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Abstract

Statistical Models for Genome Assembly and Analysis

by

Atif Hasan Rahman

Doctor of Philosophy in Computer Science
and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley

Professor Lior Pachter, Chair

Genome assembly is the process of merging fragments of DNA sequences produced by
shotgun sequencing in order to reconstruct the original genome. It is complicated by repeated
regions in genomes, sequencing errors, and experimental biases. Here we focus on our efforts
to confront some of the challenges in genome assembly and analysis of genomes to find regions
associated with phenotypes using statistical models.

Assembly algorithms have been extensively benchmarked using simulated data so that
results can be compared to ground truth. However, in de novo assembly, only crude metrics
such as contig number and size are typically used to evaluate assembly quality. We present
CGAL, a novel likelihood-based approach to assembly assessment in the absence of a ground
truth. We show that likelihood is more accurate than other metrics currently used for
evaluating assemblies, and describe its application to the optimization and comparison of
assembly algorithms.

We then extend this to develop a method for “scaffolding” i.e. linking contigs using read
pairs based on optimizing assembly likelihood. It uses generative models to approximate
whether joining contigs would result in an increase in assembly likelihood. The methods are
grounded in a rigorous statistical model yet proper approximations make the implementation
named SWALO efficient and applicable to practical datasets. We analyze SWALO on real
and simulated datasets used previously to evaluate other scaffolding methods and find that
it consistently outperforms all other scaffolders.

Finally, we focus on the problem of analyzing genomic data to associate regions in the
genome to traits or diseases. We present an alignment free method for association studies
that is based on counting k-mers in sequencing read, testing for associations directly between
k-mers and the trait of interest, and local assembly of the statistically significant k-mers
to identify sequence differences. Results with simulated data and an analysis of the 1000
genomes data provide a proof of principle for the approach. In a pairwise comparison of
the Toscani in Italia (TSI) and the Yoruba in Ibadan, Nigeria (YRI) populations we find
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that sequences identified by our method largely agree with results obtained using standard
GWAS based on variant calling from mapped reads. However unlike standard GWAS, we
find that our method identifies associations with structural variations and sites not present
in the reference genome.

We also analyze the data from the Bengali from Bangladesh (BEB) population to explore
possible genetic basis of high rate of mortality due to cardiovascular diseases (CVD) among
South Asians and find significant differences in frequencies of a number of non-synonymous
variants in genes linked to CVDs between BEB and TSI samples, including the site rs1042034,
which has been associated with higher risk of CVDs previously and the nearby rs676210 in
the Apolipoprotein B (ApoB) gene.
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Chapter 1

Introduction

In the last decade, research in biology has gone through a transformation with emergence
of next-generation sequencing technologies. The low cost and high throughput nature of
these technologies have led to development of various assays to explore many aspects of
interest in biology. In this thesis we address the problem of assembling genomes which is
essential for running most of these assays and how to find segments in genomes associated
with phenotypes i.e. observable characteristics or traits.

The genome of an organism refers to all of its genetic material. It contains the infor-
mation needed for development and functioning of an organism and is passed on from one
generation to the next. It is packaged in one or multiple chromosomes and is encoded in
DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) in some viruses. DNA in turn can
be thought of as a string of four types of nucleotides – adenine (A), cytosine (C), guanine
(G) and thymine (T).

Genome includes protein coding genes - segments in DNA that are first transcribed into
RNA and then translated into proteins which perform most of the cellular functions in
organisms. Genomes also contain non-coding sequencing some of which help regulate when
genes are expressed.

1.1 Genome assembly

Sequencing the genome of an organism i.e. determining the sequence of nucleotides that
make up the genome is a prerequisite for performing various kinds of experiments to study
an organism and is fundamental to understanding how different organisms and individuals
relate to each other. However, genomes can be tens of thousands to billions of nucleotides
long and sequencing instruments typically cannot determine the entire sequence.

Due to this there are two approaches to genome assembly. In reference guided or assisted
assembly, the genome of a related organism is used to aid the genome assembly of the
organism being sequenced. Whereas in de novo sequencing no such genome is available or
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used. In de novo sequencing a technique known as shotgun sequencing is used which leads
to the computational problem of genome assembly.

Genome sequencing starts with many copies of the genome (Figure 1.1). Fragments
are then generated by shearing these at random locations. This is usually followed by a size
selection step to produce libraries of fragments with approximately a known size. Sequencing
machines then generate the sequence of nucleotides from one end of the fragment known as
single-end reads or simply reads. Most technologies can also determine sequences from both
ends of the fragment. These are called paired-end reads or mate-pair reads when circularized
DNA fragments are used. We use the term read pair to refer to either paired-end or mate-pair
reads.

Figure 1.1: Genome sequencing. Genome sequencing starts with many copies of the genome
which are sheared in random locations. One or both ends of these fragments are then read. Over-
lapping reads are assembled into contigs. Finally, contigs are oriented and linked together into
scaffolds using read pairs.

The computational task of assembling or stitching together the overlapping reads gener-
ated is complicated by three issues – errors by sequencing instruments, non-uniform coverage
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of genome due to sequencing biases and most importantly presence of identical or near iden-
tical regions in the genome called repeats.

Under certain conditions depending on structure and lengths of repeats and read lengths,
it may not be possible to reconstruct the genome uniquely [155]. The conditions are explained
by Bresler et al. [11] and illustrated in Figure 1.2. If the genome contains repeats with three
copies (shown in grey) or interleaved repeats (two sets of interleaving repeats shown in grey
and black) with minimum length of L and read length is not greater than L + 1 then the
target genome cannot be determined uniquely.

(a) (b)

Figure 1.2: Difficulties in genome assembly due to repeats. Figure shows complications
in assembly due to (a) triple repeats and (b) interleaved repeats. If there are no reads spanning
any of the repeats, the reads can be equally well explained by both paths leading to two possible
assemblies of the genome

The stochastic nature of the read generation process also complicates the assembly pro-
cess. Lander and Waterman provided guidelines on the number of reads to be generated to
ensure that the entire genome has been sampled with high probability assuming the start
sites of reads are Poisson distributed [78]. In reality, all regions of the genome are not sampled
uniformly due to sequencing biases [149] leading to unsampled regions and making estima-
tion of number of copies of repeats difficult. Furthermore, sequencing errors complicates
distinguishing between reads that actually overlap and reads that are from non-identical
repeats.

Genome assembly has been shown to be NP-hard (computationally intractable) in a
number of settings [100, 112] while Nagarajan and Pop explored how the interplay among
complexity, read length, coverage and other parameters change the complexity of the prob-
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lem [112]. Due to the theoretical hardness of the problem and practical issues, genome
assembly is commonly done in two major steps.

In the first step overlapping reads are assembled into contiguous sequences commonly
known as contigs. But most genomes contain repetitive regions longer than reads which
cannot be resolved with single-end reads. Moreover, as explained earlier, some regions in the
genome may not be read due to stochastic nature of fragment generation process or biases
in the process.

In the second step, the contigs can be linked together into scaffolds if read pairs are
available. This step of orienting and ordering contigs is known as scaffolding. Scaffolding
increases the sizes of assembled sequences aiding downstream analysis. The scaffolding step
may also estimate gaps between contigs the sequences within which can be determined in a
gap-filling step.

1.2 Sequencing technologies

Although the general approach to genome assembly has largely remained unchanged, the
technologies used for sequencing and the methods used for assembling the data have evolved
over the years. Here we review major breakthroughs in sequencing technologies and changes
in the nature of data generated. There are a number of review articles that provide more
details on sequencing technologies [146, 93, 95, 102, 44, 121, 105, 94, 134].

The first known method for determining DNA sequences was developed by Ray Wu
in the early 1970s [163, 164]. In 1977, Frederick Sanger developed the chain-termination
method for sequencing [142]. This technique known as Sanger sequencing was faster and
more efficient than earlier methods and laid the foundation for later sequencing methods.
Gilbert and Maxam had also developed a method for sequencing and reported a sequence of
24 basepairs [98].

The basic Sanger method was later automated and refined to produce reads with lengths
up to 2000bp and producing 96 reads per run [113, 95]. The human genome project [79, 157]
was completed in 2003 using Sanger sequencing and despite the advances made in sequencing,
it took more than a decade and cost around $1 billion [134].

Sequencing went through a revolution in the past decade due to the emergence of a set
of technologies collectively known as next generation sequencing (NGS) technologies. These
technologies speed up sequencing and increase the throughput by parallelizing the process
while reducing the cost drastically at the same time.

The first next generation sequencing technology to emerge was the pyrosequencing method
by 454 Life Sciences (now Roche) [96] in 2005 followed by the Illumina/Solexa sequencing
in 2006 [52] and the Sequencing by Oligo Ligation Detection (SOLiD) by Applied Biosys-
tems (now Life Technologies) in 2007 [156]. In 2010, Ion Torrent (now Life Technologies)
announced the Ion semiconductor sequencing method [137].

Figure 1.3 shows how the sequencing cost has decreased over the years while Table 1.1
compares several characteristics of various technologies that are relevant to the computational
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Figure 1.3: Evolution of sequencing technologies. Figure shows how the amount of sequences
generated per $1000 has increased over the years. Circles are color coded by technology. The radii
of the circles are proportional to log of read lengths and the border widths denote error rates.

task of assembly. The values used are approximate ones collected from [95, 130, 89, 90, 113]
and other online sources.

The reduction in cost and increase in throughput brought by NGS technologies have
spurred sequencing of genomes of many species across the tree of life [120] and led to se-
quencing of approximately 2500 individuals from 26 populations as part of the 1000 genomes
project [4]. However, the shorter read lengths and quantity of data generated by NGS tech-
nologies have posed additional computational challenges.

More recently, a third generation of technologies that include the single molecule real time
(SMRT) sequencing technology by Pacific Biosciences (PacBio) [37] and nanpore sequencing
by Oxford Nanopore [10] have emerged. In addition, Moleculo technology and GemCode
technology by 10X Genomics generate long range information from short reads using library
preparation methods. But third generation technologies have not been widely adopted due
to higher cost, higher sequencing error rate, lower throughput compared to NGS among other
reasons and most of the sequencing is still being performed using NGS or a combination of
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Table 1.1: Comparison of several features of sequencing technologies relevant to genome
assembly.

Technology Read length(bp) Error rate Reads per run Time per run
Sanger 900 (Up to 2000) 0.1% 96 20 mins-3 hrs
Roche/454 400-700 2% 1 million 1 day
Illumina/Solexa 35-300 1% Up to 6 billion 1-11 days
ABI/SOLiD 35-75 1% Up to 1.4 billion 1-2 weeks
Ion Torrent 200-400 2% Up to 80 million 2-4 hours
Pacific Biosciences 14000 13% 50,000 30 mins-4 hrs
Oxford Nanopore 6000 (Up to any) 18% 73,000 2 days

NGS and third generation sequencing.

1.3 Methods for genome assembly

The computational methods for genome assembly have had to adapt to evolving sequencing
technologies. In this section, we review prior theoretical work and practical methods for
contig generation, scaffolding and assessing genome assemblies. More detailed overview
of approaches to genome assembly, methods based on these and other issues are available
in [129, 128, 104, 113]

Contig assembly

In the early days, Sanger sequencing was used for generating reads and computer scien-
tists formulated genome assembly as the shortest common superstring (SCS) problem – the
problem of finding the shortest string that contains all reads as substrings. Although the
problem is NP-hard, the greedy algorithm of iteratively joining reads with most overlap per-
forms well in practice [41]. However, in reality genomes contain repetitive regions that are
handled improperly by the SCS formulation [109, 71]. Early assemblers such as phrap [47] and
TIGR [152] as well as a more recent one, VCAKE [66] were based on the greedy algorithm
with heuristics used to detect repetitive regions.

Myers and Kececioglu introduced a graph theoretical formulation of the problem that
gave rise to the overlap-layout-consensus (OLC) paradigm. In this formulation there is a
vertex for each read and an edge between two vertices if the corresponding reads overlap.
Then the assembly problem is related to finding a walk on the graph visiting all the vertices.
The Celera assembler was based on this paradigm [107]. Later Myers proposed the string
graph for genome assembly which is constructed by transitive reduction on the overlap graph
and estimating the number of times each vertex is to be visited [108].

A different graph theoretic paradigm was proposed by Pevzner based on the de Bruijn
graph [123, 124, 23]. In the context of genome assembly, de Bruijn graph contains a vertex for
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each k-mer (a continuous string of length k) present in the reads and there is a directed edge
between two vertices if suffix of length k− 1 of one is the prefix of length k− 1 of the other.
The assembly problem is then to find an Eulerian path i.e. a path that visits every edge
exactly once. An implementation of this approach resulted in the Euler assembler [124].

With the emergence of NGS technologies, assembly algorithms were faced with new
challenges due to large volume of data, short read lengths, and high error rates. To avoid
finding overlaps between millions of reads, de Bruijn graph based approaches started to be
more commonly used. A number of de Bruijn graph based assemblers, such as Velvet [167],
ABySS [147], Euler-sr [15], Allpaths [14, 46], SOAPdenovo [85] have been developed to
assemble NGS reads. SGA is however an overlap graph based assembler for NGS data which
uses efficient string indexing data structures for overlap computation [148].

Although assembly algorithms adapted to tackle large volume of data, there have not been
much effort to take advantage of quantity of data through a rigorous statistical model. Myers
proposed a maximum likelihood reconstruction that is finding an assembly that maximizes
the probability of observing the set of reads [109], and Medvedev and Brudno gave an
algorithm for maximum likelihood genome assembly based on a bidirected network flow-
based algorithm [99]. But there has not been a practical assembler of real NGS data based
on a maximum likelihood approach.

Scaffolding

In all of the paradigms discussed above, if the reads are not long enough to resolve the repeat
structure of the genome [155, 11] or if parts of the genome were not sequenced, the genome
cannot be reconstructed uniquely based on single-end reads. Read pair or other sources of
information such as genetic and optical maps [16, 114] are then used to orient and order the
contigs. While there have been some efforts to integrate read pair information into contig
assembly [101, 125, 13], most commonly scaffolding is done as a separate step after contigs
have been generated using single-end reads.

Due to short reads generated by next-generation sequencing technologies, the scaffolding
step has become of increased importance and as such a scaffolding module is built into
most assemblers [167, 147, 14, 85, 17]. In addition, many stand alone scaffolders have been
developed [76, 28, 7, 34, 42, 139, 48]. Typically scaffolders construct a graph with a vertex
for each contig and edges representing read pairs linking contigs and attempt to maximize
number of linking reads or minimize paired read violations.

Several formulations of this problem is known to be NP-hard [63, 73, 127] and scaffolding
algorithms rely on heuristics. There are a number of scaffolding tools that are based on
the greedy heuristic [7]. There are also other approaches – SOPRA uses statistical optimiza-
tion [28], MIP employs mixed integer programs [139] while SCARPA and Opera are based
on fixed parameter tractable algorithms [34, 42].
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Evaluating genome assemblies

An important issue regardless of the sequencing technology used for generating the data is
assessing the accuracy and completeness of an assembly [6, 113]. Assembly and scaffolding
algorithms rely on heuristics due computational intractability of the problems [99, 112, 63,
73, 127] and complications caused by sequencing errors, experimental biases and the volume
of data that must be processed. As a result assemblies produced by existing methods tend
to differ from each other. In addition, assemblies generated by the same assembler often
vary with parameter values used for assembly.

In recent years, there have been two major initiatives to evaluate assembly methods,
the genome assembly gold-standard evaluation (GAGE) [141] and Assemblathon competi-
tions [35, 9]. The results confirm the variability in the assemblies generated and suggest no
method can be termed “the best”, and thus highlight the need for methods to assess genome
assemblies.

In de novo assembly, when there is no “ground truth”, there has been a focus on contiguity
due to advantages in downstream analysis and the correctness of the reconstructed sequences
has been ignored typically. The most commonly used statistic is the N50 scaffold or contig
size - which is the maximum contig (scaffold) length such that at least half the total assembly
is contained in contigs (scaffolds) of length greater than or equal to that length. The numbers
of contigs and scaffolds have also been used to assess assemblies.

