothesis, that
the set Pk−1 obtained in the (k − 1)-th round includes all k-element convex combinations
of S, and that |T (f)| ≤ c

∏
j ‖fj‖`1/sj (Gj)

for all f ∈×j
Sj and all s ∈ Pk−1. For the

k-th round, we consider all pairwise convex combinations of r ∈ Pk−1 and t ∈ P0. By the
induction hypothesis (and base case), for all f ∈×j

Sj, |T (f)| ≤ c
∏
j ‖fj‖1/rj for all r ∈ Pk−1

and |T (f)| ≤ c
∏
j ‖fj‖`1/tj (Gj)

for all t ∈ P0. So, applying the Riesz-Thorin interpolation
theorem with T , r, t, and ρ = τ = c, we have that |T (f)| ≤ σ

∏
j ‖fj‖`1/sj (Gj)

with σ = c

for all f ∈×j
Sj at all points s on the line segment between r and t (i.e., s = θr + (1− θ)t

for θ ∈ [0, 1]). This can be repeated for all s equal to a pairwise convex combination of
r ∈ Pk−1 and t ∈ P0; the set Pk of all such s therefore includes all (k + 1)-element convex
combinations of S. After m + 1 rounds, we have established |T (f)| ≤ c

∏
j ‖fj‖`1/sj (Gj)

for
all f ∈×j

Sj and all s ∈ Pm = P .
Now, for any f ∈×j

Sj,

|T (f)| =
∣∣∣∣ ∑
x∈G

∏
j

fj(φj(x))
∣∣∣∣ ≤ ∑

x∈G

∏
j

|fj(φj(x))| = T ((|fj|)j),

which holds with equality when each fj ≥ 0. Therefore, for any s ∈ P and any f ∈
F∗(G, s) ∩×j

Sj,

C(G, s, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

=
∑
x∈G

∏
j fj(φj(x))∏

j ‖fj‖`1/sj (Gj)

= T (f)∏
j ‖fj‖`1/sj (Gj)

≤
c
∏
j ‖fj‖`1/sj (Gj)∏
j ‖fj‖`1/sj (Gj)

= c.

Since the simple functions in the discrete setting include all functions with finite supports,
applying Lemma 4.38 for each s ∈ P , we have that C(G, s, f) ≤ c for all f ∈ F∗(G, s); finally,
taking a supremum over F∗(G, s), we conclude that C(G, s) ≤ c for all s ∈ P .

47

4.5.3 Factorization of HBL Data
We recall the notation introduced in Section 4.4.5 regarding factor data: given an HBL datum
G = (G, (Gj), (φj)) and any H ≤ G, its restricted datum G|H = (H, (φj(H))j, (χj)j) has ho-
momorphisms χj : H → φj(H) : x 7→ φj(x) and its quotient datum G|H = (G/H, (Gj/φj(H))j, (ψj)j)
has homomorphisms ψj : G/H → Gj/φj(H) : x+H 7→ φj(x) + φj(H).

Lemma 4.41. If s ∈ [0,∞)m and H ≤ G, then A(G|H , s) ≤ A(G, s), with equality when
H∗f (H) = H∗f (G).

Proof. Generally H∗f (H) ⊆ H∗f (G), and for all K ∈ H∗f (H), |χj(K)| = |φj(K)|.

Lemma 4.42. If H ∈ H∗f (G), s ∈ [0,∞)m, and A(G|H , s,H) = A(G|H , s), then A(G|H , s)A(G|H , s) ≤
A(G, s).

Proof. Every element of H∗f (G/H) can be written as K/H for some H ≤ K ∈ H∗f (G) (i.e.,
some K ∈ H∗f (G) such that H ≤ K); likewise, for each j, each element of H∗f (φj(G)/φj(H))
can be written as φj(K)/φj(H) = ψj(K/H) for some H ≤ K ∈ H∗f (G). By Lagrange’s
theorem, |K/H| = |K|/|H|, and, for each j, |φj(K)/φj(H)| = |φj(K)|/|φj(H)|. So, for any
H ≤ K ∈ H∗f (G),

A(G, s) ≥ A(G, s,K) = |K|∏
j |φj(K)|sj = |H| · |K/H|∏

j(|φj(H)| · |φj(K)/φj(H)|)sj

=
 |H|∏

j |χj(H)|sj

 |K/H|∏
j |ψj(K/H)|sj

 = A(G|H , s,H)A(G|H , s,K/H)

= A(G|H , s)A(G|H , s,K/H).

Repeating for each H ≤ K ∈ H∗f (G), the value A(G|H , s,K/H) for each K/H ∈ H∗f (G)
appears on the right-hand side at least once, so taking a supremum over H ≤ K ∈ H∗f (G),
the preceding inequality becomes A(G, s) ≥ A(G|H , s)A(G|H , s).

Lemma 4.43. If H ≤ G and s ∈ [0,∞)m, then C(G, s) ≤ C(G|H , s)C(G|H , s).

Proof. First we suppose, without loss of generality, that s ∈ (0,∞)m, by application of
Lemma 4.37.

Consider any f ∈ F∗(G, s). First consider the quotient datum G|H . Define the m-function
h componentwise by

hj : Gj/φj(H)→ [0,∞) : y + φj(H) 7→
(∑
z∈φj(H)

fj(z + y)1/sj
)sj

;

we now check that each component hj is a function of the coset y + φj(H), meaning that
it is independent of the choice of the representative y ∈ Gj: considering any other possible
representative w ∈ Gj, we have that v = w − y ∈ φj(H), so

hj(w + φj(H))1/sj =
∑

u∈φj(H)
fj(u+ w)1/sj =

∑
u∈φj(H)

fj(u+ v + y)1/sj

=
∑

z−v∈φj(H)
fj(z + y)1/sj =

∑
z∈φj(H)

fj(z + y)1/sj = hj(y + φj(H))1/sj ,

48

since z − v ∈ φj(H) if and only if z ∈ φj(H). Moreover,

‖hj‖
1/sj
`1/sj (Gj/φj(H))

=
∑

y+φj(H)∈Gj/φj(H)

((∑
z∈φj(H)

fj(z + y)1/sj
)sj)1/sj

=
∑

y+φj(H)∈Gj/φj(H)

∑
z∈φj(H)

fj(z + y)1/sj =
∑
y∈Gj

fj(y)1/sj = ‖fj‖1/sj
`1/sj (Gj)

,

because, letting Y denote the set of coset representatives y appearing in the summation
subscript y+φj(H) ∈ Gj/φj(H), the map Y ×φj(H)→ Gj : (y, z) 7→ y+ z is a bijection. It
follows that h ∈ F∗(G|H , s), thus by definition,

C(G|H , s, h) =
∑

x+H∈G/H

∏
j

hj(ψj(x+H))∥∥∥hj∥∥∥
`1/sj (Gj/φj(H))

Next we consider the restricted datum G|H . For each w ∈ G, define the m-function g(w)

with g
(w)
j : φj(H) → [0,∞] : y 7→ fj(y + φj(w)). For each j, ‖g(w)

j ‖`1/sj (φj(H)) ≤ ‖fj‖`1/sj (Gj)
,

so there are two mutually exclusive cases. Either g(w)
j = 0 for some j, or g(w) ∈ F∗(G|H , s).

In the former case, ∑x∈H
∏
j g

(w)(φj(x)) = 0; in the latter case,

C(G|H , s, g(w)) =
∑
x∈H

∏
j

g
(w)
j (χj(x))

‖g(w)
j ‖`1/sj (φj(H)

=
∑
x∈H

∏
j

fj(φj(x) + φj(w)))(∑
y∈φj(H) fj(y + φj(w))1/sj

)sj
=
∑
x∈H

∏
j

fj(φj(x+ w))
hj(ψj(w +H)) .

Now allowing v to vary over a set of representatives of the cosets v +H ∈ G/H,∑
x∈G

∏
j

fj(φj(x)) =
∑

v+H∈G/H

∑
x∈H

∏
j

fj(φj(x+ v))

=
∑

v+H∈G/H
g(v)∈F∗(G|H ,s)

C(G|H , s, g(v)) ·
∏
j

hj(ψj(v +H))

≤ C(G|H , s)
∑

v+H∈G/H
g(v)∈F∗(G|H ,s)

∏
j

hj(ψj(v +H))

≤ C(G|H , s)
∑

x+H∈G/H

∏
j

hj(ψj(x+H))

= C(G|H , s)C(G|H , s, h)
∏
j

‖hj‖`1/sj (Gj/φj(H))

≤ C(G|H , s)C(G|H , s)
∏
j

‖hj‖`1/sj (Gj/φj(H))

= C(G|H , s)C(G|H , s)
∏
j

‖fj‖`1/sj (Gj)
,

so C(G, s, f) ≤ C(G|H , s)C(G|H , s). The conclusion is obtained by repeating this argument
for each f ∈ F∗(G, s) and observing the same conclusion each time.

49

4.5.4 When G Is Finite
The following three results, in tandem with Lemma 4.42 above, complete our summary of
the machinery introduced in [14] to precisely determine B(G, s), C(G, s) when G is a finite
Abelian group (i.e., a torsion group). In Section 4.6, we synthesize these results with the
results from [15] for torsion-free Abelian groups to address the general case. Here we follow
[14] and restrict s ∈ [0, 1]m; later, in the proof of Theorem 4.2, we apply Lemmas 4.27 and
Lemma 4.39 to address the case of s ∈ [0,∞)m.

Lemma 4.44. If |G| <∞ and s ∈ [0, 1]m with all sj = 0 except one sk ≥ 0, then A(G, s) =
A(G, s, G) = |G|1−sk | ker(φk)|sk = C(G, s).

Proof. Let K = ker(φk) and consider any H ≤ G (noting that H,K,G ∈ H∗f (G)):

A(G, s,H) = |H|∏
j |φj(H)|sj = |H|

|φk(H)|sk = |H|(
|H|
|H∩K|

)sk
= |H|1−sk |H ∩K|sk ≤ |G|1−sk |H ∩K|sk ≤ |G|1−sk |K|sk = A(G, s, G),

so A(G, s) = A(G, s, G) = |G|1−sk |K|sk , the two equalities in the conclusion.
Now consider any f ∈ F∗(G, s):

C(G, s, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

=
∑
x∈G

∏
j 6=k

fj(φj(x))
‖fj‖`∞(Gj)

 fk(φj(x))
‖fk‖`1/sk (Gk)

≤
∑
x∈G

fk(φj(x))
‖fk‖`1/sk (Gk)

,

and, letting V denote a set of representatives of the cosets v +K ∈ G/K,∑
x∈G

fk(φk(x)) =
∑
v∈V

∑
u∈K

fk(φk(u+ v)) =
∑
v∈V
|K|fk(φk(v)) = |K|‖fk|φk(V)‖`1(φk(V))

≤ |K||φk(V)|1−sk‖fk|φk(V)‖`1/sk (φk(V)) ≤ |K||φk(V)|1−sk‖fk‖`1/sk (Gk)

= |K||φk(G)|1−sk‖fk‖`1/sk (Gk) = |K|
(
|G|
|K|

)1−sk
‖fk‖`1/sk (Gk)

= |K|sk |G|1−sk‖fk‖`1/sk (Gk) = A(G, s)‖fk‖`1/sk (Gk),

so C(G, s, f) ≤ A(G, s) for all f ∈ F∗(G, s), thus C(G, s) ≤ A(G, s). By Lemma 4.31
A(G, s) ≤ C(G, s), so we conclude A(G, s) = C(G, s).

Lemma 4.45. If |G| < ∞ and s ∈ [0, 1]m with all sj ∈ {0, 1} except one sk ∈ [0, 1], then
A(G, s) = C(G, s).

Proof. Let I = {j 6= k | sj = 1}. Let H = ⋂
i∈I ker(φi) and consider the factor data G|H and

G|H .
First we study the restricted datum G|H and show that A(G|H , s) = C(G|H , s). By

Lemma 4.37, C(G|H , s) ≤ C((ψj)j 6∈I , (sj)j 6∈I). Now apply Lemma 4.44 to (χj)j 6∈I and (sj)j 6∈I :

A((χj)j 6∈I , (sj)j 6∈I , H) = A((χj)j 6∈I , (sj)j 6∈I) = C((χj)j 6∈I , (sj)j 6∈I) = |H|1−sk | ker(φk)|sk .

50

Note that∏i∈I |φi(H)|si = 1, soA((χj)j 6∈I , (sj)j 6∈I , H) = A(G|H , s,H) andA((χj)j 6∈I , (sj)j 6∈I) =
A(G|H , s). Therefore, applying Lemma 4.37,

A(G|H , s) = A((χj)j 6∈I , (sj)j 6∈I) = C((χj)j 6∈I , (sj)j 6∈I) ≥ C(G|H , s);

by Lemma 4.31, A(G|H , s) ≤ C(G|H , s), so we must have that A(G|H , s) = C(G|H , s).
Next we study the quotient datum G|H and show that A(G|H , s) = C(G|H , s). Since

H = ⋂
i∈I ker(φi), it follows that ⋂i∈I ker(ψi) = {0}. By Lemma 4.36, C((ψi)i∈I , (si)i∈I) ≤ 1.

By Lemma 4.37, C(G|H , s) ≤ C((ψi)i∈I , (si)i∈I). By Lemma 4.31, 1 ≤ A(G|H , s) ≤ C(G|H , s),
so A(G|H , s) = C(G|H , s).

Since we concluded above that A(G|H , s,H) = A(G|H , s), by Lemma 4.42, A(G, s) ≥
A(G|H , s)A(G|H , s). By Lemma 4.43,

C(G, s) ≤ C(G|H , s)C(G|H , s) = A(G|H , s)A(G|H , s) ≤ A(G, s);

By Lemma 4.31, A(G, s) ≤ C(G, s), so it must be that A(G, s) = C(G, s).

Lemma 4.46. If |G| <∞ and s ∈ [0, 1]m, then A(G, s) = C(G, s).

Proof. By Lemma 4.31, we have that A(G, s) ≤ C(G, s), so it remains to show the reverse
inequality C(G, s) ≤ A(G, s). We do so by induction on |G|,m ∈ {1, 2, . . .}. In the base
cases with |G| = 1, by Lemma 4.31, we have that C(G, s) ≤ |G| = 1 ≤ A(G, s). In the base
cases with m = 1, by Lemma 4.44, we have that A(G, s) = C(G, s).

Now we suppose |G| > 1 and m > 1, and assume the induction hypotheses for all HBL
data G ′ with |G′| < |G| and m′ < m, for all s ∈ [0, 1]m′ . We will invoke the induction
hypotheses in three scenarios; after concluding the proof in these cases, we will show how
the general case reduces to one of these three.

In the first scenario, some component sk = 0: by the induction hypotheses and Lemma
4.37, A(G, s) = A((φj)j 6=k, (sj)j 6=k) = C((φj)j 6=k, (sj)j 6=k) = C(G, s).

In the second scenario, some component sk = 1; letK = ker(φk), let G|K = (K, (φj(K))j, (χj)j)
be the restricted datum, let G ′|K = (K, (φj(K))j 6=k, (χj)j 6=k) be G|K with its k-th compo-
nent omitted, and let V be a set of representatives of the cosets v + K ∈ G/K. For each
w ∈ G, define g(w) with components g(w)

j : φj(K) → [0,∞] : y 7→ fj(y + φj(w)). For each j,
‖g(w)

j ‖`1/sj (φj(K)) ≤ ‖fj‖`1/sj (Gj)
, so there are two mutually exclusive cases. Either g(w)

j = 0
for some j, or g(w) ∈ F∗(G|K , s). In the former case, ∑x∈K

∏
j g

(w)
j (φj(x)) = 0. In the latter

case, (g(w)
j)j 6=k ∈ F∗(G ′|K , (sj)j 6=k). For any f ∈ F∗(G, s),

C(G, s, f) =
∑
x∈G

∏
j

fj(φj(x))
‖fj‖`1/sj (Gj)

=
∑
v∈V

∑
x∈K

∏
j

fj(φj(v + x))
‖fj‖`1/sj (Gj)

=
∑
v∈V

g(v)∈F∗(G|K ,s)

∑
x∈K

∏
j

g
(v)
j (φj(x))
‖fj‖`1/sj (Gj)

=
∑
v∈V

g(v)∈F∗(G|K ,s)

fk(φk(v))
‖fk‖`1(Gk)

∑
x∈K

∏
j 6=k

g
(v)
j (φj(x))
‖fj‖`1/sj (Gj)

≤
∑
v∈V

g(v)∈F∗(G|K ,s)

fk(φk(v))
‖fk‖`1(Gk)

∑
x∈K

∏
j 6=k

g
(v)
j (φj(x))

‖g(v)
j ‖`1/sj (φj(K))

≤
∑
v∈V

g(v)∈F∗(G|K ,s)

fk(φk(v))
‖fk‖`1(Gk)

C(G ′|K , (sj)j 6=k).

