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Abstract

Compositional Design of Cyber-Physical Systems Using Contracts
by
Pierluigi Nuzzo
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

The realization of large and complex cyber-physical systems (such as “smart” transporta-
tion, energy, security, and health-care systems) is creating design and verification challenges
which will soon become insurmountable with the current engineering practices. These highly
heterogeneous systems, tightly combining physical processes with computation, communica-
tion, and control elements, would substantially benefit from hierarchical and compositional
methodologies to make their design possible let alone optimal. Several languages and tools
have been proposed over the years to enable model-based development of complex systems.
However, an all-encompassing design framework that helps interconnect different tools, pos-
sibly operating on different system representations, is still missing.

In this dissertation, we introduce a design methodology that addresses the complexity
and heterogeneity of cyber-physical systems by using assume-guarantee contracts to for-
malize the design process and enable the realization of system architectures and control
algorithms in a hierarchical and compositional way. In our methodology, components are
specified by contracts, and systems by compositions of contracts. Contracts explicitly define
the assumptions of a component on its environment and the guarantees of the component
under these assumptions. Contract operations and relations, such as composition, conjunc-
tion and refinement allow proving that: (i) an aggregation of components are compatible,
i.e. there exists a legal environment in which they can operate; (ii) a set of specifications are
consistent, i.e. there exists an implementation satisfying all of them; (iii) an aggregation of
components refines a specification, i.e. it implements the specification contract and is able to
operate in any environment admitted by it. While horizontal contracts are used to specify
components and aggregations of components at the same level of abstraction, we introduce
the notion of vertical contracts to reason about richer refinement relations and mappings
between different abstraction levels, possibly described by heterogeneous architectures and
behavior formalisms. Moreover, we further investigate the problem of compatibility for sys-
tems with uncontrolled inputs and controlled outputs, by establishing a link between the
theory of contracts and the one of interfaces, which rely on different mathematical for-
malisms, while sharing the same objectives. From this link, we derive a new projection



operator on contracts that enables the preservation of the semantics of interface composition
and compatibility.

Resting on the above contract framework, the design is carried out as a sequence of
refinement steps from a high-level specification to an implementation built out of a library
of components at the lower level. To allow for requirement analysis and early detection
of inconsistencies, top-level system requirements are captured as contracts, by leveraging
a front-end pattern-based specification language and a set of back-end formal languages,
including mixed integer-linear constraints and temporal logic. Top-level contracts are then
refined to achieve independent development of system architectures and control algorithms,
by combining synthesis from requirements and optimization methods.

To enable efficient architecture selection under safety and reliability constraints, we ex-
plore two optimization-based methods that use an approximate reliability analysis technique
to overcome the exponential complexity of exact computations. The Integer-Linear Pro-
gramming with Approximate Reliability (ILP-AR) method generates larger, monolithic op-
timization problems using approximate but efficient reliability computations with an explicit
theoretical bound on the error. Conversely, the Integer-Linear Programming Modulo Reli-
ability (ILP-MR) method breaks the complex architecture selection task into a sequence of
smaller optimization tasks without reliability constraints, interleaved with exact reliability
checks. By relying on efficient mechanisms to prune out candidate architectures that are
inconsistent with the reliability constraints, ILP-MR can run faster than ILP-AR on large
problem instances.

We further explore two methods to systematically design control strategies for a given
architecture. The reactive synthesis-based optimal control mapping (RS-OCM) method
generates controllers by combining reactive synthesis from linear temporal logic contracts
with optimization techniques based on simulation and monitoring of signal temporal logic
contracts. Different design concerns are then addressed by leveraging the most appropriate
abstraction levels, using contracts from the pre-characterized library to accelerate verification
tasks. The programming-based optimal control mapping (P-OCM) method uses, instead, a
discrete-time representation of the system and a formalization of the design requirements
in terms of arithmetic constraints over real numbers to cast the control problem as an
optimization problem over a finite time horizon. The optimization problem is then solved
with a receding horizon approach and scales better than monolithic reactive synthesis from
linear temporal logic.