The practice of assessing assemblies using N50 sizes has led some of the assemblers to
aggressively stitch pieces together and omit hard to assemble regions at the expense of
incorrect and incomplete assemblies. In 2005, even when genomes were assembled using
Sanger sequencing data, Salzberg and Yorke found that there were mis-assemblies in most
draft genomes they examined and questioned the emphasis on statistics based on size [140].
Alkan et al. reported that an assembly of the human genome using NGS reads is considerably
shorter than the reference [1].

To address the problem of mis-assemblies, Phillippy et al. presented a software called
amosvalidate [126] that identifies features that might arise due to mis-assemblies and uses
them to detect suspicious regions; however, it does not have high specificity and has not been
widely adopted. Narzisi et al. used these features and introduced feature response curves
to rank assemblies [116, 159]. In feature response curves, total size of contigs with a mis-
assembly feature threshold are plotted against different thresholds. This does not however
produce a single value that can be optimized during assembly and does not incorporate
amount of genome covered in the assembly.

A different approach to evaluate genome assemblies is to use experimental data such as
optical map data, transcriptome data, chromosome organization data [114, 110, 170, 171].
Each has its advantages and disadvantages and the experiments are generally expensive and
time consuming meaning thorough validations of assemblies using experimental approaches
are performed rarely.
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1.4 Genome analysis

Sequencing of the genome of a species or an individual is an important and often essential
first step for subsequent analysis. Genomic analysis includes annotation of protein coding
genes and other regulatory elements, understanding expression and regulation of genes, iden-
tification of variations in genomes and mapping their associations to phenotypes as well as
comparison of genomes of multiple species and exploring their evolutionary relationships
through phylogenetic analysis.

Although next generation sequencing technologies were initially intended for sequencing
genomes, scientists have taken advantage of low cost and high throughput of NGS technolo-
gies especially Ilumina/Solexa sequencing and reduced many other experiments in biology
to sequencing. These so called “*-Seq” assays probe diverse aspects such as protein-DNA
binding (ChIP-Seq [67, 103]), RNA transcript abundances (RNA-Seq [106]), RNA structure
(dsRNA-Seq [169], SHAPE-Seq [91, 5], DMS-Seq [138]), translation of RNA (ribosome pro-
filing [64]), chromatin structure, methylation and other epigenetic features (DNAse-Seq [25],
BS-Seq [88], Hi-C [86]). Many of the computational methods to analyze the data map reads
to a reference genome requiring prior sequencing of the genome.

However, the difficulties in assembling genomes using NGS data motivated us to explore
methods for genomic analysis that do not require a reference genome. Here we focus on a
reference-free method for association mapping from NGS sequencing reads with only local
assembly.

Association mapping

Although genomes of individuals of a species are quite similar, there are variations in the se-
quence of DNA across individuals. Genomic variations, illustrated in Figure 1.4, are broadly
of two types – sequence variations and structural variations. Sequence variations include
mutation at a single base from one base into another called substitutions, and insertion or
deletion of a few bases, together commonly referred to as indels. In some cases, both vari-
ants or alleles resulting from a mutation persist in populations. These are known as single-
nucleotide polymorphisms (SNPs). On the other hand, structural variations are long-range
variations in chromosomes including insertions, deletions, copy number variations (CNVs),
inversions and translocations.

Some of these variations or genotypes result in changes in traits or phenotypes and
can cause diseases through alteration of the structure of the proteins encoded, change in
regulation of expression, or other mechanisms. Association mapping refers to associating
regions in genome or variations to phenotypes. Although association does not imply causality,
the associated regions may then be investigated for causal variants.

Association mapping is typically done in the form of a genome-wide association study
(GWAS) illustrated in Figure 1.5. For categorical phenotypes firstly two groups of individuals
are selected – individuals who have the trait or the disease of interest (cases) and who do
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CGTTTGCTATCCGATTReference

Substitution CGTTTGCTGTCCGATT

Insertion CGTTTGCTGTATCCGATT

Deletion CGTTTG--ATCCGATT

Reference

Insertion

Deletion

Inversion

Translocation

Copy number

variation

(a) Sequence variations (b) Structural variations

Figure 1.4: Genomic variations. Common types of (a) sequence variations and (b) structural
variations. Sequence variations involve a single or a few nucleotides whereas structural variations
affect large regions of genomes.

not (controls). Then a SNP array is used to determine the alleles present at a set of known
SNP sites for all individuals in the study.

Then each SNP is tested for association with the phenotype by computing a P-value
using a statistical test. P-value is the probability of observing an outcome as extreme as
the one being observed if the null hypothesis is true. The null hypothesis in this context
is the SNP is not associated with the phenotype whereas the alternate hypothesis is that it
is associated with the phenotype. A popular approach to visualize the resulting P-values
across the genome is to create a Manhattan plot where negative logarithm of P-values are
plotted against genomic co-ordinates of SNPs. In a typical GWAS, P-values of millions
of SNPs are computed. Therefore the P-value threshold for significance must be corrected
for multiple testing and SNPs with P-values less than 5 × 10−8 are commonly considered
significant for humans [56, 24]. Since there can be differences in allele frequencies across
populations, correcting for population structure and other confounding factors such as age
and sex is often needed for P-value computation.

GWAS may also involve analysis of quantitative phenotypic data. One approach is to
regress the phenotype against principal components of the genotype data to account for pop-
ulation structure, as well as against other confounding factors. Then P-values are computed
for each SNP typically using chi-squared test by including the SNP in the regression. Same
approach can also be used for categorical phenotypes with the use of logistic regression.
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(a)

(b)

Test each SNP

for association with

the phenotype

Cases Controls

SNPs from cases SNPs from controls

Figure 1.5: Genome wide association mapping. Genome wide association mapping (GWAS) is
performed by using a SNP array to determine the alleles at a set of SNP sites for some individuals
with the phenotype (cases) and some who do not (controls). Each SNP is then tested for association
with the phenotype and P-values are determined. P-values across the genome are often visualized
using Manhattan plots (adapted from www.mpg.de and en.wikipedia.org).

Since 2005 thousands of GWA studies have been performed [160] mostly in human and
association between many SNPs and phenotypes have been uncovered. However, GWAS
design has a number of limitations. The construction of the SNP array requires knowledge
of the reference genome and where the SNPs are located making it difficult to apply to
most species other than human. Even in human if the disease is caused (risk elevated) by
a structural variation or a rare variant not on the array, follow up is required to determine
the causal variant even if association is detected which is often difficult. Moreover, if the
disease is caused by a variant in a region not in the reference, reference based methods
are unlikely to work. Many of these limitations can be overcome by using NGS data as
sequencing gets cheaper but current approach to association mapping from sequencing reads
relies on mapping reads to a reference genome and calling different kinds of variants. But
calling structural variants is difficult and this approach is again unable to map associations
in regions not in the reference.
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1.5 Outline

In Part I of this dissertation, we present statistical models for genome assembly. In Chap-
ter 2, the problem of evaluating genome assemblies is addressed. We present a generative
model for sequencing and develop a method for computing likelihoods of genome assem-
blies implemented in Cgal (computing genome assembly likelihoods) which can be used
for evaluating assemblies. Application to real and simulated datasets including the GAGE
and Assemblathon 1 datasets reveal that likelihood is more accurate in assessing genome
assemblies compared to contiguity based measures and reflects completeness of the assembly
which is missed by other approaches.

In Chapter 3, we use the generative model for sequencing to develop a method for scaffold-
ing. Similar generative models are used to estimate gaps between contigs and approximate
the change in likelihood of the assembly if the contigs are joined with the estimated gap.
The method is implemented in a tool called Swalo (scaffolding with assembly likelihood
optimization). It is based on a rigorous statistical model yet we make approximations when-
ever necessary to make it efficient. We analyze datasets recently introduced by Hunt et al.
to evaluate scaffolders and find that Swalo outperforms all other scaffolding tools.

Finally, in Part II of this dissertation, we focus on association mapping and present an
alignment free method from sequencing reads. The method does not require a reference
genome enabling association mapping in organisms with no or incomplete reference genome.
It works by testing for association between each k-mer and performing local assemblies
of the k-mers with significant association and the implementation is titled Hawk (hitting
associations with k-mers). We also discuss some findings upon applying our method to the
1000 genomes project data.
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Part I

Genome Assembly
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Chapter 2

CGAL: computing genome assembly
likelihoods

2.1 Background

Genome assembly is the process of merging fragments of DNA sequence produced by shotgun
sequencing in order to reconstruct the original genome. The assembly problem is known to be
NP-hard for a number of formulations [99, 100, 112] and is also complicated by many types
of sequencing errors, experimental biases and the volume of data that must be processed.
For these reasons, in addition to differences in underlying theory and algorithms, popular
assembly methods employ many different heuristics and assemblies produced by existing
methods differ substantially from each other [35, 141].

Paradoxically, the difficulties of sequence assembly have been compounded by sequencing
advances in recent years collectively termed next-generation sequencing technologies. Next-
generation sequencing technologies such as 454 pyrosequencing by Applied Sciences [96],
Solexa/Illumina sequencing, the SOLiD technology from Applied Biosystems and the Heli-
cos single-molecule sequencing [52] produce data of much greater volume at a much lower
cost than traditional Sanger sequencing [142]. However, read lengths are considerably shorter
and error rates are higher than those in Sanger sequencing. To allow de novo sequencing from
short reads from next generation sequencing machines several assemblers have been devel-
oped such as Velvet [167], Euler-sr [15], ABySS [147], Edena [55], SSAKE [161], VCAKE [66],
SHARCGS [32], Allpaths [14], SOAPdenovo [85], Celera WGA [107], the CLC bio assembler
and others [35, 141]. A key problem that has arisen is to determine which assembler is “the
best”. In the past this has been done with the help of a number of measures such as N50
scaffold or contig lengths - which is the maximum contig (scaffold) length such that at least
half the total length is contained in contigs (scaffolds) of length greater or equal that length.
Although simulation studies show that simple metrics correlate with assembly quality, cur-
rently used metrics are crude and provide only condensed summaries of the result. They
can therefore be very misleading [141, 158]. For example, the assembly consisting of simply



CHAPTER 2. CGAL: COMPUTING GENOME ASSEMBLY LIKELIHOODS 15

gluing all reads end-to-end has a very large N50 length, but is obviously a poor assembly.
Phillippy et al. presented a software called amosvalidate [126] that identifies mis-assembly
features and suspicious regions but it does not have high specificity and has not been widely
adopted. Narzisi et al. utilized feature-response curve [116] to rank assemblies based on
features identified by amosvalidate. Studies such as [168, 87, 27, 1] have discussed these
issues and produce interesting insights into assembler performance but do not provide an
intrinsic direct measure of assembly quality. The recent Assemblathon 1 competition used
10 different metrics [35] that attempt to reveal more information than just N50 values, but
most of them can only be computed when the genome that is being assembled is known, and
are therefore not useful in practice on real data.

In this paper we present a computationally efficient approach for computing the likelihood
of an assembly which provides a way to assess assemblies without a ground truth. Intuitively,
the likelihood assessment evaluates the uniformity of coverage of the assembly, taking into
account errors in the reads, the insert size distribution and the extent of unassembled data.
Genome assembly by maximizing likelihood has been proposed previously by Myers [108]
and Medvedev et al. [99] but their formulations are based on simplified models that omit
evaluating and utilizing crucial parameters, especially sequencing error. To demonstrate the
power of our approach for assembly quality evaluation we have implemented our methods in a
program called CGAL that we evaluate by testing several assemblies from different programs
with varying input parameters in setting where the desired target genome is known. For
each assembly, we compute the likelihood using our tool and then compare our likelihood
computation to standard measures such as N50 contig values, sequence similarity with the
reference genome as well as values reported by amosvalidate. Although it is beyond the scope
of this paper to compare all assemblers and explore all parameters, our results indicate that
likelihood is meaningful and useful for evaluating assemblies.

2.2 Results

Our overall approach is simple: we describe a probabilistic generative model for sequencing
that captures many aspects of sequencing experiments, and from which we can compute the
likelihood of an assembly. This intuitive framework is, however, complicated by one major
difficulty which is the problem we address in this paper: to compute the likelihood of an
assembly it is necessary, in principle, to consider the possibility that a read was produced
from every single location in the assembly. This results in an intractable computation, that
we circumvent by approximating the likelihood via a reduction to a small set of “likely” sites
from which each read originated (using a mapping of the reads to the assembly). This requires
an examination of the quality of the approximation, and leads to yet another difficulty, which
is how to compute the likelihood for reads that do not map to the assembly at all. These
issues are addressed in this paper and their solution is what enables our program for likelihood
computation to be efficient and practical.

We begin by describing the statistical model that forms the basis for our likelihood
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computation. We believe that our model incorporates many aspects of typical sequenc-
ing experiments, but it can be easily generalized to accommodate additional parameters if
desired.

A generative model for sequencing

Let, R = {r1, r2 . . . rN} be a set of N paired end (or mate pair) reads generated from
a genome, G (our model can, in principle be adapted to single end reads but we do not
consider that here). We assume a fragment represented by two paired-end reads ri = (ri1, ri2)
is generated according to the following model:

• A fragment length, li is selected according to a distribution, F .

• A site for the 5′ end of the fragment, si is selected according to a distribution, S.

• The ends of the fragment are read as ri1 and ri2 according to an error model, E which
comprises mismatches as well as indels.

The generative model is illustrated in Figure 2.1.

N

length 5’ end

read

genome
F S

E

Figure 2.1: A generative graphical model for sequencing. N paired end reads are generated
independently from a genome. Here, F denotes the distribution of fragment lengths, S is the
distribution of start sites of reads and E stands for error parameters.

Computing likelihood

Computing the likelihood of an assembly means that the probability of the (observed) set
of reads is computed with respect to a proposed assembly using the model described in the
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previous section. The probability of a sequence of length L generating a paired-end or mate
pair read (termed read from now on) ri is

p(ri) =
L∑
l=1

pF (l)
L−l+1∑
s=1

pS(s)
∑
e∈E

pE(ri|as . . . as+l−1)

where as . . . as+l−1 is the assembly subsequence starting at s of length l, E denotes all possible
ways of obtaining ri from as . . . as+l−1 and

pF (l) = probability that the fragment length is l,

pS(s) = probability that the 5′ end of the fragment is at site s,

pE(ri|as . . . as+l−1) = probability of obtaining ri from as . . . as+l−1

with sequencing errors given by e.

Although in theory a read could have been generated from any site (assuming that
every base could have been an error), in practice the probability decreases considerably with
increasing number of disagreements between the source sequence and the read sequence.
We therefore approximate the probability p(ri) by mapping the read to the assembly and
ignoring mappings with large number of differences. If Mi is the number of such mappings
of read ri, the probability is given by

p(ri) ≈
Mi∑
j=1

pF (li,j)pS(si,j)pE(ri|ai,j)

where li,j, si,j, ai,j and ei,j are fragment length, start site, assembly subsequence and errors
corresponding to j-th mapping of i-th read respectively. The above equation generalizes
to assemblies with more than one contig. Given an assembly A and a set of reads R =
{r1, r2 . . . rN}, the log likelihood is given by

l(A;R) = log
N∏
i=1

p(ri|A)

≈
N∑
i=1

log

Mi∑
j=1

pF (li,j)pS(si,j)pE(ri|ai,j).

In the above equation Mi ≥ 1 for all reads ri, and in Methods we explain how we obtain
alignments for all reads and how to learn the needed distributions.

Validation with simulated data

To test our implementation we developed a simulator that generates reads according to error
parameters provided and fragment lengths distributed according to a Gaussian distribution.
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We generated 3 million 35bp paired end reads from a strain of Escherichia coli ([NCBI:
NC 000913.2]) and an assembly of Grosmannia clavigera ([DDBJ/EMBL/GenBank:
ACXQ00000000]) reported in [31]. Table 2.1 shows percentage difference in likelihood values
computed using true parameters provided to the simulator and using parameters inferred by
CGAL.

Table 2.1: Percentage difference between the simulator and CGAL

Genome Length(bp) % difference
E.coli 4.6M 0.074

G. clavigera 29.1M 0.0755

Performance of assemblers on E. coli reads

We assessed performance of four assemblers: Velvet, Euler-sr, ABySS and SOAPdenovo
on an Escherichia coli dataset ([SRA:SRR 001665] and [SRA:SRR 001666]). We chose E.
coli because its assembly is a true “gold standard” without questions about reliability or
accuracy. We assembled the reads using the assemblers mentioned for different hash lengths
(k-mer used for constructing de Bruijn graph [124]). Likelihood values for assemblies along
with the likelihood value for the reference ([NCBI: U00096.2]) are shown in Figure 2.2(a).