51

Now by the induction hypothesis, we have that C(G ′|K , (sj)j 6=k) = A(G ′|K , (sj)j 6=k). More-
over, since φk(K) = {0}, applying Lemma 4.37 with m-functions f ∈ F∗(G|K , s) such that
fj = 1φj(H) for some H ∈ H∗f (K), thus taking a supremum of the conclusion over all such
m-functions, we have that A(G ′|K , (sj)j 6=k) = A(G|K , s). Lastly, by Lemma 4.41, we have
that A(G|K , s) ≤ A(G, s). Therefore,

C(G, s, f) ≤ A(G, s)
∑
v∈V

g(v)∈F∗(G|K ,s)

fk(φk(v))
‖fk‖`1(Gk)

≤ A(G, s)
∑
v∈V

fk(φk(v))
‖fk‖`1(Gk)

≤ A(G, s) ‖fk‖1

‖fk‖`1(Gk)
= A(G, s),

since φk|V is an injection. The conclusion C(G, s) ≤ A(G, s) follows by taking a supremum
over all f ∈ F∗(G, s).

In the third scenario, A(G, s,K) ≥ 1 for some {0} < K < G. This implies the existence
of some {0} < H < G such that A(G, s,H) = A(G, s), as we now show. If A(G, s,K) =
A(G, s), then we pick H = K. Otherwise, 1 ≤ A(G, s,K) < A(G, s). Since {0} < K <
G and |G| < ∞, H = argmax0<H<GA(G, s,H) is nonempty and finite. Each H ∈ H
maximizes A(G|H , s, F) = A(G, s, F) over all {0} ≤ F ≤ H, including F = {0}, since
A(G, s, {0}) = 1 ≤ A(G, s,K). Thus, for any H ∈ H, A(G, s,H) = A(G, s). Considering H
obtained in either case, since A(G, s,H) = A(G|H , s,H) ≤ A(G|H , s) ≤ A(G, s), we have that
A(G|H , s,H) = A(G|H , s), so by Lemma 4.43, the induction hypotheses, and Lemma 4.42,

C(G, s) ≤ C(G|H , s)C(G|H , s) = A(G|H , s)A(G|H , s) ≤ A(G, s).

We now show that it suffices to consider just the preceding three scenarios. For each
a ∈ [1,∞), define P (a) = {t ∈ [0, 1]m | A(G, t) ≤ a}. Since 1 ≤ A(G, s) ≤ |G| by Lemma
4.31 and |G| < ∞ by hypothesis, s ∈ P (A(G, s)), thus C(G, s) ≤ A(G, s) is implied by the
more general statement, C(G, t) ≤ A(G, s) for all t ∈ P (A(G, s)). More generally still, we
will show that for all a ∈ [1,∞) and all t ∈ P (a), C(G, t) ≤ a. For each a ∈ [1,∞), note
that P (a) is a closed and bounded convex set, so by Carathéodory’s theorem, it equals its
extreme points’ convex hull; then, by Lemma 4.40, if C(G, t) ≤ a for all extreme points t of
P (a) then it holds for all t ∈ P (a).

Consider any a ∈ [1,∞); if P (a) 6= ∅, examine any of its extreme points t. Since t ∈ P (a),
A(G, t) ≤ a. If any of the preceding three scenarios apply, then we conclude C(G, t) ≤
A(G, t) ≤ a. Thus, it remains to treat the scenario where t ∈ (0, 1)m and A(G, t, H) <
1 ≤ A(G, t) for all {0} < H < G. In particular, A(G, t) = max(A(G, t, {0}), A(G, t, G)) =
max(1, A(G, t, G)).

We first show that A(G, t) = 1 > A(G, t, G). Suppose towards a contradiction that
A(G, t) = A(G, t, G). By the definition of P (a), we see that each s ∈ P (a) satisfies the
following finite system of linear inequalities (taking logarithms of A(G, s) ≤ a):

0 ≤ sj ≤ 1 for all j, ln |H| −
∑
j

sj ln |φj(H)| ≤ ln a for all {0} 6= H ≤ G.

Under the present hypotheses regarding t, since A(G, s) is a continuous function of s ∈
[0,∞)m, for all s ∈ P (a) in a neighborhood of t, all of these inequalities hold strictly except
possibly the one induced by H = G (just in case A(G, t) = a). Therefore, t is contained in

52

at most one of the hyperplanes that bound P (a): this contradicts extremality of t, because
P (a) is defined by at least m ≥ 2 and at most finitely many linear inequalities.

Therefore, A(G, t, G) < A(G, t) = max(1, A(G, t, G)). That is, A(G, t, G) < 1 = A(G, t).
Note that for all H ≤ G, A(G, αt,H) is a continuous nonincreasing function of α ∈ [0, 1],
so A(G, αt) is too. For all {0} < H ≤ G, A(G, 0 · t,H) > 1 > A(G, 1 · t,H). Thus, by
continuity and (anti-) monotonicity, for all {0} < H ≤ G, there exists αH ∈ (0, 1) such
that A(G, αHt,H) = 1. Let K be the set of all subgroups {0} < K ≤ G which maximize
αK : since G has finitely many subgroups, K 6= ∅ (i.e., this maximum is well defined), and it
follows that A(G, αKt) = 1 = A(G, t). Moreover, we can find at least one K ∈ K such that
K < G: to show this, suppose towards a contradiction that none exist. Then, abbreviating
r = αGt, we must have that A(G, r, G) = A(G, r) = 1 ≤ a, i.e., r ∈ P (a). By Lemma
4.32, P (a) also contains every r ≤ q ∈ [0, 1]m. By construction, r ≤ t, and moreover some
component rk < tk since αG ∈ (0, 1). Fixing qj = tj for all j 6= k and qk = θrk + (1− θ)1 for
some θ ∈ [0, 1], we observe that q ∈ P (a) for any θ ∈ [0, 1]. Since t ∈ (0, 1)m is an extreme
point of P (a), rk < tk < 1, so there exists an open line segment in P (a) containing t, defined
by q with parameter θ ∈ (0, 1), contradicting extremality of t. In light of this contradiction,
we have shown that there exists some {0} < K < G such that A(G, αKt,K) = A(G, αKt).
Thus, the third scenario applies (replacing s by αKt), and we conclude

C(G, t) ≤ C(G, αKt) ≤ A(G, αKt) = A(G, t) = 1 ≤ a.

Repeating this argument and obtaining C(G, t) ≤ a for each extreme point t of P (a) for
each a ∈ [1,∞), we confirm that C(G, s) ≤ A(G, s). As mentioned above, the conclusion
A(G, s) = C(G, s) follows from Lemma 4.31.

4.6 Relating P with A, B, and C

Now we connect the preceding results in order to complete the proof of Theorem 4.2; Theorem
4.1 follows as a special case. We suppose again that G is any HBL datum.

Lemma 4.47. If s ∈ P(G) ∩ [0, 1]m then A(G, s) = C(G, s).

Proof. We first show that rank(⋂j ker(φj)) = 0. If rank(⋂j ker(φj)) > 0, then by Lemma
4.11, P(G) = ∅, a contradiction to the hypothesis s ∈ P(G).

We first consider the special case where G is finitely generated and torsion-free (T (G) =
{0}), and treat the general case afterward. Applying Lemmas 4.31 and 4.33 when G is
torsion-free, we see that 1 ≤ A(G, s) ≤ |T (G)| = 1, so it suffices to show that C(G, s) = 1.
We know that C(G, s) ≥ 1 by Lemma 4.31, so it remains to show that C(G, s) ≤ 1, which
we will do by induction on rank(G).

In the base case rank(G) = 0, since G is finitely generated, G = {0}, i.e., |G| = 1;
therefore, 1 ≤ C(G, s) ≤ |G| by Lemma 4.31.

Now suppose that rank(G) > 0 and assume the induction hypothesis, that the conclusion
holds for all HBL data G ′ with rank(G′) < rank(G). By Lemma 4.40, it suffices to show
that C(G, s) ≤ 1 at the extreme points of P(G)∩ [0, 1]m. By Lemma 4.29, if s is an extreme
point of P(G) ∩ [0, 1]m, there are two cases, not necessarily exclusive.

53

In the first case, s ∈ {0, 1}m. Let I = {j | sj = 1}; note that I 6= ∅, since otherwise
1 ≤ rank(G) ≤ ∑j sj rank(φj(G)) = 0, contradicting the hypothesis that s ∈ P(G). Letting
K = ⋂

i∈I ker(φi) ∈ H∗fg(G) = H∗N(G), since s ∈ P(G),

rank(K) ≤
∑
j

sj rank(φj(K)) =
∑
i∈I

rank(φi(K)) = 0,

so rank(K) = 0, i.e., K = {0}. By Lemmas 4.37 and 4.36,

C(G, s) = C((φi)i∈I , (si)i∈I) ≤ |K| = 1.

In the second case, there exists H ∈ H∗N(G) = H∗fg(G) such that 0 < rank(H) =∑
j sj rank(φj(H)) < rank(G). By Lemma 4.25, s ∈ P(G|H) ∩ P(G|H). Apply Lemma

4.1 to obtain a torsion-free F ∈ H∗fg(G) such that G/F is finitely generated and torsion-
free, rank(F) = rank(H), and rank(φj(F)) = rank(φj(H)) for each j. Since s ∈ [0, 1]m,
0 < rank(F), rank(G/F) < rank(G), and both F and G/F are finitely generated and torsion-
free, applying Lemma 4.43 and the induction hypotheses for G|F and G|F ,

C(G, s) ≤ C(G|F , s)C(G|F , s) ≤ 1 · 1 = 1.

This concludes the proof in the case where G is finitely generated and torsion free.
Now consider the more general case where G is still finitely generated but not necessarily

torsion free; our task is to show that C(G, s) ≤ A(G, s). Since G is finitely generated,
H ∈ H∗f (G) if and only if H ≤ T (G). Therefore, A(G|T (G), s) = A(G, s) by Lemma 4.41, and
then applying Lemma 4.46, A(G|T (G), s) = C(G|T (G), s). Since G/T (G) is finitely generated
and torsion-free, by the argument in the previous case, A(G|T (G), s) = C(G|T (G), s) = 1, and
so applying Lemma 4.43,

C(G, s) ≤ C(G|T (G), s)C(G|T (G), s) = A(G|T (G), s) · 1 = A(G, s).

This concludes the proof in the case where G is finitely generated.
Now we treat the most general case, where G is not necessarily finitely generated or

torsion-free; again, our task is to show that C(G, s) ≤ A(G, s). By Lemma 4.38, it suffices
to show that C(G, s, fE) ≤ A(G, s) for all E ∈ E∗(G) and all fE ∈ F∗(G, s) where each
supp(fEj) = φj(E). Pick any E ∈ E∗(G), let GE ≤ G be the subgroup of G generated by E,
and examine the restricted datum G|GE . By Lemma 4.24, s ∈ P(G) implies s ∈ P(G|GE),
so by applying this result in the finitely generated case (already established), we have that
C(G|GE , s) ≤ A(G|GE , s), and moreover A(G|GE , s) ≤ A(G, s) by Lemma 4.41. For any
fE ∈ F∗(G, s) where each supp(fEj) = φj(E), it follows that (fEj |φj(GE))j ∈ F∗(G|GE , s),
therefore,

C(G, s, fE) = C(G|GE , s, (fEj |φj(GE))j) ≤ C(G|GE , s) ≤ A(G, s);

thus we have C(G, s) ≤ A(G, s) by taking a supremum over all E ∈ E∗(G) and all associated
m-functions fE ∈ F∗(G, s).

Lemma 4.48. For each s ∈ [0,∞)m, B(G, s) <∞ implies s ∈ P(G).

54

Proof. The key step of this proof is the following simple observation regarding free Z-
modules. Let H,K be free Z-modules with finite ranks h, k and let φ : H → K be a surjective
Z-module homomorphism (so k ≤ h). Pick any Z-bases of H and K and let F ∈ Zk×h be the
(rank-k) matrix of φ with respect to these Z-bases. Consider any element of H, represented
as a column vector x ∈ Zh in H’s chosen Z-basis, and the column vector y ∈ Zk (representing
an element of K) obtained by matrix-vector multiplication y = F ·x, defined componentwise
for each i ∈ {1, . . . , k} by yi = ∑h

j=1 Fi,jxj. We have that

kmax
i=1
|yi| =

kmax
i=1

∣∣∣∣ h∑
j=1

Fi,jxj

∣∣∣∣ ≤ kmax
i=1

(h∑
j=1
|Fi,jxj|

)
≤
(

kmax
i=1

h∑
j=1
|Fi,j|

)
hmax
j=1
|xj|,

Let F ∗ = maxki=1
∑h
j=1 |Fi,j|; observe that F ∗ depends only on φ and the chosen Z-bases

of H and K. For each N ∈ {1, 2, . . .}, let EN = {1, . . . , N}h denote a set of Nh column
vectors representing elements of H in its chosen Z-basis. For each x ∈ EN , we have that
maxhj=1 |xj| ≤ N . It follows that maxki=1 |yi| ≤ F ∗N . Since this holds for all y ∈ φ(EN), we
have that φ(EN) ⊆ {−F ∗N, . . . , F ∗N}k, i.e., |φ(EN)| ≤ (2F ∗ + 1)kNk.

Now we apply this observation for each homomorphism φj in the present setting. Consider
any H ∈ H∗N(G), and first consider the case where H is finitely generated and torsion-free.
As a torsion-free finitely generated Abelian group, by defining multiplication in terms of
addition, H becomes a free Z-module. Letting r = rank(H) <∞, fix a Z-basis e1, . . . , er of
H and for each N ∈ {1, 2, . . .}, define EN = {∑r

i=1 nei | n ∈ {1, . . . , N}}, so |EN | = N r.
Now consider each homomorphism φj in turn. Letting Hj = φj(H), we see that like H,

Hj is finitely generated and torsion-free and so can be treated as a free Z-module. Defining
χj : H → Hj : x 7→ φj(x) to be a surjective Z-module homomorphism, we can apply the
preceding argument: therefore, there exists a constant Aj ∈ [0,∞) independent of N such
that |χj(EN)| ≤ AjN

rj , where rj = rank(Hj). Since the ranks of H,Hj are same when
interpreting H,Hj as Abelian groups or as Z-modules, and since χj(EN) = φj(EN), we have
that |φj(EN)| ≤ AjN

rank(φj(H)). The hypothesis B(G, s) <∞ implies that B(G, s, EN) <∞
for all N ∈ {1, 2, . . .}. In particular, there exists a constant B ∈ (0,∞) such that |EN | ≤
B
∏
j |φj(EN)|sj , so

N rank(H) = |EN | ≤ B
∏
j

|φj(EN)|sj ≤ B
∏
j

AjN
sj rank(φj(H)) = (B

∏
j

Aj)N
∑

j
sj rank(φj(H)).

Supposing N ≥ 2 and taking base-N logarithms, we have that rank(H) ≤ logN(B∏j Aj) +∑
j sj rank(φj(H)). Since B,Aj are independent of N , taking the limit as N → ∞ we have

that rank(H) ≤ ∑j sj rank(φj(H)).
Now consider the case where H ∈ H∗N(G) is neither finitely generated nor torsion-free:

pick any rank(H) independent elements of H and examine the subgroup K of H they gen-
erate: K is finitely generated, torsion free, and rank(H) = rank(K), so by Lemma 4.3,
rank(φj(H)) = rank(φj(K)) for each j. We can thus apply the argument above to K and
obtain the same conclusion for H.