We demonstrate, for the first time, the effectiveness of a contract-based design flow
on real-life examples of industrial relevance, namely, the design of aircraft electric power
distribution and environment control systems. In our framework, optimal selection of large,
industrial-scale power system architectures can be performed in a few minutes. Design
validation of power system controllers based on linear temporal logic contracts shows up to
two orders of magnitude improvement in terms of execution time with respect to conventional
techniques. Finally, our optimization-based load management scheme allows better resource
utilization than a conventional one.



To my family: Antonietta, Corrado, and Alessandro
To my aunt, Mimina

“General Systems theory should be an important means of instigating the transfer of
principles from one field to another (so that it would) no longer be necessary to duplicate

the discovery of the same principles in different fields.”
Ludwig von Bertalanfty

“Perfection (in design) is achieved, not when there is nothing more to add, but when there
is nothing left to take away.”

Antoine de Saint-Exupéry

“Everything must be made as simple as possible. But not simpler.”
Albert Einstein
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Chapter 1

Introduction

This chapter provides the motivation for the work in this dissertation, and a preview of the
main results. We first discuss some of the challenges for the realization of cyber-physical
systems, and introduce an aircraft electric power system as a running example to illustrate
them. We then offer an overview of the strategies adopted to address these challenges, and
highlight the key technical contributions. Finally, we outline the covered topics and their
organization.

1.1 Cyber-Physical System Design Challenges

A large number of new applications are emerging, which go beyond the traditional bound-
aries between computation, communication and control. The majority of these applications,
such as “smart” buildings, “smart” traffic, “smart” grids, “smart” cities, cyber security,
and health-care wearables (Figure 1.1), build on distributed, networked, sense-and-control
platforms, characterized by the tight integration of “cyber” aspects (computing and net-
working) with “physical” ones (e.g., mechanical, electrical, and chemical processes). In
these cyber-physical systems (CPS) embedded computers and networks monitor and control
the physical processes, usually with feedback loops where physics affects computation and
vice versa [192, 120, 156, 124].

Intelligent systems that gather, process and apply information are changing the way
entire industries operate, and have the potential to radically influence how we deal with a
broad range of crucial societal problems. Moreover, as embedded digital electronics becomes
pervasive and cost-effective, co-design of both the cyber and the physical portions of these
systems shows promise of making the holistic system more capable and efficient. Indeed,
the availability and cooperation of all the elements of a CPS to fulfill common goals can
outperform a system in which such elements are kept separated. However, CPS complezity
and heterogeneity, originating from combining what in the past have been separate worlds,
tend to substantially increase the design and verification challenges.

A serious obstacle to the efficient realization of CPS is the inability to rigorously model
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Figure 1.1: Examples of applications of cyber-physical systems. According to the US maga-
zine EE-Times (http://www.eetimes.com/), approximately 98% of the world’s processors
today are not in a PC but “embedded” in a physical system. For instance, a premium car
contains around 80 “computers” (electronic control units), 100 million lines of code, and
2 km of wiring (controller area network bus and other networks).

the interactions among heterogeneous components and between the physical and the cyber
sides. While in traditional embedded system design the physical system is regarded as a
given, the emphasis of CPS design is instead on managing dynamics, time, and concurrency
by orchestrating networked, distributed computational resources together with the physical
systems. Functionality in CPS is provided by an ensemble of sensing, actuation, connec-
tivity, computation, storage and energy. Therefore, CPS design entails the convergence of
several sub-disciplines, and tends to stress all existing modeling languages and frameworks,
which are hardly interoperable today. In computer science, logic is emphasized rather than
dynamics, and processes follow a sequential semantics; computer scientists mostly deal with
computational aspects and carefully abstract the physical world. Conversely, physical pro-
cesses are generally represented using continuous-time dynamical models, often expressed
as differential equations, which are acausal, concurrent models; control, electrical and me-
chanical engineering have to directly deal with the physical quantities involved in the design
process. It is, therefore, difficult to accurately capture the interactions between these two
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worlds.