Figure 2.2: (a) Hash length vs log likelihood for E. coli. Log likelihoods of assemblies
generated using different assemblers for varying k-mer lengths shown. The dotted line corresponds
to the log likelihood of the reference. (b) Hash length vs difference from reference for
E. coli. Differences between assemblies and the reference are shown where difference refers to
numbers of bases in the reference not covered by the assembly or are different in the reference and
the assembly.
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For this dataset ABySS outperforms others when likelihood is used as the metric. We
also aligned the assemblies to the reference with NUCmer [29] and Figure 2.2(b) shows
differences from reference against hash lengths. The relations among likelihood, N50 length
and similarity are illustrated in Figure 2.3 and Figure A.1. They suggest that likelihood
values are better at capturing sequence similarity than other metrics commonly used for
evaluating assemblies such as N50 scaffold or contig lengths. We also ran the amosvalidate
pipeline to obtain numbers of mis-assembly of features and suspicious regions (Figure 2.4)
and plotted the feature response curves (FRC) [116] of the assemblies (Figures A.3, A.3).
FRC also ranks an ABySS assembly as the best one.

−3.4e+08 −3.0e+08 −2.6e+08 −2.2e+08

0
50

00
0

10
00

00
15

00
00

20
00

00

Log likelihood

N
50

 s
ca

ffo
ld

 le
ng

th

Euler Abyss Velvet SOAP

Figure 2.3: Log likelihood vs N50 scaffold length for E. coli. Each circle corresponds to
an assembly generated using an assembler for some hash length and sizes of circles correspond to
similarity with reference. The R2 values are (i) log likelihood vs similarity: 0.9372048, (ii) log
likelihood vs N50 scaffold length: 0.44011, (iii) N50 scaffold length vs similarity: 0.3216882.

Similar analysis was performed on a different Escherichia coli dataset downloaded from
CLC bio [22]. It consists of approximately 2.6 million 35bp paired end Illumina reads (approx-
imately 40X coverage) along with a reference genome ([NCBI: NC 010473.1]). We noticed
that many of the assemblies have better likelihood than the reference. However, we assem-
bled reads that could not be mapped to the reference and after running BLAST [3] we found
another substrain of Escherichia coli strain K-12, MG1655 ([NCBI: NC 000913.2]) that has
a better likelihood than all assemblies. We conjecture that the reads were generated from
NC 000913.2. Likelihood values are shown in Figure 2.5 and relationships among likelihood,
similarity and N50 values are illustrated in Figures A.5, A.6, A.7, A.8.
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Figure 2.4: Log likelihood vs numbers of mis-assembly features and suspicious regions
for E. coli. Numbers of mis-assembly features and suspicious regions reported by amosvalidate
are shown against log likelihoods. Each symbol corresponds to an assembly generated using an
assembler for some hash length and sizes of symbols correspond to similarity with reference. The
R2 values are (i) log likelihood vs # mis-assembly features: 0.8922, (ii) log likelihood vs # suspicious
regions: 0.9039, (iii) similarity vs # mis-assembly features: 0.8211, (iv) similarity vs # suspicious
regions: 0.7723.

Performance of assemblers on G. clavigera reads

To assess assemblies of a larger genome, we used the dataset generated for sequencing an
ascomycete fungus, Grosmannia clavigera by DiGuistini et al. [31]. We ran Velvet, ABySS
and SOAP on PE Illumina reads with fragment length mean of 200 bp [SRA:SRR 018008-11]
and 700 bp [SRA:SRR 018012].

The likelihood values of the 200bp fragment reads for the assemblies are shown in Fig-
ure 2.6(a). It also shows likelihood values for assemblies [DDBJ/EMBL/GenBank:
ACXQ00000000] and [DDBJ/EMBL/GenBank: ACYC00000000] reported in [31] which were
generated using Sanger and 454 reads as well as Illumina reads. The numbers of mis-assembly
features and suspicious regions identified by amosvalidate and the feature response curves
(FRC) are shown in Figure A.12.

Figure 2.6(b) shows that the assembly with most sequence coverage is produced by
ABySS. However, in this case ABySS assemblies are much longer compared to other as-
semblies and references (Tables A.9, A.10, A.11). This results in lower likelihoods compared
to some assemblies by Velvet and SOAPdenovo. In FRC analysis, coverage is estimated using
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Figure 2.5: Hash length vs log likelihood for E. coli data from CLC Bio. Log likelihoods
of assemblies generated using different assemblers for varying k-mer length are shown. The yellow
dotted line corresponds to the log likelihood of the reference provided and the gray dotted line
corresponds to the log likelihood of the strain we believe the reads were generated from.

Figure 2.6: (a) Hash length vs log likelihood for G. clavigera. Log likelihoods of assemblies
generated using different assemblers for varying k-mer lengths shown. The dotted lines correspond
to log likelihood of the assemblies generated using Sanger, 454 as well as Illumina data. (b) Hash
length vs difference from reference for G. clavigera. Differences between assemblies and
the reference are shown where difference refers to numbers of bases in the reference not covered by
the assembly or are different in the reference and the assembly.
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assembly length and so it does not take into account the unassembled sequences and ranks
ABySS assemblies above others. It is interesting that assemblies with the best likelihood
and sequence similarity are generated for higher values of hash length than are optimal for
producing high N50 values.
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Figure 2.7: Log likelihood vs N50 scaffold length for G. clavigera. Each circle corresponds
to an assembly generated using an assembler for some hash length and sizes of circles correspond
to similarity with reference. The R2 values are (i) log likelihood vs similarity: 0.4545793, (ii) log
likelihood vs N50 scaffold length: 0.002397233, (iii) N50 scaffold length vs similarity: 0.006084032.

GAGE results

We computed likelihoods for the assemblies generated in the GAGE project [141]. Ta-
bles A.12, A.13, A.14 show likelihoods of Library 1 and number of reads mapped to as-
semblies by Bowtie 2 [80]. We found that likelihood values of Library 1 are dominated by
coverage and contiguity does not affect these values greatly. However, contiguity have more
effect on likelihoods of Library 2 with longer insert size (Tables A.12, A.13, A.14) as might
be expected. Total likelihood along with coverage and N50 values are shown in Tables 2.2,
2.3, 2.4, 2.5. For human we computed Library 2 likelihoods for assemblies with best three
likelihoods of Library 1. Likelihood values of Library 2 for bumble bee assemblies were not
computed as only a small fraction of the reads could be mapped to the assemblies.
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Table 2.2: Likelihoods of GAGE assemblies of S. aureus

Assembler Likelihood # reads
mapped

Coverage(%) Scaffold
N50 (kb)

Contig
N50 (kb)

ABySS −23.34× 107 1236230 99.74 † 34 29.2
ALLPATHS-LG −24.53× 107 1220328 99.38 1092 96.7
Bambus2 −23.76× 107 1200527 98.68 1084 50.2
MSR-CA −25.85× 107 1192001 98.70 2412 59.2
SGA −26.61× 107 1018936 98.09 208 4.0
SOAPdenovo −23.55× 107 1212384 99.62 332 288.2
Velvet −23.28× 107 1203907 99.21 762 48.4
Reference −22.38× 107 1268718 - - -

† Value reported in the GAGE paper is 98.63

Table 2.3: Likelihoods of GAGE assemblies of R. sphaeroides

Assembler Likelihood # reads
mapped

Coverage(%) Scaffold
N50 (kb)

Contig
N50 (kb)

ABySS −27.55× 107 1199197 99.11† 9 5.9
ALLPATHS-LG −26.61× 107 1237938 99.53 3192 42.5
Bambus2 −32.56× 107 1111596 95.07 2439 93.2
CABOG −39.23× 107 1022732 92.49 66 20.2
MSR-CA −31.61× 107 1155078 96.48 2976 22.1
SGA −31.58× 107 1031547 97.69 51 4.5
SOAPdenovo −27.67× 107 1212959 99.12 660 131.7
Velvet −28.77× 107 1176125 98.40 353 15.7
Reference −25.99× 107 1255750 - - -

† Value reported in the GAGE paper is 96.99

Table 2.4: Likelihoods of GAGE assemblies of human chromosome 14

Assembler Likelihood # reads
mapped

Coverage(%) Scaffold
N50 (kb)

Contig
N50 (kb)

ABySS −23.44× 108 22096466 82.22 2.1 2
ALLPATHS-LG −22.77× 108 23122569 97.24 81647 36.5
CABOG −21.26× 108 23433424 98.32 393 45.3
SOAPdenovo * * 98.17 455 14.7
Reference −19.04× 108 23978017 - - -

* Likelihood not computed as reads could not be mapped with Bowtie 2

Assemblathon 1 results

We also analyzed the assemblies submitted for Assemblathon 1 [35]. Likelihoods of library
of insert size of mean 200bp for all assemblies are given in Table A.15 and Figure 2.8 shows
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Table 2.5: Likelihoods of GAGE assemblies of bumble bee, B. impateins

Assembler Likelihood # reads mapped Scaffold N50 (kb) Contig N50 (kb)
ABySS −30.83× 109 72629126 - -
CABOG −19.99× 109 92844610 1125 23.5
MSR-CA −22.84× 109 78755756 1246 32.4
SOAPdenovo * * 1374 57.1

* Likelihood not computed as reads could not be mapped with Bowtie 2

the relationship between likelihood and coverage. Among these, we took the entries with
the highest likelihood for top ten participants and computed likelihoods of libraries of insert
sizes of means 3000bp and 10000bp. Table 2.6 shows total likelihoods of top ten participants
along with their Assemblathon 1 rankings.

80 85 90 95

−
2.

5e
+

09
−

2.
0e

+
09

−
1.

5e
+

09
−

1.
0e

+
09

Coverage of genome

Lo
g 

lik
el

ih
oo

d

Figure 2.8: Coverage vs Log likelihood for Assemblathon 1 entries. Coverage is shown on
the x-axis and log likelihood is shown on the y-axis. Each circle corresponds to an assembly. The
R2 value is 0.989972.



CHAPTER 2. CGAL: COMPUTING GENOME ASSEMBLY LIKELIHOODS 25

Table 2.6: Likelihoods of Assemblathon 1 assemblies

Assembler Likelihood #reads mapped Assemblathon 1 rank
BGI 1 −20.17× 108 42005212 2
CSHL 2 −20.19× 108 41973576 5
BCCGSC 5 −20.23× 108 41891758 7
IoBUGA 2 −20.49× 108 41931526 9
RHUL 3 −20.69× 108 41753084 10
DOEJGI 1 −20.73× 108 41836210 4
WTSI-P 2 −20.81× 108 41748504 11
Broad 1 −21.75× 108 41778343 1
EBI 1 −21.83× 108 41377165 8
WTSI-S 4 −30.81× 108 37442672 3

2.3 Discussion

E. coli

We find that for both E. coli datasets assemblies with the best likelihoods are constructed
by ABySS. They also have most similarity with references (assuming [NCBI: NC 000913.2]
is the reference for the CLC bio dataset). The R2 values (Figures 2.3, 2.4 and Figure A.1)
reveal that likelihoods reflect sequence similarity better than contiguity statistics such as
N50 values as well as numbers of mis-assembly features and suspicious regions identified
by amosvalidate. Analysis of two different E. coli datasets also reveal that for assemblers
like Velvet, SOAPdenovo higher likelihood values are achieved for different values of k-mer
length used to construct the de Bruijn graph during assembly.

G. clavigera

For the G. clavigera dataset one of the Velvet assemblies has the highest likelihood. Al-
though ABySS assemblies have more coverage, they have lower likelihood because of much
longer total length. Despite this we see from R2 values that likelihood values reflect se-
quence similarity better than N50 values (Figure 2.7 and Figures A.9, A.11) and numbers of
mis-assembly features and suspicious regions reported by amosvalidate. This suggests that
likelihood values are useful in simultaneously evaluating coverage and total assembly length.

GAGE

For the GAGE S. aureus dataset, we find that the assembly generated using Velvet has the
best likelihood but likelihoods of a few other assemblies are close. For R. sphaeroides, the
ALLPATHS-LG assembly has the best likelihood which is also the assembly with highest
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coverage and N50 scaffold length. The CABOG assembly of human chromosome 14 is the one
with best likelihood. The CABOG assembly also has the highest coverage and N50 contig
length among the assemblies. In all three cases, we find that the reference sequences have
the highest likelihoods and the highest number of reads mapped to them by Bowtie 2. For
the bumblebee data, the assembly using CABOG has best likelihood among the three (the
likelihood of SOAPdenovo assembly could not be computed as reads could not be mapped
to it using Bowtie 2).

Assemblathon 1

Figure 2.8 reveals that for the Assemblathon 1 dataset, likelihoods of small fragment li-
brary correlates well with coverages. Overall, we find that participants with the ten highest
likelihoods were ranked within the top eleven by Assemblathon 1 organizers but there are
differences between the two rankings. The entry with the highest likelihood is by Beijing
Genomics Institute (BGI) which was ranked two in the original paper. The differences in
rankings are primarily due to the emphasis on contiguity by Assemblathon1 organizers while
our likelihood model implicitly places high importance on coverage. This brings up the issue
that better contiguity statistics can be achieved by not reporting hard to assemble regions
and these values may be misleading if they are not used in conjunction with an indicator of
coverage.

Applications

Currently, assembly evaluation projects rely mostly on simulated data or data from genomes
that have been sequenced previously [35, 141]. Having a tool that can assess quality of
assembly without the need for a reference will allow researchers who work with real data
from genomes that have not been sequenced before to assess the performance of different
assemblers on their data, and to optimize parameters in the programs they are using.

Analysis of two different datasets from E. coli reveal that performance of some assemblers
vary significantly depending on the k-mer chosen for constructing the de Bruijn graph.
Moreover, the ‘optimal’ value depends on read length and sequence coverage. Likelihood
values can therefore guide selection of parameter values.

Maximum likelihood genome assembly was introduced by Medvedev and Brudno [99] but
they do not consider sequencing errors or paired end reads. A likelihood model taking into
account these may be the next step towards genome assemblers for real data that try to
maximize likelihood.

2.4 Conclusions

In this paper we presented a tool for computing the likelihood of an assembly. The result
can be used as a metric for evaluating and comparing assemblies. In the past this has been
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done using many different criteria including N50 lengths, total sequence length, number of
contigs. The likelihood model incorporates these directly or indirectly in addition to other
important factors such as genome coverage and assembly accuracy and combines them into
a single metric for evaluation.

We have also used our tool to assess performance of some assemblers on a few different
datasets. Our results indicate that likelihood reflects sequence similarity which is missed by
other metrics commonly used and is going to be a valuable tool for evaluating assemblies
generated by different assemblers and for different values for input parameters.

2.5 Materials and methods

Mapping reads

The first step in computing the likelihood is mapping reads to the assembly. A number of
tools are available for this such as Bowtie [81, 80], MAQ [83], BWA [82] and BFAST [57].
Our present implementation can use either BFAST or Bowtie 2 for mapping reads as they
support mapping with indels and report multiple alignments in a way that gives all the
required information without accessing the assembly sequence. But any tool that reports
multiple alignments of reads and allows for insertions/deletions can be used with some minor
modifications.

However, existing tools do not usually map all reads, and for the likelihood computation
it is necessary to assign probabilities to reads that are unmapped. We found that mapping
tools were unable to map a large fraction of reads in our experiments. One option is to
assign probabilities to these reads assuming that they could have been generated from any
site with number and types of errors not handled by the mapping tool. But it is then often the
case that unmapped reads are deemed more probable than mapped ones, which we believe is
anomalous. Furthermore, in our analyses we determined that the resulting probabilities were
inaccurate (results not shown). Therefore, we chose to directly align the reads not mapped
by BFAST or Bowtie 2 using an adaptation of the Smith-Waterman algorithm. For this we
have adapted the striped implementation of Smith-Waterman algorithm by Farrar [38]. This
step is time consuming, so we align only a random subset of reads with the number specified
by the user and approximate probabilities using these.

Learning Distributions

To compute the likelihood from mapped reads, we need to learn the distribution of fragment
lengths, their distribution across genome and error characteristics. Since they differ with
library preparation methods and sequencing instruments, we have chosen to learn these
from sequencing data generated in the experiment. We do this by mapping reads to the
assembly and using reads that map uniquely. However, this can be easily extended to take
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into account all reads by using the EM algorithm at the expense of more iterations. We
explain each distribution in more detail below.