Repeating this argument for all H ∈ H∗N(G), we confirm that s ∈ P(G).

At this point, we are ready to assemble the preceding lemmas to prove Theorem 4.2: all
that remains is to handle the cases of s ∈ P(G) such that s 6∈ [0, 1]m.

55

Proof of Theorem 4.2. If s ∈ [0, 1]m, then we apply Lemma 4.47 to show that s ∈ P(G) ∩
[0, 1]m implies A(G, s) = C(G, s); therefore by Lemma 4.31, B(G, s) = C(G, s) = A(G, s).
Otherwise, letting r = (min(1, sj))j, we apply Lemma 4.39 to show that B(G, s) = B(G, r)
and C(G, s) = C(G, r), and apply Lemma 4.5 to show that r ∈ P(G); since r ∈ [0, 1]m
as well, we conclude B(G, s) = C(G, s) = A(G, r) by the preceding case. This gives the
first conclusion of Theorem 4.2. To show the second conclusion, for any s ∈ [0,∞)m, apply
Lemma 4.48 to show that B(G, s) <∞ implies s ∈ P(G).

Finally, Theorem 4.1 follows as a special case of the first conclusion of Theorem 4.2.

Proof of Theorem 4.1. In this setting, we have the HBL datum G = (Zr, (Zrj)j, (φj)j); since
Zr is torsion-free, A(G, s) = 1 for all s ∈ [0,∞)m. Therefore, by Theorem 4.2, if s ∈ P(G),
then B(G, s) = 1.

4.7 Computing P
Now we address the decidability of the hypothesis of Theorem 4.2, that is, given an HBL
datum G and s ∈ [0,∞)m, to decide whether s ∈ P(G) = P(G,H∗N(G)). We will only address
the case when r = rank(G) < ∞, in order to exploit Lemma 4.9; we comment briefly on
the general case after concluding the proof of Theorem 4.3. Then, in Section 4.7.1, we prove
Theorem 4.4.

By Lemma 4.23, since r < ∞, it suffices to compute P(G,H∗fg(H)) for any H ∈ H∗fg(G)
with rank(H) = r; moreover, there is no loss of generality to suppose H is torsion-free.
Therefore, there is no loss of generality hereafter to suppose that G is finitely generated and
torsion-free. In particular, there is no loss of generality to suppose G = Zr; therefore, G’s
elements (r-tuples over Z) and its action (componentwise addition) are computable.

When convenient, we will treat G and its subgroups as Z-modules and use module-
theoretic terminology; multiplication, defined in terms of addition, is also computable. The
subgroups of G as Z-modules are finitely generated and torsion-free, thus free (admit Z-
bases), and their ranks as Z-modules coincide with their ranks as Abelian groups, so we will
not distinguish the two types of rank notationally. For computational reasons, we prefer to
work in coordinates: in particular, we assume the standard ordered Z-basis on Zr, meaning
that each element of G, an r-tuple over Z, coincides with its coordinate representation, a
column r-vector over Z. Each rank-h subgroup H of G is (non-uniquely) represented by a
Z-basis matrix, an r-by-h matrix over Z that horizontally concatenates the column vectors of
some ordered Z-basis of H; we will often use the same symbol H to denote both a subgroup
and any of its Z-basis matrices.

We represent the homomorphisms φj by their kernels Kj ≤ G, which we assume are
provided in Z-basis matrix representation. To see that the codomains Gj are truly irrelevant
to the task at hand, rewrite (4.8) in the present notation, rank(H) ≤ ∑

j sj rank(φj(H)) =∑
j sj(rank(H)− rank(H ∩Kj)).

We will compute the intersection H = H1 ∩ H2 of any two subgroups by solving the
system of Z-linear equations H1x1 = H2x2 over Z. In more detail, letting h1, h2, h be the
ranks of H1, H2, H, reduce the matrix [H1,−H2] = TU to (column-style) Hermite normal
form, where T ∈ Zr×(h1+h2) is rank-(h1 + h2 − h) and zero outside its first h1 + h2 − h

56

columns and U ∈ Z(h1+h2)×(h1+h2) is unimodular, represented as a sequence of elementary
column operations. Compute U−1 by applying the reverse sequence of elementary operations
to an identity matrix and let F ∈ Z(h1+h2)×h be the last h columns of U−1; it follows that
[H1,−H2]F = 0r×h. Split F = [F T

1 , F
T
2]T so F1 is the top h1 rows and F2 is the bottom h2

rows of F , and finally set H = H1F1 = H2F2 ∈ Zr×h.
We now introduce some notation for inequalities of the form h ≤ ∑

j sjhj, defined by
parameters h, hj ∈ Z, which constrain particular Z-linear combinations of the unknowns
sj ∈ R. We encode such a constraint as (h, (hj)j) ∈ Z× Zm.

Lemma 4.49. For any m ∈ {1, 2, . . .}, given a closed, convex subset P ⊆ Rm defined by a
finite set of constraints on s ∈ Rm, each of the form h ≤ ∑

j sjhj and encoded as (h, (hj)j),
there exists an algorithm that returns the set of (Q-valued) extreme points of the convex
polytope P ∩ [0, 1]m.

Proof. The following is a variation on a standard linear programming problem.
To enforce that s ∈ [0, 1]m, we augment the given set with the 2m inequalities, (0, ej)

and (−1,−ej) for each j. Now index the inequalities by α ∈ A, yielding the nonempty, finite
set {(rα, (rα,j)j) | α ∈ A}.

Any t ∈ Rm is an extreme point of P ∩ [0, 1]m if and only if (1) rα ≤
∑
j tjrα,j for all

α ∈ A and (2) there exists B ⊆ A of size |B| = m such that the m-tuples (rβ,j)j, β ∈ B, are
Z-linearly independent and rβ = ∑

j tjrβ,j for all β ∈ B. (Condition (1) enforces that t ∈ P
and condition (2) enforces that t lies on m Z-linearly independent bounding hyperplanes.)
It follows that for each extreme point t of P ∩ [0, 1]m, each component tj ∈ Q.

Identify the maximal subset B of the finite set {X ⊂ A | |X| = m} such that for
each B ∈ B, the m-tuples (rβ,j)j, β ∈ B, are Z-linearly independent. We test Z-linear
independence by defining R ∈ Zm×m with entries Rj,β = rβ,j, reducing R = UT to (row-
style) Hermite normal form where U ∈ Zm×m is unimodular and the number of leading
nonzero rows of T ∈ Zm×m equals m if and only if (rβ,j)j are Z-linearly independent. For
each B ∈ B, the system of m Z-linear equations rβ = ∑

j tB,jrβ,j, β ∈ B in the m unknowns
(tB,j)j thus has a unique solution over Q, which we compute by inverting R over Q using
Gauss-Jordan elimination and applying R−1 to the column vector (rβ)β. We then check
whether, for all α ∈ A \ B, rα ≤

∑
j tB,jrα,j, by further rational arithmetic; if so, augment

the set of extreme points, initially ∅, with t = (tB,j)j.

Another task that arises is enumerating the subgroups of G = Zr.

Lemma 4.50. Given r, n ∈ N, there exists an algorithm that outputs the first n elements of a
fixed enumeration (independent of n, repetitions allowed) of the subgroups of Zr, represented
as basis matrices.

Proof. If n = 0, terminate with the empty tuple (). Otherwise, if r = 0, terminate with the
singleton tuple ({0}), where {0} is represented as the empty matrix []. Otherwise, consider
any (fixed) computable surjective function A : {1, 2, . . .} → Zr×r: at least one such function
(algorithm) exists since Zr×r is countable. Consider any i ∈ {1, 2, . . .}, not necessarily i ≤ n.
The matrix Ai is rank-ri and its columns, interpreted as elements of G, span (over Z) a
rank-ri subgroup Hi ≤ G. Moreover, Hi is a surjective function from i ∈ {1, 2, . . .} to

57

the subgroups Hi ≤ G, i.e., every subgroup of G is represented in the enumeration (Ai)i.
Returning (H1, . . . , Hn) thus satisfies the conclusion.

It remains to show how to reduce each Ai to a Z-basis matrix of the associated subgroup
Hi: reduce each Ai = TU to (column-style) Hermite normal form where T ∈ Zr×r is rank-ri
and zero past its first ri columns and U ∈ Zr×r is unimodular, and let be the Hi ∈ Zr×ri be
the first ri columns of T (the nonzero ones).

Note that a subgroup can appear more than once in the enumeration. Also note that this
algorithm is generally non-halting, outputting subgroups indefinitely. However, Lemma 4.9
tells us that after some finite number of steps, the output will contain some (finite) subset
H of subgroups such that P(G) = P(G,H). Thus, our strategy is to enumerate subgroups
one-by-one, pausing after each step i to check whether the output, a finite set of subgroups
Hi = {H1, . . . , Hi}, contains such an H.

With this machinery at hand, we now show that P(G) is computable under the present
assumption that G = Zr for some r <∞; recall that H∗(G) denotes the set of all subgroups
of G, which here are all finitely generated, torsion free, and encoded as Z-basis matrices. A
similar algorithm to the following one was sketched by Valdimarsson following the proof of
[35, Theorem 1.8], in the context of computing the hypotheses of [9, Theorem 2.1], which
define convex set like P(G). Valdimarsson’s approach avoids enumerating all subgroups
(technically, subspaces), and instead only enumerates the lattice generated by (Kj)j; our
future work will show that it suffices to search such a lattice in the present setting as well.

Lemma 4.51. There exists an algorithm that returns a finite H ⊆ H∗(G) such that P(G) =
P(G,H).

Proof. By Lemma 4.8, if rank(G) = 0, then P(G) = [0,∞)m, so we returnH = ∅. Otherwise,
rank(G) ≥ 1. By Lemma 4.11, letting K = ⋂

jKj, computed via pairwise intersections, if
rank(K) > 0 then P(G) = ∅, thus we terminate with H = {K} ⊂ H∗(G). Otherwise, by
Lemma 4.10, rank(K) = 0 and (1, . . . , 1) ∈ P(G). We will now construct a finite H ⊆ H∗(G)
such that P(G) ∩ [0, 1]m = P(G,H) ∩ [0, 1]m: the conclusion P(G) = P(G,H) follows from
Lemma 4.5.

Consider the base case m = 1: Since rank(K1) = 0, for all H ∈ H∗(G), rank(H) =
rank(φ1(H)), so taking H = {H} for any H ∈ H∗(G) with rank(H) > 0, P(G,H) ∩ [0, 1] =
P(G) ∩ [0, 1] = {1}. (We can also confirm this with Lemma 4.12: s1 = ∑

j sj ≥ 1.)
Now consider the inductive case m ≥ 2 and rank(G) ≥ 1, meaning that we suppose the

conclusion holds for all G ′ such that m′ < m or rank(G′) < rank(G). We run the following
subroutine, which recursively invokes this lemma. Run the algorithm in Lemma 4.50 step-
by-step, pausing after each step i ∈ {1, 2, . . .} to examine the finite Hi ⊆ H∗(G) computed
thus far. We have that

∅ 6= H1 ⊆ · · · ⊆ Hi ⊆ · · · ⊆ H∗(G),
so by Lemma 4.6,

[0,∞)m ⊇ P(G,H1) ⊇ · · · ⊇ P(G,Hi) ⊇ · · · ⊇ P(G).

Moreover, by Lemma 4.9, there exists a l ∈ {1, 2, . . .} such that P(G,Hi) = P(G) for all
i ≥ l, so we only need to take finitely many steps i (however, we don’t yet have bounds

58

on how big i has to be). Determine the set {(rank(H), (rank(φj(H)))j) | H ∈ Hi} of linear
inequalities that Hi generates: note that each subgroup’s rank is stored as part of the Z-basis
matrix representation, and we can compute rank(φj(H)) = rank(H) − rank(H ∩Kj) from
H and Kj using the algorithm for computing subgroup intersections given earlier. We then
apply Lemma 4.49 to obtain the finite set of extreme points of P(G,Hi) ∩ [0, 1]m, each of
which is Q-valued.

We will analyze the finitely many extreme points of P(G,Hi) ∩ [0, 1]m in turn. Each
extreme point s of P(G,Hi) ∩ [0, 1]m falls into one of three cases, and depending on the
outcome, the algorithm either terminates or moves on to the next extreme point.

In the first case, s ∈ (0, 1)m — note that we can decide inequality over Q, and testing this
particular case involves 2m inequality decisions. We can adapt the algorithm in Lemma 4.49
to exploit Lemma 4.17 and return H ∈ Hi such that 0 < rank(H) = ∑

j sj rank(φj(H)) <
rank(G).

A complication now arises: even though G and H are torsion-free, the quotient group
G/H need not be, and thus may not have a well-defined basis-matrix representation. As
in the proof of Theorem 4.2, we apply Lemma 4.1 to avoid torsion during the factorization
step. We now give an algorithm that implements Lemma 4.1, i.e., computing a subgroup
H ≤ K ≤ G such that G/K is torsion-free and rank(H) = rank(K). Additionally, since K
has a complement in G, we will represent G/K by this subgroup. In case h = rank(H) = 0,
it follows that H = {0}, thus we simply return K = H, and represent G/K by G, i.e., the
r-by-r identity matrix. In case h = r = rank(G), we simply return K = G and represent
G/K by {0}, i.e., the empty matrix []. Otherwise 0 < h < r. Given the r-by-h matrix H,
reduce H to (row-style) Hermite normal form H = UT where U ∈ Zr×r is unimodular and
T ∈ Zr×h is full rank and zero below its top h rows. Represent K by the leading r-by-h
submatrix of U and represent G/K by the trailing r-by-(r − h) submatrix of U .

It follows from Lemma 4.3 that rank(φj(H)) = rank(φj(K)) for each j as well, so com-
bining Lemmas 4.24 and 4.25, s ∈ P(G) if and only if s ∈ P(G|K) ∩ P(G|K).

We now show how to replace G by G|K and G|K ; let r = rank(G) and k = rank(K). For
each j, compute K ′j = K ∩Kj and K ′′j = G/K ∩Kj (recalling that G/K is represented as a
complement of K in G): K ′j and K ′′j represent ker(χj) and ker(ψj), respectively, as subgroups
of G; however, to apply the induction hypotheses, we need ker(χj) to be represented as a
subgroup of K, and we need ker(ψj) to be represented as a subgroup of G/K. We will
change coordinates according the unimodular matrix U obtained above: letting V1 and V2
denote the top k and bottom r− k rows of U−1, computed by applying the reverse sequence
of elementary operations to an identity matrix, we represent each ker(χj) by V1K

′
j and each

ker(ψj) by V2K
′′
j .

Since rank(K), rank(G/K) < rank(G), we can apply the induction hypotheses (i.e., apply
the algorithm recursively) to compute finite sets H′ ⊆ H∗(G|K) and H′′ ⊆ H∗(G|K) such that
P(G|K)∩ [0, 1]m = P(G|K ,H′)∩ [0, 1]m and P(G|K)∩ [0, 1]m = P(G|K ,H′′)∩ [0, 1]m. We can
then test whether s ∈ P(G) by testing whether, for all K ′ ∈ H′ and K ′′ ∈ H′′, rank(K ′) ≤∑
j sj rank(χj(K ′)) and rank(K ′′) ≤ ∑j sj rank(ψj(K ′′)), using rational arithmetic. If any of

these tests fail, then we proceed with taking the next step i+ 1 of the algorithm in Lemma
4.50, and repeat the preceding steps with respect to Hi+1.

In the second case, some component sk = 1; we can reduce G to the HBL datum G ′ =
(Kk, (Gj)j 6=k, (φj|Kk)j 6=k) by dropping the k-th homomorphism and, for each j 6= k, replacing

59

Kj by V1Kj, where V1 is computed from Kk as it was from the matrix K in the preceding
case. By Lemma 4.26, we can apply this algorithm recursively to G ′, which has one less
homomorphism, obtaining a finite set H′ ⊆ H∗(G) such that (sj)j 6=k ∈ P(G ′,H′) if and only
if s ∈ P(G). To check whether s ∈ P(G), we test whether rank(H) ≤ ∑

j 6=k sj rank(φj(H))
for all H ∈ H′. If any of these tests fail, then we continue with the next step i + 1 of the
algorithm in Lemma 4.50, and repeat the preceding steps with respect to Hi+1.