Moreover, a severe limitation in common design practice is the lack of formal specifica-
tions. Requirements are written in languages that are not suitable for mathematical analysis
and verification. Assessing system correctness is then left for simulation and, later in the
design process, prototyping. Thus, the traditional heuristic design process based on informal
requirement capture and designers’ experience can lead to implementations that are ineffi-
cient and sometimes do not even satisfy the requirements, yielding long re-design cycles,
cost overruns and unacceptable delays. The cost of being late to market or of product mal-
functioning is staggering as witnessed by the recent recalls and delivery delays that system
industries had to bear. Toyota’s infamous recall of approximately 9 million vehicles due
to the sticky accelerator problem!®, Boeing’s 787 delay bringing an approximate toll of $3.3
billion? are examples of devastating effects that design problems may cause.

In the remainder of this section, we further detail the difficulties highlighted above,
and motivate the research developed in this dissertation. While we build on the seminal
elaborations by Derler et al. [72] and Sangiovanni-Vincentelli et al. [177], we offer a new
vista of the main CPS design challenges from the perspective of the system engineers who
are in charge of realizing them. We classify the main issues into three categories: modeling,
specification, and integration.

1.1.1 Modeling Challenges

Model-based design (MBD) [193, 179] is today generally accepted as a key enabler for the
design and integration of complex systems. However, as mentioned above, because CPS
tend to stress all existing modeling languages and frameworks, a set of modeling challenges
stem by the difficulty in accurately capturing the interactions between them. We categorize
these challenges in terms of: (1) modeling timing and concurrency and (2) modeling the
interactions between functionality and implementation.

1.1.1.1 Challenge 1 — Modeling Timing and Concurrency

A first set of technical challenges in the analysis and design of the real-time embedded soft-
ware in CPS stems from the need to bridge its inherently sequential semantics with the
intrinsically concurrent physical world. All the general-purpose computation and network-
ing abstractions are built on the premise that execution time is just an issue of performance,
not correctness. Therefore, timing of programs is not repeatable, except at very coarse
granularity, and programmers have hard time to specify timing behaviors within the current
programming abstractions. Moreover, concurrency, is often poorly modelled. Concurrent
software is today dominated by threads, performing sequential computations with shared
memory. Incomprehensible interactions between threads can be the sources of many prob-
lems, ranging from deadlock and scheduling anomalies, to timing variability, nondeterminism,

!see, e.g., http://www.autorecalls.us
%see, e.g., http://en.wikipedia.org/wiki/Boeing_787
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buffer overruns, and system crashes [122]. Finally, modeling distributed systems adds to the
complexity of CPS modeling by introducing issues such as disparities in measurements of
time, network delays, imperfect communication, consistency of views of system state, and
distributed consensus [72].

1.1.1.2 Challenge 2 — Modeling Interactions between Functionality and
Implementation

Functional models are particularly suitable for prototyping control and data processing al-
gorithms, since they are able to abstract unnecessary implementation details, and can be
evaluated more efficiently. However, computation and communication do take time. There-
fore, to correctly evaluate a CPS model, it is necessary to also model the dynamics of soft-
ware and networks. While implementation is largely orthogonal to functionality and should,
therefore, not be an integral part of a model of functionality, pure functional models tend
to be inaccurate, in that they implicitly assume that data are computed and transmitted in
zero time, so that the dynamics of the software and networks have no effect on the system
behaviors.

It is then essential to provide mechanisms to capture the interactions of functionality and
implementation, while still preserving their separation. Specifically, it should be possible to
conjoin two distinct representation of design with each other, namely a functional model
and an tmplementation model. The latter allows for design space exploration, while the
former supports the design of control strategies. The conjoined models enable evaluation of
interactions across these domains.

1.1.2 Specification Challenges

Depending on application domains, up to 50% of all errors result from imprecise, incomplete,
or inconsistent and thus unfeasible requirements. The overall system product specification
is somewhat of an art today, since to verify its completeness and its correctness there is little
that it can be used to compare with. We categorize the specification challenges in terms of:
(3) capturing system requirements and (4) managing them.