• Fragment length distribution

The distribution of fragment lengths depends on the method used for size selection and
may not be approximated well by common distributions [135]. So, we use the empirical
distribution.

• Distribution of fragments along genome

In our implementation, we assume that fragments are distributed uniformly across the
genome. We leave incorporating sequencing bias as future work

• Error model

In the error model used at present, we have made the assumption that sequencing
errors are independent of one another. We learn an error rate for each position in the
read since error rates are known to be different across positions in reads. [33] We also
learn separate error rates for each type of base and substitution types. Although errors
are known to depend on sequence context [33] we have ignored them for the sake of
simplicity.

To account for varying indel rates across positions in reads, we learn an insertion rate
and a deletion rate for each position in the read. Since short indels are more likely
than longer ones we also count number of insertions and deletions by length.

Implementation

As mentioned earlier, we use BFAST or Bowtie 2 to map reads to assemblies. The parameters
are set so that they report all alignments of a read found.

The remaining code for computing likelihood is written in C++ and it consists of three
parts.

• convert: It converts the output generated by BFAST or Bowtie 2 to an internal format.
It also separates reads with no end or one end mapped and reads with ends mapped
to different scaffolds if needed. Separating this module also allow us to support other
mapping tools by writing a conversion routine.

• align: To align the reads not mapped by the mapping tool, we have adapted the
striped implementation of Smith-Waterman algorithm by Farrar [38]. As this step is
time consuming, we align a random subset of reads with the number determined by
the user. This step is multithreaded to speed up the process.

• cgal: This part learns the fragment length distribution and parameters for the error
model using uniquely mapped reads and then uses these to compute the likelihood
value.
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Assembling genomes

To assemble reads, we varied k-mer length used to construct the de Bruijn graph to obtain
different assemblies for each assembly tool. For other parameters default values or values
suggested in manuals were used.

Data analysis

Likelihoods were computed by running CGAL with default parameters and aligning between
300 and 1000 randomly chosen reads not mapped the mapping tool used. The running time
of CGAL was approximately 1/3 the time taken to map reads using Bowtie 2.

To compute the difference between an assembly and the reference we aligned the assembly
to the reference using NUCmer [29] and the difference refers to the number of bases in
reference that are either not covered by the assembly or different in reference and assembly.
Contigs have been generated by splitting scaffolds at sites with 25 or more N’s (character
representing any base).
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Chapter 3

SWALO: scaffolding with assembly
likelihood optimization

3.1 Introduction

The emergence of next-generation sequencing technologies has led to development of various
assays to probe many aspects of interest in molecular and cell biology due to their low cost
and high throughput. However, there is still scope for improvement in genome assembly
which is essential for running many of these assays. The high cost, low sequencing coverage
and high error rates of single molecule real time (SMRT) and nanopore sequencing mean
that most of the genomes are being assembled from next-generation sequencing data or
a combination of the two. In this paper, we demonstrate that considerable improvement
in genome assembly using next-generation sequencing can be achieved through application
of statistical models for sequencing while joining contigs. The contigs themselves may be
generated using any sequencing technology.

Genome assembly typically consists of two steps. The first step is to merge overlapping
reads into contigs commonly done using de Bruijn or overlap graphs. In the second step
which is known as “scaffolding”, contigs are oriented and ordered using paired-end or mate-
pair reads (we use the term read pair to refer to either). Scaffolding is a critical part of
the genome assembly process and hence is built into most assemblers [167, 147, 14, 92, 148].
A number of stand-alone scaffolders such as Bambus2 [127, 76], GRASS [48], MIP [139],
Opera [42], SCARPA [34], SOPRA [28], SSPACE [7] have also been developed. Most of
the scaffolding algorithms rely on heuristics or user input to determine parameters such as
minimum number read-pairs linking contigs to join them ignoring contig lengths, sequencing
depth and sequencing errors. Recently, Hunt et al. evaluated scaffolding tools on real and
simulated data and observed that although many of the scaffolders perform well on simulated
datasets, they display inconsistent performance across real datasets and mapping tools [62].
Their results show that SGA, SOPRA and ABySS are conservative and make very few
scaffolding errors while SOAPdenovo identified more joins at the expense of greater number
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of errors indicating the need for a better scaffolding method.
Here we present a scaffolding method called Swalo which is based on a generative model

for sequencing [132] that incorporates sequencing errors and insert size distribution while
making approximations where necessary to make it efficient and applicable in practice. We
use this model to determine whether joining a pair of contigs would result in an improvement
in likelihood of the assembly making our method largely free of user parameters. We are
also able to accurately estimate gaps between contigs that will aid the gap-filling process.
Moreover, the use of a probabilistic model enables us to resolve multi-mapped read pairs
using the EM (expectation maximization) algorithm that are ignored in most scaffolders.

Analysis of the standard datasets used in [62] that include the GAGE [141] datasets reveal
that Swalo outperforms all other scaffolders and show pareto-optimal performance. We find
that application of Swalo lead to better contiguity of assemblies facilitating downstream
analysis while making very few scaffolding errors at the same time.

3.2 Methods

Figure 3.1 illustrates the main steps of Swalo. In the first step, reads are aligned to contigs,
insert size distribution and error parameters are learned using reads that map uniquely and
likelihood of contigs is computed using a generative model. We then construct the bi-directed
scaffold graph which contains a vertex for each contig and there is an edge between contigs
if joining them would result in an increase in likelihood. It uses probabilistic models to
estimate maximum likelihood gaps between contigs correcting for the issue that we may not
observe inserts from the entire distribution due to gaps between contigs and their lengths. It
then approximates whether joining contigs would result in an increase in genome assembly
likelihood. We use the EM (expectation maximization) algorithm to resolve multi-mapped
read pairs. Contigs are then joined if the increase in likelihood is significantly higher than all
other conflicting joins as determined by a heuristic. We select multiple joins consistent with
one another using the dynamic programming algorithm for the weighted interval scheduling
problem. Each of these steps is described in more detail in following sections.

Learning distributions and computing likelihood

The first phase in Swalo is to compute likelihood of the contigs and learn parameters to
be used in the scaffolding process. To compute the likelihood of an assembly we use the
generative model and parameter estimation approach presented in Chapter 2 Section 2.2.
We however make some modifications to the distributions discussed in Chapter 2 Section 2.5.

• Insert size distribution: We use the empirical distribution as normal distribution
is not always a good approximation. The distribution is learned using contigs longer
than a minimum length (provided by the user) so that the distribution is not biased.
We use a smoothed version of the distribution using a window size of 25 as the number
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Figure 3.1: Overview of SWALO. In the first step, reads are aligned to contigs, uniquely mapped
reads are used to learn insert size distribution and error parameters and likelihood of contigs is
computed. In the next step, the scaffold graph is constructed by first estimating maximum likeli-
hood gaps between contigs correcting for the issue that we may not observe inserts from the entire
distribution due to gaps between contigs and their lengths and then approximating whether changes
in number of possible start sites of reads (the regions shaded in grey) lead to an increase or decrease
of assembly likelihood. Finally, we make the joins that are unambiguous or correspond to likeli-
hood increase significantly higher than other conflicting joins. We use the dynamic programming
algorithm for the weighted interval scheduling problem when there are multiple possible joins to
select from.
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of reads to learn the distribution from may not be very high for some datasets. We also
compute mean, µ left-sided and right-sided standard deviations, σl and σr respectively
and truncate the distribution at µ − 2.5 ∗ σl and µ + 2.5 ∗ σr to avoid linking contigs
based on chimeric reads.

In situations where the number of read-pairs mapped to contigs long enough to learn
distribution is very low (less than 100,000), we recommend switching to normal distri-
bution and require the user to input a mean and a standard deviation.

• Distribution of fragments: We ignore sequencing bias such as GC content bias and
assume all sites have same probability. The probability that an insert of length l starts
at s is

pS(s) =
1

T̃ (l)

=
1∑

c∈{contigs}(lc − l + 1)

where T̃ (l) is the total effective length i.e. number of possible start sites for insert size
l and lc is the length of contig c.

• Error Model: The error model described in [132] is used and learnt using reads that
map uniquely to contigs.

The scaffold graph

The next phase of our algorithm is to construct the scaffold graph. The scaffold graph is
a weighted bidirected graph [36] where there is a vertex for each contig. There is an edge
between two contigs if joining them would result in an increase in likelihood of the assembly.
The edges are bidirected as each contig in the pair may correspond to one of the two DNA
strands resulting in four possible orientations of the pair of contigs. There may be more than
one edge between two contigs provided the edges are of different types. The edge weights
correspond to increase in likelihood achieved if the contigs were to be joined. We also have
a gap estimate between two contigs associated with each edge. Computing the edge weights
is done in following two steps.

• Estimate the gaps between pairs of contigs using maximum likelihood. Gaps may be
negative if contigs overlap.

• Compute the change in assembly likelihood if contigs are linked with maximum like-
lihood gap estimates. This constitutes computing probability of linking reads as well
as adjusting probabilities of all other reads.
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Estimating gaps using maximum likelihood

The gaps between contigs are estimated using a generative model similar to the one used for
computing likelihood of assembly. However, we modify the generative model to correct for
the issue that we may not observe inserts from the entire distribution due to gap between
contigs [17] and lengths of contigs.

l

glr lr

lmin

lmax

s t

A B

Figure 3.2: Gap estimation. Figure illustrates that inserts smaller than lmin and greater than
lmax will not be observed due to lengths of contigs A and B and the gap g between them.

Consider contigs A and B separated by a gap g in Figure 3.2. If the 5′ end of an insert
is at s, then we will not observe inserts smaller than lmin and greater than lmax where lr is
the length of the second read of the pair. The probability of a read is then given by

p(r) ≈
∑

p′S(s)p
′
F (l)pE(r|a)

where p′F and p′S are the corrected insert size and start site distributions respectively given
by

p′F (l) =
pF (l)∑lmax

k=lmin
pF (k)

,

p′S(s) =
p{fragment starting at s and ending in B}
p{fragment starting in A and ending in B}

.

While p′F can be efficiently pre-computed, computation of p′S is time consuming. So we make
the following approximation.

p′S(s) ≈ p{fragment starting at s and ending at t}
p{fragment starting in A and ending at t}

.

We then find the gap, g that maximizes likelihood of linking reads, maxg
∏

r∈{linking} p(r)
for every pair of contigs with read pairs linking them.
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Resolving multi-mapped pairs using the EM algorithm

Application of a probabilistic model allows us to resolve read pairs with multiple mappings
using the expectation maximization (EM) algorithm [30, 154] which are ignored in most other
scaffolders. In the initialization step, we probabilistically assign read pairs to contig pairs
using only the error probabilities and obtain gap estimates as discussed above. We then
iterate the two steps of the EM algorithm.

• E-step: Determine the expected assignments of read pairs to contig pairs according to
the generative model with current gap estimates.

• M-step: Find maximum likelihood estimates of gaps using the current assignments.

In early iterations when the gap estimates are inaccurate, we use relaxed cut-offs for
insert size distribution and divide by two in each iteration to converge towards the cut-off
points determined by standard deviations.

Computing edge weights

We then approximate the change in assembly likelihood if two contigs are joined with the
MLE of gap. The likelihood of linking reads can be computed using the generative model
for sequencing (Figure 2.1). However, we also need to adjust probabilities of all other reads
since the effective length changes. Recall that the likelihood of an assembly is given by

l(A;R) ≈
N∑
i=1

log

Mi∑
j=1

pF (li,j)
1

T̃ (li,j)
pE(ri|ai,j).

Adjusting the probabilities using the above equation would require iterating over of all reads
with more than one mapping. In order to make this step practical we make the following
approximation.

l(A;R) ≈
N∑
i=1

log
1

T̃ (l̂i)

Mi∑
j=1

pF (li,j)pE(ri|ai,j)

=
N∑
i=1

log
1

T̃ (l̂i)
+

N∑
i=1

log

Mi∑
j=1

pF (li,j)pE(ri|ai,j)

where l̂i is insert size corresponding to most probable mapping of read i. This allows us to
count number of reads corresponding to a particular insert size and efficiently calculate the
new likelihood. If nl̂ is number of reads with insert size l̂, then

lnew(A;R) ≈ lold(A;R)−
∑
l̂

nl̂

(
log

1

T̃old(l̂)
− log

1

T̃new(l̂)

)
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where T̃new(l) = T̃old(l) + l − 1 + g is the new effective length if both contigs are sufficiently
large compared to insert sizes and can be precomputed for various gap sizes. The adjustments
for cases where contigs are small can also be precomputed.

The likelihood of linking reads and likelihood adjustments of all other reads are combined
to estimate the edge weight. We retain the edge and assign it the computed weight if it is
positive and delete the edge otherwise.

Selecting joins

Once the scaffold graph is constructed, one approach might be to select the set of edges that
maximizes likelihood. Analogous problems have been proved to be NP-hard [63] but fixed
parameter tractable algorithms are known [42]. However, this may lead to incorrect joins if
there are repeats longer than the insert sizes. So, we use the following heuristic instead.

i Make unambiguous joins and compute the standard deviation, σL of the likelihoods of
the joins made.

ii Sort other candidate joins in decreasing order of likelihood.

iii Join contigs if likelihood, l of the join is α(l) = max(5eλl, 2) times greater or 2.5σL more

than all other conflicting joins where λ = − ln(2/5)
5σL

.

For the remainder of this section we say two joins are inconsistent or in conflict with each
other if none of the contigs with the estimated gap fits into the gap between the other two
times a stretch factor of 1.1 and neither has increase in likelihood higher than the other
determined by the rule above.

The intuition behind the heuristic is to learn a distribution of likelihoods of unambiguous
joins and make a join if there is no inconsistent join within two and a half standard deviations
of it. But this leads to missing joins with increase in likelihood less than 2.5σL if there are
other conflicting joins. So, we add a factor determined by an exponential decay function, α
with α(0) = 5 and α(l) = 2 for l > 5σL.

Following exceptions are however made based on practical observations.

• Similar to some other scaffolders [28, 42], we compute the mean sequencing depth per
base of contigs and the right sided standard deviation and avoid joining any contig
with sequencing depth two standard deviations more than the mean and more than
1.5 times the mean.

• Gap estimates based on only linking read pair are often inaccurate and lead to incorrect
joins. So, we do not join contigs linked by a single read pair.
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Selecting from multiple consistent joins

In many cases although there are multiple outgoing or incoming edges from or to a contig,
one or more contigs fit into the gap between the contigs to be joined. In these cases more
than one join can be made and we use the following algorithm.

i Find all contigs with edges from the two contigs currently being joined that fit into
interval determined by the estimated gap times a stretch factor.

ii Remove contigs with conflicting edges to other contigs.

iii Select consistent set of contigs that optimizes likelihood using the dynamic programming
algorithm for Weighted interval scheduling.

iv Remove selected contigs inconsistent with not selected ones.

In actual implementation there may be two possible positions for each contig within the
interval. This requires solving the Discrete weighted interval scheduling problem.
However, the problem is known to be NP-hard [115] and we find that the two possible posi-
tions almost always overlap. So, we run the Weighted interval scheduling algorithm
and remove one in the rare case both were selected.

Edge propagation

When we merge two contigs, if there are edges to contigs with gap estimates large enough
so that the contig being joined to along with the gap can fit in there, we propagate the edge
from the contigs to the meta-node corresponding to the merged contigs.

Special cases

Under usual circumstances, Swalo takes as input a single parameter denoting the minimum
size of contigs to be used to learn the insert size distribution. But in some cases discussed
below, special modes are recommended.

Inadequate number of inserts to learn the distribution:

If the contigs are small compared to insert sizes or if the number of inserts mapping con-
cordantly to contigs is low (less than 100,000), the insert size distribution cannot be learnt
properly. So, we recommend that the user switches to Gaussian distribution and provide a
mean and a standard deviation as inputs.

Insert size standard deviation very high:

If the insert size standard deviation is very high (greater than 1000), then there are large
errors in gap estimates. So, we switch to a conservative mode where only uniquely mapped
reads are used and multiple consistent joining step is skipped.
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Multiple insert size libraries:

There are two approaches for multiple insert size libraries. The first is to build the scaffold
graph separately and then combine the graphs before actually merging contigs. The other
approach is to do the scaffolding hierarchically. We recommend the first approach unless
some insert libraries have large standard deviations in which case we recommend scaffolding
using all other libraries using the first approach and then scaffold using libraries with high
standard deviation together using the conservative mode.