In the third case, some component sk = 0; by Lemma 4.13, we can apply this algorithm
recursively to the HBL datum G ′ = (G, (Gj)j 6=k, (φj)j 6=k), which has one less homomorphism
(i.e., we omit Kk), obtaining a finite setH′ ⊆ H∗fg(G) such that (sj)j 6=k ∈ P(G ′,H′) if and only
if s ∈ P(G). To check whether s ∈ P(G), we test whether rank(H) ≤ ∑

j 6=k sj rank(φj(H))
for all H ∈ H′, using rational arithmetic. If any of these tests fail, then continue with the
next step i+ 1 of the algorithm in Lemma 4.50, and repeat the preceding steps with respect
to Hi+1.

If every extreme point s ∈ P(G,Hi)∩ [0, 1]m is contained in P(G), which we have already
confirmed must happen within finitely many steps, then because any closed and bounded
convex subset of Rm equals the convex hull of its extreme points, P(G,Hi) ∩ [0, 1]m ⊆
P(G). We already concluded the converse inclusion P(G,Hi) ⊇ P(G) by Lemma 4.6, thus
P(G,Hi) = P(G) and we return the finite set H = Hi.

Note that the output of the algorithm in Lemma 4.51 can be then used to decide membership
in P(G) via checking each of a finite list of Z-linear inequalities (this task is already performed
within the algorithm, in the inductive step). Since P(G) is a subset of Rm, cocountably many
points of which are uncomputable, membership can only be decided for the computable
elements of Rm.

Lemma 4.51 nearly completes the proof of Theorem 4.3, except for one caveat that was
glossed over in the theorem statement.

Proof of Theorem 4.3. Lemma 4.51 gives the the desired conclusion in the case G = Zr,
assuming that G is represented as an m-tuple (Kj)j of Z-basis matrices, as defined above.
We showed earlier that when G is a finite rank Abelian group, the membership problem
reduces to the study of the case G = Zr. Whether or not this reduction itself is computable
depends on the given representation of G: we have sidestepped this potential obstacle by
assuming a particular representation.

We briefly comment on the most general case, where rank(G) = ∞. An immediate
obstacle facing our approach is that H∗N(G) need not be countable, so even if there exists
a finite H ⊆ H∗N(G) such that P(G) = P(G,H), it may not appear after finitely many
steps of the algorithm in Lemma 4.50. However, since P(G) is defined by a countable (not
necessarily finite) intersection of half-spaces of Rm, there exists a countable analogue of
Lemma 4.9. Therefore, supposing first that we can resolve the issues of representing G and
computing G’s elements and action, given an algorithm (like the one in Lemma 4.50) that
enumerates a countableH ⊆ H∗N(G) such that P(G) = P(G,H), we can extend the algorithm
in Lemma 4.51 into a nondeterministic one that halts whenever s 6∈ P(G), and otherwise
potentially runs forever. In other words, membership in P(G) may still be cosemidecidable
in the case rank(G) = ∞. These comments are motivated by Valdimarsson’s result [35,
Theorem 1.8] regarding the hypotheses of [9, Theorem 2.1], demonstrating in the continuum

60

setting, where G is a finite-dimensional R-vector space, that it suffices to search a countable
set of subspaces — the lattice generated by (Kj)j — despite G having (as an Abelian group)
both infinite rank and uncountably many finitely generated subgroups.

4.7.1 Computing the Inequalities Defining P(G)
Our last investigation regarding computability of P(G) concerns the question of whether a
simpler algorithm would suffice. In particular, in the case G = Zr for r <∞, given arbitrary
h, hj ∈ {0, . . . , r}, can we decide whether there exists H ≤ G such that rank(H) = h and
each rank(φj(H)) = hj? (Actually computing H is not required.) An algorithm that decides
this problem could be used to iterate over the (r+ 1)m+1 possible values of h, hj, outputting
a Z-linear inequality h ≤ ∑

j sjhj over s ∈ Rm, encoded as (h, (hj)j), whenever the answer
is affirmative. It then remains to test whether the (computable) m-tuple s ∈ Rm, satisfies
a finite set of inequalities, which we have already shown is decidable. However, we have
so far failed to devise such an algorithm: we will show that this question of decidability is
equivalent to Hilbert’s Tenth Problem for Q, a longstanding open problem.

For the following discussion, we will change our notation yet again. In particular, we now
suppose that the homomorphisms φj are endomorphisms of G = Zr: we can always satisfy
this assumption by identifying each homomorphic image φj(G) with an isomorphic subgroup
of G. We now represent each φj as an r-by-r matrix over Z with respect to the standard
ordered Z-basis on Zr (rather than by its kernel Kj), and use the symbol φj to refer to both
the endomorphism and its matrix. We also introduce the notation φ = (φj)j ∈ (Zr×r)m to
denote an m-tuple over Zr×r.

In the following definitions, we will replace Z by a more general integral domain, denoted
D; we are primarily interested in the integral domains Z and Q. For any integral domain
D, m, r ∈ {1, 2, . . .}, and h, hj ∈ N, define (using the notations ≤D and rankD introduced in
Section 4.4.2),

ED,m,r
h,(hj)j =

{
φ ∈ (Dr×r)m

∣∣∣ (∃H ≤D Dr) rankD(H) = h ∧ (∀j) rankD(φj(H)) = hj
}

;

in our application, D = Z, m, r = rank(G), and φ = (φj)j are specified by G, while h, hj
are specified by the particular inequality (h, (hj)j) whose existence in P(G) we are currently
probing; thus, our problem is deciding whether φ ∈ ED,m,r

h,(hj)j . This problem reduces to one
about solutions of polynomial equations, not over D, but over D’s field of fractions. We
demonstrate this below in Lemma 4.53 in the case D = Z, with field of fractions Q.

First we pause to introduce some notation for polynomials, as well as introduce Hilbert’s
Tenth Problem. For any integral domain D and t ∈ N, let D[x1, . . . , xt] denote the ring of
polynomials over D in the variables x1, . . . , xt. For any S ⊆ D[x1, . . . , xt], define

Z(S) = {a ∈ Dt | (∀f ∈ S) f(a) = 0},

with Z(f) being shorthand for Z({f}) when f ∈ D[x1, . . . , xt]. Hilbert’s Tenth Problem for D
is the question of whether Z(S) 6= 0 is decidable for all t ∈ N and all finite S ⊆ D[x1, . . . , xt].
Matiyasevich-Davis-Putnam-Robinson’s theorem (see, e.g., [27]) famously resolved Hilbert’s
Tenth Problem (for Z, the version Hilbert posed) with a negative answer: there exists no
general algorithm for testing solvability over Z. Hilbert’s Tenth Problem for the computable

61

real numbers, however, was resolved with an affirmative answer by Tarski [32]; the asymp-
totic complexity of Tarski’s original algorithm has been improved many times, with Collins’
algorithm [17], called cylindrical algebraic decomposition, being a milestone. Hilbert’s Tenth
Problem for Q, on the other hand, remains open (see, e.g., [28]).

We already saw in Section 4.4.2 that P(G) = PQ(GQ), where GQ = (GQ, (GQ
j)j, (φQ

j)j) is
obtained from G by extending scalars from Z to Q, and PQ is obtained from P by replacing
Abelian group ranks with Q-module ranks in its definition, (4.8).

Lemma 4.52. EZ,m,r
h,(hj)j = EQ,m,r

h,(hj)j ∩ (Zr×r)m.

Proof. This follows from specializing Lemma 4.4 to the inclusion Z ⊂ Q.

Lemma 4.53. Each instance of the problem of whether φ ∈ EQ,m,r
h,(hj)j , given φ,m, r, h, hj, com-

putably reduces to an instance of the problem of whether Z(f) 6= ∅ for some f ∈ Q[x1, . . . , xt]
and t ∈ N.

Proof. Recall that if M is a matrix over Q, rankQ(M) = s if and only if all (s+ 1)-by-(s+ 1)
minors of M are zero and at least one s-by-s minor is nonzero. Since for any x, y ∈ Q,
x2 + y2 = 0 if and only if x = y = 0, we can reduce any finite set of polynomial equations
to a single equation. In particular, the condition that all (s + 1)-by-(s + 1) minors of M
are zero reduces to an equality of the form ∑

f f
2 = 0, and the condition that not all s-by-s

minors are zero reduces to an inequality of the form ∑
g g

2 6= 0. The latter expression can
be converted to an equality, since for any g ∈ Q[X], g 6= 0 is equivalent to f = gy − 1 = 0
where y 6∈ X and f ∈ Q[X ∪ {y}]. Now the remaining two polynomial equations can be
combined into a single equation.

Let B be a r-by-h matrix of variables and let φ = (φj)j ∈ (Qr×r)m as given. Now using
the preceding argument, define m + 1 polynomial equations for the matrices M = B (with
s = h) and M = φjB (with s = hj) for each j, and then finally combine them into a single
equation.

If Hilbert’s Tenth Problem for Q has an affirmative solution, then we can use the associated
algorithm to directly test each candidate inequality (h, (hj)).

Now we develop a stronger converse result than we need to show equivalence with
Hilbert’s Tenth Problem for Q, that the ability to decide membership in EQ,m,r

h,(hj)j enables
deciding membership in arbitrary Diophantine sets (over Q). Given p, q ∈ N and S ⊆
Q[x1, . . . , xp; y1, . . . , yq], the parameter triple (p, q, S) define the Diophantine set (over Q),

D(p, q, S) = {a ∈ Qp | (∃b ∈ Qq)(a, b) ∈ Z(S)}.

Our task above, deciding whether Z(S) 6= ∅ for some S ⊆ Q[x1, . . . , xs] and s ∈ N, is
equivalent to deciding whether the empty tuple () ∈ D(0, s, S) ⊆ Q0 = {()}; a different task,
when additionally given some a ∈ Qs, is deciding whether a ∈ Z(S), which is equivalent to
deciding whether a ∈ D(s, 0, S) ⊆ Qs.

At this point, we observe that Q is a Noetherian ring, so by Hilbert’s basis theorem, for
any S ⊆ Q[x1, . . . , xs], there exists a finite R ⊆ Q[x1, . . . , xs] such that Z(R) = Z(S). In
particular, for any Diophantine set D(p, q, S), where p, q ∈ N such that s = p + q, there is
no loss of generality to suppose S is finite. From here on, we will suppose that all sets of
polynomials are finite.

62

Lemma 4.54. Each instance of the problem of whether a ∈ D(p, q, S), given a, p, q, S,
computably reduces to the problem of φ ∈ EQ,m,r

h,(hj)j , for some φ,m, r, h, hj.

Proof. Our first step is to simplify the presentation of S by (algorithmically) constructing
T , a set of simpler polynomials in a larger set of variables, such that Z(S) equals Z(T) on
a subset of T ’s variables, thus computably reducing the membership problem.

Let s = p+q and substitute the variables (z1, . . . , zs) for (x1, . . . , xp; y1, . . . , yq), rewriting
S as a (finite) subset of Q[z1, . . . , zs]; we will dedicate the subscript i to range over {1, . . . , s}.
Compute d = maxf∈S maxi degzi(f) and define the index set A = {0, . . . , d}s and (d + 1)s
variables vα indexed by α = (αi)i ∈ A. Construct a finite T1 ⊆ Q[{vα}α∈A], initially
T1 = ∅, by examining each f ∈ S, which can be represented as f = ∑

α∈A cα
∏
i z

αi
i where

each cα ∈ Q is uniquely defined by f . For each f ∈ S, augment T1 with the polynomial∑
α∈A cαvα. Also construct a finite T2 ⊆ Q[{vα}α∈A], initially T2 = ∅, by examining each

α ∈ A: if α = (0, . . . , 0), augment T2 with the polynomial v(0,...,0) − 1; otherwise, keeping α
fixed, examine each β ∈ A: if β 6= (0, . . . , 0) and α+β ∈ A, augment T2 with the polynomial
vα+β − vαvβ (if not already in T2). Now let T = T1 ∪ T2.

We now show that Z(T) equals Z(S) when projecting the former set onto to its coor-
dinates corresponding to the s variables vei , where each ei ∈ A is zero except for its unit
i-th entry; this projection, π : QA → Qs : (vα)α∈A 7→ (vei)i, is computable. Now define
χ : Qs → QA : (zi)i 7→ (∏i z

αi
i)α∈A, also computable. By construction, χ(Qs) = Z(T2) ⊆ QA;

defining ψ to be χ with its codomain restricted to Z(T2), we see that ψ is a bijection with
ψ−1 = π|Z(T2). Moreover, for any a ∈ Qs, a ∈ Z(S) if and only if χ(a) ∈ Z(T). Therefore,
Z(S) = π(Z(T)).

Thus, given a ∈ Qp, deciding whether a ∈ D(p, q, S) is equivalent to deciding whether
a ∈ D(p, (d + 1)p+q − p, T), linearizing the indices α ∈ A so that T ⊆ Q[ve1 , . . . , vep ; . . .],
where the second ellipsis indicates the variables’ order is arbitrary after the first p. Moreover,
each instance of the former problem (with S) computably reduces to an instance of the latter
problem (with T).

In light of this reduction, we suppose that the given S has the form of T . That is,
S ⊆ Q[z1, . . . , zs] with s = p + q, and there exist k, l ∈ N such that |S| = k + l and the
elements of S can be expressed as

S = {zi1,jzi2,j − zi3,j}kj=1 ∪ {λ0,j +
∑
i

λi,jzi}lj=1,

where the subscript i continues to range over {1, . . . , s}, and the double subscripts i1,j, i2,j, i3,j ∈
{1, . . . , s} are distinct for each j but not necessarily between different j. We suppose that
each λ0,j, λi,j ∈ Z: this can be computably enforced, scaling by integers to clear denomina-
tors, without affecting Z(T).

Now define m = 4 + s + k + p + l, r = 2s + 2, h = 2, and hj = 1 for j ≤ 4 + s + k
and hj = 0 otherwise (j continues to range over {1, . . . ,m} unless specified otherwise). We
will use the coordinates (u; v) = (u0, . . . , us; v0, . . . , vs) on Qr. Instead of working with a
fixed m-tuple (φj)j ∈ (Qr×r)m, we will parameterize (φ(a)

j)j by the input a ∈ Qp to the
Diophantine membership problem, where we assume that a = (α1/β1, . . . , αp/βp) is given in

63

lowest terms. We then compute (φ(a)
j)j componentwise from a as follows:

φ
(a)
1 : (u; v) 7→ (u0, 0, . . . 0; 0, . . . , 0)
φ

(a)
2 : (u; v) 7→ (v0, 0, . . . 0; 0, . . . , 0)
φ

(a)
3 : (u; v) 7→ (u0, . . . , us; 0, . . . , 0)
φ

(a)
4 : (u; v) 7→ (v0, . . . , vs; 0, . . . , 0)

φ
(a)
4+j : (u; v) 7→ (u0 − v0, uj − vj, 0, . . . , 0; 0, . . . , 0) j ∈ {1, . . . , s}

φ
(a)
4+s+j : (u; v) 7→ (ui1,j + v0, ui3,j + vi2,j , 0, . . . , 0; 0, . . . , 0) j ∈ {1, . . . , k}

φ
(a)
4+s+k+j : (u; v) 7→ (αju0 − βjuj, 0, . . . , 0; 0, . . . , 0) j ∈ {1, . . . , p}

φ
(a)
4+s+k+p+j : (u; v) 7→ (λ0,ju0 +

∑
i

λi,jui, 0, . . . , 0; 0, . . . , 0) j ∈ {1, . . . , l};

note that only φ
(a)
4+s+k+1, . . . , φ

(a)
4+s+k+p actually depend on the p-tuple a, and none of these

matrices exist in the case p = 0. It remains to show that a ∈ D(p, q, S) if and only if
(φ(a)

j)j ∈ EQ,m,r
h,(hj)j . We will show sufficiency and then necessity.

Suppose we are given a = (α1/β1, . . . , αp/βp) ∈ Qp (in lowest terms) such that a ∈
D(p, q, S), i.e., there exists b ∈ Qq such that (a, b) ∈ Z(S). Introduce the notation (c1, . . . , cs) =
(a1, . . . , ap, b1, . . . , bq) and define

V = Q(1, c1, . . . , cs; 0, . . . , 0, . . . , 0) + Q(0, . . . , 0; 1, c1, . . . , cs).