1.1.2.1 Challenge 3 — Capturing System Requirements

Among the many approaches taken in industry for getting requirements right, some of them
are meant for initial systems requirements, mostly relying on ISO 26262% compliant ap-
proaches. To cope with the inherently unstructured problem of completeness of requirements,
industry has set up domain- and application-class specific methodologies, including learning
processes, such as the one employed by Airbus to incorporate the knowledge base of exter-
nal hazards from flight incidents. Use-case analysis methods as advocated for UML*-based

3http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
“http://www.omg.org/spec/UML/
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development processes [45] follow the same objective. A common theme of these approaches
is the intent to systematically identify those aspects of the environment of the system under
development whose observability is necessary and sufficient to achieve the system require-
ments. However, the most efficient way of assessing completeness of a set of requirements is
by executing it, which is only possible if semi-formal or formal specification languages are
used, where the particular shape of such formalizations is domain dependent.

1.1.2.2 Challenge 4 — Managing Requirements

Design specifications tend to move from one company (or one division) to the next in non-
executable and often unstable and imprecise forms, thus yielding misinterpretations and
consequent design errors. In addition, errors are often caught only at the final integration
step as the specifications were incomplete and imprecise; further, nonfunctional specifications
(e.g., timing, power consumption, size) are difficult to trace.

It is common practice to structure system level requirements into several “chapters,”
“aspects,” or “viewpoints,” quite often developed by different teams using different skills,
frameworks, and tools. However, these viewpoints, e.g., including function, safety, timing,
energy, are not unrelated. Without a clean approach to handle multiple viewpoints, as also
discussed in Section 1.1.1, the common practice today is to discard some of the viewpoints
in a first stage, e.g., by considering only functions and safety. Designs are then developed
based on these only viewpoints. Other viewpoints are subsequently taken into account (e.g.,
timing, energy), thus resulting in late and costly modifications and re-designs.

Requirement engineering is a discipline that aims at improving the situation described
above by paying close attention to the management of the requirement descriptions and their
traceability (e.g., using commercial tools such as DOORS® in combination with REQTIFYY)
and by inserting, whenever possible, precise formulation and analysis methods and tools.
However, the support of formal approaches for requirement structuring and analysis is still
largely missing.

1.1.3 Integration Challenges

CPS integrate diverse subsystems by often composing pieces that have been pre-designed
or designed independently by different groups or companies. This is done routinely, for
example, in the avionics and automotive sectors, albeit in a heuristic and ad hoc way. In
fact, integrating component models to develop holistic views of the system becomes very
challenging. We summarize below the main integration challenges by categorizing them in
terms of: (5) preventing misconnected model components, (6) keeping model components
consistent, and (7) improving scalability and accuracy of model analysis.

Shttp://www-03.ibm.com/software/products/en/ratidoorfami
Shttp://www.3ds.com/products-services/catia/capabilities/requirements-engineering/
reqtify/
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1.1.3.1 Challenge 5 — Preventing Misconnected Model Components

The bigger a model becomes, the harder it is to check for correctness of connections between
components. Typically, model components are highly interconnected, and the possibility of
errors increases. Errors may be due to different units between a transmitting and a receiving
port (unit errors), different interpretation of the exchanged data (semantic errors), or just
reversed connections among ports (transposition errors). Since none of these errors would
be detected by a type system, specific measures should be enabled to automatically check
for them [72].

1.1.3.2 Challenge 6 — Keeping Model Components Consistent

Inconsistency may arise when a simpler (more abstract) model evolves into a more complex
(refined) one, where a single component in the simple model becomes multiple components
in the complex one. Moreover, non-functional aspects such as performance, timing, power,
or safety analysis are typically addressed in dedicated tools using specific models, which are
often evolved independently of the functional ones (capturing the component dynamics),
thus also increasing the risk of inconsistency.

In a modeling environment, a mechanism for maintaining model consistency is needed to
allow components to be copied and reused in various parts of the model while guaranteeing
that, if later a change in one instance of the component becomes necessary, the same change is
applied to all other instances that were used in the design. Additionally, more sophisticated
mechanisms would be needed to maintain consistency between the results of specialized
analysis and synthesis tools operating on different representations of the same component.