Implementation

The methods have been implemented in a tool called ‘scaffolding with assembly likelihood
optimization (Swalo)’ using C/C++. The gap estimation phase (the M-step of the EM
algorithm) is mutli-threaded for speed-up in computation.

3.3 Results

Datasets

To compare performance of Swalo with other scaffolders, we use the datasets used by Hunt
et al. to evaluate scaffolding tools [62]. The datasets include four simulated datasets from
S. aureus and six real datasets from S. aureus, R. sphaeroides, P. falciparum and human
chromosome 14. Among these the S. aureus, R. sphaeroides, and human chromosome 14
datasets were also part of the GAGE project [141]. Table 3.1 provides a summary of the
datasets used. For more details on the datasets and how the contigs were generated, please
see [62]. We analyze results using the scripts provided in [62] and when applicable use the
same parameter values for mapping and scaffolding.

Simulated data

Table 3.2 summarizes performance of scaffolding tools on simulated datasets. We find that
Swalo makes no incorrect joins for any of the datasets. For 100kb contigs Swalo was able
to make 100% of the correct joins using either library and all aligners. When the insert
size library of 500 was used to scaffold 3kb contigs, Swalo made 99.0%, 99.3% and 99.0%
correct joins using Bowtie 2, Bowtie -v 0 and Bowtie -v 3 respectively. We find that the
only scaffolder that makes more than 99.3% correct joins is Opera at 99.8% when used in
conjunction with BWA however at the cost of making 0.2% incorrect joins. For 3kb contigs
and 3kb insert size library, Swalo was provided as input mean and standard deviation of
insert size library as it would not be possible to learn the distribution accurately from the
mapped reads. Swalo made 99.6%, 99.8% and 99.6% correct joins using Bowtie 2, Bowtie
-v 0 and Bowtie -v 3 respectively. No other scaffolder made more than 99.6% correct joins.
It is worth pointing out that Swalo was able to make more correct joins when used with
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Table 3.1: Summary of datasets used to analyze performance of Swalo

Reference Size
(Mb)

Number of
contigs

Type Number of
reads

(millions)

Read
length

Insert size

S. aureus 2.8 28 Simulated 0.76 76 505
28 Simulated 0.76 76 2795
941 Simulated 0.76 76 505
941 Simulated 0.76 76 2995

S. aureus
(GAGE)

2.9 168 Real 3.5 37 3385

R. sphaeroides
(GAGE)

4.6 571 Real 2.1 101 3695

P. falciparum 23.3 9303 Real 52.5 76 645
9303 Real 12.0 75 2705

Human
chromosome
14 (GAGE)

88.2 19936 Real 22.7 101 2865

19936 Real 2.4 57–82 34500

Bowtie -v 0 compared to Bowtie -v 3 and Bowtie 2 which may be due to reads not being
mapped to some regions when Bowtie -v 3 and Bowtie 2 are used.

Real data

Performance of Swalo in comparison to other scaffolders for real datasets is illustrated in
Figure 3.3. For the S. aureus dataset from GAGE, we find that Swalo made more correct
joins than all other scaffolders while making 2, 2 and 3 incorrect joins using Bowtie 2, Bowtie
-v 0 and Bowtie -v 3 respectively. However, upon closer inspection we find that 2 joins in
each case that are labeled incorrect are in fact joins from the end to the start of circular
chromosomes or plasmids and are actually correct.

Similarly for R. sphaeroides dataset more correct joins are made by Swalo than all
other scaffolders when used in conjunction with Bowtie 2. Again we find that 3 joins that
are marked as incorrect are joins linking ends of circular chromosomes or plasmids to the
start. The sequencing error rate for this dataset is high compared to the S. aureus dataset.
So, number of reads mapped is quite low [62] for Bowtie -v 3 and particularly for Bowtie -v
0 resulting in much less correct joins made by Swalo and other scaffolders when Bowtie is
used compared to Bowtie 2.

The P. falciparum genome is known to be hard to assemble due its low GC content.
We find that in this case although Swalo does not make more correct joins than all other
scaffolders as in other cases, the number of correct joins made are only slightly less than
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Table 3.2: Comparison of performance of scaffolders on simulated datasets. None of the
scaffolders made any incorrect joins for 100kb contigs. Values for all scaffolders except Swalo are
from [62].

Scaffolder Aligner 100kb contigs 3kb contigs
500b lib 3kb lib 500b lib 3kb lib
%correct %correct %correct %wrong %correct %wrong

ABySS abyss-map 100.0 66.7 98.9 0.0 99.5 0.0
Bambus2 Bowtie 2 100.0 66.7 63.7 0.0 95.9 0.0

BWA 48.2 48.2 59.6 0.0 96.2 0.0
MIP Bowtie -v 0 100.0 96.3 98.9 0.0 98.4 0.0

Bowtie -v 3 100.0 96.3 98.4 0.0 97.9 0.0
Bowtie 2 100.0 29.6 96.3 0.5 98.7 0.5
BWA 100.0 33.3 98.0 1.1 98.2 0.4

Opera Bowtie 100.0 92.6 98.4 0.0 1.0 10.0
BWA 100.0 92.6 99.8 0.2 1.2 80.0

SCARPA Bowtie -v 0 100.0 96.3 98.9 0.0 95.0 0.0
Bowtie -v 3 100.0 96.3 98.6 0.0 96.3 0.0
Bowtie 2 85.2 96.3 96.8 0.0 76.3 0.7
BWA 85.2 92.6 96.6 0.0 77.9 0.4

SGA Bowtie 2 100.0 96.3 97.3 0.0 97.6 0.0
BWA 100.0 92.6 99.0 0.0 96.2 0.0

SOAP2 SOAP2 96.3 96.3 98.6 0.0 99.5 0.0
SOPRA Bowtie -v 0 100.0 96.3 98.3 0.0 98.2 0.0

Bowtie -v 3 100.0 96.3 97.2 0.0 97.2 0.0
Bowtie 2 74.1 100.0 91.5 0.5 85.6 0.5
BWA 74.1 88.9 92.9 0.2 83.1 0.4

SSPACE Bowtie -v 0 100.0 92.6 99.1 0.0 99.6 0.0
Bowtie -v 3 100.0 92.6 98.7 0.0 99.3 0.0

SWALO Bowtie 2 100.0 100.0 99.0 0.0 99.6 0.0
Bowtie -v 0 100.0 100.0 99.3 0.0 99.8 0.0
Bowtie -v 3 100.0 100.0 99.0 0.0 99.6 0.0

that of SOPRA, MIP and SCARPA while number of incorrect joins is less than or similar
to what SOPRA made and much less than the numbers for SCARPA and MIP. We observe
that many of the contigs have strings of consecutive ‘A’s or ‘T’s where very few reads are
mapped to by aligners leading to poor gap estimates.

Finally, for the combined human chromosome 14 dataset, Swalo makes more correct
joins than all other scaffolders except SOAP2 which makes many more incorrect joins com-
pared to Swalo. Figure B.1 shows that the long jumping library is in fact a mixture inserts
of two sizes. When the two libraries are mapped separately and used to estimate gaps before
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Figure 3.3: Performance of scaffolders. Scatter plots showing number of correct joins vs in-
correct joins made by different scaffolders on (a) S. aureus data, (b) R. sphaeroides data, (c) P.
falciparum combined short and long insert data, and (d) human chromosome 14 combined long in-
sert and fosmid library data. Up to 2 and 3 joins in (a) and (b) respectively made by Swalo (and
possibly other scaffolders) labelled incorrect are joins from end to start of circular chromosomes
and are therefore correct. Values for all scaffolders except Swalo are from [62].
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scaffolding, and the fosmid library is applied on the output, the results improve both in
terms of increase in number of correct joins and decrease in number of incorrect joins.

Overall we find that Swalo outperforms all other scaffolders on real and simulated
datasets. We observe that consistent results are achieved when it is used with Bowtie 2.
However, when reads are largely error free results achieved using Bowtie -v 0 can be better
possibly due to reads being mapped to more regions compared to Bowtie 2.

Although a comparison of running times is not appropriate since Swalo was run on a
different machine to other scaffolding tools, but we would like to note that Swalo took from
a few minutes for S. aureus datasets to less than two hours for combined human chromosome
14 dataset to run when used with Bowtie 2 (excluding the time required for mapping) using
32 cores. This makes it efficient and applicable to practical datasets.

3.4 Conclusions

We presented a scaffolding method, Swalo which is based on generative models to approxi-
mate whether joining contigs would lead to an increase in assembly likelihood. Experiments
with real and simulated data used in [62] suggest Swalo outperform all other scaffolding
tools. The method may further be improved by modifying the heuristic used to select among
multiple candidate joins and by considering global properties of the scaffold graph. The im-
provement in scaffolding achieved by a practical method based on assembly likelihoods opens
up the possibility that other problems related to assembly such as reference guided assembly,
mis-assembly correction, copy number estimation may also be amenable to this approach.
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Part II

Genome Analysis
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Chapter 4

Association mapping from sequencing
reads using k-mers

4.1 Introduction

Association mapping refers to linking of genotypes to phenotypes. Most often this is done us-
ing a genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs).
Individuals are genotyped at a set of known SNP locations using a SNP array. Then each
SNP is tested for statistically significant association with the phenotype. In recent years
thousands of genome-wide association studies have been performed and regions associated
with traits and diseases have been located.

However, this approach has a number of limitations. Firstly, designing SNP arrays re-
quires knowledge about the genome of the organism and where the SNPs are located in the
genome. This makes it hard to apply to study organisms other than human. Even the human
reference genome is incomplete [2] and association mapping to regions not in the reference is
difficult. Secondly, structural variations such as insertion-deletions (indels) and copy num-
ber variations are ignored in these studies. Despite the many GWA studies that have been
performed a significant amount of heritability is yet to be explained. This is known as the
“missing heritability” problem [172]. A hypothesis is some of the missing heritability is due
to structural variations. Thirdly, the phenotype might be caused by rare variants which are
not on the SNP chip. In last two cases, follow up work is required to find the causal variant
even if association is detected in the GWAS.

Some of these limitations can be overcome by utilizing high throughput sequencing data.
As sequencing gets cheaper association mapping using next generation sequencing may be-
come feasible. The current approach to doing this is to map all the reads to a reference
genome followed by variant calling. Then these variants can be tested for association. But
this again requires a reference genome and it may induce biases in variant calling and regions
not in the reference genome will not be included. Moreover, genotype calling is complicated
when sequencing depth is low due to sequencing errors [117] and in repetitive regions. Meth-
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ods have been proposed to do population genetics analyses that avoid the genotype calling
step [40, 39] but these methods still require reads to be aligned to a reference genome. An
alternate approach is simultaneous de novo assembly and genotyping using a tool such as
Cortex [65] but this is not suited to large number of individuals. Furthermore, both these
approaches are computationally very expensive.

In the past, alignment free methods have been developed for a number of problems
including transcript abundance estimation [122], sequence comparison [150], phylogeny es-
timation [53], etc. Nordstrom et al. introduced a pipeline called needle in the k-stack
(NIKS) for mutation identification by comparison of sequencing data from two strains using
k-mers [119]. Here we present an alignment free method for association mapping. It is based
on counting k-mers and identifying k-mers associated with the phenotype. The overlapping
k-mers found are then assembled to obtain sequences corresponding to associated regions.
Our method is applicable to association studies in organisms with no or incomplete reference
genome. Even if a reference genome is available, this method avoids aligning and genotype
calling thus allowing association mapping to many types of variants using the same pipeline
and to regions not in the reference.

We have implemented our method in a software called ‘hitting associations with k-mers’
(HAWK). Experiments with simulated and real data demonstrate the promises of this ap-
proach. We leave taking into account confounding factors such as population structure as
future work and apply our method to analyze sequencing data from three populations in the
1000 genomes project treating population identity as the trait of interest. Agreement with
sites found using read alignment and genotype calling indicate that k-mer based association
mapping will be applicable to studying disease associations.

4.2 Methods

Association mapping with k-mers.

We present a method for finding regions associated with a trait using sequencing reads with-
out mapping reads to reference genomes. The workflow is illustrated in Fig 4.1. Given
sequencing reads from case and control samples, we count k-mers appearing in each sample.
We assume the counts are Poisson distributed and test k-mers for statistically significant
association with case or control using likelihood ratio test for nested models (see Appendix
C for details). The differences in k-mer counts may be due to single nucleotide polymor-
phisms (SNPs), insertion-deletions (indels) or copy number variations. The k-mers are then
assembled to obtain sequences corresponding to each region.

Counting k-mers

The first step in our method for association mapping from sequencing reads using k-mers is
to count k-mers in sequencing reads from all samples. To count k-mers we use the multi-



CHAPTER 4. ASSOCIATION MAPPING USING K-MERS 46

Figure 4.1: Workflow for association mapping using k-mers. The Hawk pipeline starts with
sequencing reads from two sets of samples. The first step is to count k-mers in reads from each
sample. Then k-mers with significantly different counts in two sets are detected using likelihood
ratio test. Finally, overlapping k-mers are assembled into sequences to get one or few sequences for
each associated locus.

threaded hash based tool Jellyfish developed by Marcais and Kingsford [97]. We use k-mers
of length 31 and ignore k-mers that appear once in a sample for computational and memory
efficiency as they likely are from sequencing errors.

Finding significant k-mers

Then for each k-mer we test whether that k-mer appears significantly more times in case
or control datasets compared to the other using a likelihood ratio test for nested models.
Suppose, a particular k-mer appears K1 times in cases and K2 times in controls, and N1

and N2 are the total number of k-mers in cases and controls respectively. The k-mer counts
are assumed to be Poisson distributed with rates θ1 and θ2 in cases and controls. The null
hypothesis is H0 : θ1 = θ2 = θ and the alternate hypothesis is H1 : θ1 ̸= θ2. The likelihoods
under the alternate and the null are given by (see Appendix C for details)
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L(θ1, θ2) =
e−θ1N1(θ1N1)

K1

K1!

e−θ2N2(θ2N2)
K2

K2!

and

L(θ) =
e−θN1(θN1)

K1

K1!

e−θN2(θN2)
K2

K2!
.

Since the null model is a special case of the alternate model, 2 lnΛ is approximately
chi-squared distributed with one degree of freedom where Λ is the likelihood ratio. We get
a p-value for each k-mer using the approximate χ2 distribution of the likelihood ratio and
perform Bonferroni corrections to account for multiple testing.

Merging k-mers

We then merge overlapping k-mers to get a sequence for each differential site using the
assembler ABySS [147]. ABySS was used as the assemblies it generated were found to cover
more of the sequences to be assembled compared to other assemblers [132]. We construct the
de Bruijn graph using hash length of 25 and retain assembled sequences of length at least
49. It is also possible to merge k-mers and pair sequences from cases and controls using
the NIKS pipeline [119]. However, we find that this is time consuming when we have many
significant k-mers. Moreover, when number of cases and controls are not very high we do not
have enough power to get both of sequences to be paired and as such pairing is not possible.

Implementation

Our method is implemented in a tool called ‘hitting associations with k-mers’ (HAWK) using
C++. To speed up the computation we use a multi-threaded implementation. In addition,
it is not possible to load all the k-mers into memory at the same time for large genomes.
So, we sort the k-mers and load them into memory in batches. To make the sorting faster
Jellyfish has been modified to output internal representation of k-mers instead of the k-
mer strings. In future the sorting step may be avoided by utilizing the internal ordering of
Jellyfish or other tools for k-mer counting.

Downstream analysis

The sequences can then be analyzed by aligning to a reference if one is available or by
running BLAST [3] to check for hits to related organisms. The intersection results in this
paper were obtained by mapping them to the human reference genome version GRCh37
using Bowtie2 [80] to be consistent with co-ordinates of genotypes called by 1000 genomes
project. The breakdown analysis was performed by first mapping to the latest version of the
reference, hg38 and then running BLAST on some of the ones that did not map. Specific
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loci of interest were checked by aligning them to RefSeq mRNAs using Bowtie 2 and on the
UCSC Human Genome Browser [74] by running BLAT [72].

4.3 Results

Verification with simulated data.