Each element of V has the form (µ, µc1, . . . , µcs, ν, νc1, . . . , νcs) for (µ, ν) ∈ Q2; we thus
identify elements of V by their coordinates (µ, ν). Clearly rankQ(V) = 2 = h, as requested.
We now check that for each component j, rankQ(φ(a)

j (V)) = hj. First and second, φ(a)
1 (V) =

Q(1, 0, . . . , 0; 0, . . . , 0) = φ
(a)
2 (V), confirming that

h1 = rankQ(φ(a)
1 (V)) = 1 = rankQ(φ(a)

2 (V)) = h2.

Third and fourth, φ(a)
3 (V) = Q(1, c1, . . . , cs; 0, . . . , 0) = φ

(a)
4 (V), confirming that

h3 = rankQ(φ(a)
3 (V)) = 1 = rankQ(φ(a)

4 (V)) = h4.

For the next j ∈ {1, . . . , s}, each x ∈ φ(a)
4+j(V) has the form

x = (µ− ν, µcj − νcj, 0, . . . , 0; 0, . . . , 0) = (µ− ν)(1, cj, 0, . . . , 0; 0, . . . , 0)

for some (µ, ν) ∈ Q2, thus φ(a)
4+j(V) = Q(1, cj, 0, . . . , 0; 0, . . . , 0), and so each rankQ(φ(a)

4+j(V)) =
1 = h4+j. For the next j ∈ {1, . . . , k}, since ci3,j = ci1,jci2,j , each x ∈ φ(a)

4+s+j(V) has the form

x = (µci1,j + ν, µci3,j + νci2,j , 0, . . . , 0; 0, . . . , 0)
= (µci1,j + ν, µci1,jci2,j + νci2,j , 0, . . . , 0; 0, . . . , 0)
= (µci1,j + ν)(1, ci2,j , 0, . . . , 0; 0, . . . , 0),

64

so as before rankQ(φ(a)
4+s+j(V)) = 1 = h4+s+j. For the next j ∈ {1, . . . , p}, i.e., the compo-

nents which depend on a = (α1/β1, . . . , αp/βp), each x ∈ φ(a)
4+s+k+j(V) has the form

x = (αjµ− βjµaj, 0, . . . , 0; 0, . . . , 0) = (0, . . . , 0; 0, . . . , 0),

confirming that each rankQ(φ(a)
4+s+k+j(V)) = 0 = h4+s+k+j. Finally, for the last j ∈ {1, . . . , l},

each x ∈ φ(a)
4+s+k+p+j(V) has the form

x = (λ0,jµ+
∑
i

λi,jµci, 0, . . . , 0; 0, . . . , 0) = (0, . . . , 0; 0, . . . , 0),

confirming that each rankQ(φ(a)
4+s+k+p+j(V)) = 0 = h4+s+k+p+j. Thus we conclude that

a ∈ D(p, q, S) implies (φ(a)
j)j ∈ EQ,m,r

h,(hj)j .
To show necessity, suppose that we are given a = (α1/β1, . . . , αp/βp) ∈ Qp (in lowest

terms) such that (φ(a)
j)j ∈ EQ,m,r

h,(hj)j with the same parameters m, r, h, hj; we will show there
exists b ∈ Qq such that (a, b) ∈ Z(S). Pick any V ≤Q Qr such that rankQ(V) = h and each
rankQ(φ(a)

j (V)) = hj.
We first show that there exist elements f, g ∈ V of the forms

f = (f0, . . . , fs; 0, . . . , 0) g = (0, . . . , 0; g0, . . . , gs),

such that f0 = g0 = 1 and Qf + Qg = V . Let d = (d0, . . . , ds; d′0, . . . , d′s) and e =
(e0, . . . , es; e′0, . . . , e′s) be a Q-basis of V . Since rankQ(φ(a)

1 (V)) = h1 = 1, we may sup-
pose that d0 = 1: otherwise, if 0 6= d0 6= 1 then we can scale d so that d0 = 1, except if
d0 = 0, in which case necessarily e0 6= 0, thus we can swap d and e and repeat this argument.
Since rankQ(φ(a)

3 (V)) = h3 = 1, there exists γ ∈ Q such that γ(d0, . . . , ds) = (e0, . . . , es). Let
g′ = e− γd = (0, . . . , 0; g′0, . . . , g′s). Since g′ and d are Q-linearly independent elements of V
and rankQ(φ(a)

4 (V)) = h4 = 1, there exists δ ∈ Q such that δ(g′0, . . . , g′s) = (d′0, . . . , d′s).
Now define f = d − δg′ = (f0, . . . , fs; 0, . . . , 0); it has the desired form. Noting that
f = −δe + (1 + δγ)d), g′ and f are Q-linearly independent elements of V , and since
rankQ(φ(a)

2 (V)) = h2 = 1, it follows that g′0 6= 0, so we can define g = (1/g′0)g′, which
also has the desired form. Additionally, f0 = g0 = 1 and Qf + Qg = V , as desired.

It follows that each element of V can be written as µf + νg for some (µ, ν) ∈ Q2. For
each j ∈ {1, . . . , s}, each x ∈ φ(a)

4+j(V) has the form

x = (µf0−νg0, µfj−νgj, 0, . . . , 0; 0, . . . , 0) = ((µ−ν)1, (µ−ν)fj+ν(fj−gj), 0, . . . , 0; 0, . . . , 0);

if fj 6= gj, then rankQ(φ(a)
4+j(V)) = 2 6= h4+j = 1, a contradiction. Therefore, fj = gj for all

j ∈ {1, . . . , s}, as well as f0 = g0 as shown earlier.
For each j ∈ {1, . . . , p}, given a = (α1/β1, . . . , αp/βp), we have that, for any (µ, ν) ∈ Q2,

φ
(a)
4+s+k+j(µf + νg) = (αjµf0 − βjµfj, 0, . . . , 0; 0, . . . , 0);

since rankQ(φ(a)
4+s+k+j(V)) = h4+s+k+j = 0, it follows that βjµfj = αjµf0 = αjµ; now picking

(µ, ν) ∈ Q2 such that µ 6= 0, we have that fj = aj for all j ∈ {1, . . . , p}.

65

Now consider any F ∈ S. If F = λ0,j + ∑
i λi,jzi for some j ∈ {1, . . . , l}, then because

rankQ(φ(a)
4+s+k+p+j(V)) = h4+s+k+p+j = 0, then λ0,j + ∑

i λi,jfi = 0; that is, F (fi)i = 0.
Otherwise, F = zi1,jzi2,j−zi3,j for some j ∈ {1, . . . , k}; because rankQ(φ(a)

4+s+j(V)) = h4+s+j =
1, then there exists γ ∈ Q such that γ(µfi1,j + ν) = µfi3,j + νfi2,j for any (µ, ν) ∈ Q2.
Considering the case ν = 0 and µ = 1, it follows that if fi1,j = 0 then fi3,j = 0; in this case,
fi1,jfi2,j = fi3,j . Otherwise, fi1,j , fi3,j 6= 0, and we have γ = fi3,j/fi1,j , which we substitute to
obtain fi3,j/fi1,j = fi2,j . That is, again, fi1,jfi2,j = fi3,j , so F (fi)i = 0.

In conclusion, letting b = (fp+1, . . . , fs), we have shown that (f1, . . . , fs) = (a, b) ∈
Z(S).

Proof of Theorem 4.4. Together, Lemmas 4.52, 4.53, and 4.54 complete the proof of Theorem
4.4. As in the case of Theorem 4.3, the statement of Theorem 4.4 tacitly assumes a particular
representation of G.

66

Chapter 5

Communication Bounds for Loop
Nests

In this chapter we apply the communication lower bounds framework developed in Section
2.3 to the class of algorithms characterized in Section 3.2, and study the attainability of
these bounds. A section-by-section outline is as follows.

• In Section 5.1 we prove Theorem 3.1 (stated in Section 3.2), which yields communica-
tion lower bounds via Corollary 2.1 (in Section 2.3).

• In Section 5.2, we discuss attainability of the lower bounds, proposing blocked imple-
mentations as promising candidates. In Theorem 5.1, we suggest a class of tiles which
in many cases attain equality in the conclusion (4.2) of Theorem 4.1 (in Chapter 4),
and can be used to derive blocked implementations in many important cases.

• In Section 5.3, we discuss the infeasible case, the class of HBL interpretations where
the hypothesis ⋂j ker(φj) = {0} of Theorem 3.1 fails. In this case, the linear pro-
gram (3.2) defining the parameter σ is infeasible; this turns out to be promising from
the standpoint of minimizing communication, because arbitrary data reuse may be
possible.

• In Section 5.4, we discuss the injective case, the class of HBL interpretations where at
least one homomorphism φj is an injection. In this case, we always have the parameter
σ = 1, its minimum value. This case turns out to be the least promising from the
standpoint of minimizing communication, because no asymptotic data reuse is possible.

• In Section 5.5, we discuss the product case, mentioned in the context of Lemma 4.30 (in
Section 4.4.5). This models nested-loop programs whose array subscripts are subsets
of the loop indices, e.g., the matrix multiplication example at the beginning of Chapter
3, which has loop indices i, j, k and array subscripts (i, k), (k, j), (i, j), corresponding
to the array elements A(i, k), B(k, j), C(i, j). In the product case, communication
lower bounds can be computed by simpler means than using the algorithm in Theo-
rem 4.3 (stated in Section 4.2); moreover, Theorem 5.1 can be specialized to yield a
stronger result (see Corollary 5.1). In Sections 5.5.1-5.5.5 we treat several examples of

67

the product case including dot products, matrix-vector multiplication, matrix-matrix
multiplication, tensor operations, and many-body calculations.

5.1 Lower Bounds for Loop Nests
Recall that Theorem 3.1 (in Section 3.2) gives bounds on input-/output-path cutsizesQin, Qout
for algorithms with HBL interpretations. In particular, each HBL interpretation defines a
real number σ ≥ 1 such that Qin(J) + Qout(J) ≥ |J |1/σ for all nonempty subsets J of some
subset K of the algorithm. We can then apply Corollary 2.1 to derive communication lower
bounds, as shown following the statement of Theorem 3.1. That is, given an algorithm
with an HBL interpretation, in any implementation of that algorithm where some processor
p, with Mp local memory cells, is assigned the N = |K| Operations corresponding to the
evaluations K ⊆ F , if N ≥ (4Mp)σ, then by Corollary 2.1, processor p performs at least

1
2 · 3σ ·

N

Mσ−1
p

= Ω
 N

Mσ−1
p


Loads and Stores between their first and last assigned Operation corresponding to K.

We now prove Theorem 3.1. Recall that we are given the HBL datum G = (Zr, (Zrj)j, (φj)j),
and recall the definition of P(G) from (4.8).

Proof of Theorem 3.1. Theorem 4.1 tells us that if s ∈ P(G), then for all nonempty finite
E ⊆ Zr, |E| ≤ ∏

j |φj(E)|sj . Therefore, since P(G) is a closed subset of the first orthant of
Rm, and since P(G) 6= ∅ via Lemma 4.10 and the hypothesis ⋂j ker(φj) = {0}, we can take
a minimum over s ∈ P(G),

|E| ≤ min
s∈P(G)

∏
j

|φj(E)|sj

≤ min
s∈P(G)

∏
j

(mmax
i=1
|φi(E)|)sj

= min
s∈P(G)

(max
j
|φj(E)|)

∑
j
sj

= (max
j
|φj(E)|)σ,

where
σ = σ(G) = min

s∈P(G)

∑
j

sj. (5.1)

We have that σ ≥ 1 by Lemma 4.12 (by hypothesis, 1 ≤ r = rank(Zr)); additionally, since s ∈
P(G) implies (min(1, sj))j ∈ P(G) by Lemma 4.27, mins∈P(G)

∑
j sj = mins∈P(G)∩[0,1]m

∑
j sj,

so σ ≤ ∑j 1 = m.
Having established the existence of σ ∈ [1,m] such that maxj |φj(E)| ≥ |E|1/σ for all

nonempty finite E ⊆ Zr, consider the case E = Z(J) for any nonempty J ⊆ K. By definition,
A(J) = ⋃

j Aj(φj(Z(J))), and for each j, |Aj(φj(Z(J)))| = |φj(Z(J))| by injectivity of Aj.
So

|A(J)| =
∣∣∣∣⋃
j

Aj(φj(Z(J)))
∣∣∣∣ ≥ max

j
|φj(Z(J))| ≥ |Z(J)|1/σ = |J |1/σ,

68

where the last equality follows from injectivity of Z. The conclusion follows from the fact
that Qin(J) +Qout(J) ≥ |A(J)|, noted before the statement of Theorem 3.1.

As remarked following the statement of Theorem 3.1, the exponent σ is the solution of
a linear program, mins∈P(G)

∑
j sj. We have studied the linear inequalities defining P(G) in

depth in Sections 4.4 and 4.7. In particular, since G = Zr is finitely generated, we can
apply Theorem 4.3 to compute a finite set of Z-linear inequalities which define P(G), and
then (computably) solve this linear program for σ. Moreover, note that σ ∈ Q: the extreme
points of P(G) are Q-valued and the hyperplane defined by ∑j sj = σ must intersect at least
one extreme point of P(G).

We mention several ways in which the computation of σ(G) can be simplified. First,
by Lemma 4.14, if there exist distinct indices k, l ∈ {1, . . . ,m} such that rank(ker(φk) ∩
ker(φl)) = rank(ker(φk)) = rank(ker(φl)), then letting G ′ = (G, (Gj)j 6=l, (φj)j 6=l), we have
that σ(G) = σ(G ′): that is, dropping ‘duplicate’ homomorphisms does not affect the commu-
nication lower bound. Second, by Lemma 4.15, if there exists an index k ∈ {1, . . . ,m} such
that rank(φk(G)) = 0, letting G ′ = (G, (Gj)j 6=k, (φj)j 6=k), we have have σ(G) = σ(G ′): that is,
dropping rank-0 homomorphisms does not affect the communication lower bound. Third, by
Lemma 4.16, if there exists an index k ∈ {1, . . . ,m} such that rank(φk(G)) = rank(G), then
ek ∈ P(G); since rank(G) ≥ 1, by Lemma 4.12 we conclude that σ(G) = 1: that is, we need
only identify a single corank-0 homomorphism to identify the communication lower bound.
Fourth, if the hypotheses of Lemma 4.30 apply, then the set P(G) has a simpler definition,
which we discuss below in Section 5.5.

5.2 Upper Bounds for Loop Nests
We now turn to the question of the attainability of our communication lower bounds in
Section 2.3: given an algorithm with an HBL interpretation, can we find an implementation
with communication cost within a constant factor of the lower bound? This question is
imprecise because there are actually multiple communication lower bounds in Section 2.3,
and their derivations involved a number of steps that (possibly) weakened the ultimate
results; in order to clarify what we are attaining, we first review the main lower bound
results of Section 2.3.

The main lower bound results of Section 2.3 — Theorem 2.1 and its special case Corollary
2.1 — are stated for a fixed algorithm with parameters V, F, x, y, I, O (see Section 2.2 for
definitions). Both results hypothesize that there exists a nonempty finite K ⊆ F such that,
for all nonempty J ⊆ K, the sum Qin(J) +Qout(J) of the input- and output-path cutsizes of
J is bounded below by a nondecreasing function q(|J |). Both results then conclude that in
any implementation of this algorithm in which some processor p is assigned the Operations
corresponding to K, then processor p must perform at least a certain number of Loads and
Stores.

We now define a special class of implementations, called blocked implementations, whose
definition is motivated by the segmentation argument in the proof of Theorem 2.1. Consider
any algorithm with parameters V, F, x, y, I, O, and any of its implementations. Identifying
F with the corresponding Operations, the assignment of instructions to processors induces

69

a disjoint cover F = ⋃
p Fp, and for each p, Fp induces a chain in the execution order.