1.1.3.3 Challenge 7 — Improving Scalability and Accuracy of Model Analysis

As stated above, it is essential that the fundamental steps of system design (functional
partitioning, allocation on computational resources, integration, and verification) be sup-
ported across the entire design development cycle and across different disciplines. CPS may
be modeled as hybrid systems integrating solvers that numerically approximate the solu-
tions to differential equations with discrete models, such as state machines, dataflow models,
synchronous-reactive models, or discrete event models [123]. A survey of languages and tools
for the specification and analysis of CPS models can be found in Chapter 2. However, a ma-
jor set of challenges for CPS integration is the inadequacy of traditional analysis techniques
and their interoperability. In particular, conventional verification and validation techniques
tend not to scale to highly complex or adaptable systems (i.e., those with large or infinite
numbers of possible states or configurations). On the other hand, simulation techniques may
also be affected by modeling artifacts, such as solver-dependent, nondeterminate, or Zeno
behaviors [72].

As a concrete example of industrial CPS which exposes several of, if not all, the challenges
discussed above, we introduce an aircraft electric power system (EPS) in Section 1.2. This
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Figure 1.2: Evolution in aircraft electric power system architectures: from traditional archi-
tectures (circa World War 11, left side) to more recent ones (Boeing 787, circa 2007, right
side). The centralized distribution scheme, relying on mechanical circuit breakers and relays,
has been replaced by a remote distribution scheme, extensively relying on solid-state power
controllers. Courtesy of United Technology Corporation (UTC), industrial partner of the
industrial Cyber-Physical (iCyPhy) system consortium (http://www.icyphy.org/).

is also used as a running example to illustrate the methodology and tools developed in this
dissertation.

1.2 Running Example: Aircraft Electric Power
System Design

The advent of high capability, reliable power electronics together with powerful embedded
processors has enabled an increasing amount of “electrification” of vehicles such as cars and
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aircraft in recent years [147, 107]. Hydraulic, pneumatic, and mechanical systems are being
replaced by cyber-electrical components that decrease weight and increase the overall system
efficiency [175]. For example, Figure 1.2 shows the evolution of the architecture of an electric
power system in a “more electric” aircraft. Traditional architectures (circa World War II),
based on centralized distribution and mechanical circuit breakers and relays, have been
replaced with more advanced ones (Boeing 787, circa 2007), based on remote distribution
and solid-state power controllers. As this trend is common to almost all the subsystems of
an aircraft, the increased use of electrically-powered elements poses even more challenges to
the power system in terms of the reliability of electrical power generation and distribution
while satisfying safety requirements.

In the following, we provide details on the power generation and distribution system in a
passenger aircraft, using the sample EPS architecture in Figure 1.3, in the form of a single-
line diagram (SLD) [147], a simplified notation for three-phase power systems. We then
summarize the system requirements and expose the main design challenges in its realization.

Typically, aircraft electric power systems consist of generation, primary distribution and
secondary distribution sub-systems. One or more supervisory control units actuate a set
of electromechanical switches to dynamically distribute power from generators to loads,
while satisfying safety, reliability and real-time performance requirements. In this example,
we focus on the primary power distribution system, which includes the majority of the
supervisory control logic, and involves the configuration of the contactors that deliver power
to high-voltage AC and DC buses and loads.

1.2.1 Components

The main components of an electric power system are generators, contactors, buses, and
loads. Primary generators are connected to the aircraft engine and can operate at high or
low voltages. Auxiliary generators are mounted atop an auziliary power unit (APU). The
APU is normally used on ground (when no engines are available) to provide hydraulic and
electric power, but can also be used in flight when one of the primary generators fails. With a
small abuse of notation, we also refer to auxiliary generators themselves as APUs. Batteries
are primarily used at start-up and in case of emergency. AC and DC buses (both high and
low-voltage) deliver power to a number of loads. Buses can be essential or non-essential.
Essential buses supply loads that should always be powered, while non-essential ones supply
loads that may be shed in the case of a fault or limited power capacity.

Contactors are electromechanical switches that connect components, and therefore de-
termine the power flow from sources to loads. They are configured to be open or closed by
one or multiple controllers (not shown in Figure 1.3), denoted as Bus Power Control Units
(BPCU).