The implementation was tested by simulating reads from genome of an Escherichia coli
strain. We introduced different types mutations - single nucleotide changes, short indels
(less than 10bp) and long indels (between 100bp and 1000bp) into the genome. Then wgsim

of SAMtools[84] was used to first generate two sets of genomes by introducing more random
mutations (both substitutions and indels) into the original and the modified genomes and
then simulate reads with sequencing errors. The Hawk pipeline was then run on these
two sets of sequencing reads. The fraction of mutations covered by resulting sequences are
shown in Figure 4.2 for varying numbers of case and control samples and different types of
mutations. The results are consistent with calculation of power to detect k-mers for varying
total k-mer coverage (Figure C.1) with slightly lower values expected due to sequencing
errors and conditions imposed during assembly.
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Figure 4.2: Sensitivity with simulated E. coli data. The figure shows sensitivity for varying
number of case and control samples for different types of mutations. Sensitivity is defined as the
percentage of differing nucleotides that are covered by a sequence. All of the sequences covered
some location of mutation.
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Verification with 1000 genomes data.

To analyze the performance of the method on real data we used sequencing reads from the
1000 genomes project [4]. The population identities were used as the phenotype of interest
circumventing the need for correction of population structure. For verification, we used
sequencing reads from 87 YRI individuals and 98 TSI individuals for which both sequencing
reads and genotype calls were available at the time analysis was performed.

The analysis using k-mers resulted in 2,970,929 sequences associated with YRI samples
and 1,865,285 sequences of significant association with TSI samples. We also performed
similar analysis with genotype calls. VCFtools [26] was used to obtain number of individuals
with 0, 1 and 2 copies of one of the alleles for each SNP site. Each site was then tested to
check whether the allele frequencies are significantly different in two samples using likelihood
ratio test for nested models for multinomial distribution (see Appendix C for details). We
found that 2,658,964 out of the 39,706,715 sites had allele frequencies that are significantly
different.

Figure 4.3 shows the extent of overlap among these discarding the sequences that did
not map to the reference. We find that 80.3% (2,135,415 out of 2,658,964) of the significant
sites overlapped with a sequence. We also find that approximately 95.2% of them overlapped
with at least one k-mer.

Figure 4.3: Intersection analysis Venn diagrams showing intersections among sequences obtained
using Hawk and significant sites found by genotype calling. ‘YRI’ and ‘TSI’ denote sequences of
significant association with YRI and TSI samples and ‘Genotypes’ denote the sites where allele
frequencies are significantly different in two populations.

It was observed that around 42% of sites found using k-mers do not overlap with any sites
found significant using genotype calling. While upto 20% of them correspond to regions for
which we did not have genotype calls (chromosome Y, mitochondrial DNA and small contigs),
repetitive regions where genotype calling is difficult and structural variations, many of the
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remaining sequences are possibly due to more power of the test based on counts than the
one using only number of copies of an allele. We performed Monte Carlo simulations to
determine powers of the two tests. Figure C.2 shows the fraction of trials that passed the
p-value threshold after Bonferroni correction as the allele frequencies in cases were increased
keeping the allele frequencies of control fixed at 0.

This is consistent with greater fraction of sequences in YRI (47.3%) not overlapping with
sites obtained by genotyping compared to TSI (38.7%) as some low frequency variations in
African populations were lost in other populations due to population bottleneck during the
migration out of Africa. However, some false positives may result due to discrepancies in
sequencing depth of the samples and sequencing biases. We provide scripts to lookup number
of individuals with constituent k-mers and leave dealing with these confounding factors as
well as population structure as future work.

Table 4.1 shows p-values of some of the well known sites of variation between African
and European populations.

Table 4.1: Known variants in YRI-TSI comparison.

Gene SNP ID Description Allele p-value %YRI %TSI
ACKR1 rs2814778 Duffy antigen C 9.72×10−114 84.39% 1.78%
SLC24A5 rs1426654 Skin pigmentation G 8.45×10−144 87.39% 1.02%
SLC45A2 rs16891982 Skin/hair color C 1.89×10−122 92.18% 4.67%
G6PD rs1050829 G6PD deficiency C 1.53×10−29 24.92% 1.02%
G6PD rs1050828 G6PD deficiency T 5.83×10−25 18.32% 0.00%

Table shows p-values of sequences at some well known sites of variation between
populations. The (%) values denote fraction of individuals in the sample with the allele
present. The p-values and % values are averaged over k-mers constituting the associated
sequences.

HAWK maps associations to different types of variants

Hawk enables mapping associations to different types of variants using the same pipeline.
Figure 4.4 shows breakdown of types of variants found associated with YRI and TSI pop-
ulations. The ‘Multiple SNPs/Structural’ entries correspond to sequences of length greater
than 61 (the maximum length of a sequence due to a single SNP with k-mer size of 31). In
additions to SNPs we find associations to sites with indels and structural variations. Further-
more, we find sequences that map to multiple regions in the genome indicating copy number
of variations or sequence variation in repeated regions where genotype calling is known to
be difficult.

We performed similar analysis on sequencing reads available from 87 BEB and 110 TSI
individuals from the 1000 genomes project and obtained 529,287 and 462,122 sequences as-
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Figure 4.4: Breakdown of types of variations in YRI-TSI comparison. Pie charts showing
breakdown of 2,970,929 and 1,865,285 sequences associated with YRI and TSI samples respectively.
The ‘Multiple SNPs/Structural’ entries correspond to sequences of length greater than 61, the
maximum length of a sequence due to a single SNP with k-mer size of 31 and ‘SNPs’ correspond
to sequences of maximum length of 61.

sociated with BEB and TSI samples respectively, much fewer than the YRI-TSI comparison.
Figure 4.5 shows breakdown of probable variant types corresponding to the sequences found
associated with BEB and TSI samples.

Histograms of sequence lengths show (Figures C.3 and C.4) peaks at 61bp which is the
maximum length corresponding to a single SNP for k-mer size of 31. We also see drops off
after 98bp in all cases providing evidence for multinucleotide mutations (MNMs) reported
in [51] since this is the maximum sequence length we can get when k-mers of size 31 are
assembled with minimum overlap of 24.

HAWK reveals sequences not in the human reference genome.

As Hawk is an alignment free method for mapping associations, it is able to find associations
in regions that are not in the human reference genome. The analysis resulted in 94,795
and 66,051 sequences of lengths up to 2,666bp and 12,467bp associated with YRI and TSI
samples respectively that did not map to the human reference genome. Similarly BEB-
TSI comparison yielded 19,584 and 18,508 sequences with maximum lengths of 1761bp and
2149bp associated with BEB and TSI respectively.

We found that few of the sequences associated with TSI samples some as long as 12kbp
and 2kbp in comparisons against YRI and BEB respectively that mapped to the Epstein-
Barr virus (EBV) genome, strain B95-8 [GenBank: V01555.2]. EBV strain B95-8 was used
to transform B cells into lymphoblastoid cell lines (LCLs) in the 1000 Genomes Project and
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Figure 4.5: Breakdown of types of variations in BEB-TSI comparison. Pie charts showing
breakdown of 529,287 and 462,122 sequences associated with BEB and TSI samples respectively.
The ‘Multiple SNPs/Structural’ entries correspond to sequences of length greater than 61, the
maximum length of a sequence due to a single SNP with k-mer size of 31 and ’SNPs’ correspond
to sequences of maximum length of 61.

is a known contaminant in the data [143].
Table 4.2 summarizes the sequences that could not be mapped to either the human

reference genome or the Epstein-Barr virus genome using Bowtie2. Although an exhaustive
analysis of all remaining sequences using BLAST is difficult, we find sequences associated
with YRI that do not map to the human reference genome (hg38) with high score but
upon running BLAST aligned to other sequences from human (for example to [GenBank:
AC205876.2] and some other sequences reported by Kidd et al. [75]). We also find sequences
with no significant BLAST hits to human genomic sequences some with hits to closely related
species. Similarly, we find sequences associated with TSI aligning to human sequences such
as [GenBank: AC217954.1] not in the reference. Although there much fewer long sequences
obtained in the BEB-TSI comparison, we find sequences longer than 1kbp associated with
each population with no BLAST hit.

Differential prevalence of variants in genes linked to CVDs in
BEB-TSI comparison.

We noted that cardiovascular diseases (CVD) are a leading cause of mortality in Bangladesh
[118] and age standardized death rates from CVDs in Bangladesh is higher compared to
Italy [118, 162]. Moreover, South Asians have high rates of acute myocardial infarction (MI)
or heart failure at younger ages compared to other populations and in several countries
migrants from South Asia have higher death rates from coronary heart disease (CHD) at
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Table 4.2: Summary of sequences not in the human reference genome.

Comparison Total no.
sequences

No.
sequences
of length
≥ 1000bp

Total
length in
sequences
of length
≥ 1000bp

No.
sequences
of length
≥ 200bp

Total
length in
sequences
of length
≥ 200bp

YRI (vs TSI) 94,795 41 59,956 478 225,426
TSI (vs YRI) 66,051 10 13,896 184 77,383
BEB (vs TSI) 19,584 3 3,835 75 33,954
TSI (vs BEB) 18,508 2 2,105 81 28,134

Table shows summary of sequences associated with different populations that did not map
to the human reference genome (hg38) or to the Epstein-Barr virus genome.

younger ages compared with the local population [49, 68] and according to the Interheart
Study, the mean age of MI among the poeple from Bangladesh is considerably lower than
non-South Asians and the lowest among South Asians [166, 144]. This motivated us to explore
probable underlying genetic causes.

The sequences of significant association with the BEB sample were aligned to RefSeq
mRNAs and the ones mapping to genes linked to CVDs [70] were analyzed. Table 4.3
shows non-synonymous variants in such genes that are significantly more common in the
BEB sample compared to the TSI sample. It is worth mentioning that the ‘C’ allele at the
SNP site, rs1042034 in the gene Apolipoprotein B (ApoB) has been associated with increased
levels of HDL cholesterol and decreased levels of Triglycerides [153] in individuals of European
descent but individuals with the ‘CC’ genotype have been reported to have higher risk of
CVDs in an analysis of the data from the Framingham Heart Study [77]. The SNP rs676210
has also been associated with a number of traits [111, 18]. Both alleles of higher prevalence in
BEB at those sites have been found to be common in familial hypercholesterolemia patients
in Taiwan [20]. On the other hand, prevalence of the risk allele, ‘T’ at rs3184504 in the gene
SH2B3 is higher in TSI samples compared to BEB samples.

We also observe a number of sites in the gene Titin (TTN) of differential allele frequencies
in BEB and TSI samples (see Table C.1). However, TTN codes for the largest known protein
and although truncating mutations in TTN are known to cause dilated cardiomyopathy [54,
151, 136], no such effect of other kinds of mutations are known.

4.4 Discussion

In this paper, we presented an alignment free method for association mapping from sequenc-
ing reads. It is based on finding k-mers that appear significantly more times in one set of
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Table 4.3: Variants in genes linked to cardiovascular diseases.

Gene SNP ID Variant type Allele p-value %BEB %TSI
APOB rs2302515 Missense C 1.30×10−12 29.29% 8.37%
APOB rs676210 Missense A 7.73×10−25 72.93% 33.08%
APOB rs1042034 Missense C 2.28×10−23 68.67% 31.91%
CYP11B2 rs4545 Missense T 1.31×10−28 31.33% 0.91%
CYP11B1 rs4534 Missense T 9.36×10−36 33.00% 0.91%
WNK4 rs2290041 Missense T 1.53×10−14 13.24% 0.47%
WNK4 rs55781437 Missense T 1.30×10−12 15.21% 0.91%
SLC12A3 rs2289113 Missense T 7.40×10−13 8.14% 0.00%
SCNN1A rs10849447 Missense C 8.67×10−12 62.88% 39.92%
ABO - 4bp (CTGT) deletion - 1.17×10−13 29.15% 10.55%
ABO rs8176741 Missense A 2.06×10−16 27.70% 8.45%
SH2B3 rs3184504 Missense C 8.22×10−23 92.88% 63.87%
RAI1 rs3803763 Missense C 1.32×10−12 75.86% 51.17%
RAI1 rs11649804 Missense A 1.95×10−19 81.57% 52.79%

Variants in genes linked to cardiovascular diseases found to be significantly more common
in BEB sample compared to TSI sample. The (%) values denote fraction of individuals in
the sample with the allele present. The p-values and % values are averaged over k-mers
constituting the associated sequences.

samples compared to the other and then locally assembling those k-mers. Since this method
does not require a reference genome, it is applicable to association studies of organisms with
no or incomplete reference genome. Even for human our method is advantageous as it can
map associations in regions not in the reference or where variant calling is difficult.

We tested our method by applying it to data from the 1000 genomes project and com-
paring the results with the results obtained using the genotypes called by the project as well
as using simulated data. We observe that more than 80% of the sites found using genotype
calls are covered by some sequence obtained by our method while also mapping associations
to regions not in the reference and in repetitive areas. Moreover, simulations suggest tests
based on k-mer counts have more power than those based number of copies of an allele
present at some site.

Breakdown analysis of the sequences found in pairwise comparison of YRI, TSI and
BEB, TSI samples reveals that this approach allows mapping associations to SNPs, indels,
structural and copy number variations through the same pipeline. In addition we find 2-4%
of associated sequences are not present in the human reference genome some of which are
longer than 1kbp. The YRI, TSI comparison yields almost 60kbp sequence associated with
the YRI samples in sequences of length greater than 1kbp alone. This indicates populations
around the world have regions in the genome not present in the reference emphasizing the
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importance of a reference free approach.
We explored variants in genes linked to cardiovascular diseases in the BEB, TSI compar-

ison as South Asians are known to have a higher rate mortality from coronary heart diseases
compared to many other populations. We find a number of non-synonymous mutations in
those genes are more common in the BEB samples in comparison to the TSI ones underscor-
ing the importance of association studies in diverse populations. The SNP rs1042034 in the
gene Apolipoprotein B (ApoB) merits particular mention as the CC genotype at that site
has been associated with higher risk of CVDs.

The results on simulated data and real data from the 1000 genomes project provide a proof
of principle of this approach which has motivated us to extend this method to quantitative
phenotypes and correct for population structure and other confounding factors and then
apply it to association studies of disease phenotypes in humans and other organisms.
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Chapter 5

Conclusion

In this dissertation, we showed that substantial improvements in genome assembly and anal-
ysis can be achieved through the use of statistical models. In Part I, we focused on two
important problems related to genome assembly – evaluating genome assemblies and scaf-
folding contigs using read pairs. Genome assembly is one of the most widely studied problems
in computational biology. To deal with the computational intractability of the problem pri-
marily due to repeats, as well as practical issues such as sequencing errors, biases and volume
of data generated by next-generation sequencing technologies, numerous methods have been
developed based on many heuristics and approaches. The emphasis on contiguity based
measures to evaluate assemblies and largely ignoring mis-assemblies and completeness of as-
sembly mean many of the assembled genomes have errors in them and there have been calls
for more principled ways to evaluate assemblies. The short lengths of next-generation se-
quencing reads have also complicated resolving repeat structure of genomes using only single
end reads and made utilization of read pairs to scaffold contigs increasingly important.

We take advantage of the low cost and large volume of NGS data available and address
these issues through use of statistical models. In Chapter 2, we present a generative model
for sequencing that takes into account randomness in read generation process, insert size
distribution and sequencing errors. We have developed a method called Cgal that learns
distributions from the data and computes likelihood of an assembly of generating the given
set of reads. Experiments with real and simulated data including GAGE and Assemblathon
1 datasets indicate that likelihood values more accurately assess assemblies compared to
other approaches commonly used.

It has been suggested that scaling likelihood values by number of reads and genome
size would allow comparison across genomes and different datasets using the scaled values.
However, we observe that quality of reads generated varies substantially across datasets
making comparison across datasets very difficult.

There have also been other efforts to evaluate assemblies using likelihood values [21, 43].
Likelihood values in addition to being useful for comparison of different assemblies generated
by various assemblers and choosing input parameters to assemblers, provide an optimization
criteria for genome assemblies. Assemblers based on maximum likelihood such as Piper [12],
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GAML [8] and one using a Bayesian approach [58] demonstrate that better assemblies can be
achieved using statistical approaches although the methods presented do not scale to large
genomes.