We say that the given implementation is blocked it, for each p, we can write the chain
Fp = Bp,1 · · ·Bp,bp as the concatenation of some bp ∈ N nonempty contiguous subchains Bp,i,
called blocks, such that processor p’s chain of instructions is a repetition, for each i ∈ [bp], of
the three-phase instruction sequence,

Loads, for each v ∈ Xp,i = X(Bp,i) \ Y (Bp,i)
Operations, for each f ∈ Bp,i

Stores, for each v ∈ Yp,i = Y (Bp,i) ∩
(
O ∪

⋃
(q,j)6=(p,i)

X(Bq,j)
)
.

Here we have also introduced the notations X(J) = {xf,1, . . . , xf,mf | f ∈ J} and Y (J) =
{yf,1, . . . , yf,nf | f ∈ J} for any J ⊆ F . It follows that any blocked implementation does not
perform ‘extra’ Operations, i.e., there is a bijection between F and the set of Operations
in the execution. The key property of a blocked implementation is that the Operations in
each block Bp,i are performed without intervening Loads and Stores. It follows that, for each
block Bp,i, |Xp,i| ≤Mp and |Yp,i| ≤Mp. Therefore, each processor p’s communication cost is
bounded above,

Wp ≤ 2Mpbp.

Note that this upper bound is reminiscent of the lower bound (2.1) (Section 2.3) that we are
trying to attain (in the case l = 2Mp). Our approach to deriving communication-reducing
implementations, given an algorithm and machine parameters P and (Mp)p, is to construct
a blocked implementation that attempts to minimize

max
p

2Mpbp ≥ max
p
Wp.

We do not claim that blocked implementations minimize maxpWp: for example, we are
neglecting the possibility of inter-block data reuse in each processor’s local memory (some
Loads/Stores could be avoided).

We are particularly interested in the attainability of the (weaker) conclusion of Corollary
2.1. Consider any implementation that minimizes maxpWp, and look at any processor p
with maximal Wp. Corollary 2.1 hypothesizes that there exists a nonempty K ⊆ Fp and a
σ ∈ [1,∞) such that |J |1/σ ≤ Qin(J) + Qout(J) for all nonempty J ⊆ K. Additionally, if
N = |K| ≥ (4Mp)σ, then Corollary 2.1 gives the (nontrivial) lower bound

Wp ≥
1

2 · 3σ
N

Mσ−1
p

= 2Mp ·
N

4(3Mp)σ
.

This motivates us to seek a blocked implementation where bp ≤ CN/Mσ
p where C is inde-

pendent of the machine parameters P and (Mp)p, as well as N ; C will, however, depend on
another aspect of the HBL interpretation, its induced HBL datum G = (Zr, (Zrj), (φj)j).

So far, we have not developed a general framework for deriving blocked implementa-
tions (for algorithms with or without HBL interpretations). The examples treated later in
this chapter have dependence structures which enable a simpler, geometry-inspired block-
ing approach which we call tiling. For example, as mentioned in Chapter 3, multiplying

70

N -by-N matrices, C = A · B, can be programmed with triply nested loops (assuming C is
zero-initialized),

for i = 1 : N, for j = 1 : N, for k = 1 : N,
C(i, j) = C(i, j) + A(i, k) ∗B(k, j).

A blocked version of this code, where the blocking factor b ∈ N≥1 is assumed to divide N , is
given by

for i1 = 1 : N/b, for j1 = 1 : N/b, for k1 = 1 : N/b,
for i2 = 1 : b, for j2 = 1 : b, for k2 = 1 : b,

// reindexing (i, j, k) = b · (i1 − 1, j1 − 1, k1 − 1) + (i2, j2, k2)
C(i, j) = C(i, j) + A(i, k) ∗B(k, j).

The inner three loops (indexed by i2, j2, k2) represent blocks, of which there are (N/b)3,
traversed by the outer three loops (indexed by i1, j1, k1). Each block requires 3b2 local
memory cells to execute: the submatrices of A,B,C, b2 entries each, must be loaded, and
the submatrix of C must be stored, but each updated entry of C can overwrite its previous
value. Therefore, we can define a blocked implementation by picking b such that 3b2 ≤Mp for
some processor p, and assigning all the work to that processor p. A parallel implementation
can be defined, e.g., by replacing Mp by minpMp, and assigning blocks to processors, ensuring
that the execution order preserves the partial order on blocks, in particular, when multiple
processors are assigned blocks that update the same submatrix of C. (Additionally, more
care must be taken when trying to minimize the critical-path communication cost, rather
than the per-processor communication costs.) We will revisit this example in Section 5.5.3
more formally (in terms of algorithms), to illustrate the algorithmic dependence structure
that permits this code transformation. To foreshadow this discussion, we observe that while
the unblocked example suggests a lexicographical order on (i, j, k) ∈ [N]3, the only inter-
iteration dependences are due to the summation order, which impose a lexicographical order
on the set {(i, j, k) | k ∈ [N]} for each (i, j) ∈ [N]2, i.e., a partial order on [N]3, and the
blocked code respects this partial order.

This matrix multiplication example demonstrates tiling Z3 (in particular, the cube [N]3)
by translates of the cube [b]3. In the remainder of this section, we develop a tool (see
Theorem 5.1), to assist in finding tilings, which can use more general parallelotopes than
cubes like [b]3. This development is motivated by attainability of the upper bounds given by
Theorem 4.1 (Section 5.2). That is, given some s ∈ P(G), does there exist a nonempty finite
E ⊆ Zr such that |E| = ∏

j |φj(E)|sj? Actually, recalling the invocation of Theorem 4.1
within the proof of Theorem 3.1, we are really concerned with whether |E| = maxj |φj(E)|σ,
where σ = σ(G) = mins∈P(G)

∑
j sj ∈ [1,m] and we assume r ≥ 1. Of course, either of these

equalities are satisfied by taking E to be any singleton — so to get a meaningful answer, we
must impose additional constraints.

Let’s borrow some notation from Chapter 4: given the HBL datum G = (Zr, (Zrj)j, (φj)j)
where r ∈ {1, 2, . . .}, we let H∗ denote the set of all nontrivial subgroups of Zr and let E∗
denote the set of all nonempty finite subsets of Zr. For any H ⊆ H∗, we define P(G,H)
according to (4.8) in Section 4.4, with the special case P(G) = P(G,H∗). We also extend

71

σ = σ(G) to the more general notation, continuing to assume ⋂j ker(φj) = {0},

σ(G,H) = min
s∈P(G,H)

∑
j

sj, (5.2)

and say σ(G) to mean σ(G,H∗) from now on; as in the case of σ(G), σ(G,H) ∈ [1, σ(G)] ⊆
[1,m] is well defined because P(G,H) is a closed subset of the first orthant of Rm.

A nonempty finite subsetH = {H1, . . . , Hk} ofH∗ is independent if the subgroups’ sum is
isomorphic to their direct sum, i.e., H = ∑k

i=1Hi
∼=
⊕k
i=1 Hi, or, equivalently, if we can find a

basis B (over Z) of H that can be partitioned as {B1, . . . , Bk}, where for each i ∈ {1, . . . , k},
Bi is a basis of Hi.

Theorem 5.1. If ⋂j ker(φj) = {0} and H ⊆ H∗ is independent, then there exists µ ∈
{1, 2, . . .}, c ∈ (0,∞), τ ∈ [σ(G,H), σ(G)], and a sequence (E1, E2, . . .) over E∗ such that,
for all N ∈ {µ, µ+ 1, . . .},

Property (1) ∑
j |φj(EN)| ≤ N ,

Property (2) |EN | ≥ cN τ , and

Property (3) Zr is partitioned by translates of EN .

Proof. We adopt a few notational conveniences. We reserve the index i to range over
{1, . . . , k}, while j continues to range over {1, . . . ,m}. We treat the Abelian group Zd
and its subgroups as (sub-) Z-modules, defining (scalar) multiplication in terms of addition.
In this case, we assume the standard basis (e1, . . . , ed) on Zd and represent tuples over Z as
column vectors. If B is a column vector, or a set or matrix of column vectors, then 〈B〉 is
the set of all linear combinations of B over Z. If y is an n-element column vector, X,Xi

are sets of n-element column vectors, and A is an n-column matrix, y + X denotes the set
{y + x | x ∈ X}, ∑iXi denotes the set {∑i xi | x ∈×i

Xi}, and A · X denotes the set
{Ax | x ∈ X}.

For each n ∈ {1, 2, . . .}, h ∈ {1, . . . , r}, rank-h matrix B = [b1, . . . , bh] ∈ Zr×h, and
t ∈ Zr, we define the cube

C(n, h,B, t) = t+B · {0, . . . , n− 1}h.

Suppose we have k cubes Ci = C(ni, hi, Bi, ti) and we define h = ∑
i hi, B = [B1, . . . , Bk],

and t = ∑
i ti. If B is rank-h, then we define the tile

D(C1, . . . , Ck) = t+B ·×
i

{0, . . . , ni − 1}hi .

For each i, let hi = rank(Hi) and let Bi be an arbitrary basis of Hi represented as a matrix
of column vectors, defining the family of cubes C(N, hi, Bi, 0) for N ∈ {1, 2, . . .}. Adapting
the argument in the proof of Lemma 4.48 (Section 4.6), for each j, there exists Ai,j ∈ [1,∞)
such that |φj(C(N, hi, Bi, 0))| ≤ Ai,jN

rank(φj(Hi)) for all N ; in case rank(φj(Hi)) = 0 we set
Ai,j = 1. Let x = (x1, . . . , xk) be any optimal solution of the linear program

max
{∑

i

xi rank(Hi)
∣∣∣∣x ∈ [0,∞)k ∧ (∀j) 1 ≥

∑
i

xi rank(φj(Hi))
}
, (5.3)

72

which is the dual of the linear program (5.2) for the given H, whose optimal value σ(G,H)
we have already confirmed exists; therefore, we know that ∑i xi rank(Hi) = σ(G,H). We can
also show that any feasible dual solution x ∈ [0, 1]m: supposing towards a contradiction that
some xi > 1, it follows that rank(φj(Hi)) = 0 for all j, so Hi ≤

⋂
j ker(φj), but rank(Hi) >

0 by hypothesis, contradicting the hypothesis that ⋂j ker(φj) = {0}. Additionally, since
σ(G,H) ≥ 1, at least one xi > 0. Consider each index i: if xi = 0 then we set ni(N) = 1
and µi,j = 1 for all j. Otherwise, if xi > 0, consider each index j; let µi be the smallest N ∈
{1, 2, . . .} such that ni(N) = bNxi/(m∏

j Ai,j)c > 0; µi is well defined since Nxi/(m∏
j Ai,j)

is an increasing function of N ; note that µi ≥ m1/xi ≥ m, since xi ∈ (0, 1]. Let µ = maxi µi ≥
m.

For each N ∈ {1, . . . , µ − 1}, let EN = {0}. For each N ∈ {µ, µ + 1, . . .}, let Ci(N) =
C(ni(N), hi, Bi, 0) for each i; by independence, B = [B1, . . . , Bk] has rank h = ∑

i hi so we
can define the tile EN = D(C1(N), . . . , Ck(N)). We now verify that the sequence of tiles
E1, E2, . . . has the three desired properties.
Property (1). Consider any N ∈ {µ, µ+ 1, . . .}. For each j,

φj(EN) = φj(D(C1(N), . . . , Ck(N))) = φj

(
B ·×

i

{0, . . . , ni(N)− 1}hi
)

=
∑
i

φj(Bi · {0, . . . , ni(N)− 1}hi)

=
∑
i

φj(Ci(N));

Consider any k ∈ {1, . . . ,m}. Let I = {i | xi > 0 ∧ rank(φk(Hi)) > 0}; if i 6∈ I, then
|φk(Ci(N))| = 1. So, if I = ∅, then |φk(EN)| = 1. Otherwise, I 6= ∅, then

|φk(EN)| ≤
∏
i

|φk(Ci(N))| =
∏
i∈I
|φk(Ci(N))| ≤

∏
i∈I
Ai,kn

rank(φk(Hi))
i

=
∏
i∈I
Ai,k

 Nxi

m
∏
j Ai,j

rank(φk(Hi))

≤
∏
i∈I
Ai,k

 Nxi

m
∏
j Ai,j

rank(φk(Hi))

=

∏
i∈I

Ai,k(
m
∏
j Ai,j

)rank(φk(Hi))

∏
i∈I
Nxi rank(φk(Hi)) ≤ 1

m

∏
i∈I
Nxi rank(φk(Hi))

= 1
m
N
∑

i
xi rank(φk(Hi)) ≤ N1

m
.

where we have exploited the facts that all Ai,j ≥ 1, that rank(φk(Hi)) ≥ 1 for all i ∈ I, and
that ∑i xi rank(φk(Hi)) ≤ 1 by the fact that x is a feasible solution of (5.3).

Since N ≥ µ ≥ m, we have thus shown that for all j, |φj(EN)| ≤ bN/mc, therefore

∑
j

|φj(EN)| ≤
∑
j

⌊
N

m

⌋
= m

⌊
N

m

⌋
≤ N,

as desired.

73

Property (2). Consider any N ∈ {µ, µ+1, . . .}; by independence (of H and B) and definition
of µ,

|EN | =
∏
i

 Nxi

m
∏
j Ai,j

hi ≥∏
i

 Nxi

2m∏
j Ai,j

hi =

∏
i

1(
2m∏

j Ai,j
)hi
∏

i

Nxihi ;

letting c = ∏
i

(
2m∏

j Ai,j
)−hi ∈ (0, 1], we have that

|EN | ≥ c
∏
i

Nxihi = cN
∑

i
xi rank(Hi) = cNσ(G,H).

We also have that

|EN | ≤ (max
j
|φj(EN)|)σ(G) ≤ (

∑
j

|φj(EN)|)σ(G) ≤ Nσ(G),

Therefore, there exists c ∈ (0,∞) and τ ∈ [σ(G,H), σ(G)] such that, for allN ∈ {µ, µ+1, . . .},
|EN | ≥ cN τ .
Property (3). For each N ∈ {1, 2, . . .}, the cubic structure of EN makes it straightforward
to partition Zr with its translates as follows. If N < µ, then EN = {0} by construction
and the conclusion is immediate: Zr is partitioned by the set of all its singletons. Otherwise
N ≥ µ, and for each i, the cube Ci can be translated to partition Hi by varying ti over
the linear combinations of the columns of Bi by all integer multiples of ni. By partitioning
each subgroup Hi with translated cubes in this manner, we obtain a partition of ⊕iHi and
thus of H = ∑

iHi by isomorphism, and each part in this induced partition of H is a tile, in
particular, t+ EN for some t ∈ H. The cosets of H in Zr (i.e., the elements of the quotient
group Zr/H) partition Zr, and each coset y+H is a translation of H by some representative
y ∈ Zr, so the partition of H (i.e., the coset 0 +H) into tiles induces partitions into tiles of
all the other cosets of H by translation by y.

The constant c can be improved in a number of ways. For example, we can weakening Prop-
erty 1 to bound maxj |φj(EN)| instead, we can model some instances of aliasing arrays (see
Section 3.2). Also, a few simplifications to the dual linear program (5.3) are possible. For
example, the constraints corresponding to any rank-0 homomorphisms φj have no impact,
and could be omitted. Other possible simplifications include combining duplicate homomor-
phisms φk = φl, as discussed in the preceding section. In the case of injective φj, since
σ(G) = 1, a simpler special case of Theorem 5.1 applies, as discussed below in Section 5.4.

At this point, we have defined blocked implementations, which enable a simpler com-
munication upper bound analysis, as well as defined a tool, Theorem 5.1, for finding tilings
of Zr that have certain properties with respect to a given HBL datum. It remains future
work to develop a general approach for using Theorem 5.1 to define blocked implementations
of given algorithms with HBL interpretations. In the remainder of this chapter, we apply
Theorem 5.1 to a sequence of examples, demonstrating its practical use.

74

5.3 Infeasible Case
Our first class of examples is called the infeasible case. These are algorithms with HBL
interpretations where P((Zr, (Zrj)j, (φj)j)) = ∅, i.e., the linear program (5.1) is infeasible.
By Lemma 4.10, this means that rank(⋂j ker(φj)) > 0.