Loads include subsystems such as lighting, heating, avionics and navigation. Bus loads
also include power conversion devices: Rectifier Units (RUs) convert AC power to DC power,
AC transformers (ACTs) step down a high-voltage to a lower one, Transformer Rectifier
Units (TRUs) both decrease the voltage level and convert it from AC to DC.



CHAPTER 1. INTRODUCTION 9

:'"j'_ """"""""" R ""_'. itk Sl ful Sl
T T i T o
| [[Hvac Bus1 H |-'-i-| HVAC Bus 2 |—| |—| HVAC Bus 3 |-u-| H HVAC Bus4 |
! I
1
1
1

T ' !
[ LVAC Bus 1 H EH LVAC Bus 2 | —

T T ! T

1
—l_ 1
L:—f\——| LVACESSBus3_ || j+{ LVACESSBus4 |——f\—§—
S '_______:L_ ____________________
[TRu_] . B [ TRU ]
[ LvDCESS Bus 1 LVDC ESSBus 2 |
s H e

T 'i T L=
—§—| —IL;DCBUSS |—||+| LVDCBus—I4_ |—§—

____________________________________________________

Figure 1.3: Single-line diagram of an aircraft electric power system adapted from a Honey-
well, Inc. patent [144] (figure from [154]).

1.2.2 System Description

The main AC power sources at the top of Figure 1.3 include two low-voltage generators, two
high-voltage generators, and two APU-mounted auxiliary generators. Each engine connects
to a high-voltage AC (HVAC) generator (L1 and R1) and a low-voltage AC (LVAC) generator
(L2 and R2). Panels, denoted as dashed square boxes, represent groups of components that
are physically separated on the aircraft. The three panels below the generators include the
HVAC buses, which can be selectively connected to the HVAC generators, to the auxiliary
generators, and to each other via contactors, denoted by double bars.

Four rectifier units are selectively connected to buses as HVAC loads. The two pan-
els below the high-voltage DC (HVDC) buses include the LVAC subsystem. A set of AC
transformers (ACTs) convert HVAC power to LVAC power and are connected to four LVAC
buses. LVAC ESS Bus 3 and LVAC ESS Bus 4 are essential and are selectively connected
to the two low-voltage generators. The LVAC essential buses are also connected to rectifier
units, and thus to low-voltage DC (LVDC) power. The LVDC subsystem also contains two
batteries. Power can be selectively routed directly from the HVAC bus to the LVDC buses
3 and 4 using TRUs.
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One or more bus power control units use sensors (which are not depicted in Figure 1.3)
to measure physical quantities, such as voltages and currents, and control the state (open
or closed) of the contactors, to dynamically reconfigure the system based on the status and
availability of the power sources. For the rest of the thesis, we also denote this centralized
or distributed supervisory control unit as BPCU.

Each generator is also controlled by a Generator Control Unit (GCU), which is considered
an internal component, and is not explicitly represented in Figure 1.3. The GCU regulates
the output voltage level delivered by each generator to be within a specified range. Therefore,
fluctuations in the power required by the loads can be directly handled by the GCU within
the generator’s power rating. On the other hand, whenever the power demand exceeds the
generator’s capability, the BPCU is responsible for possibly shedding unessential loads or
rerouting some of them to another power source.

1.2.3 System Requirements

Given a set of loads, together with their power and reliability requirements, the goal is
to determine the system’s architecture and control such that the demand of the loads is
satisfied for all flight conditions and a set of predetermined faults. To better formalize this
design objective, we begin with a qualitative analysis of the main system requirements, by
categorizing them in terms of safety, reliability and performance requirements. For each
of these categories, we provide a few examples that serve as a reference for the rest of the
dissertation.

Safety specifications constrain the way each bus must be powered to avoid loss of essential
features, and the maximum time interval allowed for power shortages. For instance, to avoid
generator damage, we proscribe AC sources to be paralleled, i.e. no AC bus can be powered
by multiple generators at the same time. Moreover, we refine the definition of essential loads
and buses (such as flight-critical actuators) provided above by requiring that they be never
unpowered for more than a specified time t,,,;.