In Chapter 3, we presented a scaffolding method based on assembly likelihood. We use
statistical models to approximates the change in likelihood if contigs are joined while em-
ploying necessary approximations to make it efficient. The method is implemented in a tool
called Swalo. The performance of Swalo is compared with other scaffolders on datasets
used in an evaluation paper and the results indicate that Swalo outperforms all other scaf-
folders and show pareto-optimal performance. The performance may be improved further
by modifying the heuristic used to select from multiple candidate joins and by considering
global properties of the scaffold graph.

The performance of a practical scaffolder based on assembly likelihood demonstrate that
assemblies from next generation sequencing reads can be improved – Bresler arrived at a
similar conclusion [12]. Statistical models may also be applied to other problem related to
genome assembly – reference guided or assisted assembly [45, 145, 133], correction of mis-
assemblies in addition to detection [126, 21, 61], copy number estimation [19, 165, 50], etc.

While we have made strides in improving genome assemblies, we also observe that some
genomic analyses can be performed without requiring prior sequencing of a reference genome.
In Part II of this dissertation, we presented a method for association mapping from sequenc-
ing reads that does not need a reference genome. The method is based on testing for as-
sociations between k-mers and the phenotype of interest and locally assembling the k-mers
found significant. The implementation called Hawk is able to map associations to sequence
and structural variation as well as to regions not in reference genomes.

Application of the method to analyze data from the Toscani in Italia (TSI), the Yoruba
in Ibadan, Nigeria (YRI) and the Bengali from Bangladesh (BEB) populations from 1000
genomes project reveals sequences associated with each population that are not in the human
reference genome. We also explored possible genetic basis of high rates of mortality due to
cardiovascular diseases (CVD) among South Asians and find significant differences in allele
frequencies between BEB and TSI samples at the sites rs1042034 and the nearby rs676210 in
the Apolipoprotein B (ApoB) gene and a number of other non-synonymous variants in genes
linked to CVDs. Individuals with the ‘CC’ genotype at rs1042034 have been reported to be
at higher risks of CVDs at earlier ages and need to be followed up on.

Hawk promises to be an efficient, reference-free method for association mapping from
sequencing reads that can map to associations to multiple kinds of variants without explicitly
calling them. However, to apply this method to mapping associations to diseases, corrections
of population structure and other confounding factors need to be incorporated and are the
subjects of our future work.
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Appendix A

Supplementary information for
computing genome assembly
likelihoods

The Assemblers

The following assemblers were used for assembling reads from E. coli and G. clavigera:

• ABySS-1.2.7

• Euler-sr.1.1.2

• SOAPdenovo-V1.05

• Velvet 1.1.04

Supplementary information for E. coli data

• Organism: Escherichia coli

• Total reads: 10408224

• Reads mapped using: Bowtie 2 - 2.0.0 - beta 6

Reference

• Identifier: [NCBI: U00096.2]

• Likelihood: -238572967.687551

• Number of reads mapped: 10305539
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• Total length: 4639675 bases

Assemblies

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 775 −24.43× 107 10239632 4716697 106014 106014 41232
22 577 −24.28× 107 10252838 4655390 105565 105565 35940
23 466 −24.23× 107 10260818 4668411 119098 113303 32206
24 423 −24.33× 107 10258113 4662049 119103 119103 34380
25 385 −24.29× 107 10260950 4647968 119103 119103 33392
26 296 −24.16× 107 10267506 4776771 119289 119289 29411
27 290 −24.19× 107 10270072 4655849 113303 113303 26690
28 268 −24.21× 107 10269192 4653402 127397 127397 27186
29 251 −24.18× 107 10267174 4655844 119060 119060 30500
30 243 −24.20× 107 10262735 4648199 119061 119061 34214
31 200 −24.11× 107 10273191 4660482 127380 127380 26299
32 183 −24.07× 107 10278821 4720013 127449 127449 18566
33 191 −24.14× 107 10274370 4715256 127449 127449 19629
34 184 −24.11× 107 10275712 4677901 127449 127449 18549
35 187 −24.14× 107 10271870 4678986 119691 114019 18551
36 1357 −29.88× 107 9694443 4781873 14486 9005 58656

Table A.1: Details of ABySS assemblies of E. coli

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

23 8721 −79.29× 107 5450331 4173530 941 941 596466
24 3915 −50.08× 107 7963793 4546541 2675 2675 265291
25 1556 −35.52× 107 9294984 4714101 6828 6828 159086
26 818 −32.21× 107 9686807 4867555 13445 13445 140369
27 567 −31.15× 107 9777746 4627451 19731 19731 134725

Table A.2: Details of Euler-sr assemblies of E. coli
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k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 103 −30.55× 107 9769728 4536683 125011 42063 141257
23 108 −28.42× 107 9894505 4547233 132296 47267 124586
25 126 −27.65× 107 9947906 4553034 125245 58712 115939
27 142 −27.27× 107 9989334 4555420 125292 63059 111662
29 133 −26.57× 107 10033409 4556756 125296 60809 106641
31 131 −26.12× 107 10055340 4561246 132417 59343 105305
33 137 −26.23× 107 10057803 4558913 130824 63523 103877

Table A.3: Details of SOAPdenovo assemblies of E. coli

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 146 −26.14× 107 10073984 4558369 132072 39884 94001
23 152 −25.67× 107 10114372 4558963 171787 47058 86735
25 148 −25.25× 107 10153953 4561882 132844 50967 83227
27 137 −25.04× 107 10176741 4561981 171642 60809 78998
29 138 −24.97× 107 10180739 4564097 132509 64114 77588
31 137 −24.98× 107 10183271 4564728 171679 64138 79649
33 143 −25.05× 107 10174263 4568906 132976 39335 79423

Table A.4: Details of Velvet assemblies of E. coli
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Figure A.1: Log likelihood vs N50 contig length for E. coli. Log likelihoods are shown on the x-axis
and N50 contig lengths are shown on the y-axis. Each circle corresponds to an assembly generated
using an assembler for some hash length and sizes of circles correspond to similarity with reference.
The R2 values are (i) log likelihood vs similarity: 0.9372048, (ii) log likelihood vs N50 contig length:
0.3316912, (iii) N50 contig length vs similarity: 0.4584904

Figure A.2: (a) Hash length vs N50 scaffold length for E. coli, (b) Hash length vs N50 contig length
for E. coli
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Figure A.3: Feature response curves for (a) ABySS, (b) Euler-sr, (c) SOAPdenovo, (d) Velvet
assemblies of E. coli
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Figure A.4: Feature response curves for assemblies of E. coli by different assemblers
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Supplementary information for E. coli data from CLC

bio

• Organism: Escherichia coli

• Total reads: 2609307

• Reads mapped using: BFAST-0.6.5a

Reference - provided

• Identifier: [NCBI: NC 010473.1]

• Likelihood: -69204665.425366

• Number of reads mapped: 2523195

• Total length: 4686137 bases

Reference - conjectured

• Identifier: [NCBI: NC 000913.2]

• Likelihood: -57857459.428822

• Number of reads mapped: 2591992

• Total length: 4639675 bases

Assemblies



APPENDIX A. SUPPLEMENTARY INFORMATION FOR CGAL 65

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 505 −59.21× 106 2579014 4696557 82879 82879 40186
22 445 −58.99× 106 2581729 4679494 95869 95869 34079
23 418 −59.16× 106 2581745 4679963 92870 92870 35167
24 375 −58.98× 106 2582234 4654094 89001 88061 34348
25 367 −58.94× 106 2582400 4768360 88276 88276 34030
26 362 −59.16× 106 2583036 4756869 78513 78513 31967
27 370 −58.85× 106 2581930 4691177 80741 72160 36373
28 386 −59.38× 106 2578904 4926998 59949 59185 34738
29 465 −60.05× 106 2571176 4839950 42041 33858 40728
30 914 −63.74× 106 2533423 4850165 16657 13990 47853

Table A.5: Details of ABySS assemblies of E. coli from CLC bio

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 620 −65.65× 106 2522602 4692994 32728 30483 98983
22 569 −64.66× 106 2528669 4691836 33655 29444 93766
23 527 −64.34× 106 2527001 4598511 31478 27051 93579
24 560 −65.73× 106 2517944 4608041 33556 22946 102399
25 667 −68.01× 106 2494175 4561288 27187 14191 124413
26 830 −73.72× 106 2431998 4545734 19849 8495 175362
27 1131 −84.04× 106 2312331 4473173 12353 4780 280823

Table A.6: Details of Euler-sr assemblies of E. coli from CLC bio

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 180 −64.41× 106 2530857 4538915 82523 53402 117331
23 176 −63.66× 106 2536802 4541478 94647 57729 113126
25 179 −63.93× 106 2538168 4544165 94659 58755 112015
27 175 −64.23× 106 2527604 4539301 95159 46483 121115
29 200 −72.31× 106 2438802 4488341 83775 12597 203884

Table A.7: Details of SOAPdenovo assemblies of E. coli from CLC bio
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k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

19 2091 −82.01× 106 2352836 4532537 4112 4112 128441
21 198 −62.95× 106 2542960 4542798 78546 53459 100298
23 896 −71.06× 106 2471662 4532134 11286 11286 113920
25 1075 −71.52× 106 2459554 4542157 8352 8386 111040

Table A.8: Details of Velvet assemblies of E. coli from CLC bio
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Figure A.5: Hash length vs difference from reference for CLC bio E. coli data. Differences between
assemblies and the reference are shown on the y-axis where difference refers to numbers of bases in
the reference not covered by the assembly or are different in the reference and the assembly.
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Figure A.6: Log likelihood vs N50 scaffold length for CLC bio E. coli data. Log likelihoods are
shown on the x-axis and N50 scaffold lengths are shown on the y-axis. Each circle corresponds
to an assembly generated using an assembler for some hash length and sizes of circles correspond
to similarity with reference. The R2 values are (i) log likelihood vs similarity: 0.7508, (ii) log
likelihood vs N50 scaffold length: 0.4502, (iii) N50 scaffold length vs similarity: 0.1525
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Figure A.7: Log likelihood vs N50 contig length for CLC bio E. coli data. Log likelihoods are
shown on the x-axis and N50 contig lengths are shown on the y-axis. Each circle corresponds to
an assembly generated using an assembler for some hash length and sizes of circles correspond to
similarity with reference. The R2 values are (i) log likelihood vs similarity: 0.7508, (ii) log likelihood
vs N50 contig length: 0.6456, (iii) N50 contig length vs similarity: 0.4867
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Figure A.8: (a) Hash length vs N50 scaffold length, (b) Hash length vs N50 contig length for CLC
bio E. coli data
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Supplementary information for G. clavigera data

• Organism: Grosmannia clavigera

• Total reads: 41034877

• Reads mapped using: BFAST-0.6.5a

References

• Identifier: [DDBJ/EMBL/GenBank: ACXQ00000000]

• Likelihood: -1879322697.243536

• Number of reads mapped: 35708831

• Total length: 29128742 bases

• Identifier: [DDBJ/EMBL/GenBank: ACYC00000000]

• Likelihood: -1770350912.163320

• Number of reads mapped: 36287407

• Total length: 29518845 bases

Assemblies
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k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 256124 −21.38× 108 32979149 37142184 17220 16671 2809452
22 232501 - - 36709685 27945 25559 2700584
23 210071 −20.71× 108 33306434 36657119 37813 35026 2594137
24 192943 - - 35750082 55105 49172 2482608
25 184177 −20.41× 108 33472590 36531590 62982 58787 2382831
26 170997 - - 37378311 77784 67029 2267368
27 159554 −20.23× 108 33633432 35707870 93477 82886 2149608
28 149309 - - 35786179 98522 92594 2028791
29 141391 −19.78× 108 33809082 34799760 106367 92588 1906317
30 128886 - - 34297703 112410 98015 1763278
31 118223 −19.40× 108 34087970 34330058 119303 106618 1621203
32 107767 - - 34689640 130674 105063 1484476
33 96232 −19.32× 108 34385760 34434911 132294 113136 1266955
34 87415 - - 35763495 135634 116906 1150820
35 77636 −19.12× 108 34618713 34532607 135175 115835 1067088
36 69079 - - 34687680 132362 104995 992028
37 61086 −18.96× 108 34821797 34949964 136072 102040 922206
38 52639 - - 34591823 118013 85684 886238
39 46557 −18.96× 108 35034414 34312824 101526 63060 873592
40 42136 - - 32248177 54066 28644 976543

Table A.9: Details of ABySS assemblies of G. clavigera. ‘-’ indicates likelihood not computed

k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

23 718 −21.94× 108 33595856 28168246 404931 9519 3020692
25 854 −21.78× 108 33889880 28382967 471227 16994 2837023
27 1077 −21.26× 108 33906837 28633019 424982 24420 2679202
29 1319 −21.18× 108 33943297 29022797 472893 28732 2520229
31 1672 −20.50× 108 34161562 29315722 357348 31279 2362441
33 1959 −19.99× 108 34537448 29386051 363057 26110 2227202
35 2319 −19.59× 108 34962836 29343677 329057 15974 2166290
37 2737 −18.77× 108 35088054 29073407 328162 4779 2527367
39 4411 −22.52× 108 33276354 29618592 30833 440 7574440

Table A.10: Details of SOAPdenovo assemblies of G. clavigera
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k-mer #contigs Log likelihood Reads
mapped

Length N50
scaffold

N50
contig

Diff

21 4591 −21.81× 108 33369710 26845917 21877 10000 3088905
23 1250 −21.11× 108 34259414 26755488 174576 17299 2960501
25 1247 −19.86× 108 34626195 26820775 256321 22175 2870534
27 1513 −19.26× 108 34846513 26974390 313211 31692 2707470
29 1703 −19.17× 108 34886953 27199402 322108 38029 2545990
31 1967 −19.07× 108 34984676 27514303 304883 41579 2339277
33 2046 −19.00× 108 35210381 27736636 332958 39448 2129331
35 2066 −18.79× 108 35394715 28019566 322296 28230 1876746
37 2064 −18.87× 108 35469983 28278498 279463 12808 1794095
39 2164 −18.94× 108 35395912 28837034 181012 3210 2220725

Table A.11: Details of Velvet assemblies of G. clavigera
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Figure A.9: Log likelihood vs N50 contig length for G. clavigera. Log likelihoods are shown on the
x-axis and N50 contig lengths are shown on the y-axis. Each circle corresponds to an assembly
generated using an assembler for some hash length and sizes of circles correspond to similarity with
reference. The R2 values are (i) log likelihood vs similarity: 0.4545793, (ii) log likelihood vs N50
contig length: 0.1582344, (iii) N50 contig length vs similarity: 0.3287432
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Figure A.10: (a) Hash length vs N50 scaffold length, (b) Hash length vs N50 contig length for G.
clavigera data
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Figure A.11: Log likelihood vs numbers of mis-assembly features and suspicious regions for G.
clavigera. Log likelihoods are shown on the x-axis and Numbers of mis-assembly features and
suspicious regions reported by amosvalidate are shown on the y-axis. Each symbol corresponds to
an assembly generated using an assembler for some hash length and sizes of symbols correspond to
similarity with reference. The R2 values are (i) log likelihood vs # mis-assembly features: 0.0726,
(ii) log likelihood vs # suspicious regions: 0.0002, (iii) similarity vs # mis-assembly features: 0.2429,
(iv) similarity vs # suspicious regions: 0.0588
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Figure A.12: Feature response curves for (a) ABySS, (b) SOAPdenovo, (c) Velvet, (d) all assemblies
of G. clavigera
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Supplementary information for GAGE assemblies

• Reads mapped using Bowtie 2 - 2.0.0 - beta 6

Library 1 Library 2
Assembler Likelihood # reads mapped Likelihood # reads mapped
ABySS −63.67× 106 530004 −16.97× 107 706226
ALLPATHS-LG −80.69× 106 497645 −16.46× 107 722683
Bambus2 −74.04× 106 497912 −16.36× 107 702615
MSR-CA −92.54× 106 475548 −16.59× 107 716453
SGA −79.25× 106 483150 −18.68× 107 535786
SOAPdenovo −64.69× 106 518963 −17.08× 107 693421
Velvet −65.18× 106 515646 −16.76× 107 688261
Reference −63.55× 106 530582 −16.03× 107 738136