As an example of the infeasible case, recall the “path graph” example in Section 3.1.3
(see also Figure 3.3), meant to model a loop like

for i = 1 : N, ai = f(ai−1),

which transform an input a0 to an output aN ; a single processor can perform the correspond-
ing sequence of Ops entirely in their local memory, without any communication other than
(perhaps) initially Loading a0. From the perspective of our lower-bound analysis, infeasibil-
ity is the best-case scenario for minimizing communication. We interpret the preceding code
as a family of algorithms whose parameters satisfy

V = {a0, ai | i ∈ [N]}, F = {fi | i ∈ [N]}, x : (fi, 1) 7→ ai−1, y : (fi, 1) 7→ ai. (5.4)

Such algorithms admit the HBL interpretation

m = 2, r = 1, r1 = r2 = 0, K = F, Z(fi) = i,

φ1(i) = φ2(i) = 0, A1(0) = a0, A2(0) = aN

This induces the HBL datum G = (Z1, (Z0)2, (Z1 → Z0)2), and we immediately see that⋂
j ker(φj) = Z1, implying infeasibility.

Suppose the primal linear program min{∑j sj | s ∈ P(G)} is infeasible. Since x =
(0, . . . , 0) is always a feasible solution of the dual linear program (5.3), the dual must be
unbounded. This confirms the intuition in the preceding section, that we can increase the
tile edge lengths (e.g., via the dual variables {xi}) without bound. Note that for arbitrary
H ⊆ H∗, possibly P(G,H) 6= ∅ even if P(G) = ∅. That is, the (generalized) primal linear
program min{∑j sj | s ∈ P(G,H)} may be feasible, and the primal/dual solution σ(P ,H) ∈
[1, σ(P)] as otherwise expected. For example, H ∩ ⋂j ker(φj) = {0} for all H ∈ H. If
algorithm dependences do not permit a tiling that takes care of infeasibility in the manner
discussed next, then it may be worthwhile to study such an H.

Note than in the path graph example above, picking EN = {0, . . . , N − 1}, we have that
|φ1(EN)| = 1 ≤ N and |EN | = N = N1 for all N ∈ {1, 2, . . .}. In the case of more general
infeasible HBL data, we can pick EN as a cube in ⋂j ker(φj) and apply similar reasoning.

5.4 Injective Case
Our next class of examples is called the injective case. These are algorithms with HBL inter-
pretations which induce HBL data G = (Zr, (Zrj)j, (φj)j) where at least one homomorphism
φj is an injection, and σ(G) = 1.

As an example of the injective case, recall the example in Section 3.1.1 (see also Figure
3.1), meant to model a loop like

for i = 1 : N, bi = f(ai),

75

which transforms an input sequence a1, . . . , aN to an output sequence b1, . . . , bN in a compo-
nentwise fashion. If a processor performs sufficiently many of the corresponding Operations
(at least their local memory size), then they must perform Loads/Stores to read inputs ai
(which cannot all initially be in their local memory) or write outputs bi (which cannot be
overwritten by definition of implementation). From the perspective of our lower-bound anal-
ysis, injectivity is the worst-case scenario for minimizing communication. We interpret the
pr

Consider the HBL datum G = (Z1, (Z1), (φ1 : x 7→ x)). We interpret the preceding code
as a family of algorithms whose parameters satisfy

V = {ai, bi | i ∈ [N]}, F = {fi | i ∈ [N]}, x : (fi, 1) 7→ ai, y : (fi, 1) 7→ bi. (5.5)

Such algorithms admit the HBL interpretation

m = 2, r = 1, r1 = r2 = 1, K = F, Z(fi) = i,

φ1(i) = φ2(i) = i, A1(i) = ai, A2(i) = bi

This induces the HBL datum G = (Z1, (Z1)2, (x 7→ x)2), and we confirm that both φ1 and
φ2 are injections (in particular, identity functions).

If an algorithm admits an HBL interpretation with σ(G) = 1, it means that there is a
set of disjoint input- and output-paths that connect at least one input or output argument
variable of every f ∈ K. Conversely, if some nonempty K ⊆ F has this property, then we
can record a (distinct) v(f) ∈ I ∪ O for each f ∈ K and define an HBL interpretation with
m = r = 1, Z(K) = {1, . . . , |K|}, φ1 = idZ, and A1(i) = v(Z−1(i)) for each i ∈ {1, . . . , |K|};
we observe that σ((Z,Z, idZ)) = 1.

From an asymptotic standpoint, we are done the moment we identify an injective homo-
morphism φj. Picking EN = {0, . . . , N − 1}, we have that |φ1(EN)| = N and |EN | = N =
Nσ(G). In more general injective HBL data, we can pick EN to be any size-N tile in Zr, with
obtaining similar results (possibly) with constants depending on m.

We will see two more examples of injectivity in Sections 5.5.1 and 5.5.2.

5.5 Product Case
Our main class of examples is called the product case, introduced in Lemma 4.30 (in Section
4.4.5). These are algorithms with HBL interpretations inducing HBL data G such that P(G)
is defined by a simpler set of inequalities. We will consider applying Lemma 4.30 using the
standard coordinate Z-basis of Zr: in this case, each φj “forgets” a subset of the coordinates
i1, . . . , ir. Consider, for example, the HBL datum

G = (Zr, {Zr−1}m, (φj : (i1, . . . , ir) 7→ (i1, . . . , ij−1, ij+1, . . . , ir))j).

This is an HBL interpretation for the r-dimensional diamond DAG example in Section 3.1.5,
revisited below in Section 5.5.5. We have found a number of practical applications of the
product case, which we explore below.

76

Corollary 5.1. Consider an HBL datum G = (Zr, (Zrj)j, (φj)j), where each φj(i1, . . . , ir) =
(iπj(1), . . . , iπj(rj)) for some πj : {1, . . . , rj} → {1, . . . , r}. Given H = {〈e1〉, . . . , 〈er〉} and
any optimal solution x to the linear program (5.3), the conclusion of Theorem 5.1 holds with
µ = mmax{1/xi|xi>0}, c = (2m)−r, and τ = σ(G,H)

Proof. To specialize Theorem 5.1 in this manner, all we need to show is that the constants
Ai,j appearing in the proof can all be made equal to one. To see this, we return to the proof
of Lemma 4.48 (Section 4.6) where these constants originated, and exploit the fact that the
matrix for each φj is 0/1-valued with at most one nonzero in any row.

In the following, we go through a number of examples of the product case. We will use the
following notation about the linear programs related to HBL data. For any HBL datum G and
any subset H of the finite-rank subgroups of G, let yH = rank(H) and ∆H,j = rank(φj(H)),
and assemble y = (yH)H and ∆ = (∆H,j)H,j, where y is a column vector and ∆ is an m-
column matrix both with (possibly infinitely many) rows indexed by H. We also let 1m
denote the column vector of all ones of length m. In this notation, the primal and dual
linear programs (5.2) (5.3) are the following.

Primal linear program
min

s∈[0,∞)m
1Tms s.t. ∆s ≥ y

Dual linear program
max

x∈[0,∞)H
yTx s.t. ∆Tx ≤ 1m.

In the present (product case) setting, G = Zr and H = {〈e1〉, . . . , 〈er〉}, so |H| = r and
y = 1r, the column vector of all ones of length r. Moreover, ∆ is 0/1-valued: ∆i,j = 1 if
ei ∈ ker(φj) and ∆i,j = 0 otherwise.

Primal linear program (product case)
min

s∈[0,∞)m
1Tms s.t. ∆s ≥ 1r

Dual linear program (product case)
max

x∈[0,∞)r
1Tr x s.t. ∆Tx ≤ 1m.

We give a number of examples (Sections 5.5.1-5.5.5) of the product case, including several
from our earlier work [15]. Many of these examples are related to ‘independent evaluations’
studied by Hong-Kung [21, Section 6] and expanded in subsequent works [1, 33, 22, 5]. That
is, communication lower bounds and, in many cases, matching upper bounds, are already
known for several of these examples. Our contribution is to generalize this to more general
loop nests.

5.5.1 Dot Product
We model computing sums-of-products, expressed mathematically as ∑i aibi, or in pseu-
docode as

for i = 1 : N,
s = s+ ai ∗ bi,

by a family of algorithms whose parameters satisfy
I = {ai, bi | i ∈ [N]}, O = {t}, R = V \ I ⊇ {si | i ∈ [N]}, F ⊇ {zi | i ∈ [N]}

{ai, bi} ⊆ im(x(zi, ·)) ⊆ {ai, bi} ∪ (R \ {si}), {si} ⊆ im(y(zi, ·)) ⊆ R \ {sk | i 6= k ∈ [N]}.
(5.6)

77

𝑠1

𝑡

𝑎1 𝑏1

𝑠3

𝑎3 𝑏3

𝑠2

𝑎2 𝑏2

∗ ∗∗

+ +

+∗ +∗∗

Figure 5.1: Dot product example (Section 5.5.1) in the case N = 3: general form (top); using
binary +, ∗ operations (bottom-left); using “fused multiply-add” ∗+ operation (bottom-
right).

(Informally, the constraints on im(x(zi, ·)) and im(y(zi, ·)) mean that additions can be fused
with multiplications, but multiplications cannot be fused.) The variable t ∈ V is any element
of R (perhaps one of s1, . . . , sN). Algorithms satisfying (5.6) induce DAGs of the form shown
in Figure 5.1. Note that the summation is modeled by a more general reduction, introduced
in Section 3.1.6. In particular, note that the operations zi are not necessarily independent;
the important property is that they each depend on a distinct pair {ai, bi} of inputs.

Algorithms satisfying (5.6) admit the following HBL interpretation.

m = 3, r = 1, (r1, r2, r3) = (1, 1, 0)
K = {zi | i ∈ [N]}, Z(zi) = i

φ1 = φ2 = idZ, φ3 : Z→ {0}
A1(i) = ai, A2(i) = bi, A3(i) = t

We confirm that ⋂j ker(φj) = {0}. We also recognize that φ1 and φ2 are both injections,
so the conclusions in Section 5.4 apply. However, we can arrive at the same conclusions by
exploiting the machinery of the product case. That is, we observe that

∆ =
[
1 1 0

]
,

so the LPs have value σ = 1, and the dual solution x = (x1) = 1.

78

Although blocking cannot demonstrate an asymptotic benefit (this is the injective case),
we can apply Corollary 5.1 to obtain the tiles

EM = {0, . . . , bMx1/mc − 1} = {0, . . . , bM/3c − 1},

supposing M ≥ µ = 3. A blocked version of the preceding code, where the blocking factor
b = bM/3c is assumed to divide N , is given by

for j = 1 : N/b,
for k = 1 : b, // reindexing i = b · (j − 1) + k

s = s+ ai ∗ bi.

5.5.2 Matrix-Vector Multiplication
Next we model premultiplying a length-N column vector by a N -by-N matrix, expressed
componentwise mathematically as ∑i2 ai1,i2bi2 , or in pseudocode as

for i1 = 1 : N, for i2 = 1 : N,
si1 = si1 + ai1,i2 ∗ bi2 ,

by a family of algorithms whose parameters satisfy

I = {ai1,i2 , bi2 | (i1, i2) ∈ [N]2}, O = {ti1 | i1 ∈ [N]}
R = V \ I ⊇ {si1,i2 | (i1, i2) ∈ [N]2}, F ⊇ {zi1,i2 | (i1, i2) ∈ [N]2}

{ai1,i2 , bi2} ⊆ im(x(zi1,i2 , ·)) ⊆ {ai1,i2 , bi1} ∪ (R \ {si1,i2})
{si1,i2} ⊆ im(y(zi1,i2 , ·)) ⊆ R \ {sk,l | (i1, i2) 6= (k, l) ∈ [N]2}.

(5.7)

(The constraints on x and y are analogous to those in the dot product example.) The
variables t1, . . . , tM ∈ V can be any N distinct elements of R (perhaps si1,i2). Algorithms
satisfying (5.7) induce DAGs of the form shown in Figure 5.2. Each element of the output
vector is computed by a dot product (see Section 5.5.1) of a distinct matrix row and the
input vector.

Algorithms satisfying (5.7) admit the following HBL interpretation.

m = 3, r = 2, (r1, r2, r3) = (2, 1, 0)
K = {zi1,i2 | (i1, i2) ∈ [N]2}, Z(zi1,i2) = (i1, i2)

φ1(i1, i2) = (i1, i2), φ2(i1, i2) = i2, φ3(i1, i2) = i1

A1(i1, i2) = ai1,i2 , A2(i2) = bi2 , A3(i1) = ti1 .

We confirm that ⋂j ker(φj) = {0}. We also recognize that φ1 is an injection, so as in
the previous example, the conclusions in Section 5.4 apply, but we can arrive at the same
conclusions by exploiting the machinery of the product case. That is, we observe that

∆ =
[
1 0 1
1 1 0

]
,

79

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

𝑠3

𝑠1

𝑠2

𝑏3𝑏1 𝑏2

Figure 5.2: Matrix-vector multiplication example (Section 5.5.2) in the case N = 3. Pencils
are meant to suggest reductions and expansions (see Section 3.1.6).

so the LPs have value σ = 1, and the dual solution x = (x1, x2) = (α, 1−α) for any α ∈ [0, 1].
Although blocking cannot demonstrate an asymptotic benefit (again, this is the injective

case), we can apply Corollary 5.1 to obtain the tiles

EM = {0, . . . , bMx1/mc − 1} × {0, . . . , bMx2/mc − 1}
= {0, . . . , bMα/3c − 1} × {0, . . . , bM1−α/3c − 1},

supposing M ≥ µ = 3. A blocked version of the preceding code, where the blocking factors

b1 =

bMα/3c α > 0
1 otherwise,

b2 =

bM1−α/3c α < 1
1 otherwise,

are both assumed to divide N , is given by

for j1 = 1 : N/b1, for j2 = 1 : N/b2,

for k1 = 1 : b1, for k2 = 1 : b2,

// reindexing (i1, i2) = b · (j1 − 1, j2 − 1) + (k1, k2)
si1 = si1 + ai1,i2 ∗ bi2 .

5.5.3 Matrix-Matrix Multiplication
Next we model multiplyingN -by-N matrices, componentwise mathematically as∑i3 ai1,i3bi3,i2 ,
or in pseudocode as

for i1 = 1 : N, for i2 = 1 : N, for i3 = 1 : N,
si1,i2 = si1,i2 + ai1,i3 ∗ bi3,i2 ,

80

𝑐2,1

𝑏1,1𝑎2,2

𝑎2,1 𝑏2,1

𝑎1,1

𝑎1,2

𝑐1,1

𝑐1,2

𝑐2,2

𝑏1,2

𝑏2,2

𝑐2,1

𝑐1,1 𝑐2,2

𝑏1,1𝑎2,2

𝐶

𝐴 𝐵

Figure 5.3: Matrix-matrix multiplication example (Section 5.5.3) in the case N = 3.

by a family of algorithms whose parameters satisfy

I = {ai1,i3 , bi3,i2 | (i1, i2, i3) ∈ [N]3}, O = {ti1,i2 | (i1, i2) ∈ [N]2}
R = V \ I ⊇ {si1,i2,i3 | (i1, i2, i3) ∈ [N]3}, F ⊇ {zi1,i2,i3 | (i1, i2, i3) ∈ [N]3}

{ai1,i3 , bi3,i2} ⊆ im(x(zi1,i2,i3 , ·)) ⊆ {ai1,i3 , bi3,i2} ∪ (R \ {si1,i2,i3})
{si1,i2,i3} ⊆ im(y(zi1,i2,i3 , ·)) ⊆ R \ {sk,l,m | (i1, i2, i3) 6= (k, l,m) ∈ [N]3}.

(5.8)

The variables ti1,i2 ∈ V can be any N2 distinct elements of R (perhaps si1,i2,i3). Algorithms
satisfying (5.8) induce DAGs of the form shown in Figure 5.3. Each element of the output
matrix is computed by a dot product (see Section 5.5.1) of a distinct matrix row and matrix
column.

Algorithms satisfying (5.8) admit the following HBL interpretation.

m = 3, r = 3, (r1, r2, r3) = (2, 2, 2)
K = {zi1,i2,i3 | (i1, i2, i3) ∈ [N]3}, Z(zi1,i2,i3) = (i1, i2, i3)

φ1(i1, i2, i3) = (i1, i3), φ2(i1, i2, i3) = (i3, i2), φ3(i1, i2, i3) = (i1, i2)
A1(i1, i3) = ai1,i3 , A2(i3, i2) = bi3,i2 , A3(i1, i2) = ti1,i2 .