Reliability specifications describe the bounds on the failure probabilities that can be
tolerated for different portions of the system. Based on its failure modes, every component is
characterized by a failure rate. A failure rate of )\ indicates that a failure occurs, on average,
every 1/A hours. For a given mission profile, failure rates can be translated into failure
probabilities so that system reliability specifications are also expressed in terms of the failure
probabilities of the components. Based on the component failure rates, a typical specification
would require that the failure probability for an essential load (i.e., the probability of being
unpowered for longer than t,,,,) be smaller than 1079 per flight hour. The actual probability
value depends on the load criticality [147]. In our example, both the electric power system
topology and the controller should be designed to accommodate any possible combination of
faults potentially causing the failure of an essential component, and having a joint probability
larger than 1079 per flight hour.

Performance requirements specify quality metrics that are desired for the system, in
addition to the safety and reliability requirements reviewed above. For instance, to improve
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the system performance in response to a failure, each bus may be assigned a priority list
determining in which order available generators should be selected to power it. If the first
generator in the list is unavailable, then the bus will be powered by the second generator, and
so on. A hypothetical prioritization list for the HVAC Bus 1 in Figure 1.3 would require,
for instance, that L1 GEN has the priority, if available. Otherwise, Bus 1 should receive
power from the R1 GEN, then from the . APU, and finally from the R APU. In a similar
way, load management policies are also based on priority tables requiring, for instance, that
the available power be first allocated to the non-sheddable loads and then to the sheddable
loads, in a prescribed order. In general, bus power priorities can be integrated in the BPCU
control logic, while load shedding priorities are handled by a load management controller.

Altogether, an aircraft electric power system, as the one discussed above, offers a con-
crete example of an industrial-scale, heterogeneous cyber-physical system, suitable enough
to illustrate the main concepts of this dissertation, and experiment with the proposed de-
sign techniques. Typical sub-systems in aeronautics, such as the EPS, may easily reach a
few thousands top-level requirements, often ambiguously expressed using textual languages,
and intrinsically heterogeneous, spanning safety, reliability and real-time performance, as
highlighted above. As in any CPS design problem, system engineers are to define both the
system architecture, including the number and type of system components, their dimensions,
and their interconnections, and the control algorithm, possibly exploring trade-offs across
their boundaries. However, as the complexity of this system increases, it is more difficult to
perform design space exploration and trade-off analysis at the system level. Designers are
expected to solve combinatorial problems over a large, discrete variable space that is coupled
to a continuous space, where expensive, high-fidelity simulations must be run to achieve the
desired accuracy and provide strong guarantees on the satisfaction of the requirements.

Current design flows for aircraft EPS are, therefore, experiencing all the severe limitations
discussed in Section 1.1, because of the lack of formalized specifications, and the inability
to rigorously model the interactions among heterogeneous components and between the
physical and the cyber sides of the system. To reduce expensive re-design steps, the design
is generally addressed by minor incremental changes on top of consolidated solutions. A
more systematic approach is hindered by the lack of rigorous design methodologies that
allow estimating the impact of earlier design decisions on the final implementation. In the
following, we summarize the limitations of current design methodologies in addressing the
challenges discussed in Section 1.1, and the strategy proposed in this thesis to overcome
them.

1.3 CPS Design Methodology and Tools: The
Challenge of Combining Heterogeneous Worlds

Several languages and tools have been proposed over the years to overcome the limitations
discussed in Section 1.1 and Section 1.2, provide support for different design tasks, and en-
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Figure 1.4: Simplified representation of the V-model together with some state-of-the-art
languages and tools providing support for different design tasks.

able model-based development of CPS. An overview of some of these languages and tools,
which are also iconically represented in Figure 1.4, is provided in Chapter 2. However, the
largest benefits in design technologies are deemed to arrive by addressing the entire system
design process, rather than just considering point solutions of tools and models that ease
only part of the design. Moreover, as we mentioned before, a major bottleneck in the de-
sign of cyber-physical systems is the inability to foresee the impact of design decisions made
early in the design process, e.g. during the concept design phase, on the final implementa-
tion. While researchers from both academia and industry have chartered the field of design
methodologies with increasing clarity, an all-encompassing framework for CPS design that
helps interconnect different tools, possibly operating on different system representations, is
very difficult to assemble, and most designers still resort to patched flows [156].