Table A.12: Likelihoods of GAGE assemblies of S. aureus

Library 1 Library 2
Assembler Likelihood # reads mapped Likelihood # reads mapped
ABySS −11.18× 107 830206 −16.37× 107 368991
ALLPATHS-LG −11.25× 107 840079 −15.35× 107 397859
Bambus2 −13.64× 107 782413 −18.92× 107 329183
CABOG −16.17× 107 735552 −23.06× 107 287180
MSR-CA −13.74× 107 786563 −17.87× 107 368515
SGA −12.06× 107 776980 −19.52× 107 254567
SOAPdenovo −11.23× 107 832984 −16.44× 107 379975
Velvet −11.47× 107 825280 −17.29× 107 350845
Reference −11.04× 107 844992 −14.95× 107 410758

Table A.13: Likelihoods of GAGE assemblies of R. sphaeroides
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Library 1 Library 2
Assembler Likelihood # reads mapped Likelihood # reads mapped
ABySS −82.28× 107 17668025 −15.21× 108 4428441
ALLPATHS-LG −96.97× 107 17409906 −13.11× 108 5712663
Bambus2 −22.77× 108 14162003 - -
CABOG −90.14× 107 17579185 −12.25× 108 5854239
MSR-CA −10.44× 108 16817275 - -
SGA −10.68× 108 16065518 - -
SOAPdenovo * * - -
Velvet −13.07× 108 14382698 - -
Reference −77.90× 107 17938368 −11.25× 108 6039649

Table A.14: Likelihoods of GAGE assemblies of human chromosome 14. * Likelihood not computed
as reads could not be mapped with Bowtie 2

Supplementary information for Assemblathon 1 data

• Reads mapped using BFAST-0.7.0a

• Due to an issue with mapping first 21200000, 10550000, 10550000 reads from libraries
of insert size 200, 3000, 10000 respectively were mapped
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Assembler Likelihood #reads mapped Coverage
ASTR 1 −15.73× 108 19583345 90.9
WTSI-P 1 −84.10× 107 21111310 98.7
WTSI-P 2 −83.38× 107 21140835 98.6
EBI 1 −91.35× 107 20903073 97.7
EBI 2 −12.50× 108 19866346 92.9
WTSI-S 1 −88.44× 107 21021575 97.8
WTSI-S 2 −88.12× 107 21026735 97.8
WTSI-S 3 −88.56× 107 21008685 97.8
WTSI-S 4 −83.84× 107 21111281 98.3
CRACS 1 −10.30× 108 20701940 96.3
CRACS 2 −10.68× 108 20616519 95.9
CRACS 3 −11.02× 108 20588439 95.6
BCCGSC 1 −82.38× 107 21140990 98.6
BCCGSC 2 −82.36× 107 21142978 98.6
BCCGSC 3 −82.25× 107 21143989 98.7
BCCGSC 4 −82.23× 107 21148816 98.7
BCCGSC 5 −82.20× 107 21148400 98.7
DOEJGI 1 −86.84× 107 21098465 97.3
IRISA 1 −11.46× 108 20504763 93.7
IRISA 2 −12.42× 108 20193993 92.8
IRISA 3 −11.99× 108 20349895 92.9
IRISA 4 −10.12× 108 20762461 95.7
IRISA 5 −10.97× 108 20563254 94.6
CSHL 1 −18.69× 108 18879773 87.2
CSHL 2 −83.01× 107 21140814 98.5
DCSISU 1 −11.31× 108 20525628 94.3
IoBUGA 1 −85.73× 107 21106253 98.3
IoBUGA 2 −85.69× 107 21103249 98.3
IoBUGA 3 −87.99× 107 21057492 98.1
UCSF 1 −21.98× 108 18216040 83.7
RHUL 1 −82.92× 107 21138821 98.5
RHUL 2 −83.03× 107 21140544 98.5
RHUL 3 −81.56× 107 21142931 98.7
RHUL 4 −96.40× 107 20868381 97.0
RHUL 5 −82.61× 107 21148936 98.7
GACWT 1 −18.32× 108 18734425 87.6
GACWT 2 −25.98× 108 17023161 79.5
GACWT 3 −19.33× 108 18455366 86.4
CIUoC −27.38× 108 17087357 78.5
BGI 1 −84.13× 107 21108642 98.8
Broad 1 −92.49× 107 21026955 98.3

Table A.15: Assemblathon 1 likelihoods



77

Appendix B

Supplementary information for
scaffolding with assembly likelihood
optimization
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Table B.1: Parameters used to run aligners and Swalo

Dataset Mapping
parameters
(Bowtie 2 /
Bowtie)

Max insert
size (Bowtie2
/ Bowtiecon-

vert)

Min contig
length

(Swalo)

Others
(Swalo)

S. aureus (100kb
contigs, short inserts)

-a 650 650 -

S. aureus (100kb
contigs, long inserts)

-a 4000 4000 -

S. aureus (3kb
contigs, short inserts)

-a 650 650 -

S. aureus (3kb
contigs, long inserts)

-a 4000 4000 -d 3000 200
(all)

S. aureus (GAGE) -a 6000 4400 -
R. sphaeroides
(GAGE)

-a 6000 4400 -d 3700 400
(bowtie -v 0,

-v 3)
P. falciparum (short
inserts)

-k 5 1200 1200 -

P. falciparum (long
inserts)

-k 5 6000 6000 -d 3045 750
(bowtie -v 0)

Human chromosome
14 (GAGE short
jump)

-k 5 6000 3600 -

Human chromosome
14 (GAGE fosmid)

-k 5 50000 40000 -c -d 35000
2000 (all)
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Figure B.1: Insert size distribution for human chromosome 14 GAGE short jump library.
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Figure B.2: Performance of scaffolders. Scatter plots showing number of correct joins vs
incorrect joins made by different scaffolders on (a) P. falciparum short library, (b) P. falciparum
short jump library, (c) human chromosome 14 short jump library, and (d) human chromosome 14
fosmid library. Values for all scaffolders except Swalo are from [62].
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Appendix C

Supplementary information for
association mapping from sequencing
reads using k-mers

Finding differential k-mers in association studies

We consider the case where we have s1 and s2 samples from two populations. We observe a
specific k-mer k1,1, . . . , k1,s1 and k2,1, . . . , k2,s2 times in the samples from two populations and
total k-mer counts in the samples are given by n1,1, . . . , n1,s1 and n2,1, . . . , n2,s2 . We assume
that the k-mer counts are Poisson distributed with rate θ1 and θ2 in the two populations
where the θ’s can be interpreted as quantities proportional to the average number of times
the k-mer appears in the two populations. The null hypothesis is H0 : θ1 = θ2 = θ and the
alternate hypothesis is H1 : θ1 ̸= θ2

We test the null using likelihood ratio test for nested models. The likelihood ratio is
given by

Λ =
sup{L(θ1, θ2)}
sup{L(θ, θ)}

where

L(θ1, θ2) =

s1∏
i=1

e−θ1n1,i(θ1n1,i)
k1,i

k1,i!

s2∏
i=1

e−θ2n2,i(θ2n2,i)
k2,i

k2,i!

and

L(θ) =

s1∏
i=1

e−θn1,i(θn1,i)
k1,i

k1,i!

s2∏
i=1

e−θn2,i(θn2,i)
k2,i

k2,i!
.

L(θ1, θ2) is maximized at θ̂1 =
∑s1

i=1 k1,i∑s1
i=1 n1,i

, θ̂2 =
∑s2

i=1 k2,i∑s2
i=1 n2,i

and L(θ) is maximized at θ̂ =∑s1
i=1 k1,i+

∑s2
i=1 k2,i∑s1

i=1 n1,i+
∑s2

i=1 n2,i
. Therefore,
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Λ =
L(θ̂1, θ̂2)

L(θ̂, θ̂)
.

Since the null model is a special case of the alternate model, 2 lnΛ is approximately
chi-squared distributed with one degree of freedom [59, 60].

We note that the test statistic stays the same if the likelihood values are computed by
pooling together the counts in samples from two populations i.e.

L(θ1, θ2) =
e−θ1N1(θ1N1)

K1

K1!

e−θ2N2(θ2N2)
K2

K2!

and

L(θ) =
e−θN1(θN1)

K1

K1!

e−θN2(θN2)
K2

K2!

where
∑s1

i=1 k1,i = K1,
∑s2

i=1 k2,i = K2,
∑s1

i=1 n1,i = N1, and
∑s2

i=1 n2,i = N2.
For each k-mer in the data, we compute the statistic as described above and obtain a

P-value using χ2
1 distribution. The P-values are then corrected for multiple testing using

Bonferroni correction.

Verification with simulated E. coli data

The simulation with E. coli genome (∼4.6 million bp) was performed by first introducing 100
single base changes, 100 indels of random lengths less than 10bp and 100 indels of random
lengths between 100 and 1000bp at random locations. Then different number of controls and
cases were generated using wgsim of SAMtools[84] introducing more mutations with default
parameters and 300000 paired end reads of length 70 (∼5x k-mer coverage) were generated
with sequencing error rate of 0.01.

The sensitivity and specificity analysis was done by aligning the sequences generated by
HAWK using Bowtie 2 [80] and checking for overlap with mutation locations with in-house
scripts. The power calculation is done by finding the minimum k-mer count to obtain a
p-value less than significant threshold and then calculating the probability of observing at
least that count for different coverages using R.

Testing for significant SNPs

Consider a site with two alleles. Let n1,0, n1,1, n1,2 be the number of individuals with 0,1 and
2 copies of the minor allele respectively in the sample from population 1 and n2,0, n2,1, n2,2

are the corresponding ones from population 2. Let p1 and p2 be the minor allele frequencies
in the two populations and N1 and N2 be the number of samples. The null hypothesis is
H0 : p1 = p2 = p and the alternate hypothesis is H0 : p1 ̸= p2.

We test the null using likelihood ratio test for nested models. The likelihood ratio is
given by
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Figure C.1: Power for different k-mer coverage. The figure shows power to detect a k-mer
present in all case samples and no control sample against total k-mer coverage of cases using
Bonferroni correction for different number of total tests for p-value=0.05.

Λ =
sup{L(p1, p2)}
sup{L(p, p)}

where under random mating

L(p1, p2) =

(
N1

n1,0, n1,1, n1,2

)
(1− p1)

2n1,0(2p1(1− p1))
n1,1p

2n1,2

1(
N2

n2,0, n2,1, n2,2

)
(1− p2)

2n2,0(2p2(1− p2))
n2,1p

2n2,2

2

and

L(p) =

(
N1

n1,0, n1,1, n1,2

)
(1− p)2n1,0(2p(1− p))n1,1p2n1,2(

N2

n2,0, n2,1, n2,2

)
(1− p)2n2,0(2p(1− p))n2,1p2n2,2 .
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L(p1, p2) is maximized at p̂1 = n1,1+2n1,2

2N1
, p̂2 = n2,1+2n2,2

2N2
and L(p) is maximized at p̂ =

n1,1+2n1,2+n2,1+2n2,2

2N1+2N2
. Therefore,

Λ =
L(p̂1, p̂2)

L(p̂, p̂)
.

Since the null model is a special case of the alternate model, 2 lnΛ is approximately
chi-squared distributed with one degree of freedom.

For each SNP site in the data, we compute the statistic as described above and obtain
a p-value using χ2

1 distribution. The p-values are then corrected for multiple testing using
Bonferroni correction.
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Figure C.2: Comparison of powers. Figure shows fraction of runs found significant by tests
against minor allele frequency of one of samples (with the other one fixed at 0) after Bonferroni
correction for total number of k-mers tested (for test based on the Poisson distribution) and total
number of genotypes tested (for test based on the multinomial distribution). The curve labeled
multinomial and Poisson correspond to likelihood ratio test using multinomial distribution and
Poisson distributions with different k-mer coverage.
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Intersection analysis using 1000 genomes data

For the intersection analysis we used data from 87 YRI individuals and 98 TSI individuals for
which both sequencing reads and genotype calls were available. The Hawk pipeline was run
using a k-mer size of 31. The assembly was using ABySS [147]. The sequences were aligned
to the human reference genome version GRCh37 using Bowtie2. Each of the genotypes
called by the 1000 genomes project was then tested for association with populations using
the approach described in the previous section. The extent of intersection of the loci found
using two methods was then determined using BEDtools [131].

Breakdown analysis

The types of variants corresponding to sequences found using the Hawk pipeline were es-
timated by mapping them to the human reference genome version hg38 using Bowtie2 and
using following properties.

Unmapped: The sequences that were not mapped to the reference using Bowtie2.

Multimapped: The sequences with multiple mappings. These may be due to copy number
variations or sequence variation in repetitive regions.

Indels: The sequences that mapped to the reference with one or more indels.

Multiple SNPs/Structural: The maximum length of a sequence due to a single SNP with
31-mer is 61. Sequences with length greater than 61 were assigned this label.

SNPs: All other sequences.

Probing for variants of interest

We searched for well known variants and other variants of potential biological interest by
aligning sequences to RefSeq mRNAs using Bowtie2 and then looking up gene names from
RefSeq mRNA identifiers using the UCSC Table Browser [69]. Variants of interest were then
further explored by running BLAT [72] on the UCSC Human Genome Browser [74].
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Figure C.3: Histograms of sequence lengths in YRI-TSI comparison. Figures show sections
of histograms of lengths of sequences associated with (a),(c) YRI and (b),(d) TSI in comparison of
YRI and TSI samples. Figures (a), (b) show peaks at 61, the maximum length corresponding to
a single SNP with k-mer size of 31. Figures (c), (d) show drop off after 98 which is the maximum
length corresponding to two close-by SNPs as 31-mers were assembled using a minimum overlap of
24.
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Figure C.4: Histograms of sequence lengths in BEB-TSI comparison. Figures show sections
of histograms of lengths of sequences associated with (a),(c) BEB and (b),(d) TSI in comparison of
BEB and TSI samples. Figures (a), (b) show peaks at 61, the maximum length corresponding to
a single SNP with k-mer size of 31. Figures (c), (d) show drop off after 98 which is the maximum
length corresponding to two close-by SNPs as 31-mers were assembled using a minimum overlap of
24.
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Table C.1: Variants in Titin of differential prevalence in BEB-TSI comparison.

Gene SNP ID Variant type Allele p-value %BEB %TSI
TTN rs9808377 Missense G 1.70×10−15 66.44% 41.91%
TTN rs62621236 Missense G 2.33×10−16 27.70% 5.72%
TTN rs2291311 Missense C 1.06×10−11 25.77% 7.77%
TTN rs16866425 Missense C 8.19×10−12 21.73% 2.73%
TTN rs4894048 Missense T 2.00×10−23 22.65% 2.26%
TTN rs13398235 Intron/missense A 2.04×10−13 41.00% 17.40%
TTN rs11888217 Intron/missense T 4.18×10−13 27.25% 4.55%
TTN rs10164753 Missense T 3.69×10−13 28.48% 6.19%
TTN rs10497520 Missense T 1.66×10−23 54.76% 18.86%
TTN rs2627037 Missense A 6.99×10−13 25.06% 4.72%
TTN rs1001238 Missense C 1.66×10−17 64.66% 38.21%
TTN rs3731746 Missense A 1.26×10−14 50.72% 30.21%
TTN rs17355446 Intron/missense A 3.31×10−11 15.44% 1.11%
TTN rs2042996 Missense A 1.03×10−17 71.41% 35.87%
TTN rs747122 Missense T 1.59×10−11 28.57% 7.24%
TTN rs1560221∗ Synonymous G 1.11×10−22 70.71% 34.66%
TTN rs16866406 Missense A 2.17×10−12 35.60% 17.51%
TTN rs4894028 Missense T 2.58×10−13 27.54% 6.89%
TTN - Insertion T 1.09×10−12 34.11% 8.59%
TTN rs3829747 Missense T 4.72×10−12 37.55% 20.30%
TTN rs2291310 Missense C 2.18×10−20 36.63% 8.04%
TTN rs2042995 Intron/Missense C 7.83×10−12 56.32% 31.64%
TTN rs3829746 Missense C 5.30×10−29 75.94% 37.60%
TTN rs744426 Missense A 1.36×10−13 37.15% 18.92%

Variants in Titin, a gene linked to cardiovascular diseases, that were found to be
significantly more common in BEB samples compared to TSI samples.The (%) values
denote fraction of individuals in the sample with the allele present. The p-values and %
values are averaged over k-mers constituting the associated sequences.
* A stop gained SNP exists at the same position.
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