We confirm that ⋂j ker(φj) = {0}. We have the linear system

∆ =

1 0 1
0 1 1
1 1 0

 ,

so the LPs have value σ = 3/2, and the dual solution x = (x1, x2, x3) = (1/2, 1/2, 1/2).
In this case, we can apply Corollary 5.1 to obtain the tiles

EM =×
i∈[r]
{0, . . . , bMxi/mc − 1} = {0, . . . , bM1/2/3c − 1}

81

supposing M ≥ µ = 3. A blocked version of the preceding code, where the blocking factor
b = bM1/2/3c is assumed to divide N , is given by

for j1 = 1 : N/b, for j2 = 1 : N/b, for j3 = 1 : N/b,
for k1 = 1 : b, for k2 = 1 : b, for k3 = 1 : b

// reindexing (i1, i2, i3) = b · (j1 − 1, j2 − 1, j3 − 1) + (k1, k2, k3)
si1,i2 = si1,i2 + ai1,i3 ∗ bi3,i2 .

This example extends to multiplication of rectangular and sparse matrices, as well as
tensor contractions, which can be recast as matrix multiplication (see, e.g., [3, Section 2.6.1]).

5.5.4 Multiple-Tensor Contractions
Multiplying multiple matrices or tensors is usually done more efficiently by exploiting asso-
ciativity, i.e., inserting parentheses and multiplying pairs of matrices/tensors; in this case,
we can apply the preceding example (matrix multiplication, Section 5.5.3) to each pair, ob-
taining a communication lower bound based on σ = 3/2. Now we consider two examples
where this natural optimization is not exploited.

In the first example, we suppose we obtain an HBL datum with m = r and homomor-
phisms

φj(i1, . . . , ir) = (ij mod r, i(j+1) mod r, . . . , i(j+k−1) mod r)
given some k ∈ {1, . . . , r}. We can solve the corresponding linear program to see that
σ = r/k. The case r = 3 and k = 2 is equivalent to the matrix multiplication example.

In the second example, meant to model a “matricized tensor times Khatri-Rao product
operation” (given by G. Ballard in personal communication, May 14, 2015), m = r ≥ 2 and

φ1(i1, . . . , ir) = (i1, . . . , ir−1)
φ2(i1, . . . , ir) = (i2, ir)

...
φm(i1, . . . , ir) = (ir−1, ir);

we can solve the corresponding linear program to see that σ = 2−1/(r−1). Note that when
r ≥ 3, σ > 3/2.

5.5.5 N-body Simulation
In our last example, we return to the diamond DAG examples introduced in Section 3.1.5.
We have that m = r and for each j,

φj(i1, . . . , ir) = (i1, . . . , ij−1, ij+1, . . . , ir).

We find that σ = r, and that x = (xj)j = (1, . . . , 1) is the optimal solution of the dual linear
program, indicating that the natural approach of tiling these computations with cubes is
optimal.

82

Chapter 6

Conclusion

Motivated by the fact that communication (moving data) frequently dominates the costs
of computation (performing operations on that data), we have studied the communication
costs within a class of nested-loop programs.

We started in Chapter 2 by modeling communication in an abstract machine model, and
deriving communication lower bounds. The main contribution of Chapter 2 is a new shared-
memory parallel variant of Hong-Kung’s sequential communication lower bounds approach
[21], based on the notions of input-/output-path cutsize.

In Chapter 3, we demonstrated how algorithms can model a class of nested-loop programs
with group-theoretic interpretations. The main contribution of Chapter 3 is the notion of
an HBL interpretation, which generalizes previous work.

In Chapter 4, we developed a deeper theory needed show that algorithms with HBL
interpretations have particular input-/output-path cutsize properties. The main contribution
of Chapter 4 is deriving sharper constants in certain HBL-type inequalities, which in turn
give sharper constants in our lower bounds.

Finally, in Chapter 5, we studied the attainability of the lower bounds, showing that
they are attainable within constant factors in many practical cases. The main contribution
of Chapter 5 is a framework for finding communication-optimal implementations by tiling.

There are a number of different directions for future work.
First, there are a number of possible improvements to our approach for computing the

constraints for HBL-type inequalities in Section 4.7. For example, we have identified simpler
approaches when all the homomorphisms have rank-1 or corank-1. Additionally, we believe
that a simplification proposed by Valdimarsson [34] in the continuum setting extends to
the discrete setting; this would simplify computing the constraints in many more cases, for
example, whenever there are at most three homomorphisms, but it would also simplify our
algorithm for the general case.

Second, there are number of ways to tighten the communication lower bounds. We have
suggested changing the segment length as one option, as well as exploiting knowledge about
aliasing arrays, but there are a wide variety of options when it comes to picking an HBL
interpretation. It would be interesting to characterize different HBL interpretations that a
single algorithm admits.

Third, there are other ways to model communication cost other than the ones proposed
here. Our analysis was mostly in terms of per-processor communication costs, and it remains

83

future work to develop tighter bounds on critical-path communication cost. This will involve
a more complicated proof approach, since we largely ignored the influence of processors on
each other. Another important aspect of communication is overlap: there is often concur-
rency in the memory system (network, etc.) which is exploited by overlapping the cost of
moving single values by moving data in blocks/messages. Yet another issue is distributed
versus shared-memory. In this work we model shared-memory parallel machines but in our
previous work we modeled distributed-memory machines. We can model distributed mem-
ory in the present model by simulating message-passing in shared-memory; it remains to
demonstrate this extension, and show how tiling changes to address it.

Fourth, there is much to be done from an upper-bounds standpoint. We would like to give
an automated approach to transform a nested-loop program into a communication-optimal
version. There are a number of complications both theoretically (algorithm dependences)
and practically (program representations), and this remains future work.

84

References

[1] A. Aggarwal, A. Chandra, and M. Snir. “Communication complexity of PRAMs”.
In: Theoretical Computer Science 71 (1 Mar. 1990), pp. 3–28. issn: 0304-3975. doi:
10.1016/0304-3975(90)90188-N. url: http://portal.acm.org/citation.cfm?
id=77831.77836.

[2] G. Ballard. “Avoiding Communication in Dense Linear Algebra”. PhD thesis. EECS
Department, University of California, Berkeley, Aug. 2013. url: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2013/EECS-2013-151.html.

[3] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. “Com-
munication lower bounds and optimal algorithms for numerical linear algebra”. In:
Acta Numerica 23 (2014), pp. 1–155.

[4] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. “Brief announcement:
strong scaling of matrix multiplication algorithms and memory-independent commu-
nication lower bounds”. In: Proceedings of the twenty-fourth annual ACM symposium
on Parallelism in algorithms and architectures. ACM. 2012, pp. 77–79.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Minimizing communication in
numerical linear algebra”. In: SIAM Journal on Matrix Analysis and Applications 32.3
(2011), pp. 866–901.

[6] F. Barthe. “The Brunn-Minkowski theorem and related geometric and functional in-
equalities”. In: International Congress of Mathematicians. Vol. 2. 2006, pp. 1529–1546.

[7] W. Beckner. “Inequalities in Fourier analysis”. In: Annals of Mathematics (1975),
pp. 159–182.

[8] C. Bennett and R. Sharpley. Interpolation of Operators. Vol. 129. Pure and Applied
Mathematics. Academic Press, 1988.

[9] J. Bennett, A. Carbery, M. Christ, and T. Tao. “Finite bounds for Hölder-Brascamp-
Lieb multilinear inequalities”. In: Mathematical Research Letters 17.4 (2010), pp. 647–
666.

[10] J. Bennett, A. Carbery, M. Christ, and T. Tao. “The Brascamp-Lieb inequalities: finite-
ness, structure, and extremals”. In: Geometric and Functional Analysis 17.5 (Jan. 1,
2008), pp. 1343–1415.

85

http://dx.doi.org/10.1016/0304-3975(90)90188-N
http://portal.acm.org/citation.cfm?id=77831.77836
http://portal.acm.org/citation.cfm?id=77831.77836
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-151.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-151.html

[11] G. Bilardi, A. Pietracaprina, and P. D’Alberto. “On the space and access complexity
of computation DAGs”. In: Graph-Theoretic Concepts in Computer Science. 26th In-
ternational Workshop, WG 2000 Konstanz, Germany, June 15-17, 2000 Proceedings.
26th International Workshop on Graph-Theoretic Concepts in Computer Science. WG
2000 (Konstanz, Germany, June 15–17, 2000). Ed. by U. Brandes and D. Wagner.
Vol. 1928. Lecture Notes in Computer Science. Algorithms and Data Structures Group
of the Department of Computer and Information Science, University of Konstanz.
Springer-Verlag, 2000, pp. 47–58.

[12] H. J. Brascamp and E. H. Lieb. “Best constants in Young’s inequality, its converse,
and its generalization to more than three functions”. In: Advances in Mathematics 20.2
(1976), pp. 151–173.

[13] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and
H. V. Simhadri. Write-Avoiding Algorithms. Tech. rep. UCB/EECS-2015-163. EECS
Department, University of California, Berkeley, June 2015. url: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html.

[14] M. Christ. “The optimal constants in Hölder-Brascamp-Lieb inequalities for discrete
Abelian groups”. In: (July 31, 2013). arXiv:1307.8442v1.

[15] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick. Communication lower
bounds and optimal algorithms for programs that reference arrays (part 1). Tech. rep.
UCB/EECS-2013-61. University of California, Berkeley, Dept. of Electrical Engineering
and Computer Science, May 14, 2013.

[16] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick. “Communication lower
bounds for programs with affine dependences”. Talk at SIAM Conference on Parallel
Processing for Scientific Computing, Portland, Oregon, USA. Feb. 19, 2014. url: http:
//www.cs.berkeley.edu/˜knight/cdksy_PP14_slides.pdf.

[17] G. Collins. “Quantifier elimination for real closed fields by cylindrical algebraic decom-
position”. In: Automata Theory and Formal Languages: 2nd GI Conference. Springer.
1975, pp. 134–183.

[18] V. Elango, F. Rastello, L. Pouchet, J. Ramanujam, and P. Sadayappan. “On Charac-
terizing the Data Access Complexity of Programs”. In: Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. 2015, pp. 567–580. doi: 10.1145/
2676726.2677010. url: http://doi.acm.org/10.1145/2676726.2677010.

[19] P. van Emde Boas and J. van Leeuwen. “Move rules and trade-offs in the pebble game”.
English. In: Theoretical Computer Science 4th GI Conference. Ed. by K. Weihrauch.
Vol. 67. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1979, pp. 101–
112. isbn: 978-3-540-09118-9. doi: 10.1007/3-540-09118-1_12. url: http://dx.
doi.org/10.1007/3-540-09118-1_12.

[20] O. Hölder. “Über einen Mittelwertssatz”. In: Nachr. Akad. Wiss. Göttingen Math.-
Phys. Kl. (1889), pp. 38–47.

86

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html
http://www.cs.berkeley.edu/~knight/cdksy_PP14_slides.pdf
http://www.cs.berkeley.edu/~knight/cdksy_PP14_slides.pdf
http://dx.doi.org/10.1145/2676726.2677010
http://dx.doi.org/10.1145/2676726.2677010
http://doi.acm.org/10.1145/2676726.2677010
http://dx.doi.org/10.1007/3-540-09118-1_12
http://dx.doi.org/10.1007/3-540-09118-1_12
http://dx.doi.org/10.1007/3-540-09118-1_12

[21] J.-W. Hong and H. T. Kung. “I/O complexity: the red-blue pebble game”. In: Pro-
ceedings of the 13th annual ACM symposium on theory of computing. STOC ’81. (Mil-
waukee, Wisconsin, USA, 1981). ACM special interest group on algorithms and com-
putation theory (SIGACT). New York, New York, USA: ACM, 1981, pp. 326–333.

[22] D. Irony, S. Toledo, and A. Tiskin. “Communication lower bounds for distributed-
memory matrix multiplication”. In: Journal of Parallel and Distributed Computing
64.9 (2004), pp. 1017–1026.

[23] S. Lang. Algebra. 3rd. Vol. 211. Graduate Texts in Mathematics. Springer, 2002. isbn:
9780387953854.

[24] L. Loomis and H. Whitney. “An inequality related to the isoperimetric inequality”. In:
Bulletin of the American Mathematical Society 55 (1949), pp. 961–962.

[25] B. Lowery and J. Langou. “Improving Communication Lower Bounds for Matrix-
Matrix Multiplication”. Talk at the 9th Scheduling for Large Scale Systems Work-
shop, Lyon, France. July 2, 2014. url: http://scheduling2014.sciencesconf.org/
conference/scheduling2014/pages/julien_langou.pdf.

[26] L. Maligranda. “Why Hölder’s inequality should be called Rogers’ inequality”. In:
Math. Inequal. Appl 1.1 (1998), pp. 69–83.

[27] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
[28] B. Poonen. “Hilbert’s Tenth Problem over rings of number-theoretic interest”. Notes

from Arizona Winter School, “Logic and Number Theory”, March 15-19, 2003, Tuscon,
AZ. 2003.

[29] L. J. Rogers. “An extension of a certain theorem in inequalities”. In: Messenger of
Math 17 (1888), pp. 145–150.

[30] W. Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, 1987.
[31] J. E. Savage. “Extending the Hong-Kung model to memory hierarchies”. In: Comput-

ing and Combinatorics. First Annual International Conference, COCOON ’95 Xi’an,
China, August 24-26, 1995 Proceedings. First Annual International Conference on Com-
puting and Combinatorics. COCOON ’95 (Xi’an, China, Aug. 24–26, 1995). Ed. by
D.-Z. Du and M. Li. Vol. 959. Lecture Notes in Computer Science. Springer, 1995,
pp. 270–281.

[32] A. Tarski. A decision method for elementary algebra and geometry. Tech. rep. R-109.
RAND Corporation, 1951.

[33] A. Tiskin. “The design and analysis of bulk-synchronous parallel algorithms”. PhD
thesis. Oxford Univ., 1998.

[34] S. I. Valdimarsson. “Optimizers for the Brascamp-Lieb inequality”. In: Israel Journal
of Mathematics 168.1 (Nov. 1, 2008), pp. 253–274.

[35] S. I. Valdimarsson. “The Brascamp-Lieb polyhedron”. In: Canadian Journal of Math-
ematics 62.4 (2010), pp. 870–888.

[36] W. Young. “On the multiplication of successions of Fourier constants”. In: Proc. Roy.
Soc. of London, Ser. A (1912), pp. 331–339.

87

http://scheduling2014.sciencesconf.org/conference/scheduling2014/pages/julien_langou.pdf
http://scheduling2014.sciencesconf.org/conference/scheduling2014/pages/julien_langou.pdf

	Acknowledgements
	Introduction
	Avoiding Communication
	Communication Lower Bounds
	Contributions
	Outline
	Notation

	Modeling Computation and Communication
	Model Preliminaries
	Analyzing Executions
	Communication Lower Bounds
	Proofs

	Related Work

	Modeling Loop Nests
	Motivating Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	HBL Interpretations
	Related Work

	Hölder-Brascamp-Lieb-type Inequalities
	Definitions and Notation
	Main Results
	Background and Related Work
	Analysis of P
	Group-Theoretic Tools
	Embedding Z in Q
	Properties of P(G,H)
	Extreme Points of P(G,H) [0,1]m
	Properties of P(G)= P(G,H*N(G))

	Analysis of A, B, and C
	Basic Properties of A(G,s), B(G,s), and C(G,s)
	Properties of B(G,s) and C(G,s) when s [0,1]m
	Factorization of HBL Data
	When G Is Finite

	Relating P with A, B, and C
	Computing P
	Computing the Inequalities Defining P(G)

	Communication Bounds for Loop Nests
	Lower Bounds for Loop Nests
	Upper Bounds for Loop Nests
	Infeasible Case
	Injective Case
	Product Case
	Dot Product
	Matrix-Vector Multiplication
	Matrix-Matrix Multiplication
	Multiple-Tensor Contractions
	N-body Simulation

	Conclusion
	References