Some industrial domains such as automotive and aerospace use the “V-model” that was
proposed several years ago by the German defense companies”. As shown in Figure 1.4, in
this methodology, there is a top-down design process that ends with system decomposition

"http://v-modell.iabg.de/
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(the left arm of the V) followed by an integration and verification process that ends with
the verification of the entire system (the right arm of the V). Specifically, as summarized by
Benveniste et al. [34], following product level requirement analysis, subsequent steps would
first evolve a functional architecture supporting product level requirements. Sub-functions
are then re-grouped taking into account re-use and product line requirements into a logical
architecture, whose modules can be developed independently, e.g., by different subsystem
suppliers. The realization of such modules often involves mechatronic design. The top-level
of the technology-oriented architecture would then show the mechatronic architecture of the
module, defining interfaces between the different domains of mechanical, hydraulic, electri-
cal, and electronic system design. Subsequent phases would then unfold the detailed design
for each of these domains, such as the design of the electronic subsystem involving, among
others, the design of electronic control units (ECUs). These design phases are paralleled
by integration phases along the right-hand part of the V, such as integrating basic and ap-
plication software on the ECU hardware to actually construct the electronic control unit,
integrating the complete electronic subsystems, integrating the mechatronic subsystem to
build the module, and integrating multiple modules to build the complete product. An inte-
gral part of V-based development processes are testing activities, where at each integration
level test-suites developed during the design phases are used to verify compliance of the
integrated entity to the specification.

This presentation is overly simplistic, since it does not directly reflect the multi-site,
multi-domain, and cross-organizational design teams involved in the design of electronic
components in today’s complex systems, as well as the parallelization of design activities
motivated by the partitioning of the design space into different subsystems and domains.
Moreover, re-use strategies lead to separate design activities, which then short-cut or signif-
icantly reduce the effort both in design and integration steps. Therefore, in spite of being
very popular and widely referenced, the V-model tends to hide the complexity of the actual
design processes that system companies develop by themselves. The sequential process that
starts with a specification and moves along the arms of the V may often be replaced, in
practice, by a number of iterations and “out-of-order” executions of activities. Furthermore,
it is often observed that heuristic design processes largely based on the V-model tend to
become soon inadequate in many ways:

e This water-fall methodology produced good results when the complexity of the designs
was relatively small. When complexity scales up, we cannot simply wait to initiate
the verification phase after the design is completed. Conventional Verification and
Validation (V&V) techniques performed too late in the design flow do not scale to
highly complex or adaptable systems. Rather we should favor early verification and
continuous monitoring of the design while the refinement steps are taken. In addition,
we should favor “formality” in all aspects of the design flow to allow analysis and even
synthesis with guaranteed properties of the final outcome of the process.

e In traditional flows, design-space exploration is rarely performed adequately, yielding
suboptimal designs where the architecture selection phase does not consider extensibil-
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ity, re-usability, and fault tolerance to the extent that is needed to reduce cost, failure
rates, and time-to-market. System-level design exploration is usually the realm of ex-
perienced architects, often relying on their accrued knowledge and a set of heuristic
evaluations to take risky decisions. Rather, we should favor mechanisms to generate
reliable abstractions that enable design space exploration across different domains in a
scalable way.

e Even if model-based design techniques are largely adopted at the module and com-
ponent levels, tools are domain-specific and hardly interoperable. We should instead
favor new modeling approaches that can mix different physical systems, control logic,
and implementation architectures. In doing so, existing approaches, models, and tools
should be subsumed and not eliminated in order to be smoothly incorporated in current
design flows. A design platform should then be developed to host the new techniques
and to integrate a set of today’s poorly interconnected tools.

In the lack of a comprehensive framework for early requirement validation with tight
safety, reliability and performance guarantees, and for scalable